diff --git a/arches/app/views/search_layer.py b/arches/app/views/search_layer.py index 4c5e04d4ac..2db577a43e 100644 --- a/arches/app/views/search_layer.py +++ b/arches/app/views/search_layer.py @@ -1,178 +1,248 @@ +import math from django.views import View -# from django.http import JsonResponse -import json from django.core.cache import caches from arches.app.models.system_settings import settings from django.utils.translation import gettext as _ -# from arches.app.search.search_engine_factory import SearchEngineFactory -from django.db import connection +from arches.app.search.search_engine_factory import SearchEngineFactory +from arches.app.search.elasticsearch_dsl_builder import ( + Query, + Bool, + GeoShape, + Nested, + GeoTileGridAgg, + NestedAgg, + Aggregation, +) + +# from django.db import connection from django.http import Http404, HttpResponse +from arches.app.utils.betterJSONSerializer import JSONDeserializer +from pprint import pprint + +# from django.contrib.gis.geos import Polygon +from datetime import datetime, timedelta +from time import time +import mercantile +import mapbox_vector_tile + +ZOOM_THRESHOLD = 14 +EXTENT = 4096 class SearchLayer(View): def get(self, request, zoom, x, y): - # se = SearchEngineFactory().create() + start = time() + print(f"ZOOM: {zoom}") searchid = request.GET.get("searchid", None) if not searchid: + print("NO SEARCHID FOUND ON REQUEST") raise Http404(_("Missing 'searchid' query parameter.")) + EARTHCIRCUM = 40075016.6856 PIXELSPERTILE = 256 cache = caches["default"] - resource_ids = cache.get(searchid) - if resource_ids: - resource_ids = json.loads(resource_ids) - else: + pit_id = cache.get(searchid + "_pit") + query_dsl = cache.get(searchid + "_dsl") + # pprint(query_dsl) + # {"pit_id": pit_id, "dsl": query.dsl} + if pit_id is None or query_dsl is None: print(f"no resourceids found in cache for searchid: {searchid}") raise Http404(_("Missing resourceids from search cache.")) - search_geom_count = 0 - cache_key = create_searchlayer_mvt_cache_key(searchid, zoom, x, y, request.user) - tile = cache.get(cache_key) - if tile is None: - with connection.cursor() as cursor: - if len(resource_ids) == 0: - resource_ids.append( - "10000000-0000-0000-0000-000000000001" - ) # This must have a uuid that will never be a resource id. - resource_ids = tuple(resource_ids) - - if int(zoom) < 14: - arc = EARTHCIRCUM / ((1 << int(zoom)) * PIXELSPERTILE) - distance = arc * float(1000) - min_points = 3 - distance = ( - settings.CLUSTER_DISTANCE_MAX - if distance > settings.CLUSTER_DISTANCE_MAX - else distance - ) - - count_query = """ - SELECT count(*) FROM geojson_geometries - WHERE - ST_Intersects(geom, TileBBox(%s, %s, %s, 3857)) - AND - resourceinstanceid in %s - """ - - # get the count of matching geometries - cursor.execute( - count_query, - [ - zoom, - x, - y, - resource_ids, - ], - ) - search_geom_count = cursor.fetchone()[0] - - if search_geom_count >= min_points: - cursor.execute( - """WITH clusters(tileid, resourceinstanceid, nodeid, geom, cid) - AS ( - SELECT m.*, - ST_ClusterDBSCAN(geom, eps := %s, minpoints := %s) over () AS cid - FROM ( - SELECT tileid, - resourceinstanceid, - nodeid, - geom - FROM geojson_geometries - WHERE - ST_Intersects(geom, TileBBox(%s, %s, %s, 3857)) - AND - resourceinstanceid in %s - ) m - ) - SELECT ST_AsMVT( - tile, - 'search_layer', - 4096, - 'geom', - 'id' - ) FROM ( - SELECT resourceinstanceid::text, - row_number() over () as id, - 1 as point_count, - ST_AsMVTGeom( - geom, - TileBBox(%s, %s, %s, 3857) - ) AS geom, - '' AS extent - FROM clusters - WHERE cid is NULL - UNION - SELECT NULL as resourceinstanceid, - row_number() over () as id, - count(*) as point_count, - ST_AsMVTGeom( - ST_Centroid( - ST_Collect(geom) - ), - TileBBox(%s, %s, %s, 3857) - ) AS geom, - ST_AsGeoJSON( - ST_Extent(geom) - ) AS extent - FROM clusters - WHERE cid IS NOT NULL - GROUP BY cid - ) as tile;""", - [ - distance, - min_points, - zoom, - x, - y, - resource_ids, - zoom, - x, - y, - zoom, - x, - y, - ], - ) - elif search_geom_count: - cursor.execute( - """SELECT ST_AsMVT(tile, 'search_layer', 4096, 'geom', 'id') FROM (SELECT tileid, - id, - resourceinstanceid, - nodeid, - featureid::text AS featureid, - ST_AsMVTGeom( - geom, - TileBBox(%s, %s, %s, 3857) - ) AS geom, - 1 AS point_count - FROM geojson_geometries - WHERE resourceinstanceid in %s and (geom && ST_TileEnvelope(%s, %s, %s))) AS tile;""", - [zoom, x, y, resource_ids, zoom, x, y], - ) - else: - tile = "" - - cursor.execute( - """SELECT ST_AsMVT(tile, 'search_layer', 4096, 'geom', 'id') FROM (SELECT tileid, - id, - resourceinstanceid, - nodeid, - featureid::text AS featureid, - ST_AsMVTGeom( - geom, - TileBBox(%s, %s, %s, 3857) - ) AS geom, - 1 AS point_count - FROM geojson_geometries - WHERE resourceinstanceid in %s and (geom && ST_TileEnvelope(%s, %s, %s))) AS tile;""", - [zoom, x, y, resource_ids, zoom, x, y], - ) - tile = bytes(cursor.fetchone()[0]) if tile is None else tile - cache.set(cache_key, tile, settings.TILE_CACHE_TIMEOUT) - - return HttpResponse(tile, content_type="application/x-protobuf") + se = SearchEngineFactory().create() + query_dsl = JSONDeserializer().deserialize(query_dsl, indent=4) + new_query = Query(se, limit=0) + new_query.prepare() + new_query.dsl = query_dsl + # spatial_query = Bool() + # if int(y) == 203: + # print("\n\n\nwhats my new query\n\n\n") + # pprint(new_query.__str__()) + tile_x = int(x) + tile_y = int(y) + tile_z = int(zoom) + tile_bounds = mercantile.bounds(tile_x, tile_y, tile_z) + bbox = ( + tile_bounds.west, + tile_bounds.south, + tile_bounds.east, + tile_bounds.north, + ) + geo_bbox_query = { + "geo_bounding_box": { + "points.point": { + "top_left": {"lat": tile_bounds.north, "lon": tile_bounds.west}, + "bottom_right": {"lat": tile_bounds.south, "lon": tile_bounds.east}, + } + } + } + + if int(zoom) < ZOOM_THRESHOLD: + + geotile_agg = GeoTileGridAgg( + precision=int(zoom), field="points.point", size=10000 + ) + centroid_agg = Aggregation( + type="geo_centroid", name="centroid", field="points.point" + ) + geotile_agg.add_aggregation(centroid_agg) + nested_agg = NestedAgg(path="points", name="geo_aggs") + nested_agg.add_aggregation(geotile_agg) + + # Build the filter aggregation + geo_filter_agg = Aggregation( + type="filter", + name="geo_filter", + filter=Nested(path="points", query=geo_bbox_query).dsl, + ) + + # Add the geotile_grid aggregation under the filter aggregation + geo_filter_agg.add_aggregation(geotile_agg) + + # Update the nested aggregation + nested_agg = NestedAgg(path="points", name="geo_aggs") + nested_agg.add_aggregation(geo_filter_agg) + new_query.add_aggregation(nested_agg) + + # pit doesn't allow scroll context or index + new_query.dsl["source_includes"] = [] + new_query.dsl["size"] = 0 + # if int(y) == 203: + # pprint(new_query.dsl) + results = se.es.search( + pit={"id": pit_id, "keep_alive": "2m"}, _source=False, **new_query.dsl + ) + elapsed = time() - start + # print( + # "_______Time to finish search_layer search 1 (total: {0}) = {1}".format(results["hits"]["total"]["value"], timedelta(seconds=elapsed)) + # ) + # print("search done") + # print(results["hits"]["total"]) + # pprint(results) + features = [] + buckets = results["aggregations"]["geo_aggs"]["geo_filter"]["zoomed_grid"][ + "buckets" + ] + # print(f"Number of buckets: {len(buckets)}") + + for bucket in buckets: + centroid = bucket["centroid"]["location"] + lon = centroid["lon"] + lat = centroid["lat"] + doc_count = bucket["doc_count"] + # px, py = lnglat_to_tile_px(lon, lat, tile_x, tile_y, tile_z, EXTENT) + + feature = { + "geometry": {"type": "Point", "coordinates": [lon, lat]}, + "properties": {"count": doc_count}, + } + + features.append(feature) + + layers = [ + { + "name": "clusters", # Layer name + "features": features, + "version": 2, + "extent": EXTENT, + } + ] + else: + # Fetch individual features + # Add the spatial filter to the query + points_spatial_query = Nested(path="points", query=geo_bbox_query) + # new_query.add_query(spatial_query) + + geometries_spatial_query = Nested(path="geometries", query=geo_bbox_query) + spatial_bool_query = Bool() + spatial_bool_query.should(points_spatial_query) + spatial_bool_query.should(geometries_spatial_query) + new_query.add_query(spatial_bool_query) + + new_query.dsl["size"] = 10000 + + new_query.include("points.point") + new_query.include("geometries.geom") + # new_query.include("resourceinstanceid") + # Add other fields if needed + + # Execute the search + results = se.es.search( + pit={"id": pit_id, "keep_alive": "2m"}, **new_query.dsl + ) + + # Process the hits to generate features + features = [] + point_features = [] + geometry_features = [] + + for hit in results["hits"]["hits"]: + source = hit["_source"] + resource_id = hit.get("_id") + + # Handle points + points = source.get("points", []) + for point in points: + point_geom = point.get("point") + if point_geom: + lon = point_geom.get("lon") + lat = point_geom.get("lat") + if lon and lat: + feature = { + "geometry": { + "type": "Point", + "coordinates": [lon, lat], + }, + "properties": { + "resourceinstanceid": resource_id, + "count": 1, + }, + } + point_features.append(feature) + geometries = source.get("geometries", []) + for geometry in geometries: + geom = geometry.get("geom") + if geom: + geom_type = geom.get("type") + coordinates = geom.get("coordinates") + if coordinates: + feature = { + "geometry": { + "type": geom_type, + "coordinates": coordinates, + }, + "properties": {"resourceinstanceid": resource_id}, + } + pprint(feature) + geometry_features.append(feature) + + # Build layers + layers = [] + + if point_features: + point_layer = { + "name": "points", + "features": point_features, + "version": 2, + "extent": EXTENT, + } + layers.append(point_layer) + + if geometry_features: + geometry_layer = { + "name": "geometries", + "features": geometry_features, + "version": 2, + "extent": EXTENT, + } + layers.append(geometry_layer) + + tile = mapbox_vector_tile.encode( + layers, quantize_bounds=bbox, y_coord_down=True, extents=EXTENT + ) + return HttpResponse(tile, content_type="application/vnd.mapbox-vector-tile") def create_searchlayer_mvt_cache_key(searchid_hash, zoom, x, y, user):