forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_label_smoothing.py
executable file
·52 lines (42 loc) · 1.76 KB
/
test_label_smoothing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from distutils.version import LooseVersion
import torch
from label_smoothing import LabelSmoothingLoss
torch_ver = LooseVersion(torch.__version__)
def test_with_torch_label_smoothing_loss():
if torch_ver < LooseVersion("1.10.0"):
print(f"Current torch version: {torch_ver}")
print("Please use torch >= 1.10 to run this test - skipping")
return
torch.manual_seed(20211105)
x = torch.rand(20, 30, 5000)
tgt = torch.randint(low=-1, high=x.size(-1), size=x.shape[:2])
for reduction in ["none", "sum", "mean"]:
custom_loss_func = LabelSmoothingLoss(
ignore_index=-1, label_smoothing=0.1, reduction=reduction
)
custom_loss = custom_loss_func(x, tgt)
torch_loss_func = torch.nn.CrossEntropyLoss(
ignore_index=-1, reduction=reduction, label_smoothing=0.1
)
torch_loss = torch_loss_func(x.reshape(-1, x.size(-1)), tgt.reshape(-1))
assert torch.allclose(custom_loss, torch_loss)
def main():
test_with_torch_label_smoothing_loss()
if __name__ == "__main__":
main()