Skip to content

Latest commit

 

History

History
59 lines (45 loc) · 2.26 KB

Readme.md

File metadata and controls

59 lines (45 loc) · 2.26 KB

Floaty Removal

This repository provides the implementation of our post-processing approach for floater removal in Neural Radiance Fields, specifically Instant-NGP.

A Post Processing Technique to Automatically Remove Floater Artifacts in Neural Radiance Fields
Tristan Wirth, Arne Rak, Volker Knauthe, Dieter W. Fellner
Computer Graphics Forum v42, 2023

A Dockerfile is provided for ease of use.

Python bindings for manipulating the density grid in Instant-NGP are provided in our Instant-NGP fork.

Prerequisites

  1. NVIDIA GPU (RTX 20 Series and above)
  2. CUDA Toolkit (11.2+)
  3. Docker and Docker Compose
  4. For evaluation, you may download the Nerfbusters dataset and insert it into the dataset folder. It will be mounted in the docker container.

Floaty Removal Docker Container

# build image
docker compose -f ./docker-compose.yml build floatyremoval
# optional if Instant-NGP GUI is to be used
xhost local:root
# open bash inside the container
docker compose -f ./docker-compose.yml run floatyremoval /bin/bash

Run colmap

From the Docker container's bash, run the colmap2nerf.py script to generate a transforms.json file for Instant-NGP.

cd dataset/pikachu
python3 /opt/instant-ngp/scripts/colmap2nerf.py --run_colmap --images images_2

Post-processing density grid

Example usage of our post-processing approach for floater removal is shown in eval.py.

cd /volume
python3 eval.py dataset/pikachu

Citation

@article {10.1111:cgf.14977,
    journal = {Computer Graphics Forum},
    title = {{A Post Processing Technique to Automatically Remove Floater Artifacts in Neural Radiance Fields}},
    author = {Wirth, Tristan and Rak, Arne and Knauthe, Volker and Fellner, Dieter W.},
    year = {2023},
    publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
    ISSN = {1467-8659},
    DOI = {10.1111/cgf.14977}
}