From f9bc748f53074ea9b9d65b54e8d2654d85f8590e Mon Sep 17 00:00:00 2001 From: Tianqi Chen Date: Mon, 23 Dec 2019 11:51:26 -0800 Subject: [PATCH] [DEPRECATION] Remove NNVM compiler (#4571) * Remove NNVM compiler --- CMakeLists.txt | 28 +- Makefile | 2 - conda/tvm/build.sh | 8 +- conda/tvm/meta.yaml | 1 - docker/Dockerfile.demo_android | 2 +- docker/Dockerfile.demo_cpu | 2 +- docker/Dockerfile.demo_gpu | 2 +- docker/Dockerfile.demo_opencl | 3 +- .../org/apache/tvm/contrib/GraphRuntime.java | 2 +- nnvm/Makefile | 5 +- nnvm/README.md | 38 +- nnvm/include/nnvm/base.h | 22 +- nnvm/include/nnvm/compiler/op_attr_types.h | 119 -- nnvm/include/nnvm/compiler/packed_func_ext.h | 77 - nnvm/include/nnvm/compiler/util.h | 62 - nnvm/include/nnvm/top/README | 1 - nnvm/include/nnvm/top/nn.h | 555 ------ nnvm/include/nnvm/top/tensor.h | 327 ---- nnvm/python/.gitignore | 2 - nnvm/python/nnvm/__init__.py | 33 - nnvm/python/nnvm/_base.py | 215 --- nnvm/python/nnvm/_ctypes/README | 1 - nnvm/python/nnvm/_ctypes/__init__.py | 18 - nnvm/python/nnvm/_ctypes/symbol.py | 242 --- nnvm/python/nnvm/_cy2/README | 1 - nnvm/python/nnvm/_cy2/__init__.py | 18 - nnvm/python/nnvm/_cy3/README | 1 - nnvm/python/nnvm/_cy3/__init__.py | 18 - nnvm/python/nnvm/_symbol_internal.py | 17 - nnvm/python/nnvm/attribute.py | 76 - nnvm/python/nnvm/compiler/__init__.py | 40 - nnvm/python/nnvm/compiler/build_module.py | 466 ----- nnvm/python/nnvm/compiler/compile_engine.py | 119 -- nnvm/python/nnvm/compiler/graph_attr.py | 136 -- nnvm/python/nnvm/compiler/graph_pass.py | 24 - nnvm/python/nnvm/compiler/graph_util.py | 164 -- nnvm/python/nnvm/compiler/lr_scheduler.py | 74 - nnvm/python/nnvm/compiler/optimizer.py | 147 -- nnvm/python/nnvm/compiler/param_dict.py | 77 - nnvm/python/nnvm/contrib.py | 17 - nnvm/python/nnvm/cython/README | 1 - nnvm/python/nnvm/cython/base.pyi | 106 -- nnvm/python/nnvm/cython/symbol.pyx | 233 --- nnvm/python/nnvm/frontend/__init__.py | 26 - nnvm/python/nnvm/frontend/caffe2.py | 471 ----- nnvm/python/nnvm/frontend/common.py | 204 --- nnvm/python/nnvm/frontend/coreml.py | 431 ----- nnvm/python/nnvm/frontend/darknet.py | 979 ---------- nnvm/python/nnvm/frontend/keras.py | 727 -------- nnvm/python/nnvm/frontend/mxnet.py | 575 ------ nnvm/python/nnvm/frontend/onnx.py | 1038 ----------- .../python/nnvm/frontend/onnx_caffe2_utils.py | 61 - nnvm/python/nnvm/frontend/tensorflow.py | 1613 ----------------- nnvm/python/nnvm/graph.py | 288 --- nnvm/python/nnvm/libinfo.py | 84 - nnvm/python/nnvm/name.py | 94 - nnvm/python/nnvm/symbol.py | 405 ----- nnvm/python/nnvm/testing/__init__.py | 33 - nnvm/python/nnvm/testing/check_computation.py | 573 ------ nnvm/python/nnvm/testing/config.py | 30 - nnvm/python/nnvm/testing/dcgan.py | 109 -- nnvm/python/nnvm/testing/densenet.py | 65 - nnvm/python/nnvm/testing/dqn.py | 71 - nnvm/python/nnvm/testing/inception_v3.py | 270 --- nnvm/python/nnvm/testing/init.py | 125 -- nnvm/python/nnvm/testing/mlp.py | 60 - nnvm/python/nnvm/testing/mobilenet.py | 122 -- nnvm/python/nnvm/testing/mobilenet_v2.py | 67 - nnvm/python/nnvm/testing/resnet.py | 224 --- nnvm/python/nnvm/testing/squeezenet.py | 132 -- nnvm/python/nnvm/testing/utils.py | 73 - nnvm/python/nnvm/testing/vgg.py | 107 -- nnvm/python/nnvm/to_relay.py | 507 ------ nnvm/python/nnvm/top/__init__.py | 31 - nnvm/python/nnvm/top/attr_dict.py | 175 -- nnvm/python/nnvm/top/image.py | 33 - nnvm/python/nnvm/top/nn.py | 456 ----- nnvm/python/nnvm/top/reduction.py | 75 - nnvm/python/nnvm/top/registry.py | 138 -- nnvm/python/nnvm/top/tensor.py | 306 ---- nnvm/python/nnvm/top/transform.py | 108 -- nnvm/python/nnvm/top/vision.py | 105 -- nnvm/python/setup.py | 78 - nnvm/src/README.md | 5 - nnvm/src/compiler/alter_op_layout.cc | 177 -- nnvm/src/compiler/compile_engine.cc | 401 ---- nnvm/src/compiler/compile_engine.h | 133 -- nnvm/src/compiler/fold_scale_axis.cc | 602 ------ nnvm/src/compiler/graph_compile.cc | 278 --- nnvm/src/compiler/graph_fuse.cc | 424 ----- nnvm/src/compiler/graph_fuse.h | 99 - nnvm/src/compiler/graph_hash.cc | 240 --- nnvm/src/compiler/graph_hash.h | 101 -- nnvm/src/compiler/graph_runtime.cc | 127 -- nnvm/src/compiler/graph_runtime.h | 77 - nnvm/src/compiler/graph_transform.h | 144 -- nnvm/src/compiler/node_attr.h | 52 - nnvm/src/compiler/packed_func_ext.cc | 164 -- nnvm/src/compiler/pattern_util.h | 118 -- nnvm/src/compiler/precompute_prune.cc | 127 -- nnvm/src/compiler/simplify_inference.cc | 129 -- nnvm/src/pass/plan_memory.cc | 7 +- nnvm/src/top/elemwise_op_common.h | 369 ---- nnvm/src/top/image/resize.cc | 127 -- nnvm/src/top/image/resize.h | 63 - nnvm/src/top/nn/convolution.cc | 660 ------- nnvm/src/top/nn/nn.cc | 748 -------- nnvm/src/top/nn/nn_common.h | 110 -- nnvm/src/top/nn/pooling.cc | 435 ----- nnvm/src/top/nn/upsampling.cc | 124 -- nnvm/src/top/op_common.h | 351 ---- nnvm/src/top/tensor/broadcast.cc | 614 ------- nnvm/src/top/tensor/elemwise.cc | 998 ---------- nnvm/src/top/tensor/matrix_op.cc | 195 -- nnvm/src/top/tensor/reduce.cc | 411 ----- nnvm/src/top/tensor/state_op.cc | 90 - nnvm/src/top/tensor/transform.cc | 1500 --------------- nnvm/src/top/vision/nms.cc | 107 -- nnvm/src/top/vision/ssd/mutibox_op.cc | 176 -- nnvm/src/top/vision/yolo/reorg.cc | 70 - nnvm/src/top/vision/yolo/reorg.h | 128 -- .../python/compiler/test_alter_op_layout.py | 121 -- .../compiler/test_autotvm_task_extraction.py | 79 - nnvm/tests/python/compiler/test_build.py | 176 -- .../python/compiler/test_compiler_cache.py | 58 - nnvm/tests/python/compiler/test_fold_axis.py | 174 -- nnvm/tests/python/compiler/test_graph_pass.py | 34 - .../tests/python/compiler/test_nhwc_layout.py | 73 - nnvm/tests/python/compiler/test_op_fusion.py | 248 --- nnvm/tests/python/compiler/test_optimizer.py | 134 -- nnvm/tests/python/compiler/test_param_dict.py | 100 - nnvm/tests/python/compiler/test_rpc_exec.py | 67 - .../compiler/test_simplify_inference.py | 65 - nnvm/tests/python/compiler/test_to_relay.py | 58 - nnvm/tests/python/compiler/test_top_assign.py | 57 - nnvm/tests/python/compiler/test_top_level1.py | 605 ------- nnvm/tests/python/compiler/test_top_level2.py | 362 ---- nnvm/tests/python/compiler/test_top_level3.py | 63 - nnvm/tests/python/compiler/test_top_level4.py | 746 -------- .../frontend/caffe2/model_zoo/__init__.py | 35 - .../frontend/caffe2/model_zoo/squeezenet.py | 118 -- .../python/frontend/caffe2/test_forward.py | 108 -- .../python/frontend/caffe2/test_graph.py | 40 - .../frontend/coreml/model_zoo/.gitignore | 3 - .../frontend/coreml/model_zoo/__init__.py | 41 - .../python/frontend/coreml/test_forward.py | 370 ---- .../python/frontend/darknet/test_forward.py | 525 ------ .../python/frontend/keras/test_forward.py | 354 ---- .../frontend/mxnet/model_zoo/__init__.py | 62 - .../python/frontend/mxnet/model_zoo/dcgan.py | 82 - .../python/frontend/mxnet/model_zoo/dqn.py | 43 - .../frontend/mxnet/model_zoo/inception_v3.py | 186 -- .../python/frontend/mxnet/model_zoo/mlp.py | 40 - .../python/frontend/mxnet/model_zoo/resnet.py | 199 -- .../frontend/mxnet/model_zoo/squeezenet.py | 92 - .../python/frontend/mxnet/model_zoo/vgg.py | 85 - .../python/frontend/mxnet/test_forward.py | 333 ---- .../tests/python/frontend/mxnet/test_graph.py | 95 - .../frontend/onnx/model_zoo/__init__.py | 40 - .../frontend/onnx/model_zoo/squeezenet.py | 118 -- .../onnx/model_zoo/super_resolution.py | 36 - .../python/frontend/onnx/test_forward.py | 1099 ----------- .../frontend/tensorflow/test_forward.py | 1299 ------------- .../python/unittest/test_correct_layout.py | 379 ---- nnvm/tests/python/unittest/test_graph.py | 160 -- .../python/unittest/test_graph_gradient.py | 152 -- .../tests/python/unittest/test_infer_shape.py | 415 ----- .../unittest/test_pass_saveload_json.py | 33 - nnvm/tests/python/unittest/test_symbol.py | 77 - nnvm/tests/python/unittest/test_top_level1.py | 66 - nnvm/tests/python/unittest/test_top_level2.py | 35 - nnvm/tests/python/unittest/test_top_level3.py | 46 - nnvm/tests/python/unittest/test_top_level4.py | 36 - nnvm/tutorials/.gitignore | 11 - nnvm/tutorials/README.txt | 4 - nnvm/tutorials/deploy_model_on_mali_gpu.py | 229 --- nnvm/tutorials/deploy_model_on_rasp.py | 220 --- nnvm/tutorials/deploy_ssd_mxnet.py | 180 -- nnvm/tutorials/from_coreml.py | 106 -- nnvm/tutorials/from_darknet.py | 177 -- nnvm/tutorials/from_mxnet.py | 136 -- nnvm/tutorials/from_mxnet_to_webgl.py | 515 ------ nnvm/tutorials/from_onnx.py | 111 -- nnvm/tutorials/from_tensorflow.py | 239 --- nnvm/tutorials/get_started.py | 190 -- nnvm/tutorials/nlp/from_darknet_rnn.py | 198 -- nnvm/tutorials/nlp/keras_s2s_translate.py | 254 --- nnvm/tutorials/tune_nnvm_arm.py | 427 ----- nnvm/tutorials/tune_nnvm_cuda.py | 391 ---- nnvm/tutorials/tune_nnvm_mobile_gpu.py | 416 ----- nnvm/tutorials/tune_nnvm_x86.py | 236 --- nnvm/tutorials/using_external_lib.py | 234 --- nnvm/tutorials/web/resnet.html | 204 --- src/relay/op/nn/convolution.cc | 2 +- tests/lint/check_file_type.py | 1 - tests/python/frontend/darknet/test_forward.py | 4 +- tests/python/frontend/mxnet/test_forward.py | 2 +- .../nnvm_to_relay/test_alter_conv2d.py | 89 - .../frontend/nnvm_to_relay/test_forward.py | 116 -- tutorials/autotvm/tune_relay_cuda.py | 2 +- tutorials/frontend/deploy_model_on_android.py | 2 +- 201 files changed, 45 insertions(+), 39925 deletions(-) delete mode 100644 nnvm/include/nnvm/compiler/op_attr_types.h delete mode 100644 nnvm/include/nnvm/compiler/packed_func_ext.h delete mode 100644 nnvm/include/nnvm/compiler/util.h delete mode 100644 nnvm/include/nnvm/top/README delete mode 100644 nnvm/include/nnvm/top/nn.h delete mode 100644 nnvm/include/nnvm/top/tensor.h delete mode 100644 nnvm/python/.gitignore delete mode 100644 nnvm/python/nnvm/__init__.py delete mode 100644 nnvm/python/nnvm/_base.py delete mode 100644 nnvm/python/nnvm/_ctypes/README delete mode 100644 nnvm/python/nnvm/_ctypes/__init__.py delete mode 100644 nnvm/python/nnvm/_ctypes/symbol.py delete mode 100644 nnvm/python/nnvm/_cy2/README delete mode 100644 nnvm/python/nnvm/_cy2/__init__.py delete mode 100644 nnvm/python/nnvm/_cy3/README delete mode 100644 nnvm/python/nnvm/_cy3/__init__.py delete mode 100644 nnvm/python/nnvm/_symbol_internal.py delete mode 100644 nnvm/python/nnvm/attribute.py delete mode 100644 nnvm/python/nnvm/compiler/__init__.py delete mode 100644 nnvm/python/nnvm/compiler/build_module.py delete mode 100644 nnvm/python/nnvm/compiler/compile_engine.py delete mode 100644 nnvm/python/nnvm/compiler/graph_attr.py delete mode 100644 nnvm/python/nnvm/compiler/graph_pass.py delete mode 100644 nnvm/python/nnvm/compiler/graph_util.py delete mode 100644 nnvm/python/nnvm/compiler/lr_scheduler.py delete mode 100644 nnvm/python/nnvm/compiler/optimizer.py delete mode 100644 nnvm/python/nnvm/compiler/param_dict.py delete mode 100644 nnvm/python/nnvm/contrib.py delete mode 100644 nnvm/python/nnvm/cython/README delete mode 100644 nnvm/python/nnvm/cython/base.pyi delete mode 100644 nnvm/python/nnvm/cython/symbol.pyx delete mode 100644 nnvm/python/nnvm/frontend/__init__.py delete mode 100644 nnvm/python/nnvm/frontend/caffe2.py delete mode 100644 nnvm/python/nnvm/frontend/common.py delete mode 100644 nnvm/python/nnvm/frontend/coreml.py delete mode 100644 nnvm/python/nnvm/frontend/darknet.py delete mode 100644 nnvm/python/nnvm/frontend/keras.py delete mode 100644 nnvm/python/nnvm/frontend/mxnet.py delete mode 100644 nnvm/python/nnvm/frontend/onnx.py delete mode 100644 nnvm/python/nnvm/frontend/onnx_caffe2_utils.py delete mode 100644 nnvm/python/nnvm/frontend/tensorflow.py delete mode 100644 nnvm/python/nnvm/graph.py delete mode 100644 nnvm/python/nnvm/libinfo.py delete mode 100644 nnvm/python/nnvm/name.py delete mode 100644 nnvm/python/nnvm/symbol.py delete mode 100644 nnvm/python/nnvm/testing/__init__.py delete mode 100644 nnvm/python/nnvm/testing/check_computation.py delete mode 100644 nnvm/python/nnvm/testing/config.py delete mode 100644 nnvm/python/nnvm/testing/dcgan.py delete mode 100644 nnvm/python/nnvm/testing/densenet.py delete mode 100644 nnvm/python/nnvm/testing/dqn.py delete mode 100644 nnvm/python/nnvm/testing/inception_v3.py delete mode 100644 nnvm/python/nnvm/testing/init.py delete mode 100644 nnvm/python/nnvm/testing/mlp.py delete mode 100644 nnvm/python/nnvm/testing/mobilenet.py delete mode 100644 nnvm/python/nnvm/testing/mobilenet_v2.py delete mode 100644 nnvm/python/nnvm/testing/resnet.py delete mode 100644 nnvm/python/nnvm/testing/squeezenet.py delete mode 100644 nnvm/python/nnvm/testing/utils.py delete mode 100644 nnvm/python/nnvm/testing/vgg.py delete mode 100644 nnvm/python/nnvm/to_relay.py delete mode 100644 nnvm/python/nnvm/top/__init__.py delete mode 100644 nnvm/python/nnvm/top/attr_dict.py delete mode 100644 nnvm/python/nnvm/top/image.py delete mode 100644 nnvm/python/nnvm/top/nn.py delete mode 100644 nnvm/python/nnvm/top/reduction.py delete mode 100644 nnvm/python/nnvm/top/registry.py delete mode 100644 nnvm/python/nnvm/top/tensor.py delete mode 100644 nnvm/python/nnvm/top/transform.py delete mode 100644 nnvm/python/nnvm/top/vision.py delete mode 100644 nnvm/python/setup.py delete mode 100644 nnvm/src/compiler/alter_op_layout.cc delete mode 100644 nnvm/src/compiler/compile_engine.cc delete mode 100644 nnvm/src/compiler/compile_engine.h delete mode 100644 nnvm/src/compiler/fold_scale_axis.cc delete mode 100644 nnvm/src/compiler/graph_compile.cc delete mode 100644 nnvm/src/compiler/graph_fuse.cc delete mode 100644 nnvm/src/compiler/graph_fuse.h delete mode 100644 nnvm/src/compiler/graph_hash.cc delete mode 100644 nnvm/src/compiler/graph_hash.h delete mode 100644 nnvm/src/compiler/graph_runtime.cc delete mode 100644 nnvm/src/compiler/graph_runtime.h delete mode 100644 nnvm/src/compiler/graph_transform.h delete mode 100644 nnvm/src/compiler/node_attr.h delete mode 100644 nnvm/src/compiler/packed_func_ext.cc delete mode 100644 nnvm/src/compiler/pattern_util.h delete mode 100644 nnvm/src/compiler/precompute_prune.cc delete mode 100644 nnvm/src/compiler/simplify_inference.cc delete mode 100644 nnvm/src/top/elemwise_op_common.h delete mode 100644 nnvm/src/top/image/resize.cc delete mode 100644 nnvm/src/top/image/resize.h delete mode 100644 nnvm/src/top/nn/convolution.cc delete mode 100644 nnvm/src/top/nn/nn.cc delete mode 100644 nnvm/src/top/nn/nn_common.h delete mode 100644 nnvm/src/top/nn/pooling.cc delete mode 100644 nnvm/src/top/nn/upsampling.cc delete mode 100644 nnvm/src/top/op_common.h delete mode 100644 nnvm/src/top/tensor/broadcast.cc delete mode 100644 nnvm/src/top/tensor/elemwise.cc delete mode 100644 nnvm/src/top/tensor/matrix_op.cc delete mode 100644 nnvm/src/top/tensor/reduce.cc delete mode 100644 nnvm/src/top/tensor/state_op.cc delete mode 100644 nnvm/src/top/tensor/transform.cc delete mode 100644 nnvm/src/top/vision/nms.cc delete mode 100644 nnvm/src/top/vision/ssd/mutibox_op.cc delete mode 100644 nnvm/src/top/vision/yolo/reorg.cc delete mode 100644 nnvm/src/top/vision/yolo/reorg.h delete mode 100644 nnvm/tests/python/compiler/test_alter_op_layout.py delete mode 100644 nnvm/tests/python/compiler/test_autotvm_task_extraction.py delete mode 100644 nnvm/tests/python/compiler/test_build.py delete mode 100644 nnvm/tests/python/compiler/test_compiler_cache.py delete mode 100644 nnvm/tests/python/compiler/test_fold_axis.py delete mode 100644 nnvm/tests/python/compiler/test_graph_pass.py delete mode 100644 nnvm/tests/python/compiler/test_nhwc_layout.py delete mode 100644 nnvm/tests/python/compiler/test_op_fusion.py delete mode 100644 nnvm/tests/python/compiler/test_optimizer.py delete mode 100644 nnvm/tests/python/compiler/test_param_dict.py delete mode 100644 nnvm/tests/python/compiler/test_rpc_exec.py delete mode 100644 nnvm/tests/python/compiler/test_simplify_inference.py delete mode 100644 nnvm/tests/python/compiler/test_to_relay.py delete mode 100644 nnvm/tests/python/compiler/test_top_assign.py delete mode 100644 nnvm/tests/python/compiler/test_top_level1.py delete mode 100644 nnvm/tests/python/compiler/test_top_level2.py delete mode 100644 nnvm/tests/python/compiler/test_top_level3.py delete mode 100644 nnvm/tests/python/compiler/test_top_level4.py delete mode 100644 nnvm/tests/python/frontend/caffe2/model_zoo/__init__.py delete mode 100644 nnvm/tests/python/frontend/caffe2/model_zoo/squeezenet.py delete mode 100644 nnvm/tests/python/frontend/caffe2/test_forward.py delete mode 100644 nnvm/tests/python/frontend/caffe2/test_graph.py delete mode 100644 nnvm/tests/python/frontend/coreml/model_zoo/.gitignore delete mode 100644 nnvm/tests/python/frontend/coreml/model_zoo/__init__.py delete mode 100644 nnvm/tests/python/frontend/coreml/test_forward.py delete mode 100644 nnvm/tests/python/frontend/darknet/test_forward.py delete mode 100644 nnvm/tests/python/frontend/keras/test_forward.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/dcgan.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/dqn.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/inception_v3.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/mlp.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/resnet.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/squeezenet.py delete mode 100644 nnvm/tests/python/frontend/mxnet/model_zoo/vgg.py delete mode 100644 nnvm/tests/python/frontend/mxnet/test_forward.py delete mode 100644 nnvm/tests/python/frontend/mxnet/test_graph.py delete mode 100644 nnvm/tests/python/frontend/onnx/model_zoo/__init__.py delete mode 100644 nnvm/tests/python/frontend/onnx/model_zoo/squeezenet.py delete mode 100644 nnvm/tests/python/frontend/onnx/model_zoo/super_resolution.py delete mode 100644 nnvm/tests/python/frontend/onnx/test_forward.py delete mode 100644 nnvm/tests/python/frontend/tensorflow/test_forward.py delete mode 100644 nnvm/tests/python/unittest/test_correct_layout.py delete mode 100644 nnvm/tests/python/unittest/test_graph.py delete mode 100644 nnvm/tests/python/unittest/test_graph_gradient.py delete mode 100644 nnvm/tests/python/unittest/test_infer_shape.py delete mode 100644 nnvm/tests/python/unittest/test_pass_saveload_json.py delete mode 100644 nnvm/tests/python/unittest/test_symbol.py delete mode 100644 nnvm/tests/python/unittest/test_top_level1.py delete mode 100644 nnvm/tests/python/unittest/test_top_level2.py delete mode 100644 nnvm/tests/python/unittest/test_top_level3.py delete mode 100644 nnvm/tests/python/unittest/test_top_level4.py delete mode 100644 nnvm/tutorials/.gitignore delete mode 100644 nnvm/tutorials/README.txt delete mode 100644 nnvm/tutorials/deploy_model_on_mali_gpu.py delete mode 100644 nnvm/tutorials/deploy_model_on_rasp.py delete mode 100644 nnvm/tutorials/deploy_ssd_mxnet.py delete mode 100644 nnvm/tutorials/from_coreml.py delete mode 100644 nnvm/tutorials/from_darknet.py delete mode 100644 nnvm/tutorials/from_mxnet.py delete mode 100644 nnvm/tutorials/from_mxnet_to_webgl.py delete mode 100644 nnvm/tutorials/from_onnx.py delete mode 100644 nnvm/tutorials/from_tensorflow.py delete mode 100644 nnvm/tutorials/get_started.py delete mode 100644 nnvm/tutorials/nlp/from_darknet_rnn.py delete mode 100644 nnvm/tutorials/nlp/keras_s2s_translate.py delete mode 100644 nnvm/tutorials/tune_nnvm_arm.py delete mode 100644 nnvm/tutorials/tune_nnvm_cuda.py delete mode 100644 nnvm/tutorials/tune_nnvm_mobile_gpu.py delete mode 100644 nnvm/tutorials/tune_nnvm_x86.py delete mode 100644 nnvm/tutorials/using_external_lib.py delete mode 100644 nnvm/tutorials/web/resnet.html delete mode 100644 tests/python/frontend/nnvm_to_relay/test_alter_conv2d.py delete mode 100644 tests/python/frontend/nnvm_to_relay/test_forward.py diff --git a/CMakeLists.txt b/CMakeLists.txt index 292bd6780c52..afcb73041469 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -118,9 +118,8 @@ else(MSVC) endif(MSVC) # add source group -FILE(GLOB_RECURSE GROUP_SOURCE "src/*.cc" "nnvm/src/*.cc") -FILE(GLOB_RECURSE GROUP_INCLUDE "src/*.h" "include/*.h" - "nnvm/src/*.h" "nnvm/include/*.h") +FILE(GLOB_RECURSE GROUP_SOURCE "src/*.cc") +FILE(GLOB_RECURSE GROUP_INCLUDE "src/*.h" "include/*.h") assign_source_group("Source" ${GROUP_SOURCE}) assign_source_group("Include" ${GROUP_INCLUDE}) @@ -174,13 +173,6 @@ if(NOT MSVC) list(APPEND COMPILER_SRCS ${COMPILER_VERILOG_SRCS}) endif() -file(GLOB_RECURSE NNVM_COMPILER_SRCS - nnvm/src/c_api/*.cc - nnvm/src/core/*.cc - nnvm/src/pass/*.cc - nnvm/src/compiler/*.cc - nnvm/src/top/*.cc - ) file(GLOB TOPI_SRCS topi/src/*.cc @@ -294,7 +286,6 @@ if(NOT USE_SGX STREQUAL "OFF") add_dependencies(tvm_runtime sgx_edl tvm_t) install(TARGETS tvm_t ARCHIVE DESTINATION lib${LIB_SUFFIX}) endif() -add_library(nnvm_compiler SHARED ${NNVM_COMPILER_SRCS}) if(USE_THREADS) message(STATUS "Build with thread support...") @@ -304,13 +295,11 @@ if(USE_THREADS) target_link_libraries(tvm Threads::Threads) target_link_libraries(tvm_topi Threads::Threads) target_link_libraries(tvm_runtime Threads::Threads) - target_link_libraries(nnvm_compiler Threads::Threads) endif(USE_THREADS) target_link_libraries(tvm ${TVM_LINKER_LIBS} ${TVM_RUNTIME_LINKER_LIBS}) target_link_libraries(tvm_topi tvm ${TVM_LINKER_LIBS} ${TVM_RUNTIME_LINKER_LIBS}) target_link_libraries(tvm_runtime ${TVM_RUNTIME_LINKER_LIBS}) -target_link_libraries(nnvm_compiler tvm) if (HIDE_PRIVATE_SYMBOLS AND NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin") set(HIDE_SYMBOLS_LINKER_FLAGS "-Wl,--exclude-libs,ALL") @@ -320,7 +309,6 @@ if (HIDE_PRIVATE_SYMBOLS AND NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin") target_link_libraries(tvm ${HIDE_SYMBOLS_LINKER_FLAGS}) target_link_libraries(tvm_topi ${HIDE_SYMBOLS_LINKER_FLAGS}) target_link_libraries(tvm_runtime ${HIDE_SYMBOLS_LINKER_FLAGS}) - target_link_libraries(nnvm_compiler ${HIDE_SYMBOLS_LINKER_FLAGS}) endif() # Related headers @@ -330,10 +318,7 @@ target_include_directories( target_include_directories( tvm_topi PUBLIC "topi/include") -target_include_directories( - nnvm_compiler - PUBLIC "nnvm/include" - PUBLIC "topi/include") + # Tests set(TEST_EXECS "") @@ -372,7 +357,6 @@ add_custom_target(runtime DEPENDS tvm_runtime) install(TARGETS tvm DESTINATION lib${LIB_SUFFIX}) install(TARGETS tvm_topi DESTINATION lib${LIB_SUFFIX}) install(TARGETS tvm_runtime DESTINATION lib${LIB_SUFFIX}) -install(TARGETS nnvm_compiler DESTINATION lib${LIB_SUFFIX}) if (INSTALL_DEV) install( @@ -395,11 +379,6 @@ if (INSTALL_DEV) FILES_MATCHING PATTERN "*.h" ) - install( - DIRECTORY "nnvm/include/." DESTINATION "include" - FILES_MATCHING - PATTERN "*.h" - ) else(INSTALL_DEV) install( DIRECTORY "include/tvm/runtime/." DESTINATION "include/tvm/runtime" @@ -412,5 +391,4 @@ endif(INSTALL_DEV) if(MSVC) target_compile_definitions(tvm PRIVATE -DTVM_EXPORTS) target_compile_definitions(tvm_runtime PRIVATE -DTVM_EXPORTS) - target_compile_definitions(nnvm_compiler PRIVATE -DNNVM_EXPORTS) endif() diff --git a/Makefile b/Makefile index d3ad1030b9f2..d34fbe4c9d88 100644 --- a/Makefile +++ b/Makefile @@ -69,14 +69,12 @@ build/libtvm_web_runtime.js: build/libtvm_web_runtime.bc cpplint: python3 3rdparty/dmlc-core/scripts/lint.py vta cpp vta/include vta/src python3 3rdparty/dmlc-core/scripts/lint.py topi cpp topi/include; - python3 3rdparty/dmlc-core/scripts/lint.py nnvm cpp nnvm/include nnvm/src; python3 3rdparty/dmlc-core/scripts/lint.py tvm cpp include src \ examples/extension/src examples/graph_executor/src pylint: python3 -m pylint python/tvm --rcfile=$(ROOTDIR)/tests/lint/pylintrc python3 -m pylint topi/python/topi --rcfile=$(ROOTDIR)/tests/lint/pylintrc - python3 -m pylint nnvm/python/nnvm --rcfile=$(ROOTDIR)/tests/lint/pylintrc python3 -m pylint vta/python/vta --rcfile=$(ROOTDIR)/tests/lint/pylintrc jnilint: diff --git a/conda/tvm/build.sh b/conda/tvm/build.sh index 494f90f0afa0..358e0b91798a 100644 --- a/conda/tvm/build.sh +++ b/conda/tvm/build.sh @@ -6,9 +6,9 @@ # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -26,7 +26,3 @@ cd .. cd topi/python $PYTHON setup.py install --single-version-externally-managed --record=/tmp/record.txt cd ../.. - -cd nnvm/python -$PYTHON setup.py install --single-version-externally-managed --record=/tmp/record.txt -cd ../.. diff --git a/conda/tvm/meta.yaml b/conda/tvm/meta.yaml index 12f9a9698d70..3ce0f5e4726c 100644 --- a/conda/tvm/meta.yaml +++ b/conda/tvm/meta.yaml @@ -48,7 +48,6 @@ test: imports: - tvm - topi - - nnvm requires: - pytest - scipy diff --git a/docker/Dockerfile.demo_android b/docker/Dockerfile.demo_android index 4d52411444f7..13d1a2175b88 100644 --- a/docker/Dockerfile.demo_android +++ b/docker/Dockerfile.demo_android @@ -70,5 +70,5 @@ RUN cd /usr && \ make -j10 # Environment variables -ENV PYTHONPATH=/usr/tvm/python:/usr/tvm/topi/python:/usr/tvm/nnvm/python/:/usr/tvm/vta/python:${PYTHONPATH} +ENV PYTHONPATH=/usr/tvm/python:/usr/tvm/topi/python:/usr/tvm/vta/python:${PYTHONPATH} ENV ANDROID_HOME=/opt/android-sdk-linux/ diff --git a/docker/Dockerfile.demo_cpu b/docker/Dockerfile.demo_cpu index 63dc3a15d088..6700579bc41b 100644 --- a/docker/Dockerfile.demo_cpu +++ b/docker/Dockerfile.demo_cpu @@ -30,4 +30,4 @@ COPY install/install_tvm_cpu.sh /install/install_tvm_cpu.sh RUN bash /install/install_tvm_cpu.sh # Environment variables -ENV PYTHONPATH=/usr/tvm/python:/usr/tvm/topi/python:/usr/tvm/nnvm/python/:/usr/tvm/vta/python:${PYTHONPATH} +ENV PYTHONPATH=/usr/tvm/python:/usr/tvm/topi/python:/usr/tvm/vta/python:${PYTHONPATH} diff --git a/docker/Dockerfile.demo_gpu b/docker/Dockerfile.demo_gpu index 9be8c00f941c..0591050c5270 100644 --- a/docker/Dockerfile.demo_gpu +++ b/docker/Dockerfile.demo_gpu @@ -28,7 +28,7 @@ COPY install/install_tvm_gpu.sh /install/install_tvm_gpu.sh RUN bash /install/install_tvm_gpu.sh # Environment variables -ENV PYTHONPATH=/usr/tvm/python:/usr/tvm/topi/python:/usr/tvm/nnvm/python/:/usr/tvm/vta/python:${PYTHONPATH} +ENV PYTHONPATH=/usr/tvm/python:/usr/tvm/topi/python:/usr/tvm/vta/python:${PYTHONPATH} ENV PATH=/usr/local/nvidia/bin:${PATH} ENV PATH=/usr/local/cuda/bin:${PATH} ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/nvidia/lib64:${LD_LIBRARY_PATH} diff --git a/docker/Dockerfile.demo_opencl b/docker/Dockerfile.demo_opencl index 7afb2243cb52..bf27eef862f5 100644 --- a/docker/Dockerfile.demo_opencl +++ b/docker/Dockerfile.demo_opencl @@ -76,7 +76,6 @@ RUN mkdir -p ${TVM_BUILD_DIR} && \ make -j6 RUN echo "Building Python package" -ENV PYTHONPATH=${TVM_HOME}/python:${TVM_HOME}/topi/python:${TVM_HOME}/nnvm/python:${PYTHONPATH} +ENV PYTHONPATH=${TVM_HOME}/python:${TVM_HOME}/topi/python:${PYTHONPATH} RUN cd ${TVM_HOME}/python && python3 setup.py install --user RUN cd ${TVM_HOME}/topi/python && python3 setup.py install --user -RUN cd ${TVM_HOME}/nnvm/python && python3 setup.py install --user diff --git a/jvm/core/src/main/java/org/apache/tvm/contrib/GraphRuntime.java b/jvm/core/src/main/java/org/apache/tvm/contrib/GraphRuntime.java index 03695dc9045b..c31c67f283af 100644 --- a/jvm/core/src/main/java/org/apache/tvm/contrib/GraphRuntime.java +++ b/jvm/core/src/main/java/org/apache/tvm/contrib/GraphRuntime.java @@ -32,7 +32,7 @@ public class GraphRuntime { /** * Create a runtime executor module given a graph and module. - * @param graphJson The graph deployed in json format output by nnvm graph. + * @param graphJson The graph deployed in json format output by compiler. * @param libmod The module of the corresponding function. * @param ctx The local or remote context to deploy the module. * @return Runtime graph module that can be used to execute the graph. diff --git a/nnvm/Makefile b/nnvm/Makefile index 39763cb59db8..14af3b294e73 100644 --- a/nnvm/Makefile +++ b/nnvm/Makefile @@ -30,7 +30,6 @@ TVMPATH = .. export LDFLAGS = -pthread -lm export CFLAGS = -std=c++11 -Wall -O2 -Iinclude -fPIC -CFLAGS += -I$(TVMPATH)/include -I$(TVMPATH)/3rdparty/dlpack/include -I$(TVMPATH)/3rdparty/HalideIR/src -I$(TVMPATH)/topi/include ifdef DMLC_CORE_PATH CFLAGS += -I$(DMLC_CORE_PATH)/include @@ -66,7 +65,7 @@ else NO_WHOLE_ARCH= --no-whole-archive endif -all: lib/libnnvm.a lib/libnnvm_compiler.$(SHARED_LIBRARY_SUFFIX) +all: lib/libnnvm.a lib/libnnvm.$(SHARED_LIBRARY_SUFFIX) SRC = $(wildcard src/*.cc src/c_api/*.cc src/core/*.cc src/pass/*.cc) SRC_COMPILER = $(wildcard src/top/*/*.cc wildcard src/top/vision/*/*.cc src/compiler/*.cc src/compiler/*/*.cc) @@ -87,7 +86,7 @@ lib/libnnvm.a: $(ALL_DEP) @mkdir -p $(@D) $(AR) crv $@ $(filter %.o, $?) -lib/libnnvm_compiler.$(SHARED_LIBRARY_SUFFIX): lib/libnnvm.a ${TOP_OBJ} +lib/libnnvm.$(SHARED_LIBRARY_SUFFIX): lib/libnnvm.a ${TOP_OBJ} @mkdir -p $(@D) $(CXX) $(CFLAGS) -shared -o $@ $(filter %.o, $^) $(LDFLAGS) -Wl,${WHOLE_ARCH} lib/libnnvm.a -Wl,${NO_WHOLE_ARCH} diff --git a/nnvm/README.md b/nnvm/README.md index e3b451d63dcd..54caa17e2ce3 100644 --- a/nnvm/README.md +++ b/nnvm/README.md @@ -15,38 +15,8 @@ -# NNVM Compiler Module of TVM Stack +# NNVM -```python -import tvm -from tvm.contrib import graph_runtime, rpc -import nnvm.frontend -import nnvm.compiler - -# GET model from frameworks -# change xyz to supported framework name. -graph, params = nnvm.frontend.from_xyz(...) - -# OPTIMIZE and COMPILE the graph to get a deployable module -# target can be "opencl", "llvm", "metal" or any target supported by tvm -target = "cuda" -graph, lib, params = nnvm.compiler.build(graph, target, {"data", data_shape}, params=params) - -# DEPLOY and run on gpu(0) -module = graph_runtime.create(graph, lib, tvm.gpu(0)) -module.set_input(**params) -module.run(data=data_array) -output = tvm.nd.empty(out_shape, ctx=tvm.gpu(0)) -module.get_output(0, output) - -# DEPLOY to REMOTE mobile/rasp/browser with minimum tvm rpc runtime -# useful for quick experiments on mobile devices -remote = rpc.connect(remote_host, remote_port) -lib.export_library("mylib.so") -remote.upload("mylib.so") -rlib = rpc.load_module("mylib.so") -# run on remote device -rmodule = graph_runtime.create(graph, rlib, remote.gpu(0)) -rmodule.set_input(**params) -rmodule.run() -``` +NNVM is a graph level IR for neural networks. +We are moving towards Relay IR, a better unified IR that support wider range of programs. +Please use relay instead. diff --git a/nnvm/include/nnvm/base.h b/nnvm/include/nnvm/base.h index 2fd71c7d087e..678ed4d4a942 100644 --- a/nnvm/include/nnvm/base.h +++ b/nnvm/include/nnvm/base.h @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -46,6 +46,24 @@ using dmlc::get; /*!\brief "unsafe" getter function of any type */ using dmlc::unsafe_get; +enum TypeFlag { + kFloat32 = 0, + kFloat64 = 1, + kFloat16 = 2, + kUint8 = 3, + kInt32 = 4, + kInt8 = 5, + kInt64 = 6, + // kBool = 7, + // 7 is reserved for kBool, in order to keep consistency with MXNet TypeFlag defined in + // https://github.com/apache/incubator-mxnet/blob/master/3rdparty/mshadow/mshadow/base.h#L314 + kInt16 = 8, + kUint16 = 9, + kUint32 = 10, + kUint64 = 11, + kBfloat16 = 12, +}; + } // namespace nnvm // describe op registration point diff --git a/nnvm/include/nnvm/compiler/op_attr_types.h b/nnvm/include/nnvm/compiler/op_attr_types.h deleted file mode 100644 index 12b4415850d4..000000000000 --- a/nnvm/include/nnvm/compiler/op_attr_types.h +++ /dev/null @@ -1,119 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nnvm/compiler/op_attr_types.h - * \brief The Expr and related elements in DataFlow construction. - */ -#ifndef NNVM_COMPILER_OP_ATTR_TYPES_H_ -#define NNVM_COMPILER_OP_ATTR_TYPES_H_ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "packed_func_ext.h" - -namespace nnvm { -namespace compiler { - -using ::tvm::Array; -using ::tvm::Tensor; -using ::tvm::Schedule; - -/*! \brief operator pattern used in graph fusion */ -enum OpPatternKind { - // Elementwise operation - kElemWise = 0, - // Broadcasting operator, can always map output axis to the input in order. - // for example :code:`out[i, ax1, j, ax2] = input[i, j]`. - // Note that the axis need to be in order so transpose is not a bcast operator. - kBroadcast = 1, - // Injective operator, can always injectively map output axis to a single input axis. - // All injective operator can still be safely fused to injective and reduction. - kInjective = 2, - // Communicative reduction operator. - kCommReduce = 3, - // Complex operation, can still fuse elemwise operations into its output. - // but cannot chain another complex op - kOutEWiseFusable = 4, - // Opaque operation, cannot fuse anything. - kOpaque = 8 -}; - -/*! \brief the operator pattern */ -using TOpPattern = int; - -/*! - * \brief Computation description interface - * \param attrs The attribute of the node. - * \param inputs The input tensors(placeholders) - * \param out_info Tensors holding shape/type information about output, - & these are always placeholders. - * \return The output description of the tensor. - */ -using FTVMCompute = std::function< - Array(const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info)>; - -/*! - * \brief Build the computation schedule for - * op whose root is at current op. - * \param attrs The attribute of the node. - * \param outs The output tensors. - * \param target The build target. - * \return schedule The computation schedule. - */ -using FTVMSchedule = std::function< - Schedule(const NodeAttrs& attrs, - const Array& outs, - const std::string& target)>; - -/*! - * \brief Modify the op node to alter its input layout. - * it is invoked in AlterOpLayout pass. - * \param attrs The attribute of the original node. - * \param inputs The input symbols of the original node. - * \param tinfos The inferred shape and dtype of the inputs. - * \param ret The replaced operator. - * \return Whether to replace current operator. - */ -using FTVMAlterOpLayout = std::function< - bool(const NodeAttrs& attrs, - const Symbol& inputs, - const Array& tinfos, - Symbol* ret)>; - -/*! - * \brief Transform from normal operator to vectorized operator - * \param node The source node. - * \return Transformed vectorized op. - */ -using FTVMVectorizedOp = std::function; - -} // namespace compiler -} // namespace nnvm -#endif // NNVM_COMPILER_OP_ATTR_TYPES_H_ diff --git a/nnvm/include/nnvm/compiler/packed_func_ext.h b/nnvm/include/nnvm/compiler/packed_func_ext.h deleted file mode 100644 index 67a43a7b4104..000000000000 --- a/nnvm/include/nnvm/compiler/packed_func_ext.h +++ /dev/null @@ -1,77 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nnvm/compiler/packed_func_ext.h - * \brief Extension to enable packed functionn for nnvm types - */ -#ifndef NNVM_COMPILER_PACKED_FUNC_EXT_H_ -#define NNVM_COMPILER_PACKED_FUNC_EXT_H_ - -#include -#include -#include -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -using tvm::runtime::PackedFunc; - -using AttrDict = std::unordered_map; - -/*! - * \brief Get PackedFunction from global registry and - * report error if it does not exist - * \param name The name of the function. - * \return The created PackedFunc. - */ -inline const PackedFunc& GetPackedFunc(const std::string& name) { - const PackedFunc* pf = tvm::runtime::Registry::Get(name); - CHECK(pf != nullptr) << "Cannot find function " << name << " in registry"; - return *pf; -} -} // namespace compiler -} // namespace nnvm - -// Enable the graph and symbol object exchange. -namespace tvm { -namespace runtime { - -template<> -struct extension_type_info { - static const int code = 16; -}; - -template<> -struct extension_type_info { - static const int code = 17; -}; - -template<> -struct extension_type_info { - static const int code = 18; -}; - -} // namespace runtime -} // namespace tvm -#endif // NNVM_COMPILER_PACKED_FUNC_EXT_H_ diff --git a/nnvm/include/nnvm/compiler/util.h b/nnvm/include/nnvm/compiler/util.h deleted file mode 100644 index 63d065576213..000000000000 --- a/nnvm/include/nnvm/compiler/util.h +++ /dev/null @@ -1,62 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! -* \file nnvm/compiler/util.h -* \brief Utility functions for nnvm compiler -*/ -#ifndef NNVM_COMPILER_UTIL_H_ -#define NNVM_COMPILER_UTIL_H_ - -#include -#include - -namespace nnvm { -namespace compiler { - -/* - * \brief Helper function to convert TShape to TVM array. Useful for - * passing data from NNVM param structures to TOPI ops. - * - * \param shape The shape to convert - * - * \return An Array of Expr, where each element is a constant int32 - */ -inline tvm::Array ShapeToArray(TShape shape) { - tvm::Array result; - for (auto i : shape) { - result.push_back(tvm::make_const(tvm::DataType::Int(32), i)); - } - return result; -} - -/* - * \brief Helper function to convert TShape to TVM array. Useful for - * passing data from NNVM param structures to TOPI ops. - * - * \param shape The shape to convert - * - * \return An Array of Expr, where each element is a constant int32 - */ -inline tvm::Array ShapeToIntArray(TShape shape) { - return tvm::Downcast >(ShapeToArray(shape)); -} -} // namespace compiler -} // namespace nnvm -#endif // NNVM_COMPILER_UTIL_H_ diff --git a/nnvm/include/nnvm/top/README b/nnvm/include/nnvm/top/README deleted file mode 100644 index 09a4d6fc387f..000000000000 --- a/nnvm/include/nnvm/top/README +++ /dev/null @@ -1 +0,0 @@ -NNVM Core Operator and Compiler diff --git a/nnvm/include/nnvm/top/nn.h b/nnvm/include/nnvm/top/nn.h deleted file mode 100644 index f2a3e81472e1..000000000000 --- a/nnvm/include/nnvm/top/nn.h +++ /dev/null @@ -1,555 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nnvm/top/nn.h - * \brief Auxiliary param for tensor primitive. - */ -#ifndef NNVM_TOP_NN_H_ -#define NNVM_TOP_NN_H_ - -#include -#include -#include -#include -#include -#include "tensor.h" - -namespace nnvm { -namespace top { - -struct DenseParam : public dmlc::Parameter { - int units; - bool use_bias; - - DMLC_DECLARE_PARAMETER(DenseParam) { - DMLC_DECLARE_FIELD(units).set_lower_bound(1) - .describe("Number of hidden units of the dense transformation."); - DMLC_DECLARE_FIELD(use_bias).set_default(true) - .describe("Whether to use bias parameter"); - } - // constants - static const constexpr int kData = 0; - static const constexpr int kWeight = 1; - static const constexpr int kBias = 2; -}; - -struct DropoutParam : public dmlc::Parameter { - float rate; - - DMLC_DECLARE_PARAMETER(DropoutParam) { - DMLC_DECLARE_FIELD(rate).set_default(0.5) - .set_range(0, 1) - .describe("Fraction of the input that gets dropped out during training time."); - } -}; - -struct BatchNormParam : public dmlc::Parameter { - int axis; - double epsilon; - double momentum; - bool center; - bool scale; - - DMLC_DECLARE_PARAMETER(BatchNormParam) { - DMLC_DECLARE_FIELD(axis).set_default(1) - .describe("Specify which shape axis the channel is specified."); - DMLC_DECLARE_FIELD(epsilon).set_default(1e-5) - .describe("Small float added to variance to avoid dividing by zero."); - DMLC_DECLARE_FIELD(center).set_default(true) - .describe("If True, add offset of `beta` to normalized tensor." - "If False, `beta` is ignored."); - DMLC_DECLARE_FIELD(scale).set_default(true) - .describe("If True, multiply by `gamma`. If False, `gamma` is not used." - "When the next layer is piecewise linear (also e.g. `nn.relu`)," - "this can be disabled since the scaling" - "will be done by the next layer."); - } - // constants - static const constexpr int kData = 0; - static const constexpr int kGamma = 1; - static const constexpr int kBeta = 2; - static const constexpr int kMovingMean = 3; - static const constexpr int kMovingVariance = 4; -}; - - -// Shared by softmax and log_softmax -struct SoftmaxParam : public dmlc::Parameter { - int axis; - - DMLC_DECLARE_PARAMETER(SoftmaxParam) { - DMLC_DECLARE_FIELD(axis).set_default(-1) - .describe("The axis to sum over when computing softmax."); - } -}; - -struct LeakyReLUParam : public dmlc::Parameter { - double alpha; - - DMLC_DECLARE_PARAMETER(LeakyReLUParam) { - DMLC_DECLARE_FIELD(alpha).set_lower_bound(0.0).set_default(0.25) - .describe("slope coefficient for the negative half axis."); - } -}; - -struct PReLUParam : public dmlc::Parameter { - int axis; - DMLC_DECLARE_PARAMETER(PReLUParam) { - DMLC_DECLARE_FIELD(axis).set_default(1) - .describe("Specify which shape axis the channel is specified."); - } -}; - -struct PadParam : public dmlc::Parameter { - float pad_value; - Tuple > pad_width; - - DMLC_DECLARE_PARAMETER(PadParam) { - DMLC_DECLARE_FIELD(pad_value).set_default(0.0) - .describe("The value to be padded."); - DMLC_DECLARE_FIELD(pad_width) - .describe("Number of values padded to the edges of each axis, " - "in the format of ((before_1, after_1), ... (before_N, after_N))"); - } -}; - - -struct Conv2DParam : public dmlc::Parameter { - int channels; - TShape kernel_size; - TShape strides; - TShape padding; - TShape dilation; - int groups; - std::string layout; - std::string kernel_layout; - std::string out_layout; - int out_dtype; - bool use_bias; - - DMLC_DECLARE_PARAMETER(Conv2DParam) { - DMLC_DECLARE_FIELD(channels) - .describe("The dimensionality of the output space" - "i.e. the number of output channels in the convolution."); - DMLC_DECLARE_FIELD(kernel_size) - .describe("Specifies the dimensions of the convolution window."); - DMLC_DECLARE_FIELD(strides).set_default(TShape({1, 1})) - .describe("Specifies the strides of the convolution."); - DMLC_DECLARE_FIELD(padding).set_default(TShape({0, 0})) - .describe("If padding is non-zero, then the input is implicitly zero-padded" - "on both sides for padding number of points"); - DMLC_DECLARE_FIELD(dilation).set_default(TShape({1, 1})) - .describe("Specifies the dilation rate to use for dilated convolution."); - DMLC_DECLARE_FIELD(groups).set_default(1) - .describe("Controls the connections between inputs and outputs." - "At groups=1, all inputs are convolved to all outputs." - "At groups=2, the operation becomes equivalent to having two convolution" - "layers side by side, each seeing half the input channels, and producing" - "half the output channels, and both subsequently concatenated."); - DMLC_DECLARE_FIELD(layout).set_default("NCHW") - .describe("Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Convolution is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(out_layout).set_default("__undef__") - .describe("Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Default to be same as input layout."); - DMLC_DECLARE_FIELD(kernel_layout).set_default("OIHW") - .describe("Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." - "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" - "dimensions respectively."); - DMLC_DECLARE_DTYPE_FIELD(out_dtype) - .add_enum("same", -1) - .set_default(-1) - .describe("Output data type, set to explicit type under mixed precision setting"); - - DMLC_DECLARE_FIELD(use_bias).set_default(true) - .describe("Whether the layer uses a bias vector."); - } - // constants - static const constexpr int kData = 0; - static const constexpr int kWeight = 1; - static const constexpr int kBias = 2; -}; - -struct WinogradWeightTransformParam : public dmlc::Parameter { - int tile_size; - - DMLC_DECLARE_PARAMETER(WinogradWeightTransformParam) { - DMLC_DECLARE_FIELD(tile_size) - .describe("Tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)"); - } - - static const constexpr int kWeight = 0; -}; - -struct WinogradNNPACKWeightTransformParam - : public dmlc::Parameter { - int convolution_algorithm; - int out_dtype; - - DMLC_DECLARE_PARAMETER(WinogradNNPACKWeightTransformParam) { - DMLC_DECLARE_FIELD(convolution_algorithm) - .describe( - "The convolution algorithm for Winograd NNPACK. " - "E.g. tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8 for WT_8x8, " - "tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8_FP16 for WT_8x8_FP16"); - DMLC_DECLARE_DTYPE_FIELD(out_dtype) - .add_enum("same", -1) - .set_default(-1) - .describe("Output data type, set to explicit type under mixed precision setting"); - } - - static const constexpr int kWeight = 0; -}; - -struct WinogradConv2DParam : public dmlc::Parameter { - int channels; - TShape kernel_size; - TShape strides; - TShape padding; - TShape dilation; - int groups; - std::string layout; - std::string kernel_layout; - std::string out_layout; - int out_dtype; - bool use_bias; - int tile_size; - - DMLC_DECLARE_PARAMETER(WinogradConv2DParam) { - DMLC_DECLARE_FIELD(channels) - .describe("The dimensionality of the output space" - "i.e. the number of output channels in the convolution."); - DMLC_DECLARE_FIELD(kernel_size) - .describe("Specifies the dimensions of the convolution window."); - DMLC_DECLARE_FIELD(strides).set_default(TShape({1, 1})) - .describe("Specifies the strides of the convolution."); - DMLC_DECLARE_FIELD(padding).set_default(TShape({0, 0})) - .describe("If padding is non-zero, then the input is implicitly zero-padded" - "on both sides for padding number of points"); - DMLC_DECLARE_FIELD(dilation).set_default(TShape({1, 1})) - .describe("Specifies the dilation rate to use for dilated convolution."); - DMLC_DECLARE_FIELD(groups).set_default(1) - .describe("Controls the connections between inputs and outputs." - "At groups=1, all inputs are convolved to all outputs." - "At groups=2, the operation becomes equivalent to having two convolution" - "layers side by side, each seeing half the input channels, and producing" - "half the output channels, and both subsequently concatenated."); - DMLC_DECLARE_FIELD(layout).set_default("NCHW") - .describe("Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Convolution is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(out_layout).set_default("__undef__") - .describe("Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Default to be same as input layout."); - DMLC_DECLARE_FIELD(kernel_layout).set_default("OIHW") - .describe("Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." - "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" - "dimensions respectively."); - DMLC_DECLARE_DTYPE_FIELD(out_dtype) - .add_enum("same", -1) - .set_default(-1) - .describe("Output data type, set to explicit type under mixed precision setting"); - DMLC_DECLARE_FIELD(use_bias).set_default(true) - .describe("Whether the layer uses a bias vector."); - DMLC_DECLARE_FIELD(tile_size) - .describe("Tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)"); - } - // constants - static const constexpr int kData = 0; - static const constexpr int kWeight = 1; - static const constexpr int kBias = 2; -}; - -struct Conv2DTransposeParam : public dmlc::Parameter { - int channels; - TShape kernel_size; - TShape strides; - TShape padding; - TShape output_padding; - TShape dilation; - int groups; - std::string layout; - std::string kernel_layout; - int out_dtype; - bool use_bias; - - DMLC_DECLARE_PARAMETER(Conv2DTransposeParam) { - DMLC_DECLARE_FIELD(channels) - .describe("The dimensionality of the output space" - "i.e. the number of output channels in the convolution."); - DMLC_DECLARE_FIELD(kernel_size) - .describe("Specifies the dimensions of the convolution window."); - DMLC_DECLARE_FIELD(strides).set_default(TShape({1, 1})) - .describe("Specifies the strides of the convolution."); - DMLC_DECLARE_FIELD(output_padding).set_default(TShape({0, 0})) - .describe("Zero-padding added to one side of the output."); - DMLC_DECLARE_FIELD(padding).set_default(TShape({0, 0})) - .describe("If padding is non-zero, then the input is implicitly zero-padded" - "on both sides for padding number of points"); - DMLC_DECLARE_FIELD(dilation).set_default(TShape({1, 1})) - .describe("Specifies the dilation rate to use for dilated convolution."); - DMLC_DECLARE_FIELD(groups).set_default(1) - .describe("Controls the connections between inputs and outputs." - "At groups=1, all inputs are convolved to all outputs." - "At groups=2, the operation becomes equivalent to having two convolution" - "layers side by side, each seeing half the input channels, and producing" - "half the output channels, and both subsequently concatenated."); - DMLC_DECLARE_FIELD(layout).set_default("NCHW") - .describe("Dimension ordering of data. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Convolution is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(kernel_layout).set_default("OIHW") - .describe("Dimension ordering of data and weight. Can be 'OIHW', 'OIHW16o16i', etc." - "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" - "dimensions respectively."); - DMLC_DECLARE_DTYPE_FIELD(out_dtype) - .add_enum("same", -1) - .set_default(-1) - .describe("Output data type, set to explicit type under mixed precision setting"); - DMLC_DECLARE_FIELD(use_bias).set_default(true) - .describe("Whether the layer uses a bias vector."); - } - // constants - static const constexpr int kData = 0; - static const constexpr int kWeight = 1; - static const constexpr int kBias = 2; -}; - - -struct MaxPool2DParam : public dmlc::Parameter { - TShape pool_size; - TShape strides; - TShape padding; - std::string layout; - bool ceil_mode; - - DMLC_DECLARE_PARAMETER(MaxPool2DParam) { - DMLC_DECLARE_FIELD(pool_size) - .describe("Size of the pooling windows.."); - DMLC_DECLARE_FIELD(strides).set_default(TShape({1, 1})) - .describe("Specifies the strides of the convolution."); - DMLC_DECLARE_FIELD(padding).set_default(TShape({0, 0})) - .describe("If padding is non-zero, then the input is implicitly zero-padded" - "Padding support both symmetric and asymmetric as" - "one int : same padding used on all sides" - "two int : bottom, right will use same padding as top, left" - "four int : padding width in the order of (top, left, bottom, right)"); - DMLC_DECLARE_FIELD(layout).set_default("NCHW") - .describe("Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Convolution is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(ceil_mode).set_default(false) - .describe("When true, will use ceil instead of floor to compute the output shape."); - } -}; - - -struct AvgPool2DParam : public dmlc::Parameter { - TShape pool_size; - TShape strides; - TShape padding; - std::string layout; - bool ceil_mode; - bool count_include_pad; - - DMLC_DECLARE_PARAMETER(AvgPool2DParam) { - DMLC_DECLARE_FIELD(pool_size) - .describe("Size of the pooling windows.."); - DMLC_DECLARE_FIELD(strides).set_default(TShape({1, 1})) - .describe("Specifies the strides of the convolution."); - DMLC_DECLARE_FIELD(padding).set_default(TShape({0, 0})) - .describe("If padding is non-zero, then the input is implicitly zero-padded" - "Padding support both symmetric and asymmetric as" - "one int : same padding used on all sides" - "two int : bottom, right will use same padding as top, left" - "four int : padding width in the order of (top, left, bottom, right)"); - DMLC_DECLARE_FIELD(layout).set_default("NCHW") - .describe("Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Convolution is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(ceil_mode).set_default(false) - .describe("When true, will use ceil instead of floor to compute the output shape."); - DMLC_DECLARE_FIELD(count_include_pad).set_default(false) - .describe("When true, will include padding to compute the average"); - } -}; - - -struct GlobalPool2DParam : public dmlc::Parameter { - std::string layout; - - DMLC_DECLARE_PARAMETER(GlobalPool2DParam) { - DMLC_DECLARE_FIELD(layout).set_default("NCHW") - .describe("Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Convolution is applied on the 'H' and" - "'W' dimensions."); - } -}; - -struct UpSamplingParam : public dmlc::Parameter { - int scale; - std::string layout; - std::string method; - - DMLC_DECLARE_PARAMETER(UpSamplingParam) { - DMLC_DECLARE_FIELD(scale) - .describe("upsampling scaling factor"); - DMLC_DECLARE_FIELD(layout) - .set_default("NCHW") - .describe("Dimension ordering of data. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Upsampling is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(method) - .set_default("NEAREST_NEIGHBOR") - .describe("Specify the mode to use for scaling." - "NEAREST_NEIGHBOR - Nearest Neighbor" - "BILINEAR - Bilinear Interpolation"); - } -}; - -struct LayoutTransformParam : public dmlc::Parameter { - std::string src_layout; - std::string dst_layout; - - DMLC_DECLARE_PARAMETER(LayoutTransformParam) { - DMLC_DECLARE_FIELD(src_layout).set_default("__undef__") - .describe("Dimension ordering of data"); - DMLC_DECLARE_FIELD(dst_layout).set_default("__undef__") - .describe("Dimension ordering of data."); - } -}; - -struct MultiBoxPriorParam : public dmlc::Parameter { - Tuple sizes; - Tuple ratios; - Tuple steps; - Tuple offsets; - bool clip; - - DMLC_DECLARE_PARAMETER(MultiBoxPriorParam) { - DMLC_DECLARE_FIELD(sizes).set_default(Tuple({1.0})) - .describe("List of sizes of generated MultiBoxPriores."); - DMLC_DECLARE_FIELD(ratios).set_default(Tuple({1.0})) - .describe("List of aspect ratios of generated MultiBoxPriores."); - DMLC_DECLARE_FIELD(steps).set_default(Tuple({-1.0, -1.0})) - .describe("Priorbox step across y and x, -1 for auto calculation."); - DMLC_DECLARE_FIELD(offsets).set_default(Tuple({0.5, 0.5})) - .describe("Priorbox center offsets, y and x respectively."); - DMLC_DECLARE_FIELD(clip).set_default(false) - .describe("Whether to clip out-of-boundary boxes."); - } -}; - -struct MultiBoxTransformLocParam : public dmlc::Parameter { - bool clip; - float threshold; - Tuple variances; - DMLC_DECLARE_PARAMETER(MultiBoxTransformLocParam) { - DMLC_DECLARE_FIELD(clip).set_default(true) - .describe("Clip out-of-boundary boxes."); - DMLC_DECLARE_FIELD(threshold).set_default(0.01) - .describe("Threshold to be a positive prediction."); - DMLC_DECLARE_FIELD(variances).set_default(Tuple({0.1f, 0.1f, 0.2f, 0.2f})) - .describe("Variances to be decoded from box regression output."); - } -}; - -struct NonMaximumSuppressionParam : public dmlc::Parameter { - bool return_indices; - float iou_threshold; - bool force_suppress; - int top_k; - int id_index; - int coord_start; - int score_index; - int max_output_size; - bool invalid_to_bottom; - DMLC_DECLARE_PARAMETER(NonMaximumSuppressionParam) { - DMLC_DECLARE_FIELD(max_output_size).set_default(-1) - .describe("Max number of output valid boxes for each instance." - "By default all valid boxes are returned."); - DMLC_DECLARE_FIELD(iou_threshold).set_default(0.5) - .describe("Non-maximum suppression threshold."); - DMLC_DECLARE_FIELD(force_suppress).set_default(false) - .describe("Suppress all detections regardless of class_id."); - DMLC_DECLARE_FIELD(top_k).set_default(-1) - .describe("Keep maximum top k detections before nms, -1 for no limit."); - DMLC_DECLARE_FIELD(coord_start).set_default(2) - .describe("Start index of the consecutive 4 coordinates."); - DMLC_DECLARE_FIELD(score_index).set_default(1) - .describe("Index of the scores/confidence of boxes."); - DMLC_DECLARE_FIELD(id_index).set_default(0) - .describe("Axis index of id."); - DMLC_DECLARE_FIELD(return_indices).set_default(true) - .describe("Whether to return box indices in input data."); - DMLC_DECLARE_FIELD(invalid_to_bottom).set_default(false) - .describe("Whether to move all invalid bounding boxes to the bottom."); - } -}; - -struct LRNParam : public dmlc::Parameter { - int size; - int axis; - float alpha; - float beta; - float bias; - - DMLC_DECLARE_PARAMETER(LRNParam) { - DMLC_DECLARE_FIELD(size) - .describe("The size of the local region to be considered for normalization."); - DMLC_DECLARE_FIELD(axis) - .describe("input data layout channel axis"); - DMLC_DECLARE_FIELD(alpha) - .describe("The scaling parameter."); - DMLC_DECLARE_FIELD(beta) - .describe("The exponent parameter."); - DMLC_DECLARE_FIELD(bias) - .describe("The offset parameter."); - } - // constants - static const constexpr int kData = 0; -}; - -struct L2NormalizeParam : public dmlc::Parameter { - float eps; - Tuple axis; - - DMLC_DECLARE_PARAMETER(L2NormalizeParam) { - DMLC_DECLARE_FIELD(eps) - .describe("float type epsilon value."); - DMLC_DECLARE_FIELD(axis) - .describe("axis over the normalization applied"); - } -}; - -} // namespace top -} // namespace nnvm - -#endif // NNVM_TOP_NN_H_ diff --git a/nnvm/include/nnvm/top/tensor.h b/nnvm/include/nnvm/top/tensor.h deleted file mode 100644 index 51cb6e7edfb9..000000000000 --- a/nnvm/include/nnvm/top/tensor.h +++ /dev/null @@ -1,327 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nnvm/top/tensor.h - * \brief Auxiliary param for tensor primitive. - */ -#ifndef NNVM_TOP_TENSOR_H_ -#define NNVM_TOP_TENSOR_H_ - -#include -#include -#include - -namespace nnvm { -namespace top { - -struct ConcatenateParam : public dmlc::Parameter { - int axis; - DMLC_DECLARE_PARAMETER(ConcatenateParam) { - DMLC_DECLARE_FIELD(axis).set_default(1) - .describe("the axis to be concated."); - } -}; - -struct ExpandDimsParam : public dmlc::Parameter { - int axis; - int num_newaxis; - DMLC_DECLARE_PARAMETER(ExpandDimsParam) { - DMLC_DECLARE_FIELD(axis) - .describe("the axis to be expanded."); - DMLC_DECLARE_FIELD(num_newaxis).set_lower_bound(1).set_default(1) - .describe("Number of new axis to be inserted."); - } -}; - -struct SplitParam : public dmlc::Parameter { - // numpy convention, only support indices, not support list. - Tuple indices_or_sections; - int axis; - // additional hint whether it is equal_split mode - // deduced from indices_or_sections - bool equal_split; - - DMLC_DECLARE_PARAMETER(SplitParam) { - DMLC_DECLARE_FIELD(indices_or_sections) - .describe("Number of outputs to be splitted"); - DMLC_DECLARE_FIELD(axis).set_default(1) - .describe("the axis to be splitted."); - } -}; - - -struct TakeParam : public dmlc::Parameter { - dmlc::optional axis; - - DMLC_DECLARE_PARAMETER(TakeParam) { - DMLC_DECLARE_FIELD(axis).set_default(dmlc::optional()) - .describe("the axis over which to select values."); - } -}; - -struct StridedSliceParam : public dmlc::Parameter { - // numpy convention, only support indices, not support list. - Tuple begin; - Tuple end; - Tuple stride; - - DMLC_DECLARE_PARAMETER(StridedSliceParam) { - DMLC_DECLARE_FIELD(begin) - .describe("Indices for begin of slice"); - DMLC_DECLARE_FIELD(end) - .describe("Indices for end of the slice"); - DMLC_DECLARE_FIELD(stride).set_default(Tuple()) - .describe("Stride values of the slice"); - } -}; - -enum TypeFlag { - kFloat32 = 0, - kFloat64 = 1, - kFloat16 = 2, - kUint8 = 3, - kInt32 = 4, - kInt8 = 5, - kInt64 = 6, - // kBool = 7, - // 7 is reserved for kBool, in order to keep consistency with MXNet TypeFlag defined in - // https://github.com/apache/incubator-mxnet/blob/master/3rdparty/mshadow/mshadow/base.h#L314 - kInt16 = 8, - kUint16 = 9, - kUint32 = 10, - kUint64 = 11, - kBfloat16 = 12, -}; - -enum IndicatorRuleFlag { - kGT0 = 0, - kLT0 = 1, - kMax = 2, - kMin = 3, -}; - -#define DMLC_DECLARE_DTYPE_FIELD(name) \ - DMLC_DECLARE_FIELD(name) \ - .add_enum("float16", kFloat16) \ - .add_enum("float32", kFloat32) \ - .add_enum("float64", kFloat64) \ - .add_enum("uint8", kUint8) \ - .add_enum("uint16", kUint16) \ - .add_enum("uint32", kUint32) \ - .add_enum("uint64", kUint64) \ - .add_enum("int8", kInt8) \ - .add_enum("int16", kInt16) \ - .add_enum("int32", kInt32) \ - .add_enum("int64", kInt64) \ - .add_enum("bfloat16", kBfloat16) - -struct CastParam : public dmlc::Parameter { - int dtype; - DMLC_DECLARE_PARAMETER(CastParam) { - DMLC_DECLARE_DTYPE_FIELD(dtype) - .describe("Output data type."); - } -}; - -struct IndicatorParam : public dmlc::Parameter { - TShape axis; - bool exclude; - DMLC_DECLARE_PARAMETER(IndicatorParam) { - DMLC_DECLARE_FIELD(axis).set_default(TShape()) - .describe(R"code(The axis or axes along which to perform the indicator rule. - - The default, `axis=()`, will compute over all elements into a - scalar array with shape `(1,)`. - - If `axis` is int, rule is applied on a particular axis. - - If `axis` is a tuple of ints, rule is applied on all the axes - specified in the tuple. - - If `exclude` is true, rule will be applied on the axes that are - NOT in axis instead.)code"); - DMLC_DECLARE_FIELD(exclude).set_default(false) - .describe("Whether to apply rule on axis that are NOT in axis instead."); - } -}; - -struct ReshapeParam : public dmlc::Parameter { - Tuple shape; - - DMLC_DECLARE_PARAMETER(ReshapeParam) { - DMLC_DECLARE_FIELD(shape); - } -}; - -struct SqueezeParam : public dmlc::Parameter { - TShape axis; - - DMLC_DECLARE_PARAMETER(SqueezeParam) { - DMLC_DECLARE_FIELD(axis).set_default(TShape()) - .describe("The axis to squeeze in the input tensor."); - } -}; - -struct ScalarParam : public dmlc::Parameter { - double scalar; - - DMLC_DECLARE_PARAMETER(ScalarParam) { - DMLC_DECLARE_FIELD(scalar); - } -}; - -struct FillValueParam : public dmlc::Parameter { - double fill_value; - - DMLC_DECLARE_PARAMETER(FillValueParam) { - DMLC_DECLARE_FIELD(fill_value) - .describe("Scalar value to be filled"); - } -}; - -struct TransposeParam : public dmlc::Parameter { - TShape axes; - - DMLC_DECLARE_PARAMETER(TransposeParam) { - DMLC_DECLARE_FIELD(axes).set_default(TShape()) - .describe("Target axis order. By default the axes will be inverted."); - } -}; - -struct FlipParam : public dmlc::Parameter { - int axis; - DMLC_DECLARE_PARAMETER(FlipParam) { - DMLC_DECLARE_FIELD(axis).set_default(0) - .describe("the axis to be reveresed."); - } -}; - -struct BroadcastToParam : public dmlc::Parameter { - TShape shape; - - DMLC_DECLARE_PARAMETER(BroadcastToParam) { - DMLC_DECLARE_FIELD(shape).set_default(TShape()) - .describe("The shape of the desired array." - " We can set the dim to zero if it's same as the original." - " E.g `A = broadcast_to(B, shape=(10, 0, 0))` "); - } -}; - -struct ReduceParam : public dmlc::Parameter { - TShape axis; - bool keepdims; - bool exclude; - int dtype; - - DMLC_DECLARE_PARAMETER(ReduceParam) { - DMLC_DECLARE_FIELD(axis).set_default(TShape()) - .describe(R"code(The axis or axes along which to perform the reduction. - - The default, `axis=()`, will compute over all elements into a - scalar array with shape `(1,)`. - - If `axis` is int, a reduction is performed on a particular axis. - - If `axis` is a tuple of ints, a reduction is performed on all the axes - specified in the tuple. - - If `exclude` is true, reduction will be performed on the axes that are - NOT in axis instead.)code"); - - DMLC_DECLARE_FIELD(keepdims).set_default(false) - .describe("If this is set to `True`, the reduced axes are left " - "in the result as dimension with size one."); - DMLC_DECLARE_FIELD(exclude).set_default(false) - .describe("Whether to perform reduction on axis that are NOT in axis instead."); - DMLC_DECLARE_DTYPE_FIELD(dtype).set_default(kInt32) - .describe("Target data type."); - } -}; - -struct InitOpWithScalarParam : public dmlc::Parameter { - TShape shape; - int dtype; - double fill_value; - - DMLC_DECLARE_PARAMETER(InitOpWithScalarParam) { - DMLC_DECLARE_FIELD(shape).set_default(TShape()); - DMLC_DECLARE_DTYPE_FIELD(dtype).set_default(kFloat32) - .describe("Target data type."); - DMLC_DECLARE_FIELD(fill_value).describe("Scalar value to fill"); - } -}; - -struct InitOpParam : public dmlc::Parameter { - TShape shape; - int dtype; - - DMLC_DECLARE_PARAMETER(InitOpParam) { - DMLC_DECLARE_FIELD(shape).set_default(TShape()); - DMLC_DECLARE_DTYPE_FIELD(dtype).set_default(kFloat32) - .describe("Target data type."); - } -}; - -struct ElementWiseReduceParam : public dmlc::Parameter { - int num_args; - DMLC_DECLARE_PARAMETER(ElementWiseReduceParam) { - DMLC_DECLARE_FIELD(num_args).set_lower_bound(1) - .describe("Number of inputs to be reduced."); - } -}; - -struct MatMulParam : public dmlc::Parameter { - bool transpose_a; - bool transpose_b; - - DMLC_DECLARE_PARAMETER(MatMulParam) { - DMLC_DECLARE_FIELD(transpose_a) - .describe("If true then transpose the first input before dot.") - .set_default(false); - DMLC_DECLARE_FIELD(transpose_b) - .describe("If true then transpose the second input before dot.") - .set_default(false); - } -}; - -struct ClipParam : public dmlc::Parameter { - double a_min, a_max; - DMLC_DECLARE_PARAMETER(ClipParam) { - DMLC_DECLARE_FIELD(a_min) - .describe("Minimum value such that value smaller then this will be clipped."); - DMLC_DECLARE_FIELD(a_max) - .describe("Maximum value such that value larger then this will be clipped."); - } -}; - -struct SliceLikeParam : public dmlc::Parameter { - Tuple axis; - DMLC_DECLARE_PARAMETER(SliceLikeParam) { - DMLC_DECLARE_FIELD(axis).set_default(Tuple()) - .describe("List of axes on which input data will be sliced according to the " - "corresponding size of the second input. By default will slice " - "on all axes. Negative axes are supported."); - } -}; - -} // namespace top -} // namespace nnvm - -#endif // NNVM_TOP_TENSOR_H_ diff --git a/nnvm/python/.gitignore b/nnvm/python/.gitignore deleted file mode 100644 index 40d7cb4cc13a..000000000000 --- a/nnvm/python/.gitignore +++ /dev/null @@ -1,2 +0,0 @@ -*.c -*.cpp diff --git a/nnvm/python/nnvm/__init__.py b/nnvm/python/nnvm/__init__.py deleted file mode 100644 index 450058449e3a..000000000000 --- a/nnvm/python/nnvm/__init__.py +++ /dev/null @@ -1,33 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -#!/usr/bin/env python -# coding: utf-8 -"""NNVM python API for ease of use and help new framework establish python API. """ -from __future__ import absolute_import as _abs -import warnings - -from . import _base -from . import symbol as sym -from . import symbol -from ._base import NNVMError -from . import frontend - -__version__ = _base.__version__ - -warnings.warn("NNVM is deprecated and will be removed in a future version. Use Relay instead.", - FutureWarning) diff --git a/nnvm/python/nnvm/_base.py b/nnvm/python/nnvm/_base.py deleted file mode 100644 index 420392f17e92..000000000000 --- a/nnvm/python/nnvm/_base.py +++ /dev/null @@ -1,215 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -# pylint: disable=invalid-name, unused-import -""" ctypes library of nnvm and helper functions """ -from __future__ import absolute_import - -import os -import sys -import ctypes -import numpy as np -from . import libinfo - -try: - import tvm -except ImportError: - pass - -#---------------------------- -# library loading -#---------------------------- -if sys.version_info[0] == 3: - string_types = str - numeric_types = (float, int, np.float32, np.int32) - # this function is needed for python3 - # to convert ctypes.char_p .value back to python str - py_str = lambda x: x.decode('utf-8') -else: - string_types = basestring - numeric_types = (float, int, long, np.float32, np.int32) - py_str = lambda x: x - - -class NNVMError(Exception): - """Error that will be throwed by all nnvm functions""" - - -def _load_lib(): - """Load libary by searching possible path.""" - lib_path = libinfo.find_lib_path() - lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_LOCAL) - # DMatrix functions - lib.NNGetLastError.restype = ctypes.c_char_p - return lib - -# version number -__version__ = libinfo.__version__ -# library instance of nnvm -_LIB = _load_lib() -# The FFI mode of TVM -_FFI_MODE = os.environ.get("TVM_FFI", "auto") - -# type definitions -nn_uint = ctypes.c_uint -OpHandle = ctypes.c_void_p -SymbolHandle = ctypes.c_void_p -GraphHandle = ctypes.c_void_p - -# Global dict of str to symbol to initialize variables -_all_var_init = {} - -#---------------------------- -# helper function definition -#---------------------------- -def check_call(ret): - """Check the return value of C API call - - This function will raise exception when error occurs. - Wrap every API call with this function - - Parameters - ---------- - ret : int - return value from API calls - """ - if ret != 0: - raise NNVMError(py_str(_LIB.NNGetLastError())) - -def c_str(string): - """Create ctypes char * from a python string - Parameters - ---------- - string : string type - python string - - Returns - ------- - str : c_char_p - A char pointer that can be passed to C API - """ - return ctypes.c_char_p(string.encode('utf-8')) - - -def c_array(ctype, values): - """Create ctypes array from a python array - - Parameters - ---------- - ctype : ctypes data type - data type of the array we want to convert to - - values : tuple or list - data content - - Returns - ------- - out : ctypes array - Created ctypes array - """ - return (ctype * len(values))(*values) - -def ctypes2buffer(cptr, length): - """Convert ctypes pointer to buffer type. - - Parameters - ---------- - cptr : ctypes.POINTER(ctypes.c_char) - pointer to the raw memory region - length : int - the length of the buffer - - Returns - ------- - buffer : bytearray - The raw byte memory buffer - """ - if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)): - raise TypeError('expected char pointer') - res = bytearray(length) - rptr = (ctypes.c_char * length).from_buffer(res) - if not ctypes.memmove(rptr, cptr, length): - raise RuntimeError('memmove failed') - return res - -def ctypes2numpy_shared(cptr, shape): - """Convert a ctypes pointer to a numpy array - - The result numpy array shares the memory with the pointer - - Parameters - ---------- - cptr : ctypes.POINTER(mx_float) - pointer to the memory region - - shape : tuple - shape of target ndarray - - Returns - ------- - out : numpy_array - A numpy array : numpy array - """ - if not isinstance(cptr, ctypes.POINTER(mx_float)): - raise RuntimeError('expected float pointer') - size = 1 - for s in shape: - size *= s - dbuffer = (mx_float * size).from_address(ctypes.addressof(cptr.contents)) - return np.frombuffer(dbuffer, dtype=np.float32).reshape(shape) - - -def ctypes2docstring(num_args, arg_names, arg_types, arg_descs, remove_dup=True): - """Convert ctypes returned doc string information into parameters docstring. - - num_args : nn_uint - Number of arguments. - - arg_names : ctypes.POINTER(ctypes.c_char_p) - Argument names. - - arg_types : ctypes.POINTER(ctypes.c_char_p) - Argument type information. - - arg_descs : ctypes.POINTER(ctypes.c_char_p) - Argument description information. - - remove_dup : boolean, optional - Whether remove duplication or not. - - Returns - ------- - docstr : str - Python docstring of parameter sections. - """ - param_keys = set() - param_str = [] - for i in range(num_args.value): - key = py_str(arg_names[i]) - if key in param_keys and remove_dup: - continue - param_keys.add(key) - type_info = py_str(arg_types[i]) - ret = '%s : %s' % (key, type_info) - if arg_descs[i]: - ret += '\n ' + py_str(arg_descs[i]) - param_str.append(ret) - doc_str = ('Parameters\n' + - '----------\n' + - '%s\n') - doc_str = doc_str % ('\n'.join(param_str)) - return doc_str diff --git a/nnvm/python/nnvm/_ctypes/README b/nnvm/python/nnvm/_ctypes/README deleted file mode 100644 index 6e82cb962f99..000000000000 --- a/nnvm/python/nnvm/_ctypes/README +++ /dev/null @@ -1 +0,0 @@ -Ctypes specific implementation of certain modules \ No newline at end of file diff --git a/nnvm/python/nnvm/_ctypes/__init__.py b/nnvm/python/nnvm/_ctypes/__init__.py deleted file mode 100644 index ea196643ae2f..000000000000 --- a/nnvm/python/nnvm/_ctypes/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""""ctypes implementation of the Symbol""" diff --git a/nnvm/python/nnvm/_ctypes/symbol.py b/nnvm/python/nnvm/_ctypes/symbol.py deleted file mode 100644 index 8c7d58a65920..000000000000 --- a/nnvm/python/nnvm/_ctypes/symbol.py +++ /dev/null @@ -1,242 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -# pylint: disable=invalid-name, protected-access, too-many-arguments, too-many-lines, -# pylint: disable=len-as-condition, consider-iterating-dictionary -"""Symbolic configuration API.""" -from __future__ import absolute_import as _abs - -import copy -import ctypes -import sys -from .._base import _LIB -from .._base import c_array, c_str, nn_uint, py_str -from .._base import SymbolHandle, OpHandle -from .._base import check_call, ctypes2docstring -from ..name import NameManager -from ..attribute import AttrScope - -class SymbolBase(object): - """Symbol is symbolic graph.""" - __slots__ = ["handle"] - # pylint: disable=no-member - def __init__(self, handle): - """Initialize the function with handle - - Parameters - ---------- - handle : SymbolHandle - the handle to the underlying C++ Symbol - """ - self.handle = handle - - def __del__(self): - check_call(_LIB.NNSymbolFree(self.handle)) - - def __call__(self, *args, **kwargs): - """Invoke symbol as function on inputs. - - Parameters - ---------- - args: - provide positional arguments - - kwargs: - provide keyword arguments - Returns - ------- - the resulting symbol - """ - s = copy.deepcopy(self) - s._compose(*args, **kwargs) - return s - - def _compose(self, *args, **kwargs): - """Compose symbol on inputs. - - This call mutates the current symbol. - - Parameters - ---------- - args: - provide positional arguments - - kwargs: - provide keyword arguments - - Returns - ------- - the resulting symbol - """ - name = kwargs.pop('name', None) - - if name: - name = c_str(name) - if len(args) != 0 and len(kwargs) != 0: - raise TypeError('compose only accept input Symbols \ - either as positional or keyword arguments, not both') - - for arg in args: - if not isinstance(arg, SymbolBase): - raise TypeError('Compose expect `Symbol` as arguments') - for val in kwargs.values(): - if not isinstance(val, SymbolBase): - raise TypeError('Compose expect `Symbol` as arguments') - - num_args = len(args) + len(kwargs) - if len(kwargs) != 0: - keys = c_array(ctypes.c_char_p, [c_str(key) for key in kwargs.keys()]) - args = c_array(SymbolHandle, [s.handle for s in kwargs.values()]) - else: - keys = None - args = c_array(SymbolHandle, [s.handle for s in args]) - check_call(_LIB.NNSymbolCompose( - self.handle, name, num_args, keys, args)) - - def _set_attr(self, **kwargs): - """Set the attribute of the symbol. - - Parameters - ---------- - **kwargs - The attributes to set - """ - keys = c_array(ctypes.c_char_p, - [c_str(key) for key in kwargs.keys()]) - vals = c_array(ctypes.c_char_p, - [c_str(str(val)) for val in kwargs.values()]) - num_args = nn_uint(len(kwargs)) - check_call(_LIB.NNSymbolSetAttrs( - self.handle, num_args, keys, vals)) - - -_symbol_cls = SymbolBase - -def _set_symbol_class(cls): - global _symbol_cls - _symbol_cls = cls - - -def _make_atomic_symbol_function(handle, name): - """Create an atomic symbol function by handle and funciton name.""" - real_name = ctypes.c_char_p() - desc = ctypes.c_char_p() - num_args = nn_uint() - arg_names = ctypes.POINTER(ctypes.c_char_p)() - arg_types = ctypes.POINTER(ctypes.c_char_p)() - arg_descs = ctypes.POINTER(ctypes.c_char_p)() - ret_type = ctypes.c_char_p() - - check_call(_LIB.NNGetOpInfo( - handle, ctypes.byref(real_name), ctypes.byref(desc), - ctypes.byref(num_args), - ctypes.byref(arg_names), - ctypes.byref(arg_types), - ctypes.byref(arg_descs), - ctypes.byref(ret_type))) - param_str = ctypes2docstring(num_args, arg_names, arg_types, arg_descs) - func_name = name - desc = py_str(desc.value) - - doc_str = ('%s\n\n' + - '%s\n' + - 'Returns\n' + - '-------\n' + - 'result: Tensor\n' + - ' The result Tensor.') - doc_str = doc_str % (desc, param_str) - - def creator(*args, **kwargs): - """Activation Operator of Neural Net. - The parameters listed below can be passed in as keyword arguments. - - Parameters - ---------- - name : string, required. - Name of the resulting symbol. - - Returns - ------- - symbol: Symbol - the resulting symbol - """ - param_keys = [] - param_vals = [] - symbol_kwargs = {} - name = kwargs.pop('name', None) - attr = kwargs.pop('attr', None) - - for k, v in kwargs.items(): - if isinstance(v, SymbolBase): - symbol_kwargs[k] = v - else: - param_keys.append(c_str(k)) - param_vals.append(c_str(str(v))) - # create atomic symbol - param_keys = c_array(ctypes.c_char_p, param_keys) - param_vals = c_array(ctypes.c_char_p, param_vals) - sym_handle = SymbolHandle() - check_call(_LIB.NNSymbolCreateAtomicSymbol( - handle, - nn_uint(len(param_keys)), - param_keys, param_vals, - ctypes.byref(sym_handle))) - - if len(args) != 0 and len(symbol_kwargs) != 0: - raise TypeError( - '%s can only accept input' - 'Symbols either as positional or keyword arguments, not both' % func_name) - s = _symbol_cls(sym_handle) - attr = AttrScope.current.get(attr) - if attr: - s._set_attr(**attr) - hint = func_name.lower() - name = NameManager.current.get(name, hint) - s._compose(*args, name=name, **symbol_kwargs) - return s - - creator.__name__ = func_name - creator.__doc__ = doc_str - return creator - - -def _init_symbol_module(symbol_class, root_namespace): - """List and add all the atomic symbol functions to current module.""" - _set_symbol_class(symbol_class) - plist = ctypes.POINTER(ctypes.c_char_p)() - size = ctypes.c_uint() - - check_call(_LIB.NNListAllOpNames(ctypes.byref(size), - ctypes.byref(plist))) - op_names = [] - for i in range(size.value): - op_names.append(py_str(plist[i])) - - module_obj = sys.modules["%s.symbol" % root_namespace] - module_obj_contrib = sys.modules["%s.contrib" % root_namespace] - module_internal = sys.modules["%s._symbol_internal" % root_namespace] - for name in op_names: - hdl = OpHandle() - check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) - function = _make_atomic_symbol_function(hdl, name) - if function.__name__.startswith('_contrib_'): - setattr(module_obj_contrib, function.__name__.split('_contrib_')[1], function) - elif function.__name__.startswith('_'): - setattr(module_internal, function.__name__, function) - setattr(module_obj, function.__name__, function) - else: - setattr(module_obj, function.__name__, function) diff --git a/nnvm/python/nnvm/_cy2/README b/nnvm/python/nnvm/_cy2/README deleted file mode 100644 index ed4639b674a0..000000000000 --- a/nnvm/python/nnvm/_cy2/README +++ /dev/null @@ -1 +0,0 @@ -This folder is by default empty and will hold DLLs generated by cython. diff --git a/nnvm/python/nnvm/_cy2/__init__.py b/nnvm/python/nnvm/_cy2/__init__.py deleted file mode 100644 index 1961cd9ff613..000000000000 --- a/nnvm/python/nnvm/_cy2/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Namespace for cython generated modules for python2""" diff --git a/nnvm/python/nnvm/_cy3/README b/nnvm/python/nnvm/_cy3/README deleted file mode 100644 index dc3a57603782..000000000000 --- a/nnvm/python/nnvm/_cy3/README +++ /dev/null @@ -1 +0,0 @@ -This folder is by default empty and will hold DLLs generated by cython. \ No newline at end of file diff --git a/nnvm/python/nnvm/_cy3/__init__.py b/nnvm/python/nnvm/_cy3/__init__.py deleted file mode 100644 index c9a495225351..000000000000 --- a/nnvm/python/nnvm/_cy3/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Cython generated modules""" diff --git a/nnvm/python/nnvm/_symbol_internal.py b/nnvm/python/nnvm/_symbol_internal.py deleted file mode 100644 index de2f85aa2f29..000000000000 --- a/nnvm/python/nnvm/_symbol_internal.py +++ /dev/null @@ -1,17 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Module space to register internal functions. Leave empty""" diff --git a/nnvm/python/nnvm/attribute.py b/nnvm/python/nnvm/attribute.py deleted file mode 100644 index 14341794bb64..000000000000 --- a/nnvm/python/nnvm/attribute.py +++ /dev/null @@ -1,76 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -"""Attribute scoping support for symbolic API.""" -from __future__ import absolute_import - -from ._base import string_types - -class AttrScope(object): - """Attribute manager for scoping. - - User can also inherit this object to change naming behavior. - - Parameters - ---------- - kwargs - The attributes to set for all symbol creations in the scope. - """ - current = None - - def __init__(self, **kwargs): - self._old_scope = None - for value in kwargs.values(): - if not isinstance(value, string_types): - raise ValueError("Attributes need to be string") - self._attr = kwargs - - def get(self, attr): - """ - Get the attribute dict given the attribute set by the symbol. - - Parameters - ---------- - attr : dict of string to string - The attribute passed in by user during symbol creation. - - Returns - ------- - attr : dict of string to string - Updated attributes to add other scope related attributes. - """ - if self._attr: - ret = self._attr.copy() - if attr: - ret.update(attr) - return ret - return attr - - def __enter__(self): - # pylint: disable=protected-access - self._old_scope = AttrScope.current - attr = AttrScope.current._attr.copy() - attr.update(self._attr) - self._attr = attr - AttrScope.current = self - return self - - def __exit__(self, ptype, value, trace): - assert self._old_scope - AttrScope.current = self._old_scope - -AttrScope.current = AttrScope() diff --git a/nnvm/python/nnvm/compiler/__init__.py b/nnvm/python/nnvm/compiler/__init__.py deleted file mode 100644 index 6a3e846c4496..000000000000 --- a/nnvm/python/nnvm/compiler/__init__.py +++ /dev/null @@ -1,40 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""NNVM compiler toolchain. - -User only need to use :any:`build` and :any:`build_config` to do the compilation, -and :any:`save_param_dict` to save the parameters into bytes. -The other APIs are for more advanced interaction with the compiler toolchain. -""" -from __future__ import absolute_import - -import tvm - -from . import build_module -from . build_module import build, optimize, build_config -from . compile_engine import engine, graph_key -from . param_dict import save_param_dict, load_param_dict - -from .. import symbol as _symbol -from .. import graph as _graph - -from .. import top as _top - - -tvm.register_extension(_symbol.Symbol, _symbol.Symbol) -tvm.register_extension(_graph.Graph, _graph.Graph) diff --git a/nnvm/python/nnvm/compiler/build_module.py b/nnvm/python/nnvm/compiler/build_module.py deleted file mode 100644 index c52265f1adc4..000000000000 --- a/nnvm/python/nnvm/compiler/build_module.py +++ /dev/null @@ -1,466 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Namespace for building operators.""" -from __future__ import absolute_import as _abs - -import logging -import tvm - -from tvm.contrib import graph_runtime -from tvm import autotvm -from . import graph_attr, graph_util -from .. import graph as _graph -from .. import symbol as sym -from .._base import _all_var_init - -OPT_PASS_LEVEL = { - "SimplifyInference": 0, - "PrecomputePrune": 2, - "OpFusion": 1, - "FoldScaleAxis": 3, - "AlterOpLayout": 3, -} - -# List of optimization pass and level when switch on -class BuildConfig(object): - """Configuration scope to set a build config option. - - Parameters - ---------- - kwargs - Keyword arguments of configurations to set. - """ - current = None - defaults = { - "opt_level": 2, - "add_pass": None, - } - def __init__(self, **kwargs): - self._old_scope = None - for k, _ in kwargs.items(): - if k not in BuildConfig.defaults: - raise ValueError( - "invalid argument %s, candidates are %s" % (k, BuildConfig.defaults.keys())) - self._attr = kwargs - - def __getattr__(self, name): - if name not in self._attr: - return BuildConfig.defaults[name] - return self._attr[name] - - def __enter__(self): - # pylint: disable=protected-access - self._old_scope = BuildConfig.current - attr = BuildConfig.current._attr.copy() - attr.update(self._attr) - self._attr = attr - BuildConfig.current = self - return self - - def __exit__(self, ptype, value, trace): - assert self._old_scope - BuildConfig.current = self._old_scope - - def pass_enabled(self, pass_name): - """Get whether pass is enabled. - - Parameters - ---------- - pass_name : str - The optimization pass name - - Returns - ------- - enabled : bool - Whether pass is enabled. - """ - if self.add_pass and pass_name in self.add_pass: - return True - return self.opt_level >= OPT_PASS_LEVEL[pass_name] - - -BuildConfig.current = BuildConfig() - -def build_config(**kwargs): - """Configure the build behavior by setting config variables. - - Parameters - ---------- - opt_level: int, default=2 - Optimization level. See OPT_PASS_LEVEL for level of each pass. - - add_pass: set of str - Optimization pass to be added regardless of optimization level. - - Returns - ------- - config: BuildConfig - The build configuration - """ - return BuildConfig(**kwargs) - - -@tvm.register_func("nnvm.compiler.lower") -def _lower(sch, inputs, func_name, graph): - import traceback - # pylint: disable=broad-except - try: - f = tvm.lower(sch, inputs, name=func_name) - logging.debug("lower function %s", func_name) - logging.debug("%s", tvm.lower(sch, inputs, simple_mode=True)) - except Exception: - msg = traceback.format_exc() - msg += "Error during compile graph\n" - msg += "--------------------------\n" - msg += graph.ir(join_entry_attrs=["shape"]) - raise RuntimeError(msg) - return f if isinstance( - f, (tvm.container.Array, tuple, list)) else [f] - - -@tvm.register_func("nnvm.compiler.build_target") -def _build(funcs, target, target_host): - if target_host == "": - target_host = None - return tvm.build(funcs, target=target, target_host=target_host) - - -def _update_shape_dtype(shape, dtype, params): - """Update shape dtype given params information""" - if not params: - return shape, dtype - shape = shape.copy() - shape.update({k : v.shape for k, v in params.items()}) - if isinstance(dtype, str): - for k, v in params.items(): - if v.dtype != dtype and v.shape: - raise ValueError( - "%s: dtype not expected %s vs %s" % (k, dtype, v.dtype)) - else: - dtype = dtype.copy() - dtype.update({k : str(v.dtype) for k, v in params.items()}) - return shape, dtype - - -def optimize(graph, shape, dtype="float32", layout=None): - """Perform target and parameter invariant graph optimization. - - This is an advanced function that usually do not need to be called. - Call build instead. - - Parameters - ---------- - graph : Graph - The graph to be used in optimized. - - Returns - ------- - graph : Graph - The optimized graph. - """ - # pylint: disable=unused-argument - cfg = BuildConfig.current - - if cfg.pass_enabled("AlterOpLayout"): - layout = layout if layout else {} - graph = graph_attr.set_layout_inputs(graph, layout) - graph = graph.apply(["CorrectLayout"]) - - graph = graph_attr.set_shape_inputs(graph, shape) - graph = graph_attr.set_dtype_inputs(graph, dtype) - graph = graph.apply(["InferShape", "InferType", "AlterOpLayout"]) - graph = graph_attr.set_layout_inputs(graph, layout) - graph = graph.apply(["CorrectLayout"]) - - if cfg.pass_enabled("SimplifyInference"): - graph = graph_attr.set_shape_inputs(graph, shape) - graph = graph.apply(["InferShape", "SimplifyInference"]) - - if cfg.pass_enabled("FoldScaleAxis"): - graph = graph_attr.set_shape_inputs(graph, shape) - graph = graph.apply(["InferShape", "FoldScaleAxis"]) - return graph - - -def build(graph, target=None, shape=None, dtype="float32", - params=None, target_host=None, layout=None): - """Build graph into runtime library. - - The build function will optimize the graph and do the compilation. - - When params is provided, the compiler might split the graph to - pre-compute certain values, so the final execution graph can - be different from the original one. - - Parameters - ---------- - graph : Graph - The graph to be used in lowering - - target : str or :any:`tvm.target.Target`, optional - The build target - - shape : dict of str to tuple, optional - The input shape to the graph - - dtype : str or dict of str to str - The input types to the graph - - params : dict of str to NDArray - Input parameters to the graph that do not change - during inference time. Used for pre-compute - folding optimization. - - target_host : str or :any:`tvm.target.Target` optional - Host compilation target, if target is device. - When TVM compiles device specific program such as CUDA, - we also need host(CPU) side code to interact with the driver - setup the dimensions and parameters correctly. - target_host is used to specify the host side codegen target. - By default, llvm is used if it is enabled, - otherwise a stackvm intepreter is used. - - layout : dict of str to str or str optional - The input layout - - Returns - ------- - graph : Graph - The final execution graph. - - libmod : tvm.Module - The module that comes with the execution graph - - params : dict of str to NDArray - The updated parameters of graph if params is passed. - This can be different from the params passed in. - """ - target = target if target else tvm.target.current_target() - if target is None: - raise ValueError("Target is not set in env or passed as argument.") - target = tvm.target.create(target) - - # If current dispatch context is fallback context (the default root context), - # then load pre-tuned parameters from TopHub - if isinstance(autotvm.DispatchContext.current, autotvm.FallbackContext): - tophub_context = autotvm.tophub.context(target) - else: - tophub_context = autotvm.util.EmptyContext() - - with tophub_context: - shape = shape if shape else {} - if not isinstance(shape, dict): - raise TypeError("require shape to be dict") - for value in shape.values(): - if not all(isinstance(x, tvm._ffi.base.integer_types) for x in value): - raise TypeError("shape value must be Integer types iterator") - - cfg = BuildConfig.current - graph = graph if isinstance(graph, _graph.Graph) else _graph.create(graph) - shape, dtype = _update_shape_dtype(shape, dtype, params) - - # correct layout if necessary - layout = layout if layout else {} - graph = graph_attr.set_layout_inputs(graph, layout) - graph = graph.apply("CorrectLayout") - index = graph.index - layouts = graph.json_attr("layout") - layout = {x: layouts[index.entry_id(x)] for x in index.input_names} - - # Initial pass do shape type inference - ishape, _ = graph_util.infer_shape(graph, **shape) - shape.update(zip(graph.index.input_names, ishape)) - if not isinstance(dtype, str): - idtype, _ = graph_util.infer_dtype(graph, **dtype) - dtype.update(zip(graph.index.input_names, idtype)) - # Initialize all variables specified in _all_var_init - init_var = {} - if _all_var_init: - init_var = initialize_variables(shape, dtype) - # Apply optimization - with target: - graph = optimize(graph, shape, dtype, layout) - - # Clear extra params without nodes. - _remove_noref_params(params, graph) - - # Precompute prune - if params and cfg.pass_enabled("PrecomputePrune"): - graph, params = precompute_prune(graph, params) - shape, dtype = _update_shape_dtype(shape, dtype, params) - # Operator Fusion and generation - graph = graph_attr.set_shape_inputs(graph, shape) - graph = graph.apply("InferShape") - graph = graph_attr.set_dtype_inputs(graph, dtype) - graph._set_json_attr("target", str(target), "str") - if target_host is not None: - graph._set_json_attr("target_host", str(target_host), "str") - if cfg.pass_enabled("OpFusion"): - graph._set_json_attr("opt_level", 1, "int") - else: - graph._set_json_attr("opt_level", 0, "int") - graph = graph.apply("InferShape").apply("InferType") - graph = graph.apply("GraphFindFusibleGroups") - graph = graph.apply("GraphFuse") - with target: - graph = graph.apply("GraphCompile") - libmod = graph_attr._move_out_module(graph, "module") - # Write variable initial values into params - if init_var: - if params is None: - params = {} - params.update(init_var) - return graph, libmod, params - -def _remove_noref_params(params, graph): - """ Helper to clear non referenced params - - Parameters - ---------- - graph : Graph - The input graph - - params: dict of str to ndarray - The parameter dictionary - """ - arg_list = set(graph.symbol.list_input_names()) - - if params: - param_keys = list(params.keys()) - for key in param_keys: - if key not in arg_list: - params.pop(key) - -def _run_graph(graph, params): - """Helper utility to build and run and get outputs, only use cpu mode. - - Parameters - ---------- - graph : Graph - The graph to be executed. - - params: dict of str to ndarray - The parameter dictionary. - - Returns - ------- - out_dict: dict of str to tvm.NDArray - The output dictionaries. - """ - graph = graph if isinstance(graph, _graph.Graph) else _graph.create(graph) - shape = {k : v.shape for k, v in params.items()} - dtype = {k : v.dtype for k, v in params.items()} - target = "llvm" - ctx = tvm.cpu(0) - _, oshape = graph_util.infer_shape(graph, **shape) - _, odtype = graph_util.infer_dtype(graph, **dtype) - graph, libmod, _ = build(graph, target, shape, dtype) - m = graph_runtime.create(graph, libmod, ctx) - set_input, run, get_output = m["set_input"], m["run"], m["get_output"] - kset = set(graph.symbol.list_input_names()) - for k, v in params.items(): - if k in kset: - set_input(k, tvm.nd.array(v)) - run() - out_data = [] - for i, kv in enumerate(zip(oshape, odtype)): - shape, dtype = kv - arr = tvm.nd.empty(shape, dtype, ctx) - get_output(i, arr) - out_data.append(arr) - return out_data - - -def precompute_prune(graph, params): - """Precompute the part of graph that can be pre-computed. - - This will create a new graph that only contains the ops - that need to be computed depending on input as well as - updated version of param dict that pre-computes some of - intermediate results. - - Parameters - ---------- - graph : Graph - The input graph - - params : dict of str -> tvm.NDArray - The parameter dictionary of the graph - - Returns - ------- - pruned_graph : Graph - The pruned graph - - new_params : dict of str-> tvm.NDArray - The updated dictionary of parameters. - """ - graph = graph if isinstance(graph, _graph.Graph) else _graph.create(graph) - graph._set_json_attr("param_name_list", list(params.keys()), "list_str") - graph = graph.apply("PrecomputePrune") - pre_graph = graph_attr._move_out_graph(graph, "precompute_graph") - if pre_graph is None: - return graph, params - out_names = pre_graph.json_attr("output_names") - if not pre_graph.symbol.list_output_names(): - return graph, params - with tvm.build_config(auto_unroll_max_step=0): - out_arrs = _run_graph(pre_graph, params) - return graph, dict(zip(out_names, out_arrs)) - - -def initialize_variables(ishape, idtype): - """ Initialize variables stored in _all_var_init dictionary. - - Parameters - ---------- - ishape : dict of str to tuple of int - The input shape to the graph - - idtype : str or dict of str to str - The input types to the graph - - Returns - ------- - init_var : dict of str to tvm.ndarray - """ - symbol_init_dict = {} - const_init_dict = {} - init_var = {} - for key, value in _all_var_init.items(): - if isinstance(value, sym.Symbol): - symbol_init_dict[key] = value - else: - const_init_dict[key] = tvm.nd.array(value) - # Make sure variables are initialized only once. - _all_var_init.clear() - if symbol_init_dict: - # Create dummy params to run initialization graph - params = {} - for name, shape in ishape.items(): - dtype = idtype if isinstance(idtype, str) else idtype[name] - params[name] = tvm.nd.empty(shape, dtype, ctx=tvm.cpu()) - init_group_sym = sym.Group(symbol_init_dict.values()) - graph = _graph.create(init_group_sym) - with tvm.build_config(auto_unroll_max_step=0): - init_values = _run_graph(graph, params) - init_var.update(dict(zip(symbol_init_dict.keys(), init_values))) - init_var.update(const_init_dict) - for name, data in init_var.items(): - ishape[name] = data.shape - return init_var diff --git a/nnvm/python/nnvm/compiler/compile_engine.py b/nnvm/python/nnvm/compiler/compile_engine.py deleted file mode 100644 index d7799bf7b0e7..000000000000 --- a/nnvm/python/nnvm/compiler/compile_engine.py +++ /dev/null @@ -1,119 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Compiler engine interface to internal engine - -You can get the engine singleton at ``nnvm.compiler.engine`` -""" -import tvm - -_list_cache_items = tvm.get_global_func("nnvm.compiler.ListCacheItems") -_clear_cache = tvm.get_global_func("nnvm.compiler.ClearCache") -_get_cache_item = tvm.get_global_func("nnvm.compiler.GetCacheItem") -_set_cache_item = tvm.get_global_func("nnvm.compiler.SetCacheItem") -_graph_key_get_graph = tvm.get_global_func("nnvm.compiler.GraphKeyGetGraph") -_make_graph_key = tvm.get_global_func("nnvm.compiler.MakeGraphKey") - -@tvm.register_node -class GraphKey(tvm.node.NodeBase): - """Key of a graph compilation context""" - @property - def graph(self): - return _graph_key_get_graph(self) - - -@tvm.register_node -class GraphCacheEntry(tvm.node.NodeBase): - """CacheEntry of compilation into a TVM Function""" - - -@tvm.register_node -class GraphFunc(tvm.node.NodeBase): - """Compiled result of a graph into a TVM Function""" - - -class Engine(object): - """Global singleton compilation engine. - - You can get the singleton at ``nnvm.compiler.engine`` - """ - def items(self): - """List the available cache key value pairs. - - Returns - ------- - item_list : list of (GraphKey, GraphCacheEntry) - The existing cache items - """ - res = _list_cache_items() - assert len(res) % 2 == 0 - return [(res[2*i], res[2*i+1]) for i in range(len(res) // 2)] - - def clear_cache(self): - """Clear the existing cached functions.""" - _clear_cache() - - def __setitem__(self, key, value): - """Clear the existing cached functions.""" - if isinstance(value, GraphCacheEntry): - _set_cache_item(key, value.graph_func) - else: - _set_cache_item(key, value) - - def __getitem__(self, key): - """Clear the existing cached functions.""" - return _get_cache_item(key) - - def dump(self): - """Return a string representation of engine dump - - Returns - ------- - dump : str - The dumped string representation - """ - items = self.items() - res = "====================================\n" - res += "CompilerEngine dump, %d items cached\n" % len(items) - for key, value in items: - res += "------------------------------------\n" - res += "target={}\n".format(key.target) - res += "inputs={}\n".format(key.inputs) - res += "use_count={}\n".format(value.use_count) - res += "func_name={}\n".format(value.graph_func.func_name) - res += key.graph.ir() + "\n" - res += "===================================\n" - return res - -engine = Engine() - - -def graph_key(graph, inputs, target): - """Construct a new graph key. - - Parameters - ---------- - graph : Graph - The computation graph structure - - inputs : list of Tensor(placeholder) - The input requirement to the graph. - - target : str - The target of compilation. - """ - return _make_graph_key(graph, inputs, target) diff --git a/nnvm/python/nnvm/compiler/graph_attr.py b/nnvm/python/nnvm/compiler/graph_attr.py deleted file mode 100644 index de557cce78b3..000000000000 --- a/nnvm/python/nnvm/compiler/graph_attr.py +++ /dev/null @@ -1,136 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Utilities to access graph attributes""" -from __future__ import absolute_import as _abs - -import tvm - -def set_shape_inputs(g, shape): - """Set the shape of input graph nodes in the graph attribute. - - Parameters - ---------- - g : Graph - The input graph - - shape : dict of str to tuple - The input shape - - Returns - ------- - g : Graph - The updated graph with updated shape. - """ - list_shape = [ - shape.get(name, ()) for name in g.index.input_names] - g._set_json_attr("shape_inputs", list_shape, 'list_shape') - return g - - -DTYPE_TO_TCODE = { - "default": -1, - "float32": 0, - "float64": 1, - "float16": 2, - "uint8": 3, - "int32": 4, - "int8": 5, - "int64": 6, - "int16": 7, - "uint16": 8, - "uint32": 9, - "uint64": 10, - "bool": 11, -} - -TCODE_TO_DTYPE = { - -1: None, - 0: "float32", - 1: "float64", - 2: "float16", - 3: "uint8", - 4: "int32", - 5: "int8", - 6: "int64", - 7: "int16", - 8: "uint16", - 9: "uint32", - 10: "uint64", - 11: "bool", -} - -def set_dtype_inputs(g, dtype): - """Set the dtype inputs of graph nodes - - Parameters - ---------- - g : Graph - The input graph - - dtype : dict of str to str or str - The input dtype - - Returns - ------- - g : Graph - The updated graph with updated dtype. - """ - if isinstance(dtype, dict): - list_dtype = [ - DTYPE_TO_TCODE[str(dtype.get(name, "default"))] - for name in g.index.input_names] - else: - list_dtype = [DTYPE_TO_TCODE[dtype]] * len(g.index.input_names) - g._set_json_attr("dtype_inputs", list_dtype, "list_int") - return g - - -def set_layout_inputs(g, layout): - """Set the layout inputs of graph nodes - - Parameters - ---------- - g : Graph - The input graph - - layout : dict of str to str or str - The input layout - - Returns - ------- - g : Graph - The updated graph with updated layout. - """ - if isinstance(layout, dict): - list_layout = [ - layout.get(name, "__undef__") for name in g.index.input_names] - elif isinstance(layout, str): - list_layout = ["__undef__"] * len(g.index.input_names) - list_layout[0] = layout - else: - raise ValueError("Input layout must be str or dict") - last_inferred_layouts = g.json_attr("layout") - if last_inferred_layouts: - input_layout = [last_inferred_layouts[g.index.entry_id(x)] for x in g.index.input_names] - for i, layout_stored in enumerate(input_layout): - list_layout[i] = list_layout[i] if list_layout[i] != '__undef__' else layout_stored - g._set_json_attr("layout_inputs", list_layout, 'list_layout') - return g - -_move_out_module = tvm.get_global_func("nnvm.graph._move_module") -_move_out_graph = tvm.get_global_func("nnvm.graph._move_graph") diff --git a/nnvm/python/nnvm/compiler/graph_pass.py b/nnvm/python/nnvm/compiler/graph_pass.py deleted file mode 100644 index a11a80e43fe4..000000000000 --- a/nnvm/python/nnvm/compiler/graph_pass.py +++ /dev/null @@ -1,24 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Namespace of graph pass. - -Principle: -- Graph in, graph out: always takes in graph as first argument and returns a graph -- Composable API: break graph transformation pass as segments of small transformations. -""" -from __future__ import absolute_import as _abs diff --git a/nnvm/python/nnvm/compiler/graph_util.py b/nnvm/python/nnvm/compiler/graph_util.py deleted file mode 100644 index 3ce38dacacc3..000000000000 --- a/nnvm/python/nnvm/compiler/graph_util.py +++ /dev/null @@ -1,164 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Utility function to get information from graph.""" -from __future__ import absolute_import as _abs - -import tvm -from . import graph_attr - -from ..graph import create -from ..symbol import Group, ones_like - -def infer_shape(graph, **shape): - """Infer the shape given the shape of inputs. - - Parameters - ---------- - graph : Graph - The graph to perform shape inference from - - shape : dict of str to tuple - The specific input shape. - - Returns - ------- - in_shape : list of tuple - Shape of inputs - - out_shape: list of tuple - Shape of outputs - """ - graph = graph_attr.set_shape_inputs(graph, shape) - graph = graph.apply("InferShape") - shape = graph.json_attr("shape") - index = graph.index - input_shape = [shape[index.entry_id(x)] for x in index.input_names] - output_shape = [shape[index.entry_id(x)] for x in index.output_entries] - return input_shape, output_shape - - -def infer_dtype(graph, **dtype): - """Infer the type given the typeS of inputs. - - Parameters - ---------- - graph : Graph - The graph to perform type inference from - - dtype : dict of str to dtype - The specific input data type. - - Returns - ------- - in_dtype : list of tuple - Dtype of inputs - - out_dtype: list of tuple - Dtype of outputs - """ - graph = graph_attr.set_dtype_inputs(graph, dtype) - graph = graph.apply("InferType") - dtype = graph.json_attr("dtype") - index = graph.index - input_dtype = [graph_attr.TCODE_TO_DTYPE[dtype[index.entry_id(x)]] - for x in index.input_names] - output_dtype = [graph_attr.TCODE_TO_DTYPE[dtype[index.entry_id(x)]] - for x in index.output_entries] - return input_dtype, output_dtype - - -_deep_compare = tvm.get_global_func("nnvm.graph.DeepCompare") - -def check_graph_equal(grapha, graphb, compare_variable_attrs=False): - """Check if two graphs have equal structure. - - Parameters - ---------- - grapha : Graph - The first graph - - graphb : Graph - The second graph - - compare_variable_attrs : bool, optional - Whether we want to compare attributes(names) on variables. - Usually it is safe to skip it unless we want input name - to exactly match - - Raises - ------ - ValueError - ValueError is raised with error message when graph not equal - """ - err = _deep_compare(grapha, graphb, compare_variable_attrs) - if err: - raise ValueError("Graph compare error: " + err) - -def get_gradient_graph(ys, xs, grad_ys=None): - """Create gradient graph of ys with respect to xs. - - Parameters - ---------- - ys : Symbol or list of Symbol - Symbols from which the gradient is calculated. - xs : Symbol or list of Symbol - Symbols the gradient respect to. - For group symbol, gradients for all outputs will be calculated. - grad_ys : Symbol or list of Symbol - Head gradients for ys. - - Returns - ------- - ret : Graph - Generated gradient graph. - """ - if isinstance(ys, list): - ys = Group(ys) - g = create(ys) - g._set_symbol_list_attr('grad_ys', ys) - g._set_symbol_list_attr('grad_xs', xs) - ny = len(ys.list_output_names()) - if grad_ys is None: - grad_ys = [ones_like(ys[i]) for i in range(ny)] - g._set_symbol_list_attr('grad_ys_out_grad', grad_ys) - return g.apply('Gradient') - -def gradients(ys, xs, grad_ys=None): - """Create gradient symbol of ys respect to xs. - - Parameters - ---------- - ys : Symbol or list of Symbol - Symbols from which the gradient is calculated. - xs : Symbol or list of Symbol - Symbols the gradient respect to. - For group symbol, gradients for all outputs will be calculated. - grad_ys : Symbol or list of Symbol - Head gradients for ys. - - Returns - ------- - ret : list of Symbol - Generated gradient symbol. For each xs, - all gradients from ys are merged into a single symbol. - """ - grad_g = get_gradient_graph(ys, xs, grad_ys) - nx = len(Group(xs).list_output_names()) \ - if isinstance(xs, list) else len(xs.list_output_names()) - ret = [grad_g.symbol[i] for i in range(nx)] - return ret diff --git a/nnvm/python/nnvm/compiler/lr_scheduler.py b/nnvm/python/nnvm/compiler/lr_scheduler.py deleted file mode 100644 index 3a33f390b6f4..000000000000 --- a/nnvm/python/nnvm/compiler/lr_scheduler.py +++ /dev/null @@ -1,74 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=too-few-public-methods, no-member -"""API for scheduling learning rate.""" -from .. import symbol as sym - -class LRScheduler(object): - """Base class of a learning rate scheduler. - - A scheduler returns a new learning rate based on the number of updates that have - been performed. - - Parameters - ---------- - base_lr : float, optional - The initial learning rate. - """ - def __init__(self, base_lr=0.01, name='LRScheduler'): - self.name = name - self.base_lr = base_lr - - def __call__(self, num_update): - """Return a new learning rate based on number of updates. - - Parameters - ---------- - num_update: nnvm Symbol - the number of updates applied to weight. - """ - raise NotImplementedError("__call__ method must be overridden.") - -class FactorScheduler(LRScheduler): - """Reduce the learning rate by a factor for every *n* steps. - - It returns a new learning rate by:: - - base_lr * pow(factor, num_update/step) - - Parameters - ---------- - step : int - Changes the learning rate for every n updates. - factor : float, optional - The factor to change the learning rate. - stop_factor_lr : float, optional - Stop updating the learning rate if it is less than this value. - """ - def __init__(self, step, factor=1, stop_factor_lr=1e-8, name='FactorScheduler', **kwargs): - super(FactorScheduler, self).__init__(name=name, **kwargs) - if step < 1: - raise ValueError("Schedule step must be greater or equal than 1 round") - if factor > 1.0: - raise ValueError("Factor must be no more than 1 to make lr reduce") - self.step = step - self.factor = factor - self.stop_factor_lr = stop_factor_lr - - def __call__(self, num_update): - updated_lr = self.base_lr * self.factor ** (num_update / self.step) - return sym.clip(updated_lr, a_min=self.stop_factor_lr, a_max=self.base_lr) diff --git a/nnvm/python/nnvm/compiler/optimizer.py b/nnvm/python/nnvm/compiler/optimizer.py deleted file mode 100644 index ba739b8c7056..000000000000 --- a/nnvm/python/nnvm/compiler/optimizer.py +++ /dev/null @@ -1,147 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, no-member, too-few-public-methods, too-many-arguments, too-many-locals, protected-access -"""Optimizer API""" -from . import graph_util -from .. import symbol as sym - -class Optimizer(object): - """Base class inherited by all optimizers. - - Parameters - ---------- - learning_rate : float, optional - The initial learning rate. - - lr_scheduler : LRScheduler, optional - The learning rate scheduler. - - rescale_grad : float, optional - Multiply the gradient with `rescale_grad` before updating. Often - choose to be ``1.0/batch_size``. - - clip_gradient : float, optional - Clip the gradient by projecting onto the box ``[-clip_gradient, clip_gradient]``. - - wd : float, optional - The weight decay (or L2 regularization) coefficient. Modifies objective - by adding a penalty for having large weights. - - name : string, optional - The name of optimizer. - """ - def __init__(self, learning_rate=0.01, lr_scheduler=None, - rescale_grad=1, clip_gradient=None, wd=0, name="Optimizer"): - self.name = name - self.lr = learning_rate - self.lr_scheduler = lr_scheduler - self.rescale_grad = rescale_grad - self.clip_gradient = clip_gradient - self.wd = wd - init_update_t = sym.Variable(name+'_t', init=sym.zeros(shape=(1,), dtype="int32")) - self.update_t = sym._assign(init_update_t, init_update_t + 1) - - def minimize(self, obj, var=None): - """Minimize given obj symbol respect to var. If var is not set, all input - variables of obj will be used. - - Parameters - ---------- - obj : nnvm Symbol or list of nnvm Symbols - Symbols to be minimized. - var : nnvm Symbol or list of nnvm Symbols, optional - Symbols the gradient respect to. - - Returns - ------- - group_sym : nnvm Symbol - Group symbol represents update symbols. - """ - raise NotImplementedError() - - def _get_lr(self): - """Gets the learning rate with learning rate scheduler. - - Returns - ------- - lr : float - Learning rate. - """ - if self.lr_scheduler is not None: - lr = self.lr_scheduler(self.update_t) - else: - lr = self.lr - return lr - - -class SGD(Optimizer): - """The SGD optimizer - """ - def __init__(self, name='SGD', **kwargs): - super(SGD, self).__init__(name=name, **kwargs) - - def minimize(self, obj, var=None): - variables = var or obj.list_input_variables() - if not isinstance(variables, list): - variables = [variables] - grads = graph_util.gradients(obj, variables) - updates = [] - lr_t = self._get_lr() - for v, g in zip(variables, grads): - g = self.rescale_grad * g - if self.clip_gradient is not None: - g = sym.clip(g, a_min=-1 * self.clip_gradient, a_max=self.clip_gradient) - updates.append(sym._assign(v, v - lr_t * (g + self.wd * v))) - return sym.Group(updates) - - -class Adam(Optimizer): - """The Adam optimizer. - - This class implements the optimizer described in *Adam: A Method for - Stochastic Optimization*, available at http://arxiv.org/abs/1412.6980. - """ - def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, - epsilon=1e-8, name='Adam', **kwargs): - super(Adam, self).__init__(learning_rate=learning_rate, name=name, **kwargs) - self.beta1 = beta1 - self.beta2 = beta2 - self.epsilon = epsilon - self.m = [] - self.v = [] - - def minimize(self, obj, var=None): - variables = var or obj.list_input_variables() - if not isinstance(variables, list): - variables = [variables] - grads = graph_util.gradients(obj, variables) - updates = [] - for i, v in enumerate(variables): - self.m.append(sym.Variable(self.name + '_m' + str(i), init=sym.zeros_like(v))) - self.v.append(sym.Variable(self.name + '_v' + str(i), init=sym.zeros_like(v))) - rate = sym.sqrt(1 - self.beta2 ** self.update_t) / (1 - self.beta1 ** self.update_t) - lr_t = self._get_lr() * rate - for variable, g, m, v in zip(variables, grads, self.m, self.v): - g = self.rescale_grad * g - if self.clip_gradient is not None: - g = sym.clip(g, a_min=-1 * self.clip_gradient, a_max=self.clip_gradient) - update_m = sym._assign(m, self.beta1 * m + (1 - self.beta1) * g) - update_v = sym._assign(v, self.beta2 * v + (1 - self.beta2) * g * g) - update_var = sym._assign(variable, variable - lr_t * (update_m / (sym.sqrt(update_v) \ - + self.epsilon) + self.wd * variable)) - updates.append(update_var) - return sym.Group(updates) diff --git a/nnvm/python/nnvm/compiler/param_dict.py b/nnvm/python/nnvm/compiler/param_dict.py deleted file mode 100644 index a543e0a827b3..000000000000 --- a/nnvm/python/nnvm/compiler/param_dict.py +++ /dev/null @@ -1,77 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Helper utility to save parameter dict""" -import tvm - -_save_param_dict = tvm.get_global_func("nnvm.compiler._save_param_dict") -_load_param_dict = tvm.get_global_func("nnvm.compiler._load_param_dict") - -def save_param_dict(params): - """Save parameter dictionary to binary bytes. - - The result binary bytes can be loaded by the - GraphModule with API "load_params". - - Parameters - ---------- - params : dict of str to NDArray - The parameter dictionary. - - Returns - ------- - param_bytes: bytearray - Serialized parameters. - - Examples - -------- - .. code-block:: python - - # compile and save the modules to file. - graph, lib, params = nnvm.compiler.build( - graph, target, shape={"data", data_shape}, params=params) - module = graph_runtime.create(graph, lib, tvm.gpu(0)) - # save the parameters as byte array - param_bytes = nnvm.compiler.save_param_dict(params) - # We can serialize the param_bytes and load it back later. - # Pass in byte array to module to directly set parameters - module["load_params"](param_bytes) - """ - args = [] - for k, v in params.items(): - args.append(k) - args.append(tvm.nd.array(v)) - return _save_param_dict(*args) - - -def load_param_dict(param_bytes): - """Load parameter dictionary to binary bytes. - - Parameters - ---------- - param_bytes: bytearray - Serialized parameters. - - Returns - ------- - params : dict of str to NDArray - The parameter dictionary. - """ - if isinstance(param_bytes, (bytes, str)): - param_bytes = bytearray(param_bytes) - load_arr = _load_param_dict(param_bytes) - return {v.name : v.array for v in load_arr} diff --git a/nnvm/python/nnvm/contrib.py b/nnvm/python/nnvm/contrib.py deleted file mode 100644 index c3e943682db5..000000000000 --- a/nnvm/python/nnvm/contrib.py +++ /dev/null @@ -1,17 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Module space to register contrib functions. Leave empty""" diff --git a/nnvm/python/nnvm/cython/README b/nnvm/python/nnvm/cython/README deleted file mode 100644 index d9deab1abca9..000000000000 --- a/nnvm/python/nnvm/cython/README +++ /dev/null @@ -1 +0,0 @@ -Cython specific implementation of certain modules \ No newline at end of file diff --git a/nnvm/python/nnvm/cython/base.pyi b/nnvm/python/nnvm/cython/base.pyi deleted file mode 100644 index 40ef71a20546..000000000000 --- a/nnvm/python/nnvm/cython/base.pyi +++ /dev/null @@ -1,106 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -ctypedef void* SymbolHandle -ctypedef void* OpHandle -ctypedef unsigned nn_uint - -cdef py_str(const char* x): - if PY_MAJOR_VERSION < 3: - return x - else: - return x.decode("utf-8") - - -cdef c_str(pystr): - """Create ctypes char * from a python string - Parameters - ---------- - string : string type - python string - - Returns - ------- - str : c_char_p - A char pointer that can be passed to C API - """ - return pystr.encode("utf-8") - - -cdef CALL(int ret): - if ret != 0: - raise NNVMError(NNGetLastError()) - - -cdef const char** CBeginPtr(vector[const char*]& vec): - if (vec.size() != 0): - return &vec[0] - else: - return NULL - -cdef vector[const char*] SVec2Ptr(vector[string]& vec): - cdef vector[const char*] svec - svec.resize(vec.size()) - for i in range(vec.size()): - svec[i] = vec[i].c_str() - return svec - - -cdef BuildDoc(nn_uint num_args, - const char** arg_names, - const char** arg_types, - const char** arg_descs, - remove_dup=True): - """Convert ctypes returned doc string information into parameters docstring. - - num_args : nn_uint - Number of arguments. - - arg_names : ctypes.POINTER(ctypes.c_char_p) - Argument names. - - arg_types : ctypes.POINTER(ctypes.c_char_p) - Argument type information. - - arg_descs : ctypes.POINTER(ctypes.c_char_p) - Argument description information. - - remove_dup : boolean, optional - Whether remove duplication or not. - - Returns - ------- - docstr : str - Python docstring of parameter sections. - """ - param_keys = set() - param_str = [] - for i in range(num_args): - key = arg_names[i] - if key in param_keys and remove_dup: - continue - param_keys.add(key) - type_info = arg_types[i] - ret = '%s : %s' % (key, type_info) - if len(arg_descs[i]) != 0: - ret += '\n ' + py_str(arg_descs[i]) - param_str.append(ret) - doc_str = ('Parameters\n' + - '----------\n' + - '%s\n') - doc_str = doc_str % ('\n'.join(param_str)) - return doc_str diff --git a/nnvm/python/nnvm/cython/symbol.pyx b/nnvm/python/nnvm/cython/symbol.pyx deleted file mode 100644 index eedf2afbbc2a..000000000000 --- a/nnvm/python/nnvm/cython/symbol.pyx +++ /dev/null @@ -1,233 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -from __future__ import absolute_import as _abs - -import sys as _sys -import ctypes as _ctypes -from numbers import Number as _Number -from .._base import NNVMError -from ..name import NameManager -from ..attribute import AttrScope -from libcpp.vector cimport vector -from libcpp.string cimport string -from cpython.version cimport PY_MAJOR_VERSION - -include "./base.pyi" - -cdef extern from "nnvm/c_api.h": - const char* NNGetLastError(); - int NNListAllOpNames(nn_uint *out_size, - const char ***out_array); - int NNGetOpHandle(const char *op_name, - OpHandle *handle); - int NNGetOpInfo(OpHandle op, - const char **name, - const char **description, - nn_uint *num_doc_args, - const char ***arg_names, - const char ***arg_type_infos, - const char ***arg_descriptions, - const char **return_type); - int NNListOpNames(nn_uint *out_size, - const char ***out_array); - int NNSymbolCreateAtomicSymbol(OpHandle op, - nn_uint num_param, - const char **keys, - const char **vals, - SymbolHandle *out); - int NNSymbolFree(SymbolHandle symbol); - int NNSymbolSetAttrs(SymbolHandle symbol, - nn_uint num_param, - const char** keys, - const char** values); - int NNSymbolCompose(SymbolHandle sym, - const char* name, - nn_uint num_args, - const char** keys, - SymbolHandle* args); - -cdef class SymbolBase: - """Symbol is symbolic graph.""" - # handle for symbolic operator. - cdef SymbolHandle handle - - def __init__(self, handle): - cdef unsigned long ptr - if handle is None: - self.handle = NULL - else: - ptr = handle.value - self.handle = (ptr) - - def __dealloc__(self): - CALL(NNSymbolFree(self.handle)) - - @property - def handle(self): - return _ctypes.cast(self.handle, _ctypes.c_void_p) - - def _set_attr(self, **kwargs): - """Set the attribute of the symbol. - - Parameters - ---------- - **kwargs - The attributes to set - """ - SymbolSetAttr(self.handle, kwargs) - - -cdef SymbolSetAttr(SymbolHandle handle, dict kwargs): - cdef vector[string] sparam_keys - cdef vector[string] sparam_vals - cdef nn_uint num_args - for k, v in kwargs.items(): - sparam_keys.push_back(c_str(k)) - sparam_vals.push_back(c_str(str(v))) - # keep strings in vector - cdef vector[const char*] param_keys = SVec2Ptr(sparam_keys) - cdef vector[const char*] param_vals = SVec2Ptr(sparam_vals) - num_args = param_keys.size() - CALL(NNSymbolSetAttrs( - handle, num_args, CBeginPtr(param_keys), CBeginPtr(param_vals))) - - -_symbol_cls = SymbolBase - -cdef _set_symbol_class(cls): - global _symbol_cls - _symbol_cls = cls - -cdef NewSymbol(SymbolHandle handle): - """Create a new symbol given handle""" - sym = _symbol_cls(None) - (sym).handle = handle - return sym - -cdef _make_atomic_symbol_function(OpHandle handle, string name): - """Create an atomic symbol function by handle and funciton name.""" - cdef const char *real_name - cdef const char *desc - cdef nn_uint num_args - cdef const char** arg_names - cdef const char** arg_types - cdef const char** arg_descs - cdef const char* return_type - - CALL(NNGetOpInfo( - handle, &real_name, &desc, - &num_args, &arg_names, - &arg_types, &arg_descs, - &return_type)) - - param_str = BuildDoc(num_args, arg_names, arg_types, arg_descs) - func_name = py_str(name.c_str()) - doc_str = ('%s\n\n' + - '%s\n' + - 'Returns\n' + - '-------\n' + - 'result: Tensor\n' + - ' The result Tensor.') - doc_str = doc_str % (desc, param_str) - func_hint = func_name.lower() - - def creator(*args, **kwargs): - cdef vector[string] sparam_keys - cdef vector[string] sparam_vals - cdef vector[SymbolHandle] symbol_args - cdef vector[string] ssymbol_keys - cdef SymbolHandle ret_handle - - name = kwargs.pop("name", None) - attr = kwargs.pop("attr", None) - - if len(kwargs) != 0: - for k, v in kwargs.items(): - if isinstance(v, SymbolBase): - ssymbol_keys.push_back(c_str(k)) - symbol_args.push_back((v).handle) - else: - sparam_keys.push_back(c_str(k)) - sparam_vals.push_back(c_str(str(v))) - - if len(args) != 0: - if symbol_args.size() != 0: - raise TypeError("compose only accept input Symbols\ - either as positional or keyword arguments, not both") - for v in args: - if not isinstance(v, SymbolBase): - raise TypeError('Compose expect `Symbol` as arguments') - symbol_args.push_back((v).handle) - - cdef vector[const char*] param_keys = SVec2Ptr(sparam_keys) - cdef vector[const char*] param_vals = SVec2Ptr(sparam_vals) - cdef vector[const char*] symbol_keys = SVec2Ptr(ssymbol_keys) - - CALL(NNSymbolCreateAtomicSymbol( - handle, - param_keys.size(), - CBeginPtr(param_keys), - CBeginPtr(param_vals), - &ret_handle)) - num_args = (symbol_args.size()) - - attr = AttrScope.current.get(attr) - if attr: - SymbolSetAttr(ret_handle, attr) - name = NameManager.current.get(name, func_hint) - - cdef const char* c_name = NULL - - if name: - name = c_str(name) - c_name = name - - CALL(NNSymbolCompose( - ret_handle, - c_name, - num_args, - &symbol_keys[0] if symbol_keys.size() != 0 else NULL, - &symbol_args[0] if symbol_args.size() != 0 else NULL)) - return NewSymbol(ret_handle) - - creator.__name__ = func_name - creator.__doc__ = doc_str - return creator - - -def _init_symbol_module(symbol_class, root_namespace): - """List and add all the atomic symbol functions to current module.""" - cdef const char** op_name_ptrs - cdef nn_uint size - cdef vector[string] op_names - cdef OpHandle handle - - _set_symbol_class(symbol_class) - CALL(NNListAllOpNames(&size, &op_name_ptrs)) - for i in range(size): - op_names.push_back(string(op_name_ptrs[i])); - module_obj = _sys.modules["%s.symbol" % root_namespace] - module_internal = _sys.modules["%s._symbol_internal" % root_namespace] - for i in range(op_names.size()): - CALL(NNGetOpHandle(op_names[i].c_str(), &handle)) - function = _make_atomic_symbol_function(handle, op_names[i]) - if function.__name__.startswith('_'): - setattr(module_internal, function.__name__, function) - setattr(module_obj, function.__name__, function) - else: - setattr(module_obj, function.__name__, function) diff --git a/nnvm/python/nnvm/frontend/__init__.py b/nnvm/python/nnvm/frontend/__init__.py deleted file mode 100644 index 61c294f2606f..000000000000 --- a/nnvm/python/nnvm/frontend/__init__.py +++ /dev/null @@ -1,26 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""NNVM frontends.""" -from __future__ import absolute_import -from .mxnet import from_mxnet -from .onnx import from_onnx -from .coreml import from_coreml -from .keras import from_keras -from .darknet import from_darknet -from .tensorflow import from_tensorflow -from .caffe2 import from_caffe2 diff --git a/nnvm/python/nnvm/frontend/caffe2.py b/nnvm/python/nnvm/frontend/caffe2.py deleted file mode 100644 index f951db66b5a6..000000000000 --- a/nnvm/python/nnvm/frontend/caffe2.py +++ /dev/null @@ -1,471 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=import-self, invalid-name, line-too-long, unused-argument -"""Caffe2 frontend""" -from __future__ import absolute_import as _abs -import tvm -from nnvm import symbol as _sym -from .common import get_nnvm_op, Renamer, AttrConverter as AttrCvt -from .onnx_caffe2_utils import dimension_picker, dimension_constraint, infer_channels, revert_caffe2_pad -from . import onnx - -__all__ = ['from_caffe2'] - - -def _clean_up_pool_args(args): - """ A helper function to clean up common arguments in conv and pooling ops. - """ - assert isinstance(args, dict) - - if 'stride_h' in args and 'stride_w' in args: - assert 'stride' not in args and 'strides' not in args - args['strides'] = [args['stride_h'], args['stride_w']] - args.pop('stride_h') - args.pop('stride_w') - elif 'stride' in args: - args['strides'] = [args['stride'], args['stride']] - args.pop('stride') - - # rename 'kernel', 'kernels', to 'kernel_shape' - if 'kernel_h' in args and 'kernel_w' in args: - assert 'kernel' not in args and 'kernels' not in args - args['kernel_shape'] = [args['kernel_h'], args['kernel_w']] - args.pop('kernel_h') - args.pop('kernel_w') - elif 'kernel' in args: - args['kernel_shape'] = [args['kernel'], args['kernel']] - args.pop('kernel') - elif 'kernels' in args: - args['kernel_shape'] = args['kernels'] - args.pop('kernels') - - if 'pad_t' in args and 'pad_l' in args and 'pad_b' in args and 'pad_r' in args: - assert 'pad' not in args and 'pads' not in args - args['pads'] = [ - args['pad_t'], args['pad_l'], args['pad_b'], args['pad_r'] - ] - for pad in ['pad_t', 'pad_l', 'pad_b', 'pad_r']: - args.pop(pad) - elif 'pad' in args: - args['pads'] = [args['pad'], args['pad']] - args.pop('pad') - - if 'dilation_h' in args and 'dilation_w' in args: - assert 'dilation' not in args and 'dilations' not in args - args['dilations'] = [args['dilation_h'], args['dilation_w']] - args.pop('dilation_h') - args.pop('dilation_w') - elif 'dilation' in args: - args['dilations'] = [args['dilation'], args['dilation']] - args.pop('dilation') - - return args - - -class Caffe2OpConverter(object): - """ A helper class for holding Caffe2 op converters. - """ - - @classmethod - def get_converter(cls): - """ Get converter. - - :return: converter, which should be `_impl`. - """ - - if hasattr(cls, '_impl'): - return getattr(cls, '_impl') - raise tvm.error.OpNotImplemented( - 'Operator {} is not implemented in frontend Caffe2.'.format(cls.__name__)) - - -_caffe2_internal_args = { - # nnpack args - 'algo', - 'convolution_transform_strategy', - 'float16_compute', - 'shared_buffer', - - # training args - 'init_params', - 'cudnn_exhaustive_search', - 'exhaustive_search', - - # training args - 'adj', - 'hwgq', - - # args that we don't care - 'legacy_pad', -} - - -class Pool(Caffe2OpConverter): - """ A helper class for pool op converters. - """ - - name = '' - - @classmethod - def _impl(cls, inputs, args, params): - _clean_up_pool_args(args) - if 'global_pooling' in args and args['global_pooling'] == 1: - op_name = dimension_picker('global_' + cls.name) - return get_nnvm_op(op_name(args))(*inputs) - - return AttrCvt( - op_name=dimension_picker(cls.name), - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'strides': 'strides', - }, - excludes={ - # TVM poolop does not support dilation - 'dilations', - }, - ignores=_caffe2_internal_args | {'global_pooling', 'order'}, - custom_check=dimension_constraint())(inputs, args, params) - - -class AveragePool(Pool): - name = 'avg_pool' - - -class MaxPool(Pool): - name = 'max_pool' - - -class Conv(Caffe2OpConverter): - """ Operator converter for Conv. - """ - - @classmethod - def _impl(cls, inputs, args, params): - # get number of channels - channels = infer_channels(inputs[1], params) - args['channels'] = channels - _clean_up_pool_args(args) - return AttrCvt( - op_name=dimension_picker('conv'), - transforms={ - 'group': ('groups', 1), - 'kernel_shape': - 'kernel_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'strides': - 'strides', - 'dilations': ('dilation', (1, 1)), - 'order': - ('layout', ("NCHW"), - lambda x: x if isinstance(x, str) else x.decode('UTF-8')), - }, - excludes={}, - ignores=_caffe2_internal_args, - extras={'use_bias': len(inputs) == 3}, - custom_check=dimension_constraint())(inputs, args, params) - - -class Concat(Caffe2OpConverter): - """ Operator converter for Concat. - """ - - @classmethod - def _impl(cls, inputs, args, params): - def _get_axis_from_order_str(order): - order = order if isinstance(order, str) else order.decode('UTF-8') - if order == 'NCHW': - return 1 - if order == 'NHWC': - return 3 - raise tvm.error.OpAttributeInvalid('Value {} in attribute {} of operator {} is not valid.'.format(order, 'order', 'Concat')) - - return AttrCvt( - op_name='concatenate', - transforms={ - 'order': ('axis', (1), _get_axis_from_order_str), - }, - excludes={ - 'add_axis', - })(inputs, args, params) - - -class NormalizePlanarYUV(Caffe2OpConverter): - """ Operator converter for NormalizePlanarYUV. - caffe2 definition: https://github.com/pytorch/pytorch/blob/master/caffe2/operators/norm_planar_yuv_op.cc - """ - - @classmethod - def _impl(cls, inputs, args, params): - assert len(inputs) == 3 - mean = _sym.expand_dims(inputs[1], axis=2, num_newaxis=2) - std = _sym.expand_dims(inputs[2], axis=2, num_newaxis=2) - - return _sym.broadcast_div(_sym.broadcast_sub(inputs[0], mean), std) - - -class ResizeNearest(Caffe2OpConverter): - """ Operator converter for Upsample (nearest mode). - """ - - @classmethod - def _impl(cls, inputs, args, params): - width_scale = args['width_scale'] if 'width_scale' in args else 1 - height_scale = args['height_scale'] if 'height_scale' in args else 1 - assert width_scale == height_scale - - return _sym.upsampling( - inputs[0], scale=int(width_scale), method="NEAREST_NEIGHBOR") - - -class FC(Caffe2OpConverter): - """ Operator converter for FC. - """ - - @classmethod - def _impl(cls, inputs, args, params): - inputs[0] = _sym.flatten(inputs[0]) - args['units'] = infer_channels(inputs[1], params) - return AttrCvt( - 'dense', - ignores=['axis', 'axis_w'], - extras={'use_bias': len(inputs) == 3}, - )(inputs, args, params) - - -class SpatialBN(Caffe2OpConverter): - """ Operator converter for SpatialBN. - """ - - @classmethod - def _impl(cls, inputs, args, params): - return AttrCvt( - op_name='batch_norm', - disables=['momentum'], - ignores=[ - 'order', 'spatial', 'is_test', 'consumed_inputs', 'num_batches' - ])(inputs, args, params) - - -# compatible operators that do NOT require any conversion. -_identity_list = [] - -# _convert_map defines maps of name to converter functor(callable) -# for 1 to 1 mapping, use Renamer if nothing but name is different -# use AttrCvt if attributes need to be converted -# for 1 to N mapping(composed), use custom callable functions -# for N to 1 mapping, currently not supported(?) - -# Minimal set of ops for squeezenet and resnet50 -def _get_convert_map(): - return { - # caffe2/onnx common operators - 'Add': onnx.Add.get_converter(opset=1), - 'Sum': onnx.Sum.get_converter(opset=1), - 'Softmax': onnx.Softmax.get_converter(opset=1), - - # nn - 'AveragePool': AveragePool.get_converter(), - 'MaxPool': MaxPool.get_converter(), - 'Conv': Conv.get_converter(), - 'Concat': Concat.get_converter(), - 'FC': FC.get_converter(), - 'SpatialBN': SpatialBN.get_converter(), - 'ResizeNearest': ResizeNearest.get_converter(), - 'Relu': AttrCvt('relu', {}, ignores=['order']), - 'Sigmoid': Renamer('sigmoid'), - 'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']), - - # c2 image preprocessing ops - 'NormalizePlanarYUV': NormalizePlanarYUV.get_converter(), - } - - -class Caffe2NetDef(object): - """A helper class for handling nnvm graph copying from pb2.GraphProto. - Definition: https://github.com/pytorch/pytorch/blob/master/caffe2/proto/caffe2.proto - """ - - def __init__(self): - self._nodes = {} - self._params = {} - self._visited_nodes = set() - self._ops = {} - - def from_caffe2(self, init_net, predict_net): - """Construct nnvm nodes from caffe2 graph. - - Parameters - ---------- - workspace : Caffe2 workspace - predict_net : protobuf object - - Returns - ------- - sym : nnvm.sym.Symbol - The returned nnvm symbol - params : dict - A dict of name: tvm.nd.array pairs, used as pretrained weights - """ - from caffe2.python import workspace - workspace.RunNetOnce(init_net) - - # Input - input_name = predict_net.op[0].input[0] - - # Params - self._params = {} - used_blobs = set() - for c2_op in predict_net.op: - for i in c2_op.input: - used_blobs.add(i) - for blob in workspace.Blobs(): - if blob in used_blobs and blob != input_name: - self._params[blob] = tvm.nd.array(workspace.FetchBlob(blob)) - - # Variables - self._nodes = {} - for blob in predict_net.external_input: - self._nodes[blob] = _sym.Variable(name=blob) - - # Ops - for c2_op in predict_net.op: - for blob in c2_op.output: - self._ops[blob] = c2_op - for c2_op in predict_net.op: - self._process_op(c2_op) - - # Outputs - out = [] - for blob in predict_net.external_output: - out.append(self._nodes[blob]) - - if len(out) > 1: - sym = _sym.Group(out) - else: - sym = out[0] - - return sym, self._params - - def _get_node(self, blob): - """Get the nnvm Symbol of blob and detect cyclic dependency in the graph.""" - if blob in self._nodes: - return self._nodes[blob] - - assert blob not in self._visited_nodes, 'Cyclic dependency in the graph (in {})'.format( - blob) - self._visited_nodes.add(blob) - - self._process_op(self._ops[blob]) - return self._nodes[blob] - - def _process_op(self, c2_op): - op_type = c2_op.type - args = self._parse_arg(c2_op.arg) - inputs = [self._get_node(i) for i in c2_op.input] - tvm_op = self._convert_operator(op_type, inputs, args) - # Ignore all outputs except the first one - self._nodes[c2_op.output[0]] = tvm_op[0] - - def _parse_arg(self, arg): - """Convert a list of Argument to a dict, with names as keys.""" - args = {} - for a in arg: - for f in ['f', 'i', 's']: - if a.HasField(f): - args[a.name] = getattr(a, f) - for f in ['floats', 'ints', 'strings']: - if list(getattr(a, f)): - assert a.name not in args, "Only one type of attr is allowed" - args[a.name] = tuple(getattr(a, f)) - for f in ['n']: - if a.HasField(f): - raise NotImplementedError( - "Field {} is not supported in nnvm.".format(f)) - for f in ['nets']: - if list(getattr(a, f)): - raise NotImplementedError( - "Field {} is not supported in nnvm.".format(f)) - if a.name not in args: - raise ValueError("Cannot parse attribute: \n{}\n.".format(a)) - return args - - def _convert_operator(self, - op_type, - inputs, - args, - identity_list=None, - convert_map=None): - """Convert from Caffe2 operator to nnvm operator. - The converter must specify conversions explicitly for incompatible name, and - apply handlers to operator attributes. - - Parameters - ---------- - op_type : str - Operator name, such as Convolution, FullyConnected - inputs : list of nnvm.Symbol - List of input symbols. - args : dict - Dict of operator attributes - identity_list : list - List of operators that don't require conversion - convert_map : dict - Dict of name : callable, where name is the op's name that - require conversion to nnvm, callable are functions which - take args and return (new_op_type, new_args) - - Returns - ------- - sym : nnvm.Symbol - Converted nnvm Symbol - """ - identity_list = identity_list if identity_list else _identity_list - convert_map = convert_map if convert_map else _get_convert_map() - if op_type in identity_list: - sym = get_nnvm_op(op_type)(*inputs, **args) - elif op_type in convert_map: - # Add a sanitizing step to convert all byte strings in args to strings - sym = convert_map[op_type](inputs, args, self._params) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Caffe2.'.format(op_type)) - return sym - - -def from_caffe2(init_net, predict_net): - """Load caffe2 graph which contains init_net and predict_net into nnvm graph. - - Parameters - ---------- - init_net : protobuf object - Caffe2 NetDef containing the weights - - predict_net : protobuf object - Caffe2 NetDef containing the graph - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.ndarray - Dict of converted parameters stored in tvm.ndarray format - """ - - caffe2 = Caffe2NetDef() - return caffe2.from_caffe2(init_net, predict_net) diff --git a/nnvm/python/nnvm/frontend/common.py b/nnvm/python/nnvm/frontend/common.py deleted file mode 100644 index 0e09a2c43323..000000000000 --- a/nnvm/python/nnvm/frontend/common.py +++ /dev/null @@ -1,204 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Shared functions and classes for frontends.""" -from __future__ import absolute_import as _abs -import logging -from nnvm import sym as _sym -from .._base import string_types - -def get_nnvm_op(op_name): - op = getattr(_sym, op_name) - if not op: - raise OpNotImplemented( - 'Operator {} is not supported.'.format(op)) - return op - -def required_attr(attr, key, op_name): - assert isinstance(attr, dict) - if key not in attr: - raise OpAttributeRequired( - 'Required attribute {} not found in operator {}'.format(key, op_name)) - return attr[key] - -def parse_tshape(tshape): - """Parse tshape in string.""" - return [int(x.strip()) for x in tshape.strip('()').split(',')] - -def parse_bool_str(attr, key, default='False'): - """Parse bool string to boolean.""" - return attr.get(key, default).strip().lower() in ['true', '1', 't', 'y', 'yes'] - -class Renamer(object): - """A simply renamer for operators. - - Parameters - ---------- - new_name : str - The new name for the operator - """ - def __init__(self, new_name): - self._new_name = new_name - - def __call__(self, inputs, attrs, *args): - return get_nnvm_op(self._new_name)(*inputs, **attrs) - - -class AttrConverter(object): - """Common attribute converter. An AttrConverter instance is a callable: - ``` - attr_converter = AttrConverter(op_name, transforms={'a':'b', 'c':('d', 1)}) - new_op_name, new_attr = attr_converter(attrs) - ``` - - Parameters - ---------- - op_name : str or callable - If set as str, returned operator name is the str. - If set as callable, returned operator is the str returned by calling: - `op_name = func(attr)` - transforms : dict of `new_name, or (new_name, default_value, transform function)` - If only a new_name is provided, it's like renaming the attribute name. - If default_value if provided, then the attribute is considered as optional. - If transform function is provided, the original attribute value is handled - by transform function. - excludes : list - A list of excluded attributes that should `NOT` appear. - Raise NotImplementedError if occurred. - disables : list - A list of attributes that is disabled in nnvm. Log warnings. - ignores : list - A list of attributes that is ignored in nnvm. Debug level logging. - extras : dict - A series of additional attributes should be added anyway to the returned - attribute dict. - custom_check : callable - A custom function takes attribute, and return True/False. - Raise RuntimeError if not bool(True) returned. - """ - def __init__(self, op_name, transforms=None, - excludes=None, disables=None, ignores=None, - extras=None, custom_check=None): - self._op_name = op_name - self._transforms = transforms if transforms else {} - self._excludes = excludes if excludes else [] - self._disables = disables if disables else [] - self._ignores = ignores if ignores else [] - self._extras = extras if extras else {} - self._custom_check = custom_check - - def __call__(self, inputs, attrs, *args): - # apply custom check - if self._custom_check: - func, msg = self._custom_check - if not func(attrs): - raise RuntimeError("Check failed: {}".format(msg)) - # get new op_name - if isinstance(self._op_name, string_types): - op_name = self._op_name - else: - assert callable(self._op_name), "op_name can either be string or callable" - op_name = self._op_name(attrs) - # convert attributes - new_attrs = {} - for k in attrs.keys(): - if k in self._excludes: - raise NotImplementedError("Attribute {} not supported yet.".format(k)) - elif k in self._disables: - logging.warning("Attribute %s is disabled in nnvm.sym.%s", k, op_name) - elif k in self._ignores: - logging.debug("Attribute %s is ignored in nnvm.sym.%s", k, op_name) - elif k in self._transforms: - new_name, defaults, transform = self._parse_default(self._transforms[k]) - if defaults is None: - new_attr = self._required_attr(attrs, k) - else: - new_attr = attrs.get(k, None) - if new_attr is None: - new_attrs[new_name] = defaults - else: - new_attrs[new_name] = transform(new_attr) - else: - # copy - new_attrs[k] = attrs[k] - # add extras - new_attrs.update(self._extras) - return get_nnvm_op(op_name)(*inputs, **new_attrs) - - def _parse_default(self, target): - """Helper function to parse default values.""" - if not isinstance(target, (list, tuple)): - k, v, t = target, None, lambda x: x - elif len(target) == 1: - k, v, t = target[0], None, lambda x: x - elif len(target) == 2: - k, v, t = target[0], target[1], lambda x: x - elif len(target) > 2: - k, v, t = target[0], target[1], target[2] - else: - k = None # should raise - if not isinstance(k, string_types): - msg = "{} is not a valid target, (name, default) expected.".format(target) - raise ValueError(msg) - return k, v, t - - def _parse_bool(self, value): - """Helper function to parse default boolean values.""" - if isinstance(value, string_types): - return value.strip().lower() in ['true', '1', 't', 'y', 'yes'] - return bool(value) - - def _required_attr(self, attr, key): - """Wrapper for getting required attributes.""" - assert isinstance(attr, dict) - if key not in attr: - raise AttributeError("Required attribute {} not found.".format(key)) - return attr[key] - - -class SymbolTable(object): - """Table storing symbols by names.""" - def __init__(self): - self.vars = {} - self.params = {} - self.const_ctr = 1 - self.in_padding = False - self.paddings = [0, 0] - - def new_const(self, value): - name = "_param_%d" % (self.const_ctr) - self.const_ctr += 1 - self.params[name] = value - self.vars[name] = _sym.Variable(name=name) - return self.vars[name] - - def get_var(self, name, must_contain=True): - if must_contain: - assert name in self.vars - if name not in self.vars: - self.vars[name] = _sym.Variable(name=name) - return self.vars[name] - - def set_var(self, name, sym): - assert isinstance(sym, _sym.Symbol) - self.vars[name] = sym - - def set_padding(self, paddings): - self.paddings = paddings - self.in_padding = True - - def clear_padding(self): - self.in_padding = False diff --git a/nnvm/python/nnvm/frontend/coreml.py b/nnvm/python/nnvm/frontend/coreml.py deleted file mode 100644 index c5b0c0a799ec..000000000000 --- a/nnvm/python/nnvm/frontend/coreml.py +++ /dev/null @@ -1,431 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument -"""CoreML frontend.""" -from __future__ import absolute_import as _abs -import numpy as np -import tvm -from .common import SymbolTable -from .. import symbol as _sym -from .._base import string_types - -__all__ = ['from_coreml'] - - -def NeuralNetworkImageScaler(op, insym, symtab): - # this changes the symbol - biases = np.array([op.blueBias, op.greenBias, op.redBias]).reshape([3, 1, 1]) - bias = symtab.new_const(biases) - ret = _sym.__mul_scalar__(insym, scalar=op.channelScale) - ret = _sym.broadcast_add(ret, bias) - return ret - - -def NeuralNetworkMeanImage(op, insym, symtab): - # this changes the symbol - ret = _sym.elemwise_sub(insym, scalar=op.meanImage) - return ret - - -def ConvolutionLayerParams(op, insym, symtab): - """Convolution layer params.""" - weights = symtab.new_const(np.array(list(op.weights.floatValue)).reshape( - tuple([op.outputChannels, op.kernelChannels] + list(op.kernelSize)))) - if op.hasBias: - biases = symtab.new_const(list(op.bias.floatValue)) - dilation = list(op.dilationFactor) - if not dilation: - dilation = [1, 1] - params = {'channels':op.outputChannels, - 'kernel_size':list(op.kernelSize), - 'strides':list(op.stride), - 'dilation': dilation, - 'use_bias': op.hasBias, - 'groups':op.nGroups} - - if op.WhichOneof('ConvolutionPaddingType') == 'valid': - valid = op.valid - padding = [b.startEdgeSize for b in valid.paddingAmounts.borderAmounts] - padding2 = [b.endEdgeSize for b in valid.paddingAmounts.borderAmounts] - for i, j in zip(padding, padding2): - assert i == j, "Asymmetry padding not supported" - if padding: - params['padding'] = padding - elif op.WhichOneof('ConvolutionPaddingType') == 'same': - kernel = params['kernel_size'] - pad_h = kernel[0] - 1 - pad_w = kernel[1] - 1 - pad_t = pad_h // 2 - pad_l = pad_w // 2 - pad_b = pad_h - pad_t - pad_r = pad_w - pad_l - assert pad_t == pad_r and pad_l == pad_b, "Asymmetry padding not supported" - params['padding'] = [pad_t, pad_l] - else: - raise NotImplementedError("Valid/Same convolution padding implemented") - - if op.hasBias: - pos = [insym, weights, biases] - else: - pos = [insym, weights] - - # consume padding layer - if symtab.in_padding: - params['padding'] = [sum(x) for x in zip(params.get('padding', [0, 0]), symtab.paddings)] - symtab.clear_padding() - - if op.isDeconvolution: - ret = _sym.conv2d_transpose(*pos, **params) - else: - ret = _sym.conv2d(*pos, **params) - return ret - -def BatchnormLayerParams(op, insym, symtab): - """Get layer of batchnorm parameter""" - # this changes the symbol - if op.instanceNormalization: - msg = 'Operator "instance normalization" is not supported in frontend CoreML.' - raise tvm.error.OpNotImplemented(msg) - else: - params = {'gamma':symtab.new_const(list(op.gamma.floatValue)), - 'beta':symtab.new_const(list(op.beta.floatValue)), - 'moving_mean':symtab.new_const(list(op.mean.floatValue)), - 'moving_var': symtab.new_const(list(op.variance.floatValue)), - 'epsilon': op.epsilon} - return _sym.batch_norm(data=insym, **params) - -def ActivationParams(op, insym, symtab): - """Get activation parameters""" - whichActivation = op.WhichOneof('NonlinearityType') - par = getattr(op, whichActivation) - if whichActivation == 'linear': - return _sym.__add_scalar__(_sym.__mul_scalar__(insym, scalar=par.alpha), scalar=par.beta) - if whichActivation == 'ReLU': - return _sym.relu(insym) - if whichActivation == 'leakyReLU': - return _sym.leaky_relu(insym, alpha=par.alpha) - if whichActivation == 'thresholdedReLU': - alpha_tensor = _sym.full_like(insym, fill_value=float(par.alpha)) - return _sym.elemwise_mul(insym, _sym.greater(insym, alpha_tensor)) - if whichActivation == 'PReLU': - return _sym.prelu(insym, alpha=par.alpha) - if whichActivation == 'tanh': - return _sym.tanh(insym) - if whichActivation == 'scaledTanh': - return _sym.__mul_scalar__(_sym.tanh(_sym.__mul_scalar__( - insym, scalar=par.beta)), scalar=par.alpha) - if whichActivation == 'sigmoid': - return _sym.sigmoid(insym) - if whichActivation == 'sigmoidHard': - transformX = (par.alpha * insym) + par.beta - return _sym.clip(transformX, a_min=0, a_max=1) - if whichActivation == 'ELU': - return _sym.__mul_scalar__(_sym.__add_scalar__( - _sym.exp(insym), scalar=-1), scalar=par.alpha) - if whichActivation == 'softsign': - return insym / (1 + (_sym.relu(insym) + _sym.relu(_sym.negative(insym)))) - if whichActivation == 'softplus': - return _sym.log(_sym.__add_scalar__(_sym.exp(insym), scalar=1)) - if whichActivation == 'parametricSoftplus': - alpha = list(par.alpha.floatValue) - beta = list(par.alpha.floatValue) - if len(alpha) == 1: - return _sym.__mul_scalar__(_sym.log(_sym.__add_scalar__( - _sym.exp(insym), scalar=beta[0])), scalar=alpha[0]) - alpha = np.array(alpha).reshape((len(alpha), 1, 1)) - beta = np.array(beta).reshape((len(beta), 1, 1)) - alphasym = symtab.new_const(alpha) - betasym = symtab.new_const(beta) - return _sym.broadcast_mul(_sym.log(_sym.broadcast_add( - _sym.exp(insym), betasym)), alphasym) - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend CoreML.'.format(whichActivation)) - -def ScaleLayerParams(op, insym, symtab): - """Scale layer params.""" - scale = symtab.new_const(np.array(list(op.scale.floatValue)).reshape( - tuple(list(op.shapeScale) + [1, 1]))) - # scale = _sym.reshape(scale, shape=tuple(list(op.shapeScale) + [1,1])) - ret = _sym.broadcast_mul(insym, scale) - if op.hasBias: - bias = symtab.new_const(np.array(list(op.bias.floatValue)).reshape( - tuple(list(op.shapeBias) + [1, 1]))) - # bias = _sym.reshape(bias, shape=tuple(list(op.shapeBias) + [1,1])) - ret = _sym.broadcast_add(ret, bias) - return ret - -def PoolingLayerParams(op, insym, symtab): - """get pooling parameters""" - if op.globalPooling: - if op.type == 0: - return _sym.global_max_pool2d(insym) - if op.type == 1: - return _sym.global_avg_pool2d(insym) - raise tvm.error.OpNotImplemented( - 'Operator pooling (not max or average) is not supported in frontend CoreML.') - - else: - params = {'pool_size':list(op.kernelSize), - 'strides':list(op.stride)} - - if op.WhichOneof('PoolingPaddingType') == 'valid': - valid = op.valid - padding = [b.startEdgeSize for b in valid.paddingAmounts.borderAmounts] - padding2 = [b.endEdgeSize for b in valid.paddingAmounts.borderAmounts] - for i, j in zip(padding, padding2): - assert i == j - params['padding'] = padding - elif op.WhichOneof('PoolingPaddingType') == 'includeLastPixel': - # I don't know if this is correct - valid = op.includeLastPixel - padding = list(valid.paddingAmounts) - params['padding'] = padding - params['ceil_mode'] = True - else: - msg = 'Value {} in attribute PoolingPaddingType of operator Pooling is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(op.WhichOneof('PoolingPaddingType'))) - - # consume padding layer - if symtab.in_padding: - params['padding'] = [sum(x) for x in zip( - params.get('padding', [0, 0]), symtab.paddings)] - symtab.clear_padding() - - if op.type == 0: - return _sym.max_pool2d(insym, **params) - if op.type == 1: - return _sym.avg_pool2d(insym, **params) - msg = 'Operator pooling (not max or average) is not supported in frontend CoreML.' - raise tvm.error.OpNotImplemented(msg) - -def SoftmaxLayerParams(op, insym, symtab): - return _sym.softmax(_sym.flatten(insym)) - -def InnerProductLayerParams(op, insym, symtab): - weights = symtab.new_const(np.array(op.weights.floatValue).reshape( - (op.outputChannels, op.inputChannels))) - par = {'weight':weights, 'use_bias':False, 'units':op.outputChannels} - if op.hasBias: - bias = symtab.new_const(np.array(op.bias.floatValue)) - par['bias'] = bias - par['use_bias'] = True - return _sym.dense(data=insym, **par) - -def AddLayerParams(op, insyms, symtab): - if not isinstance(insyms, list): - insyms = [insyms] - ret = insyms[0] - for i in range(1, len(insyms)): - ret = _sym.elemwise_add(ret, insyms[i]) - if op.alpha > 0: - ret = _sym.__add_scalar__(ret, scalar=op.alpha) - return ret - -def MultiplyLayerParams(op, insyms, symtab): - if not isinstance(insyms, list): - insyms = [insyms] - ret = insyms[0] - for i in range(1, len(insyms)): - ret = _sym.elemwise_mul(ret, insyms[i]) - if op.alpha != 1: - ret = _sym.__mul_scalar__(ret, scalar=op.alpha) - return ret - -def ConcatLayerParams(op, insyms, symtab): - if not isinstance(insyms, list): - insyms = [insyms] - if op.sequenceConcat: - raise tvm.error.OpNotImplemented( - 'Operator Sequence Concat is not supported in frontend CoreML.') - ret = _sym.concatenate(*insyms, axis=1) - return ret - -def FlattenLayerParams(op, insym, symtab): - if op.mode == 1: - insym = _sym.transpose(_sym.reshape(insym, shape=(0, 0, -1)), axes=(0, 2, 1)) - return _sym.flatten(insym) - -def PaddingLayerParams(op, insym, symtab): - """Hacking for padding layer params.""" - if op.WhichOneof('PaddingType') == 'constant': - constant = op.constant - if constant.value != 0: - msg = 'Value {} in attribute "padding value" of operator Padding is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(constant.value)) - padding = [b.startEdgeSize for b in op.paddingAmounts.borderAmounts] - padding2 = [b.endEdgeSize for b in op.paddingAmounts.borderAmounts] - for i, j in zip(padding, padding2): - assert i == j - symtab.set_padding(padding) - else: - raise tvm.error.OpNotImplemented( - 'Operator "non-constant padding" is not supported in frontend CoreML.') - return insym - -def PermuteLayerParams(op, insym, symtab): - axes = tuple(op.axis) - return _sym.transpose(insym, axes=axes) - -def UpsampleLayerParams(op, insym, symtab): - if op.scalingFactor[0] != op.scalingFactor[1]: - raise tvm.error.OpAttributeInvalid( - 'Height and width scaling factors of Upsample operator must be equal.') - interpolationMode = 'NEAREST_NEIGHBOR' if op.mode == 0 else 'BILINEAR' - return _sym.upsampling(insym, scale=op.scalingFactor[0], method=interpolationMode) - -def L2NormalizeLayerParams(op, insym, symtab): - return _sym.l2_normalize(insym, eps=op.epsilon, axis=1) - -def LRNLayerParams(op, insym, symtab): - par = {} - par['size'] = op.localSize - par['bias'] = op.k - par['alpha'] = op.alpha - par['beta'] = op.beta - par['axis'] = 1 #default layout is nchw - return _sym.lrn(data=insym, **par) - -def AverageLayerParams(op, insyms, symtab): - if not isinstance(insyms, list) or len(insyms) < 2: - raise ValueError("Expect minimum 2 inputs") - count = len(insyms) - _sum = insyms[0] - for i in range(1, count): - _sum = _sym.broadcast_add(_sum, insyms[i]) - return _sum / count - -def MaxLayerParams(op, insyms, symtab): - if not isinstance(insyms, list) or len(insyms) < 2: - raise ValueError("Expect minimum 2 inputs") - _max = insyms[0] - for i in range(1, len(insyms)): - _max = _sym.broadcast_max(_max, insyms[i]) - return _max - -def MinLayerParams(op, insyms, symtab): - if not isinstance(insyms, list) or len(insyms) < 2: - raise ValueError("Expect minimum 2 inputs") - _min = insyms[0] - for i in range(1, len(insyms)): - _min = _sym.broadcast_min(_min, insyms[i]) - return _min - -_convert_map = { - 'NeuralNetworkMeanImage': NeuralNetworkMeanImage, - 'NeuralNetworkImageScaler': NeuralNetworkImageScaler, - 'ConvolutionLayerParams':ConvolutionLayerParams, - 'BatchnormLayerParams':BatchnormLayerParams, - 'ActivationParams':ActivationParams, - 'ScaleLayerParams':ScaleLayerParams, - 'PoolingLayerParams':PoolingLayerParams, - 'SoftmaxLayerParams':SoftmaxLayerParams, - 'InnerProductLayerParams':InnerProductLayerParams, - 'AddLayerParams':AddLayerParams, - 'MultiplyLayerParams':MultiplyLayerParams, - 'FlattenLayerParams':FlattenLayerParams, - 'ConcatLayerParams':ConcatLayerParams, - 'PaddingLayerParams':PaddingLayerParams, - 'PermuteLayerParams':PermuteLayerParams, - 'UpsampleLayerParams':UpsampleLayerParams, - 'L2NormalizeLayerParams':L2NormalizeLayerParams, - 'LRNLayerParams':LRNLayerParams, - 'AverageLayerParams':AverageLayerParams, - 'MaxLayerParams':MaxLayerParams, - 'MinLayerParams':MinLayerParams, -} - -def coreml_op_to_nnvm(op, inname, outname, symtab): - """Convert coreml layer to nnvm layer. - - Parameters - ---------- - coremlop: a coreml protobuf bit - - prevsym: previous nnvm symbol - - Returns: - ------- - nnvm.sym.Symbol - Converted symbol - """ - classname = type(op).__name__ - if classname not in _convert_map: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend CoreML.'.format(classname)) - if isinstance(inname, string_types): - insym = symtab.get_var(inname) - else: - insym = [symtab.get_var(i) for i in inname] - ret = _convert_map[classname](op, insym, symtab) - if outname: - symtab.set_var(outname, ret) - if classname != 'PaddingLayerParams': - assert not symtab.in_padding, "Previous padding not consumed by conv/pool" - -def from_coreml(model): - """Convert from coreml model into NNVM format. - - Parameters - ---------- - model: - coremltools.models.MLModel of a NeuralNetworkClassifier - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.NDArray - The parameter dict to be used by nnvm - """ - try: - import coremltools as cm - except ImportError: - raise ImportError('The coremltools package must be installed') - - assert isinstance(model, cm.models.MLModel) - spec = model.get_spec() - modeltype = spec.WhichOneof('Type') - assert modeltype in ['neuralNetworkClassifier', 'neuralNetwork', 'neuralNetworkRegressor'] - cc = getattr(spec, modeltype) - - symtab = SymbolTable() - for i in spec.description.input: - symtab.get_var(i.name, must_contain=False) - - for pp in cc.preprocessing: - whichpp = pp.WhichOneof('preprocessor') - ppmethod = getattr(pp, whichpp) - # the NeuralNetworkImageScalar doesn't seem to have a featureName? - if whichpp == 'scaler': - for i in spec.description.input: - coreml_op_to_nnvm(ppmethod, i.name, i.name, symtab) - else: - coreml_op_to_nnvm(ppmethod, pp.featureName, pp.featureName, symtab) - - for l in cc.layers: - layertype = l.WhichOneof('layer') - layerop = getattr(l, layertype) - assert len(l.output) == 1 - if len(l.input) == 1: - coreml_op_to_nnvm(layerop, l.input[0], l.output[0], symtab) - else: - coreml_op_to_nnvm(layerop, list(l.input), l.output[0], symtab) - returns = [symtab.get_var(i.name, must_contain=False) for i in spec.description.output] - tvmparams = {k:tvm.nd.array(np.array(v, dtype=np.float32)) for k, v in symtab.params.items()} - # for now return first output - return returns[0], tvmparams diff --git a/nnvm/python/nnvm/frontend/darknet.py b/nnvm/python/nnvm/frontend/darknet.py deleted file mode 100644 index 8c6020500b45..000000000000 --- a/nnvm/python/nnvm/frontend/darknet.py +++ /dev/null @@ -1,979 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -DarkNet symbol frontend. -""" - -from __future__ import absolute_import as _abs -import numpy as np -import tvm -from .. import symbol as _sym -from .common import get_nnvm_op, required_attr, parse_tshape, parse_bool_str - -class LAYERTYPE(object): - """Darknet LAYERTYPE Class constant.""" - CONVOLUTIONAL = 0 - DECONVOLUTIONAL = 1 - CONNECTED = 2 - MAXPOOL = 3 - SOFTMAX = 4 - DETECTION = 5 - DROPOUT = 6 - CROP = 7 - ROUTE = 8 - COST = 9 - NORMALIZATION = 10 - AVGPOOL = 11 - LOCAL = 12 - SHORTCUT = 13 - ACTIVE = 14 - RNN = 15 - GRU = 16 - LSTM = 17 - CRNN = 18 - BATCHNORM = 19 - NETWORK = 20 - XNOR = 21 - REGION = 22 - YOLO = 23 - REORG = 24 - UPSAMPLE = 25 - LOGXENT = 26 - L2NORM = 27 - BLANK = 28 - -class ACTIVATION(object): - """Darknet ACTIVATION Class constant.""" - LOGISTIC = 0 - RELU = 1 - RELIE = 2 - LINEAR = 3 - RAMP = 4 - TANH = 5 - PLSE = 6 - LEAKY = 7 - ELU = 8 - LOGGY = 9 - STAIR = 10 - HARDTAN = 11 - LHTAN = 12 - -__all__ = ['from_darknet'] - -def _darknet_maxpooling(inputs, attrs): - """Process the max pool 2d operation.""" - kernel = parse_tshape(required_attr(attrs, 'kernel', 'maxpool')) - if len(kernel) != 1: - raise tvm.error.OpAttributeUnImplemented( - 'Non-2D kernels for Max Pooling are not supported in frontend Darknet.') - - op_name, new_attrs = 'max_pool2d', {} - strides = int(attrs.get('stride', (1, 1))) - pads = int(attrs.get('pad', (0, 0))) - new_attrs['pool_size'] = [kernel[0], kernel[0]] - new_attrs['strides'] = str((strides, strides)) - new_attrs['padding'] = str((pads, pads)) - extra_pad_size = attrs.get('extra_pad_size', 0) - if extra_pad_size: - pad_width = ((0, 0), (0, 0), (0, extra_pad_size), (0, extra_pad_size)) - inputs = _sym.pad(*inputs, pad_width=pad_width, pad_value=np.finfo(np.float32).min) - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_avgpooling(inputs, attrs): - """Process the average pool 2d operation.""" - kernel = parse_tshape(required_attr(attrs, 'kernel', 'avgpool')) - if len(kernel) != 1: - raise tvm.error.OpAttributeUnimplemented( - 'Non-2D kernels for Average Pooling are not supported in frontend Darknet.') - - op_name, new_attrs = 'avg_pool2d', {} - strides = int(attrs.get('stride', (1, 1))) - pads = int(attrs.get('pad', (0, 0))) - new_attrs['pool_size'] = [kernel[0], kernel[0]] - new_attrs['strides'] = str((strides, strides)) - new_attrs['padding'] = str((pads, pads)) - - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_batch_norm(inputs, attrs): - """Process the batchnormalization operation.""" - op_name, new_attrs = 'darknet_batch_norm', {} - new_attrs['axis'] = attrs.get('axis', 1) - new_attrs['epsilon'] = attrs.get('eps', 0.000001) - new_attrs['center'] = True - new_attrs['scale'] = True - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_conv2d(inputs, attrs): - """Process the convolution 2d operation.""" - kernel = parse_tshape(required_attr(attrs, 'kernel', 'conv2d')) - if len(kernel) != 1: - raise tvm.error.OpAttributeUnimplemented('Non-2D kernels for Conv2D are unsupported ' - 'in frontend Darknet.') - layout = attrs.get('layout', 'NCHW') - if layout not in ['NCHW', 'NHWC']: - raise tvm.error.OpAttributeInvalid( - 'Value {} in attribute "layout" of operator Conv2D is not valid.'.format(layout)) - strides = int(attrs.get('stride', (1, 1))) - pads = int(attrs.get('pad', (0, 0))) - - op_name, new_attrs = 'conv2d', {} - new_attrs['channels'] = required_attr(attrs, 'num_filter', 'conv2d') - new_attrs['kernel_size'] = [kernel[0], kernel[0]] - new_attrs['strides'] = (strides, strides) - new_attrs['padding'] = (pads, pads) - new_attrs['dilation'] = attrs.get('dilate', (1, 1)) - new_attrs['groups'] = attrs.get('num_group', 1) - new_attrs['layout'] = layout - if attrs.get('use_batchNorm', False) is True: - new_attrs['use_bias'] = False - else: - new_attrs['use_bias'] = True - out_name = {} - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - out_name[0] = sym.list_output_names()[0].replace('_output', '') - - if attrs.get('use_batchNorm', False) is True: - op_name, new_attrs = 'batch_norm', {} - new_attrs['epsilon'] = 0.000001 - sym = get_nnvm_op(op_name)(*sym, **new_attrs) - out_name[1] = sym.list_output_names()[0].replace('_output', '') - if 'activation' in attrs: - new_attrs = {} - new_attrs['activation'] = attrs['activation'] - new_attrs['slope'] = 0.1 - sym, _ = _darknet_activations(sym, new_attrs) - return sym, out_name - - -def _darknet_conv2d_transpose(inputs, attrs): - """Process the convolution 2d transpose operation.""" - if 'target_shape' in attrs: - raise tvm.error.OpAttributeUnimplemented( - 'Attribute "target_shape" is not supported in operator Conv2D-transpose.') - kernel = parse_tshape(required_attr(attrs, 'kernel', 'conv2d_transpose')) - if len(kernel) != 2: - raise tvm.error.OpAttributeUnimplemented( - 'Non-2D kernels are not supported in operator Conv2D-transpose.') - layout = attrs.get('layout', 'NCHW') - if layout not in ['NCHW', 'NHWC']: - msg = 'Value {} in attribute "layout" of operator Conv2D-transpose is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(layout)) - op_name, new_attrs = 'conv2d_transpose', {} - new_attrs['channels'] = required_attr(attrs, 'num_filter', 'conv2d_transpose') - new_attrs['kernel_size'] = kernel - new_attrs['strides'] = attrs.get('stride', (1, 1)) - new_attrs['output_padding'] = attrs.get('adj', (0, 0)) - new_attrs['padding'] = attrs.get('pad', (0, 0)) - new_attrs['dilation'] = attrs.get('dilate', (1, 1)) - new_attrs['groups'] = attrs.get('num_group', 1) - new_attrs['layout'] = layout - new_attrs['use_bias'] = not parse_bool_str(attrs, 'no_bias') - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_shortcut(inputs, attrs): - """Process the shortcut operation.""" - op_name, new_attrs = 'elemwise_add', {} - input_0 = inputs[0] - input_1 = inputs[1] - input_0_channel = int(attrs['out_channel']) - input_1_channel = int(attrs['add_out_channel']) - input_0_size = int(attrs['out_size']) - input_1_size = int(attrs['add_out_size']) - - if input_0_size > input_1_size: - scale = int(input_0_size/input_1_size) - input_1 = _sym.upsampling(input_1, scale=scale, name="_upsampling") - elif input_0_size < input_1_size: - stride = int(input_1_size/input_0_size) - input_1 = _sym.avg_pool2d(input_1, pool_size=(1, 1), - strides=(stride, stride), padding=(0, 0), name="_downsampling") - - if input_0_channel != input_1_channel: - pad_channel = input_0_channel - input_1_channel - input_1 = _sym.pad(input_1, pad_width=((0, 0), (0, pad_channel), (0, 0), (0, 0)), - pad_value=0.) - - new_inputs = _as_list([input_0, input_1]) - sym = get_nnvm_op(op_name)(*new_inputs, **new_attrs) - out_name = sym.list_output_names()[0].replace('_output', '') - if 'activation' in attrs: - new_attrs['activation'] = attrs['activation'] - sym, _ = _darknet_activations(sym, new_attrs) - return sym, out_name - -def _darknet_dense(inputs, attrs): - """Process the dense operation.""" - op_name, new_attrs = 'dense', {} - new_attrs['units'] = required_attr(attrs, 'num_hidden', 'dense') - out_name = {} - new_attrs['use_bias'] = attrs.get('use_bias', False) - if attrs.get('use_flatten', False) is True: - inputs[0] = _sym.flatten(inputs[0]) - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - out_name[0] = sym.list_output_names()[0].replace('_output', '') - if 'use_batchNorm' in attrs: - op_name, new_attrs = 'batch_norm', {} - new_attrs['epsilon'] = 0.000001 - sym = get_nnvm_op(op_name)(*sym, **new_attrs) - out_name[1] = sym.list_output_names()[0].replace('_output', '') - if 'activation' in attrs: - new_attrs = {} - new_attrs['activation'] = attrs['activation'] - sym, _ = _darknet_activations(sym, new_attrs) - return sym, out_name - -def _darknet_dropout(inputs, attrs): - """Process the dropout operation, its a blank operation.""" - op_name, new_attrs = 'dropout', {} - new_attrs['rate'] = attrs.get('p', 0.5) - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_reshape(inputs, attrs): - """Process the reshape operation.""" - if parse_bool_str(attrs, 'reverse'): - raise tvm.error.OpAttributeUnimplemented( - 'Attribute "reverse" is not supported in operator Reshape.') - op_name, new_attrs = 'reshape', {} - new_attrs['shape'] = required_attr(attrs, 'shape', 'reshape') - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_upsampling(inputs, attrs): - """Process the upsampling operation.""" - op_name, new_attrs = 'upsampling', {} - new_attrs['scale'] = attrs.get('scale', 1) - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_l2normalize(inputs, attrs): - """Process the l2 normalization operation.""" - op_name, new_attrs = 'l2_normalize', {} - new_attrs['eps'] = attrs.get('eps', 0) - new_attrs['axis'] = attrs.get('axis', 1) - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_softmax_output(inputs, attrs): - """Process the softmax operation.""" - temperature = attrs.get('temperature', 1) - if temperature != 1: - inputs[0] = inputs[0] / float(temperature) - op_name, new_attrs = 'softmax', {} - if parse_bool_str(attrs, 'multi_output'): - new_attrs['axis'] = 1 - - if attrs.get('use_flatten', False) is True: - inputs[0] = _sym.flatten(inputs[0]) - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_route(inputs, attrs): - """Process the route operation, which is equivalent to concat.""" - op_name = 'concatenate' - new_attrs = {'axis': attrs.get('dim', 1)} - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_reorg(inputs, attrs): - """Process the reorg operation.""" - op_name, new_attrs = 'yolo_reorg', {} - if 'stride' in attrs: - new_attrs = {'stride': attrs.get('stride', 1)} - return get_nnvm_op(op_name)(*inputs, **new_attrs), None - -def _darknet_region(inputs, attrs): - """Process the region operation.""" - num = attrs.get('n', 1) - classes = attrs.get('classes', 1) - coords = attrs.get('coords', 0) - background = attrs.get('background', 0) - softmax = attrs.get('softmax', True) - input_shape = attrs.get('shape') - - split_size = classes + coords + 1 - intermediate_shape = (input_shape[0], num, split_size, input_shape[2], input_shape[3]) - data_block = _sym.reshape(inputs[0], shape=intermediate_shape) - split_indices = (2, 4, 5) - split_res = _sym.split(data_block, indices_or_sections=split_indices, axis=2) - split_res0 = _sym.sigmoid(split_res[0]) - if not background: - split_res2 = _sym.sigmoid(split_res[2]) - else: - split_res2 = split_res[2] - if softmax: - split_res3 = _sym.softmax(split_res[3], axis=2) - concat_list = [split_res0, split_res[1], split_res2, split_res3] - out = _sym.concatenate(*concat_list, axis=2) - return _sym.reshape(out, shape=input_shape), None - - -def _darknet_yolo(inputs, attrs): - """Process the yolo operation.""" - num = attrs.get('n', 1) - classes = attrs.get('classes', 1) - input_shape = attrs.get('shape') - split_size = classes + 5 - intermediate_shape = (input_shape[0], num, split_size, input_shape[2], input_shape[3]) - data_block = _sym.reshape(inputs[0], shape=intermediate_shape) - split_indices = (2, 4) - split_res = _sym.split(data_block, indices_or_sections=split_indices, axis=2) - split_res0 = _sym.sigmoid(split_res[0]) - split_res2 = _sym.sigmoid(split_res[2]) - concat_list = [split_res0, split_res[1], split_res2] - out = _sym.concatenate(*concat_list, axis=2) - return _sym.reshape(out, shape=input_shape), None - -def _darknet_activations(inputs, attrs): - """Process the activation function.""" - act = required_attr(attrs, 'activation', 'activations') - if ACTIVATION.LOGISTIC == act: - act_type = 'sigmoid' - elif ACTIVATION.RELU == act: - act_type = 'relu' - elif ACTIVATION.TANH == act: - act_type = 'tanh' - elif ACTIVATION.LINEAR == act: - return inputs, None - elif ACTIVATION.LEAKY == act: - act_type = 'leaky_relu' - elif ACTIVATION.ELU == act: - act_type = 'elu' - else: - raise tvm.error.OpNotImplemented( - 'Operator act: {} is not supported in framework Darknet.'.format(act)) - - if act_type in ['relu', 'tanh']: - op_name, new_attrs = act_type, {} - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - elif act_type in ['leaky_relu']: - op_name, new_attrs = act_type, {} - new_attrs['alpha'] = attrs.get('slope', 0.1) - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - elif act_type in ['elu']: - sym = -1 * _sym.relu(1 - _sym.exp(*inputs)) + _sym.relu(*inputs) - elif act_type in ['sigmoid']: - op_name, new_attrs = act_type, {} - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - else: - raise tvm.error.OpNotImplemented( - 'Operator act: {} is not supported in framework Darknet.'.format(act)) - return sym, None - -def _darknet_op_not_support(inputs, attrs): - """Raise exception if the operation is not supported.""" - err = "{} is not supported in {}.".format(attrs, inputs) - raise NotImplementedError(err) - -_DARKNET_CONVERT_MAP = { - LAYERTYPE.CONVOLUTIONAL : _darknet_conv2d, - LAYERTYPE.DECONVOLUTIONAL : _darknet_conv2d_transpose, - LAYERTYPE.CONNECTED : _darknet_dense, - LAYERTYPE.MAXPOOL : _darknet_maxpooling, - LAYERTYPE.SOFTMAX : _darknet_softmax_output, - LAYERTYPE.DROPOUT : _darknet_dropout, - LAYERTYPE.AVGPOOL : _darknet_avgpooling, - LAYERTYPE.BATCHNORM : _darknet_batch_norm, - LAYERTYPE.ROUTE : _darknet_route, - LAYERTYPE.REORG : _darknet_reorg, - LAYERTYPE.REGION : _darknet_region, - LAYERTYPE.SHORTCUT : _darknet_shortcut, - LAYERTYPE.UPSAMPLE : _darknet_upsampling, - LAYERTYPE.L2NORM : _darknet_l2normalize, - LAYERTYPE.YOLO : _darknet_yolo, - LAYERTYPE.DETECTION : _darknet_op_not_support, - LAYERTYPE.CROP : _darknet_op_not_support, - LAYERTYPE.COST : _darknet_op_not_support, - LAYERTYPE.NORMALIZATION : _darknet_op_not_support, - LAYERTYPE.LOCAL : _darknet_op_not_support, - LAYERTYPE.ACTIVE : _darknet_op_not_support, - LAYERTYPE.RNN : _darknet_op_not_support, - LAYERTYPE.GRU : _darknet_op_not_support, - LAYERTYPE.LSTM : _darknet_op_not_support, - LAYERTYPE.CRNN : _darknet_op_not_support, - LAYERTYPE.NETWORK : _darknet_op_not_support, - LAYERTYPE.XNOR : _darknet_op_not_support, - LAYERTYPE.BLANK : _darknet_op_not_support, -} - -def _darknet_convert_symbol(op_name, inputs, attrs): - """Convert from darknet op to nnvm op. - The converter must specify some conversions explicitly to - support gluon format ops such as conv2d... - - Parameters - ---------- - op_name : str - Operator name, such as Convolution, Connected, etc - inputs : list of nnvm.Symbol - List of input symbols. - attrs : dict - Dict of operator attributes - - Returns - ------- - out_name : converted out name of operation - sym : nnvm.Symbol - Converted nnvm Symbol - """ - - if op_name in _DARKNET_CONVERT_MAP: - sym, out_name = _DARKNET_CONVERT_MAP[op_name](inputs, attrs) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Darknet.'.format(op_name)) - if out_name is None: - out_name = sym.list_output_names()[0].replace('_output', '') - return out_name, sym - - -def _as_list(arr): - """Force being a list, ignore if already is.""" - if isinstance(arr, list): - return arr - return [arr] - - -class GraphProto(object): - """A helper class for handling nnvm graph copying from darknet model. - """ - - def __init__(self, net, dtype='float32'): - self.net = net - self.dtype = dtype - self._sym_array = {} - self._tvmparams = {} - self._outs = [] - self._state_ctr = {} - self._state_ctr['rnn'] = 0 - self._state_ctr['crnn'] = 0 - self._state_ctr['lstm'] = 0 - self._state_ctr['cell_state'] = 0 - self._state_ctr['gru'] = 0 - - def _read_memory_buffer(self, shape, data, dtype=None): - if dtype is None: - dtype = self.dtype - length = 1 - for x in shape: - length *= x - data_np = np.zeros(length, dtype=dtype) - for i in range(length): - data_np[i] = data[i] - return data_np.reshape(shape) - - def _get_convolution_weights(self, layer, opname): - """Get the convolution layer weights and biases.""" - if layer.nweights == 0: - return - - if layer.n * layer.c * layer.size * layer.size != layer.nweights: - msg = 'nweights ({}) != n * c * h * w ({}) in operator {}' - msg = msg.format(layer.nweights, layer.n * layer.c * layer.size ** 2, opname) - raise tvm.error.OpAttributeInvalid(msg) - - shape = (layer.n, layer.c, layer.size, layer.size) - weights = self._read_memory_buffer(shape, layer.weights) - - biases = self._read_memory_buffer((layer.n, ), layer.biases) - - k = self._get_tvm_params_name(opname[0], 'weight') - self._tvmparams[k] = tvm.nd.array(weights) - - if layer.batch_normalize == 1 and layer.dontloadscales != 1: - self._get_batchnorm_weights(layer, opname[1], layer.n) - k = self._get_tvm_params_name(opname[1], 'beta') - self._tvmparams[k] = tvm.nd.array(biases) - else: - k = self._get_tvm_params_name(opname[0], 'bias') - self._tvmparams[k] = tvm.nd.array(biases) - - def _get_connected_weights(self, layer, opname): - """Parse the weights and biases for fully connected or dense layer.""" - size = layer.outputs * layer.inputs - if size == 0: - return - - weights = self._read_memory_buffer((layer.outputs, layer.inputs), layer.weights) - biases = self._read_memory_buffer((layer.outputs, ), layer.biases) - - k = self._get_tvm_params_name(opname[0], 'weight') - self._tvmparams[k] = tvm.nd.array(weights) - - if layer.batch_normalize == 1 and layer.dontloadscales != 1: - self._get_batchnorm_weights(layer, opname[1], layer.outputs) - k = self._get_tvm_params_name(opname[1], 'beta') - self._tvmparams[k] = tvm.nd.array(biases) - else: - k = self._get_tvm_params_name(opname[0], 'bias') - self._tvmparams[k] = tvm.nd.array(biases) - - def _get_region_weights(self, layer, opname): - """Parse the biases for region layer.""" - biases = self._read_memory_buffer((layer.n*2, ), layer.biases) - attributes = np.array([layer.n, layer.out_c, layer.out_h, layer.out_w, - layer.classes, layer.coords, layer.background], - dtype=np.int32) - k = self._get_tvm_params_name(opname, 'bias') - self._tvmparams[k] = tvm.nd.array(biases) - k = self._get_tvm_params_name(opname, 'attr') - self._tvmparams[k] = tvm.nd.array(attributes) - - def _get_yolo_weights(self, layer, opname): - """Parse the biases and mask for yolo layer.""" - biases = self._read_memory_buffer((layer.total*2, ), layer.biases) - mask = self._read_memory_buffer((layer.n, ), layer.mask, dtype='int32') - attributes = np.array([layer.n, layer.out_c, layer.out_h, layer.out_w, - layer.classes, layer.total], - dtype=np.int32) - k = self._get_tvm_params_name(opname, 'bias') - self._tvmparams[k] = tvm.nd.array(biases) - k = self._get_tvm_params_name(opname, 'mask') - self._tvmparams[k] = tvm.nd.array(mask) - k = self._get_tvm_params_name(opname, 'attr') - self._tvmparams[k] = tvm.nd.array(attributes) - - def _get_batchnorm_weights(self, layer, opname, size): - """Parse the weights for batchnorm, which includes, scales, moving mean - and moving variances.""" - scales = self._read_memory_buffer((size, ), layer.scales) - rolling_mean = self._read_memory_buffer((size, ), layer.rolling_mean) - rolling_variance = self._read_memory_buffer((size, ), layer.rolling_variance) - - k = self._get_tvm_params_name(opname, 'moving_mean') - self._tvmparams[k] = tvm.nd.array(rolling_mean) - k = self._get_tvm_params_name(opname, 'moving_var') - self._tvmparams[k] = tvm.nd.array(rolling_variance) - k = self._get_tvm_params_name(opname, 'gamma') - self._tvmparams[k] = tvm.nd.array(scales) - - def _get_darknet_attrs(self, layer, layer_num): - """Parse attributes of each layer and return.""" - attr = {} - use_flatten = True - if LAYERTYPE.CONVOLUTIONAL == layer.type: - attr.update({'layout' : 'NCHW'}) - attr.update({'pad' : str(layer.pad)}) - attr.update({'num_group' : str(layer.groups)}) - attr.update({'num_filter' : str(layer.n)}) - attr.update({'stride' : str(layer.stride)}) - attr.update({'kernel' : str(layer.size)}) - attr.update({'activation' : (layer.activation)}) - - if layer.nbiases == 0: - attr.update({'use_bias' : False}) - else: - attr.update({'use_bias' : True}) - - if layer.batch_normalize == 1 and layer.dontloadscales != 1: - attr.update({'use_batchNorm' : True}) - attr.update({'use_scales' : True}) - - elif LAYERTYPE.CONNECTED == layer.type: - attr.update({'num_hidden' : str(layer.outputs)}) - attr.update({'activation' : (layer.activation)}) - if layer_num != 0: - layer_prev = self.net.layers[layer_num - 1] - if (layer_prev.out_h == layer.h and - layer_prev.out_w == layer.w and - layer_prev.out_c == layer.c): - use_flatten = False - attr.update({'use_flatten' : use_flatten}) - attr.update({'use_bias' : True}) - if layer.batch_normalize == 1 and layer.dontloadscales != 1: - attr.update({'use_batchNorm' : True}) - attr.update({'use_scales' : True}) - attr.update({'use_bias' : False}) - - elif LAYERTYPE.MAXPOOL == layer.type: - attr.update({'pad' : str(layer.pad)}) - attr.update({'stride' : str(layer.stride)}) - attr.update({'kernel' : str(layer.size)}) - max_output = (layer.w - layer.size + 2 * layer.pad)/float(layer.stride) + 1 - if max_output < layer.out_w: - extra_pad = (layer.out_w - max_output)*layer.stride - attr.update({'extra_pad_size' : int(extra_pad)}) - elif LAYERTYPE.AVGPOOL == layer.type: - attr.update({'pad' : str(layer.pad)}) - if layer.stride == 0: - attr.update({'stride' : str(1)}) - else: - attr.update({'stride' : str(layer.stride)}) - if layer.size == 0 and layer.h == layer.w: - attr.update({'kernel' : str(layer.h)}) - else: - attr.update({'kernel' : str(layer.size)}) - - elif LAYERTYPE.DROPOUT == layer.type: - attr.update({'p' : str(layer.probability)}) - - elif LAYERTYPE.SOFTMAX == layer.type: - attr.update({'axis' : 1}) - attr.update({'use_flatten' : True}) - if layer.temperature: - attr.update({'temperature' : str(layer.temperature)}) - - elif LAYERTYPE.SHORTCUT == layer.type: - add_layer = self.net.layers[layer.index] - attr.update({'activation' : (layer.activation)}) - attr.update({'out_channel' : (layer.out_c)}) - attr.update({'out_size' : (layer.out_h)}) - attr.update({'add_out_channel' : (add_layer.out_c)}) - attr.update({'add_out_size' : (add_layer.out_h)}) - - elif LAYERTYPE.ROUTE == layer.type: - pass - - elif LAYERTYPE.COST == layer.type: - pass - - elif LAYERTYPE.REORG == layer.type: - attr.update({'stride' : layer.stride}) - - elif LAYERTYPE.REGION == layer.type: - attr.update({'n' : layer.n}) - attr.update({'classes' : layer.classes}) - attr.update({'coords' : layer.coords}) - attr.update({'background' : layer.background}) - attr.update({'softmax' : layer.softmax}) - attr.update({'shape' : (1, layer.c, layer.h, layer.w)}) - - elif LAYERTYPE.YOLO == layer.type: - attr.update({'n' : layer.n}) - attr.update({'classes' : layer.classes}) - attr.update({'shape' : (1, layer.c, layer.h, layer.w)}) - - elif LAYERTYPE.UPSAMPLE == layer.type: - attr.update({'scale' : layer.stride}) - - elif LAYERTYPE.L2NORM == layer.type: - pass - - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Darknet.'.format(layer.type)) - - return attr - - def _get_tvm_params_name(self, opname, arg_name): - """Makes the params name for the k,v pair.""" - return opname + '_'+ arg_name - - def _get_darknet_params(self, layer, opname): - """To parse and get the darknet params.""" - if LAYERTYPE.CONVOLUTIONAL == layer.type: - self._get_convolution_weights(layer, opname) - - elif LAYERTYPE.CONNECTED == layer.type: - self._get_connected_weights(layer, opname) - - elif LAYERTYPE.REGION == layer.type: - self._get_region_weights(layer, opname) - - elif LAYERTYPE.YOLO == layer.type: - self._get_yolo_weights(layer, opname) - def _preproc_layer(self, layer, layer_num): - """To preprocess each darknet layer, some layer doesnt need processing.""" - if layer_num == 0: - name = 'data' - attribute = {} - sym = [_sym.Variable(name, **attribute)] - else: - sym = self._sym_array[layer_num - 1] - skip_layer = False - - if LAYERTYPE.ROUTE == layer.type: - sym = [] - for j in range(layer.n): - sym.append(self._sym_array[layer.input_layers[j]]) - if layer.n == 1: - skip_layer = True - - elif LAYERTYPE.COST == layer.type: - skip_layer = True - - elif LAYERTYPE.SHORTCUT == layer.type: - sym = [sym, self._sym_array[layer.index]] - - elif LAYERTYPE.BLANK == layer.type: - skip_layer = True - - if skip_layer is True: - self._sym_array[layer_num] = sym - - return skip_layer, sym - - def _get_opname(self, layer): - """Returs the layer name.""" - return layer.type - - def _new_rnn_state_sym(self, state=None, name='rnn'): - """Returs a symbol for state""" - sym_name = name + "%d_state" % self._state_ctr[name] - self._state_ctr[name] += 1 - return _sym.Variable(name=sym_name, init=state) - - def _get_rnn_state_buffer(self, layer, name): - """Get the state buffer for rnn.""" - buffer = np.zeros((1, layer.outputs), self.dtype) - return self._new_rnn_state_sym(buffer, name) - - def _get_darknet_rnn_attrs(self, layer, sym): - """Get the rnn converted symbol from attributes.""" - attr = self._get_darknet_attrs(layer, 0) - op_name = self._get_opname(layer) - layer_name, sym = _darknet_convert_symbol(op_name, _as_list(sym), attr) - self._get_darknet_params(layer, layer_name) - return sym - - def _handle_darknet_rnn_layers(self, layer_num, sym): - """Parse attributes and handle the rnn layers.""" - attr = {} - layer = self.net.layers[layer_num] - processed = False - - if LAYERTYPE.RNN == layer.type: - attr.update({'n' : layer.n}) - attr.update({'batch' : layer.batch}) - attr.update({'num_hidden' : str(layer.outputs)}) - - state = self._get_rnn_state_buffer(layer, 'rnn') - - for _ in range(layer.steps): - input_layer = layer.input_layer - sym = self._get_darknet_rnn_attrs(input_layer, sym) - - self_layer = layer.self_layer - state = self._get_darknet_rnn_attrs(self_layer, state) - - op_name, new_attrs = 'elemwise_add', {} - new_inputs = _as_list([sym, state]) - state = get_nnvm_op(op_name)(*new_inputs, **new_attrs) - self._outs.append(state) - - output_layer = layer.output_layer - sym = self._get_darknet_rnn_attrs(output_layer, state) - - self._sym_array[layer_num] = sym - processed = True - - elif LAYERTYPE.CRNN == layer.type: - attr.update({'n' : layer.n}) - attr.update({'batch' : layer.batch}) - attr.update({'num_hidden' : str(layer.outputs)}) - - state = self._get_rnn_state_buffer(layer, 'crnn') - - for _ in range(layer.steps): - input_layer = layer.input_layer - sym = self._get_darknet_rnn_attrs(input_layer, sym) - - self_layer = layer.self_layer - state = self._get_darknet_rnn_attrs(self_layer, state) - - op_name, new_attrs = 'elemwise_add', {} - new_inputs = _as_list([sym, state]) - state = get_nnvm_op(op_name)(*new_inputs, **new_attrs) - self._outs.append(state) - - output_layer = layer.output_layer - sym = self._get_darknet_rnn_attrs(output_layer, state) - - self._sym_array[layer_num] = sym - processed = True - - elif LAYERTYPE.LSTM == layer.type: - if layer.steps > 1: - raise tvm.error.OpAttributeInvalid( - 'Number of steps {} of RNN is not valid.'.format(layer.steps)) - - op_name_add = 'elemwise_add' - op_name_mul = 'elemwise_mul' - attrs = {} - act_attr = {} - - h_state = self._get_rnn_state_buffer(layer, 'lstm') - c_state = self._get_rnn_state_buffer(layer, 'cell_state') - for _ in range(layer.steps): - sym_wf = self._get_darknet_rnn_attrs(layer.wf, h_state) - sym_wi = self._get_darknet_rnn_attrs(layer.wi, h_state) - sym_wg = self._get_darknet_rnn_attrs(layer.wg, h_state) - sym_wo = self._get_darknet_rnn_attrs(layer.wo, h_state) - - input_sym = sym - sym_uf = self._get_darknet_rnn_attrs(layer.uf, input_sym) - sym_ui = self._get_darknet_rnn_attrs(layer.ui, input_sym) - sym_ug = self._get_darknet_rnn_attrs(layer.ug, input_sym) - sym_uo = self._get_darknet_rnn_attrs(layer.uo, input_sym) - - new_inputs = _as_list([sym_wf, sym_uf]) - add_f = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - new_inputs = _as_list([sym_wi, sym_ui]) - add_i = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - new_inputs = _as_list([sym_wg, sym_ug]) - add_g = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - new_inputs = _as_list([sym_wo, sym_uo]) - add_o = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - act_attr['activation'] = ACTIVATION.LOGISTIC - act_f, _ = _darknet_activations(_as_list(add_f), act_attr) - - act_attr['activation'] = ACTIVATION.LOGISTIC - act_i, _ = _darknet_activations(_as_list(add_i), act_attr) - - act_attr['activation'] = ACTIVATION.TANH - act_g, _ = _darknet_activations(_as_list(add_g), act_attr) - - act_attr['activation'] = ACTIVATION.LOGISTIC - act_o, _ = _darknet_activations(_as_list(add_o), act_attr) - - new_inputs = _as_list([act_i, act_g]) - mul_t = get_nnvm_op(op_name_mul)(*new_inputs, **attrs) - - new_inputs = _as_list([act_f, c_state]) - c_state = get_nnvm_op(op_name_mul)(*new_inputs, **attrs) - - new_inputs = _as_list([mul_t, c_state]) - c_state = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - act_attr['activation'] = ACTIVATION.TANH - h_state, _ = _darknet_activations(_as_list(c_state), act_attr) - - new_inputs = _as_list([act_o, h_state]) - h_state = get_nnvm_op(op_name_mul)(*new_inputs, **attrs) - self._outs = self._outs + [c_state, h_state] - sym = h_state - self._sym_array[layer_num] = sym - processed = True - - elif LAYERTYPE.GRU == layer.type: - if layer.steps > 1: - raise tvm.error.OpAttributeInvalid( - 'Number of steps {} is not valid in RNN.'.format(layer.steps)) - - op_name_add = 'elemwise_add' - op_name_mul = 'elemwise_mul' - attrs = {} - act_attr = {} - - state = self._get_rnn_state_buffer(layer, "gru") - for _ in range(layer.steps): - sym_wz = self._get_darknet_rnn_attrs(layer.wz, state) - sym_wr = self._get_darknet_rnn_attrs(layer.wr, state) - - input_sym = sym - sym_uz = self._get_darknet_rnn_attrs(layer.uz, input_sym) - sym_ur = self._get_darknet_rnn_attrs(layer.ur, input_sym) - sym_uh = self._get_darknet_rnn_attrs(layer.uh, input_sym) - - new_inputs = _as_list([sym_uz, sym_wz]) - add_z = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - new_inputs = _as_list([sym_ur, sym_wr]) - add_r = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - act_attr['activation'] = ACTIVATION.LOGISTIC - act_z, _ = _darknet_activations(_as_list(add_z), act_attr) - - act_attr['activation'] = ACTIVATION.LOGISTIC - act_r, _ = _darknet_activations(_as_list(add_r), act_attr) - - new_inputs = _as_list([act_r, state]) - forgot = get_nnvm_op(op_name_mul)(*new_inputs, **attrs) - - sym_wh = self._get_darknet_rnn_attrs(layer.wh, forgot) - - new_inputs = _as_list([sym_uh, sym_wh]) - h_state = get_nnvm_op(op_name_add)(*new_inputs, **attrs) - - if layer.tanh == 1: - act_attr['activation'] = ACTIVATION.TANH - else: - act_attr['activation'] = ACTIVATION.LOGISTIC - h_state, _ = _darknet_activations(_as_list(h_state), act_attr) - - sym = act_z * state + (1 - act_z) * h_state - - self._outs = self._outs + [sym] - self._sym_array[layer_num] = sym - processed = True - - return processed, sym - - def _make_outlist(self, sym, op_name, layer, layer_num): - if layer.type == LAYERTYPE.REGION: - k = self._get_tvm_params_name(op_name, 'attr') - self._outs.insert(0, _sym.Variable(name=k, init=self._tvmparams[k].asnumpy())) - k = self._get_tvm_params_name(op_name, 'bias') - self._outs.insert(0, _sym.Variable(name=k, init=self._tvmparams[k].asnumpy())) - if layer_num != self.net.n-1: - self._outs.insert(0, sym) - - elif layer.type == LAYERTYPE.YOLO: - k = self._get_tvm_params_name(op_name, 'attr') - self._outs.insert(0, _sym.Variable(name=k, init=self._tvmparams[k].asnumpy())) - k = self._get_tvm_params_name(op_name, 'bias') - self._outs.insert(0, _sym.Variable(name=k, init=self._tvmparams[k].asnumpy())) - k = self._get_tvm_params_name(op_name, 'mask') - self._outs.insert(0, _sym.Variable(name=k, init=self._tvmparams[k].asnumpy())) - if layer_num != self.net.n-1: - self._outs.insert(0, sym) - - def from_darknet(self): - """To convert the darknet symbol to nnvm symbols.""" - for i in range(self.net.n): - layer = self.net.layers[i] - need_skip, sym = self._preproc_layer(layer, i) - if need_skip is True: - continue - - processed, sym = self._handle_darknet_rnn_layers(i, sym) - if processed is True: - continue - - attr = self._get_darknet_attrs(layer, i) - op_name = self._get_opname(layer) - layer_name, sym = _darknet_convert_symbol(op_name, _as_list(sym), attr) - self._get_darknet_params(self.net.layers[i], layer_name) - self._sym_array[i] = sym - self._make_outlist(sym, layer_name, layer, i) - - self._outs = _as_list(sym) + self._outs - if isinstance(self._outs, list): - sym = _sym.Group(self._outs) - return sym, self._tvmparams - -def from_darknet(net, dtype='float32'): - """Convert from darknet's model into compatible NNVM format. - Reconstruct a nnvm symbol by traversing the darknet input. - - Parameters - ---------- - net : ctype Pointer to network - Darknet parsed symbols - - dtype : str - Datatype of the input net structure, default is float32 - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.NDArray - The parameter dict to be used by nnvm - """ - - return GraphProto(net, dtype).from_darknet() diff --git a/nnvm/python/nnvm/frontend/keras.py b/nnvm/python/nnvm/frontend/keras.py deleted file mode 100644 index f647a644bd2b..000000000000 --- a/nnvm/python/nnvm/frontend/keras.py +++ /dev/null @@ -1,727 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, import-self -"""Keras frontend.""" -from __future__ import absolute_import as _abs -import sys -import numpy as np -import tvm -from .. import symbol as _sym -from .common import SymbolTable - -__all__ = ['from_keras'] - - -def _check_data_format(keras_layer): - if hasattr(keras_layer, ('data_format')): - if keras_layer.data_format != 'channels_last': - raise ValueError("Keras frontend currently supports data_format = channels_last only.") - - -def _get_pad_pair(input1d, kernel1d, stride1d): - out1d = (input1d + stride1d - 1) // stride1d - pad = np.maximum((out1d - 1) * stride1d + kernel1d - input1d, 0) - pad_before = pad // 2 - pad_after = pad - pad_before - return [pad_before, pad_after] - -def _get_elu(insym, alpha): - """ A helper method for elu. - """ - return -alpha * _sym.relu(1 - _sym.exp(insym)) + _sym.relu(insym) - -def _convert_recurrent_activation(insym, keras_layer): - act_type = keras_layer.recurrent_activation.__name__ - return _convert_activation(insym, act_type, None) - -def _convert_activation(insym, keras_layer, _): - if isinstance(keras_layer, str): - act_type = keras_layer - else: - if sys.version_info.major < 3: - act_type = keras_layer.activation.func_name - else: - act_type = keras_layer.activation.__name__ - if act_type == 'linear': - if isinstance(keras_layer, str): - return insym - alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1 - beta = keras_layer.beta if hasattr(keras_layer, "beta") else 0 - return _sym.__add_scalar__(_sym.__mul_scalar__(insym, \ - scalar=alpha), scalar=beta) - if act_type == 'softmax': - return _sym.softmax(insym, axis=1) - if act_type == 'sigmoid': - return _sym.sigmoid(insym) - if act_type == 'tanh': - return _sym.tanh(insym) - if act_type == 'relu': - return _sym.relu(insym) - if act_type == 'softplus': - return _sym.log(_sym.__add_scalar__(_sym.exp(insym), scalar=1)) - if act_type == 'elu': - alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1 - return _get_elu(insym, alpha) - if act_type == 'selu': - # Alpha, Gamma values, obtained from https://arxiv.org/abs/1706.02515 - alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") \ - else 1.6732632423543772848170429916717 - gamma = keras_layer.gamma if hasattr(keras_layer, "gamma") \ - else 1.0507009873554804934193349852946 - return gamma * _get_elu(insym, alpha) - if act_type == 'relu6': - return _sym.clip(insym, a_min=0, a_max=6) - if act_type == 'softsign': - return insym / (1 + (_sym.relu(insym) + _sym.relu(_sym.negative(insym)))) - if act_type == 'hard_sigmoid': - transformX = (0.2 * insym) + 0.5 - return _sym.clip(transformX, a_min=0, a_max=1) - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Keras.'.format(act_type)) - - -def _convert_advanced_activation(insym, keras_layer, symtab): - act_type = type(keras_layer).__name__ - if act_type == 'ReLU': - if keras_layer.max_value: - return _sym.clip(insym, a_min=0, a_max=keras_layer.max_value) - return _sym.relu(insym) - if act_type == 'LeakyReLU': - return _sym.leaky_relu(insym, alpha=keras_layer.alpha) - if act_type == 'ELU': - alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1 - return _get_elu(insym, alpha) - if act_type == 'PReLU': - assert hasattr(keras_layer, "alpha"), \ - "alpha required for PReLU." - _check_data_format(keras_layer) - size = len(keras_layer.alpha.shape) - return -symtab.new_const(keras_layer.get_weights()[0] \ - .transpose(np.roll(range(size), 1))) \ - * _sym.relu(-insym) + _sym.relu(insym) - if act_type == 'ThresholdedReLU': - theta = keras_layer.theta if hasattr(keras_layer, "theta") else 1.0 - theta_tensor = _sym.full_like(insym[0], fill_value=float(theta)) - return _sym.elemwise_mul(insym[0], _sym.greater(insym[0], theta_tensor, out_type="float32")) - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Keras.'.format(act_type)) - - -def _convert_merge(insym, keras_layer, _): - merge_type = type(keras_layer).__name__ - ret = insym[0] - for i in range(1, len(insym)): - if merge_type == 'Add': - ret = _sym.elemwise_add(ret, insym[i]) - elif merge_type == 'Subtract': - ret = _sym.elemwise_sub(ret, insym[i]) - elif merge_type == 'Multiply': - ret = _sym.elemwise_mul(ret, insym[i]) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} Merge is not supported in frontend Keras.'.format(merge_type)) - return ret - - -def _convert_dense(insym, keras_layer, symtab): - weightList = keras_layer.get_weights() - weight = symtab.new_const(weightList[0].transpose([1, 0])) - params = {'weight':weight, 'use_bias':False, 'units':weightList[0].shape[1]} - if keras_layer.use_bias: - params['use_bias'] = True - params['bias'] = symtab.new_const(weightList[1]) - input_shape = keras_layer.input_shape - input_dim = len(input_shape) - # In case of RNN dense, input shape will be (1, 1, n) - if input_dim > 2: - input_shape = tuple(dim if dim else 1 for dim in _as_list(input_shape)[0]) - if input_dim != 3 or input_shape[0] != 1 or input_shape[1] != 1: - msg = 'Value {} in attribute "input_shape" of operator Dense is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(input_shape)) - insym = _sym.squeeze(insym, axis=0) - out = _sym.dense(data=insym, **params) - # defuse activation - if sys.version_info.major < 3: - act_type = keras_layer.activation.func_name - else: - act_type = keras_layer.activation.__name__ - if act_type != 'linear': - out = _convert_activation(out, act_type, symtab) - if input_dim > 2: - out = _sym.expand_dims(out, axis=0) - return out - - -def _convert_convolution(insym, keras_layer, symtab): - _check_data_format(keras_layer) - is_deconv = type(keras_layer).__name__ == 'Conv2DTranspose' - is_depthconv = type(keras_layer).__name__ == 'DepthwiseConv2D' - weightList = keras_layer.get_weights() - if is_deconv: - kernel_h, kernel_w, n_filters, in_channels = weightList[0].shape - weight = weightList[0].transpose([3, 2, 0, 1]) - elif is_depthconv: - kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape - weight = weightList[0].transpose([2, 3, 0, 1]) - else: - kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape - weight = weightList[0].transpose([3, 2, 0, 1]) - if isinstance(keras_layer.dilation_rate, (list, tuple)): - dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]] - else: - dilation = [keras_layer.dilation_rate, keras_layer.dilation_rate] - dilated_kernel_h = (kernel_h - 1) * dilation[0] + 1 - dilated_kernel_w = (kernel_w - 1) * dilation[1] + 1 - stride_h, stride_w = keras_layer.strides - params = {'weight': symtab.new_const(weight), - 'kernel_size': [kernel_h, kernel_w], - 'strides': [stride_h, stride_w], - 'dilation': dilation, - 'padding': [0, 0], - 'use_bias': False} - if is_depthconv: - params['channels'] = in_channels * depth_mult - params['groups'] = in_channels - else: - params['channels'] = n_filters - if keras_layer.use_bias: - params['use_bias'] = True - params['bias'] = symtab.new_const(weightList[1]) - if keras_layer.padding == 'valid': - pass - # we insert a separate pad operator - elif keras_layer.padding == 'same': - in_h = keras_layer.input_shape[1] - in_w = keras_layer.input_shape[2] - pad_t, pad_b = _get_pad_pair(in_h, dilated_kernel_h, stride_h) - pad_l, pad_r = _get_pad_pair(in_w, dilated_kernel_w, stride_w) - if pad_t == pad_b and pad_l == pad_r: - params['padding'] = (pad_t, pad_l) - else: - insym = _sym.pad(data=insym, pad_width=((0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) - else: - msg = 'Value {} in attribute "padding" of operator Convolution is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(keras_layer.padding)) - if is_deconv: - out = _sym.conv2d_transpose(data=insym, **params) - else: - out = _sym.conv2d(data=insym, **params) - # defuse activation - if sys.version_info.major < 3: - act_type = keras_layer.activation.func_name - else: - act_type = keras_layer.activation.__name__ - if act_type != 'linear': - out = _convert_activation(out, act_type, symtab) - return out - - -def _convert_separable_convolution(insym, keras_layer, symtab): - _check_data_format(keras_layer) - weightList = keras_layer.get_weights() - # depthwise conv - kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape - stride_h, stride_w = keras_layer.strides - weight0 = weightList[0].transpose([2, 3, 0, 1]) - params0 = {'weight': symtab.new_const(weight0), - 'channels': in_channels * depth_mult, - 'groups': in_channels, - 'kernel_size': [kernel_h, kernel_w], - 'strides': [stride_h, stride_w], - 'dilation': [1, 1], - 'padding': [0, 0], - 'use_bias': False} - if keras_layer.padding == 'valid': - pass - # we insert a separate pad operator - elif keras_layer.padding == 'same': - in_h = keras_layer.input_shape[1] - in_w = keras_layer.input_shape[2] - pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h) - pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w) - insym = _sym.pad(data=insym, pad_width=( - (0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) - else: - msg = 'Value {} in attribute "padding" of operator Separable Convolution is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(keras_layer.padding)) - depthconv = _sym.conv2d(data=insym, **params0) - # pointwise conv - weight1 = weightList[1].transpose([3, 2, 0, 1]) - params1 = {'weight': symtab.new_const(weight1), - 'channels': weight1.shape[0], - 'groups': 1, - 'kernel_size': [1, 1], - 'strides': [1, 1], - 'dilation': [1, 1], - 'use_bias': False} - if keras_layer.use_bias: - params1['use_bias'] = True - params1['bias'] = symtab.new_const(weightList[2]) - out = _sym.conv2d(data=depthconv, **params1) - # defuse activation - if sys.version_info.major < 3: - act_type = keras_layer.activation.func_name - else: - act_type = keras_layer.activation.__name__ - if act_type != 'linear': - out = _convert_activation(out, act_type, symtab) - return out - - -def _convert_flatten(insym, keras_layer, _): - _check_data_format(keras_layer) - # NCHW -> NHWC so that dense can be correctly converted - insym = _sym.transpose(insym, axes=[0, 2, 3, 1]) - return _sym.flatten(insym) - - -def _convert_pooling(insym, keras_layer, symtab): - _check_data_format(keras_layer) - pool_type = type(keras_layer).__name__ - # global pool in keras = global pool + flatten in nnvm - if pool_type == 'GlobalMaxPooling2D': - return _convert_flatten(_sym.global_max_pool2d(insym), keras_layer, symtab) - if pool_type == 'GlobalAveragePooling2D': - return _convert_flatten(_sym.global_avg_pool2d(insym), keras_layer, symtab) - pool_h, pool_w = keras_layer.pool_size - stride_h, stride_w = keras_layer.strides - params = {'pool_size': [pool_h, pool_w], - 'strides': [stride_h, stride_w], - 'padding': [0, 0]} - if keras_layer.padding == 'valid': - pass - elif keras_layer.padding == 'same': - in_h = keras_layer.input_shape[1] - in_w = keras_layer.input_shape[2] - pad_t, pad_b = _get_pad_pair(in_h, pool_h, stride_h) - pad_l, pad_r = _get_pad_pair(in_w, pool_w, stride_w) - params['padding'] = [pad_t, pad_l, pad_b, pad_r] - else: - msg = 'Value {} in attribute "padding" of operator Pooling is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(keras_layer.padding)) - if pool_type == 'MaxPooling2D': - return _sym.max_pool2d(insym, **params) - if pool_type == 'AveragePooling2D': - # TODO: in keras, padded zeros are not calculated - return _sym.avg_pool2d(insym, **params) - msg = 'Value {} in attribute "padding" of operator Pooling is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(keras_layer.padding)) - - -def _convert_upsample(insym, keras_layer, _): - _check_data_format(keras_layer) - upsample_type = type(keras_layer).__name__ - if upsample_type == "UpSampling1D": - h = keras_layer.size - params = {'scale': h} - elif upsample_type == "UpSampling2D": - h, w = keras_layer.size - if h != w: - raise tvm.error.OpAttributeInvalid( - 'Upsample height ({}) must equal width ({})'.format(h, w)) - params = {'scale': h} - elif upsample_type == "UpSampling3D": - h, w, d = keras_layer.size - if h != w or w != d: - raise tvm.error.OpAttributeInvalid( - 'Upsample height ({}), width ({}), and depth ({}) must be equal.'.format(h, w, d)) - params = {'scale': h} - else: - msg = 'Operator {} is not supported in frontend Keras.' - raise tvm.error.OpNotImplemented(msg.format(upsample_type)) - return _sym.upsampling(insym, **params) - - -def _convert_cropping(insym, keras_layer, _): - _check_data_format(keras_layer) - crop_type = type(keras_layer).__name__ - if crop_type == "Cropping2D": - (_, in_h, in_w, _) = keras_layer.input_shape - ((crop_t, crop_b), (crop_l, crop_r)) = keras_layer.cropping - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Keras.'.format(crop_type)) - int32_max = np.iinfo(np.int32).max - return _sym.strided_slice(insym, begin=[0, 0, crop_t, crop_l], - end=[int32_max, int32_max, in_h-crop_b, in_w-crop_r]) - - -def _convert_batchnorm(insym, keras_layer, symtab): - params = {'scale': False, - 'center': False, - 'epsilon': keras_layer.epsilon} - idx = 0 - if keras_layer.scale: - params['scale'] = True - gamma = keras_layer.get_weights()[idx] - params['gamma'] = symtab.new_const(gamma) - idx += 1 - if keras_layer.center: - params['center'] = True - beta = keras_layer.get_weights()[idx] - params['beta'] = symtab.new_const(beta) - idx += 1 - moving_mean = keras_layer.get_weights()[idx] - moving_var = keras_layer.get_weights()[idx + 1] - params['moving_mean'] = symtab.new_const(moving_mean) - params['moving_var'] = symtab.new_const(moving_var) - return _sym.batch_norm(data=insym, **params) - - -def _convert_padding(insym, keras_layer, _): - _check_data_format(keras_layer) - padding_type = type(keras_layer).__name__ - padding = keras_layer.padding - top = left = bottom = right = 0 - if padding_type == 'ZeroPadding2D': - if isinstance(padding, int): - top = left = bottom = right = padding - elif isinstance(padding, tuple): - if isinstance(padding[0], int): - top, left = padding - bottom, right = padding - elif isinstance(padding[0], tuple): - top, bottom = padding[0] - left, right = padding[1] - else: - msg = 'Value {} in attribute "padding" of operator {} is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(str(padding), padding_type)) - else: - msg = 'Value {} in attribute "padding" of operator {} is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(str(padding), padding_type)) - else: - raise tvm.error.OpNotImplemented('Operator {} is not supported in frontend Keras.') - return _sym.pad(data=insym, pad_width=((0, 0), (0, 0), (top, bottom), (left, right))) - - -def _convert_concat(insym, keras_layer, _): - _check_data_format(keras_layer) - if not isinstance(insym, list): - insym = [insym] - return _sym.concatenate(*insym, axis=1) - - -def _convert_reshape(insym, keras_layer, _): - _check_data_format(keras_layer) - ch = keras_layer.input_shape[-1] - assert ch == keras_layer.target_shape[-1], \ - "Only supports last dimension in target shape being equal to " \ - "the channel number of input tensor." - shape = (-1, ch) + keras_layer.target_shape[:-1] - return _sym.reshape(insym, shape=shape) - -def _convert_lstm(insym, keras_layer, symtab): - _check_data_format(keras_layer) - if not isinstance(insym, list): - buffer = np.zeros((1, keras_layer.units), 'float32') - c_sym = symtab.new_const(buffer) - h_sym = symtab.new_const(buffer) - insym = [insym, h_sym, c_sym] - - in_data = insym[0] - next_h = insym[1] - next_c = insym[2] - - weightList = keras_layer.get_weights() - inp_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.input_shape)[0]) - - kernel_wt = symtab.new_const(weightList[0].transpose([1, 0])) - recurrent_wt = symtab.new_const(weightList[1].transpose([1, 0])) - in_bias = symtab.new_const(weightList[2]) - - units = list(weightList[0].shape)[1] - - time_steps = inp_shape[1] - in_data = _sym.squeeze(in_data, axis=0) - in_data = _sym.split(in_data, indices_or_sections=time_steps, axis=0) - #loop for the number of time_steps - for data in in_data: - ixh1 = _sym.dense(data, kernel_wt, use_bias=False, units=units) - ixh2 = _sym.dense(next_h, recurrent_wt, in_bias, use_bias=True, units=units) - gate = ixh1 + ixh2 - gates = _sym.split(gate, indices_or_sections=4, axis=1) - in_gate = _convert_recurrent_activation(gates[0], keras_layer) - in_transform = _convert_recurrent_activation(gates[1], keras_layer) - next_c = in_transform * next_c + in_gate * _convert_activation(gates[2], keras_layer, None) - out_gate = _convert_recurrent_activation(gates[3], keras_layer) - next_h = out_gate * _convert_activation(next_c, keras_layer, None) - - out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0]) - out = _sym.reshape(next_h, shape=out_shape) - return [out, next_h, next_c] - -def _convert_simple_rnn(insym, keras_layer, symtab): - _check_data_format(keras_layer) - if not isinstance(insym, list): - buffer = np.zeros((1, keras_layer.units), 'float32') - prev_sym = symtab.new_const(buffer) - insym = [insym, prev_sym] - in_data = insym[0] - prev_sym = insym[1] - - weightList = keras_layer.get_weights() - kernel_wt = symtab.new_const(weightList[0].transpose([1, 0])) - recurrent_wt = symtab.new_const(weightList[1].transpose([1, 0])) - in_bias = symtab.new_const(weightList[2]) - units = list(weightList[0].shape)[1] - - in_data = _sym.flatten(in_data) - ixh = _sym.dense(in_data, kernel_wt, in_bias, use_bias=True, units=units) - prev_sym = _sym.flatten(prev_sym) - ixh2 = _sym.dense(prev_sym, recurrent_wt, use_bias=False, units=units) - output = ixh + ixh2 - output = _convert_activation(output, keras_layer, None) - - out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0]) - output = _sym.reshape(output, shape=out_shape) - - return [output, output] - -def _convert_gru(insym, keras_layer, symtab): - _check_data_format(keras_layer) - if not isinstance(insym, list): - buffer = np.zeros((1, keras_layer.units), 'float32') - h_tm1 = symtab.new_const(buffer) - insym = [insym, h_tm1] - in_data = insym[0] - h_tm1_sym = insym[1] - - weightList = keras_layer.get_weights() - kernel_wt = symtab.new_const(weightList[0].transpose([1, 0])) - recurrent_wt = symtab.new_const(weightList[1].transpose([1, 0])) - in_bias = symtab.new_const(weightList[2]) - - units = list(weightList[0].shape)[1] - - in_data = _sym.flatten(in_data) - matrix_x = _sym.dense(in_data, kernel_wt, in_bias, use_bias=True, units=units) - - # inputs projected by all gate matrices at once - split_indices = [keras_layer.units, 2 * keras_layer.units] - gates = _sym.split(matrix_x, indices_or_sections=split_indices, axis=1) - x_z = gates[0] - x_r = gates[1] - x_h = gates[2] - - # hidden state projected separately for update/reset and new - units = 2 * keras_layer.units - split_indices = [units] - rec_wts = _sym.split(recurrent_wt, indices_or_sections=split_indices, axis=0) - - h_tm1_sym = _sym.flatten(h_tm1_sym) - matrix_inner = _sym.dense(h_tm1_sym, rec_wts[0], use_bias=False, units=units) - - split_indices = [keras_layer.units] - recurrent = _sym.split(matrix_inner, indices_or_sections=split_indices, axis=1) - recurrent_z = recurrent[0] - recurrent_r = recurrent[1] - - rec_act_z = _convert_recurrent_activation(x_z + recurrent_z, keras_layer) - rec_act_r = _convert_recurrent_activation(x_r + recurrent_r, keras_layer) - - units = keras_layer.units - recurrent_h = _sym.dense(rec_act_r * h_tm1_sym, rec_wts[1], use_bias=False, units=units) - act_hh = _convert_activation(x_h + recurrent_h, keras_layer, None) - - # previous and candidate state mixed by update gate - output = rec_act_z * h_tm1_sym + (1 - rec_act_z) * act_hh - - out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0]) - output = _sym.reshape(output, shape=out_shape) - return [output, output] - -def _default_skip(insym, keras_layer, _): # pylint: disable=unused-argument - """Layers that can be skipped because they are train time only.""" - return insym - - -_convert_map = { - 'Dense' : _convert_dense, - 'Activation' : _convert_activation, - 'ReLU' : _convert_advanced_activation, - 'LeakyReLU' : _convert_advanced_activation, - 'PReLU' : _convert_advanced_activation, - 'ELU' : _convert_advanced_activation, - 'ThresholdedReLU' : _convert_advanced_activation, - - 'AveragePooling2D' : _convert_pooling, - 'MaxPooling2D' : _convert_pooling, - 'GlobalAveragePooling2D' : _convert_pooling, - 'GlobalMaxPooling2D' : _convert_pooling, - 'Conv2D' : _convert_convolution, - 'Conv2DTranspose' : _convert_convolution, - 'DepthwiseConv2D' : _convert_convolution, - 'SeparableConv2D' : _convert_separable_convolution, - - 'Flatten' : _convert_flatten, - 'Reshape' : _convert_reshape, - 'Concatenate' : _convert_concat, - 'BatchNormalization' : _convert_batchnorm, - - 'Add' : _convert_merge, - 'Subtract' : _convert_merge, - 'Multiply' : _convert_merge, - 'ZeroPadding2D' : _convert_padding, - 'UpSampling2D' : _convert_upsample, - 'Cropping2D' : _convert_cropping, - - # 'ZeroPadding1D' : _convert_padding, - # 'AveragePooling1D' : _convert_pooling, - # 'MaxPooling1D' : _convert_pooling, - # 'GlobalAveragePooling1D' : _convert_pooling, - # 'GlobalMaxPooling1D' : _convert_pooling, - # 'Cropping1D' : _convert_cropping, - # 'UpSampling1D' : _convert_upsample, - # 'UpSampling3D' : _convert_upsample, - # 'Conv1D' : _convert_convolution1d, - - 'SimpleRNN' : _convert_simple_rnn, - 'LSTM' : _convert_lstm, - 'GRU' : _convert_gru, - # 'Bidirectional' : _convert_bidirectional, - # 'TimeDistributed' : _default_skip, - - # 'Average' : _convert_merge, - # 'Maximum' : _convert_merge, - # 'Dot' : _convert_merge, - # 'Permute' : _convert_permute, - # 'Embedding' : _convert_embedding, - # 'RepeatVector' : _convert_repeat_vector, - - 'InputLayer' : _default_skip, - 'Dropout' : _default_skip, - 'SpatialDropout2D' : _default_skip, - 'SpatialDropout1D' : _default_skip, -} - - -def _check_unsupported_layers(model): - for layer in model.layers: - op_name = type(layer).__name__ - if op_name not in _convert_map: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Keras.'.format(op_name)) - -def _as_list(arr): - """Force being a list, ignore if already is.""" - if isinstance(arr, list): - return arr - return [arr] - -def keras_op_to_nnvm(insym, keras_layer, outname, symtab): - """Convert keras layer to nnvm symbol, and update symtab. - - Parameters - ---------- - insym : nnvm.symbol.Symbol or a list of it - The input nnvm symbol(s) - - keras_layer : keras.layers - The keras layer to be converted - - outname : str - Name of the output nnvm symbol - - symtab : nnvm.frontend.common.SymbolTable - The global symbol table to be updated - """ - op_name = type(keras_layer).__name__ - if op_name not in _convert_map: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend Keras.'.format(op_name)) - outs = _convert_map[op_name](insym, keras_layer, symtab) - outs = _as_list(outs) - - for t_idx, out in enumerate(outs): - name = outname + ":" + str(t_idx) - symtab.set_var(name, out) - -def from_keras(model): - """Convert keras model to NNVM format. - - Parameters - ---------- - model : keras.engine.training.Model - The keras model to be converted - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.NDArray - The parameter dict to be used by nnvm - """ - try: - import keras - except ImportError: - raise ImportError('Keras must be installed') - - assert isinstance(model, keras.engine.training.Model) - if keras.backend.backend() != 'tensorflow': - raise ValueError("Keras frontend currently supports tensorflow backend only.") - if keras.backend.image_data_format() != 'channels_last': - raise ValueError("Keras frontend currently supports data_format = channels_last only.") - _check_unsupported_layers(model) - - symtab = SymbolTable() - for keras_layer in model.layers: - if isinstance(keras_layer, keras.engine.InputLayer): - symtab.get_var(keras_layer.name, must_contain=False) - else: - inbound_nodes = keras_layer.inbound_nodes if hasattr(keras_layer, 'inbound_nodes') \ - else keras_layer._inbound_nodes if hasattr(keras_layer, '_inbound_nodes') \ - else None - if inbound_nodes is None: - raise TypeError("Unknown layer type or unsupported Keras version : {}" - .format(keras_layer)) - for node_idx, node in enumerate(inbound_nodes): - # If some nodes in imported model is not relevant to the current model, - # skip such layers. model._network_nodes contains keys of all nodes relevant - # to the current model. - if not model._node_key(keras_layer, node_idx) in model._network_nodes: - continue - - insym = [] - - # Since Keras allows creating multiple layers from the same name instance, - # we append node index to the symbol name to make it unique. - # The one exception is InputLayer. Changing input variable names after conversion - # would confuse users, so we should keep them as far as possible. Fortunately, - # they are named uniquely to input_1, input_2, input_3 ... by default. - zip_node = zip(node.node_indices, node.tensor_indices, node.inbound_layers) - for n_idx, t_idx, layer in zip_node: - if isinstance(layer, keras.engine.InputLayer): - sym = symtab.get_var(layer.name, must_contain=True) - else: - sym_name = layer.name + ':' + str(n_idx) + ':' + str(t_idx) - sym = symtab.get_var(sym_name, must_contain=True) - insym.append(sym) - - if len(insym) == 1: - insym = insym[0] - keras_op_to_nnvm(insym, keras_layer, keras_layer.name + ':' + str(node_idx), symtab) - - #model._output_coordinates contains out_node(oc[0]), node_index(oc[1]) and tensor index(oc[2]) - #Get all output nodes in symtab using the name made from above values. The out symbols - #were added to symtab in keras_op_to_nnvm using this name. For multiple outputs, make a list - #with these output symbols and Group them. - outsym = [symtab.get_var(oc[0].name + ":" + str(oc[1]) + ":" + str(oc[2])) - for oc in model._output_coordinates] - - tvmparams = {k:tvm.nd.array(np.array(v, dtype=np.float32)) for k, v in symtab.params.items()} - return _sym.Group(outsym), tvmparams diff --git a/nnvm/python/nnvm/frontend/mxnet.py b/nnvm/python/nnvm/frontend/mxnet.py deleted file mode 100644 index ff2b1456cbcd..000000000000 --- a/nnvm/python/nnvm/frontend/mxnet.py +++ /dev/null @@ -1,575 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, import-self -"""MXNet symbol frontend.""" -from __future__ import absolute_import as _abs -import json -import tvm -from .. import symbol as _sym -from .common import get_nnvm_op, required_attr, parse_tshape, parse_bool_str - -__all__ = ['from_mxnet'] - -def _rename(new_name): - def impl(inputs, attrs): - return get_nnvm_op(new_name)(*inputs, **attrs) - return impl - -def _pooling(inputs, attrs): - kernel = parse_tshape(required_attr(attrs, 'kernel', 'pooling')) - if len(kernel) != 2: - raise tvm.error.OpAttributeUnImplemented( - 'Non-2D kernels are not supported for Pool2D.') - global_pool = 'global' if parse_bool_str(attrs, 'global_pool') else '' - pool_type = required_attr(attrs, 'pool_type', 'pooling') - if pool_type not in ['avg', 'max']: - raise tvm.error.OpNotImplemented( - 'Only max and average pooling are supported in frontend MXNet.') - op_name, new_attrs = '_'.join([global_pool, pool_type, 'pool2d']).strip('_'), {} - # new_attrs['layout'] = 'NCHW' - if not global_pool: - new_attrs['pool_size'] = kernel - new_attrs['strides'] = attrs.get('stride', (1, 1)) - new_attrs['padding'] = attrs.get('pad', (0, 0)) - new_attrs['ceil_mode'] = (attrs.get('pooling_convention', 'valid') == 'full') - if pool_type == 'avg': - new_attrs['count_include_pad'] = attrs.get('count_include_pad', True) - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _batch_norm(inputs, attrs): - if parse_bool_str(attrs, 'output_mean_var'): - raise tvm.error.OpAttributeUnImplemented( - 'Attribute "output_mean_var" is not supported in operator batch_norm.') - # if parse_bool_str(attrs, 'fix_gamma'): - # _warn_not_used('fix_gamma', 'batch_norm') - if parse_bool_str(attrs, 'use_global_stats'): - from warnings import warn - warn( - 'Attribute "use_global_stats" is ignored in operator batch_norm.') - # if parse_bool_str(attrs, 'momentum'): - # _warn_not_used('momentum', 'batch_norm') - op_name, new_attrs = 'batch_norm', {} - new_attrs['axis'] = attrs.get('axis', 1) - new_attrs['epsilon'] = attrs.get('eps', 0.001) - new_attrs['center'] = True - new_attrs['scale'] = not parse_bool_str(attrs, 'fix_gamma', default="False") - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _concat(inputs, attrs): - op_name = 'concatenate' - new_attrs = {'axis': attrs.get('dim', 1)} - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _conv2d(inputs, attrs): - kernel = parse_tshape(required_attr(attrs, 'kernel', 'conv2d')) - if len(kernel) != 2: - raise tvm.error.OpAttributeUnimplemented( - 'Non-2D kernels are not supported for operator Conv2D.') - layout = attrs.get('layout', 'NCHW') - if layout not in ['NCHW', 'NHWC']: - raise tvm.error.OpAttributeUnimplemented( - 'Layout {} is not supported in operator Conv2D.'.format(layout)) - if 'kernel_layout' in attrs: - kernel_layout = attrs['kernel_layout'] - else: - kernel_layout = 'HWIO' if layout == 'NHWC' else 'OIHW' - op_name, new_attrs = 'conv2d', {} - new_attrs['channels'] = required_attr(attrs, 'num_filter', 'conv2d') - new_attrs['kernel_size'] = kernel - new_attrs['strides'] = attrs.get('stride', (1, 1)) - new_attrs['padding'] = attrs.get('pad', (0, 0)) - new_attrs['dilation'] = attrs.get('dilate', (1, 1)) - new_attrs['groups'] = attrs.get('num_group', 1) - new_attrs['layout'] = layout - new_attrs['kernel_layout'] = kernel_layout - new_attrs['use_bias'] = attrs.get('no_bias', 'False').strip() == 'False' - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _conv2d_transpose(inputs, attrs): - if 'target_shape' in attrs: - raise tvm.error.OpAttributeUnimplemented( - 'Attribute "target_shape" is not supported in operator Conv2D-transpose.') - kernel = parse_tshape(required_attr(attrs, 'kernel', 'conv2d_transpose')) - if len(kernel) != 2: - raise tvm.error.OpAttributeInvalid( - 'Non-2D kernels are not supported in Conv2D-transpose.') - layout = attrs.get('layout', 'NCHW') - if layout not in ['NCHW', 'NHWC']: - raise tvm.error.OpAttributeUnimplemented( - 'Layout {} is not supported in operator Conv2D-transpose.') - if 'kernel_layout' in attrs: - kernel_layout = attrs['kernel_layout'] - else: - kernel_layout = 'HWIO' if layout == 'NHWC' else 'OIHW' - op_name, new_attrs = 'conv2d_transpose', {} - new_attrs['channels'] = required_attr(attrs, 'num_filter', 'conv2d_transpose') - new_attrs['kernel_size'] = kernel - new_attrs['strides'] = attrs.get('stride', (1, 1)) - new_attrs['output_padding'] = attrs.get('adj', (0, 0)) - new_attrs['padding'] = attrs.get('pad', (0, 0)) - new_attrs['dilation'] = attrs.get('dilate', (1, 1)) - new_attrs['groups'] = attrs.get('num_group', 1) - new_attrs['layout'] = layout - new_attrs['kernel_layout'] = kernel_layout - new_attrs['use_bias'] = not parse_bool_str(attrs, 'no_bias') - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _dense(inputs, attrs): - import mxnet as mx - op_name, new_attrs = 'dense', {} - new_attrs['units'] = required_attr(attrs, 'num_hidden', 'dense') - new_attrs['use_bias'] = not parse_bool_str(attrs, 'no_bias') - try: - _ = mx.sym.FullyConnected(mx.sym.var('x'), num_hidden=1, flatten=True) - has_flatten = True - except mx.base.MXNetError: - # no flatten attribute in old mxnet - has_flatten = False - use_flatten = parse_bool_str(attrs, 'flatten', 'True') - if has_flatten and use_flatten: - inputs[0] = _sym.flatten(inputs[0]) - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _dropout(inputs, attrs): - op_name, new_attrs = 'dropout', {} - new_attrs['rate'] = attrs.get('p', 0.5) - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _leaky_relu(inputs, attrs): - act_type = required_attr(attrs, 'act_type', 'leaky_relu') - if act_type in ['leaky', 'prelu']: - op_name, new_attrs = act_type, {} - if act_type == 'leaky': - new_attrs['alpha'] = attrs.get('slope', 0.25) - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - elif act_type == 'elu': - slope = attrs.get('slope', 0.25) - sym = -slope * _sym.relu(1 - _sym.exp(*inputs)) + _sym.relu(*inputs) - elif act_type == 'rrelu': - lower_bound = float(required_attr(attrs, 'lower_bound', 'leaky_relu')) - upper_bound = float(required_attr(attrs, 'upper_bound', 'leaky_relu')) - slope = (lower_bound + upper_bound) / 2.0 - op_name, new_attrs = 'leaky_relu', {'alpha': str(slope)} - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend MXNet.'.format(act_type)) - return sym - -def _activations(inputs, attrs): - act_type = required_attr(attrs, 'act_type', 'activations') - if act_type in ['relu', 'sigmoid', 'tanh']: - op_name, new_attrs = act_type, {} - sym = get_nnvm_op(op_name)(*inputs, **new_attrs) - elif act_type == 'softrelu': - sym = _sym.log((1 + _sym.exp(*inputs))) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend MXNet.'.format(act_type)) - return sym - -def _reshape(inputs, attrs): - if parse_bool_str(attrs, 'reverse'): - raise tvm.error.OpAttributeUnimplemented( - 'Attribute "reverse" is not supported in operator Reshape.') - op_name, new_attrs = 'reshape', {} - new_attrs['shape'] = required_attr(attrs, 'shape', 'reshape') - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _slice(inputs, attrs): - begin = attrs.get('begin', None) - end = attrs.get('end', None) - stride = attrs.get('step', None) - if begin is None or end is None: - raise RuntimeError('begin and end are required params') - if 'None' in begin or 'None' in end: - raise RuntimeError('None in begin or end not supported yet...') - new_attrs = {'begin': begin, 'end': end} - if stride is not None: - new_attrs['stride'] = stride - return get_nnvm_op('strided_slice')(inputs[0], **new_attrs) - -def _split(inputs, attrs): - op_name, new_attrs = 'split', {} - axis = attrs.get('axis', 1) - new_attrs['indices_or_sections'] = required_attr(attrs, 'num_outputs', 'split') - new_attrs['axis'] = axis - outputs = get_nnvm_op(op_name)(*inputs, **new_attrs) - if parse_bool_str(attrs, 'squeeze_axis'): - squeeze_attrs = {'axis': axis} - outputs = _sym.Group([get_nnvm_op('squeeze')(o, **squeeze_attrs) for o in outputs]) - return outputs - -def _softmax_activation(inputs, attrs): - op_name, new_attrs = 'softmax', {} - mode = attrs.get('mode', 'instance') - new_attrs['axis'] = 0 if mode == 'instance' else 1 - return get_nnvm_op(op_name)(inputs[0], **new_attrs) - -def _softmax_output(inputs, attrs): - op_name, new_attrs = 'softmax', {} - if parse_bool_str(attrs, 'multi_output'): - new_attrs['axis'] = 1 - return get_nnvm_op(op_name)(inputs[0], **new_attrs) - -def _upsampling(inputs, attrs): - scale = attrs.get('scale') - new_attrs = {'scale':int(scale)} - return get_nnvm_op('upsampling')(inputs[0], **new_attrs) - -def _clip(inputs, attrs): - op_name, new_attrs = "clip", {} - new_attrs['a_min'] = required_attr(attrs, 'a_min', 'clip') - new_attrs['a_max'] = required_attr(attrs, 'a_max', 'clip') - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _contrib_multibox_detection(inputs, attrs): - clip = parse_bool_str(attrs, 'clip', default='True') - threshold = attrs.get('threshold') or 0.01 - nms_threshold = attrs.get('nms_threshold') or 0.5 - force_suppress = parse_bool_str(attrs, 'force_suppress', default='False') - variances = tuple([float(x.strip()) for x in attrs.get('variances').strip('()').split(',')]) \ - if attrs.get('variances') is not None else (0.1, 0.1, 0.2, 0.2) - nms_topk = attrs.get('nms_topk') or -1 - new_attrs0 = {'clip': clip, 'threshold': float(threshold), 'variances': variances} - new_attrs1 = {'return_indices': False, 'iou_threshold': float(nms_threshold), - 'force_suppress': force_suppress, 'top_k': int(nms_topk)} - data, valid_count = get_nnvm_op('multibox_transform_loc')(inputs[0], inputs[1], - inputs[2], **new_attrs0) - return get_nnvm_op('non_max_suppression')(data, valid_count, **new_attrs1) - -def _elemwise_sum(inputs, _): - new_attrs = {'num_args':len(inputs)} - return get_nnvm_op('elemwise_sum')(*inputs, **new_attrs) - -def _crop_like(inputs, attrs): - new_attrs = {} - offsets = \ - tuple([float(x.strip()) for x in attrs.get('offsets').strip('()').split(',')]) \ - if attrs.get('offsets') is not None else (0, 0) - if offsets != (0, 0): - raise tvm.error.OpAttributeInvalid( - 'crop_like offsets must equal (0,0).') - center_crop = parse_bool_str(attrs, 'center_crop', default="False") - if center_crop: - raise tvm.error.OpAttributeUnimplemented( - 'Center crop is not supported in operator crop_like.') - if len(inputs) < 2: - raise tvm.error.OpAttributeUnimplemented("Only support crop_like pattern.") - new_attrs["axis"] = [2, 3] - return get_nnvm_op('slice_like')(inputs[0], inputs[1], **new_attrs) - - -def _expand_dims(inputs, attrs): - op_name, new_attrs = 'expand_dims', {} - new_attrs['axis'] = required_attr(attrs, 'axis', 'expand_dims') - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _lrn(inputs, attrs): - op_name, new_attrs = 'lrn', {} - new_attrs['alpha'] = attrs.get('alpha', 0.0001) - new_attrs['beta'] = attrs.get('beta', 0.75) - new_attrs['bias'] = attrs.get('knorm', 2) - # NCHW format and normalization along channel axis - new_attrs['axis'] = 1 - new_attrs['size'] = required_attr(attrs, 'nsize', 'lrn') - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _minimum(inputs, attrs): - return get_nnvm_op('broadcast_min')(*inputs, **attrs) - -def _maximum(inputs, attrs): - return get_nnvm_op('broadcast_max')(*inputs, **attrs) - -def _ones(_, attrs): - op_name = 'ones' - return get_nnvm_op(op_name)(**attrs) - -def _zeros(_, attrs): - op_name = 'zeros' - return get_nnvm_op(op_name)(**attrs) - -def _argmax(inputs, attrs): - op_name, new_attrs = 'argmax', {} - new_attrs['dtype'] = 'float32' - new_attrs['axis'] = attrs.get('axis', 0) - new_attrs['keepdims'] = parse_bool_str(attrs, 'keepdims', default="False") - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -def _argmin(inputs, attrs): - op_name, new_attrs = 'argmin', {} - new_attrs['dtype'] = 'float32' - new_attrs['axis'] = attrs.get('axis', 0) - new_attrs['keepdims'] = parse_bool_str(attrs, 'keepdims', default="False") - return get_nnvm_op(op_name)(*inputs, **new_attrs) - -_identity_list = ['__add_scalar__', '__add_symbol__', '__div_scalar__', - '__div_symbol__', '__mul_scalar__', '__mul_symbol__', - '__pow_scalar__', '__rdiv_scalar__', '__rpow_scalar__', - '__rsub_scalar__', '__sub_scalar__', '__sub_symbol__', - 'broadcast_add', 'broadcast_div', 'broadcast_mul', - 'broadcast_sub', 'broadcast_to', 'cast', 'elemwise_add', - 'elemwise_div', 'elemwise_mul', 'elemwise_sub', 'exp', - 'flatten', 'log', 'log_softmax', 'max', 'min', 'negative', - 'ones_like', 'relu', 'sigmoid', 'slice_like', 'softmax', - 'sum', 'tanh', 'transpose', 'zeros_like', 'gather_nd', - 'reshape_like', 'where'] - -_convert_map = { - '_copy' : _rename('copy'), - '_div_scalar' : _rename('__div_scalar__'), - '_minus_scalar' : _rename('__sub_scalar__'), - '_mul_scalar' : _rename('__mul_scalar__'), - '_plus_scalar' : _rename('__add_scalar__'), - '_rdiv_scalar' : _rename('__rdiv_scalar__'), - '_rminus_scalar': _rename('__rsub_scalar__'), - '_contrib_MultiBoxPrior' : _rename('multibox_prior'), - '_contrib_MultiBoxDetection' : _contrib_multibox_detection, - '_minimum' : _minimum, - '_maximum' : _maximum, - '_ones' : _ones, - '_zeros' : _zeros, - 'argmax' : _argmax, - 'argmin' : _argmin, - 'Activation' : _activations, - 'BatchNorm' : _batch_norm, - 'BatchNorm_v1' : _batch_norm, - 'Cast' : _rename('cast'), - 'Concat' : _concat, - 'Convolution' : _conv2d, - 'Convolution_v1': _conv2d, - 'Crop' : _crop_like, - 'Deconvolution' : _conv2d_transpose, - 'Dropout' : _dropout, - 'Flatten' : _rename('flatten'), - 'FullyConnected': _dense, - 'LeakyReLU' : _leaky_relu, - 'Pooling' : _pooling, - 'Pooling_v1' : _pooling, - 'Reshape' : _reshape, - 'slice' : _slice, - 'SliceChannel' : _split, - 'split' : _split, - 'Softmax' : _rename('softmax'), - 'SoftmaxActivation' : _softmax_activation, - 'SoftmaxOutput' : _softmax_output, - 'add_n' : _elemwise_sum, - 'concat' : _concat, - 'max_axis' : _rename('max'), - 'min_axis' : _rename('min'), - 'reshape' : _reshape, - 'sum_axis' : _rename('sum'), - 'UpSampling' : _upsampling, - 'clip' : _clip, - 'expand_dims' : _expand_dims, - 'LRN' : _lrn -} - -def _convert_symbol(op_name, inputs, attrs, - identity_list=None, - convert_map=None): - """Convert from mxnet op to nnvm op. - The converter must specify some conversions explicitly to - support gluon format ops such as conv2d... - - Parameters - ---------- - op_name : str - Operator name, such as Convolution, FullyConnected - inputs : list of nnvm.Symbol - List of input symbols. - attrs : dict - Dict of operator attributes - identity_list : list - List of operators that don't require conversion - convert_map : dict - Dict of name : callable, where name is the op's name that - require conversion to nnvm, callable are functions which - take attrs and return (new_op_name, new_attrs) - - Returns - ------- - sym : nnvm.Symbol - Converted nnvm Symbol - """ - identity_list = identity_list if identity_list else _identity_list - convert_map = convert_map if convert_map else _convert_map - if op_name in identity_list: - op = get_nnvm_op(op_name) - sym = op(*inputs, **attrs) - elif op_name in convert_map: - sym = convert_map[op_name](inputs, attrs) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend MXNet.'.format(op_name)) - return sym - -def _as_list(arr): - """Force being a list, ignore if already is.""" - if isinstance(arr, list): - return arr - return [arr] - -def _topo_sort(symbol): - """Sort all symbols in the mxnet graph in topological order. - - Parameters - ---------- - symbol : mxnet.sym.Symbol - - Returns: - ------- - list - List of mxnet symbol - """ - queue = [] - symbol_map = {} - deps = {} - dep_cnts = {} - for s in symbol: - symbol_map[s.attr('name')] = s - queue.append(s) - while queue: - sym = queue.pop(0) - name = sym.attr('name') - childs = sym.get_children() - if childs is None: - dep_cnts[name] = 0 - else: - dep_cnts[name] = len({c.attr('name') for c in childs}) - for child in childs: - child_name = child.attr('name') - if child_name not in deps: - deps[child_name] = set() - deps[child_name].add(name) - if child_name not in symbol_map: - symbol_map[child_name] = child - queue.append(child) - order = [] - while dep_cnts: - remove = [] - for name in dep_cnts: - if dep_cnts[name] == 0: - order.append(symbol_map[name]) - remove.append(name) - if name in deps: - for other in deps[name]: - dep_cnts[other] -= 1 - for name in remove: - del dep_cnts[name] - return order - -def _from_mxnet_impl(symbol, graph): - """Convert mxnet symbol to nnvm implementation. - Reconstruct a nnvm symbol by traversing the mxnet symbol. - - Parameters - ---------- - symbol : mxnet.sym.Symbol - Incompatible symbol from mxnet, sharing similar graph structure. - The op_name and attrs inside are not always compatible. - graph : dict - Reusable nodes are stored in graph. - - Returns: - ------- - nnvm.sym.Symbol - Converted symbol - """ - def get_node(sym): - name = sym.attr('name') - if name not in graph: - return None - output_index = json.loads(sym.tojson())['heads'][0][1] - return graph[name][output_index] - - assert symbol is not None - # Traverse all symbols in topological order - for sym in _topo_sort(symbol): - name = sym.attr('name') - attr = sym.list_attr() - op_name = sym.attr('op_name') - childs = sym.get_children() - if childs is not None: - childs = [get_node(child) for child in childs] - childs = [x for y in childs for x in _as_list(y)] - node = _convert_symbol(op_name, childs, attr) - elif op_name != 'null': - node = _convert_symbol(op_name, [], attr) - else: - node = _sym.Variable(name=name, **attr) - graph[name] = node - nodes = [] - for sym in symbol: - node = get_node(sym) - assert node is not None - nodes.append(node) - if len(nodes) > 1: - return _sym.Group(nodes) - return nodes[0] - -def from_mxnet(symbol, arg_params=None, aux_params=None): - """Convert from MXNet's model into compatible NNVM format. - - Parameters - ---------- - symbol : mxnet.Symbol or mxnet.gluon.HybridBlock - MXNet symbol - - arg_params : dict of str to mx.NDArray - The argument parameters in mxnet - - aux_params : dict of str to mx.NDArray - The auxiliary parameters in mxnet - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.NDArray - The parameter dict to be used by nnvm - """ - try: - import mxnet as mx - except ImportError as e: - raise ImportError('{}. MXNet is required to parse symbols.'.format(e)) - - if isinstance(symbol, mx.sym.Symbol): - sym = _from_mxnet_impl(symbol, {}) - params = {} - arg_params = arg_params if arg_params else {} - aux_params = aux_params if aux_params else {} - for k, v in arg_params.items(): - params[k] = tvm.nd.array(v.asnumpy()) - for k, v in aux_params.items(): - params[k] = tvm.nd.array(v.asnumpy()) - elif isinstance(symbol, mx.gluon.HybridBlock): - data = mx.sym.Variable('data') - sym = symbol(data) - sym = _from_mxnet_impl(sym, {}) - params = {} - for k, v in symbol.collect_params().items(): - params[k] = tvm.nd.array(v.data().asnumpy()) - elif isinstance(symbol, mx.gluon.Block): - raise NotImplementedError("Only Hybrid Blocks are supported now.") - else: - msg = "mxnet.Symbol or gluon.HybridBlock expected, got {}".format(type(symbol)) - raise ValueError(msg) - if isinstance(sym, list): - sym = _sym.Group(sym) - return sym, params diff --git a/nnvm/python/nnvm/frontend/onnx.py b/nnvm/python/nnvm/frontend/onnx.py deleted file mode 100644 index 8a92821476a5..000000000000 --- a/nnvm/python/nnvm/frontend/onnx.py +++ /dev/null @@ -1,1038 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines -"""ONNX: Open Neural Network Exchange frontend.""" -from __future__ import absolute_import as _abs -import numpy as np -import tvm -from .. import symbol as _sym -from .common import get_nnvm_op, Renamer, SymbolTable, AttrConverter as AttrCvt -from .onnx_caffe2_utils import dimension_picker, dimension_constraint, \ - infer_channels, revert_caffe2_pad - -__all__ = ['from_onnx'] - - -def onnx_storage_order2layout(storage_order): - if storage_order not in (0, 1): - raise tvm.error.OpAttributeInvalid('Mode of storage_order must be either 0 or 1') - - return 'NCHW' if storage_order == 0 else 'NHWC' - - -class OnnxOpConverter(object): - """ A helper class for holding onnx op converters. - """ - - @classmethod - def get_converter(cls, opset): - """ Get converter matches given opset. - - :param opset: opset from model. - :return: converter, which should be `_impl_vx`. Number x is the biggest - number smaller than or equal to opset belongs to all support versions. - """ - versions = [ - int(d.replace('_impl_v', '')) for d in dir(cls) if '_impl_v' in d - ] - versions = sorted(versions + [opset]) - version = versions[ - max([i for i, v in enumerate(versions) if v == opset]) - 1] - if hasattr(cls, '_impl_v{}'.format(version)): - return getattr(cls, '_impl_v{}'.format(version)) - raise NotImplementedError( - 'opset version {} of {} not implemented'.format( - version, cls.__name__)) - - -class Elemwise(OnnxOpConverter): - """ A helper class for elemwise op converters. - """ - - name = '' - - @classmethod - def _math_name_picker(cls, suffix): - - def _impl(attr): - if attr.get('broadcast', 0): - return 'broadcast_' + suffix - return 'elemwise_' + suffix - - return _impl - - @classmethod - def _impl_v1(cls, inputs, attr, params): - assert len(inputs) == 2, "Math op take 2 inputs, {} given".format( - len(inputs)) - op_name = cls._math_name_picker(cls.name)(attr) - axis = int(attr.get('axis', 0)) - conv_ops = ["conv2d", "conv2d_transpose"] - if op_name == 'broadcast_add' and inputs[0].attr('op_name') in conv_ops: - # TODO(zhreshold): remove hard coded infershape - inputs[1] = _sym.expand_dims(inputs[1], axis=axis, num_newaxis=2) - return get_nnvm_op(op_name)(*inputs) - - -class Pool(OnnxOpConverter): - """ A helper class for pool op converters. - """ - - name = '' - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return AttrCvt( - op_name=dimension_picker(cls.name), - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad) - }, - # very weird attributes here in onnx, force check - ignores=['dilations'], - # TODO(zhreshold): make sure ceil_mode in onnx, and layout? - extras={'ceil_mode': False}, - custom_check=dimension_constraint())(inputs, attr, params) - - -class Absolute(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return _sym.relu(inputs[0]) + _sym.relu(_sym.negative(inputs[0])) - - -class Add(Elemwise): - name = 'add' - - -class AveragePool(Pool): - name = 'avg_pool' - - -class BatchNorm(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - # TODO(zhreshold): 'spatial' is not properly handled here. - return AttrCvt( - op_name='batch_norm', - disables=['momentum'], - ignores=['spatial', 'is_test', 'consumed_inputs'])(inputs, attr, - params) - - -class Conv(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - # get number of channels - channels = infer_channels(inputs[1], params) - attr['channels'] = channels - return AttrCvt( - op_name=dimension_picker('conv'), - transforms={ - 'kernel_shape': 'kernel_size', - 'dilations': ('dilation', (0, 0)), - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'group': ('groups', 1) - }, - extras={'use_bias': len(inputs) == 3}, - custom_check=dimension_constraint())(inputs, attr, params) - - -class ConvTranspose(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - # get number of channels - channels = infer_channels(inputs[1], params, True) - attr['channels'] = channels - groups = attr.pop('group') - attr['groups'] = groups - return AttrCvt( - op_name=dimension_picker('conv', '_transpose'), - transforms={ - 'kernel_shape': 'kernel_size', - 'dilations': ('dilation', (0, 0)), - 'pads': ('padding', (0, 0), revert_caffe2_pad) - }, - disables=['output_shape'], - extras={'use_bias': len(inputs) == 3}, - custom_check=dimension_constraint())(inputs, attr, params) - - -class Div(Elemwise): - name = 'div' - - -class Elu(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - alpha = float(attr.get('alpha', 1.0)) - return -alpha * _sym.relu(1 - _sym.exp(inputs[0])) + _sym.relu( - inputs[0]) - - -class Gemm(OnnxOpConverter): - """ Operator converter for Gemm. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - assert len(inputs) == 3, "Gemm op take 3 inputs, {} given".format( - len(inputs)) - # Y = alpha * A * B + beta * C - alpha = float(attr.get('alpha', 1.0)) - beta = float(attr.get('beta', 1.0)) - transA = int(attr.get('transA', 0)) - transB = int(attr.get('transB', 0)) - # get number of channels - channels = infer_channels(inputs[1], params, not transB) - if transA: - inputs[0] = _sym.transpose(inputs[0], axes=(1, 0)) - if not transB: - inputs[1] = _sym.transpose(inputs[1], axes=(1, 0)) - inputs[0] = _sym.flatten(inputs[0]) - return _sym.dense( - alpha * inputs[0], inputs[1], beta * inputs[2], units=channels) - - -class MaxPool(Pool): - """ Operator converter for MaxPool - """ - name = 'max_pool' - - @classmethod - def _impl_v8(cls, inputs, attr, params): - return AttrCvt( - op_name=dimension_picker(cls.name), - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'storage_order': ('layout', 'NCHW', onnx_storage_order2layout), - }, - # very weird attributes here in onnx, force check - ignores=['dilations', 'auto_pad'], - # TODO(higumachan): make sure ceil_mode in onnx, and layout? - extras={'ceil_mode': False}, - custom_check=dimension_constraint())(inputs, attr, params) - - @classmethod - def _impl_v10(cls, inputs, attr, params): - return AttrCvt( - op_name=dimension_picker(cls.name), - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'storage_order': ('layout', 'NCHW', onnx_storage_order2layout), - 'ceil_mode': 'ceil_mode' - }, - # very weird attributes here in onnx, force check - ignores=['dilations', 'auto_pad'], - custom_check=dimension_constraint())(inputs, attr, params) - -class Mul(Elemwise): - name = 'mul' - - -class Pad(OnnxOpConverter): - """ Operator converter for Pad. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - pad_width = [] - pads = attr.pop('paddings') - dims = int(len(pads) / 2) - for i in range(dims): - pad_width.append((pads[i], pads[i+dims])) - attr['pad_width'] = pad_width - - return AttrCvt( - op_name='pad', - transforms={ - 'value': 'pad_value', - }, - ignores=['mode'], - custom_check=(lambda attrs: attrs.get('mode', 'constant').decode("utf-8") == 'constant', - 'split mode != constant'))(inputs, attr, params) - - @classmethod - def _impl_v2(cls, inputs, attr, params): - pad_width = [] - pads = attr.pop('pads') - dims = int(len(pads) / 2) - for i in range(dims): - pad_width.append((pads[i], pads[i+dims])) - attr['pad_width'] = pad_width - - return AttrCvt( - op_name='pad', - transforms={ - 'value': 'pad_value', - }, - ignores=['mode'], - custom_check=(lambda attrs: attrs.get('mode', 'constant').decode("utf-8") == 'constant', - 'split mode != constant'))(inputs, attr, params) - - -class ParametricSoftPlus(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - alpha = float(attr.get('alpha', 1.0)) - beta = float(attr.get('beta', 1.0)) - return _sym.log(_sym.exp(beta * inputs[0]) + 1) * alpha - - -class Prelu(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - assert len(inputs) == 2, "Prelu need 2 inputs, {} given".format( - len(inputs)) - return _sym.prelu(inputs[0], inputs[1]) - - -class Reciprocal(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return 1.0 / inputs[0] - - -class Reshape(OnnxOpConverter): - """ Operator converter for Reshape. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return _sym.reshape(inputs[0], shape=attr['shape']) - - @classmethod - def _impl_v5(cls, inputs, attr, params): - if inputs[1].list_output_names()[0] in params: - shape = tuple(params[inputs[1].list_output_names()[0]].asnumpy()) - out = _sym.reshape(inputs[0], shape=shape) - else: - out = _sym.reshape_like(inputs[0], inputs[1]) - - return out - -class Scale(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - scale = float(attr.get('scale', 1.0)) - return inputs[0] * scale - - -class Selu(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - alpha = float(attr.get('alpha', 1.6732)) - gamma = float(attr.get('gamma', 1.0507)) - return gamma * ( - -alpha * _sym.relu(1 - _sym.exp(inputs[0])) + _sym.relu(inputs[0])) - - -class ScaledTanh(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - alpha = float(attr.get('alpha', 1.0)) - beta = float(attr.get('beta', 1.0)) - return _sym.tanh(beta * inputs[0]) * alpha - - -class SoftPlus(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return _sym.log(_sym.exp(inputs[0]) + 1) - - -class Softsign(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return inputs[0] / (1 + Absolute.get_converter(1)(inputs, attr, params)) - - -class Sub(Elemwise): - name = 'sub' - - -class Sum(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - # Onnx Sum Operator - for in_index in range(len(inputs) - 1): - inputs[in_index + 1] = _sym.broadcast_add(inputs[in_index], - inputs[in_index + 1]) - - return inputs[len(inputs) - 1] - - -class ThresholdedRelu(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - alpha = float(attr.get('alpha', 1.0)) - alpha_tensor = _sym.full_like(inputs[0], fill_value=float(alpha)) - return _sym.elemwise_mul(inputs[0], _sym.greater(inputs[0], alpha_tensor)) - -class ImageScaler(OnnxOpConverter): - - @classmethod - def _impl_v1(cls, inputs, attr, params): - channelScale = attr['scale'] - bias_attr = attr['bias'] - bias = SymbolTable().new_const(np.array(bias_attr).reshape([3, 1, 1])) - scaledChannel = _sym.__mul_scalar__(inputs[0], scalar=channelScale) - ret = _sym.broadcast_add(scaledChannel, bias) - return ret - - -def _broadcast_constraint(): - - def _broadcast_check(attrs): - if attrs.get('axis', None): - return False - return True - - return _broadcast_check, "Specifying broadcast axis not allowed." - - -def _fully_connected(opset): - - def _impl(inputs, attr, params): - # get number of channels - channels = infer_channels(inputs[1], params) - attr['units'] = channels - return AttrCvt('dense', ignores=['axis', 'axis_w'])(inputs, attr) - - return _impl - - -class Upsample(OnnxOpConverter): - """ Operator converter for Upsample (nearest mode). - """ - - @classmethod - def _impl_v9(cls, inputs, attr, params): - scales = attr.get('scales') - if not scales: - #Here we are going to higher OPSET version. - assert len(inputs) == 2, "Upsample op take 2 inputs, {} given".format(len(inputs)) - input_name = inputs[1].list_input_names()[0] - scales = params[input_name].asnumpy() - inputs = inputs[:1] - assert len(scales) == 4 and scales[0] == 1.0 and scales[1] == 1.0 and scales[2] == scales[3] - mode = attr.get('mode') - if mode == b'nearest': - method = "NEAREST_NEIGHBOR" - elif mode == b'linear': - method = "BILINEAR" - else: - raise tvm.error.OpAttributeInvalid( - 'Value {} in attribute "mode" of operator Upsample is not valid.'.format(mode)) - return _sym.upsampling(inputs[0], scale=int(scales[-1]), method=method, layout='NCHW') - - -class Shape(OnnxOpConverter): - """ Operator converter for Shape. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - # Result of this operator is prominently used by reshape operator. - # Just pass the input as it is so that reshape_like can be used there. - print("Shape: Differently implemented in NNVM as a bypass (dummy operator)") - return inputs[0] - -class Cast(OnnxOpConverter): - """ Operator converter for Cast. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr) - - @classmethod - def _impl_v5(cls, inputs, attr, params): - try: - from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE - attr['to'] = TENSOR_TYPE_TO_NP_TYPE[attr['to']] - except ImportError as e: - raise ImportError( - "Unable to import onnx.mapping which is required {}".format(e)) - return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr) - - -class Unsqueeze(OnnxOpConverter): - """ Operator converter for Unsqueeze. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - for axes in attr['axes']: - inputs[0] = _sym.expand_dims(inputs[0], axis=axes, num_newaxis=1) - return inputs[0] - - -class Split(OnnxOpConverter): - """ Operator converter for Split. - """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - attr['indices_or_sections'] = [] - index = 0 - for i in attr['split'][:-1]: - index += i - attr['indices_or_sections'].append(index) - return AttrCvt( - op_name='split', - ignores=['split'])(inputs, attr, params) - - -class Slice(OnnxOpConverter): - """ Operator converter for Slice. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - if isinstance(attr['starts'], int): - attr['starts'] = (attr['starts'],) - attr['ends'] = (attr['ends'],) - - try: - # Update the starts and ends according to axes if required. - if isinstance(attr['axes'], int): - attr['axes'] = (attr['axes'],) - - if (max(attr['axes']) + 1) != len(attr['axes']): - new_axes = [] - new_starts = [] - new_ends = [] - pop_index = 0 - for i in range(max(attr['axes']) + 1): - if i in attr['axes']: - new_axes.append(i) - new_starts.append(attr['starts'][pop_index]) - new_ends.append(attr['ends'][pop_index]) - pop_index += 1 - else: - new_axes.append(i) - new_starts.append(0) - new_ends.append(np.iinfo(np.int32).max) - attr['axes'] = new_axes - attr['starts'] = new_starts - attr['ends'] = new_ends - except KeyError: - pass - - return AttrCvt(op_name='strided_slice', - transforms={'starts': 'begin', - 'ends': 'end'}, - ignores=['axes'])(inputs, attr) - -class Gather(OnnxOpConverter): - """ Operator converter for Gather. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - axis = attr.get('axis', 0) - return AttrCvt(op_name='take', - extras={'axis':axis})(inputs, attr) - -class LRN(OnnxOpConverter): - """ Operator converter for Local Response Normalization. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - """LRN support only NCHW format - https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN - """ - axis = 1 - alpha = attr.get('alpha', 0.0001) - beta = attr.get('beta', 0.75) - bias = attr.get('bias', 1.0) - nsize = attr.get('size') - return _sym.lrn(inputs[0], size=nsize, axis=axis, - alpha=alpha, beta=beta, bias=bias) - -class Maximum(OnnxOpConverter): - """ Operator converter for Maximum. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - if not isinstance(inputs, list) or len(inputs) < 2: - raise ValueError("Expect minimum 2 inputs") - _max = inputs[0] - for i in range(1, len(inputs)): - _max = AttrCvt(op_name='broadcast_max')([_max, inputs[i]], {}) - return _max - -class Minimum(OnnxOpConverter): - """ Operator converter for Minimum. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - if not isinstance(inputs, list) or len(inputs) < 2: - raise ValueError("Expect minimum 2 inputs") - _min = inputs[0] - for i in range(1, len(inputs)): - _min = AttrCvt(op_name='broadcast_min')([_min, inputs[i]], {}) - return _min - -class Mean(OnnxOpConverter): - """ Operator converter for Mean. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - if not isinstance(inputs, list) or len(inputs) < 2: - raise ValueError("Expect minimum 2 inputs") - count = len(inputs) - _sum = inputs[0] - for i in range(1, count): - _sum = AttrCvt(op_name='broadcast_add')([_sum, inputs[i]], {}) - return _sum / count - -class HardSigmoid(OnnxOpConverter): - """ Operator converter for HardSigmoid. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - alpha = attr.get('alpha', 0.2) - beta = attr.get('beta', 0.5) - transformX = (inputs[0] * alpha) + beta - attr = {'a_min':0, 'a_max':1} - return AttrCvt(op_name='clip')([transformX], attr) - -class ArgMax(OnnxOpConverter): - """ Operator converter for ArgMax. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - axis = attr.get('axis', 0) - keepdims = attr.get('keepdims', True) - attr = {'axis':axis, 'keepdims':keepdims} - return AttrCvt(op_name='argmax')(inputs, attr) - -class ArgMin(OnnxOpConverter): - """ Operator converter for ArgMin. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - axis = attr.get('axis', 0) - keepdims = attr.get('keepdims', True) - attr = {'axis':axis, 'keepdims':keepdims} - return AttrCvt(op_name='argmin')(inputs, attr) - -class Softmax(OnnxOpConverter): - """ Operator converter for Softmax. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - # set default value when axis is not set in the model - if 'axis' not in attr: - attr['axis'] = 1 - return AttrCvt( - op_name='softmax', - transforms={ - 'axis': ('axis', 1), - })(inputs, attr, params) - -class ConstantFill(OnnxOpConverter): - """ Operator converter for ConstantFill. - """ - @classmethod - def _impl_v1(cls, inputs, attr, params): - is_full = True - num_inputs = len(inputs) - if 'shape' in attr: - if num_inputs > 0: - raise ImportError( - "Can't set shape and input tensor at a time") - shape = attr.pop('shape') - else: - if num_inputs == 0: - raise ImportError( - "Either shape attribute or input should be set") - if 'input_as_shape' in attr and attr['input_as_shape']: - shape = params[inputs[0].list_output_names()[0]].asnumpy() - else: - is_full = False - - if not is_full: - if 'extra_shape' in attr: - raise ImportError( - "Extra Shape not supported with fill_like") - - out = AttrCvt( - op_name='full_like', - transforms={'value': 'fill_value'}, - ignores=['dtype'])(inputs, attr) - return _sym.cast(out, dtype=attr['dtype'].decode("utf-8")) - if 'extra_shape' in attr: - shape = shape + attr.pop('extra_shape') - - return AttrCvt( - op_name='full', - transforms={'value': 'fill_value'}, - extras={'shape':shape})(inputs, attr) - -# compatible operators that do NOT require any conversion. -_identity_list = [] - - -# _convert_map defines maps of name to converter functor(callable) -# for 1 to 1 mapping, use Renamer if nothing but name is different -# use AttrCvt if attributes need to be converted -# for 1 to N mapping(composed), use custom callable functions -# for N to 1 mapping, currently not supported(?) -def _get_convert_map(opset): - return { - # defs/experimental - 'Identity': Renamer('copy'), - # 'Affine' - 'ThresholdedRelu': ThresholdedRelu.get_converter(opset), - 'ScaledTanh': ScaledTanh.get_converter(opset), - 'ParametricSoftplus': ParametricSoftPlus.get_converter(opset), - 'ConstantFill': ConstantFill.get_converter(opset), - # 'GivenTensorFill' - 'FC': AttrCvt('dense', ignores=['axis', 'axis_w']), - 'Scale': Scale.get_converter(opset), - # 'GRUUnit' - # 'ATen' - 'ImageScaler': ImageScaler.get_converter(opset), - # 'MeanVarianceNormalization' - # 'Crop' - # 'Embedding' - 'Upsample' : Upsample.get_converter(opset), - 'SpatialBN': BatchNorm.get_converter(opset), - - # defs/generator - # 'Constant' # Implemented - # 'RandomUniform' - # 'RandomNormal' - # 'RandomUniformLike' - # 'RandomNormalLike' - - # defs/logical - - # defs/math - 'Add': Add.get_converter(opset), - 'Sub': Sub.get_converter(opset), - 'Mul': Mul.get_converter(opset), - 'Div': Div.get_converter(opset), - 'Neg': Renamer('negative'), - 'Abs': Absolute.get_converter(opset), - 'Reciprocal': Reciprocal.get_converter(opset), - 'Floor': Renamer('floor'), - 'Ceil': Renamer('ceil'), - 'Sqrt': Renamer('sqrt'), - 'Relu': Renamer('relu'), - 'LeakyRelu': Renamer('leaky_relu'), - 'Selu': Selu.get_converter(opset), - 'Elu': Elu.get_converter(opset), - 'Exp': Renamer('exp'), - 'Log': Renamer('log'), - 'Tanh': Renamer('tanh'), - 'Pow': Renamer('broadcast_pow'), - 'PRelu': Prelu.get_converter(opset), - 'Sigmoid': Renamer('sigmoid'), - 'HardSigmoid': HardSigmoid.get_converter(opset), - 'Max': Maximum.get_converter(opset), - 'Min': Minimum.get_converter(opset), - 'Sum': Sum.get_converter(opset), - 'Mean': Mean.get_converter(opset), - 'Clip': AttrCvt('clip', transforms={'min': 'a_min', 'max': 'a_max'}), - # softmax default axis is different in onnx - 'Softmax': Softmax.get_converter(opset), - 'LogSoftmax': AttrCvt('log_softmax', {'axis': ('axis', 1)}), - # 'Hardmax' - 'Softsign': Softsign.get_converter(opset), - 'SoftPlus': SoftPlus.get_converter(opset), - 'Gemm': Gemm.get_converter(opset), - 'MatMul': Renamer('matmul'), - - # defs/nn - 'AveragePool': AveragePool.get_converter(opset), - 'MaxPool': MaxPool.get_converter(opset), - 'Conv': Conv.get_converter(opset), - 'ConvTranspose': ConvTranspose.get_converter(opset), - 'GlobalAveragePool': Renamer('global_avg_pool2d'), - 'GlobalMaxPool': Renamer('global_max_pool2d'), - 'BatchNormalization': BatchNorm.get_converter(opset), - # 'InstanceNormalization' - # 'LpNormalization' - 'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']), - 'Flatten': Renamer('flatten'), - 'LRN': LRN.get_converter(opset), - - # defs/reduction - 'ReduceMax': AttrCvt('max', {'axes': 'axis'}), - 'ReduceMin': AttrCvt('min', {'axes': 'axis'}), - 'ReduceSum': AttrCvt('sum', {'axes': 'axis'}), - 'ReduceMean': AttrCvt('mean', {'axes': 'axis'}), - # 'ReduceProd' - # 'ReduceLogSumExp' - 'ArgMax': ArgMax.get_converter(opset), - 'ArgMin': ArgMin.get_converter(opset), - - # defs/tensor - 'Cast': Cast.get_converter(opset), - 'Reshape': Reshape.get_converter(opset), - 'Concat': Renamer('concatenate'), - 'Split': Split.get_converter(opset), - 'Slice': Slice.get_converter(opset), - 'Transpose': AttrCvt('transpose', {'perm': 'axes'}), - 'Gather': Gather.get_converter(opset), - 'Squeeze': AttrCvt('squeeze', {'axes': 'axis'}), - 'Unsqueeze': Unsqueeze.get_converter(opset), - 'Pad': Pad.get_converter(opset), - 'Shape': Shape.get_converter(opset), - } - - -class GraphProto(object): - """A helper class for handling nnvm graph copying from pb2.GraphProto. - Definition: https://github.com/onnx/onnx/blob/master/onnx/onnx.proto - """ - - def __init__(self): - self._nodes = {} - self._params = {} - self._renames = {} - self._num_input = 0 - self._num_param = 0 - - def from_onnx(self, graph, opset): - """Construct nnvm nodes from onnx graph. - The inputs from onnx graph is vague, only providing "1", "2"... - For convenience, we rename the `real` input names to "input_0", - "input_1"... And renaming parameters to "param_0", "param_1"... - - Parameters - ---------- - graph : onnx protobuf object - The loaded onnx graph - opset : opset version - - Returns - ------- - sym : nnvm.sym.Symbol - The returned nnvm symbol - params : dict - A dict of name: tvm.nd.array pairs, used as pretrained weights - """ - # parse network inputs to nnvm, aka parameters - for init_tensor in graph.initializer: - if not init_tensor.name.strip(): - raise ValueError("Tensor's name is required.") - self._params[init_tensor.name] = self._parse_array(init_tensor) - for i in graph.input: - # from onnx v0.2, GraphProto.input has type ValueInfoProto, - # and the name is 'i.name' - i_name = self._parse_value_proto(i) - if i_name in self._params: - # i is a param instead of input - self._num_param += 1 - self._params[i_name] = self._params.pop(i_name) - self._nodes[i_name] = _sym.Variable( - name=i_name, shape=self._params[i_name].shape) - else: - self._num_input += 1 - self._nodes[i_name] = _sym.Variable(name=i_name) - # get list of unsupported ops - convert_map = _get_convert_map(opset) - unsupported_ops = set() - for node in graph.node: - op_name = node.op_type - if op_name not in convert_map and \ - op_name != 'Constant' and \ - op_name not in _identity_list: - unsupported_ops.add(op_name) - if unsupported_ops: - msg = 'The following operators are not supported for frontend ONNX: ' - msg += ', '.join(unsupported_ops) - raise tvm.error.OpNotImplemented(msg) - # construct nodes, nodes are stored as directed acyclic graph - for node in graph.node: - op_name = node.op_type - attr = self._parse_attr(node.attribute) - inputs = [self._nodes[self._renames.get(i, i)] for i in node.input] - if op_name == "Constant": - t_proto = self._parse_attr(node.attribute)["value"] - self._num_param += 1 - self._params[node.output[0]] = self._parse_array(t_proto) - self._nodes[node.output[0]] = _sym.Variable(name=node.output[0], - shape=list(t_proto.dims)) - else: - op = self._convert_operator(op_name, inputs, attr, opset) - node_output = self._fix_outputs(op_name, node.output) - assert len(node_output) == len(op.list_output_names()), ( - "Number of output mismatch {} vs {} in {}.".format( - len(node_output), len(op.list_output_names()), op_name)) - for k, i in zip(list(node_output), range(len(node_output))): - self._nodes[k] = op[i] - # now return the outputs - out = [self._nodes[self._parse_value_proto(i)] for i in graph.output] - if len(out) > 1: - out = _sym.Group(out) - else: - out = out[0] - return out, self._params - - def _parse_value_proto(self, value_proto): - """Parse ValueProto or raw str.""" - try: - name = value_proto.name - except AttributeError: - name = value_proto - return name - - def _parse_array(self, tensor_proto): - """Grab data in TensorProto and convert to numpy array.""" - try: - from onnx.numpy_helper import to_array - except ImportError as e: - raise ImportError( - "Unable to import onnx which is required {}".format(e)) - np_array = to_array(tensor_proto).reshape(tuple(tensor_proto.dims)) - return tvm.nd.array(np_array) - - def _parse_attr(self, attr_proto): - """Convert a list of AttributeProto to a dict, with names as keys.""" - attrs = {} - for a in attr_proto: - for f in ['f', 'i', 's']: - if a.HasField(f): - attrs[a.name] = getattr(a, f) - for f in ['floats', 'ints', 'strings']: - if list(getattr(a, f)): - assert a.name not in attrs, "Only one type of attr is allowed" - attrs[a.name] = tuple(getattr(a, f)) - for f in ['t']: - if a.HasField(f): - attrs[a.name] = getattr(a, f) - for f in ['tensors']: - if list(getattr(a, f)): - assert a.name not in attrs, "Only one type of attr is allowed" - attrs[a.name] = tuple(getattr(a, f)) - for f in ['g']: - if a.HasField(f): - raise NotImplementedError( - "Filed {} is not supported in nnvm.".format(f)) - for f in ['graphs']: - if list(getattr(a, f)): - raise NotImplementedError( - "Filed {} is not supported in nnvm.".format(f)) - if a.name not in attrs: - raise ValueError("Cannot parse attribute: \n{}\n.".format(a)) - return attrs - - def _convert_operator(self, - op_name, - inputs, - attrs, - opset, - identity_list=None, - convert_map=None): - """Convert from onnx operator to nnvm operator. - The converter must specify conversions explicitly for incompatible name, and - apply handlers to operator attributes. - - Parameters - ---------- - op_name : str - Operator name, such as Convolution, FullyConnected - inputs : list of nnvm.Symbol - List of input symbols. - attrs : dict - Dict of operator attributes - opset : int - Opset version - identity_list : list - List of operators that don't require conversion - convert_map : dict - Dict of name : callable, where name is the op's name that - require conversion to nnvm, callable are functions which - take attrs and return (new_op_name, new_attrs) - - Returns - ------- - sym : nnvm.Symbol - Converted nnvm Symbol - """ - identity_list = identity_list if identity_list else _identity_list - convert_map = convert_map if convert_map else _get_convert_map(opset) - if op_name in identity_list: - sym = get_nnvm_op(op_name)(*inputs, **attrs) - elif op_name in convert_map: - sym = convert_map[op_name](inputs, attrs, self._params) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend ONNX.') - return sym - - def _fix_outputs(self, op_name, outputs): - """A hack to handle dropout or similar operator that have more than one out - in ONNX. - """ - if op_name == 'Dropout': - if len(outputs) == 1: - return outputs - # TODO(zhreshold): support dropout mask? - outputs = outputs[:-1] - return outputs - - -def from_onnx(model): - """Load onnx graph which is a python protobuf object into nnvm graph. - The companion parameters will be handled automatically. - The inputs from onnx graph is vague, only providing "1", "2"... - For convenience, we rename the `real` input names to "input_0", - "input_1"... And renaming parameters to "param_0", "param_1"... - - Parameters - ---------- - model : protobuf object - ONNX ModelProto after ONNX v1.1.0 - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.ndarray - Dict of converted parameters stored in tvm.ndarray format - """ - g = GraphProto() - graph = model.graph - try: - opset = model.opset_import[0].version if model.opset_import else 1 - except AttributeError: - opset = 1 - sym, params = g.from_onnx(graph, opset) - return sym, params diff --git a/nnvm/python/nnvm/frontend/onnx_caffe2_utils.py b/nnvm/python/nnvm/frontend/onnx_caffe2_utils.py deleted file mode 100644 index 18f9263ecc0b..000000000000 --- a/nnvm/python/nnvm/frontend/onnx_caffe2_utils.py +++ /dev/null @@ -1,61 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Util functions shared by the ONNX and Caffe2 frontends.""" -from __future__ import absolute_import as _abs -from nnvm import graph as _graph -from nnvm.compiler import graph_util - - -def dimension_picker(prefix, surfix=''): - def _impl(attr): - kernel = attr['kernel_shape'] - if len(kernel) == 2: - return prefix + '2d' + surfix - raise NotImplementedError("Only 2d kernel supported.") - - return _impl - - -def dimension_constraint(): - def _dim_check(attrs): - if len(attrs['kernel_shape']) == 2: - return True - return False - - return _dim_check, "Only 2d kernel supported." - - -def infer_channels(inputs, params, transpose=False): - """A hack for getting 'channels' or 'units' since caffe2 don't provide - these attributes. We check the shape of weights provided to get the number. - """ - g = _graph.create(inputs) - shape_dict = {k: v.shape for k, v in params.items()} - _, out_shapes = graph_util.infer_shape(g, **shape_dict) - channels = out_shapes[0][0] if not transpose else out_shapes[0][1] - return channels - - -def revert_caffe2_pad(pads): - """Caffe2 require two times the normal padding.""" - if len(pads) == 4: - pads = pads[:2] - elif len(pads) == 2: - pass - else: - raise ValueError("Invalid caffe2 type padding: {}".format(pads)) - return pads diff --git a/nnvm/python/nnvm/frontend/tensorflow.py b/nnvm/python/nnvm/frontend/tensorflow.py deleted file mode 100644 index a7674f217e90..000000000000 --- a/nnvm/python/nnvm/frontend/tensorflow.py +++ /dev/null @@ -1,1613 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines -"""TF: Tensorflow frontend.""" -from __future__ import absolute_import as _abs -from __future__ import print_function - -import warnings -# Numpy support -import numpy as np - -import tvm -from .. import symbol as _sym -from .. import graph as _graph -from .. compiler import graph_util, build_module -from .common import get_nnvm_op, AttrConverter as AttrConvert - -__all__ = ['from_tensorflow'] - -class AttrCvt(object): - """A Wrapper to handle some common jobs: - """ - def __init__(self, op_name, transforms=None, - excludes=None, disables=None, ignores=None, - extras=None, custom_check=None): - self._op_name = op_name - self._transforms = transforms if transforms else {} - self._excludes = excludes if excludes else [] - self._disables = disables if disables else [] - self._ignores = ignores if ignores else [] - self._extras = extras if extras else {} - self._custom_check = custom_check - - def __call__(self, inputs, attrs, *args): - self._ignores.append('_output_shapes') - self._ignores.append('_input_shapes') - self._ignores.append('T') - self._ignores.append('use_cudnn_on_gpu') - self._ignores.append('_node_name') - self._ignores.append('is_training') - self._ignores.append('_target_layout') - self._ignores.append('_input_0d_mismatch') - # Retain the names - try: - attrs['name'] = attrs['_node_name'] - except KeyError: - pass - return AttrConvert(self._op_name, self._transforms, self._excludes, - self._disables, self._ignores, self._extras, - self._custom_check)(inputs, attrs, *args) - -def _get_pad_pair(input1d, kernel1d, stride1d): - if input1d % stride1d == 0: - pad = max(kernel1d - stride1d, 0) - else: - pad = max(kernel1d - (input1d % stride1d), 0) - - pad_before = pad // 2 - pad_after = pad - pad_before - - return [pad_before, pad_after] - -def _math_name_picker(surfix): - def _impl(attr): - return 'broadcast_' + surfix - return _impl - -def _dimension_picker(prefix, surfix=''): - def _impl(attr): - kernel = attr['kernel_shape'] - if len(kernel) == 2: - return prefix + '2d' + surfix - raise tvm.error.OpAttributeUnImplemented( - 'Non-2D kernels are not supported for operator {}.'.format(prefix)) - return _impl - -def _dimension_constraint(): - def _dim_check(attrs): - if len(attrs['kernel_shape']) == 2: - return True - return False - return _dim_check, "Only 2d kernel supported." - -def _infer_channels(inputs, params, transpose=False): - """A hack for getting 'channles' or 'units' since tensorflow don't provide - these attributes. We check the shape of weights provided to get the number. - """ - g = _graph.create(inputs) - shape_dict = {k: v.shape for k, v in params.items()} - _, out_shapes = graph_util.infer_shape(g, **shape_dict) - channels = out_shapes[0][0] if not transpose else out_shapes[0][1] - return channels - -def _rsqrt(): - def _impl(inputs, attr, *args): - return AttrCvt(op_name="__pow_scalar__", extras={'scalar': -0.5})(inputs, attr) - return _impl - -def _argx(func, func_name): - """ A common wrapper for argmin and argmax operations """ - def _impl(inputs, attr, params): - try: - # In Tensorflow, `axis` argument is a Tensor, not attribute. We - # support the case where it inputs from a scalar constant. - axis_input_name = inputs[1].list_output_names()[0] - axis_input_vlaue = params[axis_input_name].asnumpy()[0] - except (IndexError, KeyError): - raise TypeError( \ - "Unsupported argument for `{}` : `axis` should be a constant".format(func_name)) - return func(inputs[0], axis=axis_input_vlaue, keepdims=False) - return _impl - -def _elemwise(name): - def _impl(inputs, attr, *args): - assert len(inputs) == 2, "{} take 2 inputs, {} given".format(name, len(inputs)) - op_name = _math_name_picker(name)(attr) - return get_nnvm_op(op_name)(*inputs) - return _impl - -def _pooling(name): - def _impl(inputs, attr, params): - - attr['data_format'] = attr['data_format'].decode("utf-8") - flip_layout = False - - input_shape = attr['_input_shapes'][inputs[0]] - - if attr['data_format'] == 'NHWC': - attr['kernel_shape'] = (attr['ksize'][1], attr['ksize'][2]) - attr['strides'] = (attr['strides'][1], attr['strides'][2]) - elif attr['data_format'] == 'NCHW': - attr['kernel_shape'] = (attr['ksize'][2], attr['ksize'][3]) - attr['strides'] = (attr['strides'][2], attr['strides'][3]) - else: - msg = 'Value {} in attribute "data_format" of operator Pooling is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format'])) - - if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC": - tmp_shape = attr['_input_shapes'][inputs[0]] - input_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)] - inputs[0] = _sym.transpose(inputs[0], axes=(0, 3, 1, 2)) - attr['data_format'] = "NCHW" - flip_layout = True - - # Fix padding - attr['padding'] = attr['padding'].decode("utf-8") - - if attr['padding'] == 'VALID': - attr['padding'] = [0, 0] - elif attr['padding'] == 'SAME': - stride_h, stride_w = attr['strides'] - kernel_h, kernel_w = attr['kernel_shape'] - if attr['data_format'] == 'NHWC': - in_h = input_shape[1] - in_w = input_shape[2] - else: - in_h = input_shape[2] - in_w = input_shape[3] - - pad_v = _get_pad_pair(in_h, kernel_h, stride_h) - pad_h = _get_pad_pair(in_w, kernel_w, stride_w) - - attr['padding'] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]] - else: - msg = 'Value {} in attribute "padding" of operator Pooling is not valid.' - raise tvm.error.OpAttributeUnImplemented(msg.format(attr['padding'])) - - if name == "avg_pool": - attr['count_include_pad'] = False - - out = AttrCvt( - op_name=_dimension_picker(name), - transforms={ - 'kernel_shape':'pool_size', - 'data_format':'layout'}, - ignores=['ksize'], - extras={'ceil_mode': False}, - custom_check=_dimension_constraint())(inputs, attr) - - if flip_layout: - out = _sym.transpose(out, axes=(0, 2, 3, 1)) - - return out - return _impl - -def _conv(opname): - def _impl(inputs, attr, params): - attr['data_format'] = attr['data_format'].decode("utf-8") - flip_layout = False - - # NCHW Layout require weights transpose - if attr['data_format'] == 'NCHW': - tmp_shape = attr['_input_shapes'][inputs[1]] - if opname == 'conv': - tmp_shape = [tmp_shape[ii] for ii in (3, 2, 0, 1)] - inputs[1] = _sym.transpose(inputs[1], axes=(3, 2, 0, 1)) - else: - tmp_shape = [tmp_shape[ii] for ii in (2, 3, 0, 1)] - inputs[1] = _sym.transpose(inputs[1], axes=(2, 3, 0, 1)) - attr['_input_shapes'][inputs[1]] = tmp_shape - - input_shape = attr['_input_shapes'][inputs[0]] - weights_shape = attr['_input_shapes'][inputs[1]] - - if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC": - input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] - inputs[0] = _sym.transpose(inputs[0], axes=(0, 3, 1, 2)) - if opname == 'conv': - weights_shape = [weights_shape[ii] for ii in (3, 2, 0, 1)] - inputs[1] = _sym.transpose(inputs[1], axes=(3, 2, 0, 1)) - else: - weights_shape = [weights_shape[ii] for ii in (2, 3, 0, 1)] - inputs[1] = _sym.transpose(inputs[1], axes=(2, 3, 0, 1)) - - attr['data_format'] = "NCHW" - attr['strides'] = [attr['strides'][ii] for ii in (0, 3, 1, 2)] - flip_layout = True - - if attr['data_format'] == 'NHWC': - kernel_h, kernel_w, _, depth_mult = weights_shape - attr['kernel_shape'] = (weights_shape[0], weights_shape[1]) - if opname == 'conv': - attr['channels'] = weights_shape[3] - else: - attr['channels'] = input_shape[3] * depth_mult - - if 'dilations' in attr: - attr['dilations'] = (attr['dilations'][1], attr['dilations'][2]) - attr['strides'] = (attr['strides'][1], attr['strides'][2]) - elif attr['data_format'] == 'NCHW': - _, depth_mult, kernel_h, kernel_w = weights_shape - attr['kernel_shape'] = (weights_shape[2], weights_shape[3]) - if opname == 'conv': - attr['channels'] = weights_shape[0] - else: - attr['channels'] = input_shape[1] * depth_mult - if attr['channels'] < 0: - attr['channels'] *= -1 - - if 'dilations' in attr: - attr['dilations'] = (attr['dilations'][2], attr['dilations'][3]) - attr['strides'] = (attr['strides'][2], attr['strides'][3]) - else: - msg = 'Value {} in attribute "data_format" of operator Conv is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format'])) - - - if opname == 'depthwise': - if depth_mult > 1: - raise tvm.error.OpNotImplemented('depth_mult > 1 of operator DepthwiseConv2dNative' - ' is not supported.') - attr['groups'] = attr['channels'] - - # Fix padding - attr['padding'] = attr['padding'].decode("utf-8") - - if attr['padding'] == 'VALID': - attr['padding'] = [0, 0] - elif attr['padding'] == 'SAME': - stride_h, stride_w = attr['strides'] - kernel_h, kernel_w = attr['kernel_shape'] - if attr['data_format'] == 'NHWC': - in_h = input_shape[1] - in_w = input_shape[2] - else: - in_h = input_shape[2] - in_w = input_shape[3] - - dilation_h = attr['dilations'][0] - dilation_w = attr['dilations'][1] - dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 - dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 - pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h) - pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w) - - if attr['data_format'] == 'NHWC': - inputs[0] = _sym.pad(data=inputs[0], - pad_width=((0, 0), - (pad_v[0], pad_v[1]), - (pad_h[0], pad_h[1]), - (0, 0))) - else: - inputs[0] = _sym.pad(data=inputs[0], - pad_width=((0, 0), - (0, 0), - (pad_v[0], pad_v[1]), - (pad_h[0], pad_h[1]))) - - attr['padding'] = [0, 0] - - else: - msg = 'Value {} in attribute "padding" of operator Conv is not valid.' - raise tvm.error.OpAttributeInvalid(msg.format(attr['padding'])) - - if 'kernel_layout' not in attr: - if opname == 'conv': - attr['kernel_layout'] = 'HWIO' if attr['data_format'] == 'NHWC' else 'OIHW' - else: - attr['kernel_layout'] = 'HWOI' if attr['data_format'] == 'NHWC' else 'OIHW' - - out = AttrCvt( - op_name=_dimension_picker('conv'), - transforms={ - 'kernel_shape': 'kernel_size', - 'data_format': 'layout', - 'dilations': ('dilation', (0, 0)), - 'group': ('groups', 1)}, - extras={'use_bias': len(inputs) == 3}, - custom_check=_dimension_constraint())(inputs, attr) - - if flip_layout: - out = _sym.transpose(out, axes=(0, 2, 3, 1)) - - return out - return _impl - -def _decode_image(): - def _impl(inputs, attr, params): - # Image decode wrapper: Expecting user to feed decoded input to next layer drop this layer. - warnings.warn("DecodeJpeg: It's a pass through, " - "please handle preprocessing before input") - return inputs[0] - return _impl - -def _cast(): - def _impl(inputs, attr, params): - # Convert from tensorflow Dtype to str - attr['DstT'] = attr['DstT'].name - return AttrCvt(op_name='cast', transforms={'DstT': 'dtype'}, - ignores=['SrcT', 'Truncate'])(inputs, attr) - return _impl - -def _expand_dims(): - def _impl(inputs, attr, params): - dim_input = inputs.pop(1) - axis = params[dim_input.list_output_names()[0]] - params.pop(dim_input.list_output_names()[0]) - return _expand_dims_0d_aware(inputs[0], attr, axis=axis.asnumpy()[0]) - return _impl - -def _resize_bilinear(): - def _impl(inputs, attr, params): - attr['size'] = attr['_output_shapes'][0][1:3] - inputs.pop(1) - # NHWC - attr['layout'] = 'NHWC' - - return AttrCvt(op_name="resize", - ignores=['Tdim'], - extras={'method': "BILINEAR"})(inputs, attr) - return _impl - -def _check_numerics(): - def _impl(inputs, attr, params): - # Making a copy node assuming no need to verify - return AttrCvt(op_name="copy", ignores=['message'])(inputs, attr) - return _impl - - -def _matmul(): - def _impl(inputs, attr, params): - channels = _infer_channels(inputs[1], params, not attr['transpose_b']) - if attr['transpose_a']: - inputs[0] = _sym.transpose(inputs[0], axes=(1, 0)) - if not attr['transpose_b']: - inputs[1] = _sym.transpose(inputs[1], axes=(1, 0)) - return AttrCvt(op_name="dense", - extras={'use_bias': False, 'units': channels}, - ignores=['transpose_a', 'transpose_b', 'T'])(inputs, attr) - - return _impl - -def _undef(): - def _impl(inputs, attr, params): - return _sym.__undef__() - return _impl - -def _identity(): - def _impl(inputs, attr, params): - return inputs[0] - return _impl - -def _concatV2(): - def _impl(inputs, attr, params): - pop_node = inputs.pop(len(inputs)-1) - axis = params[pop_node.list_output_names()[0]] - params.pop(pop_node.list_output_names()[0]) - return AttrCvt( - op_name="concatenate", ignores=['T', 'N', 'Tidx'], - extras={'axis': axis.asnumpy()[0]})(inputs, attr) - return _impl - -def _concat(): - def _impl(inputs, attr, params): - pop_node = inputs.pop(0) - axis = params[pop_node.list_output_names()[0]] - params.pop(pop_node.list_output_names()[0]) - return AttrCvt( - op_name="concatenate", ignores=['N'], - extras={'axis': axis.asnumpy()[0]})(inputs, attr) - return _impl - -def _pack(): - def _impl(inputs, attr, params): - axis = int(attr["axis"]) - inputs_reshaped = [_expand_dims_0d_aware(i, attr, axis=axis, num_newaxis=1) for i in inputs] - return _sym.concatenate(*inputs_reshaped, axis=axis, name=attr["_node_name"]) - - return _impl - -def _slice(): - def _impl(inputs, attr, params): - begin = params.pop(inputs[1].list_output_names()[0]).asnumpy().tolist() - size = params.pop(inputs[2].list_output_names()[0]).asnumpy().tolist() - data_shape = attr['_input_shapes'][inputs[0]] - data_dim = len(data_shape) - end = size - for i in range(data_dim): - if size[i] == -1: - end[i] = data_shape[i] - begin[i] - else: - end[i] += begin[i] - return _sym.strided_slice(inputs[0], begin=begin, end=size) - return _impl - -def _reshape(): - def _impl(inputs, attr, params): - try: - pop_node = inputs[1] - shape_arg = params.pop(pop_node.list_output_names()[0]) - inputs.pop(1) - - return AttrCvt( - op_name="reshape", - extras={'shape':tuple(shape_arg.asnumpy())}, - ignores=['Tshape'])(inputs, attr) - except KeyError: - # Shape operator is already pruned, hence - # try to infer shape by precompute prune if possible. - if all(in_node in params for in_node in inputs[1].list_input_names()): - graph = _graph.create(_sym.Group(inputs[1])) - params_pre = {k: params[k] for k in inputs[1].list_input_names()} - params_new = build_module._run_graph(graph, params_pre) - inputs.pop(1) - return AttrCvt( - op_name="reshape", - extras={'shape':tuple(params_new[0].asnumpy().flatten())}, - ignores=['Tshape'])(inputs, attr) - raise tvm.error.OpAttributeUnimplemented( - 'Attribute "dynamic shape" of operator Reshape is not supported.') - return _impl - -def _bias_add(): - def _impl(inputs, attr, params): - if attr['data_format'].decode("utf-8") == 'NCHW': - bias = _sym.reshape(inputs[1], newshape=(1, -1, 1, 1)) - else: - bias = inputs[1] - return _sym.broadcast_add(inputs[0], bias) - return _impl - -def _squeeze(): - def _impl(inputs, attr, params): - return AttrCvt( - op_name="squeeze", - transforms={'squeeze_dims':'axis'}, - ignores=['T'])(inputs, attr) - return _impl - -def _fused_batch_norm(): - def _impl(inputs, attr, params): - # Tensorflow: (data, gamma, beta, moving_mean, moving_variance) - # NNVM: (data, gamma, beta, moving_mean, moving_varience) - axis = 3 - need_cast = False - - if 'data_format' in attr: - attr['data_format'] = attr['data_format'].decode("utf-8") - if attr['data_format'] == 'NCHW': - axis = 1 - if 'U' in attr: - need_cast = True - inputs[0] = _sym.cast(inputs[0], dtype=attr['U'].name) - - out = AttrCvt(op_name='batch_norm', - transforms={'scale_after_normalization':'scale', - 'variance_epsilon':'epsilon'}, - extras={'axis': axis}, - ignores=['data_format', 'U'], - disables=['momentum'])(inputs, attr) - - if need_cast: - out = _sym.cast(out, dtype=attr['T'].name) - return out - return _impl - -def _batch_norm(): - def _impl(inputs, attr, params): - # Rearrange inputs from - # (data, moving_mean, moving_variance, beta, gamma) - # to - # (data, gamma, beta, moving_mean, moving_var) - new_inputs = [inputs[0], inputs[4], inputs[3], inputs[1], inputs[2]] - - axis = 3 - if 'data_format' in attr: - attr['data_format'] = attr['data_format'].decode("utf-8") - if attr['data_format'] == 'NCHW': - axis = 1 - - return AttrCvt( - op_name='batch_norm', - transforms={'scale_after_normalization':'scale', 'variance_epsilon':'epsilon'}, - extras={'axis': axis}, - ignores=['data_format'], - disables=['momentum'])(new_inputs, attr) - return _impl - -def _relu6(): - def _impl(inputs, attr, params): - return _sym.clip(inputs[0], a_min=0, a_max=6, name=attr['_node_name']) - return _impl - -def _shape(): - def _impl(inputs, attr, params): - return np.array(attr['_input_shapes'][inputs[0]], dtype='int32') - return _impl - -def _fill(): - def _impl(inputs, attr, params): - fill_arg = params.pop(inputs.pop(1).list_output_names()[0]) - new_inputs = [] - return AttrCvt( - op_name='full', - extras={'shape':inputs[0], - 'fill_value':fill_arg.asnumpy()[0], 'dtype':attr['T'].name}, - ignores=['index_type', 'T'])(new_inputs, attr) - return _impl - -def _lrn(): - def _impl(inputs, attr, params): - attr_new = {} - depth_radius = attr.get('depth_radius', 5) - size = (depth_radius * 2) + 1 - attr_new['axis'] = 3 # Fix axis, NHWC format - attr_new['size'] = size - attr_new['bias'] = attr.get('bias', 1) - attr_new['alpha'] = attr.get('alpha', 1) * size - attr_new['beta'] = attr.get('beta', 0.5) - return AttrCvt(op_name='lrn')(inputs, attr_new) - return _impl - -def _sum(): - def _impl(inputs, attr, params): - axis = params.pop(inputs[1].list_output_names()[0]).asnumpy() - # convert to tuple for preventing invalid parameter format error - axis = tuple(axis) - return AttrCvt( - op_name='sum', - extras={'axis': axis}, - transforms={'keep_dims':'keepdims'}, - ignores=['name', 'Tidx'])(inputs[0], attr) - return _impl - -def _square(): - def _impl(inputs, attr, params): - return _sym.elemwise_mul(inputs[0], inputs[0]) - return _impl - -def _gather_v2(): - "Tensorflow now support only gatherv2" - def _impl(inputs, attr, params): - axis = params[inputs.pop(2).list_output_names()[0]].asnumpy()[0] - new_input = [] - new_input.append(inputs.pop(0)) - new_input.append(inputs.pop(0)) - return AttrCvt( - op_name="take", - extras={'axis':axis}, - ignores=['Tindices', 'Tparams', 'validate_indices', \ - 'Taxis', '_class'])(new_input, attr) - return _impl - -def _infer_out_shapes(inputs, params): - """A method to get the output shape of an intermediate node in the NNVM graph.""" - g = _graph.create(inputs) - shape_dict = {k: v.shape for k, v in params.items()} - _, out_shapes = graph_util.infer_shape(g, **shape_dict) - return out_shapes - -def _stridedSlice(): - def _impl(inputs, attr, params): - """Strided Slice. - Operator description: https://www.tensorflow.org/api_docs/python/tf/strided_slice - Tensorflow mask validation: https://github.com/tensorflow/tensorflow/blob/master/ - tensorflow/core/util/strided_slice_op.cc#L147-L368 - """ - begin = params.pop(inputs[1].list_output_names()[0]).asnumpy().tolist() - end = params.pop(inputs[2].list_output_names()[0]).asnumpy().tolist() - stride = params.pop(inputs[3].list_output_names()[0]).asnumpy().tolist() - begin_mask = int(attr.get('begin_mask', 0)) - end_mask = int(attr.get('end_mask', 0)) - ellipsis_mask = int(attr.get('ellipsis_mask', 0)) - new_axis_mask = int(attr.get('new_axis_mask', 0)) - shrink_axis_mask = int(attr.get('shrink_axis_mask', 0)) - data_shape = attr['_input_shapes'][inputs[0]] - data_dim = len(data_shape) - stride_dim = len(stride) - - def _transform_mask(stride_dim, ellipsis_mask): - """Handle mask inputs to create new begin, end, stride and output shape""" - m_begin = [0] * data_dim - m_end = [0] * data_dim - m_stride = [0] * data_dim - fshape_indices = [] - #Count new axis after ellipsis_mask, consider while applying ellipsis_mask. - ellipsis_seen = False - new_axes_after_ellipsis = 0 - for i in range(stride_dim): - mask = 1 << i - if ellipsis_seen and (mask & new_axis_mask) != 0: - new_axes_after_ellipsis += 1 - if (mask & ellipsis_mask) != 0: - ellipsis_seen = True - if not ellipsis_seen: - #Used later for extending the stride attributes in the below loop. - ellipsis_mask |= (1 << stride_dim) - stride_dim += 1 - final_index = 0 - for index in range(stride_dim): - mask = 1 << index - if mask & ellipsis_mask: - #Identify the end index for applying ellipsis_mask - to_index = min(((data_dim - (stride_dim-index)) + 1 \ - + new_axes_after_ellipsis), data_dim) - for i in range(final_index, to_index): - m_begin[final_index] = 0 - m_end[final_index] = data_shape[final_index] - m_stride[final_index] = 1 - fshape_indices.append(final_index) - final_index += 1 - elif mask &new_axis_mask: - fshape_indices.append(-1) - elif not mask & new_axis_mask: - if final_index == len(m_begin): - break - if mask & begin_mask: - m_begin[final_index] = data_shape[final_index] \ - if stride[index] < 0 else 0 - elif begin[index]: - m_begin[final_index] = begin[index] - if mask & end_mask: - m_end[final_index] = 0 if stride[index] < 0 \ - else data_shape[final_index] - elif end[index]: - m_end[final_index] = end[index] - m_stride[final_index] = stride[index] - if mask & shrink_axis_mask: - #Tensorflow make axis with shrink_axis_mask as dimension 1 - m_begin[final_index] = data_shape[final_index] + begin[index] \ - if begin[index] < 0 else begin[index] - m_end[final_index] = begin[index] + 1 - m_stride[final_index] = 1 - fshape_indices.append(-2) - else: - fshape_indices.append(final_index) - - final_index += 1 - return m_begin, m_end, m_stride, fshape_indices - - fshape_indices = None - if begin_mask or end_mask or ellipsis_mask or new_axis_mask or shrink_axis_mask: - begin, end, stride, fshape_indices = _transform_mask(stride_dim, ellipsis_mask) - out = _sym.strided_slice(inputs[0], begin=begin, end=end, stride=stride) - out_shape = _infer_out_shapes(out, params)[0] - if not fshape_indices: - fshape_indices = range(len(out_shape)) - - #Create final output shape. - final_output = [] - for gather_index in fshape_indices: - if gather_index == -1: - final_output.append(1) - elif gather_index == -2: - pass - else: - final_output.append(out_shape[gather_index]) - # Prevent 0-dim tensors which are not accepted by nnvm - if not final_output: - final_output.append(1) - return _sym.reshape(out, shape=tuple(final_output)) - return _impl - -def _LSTMBlockCell(): - def _impl(inputs, in_state_c, in_state_h, attr, params): - """LSTM Block cell. - Calculations are described in: https://github.com/tensorflow/tensorflow/blob/ - r1.8/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L41-L114 - - Parameters - ---------- - inputs : nnvm.Symbol - Input data - in_state_c: list of nnvm.Symbol - Cell state input values for all the layers - in_state_h: list of nnvm.Symbol - Hidden state input values for all the layers - attrs : dict - Dict of operator attributes - params : dict - List of pretrained weights and bias - - Returns - ------- - sym : nnvm.Symbol - Converted nnvm Symbol - output: nnvm.Symbol - Output state value. - """ - in_data = inputs[0] - in_weight = inputs[3] - in_bias = inputs[7] - forget_bias = attr.pop('forget_bias') - input_shape = attr['_input_shapes'][inputs[0]] - weight_shape = attr['_input_shapes'][inputs[3]] - batch_size, input_size = input_shape[0], input_shape[1] - num_hidden_layers = weight_shape[1] - num_hidden = num_hidden_layers // 4 - - in_data = _sym.reshape(in_data, - shape=(batch_size, input_size)) - ixh = _sym.concatenate(*[in_data, in_state_h], axis=1) - in_weight = _sym.transpose(in_weight) - gates = _sym.dense(ixh, in_weight, in_bias, use_bias=True, - units=num_hidden_layers) - gate_list = _sym.split(gates, indices_or_sections=4, axis=1) - in_gate = _sym.sigmoid(gate_list[0]) - in_transform = _sym.tanh(gate_list[1]) - forget_gate = _sym.sigmoid(gate_list[2]) - forget_gate = forget_gate + forget_bias - out_gate = _sym.sigmoid(gate_list[3]) - next_c = _sym.broadcast_add(_sym.broadcast_mul(forget_gate, in_state_c), - _sym.broadcast_mul(in_gate, in_transform)) - next_h = out_gate * _sym.tanh(next_c) - out_state = _sym.concatenate(*[next_c, next_h]) - out_state = _sym.reshape(out_state, - shape=(2, batch_size, num_hidden)) - return next_h, out_state - return _impl - - -def _pad(name): - def _impl(inputs, attr, params): - padlist_key = inputs[1].list_output_names()[0] - if padlist_key in params: - padlist = params.pop(padlist_key).asnumpy() - else: - raise tvm.error.OpAttributeRequired( - 'Required attribute "{}" not found in operator Pad.'.format(padlist_key)) - paddings = tuple([tuple(l) for l in padlist]) - attr['pad_width'] = paddings - attr['pad_value'] = 0 - new_inputs = [inputs[0]] - if name == 'PadV2': - constant_values = params.pop(inputs[2].list_output_names()[0]).asnumpy() - attr['pad_value'] = constant_values[0] - return AttrCvt( - op_name='pad', - ignores=['Tpaddings'],)(new_inputs, attr) - return _impl - - -def _transpose(): - def _impl(inputs, attr, params): - # If perm is not specified, axes is left empty, - # otherwise its value is get from params - param_name = inputs[1].list_output_names()[0] - axes = params.get(param_name, tvm.nd.array([])).asnumpy() - return _sym.transpose(inputs[0], axes=tuple(axes)) - return _impl - -def _rank(): - def _impl(inputs, attr, params): - input_shape = attr['_input_shapes'][inputs[0]] - - name = attr["_node_name"] - params[name] = tvm.nd.array([len(input_shape)]) - return _sym.Variable(name=name, shape=params[name].shape) - return _impl - -def _range(): - def _impl(inputs, attr, params): - start = params.pop(inputs[0].list_output_names()[0]).asnumpy()[0] - limit = params.pop(inputs[1].list_output_names()[0]).asnumpy()[0] - delta = params.pop(inputs[2].list_output_names()[0]).asnumpy()[0] - - name = attr["_node_name"] - params[name] = tvm.nd.array([start, limit, delta]) - return _sym.Variable(name=name, shape=params[name].shape) - return _impl - -def _elu(): - def _impl(inputs, attr, params): - alpha = 1.0 - return -alpha * _sym.relu(1 - _sym.exp(inputs[0])) + _sym.relu(inputs[0]) - return _impl - -def _selu(): - def _impl(inputs, attr, params): - alpha = 1.6732632423543772848170429916717 - gamma = 1.0507009873554804934193349852946 - return gamma * (-alpha * _sym.relu(1 - _sym.exp(inputs[0])) + _sym.relu(inputs[0])) - return _impl - -def _mean(): - def _impl(inputs, attr, params): - axis = params.pop(inputs[1].list_output_names()[0]) - return AttrCvt(op_name="mean", ignores=['Tdim', 'Tidx'], - transforms={'keep_dims': 'keepdims'}, - extras={'axis': tuple(axis.asnumpy())})(inputs[0], attr) - return _impl - -def _broadcast(name): - def _impl(inputs, attr, params): - op_name = _math_name_picker(name)(attr) - return AttrCvt( - op_name=op_name, - ignores=['name', 'Tidx'] - )(inputs, attr) - return _impl - -def _split(has_size_vector): - # TF documentation https://www.tensorflow.org/api_docs/python/tf/split - def _impl(inputs, attr, params): - try: - # order and number of inputs are different: - # if has_size_vector: - # https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/split-v - # else: - # https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/split - - # in addition, `axis` and `num_or_size_splits` can be tensors in TensorFlow, - # we can only support constants - if has_size_vector: - input_node_index = 0 - input_axis_index = 2 - size_splits_input_name = inputs[1].list_output_names()[0] - size_splits = params[size_splits_input_name].asnumpy() - section_beginnings = np.cumsum(size_splits)[:-1] - indices_or_sections = tuple(section_beginnings) - else: - input_node_index = 1 - input_axis_index = 0 - indices_or_sections = attr['num_split'] - input_node = inputs[input_node_index] - axis_input_name = inputs[input_axis_index].list_output_names()[0] - axis_input_value = params[axis_input_name].asnumpy()[0] - except (IndexError, KeyError): - raise TypeError( \ - "Unsupported argument for split: `axis` and `num_or_size_splits` " \ - "should be constants") - return _sym.split(input_node, - indices_or_sections=indices_or_sections, - axis=axis_input_value) - return _impl - -def _unpack(): - def _impl(inputs, attr, params): - input_node = inputs[0] - axis = attr['axis'] - input_shape = attr['_input_shapes'][input_node] - axis_length = input_shape[axis] - if axis_length < 0: - raise TypeError("Unstack with unknown axis length") - splitted = _sym.split(input_node, - indices_or_sections=axis_length, - axis=axis, - name=attr.get('_node_name', 'unstack')) - - return _sym.Group([_sym.squeeze(split_item, axis=axis) for split_item in splitted]) - return _impl - -def _expand_dims_0d_aware(data, attr, axis, num_newaxis=1): - if data in attr['_input_0d_mismatch']: - return data if num_newaxis == 1 else \ - _sym.expand_dims(data, axis=axis, num_newaxis=num_newaxis-1) - - return _sym.expand_dims(data, axis=axis, num_newaxis=num_newaxis) - -def _logical(name): - def _impl(inputs, attr, params): - return AttrCvt(op_name=name)(inputs, attr) - return _impl - -# compatible operators that do NOT require any conversion. -_identity_list = [] - -# _convert_map defines maps of name to converter functor(callable) -# for 1 to 1 mapping, use Renamer if nothing but name is different -# use AttrCvt if attributes need to be converted -# for 1 to N mapping(composed), use custom callable functions -# for N to 1 mapping, currently not supported(?) -_convert_map = { - 'ArgMax' : _argx(_sym.argmax, 'argmax'), - 'ArgMin' : _argx(_sym.argmin, 'argmin'), - 'AvgPool' : _pooling('avg_pool'), - 'BatchNormWithGlobalNormalization' : _batch_norm(), - 'BiasAdd' : _bias_add(), - 'Cast' : _cast(), - 'Ceil' : AttrCvt('ceil'), - 'CheckNumerics' : _check_numerics(), - 'Concat' : _concat(), - 'ConcatV2' : _concatV2(), - 'Conv2D' : _conv('conv'), - 'DecodeJpeg' : _decode_image(), - 'Elu' : _elu(), - 'ExpandDims' : _expand_dims(), - 'Floor' : AttrCvt('floor'), - 'Identity' : _identity(), - 'MatMul' : _matmul(), - 'MaxPool' : _pooling('max_pool'), - 'Add' : _elemwise('add'), - 'Sub' : _elemwise('sub'), - 'Mul' : _elemwise('mul'), - 'RealDiv' : _elemwise('div'), - 'Maximum' : _elemwise('max'), - 'Minimum' : _elemwise('min'), - 'Sum' : _sum(), - 'Square' : _square(), - 'Pack' : _pack(), - 'Slice' : _slice(), - 'LeakyRelu' : AttrCvt('leaky_relu'), - 'Relu' : AttrCvt('relu'), - 'Reshape' : _reshape(), - 'ResizeBilinear' : _resize_bilinear(), - 'Selu' : _selu(), - 'Softmax' : AttrCvt('softmax', {'axis': ('axis', 1)}), - 'Rsqrt' : _rsqrt(), - 'Squeeze' : _squeeze(), - 'FusedBatchNorm' : _fused_batch_norm(), - 'FusedBatchNormV2' : _fused_batch_norm(), - 'Relu6' : _relu6(), - 'DepthwiseConv2dNative' : _conv('depthwise'), - 'Shape' : _shape(), - 'Sigmoid' : AttrCvt('sigmoid'), - 'Fill' : _fill(), - 'GatherV2' : _gather_v2(), - 'StridedSlice' : _stridedSlice(), - 'LRN' : _lrn(), - 'Pad' : _pad('Pad'), - 'PadV2' : _pad('PadV2'), - 'Range' : _range(), - 'Rank' : _rank(), - 'Transpose' : _transpose(), - 'Tanh' : AttrCvt('tanh'), - 'Mean' : _mean(), - 'LogicalAnd' : _logical('logical_and'), - 'LogicalOr' : _logical('logical_or'), - 'LogicalNot' : _logical('logical_not'), - 'Less' : _broadcast('less'), - 'Greater' : _broadcast('greater'), - 'LessEqual' : _broadcast('less_equal'), - 'GreaterEqual' : _broadcast('greater_equal'), - 'Equal' : _broadcast('equal'), - 'NotEqual' : _broadcast('not_equal'), - 'Split' : _split(False), - 'SplitV' : _split(True), - 'Unpack' : _unpack(), -} - -# _convert_map_rnn defines maps of rnn operator name to -# converter functor(callable) for 1 to 1 mapping. -_convert_map_rnn = { - 'LSTMBlockCell' : _LSTMBlockCell(), -} - -class RecurrentNetworks(object): - """Recurrent network layer handlers. - - Handle Layer operations. - ToDo: Operators like RNN/GRU layer concepts also can be handled here - - Parameters - ---------- - nodes : list - list of graph nodes used for tensorflow parsing. - - out_rnn : list - List of RecurrentNetwork outputs. This output will be appended to the - 'head' nodes of the graph. - - graph : tensorflow graph definition object - The loaded tensorflow GraphDef - - convert_map : dict - Dict of name : callable, where name is the op's name that - require conversion to nnvm, callable are functions which - take attrs and return (new_op_name, new_attrs) - """ - def __init__(self, nodes, out_rnn, graph, convert_map): - self._graph = graph - self._convert_map = convert_map - self._nodes = nodes - self._out_rnn = out_rnn - self._cur_lstm_layer = 0 - self._layer_name_list = [] - self._recurrent_ops_layer_map = { - 'LSTMBlockCell' : self._LSTMBlockCellLayer(), - } - - def _LSTMBlockCellLayer(self): - """LSTMBlockCell layer handler. - - Parameters - ---------- - op_name : str - Operator name, eg:LSTMBlockCell - - layer_name : str list - Layer name is used for creating the state input placeholder. - - inputs : nnvm.Symbol - Input data - - attrs : dict - Dict of operator attributes - - params : dict - List of pretrained weights and bias - - num_layers : int - Total number of LSTM layer presented in the graph - - Returns - ------- - sym : nnvm.sym.Symbol - The returned nnvm symbol - """ - def _impl(op_name, layer_name, inputs, attrs, params, num_layers): - in_state_c_name = layer_name+'_c' - in_state_h_name = layer_name+'_h' - - def _init_state(num_layers, batch_size, num_hidden): - """Create the initial states for the first layer in the graph.""" - in_state_c = _sym.Variable(in_state_c_name, - shape=(num_layers, batch_size, num_hidden)) - in_state_h = _sym.Variable(in_state_h_name, - shape=(num_layers, batch_size, num_hidden)) - return in_state_c, in_state_h - - def _get_cur_input_state(in_state_c, in_state_h, num_layers, - layer, batch_size, num_hidden): - """Select the appropriate states for the current layer""" - in_state_c_tup = _sym.split(in_state_c, - indices_or_sections=num_layers, axis=0) - in_state_h_tup = _sym.split(in_state_h, - indices_or_sections=num_layers, axis=0) - cur_in_state_c = _sym.reshape(in_state_c_tup[layer], - shape=(batch_size, num_hidden)) - cur_in_state_h = _sym.reshape(in_state_h_tup[layer], - shape=(batch_size, num_hidden)) - return cur_in_state_c, cur_in_state_h - - def _LSTMBlockCellWrapper(inputs, attr, params, - num_layers, layer): - """LSTM cell warapper to prepare the inputs""" - input_shape = attr['_input_shapes'][inputs[0]] - weight_shape = attr['_input_shapes'][inputs[3]] - batch_size = input_shape[0] - num_hidden = weight_shape[1] // 4 - - if layer == 0: - #Create initial states placeholder in case of first layer - in_state_c, in_state_h = _init_state(num_layers, - batch_size, num_hidden) - else: - in_state_c = self._nodes[in_state_c_name] - in_state_h = self._nodes[in_state_h_name] - - cur_in_state_c, cur_in_state_h = _get_cur_input_state( \ - in_state_c, in_state_h, - num_layers, layer, - batch_size, num_hidden) - output, out_state = self._convert_map[op_name](inputs, cur_in_state_c, - cur_in_state_h, - attr, params) - return output, out_state, in_state_c, in_state_h - - sym, cur_out_state, in_state_c, in_state_h = \ - _LSTMBlockCellWrapper(inputs, attrs, params, - num_layers, self._cur_lstm_layer) - self._nodes[in_state_c_name] = in_state_c - self._nodes[in_state_h_name] = in_state_h - cur_out_state = _sym.expand_dims(cur_out_state, axis=0, num_newaxis=1) - self._out_rnn.append(cur_out_state) - self._cur_lstm_layer += 1 - return sym - return _impl - - def process_op(self, op_name, inputs, attrs, params): - """Process recurrent layer operators. - - List '_recurrent_ops_layer_map' map each Layer based operators with its - layer handlers. Total number of layers are calculated to form the input - data shapes. - - Parameters - ---------- - op_name : str - Operator name, such as LSTMBlockCell - - inputs : nnvm.Symbol - Input data - - attrs : dict - Dict of operator attributes - - params : dict - List of pretrained weights and bias - - Returns - ------- - sym : nnvm.sym.Symbol - The returned nnvm symbol - """ - def _get_abs_layer_name(node): - """Identify the layer name is already handled. Return the absolute name - """ - if not self._layer_name_list: - self._layer_name_list.append(node.name) - return node.name - - for _name in self._layer_name_list: - if _name in node.name: - abs_name = _name - else: - self._layer_name_list.append(node.name) - abs_name = node.name - return abs_name - - #Find number of layers of this same operator node in the graph - #and also read the inputs name for the current op. - num_layers = 0 - for _, node in enumerate(self._graph.node): - if node.op == op_name: - layer_name = _get_abs_layer_name(node) - num_layers += 1 - - sym = self._recurrent_ops_layer_map[op_name](op_name, layer_name, inputs, attrs, - params, num_layers) - return sym - -class GraphProto(object): - """ A helper class for handling nnvm graph copying from Tensorflow GraphDef. - Definition: - https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto - """ - def __init__(self): - self._nodes = {} - self._params = {} - self._output_shapes = {} - self._num_param = 0 - self._num_rnn_layer = False - self._outputs_are_0d = {} - self._input_shapes = {} - - def from_tensorflow(self, graph, layout="NHWC", shape=None, outputs=None): - """Construct nnvm nodes from tensorflow graph definition - GraphDef. - - Follow the tensorflow graph definition to parse and convert it to NNVM. - Some of the assumptions listed below. - - -> All Placeholders are considered as graph input. - -> All Const nodes are params. - -> Last node is assumed as graph output. - -> _output_shapes : Graph should be frozen with add_shapes=True. - Or user can pass input shape dictionary optionally. - -> DecodeJpeg, ResizeBilinear: These are dummy operators. - Hence user should handle preprocessing outside. - -> CheckNumerics: No implementation as of now for this. - Just copies input to output. - - Parameters - ---------- - graph : tensorflow graph definition object - The loaded tensorflow GraphDef - - layout : target layout to be used (Optional) - NCHW only supported now to enable NHWC models on GPU. - - shape : Dictionary of input dimensions (Optional) - Graph level input shape dictionary. - - outputs : List of output tensor names (Optional) - if not specified then the last node is assumed as graph output. - - Returns - ------- - sym : nnvm.sym.Symbol - The returned nnvm symbol - params : dict - A dict of name: tvm.nd.array pairs, used as pretrained weights - """ - - try: - from tensorflow.python.framework import tensor_util - except ImportError as e: - raise ImportError( - "Unable to import tensorflow which is required {}".format(e)) - - missing_operators = self._parse_import_prerequisites(graph) - - if missing_operators: - msg = 'The following operators are not supported in frontend TensorFlow: {}' - ops = str(list(missing_operators)).strip('[,]') - raise tvm.error.OpNotImplemented(msg.format(ops)) - - for node in graph.node: - if node.op == 'Placeholder': - # Give priority to user argument. - if shape and node.name in shape: - self._input_shapes[node.name] = list(shape[node.name]) - else: - self._input_shapes[node.name] = \ - tensor_util.TensorShapeProtoToList(node.attr['shape'].shape) - for idx, dim in enumerate(self._input_shapes[node.name]): - if dim < 0: - self._input_shapes[node.name][idx] = 1 - warnings.warn("Use 1 instead of -1 in shape of operator %s." - % node.name) - - self._nodes[node.name] = _sym.Variable(name=node.name, - shape=self._input_shapes[node.name]) - self._output_shapes[node.name] = [self._input_shapes[node.name]] - self._outputs_are_0d[node.name] = [ \ - not tshape if isinstance(tshape, list) else False \ - for tshape in self._output_shapes[node.name]] - - # Ignore user's input shape for Non placeholder - elif node.op == 'Const': - tensor_value = node.attr['value'].tensor - self._input_shapes[node.name] = \ - tensor_util.TensorShapeProtoToList(tensor_value.tensor_shape) - if shape and node.name in shape: - warnings.warn("Ignore the passed shape. " - "Shape in graphdef will be used for operator %s." % node.name) - - final_op = None - # Parse the nodes to re-create TF graph using Symbol API of NNVM - for node in graph.node: - # Tensorflow doesn't have separate list for params extraction. - # Operator name 'Const' is treated as a parameter to build NNVM params dict. - - input_shapes = {} - input_0d_mismatch = set() - attr = self._parse_attr(node.attr) - - # Variable converted to Const will not have only value attr - if 'value' in attr and node.op == 'Const': - self._output_shapes[node.name] = [self._input_shapes[node.name]] - elif '_output_shapes' in attr: - self._output_shapes[node.name] = \ - [tensor_util.TensorShapeProtoToList(tshape) \ - for tshape in attr['_output_shapes']] - else: - # Keep the list indexable to avoid key error. - # Actual value will be filled after node creation. - # Will infer shapes if the graph is not frozen with add_shapes=True - self._output_shapes[node.name] = [None] - - self._outputs_are_0d[node.name] = [ \ - not tshape if isinstance(tshape, list) else False \ - for tshape in self._output_shapes[node.name]] - - if node.op == "Const": - # All Const nodes are Param nodes, lets parse - self._num_param += 1 - for key, value in node.attr.items(): - self._parse_param(key, value, node.name) - if node.name not in self._nodes: - raise NotImplementedError( \ - "Const {} couldn't be converted to Param.".format(node.name)) - - attr = self._parse_attr(node.attr) - - elif node.op != "Placeholder": - # Pass the parsed shapes instead - attr["_output_shapes"] = output_shapes = self._output_shapes[node.name] - - # Pass the node name too in attr - attr["_node_name"] = node.name - - # Pass the target layout - attr["_target_layout"] = layout - - # Fill shapes for all inputs in a list - inputs = [] - for i in node.input: - # Some TensorFlow operators internally maintain execution layers - # and their output name includes the layer number along with - # graph node name. E.g. the node name is 'Model/RNN/cell_0/RnnCell', but the - # output tensor name is 'Model/RNN/cell_0/RnnCell:0'. In this case, - # the number has to be ignored for single-output nodes. - # On the other hand, for multi-output nodes the number is the output index, - # and the lack of the number implies 0. - tensor_name = i.split(':') - node_name = tensor_name[0] - if node_name in self._nodes: - in_sym = self._nodes[node_name] - if len(in_sym.list_output_names()) > 1: - tensor_slot = int(tensor_name[1]) if len(tensor_name) > 1 else 0 - in_sym = in_sym[tensor_slot] - input_shape = self._output_shapes[node_name][tensor_slot] - else: - tensor_slot = 0 - input_shape = self._output_shapes[node_name][0] - inputs.append(in_sym) - input_shapes[in_sym] = input_shape - # This means the node is 1d in NNVM and 0d in TF. - # See `_expand_dims_0d_aware`. - if self._outputs_are_0d[node_name][tensor_slot] and input_shape: - input_0d_mismatch.add(in_sym) - attr['_input_shapes'] = input_shapes - attr['_input_0d_mismatch'] = input_0d_mismatch - - inputs = self._fix_extranodes(node.op, attr, inputs) - op = self._convert_operator(node.op, inputs, attr, graph) - - # Check if op is converted to param - if isinstance(op, np.ndarray): - self._params[node.name] = tvm.nd.array(op) - op = _sym.Variable(name=node.name, - shape=self._params[node.name].shape) - - # Assuming only one output. - self._nodes[node.name] = op - final_op = op - - # Infer shapes even without specifying "add_shapes=True" - if output_shapes == [None]: - g = _graph.create(final_op) - self._output_shapes[node.name] = \ - list(graph_util.infer_shape(g, **self._input_shapes))[-1] - - if self._output_shapes[node.name] and shape and node.name in shape: - assert self._output_shapes[node.name] == list(shape[node.name]) - - # Infer shapes if passed explicitely - node_output = self._nodes[node.name] - if shape and (not self._output_shapes[node.name][0] - or -1 in self._output_shapes[node.name][0]): - g = _graph.create(node_output) - shape_dict = {k: v.shape for k, v in self._params.items()} - shape_dict.update(shape) - _, out_shapes = graph_util.infer_shape(g, **shape_dict) - self._output_shapes[node.name] = out_shapes - - out = [] - if outputs is None: - out.append(final_op) - else: - for out_name in outputs: - if ":" in out_name: - out_name, out_num = out_name.split(":") - out_num = int(out_num) - out.append(self._nodes[out_name][out_num]) - else: - out.append(self._nodes[out_name]) - - #Add the RNN outputs also with 'head' nodes of the nnvm graph - if self._num_rnn_layer: - out_rnn = _sym.concatenate(*self._out_rnn, axis=0) - out.append(out_rnn) - - if isinstance(out, list): - out = _sym.Group(out) if len(out) > 1 else out[0] - - return out, self._params - - def _parse_import_prerequisites(self, graph): - """ Calculate the named preconditions from TensorFlow `graph`. - Return prerequisites for parsing: - a. Set of operator names which don't have their mapping in TVM, i.e. - which are not supported - """ - missing_operators = set() - for node in graph.node: - if node.op == "Placeholder": - pass - elif node.op == "Const": - pass - else: - if any([node.op in t for t in [_identity_list, _convert_map, _convert_map_rnn]]): - pass - else: - missing_operators.add(node.op) - - return missing_operators - - def _parse_param(self, key, value, name): - try: - from tensorflow.python.framework import tensor_util - except ImportError as e: - raise ImportError( - "Unable to import tensorflow which is required {}".format(e)) - - if key == 'value': - np_array = tensor_util.MakeNdarray(value.tensor) - - if np_array.dtype == np.dtype(object): - # Object types are generally tensorflow DT_STRING (DecodeJpeg op). - # Just leave it as placeholder. - self._nodes[name] = _sym.Variable(name=name) - return - - array_ndim = len(np_array.shape) - if array_ndim == 0: - new_array = np.empty([1], dtype=np_array.dtype) - new_array[0] = np_array - self._params[name] = tvm.nd.array(new_array) - else: - self._params[name] = tvm.nd.array(np_array) - self._nodes[name] = _sym.Variable(name=name, - shape=self._params[name].shape) - else: - if key not in ('dtype', '_output_shapes', '_class'): - raise NotImplementedError \ - ("Other attributes for a Const(param) Node {} ? .".format(key)) - - def _get_attr(self, buf): - """Returns the value of the attr of this buf with the given `name`. - - Args: - buf: attrvalue protobuf. - - Returns: - The value of the attr, as a Python object. - - Raises: - ValueError: If this op does not have an attr with the given `name`. - """ - fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"] - - x = buf - - ret = [] - - try: - from tensorflow.python.framework import dtypes - except ImportError as e: - raise ImportError( - "Unable to import tensorflow which is required {}".format(e)) - - # Treat an empty oneof value as an empty list. - if not x.WhichOneof("value"): - return ret - if x.HasField("list"): - for f in fields: - if getattr(x.list, f): - if f == "type": - ret += [dtypes.as_dtype(x) for x in list(getattr(x.list, f))] - else: - ret += list(getattr(x.list, f)) - else: - for f in fields: - if x.HasField(f): - if f == "type": - ret = dtypes.as_dtype(getattr(x, f)) - else: - ret = getattr(x, f) - return ret - - def _parse_attr(self, attr_proto): - """Convert a list of AttributeProto to a dict, with names as keys.""" - attrs = {} - for key, value in attr_proto.items(): - attrs[key] = self._get_attr(value) - - return attrs - - def _convert_rnn_operator(self, op_name, inputs, - attrs, params, graph, convert_map): - """Convert RNN and its variant operators to NNVM operators. - This converter read the input states of each layers and - also maintain the output states of each layer in a list. - - Parameters - ---------- - op_name : str - Operator name, such as LSTMBlockCell - inputs : list of nnvm.Symbol - List of input symbols. - attrs : dict - Dict of operator attributes - params : dict - List of pretrained weights and bias - graph : Tensorflow graph object - Graph is to find the number of upcoming same operator to - calculate the number of layers. - convert_map : dict - Dict of name : callable, where name is the op's name that - require conversion to nnvm, callable are functions which - take attrs and return (new_op_name, new_attrs) - - Returns - ------- - sym : nnvm.Symbol - Converted nnvm Symbol - """ - if not self._num_rnn_layer: - self._out_rnn = [] - self.rnn = RecurrentNetworks(self._nodes, self._out_rnn, graph, convert_map) - self._num_rnn_layer = True - sym = self.rnn.process_op(op_name, inputs, attrs, params) - return sym - - def _convert_operator(self, op_name, inputs, attrs, - graph, identity_list=None, convert_map=None): - """Convert from Tensorflow operator to nnvm operator. - The converter must specify conversions explicitly for incompatible name, and - apply handlers to operator attributes. - - Parameters - ---------- - op_name : str - Operator name, such as Conv2D, AvgPool - inputs : list of nnvm.Symbol - List of input symbols. - attrs : dict - Dict of operator attributes - identity_list : list - List of operators that don't require conversion - convert_map : dict - Dict of name : callable, where name is the op's name that - require conversion to nnvm, callable are functions which - take attrs and return (new_op_name, new_attrs) - - Returns - ------- - sym : nnvm.Symbol - Converted nnvm Symbol - """ - identity_list = identity_list if identity_list else _identity_list - convert_map = convert_map if convert_map else _convert_map - convert_map_rnn = _convert_map_rnn - if op_name in identity_list: - sym = get_nnvm_op(op_name)(*inputs, **attrs) - elif op_name in convert_map: - sym = convert_map[op_name](inputs, attrs, self._params) - elif op_name in convert_map_rnn: - sym = self._convert_rnn_operator(op_name, inputs, attrs, - self._params, graph, - convert_map_rnn) - else: - raise tvm.error.OpNotImplemented( - 'Operator {} is not supported in frontend TensorFlow.'.format(op_name)) - return sym - - def _fix_extranodes(self, op_name, attr, inputs): - if op_name == "Softmax": - # Require some times flatten of data before it goes to softmax - # Need to relook into this with latest softmax axis support. - op = AttrCvt(op_name='flatten')(inputs, {}) - node_output = op.list_output_names() - for k, i in zip(list(node_output), range(len(node_output))): - self._nodes[k] = op[i] - inputs = [op] - - return inputs - -def from_tensorflow(graph, layout="NHWC", shape=None, outputs=None): - """Load tensorflow graph which is a python tensorflow graph object into nnvm graph. - The companion parameters will be handled automatically. - - Parameters - ---------- - graph : GraphDef object - Tensorflow GraphDef - - layout : target layout to be used (Optional) - NCHW only supported now to enable NHWC models on GPU. - - shape : Dictionary of input dimensions (Optional) - Graph level input shape dictionary. - - outputs : List of output tensor names (Optional) - if not specified then the last node is assumed as graph output. - - Returns - ------- - sym : nnvm.Symbol - Compatible nnvm symbol - - params : dict of str to tvm.ndarray - Dict of converted parameters stored in tvm.ndarray format - """ - g = GraphProto() - sym, params = g.from_tensorflow(graph, layout, shape, outputs) - return sym, params diff --git a/nnvm/python/nnvm/graph.py b/nnvm/python/nnvm/graph.py deleted file mode 100644 index 0d1e70f4e0f6..000000000000 --- a/nnvm/python/nnvm/graph.py +++ /dev/null @@ -1,288 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -# pylint: disable=invalid-name, protected-access, too-many-arguments, too-many-lines -"""NNVM Graph IR API. - -This is a developer API that is used to manipulate and transform graphs. -""" -from __future__ import absolute_import as _abs - -import ctypes -import json -from ._base import _LIB -from ._base import c_array, c_str, nn_uint, py_str, string_types -from ._base import GraphHandle, SymbolHandle -from ._base import check_call -from .symbol import Variable, Symbol, Group as _Group - -class GraphIndex(object): - """Index for quickly accessing graph attributes. - - Parameters - ---------- - graph : Graph - The graph to create index. - """ - def __init__(self, graph): - jgraph = json.loads(create(graph).apply("SaveJSON").json_attr("json")) - self.nodes = jgraph["nodes"] - self.entry_ptr = jgraph["node_row_ptr"] - self._name2nodeid = {n["name"]: i for i, n in enumerate(self.nodes)} - self.input_names = graph.symbol.list_input_names() - self.output_entries = jgraph["heads"] - - @property - def num_nodes(self): - """Number of nodes in graph.""" - return len(self.entry_ptr) - 1 - - @property - def num_node_entries(self): - """Number of nodes in graph.""" - return self.entry_ptr[-1] - - def node_id(self, key): - """Get the node index for a given key. - - Parameters - ---------- - key : str or int - The node key or index - - Returns - ------- - index : int - The entry index - """ - return self._name2nodeid[key] - - def entry_id(self, key, value_index=0): - """Get the entry id of a node entry. - - Parameters - ---------- - key : str or int - The node key or index - - value_index : int - The value index of output - - Returns - ------- - index : int - The entry index - """ - if isinstance(key, (list, tuple)): - if len(key) != 3: - raise ValueError("Expect entry index to be tuple of 3 elems") - key, value_index, _ = key - idx = self.node_id(key) if isinstance(key, str) else key - assert value_index < self.entry_ptr[idx + 1] - return self.entry_ptr[idx] + value_index - - - -class Graph(object): - """Graph is the graph object that can be used to apply optimization pass. - - It contains additional graphwise attribute besides the internal symbol. - """ - _tvm_tcode = 17 - - # pylint: disable=no-member - def __init__(self, handle): - """Initialize the function with handle - - Parameters - ---------- - handle : GraphHandle - the handle to the underlying C++ Graph - """ - self.handle = handle - self._index = None - - def __del__(self): - check_call(_LIB.NNGraphFree(self.handle)) - - def json_attr(self, key): - """Get attribute string from the graph. - - Parameters - ---------- - key : str - The key to get attribute from. - - Returns - ------- - value : str - The attribute value of the key, returns None if attribute do not exist. - """ - ret = ctypes.c_char_p() - success = ctypes.c_int() - check_call(_LIB.NNGraphGetJSONAttr( - self.handle, c_str(key), ctypes.byref(ret), ctypes.byref(success))) - if success.value != 0: - json_str = py_str(ret.value) - return json.loads(json_str)[1] - return None - - def _set_symbol_list_attr(self, key, value): - """Set the attribute of the graph. - - Parameters - ---------- - key : string - The key of the attribute - value : value - The any type that can be dumped to json - type_name : string - The typename registered on c++ side. - """ - if isinstance(value, list): - value = _Group(value) - if not isinstance(value, Symbol): - raise ValueError("value need to be grouped symbol") - check_call(_LIB.NNGraphSetNodeEntryListAttr_( - self.handle, c_str(key), value.handle)) - - def _set_json_attr(self, key, value, type_name=None): - """Set the attribute of the graph. - - Parameters - ---------- - key : string - The key of the attribute - value : value - The any type that can be dumped to json - type_name : string - The typename registered on c++ side. - """ - if isinstance(value, string_types): - type_name = 'str' - elif type_name is None: - raise ValueError("Need to specify type_name") - json_value = json.dumps([type_name, value]) - check_call(_LIB.NNGraphSetJSONAttr( - self.handle, c_str(key), c_str(json_value))) - - @property - def _tvm_handle(self): - return self.handle.value - - @property - def symbol(self): - shandle = SymbolHandle() - check_call(_LIB.NNGraphGetSymbol(self.handle, ctypes.byref(shandle))) - return Symbol(shandle) - - def json(self): - """Get JSON representation of the graph - - Returns - ------- - json : str - JSON representation of the graph - """ - return self.apply("SaveJSON").json_attr("json") - - def _tvm_graph_json(self): - """Get TVM graph json""" - return self.json() - - @property - def index(self): - if not self._index: - self._index = GraphIndex(self) - return self._index - - def ir(self, join_entry_attrs=None, join_node_attrs=None): - """Get text form of graph ir. - - Parameters - ---------- - join_entry_attrs : list of str - List of graph NodeEntry attribute to be - printed along each operator. - - join_node_attrs : list of str - List of graph node attribute to be - printed along each operator. - """ - if join_entry_attrs: - self._set_json_attr("join_entry_attrs", join_entry_attrs, "list_str") - if join_node_attrs: - self._set_json_attr("join_node_attrs", join_node_attrs, "list_str") - return self.apply("PrintGraphIR").json_attr("graphir") - - def apply(self, passes): - """Apply passes to the graph - - Parameters - ---------- - passes : str or list of str - The passes to be applied - - Returns - ------- - g : Graph - The transformed graph. - """ - if isinstance(passes, string_types): - passes = [passes] - cpass = c_array(ctypes.c_char_p, [c_str(key) for key in passes]) - ghandle = GraphHandle() - npass = nn_uint(len(passes)) - check_call(_LIB.NNGraphApplyPasses(self.handle, npass, cpass, ctypes.byref(ghandle))) - return Graph(ghandle) - - -def load_json(json_str): - """Create a new graph by loading from json - - Parameters - ---------- - json_str : str - The json string - - Returns - ------- - graph : Graph - The loaded graph - """ - ret = create(Variable("x")) - ret._set_json_attr("json", json_str) - return ret.apply("LoadJSON") - - -def create(symbol): - """Create a new graph from symbol. - - Parameters - ---------- - symbol : Symbol - The symbolic graph used to create Graph object. - - Returns - ------- - graph : Graph - A generated new graph object. - """ - ghandle = GraphHandle() - check_call(_LIB.NNGraphCreate( - symbol.handle, ctypes.byref(ghandle))) - return Graph(ghandle) diff --git a/nnvm/python/nnvm/libinfo.py b/nnvm/python/nnvm/libinfo.py deleted file mode 100644 index b3bfc753b9c2..000000000000 --- a/nnvm/python/nnvm/libinfo.py +++ /dev/null @@ -1,84 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -"""Information about nnvm.""" -from __future__ import absolute_import -import sys -import os -import platform - -if sys.version_info[0] == 3: - import builtins as __builtin__ -else: - import __builtin__ - -def find_lib_path(): - """Find NNNet dynamic library files. - - Returns - ------- - lib_path : list(string) - List of all found path to the libraries - """ - if hasattr(__builtin__, "NNVM_BASE_PATH"): - base_path = __builtin__.NNVM_BASE_PATH - else: - base_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) - - if hasattr(__builtin__, "NNVM_LIBRARY_NAME"): - lib_name = __builtin__.NNVM_LIBRARY_NAME - else: - lib_name = "nnvm_compiler" if sys.platform.startswith('win32') else "libnnvm_compiler" - - api_path = os.path.join(base_path, '..', '..', 'lib') - cmake_build_path_win = os.path.join(base_path, '..', '..', '..', 'build', 'Release') - cmake_build_path = os.path.join(base_path, '..', '..', '..', 'build') - install_path = os.path.join(base_path, '..', '..', '..') - dll_path = [base_path, api_path, cmake_build_path_win, cmake_build_path, - install_path] - - if sys.platform.startswith('linux') and os.environ.get('LD_LIBRARY_PATH', None): - dll_path.extend([p.strip() for p in os.environ['LD_LIBRARY_PATH'].split(":")]) - elif sys.platform.startswith('darwin') and os.environ.get('DYLD_LIBRARY_PATH', None): - dll_path.extend([p.strip() for p in os.environ['DYLD_LIBRARY_PATH'].split(":")]) - elif sys.platform.startswith('win32') and os.environ.get('PATH', None): - dll_path.extend([p.strip() for p in os.environ['PATH'].split(";")]) - - if sys.platform.startswith('win32'): - vs_configuration = 'Release' - if platform.architecture()[0] == '64bit': - dll_path.append(os.path.join(base_path, '..', '..', '..', 'build', vs_configuration)) - dll_path.append(os.path.join(base_path, '..', '..', '..', 'windows', 'x64', - vs_configuration)) - else: - dll_path.append(os.path.join(base_path, '..', '..', '..', 'build', vs_configuration)) - dll_path.append(os.path.join(base_path, '..', '..', '..', 'windows', vs_configuration)) - dll_path = [os.path.join(p, '%s.dll' % lib_name) for p in dll_path] - elif sys.platform.startswith('darwin'): - dll_path = [os.path.join(p, '%s.dylib' % lib_name) for p in dll_path] - else: - dll_path = [os.path.join(p, '%s.so' % lib_name) for p in dll_path] - - lib_path = [p for p in dll_path if os.path.exists(p) and os.path.isfile(p)] - if not lib_path: - raise RuntimeError('Cannot find the files.\n' + - 'List of candidates:\n' + str('\n'.join(dll_path))) - return lib_path - - -# current version -__version__ = "0.8.0" diff --git a/nnvm/python/nnvm/name.py b/nnvm/python/nnvm/name.py deleted file mode 100644 index fe3d8311f1a6..000000000000 --- a/nnvm/python/nnvm/name.py +++ /dev/null @@ -1,94 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -"""Automatic naming support for symbolic API.""" -from __future__ import absolute_import as _abs - -class NameManager(object): - """NameManager to do automatic naming. - - User can also inherit this object to change naming behavior. - """ - current = None - - def __init__(self): - self._counter = {} - self._old_manager = None - - def get(self, name, hint): - """Get the canonical name for a symbol. - - This is default implementation. - When user specified a name, - the user specified name will be used. - - When user did not, we will automatically generate a - name based on hint string. - - Parameters - ---------- - name : str or None - The name user specified. - - hint : str - A hint string, which can be used to generate name. - - Returns - ------- - full_name : str - A canonical name for the user. - """ - if name: - return name - if hint not in self._counter: - self._counter[hint] = 0 - name = '%s%d' % (hint, self._counter[hint]) - self._counter[hint] += 1 - return name - - def __enter__(self): - self._old_manager = NameManager.current - NameManager.current = self - return self - - def __exit__(self, ptype, value, trace): - assert self._old_manager - NameManager.current = self._old_manager - - -class Prefix(NameManager): - """A name manager that always attach a prefix to all names. - - Examples - -------- - >>> import nnvm as nn - >>> data = nn.symbol.Variable('data') - >>> with nn.name.Prefix('mynet_'): - net = nn.symbol.FullyConnected(data, num_hidden=10, name='fc1') - >>> net.list_arguments() - ['data', 'mynet_fc1_weight', 'mynet_fc1_bias'] - """ - def __init__(self, prefix): - super(Prefix, self).__init__() - self._prefix = prefix - - def get(self, name, hint): - name = super(Prefix, self).get(name, hint) - return self._prefix + name - -# initialize the default name manager -NameManager.current = NameManager() diff --git a/nnvm/python/nnvm/symbol.py b/nnvm/python/nnvm/symbol.py deleted file mode 100644 index 297d2ba7405a..000000000000 --- a/nnvm/python/nnvm/symbol.py +++ /dev/null @@ -1,405 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-import, protected-access -"""Symbolic graph construction API. - -This namespace contains most of the registered operators. -For detailed list of operators, checkout ``Core Tensor Operators`` -""" -from __future__ import absolute_import as _abs -import sys as _sys -import os as _os -import ctypes as _ctypes -from numbers import Number as _Number - -import numpy as np - -from . import _base -from ._base import _LIB, check_call as _check_call, _FFI_MODE, _all_var_init -from .attribute import AttrScope -from . import _symbol_internal as _internal -from . import contrib - -# Use different verison of SymbolBase -# When possible, use cython to speedup part of computation. - -IMPORT_EXCEPT = RuntimeError if _FFI_MODE == "cython" else ImportError - -try: - if _FFI_MODE == "ctypes": - raise ImportError() - if _sys.version_info >= (3, 0): - from ._cy3.symbol import SymbolBase, _init_symbol_module - else: - from ._cy2.symbol import SymbolBase, _init_symbol_module -except IMPORT_EXCEPT: - # pylint: disable=wrong-import-position - from ._ctypes.symbol import SymbolBase, _init_symbol_module - - -class Symbol(SymbolBase): - """Symbol is basic operation unit for symbolic graph composition.""" - # disable dictionary storage, also do not have parent type. - __slots__ = [] - - _tvm_tcode = 16 - - @property - def _tvm_handle(self): - return self.handle.value - - def __add__(self, other): - """x.__add__(y) <=> x+y""" - if isinstance(other, Symbol): - return __add_symbol__(self, other) - if isinstance(other, _Number): - return __add_scalar__(self, scalar=other) - raise TypeError("type %s not supported" % str(type(other))) - - def __radd__(self, other): - return self.__add__(other) - - def __sub__(self, other): - """x.__sub__(y) <=> x-y""" - if isinstance(other, Symbol): - return __sub_symbol__(self, other) - if isinstance(other, _Number): - return __sub_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __rsub__(self, other): - if isinstance(other, _Number): - return __rsub_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __mul__(self, other): - """x.__mul__(y) <=> x*y""" - if isinstance(other, Symbol): - return __mul_symbol__(self, other) - if isinstance(other, _Number): - return __mul_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __rmul__(self, other): - return self.__mul__(other) - - def __div__(self, other): - """x.__div__(y) <=> x/y""" - if isinstance(other, Symbol): - return __div_symbol__(self, other) - if isinstance(other, _Number): - return __div_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __rdiv__(self, other): - if isinstance(other, _Number): - return __rdiv_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __lshift__(self, other): - """x.__lshift__(y) <=> x << y""" - if isinstance(other, _Number): - return __lshift_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __rshift__(self, other): - """x.__rshift__(y) <=> x >> y""" - if isinstance(other, _Number): - return __rshift_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __truediv__(self, other): - return self.__div__(other) - - def __rtruediv__(self, other): - return self.__rdiv__(other) - - def __pow__(self, other): - """x.__pow__(y) <=> x**y""" - if isinstance(other, Symbol): - return __pow_symbol__(self, other) - if isinstance(other, _Number): - return __pow_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __rpow__(self, other): - if isinstance(other, _Number): - return __rpow_scalar__(self, scalar=other) - raise TypeError('type %s not supported' % str(type(other))) - - def __neg__(self): - """x.__neg__() <=> -x""" - return self.__mul__(-1.0) - - def __copy__(self): - return self.__deepcopy__() - - def __deepcopy__(self, _=None): - """Returns a deep copy of the input object.""" - handle = _base.SymbolHandle() - _base.check_call(_LIB.NNSymbolCopy(self.handle, - _ctypes.byref(handle))) - return Symbol(handle) - - def __getitem__(self, index): - if isinstance(index, _base.string_types): - idx = None - for i, name in enumerate(self.list_output_names()): - if name == index: - if idx is not None: - raise ValueError('There are multiple outputs with name \"%s\"' % index) - idx = i - if idx is None: - raise ValueError('Cannot find output that matches name \"%s\"' % index) - index = idx - if not isinstance(index, int): - raise TypeError('Symbol only support integer index to fetch i-th output') - handle = _base.SymbolHandle() - _check_call(_LIB.NNSymbolGetOutput( - self.handle, _base.nn_uint(index), _ctypes.byref(handle))) - return Symbol(handle=handle) - - def __iter__(self): - return (self[i] for i in self.list_output_names()) - - def attr(self, key): - """Get attribute string from the symbol, this function only works for non-grouped symbol. - - Parameters - ---------- - key : str - The key to get attribute from. - - Returns - ------- - value : str - The attribute value of the key, returns None if attribute do not exist. - """ - ret = _ctypes.c_char_p() - success = _ctypes.c_int() - _check_call(_LIB.NNSymbolGetAttr( - self.handle, _base.c_str(key), _ctypes.byref(ret), _ctypes.byref(success))) - if success.value != 0: - return _base.py_str(ret.value) - return None - - def list_attr(self, recursive=False): - """Get all attributes from the symbol. - - Parameters - ---------- - recursive : bool - Default `False`. When `recursive` is `True`, list recursively all the - attributes in the descendents. The attribute names are pre-pended with - the symbol names to avoid conflicts. If `False`, then only attributes - that belongs to this symbol is returned, and the attribute names will - **not** be pre-pended with the symbol name. - """ - size = _base.nn_uint() - pairs = _ctypes.POINTER(_ctypes.c_char_p)() - option = _ctypes.c_int(0) if recursive else _ctypes.c_int(1) - _check_call(_LIB.NNSymbolListAttrs( - self.handle, option, _ctypes.byref(size), _ctypes.byref(pairs))) - return {_base.py_str(pairs[i*2]): _base.py_str(pairs[i*2+1]) for i in range(size.value)} - - def get_internals(self): - """Get a new grouped symbol whose output contains all the internal outputs of this symbol. - - Returns - ------- - sgroup : Symbol - The internal of the symbol. - """ - handle = _base.SymbolHandle() - _check_call(_LIB.NNSymbolGetInternals( - self.handle, _ctypes.byref(handle))) - return Symbol(handle=handle) - - def get_children(self): - """Gets a new grouped symbol whose output contains - inputs to output nodes of the original symbol.""" - handle = _base.SymbolHandle() - _check_call(_LIB.NNSymbolGetChildren( - self.handle, _ctypes.byref(handle))) - ret = Symbol(handle=handle) - if not ret.list_output_names(): - return None - return ret - - def _get_list_copt(self, option): - """internal function to get list option""" - if option == 'all': - return _ctypes.c_int(0) - if option == 'read_only': - return _ctypes.c_int(1) - if option == 'aux_state': - return _ctypes.c_int(2) - raise ValueError("option need to be in {'all', 'read_only, 'aux_state'}") - - def list_input_variables(self, option='all'): - """List all the input variables in the symbol. - - Parameters - ---------- - option : {'all', 'read_only', 'aux_state'}, optional - The listing option - - 'all' will list all the arguments. - - 'read_only' lists arguments that are readed by the graph. - - 'aux_state' lists arguments that are mutated by the graph as state. - Returns - ------- - vars : list of symbol - List of all the variables - """ - size = _ctypes.c_uint() - sarr = _ctypes.POINTER(_base.SymbolHandle)() - _check_call(_LIB.NNSymbolListInputVariables( - self.handle, self._get_list_copt(option), - _ctypes.byref(size), _ctypes.byref(sarr))) - return [Symbol(_base.SymbolHandle(sarr[i])) for i in range(size.value)] - - def list_input_names(self, option='all'): - """List all the inputs in the symbol. - - Parameters - ---------- - option : {'all', 'read_only', 'aux_state'}, optional - The listing option - - 'all' will list all the arguments. - - 'read_only' lists arguments that are readed by the graph. - - 'aux_state' lists arguments that are mutated by the graph as state. - Returns - ------- - args : list of string - List of all the arguments. - """ - size = _ctypes.c_uint() - sarr = _ctypes.POINTER(_ctypes.c_char_p)() - _check_call(_LIB.NNSymbolListInputNames( - self.handle, self._get_list_copt(option), - _ctypes.byref(size), _ctypes.byref(sarr))) - return [_base.py_str(sarr[i]) for i in range(size.value)] - - def list_output_names(self): - """List all outputs in the symbol. - - Returns - ------- - returns : list of string - List of all the outputs. - """ - size = _ctypes.c_uint() - sarr = _ctypes.POINTER(_ctypes.c_char_p)() - _check_call(_LIB.NNSymbolListOutputNames( - self.handle, _ctypes.byref(size), _ctypes.byref(sarr))) - return [_base.py_str(sarr[i]) for i in range(size.value)] - - def debug_str(self): - """Get a debug string. - - Returns - ------- - debug_str : string - Debug string of the symbol. - """ - debug_str = _ctypes.c_char_p() - _check_call(_LIB.NNSymbolPrint( - self.handle, _ctypes.byref(debug_str))) - return _base.py_str(debug_str.value) - - def _add_control_deps(self, deps): - """Add control flow dependencies. - This makes current op depend on the deps. - Only use when necessary, - this function mutate the current symbol node. - - Returns - ------- - deps : Symbol for list of symbol - The dependencies - """ - if isinstance(deps, list): - deps = Group(deps) - _check_call(_LIB.NNAddControlDeps( - self.handle, deps.handle)) - - -def Variable(name, init=None, **kwargs): - """Create a symbolic variable with specified name. - - Parameters - ---------- - name : str - Name of the variable. - init : Symbol or numpy.ndarray - Symbol or numpy ndarray of initial value for the variable. - Note that for symbolic initialization value, it must be able - to be defined through InferShape, such as sym.zeros_like(v), - in which v is an input or parameter. Otherwise, pass a numpy - ndarray instead. - kwargs : dict of string -> string - Additional attributes to set on the variable. - - Returns - ------- - variable : Symbol - The created variable symbol. - """ - if not isinstance(name, _base.string_types): - raise TypeError('Expect a string for variable `name`') - handle = _base.SymbolHandle() - _base.check_call(_LIB.NNSymbolCreateVariable( - _base.c_str(name), _ctypes.byref(handle))) - ret = Symbol(handle) - attr = AttrScope.current.get(kwargs) - if attr: - ret._set_attr(**attr) - if init is not None: - if not isinstance(init, (Symbol, np.ndarray)): - raise TypeError('Expect a Symbol or numpy ndarray' - 'for variable `init`') - _all_var_init[name] = init - return ret - - -def Group(symbols): - """Create a symbol that groups symbols together. - - Parameters - ---------- - symbols : list - List of symbols to be grouped. - - Returns - ------- - sym : Symbol - The created group symbol. - """ - ihandles = [] - for sym in symbols: - if not isinstance(sym, Symbol): - raise TypeError('Expect Symbols in the list input') - ihandles.append(sym.handle) - handle = _base.SymbolHandle() - _check_call(_LIB.NNSymbolCreateGroup( - _base.nn_uint(len(ihandles)), - _base.c_array(_base.SymbolHandle, ihandles), - _ctypes.byref(handle))) - return Symbol(handle) - -# Set the real symbol class to Symbol -_init_symbol_module(Symbol, "nnvm") diff --git a/nnvm/python/nnvm/testing/__init__.py b/nnvm/python/nnvm/testing/__init__.py deleted file mode 100644 index 506a9e9aa68b..000000000000 --- a/nnvm/python/nnvm/testing/__init__.py +++ /dev/null @@ -1,33 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Utilities for testing and benchmarks""" -from __future__ import absolute_import as _abs - -from .config import ctx_list -from .utils import create_workload -from . import mobilenet -from . import mobilenet_v2 -from . import mlp -from . import resnet -from . import vgg -from . import densenet -from . import squeezenet -from . import inception_v3 -from . import dcgan -from . import dqn -from . import check_computation diff --git a/nnvm/python/nnvm/testing/check_computation.py b/nnvm/python/nnvm/testing/check_computation.py deleted file mode 100644 index 63b3a17880a2..000000000000 --- a/nnvm/python/nnvm/testing/check_computation.py +++ /dev/null @@ -1,573 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=cell-var-from-loop,no-else-return -"""Helper utilities to check functions and their gradients.""" -from __future__ import absolute_import as _abs - -import logging -import numpy as np - -import tvm -from tvm.contrib import graph_runtime -from tvm.testing import check_numerical_grads -from tvm import relay - -import nnvm -from nnvm.compiler import graph_util -from nnvm.compiler.graph_attr import TCODE_TO_DTYPE, DTYPE_TO_TCODE -from nnvm.to_relay import to_relay -from .config import ctx_list - -def infer_shapes_dtypes(graph, shape=None, dtype=None, fallback_dtype=None): - """Runs dtype and shape inference passes on a graph and returns the resulting graph - along with the inferred information. - - Parameters - ---------- - graph : nnvm.graph.Graph - A graph we want to run inference on. - - shape : Dict[str, Tuple[int]] or Tuple[int], optional - A dict mapping input variable names to shapes. - By default shapes will be inferred from variables' attributes. - Note that this parameter takes precedence over variables' attributes. - - dtype : Dict[str, str] or str, optional - A dict mapping input variable names to dtypes, or just a single dtype. - By default dtypes will be inferred from variables' attributes. - Note that this parameter takes precedence over variables' attributes. - - fallback_dtype : str, optional - A dtype that will be used for variables whose dtype can't be inferred from other - variables' dtypes. - - Returns - ------- - graph : nnvm.graph.Graph - The resulting graph with dtype and shape information on its nodes. - - input_shapes : Dict[str, Tuple[int]] - The inferred shapes of input variables merged with the `shape` dictionary. - - input_dtypes : Dict[str, str] - The inferred dtypes of input variables merged with the `dtype` dictionary. - - output_shapes : List[Tuple[int]] - The inferred shapes of outputs. - - output_dtypes : List[str] - The inferred dtypes of outputs. - """ - # Preprocess input parameters - if shape is None: - provided_shapes = {} - elif isinstance(shape, dict): - provided_shapes = shape - else: - provided_shapes = {x: shape for x in graph.symbol.list_input_variables()} - - if dtype is None: - provided_dtypes = {} - elif isinstance(dtype, dict): - provided_dtypes = dtype - else: - provided_dtypes = {x: dtype for x in graph.symbol.list_input_variables()} - - provided_shapes = _dict_var_to_dict_str(provided_shapes) - provided_dtypes = _dict_var_to_dict_str(provided_dtypes) - - # The graph may already contain shape and dtype info, so extract it and merge with - # the user-specified shapes and dtypes (use the user-specified one on contradiction) - preexisting_shapes = graph.json_attr('shape') - preexisting_dtypes = graph.json_attr('dtype') - - if preexisting_shapes: - for x in graph.index.input_names: - if x not in provided_shapes: - x_shape = tuple(preexisting_shapes[graph.index.entry_id(x)]) - provided_shapes[x] = x_shape - - if preexisting_dtypes: - for x in graph.index.input_names: - if x not in provided_dtypes: - x_dtype = TCODE_TO_DTYPE[preexisting_dtypes[graph.index.entry_id(x)]] - provided_dtypes[x] = x_dtype - - # Perform inference - nnvm.compiler.graph_attr.set_shape_inputs(graph, provided_shapes) - nnvm.compiler.graph_attr.set_dtype_inputs(graph, provided_dtypes) - - graph = graph.apply('InferShape').apply('InferType') - - inferred_shapes = graph.json_attr('shape') - inferred_dtypes = graph.json_attr('dtype') - - index = graph.index - - output_shapes = [tuple(inferred_shapes[index.entry_id(entry)]) - for entry in index.output_entries] - output_dtypes = [TCODE_TO_DTYPE[inferred_dtypes[index.entry_id(entry)]] - for entry in index.output_entries] - - # Postprocess the results - input_shapes = provided_shapes.copy() - input_dtypes = provided_dtypes.copy() - - for x in graph.symbol.list_input_variables(): - x_name = x.attr('name') - x_entry_id = graph.index.entry_id(x_name) - input_shapes[x_name] = tuple(inferred_shapes[x_entry_id]) - input_dtypes[x_name] = TCODE_TO_DTYPE[inferred_dtypes[x_entry_id]] - - # Merge the original user-specified shapes in case some of them are specified for non-existing - # variables - for x_name, x_shape in provided_shapes.items(): - x_shape = tuple(x_shape) - if input_shapes.get(x_name, x_shape) != x_shape: - raise RuntimeError("Inferred shape differs from the provided shape.\n" - "Provided shapes: {}\nInferred shapes: {}" - .format(provided_shapes, input_shapes)) - else: - input_shapes[x_name] = x_shape - - # Merge the original user-specified dtypes - for x_name, x_dtype in provided_dtypes.items(): - if not isinstance(x_dtype, str): - x_dtype = TCODE_TO_DTYPE[x_dtype] - if input_dtypes.get(x_name, x_dtype) != x_dtype: - raise RuntimeError("Inferred dtype differs from the provided dtype.\n" - "Provided dtypes: {}\nInferred dtypes: {}" - .format(provided_dtypes, input_dtypes)) - else: - input_dtypes[x_name] = x_dtype - - # If some dtypes weren't inferred and there is a fallback dtype, assign it to those varibles - # and repeat the inference - if fallback_dtype is not None and not all(input_dtypes.values()): - input_dtypes = {x: input_dtypes[x] if input_dtypes[x] else fallback_dtype - for x in input_dtypes} - return infer_shapes_dtypes(graph, input_shapes, input_dtypes, fallback_dtype=None) - - return graph, input_shapes, input_dtypes, output_shapes, output_dtypes - -def graph_to_function(graph, target, ctx, shape=None, dtype=None): - """Convert a graph to a function taking a keyword args and returning a list of results - (both args and results are numpy arrays). - - Example:: - - fun = graph_to_function(graph, llvm, cpu(0)) - [res1, res2] = fun(x=np.zeros((1,2)), y=np.zeros((1,))) - - Parameters - ---------- - graph : nnvm.graph.Graph - A graph we want to convert to a function. - - target : str or :any:`tvm.target.Target` - The build target - - ctx : TVMContext - The context to deploy the module. - - shape : Dict[str, Tuple[int]], optional - A dict mapping input variable names to shapes. - By default shapes will be inferred from variables' attributes. - Note that this parameter takes precedence over variables' attributes. - - dtype : Dict[str, str] or str, optional - A dict mapping input variable names to dtypes, or just a single dtype. - By default dtypes will be inferred from variables' attributes. - Note that this parameter takes precedence over variables' attributes. - - Returns - ------- - function : Callable[..., List[numpy.ndarray]] - """ - # Infer missing shapes and dtypes - graph, shape, dtype, output_shapes, output_dtypes = \ - infer_shapes_dtypes(graph, shape=shape, dtype=dtype) - - if None in dtype.values(): - raise ValueError("Input variables with no type: {}".format(dtype)) - - if not all(shape.values()): - raise ValueError("Input variables with no shape: {}".format(shape)) - - compute_graph, lib, params = nnvm.compiler.build(graph, target, shape=shape, dtype=dtype) - module = graph_runtime.create(compute_graph, lib, ctx) - - if params: - module.set_inputs(**params) - - def run(**kwargs): - module.run(**kwargs) - res = [] - for i, (o_shape, o_dtype) in enumerate(zip(output_shapes, output_dtypes)): - res.append(module.get_output(i, tvm.nd.empty(o_shape, o_dtype)).asnumpy()) - return res - - return run - -def _dict_var_to_dict_str(dictionary): - """Convert a Dict[nnvm.Symbol, T] to Dict[str, T]""" - if isinstance(dictionary, dict): - return {s.attr('name') if isinstance(s, nnvm.symbol.Symbol) else s: - dictionary[s] for s in dictionary} - else: - return dictionary - -def check_function(symbol, forward=None, backward=None, grad_input_vars=None, - shape=None, dtype=None, in_range=None, values=None, - exclude_targets=None, only_targets=None, - additional_params=None, - numerical_grads=None, numerical_grads_params=None, - atol=1e-5, rtol=1e-5, quiet=False): - """Compute the function and/or its gradients on a random input and raise - an exception if the result doesn't match the reference implementation. - - Parameters - ---------- - symbol : nnvm.Symbol - A symbol representing the output. - - forward : Callable[..., List[numpy.ndarray]], optional - A reference implementation to compare with. - - backward : Callable[..., List[numpy.ndarray] or Dict[str, numpy.ndarray]], optional - A reference implementation of gradients. Should also accept head_grads besides - normal inputs which is a list of gradients of some scalar wrt the outputs or just a - single gradient if there are multiple outputs. - Should return either a dict mapping input variable names to the respective - gradients or a list of gradients wrt variables from grad_input_vars in - exactly the same order (in alphabetical order by default). - - grad_input_vars : List[nnvm.Symbol or str], optional - A list of variables with respect to which the gradients will be computed. - None (default) means that all input variables will be used in an alphabetical order. - - shape : Dict[nnvm.Symbol or str, Tuple[int]] or Tuple[int], optional - A dict mapping input variable names to shapes, or just a single shape. - By default shapes will be inferred from variables' attributes (see the Examples). - Note that this parameter takes precedence over variables' attributes. - - dtype : Dict[nnvm.Symbol or str, str] or str, optional - A dict mapping input variable names to dtypes, or just a single dtype. - By default dtypes will be inferred from variables' attributes (see the Examples). - If dtypes cannot be inferred for some variables then float32 will be used as a fallback. - Note that this parameter takes precedence over variables' attributes. - - in_range : Dict[nnvm.Symbol or str, (float, float)] or (float, float), optional - A dict mapping input variable names to ranges or just a single range - (the same for all variables). Input values will be generated from - uniform distributions on these ranges. `head_grads` can also be - assigned a range this way. - - values : Dict[nnvm.Symbol or str, numpy.ndarray], optional - A dict explicitly providing values for some variables instead of random generation. - - exclude_targets : Set[str], optional - Skip compiling and running anything for these targets. - - only_targets : Set[str], optional - Test only for those targets from `ctx_list()` that are also in this set. - - additional_params : dict, optional - A dict of additional parameters which will be passed to forward and backward. - - numerical_grads : bool or 'if_possible', optional - Whether to additionally check against numerically computed gradients. If 'if_possible' or - None is passed (which is the default) then it will try to create a gradient computation - graph and then check gradients numerically only if this graph can be created (i.e. if there - are some operations with unimplemented gradients, it will just issue a warning). - Checking against numerical gradients is done via the `check_numerical_grads` function. - - numerical_grads_params : dict, optional - Additional parameters for `check_numerical_grads`. - - atol : float, optional - Absolute tolerance for `tvm.testing.assert_allclose`. NOT used for numerical gradients. - - rtol : float, optional - Relative tolerance for `tvm.testing.assert_allclose`. NOT used for numerical gradients. - - quiet : bool, optional - Don't dump additional information to stdout on failure. - - Examples - -------- - .. code-block:: python - - x = sym.Variable("x", shape=(1, 2)) - y = sym.Variable("y", shape=(1, 2)) - - # check the function and its gradients both numerically and using a reference function - check_function(x + 2*y, - lambda x, y: x + 2*y, - lambda x, y, head_grads: {'x': head_grads, 'y': 2*head_grads}) - - # just check gradients numerically - check_function(x + 2*y, numerical_grads=True) - - # just check the forward computation - check_function(x + 2*y, lambda x, y: x + 2*y, numerical_grads=False) - - # specifying dtype - check_function(x + 2*y, lambda x, y: x + 2*y, dtype='float64') - - # dtypes can also be specified during variable creation with dtype codes - x = sym.Variable("x", dtype=0) - check_function(x + 1, shape=(2, 2), numerical_grads=True) - """ - # validate and preprocess the input params - if numerical_grads is None and forward is None and backward is None: - raise ValueError("No reference function was passed to check_function. If you only want to " - "check gradients numerically, pass numerical_grads=True explicitly.") - - if numerical_grads is None: - numerical_grads = 'if_possible' - - if numerical_grads not in [False, True, 'if_possible']: - raise ValueError("numerical_grads must be a bool or 'if_possible', not {}" - .format(numerical_grads)) - - if additional_params is None: - additional_params = {} - - input_vars = symbol.list_input_variables() - input_dict = {x.attr('name'): x for x in input_vars} - - if grad_input_vars is None: - grad_input_vars = sorted(input_vars, key=lambda x: x.attr('name')) - else: - grad_input_vars = [input_dict[x] if isinstance(x, str) else x for x in grad_input_vars] - - in_range = _dict_var_to_dict_str(in_range) - values = _dict_var_to_dict_str(values) - - out_len = len(symbol.list_output_names()) - - # Infer the output shapes and dtypes, and preprocess the shape and dtype params - forward_graph, shape, dtype, out_shapes, out_dtypes = \ - infer_shapes_dtypes(nnvm.graph.create(symbol), shape=shape, dtype=dtype, - fallback_dtype='float32') - - if not all(out_shapes) or not all(out_dtypes): - if not quiet: - print(forward_graph.ir(join_node_attrs=['shape', 'dtype'])) - raise ValueError("Could not infer shapes or dtypes for outputs.\n" - "out_shapes = {}\nout_dtypes = {}".format(out_shapes, out_dtypes)) - - backward_graph = None - - # If we want gradients, we have to recreate the graph, but now with gradient computations - # Note that here we need out_shapes for defining the shape of head grads, so we have to - # create the graph twice - if backward is not None or numerical_grads: - try: - head_grads_symbols = [nnvm.symbol.Variable("head_grads_" + str(i), - shape=out_shapes[i], - dtype=DTYPE_TO_TCODE[out_dtypes[i]]) - for i in range(out_len)] - grad_symbols = graph_util.gradients([symbol], grad_input_vars, - grad_ys=head_grads_symbols) - # Sometimes grads do not depend on head_grads, so head_grads does not appear - # in the variable list; adding it manually prevents this, making things a bit easier - backward_graph = \ - nnvm.graph.create(nnvm.symbol.Group([symbol] + grad_symbols + head_grads_symbols)) - - backward_graph, shape, dtype, out_shapes, out_dtypes = \ - infer_shapes_dtypes(backward_graph, shape=shape, dtype=dtype, - fallback_dtype='float32') - except nnvm._base.NNVMError as err: - if backward is None and numerical_grads == "if_possible": - logging.warning("Won't check gradients because: %s", str(err).split('\n', 1)[0]) - numerical_grads = False - backward_graph = None - else: - raise - - main_graph = backward_graph if backward_graph is not None else forward_graph - - # Generate random data for inputs (including head_grads) - - np_inputs = {} - - for x in main_graph.symbol.list_input_variables(): - x_name = x.attr('name') - x_shape = shape[x_name] - x_dtype = dtype[x_name] - - if values is not None and x_name in values: - np_inputs[x_name] = values[x_name].astype(x_dtype) - continue - - low = -1.0 - high = 1.0 - if in_range is not None: - if isinstance(in_range, dict): - if x_name in in_range: - low = in_range[x_name][0] - high = in_range[x_name][1] - else: - low = in_range[0] - high = in_range[1] - - np_inputs[x_name] = np.random.uniform(size=x_shape, low=low, high=high).astype(x_dtype) - - np_inputs_without_head_grads = {k: np_inputs[k] for k in np_inputs - if not k.startswith('head_grads_')} - - nothing_was_done = True - - # Compute and compare the results - for target, ctx in ctx_list(): - if exclude_targets is not None: - if target in exclude_targets or str(target) in exclude_targets: - logging.info("Skipping target = %s, ctx = %s", target, ctx) - continue - if only_targets is not None: - if target not in only_targets and str(target) not in only_targets: - logging.info("Skipping target = %s, ctx = %s", target, ctx) - continue - - logging.info("Checking computation on target = %s, ctx = %s", target, ctx) - - debug_stage = None - - try: - nnvm_res = None - - debug_stage = "compiling" - main_function = graph_to_function(main_graph, target, ctx) - - # nnvm_res contains the output and gradients (if they are needed) - debug_stage = "running" - nnvm_res = main_function(**np_inputs) - - try: - logging.debug("checking to_relay conversion") - inputs = np_inputs_without_head_grads.copy() - func, inputs = to_relay(main_graph, shape, dtype, params=inputs) - with relay.build_config(opt_level=3): - graph, lib, params = relay.build(func, target=target) - m = graph_runtime.create(graph, lib, ctx) - m.set_input(**inputs) - m.set_input(**params) - m.run() - for i in range(out_len): - relay_out = m.get_output(i).asnumpy() - tvm.testing.assert_allclose(nnvm_res[i], relay_out, atol=atol, rtol=rtol) - except NotImplementedError as err: - # the NNVM operator is not supported yet - logging.warning(err) - - if backward_graph is not None: - grad_var_names = [x.attr('name') for x in grad_input_vars] - nnvm_grads = {x: v for x, v in zip(grad_var_names, nnvm_res[out_len:])} - - if forward is not None: - nothing_was_done = False - debug_stage = "checking forward computation" - logging.debug(debug_stage) - - params = {} - params.update(np_inputs_without_head_grads) - params.update(additional_params) - numpy_res = forward(**params) - - if isinstance(numpy_res, tuple): - numpy_res = list(numpy_res) - - if not isinstance(numpy_res, list): - numpy_res = [numpy_res] - - if len(numpy_res) != out_len: - raise ValueError("Forward function returned {} values, but " - "the nnvm graph returns {} values" - .format(len(numpy_res), out_len)) - - for i in range(out_len): - tvm.testing.assert_allclose(nnvm_res[i], numpy_res[i], atol=atol, rtol=rtol) - - if backward is not None: - nothing_was_done = False - debug_stage = "checking gradients" - logging.debug(debug_stage) - - np_head_grads = [np_inputs["head_grads_" + str(i)] for i in range(out_len)] - - if out_len == 1: - np_head_grads = np_head_grads[0] - - params = {'head_grads': np_head_grads} - params.update(np_inputs_without_head_grads) - params.update(additional_params) - numpy_grads = backward(**params) - - if not isinstance(numpy_grads, dict): - if isinstance(numpy_grads, tuple): - numpy_grads = list(numpy_grads) - if not isinstance(numpy_grads, list): - numpy_grads = [numpy_grads] - numpy_grads = {x: v for x, v in zip(grad_var_names, numpy_grads)} - if len(numpy_grads) != len(grad_var_names): - raise ValueError("The backward function returns a list of gradients which " - "does not contain gradients for these variables: {}" - .format(set(grad_var_names) - set(numpy_grads))) - - for x_name in numpy_grads: - tvm.testing.assert_allclose(nnvm_grads[x_name], numpy_grads[x_name], - atol=atol, rtol=rtol) - - if numerical_grads: - nothing_was_done = False - debug_stage = "checking gradients numerically" - logging.debug(debug_stage) - - forward_function = graph_to_function(forward_graph, target, ctx) - - # Since the result may be non-scalar, we have to put another operation on the top, - # so we just multiple by the randomly generated head_grads and then sum everything. - # This way we can reuse the gradient values which has been already computed. - def scalar_function(**kwargs): - res = forward_function(**kwargs) - return np.sum([np.dot(np_inputs['head_grads_' + str(i)].ravel(), res[i].ravel()) - for i in range(out_len)]) - - if numerical_grads_params is None: - numerical_grads_params = {} - - check_numerical_grads( - scalar_function, - input_values=np_inputs_without_head_grads, - grad_values=nnvm_grads, - **numerical_grads_params) - - except: - if not quiet: - print("\ncheck_function failed while {}, here is the main graph" - .format(debug_stage)) - print(main_graph.ir(join_node_attrs=['shape', 'dtype'])) - if nnvm_res is not None: - print("Generated inputs:") - print(np_inputs) - print() - raise - - if nothing_was_done: - logging.warning("Nothing was done in check_function. Check ctx_list().") diff --git a/nnvm/python/nnvm/testing/config.py b/nnvm/python/nnvm/testing/config.py deleted file mode 100644 index 175478b6e14a..000000000000 --- a/nnvm/python/nnvm/testing/config.py +++ /dev/null @@ -1,30 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Configuration about tests""" -from __future__ import absolute_import as _abs - -import os -import tvm - -def ctx_list(): - """Get context list for testcases""" - device_list = os.environ.get("NNVM_TEST_TARGETS", "") - device_list = (device_list.split(",") if device_list - else ["llvm", "cuda"]) - device_list = set(device_list) - res = [(device, tvm.context(device, 0)) for device in device_list] - return [x for x in res if x[1].exist] diff --git a/nnvm/python/nnvm/testing/dcgan.py b/nnvm/python/nnvm/testing/dcgan.py deleted file mode 100644 index 714b3fbb1301..000000000000 --- a/nnvm/python/nnvm/testing/dcgan.py +++ /dev/null @@ -1,109 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=unused-argument -""" -Symbol of the generator of DCGAN - -Adopted from: -https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py - -Reference: -Radford, Alec, Luke Metz, and Soumith Chintala. -"Unsupervised representation learning with deep convolutional generative adversarial networks." -arXiv preprint arXiv:1511.06434 (2015). -""" -from .. import symbol as sym -from . utils import create_workload - -def deconv2d(data, ishape, oshape, kshape, name, stride=(2, 2)): - """a deconv layer that enlarges the feature map""" - target_shape = (oshape[-2], oshape[-1]) - - pad_y = (kshape[0] - 1) // 2 - pad_x = (kshape[1] - 1) // 2 - adj_y = (target_shape[0] + 2 * pad_y - kshape[0]) % stride[0] - adj_x = (target_shape[1] + 2 * pad_x - kshape[1]) % stride[1] - - net = sym.conv2d_transpose(data, - kernel_size=kshape, - strides=stride, - channels=oshape[0], - padding=(pad_y, pad_x), - output_padding=(adj_y, adj_x), - use_bias=False, - name=name) - return net - -def deconv2d_bn_relu(data, prefix, **kwargs): - """a block of deconv + batch norm + relu""" - eps = 1e-5 + 1e-12 - net = deconv2d(data, name="%s_deconv" % prefix, **kwargs) - net = sym.batch_norm(net, epsilon=eps, name="%s_bn" % prefix) - net = sym.relu(net, name="%s_act" % prefix) - return net - -def get_symbol(oshape, ngf=128, code=None): - """get symbol of dcgan generator""" - assert oshape[-1] == 64, "Only support 64x64 image" - assert oshape[-2] == 64, "Only support 64x64 image" - - code = sym.Variable("data") if code is None else code - net = sym.dense(code, name="g1", units=4*4*ngf*8, use_bias=False) - net = sym.relu(net) - # 4 x 4 - net = sym.reshape(net, shape=(-1, ngf * 8, 4, 4)) - # 8 x 8 - net = deconv2d_bn_relu( - net, ishape=(ngf * 8, 4, 4), oshape=(ngf * 4, 8, 8), kshape=(4, 4), prefix="g2") - # 16x16 - net = deconv2d_bn_relu( - net, ishape=(ngf * 4, 8, 8), oshape=(ngf * 2, 16, 16), kshape=(4, 4), prefix="g3") - # 32x32 - net = deconv2d_bn_relu( - net, ishape=(ngf * 2, 16, 16), oshape=(ngf, 32, 32), kshape=(4, 4), prefix="g4") - # 64x64 - net = deconv2d( - net, ishape=(ngf, 32, 32), oshape=oshape[-3:], kshape=(4, 4), name="g5_deconv") - net = sym.tanh(net) - return net - - -def get_workload(batch_size, oshape=(3, 64, 64), ngf=128, random_len=100, dtype="float32"): - """Get benchmark workload for a DCGAN generator - - Parameters - ---------- - batch_size : int - The batch size used in the model - oshape : tuple, optional - The shape of output image, layout="CHW" - ngf: int, optional - The number of final feature maps in the generator - random_len : int, optional - The length of random input - dtype : str, optional - The data type - - Returns - ------- - net : nnvm.symbol - The computational graph - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(oshape=oshape, ngf=ngf) - return create_workload(net, batch_size, (random_len, ), dtype) diff --git a/nnvm/python/nnvm/testing/densenet.py b/nnvm/python/nnvm/testing/densenet.py deleted file mode 100644 index 92ba2bf46a8f..000000000000 --- a/nnvm/python/nnvm/testing/densenet.py +++ /dev/null @@ -1,65 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -DenseNet, load model from gluon model zoo - -Reference: -Huang, Gao, et al. "Densely Connected Convolutional Networks." CVPR 2017 -""" - -from .utils import create_workload -from ..frontend.mxnet import _from_mxnet_impl - -def get_workload(batch_size, num_classes=1000, num_layers=121, dtype="float32"): - """Get benchmark workload for mobilenet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - num_layers : int, optional - The number of layers - - dtype : str, optional - The data type - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - import mxnet as mx - from mxnet.gluon.model_zoo.vision import get_model - - image_shape = (1, 3, 224, 224) - - block = get_model('densenet%d' % num_layers, classes=num_classes, pretrained=False) - - data = mx.sym.Variable('data') - sym = block(data) - sym = mx.sym.SoftmaxOutput(sym) - - net = _from_mxnet_impl(sym, {}) - - return create_workload(net, batch_size, image_shape[1:], dtype) diff --git a/nnvm/python/nnvm/testing/dqn.py b/nnvm/python/nnvm/testing/dqn.py deleted file mode 100644 index b04475efa32a..000000000000 --- a/nnvm/python/nnvm/testing/dqn.py +++ /dev/null @@ -1,71 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Symbol of Nature DQN - -Reference: -Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." -Nature 518.7540 (2015): 529. -""" - -from .. import symbol as sym -from . utils import create_workload - -def get_symbol(num_actions=18): - """get symbol of nature dqn""" - data = sym.Variable(name='data') - net = sym.conv2d(data, kernel_size=(8, 8), strides=(4, 4), padding=(0, 0), - channels=32, name='conv1') - net = sym.relu(net, name='relu1') - net = sym.conv2d(net, kernel_size=(4, 4), strides=(2, 2), padding=(0, 0), - channels=64, name='conv2') - net = sym.relu(net, name='relu2') - net = sym.conv2d(net, kernel_size=(3, 3), strides=(1, 1), padding=(0, 0), - channels=64, name='conv3') - net = sym.relu(net, name='relu3') - net = sym.flatten(net, name='flatten') - net = sym.dense(net, units=512, name='fc4') - net = sym.relu(net, name='relu4') - net = sym.dense(net, units=num_actions, name='fc5') - - return net - - -def get_workload(batch_size, num_actions=18, image_shape=(4, 84, 84), dtype="float32"): - """Get benchmark workload for a Deep Q Network - - Parameters - ---------- - batch_size : int - The batch size used in the model - num_actions : int, optional - Number of actions - image_shape : tuple, optional - The input image shape - dtype : str, optional - The data type - - Returns - ------- - net : nnvm.symbol - The computational graph - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_actions=num_actions) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/testing/inception_v3.py b/nnvm/python/nnvm/testing/inception_v3.py deleted file mode 100644 index e1614d7a9fed..000000000000 --- a/nnvm/python/nnvm/testing/inception_v3.py +++ /dev/null @@ -1,270 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Inception V3, suitable for images with around 299 x 299 - -Reference: -Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision." -arXiv preprint arXiv:1512.00567 (2015). - -Adopted from https://github.com/apache/incubator-mxnet/blob/ - master/example/image-classification/symbols/inception-v3.py -""" -# pylint: disable=invalid-name,missing-docstring,unused-argument -from .. import symbol as sym -from .utils import create_workload - -def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''): - conv = sym.conv2d(data=data, channels=num_filter, kernel_size=kernel, - strides=stride, padding=pad, use_bias=False, - name='%s%s_conv2d' % (name, suffix)) - bn = sym.batch_norm(data=conv, name='%s%s_batchnorm' % (name, suffix), epsilon=2e-5) - act = sym.relu(data=bn, name='%s%s_relu' % (name, suffix)) - return act - -def Pooling(data, kernel, stride, pad, pool_type, name): - if pool_type == 'max': - return sym.max_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad, name=name) - if pool_type == 'avg': - return sym.avg_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad, name=name, - count_include_pad=True) - raise ValueError("Invalid pooling type: " + pool_type) - -def Inception7A(data, - num_1x1, - num_3x3_red, num_3x3_1, num_3x3_2, - num_5x5_red, num_5x5, - pool, proj, - name): - tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name)) - tower_5x5 = Conv(data, num_5x5_red, name=('%s_tower' % name), suffix='_conv') - tower_5x5 = Conv(tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=('%s_tower' % name), - suffix='_conv_1') - tower_3x3 = Conv(data, num_3x3_red, name=('%s_tower_1' % name), suffix='_conv') - tower_3x3 = Conv(tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), - suffix='_conv_1') - tower_3x3 = Conv(tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), - suffix='_conv_2') - pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, - name=('%s_pool_%s_pool' % (pool, name))) - - cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv') - concat = sym.concatenate(*[tower_1x1, tower_5x5, tower_3x3, cproj], - name='ch_concat_%s_chconcat' % name) - return concat - -# First Downsample -def Inception7B(data, - num_3x3, - num_d3x3_red, num_d3x3_1, num_d3x3_2, - pool, - name): - tower_3x3 = Conv(data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), - name=('%s_conv' % name)) - tower_d3x3 = Conv(data, num_d3x3_red, name=('%s_tower' % name), suffix='_conv') - tower_d3x3 = Conv(tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1), - name=('%s_tower' % name), suffix='_conv_1') - tower_d3x3 = Conv(tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2), - name=('%s_tower' % name), suffix='_conv_2') - pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pad=(0, 0), pool_type="max", - name=('max_pool_%s_pool' % name)) - concat = sym.concatenate(*[tower_3x3, tower_d3x3, pooling], name='ch_concat_%s_chconcat' % name) - return concat - -def Inception7C(data, - num_1x1, - num_d7_red, num_d7_1, num_d7_2, - num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4, - pool, proj, - name): - tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name)) - tower_d7 = Conv(data=data, num_filter=num_d7_red, name=('%s_tower' % name), suffix='_conv') - tower_d7 = Conv(data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), - name=('%s_tower' % name), suffix='_conv_1') - tower_d7 = Conv(data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), - name=('%s_tower' % name), suffix='_conv_2') - tower_q7 = Conv(data=data, num_filter=num_q7_red, name=('%s_tower_1' % name), suffix='_conv') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0), - name=('%s_tower_1' % name), suffix='_conv_1') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3), - name=('%s_tower_1' % name), suffix='_conv_2') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0), - name=('%s_tower_1' % name), suffix='_conv_3') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3), - name=('%s_tower_1' % name), suffix='_conv_4') - pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, - name=('%s_pool_%s_pool' % (pool, name))) - cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), - name=('%s_tower_2' % name), suffix='_conv') - # concat - concat = sym.concatenate(*[tower_1x1, tower_d7, tower_q7, cproj], - name='ch_concat_%s_chconcat' % name) - return concat - -def Inception7D(data, - num_3x3_red, num_3x3, - num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3, - pool, - name): - tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=('%s_tower' % name), - suffix='_conv') - tower_3x3 = Conv(data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), - name=('%s_tower' % name), suffix='_conv_1') - tower_d7_3x3 = Conv(data=data, num_filter=num_d7_3x3_red, name=('%s_tower_1' % name), - suffix='_conv') - tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), - name=('%s_tower_1' % name), suffix='_conv_1') - tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), - name=('%s_tower_1' % name), suffix='_conv_2') - tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2), - name=('%s_tower_1' % name), suffix='_conv_3') - pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, pad=(0, 0), - name=('%s_pool_%s_pool' % (pool, name))) - # concat - concat = sym.concatenate(*[tower_3x3, tower_d7_3x3, pooling], - name='ch_concat_%s_chconcat' % name) - return concat - -def Inception7E(data, - num_1x1, - num_d3_red, num_d3_1, num_d3_2, - num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2, - pool, proj, - name): - tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name)) - tower_d3 = Conv(data=data, num_filter=num_d3_red, name=('%s_tower' % name), suffix='_conv') - tower_d3_a = Conv(data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1), - name=('%s_tower' % name), suffix='_mixed_conv') - tower_d3_b = Conv(data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0), - name=('%s_tower' % name), suffix='_mixed_conv_1') - tower_3x3_d3 = Conv(data=data, num_filter=num_3x3_d3_red, name=('%s_tower_1' % name), - suffix='_conv') - tower_3x3_d3 = Conv(data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), - name=('%s_tower_1' % name), suffix='_conv_1') - tower_3x3_d3_a = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1), - name=('%s_tower_1' % name), suffix='_mixed_conv') - tower_3x3_d3_b = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0), - name=('%s_tower_1' % name), suffix='_mixed_conv_1') - pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, - name=('%s_pool_%s_pool' % (pool, name))) - cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name), - suffix='_conv') - # concat - concat = sym.concatenate( - *[tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj], - name='ch_concat_%s_chconcat' % name) - return concat - - -def get_symbol(num_classes=1000, **kwargs): - data = sym.Variable(name="data") - # stage 1 - conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv") - conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1") - conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2") - pool = Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0), - name="pool") - # stage 2 - conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3") - conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4") - pool1 = Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0), - name="pool1") - - # stage 3 - in3a = Inception7A(pool1, 64, - 64, 96, 96, - 48, 64, - "avg", 32, "mixed") - in3b = Inception7A(in3a, 64, - 64, 96, 96, - 48, 64, - "avg", 64, "mixed_1") - in3c = Inception7A(in3b, 64, - 64, 96, 96, - 48, 64, - "avg", 64, "mixed_2") - in3d = Inception7B(in3c, 384, - 64, 96, 96, - "max", "mixed_3") - # stage 4 - in4a = Inception7C(in3d, 192, - 128, 128, 192, - 128, 128, 128, 128, 192, - "avg", 192, "mixed_4") - in4b = Inception7C(in4a, 192, - 160, 160, 192, - 160, 160, 160, 160, 192, - "avg", 192, "mixed_5") - in4c = Inception7C(in4b, 192, - 160, 160, 192, - 160, 160, 160, 160, 192, - "avg", 192, "mixed_6") - in4d = Inception7C(in4c, 192, - 192, 192, 192, - 192, 192, 192, 192, 192, - "avg", 192, "mixed_7") - in4e = Inception7D(in4d, 192, 320, - 192, 192, 192, 192, - "max", "mixed_8") - # stage 5 - in5a = Inception7E(in4e, 320, - 384, 384, 384, - 448, 384, 384, 384, - "avg", 192, "mixed_9") - in5b = Inception7E(in5a, 320, - 384, 384, 384, - 448, 384, 384, 384, - "max", 192, "mixed_10") - # pool - pool = Pooling(data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", pad=(0, 0), - name="global_pool") - flatten = sym.flatten(data=pool, name="flatten") - fc1 = sym.dense(data=flatten, units=num_classes, name='fc1') - softmax = sym.softmax(data=fc1, name='softmax') - return softmax - -def get_workload(batch_size=1, num_classes=1000, - image_shape=(3, 299, 299), dtype="float32", **kwargs): - """Get benchmark workload for InceptionV3 - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - kwargs : dict - Extra arguments - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes, **kwargs) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/testing/init.py b/nnvm/python/nnvm/testing/init.py deleted file mode 100644 index 611c81e69483..000000000000 --- a/nnvm/python/nnvm/testing/init.py +++ /dev/null @@ -1,125 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Initializer of parameters.""" -import numpy as np - -class Initializer(object): - """The base class of an initializer.""" - def __init__(self, **kwargs): - self._kwargs = kwargs - - def __call__(self, desc, arr): - """Initialize an array - - Parameters - ---------- - desc : str - Initialization pattern descriptor. - - arr : NDArray - The array to be initialized. - """ - if desc.endswith('weight'): - self._init_weight(desc, arr) - elif desc.endswith('bias'): - self._init_bias(desc, arr) - elif desc.endswith('gamma'): - self._init_gamma(desc, arr) - elif desc.endswith('beta'): - self._init_beta(desc, arr) - elif desc.endswith('mean'): - self._init_mean(desc, arr) - elif desc.endswith('var'): - self._init_var(desc, arr) - else: - self._init_default(desc, arr) - - def _init_bias(self, _, arr): - arr[:] = 0.0 - - def _init_gamma(self, _, arr): - arr[:] = 1.0 - - def _init_beta(self, _, arr): - arr[:] = 0.0 - - def _init_mean(self, _, arr): - arr[:] = 0.0 - - def _init_var(self, _, arr): - arr[:] = 1.0 - - def _init_weight(self, name, arr): - """Abstract method to Initialize weight.""" - raise NotImplementedError("Must override it") - - def _init_default(self, name, _): - raise ValueError( - 'Unknown initialization pattern for %s. ' \ - 'Default initialization is now limited to '\ - '"weight", "bias", "gamma" (1.0), and "beta" (0.0).' \ - 'Please use mx.sym.Variable(init=mx.init.*) to set initialization pattern' % name) - - -class Xavier(Initializer): - """ "Xavier" initialization for weights - - Parameters - ---------- - rnd_type: str, optional - Random generator type, can be ``'gaussian'`` or ``'uniform'``. - - factor_type: str, optional - Can be ``'avg'``, ``'in'``, or ``'out'``. - - magnitude: float, optional - Scale of random number. - """ - def __init__(self, rnd_type="uniform", factor_type="avg", magnitude=3): - super(Xavier, self).__init__(rnd_type=rnd_type, - factor_type=factor_type, - magnitude=magnitude) - self.rnd_type = rnd_type - self.factor_type = factor_type - self.magnitude = float(magnitude) - - def _init_weight(self, name, arr): - shape = arr.shape - hw_scale = 1. - if len(shape) < 2: - raise ValueError('Xavier initializer cannot be applied to vector {0}. It requires at' - ' least 2D.'.format(name)) - if len(shape) > 2: - hw_scale = np.prod(shape[2:]) - fan_in, fan_out = shape[1] * hw_scale, shape[0] * hw_scale - factor = 1. - if self.factor_type == "avg": - factor = (fan_in + fan_out) / 2.0 - elif self.factor_type == "in": - factor = fan_in - elif self.factor_type == "out": - factor = fan_out - else: - raise ValueError("Incorrect factor type") - # Hack for mobilenet, because there is less connectivity - if "depthwise" in name: - factor = 3 * 3 - scale = np.sqrt(self.magnitude / factor) - if self.rnd_type == "uniform": - arr[:] = np.random.uniform(-scale, scale, size=arr.shape) - else: - raise ValueError("Unknown random type") diff --git a/nnvm/python/nnvm/testing/mlp.py b/nnvm/python/nnvm/testing/mlp.py deleted file mode 100644 index 1b6975661fe4..000000000000 --- a/nnvm/python/nnvm/testing/mlp.py +++ /dev/null @@ -1,60 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -a simple multilayer perceptron -""" -from .. import symbol as sym -from . utils import create_workload - -def get_symbol(num_classes=1000): - data = sym.Variable('data') - data = sym.flatten(data=data) - fc1 = sym.dense(data=data, name='fc1', units=128) - act1 = sym.relu(data=fc1, name='relu1') - fc2 = sym.dense(data=act1, name='fc2', units=64) - act2 = sym.relu(data=fc2, name='relu2') - fc3 = sym.dense(data=act2, name='fc3', units=num_classes) - mlp = sym.softmax(data=fc3, name='softmax') - return mlp - -def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), dtype="float32"): - """Get benchmark workload for a simple multilayer perceptron - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of claseses - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - Returns - ------- - net : nnvm.symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/testing/mobilenet.py b/nnvm/python/nnvm/testing/mobilenet.py deleted file mode 100644 index e505ff499a54..000000000000 --- a/nnvm/python/nnvm/testing/mobilenet.py +++ /dev/null @@ -1,122 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Helper utility to get mobilenet workload for testing.""" -# pylint: disable=invalid-name -from __future__ import absolute_import as _abs - -from .. import symbol as sym -from . utils import create_workload - -def conv_block(data, name, channels, - kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), - epsilon=1e-5): - """Helper function to construct conv-bn-relu""" - # convolution + bn + relu - conv = sym.conv2d(data=data, channels=channels, - kernel_size=kernel_size, strides=strides, - padding=padding, use_bias=False, - layout="NCHW", name=name + "_conv") - bn = sym.batch_norm(data=conv, epsilon=epsilon, name=name + "_bn") - act = sym.relu(data=bn, name=name + "_relu") - return act - -def separable_conv_block(data, name, depthwise_channels, - pointwise_channels, kernel_size=(3, 3), - downsample=False, padding=(1, 1), - epsilon=1e-5): - """Helper function to get a separable conv block""" - if downsample: - strides = (2, 2) - else: - strides = (1, 1) - # depthwise convolution + bn + relu - conv1 = sym.conv2d(data=data, channels=depthwise_channels, - groups=depthwise_channels, kernel_size=kernel_size, strides=strides, - padding=padding, use_bias=False, layout="NCHW", - name=name + "_depthwise_conv1") - bn1 = sym.batch_norm(data=conv1, epsilon=epsilon, name=name + "_bn1") - act1 = sym.relu(data=bn1, name=name + "_relu1") - # pointwise convolution + bn + relu - conv2 = sym.conv2d(data=act1, channels=pointwise_channels, kernel_size=(1, 1), strides=(1, 1), - padding=(0, 0), use_bias=False, layout="NCHW", name=name + "_conv2") - bn2 = sym.batch_norm(data=conv2, epsilon=epsilon, name=name + "_bn2") - act2 = sym.relu(data=bn2, name=name + "_relu2") - return act2 - -def mobile_net(num_classes=1000, alpha=1.0, is_shallow=False): - """Function to construct a MobileNet""" - data = sym.Variable("data") - body = conv_block(data, "conv_block_1", int(32*alpha), strides=(2, 2)) - body = separable_conv_block(body, "separable_conv_block_1", - int(32*alpha), int(64*alpha)) - body = separable_conv_block(body, "separable_conv_block_2", - int(64*alpha), int(128*alpha), downsample=True) - body = separable_conv_block(body, "separable_conv_block_3", - int(128*alpha), int(128*alpha)) - body = separable_conv_block(body, "separable_conv_block_4", - int(128*alpha), int(256*alpha), downsample=True) - body = separable_conv_block(body, "separable_conv_block_5", - int(256*alpha), int(256*alpha)) - body = separable_conv_block(body, "separable_conv_block_6", - int(256*alpha), int(512*alpha), downsample=True) - if is_shallow: - body = separable_conv_block(body, "separable_conv_block_7", - int(512*alpha), int(1024*alpha), downsample=True) - body = separable_conv_block(body, "separable_conv_block_8", - int(1024*alpha), int(1024*alpha)) - else: - for i in range(7, 12): - body = separable_conv_block(body, "separable_conv_block_%d" % i, - int(512*alpha), int(512*alpha)) - body = separable_conv_block(body, "separable_conv_block_12", - int(512*alpha), int(1024*alpha), downsample=True) - body = separable_conv_block(body, "separable_conv_block_13", - int(1024*alpha), int(1024*alpha)) - pool = sym.global_avg_pool2d(data=body, name="pool") - flatten = sym.flatten(data=pool, name="flatten") - fc = sym.dense(data=flatten, units=num_classes, use_bias=False, name="fc") - softmax = sym.softmax(data=fc, name="softmax") - return softmax - - -def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), dtype="float32"): - """Get benchmark workload for mobilenet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = mobile_net(num_classes=num_classes, alpha=1.0, is_shallow=False) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/testing/mobilenet_v2.py b/nnvm/python/nnvm/testing/mobilenet_v2.py deleted file mode 100644 index 87c4a2c7e9f5..000000000000 --- a/nnvm/python/nnvm/testing/mobilenet_v2.py +++ /dev/null @@ -1,67 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -MobileNetV2, load model from gluon model zoo - -Reference: -Inverted Residuals and Linear Bottlenecks: -Mobile Networks for Classification, Detection and Segmentation -https://arxiv.org/abs/1801.04381 -""" - -from .utils import create_workload -from ..frontend.mxnet import _from_mxnet_impl - -def get_workload(batch_size, num_classes=1000, multiplier=1.0, dtype="float32"): - """Get benchmark workload for mobilenet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - multiplier : tuple, optional - The input image shape - - dtype : str, optional - The data type - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - import mxnet as mx - from mxnet.gluon.model_zoo.vision.mobilenet import MobileNetV2 - - image_shape = (1, 3, 224, 224) - - block = MobileNetV2(multiplier=multiplier, classes=num_classes) - - data = mx.sym.Variable('data') - sym = block(data) - sym = mx.sym.SoftmaxOutput(sym) - - net = _from_mxnet_impl(sym, {}) - - return create_workload(net, batch_size, image_shape[1:], dtype) diff --git a/nnvm/python/nnvm/testing/resnet.py b/nnvm/python/nnvm/testing/resnet.py deleted file mode 100644 index e63ceff7c3f0..000000000000 --- a/nnvm/python/nnvm/testing/resnet.py +++ /dev/null @@ -1,224 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -''' -Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py -Original author Wei Wu - -Implemented the following paper: - -Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Identity Mappings in Deep Residual Networks" -''' -# pylint: disable=unused-argument -from .. import symbol as sym -from . utils import create_workload - -def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True): - """Return ResNet Unit symbol for building ResNet - Parameters - ---------- - data : str - Input data - num_filter : int - Number of output channels - bnf : int - Bottle neck channels factor with regard to num_filter - stride : tuple - Stride used in convolution - dim_match : Boolean - True means channel number between input and output is the same, - otherwise means differ - name : str - Base name of the operators - """ - if bottle_neck: - bn1 = sym.batch_norm(data=data, epsilon=2e-5, name=name + '_bn1') - act1 = sym.relu(data=bn1, name=name + '_relu1') - conv1 = sym.conv2d( - data=act1, channels=int(num_filter*0.25), kernel_size=(1, 1), - strides=stride, padding=(0, 0), use_bias=False, name=name + '_conv1') - bn2 = sym.batch_norm(data=conv1, epsilon=2e-5, name=name + '_bn2') - act2 = sym.relu(data=bn2, name=name + '_relu2') - conv2 = sym.conv2d( - data=act2, channels=int(num_filter*0.25), kernel_size=(3, 3), - strides=(1, 1), padding=(1, 1), use_bias=False, name=name + '_conv2') - bn3 = sym.batch_norm(data=conv2, epsilon=2e-5, name=name + '_bn3') - act3 = sym.relu(data=bn3, name=name + '_relu3') - conv3 = sym.conv2d( - data=act3, channels=num_filter, kernel_size=(1, 1), - strides=(1, 1), padding=(0, 0), use_bias=False, name=name + '_conv3') - if dim_match: - shortcut = data - else: - shortcut = sym.conv2d( - data=act1, channels=num_filter, kernel_size=(1, 1), - strides=stride, use_bias=False, name=name+'_sc') - return sym.elemwise_add(conv3, shortcut) - else: - bn1 = sym.batch_norm(data=data, epsilon=2e-5, name=name + '_bn1') - act1 = sym.relu(data=bn1, name=name + '_relu1') - conv1 = sym.conv2d( - data=act1, channels=num_filter, kernel_size=(3, 3), - strides=stride, padding=(1, 1), use_bias=False, name=name + '_conv1') - bn2 = sym.batch_norm(data=conv1, epsilon=2e-5, name=name + '_bn2') - act2 = sym.relu(data=bn2, name=name + '_relu2') - conv2 = sym.conv2d( - data=act2, channels=num_filter, kernel_size=(3, 3), - strides=(1, 1), padding=(1, 1), use_bias=False, name=name + '_conv2') - if dim_match: - shortcut = data - else: - shortcut = sym.conv2d( - data=act1, channels=num_filter, kernel_size=(1, 1), - strides=stride, use_bias=False, name=name+'_sc') - return sym.elemwise_add(conv2, shortcut) - -def resnet(units, num_stages, filter_list, num_classes, image_shape, - bottle_neck=True): - """Return ResNet symbol of - Parameters - ---------- - units : list - Number of units in each stage - num_stages : int - Number of stage - filter_list : list - Channel size of each stage - num_classes : int - Ouput size of symbol - dataset : str - Dataset type, only cifar10 and imagenet supports - """ - num_unit = len(units) - assert num_unit == num_stages - data = sym.Variable(name='data') - data = sym.batch_norm(data=data, epsilon=2e-5, scale=False, name='bn_data') - (_, height, _) = image_shape - if height <= 32: # such as cifar10 - body = sym.conv2d( - data=data, channels=filter_list[0], kernel_size=(3, 3), - strides=(1, 1), padding=(1, 1), use_bias=False, name="conv0") - else: # often expected to be 224 such as imagenet - body = sym.conv2d( - data=data, channels=filter_list[0], kernel_size=(7, 7), - strides=(2, 2), padding=(3, 3), use_bias=False, name="conv0") - body = sym.batch_norm(data=body, epsilon=2e-5, name='bn0') - body = sym.relu(data=body, name='relu0') - body = sym.max_pool2d(data=body, pool_size=(3, 3), strides=(2, 2), padding=(1, 1)) - - for i in range(num_stages): - body = residual_unit( - body, filter_list[i+1], (1 if i == 0 else 2, 1 if i == 0 else 2), - False, name='stage%d_unit%d' % (i + 1, 1), bottle_neck=bottle_neck) - for j in range(units[i]-1): - body = residual_unit( - body, filter_list[i+1], (1, 1), True, - name='stage%d_unit%d' % (i + 1, j + 2), bottle_neck=bottle_neck) - bn1 = sym.batch_norm(data=body, epsilon=2e-5, name='bn1') - relu1 = sym.relu(data=bn1, name='relu1') - # Although kernel is not used here when global_pool=True, we should put one - pool1 = sym.global_avg_pool2d(data=relu1, name='pool1') - flat = sym.flatten(data=pool1) - fc1 = sym.dense(data=flat, units=num_classes, name='fc1') - return sym.softmax(data=fc1, name='softmax') - -def get_symbol(num_classes, num_layers=50, image_shape=(3, 224, 224), **kwargs): - """ - Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py - Original author Wei Wu - """ - (_, height, _) = image_shape - if height <= 28: - num_stages = 3 - if (num_layers-2) % 9 == 0 and num_layers >= 164: - per_unit = [(num_layers-2)//9] - filter_list = [16, 64, 128, 256] - bottle_neck = True - elif (num_layers-2) % 6 == 0 and num_layers < 164: - per_unit = [(num_layers-2)//6] - filter_list = [16, 16, 32, 64] - bottle_neck = False - else: - raise ValueError("no experiments done on num_layers {}".format(num_layers)) - units = per_unit * num_stages - else: - if num_layers >= 50: - filter_list = [64, 256, 512, 1024, 2048] - bottle_neck = True - else: - filter_list = [64, 64, 128, 256, 512] - bottle_neck = False - num_stages = 4 - if num_layers == 18: - units = [2, 2, 2, 2] - elif num_layers == 34: - units = [3, 4, 6, 3] - elif num_layers == 50: - units = [3, 4, 6, 3] - elif num_layers == 101: - units = [3, 4, 23, 3] - elif num_layers == 152: - units = [3, 8, 36, 3] - elif num_layers == 200: - units = [3, 24, 36, 3] - elif num_layers == 269: - units = [3, 30, 48, 8] - else: - raise ValueError("no experiments done on num_layers {}".format(num_layers)) - - return resnet(units=units, - num_stages=num_stages, - filter_list=filter_list, - num_classes=num_classes, - image_shape=image_shape, - bottle_neck=bottle_neck) - -def get_workload(batch_size=1, num_classes=1000, num_layers=18, - image_shape=(3, 224, 224), dtype="float32", **kwargs): - """Get benchmark workload for resnet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - num_layers : int, optional - Number of layers - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - kwargs : dict - Extra arguments - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes, num_layers=num_layers, - image_shape=image_shape, **kwargs) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/testing/squeezenet.py b/nnvm/python/nnvm/testing/squeezenet.py deleted file mode 100644 index eab2cf06fee6..000000000000 --- a/nnvm/python/nnvm/testing/squeezenet.py +++ /dev/null @@ -1,132 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# coding: utf-8 -# pylint: disable=unused-argument - -""" -Symbol of SqueezeNet - -Reference: -Iandola, Forrest N., et al. -"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). -""" - -from .. import symbol as sym -from . utils import create_workload - -# Helpers -def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): - net = _make_fire_conv(net, squeeze_channels, 1, 0) - - left = _make_fire_conv(net, expand1x1_channels, 1, 0) - right = _make_fire_conv(net, expand3x3_channels, 3, 1) - # NOTE : Assume NCHW layout here - net = sym.concatenate(left, right, axis=1) - - return net - -def _make_fire_conv(net, channels, kernel_size, padding=0): - net = sym.conv2d(net, channels=channels, kernel_size=(kernel_size, kernel_size), - padding=(padding, padding)) - net = sym.relu(net) - return net - -# Net -def get_symbol(num_classes, version, **kwargs): - """Get symbol of SqueezeNet - - Parameters - ---------- - num_classes: int - The number of classification results - - version : str, optional - "1.0" or "1.1" of SqueezeNet - """ - assert version in ['1.0', '1.1'], ("Unsupported SqueezeNet version {version}:" - "1.0 or 1.1 expected".format(version=version)) - net = sym.Variable("data") - if version == '1.0': - net = sym.conv2d(net, channels=96, kernel_size=(7, 7), strides=(2, 2), padding=(3, 3)) - net = sym.relu(net) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 32, 128, 128) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 32, 128, 128) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 64, 256, 256) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 64, 256, 256) - else: - net = sym.conv2d(net, channels=64, kernel_size=(3, 3), strides=(2, 2), padding=(1, 1)) - net = sym.relu(net) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 16, 64, 64) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 32, 128, 128) - net = _make_fire(net, 32, 128, 128) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 64, 256, 256) - net = _make_fire(net, 64, 256, 256) - net = sym.dropout(net, rate=0.5) - net = sym.conv2d(net, channels=num_classes, kernel_size=(1, 1)) - net = sym.relu(net) - net = sym.global_avg_pool2d(net) - net = sym.flatten(net) - return sym.softmax(net) - -def get_workload(batch_size=1, num_classes=1000, version='1.0', - image_shape=(3, 224, 224), dtype="float32", **kwargs): - """Get benchmark workload for SqueezeNet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - version : str, optional - "1.0" or "1.1" of SqueezeNet - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - kwargs : dict - Extra arguments - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes, version=version, **kwargs) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/testing/utils.py b/nnvm/python/nnvm/testing/utils.py deleted file mode 100644 index 0bffc81a0663..000000000000 --- a/nnvm/python/nnvm/testing/utils.py +++ /dev/null @@ -1,73 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Helper utility to create common workload for testing.""" -from __future__ import absolute_import as _abs - -import numpy as np -import tvm -from ..compiler import graph_util -from ..import graph -from . init import Xavier - -def create_workload(net, batch_size, image_shape=(3, 224, 224), - dtype="float32", initializer=None, seed=0): - """Helper function to create benchmark workload for input network - - Parameters - ---------- - net : nnvm.Symbol - The selected network symbol to use - - batch_size : int - The batch size used in the model - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - initializer : Initializer - The initializer used - - seed : int - The seed used in initialization. - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - if image_shape is None: - image_shape = (3, 224, 224) - data_shape = (batch_size,) + image_shape - params = {} - g = graph.create(net) - input_shapes, _ = graph_util.infer_shape(g, data=data_shape) - shape_dict = dict(zip(g.index.input_names, input_shapes)) - np.random.seed(seed) - initializer = initializer if initializer else Xavier() - for k, v in shape_dict.items(): - if k == "data": - continue - init_value = np.zeros(v).astype(dtype) - initializer(k, init_value) - params[k] = tvm.nd.array(init_value, ctx=tvm.cpu(0)) - return net, params diff --git a/nnvm/python/nnvm/testing/vgg.py b/nnvm/python/nnvm/testing/vgg.py deleted file mode 100644 index 2c290bdc3c68..000000000000 --- a/nnvm/python/nnvm/testing/vgg.py +++ /dev/null @@ -1,107 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""References: - -Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for -large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). -""" -from .. import symbol as sym -from . utils import create_workload - -def get_feature(internel_layer, layers, filters, batch_norm=False): - """Get VGG feature body as stacks of convoltions.""" - for i, num in enumerate(layers): - for j in range(num): - internel_layer = sym.conv2d( - data=internel_layer, kernel_size=(3, 3), padding=(1, 1), - channels=filters[i], name="conv%s_%s"%(i + 1, j + 1)) - if batch_norm: - internel_layer = sym.batch_norm( - data=internel_layer, name="bn%s_%s" %(i + 1, j + 1)) - internel_layer = sym.relu(data=internel_layer, name="relu%s_%s" %(i + 1, j + 1)) - internel_layer = sym.max_pool2d( - data=internel_layer, pool_size=(2, 2), strides=(2, 2), name="pool%s"%(i + 1)) - return internel_layer - -def get_classifier(input_data, num_classes): - """Get VGG classifier layers as fc layers.""" - flatten = sym.flatten(data=input_data, name="flatten") - fc6 = sym.dense(data=flatten, units=4096, name="fc6") - relu6 = sym.relu(data=fc6, name="relu6") - drop6 = sym.dropout(data=relu6, rate=0.5, name="drop6") - fc7 = sym.dense(data=drop6, units=4096, name="fc7") - relu7 = sym.relu(data=fc7, name="relu7") - drop7 = sym.dropout(data=relu7, rate=0.5, name="drop7") - fc8 = sym.dense(data=drop7, units=num_classes, name="fc8") - return fc8 - -def get_symbol(num_classes, num_layers=11, batch_norm=False): - """ - Parameters - ---------- - num_classes : int, default 1000 - Number of classification classes. - num_layers : int - Number of layers for the variant of densenet. Options are 11, 13, 16, 19. - batch_norm : bool, default False - Use batch normalization. - """ - vgg_spec = {11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]), - 13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]), - 16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]), - 19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])} - if num_layers not in vgg_spec: - raise ValueError("Invalide num_layers {}. Choices are 11,13,16,19.".format(num_layers)) - layers, filters = vgg_spec[num_layers] - data = sym.Variable(name="data") - feature = get_feature(data, layers, filters, batch_norm) - classifier = get_classifier(feature, num_classes) - symbol = sym.softmax(data=classifier, name='softmax') - return symbol - -def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), - dtype="float32", **kwargs): - """Get benchmark workload for VGG nets. - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of claseses - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - kwargs : dict - Extra arguments - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes, **kwargs) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/python/nnvm/to_relay.py b/nnvm/python/nnvm/to_relay.py deleted file mode 100644 index 94a736dabe70..000000000000 --- a/nnvm/python/nnvm/to_relay.py +++ /dev/null @@ -1,507 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=no-else-return, unidiomatic-typecheck, invalid-name, unused-argument -"""Convert an NNVM graph to Relay.""" -import numpy - -from tvm import relay, nd -from tvm.relay import op, expr, var -from tvm.relay.frontend.common import StrAttrsDict -from tvm.relay.frontend.nnvm_common import _rename, _binop_scalar, _rbinop_scalar, \ - _elemwise_sum, _softmax_op, _compare, _reduce -from .symbol import Symbol -from .compiler import graph_attr -from .graph import create as graph_create - -def _nn_batch_flatten(children, attrs, odtype='float32'): - assert len(children) == 1 - return op.nn.batch_flatten(children[0]) - - -def _dense(children, attrs, odtype='float32'): - use_bias = attrs.get_bool('use_bias', True) - units = attrs.get_int('units') - dense = op.nn.dense(children[0], children[1], units=units) - if use_bias: - return op.nn.bias_add(dense, children[2]) - else: - return dense - -def _conv2d(children, attrs, odtype='float32'): - use_bias = attrs.get_bool('use_bias', True) - - if use_bias: - data, weight, bias = children - else: - data, weight = children - - kernel_size = attrs.get_int_tuple('kernel_size') - channels = attrs.get_int('channels') - strides = attrs.get_int_tuple('strides', (1, 1)) - padding = attrs.get_int_tuple('padding', (0, 0)) - dilation = attrs.get_int_tuple('dilation', (1, 1)) - groups = attrs.get_int('groups', 1) - data_layout = attrs.get_str('layout', 'NCHW') - kernel_layout = attrs.get_str('kernel_layout', 'OIHW') - out_layout = '' - out_dtype = attrs.get_str('out_dtype', '') - - conv_out = op.nn.conv2d( - data, - weight, - kernel_size=kernel_size, - channels=channels, - strides=strides, - padding=padding, - dilation=dilation, - groups=groups, - data_layout=data_layout, - kernel_layout=kernel_layout, - out_layout=out_layout, - out_dtype=out_dtype) - - if use_bias: - return op.nn.bias_add(conv_out, bias) - else: - return conv_out - - -def _conv2d_transpose(children, attrs, odtype='float32'): - use_bias = attrs.get_bool('use_bias', False) - - if use_bias: - data, weight, bias = children - else: - data, weight = children - - strides = attrs.get_int_tuple('strides', (1, 1)) - padding = attrs.get_int_tuple('padding', (0, 0)) - dilation = attrs.get_int_tuple('dilation', (1, 1)) - groups = attrs.get_int('groups', 1) - data_layout = attrs.get_str('layout', 'NCHW') - kernel_layout = attrs.get_str('kernel_layout', 'OIHW') - out_dtype = attrs.get_str('out_dtype', '') - - out_conv2d = op.nn.conv2d_transpose( - data, - weight, - strides=strides, - padding=padding, - dilation=dilation, - groups=groups, - data_layout=data_layout, - kernel_layout=kernel_layout, - out_dtype=out_dtype) - - if use_bias: - return op.nn.bias_add(out_conv2d, bias) - else: - return out_conv2d - - -def _batch_norm(children, attrs, odtype='float32'): - data, gamma, beta, moving_mean, moving_view = children - axis = attrs.get_int('axis', 1) - epsilon = attrs.get_float('epsilon', 1e-05) - center = attrs.get_bool('center', True) - scale = attrs.get_bool('scale', True) - - return op.nn.batch_norm( - data, - gamma, - beta, - moving_mean, - moving_view, - axis=axis, - epsilon=epsilon, - center=center, - scale=scale)[0] - - -def _max_pool2d(children, attrs, odtype='float32'): - assert len(children) == 1 - data = children[0] - pool_size = attrs.get_int_tuple('pool_size', (1, 1)) - strides = attrs.get_int_tuple('strides', (1, 1)) - padding = attrs.get_int_tuple('padding', (0, 0)) - layout = attrs.get_str('layout', 'NCHW') - ceil_mode = attrs.get_bool('ceil_mode', False) - - return op.nn.max_pool2d( - data, - pool_size=pool_size, - strides=strides, - padding=padding, - layout=layout, - ceil_mode=ceil_mode) - - -def _reshape(children, attrs, odtype='float32'): - data = children[0] - shape = attrs.get_int_list('shape') - return op.reshape(data, shape) - - -def _transpose(children, attrs, odtype='float32'): - axes = attrs.get_int_list('axes', None) - return op.transpose(children[0], axes=axes) - - -def _clip(children, attrs, odtype='float32'): - a_min = attrs.get_float('a_min') - a_max = attrs.get_float('a_max') - return op.clip(children[0], a_min, a_max) - - -def _cast(children, attrs, odtype='float32'): - data = children[0] - dtype = attrs.get_str('dtype') - return data.astype(dtype) - - -def _expand_dims(children, attrs, odtype='float32'): - data = children[0] - axis = attrs.get_int('axis') - num_newaxis = attrs.get_int('num_newaxis', 1) - return op.transform.expand_dims(data, axis, num_newaxis=num_newaxis) - - -def broadcast_to(children, attrs, odtype='float32'): - # TODO(@jroesch) export broadcast to? - data = children[0] - shape = attrs.get_int_tuple('shape') - array = numpy.zeros(shape).astype(odtype) - rconst = relay.Constant(nd.array(array)) - return op.broadcast_to_like(data, rconst) - - -def _global_avg_pool2d(children, attrs, odtype='float32'): - data = children[0] - layout = attrs.get_str('layout', "NCHW") - return op.nn.global_avg_pool2d(data, layout) - - -def _avg_pool2d(children, attrs, odtype='float32'): - data = children[0] - pool_size = attrs.get_int_tuple('pool_size', (1, 1)) - strides = attrs.get_int_tuple('strides', (1, 1)) - padding = attrs.get_int_tuple('padding', (0, 0)) - layout = attrs.get_str('layout', "NCHW") - ceil_mode = attrs.get_bool('ceil_mode', False) - count_include_pad = attrs.get_bool('layout', False) - return op.nn.avg_pool2d( - data, - pool_size=pool_size, - strides=strides, - padding=padding, - layout=layout, - ceil_mode=ceil_mode, - count_include_pad=count_include_pad) - - -def _upsampling(children, attrs, odtype='float32'): - scale = attrs.get_int('scale') - layout = attrs.get_str('layout', 'NCHW') - method = attrs.get_str('method', 'NEAREST_NEIGHBOR') - return op.nn.upsampling( - children[0], - scale_h=scale, - scale_w=scale, - layout=layout, - method=method) - - -def _pad(children, attrs, odtype='float32'): - pad_value = attrs.get_float('pad_value', 0.0) - pad_width = attrs.get_tuple_tuple_int('pad_width') - return op.nn.pad(children[0], pad_width, pad_value=pad_value) - -def _leaky_relu(children, attrs, odtype='float32'): - alpha = attrs.get_float('alpha') - return op.nn.leaky_relu(children[0], alpha) - - -def _full_like(children, attrs, odtype='float32'): - fill_value = relay.const(attrs.get_float('fill_value'), dtype='float32') - return op.full_like(children[0], fill_value) - - -def _strided_slice(children, attrs, odtype='float32'): - begin = attrs.get_int_list('begin') - end = attrs.get_int_list('end') - strides = attrs.get_int_list('stride', None) - return op.strided_slice(children[0], begin, end, strides=strides) - - -def _split(children, attrs, odtype='float32'): - indices_or_sections = None - try: - indices_or_sections = attrs.get_int('indices_or_sections', None) - except ValueError: - indices_or_sections = indices_or_sections or attrs.get_int_tuple( - 'indices_or_sections') - - axis = attrs.get_int('axis', 0) - - return op.split(children[0], indices_or_sections, axis) - -def _squeeze(children, attrs, odtype='float32'): - axis = attrs.get_int_tuple('axis', None) - axis = [axis] if isinstance(axis, int) else axis - - return op.squeeze(children[0], axis) - -def _concatenate(children, attrs, odtype='float32'): - axis = attrs.get_int('axis', 1) - return op.concatenate(children, axis) - -def _dropout(children, attrs, odtype='float32'): - rate = attrs.get_float('rate', 0.5) - return op.nn.dropout(children[0], rate) - -def _mean(children, attrs, odtype='float32'): - axis = attrs.get_int_tuple('axis', None) - keepdims = attrs.get_bool('keepdims') - - return op.mean(children[0], axis, keepdims) - - -def _prelu(children, attrs, odtype='float32'): - axis = attrs.get_int('axis', 1) - return op.nn.prelu(children[0], children[1], axis) - - -def _lrn(children, attrs, odtype='float32'): - size = attrs.get_int("size", 5) - axis = attrs.get_int("axis", 1) - bias = attrs.get_float("bias", 2) - alpha = attrs.get_float("alpha", 1e-05) - beta = attrs.get_float("beta", 0.75) - return op.nn.lrn(children[0], size, axis, bias, alpha, beta) - - -def _l2_nomalize(children, attrs, odtype='float32'): - eps = attrs.get_float('eps') - axis = attrs.get_int_tuple('axis', None) - return op.nn.l2_normalize(children[0], eps, axis) - - -def _take(children, attrs, odtype='float32'): - axis = attrs.get_int('axis', None) - return op.take(children[0], children[1], axis) - - -def _matmul(children, attrs, odtype='float32'): - input_1_t = op.transpose(children[1], axes=(1, 0)) - return op.nn.dense(children[0], input_1_t) - - -def _collapse_sum(children, attrs, odtype='float32'): - for key in ["axis", "keepdims", "exclude"]: - if key in attrs.attrs: - raise NotImplementedError("Parameter '" + key + "' is not supported.") - return op.collapse_sum_like(children[0], children[1]) - - -def _not_implemented(new_op): - def _impl(children, attrs, odtype='float32'): - raise NotImplementedError(str(new_op) + " is not implemented.") - return _impl - - -NNVM_OP_2_RELAY_OP = { - 'flatten': _nn_batch_flatten, - 'dense': _dense, - 'softmax': _softmax_op(op.nn.softmax), - 'log_softmax': _softmax_op(op.nn.log_softmax), - 'conv2d': _conv2d, - 'batch_norm': _batch_norm, - 'max_pool2d': _max_pool2d, - 'reshape': _reshape, - 'transpose': _transpose, - 'dropout': _dropout, - 'mean': _mean, - # Addition - '__add_scalar__': _binop_scalar(op.add), - 'broadcast_add' : _rename(op.add), - 'elemwise_add' : _rename(op.add), - # Subtraction - '__sub_scalar__' : _binop_scalar(op.subtract), - '__rsub_scalar__': _rbinop_scalar(op.subtract), - 'broadcast_sub' : _rename(op.subtract), - 'elemwise_sub' : _rename(op.subtract), - # Multiply - '__mul_scalar__': _binop_scalar(op.multiply), - 'broadcast_mul' : _rename(op.multiply), - 'elemwise_mul' : _rename(op.multiply), - # Division - '__div_scalar__': _binop_scalar(op.divide), - 'broadcast_div' : _rename(op.divide), - 'elemwise_div' : _rename(op.divide), - 'broadcast_mod' : _rename(op.mod), - # Negative - 'negative': _rename("negative"), - # Power - '__pow_scalar__': _binop_scalar(op.power), - '__rpow_scalar__': _rbinop_scalar(op.power), - 'broadcast_pow': _rename(op.power), - # Sum - 'sum': _reduce(op.sum), - 'elemwise_sum': _elemwise_sum, - 'collapse_sum': _collapse_sum, - 'broadcast_max': _rename(op.maximum), - 'broadcast_min': _rename(op.minimum), - - # Comparsion - 'greater': _compare(op.greater), - 'broadcast_greater': _compare(op.greater), - 'greater_equal': _compare(op.greater_equal), - 'broadcast_greater_equal': _compare(op.greater_equal), - 'less': _compare(op.less), - 'broadcast_less': _compare(op.less), - 'less_equal': _compare(op.less_equal), - 'broadcast_less_equal': _compare(op.less_equal), - 'broadcast_equal': _compare(op.equal), - 'broadcast_not_equal': _compare(op.not_equal), - - # Activations - 'sigmoid': _rename('sigmoid'), - 'relu': _rename('nn.relu'), - 'exp': _rename('exp'), - 'log': _rename('log'), - 'tanh': _rename('tanh'), - 'leaky_relu': _leaky_relu, - 'prelu': _prelu, - 'clip': _clip, - 'round': _rename('round'), - 'cast': _cast, - 'expand_dims': _expand_dims, - 'broadcast_to': broadcast_to, - '__lshift_scalar__': _binop_scalar(op.left_shift), - '__rshift_scalar__': _binop_scalar(op.right_shift), - 'broadcast_left_shift': _rename(op.left_shift), - 'broadcast_right_shift': _rename(op.right_shift), - 'copy': _rename(op.copy), - 'global_avg_pool2d': _global_avg_pool2d, - 'avg_pool2d': _avg_pool2d, - 'conv2d_transpose': _conv2d_transpose, - 'upsampling': _upsampling, - 'pad': _pad, - 'full_like': _full_like, - 'strided_slice': _strided_slice, - 'split': _split, - 'squeeze': _squeeze, - 'concatenate': _concatenate, - 'abs': _rename(op.abs), - 'ceil': _rename(op.ceil), - 'floor': _rename(op.floor), - 'trunc': _rename(op.trunc), - 'take': _take, - 'lrn': _lrn, - 'l2_normalize': _l2_nomalize, - 'matmul': _matmul, - 'zeros_like': _rename(op.zeros_like), - 'reshape_like': _rename(op.reshape_like), - 'ones_like': _rename(op.ones_like), - - 'expand_like': _not_implemented("expand_like"), - 'gather_nd': _not_implemented("gather_nd"), - 'block_grad': _not_implemented("block_grad"), -} - - -def to_relay(graph, shape_dict, dtype_dict, params): - """Convert an NNVM graph into the corresponding Relay expression. - - Parameters - ---------- - graph : Graph - The input graph. - - shape_dict : dict of str to shape - The input shape. - - dtype_dict : dict of str to str/dtype - The input shape. - - params : dict of str to array - The parameters. - - Returns - ------- - (expr, params) : Tuple[relay.Expr, dict of str to array] - The corresponding Relay expression and parameters. - """ - if isinstance(graph, Symbol): - graph = graph_create(graph) - - param_shapes = dict((k, params[k].shape) for k in params) - shape_dict = shape_dict.copy() - shape_dict.update(param_shapes) - graph = graph_attr.set_shape_inputs(graph, shape_dict) - graph = graph_attr.set_dtype_inputs(graph, dtype_dict) - graph = graph.apply(["InferShape", "InferType"]) - shape = graph.json_attr("shape") - dtype = [graph_attr.TCODE_TO_DTYPE[di] for di in graph.json_attr("dtype")] - - gidx = graph.index - relay_map = {} - fn_params = [] - - for nid, node in enumerate(gidx.nodes): - children = [] - for i in node['inputs']: - child = relay_map[i[0]] - if isinstance(child, expr.TupleWrapper): - children.append(child[i[1]]) - else: - children.append(child) - - oshape = shape[gidx.entry_id(nid, 0)] - odtype = dtype[gidx.entry_id(nid, 0)] - attrs = node.get("attrs", {}) - node_name = node["name"] - op_name = node["op"] - - if op_name == "null": - v = var(node_name, shape=oshape, dtype=odtype) - fn_params.append(v) - relay_map[nid] = v - else: - if op_name in NNVM_OP_2_RELAY_OP: - str_attrs = StrAttrsDict(attrs) - call = NNVM_OP_2_RELAY_OP[op_name](children, str_attrs, odtype) - relay_map[nid] = call - else: - raise Exception( - "nnvm.to_relay: unsupported operator: {0}".format(op_name)) - - outputs = [] - for nid, idx, _ in gidx.output_entries: - output = relay_map[nid] - if isinstance(output, expr.TupleWrapper): - outputs.append(output[idx]) - else: - outputs.append(output) - - if len(outputs) == 1: - body = outputs[0] - else: - body = expr.Tuple(outputs) - - func = relay.Function(fn_params, body) - return func, params diff --git a/nnvm/python/nnvm/top/__init__.py b/nnvm/python/nnvm/top/__init__.py deleted file mode 100644 index db80df03e269..000000000000 --- a/nnvm/python/nnvm/top/__init__.py +++ /dev/null @@ -1,31 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Tensor operator property registry - -Provide information to lower and schedule tensor operators. -""" -from .attr_dict import AttrDict -from . import tensor -from . import nn -from . import transform -from . import reduction -from . import vision -from . import image - -from .registry import OpPattern -from .registry import register_compute, register_schedule, register_pattern diff --git a/nnvm/python/nnvm/top/attr_dict.py b/nnvm/python/nnvm/top/attr_dict.py deleted file mode 100644 index 5082a587d5a0..000000000000 --- a/nnvm/python/nnvm/top/attr_dict.py +++ /dev/null @@ -1,175 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Attr dictionary object used by schedule functions""" -import tvm - -_dict_get = tvm.get_global_func("nnvm.compiler._dict_get") -_dict_size = tvm.get_global_func("nnvm.compiler._dict_size") -_dict_keys = tvm.get_global_func("nnvm.compiler._dict_keys") - -class AttrDict(object): - """Attribute dictionary in nnvm. - - Used by python registration of compute and schedule function. - AttrDict is passed as the first argument to schedule and compute function. - """ - _tvm_tcode = 18 - - def __init__(self, handle): - self.handle = handle - - def __del__(self): - tvm.nd.free_extension_handle(self.handle, 18) - - @property - def _tvm_handle(self): - return self.handle.value - - def __getitem__(self, key): - return _dict_get(self, key) - - def keys(self): - """Get list of keys in the dict. - - Returns - ------- - keys : list of str - List of keys - """ - return [x.value for x in _dict_keys(self)] - - def get_int_tuple(self, key): - """Get tuple of integer from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - tuple : tuple of int - The result tuple - """ - return tuple(int(x) for x in self[key][1:-1].split(",") if x) - - def get_int_pair_tuple(self, key): - """Get tuple of integer pairs from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - tuple : tuple of int pairs - The result tuple - """ - flat = [int(x.strip(' [] ')) for x in self[key][1:-1].split(",")] - return tuple((flat[i], flat[i+1]) for i in range(0, len(flat), 2)) - - def get_int(self, key): - """Get integer from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - value : int - The result value - """ - return int(self[key]) - - def get_float_tuple(self, key): - """Get tuple of float from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - tuple : tuple of float - The result tuple - """ - return tuple(float(x) for x in self[key][1:-1].split(",") if x) - - def get_float(self, key): - """Get float from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - value : float - The result value - """ - return float(self[key]) - - def get_bool(self, key): - """Get bool from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - value : bool - The result value - """ - lowercase = self[key].lower() - if lowercase == "1": - return True - if lowercase == "0": - return False - if lowercase == "true": - return True - if lowercase == "false": - return False - raise ValueError("Wrong bool format for key %s" % key) - - def get_str(self, key): - """Get string from attr dict - - Parameters - ---------- - key : str - The attr key - - Returns - ------- - value : str - The result value - """ - return self[key] - - def __repr__(self): - return str({k : self[k] for k in self.keys()}) - - -tvm.register_extension(AttrDict, AttrDict) diff --git a/nnvm/python/nnvm/top/image.py b/nnvm/python/nnvm/top/image.py deleted file mode 100644 index 4367d982985c..000000000000 --- a/nnvm/python/nnvm/top/image.py +++ /dev/null @@ -1,33 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument -"""Definition of image ops""" -from __future__ import absolute_import - -import tvm -import topi -from . import registry as reg -from .registry import OpPattern - -# resize -@reg.register_schedule("resize") -def schedule_resize(_, outs, target): - """Schedule definition of resize""" - with tvm.target.create(target): - return topi.generic.schedule_injective(outs) - -reg.register_pattern("resize", OpPattern.INJECTIVE) diff --git a/nnvm/python/nnvm/top/nn.py b/nnvm/python/nnvm/top/nn.py deleted file mode 100644 index 521b7f4b1da0..000000000000 --- a/nnvm/python/nnvm/top/nn.py +++ /dev/null @@ -1,456 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument, missing-docstring, no-else-return -"""Definition of nn ops""" -from __future__ import absolute_import - -import tvm -import topi -from topi.util import get_const_int, get_const_tuple -from .tensor import _fschedule_broadcast, _fschedule_injective -from . import registry as reg -from .registry import OpPattern - -# relu -reg.register_schedule("relu", _fschedule_broadcast) -reg.register_pattern("relu", OpPattern.ELEMWISE) - - -# leaky_relu -reg.register_schedule("leaky_relu", _fschedule_broadcast) -reg.register_pattern("leaky_relu", OpPattern.ELEMWISE) - -# prelu -reg.register_schedule("prelu", _fschedule_broadcast) -reg.register_pattern("prelu", OpPattern.BROADCAST) - -# flatten -reg.register_schedule("flatten", _fschedule_broadcast) -reg.register_pattern("flatten", OpPattern.INJECTIVE) - - -# pad -reg.register_schedule("pad", _fschedule_broadcast) -reg.register_pattern("pad", OpPattern.INJECTIVE) - - -# layout transform -reg.register_schedule("__layout_transform__", _fschedule_injective) -reg.register_pattern("__layout_transform__", OpPattern.INJECTIVE) - - -@reg.register_schedule("softmax") -def schedule_softmax(_, outs, target): - """Schedule definition of softmax""" - with tvm.target.create(target): - return topi.generic.schedule_softmax(outs) - -reg.register_pattern("softmax", OpPattern.OPAQUE) - - -# log softmax -@reg.register_schedule("log_softmax") -def schedule_log_softmax(_, outs, target): - """Schedule definition of softmax""" - with tvm.target.create(target): - return topi.generic.schedule_softmax(outs) - -# Mark softmax as extern as we do not fuse it in call cases -reg.register_pattern("log_softmax", OpPattern.OPAQUE) - - -# dense -@reg.register_compute("dense") -def compute_dense(attrs, inputs, _): - """Compute definition of dense""" - if attrs.get_bool("use_bias"): - return topi.nn.dense(inputs[0], inputs[1], inputs[2]) - return topi.nn.dense(inputs[0], inputs[1]) - -@reg.register_schedule("dense") -def schedule_dense(_, outs, target): - """Schedule definition of dense""" - with tvm.target.create(target): - return topi.generic.schedule_dense(outs) - -reg.register_pattern("dense", OpPattern.OUT_ELEMWISE_FUSABLE) - -#matmul -reg.register_pattern("matmul", OpPattern.OUT_ELEMWISE_FUSABLE) -reg.register_schedule("matmul", _fschedule_injective) - -# conv2d -@reg.register_compute("conv2d") -def compute_conv2d(attrs, inputs, _): - """Compute definition of conv2d""" - padding = attrs.get_int_tuple("padding") - strides = attrs.get_int_tuple("strides") - dilation = attrs.get_int_tuple("dilation") - groups = attrs.get_int("groups") - channels = attrs.get_int("channels") - layout = attrs["layout"] - kernel_layout = attrs["kernel_layout"] - out_dtype = attrs["out_dtype"] - out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype - assert layout in ["NCHW", "NHWC", "NCHW4c"] - (dilation_h, dilation_w) = dilation - if dilation_h < 1 or dilation_w < 1: - raise ValueError("dilation should be positive value") - - if groups == 1 and layout == 'NCHW4c' and inputs[0].dtype == 'int8': - # pylint: disable=assignment-from-no-return - out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding, - dilation, layout, out_dtype) - # pylint: enable=assignment-from-no-return - elif groups == 1: - out = topi.nn.conv2d( - inputs[0], inputs[1], strides, padding, dilation, layout, out_dtype) - elif layout == "NCHW" and \ - groups == get_const_int(inputs[0].shape[1]) and \ - groups == channels: - out = topi.nn.depthwise_conv2d_nchw( - inputs[0], inputs[1], strides, padding, dilation, out_dtype) - elif layout in ["NCHW", "NCHW4c"]: - out = topi.nn.group_conv2d_nchw(inputs[0], inputs[1], strides, padding, dilation, groups, - out_dtype) - elif layout == "NHWC" and \ - kernel_layout == "HWOI" and \ - groups == get_const_int(inputs[0].shape[3]) and \ - groups == channels: - out = topi.nn.depthwise_conv2d_nhwc( - inputs[0], inputs[1], strides, padding, dilation, out_dtype) - else: - raise ValueError("not support arbitrary group number for now") - - if attrs.get_bool("use_bias"): - bias = inputs[2] - expand_axis = 1 if layout in ["NCHW", "NCHW4c"] else 0 - bias = topi.expand_dims(bias, axis=expand_axis, num_newaxis=2) - out = topi.add(out, bias) - return out - -@reg.register_schedule("conv2d") -def schedule_conv2d(attrs, outs, target): - """Schedule definition of conv2d""" - groups = attrs.get_int("groups") - channels = attrs.get_int("channels") - layout = attrs["layout"] - kernel_layout = attrs["kernel_layout"] - - with tvm.target.create(target): - if groups == 1 and layout == "NCHW": - return topi.generic.schedule_conv2d_nchw(outs) - elif groups == 1 and layout == "NCHW4c": - return topi.generic.schedule_conv2d_nchw(outs) - elif groups == 1 and layout == "NHWC": - return topi.generic.schedule_conv2d_nhwc(outs) - elif groups == channels and layout == "NCHW": - return topi.generic.schedule_depthwise_conv2d_nchw(outs) - elif groups == channels and layout == "NHWC" and kernel_layout == "HWOI": - return topi.generic.schedule_depthwise_conv2d_nhwc(outs) - elif layout in ["NCHW", "NCHW4c"]: - return topi.generic.schedule_group_conv2d_nchw(outs) - else: - raise ValueError("No compatible schedule") - -@reg.register_alter_op_layout("conv2d") -def alter_conv2d_layout(attrs, inputs, tinfos): - """Replace conv2d op with other layouts or algorithms""" - import nnvm.symbol as sym - - # map relay op names to nnvm op names - sym.contrib_conv2d_winograd_without_weight_transform = \ - sym.contrib.conv2d_winograd_without_weight_transform - sym.contrib_conv2d_winograd_weight_transform = \ - sym.contrib.conv2d_winograd_weight_transform - sym.contrib_conv2d_winograd_nnpack_without_weight_transform = \ - sym.contrib.conv2d_winograd_nnpack_without_weight_transform - sym.contrib_conv2d_winograd_nnpack_weight_transform = \ - sym.contrib.conv2d_winograd_nnpack_weight_transform - sym.nn = sym - - # map relay argument names to nnvm argument names - raw_reshape = sym.reshape - def _reshape(*args, **kwargs): - if "newshape" in kwargs: - kwargs['shape'] = kwargs.pop('newshape') - return raw_reshape(*args, **kwargs) - sym.reshape = _reshape - - return topi.nn.conv2d_alter_layout(attrs, inputs, tinfos, sym) - -reg.register_pattern("conv2d", OpPattern.OUT_ELEMWISE_FUSABLE) - -# convolution NCHWc -@reg.register_compute("_contrib_conv2d_NCHWc") -def compute_contrib_conv2d_NCHWc(attrs, inputs, _): - """Compute definition of conv2d NCHWc""" - padding = attrs.get_int_tuple("padding") - strides = attrs.get_int_tuple("strides") - dilation = attrs.get_int_tuple("dilation") - out_channel = attrs.get_int("channels") - groups = attrs.get_int("groups") - layout = attrs.get_str("layout") - out_layout = attrs.get_str("out_layout") - out_dtype = attrs.get_str("out_dtype") - out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype - if layout == "NCHW": - _, in_channel, _, _ = get_const_tuple(inputs[0].shape) - else: - _, in_channel_chunk, _, _, in_channel_block = get_const_tuple(inputs[0].shape) - in_channel = in_channel_chunk * in_channel_block - assert dilation == (1, 1), "not support dilate now" - if groups == 1: - # pylint: disable=assignment-from-no-return - out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], strides, padding, dilation, - layout, out_layout, out_dtype) - # pylint: enable=assignment-from-no-return - elif groups == in_channel and groups == out_channel: - # pylint: disable=assignment-from-no-return - out = topi.nn.depthwise_conv2d_NCHWc(inputs[0], inputs[1], strides, padding, - dilation, layout, out_layout, out_dtype) - # pylint: enable=assignment-from-no-return - else: - raise ValueError("not support arbitrary group number > 1 for now") - if attrs.get_bool("use_bias"): - bias = inputs[2] - bias = topi.expand_dims(bias, axis=1, num_newaxis=2) - out = topi.add(out, bias) - return out - -@reg.register_schedule("_contrib_conv2d_NCHWc") -def schedule_contrib_conv2d_NCHWc(attrs, outs, target): - """Schedule definition of conv2d NCHWc""" - groups = attrs.get_int("groups") - out_channel = attrs.get_int("channels") - with tvm.target.create(target): - if groups == 1: - return topi.generic.schedule_conv2d_NCHWc(outs) - elif groups == out_channel: - return topi.generic.schedule_depthwise_conv2d_NCHWc(outs) - else: - raise ValueError("not support group number > 1 for now") - -reg.register_pattern("_contrib_conv2d_NCHWc", OpPattern.OUT_ELEMWISE_FUSABLE) - - -@reg.register_compute("_contrib_conv2d_winograd_weight_transform") -def compute_contrib_conv2d_winograd_weight_transform(attrs, inputs, _): - return topi.nn.conv2d_winograd_weight_transform(inputs[0], attrs.get_int('tile_size')) - -@reg.register_schedule("_contrib_conv2d_winograd_weight_transform") -def schedule_contrib_conv2d_winograd_weight_transform(attrs, outs, target): - with tvm.target.create(target): - return topi.generic.schedule_conv2d_winograd_weight_transform(outs) - -reg.register_pattern("_contrib_conv2d_winograd_weight_transform", OpPattern.OUT_ELEMWISE_FUSABLE) - - -@reg.register_compute("_contrib_conv2d_winograd_without_weight_transform") -def compute_contrib_conv2d_winograd_without_weight_transform(attrs, inputs, _): - """Compute definition of conv2d NCHWc""" - padding = attrs.get_int_tuple("padding") - strides = attrs.get_int_tuple("strides") - dilation = attrs.get_int_tuple("dilation") - groups = attrs.get_int("groups") - layout = attrs.get_str("layout") - out_dtype = attrs.get_str("out_dtype") - tile_size = attrs.get_int("tile_size") - out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype - assert dilation == (1, 1), "Do not support dilate now" - assert groups == 1, "Do not supoort arbitrary group number" - - # pylint: disable=assignment-from-no-return - out = topi.nn.conv2d_winograd_without_weight_transform( - inputs[0], inputs[1], strides, padding, dilation, layout, out_dtype, - tile_size) - - if attrs.get_bool("use_bias"): - bias = inputs[2] - bias = topi.expand_dims(bias, axis=1, num_newaxis=2) - out = topi.add(out, bias) - return out - -@reg.register_schedule("_contrib_conv2d_winograd_without_weight_transform") -def schedule_contrib_conv2d_winograd_without_weight_transform(attrs, outs, target): - with tvm.target.create(target): - return topi.generic.schedule_conv2d_winograd_without_weight_transform(outs) - -reg.register_pattern("_contrib_conv2d_winograd_without_weight_transform", - OpPattern.OUT_ELEMWISE_FUSABLE) - - -@reg.register_compute("_contrib_conv2d_winograd_nnpack_weight_transform") -def compute_contrib_conv2d_winograd_nnpack_weight_transform(attrs, inputs, _): - convolution_algorithm = attrs.get_int('convolution_algorithm') - out_dype = attrs.get_str('out_dtype') - return topi.nn.conv2d_winograd_nnpack_weight_transform( - inputs[0], convolution_algorithm, out_dype) - - -@reg.register_schedule("_contrib_conv2d_winograd_nnpack_weight_transform") -def schedule_contrib_conv2d_winograd_nnpack_weight_transform(attrs, outs, target): - with tvm.target.create(target): - return topi.generic.schedule_conv2d_winograd_nnpack_weight_transform(outs) - -reg.register_pattern("_contrib_conv2d_winograd_nnpack_weight_transform", OpPattern.OPAQUE) - - -@reg.register_compute("_contrib_conv2d_winograd_nnpack_without_weight_transform") -def compute_contrib_conv2d_winograd_nnpack_without_weight_transform(attrs, inputs, _): - padding = attrs.get_int_tuple("padding") - strides = attrs.get_int_tuple("strides") - dilation = attrs.get_int_tuple("dilation") - groups = attrs.get_int("groups") - layout = attrs.get_str("layout") - out_dtype = attrs.get_str("out_dtype") - out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype - assert dilation == (1, 1), "Do not support dilate now" - assert groups == 1, "Do not supoort arbitrary group number" - - # pylint: disable=assignment-from-no-return - out = topi.nn.conv2d_winograd_nnpack_without_weight_transform( - inputs[0], inputs[1], inputs[2] if attrs.get_bool("use_bias") else None, - strides, padding, dilation, layout, out_dtype) - return out - -@reg.register_schedule("_contrib_conv2d_winograd_nnpack_without_weight_transform") -def schedule_contrib_conv2d_winograd_nnpack_without_weight_transform(attrs, outs, target): - with tvm.target.create(target): - return topi.generic.schedule_conv2d_winograd_nnpack_without_weight_transform(outs) - -reg.register_pattern("_contrib_conv2d_winograd_nnpack_without_weight_transform", - OpPattern.OPAQUE) - - -# conv2d_transpose -@reg.register_compute("conv2d_transpose") -def compute_conv2d_transpose(attrs, inputs, _): - """Compute definition of conv2d_transpose""" - padding = attrs.get_int_tuple("padding") - strides = attrs.get_int_tuple("strides") - dilation = attrs.get_int_tuple("dilation") - groups = attrs.get_int("groups") - out_dtype = attrs.get_str("out_dtype") - layout = attrs["layout"] - out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype - - assert layout == "NCHW", "only support nchw for now" - assert dilation == (1, 1), "not support dilate now" - assert groups == 1, "only support groups == 1 for now" - - out = topi.nn.conv2d_transpose_nchw(inputs[0], inputs[1], strides, padding, out_dtype) - if attrs.get_bool("use_bias"): - bias = inputs[2] - bias = topi.expand_dims(bias, axis=1, num_newaxis=2) - out = topi.add(out, bias) - output_padding = attrs.get_int_tuple("output_padding") - out = topi.nn.pad(out, \ - [0, 0, 0, 0], [0, 0, output_padding[0], output_padding[1]]) - return out - -@reg.register_schedule("conv2d_transpose") -def schedule_conv2d_transpose(attrs, outs, target): - """Schedule definition of conv2d_transpose""" - with tvm.target.create(target): - return topi.generic.schedule_conv2d_transpose_nchw(outs) - -reg.register_pattern("conv2d_transpose", OpPattern.OUT_ELEMWISE_FUSABLE) - - -# max_pool2d -@reg.register_schedule("max_pool2d") -def schedule_max_pool2d(attrs, outs, target): - """Schedule definition of max_pool2d""" - layout = attrs["layout"] - with tvm.target.create(target): - return topi.generic.schedule_pool(outs, layout) - -reg.register_pattern("max_pool2d", OpPattern.OUT_ELEMWISE_FUSABLE) - - -# avg_pool2d -@reg.register_schedule("avg_pool2d") -def schedule_avg_pool2d(attrs, outs, target): - """Schedule definition of avg_pool2d""" - layout = attrs["layout"] - with tvm.target.create(target): - return topi.generic.schedule_pool(outs, layout) - -reg.register_pattern("avg_pool2d", OpPattern.OUT_ELEMWISE_FUSABLE) - - -# global_max_pool2d -@reg.register_schedule("global_max_pool2d") -def schedule_global_max_pool2d(_, outs, target): - """Schedule definition of global_max_pool2d""" - with tvm.target.create(target): - return topi.generic.schedule_adaptive_pool(outs) - -reg.register_pattern("global_max_pool2d", OpPattern.OUT_ELEMWISE_FUSABLE) - - -# global_avg_pool2d -@reg.register_schedule("global_avg_pool2d") -def schedule_global_avg_pool2d(_, outs, target): - """Schedule definition of global_avg_pool2d""" - with tvm.target.create(target): - return topi.generic.schedule_adaptive_pool(outs) - -reg.register_pattern("global_avg_pool2d", OpPattern.OUT_ELEMWISE_FUSABLE) - -# upsampling -@reg.register_schedule("upsampling") -def schedule_upsampling(_, outs, target): - """Schedule definition of upsampling""" - with tvm.target.create(target): - return topi.generic.schedule_injective(outs) - -reg.register_pattern("upsampling", OpPattern.INJECTIVE) - -@reg.register_compute("lrn") -def compute_lrn(attrs, inputs, _): - """Compute definition of lrn""" - size = attrs.get_int("size") - axis = attrs.get_int("axis") - alpha = attrs.get_float("alpha") - beta = attrs.get_float("beta") - bias = attrs.get_float("bias") - return topi.nn.lrn(inputs[0], size, axis, alpha, beta, bias) - -@reg.register_schedule("lrn") -def schedule_lrn(attrs, outs, target): - """Schedule definition of lrn""" - with tvm.target.create(target): - return topi.generic.schedule_lrn(outs) - -reg.register_pattern("lrn", OpPattern.OPAQUE) - -@reg.register_compute("l2_normalize") -def compute_l2_normalize(attrs, inputs, _): - """Compute definition of l2 normalize""" - eps = attrs.get_float("eps") - axis = attrs.get_int_tuple("axis") - return topi.nn.l2_normalize(inputs[0], eps, axis) - -@reg.register_schedule("l2_normalize") -def schedule_l2_normalize(attrs, outs, target): - """Schedule definition of l2 normalize""" - with tvm.target.create(target): - return topi.generic.schedule_l2_normalize(outs) - -reg.register_pattern("l2_normalize", OpPattern.OUT_ELEMWISE_FUSABLE) diff --git a/nnvm/python/nnvm/top/reduction.py b/nnvm/python/nnvm/top/reduction.py deleted file mode 100644 index ce14d0d28831..000000000000 --- a/nnvm/python/nnvm/top/reduction.py +++ /dev/null @@ -1,75 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument -"""Reduction ops""" -from __future__ import absolute_import - -import tvm -import topi -import topi.cuda -from . import registry as reg -from .registry import OpPattern - -def _schedule_reduce(_, outs, target): - """Generic schedule for reduce""" - with tvm.target.create(target): - return topi.generic.schedule_reduce(outs) - - -_fschedule_reduce = tvm.convert(_schedule_reduce) - -def _compute_reduce(f): - """auxiliary function""" - def _compute(attrs, inputs, out_info): - axis = attrs.get_int_tuple("axis") - keepdims = attrs.get_bool("keepdims") - if axis: - return f(inputs[0], axis=axis, keepdims=keepdims) - return f(inputs[0], keepdims=keepdims) - return _compute - -# sum -reg.register_pattern("sum", OpPattern.COMM_REDUCE) -reg.register_schedule("sum", _fschedule_reduce) - -# max -reg.register_pattern("max", OpPattern.COMM_REDUCE) -reg.register_schedule("max", _fschedule_reduce) - -# min -reg.register_pattern("min", OpPattern.COMM_REDUCE) -reg.register_schedule("min", _fschedule_reduce) - -# collapse sum -reg.register_pattern("collapse_sum", OpPattern.COMM_REDUCE) -reg.register_schedule("collapse_sum", _fschedule_reduce) - -# argmax -reg.register_pattern("argmax", OpPattern.COMM_REDUCE) -reg.register_schedule("argmax", _fschedule_reduce) - -# argmin -reg.register_pattern("argmin", OpPattern.COMM_REDUCE) -reg.register_schedule("argmin", _fschedule_reduce) - -# mean -reg.register_pattern("mean", OpPattern.COMM_REDUCE) -reg.register_schedule("mean", _fschedule_reduce) - -# product -reg.register_pattern("prod", OpPattern.COMM_REDUCE) -reg.register_schedule("prod", _fschedule_reduce) diff --git a/nnvm/python/nnvm/top/registry.py b/nnvm/python/nnvm/top/registry.py deleted file mode 100644 index 7ad10620f304..000000000000 --- a/nnvm/python/nnvm/top/registry.py +++ /dev/null @@ -1,138 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name -"""Information registry to register operator information for compiler""" -import tvm - -class OpPattern(object): - """Operator generic patterns - - See Also - -------- - top.tag : Contains explanation of the tag type. - """ - # Elementwise operator - ELEMWISE = 0 - # Broadcast operator - BROADCAST = 1 - # Injective mapping - INJECTIVE = 2 - # Comunication - COMM_REDUCE = 3 - # Complex op, can still fuse ewise into it - OUT_ELEMWISE_FUSABLE = 4 - # Not fusable opaque op - OPAQUE = 8 - -_register_compute = tvm.get_global_func("nnvm._register_compute") -_register_schedule = tvm.get_global_func("nnvm._register_schedule") -_register_pattern = tvm.get_global_func("nnvm._register_pattern") -_register_alter_op_layout = tvm.get_global_func("nnvm.compiler._register_alter_op_layout") - -def register_compute(op_name, f=None, level=10): - """Register compute function for operator - - Parameters - ---------- - op_name : str - The name of operator - - f : function - The schedule function - - level : int - The priority level - - Returns - ------- - fregister : function - Register function if f is not specified. - """ - def register(myf): - """internal register function""" - _register_compute(op_name, myf, level) - return myf - return register(f) if f else register - - -def register_schedule(op_name, f=None, level=10): - """Register schedule function for operator - - Parameters - ---------- - op_name : str - The name of operator - - f : function - The schedule function - - level : int - The priority level - - Returns - ------- - fregister : function - Register function if f is not specified. - """ - def register(myf): - """internal register function""" - _register_schedule(op_name, myf, level) - return myf - return register(f) if f else register - - -def register_pattern(op_name, pattern, level=10): - """Register pattern code for operator - - Parameters - ---------- - op_name : str - The name of operator - - pattern : int - The pattern code. - - level : int - The priority level - """ - _register_pattern(op_name, pattern, level) - - -def register_alter_op_layout(op_name, f=None, level=10): - """Register alter layout function for operator - - Parameters - ---------- - op_name : str - The name of operator - - f : function - The schedule function - - level : int - The priority level - - Returns - ------- - fregister : function - Register function if f is not specified. - """ - def register(myf): - """internal register function""" - _register_alter_op_layout(op_name, myf, level) - return myf - return register(f) if f else register diff --git a/nnvm/python/nnvm/top/tensor.py b/nnvm/python/nnvm/top/tensor.py deleted file mode 100644 index 9f12e3245e3a..000000000000 --- a/nnvm/python/nnvm/top/tensor.py +++ /dev/null @@ -1,306 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument -"""Tensor ops""" -from __future__ import absolute_import - -import tvm -import topi -import topi.cuda -from . import registry as reg -from .registry import OpPattern - -def _schedule_injective(_, outs, target): - """Generic schedule for binary bcast""" - with tvm.target.create(target): - return topi.generic.schedule_injective(outs) - -def _compute_binary_scalar(f): - """auxiliary function""" - @tvm.tag_scope(topi.tag.ELEMWISE) - def _compute(attrs, x, _): - x = x[0] - scalar = attrs.get_float("scalar") - scalar = tvm.const(scalar, x.dtype) - return tvm.compute(x.shape, lambda *i: f(x(*i), scalar)) - return _compute - - -def _compute_unary(f): - """auxiliary function""" - def _compute(attrs, x, _): - return f(x[0]) - return _compute - - -def _compute_binary(f): - """auxiliary function""" - def _compute(attrs, x, _): - return f(x[0], x[1]) - return _compute - - -_fschedule_injective = tvm.convert(_schedule_injective) -_fschedule_broadcast = _fschedule_injective -_fschedule_elemwise = _fschedule_injective - -# Assign requires special treatment in the compiler -# The compute and schedule are designed as -# copy from rhs to output -reg.register_pattern("_assign", OpPattern.OPAQUE) -reg.register_schedule("_assign", _fschedule_broadcast) - -# copy -reg.register_pattern("copy", OpPattern.ELEMWISE) -reg.register_schedule("copy", _fschedule_broadcast) - -# cast -reg.register_pattern("cast", OpPattern.ELEMWISE) -reg.register_schedule("cast", _fschedule_broadcast) - -# floor -reg.register_pattern("floor", OpPattern.ELEMWISE) -reg.register_schedule("floor", _fschedule_broadcast) - -# ceil -reg.register_pattern("ceil", OpPattern.ELEMWISE) -reg.register_schedule("ceil", _fschedule_broadcast) - -# round -reg.register_pattern("round", OpPattern.ELEMWISE) -reg.register_schedule("round", _fschedule_broadcast) - -# abs -reg.register_pattern("abs", OpPattern.ELEMWISE) -reg.register_schedule("abs", _fschedule_broadcast) - -# trunc -reg.register_pattern("trunc", OpPattern.ELEMWISE) -reg.register_schedule("trunc", _fschedule_broadcast) - -# exp -reg.register_pattern("exp", OpPattern.ELEMWISE) -reg.register_schedule("exp", _fschedule_broadcast) - -# sqrt -reg.register_pattern("sqrt", OpPattern.ELEMWISE) -reg.register_schedule("sqrt", _fschedule_broadcast) - -# log -reg.register_pattern("log", OpPattern.ELEMWISE) -reg.register_schedule("log", _fschedule_broadcast) - -# tanh -reg.register_pattern("tanh", OpPattern.ELEMWISE) -reg.register_schedule("tanh", _fschedule_broadcast) - -# negative -reg.register_pattern("negative", OpPattern.ELEMWISE) -reg.register_schedule("negative", _fschedule_broadcast) - -# sigmoid -reg.register_pattern("sigmoid", OpPattern.ELEMWISE) -reg.register_schedule("sigmoid", _fschedule_broadcast) - -# add_scalar -reg.register_pattern("__add_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__add_scalar__", _fschedule_broadcast) - -# sub_calar -reg.register_pattern("__sub_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__sub_scalar__", _fschedule_broadcast) - -# rsub_scalar -reg.register_pattern("__rsub_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__rsub_scalar__", _fschedule_broadcast) - -# mul_scalar -reg.register_pattern("__mul_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__mul_scalar__", _fschedule_broadcast) - -# div_scalar -reg.register_pattern("__div_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__div_scalar__", _fschedule_broadcast) - -# rdiv_scalar -reg.register_pattern("__rdiv_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__rdiv_scalar__", _fschedule_broadcast) - -# pow_scalar -reg.register_pattern("__pow_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__pow_scalar__", _fschedule_broadcast) - -# rpow_scalar -reg.register_pattern("__rpow_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__rpow_scalar__", _fschedule_broadcast) - -# lshift_scalar -reg.register_pattern("__lshift_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__lshift_scalar__", _fschedule_broadcast) - -# rshift_scalar -reg.register_pattern("__rshift_scalar__", OpPattern.ELEMWISE) -reg.register_schedule("__rshift_scalar__", _fschedule_broadcast) - -# logical_and -reg.register_pattern("logical_and", OpPattern.ELEMWISE) -reg.register_schedule("logical_and", _fschedule_broadcast) - -# logical_or -reg.register_pattern("logical_or", OpPattern.ELEMWISE) -reg.register_schedule("logical_or", _fschedule_broadcast) - -# logical_not -reg.register_pattern("logical_not", OpPattern.ELEMWISE) -reg.register_schedule("logical_not", _fschedule_broadcast) - -# elemwise_add -reg.register_pattern("elemwise_add", OpPattern.BROADCAST) -reg.register_schedule("elemwise_add", _fschedule_broadcast) - -# elemwise_sub -reg.register_pattern("elemwise_sub", OpPattern.BROADCAST) -reg.register_schedule("elemwise_sub", _fschedule_broadcast) - -# elemwise_mul -reg.register_pattern("elemwise_mul", OpPattern.BROADCAST) -reg.register_schedule("elemwise_mul", _fschedule_broadcast) - -# elemwise_div -reg.register_pattern("elemwise_div", OpPattern.BROADCAST) -reg.register_schedule("elemwise_div", _fschedule_broadcast) - -# elemwise_mod -reg.register_pattern("elemwise_mod", OpPattern.BROADCAST) -reg.register_schedule("elemwise_mod", _fschedule_broadcast) - -# elemwise_pow -reg.register_pattern("elemwise_pow", OpPattern.BROADCAST) -reg.register_schedule("elemwise_pow", _fschedule_broadcast) - -# broadcast_add -reg.register_pattern("broadcast_add", OpPattern.BROADCAST) -reg.register_schedule("broadcast_add", _fschedule_broadcast) - -# broadcast_sub -reg.register_pattern("broadcast_sub", OpPattern.BROADCAST) -reg.register_schedule("broadcast_sub", _fschedule_broadcast) - -# broadcast_mul -reg.register_pattern("broadcast_mul", OpPattern.BROADCAST) -reg.register_schedule("broadcast_mul", _fschedule_broadcast) - -# broadcast_div -reg.register_pattern("broadcast_div", OpPattern.BROADCAST) -reg.register_schedule("broadcast_div", _fschedule_broadcast) - -# broadcast mod -reg.register_pattern("broadcast_mod", OpPattern.BROADCAST) -reg.register_schedule("broadcast_mod", _fschedule_broadcast) - -# broadcast max -reg.register_pattern("broadcast_max", OpPattern.BROADCAST) -reg.register_schedule("broadcast_max", _fschedule_broadcast) - -# broadcast min -reg.register_pattern("broadcast_min", OpPattern.BROADCAST) -reg.register_schedule("broadcast_min", _fschedule_broadcast) - -# broadcast pow -reg.register_pattern("broadcast_pow", OpPattern.BROADCAST) -reg.register_schedule("broadcast_pow", _fschedule_broadcast) - -# broadcast left_shift -reg.register_pattern("broadcast_left_shift", OpPattern.BROADCAST) -reg.register_schedule("broadcast_left_shift", _fschedule_broadcast) - -# broadcast right_shift -reg.register_pattern("broadcast_right_shift", OpPattern.BROADCAST) -reg.register_schedule("broadcast_right_shift", _fschedule_broadcast) - -# broadcast greater -reg.register_pattern("broadcast_greater", OpPattern.BROADCAST) -reg.register_schedule("broadcast_greater", _fschedule_broadcast) - -# broadcast less -reg.register_pattern("broadcast_less", OpPattern.BROADCAST) -reg.register_schedule("broadcast_less", _fschedule_broadcast) - -# broadcast equal -reg.register_pattern("broadcast_equal", OpPattern.BROADCAST) -reg.register_schedule("broadcast_equal", _fschedule_broadcast) - -# broadcast not_equal -reg.register_pattern("broadcast_not_equal", OpPattern.BROADCAST) -reg.register_schedule("broadcast_not_equal", _fschedule_broadcast) - -# broadcast greater_equal -reg.register_pattern("broadcast_greater_equal", OpPattern.BROADCAST) -reg.register_schedule("broadcast_greater_equal", _fschedule_broadcast) - -# broadcast less_equal -reg.register_pattern("broadcast_less_equal", OpPattern.BROADCAST) -reg.register_schedule("broadcast_less_equal", _fschedule_broadcast) - -# broadcast_to -reg.register_pattern("broadcast_to", OpPattern.BROADCAST) -reg.register_schedule("broadcast_to", _fschedule_broadcast) - -# clip -reg.register_pattern("clip", OpPattern.ELEMWISE) -reg.register_schedule("clip", _fschedule_elemwise) - -# elemwise sum -reg.register_pattern("elemwise_sum", OpPattern.ELEMWISE) -reg.register_schedule("elemwise_sum", _fschedule_elemwise) - -# full -reg.register_pattern("full", OpPattern.OUT_ELEMWISE_FUSABLE) -reg.register_schedule("full", _fschedule_elemwise) - -# full_like -reg.register_pattern("full_like", OpPattern.ELEMWISE) -reg.register_schedule("full_like", _fschedule_elemwise) - -# zeros -reg.register_pattern("zeros", OpPattern.OUT_ELEMWISE_FUSABLE) -reg.register_schedule("zeros", _fschedule_elemwise) - -# zeros_like -reg.register_pattern("zeros_like", OpPattern.ELEMWISE) -reg.register_schedule("zeros_like", _fschedule_elemwise) - -# ones -reg.register_pattern("ones", OpPattern.OUT_ELEMWISE_FUSABLE) -reg.register_schedule("ones", _fschedule_elemwise) - -# ones_like -reg.register_pattern("ones_like", OpPattern.ELEMWISE) -reg.register_schedule("ones_like", _fschedule_elemwise) - -# greater -reg.register_pattern("greater", OpPattern.ELEMWISE) -reg.register_schedule("greater", _fschedule_elemwise) - -# less -reg.register_pattern("less", OpPattern.ELEMWISE) -reg.register_schedule("less", _fschedule_elemwise) - -# block_grad -reg.register_compute("block_grad", _compute_unary(topi.identity)) -reg.register_pattern("block_grad", OpPattern.ELEMWISE) -reg.register_schedule("block_grad", _fschedule_elemwise) diff --git a/nnvm/python/nnvm/top/transform.py b/nnvm/python/nnvm/top/transform.py deleted file mode 100644 index e9051309734a..000000000000 --- a/nnvm/python/nnvm/top/transform.py +++ /dev/null @@ -1,108 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument -"""Tensor transformation ops""" -from __future__ import absolute_import - -import tvm -import topi -from .tensor import _fschedule_broadcast, _fschedule_injective -from . import registry as reg -from .registry import OpPattern - -# expand_dims -reg.register_pattern("expand_dims", OpPattern.BROADCAST) -reg.register_schedule("expand_dims", _fschedule_broadcast) - -# expand_like -@reg.register_compute("expand_like") -def compute_expand_like(attrs, inputs, _): - """Compute definition of expand_like""" - if len(inputs[0].shape) == len(inputs[1].shape): - # If the number of dimensions is not changed then it is just a broadcasting - return topi.broadcast_to(inputs[0], inputs[1].shape) - - exclude = attrs.get_bool("exclude") - axis = attrs.get_int_tuple("axis") - if exclude: - exclude_axis = (axis,) if isinstance(axis, int) else axis - axis = [] - for item in range(len(inputs[1].shape)): - if item not in exclude_axis: - axis.append(item) - axis = tuple(axis) - - return topi.transform.expand_like(inputs[0], inputs[1], axis) -reg.register_pattern("expand_like", OpPattern.BROADCAST) -reg.register_schedule("expand_like", _fschedule_broadcast) - -# reshape_like -@reg.register_compute("reshape_like") -def compute_reshape_like(attrs, inputs, out_info): - """Compute definition of reshape_like""" - return topi.reshape(inputs[0], inputs[1].shape) -reg.register_pattern("reshape_like", OpPattern.INJECTIVE) -reg.register_schedule("reshape_like", _fschedule_injective) - -# transpose -reg.register_pattern("transpose", OpPattern.INJECTIVE) -reg.register_schedule("transpose", _fschedule_injective) - -# flip -reg.register_pattern("flip", OpPattern.INJECTIVE) -reg.register_schedule("flip", _fschedule_injective) - -# reshape -reg.register_pattern("reshape", OpPattern.INJECTIVE) -reg.register_schedule("reshape", _fschedule_injective) - -# squeeze -reg.register_pattern("squeeze", OpPattern.INJECTIVE) -reg.register_schedule("squeeze", _fschedule_injective) - -# concatenate -@reg.register_schedule("concatenate") -def schedule_concatenate(_, outs, target): - """Schedule definition of concatenate""" - with tvm.target.create(target): - return topi.generic.schedule_concatenate(outs) - -reg.register_pattern("concatenate", OpPattern.INJECTIVE) - -# split -reg.register_pattern("split", OpPattern.INJECTIVE) -reg.register_schedule("split", _fschedule_injective) - -# take -reg.register_pattern("take", OpPattern.INJECTIVE) -reg.register_schedule("take", _fschedule_injective) - -# strided_slice -reg.register_pattern("strided_slice", OpPattern.INJECTIVE) -reg.register_schedule("strided_slice", _fschedule_injective) - -# slice_like -reg.register_pattern("slice_like", OpPattern.INJECTIVE) -reg.register_schedule("slice_like", _fschedule_injective) - -# where -reg.register_pattern("where", OpPattern.INJECTIVE) -reg.register_schedule("where", _fschedule_injective) - -# gather_nd -reg.register_pattern("gather_nd", OpPattern.INJECTIVE) -reg.register_schedule("gather_nd", _fschedule_injective) diff --git a/nnvm/python/nnvm/top/vision.py b/nnvm/python/nnvm/top/vision.py deleted file mode 100644 index 2e18cf7023ef..000000000000 --- a/nnvm/python/nnvm/top/vision.py +++ /dev/null @@ -1,105 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=invalid-name, unused-argument -"""Definition of nn ops""" -from __future__ import absolute_import - -import tvm -import topi -from . import registry as reg -from .registry import OpPattern - -@reg.register_compute("yolo_reorg") -def compute_reorg(attrs, inputs, _): - """Compute definition of reorg""" - return topi.vision.reorg(inputs[0], attrs.get_int("stride")) - -@reg.register_schedule("yolo_reorg") -def schedule_reorg(attrs, outs, target): - """Schedule definition of reorg""" - with tvm.target.create(target): - return topi.generic.schedule_injective(outs) - -reg.register_pattern("yolo_reorg", OpPattern.INJECTIVE) - -# multibox_prior -@reg.register_schedule("multibox_prior") -def schedule_multibox_prior(_, outs, target): - """Schedule definition of multibox_prior""" - with tvm.target.create(target): - return topi.generic.schedule_multibox_prior(outs) - -@reg.register_compute("multibox_prior") -def compute_multibox_prior(attrs, inputs, _): - """Compute definition of multibox_prior""" - sizes = attrs.get_float_tuple('sizes') - ratios = attrs.get_float_tuple('ratios') - steps = attrs.get_float_tuple('steps') - offsets = attrs.get_float_tuple('offsets') - clip = attrs.get_bool('clip') - - return topi.vision.ssd.multibox_prior(inputs[0], sizes, ratios, - steps, offsets, clip) - -reg.register_pattern("multibox_prior", OpPattern.OPAQUE) - -# multibox_transform_loc -@reg.register_schedule("multibox_transform_loc") -def schedule_multibox_transform_loc(_, outs, target): - """Schedule definition of multibox_detection""" - with tvm.target.create(target): - return topi.generic.schedule_multibox_transform_loc(outs) - -@reg.register_compute("multibox_transform_loc") -def compute_multibox_transform_loc(attrs, inputs, _): - """Compute definition of multibox_detection""" - clip = attrs.get_bool('clip') - threshold = attrs.get_float('threshold') - variance = attrs.get_float_tuple('variances') - - return topi.vision.ssd.multibox_transform_loc(inputs[0], inputs[1], inputs[2], - clip, threshold, variance) - -reg.register_pattern("multibox_detection", OpPattern.OPAQUE) - -# non-maximum suppression -@reg.register_schedule("non_max_suppression") -def schedule_nms(_, outs, target): - """Schedule definition of non_max_suppression""" - with tvm.target.create(target): - return topi.generic.schedule_nms(outs) - -@reg.register_compute("non_max_suppression") -def compute_nms(attrs, inputs, _): - """Compute definition of non_max_suppression""" - return_indices = attrs.get_bool('return_indices') - max_output_size = attrs.get_int('max_output_size') - iou_threshold = attrs.get_float('iou_threshold') - force_suppress = attrs.get_bool('force_suppress') - top_k = attrs.get_int('top_k') - id_index = attrs.get_int('id_index') - invalid_to_bottom = attrs.get_bool('invalid_to_bottom') - - return topi.vision.non_max_suppression(inputs[0], inputs[1], - max_output_size=max_output_size, - iou_threshold=iou_threshold, - force_suppress=force_suppress, - top_k=top_k, id_index=id_index, - return_indices=return_indices, - invalid_to_bottom=invalid_to_bottom) - -reg.register_pattern("non_max_suppression", OpPattern.OPAQUE) diff --git a/nnvm/python/setup.py b/nnvm/python/setup.py deleted file mode 100644 index f89ac33a2e39..000000000000 --- a/nnvm/python/setup.py +++ /dev/null @@ -1,78 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import os -import sys -from setuptools import find_packages -from distutils.core import setup - -def config_cython(): - # temporary disable cython for now - # as NNVM uses local DLL build - return [] - try: - from Cython.Build import cythonize - from distutils.extension import Extension - if sys.version_info >= (3, 0): - subdir = "_cy3" - else: - subdir = "_cy2" - ret = [] - path = "nnvm/cython" - - for fn in os.listdir(path): - if not fn.endswith(".pyx"): - continue - ret.append(Extension( - "nnvm/%s/%s" % (subdir, fn[:-4]), - ["nnvm/cython/%s" % fn], - include_dirs=["../include/"], - language="c++")) - return cythonize(ret) - except: - print("Cython is not installed, will compile without cython module") - return [] - -# We can not import `libinfo.py` in setup.py directly since __init__.py -# Will be invoked which introduces dependences -CURRENT_DIR = os.path.dirname(__file__) -libinfo_py = os.path.join(CURRENT_DIR, './nnvm/libinfo.py') -libinfo = {'__file__': libinfo_py} -exec(compile(open(libinfo_py, "rb").read(), libinfo_py, 'exec'), libinfo, libinfo) - -__version__ = libinfo['__version__'] -if not os.getenv('CONDA_BUILD'): - LIB_PATH = libinfo['find_lib_path']() - _, LIB_NAME = os.path.split(LIB_PATH[0]) - curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) - rpath = os.path.relpath(LIB_PATH[0], curr_path) - setup_kwargs = dict( - include_package_data=True, - data_files=[('nnvm', [rpath])] - ) -else: - setup_kwargs = {} - -setup(name='nnvm', - version=__version__, - description="NNVM: Open Compiler for AI Frameworks", - zip_safe=False, - install_requires=[ - 'numpy' - ], - packages=find_packages(), - url='https://github.com/dmlc/nnvm', - **setup_kwargs) diff --git a/nnvm/src/README.md b/nnvm/src/README.md index c1b66260625e..64fd1371719a 100644 --- a/nnvm/src/README.md +++ b/nnvm/src/README.md @@ -23,8 +23,3 @@ The following components are operator invariant. - c_api: NNVM C API - core: NNVM core data structure - pass: NNVM pass - -The following components are generic NNVM compiler and defines tensor operator set - -- top: NNVM core tensor operators -- compiler: NNVM compiler toolchain diff --git a/nnvm/src/compiler/alter_op_layout.cc b/nnvm/src/compiler/alter_op_layout.cc deleted file mode 100644 index 8a6694f166d4..000000000000 --- a/nnvm/src/compiler/alter_op_layout.cc +++ /dev/null @@ -1,177 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file alter_op_layout.cc - * \brief Alter the operator layouts. Keep inferred layouts (if any) from previous stages. - * e.g., convolution may calculates faster with NCHW16c layout. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include "compile_engine.h" -#include "graph_transform.h" - -namespace nnvm { -namespace compiler { -namespace { - -tvm::Array GetTensorInfo(const IndexedGraph& idx_graph, - const uint32_t nid, - const ShapeVector& shape_vec, - const DTypeVector& dtype_vec) { - tvm::Array vec; - for (uint32_t i = 0; i < idx_graph[nid].source->num_outputs(); ++i) { - tvm::Array shape; - for (int64_t x : shape_vec[idx_graph.entry_id(nid, i)]) { - CHECK_LE(x, static_cast(std::numeric_limits::max())); - shape.push_back(tvm::make_const(tvm::DataType::Int(32), x)); - } - vec.push_back(tvm::placeholder( - shape, GetTVMType(dtype_vec[idx_graph.entry_id(nid, i)]))); - } - return vec; -} - -Graph AlterOpLayout(const Graph& src) { - static auto& falter_op_layout = - Op::GetAttr("FTVMAlterOpLayout"); - - const ShapeVector& shape_vec = src.GetAttr("shape"); - const DTypeVector& dtype_vec = src.GetAttr("dtype"); - const IndexedGraph& idx_graph = src.indexed_graph(); - - std::vector > in_layouts_of_node(idx_graph.num_nodes()); - std::vector > out_layouts_of_node(idx_graph.num_nodes()); - std::unordered_map unchanged_nodes; - - if (src.HasAttr("layout")) { - // record layouts so that LayoutTransform pass can fix layouts correctly, - // e.g., conv2d can be replaced by some contrib implement - // whose layout is different from the original one - // (which was imported from a model file). - const auto& layouts = src.GetAttr >("layout"); - for (uint32_t nid = 0; nid < idx_graph.num_nodes(); ++nid) { - const auto &inode = idx_graph[nid]; - // record input layouts for all nodes, - // while replaced nodes will ignore the records here and have undefined input layouts. - std::vector in_layout; - for (const auto& e : inode.inputs) { - in_layout.emplace_back(layouts[idx_graph.entry_id(e)]); - } - in_layouts_of_node[nid] = in_layout; - - std::vector out_layout; - for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) { - out_layout.emplace_back(layouts[idx_graph.entry_id(nid, i)]); - } - out_layouts_of_node[nid] = out_layout; - } - } - - auto transform = [&](uint32_t nid, - const NodePtr& n, - std::vector* ret) { - nnvm::compiler::FTVMAlterOpLayout fn_alter_op_layout = - falter_op_layout.get(n->op(), nullptr); - if (fn_alter_op_layout == nullptr) { - // will restore the original input layouts later. - unchanged_nodes[n.get()] = nid; - return false; - } - - // construct parameters for registered function - std::vector op_inputs; - tvm::Array tensor_infos; - CHECK_EQ(n->num_inputs(), idx_graph[nid].inputs.size()); - for (uint32_t i = 0; i < n->num_inputs(); ++i) { - const nnvm::NodeEntry& input = n->inputs[i]; - // input operator - Symbol op_input; - op_input.outputs.push_back(input); - op_inputs.push_back(op_input); - - // input tinfo, extract from the original graph - // because it was where infer_shape & infer_type applied. - tvm::Array op_output_tinfos = - GetTensorInfo(idx_graph, idx_graph[nid].inputs[i].node_id, - shape_vec, dtype_vec); - tensor_infos.push_back(op_output_tinfos[input.index]); - } - // callback registered function to get a new operator. - Symbol op; - bool do_alter = - fn_alter_op_layout(n->attrs, Symbol::CreateGroup(op_inputs), tensor_infos, &op); - - if (do_alter) { - *ret = op.outputs; - } else { - // will restore the original input layouts later. - unchanged_nodes[n.get()] = nid; - } - return do_alter; - }; - - Graph ret = nnvm::compiler::GraphTransform(src, transform); - - if (src.HasAttr("layout")) { - // restore the layouts to return graph - const auto& ret_idx = ret.indexed_graph(); - std::vector ret_layouts(ret_idx.num_node_entries(), Layout::Undef()); - for (uint32_t nid = 0; nid < ret_idx.num_nodes(); ++nid) { - const auto& inode = ret_idx[nid]; - if (unchanged_nodes.count(inode.source)) { - const std::vector& in_layouts = - in_layouts_of_node[unchanged_nodes[inode.source]]; - for (uint32_t i = 0; i < inode.inputs.size(); ++i) { - const auto& e = inode.inputs[i]; - ret_layouts[ret_idx.entry_id(e)] = in_layouts[i]; - } - const std::vector& out_layouts = - out_layouts_of_node[unchanged_nodes[inode.source]]; - for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) { - ret_layouts[ret_idx.entry_id(nid, i)] = out_layouts[i]; - } - } - } - - // cannot call indexed_graph() before return the origin Graph, - // thus create a new one. - nnvm::Graph new_ret; - new_ret.outputs = ret.outputs; - new_ret.attrs["layout"] = std::make_shared(std::move(ret_layouts)); - return new_ret; - } - - return ret; -} - -// register pass -NNVM_REGISTER_PASS(AlterOpLayout) -.set_body(AlterOpLayout) -.set_change_graph(true); - -} // namespace -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/compile_engine.cc b/nnvm/src/compiler/compile_engine.cc deleted file mode 100644 index 82d8ff31612e..000000000000 --- a/nnvm/src/compiler/compile_engine.cc +++ /dev/null @@ -1,401 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file compile_engine.cc - * \brief The compile engine. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "graph_hash.h" -#include "compile_engine.h" - -namespace nnvm { -namespace compiler { - -using namespace tvm; - -/*! - * \brief Get type flag from TVM Type - * - * \param type the tvm type. - * \return corresponding DLDataType - */ -int GetTypeFlag(tvm::DataType type) { - if (type == tvm::DataType::Float(32)) return 0; - if (type == tvm::DataType::Float(64)) return 1; - if (type == tvm::DataType::Float(16)) return 2; - if (type == tvm::DataType::UInt(8)) return 3; - if (type == tvm::DataType::Int(32)) return 4; - if (type == tvm::DataType::Int(8)) return 5; - if (type == tvm::DataType::Int(64)) return 6; - if (type == tvm::DataType::Int(16)) return 7; - if (type == tvm::DataType::UInt(16)) return 8; - if (type == tvm::DataType::UInt(32)) return 9; - if (type == tvm::DataType::UInt(64)) return 10; - if (type == tvm::DataType::UInt(1)) return 11; - LOG(FATAL) << "cannot convert " << type; - return 0; -} -// convert from type flag to tvm type. -DataType GetTVMType(int type_flag) { - switch (type_flag) { - case 0: - return tvm::DataType::Float(32); - case 1: - return tvm::DataType::Float(64); - case 2: - return tvm::DataType::Float(16); - case 3: - return tvm::DataType::UInt(8); - case 4: - return tvm::DataType::Int(32); - case 5: - return tvm::DataType::Int(8); - case 6: - return tvm::DataType::Int(64); - case 7: - return tvm::DataType::Int(16); - case 8: - return tvm::DataType::UInt(16); - case 9: - return tvm::DataType::UInt(32); - case 10: - return tvm::DataType::UInt(64); - case 11: - return tvm::DataType::UInt(1); - default: - LOG(FATAL) << "unknown type_flag=" << type_flag; - return DataType::Float(32); - } -} - -// internal compile engine -class CompileEngine { - public: - static CompileEngine* Global() { - static CompileEngine inst; - return &inst; - } - // lower graph possible get back an cached op. - GraphFunc Lower(Graph graph, - const Array& inputs, - const std::string& target, - int master_idx) { - GraphKey key = GraphKeyNode::make(graph, inputs, target); - std::lock_guard lock(mutex_); - auto it = cache_.find(key); - if (it != cache_.end()) { - ++(it->second->use_count); - return it->second->graph_func; - } - GraphFunc f = DoLower(key->graph, key->inputs, key->target, master_idx); - auto n = tvm::make_node(); - n->graph_func = f; - n->use_count = 1; - n->master_idx = master_idx; - cache_[key] = GraphCacheEntry(n); - return f; - } - // List all items in the cache. - Array ListCacheItems() { - std::lock_guard lock(mutex_); - Array items; - for (auto& kv : cache_) { - items.push_back(kv.first); - auto n = tvm::make_node(*(kv.second.operator->())); - items.push_back(GraphCacheEntry(n)); - } - return items; - } - // Find the function given graph key. - GraphCacheEntry Find(const GraphKey& key) { - std::lock_guard lock(mutex_); - auto it = cache_.find(key); - if (it != cache_.end()) { - return it->second; - } else { - return GraphCacheEntry(); - } - } - // Set the given function on given graph key. - void Set(const GraphKey& key, GraphFunc func) { - std::lock_guard lock(mutex_); - auto n = tvm::make_node(); - n->graph_func = func; - n->use_count = 1; - cache_[key] = GraphCacheEntry(n); - } - // Clear the function cache. - void Clear() { - std::lock_guard lock(mutex_); - cache_.clear(); - } - - // get schedule and its args - std::tuple, Graph> - GetScheduleArgs(Graph graph, - const Array &inputs, - const std::string &target, - int master_idx, - std::string *readable_name, - Array *outputs) { - // shape, type - static auto& fcompute = - nnvm::Op::GetAttr("FTVMCompute"); - static auto& fschedule = - nnvm::Op::GetAttr("FTVMSchedule"); - - std::vector ishape; - std::vector idtype; - - for (const tvm::Tensor t : inputs) { - std::vector shape; - for (Expr v : t->shape) { - CHECK(v.as()); - shape.push_back(v.as()->value); - } - ishape.emplace_back(TShape(shape.begin(), shape.end())); - idtype.emplace_back(GetTypeFlag(t->dtype)); - } - graph = pass::InferShape(graph, ishape); - graph = pass::InferType(graph, idtype); - - const ShapeVector& shape_vec = graph.GetAttr("shape"); - const DTypeVector& dtype_vec = graph.GetAttr("dtype"); - const IndexedGraph& idx = graph.indexed_graph(); - CHECK_EQ(inputs.size(), idx.input_nodes().size()); - - std::vector tensor_vec(idx.num_node_entries()); - for (size_t i = 0; i < idx.input_nodes().size(); ++i) { - uint32_t nid = idx.input_nodes()[i]; - tensor_vec[idx.entry_id(nid, 0)] = inputs[i]; - } - - std::ostringstream readable_name_os; - readable_name_os << "fuse"; - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - Array op_inputs, out_info; - readable_name_os << "_" << inode.source->op()->name; - // input array - for (const IndexedGraph::NodeEntry& e : inode.inputs) { - const tvm::Tensor& t = tensor_vec[idx.entry_id(e)]; - CHECK(t.defined()); - op_inputs.push_back(t); - } - // output hint - for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) { - Array shape; - for (int64_t x : shape_vec[idx.entry_id(nid, i)]) { - CHECK_LE(x, static_cast(std::numeric_limits::max())); - shape.push_back(make_const(DataType::Int(32), x)); - } - out_info.push_back( - placeholder(shape, - GetTVMType(dtype_vec[idx.entry_id(nid, i)]))); - } - // get default - Array out = fcompute[inode.source->op()]( - inode.source->attrs, op_inputs, out_info); - CHECK_EQ(out.size(), inode.source->num_outputs()); - - // check output dimentions also match - // This check is to make sure the NNVM operator Infer match with Compute result. - // Missing this check may pass the build but leads to runtime errors. - for (uint32_t i = 0; i < out.size(); ++i) { - CHECK_EQ(out[i].ndim(), out_info[i].ndim()) << inode.source->op()->name; - tvm::Tensor inferred_tensor = out[i]; - tvm::Tensor computed_tensor = out_info[i]; - for (uint32_t j = 0; j < inferred_tensor->shape.size(); ++j) { - if ((as_const_int(inferred_tensor->shape[j])) && - (as_const_int(computed_tensor->shape[j]))) - CHECK_EQ((*as_const_int(inferred_tensor->shape[j])), - (*as_const_int(computed_tensor->shape[j]))) << inode.source->op()->name; - } - } - - // schedule on root node, and use master's schedule - for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { - uint32_t eid = idx.entry_id(nid, index); - tensor_vec[eid] = out[index]; - } - } - // Schedule on final output. - Array all_args = inputs; - Array outs; - for (const IndexedGraph::NodeEntry& e : idx.outputs()) { - const tvm::Tensor& t = tensor_vec[idx.entry_id(e)]; - CHECK(t.defined()); - outs.push_back(t); - all_args.push_back(t); - } - - Schedule sch = fschedule[idx[master_idx].source->op()]( - idx[master_idx].source->attrs, outs, target); - - // store extra return values - if (readable_name != nullptr) { - *readable_name = readable_name_os.str(); - } - if (outputs != nullptr) { - *outputs = outs; - } - - return std::make_tuple(sch, all_args, graph); - } - - // run the actual lowering process - GraphFunc DoLower(Graph graph, - const Array& inputs, - const std::string& target, - int master_idx) { - std::string readable_name; - Array all_args; - Array outputs; - Schedule sch; - - std::tie(sch, all_args, graph) = GetScheduleArgs( - graph, inputs, target, master_idx, - &readable_name, &outputs); - - auto gf = tvm::make_node(); - gf->target = target; - gf->func_name = GetUniqeName(readable_name); - gf->inputs = inputs; - gf->outputs = outputs; - static const PackedFunc& flower = GetPackedFunc("nnvm.compiler.lower"); - gf->funcs = flower(sch, all_args, gf->func_name, graph); - return GraphFunc(gf); - } - - private: - // Get unique name - std::string GetUniqeName(std::string name) { - while (true) { - auto it = name_map_.find(name); - if (it == name_map_.end()) { - name_map_[name] = 1; - return name; - } else { - std::ostringstream os; - os << name << "_" << it->second; - ++(it->second); - name = os.str(); - } - } - return name; - } - - // global mutex - std::mutex mutex_; - // the name map - std::unordered_map name_map_; - // the compiler cache - std::unordered_map cache_; -}; - -GraphFunc GraphLower(Graph graph, - const Array& inputs, - const std::string& target, - int master_idx) { - return CompileEngine::Global()->Lower( - graph, inputs, target, master_idx); -} - -// Expose cache to front end -TVM_REGISTER_GLOBAL("nnvm.compiler.ListCacheItems") -.set_body([](tvm::runtime::TVMArgs args, tvm::runtime::TVMRetValue *rv) { - *rv = CompileEngine::Global()->ListCacheItems(); - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler.ClearCache") -.set_body([](tvm::runtime::TVMArgs args, tvm::runtime::TVMRetValue *rv) { - CompileEngine::Global()->Clear(); - }); - -// NOTE: this involves graph lookup and can be slow -TVM_REGISTER_GLOBAL("nnvm.compiler.GetCacheItem") -.set_body([](tvm::runtime::TVMArgs args, tvm::runtime::TVMRetValue *rv) { - *rv = CompileEngine::Global()->Find(args[0]); - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler.SetCacheItem") -.set_body([](tvm::runtime::TVMArgs args, tvm::runtime::TVMRetValue *rv) { - CompileEngine::Global()->Set(args[0], args[1]); - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler.GraphKeyGetGraph") -.set_body([](tvm::runtime::TVMArgs args, tvm::runtime::TVMRetValue *rv) { - *rv = args[0].operator GraphKey()->graph; - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler.MakeGraphKey") -.set_body_typed(GraphKeyNode::make); - -// This can be used to extract workloads from nnvm compiler -TVM_REGISTER_GLOBAL("nnvm.compiler.CacheItem2ScheduleArgs") -.set_body([](TVMArgs args, TVMRetValue *rv) { - Array item = args[0]; - - const GraphKeyNode *key = reinterpret_cast(item[0].get()); - const GraphCacheEntryNode *value = reinterpret_cast(item[1].get()); - - // extract arguments from cached item - Graph graph = key->graph; - const Array &inputs = key->inputs; - std::string target = args[1]; - int master_idx = value->master_idx; - - Schedule sch; - Array all_args; - std::tie(sch, all_args, graph) = - CompileEngine::Global()->GetScheduleArgs( - graph, inputs, target, master_idx, nullptr, nullptr); - - Array ret; - ret.push_back(sch); - ret.push_back(all_args); - *rv = ret; - }); - -TVM_REGISTER_NODE_TYPE(GraphFuncNode); -TVM_REGISTER_NODE_TYPE(GraphCacheEntryNode); - -TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable) -.set_dispatch([](const ObjectRef& ref, IRPrinter* p) { - auto* op = static_cast(ref.get()); - p->stream << "GraphFunc(name=" << op->func_name - << ", addr=" << op << ")"; -}); - -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/compile_engine.h b/nnvm/src/compiler/compile_engine.h deleted file mode 100644 index b4fec104bbcb..000000000000 --- a/nnvm/src/compiler/compile_engine.h +++ /dev/null @@ -1,133 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file compile_engine.h - * \brief Internal engine to compile a subgraph fragment and cache compilation. - */ -#ifndef NNVM_COMPILER_COMPILE_ENGINE_H_ -#define NNVM_COMPILER_COMPILE_ENGINE_H_ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "graph_hash.h" - -namespace nnvm { -namespace compiler { - -/*! \brief A TVM Node to represent compiled graph function */ -struct GraphFuncNode : public tvm::Node { - /* \brief compiled target */ - std::string target; - /*! \brief Function name */ - std::string func_name; - /* \brief The inputs to the function */ - tvm::Array inputs; - /* \brief The outputs to the function */ - tvm::Array outputs; - /*! \brief The lowered functions */ - tvm::Array funcs; - - void VisitAttrs(tvm::AttrVisitor* v) { - v->Visit("target", &target); - v->Visit("func_name", &func_name); - v->Visit("inputs", &inputs); - v->Visit("outputs", &outputs); - v->Visit("funcs", &funcs); - } - - static constexpr const char* _type_key = "GraphFunc"; - TVM_DECLARE_NODE_TYPE_INFO(GraphFuncNode, tvm::Node); -}; - -TVM_DEFINE_NODE_REF(GraphFunc, GraphFuncNode); - -/*! \brief Cache Entry in the graph */ -struct GraphCacheEntryNode : public tvm::Node { - /*! \brief The graph function */ - GraphFunc graph_func; - /*! \brief Usage statistics */ - int use_count{0}; - /*! \brief Index of the master node for calling schedule*/ - int master_idx; - - void VisitAttrs(tvm::AttrVisitor* v) { - v->Visit("graph_func", &graph_func); - v->Visit("use_count", &use_count); - v->Visit("master_idx", &master_idx); - } - static constexpr const char* _type_key = "GraphCacheEntry"; - TVM_DECLARE_NODE_TYPE_INFO(GraphCacheEntryNode, tvm::Node); -}; - -class GraphCacheEntry : public ::tvm::NodeRef { - public: - GraphCacheEntry() {} - explicit GraphCacheEntry(::tvm::NodePtr<::tvm::Node> n) : NodeRef(n) {} - GraphCacheEntryNode* operator->() { - return static_cast(get_mutable()); - } - using ContainerType = GraphCacheEntryNode; -}; - -/*! - * \brief Call compile engine to lower a graph with given inputs. - * - * \param graph The graph to be compiled - * \param inputs The input specification. - * \param target The build target - * \param master_idx The index of master node for calling schedule - * - * \return func A lowered tvm function. - */ -GraphFunc GraphLower(Graph graph, - const Array& inputs, - const std::string& target, - int master_idx); - -/*! - * \brief Get type flag from TVM Type - * - * \param type the tvm type - * \return corresponding DLDataType - */ -int GetTypeFlag(tvm::DataType type); - -/*! - * \brief Get TVM Type from type flag - * - * \param type_flag the type flag - * \return corresponding TVM type - */ -tvm::DataType GetTVMType(int type_flag); - -} // namespace compiler -} // namespace nnvm - -#endif // NNVM_COMPILER_COMPILE_ENGINE_H_ diff --git a/nnvm/src/compiler/fold_scale_axis.cc b/nnvm/src/compiler/fold_scale_axis.cc deleted file mode 100644 index 6e5e73788c4c..000000000000 --- a/nnvm/src/compiler/fold_scale_axis.cc +++ /dev/null @@ -1,602 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file fold_scale_axis.cc - * \author Fold scaling parameter of axis into weight of conv/dense -*/ -#include -#include -#include -#include -#include -#include -#include "pattern_util.h" -#include "graph_transform.h" - -namespace nnvm { -namespace compiler { - -enum FoldScaleKind { - // No folding is applied - kNone, - // The folding decision is pending, we can fold on a state. - kPending, - // The original operator that contains the scale. - kProvider, - // The final conumer of axis scale using multiply - // Likely be a conv or dense operator. - kMulConsumer, - // The final conumer of axis scale using division - kDivConsumer -}; - -struct FoldChainInfo { - // Entry kind - FoldScaleKind kind{kNone}; - // The output axis to be folded - int axis{0}; - // Source node in the fold chain - int source{0}; -}; - -// The entry of folding chains on which -// we should perform folding on -struct FoldChainEntry { - // Fold information - FoldChainInfo info; - // Number of outgoing fork count - // in forward propagation. - int fork_count{0}; - // Following field only used by provider. - // The input index - int fold_input_index{1}; - // The scale entry - NodeEntry scale_entry; -}; - -// Try to pass axis scaling to backward, -// Given that we we know the status of current fold axis. -// return whether the forward signal is consumed. -using FScaleAxisBackward = std::function< - bool(const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - const FoldChainInfo& out_info, - std::vector* in_info)>; - - -// Try to pass axis scaling to forward, -// Given that we we know the status of one of its input to be pending -// also update other input info -// return whether the forward signal is consumed. -using FScaleAxisForward = std::function< - bool(const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - std::vector* in_info, - FoldChainInfo* out_info)>; - - -// Detect if there is a scaling axis happening -bool DetectScaleAxis(const IndexedGraph& idx, - uint32_t nid, - const ShapeVector& shape_vec, - const std::vector& ref_count, - bool is_forward, - std::vector* chain) { - const IndexedGraph::Node& inode = idx[nid]; - static const Op* bcast_mul = Op::Get("broadcast_mul"); - static const Op* expand_dims = Op::Get("expand_dims"); - if (inode.source->op() != bcast_mul) return false; - const TShape& oshape = shape_vec[idx.entry_id(nid, 0)]; - CHECK_NE(oshape.ndim(), 0); - if (oshape.ndim() <= 1) return false; - for (int i = 0; i < 2; ++i) { - const IndexedGraph::NodeEntry& a = inode.inputs[i]; - const IndexedGraph::NodeEntry& b = inode.inputs[1 - i]; - std::pair axis = - MatchBroadcast1DAxis(oshape, shape_vec[idx.entry_id(a)]); - if (axis.first != -1 && - shape_vec[idx.entry_id(b)] == oshape) { - if (ref_count[a.node_id] != 1) return false; - if (is_forward && ref_count[nid] != 1) return false; - if (!is_forward && ref_count[b.node_id] != 1) return false; - const IndexedGraph::Node& anode = idx[a.node_id]; - // mark the current entry. - FoldChainEntry& e = (*chain)[nid]; - if (anode.source->is_variable()) { - e.fold_input_index = 1 - i; - e.scale_entry = inode.source->inputs[1 - i]; - } else if (anode.source->op() == expand_dims && - shape_vec[idx.entry_id(anode.source->inputs[0])].ndim() == 1) { - e.fold_input_index = 1 - i; - e.scale_entry = anode.source->inputs[0]; - } else { - return false; - } - e.info.axis = axis.first; - e.info.kind = kPending; - e.info.source = nid; - e.fork_count = 1; - // In the backward message passing - // We need to eagerly pass it to the input - // In the forward message passing - // we will "pull" the message from input. - if (!is_forward) { - FoldChainEntry& enext = (*chain)[b.node_id]; - enext.info.axis = e.info.axis; - enext.info.kind = kPending; - enext.info.source = nid; - } - return true; - } - } - return false; -} - -Graph FoldScaleAxis(Graph src) { - // Operator pattern - static auto& fbackward = - nnvm::Op::GetAttr("FScaleAxisBackward"); - static auto& fforward = - nnvm::Op::GetAttr("FScaleAxisForward"); - const IndexedGraph& idx = src.indexed_graph(); - const ShapeVector& shape_vec = src.GetAttr("shape"); - std::vector ref_count = GetNodeRefCounts(idx); - std::vector bwd_chain(idx.num_nodes()); - std::vector fwd_chain(idx.num_nodes()); - // shape hint for the inference. - std::vector in_shape, out_shape; - - // perform backward folding. - for (uint32_t i = idx.num_nodes(); i != 0; --i) { - uint32_t nid = i - 1; - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - if (DetectScaleAxis(idx, nid, shape_vec, - ref_count, false, &bwd_chain)) continue; - if (bwd_chain[nid].info.kind != kPending) continue; - // if referred by multiple node, cannot do propagation - if (ref_count[nid] != 1 || !fbackward.count(inode.source->op())) { - bwd_chain[nid].info.kind = kNone; continue; - } - // get input shape and output shape. - in_shape.clear(); out_shape.clear(); - for (const IndexedGraph::NodeEntry& e : inode.inputs) { - in_shape.push_back(shape_vec[idx.entry_id(e)]); - } - for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) { - out_shape.push_back(shape_vec[idx.entry_id(nid, i)]); - } - std::vector in_info(in_shape.size(), FoldChainInfo()); - bool consumed = fbackward[inode.source->op()]( - inode.source->attrs, - in_shape, - out_shape, - bwd_chain[nid].info, - &in_info); - CHECK_EQ(in_info.size(), in_shape.size()); - // propagate back. - bool can_prop = true; - for (size_t i = 0; i < in_info.size(); ++i) { - const IndexedGraph::NodeEntry& e = inode.inputs[i]; - if (ref_count[e.node_id] != 1 || - idx[e.node_id].source->num_outputs() != 1) { - can_prop = false; break; - } - } - if (!can_prop) continue; - for (size_t i = 0; i < in_info.size(); ++i) { - const IndexedGraph::NodeEntry& e = inode.inputs[i]; - bwd_chain[e.node_id].info = in_info[i]; - } - // mark consumed by making the source as provider. - if (consumed) { - bwd_chain[bwd_chain[nid].info.source].info.kind = kProvider; - } - } - - - // perform forward folding. - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - // skip scales that are already folded in backward. - if (bwd_chain[nid].info.kind == kProvider) continue; - if (DetectScaleAxis(idx, nid, shape_vec, - ref_count, true, &fwd_chain)) continue; - if (inode.source->num_outputs() != 1) continue; - // Do state update - // get input shape and output shape. - std::vector in_info; - FoldChainInfo out_info; - int num_inpending = 0; - in_shape.clear(); out_shape.clear(); - for (const IndexedGraph::NodeEntry& e : inode.inputs) { - in_shape.push_back(shape_vec[idx.entry_id(e)]); - // input information - in_info.push_back(fwd_chain[e.node_id].info); - if (fwd_chain[e.node_id].info.kind == kPending) { - ++num_inpending; - } - } - for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) { - out_shape.push_back(shape_vec[idx.entry_id(nid, i)]); - } - if (num_inpending != 1 || - !fforward.count(inode.source->op())) continue; - bool consumed = fforward[inode.source->op()]( - inode.source->attrs, - in_shape, - out_shape, - &in_info, - &out_info); - // update input info - for (size_t i = 0; i < in_info.size(); ++i) { - fwd_chain[inode.inputs[i].node_id].info = in_info[i]; - } - if (consumed) { - fwd_chain[nid].info = out_info; - for (size_t i = 0; i < in_info.size(); ++i) { - if (in_info[i].kind == kPending) { - if (--fwd_chain[in_info[i].source].fork_count == 0) { - fwd_chain[in_info[i].source].info.kind = kProvider; - } - } - } - } else { - // can propagate condition - if (inode.source->num_outputs() == 1) { - fwd_chain[nid].info = out_info; - if (out_info.kind == kPending) { - // When there is multiple reference to input - // every path have to be consumed - fwd_chain[out_info.source].fork_count += ref_count[nid] - 1; - } - } - } - } - - auto transform = [&](uint32_t nid, const NodePtr& n, std::vector* ret) { - NodeEntry rvalue = NodeEntry{n, 0, 0}; - { - // Backward chain - const FoldChainEntry& e = bwd_chain[nid]; - if (e.info.kind == kMulConsumer && - bwd_chain[e.info.source].info.kind == kProvider) { - const FoldChainEntry& se = bwd_chain[e.info.source]; - CHECK_EQ(n->num_outputs(), 1); - NodeEntry scale = ExpandBiasToMatchAxis( - se.scale_entry, - shape_vec[idx.entry_id(nid, 0)].ndim(), - shape_vec[idx.entry_id(se.scale_entry)].ndim(), - e.info.axis); - rvalue = MakeNode("broadcast_mul", n->attrs.name + "_sc", - {rvalue, scale}); - } else if (e.info.kind == kProvider) { - rvalue = n->inputs[e.fold_input_index]; - } - } - // Note that the value might get transformed twice if it - // folds value from both fwd and backward chain. - { - // forward chain - const FoldChainEntry& e = fwd_chain[nid]; - if (e.info.kind == kMulConsumer && - fwd_chain[e.info.source].info.kind == kProvider) { - const FoldChainEntry& se = fwd_chain[e.info.source]; - CHECK_EQ(n->num_outputs(), 1); - NodeEntry scale = ExpandBiasToMatchAxis( - se.scale_entry, - shape_vec[idx.entry_id(nid, 0)].ndim(), - shape_vec[idx.entry_id(se.scale_entry)].ndim(), - e.info.axis); - rvalue = MakeNode("broadcast_mul", n->attrs.name + "_sc", - {rvalue, scale}); - } else if (e.info.kind == kDivConsumer && - fwd_chain[e.info.source].info.kind == kProvider) { - const FoldChainEntry& se = fwd_chain[e.info.source]; - CHECK_EQ(n->num_outputs(), 1); - NodeEntry scale = ExpandBiasToMatchAxis( - se.scale_entry, - shape_vec[idx.entry_id(nid, 0)].ndim(), - shape_vec[idx.entry_id(se.scale_entry)].ndim(), - e.info.axis); - rvalue = MakeNode("broadcast_div", n->attrs.name + "_sc", - {rvalue, scale}); - } else if (e.info.kind == kProvider) { - rvalue = n->inputs[e.fold_input_index]; - } - } - if (rvalue.node == n) { - return false; - } else { - *ret = {rvalue}; - return true; - } - }; - return GraphTransform(src, transform); -} - -NNVM_REGISTER_PASS(FoldScaleAxis) -.set_body(FoldScaleAxis); - -// property registration. -bool ReluScaleAxisBackward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - const FoldChainInfo& out_info, - std::vector* in_axis) { - (*in_axis)[0] = out_info; - return false; -} - -bool ReluScaleAxisForward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - std::vector* in_info, - FoldChainInfo* out_info) { - *out_info = (*in_info)[0]; - return false; -} - -NNVM_REGISTER_OP(relu) -.set_attr("FScaleAxisBackward", ReluScaleAxisBackward); - -NNVM_REGISTER_OP(leaky_relu) -.set_attr("FScaleAxisBackward", ReluScaleAxisBackward); - -NNVM_REGISTER_OP(relu) -.set_attr("FScaleAxisForward", ReluScaleAxisForward); - -NNVM_REGISTER_OP(leaky_relu) -.set_attr("FScaleAxisForward", ReluScaleAxisForward); - -// property registration. -template -bool Pool2DBackward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - const FoldChainInfo& out_info, - std::vector* in_axis) { - const T& param = nnvm::get(attrs.parsed); - if (out_info.axis == 1 && param.layout == "NCHW") { - (*in_axis)[0] = out_info; - } - return false; -} - -template -bool Pool2DForward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - std::vector* in_info, - FoldChainInfo* out_info) { - const T& param = nnvm::get(attrs.parsed); - if ((*in_info)[0].axis == 1 && param.layout == "NCHW") { - *out_info = (*in_info)[0]; - } - return false; -} - -NNVM_REGISTER_OP(max_pool2d) -.set_attr("FScaleAxisBackward", Pool2DBackward); - -NNVM_REGISTER_OP(avg_pool2d) -.set_attr("FScaleAxisBackward", Pool2DBackward); - -NNVM_REGISTER_OP(max_pool2d) -.set_attr("FScaleAxisForward", Pool2DForward); - -NNVM_REGISTER_OP(avg_pool2d) -.set_attr("FScaleAxisForward", Pool2DForward); - - - -bool BroadcastAddSubScaleAxisBackward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - const FoldChainInfo& out_info, - std::vector* in_axis) { - if (out_info.kind != kPending) return false; - for (int i = 0; i < 2; ++i) { - std::pair m = MatchBroadcast1DAxis(out_shape[0], in_shape[1 - i]); - if (m.second != -1 && - in_shape[i] == out_shape[0] && - m.first == out_info.axis) { - (*in_axis)[i].kind = kPending; - (*in_axis)[i].axis = out_info.axis; - (*in_axis)[i].source = out_info.source; - (*in_axis)[1 - i].kind = kMulConsumer; - (*in_axis)[1 - i].axis = m.second; - (*in_axis)[1 - i].source = out_info.source; - return false; - } - } - return false; -} - -bool BroadcastAddSubScaleAxisForward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - std::vector* in_info, - FoldChainInfo* out_info) { - for (int i = 0; i < 2; ++i) { - if ((*in_info)[i].kind == kPending) { - std::pair m = MatchBroadcast1DAxis(out_shape[0], in_shape[1 - i]); - if (m.second != -1 && - in_shape[i] == out_shape[0] && - m.first == (*in_info)[i].axis) { - out_info->kind = kPending; - out_info->axis = m.first; - out_info->source = (*in_info)[i].source; - (*in_info)[1 - i].kind = kDivConsumer; - (*in_info)[1 - i].axis = m.second; - (*in_info)[1 - i].source = (*in_info)[i].source; - return false; - } - } - } - return false; -} - -NNVM_REGISTER_OP(broadcast_add) -.set_attr("FScaleAxisBackward", BroadcastAddSubScaleAxisBackward); - -NNVM_REGISTER_OP(broadcast_sub) -.set_attr("FScaleAxisBackward", BroadcastAddSubScaleAxisBackward); - -NNVM_REGISTER_OP(broadcast_add) -.set_attr("FScaleAxisForward", BroadcastAddSubScaleAxisForward); - -NNVM_REGISTER_OP(broadcast_sub) -.set_attr("FScaleAxisForward", BroadcastAddSubScaleAxisForward); - -bool Conv2DScaleAxisBackward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - const FoldChainInfo& out_info, - std::vector* in_axis) { - using top::Conv2DParam; - const Conv2DParam& param = nnvm::get(attrs.parsed); - if (out_info.kind != kPending) return false; - // only optimize for kernel layout OIHW for now - if (param.kernel_layout == "OIHW" && out_info.axis == 1) { - (*in_axis)[1].kind = kMulConsumer; - (*in_axis)[1].axis = 0; - (*in_axis)[1].source = out_info.source; - if (param.use_bias) { - (*in_axis)[2].kind = kMulConsumer; - (*in_axis)[2].axis = 0; - (*in_axis)[2].source = out_info.source; - } - return true; - } else { - return false; - } -} - -bool Conv2DScaleAxisForward( - const NodeAttrs& attrs, - const std::vector& in_shape, - const std::vector& out_shape, - std::vector* in_info, - FoldChainInfo* out_info) { - using top::Conv2DParam; - const Conv2DParam& param = nnvm::get(attrs.parsed); - if ((*in_info)[0].kind != kPending) return false; - // only optimize for nchw for now - if (param.kernel_layout == "OIHW" && (*in_info)[0].axis == 1) { - // Check whether it is depthwise conv2d - if (param.use_bias) { - CHECK_EQ(in_shape.size(), 3U) << "Input:[data, weight, bias]"; - } else { - CHECK_EQ(in_shape.size(), 2U) << "Input:[data, weight]"; - } - - auto dshape = in_shape.at(0); - CHECK_EQ(dshape.ndim(), 4U) << "Input data shape should be 4D"; - - // TODO(FrozenGene): Currently, we don't support conv2d's groups != in channels. - if (param.groups > 1 && dshape[1] != param.groups) { - LOG(WARNING) << "FoldScaleAxis optimization doesn't support conv2d " - << "with groups != in channels. We will skip FoldScaleAxis " - << "optimization for this op."; - return false; - } - - - // input channel equals to groups, which means depthwise conv2d - bool is_depthwise_conv2d = (dshape[1] == param.groups); - - // if it is depthwise convolution, the weight fold axis should along to axis 0. - // For example: - // data shape [1,54,63,127] weights shape [54,1,3,3], scale shape [54] - // depthwise convolution's weights shape means we have divided the data shape's channel - // to groups parties. Here, we divide 54 channels into 54 parties. Every part size is 1. - // weights shape's first dimision means how many parties we have divided (mapping to - // input shape's channel). So, in the depthwise convolution, we shouldn't do like - // traditional convolution(i.e. OIHW) - - // Backgroud of this algorithm: - - // Original Graph: - // Graph(%x, - // %in_scale, - // %weight, - // %bias, - // %out_scale) { - // %1 = __add_scalar__(%x, scalar='1') - // %3 = expand_dims(%in_scale, num_newaxis='2', axis='1') - // %4 = broadcast_mul(%1, %3) - // %7 = conv2d(%4, %weight, %bias, padding='(1, 1)', kernel_size='(3, 3)', channels='2') - // %8 = relu(%7) - // %10 = expand_dims(%out_scale, num_newaxis='2', axis='1') - // %11 = broadcast_mul(%8, %10) - // ret %11 - // } - - // Optimized Graph: - // Graph(%x, - // %weight, - // %out_scale, - // %in_scale, - // %bias) { - // %1 = __add_scalar__(%x, scalar='1') - // %4 = expand_dims(%out_scale, num_newaxis='3', axis='1') - // %5 = broadcast_mul(%weight, %4) - // %7 = expand_dims(%in_scale, num_newaxis='2', axis='1') - // %8 = broadcast_mul(%5, %7) - // %10 = broadcast_mul(%bias, %out_scale) - // %11 = conv2d(%1, %8, %10, padding='(1, 1)', kernel_size='(3, 3)', channels='2') - // %12 = relu(%11) - // ret %12 - // } - - // Conv2DScaleAxisForward will need in_scale. Conv2DScaleAxisBackward will need out_scale. - // in_scale will apply into input data's channel (in_channel). out_scale will apply in - // conv2d's result, which will apply in weight's output channel. - // So, default Conv2DScaleAxisForward will fold axis 1 (weights' input channel). - // Conv2DScaleAxisBackward will fold axis 0 (weights' output channel). - // But depthwise convolution is another story as said previously. - (*in_info)[1].kind = kMulConsumer; - (*in_info)[1].axis = is_depthwise_conv2d ? 0 : 1; - (*in_info)[1].source = (*in_info)[0].source; - return true; - } else { - return false; - } -} - -NNVM_REGISTER_OP(conv2d) -.set_attr("FScaleAxisBackward", Conv2DScaleAxisBackward); - -NNVM_REGISTER_OP(conv2d) -.set_attr("FScaleAxisForward", Conv2DScaleAxisForward); - -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/graph_compile.cc b/nnvm/src/compiler/graph_compile.cc deleted file mode 100644 index 4b738b2c520a..000000000000 --- a/nnvm/src/compiler/graph_compile.cc +++ /dev/null @@ -1,278 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_compile.cc - * \brief Compile a graph. It lowers the graph nodes into low level IR. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "compile_engine.h" -#include "graph_fuse.h" -#include "graph_runtime.h" -#include "pattern_util.h" - -namespace nnvm { -namespace compiler { - -using namespace tvm; - -// Decorate the result of PlanMemory -// This function does two things: -// - Give separate memory to each variable. -// - Tie the memory of output/lhs in assign node properly -// so the execution of assign can have side effect. -nnvm::Graph DecorateMemoryPlan( - nnvm::Graph g, - const std::vector& assign_flag) { - const IndexedGraph& idx = g.indexed_graph(); - StorageVector storage_vec = g.MoveCopyAttr("storage_id"); - g.attrs.erase("storage_allocated_bytes"); - g.attrs.erase("storage_inplace_index"); - size_t num_not_allocated = g.MoveCopyAttr( - "storage_num_not_allocated"); - CHECK_EQ(num_not_allocated, 0U) - << "Can only build inference graph with all statically allocated memory"; - - // Reassign variable id so that they are different. - int max_id = 0; - for (size_t i = 0; i < storage_vec.size(); ++i) { - max_id = std::max(storage_vec[i] + 1, max_id); - } - for (uint32_t nid : idx.input_nodes()) { - storage_vec[idx.entry_id(nid, 0)] = max_id++; - } - // Tie up the assign node storage properly. - for (uint32_t nid = 0 ; nid < idx.num_nodes(); ++nid) { - if (assign_flag[nid] == 0) continue; - const auto& inode = idx[nid]; - int var_storage_id = storage_vec[idx.entry_id(inode.inputs[0])]; - storage_vec[idx.entry_id(nid, 0)] = var_storage_id; - - if (assign_flag[nid] == 2) { - storage_vec[idx.entry_id(inode.inputs[1])] = var_storage_id; - } - } - g.attrs["storage_id"] = std::make_shared(std::move(storage_vec)); - return g; -} - -nnvm::Graph GraphCompile(const nnvm::Graph& g) { - // Get attributes from the graph. - const ShapeVector& shape_vec = g.GetAttr("shape"); - const DTypeVector& dtype_vec = g.GetAttr("dtype"); - const GroupVec& group_vec = g.GetAttr("group_root"); - const MasterVec& master_vec = g.GetAttr("group_master"); - const PatternVec& pattern_vec = g.GetAttr("pattern"); - - CHECK(g.HasAttr("fused_entry")) << "Fusion hasn't been applied yet."; - FuseEntryVec fuse_entries = g.GetAttr("fused_entry"); - - std::string target = g.GetAttr("target"); - std::string target_host; - - if (g.HasAttr("target_host")) { - target_host = g.GetAttr("target_host"); - } - // Specially handle assign. - const nnvm::Op* assign_op = nnvm::Op::Get("_assign"); - - // Start lowering. - Array func_list; - std::unordered_set func_set; - const IndexedGraph& idx = g.indexed_graph(); - - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - int root_id = group_vec[nid]; - if (static_cast(nid) != root_id) continue; - int master = master_vec[root_id]; - FuseEntry& fe = fuse_entries[root_id]; - - const IndexedGraph& subidx = fe.subgraph.indexed_graph(); - CHECK_EQ(subidx.input_nodes().size(), fe.imap.size()); - CHECK_EQ(subidx.input_nodes().size(), fe.input_info.size()); - - Array inputs; - for (uint32_t sub_input_id : subidx.input_nodes()) { - auto it = fe.input_info.find(subidx[sub_input_id].source); - inputs.push_back(it->second); - } - // Find master idx in the subgraph. - int sub_master_idx = -1; - for (uint32_t i = 0; i < subidx.num_nodes(); i++) { - if (subidx[i].source->op() == idx[master].source->op()) { - sub_master_idx = i; - break; - } - } - CHECK_NE(sub_master_idx, -1) << "A master node not found in the subgraph."; - fe.compiled_func = GraphLower(fe.subgraph, inputs, target, sub_master_idx); - for (LoweredFunc f : fe.compiled_func->funcs) { - if (!func_set.count(f.get())) { - func_set.insert(f.get()); - func_list.push_back(f); - } - } - } - - const nnvm::Op* tvm_op = nnvm::Op::Get("tvm_op"); - - std::unordered_map old_new; - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) { - // Only copy name since that is sufficient. - nnvm::NodePtr np = nnvm::Node::Create(); - np->attrs.name = inode.source->attrs.name; - old_new[nid] = np; - continue; - } - int root_id = group_vec[nid]; - if (static_cast(nid) != root_id) continue; - - // Handle normal op - FuseEntry& fe = fuse_entries[root_id]; - const IndexedGraph& subidx = fe.subgraph.indexed_graph(); - nnvm::NodePtr np = nnvm::Node::Create(); - np->attrs.op = tvm_op; - np->attrs.name = inode.source->attrs.name; - TVMOpParam param; - param.func_name = fe.compiled_func->func_name; - param.num_inputs = static_cast(fe.imap.size()); - param.num_outputs = static_cast(fe.subgraph.outputs.size()); - param.flatten_data = fe.flatten_data; - param.UpdateDict(&(np->attrs.dict)); - np->attrs.parsed = std::move(param); - - for (uint32_t sub_input_id : subidx.input_nodes()) { - // Need to make sure subgraph input order is consistent to the order of - // the graph input. - auto rit = fe.reverse_imap.find(subidx[sub_input_id].source); - CHECK(rit != fe.reverse_imap.end()); - const IndexedGraph::NodeEntry& e = rit->second; - auto it = old_new.find(e.node_id); - CHECK(it != old_new.end()) - << "cannot find node_id=" << e.node_id; - np->inputs.emplace_back( - nnvm::NodeEntry{it->second, e.index, e.version}); - } - for (const uint32_t node_id : inode.control_deps) { - auto it = old_new.find(node_id); - CHECK(it != old_new.end()); - np->control_deps.emplace_back(it->second); - } - old_new[nid] = np; - } - nnvm::Graph ret; - for (const auto& e : idx.outputs()) { - auto it = old_new.find(group_vec[e.node_id]); - CHECK(it != old_new.end()) - << "cannot find node_id=" << e.node_id; - ret.outputs.emplace_back( - nnvm::NodeEntry{it->second, e.index, e.version}); - } - - // Reference counter of each op node. - // For now, always store result when an op is referred more than once. - std::vector ref_count = GetNodeRefCounts(idx); - for (const auto& e : idx.outputs()) { - // This line will realize all the outputs. - ref_count[e.node_id] += 1; - } - - const IndexedGraph& new_idx = ret.indexed_graph(); - - // Handling assign: - // - // assign is a special operator that mutates the variable. - // Currently assign is implemented as output = copy(input[1]) - // Then we run DecorageMemoryPlan to force - // output.storage = input[0].storage - // - std::vector assign_flag(new_idx.num_nodes(), 0); - ShapeVector new_shape_vec = ShapeVector(new_idx.num_node_entries(), TShape()); - DTypeVector new_dtype_vec = DTypeVector(new_idx.num_node_entries()); - std::vector new_dltype_vec(new_idx.num_node_entries()); - - for (const auto& kv : old_new) { - uint32_t nid = kv.first; - const auto& inode = idx[nid]; - uint32_t new_nid = new_idx.node_id(kv.second.get()); - if (inode.source->op() == assign_op) { - // Check if rhs of assign can be computed inplace. - // If yes, we can simply set that memory to be assign target - // and change assign to nop. - const IndexedGraph::NodeEntry& rhs = inode.inputs[1]; - if (ref_count[rhs.node_id] <= 1 && - !(idx[rhs.node_id].source->is_variable()) && - pattern_vec[group_vec[rhs.node_id]] <= kBroadcast) { - assign_flag[new_nid] = 2; - TVMOpParam& param = dmlc::get(kv.second->attrs.parsed); - param.func_name = "__nop"; - param.UpdateDict(&(kv.second->attrs.dict)); - } else { - assign_flag[new_nid] = 1; - } - } - for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) { - uint32_t new_eid = new_idx.entry_id(new_idx.node_id(kv.second.get()), i); - uint32_t old_eid = idx.entry_id(nid, i); - new_shape_vec[new_eid] = shape_vec[old_eid]; - new_dtype_vec[new_eid] = dtype_vec[old_eid]; - new_dltype_vec[new_eid] = tvm::runtime::TVMType2String( - GetDLType(dtype_vec[old_eid])); - } - } - ret.attrs["shape"] = std::make_shared(std::move(new_shape_vec)); - ret.attrs["dtype"] = std::make_shared(std::move(new_dtype_vec)); - ret.attrs["dltype"] = std::make_shared(std::move(new_dltype_vec)); - - // Setup module - static const PackedFunc& fbuild = GetPackedFunc("nnvm.compiler.build_target"); - tvm::runtime::Module module = fbuild(func_list, target, target_host); - ret.attrs["module"] = std::make_shared(std::move(module)); - ret = nnvm::ApplyPass(ret, "PlanMemory"); - ret = DecorateMemoryPlan(ret, assign_flag); - return ret; -} - -NNVM_REGISTER_PASS(GraphCompile) - .set_body(GraphCompile) - .depend_graph_attr("shape") - .depend_graph_attr("dtype") - .depend_graph_attr("fused_entry") - .depend_graph_attr("group_root") - .depend_graph_attr("pattern") - .depend_graph_attr("group_master"); - -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/graph_fuse.cc b/nnvm/src/compiler/graph_fuse.cc deleted file mode 100644 index f6c1332dd79c..000000000000 --- a/nnvm/src/compiler/graph_fuse.cc +++ /dev/null @@ -1,424 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_fuse.cc - * \brief Fuse the operators together. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "graph_fuse.h" -#include "graph_runtime.h" -#include "pattern_util.h" - -namespace nnvm { -namespace compiler { -using namespace tvm; - -// Partition the graph into segments -// Each segment will be compiled into one operator. -// Also mark the property of the segment. -nnvm::Graph GraphFindFusibleGroups(nnvm::Graph g) { - const IndexedGraph& idx = g.indexed_graph(); - int opt_level = 2; - if (g.attrs.count("opt_level") != 0) { - opt_level = g.MoveCopyAttr("opt_level"); - } - - // Get attributes from the graph - const ShapeVector& shape_vec = g.GetAttr("shape"); - - // Reference counter of each op node - // For now, always store result when an op is referred more than once. - std::vector ref_count = GetNodeRefCounts(idx); - for (const auto& e : idx.outputs()) { - // this line will realize all the outputs - ref_count[e.node_id] += 1; - } - // Pattern for the subgraph - PatternVec pattern_vec(idx.num_nodes(), kOpaque); - // Whether node can be fused to parent. - std::vector fuse_vec(idx.num_nodes(), FuseRule::kUknown); - // Master node id of fusion segment. - std::vector master_vec(idx.num_nodes(), -1); - // Operator pattern - static auto& op_pattern = nnvm::Op::GetAttr("TOpPattern"); - - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) { - fuse_vec[nid] = FuseRule::kRealize; continue; - } - TOpPattern pt = op_pattern.get(inode.source->op(), kOpaque); - - if (pt <= kBroadcast) { - // Check if we can fuse to the master. - int chosen_master = -1; - bool ewise = inode.source->num_outputs() == 1; - bool mark_as_injective = false; - for (const auto& e : inode.inputs) { - if (fuse_vec[e.node_id] == FuseRule::kUknown) { - TOpPattern ipt = pattern_vec[e.node_id]; - if (ipt != kElemWise) ewise = false; - if (ipt <= kBroadcast) { - fuse_vec[e.node_id] = FuseRule::kFuseToMaster; - } else if (ipt == kInjective) { - fuse_vec[e.node_id] = FuseRule::kFuseToMaster; - mark_as_injective = true; - } else if (ipt == kOutEWiseFusable && - chosen_master == -1 && - shape_vec[idx.entry_id(nid, 0)] == shape_vec[idx.entry_id(e)]) { - chosen_master = master_vec[e.node_id]; - fuse_vec[e.node_id] = FuseRule::kFuseToMaster; - } else { - fuse_vec[e.node_id] = FuseRule::kRealize; - } - } - if (ewise) { - if (shape_vec[idx.entry_id(nid, 0)] != shape_vec[idx.entry_id(e)]) { - ewise = false; - } - } - } - master_vec[nid] = chosen_master; - if (chosen_master != -1) { - pt = kOutEWiseFusable; - } else if (mark_as_injective) { - pt = kInjective; - } else { - pt = ewise ? kElemWise : kBroadcast; - } - } else if (pt == kInjective || pt == kCommReduce) { - // Fuse to the comm reduce or injective - for (const auto& e : inode.inputs) { - if (fuse_vec[e.node_id] == FuseRule::kUknown) { - TOpPattern ipt = pattern_vec[e.node_id]; - if (ipt <= kInjective) { - fuse_vec[e.node_id] = FuseRule::kFuseToMaster; - } else { - fuse_vec[e.node_id] = FuseRule::kRealize; - } - } - } - if (pt == kCommReduce) { - master_vec[nid] = nid; - } - } else { - // Realize - master_vec[nid] = nid; - for (const auto& e : inode.inputs) { - if (fuse_vec[e.node_id] == FuseRule::kUknown) { - fuse_vec[e.node_id] = FuseRule::kRealize; - if (master_vec[e.node_id] == -1) { - master_vec[e.node_id] = e.node_id; - } - } - } - } - - pattern_vec[nid] = pt; - if (ref_count[nid] > 1 || opt_level < 1) { - fuse_vec[nid] = FuseRule::kRealize; - if (master_vec[nid] == -1) { - master_vec[nid] = nid; - } - } - } - - // Point to the group root id of each node. - GroupVec group_vec(idx.num_nodes(), -1); - std::vector > node_ids_per_group(idx.num_nodes()); - for (uint32_t i = idx.num_nodes(); i != 0; --i) { - uint32_t nid = i - 1; - const auto& inode = idx[nid]; - bool is_root = false; - if (group_vec[nid] == -1) { - group_vec[nid] = nid; - node_ids_per_group[nid].push_back(nid); - is_root = true; - } - - // Check if injective op and out_ewise_fusable op (e.g. conv2d) are in the same group. - bool parent_out_ewise = false; - bool parent_injective = false; - for (const auto& e : inode.inputs) { - if (fuse_vec[e.node_id] != FuseRule::kFuseToMaster) continue; - TOpPattern pt = pattern_vec[e.node_id]; - if (pt == kOutEWiseFusable) { - parent_out_ewise = true; - } else if (pt == kInjective) { - parent_injective = true; - } - } - // Change the master node from out_ewise_fusable op to itself - if (parent_injective && parent_out_ewise) { - master_vec[nid] = nid; - if (!is_root) { - // Children nodes in the same group might be pointing to a master node in a different group. - for (uint32_t j : node_ids_per_group[group_vec[nid]]) { - master_vec[j] = nid; - } - } - } - - // Propagate the group id. - for (const auto& e : inode.inputs) { - TOpPattern pt = pattern_vec[e.node_id]; - if (parent_out_ewise && parent_injective) { - if (pt == kOutEWiseFusable) { - continue; // Do not fuse out_ewise_fusable op - } else if (pt == kInjective) { - master_vec[e.node_id] = nid; - } - } - if (fuse_vec[e.node_id] == FuseRule::kFuseToMaster) { - CHECK(group_vec[e.node_id] == -1|| - group_vec[e.node_id] == group_vec[nid]); - group_vec[e.node_id] = group_vec[nid]; - node_ids_per_group[group_vec[nid]].push_back(e.node_id); - } - } - } - - /* - Above algorithm will not fuse a node whose output is fed to more than one - child node. This is because in general, it does not make sense to fuse multiple - children branches with their parent, as in the following example. - - conv2d - / | \ - / | \ - op op op - | | | - | | | - - However, when all children branches meet at a certain node, there is a possibility for - further operator fusion. For example, all nodes in the following subgraph can be fused - into a single node, if three 'in-between' nodes and the bottom node are all element wise - operation. - - conv2d - / | \ - / | \ - op op op - \ | / - \ | / - elemwise add - | - - This pattern is not uncommon. For example, it arises when conv2d op is followed by exponential - linear unit. If bias add and batch normalization are also present, they can be fused as well. - - In fact, above fusion algorithm already fuses three in-between nodes and the element wise - add node in the figure above. The following code fuses the conv2d node with the already - fused children nodes. The following patterns are supported. - - * Any number of child nodes from the top node - * The path from the top node to bottom node can contain any number of element wise ops. - - The only restriction is that in-between nodes cannot have more than one child. - - The overview of the algorithm below is as follows: - - 1. Check if all children nodes are fused into a single op by the existing fusion algorithm - 2. Fuse the parent node to children nodes, and update its group id to be the children's group id - 3. If the parent node originally belongs to another group (for example, conv + batch norm), - propagate the new group id to a grand parent and upward - */ - if (opt_level >= 1) { - std::vector > children_group_ids(idx.num_nodes()); - for (uint32_t nid = idx.num_nodes() - 1; nid != 0; --nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - CHECK_NE(group_vec[nid], -1); - if (inode.inputs.size() != 1) continue; - const uint32_t parent_nid = inode.inputs[0].node_id; - // if parent node has more than one child, record each child's group id. - if (ref_count[parent_nid] > 1) children_group_ids[parent_nid].push_back(group_vec[nid]); - } - - std::vector new_group_id(idx.num_nodes(), -1); - for (uint32_t nid = idx.num_nodes() - 1; nid != 0; --nid) { - if (new_group_id[group_vec[nid]] != -1) { - // propagate new group id from child - group_vec[nid] = new_group_id[group_vec[nid]]; - } - TOpPattern pt = op_pattern.get(idx[nid].source->op(), kOpaque); - if (pt == kOpaque) continue; - const auto& group_ids = children_group_ids[nid]; - if (group_ids.size() <= 1) continue; - const uint32_t child_group_id = group_ids[0]; - const auto& children_node_ids = node_ids_per_group[child_group_id]; - - auto is_same_group_id = [child_group_id](uint32_t id) { - return id == child_group_id; - }; - auto is_fusible_pattern = [&idx](uint32_t child_nid) { - TOpPattern child_pt = op_pattern.get(idx[child_nid].source->op(), kOpaque); - return child_pt <= kBroadcast; - }; - // fuse this node with children if - // all children belong to the same group and - // all nodes in the group are element wise or broadcast op. - const bool can_be_fused = std::all_of(group_ids.begin(), group_ids.end(), is_same_group_id) && - std::all_of(children_node_ids.begin(), children_node_ids.end(), is_fusible_pattern); - - if (can_be_fused) { - new_group_id[group_vec[nid]] = child_group_id; - group_vec[nid] = child_group_id; - for (uint32_t nid2 : node_ids_per_group[child_group_id]) { - pattern_vec[nid2] = pattern_vec[nid]; - master_vec[nid2] = master_vec[nid]; - } - } - } - } - - g.attrs["group_root"] = std::make_shared(std::move(group_vec)); - g.attrs["group_master"] = std::make_shared(std::move(master_vec)); - g.attrs["pattern"] = std::make_shared(std::move(pattern_vec)); - return g; -} - -NNVM_REGISTER_PASS(GraphFindFusibleGroups) -.set_body(GraphFindFusibleGroups) -.depend_graph_attr("shape") -.depend_graph_attr("dtype"); - -// Fuse the partitioned graph into segments. -// Create a new graph with fused nodes. -// Also inherit attribute shape, dltype from the previous graph. -nnvm::Graph GraphFuse(nnvm::Graph g) { - CHECK(g.HasAttr("group_root") && g.HasAttr("pattern")) - << "GraphFindFusibleGroups pass hasn't been applied yet."; - - const IndexedGraph& idx = g.indexed_graph(); - // Get attributes from the graph - const ShapeVector& shape_vec = g.GetAttr("shape"); - const DTypeVector& dtype_vec = g.GetAttr("dtype"); - const GroupVec& group_vec = g.GetAttr("group_root"); - const PatternVec& pattern_vec = g.GetAttr("pattern"); - - // Specially handle assign op. - const nnvm::Op* assign_op = nnvm::Op::Get("_assign"); - - FuseEntryVec fuse_entries(idx.num_nodes()); - // Setup inputs and placeholder. - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - CHECK_GE(group_vec[nid], 0); - int root_id = group_vec[nid]; - FuseEntry& fe = fuse_entries[root_id]; - fe.flatten_data = (pattern_vec[root_id] == kElemWise || - inode.source->op() == assign_op); - for (const auto& e : inode.inputs) { - if (group_vec[e.node_id] != root_id && fe.imap.count(e) == 0) { - Array shape; - if (fe.flatten_data) { - // Elementwise support flatten - int64_t prod = 1; - for (int64_t x : shape_vec[idx.entry_id(e)]) { - prod *= x; - } - CHECK_LE(prod, static_cast(std::numeric_limits::max())); - shape.push_back(make_const(DataType::Int(32), prod)); - } else { - for (int64_t x : shape_vec[idx.entry_id(e)]) { - CHECK_LE(x, static_cast(std::numeric_limits::max())); - shape.push_back(make_const(DataType::Int(32), x)); - } - } - std::ostringstream os_name; - os_name << "input" << fe.imap.size(); - Tensor data = placeholder( - shape, DataType(GetDLType(dtype_vec[idx.entry_id(e)])), - os_name.str()); - NodeEntry garg = Symbol::CreateVariable(os_name.str()).outputs[0]; - fe.imap[e] = garg; - fe.reverse_imap[garg.node.get()] = e; - fe.input_info[garg.node.get()] = std::move(data); - } - } - } - - // Setup the Subgraph - std::vector subgraph_vec(idx.num_node_entries()); - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - int root_id = group_vec[nid]; - FuseEntry& fe = fuse_entries[root_id]; - // Create a subgraph node. - NodePtr gnode = Node::Create(); - gnode->attrs = inode.source->attrs; - // Set input entries for the subgraph node. - for (const auto& e : inode.inputs) { - if (group_vec[e.node_id] != root_id) { - auto it = fe.imap.find(e); - CHECK(it != fe.imap.end()); - gnode->inputs.push_back(it->second); - } else { - const NodeEntry& ne = subgraph_vec[idx.entry_id(e)]; - CHECK(!idx[e.node_id].source->is_variable()); - CHECK(ne.node != nullptr); - gnode->inputs.push_back(ne); - } - } - // Schedule on the root node and use the master's schedule - if (static_cast(nid) != root_id) { - for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { - uint32_t eid = idx.entry_id(nid, index); - subgraph_vec[eid] = NodeEntry{gnode, index, 0}; - } - } else { - for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { - fe.subgraph.outputs.push_back(NodeEntry{gnode, index, 0}); - } - } - } - g.attrs["fused_entry"] = std::make_shared(std::move(fuse_entries)); - return g; -} - -NNVM_REGISTER_PASS(GraphFuse) - .set_body(GraphFuse) - .set_change_graph(true) - .provide_graph_attr("fused_entry") - .depend_graph_attr("shape") - .depend_graph_attr("dtype") - .depend_graph_attr("group_root") - .depend_graph_attr("group_master"); - -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/graph_fuse.h b/nnvm/src/compiler/graph_fuse.h deleted file mode 100644 index dd8d5d57f66a..000000000000 --- a/nnvm/src/compiler/graph_fuse.h +++ /dev/null @@ -1,99 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_fuse.h - * \brief Definition of structs used by graph fusion -*/ -#ifndef NNVM_COMPILER_GRAPH_FUSE_H_ -#define NNVM_COMPILER_GRAPH_FUSE_H_ - -#include -#include -#include - -#include "compile_engine.h" - -namespace nnvm { -namespace compiler { - -// The single fuse rule. -enum class FuseRule { - kUknown, - kFuseToMaster, - kRealize -}; - -/*! - * \brief Get DLDataType from dtype flag. - * - * \param type_flag The data type flag - * \return corresponding DLDataType - */ -inline DLDataType GetDLType(int type_flag) { - return GetTVMType(type_flag); -} - -struct INodeEntryHash { - size_t operator()(const IndexedGraph::NodeEntry& e) const { - return e.node_id; - } -}; - -struct INodeEntryEqual { - size_t operator()(const IndexedGraph::NodeEntry &a, - const IndexedGraph::NodeEntry &b) const { - return a.node_id == b.node_id && a.index == b.index; - } -}; - -// Auxiliary data structure for representing fused op. -struct FuseEntry { - // Subgraph of the fragment - Graph subgraph; - // The input map - std::unordered_map - imap; - // Reverse map to the old input entry - std::unordered_map reverse_imap; - // TVM Placeholder for inputs - std::unordered_map input_info; - // Whether we can flatten data - bool flatten_data; - // The corresponding function. - GraphFunc compiled_func; -}; - -// GroupVec stores the root node ids of the fused nodes. -using GroupVec = std::vector; - -// MasterVec stores master node ids of fused groups. -using MasterVec = std::vector; - -// FuseVec stores fused entries. -using FuseEntryVec = std::vector; - -// PatternVec stores operator patterns. -using PatternVec = std::vector; - -} // namespace compiler -} // namespace nnvm - -#endif // NNVM_COMPILER_GRAPH_FUSE_H_ diff --git a/nnvm/src/compiler/graph_hash.cc b/nnvm/src/compiler/graph_hash.cc deleted file mode 100644 index 236a27375225..000000000000 --- a/nnvm/src/compiler/graph_hash.cc +++ /dev/null @@ -1,240 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_deep_compare.cc - * \brief Deep compare two graph structure - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "node_attr.h" -#include "graph_hash.h" - -namespace nnvm { -namespace compiler { - -using namespace tvm; -using tvm::ir::IntImm; - -size_t HashPlaceHolder(const Tensor& t) { - size_t key = t->shape.size(); - key = dmlc::HashCombine(key, (t->dtype.code() << 8) | t->dtype.bits()); - for (Expr s : t->shape) { - if (const IntImm* op = s.as()) { - key = dmlc::HashCombine(key, op->value); - } - } - return key; -} - -bool PlaceHolderEqual(const Tensor& a, const Tensor& b) { - if (a->shape.size() != b->shape.size()) return false; - if (a->dtype != b->dtype) return false; - for (size_t i = 0; i < a->shape.size(); ++i) { - const IntImm* a_value = a->shape[i].as(); - const IntImm* b_value = b->shape[i].as(); - if (a_value && b_value == nullptr) return false; - if (b_value && a_value == nullptr) return false; - if (a_value == nullptr && b_value == nullptr) { - continue; - } - if (a_value->value != b_value->value) return false; - } - return true; -} - -size_t GraphKeyHash::Hash(const GraphKey& gkey) { - if (gkey->cache_hash_key_ != 0) return gkey->cache_hash_key_; - size_t key = dmlc::HashCombine(GraphHash(gkey->graph), gkey->target); - key = dmlc::HashCombine(key, gkey->inputs.size()); - for (size_t i = 0; i < gkey->inputs.size(); ++i) { - key = dmlc::HashCombine(key, HashPlaceHolder(gkey->inputs[i])); - } - if (key == 0) key = 1; - gkey->cache_hash_key_ = key; - return key; -} - -bool GraphKeyEqual::Equal(const GraphKey& a, - const GraphKey& b) { - if (a->target != b->target) return false; - if (a->inputs.size() != b->inputs.size()) return false; - for (size_t i = 0; i < a->inputs.size(); ++i) { - if (!PlaceHolderEqual(a->inputs[i], b->inputs[i])) return false; - } - if (GraphDeepCompare(a->graph, b->graph, false).length() != 0) return false; - return true; -} - -GraphKey GraphKeyNode::make(Graph graph, - tvm::Array inputs, - std::string target) { - auto n = tvm::make_node(); - n->graph = std::move(graph); - n->inputs = inputs; - n->target = std::move(target); - return GraphKey(n); -} - -TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable) -.set_dispatch([](const ObjectRef& ref, IRPrinter* p) { - auto* op = static_cast(ref.get()); - p->stream << "GraphKeyNode("<< op << ")"; -}); - - -// Run graph hash -size_t GraphHash(const Graph& graph) { - const IndexedGraph& idx = graph.indexed_graph(); - size_t key = 0; - // Combine a linearized sequence of ops in subgraph - key = dmlc::HashCombine(key, idx.num_nodes()); - std::hash str_hash; - std::vector hash_temp; - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const IndexedGraph::Node& inode = idx[nid]; - // Use name instad op address so it is deterministic across runs - if (inode.source->is_variable()) continue; - key = dmlc::HashCombine(key, inode.source->op()->name); - hash_temp.clear(); - for (const auto& kv : GetAttrDict(inode.source->attrs)) { - hash_temp.push_back(dmlc::HashCombine(str_hash(kv.first), kv.second)); - } - // to make sure it is deterministic - // since unordered_map is not deterministic - std::sort(hash_temp.begin(), hash_temp.end()); - for (size_t value : hash_temp) { - key = dmlc::HashCombine(key, value); - } - } - return key; -} - -// deep compare the graph structure -// not considering the graph attributes -// return non-empty error message if the graph mismatch. -// the comparator won't match name of intermediate node. -// compare_var_attr -std::string GraphDeepCompare(const Graph& a, - const Graph& b, - bool compare_variable_attr) { - const IndexedGraph& idxa = a.indexed_graph(); - const IndexedGraph& idxb = b.indexed_graph(); - std::ostringstream err; - if (idxa.num_nodes() != idxb.num_nodes()) { - err << "Number of nodes mismatch (" << idxa.num_nodes() << " v.s " << idxb.num_nodes() << ")"; - return err.str(); - } - if (idxa.num_node_entries() != idxb.num_node_entries()) { - err << "Number of node entry mismatch"; - return err.str(); - } - if (idxa.outputs().size() != idxb.outputs().size()) { - err << "Number of outputs mismatch"; - return err.str(); - } - for (size_t i = 0; i < idxa.outputs().size(); ++i) { - if (idxa.outputs()[i].node_id != idxb.outputs()[i].node_id || - idxa.outputs()[i].index != idxb.outputs()[i].index) { - err << "Output entry mismatch"; - return err.str(); - } - } - if (idxa.input_nodes().size() != idxb.input_nodes().size()) { - err << "Number of inputs mismatch"; - return err.str(); - } - - for (uint32_t nid = 0; nid < idxa.num_nodes(); ++nid) { - const IndexedGraph::Node& anode = idxa[nid]; - const IndexedGraph::Node& bnode = idxb[nid]; - if (anode.source->op() != bnode.source->op()) { - err << "Node mismatch "; - return err.str(); - } - if (anode.source->is_variable()) { - CHECK(bnode.source->is_variable()); - if (!compare_variable_attr) continue; - } - AttrDict adict = GetAttrDict(anode.source->attrs); - AttrDict bdict = GetAttrDict(bnode.source->attrs); - - auto fmatch = [&err, &anode](const AttrDict& adict, const AttrDict& bdict) { - for (const auto& kv : adict) { - auto it = bdict.find(kv.first); - if (it != bdict.end()) { - if (it->second != kv.second) { - err << "Node attr mismatch, op=" << anode.source->attrs.name - << " attr_key=" << kv.first << " " << it->second - << " v.s. " << kv.second; - return false; - } - } else { - err << "One attr_key=" << kv.first << " is missing in another " - << "op=" << anode.source->attrs.name; - return false; - } - } - return true; - }; - if (!fmatch(adict, bdict)) return err.str(); - if (adict.size() != bdict.size()) { - CHECK(!fmatch(bdict, adict)); - return err.str(); - } - if (anode.inputs.size() != bnode.inputs.size()) { - err << "Node input mismatch, op=" << anode.source->attrs.name; - return err.str(); - } - if (anode.control_deps.size() != bnode.control_deps.size()) { - err << "Node control_deps mistach, op=" << anode.source->attrs.name; - return err.str(); - } - for (size_t i = 0; i < anode.inputs.size(); ++i) { - const IndexedGraph::NodeEntry& ae = anode.inputs[i]; - const IndexedGraph::NodeEntry& be = bnode.inputs[i]; - if (ae.node_id != be.node_id || - ae.index != be.index || - ae.version != be.version) { - err << "Node input mismatch on, op=" << anode.source->attrs.name; - return err.str(); - } - } - for (size_t i = 0; i < anode.control_deps.size(); ++i) { - if (anode.control_deps[i] != bnode.control_deps[i]) { - err << "Node control_dep mismatch on, op=" << anode.source->attrs.name; - return err.str(); - } - } - } - return ""; -} - -TVM_REGISTER_GLOBAL("nnvm.graph.DeepCompare") -.set_body_typed(GraphDeepCompare); -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/graph_hash.h b/nnvm/src/compiler/graph_hash.h deleted file mode 100644 index 42c069b280c9..000000000000 --- a/nnvm/src/compiler/graph_hash.h +++ /dev/null @@ -1,101 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_hash.h - * \brief The graph hashing function. - */ -#ifndef NNVM_COMPILER_GRAPH_HASH_H_ -#define NNVM_COMPILER_GRAPH_HASH_H_ - -#include -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -class GraphKey; - -/*! \brief Key to a graph compiler cache */ -struct GraphKeyNode : public tvm::Node { - /*! \brief The graph structure */ - Graph graph; - /* \brief The inputs to the function */ - tvm::Array inputs; - /*! \brief The target */ - std::string target; - // Cached internal hash key, invisible to the user. - // The graph hash key is ensured always not to be 0 - mutable size_t cache_hash_key_{0}; - - void VisitAttrs(tvm::AttrVisitor* v) { - v->Visit("inputs", &inputs); - v->Visit("target", &target); - } - - static GraphKey make(Graph graph, - tvm::Array inputs, - std::string target); - static constexpr const char* _type_key = "GraphKey"; - TVM_DECLARE_NODE_TYPE_INFO(GraphKeyNode, tvm::Node); -}; - -TVM_DEFINE_NODE_REF(GraphKey, GraphKeyNode); - -/*! \brief Hashing function for graph key */ -struct GraphKeyHash { - size_t operator()(const GraphKey& gkey) const { - return Hash(gkey); - } - static size_t Hash(const GraphKey& gkey); -}; - -/*! \brief function for graph key */ -struct GraphKeyEqual { - bool operator()(const GraphKey& a, - const GraphKey& b) const { - return Equal(a, b); - } - static bool Equal(const GraphKey& a, const GraphKey& b); -}; - -/*! - * \brief Create a hash code for a given graph. - * \return The hash code of the graph. - */ -size_t GraphHash(const Graph& graph); - -/*! - * \brief Compare two graphs - * return empty string if they are equal - * otherwise return error message - * \param a The first graph. - * \param b The second graph. - * \return empty string if they are equal, otherwise return error message. - */ -std::string GraphDeepCompare(const Graph& a, - const Graph& b, - bool compare_variable_attr); -} // namespace compiler -} // namespace nnvm - -#endif // NNVM_COMPILER_GRAPH_HASH_H_ diff --git a/nnvm/src/compiler/graph_runtime.cc b/nnvm/src/compiler/graph_runtime.cc deleted file mode 100644 index a4b398cd41ea..000000000000 --- a/nnvm/src/compiler/graph_runtime.cc +++ /dev/null @@ -1,127 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_runtime.cc - * \brief Interface code with TVM graph runtime. -*/ -#include -#include - -#include -#include "graph_runtime.h" - -namespace nnvm { -namespace compiler { - -using tvm::Object; -using tvm::ObjectPtr; -using tvm::runtime::TVMArgs; -using tvm::runtime::TVMRetValue; -using tvm::runtime::PackedFunc; - -DMLC_REGISTER_PARAMETER(TVMOpParam); - -// parser -inline void TVMOpParamParser(nnvm::NodeAttrs* attrs) { - TVMOpParam param; - param.Init(attrs->dict); - attrs->parsed = std::move(param); -} - -NNVM_REGISTER_OP(tvm_op) -.set_attr_parser(TVMOpParamParser) -.set_num_inputs([](const NodeAttrs& attrs) { - const TVMOpParam& param = nnvm::get(attrs.parsed); - return param.num_inputs; - }) -.set_num_outputs([](const NodeAttrs& attrs) { - const TVMOpParam& param = nnvm::get(attrs.parsed); - return param.num_outputs; - }); - - -TVM_REGISTER_GLOBAL("nnvm.compiler._save_param_dict") -.set_body([](TVMArgs args, TVMRetValue *rv) { - CHECK_EQ(args.size() % 2, 0u); - size_t num_params = args.size() / 2; - std::vector names; - names.reserve(num_params); - std::vector arrays; - arrays.reserve(num_params); - for (size_t i = 0; i < num_params * 2; i += 2) { - names.emplace_back(args[i].operator std::string()); - arrays.emplace_back(args[i + 1].operator DLTensor*()); - } - std::string bytes; - dmlc::MemoryStringStream strm(&bytes); - dmlc::Stream* fo = &strm; - uint64_t header = kTVMNDArrayListMagic, reserved = 0; - fo->Write(header); - fo->Write(reserved); - fo->Write(names); - { - uint64_t sz = static_cast(arrays.size()); - fo->Write(sz); - for (size_t i = 0; i < sz; ++i) { - tvm::runtime::SaveDLTensor(fo, arrays[i]); - } - } - TVMByteArray arr; - arr.data = bytes.c_str(); - arr.size = bytes.length(); - *rv = arr; - }); - - -TVM_REGISTER_GLOBAL("nnvm.compiler._load_param_dict") -.set_body([](TVMArgs args, TVMRetValue *rv) { - std::string bytes = args[0]; - std::vector names; - dmlc::MemoryStringStream memstrm(&bytes); - dmlc::Stream* strm = &memstrm; - uint64_t header, reserved; - CHECK(strm->Read(&header)) - << "Invalid parameters file format"; - CHECK(header == kTVMNDArrayListMagic) - << "Invalid parameters file format"; - CHECK(strm->Read(&reserved)) - << "Invalid parameters file format"; - CHECK(strm->Read(&names)) - << "Invalid parameters file format"; - uint64_t sz; - strm->Read(&sz, sizeof(sz)); - size_t size = static_cast(sz); - CHECK(size == names.size()) - << "Invalid parameters file format"; - tvm::Array ret; - for (size_t i = 0; i < size; ++i) { - tvm::runtime::NDArray temp; - temp.Load(strm); - auto n = tvm::make_node(); - n->name = std::move(names[i]); - n->array = temp; - ret.push_back(NDArrayWrapper(n)); - } - *rv = ret; - }); - -TVM_REGISTER_NODE_TYPE(NDArrayWrapperNode); -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/graph_runtime.h b/nnvm/src/compiler/graph_runtime.h deleted file mode 100644 index 252a6b243c3d..000000000000 --- a/nnvm/src/compiler/graph_runtime.h +++ /dev/null @@ -1,77 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_runtime.h - * \brief Interface code with TVM graph runtime. -*/ -#ifndef NNVM_COMPILER_GRAPH_RUNTIME_H_ -#define NNVM_COMPILER_GRAPH_RUNTIME_H_ - -#include -#include -#include -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -/*! \brief Magic number for NDArray list file */ -constexpr uint64_t kTVMNDArrayListMagic = 0xF7E58D4F05049CB7; - -struct TVMOpParam : public dmlc::Parameter { - std::string func_name; - uint32_t num_inputs; - uint32_t num_outputs; - uint32_t flatten_data; - - DMLC_DECLARE_PARAMETER(TVMOpParam) { - DMLC_DECLARE_FIELD(func_name); - DMLC_DECLARE_FIELD(num_inputs).set_default(1); - DMLC_DECLARE_FIELD(num_outputs).set_default(1); - DMLC_DECLARE_FIELD(flatten_data).set_default(0); - } -}; - - -/*! - * \brief wrapper node container for exchange. - */ -struct NDArrayWrapperNode : public ::tvm::Node { - std::string name; - tvm::runtime::NDArray array; - - void VisitAttrs(tvm::AttrVisitor* v) { - v->Visit("name", &name); - v->Visit("array", &array); - } - - static constexpr const char* _type_key = "NDArrayWrapper"; - TVM_DECLARE_NODE_TYPE_INFO(NDArrayWrapperNode, tvm::Node); -}; - -TVM_DEFINE_NODE_REF(NDArrayWrapper, NDArrayWrapperNode); - -} // namespace compiler -} // namespace nnvm - -#endif // NNVM_COMPILER_GRAPH_RUNTIME_H_ diff --git a/nnvm/src/compiler/graph_transform.h b/nnvm/src/compiler/graph_transform.h deleted file mode 100644 index 4b183bf2dd6c..000000000000 --- a/nnvm/src/compiler/graph_transform.h +++ /dev/null @@ -1,144 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file graph_transform.h - * \brief A mutator class that does local pattern matching and mutates a node. -*/ -#ifndef NNVM_COMPILER_GRAPH_TRANSFORM_H_ -#define NNVM_COMPILER_GRAPH_TRANSFORM_H_ - -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -/*! - * \brief Transform the graph to build a new Graph, in post DFS order. - * - * Automatically copies node when some of its children or control_deps changed. - * This function won't be called in Variable. - * - * \param graph The original graph - * - * \param ftransform Function of (int nid, const NodePtr& node, std::vector* out) -> bool - * - * If empty vector is returned, it means original entries should be kept. - * - * \tparam FTransform The transformation function. - */ -template -Graph GraphTransform(Graph graph, FTransform ftransform) { - const IndexedGraph& idx = graph.indexed_graph(); - // new nodes - std::vector new_entry_map(idx.num_node_entries()); - std::vector updated(idx.num_node_entries(), false); - - // setup inputs and placeholder. - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - bool need_copy = false; - for (const IndexedGraph::NodeEntry& e : inode.inputs) { - if (updated[idx.entry_id(e)]) { - need_copy = true; break; - } - } - if (!need_copy) { - for (const uint32_t cid : inode.control_deps) { - const auto& cnode = idx[cid]; - for (uint32_t i = 0 ; i < cnode.source->num_outputs(); ++i) { - if (updated[idx.entry_id(cid, i)]) { - need_copy = true; - } - } - if (need_copy) break; - } - } - - if (!need_copy) { - std::vector ret; - if (ftransform(nid, inode.weak_ref.lock(), &ret)) { - CHECK_EQ(ret.size(), static_cast(inode.source->num_outputs())); - for (uint32_t i = 0 ; i < inode.source->num_outputs(); ++i) { - updated[idx.entry_id(nid, i)] = true; - new_entry_map[idx.entry_id(nid, i)] = ret[i]; - } - } - } else { - NodePtr node = Node::Create(); - node->attrs = inode.source->attrs; - for (size_t i = 0; i < inode.inputs.size(); ++i) { - const IndexedGraph::NodeEntry& e = inode.inputs[i]; - if (updated[idx.entry_id(e)]) { - node->inputs.push_back(new_entry_map[idx.entry_id(e)]); - } else { - node->inputs.push_back(inode.source->inputs[i]); - } - } - for (size_t i = 0; i < inode.control_deps.size(); ++i) { - const uint32_t cid = inode.control_deps[i]; - const auto& cnode = idx[cid]; - CHECK_NE(cnode.source->num_outputs(), 0U); - NodePtr selected_ptr; - for (uint32_t j = 0 ; j < cnode.source->num_outputs(); ++j) { - NodePtr cptr = updated[idx.entry_id(cid, j)] ? - new_entry_map[idx.entry_id(cid, j)].node : inode.source->control_deps[i]; - if (selected_ptr == nullptr) { - selected_ptr = std::move(cptr); - } else { - CHECK(selected_ptr.get() == cptr.get()) - << "Control dependency node changed to more than one node"; - } - } - node->control_deps.push_back(selected_ptr); - } - std::vector ret; - if (ftransform(nid, node, &ret)) { - CHECK_EQ(ret.size(), static_cast(inode.source->num_outputs())); - for (uint32_t i = 0 ; i < inode.source->num_outputs(); ++i) { - updated[idx.entry_id(nid, i)] = true; - new_entry_map[idx.entry_id(nid, i)] = ret[i]; - } - } else { - for (uint32_t i = 0 ; i < inode.source->num_outputs(); ++i) { - updated[idx.entry_id(nid, i)] = true; - new_entry_map[idx.entry_id(nid, i)] = NodeEntry{node, i, 0}; - } - } - } - } - Graph ret; - for (size_t i = 0; i < idx.outputs().size(); ++i) { - const IndexedGraph::NodeEntry& e = idx.outputs()[i]; - if (updated[idx.entry_id(e)]) { - ret.outputs.push_back(new_entry_map[idx.entry_id(e)]); - } else { - ret.outputs.push_back(graph.outputs[i]); - } - } - return ret; -} - -} // namespace compiler -} // namespace nnvm - -#endif // NNVM_COMPILER_GRAPH_TRANSFORM_H_ diff --git a/nnvm/src/compiler/node_attr.h b/nnvm/src/compiler/node_attr.h deleted file mode 100644 index cd11981bffec..000000000000 --- a/nnvm/src/compiler/node_attr.h +++ /dev/null @@ -1,52 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file node_attr.h - * \brief utility to access node attributes -*/ -#ifndef NNVM_COMPILER_NODE_ATTR_H_ -#define NNVM_COMPILER_NODE_ATTR_H_ - -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -using AttrDict = std::unordered_map; -/*! - * \brief Get canonicalized attr dict from node - * \param attrs The node attrs - * \return The attribute dict - */ -inline AttrDict GetAttrDict(const NodeAttrs& attrs) { - static auto& fgetdict = nnvm::Op::GetAttr("FGetAttrDict"); - if (fgetdict.count(attrs.op)) { - return fgetdict[attrs.op](attrs); - } else { - return attrs.dict; - } -} - -} // namespace compiler -} // namespace nnvm -#endif // NNVM_COMPILER_NODE_ATTR_H_ diff --git a/nnvm/src/compiler/packed_func_ext.cc b/nnvm/src/compiler/packed_func_ext.cc deleted file mode 100644 index 5680af1b2550..000000000000 --- a/nnvm/src/compiler/packed_func_ext.cc +++ /dev/null @@ -1,164 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file packed_func_ext.cc - * \brief Registeration of extension type. - */ -#include -#include -#include -#include -#include -#include -#include "node_attr.h" -#include "compile_engine.h" - -namespace tvm { -namespace runtime { - -TVM_REGISTER_EXT_TYPE(nnvm::Graph); -TVM_REGISTER_EXT_TYPE(nnvm::Symbol); -TVM_REGISTER_EXT_TYPE(nnvm::compiler::AttrDict); - -} // namespace runtime -} // namespace tvm - -namespace nnvm { -DMLC_JSON_ENABLE_ANY(int, int); -} // namespace nnvm - -namespace nnvm { -namespace compiler { - -using tvm::Tensor; -using tvm::Array; -using tvm::Node; -using tvm::runtime::TVMArgs; -using tvm::runtime::TVMRetValue; - -TVM_REGISTER_GLOBAL("nnvm.compiler._dict_get") -.set_body([](TVMArgs args, TVMRetValue *rv) { - const AttrDict& dict = args[0].AsExtension(); - std::string key = args[1]; - auto it = dict.find(key); - if (it != dict.end()) { - *rv = it->second; - } else { - *rv = nullptr; - } - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler._dict_size") -.set_body([](TVMArgs args, TVMRetValue *rv) { - const AttrDict& dict = args[0].AsExtension(); - *rv = static_cast(dict.size()); - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler._dict_keys") -.set_body([](TVMArgs args, TVMRetValue *rv) { - const AttrDict& dict = args[0].AsExtension(); - tvm::Array keys; - for (const auto& kv : dict) { - keys.push_back(kv.first); - } - *rv = keys; - }); - -TVM_REGISTER_GLOBAL("nnvm.compiler._register_alter_op_layout") -.set_body([](TVMArgs args, TVMRetValue *rv) { - // Intentionally copy and not de-allocate it, to avoid free pyobject during shutdown - PackedFunc* f = new PackedFunc(args[1].operator PackedFunc()); - Op& op = ::dmlc::Registry::Get()->__REGISTER_OR_GET__(args[0]); - auto fpack = [f](const NodeAttrs& attrs, - const Symbol& inputs, - const Array& tinfos, - Symbol* ret_symbol) { - TVMRetValue ret = (*f)(GetAttrDict(attrs), inputs, tinfos); - if (ret.type_code() == TVMTypeCode::kNull) { - return false; - } - CHECK_EQ(ret.type_code(), tvm::runtime::extension_type_info::code) - << " expected " << "Symbol (code = " << tvm::runtime::extension_type_info::code - << ") but get code = " << ret.type_code(); - *ret_symbol = *(static_cast(ret.value().v_handle)); - return true; - }; - op.set_attr("FTVMAlterOpLayout", fpack, args[2]); -}); - -// custom version of TVM compute -TVM_REGISTER_GLOBAL("nnvm._register_compute") -.set_body([](TVMArgs args, TVMRetValue *rv) { - // Intentionally copy and not de-allocate it, to avoid free pyobject during shutdown - PackedFunc* f = new PackedFunc(args[1].operator PackedFunc()); - Op& op = ::dmlc::Registry::Get()->__REGISTER_OR_GET__(args[0]); - auto fcompute = [f](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) - -> Array { - TVMRetValue ret = (*f)(GetAttrDict(attrs), inputs, out_info); - if (ret.IsObjectRef()) { - return {ret.operator Tensor()}; - } else { - return ret; - } - }; - op.set_attr("FTVMCompute", fcompute, args[2]); - }); - -TVM_REGISTER_GLOBAL("nnvm._register_schedule") -.set_body([](TVMArgs args, TVMRetValue *rv) { - // Intentionally copy and not de-allocate it, to avoid free pyobject during shutdown - PackedFunc* f = new PackedFunc(args[1].operator PackedFunc()); - Op& op = ::dmlc::Registry::Get()->__REGISTER_OR_GET__(args[0]); - auto fschedule = [f](const NodeAttrs& attrs, - const Array& outs, - const std::string& target) { - return (*f)(GetAttrDict(attrs), outs, target).operator Schedule(); - }; - op.set_attr("FTVMSchedule", fschedule, args[2]); - }); - -TVM_REGISTER_GLOBAL("nnvm._register_pattern") -.set_body([](TVMArgs args, TVMRetValue *rv) { - Op& op = ::dmlc::Registry::Get()->__REGISTER_OR_GET__(args[0]); - op.set_attr("TOpPattern", args[1].operator int(), args[2]); - }); - -TVM_REGISTER_GLOBAL("nnvm.graph._move_module") -.set_body([](TVMArgs args, TVMRetValue *rv) { - const nnvm::Graph& g = args[0].AsExtension(); - *rv = const_cast(&g)-> - MoveCopyAttr(args[1]); - }); - -TVM_REGISTER_GLOBAL("nnvm.graph._move_graph") -.set_body([](TVMArgs args, TVMRetValue *rv) { - const nnvm::Graph& g = args[0].AsExtension(); - std::string key = args[1]; - if (g.attrs.count(key)) { - *rv = const_cast(&g)-> - MoveCopyAttr(key); - } else { - *rv = nullptr; - } - }); -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/pattern_util.h b/nnvm/src/compiler/pattern_util.h deleted file mode 100644 index d3f9725caefa..000000000000 --- a/nnvm/src/compiler/pattern_util.h +++ /dev/null @@ -1,118 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file pattern_util.h - * \brief Utilities for doing various pattern matching in graph. -*/ -#ifndef NNVM_COMPILER_PATTERN_UTIL_H_ -#define NNVM_COMPILER_PATTERN_UTIL_H_ - -#include -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -/*! - * \brief find axis in oshape, such that: - * bias_shape = [1,1, ... oshape[axis], 1,1,] - * - * This is used to detect bias or scaling factor on channel dimension. - * \param oshape The output shape - * \param bias_shape The shape of bias or scaling factor. - * \return Pair of matched axis in o shape and bias_shape if found. - */ -inline std::pair MatchBroadcast1DAxis( - const TShape& oshape, const TShape& bias_shape) { - dim_t axis_dim = bias_shape.ndim(); - for (dim_t i = bias_shape.ndim(); i != 0; --i, --axis_dim) { - if (bias_shape[i - 1] != 1) break; - } - // everything is 1 - if (axis_dim == 0) { - return {oshape.ndim() - bias_shape.ndim(), 0}; - } - axis_dim = axis_dim - 1; - // The bias shape is not 1D - for (dim_t i = 0; i < axis_dim; ++i) { - if (bias_shape[i] != 1) return {-1, -1}; - } - int axis = static_cast( - oshape.ndim() - bias_shape.ndim() + axis_dim); - if (oshape[axis] != bias_shape[axis_dim]) return {-1, -1}; - return {axis, axis_dim}; -} - -/*! - * \brief Expand bias dimension to match needed axis. - * - * \param bias The bias NodeEntry - * \param out_dim output dimension. - * \param bias_dim The current bias dimension. - * \param axis The axis we want to match on. - */ -inline NodeEntry -ExpandBiasToMatchAxis(NodeEntry bias, - int out_dim, - int bias_dim, - int axis) { - if (bias_dim != 1) { - bias = MakeNode("squeeze", bias.node->attrs.name + "_sqz", {bias}); - } - int num_pad_axis = out_dim - axis - 1; - if (num_pad_axis > 0) { - std::unordered_map kwargs{ - {"axis", "1"}, - {"num_newaxis", std::to_string(num_pad_axis)}}; - return MakeNode("expand_dims", bias.node->attrs.name + "_expand", - {bias}, kwargs); - - } else { - return bias; - } -} - -/*! - * \brief Get the reference count of each node. - * \param idx The IndexedGraph - * \return ref_count vector of length number nodes. - */ -inline std::vector -GetNodeRefCounts(const IndexedGraph& idx) { - std::vector ref_count(idx.num_nodes(), 0); - for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { - const auto& inode = idx[nid]; - if (inode.source->is_variable()) continue; - for (const auto& e : inode.inputs) { - ++ref_count[e.node_id]; - } - } - for (const auto& e : idx.outputs()) { - // this line will realize all the outputs - ref_count[e.node_id] += 1; - } - return ref_count; -} -} // namespace compiler -} // namespace nnvm -#endif // NNVM_COMPILER_PATTERN_UTIL_H_ diff --git a/nnvm/src/compiler/precompute_prune.cc b/nnvm/src/compiler/precompute_prune.cc deleted file mode 100644 index cd11420b0a33..000000000000 --- a/nnvm/src/compiler/precompute_prune.cc +++ /dev/null @@ -1,127 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file precompute_prune.cc - * \brief Split the graph into a pre-compute graph and a execution graph. - * - * The pre-compute graph outputs parameters that can be taken - * by execution graph during execution phase. - */ -#include -#include -#include -#include -#include -#include - -namespace nnvm { -namespace compiler { - -nnvm::Graph PrecomputePrune(nnvm::Graph src) { - const auto& plist - = src.GetAttr >("param_name_list"); - std::unordered_set params(plist.begin(), plist.end()); - - std::unordered_set pruned; - nnvm::NodeEntryMap entry_var; - std::unordered_set unique_name; - // number of edges that are not variable - int non_var_edge = 0; - - auto replace_pruned_entry = [&] (const NodeEntry& e) { - if (!entry_var.count(e)) { - if (!e.node->is_variable()) { - ++non_var_edge; - } - nnvm::NodePtr var = nnvm::Node::Create(); - var->attrs.name = e.node->attrs.name; - if (e.version) { - var->attrs.name += "_" + std::to_string(e.version); - } - if (e.node->num_outputs() != 1) { - var->attrs.name += "_output" + std::to_string(e.index); - } - entry_var.emplace(e, var); - CHECK(!unique_name.count(var->attrs.name)); - unique_name.insert(var->attrs.name); - return nnvm::NodeEntry{var, 0, 0}; - } else { - return nnvm::NodeEntry{entry_var.at(e), 0, 0}; - } - }; - - DFSVisit(src.outputs, [&](const nnvm::NodePtr& n) { - bool can_be_pruned = true; - if (n->is_variable()) { - if (params.count(n->attrs.name)) { - pruned.emplace(n.get()); - } - can_be_pruned = false; - } - - for (const auto& e : n->inputs) { - if (!pruned.count(e.node.get())) { - can_be_pruned = false; - } - } - if (can_be_pruned) { - pruned.emplace(n.get()); - } else { - // scan again to find edge nodes, skip variables - for (auto& e : n->inputs) { - if (pruned.count(e.node.get())) { - e = replace_pruned_entry(e); - } - } - } - }); - - // nothing being pruned. - if (non_var_edge == 0) { - return src; - } - - for (auto& e : src.outputs) { - if (pruned.count(e.node.get())) { - e = replace_pruned_entry(e); - } - } - - nnvm::Graph pre_graph; - pre_graph.outputs.reserve(entry_var.size()); - std::vector output_names; - output_names.reserve(entry_var.size()); - - for (auto kv : entry_var) { - pre_graph.outputs.emplace_back(kv.first); - output_names.emplace_back(kv.second->attrs.name); - } - // new parameter list - pre_graph.attrs["output_names"] = - std::make_shared(std::move(output_names)); - src.attrs["precompute_graph"] = - std::make_shared(std::move(pre_graph)); - return src; -} - -NNVM_REGISTER_PASS(PrecomputePrune) -.set_body(PrecomputePrune); -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/compiler/simplify_inference.cc b/nnvm/src/compiler/simplify_inference.cc deleted file mode 100644 index 0e33a2260986..000000000000 --- a/nnvm/src/compiler/simplify_inference.cc +++ /dev/null @@ -1,129 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file simplify_inference.cc - * \author Ziheng Jiang -*/ -#include -#include -#include -#include -#include -#include -#include "graph_transform.h" -#include "pattern_util.h" - -namespace nnvm { -namespace compiler { - -std::vector -BatchNormToInferUnpack(const nnvm::NodeAttrs& attrs, - nnvm::NodeEntry data, - nnvm::NodeEntry gamma, - nnvm::NodeEntry beta, - nnvm::NodeEntry moving_mean, - nnvm::NodeEntry moving_var, - TShape dshape, - TShape bshape) { - CHECK_NE(dshape.ndim(), 0); - CHECK(attrs.op); - static const Op* bn_op = Op::Get("batch_norm"); - CHECK(attrs.op == bn_op); - const auto& param = nnvm::get(attrs.parsed); - std::string bn_name = attrs.name; - - // transform batch_norm(data) to scale * data + shift - NodeEntry var_add_eps = MakeNode( - "__add_scalar__", bn_name + "_add_eps", - {moving_var}, {{"scalar", std::to_string(param.epsilon)}}); - - NodeEntry sqrt = MakeNode( - "sqrt", bn_name + "_sqrt", {var_add_eps}); - - NodeEntry scale = MakeNode( - "__rdiv_scalar__", bn_name + "_div", - {sqrt}, {{"scalar", "1"}}); - - if (param.scale) { - scale = MakeNode( - "elemwise_mul", bn_name + "_gamma_mul_div", - {scale, gamma}); - } - - NodeEntry neg_mean = MakeNode( - "negative", bn_name + "_neg_mean", {moving_mean}); - - NodeEntry shift = MakeNode( - "elemwise_mul", bn_name + "_neg_mean_mul_a", - {neg_mean, scale}); - - if (param.center) { - shift = MakeNode( - "elemwise_add", bn_name + "_add_beta", {shift, beta}); - } - int axis = param.axis; - scale = ExpandBiasToMatchAxis(scale, dshape.ndim()-bshape.ndim()+1, 1, axis); - shift = ExpandBiasToMatchAxis(shift, dshape.ndim()-bshape.ndim()+1, 1, axis); - - NodeEntry out = MakeNode("broadcast_mul", bn_name + "_a_mul_data", - {data, scale}); - out = MakeNode("broadcast_add", bn_name + "_out", - {out, shift}); - // It is invalid to ref the other values of BN after inference transform. - NodeEntry undef = MakeNode("__undef__", "undef", {}); - return {out, undef, undef}; -} - -Graph SimplifyInference(nnvm::Graph src) { - // Get attributes from the graph - const IndexedGraph& idx = src.indexed_graph(); - const ShapeVector& shape_vec = src.GetAttr("shape"); - auto transform = [&](uint32_t nid, const NodePtr& n, std::vector* ret) { - if (n->is_variable()) return false; - static const Op* bn_op = Op::Get("batch_norm"); - static const Op* dropout_op = Op::Get("dropout"); - if (n->op() == bn_op) { - *ret = BatchNormToInferUnpack( - n->attrs, - n->inputs[0], - n->inputs[1], - n->inputs[2], - n->inputs[3], - n->inputs[4], - shape_vec[idx.entry_id(nid, 0)], - shape_vec[idx.entry_id(nid, 1)]); - return true; - } else if (n->op() == dropout_op) { - NodeEntry undef = MakeNode("__undef__", "undef", {}); - *ret = {n->inputs[0], undef}; - return true; - } else { - return false; - } - }; - return GraphTransform(src, transform); -} - -NNVM_REGISTER_PASS(SimplifyInference) -.set_body(SimplifyInference) -.set_change_graph(true); - -} // namespace compiler -} // namespace nnvm diff --git a/nnvm/src/pass/plan_memory.cc b/nnvm/src/pass/plan_memory.cc index de8bc946c525..83d8f87fa9f1 100644 --- a/nnvm/src/pass/plan_memory.cc +++ b/nnvm/src/pass/plan_memory.cc @@ -6,9 +6,9 @@ * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY @@ -25,14 +25,13 @@ #include #include #include -#include #include #include "graph_algorithm.h" namespace nnvm { namespace pass { namespace { - using namespace nnvm::top; + // Return bytes of data flag. static int GetDTypeSize(int type_flag) { switch (type_flag) { diff --git a/nnvm/src/top/elemwise_op_common.h b/nnvm/src/top/elemwise_op_common.h deleted file mode 100644 index 1864850eb436..000000000000 --- a/nnvm/src/top/elemwise_op_common.h +++ /dev/null @@ -1,369 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file elemwise_op_common.h - * \brief Common operator utilities - */ -#ifndef NNVM_TOP_ELEMWISE_OP_COMMON_H_ -#define NNVM_TOP_ELEMWISE_OP_COMMON_H_ - -#include -#include -#include -#include -#include -#include -#include "op_common.h" - -namespace nnvm { -namespace top { - -template -inline bool ElemwiseAttr(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs, - const AttrType& none) { - AttrType dattr = none; - size_t in_size = in_attrs->size(); - size_t out_size = out_attrs->size(); - if (n_in != -1) - in_size = static_cast(n_in); - if (n_out != -1) - out_size = static_cast(n_out); - - auto deduce = [&](std::vector *vec, size_t size, const char *name) { - for (size_t i = 0; i < size; ++i) { - CHECK(assign(&dattr, (*vec)[i])) - << "Incompatible attr in node " << attrs.name << " at " << i << "-th " - << name << ": " << "expected " << attr_string(dattr) - << ", got " << attr_string((*vec)[i]); - } - }; - deduce(in_attrs, in_size, "input"); - if (reverse_infer) deduce(out_attrs, out_size, "output"); - - auto write = [&](std::vector *vec, size_t size, const char *name) { - for (size_t i = 0; i < size; ++i) { - CHECK(assign(&(*vec)[i], dattr)) - << "Incompatible attr in node " << attrs.name << " at " << i << "-th " - << name << ": " << "expected " << attr_string(dattr) - << ", got " << attr_string((*vec)[i]); - } - }; - write(in_attrs, in_size, "input"); - write(out_attrs, out_size, "output"); - - if (is_none(dattr)) return false; - return true; -} - -template -inline bool ElemwiseShape(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - if (n_in != -1) { - CHECK_EQ(in_attrs->size(), static_cast(n_in)) << " in operator " << attrs.name; - } - if (n_out != -1) { - CHECK_EQ(out_attrs->size(), static_cast(n_out)) << " in operator " << attrs.name; - } - return ElemwiseAttr( - attrs, in_attrs, out_attrs, TShape()); -} - -template -inline bool ElemwiseType(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - if (n_in != -1) { - CHECK_EQ(in_attrs->size(), static_cast(n_in)) << " in operator " << attrs.name; - } - if (n_out != -1) { - CHECK_EQ(out_attrs->size(), static_cast(n_out)) << " in operator " << attrs.name; - } - return ElemwiseAttr( - attrs, in_attrs, out_attrs, -1); -} - -inline bool ElementWiseReduceShape(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_EQ(out_attrs->size(), 1); - return ElemwiseAttr( - attrs, in_attrs, out_attrs, TShape()); -} - -inline bool ElementWiseReduceType(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_EQ(out_attrs->size(), 1); - return ElemwiseAttr( - attrs, in_attrs, out_attrs, -1); -} - -template -inline bool ElemwiseFixedLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts, - const std::function& finfer) { - const size_t in_size = (n_in == -1) ? in_layouts->size() : static_cast(n_in); - const size_t out_size = (n_out == -1) ? out_layouts->size() : static_cast(n_out); - - auto deduce = [&](Layout *target, const std::vector *vec, - size_t size, const char *name) { - for (size_t i = 0; i < size; ++i) { - if (vec->at(i).defined()) { - if (!target->defined()) { - *target = vec->at(i); - } - CHECK_EQ(*target, vec->at(i)) - << "Incompatible attr in node " << attrs.name << " at " << i << "-th " - << name << ": " << "expected " << *target - << ", got " << vec->at(i); - } - } - }; - - Layout in, last_in, out; - deduce(&in, in_layouts, in_size, "input"); - deduce(&last_in, last_in_layouts, in_size, "input (last infer pass)"); - deduce(&out, out_layouts, out_size, "output"); - - if (!last_in.defined()) { - last_in = in; - } else { - // else we copy in_layout produced by last infer pass to in_layout, - // and let LayoutTransform pass - // to insert an layout_transform node to fix the input layout. - in = last_in; - } - - out = finfer(in); - - auto write = [](std::vector *vec, Layout& value, size_t size) { - for (size_t i = 0; i < size; ++i) { - vec->at(i) = value; - } - }; - if (in.defined()) write(in_layouts, in, in_size); - if (out.defined()) write(out_layouts, out, out_size); - - return true; -} - -/*! \brief Fix the input layout as the previous inferred (if any) and copy to output */ -template -inline bool ElemwiseFixedLayoutCopyToOut(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - return ElemwiseFixedLayout( - attrs, in_layouts, last_in_layouts, out_layouts, [](const Layout& in) { - return in; - }); -} - -/*! \brief Fix the input layout as the previous inferred (if any) and do not define output */ -template -inline bool ElemwiseFixedLayoutUnknownOut(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - return ElemwiseFixedLayout( - attrs, in_layouts, last_in_layouts, out_layouts, [](const Layout& in) { - return Layout::Undef(); - }); -} - -/*! \brief take arbitrary input layout and copy to output */ -template -inline bool ElemwiseArbitraryLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - const size_t in_size = (n_in == -1) ? in_layouts->size() : static_cast(n_in); - const size_t out_size = (n_out == -1) ? out_layouts->size() : static_cast(n_out); - - Layout in; - for (size_t i = 0; i < in_size; ++i) { - if (!in.defined()) in = in_layouts->at(i); - CHECK_EQ(in, in_layouts->at(i)) - << "Incompatible attr in node " << attrs.name << " at " << i - << "-th input: expected " << in - << ", got " << in_layouts->at(i); - } - - if (in.defined()) { - for (size_t i = 0; i < out_size; ++i) { - out_layouts->at(i) = in; - } - } - - return true; -} - -/*! - * \brief try to convert right layout to left layout if they are different. - * if the converting fails, it will use the last inferred layouts. - */ -inline bool ElemwiseBinaryKeepLeftLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - CHECK_EQ(in_layouts->size(), 2U); - CHECK_EQ(last_in_layouts->size(), 2U); - CHECK_EQ(out_layouts->size(), 1U); - - const Layout& lhs_last = (*last_in_layouts)[0]; - const Layout& rhs_last = (*last_in_layouts)[1]; - CHECK((lhs_last.defined() && rhs_last.defined()) || - (!lhs_last.defined() && !rhs_last.defined())); - - const Layout& lhs = (*in_layouts)[0]; - const Layout& rhs = (*in_layouts)[1]; - - if (!lhs.defined() && !rhs.defined()) { - CHECK(!lhs_last.defined() && !rhs_last.defined()) - << "Lost input layouts in node " << attrs.name - << ": last inferred lhs=" << lhs_last << ", rhs=" << rhs_last; - return true; - } else if (!lhs.defined()) { - CHECK(!lhs_last.defined() && !rhs_last.defined()); - in_layouts->at(0) = rhs; - out_layouts->at(0) = rhs; - return true; - } else if (!rhs.defined()) { - CHECK(!lhs_last.defined() && !rhs_last.defined()); - in_layouts->at(1) = lhs; - out_layouts->at(0) = lhs; - return true; - } - - if (lhs == rhs) { - // for same layout, we can always do binary calculation - // and pass the layout to next layer - out_layouts->at(0) = lhs; - return true; - } - - if (rhs.convertible(lhs)) { - in_layouts->at(1) = lhs; - out_layouts->at(0) = lhs; - } else { - CHECK(lhs_last.defined() && rhs_last.defined()) - << "Incompatible input layouts in node " << attrs.name - << ". lhs: " << lhs << ", rhs: " << rhs; - CHECK(lhs_last == rhs_last); - in_layouts->at(0) = lhs_last; - in_layouts->at(1) = rhs_last; - out_layouts->at(0) = lhs_last; - } - - return true; -} - -#define NNVM_REGISTER_ELEMWISE_UNARY_OP(name) \ - NNVM_REGISTER_OP(name) \ - .set_num_inputs(1) \ - .set_num_outputs(1) \ - .set_attr("FInferShape", ElemwiseShape<1, 1>) \ - .set_attr("FInferType", ElemwiseType<1, 1>) \ - .set_attr("FCorrectLayout", \ - ElemwiseArbitraryLayout<1, 1>) \ - .set_attr("FInplaceOption", \ - [](const NodeAttrs& attrs){ \ - return std::vector >{{0, 0}}; \ - }) \ - .add_argument("data", "Tensor", "The input tensor.") - - -#define NNVM_REGISTER_INIT_OP(name) \ - NNVM_REGISTER_OP(name) \ - .set_num_inputs(0) \ - .set_num_outputs(1) - - -#define NNVM_REGISTER_INIT_LIKE_OP(name) \ - NNVM_REGISTER_ELEMWISE_UNARY_OP(name) \ - .set_attr("FGradient", MakeZeroGradNodes) \ - .add_argument("data", "Symbol", "The input") - - -#define NNVM_REGISTER_ELEMWISE_BINARY_OP(name) \ - NNVM_REGISTER_OP(name) \ - .set_num_inputs(2) \ - .set_num_outputs(1) \ - .set_attr("FInferShape", ElemwiseShape<2, 1>) \ - .set_attr("FInferType", ElemwiseType<2, 1>) \ - .set_attr("FCorrectLayout", \ - ElemwiseBinaryKeepLeftLayout) \ - .set_attr("FInplaceOption", \ - [](const NodeAttrs& attrs) { \ - return std::vector >{{0, 0}, {1, 0}}; \ - }) \ - .add_argument("lhs", "Tensor", "first input") \ - .add_argument("rhs", "Tensor", "second input") - - -#define NNVM_REGISTER_ELEMWISE_REDUCE_OP(name) \ - NNVM_REGISTER_OP(name) \ - .set_num_inputs([](const NodeAttrs& attrs) { \ - return static_cast( \ - dmlc::get(attrs.parsed).num_args); \ - }) \ - .set_attr_parser(ParamParser) \ - .set_attr("FGetAttrDict", \ - ParamGetAttrDict) \ - .set_attr("FInferShape", \ - ElementWiseReduceShape) \ - .set_attr("FCorrectLayout", \ - ElemwiseFixedLayoutCopyToOut<-1, 1>) \ - .set_attr("FInferType", ElementWiseReduceType) \ - .add_argument("args", "Symbol[]", "Positional input arguments") - - -#define NNVM_REGISTER_INDICATOR_OP(name) \ - NNVM_REGISTER_OP(name) \ - .set_num_outputs(1) \ - .set_attr( \ - "FInferType", [](const NodeAttrs& attrs, \ - std::vector* in_attrs, \ - std::vector* out_attrs) { \ - CHECK_EQ(out_attrs->size(), 1U); \ - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_attrs, 0, \ - static_cast(kFloat32)); \ - return true; \ - }) \ - .set_attr("FCorrectLayout", \ - ElemwiseFixedLayoutUnknownOut<1, 1>) \ - .set_attr( \ - "FGradient", [](const NodePtr& n, \ - const std::vector& ograds) { \ - return MakeZeroGradNodes(n, ograds); \ - }) - - -} // namespace top -} // namespace nnvm -#endif // NNVM_TOP_ELEMWISE_OP_COMMON_H_ diff --git a/nnvm/src/top/image/resize.cc b/nnvm/src/top/image/resize.cc deleted file mode 100644 index a50b4ac961ea..000000000000 --- a/nnvm/src/top/image/resize.cc +++ /dev/null @@ -1,127 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file resize.cc - * \brief Property def of resize operators. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include "../nn/nn_common.h" -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/elemwise.h" -#include "topi/transform.h" -#include "topi/image/resize.h" -#include "resize.h" - -namespace nnvm { -namespace top { -using tvm::Expr; -using tvm::Array; -using tvm::Tensor; -using nnvm::compiler::FTVMCompute; - -DMLC_REGISTER_PARAMETER(ResizeParam); - -inline bool ResizeInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - static const Layout kNCHW("NCHW"); - const ResizeParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 1U); - CHECK_EQ(out_shape->size(), 1U); - TShape dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - dshape = ConvertLayout(dshape, param.layout, kNCHW); - - TShape oshape = dshape; - oshape[2] = param.size[0]; - oshape[3] = param.size[1]; - - oshape = ConvertLayout(oshape, kNCHW, param.layout); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - - return true; -} - -inline bool ResizeLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - const ResizeParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_layouts->size(), 1U); - CHECK_EQ(out_layouts->size(), 1U); - const Layout layout(param.layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, layout); - NNVM_ASSIGN_LAYOUT(*out_layouts, 0, layout); - return true; -} - -NNVM_REGISTER_OP(resize) -.describe(R"(Perform resize to input array with nearest neighbour or bilinear interpolation. - -- **data**: data is 4D array of shape - (batch_size, channels, in_height, in_width) for NCHW - (batch_size, in_height, in_width, channels) for NHWC - -- **out**: Output is 4D array of shape - for layout NCHW - (batch_size, channels, size[0], size[1]) - - for layout NHWC - (batch_size, size[0], size[1], channels) - -)" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_arguments(ResizeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ResizeInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ResizeLayout) -.set_num_outputs(1) -.set_num_inputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ResizeParam& param = nnvm::get(attrs.parsed); - Array oshape; - if (param.layout == "NCHW") { - oshape.push_back(out_info[0]->shape[2]); - oshape.push_back(out_info[0]->shape[3]); - } else { - oshape.push_back(out_info[0]->shape[1]); - oshape.push_back(out_info[0]->shape[2]); - } - - return Array{ topi::image::resize(inputs[0], oshape, param.layout, - param.align_corners, param.method)}; -}) -.set_support_level(2); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/image/resize.h b/nnvm/src/top/image/resize.h deleted file mode 100644 index 8c894140fabc..000000000000 --- a/nnvm/src/top/image/resize.h +++ /dev/null @@ -1,63 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file resize.h - */ -#ifndef NNVM_TOP_IMAGE_RESIZE_H_ -#define NNVM_TOP_IMAGE_RESIZE_H_ - -#include -#include -#include -#include -#include - -namespace nnvm { -namespace top { - -struct ResizeParam : public dmlc::Parameter { - TShape size; - std::string layout; - std::string method; - bool align_corners; - - DMLC_DECLARE_PARAMETER(ResizeParam) { - DMLC_DECLARE_FIELD(size) - .describe("Output size"); - DMLC_DECLARE_FIELD(layout) - .set_default("NCHW") - .describe("Dimension ordering of data. Can be 'NCHW', 'NHWC', etc." - "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" - "dimensions respectively. Resize is applied on the 'H' and" - "'W' dimensions."); - DMLC_DECLARE_FIELD(method) - .set_default("BILINEAR") - .describe("Specify the mode to use for scaling." - "NEAREST_NEIGHBOR - Nearest Neighbor" - "BILINEAR - Bilinear Interpolation"); - DMLC_DECLARE_FIELD(align_corners) - .set_default(false) - .describe("Should be true to preserve the values at the corner pixels"); - } -}; - -} // namespace top -} // namespace nnvm -#endif // NNVM_TOP_IMAGE_RESIZE_H_ diff --git a/nnvm/src/top/nn/convolution.cc b/nnvm/src/top/nn/convolution.cc deleted file mode 100644 index 5c3b2d35991d..000000000000 --- a/nnvm/src/top/nn/convolution.cc +++ /dev/null @@ -1,660 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file convolution.cc - * \brief Convolution operators - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "nn_common.h" -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/nn.h" - - -using tvm::Tensor; -using tvm::Array; -using nnvm::compiler::FTVMCompute; - -namespace nnvm { -namespace top { - -// conv2d -DMLC_REGISTER_PARAMETER(Conv2DParam); - -inline bool Conv2DInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - static const Layout kNCHW("NCHW"); - static const Layout kOIHW("OIHW"); - - const Conv2DParam& param = nnvm::get(attrs.parsed); - - const Layout in_layout(param.layout); - const Layout kernel_layout(param.kernel_layout); - CHECK(in_layout.convertible(kNCHW)) - << "Conv only support input layouts that are convertible from NCHW." - << " But got " << in_layout; - CHECK(kernel_layout.convertible(kOIHW)) - << "Conv only support kernel layouts that are convertible from OIHW." - << " But got "<< kernel_layout; - - Layout out_layout(param.out_layout); - if (!out_layout.defined()) out_layout = in_layout; - CHECK(out_layout.convertible(kNCHW)) - << "Conv only support output layouts that are convertible from NCHW." - << " But got " << out_layout; - - if (param.use_bias) { - CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]"; - } else { - CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; - } - CHECK_EQ(out_shape->size(), 1U); - - TShape dshape = in_shape->at(0); - if (dshape.ndim() == 0) return false; - dshape = ConvertLayout(dshape, in_layout, kNCHW); - - CHECK_EQ(dshape.ndim(), 4U) << "Input data should be 4D"; - CHECK_EQ(param.kernel_size.ndim(), 2U); - CHECK_EQ(param.strides.ndim(), 2U) - << "incorrect stride size: " << param.strides; - CHECK_EQ(param.dilation.ndim(), 2U) - << "incorrect dilate size: " << param.dilation; - CHECK_EQ(dshape[1] % param.groups, 0U) - << "input channels must divide group size"; - CHECK_EQ(param.channels % param.groups, 0U) - << "output channels must divide group size"; - - TShape wshape({param.channels, - dshape[1] / param.groups, - param.kernel_size[0], - param.kernel_size[1]}); - - wshape = ConvertLayout(wshape, kOIHW, kernel_layout); - - if (in_shape->at(Conv2DParam::kWeight).ndim() == 0) { - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, Conv2DParam::kWeight, wshape); - } - if (param.use_bias) { - static const Layout default_bias_layout("C"); - TShape bias_shape({param.channels}); - auto oc_block = out_layout.subsizeof('C'); - if (oc_block > 0) { - size_t split_axis = (out_layout.indexof('C') < out_layout.indexof('c')) ? 1 : 0; - bias_shape = ConvertLayout(bias_shape, default_bias_layout, - default_bias_layout.split('C', split_axis, oc_block)); - } - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, Conv2DParam::kBias, bias_shape); - } - // dilation - dim_t dilated_ksize_y = 1 + (param.kernel_size[0] - 1) * param.dilation[0]; - dim_t dilated_ksize_x = 1 + (param.kernel_size[1] - 1) * param.dilation[1]; - TShape oshape({dshape[0], param.channels, 0, 0}); - if (dshape[2] != 0) { - oshape[2] = (dshape[2] + param.padding[0] * 2 - dilated_ksize_y) / param.strides[0] + 1; - } - if (dshape[3] != 0) { - oshape[3] = (dshape[3] + param.padding[1] * 2 - dilated_ksize_x) / param.strides[1] + 1; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, ConvertLayout(oshape, kNCHW, out_layout)); - // Perform incomplete shape inference. Fill in the missing values in data shape. - // 1) We can always fill in the batch_size. - // 2) We can back-calculate the input height/width if the corresponding stride is 1. - oshape = ConvertLayout((*out_shape)[0], out_layout, kNCHW); - dshape[0] = oshape[0]; - if (oshape[2] && param.strides[0] == 1) { - dshape[2] = oshape[2] + dilated_ksize_y - 1 - 2 * param.padding[0]; - } - if (oshape[3] && param.strides[1] == 1) { - dshape[3] = oshape[3] + dilated_ksize_x - 1 - 2 * param.padding[1]; - } - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, Conv2DParam::kData, - ConvertLayout(dshape, kNCHW, in_layout)); - // Check whether the kernel sizes are valid - if (dshape[2] != 0) { - CHECK_LE(dilated_ksize_y, dshape[2] + 2 * param.padding[0]) - << "kernel size exceed input"; - } - if (dshape[3] != 0) { - CHECK_LE(dilated_ksize_x, dshape[3] + 2 * param.padding[1]) - << "kernel size exceed input"; - } - return true; -} - -template -inline bool WinogradConv2DInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - static const Layout kNCHW("NCHW"); - static const Layout kOIHW("OIHW"); - - const Param& param = nnvm::get(attrs.parsed); - - const Layout in_layout(param.layout); - const Layout kernel_layout(param.kernel_layout); - CHECK(in_layout.convertible(kNCHW)) - << "Conv only support input layouts that are convertible from NCHW." - << " But got " << in_layout; - CHECK(kernel_layout.convertible(kOIHW)) - << "Conv only support kernel layouts that are convertible from OIHW." - << " But got "<< kernel_layout; - - Layout out_layout(param.out_layout); - if (!out_layout.defined()) out_layout = in_layout; - CHECK(out_layout.convertible(kNCHW)) - << "Conv only support output layouts that are convertible from NCHW." - << " But got " << out_layout; - - if (param.use_bias) { - CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]"; - } else { - CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; - } - CHECK_EQ(out_shape->size(), 1U); - - TShape dshape = in_shape->at(0); - if (dshape.ndim() == 0) return false; - dshape = ConvertLayout(dshape, in_layout, kNCHW); - - CHECK_EQ(dshape.ndim(), 4U) << "Input data should be 4D"; - CHECK_EQ(param.kernel_size.ndim(), 2U); - CHECK_EQ(param.strides.ndim(), 2U) - << "incorrect stride size: " << param.strides; - CHECK_EQ(param.dilation.ndim(), 2U) - << "incorrect dilate size: " << param.dilation; - CHECK_EQ(dshape[1] % param.groups, 0U) - << "input channels must divide group size"; - CHECK_EQ(param.channels % param.groups, 0U) - << "output channels must divide group size"; - - // NOTE: Do not check weight shape here! - // Different backend requires different layout to compute - // the batch gemm stage in winograd efficiently, but we want to - // make this NNVM symbol work for all backends. - // So we accept all weight shapes, and assume the TOPI developers - // can handle this correctly in alter_op_layout. - - if (param.use_bias) { - static const Layout default_bias_layout("C"); - TShape bias_shape({param.channels}); - auto oc_block = out_layout.subsizeof('C'); - if (oc_block > 0) { - size_t split_axis = (out_layout.indexof('C') < out_layout.indexof('c')) ? 1 : 0; - bias_shape = ConvertLayout(bias_shape, default_bias_layout, - default_bias_layout.split('C', split_axis, oc_block)); - } - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, WinogradConv2DParam::kBias, bias_shape); - } - // dilation - dim_t dilated_ksize_y = 1 + (param.kernel_size[0] - 1) * param.dilation[0]; - dim_t dilated_ksize_x = 1 + (param.kernel_size[1] - 1) * param.dilation[1]; - TShape oshape({dshape[0], param.channels, 0, 0}); - if (dshape[2] != 0) { - oshape[2] = (dshape[2] + param.padding[0] * 2 - dilated_ksize_y) / param.strides[0] + 1; - } - if (dshape[3] != 0) { - oshape[3] = (dshape[3] + param.padding[1] * 2 - dilated_ksize_x) / param.strides[1] + 1; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, ConvertLayout(oshape, kNCHW, out_layout)); - // Perform incomplete shape inference. Fill in the missing values in data shape. - // 1) We can always fill in the batch_size. - // 2) We can back-calculate the input height/width if the corresponding stride is 1. - oshape = ConvertLayout((*out_shape)[0], out_layout, kNCHW); - dshape[0] = oshape[0]; - if (oshape[2] && param.strides[0] == 1) { - dshape[2] = oshape[2] + dilated_ksize_y - 1 - 2 * param.padding[0]; - } - if (oshape[3] && param.strides[1] == 1) { - dshape[3] = oshape[3] + dilated_ksize_x - 1 - 2 * param.padding[1]; - } - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, WinogradConv2DParam::kData, - ConvertLayout(dshape, kNCHW, in_layout)); - // Check whether the kernel sizes are valid - if (dshape[2] != 0) { - CHECK_LE(dilated_ksize_y, dshape[2] + 2 * param.padding[0]) - << "kernel size exceed input"; - } - if (dshape[3] != 0) { - CHECK_LE(dilated_ksize_x, dshape[3] + 2 * param.padding[1]) - << "kernel size exceed input"; - } - return true; -} - -template -inline bool Conv2DInferType(const nnvm::NodeAttrs& attrs, - std::vector* in_type, - std::vector* out_type) { - const PARAM& param = nnvm::get(attrs.parsed); - if (param.use_bias) { - CHECK_EQ(in_type->size(), 3U) << "Input:[data, weight, bias]"; - } else { - CHECK_EQ(in_type->size(), 2U) << "Input:[data, weight]"; - } - CHECK_EQ(out_type->size(), 1U); - if (param.out_dtype != -1) { - CHECK(!type_is_none((*in_type)[0])); - for (size_t i = 1; i < in_type->size(); ++i) { - NNVM_ASSIGN_INPUT_TYPE(attrs, *in_type, i, (*in_type)[0]); - } - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_type, 0, param.out_dtype); - } else { - ElemwiseType<-1, 1>(attrs, in_type, out_type); - } - return true; -} - - -template -inline bool Conv2DCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const PARAM& param = nnvm::get(attrs.parsed); - - const Layout in_layout(param.layout); - Layout out_layout(param.out_layout); - if (!out_layout.defined()) out_layout = in_layout; - - const Layout kernel_layout(param.kernel_layout); - if (param.use_bias) { - CHECK_EQ(ilayouts->size(), 3U) << "Input:[data, weight, bias]"; - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, in_layout); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, kernel_layout); - // automatically decide bias layout - Layout bias_layout("C"); - auto oc_block = out_layout.subsizeof('C'); - if (oc_block > 0) { - size_t split_axis = (out_layout.indexof('C') < out_layout.indexof('c')) ? 1 : 0; - bias_layout = bias_layout.split('C', split_axis, oc_block); - } - NNVM_ASSIGN_LAYOUT(*ilayouts, 2, bias_layout); - } else { - CHECK_EQ(ilayouts->size(), 2U) << "Input:[data, weight]"; - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, in_layout); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, kernel_layout); - } - - CHECK_EQ(olayouts->size(), 1U); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, out_layout); - - return true; -} - -NNVM_REGISTER_OP(conv2d) -.describe(R"code(2D convolution layer (e.g. spatial convolution over images). - -This layer creates a convolution kernel that is convolved -with the layer input to produce a tensor of -outputs. If `use_bias` is True, -a bias vector is created and added to the outputs. - -- **data**: This depends on the `layout` parameter. Input is 4D array of shape - (batch_size, in_channels, height, width) if `layout` is `NCHW`. -- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1]) -- **bias**: (channels,) -- **out**: This depends on the `layout` parameter. Output is 4D array of shape - (batch_size, channels, out_height, out_width) if `layout` is `NCHW`. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_argument("weight", "4D Tensor", "Weight matrix.") -.add_argument("bias", "1D Tensor", "Bias parameter.") -.add_arguments(Conv2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FListInputNames", UseBiasListInputNames) -.set_attr("FInferShape", Conv2DInferShape) -.set_attr("FInferType", Conv2DInferType) -.set_attr("FCorrectLayout", Conv2DCorrectLayout) -.set_num_outputs(1) -.set_num_inputs(UseBiasNumInputs) -.set_support_level(2) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return MakeGradNode("_conv2d_grad", n, - {ograds[0], n->inputs[Conv2DParam::kData], - n->inputs[Conv2DParam::kWeight]}, - n->attrs.dict); -}); - -NNVM_REGISTER_OP(_contrib_conv2d_NCHWc) -.describe(R"code(2D convolution layer (e.g. spatial convolution over images). -)code" NNVM_ADD_FILELINE) -.add_argument("data", "5D Tensor", "Packed input data.") -.add_argument("weight", "6D Tensor", "Packed weight matrix.") -.add_argument("bias", "1D Tensor", "Bias parameter.") -.add_arguments(Conv2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FListInputNames", UseBiasListInputNames) -.set_attr("FInferShape", Conv2DInferShape) -.set_attr("FInferType", Conv2DInferType) -.set_attr("FCorrectLayout", Conv2DCorrectLayout) -.set_num_outputs(1) -.set_num_inputs(UseBiasNumInputs) -.set_support_level(2); - -NNVM_REGISTER_OP(_contrib_conv2d_winograd_weight_transform) -.describe(R"code(Weight transformation of winograd fast convolution algorithm. -Separate this into another nnvm symbol in order to enable Precompute Pass to compute the -weight transformation in advance. - -- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1]) -)code" NNVM_ADD_FILELINE) -.add_argument("weight", "4D Tensor", "Weight tensor.") -.add_arguments(WinogradWeightTransformParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { - const auto& param = nnvm::get(attrs.parsed); - const TShape &wshape = (*in_shape)[0]; - - CHECK_EQ(wshape.ndim(), 4) << "Weight should be a 4 dimensional tensor"; - - TShape oshape({param.tile_size + wshape[2] - 1, - param.tile_size + wshape[3] - 1, - wshape[0], - wshape[1]}); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; - }) -.set_attr("FCorrectLayot", [](const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - Layout layout("OIHW"); - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, layout); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, layout); - return true; -}) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_num_outputs(1) -.set_num_inputs(1) -.set_support_level(5); - -DMLC_REGISTER_PARAMETER(WinogradWeightTransformParam); - -NNVM_REGISTER_OP(_contrib_conv2d_winograd_without_weight_transform) -.describe(R"code(Compute conv2d with winograd algorithm. - -- **data**: Input is 4D array of shape (batch_size, in_channels, height, width) -- **weight**: Any shape - We do not check shape for this input tensor. - -- **bias**: (channels,) -- **out**: Output is 4D array of shape (batch_size, channels, out_height, out_width) -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_argument("weight", "Tensor", "Transformed weight tensor.") -.add_argument("bias", "1D Tensor", "Bias parameter.") -.add_arguments(WinogradConv2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FListInputNames", UseBiasListInputNames) -.set_attr("FInferShape", WinogradConv2DInferShape) -.set_attr("FInferType", Conv2DInferType) -.set_attr("FCorrectLayout", Conv2DCorrectLayout) -.set_num_outputs(1) -.set_num_inputs(UseBiasNumInputs) -.set_support_level(5); - -DMLC_REGISTER_PARAMETER(WinogradConv2DParam); - - -inline bool Conv2DWinogradNNPACKWTInferType(const nnvm::NodeAttrs& attrs, - std::vector* in_type, - std::vector* out_type) { - const WinogradNNPACKWeightTransformParam& param = - nnvm::get(attrs.parsed); - - CHECK_EQ(in_type->size(), 1U) << "Input:[weight]"; - CHECK_EQ(out_type->size(), 1U); - - if (param.out_dtype != -1) { - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_type, 0, param.out_dtype); - } else { - ElemwiseType<1, 1>(attrs, in_type, out_type); - } - return true; -} - -NNVM_REGISTER_OP(_contrib_conv2d_winograd_nnpack_weight_transform) -.describe(R"code(Weight transformation of winograd fast convolution algorithm. -Separate this into another nnvm symbol in order to enable Precompute Pass to compute the -weight transformation in advance. -- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1]) -)code" NNVM_ADD_FILELINE) -.add_argument("weight", "4D Tensor", "Weight tensor.") -.add_arguments(WinogradNNPACKWeightTransformParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { - const TShape &wshape = (*in_shape)[0]; - CHECK_EQ(wshape.ndim(), 4) << "Weight should be a 4 dimensional tensor"; - TShape oshape({wshape[0], wshape[1], 8, 8}); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -}) -.set_attr("FCorrectLayout", [](const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - Layout layout("OIHW"); - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, layout); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, layout); - return true; -}) -.set_attr("FInferType", Conv2DWinogradNNPACKWTInferType) -.set_num_outputs(1) -.set_num_inputs(1) -.set_support_level(5); - -DMLC_REGISTER_PARAMETER(WinogradNNPACKWeightTransformParam); - -NNVM_REGISTER_OP(_contrib_conv2d_winograd_nnpack_without_weight_transform) -.describe(R"code(Compute conv2d with winograd nnpack. -- **data**: Input is 4D array of shape (batch_size, in_channels, height, width) -- **weight**: Any shape - We do not check shape for this input tensor. -- **bias**: (channels,) -- **out**: Output is 4D array of shape (batch_size, channels, out_height, out_width) -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_argument("weight", "4D Tensor", "Transformed weight tensor.") -.add_argument("bias", "1D Tensor", "Bias parameter.") -.add_arguments(Conv2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FListInputNames", UseBiasListInputNames) -.set_attr("FInferShape", WinogradConv2DInferShape) -.set_attr("FInferType", Conv2DInferType) -.set_attr("FCorrectLayout", Conv2DCorrectLayout) -.set_num_outputs(1) -.set_num_inputs(UseBiasNumInputs) -.set_support_level(5); - - -NNVM_REGISTER_OP(_conv2d_grad) - .describe(R"code(2D convolution grad. - -)code" NNVM_ADD_FILELINE) -.add_argument("ograd", "4D Tensor", "Output grad.") -.add_argument("data", "4D Tensor", "Input data of conv2d.") -.add_argument("weight", "4D Tensor", "Input weight.") -.set_num_inputs(3) -.set_num_outputs(UseBiasNumInputs) -.set_attr("FListOutputNames", UseBiasListInputNames) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr( - "FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - const Conv2DParam& param = nnvm::get(attrs.parsed); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, Conv2DParam::kData, in_attrs->at(1)); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, Conv2DParam::kWeight, in_attrs->at(2)); - if (param.use_bias) { - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, Conv2DParam::kBias, TShape({param.channels})); - } - return true; -}) -.set_attr("FInferType", ElemwiseType<3, -1>) -.set_attr("TIsBackward", true); - - -DMLC_REGISTER_PARAMETER(Conv2DTransposeParam); - -inline bool Conv2DTransposeInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - static const Layout kNCHW("NCHW"); - static const Layout kOIHW("OIHW"); - const Conv2DTransposeParam& param = nnvm::get(attrs.parsed); - const Layout layout(param.layout); - const Layout kernel_layout(param.kernel_layout); - if (param.use_bias) { - CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]"; - } else { - CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; - } - CHECK_EQ(out_shape->size(), 1U); - - const TShape& dshape = (*in_shape)[Conv2DTransposeParam::kData]; - if (dshape.ndim() == 0) return false; - TShape dshape_nchw = ConvertLayout(dshape, layout, kNCHW); - - CHECK_EQ(dshape_nchw[1] % param.groups, 0U) - << "input num_filter must divide group size"; - CHECK_EQ(param.channels % param.groups, 0U) - << "output num_filter must divide group size"; - CHECK_EQ(param.kernel_size.ndim(), 2U) - << "incorrect kernel size: " << param.kernel_size; - CHECK_EQ(param.strides.ndim(), 2U) - << "incorrect stride size: " << param.strides; - CHECK_EQ(param.dilation.ndim(), 2U) - << "incorrect dilate size: " << param.dilation; - - TShape wshape({dshape_nchw[1], - param.channels / param.groups, - param.kernel_size[0], - param.kernel_size[1]}); - wshape = ConvertLayout(wshape, kOIHW, kernel_layout); - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, Conv2DTransposeParam::kWeight, wshape); - - if (param.use_bias) { - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, - Conv2DTransposeParam::kBias, - TShape({param.channels})); - } - // dilation - dim_t dilated_ksize_y = 1 + (param.kernel_size[0] - 1) * param.dilation[0]; - dim_t dilated_ksize_x = 1 + (param.kernel_size[1] - 1) * param.dilation[1]; - // output shape. - TShape oshape({dshape_nchw[0], param.channels, 0, 0}); - oshape[2] = (param.strides[0] * (dshape_nchw[2] - 1) + dilated_ksize_y - - 2 * param.padding[0] + param.output_padding[0]); - - oshape[3] = (param.strides[1] * (dshape_nchw[3] - 1) + dilated_ksize_x - - 2 * param.padding[1] + param.output_padding[1]); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, - ConvertLayout(oshape, kNCHW, layout)); - return true; -} - -inline bool Conv2DTransposeCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const Conv2DTransposeParam& param = nnvm::get(attrs.parsed); - - const Layout in_layout(param.layout); - - const Layout kernel_layout(param.kernel_layout); - if (param.use_bias) { - CHECK_EQ(ilayouts->size(), 3U) << "Input:[data, weight, bias]"; - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, in_layout); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, kernel_layout); - NNVM_ASSIGN_LAYOUT(*ilayouts, 2, Layout("C")); - } else { - CHECK_EQ(ilayouts->size(), 2U) << "Input:[data, weight]"; - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, in_layout); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, kernel_layout); - } - - CHECK_EQ(olayouts->size(), 1U); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, in_layout); - - return true; -} - -NNVM_REGISTER_OP(conv2d_transpose) -.describe(R"code(Transposed 2D convolution layer (sometimes called Deconvolution). - -The need for transposed convolutions generally arises -from the desire to use a transformation going in the opposite direction -of a normal convolution, i.e., from something that has the shape of the -output of some convolution to something that has the shape of its input -while maintaining a connectivity pattern that is compatible with -said convolution. - -- **data**: This depends on the `layout` parameter. Input is 4D array of shape - (batch_size, in_channels, height, width) if `layout` is `NCHW`. -- **weight**: (in_channels, channels, kernel_size[0], kernel_size[1]) -- **bias**: (channels,) -- **out**: This depends on the `layout` parameter. Output is 4D array of shape -v (batch_size, channels, out_height, out_width) if `layout` is `NCHW`. - - out_height and out_width are calculated as:: - out_height = (height-1)*strides[0]-2*padding[0]+kernel_size[0]+output_padding[0] - out_width = (width-1)*strides[1]-2*padding[1]+kernel_size[1]+output_padding[1] - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_argument("weight", "4D Tensor", "Weight matrix.") -.add_argument("bias", "1D Tensor", "Bias parameter.") -.add_arguments(Conv2DTransposeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FListInputNames", UseBiasListInputNames) -.set_attr("FInferShape", Conv2DTransposeInferShape) -.set_attr("FInferType", Conv2DInferType) -.set_attr("FCorrectLayout", Conv2DTransposeCorrectLayout) -.set_num_outputs(1) -.set_num_inputs(UseBiasNumInputs) -.set_support_level(2); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/nn/nn.cc b/nnvm/src/top/nn/nn.cc deleted file mode 100644 index 1864ccd3506f..000000000000 --- a/nnvm/src/top/nn/nn.cc +++ /dev/null @@ -1,748 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nn.cc - * \brief Property def of nn operators. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "nn_common.h" -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/nn/dense.h" -#include "topi/nn.h" -#include "topi/nn/softmax.h" - -namespace nnvm { -namespace top { - -using tvm::Var; -using tvm::Expr; -using tvm::Tensor; -using tvm::Array; -using nnvm::compiler::FTVMCompute; - -// dense -DMLC_REGISTER_PARAMETER(DenseParam); - -inline bool DenseInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const DenseParam& param = nnvm::get(attrs.parsed); - if (param.use_bias) { - CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]"; - } else { - CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; - } - CHECK_EQ(out_shape->size(), 1U); - // reverse infer - if ((*out_shape)[0].ndim() != 0) { - TShape dshape = (*out_shape)[0]; - dshape[dshape.ndim() - 1] = 0; - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, DenseParam::kData, dshape); - } - dim_t num_inputs = 0; - if ((*in_shape)[DenseParam::kData].ndim() != 0) { - TShape oshape = (*in_shape)[DenseParam::kData]; - num_inputs = oshape[oshape.ndim() - 1]; - oshape[oshape.ndim() - 1] = param.units; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - } - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, DenseParam::kWeight, - TShape({param.units, num_inputs})); - if (param.use_bias) { - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, DenseParam::kBias, TShape({param.units})); - } - return true; -} - -NNVM_REGISTER_OP(dense) -.describe(R"code(Applies a linear transformation: :math:`Y = XW^T + b`. - -- **data**: `(x1, x2, ..., xn, input_dim)` -- **weight**: `(units, input_dim)` -- **bias**: `(units,)` -- **out**: `(x1, x2, ..., xn, units)` - -The learnable parameters include both ``weight`` and ``bias``. - -If ``use_bias`` is set to be false, then the ``bias`` term is ignored. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "nD Tensor", "Input data.") -.add_argument("weight", "2D Tensor", "Weight matrix.") -.add_argument("bias", "1D Tensor", "Bias parameter.") -.add_arguments(DenseParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_outputs(1) -.set_num_inputs(UseBiasNumInputs) -.set_attr("FListInputNames", UseBiasListInputNames) -.set_attr("FInferShape", DenseInferShape) -.set_attr("FInferType", ElemwiseType<-1, 1>) -// leave weight & bias layout undefined -.set_attr("FCorrectLayout", ElemwiseFixedLayoutCopyToOut<1, 1>) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - const DenseParam& param = nnvm::get(n->attrs.parsed); - - NodeEntry data_grad = MakeNode("matmul", - n->attrs.name + "_data_grad", - {ograds[0], n->inputs[DenseParam::kWeight]}); - NodeEntry w_grad_sub = MakeNode("matmul", - n->attrs.name + "_weight_grad_sub0", - {ograds[0], n->inputs[DenseParam::kData]}, - {{"transpose_a", "true"}}); - TShape w_reduce_axis = {0, -1}; - std::ostringstream w_oss; w_oss << w_reduce_axis; - NodeEntry w_grad = MakeNode("sum", n->attrs.name + "_weight_grad", - {w_grad_sub}, - {{"axis", w_oss.str()}, {"exclude", "true"}}); - std::vector grads = {data_grad, w_grad}; - - if (param.use_bias) { - TShape axis = {-1}; - std::ostringstream b_oss; b_oss << axis; - grads.push_back(MakeNode("sum", n->attrs.name + "_bias_grad", - {ograds[0]}, - {{"axis", b_oss.str()}, {"exclude", "true"}})); - } - return grads; -}) -.set_support_level(1); - -// relu -NNVM_REGISTER_ELEMWISE_UNARY_OP(relu) -.describe(R"code(Computes rectified linear. - -.. math:: - max(input, 0) - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::relu(inputs[0], 0.0f) }; - }) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = relu(x) - // grad = indicator(x > 0) * ograd - NodeEntry sub0 = MakeNode("zeros_like", n->attrs.name + "_sub0", - {n->inputs[0]}); - NodeEntry sub1 = MakeNode("greater", n->attrs.name + "_sub1", - {n->inputs[0], sub0}, {{"exclude", "true"}}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad", - {ograds[0], sub1}) - }; -}) -.set_support_level(1); - -// dropout -DMLC_REGISTER_PARAMETER(DropoutParam); - -NNVM_REGISTER_OP(dropout) -.describe(R"(Applies dropout operation to input array. - -- During training, each element of the input is set to zero with probability p. - The whole array is rescaled by :math:`1/(1-p)` to keep the expected - sum of the input unchanged. - -)" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input to which dropout will be applied") -.add_arguments(DropoutParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_inputs(1) -.set_num_outputs(2) -.set_attr("FInferShape", ElemwiseShape<1, 2>) -.set_attr("FInferType", ElemwiseType<1, 2>) -.set_attr("FCorrectLayout", ElemwiseArbitraryLayout<1, 1>) -.set_attr("FNumVisibleOutputs", [](const NodeAttrs& attrs) { - return 1; - }) -.set_attr("FListOutputNames", [](const NodeAttrs& attrs) { - return std::vector{"output", "mask"}; - }) -.set_support_level(1); - -// batchnorm -DMLC_REGISTER_PARAMETER(BatchNormParam); - -inline bool BatchNormInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const BatchNormParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 5U) - << "Input:[data, gamma, beta, moving_mean, moving_var]"; - CHECK_EQ(out_shape->size(), 3U); - const TShape &dshape = in_shape->at(0); - if (dshape.ndim() == 0) return false; - CHECK((size_t)param.axis < dshape.Size()); - - TShape bshape({dshape[param.axis]}); - if (in_shape->at(1).ndim() == 0) in_shape->at(1) = bshape; - if (in_shape->at(2).ndim() == 0) in_shape->at(2) = bshape; - if (in_shape->at(3).ndim() == 0) in_shape->at(3) = bshape; - if (in_shape->at(4).ndim() == 0) in_shape->at(4) = bshape; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, dshape); - out_shape->at(1) = in_shape->at(3); - out_shape->at(2) = in_shape->at(4); - return true; -} - -inline bool BatchNormCorrectLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - const BatchNormParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_layouts->size(), 5U); - CHECK_EQ(last_in_layouts->size(), 5U); - CHECK_EQ(out_layouts->size(), 3U); - - Layout data_layout = in_layouts->at(0); - const Layout& origin_data_layout = last_in_layouts->at(0); - Layout param_layout("C"); - if (data_layout.defined()) { - if (data_layout.indexof('C') != param.axis) { - CHECK(origin_data_layout.defined()) - << "Channel in data layout " << data_layout - << " is not at index " << param.axis; - // convert it to the original one. - data_layout = origin_data_layout; - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, origin_data_layout); - } else if (data_layout.indexof('c') >= 0 && - static_cast(data_layout.indexof('c')) != (data_layout.ndim()-1)) { - CHECK(origin_data_layout.defined()) - << "sub-channel c in data layout " << data_layout - << " does not at the final dimension"; - // convert it to the original one. - data_layout = origin_data_layout; - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, origin_data_layout); - } else { - for (Layout::LayoutDim axis : data_layout) { - if (Layout::is_subdim(axis) && axis != 'c') { - CHECK(origin_data_layout.defined()) - << "sub-axis other than c appears in data layout " << data_layout; - // convert it to the original one. - data_layout = origin_data_layout; - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, origin_data_layout); - break; - } - } - } - - // decide the param layout - if (data_layout.defined()) { - auto channel_block = data_layout.subsizeof('C'); - if (channel_block > 0) { - param_layout = param_layout.split('C', 1, channel_block); - } - } - } - - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, data_layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 1, param_layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 2, param_layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 3, param_layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 4, param_layout); - - NNVM_ASSIGN_LAYOUT(*out_layouts, 0, data_layout); - NNVM_ASSIGN_LAYOUT(*out_layouts, 1, param_layout); - NNVM_ASSIGN_LAYOUT(*out_layouts, 2, param_layout); - return true; -} - -NNVM_REGISTER_OP(batch_norm) -.describe(R"(Batch normalization layer (Ioffe and Szegedy, 2014). -Normalizes the input at each batch, i.e. applies a transformation -that maintains the mean activation close to 0 and the activation -standard deviation close to 1. - -.. math:: - - data\_mean[i] = mean(data[:,i,:,...]) \\ - data\_var[i] = var(data[:,i,:,...]) - -Then compute the normalized output, which has the same shape as input, as following: - -.. math:: - - out[:,i,:,...] = \frac{data[:,i,:,...] - data\_mean[i]}{\sqrt{data\_var[i]+\epsilon}} * gamma[i] + beta[i] - -Both *mean* and *var* returns a scalar by treating the input as a vector. - -Assume the input has size *k* on axis 1, then both ``gamma`` and ``beta`` have shape *(k,)*. - -Besides the inputs and the outputs, this operator accepts two auxiliary -states, ``moving_mean`` and ``moving_var``, which are *k*-length -vectors. They are global statistics for the whole dataset, which are updated -by:: - - moving_mean = moving_mean * momentum + data_mean * (1 - momentum) - moving_var = moving_var * momentum + data_var * (1 - momentum) - -The parameter ``axis`` specifies which axis of the input shape denotes -the 'channel' (separately normalized groups). The default is 1. Specifying -1 sets the channel -axis to be the last item in the input shape. - -.. note:: - This operator can be optimized away for inference. -)" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input to which dropout will be applied") -.add_argument("gamma", "Tensor", "The gamma scale factor") -.add_argument("beta", "Tensor", "The beta offset factor") -.add_argument("moving_mean", "Tensor", "running mean of input") -.add_argument("moving_var", "Tensor", "running variance of input") -.add_arguments(BatchNormParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FCorrectLayout", BatchNormCorrectLayout) -.set_num_inputs(5) -.set_num_outputs(3) -.set_attr("FInferShape", BatchNormInferShape) -.set_attr("FInferType", ElemwiseType<5, 3>) -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"data", "gamma", "beta", "moving_mean", "moving_var"}; - }) -.set_attr("FListOutputNames", [](const NodeAttrs& attrs) { - return std::vector{"output", "mean", "var"}; - }) -.set_attr("FNumVisibleOutputs", [](const NodeAttrs& attrs) { - return 1; - }) -.set_attr("FMutateInputs", [](const NodeAttrs& attrs) { - return std::vector{3, 4}; - }) -.set_support_level(1); - -// softmax -DMLC_REGISTER_PARAMETER(SoftmaxParam); - -NNVM_REGISTER_OP(softmax) -.describe(R"code(Computes softmax. - -.. math:: \text{softmax}(x)_i = \frac{exp(x_i)}{\sum_j exp(x_j)} - -.. note:: - This operator can be optimized away for inference. -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_arguments(SoftmaxParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutCopyToOut<1, 1>) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const SoftmaxParam& param = nnvm::get(attrs.parsed); - return Array{ topi::nn::softmax(inputs[0], param.axis) }; - }) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // grad_x = grad_y dot jacobian of softmax - // - // jacobian of softmax - // [-y1y1 + y1, -y1y2, ... ] - // [ ... , -y2y2 + y2, ... ] - // [ ... ... ] - // [ ... ,-ynyn + yn] - // - // grad_x = - // [-y1*(ograd1*y1 - ograd1 + ograd2*y2 + ...), - // -y2*(ograd1*y1 - ograd2 + ograd2*y2 + ...), - // ... - // -yn*(ograd1*y1 - ogradn + ograd2*y2 + ...)] - - // grad_x = ograd elemwise_mul output - // grad_x = sum(grad_x, keepdim, axis) - // grad_x = grad_x broadcast_mul output - // grad_x = neg grad_x - // grad_x = grad_x + ograd elemwise_mul output - const SoftmaxParam& param = nnvm::get(n->attrs.parsed); - NodeEntry output = NodeEntry{n, 0, 0}; - NodeEntry sub0 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub0", {ograds[0], output}); - NodeEntry sub1 = MakeNode("sum", n->attrs.name + "_grad_sub1", {sub0}, - {{"axis", std::to_string(param.axis)}, {"keepdims", "true"}}); - NodeEntry sub2 = MakeNode("broadcast_mul", n->attrs.name + "_grad_sub2", {sub1, output}); - return std::vector { - MakeNode("elemwise_sub", n->attrs.name + "_grad", {sub0, sub2}) - }; -}); - -// log_softmax -NNVM_REGISTER_OP(log_softmax) -.describe(R"code(Computes log softmax. - -.. math:: \text{log_softmax}(x)_i = \log \frac{exp(x_i)}{\sum_j exp(x_j)} - -.. note:: - This operator can be optimized away for inference. -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_arguments(SoftmaxParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutCopyToOut<1, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const SoftmaxParam& param = nnvm::get(attrs.parsed); - CHECK(param.axis == -1 || param.axis == static_cast(inputs[0].ndim()) - 1) - << "log_softmax currently only works on last dimension"; - return Array{ topi::nn::log_softmax(inputs[0]) }; - }) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // grad_x = grad_y dot jacobian of logsoftmax - // - // jacobian of logsoftmax - // [-y1 + 1, -y2, ... ] - // [ ... , -y2 + 1, ... ] - // [ ... ... ] - // [ ... ,-yn + 1] - // - // grad_x = - // [ograd1 - exp(y1)*(ograd1 + ... + ogradn), - // ograd2 - exp(y2)*(ograd1 + ... + ogradn), - // ... - // ogradn - exp(yn)*(ograd1 + ... + ogradn)] - - // grad_x = sum(ograd, keepdim, axis) - // sigma = exp(output) - // grad_x = grad_x elemwise_mul sigma - // grad_x = neg grad_x - // grad_x = grad_x + ograd - const SoftmaxParam& param = nnvm::get(n->attrs.parsed); - NodeEntry output = NodeEntry{n, 0, 0}; - NodeEntry sub0 = MakeNode("sum", n->attrs.name + "_grad_sub0", {ograds[0]}, - {{"axis", std::to_string(param.axis)}, {"keepdims", "true"}}); - NodeEntry sub1 = MakeNode("exp", n->attrs.name + "_grad_sub1", {output}); - NodeEntry sub2 = MakeNode("broadcast_mul", n->attrs.name + "_grad_sub2", {sub0, sub1}); - return std::vector { - MakeNode("elemwise_sub", n->attrs.name + "_grad", {ograds[0], sub2}) - }; -}) -.set_support_level(1); - -// leaky_relu -DMLC_REGISTER_PARAMETER(LeakyReLUParam); - -NNVM_REGISTER_OP(leaky_relu) -.describe(R"code(Leaky version of a Rectified Linear Unit. - -`y = x > 0 ? x : alpha * x` - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_arguments(LeakyReLUParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseArbitraryLayout<1, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const LeakyReLUParam& param = nnvm::get(attrs.parsed); - return Array{ topi::leaky_relu(inputs[0], param.alpha) }; - }) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = leak_relu(x) - // grad = indicator(x > 0) + alpha * indicator(x < 0) - const LeakyReLUParam& param = nnvm::get(n->attrs.parsed); - NodeEntry zero = MakeNode("zeros_like", n->attrs.name + "_grad_zero", - {n->inputs[0]}); - NodeEntry sub0 = MakeNode("greater", n->attrs.name + "_pos_grad", - {n->inputs[0], zero}); - NodeEntry sub1 = MakeNode("less", n->attrs.name + "_neg_grad", - {n->inputs[0], zero}); - NodeEntry sub2 = MakeNode("__mul_scalar__", n->attrs.name + "_neg_mul_2", - {sub1}, - {{"scalar", std::to_string(param.alpha)}}); - NodeEntry sub3 = MakeNode("elemwise_add", n->attrs.name + "_sub3", {sub0, sub2}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad", {ograds[0], sub3}) - }; -}) -.set_support_level(1); - -// prelu -DMLC_REGISTER_PARAMETER(PReLUParam); - -inline bool PReluInferShape(const nnvm::NodeAttrs &attrs, - std::vector *in_shape, - std::vector *out_shape) { - const PReLUParam ¶m = nnvm::get(attrs.parsed); - TShape dshape = in_shape->at(0); - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, 0, dshape); - - // The case of parametric relu - CHECK(size_t(param.axis) < dshape.Size()) - << "Wrong axis (" << param.axis << ")value."; - - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, 1, TShape({dshape[param.axis]})); - - TShape oshape(dshape); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -inline bool PReluCorrectLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - const PReLUParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_layouts->size(), 2U); - CHECK_EQ(last_in_layouts->size(), 2U); - CHECK_EQ(out_layouts->size(), 1U); - - const Layout& data_layout = last_in_layouts->at(0).defined() ? - last_in_layouts->at(0) : in_layouts->at(0); - if (data_layout.defined()) { - CHECK(data_layout.indexof('C') == param.axis && !data_layout.contains('c')) - << "Channel in data layout " << data_layout - << " is not at index " << param.axis; - } - - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, data_layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 1, Layout("C")); - NNVM_ASSIGN_LAYOUT(*out_layouts, 0, data_layout); - - return true; -} - -NNVM_REGISTER_OP(prelu) -.describe(R"code(Parametric version of a Rectified Linear Unit. -It accepts two arguments: an input ``x`` and a channelwise slope ``alpha`` -and computes the output as :math:`PReLU(x) y = x > 0 ? x : alpha * x`, -where :math:`*` is an channelwise multiplication for each sample in the - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_argument("alpha", "Tensor", "Input channelwise alpha.") -.add_arguments(PReLUParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr("FInferShape", PReluInferShape) -.set_attr("FCorrectLayout", PReluCorrectLayout) -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"data", "alpha"}; - }) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const PReLUParam& param = nnvm::get(attrs.parsed); - return Array{ topi::prelu(inputs[0], inputs[1], param.axis)}; - }) -.set_support_level(4); - -DMLC_REGISTER_PARAMETER(PadParam); - -inline bool PadInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const PadParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 1U); - CHECK_EQ(out_shape->size(), 1U); - TShape dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - CHECK_EQ(param.pad_width.ndim(), dshape.ndim()); - TShape oshape = dshape; - for (uint32_t i = 0; i < dshape.ndim(); i++) { - CHECK_EQ(param.pad_width[i].ndim(), 2U); - int pad_before = param.pad_width[i][0]; - int pad_after = param.pad_width[i][1]; - oshape[i] = dshape[i] + pad_before + pad_after; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(pad) -.describe(R"code(Pad for n-D tensor. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "n-D Tensor", "Input data.") -.add_arguments(PadParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_outputs(1) -.set_num_inputs(1) -.set_attr("FInferShape", PadInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutCopyToOut<1, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const PadParam& param = nnvm::get(attrs.parsed); - auto pad_width = param.pad_width; - CHECK(pad_width.ndim() == inputs[0]->shape.size() && - pad_width[0].ndim() == 2) - << "Illegal pad_width"; - Array pad_before; - for (size_t i = 0; i < pad_width.ndim(); ++i) { - pad_before.push_back(tvm::make_const(tvm::DataType::Int(32), pad_width[i][0])); - } - Array pad_after; - for (size_t i = 0; i < pad_width.ndim(); ++i) { - pad_after.push_back(tvm::make_const(tvm::DataType::Int(32), pad_width[i][1])); - } - return Array{ topi::pad(inputs[0], pad_before, pad_after, - tvm::make_const(inputs[0]->dtype, param.pad_value)) }; -}) -.set_support_level(1); - -// layout transformer -DMLC_REGISTER_PARAMETER(LayoutTransformParam); - -inline bool LayoutTransformInferShape(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 1U) << "Input: [data]"; - CHECK_EQ(out_attrs->size(), 1U); - const LayoutTransformParam& param = nnvm::get(attrs.parsed); - const TShape &dshape = (*in_attrs)[0]; - if (dshape.ndim() == 0) return false; - const TShape &oshape = ConvertLayout(dshape, - Layout(param.src_layout), - Layout(param.dst_layout)); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(__layout_transform__) -.describe(R"code(Transform the input data layout. - -For transforming from NCHW to N16cHWC, the `__layout_transform__` operator reshapes -the input array by output[n, c, h, w, C] = data[n, C*16+c, h, w] - -)code" NNVM_ADD_FILELINE) -.set_num_inputs(1) -.set_num_outputs(1) -.add_argument("data", "Tensor", "Input data.") -.add_arguments(LayoutTransformParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FInferShape", LayoutTransformInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr( - "FCorrectLayout", [](const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const LayoutTransformParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(ilayouts->size(), 1U); - CHECK_EQ(olayouts->size(), 1U); - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, Layout(param.src_layout)); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, Layout(param.dst_layout)); - return true; -}) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& outputs) { - const LayoutTransformParam& param = nnvm::get(attrs.parsed); - return Array{ - topi::layout_transform(inputs[0], param.src_layout, param.dst_layout) - }; -}) -.set_support_level(1); - -DMLC_REGISTER_PARAMETER(LRNParam); - -inline bool LRNInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - TShape dshape = (*in_shape)[0]; - TShape oshape = dshape; - - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(lrn) -.describe(R"code(LRN layer)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr("FInferShape", LRNInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_support_level(1); - -DMLC_REGISTER_PARAMETER(L2NormalizeParam); - -inline bool L2NormalizeInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - TShape dshape = (*in_shape)[0]; - TShape oshape = dshape; - - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(l2_normalize) -.describe(R"code(L2NORMALIZE layer)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr("FInferShape", L2NormalizeInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseArbitraryLayout<1, 1>) -.set_support_level(1); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/nn/nn_common.h b/nnvm/src/top/nn/nn_common.h deleted file mode 100644 index d7ce420b6d94..000000000000 --- a/nnvm/src/top/nn/nn_common.h +++ /dev/null @@ -1,110 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nn_common.h - * \brief Common utilities for nn ops. - */ -#ifndef NNVM_TOP_NN_NN_COMMON_H_ -#define NNVM_TOP_NN_NN_COMMON_H_ - -#include -#include -#include -#include -#include -#include -#include -#include - -namespace nnvm { -namespace top { - -template -inline uint32_t UseBiasNumInputs(const NodeAttrs& attrs) { - const ParamType& param = get(attrs.parsed); - return param.use_bias ? 3 : 2; -} - -template -inline std::vector UseBiasListInputNames(const NodeAttrs& attrs) { - const ParamType& param = nnvm::get(attrs.parsed); - if (param.use_bias) { - return {"data", "weight", "bias"}; - } else { - return {"data", "weight"}; - } -} - -/*! - * \brief Convert shape in src_layout to shape in dst_layout - * \param src original shape - * \param src_layout layout of original shape - * \param dst_layout target layout - * \return shape in target layout - */ -inline TShape ConvertLayout(TShape src, const Layout& src_layout, const Layout& dst_layout) { - if (src_layout == dst_layout) { - return src; - } else if (!src_layout.defined()) { - LOG(FATAL) << "cannot convert undefined layout to " << dst_layout; - } else if (!dst_layout.defined()) { - LOG(FATAL) << "cannot convert " << src_layout << " to undefined layout"; - } - - CHECK(src_layout.convertible(dst_layout)) << "cannot convert from " - << src_layout << " to " << dst_layout; - - TShape dst(dst_layout.ndim()); - for (size_t i = 0; i < src_layout.ndim(); ++i) { - Layout::LayoutDim src_dim = src_layout[i]; - if (Layout::is_superdim(src_dim)) { - int dst_major_pos = dst_layout.indexof(Layout::to_superdim(src_dim)); - int dst_minor_pos = dst_layout.indexof(Layout::to_subdim(src_dim)); - int src_minor_pos = src_layout.indexof(Layout::to_subdim(src_dim)); - int src_factor = src_layout.subsizeof(src_dim); - int dst_factor = dst_layout.subsizeof(src_dim); - - uint32_t src_dim_size = src[i]; - if (src_minor_pos >= 0) { - CHECK_EQ(src_factor, src[src_minor_pos]) << "src shape " << src - << " does not agree with layout " << src_layout; - src_dim_size *= src_factor; - } - - dst[dst_major_pos] = src_dim_size; - if (dst_minor_pos >= 0) { - CHECK_GT(dst_factor, 0); - CHECK_LE(dst_factor, src_dim_size) << "Converting " << src - << " from " << src_layout - << " to " << dst_layout - << ": cannot split dimension size of " - << src_dim_size << " by " << dst_factor; - dst[dst_major_pos] /= dst_factor; - dst[dst_minor_pos] = dst_factor; - } - } - } - return dst; -} - -} // namespace top -} // namespace nnvm - -#endif // NNVM_TOP_NN_NN_COMMON_H_ diff --git a/nnvm/src/top/nn/pooling.cc b/nnvm/src/top/nn/pooling.cc deleted file mode 100644 index 11ca637d3b06..000000000000 --- a/nnvm/src/top/nn/pooling.cc +++ /dev/null @@ -1,435 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - - -/*! - * \file pooling.cc - * \brief Property def of pooling operators. - */ -#include -#include -#include -#include -#include -#include -#include "nn_common.h" -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/nn/pooling.h" - -namespace nnvm { -namespace top { -using namespace tvm; -using namespace nnvm::compiler; - -DMLC_REGISTER_PARAMETER(MaxPool2DParam); - -template -inline bool Pool2DInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const T& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 1U); - CHECK_EQ(out_shape->size(), 1U); - - TShape dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - - CHECK_GE(dshape.ndim(), 2U) - << "Pool2D only support input >= 2-D: input must have height and width"; - - Layout layout(param.layout); - CHECK(layout.contains('H') && layout.contains('W') && - !layout.contains('h') && !layout.contains('w')) - << "Invalid layout " << layout - << ". Pool2D layout must have H and W, which cannot be split"; - - const auto hidx = layout.indexof('H'); - const auto widx = layout.indexof('W'); - - dim_t pad_h, pad_w; - if (param.padding.ndim() == 1) { - pad_h = param.padding[0] * 2; - pad_w = param.padding[0] * 2; - } else if (param.padding.ndim() == 2) { - // (top, left) - pad_h = param.padding[0] * 2; - pad_w = param.padding[1] * 2; - } else if (param.padding.ndim() == 4) { - // (top, left, bottom, right) - pad_h = param.padding[0] + param.padding[2]; - pad_w = param.padding[1] + param.padding[3]; - } else { - return false; - } - - TShape oshape = dshape; - CHECK(param.pool_size[0] <= dshape[hidx] + pad_h) - << "pool size (" << param.pool_size[0] << ") exceeds input (" << dshape[hidx] - << " padded to " << (dshape[hidx] + pad_h) << ")"; - CHECK(param.pool_size[1] <= dshape[widx] + pad_w) - << "pool size (" << param.pool_size[1] << ") exceeds input (" << dshape[widx] - << " padded to " << (dshape[widx] + pad_w) << ")"; - - if (!param.ceil_mode) { - oshape[hidx] = ((dshape[hidx] + pad_h - param.pool_size[0]) / - param.strides[0]) + 1; - oshape[widx] = ((dshape[widx] + pad_w - param.pool_size[1]) / - param.strides[1]) + 1; - } else { - oshape[hidx] = ((dshape[hidx] + pad_h - param.pool_size[0] + - param.strides[0] - 1) / param.strides[0]) + 1; - oshape[widx] = ((dshape[widx] + pad_w - param.pool_size[1] + - param.strides[1] - 1) / param.strides[1]) + 1; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -template -inline bool Pool2DCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const T ¶m = nnvm::get(attrs.parsed); - CHECK_EQ(ilayouts->size(), 1); - CHECK_EQ(last_ilayouts->size(), 1); - CHECK_EQ(olayouts->size(), 1); - - Layout input = (*ilayouts)[0]; - const Layout layout(param.layout); - - if (input.defined()) { - CHECK(input.convertible(layout)) << "Invalid input layout " << input; - if (input.indexof('W') != layout.indexof('W') || - input.indexof('H') != layout.indexof('H') || - input.contains('w') || input.contains('h')) { - // as long as the index doesn't change for width and height - // pool2d can keep the input layout. - input = layout; - } - } else { - input = layout; - } - - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, input); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, input); - - return true; -} - -NNVM_REGISTER_OP(max_pool2d) -.describe(R"code(Max pooling operation for one dimensional data. - -- **data**: This depends on the `layout` parameter. Input is 4D array of shape - (batch_size, channels, height, width) if `layout` is `NCHW`. -- **out**: This depends on the `layout` parameter. Output is 4D array of shape - (batch_size, channels, out_height, out_width) if `layout` is `NCHW`. - out_height and out_width are calculated as:: - - out_height = floor((height+padding[0]+padding[2]-pool_size[0])/strides[0])+1 - out_width = floor((width+padding[1]+padding[3]-pool_size[1])/strides[1])+1 - - where padding will be an expanded array based on number of values passed as:: - one int : all sides same padding used. - two int : bottom, right use same as top and left. - four int: padding width in the order of (top, left, bottom, right). - - When `ceil_mode` is `True`, ceil will be used instead of floor in this - equation. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_arguments(MaxPool2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_num_outputs(1) -.set_num_inputs(1) -.set_attr("FInferShape", Pool2DInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", Pool2DCorrectLayout) -.set_attr("FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const MaxPool2DParam& param = nnvm::get(attrs.parsed); - auto pool_size = ShapeToArray(param.pool_size); - auto strides = ShapeToArray(param.strides); - auto padding = ShapeToArray(param.padding); - auto ceil_mode = param.ceil_mode; - - Layout layout(param.layout); - CHECK(layout.convertible(Layout("NCHW"))) - << "max_pool2d currently only supports layouts that are convertible from NCHW"; - CHECK_EQ(layout.indexof('h'), -1) << "max_pool2d does not support input split on height"; - CHECK_EQ(layout.indexof('w'), -1) << "max_pool2d does not support input split on width"; - - CHECK(inputs[0].ndim() == 4U || inputs[0].ndim() == 5U) - << "Pool2D only support 4-D input (e.g., NCHW)" - << " or 5-D input (last dimension is a split of channel)"; - - if (param.padding.ndim() == 1) { - padding.push_back(padding[0]); - padding.push_back(padding[0]); - padding.push_back(padding[0]); - } else if (param.padding.ndim() == 2) { - padding.push_back(padding[0]); - padding.push_back(padding[1]); - } - - return Array{ - topi::nn::pool(inputs[0], pool_size, strides, padding, - topi::nn::kMaxPool, ceil_mode, layout.name())}; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return MakeGradNode("_max_pool2d_grad", n, - {ograds[0], n->inputs[0], NodeEntry{n, 0, 0}}, - n->attrs.dict); -}) -.set_support_level(2); - -NNVM_REGISTER_OP(_max_pool2d_grad) - .describe(R"code(Max pooling 2D grad. - -)code" NNVM_ADD_FILELINE) -.add_argument("ograd", "4D Tensor", "Output grad.") -.add_argument("input", "4D Tensor", "Input data of max_pool2d grad.") -.add_argument("output", "4D Tensor", "Output data of max_pool2d grad.") -.set_num_inputs(3) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", AssignOutputAttr) -.set_attr("FInferType", ElemwiseType<3, 1>) -.set_attr("TIsBackward", true); - -DMLC_REGISTER_PARAMETER(AvgPool2DParam); - -NNVM_REGISTER_OP(avg_pool2d) -.describe(R"code(Average pooling operation for one dimensional data. - -- **data**: This depends on the `layout` parameter. Input is 4D array of shape - (batch_size, channels, height, width) if `layout` is `NCHW`. -- **out**: This depends on the `layout` parameter. Output is 4D array of shape - (batch_size, channels, out_height, out_width) if `layout` is `NCHW`. - out_height and out_width are calculated as:: - - out_height = floor((height+padding[0]+padding[2]-pool_size[0])/strides[0])+1 - out_width = floor((width+padding[1]+padding[3]-pool_size[1])/strides[1])+1 - - where padding will be an expanded array based on number of values passed as:: - one int : all sides same padding used. - two int : bottom, right use same as top and left. - four int: padding width in the order of (top, left, bottom, right). - - When `ceil_mode` is `True`, ceil will be used instead of floor in this - equation. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_arguments(AvgPool2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", Pool2DInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", Pool2DCorrectLayout) -.set_attr("FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const AvgPool2DParam& param = nnvm::get(attrs.parsed); - auto pool_size = ShapeToArray(param.pool_size); - auto strides = ShapeToArray(param.strides); - auto padding = ShapeToArray(param.padding); - auto ceil_mode = param.ceil_mode; - auto count_include_pad = param.count_include_pad; - - Layout layout(param.layout); - CHECK(layout.convertible(Layout("NCHW"))) - << "avg_pool2d currently only supports layouts that are convertible from NCHW"; - CHECK_EQ(layout.indexof('h'), -1) << "avg_pool2d does not support input split on height"; - CHECK_EQ(layout.indexof('w'), -1) << "avg_pool2d does not support input split on width"; - - CHECK(inputs[0].ndim() == 4U || inputs[0].ndim() == 5U) - << "Pool2D only support 4-D input (e.g., NCHW)" - << " or 5-D input (last dimension is a split of channel)"; - - if (param.padding.ndim() == 1) { - padding.push_back(padding[0]); - padding.push_back(padding[0]); - padding.push_back(padding[0]); - } else if (param.padding.ndim() == 2) { - padding.push_back(padding[0]); - padding.push_back(padding[1]); - } - - return Array{ - topi::nn::pool(inputs[0], pool_size, strides, padding, - topi::nn::kAvgPool, ceil_mode, layout.name(), count_include_pad)}; -}) -.set_num_outputs(1) -.set_num_inputs(1) -.set_support_level(2); - - -DMLC_REGISTER_PARAMETER(GlobalPool2DParam); - -inline bool GlobalPool2DInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - static const Layout kNCHW("NCHW"); - const GlobalPool2DParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 1U); - CHECK_EQ(out_shape->size(), 1U); - - TShape dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - - CHECK_GE(dshape.ndim(), 2U) - << "Pool2D only support input >= 2-D: input must have height and width"; - - Layout layout(param.layout); - CHECK(layout.contains('H') && layout.contains('W') && - !layout.contains('h') && !layout.contains('w')) - << "Invalid layout " << layout - << ". Pool2D layout must have H and W, which cannot be split"; - - const auto hidx = layout.indexof('H'); - const auto widx = layout.indexof('W'); - - TShape oshape = dshape; - oshape[hidx] = oshape[widx] = 1; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -inline bool GlobalPool2DCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const GlobalPool2DParam ¶m = nnvm::get(attrs.parsed); - CHECK_EQ(ilayouts->size(), 1); - CHECK_EQ(last_ilayouts->size(), 1); - CHECK_EQ(olayouts->size(), 1); - - Layout input = (*ilayouts)[0]; - const Layout layout(param.layout); - - if (input.defined()) { - CHECK(input.convertible(layout)) << "Invalid input layout " << input; - if (input.indexof('W') != layout.indexof('W') || - input.indexof('H') != layout.indexof('H') || - input.contains('w') || input.contains('h')) { - // as long as the index doesn't change for width and height - // pool2d can keep the input layout. - input = layout; - } - } else { - input = layout; - } - - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, input); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, input); - - return true; -} - -NNVM_REGISTER_OP(global_max_pool2d) -.describe(R"code(Global max pooling operation for 2D data. - -- **data**: This depends on the `layout` parameter. Input is 4D array of shape - (batch_size, channels, height, width) if `layout` is `NCHW`. -- **out**: This depends on the `layout` parameter. Output is 4D array of shape - (batch_size, channels, 1, 1) if `layout` is `NCHW`. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_arguments(GlobalPool2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", GlobalPool2DInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", GlobalPool2DCorrectLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const GlobalPool2DParam& param = nnvm::get(attrs.parsed); - Layout layout(param.layout); - CHECK(layout.convertible(Layout("NCHW"))) - << "global_max_pool2d currently only supports layouts that are convertible from NCHW"; - CHECK_EQ(layout.indexof('h'), -1) - << "global_max_pool2d does not support input split on height"; - CHECK_EQ(layout.indexof('w'), -1) - << "global_max_pool2d does not support input split on width"; - - CHECK(inputs[0].ndim() == 4U || inputs[0].ndim() == 5U) - << "Pool2D only support 4-D input (e.g., NCHW)" - << " or 5-D input (last dimension is a split of channel)"; - - return Array{ - topi::nn::global_pool(inputs[0], topi::nn::kMaxPool, layout.name()) }; -}) -.set_num_outputs(1) -.set_num_inputs(1) -.set_support_level(2); - - -NNVM_REGISTER_OP(global_avg_pool2d) -.describe(R"code(Global average pooling operation for 2D data. - -- **data**: This depends on the `layout` parameter. Input is 4D array of shape - (batch_size, channels, height, width) if `layout` is `NCHW`. -- **out**: This depends on the `layout` parameter. Output is 4D array of shape - (batch_size, channels, 1, 1) if `layout` is `NCHW`. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_arguments(GlobalPool2DParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", GlobalPool2DInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", GlobalPool2DCorrectLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const GlobalPool2DParam& param = nnvm::get(attrs.parsed); - Layout layout(param.layout); - CHECK(layout.convertible(Layout("NCHW"))) - << "global_avg_pool2d currently only supports layouts that are convertible from NCHW"; - CHECK_EQ(layout.indexof('h'), -1) - << "global_avg_pool2d does not support input split on height"; - CHECK_EQ(layout.indexof('w'), -1) - << "global_avg_pool2d does not support input split on width"; - - CHECK(inputs[0].ndim() == 4U || inputs[0].ndim() == 5U) - << "Pool2D only support 4-D input (e.g., NCHW)" - << " or 5-D input (last dimension is a split of channel)"; - - return Array{ - topi::nn::global_pool(inputs[0], topi::nn::kAvgPool, layout.name()) }; -}) -.set_num_outputs(1) -.set_num_inputs(1) -.set_support_level(2); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/nn/upsampling.cc b/nnvm/src/top/nn/upsampling.cc deleted file mode 100644 index 68583ae616f2..000000000000 --- a/nnvm/src/top/nn/upsampling.cc +++ /dev/null @@ -1,124 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file upsampling.cc - * \brief Property def of upsampling operators. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include "nn_common.h" -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/elemwise.h" -#include "topi/transform.h" -#include "topi/nn/upsampling.h" - -namespace nnvm { -namespace top { -using tvm::Expr; -using tvm::Array; -using tvm::Tensor; -using nnvm::compiler::FTVMCompute; - -DMLC_REGISTER_PARAMETER(UpSamplingParam); - -inline bool UpSamplingInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - static const Layout kNCHW("NCHW"); - const UpSamplingParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 1U); - CHECK_EQ(out_shape->size(), 1U); - TShape dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - - dshape = ConvertLayout(dshape, param.layout, kNCHW); - TShape oshape = dshape; - oshape[2] = oshape[2] * param.scale; - oshape[3] = oshape[3] * param.scale; - oshape = ConvertLayout(oshape, kNCHW, param.layout); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - - return true; -} - -inline bool UpsamplingLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - const UpSamplingParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_layouts->size(), 1U); - CHECK_EQ(out_layouts->size(), 1U); - const Layout layout(param.layout); - NNVM_ASSIGN_LAYOUT(*in_layouts, 0, layout); - NNVM_ASSIGN_LAYOUT(*out_layouts, 0, layout); - return true; -} - -NNVM_REGISTER_OP(upsampling) -.describe(R"(Perform upsampling to input array with nearest neighbour or bilinear interpolation. - -- **data**: data is 4D array of shape - (batch_size, channels, in_height, in_width) for NCHW - (batch_size, in_height, in_width, channels) for NHWC - -- **out**: Output is 4D array of shape - for layout NCHW - (batch_size, channels, in_height*scale, in_width*scale) - - for layout NHWC - (batch_size, in_height*scale, in_width*scale, channels) - -)" NNVM_ADD_FILELINE) -.add_argument("data", "4D Tensor", "Input data.") -.add_arguments(UpSamplingParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", UpSamplingInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", UpsamplingLayout) -.set_num_outputs(1) -.set_num_inputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const UpSamplingParam& param = nnvm::get(attrs.parsed); - Array oshape; - if (param.layout == "NCHW") { - oshape.push_back(out_info[0]->shape[2]); - oshape.push_back(out_info[0]->shape[3]); - } else { - oshape.push_back(out_info[0]->shape[1]); - oshape.push_back(out_info[0]->shape[2]); - } - - return Array{ topi::nn::upsampling(inputs[0], oshape, param.layout, param.method)}; -}) -.set_support_level(2); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/op_common.h b/nnvm/src/top/op_common.h deleted file mode 100644 index 7213e1c9c116..000000000000 --- a/nnvm/src/top/op_common.h +++ /dev/null @@ -1,351 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file op_common.h - * \brief Common operator utilities - */ -#ifndef NNVM_TOP_OP_COMMON_H_ -#define NNVM_TOP_OP_COMMON_H_ - -#include -#include -#include -#include -#include -#include -#include -#include - -namespace nnvm { -namespace top { -/*! - * \brief Parse keyword arguments as PType arguments and save to parsed - * \tparam PType the parameter type. - * \param attrs The attributes. - */ -template -inline void ParamParser(nnvm::NodeAttrs* attrs) { - PType param; - try { - param.Init(attrs->dict); - } catch (const dmlc::ParamError& e) { - std::ostringstream os; - os << e.what(); - os << ", in operator " << attrs->op->name << "(" - << "name=\"" << attrs->name << "\""; - for (const auto& k : attrs->dict) { - os << ", " << k.first << "=\"" << k.second << "\""; - } - os << ")"; - throw dmlc::ParamError(os.str()); - } - attrs->parsed = std::move(param); -} - -/*! - * \brief Parse keyword arguments as PType arguments and save to parsed - * \tparam PType the arameter type. - * \param attrs The attributes. - */ -template -inline std::unordered_map -ParamGetAttrDict(const nnvm::NodeAttrs& attrs) { - std::unordered_map dict = attrs.dict; - nnvm::get(attrs.parsed).UpdateDict(&dict); - return dict; -} - -/*! \brief check if shape is empty or contains unkown (0) dim. */ -inline bool shape_is_none(const TShape& x) { - return x.ndim() == 0 || x.Size() == 0; -} - -/*! \brief check if type is none (-1) */ -inline bool type_is_none(const int& x) { - return x == -1; -} - -/*! \brief check if shape is scalar({1}). */ -inline bool shape_is_scalar(const TShape& x) { - return x.ndim() == 1 && x.Size() == 1; -} - -/*! \brief get string representation of shape */ -inline std::string shape_string(const TShape& x) { - std::ostringstream os; - os << x; - return os.str(); -} - -/*! \brief get string representation of shape */ -inline std::string type_string(const int& x) { - return std::to_string(x); -} - -/*! - * \brief Assign x to y. Checks for compatiblity when y is not empty. - * Allow missing dim in both x and y (as 0). - * \param y target shape. - * \param x source shape. - * \return whether x and y are compatible. - */ -inline bool shape_assign(TShape *y, const TShape& x) { - if (y->ndim() == 0) { - *y = x; - return true; - } else if (y->ndim() != x.ndim()) { - return x.ndim() == 0; - } else { - for (size_t i = 0; i < y->ndim(); ++i) { - if ((*y)[i] == 0) { - (*y)[i] = x[i]; - } else if ((*y)[i] != x[i] && x[i] != 0) { - return false; - } - } - return true; - } -} - -/*! - * \brief Assign x to y. Checks for compatiblity when y is not -1. - * \param y target type. - * \param x source type. - * \return whether x and y are compatible. - */ -inline bool type_assign(int *y, const int& x) { - if (*y == -1) { - *y = x; - return true; - } else if (*y != x && x != -1) { - return false; - } - return true; -} - -template -inline std::string attr_assign_error_msg(const NodeAttrs& attrs, - int index, bool is_input, - const AttrType& expected, - const AttrType& actual, - const char* attr_name) { - static const auto& flist_inputs = Op::GetAttr("FListInputNames"); - static const auto& flist_outputs = Op::GetAttr("FListOutputNames"); - const auto& flist = is_input ? flist_inputs : flist_outputs; - std::string name; - if (flist.count(attrs.op)) { - name = flist[attrs.op](attrs)[index]; - } else { - name = (is_input ? "data" : "output") + std::to_string(index); - } - std::ostringstream msg; - msg << "Operator " << attrs.op->name << "("; - for (const auto& kv : attrs.dict) msg << kv.first << "=" << kv.second << ", "; - msg << "name=" << attrs.name << ") expects " << name << "\'s " << attr_name - << " to be " << expected << ", but got " << actual << "."; - return msg.str(); -} - -/*! - * \brief macro assign shape to input if out is unknown otherwise check consistency - * Use macro so we can see the error file more clearly - * \param inputs the shape array to store the result - * \param index the index of in the array - * \param shape the inferred shape - */ -#define NNVM_ASSIGN_INPUT_SHAPE(attrs, inputs, index, shape) \ - { \ - if (!shape_assign(&(inputs)[index], TShape(shape))) { \ - LOG(FATAL) << attr_assign_error_msg(attrs, index, true, shape, \ - (inputs)[index], "shape"); \ - } \ - } - -/*! - * \brief macro assign shape to out if out is unknown otherwise check consistency - * Use macro so we can see the error file more clearly - * \param inputs the shape array to store the result - * \param index the index of in the array - * \param shape the inferred shape - */ -#define NNVM_ASSIGN_OUTPUT_SHAPE(attrs, outputs, index, shape) \ - { \ - if (!shape_assign(&(outputs)[index], TShape(shape))) { \ - LOG(FATAL) << attr_assign_error_msg(attrs, index, false, shape, \ - (outputs)[index], "shape"); \ - } \ - } - -/*! - * \brief macro assign type to out if out is unknown (-1) otherwise check consistency - * Use macro so we can see the error file more clearly - * \param inputs the type array to store the result - * \param index the index of in the array - * \param type the inferred type - */ -#define NNVM_ASSIGN_INPUT_TYPE(attrs, inputs, index, type) \ - { \ - if (!type_assign(&(inputs)[index], type)) { \ - LOG(FATAL) << attr_assign_error_msg(attrs, index, true, type, \ - (inputs)[index], "type"); \ - } \ - } - -/*! - * \brief macro assign type to out if out is unknown (-1) otherwise check consistency - * Use macro so we can see the error file more clearly - * \param inputs the type array to store the result - * \param index the index of in the array - * \param type the inferred type - */ -#define NNVM_ASSIGN_OUTPUT_TYPE(attrs, outputs, index, type) \ - { \ - if (!type_assign(&(outputs)[index], type)) { \ - LOG(FATAL) << attr_assign_error_msg(attrs, index, false, type, \ - (outputs)[index], "type"); \ - } \ - } - -#define NNVM_ASSIGN_LAYOUT(outputs, index, layout) \ - { \ - if (layout.defined()) { \ - (outputs)[index] = layout; \ - } \ - } - -/*! - * \brief macro assign rhs shape to lhs - * Use macro so we can see the error file more clearly - * \param lhs lhs shape - * \param rhs rhs shape - */ -#define SHAPE_ASSIGN(lhs, rhs) \ - if ((lhs).ndim() == 0) (lhs) = (rhs); \ - else \ - CHECK_EQ(lhs, rhs) << "shape inference inconsistent"; \ - -/*! - * \brief macro assign rhs type to lhs - * Use macro so we can see the error file more clearly - * \param lhs lhs type - * \param rhs rhs type - */ -#define DTYPE_ASSIGN(lhs, rhs) \ - if ((lhs) == -1) (lhs) = (rhs); \ - else \ - CHECK_EQ(lhs, rhs) << "type inference inconsistent"; \ - -// simply return the shape as same -inline bool SameShape(const NodeAttrs& attrs, - std::vector *ishape, - std::vector *oshape) { - if (ishape->size() == 0 || (*ishape)[0].ndim() == 0) return false; - for (TShape& pshape : *oshape) { - pshape = (*ishape)[0]; - } - for (TShape& pshape : *ishape) { - pshape = (*ishape)[0]; - } - return true; -} - -// return shape from node attrs -template -inline bool ZeroShape(const NodeAttrs& attrs, - std::vector *ishape, - std::vector *oshape) { - const TShape& ts = dmlc::get(attrs.parsed).shape; - if (ts.ndim() != 0) { - SHAPE_ASSIGN(oshape->at(0), ts); - return true; - } else { - return false; - } -} - -// do not infer layout -inline bool ZeroLayout(const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - return true; -} - -// simply assign output shape or type from input -template -inline bool AssignOutputAttr(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_LT(in_index, in_attrs->size()); - CHECK_LT(out_index, out_attrs->size()); - const TShape &dshape = in_attrs->at(in_index); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, out_index, dshape); - return true; -} - -// return type from node attrs -template -inline bool ZeroType(const NodeAttrs& attrs, - std::vector *iattr, - std::vector *oattr) { - int dtype = dmlc::get(attrs.parsed).dtype; - DTYPE_ASSIGN(oattr->at(0), dtype); - return true; -} - -// Make zero grad node -inline std::vector MakeZeroGradNodes( - const NodePtr& n, - const std::vector& ograds) { - std::vector ret; - for (uint32_t i = 0; i < n->num_inputs(); ++i) { - std::ostringstream os; - ret.push_back(MakeNode("zeros_like", n->attrs.name + "_zero_grad", - {n->inputs[i]})); - } - return ret; -} - -// Helper to make gradient node -inline std::vector MakeGradNode( - const char* op_name, - const NodePtr& n, - std::vector inputs, - std::unordered_map attr = {{}}) { - NodePtr p = Node::Create(); - p->attrs.op = nnvm::Op::Get(op_name); - p->attrs.name = n->attrs.name + "_grad"; - p->inputs = std::move(inputs); - p->attrs.dict = std::move(attr); - if (p->attrs.op->attr_parser) { - p->attrs.op->attr_parser(&p->attrs); - } - std::vector ret; - for (uint32_t i = 0; i < p->num_outputs(); ++i) { - ret.emplace_back(NodeEntry{p, i, 0}); - } - return ret; -} - - -} // namespace top -} // namespace nnvm - -#endif // NNVM_TOP_OP_COMMON_H_ diff --git a/nnvm/src/top/tensor/broadcast.cc b/nnvm/src/top/tensor/broadcast.cc deleted file mode 100644 index f30fab9f74b5..000000000000 --- a/nnvm/src/top/tensor/broadcast.cc +++ /dev/null @@ -1,614 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file broadcast.cc - * \brief broadcast operator. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/broadcast.h" -#include "topi/elemwise.h" - -namespace nnvm { -namespace top { -using namespace tvm; -using namespace nnvm::compiler; - -// broadcast_to -DMLC_REGISTER_PARAMETER(BroadcastToParam); - -inline bool BroadcastToInferShape(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 1U); - CHECK_EQ(out_attrs->size(), 1U); - const TShape& ishape = (*in_attrs)[0]; - if (ishape.ndim() == 0) return false; - - const BroadcastToParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(ishape.ndim(), param.shape.ndim()) - << "Operand of shape " << ishape - << " cannot be broadcasted to " << param.shape; - TShape oshape = param.shape; - for (dim_t i = 0; i < ishape.ndim(); ++i) { - if (oshape[i] != 0) { - CHECK(ishape[i] == oshape[i] || ishape[i] == 1) - << "Array cannot be broadcasted from " << - ishape << " to " << param.shape; - } else { - oshape[i] = ishape[i]; - } - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(broadcast_to) -.describe(R"code(Broadcasts the input array to a new shape. - -Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations -with arrays of different shapes efficiently without creating multiple copies of arrays. -Also see, `Broadcasting `_ for more explanation. - -Broadcasting is allowed on axes with size 1, such as from `(2,1,3,1)` to -`(2,8,3,9)`. Elements will be duplicated on the broadcasted axes. - -For example:: - - broadcast_to([[1,2,3]], shape=(2,3)) = [[ 1., 2., 3.], - [ 1., 2., 3.]]) - -The dimension which you do not want to change can also be kept as `0` which means copy the original value. -So with `shape=(2,0)`, we will obtain the same result as in the above example. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_arguments(BroadcastToParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", BroadcastToInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const BroadcastToParam& param = nnvm::get(attrs.parsed); - auto shape = ShapeToArray(param.shape); - return Array{ topi::broadcast_to(inputs[0], shape) }; - }) -.set_num_inputs(1) -.set_num_outputs(1) -.set_support_level(4); - -// binary broadcast op -inline bool BinaryBroadcastShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - const TShape& lhs = (*in_attrs)[0]; - const TShape& rhs = (*in_attrs)[1]; - - // avoid pre-mature shape inference. - if (lhs.ndim() == 0 || rhs.ndim() == 0) return false; - - if (lhs == rhs) { - NNVM_ASSIGN_INPUT_SHAPE(attrs, *out_attrs, 0, lhs); - return true; - } - TShape out(std::max(lhs.ndim(), rhs.ndim())); - dim_t bl = out.ndim() - lhs.ndim(); - dim_t br = out.ndim() - rhs.ndim(); - for (dim_t i = 0; i < out.ndim(); ++i) { - dim_t l = 1, r = 1; - if (i >= bl) l = lhs[i - bl]; - if (i >= br) r = rhs[i - br]; - if (l != r) { - if (l == 0 || r == 0) { - out[i] = 0; - } else { - CHECK(l == 1 || r == 1) - << "operands could not be broadcast together with shapes " - << lhs << " " << rhs << ", l=" << l << ", r=" << r; - out[i] = std::max(l, r); - } - } else { - out[i] = l; - } - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, out); - return true; -} - -inline bool BinaryBroadcastCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - CHECK_EQ(ilayouts->size(), 2U); - CHECK_EQ(olayouts->size(), 1U); - Layout lhs = (*ilayouts)[0]; - Layout rhs = (*ilayouts)[1]; - Layout out(Layout::Undef()); - - if (lhs.defined() && rhs.defined()) { - if (lhs == rhs) { - NNVM_ASSIGN_LAYOUT(*olayouts, 0, lhs); - return true; - } - // For example, NCHW <-> CHW, N16nCH16cW <-> HCW16c, etc, are broadcast-convertible - // because as the definition, CHW can broadcast with NCHW. - // For the second case, we can convert HCW16c to CH16cW then it can broadcast with N16nCH16cW. - // But CNHW <-> CHW, NCHW16n <-> CHW are not, - // because not matter how we adjust the layout of 'CHW', - // we can never have an 'N' between 'C' and "HW". - size_t l_start = 0, r_start = 0; - size_t l = 0, r = 0; - bool find_first_match = false; - while (l < lhs.ndim() && r < rhs.ndim()) { - if (!rhs.contains(Layout::to_superdim(lhs[l]))) { - CHECK(!find_first_match) << lhs << " and " << rhs << " are not broadcast-convertible"; - l_start = ++l; - } else if (!lhs.contains(Layout::to_superdim(rhs[r]))) { - CHECK(!find_first_match) << lhs << " and " << rhs << " are not broadcast-convertible"; - r_start = ++r; - } else { - find_first_match = true; - ++l; ++r; - } - } - if (l_start > 0 && r_start > 0) { - LOG(FATAL) << lhs << " and " << rhs << " are not broadcast-convertible"; - } else if (l_start > 0) { - rhs = lhs.sublayout(l_start, lhs.ndim()-l_start); - out = lhs; - } else if (r_start > 0) { - lhs = rhs.sublayout(r_start, rhs.ndim()-r_start); - out = rhs; - } else { - // prior to keep left layout - rhs = lhs; - out = lhs; - } - } else if (lhs.defined()) { - const Layout& last_lhs = last_ilayouts->at(0); - if (last_lhs.defined()) { - CHECK(lhs.convertible(last_lhs)) << "current lhs layout " << lhs - << " cannot be converted to the original one " << last_lhs; - lhs = last_lhs; - // cannot decide output layout - } - } else if (rhs.defined()) { - const Layout& last_rhs = last_ilayouts->at(1); - if (last_rhs.defined()) { - CHECK(rhs.convertible(last_rhs)) << "current rhs layout " << rhs - << " cannot be converted to the original one " << last_rhs; - rhs = last_rhs; - // cannot decide output layout - } - } - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, lhs); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, rhs); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, out); - return true; -} - -#define NNVM_REGISTER_BINARY_BROADCAST_OP(name, TOPIOp) \ - NNVM_REGISTER_OP(name) \ - .set_num_inputs(2) \ - .set_num_outputs(1) \ - .set_attr("FInferShape", BinaryBroadcastShape) \ - .set_attr("FInferType", ElemwiseType<2, 1>) \ - .set_attr("FCorrectLayout", \ - BinaryBroadcastCorrectLayout) \ - .set_attr("FInplaceOption", \ - [](const NodeAttrs& attrs) { \ - return std::vector >{{0, 0}, {1, 0}}; \ - }) \ - .set_attr( \ - "FTVMCompute", [](const NodeAttrs& attrs, \ - const Array& inputs, \ - const Array& out_info) { \ - return Array{ \ - topi::TOPIOp(inputs[0], inputs[1]) }; \ - }) \ - .add_argument("lhs", "Tensor", "first input") \ - .add_argument("rhs", "Tensor", "second input") - - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_add, add) -.add_alias("__add_symbol__") -.describe(R"code(Returns element-wise sum of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 1., 1.], - [ 1., 1., 1.]] - - y = [[ 0.], - [ 1.]] - - broadcast_add(x, y) = [[ 1., 1., 1.], - [ 2., 2., 2.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return std::vector{ - MakeNode("collapse_sum", n->attrs.name + "_dlhs", { ograds[0], n->inputs[0] }), - MakeNode("collapse_sum", n->attrs.name + "_drhs", { ograds[0], n->inputs[1] }) - }; -}); - - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_sub, subtract) -.add_alias("__sub_symbol__") -.describe(R"code(Returns element-wise difference of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 1., 1.], - [ 1., 1., 1.]] - - y = [[ 0.], - [ 1.]] - - broadcast_sub(x, y) = [[ 1., 1., 1.], - [ 0., 0., 0.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return std::vector{ - MakeNode("collapse_sum", n->attrs.name + "_dlhs", { ograds[0], n->inputs[0] }), - MakeNode("collapse_sum", n->attrs.name + "_drhs", { - MakeNode("negative", n->attrs.name + "_drhs_neg", {ograds[0]}), - n->inputs[1] - }) - }; -}); - - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_mul, multiply) -.add_alias("__mul_symbol__") -.describe(R"code(Returns element-wise product of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 1., 1.], - [ 1., 1., 1.]] - - y = [[ 0.], - [ 1.]] - - broadcast_mul(x, y) = [[ 0., 0., 0.], - [ 1., 1., 1.]] -)code" NNVM_ADD_FILELINE) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - NodeEntry dlhs = MakeNode("collapse_sum", n->attrs.name + "_dlhs_sum", { - MakeNode("broadcast_mul", n->attrs.name + "_dlhs_mul", - { n->inputs[1], ograds[0] }), - n->inputs[0] - }); - NodeEntry drhs = MakeNode("collapse_sum", n->attrs.name + "_drhs_sum", { - MakeNode("broadcast_mul", n->attrs.name + "_drhs_mul", - { n->inputs[0], ograds[0] }), - n->inputs[1] - }); - return std::vector{ dlhs, drhs }; -}); - - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_div, divide) -.add_alias("__div_symbol__") -.describe(R"code(Returns element-wise division of the input arrays with broadcasting. - -Example:: - - x = [[ 6., 6., 6.], - [ 6., 6., 6.]] - - y = [[ 2.], - [ 3.]] - - broadcast_div(x, y) = [[ 3., 3., 3.], - [ 2., 2., 2.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - NodeEntry dlhs = MakeNode("collapse_sum", n->attrs.name + "_dlhs_sum", { - MakeNode("broadcast_div", n->attrs.name + "_dlhs_div", - { ograds[0], n->inputs[1] }), - n->inputs[0] - }); - NodeEntry dy = MakeNode("broadcast_div", n->attrs.name + "_drhs_div", { - NodeEntry{n, 0, 0}, - MakeNode("negative", n->attrs.name + "_rhs_neg", {n->inputs[1]}) - }); - NodeEntry drhs = MakeNode("collapse_sum", n->attrs.name + "_drhs_sum", { - MakeNode("broadcast_mul", n->attrs.name + "_drhs_mul", { dy, ograds[0] }), - n->inputs[1] - }); - return std::vector{ dlhs, drhs }; -}); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_mod, mod) -.add_alias("__mod_symbol__") -.describe(R"code(Returns element-wise mod of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 3.]] - - broadcast_mod(x, y) = [[ 1., 0., 1.], - [ 1., 2., 0.]] - -)code" NNVM_ADD_FILELINE); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_max, maximum) -.add_alias("__max_symbol__") -.describe(R"code(Returns element-wise max of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 3.]] - - broadcast_max(x, y) = [[ 2., 2., 3.], - [ 4., 5., 6.]] - -)code" NNVM_ADD_FILELINE); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_min, minimum) -.add_alias("__min_symbol__") -.describe(R"code(Returns element-wise minimum of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 3.]] - - broadcast_min(x, y) = [[ 1., 2., 2.], - [ 3., 3., 3.]] - -)code" NNVM_ADD_FILELINE); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_pow, power) -.add_alias("__pow_symbol__") -.describe(R"code(Returns element-wise x^y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 1.], - [ 2.]] - - broadcast_pow(x, y) = [[ 1., 2., 3. ], - [ 16., 25., 36.]] - -)code" NNVM_ADD_FILELINE); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_left_shift, left_shift) -.add_alias("__left_shift_symbol__") -.describe(R"code(Returns element-wise x << y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 1.]] - - broadcast_left_shift(x, y) = [[ 4., 8., 12.], - [ 8., 10., 12.]] - -)code" NNVM_ADD_FILELINE); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_right_shift, right_shift) -.add_alias("__right_shift_symbol__") -.describe(R"code(Returns element-wise x >> y of the input arrays with broadcasting. - -Example:: - - x = [[ 4., 8., 12.], - [ 8., 10., 12.]] - - y = [[ 2.], - [ 1.]] - - broadcast_right_shift(x, y) = [[ 1., 2., 3.], - [ 4., 5., 6.]] - -)code" NNVM_ADD_FILELINE); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_greater, greater) -.add_alias("__greater_symbol__") -.describe(R"code(Returns element-wise x > y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 3.]] - - broadcast_greater(x, y) = [[ 0., 0., 1.], - [ 1., 1., 1.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::greater(inputs[0], inputs[1]), out_info[0]->dtype) }; -}, 11); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_less, less) -.add_alias("__less_symbol__") -.describe(R"code(Returns element-wise x < y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 3.]] - - broadcast_less(x, y) = [[ 1., 0., 0.], - [ 0., 0., 0.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::less(inputs[0], inputs[1]), out_info[0]->dtype) }; -}, 11); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_equal, equal) -.add_alias("__equal_symbol__") -.describe(R"code(Returns element-wise x == y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 5.]] - - broadcast_equal(x, y) = [[ 0., 1., 0.], - [ 0., 1., 0.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::equal(inputs[0], inputs[1]), out_info[0]->dtype) }; -}, 11); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_not_equal, not_equal) -.add_alias("__not_equal_symbol__") -.describe(R"code(Returns element-wise x != y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 4.]] - - broadcast_not_equal(x, y) = [[ 1., 0., 1.], - [ 0., 1., 1.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::not_equal(inputs[0], - inputs[1]), - out_info[0]->dtype) }; -}, 11); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_greater_equal, greater_equal) -.add_alias("__greater_equal_symbol__") -.describe(R"code(Returns element-wise x >= y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 2.], - [ 6.]] - - broadcast_greater_equal(x, y) = [[ 0., 1., 1.], - [ 0., 0., 1.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::greater_equal(inputs[0], - inputs[1]), - out_info[0]->dtype) }; -}, 11); - -NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_less_equal, less_equal) -.add_alias("__less_equal_symbol__") -.describe(R"code(Returns element-wise x <= y of the input arrays with broadcasting. - -Example:: - - x = [[ 1., 2., 3.], - [ 4., 5., 6.]] - - y = [[ 1.], - [ 5.]] - - broadcast_less_equal(x, y) = [[ 1., 0., 0.], - [ 1., 1., 0.]] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::less_equal(inputs[0], - inputs[1]), - out_info[0]->dtype) }; -}, 11); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/tensor/elemwise.cc b/nnvm/src/top/tensor/elemwise.cc deleted file mode 100644 index 5ac6d91dc141..000000000000 --- a/nnvm/src/top/tensor/elemwise.cc +++ /dev/null @@ -1,998 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file elemwise.cc - * \brief Elemenwise operators - */ -#include -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/broadcast.h" -#include "topi/elemwise.h" -#include "topi/tags.h" -#include "../../compiler/compile_engine.h" - -namespace nnvm { -namespace top { - -using namespace tvm; -using namespace nnvm::compiler; - -// undefined op -NNVM_REGISTER_ELEMWISE_UNARY_OP(__undef__) -.describe(R"code(undefined op. - -Used to produce invalide node during optimization. - -)code" NNVM_ADD_FILELINE) -.set_num_outputs(1) -.set_num_inputs(0); - -// floor -NNVM_REGISTER_ELEMWISE_UNARY_OP(floor) -.describe(R"code(Take floor input array, computed element-wise. -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::floor(inputs[0]) }; -}); - -// ceil -NNVM_REGISTER_ELEMWISE_UNARY_OP(ceil) -.describe(R"code(Take ceil input array, computed element-wise. -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::ceil(inputs[0]) }; -}); - -// trunc -NNVM_REGISTER_ELEMWISE_UNARY_OP(trunc) -.describe(R"code(Take truncated value of the input, element-wise. -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::trunc(inputs[0]) }; -}); - -// round -NNVM_REGISTER_ELEMWISE_UNARY_OP(round) -.describe(R"code(Round elements of the input to nearest integer. -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::round(inputs[0]) }; -}); - -// abs -NNVM_REGISTER_ELEMWISE_UNARY_OP(abs) -.describe(R"code(Take absolute value of elements of the input. -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::abs(inputs[0]) }; -}); - -// sigmoid -NNVM_REGISTER_ELEMWISE_UNARY_OP(sigmoid) -.describe(R"code(Computes sigmoid. - -.. math:: - Y = 1 / (1 + exp(-X)) - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::sigmoid(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = 1 / (1 + exp(-n0)) - // grad_0 = grad_y * y * (1 - y) - NodeEntry sub0 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub_0", - {ograds[0], NodeEntry{n, 0, 0}}); - NodeEntry sub1 = MakeNode("__rsub_scalar__", n->attrs.name + "_grad_sub_1", - {NodeEntry{n, 0, 0}}, {{"scalar", "1"}}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad_0", - {sub0, sub1}) - }; -}); - -// tanh -NNVM_REGISTER_ELEMWISE_UNARY_OP(tanh) -.describe(R"code(Computes hyperbolic tangent. - -.. math:: - Y = sinh(X) / cosh(X) - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::tanh(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = sinh(n0) / cosh(n0) - // grad_0 = grad_y * (1 - y^2) - NodeEntry sub0 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub_0", - {NodeEntry{n, 0, 0}, NodeEntry{n, 0, 0}}); - NodeEntry sub1 = MakeNode("__rsub_scalar__", n->attrs.name + "_grad_sub_1", - {sub0}, {{"scalar", "1"}}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad_0", - {ograds[0], sub1}) - }; -}); - -// exp -NNVM_REGISTER_ELEMWISE_UNARY_OP(exp) -.describe(R"code(Returns the exp input array, computed element-wise. - -.. math:: - exp(x) - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::exp(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = exp(n0) - // grad_0 = grad_y * y - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad_0", - {ograds[0], NodeEntry{n, 0, 0}}) - }; -}); - -// log -NNVM_REGISTER_ELEMWISE_UNARY_OP(log) -.describe(R"code(Returns the log input array, computed element-wise. - -.. math:: - log(x) - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::log(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = log(n0) - // grad_0 = grad_y / n0 - return std::vector{ - MakeNode("elemwise_div", n->attrs.name + "_grad_0", - {ograds[0], n->inputs[0]}) - }; -}); - -// sqrt -NNVM_REGISTER_ELEMWISE_UNARY_OP(sqrt) -.describe(R"code(Returns the sqrt input array, computed element-wise. - -.. math:: - \sqrt(x) - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::sqrt(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // y = sqrt(n0) - // grad_0 = grad_y / (2 * y) - NodeEntry sub0 = MakeNode("__mul_scalar__", n->attrs.name + "_grad_sub_0", - {NodeEntry{n, 0, 0}}, {{"scalar", "2"}}); - return std::vector{ - MakeNode("elemwise_div", n->attrs.name + "_grad_0", - {ograds[0], sub0}) - }; -}); - -// binary ops - -NNVM_REGISTER_ELEMWISE_BINARY_OP(elemwise_add) -.describe(R"code(Element-wise add - -)code") -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::add(inputs[0], inputs[1]) }; - }) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0 + n1 - // grad_0 = grad_y - // grad_1 = grad_y - return std::vector{ MakeNode("copy", n->attrs.name + "_grad_0", - {ograds[0]}), - MakeNode("copy", n->attrs.name + "_grad_0", - {ograds[0]}) }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_OP(elemwise_sub) -.describe(R"code(Element-wise substraction - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::subtract(inputs[0], inputs[1]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0 - n1 - // grad_0 = grad_y - // grad_1 = - grad_y - return std::vector{ - ograds[0], - MakeNode("negative", n->attrs.name + "_grad_1", {ograds[0]}), - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_OP(elemwise_mul) -.describe(R"code(Element-wise multiplication - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::multiply(inputs[0], inputs[1]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0 * n1 - // grad_0 = grad_y * n1 - // grad_1 = grad_y * n0 - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad_0", - {ograds[0], n->inputs[1]}), - MakeNode("elemwise_mul", n->attrs.name + "_grad_1", - {ograds[0], n->inputs[0]}) - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_OP(elemwise_div) -.describe(R"code(Element-wise division - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::divide(inputs[0], inputs[1]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0 / n1 - // grad_0 = grad_y / n1 - // grad_1 = - grad_y * n0 / n1^2 - NodeEntry sub0 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub_0", - {ograds[0], n->inputs[0]}); - NodeEntry sub1 = MakeNode("negative", n->attrs.name + "_grad_sub_1", - {sub0}); - NodeEntry sub2 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub_2", - {n->inputs[1], n->inputs[1]}); - return std::vector{ - MakeNode("elemwise_div", n->attrs.name + "_grad_0", - {ograds[0], n->inputs[1]}), - MakeNode("elemwise_div", n->attrs.name + "_grad_1", - {sub1, sub2}) - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_OP(elemwise_mod) - .describe(R"code(Element-wise modulo - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::mod(inputs[0], inputs[1]) }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_OP(elemwise_pow) - .describe(R"code(Element-wise power - -)code" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::power(inputs[0], inputs[1]) }; -}); - -// logical -NNVM_REGISTER_ELEMWISE_BINARY_OP(logical_and) -.describe(R"code(Elementwise compute the logical AND - -)code") -.set_support_level(4) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::logical_and(inputs[0], inputs[1]) }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_OP(logical_or) -.describe(R"code(Elementwise compute the logical OR - -)code") -.set_support_level(4) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::logical_or(inputs[0], inputs[1]) }; -}); - -// negative -NNVM_REGISTER_ELEMWISE_UNARY_OP(negative) -.describe(R"code(Elemenwise numeric negative - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::negative(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = - n0 - // grad_0 = - grad_y - return std::vector{ - MakeNode("negative", n->attrs.name + "_grad_0", {ograds[0]}), - }; -}); - -// logical NOT -NNVM_REGISTER_ELEMWISE_UNARY_OP(logical_not) -.describe(R"code(Elementwise compute the logical NOT - -)code" NNVM_ADD_FILELINE) -.set_support_level(4) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::logical_not(inputs[0]) }; -}); - -// copy -NNVM_REGISTER_ELEMWISE_UNARY_OP(copy) -.describe(R"code(Copy tensor to another one. - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::identity(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = copy(n0) - // grad_0 = grad_y - return std::vector{ MakeNode("copy", n->attrs.name + "_grad_0", - {ograds[0]}) }; -}); - -DMLC_REGISTER_PARAMETER(InitOpParam); -DMLC_REGISTER_PARAMETER(InitOpWithScalarParam); -DMLC_REGISTER_PARAMETER(FillValueParam); - -// full -NNVM_REGISTER_INIT_OP(full) -.describe(R"code(Fill array with scalar value - -)code" NNVM_ADD_FILELINE) -.set_attr_parser(ParamParser) -.set_attr( - "FGetAttrDict", ParamGetAttrDict) -.add_arguments(InitOpWithScalarParam::__FIELDS__()) -.set_attr("FInferShape", ZeroShape) -.set_attr("FInferType", ZeroType) -.set_attr("FCorrectLayout", ZeroLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const InitOpWithScalarParam& param = nnvm::get(attrs.parsed); - Array shape = ShapeToArray(param.shape); - DataType dtype = GetTVMType(param.dtype); - Expr fill_value = tvm::make_const(dtype, param.fill_value); - return Array{ topi::full(shape, dtype, fill_value) }; -}) -.set_support_level(4); - -NNVM_REGISTER_INIT_OP(zeros) -.describe(R"code(Fill target with zeros - -)code" NNVM_ADD_FILELINE) -.set_attr_parser(ParamParser) -.set_attr( - "FGetAttrDict", ParamGetAttrDict) -.add_arguments(InitOpParam::__FIELDS__()) -.set_attr("FInferShape", ZeroShape) -.set_attr("FInferType", ZeroType) -.set_attr("FCorrectLayout", ZeroLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const InitOpParam& param = nnvm::get(attrs.parsed); - Array shape = ShapeToArray(param.shape); - DataType dtype = GetTVMType(param.dtype); - Expr fill_value = tvm::make_const(dtype, 0); - return Array{ topi::full(shape, dtype, fill_value) }; -}) -.set_support_level(4); - -NNVM_REGISTER_INIT_OP(ones) -.describe(R"code(Fill target with ones - -)code" NNVM_ADD_FILELINE) -.set_attr_parser(ParamParser) -.set_attr( - "FGetAttrDict", ParamGetAttrDict) -.add_arguments(InitOpParam::__FIELDS__()) -.set_attr("FInferShape", ZeroShape) -.set_attr("FInferType", ZeroType) -.set_attr("FCorrectLayout", ZeroLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const InitOpParam& param = nnvm::get(attrs.parsed); - Array shape = ShapeToArray(param.shape); - DataType dtype = GetTVMType(param.dtype); - Expr fill_value = tvm::make_const(dtype, 1); - return Array{ topi::full(shape, dtype, fill_value) }; -}) -.set_support_level(4); - -// full_like -NNVM_REGISTER_INIT_LIKE_OP(full_like) -.describe(R"code(Return an scalar value array with the same shape and type -as the input array - -)code" NNVM_ADD_FILELINE) -.add_arguments(FillValueParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const FillValueParam& param = nnvm::get(attrs.parsed); - const Expr fill_value = tvm::make_const(out_info[0]->dtype, param.fill_value); - return Array { topi::full_like(inputs[0], fill_value) }; -}) -.set_support_level(4); - -NNVM_REGISTER_INIT_LIKE_OP(zeros_like) -.describe(R"code(Return an array of zeros with the same shape and type -as the input array. - -)code") -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array { topi::full_like(inputs[0], - tvm::make_const(out_info[0]->dtype, 0)) }; -}) -.set_support_level(4); - -NNVM_REGISTER_INIT_LIKE_OP(ones_like) -.describe(R"code(Return an array of ones with the same shape and type -as the input array. - -)code") -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array { topi::full_like(inputs[0], - tvm::make_const(out_info[0]->dtype, 1)) }; -}) -.set_support_level(4); - -// unary scalar op -DMLC_REGISTER_PARAMETER(ScalarParam); - -#define NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(op) \ - NNVM_REGISTER_ELEMWISE_UNARY_OP(op) \ - .add_arguments(ScalarParam::__FIELDS__()) \ - .set_attr_parser(ParamParser) \ - .set_attr("FGetAttrDict", ParamGetAttrDict) - -inline Tensor binary_scalar_op(const NodeAttrs& attrs, - const Tensor& x, - std::function f) { - const ScalarParam& param = nnvm::get(attrs.parsed); - auto scalar_val = static_cast(param.scalar); - return compute(x->shape, [&](const Array& i) { - auto scalar_const = make_const(x->dtype, scalar_val); - return f(x(i), scalar_const); - }, "tensor", topi::kElementWise); -} - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__add_scalar__) -.describe(R"code(Tensor add scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return x + y; }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - return std::vector{ MakeNode("copy", n->attrs.name + "_grad_0", - {ograds[0]}) }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__sub_scalar__) -.describe(R"code(Tensor substract scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return x - y; }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - return std::vector{ograds[0]}; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__rsub_scalar__) -.describe(R"code(scalar substract Tensor - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return y - x; }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - return std::vector{ - MakeNode("negative", n->attrs.name + "_grad_0", {ograds[0]}) - }; -}); - - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__lshift_scalar__) -.describe(R"code(Tensor left shift by scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ScalarParam& param = nnvm::get(attrs.parsed); - int scalar_val = static_cast(param.scalar); - return Array{ - topi::left_shift(inputs[0], - make_const(inputs[0]->dtype, scalar_val))}; - }); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__rshift_scalar__) -.describe(R"code(Tensor right shift by scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ScalarParam& param = nnvm::get(attrs.parsed); - int scalar_val = static_cast(param.scalar); - return Array{ - topi::right_shift(inputs[0], - make_const(inputs[0]->dtype, scalar_val))}; - }); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__mul_scalar__) -.describe(R"code(Tensor multiplies scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return x * y; }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0 * scalar - // grad_0 = grad_y * scalar - return std::vector{ - MakeNode("__mul_scalar__", n->attrs.name + "_grad_0", - {ograds[0]}, {{"scalar", n->attrs.dict["scalar"]}}) - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__div_scalar__) -.describe(R"code(Tensor divides scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return x / y; }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0 / scalar - // grad_0 = grad_y / scalar - return std::vector{ - MakeNode("__div_scalar__", n->attrs.name + "_grad_0", - {ograds[0]}, {{"scalar", n->attrs.dict["scalar"]}}) - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__rdiv_scalar__) -.describe(R"code(scalar divides Tensor - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return y / x; }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = scalar / n0 - // grad_0 = - grad_y * scalar / n0^2 - NodeEntry sub0 = MakeNode("__mul_scalar__", n->attrs.name + "_grad_sub_0", - {ograds[0]}, - {{"scalar", n->attrs.dict["scalar"]}}); - NodeEntry sub1 = MakeNode("negative", n->attrs.name + "_grad_sub_1", - {sub0}); - NodeEntry sub2 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub_2", - {n->inputs[0], n->inputs[0]}); - return std::vector{ - MakeNode("elemwise_div", n->attrs.name + "_grad_0", - {sub1, sub2}) - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__pow_scalar__) -.describe(R"code(Tensor power scalar - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return tvm::pow(x, y); }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = n0^scalar - // grad_0 = grad_y * scalar * n0^(scalar - 1) - double scalar = std::stod(n->attrs.dict["scalar"]); - NodeEntry sub0 = MakeNode("__pow_scalar__", n->attrs.name + "_grad_sub_0", - {n->inputs[0]}, - {{"scalar", std::to_string(scalar - 1)}}); - NodeEntry sub1 = MakeNode("__mul_scalar__", n->attrs.name + "_grad_sub_1", - {ograds[0]}, - {{"scalar", std::to_string(scalar)}}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad_0", - {sub0, sub1}) - }; -}); - -NNVM_REGISTER_ELEMWISE_BINARY_SCALAR(__rpow_scalar__) -.describe(R"code(scalar power Tensor - -)code" NNVM_ADD_FILELINE) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ binary_scalar_op(attrs, inputs[0], - [](Expr x, Expr y) { return tvm::pow(y, x); }) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = scalar^n0 - // grad_0 = grad_y * scalar^n0 * log(scalar) - double num = std::stod(n->attrs.dict["scalar"]); - NodeEntry sub0 = MakeNode("__mul_scalar__", n->attrs.name + "_grad_sub_0", - {NodeEntry{n, 0, 0}}, - {{"scalar", std::to_string(std::log(num))}}); - return std::vector{ - MakeNode("__mul_symbol__", n->attrs.name + "_grad_0", - {ograds[0], sub0}) - }; -}); - -DMLC_REGISTER_PARAMETER(ElementWiseReduceParam); - -NNVM_REGISTER_ELEMWISE_REDUCE_OP(elemwise_sum) -.describe(R"code(Adds all input arguments element-wise. - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ElementWiseReduceParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(param.num_args, inputs.size()) << """Compute definition of elemwise sum"""; - return Array{ topi::elemwise_sum(inputs) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - CHECK_EQ(ograds.size(), 1); - std::vector ret; - for (size_t i = 0; i < n->inputs.size(); i++) { - ret.push_back(MakeNode("copy", n->attrs.name + "_grad_0", {ograds[0]})); - } - return ret; - }) -.set_support_level(4); - -NNVM_REGISTER_ELEMWISE_UNARY_OP(block_grad) -.describe(R"code(Blocks gradient computation for input. - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FInplaceIdentity", [](const NodeAttrs& attrs){ - return std::vector{true}; -}) -.set_attr("FGradient", MakeZeroGradNodes) -.set_support_level(4); - -DMLC_REGISTER_PARAMETER(IndicatorParam); - -// indicator function -NNVM_REGISTER_INDICATOR_OP(greater) -.describe(R"code(Greater function that returns a mask tensor -with 1.0 if (left > right), otherwise 0.0 element-wise. - -)code" NNVM_ADD_FILELINE) -.add_argument("lhs", "Tensor", "First input") -.add_argument("rhs", "Tensor", "Second input") -.set_num_inputs(2) -.set_attr("FInferShape", ElemwiseShape<2, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::greater(inputs[0], inputs[1]), out_info[0]->dtype) }; -}) -.set_support_level(4); - - -NNVM_REGISTER_INDICATOR_OP(less) - .describe(R"code(Less function that returns a mask tensor -with 1.0 if (left < right), otherwise 0.0 element-wise. - -)code" NNVM_ADD_FILELINE) -.add_argument("lhs", "Tensor", "First input") -.add_argument("rhs", "Tensor", "Second input") -.set_num_inputs(2) -.set_attr("FInferShape", ElemwiseShape<2, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::cast(topi::less(inputs[0], inputs[1]), out_info[0]->dtype) }; -}) -.set_support_level(4); - -NNVM_REGISTER_INDICATOR_OP(_max_mask) - .describe(R"code(Function that returns a mask tensor -with 1.0 if the value is maximum over given axes, otherwise 0.0 element-wise. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input") -.set_num_inputs(1) -.add_arguments(IndicatorParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_support_level(1); - -NNVM_REGISTER_INDICATOR_OP(_min_mask) - .describe(R"code(Function that returns a mask tensor -with 1.0 if the value is minimum over given axes, otherwise 0.0 element-wise. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input") -.set_num_inputs(1) -.add_arguments(IndicatorParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_support_level(1); - - -DMLC_REGISTER_PARAMETER(ClipParam); - -NNVM_REGISTER_OP(clip) -.describe(R"doc(Clips (limits) the values in an array. -Given an interval, values outside the interval are clipped to the interval edges. -Clipping ``x`` between `a_min` and `a_x` would be:: - clip(x, a_min, a_max) = max(min(x, a_max), a_min)) -Example:: - x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] - clip(x,1,8) = [ 1., 1., 2., 3., 4., 5., 6., 7., 8., 8.] -)doc" NNVM_ADD_FILELINE) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ClipParam params = get(attrs.parsed); - return Array{ - topi::clip(inputs[0], tvm::make_const(tvm::DataType::Float(32), params.a_min), - tvm::make_const(tvm::DataType::Float(32), params.a_max)) }; - }) -.add_argument("data", "NDArray-or-Symbol", "Input array.") -.add_arguments(ClipParam::__FIELDS__()) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - // y = clip(x, a_min, a_max) - // min_mask = greater_equal(x, a_min*ones_like(x)) - // => ones_like(x) - less(x, a_min) - // max_mask = less_equal(x, a_max*ones_like(x)) - // => ones_like(x) - greater(x, a_max) - // grad_x = min_mask * max_mask * grad_y - CHECK_EQ(ograds.size(), 1); - - NodeEntry sub0 = MakeNode("ones_like", n->attrs.name + "_grad_sub_0", - {n->inputs[0]}); - // min_mask - NodeEntry sub1 = MakeNode("__mul_scalar__", n->attrs.name + "_grad_sub_1", - {sub0}, {{"scalar", n->attrs.dict["a_min"]}}); - NodeEntry sub2 = MakeNode("less", n->attrs.name + "_grad_sub_2", - {n->inputs[0], sub1}); - NodeEntry sub3 = MakeNode("elemwise_sub", n->attrs.name + "_grad_sub_3", - {sub0, sub2}); - - // max_mask - NodeEntry sub4 = MakeNode("__mul_scalar__", n->attrs.name + "_grad_sub_4", - {sub0}, {{"scalar", n->attrs.dict["a_max"]}}); - NodeEntry sub5 = MakeNode("greater", n->attrs.name + "_grad_sub_5", - {n->inputs[0], sub4}); - NodeEntry sub6 = MakeNode("elemwise_sub", n->attrs.name + "_grad_sub_6", - {sub0, sub5}); - - // min_mask * max_mask - NodeEntry sub7 = MakeNode("elemwise_mul", n->attrs.name + "_grad_sub_7", - {sub3, sub6}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad", - {sub7, ograds[0]}) - }; - }) -.set_support_level(4); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/tensor/matrix_op.cc b/nnvm/src/top/tensor/matrix_op.cc deleted file mode 100644 index b1810f40de20..000000000000 --- a/nnvm/src/top/tensor/matrix_op.cc +++ /dev/null @@ -1,195 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file matrix_op.cc - * \brief Matrix operators - */ -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" - -namespace nnvm { -namespace top { - -using namespace nnvm::compiler; - -DMLC_REGISTER_PARAMETER(MatMulParam); - -inline bool DotShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - const MatMulParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - TShape lshape = (*in_attrs)[0]; - TShape rshape = (*in_attrs)[1]; - - if (lshape.ndim() == 1) lshape = TShape{1, lshape[0]}; - if (rshape.ndim() == 1) rshape = TShape{1, rshape[0]}; - - if (param.transpose_a) std::reverse(lshape.begin(), lshape.end()); - if (param.transpose_b) std::reverse(rshape.begin(), rshape.end()); - - CHECK_EQ(lshape[lshape.ndim() - 1], rshape[0]) - << "dot shape inconsistent: " << lshape << " X " << rshape; - - TShape oshape(lshape.ndim() + rshape.ndim() - 2); - for (uint32_t i = 0; i < lshape.ndim() - 1; i++) oshape[i] = lshape[i]; - for (uint32_t i = 1; i < rshape.ndim(); i++) oshape[i + lshape.ndim() - 2] = rshape[i]; - - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape); - return true; -} - -inline bool DotCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const MatMulParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(ilayouts->size(), 2U); - CHECK_EQ(olayouts->size(), 1U); - const Layout& lhs = last_ilayouts->at(0).defined() ? last_ilayouts->at(0) - : ilayouts->at(0); - const Layout& rhs = last_ilayouts->at(1).defined() ? last_ilayouts->at(1) - : ilayouts->at(1); - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, lhs); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, rhs); - - if (lhs.ndim() > 1 && rhs.ndim() > 1) { - // concat lhs and rhs layout - const Layout& lhs_out = param.transpose_a ? lhs.reverse() : lhs; - const Layout& rhs_out = param.transpose_b ? rhs.reverse() : rhs; - Layout out = lhs_out.sublayout(0, lhs_out.ndim()-1) + - rhs_out.sublayout(1, rhs_out.ndim()-1); - NNVM_ASSIGN_LAYOUT(*olayouts, 0, out); - } - return true; -} - -NNVM_REGISTER_OP(matmul) -.describe(R"doc(Matrix multiplication of two arrays. - -``dot``'s behavior depends on the input array dimensions: - -- 1-D arrays: inner product of vectors -- 2-D arrays: matrix multiplication -- N-D arrays: a sum product over the last axis of the first input and the first - axis of the second input - - For example, given 3-D ``x`` with shape `(n,m,k)` and ``y`` with shape `(k,r,s)`, the - result array will have shape `(n,m,r,s)`. It is computed by:: - - dot(x,y) = sum(x[i,j,:]*y[:,a,b]) - -)doc" NNVM_ADD_FILELINE) -.set_support_level(1) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.add_arguments(MatMulParam::__FIELDS__()) -.add_argument("lhs", "NDArray-or-Symbol", "The first input") -.add_argument("rhs", "NDArray-or-Symbol", "The second input") -.set_attr("FInferShape", DotShape) -.set_attr("FInferType", ElemwiseType<2, 1>) -.set_attr("FCorrectLayout", DotCorrectLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const MatMulParam& param = nnvm::get(attrs.parsed); - return Array{ - topi::matmul(inputs[0], inputs[1], param.transpose_a, param.transpose_b) - }; - }) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - // z = x dot y - // xshape (n,m,k), yshape (k,r,s) - const MatMulParam& param = nnvm::get(n->attrs.parsed); - bool Ta = param.transpose_a; - bool Tb = param.transpose_b; - // Ta = false, Tb = false - // grad_x = grad_z dot y.T - // grad_y = x.T dot grad_z - if (!Ta && !Tb) { - return std::vector{ - MakeNode("matmul", n->attrs.name + "_grad_0", - {ograds[0], n->inputs[1]}, - {{"transpose_a", "false"}, - {"transpose_b", "true"}}), - MakeNode("matmul", n->attrs.name + "_grad_1", - {n->inputs[0], ograds[0]}, - {{"transpose_a", "true"}, - {"transpose_b", "false"}}) - }; - } else if (Ta && !Tb) { - // Ta = true, Tb = false - // grad_x = y dot grad_z.T - // grad_y = x dot grad_z - return std::vector{ - MakeNode("matmul", n->attrs.name + "_grad_0", - {n->inputs[1], ograds[0]}, - {{"transpose_a", "false"}, - {"transpose_b", "true"}}), - MakeNode("matmul", n->attrs.name + "_grad_1", - {n->inputs[0], ograds[0]}, - {{"transpose_a", "false"}, - {"transpose_b", "false"}}) - }; - } else if (!Ta && Tb) { - // Ta = false, Tb = true - // grad_x = grad_z dot y - // grad_y = grad_z.T dot x - return std::vector{ - MakeNode("matmul", n->attrs.name + "_grad_0", - {ograds[0], n->inputs[1]}, - {{"transpose_a", "false"}, - {"transpose_b", "false"}}), - MakeNode("matmul", n->attrs.name + "_grad_1", - {ograds[0], n->inputs[0]}, - {{"transpose_a", "true"}, - {"transpose_b", "false"}}) - }; - } else { - // Ta = true, Tb = true - // grad_x = y.T dot grad_z.T - // grad_y = grad_z.T dot x.T - return std::vector{ - MakeNode("matmul", n->attrs.name + "_grad_0", - {n->inputs[1], ograds[0]}, - {{"transpose_a", "true"}, - {"transpose_b", "true"}}), - MakeNode("matmul", n->attrs.name + "_grad_1", - {ograds[0], n->inputs[0]}, - {{"transpose_a", "true"}, - {"transpose_b", "true"}}) - }; - } -}); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/tensor/reduce.cc b/nnvm/src/top/tensor/reduce.cc deleted file mode 100644 index dd8e23cf6fe9..000000000000 --- a/nnvm/src/top/tensor/reduce.cc +++ /dev/null @@ -1,411 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file reduce.cc - * \brief reduce operator. - */ -#include -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/detail/constant_utils.h" -#include "topi/elemwise.h" -#include "topi/reduction.h" -#include "topi/transform.h" - -namespace nnvm { -namespace top { -using namespace tvm; -using namespace nnvm::compiler; - - -// reduce -DMLC_REGISTER_PARAMETER(ReduceParam); - -inline TShape GetReduceAxes(const uint32_t indim, - const TShape& axis, - bool exclude) { - if (axis.ndim() == 0) { - TShape r_axes(indim); - std::iota(r_axes.begin(), r_axes.end(), 0); - return r_axes; - } - - CHECK_LT(axis[axis.ndim() - 1], indim) - << "Reduction axis " << axis[axis.ndim() - 1] - << " exceeds input dimensions " << indim; - - TShape in_axis = axis; - for (auto& i : in_axis) { - i = i < 0 ? i + indim : i; - CHECK_GE(i, 0) << "axis out of bounds in reduce operator"; - CHECK_LT(i, indim) << "axis out of bounds in reduce operator"; - } - std::sort(in_axis.begin(), in_axis.end()); - if (!exclude) return in_axis; - TShape r_axis(indim - in_axis.ndim()); - for (unsigned i = 0, j = 0, k = 0; i < indim; ++i) { - if (j < in_axis.ndim() && i == in_axis[j]) { - ++j; - continue; - } - r_axis[k++] = i; - } - return r_axis; -} - -inline TShape ReduceShapeImpl(const TShape& ishape, - const TShape& axis, - bool keepdims, - bool exclude) { - uint32_t indim = ishape.ndim(); - TShape r_axes = GetReduceAxes(indim, axis, exclude); - if (!r_axes.ndim()) return ishape; - if (r_axes.ndim() == indim) - return TShape(keepdims ? indim : 1); - - CHECK(r_axes.ndim() < indim); - if (keepdims) { - TShape oshape(ishape); - for (unsigned i = 0, j = 0; i < indim; ++i) { - if (j >= r_axes.ndim() || i != r_axes[j]) continue; - oshape[i] = 1; - ++j; - } - return oshape; - } - - TShape oshape(indim - r_axes.ndim()); - for (unsigned i = 0, j = 0, k = 0; i < indim; ++i) { - if (j < r_axes.ndim() && i == r_axes[j]) { - ++j; - continue; - } - oshape[k++] = ishape[i]; - } - return oshape; -} - -inline bool ReduceShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 1U); - CHECK_EQ(out_attrs->size(), 1U); - if ((*in_attrs)[0].ndim() == 0) return false; - const ReduceParam& param = nnvm::get(attrs.parsed); - NNVM_ASSIGN_OUTPUT_SHAPE( - attrs, *out_attrs, 0, - ReduceShapeImpl((*in_attrs)[0], param.axis, - param.keepdims, param.exclude)); - return true; -} - -inline bool CollapseShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - if ((*in_attrs)[0].ndim() == 1) return false; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, (*in_attrs)[1]); - return true; -} - -template -inline void AxesParamParser(nnvm::NodeAttrs* attrs) { - PType param; - param.Init(attrs->dict); - std::sort(¶m.axis[0], ¶m.axis[param.axis.ndim()]); - attrs->parsed = std::move(param); -} - -#define NNVM_REGISTER_BASE_REDUCE_OP(op) \ - NNVM_REGISTER_OP(op) \ - .add_arguments(ReduceParam::__FIELDS__()) \ - .set_attr_parser(AxesParamParser) \ - .set_attr("FGetAttrDict", ParamGetAttrDict) \ - .set_num_outputs(1) - -#define NNVM_REGISTER_REDUCE_OP(op) \ - NNVM_REGISTER_BASE_REDUCE_OP(op) \ - .add_argument("data", "Tensor", "The input") \ - .set_attr("FInferShape", ReduceShape) \ - .set_attr("FInferType", ElemwiseType<1, 1>) \ - .set_attr("FCorrectLayout", \ - ElemwiseFixedLayoutUnknownOut<1, 1>) \ - .set_num_inputs(1) - -NNVM_REGISTER_REDUCE_OP(sum) -.describe(R"code(Computes the sum of array elements over given axes. - -Example:: - - data = [[[1,2],[2,3],[1,3]], - [[1,4],[4,3],[5,2]], - [[7,1],[7,2],[7,3]]] - - sum(data, axis=1) - [[ 4. 8.] - [ 10. 9.] - [ 21. 6.]] - - sum(data, axis=[1,2]) - [ 12. 19. 27.] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - if (!r_axes.ndim()) return Array { topi::identity(inputs[0]) }; - auto axis = ShapeToIntArray(r_axes); - return Array{ - topi::sum(inputs[0], axis, param.keepdims, true) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - const ReduceParam& param = nnvm::get(n->attrs.parsed); - bool exclude = param.exclude; - TShape p_axis = param.axis; - if (!param.exclude && param.axis.ndim() == 0) { - exclude = true; - p_axis = TShape(); - } - std::ostringstream axis; axis << p_axis; - return std::vector{ - MakeNode("expand_like", n->attrs.name + "_grad", - {ograds[0], n->inputs[0]}, - {{"axis", axis.str()}, - {"exclude", std::to_string(exclude)}}) - }; -}); - -NNVM_REGISTER_REDUCE_OP(max) -.describe(R"code(Computes the max of array elements over given axes. - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - auto axis = ShapeToIntArray(r_axes); - return Array{ - topi::max(inputs[0], axis, param.keepdims, true) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - const ReduceParam& param = nnvm::get(n->attrs.parsed); - std::ostringstream axis; axis << param.axis; - NodeEntry sub0 = MakeNode("expand_like", n->attrs.name + "_grad_sub0", - {ograds[0], n->inputs[0]}, - {{"axis", axis.str()}, - {"exclude", std::to_string(param.exclude)}}); - NodeEntry sub1 = MakeNode("_max_mask", n->attrs.name + "_grad_sub1", - {ograds[0]}, - {{"axis", axis.str()}, - {"exclude", std::to_string(param.exclude)}}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad", {sub0, sub1}) - }; -}); - -NNVM_REGISTER_REDUCE_OP(min) -.describe(R"code(Computes the min of array elements over given axes. - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - auto axis = ShapeToIntArray(r_axes); - return Array{ - topi::min(inputs[0], axis, param.keepdims, true) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - const ReduceParam& param = nnvm::get(n->attrs.parsed); - std::ostringstream axis; axis << param.axis; - NodeEntry sub0 = MakeNode("expand_like", n->attrs.name + "_grad_sub0", - {ograds[0], n->inputs[0]}, - {{"axis", axis.str()}, - {"exclude", std::to_string(param.exclude)}}); - NodeEntry sub1 = MakeNode("_min_mask", n->attrs.name + "_grad_sub1", - {ograds[0]}, - {{"axis", axis.str()}, - {"exclude", std::to_string(param.exclude)}}); - return std::vector{ - MakeNode("elemwise_mul", n->attrs.name + "_grad", {sub0, sub1}) - }; -}); - -NNVM_REGISTER_BASE_REDUCE_OP(collapse_sum) -.add_argument("data", "Tensor", "The input") -.add_argument("as", "Tensor", "The reference") -.set_attr("FInferShape", CollapseShape) -.set_attr("FInferType", ElemwiseType<2, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<2, 1>) -.set_num_inputs(2) -.describe(R"code(Reduces lhs to the shape of rhs via sum)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::collapse_sum(inputs[0], inputs[1]->shape) }; -}); - -inline bool InferFixedType(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 1U); - CHECK_EQ(out_attrs->size(), 1U); - const ReduceParam& param = nnvm::get(attrs.parsed); - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_attrs, 0, param.dtype); - return true; -} - -NNVM_REGISTER_BASE_REDUCE_OP(argmax) -.describe(R"code(Creates an operation that finds the indices of the maximum -values over a given axis. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "The input") -.set_attr("FInferShape", ReduceShape) -.set_attr("FInferType", InferFixedType) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_num_inputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - auto axis = ShapeToIntArray(r_axes); - Tensor out = topi::argmax(inputs[0], axis, param.keepdims, true); - if (param.dtype == kFloat32) out = topi::cast(out, out_info[0]->dtype); - return Array{out}; -}); - -NNVM_REGISTER_BASE_REDUCE_OP(argmin) -.describe(R"code(Creates an operation that finds the indices of the minimum -values over a given axis. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "The input") -.set_attr("FInferShape", ReduceShape) -.set_attr("FInferType", InferFixedType) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_num_inputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - auto axis = ShapeToIntArray(r_axes); - Tensor out = topi::argmin(inputs[0], axis, param.keepdims, true); - if (param.dtype == kFloat32) out = topi::cast(out, out_info[0]->dtype); - return Array{out}; -}); - -NNVM_REGISTER_REDUCE_OP(mean) - .describe(R"code(Computes the mean of array elements over given axes. - -Example:: - - data = [[[1,2],[2,3],[1,3]], - [[1,4],[4,3],[5,2]], - [[7,1],[7,2],[7,3]]] - - mean(data) - [3.22] - - mean(data, axis=[1,2]) - [ 2. 3.16666667 4.5] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - if (!r_axes.ndim()) return Array { topi::identity(inputs[0]) }; - auto axis = ShapeToIntArray(r_axes); - - Expr count = make_const(inputs[0]->dtype, 1); - for (auto& i : r_axes) { - count *= cast(inputs[0]->dtype, inputs[0]->shape[i]); - } - - return Array{ - topi::divide(topi::sum(inputs[0], axis, param.keepdims, true), count) }; -}); - -NNVM_REGISTER_REDUCE_OP(prod) - .describe(R"code(Computes the products of array elements over given axes. - -Example:: - - data = [[[1,2],[2,3],[1,3]], - [[1,4],[4,3],[5,2]], - [[7,1],[7,2],[7,3]]] - - mean(data, axis=1) - [35562240] - - mean(data, axis=[1,2]) - [ 36 480 2058] - -)code" NNVM_ADD_FILELINE) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ReduceParam& param = nnvm::get(attrs.parsed); - TShape r_axes = GetReduceAxes(inputs[0]->shape.size(), - param.axis, param.exclude); - if (!r_axes.ndim()) return Array { topi::identity(inputs[0]) }; - auto axis = ShapeToIntArray(r_axes); - return Array{ - topi::prod(inputs[0], axis, param.keepdims, true) }; -}); - - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/tensor/state_op.cc b/nnvm/src/top/tensor/state_op.cc deleted file mode 100644 index 23c7158aecd3..000000000000 --- a/nnvm/src/top/tensor/state_op.cc +++ /dev/null @@ -1,90 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file state_op.cc - * \brief Experimental operators - * Currently we only support assign - */ -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" - -namespace nnvm { -namespace top { - -using namespace tvm; -using namespace nnvm::compiler; - -NNVM_REGISTER_OP(_assign) -.describe(R"doc(Assign rhs to the lhs. - -lhs must be a Variable. -This is an experimental operator. - -)doc" NNVM_ADD_FILELINE) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr( - "FMutateInputs", [](const NodeAttrs& attrs) { - return std::vector{0}; -}) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - // This implementation is needed for the special - // logic handling assign in the compiler - // It simply copies the result of rhs the output - // The later decoration in compiler will change - // the memory assignment of assign to tie - // the lhs to the output. - return Array{ topi::identity(inputs[1]) }; -}) -.set_attr("FInferShape", SameShape) -.set_attr( - "FCorrectLayout", [](const NodeAttrs& attrs, - std::vector *in_layouts, - const std::vector *last_in_layouts, - std::vector *out_layouts) { - NNVM_ASSIGN_LAYOUT(*in_layouts, 1, (*in_layouts)[0]); - NNVM_ASSIGN_LAYOUT(*out_layouts, 0, (*in_layouts)[0]); - return true; -}) -.set_attr( - "FInplaceOption", [](const NodeAttrs& attrs) { - return std::vector >{{1, 0}}; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - return std::vector{ - MakeNode("zeros_like", n->attrs.name + "_zero_grad", - {n->inputs[0]}), - ograds[0] - }; -}); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/tensor/transform.cc b/nnvm/src/top/tensor/transform.cc deleted file mode 100644 index a83f447a60f4..000000000000 --- a/nnvm/src/top/tensor/transform.cc +++ /dev/null @@ -1,1500 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file transform.cc - * \brief Injective transformation of shape or type. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" -#include "topi/nn/flatten.h" -#include "topi/transform.h" -#include "topi/elemwise.h" -#include "topi/detail/constant_utils.h" -#include "../../compiler/compile_engine.h" - -namespace nnvm { -namespace top { -using namespace tvm; -using namespace nnvm::compiler; - -// flatten -inline bool FlattenInferShape(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 1U) << "Input: [data]"; - CHECK_EQ(out_attrs->size(), 1U); - const TShape &dshape = (*in_attrs)[0]; - if (dshape.ndim() == 0) return false; - uint32_t target_dim = 1; - for (uint32_t i = 1; i < dshape.ndim(); ++i) { - target_dim *= dshape[i]; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, - TShape({dshape[0], target_dim})); - return true; -} - -NNVM_REGISTER_OP(flatten) -.describe(R"code(Flattens the input into a 2-D array. - -For an input array with shape ``(d1, d2, ..., dk)``, `flatten` operation reshapes -the input array into an output array of shape ``(d1, d2*...*dk)``. - -Example:: - - x = [[ - [1,2,3], - [4,5,6], - [7,8,9] - ], - [ [1,2,3], - [4,5,6], - [7,8,9] - ]], - - flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], - [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]] - -)code" NNVM_ADD_FILELINE) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr("FInferShape", FlattenInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.add_argument("data", "Tensor", "Input data.") -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::nn::flatten(inputs[0]) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - return MakeGradNode("reshape_like", n, - {ograds[0], n->inputs[0]}); -}) -.set_support_level(1); - -// concatenate -DMLC_REGISTER_PARAMETER(ConcatenateParam); - -inline bool ConcatenateInferShape(const NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const ConcatenateParam& param = nnvm::get(attrs.parsed); - TShape dshape; - dim_t size = 0; - bool has_zero = false; - int axis = param.axis >= 0 ? param.axis : in_shape->at(0).ndim() + param.axis; - for (size_t i = 0; i < in_shape->size(); ++i) { - TShape tmp = (*in_shape)[i]; - if (tmp.ndim()) { - CHECK_LT(static_cast(axis), tmp.ndim()) - << "concat dim " << axis << " out of range of input shape " << tmp; - has_zero = tmp[axis] == 0 || has_zero; - size += tmp[axis]; - tmp[axis] = 0; - shape_assign(&dshape, tmp); - } - } - - TShape tmp = (*out_shape)[0]; - if (tmp.ndim()) { - CHECK_LT(static_cast(axis), tmp.ndim()) - << "concat dim " << axis << " out of range of input shape " << tmp; - tmp[axis] = 0; - shape_assign(&dshape, tmp); - } - - if (dshape.ndim() == 0) return false; - - for (size_t i = 0; i < in_shape->size(); ++i) { - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, i, dshape); - } - - if (!has_zero) dshape[axis] = size; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, dshape); - return dshape.Size() != 0; -} - -inline bool ConcatenateCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const ConcatenateParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(ilayouts->size(), last_ilayouts->size()); - CHECK_EQ(olayouts->size(), 1U); - - Layout layout; - if (!ilayouts->at(0).defined()) { - layout = last_ilayouts->at(0); - } else if (param.axis >= static_cast(ilayouts->at(0).ndim())) { - CHECK(last_ilayouts->at(0).defined()) - << "Current input layout " << ilayouts->at(0) - << " is invalid but last input layout is not " - "defined for the first input."; - layout = last_ilayouts->at(0); - } else if (last_ilayouts->at(0).defined() - && ilayouts->at(0)[param.axis] - != last_ilayouts->at(0)[param.axis]) { - layout = last_ilayouts->at(0); - } else { - layout = ilayouts->at(0); - } - - for (size_t i = 0; i < ilayouts->size(); ++i) { - NNVM_ASSIGN_LAYOUT(*ilayouts, i, layout); - } - NNVM_ASSIGN_LAYOUT(*olayouts, 0, layout); - return true; -} - -NNVM_REGISTER_OP(concatenate) -.describe(R"code(Joins input arrays along a given axis. - -The dimensions of the input arrays should be the same except the axis along -which they will be concatenated. -The dimension of the output array along the concatenated axis will be equal -to the sum of the corresponding dimensions of the input arrays. - -Example:: - - x = [[1,1],[2,2]] - y = [[3,3],[4,4],[5,5]] - z = [[6,6], [7,7],[8,8]] - - concatenate(x,y,z,axis=0) = [[ 1., 1.], - [ 2., 2.], - [ 3., 3.], - [ 4., 4.], - [ 5., 5.], - [ 6., 6.], - [ 7., 7.], - [ 8., 8.]] - - Note that you cannot concat x,y,z along dimension 1 since dimension - 0 is not the same for all the input arrays. - - concatenate(y,z,axis=1) = [[ 3., 3., 6., 6.], - [ 4., 4., 7., 7.], - [ 5., 5., 8., 8.]] - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor-or-Tensor[]", "List of arrays to concatenate") -.add_arguments(ConcatenateParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ConcatenateInferShape) -.set_attr("FInferType", ElemwiseType<-1, 1>) -.set_attr("FCorrectLayout", ConcatenateCorrectLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ConcatenateParam& param = nnvm::get(attrs.parsed); - return Array{ topi::concatenate(inputs, param.axis) }; -}) -.set_num_outputs(1) -.set_num_inputs(kVarg) -.set_support_level(1); - -// expand_dims -DMLC_REGISTER_PARAMETER(ExpandDimsParam); - -inline bool ExpandDimsInferShape(const NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const ExpandDimsParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_shape->size(), 1U); - const TShape& dshape = in_shape->at(0); - int ndim = static_cast(dshape.ndim()); - CHECK(param.axis >= -ndim - 1 && param.axis <= ndim) - << "with axis = " << param.axis << " ndim = " << ndim; - int axis = param.axis < 0 ? ndim + param.axis + 1 : param.axis; - std::vector oshape; - for (int i = 0; i < axis; ++i) { - oshape.push_back(dshape[i]); - } - for (int i = 0; i < param.num_newaxis; ++i) { - oshape.push_back(1); - } - for (int i = axis; i < ndim; ++i) { - oshape.push_back(dshape[i]); - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, - TShape(oshape.begin(), oshape.end())); - return true; -} - -NNVM_REGISTER_OP(expand_dims) -.describe(R"code(Inserts a new axis of size 1 into the array shape - -For example, given ``x`` with shape ``(2,3,4)``, then ``expand_dims(x, axis=1, num_newaxis=5)`` -will return a new array with shape ``(2,1,1,1,1,1,3,4)``. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input tensor") -.add_arguments(ExpandDimsParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ExpandDimsInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const ExpandDimsParam& param = nnvm::get(attrs.parsed); - return Array{ topi::expand_dims(inputs[0], param.axis, param.num_newaxis) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds){ - return std::vector { - MakeNode("collapse_sum", n->attrs.name + "_grad", {ograds[0], n->inputs[0]}) - }; -}) -.set_support_level(1); - -NNVM_REGISTER_OP(expand_like) - .describe(R"code(Expand an input array with the shape of second array. -This operation can be thought of as a composition of expand_dims and broadcast_to. -If the dimensions are already expanded then it just broadcasts. -Examples:: - input = [ 12. 19. 27.] - input.shape = (3,) - new_shape_array = [[[1,2],[2,3],[1,3]], - [[1,4],[4,3],[5,2]], - [[7,1],[7,2],[7,3]]] - new_shape_array.shape = (3, 3, 2) - expand_like(input, [1,2], new_shape_array) = - [[[12,12],[12,12],[12,12]], - [[19,19],[19,19],[19,19]], - [[27,27],[27,27],[27,27]]] -)code" NNVM_ADD_FILELINE) -.add_argument("input", "Tensor", "Source input") -.add_argument("shape_like", "Tensor", "Input with new shape") -.add_arguments(IndicatorParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", AssignOutputAttr) -.set_attr("FInferType", ElemwiseType<2, 1>) -// never transform layout of the second input array. -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - const IndicatorParam& param = nnvm::get(n->attrs.parsed); - std::ostringstream axis; - axis << param.axis; - - if (param.axis.ndim() == 0 && !param.exclude) { - // Special case needed because sum interprets axis=[] differently - return std::vector{ - ograds[0], - MakeNode("zeros_like", n->attrs.name + "_zero_grad", {n->inputs[1]}) - }; - } - - auto sum_node = - MakeNode("sum", n->attrs.name + "_sum_grad", - {ograds[0]}, - {{"axis", axis.str()}, - {"exclude", std::to_string(param.exclude)}}); - - return std::vector{ - MakeNode("reshape_like", n->attrs.name + "_grad", - {sum_node, n->inputs[0]}), - MakeNode("zeros_like", n->attrs.name + "_zero_grad", {n->inputs[1]}) - }; - }) - .set_support_level(4); - -// split -DMLC_REGISTER_PARAMETER(SplitParam); - -inline void SplitParamParser(nnvm::NodeAttrs* attrs) { - SplitParam param; - param.Init(attrs->dict); - if (!std::isdigit(attrs->dict.at("indices_or_sections")[0])) { - param.equal_split = false; - } else { - CHECK_EQ(param.indices_or_sections.ndim(), 1); - param.equal_split = true; - } - attrs->parsed = std::move(param); -} - -inline bool SplitInferShape(const NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const SplitParam& param = nnvm::get(attrs.parsed); - const TShape& dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - - auto axis = param.axis; - if (axis < 0) { - axis += dshape.ndim(); - } - CHECK_LT(axis, dshape.ndim()) - << "axis should be within input dimension range but got " << axis; - CHECK_GT(axis, -1) - << "axis should be within input dimension range but got " << axis; - - if (param.equal_split) { - int num_outputs = param.indices_or_sections[0]; - CHECK_EQ(out_shape->size(), static_cast(num_outputs)); - TShape oshape = dshape; - CHECK_EQ(oshape[axis] % num_outputs, 0) - << "indices_or_sections need to be able to divide input.shape[axis] got sections " - << num_outputs << " and dimension " << oshape[axis]; - oshape[axis] /= num_outputs; - - for (size_t i = 0; i < out_shape->size(); ++i) { - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, i, oshape); - } - } else { - dim_t num_outputs = param.indices_or_sections.ndim() + 1; - CHECK_EQ(out_shape->size(), static_cast(num_outputs)); - TShape oshape = dshape; - dim_t begin = 0; - for (dim_t i = 0; i < num_outputs - 1; ++i) { - CHECK_GT(param.indices_or_sections[i], begin) - << "indices_or_sections need to be a sorted ascending list got " - << param.indices_or_sections; - oshape[axis] = param.indices_or_sections[i] - begin; - begin = param.indices_or_sections[i]; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, i, oshape); - } - CHECK_LT(begin, dshape[axis]) - << "The sum of sections must match the input.shape[axis]"; - oshape[axis] = dshape[axis] - begin; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, num_outputs - 1, oshape); - } - return true; -} - -inline uint32_t SplitNumOutputs(const NodeAttrs& attrs) { - const SplitParam& param = nnvm::get(attrs.parsed); - if (param.equal_split) { - return static_cast(param.indices_or_sections[0]); - } else { - return static_cast(param.indices_or_sections.ndim()) + 1; - } -} - -// Intentionally not add ParamGetAttrDict for indices_or_sections. -NNVM_REGISTER_OP(split) -.describe(R"code(Splits an array along a particular axis into multiple sub-arrays. - -**Note** that `indices_or_sections` should evenly divide the length of the axis -along which to split the array. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Array to be splitted") -.add_arguments(SplitParam::__FIELDS__()) -.set_attr_parser(SplitParamParser) -.set_attr("FInferShape", SplitInferShape) -.set_attr("FInferType", ElemwiseType<1, -1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, -1>) -.set_num_inputs(1) -.set_num_outputs(SplitNumOutputs) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const SplitParam& param = nnvm::get(attrs.parsed); - if (param.equal_split) { - return Array{ - topi::split_sections(inputs[0], param.indices_or_sections[0], param.axis) }; - } else { - Array indices; - for (auto i : param.indices_or_sections) { - indices.push_back(static_cast(i)); - } - return Array{ topi::split(inputs[0], indices, param.axis) }; - } -}) -.set_support_level(3); - -// cast -DMLC_REGISTER_PARAMETER(CastParam); - -inline bool CastInferType(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - const CastParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(out_attrs->size(), 1U); - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_attrs, 0, param.dtype); - return true; -} - -NNVM_REGISTER_OP(cast) -.describe(R"code(Cast the content of input to dtype. - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data array") -.add_arguments(CastParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_attr("FInferType", CastInferType) -.set_attr("FCorrectLayout", ElemwiseArbitraryLayout<1, 1>) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const CastParam& param = nnvm::get(attrs.parsed); - DataType dtype = GetTVMType(param.dtype); - return Array{ topi::cast(inputs[0], dtype) }; -}) -.set_support_level(1); - - -// reshape -DMLC_REGISTER_PARAMETER(ReshapeParam); - -inline bool ReshapeInferShape(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - const ReshapeParam& param = nnvm::get(attrs.parsed); - CHECK_GT(param.shape.ndim(), 0); - CHECK_EQ(in_attrs->size(), 1U) << "Input: [data]"; - CHECK_EQ(out_attrs->size(), 1U); - - const TShape &dshape = (*in_attrs)[0]; - if (dshape.ndim() == 0) return false; - - const Tuple& target_shape = param.shape; - std::vector oshape; - dim_t src_idx = 0; - int infer_idx = -1; - - for (dim_t i = 0; i < target_shape.ndim(); ++i) { - int svalue = target_shape[i]; - // special flag handling for shape inference. - if (svalue > 0) { - oshape.push_back(svalue); - ++src_idx; - } else if (svalue == 0) { - // keep same - CHECK_LT(src_idx, dshape.ndim()); - oshape.push_back(dshape[src_idx++]); - } else if (svalue == -1) { - // inference based on rest - CHECK_LT(infer_idx, 0) - << "One and only one dim can be inferred"; - infer_idx = i; - oshape.push_back(1); - ++src_idx; - } else if (svalue == -2) { - // copy all remaining dims from source - while (src_idx < dshape.ndim()) { - oshape.push_back(dshape[src_idx++]); - } - } else if (svalue == -3) { - // merge two dims from source - CHECK_LT(src_idx + 1, dshape.ndim()); - dim_t d1 = dshape[src_idx++]; - dim_t d2 = dshape[src_idx++]; - oshape.push_back(d1 * d2); - } else if (svalue == -4) { - // split the source dim s into two dims - // read the left dim and then the right dim (either can be -1) - CHECK_LT(i + 2, target_shape.ndim()); - CHECK_LT(src_idx, dshape.ndim()); - dim_t d0 = dshape[src_idx++]; - int d1 = target_shape[++i]; - int d2 = target_shape[++i]; - CHECK(d1 != -1 || d2 != -1) << "Split dims cannot both be -1."; - if (d1 == -1) d1 = d0 / d2; - if (d2 == -1) d2 = d0 / d1; - CHECK_EQ(d1 * d2, static_cast(d0)) << - "Split dims " << d1 << ", " << d2 << " do not divide original dim " << d0; - oshape.push_back(d1); - oshape.push_back(d2); - } - } - - if (infer_idx >= 0) { - if (dshape.Size() > 0) { - int new_size = 1; - for (int x : oshape) { - new_size *= x; - } - oshape[infer_idx] = dshape.Size() / new_size; - } else { - oshape[infer_idx] = 0; - } - } - TShape out_shape(oshape.begin(), oshape.end()); - CHECK_EQ(out_shape.Size(), dshape.Size()) - << "Target shape size is different to source. " - << "Target: " << out_shape - << "\nSource: " << dshape; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, out_shape); - return true; -} - -NNVM_REGISTER_OP(reshape) -.describe(R"code(Reshapes the input array. - -Given an array and a shape, this function returns a copy of the array in the new shape. -The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array. - -Example:: - - reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]] - -To give user more convenience in without doing manual shape inference, -some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. -The significance of each is explained below: - -- ``0`` copy this dimension from the input to the output shape. - - Example:: - - - input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - -- ``-1`` infers the dimension of the output shape by using the remainder of the input dimensions - keeping the size of the new array same as that of the input array. - At most one dimension of shape can be -1. - - Example:: - - - input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - - input shape = (2,3,4), shape=(-1,), output shape = (24,) - -- ``-2`` copy all/remainder of the input dimensions to the output shape. - - Example:: - - - input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) - -- ``-3`` use the product of two consecutive dimensions of the input shape as the output dimension. - - Example:: - - - input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - -- ``-4`` split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1). - - Example:: - - - input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_arguments(ReshapeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ReshapeInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ topi::reshape(inputs[0], out_info[0]->shape) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return std::vector{ - MakeNode("reshape_like", n->attrs.name + "_grad", - {ograds[0], n->inputs[0]}) - }; -}) -.set_support_level(3); - -inline bool ReshapeLikeInferType(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_attrs, 0, (*in_attrs)[0]); - return true; -} - -NNVM_REGISTER_OP(reshape_like) - .describe(R"code(Reshapes the input array by the size of another array. -For an input array with shape ``(d1, d2, ..., dk)``, `reshape_like` operation reshapes -the input array into an output array with the same shape as the second input array. -.. note:: - Sizes for both array should be compatible. -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_argument("shape_like", "Tensor", "Input data.") -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr( - "FInferShape", [](const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->at(0).Size(), in_attrs->at(1).Size()) - << "Reshape inputs size should be compatible"; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, in_attrs->at(1)); - return true; -}) -.set_attr("FInferType", ReshapeLikeInferType) -// never transform layout of the second input array. -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return std::vector{ - MakeNode("reshape_like", n->attrs.name + "_grad", {ograds[0], n->inputs[0]}), - MakeNode("zeros_like", n->attrs.name + "_zero_grad", { n->inputs[1]}) - }; -}) -.set_support_level(4); - -// squeeze -DMLC_REGISTER_PARAMETER(SqueezeParam); - -inline bool SqueezeShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - const SqueezeParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_attrs->size(), 1U); - CHECK_EQ(out_attrs->size(), 1U); - const TShape& shp = (*in_attrs)[0]; - if (shp.ndim() == 0) return false; - - std::vector oshape; - if (param.axis.ndim() == 0) { - for (dim_t i = 0; i < shp.ndim(); ++i) { - if (shp[i] != 1) { - oshape.emplace_back(shp[i]); - } - } - } else { - std::unordered_set axis_checker; - for (size_t i = 0; i < param.axis.ndim(); ++i) { - int real_axis; - if (param.axis[i] < 0) { - real_axis = param.axis[i] + static_cast(shp.ndim()); - } else { - real_axis = param.axis[i]; - } - CHECK(real_axis < static_cast(shp.ndim()) && real_axis >= 0); - axis_checker.insert(real_axis); - } - for (size_t i = 0; i < shp.ndim(); ++i) { - if (axis_checker.find(i) == axis_checker.end()) { - oshape.emplace_back(shp[i]); - } else { - CHECK_EQ(shp[i], 1) << "The squeezed axis must have shape 1!" - << "Want to squeeze " << i - << ", which has shape" << shp[i]; - } - } - } - if (oshape.size() == 0) { - // Handles the case where all axes are squeezed. - oshape.push_back(1); - } - TShape out_shape(oshape.begin(), oshape.end()); - CHECK_EQ(out_shape.Size(), shp.Size()) - << "Target shape size is different to source. " - << "Target: " << out_shape - << "\nSource: " << shp; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, out_shape); - return true; -} - -NNVM_REGISTER_OP(squeeze) -.describe(R"code(Squeeze axises in the array. - -Examples:: - - x = [[[0], [1], [2]]] - x.shape = (1, 3, 1) - - squeeze(x) = [0, 1, 2] - - squeeze(x, 0) = [[0], [1], [2]] - - squeeze(x, (0, 2)) = [0, 1, 2] - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Source input") -.add_arguments(SqueezeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", SqueezeShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const SqueezeParam& param = nnvm::get(attrs.parsed); - auto axis = ShapeToIntArray(param.axis); - return Array{ topi::squeeze(inputs[0], axis, true) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return std::vector{ - MakeNode("reshape_like", n->attrs.name + "_grad", - {ograds[0], n->inputs[0]}) - }; -}) -.set_support_level(1); - -// transpose -DMLC_REGISTER_PARAMETER(TransposeParam); - -inline bool TransposeShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - const TransposeParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_attrs->size(), 1U); - CHECK_EQ(out_attrs->size(), 1U); - const TShape& shp = (*in_attrs)[0]; - if (shp.ndim() == 0) return false; - - TShape ret(shp.ndim()); - if (param.axes.ndim() == 0) { - for (dim_t i = 0; i < shp.ndim(); ++i) { - ret[i] = shp[shp.ndim() - 1 - i]; - } - } else { - CHECK_EQ(shp.ndim(), param.axes.ndim()); - for (size_t i = 0; i < shp.ndim(); ++i) { - CHECK(param.axes[i] < shp.ndim()); - ret[i] = shp[param.axes[i]]; - } - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, ret); - return true; -} - -inline bool TransposeCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - const TransposeParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(ilayouts->size(), 1U); - CHECK_EQ(olayouts->size(), 1U); - - const Layout& input = last_ilayouts->at(0).defined() - ? last_ilayouts->at(0) - : ilayouts->at(0); - - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, input); - - if (input.defined()) { - std::ostringstream new_layout; - if (param.axes.ndim() == 0) { - for (size_t i = 0; i < input.ndim(); ++i) { - new_layout << input.at(input.ndim() - 1 - i); - } - } else { - CHECK_EQ(input.ndim(), param.axes.ndim()); - for (size_t i = 0; i < input.ndim(); ++i) { - CHECK(param.axes[i] < static_cast(input.ndim())); - new_layout << input.at(param.axes[i]); - } - } - NNVM_ASSIGN_LAYOUT(*olayouts, 0, Layout(new_layout.str())); - } - - return true; -} - -NNVM_REGISTER_OP(transpose) -.describe(R"code(Permutes the dimensions of an array. - -Examples:: - - x = [[ 1, 2], - [ 3, 4]] - - transpose(x) = [[ 1., 3.], - [ 2., 4.]] - - x = [[[ 1., 2.], - [ 3., 4.]], - - [[ 5., 6.], - [ 7., 8.]]] - - transpose(x) = [[[ 1., 5.], - [ 3., 7.]], - - [[ 2., 6.], - [ 4., 8.]]] - - transpose(x, axes=(1,0,2)) = [[[ 1., 2.], - [ 5., 6.]], - - [[ 3., 4.], - [ 7., 8.]]] -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Source input") -.add_arguments(TransposeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", TransposeShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", TransposeCorrectLayout) -.set_num_inputs(1) -.set_num_outputs(1) -.set_support_level(4) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const TransposeParam& param = nnvm::get(attrs.parsed); - auto axes = ShapeToIntArray(param.axes); - return Array{ topi::transpose(inputs[0], axes) }; -}) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - const TransposeParam& param = nnvm::get(n->attrs.parsed); - std::ostringstream oss; oss << param.axes; - return std::vector{ - MakeNode("transpose", n->attrs.name + "_t", {ograds[0]}, {{"axes", oss.str()}}) - }; -}); - -// strided_slice -DMLC_REGISTER_PARAMETER(StridedSliceParam); - -inline void StridedSliceParamParser(nnvm::NodeAttrs* attrs) { - StridedSliceParam param; - param.Init(attrs->dict); - attrs->parsed = std::move(param); -} - -inline bool StridedSliceInferShape(const NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - const StridedSliceParam& param = nnvm::get(attrs.parsed); - const TShape& dshape = (*in_shape)[0]; - if (dshape.ndim() == 0) return false; - TShape oshape = dshape; - dim_t num_axis = dshape.ndim(); - - std::vector begin_vec; - std::copy(param.begin.begin(), param.begin.end(), std::back_inserter(begin_vec)); - for (dim_t i = begin_vec.size(); i < num_axis; ++i) { - begin_vec.push_back(0); - } - - std::vector end_vec; - std::copy(param.end.begin(), param.end.end(), std::back_inserter(end_vec)); - for (dim_t i = end_vec.size(); i < num_axis; ++i) { - end_vec.push_back(dshape[i]); - } - - std::vector stride_vec; - std::copy(param.stride.begin(), param.stride.end(), std::back_inserter(stride_vec)); - for (dim_t i = stride_vec.size(); i < num_axis; ++i) { - stride_vec.push_back(1); - } - - for (dim_t i = 0; i < num_axis; ++i) { - int64_t begin_range = stride_vec[i] < 0 ? -1 : 0; - int64_t end_range = stride_vec[i] < 0 ? dshape[i] - 1 : dshape[i]; - int64_t begin = begin_vec[i] < 0 ? dshape[i] + begin_vec[i] : begin_vec[i]; - int64_t end = end_vec[i] < 0 ? dshape[i] + end_vec[i] : end_vec[i]; - begin = std::min(std::max(begin, begin_range), end_range); - end = std::min(std::max(end, begin_range), end_range); - - int interval = std::abs(end - begin); - int slice_size = static_cast((interval - + std::abs(stride_vec[i]) - 1) / std::abs(stride_vec[i])); - CHECK(stride_vec[i] < 0 ? (end < begin) : (begin < end)) - << ": Input [Begin=" << begin_vec[i] << ", End=" << end_vec[i] - << "] is invalid for axis=" << i; - oshape[i] = slice_size; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(strided_slice) -.describe(R"code(Strided slice of an array. - -Examples:: - - x = [[ 1., 4., 7., 10.], - [ 2., 5., 8., 11.], - [ 3., 6., 9., 12.]] - - strided_slice(x, begin=[0, 1], end=[2, 4], stride=[1, 1]) = [[ 4., 7., 10.], - [ 5., 8., 11.]] - - x = [[[ 1., 2.], - [ 3., 4.]], - - [[ 5., 6.], - [ 7., 8.]]] - - strided_slice(x, begin=[0, 0], end=[2, 2]) = [[[ 1., 2.], - [ 3., 4.]], - - [[ 5., 6.], - [ 7., 8.]]] -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Array to be sliced") -.add_arguments(StridedSliceParam::__FIELDS__()) -.set_attr_parser(StridedSliceParamParser) -.set_attr("FInferShape", StridedSliceInferShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", ElemwiseArbitraryLayout<1, 1>) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const StridedSliceParam& param = nnvm::get(attrs.parsed); - Array begin; - Array end; - Array stride; - - for (int64_t i : param.begin) { - begin.push_back(static_cast(i)); - } - - for (int64_t i : param.end) { - end.push_back(static_cast(i)); - } - - for (int64_t i : param.stride) { - stride.push_back(static_cast(i)); - } - - return Array{ - topi::strided_slice(inputs[0], begin, end, stride) - }; -}) -.set_support_level(1); - -// Flip -DMLC_REGISTER_PARAMETER(FlipParam); - -NNVM_REGISTER_OP(flip) -.describe(R"code(Reverse the elements of an array. - -Examples:: - - x = [[ 1, 2], - [ 3, 4]] - - flip(x) = [[ 3., 4.], - [ 1., 2.]] - - x = [[[ 1., 2.], - [ 3., 4.]], - - [[ 5., 6.], - [ 7., 8.]]] - - flip(x) = [[[ 5., 6.], - [ 7., 8.]], - - [[ 1., 2.], - [ 3., 4.]]] - - flip(x, axis=1) = [[[ 3., 4.], - [ 1., 2.]], - - [[ 7., 8.], - [ 5., 6.]]] -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Source input") -.add_arguments(FlipParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", ElemwiseShape<1, 1>) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_num_inputs(1) -.set_num_outputs(1) -.set_support_level(4) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const FlipParam& param = nnvm::get(attrs.parsed); - return Array{ topi::flip(inputs[0], param.axis) }; -}); - - -// take -DMLC_REGISTER_PARAMETER(TakeParam); - -inline bool TakeInferShape(const NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { - CHECK_EQ(in_shape->size(), 2U); - CHECK_EQ(out_shape->size(), 1U); - const TShape& dshape = (*in_shape)[0]; - const TShape& indicesshape = (*in_shape)[1]; - if (dshape.ndim() == 0) return false; - if (indicesshape.ndim() == 0) return false; - - const TakeParam& param = nnvm::get(attrs.parsed); - TShape oshape((!param.axis ? 0: dshape.ndim() - 1) + indicesshape.ndim()); - if (!param.axis) { - for (size_t j = 0; j < indicesshape.ndim(); ++j) { - oshape[j] = indicesshape[j]; - } - } else { - int axis = param.axis.value(); - if (axis < 0) { - axis += dshape.ndim(); - } - CHECK_LT(axis, dshape.ndim()); - - size_t posi = 0; - for (size_t i = 0; i < dshape.ndim(); ++i) { - if (static_cast(i) == axis) { - for (size_t j = 0; j < indicesshape.ndim(); ++j) { - oshape[posi++] = indicesshape[j]; - } - } else { - oshape[posi++] = dshape[i]; - } - } - } - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, 0, dshape); - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, 1, indicesshape); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return dshape.Size() != 0; -} - -inline bool TakeInferType(const NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - CHECK_EQ((*in_attrs)[1], kInt32); - NNVM_ASSIGN_INPUT_TYPE(attrs, *in_attrs, 0, (*in_attrs)[0]); - NNVM_ASSIGN_INPUT_TYPE(attrs, *in_attrs, 1, static_cast(kInt32)); - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_attrs, 0, (*in_attrs)[0]); - return true; -} - -inline bool TakeCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - CHECK_EQ(ilayouts->size(), last_ilayouts->size()); - CHECK_EQ(olayouts->size(), 1U); - - for (size_t i = 0; i < ilayouts->size(); ++i) { - const Layout& input = last_ilayouts->at(i).defined() ? - last_ilayouts->at(i) : ilayouts->at(i); - NNVM_ASSIGN_LAYOUT(*ilayouts, i, input); - } - - return true; -} - -NNVM_REGISTER_OP(take) -.describe(R"code(Take elements from an array along an axis. - -When axis is not None, this function does the same thing as 'fancy' indexing -(indexing arrays using arrays); however, it can be easier to use if you need -elements along a given axis. - -**Note** that when axis is none the flattened input array is used. - -Examples:: - - a = [[ 1, 2], - [ 3, 4]] - indices = [3, 0, 2] - take(a, indices) = [ 4, 1, 3] - - a = [[ 1., 2.], - [ 3., 4.]] - indices = [1, 0] - take(a, indices, axis=1) = [[ 2., 1.], - [ 4., 3.]] - - )code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Array to be indexed") -.add_argument("indices", "Tensor", "The indices of the values to extract") -.add_arguments(TakeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FInferShape", TakeInferShape) -.set_attr("FInferType", TakeInferType) -.set_attr("FCorrectLayout", TakeCorrectLayout) -.set_num_inputs(2) -.set_num_outputs(1) -.set_support_level(3) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const TakeParam& param = nnvm::get(attrs.parsed); - if (!param.axis) { - return Array{ - topi::take(inputs[0], inputs[1]) }; - } else { - return Array{ - topi::take(inputs[0], inputs[1], param.axis.value()) }; - } - }); - - -// SliceLike -DMLC_REGISTER_PARAMETER(SliceLikeParam); - -inline bool SliceLikeShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - const SliceLikeParam& param = nnvm::get(attrs.parsed); - const TShape& src_shape = in_attrs->at(0); - const TShape& target_shape = in_attrs->at(1); - Tuple end_idx; - end_idx = Tuple(src_shape); - if (param.axis.ndim() == 0) { - for (size_t i = 0; i < src_shape.ndim(); ++i) { - if (i < target_shape.ndim()) { - end_idx[i] = target_shape[i]; - CHECK_LE(end_idx[i], src_shape[i]) - << "End index of axis " << i << " exceeds input shape: " - << end_idx[i] << " vs " << src_shape[i]; - } - } - } else { - for (auto i : param.axis) { - if (i < 0) { - i = src_shape.ndim() + i; - } - CHECK_LT(i, target_shape.ndim()) - << "Axis " << i << " exceeds dimension " - << target_shape.ndim()<< " of target_shape."; - end_idx[i] = target_shape[i]; - CHECK_LE(end_idx[i], src_shape[i]) - << "End index of axis " << i << " exceeds input shape: " - << end_idx[i] << " vs " << src_shape[i]; - } - } - TShape out_shape = TShape(std::move(end_idx)); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, out_shape); - return true; -} - -// Adapter function to make int array. -Array GetIntArray(Array arr) { - for (size_t i = 0; i < arr.size(); ++i) { - CHECK(!arr[i].defined() || arr[i].as()) - << "Expect an int array"; - } - return Downcast >(arr); -} - -NNVM_REGISTER_OP(slice_like) -.describe(R"code(Slice the first input respect to the second input. -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data to be sliced.") -.add_argument("slice_like", "Tensor", "Tensor with target shape") -.set_num_inputs(2) -.set_num_outputs(1) -.add_arguments(SliceLikeParam::__FIELDS__()) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferShape", SliceLikeShape) -.set_attr("FInferType", ElemwiseType<2, 1>) -.set_attr("FCorrectLayout", ElemwiseBinaryKeepLeftLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - const auto& param = nnvm::get(attrs.parsed); - Array src_shape = inputs[0]->shape; - Array target_shape = inputs[1]->shape; - Array begin_idx, end_idx, strides; - for (size_t i = 0; i < src_shape.size(); ++i) { - begin_idx.push_back(make_const(tvm::DataType::Int(32), 0)); - strides.push_back(make_const(tvm::DataType::Int(32), 1)); - } - end_idx = Array(src_shape); - if (param.axis.ndim() == 0) { - for (size_t i = 0; i < src_shape.size(); ++i) { - if (i < target_shape.size()) { - end_idx.Set(i, target_shape[i]); - CHECK_LE(topi::GetConstInt(end_idx[i]), - topi::GetConstInt(src_shape[i])) - << "End index of axis " << i << " exceeds input shape: " - << topi::GetConstInt(end_idx[i]) << " vs " - << topi::GetConstInt(src_shape[i]); - } - } - } else { - for (int axis : param.axis) { - if (axis < 0) { - axis = static_cast(src_shape.size()) + axis; - } - end_idx.Set(static_cast(axis), target_shape[axis]); - CHECK_LE(topi::GetConstInt(end_idx[axis]), - topi::GetConstInt(src_shape[axis])) - << "End index of axis " << axis << " exceeds input shape: " - << topi::GetConstInt(end_idx[axis]) << " vs " - << topi::GetConstInt(src_shape[axis]); - } - } - return Array{ - topi::strided_slice(inputs[0], - GetIntArray(begin_idx), - GetIntArray(end_idx), - GetIntArray(strides)) - }; -}) -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"data", "slice_like"}; -}) -.set_support_level(4); - -// where -inline bool WhereShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 3U); - CHECK_EQ(out_attrs->size(), 1U); - const TShape& cond_shape = in_attrs->at(0); - const TShape& x_shape = in_attrs->at(1); - const TShape& y_shape = in_attrs->at(2); - CHECK_EQ(x_shape, y_shape) << "x and y must have the same shape: " - << x_shape << " vs " << y_shape; - if (cond_shape != x_shape) { - CHECK_EQ(cond_shape.ndim(), 1) - << "Shape of condition " << cond_shape - << " must be either equal to x or has dimension of 1."; - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, x_shape); - return true; -} - -inline bool WhereInferType(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - DTYPE_ASSIGN(out_attrs->at(0), in_attrs->at(1)); - return true; -} - -inline bool WhereCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - CHECK_EQ(ilayouts->size(), last_ilayouts->size()); - CHECK_EQ(olayouts->size(), 1U); - - for (size_t i = 0; i < ilayouts->size(); ++i) { - const Layout& input = last_ilayouts->at(i).defined() ? - last_ilayouts->at(i) : ilayouts->at(i); - NNVM_ASSIGN_LAYOUT(*ilayouts, i, input); - } - - return true; -} - -NNVM_REGISTER_OP(where) -.describe(R"code( -Return the elements, either from x or y, depending on the condition. - -Given three ndarrays, condition, x, and y, return an ndarray with the elements -from x or y, depending on the elements from condition are true or false. -x and y must have the same shape. If condition has the same shape as x, -each element in the output array is from x if the corresponding element -in the condition is true, and from y if false. - -If condition does not have the same shape as x, it must be a 1D array whose -size is the same as x’s first dimension size. Each row of the output array -is from x’s row if the corresponding element from condition is true, and -from y’s row if false. - -Note that all non-zero values are interpreted as True in condition. - -Examples:: - - x = [[1, 2], [3, 4]] - y = [[5, 6], [7, 8]] - cond = [[0, 1], [-1, 0]] - where(cond, x, y) = [[5, 2], [3, 8]] - - - cond = [1, 0] - where(cond, x, y) = [[1, 2], [7, 8]] - -)code" NNVM_ADD_FILELINE) -.add_argument("condition", "Tensor", "Condition array") -.add_argument("x", "Tensor", "First array to be selected") -.add_argument("y", "Tensor", "Second array to be selected") -.set_num_inputs(3) -.set_num_outputs(1) -.set_attr("FInferShape", WhereShape) -.set_attr("FInferType", WhereInferType) -.set_attr("FCorrectLayout", WhereCorrectLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ - topi::where(inputs[0], inputs[1], inputs[2]) - }; - }) -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"condition", "x", "y"}; -}) -.set_support_level(4); - -// gather_nd -inline bool GatherNDInferShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - const TShape& data_shape = in_attrs->at(0); - const TShape& indices_shape = in_attrs->at(1); - CHECK_GT(indices_shape.ndim(), 1) << "indices must have at least 2 dimensions"; - CHECK_LE(indices_shape[0], data_shape.ndim()) << - "dim 0 of indices must be no more than rank of data"; - std::vector oshape; - for (size_t i = 1; i < indices_shape.ndim(); ++i) { - oshape.push_back(indices_shape[i]); - } - for (size_t i = indices_shape[0]; i < data_shape.ndim(); ++i) { - oshape.push_back(data_shape[i]); - } - if (oshape.size() == 0) { - oshape.push_back(1); - } - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, - TShape(oshape.begin(), oshape.end())); - return true; -} - -inline bool GatherNDInferType(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - NNVM_ASSIGN_OUTPUT_TYPE(attrs, *out_attrs, 0, (*in_attrs)[0]); - return true; -} - -inline bool GatherNDCorrectLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - CHECK_EQ(ilayouts->size(), last_ilayouts->size()); - CHECK_EQ(olayouts->size(), 1U); - - for (size_t i = 0; i < ilayouts->size(); ++i) { - const Layout& input = last_ilayouts->at(i).defined() ? - last_ilayouts->at(i) : ilayouts->at(i); - NNVM_ASSIGN_LAYOUT(*ilayouts, i, input); - } - - return true; -} - -NNVM_REGISTER_OP(gather_nd) -.describe(R"code( -Gather elements or slices from ``data`` into a tensor specified by ``indices``. - -The shape of output tensor is inferred from ``indices``. Given ``data`` with -shape ``(X0, X1, ..., X_{N-1})`` and ``indices`` with shape ``(Y_0, ..., -Y_{M-1})``, the output will have shape ``(Y_1, ..., Y_{M-1}, X_{Y_0}, ..., -X_{N-1})`` when ``Y_0 < N``, or ``(Y_1, ..., Y_{M-1})`` when ``Y_0 == N``. The -operator is invalid when ``Y_0 > N``. - -The element in output is defined as follows:: - - output[y_1, ..., y_{M-1}, x_{Y_0}, ..., x_{N-1}] = data[indices[0, y_1, ..., y_{M-1}], - ..., - indices[Y_0-1, y_1, ..., y_{M-1}], - x_{Y_0}, ..., x_{N-1}] - -Examples:: - - data = [[0, 1], [2, 3]] - indices = [[1], [0]] - gather_nd(data, indices) = [2] - - data = [[0, 1], [2, 3]] - indices = [[1, 1, 0], [0, 1, 0]] - gather_nd(data, indices) = [2, 3, 0] - - data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] - indices = [[0, 1], [1, 0]] - gather_nd(data, indices) = [[3, 4], [5, 6]] - -)code" NNVM_ADD_FILELINE) -.add_argument("data", "Tensor", "Input data.") -.add_argument("indices", "Tensor", "Indices of data") -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr("FInferShape", GatherNDInferShape) -.set_attr("FInferType", GatherNDInferType) -.set_attr("FCorrectLayout", GatherNDCorrectLayout) -.set_attr( - "FTVMCompute", [](const NodeAttrs& attrs, - const Array& inputs, - const Array& out_info) { - return Array{ - topi::gather_nd(inputs[0], inputs[1]) }; - }) -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"data", "indices"}; -}) -.set_support_level(3); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/vision/nms.cc b/nnvm/src/top/vision/nms.cc deleted file mode 100644 index ec97408284e5..000000000000 --- a/nnvm/src/top/vision/nms.cc +++ /dev/null @@ -1,107 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file nms.cc - * \brief Property def of SSD non-maximum suppression operator. - */ - -#include -#include -#include -#include -#include -#include -#include "../op_common.h" -#include "../elemwise_op_common.h" - -namespace nnvm { -namespace top { -using compiler::FTVMCompute; -using tvm::Tensor; -using tvm::Array; - -DMLC_REGISTER_PARAMETER(NonMaximumSuppressionParam); - -bool NMSShape(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - const NonMaximumSuppressionParam& param = - nnvm::get(attrs.parsed); - CHECK_EQ(in_attrs->size(), 2U) << "Inputs: [data, valid_count]"; - TShape dshape = in_attrs->at(0); - TShape vshape = in_attrs->at(1); - CHECK_EQ(dshape.ndim(), 3U) << "Input data should be 3-D."; - CHECK_EQ(vshape.ndim(), 1U) << "Input valid count should be 1-D."; - CHECK_EQ(dshape[2], 6U) << "Data input should have shape " - "(batch_size, num_anchors, 6)."; - CHECK_EQ(dshape[0], vshape[0]) << "batch_size mismatch."; - out_attrs->clear(); - if (param.return_indices) { - TShape oshape = TShape(2); - oshape[0] = dshape[0]; - oshape[1] = dshape[1]; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape); - } else { - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, dshape); - } - return true; -} - -inline bool NMSInferType(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - DTYPE_ASSIGN(out_attrs->at(0), in_attrs->at(0)); - return true; -} - -inline bool NMSInferLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - static const Layout kNCHW("NCHW"); - CHECK_EQ(ilayouts->size(), 2U); - CHECK_EQ(olayouts->size(), 1U); - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, kNCHW); - NNVM_ASSIGN_LAYOUT(*ilayouts, 1, kNCHW); - return true; -} - -NNVM_REGISTER_OP(non_max_suppression) - .describe(R"doc("Non-maximum suppression." -)doc" NNVM_ADD_FILELINE) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", - ParamGetAttrDict) -.add_arguments(NonMaximumSuppressionParam::__FIELDS__()) -.add_argument("data", "Tensor", "Input data.") -.add_argument("valid_count", "Tensor", "Number of valid anchor boxes.") -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"data", "valid_count"}; -}) -.set_attr("FInferShape", NMSShape) -.set_attr("FInferType", NMSInferType) -.set_attr("FCorrectLayout", NMSInferLayout) -.set_support_level(4); - -} // namespace top -} // namespace nnvm - diff --git a/nnvm/src/top/vision/ssd/mutibox_op.cc b/nnvm/src/top/vision/ssd/mutibox_op.cc deleted file mode 100644 index 47f2f82a8664..000000000000 --- a/nnvm/src/top/vision/ssd/mutibox_op.cc +++ /dev/null @@ -1,176 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file multibox_op.cc - * \brief Property def of SSD multibox related operators. - */ - -#include -#include -#include -#include -#include -#include -#include "../../op_common.h" -#include "../../elemwise_op_common.h" - -namespace nnvm { -namespace top { -using compiler::FTVMCompute; -using tvm::Tensor; -using tvm::Array; - -DMLC_REGISTER_PARAMETER(MultiBoxPriorParam); - -bool MultiBoxPriorShape(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - const MultiBoxPriorParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_attrs->size(), 1U) << "Inputs: [data]" << in_attrs->size(); - TShape dshape = in_attrs->at(0); - CHECK_GE(dshape.ndim(), 4U) << "Input data should be 4D: " - "[batch, channel, height, width]"; - int in_height = dshape[2]; - CHECK_GT(in_height, 0) << "Input height should > 0"; - int in_width = dshape[3]; - CHECK_GT(in_width, 0) << "Input width should > 0"; - // since input sizes are same in each batch, we could share MultiBoxPrior - TShape oshape = TShape(3); - int num_sizes = param.sizes.ndim(); - int num_ratios = param.ratios.ndim(); - oshape[0] = 1; - oshape[1] = in_height * in_width * (num_sizes + num_ratios - 1); - oshape[2] = 4; - CHECK_EQ(param.steps.ndim(), 2) << "Step ndim must be 2: (step_y, step_x)"; - CHECK_GE(param.steps[0] * param.steps[1], 0) << "Must specify both " - "step_y and step_x"; - out_attrs->clear(); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape); - return true; -} - -inline bool MultiBoxPriorLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - static const Layout kNCHW("NCHW"); - CHECK_EQ(ilayouts->size(), 1U); - CHECK_EQ(olayouts->size(), 1U); - NNVM_ASSIGN_LAYOUT(*ilayouts, 0, kNCHW); - return true; -} - -NNVM_REGISTER_OP(multibox_prior) - .describe(R"doc("Generate prior(anchor) boxes from data, sizes and ratios." -)doc" NNVM_ADD_FILELINE) -.set_num_inputs(1) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.add_arguments(MultiBoxPriorParam::__FIELDS__()) -.add_argument("data", "Tensor", "Input data") -.set_attr("FInferShape", MultiBoxPriorShape) -.set_attr("FInferType", ElemwiseType<1, 1>) -.set_attr("FCorrectLayout", MultiBoxPriorLayout) -.set_attr( - "FGradient", [](const NodePtr& n, - const std::vector& ograds) { - return std::vector{ - MakeNode("zeros_like", n->attrs.name + "_zero_grad", - {n->inputs[0]}), - ograds[0] - }; -}) -.set_support_level(4); - -DMLC_REGISTER_PARAMETER(MultiBoxTransformLocParam); - -bool MultiBoxTransformLocShape(const NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_EQ(in_attrs->size(), 3U) << "Inputs: [cls_prob, loc_pred, anchor]"; - TShape cshape = in_attrs->at(0); - TShape lshape = in_attrs->at(1); - TShape ashape = in_attrs->at(2); - CHECK_EQ(cshape.ndim(), 3U) << "Class probability should be 3-D."; - CHECK_EQ(lshape.ndim(), 2U) << "Location prediction should be 2-D."; - CHECK_EQ(ashape.ndim(), 3U) << "Anchor should be 3-D."; - CHECK_EQ(cshape[2], ashape[1]) << "Number of anchors mismatch."; - CHECK_EQ(cshape[2] * 4, lshape[1]) << "# anchors mismatch with # loc."; - CHECK_GT(ashape[1], 0U) << "Number of anchors must > 0."; - CHECK_EQ(ashape[2], 4U); - TShape oshape0 = TShape(3); - oshape0[0] = cshape[0]; - oshape0[1] = ashape[1]; - oshape0[2] = 6; // [id, prob, xmin, ymin, xmax, ymax] - TShape oshape1 = TShape(1); - oshape1[0] = cshape[0]; - out_attrs->clear(); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape0); - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 1, oshape1); - return true; -} - -inline bool MultiBoxTransformLocLayout(const NodeAttrs& attrs, - std::vector *ilayouts, - const std::vector *last_ilayouts, - std::vector *olayouts) { - CHECK_EQ(ilayouts->size(), 3U); - CHECK_EQ(last_ilayouts->size(), 3U); - CHECK_EQ(olayouts->size(), 2U); - for (size_t i = 0; i < last_ilayouts->size(); ++i) { - const Layout& last_layout = last_ilayouts->at(i); - if (last_layout.defined()) { - NNVM_ASSIGN_LAYOUT(*ilayouts, i, last_layout); - } - } - return true; -} - -inline bool MultiBoxTransformLocInferType(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - DTYPE_ASSIGN(out_attrs->at(0), in_attrs->at(0)); - DTYPE_ASSIGN(out_attrs->at(1), 4U); - return true; -} - -NNVM_REGISTER_OP(multibox_transform_loc) - .describe(R"doc("Location transformation for multibox detection." -)doc" NNVM_ADD_FILELINE) -.set_num_inputs(3) -.set_num_outputs(2) -.set_attr_parser(ParamParser) -.set_attr("FGetAttrDict", - ParamGetAttrDict) -.add_arguments(MultiBoxTransformLocParam::__FIELDS__()) -.add_argument("cls_prob", "Tensor", "Class probabilities.") -.add_argument("loc_pred", "Tensor", "Location regression predictions.") -.add_argument("anchor", "Tensor", "Multibox prior anchor boxes") -.set_attr("FListInputNames", [](const NodeAttrs& attrs) { - return std::vector{"cls_prob", "loc_pred", "anchor"}; -}) -.set_attr("FInferShape", MultiBoxTransformLocShape) -.set_attr("FInferType", MultiBoxTransformLocInferType) -.set_attr("FCorrectLayout", MultiBoxTransformLocLayout) -.set_support_level(4); - -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/vision/yolo/reorg.cc b/nnvm/src/top/vision/yolo/reorg.cc deleted file mode 100644 index c16d46ff4652..000000000000 --- a/nnvm/src/top/vision/yolo/reorg.cc +++ /dev/null @@ -1,70 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file reorg.cc - */ -#include -#include -#include -#include -#include "../../op_common.h" -#include "../../elemwise_op_common.h" -#include "reorg.h" - -namespace nnvm { -namespace top { - -// reorg -DMLC_REGISTER_PARAMETER(ReorgParam); - -inline bool ReorgInferShape(const nnvm::NodeAttrs &attrs, - std::vector *in_shape, - std::vector *out_shape) { - const ReorgParam ¶m = nnvm::get(attrs.parsed); - TShape dshape = in_shape->at(0); - if (dshape.ndim() == 0) - return false; - NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, 0, dshape); - CHECK_EQ(dshape.ndim(), 4) << "Input data should be 4D"; - CHECK_GT(param.stride, 0U) << "Stride value cannot be 0"; - TShape oshape({dshape[0], 0, 0, 0}); - oshape[1] = dshape[1] * param.stride * param.stride; - oshape[2] = dshape[2] / param.stride; - oshape[3] = dshape[3] / param.stride; - NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); - return true; -} - -NNVM_REGISTER_OP(yolo_reorg) -.describe(R"(Perform reorg operation on input array based on the stride value. -- **data**: Input is 4D array of shape (batch_size, channels, in_height, in_width). -- **out**: Output is 4D array of shape (batch_size, channels/(stride*stride), in_height*stride, in_width*stride). -)" NNVM_ADD_FILELINE) -.set_num_inputs(1) -.set_num_outputs(1) -.set_support_level(5) -.add_argument("data", "Tensor", "Data input to reorganize") -.set_attr_parser(ParamParser) -.add_arguments(ReorgParam::__FIELDS__()) -.set_attr("FGetAttrDict", ParamGetAttrDict) -.set_attr("FInferType", ElemwiseType<-1, 1>) -.set_attr("FInferShape", ReorgInferShape); -} // namespace top -} // namespace nnvm diff --git a/nnvm/src/top/vision/yolo/reorg.h b/nnvm/src/top/vision/yolo/reorg.h deleted file mode 100644 index 53549df3634a..000000000000 --- a/nnvm/src/top/vision/yolo/reorg.h +++ /dev/null @@ -1,128 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * \file reorg.h - */ -#ifndef NNVM_TOP_VISION_YOLO_REORG_H_ -#define NNVM_TOP_VISION_YOLO_REORG_H_ - -#include -#include -#include -#include -#include - -namespace nnvm { -namespace top { - -template -inline bool ReorgAttr(const nnvm::NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs, - const AttrType &none) { - AttrType dattr = none; - size_t in_size = in_attrs->size(); - size_t out_size = out_attrs->size(); - if (n_in != -1) { - in_size = static_cast(n_in); - } - if (n_out != -1) { - out_size = static_cast(n_out); - } - - auto deduce = [&](std::vector *vec, size_t size, const char *name) { - for (size_t i = 0; i < size; ++i) { - if (i == 0) { - CHECK(assign(&dattr, (*vec)[i])) - << "Incompatible attr in node " << attrs.name << " at " << i - << "-th " << name << ": " - << "expected " << attr_string(dattr) << ", got " - << attr_string((*vec)[i]); - } - } - }; - deduce(in_attrs, in_size, "input"); - - auto write = [&](std::vector *vec, size_t size, const char *name) { - for (size_t i = 0; i < size; ++i) { - CHECK(assign(&(*vec)[i], dattr)) - << "Incompatible attr in node " << attrs.name << " at " << i << "-th " - << name << ": " - << "expected " << attr_string(dattr) << ", got " - << attr_string((*vec)[i]); - } - }; - write(out_attrs, out_size, "output"); - - if (is_none(dattr)) { - return false; - } - return true; -} - -template -inline bool ReorgShape(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - if (n_in != -1) { - CHECK_EQ(in_attrs->size(), static_cast(n_in)) - << " in operator " << attrs.name; - } - if (n_out != -1) { - CHECK_EQ(out_attrs->size(), static_cast(n_out)) - << " in operator " << attrs.name; - } - return ReorgAttr( - attrs, in_attrs, out_attrs, TShape()); -} - -template -inline bool ReorgType(const NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - if (n_in != -1) { - CHECK_EQ(in_attrs->size(), static_cast(n_in)) - << " in operator " << attrs.name; - } - if (n_out != -1) { - CHECK_EQ(out_attrs->size(), static_cast(n_out)) - << " in operator " << attrs.name; - } - return ReorgAttr( - attrs, in_attrs, out_attrs, -1); -} - -struct ReorgParam : public dmlc::Parameter { - int stride; - - DMLC_DECLARE_PARAMETER(ReorgParam) { - DMLC_DECLARE_FIELD(stride).set_default(1).describe("Stride value"); - } -}; -} // namespace top -} // namespace nnvm -#endif // NNVM_TOP_VISION_YOLO_REORG_H_ diff --git a/nnvm/tests/python/compiler/test_alter_op_layout.py b/nnvm/tests/python/compiler/test_alter_op_layout.py deleted file mode 100644 index aad634f03843..000000000000 --- a/nnvm/tests/python/compiler/test_alter_op_layout.py +++ /dev/null @@ -1,121 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Unittest cases for AlterOpLayout pass""" -from nnvm import symbol as sym -from nnvm.compiler import graph_attr -from nnvm.top import registry as reg -import nnvm.graph as graph - -def get_layouts(g): - ldict = {} - vlayout = g.json_attr("layout") - entry_ptr = g.index.entry_ptr - for i, n in enumerate(g.index.nodes): - begin, end = entry_ptr[i], entry_ptr[i + 1] - ldict[n["name"]] = vlayout[begin:end] - return ldict - - -def test_alter_conv2d_layout(): - data = sym.Variable("data", shape=(1, 32, 512, 512)) - conv = sym.conv2d(data, name="conv", channels=16, - kernel_size=(3,3), padding=(1,1), - use_bias=False, layout="NCHW") - # split here - convs = sym.split(conv, indices_or_sections=2) - relus = [sym.relu(x, name="relu") for x in convs] - relu = sym.concatenate(*relus) - flatten = sym.flatten(relu, name="flatten") - softmax = sym.softmax(flatten, name="softmax") - g = graph.create(softmax) - - g = g.apply("CorrectLayout") - g = graph_attr.set_dtype_inputs(g, "float32") - g = g.apply(["InferShape", "InferType"]) - layouts_origin = get_layouts(g) - - @reg.register_alter_op_layout("conv2d", level=100) - def alter_conv2d_layout(attrs, inputs, tinfos): - new_attrs = {k : attrs[k] for k in attrs.keys()} - new_attrs["layout"] = "NCHW16c" - new_attrs["kernel_layout"] = "NCHW16c" - new_attrs["name"] = "conv_alter" - return sym.conv2d(inputs[0], inputs[1], **new_attrs) - - g = g.apply("AlterOpLayout") - layouts = get_layouts(g) - - # check copy layouts - for node in ["data", "relu", "flatten", "softmax", "conv_weight"]: - assert layouts[node] == layouts_origin[node] - assert layouts["conv_alter"] == layouts_origin["conv"] - - -def test_consecutive_alter_layout(): - data = sym.Variable("data", shape=(1, 32, 512, 512)) - pool1 = sym.global_avg_pool2d(data, name="global_avg_pool2d_1", layout="NCHW") - pool2 = sym.global_avg_pool2d(pool1, name="global_avg_pool2d_2", layout="NCHW") - relu = sym.relu(pool2, name="relu") - - g = graph.create(relu) - g = g.apply("CorrectLayout") - g = graph_attr.set_dtype_inputs(g, "float32") - g = g.apply(["InferShape", "InferType"]) - assert g.json_attr("layout") == ['NCHW', 'NCHW', 'NCHW', 'NCHW'] - - @reg.register_alter_op_layout("global_avg_pool2d", level=100) - def alter_global_avg_pool2d_layout(attrs, inputs, tinfos): - new_attrs = {k : attrs[k] for k in attrs.keys()} - new_attrs["layout"] = "NCHW16c" - return sym.global_avg_pool2d(inputs[0], **new_attrs) - - g = g.apply("AlterOpLayout") - - # pool1 get replaced - output layout of pool1 is not recorded - # pool2 get replaced - input layout of pool2 is not recorded - # thus the second entry must be undefined - it can neither recover from pool1's output, - # nor from pool2's input. - assert g.json_attr("layout") == ['NCHW', '__undef__', 'NCHW', 'NCHW'] - - -def test_alter_func_return_none(): - data = sym.Variable("data", shape=(1, 32, 512, 512)) - pool1 = sym.global_max_pool2d(data, name="pool1", layout="NCHW") - pool2 = sym.global_max_pool2d(pool1, name="pool2", layout="NCHW") - relu = sym.relu(pool2, name="relu") - - g = graph.create(relu) - g = g.apply("CorrectLayout") - g = graph_attr.set_dtype_inputs(g, "float32") - g = g.apply(["InferShape", "InferType"]) - assert g.json_attr("layout") == ['NCHW', 'NCHW', 'NCHW', 'NCHW'] - - @reg.register_alter_op_layout("global_max_pool2d", level=100) - def alter_global_max_pool2d_layout(attrs, inputs, tinfos): - return None - - g = g.apply("AlterOpLayout") - - # alter func return none, nothing get replaced, - # the layouts should remain the same - assert g.json_attr("layout") == ['NCHW', 'NCHW', 'NCHW', 'NCHW'] - - -if __name__ == "__main__": - test_alter_conv2d_layout() - test_consecutive_alter_layout() - test_alter_func_return_none() diff --git a/nnvm/tests/python/compiler/test_autotvm_task_extraction.py b/nnvm/tests/python/compiler/test_autotvm_task_extraction.py deleted file mode 100644 index 1ecbf053f923..000000000000 --- a/nnvm/tests/python/compiler/test_autotvm_task_extraction.py +++ /dev/null @@ -1,79 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Test task extraction for autotvm""" - -import nnvm.testing -import nnvm.compiler -from tvm import autotvm - -def get_network(name, batch_size): - """Get the symbol definition and random weight of a network""" - input_shape = (batch_size, 3, 224, 224) - output_shape = (batch_size, 1000) - - if name == 'resnet-18': - net, params = nnvm.testing.resnet.get_workload(num_layers=18, batch_size=batch_size) - elif name == 'mobilenet': - net, params = nnvm.testing.mobilenet.get_workload(batch_size=batch_size) - elif name == 'squeezenet v1.1': - net, params = nnvm.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1') - elif name == 'vgg-16': - net, params = nnvm.testing.vgg.get_workload(num_layers=16, batch_size=batch_size) - elif name == 'dcgan': - net, params = nnvm.testing.dcgan.get_workload(batch_size=batch_size) - input_shape = (batch_size, 100) - else: - raise ValueError("Unsupported network: " + name) - - return net, params, input_shape, output_shape - -def test_task_extraction(): - target = 'llvm' - dtype = 'float32' - - net, params, input_shape, out_shape = get_network('resnet-18', batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d,)) - assert len(tasks) == 12 - - net, params, input_shape, out_shape = get_network('resnet-18', batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.dense,)) - assert len(tasks) == 1 - - net, params, input_shape, out_shape = get_network('resnet-18', batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d, nnvm.sym.dense)) - assert len(tasks) == 13 - - net, params, input_shape, out_shape = get_network('mobilenet', batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d, nnvm.sym.dense)) - assert len(tasks) == 20 - - net, params, input_shape, out_shape = get_network('dcgan', batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d_transpose,)) - assert len(tasks) == 4 - -if __name__ == '__main__': - test_task_extraction() diff --git a/nnvm/tests/python/compiler/test_build.py b/nnvm/tests/python/compiler/test_build.py deleted file mode 100644 index a2a5ac659c8f..000000000000 --- a/nnvm/tests/python/compiler/test_build.py +++ /dev/null @@ -1,176 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np - -import tvm -from tvm.contrib import graph_runtime -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.compiler.build_module import _run_graph, precompute_prune - -def test_compile(): - x = sym.Variable("x") - y = sym.Variable("y") - z = sym.exp(y + x) - shape = (10, 128) - dtype = tvm.float32 - shape_dict = {"x": shape, "y": shape} - def verify(graph, lib): - m = graph_runtime.create(graph, lib, tvm.cpu(0)) - # get member functions - set_input, run, get_output = m["set_input"], m["run"], m["get_output"] - na = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - nb = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - # set inputs - set_input("x", na) - set_input("y", nb) - # execute - run() - # get outputs - out = tvm.nd.empty(shape, dtype) - get_output(0, out) - tvm.testing.assert_allclose( - out.asnumpy(), np.exp(na.asnumpy() + nb.asnumpy())) - - graph, lib, _ = nnvm.compiler.build(z, "llvm", shape_dict) - assert graph.index.num_nodes == 3 - verify(graph, lib) - - with nnvm.compiler.build_config(opt_level=0): - graph, lib, _ = nnvm.compiler.build(z, "llvm", shape_dict) - # print(graph.ir()) - assert graph.index.num_nodes == 4 - verify(graph, lib) - -def test_run(): - x = sym.Variable("x") - y = sym.Variable("y") - z = sym.exp(y + x) - shape = (10, 10) - dtype = tvm.float32 - nx = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - ny = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - res = _run_graph(z, {"x": nx, "y": ny}) - tvm.testing.assert_allclose( - res[0].asnumpy(), np.exp(nx.asnumpy() + ny.asnumpy())) - - -def test_precompute_prune(): - x = sym.Variable("x") + 1 - a = sym.Variable("a") - y = sym.Variable("y") - z = y + x + a - shape = (10, 10) - dtype = tvm.float32 - nx = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - na = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - ny = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - params = {"x": nx, "a": na} - graph, lib, params = nnvm.compiler.build( - z, "llvm", shape={"y": ny.shape}, params=params) - assert graph.index.num_nodes == 4 - m = graph_runtime.create(graph, lib, tvm.cpu(0)) - params["y"] = ny - res = tvm.nd.empty(shape) - m["load_params"](nnvm.compiler.save_param_dict(params)) - m.run() - out = m.get_output(0, out=res) - tvm.testing.assert_allclose( - res.asnumpy(), nx.asnumpy() + 1 + ny.asnumpy() + na.asnumpy()) - - -def test_dtypes(): - x = sym.Variable("x") - y = sym.relu(x) - dshape = (1, 3, 32, 32) - oshape = dshape - for dtype in ['float32', 'float64', 'int32', 'int16', 'int8', 'int64']: - graph, lib, _ = nnvm.compiler.build(y, 'llvm', {"x": dshape}, dtype=dtype) - m = graph_runtime.create(graph, lib, tvm.cpu()) - if 'float' in dtype: - data = np.random.uniform(size=dshape).astype(dtype) - elif 'int' in dtype: - data = np.random.randint(-127, 127, dshape).astype(dtype) - m.run(x=data) - data = (data > 0) * data - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), data, atol=1e-5, rtol=1e-5) - -def test_ndarray_output(): - x = sym.Variable("x") - y = sym.Variable("y") - z = x + y - shape = (10, 10) - dtype = tvm.float32 - nx = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - ny = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - params = {"x": nx, "ny": ny} - graph, lib, params = nnvm.compiler.build( - z, "llvm", shape={"y": ny.shape, "x": nx.shape}, params=params) - m = graph_runtime.create(graph, lib, tvm.cpu(0)) - m.set_input("x", nx) - m.set_input("y", ny) - m.run() - out = m.get_output(0) - tvm.testing.assert_allclose( - out.asnumpy(), nx.asnumpy() + ny.asnumpy()) - -def test_ndarray_input(): - x = sym.Variable("x") - y = sym.Variable("y") - z = x + y - shape = (10, 10) - dtype = tvm.float32 - nx = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - ny = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - params = {"x": nx, "ny": ny} - graph, lib, params = nnvm.compiler.build( - z, "llvm", shape={"y": ny.shape, "x": nx.shape}, params=params) - m = graph_runtime.create(graph, lib, tvm.cpu(0)) - m.set_input("x", nx) - m.set_input("y", ny) - in_x = tvm.nd.empty(shape, dtype) - in_y = tvm.nd.empty(shape, dtype) - m.get_input("x", in_x) - m.get_input("y", in_y) - tvm.testing.assert_allclose(nx.asnumpy(), in_x.asnumpy()) - tvm.testing.assert_allclose(ny.asnumpy(), in_y.asnumpy()) - in_nx = m.get_input("x") - in_ny = m.get_input("y") - tvm.testing.assert_allclose(nx.asnumpy(), in_nx.asnumpy()) - tvm.testing.assert_allclose(ny.asnumpy(), in_ny.asnumpy()) - -def test_num_outputs(): - x = sym.Variable('x') - z = sym.split(x, indices_or_sections=5, axis=1) - shape = (10, 10) - dtype = tvm.float32 - nx = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - params = {"x": nx} - graph, lib, params = nnvm.compiler.build( - z, "llvm", shape={"x": nx.shape}, params=params) - m = graph_runtime.create(graph, lib, tvm.cpu(0)) - assert m.get_num_outputs() == 5 - -if __name__ == "__main__": - test_precompute_prune() - test_compile() - test_run() - test_dtypes() - test_ndarray_output() - test_ndarray_input() - test_num_outputs() diff --git a/nnvm/tests/python/compiler/test_compiler_cache.py b/nnvm/tests/python/compiler/test_compiler_cache.py deleted file mode 100644 index c0f207a66bf0..000000000000 --- a/nnvm/tests/python/compiler/test_compiler_cache.py +++ /dev/null @@ -1,58 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import tvm -from tvm.contrib import graph_runtime -import nnvm.symbol as sym -import nnvm.compiler - -def test_compile_cache(): - x = sym.Variable("x") - y = sym.Variable("y") - z = sym.exp(y + x) - shape = (10, 1) - dtype = tvm.float32 - shape_dict = {"x": shape, "y": shape} - def verify(graph, lib): - m = graph_runtime.create(graph, lib, tvm.cpu(0)) - # get member functions - na = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - nb = tvm.nd.array(np.random.uniform(size=shape).astype(dtype)) - m.run(x=na, y=nb) - # get outputs - out = m.get_output(0, tvm.nd.empty(shape, dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), np.exp(na.asnumpy() + nb.asnumpy())) - - engine = nnvm.compiler.engine - graph, lib, _ = nnvm.compiler.build(z, "llvm", shape_dict) - inputs = [tvm.placeholder((10,)), tvm.placeholder((10,))] - - gkey = nnvm.compiler.graph_key(nnvm.graph.create(z), inputs, "llvm") - gkey2 = nnvm.compiler.graph_key(nnvm.graph.create(z), inputs + inputs, "llvm") - gf = engine[gkey] - assert gf is not None - assert engine[gkey2] is None - graph, lib, _ = nnvm.compiler.build(z, "llvm", shape_dict) - assert graph.index.num_nodes == 3 - verify(graph, lib) - # Test various set external cache - engine.clear_cache() - engine[gkey] = gf - -if __name__ == "__main__": - test_compile_cache() diff --git a/nnvm/tests/python/compiler/test_fold_axis.py b/nnvm/tests/python/compiler/test_fold_axis.py deleted file mode 100644 index 2bceb652162a..000000000000 --- a/nnvm/tests/python/compiler/test_fold_axis.py +++ /dev/null @@ -1,174 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Unittest cases for fold_axis""" -import tvm -import nnvm -import nnvm.testing.resnet -import numpy as np -from nnvm import symbol as sym -from nnvm.compiler import graph_util, graph_attr - -def test_fold_axis_conv(): - # Before simplify - def before(x, conv_weight, conv_bias, in_scale, out_scale, channels): - x = x * sym.expand_dims(in_scale, axis=1, num_newaxis=2) - y = sym.conv2d(x, conv_weight, conv_bias, - channels=channels, - kernel_size=(3, 3), - padding=(1, 1), - name="conv") - y = sym.relu(y) - y = y * sym.expand_dims(out_scale, axis=1, num_newaxis=2) - return y - - def expected(x, conv_weight, conv_bias, in_scale, out_scale, channels): - conv_weight = conv_weight * sym.expand_dims(out_scale, axis=1, num_newaxis=3) - conv_weight = conv_weight * sym.expand_dims(in_scale, axis=1, num_newaxis=2) - conv_bias = conv_bias * out_scale - y = sym.conv2d(x, - conv_weight, - conv_bias, - channels=channels, - kernel_size=(3, 3), - padding=(1, 1), - name="conv") - y = sym.relu(y) - return y - - def check(shape, channels): - x = sym.Variable("x") + 1 - weight = sym.Variable("weight") - bias = sym.Variable("bias") - in_scale = sym.Variable("in_scale") - out_scale = sym.Variable("out_scale") - y1 = before(x, weight, bias, in_scale, out_scale, channels) - y2 = expected(x, weight, bias, in_scale, out_scale, channels) - ishape = {"x": shape, "out_scale": (channels,), "in_scale": (shape[1],)} - g1 = nnvm.graph.create(y1) - g2 = nnvm.graph.create(y2) - graph_attr.set_shape_inputs(g1, ishape) - g1 = g1.apply("InferShape").apply("FoldScaleAxis") - # assert graph equals as expected - graph_util.check_graph_equal(g1, g2) - - check((2, 4, 10, 10), 2) - -def test_fold_axis_depthwise_conv(): - # Before simplify - def before(x, conv_weight, conv_bias, in_scale, out_scale, channels): - x = x * sym.expand_dims(in_scale, axis=1, num_newaxis=2) - y = sym.conv2d(x, conv_weight, conv_bias, - channels=channels, - kernel_size=(3, 3), - padding=(1, 1), - groups=54, - name="depthiwise_conv") - y = sym.relu(y) - y = y * sym.expand_dims(out_scale, axis=1, num_newaxis=2) - return y - - def expected(x, conv_weight, conv_bias, in_scale, out_scale, channels): - conv_weight = conv_weight * sym.expand_dims(out_scale, axis=1, num_newaxis=3) - conv_weight = conv_weight * sym.expand_dims(in_scale, axis=1, num_newaxis=3) - conv_bias = conv_bias * out_scale - y = sym.conv2d(x, - conv_weight, - conv_bias, - channels=channels, - kernel_size=(3, 3), - padding=(1, 1), - groups=54, - name="depthiwise_conv") - y = sym.relu(y) - return y - - def check(shape, channels): - x = sym.Variable("x") + 1 - weight = sym.Variable("weight") - bias = sym.Variable("bias") - in_scale = sym.Variable("in_scale") - out_scale = sym.Variable("out_scale") - y1 = before(x, weight, bias, in_scale, out_scale, channels) - y2 = expected(x, weight, bias, in_scale, out_scale, channels) - ishape = {"x": shape, "out_scale": (channels,), "in_scale": (shape[1],)} - g1 = nnvm.graph.create(y1) - g2 = nnvm.graph.create(y2) - graph_attr.set_shape_inputs(g1, ishape) - g1 = g1.apply("InferShape").apply("FoldScaleAxis") - # assert graph equals as expected - graph_util.check_graph_equal(g1, g2) - - check((1, 54, 63, 127), 54) - -def test_fold_fail(): - # Before simplify - def before(x, scale, channels): - y = sym.conv2d(x, - channels=channels, - kernel_size=(3, 3), - padding=(1, 1), - name="conv") - y = y * sym.expand_dims(scale, axis=1, num_newaxis=1) - return y - - def check(shape, channels): - x = sym.Variable("x") - bias = sym.Variable("bias") - scale = sym.Variable("scale") - y1 = before(x, scale, channels) - ishape = {"x": shape, "scale": (channels,), "bias": (channels,)} - g1 = nnvm.graph.create(y1) - graph_attr.set_shape_inputs(g1, ishape) - g2 = g1.apply("InferShape").apply("FoldScaleAxis") - # assert graph equals as expected - graph_util.check_graph_equal(g1, g2) - - check((2, 10, 10, 10), 10) - - -def test_fold_resnet(): - batch_size = 1 - num_classes = 1000 - image_shape = (3, 224, 224) - data_shape = (batch_size,) +image_shape - net, params = nnvm.testing.resnet.get_workload( - batch_size=1, image_shape=image_shape) - ishape = {"data" : data_shape} - graph = nnvm.graph.create(net) - data = np.random.uniform(size=data_shape).astype("float32") - # Initial pass do shape type inference - shape, _ = graph_util.infer_shape(graph, **ishape) - ishape.update(zip(graph.index.input_names, shape)) - - def run_prune(graph, params, opt_level): - # Apply optimization - with nnvm.compiler.build_config(opt_level=0): - graph = nnvm.compiler.optimize(graph, ishape) - graph, params = nnvm.compiler.build_module.precompute_prune(graph, params) - params["data"] = data - return nnvm.compiler.build_module._run_graph(graph, params) - - x = run_prune(graph, params, 0) - y = run_prune(graph, params, 3) - tvm.testing.assert_allclose(y[0].asnumpy(), x[0].asnumpy()) - - -if __name__ == "__main__": - test_fold_resnet() - test_fold_axis_conv() - test_fold_fail() - test_fold_axis_depthwise_conv() diff --git a/nnvm/tests/python/compiler/test_graph_pass.py b/nnvm/tests/python/compiler/test_graph_pass.py deleted file mode 100644 index d65a2be9abf8..000000000000 --- a/nnvm/tests/python/compiler/test_graph_pass.py +++ /dev/null @@ -1,34 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Unittest cases for graph pass""" -import nnvm -import nnvm.compiler -from nnvm import symbol as sym -from nnvm.compiler import graph_util, graph_attr - -def test_infer_attr(): - x = sym.Variable("x") - y = x * 2 - g = nnvm.graph.create(y) - ishape, oshape = graph_util.infer_shape(g, x=(10,20)) - assert tuple(oshape[0]) == (10, 20) - - itype, otype = graph_util.infer_dtype(g, x="float32") - assert otype[0] == "float32" - -if __name__ == "__main__": - test_infer_attr() diff --git a/nnvm/tests/python/compiler/test_nhwc_layout.py b/nnvm/tests/python/compiler/test_nhwc_layout.py deleted file mode 100644 index e3747daf8563..000000000000 --- a/nnvm/tests/python/compiler/test_nhwc_layout.py +++ /dev/null @@ -1,73 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import tvm -from tvm.contrib import graph_runtime as runtime -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list - -def get_sym(layout, kernel_layout, channels): - data = sym.Variable(name="data") - data = sym.conv2d(data=data, kernel_size=(3,3), channels=channels, padding=(1, 1), - layout=layout, kernel_layout=kernel_layout, use_bias=True) - data = sym.max_pool2d(data=data, pool_size=(2, 2), strides=(2, 2), layout=layout) - data = sym.upsampling(data=data, scale=2, layout=layout) - softmax_axis = 1 - if layout == "NHWC": - softmax_axis = 3 - data = sym.softmax(data=data, axis=softmax_axis) - return data - - -def build_and_run(sym, params, data, out_shape): - ctx = tvm.cpu(0) - graph, lib, params = nnvm.compiler.build(sym, "llvm", shape={"data":data.shape}, params=params) - module = runtime.create(graph, lib, ctx) - module.set_input(**params) - module.set_input("data", data) - module.run() - out = module.get_output(0, tvm.nd.empty(out_shape)) - return out.asnumpy() - - -def test_nhwc(): - data_shape = (1, 3, 224, 224) - out_channel = 8 - nchw_sym = get_sym("NCHW", "OIHW", out_channel) - nhwc_sym = get_sym("NHWC", "HWIO", out_channel) - conv_weight = np.random.uniform(-1, 1, (out_channel, 3, 3, 3)).astype(np.float32) - conv_bias = np.random.uniform(-1, 1, (out_channel)).astype(np.float32) - nchw_params = { - "conv2d0_weight" : tvm.nd.array(conv_weight, ctx=tvm.cpu(0)), - "conv2d0_bias" : tvm.nd.array(conv_bias, ctx=tvm.cpu(0)) - } - nhwc_params = { - "conv2d1_weight" : tvm.nd.array(conv_weight.transpose(2, 3, 1, 0), ctx=tvm.cpu(0)), - "conv2d1_bias" : tvm.nd.array(conv_bias, ctx=tvm.cpu(0)) - } - - data = np.random.uniform(-1, 1, data_shape).astype(np.float32) - oshape = (1, out_channel, 224, 224) - oshape_nhwc = (1, 224, 224, out_channel) - nchw_output = build_and_run(nchw_sym, nchw_params, data, oshape) - nhwc_output = build_and_run(nhwc_sym, nhwc_params, data.transpose(0, 2, 3, 1), oshape_nhwc) - tvm.testing.assert_allclose(nchw_output, nhwc_output.transpose(0, 3, 1, 2), rtol=1e-5, atol=1e-5) - - -if __name__ == "__main__": - test_nhwc() diff --git a/nnvm/tests/python/compiler/test_op_fusion.py b/nnvm/tests/python/compiler/test_op_fusion.py deleted file mode 100644 index bc0caeecf58c..000000000000 --- a/nnvm/tests/python/compiler/test_op_fusion.py +++ /dev/null @@ -1,248 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm -import numpy as np -import tvm -import topi.testing -from tvm.contrib import graph_runtime -from nnvm import symbol as sym -from nnvm.compiler import graph_util, graph_attr -from nnvm.testing import ctx_list, utils - -def test_ewise_injective(): - x = sym.Variable("x") - y = x * 2 - y = sym.flatten(y) + 1 - dshape = (10, 2, 3) - shape_dict = {"x": dshape} - dtype = "float32" - target = "llvm" - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - assert graph.index.num_nodes == 2 - m = graph_runtime.create(graph, lib, ctx) - x_np = np.random.uniform(size=dshape).astype(dtype) - m.run(x=x_np) - out = m.get_output(0, tvm.nd.empty((10, 6))) - tvm.testing.assert_allclose( - out.asnumpy(), x_np.reshape(out.shape) * 2 + 1, - atol=1e-5, rtol=1e-5) - - -def test_conv_ewise_injective(): - x = sym.Variable("x") - y = sym.conv2d(x, channels=32, kernel_size=(3, 3), groups=32, - name="y", padding=(1,1)) - y = sym.flatten(y + 1) + 1 - dtype = "float32" - dshape = (1, 32, 18, 18) - kshape = (32, 1, 3, 3) - oshape = (1, 32* 18 * 18) - shape_dict = {"x": dshape} - - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - # print(graph.ir(join_entry_attrs=["shape"])) - assert graph.index.num_nodes == 5 - # set input - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype)) - m.run(x=data, y_weight=kernel, y_bias=bias) - # get output - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - c_np = topi.testing.depthwise_conv2d_python_nchw( - data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME') - c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1) + 1 - c_np = c_np.reshape(c_np.shape[0], np.prod(c_np.shape[1:])) + 1 - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - -def test_injective_reduce_injective(): - x = sym.Variable("x") - x = sym.flatten(x) + 1 - y = sym.sum(x, axis=1) - dtype = "float32" - dshape = (32, 1, 18, 18) - shape_dict = {"x": dshape} - - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - assert graph.index.num_nodes == 2 - data = np.random.uniform(size=dshape).astype(dtype) - m.run(x=data) - c_np = np.sum(data.reshape(32, 18 * 18) + 1, axis=1) - # get output - out = m.get_output(0, tvm.nd.empty(c_np.shape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - -def test_injective_conv2d(): - channels = 16 - data = sym.Variable(name="data") - pool = sym.global_avg_pool2d(data=data) - weight = sym.reshape(pool, shape=[1, channels, 1, 1]) - residual = sym.conv2d(data=data, kernel_size=(3,3), channels=channels, padding=(1, 1), - layout="NCHW", kernel_layout="OIHW", use_bias=False, name="conv") - net = weight * data + residual - size = 56 - dtype="float32" - dshape = (1, channels, size, size) - kshape = (channels, channels, 3, 3) - oshape = dshape - shape_dict = {"data": dshape} - - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(net, target, shape_dict) - # data, global_avg_pool, conv weight, conv op, fused elemwise add - assert graph.index.num_nodes == 5 - - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - m = graph_runtime.create(graph, lib, ctx) - m.run(data=data, conv_weight=kernel) - # get output - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - residual = topi.testing.conv2d_nchw_python( - data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME') - weight = np.mean(data.asnumpy(), axis=(2, 3)) - c_np = weight[:, :, np.newaxis, np.newaxis] * data.asnumpy() + residual - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - -def test_concatenate_conv2d(): - ch = 3 - size = 8 - data = sym.Variable(name="data") - concat = sym.concatenate(data, data, axis=1) - conv = sym.conv2d(data=concat, kernel_size=(1,1), channels=ch*2, use_bias=False, name="conv") - net = sym.elemwise_add(concat, conv) - - dtype="float32" - dshape = (1, ch, size, size) - kshape = (ch*2, ch*2, 1, 1) - oshape = (1, ch*2, size, size) - shape_dict = {"data": dshape} - - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(net, target, shape_dict) - # data, conv weight, conv op, concat - assert graph.index.num_nodes == 4 - - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - m = graph_runtime.create(graph, lib, ctx) - m.run(data=data, conv_weight=kernel) - # get output - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - - concat = np.concatenate((data.asnumpy(), data.asnumpy()), axis=1) - conv = topi.testing.conv2d_nchw_python( - concat, kernel.asnumpy(), (1,1), 'SAME') - ref = concat + conv - tvm.testing.assert_allclose(out.asnumpy(), ref, rtol=1e-5) - - -def test_residual_block_layout_transform(): - ch = 16 - size = 32 - data = sym.Variable(name="data") - conv1 = sym.conv2d(data=data, kernel_size=(3,3), channels=ch, padding = (1, 1), use_bias=False, name="conv1") - layout_transform1 = sym.__layout_transform__(data=conv1, src_layout="NCHW", dst_layout="NCHW8c") - layout_transform2 = sym.__layout_transform__(data=layout_transform1, src_layout="NCHW8c", dst_layout="NCHW") - conv2 = sym.conv2d(data=conv1, kernel_size=(3,3), channels=ch, padding = (1, 1), use_bias=False, name="conv2") - elemwise_sum = sym.elemwise_add(layout_transform2, conv2) - out = sym.relu(elemwise_sum) - - dtype="float32" - dshape = (1, ch, size, size) - kshape = (ch, ch, 3, 3) - oshape = (1, ch, size, size) - shape_dict = {"data": dshape} - - target = "llvm" # only test on llvm since it involves NCHW8c layout - ctx = tvm.context(target, 0) - graph, lib, _ = nnvm.compiler.build(out, target, shape_dict) - # data, conv1 weight, conv1, layout transform + elemwise add + relu, conv2 weight, conv2 op - assert graph.index.num_nodes == 6 - - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel1 = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - kernel2 = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - m = graph_runtime.create(graph, lib, ctx) - m.run(data=data, conv1_weight=kernel1, conv2_weight=kernel2) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - - conv1 = topi.testing.conv2d_nchw_python( - data.asnumpy(), kernel1.asnumpy(), (1,1), 'SAME') - conv2 = topi.testing.conv2d_nchw_python( - conv1, kernel2.asnumpy(), (1,1), 'SAME') - ref = np.maximum(conv1 + conv2, 0) - tvm.testing.assert_allclose(out.asnumpy(), ref, rtol=1e-5) - - -def build_and_run(sym, params, data, out_shape, target, ctx, opt_level=2): - with nnvm.compiler.build_config(opt_level=opt_level): - graph, lib, params = nnvm.compiler.build(sym, target, shape={"data":data.shape}, params=params) - module = graph_runtime.create(graph, lib, ctx) - module.set_input(**params) - module.set_input("data", data) - module.run() - out = module.get_output(0, tvm.nd.empty(out_shape)) - return out.asnumpy(), graph - - -def test_fuse_conv2d_elu(): - def elu(data): - return -0.5 * sym.relu(1 - sym.exp(data)) + sym.relu(data) - - def get_sym(out_channel): - data = sym.Variable(name="data") - data = sym.conv2d(data=data, kernel_size=(3,3), channels=out_channel, padding=(1, 1), - layout="NCHW", kernel_layout="OIHW", use_bias=True) - data = sym.batch_norm(data) - data = elu(data) - return data - - in_channel = 8 - out_channel = 16 - size = 64 - dshape = (1, in_channel, size, size) - oshape = (1, out_channel, size, size) - data = np.random.uniform(-1, 1, dshape).astype(np.float32) - - for target, ctx in ctx_list(): - sym1 = get_sym(out_channel) - sym2 = get_sym(out_channel) - _, params1 = utils.create_workload(sym1, 1, dshape[1:], seed=0) - _, params2 = utils.create_workload(sym2, 1, dshape[1:], seed=0) - output1, g1 = build_and_run(sym1, params1, data, oshape, target, ctx, opt_level=2) - output2, g2 = build_and_run(sym2, params2, data, oshape, target, ctx, opt_level=0) - tvm.testing.assert_allclose(output1, output2, rtol=1e-5, atol=1e-5) - # data, conv weight, bias, batch norm gamma, batch norm beta, conv op - assert g1.index.num_nodes == 6 - -if __name__ == "__main__": - test_injective_reduce_injective() - test_ewise_injective() - test_conv_ewise_injective() - test_fuse_conv2d_elu() - test_injective_conv2d() - test_concatenate_conv2d() - test_residual_block_layout_transform() diff --git a/nnvm/tests/python/compiler/test_optimizer.py b/nnvm/tests/python/compiler/test_optimizer.py deleted file mode 100644 index 86a9b71b46dc..000000000000 --- a/nnvm/tests/python/compiler/test_optimizer.py +++ /dev/null @@ -1,134 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import tvm -import nnvm -import nnvm.compiler.optimizer as optimizer -import nnvm.compiler.lr_scheduler as lr_scheduler - -from nnvm.testing.config import ctx_list -from tvm.contrib import graph_runtime - - -def helper(symbol, inputs, params, update_func, run_times, target, ctx, dtype="float32"): - ishapes = {} - np_inputs = {} - params_dict = {} - for (name, shape, s) in inputs: - ishapes.update({name: shape}) - np_inputs.update({name: np.random.uniform(size=shape).astype(dtype)}) - for (name, shape, s) in params: - np_inputs.update({name: np.random.uniform(size=shape).astype(dtype)}) - params_dict.update({name: np_inputs[name]}) - - graph, lib, rt_params = nnvm.compiler.build(symbol, target, shape=ishapes) - m = graph_runtime.create(graph, lib, ctx) - m.set_input(**np_inputs) - m.set_input(**rt_params) - for _ in range(run_times): - m.run() - y_np = update_func(**np_inputs) - out = m.get_output(0, tvm.nd.empty(y_np.shape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), y_np, atol=1e-5, rtol=1e-5) - - -def test_sgd(): - for target, ctx in ctx_list(): - data = nnvm.sym.Variable("data") - weight = nnvm.sym.Variable("weight") - out = nnvm.sym.elemwise_mul(data, weight ** 2) - - dshape = (1, 2, 3) - wshape = dshape - - base_lr = 0.1 - lr_factor = 0.5 - rescale_grad = 0.2 - wd = 0.1 - clip_gradient = 0.25 - - scheduler = lr_scheduler.FactorScheduler(base_lr=base_lr, step=1, factor=lr_factor) - opt = optimizer.SGD(learning_rate=base_lr, lr_scheduler=scheduler, - rescale_grad=rescale_grad, clip_gradient=clip_gradient, - wd=wd) - opt_sym = opt.minimize(out, var=weight) - - inputs = [("data", dshape, data)] - params = [("weight", wshape, weight)] - - def update_func(data, weight): - gradient_0 = data * 2 * weight * rescale_grad - gradient_0 = np.clip(gradient_0, -clip_gradient, clip_gradient) - weight_0 = weight - base_lr * lr_factor * (gradient_0 + wd * weight) - gradient_1 = data * 2 * weight_0 * rescale_grad - gradient_1 = np.clip(gradient_1, -clip_gradient, clip_gradient) - weight_1 = weight_0 - base_lr * (lr_factor ** 2) * (gradient_1 + wd * weight_0) - return weight_1 - - helper(opt_sym, inputs, params, update_func, 2, target, ctx) - - - -def test_adam(): - for target, ctx in ctx_list(): - data = nnvm.sym.Variable("data") - weight = nnvm.sym.Variable("weight") - out = nnvm.sym.elemwise_mul(data, weight ** 2) - - dshape = (1, 2, 3) - wshape = dshape - - base_lr = 0.1 - beta1 = 0.9 - beta2 = 0.999 - epsilon = 1e-8 - lr_factor = 0.5 - rescale_grad = 0.2 - wd = 0.1 - clip_gradient = 0.25 - - scheduler = lr_scheduler.FactorScheduler(base_lr=base_lr, step=1, factor=lr_factor) - opt = optimizer.Adam(learning_rate=base_lr, beta1=beta1, beta2=beta2, epsilon=epsilon, - lr_scheduler=scheduler, rescale_grad=rescale_grad, - clip_gradient=clip_gradient, wd=wd) - opt_sym = opt.minimize(out, var=weight) - - inputs = [("data", dshape, data)] - params = [("weight", wshape, weight)] - - def update_func(data, weight): - rate_0 = np.sqrt(1 - beta2) / (1 - beta1) - lr_0 = base_lr * lr_factor * rate_0 - gradient_0 = data * 2 * weight * rescale_grad - gradient_0 = np.clip(gradient_0, -clip_gradient, clip_gradient) - m_0 = (1 - beta1) * gradient_0 - v_0 = (1 - beta2) * (gradient_0 ** 2) - weight_0 = weight - lr_0 * (m_0 / (np.sqrt(v_0) + epsilon) + wd * weight) - rate_1 = np.sqrt(1 - beta2 ** 2) / (1 - beta1 ** 2) - lr_1 = base_lr * (lr_factor ** 2) * rate_1 - gradient_1 = data * 2 * weight_0 * rescale_grad - gradient_1 = np.clip(gradient_1, -clip_gradient, clip_gradient) - m_1 = beta1 * m_0 + (1 - beta1) * gradient_1 - v_1 = beta2 * v_0 + (1 - beta2) * (gradient_1 ** 2) - weight_1 = weight_0 - lr_1 * (m_1 / (np.sqrt(v_1) + epsilon) + wd * weight_0) - return weight_1 - - helper(opt_sym, inputs, params, update_func, 2, target, ctx) - -if __name__ == "__main__": - test_sgd() - test_adam() diff --git a/nnvm/tests/python/compiler/test_param_dict.py b/nnvm/tests/python/compiler/test_param_dict.py deleted file mode 100644 index b30f8f99082c..000000000000 --- a/nnvm/tests/python/compiler/test_param_dict.py +++ /dev/null @@ -1,100 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import os -import numpy as np -import nnvm.compiler -import tvm -import json -import base64 -from tvm._ffi.base import py_str -from tvm import rpc -from tvm.contrib import util, graph_runtime - - -def test_save_load(): - x = np.random.uniform(size=(10, 2)).astype("float32") - y = np.random.uniform(size=(1, 2, 3)).astype("float32") - x[:] = 1 - y[:] = 1 - params = {"x": x, "y": y} - param_bytes = nnvm.compiler.save_param_dict(params) - assert isinstance(param_bytes, bytearray) - param2 = nnvm.compiler.load_param_dict(param_bytes) - assert len(param2) == 2 - np.testing.assert_equal(param2["x"].asnumpy(), x) - np.testing.assert_equal(param2["y"].asnumpy(), y) - - -def test_ndarray_reflection(): - x = np.random.uniform(size=(10, 2)).astype("float32") - xx = tvm.nd.array(x) - xnode = tvm.make.node("NDArrayWrapper", name="xx", array=xx) - xnode2 = tvm.make.node("NDArrayWrapper", name="x2", array=xx) - assert xnode.array.same_as(xx) - json_str = tvm.save_json([xnode, xnode2]) - json_dict = json.loads(json_str) - b64_str = json_dict["b64ndarrays"][0] - decoded = py_str(base64.b64encode(base64.b64decode(b64_str))) - assert b64_str == decoded - xlist = tvm.load_json(json_str) - np.testing.assert_equal(xlist[0].array.asnumpy(), xx.asnumpy()) - assert xlist[1].array == xlist[0].array - - -def test_bigendian_rpc_param(): - """Test big endian rpc when there is a PowerPC RPC server available""" - host = os.environ.get("TVM_POWERPC_TEST_HOST", None) - port = os.environ.get("TVM_POWERPC_TEST_PORT", 9090) - if host is None: - return - - def verify_nnvm(remote, target, shape, dtype): - x = nnvm.sym.Variable("x") - y = x + 1 - graph, lib, _ = nnvm.compiler.build( - y, target, - shape={"x": shape}, - dtype={"x": dtype}) - - temp = util.tempdir() - path_dso = temp.relpath("dev_lib.o") - lib.save(path_dso) - remote.upload(path_dso) - lib = remote.load_module("dev_lib.o") - a = np.random.randint(0, 256, size=shape).astype(dtype) - a[:] = 1 - params = {"x" : a} - ctx = remote.cpu(0) - m = graph_runtime.create(graph, lib, ctx) - # uses save param_dict - m.load_params(nnvm.compiler.save_param_dict(params)) - m.run() - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype, ctx=ctx)) - tvm.testing.assert_allclose(a + 1, out.asnumpy()) - - print("Test RPC connection to PowerPC...") - remote = rpc.connect(host, port) - target = "llvm -mtriple=powerpc-linux-gnu" - for dtype in ["float32", "float64", "int32", "int8"]: - verify_nnvm(remote, target, (10,), dtype) - - - -if __name__ == "__main__": - test_ndarray_reflection() - test_save_load() - test_bigendian_rpc_param() diff --git a/nnvm/tests/python/compiler/test_rpc_exec.py b/nnvm/tests/python/compiler/test_rpc_exec.py deleted file mode 100644 index 1584f7c589a4..000000000000 --- a/nnvm/tests/python/compiler/test_rpc_exec.py +++ /dev/null @@ -1,67 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import tvm -from tvm import rpc -from tvm.contrib import util, graph_runtime -import nnvm.symbol as sym -import nnvm.compiler -import numpy as np -import time - -def test_rpc_executor(): - host = "localhost" - port = 9021 - server = rpc.Server(host, port, use_popen=True) - time.sleep(1) - x = sym.Variable("x") - y = sym.Variable("y") - z = sym.exp(y + x) - shape = (10, 128) - dtype = tvm.float32 - shape_dict = {"x": shape, "y": shape} - tmp = util.tempdir() - lib_name = tmp.relpath("net.o") - - graph, lib, _ = nnvm.compiler.build(z, "llvm", shape_dict) - # save module - lib.save(lib_name) - remote = rpc.connect(host, port) - remote.upload(lib_name) - ctx = remote.cpu(0) - # load remote - rlib = remote.load_module("net.o") - - # Create remotemodule - m = graph_runtime.create(graph, rlib, remote.cpu(0)) - # get member functions - set_input, run, get_output = m["set_input"], m["run"], m["get_output"] - na = tvm.nd.array(np.ones(shape).astype(dtype), ctx) - nb = tvm.nd.array(np.ones(shape).astype(dtype), ctx) - # set inputs - set_input("x", na) - set_input("y", nb) - # execute - run() - # get outputs - out = tvm.nd.empty(shape, dtype, ctx) - get_output(0, out) - tvm.testing.assert_allclose( - out.asnumpy(), np.exp(na.asnumpy() + nb.asnumpy())) - server.terminate() - -if __name__ == "__main__": - test_rpc_executor() diff --git a/nnvm/tests/python/compiler/test_simplify_inference.py b/nnvm/tests/python/compiler/test_simplify_inference.py deleted file mode 100644 index 2f520bd6c125..000000000000 --- a/nnvm/tests/python/compiler/test_simplify_inference.py +++ /dev/null @@ -1,65 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Unittest cases for simplify batch_norm""" -import nnvm -from nnvm import symbol as sym -from nnvm.compiler import graph_util, graph_attr - -def test_simplify_batchnorm(): - def simple_bn(x, gamma, beta, moving_mean, moving_var, - axis=1, epsilon=1e-5, shape=None): - # expect = (x - moving_mean) / sym.sqrt(moving_var + eps) * gamma + beta - scale = sym.elemwise_mul(1 / sym.sqrt(moving_var + epsilon), gamma) - shift = sym.elemwise_add( - sym.elemwise_mul(sym.negative(moving_mean), scale), beta) - # for 2D - num_newaxis=len(shape) - axis - 1 - if num_newaxis: - scale = sym.expand_dims(scale, axis=1, num_newaxis=num_newaxis) - shift = sym.expand_dims(shift, axis=1, num_newaxis=num_newaxis) - return x * scale + shift - - - # Before simplify - def check(dim, axis, nstep): - eps = 0.01 - x = sym.Variable("x") + 1 - beta = sym.Variable("beta") - gamma = sym.Variable("gamma") - moving_var = sym.Variable("moving_var") - moving_mean = sym.Variable("moving_mean") - y1, y2 = x, sym.Variable("xx") + 1 - ishape = {"x": tuple(10 for i in range(dim))} - for i in range(nstep): - y1 = sym.batch_norm( - y1 + 1, gamma, beta, moving_mean, moving_var, epsilon=eps, axis=axis) - y1 = sym.dropout(y1) - y2 = simple_bn(y2 + 1, gamma, beta, moving_mean, moving_var, - epsilon=eps, axis=axis, shape=ishape["x"]) - g = nnvm.graph.create(y1) - g2 = nnvm.graph.create(y2) - graph_attr.set_shape_inputs(g, ishape) - g1 = g.apply("InferShape").apply("SimplifyInference") - # assert graph equals as expected - graph_util.check_graph_equal(g1, g2) - - check(2, 1, 1) - check(4, 0, 3) - check(4, 1, 2) - -if __name__ == "__main__": - test_simplify_batchnorm() diff --git a/nnvm/tests/python/compiler/test_to_relay.py b/nnvm/tests/python/compiler/test_to_relay.py deleted file mode 100644 index dac14a8c1f22..000000000000 --- a/nnvm/tests/python/compiler/test_to_relay.py +++ /dev/null @@ -1,58 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm -from nnvm import testing -from nnvm import to_relay -import tvm -from tvm.relay import transform -from tvm.relay import create_executor -from tvm.contrib import graph_runtime -import numpy as np - -def check_model(sym, shapes, dtypes, params): - net = nnvm.graph.create(sym) - graph_json, mod, params = nnvm.compiler.build( - net, - 'llvm', - shape=shapes, - dtype=dtypes, - params=params) - nnvm_rts = graph_runtime.create(graph_json, mod, tvm.cpu(0)) - inputs = {} - for name in shapes: - np_array = np.random.rand(*shapes[name]).astype('float32') - inputs[name] = tvm.nd.array(np_array) - - nnvm_rts.set_input(**params) - nnvm_rts.run(**inputs) - nnvm_out = nnvm_rts.get_output(0) - relay_model, params = to_relay.to_relay(net, shapes, dtypes, params) - mod = tvm.relay.Module.from_expr(relay_model) - mod = transform.InferType()(mod) - relay_rts = create_executor(kind='graph', mod=mod, ctx=tvm.cpu(0), target='llvm') - inputs.update(params) - relay_out = relay_rts.evaluate()(*list(inputs.values())) - np.testing.assert_allclose(nnvm_out.asnumpy(), relay_out.asnumpy()) - -# def test_mlp(): -# mlp, params = testing.mlp.get_workload(1) -# shapes = { "data": (10, 3, 224, 224) } -# dtypes = { "data": 'float32' } -# check_model(mlp, shapes, dtypes, params) - -if __name__ == "__main__": - test_mlp() diff --git a/nnvm/tests/python/compiler/test_top_assign.py b/nnvm/tests/python/compiler/test_top_assign.py deleted file mode 100644 index dae0506edc36..000000000000 --- a/nnvm/tests/python/compiler/test_top_assign.py +++ /dev/null @@ -1,57 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np - -import tvm -from tvm.contrib import graph_runtime - -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list - - -def test_update(): - w = sym.Variable("w") - w2 = sym.Variable("w2") - w = sym._assign(w, w + 1) - w2 = sym._assign(w2, w + 1) - - dshape = (5, 3, 18, 18) - shape_dict = {"w": dshape, "w2":dshape} - dtype = "float32" - - def check(target, ctx): - graph, lib, _ = nnvm.compiler.build(w2, target, shape_dict) - - m = graph_runtime.create(graph, lib, ctx) - - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.set_input("w", data) - m.run() - out = m.get_input("w2", tvm.nd.empty(dshape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), data.asnumpy() + 2, rtol=1e-5) - - m.run() - out = m.get_input("w2", tvm.nd.empty(dshape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), data.asnumpy() + 3, rtol=1e-5) - - for target, ctx in ctx_list(): - check(target, ctx) - - -if __name__ == "__main__": - test_update() diff --git a/nnvm/tests/python/compiler/test_top_level1.py b/nnvm/tests/python/compiler/test_top_level1.py deleted file mode 100644 index ae6266cdde54..000000000000 --- a/nnvm/tests/python/compiler/test_top_level1.py +++ /dev/null @@ -1,605 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import tvm -from tvm.contrib import graph_runtime -import topi.testing -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list -from nnvm.testing.check_computation import check_function - -def test_check_function(): - # test the testing function - - x = sym.Variable("x") - y = sym.Variable("y") - - # different styles of returning gradients from the backward function - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: [head_grads, 2*head_grads], - shape={'x': (1, 2), y: (1, 2)}, dtype='float32') - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: (head_grads, 2*head_grads), - shape={'x': (1, 2), y: (1, 2)}, dtype='float32') - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: {'x': head_grads, 'y': 2*head_grads}, - shape={'x': (1, 2), y: (1, 2)}, dtype='float32') - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: {'y': 2*head_grads}, - shape={'x': (1, 2), y: (1, 2)}, dtype='float32') - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: [2*head_grads], - grad_input_vars=[y], - shape={'x': (1, 2), y: (1, 2)}, dtype='float32') - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: 2*head_grads, - grad_input_vars=[y], - shape={'x': (1, 2), y: (1, 2)}, dtype='float32') - check_function(x + 2*y, lambda x, y: x + 2*y, - lambda x, y, head_grads: 2*head_grads, - grad_input_vars=[y], - shape={'x': (1, 2), y: (1, 2)}, dtype='float64') - - # test just numerical gradients - # different styles of shape and dtype passing - check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, - numerical_grads=True) - check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, dtype='float32', - numerical_grads=True) - check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, dtype={x: 'float32', 'y': 'float32'}, - numerical_grads=True) - check_function(x + 2*y, shape=(1, 2), dtype='float32', - numerical_grads=True) - - # specifying variable attributes on variable creation - # (in this case type codes must be used) - x = sym.Variable("x", dtype=0, shape=(1, 2)) - check_function(x + 2*y, shape={y: (1, 2)}, dtype={'y': 'float32'}, numerical_grads=True) - y = sym.Variable("y", dtype=0, shape=(1, 2)) - - # shape overriding - def _fwd1(x, y): - assert x.shape == (1, 1) - assert y.shape == (1, 2) - return x + 2*y - check_function(x + 2*y, _fwd1, shape={x: (1, 1)}) - - # in_range - def _fwd2(x, y): - assert x.shape == (100,) - assert (x <= 0.9).all() - assert (x >= 0.8).all() - return x + 2*y - check_function(x + 2*y, _fwd2, shape=(100,), in_range=(0.8, 0.9), numerical_grads=False) - check_function(x + 2*y, _fwd2, shape=(100,), in_range={'x': (0.8, 0.9)}, numerical_grads=False) - check_function(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0], - in_range={'head_grads_0': (1.0, 1.0)}) - # explicit passing of values - check_function(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0], - values={'head_grads_0': np.full((1, 2), 1.0)}) - - # check that the function reports errors - def _check_function_must_fail(*args, **kwargs): - error = AssertionError - if 'error' in kwargs: - error = kwargs['error'] - del kwargs['error'] - try: - check_function(*args, quiet=True, **kwargs) - except error: - pass - else: - raise AssertionError("check_function didn't raise an exception") - - _check_function_must_fail(x + 2*y, error=ValueError) - _check_function_must_fail(x + 2*y, lambda x, y: x + y) - _check_function_must_fail(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0]) - _check_function_must_fail(sym.block_grad(x + 2*y), numerical_grads=True) - _check_function_must_fail(x*x, numerical_grads=True, - numerical_grads_params={'atol': 0.0, 'rtol': 0.0}) - _check_function_must_fail(sym.log(-x*x), numerical_grads=True, error=ValueError) - - # different styles of returning results from the forward function - check_function(x + 2*y, lambda x, y: [x + 2*y], numerical_grads=False) - _check_function_must_fail(x + 2*y, lambda x, y: [x + 2*y, x], numerical_grads=False, - error=ValueError) - _check_function_must_fail(x + 2*y, lambda x, y: [], numerical_grads=False, - error=ValueError) - - # multiple outputs - z = sym.Group([2*x + y, x + 2*y]) - check_function(z, lambda x, y: [2*x + y, x + 2*y]) - check_function(z, lambda x, y: (2*x + y, x + 2*y)) - check_function(z, backward=lambda x, y, head_grads: [2*head_grads[0] + head_grads[1], - head_grads[0] + 2*head_grads[1]]) - _check_function_must_fail(z, backward=lambda x, y, head_grads: [2*head_grads[0], - 2*head_grads[1]]) - check_function(z, backward=lambda x, y, head_grads: [head_grads[1], 2*head_grads[1]], - in_range={'head_grads_0': (0, 0)}) - check_function(z, numerical_grads=True) - - z = sym.Group([sym.block_grad(2*x + y), x + 2*y]) - check_function(z, lambda x, y: [2*x + y, x + 2*y], numerical_grads=False) - _check_function_must_fail(z, lambda x, y: [2*x + y, x + 2*y]) - _check_function_must_fail(z, numerical_grads=True) - - z = sym.Group([2*x + y, sym.block_grad(x + 2*y)]) - _check_function_must_fail(z, numerical_grads=True) - - z = sym.Group([2*x + y, x + 2*y, x, y, sym.sum(x)]) - check_function(z, lambda x, y: [2*x + y, x + 2*y, x, y, np.sum(x)]) - - # passing additional parameters to forward and backward - def _fwd3(x, p): - assert p == 'v' - return x + 1 - def _bwd3(x, p, head_grads): - assert p == 'v' - return head_grads - check_function(x + 1, _fwd3, _bwd3, additional_params={'p': 'v'}) - - # implicitly created variables and shape/dtype inference for inputs - x = sym.Variable("x", shape=(2, 3), dtype=0) - b = sym.Variable("b") - y = sym.dense(data=x, bias=b, units=4) - # Don't check gradients on cuda because is doesn't yet support ewise after reduce - check_function(y, exclude_targets={'cuda'}, numerical_grads=True) - check_function(y, shape={'x': (3, 4)}, exclude_targets={'cuda'}, numerical_grads=True) - check_function(y, dtype={'x': 'float64'}, exclude_targets={'cuda'}, numerical_grads=True) - - x = sym.Variable("x") - b = sym.Variable("b") - w = sym.Variable("w") - y = sym.dense(data=x, bias=b, weight=w, units=4) - def _fwd_dense(x, w, b): - return np.dot(x, w.T) + b - check_function(y, _fwd_dense, shape={'x': (1,2)}, dtype={'x': 'float32'}, numerical_grads=False) - check_function(y, _fwd_dense, shape={'x': (1,2)}, dtype={'w': 'float64'}, numerical_grads=False) - _check_function_must_fail(y, _fwd_dense, shape={'x': (1,2)}, - dtype={'w': 'float64', 'b': 'float32'}, - numerical_grads=False, - error=nnvm._base.NNVMError) - # fails because no shape - _check_function_must_fail(y, _fwd_dense, numerical_grads=False, error=ValueError) - # ok because type is float32 by default - check_function(y, _fwd_dense, shape={'x': (1,2)}, numerical_grads=False) - -def test_relu(): - x = sym.Variable("x") - y = sym.relu(sym.leaky_relu(x, alpha=0.3) - 0.2) - - def forward(x): - x = (x < 0) * x * 0.3 + (x > 0) * x - 0.2 - return (x > 0) * x - - def backward(head_grads, x): - sub = (x < 0) * x * 0.3 + (x > 0) * x - 0.2 - return [(sub > 0).astype("float") * \ - ((x > 0).astype("float") + 0.3 * (x < 0).astype("float")) * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, shape=shape) - -def test_prelu_nchw(): - x = sym.Variable("x") - a = sym.Variable("a") - y = sym.prelu(data=x, alpha=a) - - def forward(x, a): - return (x < 0) * (x * a.reshape(3, 1, 1)) + (x>=0) * x - - shape = {'x': (1, 3, 32, 32), 'a': (3,)} - check_function(y, forward, shape=shape) - -def test_prelu_nhwc(): - x = sym.Variable("x") - a = sym.Variable("a") - y = sym.prelu(data=x, alpha=a, axis=3) - - def forward(x, a): - return (x < 0) * (x * a.reshape(1, 1, 3)) + (x>=0) * x - - shape = {'x': (1, 32, 32, 3), 'a': (3,)} - check_function(y, forward, shape=shape) - -def test_sym_scalar_pow(): - scalar = 3 - x = sym.Variable("x") - y = x**scalar - - def forward(x): - return x**scalar - - def backward(head_grads, x): - return [scalar * x**(scalar - 1) * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, shape=shape) - - -def test_scalar_sym_pow(): - scalar = 3 - x = sym.Variable("x") - y = scalar**x - - def forward(x): - return scalar**x - - def backward(head_grads, x): - return [np.log(scalar) * scalar**x * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, shape=shape) - - -def test_exp(): - x = sym.Variable("x") - y = sym.exp(x) - - def forward(x): - return np.exp(x) - - def backward(head_grads, x): - return [np.exp(x) * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, shape=shape) - - -def test_log(): - x = sym.Variable("x") - y = sym.log(x) - - def forward(x): - return np.log(x) - - def backward(head_grads, x): - return [1. / x * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, in_range=(0.002, 2.0), shape=shape) - - -def test_tanh(): - x = sym.Variable("x") - y = sym.tanh(x) - - def forward(x): - return np.sinh(x) / np.cosh(x) - - def backward(head_grads, x): - y_np = forward(x) - return [(1 - y_np**2) * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, shape=shape) - - -def test_sigmoid(): - x = sym.Variable("x") - y = sym.sigmoid(x) - - def forward(x): - return 1.0 / (1.0 + np.exp(-x)) - - def backward(head_grads, x): - y_np = forward(x) - return [y_np *(1 - y_np) * head_grads] - - shape = {'x': (1, 3, 32, 32)} - check_function(y, forward, backward, shape=shape) - - -def test_softmax(): - x = sym.Variable("x") - y = sym.softmax(x) - - def forward(x): - return topi.testing.softmax_python(x) - - def backward(head_grads, x): - y = topi.testing.softmax_python(x) - grad = y * (head_grads - np.sum(y * head_grads, axis=1, keepdims=True)) - return [grad] - - check_function(y, forward, backward, - shape={'x': (10, 1000)}, numerical_grads=False) - check_function(y, forward, backward, - shape={'x': (2, 10)}) - - -def test_log_softmax(): - x = sym.Variable("x") - y = sym.log_softmax(x) - - def forward(x): - return topi.testing.log_softmax_python(x) - - def backward(head_grads, x): - y = topi.testing.log_softmax_python(x) - grad = head_grads - np.exp(y) * np.sum(head_grads, axis=1, keepdims=True) - return [grad] - - check_function(y, forward, backward, - shape={'x': (10, 1000)}, numerical_grads=False) - check_function(y, forward, backward, - shape={'x': (2, 10)}) - - -def test_dense(): - x = sym.Variable("x", shape=(10, 100)) - w = sym.Variable("dense_weight", shape=(3, 100)) - b = sym.Variable("dense_bias", shape=(3,)) - y = sym.dense(x, w, b, use_bias=True, units=3, name="dense") - y = sym.flatten(y) - - def forward(x, dense_weight, dense_bias): - return np.dot(x, dense_weight.T) + dense_bias - shape = { - 'x': (10, 100), - 'w': (3, 100), - 'b': (3,) - } - # Don't check gradients on cuda because is doesn't yet support ewise after reduce - check_function(y, forward, shape=shape, - exclude_targets={'cuda'}, numerical_grads=True) - check_function(y, forward, shape=shape, - only_targets={'cuda'}, numerical_grads=False) - - -def test_batchnorm(): - x = sym.Variable("x") - beta = sym.Variable("beta") - gamma = sym.Variable("gamma") - moving_var = sym.Variable("moving_var") - moving_mean = sym.Variable("moving_mean") - eps = 1e-5 - y = sym.batch_norm( - x, gamma, beta, moving_mean, moving_var, epsilon=eps) - - def forward(x, gamma, beta, moving_mean, moving_var): - return (x - moving_mean) / np.sqrt(moving_var + eps) * gamma + beta - - shape = { - 'x': (10, 20), - 'gamma': (20,), - 'beta': (20,), - 'moving_mean': (20,), - 'moving_var': (20,) - } - - check_function(y, forward, in_range=(0.001, 1.0), shape=shape) - - -def verify_concatenate(ishape, axis): - x = [sym.Variable("x%d" % i, shape=ishape[i]) for i in range(len(ishape))] - y = sym.concatenate(*x, axis=axis) + 1 - - def forward(**kwargs): - return np.concatenate(list(kwargs.values()), axis=axis) + 1 - - check_function(y, forward) - - -def test_concatenate(): - verify_concatenate([(2, 3, 4), (1, 3, 4)], axis=0) - verify_concatenate([(2, 4), (2, 7)], axis=1) - - -def verify_split(ishape, indices_or_sections, axis): - x = sym.Variable("x", shape=ishape) - y = sym.split(x, indices_or_sections=indices_or_sections, axis=axis) - - def forward(x): - return np.split(x, indices_or_sections, axis=axis) - - check_function(y, forward) - - -def test_split(): - verify_split((2, 3), 2, axis=0) - verify_split((5, 3), [3], axis=0) - verify_split((5, 9, 3), [3, 4], axis=1) - -def verify_strided_slice(ishape, begin, end, strideinp=None): - stride = strideinp if strideinp else [1, 1, 1] - x = sym.Variable("x", shape=ishape) - if strideinp: - y = sym.strided_slice(x, begin = begin, end = end, stride = stride) + 1 - else: - y = sym.strided_slice(x, begin = begin, end = end) + 1 - - for i in range(len(begin), 3): - begin.append(0) - for i in range(len(end), 3): - end.append(ishape[i]) - - def test_forward(x): - return x[begin[0]:end[0]:stride[0], - begin[1]:end[1]:stride[1], begin[2]:end[2]:stride[2]] + 1 - - check_function(y, test_forward) - -def test_strided_slice(): - verify_strided_slice((3, 4, 3), [0, 0, 0], [4, -5, 4], [1, -1, 2]) - verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1]) - verify_strided_slice((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1]) - verify_strided_slice((3, 4, 3), [1, 0, 0], [2, 2, 3], [1, 1, 2]) - verify_strided_slice((3, 4, 3), [1, -1, 0], [2, -3, 3], [1, -1, 1]) - verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 4, 3]) - verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 1000, 3]) - verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 4]) - verify_strided_slice((3, 4, 3), [1, 1], [4, 4, 3]) - -def verify_take(src_shape, indices_src, axis=None): - src_dtype = "float32" - indices_dtype = "int32" - indices_src = np.array(indices_src, dtype=indices_dtype) - a = sym.Variable("a", shape=src_shape) - indices = sym.Variable("indices", shape=indices_src.shape) - y = sym.take(a, indices, axis=axis) - - def forward(a, indices): - return np.take(a, indices=indices, axis=axis) - - a_src = np.arange(np.prod(src_shape), dtype=src_dtype).reshape(src_shape) - - check_function(y, forward, - dtype={'a': src_dtype, 'indices': indices_dtype}, - values={'a': a_src, 'indices': indices_src}) - -def test_take(): - verify_take((4,), [1]) - verify_take((4,), [[0,1,2,3]]) - verify_take((3,3,3), [[11,25]]) - verify_take((4,), [[0,1],[2,3]]) - verify_take((4,), [1], 0) - verify_take((2,2), [[[1,0],[0,1]]], 0) - verify_take((2,2), [[[1,0],[0,1]]], 1) - verify_take((4,3,5,6), [[2,1,0,0]], -2) - - -def verify_squeeze(shape, axis): - x = sym.Variable("x") - if axis is not None: - y = sym.squeeze(x, axis=axis) - else: - y = sym.squeeze(x) - y = y + 1 - - def forward(x): - return np.squeeze(x, axis=axis) + 1 - - def backward(head_grads, x): - return [np.reshape(head_grads, x.shape)] - - check_function(y, forward, backward, shape=shape) - - -def test_squeeze(): - verify_squeeze((1, 3, 2, 5), None) - verify_squeeze((1, 3, 1), axis=0) - verify_squeeze((1, 3, 2, 5, 1), axis=-1) - - -def test_pad(): - x = sym.Variable("x") - y = sym.pad(x, pad_width=((0, 0), (0, 0), (0, 1), (2, 3)), pad_value=1.) - - def forward(x): - return np.pad(x, - pad_width=((0, 0), (0, 0), (0, 1), (2, 3)), - mode='constant', constant_values=1.) - - shape = {'x': (1, 3, 28, 28)} - check_function(y, forward, shape=shape) - -def verify_lrn(ishape, size, axis, bias, alpha, beta): - x = sym.Variable("x", shape=ishape) - y = sym.lrn(x, size=size, axis=axis, bias=bias, alpha=alpha, beta=beta) - - def forward1(x): - return topi.testing.lrn_python(x, size, axis, bias, alpha, beta) - - check_function(y, forward1) - - def forward2(x): - y = forward1(x) - return (y > 0)*y - - #Checking LRN op followed by elementwise op relu - check_function(sym.relu(y), forward2, in_range={'x': (-10.0, 10.0)}) - -def verify_l2_normalize(ishape, eps, axis): - x = sym.Variable("x", shape=ishape) - y = sym.l2_normalize(x, eps=eps, axis=axis) - - def forward1(x): - return topi.testing.l2_normalize_python(x, eps, axis) - - check_function(y, forward1) - - def forward2(x): - y = forward1(x) - return (y > 0)*y - - #Checking L2 normalization op followed by elementwise op relu - check_function(sym.relu(y), forward2, in_range={'x': (-10.0, 10.0)}) - -def test_lrn(): - verify_lrn((1, 3, 20, 20), 3, 1, 1.0, 1.0, 0.5) - verify_lrn((1, 3, 20, 20), 3, 1, 2.0, 1.0, 0.75) - -def test_l2_normalize(): - verify_l2_normalize((1, 3, 20, 20), 0.001, (1,)) - verify_l2_normalize((1, 3, 20, 20), 0.001, (1, 2)) - -def verify_gather_nd(src_shape, indices_src): - src_dtype = "float32" - indices_dtype = "int32" - indices_src = np.array(indices_src, dtype=indices_dtype) - a = sym.Variable("a", shape=src_shape) - indices = sym.Variable("indices", shape=indices_src.shape) - y = sym.gather_nd(a, indices) - - def forward(a, indices): - return topi.testing.gather_nd_python(a, indices) - - a_src = np.arange(np.prod(src_shape), dtype=src_dtype).reshape(src_shape) - - check_function(y, forward, - dtype={'a': src_dtype, 'indices': indices_dtype}, - values={'a': a_src, 'indices': indices_src}) - -def test_gather_nd(): - verify_gather_nd((4,), [[1]]) - verify_gather_nd((4,), [[1, 3, 2]]) - verify_gather_nd((2, 3), [[1]]) - verify_gather_nd((2, 3), [[1], [0]]) - verify_gather_nd((2, 3), [[1, 0], [0, 2]]) - verify_gather_nd((2, 3, 4), [[1, 0], [0, 2]]) - verify_gather_nd((2, 3, 4), [[1, 0], [0, 2], [3, 1]]) - verify_gather_nd((2, 3, 4), [[[1, 0], [0, 1]], [[0, 2], [1, 2]], - [[3, 1], [0, 2]]]) - verify_gather_nd((2, 3, 4, 5), [[1, 0], [0, 2]]) - verify_gather_nd((2, 3, 4, 5), [[1, 0], [2, 1], [3, 2], [4, 2]]) - -if __name__ == "__main__": - test_check_function() - test_split() - test_concatenate() - test_log_softmax() - test_batchnorm() - test_dense() - test_relu() - test_prelu_nchw() - test_prelu_nhwc() - test_sym_scalar_pow() - test_scalar_sym_pow() - test_exp() - test_log() - test_tanh() - test_sigmoid() - test_softmax() - test_squeeze() - test_pad() - test_take() - test_lrn() - test_l2_normalize() - test_strided_slice() - test_gather_nd() diff --git a/nnvm/tests/python/compiler/test_top_level2.py b/nnvm/tests/python/compiler/test_top_level2.py deleted file mode 100644 index b558428f0144..000000000000 --- a/nnvm/tests/python/compiler/test_top_level2.py +++ /dev/null @@ -1,362 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np - -import tvm -from tvm.contrib import graph_runtime -import topi -import topi.testing -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list - - -def test_conv2d(): - def run_test_conv2d(sym, dtype, dshape, kshape, oshape, shape_dict, padding): - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(sym, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype)) - m.run(x=data, y_weight=kernel, y_bias=bias) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - c_np = topi.testing.conv2d_nchw_python( - data.asnumpy(), kernel.asnumpy(), 1, padding) - c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1) - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - x = sym.Variable("x") - y = sym.conv2d(x, channels=10, kernel_size=(3,3), - name="y", padding=(1,1)) - dtype = "float32" - dshape = (1, 3, 18, 18) - kshape = (10, 3, 3, 3) - oshape = (1, 10, 18, 18) - shape_dict = {"x": dshape} - run_test_conv2d(y, dtype, dshape, kshape, oshape, shape_dict, (1,1)) - - x = sym.Variable("x") - y = sym.conv2d(x, channels=10, kernel_size=(1,3), - name="y", padding=(0,1)) - dtype = "float32" - dshape = (1, 3, 224, 224) - kshape = (10, 3, 1, 3) - oshape = (1, 10, 224, 224) - shape_dict = {"x": dshape} - run_test_conv2d(y, dtype, dshape, kshape, oshape, shape_dict, (0,1)) - - -def test_mixed_precision(): - x = sym.Variable("x") - dtype = "int8" - out_dtype="int32" - y = sym.conv2d(x, - channels=10, - kernel_size=(3,3), - name="y", - padding=(1,1), - use_bias=False, - out_dtype="int32") - dshape = (1, 3, 18, 18) - kshape = (10, 3, 3, 3) - oshape = (1, 10, 18, 18) - shape_dict = {"x": dshape} - dtype_dict = {"x": dtype} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict, dtype_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(-127, 127, size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(-127, 127, size=kshape).astype(dtype)) - m.run(x=data, y_weight=kernel) - out = m.get_output(0, tvm.nd.empty(oshape, out_dtype)) - c_np = topi.testing.conv2d_nchw_python( - data.asnumpy().astype(out_dtype), - kernel.asnumpy().astype(out_dtype), 1, 1) - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - -def test_dilated_conv2d(): - dilation = 3 - x = sym.Variable("x") - y = sym.conv2d(x, channels=10, kernel_size=(3, 3), dilation=(dilation, dilation), - name="y", padding=(1, 1)) - dtype = "float32" - dshape = (1, 3, 18, 18) - kshape = (10, 3, 3, 3) - oshape = (1, 10, 14, 14) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype)) - kernel_np = np.random.uniform(size=kshape).astype(dtype) - kernel = tvm.nd.array(kernel_np) - dkernel_np = topi.testing.dilate_python(kernel_np, (1, 1, dilation, dilation)) - m.run(x=data, y_weight=kernel, y_bias=bias) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - c_np = topi.testing.conv2d_nchw_python( - data.asnumpy(), dkernel_np, 1, 1) - c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1) - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - -def test_grouped_conv2d_nchw(): - x = sym.Variable("x") - y = sym.conv2d(x, channels=32, kernel_size=(3,3), groups=32, - name="y", padding=(1,1)) - dtype = "float32" - dshape = (1, 32, 18, 18) - kshape = (32, 1, 3, 3) - oshape = (1, 32, 18, 18) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype)) - m.run(x=data, y_weight=kernel, y_bias=bias) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - c_np = topi.testing.depthwise_conv2d_python_nchw( - data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME') - c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1) - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - -def test_grouped_conv2d_nhwc(): - x = sym.Variable("x") - y = sym.conv2d(x, channels=32, kernel_size=(3,3), groups=32, - name="y", padding=(1,1), layout="NHWC", kernel_layout ='HWOI') - dtype = "float32" - dshape = (1, 18, 18, 32) - kshape = (3, 3, 32, 1) - oshape = (1, 18, 18, 32) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - bias = tvm.nd.array(np.random.uniform(size=kshape[2]).astype(dtype)) - m.run(x=data, y_weight=kernel, y_bias=bias) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - c_np = topi.testing.depthwise_conv2d_python_nhwc( - data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME') - c_np = c_np + bias.asnumpy().reshape(1, 1, kshape[2]) - tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5) - - -def test_conv2d_transpose(): - x = sym.Variable("x") - y = sym.conv2d_transpose(x, channels=10, kernel_size=(3,3), strides=(2,2), - name="y", padding=(1,1), output_padding=(2,2)) - dtype = "float32" - dshape = (1, 3, 18, 18) - kshape = (3, 10, 3, 3) - oshape = (1, 10, 37, 37) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype)) - bias = tvm.nd.array(np.random.uniform(size=kshape[1]).astype(dtype)) - m.run(x=data, y_weight=kernel, y_bias=bias) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - c_np = topi.testing.conv2d_transpose_nchw_python( - data.asnumpy(), kernel.asnumpy(), 2, 1) - c_np = c_np + bias.asnumpy().reshape(kshape[1], 1, 1) - d_np = np.zeros(shape=oshape) - d_np[:,:,0:c_np.shape[2],0:c_np.shape[3]] = c_np - tvm.testing.assert_allclose(out.asnumpy(), d_np, rtol=1e-5) - - -def test_max_pool2d(): - x = sym.Variable("x") - y = sym.max_pool2d(x, pool_size=(2,2), strides=(2,2), - padding=(0,0), name="y", ceil_mode=True) - dtype = "float32" - dshape = (1, 3, 28, 28) - oshape = (1, 3, 14, 14) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = np.max(data.asnumpy().reshape(1,3,14,2,14,2), axis=(3,5)) - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5) - - -def test_avg_pool2d(): - x = sym.Variable("x") - y = sym.avg_pool2d(x, pool_size=(2,2), strides=(2,2), padding=(0,0), name="y") - dtype = "float32" - dshape = (1, 3, 28, 28) - oshape = (1, 3, 14, 14) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = np.mean(data.asnumpy().reshape(1,3,14,2,14,2), axis=(3,5)) - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5) - - -def test_avg_pool2d_no_count_pad(): - kh, kw = (4, 4) - sh, sw = (2, 2) - ph, pw = (2, 2) - - x = sym.Variable("x") - y = sym.avg_pool2d(x, pool_size=(kh, kw), strides=(sw, sw), padding=(ph, pw), - name="y", count_include_pad=False) - dtype = "float32" - n = 1 - (ic, ih, iw) = (3, 28, 28) - (oc, oh, ow) = (3, 15, 15) - - a_np = np.random.uniform(low=0.001, size=(n, ic, ih, iw)).astype(dtype) - pad_np = np.zeros(shape=(n, ic, ih+2*ph, iw+2*pw)).astype(dtype) - no_zero = (range(n), range(ic), (range(ph, ih+ph)), (range(pw, iw+pw))) - pad_np[np.ix_(*no_zero)] = a_np - b_np = np.zeros(shape=(n, oc, oh, ow)).astype(dtype) - - for i in range(oh): - for j in range(ow): - pad_count = np.sum(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw] > 0, axis=(2,3)) - b_np[:,:,i,j] = np.sum(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw], - axis=(2,3)) / np.maximum(pad_count, 1) - b_np = np.maximum(b_np, 0.0) - shape_dict = {"x": (n, ic, ih, iw)} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(a_np) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty((n, oc, oh, ow), dtype)) - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5) - - -def test_global_max_pool2d(): - x = sym.Variable("x") - y = sym.global_max_pool2d(x, name="y") - dtype = "float32" - dshape = (1, 1024, 7, 7) - oshape = (1, 1024, 1, 1) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = np.max(data.asnumpy(), axis=(2,3), keepdims=True) - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5) - - -def test_global_avg_pool2d(): - x = sym.Variable("x") - y = sym.global_avg_pool2d(x, name="y") - dtype = "float32" - dshape = (1, 1024, 7, 7) - oshape = (1, 1024, 1, 1) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = np.mean(data.asnumpy(), axis=(2,3), keepdims=True) - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5) - - -def test_upsampling_nearest_neighbor(): - x = sym.Variable("x") - scale = 2 - y = sym.upsampling(x, scale=scale, name="y") - dtype = "float32" - dshape = (1, 16, 32, 32) - oshape = (1, 16, 32*scale, 32*scale) - shape_dict = {"x": dshape} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict) - m = graph_runtime.create(graph, lib, ctx) - a_np = np.random.uniform(size=dshape).astype(dtype) - data = tvm.nd.array(a_np) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = topi.testing.upsampling_python(a_np, (scale, scale), "NCHW") - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5) - -def test_upsampling_bilinear(): - x = sym.Variable("x") - scale = 2 - y = sym.upsampling(x, scale=scale, method="BILINEAR", name="y", layout="NCHW") - dtype = "float32" - dshape = (1, 4, 32, 32) - oshape = (1, 4, 32*scale, 32*scale) - shape_dict = {"x": dshape} - dtype_dict = {"x": dtype} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict, dtype_dict) - m = graph_runtime.create(graph, lib, ctx) - a_np = np.random.uniform(size=dshape).astype(dtype) - data = tvm.nd.array(a_np) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = topi.testing.bilinear_resize_python(a_np, (32*scale, 32*scale), "NCHW", align_corners=False) - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5, atol=1e-5) - -def test_resize_bilinear(): - x = sym.Variable("x") - y = sym.resize(x, size=(60, 60), method="BILINEAR", name="y", layout="NHWC", align_corners=True) - dtype = "float32" - dshape = (1, 32, 32, 4) - oshape = (1, 60, 60, 4) - shape_dict = {"x": dshape} - dtype_dict = {"x": dtype} - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, shape_dict, dtype_dict) - m = graph_runtime.create(graph, lib, ctx) - a_np = np.random.uniform(size=dshape).astype(dtype) - data = tvm.nd.array(a_np) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(oshape, dtype)) - b_np = topi.testing.bilinear_resize_python(a_np, (60, 60), "NHWC") - tvm.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5, atol=1e-5) - -if __name__ == "__main__": - test_mixed_precision() - test_conv2d() - test_dilated_conv2d() - test_grouped_conv2d_nchw() - test_grouped_conv2d_nhwc() - test_conv2d_transpose() - test_max_pool2d() - test_avg_pool2d() - test_avg_pool2d_no_count_pad() - test_global_max_pool2d() - test_global_avg_pool2d() - test_upsampling_nearest_neighbor() - test_upsampling_bilinear() - test_resize_bilinear() diff --git a/nnvm/tests/python/compiler/test_top_level3.py b/nnvm/tests/python/compiler/test_top_level3.py deleted file mode 100644 index c60f0450b30a..000000000000 --- a/nnvm/tests/python/compiler/test_top_level3.py +++ /dev/null @@ -1,63 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import tvm -from tvm.contrib import graph_runtime -import topi.testing -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list -from nnvm.testing.check_computation import check_function - -def check_map(symfunc, np_func, np_backward=None, dtype="float32", rnd_min=-1, rnd_max=1): - x = sym.Variable("x") - y = symfunc(x) - shape = {'x': (1, 3, 32, 32)} - check_function(y, lambda x: np_func(x), np_backward, - dtype=dtype, shape=shape, in_range=(rnd_min, rnd_max)) - - -def test_floor(): - check_map(sym.floor, np.floor) - -def test_ceil(): - check_map(sym.ceil, np.ceil) - -def test_trunc(): - check_map(sym.trunc, np.trunc) - -def test_round(): - check_map(sym.round, np.round) - -def test_abs(): - check_map(sym.abs, np.abs) - check_map(sym.abs, np.abs, dtype = "int32") - check_map(sym.abs, np.abs, dtype = "int8") - -def test_shift(): - n = 3 - for dtype in ["int32", "int8"]: - check_map(lambda x : x >> n, lambda x: x >> n, dtype=dtype, rnd_min=-100, rnd_max=100) - check_map(lambda x : x << n, lambda x: x << n, dtype=dtype, rnd_min=-100, rnd_max=100) - -if __name__ == "__main__": - test_shift() - test_floor() - test_ceil() - test_round() - test_abs() - test_trunc() diff --git a/nnvm/tests/python/compiler/test_top_level4.py b/nnvm/tests/python/compiler/test_top_level4.py deleted file mode 100644 index 691163974470..000000000000 --- a/nnvm/tests/python/compiler/test_top_level4.py +++ /dev/null @@ -1,746 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import math -import numpy as np -import tvm -from tvm.contrib import graph_runtime -import topi -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list -from nnvm.testing.check_computation import check_function - -def verify_transpose(dshape, axes): - x = sym.Variable("x") - if axes: - y = sym.transpose(x, axes=axes) - else: - y = sym.transpose(x) - y = y + 1 - dtype = "float32" - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, {"x": dshape}) - m = graph_runtime.create(graph, lib, ctx) - # set input - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.run(x=data) - out_np = np.transpose(data.asnumpy(), axes=axes) + 1 - out = m.get_output(0, tvm.nd.empty(out_np.shape)) - tvm.testing.assert_allclose(out.asnumpy(), out_np, atol=1e-5, rtol=1e-5) - -def verify_reduce_explicit(dshape, data, result, fsym, oshape=None, otype='float32', **kwargs): - """ Verify reduce operations by comparign its result with `result` """ - x = sym.Variable("x") - y = fsym(x + 0, **kwargs) - for target, ctx in ctx_list(): - # TODO(yuruofei): remove when cuda reduce schedule is done - if target == 'cuda' and fsym == sym.mean: - continue - graph, lib, _ = nnvm.compiler.build(y, target, {"x": dshape}) - m = graph_runtime.create(graph, lib, ctx) - # set input - m.run(x=data) - # oshape set to None means do not test the shape-correctness - oshape = result.shape if isinstance(result, np.ndarray) else (1,) if oshape is None else oshape - out = m.get_output(0, tvm.nd.empty(oshape, dtype=otype)) - if isinstance(result, np.ndarray): - np.testing.assert_equal(out.asnumpy().shape, result.shape) - tvm.testing.assert_allclose(out.asnumpy(), result, atol=1e-5, rtol=1e-5) - else: - tvm_out = out.asnumpy() - assert abs(result - tvm_out) <= (1e-5 + 1e-5 * abs(tvm_out)) - -def verify_reduce(dshape, fnp, fsym, oshape=None, otype='float32', **kwargs): - """ Verify reduce operations by generating data at random and calling numpy - version as reference """ - data = np.random.uniform(size=dshape).astype(otype) - result = fnp(data + 0, **kwargs) - verify_reduce_explicit(dshape, data, result, fsym, oshape=oshape, otype=otype, **kwargs) - -def verify_collapse(dshape, target_shape, fnp): - x = sym.Variable("x", shape=dshape) - t = sym.Variable("t", shape=target_shape) - y = sym.collapse_sum(x, t) - dtype = "float32" - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, - {"x": dshape, "t": target_shape}) - m = graph_runtime.create(graph, lib, ctx) - data = np.random.uniform(size=dshape).astype(dtype) - m.run(x=data) - out = m.get_output(0, tvm.nd.empty(target_shape)) - out_np = fnp(data) - tvm.testing.assert_allclose(out.asnumpy(), out_np, atol=1e-5, rtol=1e-5) - - -def test_transpose(): - verify_transpose((2, 3, 4), (0, 2, 1)) - verify_transpose((2, 3, 4), None) - - -def test_reduce(): - - def _with_keepdims(func): - """ Wrapper around numpy's argmax/argmin with `keepdims` argument supported """ - def wrapper(data, axis=None, keepdims=False): - if not keepdims: - return func(data, axis=axis) - else: - if axis is not None: - out_shape = list(data.shape) - out_shape[axis] = 1 - else: - out_shape = [1 for _ in range(len(data.shape))] - return func(data, axis=axis).reshape(out_shape) - return wrapper - - verify_reduce((2, 3, 4), np.max, sym.max, axis=1, keepdims=True) - verify_reduce((4, 4, 3), np.min, sym.min, keepdims=True) - verify_reduce((4, 4, 3), np.sum, sym.sum, axis=(0, 2)) - verify_reduce((4, 4, 3), np.sum, sym.sum) - verify_reduce((128, 24, 128), np.mean, sym.mean, axis=(0, 1), keepdims=False) - verify_reduce((128, 24, 128), np.mean, sym.mean, axis=(0, 2), keepdims=False) - verify_reduce((128, 24, 128), np.mean, sym.mean, axis=(0, 1), keepdims=True) - verify_reduce((128, 24, 128), np.mean, sym.mean, axis=(0, 2), keepdims=True) - verify_reduce((128, 24, 128), np.mean, sym.mean, keepdims=True) - verify_reduce((128, 24, 128), np.mean, sym.mean, keepdims=False) - verify_reduce((128, 24, 128), np.mean, sym.mean, axis=(0, 1, 2), keepdims=True) - - data = np.array([[[1,2],[3,4]],[[3,44],[5,6]]], dtype=np.float32) - verify_reduce_explicit([2,2,2], data, np.array([[1,1],[1,0]]), sym.argmax, otype='int32', axis=[0,2], exclude=True) - verify_reduce_explicit([2,2,2], data, np.array([[0,0],[0,1]]), sym.argmin, otype='int32', axis=[0,2], exclude=True) - shape = [4, 4, 3] - for axis in [None, 0, 1, 2]: - for keepdims in [True,False]: - kwargs = { 'keepdims':keepdims } - if axis is None: - # FIXME: NNVM doesn't support setting `axis=None` explicitly. - kwargs.update({'oshape': [1,1,1] if keepdims else [1] }) - else: - kwargs.update({'axis': axis}) - kwargs.update({'oshape': shape[:axis]+[1]+shape[axis+1:] if keepdims else shape[:axis]+shape[axis+1:]}) - - verify_reduce(shape, _with_keepdims(np.argmax), sym.argmax, otype='int32', **kwargs) - verify_reduce(shape, _with_keepdims(np.argmin), sym.argmin, otype='int32', **kwargs) - - -def test_collapse(): - verify_collapse((2, 3, 4), (1,), lambda x: x.sum()) - verify_collapse((2, 3, 4), (1, 1, 1), lambda x: x.sum(keepdims=True)) - verify_collapse((2, 3, 4), (1, 1), lambda x: x.sum().reshape(1, 1)) - verify_collapse((2, 3, 4), (1, 4), lambda x: x.reshape(-1, 4).sum(0, keepdims=True)) - verify_collapse((2, 3, 4), (3, 4), lambda x: x.sum(0)) - verify_collapse((2, 3, 4), (1, 3, 4), lambda x: x.sum(0, keepdims=True)) - verify_collapse((2, 3, 4), (1, 1, 4), lambda x: x.sum((0, 1), keepdims=True)) - verify_collapse((2, 3, 4), (2, 1, 4), lambda x: x.sum(1, keepdims=True)) - verify_collapse((2, 3, 4), (2, 1, 1), lambda x: x.sum((1, 2), keepdims=True)) - verify_collapse((2, 3, 4), (2, 3, 1), lambda x: x.sum(2, keepdims=True)) - verify_collapse((2, 3, 4), (2, 3, 4), lambda x: x) - - -def verify_flip(ishape, axis): - x = sym.Variable("x") - y = sym.flip(x, axis=axis) + 1 - dtype = "float32" - x_np = np.random.uniform(size=ishape).astype(dtype) - res = np.flip(x_np, axis) + 1 - - for target, ctx in ctx_list(): - # set input - graph, lib, _ = nnvm.compiler.build(y, target, {"x": ishape}) - m = graph_runtime.create(graph, lib, ctx) - m.run(x=x_np) - out = m.get_output(0, tvm.nd.empty(res.shape)) - tvm.testing.assert_allclose(out.asnumpy(), res, atol=1e-5, rtol=1e-5) - - -def test_flip(): - verify_flip((3, 4, 3), 1) - verify_flip((3, 4, 3), 0) - verify_flip((3, 4, 3), 2) - verify_flip((3, 4, 3), -1) - verify_flip((3, 4, 3), -3) - verify_flip((3, 4, 3), -2) - - -def verify_reshape(dshape, oshape): - x = sym.Variable("x") - y = sym.reshape(x, shape=oshape) - y = y + 1 - dtype = "float32" - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(y, target, {"x": dshape}) - m = graph_runtime.create(graph, lib, ctx) - # set input - data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype)) - m.run(x=data) - out_np = data.asnumpy().reshape(oshape) + 1 - out = m.get_output(0, tvm.nd.empty(out_np.shape)) - tvm.testing.assert_allclose(out.asnumpy(), out_np, atol=1e-5, rtol=1e-5) - - -def test_reshape(): - verify_reshape((2, 3, 4), (-1, 2, 1)) - verify_reshape((2, 3, 4), (8, 3)) - verify_reshape((4, 7), (2, 7, 2)) - - -def test_clip(): - x = sym.Variable("x") - a_min=0.2 - a_max=0.75 - y = sym.clip(x, a_min=a_min, a_max=a_max) - - def forward(x): - return np.clip(x, a_min=a_min, a_max=a_max) - - def backward(head_grads, x): - mask1 = np.greater_equal(x, a_min).astype("float") - mask2 = np.less_equal(x, a_max).astype("float") - return [head_grads * mask1 * mask2] - - shape = {'x': (3, 4, 5)} - check_function(y, forward, backward, shape=shape) - - -def test_broadcast(): - a = sym.Variable("a") - b = sym.Variable("b") - shape = {'a': (3, 4, 5), 'b': (1, 5)} - - def _collapse(g): - return g.reshape(-1, shape['b'][-1]).sum(0, keepdims=True) - - y = sym.broadcast_add(a, b) - def _backward_add(head_grads, a, b): - da = head_grads - db = _collapse(head_grads) - return da, db - check_function(y, lambda a, b: a + b, _backward_add, shape=shape) - - y = sym.broadcast_sub(a, b) - def _backward_sub(head_grads, a, b): - da = head_grads - db = -_collapse(head_grads) - return da, db - check_function(y, lambda a, b: a - b, _backward_sub, shape=shape) - - y = sym.broadcast_mul(a, b) - def _backward_mul(head_grads, a, b): - da = head_grads * b - db = _collapse(head_grads * a) - return da, db - check_function(y, lambda a, b: a * b, _backward_mul, shape=shape) - - y = sym.broadcast_div(a, b) - def _backward_div(head_grads, a, b): - da = head_grads / b - db = _collapse(- head_grads * a / b**2) - return da, db - # We avoid computing numerical derivatives too close to zero here - check_function(y, lambda a, b: a / b, _backward_div, shape=shape, numerical_grads=False) - check_function(y, lambda a, b: a / b, _backward_div, shape=shape, - in_range={'b': (0.1, 20)}) - - y = sym.broadcast_mod(a, b) - check_function(y, - lambda a, b: np.mod(a, b), - in_range={'a': (0.001, 100), 'b': (1, 100)}, dtype='int32', shape=shape) - - y = sym.broadcast_max(a, b) - check_function(y, lambda a, b: np.maximum(a, b), shape=shape) - - y = sym.broadcast_min(a, b) - check_function(y, lambda a, b: np.minimum(a, b), shape=shape) - - y = sym.broadcast_pow(a, b) - check_function(y, - lambda a, b: np.power(a, b), - in_range={'a': (0.001, 100), 'b': (0.001, 2)}, shape=shape) - - y = sym.broadcast_left_shift(a, b) - check_function(y, lambda a, b: a << b, dtype='int32', shape=shape) - - y = sym.broadcast_right_shift(a, b) - check_function(y, lambda a, b: a >> b, dtype='int32', shape=shape) - - y = sym.broadcast_greater(a, b) - check_function(y, lambda a, b: np.greater(a, b), shape=shape) - - y = sym.broadcast_less(a, b) - check_function(y, lambda a, b: np.less(a, b), shape=shape) - - y = sym.broadcast_equal(a, b) - check_function(y, lambda a, b: np.equal(a, b), - in_range={'a': (-2, 2), 'b': (-2, 2)}, dtype='int32', shape=shape) - - y = sym.broadcast_not_equal(a, b) - check_function(y, lambda a, b: np.not_equal(a, b), - in_range={'a': (-2, 2), 'b': (-2, 2)}, dtype='int32', shape=shape) - - y = sym.broadcast_greater_equal(a, b) - check_function(y, lambda a, b: np.greater_equal(a, b), - in_range={'a': (-3, 3), 'b': (-3, 3)}, dtype='int32', shape=shape) - - y = sym.broadcast_less_equal(a, b) - check_function(y, lambda a, b: np.less_equal(a, b), - in_range={'a': (-3, 3), 'b': (-3, 3)}, dtype='int32', shape=shape) - -def test_greater(): - l = sym.Variable("l") - r = sym.Variable("r") - y = sym.greater(l, r) - - def forward(l, r): - return np.greater(l, r).astype("float32") - - def backward(head_grads, l, r): - return {'l': np.zeros_like(l)} - - shape = {'l': (3, 4, 5), 'r': (3, 4, 5)} - check_function(y, forward, backward, shape=shape) - - -def test_less(): - l = sym.Variable("l") - r = sym.Variable("r") - y = sym.less(l, r) - - def forward(l, r): - return np.less(l, r).astype("float32") - - def backward(head_grads, l, r): - return {'l': np.zeros_like(l)} - - shape = {'l': (3, 4, 5), 'r': (3, 4, 5)} - check_function(y, forward, backward, shape=shape) - - -def test_reshape_like(): - x = sym.Variable("x") - y = sym.Variable("y") - z = sym.reshape_like(x, y) - - def forward(x, y): - return np.reshape(x, y.shape) - - def backward(head_grads, x, y): - return [np.reshape(head_grads, x.shape), - np.zeros_like(y)] - - shape = {'x': (3, 4, 5), 'y': (5, 4, 3)} - check_function(z, forward, backward, shape=shape) - - -def verify_expand_like(in_shape, out_shape, axis, exclude): - x = sym.Variable("x") - y = sym.Variable("y") - z = sym.expand_like(x, y, axis=axis, exclude=exclude) - - def forward(x, y): - odim = len(out_shape) - - if len(x.shape) == len(y.shape): - return np.broadcast_to(x, y.shape) - - if x.shape == (1,) and len(y.shape) == odim: - x = np.reshape(x, ()) - - real_axis = [i if i >= 0 else i + odim for i in axis] - real_axis = sorted(real_axis) - if exclude: - real_axis = list(set(range(odim)) - set(real_axis)) - for i in real_axis: - x = np.expand_dims(x, i).astype(x.dtype) - for i in real_axis: - x = np.concatenate([x]*out_shape[i], axis=i).astype(x.dtype) - - return x - - def backward(head_grads, x, y): - odim = len(out_shape) - - keepdims = len(x.shape) == len(y.shape) - - if x.shape == (1,) and len(y.shape) == odim: - x = np.reshape(x, ()) - - real_axis = [i if i >= 0 else i + odim for i in axis] - real_axis = sorted(real_axis) - if exclude: - real_axis = list(set(range(odim)) - set(real_axis)) - return [np.sum(head_grads, axis=tuple(real_axis), keepdims=keepdims), - np.zeros_like(y)] - - - shape = {'x': in_shape, 'y': out_shape} - check_function(z, forward, backward, shape=shape) - - -def test_expand_like(): - verify_expand_like((3,), (3, 2), [1], False) - verify_expand_like((2,), (2, 3), [1], False) - verify_expand_like((3, 4), (3, 5, 4), [1], False) - verify_expand_like((5, 7), (5, 6, 7, 8), [0, 2], True) - verify_expand_like((2, 3), (2, 3), [], False) - verify_expand_like((1,), (2, 3), [0, 1], False) - verify_expand_like((1, 1), (2, 3), [0, 1], False) - verify_expand_like((2, 1), (2, 3), [1], False) - verify_expand_like((1, 3), (2, 3), [0], False) - - -def verify_elemwise_sum(num_args): - s = [sym.Variable("input" + str(i)) for i in range(num_args)] - y = sym.elemwise_sum(*s, num_args=num_args) - - def forward(**inputs): - return np.sum(np.array(list(inputs.values())), axis=0) - - def backward(head_grads, **inputs): - return [head_grads] * num_args - - shape = {s[i]: (3, 4, 5) for i in range(num_args)} - check_function(y, forward, backward, shape=shape) - - -def test_elemwise_sum(): - verify_elemwise_sum(1) - verify_elemwise_sum(5) - verify_elemwise_sum(7) - - -def test_block_grad(): - x = sym.Variable("x") - y = sym.block_grad(x) - - def forward(x): - return x - - def backward(head_grads, x): - return [np.zeros_like(head_grads)] - - - shape = {'x': (3, 4, 5)} - # Numerical grad checking would fail for this function - check_function(y, forward, backward, shape=shape, numerical_grads=False) - - -def test_full(): - shape = (3, 4, 5) - value = 7 - dtype = "float32" - for target, ctx in ctx_list(): - data = sym.Variable("data", dtype=dtype) - # full_like - s = sym.full_like(data=data, fill_value=value, name="s") - graph, lib, _ = nnvm.compiler.build(s, target, {"data": shape}) - m = graph_runtime.create(graph, lib, ctx) - m.run(data=np.random.uniform(size=shape).astype(dtype)) - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), - np.full(shape, fill_value=value, dtype=dtype), - atol=1e-5, rtol=1e-5) - # ones_like - s = sym.ones_like(data=data, fill_value=value, name="s") - graph, lib, _ = nnvm.compiler.build(s, target, {"data": shape}) - m = graph_runtime.create(graph, lib, ctx) - m.run(data=np.random.uniform(size=shape).astype(dtype)) - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), - np.full(shape, fill_value=1, dtype=dtype), - atol=1e-5, rtol=1e-5) - # zeros_like - s = sym.zeros_like(data=data, fill_value=value, name="s") - graph, lib, _ = nnvm.compiler.build(s, target, {"data": shape}) - m = graph_runtime.create(graph, lib, ctx) - m.run(data=np.random.uniform(size=shape).astype(dtype)) - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), - np.full(shape, fill_value=0, dtype=dtype), - atol=1e-5, rtol=1e-5) - # full - s = sym.full(shape=shape, dtype=dtype, fill_value=value, name="s") - graph, lib, _ = nnvm.compiler.build(s, target) - m = graph_runtime.create(graph, lib, ctx) - m.run() - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), - np.full(shape, fill_value=value, dtype=dtype), - atol=1e-5, rtol=1e-5) - # ones - s = sym.ones(shape=shape, dtype=dtype, name="s") - graph, lib, _ = nnvm.compiler.build(s, target) - m = graph_runtime.create(graph, lib, ctx) - m.run() - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), - np.full(shape, fill_value=1, dtype=dtype), - atol=1e-5, rtol=1e-5) - # zeros - s = sym.zeros(shape=shape, dtype=dtype, name="s") - graph, lib, _ = nnvm.compiler.build(s, target) - m = graph_runtime.create(graph, lib, ctx) - m.run() - out = m.get_output(0, tvm.nd.empty(shape, dtype=dtype)) - tvm.testing.assert_allclose( - out.asnumpy(), - np.full(shape, fill_value=0, dtype=dtype), - atol=1e-5, rtol=1e-5) - -def verify_multibox_prior(dshape, sizes=(1,), ratios=(1,), steps=(-1, -1), - offsets=(0.5, 0.5), clip=False): - data = sym.Variable("data") - out = sym.multibox_prior(data=data, sizes=sizes, ratios=ratios, steps=steps, - offsets=offsets, clip=clip) - - in_height = dshape[2] - in_width = dshape[3] - num_sizes = len(sizes) - num_ratios = len(ratios) - size_ratio_concat = sizes + ratios - steps_h = steps[0] if steps[0] > 0 else 1.0 / in_height - steps_w = steps[1] if steps[1] > 0 else 1.0 / in_width - offset_h = offsets[0] - offset_w = offsets[1] - - oshape = (1, in_height * in_width * (num_sizes + num_ratios - 1), 4) - dtype = "float32" - np_out = np.zeros(oshape).astype(dtype) - - for i in range(in_height): - center_h = (i + offset_h) * steps_h - for j in range(in_width): - center_w = (j + offset_w) * steps_w - for k in range(num_sizes + num_ratios - 1): - w = size_ratio_concat[k] * in_height / in_width / 2.0 if k < num_sizes else \ - size_ratio_concat[0] * in_height / in_width * math.sqrt(size_ratio_concat[k + 1]) / 2.0 - h = size_ratio_concat[k] / 2.0 if k < num_sizes else \ - size_ratio_concat[0] / math.sqrt(size_ratio_concat[k + 1]) / 2.0 - count = i * in_width * (num_sizes + num_ratios - 1) + j * (num_sizes + num_ratios - 1) + k - np_out[0][count][0] = center_w - w - np_out[0][count][1] = center_h - h - np_out[0][count][2] = center_w + w - np_out[0][count][3] = center_h + h - if clip: - np_out = np.clip(np_out, 0, 1) - - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(out, target, {"data": dshape}) - m = graph_runtime.create(graph, lib, ctx) - m.set_input("data", np.random.uniform(size=dshape).astype(dtype)) - m.run() - tvm_out = m.get_output(0, tvm.nd.empty(np_out.shape, dtype)) - tvm.testing.assert_allclose(tvm_out.asnumpy(), np_out, atol=1e-5, rtol=1e-5) - -def test_multibox_prior(): - verify_multibox_prior((1, 3, 50, 50)) - verify_multibox_prior((1, 3, 224, 224), sizes=(0.5, 0.25, 0.1), ratios=(1, 2, 0.5)) - verify_multibox_prior((1, 32, 32, 32), sizes=(0.5, 0.25), ratios=(1, 2), steps=(2, 2), clip=True) - -def test_multibox_transform_loc(): - batch_size = 1 - num_anchors = 3 - num_classes = 3 - cls_prob = sym.Variable("cls_prob") - loc_preds = sym.Variable("loc_preds") - anchors = sym.Variable("anchors") - transform_loc_data, valid_count = sym.multibox_transform_loc(cls_prob=cls_prob, loc_pred=loc_preds, - anchor=anchors) - out = sym.non_max_suppression(data=transform_loc_data, valid_count=valid_count, return_indices=False) - - # Manually create test case - np_cls_prob = np.array([[[0.2, 0.5, 0.3], [0.25, 0.3, 0.45], [0.7, 0.1, 0.2]]]) - np_loc_preds = np.array([[0.1, -0.2, 0.3, 0.2, 0.2, 0.4, 0.5, -0.3, 0.7, -0.2, -0.4, -0.8]]) - np_anchors = np.array([[[-0.1, -0.1, 0.1, 0.1], [-0.2, -0.2, 0.2, 0.2], [1.2, 1.2, 1.5, 1.5]]]) - - expected_np_out = np.array([[[1, 0.69999999, 0, 0, 0.10818365, 0.10008108], - [0, 0.44999999, 1, 1, 1, 1], - [0, 0.30000001, 0, 0, 0.22903419, 0.20435292]]]) - - dtype = "float32" - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(out, target, {"cls_prob": (batch_size, num_anchors, num_classes), - "loc_preds": (batch_size, num_anchors * 4), - "anchors": (1, num_anchors, 4)}) - m = graph_runtime.create(graph, lib, ctx) - m.set_input(**{"cls_prob": np_cls_prob.astype(dtype), "loc_preds": np_loc_preds.astype(dtype), "anchors": np_anchors.astype(dtype)}) - m.run() - tvm_out = m.get_output(0, tvm.nd.empty(expected_np_out.shape, dtype)) - tvm.testing.assert_allclose(tvm_out.asnumpy(), expected_np_out, atol=1e-5, rtol=1e-5) - -def test_non_max_suppression(): - dshape = (1, 5, 6) - data = sym.Variable("data") - valid_count = sym.Variable("valid_count", dtype="int32") - iou_threshold = 0.7 - force_suppress = True - top_k = 2 - out = sym.non_max_suppression(data=data, valid_count=valid_count, return_indices=False, - iou_threshold=iou_threshold, force_suppress=force_suppress, top_k=top_k) - - np_data = np.array([[[0, 0.8, 1, 20, 25, 45], [1, 0.7, 30, 60, 50, 80], - [0, 0.4, 4, 21, 19, 40], [2, 0.9, 35, 61, 52, 79], - [1, 0.5, 100, 60, 70, 110]]]).astype("float32") - np_valid_count = np.array([4]).astype("int32") - np_result = np.array([[[2, 0.9, 35, 61, 52, 79], [0, 0.8, 1, 20, 25, 45], - [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1], - [-1, -1, -1, -1, -1, -1]]]) - - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(out, target, {"data": dshape, "valid_count": (dshape[0],)}, - dtype={"data": "float32", "valid_count": "int32"}) - m = graph_runtime.create(graph, lib, ctx) - m.set_input(**{"data": np_data, "valid_count": np_valid_count}) - m.run() - tvm_out = m.get_output(0, tvm.nd.empty(np_result.shape, "float32")) - tvm.testing.assert_allclose(tvm_out.asnumpy(), np_result, atol=1e-5, rtol=1e-5) - -def np_slice_like(np_data, np_shape_like, axis=[]): - begin_idx = [0 for _ in np_data.shape] - end_idx = list(np_data.shape) - if len(axis) > 0: - for i in axis: - if i < 0: - i = len(np_data.shape) + i - end_idx[i] = np_shape_like.shape[i] - else: - for i in range(len(np_data.shape)): - if i < len(np_shape_like.shape): - end_idx[i] = np_shape_like.shape[i] - slice_idx = [] - for b, e in zip(begin_idx, end_idx): - slice_idx.append(slice(b, e)) - np_result = np_data[slice_idx] - return np_result - -def verify_slice_like(np_data, np_shape_like, axis=[]): - dtype = "float32" - np_data = np_data.astype(dtype) - np_shape_like = np_shape_like.astype(dtype) - np_result = np_slice_like(np_data, np_shape_like, axis) - data1 = sym.Variable("data1") - data2 = sym.Variable("data2") - net = sym.slice_like(data=data1, slice_like=data2, axis=axis) - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(net, target, {"data1": np_data.shape, - "data2": np_shape_like.shape}) - m = graph_runtime.create(graph, lib, ctx) - m.set_input(**{"data1": np_data, "data2": np_shape_like}) - m.run() - out = m.get_output(0, tvm.nd.empty(np_result.shape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), np_result, atol=1e-5, rtol=1e-5) - -def test_slice_like(): - np_data = np.random.uniform(size=(3, 4, 5)) - np_shape_like = np.random.uniform(size=(1, 2, 3)) - verify_slice_like(np_data, np_shape_like) - np_data = np.random.uniform(size=(3, 4, 5)) - np_shape_like = np.random.uniform(size=(1, 2)) - verify_slice_like(np_data, np_shape_like) - np_data = np.random.uniform(size=(3, 4, 5)) - np_shape_like = np.random.uniform(size=(1, 2, 3)) - axis = (1, 2) - verify_slice_like(np_data, np_shape_like, axis) - np_data = np.random.uniform(size=(3, 4, 5)) - np_shape_like = np.random.uniform(size=(1, 2, 3)) - axis = (-1, -3) - verify_slice_like(np_data, np_shape_like, axis) - np_data = np.random.uniform(size=(1, 3, 224, 224)) - np_shape_like = np.random.uniform(size=(1, 3, 112, 112)) - axis = (2, 3) - verify_slice_like(np_data, np_shape_like, axis) - -def verify_where(condition, x, y): - dtype = "float32" - if len(condition.shape) == 1: - np_out = np.array([xv if c else yv for (c,xv,yv) in zip(condition,x,y)]) - else: - np_out = np.where(condition, x, y) - cond_var = sym.Variable("condition") - x_var = sym.Variable("x") - y_var = sym.Variable("y") - net = sym.where(cond_var, x_var, y_var) - for target, ctx in ctx_list(): - graph, lib, _ = nnvm.compiler.build(net, target, {"condition": condition.shape, - "x": x.shape, "y": y.shape}) - m = graph_runtime.create(graph, lib, ctx) - m.set_input(**{"condition": condition, "x": x, "y": y}) - m.run() - out = m.get_output(0, tvm.nd.empty(x.shape, dtype)) - tvm.testing.assert_allclose(out.asnumpy(), np_out, atol=1e-5, rtol=1e-5) - -def test_where(): - shape = (13, 8, 224, 224, 6) - condition = np.random.uniform(low=-1, high=1, size=shape).astype("float32") - x = np.random.uniform(size=shape).astype("float32") - y = np.random.uniform(size=shape).astype("float32") - verify_where(condition, x, y) - condition = np.random.uniform(low=-1, high=1, size=(shape[0],)).astype("float32") - x = np.random.uniform(size=shape).astype("float32") - y = np.random.uniform(size=shape).astype("float32") - verify_where(condition, x, y) - -def test_argmax(): - dshape = (204800, 2) - oshape = (1, 320, 640) - - dtype = "float32" - x = sym.Variable("x", shape=dshape, dtype=dtype) - x = sym.reshape(x, shape=(1, 320, 640, 2)) - x = sym.transpose(x, axes=(0, 3, 1, 2)) - y = sym.argmax(x, axis=1) - target_str = "llvm" - target = tvm.target.create(target_str) - ctx = tvm.context(target_str, 0) - with nnvm.compiler.build_config(opt_level=2): - graph, lib, _ = nnvm.compiler.build(y, target, {"x": dshape}) - m = graph_runtime.create(graph, lib, ctx) - data = np.random.uniform(size=dshape).astype(dtype) - m.run(x=data) - np_reshape = np.reshape(data, (1, 320, 640, 2)) - np_transpose = np.transpose(np_reshape, axes=(0, 3, 1, 2)) - np_argmax = np.argmax(np_transpose, axis=1) - out = m.get_output(0) - np.testing.assert_allclose(out.asnumpy(), np_argmax, atol=1e-5, rtol=1e-5) - -if __name__ == "__main__": - test_reshape() - test_broadcast() - test_reduce() - test_collapse() - test_transpose() - test_clip() - test_greater() - test_less() - test_reshape_like() - test_expand_like() - test_elemwise_sum() - test_block_grad() - test_full() - test_flip() - test_multibox_prior() - test_multibox_transform_loc() - test_non_max_suppression() - test_slice_like() - test_where() - test_argmax() - print(nnvm.compiler.engine.dump()) diff --git a/nnvm/tests/python/frontend/caffe2/model_zoo/__init__.py b/nnvm/tests/python/frontend/caffe2/model_zoo/__init__.py deleted file mode 100644 index 2dc1f08f6ec9..000000000000 --- a/nnvm/tests/python/frontend/caffe2/model_zoo/__init__.py +++ /dev/null @@ -1,35 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Store for caffe2 examples and common models.""" -from __future__ import absolute_import as _abs -import os -import importlib - -models = [ - 'squeezenet', - 'resnet50', - 'vgg19', -] - -# skip download if model exist -for model in models: - try: - locals()['c2_' + model] = importlib.import_module('caffe2.python.models.' + model) - except ImportError: - os.system("python -m caffe2.python.models.download -i -f " + model) - locals()['c2_' + model] = importlib.import_module('caffe2.python.models.' + model) diff --git a/nnvm/tests/python/frontend/caffe2/model_zoo/squeezenet.py b/nnvm/tests/python/frontend/caffe2/model_zoo/squeezenet.py deleted file mode 100644 index 2de2d1075494..000000000000 --- a/nnvm/tests/python/frontend/caffe2/model_zoo/squeezenet.py +++ /dev/null @@ -1,118 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# coding: utf-8 -# pylint: disable=unused-argument - -""" -Symbol of SqueezeNet - -Reference: -Iandola, Forrest N., et al. -"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). -""" - -from nnvm import symbol as sym -from nnvm.testing.utils import create_workload - -# Helpers -def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): - net = _make_fire_conv(net, squeeze_channels, 1, 0) - - left = _make_fire_conv(net, expand1x1_channels, 1, 0) - right = _make_fire_conv(net, expand3x3_channels, 3, 1) - # NOTE : Assume NCHW layout here - net = sym.concatenate(left, right, axis=1) - - return net - -def _make_fire_conv(net, channels, kernel_size, padding=0): - net = sym.conv2d(net, channels=channels, kernel_size=(kernel_size, kernel_size), - padding=(padding, padding)) - net = sym.relu(net) - return net - -# Net -def get_symbol(num_classes, version, **kwargs): - """Get symbol of SqueezeNet - - Parameters - ---------- - num_classes: int - The number of classification results - - version : str, optional - "1.0" or "1.1" of SqueezeNet - """ - assert version == '1.1', ("Unsupported SqueezeNet version {version}:" - "1.1 expected".format(version=version)) - net = sym.Variable("data") - - net = sym.conv2d(net, channels=64, kernel_size=(3, 3), strides=(2, 2)) - net = sym.relu(net) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 16, 64, 64) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 32, 128, 128) - net = _make_fire(net, 32, 128, 128) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 64, 256, 256) - net = _make_fire(net, 64, 256, 256) - - net = sym.dropout(net, rate=0.5) - net = sym.conv2d(net, channels=num_classes, kernel_size=(1, 1)) - net = sym.relu(net) - net = sym.global_avg_pool2d(net) - return sym.softmax(net, axis=1) - -def get_workload(batch_size=1, num_classes=1000, version='1.0', - image_shape=(3, 224, 224), dtype="float32", **kwargs): - """Get benchmark workload for SqueezeNet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - version : str, optional - "1.0" or "1.1" of SqueezeNet - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - kwargs : dict - Extra arguments - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes, version=version, **kwargs) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/tests/python/frontend/caffe2/test_forward.py b/nnvm/tests/python/frontend/caffe2/test_forward.py deleted file mode 100644 index 2a216314ba1a..000000000000 --- a/nnvm/tests/python/frontend/caffe2/test_forward.py +++ /dev/null @@ -1,108 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import nnvm -import tvm -from tvm.contrib import graph_runtime -from nnvm.testing.config import ctx_list -from model_zoo import c2_squeezenet, c2_resnet50, c2_vgg19 - -from caffe2.python import workspace - - -def get_tvm_output(model, - input_data, - target, - ctx, - output_shape, - output_dtype='float32'): - """ Generic function to execute and get tvm output""" - sym, params = nnvm.frontend.from_caffe2(model.init_net, model.predict_net) - - # supporting multiple inputs in caffe2 in a bit tricky, - # because the input names can appear at the beginning or end of model.predict_net.external_input - assert isinstance(input_data, np.ndarray) - - # here we use the first input blob to the first op to get the input name - input_names = model.predict_net.op[0].input[0] - shape_dict = {input_names: input_data.shape} - dtype_dict = {input_names: input_data.dtype} - - graph, lib, params = nnvm.compiler.build( - sym, target, shape=shape_dict, dtype=dtype_dict, params=params) - - m = graph_runtime.create(graph, lib, ctx) - - # set inputs - m.set_input(input_names, tvm.nd.array(input_data.astype(input_data.dtype))) - m.set_input(**params) - - # execute - m.run() - - # get outputs - if isinstance(output_shape, list) and isinstance(output_dtype, list): - tvm_output_list = [] - for i, s in enumerate(output_shape): - tvm_output = m.get_output(i, tvm.nd.empty((s), output_dtype[i])) - tvm_output_list.append(tvm_output.asnumpy()) - return tvm_output_list - else: - tvm_output = m.get_output(0, tvm.nd.empty((output_shape), - output_dtype)) - return tvm_output.asnumpy() - - -def get_caffe2_output(model, x, dtype='float32'): - workspace.RunNetOnce(model.init_net) - - input_blob = model.predict_net.op[0].input[0] - workspace.FeedBlob(input_blob, x.astype(dtype)) - workspace.RunNetOnce(model.predict_net) - - output_blob = model.predict_net.external_output[0] - c2_output = workspace.FetchBlob(output_blob) - return c2_output - - -def verify_caffe2_forward_impl(model, data_shape, out_shape): - dtype = 'float32' - data = np.random.uniform(size=data_shape).astype(dtype) - c2_out = get_caffe2_output(model, data, dtype) - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, data, target, ctx, out_shape, dtype) - tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5) - - -def test_squeezenet1_1(): - verify_caffe2_forward_impl(c2_squeezenet, (1, 3, 224, 224), - (1, 1000, 1, 1)) - - -def test_resnet50(): - verify_caffe2_forward_impl(c2_resnet50, (1, 3, 224, 224), - (1, 1000)) - - -def test_vgg19(): - verify_caffe2_forward_impl(c2_vgg19, (1, 3, 224, 224), (1, 1000)) - - -if __name__ == '__main__': - test_squeezenet1_1() - test_resnet50() - test_vgg19() diff --git a/nnvm/tests/python/frontend/caffe2/test_graph.py b/nnvm/tests/python/frontend/caffe2/test_graph.py deleted file mode 100644 index c8203815e6d0..000000000000 --- a/nnvm/tests/python/frontend/caffe2/test_graph.py +++ /dev/null @@ -1,40 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Test graph equality of caffe2 models.""" -import nnvm -from nnvm.compiler import graph_util, graph_attr -from model_zoo import c2_squeezenet, squeezenet - -def compare_graph(init, predict, nnvm_sym, ishape): - caffe2_sym, params = nnvm.frontend.from_caffe2(init, predict) - g1 = nnvm.graph.create(caffe2_sym) - g2 = nnvm.graph.create(nnvm_sym) - input_name = predict.external_input[0] - ishapes = {input_name: ishape} - graph_attr.set_shape_inputs(g1, ishapes) - graph_attr.set_shape_inputs(g2, ishapes) - g1 = g1.apply("InferShape").apply("SimplifyInference") - g2 = g2.apply("InferShape").apply("SimplifyInference") - graph_util.check_graph_equal(g1, g2) - -def test_squeeze_net(): - symbol, params = squeezenet.get_workload(version='1.1') - compare_graph(c2_squeezenet.init_net, c2_squeezenet.predict_net, symbol, ishape=(1, 3, 224, 224)) - - -if __name__ == '__main__': - test_squeeze_net() diff --git a/nnvm/tests/python/frontend/coreml/model_zoo/.gitignore b/nnvm/tests/python/frontend/coreml/model_zoo/.gitignore deleted file mode 100644 index 4242a1b2e2e0..000000000000 --- a/nnvm/tests/python/frontend/coreml/model_zoo/.gitignore +++ /dev/null @@ -1,3 +0,0 @@ -*.mlmodel -*.jpg -*.png diff --git a/nnvm/tests/python/frontend/coreml/model_zoo/__init__.py b/nnvm/tests/python/frontend/coreml/model_zoo/__init__.py deleted file mode 100644 index 2dbaf2b10483..000000000000 --- a/nnvm/tests/python/frontend/coreml/model_zoo/__init__.py +++ /dev/null @@ -1,41 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os -from PIL import Image -import numpy as np -from tvm.contrib.download import download_testdata - -def get_mobilenet(): - url = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel' - dst = 'mobilenet.mlmodel' - real_dst = download_testdata(url, dst, module='coreml') - return real_dst - -def get_resnet50(): - url = 'https://docs-assets.developer.apple.com/coreml/models/Resnet50.mlmodel' - dst = 'resnet50.mlmodel' - real_dst = download_testdata(url, dst, module='coreml') - return real_dst - -def get_cat_image(): - url = 'https://gist.githubusercontent.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/fa7ef0e9c9a5daea686d6473a62aacd1a5885849/cat.png' - dst = 'cat.png' - real_dst = download_testdata(url, dst, module='data') - img = Image.open(real_dst).resize((224, 224)) - img = np.transpose(img, (2, 0, 1))[np.newaxis, :] - return np.asarray(img) diff --git a/nnvm/tests/python/frontend/coreml/test_forward.py b/nnvm/tests/python/frontend/coreml/test_forward.py deleted file mode 100644 index 7a9f294f4359..000000000000 --- a/nnvm/tests/python/frontend/coreml/test_forward.py +++ /dev/null @@ -1,370 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np - -from coremltools.models.neural_network import NeuralNetworkBuilder -from coremltools.models import datatypes - -import tvm -from tvm.contrib import graph_runtime -import topi -import topi.testing -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list -from nnvm import frontend -import coremltools as cm -import model_zoo - -def get_tvm_output(symbol, x, params, target, ctx, - out_shape=(1, 1000), input_name='image', dtype='float32'): - shape_dict = {input_name : x.shape} - with nnvm.compiler.build_config(opt_level=2): - graph, lib, params = nnvm.compiler.build(symbol, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - # set inputs - m.set_input(input_name, tvm.nd.array(x.astype(dtype))) - m.set_input(**params) - m.run() - # get outputs - out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) - return out.asnumpy() - -def run_model_checkonly(model_file, model_name=''): - model = cm.models.MLModel(model_file) - sym, params = nnvm.frontend.from_coreml(model) - x = model_zoo.get_cat_image() - for target, ctx in ctx_list(): - tvm_output = get_tvm_output(sym, x, params, target, ctx) - print(target, ctx, model_name, 'prediction id: ', np.argmax(tvm_output.flat)) - -def test_mobilenet_checkonly(): - model_file = model_zoo.get_mobilenet() - run_model_checkonly(model_file, 'mobilenet') - -def test_resnet50_checkonly(): - model_file = model_zoo.get_resnet50() - run_model_checkonly(model_file, 'resnet50') - -def run_tvm_graph(graph_def, input_data, input_name, output_shape, output_dtype='float32'): - """ Generic function to compile on nnvm and execute on tvm """ - - sym, params = nnvm.frontend.from_coreml(graph_def) - target = 'llvm' - if isinstance(input_data, list): - shape_dict = {} - dtype_dict = {} - for i, e in enumerate(input_name): - shape_dict[e] = input_data[i].shape - dtype_dict[e] = input_data[i].dtype - else: - shape_dict = {input_name: input_data.shape} - dtype_dict = {input_name: input_data.dtype} - - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, - dtype=dtype_dict, params=params) - - ctx = tvm.cpu(0) - from tvm.contrib import graph_runtime - m = graph_runtime.create(graph, lib, ctx) - # set inputs - if isinstance(input_data, list): - for i, e in enumerate(input_name): - m.set_input(e, tvm.nd.array(input_data[i].astype(input_data[i].dtype))) - else: - m.set_input(input_name, tvm.nd.array(input_data.astype(input_data.dtype))) - - m.set_input(**params) - # execute - m.run() - # get outputs - if isinstance(output_shape, list) and isinstance(output_dtype, list): - tvm_output_list = [] - for i, s in enumerate(output_shape): - tvm_output = m.get_output(i, tvm.nd.empty((s), output_dtype[i])) - tvm_output_list.append(tvm_output.asnumpy()) - return tvm_output_list - else: - tvm_output = m.get_output(0, tvm.nd.empty((output_shape), output_dtype)) - return tvm_output.asnumpy() - -def verify_AddLayerParams(input_dim, alpha=2): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.add(a_np1, a_np2) + alpha - inputs = [('input1', datatypes.Array(*input_dim)), - ('input2', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(inputs, output) - builder.add_elementwise(name='Add', - alpha=alpha, - input_names=['input1', 'input2'], - output_name='output', - mode='ADD') - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, - [a_np1, a_np2], - ['input1', 'input2'], - b_np.shape, - dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_AddLayerParams(): - verify_AddLayerParams((1, 2, 2), 0) - verify_AddLayerParams((1, 2, 2), 1) - verify_AddLayerParams((1, 3, 3), 2) - -def verify_MultiplyLayerParams(input_dim, alpha): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.multiply(a_np1, a_np2) * alpha - inputs = [('input1', datatypes.Array(*input_dim)), - ('input2', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(inputs, output) - builder.add_elementwise(name='Mul', - alpha=alpha, - input_names=['input1', 'input2'], - output_name='output', - mode='MULTIPLY') - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, - [a_np1, a_np2], - ['input1', 'input2'], - b_np.shape, - dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_MultiplyLayerParams(): - verify_MultiplyLayerParams((1, 2, 2), 0) - verify_MultiplyLayerParams((1, 2, 2), 1) - verify_MultiplyLayerParams((1, 3, 3), 2) - -def verify_ConcatLayerParams(input1_dim, input2_dim): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input1_dim).astype(dtype) - a_np2 = np.random.uniform(size=input2_dim).astype(dtype) - - b_np = np.concatenate((a_np1, a_np2), axis=1) - inputs = [('input1', datatypes.Array(*input1_dim)), - ('input2', datatypes.Array(*input2_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(inputs, output) - builder.add_elementwise(name='Concate', - input_names=['input1', 'input2'], - output_name='output', - mode='CONCAT') - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, - [a_np1, a_np2], - ['input1', 'input2'], - b_np.shape, - dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_ConcatLayerParams(): - verify_ConcatLayerParams((1, 1, 2, 2), (1, 2, 2, 2)) - verify_ConcatLayerParams((1, 2, 4, 4), (1, 3, 4, 4)) - -def verify_UpsampleLayerParams(input_dim, scale, mode): - dtype = "float32" - - a_np = np.full(input_dim, 1, dtype=dtype) - if mode == 'NN': - b_np = topi.testing.upsampling_python(a_np, (scale, scale)) - else: - new_h = input_dim[2] * scale - new_w = input_dim[3] * scale - b_np = topi.testing.bilinear_resize_python(a_np, (new_h, new_w), 'NCHW') - - input = [('input', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(input, output) - builder.add_upsample(name='Upsample', - scaling_factor_h=scale, - scaling_factor_w=scale, - mode=mode, - input_name='input', - output_name='output') - - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, a_np, 'input', b_np.shape, dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_UpsampleLayerParams(): - verify_UpsampleLayerParams((1, 16, 32, 32), 2, 'NN') - verify_UpsampleLayerParams((1, 4, 6, 6), 3, 'BILINEAR') - -def verify_l2_normalize(input_dim, eps): - dtype = "float32" - - a_np = np.random.uniform(size=input_dim).astype(dtype) - b_np = topi.testing.l2_normalize_python(a_np, eps, 1) - - input = [('input', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(input, output) - builder.add_l2_normalize(name='L2', epsilon=eps, input_name='input', output_name='output') - - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, a_np, 'input', b_np.shape, dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_l2_normalize(): - verify_l2_normalize((1, 3, 20, 20), 0.001) - -def verify_lrn(input_dim, size, bias, alpha, beta): - dtype = "float32" - axis=1 - a_np = np.random.uniform(size=input_dim).astype(dtype) - b_np = topi.testing.lrn_python(a_np, size, axis, bias, alpha, beta) - - input = [('input', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(input, output) - builder.add_lrn(name='LRN', - input_name='input', - output_name='output', - alpha=alpha, - beta=beta, - k=bias, - local_size=size) - - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, a_np, 'input', b_np.shape, dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_lrn(): - verify_lrn((1, 3, 10, 20), 3, 1.0, 1.0, 0.5) - -def verify_average(input_dim1, input_dim2, axis=0): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim1).astype(dtype) - a_np2 = np.random.uniform(size=input_dim2).astype(dtype) - - b_np = np.mean((a_np1, a_np2), axis=axis) - - inputs = [('input1', datatypes.Array(*input_dim1)), - ('input2', datatypes.Array(*input_dim2))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(inputs, output) - builder.add_elementwise(name='MEAN', - input_names=['input1', 'input2'], - output_name='output', - mode='AVE') - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, - [a_np1, a_np2], - ['input1', 'input2'], - b_np.shape, - dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_average(): - verify_average((1, 3, 20, 20), (1, 3, 20, 20)) - verify_average((3, 20, 20), (1, 3, 20, 20)) - verify_average((20, 20), (1, 3, 20, 20)) - -def verify_max(input_dim): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - a_np3 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.max((a_np1, a_np2, a_np3), axis=0) - - inputs = [('input1', datatypes.Array(*input_dim)), - ('input2', datatypes.Array(*input_dim)), - ('input3', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(inputs, output) - builder.add_elementwise(name='Max', - input_names=['input1', 'input2', 'input3'], - output_name='output', - mode='MAX') - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, - [a_np1, a_np2, a_np3], - ['input1', 'input2', 'input3'], - b_np.shape, - dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_max(): - verify_max((1, 3, 20, 20)) - verify_max((20, 20)) - -def verify_min(input_dim): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - a_np3 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.min((a_np1, a_np2, a_np3), axis=0) - - inputs = [('input1', datatypes.Array(*input_dim)), - ('input2', datatypes.Array(*input_dim)), - ('input3', datatypes.Array(*input_dim))] - output = [('output', datatypes.Array(*b_np.shape))] - builder = NeuralNetworkBuilder(inputs, output) - builder.add_elementwise(name='Min', - input_names=['input1', 'input2', 'input3'], - output_name='output', - mode='MIN') - model = cm.models.MLModel(builder.spec) - for target, ctx in ctx_list(): - out = run_tvm_graph(model, - [a_np1, a_np2, a_np3], - ['input1', 'input2', 'input3'], - b_np.shape, - dtype) - tvm.testing.assert_allclose(out, b_np, rtol=1e-5) - -def test_forward_min(): - verify_min((1, 3, 20, 20)) - verify_min((20, 20)) - -if __name__ == '__main__': - test_mobilenet_checkonly() - test_resnet50_checkonly() - test_forward_AddLayerParams() - test_forward_ConcatLayerParams() - test_forward_MultiplyLayerParams() - test_forward_UpsampleLayerParams() - test_forward_l2_normalize() - test_forward_lrn() - test_forward_average() - test_forward_max() - test_forward_min() diff --git a/nnvm/tests/python/frontend/darknet/test_forward.py b/nnvm/tests/python/frontend/darknet/test_forward.py deleted file mode 100644 index 4e62ff2e1f33..000000000000 --- a/nnvm/tests/python/frontend/darknet/test_forward.py +++ /dev/null @@ -1,525 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Compile Darknet Models -===================== -This article is a test script to test darknet models with NNVM. -All the required models and libraries will be downloaded from the internet -by the script. -""" -import numpy as np -import tvm -from tvm.contrib import graph_runtime -from tvm.contrib.download import download_testdata -download_testdata.__test__ = False -from nnvm import frontend -from tvm.relay.testing.darknet import LAYERTYPE -from tvm.relay.testing.darknet import __darknetffi__ -import nnvm.compiler - -DARKNET_LIB = 'libdarknet2.0.so' -DARKNETLIB_URL = 'https://github.com/siju-samuel/darknet/blob/master/lib/' \ - + DARKNET_LIB + '?raw=true' -LIB = __darknetffi__.dlopen(download_testdata(DARKNETLIB_URL, DARKNET_LIB, module='darknet')) - -DARKNET_TEST_IMAGE_NAME = 'dog.jpg' -DARKNET_TEST_IMAGE_URL = 'https://github.com/siju-samuel/darknet/blob/master/data/' + DARKNET_TEST_IMAGE_NAME +'?raw=true' -DARKNET_TEST_IMAGE_PATH = download_testdata(DARKNET_TEST_IMAGE_URL, DARKNET_TEST_IMAGE_NAME, module='data') - -def _read_memory_buffer(shape, data, dtype='float32'): - length = 1 - for x in shape: - length *= x - data_np = np.zeros(length, dtype=dtype) - for i in range(length): - data_np[i] = data[i] - return data_np.reshape(shape) - -def _get_tvm_output(net, data, build_dtype='float32'): - '''Compute TVM output''' - dtype = 'float32' - sym, params = frontend.darknet.from_darknet(net, dtype) - - target = 'llvm' - shape_dict = {'data': data.shape} - graph, library, params = nnvm.compiler.build(sym, target, shape_dict, - build_dtype, params=params) - # Execute on TVM - ctx = tvm.cpu(0) - m = graph_runtime.create(graph, library, ctx) - # set inputs - m.set_input('data', tvm.nd.array(data.astype(dtype))) - m.set_input(**params) - m.run() - # get outputs - tvm_out = [] - for i in range(m.get_num_outputs()): - tvm_out.append(m.get_output(i).asnumpy()) - return tvm_out - -def _load_net(cfg_url, cfg_name, weights_url, weights_name): - cfg_path = download_testdata(cfg_url, cfg_name, module='darknet') - weights_path = download_testdata(weights_url, weights_name, module='darknet') - net = LIB.load_network(cfg_path.encode('utf-8'), weights_path.encode('utf-8'), 0) - return net - -def verify_darknet_frontend(net, build_dtype='float32'): - '''Test network with given input image on both darknet and tvm''' - def get_darknet_output(net, img): - LIB.network_predict_image(net, img) - out = [] - for i in range(net.n): - layer = net.layers[i] - if layer.type == LAYERTYPE.REGION: - attributes = np.array([layer.n, layer.out_c, layer.out_h, - layer.out_w, layer.classes, - layer.coords, layer.background], - dtype=np.int32) - out.insert(0, attributes) - out.insert(0, _read_memory_buffer((layer.n*2, ), layer.biases)) - layer_outshape = (layer.batch, layer.out_c, - layer.out_h, layer.out_w) - out.insert(0, _read_memory_buffer(layer_outshape, layer.output)) - elif layer.type == LAYERTYPE.YOLO: - attributes = np.array([layer.n, layer.out_c, layer.out_h, - layer.out_w, layer.classes, - layer.total], - dtype=np.int32) - out.insert(0, attributes) - out.insert(0, _read_memory_buffer((layer.total*2, ), layer.biases)) - out.insert(0, _read_memory_buffer((layer.n, ), layer.mask, dtype='int32')) - layer_outshape = (layer.batch, layer.out_c, - layer.out_h, layer.out_w) - out.insert(0, _read_memory_buffer(layer_outshape, layer.output)) - elif i == net.n-1: - if layer.type == LAYERTYPE.CONNECTED: - darknet_outshape = (layer.batch, layer.out_c) - elif layer.type in [LAYERTYPE.SOFTMAX]: - darknet_outshape = (layer.batch, layer.outputs) - else: - darknet_outshape = (layer.batch, layer.out_c, - layer.out_h, layer.out_w) - out.insert(0, _read_memory_buffer(darknet_outshape, layer.output)) - return out - - dtype = 'float32' - - img = LIB.letterbox_image(LIB.load_image_color(DARKNET_TEST_IMAGE_PATH.encode('utf-8'), 0, 0), net.w, net.h) - darknet_output = get_darknet_output(net, img) - batch_size = 1 - data = np.empty([batch_size, img.c, img.h, img.w], dtype) - i = 0 - for c in range(img.c): - for h in range(img.h): - for k in range(img.w): - data[0][c][h][k] = img.data[i] - i = i + 1 - - tvm_out = _get_tvm_output(net, data, build_dtype) - for tvm_outs, darknet_out in zip(tvm_out, darknet_output): - tvm.testing.assert_allclose(darknet_out, tvm_outs, rtol=1e-3, atol=1e-3) - -def verify_rnn_forward(net): - '''Test network with given input data on both darknet and tvm''' - def get_darknet_network_predict(net, data): - return LIB.network_predict(net, data) - from cffi import FFI - ffi = FFI() - np_arr = np.zeros([1, net.inputs], dtype='float32') - np_arr[0, 84] = 1 - cffi_arr = ffi.cast('float*', np_arr.ctypes.data) - tvm_out = _get_tvm_output(net, np_arr)[0] - darknet_output = get_darknet_network_predict(net, cffi_arr) - darknet_out = np.zeros(net.outputs, dtype='float32') - for i in range(net.outputs): - darknet_out[i] = darknet_output[i] - last_layer = net.layers[net.n-1] - darknet_outshape = (last_layer.batch, last_layer.outputs) - darknet_out = darknet_out.reshape(darknet_outshape) - tvm.testing.assert_allclose(darknet_out, tvm_out, rtol=1e-4, atol=1e-4) - -def test_forward_extraction(): - '''test extraction model''' - model_name = 'extraction' - cfg_name = model_name + '.cfg' - weights_name = model_name + '.weights' - cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true' - weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true' - net = _load_net(cfg_url, cfg_name, weights_url, weights_name) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_alexnet(): - '''test alexnet model''' - model_name = 'alexnet' - cfg_name = model_name + '.cfg' - weights_name = model_name + '.weights' - cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true' - weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true' - net = _load_net(cfg_url, cfg_name, weights_url, weights_name) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_resnet50(): - '''test resnet50 model''' - model_name = 'resnet50' - cfg_name = model_name + '.cfg' - weights_name = model_name + '.weights' - cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true' - weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true' - net = _load_net(cfg_url, cfg_name, weights_url, weights_name) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_yolov2(): - '''test yolov2 model''' - model_name = 'yolov2' - cfg_name = model_name + '.cfg' - weights_name = model_name + '.weights' - cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true' - weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true' - net = _load_net(cfg_url, cfg_name, weights_url, weights_name) - build_dtype = {} - verify_darknet_frontend(net, build_dtype) - LIB.free_network(net) - -def test_forward_yolov3(): - '''test yolov3 model''' - model_name = 'yolov3' - cfg_name = model_name + '.cfg' - weights_name = model_name + '.weights' - cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true' - weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true' - net = _load_net(cfg_url, cfg_name, weights_url, weights_name) - build_dtype = {} - verify_darknet_frontend(net, build_dtype) - LIB.free_network(net) - -def test_forward_convolutional(): - '''test convolutional layer''' - net = LIB.make_network(1) - layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) - net.layers[0] = layer - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_dense(): - '''test fully connected layer''' - net = LIB.make_network(1) - layer = LIB.make_connected_layer(1, 75, 20, 1, 0, 0) - net.layers[0] = layer - net.w = net.h = 5 - LIB.resize_network(net, 5, 5) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_dense_batchnorm(): - '''test fully connected layer with batchnorm''' - net = LIB.make_network(1) - layer = LIB.make_connected_layer(1, 12, 2, 1, 1, 0) - for i in range(5): - layer.rolling_mean[i] = np.random.rand(1) - layer.rolling_variance[i] = np.random.rand(1) - layer.scales[i] = np.random.rand(1) - net.layers[0] = layer - net.w = net.h = 2 - LIB.resize_network(net, 2, 2) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_maxpooling(): - '''test maxpooling layer''' - net = LIB.make_network(1) - layer = LIB.make_maxpool_layer(1, 224, 224, 3, 2, 2, 0) - net.layers[0] = layer - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_avgpooling(): - '''test avgerage pooling layer''' - net = LIB.make_network(1) - layer = LIB.make_avgpool_layer(1, 224, 224, 3) - net.layers[0] = layer - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_batch_norm(): - '''test batch normalization layer''' - net = LIB.make_network(1) - layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 1, 0, 0, 0) - for i in range(32): - layer.rolling_mean[i] = np.random.rand(1) - layer.rolling_variance[i] = np.random.rand(1) - net.layers[0] = layer - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_shortcut(): - '''test shortcut layer''' - net = LIB.make_network(3) - layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) - layer_2 = LIB.make_convolutional_layer(1, 111, 111, 32, 32, 1, 1, 1, 0, 1, 0, 0, 0, 0) - layer_3 = LIB.make_shortcut_layer(1, 0, 111, 111, 32, 111, 111, 32) - layer_3.activation = 1 - layer_3.alpha = 1 - layer_3.beta = 1 - net.layers[0] = layer_1 - net.layers[1] = layer_2 - net.layers[2] = layer_3 - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_reorg(): - '''test reorg layer''' - net = LIB.make_network(2) - layer_1 = LIB.make_convolutional_layer(1, 222, 222, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) - layer_2 = LIB.make_reorg_layer(1, 110, 110, 32, 2, 0, 0, 0) - net.layers[0] = layer_1 - net.layers[1] = layer_2 - net.w = net.h = 222 - LIB.resize_network(net, 222, 222) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_region(): - '''test region layer''' - net = LIB.make_network(2) - layer_1 = LIB.make_convolutional_layer(1, 19, 19, 3, 425, 1, 1, 1, 0, 1, 0, 0, 0, 0) - layer_2 = LIB.make_region_layer(1, 19, 19, 5, 80, 4) - layer_2.softmax = 1 - net.layers[0] = layer_1 - net.layers[1] = layer_2 - net.w = net.h = 19 - LIB.resize_network(net, 19, 19) - build_dtype = {} - verify_darknet_frontend(net, build_dtype) - LIB.free_network(net) - -def test_forward_yolo_op(): - '''test yolo layer''' - net = LIB.make_network(2) - layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 14, 1, 3, 2, 0, 1, 0, 0, 0, 0) - layer_2 = LIB.make_yolo_layer(1, 111, 111, 2, 9, __darknetffi__.NULL, 2) - net.layers[0] = layer_1 - net.layers[1] = layer_2 - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - build_dtype = {} - verify_darknet_frontend(net, build_dtype) - LIB.free_network(net) - -def test_forward_upsample(): - '''test upsample layer''' - net = LIB.make_network(1) - layer = LIB.make_upsample_layer(1, 19, 19, 3, 3) - layer.scale = 1 - net.layers[0] = layer - net.w = net.h = 19 - LIB.resize_network(net, 19, 19) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_l2normalize(): - '''test l2 normalization layer''' - net = LIB.make_network(1) - layer = LIB.make_l2norm_layer(1, 224*224*3) - layer.c = layer.out_c = 3 - layer.h = layer.out_h = 224 - layer.w = layer.out_w = 224 - net.layers[0] = layer - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_elu(): - '''test elu activation layer''' - net = LIB.make_network(1) - layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) - layer_1.activation = 8 - net.layers[0] = layer_1 - net.w = net.h = 224 - LIB.resize_network(net, 224, 224) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_softmax(): - '''test softmax layer''' - net = LIB.make_network(1) - layer_1 = LIB.make_softmax_layer(1, 75, 1) - layer_1.temperature = 1 - net.layers[0] = layer_1 - net.w = net.h = 5 - LIB.resize_network(net, net.w, net.h) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_softmax_temperature(): - '''test softmax layer''' - net = LIB.make_network(1) - layer_1 = LIB.make_softmax_layer(1, 75, 1) - layer_1.temperature = 0.8 - net.layers[0] = layer_1 - net.w = net.h = 5 - LIB.resize_network(net, net.w, net.h) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_rnn(): - '''test RNN layer''' - net = LIB.make_network(1) - batch = 1 - inputs = 256 - outputs = 256 - steps = 1 - activation = 1 - batch_normalize = 0 - adam = 0 - layer_1 = LIB.make_rnn_layer(batch, inputs, outputs, steps, activation, batch_normalize, adam) - net.layers[0] = layer_1 - net.inputs = inputs - net.outputs = outputs - net.w = net.h = 0 - LIB.resize_network(net, net.w, net.h) - verify_rnn_forward(net) - LIB.free_network(net) - -def _test_forward_crnn(): - '''test CRNN layer''' - net = LIB.make_network(1) - batch = 1 - c = 3 - h = 224 - w = 224 - hidden_filters = c - output_filters = c - steps = 1 - activation = 0 - batch_normalize = 0 - inputs = 256 - outputs = 256 - layer_1 = LIB.make_crnn_layer(batch, h, w, c, hidden_filters, output_filters, - steps, activation, batch_normalize) - net.layers[0] = layer_1 - net.inputs = inputs - net.outputs = output_filters * h * w - net.w = w - net.h = h - LIB.resize_network(net, net.w, net.h) - verify_darknet_frontend(net) - LIB.free_network(net) - -def test_forward_lstm(): - '''test LSTM layer''' - net = LIB.make_network(1) - batch = 1 - inputs = 256 - outputs = 256 - steps = 1 - batch_normalize = 0 - adam = 0 - layer_1 = LIB.make_lstm_layer(batch, inputs, outputs, steps, batch_normalize, adam) - net.layers[0] = layer_1 - net.inputs = inputs - net.outputs = outputs - net.w = net.h = 0 - LIB.resize_network(net, net.w, net.h) - verify_rnn_forward(net) - LIB.free_network(net) - -def test_forward_gru(): - '''test GRU layer''' - net = LIB.make_network(1) - batch = 1 - inputs = 256 - outputs = 256 - steps = 1 - batch_normalize = 0 - adam = 0 - layer_1 = LIB.make_gru_layer(batch, inputs, outputs, steps, batch_normalize, adam) - net.layers[0] = layer_1 - net.inputs = inputs - net.outputs = outputs - net.w = net.h = 0 - LIB.resize_network(net, net.w, net.h) - verify_rnn_forward(net) - LIB.free_network(net) - -def test_forward_activation_logistic(): - '''test logistic activation layer''' - net = LIB.make_network(1) - batch = 1 - h = 224 - w = 224 - c = 3 - n = 32 - groups = 1 - size = 3 - stride = 2 - padding = 0 - activation = 0 - batch_normalize = 0 - binary = 0 - xnor = 0 - adam = 0 - layer_1 = LIB.make_convolutional_layer(batch, h, w, c, n, groups, size, stride, padding, - activation, batch_normalize, binary, xnor, adam) - net.layers[0] = layer_1 - net.w = w - net.h = h - LIB.resize_network(net, net.w, net.h) - verify_darknet_frontend(net) - LIB.free_network(net) - -if __name__ == '__main__': - test_forward_resnet50() - test_forward_alexnet() - test_forward_extraction() - test_forward_yolov2() - test_forward_yolov3() - test_forward_convolutional() - test_forward_maxpooling() - test_forward_avgpooling() - test_forward_batch_norm() - test_forward_shortcut() - test_forward_dense() - test_forward_dense_batchnorm() - test_forward_softmax() - test_forward_softmax_temperature() - test_forward_rnn() - test_forward_reorg() - test_forward_region() - test_forward_yolo_op() - test_forward_upsample() - test_forward_l2normalize() - test_forward_elu() - test_forward_rnn() -# FIXME: Skip CRNN test since it causes segfault in libdarknet2.0.so -# _test_forward_crnn() - test_forward_lstm() - test_forward_gru() - test_forward_activation_logistic() diff --git a/nnvm/tests/python/frontend/keras/test_forward.py b/nnvm/tests/python/frontend/keras/test_forward.py deleted file mode 100644 index 78e4204e8250..000000000000 --- a/nnvm/tests/python/frontend/keras/test_forward.py +++ /dev/null @@ -1,354 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import nnvm -import tvm -from tvm.contrib import graph_runtime -from nnvm.testing.config import ctx_list -import keras - -# prevent keras from using up all gpu memory -import tensorflow as tf -from keras.backend.tensorflow_backend import set_session -config = tf.ConfigProto() -config.gpu_options.per_process_gpu_memory_fraction = 0.5 -set_session(tf.Session(config=config)) - - -def verify_keras_frontend(keras_model, need_transpose=True): - # Keras frontend currently supports tensorflow backend only. - assert(keras.backend.backend() == 'tensorflow') - - in_shapes = [] - for layer in keras_model._input_layers: - in_shapes.append(tuple(dim.value if dim.value is not None else 1 for dim in layer.input.shape)) - - def get_keras_output(xs, dtype='float32'): - return keras_model.predict(xs) - - def get_tvm_output(xs, target, ctx, dtype='float32'): - sym, params = nnvm.frontend.from_keras(keras_model) - shape_dict = {name: x.shape for (name, x) in zip(keras_model.input_names, xs)} - with nnvm.compiler.build_config(opt_level=2): - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - for name, x in zip(keras_model.input_names, xs): - m.set_input(name, tvm.nd.array(x.astype(dtype))) - m.set_input(**params) - m.run() - - return [m.get_output(i).asnumpy() for i in range(m.get_num_outputs())] - - def to_channels_first(arr): - return arr.transpose([0, -1] + list(range(1, arr.ndim - 1))) - - def to_channels_last(arr): - return arr.transpose([0] + list(range(2, arr.ndim)) + [1]) - - xs = [np.random.uniform(size=shape, low=-1.0, high=1.0) for shape in in_shapes] - keras_out = get_keras_output(xs) - - keras_out = keras_out if isinstance(keras_out, list) else [keras_out] - for target, ctx in ctx_list(): - tvm_out = get_tvm_output([to_channels_first(x) for x in xs] if need_transpose else xs, target, ctx) - for kout, tout in zip(keras_out, tvm_out): - if need_transpose: - tout = to_channels_last(tout) - tvm.testing.assert_allclose(kout, tout, rtol=1e-5, atol=1e-5) - -def test_forward_elemwise_add(): - r = [] - data = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.Conv2D(8, (3, 3), padding="same")(data) - r.append(x) - x = keras.layers.Conv2D(8, (3, 3), padding="same")(x) - r.append(x) - x = keras.layers.Conv2D(8, (3, 3), padding="same")(x) - # add two symbols - y = keras.layers.add([keras.layers.add([x, r[0]]), r[1]]) - y = keras.layers.GlobalAveragePooling2D()(y) - keras_model = keras.models.Model(data, y) - verify_keras_frontend(keras_model) - # add three symbols - y = keras.layers.add([x, r[0], r[1]]) - y = keras.layers.GlobalAveragePooling2D()(y) - keras_model = keras.models.Model(data, y) - verify_keras_frontend(keras_model) - - -def _test_forward_dense(): - data = keras.layers.Input(shape=(32,32,1)) - x = keras.layers.Flatten()(data) - x = keras.layers.Dropout(0.5)(x) - x = keras.layers.Dense(10, activation='relu', kernel_initializer='uniform')(x) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - -def _test_forward_dense_with_3d_inp(): - data = keras.layers.Input(shape=(1, 20)) - x = keras.layers.Dense(10, activation='relu', kernel_initializer='uniform')(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model, need_transpose=False) - -def test_forward_dense(): - _test_forward_dense() - _test_forward_dense_with_3d_inp() - -def test_forward_pool(): - data = keras.layers.Input(shape=(32,32,1)) - # maxpool - x = keras.layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same')(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - # avgpool - y = keras.layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(data) - keras_model = keras.models.Model(data, y) - verify_keras_frontend(keras_model) - - -def test_forward_conv(): - data = keras.layers.Input(shape=(32,32,3)) - conv_funcs = [keras.layers.Conv2D(filters=10, kernel_size=(3,3), - strides=(2,2), padding='same'), - keras.layers.Conv2D(filters=10, kernel_size=(3,3), - dilation_rate=(2,2), padding='same'), - keras.layers.DepthwiseConv2D(kernel_size=(3,3), padding='same'), - keras.layers.Conv2DTranspose(filters=10, kernel_size=(3,3), padding='valid'), - keras.layers.SeparableConv2D(filters=10, kernel_size=(3,3), padding='same')] - for conv_func in conv_funcs: - x = conv_func(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - - -def test_forward_upsample(): - data = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.UpSampling2D(size=(3,3))(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - - -def test_forward_reshape(): - data = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.Reshape(target_shape=(32,32,3))(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - - -def test_forward_crop(): - data = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.Cropping2D(cropping=((1, 1), (1, 1)))(data) - x = keras.layers.Cropping2D(cropping=(1, 1))(x) - x = keras.layers.Cropping2D(cropping=1)(x) - x = keras.layers.Cropping2D(cropping=((0, 1), (1, 0)))(x) - x = keras.layers.Cropping2D(cropping=(1, 0))(x) - x = keras.layers.Cropping2D(cropping=0)(x) - x = keras.layers.Add()([x, x]) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - - -def test_forward_vgg16(): - keras_model = keras.applications.vgg16.VGG16(include_top=True, weights='imagenet', - input_shape=(224,224,3), classes=1000) - verify_keras_frontend(keras_model) - - -def test_forward_xception(): - keras_model = keras.applications.xception.Xception(include_top=True, weights='imagenet', - input_shape=(299,299,3), classes=1000) - verify_keras_frontend(keras_model) - - -def test_forward_resnet50(): - keras_model = keras.applications.resnet50.ResNet50(include_top=True, weights='imagenet', - input_shape=(224,224,3), classes=1000) - verify_keras_frontend(keras_model) - - -def test_forward_mobilenet(): - keras_model = keras.applications.mobilenet.MobileNet(include_top=True, weights='imagenet', - input_shape=(224,224,3), classes=1000) - verify_keras_frontend(keras_model) - - -def test_forward_activations(): - data = keras.layers.Input(shape=(32,32,3)) - weights = np.random.rand(1, 32, 32, 3) - act_funcs = [keras.layers.Activation('softmax'), - keras.layers.Activation('softplus'), - keras.layers.ReLU(), - keras.layers.ReLU(max_value=6.), - keras.layers.LeakyReLU(alpha=0.3), - keras.layers.PReLU(weights=weights, alpha_initializer="zero"), - keras.layers.ELU(alpha=0.5), - keras.layers.Activation('selu'), - keras.layers.ThresholdedReLU(theta=0.5), - keras.layers.Activation('softsign'), - keras.layers.Activation('hard_sigmoid'), - keras.layers.Activation('sigmoid'), - keras.layers.Activation('tanh'), - keras.layers.Activation('linear')] - for act_func in act_funcs: - x = act_func(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model) - - -def test_forward_multi_inputs(): - data1 = keras.layers.Input(shape=(32,32,3)) - data2 = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.Conv2D(8, (3, 3), padding="same")(data1) - y = keras.layers.Conv2D(8, (3, 3), padding="same")(data2) - z = keras.layers.add([x, y]) - z = keras.layers.GlobalAveragePooling2D()(z) - keras_model = keras.models.Model([data1, data2], z) - verify_keras_frontend(keras_model) - - -def test_forward_multi_outputs(): - data = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.Conv2D(8, (3, 3), padding="same")(data) - x = keras.layers.GlobalAveragePooling2D()(x) - y = keras.layers.Conv2D(8, (3, 3), padding="same")(data) - y = keras.layers.GlobalAveragePooling2D()(y) - keras_model = keras.models.Model(data, [x, y]) - verify_keras_frontend(keras_model) - - -def test_forward_reuse_layers(): - # reuse conv2d - data = keras.layers.Input(shape=(32,32,3)) - conv2d = keras.layers.Conv2D(8, (3, 3), padding="same") - x = conv2d(data) - y = conv2d(data) - z = keras.layers.add([x, y]) - z = keras.layers.GlobalAveragePooling2D()(z) - keras_model = keras.models.Model(data, z) - verify_keras_frontend(keras_model) - - # reuse add - data = keras.layers.Input(shape=(32,32,3)) - x = keras.layers.Conv2D(8, (3, 3), padding="same")(data) - add = keras.layers.Add() - x = add([x, x]) - x = add([x, x]) - z = keras.layers.GlobalAveragePooling2D()(x) - keras_model = keras.models.Model(data, z) - verify_keras_frontend(keras_model) - -def _test_LSTM(time_steps, inputs, hidden, return_state=True): - data = keras.layers.Input(shape=(time_steps, inputs)) - lstm_out = keras.layers.LSTM(hidden, - return_state=return_state, - recurrent_activation='sigmoid', - activation='tanh') - x = lstm_out(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model, need_transpose=False) - -def _test_LSTM_MultiLayer(inputs, hidden): - inputs = keras.layers.Input(shape=(1, inputs)) - layer = keras.layers.LSTM(hidden, return_state=True, return_sequences=True, - recurrent_activation='sigmoid', - activation='tanh') - outputs = layer(inputs) - output, state = outputs[0], outputs[1:] - output = keras.layers.LSTM(hidden, recurrent_activation='sigmoid', - activation='tanh')(output, initial_state=state) - keras_model = keras.models.Model(inputs, output) - verify_keras_frontend(keras_model, need_transpose=False) - - -def test_forward_LSTM(): - _test_LSTM(1, 8, 8, return_state=True) - _test_LSTM(1, 4, 4, return_state=False) - _test_LSTM(20, 16, 256, return_state=False) - _test_LSTM_MultiLayer(4, 4) - -def _test_RNN(inputs, units): - data = keras.layers.Input(shape=(1, inputs)) - rnn_out = keras.layers.SimpleRNN(units, return_state=True, - activation='tanh') - x = rnn_out(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model, need_transpose=False) - -def _test_RNN_MultiLayer(inputs, units): - inputs = keras.layers.Input(shape=(1, inputs)) - layer = keras.layers.SimpleRNN(units, return_state=True, return_sequences=True, - activation='tanh') - outputs = layer(inputs) - output, state = outputs[0], outputs[1:] - output = keras.layers.SimpleRNN(units, activation='tanh')(output, initial_state=state) - keras_model = keras.models.Model(inputs, output) - verify_keras_frontend(keras_model, need_transpose=False) - -def test_forward_RNN(): - _test_RNN(2, 4) - _test_RNN(4, 3) - _test_RNN_MultiLayer(4, 12) - -def _test_GRU(inputs, units): - data = keras.layers.Input(shape=(1, inputs)) - gru_out = keras.layers.GRU(units, - return_state=True, - recurrent_activation='sigmoid', - activation='tanh') - x = gru_out(data) - keras_model = keras.models.Model(data, x) - verify_keras_frontend(keras_model, need_transpose=False) - -def _test_GRU_MultiLayer(inputs, units): - inputs = keras.layers.Input(shape=(1, inputs)) - layer = keras.layers.GRU(units, - return_state=True, - return_sequences=True, - recurrent_activation='sigmoid', - activation='tanh') - outputs = layer(inputs) - output, state = outputs[0], outputs[1:] - output = keras.layers.GRU(units, recurrent_activation='sigmoid', - activation='tanh')(output, initial_state=state) - keras_model = keras.models.Model(inputs, output) - verify_keras_frontend(keras_model, need_transpose=False) - -def test_forward_GRU(): - _test_GRU(2, 4) - _test_GRU(4, 3) - _test_GRU_MultiLayer(4, 4) - -if __name__ == '__main__': - test_forward_elemwise_add() - test_forward_activations() - test_forward_dense() - test_forward_pool() - test_forward_conv() - test_forward_upsample() - test_forward_reshape() - test_forward_crop() - test_forward_vgg16() - test_forward_xception() - test_forward_resnet50() - test_forward_mobilenet() - - test_forward_multi_inputs() - test_forward_multi_outputs() - test_forward_reuse_layers() - test_forward_LSTM() - test_forward_RNN() - test_forward_GRU() diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py b/nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py deleted file mode 100644 index 3922ba673f2f..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py +++ /dev/null @@ -1,62 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""MXNet and NNVM model zoo.""" -from __future__ import absolute_import -from . import mlp, resnet, vgg, dqn, dcgan, squeezenet, inception_v3 -import nnvm.testing - -_num_class = 1000 - -# mlp fc -mx_mlp = mlp.get_symbol(_num_class) -nnvm_mlp = nnvm.testing.mlp.get_workload(1, _num_class)[0] - -# resnet fc -mx_resnet = {} -nnvm_resnet = {} -for num_layer in [18, 34, 50, 101, 152, 200, 269]: - mx_resnet[num_layer] = resnet.get_symbol(_num_class, num_layer, '3,224,224') - nnvm_resnet[num_layer] = nnvm.testing.resnet.get_workload( - 1, _num_class, num_layers=num_layer)[0] - -# vgg fc -mx_vgg = {} -nnvm_vgg = {} -for num_layer in [11, 13, 16, 19]: - mx_vgg[num_layer] = vgg.get_symbol(_num_class, num_layer) - nnvm_vgg[num_layer] = nnvm.testing.vgg.get_workload( - 1, _num_class, num_layers=num_layer)[0] - -# squeezenet -mx_squeezenet = {} -nnvm_squeezenet = {} -for version in ['1.0', '1.1']: - mx_squeezenet[version] = squeezenet.get_symbol(version=version) - nnvm_squeezenet[version] = nnvm.testing.squeezenet.get_workload(1, version=version)[0] - -# inception -mx_inception_v3 = inception_v3.get_symbol() -nnvm_inception_v3 = nnvm.testing.inception_v3.get_workload(1)[0] - -# dqn -mx_dqn = dqn.get_symbol() -nnvm_dqn = nnvm.testing.dqn.get_workload(1)[0] - -# dcgan generator -mx_dcgan = dcgan.get_symbol() -nnvm_dcgan = nnvm.testing.dcgan.get_workload(1)[0] diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/dcgan.py b/nnvm/tests/python/frontend/mxnet/model_zoo/dcgan.py deleted file mode 100644 index e606b78e1597..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/dcgan.py +++ /dev/null @@ -1,82 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=unused-argument -""" -The MXNet symbol of DCGAN generator - -Adopted from: -https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py - -Reference: -Radford, Alec, Luke Metz, and Soumith Chintala. -"Unsupervised representation learning with deep convolutional generative adversarial networks." -arXiv preprint arXiv:1511.06434 (2015). -""" - -import mxnet as mx - -def deconv2d(data, ishape, oshape, kshape, name, stride=(2, 2)): - """a deconv layer that enlarges the feature map""" - target_shape = (oshape[-2], oshape[-1]) - pad_y = (kshape[0] - 1) // 2 - pad_x = (kshape[1] - 1) // 2 - adj_y = (target_shape[0] + 2 * pad_y - kshape[0]) % stride[0] - adj_x = (target_shape[1] + 2 * pad_x - kshape[1]) % stride[1] - - net = mx.sym.Deconvolution(data, - kernel=kshape, - stride=stride, - pad=(pad_y, pad_x), - adj=(adj_y, adj_x), - num_filter=oshape[0], - no_bias=True, - name=name) - return net - -def deconv2d_bn_relu(data, prefix, **kwargs): - """a block of deconv + batch norm + relu""" - eps = 1e-5 + 1e-12 - - net = deconv2d(data, name="%s_deconv" % prefix, **kwargs) - net = mx.sym.BatchNorm(net, eps=eps, name="%s_bn" % prefix) - net = mx.sym.Activation(net, name="%s_act" % prefix, act_type='relu') - return net - -def get_symbol(oshape=(3, 64, 64), ngf=128, code=None): - """get symbol of dcgan generator""" - assert oshape[-1] == 64, "Only support 64x64 image" - assert oshape[-2] == 64, "Only support 64x64 image" - - code = mx.sym.Variable("data") if code is None else code - net = mx.sym.FullyConnected(code, name="g1", num_hidden=ngf*8*4*4, no_bias=True, flatten=False) - net = mx.sym.Activation(net, act_type='relu') - # 4 x 4 - net = mx.sym.reshape(net, shape=(-1, ngf * 8, 4, 4)) - # 8 x 8 - net = deconv2d_bn_relu( - net, ishape=(ngf * 8, 4, 4), oshape=(ngf * 4, 8, 8), kshape=(4, 4), prefix="g2") - # 16x16 - net = deconv2d_bn_relu( - net, ishape=(ngf * 4, 8, 8), oshape=(ngf * 2, 16, 16), kshape=(4, 4), prefix="g3") - # 32x32 - net = deconv2d_bn_relu( - net, ishape=(ngf * 2, 16, 16), oshape=(ngf, 32, 32), kshape=(4, 4), prefix="g4") - # 64x64 - net = deconv2d( - net, ishape=(ngf, 32, 32), oshape=oshape[-3:], kshape=(4, 4), name="g5_deconv") - net = mx.sym.Activation(net, act_type='tanh') - return net diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/dqn.py b/nnvm/tests/python/frontend/mxnet/model_zoo/dqn.py deleted file mode 100644 index e661e18debcb..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/dqn.py +++ /dev/null @@ -1,43 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -The mxnet symbol of Nature DQN - -Reference: -Mnih, Volodymyr, et al. -"Human-level control through deep reinforcement learning." -Nature 518.7540 (2015): 529. -""" - -import mxnet as mx - -def get_symbol(num_action=18): - data = mx.sym.Variable(name='data') - net = mx.sym.Convolution(data, kernel=(8, 8), stride=(4, 4), - num_filter=32, name='conv1') - net = mx.sym.Activation(net, act_type='relu', name='relu1') - net = mx.sym.Convolution(net, kernel=(4, 4), stride=(2, 2), - num_filter=64, name='conv2') - net = mx.sym.Activation(net, act_type='relu', name='relu2') - net = mx.sym.Convolution(net, kernel=(3, 3), stride=(1, 1), - num_filter=64, name='conv3') - net = mx.sym.Activation(net, act_type='relu', name='relu3') - net = mx.sym.FullyConnected(net, num_hidden=512, name='fc4') - net = mx.sym.Activation(net, act_type='relu', name='relu4') - net = mx.sym.FullyConnected(net, num_hidden=num_action, name='fc5', flatten=False) - - return net diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/inception_v3.py b/nnvm/tests/python/frontend/mxnet/model_zoo/inception_v3.py deleted file mode 100644 index 8e8f36a3e644..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/inception_v3.py +++ /dev/null @@ -1,186 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Inception V3, suitable for images with around 299 x 299 - -Reference: -Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision." arXiv preprint arXiv:1512.00567 (2015). - -Adopted from https://github.com/apache/incubator-mxnet/blob/ - master/example/image-classification/symbols/inception-v3.py -""" -import mxnet as mx -import numpy as np - -def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''): - conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True, name='%s%s_conv2d' %(name, suffix)) - bn = mx.sym.BatchNorm(data=conv, eps=2e-5, name='%s%s_batchnorm' % (name, suffix)) - act = mx.sym.Activation(data=bn, act_type='relu', name='%s%s_relu' %(name, suffix)) - return act - - -def Inception7A(data, - num_1x1, - num_3x3_red, num_3x3_1, num_3x3_2, - num_5x5_red, num_5x5, - pool, proj, - name): - tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name)) - tower_5x5 = Conv(data, num_5x5_red, name=('%s_tower' % name), suffix='_conv') - tower_5x5 = Conv(tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=('%s_tower' % name), suffix='_conv_1') - tower_3x3 = Conv(data, num_3x3_red, name=('%s_tower_1' % name), suffix='_conv') - tower_3x3 = Conv(tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), suffix='_conv_1') - tower_3x3 = Conv(tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), suffix='_conv_2') - pooling = mx.sym.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name))) - cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv') - concat = mx.sym.Concat(*[tower_1x1, tower_5x5, tower_3x3, cproj], name='ch_concat_%s_chconcat' % name) - return concat - -# First Downsample -def Inception7B(data, - num_3x3, - num_d3x3_red, num_d3x3_1, num_d3x3_2, - pool, - name): - tower_3x3 = Conv(data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), name=('%s_conv' % name)) - tower_d3x3 = Conv(data, num_d3x3_red, name=('%s_tower' % name), suffix='_conv') - tower_d3x3 = Conv(tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name=('%s_tower' % name), suffix='_conv_1') - tower_d3x3 = Conv(tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2), name=('%s_tower' % name), suffix='_conv_2') - pooling = mx.sym.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pad=(0,0), pool_type="max", name=('max_pool_%s_pool' % name)) - concat = mx.sym.Concat(*[tower_3x3, tower_d3x3, pooling], name='ch_concat_%s_chconcat' % name) - return concat - -def Inception7C(data, - num_1x1, - num_d7_red, num_d7_1, num_d7_2, - num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4, - pool, proj, - name): - tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name)) - tower_d7 = Conv(data=data, num_filter=num_d7_red, name=('%s_tower' % name), suffix='_conv') - tower_d7 = Conv(data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), name=('%s_tower' % name), suffix='_conv_1') - tower_d7 = Conv(data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), name=('%s_tower' % name), suffix='_conv_2') - tower_q7 = Conv(data=data, num_filter=num_q7_red, name=('%s_tower_1' % name), suffix='_conv') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0), name=('%s_tower_1' % name), suffix='_conv_1') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3), name=('%s_tower_1' % name), suffix='_conv_2') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0), name=('%s_tower_1' % name), suffix='_conv_3') - tower_q7 = Conv(data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3), name=('%s_tower_1' % name), suffix='_conv_4') - pooling = mx.sym.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name))) - cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name), suffix='_conv') - # concat - concat = mx.sym.Concat(*[tower_1x1, tower_d7, tower_q7, cproj], name='ch_concat_%s_chconcat' % name) - return concat - -def Inception7D(data, - num_3x3_red, num_3x3, - num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3, - pool, - name): - tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=('%s_tower' % name), suffix='_conv') - tower_3x3 = Conv(data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0,0), stride=(2, 2), name=('%s_tower' % name), suffix='_conv_1') - tower_d7_3x3 = Conv(data=data, num_filter=num_d7_3x3_red, name=('%s_tower_1' % name), suffix='_conv') - tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), name=('%s_tower_1' % name), suffix='_conv_1') - tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), name=('%s_tower_1' % name), suffix='_conv_2') - tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2), name=('%s_tower_1' % name), suffix='_conv_3') - pooling = mx.sym.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name))) - # concat - concat = mx.sym.Concat(*[tower_3x3, tower_d7_3x3, pooling], name='ch_concat_%s_chconcat' % name) - return concat - -def Inception7E(data, - num_1x1, - num_d3_red, num_d3_1, num_d3_2, - num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2, - pool, proj, - name): - tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name)) - tower_d3 = Conv(data=data, num_filter=num_d3_red, name=('%s_tower' % name), suffix='_conv') - tower_d3_a = Conv(data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1), name=('%s_tower' % name), suffix='_mixed_conv') - tower_d3_b = Conv(data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0), name=('%s_tower' % name), suffix='_mixed_conv_1') - tower_3x3_d3 = Conv(data=data, num_filter=num_3x3_d3_red, name=('%s_tower_1' % name), suffix='_conv') - tower_3x3_d3 = Conv(data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), suffix='_conv_1') - tower_3x3_d3_a = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1), name=('%s_tower_1' % name), suffix='_mixed_conv') - tower_3x3_d3_b = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0), name=('%s_tower_1' % name), suffix='_mixed_conv_1') - pooling = mx.sym.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name))) - cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name), suffix='_conv') - # concat - concat = mx.sym.Concat(*[tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj], name='ch_concat_%s_chconcat' % name) - return concat - -def get_symbol(num_classes=1000, **kwargs): - data = mx.sym.Variable(name="data") - # stage 1 - conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv") - conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1") - conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2") - pool = mx.sym.Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", name="pool") - # stage 2 - conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3") - conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4") - pool1 = mx.sym.Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", name="pool1") - - # # stage 3 - in3a = Inception7A(pool1, 64, - 64, 96, 96, - 48, 64, - "avg", 32, "mixed") - in3b = Inception7A(in3a, 64, - 64, 96, 96, - 48, 64, - "avg", 64, "mixed_1") - in3c = Inception7A(in3b, 64, - 64, 96, 96, - 48, 64, - "avg", 64, "mixed_2") - in3d = Inception7B(in3c, 384, - 64, 96, 96, - "max", "mixed_3") - # stage 4 - in4a = Inception7C(in3d, 192, - 128, 128, 192, - 128, 128, 128, 128, 192, - "avg", 192, "mixed_4") - in4b = Inception7C(in4a, 192, - 160, 160, 192, - 160, 160, 160, 160, 192, - "avg", 192, "mixed_5") - in4c = Inception7C(in4b, 192, - 160, 160, 192, - 160, 160, 160, 160, 192, - "avg", 192, "mixed_6") - in4d = Inception7C(in4c, 192, - 192, 192, 192, - 192, 192, 192, 192, 192, - "avg", 192, "mixed_7") - in4e = Inception7D(in4d, 192, 320, - 192, 192, 192, 192, - "max", "mixed_8") - # stage 5 - in5a = Inception7E(in4e, 320, - 384, 384, 384, - 448, 384, 384, 384, - "avg", 192, "mixed_9") - in5b = Inception7E(in5a, 320, - 384, 384, 384, - 448, 384, 384, 384, - "max", 192, "mixed_10") - # pool - pool = mx.sym.Pooling(data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", name="global_pool") - flatten = mx.sym.Flatten(data=pool, name="flatten") - fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=num_classes, name='fc1', flatten=False) - softmax = mx.sym.SoftmaxOutput(data=fc1, name='softmax') - return softmax diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/mlp.py b/nnvm/tests/python/frontend/mxnet/model_zoo/mlp.py deleted file mode 100644 index 922b208749bf..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/mlp.py +++ /dev/null @@ -1,40 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -a simple multilayer perceptron -""" -import mxnet as mx - -def get_symbol(num_classes=10, **kwargs): - data = mx.symbol.Variable('data') - data = mx.sym.Flatten(data=data) - try: - fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128, flatten=False) - act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") - fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64, flatten=False) - act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") - fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes, flatten=False) - mlp = mx.symbol.softmax(data = fc3, name = 'softmax') - except: - fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) - act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") - fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) - act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") - fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes) - mlp = mx.symbol.softmax(data = fc3, name = 'softmax') - return mlp diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/resnet.py b/nnvm/tests/python/frontend/mxnet/model_zoo/resnet.py deleted file mode 100644 index 3f9a870d31c0..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/resnet.py +++ /dev/null @@ -1,199 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -''' -Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py -Original author Wei Wu - -Implemented the following paper: - -Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Identity Mappings in Deep Residual Networks" -''' -import mxnet as mx -import numpy as np - -def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, bn_mom=0.9, workspace=256, memonger=False): - """Return ResNet Unit symbol for building ResNet - Parameters - ---------- - data : str - Input data - num_filter : int - Number of output channels - bnf : int - Bottle neck channels factor with regard to num_filter - stride : tuple - Stride used in convolution - dim_match : Boolean - True means channel number between input and output is the same, otherwise means differ - name : str - Base name of the operators - workspace : int - Workspace used in convolution operator - """ - if bottle_neck: - bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') - act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') - conv1 = mx.sym.Convolution(data=act1, num_filter=int(num_filter*0.25), kernel=(1,1), stride=stride, pad=(0,0), - no_bias=True, workspace=workspace, name=name + '_conv1') - bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') - act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') - conv2 = mx.sym.Convolution(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(1,1), - no_bias=True, workspace=workspace, name=name + '_conv2') - bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') - act3 = mx.sym.Activation(data=bn3, act_type='relu', name=name + '_relu3') - conv3 = mx.sym.Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, - workspace=workspace, name=name + '_conv3') - if dim_match: - shortcut = data - else: - shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, - workspace=workspace, name=name+'_sc') - if memonger: - shortcut._set_attr(mirror_stage='True') - return conv3 + shortcut - else: - bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn1') - act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') - conv1 = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1), - no_bias=True, workspace=workspace, name=name + '_conv1') - bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2') - act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') - conv2 = mx.sym.Convolution(data=act2, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1), - no_bias=True, workspace=workspace, name=name + '_conv2') - if dim_match: - shortcut = data - else: - shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, - workspace=workspace, name=name+'_sc') - if memonger: - shortcut._set_attr(mirror_stage='True') - return conv2 + shortcut - -def resnet(units, num_stages, filter_list, num_classes, image_shape, bottle_neck=True, bn_mom=0.9, workspace=256, dtype='float32', memonger=False): - """Return ResNet symbol of - Parameters - ---------- - units : list - Number of units in each stage - num_stages : int - Number of stage - filter_list : list - Channel size of each stage - num_classes : int - Ouput size of symbol - dataset : str - Dataset type, only cifar10 and imagenet supports - workspace : int - Workspace used in convolution operator - dtype : str - Precision (float32 or float16) - """ - num_unit = len(units) - assert(num_unit == num_stages) - data = mx.sym.Variable(name='data') - if dtype == 'float32': - # data = mx.sym.identity(data=data, name='id') - data = data - else: - if dtype == 'float16': - data = mx.sym.Cast(data=data, dtype=np.float16) - data = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='bn_data') - (nchannel, height, width) = image_shape - if height <= 32: # such as cifar10 - body = mx.sym.Convolution(data=data, num_filter=filter_list[0], kernel=(3, 3), stride=(1,1), pad=(1, 1), - no_bias=True, name="conv0", workspace=workspace) - else: # often expected to be 224 such as imagenet - body = mx.sym.Convolution(data=data, num_filter=filter_list[0], kernel=(7, 7), stride=(2,2), pad=(3, 3), - no_bias=True, name="conv0", workspace=workspace) - body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0') - body = mx.sym.Activation(data=body, act_type='relu', name='relu0') - body = mx.sym.Pooling(data=body, kernel=(3, 3), stride=(2,2), pad=(1,1), pool_type='max') - - for i in range(num_stages): - body = residual_unit(body, filter_list[i+1], (1 if i==0 else 2, 1 if i==0 else 2), False, - name='stage%d_unit%d' % (i + 1, 1), bottle_neck=bottle_neck, workspace=workspace, - memonger=memonger) - for j in range(units[i]-1): - body = residual_unit(body, filter_list[i+1], (1,1), True, name='stage%d_unit%d' % (i + 1, j + 2), - bottle_neck=bottle_neck, workspace=workspace, memonger=memonger) - bn1 = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1') - relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1') - # Although kernel is not used here when global_pool=True, we should put one - pool1 = mx.sym.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1') - flat = mx.sym.Flatten(data=pool1) - try: - fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name='fc1', flatten=False) - except: - fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name='fc1') - if dtype == 'float16': - fc1 = mx.sym.Cast(data=fc1, dtype=np.float32) - return mx.sym.softmax(data=fc1, name='softmax') - -def get_symbol(num_classes, num_layers, image_shape, conv_workspace=256, dtype='float32', **kwargs): - """ - Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py - Original author Wei Wu - """ - image_shape = [int(l) for l in image_shape.split(',')] - (nchannel, height, width) = image_shape - if height <= 28: - num_stages = 3 - if (num_layers-2) % 9 == 0 and num_layers >= 164: - per_unit = [(num_layers-2)//9] - filter_list = [16, 64, 128, 256] - bottle_neck = True - elif (num_layers-2) % 6 == 0 and num_layers < 164: - per_unit = [(num_layers-2)//6] - filter_list = [16, 16, 32, 64] - bottle_neck = False - else: - raise ValueError("no experiments done on num_layers {}, you can do it yourself".format(num_layers)) - units = per_unit * num_stages - else: - if num_layers >= 50: - filter_list = [64, 256, 512, 1024, 2048] - bottle_neck = True - else: - filter_list = [64, 64, 128, 256, 512] - bottle_neck = False - num_stages = 4 - if num_layers == 18: - units = [2, 2, 2, 2] - elif num_layers == 34: - units = [3, 4, 6, 3] - elif num_layers == 50: - units = [3, 4, 6, 3] - elif num_layers == 101: - units = [3, 4, 23, 3] - elif num_layers == 152: - units = [3, 8, 36, 3] - elif num_layers == 200: - units = [3, 24, 36, 3] - elif num_layers == 269: - units = [3, 30, 48, 8] - else: - raise ValueError("no experiments done on num_layers {}, you can do it yourself".format(num_layers)) - - return resnet(units = units, - num_stages = num_stages, - filter_list = filter_list, - num_classes = num_classes, - image_shape = image_shape, - bottle_neck = bottle_neck, - workspace = conv_workspace, - dtype = dtype) diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/squeezenet.py b/nnvm/tests/python/frontend/mxnet/model_zoo/squeezenet.py deleted file mode 100644 index 093da51a78a7..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/squeezenet.py +++ /dev/null @@ -1,92 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Symbol of SqueezeNet - -Reference: -Iandola, Forrest N., et al. -"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). -""" - -import mxnet as mx - -# Helpers -def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): - net = _make_fire_conv(net, squeeze_channels, 1, 0) - - left = _make_fire_conv(net, expand1x1_channels, 1, 0) - right = _make_fire_conv(net, expand3x3_channels, 3, 1) - # NOTE : Assume NCHW layout here - net = mx.sym.concat(left, right, dim=1) - - return net - -def _make_fire_conv(net, channels, kernel_size, padding=0): - net = mx.sym.Convolution(net, num_filter=channels, kernel=(kernel_size, kernel_size), - pad=(padding, padding)) - net = mx.sym.Activation(net, act_type='relu') - return net - -# Net -def get_symbol(num_classes=1000, version='1.0', **kwargs): - """Get symbol of SqueezeNet - - Parameters - ---------- - num_classes: int - The number of classification results - - version : str, optional - "1.0" or "1.1" of SqueezeNet - """ - assert version in ['1.0', '1.1'], ("Unsupported SqueezeNet version {version}:" - "1.0 or 1.1 expected".format(version=version)) - net = mx.sym.Variable("data") - if version == '1.0': - net = mx.sym.Convolution(net, num_filter=96, kernel=(7, 7), stride=(2, 2), pad=(3, 3)) - net = mx.sym.Activation(net, act_type='relu') - net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2)) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 32, 128, 128) - net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2)) - net = _make_fire(net, 32, 128, 128) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 64, 256, 256) - net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2)) - net = _make_fire(net, 64, 256, 256) - else: - net = mx.sym.Convolution(net, num_filter=64, kernel=(3, 3), stride=(2, 2), pad=(1, 1)) - net = mx.sym.Activation(net, act_type='relu') - net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2)) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 16, 64, 64) - net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2)) - net = _make_fire(net, 32, 128, 128) - net = _make_fire(net, 32, 128, 128) - net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2)) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 64, 256, 256) - net = _make_fire(net, 64, 256, 256) - net = mx.sym.Dropout(net, p=0.5) - net = mx.sym.Convolution(net, num_filter=num_classes, kernel=(1, 1)) - net = mx.sym.Activation(net, act_type='relu') - net = mx.sym.Pooling(data=net, global_pool=True, kernel=(13, 13), pool_type='avg') - net = mx.sym.flatten(net) - return mx.sym.softmax(net) diff --git a/nnvm/tests/python/frontend/mxnet/model_zoo/vgg.py b/nnvm/tests/python/frontend/mxnet/model_zoo/vgg.py deleted file mode 100644 index 68215bb80aaa..000000000000 --- a/nnvm/tests/python/frontend/mxnet/model_zoo/vgg.py +++ /dev/null @@ -1,85 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""References: - -Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for -large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). -""" - -import mxnet as mx -import numpy as np - -def get_feature(internel_layer, layers, filters, batch_norm = False, **kwargs): - for i, num in enumerate(layers): - for j in range(num): - internel_layer = mx.sym.Convolution(data = internel_layer, kernel=(3, 3), pad=(1, 1), num_filter=filters[i], name="conv%s_%s" %(i + 1, j + 1)) - if batch_norm: - internel_layer = mx.symbol.BatchNorm(data=internel_layer, name="bn%s_%s" %(i + 1, j + 1)) - internel_layer = mx.sym.Activation(data=internel_layer, act_type="relu", name="relu%s_%s" %(i + 1, j + 1)) - internel_layer = mx.sym.Pooling(data=internel_layer, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool%s" %(i + 1)) - return internel_layer - -def get_classifier(input_data, num_classes, **kwargs): - flatten = mx.sym.Flatten(data=input_data, name="flatten") - try: - fc6 = mx.sym.FullyConnected(data=flatten, num_hidden=4096, name="fc6", flatten=False) - relu6 = mx.sym.Activation(data=fc6, act_type="relu", name="relu6") - drop6 = mx.sym.Dropout(data=relu6, p=0.5, name="drop6") - fc7 = mx.sym.FullyConnected(data=drop6, num_hidden=4096, name="fc7", flatten=False) - relu7 = mx.sym.Activation(data=fc7, act_type="relu", name="relu7") - drop7 = mx.sym.Dropout(data=relu7, p=0.5, name="drop7") - fc8 = mx.sym.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8", flatten=False) - except: - fc6 = mx.sym.FullyConnected(data=flatten, num_hidden=4096, name="fc6") - relu6 = mx.sym.Activation(data=fc6, act_type="relu", name="relu6") - drop6 = mx.sym.Dropout(data=relu6, p=0.5, name="drop6") - fc7 = mx.sym.FullyConnected(data=drop6, num_hidden=4096, name="fc7") - relu7 = mx.sym.Activation(data=fc7, act_type="relu", name="relu7") - drop7 = mx.sym.Dropout(data=relu7, p=0.5, name="drop7") - fc8 = mx.sym.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8") - return fc8 - -def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32', **kwargs): - """ - Parameters - ---------- - num_classes : int, default 1000 - Number of classification classes. - num_layers : int - Number of layers for the variant of densenet. Options are 11, 13, 16, 19. - batch_norm : bool, default False - Use batch normalization. - dtype: str, float32 or float16 - Data precision. - """ - vgg_spec = {11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]), - 13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]), - 16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]), - 19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])} - if num_layers not in vgg_spec: - raise ValueError("Invalide num_layers {}. Possible choices are 11,13,16,19.".format(num_layers)) - layers, filters = vgg_spec[num_layers] - data = mx.sym.Variable(name="data") - if dtype == 'float16': - data = mx.sym.Cast(data=data, dtype=np.float16) - feature = get_feature(data, layers, filters, batch_norm) - classifier = get_classifier(feature, num_classes) - if dtype == 'float16': - classifier = mx.sym.Cast(data=classifier, dtype=np.float32) - symbol = mx.sym.softmax(data=classifier, name='softmax') - return symbol diff --git a/nnvm/tests/python/frontend/mxnet/test_forward.py b/nnvm/tests/python/frontend/mxnet/test_forward.py deleted file mode 100644 index dd315c6f87b0..000000000000 --- a/nnvm/tests/python/frontend/mxnet/test_forward.py +++ /dev/null @@ -1,333 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np - -import topi -import tvm -from tvm.contrib import graph_runtime -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing.config import ctx_list -from nnvm import frontend -import mxnet as mx -from mxnet import gluon -from mxnet.gluon.model_zoo import vision -import model_zoo - - -def verify_mxnet_frontend_impl(mx_symbol, data_shape=(1, 3, 224, 224), out_shape=(1, 1000), - gluon_impl=False, name=None, dtype='float32'): - """Use name different from test to avoid pytest picking it up""" - if gluon_impl: - def get_gluon_output(name, x): - net = vision.get_model(name) - net.collect_params().initialize(mx.init.Xavier()) - net_sym = gluon.nn.SymbolBlock(outputs=net(mx.sym.var('data')), - inputs=mx.sym.var('data'), - params=net.collect_params()) - out = net_sym(mx.nd.array(x.astype(dtype))).asnumpy() - return out, net_sym - else: - def get_mxnet_output(symbol, x, dtype='float32'): - from collections import namedtuple - Batch = namedtuple('Batch', ['data']) - mod = mx.mod.Module(symbol, label_names=None) - mod.bind(data_shapes=[('data', x.shape)], for_training=False) - mod.init_params() - mod.forward(Batch([mx.nd.array(x.astype(dtype))])) - out = mod.get_outputs()[0].asnumpy() - args, auxs = mod.get_params() - return out, args, auxs - - def get_tvm_output(symbol, x, args, auxs, target, ctx, dtype='float32'): - if gluon_impl: - new_sym, params = frontend.from_mxnet(symbol) - else: - new_sym, params = frontend.from_mxnet(symbol, args, auxs) - - dshape = x.shape - shape_dict = {'data': dshape} - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(new_sym, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - # set inputs - m.set_input("data", tvm.nd.array(x.astype(dtype))) - m.set_input(**params) - m.run() - # get outputs - out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) - return out.asnumpy() - - # random input - x = np.random.uniform(size=data_shape) - if gluon_impl: - gluon_out, gluon_sym = get_gluon_output(name, x) - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(gluon_sym, x, None, None, target, ctx, dtype) - tvm.testing.assert_allclose(gluon_out, tvm_out, rtol=1e-5, atol=1e-5) - else: - mx_out, args, auxs = get_mxnet_output(mx_symbol, x, dtype) - assert "data" not in args - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(mx_symbol, x, args, auxs, target, ctx, dtype) - tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_mlp(): - mlp = model_zoo.mx_mlp - verify_mxnet_frontend_impl(mlp) - -def test_forward_vgg(): - for n in [11]: - mx_sym = model_zoo.mx_vgg[n] - verify_mxnet_frontend_impl(mx_sym) - -def test_forward_resnet(): - for n in [18]: - mx_sym = model_zoo.mx_resnet[n] - verify_mxnet_frontend_impl(mx_sym) - -def test_forward_elu(): - data = mx.sym.var('data') - data = mx.sym.concat(data, -data, dim=1) # negative part explicitly - mx_sym = mx.sym.LeakyReLU(data, act_type='elu') - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) - -def test_forward_rrelu(): - data = mx.sym.var('data') - data = mx.sym.concat(data, -data, dim=1) # negative part explicitly - mx_sym = mx.sym.LeakyReLU(data, act_type='rrelu', lower_bound=0.3, upper_bound=0.7) - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) - -def test_forward_prelu(): - data = mx.sym.var('data') - data = mx.sym.concat(data, -data, dim=1) # negative part explicitly - mx_sym = mx.sym.LeakyReLU(data, act_type='prelu') - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) - -def test_forward_softrelu(): - data = mx.sym.var('data') - data = mx.sym.concat(data, -data, dim=1) # negative part explicitly - mx_sym = mx.sym.Activation(data, act_type='softrelu') - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) - -def test_forward_fc_flatten(): - # test flatten=True option in mxnet 0.11.1 - data = mx.sym.var('data') - try: - mx_sym = mx.sym.FullyConnected(data, num_hidden=100, flatten=True) - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) - mx_sym = mx.sym.FullyConnected(mx.sym.Flatten(data), num_hidden=100, flatten=False) - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) - except: - pass - -def test_forward_clip(): - data = mx.sym.var('data') - data = mx.sym.concat(data, -data, dim=1) # negative part explicitly - mx_sym = mx.sym.clip(data, a_min=0, a_max=1) - verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) - -def test_forward_split(): - data = mx.sym.var('data') - mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=False) - verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 1, 2, 1)) - -def test_forward_split_squeeze(): - data = mx.sym.var('data') - mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=True) - verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 2, 1)) - -def test_forward_expand_dims(): - data = mx.sym.var('data') - mx_sym = mx.sym.expand_dims(data, axis=1) - verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 1, 3, 4)) - -def test_forward_pooling(): - data = mx.sym.var('data') - mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type='avg') - verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) - - mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type='max') - verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) - -def test_forward_lrn(): - data = mx.sym.var('data') - mx_sym = mx.sym.LRN(data, alpha=2, beta=2, knorm=1, nsize=5) - verify_mxnet_frontend_impl(mx_sym, (1, 10, 24, 24), (1, 10, 24, 24)) - -def test_forward_ones(): - data = mx.sym.var('data') - ones = mx.sym.ones(shape=(2, 3, 4), dtype='float32') - mx_sym = mx.sym.elemwise_add(data, ones) - verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) - -def test_forward_zeros(): - data = mx.sym.var('data') - zeros = mx.sym.zeros(shape=(2, 3, 4), dtype='float32') - mx_sym = mx.sym.elemwise_add(data, zeros) - verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) - -def test_forward_ones_like(): - data = mx.sym.var('data') - mx_sym = mx.sym.ones_like(data, dtype='float32') - verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) - -def test_forward_zeros_like(): - data = mx.sym.var('data') - mx_sym = mx.sym.zeros_like(data, dtype='float32') - verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) - -def test_forward_argmax(): - data = mx.sym.var('data') - mx_sym = mx.sym.argmax(data, axis=1) - verify_mxnet_frontend_impl(mx_sym, (5, 3), (5,)) - -def test_forward_argmin(): - data = mx.sym.var('data') - mx_sym = mx.sym.argmin(data, axis=0) - verify_mxnet_frontend_impl(mx_sym, (5, 4), (4,)) - -def test_forward_where(): - cond = mx.sym.var('cond') - x = mx.sym.var('x') - y = mx.sym.var('y') - dshape = (2, 2) - dtype = 'float32' - mx_sym = mx.sym.where(cond, x, y) - np_cond = np.array([[0, 1], [-1, 0]]).astype(dtype) - np_x = np.random.uniform(size=dshape).astype(dtype) - np_y = np.random.uniform(size=dshape).astype(dtype) - mx_cond = mx.nd.array(np_cond) - mx_x = mx.nd.array(np_x) - mx_y = mx.nd.array(np_y) - mod = mx.mod.Module(mx_sym, label_names=None, data_names=['cond', 'x', 'y']) - mod.bind(data_shapes=[('cond', dshape), ('x', dshape), ('y', dshape)], for_training=False) - mod.init_params() - args, auxs = mod.get_params() - mx_out = mx.nd.where(mx_cond, mx_x, mx_y).asnumpy() - out_shape = dshape - new_sym, params = frontend.from_mxnet(mx_sym, args, auxs) - shape_dict = {'cond': dshape, 'x': dshape, 'y': dshape} - for target, ctx in ctx_list(): - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(new_sym, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - # set inputs - m.set_input("cond", tvm.nd.array(np_cond)) - m.set_input("x", tvm.nd.array(np_x)) - m.set_input("y", tvm.nd.array(np_y)) - m.set_input(**params) - m.run() - # get outputs - tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy() - tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_slice(): - data = mx.sym.var('data') - mx_sym = mx.sym.slice(data, begin=(0, 1), end=(2, 4)) - verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 3)) - mx_sym = mx.sym.slice(data, begin=(-1, 1), end=(-3, 4), step=(-1, 2)) - verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 2)) - -def test_forward_maximum(): - a = mx.sym.var('a') - b = mx.sym.var('b') - dshape = (10, 20) - dtype = 'float32' - mx_sym = mx.sym._internal._maximum(a, b) - np_a = np.random.uniform(size=dshape).astype(dtype) - np_b = np.random.uniform(size=dshape).astype(dtype) - mx_a = mx.nd.array(np_a) - mx_b = mx.nd.array(np_b) - mod = mx.mod.Module(mx_sym, label_names=None, data_names=['a', 'b']) - mod.bind(data_shapes=[('a', dshape), ('b', dshape)], for_training=False) - mod.init_params() - args, auxs = mod.get_params() - mx_out = mx.nd._internal._maximum(mx_a, mx_b).asnumpy() - out_shape = dshape - new_sym, params = frontend.from_mxnet(mx_sym, args, auxs) - shape_dict = {'a': dshape, 'b': dshape} - for target, ctx in ctx_list(): - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(new_sym, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - # set inputs - m.set_input("a", tvm.nd.array(np_a)) - m.set_input("b", tvm.nd.array(np_b)) - m.set_input(**params) - m.run() - # get outputs - tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy() - tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_minimum(): - a = mx.sym.var('a') - b = mx.sym.var('b') - dshape = (10, 20) - dtype = 'float32' - mx_sym = mx.sym._internal._minimum(a, b) - np_a = np.random.uniform(size=dshape).astype(dtype) - np_b = np.random.uniform(size=dshape).astype(dtype) - mx_a = mx.nd.array(np_a) - mx_b = mx.nd.array(np_b) - mod = mx.mod.Module(mx_sym, label_names=None, data_names=['a', 'b']) - mod.bind(data_shapes=[('a', dshape), ('b', dshape)], for_training=False) - mod.init_params() - args, auxs = mod.get_params() - mx_out = mx.nd._internal._minimum(mx_a, mx_b).asnumpy() - out_shape = dshape - new_sym, params = frontend.from_mxnet(mx_sym, args, auxs) - shape_dict = {'a': dshape, 'b': dshape} - for target, ctx in ctx_list(): - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(new_sym, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - # set inputs - m.set_input("a", tvm.nd.array(np_a)) - m.set_input("b", tvm.nd.array(np_b)) - m.set_input(**params) - m.run() - # get outputs - tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy() - tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) - - -if __name__ == '__main__': - test_forward_mlp() - test_forward_vgg() - test_forward_resnet() - test_forward_elu() - test_forward_rrelu() - test_forward_prelu() - test_forward_softrelu() - test_forward_fc_flatten() - test_forward_clip() - test_forward_split() - test_forward_split_squeeze() - test_forward_expand_dims() - test_forward_pooling() - test_forward_lrn() - test_forward_ones() - test_forward_zeros() - test_forward_ones_like() - test_forward_zeros_like() - test_forward_argmax() - test_forward_argmin() - test_forward_where() - test_forward_slice() - test_forward_maximum() - test_forward_minimum() diff --git a/nnvm/tests/python/frontend/mxnet/test_graph.py b/nnvm/tests/python/frontend/mxnet/test_graph.py deleted file mode 100644 index 1bbd0a97e8e1..000000000000 --- a/nnvm/tests/python/frontend/mxnet/test_graph.py +++ /dev/null @@ -1,95 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import mxnet as mx -import nnvm -from nnvm.compiler import graph_util, graph_attr -import model_zoo - -def compare_graph(sym1, sym2, ishape=(2, 3, 224, 224)): - g1 = nnvm.graph.create(sym1) - g2 = nnvm.graph.create(sym2) - graph_attr.set_shape_inputs(g1, {'data':ishape}) - graph_attr.set_shape_inputs(g2, {'data':ishape}) - g1 = g1.apply("InferShape").apply("SimplifyInference") - g2 = g2.apply("InferShape").apply("SimplifyInference") - graph_util.check_graph_equal(g1, g2) - -def test_mlp(): - mx_sym = model_zoo.mx_mlp - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_mlp - compare_graph(from_mx_sym, nnvm_sym) - -def test_vgg(): - for n in [11, 13, 16, 19]: - mx_sym = model_zoo.mx_vgg[n] - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_vgg[n] - compare_graph(from_mx_sym, nnvm_sym) - -def test_resnet(): - for n in [18, 34, 50, 101]: - mx_sym = model_zoo.mx_resnet[n] - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_resnet[n] - compare_graph(from_mx_sym, nnvm_sym) - -def test_squeezenet(): - for version in ['1.0', '1.1']: - mx_sym = model_zoo.mx_squeezenet[version] - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_squeezenet[version] - compare_graph(from_mx_sym, nnvm_sym) - -def test_inception_v3(): - mx_sym = model_zoo.mx_inception_v3 - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_inception_v3 - compare_graph(from_mx_sym, nnvm_sym, ishape=(2, 3, 299, 299)) - -def test_dqn(): - mx_sym = model_zoo.mx_dqn - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_dqn - compare_graph(from_mx_sym, nnvm_sym, ishape=(2, 4, 84, 84)) - -def test_dcgan(): - mx_sym = model_zoo.mx_dcgan - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = model_zoo.nnvm_dcgan - compare_graph(from_mx_sym, nnvm_sym, ishape=(2, 100)) - -def test_multi_outputs(): - def compose(F, **kwargs): - x = F.sym.Variable('x') - y = F.sym.Variable('y') - z = F.sym.split(x, **kwargs) - return F.sym.broadcast_sub(F.sym.broadcast_add(z[0], z[2]), y) - mx_sym = compose(mx, num_outputs=3, axis=1) - from_mx_sym, _ = nnvm.frontend.from_mxnet(mx_sym) - nnvm_sym = compose(nnvm, indices_or_sections=3, axis=1) - compare_graph(from_mx_sym, nnvm_sym) - -if __name__ == '__main__': - test_mlp() - test_vgg() - test_resnet() - test_multi_outputs() - test_dqn() - test_dcgan() - test_squeezenet() - test_inception_v3() diff --git a/nnvm/tests/python/frontend/onnx/model_zoo/__init__.py b/nnvm/tests/python/frontend/onnx/model_zoo/__init__.py deleted file mode 100644 index f5eb604acfd7..000000000000 --- a/nnvm/tests/python/frontend/onnx/model_zoo/__init__.py +++ /dev/null @@ -1,40 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Store for onnx examples and common models.""" -from __future__ import absolute_import as _abs -import os -import logging -from .super_resolution import get_super_resolution -from tvm.contrib.download import download_testdata - - -URLS = { - 'super_resolution.onnx': 'https://gist.github.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/93672b029103648953c4e5ad3ac3aadf346a4cdc/super_resolution_0.2.onnx', - 'squeezenet1_1.onnx': 'https://gist.github.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/93672b029103648953c4e5ad3ac3aadf346a4cdc/squeezenet1_1_0.2.onnx', - 'lenet.onnx': 'https://gist.github.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/93672b029103648953c4e5ad3ac3aadf346a4cdc/lenet_0.2.onnx', - 'resnet18_1_0.onnx': 'https://gist.github.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/b385b1b242dc89a35dd808235b885ed8a19aedc1/resnet18_1.0.onnx'} - -# download and add paths -for k, v in URLS.items(): - name = k.split('.')[0] - relpath = os.path.join('onnx', k) - abspath = download_testdata(v, relpath, module='onnx') - locals()[name] = abspath - -# symbol for graph comparison -super_resolution_sym = get_super_resolution() diff --git a/nnvm/tests/python/frontend/onnx/model_zoo/squeezenet.py b/nnvm/tests/python/frontend/onnx/model_zoo/squeezenet.py deleted file mode 100644 index 2de2d1075494..000000000000 --- a/nnvm/tests/python/frontend/onnx/model_zoo/squeezenet.py +++ /dev/null @@ -1,118 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# coding: utf-8 -# pylint: disable=unused-argument - -""" -Symbol of SqueezeNet - -Reference: -Iandola, Forrest N., et al. -"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). -""" - -from nnvm import symbol as sym -from nnvm.testing.utils import create_workload - -# Helpers -def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): - net = _make_fire_conv(net, squeeze_channels, 1, 0) - - left = _make_fire_conv(net, expand1x1_channels, 1, 0) - right = _make_fire_conv(net, expand3x3_channels, 3, 1) - # NOTE : Assume NCHW layout here - net = sym.concatenate(left, right, axis=1) - - return net - -def _make_fire_conv(net, channels, kernel_size, padding=0): - net = sym.conv2d(net, channels=channels, kernel_size=(kernel_size, kernel_size), - padding=(padding, padding)) - net = sym.relu(net) - return net - -# Net -def get_symbol(num_classes, version, **kwargs): - """Get symbol of SqueezeNet - - Parameters - ---------- - num_classes: int - The number of classification results - - version : str, optional - "1.0" or "1.1" of SqueezeNet - """ - assert version == '1.1', ("Unsupported SqueezeNet version {version}:" - "1.1 expected".format(version=version)) - net = sym.Variable("data") - - net = sym.conv2d(net, channels=64, kernel_size=(3, 3), strides=(2, 2)) - net = sym.relu(net) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 16, 64, 64) - net = _make_fire(net, 16, 64, 64) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 32, 128, 128) - net = _make_fire(net, 32, 128, 128) - net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 48, 192, 192) - net = _make_fire(net, 64, 256, 256) - net = _make_fire(net, 64, 256, 256) - - net = sym.dropout(net, rate=0.5) - net = sym.conv2d(net, channels=num_classes, kernel_size=(1, 1)) - net = sym.relu(net) - net = sym.global_avg_pool2d(net) - return sym.softmax(net, axis=1) - -def get_workload(batch_size=1, num_classes=1000, version='1.0', - image_shape=(3, 224, 224), dtype="float32", **kwargs): - """Get benchmark workload for SqueezeNet - - Parameters - ---------- - batch_size : int - The batch size used in the model - - num_classes : int, optional - Number of classes - - version : str, optional - "1.0" or "1.1" of SqueezeNet - - image_shape : tuple, optional - The input image shape - - dtype : str, optional - The data type - - kwargs : dict - Extra arguments - - Returns - ------- - net : nnvm.Symbol - The computational graph - - params : dict of str to NDArray - The parameters. - """ - net = get_symbol(num_classes=num_classes, version=version, **kwargs) - return create_workload(net, batch_size, image_shape, dtype) diff --git a/nnvm/tests/python/frontend/onnx/model_zoo/super_resolution.py b/nnvm/tests/python/frontend/onnx/model_zoo/super_resolution.py deleted file mode 100644 index a98478e58307..000000000000 --- a/nnvm/tests/python/frontend/onnx/model_zoo/super_resolution.py +++ /dev/null @@ -1,36 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""NNVM symbol corresponding to super_resolution.onnx example.""" -from nnvm import sym - -def get_super_resolution(): - factor = 3 - size = 224 - data = sym.Variable(name='9') - conv1 = sym.conv2d(data, channels=64, kernel_size=(5, 5), padding=(2, 2), use_bias=False) - relu1 = sym.relu(conv1 + sym.expand_dims(sym.Variable(name='2', shape=(64)), axis=1, num_newaxis=2)) - conv2 = sym.conv2d(relu1, channels=64, kernel_size=(3, 3), padding=(1, 1), use_bias=False) - relu2 = sym.relu(conv2 + sym.expand_dims(sym.Variable(name='4', shape=(64)), axis=1, num_newaxis=2)) - conv3 = sym.conv2d(relu2, channels=32, kernel_size=(3, 3), padding=(1, 1), use_bias=False) - relu3 = sym.relu(conv3 + sym.expand_dims(sym.Variable(name='6', shape=(32)), axis=1, num_newaxis=2)) - conv4 = sym.conv2d(relu3, channels=factor**2, kernel_size=(3, 3), padding=(1, 1), use_bias=False) - conv4 = conv4 + sym.expand_dims(sym.Variable(name='8', shape=(factor**2)), axis=1, num_newaxis=2) - # TODO(zhreshold): allow shape inference for batch size > 1 - r1 = sym.reshape(conv4, shape=(1, 1, factor, factor, size, size)) - t1 = sym.transpose(r1, axes=(0, 1, 4, 2, 5, 3)) - r2 = sym.reshape(t1, shape=(1, 1, size * factor, size * factor)) - return r2 diff --git a/nnvm/tests/python/frontend/onnx/test_forward.py b/nnvm/tests/python/frontend/onnx/test_forward.py deleted file mode 100644 index 8cb6876956c4..000000000000 --- a/nnvm/tests/python/frontend/onnx/test_forward.py +++ /dev/null @@ -1,1099 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np -import math -import nnvm -import topi -import topi.testing -import tvm -from tvm.contrib import graph_runtime -from nnvm.testing.config import ctx_list -import onnx -from model_zoo import super_resolution, squeezenet1_1, lenet, resnet18_1_0 -from onnx import helper, TensorProto - -def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output_dtype='float32'): - """ Generic function to execute and get tvm output""" - - sym, params = nnvm.frontend.from_onnx(graph_def) - target = 'llvm' - if isinstance(input_data, list): - input_names = {} - shape_dict = {} - dtype_dict = {} - for i, _ in enumerate(input_data): - input_names[i] = graph_def.graph.input[i].name - shape_dict[input_names[i]] = input_data[i].shape - dtype_dict[input_names[i]] = input_data[i].dtype - else: - input_names = graph_def.graph.input[0].name - shape_dict = {input_names: input_data.shape} - dtype_dict = {input_names: input_data.dtype} - - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, - dtype=dtype_dict, params=params) - - ctx = tvm.cpu(0) - from tvm.contrib import graph_runtime - m = graph_runtime.create(graph, lib, ctx) - # set inputs - if isinstance(input_data, list): - for i, e in enumerate(input_names): - m.set_input(input_names[i], tvm.nd.array(input_data[i].astype(input_data[i].dtype))) - else: - m.set_input(input_names, tvm.nd.array(input_data.astype(input_data.dtype))) - - m.set_input(**params) - # execute - m.run() - # get outputs - if isinstance(output_shape, list) and isinstance(output_dtype, list): - tvm_output_list = [] - for i, _ in enumerate(output_shape): - tvm_output = m.get_output(i) - tvm_output_list.append(tvm_output.asnumpy()) - return tvm_output_list - else: - tvm_output = m.get_output(0) - return tvm_output.asnumpy() - -def get_caffe2_output(model, x, dtype='float32'): - import caffe2.python.onnx.backend - prepared_backend = caffe2.python.onnx.backend.prepare(model) - W = {model.graph.input[0].name: x.astype(dtype)} - c2_out = prepared_backend.run(W)[0] - return c2_out - - -def verify_onnx_forward_impl(graph_file, data_shape, out_shape): - dtype = 'float32' - x = np.random.uniform(size=data_shape) - model = onnx.load_model(graph_file) - c2_out = get_caffe2_output(model, x, dtype) - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, x, target, ctx, out_shape, dtype) - tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5) - -def verify_super_resolution_example(): - verify_onnx_forward_impl(super_resolution, (1, 1, 224, 224), (1, 1, 672, 672)) - -def verify_squeezenet1_1(): - verify_onnx_forward_impl(squeezenet1_1, (1, 3, 224, 224), (1, 1000)) - -def verify_lenet(): - verify_onnx_forward_impl(lenet, (1, 1, 28, 28), (1, 10)) - -def verify_resnet18(): - verify_onnx_forward_impl(resnet18_1_0, (1, 3, 224, 224), (1, 1000)) - - -def test_reshape(): - in_shape = (4, 3, 3, 4) - ref_shape = (3, 4, 4, 3) - - ref_array = np.array(ref_shape) - ref_node = onnx.helper.make_node('Constant', - inputs=[], - outputs=['ref_in'], - value=onnx.helper.make_tensor(name = 'const_tensor', - data_type = onnx.TensorProto.INT32, - dims = ref_array.shape, - vals = ref_array.flatten().astype(int))) - reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"]) - - graph = helper.make_graph([ref_node, reshape_node], - "reshape_test", - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(ref_shape))]) - - model = helper.make_model(graph, producer_name='reshape_test') - - for target, ctx in ctx_list(): - x = np.random.uniform(size=in_shape).astype('int32') - tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32') - - tvm.testing.assert_allclose(ref_shape, tvm_out.shape) - -def test_reshape_like(): - in_shape = (4, 3, 3, 4) - ref_shape = (3, 4, 4, 3) - - ref_array = np.random.uniform(size=ref_shape).astype('float32') - ref_node = onnx.helper.make_node('Constant', - inputs=[], - outputs=['ref_in'], - value=onnx.helper.make_tensor(name = 'const_tensor', - data_type = onnx.TensorProto.FLOAT, - dims = ref_array.shape, - vals = ref_array.flatten().astype(float))) - copy_node = helper.make_node("Identity", ["ref_in"], ["copy_in"]) - reshape_node = helper.make_node("Reshape", ["in", "copy_in"], ["out"]) - - graph = helper.make_graph([ref_node, copy_node, reshape_node], - "reshape_like_test", - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(ref_shape))]) - - model = helper.make_model(graph, producer_name='reshape_like_test') - - for target, ctx in ctx_list(): - x = np.random.uniform(size=in_shape).astype('float32') - tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32') - - tvm.testing.assert_allclose(ref_shape, tvm_out.shape) - -def _test_power_iteration(x_shape, y_shape): - if isinstance(y_shape, int): - y_shape = [y_shape] - - x = np.random.uniform(size=x_shape).astype(np.float32) - y = np.random.uniform(size=y_shape).astype(np.float32) - - np_res = np.power(x, y).astype(np.float32) - - res = helper.make_node("Pow", ['x', 'y'], ['out']) - - graph = helper.make_graph([res], - 'power_test', - inputs = [helper.make_tensor_value_info("x", - TensorProto.FLOAT, list(x_shape)), - helper.make_tensor_value_info("y", - TensorProto.FLOAT, list(y_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(np_res.shape))]) - - model = helper.make_model(graph, producer_name='power_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape) - tvm.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5) - -def test_power(): - _test_power_iteration((1, 3), (1)) - _test_power_iteration((2, 3), (2, 3)) - _test_power_iteration((2, 3), (1, 3)) - -def test_squeeze(): - in_shape = (1, 3, 1, 3, 1, 1) - out_shape = (3, 3) - y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5]) - - graph = helper.make_graph([y], - 'squeeze_test', - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out_shape))]) - - model = helper.make_model(graph, producer_name='squeeze_test') - - for target, ctx in ctx_list(): - x = np.random.uniform(size=in_shape).astype('float32') - tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') - - tvm.testing.assert_allclose(out_shape, tvm_out.shape) - -def test_unsqueeze(): - in_shape = (3, 3) - axis = (0, 3, 4) - out_shape = (1, 3, 3, 1, 1) - y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis)) - - graph = helper.make_graph([y], - 'squeeze_test', - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out_shape))]) - - model = helper.make_model(graph, producer_name='squeeze_test') - - for target, ctx in ctx_list(): - x = np.random.uniform(size=in_shape).astype('float32') - tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') - - tvm.testing.assert_allclose(out_shape, tvm_out.shape) - -def verify_gather(in_shape, indices, axis, dtype): - x = np.random.uniform(size=in_shape).astype(dtype) - indices = np.array(indices, dtype="int32") - out_np = np.take(x, indices, axis=axis) - - y = helper.make_node("Gather", ['in', 'indices'], ['out'], axis=axis) - - graph = helper.make_graph([y], - 'gather_test', - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(in_shape)), - helper.make_tensor_value_info("indices", - TensorProto.INT32, list(indices.shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out_np.shape))]) - model = helper.make_model(graph, producer_name='gather_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [x, indices], target, ctx, out_np.shape) - tvm.testing.assert_allclose(out_np, tvm_out) - -def test_gather(): - verify_gather((4,), [1], 0, 'int32') - verify_gather((1,4), [0], 0, 'int32') - verify_gather((4,), [[[1,0],[0,1]]], 0, 'float32') - verify_gather((2,2), [[[1,0],[0,1]]], 1, 'int32') - verify_gather((3,3,3), [[[1,0]]], -1, 'int32') - verify_gather((4,3,5,6), [[2,1,0,0]], 0, 'float32') - -def _test_slice_iteration(indata, outdata, starts, ends, axes=None): - if axes: - y = helper.make_node("Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends) - else: - y = helper.make_node("Slice", ['in'], ['out'], starts=starts, ends=ends) - - graph = helper.make_graph([y], - 'slice_test', - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(indata.shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(outdata.shape))]) - - model = helper.make_model(graph, producer_name='slice_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32') - - tvm.testing.assert_allclose(outdata, tvm_out) - -def test_slice(): - x = np.random.randn(20, 10, 5).astype(np.float32) - _test_slice_iteration(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1)) - _test_slice_iteration(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4)) - _test_slice_iteration(x, x[:, 1:1000], (1), (1000), (1)) - _test_slice_iteration(x, x[:, 0:-1], (0), (-1), (1)) - -def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs, rtol=1e-7, atol=1e-7): - indata = np.random.uniform(-1, 1, size=inshape).astype(dtype) - outdata = outfunc(indata, **npargs) - - y = helper.make_node(opname, ['in'], ['out'], **kwargs) - - graph = helper.make_graph([y], - opname+'_test', - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(indata.shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(outdata.shape))]) - - model = helper.make_model(graph, producer_name=opname+'_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, dtype) - - tvm.testing.assert_allclose(outdata, tvm_out, rtol=rtol, atol=atol) - -def test_floor(): - _test_onnx_op_elementwise((2, 4, 5, 6), np.floor, {}, 'float32', 'Floor', {}) - -def test_ceil(): - _test_onnx_op_elementwise((2, 4, 5, 6), np.ceil, {}, 'float32', 'Ceil', {}) - -def test_clip(): - _test_onnx_op_elementwise((2, 4, 5, 6), - np.clip, - {'a_min': -1.0, 'a_max': 1.0}, - 'float32', - 'Clip', - {'min': -1.0, 'max': 1.0}) - -def test_matmul(): - a_shape = (4, 3) - b_shape = (3, 4) - - a_array = np.random.uniform(size=a_shape).astype('float32') - b_array = np.random.uniform(size=b_shape).astype('float32') - out_np = np.matmul(a_array, b_array) - - mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) - - graph = helper.make_graph([mul_node], - "matmul_test", - inputs = [helper.make_tensor_value_info("a", - TensorProto.FLOAT, list(a_shape)), - helper.make_tensor_value_info("b", - TensorProto.FLOAT, list(b_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out_np.shape))]) - - model = helper.make_model(graph, producer_name='matmul_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_array, b_array], target, ctx, out_np.shape) - tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) - -def verify_lrn(shape, nsize, dtype, alpha=None, beta=None, bias=None): - in_array = np.random.uniform(size=shape).astype(dtype) - - if alpha == None and beta == None and bias==None: - alpha = 0.0001 - beta = 0.75 - bias = 1.0 - node = onnx.helper.make_node('LRN', inputs=['in'], outputs=['out'], size=nsize) - else: - node = onnx.helper.make_node('LRN', inputs=['in'], outputs=['out'], alpha=alpha, - beta=beta, bias=bias, size=nsize) - - graph = helper.make_graph([node], - "lrn_test", - inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(shape))], - outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(shape))]) - model = helper.make_model(graph, producer_name='lrn_test') - - def _get_python_lrn(): - square_sum = np.zeros(shape).astype(dtype) - for n, c, h, w in np.ndindex(in_array.shape): - square_sum[n, c, h, w] = sum(in_array[n, - max(0, c - int(math.floor((nsize - 1) / 2))): \ - min(5, c + int(math.ceil((nsize - 1) / 2)) + 1), - h, - w] ** 2) - py_out = in_array / ((bias + (alpha / nsize) * square_sum) ** beta) - return py_out - - for target, ctx in ctx_list(): - new_sym, params = nnvm.frontend.from_onnx(model) - - input_name = model.graph.input[0].name - shape_dict = {input_name: in_array.shape} - dtype_dict = {input_name: dtype} - graph, lib, params = nnvm.compiler.build(new_sym, target, - shape_dict, dtype_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - # set inputs - m.set_input(input_name, tvm.nd.array(in_array.astype(dtype))) - m.set_input(**params) - m.run() - # get outputs - tvm_out = m.get_output(0, tvm.nd.empty(shape, dtype)) - py_out = _get_python_lrn() - tvm.testing.assert_allclose(py_out, tvm_out.asnumpy(), rtol=1e-5, atol=1e-5) - -def test_lrn(): - verify_lrn((5, 5, 5, 5), 3, 'float32') - verify_lrn((5, 5, 5, 5), 3, 'float32', alpha=0.0002, beta=0.5, bias=2.0) - -def _test_upsample_nearest(): - scale = 2 - in_shape = (1, 1, 3, 3) - out_shape = (1, 1, 3*scale, 3*scale) - y = helper.make_node("Upsample", ['in'], ['out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0]) - - in_array = np.random.uniform(size=in_shape).astype(np.float32) - out_array = topi.testing.upsampling_python(in_array, (scale, scale), "NCHW") - - graph = helper.make_graph([y], - 'upsample_nearest_test', - inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) - - model = helper.make_model(graph, producer_name='upsample_nearest_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32') - tvm.testing.assert_allclose(out_array, tvm_out) - -def _test_upsample_bilinear(): - scale = 2 - in_shape = (1, 1, 3, 3) - out_shape = (1, 1, 3*scale, 3*scale) - y = helper.make_node("Upsample", ['in'], ['out'], mode='linear', scales=[1.0, 1.0, 2.0, 2.0]) - - in_array = np.random.uniform(size=in_shape).astype(np.float32) - out_array = topi.testing.bilinear_resize_python(in_array, (3*scale, 3*scale), "NCHW", align_corners=False) - - graph = helper.make_graph([y], - 'upsample_bilinear_test', - inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) - - model = helper.make_model(graph, producer_name='upsample_bilinear_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32') - tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) - -def _test_upsample_bilinear_opset9(): - scale = 2 - in_shape = (1, 1, 3, 3) - out_shape = (1, 1, 3*scale, 3*scale) - y = helper.make_node("Upsample", ['in','scales'], ['out'], mode='linear') - scales=[1.0, 1.0, 2.0, 2.0] - in_array = np.random.uniform(size=in_shape).astype(np.float32) - out_array = topi.testing.bilinear_resize_python(in_array, (3*scale, 3*scale), "NCHW", align_corners=False) - - ref_array = np.array(scales) - ref_node = helper.make_node('Constant', - inputs=[], - outputs=['scales'], - value=onnx.helper.make_tensor(name = 'const_tensor', - data_type = TensorProto.FLOAT, - dims = ref_array.shape, - vals = ref_array.flatten().astype(float))) - - graph = helper.make_graph([ref_node, y], - 'upsample_bilinear_opset9_test', - inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) - - model = helper.make_model(graph, producer_name='upsample_bilinear_opset9_test') - inputs = [] - inputs.append(in_array) - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, inputs, target, ctx, out_shape, 'float32') - tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) - -def test_upsample(): - _test_upsample_nearest() - _test_upsample_bilinear() - _test_upsample_bilinear_opset9() - -def _test_softmax(inshape, axis): - opname = 'Softmax' - indata = np.random.uniform(size=inshape).astype(np.float32) - outshape = inshape - outdata = topi.testing.softmax_python(indata) - if isinstance(axis, int): - y = helper.make_node(opname, ['in'], ['out'], axis = axis) - elif axis is None: - y = helper.make_node(opname, ['in'], ['out']) - - graph = helper.make_graph([y], - opname+'_test', - inputs = [helper.make_tensor_value_info("in", - TensorProto.FLOAT, list(indata.shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(outdata.shape))]) - - model = helper.make_model(graph, producer_name=opname+'_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, indata, target, ctx, outshape, 'float32') - tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5) - -def test_softmax(): - _test_softmax((1, 10), None) - _test_softmax((1, 10), 1) - -def verify_min(input_dim): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - a_np3 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.min((a_np1, a_np2, a_np3), axis=0) - - min_node = helper.make_node("Min", ["a_np1", "a_np2", "a_np3"], ["out"]) - - graph = helper.make_graph([min_node], - "Min_test", - inputs = [helper.make_tensor_value_info("a_np1", - TensorProto.FLOAT, list(input_dim)), - helper.make_tensor_value_info("a_np2", - TensorProto.FLOAT, list(input_dim)), - helper.make_tensor_value_info("a_np3", - TensorProto.FLOAT, list(input_dim))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(b_np.shape))]) - - model = helper.make_model(graph, producer_name='Min_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape) - tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_min(): - verify_min((1, 3, 20, 20)) - verify_min((20, 20)) - -def verify_max(input_dim): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - a_np3 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.max((a_np1, a_np2, a_np3), axis=0) - - max_node = helper.make_node("Max", ["a_np1", "a_np2", "a_np3"], ["out"]) - - graph = helper.make_graph([max_node], - "Max_test", - inputs = [helper.make_tensor_value_info("a_np1", - TensorProto.FLOAT, list(input_dim)), - helper.make_tensor_value_info("a_np2", - TensorProto.FLOAT, list(input_dim)), - helper.make_tensor_value_info("a_np3", - TensorProto.FLOAT, list(input_dim))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(b_np.shape))]) - - model = helper.make_model(graph, producer_name='Max_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape) - tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_max(): - verify_max((1, 3, 20, 20)) - verify_max((20, 20)) - -def verify_mean(input_dim): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - a_np2 = np.random.uniform(size=input_dim).astype(dtype) - a_np3 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.mean((a_np1, a_np2, a_np3), axis=0) - - mean_node = helper.make_node("Mean", ["a_np1", "a_np2", "a_np3"], ["out"]) - - graph = helper.make_graph([mean_node], - "Mean_test", - inputs = [helper.make_tensor_value_info("a_np1", - TensorProto.FLOAT, list(input_dim)), - helper.make_tensor_value_info("a_np2", - TensorProto.FLOAT, list(input_dim)), - helper.make_tensor_value_info("a_np3", - TensorProto.FLOAT, list(input_dim))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(b_np.shape))]) - - model = helper.make_model(graph, producer_name='Mean_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape) - tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_mean(): - verify_mean((1, 3, 20, 20)) - verify_mean((20, 20)) - -def verify_hardsigmoid(input_dim, alpha, beta): - dtype = 'float32' - - a_np1 = np.random.uniform(size=input_dim).astype(dtype) - - b_np = np.clip(a_np1 * alpha + beta, 0, 1) - - hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], ["out"], alpha=alpha, beta=beta) - - graph = helper.make_graph([hardsigmoid_node], - "HardSigmoid_test", - inputs = [helper.make_tensor_value_info("a_np1", - TensorProto.FLOAT, list(input_dim))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(b_np.shape))]) - - model = helper.make_model(graph, producer_name='HardSigmoid_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape) - tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_hardsigmoid(): - verify_hardsigmoid((1, 3, 20, 20), 0.5, 0.6) - verify_hardsigmoid((20, 20), 0.3, 0.4) - -def verify_argmin(input_dim, axis=None, keepdims=None): - def _argmin_numpy(data, axis=0, keepdims=True): - result = np.argmin(data, axis=axis) - if (keepdims == 1): - result = np.expand_dims(result, axis) - return result.astype(data.dtype) - - a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32) - if keepdims is None and axis is None: - b_np = _argmin_numpy(a_np1) - node = onnx.helper.make_node('ArgMin', - inputs=['a_np1'], - outputs=['out']) - elif axis is None: - b_np = _argmin_numpy(a_np1, keepdims=keepdims) - node = onnx.helper.make_node('ArgMin', - inputs=['a_np1'], - outputs=['out'], - keepdims=keepdims) - elif keepdims is None: - b_np = _argmin_numpy(a_np1, axis=axis) - node = onnx.helper.make_node('ArgMin', - inputs=['a_np1'], - outputs=['out'], - axis=axis) - else: - b_np = _argmin_numpy(a_np1, axis=axis, keepdims=keepdims) - node = onnx.helper.make_node('ArgMin', - inputs=['a_np1'], - outputs=['out'], - axis=axis, - keepdims=keepdims) - graph = helper.make_graph([node], - "argmin_test", - inputs = [helper.make_tensor_value_info("a_np1", - TensorProto.INT32, list(a_np1.shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.INT32, list(b_np.shape))]) - - model = helper.make_model(graph, producer_name='argmin_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape, b_np.dtype) - tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) - -def verify_argmax(input_dim, axis=None, keepdims=None): - def _argmax_numpy(data, axis=0, keepdims=True): - result = np.argmax(data, axis=axis) - if (keepdims == 1): - result = np.expand_dims(result, axis) - return result.astype(data.dtype) - - a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32) - - if keepdims is None and axis is None: - b_np = _argmax_numpy(a_np1) - node = onnx.helper.make_node('ArgMax', - inputs=['a_np1'], - outputs=['out']) - elif axis is None: - b_np = _argmax_numpy(a_np1, keepdims=keepdims) - node = onnx.helper.make_node('ArgMax', - inputs=['a_np1'], - outputs=['out'], - keepdims=keepdims) - elif keepdims is None: - b_np = _argmax_numpy(a_np1, axis=axis) - node = onnx.helper.make_node('ArgMax', - inputs=['a_np1'], - outputs=['out'], - axis=axis) - else: - b_np = _argmax_numpy(a_np1, axis=axis, keepdims=keepdims) - node = onnx.helper.make_node('ArgMax', - inputs=['a_np1'], - outputs=['out'], - axis=axis, - keepdims=keepdims) - - graph = helper.make_graph([node], - "argmax_test", - inputs = [helper.make_tensor_value_info("a_np1", - TensorProto.INT32, list(a_np1.shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.INT32, list(b_np.shape))]) - - model = helper.make_model(graph, producer_name='argmax_test') - - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape, b_np.dtype) - tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) - -def test_forward_arg_min_max(): - '''Verify argmin and argmax''' - verify_argmin([3,4,4]) - verify_argmax([3,4,4]) - verify_argmin([3,4,4], axis=1) - verify_argmax([3,4,4], axis=0) - verify_argmin([3,4,4], keepdims=0) - verify_argmax([3,4,4], keepdims=1) - for axis in [0,1,2]: - for keepdims in [True,False]: - verify_argmin([3,4,4], axis, keepdims) - verify_argmax([3,4,4], axis, keepdims) - -def verify_constantfill(is_shape, input_dim, out_dim, value, dtype, **kwargs): - input_a = np.random.uniform(size=input_dim).astype(dtype) - out = np.empty(shape=out_dim, dtype=dtype) - out.fill(value) - - if is_shape == True: - fill_node = helper.make_node("ConstantFill", [], ["out"], shape=input_dim, value=value, **kwargs) - else: - fill_node = helper.make_node("ConstantFill", ["input_a"], ["out"], value=value, dtype=dtype, **kwargs) - - graph = helper.make_graph([fill_node], - "fill_test", - inputs = [helper.make_tensor_value_info("input_a", - TensorProto.FLOAT, list(input_dim))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out.shape))]) - - model = helper.make_model(graph, producer_name='fill_test') - - for target, ctx in ctx_list(): - if is_shape == True: - tvm_out = get_tvm_output(model, [], target, ctx, out.shape) - else: - tvm_out = get_tvm_output(model, [input_a], target, ctx, out.shape) - - tvm.testing.assert_allclose(out, tvm_out, rtol=1e-5, atol=1e-5) - -def test_constantfill(): - verify_constantfill(True, (2, 3, 4, 5), (2, 3, 4, 5), 10, 'float32') - verify_constantfill(False, (2, 3, 4, 5), (2, 3, 4, 5), 10, 'float32') - verify_constantfill(True, (2, 3, 4, 5), (2, 3, 4, 5, 4, 5, 6), 10, 'float32', extra_shape=(4, 5, 6)) - - -def verify_pad(indata, pads, value=0.0): - indata = np.array(indata).astype(np.float32) - # numpy expect result - len_dim = len(pads) // 2 - np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)] - outdata = np.pad(indata, pad_width=np_pads, mode='constant', constant_values=value) - # onnx graph - node = helper.make_node( - 'Pad', - inputs=['input'], - outputs=['output'], - mode='constant', - pads=pads, - value=value - ) - graph = helper.make_graph([node], - 'pad_test', - inputs = [helper.make_tensor_value_info("input", - TensorProto.FLOAT, list(indata.shape))], - outputs = [helper.make_tensor_value_info("output", - TensorProto.FLOAT, list(outdata.shape))]) - model = helper.make_model(graph, producer_name='pad_test') - # tvm result - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32') - tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5) - -def test_pad(): - verify_pad(np.random.randn(2, 2).astype(np.float32), [0, 1, 0, 0], 0.0) - verify_pad(np.random.randn(2, 3).astype(np.float32), [1, 0, 0, 1], 0.0) - verify_pad(np.random.randn(3, 2).astype(np.float32), [0, 0, 1, 0], 5.0) - -def verify_reduce_x(name, indata, axis, keepdims): - indata = np.array(indata).astype(np.float32) - # numpy expect result - if name == 'ReduceMax': - outdata = np.maximum.reduce(indata, axis=axis, keepdims=keepdims == 1) - elif name == 'ReduceMin': - outdata = np.minimum.reduce(indata, axis=axis, keepdims=keepdims == 1) - elif name == 'ReduceSum': - outdata = np.sum(indata, axis=axis, keepdims=keepdims == 1) - elif name == 'ReduceMean': - outdata = np.mean(indata, axis=axis, keepdims=keepdims == 1) - else: - raise Exception('unsupport op: {}'.format(name)) - if len(np.asarray(outdata).shape) == 0: - outdata = np.asarray([outdata]) - # onnx graph - if axis is None: - node = helper.make_node(name, inputs=['input'], outputs=['output'], - keepdims=keepdims) - else: - node = helper.make_node(name, inputs=['input'], outputs=['output'], - axis=axis, keepdims=keepdims) - graph = helper.make_graph([node], - '{}_test'.format(name), - inputs = [helper.make_tensor_value_info("input", - TensorProto.FLOAT, list(indata.shape))], - outputs = [helper.make_tensor_value_info("output", - TensorProto.FLOAT, list(outdata.shape))]) - model = helper.make_model(graph, producer_name='{}_test'.format(name)) - # tvm result - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32') - tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5) - -def test_reduce_max(): - verify_reduce_x("ReduceMax", - np.random.randn(3, 2, 2).astype(np.float32), - axis=None, keepdims=1) - verify_reduce_x("ReduceMax", - np.random.randn(3, 2, 3).astype(np.float32), - axis=None, keepdims=0) - verify_reduce_x("ReduceMax", - np.random.randn(3, 3, 3).astype(np.float32), - axis=(1,), keepdims=1) - -def test_reduce_min(): - verify_reduce_x("ReduceMin", - np.random.randn(3, 2, 2).astype(np.float32), - axis=None, keepdims=1) - verify_reduce_x("ReduceMin", - np.random.randn(3, 2, 3).astype(np.float32), - axis=None, keepdims=0) - verify_reduce_x("ReduceMin", - np.random.randn(3, 3, 3).astype(np.float32), - axis=(1,), keepdims=1) - -def test_reduce_sum(): - verify_reduce_x("ReduceSum", - np.random.randn(3, 2, 2).astype(np.float32), - axis=None, keepdims=1) - verify_reduce_x("ReduceSum", - np.random.randn(3, 2, 3).astype(np.float32), - axis=None, keepdims=0) - verify_reduce_x("ReduceSum", - np.random.randn(3, 3, 3).astype(np.float32), - axis=(1,), keepdims=1) - -def test_reduce_mean(): - verify_reduce_x("ReduceMean", - np.random.randn(3, 2, 2).astype(np.float32), - axis=None, keepdims=1) - verify_reduce_x("ReduceMean", - np.random.randn(3, 2, 3).astype(np.float32), - axis=None, keepdims=0) - verify_reduce_x("ReduceMean", - np.random.randn(3, 3, 3).astype(np.float32), - axis=(1,), keepdims=1) - -def verify_split(indata, outdatas, split, axis=0): - indata = np.array(indata).astype(np.float32) - outdatas = [np.array(o).astype(np.float32) for o in outdatas] - node = helper.make_node( - 'Split', - inputs=['input'], - outputs=['output_{}'.format(i) for i in range(len(split))], - axis=axis, - split=split - ) - graph = helper.make_graph([node], - 'split_test', - inputs = [helper.make_tensor_value_info("input", - TensorProto.FLOAT, list(indata.shape))], - outputs = [helper.make_tensor_value_info("output_{}".format(i), - TensorProto.FLOAT, list(outdatas[i].shape)) - for i in range(len(split)) - ]) - model = helper.make_model(graph, producer_name='split_test') - - for target, ctx in ctx_list(): - output_shape = [o.shape for o in outdatas] - output_type = ['float32', 'float32', 'float32'] - tvm_out = get_tvm_output(model, indata, target, ctx, output_shape, output_type) - for o, t in zip(outdatas, tvm_out): - tvm.testing.assert_allclose(o, t) - -def test_split(): - # 1D - verify_split([1., 2., 3., 4., 5., 6.], [[1., 2.], [3., 4.], [5., 6.]], [2, 2, 2], 0) - verify_split([1., 2., 3., 4., 5., 6.], [[1., 2.], [3.], [4., 5., 6.]], [2, 1, 3], 0) - # 2D - verify_split([[1., 2., 3., 4.], [7., 8., 9., 10.]], - [[[1., 2.], [7., 8.]], [[3., 4.], [9., 10.]]], [2, 2], 1) - -def test_binary_ops(): - in_shape = (1, 2, 3, 3) - dtype = "float32" - out_shape = in_shape - - def verify_binary_ops(op, x, y, out_np, broadcast=None, rtol=1e-7, atol=1e-7): - if broadcast is None: - z = helper.make_node(op, ['in1', 'in2'], ['out']) - else: - z = helper.make_node(op, ['in1', 'in2'], ['out'], broadcast=1) - graph = helper.make_graph([z], - '_test', - inputs = [helper.make_tensor_value_info("in1", - TensorProto.FLOAT, list(in_shape)), - helper.make_tensor_value_info("in2", - TensorProto.FLOAT, list(in_shape))], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out_shape))]) - model = helper.make_model(graph, producer_name='_test') - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [x, y], target, ctx) - tvm.testing.assert_allclose(out_np, tvm_out, rtol=rtol, atol=atol) - - x = np.random.uniform(size=in_shape).astype(dtype) - y = np.random.uniform(size=in_shape).astype(dtype) - z = np.random.uniform(size=(3,)).astype(dtype) - verify_binary_ops("Add",x, y, x + y, broadcast=None) - verify_binary_ops("Add", x, z, x + z, broadcast=True) - verify_binary_ops("Sub", x, y, x - y, broadcast=None) - verify_binary_ops("Sub", x, z, x - z, broadcast=True) - verify_binary_ops("Mul",x, y, x * y, broadcast=None) - verify_binary_ops("Mul", x, z, x * z, broadcast=True) - verify_binary_ops("Div", x, y, x / y, broadcast=None, rtol=1e-5, atol=1e-5) - verify_binary_ops("Div", x, z, x / z, broadcast=True, rtol=1e-5, atol=1e-5) - verify_binary_ops("Sum", x, y, x + y, broadcast=None) - -def test_single_ops(): - in_shape = (1, 2, 3, 3) - dtype = "float32" - out_shape = in_shape - - def verify_single_ops(op, x, out_np, rtol=1e-7, atol=1e-7): - z = helper.make_node(op, ['in1'], ['out']) - graph = helper.make_graph([z], - '_test', - inputs = [helper.make_tensor_value_info("in1", - TensorProto.FLOAT, list(in_shape)),], - outputs = [helper.make_tensor_value_info("out", - TensorProto.FLOAT, list(out_shape))]) - model = helper.make_model(graph, producer_name='_test') - for target, ctx in ctx_list(): - tvm_out = get_tvm_output(model, [x], target, ctx) - tvm.testing.assert_allclose(out_np, tvm_out, rtol=rtol, atol=atol) - - x = np.random.uniform(size=in_shape).astype(dtype) - verify_single_ops("Neg",x, -x) - verify_single_ops("Abs",x, np.abs(x)) - verify_single_ops("Reciprocal",x, 1/x, rtol=1e-5, atol=1e-5) - verify_single_ops("Sqrt",x, np.sqrt(x), rtol=1e-5, atol=1e-5) - verify_single_ops("Relu",x, np.maximum(x, 0)) - verify_single_ops("Exp",x, np.exp(x), rtol=1e-5, atol=1e-5) - verify_single_ops("Log",x, np.log(x), rtol=1e-5, atol=1e-5) - verify_single_ops("Log",x, np.log(x), rtol=1e-5, atol=1e-5) - verify_single_ops("Tanh",x, np.tanh(x), rtol=1e-5, atol=1e-5) - verify_single_ops("Sigmoid",x, 1 / (1 + np.exp(-x)), rtol=1e-5, atol=1e-5) - verify_single_ops("Softsign",x, x / (1 + np.abs(x)), rtol=1e-5, atol=1e-5) - verify_single_ops("SoftPlus",x, np.log(1 + np.exp(x)), rtol=1e-5, atol=1e-5) - -def test_leaky_relu(): - def leaky_relu_x(x, alpha): - return np.where(x >= 0, x, x * alpha) - _test_onnx_op_elementwise((2, 4, 5, 6), - leaky_relu_x, - {'alpha': 0.25}, - 'float32', - 'LeakyRelu', - {'alpha': 0.25}) - -def test_elu(): - def elu_x(x, alpha): - return np.where(x > 0, x, alpha * (np.exp(x) - 1.0)) - _test_onnx_op_elementwise((2, 4, 5, 6), - elu_x, - {'alpha': 0.25}, - 'float32', - 'Elu', - {'alpha': 0.25}) - -def test_selu(): - def selu_x(x, alpha, gamma): - return gamma * np.where(x > 0, x, alpha * (np.exp(x) - 1.0)) - _test_onnx_op_elementwise((2, 4, 5, 6), - selu_x, - {'alpha': 0.25, 'gamma': 0.3}, - 'float32', - 'Selu', - {'alpha': 0.25, 'gamma': 0.3}) - -def test_ThresholdedRelu(): - def ThresholdedRelu_x(x, alpha): - out_np = np.clip(x, alpha, np.inf) - out_np[out_np == alpha] = 0 - return out_np - _test_onnx_op_elementwise((2, 4, 5, 6), - ThresholdedRelu_x, - {'alpha': 0.25}, - 'float32', - 'ThresholdedRelu', - {'alpha': 0.25}) - -def test_ScaledTanh(): - def ScaledTanh_x(x, alpha, beta): - return alpha * np.tanh(beta * x) - _test_onnx_op_elementwise((2, 4, 5, 6), - ScaledTanh_x, - {'alpha': 0.25, 'beta': 0.3}, - 'float32', - 'ScaledTanh', - {'alpha': 0.25, 'beta': 0.3}) - -def test_ParametricSoftplus(): - def ParametricSoftplus_x(x, alpha, beta): - return alpha * np.log(np.exp(beta * x) + 1) - _test_onnx_op_elementwise((2, 4, 5, 6), - ParametricSoftplus_x, - {'alpha': 0.25, 'beta': 0.3}, - 'float32', - 'ParametricSoftplus', - {'alpha': 0.25, 'beta': 0.3}) - -def test_Scale(): - def Scale_x(x, scale): - return scale * x - _test_onnx_op_elementwise((2, 4, 5, 6), - Scale_x, - {'scale': 0.25}, - 'float32', - 'Scale', - {'scale': 0.25}) - -def test_LogSoftmax(): - _test_onnx_op_elementwise((1, 4), - topi.testing.log_softmax_python, - {}, - 'float32', - 'LogSoftmax', - {'axis': 1}, - rtol=1e-5, - atol=1e-5) - -if __name__ == '__main__': - # verify_super_resolution_example() - # verify_squeezenet1_1() - # verify_lenet() - verify_resnet18() - test_reshape() - test_reshape_like() - test_power() - test_squeeze() - test_unsqueeze() - test_slice() - test_floor() - test_ceil() - test_clip() - test_matmul() - test_gather() - test_lrn() - test_upsample() - test_forward_min() - test_forward_max() - test_forward_mean() - test_forward_hardsigmoid() - test_forward_arg_min_max() - test_softmax() - test_constantfill() - test_pad() - test_reduce_max() - test_reduce_min() - test_reduce_sum() - test_reduce_mean() - test_split() - test_binary_ops() - test_single_ops() - test_leaky_relu() - test_elu() - test_selu() - test_ThresholdedRelu() - test_ScaledTanh() - test_ParametricSoftplus() - test_Scale() - test_LogSoftmax() diff --git a/nnvm/tests/python/frontend/tensorflow/test_forward.py b/nnvm/tests/python/frontend/tensorflow/test_forward.py deleted file mode 100644 index b49d702f26c2..000000000000 --- a/nnvm/tests/python/frontend/tensorflow/test_forward.py +++ /dev/null @@ -1,1299 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# pylint: disable=import-self, invalid-name, unused-argument -""" -Tensorflow testcases -==================== -This article is a test script to test tensorflow operator with NNVM. -""" -from __future__ import print_function -import numpy as np -import nnvm.compiler -import tvm -import tensorflow as tf -from tensorflow.python.framework import constant_op -from tensorflow.python.framework import graph_util -from tensorflow.python.ops import nn_ops -from tensorflow.python.ops import nn -from tensorflow.python.ops import array_ops -from tensorflow.python.ops import gen_array_ops -from tensorflow.python.ops import math_ops -from tensorflow.python.ops import variable_scope -from tensorflow.python.ops import variables -from tensorflow.python.ops import init_ops -from tensorflow.core.framework import graph_pb2 - -import tvm.relay.testing.tf as tf_testing - -####################################################################### -# Generic run functions for TVM & tensorflow -# ------------------------------------------ -def convert_to_list(x): - if not isinstance(x, list): - x = [x] - return x - -def run_tvm_graph(graph_def, input_data, input_node, num_output=1, target='llvm', out_names=None): - """ Generic function to compile on nnvm and execute on tvm """ - input_data = convert_to_list(input_data) - input_node = convert_to_list(input_node) - - layout = None - if target == "cuda": - layout = "NCHW" - target_host = 'llvm' - - if isinstance(input_data, list): - shape_dict = {} - dtype_dict = {} - for i, e in enumerate(input_node): - shape_dict[e] = input_data[i].shape - dtype_dict[e] = input_data[i].dtype - else: - shape_dict = {input_node: input_data.shape} - dtype_dict = {input_node: input_data.dtype} - - sym, params = nnvm.frontend.from_tensorflow(graph_def, layout=layout, shape=shape_dict, outputs=out_names) - graph, lib, params = nnvm.compiler.build(sym, target=target, target_host=target_host, shape=shape_dict, - dtype=dtype_dict, params=params) - - ctx = tvm.context(target, 0) - from tvm.contrib import graph_runtime - m = graph_runtime.create(graph, lib, ctx) - # set inputs - for i, e in enumerate(input_node): - m.set_input(e, tvm.nd.array(input_data[i].astype(input_data[i].dtype))) - - m.set_input(**params) - # execute - m.run() - # get outputs - assert out_names is None or num_output == len(out_names),"out_names: {} num_output: {}".format( - out_names, num_output) - tvm_output_list = [] - for i in range(0, num_output): - tvm_output = m.get_output(i) - tvm_output_list.append(tvm_output.asnumpy()) - return tvm_output_list - -def run_tf_graph(sess, input_data, input_node, output_node): - """ Generic function to execute tensorflow """ - input_data = convert_to_list(input_data) - input_node = convert_to_list(input_node) - output_node = convert_to_list(output_node) - - tensor = [0] * len(output_node) - for i in range(len(output_node)): - tensor[i] = sess.graph.get_tensor_by_name(output_node[i]) - - input_dict = {} - for i, e in enumerate(input_node): - input_dict[e] = input_data[i] - - output_data = sess.run(tensor, input_dict) - return output_data - - -def compare_tf_with_tvm(in_data, in_name, out_name, init_global_variables=False, no_gpu=False): - """Generic function to generate and compare tensorflow and TVM output""" - - out_name = convert_to_list(out_name) - out_node = [0]*len(out_name) - for i in range(len(out_name)): - out_node[i] = out_name[i].split(':')[0] if ":" in out_name[i] else out_name[i] - - in_data = convert_to_list(in_data) - in_name = convert_to_list(in_name) - in_node = [0]*len(in_name) - for i in range(len(in_name)): - in_node[i] = in_name[i].split(':')[0] if ":" in in_name[i] else in_name[i] - - with tf.Session() as sess: - if init_global_variables: - sess.run(variables.global_variables_initializer()) - final_graph_def = tf.graph_util.convert_variables_to_constants( - sess, - sess.graph.as_graph_def(add_shapes=True), - out_node, - ) - tf_output = run_tf_graph(sess, in_data, in_name, out_name) - - for device in ["llvm", "cuda"]: - ctx = tvm.context(device, 0) - if not ctx.exist: - print("Skip because %s is not enabled" % device) - continue - if no_gpu and device == 'cuda': - continue - - tvm_output = run_tvm_graph(final_graph_def, in_data, in_node, - num_output=len(out_node), target=device, out_names=out_name) - # since the names from tensorflow and nnvm runs are not exactly same, - # first len(tf_output) will be compared - for i in range(len(tf_output)): - tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) - - sess.close() - -def is_gpu_available(): - from tensorflow.python.client import device_lib - local_device_protos = device_lib.list_local_devices() - gpu_list = [x.name for x in local_device_protos if x.device_type == 'GPU'] - if len(gpu_list) > 0: - print("Tensorflow GPU:", gpu_list) - return True - else: - return False - -####################################################################### -# Pooling -# ------- -def _test_pooling_iteration(input_shape, **kwargs): - """ One iteration of pool operation with given shapes and attributes """ - - x = -np.arange( - np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=input_shape, dtype='float32') - nn_ops.pool(in_data, **kwargs) - - if kwargs['pooling_type'] == 'MAX': - out_name = 'max_pool:0' - else: - out_name = 'avg_pool:0' - - compare_tf_with_tvm(x, 'Placeholder:0', out_name) - -def _test_pooling(input_shape, **kwargs): - _test_pooling_iteration(input_shape, **kwargs) - - if is_gpu_available(): - input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] - kwargs['data_format'] = 'NCHW' - _test_pooling_iteration(input_shape, **kwargs) - -def test_forward_pooling(): - """ Pooling """ - - for pool_type in ['AVG', 'MAX']: - _test_pooling(input_shape=[2, 9, 10, 2], - window_shape=[1, 1], - padding='SAME', - pooling_type=pool_type, - dilation_rate=[1, 1], - strides=[1, 1]) - - _test_pooling(input_shape=[2, 10, 9, 2], - window_shape=[1, 1], - padding='SAME', - pooling_type=pool_type, - dilation_rate=[1, 1], - strides=[1, 1]) - - _test_pooling(input_shape=[2, 9, 10, 2], - window_shape=[2, 1], - padding='SAME', - pooling_type=pool_type, - dilation_rate=[1, 1], - strides=[1, 1]) - - _test_pooling(input_shape=[2, 10, 9, 2], - window_shape=[2, 3], - padding='SAME', - pooling_type=pool_type, - dilation_rate=[1, 1], - strides=[2, 1]) - -####################################################################### -# Convolution -# ----------- - -def _test_convolution(tensor_in_sizes, filter_in_sizes, - dilations, strides, padding, data_format): - """ One iteration of convolution with given shapes and attributes """ - - total_size_1 = 1 - total_size_2 = 1 - for s in tensor_in_sizes: - total_size_1 *= s - for s in filter_in_sizes: - total_size_2 *= s - # Initializes the input tensor with array containing incrementing - # numbers from 1. - data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] - filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32') - in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32') - if data_format == 'NHWC': - strides = [1] + strides + [1] - dilations = [1] + dilations + [1] - else: - strides = [1, 1] + strides - dilations = [1, 1] + dilations - - nn_ops.conv2d(in_data, - in_filter, - strides=strides, - padding=padding, - data_format=data_format) - - compare_tf_with_tvm(np.reshape(data_array, tensor_in_sizes).astype('float32'), - 'Placeholder:0', 'Conv2D:0') - -def test_forward_convolution(): - if is_gpu_available(): - _test_convolution([4, 176, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NCHW') - _test_convolution([4, 19, 17, 17], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NCHW') - _test_convolution([4, 124, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NCHW') - _test_convolution([4, 12, 17, 17], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NCHW') - - _test_convolution([4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC') - _test_convolution([4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NHWC') - _test_convolution([4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NHWC') - _test_convolution([4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NHWC') - -####################################################################### -# Reshape -# ------- - -def _test_reshape(data, out_shape): - """ One iteration of reshape operation with given data and out shape """ - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) - array_ops.reshape(in_data, out_shape) - - compare_tf_with_tvm(data, 'Placeholder:0', 'Reshape:0') - -def test_forward_reshape(): - _test_reshape(np.arange(6.0), [2, 3]) - _test_reshape(np.arange(6), [-1, 2]) - _test_reshape(np.arange(6), [3, -1]) - _test_reshape(np.arange(6), [-1]) - -####################################################################### -####################################################################### -# Squeeze -# ------- - -def _test_squeeze(data, squeeze_dims=None): - """ One iteration of squeeze """ - - if squeeze_dims is None: - squeeze_dims = [] - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) - - if squeeze_dims: - array_ops.squeeze(in_data, squeeze_dims) - else: - array_ops.squeeze(in_data) - - compare_tf_with_tvm(data, 'Placeholder:0', 'Squeeze:0') - -def test_forward_squeeze(): - """ Squeeze """ - - # Nothing to squeeze. - _test_squeeze(np.arange(2).reshape((2))) - _test_squeeze(np.arange(6).reshape((2, 3))) - - # Squeeze the middle element away. - _test_squeeze(np.arange(4).reshape((2, 1, 2))) - - # Squeeze on both ends. - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1))) - - # Positive squeeze dim index. - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0]) - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [2, 4]) - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0, 4, 2]) - - # Negative squeeze dim index. - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-1]) - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5]) - _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5, -1]) - -####################################################################### -# ConcatV2 -# -------- - -def _test_concat_v2(data, dim): - """ One iteration of ConcatV2 """ - - with tf.Graph().as_default(): - gen_array_ops._concat_v2(data, dim) - - compare_tf_with_tvm(data, ['ConcatV2/values_0:0', 'ConcatV2/values_1:0'], - 'ConcatV2:0') - -def _test_forward_concat_v2(): - t1 = np.array([]) - t2 = np.array([]) - test_concat_v2([t1, t2], 0) - - t1 = np.array([[1, 2, 3], [4, 5, 6]]) - t2 = np.array([[7, 8, 9], [10, 11, 12]]) - - _test_concat_v2([t1, t2], 1) - -####################################################################### -# Sigmoid -# ------- - -def _test_sigmoid(data): - """ One iteration of sigmoid """ - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) - sigmoid_out = math_ops.sigmoid(in_data) - - compare_tf_with_tvm(data, 'Placeholder:0', 'Sigmoid:0') - -def test_forward_sigmoid(): - """ Sigmoid """ - - _test_sigmoid(np.random.uniform(size=(3, 4, 4, 3)).astype('float32')) - -####################################################################### -# Argmin/Argmax -# ------------- - -def _test_argx(func, data, **kwargs): - - with tf.Graph().as_default(): - inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0") - func(inp, name="argx0", **kwargs, output_type=tf.int32) - - compare_tf_with_tvm(data, 'c0:0', 'argx0:0') - -def test_forward_argminmax(): - for axis in [None,0,1,2]: - data = np.random.uniform(size=(8,4,9)).astype('float32') - _test_argx(tf.argmax, data=data, axis=axis) - _test_argx(tf.argmin, data=data, axis=axis) - -####################################################################### -# Reduce -# ------ - -def _test_reduce(func, data, **kwargs): - """ One iteration of a reduce operation""" - - with tf.Graph().as_default(): - inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0") - func(inp, name="reducex0", **kwargs) - - compare_tf_with_tvm(data, 'c0:0', 'reducex0:0') - -def test_forward_reduce(): - data = np.random.uniform(size=(8,4,9)).astype('float32') - _test_reduce(tf.reduce_sum, data=data) - _test_reduce(tf.reduce_sum, data=data, axis=0) - _test_reduce(tf.reduce_sum, data=data, axis=(0,1)) - - -####################################################################### -# Variable -# -------- - -def _test_variable(data): - """ One iteration of a variable """ - - tf.reset_default_graph() - input_op = array_ops.placeholder(shape=data.shape, dtype=data.dtype) - input_tensor = array_ops.reshape(input_op, data.shape) - - size = input_tensor.shape.dims[1] - with variable_scope.variable_scope("linear", reuse=None): - w = variable_scope.get_variable( - "w", shape=[size, size], dtype=input_tensor.dtype) - math_ops.matmul(input_tensor, w) - - compare_tf_with_tvm(data, 'Placeholder:0', 'MatMul:0', init_global_variables=True) - -def test_forward_variable(): - """Variable type op test""" - _test_variable(np.random.uniform(size=(32, 100)).astype('float32')) - - -####################################################################### -# StridedSlice -# ------------ - -def _test_stridedslice(ip_shape, begin, end, stride, dtype, - begin_mask=0, end_mask=0, new_axis_mask=0, - shrink_axis_mask=0, ellipsis_mask=0): - """ One iteration of a Stridedslice """ - - tf.reset_default_graph() - in_data = tf.placeholder(dtype, ip_shape, name="in_data") - tf.strided_slice(in_data, begin, end, stride, begin_mask=begin_mask, - end_mask=end_mask, new_axis_mask=new_axis_mask, - shrink_axis_mask=shrink_axis_mask, - ellipsis_mask=ellipsis_mask, name="strided_slice") - np_data = np.random.uniform(size=ip_shape).astype(dtype) - - compare_tf_with_tvm(np_data, 'in_data:0', 'strided_slice:0') - -def test_forward_stridedslice(): - '''test StridedSlice''' - - _test_stridedslice((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], 'float32') - _test_stridedslice((3, 4, 3), [1, 0], [4, 3], [2, 1], 'float32', ellipsis_mask=8) - _test_stridedslice((3, 4, 3), [1, 0], [4, 2], [2, 1], 'float32', ellipsis_mask=2) - _test_stridedslice((3, 4, 5, 3), [1, 0], [4, 2], [2, 1], 'float32', ellipsis_mask=2) - _test_stridedslice((3, 4, 5, 3), [1, 0, 1], [4, 2, 2], [2, 1, 1], 'float32', ellipsis_mask=2) - _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 2], [2, 1, 1], 'float32', new_axis_mask=5) - _test_stridedslice((3, 4, 3), [1, 1, 1], [4, 4, 1], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=4) - _test_stridedslice((6, 4, 5), [1, 1, 1], [6, 3, 4], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=5) - _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=4, new_axis_mask=2) - _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=3) - _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 1], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=3) - _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=2) - _test_stridedslice((3,4), [1, 0], [4, 4], [1, 1], 'float32', shrink_axis_mask=2) - _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=2, new_axis_mask=2) - _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=1, new_axis_mask=2) - _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=2, new_axis_mask=1) - _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0], [2, 3], [1, 1], 'float32', shrink_axis_mask=5, new_axis_mask=1) - _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], - 'float32', shrink_axis_mask=5, new_axis_mask=1, ellipsis_mask=2, begin_mask=8, end_mask=8) - _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], - 'float32', shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5) - _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], - 'float32', shrink_axis_mask=16, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5) - _test_stridedslice((3, 4, 5, 4, 5, 6), [1, 2, 0, -3], [4, 5, 3, 3], [2, 2, 1, 1], - 'float32', shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, - end_mask=8) - _test_stridedslice((1), [0], [1], [1], 'float32', shrink_axis_mask=1) - - -####################################################################### -# Gather -# ------ - -def _test_gather(ip_shape, indice_shape, indice_value, axis, dtype): - """ One iteration of a Gather """ - - tf.reset_default_graph() - in_data = tf.placeholder(dtype, ip_shape, name="in_data") - indices = tf.placeholder("int32", indice_shape, name="indices") - tf.gather(in_data, indices, axis=axis) - np_data = np.random.uniform(size=ip_shape).astype(dtype) - - def _fill_indices(indice_value): - indices = np.array(ip_shape, dtype=dtype) - if isinstance(indice_value, int): - indices = np.array([indice_value], dtype='int32') - else: - indices = np.asarray(indice_value, dtype='int32') - return indices - np_indices = _fill_indices(indice_value) - - compare_tf_with_tvm([np_data, np_indices], ['in_data:0', 'indices:0'], 'GatherV2:0') - -def test_forward_gather(): - '''test gather layer''' - _test_gather((4,), (1,), 1, 0, 'int32') - _test_gather((4,), (1,), 1, 0, 'float32') - _test_gather((1,4), (1,), [0], 0, 'int32') - _test_gather((4,), (1,2,2), [[[1,0],[0,1]]], 0, 'float32') - _test_gather((2,2), (1,2,2), [[[1,0],[0,1]]], 0, 'int32') - _test_gather((2,2), (1,2,2), [[[1,0],[0,1]]], 1, 'int32') - _test_gather((2,2), (1,2,2), [[[1,0],[0,1]]], 0, 'float32') - _test_gather((3,3,3), (1,1,2), [[[1,0]]], 0, 'int32') - _test_gather((3,3,3), (1,1,2), [[[1,0]]], 2, 'int32') - _test_gather((4,3,5,6), (1,4), [[2,1,0,0]], 0, 'float32') - - -####################################################################### -# Split -# ----- - -def _test_split(in_shape, axis, num_or_size_splits, dtype): - np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) - - """ One iteration of a Split """ - tf.reset_default_graph() - in_data = tf.placeholder(dtype, in_shape, name="in_data") - num_split = len(num_or_size_splits) if isinstance(num_or_size_splits, list) else num_or_size_splits - tf.split(in_data, num_or_size_splits, axis=axis) - - compare_tf_with_tvm([np_data], ['in_data:0'], ['split:{0}'.format(n) for n in range(num_split)]) - - # and now test together with concat - tf.reset_default_graph() - in_data = tf.placeholder(dtype, in_shape, name="in_data") - splitted = tf.split(in_data, num_or_size_splits, axis=axis) - tf.concat(splitted, axis) - - compare_tf_with_tvm([np_data], 'in_data:0', 'concat:0') - -def test_forward_split(): - '''test split layer''' - # rank 1 - _test_split((3,), 0, 1, 'float32') - _test_split((3,), 0, 3, 'float32') - _test_split((6,), 0, 3, 'float32') - # rank 2 - _test_split((6, 2), 0, 3, 'float32') - _test_split((2, 6), 1, 6, 'float32') - # rank 3 - _test_split((6, 2, 4), 0, 2, 'int32') - _test_split((2, 6, 4), 1, 3, 'float32') - _test_split((2, 4, 6), 2, 1, 'float32') - # rank 4 - _test_split((6, 1, 3, 5), 0, 3, 'float32') - _test_split((1, 6, 3, 5), 1, 3, 'float32') - _test_split((1, 3, 6, 5), 2, 3, 'float32') - _test_split((1, 3, 5, 6), 3, 3, 'float32') - # split along negative axis - _test_split((6, 1, 3, 5), -4, 3, 'float32') - _test_split((1, 6, 3, 5), -3, 3, 'float32') - _test_split((1, 3, 6, 5), -2, 3, 'float32') - _test_split((1, 3, 5, 6), -1, 3, 'float32') - # size_splits list - _test_split((6,), 0, [1, 2, 3], 'int32') - _test_split((3, 6, 4), -2, [1, 4, 1], 'float32') - - -####################################################################### -# Unstack -# ------- - -def _test_unstack(ip_shape, axis, dtype): - np_data = np.random.uniform(-5, 5, size=ip_shape).astype(dtype) - - tf.reset_default_graph() - in_data = tf.placeholder(dtype, ip_shape, name="in_data") - tf.unstack(in_data, axis=axis) - - compare_tf_with_tvm([np_data], ['in_data:0'], ['unstack:{0}'.format(n) for n in range(ip_shape[axis])]) - - tf.reset_default_graph() - in_data = tf.placeholder(dtype, ip_shape, name="in_data") - tf.stack(tf.unstack(in_data, axis=axis), axis=axis) - - compare_tf_with_tvm([np_data], ['in_data:0'], 'stack:0') - -def test_forward_unstack(): - '''test unstack layer''' - _test_unstack((6,), 0, 'int32') - _test_unstack((2,6), 1, 'float64') - # negative axis - _test_unstack((1,4), -1, 'int32') - _test_unstack((3,6,4), -2, 'float32') - - -####################################################################### -# Multi Input to graph -# -------------------- - -def test_forward_multi_input(): - with tf.Graph().as_default(): - in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1') - in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2') - in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3') - in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4') - - out1 = tf.add(in1, in2, name='out1') - out2 = tf.subtract(in3, in4, name='out2') - out = tf.multiply(out1, out2, name='out') - in_data = np.arange(9, dtype='int32').reshape([3, 3]) - - compare_tf_with_tvm([in_data, in_data, in_data, in_data], - ['in1:0', 'in2:0', 'in3:0', 'in4:0'], 'out:0') - -####################################################################### -# Multi Output to Graph -# --------------------- - -def test_forward_multi_output(): - with tf.Graph().as_default(): - in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1') - in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2') - in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3') - in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4') - - out1 = tf.add(in1, in2, name='out1') - out2 = tf.subtract(in3, in4, name='out2') - in_data = np.arange(9, dtype='int32').reshape([3, 3]) - in_data = [in_data] * 4 - in_name = ['in1:0', 'in2:0', 'in3:0', 'in4:0'] - out_name = ['out1:0', 'out2:0'] - out_node = [out.strip(':0') for out in out_name] - in_node = [inp.strip(':0') for inp in in_name] - - with tf.Session() as sess: - final_graph_def = tf.graph_util.convert_variables_to_constants( - sess, sess.graph.as_graph_def(add_shapes=True), out_node,) - tf_output = run_tf_graph(sess, in_data, in_name, out_name) - tvm_output = run_tvm_graph(final_graph_def, in_data, in_node, target='llvm', - out_names=out_node, num_output=2) - for i in range(len(tf_output)): - tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) - -####################################################################### -# Resize Bilinear -# --------------- - -def _test_resize_bilinear(in_shape, to_shape, align_corners): - """ One iteration of resize bilinear """ - - data = np.random.uniform(size=in_shape).astype('float32') - shape_data = np.array(to_shape).astype('int32') - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) - shape_data = constant_op.constant(shape_data, shape=shape_data.shape, dtype=shape_data.dtype) - tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners) - - compare_tf_with_tvm(data, 'Placeholder:0', 'ResizeBilinear:0') - -def test_forward_resize_bilinear(): - """ Resize Bilinear """ - - _test_resize_bilinear((4, 16, 32, 32), [50, 50], False) - _test_resize_bilinear((6, 32, 64, 64), [20, 20], True) - - -####################################################################### -# Crop to bounding box -# -------------------- - -def _test_crop(in_shape, off_h, off_w, tar_h, tar_w): - """ Crop to bounding box """ - data = np.random.uniform(size=in_shape).astype('float32') - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) - tf.image.crop_to_bounding_box(in_data, off_h, off_w, tar_h, tar_w) - compare_tf_with_tvm(data, 'Placeholder:0', 'crop_to_bounding_box/Slice:0') - -def test_forward_crop(): - """ Crop to bounding box """ - _test_crop((1, 224, 224, 3), 20, 20, 120, 120) - - -####################################################################### -# LSTM -# ---- - -def _test_lstm_cell(batch_size, num_hidden, num_layers, forget_bias, dtype): - """ One iteration of a LSTM cell """ - - tf.reset_default_graph() - input_size = num_hidden - input_data = np.full((batch_size, input_size), 1., dtype=dtype) - in_state_c = np.full((num_layers, batch_size, num_hidden), 0.1, dtype=dtype) - in_state_h = np.full((num_layers, batch_size, num_hidden), 0.1, dtype=dtype) - - def _get_tensorflow_output(): - with tf.Session() as sess: - with variable_scope.variable_scope( - "root", initializer=init_ops.constant_initializer(0.5)): - m0 = array_ops.zeros([batch_size, num_hidden]) - m1 = array_ops.zeros([batch_size, num_hidden]) - x=tf.placeholder(shape=(batch_size, input_size), dtype=dtype) - g, ((out_m0, out_m1)) = \ - tf.contrib.rnn.LSTMBlockCell(num_hidden, - forget_bias=forget_bias)(x, ((m0, m1))) - sess.run([variables.global_variables_initializer()]) - res = sess.run([g, out_m0, out_m1], { - x.name: np.array([[1., 1.]]), - m0.name: 0.1 * np.ones([batch_size, num_hidden]), - m1.name: 0.1 * np.ones([batch_size, num_hidden]), - }) - graph_def = sess.graph.as_graph_def(add_shapes=True) - final_graph_def = graph_util.convert_variables_to_constants( - sess, - graph_def, - ['root/lstm_cell/LSTMBlockCell']) - return final_graph_def, res - - graph_def, tf_out = _get_tensorflow_output() - tvm_output = run_tvm_graph(graph_def, [input_data, in_state_c, in_state_h], - ['root/Placeholder', 'root/lstm_cell/LSTMBlockCell_c', - 'root/lstm_cell/LSTMBlockCell_h'], num_output=2) - assert isinstance(tvm_output, list) - - out = tvm_output[0] - out_state = tvm_output[1] - out_state_tup = np.split(out_state, indices_or_sections=2, axis=1) - out_state_c = np.reshape(out_state_tup[0], (batch_size, num_hidden)) - out_state_h = np.reshape(out_state_tup[1], (batch_size, num_hidden)) - tvm_out = [out, out_state_c, out_state_h] - tvm.testing.assert_allclose(tf_out[0], tvm_out[0], rtol=1e-3, atol=1e-3) - -def test_forward_lstm(): - '''test LSTM block cell''' - _test_lstm_cell(1, 2, 1, 0.0, 'float32') - - - -####################################################################### -# Pack -# --- -def _test_pack(axis, shape, **kwargs): - - a = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) - b = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) - - with tf.Graph().as_default(): - tf_a = array_ops.placeholder(shape=shape, dtype='float32', name='pl_a') - tf_b = array_ops.placeholder(shape=shape, dtype='float32', name='pl_b') - tf_c = tf.stack([tf_a,tf_b], axis=axis, **kwargs) - assert tf_c.op.op_def.name == 'Pack', "tf.stack() is expected to produce 'Pack' operation" - - compare_tf_with_tvm([a,b], ['pl_a:0','pl_b:0'], 'stack:0') - -def test_forward_pack(): - for axis in range(-3,3): - _test_pack(axis, [3,2,1]) - for axis in range(-1,1): - _test_pack(axis, [3]) - _test_pack(0, []) - -####################################################################### -# Pad -# --- -def _test_pad(input_shape, paddings, mode, **kwargs): - """ One iteration of pad operation with given shape""" - - x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) - - with tf.Graph().as_default(): - in_data = array_ops.placeholder(shape=input_shape, dtype='float32') - pad_values = constant_op.constant(paddings) - pad = tf.pad(in_data, paddings=pad_values, mode=mode, **kwargs) - - if mode == 'CONSTANT': - if 'constant_values' in kwargs: - out_name = 'PadV2:0' - else: - out_name = 'Pad:0' - - compare_tf_with_tvm(x, 'Placeholder:0', out_name) - -def test_forward_pad(): - """ Pad """ - _test_pad((2, 3), [[1,1], [2,2]], mode="CONSTANT") - _test_pad((2, 3), [[1,1], [2,2]], mode="CONSTANT", constant_values=1.0) - -####################################################################### -# Logical operators -# -------------------- -def test_logical_and(): - with tf.Graph().as_default(): - in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1') - in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2') - out = tf.logical_and(in1, in2, name='out') - in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - in_data2 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0') - -def test_logical_or(): - with tf.Graph().as_default(): - in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1') - in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2') - out = tf.logical_or(in1, in2, name='out') - in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - in_data2 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0') - -def test_logical_xor(): - with tf.Graph().as_default(): - in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1') - in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2') - out = tf.logical_xor(in1, in2, name='out') - in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - in_data2 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0') - -def test_logical_not(): - with tf.Graph().as_default(): - in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1') - out = tf.logical_not(in1, name='out') - in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool') - compare_tf_with_tvm(in_data1, 'in1:0', 'out:0') - -def test_forward_logical(): - test_logical_and() - test_logical_or() - test_logical_xor() - test_logical_not() - -####################################################################### -# Inception V3 -# ------------ -def test_forward_inception_v3(): - '''test inception V3 model''' - with tf.Graph().as_default(): - graph_def = tf_testing.get_workload('InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb') - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - - data = np.random.uniform(size=(1, 299, 299, 3)).astype('float32') - - with tf.Session() as sess: - tf_output = run_tf_graph(sess, data, 'input:0', 'InceptionV3/Predictions/Reshape_1:0') - tvm_output = run_tvm_graph(graph_def, data, 'input') - tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5) - -####################################################################### -# Inception V1 -# ------------ -def test_forward_inception_v1(): - '''test inception V1 model''' - with tf.Graph().as_default(): - graph_def = tf_testing.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb") - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - - # Build an image from random data. - from PIL import Image - from tvm.contrib import util - - img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8") - img = Image.frombuffer('RGB', (600, 600), img_array.tostring(), 'raw', 'RGB', 0, 1) - temp = util.tempdir() - img_path = temp.relpath("tf-test.jpg") - img.save(img_path); - - import os.path - if not tf.gfile.Exists(os.path.join(img_path)): - tf.logging.fatal('File does not exist %s', image) - data = tf.gfile.FastGFile(os.path.join(img_path), 'rb').read() - - temp.remove() - - # Extract tensorflow decoded image frame for tvm input - with tf.Session() as sess: - tvm_data = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'DecodeJpeg:0') - - with tf.Session() as sess: - tf_output = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'softmax:0') - tvm_output = run_tvm_graph(graph_def, tvm_data, 'DecodeJpeg/contents') - tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5) - -####################################################################### -# Mobilenet -# --------- -def test_forward_mobilenet(): - '''test mobilenet model''' - # MobilenetV2 - with tf.Graph().as_default(): - graph_def = tf_testing.get_workload( - "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz", - "mobilenet_v2_1.4_224_frozen.pb") - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - - data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32') - out_node = 'MobilenetV2/Predictions/Reshape_1' - - with tf.Session() as sess: - # Add shapes to the graph. - graph_def = tf_testing.AddShapesToGraphDef(sess, out_node) - tf_output = run_tf_graph(sess, data, 'input:0', out_node + ':0') - tvm_output = run_tvm_graph(graph_def, data, 'input') - tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5) - -####################################################################### -# ResnetV2 -# -------- -def test_forward_resnetv2(): - '''test resnet model''' - if is_gpu_available(): - with tf.Graph().as_default(): - graph_def = tf_testing.get_workload("ResnetV2/resnet-20180601_resnet_v2_imagenet-shapes.pb") - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - - data = np.random.uniform(size=(128, 224, 224, 3)).astype('float32') - out_node = 'ArgMax' - - with tf.Session() as sess: - tf_output = run_tf_graph(sess, data, 'input_tensor:0', out_node + ':0') - for device in ["llvm", "cuda"]: - ctx = tvm.context(device, 0) - if not ctx.exist: - print("Skip because %s is not enabled" % device) - continue - tvm_output = run_tvm_graph(graph_def, data, 'input_tensor', len(tf_output), target=device) - tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5) - -####################################################################### -# Placeholder -# ----------- -def test_forward_placeholder(): - '''test a simple pb with Placeholder node in the end of GraphDef''' - with tf.Graph().as_default(): - graph_def = tf_testing.get_workload("Custom/placeholder.pb") - - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - - - data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32') - out_node = 'mul' - - with tf.Session() as sess: - # Add shapes to the graph. - graph_def = tf_testing.AddShapesToGraphDef(sess, out_node) - tf_output = run_tf_graph(sess, data, 'Placeholder:0', out_node + ':0') - tvm_output = run_tvm_graph(graph_def, data, 'Placeholder') - print("tf_output is {}\ntvm_output is {}".format(tf_output, tvm_output)) - tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5) - -####################################################################### -# PTB -# --- -dir(tf.contrib) -def test_forward_ptb(): - '''test ptb model''' - config = tf_testing.get_config() - num_steps = config.num_steps - num_hidden = config.hidden_size - num_layers = config.num_layers - batch_size = config.batch_size - vocab_size = config.vocab_size - out_sample_shape = (batch_size, vocab_size) - out_state_shape = (num_layers, 2, batch_size, num_hidden) - #Sample input - inpt = "we have no useful information on" - cnt_sample = 20 - - def _pretty_print(items, is_char_model, id2word): - if not is_char_model: - return ' '.join([id2word[x] for x in items]) - else: - return ''.join([id2word[x] for x in items]).replace('_', ' ') - - def _get_tvm_graph_module(graph_def): - sym, params = nnvm.frontend.from_tensorflow(graph_def) - - #Cell inputs 'c and 'h' consist of all layers values - shape_dict = {'Model/Placeholder': (batch_size, num_steps), - 'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c':(num_layers, batch_size, num_hidden), - 'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h':(num_layers, batch_size, num_hidden)} - dtype_dict = {'Model/Placeholder': 'int32', - 'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c':'float32', - 'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h':'float32'} - target = 'llvm' - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, - dtype=dtype_dict, params=params) - from tvm.contrib import graph_runtime - ctx = tvm.cpu(0) - return params, graph_runtime.create(graph, lib, ctx) - - def _do_tvm_sample(model, data, in_states, params, num_samples): - """Sampled from the model""" - samples = [] - state = in_states - sample = None - def _get_sample(data, state): - input_data = np.full((batch_size, num_steps), data, dtype="int32") - in_state_tup = np.split(state, indices_or_sections=2, axis=1) - in_state_c = np.reshape(in_state_tup[0], (num_layers, batch_size, num_hidden)) - in_state_h = np.reshape(in_state_tup[1], (num_layers, batch_size, num_hidden)) - - model.set_input('Model/Placeholder', tvm.nd.array(input_data.astype("int32"))) - model.set_input('Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c', - tvm.nd.array(in_state_c.astype("float32"))) - model.set_input('Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h', - tvm.nd.array(in_state_h.astype("float32"))) - model.set_input(**params) - model.run() - tvm_output = model.get_output(0, tvm.nd.empty(out_sample_shape, - "float32")).asnumpy() - state_output = model.get_output(1, tvm.nd.empty(out_state_shape, - "float32")).asnumpy() - sample = tf_testing.pick_from_weight(tvm_output[0]) - - return sample, state_output - - for x in data: - sample, state = _get_sample(x, state) - - if sample is not None: - samples.append(sample) - else: - samples.append(0) - - k = 1 - while k < num_samples: - sample, state = _get_sample(samples[-1], state) - samples.append(sample) - k += 1 - return samples, state - - with tf.Graph().as_default(): - word_to_id, id_to_word, graph_def = tf_testing.get_workload_ptb() - vocab_size = len(word_to_id) - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - sess = tf.Session() - - #TVM graph module creation - params, m = _get_tvm_graph_module(graph_def) - - # Create 10 predicted statments of 20 words - cnt_stm = 0 - while cnt_stm < 10: - cnt_stm += 1 - in_state = np.full((num_layers, 2, batch_size, num_hidden), 0, dtype="float32") - seed_for_sample = inpt.split() - tvm_samples, tvm_state = _do_tvm_sample(m, [word_to_id[word] \ - for word in seed_for_sample], - in_state, params, cnt_sample) - tvm_sample_str = _pretty_print(tvm_samples, False, id_to_word) - tf_samples, tf_state = tf_testing.do_tf_sample(sess, - [word_to_id[word] for word in seed_for_sample], - in_state, cnt_sample) - tf_sample_str = _pretty_print(tf_samples, False, id_to_word) - inpt = tvm_sample_str - tvm.testing.assert_allclose(tf_samples, tvm_samples, rtol=1e-5, atol=1e-5) - assert(tvm_sample_str == tf_sample_str) - -####################################################################### -# LRN (Local Response Normalization) -# ---------------------------------- - -def _test_lrn(ishape, size, axis, bias, alpha, beta): - """ testing local response normalization """ - lrn_depth_radius = size / 2 - - inp_array = np.random.uniform(size=ishape).astype(np.float32) - - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype, name="lrn0_data") - nn_ops.local_response_normalization(in1, - name="lrn", - depth_radius=lrn_depth_radius, - bias=bias, - alpha=alpha, - beta=beta) - - compare_tf_with_tvm(inp_array, 'lrn0_data:0', 'lrn:0') - -def test_forward_lrn(): - _test_lrn((1, 3, 20, 20), 3, 1, 1.0, 1.0, 0.5) - -####################################################################### -# l2_normalize -# ------------ - -def _test_l2_normalize(ishape, eps, axis): - """ testing l2 normalize (uses max, sum, square, sqrt frontend operators)""" - - inp_array = np.random.uniform(size=ishape).astype(np.float32) - - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - nn.l2_normalize(in1, - axis=axis, - epsilon=eps, - name=None, - dim=None) - - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'l2_normalize:0') - -def test_forward_l2_normalize(): - _test_l2_normalize((1, 3, 20, 20), 0.001, (0,)) - -####################################################################### -# transpose -# --------- -def _test_forward_transpose(ishape, axes=None): - input = np.random.uniform(size=ishape).astype(np.float32) - - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=input.shape, dtype=input.dtype, name="transpose_data") - - if axes is None: - tf.transpose(in1) - else: - tf.transpose(in1, perm=axes) - - compare_tf_with_tvm(input, 'transpose_data:0', 'transpose:0') - -def test_forward_transpose(): - _test_forward_transpose((2, 3, 4)) - _test_forward_transpose((7, 8, 8, 10)) - _test_forward_transpose((2, 3, 4), (1, 2, 0)) - _test_forward_transpose((2, 3, 4), (0, 1, 2)) - _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2)) - - -def test_forward_ceil(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.ceil(in1) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Ceil:0') - -def test_forward_floor(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.floor(in1) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Floor:0') - -def test_forward_relu(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.nn.relu(in1) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Relu:0') - -def test_forward_leaky_relu(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.nn.leaky_relu(in1, alpha=0.4) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu:0') - -def test_forward_elu(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.nn.elu(in1) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Elu:0') - -def test_forward_selu(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.nn.selu(in1) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Selu:0') - -def test_forward_tanh(): - ishape = (1, 3, 10, 10) - inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.nn.tanh(in1) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Tanh:0') - -####################################################################### -# Mean -# ---- -def test_forward_mean(): - def check_mean(ishape, **kwargs): - inp_array = np.random.uniform(size=ishape).astype(np.float32) - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) - tf.keras.backend.mean(in1, **kwargs) - compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Mean:0', no_gpu=True) - - check_mean((10, 8, 16, 32)) - check_mean((10, 8, 16, 32), axis=(2,3)) - check_mean((10, 8, 16, 32), axis=(1,2), keepdims=True) - -####################################################################### -# Relational operators -# -------------------- -def _test_forward_rel_op(data, func): - with tf.Graph().as_default(): - in1 = tf.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in1') - in2 = tf.placeholder(shape=data[1].shape, dtype=data[1].dtype, name='in2') - op = func(in1, in2, name='op') - out = tf.cast(op, tf.int32, name='out1') - compare_tf_with_tvm([data[0], data[1]], ['in1:0', 'in2:0'], 'out1:0') - -def test_forward_rel_ops(): - t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) - t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]]) - _test_forward_rel_op([t1, t2], math_ops.less) - _test_forward_rel_op([t1, t2], math_ops.greater) - _test_forward_rel_op([t1, t2], math_ops.less_equal) - _test_forward_rel_op([t1, t2], math_ops.greater_equal) - _test_forward_rel_op([t1, t2], math_ops.equal) - _test_forward_rel_op([t1, t2], math_ops.not_equal) - - -####################################################################### -# Main -# ---- -if __name__ == '__main__': - # Transforms - test_forward_transpose() - test_forward_reshape() - test_forward_squeeze() - test_forward_pack() - test_forward_resize_bilinear() - test_forward_crop() - test_forward_pad() - test_forward_gather() - test_forward_stridedslice() - test_forward_split() - test_forward_unstack() - - # Activations - test_forward_sigmoid() - test_forward_relu() - test_forward_leaky_relu() - test_forward_elu() - test_forward_selu() - test_forward_tanh() - - # Reductions - test_forward_argminmax() - test_forward_reduce() - test_forward_mean() - - # NN - test_forward_convolution() - test_forward_pooling() - if tf.__version__ == '1.4.1': - _test_forward_concat_v2() - test_forward_lrn() - test_forward_l2_normalize() - - # General - test_forward_multi_input() - test_forward_multi_output() - test_forward_variable() - - # End to End - test_forward_inception_v3() - test_forward_inception_v1() - test_forward_mobilenet() - test_forward_resnetv2() - test_forward_placeholder() - test_forward_ptb() - - # RNN - test_forward_lstm() - - # Elementwise - test_forward_ceil() - test_forward_floor() - - # Relational ops - test_forward_rel_ops() - test_forward_logical() diff --git a/nnvm/tests/python/unittest/test_correct_layout.py b/nnvm/tests/python/unittest/test_correct_layout.py deleted file mode 100644 index 5d313fbacb3e..000000000000 --- a/nnvm/tests/python/unittest/test_correct_layout.py +++ /dev/null @@ -1,379 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm -import nnvm.symbol as sym -import nnvm.graph as graph -from nnvm.compiler import graph_attr - -def correct_layout(g, layout=None): - if isinstance(g, nnvm.symbol.Symbol): - g = graph.create(g) - if layout: - graph_attr.set_layout_inputs(g, layout) - g = g.apply("CorrectLayout") - ldict = {} - vlayout = g.json_attr("layout") - entry_ptr = g.index.entry_ptr - for i, n in enumerate(g.index.nodes): - begin, end = entry_ptr[i], entry_ptr[i + 1] - ldict[n["name"]] = vlayout[begin:end] - return g, ldict - - -# Level 1 -def test_dense(): - x = sym.Variable("data", shape=(10, 20)) - y = sym.dense(x, units=30, name="fc") - g, ldict = correct_layout(y, "HW") - assert(ldict["data"][0] == "HW") - assert(ldict["fc"][0] == "HW") - assert(ldict["fc_bias"][0] == "__undef__") - # second pass will insert layout transform - _, ldict = correct_layout(g, "HW16w") - assert(ldict["data"][0] == "HW16w") - assert(ldict["data_HW"][0] == "HW") - assert(ldict["fc"][0] == "HW") - assert(ldict["fc_bias"][0] == "__undef__") - - -def test_matmul(): - a = sym.Variable("a", shape=(10, 20)) - b = sym.Variable("b", shape=(20, 30)) - c = sym.matmul(a, b, name="matmul") - g, ldict = correct_layout(c, {"a" : "HW", "b" : "WC"}) - assert(ldict["a"][0] == "HW") - assert(ldict["b"][0] == "WC") - assert(ldict["matmul"][0] == "HC") - # second pass will insert layout transform - _, ldict = correct_layout(g, {"a" : "HW16w", "b" : "WC16c"}) - assert(ldict["a"][0] == "HW16w") - assert(ldict["a_HW"][0] == "HW") - assert(ldict["b"][0] == "WC16c") - assert(ldict["b_WC"][0] == "WC") - assert(ldict["matmul"][0] == "HC") - a = sym.Variable("a", shape=(20, 10)) - c = sym.matmul(a, b, name="matmul", transpose_a=True) - g, ldict = correct_layout(c, {"a" : "HW", "b" : "HC"}) - assert(ldict["a"][0] == "HW") - assert(ldict["b"][0] == "HC") - assert(ldict["matmul"][0] == "WC") - b = sym.Variable("b", shape=(30, 20)) - c = sym.matmul(a, b, name="matmul", transpose_b=True) - g, ldict = correct_layout(c, {"a" : "HW", "b" : "CW"}) - assert(ldict["a"][0] == "HW") - assert(ldict["b"][0] == "CW") - assert(ldict["matmul"][0] == "HC") - a = sym.Variable("a", shape=(20, 10)) - b = sym.Variable("b", shape=(30, 20)) - c = sym.matmul(a, b, name="matmul", transpose_a=True, transpose_b=True) - g, ldict = correct_layout(c, {"a" : "HW", "b" : "CH"}) - assert(ldict["a"][0] == "HW") - assert(ldict["b"][0] == "CH") - assert(ldict["matmul"][0] == "WC") - - -def test_concatenate(): - x1 = sym.Variable("x", shape=(10, 20)) - x2 = sym.Variable("y", shape=(10, 30)) - z = sym.concatenate(x1, x2, name="concat") - g, ldict = correct_layout(z, {"x": "HW", "y": "HW"}) - assert(ldict["x"][0] == "HW") - assert(ldict["y"][0] == "HW") - assert(ldict["concat"][0] == "HW") - # second pass will insert layout transform - _, ldict = correct_layout(g, {"x": "HW16w", "y": "HW16w"}) - assert(ldict["x"][0] == "HW16w") - assert(ldict["y"][0] == "HW16w") - assert(ldict["concat"][0] == "HW16w") - - x1 = sym.Variable("x", shape=(10, 20, 60)) - x2 = sym.Variable("y", shape=(10, 20, 40)) - z = sym.concatenate(x1, x2, axis=2, name="concat") - g, ldict = correct_layout(z, {"x": "H20wW", "y": "H20wW"}) - assert(ldict["x"][0] == "H20wW") - assert(ldict["y"][0] == "H20wW") - assert(ldict["concat"][0] == "H20wW") - # second pass will insert layout transform - _, ldict = correct_layout(g, {"x": "HW", "y": "HW"}) - assert(ldict["x_H20wW"][0] == "H20wW") - assert(ldict["x_H20wW"][0] == "H20wW") - assert(ldict["concat"][0] == "H20wW") - - -def test_expand_dims(): - x = sym.Variable("x", shape=(10, 20)) - y = sym.expand_dims(x, axis=1, name="y") - g, ldict = correct_layout(y, "HW") - assert(ldict["x"][0] == "HW") - assert(ldict["y"][0] == "__undef__") - # second pass will insert layout transform - _, ldict = correct_layout(g, "HW16w") - assert(ldict["x"][0] == "HW16w") - assert(ldict["x_HW"][0] == "HW") - assert(ldict["y"][0] == "__undef__") - - -def test_split(): - x = sym.Variable("x", shape=(10, 20)) - y = sym.split(x, indices_or_sections=[11], name="y") - g, ldict = correct_layout(y, "HW") - assert(ldict["x"][0] == "HW") - assert(ldict["y"][0] == "__undef__") - # second pass will insert layout transform - _, ldict = correct_layout(g, "HW16w") - assert(ldict["x"][0] == "HW16w") - assert(ldict["x_HW"][0] == "HW") - assert(ldict["y"][0] == "__undef__") - - -def test_batchnorm(): - x = sym.Variable("data", shape=(10, 20, 30, 40)) - y = sym.batch_norm(x, axis=1, epsilon=2e-5, name="bn") - g, ldict = correct_layout(y, "NCHW") - assert(ldict["data"][0] == "NCHW") - assert(ldict["bn"][0] == "NCHW") - assert(ldict["bn"][1] == "C") - assert(ldict["bn"][2] == "C") - assert(ldict["bn_beta"][0] == "C") - assert(ldict["bn_gamma"][0] == "C") - assert(ldict["bn_moving_mean"][0] == "C") - assert(ldict["bn_moving_var"][0] == "C") - # batch_norm can deal with sub-dim of C at the last dim. - g, ldict = correct_layout(g, "NCHW16c") - assert(ldict["data"][0] == "NCHW16c") - assert(ldict["bn"][0] == "NCHW16c") - assert(ldict["bn"][1] == "C16c") - assert(ldict["bn"][2] == "C16c") - assert(ldict["bn_beta"][0] == "C") - assert(ldict["bn_beta_C16c"][0] == "C16c") - assert(ldict["bn_gamma"][0] == "C") - assert(ldict["bn_gamma_C16c"][0] == "C16c") - assert(ldict["bn_moving_mean"][0] == "C") - assert(ldict["bn_moving_mean_C16c"][0] == "C16c") - assert(ldict["bn_moving_var"][0] == "C") - assert(ldict["bn_moving_var_C16c"][0] == "C16c") - # but for other layout, it does a layout transform for data - g, ldict = correct_layout(g, "NCH16cW") - assert(ldict["data"][0] == "NCH16cW") - assert(ldict["data_NCHW16c"][0] == "NCHW16c") - assert(ldict["bn"][0] == "NCHW16c") - assert(ldict["bn"][1] == "C16c") - assert(ldict["bn"][2] == "C16c") - assert(ldict["bn_beta"][0] == "C") - assert(ldict["bn_beta_C16c"][0] == "C16c") - assert(ldict["bn_gamma"][0] == "C") - assert(ldict["bn_gamma_C16c"][0] == "C16c") - assert(ldict["bn_moving_mean"][0] == "C") - assert(ldict["bn_moving_mean_C16c"][0] == "C16c") - assert(ldict["bn_moving_var"][0] == "C") - assert(ldict["bn_moving_var_C16c"][0] == "C16c") - - -def test_flatten(): - x = sym.Variable("x", shape=(10, 20, 10, 10)) - y = sym.flatten(x, name="y") - g, ldict = correct_layout(y, "NCHW") - assert(ldict["x"][0] == "NCHW") - assert(ldict["y"][0] == "__undef__") - # second pass will insert layout transform - _, ldict = correct_layout(g, "NCHW16c") - assert(ldict["x"][0] == "NCHW16c") - assert(ldict["x_NCHW"][0] == "NCHW") - assert(ldict["y"][0] == "__undef__") - - -def test_softmax(): - x = sym.Variable("x", shape=(10, 20, 10, 10)) - y = sym.softmax(x, name="y") - g, ldict = correct_layout(y, "NCHW") - assert(ldict["x"][0] == "NCHW") - assert(ldict["y"][0] == "NCHW") - # second pass will insert layout transform - _, ldict = correct_layout(g, "NCHW16c") - assert(ldict["x"][0] == "NCHW16c") - assert(ldict["x_NCHW"][0] == "NCHW") - assert(ldict["y"][0] == "NCHW") - - -# Level 2 -def test_conv2d(): - x = sym.Variable("data", shape=(1, 32, 512, 512)) - y = sym.conv2d(x, name="conv", channels=12, - kernel_size=(3,3), padding=(1,1), layout="NCHW") - _, ldict = correct_layout(y) - assert(ldict["data"][0] == "NCHW") - assert(ldict["conv_weight"][0] == "OIHW") - assert(ldict["conv_bias"][0] == "C") - assert(ldict["conv"][0] == "NCHW") - y = sym.conv2d(x, name="conv", channels=12, - kernel_size=(3,3), padding=(1,1), layout="NCHW16c", - kernel_layout="OIHW16i16o", out_layout="NCHW8c") - _, ldict = correct_layout(y) - assert(ldict["data"][0] == "NCHW16c") - assert(ldict["conv_weight"][0] == "OIHW16i16o") - assert(ldict["conv_bias"][0] == "C8c") - assert(ldict["conv"][0] == "NCHW8c") - y = sym.conv2d(x, name="conv", channels=12, - kernel_size=(3,3), padding=(1,1), layout="N16cHWC") - _, ldict = correct_layout(y) - assert(ldict["data"][0] == "N16cHWC") - assert(ldict["conv_weight"][0] == "OIHW") - assert(ldict["conv_bias"][0] == "16cC") - assert(ldict["conv"][0] == "N16cHWC") - - -def test_conv2d_transpose(): - x = sym.Variable("data", shape=(1, 32, 512, 512)) - y = sym.conv2d_transpose(x, name="conv", channels=12, - kernel_size=(3,3), padding=(1,1), layout="NCHW") - _, ldict = correct_layout(y) - assert(ldict["data"][0] == "NCHW") - assert(ldict["conv_weight"][0] == "OIHW") - assert(ldict["conv_bias"][0] == "C") - assert(ldict["conv"][0] == "NCHW") - - -def test_max_pool2d(): - x = sym.Variable("data", shape=(1, 32, 512, 512)) - y = sym.max_pool2d(x, name="pool", pool_size=(3,3), - padding=(1,1), layout="NCHW") - g, ldict = correct_layout(y) - assert(ldict["data"][0] == "NCHW") - assert(ldict["pool"][0] == "NCHW") - # if index of H and W remain the same, - # pool2d does not convert the layout. - g, ldict = correct_layout(g, "NCHW16c") - assert(ldict["data"][0] == "NCHW16c") - assert(ldict["pool"][0] == "NCHW16c") - # for other layout it requires a layout transform. - g, ldict = correct_layout(g, "NHWC") - assert(ldict["data"][0] == "NHWC") - assert(ldict["data_NCHW"][0] == "NCHW") - assert(ldict["pool"][0] == "NCHW") - - -def test_global_pool2d(): - x = sym.Variable("data", shape=(1, 32, 512, 512)) - y = sym.global_max_pool2d(x, name="pool", layout="NCHW") - g, ldict = correct_layout(y) - assert(ldict["data"][0] == "NCHW") - assert(ldict["pool"][0] == "NCHW") - # if index of H and W remain the same, - # pool2d does not convert the layout. - g, ldict = correct_layout(g, "NCHW16c") - assert(ldict["data"][0] == "NCHW16c") - assert(ldict["pool"][0] == "NCHW16c") - # for other layout it requires a layout transform. - g, ldict = correct_layout(g, "NHWC") - assert(ldict["data"][0] == "NHWC") - assert(ldict["data_NCHW"][0] == "NCHW") - assert(ldict["pool"][0] == "NCHW") - - -# Level 3 -def test_reshape(): - x = sym.Variable("x", shape=(4,)) - y = sym.reshape(x, shape=(2,2), name="y") - g, ldict = correct_layout(y, "C") - assert(ldict["x"][0] == "C") - assert(ldict["y"][0] == "__undef__") - # second pass will insert layout transform - g, ldict = correct_layout(g, "C16c") - assert(ldict["x"][0] == "C16c") - assert(ldict["x_C"][0] == "C") - assert(ldict["y"][0] == "__undef__") - - -def test_transpose(): - x = sym.Variable("x", shape=(1, 32, 512, 512)) - y = sym.transpose(x, name="y", axes=(0, 2, 3, 1)) - g, ldict = correct_layout(y, "NCHW") - assert(ldict["x"][0] == "NCHW") - assert(ldict["y"][0] == "NHWC") - # second pass will insert layout transform - g, ldict = correct_layout(g, "NCHW16c") - assert(ldict["x"][0] == "NCHW16c") - assert(ldict["x_NCHW"][0] == "NCHW") - assert(ldict["y"][0] == "NHWC") - - -def test_broadcast_to(): - x = sym.Variable("x", shape=(4, 1)) - y = sym.broadcast_to(x, shape=(0, 4), name="y") - g, ldict = correct_layout(y, "HW") - assert(ldict["x"][0] == "HW") - assert(ldict["y"][0] == "__undef__") - # second pass will insert layout transform - g, ldict = correct_layout(g, "HW16h") - assert(ldict["x"][0] == "HW16h") - assert(ldict["x_HW"][0] == "HW") - assert(ldict["y"][0] == "__undef__") - - -def test_broadcast_binary(): - x = sym.Variable("x", shape=(1, 16, 512, 512)) - y = sym.Variable("y", shape=(16, 512, 512)) - z = sym.broadcast_add(x, y, name="z") - g, ldict = correct_layout(z, {"x": "NCHW", "y": "CHW"}) - assert(ldict["x"][0] == "NCHW") - assert(ldict["y"][0] == "CHW") - assert(ldict["z"][0] == "NCHW") - # prior to keep the left layout if they do not match. - g, ldict = correct_layout(g, {"x": "NCHW16c", "y": "CHW"}) - assert(ldict["x"][0] == "NCHW16c") - assert(ldict["y"][0] == "CHW") - assert(ldict["y_CHW16c"][0] == "CHW16c") - assert(ldict["z"][0] == "NCHW16c") - # broadcast_add(HCW16c, N16nCH16cW) - g, ldict = correct_layout(z, {"x": "HCW16c", "y": "N16nCH16cW"}) - assert(ldict["x"][0] == "HCW16c") - assert(ldict["y"][0] == "N16nCH16cW") - assert(ldict["x_CH16cW"][0] == "CH16cW") - assert(ldict["z"][0] == "N16nCH16cW") - - -def test_reduce(): - x = sym.Variable("x", shape=(1, 16, 512, 512)) - y = sym.sum(x, name="y", axis=1) - g, ldict = correct_layout(y, "NCHW") - assert(ldict["x"][0] == "NCHW") - assert(ldict["y"][0] == "__undef__") - # second pass will insert layout transform - g, ldict = correct_layout(g, "NCHW16c") - assert(ldict["x"][0] == "NCHW16c") - assert(ldict["x_NCHW"][0] == "NCHW") - assert(ldict["y"][0] == "__undef__") - - -if __name__ == "__main__": - test_dense() - test_matmul() - test_concatenate() - test_expand_dims() - test_split() - test_batchnorm() - test_flatten() - test_softmax() - test_conv2d() - test_conv2d_transpose() - test_max_pool2d() - test_global_pool2d() - test_reshape() - test_transpose() - test_broadcast_to() - test_broadcast_binary() - test_reduce() diff --git a/nnvm/tests/python/unittest/test_graph.py b/nnvm/tests/python/unittest/test_graph.py deleted file mode 100644 index 1ba0a2487cee..000000000000 --- a/nnvm/tests/python/unittest/test_graph.py +++ /dev/null @@ -1,160 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import json -import nnvm.symbol as sym -import nnvm.graph as graph -import nnvm.compiler.graph_util as graph_util - -def test_json_pass(): - x = sym.Variable('x') - y = sym.dense(data=x, name='conv', units=30) - g = graph.create(y) - ret = g.apply('SaveJSON') - ret._set_json_attr('json', ret.json_attr('json')) - g2 = ret.apply('LoadJSON') - assert g2.apply('SaveJSON').json_attr('json') == ret.json_attr('json') - json = g.json() - g2 = graph.load_json(json) - assert json == g2.json() - - -def test_json_pass_with_attr(): - x = sym.Variable('x') - y = sym.dense(data=x, name='fc', units=30) - g = graph.create(y) - g._set_json_attr('version', '0.1.0') - ret = g.apply('SaveJSON') - json_str = ret.json_attr('json') - ret._set_json_attr('json', json_str) - g2 = ret.apply('LoadJSON') - assert g2.json_attr('version') == '0.1.0' - - -def test_graph_json_attr(): - x = sym.Variable('x') - y = sym.dense(data=x, name='fc', units=30) - g = graph.create(y) - g._set_json_attr('ilist', [1,2,3], 'list_int') - assert g.json_attr('ilist') == [1,2,3] - -def test_list_args(): - x = sym.Variable('x') - z = sym.Variable('z') - y = sym.dense(data=x, name='fc', units=30) - y = sym.elemwise_add(y, z, name='add1') - -def test_infer_shape(): - x = sym.Variable('x', shape=(2, 4, 2)) - y = sym.elemwise_add(x, x, name='add1') - y = sym.flatten(y, name="flatten") - g = graph.create(y) - g._set_json_attr("shape_attr_key", "shape") - g = g.apply('InferShape') - jgraph = json.loads(g.apply('SaveJSON').json_attr('json')) - jnodes = jgraph['nodes'] - jnode_row_ptr = jgraph['node_row_ptr'] - nindex = {n['name']: i for i, n in enumerate(jnodes)} - assert g.json_attr('shape')[jnode_row_ptr[nindex["flatten"]]] == [2, 8] - assert g.json_attr('shape')[jnode_row_ptr[nindex["add1"]]] == [2, 4, 2] - -def test_infer_shape_known_partial(): - x = sym.Variable('x') - y = sym.elemwise_add(x, x, name='add1') - y = sym.flatten(y, name="flatten1") - g = graph.create(y) - jgraph = json.loads(g.apply('SaveJSON').json_attr('json')) - shape = [[2, 4, 2], [] , []] - g._set_json_attr("shape", shape, 'list_shape') - g = g.apply("InferShape") - jnodes = jgraph['nodes'] - jnode_row_ptr = jgraph['node_row_ptr'] - nindex = {n['name']: i for i, n in enumerate(jnodes)} - assert g.json_attr('shape')[jnode_row_ptr[nindex["flatten1"]]] == [2, 8] - assert g.json_attr('shape')[jnode_row_ptr[nindex["add1"]]] == [2, 4, 2] - -def test_infer_type(): - x = sym.Variable('x', dtype=0) - y = sym.elemwise_add(x, x, name='add1') - y = sym.cast(y, dtype="float64", name="cast1") - g = graph.create(y) - g._set_json_attr("dtype_attr_key", "dtype") - g = g.apply('InferType') - jgraph = json.loads(g.apply('SaveJSON').json_attr('json')) - jnodes = jgraph['nodes'] - jnode_row_ptr = jgraph['node_row_ptr'] - nindex = {n['name']: i for i, n in enumerate(jnodes)} - assert g.json_attr('dtype')[jnode_row_ptr[nindex["cast1"]]] == 1 - assert g.json_attr('dtype')[jnode_row_ptr[nindex["add1"]]] == 0 - -def test_plan_memory(): - x = sym.Variable('x', shape=(4, 2)) - x2 = sym.elemwise_add(x, x, name='addk') - y = sym.flatten(x2, name="reshapek") - y = sym.elemwise_add(y, x2, name="add2") - y = sym.elemwise_add(y, y) - g = graph.create(y) - g._set_json_attr("shape_attr_key", "shape") - g = g.apply(["InferShape", "InferType", "PlanMemory"]) - jgraph = json.loads(g.apply('SaveJSON').json_attr('json')) - jnodes = jgraph['nodes'] - jnode_row_ptr = jgraph['node_row_ptr'] - storage_id = g.json_attr('storage_id') - nindex = {n['name']: i for i, n in enumerate(jnodes)} - assert (storage_id[jnode_row_ptr[nindex["addk"]]] != - storage_id[jnode_row_ptr[nindex["reshapek"]]]) - assert (storage_id[jnode_row_ptr[nindex["add2"]]] == - storage_id[jnode_row_ptr[nindex["reshapek"]]]) - -def test_print_graph_ir(): - x = sym.Variable("x", shape=(1, 1, 10, 20)) - y = sym.conv2d(x + 1, name="y", channels=10, kernel_size=(3,3)) - g = graph.create(y) - g = g.apply("InferShape") - ir1 = g.ir() - ir2 = g.ir(join_entry_attrs=["shape"]) - assert("y_bias" in ir1) - assert("shape=" in ir2) - -def test_gradient(): - x = sym.Variable("x") - y = sym.Variable("y") - z1 = sym.elemwise_add(x, sym.sqrt(y)) - z2 = sym.log(x) - gradient = graph_util.gradients([z1, z2], [x, y]) - assert len(gradient) == 2 - - g1 = sym.Variable("g1") - g2 = sym.Variable("g2") - grad_ys = [g1, g2] - gradient = graph_util.gradients(sym.Group([z1, z2]), - sym.Group([x, y]), grad_ys=grad_ys) - g_graph = graph.create(sym.Group(gradient)).ir() - assert len(gradient) == 2 - assert "g1" in g_graph - assert "g2" in g_graph - -if __name__ == "__main__": - test_print_graph_ir() - test_json_pass_with_attr() - test_graph_json_attr() - test_json_pass() - test_infer_shape() - test_infer_shape_known_partial() - test_infer_type() - test_plan_memory() - test_list_args() - test_gradient() diff --git a/nnvm/tests/python/unittest/test_graph_gradient.py b/nnvm/tests/python/unittest/test_graph_gradient.py deleted file mode 100644 index 4ae6053c946f..000000000000 --- a/nnvm/tests/python/unittest/test_graph_gradient.py +++ /dev/null @@ -1,152 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm.symbol as sym -from nnvm.compiler import graph_util - -def test_cnn_gradients(): - # input data - h = 128 - w = 128 - data_shape = (1000, 3, h, w) - data = sym.Variable('data', shape=data_shape, dtype=0) - - # conv2d - num_channels = 64 - kernel_size = 32 - conv_w_shape = (num_channels, 3, kernel_size, kernel_size) - conv_b_shape = (num_channels,) - conv_w = sym.Variable('conv_w', shape=conv_w_shape) - conv_b = sym.Variable('conv_b', shape=conv_b_shape) - conv1 = sym.conv2d(data=data, weight=conv_w, bias=conv_b, - channels=num_channels, kernel_size=(kernel_size, kernel_size), - name='conv1') - # relu1 - relu1 = sym.relu(data=conv1, name='relu1') - # max pooling - max_pooling1 = sym.max_pool2d(data=relu1, pool_size=(2, 2), name='max_pooling1') - # flatten - flatten1 = sym.flatten(data=max_pooling1) - # shape after flatten - flatten_out_shape = (h - kernel_size) * (w - kernel_size) * num_channels - # dense1 - dense1_hidden_units = 100 - dense1 = sym.dense(data=flatten1, name='dense1', units=dense1_hidden_units) - # relu2 - relu2 = sym.relu(data=dense1, name='relu2') - # dense2 - dense2_hidden_units = 10 - dense2 = sym.dense(data=relu2, name='dense2', units=dense2_hidden_units) - # softmax - mlp = sym.softmax(data=dense2, name='softmax') - # fake non-sparse label - label = sym.full_like(mlp, fill_value=1) - # cross entropy loss - ce_loss = sym.sum( - sym.elemwise_mul(sym.log_softmax(dense2), label), - axis=1, - keepdims=True, - name="ce_loss") - - # input variables: - # print grad_g.symbol.list_input_names() - # >> ['data', 'conv_w', 'conv_b', - # 'dense1_weight', 'dense1_bias', - # 'dense2_weight', 'dense2_bias'] - - # output gradient variables: - # print grad_g.symbol.list_output_names() - # >> ['conv1_grad_data', 'conv1_grad_weight', 'conv1_grad_bias', - # 'dense1_grad_weight', 'dense1_grad_bias', - # 'dense2_grad_weight', 'dense2_grad_bias'] - grad_g = graph_util.get_gradient_graph(ce_loss, ce_loss.list_input_variables()) - - # infer shape - in_shapes, out_shapes = graph_util.infer_shape(grad_g) - - # forward graph shape - assert in_shapes == [list(data_shape), list(conv_w_shape), list(conv_b_shape), - [dense1_hidden_units, flatten_out_shape], [dense1_hidden_units], - [dense2_hidden_units, dense1_hidden_units], [dense2_hidden_units]] - # input grads shape should be equal with input shape - assert in_shapes == out_shapes - - # output grads w.r.t input variables - grads = graph_util.gradients(ce_loss, ce_loss.list_input_variables()) - - # gradients number should be equal with grad_input number - assert len(grads) == len(ce_loss.list_input_variables()) - - # infer type - in_dtypes, out_dtypes = graph_util.infer_dtype(grad_g) - assert out_dtypes == ['float32', 'float32', 'float32', 'float32', 'float32', 'float32', 'float32'] - -def test_multi_loss_graph_gradients(): - # input data - shape1 = (1000, 100) - data1 = sym.Variable('data1', shape=(1000, 100), dtype=0) - - # fake non-sparse label - label = sym.full(fill_value=3) - - # square loss - sub1 = sym.elemwise_sub(data1, label, name="sub1") - square_loss = sym.sum(data=sub1**2, axis=1, name="square_loss") - - # fake loss1 - shape2 = (1000, ) - data2 = sym.Variable('data2', shape=shape2, dtype=0) - loss1 = sym.sqrt(data2, name="loss1") - - # fake loss2 - loss2 = sym.relu(data1, name='loss2') - - # block loss1 - total_loss = sym.elemwise_sum( - sym.block_grad(loss1), - square_loss, - num_args=2, - name="total_loss") - - # grad_g.symbol.list_output_names() - # >> ['loss1_grad_0_output', 'grad_sum_output'] - grad_g = graph_util.get_gradient_graph([total_loss, loss2], total_loss.list_input_variables()) - # infer shape - in_shapes, out_shapes = graph_util.infer_shape(grad_g) - assert out_shapes == [list(shape2), list(shape1)] - - # grad_data1 is elemwise_sum of grad_loss2, grad_square_loss - grad_data1 = grad_g.symbol[1] - assert grad_data1.list_attr()['num_args'] == '2' - - # block grad should return zero grad - grad_data2 = grad_g.symbol[0] - assert 'zeros_like' in grad_g.ir() - - # test reverse infer shape for label - assert grad_g.apply('InferShape').json_attr('shape_num_unknown_nodes') == 0 - - # infer type - in_dtypes, out_dtypes = graph_util.infer_dtype(grad_g) - assert out_dtypes == ['float32', 'float32'] - - # test reverse infer type for label - assert grad_g.apply('InferType').json_attr('dtype_num_unknown_nodes') == 0 - - -if __name__ == "__main__": - test_cnn_gradients() - test_multi_loss_graph_gradients() diff --git a/nnvm/tests/python/unittest/test_infer_shape.py b/nnvm/tests/python/unittest/test_infer_shape.py deleted file mode 100644 index c394fab562f2..000000000000 --- a/nnvm/tests/python/unittest/test_infer_shape.py +++ /dev/null @@ -1,415 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import json -import nnvm.symbol as sym -import nnvm.graph as graph - -def infer_shape(sym): - g = graph.create(sym) - g._set_json_attr("shape_attr_key", "shape") - g = g.apply("InferShape") - sdict = {} - vshape = g.json_attr("shape") - entry_ptr = g.index.entry_ptr - for i, n in enumerate(g.index.nodes): - begin, end = entry_ptr[i], entry_ptr[i + 1] - sdict[n["name"]] = vshape[begin:end] - return sdict - -# Level 1 -def test_dense(): - x = sym.Variable("x", shape=(10, 20)) - y = sym.dense(x, units=30, name="fc") - sdict = infer_shape(y) - assert(sdict["fc"][0] == [10, 30]) - assert(sdict["fc_bias"][0] == [30]) - - -def test_matmul(): - a = sym.Variable('a', shape=(10, 20)) - b = sym.Variable('b', shape=(20, 30)) - c = sym.matmul(a, b, name="matmul") - sdict = infer_shape(c) - assert(sdict["matmul"][0] == [10, 30]) - a = sym.Variable('a', shape=(20, 10)) - c = sym.matmul(a, b, name="matmul", transpose_a=True) - sdict = infer_shape(c) - assert(sdict["matmul"][0] == [10, 30]) - b = sym.Variable('b', shape=(30, 20)) - c = sym.matmul(a, b, name="matmul", transpose_a=True, transpose_b=True) - sdict = infer_shape(c) - assert(sdict["matmul"][0] == [10, 30]) - a = sym.Variable('a', shape=(10, 20)) - c = sym.matmul(a, b, name="matmul", transpose_b=True) - sdict = infer_shape(c) - assert(sdict["matmul"][0] == [10, 30]) - a = sym.Variable('a', shape=(10, 20, 30)) - b = sym.Variable('b', shape=(30, 40, 50)) - c = sym.matmul(a, b, name="matmul") - sdict = infer_shape(c) - assert(sdict["matmul"][0] == [10, 20, 40, 50]) - a = sym.Variable('a', shape=(30, 20, 10)) - b = sym.Variable('b', shape=(50, 40, 30)) - c = sym.matmul(a, b, name="matmul", transpose_a=True, transpose_b=True) - sdict = infer_shape(c) - assert(sdict["matmul"][0] == [10, 20, 40, 50]) - - -def test_concatenate(): - x1 = sym.Variable("x", shape=(10, 20)) - x2 = sym.Variable("y", shape=(10, 30)) - z = sym.concatenate(x1, x2, name="concat") - sdict = infer_shape(z) - assert(sdict["concat"][0] == [10, 50]) - z = sym.concatenate(x1, x1, axis=0, name="concat") - sdict = infer_shape(z) - assert(sdict["concat"][0] == [20, 20]) - - -def test_expand_dims(): - x = sym.Variable("x", shape=(10, 20)) - y = sym.expand_dims(x, axis=1, name="y") - sdict = infer_shape(y) - assert(sdict["y"][0] == [10, 1, 20]) - y = sym.expand_dims(x, axis=-1, name="y", num_newaxis=2) - sdict = infer_shape(y) - assert(sdict["y"][0] == [10, 20, 1, 1]) - - -def test_split(): - x1 = sym.Variable("x", shape=(10, 20)) - z = sym.split(x1, indices_or_sections=[11], name="y") - sdict = infer_shape(z) - assert(sdict["y"][0] == [10, 11]) - assert(sdict["y"][1] == [10, 9]) - z = sym.split(x1, indices_or_sections=2, name="y") - sdict = infer_shape(z) - assert(sdict["y"][0] == [10, 10]) - assert(sdict["y"][1] == [10, 10]) - z = sym.split(x1, indices_or_sections=[6], axis=-1, name="y") - sdict = infer_shape(z) - assert(sdict["y"][0] == [10, 6]) - assert(sdict["y"][1] == [10, 14]) - - -def test_batchnorm(): - x = sym.Variable("x", shape=(10, 20)) - y = sym.batch_norm(1 / x, name="bn") - sdict = infer_shape(y) - assert(sdict["bn_gamma"][0] == [20]) - - x = sym.Variable("x", shape=(10, 20, 30, 40)) - y = sym.batch_norm(data=x, axis=0, epsilon=2e-5, name='bn') - sdict = infer_shape(y) - assert(sdict['bn_moving_var'][0] == [10]) - - y = sym.batch_norm(data=x, axis=1, epsilon=2e-5, name='bn') - sdict = infer_shape(y) - assert(sdict['bn_gamma'][0] == [20]) - - y = sym.batch_norm(data=x, axis=2, epsilon=2e-5, name='bn') - sdict = infer_shape(y) - assert(sdict['bn_beta'][0] == [30]) - - y = sym.batch_norm(data=x, axis=3, epsilon=2e-5, name='bn') - sdict = infer_shape(y) - assert(sdict['bn_moving_mean'][0] == [40]) - -def test_flatten(): - x = sym.Variable("x", shape=(10, 20, 10)) - y = sym.flatten(x) * 2 - y = sym.exp(y, name="y") - sdict = infer_shape(y) - assert(sdict["y"][0] == [10, 200]) - -def test_squeeze(): - x = sym.Variable("x", shape=(1, 1, 1, 10)) - y = sym.squeeze(x, axis=(1,2), name='squeeze') - sdict = infer_shape(y) - assert(sdict['squeeze'][0] == [1, 10]) - - x = sym.Variable("x", shape=(1, 3, 1)) - y = sym.squeeze(x, name='squeeze') - sdict = infer_shape(y) - assert(sdict['squeeze'][0] == [3]) - - y = sym.squeeze(x, axis=(0), name='squeeze') - sdict = infer_shape(y) - assert(sdict['squeeze'][0] == [3, 1]) - - y = sym.squeeze(x, axis=(0,2), name='squeeze') - sdict = infer_shape(y) - assert(sdict['squeeze'][0] == [3]) - -# Level 2 -def test_conv2d(): - def check(in_shape, out_shape, **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.conv2d(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 10, 10, 12), - (4, 12, 10, 12), - channels=12, - kernel_size=(3,3), - padding=(1,1)) - check((4, 10, 12, 4), - (4, 8, 8, 5), - channels=5, - kernel_size=(3, 5), - layout="NHWC") - check((4, 10, 12, 4), - (4, 6, 8, 5), - channels=5, - dilation=(2, 2), - kernel_size=(3, 3), - layout="NHWC") - check((4, 10, 12, 4), - (4, 5, 6, 5), - channels=5, - strides=(2, 2), - kernel_size=(3, 3), - padding=(1, 1), - layout="NHWC") - - -def test_conv2d_packed(): - def check(in_shape, - out_shape, - kernel_shape, - **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.conv2d(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - assert(tuple(sdict["y_weight"][0]) == tuple(kernel_shape)) - - check((4, 10, 10, 12, 1, 8), - (4, 10, 10, 2, 1, 8), - (2, 12, 3, 3, 8, 8), - channels=8 * 2, - kernel_size=(3,3), - padding=(1,1), - layout="NHWC1n8c", - kernel_layout="OIHW8o8i") - - -def test_conv2d_transpose(): - def check(in_shape, out_shape, **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.conv2d_transpose(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 10, 10, 12), - (4, 15, 10, 12), - channels=15, - kernel_size=(3,3), - padding=(1,1)) - check((4, 10, 10, 12), - (4, 15, 10, 14), - channels=15, - kernel_size=(3, 5), - padding=(1, 1)) - check((4, 10, 10, 12), - (4, 15, 11, 15), - channels=15, - kernel_size=(3, 5), - padding=(1, 1), - output_padding=(1, 1)) - check((4, 10, 10, 12), - (4, 15, 15, 11), - channels=11, - kernel_size=(5, 5), - output_padding=(1, 1), - layout="NHWC") - - -def test_max_pool2d(): - def check(in_shape, out_shape, **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.max_pool2d(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 10, 12, 12), - (4, 10, 12, 12), - pool_size=(3,3), - padding=(1,1)) - check((4, 10, 12, 12), - (4, 10, 6, 6), - pool_size=(3, 3), - padding=(1, 1), - strides=(2, 2)) - check((4, 10, 12, 12), - (4, 10, 7, 7), - pool_size=(3, 3), - padding=(1, 1), - strides=(2, 2), - ceil_mode=True) - check((4, 12, 14, 10), - (4, 6, 7, 10), - pool_size=(3, 3), - padding=(1, 1), - strides=(2, 2), - layout="NHWC") - - -def test_global_pool2d(): - def check(in_shape, out_shape, **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.global_max_pool2d(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 10, 12, 12), - (4, 10, 1, 1)) - check((4, 10, 12, 12), - (4, 1, 1, 12), - layout="NHWC") - - -# Level 3 -def test_reshape(): - def check(in_shape, tshape, out_shape): - x = sym.Variable("x", shape=in_shape) - y = sym.reshape(x, shape=tshape, name="y") - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4,), (2, 2), (2, 2)) - check((2, 3, 4), (4, 0, 2), (4, 3, 2)) - check((2, 3, 4), (2, 0, 0), (2, 3, 4)) - check((2, 3, 4), (6, 1, -1), (6, 1, 4)) - check((2, 3, 4), (3, -1, 8), (3, 1, 8)) - check((2, 3, 4), (-1,), (24,)) - check((2, 3, 4), (-2,), (2, 3, 4)) - check((2, 3, 4), (2, -2), (2, 3, 4)) - check((2, 3, 4), (-2, 1, 1), (2, 3, 4, 1, 1)) - check((2, 3, 4), (-3, 4), (6, 4)) - check((2, 3, 4, 5), (-3, -3), (6, 20)) - check((2, 3, 4), (0, -3), (2, 12)) - check((2, 3, 4), (-3, -2), (6, 4)) - check((2, 3, 4), (-4, 1, 2, -2), (1, 2, 3, 4)) - check((2, 3, 4), (2, -4, -1, 3, -2), (2, 1, 3, 4)) - - -def test_prelu(): - def check(in_shape, axis, out_shape): - x = sym.Variable("x", shape=in_shape) - w = sym.Variable("w") - y = sym.prelu(x, w, axis=axis, name="y") - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - check((1, 3, 2, 2), 1, (1, 3, 2, 2)) - check((1, 2, 2, 3), 3, (1, 2, 2, 3)) - - -# Level 4 -def test_transpose(): - def check(in_shape, out_shape, **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.transpose(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 1), (1, 4)) - check((0, 1, 2, 3), (1, 2, 3, 0), axes=(1, 2, 3, 0)) - - -def test_broadcast_to(): - def check(in_shape, tshape, out_shape): - x = sym.Variable("x", shape=in_shape) - y = sym.broadcast_to(x, shape=tshape, name="y") - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 1), (0, 4), (4, 4)) - check((4, 1, 5), (0, 4, 5), (4, 4, 5)) - - -def test_broadcast_binary(): - def check(lhs_shape, rhs_shape, out_shape): - x = sym.Variable("x", shape=lhs_shape) - y = sym.Variable("y", shape=rhs_shape) - z = sym.broadcast_add(x, y, name="y") - sdict = infer_shape(z) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 1), (4), (4, 4)) - check((5, 1, 1), (1, 4, 4), (5, 4, 4)) - check((6, 1, 4), (5, 4), (6, 5, 4)) - - -def test_reduce(): - def check(in_shape, out_shape, **kwargs): - x = sym.Variable("x", shape=in_shape) - y = sym.sum(x, name="y", **kwargs) - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4, 5), (4,), axis=1) - check((4, 5), (4, 1), axis=1, keepdims=True) - check((4, 5), (1, 5), axis=0, keepdims=True) - check((4, 5), (1, 1), axis=(), keepdims=True) - check((4, 5), (1,), axis=()) - check((4, 5, 10), (5,), axis=(0, 2)) - check((4, 5, 10), (1, 5, 1), axis=(0, 2), keepdims=True) - - -def test_gather_nd(): - def check(data_shape, indices_shape, out_shape): - x = sym.Variable("x", shape=data_shape) - indices = sym.Variable("indices", shape=indices_shape) - y = sym.gather_nd(x, indices, name="y") - sdict = infer_shape(y) - assert(tuple(sdict["y"][0]) == tuple(out_shape)) - - check((4,), (1, 1), (1,)) - check((4,), (1, 3), (3,)) - check((2, 3), (1, 1), (1, 3)) - check((2, 3), (2, 1), (1,)) - check((2, 3), (2, 5, 6), (5, 6)) - check((2, 3, 4), (1, 1), (1, 3, 4)) - check((2, 3, 4), (2, 1), (1, 4)) - check((2, 3, 4), (2, 5), (5, 4)) - check((2, 3, 4), (2, 5, 6), (5, 6, 4)) - check((2, 3, 4, 5), (2, 6, 7), (6, 7, 4, 5)) - - -if __name__ == "__main__": - test_conv2d_packed() - test_expand_dims() - test_dense() - test_matmul() - test_concatenate() - test_split() - test_batchnorm() - test_flatten() - test_conv2d() - test_conv2d_transpose() - test_max_pool2d() - test_global_pool2d() - test_reshape() - test_broadcast_to() - test_broadcast_binary() - test_reduce() - test_transpose() - test_prelu() - test_squeeze() - test_gather_nd() diff --git a/nnvm/tests/python/unittest/test_pass_saveload_json.py b/nnvm/tests/python/unittest/test_pass_saveload_json.py deleted file mode 100644 index a8b067c8fe24..000000000000 --- a/nnvm/tests/python/unittest/test_pass_saveload_json.py +++ /dev/null @@ -1,33 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm -from tvm.contrib import util - - -def test_variable_node_parsed(): - sym = nnvm.sym.Variable('data') - tempdir = util.tempdir() - json_filename = 'test_nnvm_symbol.json' - with open(tempdir.relpath(json_filename), 'w') as fo: - fo.write(nnvm.graph.create(sym).json()) - sym_str = open(tempdir.relpath(json_filename), 'r').read() - sym = nnvm.graph.load_json(sym_str).symbol() - sym = nnvm.sym.relu(sym) - - -if __name__ == '__main__': - test_variable_node_parsed() diff --git a/nnvm/tests/python/unittest/test_symbol.py b/nnvm/tests/python/unittest/test_symbol.py deleted file mode 100644 index a54dec170aae..000000000000 --- a/nnvm/tests/python/unittest/test_symbol.py +++ /dev/null @@ -1,77 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm.symbol as sym -from nnvm import NNVMError - -def test_dense(): - x = sym.Variable('x') - y = sym.dense(x, units=30, name="fc") - assert y.list_input_names() == ["x", "fc_weight", "fc_bias"] - -def test_batch_norm(): - x = sym.Variable('x') - y = sym.dense(x, units=30, name="fc") - z = sym.batch_norm(x, name='bn') - assert z.list_input_names('aux_state') == ['bn_moving_mean', 'bn_moving_var'] - assert z.list_input_names('read_only') == ['x', 'bn_gamma', 'bn_beta'] - -def test_compose(): - x = sym.Variable('x') - z = sym.Variable('z') - y = sym.exp(sym.elemwise_add(x, x, name='add', gpu=2), - name='exp', gpu=1, attr={"kk": "1"}) - - assert y.list_input_names() == ['x'] - assert y.list_output_names() == ["exp_output"] - assert y.list_attr()['gpu'] == '1' - z = y.get_internals() - assert z['add_output'].list_output_names() == ['add_output'] - assert y.list_attr(recursive=True)['add$gpu'] == '2' - -def test_default_input(): - x = sym.Variable('x') - y = sym.dense(data=x, units=30, name='fc', use_bias=False) - assert y.list_input_names() == ['x', 'fc_weight'] - tname = [z.list_output_names()[0] for z in y.list_input_variables()] - assert tname == y.list_input_names() - try: - z = sym.elemwise_add(x) - assert False - except NNVMError: - pass - -def test_copy(): - x = sym.Variable('x') - z = sym.Variable('z') - y = sym.exp(sym.elemwise_add(x, x, name='add', gpu=2), - name='exp', gpu=1, attr={"kk": "1"}) - assert y.__copy__().debug_str() == y.debug_str() - - -def test_op_name(): - x = sym.Variable('x') - y = sym.exp(x) - op_name = y.attr("op_name") - op_func = sym.__dict__[op_name] - z = op_func(x) - -if __name__ == "__main__": - test_op_name() - test_copy() - test_default_input() - test_compose() - test_batch_norm() diff --git a/nnvm/tests/python/unittest/test_top_level1.py b/nnvm/tests/python/unittest/test_top_level1.py deleted file mode 100644 index 2d646dc16ae4..000000000000 --- a/nnvm/tests/python/unittest/test_top_level1.py +++ /dev/null @@ -1,66 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm.symbol as sym -import nnvm.graph as graph - -def test_dense(): - x = sym.Variable('x') - x1 = sym.dense(x, units=3, name="dense") - x2 = sym.flatten(x1) - x3 = sym.softmax(x2) - assert x3.list_input_names() == ['x', 'dense_weight', 'dense_bias'] - - -def test_concatenate_split(): - x = sym.Variable('x') - y = sym.Variable('y') - y = sym.concatenate(x, y) - assert y.list_input_names() == ['x', 'y'] - z = sym.split(y, indices_or_sections=10) - assert len(z.list_output_names()) == 10 - z = sym.split(y, indices_or_sections=[10, 20]) - assert len(z.list_output_names()) == 3 - -def test_expand_dims(): - x = sym.Variable('x') - y = sym.expand_dims(x, axis=1, num_newaxis=2) - assert y.list_input_names() == ['x'] - - -def test_unary(): - x = sym.Variable('x') - x = sym.exp(x) - x = sym.log(x) - x = sym.sigmoid(x) - x = sym.tanh(x) - x = sym.relu(x) - assert x.list_input_names() == ['x'] - - -def test_batchnorm(): - x = sym.Variable('x') - x = sym.batch_norm(x, name="bn") - assert x.list_input_names() == [ - "x", "bn_gamma", "bn_beta", "bn_moving_mean", "bn_moving_var"] - - -if __name__ == "__main__": - test_concatenate_split() - test_expand_dims() - test_dense() - test_unary() - test_batchnorm() diff --git a/nnvm/tests/python/unittest/test_top_level2.py b/nnvm/tests/python/unittest/test_top_level2.py deleted file mode 100644 index b327356b5cc0..000000000000 --- a/nnvm/tests/python/unittest/test_top_level2.py +++ /dev/null @@ -1,35 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm.symbol as sym - -def test_conv2d(): - x = sym.Variable('x') - y = sym.conv2d(x, channels=3, kernel_size=(3, 3), - name="y", use_bias=False) - assert y.list_input_names() == ["x", "y_weight"] - - -def test_max_pool2d(): - x = sym.Variable('x') - y = sym.max_pool2d(x, pool_size=(3, 3), name="y") - y = sym.global_max_pool2d(y) - assert y.list_input_names() == ["x"] - - -if __name__ == "__main__": - test_conv2d() - test_max_pool2d() diff --git a/nnvm/tests/python/unittest/test_top_level3.py b/nnvm/tests/python/unittest/test_top_level3.py deleted file mode 100644 index f19e1fd4376e..000000000000 --- a/nnvm/tests/python/unittest/test_top_level3.py +++ /dev/null @@ -1,46 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm.symbol as sym - -def test_reshape(): - x = sym.Variable("x") - y = sym.reshape(x, shape=(10, 20), name="y") - assert(y.list_input_names() == ["x"]) - - -def test_scalar_op(): - x = sym.Variable("x") - y = (1 / (x * 2) - 1) ** 2 - assert(y.list_input_names() == ["x"]) - -def test_leaky_relu(): - x = sym.Variable("x") - y = sym.leaky_relu(x, alpha=0.1) - assert(y.list_input_names() == ["x"]) - -def test_prelu(): - x = sym.Variable("x") - w = sym.Variable("w") - y = sym.prelu(x, w) - assert(y.list_input_names()[0] == 'x') - assert(y.list_input_names()[1] == 'w') - -if __name__ == "__main__": - test_scalar_op() - test_reshape() - test_leaky_relu() - test_prelu() diff --git a/nnvm/tests/python/unittest/test_top_level4.py b/nnvm/tests/python/unittest/test_top_level4.py deleted file mode 100644 index ad0829b59283..000000000000 --- a/nnvm/tests/python/unittest/test_top_level4.py +++ /dev/null @@ -1,36 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import nnvm.symbol as sym - -def test_binary_broadcast(): - x = sym.Variable('x') - y = sym.Variable('y') - z = x + y - z = x * y - z = x - y - z = x / y - - -def test_broadcast_to(): - x = sym.Variable('x') - y = sym.broadcast_to(x, shape=(3, 3)) - assert y.list_input_names() == ["x"] - - -if __name__ == "__main__": - test_binary_broadcast() - test_broadcast_to() diff --git a/nnvm/tutorials/.gitignore b/nnvm/tutorials/.gitignore deleted file mode 100644 index 5f8a03c46b89..000000000000 --- a/nnvm/tutorials/.gitignore +++ /dev/null @@ -1,11 +0,0 @@ -*.pb -*.mlmodel -*.ttf -*.txt -*synset*txt -*.cfg -ssd_model -*.names -*.jpg -*.pbtxt -*.weights diff --git a/nnvm/tutorials/README.txt b/nnvm/tutorials/README.txt deleted file mode 100644 index 334409cd8a28..000000000000 --- a/nnvm/tutorials/README.txt +++ /dev/null @@ -1,4 +0,0 @@ -.. _tutorial-nnvm: - -NNVM Compiler Tutorials ------------------------ diff --git a/nnvm/tutorials/deploy_model_on_mali_gpu.py b/nnvm/tutorials/deploy_model_on_mali_gpu.py deleted file mode 100644 index d90b0955048c..000000000000 --- a/nnvm/tutorials/deploy_model_on_mali_gpu.py +++ /dev/null @@ -1,229 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -.. _tutorial-deploy-model-on-mali-gpu: - -Deploy the Pretrained Model on ARM Mali GPU -=========================================== -**Author**: `Lianmin Zheng `_, `Ziheng Jiang `_ - -This is an example of using NNVM to compile a ResNet model and -deploy it on Firefly-RK3399 with ARM Mali GPU. We will use the -Mali-T860 MP4 GPU on this board to accelerate the inference. -""" - -import tvm -import nnvm.compiler -import nnvm.testing -from tvm import rpc -from tvm.contrib import util, graph_runtime as runtime -from tvm.contrib.download import download_testdata - -###################################################################### -# Build TVM Runtime on Device -# --------------------------- -# -# The first step is to build tvm runtime on the remote device. -# -# .. note:: -# -# All instructions in both this section and next section should be -# executed on the target device, e.g. Rk3399. And we assume it -# has Linux running. -# -# Since we do compilation on local machine, the remote device is only used -# for running the generated code. We only need to build tvm runtime on -# the remote device. Make sure you have opencl driver in your board. -# You can refer to `tutorial `_ -# to setup OS and opencl driver for rk3399. -# -# .. code-block:: bash -# -# git clone --recursive https://github.com/apache/incubator-tvm tvm -# cd tvm -# cp cmake/config.cmake . -# sed -i "s/USE_OPENCL OFF/USE_OPENCL ON/" config.cmake -# make runtime -j4 -# -# After building runtime successfully, we need to set environment varibles -# in :code:`~/.bashrc` file. We can edit :code:`~/.bashrc` -# using :code:`vi ~/.bashrc` and add the line below (Assuming your TVM -# directory is in :code:`~/tvm`): -# -# .. code-block:: bash -# -# export PYTHONPATH=$PYTHONPATH:~/tvm/python -# -# To update the environment variables, execute :code:`source ~/.bashrc`. - -###################################################################### -# Set Up RPC Server on Device -# --------------------------- -# To start an RPC server, run the following command on your remote device -# (Which is RK3399 in our example). -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090 -# -# If you see the line below, it means the RPC server started -# successfully on your device. -# -# .. code-block:: bash -# -# INFO:root:RPCServer: bind to 0.0.0.0:9090 -# - -###################################################################### -# Prepare the Pre-trained Model -# ----------------------------- -# Back to the host machine, which should have a full TVM installed (with LLVM). -# -# We will use pre-trained model from -# `MXNet Gluon model zoo `_. -# You can found more details about this part at tutorial :ref:`tutorial-from-mxnet`. - -from mxnet.gluon.model_zoo.vision import get_model -from PIL import Image -import numpy as np - -# only one line to get the model -block = get_model('resnet18_v1', pretrained=True) - -###################################################################### -# In order to test our model, here we download an image of cat and -# transform its format. -img_name = 'cat.png' -img_path = download_testdata('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', - img_name, module='data') -image = Image.open(img_path).resize((224, 224)) - -def transform_image(image): - image = np.array(image) - np.array([123., 117., 104.]) - image /= np.array([58.395, 57.12, 57.375]) - image = image.transpose((2, 0, 1)) - image = image[np.newaxis, :] - return image - -x = transform_image(image) - -###################################################################### -# synset is used to transform the label from number of ImageNet class to -# the word human can understand. -synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', - '4d0b62f3d01426887599d4f7ede23ee5/raw/', - '596b27d23537e5a1b5751d2b0481ef172f58b539/', - 'imagenet1000_clsid_to_human.txt']) - -synset_name = 'imagenet1000_clsid_to_human.txt' -synset_path = download_testdata(synset_url, synset_name, module='data') -with open(synset_path) as f: - synset = eval(f.read()) - -###################################################################### -# Now we would like to port the Gluon model to a portable computational graph. -# It's as easy as several lines. - -# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon -net, params = nnvm.frontend.from_mxnet(block) -# we want a probability so add a softmax operator -net = nnvm.sym.softmax(net) - -###################################################################### -# Here are some basic data workload configurations. -batch_size = 1 -num_classes = 1000 -image_shape = (3, 224, 224) -data_shape = (batch_size,) + image_shape - -###################################################################### -# Compile The Graph -# ----------------- -# To compile the graph, we call the :any:`nnvm.compiler.build` function -# with the graph configuration and parameters. As we use OpenCL for -# GPU computing, the tvm will generate both OpenCL kernel code and ARM -# CPU host code. The CPU host code is used for calling OpenCL kernels. -# In order to generate correct CPU code, we need to specify the target -# triplet for host ARM device by setting the parameter :code:`target_host`. - -###################################################################### -# If we run the example on our x86 server for demonstration, we can simply -# set it as :code:`llvm`. If running it on the RK3399, we need to -# specify its instruction set. Set :code:`local_demo` to False if you -# want to run this tutorial with a real device. - -local_demo = True - -if local_demo: - target_host = "llvm" - target = "llvm" -else: - # Here is the setting for my rk3399 board - # If you don't use rk3399, you can query your target triple by - # execute `gcc -v` on your board. - target_host = "llvm -target=aarch64-linux-gnu" - - # set target as `tvm.target.mali` instead of 'opencl' to enable - # optimization for mali - target = tvm.target.mali() - -with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(net, target=target, - shape={"data": data_shape}, params=params, target_host=target_host) - -# After `nnvm.compiler.build`, you will get three return values: graph, -# library and the new parameter, since we do some optimization that will -# change the parameters but keep the result of model as the same. - -# Save the library at local temporary directory. -tmp = util.tempdir() -lib_fname = tmp.relpath('net.tar') -lib.export_library(lib_fname) - -###################################################################### -# Deploy the Model Remotely by RPC -# -------------------------------- -# With RPC, you can deploy the model remotely from your host machine -# to the remote device. - -# obtain an RPC session from remote device. -if local_demo: - remote = rpc.LocalSession() -else: - # The following is my environment, change this to the IP address of your target device - host = '10.77.1.145' - port = 9090 - remote = rpc.connect(host, port) - -# upload the library to remote device and load it -remote.upload(lib_fname) -rlib = remote.load_module('net.tar') - -# create the remote runtime module -ctx = remote.cl(0) if not local_demo else remote.cpu(0) -module = runtime.create(graph, rlib, ctx) -# set parameter (upload params to the remote device. This may take a while) -module.set_input(**params) -# set input data -module.set_input('data', tvm.nd.array(x.astype('float32'))) -# run -module.run() -# get output -out = module.get_output(0) -# get top1 result -top1 = np.argmax(out.asnumpy()) -print('TVM prediction top-1: {}'.format(synset[top1])) diff --git a/nnvm/tutorials/deploy_model_on_rasp.py b/nnvm/tutorials/deploy_model_on_rasp.py deleted file mode 100644 index 576b517f3aa5..000000000000 --- a/nnvm/tutorials/deploy_model_on_rasp.py +++ /dev/null @@ -1,220 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -.. _tutorial-deploy-model-on-rasp: - -Deploy the Pretrained Model on Raspberry Pi -=========================================== -**Author**: `Ziheng Jiang `_ - -This is an example of using NNVM to compile a ResNet model and deploy -it on Raspberry Pi. -""" - -import tvm -import nnvm.compiler -import nnvm.testing -from tvm import rpc -from tvm.contrib import util, graph_runtime as runtime -from tvm.contrib.download import download_testdata - -###################################################################### -# .. _build-tvm-runtime-on-device: -# -# Build TVM Runtime on Device -# --------------------------- -# -# The first step is to build tvm runtime on the remote device. -# -# .. note:: -# -# All instructions in both this section and next section should be -# executed on the target device, e.g. Raspberry Pi. And we assume it -# has Linux running. -# -# Since we do compilation on local machine, the remote device is only used -# for running the generated code. We only need to build tvm runtime on -# the remote device. -# -# .. code-block:: bash -# -# git clone --recursive https://github.com/apache/incubator-tvm tvm -# cd tvm -# make runtime -j4 -# -# After building runtime successfully, we need to set environment varibles -# in :code:`~/.bashrc` file. We can edit :code:`~/.bashrc` -# using :code:`vi ~/.bashrc` and add the line below (Assuming your TVM -# directory is in :code:`~/tvm`): -# -# .. code-block:: bash -# -# export PYTHONPATH=$PYTHONPATH:~/tvm/python -# -# To update the environment variables, execute :code:`source ~/.bashrc`. - -###################################################################### -# Set Up RPC Server on Device -# --------------------------- -# To start an RPC server, run the following command on your remote device -# (Which is Raspberry Pi in our example). -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090 -# -# If you see the line below, it means the RPC server started -# successfully on your device. -# -# .. code-block:: bash -# -# INFO:root:RPCServer: bind to 0.0.0.0:9090 -# - -###################################################################### -# Prepare the Pre-trained Model -# ----------------------------- -# Back to the host machine, which should have a full TVM installed (with LLVM). -# -# We will use pre-trained model from -# `MXNet Gluon model zoo `_. -# You can found more details about this part at tutorial :ref:`tutorial-from-mxnet`. - -from mxnet.gluon.model_zoo.vision import get_model -from PIL import Image -import numpy as np - -# one line to get the model -block = get_model('resnet18_v1', pretrained=True) - -###################################################################### -# In order to test our model, here we download an image of cat and -# transform its format. -img_name = 'cat.png' -img_path = download_testdata('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', - img_name, module='data') -image = Image.open(img_path).resize((224, 224)) - -def transform_image(image): - image = np.array(image) - np.array([123., 117., 104.]) - image /= np.array([58.395, 57.12, 57.375]) - image = image.transpose((2, 0, 1)) - image = image[np.newaxis, :] - return image - -x = transform_image(image) - -###################################################################### -# synset is used to transform the label from number of ImageNet class to -# the word human can understand. -synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', - '4d0b62f3d01426887599d4f7ede23ee5/raw/', - '596b27d23537e5a1b5751d2b0481ef172f58b539/', - 'imagenet1000_clsid_to_human.txt']) -synset_name = 'imagenet1000_clsid_to_human.txt' -synset_path = download_testdata(synset_url, synset_name, module='data') -with open(synset_path) as f: - synset = eval(f.read()) - -###################################################################### -# Now we would like to port the Gluon model to a portable computational graph. -# It's as easy as several lines. - -# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon -net, params = nnvm.frontend.from_mxnet(block) -# we want a probability so add a softmax operator -net = nnvm.sym.softmax(net) - -###################################################################### -# Here are some basic data workload configurations. -batch_size = 1 -num_classes = 1000 -image_shape = (3, 224, 224) -data_shape = (batch_size,) + image_shape - -###################################################################### -# Compile The Graph -# ----------------- -# To compile the graph, we call the :any:`nnvm.compiler.build` function -# with the graph configuration and parameters. However, You cannot to -# deploy a x86 program on a device with ARM instruction set. It means -# NNVM also needs to know the compilation option of target device, -# apart from arguments :code:`net` and :code:`params` to specify the -# deep learning workload. Actually, the option matters, different option -# will lead to very different performance. - -###################################################################### -# If we run the example on our x86 server for demonstration, we can simply -# set it as :code:`llvm`. If running it on the Raspberry Pi, we need to -# specify its instruction set. Set :code:`local_demo` to False if you want -# to run this tutorial with a real device. - -local_demo = True - -if local_demo: - target = tvm.target.create('llvm') -else: - target = tvm.target.arm_cpu('rasp3b') - # The above line is a simple form of - # target = tvm.target.create('llvm -device=arm_cpu -model=bcm2837 -target=armv7l-linux-gnueabihf -mattr=+neon') - -with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build( - net, target, shape={"data": data_shape}, params=params) - -# After `nnvm.compiler.build`, you will get three return values: graph, -# library and the new parameter, since we do some optimization that will -# change the parameters but keep the result of model as the same. - -# Save the library at local temporary directory. -tmp = util.tempdir() -lib_fname = tmp.relpath('net.tar') -lib.export_library(lib_fname) - -###################################################################### -# Deploy the Model Remotely by RPC -# -------------------------------- -# With RPC, you can deploy the model remotely from your host machine -# to the remote device. - -# obtain an RPC session from remote device. -if local_demo: - remote = rpc.LocalSession() -else: - # The following is my environment, change this to the IP address of your target device - host = '10.77.1.162' - port = 9090 - remote = rpc.connect(host, port) - -# upload the library to remote device and load it -remote.upload(lib_fname) -rlib = remote.load_module('net.tar') - -# create the remote runtime module -ctx = remote.cpu(0) -module = runtime.create(graph, rlib, ctx) -# set parameter (upload params to the remote device. This may take a while) -module.set_input(**params) -# set input data -module.set_input('data', tvm.nd.array(x.astype('float32'))) -# run -module.run() -# get output -out = module.get_output(0) -# get top1 result -top1 = np.argmax(out.asnumpy()) -print('TVM prediction top-1: {}'.format(synset[top1])) diff --git a/nnvm/tutorials/deploy_ssd_mxnet.py b/nnvm/tutorials/deploy_ssd_mxnet.py deleted file mode 100644 index c88c61984293..000000000000 --- a/nnvm/tutorials/deploy_ssd_mxnet.py +++ /dev/null @@ -1,180 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Deploy Single Shot Multibox Detector(SSD) model -=============================================== -**Author**: `Yao Wang `_, \ -`Leyuan Wang `_ - -This article is an introductory tutorial to deploy SSD models with TVM. -We will use mxnet pretrained SSD model with Resnet50 as body network and -convert it to NNVM graph; -""" -import os -import zipfile -import tvm -import mxnet as mx -import cv2 -import numpy as np - -from nnvm import compiler -from nnvm.frontend import from_mxnet -from tvm import relay -from tvm.contrib.download import download_testdata -from tvm.contrib import graph_runtime -from mxnet.model import load_checkpoint - - -###################################################################### -# Preliminary and Set parameters -# ------------------------------ -# We should build TVM with sort support, in TVM root directory -# -# .. code-block:: bash -# -# echo "set(USE_SORT ON)" > config.mk -# make -j8 -# - -model_name = "ssd_resnet50_512" -model_file = "%s.zip" % model_name -test_image = "dog.jpg" -dshape = (1, 3, 512, 512) -dtype = "float32" - -# Target settings -# Use these commented settings to build for cuda. -#target = 'cuda' -#ctx = tvm.gpu(0) -# Use these commented settings to build for opencl. -#target = 'opencl' -#ctx = tvm.opencl(0) -target = "llvm" -ctx = tvm.cpu() - -###################################################################### -# Download MXNet SSD pre-trained model and demo image -# --------------------------------------------------- -# Pre-trained model available at -# https://github.com/apache/incubator-\mxnet/tree/master/example/ssd - -model_url = "https://github.com/zhreshold/mxnet-ssd/releases/download/v0.6/" \ - "resnet50_ssd_512_voc0712_trainval.zip" -image_url = "https://cloud.githubusercontent.com/assets/3307514/20012567/" \ - "cbb60336-a27d-11e6-93ff-cbc3f09f5c9e.jpg" -inference_symbol_folder = \ - "c1904e900848df4548ce5dfb18c719c7-a28c4856c827fe766aa3da0e35bad41d44f0fb26" -inference_symbol_url = "https://gist.github.com/kevinthesun/c1904e900848df4548ce5dfb18c719c7/" \ - "archive/a28c4856c827fe766aa3da0e35bad41d44f0fb26.zip" - -model_file_path = download_testdata(model_url, model_file, module=["mxnet", "ssd_model"]) -inference_symbol_path = download_testdata(inference_symbol_url, "inference_model.zip", - module=["mxnet", "ssd_model"]) -test_image_path = download_testdata(image_url, test_image, module="data") -model_dir = os.path.dirname(model_file_path) - -zip_ref = zipfile.ZipFile(model_file_path, 'r') -zip_ref.extractall(model_dir) -zip_ref.close() -zip_ref = zipfile.ZipFile(inference_symbol_path) -zip_ref.extractall(model_dir) -zip_ref.close() - -###################################################################### -# Convert and compile model with NNVM or Relay for CPU. - -sym = mx.sym.load("%s/%s/ssd_resnet50_inference.json" % (model_dir, inference_symbol_folder)) -_, arg_params, aux_params = load_checkpoint("%s/%s" % (model_dir, model_name), 0) - -import argparse -parser = argparse.ArgumentParser() -parser.add_argument( - "-f", "--frontend", - help="Frontend for compilation, nnvm or relay", - type=str, - default="nnvm") -args = parser.parse_args() -if args.frontend == "relay": - net, params = relay.frontend.from_mxnet(sym, {"data": dshape}, arg_params=arg_params, \ - aux_params=aux_params) - with relay.build_config(opt_level=3): - graph, lib, params = relay.build(net, target, params=params) -elif args.frontend == "nnvm": - net, params = from_mxnet(sym, arg_params, aux_params) - with compiler.build_config(opt_level=3): - graph, lib, params = compiler.build( - net, target, {"data": dshape}, params=params) -else: - parser.print_help() - parser.exit() - -###################################################################### -# Create TVM runtime and do inference - -# Preprocess image -image = cv2.imread(test_image_path) -img_data = cv2.resize(image, (dshape[2], dshape[3])) -img_data = img_data[:, :, (2, 1, 0)].astype(np.float32) -img_data -= np.array([123, 117, 104]) -img_data = np.transpose(np.array(img_data), (2, 0, 1)) -img_data = np.expand_dims(img_data, axis=0) -# Build TVM runtime -m = graph_runtime.create(graph, lib, ctx) -m.set_input('data', tvm.nd.array(img_data.astype(dtype))) -m.set_input(**params) -# execute -m.run() -# get outputs -tvm_output = m.get_output(0) - - -###################################################################### -# Display result - -class_names = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", - "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", - "sheep", "sofa", "train", "tvmonitor"] -def display(img, out, thresh=0.5): - import random - import matplotlib as mpl - import matplotlib.pyplot as plt - mpl.rcParams['figure.figsize'] = (10, 10) - pens = dict() - plt.clf() - plt.imshow(img) - for det in out: - cid = int(det[0]) - if cid < 0: - continue - score = det[1] - if score < thresh: - continue - if cid not in pens: - pens[cid] = (random.random(), random.random(), random.random()) - scales = [img.shape[1], img.shape[0]] * 2 - xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)] - rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, - edgecolor=pens[cid], linewidth=3) - plt.gca().add_patch(rect) - text = class_names[cid] - plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score), - bbox=dict(facecolor=pens[cid], alpha=0.5), - fontsize=12, color='white') - plt.show() - -image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) -display(image, tvm_output.asnumpy()[0], thresh=0.45) diff --git a/nnvm/tutorials/from_coreml.py b/nnvm/tutorials/from_coreml.py deleted file mode 100644 index 3eaced18728e..000000000000 --- a/nnvm/tutorials/from_coreml.py +++ /dev/null @@ -1,106 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Compile CoreML Models -===================== -**Author**: `Joshua Z. Zhang `_ - -This article is an introductory tutorial to deploy CoreML models with NNVM. - -For us to begin with, coremltools module is required to be installed. - -A quick solution is to install via pip - -.. code-block:: bash - - pip install -U coremltools --user - -or please refer to official site -https://github.com/apple/coremltools -""" -import nnvm -import tvm -import coremltools as cm -import numpy as np -from PIL import Image -from tvm.contrib.download import download_testdata - -###################################################################### -# Load pretrained CoreML model -# ---------------------------- -# We will download and load a pretrained mobilenet classification network -# provided by apple in this example -model_url = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel' -model_file = 'mobilenet.mlmodel' -model_path = download_testdata(model_url, model_file, module='coreml') -# now you mobilenet.mlmodel on disk -mlmodel = cm.models.MLModel(model_path) -# we can load the graph as NNVM compatible model -sym, params = nnvm.frontend.from_coreml(mlmodel) - -###################################################################### -# Load a test image -# ------------------ -# A single cat dominates the examples! -from PIL import Image -img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' -img_path = download_testdata(img_url, 'cat.png', module='data') -img = Image.open(img_path).resize((224, 224)) -#x = np.transpose(img, (2, 0, 1))[np.newaxis, :] -image = np.asarray(img) -image = image.transpose((2, 0, 1)) -x = image[np.newaxis, :] -###################################################################### -# Compile the model on NNVM -# --------------------------- -# We should be familiar with the process right now. -import nnvm.compiler -target = 'cuda' -shape_dict = {'image': x.shape} -with nnvm.compiler.build_config(opt_level=2, add_pass=['AlterOpLayout']): - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) - -###################################################################### -# Execute on TVM -# ------------------- -# The process is no different from other example -from tvm.contrib import graph_runtime -ctx = tvm.gpu(0) -dtype = 'float32' -m = graph_runtime.create(graph, lib, ctx) -# set inputs -m.set_input('image', tvm.nd.array(x.astype(dtype))) -m.set_input(**params) -# execute -m.run() -# get outputs -tvm_output = m.get_output(0) -top1 = np.argmax(tvm_output.asnumpy()[0]) - -##################################################################### -# Look up synset name -# ------------------- -# Look up prediction top 1 index in 1000 class synset. -synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', - '4d0b62f3d01426887599d4f7ede23ee5/raw/', - '596b27d23537e5a1b5751d2b0481ef172f58b539/', - 'imagenet1000_clsid_to_human.txt']) -synset_name = 'imagenet1000_clsid_to_human.txt' -synset_path = download_testdata(synset_url, synset_name, module='data') -with open(synset_path) as f: - synset = eval(f.read()) -print('Top-1 id', top1, 'class name', synset[top1]) diff --git a/nnvm/tutorials/from_darknet.py b/nnvm/tutorials/from_darknet.py deleted file mode 100644 index d2ab647da1b3..000000000000 --- a/nnvm/tutorials/from_darknet.py +++ /dev/null @@ -1,177 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Compile YOLO-V2 and YOLO-V3 in DarkNet Models -================================= -**Author**: `Siju Samuel `_ - -This article is an introductory tutorial to deploy darknet models with NNVM. -All the required models and libraries will be downloaded from the internet by the script. -This script runs the YOLO-V2 and YOLO-V3 Model with the bounding boxes -Darknet parsing have dependancy with CFFI and CV2 library -Please install CFFI and CV2 before executing this script - -.. code-block:: bash - - pip install cffi - pip install opencv-python -""" - -import nnvm -import nnvm.frontend.darknet -import tvm.relay.testing.yolo_detection -import tvm.relay.testing.darknet -import matplotlib.pyplot as plt -import numpy as np -import tvm -import sys - -from ctypes import * -from tvm.contrib.download import download_testdata -from tvm.relay.testing.darknet import __darknetffi__ - -# Model name -MODEL_NAME = 'yolov3' - -###################################################################### -# Download required files -# ----------------------- -# Download cfg and weights file if first time. -CFG_NAME = MODEL_NAME + '.cfg' -WEIGHTS_NAME = MODEL_NAME + '.weights' -REPO_URL = 'https://github.com/siju-samuel/darknet/blob/master/' -CFG_URL = REPO_URL + 'cfg/' + CFG_NAME + '?raw=true' -WEIGHTS_URL = 'https://pjreddie.com/media/files/' + WEIGHTS_NAME - -cfg_path = download_testdata(CFG_URL, CFG_NAME, module="darknet") -weights_path = download_testdata(WEIGHTS_URL, WEIGHTS_NAME, module="darknet") - -# Download and Load darknet library -if sys.platform in ['linux', 'linux2']: - DARKNET_LIB = 'libdarknet2.0.so' - DARKNET_URL = REPO_URL + 'lib/' + DARKNET_LIB + '?raw=true' -elif sys.platform == 'darwin': - DARKNET_LIB = 'libdarknet_mac2.0.so' - DARKNET_URL = REPO_URL + 'lib_osx/' + DARKNET_LIB + '?raw=true' -else: - err = "Darknet lib is not supported on {} platform".format(sys.platform) - raise NotImplementedError(err) - -lib_path = download_testdata(DARKNET_URL, DARKNET_LIB, module="darknet") - -DARKNET_LIB = __darknetffi__.dlopen(lib_path) -net = DARKNET_LIB.load_network(cfg_path.encode('utf-8'), weights_path.encode('utf-8'), 0) -dtype = 'float32' -batch_size = 1 - -print("Converting darknet to nnvm symbols...") -sym, params = nnvm.frontend.darknet.from_darknet(net, dtype) - -###################################################################### -# Compile the model on NNVM -# ------------------------- -# compile the model -target = 'llvm' -ctx = tvm.cpu(0) -data = np.empty([batch_size, net.c, net.h, net.w], dtype) -shape = {'data': data.shape} -print("Compiling the model...") -dtype_dict = {} -with nnvm.compiler.build_config(opt_level=2): - graph, lib, params = nnvm.compiler.build(sym, target, shape, dtype_dict, params) - -[neth, netw] = shape['data'][2:] # Current image shape is 608x608 -###################################################################### -# Load a test image -# -------------------------------------------------------------------- -test_image = 'dog.jpg' -print("Loading the test image...") -img_url = 'https://github.com/siju-samuel/darknet/blob/master/data/' + \ - test_image + '?raw=true' -img_path = download_testdata(img_url, test_image, "data") - -data = tvm.relay.testing.darknet.load_image(img_path, netw, neth) -###################################################################### -# Execute on TVM Runtime -# ---------------------- -# The process is no different from other examples. -from tvm.contrib import graph_runtime - -m = graph_runtime.create(graph, lib, ctx) - -# set inputs -m.set_input('data', tvm.nd.array(data.astype(dtype))) -m.set_input(**params) -# execute -print("Running the test image...") - -m.run() -# get outputs -tvm_out = [] -if MODEL_NAME == 'yolov2': - layer_out = {} - layer_out['type'] = 'Region' - # Get the region layer attributes (n, out_c, out_h, out_w, classes, coords, background) - layer_attr = m.get_output(2).asnumpy() - layer_out['biases'] = m.get_output(1).asnumpy() - out_shape = (layer_attr[0], layer_attr[1]//layer_attr[0], - layer_attr[2], layer_attr[3]) - layer_out['output'] = m.get_output(0).asnumpy().reshape(out_shape) - layer_out['classes'] = layer_attr[4] - layer_out['coords'] = layer_attr[5] - layer_out['background'] = layer_attr[6] - tvm_out.append(layer_out) - -elif MODEL_NAME == 'yolov3': - for i in range(3): - layer_out = {} - layer_out['type'] = 'Yolo' - # Get the yolo layer attributes (n, out_c, out_h, out_w, classes, total) - layer_attr = m.get_output(i*4+3).asnumpy() - layer_out['biases'] = m.get_output(i*4+2).asnumpy() - layer_out['mask'] = m.get_output(i*4+1).asnumpy() - out_shape = (layer_attr[0], layer_attr[1]//layer_attr[0], - layer_attr[2], layer_attr[3]) - layer_out['output'] = m.get_output(i*4).asnumpy().reshape(out_shape) - layer_out['classes'] = layer_attr[4] - tvm_out.append(layer_out) - -# do the detection and bring up the bounding boxes -thresh = 0.5 -nms_thresh = 0.45 -img = tvm.relay.testing.darknet.load_image_color(img_path) -_, im_h, im_w = img.shape -dets = tvm.relay.testing.yolo_detection.fill_network_boxes((netw, neth), (im_w, im_h), thresh, - 1, tvm_out) -last_layer = net.layers[net.n - 1] -tvm.relay.testing.yolo_detection.do_nms_sort(dets, last_layer.classes, nms_thresh) - -coco_name = 'coco.names' -coco_url = 'https://github.com/siju-samuel/darknet/blob/master/data/' + coco_name + '?raw=true' -font_name = 'arial.ttf' -font_url = 'https://github.com/siju-samuel/darknet/blob/master/data/' + font_name + '?raw=true' -coco_path = download_testdata(coco_url, coco_name, module='data') -font_path = download_testdata(font_url, font_name, module='data') - -with open(coco_path) as f: - content = f.readlines() - -names = [x.strip() for x in content] - -tvm.relay.testing.yolo_detection.draw_detections(font_path, img, dets, thresh, names, last_layer.classes) -plt.imshow(img.transpose(1, 2, 0)) -plt.show() diff --git a/nnvm/tutorials/from_mxnet.py b/nnvm/tutorials/from_mxnet.py deleted file mode 100644 index e4a30aa2c0e0..000000000000 --- a/nnvm/tutorials/from_mxnet.py +++ /dev/null @@ -1,136 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -.. _tutorial-from-mxnet: - -Compile MXNet Models -==================== -**Author**: `Joshua Z. Zhang `_ - -This article is an introductory tutorial to deploy mxnet models with NNVM. - -For us to begin with, mxnet module is required to be installed. - -A quick solution is - -.. code-block:: bash - - pip install mxnet --user - -or please refer to offical installation guide. -https://mxnet.incubator.apache.org/versions/master/install/index.html -""" -# some standard imports -import mxnet as mx -import numpy as np -import nnvm -import tvm -from tvm.contrib.download import download_testdata - -###################################################################### -# Download Resnet18 model from Gluon Model Zoo -# --------------------------------------------- -# In this section, we download a pretrained imagenet model and classify an image. -from mxnet.gluon.model_zoo.vision import get_model -from PIL import Image -from matplotlib import pyplot as plt -block = get_model('resnet18_v1', pretrained=True) -img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' -img_name = 'cat.png' -synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', - '4d0b62f3d01426887599d4f7ede23ee5/raw/', - '596b27d23537e5a1b5751d2b0481ef172f58b539/', - 'imagenet1000_clsid_to_human.txt']) -synset_name = 'imagenet1000_clsid_to_human.txt' -img_path = download_testdata(img_url, img_name, module='data') -synset_path = download_testdata(synset_url, synset_name, module='data') -with open(synset_path) as f: - synset = eval(f.read()) -image = Image.open(img_path).resize((224, 224)) -plt.imshow(image) -plt.show() - -def transform_image(image): - image = np.array(image) - np.array([123., 117., 104.]) - image /= np.array([58.395, 57.12, 57.375]) - image = image.transpose((2, 0, 1)) - image = image[np.newaxis, :] - return image - -x = transform_image(image) -print('x', x.shape) - -###################################################################### -# Compile the Graph -# ----------------- -# Now we would like to port the Gluon model to a portable computational graph. -# It's as easy as several lines. -# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon -sym, params = nnvm.frontend.from_mxnet(block) -# we want a probability so add a softmax operator -sym = nnvm.sym.softmax(sym) - -###################################################################### -# now compile the graph -import nnvm.compiler -target = 'cuda' -shape_dict = {'data': x.shape} -with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) - -###################################################################### -# Execute the portable graph on TVM -# --------------------------------- -# Now, we would like to reproduce the same forward computation using TVM. -from tvm.contrib import graph_runtime -ctx = tvm.gpu(0) -dtype = 'float32' -m = graph_runtime.create(graph, lib, ctx) -# set inputs -m.set_input('data', tvm.nd.array(x.astype(dtype))) -m.set_input(**params) -# execute -m.run() -# get outputs -tvm_output = m.get_output(0) -top1 = np.argmax(tvm_output.asnumpy()[0]) -print('TVM prediction top-1:', top1, synset[top1]) - -###################################################################### -# Use MXNet symbol with pretrained weights -# ---------------------------------------- -# MXNet often use `arg_params` and `aux_params` to store network parameters -# separately, here we show how to use these weights with existing API -def block2symbol(block): - data = mx.sym.Variable('data') - sym = block(data) - args = {} - auxs = {} - for k, v in block.collect_params().items(): - args[k] = mx.nd.array(v.data().asnumpy()) - return sym, args, auxs -mx_sym, args, auxs = block2symbol(block) -# usually we would save/load it as checkpoint -mx.model.save_checkpoint('resnet18_v1', 0, mx_sym, args, auxs) -# there are 'resnet18_v1-0000.params' and 'resnet18_v1-symbol.json' on disk - -###################################################################### -# for a normal mxnet model, we start from here -mx_sym, args, auxs = mx.model.load_checkpoint('resnet18_v1', 0) -# now we use the same API to get NNVM compatible symbol -nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(mx_sym, args, auxs) -# repeat the same steps to run this model using TVM diff --git a/nnvm/tutorials/from_mxnet_to_webgl.py b/nnvm/tutorials/from_mxnet_to_webgl.py deleted file mode 100644 index a54704cca381..000000000000 --- a/nnvm/tutorials/from_mxnet_to_webgl.py +++ /dev/null @@ -1,515 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Deploy Deep Learning Models to OpenGL and WebGL -=============================================== -**Author**: `Zhixun Tan `_ - -This example shows how to build a neural network with NNVM python frontend and -generate runtime library for WebGL running in a browser with TVM. -To run this notebook, you need to install tvm and nnvm. -Notice that you need to build tvm with OpenGL. -""" - -###################################################################### -# Overview -# -------- -# In this tutorial, we will download a pre-trained resnet18 model from Gluon -# Model Zoo, and run image classification in 3 different ways: -# -# - Run locally: -# We will compile the model into a TVM library with OpenGL device code and -# directly run it locally. -# -# - Run in a browser through RPC: -# We will compile the model into a JavaScript TVM library with WebGL device -# code, and upload it to an RPC server that is hosting JavaScript TVM runtime -# to run it. -# -# - Export a JavaScript library and run in a browser: -# We will compile the model into a JavaScript TVM library with WebGL device -# code, combine it with JavaScript TVM runtime, and pack everything together. -# Then we will run it directly in a browser. -# -from __future__ import print_function - -import numpy as np -import tvm -from tvm.contrib.download import download_testdata -import nnvm.compiler -import nnvm.testing - -# This tutorial must be run with OpenGL backend enabled in TVM. -# The NNVM CI does not enable OpenGL yet. But the user can run this script. -opengl_enabled = tvm.module.enabled("opengl") - -# To run the local demo, set this flag to True. -run_deploy_local = False - -# To run the RPC demo, set this flag to True. -run_deploy_rpc = False - -# To run the WebGL deploy demo, set this flag to True. -run_deploy_web = False - -###################################################################### -# Download a Pre-trained Resnet18 Model -# ------------------------------------- -# Here we define 2 functions: -# -# - A function that downloads a pre-trained resnet18 model from Gluon Model Zoo. -# The model that we download is in MXNet format, we then transform it into an -# NNVM computation graph. -# -# - A function that downloads a file that contains the name of all the image -# classes in this model. -# -def load_mxnet_resnet(): - """Load a pretrained resnet model from MXNet and transform that into NNVM - format. - - Returns - ------- - net : nnvm.Symbol - The loaded resnet computation graph. - - params : dict[str -> NDArray] - The pretrained model parameters. - - data_shape: tuple - The shape of the input tensor (an image). - - out_shape: tuple - The shape of the output tensor (probability of all classes). - """ - - print("Loading pretrained resnet model from MXNet...") - - # Download a pre-trained mxnet resnet18_v1 model. - from mxnet.gluon.model_zoo.vision import get_model - block = get_model('resnet18_v1', pretrained=True) - - # Transform the mxnet model into NNVM. - # We want a probability so add a softmax operator. - sym, params = nnvm.frontend.from_mxnet(block) - sym = nnvm.sym.softmax(sym) - - print("- Model loaded!") - return sym, params, (1, 3, 224, 224), (1, 1000) - -def download_synset(): - """Download a dictionary from class index to name. - This lets us know what our prediction actually is. - - Returns - ------- - synset : dict[int -> str] - The loaded synset. - """ - - print("Downloading synset...") - - url = "https://gist.githubusercontent.com/zhreshold/" + \ - "4d0b62f3d01426887599d4f7ede23ee5/raw/" + \ - "596b27d23537e5a1b5751d2b0481ef172f58b539/" + \ - "imagenet1000_clsid_to_human.txt" - file_name = "imagenet1000_clsid_to_human.txt" - - file_path = download_testdata(url, file_name, module='data') - with open(file_path) as f: - synset = eval(f.read()) - - print("- Synset downloaded!") - return synset - -###################################################################### -# Download Input Image -# -------------------- -# Here we define 2 functions that prepare an image that we want to perform -# classification on. -# -# - A function that downloads a cat image. -# -# - A function that performs preprocessing to an image so that it fits the -# format required by the resnet18 model. -# -def download_image(): - """Download a cat image and resize it to 224x224 which fits resnet. - - Returns - ------- - image : PIL.Image.Image - The loaded and resized image. - """ - - print("Downloading cat image...") - - from matplotlib import pyplot as plt - from PIL import Image - - url = "https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true" - img_name = "cat.png" - - img_path = download_testdata(url, img_name, module='data') - image = Image.open(img_path).resize((224, 224)) - - print("- Cat image downloaded!") - - plt.imshow(image) - plt.show() - - return image - -def transform_image(image): - """Perform necessary preprocessing to input image. - - Parameters - ---------- - image : numpy.ndarray - The raw image. - - Returns - ------- - image : numpy.ndarray - The preprocessed image. - """ - - image = np.array(image) - np.array([123., 117., 104.]) - image /= np.array([58.395, 57.12, 57.375]) - image = image.transpose((2, 0, 1)) - image = image[np.newaxis, :] - return image - -###################################################################### -# Compile the Model -# ----------------- -# Here we define a function that invokes the NNVM compiler. -# -def compile_net(net, target_host, target, data_shape, params): - """Compiles an NNVM computation graph. - - Parameters - ---------- - net : nnvm.Graph - The NNVM computation graph. - - target_host : str - The target to compile the host portion of the library. - - target : str - The target to compile the device portion of the library. - - data_shape : tuple - The shape of the input data (image). - - params : dict[str -> NDArray] - Model parameters. - - Returns - ------- - graph : Graph - The final execution graph. - - libmod : tvm.Module - The module that comes with the execution graph - - params : dict[str -> NDArray] - The updated parameters of graph if params is passed. - This can be different from the params passed in. - """ - - print("Compiling the neural network...") - - with nnvm.compiler.build_config(opt_level=0): - deploy_graph, lib, deploy_params = nnvm.compiler.build( - net, - target_host=target_host, - target=target, - shape={"data": data_shape}, - params=params) - - print("- Complilation completed!") - return deploy_graph, lib, deploy_params - -###################################################################### -# Demo 1: Deploy Locally -# ---------------------- -# In this demo, we will compile the model targetting the local machine. -# -# Then we will demonstrate how to save the compiled model as a shared library -# and load it back. -# -# Finally, we will run the model. -# -def deploy_local(): - """Runs the demo that deploys a model locally. - """ - - # Load resnet model. - net, params, data_shape, out_shape = load_mxnet_resnet() - - # Compile the model. - # Note that we specify the the host target as "llvm". - deploy_graph, lib, deploy_params = compile_net( - net, - target_host="llvm", - target="opengl", - data_shape=data_shape, - params=params) - - # Save the compiled module. - # Note we need to save all three files returned from the NNVM compiler. - print("Saving the compiled module...") - from tvm.contrib import util - temp = util.tempdir() - - path_lib = temp.relpath("deploy_lib.so") - path_graph_json = temp.relpath("deploy_graph.json") - path_params = temp.relpath("deploy_param.params") - - lib.export_library(path_lib) - with open(path_graph_json, "w") as fo: - fo.write(deploy_graph.json()) - with open(path_params, "wb") as fo: - fo.write(nnvm.compiler.save_param_dict(deploy_params)) - - print("- Saved files:", temp.listdir()) - - # Load the module back. - print("Loading the module back...") - loaded_lib = tvm.module.load(path_lib) - with open(path_graph_json) as fi: - loaded_graph_json = fi.read() - with open(path_params, "rb") as fi: - loaded_params = bytearray(fi.read()) - print("- Module loaded!") - - # Run the model! We will perform prediction on an image. - print("Running the graph...") - from tvm.contrib import graph_runtime - - module = graph_runtime.create(loaded_graph_json, loaded_lib, tvm.opengl(0)) - module.load_params(loaded_params) - - image = transform_image(download_image()) - input_data = tvm.nd.array(image.astype("float32"), ctx=tvm.opengl(0)) - - module.set_input("data", input_data) - module.run() - - # Retrieve the output. - out = module.get_output(0, tvm.nd.empty(out_shape, ctx=tvm.opengl(0))) - top1 = np.argmax(out.asnumpy()) - synset = download_synset() - print('TVM prediction top-1:', top1, synset[top1]) - -if run_deploy_local and opengl_enabled: - deploy_local() - -###################################################################### -# Demo 2: Deploy the Model to WebGL Remotely with RPC -# ------------------------------------------------------- -# Following the steps above, we can also compile the model for WebGL. -# TVM provides rpc module to help with remote deploying. -# -# When we deploy a model locally to OpenGL, the model consists of two parts: -# the host LLVM part and the device GLSL part. Now that we want to deploy to -# WebGL, we need to leverage Emscripten to transform LLVM into JavaScript. In -# order to do that, we will need to specify the host target as -# 'llvm -target=asmjs-unknown-emscripten -system-lib`. Then call Emscripten to -# compile the LLVM binary output into a JavaScript file. -# -# First, we need to manually start an RPC server. Please follow the instructions -# in `tvm/web/README.md`. After following the steps, you should have a web page -# opened in a browser, and a Python script running a proxy. -# -def deploy_rpc(): - """Runs the demo that deploys a model remotely through RPC. - """ - from tvm import rpc - from tvm.contrib import util, emscripten - - # As usual, load the resnet18 model. - net, params, data_shape, out_shape = load_mxnet_resnet() - - # Compile the model. - # Note that this time we are changing the target. - # This is because we want to translate the host library into JavaScript - # through Emscripten. - graph, lib, params = compile_net( - net, - target_host="llvm -target=asmjs-unknown-emscripten -system-lib", - target="opengl", - data_shape=data_shape, - params=params) - - # Now we want to deploy our model through RPC. - # First we ned to prepare the module files locally. - print("Saving the compiled module...") - - temp = util.tempdir() - path_obj = temp.relpath("deploy.bc") # host LLVM part - path_dso = temp.relpath("deploy.js") # host JavaScript part - path_gl = temp.relpath("deploy.gl") # device GLSL part - path_json = temp.relpath("deploy.tvm_meta.json") - - lib.save(path_obj) - emscripten.create_js(path_dso, path_obj, side_module=True) - lib.imported_modules[0].save(path_gl) - - print("- Saved files:", temp.listdir()) - - # Connect to the RPC server. - print("Connecting to RPC server...") - proxy_host = 'localhost' - proxy_port = 9090 - remote = rpc.connect(proxy_host, proxy_port, key="js") - print("- Connected to RPC server!") - - # Upload module to RPC server. - print("Uploading module to RPC server...") - remote.upload(path_dso, "deploy.dso") - remote.upload(path_gl) - remote.upload(path_json) - print("- Upload completed!") - - # Load remote library. - print("Loading remote library...") - fdev = remote.load_module("deploy.gl") - fhost = remote.load_module("deploy.dso") - fhost.import_module(fdev) - rlib = fhost - print("- Remote library loaded!") - - ctx = remote.opengl(0) - - # Upload the parameters. - print("Uploading parameters...") - rparams = {k: tvm.nd.array(v, ctx) for k, v in params.items()} - print("- Parameters uploaded!") - - # Create the remote runtime module. - print("Running remote module...") - from tvm.contrib import graph_runtime - module = graph_runtime.create(graph, rlib, ctx) - - # Set parameter. - module.set_input(**rparams) - - # Set input data. - input_data = np.random.uniform(size=data_shape) - module.set_input('data', tvm.nd.array(input_data.astype('float32'))) - - # Run. - module.run() - print("- Remote module execution completed!") - - out = module.get_output(0, out=tvm.nd.empty(out_shape, ctx=ctx)) - # Print first 10 elements of output. - print(out.asnumpy()[0][0:10]) - -if run_deploy_rpc and opengl_enabled: - deploy_rpc() - -###################################################################### -# Demo 3: Deploy the Model to WebGL SystemLib -# ----------------------------------------------- -# This time we are not using RPC. Instead, we will compile the model and link it -# with the entire tvm runtime into a single giant JavaScript file. Then we will -# run the model using JavaScript. -# -def deploy_web(): - """Runs the demo that deploys to web. - """ - - import base64 - import json - import os - import shutil - import SimpleHTTPServer, SocketServer - - from tvm.contrib import emscripten - - curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(os.getcwd()))) - working_dir = os.getcwd() - output_dir = os.path.join(working_dir, "resnet") - if not os.path.exists(output_dir): - os.makedirs(output_dir) - - # As usual, load the resnet18 model. - net, params, data_shape, out_shape = load_mxnet_resnet() - - # As usual, compile the model. - graph, lib, params = compile_net( - net, - target_host="llvm -target=asmjs-unknown-emscripten -system-lib", - target="opengl", - data_shape=data_shape, - params=params) - - # Now we save the model and link it with the TVM web runtime. - path_lib = os.path.join(output_dir, "resnet.js") - path_graph = os.path.join(output_dir, "resnet.json") - path_params = os.path.join(output_dir, "resnet.params") - path_data_shape = os.path.join(output_dir, "data_shape.json") - path_out_shape = os.path.join(output_dir, "out_shape.json") - - lib.export_library(path_lib, emscripten.create_js, options=[ - "-s", "USE_GLFW=3", - "-s", "USE_WEBGL2=1", - "-lglfw", - "-s", "TOTAL_MEMORY=1073741824", - ]) - with open(path_graph, "w") as fo: - fo.write(graph.json()) - with open(path_params, "w") as fo: - fo.write(base64.b64encode(nnvm.compiler.save_param_dict(params))) - - shutil.copyfile(os.path.join(curr_path, "../tvm/web/tvm_runtime.js"), - os.path.join(output_dir, "tvm_runtime.js")) - shutil.copyfile(os.path.join(curr_path, "web/resnet.html"), - os.path.join(output_dir, "resnet.html")) - - # Now we want to save some extra files so that we can execute the model from - # JavaScript. - # - data shape - with open(path_data_shape, "w") as fo: - json.dump(list(data_shape), fo) - # - out shape - with open(path_out_shape, "w") as fo: - json.dump(list(out_shape), fo) - # - input image - image = download_image() - image.save(os.path.join(output_dir, "data.png")) - # - synset - synset = download_synset() - with open(os.path.join(output_dir, "synset.json"), "w") as fo: - json.dump(synset, fo) - - print("Output files are in", output_dir) - - # Finally, we fire up a simple web server to serve all the exported files. - print("Now running a simple server to serve the files...") - os.chdir(output_dir) - port = 8080 - handler = SimpleHTTPServer.SimpleHTTPRequestHandler - httpd = SocketServer.TCPServer(("", port), handler) - print("Please open http://localhost:" + str(port) + "/resnet.html") - httpd.serve_forever() - -if run_deploy_web and opengl_enabled: - deploy_web() diff --git a/nnvm/tutorials/from_onnx.py b/nnvm/tutorials/from_onnx.py deleted file mode 100644 index 97d154615e67..000000000000 --- a/nnvm/tutorials/from_onnx.py +++ /dev/null @@ -1,111 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Compile ONNX Models -=================== -**Author**: `Joshua Z. Zhang `_ - -This article is an introductory tutorial to deploy ONNX models with NNVM. - -For us to begin with, onnx module is required to be installed. - -A quick solution is to install protobuf compiler, and - -.. code-block:: bash - - pip install onnx --user - -or please refer to offical site. -https://github.com/onnx/onnx -""" -import nnvm -import tvm -from tvm.contrib.download import download_testdata -import onnx -import numpy as np - -###################################################################### -# Load pretrained ONNX model -# --------------------------------------------- -# The example super resolution model used here is exactly the same model in onnx tutorial -# http://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html -# we skip the pytorch model construction part, and download the saved onnx model -model_url = ''.join(['https://gist.github.com/zhreshold/', - 'bcda4716699ac97ea44f791c24310193/raw/', - '93672b029103648953c4e5ad3ac3aadf346a4cdc/', - 'super_resolution_0.2.onnx']) -model_path = download_testdata(model_url, 'super_resolution.onnx', module='onnx') -# now you have super_resolution.onnx on disk -onnx_model = onnx.load_model(model_path) -# we can load the graph as NNVM compatible model -sym, params = nnvm.frontend.from_onnx(onnx_model) - -###################################################################### -# Load a test image -# --------------------------------------------- -# A single cat dominates the examples! -from PIL import Image -img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' -img_path = download_testdata(img_url, 'cat.png', module='data') -img = Image.open(img_path).resize((224, 224)) -img_ycbcr = img.convert("YCbCr") # convert to YCbCr -img_y, img_cb, img_cr = img_ycbcr.split() -x = np.array(img_y)[np.newaxis, np.newaxis, :, :] - -###################################################################### -# Compile the model on NNVM -# --------------------------------------------- -# We should be familiar with the process right now. -import nnvm.compiler -target = 'cuda' -# assume first input name is data -input_name = sym.list_input_names()[0] -shape_dict = {input_name: x.shape} -with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) - -###################################################################### -# Execute on TVM -# --------------------------------------------- -# The process is no different from other example -from tvm.contrib import graph_runtime -ctx = tvm.gpu(0) -dtype = 'float32' -m = graph_runtime.create(graph, lib, ctx) -# set inputs -m.set_input(input_name, tvm.nd.array(x.astype(dtype))) -m.set_input(**params) -# execute -m.run() -# get outputs -output_shape = (1, 1, 672, 672) -tvm_output = m.get_output(0, tvm.nd.empty(output_shape, dtype)).asnumpy() - -###################################################################### -# Display results -# --------------------------------------------- -# We put input and output image neck to neck -from matplotlib import pyplot as plt -out_y = Image.fromarray(np.uint8((tvm_output[0, 0]).clip(0, 255)), mode='L') -out_cb = img_cb.resize(out_y.size, Image.BICUBIC) -out_cr = img_cr.resize(out_y.size, Image.BICUBIC) -result = Image.merge('YCbCr', [out_y, out_cb, out_cr]).convert('RGB') -canvas = np.full((672, 672*2, 3), 255) -canvas[0:224, 0:224, :] = np.asarray(img) -canvas[:, 672:, :] = np.asarray(result) -plt.imshow(canvas.astype(np.uint8)) -plt.show() diff --git a/nnvm/tutorials/from_tensorflow.py b/nnvm/tutorials/from_tensorflow.py deleted file mode 100644 index 6a30443dba60..000000000000 --- a/nnvm/tutorials/from_tensorflow.py +++ /dev/null @@ -1,239 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Compile Tensorflow Models -========================= -This article is an introductory tutorial to deploy tensorflow models with TVM. - -For us to begin with, tensorflow python module is required to be installed. - -Please refer to https://www.tensorflow.org/install -""" - -# tvm and nnvm -import nnvm -import tvm - -# os and numpy -import numpy as np -import os.path - -# Tensorflow imports -import tensorflow as tf -from tensorflow.core.framework import graph_pb2 -from tensorflow.python.framework import dtypes -from tensorflow.python.framework import tensor_util - -# Tensorflow utility functions -import tvm.relay.testing.tf as tf_testing - -# Base location for model related files. -repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/' - -# Test image -img_name = 'elephant-299.jpg' -image_url = os.path.join(repo_base, img_name) - -###################################################################### -# Tutorials -# --------- -# .. note:: -# -# protobuf should be exported with :any:`add_shapes=True` option. -# Could use https://github.com/dmlc/web-data/tree/master/tensorflow/scripts/tf-to-nnvm.py -# to add shapes for existing models. -# -# Please refer docs/frontend/tensorflow.md for more details for various models -# from tensorflow. - -model_name = 'classify_image_graph_def-with_shapes.pb' -model_url = os.path.join(repo_base, model_name) - -# Image label map -map_proto = 'imagenet_2012_challenge_label_map_proto.pbtxt' -map_proto_url = os.path.join(repo_base, map_proto) - -# Human readable text for labels -label_map = 'imagenet_synset_to_human_label_map.txt' -label_map_url = os.path.join(repo_base, label_map) - -# Target settings -# Use these commented settings to build for cuda. -#target = 'cuda' -#target_host = 'llvm' -#layout = "NCHW" -#ctx = tvm.gpu(0) -target = 'llvm' -target_host = 'llvm' -layout = None -ctx = tvm.cpu(0) - -###################################################################### -# Download required files -# ----------------------- -# Download files listed above. -from tvm.contrib.download import download_testdata - -img_path = download_testdata(image_url, img_name, module='data') -model_path = download_testdata(model_url, model_name, module=['tf', 'InceptionV1']) -map_proto_path = download_testdata(map_proto_url, map_proto, module='data') -label_path = download_testdata(label_map_url, label_map, module='data') - -###################################################################### -# Import model -# ------------ -# Creates tensorflow graph definition from protobuf file. - -with tf.gfile.FastGFile(model_path, 'rb') as f: - graph_def = tf.GraphDef() - graph_def.ParseFromString(f.read()) - graph = tf.import_graph_def(graph_def, name='') - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - # Add shapes to the graph. - with tf.Session() as sess: - graph_def = tf_testing.AddShapesToGraphDef(sess, 'softmax') - -###################################################################### -# Decode image -# ------------ -# .. note:: -# -# tensorflow frontend import doesn't support preprocessing ops like JpegDecode. -# JpegDecode is bypassed (just return source node). -# Hence we supply decoded frame to TVM instead. -# - -from PIL import Image -image = Image.open(img_path).resize((299, 299)) - -x = np.array(image) - -###################################################################### -# Import the graph to NNVM -# ------------------------ -# Import tensorflow graph definition to nnvm. -# -# Results: -# sym: nnvm graph for given tensorflow protobuf. -# params: params converted from tensorflow params (tensor protobuf). -sym, params = nnvm.frontend.from_tensorflow(graph_def, layout=layout) - -print("Tensorflow protobuf imported as nnvm graph") -###################################################################### -# NNVM Compilation -# ---------------- -# Compile the graph to llvm target with given input specification. -# -# Results: -# graph: Final graph after compilation. -# params: final params after compilation. -# lib: target library which can be deployed on target with tvm runtime. - -import nnvm.compiler -shape_dict = {'DecodeJpeg/contents': x.shape} -dtype_dict = {'DecodeJpeg/contents': 'uint8'} -graph, lib, params = nnvm.compiler.build(sym, shape=shape_dict, target=target, target_host=target_host, dtype=dtype_dict, params=params) - -###################################################################### -# Execute the portable graph on TVM -# --------------------------------- -# Now we can try deploying the NNVM compiled model on target. - -from tvm.contrib import graph_runtime -dtype = 'uint8' -m = graph_runtime.create(graph, lib, ctx) -# set inputs -m.set_input('DecodeJpeg/contents', tvm.nd.array(x.astype(dtype))) -m.set_input(**params) -# execute -m.run() -# get outputs -tvm_output = m.get_output(0, tvm.nd.empty(((1, 1008)), 'float32')) - -###################################################################### -# Process the output -# ------------------ -# Process the model output to human readable text for InceptionV1. -predictions = tvm_output.asnumpy() -predictions = np.squeeze(predictions) - -# Creates node ID --> English string lookup. -node_lookup = tf_testing.NodeLookup(label_lookup_path=map_proto_path, - uid_lookup_path=label_path) - -# Print top 5 predictions from TVM output. -top_k = predictions.argsort()[-5:][::-1] -for node_id in top_k: - human_string = node_lookup.id_to_string(node_id) - score = predictions[node_id] - print('%s (score = %.5f)' % (human_string, score)) - -###################################################################### -# Inference on tensorflow -# ----------------------- -# Run the corresponding model on tensorflow - -def create_graph(): - """Creates a graph from saved GraphDef file and returns a saver.""" - # Creates graph from saved graph_def.pb. - with tf.gfile.FastGFile(model_path, 'rb') as f: - graph_def = tf.GraphDef() - graph_def.ParseFromString(f.read()) - graph = tf.import_graph_def(graph_def, name='') - # Call the utility to import the graph definition into default graph. - graph_def = tf_testing.ProcessGraphDefParam(graph_def) - -def run_inference_on_image(image): - """Runs inference on an image. - - Parameters - ---------- - image: String - Image file name. - - Returns - ------- - Nothing - """ - if not tf.gfile.Exists(image): - tf.logging.fatal('File does not exist %s', image) - image_data = tf.gfile.FastGFile(image, 'rb').read() - - # Creates graph from saved GraphDef. - create_graph() - - with tf.Session() as sess: - softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') - predictions = sess.run(softmax_tensor, - {'DecodeJpeg/contents:0': image_data}) - - predictions = np.squeeze(predictions) - - # Creates node ID --> English string lookup. - node_lookup = tf_testing.NodeLookup(label_lookup_path=map_proto_path, - uid_lookup_path=label_path) - - # Print top 5 predictions from tensorflow. - top_k = predictions.argsort()[-5:][::-1] - print ("===== TENSORFLOW RESULTS =======") - for node_id in top_k: - human_string = node_lookup.id_to_string(node_id) - score = predictions[node_id] - print('%s (score = %.5f)' % (human_string, score)) - -run_inference_on_image(img_path) diff --git a/nnvm/tutorials/get_started.py b/nnvm/tutorials/get_started.py deleted file mode 100644 index 46f711e7d347..000000000000 --- a/nnvm/tutorials/get_started.py +++ /dev/null @@ -1,190 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Get Started with NNVM -===================== -**Author**: `Tianqi Chen `_ - -This article is an introductory tutorial to workflow in NNVM. -""" -import nnvm.compiler -import nnvm.symbol as sym - -###################################################################### -# Declare Computation -# ------------------- -# We start by describing our need using computational graph. -# Most deep learning frameworks use computation graph to describe -# their computation. In this example, we directly use -# NNVM's API to construct the computational graph. -# -# .. note:: -# -# In a typical deep learning compilation workflow, -# we can get the models from :any:`nnvm.frontend` -# -# The following code snippet describes :math:`z = x + \sqrt{y}` -# and creates a nnvm graph from the description. -# We can print out the graph ir to check the graph content. - -x = sym.Variable("x") -y = sym.Variable("y") -z = sym.elemwise_add(x, sym.sqrt(y)) -compute_graph = nnvm.graph.create(z) -print("-------compute graph-------") -print(compute_graph.ir()) - -###################################################################### -# Compile -# ------- -# We can call :any:`nnvm.compiler.build` to compile the graph. -# The build function takes a shape parameter which specifies the -# input shape requirement. Here we only need to pass in shape of ``x`` -# and the other one will be inferred automatically by NNVM. -# -# The function returns three values. ``deploy_graph`` contains -# the final compiled graph structure. ``lib`` is a :any:`tvm.module.Module` -# that contains compiled CUDA functions. We do not need the ``params`` -# in this case. -shape = (4,) -deploy_graph, lib, params = nnvm.compiler.build( - compute_graph, target="cuda", shape={"x": shape}, dtype="float32") - -###################################################################### -# We can print out the IR of ``deploy_graph`` to understand what just -# happened under the hood. We can find that ``deploy_graph`` only -# contains a single operator ``tvm_op``. This is because NNVM -# automatically fused the operator together into one operator. -# -print("-------deploy graph-------") -print(deploy_graph.ir()) - -###################################################################### -# Let us also peek into content of ``lib``. -# Typically a compiled TVM CUDA module contains a host module(lib) -# and a device module(``lib.imported_modules[0]``) that contains the CUDA code. -# We print out the the generated device code here. -# This is exactly a fused CUDA version of kernel that the graph points to. -# -print("-------deploy library-------") -print(lib.imported_modules[0].get_source()) - -###################################################################### -# Deploy and Run -# -------------- -# Now that we have have compiled module, let us run it. -# We can use :any:`graph_runtime ` -# in tvm to create a deployable :any:`GraphModule `. -# We can use the :any:`set_input `, -# :any:`run ` and -# :any:`get_output ` function -# to set the input, execute the graph and get the output we need. -# -import tvm -import numpy as np -from tvm.contrib import graph_runtime, util - -module = graph_runtime.create(deploy_graph, lib, tvm.gpu(0)) -x_np = np.array([1, 2, 3, 4]).astype("float32") -y_np = np.array([4, 4, 4, 4]).astype("float32") -# set input to the graph module -module.set_input(x=x_np, y=y_np) -# run forward computation -module.run() -# get the first output -out = module.get_output(0, out=tvm.nd.empty(shape)) -print(out.asnumpy()) - -###################################################################### -# Provide Model Parameters -# ------------------------ -# Most deep learning models contains two types of inputs: parameters -# that remains fixed during inference and data input that need to -# change for each inference task. It is helpful to provide these -# information to NNVM. Let us assume that ``y`` is the parameter -# in our example. We can provide the model parameter information -# by the params argument to :any:`nnvm.compiler.build`. -# -deploy_graph, lib, params = nnvm.compiler.build( - compute_graph, target="cuda", shape={"x": shape}, params={"y": y_np}) - -###################################################################### -# This time we will need params value returned by :any:`nnvm.compiler.build`. -# NNVM applys optimization to pre-compute the intermediate values in -# the graph that can be determined by parameters. In this case -# :math:`\sqrt{y}` can be pre-computed. The pre-computed values -# are returned as new params. We can print out the new compiled library -# to confirm that the fused kernel only now contains add. -# -print("-----optimized params-----") -print(params) -print("-------deploy library-------") -print(lib.imported_modules[0].get_source()) - -###################################################################### -# Save the Deployed Module -# ------------------------ -# We can save the ``deploy_graph``, ``lib`` and ``params`` separately -# and load them back later. We can use :any:`tvm.module.Module` to export -# the compiled library. ``deploy_graph`` is saved in json format and ``params`` -# is serialized into a bytearray. -# -temp = util.tempdir() -path_lib = temp.relpath("deploy.so") -lib.export_library(path_lib) -with open(temp.relpath("deploy.json"), "w") as fo: - fo.write(deploy_graph.json()) -with open(temp.relpath("deploy.params"), "wb") as fo: - fo.write(nnvm.compiler.save_param_dict(params)) -print(temp.listdir()) - -###################################################################### -# We can load the module back. -loaded_lib = tvm.module.load(path_lib) -loaded_json = open(temp.relpath("deploy.json")).read() -loaded_params = bytearray(open(temp.relpath("deploy.params"), "rb").read()) -module = graph_runtime.create(loaded_json, loaded_lib, tvm.gpu(0)) -params = nnvm.compiler.load_param_dict(loaded_params) -# directly load from byte array -module.load_params(loaded_params) -module.run(x=x_np) -# get the first output -out = module.get_output(0, out=tvm.nd.empty(shape)) -print(out.asnumpy()) - -###################################################################### -# Deploy using Another Language -# ----------------------------- -# We use python in this example for demonstration. -# We can also deploy the compiled modules with other languages -# supported by TVM such as c++, java, javascript. -# The graph module itself is fully embedded in TVM runtime. -# -# The following block demonstrates how we can directly use TVM's -# runtime API to execute the compiled module. -# You can find similar runtime API in TVMRuntime of other languages. -# -fcreate = tvm.get_global_func("tvm.graph_runtime.create") -ctx = tvm.gpu(0) -gmodule = fcreate(loaded_json, loaded_lib, ctx.device_type, ctx.device_id) -set_input, get_output, run = gmodule["set_input"], gmodule["get_output"], gmodule["run"] -set_input("x", tvm.nd.array(x_np)) -gmodule["load_params"](loaded_params) -run() -out = tvm.nd.empty(shape) -get_output(0, out) -print(out.asnumpy()) diff --git a/nnvm/tutorials/nlp/from_darknet_rnn.py b/nnvm/tutorials/nlp/from_darknet_rnn.py deleted file mode 100644 index 1bc9627dd62f..000000000000 --- a/nnvm/tutorials/nlp/from_darknet_rnn.py +++ /dev/null @@ -1,198 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Compile Darknet Models for RNN -============================== -**Author**: `Siju Samuel `_ - -This article is an introductory tutorial to deploy darknet rnn models with NNVM. - -This script will run a character prediction model -Each module consists of 3 fully-connected layers. The input layer propagates information from the -input to the current state. The recurrent layer propagates information through time from the -previous state to the current one. - -The input to the network is a 1-hot encoding of ASCII characters. We train the network to predict -the next character in a stream of characters. The output is constrained to be a probability -distribution using a softmax layer. - -Since each recurrent layer contains information about the current character and the past -characters, it can use this context to predict the future characters in a word or phrase. - -All the required models and libraries will be downloaded from the internet -by the script. -""" -import random -import numpy as np -import tvm -from tvm.contrib import graph_runtime -from tvm.contrib.download import download_testdata -from nnvm.testing.darknet import __darknetffi__ -import nnvm -import nnvm.frontend.darknet - -# Set the parameters -# ----------------------- -# Set the seed value and the number of characters to predict - -#Model name -MODEL_NAME = 'rnn' -#Seed value -seed = 'Thus' -#Number of characters to predict -num = 1000 - -# Download required files -# ----------------------- -# Download cfg and weights file if first time. -CFG_NAME = MODEL_NAME + '.cfg' -WEIGHTS_NAME = MODEL_NAME + '.weights' -REPO_URL = 'https://github.com/dmlc/web-data/blob/master/darknet/' -CFG_URL = REPO_URL + 'cfg/' + CFG_NAME + '?raw=true' -WEIGHTS_URL = REPO_URL + 'weights/' + WEIGHTS_NAME + '?raw=true' - -cfg_path = download_testdata(CFG_URL, CFG_NAME, module='darknet') -weights_path = download_testdata(WEIGHTS_URL, WEIGHTS_NAME, module='darknet') - -# Download and Load darknet library -DARKNET_LIB = 'libdarknet.so' -DARKNET_URL = REPO_URL + 'lib/' + DARKNET_LIB + '?raw=true' -lib_path = download_testdata(DARKNET_URL, DARKNET_LIB, module='darknet') -DARKNET_LIB = __darknetffi__.dlopen(lib_path) -net = DARKNET_LIB.load_network(cfg_path.encode('utf-8'), weights_path.encode('utf-8'), 0) -dtype = 'float32' -batch_size = 1 - -# Import the graph to NNVM -# ------------------------ -# Import darknet graph definition to nnvm. -# -# Results: -# sym: nnvm graph for rnn model -# params: params converted from darknet weights -print("Converting darknet rnn model to nnvm symbols...") -sym, params = nnvm.frontend.darknet.from_darknet(net, dtype) - -# Compile the model on NNVM -data = np.empty([1, net.inputs], dtype)#net.inputs - -target = 'llvm' -shape = {'data': data.shape} -print("Compiling the model...") - -shape_dict = {'data': data.shape} -dtype_dict = {'data': data.dtype} - -with nnvm.compiler.build_config(opt_level=2): - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, dtype_dict, params) - -# Execute the portable graph on TVM -# --------------------------------- -# Now we can try deploying the NNVM compiled model on cpu target. - -# Set the cpu context -ctx = tvm.cpu(0) -# Create graph runtime -m = graph_runtime.create(graph, lib, ctx) -# Set the params to runtime -m.set_input(**params) - -def _init_state_memory(rnn_cells_count, dtype): - '''Initialize memory for states''' - states = {} - state_shape = (1024,) - for i in range(rnn_cells_count): - k = 'rnn' + str(i) + '_state' - states[k] = tvm.nd.array(np.zeros(state_shape, dtype).astype(dtype)) - return states - -def _set_state_input(runtime, states): - '''Set the state inputs''' - for state in states: - runtime.set_input(state, states[state]) - -def _get_state_output(runtime, states): - '''Get the state outputs and save''' - i = 1 - for state in states: - data = states[state] - states[state] = runtime.get_output((i), tvm.nd.empty(data.shape, data.dtype)) - i += 1 - -def _proc_rnn_output(out_data): - '''Generate the characters from the output array''' - sum_array = 0 - n = out_data.size - r = random.uniform(0, 1) - for j in range(n): - if out_data[j] < 0.0001: - out_data[j] = 0 - sum_array += out_data[j] - - for j in range(n): - out_data[j] *= float(1.0) / sum_array - r = r - out_data[j] - if r <= 0: - return j - return n-1 - -print("RNN generaring text...") - -out_shape = (net.outputs,) -rnn_cells_count = 3 - -# Initialize state memory -# ----------------------- -states = _init_state_memory(rnn_cells_count, dtype) - -len_seed = len(seed) -count = len_seed + num -out_txt = "" - -#Initialize random seed -random.seed(0) -c = ord(seed[0]) -inp_data = np.zeros([net.inputs], dtype) - -# Run the model -# ------------- - -# Predict character by character till `num` -for i in range(count): - inp_data[c] = 1 - - # Set the input data - m.set_input('data', tvm.nd.array(inp_data.astype(dtype))) - inp_data[c] = 0 - - # Set the state inputs - _set_state_input(m, states) - - # Run the model - m.run() - - # Get the output - tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy() - - # Get the state outputs - _get_state_output(m, states) - - # Get the predicted character and keep buffering it - c = ord(seed[i]) if i < len_seed else _proc_rnn_output(tvm_out) - out_txt += chr(c) - -print("Predicted Text =", out_txt) diff --git a/nnvm/tutorials/nlp/keras_s2s_translate.py b/nnvm/tutorials/nlp/keras_s2s_translate.py deleted file mode 100644 index 16c737418c6f..000000000000 --- a/nnvm/tutorials/nlp/keras_s2s_translate.py +++ /dev/null @@ -1,254 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Keras LSTM Sequence to Sequence Model for Translation -================================= -**Author**: `Siju Samuel `_ - -This script demonstrates how to implement a basic character-level sequence-to-sequence model. -We apply it to translating short English sentences into short French sentences, -character-by-character. - -# Summary of the algorithm - -- We start with input sequences from a domain (e.g. English sentences) - and corresponding target sequences from another domain - (e.g. French sentences). -- An encoder LSTM turns input sequences to 2 state vectors - (we keep the last LSTM state and discard the outputs). -- A decoder LSTM is trained to turn the target sequences into - the same sequence but offset by one timestep in the future, - a training process called "teacher forcing" in this context. - Is uses as initial state the state vectors from the encoder. - Effectively, the decoder learns to generate `targets[t+1...]` - given `targets[...t]`, conditioned on the input sequence. - -This script loads the s2s.h5 model saved in repository -https://github.com/dmlc/web-data/raw/master/keras/models/s2s_translate/lstm_seq2seq.py -and generates sequences from it. It assumes that no changes have been made (for example: -latent_dim is unchanged, and the input data and model architecture are unchanged). - -# References - -- Sequence to Sequence Learning with Neural Networks - https://arxiv.org/abs/1409.3215 -- Learning Phrase Representations using - RNN Encoder-Decoder for Statistical Machine Translation - https://arxiv.org/abs/1406.1078 - -See lstm_seq2seq.py for more details on the model architecture and how it is trained. -""" - -from keras.models import Model, load_model -from keras.layers import Input -import random -import os -import numpy as np -import keras -import tvm -import nnvm - -###################################################################### -# Download required files -# ----------------------- -# Download files listed below from dmlc web-data repo. -model_file = "s2s_translate.h5" -data_file = "fra-eng.txt" - -# Base location for model related files. -repo_base = 'https://github.com/dmlc/web-data/raw/master/keras/models/s2s_translate/' -model_url = os.path.join(repo_base, model_file) -data_url = os.path.join(repo_base, data_file) - -# Download files listed below. -from tvm.contrib.download import download_testdata -model_path = download_testdata(model_url, model_file, module='keras') -data_path = download_testdata(data_url, data_file, module='data') - -latent_dim = 256 # Latent dimensionality of the encoding space. -test_samples = 10000 # Number of samples used for testing. - -###################################################################### -# Process the data file -# --------------------- -# Vectorize the data. We use the same approach as the training script. -# NOTE: the data must be identical, in order for the character -> integer -# mappings to be consistent. -input_texts = [] -target_texts = [] -input_characters = set() -target_characters = set() -with open(data_path, 'r', encoding='utf-8') as f: - lines = f.read().split('\n') -test_samples = min(test_samples, len(lines)) -max_encoder_seq_length = 0 -max_decoder_seq_length = 0 -for line in lines[:test_samples]: - input_text, target_text = line.split('\t') - # We use "tab" as the "start sequence" character - # for the targets, and "\n" as "end sequence" character. - target_text = '\t' + target_text + '\n' - max_encoder_seq_length = max(max_encoder_seq_length, len(input_text)) - max_decoder_seq_length = max(max_decoder_seq_length, len(target_text)) - for char in input_text: - if char not in input_characters: - input_characters.add(char) - for char in target_text: - if char not in target_characters: - target_characters.add(char) - -input_characters = sorted(list(input_characters)) -target_characters = sorted(list(target_characters)) -num_encoder_tokens = len(input_characters) -num_decoder_tokens = len(target_characters) -input_token_index = dict( - [(char, i) for i, char in enumerate(input_characters)]) -target_token_index = dict( - [(char, i) for i, char in enumerate(target_characters)]) - -# Reverse-lookup token index to decode sequences back to something readable. -reverse_target_char_index = dict( - (i, char) for char, i in target_token_index.items()) - -###################################################################### -# Load Keras Model -# ---------------- -# Restore the model and construct the encoder and decoder. -model = load_model(model_path) -encoder_inputs = model.input[0] # input_1 - -encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1 -encoder_states = [state_h_enc, state_c_enc] -encoder_model = Model(encoder_inputs, encoder_states) - -decoder_inputs = model.input[1] # input_2 -decoder_state_input_h = Input(shape=(latent_dim,), name='input_3') -decoder_state_input_c = Input(shape=(latent_dim,), name='input_4') -decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] -decoder_lstm = model.layers[3] -decoder_outputs, state_h_dec, state_c_dec = decoder_lstm( - decoder_inputs, initial_state=decoder_states_inputs) -decoder_states = [state_h_dec, state_c_dec] -decoder_dense = model.layers[4] -decoder_outputs = decoder_dense(decoder_outputs) -decoder_model = Model( - [decoder_inputs] + decoder_states_inputs, - [decoder_outputs] + decoder_states) - -###################################################################### -# Compile both encoder and decoder model on NNVM -# ---------------------------------------------- -# Creates NNVM graph definition from keras model file. -from tvm.contrib import graph_runtime -target = 'llvm' -ctx = tvm.cpu(0) - -# Parse Encoder model -sym, params = nnvm.frontend.from_keras(encoder_model) -inp_enc_shape = (1, max_encoder_seq_length, num_encoder_tokens) -shape_dict = {'input_1': inp_enc_shape} - -# Build Encoder model -with nnvm.compiler.build_config(opt_level=2): - enc_graph, enc_lib, enc_params = nnvm.compiler.build(sym, target, shape_dict, params=params) -print("Encoder build ok.") - -# Create graph runtime for encoder model -tvm_enc = graph_runtime.create(enc_graph, enc_lib, ctx) -tvm_enc.set_input(**enc_params) - -# Parse Decoder model -inp_dec_shape = (1, 1, num_decoder_tokens) -shape_dict = {'input_2': inp_dec_shape, - 'input_3': (1, latent_dim), - 'input_4': (1, latent_dim)} - -# Build Decoder model -sym, params = nnvm.frontend.from_keras(decoder_model) -with nnvm.compiler.build_config(opt_level=2): - dec_graph, dec_lib, dec_params = nnvm.compiler.build(sym, target, shape_dict, params=params) -print("Decoder build ok.") - -# Create graph runtime for decoder model -tvm_dec = graph_runtime.create(dec_graph, dec_lib, ctx) -tvm_dec.set_input(**dec_params) - -# Decodes an input sequence. -def decode_sequence(input_seq): - # Set the input for encoder model. - tvm_enc.set_input('input_1', input_seq) - - # Run encoder model - tvm_enc.run() - - # Get states from encoder network - h = tvm_enc.get_output(0).asnumpy() - c = tvm_enc.get_output(1).asnumpy() - - # Populate the first character of target sequence with the start character. - sampled_token_index = target_token_index['\t'] - - # Sampling loop for a batch of sequences - decoded_sentence = '' - while True: - # Generate empty target sequence of length 1. - target_seq = np.zeros((1, 1, num_decoder_tokens), dtype='float32') - # Update the target sequence (of length 1). - target_seq[0, 0, sampled_token_index] = 1. - - # Set the input and states for decoder model. - tvm_dec.set_input('input_2', target_seq) - tvm_dec.set_input('input_3', h) - tvm_dec.set_input('input_4', c) - # Run decoder model - tvm_dec.run() - - output_tokens = tvm_dec.get_output(0).asnumpy() - h = tvm_dec.get_output(1).asnumpy() - c = tvm_dec.get_output(2).asnumpy() - - # Sample a token - sampled_token_index = np.argmax(output_tokens[0, -1, :]) - sampled_char = reverse_target_char_index[sampled_token_index] - - # Exit condition: either hit max length or find stop character. - if sampled_char == '\n': - break - - # Update the sentence - decoded_sentence += sampled_char - if len(decoded_sentence) > max_decoder_seq_length: - break - return decoded_sentence - -def generate_input_seq(input_text): - input_seq = np.zeros((1, max_encoder_seq_length, num_encoder_tokens), dtype='float32') - for t, char in enumerate(input_text): - input_seq[0, t, input_token_index[char]] = 1. - return input_seq - -###################################################################### -# Run the model -# ------------- -# Randonly take some text from test samples and translate -for seq_index in range(100): - # Take one sentence randomly and try to decode. - index = random.randint(1, test_samples) - input_text, _ = lines[index].split('\t') - input_seq = generate_input_seq(input_text) - decoded_sentence = decode_sequence(input_seq) - print((seq_index + 1), ": ", input_text, "==>", decoded_sentence) diff --git a/nnvm/tutorials/tune_nnvm_arm.py b/nnvm/tutorials/tune_nnvm_arm.py deleted file mode 100644 index d61130b852cc..000000000000 --- a/nnvm/tutorials/tune_nnvm_arm.py +++ /dev/null @@ -1,427 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Auto-tuning a convolutional network for ARM CPU (NNVM) -====================================================== -**Author**: `Lianmin Zheng `_, `Zhao Wu `_ - -Auto-tuning for a specific ARM device is critical for getting the best -performance. This is a tutorial about how to tune a whole convolutional -network. - -The operator implementation for ARM CPU in TVM is written in template form. -The template has many tunable knobs (tile factor, vectorization, unrolling, etc). -We will tune all convolution and depthwise convolution operators -in the neural network. After tuning, we produce a log file which stores -the best knob values for all required operators. When the tvm compiler compiles -these operators, it will query this log file to get the best knob values. - -We also released pre-tuned parameters for some arm devices. You can go to -`ARM CPU Benchmark `_ -to see the results. -""" - -###################################################################### -# Install dependencies -# -------------------- -# To use the autotvm package in tvm, we need to install some extra dependencies. -# (change "3" to "2" if you use python2): -# -# .. code-block:: bash -# -# pip3 install --user psutil xgboost tornado -# -# To make tvm run faster during tuning, it is recommended to use cython -# as FFI of tvm. In the root directory of tvm, execute -# (change "3" to "2" if you use python2): -# -# .. code-block:: bash -# -# pip3 install --user cython -# sudo make cython3 -# -# Now return to python code. Import packages. - -import os - -import numpy as np - -import nnvm.testing -import nnvm.compiler -import tvm -from tvm import autotvm -from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner -from tvm.contrib.util import tempdir -import tvm.contrib.graph_runtime as runtime - -################################################################# -# Define network -# -------------- -# First we need to define the network in nnvm symbol API. -# We can load some pre-defined network from :code:`nnvm.testing`. -# We can also load models from MXNet, ONNX and TensorFlow (see NNVM -# tutorials :ref:`tutorial-nnvm` for more details). - -def get_network(name, batch_size): - """Get the symbol definition and random weight of a network""" - input_shape = (batch_size, 3, 224, 224) - output_shape = (batch_size, 1000) - - if "resnet" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size) - elif "vgg" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size) - elif name == 'mobilenet': - net, params = nnvm.testing.mobilenet.get_workload(batch_size=batch_size) - elif name == 'squeezenet_v1.1': - net, params = nnvm.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1') - elif name == 'inception_v3': - input_shape = (1, 3, 299, 299) - net, params = nnvm.testing.inception_v3.get_workload(batch_size=batch_size) - elif name == 'custom': - # an example for custom network - from nnvm.testing import utils - net = nnvm.sym.Variable('data') - net = nnvm.sym.conv2d(net, channels=4, kernel_size=(3,3), padding=(1,1)) - net = nnvm.sym.flatten(net) - net = nnvm.sym.dense(net, units=1000) - net, params = utils.create_workload(net, batch_size, (3, 224, 224)) - elif name == 'mxnet': - # an example for mxnet model - from mxnet.gluon.model_zoo.vision import get_model - block = get_model('resnet18_v1', pretrained=True) - net, params = nnvm.frontend.from_mxnet(block) - net = nnvm.sym.softmax(net) - else: - raise ValueError("Unsupported network: " + name) - - return net, params, input_shape, output_shape - - -################################################################# -# Start RPC Tracker -# ----------------- -# TVM uses RPC session to communicate with ARM boards. -# During tuning, the tuner will send the generated code to the board and -# measure the speed of code on the board. -# -# To scale up the tuning, TVM uses RPC Tracker to manage distributed devices. -# The RPC Tracker is a centralized master node. We can register all devices to -# the tracker. For example, if we have 10 phones, we can register all of them -# to the tracker, and run 10 measurements in parallel, accelerating the tuning process. -# -# To start an RPC tracker, run this command on the host machine. The tracker is -# required during the whole tuning process, so we need to open a new terminal for -# this command: -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190 -# -# The expected output is -# -# .. code-block:: bash -# -# INFO:RPCTracker:bind to 0.0.0.0:9190 - -################################################################# -# Register devices to RPC Tracker -# ----------------------------------- -# Now we can register our devices to the tracker. The first step is to -# build tvm runtime for the ARM devices. -# -# * For Linux: -# Follow this section :ref:`build-tvm-runtime-on-device` to build -# tvm runtime on the device. Then register the device to tracker by -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_server --tracker=[HOST_IP]:9190 --key=rk3399 -# -# (replace :code:`[HOST_IP]` with the IP address of your host machine) -# -# * For Android: -# Follow this `readme page `_ to -# install tvm rpc apk on the android device. Make sure you can pass the android rpc test. -# Then you have already registred your device. During tuning, you have to go to developer option -# and enable "Keep screen awake during changing" and charge your phone to make it stable. -# -# After registering devices, we can confirm it by querying rpc_tracker -# -# .. code-block:: bash -# -# python -m tvm.exec.query_rpc_tracker --host=0.0.0.0 --port=9190 -# -# For example, if we have 2 Huawei mate10 pro, 11 Raspberry Pi 3B and 2 rk3399, -# the output can be -# -# .. code-block:: bash -# -# Queue Status -# ---------------------------------- -# key total free pending -# ---------------------------------- -# mate10pro 2 2 0 -# rk3399 2 2 0 -# rpi3b 11 11 0 -# ---------------------------------- -# -# You can register multiple devices to the tracker to accelerate the measurement in tuning. - -########################################### -# Set Tuning Options -# ------------------ -# Before tuning, we should apply some configurations. Here I use an RK3399 board -# as example. In your setting, you should modify the target and device_key accordingly. -# set :code:`use_android` to True if you use android phone. - -#### DEVICE CONFIG #### - -# Replace "aarch64-linux-gnu" with the correct target of your board. -# This target is used for cross compilation. You can query it by :code:`gcc -v` on your device. -target = tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu') - -# Also replace this with the device key in your tracker -device_key = 'rk3399' - -# Set this to True if you use android phone -use_android = False - -#### TUNING OPTION #### -network = 'resnet-18' -log_file = "%s.%s.log" % (device_key, network) -dtype = 'float32' - -tuning_option = { - 'log_filename': log_file, - - 'tuner': 'xgb', - 'n_trial': 2000, - 'early_stopping': 800, - - 'measure_option': autotvm.measure_option( - builder=autotvm.LocalBuilder( - build_func='ndk' if use_android else 'default'), - runner=autotvm.RPCRunner( - device_key, host='localhost', port=9190, - number=5, - timeout=4, - ), - ), -} - -#################################################################### -# -# .. note:: How to set tuning options -# -# In general, the default values provided here work well. -# If you have enough time budget, you can set :code:`n_trial`, :code:`early_stopping` larger, -# which makes the tuning run longer. -# If your device runs very slow or your conv2d operators have many GFLOPs, considering to -# set timeout larger. -# -# If your model has depthwise convolution, you could consider setting -# :code:`try_spatial_pack_depthwise` be :code:`True`, which perform better than default -# optimization in general. For example, on ARM CPU A53 2.0GHz, we find it could boost 1.6x -# performance of depthwise convolution on Mobilenet V1 model. - -################################################################### -# Begin Tuning -# ------------ -# Now we can extract tuning tasks from the network and begin tuning. -# Here, we provide a simple utility function to tune a list of tasks. -# This function is just an initial implementation which tunes them in sequential order. -# We will introduce a more sophisticated tuning scheduler in the future. - -# You can skip the implementation of this function for this tutorial. -def tune_tasks(tasks, - measure_option, - tuner='xgb', - n_trial=1000, - early_stopping=None, - log_filename='tuning.log', - use_transfer_learning=True, - try_winograd=True, - try_spatial_pack_depthwise=False): - if try_winograd: - for i in range(len(tasks)): - try: # try winograd template - tsk = autotvm.task.create(tasks[i].name, tasks[i].args, - tasks[i].target, tasks[i].target_host, 'winograd') - input_channel = tsk.workload[1][1] - if input_channel >= 64: - tasks[i] = tsk - except Exception: - pass - - # if we want to use spatial pack for depthwise convolution - if try_spatial_pack_depthwise: - tuner = 'xgb_knob' - for i in range(len(tasks)): - if tasks[i].name == 'topi_nn_depthwise_conv2d_nchw': - tsk = autotvm.task.create(tasks[i].name, tasks[i].args, - tasks[i].target, tasks[i].target_host, - 'contrib_spatial_pack') - tasks[i] = tsk - - # create tmp log file - tmp_log_file = log_filename + ".tmp" - if os.path.exists(tmp_log_file): - os.remove(tmp_log_file) - - for i, tsk in enumerate(reversed(tasks)): - prefix = "[Task %2d/%2d] " % (i+1, len(tasks)) - - # create tuner - if tuner == 'xgb' or tuner == 'xgb-rank': - tuner_obj = XGBTuner(tsk, loss_type='rank') - elif tuner == 'xgb_knob': - tuner_obj = XGBTuner(tsk, loss_type='rank', feature_type='knob') - elif tuner == 'ga': - tuner_obj = GATuner(tsk, pop_size=50) - elif tuner == 'random': - tuner_obj = RandomTuner(tsk) - elif tuner == 'gridsearch': - tuner_obj = GridSearchTuner(tsk) - else: - raise ValueError("Invalid tuner: " + tuner) - - if use_transfer_learning: - if os.path.isfile(tmp_log_file): - tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file)) - - # do tuning - n_trial = min(n_trial, len(tsk.config_space)) - tuner_obj.tune(n_trial=n_trial, - early_stopping=early_stopping, - measure_option=measure_option, - callbacks=[ - autotvm.callback.progress_bar(n_trial, prefix=prefix), - autotvm.callback.log_to_file(tmp_log_file)]) - - # pick best records to a cache file - autotvm.record.pick_best(tmp_log_file, log_filename) - os.remove(tmp_log_file) - - -######################################################################## -# Finally, we launch tuning jobs and evaluate the end-to-end performance. - -def tune_and_evaluate(tuning_opt): - # extract workloads from nnvm graph - print("Extract tasks...") - net, params, input_shape, out_shape = get_network(network, batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d,)) - - # run tuning tasks - print("Tuning...") - tune_tasks(tasks, **tuning_opt) - - # compile kernels with history best records - with autotvm.apply_history_best(log_file): - print("Compile...") - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build( - net, target=target, shape={'data': input_shape}, params=params, dtype=dtype) - - # export library - tmp = tempdir() - if use_android: - from tvm.contrib import ndk - filename = "net.so" - lib.export_library(tmp.relpath(filename), ndk.create_shared) - else: - filename = "net.tar" - lib.export_library(tmp.relpath(filename)) - - # upload module to device - print("Upload...") - remote = autotvm.measure.request_remote(device_key, 'localhost', 9190, - timeout=10000) - remote.upload(tmp.relpath(filename)) - rlib = remote.load_module(filename) - - # upload parameters to device - ctx = remote.context(str(target), 0) - module = runtime.create(graph, rlib, ctx) - data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype)) - module.set_input('data', data_tvm) - module.set_input(**params) - - # evaluate - print("Evaluate inference time cost...") - ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=10) - prof_res = np.array(ftimer().results) * 1000 # convert to millisecond - print("Mean inference time (std dev): %.2f ms (%.2f ms)" % - (np.mean(prof_res), np.std(prof_res))) - -# We do not run the tuning in our webpage server since it takes too long. -# Uncomment the following line to run it by yourself. - -# tune_and_evaluate(tuning_option) - -###################################################################### -# Sample Output -# ------------- -# The tuning needs to compile many programs and extract feature from them. -# So a high performance CPU is recommended. -# One sample output is listed below. -# It takes about 2 hours on a 32T AMD Ryzen Threadripper. -# -# .. code-block:: bash -# -# Extract tasks... -# Tuning... -# [Task 1/12] Current/Best: 22.37/ 52.19 GFLOPS | Progress: (544/1000) | 406.59 s Done. -# [Task 2/12] Current/Best: 6.51/ 18.77 GFLOPS | Progress: (608/1000) | 325.05 s Done. -# [Task 3/12] Current/Best: 4.67/ 24.87 GFLOPS | Progress: (480/1000) | 372.31 s Done. -# [Task 4/12] Current/Best: 11.35/ 46.83 GFLOPS | Progress: (736/1000) | 602.39 s Done. -# [Task 5/12] Current/Best: 1.01/ 19.80 GFLOPS | Progress: (448/1000) | 262.16 s Done. -# [Task 6/12] Current/Best: 2.47/ 23.76 GFLOPS | Progress: (672/1000) | 563.85 s Done. -# [Task 7/12] Current/Best: 14.57/ 33.97 GFLOPS | Progress: (544/1000) | 465.15 s Done. -# [Task 8/12] Current/Best: 1.13/ 17.65 GFLOPS | Progress: (576/1000) | 365.08 s Done. -# [Task 9/12] Current/Best: 14.45/ 22.66 GFLOPS | Progress: (928/1000) | 724.25 s Done. -# [Task 10/12] Current/Best: 3.22/ 15.36 GFLOPS | Progress: (864/1000) | 564.27 s Done. -# [Task 11/12] Current/Best: 11.03/ 32.23 GFLOPS | Progress: (736/1000) | 635.15 s Done. -# [Task 12/12] Current/Best: 8.00/ 21.65 GFLOPS | Progress: (1000/1000) | 1111.81 s Done. -# Compile... -# Upload... -# Evaluate inference time cost... -# Mean inference time (std dev): 162.59 ms (0.06 ms) - -###################################################################### -# -# .. note:: **Experiencing Difficulties?** -# -# The auto tuning module is error-prone. If you always see " 0.00/ 0.00 GFLOPS", -# then there must be something wrong. -# -# First, make sure you set the correct configuration of your device. -# Then, you can print debug information by adding these lines in the beginning -# of the script. It will print every measurement result, where you can find useful -# error messages. -# -# .. code-block:: python -# -# import logging -# logging.getLogger('autotvm').setLevel(logging.DEBUG) -# -# Finally, always feel free to ask our community for help on https://discuss.tvm.ai diff --git a/nnvm/tutorials/tune_nnvm_cuda.py b/nnvm/tutorials/tune_nnvm_cuda.py deleted file mode 100644 index be3f79992cb6..000000000000 --- a/nnvm/tutorials/tune_nnvm_cuda.py +++ /dev/null @@ -1,391 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Auto-tuning a convolutional network for NVIDIA GPU (NNVM) -========================================================= -**Author**: `Lianmin Zheng `_ - -Auto-tuning for specific devices and workloads is critical for getting the -best performance. This is a tutorial on how to tune a whole convolutional -network for NVIDIA GPU. - -The operator implementation for NVIDIA GPU in TVM is written in template form. -The template has many tunable knobs (tile factor, unrolling, etc). -We will tune all convolution and depthwise convolution operators -in the neural network. After tuning, we produce a log file which stores -the best knob values for all required operators. When the tvm compiler compiles -these operators, it will query this log file to get the best knob values. - -We also released pre-tuned parameters for some NVIDIA GPUs. You can go to -`NVIDIA GPU Benchmark `_ -to see the results. -""" - -###################################################################### -# Install dependencies -# -------------------- -# To use the autotvm package in tvm, we need to install some extra dependencies. -# (change "3" to "2" if you use python2): -# -# .. code-block:: bash -# -# pip3 install --user psutil xgboost tornado -# -# To make tvm run faster during tuning, it is recommended to use cython -# as FFI of tvm. In the root directory of tvm, execute: -# -# .. code-block:: bash -# -# pip3 install --user cython -# sudo make cython3 -# -# Now return to python code. Import packages. - -import os - -import numpy as np - -import nnvm.testing -import nnvm.compiler -import tvm -from tvm import autotvm -from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner -from tvm.contrib.util import tempdir -import tvm.contrib.graph_runtime as runtime - -################################################################# -# Define Network -# -------------- -# First we need to define the network in nnvm symbol API. -# We can load some pre-defined network from :code:`nnvm.testing`. -# We can also load models from MXNet, ONNX and TensorFlow (see NNVM -# tutorials :ref:`tutorial-nnvm` for more details). - -def get_network(name, batch_size): - """Get the symbol definition and random weight of a network""" - input_shape = (batch_size, 3, 224, 224) - output_shape = (batch_size, 1000) - - if "resnet" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size) - elif "vgg" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size) - elif name == 'mobilenet': - net, params = nnvm.testing.mobilenet.get_workload(batch_size=batch_size) - elif name == 'squeezenet_v1.1': - net, params = nnvm.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1') - elif name == 'inception_v3': - input_shape = (1, 3, 299, 299) - net, params = nnvm.testing.inception_v3.get_workload(batch_size=batch_size) - elif name == 'custom': - # an example for custom network - from nnvm.testing import utils - net = nnvm.sym.Variable('data') - net = nnvm.sym.conv2d(net, channels=4, kernel_size=(3,3), padding=(1,1)) - net = nnvm.sym.flatten(net) - net = nnvm.sym.dense(net, units=1000) - net, params = utils.create_workload(net, batch_size, (3, 224, 224)) - elif name == 'mxnet': - # an example for mxnet model - from mxnet.gluon.model_zoo.vision import get_model - block = get_model('resnet18_v1', pretrained=True) - net, params = nnvm.frontend.from_mxnet(block) - net = nnvm.sym.softmax(net) - else: - raise ValueError("Unsupported network: " + name) - - return net, params, input_shape, output_shape - -########################################### -# Set Tuning Options -# ------------------ -# Before tuning, we apply some configurations. - -#### DEVICE CONFIG #### -target = tvm.target.cuda() - -#### TUNING OPTION #### -network = 'resnet-18' -log_file = "%s.log" % network -dtype = 'float32' - -tuning_option = { - 'log_filename': log_file, - - 'tuner': 'xgb', - 'n_trial': 2000, - 'early_stopping': 600, - - 'measure_option': autotvm.measure_option( - builder=autotvm.LocalBuilder(timeout=10), - runner=autotvm.LocalRunner(number=20, repeat=3, timeout=4, min_repeat_ms=150), - ), -} - -#################################################################### -# -# .. note:: How to set tuning options -# -# In general, the default value provided here works well. -# -# If you have large time budget, you can set :code:`n_trial`, :code:`early_stopping` larger, -# which makes the tuning runs longer. -# -# If you have multiple devices, you can use all of them for measurement to -# accelerate the tuning process. (see the 'Scale up measurement` section below). -# - -################################################################### -# Begin Tuning -# ------------ -# Now we can extract tuning tasks from the network and begin tuning. -# Here, we provide a simple utility function to tune a list of tasks. -# This function is just an initial implementation which tunes them in sequential order. -# We will introduce a more sophisticated tuning scheduler in the future. - -# You can skip the implementation of this function for this tutorial. -def tune_tasks(tasks, - measure_option, - tuner='xgb', - n_trial=1000, - early_stopping=None, - log_filename='tuning.log', - use_transfer_learning=True, - try_winograd=True): - if try_winograd: - for i in range(len(tasks)): - try: # try winograd template - tsk = autotvm.task.create(tasks[i].name, tasks[i].args, - tasks[i].target, tasks[i].target_host, 'winograd') - input_channel = tsk.workload[1][1] - if input_channel >= 64: - tasks[i] = tsk - except Exception: - pass - - # create tmp log file - tmp_log_file = log_filename + ".tmp" - if os.path.exists(tmp_log_file): - os.remove(tmp_log_file) - - for i, tsk in enumerate(reversed(tasks)): - prefix = "[Task %2d/%2d] " %(i+1, len(tasks)) - - # create tuner - if tuner == 'xgb' or tuner == 'xgb-rank': - tuner_obj = XGBTuner(tsk, loss_type='rank') - elif tuner == 'ga': - tuner_obj = GATuner(tsk, pop_size=100) - elif tuner == 'random': - tuner_obj = RandomTuner(tsk) - elif tuner == 'gridsearch': - tuner_obj = GridSearchTuner(tsk) - else: - raise ValueError("Invalid tuner: " + tuner) - - if use_transfer_learning: - if os.path.isfile(tmp_log_file): - tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file)) - - # do tuning - n_trial = min(n_trial, len(tsk.config_space)) - tuner_obj.tune(n_trial=n_trial, - early_stopping=early_stopping, - measure_option=measure_option, - callbacks=[ - autotvm.callback.progress_bar(n_trial, prefix=prefix), - autotvm.callback.log_to_file(tmp_log_file)]) - - # pick best records to a cache file - autotvm.record.pick_best(tmp_log_file, log_filename) - os.remove(tmp_log_file) - - -######################################################################## -# Finally, we launch tuning jobs and evaluate the end-to-end performance. - -def tune_and_evaluate(tuning_opt): - # extract workloads from nnvm graph - print("Extract tasks...") - net, params, input_shape, out_shape = get_network(network, batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d,)) - - # run tuning tasks - print("Tuning...") - tune_tasks(tasks, **tuning_opt) - - # compile kernels with history best records - with autotvm.apply_history_best(log_file): - print("Compile...") - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build( - net, target=target, shape={'data': input_shape}, params=params, dtype=dtype) - - # export library - tmp = tempdir() - filename = "net.tar" - lib.export_library(tmp.relpath(filename)) - - # load parameters - ctx = tvm.context(str(target), 0) - module = runtime.create(graph, lib, ctx) - data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype)) - module.set_input('data', data_tvm) - module.set_input(**params) - - # evaluate - print("Evaluate inference time cost...") - ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=600) - prof_res = np.array(ftimer().results) * 1000 # convert to millisecond - print("Mean inference time (std dev): %.2f ms (%.2f ms)" % - (np.mean(prof_res), np.std(prof_res))) - -# We do not run the tuning in our webpage server since it takes too long. -# Uncomment the following line to run it by yourself. - -# tune_and_evaluate(tuning_option) - -###################################################################### -# Sample Output -# ------------- -# The tuning needs to compile many programs and extract feature from them. -# So a high performance CPU is recommended. One sample output is listed below. -# It takes about 4 hours to get the following output on a 32T AMD Ryzen Threadripper. -# The tuning target is NVIDIA 1080 Ti. -# (You can see some errors during compilation. If the tuning is not stuck, it is okay.) -# -# .. code-block:: bash -# -# Extract tasks... -# Tuning... -# [Task 1/12] Current/Best: 541.83/3570.66 GFLOPS | Progress: (960/2000) | 1001.31 s Done. -# [Task 2/12] Current/Best: 0.56/ 803.33 GFLOPS | Progress: (704/2000) | 608.08 s Done. -# [Task 3/12] Current/Best: 103.69/1141.25 GFLOPS | Progress: (768/2000) | 702.13 s Done. -# [Task 4/12] Current/Best: 2905.03/3925.15 GFLOPS | Progress: (864/2000) | 745.94 sterminate called without an active exception -# [Task 4/12] Current/Best: 2789.36/3925.15 GFLOPS | Progress: (1056/2000) | 929.40 s Done. -# [Task 5/12] Current/Best: 89.06/1076.24 GFLOPS | Progress: (704/2000) | 601.73 s Done. -# [Task 6/12] Current/Best: 40.39/2129.02 GFLOPS | Progress: (1088/2000) | 1125.76 s Done. -# [Task 7/12] Current/Best: 4090.53/5007.02 GFLOPS | Progress: (800/2000) | 903.90 s Done. -# [Task 8/12] Current/Best: 4.78/1272.28 GFLOPS | Progress: (768/2000) | 749.14 s Done. -# [Task 9/12] Current/Best: 1391.45/2325.08 GFLOPS | Progress: (992/2000) | 1084.87 s Done. -# [Task 10/12] Current/Best: 1995.44/2383.59 GFLOPS | Progress: (864/2000) | 862.60 s Done. -# [Task 11/12] Current/Best: 4093.94/4899.80 GFLOPS | Progress: (224/2000) | 240.92 sterminate called without an active exception -# [Task 11/12] Current/Best: 3487.98/4909.91 GFLOPS | Progress: (480/2000) | 534.96 sterminate called without an active exception -# [Task 11/12] Current/Best: 4636.84/4912.17 GFLOPS | Progress: (1184/2000) | 1381.16 sterminate called without an active exception -# [Task 11/12] Current/Best: 50.12/4912.17 GFLOPS | Progress: (1344/2000) | 1602.81 s Done. -# [Task 12/12] Current/Best: 3581.31/4286.30 GFLOPS | Progress: (736/2000) | 943.52 s Done. -# Compile... -# Evaluate inference time cost... -# Mean inference time (std dev): 1.07 ms (0.05 ms) -# -# As a reference baseline, the time cost of MXNet + TensorRT on resnet-18 is 1.30ms. So we are a little faster. - -###################################################################### -# -# .. note:: **Experiencing Difficulties?** -# -# The auto tuning module is error-prone. If you always see " 0.00/ 0.00 GFLOPS", -# then there must be something wrong. -# -# First, make sure you set the correct configuration of your device. -# Then, you can print debug information by adding these lines in the beginning -# of the script. It will print every measurement result, where you can find useful -# error messages. -# -# .. code-block:: python -# -# import logging -# logging.getLogger('autotvm').setLevel(logging.DEBUG) -# -# Finally, always feel free to ask our community for help on https://discuss.tvm.ai - - -################################################################# -# Scale up measurement by using multiple devices -# ---------------------------------------------- -# -# If you have multiple devices, you can use all of them for measurement. -# TVM uses the RPC Tracker to manage distributed devices. -# The RPC Tracker is a centralized master node. We can register all devices to -# the tracker. For example, if we have 10 GPU cards, we can register all of them -# to the tracker, and run 10 measurements in parallel, accelerating the tuning process. -# -# To start an RPC tracker, run this command on the host machine. The tracker is -# required during the whole tuning process, so we need to open a new terminal for -# this command: -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190 -# -# The expected output is -# -# .. code-block:: bash -# -# INFO:RPCTracker:bind to 0.0.0.0:9190 -# -# Then open another new terminal for the RPC server. We need to start one server -# for each dedicated device. We use a string key to distinguish the types of devices. -# You can pick a name you like. -# (Note: For rocm backend, there are some internal errors with the compiler, -# we need to add `--no-fork` to the argument list.) -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_server --tracker=localhost:9190 --key=1080ti -# -# After registering devices, we can confirm it by querying rpc_tracker -# -# .. code-block:: bash -# -# python -m tvm.exec.query_rpc_tracker --host=localhost --port=9190 -# -# For example, if we have four 1080ti, two titanx and one gfx900, the output can be -# -# .. code-block:: bash -# -# Queue Status -# ---------------------------------- -# key total free pending -# ---------------------------------- -# 1080ti 4 4 0 -# titanx 2 2 0 -# gfx900 1 1 0 -# ---------------------------------- -# -# Finally, we need to change the tuning option to use RPCRunner. Use the code below -# to replace the corresponding part above. - -tuning_option = { - 'log_filename': log_file, - - 'tuner': 'xgb', - 'n_trial': 2000, - 'early_stopping': 600, - - 'measure_option': autotvm.measure_option( - builder=autotvm.LocalBuilder(timeout=10), - runner=autotvm.RPCRunner( - '1080ti', # change the device key to your key - 'localhost', 9190, - number=20, repeat=3, timeout=4, min_repeat_ms=150), - ), -} diff --git a/nnvm/tutorials/tune_nnvm_mobile_gpu.py b/nnvm/tutorials/tune_nnvm_mobile_gpu.py deleted file mode 100644 index 8946dc1833bd..000000000000 --- a/nnvm/tutorials/tune_nnvm_mobile_gpu.py +++ /dev/null @@ -1,416 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Auto-tuning a convolutional network for Mobile GPU (NNVM) -========================================================= -**Author**: `Lianmin Zheng `_ - -Auto-tuning for a specific device is critical for getting the best -performance. This is a tutorial about how to tune a whole convolutional -network. - -The operator implementation for Mobile GPU in TVM is written in template form. -The template has many tunable knobs (tile factor, vectorization, unrolling, etc). -We will tune all convolution, depthwise convolution and dense operators -in the neural network. After tuning, we produce a log file which stores -the best knob values for all required operators. When the tvm compiler compiles -these operators, it will query this log file to get the best knob values. - -We also released pre-tuned parameters for some arm devices. You can go to -`Mobile GPU Benchmark `_ -to see the results. -""" - -###################################################################### -# Install dependencies -# -------------------- -# To use the autotvm package in tvm, we need to install some extra dependencies. -# (change "3" to "2" if you use python2): -# -# .. code-block:: bash -# -# pip3 install --user psutil xgboost tornado -# -# To make tvm run faster during tuning, it is recommended to use cython -# as FFI of tvm. In the root directory of tvm, execute -# (change "3" to "2" if you use python2): -# -# .. code-block:: bash -# -# pip3 install --user cython -# sudo make cython3 -# -# Now return to python code. Import packages. - -import os - -import numpy as np - -import nnvm.testing -import nnvm.compiler -import tvm -from tvm import autotvm -from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner -from tvm.contrib.util import tempdir -import tvm.contrib.graph_runtime as runtime - -################################################################# -# Define network -# -------------- -# First we need to define the network in nnvm symbol API. -# We can load some pre-defined network from :code:`nnvm.testing`. -# We can also load models from MXNet, ONNX and TensorFlow (see NNVM -# tutorials :ref:`tutorial-nnvm` for more details). - -def get_network(name, batch_size): - """Get the symbol definition and random weight of a network""" - input_shape = (batch_size, 3, 224, 224) - output_shape = (batch_size, 1000) - - if "resnet" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size) - elif "vgg" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size) - elif name == 'mobilenet': - net, params = nnvm.testing.mobilenet.get_workload(batch_size=batch_size) - elif name == 'squeezenet_v1.1': - net, params = nnvm.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1') - elif name == 'inception_v3': - input_shape = (1, 3, 299, 299) - net, params = nnvm.testing.inception_v3.get_workload(batch_size=batch_size) - elif name == 'custom': - # an example for custom network - from nnvm.testing import utils - net = nnvm.sym.Variable('data') - net = nnvm.sym.conv2d(net, channels=4, kernel_size=(3,3), padding=(1,1)) - net = nnvm.sym.flatten(net) - net = nnvm.sym.dense(net, units=1000) - net, params = utils.create_workload(net, batch_size, (3, 224, 224)) - elif name == 'mxnet': - # an example for mxnet model - from mxnet.gluon.model_zoo.vision import get_model - block = get_model('resnet18_v1', pretrained=True) - net, params = nnvm.frontend.from_mxnet(block) - net = nnvm.sym.softmax(net) - else: - raise ValueError("Unsupported network: " + name) - - return net, params, input_shape, output_shape - - -################################################################# -# Start RPC Tracker -# ----------------- -# TVM uses RPC session to communicate with ARM boards. -# During tuning, the tuner will send the generated code to the board and -# measure the speed of code on the board. -# -# To scale up the tuning, TVM uses RPC Tracker to manage distributed devices. -# The RPC Tracker is a centralized master node. We can register all devices to -# the tracker. For example, if we have 10 phones, we can register all of them -# to the tracker, and run 10 measurements in parallel, accelerating the tuning process. -# -# To start an RPC tracker, run this command on the host machine. The tracker is -# required during the whole tuning process, so we need to open a new terminal for -# this command: -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190 -# -# The expected output is -# -# .. code-block:: bash -# -# INFO:RPCTracker:bind to 0.0.0.0:9190 - -################################################################# -# Register devices to RPC Tracker -# ----------------------------------- -# Now we can register our devices to the tracker. The first step is to -# build tvm runtime for the ARM devices. -# -# * For Linux: -# Follow this section :ref:`build-tvm-runtime-on-device` to build -# tvm runtime on the device. Then register the device to tracker by -# -# .. code-block:: bash -# -# python -m tvm.exec.rpc_server --tracker=[HOST_IP]:9190 --key=rk3399 -# -# (replace :code:`[HOST_IP]` with the IP address of your host machine) -# -# * For Android: -# Follow this `readme page `_ to -# install tvm rpc apk on the android device. Make sure you can pass the android rpc test. -# Then you have already registred your device. During tuning, you have to go to developer option -# and enable "Keep screen awake during changing" and charge your phone to make it stable. -# -# After registering devices, we can confirm it by querying rpc_tracker -# -# .. code-block:: bash -# -# python -m tvm.exec.query_rpc_tracker --host=0.0.0.0 --port=9190 -# -# For example, if we have 2 Huawei mate10 pro, 11 Raspberry Pi 3B and 2 rk3399, -# the output can be -# -# .. code-block:: bash -# -# Queue Status -# ---------------------------------- -# key total free pending -# ---------------------------------- -# mate10pro 2 2 0 -# rk3399 2 2 0 -# rpi3b 11 11 0 -# ---------------------------------- -# -# You can register multiple devices to the tracker to accelerate the measurement in tuning. - -########################################### -# Set Tuning Options -# ------------------ -# Before tuning, we should apply some configurations. Here I use an RK3399 board -# as example. In your setting, you should modify the target and device_key accordingly. -# set :code:`use_android` to True if you use android phone. - -#### DEVICE CONFIG #### - -target = tvm.target.create('opencl -device=mali') - -# Replace "aarch64-linux-gnu" with the correct target of your board. -# This target host is used for cross compilation. You can query it by :code:`gcc -v` on your device. -target_host = 'llvm -target=aarch64-linux-gnu' - -# Also replace this with the device key in your tracker -device_key = 'rk3399' - -# Set this to True if you use android phone -use_android = False - -#### TUNING OPTION #### -network = 'resnet-18' -log_file = "%s.%s.log" % (device_key, network) -dtype = 'float32' - -tuning_option = { - 'log_filename': log_file, - - 'tuner': 'xgb', - 'n_trial': 1000, - 'early_stopping': 450, - - 'measure_option': autotvm.measure_option( - builder=autotvm.LocalBuilder( - build_func='ndk' if use_android else 'default'), - runner=autotvm.RPCRunner( - device_key, host='localhost', port=9190, - number=10, - timeout=5, - ), - ), -} - -#################################################################### -# -# .. note:: How to set tuning options -# -# In general, the default values provided here work well. -# If you have enough time budget, you can set :code:`n_trial`, :code:`early_stopping` larger, -# which makes the tuning run longer. -# If your device runs very slow or your conv2d operators have many GFLOPs, considering to -# set timeout larger. -# - -################################################################### -# Begin Tuning -# ------------ -# Now we can extract tuning tasks from the network and begin tuning. -# Here, we provide a simple utility function to tune a list of tasks. -# This function is just an initial implementation which tunes them in sequential order. -# We will introduce a more sophisticated tuning scheduler in the future. - -# You can skip the implementation of this function for this tutorial. -def tune_tasks(tasks, - measure_option, - tuner='xgb', - n_trial=1000, - early_stopping=None, - log_filename='tuning.log', - use_transfer_learning=True, - try_winograd=True): - if try_winograd: - for i in range(len(tasks)): - try: # try winograd template - tsk = autotvm.task.create(tasks[i].name, tasks[i].args, - tasks[i].target, tasks[i].target_host, 'winograd') - tasks.append(tsk) - except Exception: - pass - - # create tmp log file - tmp_log_file = log_filename + ".tmp" - if os.path.exists(tmp_log_file): - os.remove(tmp_log_file) - - for i, tsk in enumerate(reversed(tasks)): - prefix = "[Task %2d/%2d] " % (i+1, len(tasks)) - - # create tuner - if tuner == 'xgb' or tuner == 'xgb-rank': - tuner_obj = XGBTuner(tsk, loss_type='rank') - elif tuner == 'ga': - tuner_obj = GATuner(tsk, pop_size=50) - elif tuner == 'random': - tuner_obj = RandomTuner(tsk) - elif tuner == 'gridsearch': - tuner_obj = GridSearchTuner(tsk) - else: - raise ValueError("Invalid tuner: " + tuner) - - if use_transfer_learning: - if os.path.isfile(tmp_log_file): - tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file)) - - # do tuning - n_trial = min(n_trial, len(tsk.config_space)) - tuner_obj.tune(n_trial=n_trial, - early_stopping=early_stopping, - measure_option=measure_option, - callbacks=[ - autotvm.callback.progress_bar(n_trial, prefix=prefix), - autotvm.callback.log_to_file(tmp_log_file)]) - - # pick best records to a cache file - autotvm.record.pick_best(tmp_log_file, log_filename) - os.remove(tmp_log_file) - - -######################################################################## -# Finally, we launch tuning jobs and evaluate the end-to-end performance. - -def tune_and_evaluate(tuning_opt): - # extract workloads from nnvm graph - print("Extract tasks...") - net, params, input_shape, out_shape = get_network(network, batch_size=1) - tasks = autotvm.task.extract_from_graph(net, target=target, target_host=target_host, - shape={'data': input_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d, nnvm.sym.dense)) - - # run tuning tasks - print("Tuning...") - tune_tasks(tasks, **tuning_opt) - - # compile kernels with history best records - with autotvm.apply_history_best(log_file): - print("Compile...") - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build( - net, target=target, target_host=target_host, - shape={'data': input_shape}, params=params, dtype=dtype) - - # export library - tmp = tempdir() - if use_android: - from tvm.contrib import ndk - filename = "net.so" - lib.export_library(tmp.relpath(filename), ndk.create_shared) - else: - filename = "net.tar" - lib.export_library(tmp.relpath(filename)) - - # upload module to device - print("Upload...") - remote = autotvm.measure.request_remote(device_key, 'localhost', 9190, - timeout=10000) - remote.upload(tmp.relpath(filename)) - rlib = remote.load_module(filename) - - # upload parameters to device - ctx = remote.context(str(target), 0) - module = runtime.create(graph, rlib, ctx) - data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype)) - module.set_input('data', data_tvm) - module.set_input(**params) - - # evaluate - print("Evaluate inference time cost...") - ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=30) - prof_res = np.array(ftimer().results) * 1000 # convert to millisecond - print("Mean inference time (std dev): %.2f ms (%.2f ms)" % - (np.mean(prof_res), np.std(prof_res))) - -# We do not run the tuning in our webpage server since it takes too long. -# Uncomment the following line to run it by yourself. - -# tune_and_evaluate(tuning_option) - -###################################################################### -# Sample Output -# ------------- -# The tuning needs to compile many programs and extract feature from them. -# So a high performance CPU is recommended. -# One sample output is listed below. It takes about 3 hours on a 32T AMD Ryzen Threadripper. -# -# .. code-block:: bash -# -# Extract tasks... -# Tuning... -# [Task 1/17] Current/Best: 25.30/ 39.12 GFLOPS | Progress: (992/1000) | 751.22 s Done. -# [Task 2/17] Current/Best: 40.70/ 45.50 GFLOPS | Progress: (736/1000) | 545.46 s Done. -# [Task 3/17] Current/Best: 38.83/ 42.35 GFLOPS | Progress: (992/1000) | 1549.85 s Done. -# [Task 4/17] Current/Best: 23.31/ 31.02 GFLOPS | Progress: (640/1000) | 1059.31 s Done. -# [Task 5/17] Current/Best: 0.06/ 2.34 GFLOPS | Progress: (544/1000) | 305.45 s Done. -# [Task 6/17] Current/Best: 10.97/ 17.20 GFLOPS | Progress: (992/1000) | 1050.00 s Done. -# [Task 7/17] Current/Best: 8.98/ 10.94 GFLOPS | Progress: (928/1000) | 421.36 s Done. -# [Task 8/17] Current/Best: 4.48/ 14.86 GFLOPS | Progress: (704/1000) | 582.60 s Done. -# [Task 9/17] Current/Best: 10.30/ 25.99 GFLOPS | Progress: (864/1000) | 899.85 s Done. -# [Task 10/17] Current/Best: 11.73/ 12.52 GFLOPS | Progress: (608/1000) | 304.85 s Done. -# [Task 11/17] Current/Best: 15.26/ 18.68 GFLOPS | Progress: (800/1000) | 747.52 s Done. -# [Task 12/17] Current/Best: 17.48/ 26.71 GFLOPS | Progress: (1000/1000) | 1166.40 s Done. -# [Task 13/17] Current/Best: 0.96/ 11.43 GFLOPS | Progress: (960/1000) | 611.65 s Done. -# [Task 14/17] Current/Best: 17.88/ 20.22 GFLOPS | Progress: (672/1000) | 670.29 s Done. -# [Task 15/17] Current/Best: 11.62/ 13.98 GFLOPS | Progress: (736/1000) | 449.25 s Done. -# [Task 16/17] Current/Best: 19.90/ 23.83 GFLOPS | Progress: (608/1000) | 708.64 s Done. -# [Task 17/17] Current/Best: 17.98/ 22.75 GFLOPS | Progress: (736/1000) | 1122.60 s Done. -# Compile... -# Upload... -# Evaluate inference time cost... -# Mean inference time (std dev): 128.05 ms (7.74 ms) -# - -###################################################################### -# -# .. note:: **Experiencing Difficulties?** -# -# The auto tuning module is error-prone. If you always see " 0.00/ 0.00 GFLOPS", -# then there must be something wrong. -# -# First, make sure you set the correct configuration of your device. -# Then, you can print debug information by adding these lines in the beginning -# of the script. It will print every measurement result, where you can find useful -# error messages. -# -# .. code-block:: python -# -# import logging -# logging.getLogger('autotvm').setLevel(logging.DEBUG) -# -# Finally, always feel free to ask our community for help on https://discuss.tvm.ai diff --git a/nnvm/tutorials/tune_nnvm_x86.py b/nnvm/tutorials/tune_nnvm_x86.py deleted file mode 100644 index b7426271f06b..000000000000 --- a/nnvm/tutorials/tune_nnvm_x86.py +++ /dev/null @@ -1,236 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Auto-tuning a convolutional network for x86 CPU (NNVM) -====================================================== -**Author**: `Yao Wang `_ - -This is a tutorial about how to tune convolution neural network -for x86 cpu. -""" -import os -import numpy as np - -import nnvm.testing -import nnvm.compiler -import tvm -from tvm import autotvm -from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner -import tvm.contrib.graph_runtime as runtime - -################################################################# -# Define network -# -------------- -# First we need to define the network in nnvm symbol API. -# We can load some pre-defined network from :code:`nnvm.testing`. -# We can also load models from MXNet, ONNX and TensorFlow (see NNVM -# tutorials :ref:`tutorial-nnvm` for more details). -# -# In this tutorial, we choose resnet-18 as tuning example. - -def get_network(name, batch_size): - """Get the symbol definition and random weight of a network""" - input_shape = (batch_size, 3, 224, 224) - output_shape = (batch_size, 1000) - - if "resnet" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size) - elif "vgg" in name: - n_layer = int(name.split('-')[1]) - net, params = nnvm.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size) - elif name == 'mobilenet': - net, params = nnvm.testing.mobilenet.get_workload(batch_size=batch_size) - elif name == 'squeezenet_v1.1': - net, params = nnvm.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1') - elif name == 'inception_v3': - input_shape = (1, 3, 299, 299) - net, params = nnvm.testing.inception_v3.get_workload(batch_size=batch_size) - elif name == 'custom': - # an example for custom network - from nnvm.testing import utils - net = nnvm.sym.Variable('data') - net = nnvm.sym.conv2d(net, channels=4, kernel_size=(3,3), padding=(1,1)) - net = nnvm.sym.flatten(net) - net = nnvm.sym.dense(net, units=1000) - net, params = utils.create_workload(net, batch_size, (3, 224, 224)) - elif name == 'mxnet': - # an example for mxnet model - from mxnet.gluon.model_zoo.vision import get_model - block = get_model('resnet18_v1', pretrained=True) - net, params = nnvm.frontend.from_mxnet(block) - net = nnvm.sym.softmax(net) - else: - raise ValueError("Unsupported network: " + name) - - return net, params, input_shape, output_shape - -# Replace "llvm" with the correct target of your cpu. -# For example, for AWS EC2 c5 instance with Intel Xeon -# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512". -# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be -# "llvm -mcpu=core-avx2". -target = "llvm" - -batch_size = 1 -dtype = "float32" -model_name = "resnet-18" -log_file = "%s.log" % model_name - -# Set number of threads used for tuning based on the number of -# physical cpu cores on your machine. -num_threads = 1 -os.environ["TVM_NUM_THREADS"] = str(num_threads) - - -################################################################# -# Configure tensor tuning settings and create tasks -# ------------------------------------------------- -# To get better kernel execution performance on x86 cpu, -# we need to change data layout of convolution kernel from -# "NCHW" to "NCHWc". To deal with this situation, we define -# conv2d_NCHWc operator in topi. We will tune this operator -# instead of plain conv2d. -# -# We will use local mode for tuning configuration. RPC tracker -# mode can be setup similarly to the approach in -# :ref:`tune_nnvm_arm` tutorial. - -tuning_option = { - 'log_filename': log_file, - 'tuner': 'random', - 'early_stopping': None, - - 'measure_option': autotvm.measure_option( - builder=autotvm.LocalBuilder(), - runner=autotvm.LocalRunner(number=10, repeat=1, - min_repeat_ms=1000), - ), -} - -# You can skip the implementation of this function for this tutorial. -def tune_kernels(tasks, - measure_option, - tuner='gridsearch', - early_stopping=None, - log_filename='tuning.log'): - - for i, tsk in enumerate(tasks): - prefix = "[Task %2d/%2d] " % (i+1, len(tasks)) - - # converting conv2d tasks to conv2d_NCHWc tasks - op_name = tsk.workload[0] - if op_name == 'conv2d': - func_create = 'topi_x86_conv2d_NCHWc' - elif op_name == 'depthwise_conv2d_nchw': - func_create = 'topi_x86_depthwise_conv2d_NCHWc_from_nchw' - else: - raise ValueError("Tuning {} is not supported on x86".format(op_name)) - - task = autotvm.task.create(func_create, args=tsk.args, - target=target, template_key='direct') - task.workload = tsk.workload - - # create tuner - if tuner == 'xgb' or tuner == 'xgb-rank': - tuner_obj = XGBTuner(task, loss_type='rank') - elif tuner == 'ga': - tuner_obj = GATuner(task, pop_size=50) - elif tuner == 'random': - tuner_obj = RandomTuner(task) - elif tuner == 'gridsearch': - tuner_obj = GridSearchTuner(task) - else: - raise ValueError("Invalid tuner: " + tuner) - - # do tuning - n_trial=len(task.config_space) - tuner_obj.tune(n_trial=n_trial, - early_stopping=early_stopping, - measure_option=measure_option, - callbacks=[ - autotvm.callback.progress_bar(n_trial, prefix=prefix), - autotvm.callback.log_to_file(log_filename)]) - - -######################################################################## -# Finally, we launch tuning jobs and evaluate the end-to-end performance. - -def tune_and_evaluate(tuning_opt): - # extract workloads from nnvm graph - print("Extract tasks...") - net, params, data_shape, out_shape = get_network(model_name, batch_size) - tasks = autotvm.task.extract_from_graph(net, target=target, - shape={'data': data_shape}, dtype=dtype, - symbols=(nnvm.sym.conv2d,)) - - # run tuning tasks - print("Tuning...") - tune_kernels(tasks, **tuning_opt) - - # compile kernels with history best records - with autotvm.apply_history_best(log_file): - print("Compile...") - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build( - net, target=target, shape={'data': data_shape}, params=params, dtype=dtype) - - # upload parameters to device - ctx = tvm.cpu() - data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype)) - module = runtime.create(graph, lib, ctx) - module.set_input('data', data_tvm) - module.set_input(**params) - - # evaluate - print("Evaluate inference time cost...") - ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3) - prof_res = np.array(ftimer().results) * 1000 # convert to millisecond - print("Mean inference time (std dev): %.2f ms (%.2f ms)" % - (np.mean(prof_res), np.std(prof_res))) - -# We do not run the tuning in our webpage server since it takes too long. -# Uncomment the following line to run it by yourself. - -# tune_and_evaluate(tuning_option) - -###################################################################### -# Sample Output -# ------------- -# The tuning needs to compile many programs and extract feature from them. -# So a high performance CPU is recommended. -# One sample output is listed below. -# -# .. code-block:: bash -# -# Extract tasks... -# Tuning... -# [Task 1/12] Current/Best: 598.05/2497.63 GFLOPS | Progress: (252/252) | 1357.95 s Done. -# [Task 2/12] Current/Best: 522.63/2279.24 GFLOPS | Progress: (784/784) | 3989.60 s Done. -# [Task 3/12] Current/Best: 447.33/1927.69 GFLOPS | Progress: (784/784) | 3869.14 s Done. -# [Task 4/12] Current/Best: 481.11/1912.34 GFLOPS | Progress: (672/672) | 3274.25 s Done. -# [Task 5/12] Current/Best: 414.09/1598.45 GFLOPS | Progress: (672/672) | 2720.78 s Done. -# [Task 6/12] Current/Best: 508.96/2273.20 GFLOPS | Progress: (768/768) | 3718.75 s Done. -# [Task 7/12] Current/Best: 469.14/1955.79 GFLOPS | Progress: (576/576) | 2665.67 s Done. -# [Task 8/12] Current/Best: 230.91/1658.97 GFLOPS | Progress: (576/576) | 2435.01 s Done. -# [Task 9/12] Current/Best: 487.75/2295.19 GFLOPS | Progress: (648/648) | 3009.95 s Done. -# [Task 10/12] Current/Best: 182.33/1734.45 GFLOPS | Progress: (360/360) | 1755.06 s Done. -# [Task 11/12] Current/Best: 372.18/1745.15 GFLOPS | Progress: (360/360) | 1684.50 s Done. -# [Task 12/12] Current/Best: 215.34/2271.11 GFLOPS | Progress: (400/400) | 2128.74 s Done. -# Compile... -# Evaluate inference time cost... -# Mean inference time (std dev): 3.16 ms (0.03 ms) diff --git a/nnvm/tutorials/using_external_lib.py b/nnvm/tutorials/using_external_lib.py deleted file mode 100644 index cc52652ffa37..000000000000 --- a/nnvm/tutorials/using_external_lib.py +++ /dev/null @@ -1,234 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" -Using External Libraries in NNVM -================================ -**Author**: `Masahiro Masuda `_ - -This is a short tutorial on how to use external libraries such as cuDNN, or cuBLAS with NNVM. - -NNVM uses TVM internally to generate target specific code. For example, with cuda backend TVM generates cuda kernels for all layers in the user provided network. -But sometimes it is also helpful to incorporate external libraries developed by various vendors into NNVM. -Luckily, TVM has a mechanism to transparently call into these libraries. -For NNVM users, all we need to do is just to set a target string appropriately. - -Before we can use external libraries from NNVM, your TVM needs to be built with libraries you want to use. -For example, to use cuDNN, USE_CUDNN option in tvm/make/config.mk needs to be enabled, and cuDNN include and library directories need to be specified. - -To begin with, we import NNVM and TVM. -""" -import tvm -import numpy as np -from tvm.contrib import graph_runtime as runtime -import nnvm.symbol as sym -import nnvm.compiler -from nnvm.testing import utils - -###################################################################### -# Create a simple network -# ----------------------- -# Let's create a very simple network for demonstration. -# It consists of convolution, batch normalization, and ReLU activation. - -out_channels = 16 -data = sym.Variable(name="data") -simple_net = sym.conv2d(data=data, kernel_size=(3,3), channels=out_channels, padding = (1, 1), use_bias=True) -simple_net = sym.batch_norm(data=simple_net) -simple_net = sym.relu(data=simple_net) - -batch_size = 1 -data_shape = (batch_size, 3, 224, 224) -net, params = utils.create_workload(simple_net, batch_size, data_shape[1:]) - -###################################################################### -# Build and run with cuda backend -# ------------------------------- -# We build and run this network with cuda backend, as usual. -# By setting the logging level to DEBUG, the result of NNVM graph compilation will be dumped as pseudo code. -import logging -logging.basicConfig(level=logging.DEBUG) # to dump TVM IR after fusion - -target = "cuda" -graph, lib, params = nnvm.compiler.build( - net, target, shape={"data": data_shape}, params=params) - -ctx = tvm.context(target, 0) -data = np.random.uniform(-1, 1, size=data_shape).astype("float32") -module = runtime.create(graph, lib, ctx) -module.set_input(**params) -module.set_input("data", data) -module.run() -out_shape = (batch_size, out_channels, 224, 224) -out = module.get_output(0, tvm.nd.empty(out_shape)) -out_cuda = out.asnumpy() - -###################################################################### -# The generated pseudo code should look something like below. -# Note how bias add, batch normalization, and ReLU activation are fused into the convolution kernel. -# TVM generates a single, fused kernel from this representation. -# -# .. code-block:: text -# -# produce compute { -# // attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 112 -# // attr [input1.shared] storage_scope = "shared" -# allocate input1.shared[float32 * 16 * 3 * 3 * 3] -# // attr [compute] storage_scope = "local" -# allocate compute[float32 * 16 * 1 * 1 * 1 * 1] -# // attr [pad_temp.global.global.shared] storage_scope = "shared" -# allocate pad_temp.global.global.shared[float32 * 1 * 1 * 4 * 57 * 4] -# // attr [iter_var(threadIdx.x, Range(min=0, extent=448), threadIdx.x)] thread_extent = 448 -# produce compute { -# produce input1.shared { -# for (ax0, 0, 16) { -# if (likely((threadIdx.x < 27))) { -# input1.shared[(threadIdx.x + (ax0*27))] = input1[((((((blockIdx.x/112)*48) + (threadIdx.x/9))*9) + (threadIdx.x % 9)) + (ax0*27))] -# } -# } -# } -# compute[0] = 0.000000f -# compute[1] = 0.000000f -# compute[2] = 0.000000f -# compute[3] = 0.000000f -# compute[4] = 0.000000f -# compute[5] = 0.000000f -# compute[6] = 0.000000f -# compute[7] = 0.000000f -# compute[8] = 0.000000f -# compute[9] = 0.000000f -# compute[10] = 0.000000f -# compute[11] = 0.000000f -# compute[12] = 0.000000f -# compute[13] = 0.000000f -# compute[14] = 0.000000f -# compute[15] = 0.000000f -# for (rc, 0, 3) { -# produce pad_temp.global.global.shared { -# if (likely((threadIdx.x < 228))) { -# if (likely(((blockIdx.x*2) < (226 - (threadIdx.x/57))))) { -# pad_temp.global.global.shared[ramp((threadIdx.x*4), 1, 4)] = pad_temp[ramp(((((((blockIdx.x*2) + (threadIdx.x/57))*57) + (threadIdx.x % 57)) + (rc*12882))*4), 1, 4)] -# } -# } -# } -# for (ry, 0, 3) { -# for (rx, 0, 3) { -# compute[0] = (compute[0] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[((((rc*3) + ry)*3) + rx)])) -# compute[1] = (compute[1] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 27)])) -# compute[2] = (compute[2] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 54)])) -# compute[3] = (compute[3] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 81)])) -# compute[4] = (compute[4] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 108)])) -# compute[5] = (compute[5] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 135)])) -# compute[6] = (compute[6] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 162)])) -# compute[7] = (compute[7] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 189)])) -# compute[8] = (compute[8] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 216)])) -# compute[9] = (compute[9] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 243)])) -# compute[10] = (compute[10] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 270)])) -# compute[11] = (compute[11] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 297)])) -# compute[12] = (compute[12] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 324)])) -# compute[13] = (compute[13] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 351)])) -# compute[14] = (compute[14] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 378)])) -# compute[15] = (compute[15] + (pad_temp.global.global.shared[(((((threadIdx.x/224)*228) + (threadIdx.x % 224)) + (ry*228)) + rx)]*input1.shared[(((((rc*3) + ry)*3) + rx) + 405)])) -# } -# } -# } -# } -# compute[(((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224))] = max((((compute[0] + input2[((blockIdx.x/112)*16)])*input3[((blockIdx.x/112)*16)]) + input4[((blockIdx.x/112)*16)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 50176)] = max((((compute[1] + input2[(((blockIdx.x/112)*16) + 1)])*input3[(((blockIdx.x/112)*16) + 1)]) + input4[(((blockIdx.x/112)*16) + 1)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 100352)] = max((((compute[2] + input2[(((blockIdx.x/112)*16) + 2)])*input3[(((blockIdx.x/112)*16) + 2)]) + input4[(((blockIdx.x/112)*16) + 2)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 150528)] = max((((compute[3] + input2[(((blockIdx.x/112)*16) + 3)])*input3[(((blockIdx.x/112)*16) + 3)]) + input4[(((blockIdx.x/112)*16) + 3)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 200704)] = max((((compute[4] + input2[(((blockIdx.x/112)*16) + 4)])*input3[(((blockIdx.x/112)*16) + 4)]) + input4[(((blockIdx.x/112)*16) + 4)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 250880)] = max((((compute[5] + input2[(((blockIdx.x/112)*16) + 5)])*input3[(((blockIdx.x/112)*16) + 5)]) + input4[(((blockIdx.x/112)*16) + 5)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 301056)] = max((((compute[6] + input2[(((blockIdx.x/112)*16) + 6)])*input3[(((blockIdx.x/112)*16) + 6)]) + input4[(((blockIdx.x/112)*16) + 6)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 351232)] = max((((compute[7] + input2[(((blockIdx.x/112)*16) + 7)])*input3[(((blockIdx.x/112)*16) + 7)]) + input4[(((blockIdx.x/112)*16) + 7)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 401408)] = max((((compute[8] + input2[(((blockIdx.x/112)*16) + 8)])*input3[(((blockIdx.x/112)*16) + 8)]) + input4[(((blockIdx.x/112)*16) + 8)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 451584)] = max((((compute[9] + input2[(((blockIdx.x/112)*16) + 9)])*input3[(((blockIdx.x/112)*16) + 9)]) + input4[(((blockIdx.x/112)*16) + 9)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 501760)] = max((((compute[10] + input2[(((blockIdx.x/112)*16) + 10)])*input3[(((blockIdx.x/112)*16) + 10)]) + input4[(((blockIdx.x/112)*16) + 10)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 551936)] = max((((compute[11] + input2[(((blockIdx.x/112)*16) + 11)])*input3[(((blockIdx.x/112)*16) + 11)]) + input4[(((blockIdx.x/112)*16) + 11)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 602112)] = max((((compute[12] + input2[(((blockIdx.x/112)*16) + 12)])*input3[(((blockIdx.x/112)*16) + 12)]) + input4[(((blockIdx.x/112)*16) + 12)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 652288)] = max((((compute[13] + input2[(((blockIdx.x/112)*16) + 13)])*input3[(((blockIdx.x/112)*16) + 13)]) + input4[(((blockIdx.x/112)*16) + 13)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 702464)] = max((((compute[14] + input2[(((blockIdx.x/112)*16) + 14)])*input3[(((blockIdx.x/112)*16) + 14)]) + input4[(((blockIdx.x/112)*16) + 14)]), 0.000000f) -# compute[((((((blockIdx.x + ((blockIdx.x/112)*1792))*2) + (threadIdx.x/224))*224) + (threadIdx.x % 224)) + 752640)] = max((((compute[15] + input2[(((blockIdx.x/112)*16) + 15)])*input3[(((blockIdx.x/112)*16) + 15)]) + input4[(((blockIdx.x/112)*16) + 15)]), 0.000000f) -# } -# - -###################################################################### -# Use cuDNN for a convolutional layer -# ----------------------------------- -# We can use cuDNN to replace convolution kernels with cuDNN ones. -# To do that, all we need to do is to append the option " -libs=cudnn" to the target string. -net, params = utils.create_workload(simple_net, batch_size, data_shape[1:]) -target = "cuda -libs=cudnn" # use cudnn for convolution -graph, lib, params = nnvm.compiler.build( - net, target, shape={"data": data_shape}, params=params) - -ctx = tvm.context(target, 0) -data = np.random.uniform(-1, 1, size=data_shape).astype("float32") -module = runtime.create(graph, lib, ctx) -module.set_input(**params) -module.set_input("data", data) -module.run() -out_shape = (batch_size, out_channels, 224, 224) -out = module.get_output(0, tvm.nd.empty(out_shape)) -out_cudnn = out.asnumpy() - -###################################################################### -# Note that if you use cuDNN, NNVM cannot fuse convolution with layers following it. -# This is because layer fusion happens at the level of TVM internal representation(IR). -# NNVM treats external libraries as black box, so there is no way to fuse them with TVM IR. -# -# The pseudo code below shows that cuDNN convolution + bias add + batch norm + ReLU turned into two stages of computation, one for cuDNN call and the other for the rest of operations. -# -# .. code-block:: text -# -# allocate y[float32 * 1 * 16 * 224 * 224] -# produce y { -# // attr [0] extern_scope = 0 -# tvm_call_packed("tvm.contrib.cudnn.conv2d.forward", 1, 0, 1, 1, 1, 1, 1, 1, 1, tvm_stack_make_array(input0, tvm_stack_make_shape(1, 3, 224, 224), 0, 4, 0.000000f, 0), tvm_stack_make_array(input1, tvm_stack_make_shape(16, 3, 3, 3), 0, 4, 0.000000f, 0), tvm_stack_make_array(y, tvm_stack_make_shape(1, 16, 224, 224), 0, 4, 0.000000f, 0)) -# } -# produce compute { -# // attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 1568 -# // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 512 -# compute[((((((blockIdx.x*512) + threadIdx.x)/50176) + ((((blockIdx.x*512) + threadIdx.x)/802816)*16))*50176) + ((((((blockIdx.x*512) + threadIdx.x)/224) % 224)*224) + (((blockIdx.x*64) + threadIdx.x) % 224)))] = max((((y[((((((blockIdx.x*512) + threadIdx.x)/50176) + ((((blockIdx.x*512) + threadIdx.x)/802816)*16))*50176) + ((((((blockIdx.x*512) + threadIdx.x)/224) % 224)*224) + (((blockIdx.x*64) + threadIdx.x) % 224)))] + input2[(((blockIdx.x*512) + threadIdx.x)/50176)])*input3[(((blockIdx.x*512) + threadIdx.x)/50176)]) + input4[(((blockIdx.x*512) + threadIdx.x)/50176)]), 0.000000f) -# } -# - -###################################################################### -# Verify the result -# ----------------- -# We can check that the results of two runs match. - -tvm.testing.assert_allclose(out_cuda, out_cudnn, rtol=1e-5) - -##################################################################### -# Conclusion -# ---------- -# This tutorial covered the usage of cuDNN with NNVM. -# We also have support for cuBLAS. If cuBLAS is enabled, it will be used inside a fully connected layer (nnvm.symbol.dense). -# To use cuBLAS, set a target string as "cuda -libs=cublas". -# You can use both cuDNN and cuBLAS with "cuda -libs=cudnn,cublas". -# -# For ROCm backend, we have support for MIOpen and rocBLAS. -# They can be enabled with target "rocm -libs=miopen,rocblas". -# -# Being able to use external libraries is great, but we need to keep in mind some cautions. -# -# First, the use of external libraries may restrict your usage of TVM and NNVM. -# For example, MIOpen only supports NCHW layout and fp32 data type at the moment, so you cannot use other layouts or data type in TVM. -# -# Second, and more importantly, external libraries restrict the possibility of operator fusion during graph compilation, as shown above. -# TVM and NNVM aim to achieve the best performance on a variety of hardwares, with joint operator level and graph level optimization. -# To achieve this goal, we should continue developing better optimizations for TVM and NNVM, while using external libraries as a nice way to fall back to existing implementation when necessary. diff --git a/nnvm/tutorials/web/resnet.html b/nnvm/tutorials/web/resnet.html deleted file mode 100644 index 13531a3809c0..000000000000 --- a/nnvm/tutorials/web/resnet.html +++ /dev/null @@ -1,204 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - NNVM WebGL Test Page - - - -

NNVM WebGL Test Page

- - -
Input Image:
- - - - - - -
- - -
Log:
- - - - - - - - - - - - - diff --git a/src/relay/op/nn/convolution.cc b/src/relay/op/nn/convolution.cc index 534c2d12a6d2..df890b1ab83a 100644 --- a/src/relay/op/nn/convolution.cc +++ b/src/relay/op/nn/convolution.cc @@ -670,7 +670,7 @@ TVM_REGISTER_API("relay.op.nn._make.contrib_conv2d_winograd_weight_transform") RELAY_REGISTER_OP("nn.contrib_conv2d_winograd_weight_transform") .describe(R"code(Weight transformation of winograd fast convolution algorithm. -Separate this into another nnvm symbol in order to enable Precompute Pass to compute the +Separate this into another operator in order to enable Precompute Pass to compute the weight transformation in advance. - **weight**: (channels, in_channels, kernel_size[0], kernel_size[1]) diff --git a/tests/lint/check_file_type.py b/tests/lint/check_file_type.py index 5b83641eb8e1..fcfef181c4e6 100644 --- a/tests/lint/check_file_type.py +++ b/tests/lint/check_file_type.py @@ -102,7 +102,6 @@ # sgx file "apps/sgx/enclave/sgx-deps.diff", # html for demo purposes - "nnvm/tutorials/web/resnet.html", "tests/webgl/test_static_webgl_library.html", "web/example_rpc.html", # images are normally not allowed diff --git a/tests/python/frontend/darknet/test_forward.py b/tests/python/frontend/darknet/test_forward.py index 51f05d7c707d..22dd08ab52ea 100644 --- a/tests/python/frontend/darknet/test_forward.py +++ b/tests/python/frontend/darknet/test_forward.py @@ -251,7 +251,7 @@ def test_forward_dense_batchnorm(): layer = LIB.make_connected_layer(1, 12, 2, 1, 1, 0) for i in range(5): layer.rolling_mean[i] = np.random.rand(1) - layer.rolling_variance[i] = np.random.rand(1) + layer.rolling_variance[i] = np.random.rand(1) + 0.5 layer.scales[i] = np.random.rand(1) net.layers[0] = layer net.w = net.h = 2 @@ -285,7 +285,7 @@ def test_forward_conv_batch_norm(): layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 1, 0, 0, 0) for i in range(32): layer.rolling_mean[i] = np.random.rand(1) - layer.rolling_variance[i] = np.random.rand(1) + layer.rolling_variance[i] = np.random.rand(1) + 0.5 net.layers[0] = layer net.w = net.h = 224 LIB.resize_network(net, 224, 224) diff --git a/tests/python/frontend/mxnet/test_forward.py b/tests/python/frontend/mxnet/test_forward.py index be4436dda07e..18250d0ea5a6 100644 --- a/tests/python/frontend/mxnet/test_forward.py +++ b/tests/python/frontend/mxnet/test_forward.py @@ -734,7 +734,7 @@ def verify(shape, axis=1, fix_gamma=False): gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") moving_mean = np.random.uniform(size=(shape[axis])).astype("float32") - moving_var = np.random.uniform(size=(shape[axis])).astype("float32") + moving_var = np.abs(np.random.uniform(size=(shape[axis])).astype("float32")) + 0.5 ref_res = mx.nd.BatchNorm(mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), mx.nd.array(moving_mean), mx.nd.array(moving_var), axis=axis, use_global_stats=True, fix_gamma=fix_gamma) diff --git a/tests/python/frontend/nnvm_to_relay/test_alter_conv2d.py b/tests/python/frontend/nnvm_to_relay/test_alter_conv2d.py deleted file mode 100644 index ed8b9cd9ed97..000000000000 --- a/tests/python/frontend/nnvm_to_relay/test_alter_conv2d.py +++ /dev/null @@ -1,89 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Test alter conv2d layout pass""" -import tvm -import nnvm - -from tvm import relay -from tvm import autotvm -from tvm.relay import transform -from tvm.relay.analysis import alpha_equal - - -def test_alter_layout_conv2d(): - """Additional layout transformations should occour on the graph. - """ - - def convnet(): - """Alternating layout of simple convnet (from image super-resolution). - """ - bias1 = relay.var('bias1', shape=(64,)) - bias2 = relay.var('bias2', shape=(64,)) - bias3 = relay.var('bias3', shape=(64,)) - bias4 = relay.var('bias4', shape=(64,)) - weight1 = relay.var('weight1', shape=(64, 1, 5, 5)) - weight2 = relay.var('weight2', shape=(64, 64, 3, 3)) - weight3 = relay.var('weight3', shape=(64, 64, 3, 3)) - weight4 = relay.var('weight4', shape=(64, 64, 3, 3)) - data = relay.var("x", shape=(1, 1, 224, 224)) - n00 = relay.nn.conv2d(data, weight1, padding=[2, 2], kernel_size=[5, 5]) - n01 = relay.expand_dims(bias1, axis=1, num_newaxis=2) - n02 = relay.add(n00, n01) - n03 = relay.nn.relu(n02) - n04 = relay.nn.conv2d(n03, weight2, padding=[1, 1], kernel_size=[3, 3]) - n05 = relay.expand_dims(bias2, axis=1, num_newaxis=2) - n06 = relay.add(n04, n05) - n07 = relay.nn.relu(n06) - n08 = relay.nn.conv2d(n07, weight3, padding=[1, 1], kernel_size=[3, 3]) - n09 = relay.expand_dims(bias3, axis=1, num_newaxis=2) - n10 = relay.add(n08, n09) - n11 = relay.nn.relu(n10) - n12 = relay.nn.conv2d(n11, weight4, padding=[1, 1], kernel_size=[3, 3]) - n13 = relay.expand_dims(bias4, axis=1, num_newaxis=2) - n14 = relay.add(n12, n13) - n15 = relay.reshape(n14, newshape=[1, 1, 3, 3, 224, 224]) - n16 = relay.transpose(n15, axes=[0, 1, 4, 2, 5, 3]) - net = relay.reshape(n16, newshape=[1, 1, 672, 672]) - args = relay.analysis.free_vars(net) - return relay.Function(args, net) - - # orig net - N = convnet() - - # trigger a test - # for each known alter_conv2d - targets=['cuda', - 'opencl -device=mali', - 'opencl -device=intel_graphics', - - 'llvm -device=arm_cpu', - 'llvm -device=core-avx-ii'] - - for tgt in targets: - with tvm.target.create(tgt) as target: - with autotvm.tophub.context(target): - mod = relay.Module.from_expr(N) - mod = transform.AlterOpLayout()(mod) - O = mod["main"] - - # graph should differ - assert not relay.analysis.alpha_equal(N, O) - -if __name__ == "__main__": - import numpy as np - np.random.seed(42) - test_alter_layout_conv2d() diff --git a/tests/python/frontend/nnvm_to_relay/test_forward.py b/tests/python/frontend/nnvm_to_relay/test_forward.py deleted file mode 100644 index 6a00b5a471f4..000000000000 --- a/tests/python/frontend/nnvm_to_relay/test_forward.py +++ /dev/null @@ -1,116 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -import numpy as np - -import tvm -import nnvm -import nnvm.testing -from nnvm.to_relay import to_relay -from tvm import relay -from tvm.relay.testing.config import ctx_list -from tvm.contrib import graph_runtime - -def verify_nnvm_to_relay(nnvm_sym, params, data_shape=(1, 3, 224, 224)): - def get_nnvm_output(sym, x, params, target, ctx, dtype='float32'): - shape_dict = {'data': x.shape} - with nnvm.compiler.build_config(opt_level=3): - graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) - m = graph_runtime.create(graph, lib, ctx) - m.set_input("data", tvm.nd.array(x.astype(dtype))) - m.set_input(**params) - m.run() - return m.get_output(0).asnumpy() - - def get_relay_output(sym, x, params, target, ctx, dtype='float32'): - shape_dict = {'data': x.shape} - func, params = to_relay(sym, shape_dict, dtype, params) - with relay.build_config(opt_level=3): - graph, lib, params = relay.build(func, target=target, params=params) - m = graph_runtime.create(graph, lib, ctx) - m.set_input("data", tvm.nd.array(x.astype(dtype))) - m.set_input(**params) - m.run() - return m.get_output(0).asnumpy() - - x = np.random.uniform(size=data_shape) - for target, ctx in ctx_list(): - nnvm_out = get_nnvm_output(nnvm_sym, x, params, target, ctx) - relay_out = get_relay_output(nnvm_sym, x, params, target, ctx) - tvm.testing.assert_allclose(nnvm_out, relay_out, rtol=1e-5, atol=1e-5) - - -def test_forward_mlp(): - model, params = nnvm.testing.mlp.get_workload(1) - verify_nnvm_to_relay(model, params) - - -def test_forward_vgg(): - model, params = nnvm.testing.vgg.get_workload(1) - verify_nnvm_to_relay(model, params) - - -def test_forward_resnet(): - model, params = nnvm.testing.resnet.get_workload(1) - verify_nnvm_to_relay(model, params) - - -def test_forward_squeezenet(): - model, params = nnvm.testing.squeezenet.get_workload(1) - verify_nnvm_to_relay(model, params) - - -def test_forward_inception_v3(): - model, params = nnvm.testing.inception_v3.get_workload(1) - verify_nnvm_to_relay(model, params, data_shape=(1, 3, 299, 299)) - - -def test_forward_densenet(): - model, params = nnvm.testing.squeezenet.get_workload(1) - verify_nnvm_to_relay(model, params) - - -def test_forward_dqn(): - model, params = nnvm.testing.dqn.get_workload(1) - verify_nnvm_to_relay(model, params, data_shape=(1, 4, 84, 84)) - - -def test_forward_split_concatenate(): - shape = (2, 16) - - tensor = nnvm.sym.Variable("data", shape=shape) - - splited = nnvm.sym.split(tensor, indices_or_sections=2, axis=1) - - concatenated = nnvm.sym.concatenate(*splited, axis=1) - - params = {} - - verify_nnvm_to_relay(splited[0], params, data_shape=shape) - verify_nnvm_to_relay(splited[1], params, data_shape=shape) - verify_nnvm_to_relay(splited, params, data_shape=shape) - verify_nnvm_to_relay(concatenated, params, data_shape=shape) - - -if __name__ == '__main__': - test_forward_mlp() - test_forward_vgg() - test_forward_resnet() - test_forward_squeezenet() - test_forward_inception_v3() - test_forward_densenet() - test_forward_dqn() - test_forward_split_concatenate() diff --git a/tutorials/autotvm/tune_relay_cuda.py b/tutorials/autotvm/tune_relay_cuda.py index efce3cb9d832..b931172a9f64 100644 --- a/tutorials/autotvm/tune_relay_cuda.py +++ b/tutorials/autotvm/tune_relay_cuda.py @@ -71,7 +71,7 @@ # Define Network # -------------- # First we need to define the network in relay frontend API. -# We can load some pre-defined network from :code:`nnvm.testing`. +# We can load some pre-defined network from :code:`tvm.relay.testing`. # We can also load models from MXNet, ONNX and TensorFlow. def get_network(name, batch_size): diff --git a/tutorials/frontend/deploy_model_on_android.py b/tutorials/frontend/deploy_model_on_android.py index 813254df46b3..3d0e83d5e450 100644 --- a/tutorials/frontend/deploy_model_on_android.py +++ b/tutorials/frontend/deploy_model_on_android.py @@ -78,7 +78,7 @@ # # .. code-block:: bash # -# echo 'export PYTHONPATH=/workspace/python:/workspacem/topi/python:/workspace/nnvm/python/:/workspace/vta/python:${PYTHONPATH}' >> ~/.bashrc +# echo 'export PYTHONPATH=/workspace/python:/workspacem/topi/python:/workspace/vta/python:${PYTHONPATH}' >> ~/.bashrc # source ~/.bashrc #################################################################