-
Notifications
You must be signed in to change notification settings - Fork 217
/
constraint_system.rs
1171 lines (1050 loc) · 44.2 KB
/
constraint_system.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#[cfg(feature = "std")]
use crate::r1cs::ConstraintTrace;
use crate::r1cs::{LcIndex, LinearCombination, Matrix, SynthesisError, Variable};
use ark_ff::Field;
use ark_std::{
any::{Any, TypeId},
boxed::Box,
cell::{Ref, RefCell, RefMut},
collections::BTreeMap,
format,
rc::Rc,
string::String,
vec,
vec::Vec,
};
/// Computations are expressed in terms of rank-1 constraint systems (R1CS).
/// The `generate_constraints` method is called to generate constraints for
/// both CRS generation and for proving.
// TODO: Think: should we replace this with just a closure?
pub trait ConstraintSynthesizer<F: Field> {
/// Drives generation of new constraints inside `cs`.
fn generate_constraints(self, cs: ConstraintSystemRef<F>) -> crate::r1cs::Result<()>;
}
/// An Rank-One `ConstraintSystem`. Enforces constraints of the form
/// `⟨a_i, z⟩ ⋅ ⟨b_i, z⟩ = ⟨c_i, z⟩`, where `a_i`, `b_i`, and `c_i` are linear
/// combinations over variables, and `z` is the concrete assignment to these
/// variables.
#[derive(Debug, Clone)]
pub struct ConstraintSystem<F: Field> {
/// The mode in which the constraint system is operating. `self` can either
/// be in setup mode (i.e., `self.mode == SynthesisMode::Setup`) or in
/// proving mode (i.e., `self.mode == SynthesisMode::Prove`). If we are
/// in proving mode, then we have the additional option of whether or
/// not to construct the A, B, and C matrices of the constraint system
/// (see below).
pub mode: SynthesisMode,
/// The number of variables that are "public inputs" to the constraint
/// system.
pub num_instance_variables: usize,
/// The number of variables that are "private inputs" to the constraint
/// system.
pub num_witness_variables: usize,
/// The number of constraints in the constraint system.
pub num_constraints: usize,
/// The number of linear combinations
pub num_linear_combinations: usize,
/// The parameter we aim to minimize in this constraint system (either the
/// number of constraints or their total weight).
pub optimization_goal: OptimizationGoal,
/// Assignments to the public input variables. This is empty if `self.mode
/// == SynthesisMode::Setup`.
pub instance_assignment: Vec<F>,
/// Assignments to the private input variables. This is empty if `self.mode
/// == SynthesisMode::Setup`.
pub witness_assignment: Vec<F>,
/// Map for gadgets to cache computation results.
pub cache_map: Rc<RefCell<BTreeMap<TypeId, Box<dyn Any>>>>,
lc_map: BTreeMap<LcIndex, LinearCombination<F>>,
#[cfg(feature = "std")]
constraint_traces: Vec<Option<ConstraintTrace>>,
a_constraints: Vec<LcIndex>,
b_constraints: Vec<LcIndex>,
c_constraints: Vec<LcIndex>,
lc_assignment_cache: Rc<RefCell<BTreeMap<LcIndex, F>>>,
}
impl<F: Field> Default for ConstraintSystem<F> {
fn default() -> Self {
Self::new()
}
}
/// Defines the mode of operation of a `ConstraintSystem`.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub enum SynthesisMode {
/// Indicate to the `ConstraintSystem` that it should only generate
/// constraint matrices and not populate the variable assignments.
Setup,
/// Indicate to the `ConstraintSystem` that it populate the variable
/// assignments. If additionally `construct_matrices == true`, then generate
/// the matrices as in the `Setup` case.
Prove {
/// If `construct_matrices == true`, then generate
/// the matrices as in the `Setup` case.
construct_matrices: bool,
},
}
/// Defines the parameter to optimize for a `ConstraintSystem`.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub enum OptimizationGoal {
/// Make no attempt to optimize.
None,
/// Minimize the number of constraints.
Constraints,
/// Minimize the total weight of the constraints (the number of nonzero
/// entries across all constraints).
Weight,
}
impl<F: Field> ConstraintSystem<F> {
#[inline]
fn make_row(&self, l: &LinearCombination<F>) -> Vec<(F, usize)> {
let num_input = self.num_instance_variables;
l.0.iter()
.filter_map(|(coeff, var)| {
if coeff.is_zero() {
None
} else {
Some((
*coeff,
var.get_index_unchecked(num_input).expect("no symbolic LCs"),
))
}
})
.collect()
}
/// Construct an empty `ConstraintSystem`.
pub fn new() -> Self {
Self {
num_instance_variables: 1,
num_witness_variables: 0,
num_constraints: 0,
num_linear_combinations: 0,
a_constraints: Vec::new(),
b_constraints: Vec::new(),
c_constraints: Vec::new(),
instance_assignment: vec![F::one()],
witness_assignment: Vec::new(),
cache_map: Rc::new(RefCell::new(BTreeMap::new())),
#[cfg(feature = "std")]
constraint_traces: Vec::new(),
lc_map: BTreeMap::new(),
lc_assignment_cache: Rc::new(RefCell::new(BTreeMap::new())),
mode: SynthesisMode::Prove {
construct_matrices: true,
},
optimization_goal: OptimizationGoal::Constraints,
}
}
/// Create a new `ConstraintSystemRef<F>`.
pub fn new_ref() -> ConstraintSystemRef<F> {
ConstraintSystemRef::new(Self::new())
}
/// Set `self.mode` to `mode`.
pub fn set_mode(&mut self, mode: SynthesisMode) {
self.mode = mode;
}
/// Check whether `self.mode == SynthesisMode::Setup`.
pub fn is_in_setup_mode(&self) -> bool {
self.mode == SynthesisMode::Setup
}
/// Check whether this constraint system aims to optimize weight,
/// number of constraints, or neither.
pub fn optimization_goal(&self) -> OptimizationGoal {
self.optimization_goal
}
/// Specify whether this constraint system should aim to optimize weight,
/// number of constraints, or neither.
pub fn set_optimization_goal(&mut self, goal: OptimizationGoal) {
// `set_optimization_goal` should only be executed before any constraint or value is created.
assert_eq!(self.num_instance_variables, 1);
assert_eq!(self.num_witness_variables, 0);
assert_eq!(self.num_constraints, 0);
assert_eq!(self.num_linear_combinations, 0);
self.optimization_goal = goal;
}
/// Check whether or not `self` will construct matrices.
pub fn should_construct_matrices(&self) -> bool {
match self.mode {
SynthesisMode::Setup => true,
SynthesisMode::Prove { construct_matrices } => construct_matrices,
}
}
/// Return a variable representing the constant "zero" inside the constraint
/// system.
#[inline]
pub fn zero() -> Variable {
Variable::Zero
}
/// Return a variable representing the constant "one" inside the constraint
/// system.
#[inline]
pub fn one() -> Variable {
Variable::One
}
/// Obtain a variable representing a new public instance input.
#[inline]
pub fn new_input_variable<Func>(&mut self, f: Func) -> crate::r1cs::Result<Variable>
where
Func: FnOnce() -> crate::r1cs::Result<F>,
{
let index = self.num_instance_variables;
self.num_instance_variables += 1;
if !self.is_in_setup_mode() {
self.instance_assignment.push(f()?);
}
Ok(Variable::Instance(index))
}
/// Obtain a variable representing a new private witness input.
#[inline]
pub fn new_witness_variable<Func>(&mut self, f: Func) -> crate::r1cs::Result<Variable>
where
Func: FnOnce() -> crate::r1cs::Result<F>,
{
let index = self.num_witness_variables;
self.num_witness_variables += 1;
if !self.is_in_setup_mode() {
self.witness_assignment.push(f()?);
}
Ok(Variable::Witness(index))
}
/// Obtain a variable representing a linear combination.
#[inline]
pub fn new_lc(&mut self, lc: LinearCombination<F>) -> crate::r1cs::Result<Variable> {
let index = LcIndex(self.num_linear_combinations);
let var = Variable::SymbolicLc(index);
self.lc_map.insert(index, lc);
self.num_linear_combinations += 1;
Ok(var)
}
/// Enforce a R1CS constraint with the name `name`.
#[inline]
pub fn enforce_constraint(
&mut self,
a: LinearCombination<F>,
b: LinearCombination<F>,
c: LinearCombination<F>,
) -> crate::r1cs::Result<()> {
if self.should_construct_matrices() {
let a_index = self.new_lc(a)?.get_lc_index().unwrap();
let b_index = self.new_lc(b)?.get_lc_index().unwrap();
let c_index = self.new_lc(c)?.get_lc_index().unwrap();
self.a_constraints.push(a_index);
self.b_constraints.push(b_index);
self.c_constraints.push(c_index);
}
self.num_constraints += 1;
#[cfg(feature = "std")]
{
let trace = ConstraintTrace::capture();
self.constraint_traces.push(trace);
}
Ok(())
}
/// Count the number of times each LC is used within other LCs in the
/// constraint system
fn lc_num_times_used(&self, count_sinks: bool) -> Vec<usize> {
let mut num_times_used = vec![0; self.lc_map.len()];
// Iterate over every lc in constraint system
for (index, lc) in self.lc_map.iter() {
num_times_used[index.0] += count_sinks as usize;
// Increment the counter for each lc that this lc has a direct dependency on.
for &(_, var) in lc.iter() {
if var.is_lc() {
let lc_index = var.get_lc_index().expect("should be lc");
num_times_used[lc_index.0] += 1;
}
}
}
num_times_used
}
/// Transform the map of linear combinations.
/// Specifically, allow the creation of additional witness assignments.
///
/// This method is used as a subroutine of `inline_all_lcs` and `outline_lcs`.
///
/// The transformer function is given a references of this constraint system (&self),
/// number of times used, and a mutable reference of the linear combination to be transformed.
/// (&ConstraintSystem<F>, usize, &mut LinearCombination<F>)
///
/// The transformer function returns the number of new witness variables needed
/// and a vector of new witness assignments (if not in the setup mode).
/// (usize, Option<Vec<F>>)
pub fn transform_lc_map(
&mut self,
transformer: &mut dyn FnMut(
&ConstraintSystem<F>,
usize,
&mut LinearCombination<F>,
) -> (usize, Option<Vec<F>>),
) {
// `transformed_lc_map` stores the transformed linear combinations.
let mut transformed_lc_map = BTreeMap::<_, LinearCombination<F>>::new();
let mut num_times_used = self.lc_num_times_used(false);
// This loop goes through all the LCs in the map, starting from
// the early ones. The transformer function is applied to the
// inlined LC, where new witness variables can be created.
for (&index, lc) in &self.lc_map {
let mut transformed_lc = LinearCombination::new();
// Inline the LC, unwrapping symbolic LCs that may constitute it,
// and updating them according to transformations in prior iterations.
for &(coeff, var) in lc.iter() {
if var.is_lc() {
let lc_index = var.get_lc_index().expect("should be lc");
// If `var` is a `SymbolicLc`, fetch the corresponding
// inlined LC, and substitute it in.
//
// We have the guarantee that `lc_index` must exist in
// `new_lc_map` since a LC can only depend on other
// LCs with lower indices, which we have transformed.
//
let lc = transformed_lc_map
.get(&lc_index)
.expect("should be inlined");
transformed_lc.extend((lc * coeff).0.into_iter());
// Delete linear combinations that are no longer used.
//
// Deletion is safe for both outlining and inlining:
// * Inlining: the LC is substituted directly into all use sites, and so once it
// is fully inlined, it is redundant.
//
// * Outlining: the LC is associated with a new variable `w`, and a new
// constraint of the form `lc_data * 1 = w`, where `lc_data` is the actual
// data in the linear combination. Furthermore, we replace its entry in
// `new_lc_map` with `(1, w)`. Once `w` is fully inlined, then we can delete
// the entry from `new_lc_map`
//
num_times_used[lc_index.0] -= 1;
if num_times_used[lc_index.0] == 0 {
// This lc is not used any more, so remove it.
transformed_lc_map.remove(&lc_index);
}
} else {
// Otherwise, it's a concrete variable and so we
// substitute it in directly.
transformed_lc.push((coeff, var));
}
}
transformed_lc.compactify();
// Call the transformer function.
let (num_new_witness_variables, new_witness_assignments) =
transformer(&self, num_times_used[index.0], &mut transformed_lc);
// Insert the transformed LC.
transformed_lc_map.insert(index, transformed_lc);
// Update the witness counter.
self.num_witness_variables += num_new_witness_variables;
// Supply additional witness assignments if not in the
// setup mode and if new witness variables are created.
if !self.is_in_setup_mode() && num_new_witness_variables > 0 {
assert!(new_witness_assignments.is_some());
if let Some(new_witness_assignments) = new_witness_assignments {
assert_eq!(new_witness_assignments.len(), num_new_witness_variables);
self.witness_assignment
.extend_from_slice(&new_witness_assignments);
}
}
}
// Replace the LC map.
self.lc_map = transformed_lc_map;
}
/// Naively inlines symbolic linear combinations into the linear
/// combinations that use them.
///
/// Useful for standard pairing-based SNARKs where addition gates are cheap.
/// For example, in the SNARKs such as [\[Groth16\]](https://eprint.iacr.org/2016/260) and
/// [\[Groth-Maller17\]](https://eprint.iacr.org/2017/540), addition gates
/// do not contribute to the size of the multi-scalar multiplication, which
/// is the dominating cost.
pub fn inline_all_lcs(&mut self) {
// Only inline when a matrix representing R1CS is needed.
if !self.should_construct_matrices() {
return;
}
// A dummy closure is used, which means that
// - it does not modify the inlined LC.
// - it does not add new witness variables.
self.transform_lc_map(&mut |_, _, _| (0, None));
}
/// If a `SymbolicLc` is used in more than one location and has sufficient
/// length, this method makes a new variable for that `SymbolicLc`, adds
/// a constraint ensuring the equality of the variable and the linear
/// combination, and then uses that variable in every location the
/// `SymbolicLc` is used.
///
/// Useful for SNARKs like [\[Marlin\]](https://eprint.iacr.org/2019/1047) or
/// [\[Fractal\]](https://eprint.iacr.org/2019/1076), where addition gates
/// are not cheap.
fn outline_lcs(&mut self) {
// Only inline when a matrix representing R1CS is needed.
if !self.should_construct_matrices() {
return;
}
// Store information about new witness variables created
// for outlining. New constraints will be added after the
// transformation of the LC map.
let mut new_witness_linear_combinations = Vec::new();
let mut new_witness_indices = Vec::new();
// It goes through all the LCs in the map, starting from
// the early ones, and decides whether or not to dedicate a witness
// variable for this LC.
//
// If true, the LC is replaced with 1 * this witness variable.
// Otherwise, the LC is inlined.
//
// Each iteration first updates the LC according to outlinings in prior
// iterations, and then sees if it should be outlined, and if so adds
// the outlining to the map.
//
self.transform_lc_map(&mut |cs, num_times_used, inlined_lc| {
let mut should_dedicate_a_witness_variable = false;
let mut new_witness_index = None;
let mut new_witness_assignment = Vec::new();
// Check if it is worthwhile to dedicate a witness variable.
let this_used_times = num_times_used + 1;
let this_len = inlined_lc.len();
// Cost with no outlining = `lc_len * number of usages`
// Cost with outlining is one constraint for `(lc_len) * 1 = {new variable}` and
// using that single new variable in each of the prior usages.
// This has total cost `number_of_usages + lc_len + 2`
if this_used_times * this_len > this_used_times + 2 + this_len {
should_dedicate_a_witness_variable = true;
}
// If it is worthwhile to dedicate a witness variable,
if should_dedicate_a_witness_variable {
// Add a new witness (the value of the linear combination).
// This part follows the same logic of `new_witness_variable`.
let witness_index = cs.num_witness_variables;
new_witness_index = Some(witness_index);
// Compute the witness assignment.
if !cs.is_in_setup_mode() {
let mut acc = F::zero();
for (coeff, var) in inlined_lc.iter() {
acc += *coeff * &cs.assigned_value(*var).unwrap();
}
new_witness_assignment.push(acc);
}
// Add a new constraint for this new witness.
new_witness_linear_combinations.push(inlined_lc.clone());
new_witness_indices.push(witness_index);
// Replace the linear combination with (1 * this new witness).
*inlined_lc = LinearCombination::from(Variable::Witness(witness_index));
}
// Otherwise, the LC remains unchanged.
// Return information about new witness variables.
if new_witness_index.is_some() {
(1, Some(new_witness_assignment))
} else {
(0, None)
}
});
// Add the constraints for the newly added witness variables.
for (new_witness_linear_combination, new_witness_variable) in
new_witness_linear_combinations
.iter()
.zip(new_witness_indices.iter())
{
// Add a new constraint
self.enforce_constraint(
new_witness_linear_combination.clone(),
LinearCombination::from(Self::one()),
LinearCombination::from(Variable::Witness(*new_witness_variable)),
)
.unwrap();
}
}
/// Finalize the constraint system (either by outlining or inlining,
/// if an optimization goal is set).
pub fn finalize(&mut self) {
match self.optimization_goal {
OptimizationGoal::None => self.inline_all_lcs(),
OptimizationGoal::Constraints => self.inline_all_lcs(),
OptimizationGoal::Weight => self.outline_lcs(),
};
}
/// This step must be called after constraint generation has completed, and
/// after all symbolic LCs have been inlined into the places that they
/// are used.
pub fn to_matrices(&self) -> Option<ConstraintMatrices<F>> {
if let SynthesisMode::Prove {
construct_matrices: false,
} = self.mode
{
None
} else {
let a: Vec<_> = self
.a_constraints
.iter()
.map(|index| self.make_row(self.lc_map.get(index).unwrap()))
.collect();
let b: Vec<_> = self
.b_constraints
.iter()
.map(|index| self.make_row(self.lc_map.get(index).unwrap()))
.collect();
let c: Vec<_> = self
.c_constraints
.iter()
.map(|index| self.make_row(self.lc_map.get(index).unwrap()))
.collect();
let a_num_non_zero: usize = a.iter().map(|lc| lc.len()).sum();
let b_num_non_zero: usize = b.iter().map(|lc| lc.len()).sum();
let c_num_non_zero: usize = c.iter().map(|lc| lc.len()).sum();
let matrices = ConstraintMatrices {
num_instance_variables: self.num_instance_variables,
num_witness_variables: self.num_witness_variables,
num_constraints: self.num_constraints,
a_num_non_zero,
b_num_non_zero,
c_num_non_zero,
a,
b,
c,
};
Some(matrices)
}
}
fn eval_lc(&self, lc: LcIndex) -> Option<F> {
let lc = self.lc_map.get(&lc)?;
let mut acc = F::zero();
for (coeff, var) in lc.iter() {
acc += *coeff * self.assigned_value(*var)?;
}
Some(acc)
}
/// If `self` is satisfied, outputs `Ok(true)`.
/// If `self` is unsatisfied, outputs `Ok(false)`.
/// If `self.is_in_setup_mode()`, outputs `Err(())`.
pub fn is_satisfied(&self) -> crate::r1cs::Result<bool> {
self.which_is_unsatisfied().map(|s| s.is_none())
}
/// If `self` is satisfied, outputs `Ok(None)`.
/// If `self` is unsatisfied, outputs `Some(i)`, where `i` is the index of
/// the first unsatisfied constraint. If `self.is_in_setup_mode()`, outputs
/// `Err(())`.
pub fn which_is_unsatisfied(&self) -> crate::r1cs::Result<Option<String>> {
if self.is_in_setup_mode() {
Err(SynthesisError::AssignmentMissing)
} else {
for i in 0..self.num_constraints {
let a = self
.eval_lc(self.a_constraints[i])
.ok_or(SynthesisError::AssignmentMissing)?;
let b = self
.eval_lc(self.b_constraints[i])
.ok_or(SynthesisError::AssignmentMissing)?;
let c = self
.eval_lc(self.c_constraints[i])
.ok_or(SynthesisError::AssignmentMissing)?;
if a * b != c {
let trace;
#[cfg(feature = "std")]
{
trace = self.constraint_traces[i].as_ref().map_or_else(
|| {
eprintln!("Constraint trace requires enabling `ConstraintLayer`");
format!("{}", i)
},
|t| format!("{}", t),
);
}
#[cfg(not(feature = "std"))]
{
trace = format!("{}", i);
}
return Ok(Some(trace));
}
}
Ok(None)
}
}
/// Obtain the assignment corresponding to the `Variable` `v`.
pub fn assigned_value(&self, v: Variable) -> Option<F> {
match v {
Variable::One => Some(F::one()),
Variable::Zero => Some(F::zero()),
Variable::Witness(idx) => self.witness_assignment.get(idx).copied(),
Variable::Instance(idx) => self.instance_assignment.get(idx).copied(),
Variable::SymbolicLc(idx) => {
let value = self.lc_assignment_cache.borrow().get(&idx).copied();
if value.is_some() {
value
} else {
let value = self.eval_lc(idx)?;
self.lc_assignment_cache.borrow_mut().insert(idx, value);
Some(value)
}
},
}
}
}
/// The A, B and C matrices of a Rank-One `ConstraintSystem`.
/// Also contains metadata on the structure of the constraint system
/// and the matrices.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ConstraintMatrices<F: Field> {
/// The number of variables that are "public instances" to the constraint
/// system.
pub num_instance_variables: usize,
/// The number of variables that are "private witnesses" to the constraint
/// system.
pub num_witness_variables: usize,
/// The number of constraints in the constraint system.
pub num_constraints: usize,
/// The number of non_zero entries in the A matrix.
pub a_num_non_zero: usize,
/// The number of non_zero entries in the B matrix.
pub b_num_non_zero: usize,
/// The number of non_zero entries in the C matrix.
pub c_num_non_zero: usize,
/// The A constraint matrix. This is empty when
/// `self.mode == SynthesisMode::Prove { construct_matrices = false }`.
pub a: Matrix<F>,
/// The B constraint matrix. This is empty when
/// `self.mode == SynthesisMode::Prove { construct_matrices = false }`.
pub b: Matrix<F>,
/// The C constraint matrix. This is empty when
/// `self.mode == SynthesisMode::Prove { construct_matrices = false }`.
pub c: Matrix<F>,
}
/// A shared reference to a constraint system that can be stored in high level
/// variables.
#[derive(Debug, Clone)]
pub enum ConstraintSystemRef<F: Field> {
/// Represents the case where we *don't* need to allocate variables or
/// enforce constraints. Encountered when operating over constant
/// values.
None,
/// Represents the case where we *do* allocate variables or enforce
/// constraints.
CS(Rc<RefCell<ConstraintSystem<F>>>),
}
impl<F: Field> PartialEq for ConstraintSystemRef<F> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::None, Self::None) => true,
(..) => false,
}
}
}
impl<F: Field> Eq for ConstraintSystemRef<F> {}
/// A namespaced `ConstraintSystemRef`.
#[derive(Debug, Clone)]
pub struct Namespace<F: Field> {
inner: ConstraintSystemRef<F>,
id: Option<tracing::Id>,
}
impl<F: Field> From<ConstraintSystemRef<F>> for Namespace<F> {
fn from(other: ConstraintSystemRef<F>) -> Self {
Self {
inner: other,
id: None,
}
}
}
impl<F: Field> Namespace<F> {
/// Construct a new `Namespace`.
pub fn new(inner: ConstraintSystemRef<F>, id: Option<tracing::Id>) -> Self {
Self { inner, id }
}
/// Obtain the inner `ConstraintSystemRef<F>`.
pub fn cs(&self) -> ConstraintSystemRef<F> {
self.inner.clone()
}
/// Manually leave the namespace.
pub fn leave_namespace(self) {
drop(self)
}
}
impl<F: Field> Drop for Namespace<F> {
fn drop(&mut self) {
if let Some(id) = self.id.as_ref() {
tracing::dispatcher::get_default(|dispatch| dispatch.exit(id))
}
let _ = self.inner;
}
}
impl<F: Field> ConstraintSystemRef<F> {
/// Returns `self` if `!self.is_none()`, otherwise returns `other`.
pub fn or(self, other: Self) -> Self {
match self {
ConstraintSystemRef::None => other,
_ => self,
}
}
/// Returns `true` is `self == ConstraintSystemRef::None`.
pub fn is_none(&self) -> bool {
matches!(self, ConstraintSystemRef::None)
}
/// Construct a `ConstraintSystemRef` from a `ConstraintSystem`.
#[inline]
pub fn new(inner: ConstraintSystem<F>) -> Self {
Self::CS(Rc::new(RefCell::new(inner)))
}
fn inner(&self) -> Option<&Rc<RefCell<ConstraintSystem<F>>>> {
match self {
Self::CS(a) => Some(a),
Self::None => None,
}
}
/// Consumes self to return the inner `ConstraintSystem<F>`. Returns
/// `None` if `Self::CS` is `None` or if any other references to
/// `Self::CS` exist.
pub fn into_inner(self) -> Option<ConstraintSystem<F>> {
match self {
Self::CS(a) => Rc::try_unwrap(a).ok().map(|s| s.into_inner()),
Self::None => None,
}
}
/// Obtain an immutable reference to the underlying `ConstraintSystem`.
///
/// # Panics
/// This method panics if `self` is already mutably borrowed.
#[inline]
pub fn borrow(&self) -> Option<Ref<'_, ConstraintSystem<F>>> {
self.inner().map(|cs| cs.borrow())
}
/// Obtain a mutable reference to the underlying `ConstraintSystem`.
///
/// # Panics
/// This method panics if `self` is already mutably borrowed.
#[inline]
pub fn borrow_mut(&self) -> Option<RefMut<'_, ConstraintSystem<F>>> {
self.inner().map(|cs| cs.borrow_mut())
}
/// Set `self.mode` to `mode`.
pub fn set_mode(&self, mode: SynthesisMode) {
self.inner().map_or((), |cs| cs.borrow_mut().set_mode(mode))
}
/// Check whether `self.mode == SynthesisMode::Setup`.
#[inline]
pub fn is_in_setup_mode(&self) -> bool {
self.inner()
.map_or(false, |cs| cs.borrow().is_in_setup_mode())
}
/// Returns the number of constraints.
#[inline]
pub fn num_constraints(&self) -> usize {
self.inner().map_or(0, |cs| cs.borrow().num_constraints)
}
/// Returns the number of instance variables.
#[inline]
pub fn num_instance_variables(&self) -> usize {
self.inner()
.map_or(0, |cs| cs.borrow().num_instance_variables)
}
/// Returns the number of witness variables.
#[inline]
pub fn num_witness_variables(&self) -> usize {
self.inner()
.map_or(0, |cs| cs.borrow().num_witness_variables)
}
/// Check whether this constraint system aims to optimize weight,
/// number of constraints, or neither.
#[inline]
pub fn optimization_goal(&self) -> OptimizationGoal {
self.inner().map_or(OptimizationGoal::Constraints, |cs| {
cs.borrow().optimization_goal()
})
}
/// Specify whether this constraint system should aim to optimize weight,
/// number of constraints, or neither.
#[inline]
pub fn set_optimization_goal(&self, goal: OptimizationGoal) {
self.inner()
.map_or((), |cs| cs.borrow_mut().set_optimization_goal(goal))
}
/// Check whether or not `self` will construct matrices.
#[inline]
pub fn should_construct_matrices(&self) -> bool {
self.inner()
.map_or(false, |cs| cs.borrow().should_construct_matrices())
}
/// Obtain a variable representing a new public instance input.
#[inline]
pub fn new_input_variable<Func>(&self, f: Func) -> crate::r1cs::Result<Variable>
where
Func: FnOnce() -> crate::r1cs::Result<F>,
{
self.inner()
.ok_or(SynthesisError::MissingCS)
.and_then(|cs| {
if !self.is_in_setup_mode() {
// This is needed to avoid double-borrows, because `f`
// might itself mutably borrow `cs` (eg: `f = || g.value()`).
let value = f();
cs.borrow_mut().new_input_variable(|| value)
} else {
cs.borrow_mut().new_input_variable(f)
}
})
}
/// Obtain a variable representing a new private witness input.
#[inline]
pub fn new_witness_variable<Func>(&self, f: Func) -> crate::r1cs::Result<Variable>
where
Func: FnOnce() -> crate::r1cs::Result<F>,
{
self.inner()
.ok_or(SynthesisError::MissingCS)
.and_then(|cs| {
if !self.is_in_setup_mode() {
// This is needed to avoid double-borrows, because `f`
// might itself mutably borrow `cs` (eg: `f = || g.value()`).
let value = f();
cs.borrow_mut().new_witness_variable(|| value)
} else {
cs.borrow_mut().new_witness_variable(f)
}
})
}
/// Obtain a variable representing a linear combination.
#[inline]
pub fn new_lc(&self, lc: LinearCombination<F>) -> crate::r1cs::Result<Variable> {
self.inner()
.ok_or(SynthesisError::MissingCS)
.and_then(|cs| cs.borrow_mut().new_lc(lc))
}
/// Enforce a R1CS constraint with the name `name`.
#[inline]
pub fn enforce_constraint(
&self,
a: LinearCombination<F>,
b: LinearCombination<F>,
c: LinearCombination<F>,
) -> crate::r1cs::Result<()> {
self.inner()
.ok_or(SynthesisError::MissingCS)
.and_then(|cs| cs.borrow_mut().enforce_constraint(a, b, c))
}
/// Naively inlines symbolic linear combinations into the linear
/// combinations that use them.
///
/// Useful for standard pairing-based SNARKs where addition gates are cheap.
/// For example, in the SNARKs such as [\[Groth16\]](https://eprint.iacr.org/2016/260) and
/// [\[Groth-Maller17\]](https://eprint.iacr.org/2017/540), addition gates
/// do not contribute to the size of the multi-scalar multiplication, which
/// is the dominating cost.
pub fn inline_all_lcs(&self) {
if let Some(cs) = self.inner() {
cs.borrow_mut().inline_all_lcs()
}
}
/// Finalize the constraint system (either by outlining or inlining,
/// if an optimization goal is set).
pub fn finalize(&self) {
if let Some(cs) = self.inner() {
cs.borrow_mut().finalize()
}
}
/// This step must be called after constraint generation has completed, and
/// after all symbolic LCs have been inlined into the places that they
/// are used.
#[inline]
pub fn to_matrices(&self) -> Option<ConstraintMatrices<F>> {
self.inner().and_then(|cs| cs.borrow().to_matrices())
}
/// If `self` is satisfied, outputs `Ok(true)`.
/// If `self` is unsatisfied, outputs `Ok(false)`.
/// If `self.is_in_setup_mode()` or if `self == None`, outputs `Err(())`.
pub fn is_satisfied(&self) -> crate::r1cs::Result<bool> {
self.inner()
.map_or(Err(SynthesisError::AssignmentMissing), |cs| {
cs.borrow().is_satisfied()
})
}
/// If `self` is satisfied, outputs `Ok(None)`.
/// If `self` is unsatisfied, outputs `Some(i)`, where `i` is the index of
/// the first unsatisfied constraint.
/// If `self.is_in_setup_mode()` or `self == None`, outputs `Err(())`.
pub fn which_is_unsatisfied(&self) -> crate::r1cs::Result<Option<String>> {
self.inner()
.map_or(Err(SynthesisError::AssignmentMissing), |cs| {
cs.borrow().which_is_unsatisfied()
})
}
/// Obtain the assignment corresponding to the `Variable` `v`.
pub fn assigned_value(&self, v: Variable) -> Option<F> {
self.inner().and_then(|cs| cs.borrow().assigned_value(v))
}
/// Get trace information about all constraints in the system
pub fn constraint_names(&self) -> Option<Vec<String>> {
#[cfg(feature = "std")]
{
self.inner().and_then(|cs| {
cs.borrow()
.constraint_traces
.iter()
.map(|trace| {
let mut constraint_path = String::new();
let mut prev_module_path = "";
let mut prefixes = ark_std::collections::BTreeSet::new();
for step in trace.as_ref()?.path() {
let module_path = if prev_module_path == step.module_path {
prefixes.insert(step.module_path.to_string());
String::new()
} else {
let mut parts = step
.module_path
.split("::")
.filter(|&part| part != "r1cs_std" && part != "constraints");
let mut path_so_far = String::new();
for part in parts.by_ref() {
if path_so_far.is_empty() {
path_so_far += part;
} else {
path_so_far += &["::", part].join("");
}
if prefixes.contains(&path_so_far) {
continue;