forked from yosinski/deep-visualization-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 6
/
caffe_misc.py
265 lines (205 loc) · 11.1 KB
/
caffe_misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#! /usr/bin/env python
import skimage.io
import numpy as np
from image_misc import norm01c
def shownet(net):
'''Print some stats about a net and its activations'''
print '%-41s%-31s%s' % ('', 'acts', 'act diffs')
print '%-45s%-31s%s' % ('', 'params', 'param diffs')
for k, v in net.blobs.items():
if k in net.params:
params = net.params[k]
for pp, blob in enumerate(params):
if pp == 0:
print ' ', 'P: %-5s'%k,
else:
print ' ' * 11,
print '%-32s' % repr(blob.data.shape),
print '%-30s' % ('(%g, %g)' % (blob.data.min(), blob.data.max())),
print '(%g, %g)' % (blob.diff.min(), blob.diff.max())
print '%-5s'%k, '%-34s' % repr(v.data.shape),
print '%-30s' % ('(%g, %g)' % (v.data.min(), v.data.max())),
print '(%g, %g)' % (v.diff.min(), v.diff.max())
class RegionComputer(object):
'''Computes regions of possible influcence from higher layers to lower layers.'''
@staticmethod
def region_converter(top_slice, filter_width=(1, 1), stride=(1, 1), pad=(0, 0)):
'''
Works for conv or pool
vector<int> ConvolutionLayer<Dtype>::JBY_region_of_influence(const vector<int>& slice) {
+ CHECK_EQ(slice.size(), 4) << "slice must have length 4 (ii_start, ii_end, jj_start, jj_end)";
+ // Crop region to output size
+ vector<int> sl = vector<int>(slice);
+ sl[0] = max(0, min(height_out_, slice[0]));
+ sl[1] = max(0, min(height_out_, slice[1]));
+ sl[2] = max(0, min(width_out_, slice[2]));
+ sl[3] = max(0, min(width_out_, slice[3]));
+ vector<int> roi;
+ roi.resize(4);
+ roi[0] = sl[0] * stride_h_ - pad_h_;
+ roi[1] = (sl[1]-1) * stride_h_ + kernel_h_ - pad_h_;
+ roi[2] = sl[2] * stride_w_ - pad_w_;
+ roi[3] = (sl[3]-1) * stride_w_ + kernel_w_ - pad_w_;
+ return roi;
+}
'''
assert len(top_slice) == 4
assert len(filter_width) == 2
assert len(stride) == 2
assert len(pad) == 2
# Crop top slice to allowable region
top_slice = [ss for ss in top_slice] # Copy list or array -> list
bot_slice = [-123] * 4
bot_slice[0] = top_slice[0] * stride[0] - pad[0]
bot_slice[1] = top_slice[1] * stride[0] - pad[0] + filter_width[0] - 1
bot_slice[2] = top_slice[2] * stride[1] - pad[1]
bot_slice[3] = top_slice[3] * stride[1] - pad[1] + filter_width[1] - 1
return bot_slice
@staticmethod
def merge_regions(region1, region2):
region1_x_start, region1_x_end, region1_y_start, region1_y_end = region1
region2_x_start, region2_x_end, region2_y_start, region2_y_end = region2
merged_x_start = min(region1_x_start, region2_x_start)
merged_x_end = max(region1_x_end, region2_x_end)
merged_y_start = min(region1_y_start, region2_y_start)
merged_y_end = max(region1_y_end, region2_y_end)
merged_region = (merged_x_start, merged_x_end, merged_y_start, merged_y_end)
return merged_region
@staticmethod
def convert_region_dag(settings, from_layer, to_layer, region):
step_region = None
layer_def = settings._layer_name_to_record[from_layer] if from_layer in settings._layer_name_to_record else None
# do single step to convert according to from_layer
if not layer_def:
# fallback to doing nothing
step_region = region
else:
if layer_def.type in ['Convolution', 'Pooling']:
step_region = RegionComputer.region_converter(region, layer_def.filter, layer_def.stride, layer_def.pad)
else:
# fallback to doing nothing
step_region = region
if from_layer == to_layer:
return step_region
# handle the rest
total_region = None
if layer_def is not None:
for parent_layer in layer_def.parents:
# skip inplace layers
if len(parent_layer.tops) == 1 and len(parent_layer.bottoms) == 1 and parent_layer.tops[0] == parent_layer.bottoms[0]:
continue
# calculate convert_region_dag on each one
current_region = RegionComputer.convert_region_dag(settings, parent_layer.name, to_layer, step_region)
# aggregate results
if total_region is None:
total_region = current_region
else:
total_region = RegionComputer.merge_regions(total_region, current_region)
if total_region is None:
return step_region
return total_region
def save_caffe_image(img, filename, autoscale = True, autoscale_center = None):
'''Takes an image in caffe format (01) or (c01, BGR) and saves it to a file'''
if len(img.shape) == 2:
# upsample grayscale 01 -> 01c
img = np.tile(img[:,:,np.newaxis], (1,1,3))
else:
img = img[::-1].transpose((1,2,0))
if autoscale_center is not None:
img = norm01c(img, autoscale_center)
elif autoscale:
img = img.copy()
img -= img.min()
img *= 1.0 / (img.max() + 1e-10)
skimage.io.imsave(filename, img)
def layer_name_to_top_name(net, layer_name):
if net.top_names.has_key(layer_name) and len(net.top_names[layer_name]) >= 1:
return net.top_names[layer_name][0]
else:
return None
def get_max_data_extent(net, settings, layer_name, is_spatial):
'''Gets the maximum size of the data layer that can influence a unit on layer.'''
data_size = net.blobs['data'].data.shape[2:4] # e.g. (227,227) for fc6,fc7,fc8,prop
if is_spatial:
top_name = layer_name_to_top_name(net, layer_name)
conv_size = net.blobs[top_name].data.shape[2:4] # e.g. (13,13) for conv5
layer_slice_middle = (conv_size[0]/2,conv_size[0]/2+1, conv_size[1]/2,conv_size[1]/2+1) # e.g. (6,7,6,7,), the single center unit
data_slice = RegionComputer.convert_region_dag(settings, layer_name, 'input', layer_slice_middle)
data_slice_size = data_slice[1]-data_slice[0], data_slice[3]-data_slice[2] # e.g. (163, 163) for conv5
# crop data slice size to data size
data_slice_size = min(data_slice_size[0], data_size[0]), min(data_slice_size[1], data_size[1])
return data_slice_size
else:
# Whole data region
return data_size
def compute_data_layer_focus_area(is_spatial, ii, jj, settings, layer_name, size_ii, size_jj, data_size_ii, data_size_jj):
if is_spatial:
# Compute the focus area of the data layer
layer_indices = (ii, ii + 1, jj, jj + 1)
data_indices = RegionComputer.convert_region_dag(settings, layer_name, 'input', layer_indices)
data_ii_start, data_ii_end, data_jj_start, data_jj_end = data_indices
# safe guard edges
data_ii_start = max(data_ii_start, 0)
data_jj_start = max(data_jj_start, 0)
data_ii_end = min(data_ii_end, data_size_ii)
data_jj_end = min(data_jj_end, data_size_jj)
touching_imin = (data_ii_start == 0)
touching_jmin = (data_jj_start == 0)
# Compute how much of the data slice falls outside the actual data [0,max] range
ii_outside = size_ii - (data_ii_end - data_ii_start) # possibly 0
jj_outside = size_jj - (data_jj_end - data_jj_start) # possibly 0
if touching_imin:
out_ii_start = ii_outside
out_ii_end = size_ii
else:
out_ii_start = 0
out_ii_end = size_ii - ii_outside
if touching_jmin:
out_jj_start = jj_outside
out_jj_end = size_jj
else:
out_jj_start = 0
out_jj_end = size_jj - jj_outside
else:
data_ii_start, out_ii_start, data_jj_start, out_jj_start = 0, 0, 0, 0
data_ii_end, out_ii_end, data_jj_end, out_jj_end = size_ii, size_ii, size_jj, size_jj
return [out_ii_start, out_ii_end, out_jj_start, out_jj_end, data_ii_start, data_ii_end, data_jj_start, data_jj_end]
def extract_patch_from_image(data, net, selected_input_index, settings,
data_ii_end, data_ii_start, data_jj_end, data_jj_start,
out_ii_end, out_ii_start, out_jj_end, out_jj_start, size_ii, size_jj):
if settings.is_siamese:
# input is first image so select first 3 channels
if selected_input_index == 0:
out_arr = np.zeros((3, size_ii, size_jj), dtype='float32')
out_arr[:, out_ii_start:out_ii_end, out_jj_start:out_jj_end] = data[0:3,
data_ii_start:data_ii_end,
data_jj_start:data_jj_end]
# input is second image so select second 3 channels
elif selected_input_index == 1:
out_arr = np.zeros((3, size_ii, size_jj), dtype='float32')
out_arr[:, out_ii_start:out_ii_end, out_jj_start:out_jj_end] = data[3:6,
data_ii_start:data_ii_end,
data_jj_start:data_jj_end]
# input is both images so select concatenate data horizontally
elif selected_input_index == -1:
if settings.siamese_input_mode == 'concat_channelwise':
out_arr = np.zeros((3, size_ii, size_jj * 2), dtype='float32')
out_arr[:, out_ii_start:out_ii_end, (0 + out_jj_start):(0 + out_jj_end)] = data[0:3,
data_ii_start:data_ii_end,
data_jj_start:data_jj_end]
out_arr[:, out_ii_start:out_ii_end, (size_jj + out_jj_start):(size_jj + out_jj_end)] = data[3:6,
data_ii_start:data_ii_end,
data_jj_start:data_jj_end]
elif settings.siamese_input_mode == 'concat_along_width':
out_arr = np.zeros((3, size_ii, size_jj), dtype='float32')
out_arr[:, out_ii_start:out_ii_end, out_jj_start:out_jj_end] = data[:,
data_ii_start:data_ii_end,
data_jj_start:data_jj_end]
else:
print "Error: invalid value for selected_input_index (", selected_input_index, ")"
else:
out_arr = np.zeros((3, size_ii, size_jj), dtype='float32')
out_arr[:, out_ii_start:out_ii_end, out_jj_start:out_jj_end] = data[:,
data_ii_start:data_ii_end,
data_jj_start:data_jj_end]
return out_arr