Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Try to reproduce voc 10-1 results #37

Open
Ze-Yang opened this issue Jul 27, 2022 · 3 comments
Open

Try to reproduce voc 10-1 results #37

Ze-Yang opened this issue Jul 27, 2022 · 3 comments

Comments

@Ze-Yang
Copy link

Ze-Yang commented Jul 27, 2022

I am trying to reproduce 10-1 results as shown in the table below. I notice a large gap of the old class mIoU between my reproduce result (38.82) and your reported one (44.03), roughly 5 percent points. I am wondering what will cause this problem. I run the experiments with 2 x RTX 3090 GPU. I follow your original implementation except for the cuda version. I am using cuda 11.3 because cuda 10.2 does not support RTX 3090. Does it matter?

Btw, may I know what GPU model do you use? I think it requires to have at least 16G to hold a batch of 12 on each device and needs to support cuda 10.2 as well. V100? I guess.

Meanwhile, I notice a weird phenomenon that background performance drops drastically starting from the 8-th step and becomes 0 at 9-th step. I think this harms the old class performance a lot. Do you have a similar issue?

Thanks.

step background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor 0-10 11-20 all
0 95.19% 89.84% 41.01% 89.74% 72.24% 85.02% 95.29% 88.26% 93.30% 43.15% 92.25% x x x x x x x x x x 80.48% - 80.48%
1 92.01% 87.25% 35.76% 82.88% 67.51% 79.44% 94.49% 82.55% 88.44% 46.25% 90.74% 37.38% x x x x x x x x x 77.03% 37.38% 73.73%
2 89.16% 84.00% 34.32% 83.28% 63.44% 68.45% 92.90% 82.54% 82.37% 31.68% 84.48% 24.68% 62.59% x x x x x x x x 72.42% 43.64% 67.99%
3 83.97% 79.07% 31.92% 73.50% 53.19% 51.06% 91.18% 80.90% 76.82% 17.40% 65.26% 18.69% 3.93% 22.11% x x x x x x x 64.02% 14.91% 53.50%
4 79.89% 77.61% 35.83% 74.77% 47.67% 49.70% 90.73% 78.02% 79.41% 13.21% 65.81% 17.77% 9.43% 20.52% 33.81% x x x x x x 62.97% 20.38% 51.61%
5 84.56% 84.34% 37.88% 81.72% 53.81% 56.75% 90.72% 82.48% 82.98% 13.77% 69.20% 0.57% 0.00% 26.10% 58.37% 69.71% x x x x x 67.11% 30.95% 55.81%
6 82.18% 80.07% 37.93% 69.65% 49.38% 55.32% 89.74% 81.63% 77.15% 14.10% 61.90% 0.48% 0.00% 23.42% 51.28% 64.77% 5.04% x x x x 63.55% 24.16% 49.65%
7 80.42% 77.61% 36.88% 50.15% 42.00% 53.55% 75.10% 80.31% 74.55% 10.30% 20.94% 0.05% 0.00% 24.42% 50.90% 57.63% 0.00% 19.33% x x x 54.71% 21.76% 41.90%
8 44.45% 71.53% 35.75% 51.99% 44.17% 50.20% 80.98% 76.45% 69.19% 29.32% 40.46% 0.18% 0.00% 22.80% 51.03% 71.25% 0.00% 15.88% 3.26% x x 54.04% 20.55% 39.94%
9 0.55% 61.80% 35.53% 51.15% 44.62% 50.52% 69.98% 77.75% 57.82% 9.92% 16.76% 0.05% 0.00% 23.56% 46.89% 62.95% 0.00% 7.37% 1.49% 2.27% x 43.31% 16.06% 31.05%
10 0.00% 50.48% 32.40% 38.14% 40.64% 51.90% 62.86% 69.76% 56.53% 17.47% 6.83% 0.02% 0.00% 23.25% 53.95% 66.92% 0.00% 1.73% 1.67% 0.04% 2.60% 38.82% 15.02% 27.49%
@arthurdouillard
Copy link
Owner

I was using 2 V100 GPUs.

Do you also use the same batch size as me?

I know that the mixed precision could something give different results depending on the GPU/CUDA. Have you tried without it?

Do you have a similar issue?

Unfortunately I have left my lab as I have finished my lab, and I don't have anymore those intermediary results.

@Ze-Yang
Copy link
Author

Ze-Yang commented Jul 27, 2022

I have tried it on 2x RTX 2080Ti with cuda 10.2 (see environment.txt for the full environment). However, I got almost similar results as running with 2x RTX 3090. I think the cuda version and pytorch version does not affect the results that much. It still exists some gap (4.5 percent point) in the old class performance. Looking forward to your advice. Thanks.

Do you also use the same batch size as me?

Yes, I run with the default batch size 24, each GPU with 12.

step background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor 0-10 11-20 all
0 95.20% 89.52% 40.69% 89.28% 71.95% 84.31% 95.54% 88.19% 92.76% 46.13% 91.65% x x x x x x x x x x 80.48% 80.48%
1 92.01% 85.67% 36.34% 84.94% 69.18% 78.48% 94.33% 82.29% 87.31% 48.07% 90.68% 37.13% x x x x x x x x x 77.21% 37.13% 73.87%
2 88.68% 81.91% 35.53% 83.66% 63.85% 66.64% 93.23% 79.39% 81.74% 30.81% 85.40% 28.75% 61.16% x x x x x x x x 71.90% 44.96% 67.75%
3 83.42% 81.38% 32.47% 77.93% 55.47% 54.16% 91.72% 79.14% 73.56% 15.42% 67.04% 20.92% 13.42% 23.46% x x x x x x x 64.70% 19.26% 54.96%
4 77.20% 73.92% 35.52% 72.78% 46.47% 52.34% 89.25% 77.28% 75.36% 10.86% 71.35% 17.17% 15.28% 21.92% 32.24% x x x x x x 62.03% 21.65% 51.26%
5 82.93% 85.78% 38.60% 78.68% 54.56% 58.62% 89.83% 81.99% 81.21% 11.34% 72.56% 0.38% 0.00% 29.06% 56.57% 69.71% x x x x x 66.92% 31.14% 55.74%
6 80.73% 79.88% 37.65% 67.48% 50.95% 55.54% 90.07% 81.10% 78.17% 11.73% 65.35% 0.70% 0.00% 25.87% 47.94% 64.26% 5.08% x x x x 63.51% 23.98% 49.56%
7 76.70% 78.55% 37.95% 60.99% 40.11% 54.74% 71.47% 79.51% 73.48% 8.12% 36.72% 0.06% 0.00% 26.92% 41.19% 56.38% 0.00% 20.49% x x x 56.21% 20.72% 42.41%
8 27.93% 71.21% 35.10% 49.39% 41.93% 52.80% 76.69% 76.92% 71.46% 23.04% 38.82% 0.08% 0.00% 25.62% 47.53% 70.07% 0.00% 0.00% 2.51% x x 51.39% 18.22% 37.43%
9 0.00% 65.28% 34.59% 52.03% 41.87% 54.80% 68.75% 76.32% 62.90% 6.32% 30.98% 0.01% 0.00% 25.35% 51.62% 59.17% 0.00% 0.00% 1.46% 6.82% x 44.89% 16.05% 31.91%
10 0.00% 59.74% 23.64% 41.97% 37.19% 56.25% 58.29% 74.52% 59.88% 11.13% 11.89% 0.02% 0.00% 24.02% 55.30% 64.20% 0.00% 0.00% 1.70% 0.00% 3.38% 39.50% 14.86% 27.77%

@Ze-Yang
Copy link
Author

Ze-Yang commented Aug 3, 2022

@arthurdouillard May I know do you use different hyperparameter settings for different tasks, e.g., 10-1, 15-5, 15-1, etc.? Because I can reproduce the results for 15-1.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants