-
Notifications
You must be signed in to change notification settings - Fork 55
/
RecordWriterCustom.py
208 lines (176 loc) · 9.1 KB
/
RecordWriterCustom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import sys
import numpy as np
import cv2
import os
import tensorflow as tf
HEIGHT = 256
WIDTH = 256
NUM_POINTS = 50000
NUM_CHANNELS = [7, 64, 64, 64, 128, 256]
SIZES = [WIDTH, WIDTH // 2, WIDTH // 4, WIDTH // 8, WIDTH // 16, WIDTH // 32]
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def fitPlane(points):
if points.shape[0] == points.shape[1]:
return np.linalg.solve(points, np.ones(points.shape[0]))
else:
return np.linalg.lstsq(points, np.ones(points.shape[0]))[0]
class RecordWriterCustom():
def __init__(self, filename_list, numPoints=50000, numInputChannels=6):
"""filename_list: a list of filename dictionaries Each element is a dict of filenames for data entries, which must contains 'point_cloud'
numPoints: the number of sample points
numInputChannels: [3: XYZ, 6:XYZ + RGB, 9: XYZ + RGB + Normals]
"""
self.numPoints = numPoints
self.numInputChannels = numInputChannels
#super(RecordWriterTango, self).__init__()
self.writer = tf.python_io.TFRecordWriter('data/' + filename + '_' + options.task + '.tfrecords')
for filename_dict in filename_list:
self.writeExample(filename_dict)
continue
self.writer.close()
return
def loadPoints(self, filename):
"""Function to load the point cloud"""
assert(False, "Not implemented")
return
def rotatePoints(self, points, rotation_matrix=None):
"""Function to rotate the point cloud to be axis-aligned.
Recommand annotate the rotation by adapting the annotator here: https://github.com/art-programmer/FloorplanAnnotator.
If the annotation is not available we use heuristics to rotate the point cloud
"""
#assert(False, "Not implemented")
if transformation:
rotated_points = points.copy()
rotated_points[:, :3] = np.matmul(points[:, :3], rotation_matrix.transpose())
if points.shape[-1] >= 9:
rotated_points[:, 6:9] = np.matmul(points[:, 6:9], rotation_matrix.transpose())
pass
return rotated_points
if points.shape[-1] >= 9:
## Point normal exists
normals = points[:, 6:9]
else:
## Compute the point normal by ourselves. Consider using PCL if available. If not we sample some points and compute their normals
sampled_points = points[np.random.choice(np.arange(len(points), dtype=np.int32), 100)]
scale = (points[:, :3].max(0) - points[:, :3].min(0)).max()
normals = []
for sampled_point in sampled_points:
neighbor_points = points[np.linalg.norm(points - sampled_point, axis=1) < scale * 0.02]
if len(neighbor_points) >= 3:
## Consider to use try catch for fitPlane as it might encounter singular cases
plane = fitPlane(neighbor_points)
normal = plane / max(np.linalg.norm(plane), 1e-4)
normals.append(normal)
pass
continue
normals = np.stack(normals, axis=0)
pass
polarAngles = np.arange(16) * np.pi / 2 / 16
azimuthalAngles = np.arange(64) * np.pi * 2 / 64
polarAngles = np.expand_dims(polarAngles, -1)
azimuthalAngles = np.expand_dims(azimuthalAngles, 0)
normalBins = np.stack([np.sin(polarAngles) * np.cos(azimuthalAngles), np.tile(np.cos(polarAngles), [1, azimuthalAngles.shape[1]]), -np.sin(polarAngles) * np.sin(azimuthalAngles)], axis=2)
normalBins = np.reshape(normalBins, [-1, 3])
numBins = normalBins.shape[0]
normalDiff = np.tensordot(normals, normalBins, axes=([1], [1]))
normalDiffSign = np.sign(normalDiff)
normalDiff = np.maximum(normalDiff, -normalDiff)
normalMask = one_hot(np.argmax(normalDiff, axis=-1), numBins)
bins = normalMask.sum(0)
maxNormals = np.expand_dims(normals, 1) * np.expand_dims(normalMask, -1)
maxNormals *= np.expand_dims(normalDiffSign, -1)
averageNormals = maxNormals.sum(0) / np.maximum(np.expand_dims(bins, -1), 1e-4)
averageNormals /= np.maximum(np.linalg.norm(averageNormals, axis=-1, keepdims=True), 1e-4)
dominantNormal_1 = averageNormals[np.argmax(bins)]
dotThreshold_1 = np.cos(np.deg2rad(100))
dotThreshold_2 = np.cos(np.deg2rad(80))
dot_1 = np.tensordot(normalBins, dominantNormal_1, axes=([1], [0]))
bins[np.logical_or(dot_1 < dotThreshold_1, dot_1 > dotThreshold_2)] = 0
dominantNormal_2 = averageNormals[np.argmax(bins)]
# dot_2 = np.tensordot(normalBins, dominantNormal_2, axes=([1], [0]))
# bins[np.logical_or(dot_2 < dotThreshold_1, dot_2 > dotThreshold_2)] = 0
# dominantNormal_3 = averageNormals[np.argmax(bins)]
dominantNormal_3 = np.cross(dominant_normal_1, dominant_normal_2)
dominantNormal_2 = np.cross(dominant_normal_3, dominant_normal_1)
rotation_matrix = np.stack([dominantNormal_1, dominantNormal_2, dominantNormal_3], axis=0)
rotated_points = points.copy()
rotated_points[:, :3] = np.matmul(points[:, :3], rotation_matrix.transpose())
if points.shape[-1] >= 9:
rotated_points[:, 6:9] = np.matmul(points[:, 6:9], rotation_matrix.transpose())
pass
## Rectify the rotation matrix
return rotated_points
def scalePoints(self, points, rotation_matrix=None):
"""Function to scale the point cloud to range [0, 1]."""
XYZ = points[:, :3]
mins = XYZ.min(0, keepdims=True)
maxs = XYZ.max(0, keepdims=True)
maxRange = (maxs - mins)[:, :2].max()
padding = maxRange * 0.05
maxRange += padding * 2
mins = (maxs + mins) / 2 - maxRange / 2
XYZ = (XYZ - mins) / maxRange
points[:, :3] = XYZ
return points
def computeCoordinates(self, points):
"""Compute the image coordinate for each point"""
coordinates = np.minimum(np.maximum(np.round(points[:, :2] * imageSize).astype(np.int32), 0), imageSize - 1)
coordinates = coordinates[:, 1] * WIDTH + coordinates[:, 0]
return coordinates
def load(self, name, filename):
"""Function to load info"""
assert(False, "Not implemented")
return
def writeExample(self, filename_dict):
"""Write one data entry"""
assert('point_cloud' in filename_dict)
## Implement a function to load the point cloud as a numpy array of size [NxC] where N is the number of points and C is the number of channels
points = loadPoints(filename_dict['point_cloud'])
points = points[:, :self.numInputChannels]
if len(points) < self.numPoints:
indices = np.arange(len(points))
points = np.concatenate([points, points[np.random.choice(indices, self.numPoints - len(points))]], axis=0)
elif len(points) > self.numPoints:
sampledInds = np.arange(len(points))
points = points[np.random.choice(indices, self.numPoints)]
pass
points = self.rotatedPoints(points)
points = self.scalePoints(points)
imageSize = np.array([WIDTH, HEIGHT])
indicesMap = self.computeCoordinates()
info_dict = {}
for info_name in ['corner_gt', 'icon_gt', 'room_gt', 'image_feature']:
if info_name in filename_dict:
info = self.load(info_name, filename_dict[info_name])
else:
if info_name == 'corner_gt':
info = np.zeros((1, 3))
elif info_name in ['icon_gt', 'room_gt']:
info = np.zeros((HEIGHT, WIDTH), dtype=uint8)
else:
info = np.zeros(sum([size * size * numChannels for size, numChannels in zip(SIZES, NUM_CHANNELS)[1:]]))
pass
pass
info_dict[info_name] = info
continue
example = tf.train.Example(features=tf.train.Features(feature={
'image_path': _bytes_feature(filename_dict['point_cloud']),
'points': _float_feature(points.reshape(-1)),
'point_indices': _int64_feature(indicesMap.reshape(-1)),
'corner': _int64_feature(info['corner_gt'].reshape(-1)),
'num_corners': _int64_feature([len(info['corner_gt'])]),
'icon': _bytes_feature(info['icon_gt'].tostring()),
'room': _bytes_feature(info['room_gt'].tostring()),
'image': _float_feature(info['image_feature'].reshape(-1)),
'flags': _int64_feature(np.zeros((2, dtype=np.int64))),
}))
self.writer.write(example.SerializeToString())
return
if __name__ == "__main__":
RecordWriterCustom()
exit(1)