-
Notifications
You must be signed in to change notification settings - Fork 10
/
datasetCommon.py
428 lines (368 loc) · 15.9 KB
/
datasetCommon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2022-2023 Apple Inc. All Rights Reserved.
#
import torch
import numpy as np
from sklearn.neighbors import KDTree
import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling
try:
import cpp_wrappers.cpp_neighbors.radius_neighbors as cpp_neighbors
except BaseException:
print('Failed to import cpp_neighbors, nanoflann kNN is not loaded. Only sklearn kNN is available')
def grid_subsampling(
points,
features=None,
labels=None,
sampleDl=0.1,
verbose=0):
"""
This function comes from https://github.com/HuguesTHOMAS/KPConv
Copyright Hugues Thomas 2018
CPP wrapper for a grid subsampling (method = barycenter for points and features
Input:
points: (N, 3) matrix of input points
features: optional (N, d) matrix of features (floating number)
labels: optional (N,) matrix of integer labels
sampleDl: parameter defining the size of grid voxels
verbose: 1 to display
subsampled points, with features and/or labels depending of the input
Output: subsampled points
"""
# method = "voxelcenters" # "barycenters" "voxelcenters"
method = "barycenters"
if (features is None) and (labels is None):
return cpp_subsampling.compute(
points,
sampleDl=sampleDl,
verbose=verbose,
method=method)
elif (labels is None):
return cpp_subsampling.compute(
points,
features=features,
sampleDl=sampleDl,
verbose=verbose,
method=method)
elif (features is None):
return cpp_subsampling.compute(
points,
classes=labels,
sampleDl=sampleDl,
verbose=verbose,
method=method)
else:
return cpp_subsampling.compute(
points,
features=features,
classes=labels,
sampleDl=sampleDl,
verbose=verbose,
method=method)
def compute_weight(train_data, num_class=20):
"""
Compute the class weights for ScanNet classes based on square root of inverse proportional weighting
Input:
training data: (points, features, labels, norms), only labels are used
Output:
a list of weights for each class
"""
weights = np.array([0.0 for i in range(num_class)])
num_rooms = len(train_data)
for i in range(num_rooms):
_, _, labels, _ = train_data[i]
# rm invalid labels
labels = labels[labels >= 0]
for j in range(num_class):
weights[j] += np.sum(labels == j)
ratio = weights / float(sum(weights))
ce_label_weight = 1 / (np.power(ratio, 1 / 2))
return list(ce_label_weight)
def compute_knn(ref_points, query_points, K, dilated_rate=1, method='sklearn'):
"""
Compute KNN
Input:
ref_points: reference points (MxD)
query_points: query points (NxD)
K: the amount of neighbors for each point
dilated_rate: If set to larger than 1, then select more neighbors and then choose from them
(Engelmann et al. Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020)
method: Choose between two approaches: Scikit-Learn ('sklearn') or nanoflann ('nanoflann'). In general nanoflann should be faster, but sklearn is more stable
Output:
neighbors_idx: for each query point, its K nearest neighbors among the reference points (N x K)
"""
num_ref_points = ref_points.shape[0]
if num_ref_points < K or num_ref_points < dilated_rate * K:
num_query_points = query_points.shape[0]
inds = np.random.choice(
num_ref_points, (num_query_points, K)).astype(
np.int32)
return inds
if method == 'sklearn':
kdt = KDTree(ref_points)
neighbors_idx = kdt.query(
query_points,
k=K * dilated_rate,
return_distance=False)
elif method == 'nanoflann':
neighbors_idx = batch_neighbors(
query_points, ref_points, [
query_points.shape[0]], [num_ref_points], K * dilated_rate)
else:
raise Exception('compute_knn: unsupported knn algorithm')
if dilated_rate > 1:
neighbors_idx = np.array(
neighbors_idx[:, ::dilated_rate], dtype=np.int32)
return neighbors_idx
def crop(points, x_min, y_min, z_min, x_max, y_max, z_max):
"""
Crop all points within a 3D bounding box defined by (x_min, y_min, z_min) and (x_max, y_max, z_max)
Input:
points: an array of points (nx3)
x_min, y_min, z_min, x_max, y_max, z_max: bounding box extremal coordinates
Output:
inds: indices of the points that are within the bounding box defined by (x_min, y_min, z_min) and (x_max, y_max, z_max)
"""
if x_max <= x_min or y_max <= y_min or z_max <= z_min:
raise ValueError(
"We should have x_min < x_max and y_min < y_max and z_min < z_max. But we got"
" (x_min = {x_min}, y_min = {y_min}, z_min = {z_min},"
" x_max = {x_max}, y_max = {y_max}, z_max = {z_max})".format(
x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max, z_min=z_min, z_max=z_max, ))
inds = np.all(
[
(points[:, 0] >= x_min),
(points[:, 0] < x_max),
(points[:, 1] >= y_min),
(points[:, 1] < y_max),
(points[:, 2] >= z_min),
(points[:, 2] < z_max),
],
axis=0,
)
return inds
def tensorizeList(nplist, is_index=False):
"""
Make all numpy arrays inside a list into torch tensors
"""
ret_list = []
for npitem in nplist:
if is_index:
if npitem is None:
ret_list.append(None)
else:
ret_list.append(
torch.from_numpy(
npitem).long().unsqueeze(0))
else:
ret_list.append(torch.from_numpy(npitem).float().unsqueeze(0))
return ret_list
def tensorize(
features,
pointclouds,
edges_self,
edges_forward,
edges_propagate,
target,
norms):
"""
Convert numpy arrays from inside lists into torch tensors for all input data
"""
pointclouds = tensorizeList(pointclouds)
norms = tensorizeList(norms)
edges_self = tensorizeList(edges_self, True)
edges_forward = tensorizeList(edges_forward, True)
edges_propagate = tensorizeList(edges_propagate, True)
target = torch.from_numpy(target).long().unsqueeze(0)
features = torch.from_numpy(features).float().unsqueeze(0)
return features, pointclouds, edges_self, edges_forward, edges_propagate, target, norms
def listToBatch(
features,
pointclouds,
edges_self,
edges_forward,
edges_propagate,
target,
norms):
"""
ListToBatch transforms a batch of multiple clouds into one point cloud so that we do not have to pad them to the same length
The way this works is that all point clouds are concatenated one after another e.g., if you have point cloud 1 which is [5154,3], point cloud 2 which is [4749, 3]
then it creates a point cloud as if it has batch size 1, which is a tensor of shape [1, 5154+4749, 3]
It also modifies the edges (indices of k-nearest-neighbors) so that they point to the correct points
For example, for point cloud 2, we add 5154 to all its neighbor indices so that they
link to the points in point cloud 2 in this combined tensor
Input: List versions of all the input
Output: Batched versions of all the input
"""
# import ipdb; ipdb.set_trace()
num_sample = len(pointclouds)
# process sample 0
featureBatch = features[0][0]
pointcloudsBatch = pointclouds[0]
pointcloudsNormsBatch = norms[0]
if target:
targetBatch = target[0][0]
else:
targetBatch = np.array(0)
edgesSelfBatch = edges_self[0]
edgesForwardBatch = edges_forward[0]
edgesPropagateBatch = edges_propagate[0]
points_stored = [val.shape[0] for val in pointcloudsBatch]
for i in range(1, num_sample):
if target:
targetBatch = np.concatenate([targetBatch, target[i][0]], 0)
featureBatch = np.concatenate([featureBatch, features[i][0]], 0)
for j in range(len(edges_forward[i])):
tempMask = edges_forward[i][j] == -1
edges_forwardAdd = edges_forward[i][j] + points_stored[j]
edges_forwardAdd[tempMask] = -1
edgesForwardBatch[j] = np.concatenate([edgesForwardBatch[j],
edges_forwardAdd], 0)
tempMask2 = edges_propagate[i][j] == -1
edges_propagateAdd = edges_propagate[i][j] + points_stored[j + 1]
edges_propagateAdd[tempMask2] = -1
edgesPropagateBatch[j] = np.concatenate([edgesPropagateBatch[j],
edges_propagateAdd], 0)
for j in range(len(pointclouds[i])):
tempMask3 = edges_self[i][j] == -1
edges_selfAdd = edges_self[i][j] + points_stored[j]
edges_selfAdd[tempMask3] = -1
edgesSelfBatch[j] = np.concatenate([edgesSelfBatch[j],
edges_selfAdd], 0)
pointcloudsBatch[j] = np.concatenate(
[pointcloudsBatch[j], pointclouds[i][j]], 0)
pointcloudsNormsBatch[j] = np.concatenate(
[pointcloudsNormsBatch[j], norms[i][j]], 0)
points_stored[j] += pointclouds[i][j].shape[0]
return featureBatch, pointcloudsBatch, edgesSelfBatch, edgesForwardBatch, edgesPropagateBatch, \
targetBatch, pointcloudsNormsBatch
def prepare(
features,
pointclouds,
edges_self,
edges_forward,
edges_propagate,
target,
norms):
"""
Prepare data coming from data loader (lists of numpy arrays) into torch tensors ready to send to training
"""
features_out, pointclouds_out, edges_self_out, edges_forward_out, edges_propagate_out, target_out, norms_out = [], [], [], [], [], [], []
features_out, pointclouds_out, edges_self_out, edges_forward_out, edges_propagate_out, target_out, norms_out = \
listToBatch(features, pointclouds, edges_self, edges_forward, edges_propagate, target, norms)
features_out, pointclouds_out, edges_self_out, edges_forward_out, edges_propagate_out, target_out, norms_out = \
tensorize(features_out, pointclouds_out, edges_self_out, edges_forward_out, edges_propagate_out, target_out, norms_out)
return features_out, pointclouds_out, edges_self_out, edges_forward_out, edges_propagate_out, target_out, norms_out
def collect_fn(data_list):
"""
collect data from the data dictionary and outputs pytorch tensors
"""
features = []
pointclouds = []
target = []
norms = []
edges_forward = []
edges_propagate = []
edges_self = []
for i, data in enumerate(data_list):
features.append(data['feature_list'])
pointclouds.append(data['point_list'])
if 'label_list' in data.keys():
target.append(data['label_list'])
norms.append(data['surface_normal_list'])
edges_forward.append(data['nei_forward_list'])
edges_propagate.append(data['nei_propagate_list'])
edges_self.append(data['nei_self_list'])
features, pointclouds, edges_self, edges_forward, edges_propagate, target, norms = \
prepare(features, pointclouds, edges_self, edges_forward, edges_propagate, target, norms)
return features, pointclouds, edges_self, edges_forward, edges_propagate, target, norms
def subsample_and_knn(
coord,
norm,
grid_size=[0.1],
K_self=16,
K_forward=16,
K_propagate=16):
"""
Perform grid subsampling and compute kNN at each subsampling level
Input:
coord: N x 3 coordinates
norm: N x 3 surface normals
grid_size: all the downsampling levels (in cm) you want to use, e.g. [0.05, 0.1, 0.2, 0.4, 0.8]
K_self: number of neighbors within each downsampling level
K_forward: number of neighbors from one downsampling level to the next one (with less points), used in the downsampling PointConvs in the encoder
K_propagate: number of neighbors from one downsampling level to the previous one (with more points), used in the upsampling PointConvs in the decoder
Outputs:
point_list: list of length len(grid_size)
nei_forward_list: downsampling kNN neighbors (K_forward neighbors for each point)
nei_propagate_list: upsampling kNN neighbors (K_propagate neighbors for each point)
nei_self_list: kNN neighbors between the same layer
norm_list: list of surface normals averaged within each voxel at each grid_size
"""
point_list, norm_list = [], []
nei_forward_list, nei_propagate_list, nei_self_list = [], [], []
for j, grid_s in enumerate(grid_size):
if j == 0:
sub_point, sub_norm = coord.astype(
np.float32), norm.astype(
np.float32)
point_list.append(sub_point)
norm_list.append(sub_norm)
# compute edges
nself = compute_knn(sub_point, sub_point, K_self[j])
nei_self_list.append(nself)
else:
sub_point, sub_norm = grid_subsampling(
points=point_list[-1], features=norm_list[-1], sampleDl=grid_s)
if sub_point.shape[0] <= K_self[j]:
sub_point, sub_norm = point_list[-1], norm_list[-1]
# compute edges, nforward is for downsampling, npropagate is for upsampling,
# nself is for normal PointConv layers (between the same set of
# points)
nforward = compute_knn(point_list[-1], sub_point, K_forward[j])
npropagate = compute_knn(sub_point, point_list[-1], K_propagate[j])
nself = compute_knn(sub_point, sub_point, K_self[j])
# point_list is a list with len(grid_size) length, each item is a numpy array
# of num_points x dimensionality
point_list.append(sub_point)
norm_list.append(sub_norm)
nei_forward_list.append(nforward)
nei_propagate_list.append(npropagate)
nei_self_list.append(nself)
return point_list, nei_forward_list, nei_propagate_list, nei_self_list, norm_list
def getdataLoader(cfg, dataset, loader_set, sampler):
"""
Dataset should generate items as a dictionary with:
color_list: colors
point_list: point xyz coordinates
surface_normal_list: surface normals
nei_forward_list: neighbors from upper level to lower level
nei_propagate_list: neighbors from lower level to upper level
nei_self_list: neighbors at the same level
label_list: optional labels, if no labels is given
These can be prepared by the subsample_and_knn function which takes the input of coordinates, color,
surface normals and optional labels. Surface normals can be computed with Open3D, but could also be
obtained e.g. from meshes etc.
"""
this_dataset = dataset(cfg, dataset=loader_set)
this_sampler = sampler(this_dataset)
data_loader = torch.utils.data.DataLoader(
this_dataset,
batch_size=cfg.BATCH_SIZE,
collate_fn=collect_fn,
num_workers=cfg.NUM_WORKERS,
sampler=this_sampler,
pin_memory=True)
return data_loader, this_dataset
def batch_neighbors(queries, supports, q_batches, s_batches, K):
"""
Computes neighbors for a batch of queries and supports
:param queries: (N1, 3) the query points
:param supports: (N2, 3) the support points
:param q_batches: (B) the list of lengths of batch elements in queries
:param s_batches: (B)the list of lengths of batch elements in supports
:param K: long
:return: neighbors indices
"""
return cpp_neighbors.batch_kquery(
queries, supports, q_batches, s_batches, K=int(K))