-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharranging_data.py
73 lines (58 loc) · 2.18 KB
/
arranging_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import keras
import os
from keras.preprocessing import image
import numpy as np
import shutil
base_dir = '../dataset/KDEF_and_AKDEF/KDEF/'
def read(filename):
data = []
file = open(filename, 'r')
for line in file:
data.append(line.replace('\n',''))
file.close()
return data
def seperate_description(data):
path = [i.split(',')[0] for i in data]
expression = [i.split(',')[1] for i in data]
angle = [i.split(',')[2] for i in data]
return path, expression, angle
def make_dir(dir, label_range):
if not os.path.exists(dir):
os.mkdir(dir)
for i in label_range:
i_dir = os.path.join(dir, str(i))
if not os.path.exists(i_dir):
os.mkdir(i_dir)
def move_images_to_dir(dir, data, label):
for path, expression in zip(data, label):
file = path.split('/')[1]
src = os.path.join(base_dir,path)
dst = os.path.join(dir, str(expression), file)
shutil.copyfile(src, dst)
if __name__ == '__main__':
training_data = read('train.txt')
test_data = read('test.txt')
val_data = read('validation.txt')
print(len(training_data), len(test_data), len(val_data))
train_data, train_label, train_angle = seperate_description(training_data)
test_data, test_label, test_angle = seperate_description(test_data)
validation_data, validation_label, validation_angle = seperate_description(val_data)
data_dir = 'data/'
if not os.path.exists(data_dir):
os.mkdir(data_dir)
label_range = np.unique(train_label)
# training data dictionary
train_dir = os.path.join(data_dir, 'train')
make_dir(train_dir, label_range)
# test data dictionary
test_dir = os.path.join(data_dir, 'test')
make_dir(test_dir, label_range)
# validation data dictionary
validation_dir = os.path.join(data_dir, 'validation')
make_dir(validation_dir, label_range)
move_images_to_dir(train_dir, train_data, train_label)
print("Copied Training Images")
move_images_to_dir(test_dir, test_data, test_label)
print("Copied Test Images")
move_images_to_dir(validation_dir, validation_data, validation_label)
print("Copied Validation Images")