-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dijkstra.js
76 lines (67 loc) · 1.73 KB
/
Dijkstra.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/**
* Author: Samarth Jain
* Dijkstra's Algorithm implementation in JavaScript
* Dijkstra's Algorithm calculates the minimum distance between two nodes.
* It is used to find the shortest path.
* It uses graph data structure.
*/
function createGraph (V, E) {
// V - Number of vertices in graph
// E - Number of edges in graph (u,v,w)
const adjList = [] // Adjacency list
for (let i = 0; i < V; i++) {
adjList.push([])
}
for (let i = 0; i < E.length; i++) {
adjList[E[i][0]].push([E[i][1], E[i][2]])
adjList[E[i][1]].push([E[i][0], E[i][2]])
}
return adjList
}
function djikstra (graph, V, src) {
const vis = Array(V).fill(0)
const dist = []
for (let i = 0; i < V; i++) dist.push([10000, -1])
dist[src][0] = 0
for (let i = 0; i < V - 1; i++) {
let mn = -1
for (let j = 0; j < V; j++) {
if (vis[j] === 0) {
if (mn === -1 || dist[j][0] < dist[mn][0]) mn = j
}
}
vis[mn] = 1
for (let j = 0; j < graph[mn].length; j++) {
const edge = graph[mn][j]
if (vis[edge[0]] === 0 && dist[edge[0]][0] > dist[mn][0] + edge[1]) {
dist[edge[0]][0] = dist[mn][0] + edge[1]
dist[edge[0]][1] = mn
}
}
}
return dist
}
export { createGraph, djikstra }
// const V = 9
// const E = [
// [0, 1, 4],
// [0, 7, 8],
// [1, 7, 11],
// [1, 2, 8],
// [7, 8, 7],
// [6, 7, 1],
// [2, 8, 2],
// [6, 8, 6],
// [5, 6, 2],
// [2, 5, 4],
// [2, 3, 7],
// [3, 5, 14],
// [3, 4, 9],
// [4, 5, 10]
// ]
// const graph = createGraph(V, E)
// const distances = djikstra(graph, V, 0)
/**
* The first value in the array determines the minimum distance and the
* second value represents the parent node from which the minimum distance has been calculated
*/