- Same as the default setup.
Downloads CIFAR10 dataset from the original source and preprocess into pickles.
python -m dataset.cifar10.download_preprocess --output_dir data/cifar10
Benchmarks are implemented for both PyTorch and TensorFlow, available in image_classification/pytorch
and image_classification/tf
respectively. The commands are the same.
# pytorch or tf
framework=pytorch
CIFAR10 IID no DP:
python image_classification/${framework}/train.py --args_config image_classification/configs/baseline.yaml
CIFAR10 non-IID no DP:
python image_classification/${framework}/train.py --args_config image_classification/configs/baseline.yaml --dataset cifar10 --central_num_iterations 3000
CIFAR10 IID central DP:
python image_classification/${framework}/train.py --args_config image_classification/configs/baseline.yaml --central_privacy_mechanism gaussian_moments_accountant --central_num_iterations 3000
CIFAR10 non-IID central DP:
python image_classification/${framework}/train.py --args_config image_classification/configs/baseline.yaml --dataset cifar10 --central_privacy_mechanism gaussian_moments_accountant --central_num_iterations 3000