Skip to content

Latest commit

 

History

History
418 lines (329 loc) · 28.1 KB

IMAGES.rst

File metadata and controls

418 lines (329 loc) · 28.1 KB

Airflow has two images (build from Dockerfiles):

  • CI image (Dockerfile.ci) - used for running tests and local development
  • Production image (Dockerfile) - used to run production-ready Airflow installations

The images are named as follows:

apache/airflow:<BRANCH_OR_TAG>-python<PYTHON_MAJOR_MINOR_VERSION>[-ci][-manifest]

where:

  • BRANCH_OR_TAG - branch or tag used when creating the image. Examples: master, v1-10-test, 1.10.10 The master and v1-10-test labels are built from branches so they change over time. The 1.10.* and in the future 2.* labels are build from git tags and they are "fixed" once built.
  • PYTHON_MAJOR_MINOR_VERSION - version of python used to build the image. Examples: 3.5, 3.7
  • The -ci suffix is added for CI images
  • The -manifest is added for manifest images (see below for explanation of manifest images)

The easiest way to build those images is to use BREEZE.rst.

Note! Breeze by default builds production image from local sources. You can change it's behaviour by providing --install-airflow-version parameter, where you can specify the tag/branch used to download Airflow package from in github repository. You can also change the repository itself by adding --dockerhub-user and --dockerhub-repo flag values.

You can build the CI image using this command:

./breeze build-image

You can build production image using this command:

./breeze build-image --production-image

By adding --python <PYTHON_MAJOR_MINOR_VERSION> parameter you can build the image version for the chosen python version.

The images are build with default extras - different extras for CI and production image and you can change the extras via the --extras parameters. You can see default extras used via ./breeze flags.

For example if you want to build python 3.7 version of production image with "all" extras installed you should run this command:

./breeze build-image --python 3.7 --extras "all" --production-image

The command that builds the CI image is optimized to minimize the time needed to rebuild the image when the source code of Airflow evolves. This means that if you already have the image locally downloaded and built, the scripts will determine whether the rebuild is needed in the first place. Then the scripts will make sure that minimal number of steps are executed to rebuild parts of the image (for example, PIP dependencies) and will give you an image consistent with the one used during Continuous Integration.

The command that builds the production image is optimised for size of the image.

In Breeze by default, the airflow is installed using local sources of Apache Airflow.

You can also build production images from PIP packages via providing --install-airflow-version parameter to Breeze:

./breeze build-image --python 3.7 --extras=gcp --production-image --install-airflow-version=1.10.9

This will build the image using command similar to:

pip install apache-airflow[gcp]==1.10.9 \
   --constraint https://raw.githubusercontent.com/apache/airflow/v1-10-test/requirements/requirements-python3.7.txt

This will also download entrypoint script from https://raw.githubusercontent.com/apache/airflow/v1-10-test/entrypoint.sh url. It is important so that we have matching version of the requirements.

The requirement files and entrypoint only appeared in version 1.10.10 of airflow so if you install an earlier version - both constraint and requirements should point to 1.10.10 version.

You can also build production images from specific Git version via providing --install-airflow-reference parameter to Breeze:

pip install https://github.com/apache/airflow/archive/<tag>.tar.gz#egg=apache-airflow \
   --constraint https://raw.githubusercontent.com/apache/airflow/<tag>/requirements/requirements-python3.7.txt

This will also Download entrypoint script from https://raw.githubusercontent.com/apache/airflow/<tag>/entrypoint.sh url.

The CI image is used by Breeze as shell image but it is also used during CI build. The image is single segment image that contains Airflow installation with "all" dependencies installed. It is optimised for rebuild speed (AIRFLOW_CONTAINER_CI_OPTIMISED_BUILD flag set to "true"). It installs PIP dependencies from the current branch first - so that any changes in setup.py do not trigger reinstalling of all dependencies. There is a second step of installation that re-installs the dependencies from the latest sources so that we are sure that latest dependencies are installed.

The production image is a multi-segment image. The first segment "airflow-build-image" contains all the build essentials and related dependencies that allow to install airflow locally. By default the image is build from a released version of Airflow from Github, but by providing some extra arguments you can also build it from local sources. This is particularly useful in CI environment where we are using the image to run Kubernetes tests. See below for the list of arguments that should be provided to build production image from the local sources.

You can build the default production image with standard docker build command but they will only build default versions of the image and will not use the dockerhub versions of images as cache.

The following build arguments (--build-arg in docker build command) can be used for CI images:

Build argument Default value Description
PYTHON_BASE_IMAGE python:3.6-slim-buster Base python image
AIRFLOW_VERSION 2.0.0.dev0 version of Airflow
PYTHON_MAJOR_MINOR_VERSION 3.6 major/minor version of Python (should match base image)
DEPENDENCIES_EPOCH_NUMBER 2 increasing this number will reinstall all apt dependencies
KUBECTL_VERSION v1.15.3 version of kubectl installed
KIND_VERSION v0.6.1 version of kind installed
PIP_NO_CACHE_DIR true if true, then no pip cache will be stored
PIP_VERSION 19.0.2 version of PIP to use
HOME /root Home directory of the root user (CI image has root user as default)
AIRFLOW_HOME /root/airflow Airflow’s HOME (that’s where logs and sqlite databases are stored)
AIRFLOW_SOURCES /opt/airflow Mounted sources of Airflow
PIP_DEPENDENCIES_EPOCH_NUMBER 3 increasing that number will reinstall all PIP dependencies
CASS_DRIVER_NO_CYTHON 1 if set to 1 no CYTHON compilation is done for cassandra driver (much faster)
AIRFLOW_CONTAINER_CI_OPTIMISED_BUILD true if set then PIP dependencies are installed from repo first before they are reinstalled from local sources. This allows for incremental faster builds when requirements change
AIRFLOW_REPO apache/airflow the repository from which PIP dependencies are installed (CI optimised)
AIRFLOW_BRANCH master the branch from which PIP dependencies are installed (CI optimised)
AIRFLOW_CI_BUILD_EPOCH 1 increasing this value will reinstall PIP dependencies from the repository from scratch
AIRFLOW_EXTRAS all extras to install
ADDITIONAL_PYTHON_DEPS ```` additional python dependencies to install

Here are some examples of how CI images can built manually. CI is always built from local sources.

This builds the CI image in version 3.7 with default extras ("all").

docker build . -f Dockerfile.ci --build-arg PYTHON_BASE_IMAGE="python:3.7-slim-buster" \
  --build-arg PYTHON_MAJOR_MINOR_VERSION=3.7

This builds the CI image in version 3.6 with "gcp" extra only.

docker build . -f Dockerfile.ci --build-arg PYTHON_BASE_IMAGE="python:3.7-slim-buster" \
  --build-arg PYTHON_MAJOR_MINOR_VERSION=3.6 --build-arg AIRFLOW_EXTRAS=gcp

The following build arguments (--build-arg in docker build command) can be used for production images:

Build argument Default value Description
PYTHON_BASE_IMAGE python:3.6-slim-buster Base python image
PYTHON_MAJOR_MINOR_VERSION 3.6 major/minor version of Python (should match base image)
AIRFLOW_VERSION 2.0.0.dev0 version of Airflow
AIRFLOW_ORG apache Github organisation from which Airflow is installed (when installed from repo)
AIRFLOW_REPO airflow Github repository from which Airflow is installed (when installed from repo)
AIRFLOW_GIT_REFERENCE master reference (branch or tag) from Github repository from which Airflow is installed (when installed from repo)
REQUIREMENTS_GIT_REFERENCE master reference (branch or tag) from Github repository from which requirements are downloaded for constraints (when installed from repo).
AIRFLOW_EXTRAS (see Dockerfile) Default extras with which airflow is installed
AIRFLOW_HOME /opt/airflow Airflow’s HOME (that’s where logs and sqlite databases are stored)
AIRFLOW_UID 50000 Airflow user UID
AIRFLOW_GID 50000 Airflow group GID
PIP_VERSION 19.0.2 version of PIP to use
CASS_DRIVER_BUILD_CONCURRENCY 8 Number of processors to use for cassandra PIP install (speeds up installing in case cassandra extra is used).

There are build arguments that determine the installation mechanism of Apache Airflow for the production image. There are three types of build:

  • From local sources (by default for example when you use docker build .)
  • You can build the image from released PyPi airflow package (used to build the official Docker image)
  • You can build the image from any version in GitHub repository(this is used mostly for system testing).
Build argument What to specify
AIRFLOW_INSTALL_SOURCES Should point to the sources of of Apache Airflow. It can be either "." for installation from local sources, "apache-airflow" for installation from packages and URL to installation from GitHub repository (see below) to install from any GitHub version
AIRFLOW_INSTALL_VERSION Optional - might be used for package installation case to set Airflow version for example "==1.10.10"
CONSTRAINT_REQUIREMENTS Should point to requirements file in case of installation from the package or from GitHub URL. See examples below
ENTRYPOINT_FILE Should point to entrypoint.sh file in case of installation from the package or from GitHub URL. See examples below
AIRFLOW_WWW In case of Airflow 2.0 it should be "www", in case of Airflow 1.10 series it should be "www_rbac". See examples below
AIRFLOW_SOURCES_FROM Sources of Airflow. Set it to "entrypoint.sh" to avoid costly Docker context copying in case of installation from the package or from GitHub URL. See examples below
AIRFLOW_SOURCES_TO Target for Airflow sources. Set to "/entrypoint" to avoid costly Docker context copying in case of installation from the package or from GitHub URL. See examples below

This builds production image in version 3.6 with default extras from the local sources:

docker build .

This builds the production image in version 3.7 with default extras from 1.10.9 tag and requirements taken from v1-10-test branch in Github. Note that versions 1.10.9 and below have no requirements so requirements should be taken from head of the 1.10.10 tag.

docker build . \
  --build-arg PYTHON_BASE_IMAGE="python:3.7-slim-buster" \
  --build-arg PYTHON_MAJOR_MINOR_VERSION=3.7 \
  --build-arg AIRFLOW_INSTALL_SOURCES="https://github.com/apache/airflow/archive/1.10.10.tar.gz#egg=apache-airflow" \
  --build-arg CONSTRAINT_REQUIREMENTS="https://raw.githubusercontent.com/apache/airflow/1.10.10/requirements/requirements-python3.7.txt" \
  --build-arg ENTRYPOINT_FILE="https://raw.githubusercontent.com/apache/airflow/1.10.10/entrypoint.sh" \
  --build-arg AIRFLOW_SOURCES_FROM="entrypoint.sh" \
  --build-arg AIRFLOW_SOURCES_TO="/entrypoint"

This builds the production image in version 3.7 with default extras from 1.10.10 Pypi package and requirements taken from v1-10-test branch in Github.

docker build . \
  --build-arg PYTHON_BASE_IMAGE="python:3.7-slim-buster" \
  --build-arg PYTHON_MAJOR_MINOR_VERSION=3.7 \
  --build-arg AIRFLOW_INSTALL_SOURCES="apache-airflow" \
  --build-arg AIRFLOW_INSTALL_VERSION="==1.10.10" \
  --build-arg CONSTRAINT_REQUIREMENTS="https://raw.githubusercontent.com/apache/airflow/1.10.10/requirements/requirements-python3.7.txt" \
  --build-arg ENTRYPOINT_FILE="https://raw.githubusercontent.com/apache/airflow/1.10.10/entrypoint.sh" \
  --build-arg AIRFLOW_SOURCES_FROM="entrypoint.sh" \
  --build-arg AIRFLOW_SOURCES_TO="/entrypoint"

Together with the main CI images we also build and push image manifests. Those manifests are very small images that contain only results of the docker inspect for the image. This is in order to be able to determine very quickly if the image in the docker registry has changed a lot since the last time. Unfortunately docker registry (specifically dockerhub registry) has no anonymous way of querying image details via API, you need to download the image to inspect it. We overcame it in the way that always when we build the image we build a very small image manifest and push it to registry together with the main CI image. The tag for the manifest image is the same as for the image it refers to with added -manifest suffix. The manifest image for apache/airflow:master-python3.6-ci is named apache/airflow:master-python3.6-ci-manifest.

Sometimes the image needs to be rebuilt from scratch. This is required, for example, when there is a security update of the Python version that all the images are based on and new version of the image is pushed to the repository. In this case it is usually faster to pull the latest images rather than rebuild them from scratch.

You can do it via the --force-pull-images flag to force pulling the latest images from the Docker Hub.

For production image:

./breeze build-image --force-pull-images --production-image

For CI image Breeze automatically uses force pulling in case it determines that your image is very outdated, however uou can also force it with the same flag.

./breeze build-image --force-pull-images

Both images have entrypoint set as dumb-init with entrypoint.sh script executed (in order to forward signals). This entrypoint works as follows:

  • If AIRFLOW__CORE__SQL_ALCHEMY_CONN variable is passed to the container and it is either mysql or postgres SQL alchemy connection, then the connection is checked and the script waits until the database is reachable.
  • If no AIRFLOW__CORE__SQL_ALCHEMY_CONN variable is set or if it is set to sqlite SQL alchemy connection then db reset is executed.
  • If AIRFLOW__CELERY__BROKER_URL variable is passed and scheduler, worker of flower command is used then the connection is checked and the script waits until the Celery broker database is reachable.
  • If first argument is equal to "bash" - you are dropped in bash shell.
  • If there are any arguments they are passed to "airflow" command