$ { , _ \
$$
\backslash
$$
$$
\alpha, \beta, …, \omega
$$
$$
\Gamma, \Delta, …, \Omega
$$
$$
\land, \lor, \lnot, \forall, \exists, \top, \bot, \vdash, \vDash
$$
$$
\lt, \gt, \le, \ge, \neq, \not, \not\lt
$$
$$
\times, \div, \pm, \mp, \cdot
$$
$$
\cup, \cap, \setminus, \subset, \subseteq, \subsetneq, \supset, \in, \notin, \emptyset, \varnothing
$$
$$
\to, \rightarrow, \leftarrow, \Rightarrow, \Leftarrow, \mapsto
$$
$$
\star, \ast, \oplus, \circ, \bullet
$$
$$
\approx, \sim, \simeq, \cong, \equiv, \prec, \lhd
$$
$$
\infty, \aleph_0, \nabla, \partial, \Im, \Re
$$
$$
a\equiv b\pmod n
$$
$$
\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}
$$
$$
\lim_{x\to 0} f(x)
$$
$$
\binom{n+1}{2k}
$$
$$
a, b, \ldots , y, z
$$
$$
a + b + \cdots + y + z
$$
$$
\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{pmatrix}
$$
$$
\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{bmatrix}
$$
$$
\begin{Bmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{Bmatrix}
$$
$$
\begin{vmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{vmatrix}
$$
$$
\begin{Vmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{Vmatrix}
$$
$$
\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{pmatrix}
$$
$$
\epsilon, \varepsilon, \phi, \varphi, \ell
$$
$$
\prod, \bigcup, \bigcap, \int, \iint, \iiint
$$
$$
a, b, a; b, a\quad b, a\qquad b
$$
$$
\hat x, \widehat {abc}, \bar x, \overline {abc}, \vec x, \overrightarrow {abc}, \overleftrightarrow {abc}, \dot x \ddot x
$$
$$
\text{is extra large}
$$
$$
x^{y^z}
$$
$$
{a+1\over b+1}
$$
$$
\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)
$$
$$
\left(\frac{\sqrt x}{y^3}\right)
$$
$$
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2
\end{matrix}
$$
$$
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
$$
$$
\mathbf {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathtt {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathrm {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathsf {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathcal {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathscr {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathfrak {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$
\mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz}
$$
$$a{\bold e}\alpha + b\tilde{\bold e}\alpha + c{\bold e}_x = \bold 0$$
$${\bold e}\alpha = \begin{pmatrix}\cos\alpha\ \sin\alpha\end{pmatrix} \quad and \quad {\tilde\bold e}\alpha = \begin{pmatrix}-\sin\alpha\ \cos\alpha\end{pmatrix}$$
$$-c{\bold e}x = a{\bold e}\alpha + b\tilde{\bold e}_\alpha$$
$$c^2 = a^2 + b^2$$ (2)
$cp = a^2$
$cq = b^2$
$pq = h^2$