-
Notifications
You must be signed in to change notification settings - Fork 0
/
featureExtract.py
86 lines (69 loc) · 2.71 KB
/
featureExtract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright: Junyi Wang
# This script uses pre-trained googLeNet to extract features
# Takes 2 arguements. The first is the input file. The input file should be a text file containing the directories to all images
# to be processed
# The second is the output file, where the script will write the features into
# usage: python featureExtract.py -i <input file> -o <output file>
import numpy as np
import os, sys, getopt
# Main path to the caffe installation
caffe_root = './caffe/'
# Model prototxt file
model_prototxt = caffe_root + 'models/bvlc_googlenet/deploy.prototxt'
# Model caffemodel file
model_trained = caffe_root + 'models/bvlc_googlenet/bvlc_googlenet.caffemodel'
# File containing the class labels
imagenet_labels = caffe_root + 'data/ilsvrc12/synset_words.txt'
# Path to the mean image (used for input processing)
mean_path = caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'
# Name of the layer we want to extract
layer_name = 'pool5/7x7_s1'
sys.path.insert(0, caffe_root + 'python')
# Set flag so only output warning
os.environ['GLOG_minloglevel'] = '2'
import caffe
def main(argv):
inputfile=''
outputfile=''
try:
opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])
except getopt.GetoptError:
print 'caffe_feature_extractor.py -i <inputfile> -o <outputfile>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'caffe_feature_extractor.py -i <inputfile> -o <outputfile>'
sys.exit()
elif opt in ("-i"):
inputfile = arg
elif opt in ("-o"):
outputfile = arg
print 'Reading images from: ', inputfile
print 'Writing vectors to: ', outputfile
# setting cpu to extract feature
caffe.set_mode_gpu()
# Load in caffe model, set preprocessing parameters
net = caffe.Classifier(model_prototxt, model_trained,
mean=np.load(mean_path).mean(1).mean(1),
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256,256))
# Load class labels, we won't need it tho
with open(imagenet_labels) as f:
labels = f.readlines()
counter = 0
# Process one image at a time, print prediction and write feature vector to outputfile
with open(inputfile, 'r') as reader:
with open(outputfile, 'w') as writer:
writer.truncate()
for image_path in reader:
image_path = image_path.strip()
input_image=caffe.io.load_image(image_path)
prediction = net.predict([input_image], oversample=False)
# print os.path.basename(image_path), ' : ' , labels[prediction[0].argmax()].strip() , ' (', prediction[0][prediction[0].argmax()] , ')'
np.savetxt(writer, net.blobs[layer_name].data[0].reshape(1,-1), fmt='%.8g')
counter+=1
if counter%1000 == 0:
print "Finished extracting " + str(counter) + " features."
if __name__ == "__main__":
main(sys.argv[1:])