Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[topi][relay] Add operation scatter_add to relay, based on scatter implementation. #6030

Merged
merged 1 commit into from
Jul 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions include/tvm/relay/attrs/transform.h
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,14 @@ struct ScatterAttrs : public tvm::AttrsNode<ScatterAttrs> {
}
};

struct ScatterAddAttrs : public tvm::AttrsNode<ScatterAddAttrs> {
Integer axis;

TVM_DECLARE_ATTRS(ScatterAddAttrs, "relay.attrs.ScatterAddAttrs") {
TVM_ATTR_FIELD(axis).set_default(0).describe("The axis over which to select values.");
}
};

struct GatherAttrs : public tvm::AttrsNode<GatherAttrs> {
Integer axis;

Expand Down
9 changes: 9 additions & 0 deletions python/tvm/relay/op/_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,14 @@ def compute_scatter(attrs, inputs, output_type):

_reg.register_schedule("scatter", strategy.schedule_scatter)

# scatter_add
@_reg.register_compute("scatter_add")
def compute_scatter_add(attrs, inputs, output_type):
"""Compute definition of scatter_add"""
return [topi.scatter_add(inputs[0], inputs[1], inputs[2], attrs.axis)]

_reg.register_schedule("scatter_add", strategy.schedule_scatter_add)

#####################
# Shape functions #
#####################
Expand Down Expand Up @@ -396,6 +404,7 @@ def argwhere_shape_func(attrs, inputs, out_ndims):
return ValueError("Does not support rank higher than 5 in argwhere")

_reg.register_shape_func("scatter", False, elemwise_shape_func)
_reg.register_shape_func("scatter_add", False, elemwise_shape_func)

@script
def _layout_transform_shape_func(data_shape,
Expand Down
7 changes: 7 additions & 0 deletions python/tvm/relay/op/strategy/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -841,6 +841,13 @@ def schedule_scatter(attrs, outs, target):
with target:
return topi.generic.schedule_scatter(outs)

# scatter_add
@generic_func
def schedule_scatter_add(attrs, outs, target):
"""schedule scatter_add"""
with target:
return topi.generic.schedule_scatter_add(outs)

# bitserial_conv2d
def wrap_compute_bitserial_conv2d(topi_compute):
"""wrap bitserial_conv2d topi compute"""
Expand Down
24 changes: 24 additions & 0 deletions python/tvm/relay/op/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,30 @@ def scatter(data, indices, updates, axis):
"""
return _make.scatter(data, indices, updates, axis)

def scatter_add(data, indices, updates, axis):
"""Update data by adding values in updates at positions defined by indices

Parameters
----------
data : relay.Expr
The input data to the operator.

indices : relay.Expr
The index locations to update.

updates : relay.Expr
The values to add.

axis : int
The axis to scatter_add on

Returns
-------
ret : relay.Expr
The computed result.
"""
return _make.scatter_add(data, indices, updates, axis)

def reshape_like(data, shape_like):
"""Reshapes the input array by the size of another array.
For an input array with shape ``(d1, d2, ..., dk)``, `reshape_like` operation reshapes
Expand Down
49 changes: 49 additions & 0 deletions src/relay/op/tensor/transform.cc
Original file line number Diff line number Diff line change
Expand Up @@ -805,6 +805,55 @@ RELAY_REGISTER_OP("scatter")
.set_attr<TOpPattern>("TOpPattern", kOpaque)
.set_support_level(10);

// Scatter_add
TVM_REGISTER_NODE_TYPE(ScatterAddAttrs);

// Scatter Add
bool ScatterAddRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(num_inputs, 3);
CHECK_EQ(types.size(), 4);
auto data = types[0].as<TensorTypeNode>();
if (data == nullptr) {
return false;
}
auto indices = types[1].as<TensorTypeNode>();
if (indices == nullptr) {
return false;
}
auto updates = types[2].as<TensorTypeNode>();
if (updates == nullptr) {
return false;
}
CHECK(indices->dtype.is_int()) << "indices of scatter_add must be tensor of integer";
const auto param = attrs.as<ScatterAddAttrs>();
CHECK(param != nullptr);
reporter->Assign(types[3], TensorType(data->shape, data->dtype));
return true;
}

TVM_REGISTER_GLOBAL("relay.op._make.scatter_add")
.set_body_typed([](Expr data, Expr indices, Expr updates, int axis) {
auto attrs = make_object<ScatterAddAttrs>();
attrs->axis = std::move(axis);
static const Op& op = Op::Get("scatter_add");
return Call(op, {data, indices, updates}, Attrs(attrs), {});
});

RELAY_REGISTER_OP("scatter_add")
.describe(
R"doc(Update data by adding values in updates at positions defined by indices)doc" TVM_ADD_FILELINE)
.set_num_inputs(3)
.add_argument("data", "Tensor", "The input data tensor.")
.add_argument("indicies", "Tensor", "The indicies location tensor.")
.add_argument("updates", "Tensor", "The values to update the input with.")
.add_type_rel("ScatterAdd", ScatterAddRel)
.set_attr<TOpIsStateful>("TOpIsStateful", false)
.set_attr<TOpPattern>("TOpPattern", kOpaque)
.set_support_level(10);

////

// Take
TVM_REGISTER_NODE_TYPE(TakeAttrs);

Expand Down
45 changes: 45 additions & 0 deletions tests/python/relay/test_op_level3.py
Original file line number Diff line number Diff line change
Expand Up @@ -811,6 +811,51 @@ def verify_scatter(dshape, ishape, axis=0):
verify_scatter((16, 16, 4, 5), (16, 16, 4, 5), 3)


def test_scatter_add():

def ref_scatter_add(data, indices, updates, axis=0):
output = np.copy(data)
for index in np.ndindex(*indices.shape):
new_index = list(index)
new_index[axis] = indices[index]
output[tuple(new_index)] += updates[index]
return output

def verify_scatter_add(dshape, ishape, axis=0):
d = relay.var("d", relay.TensorType(dshape, "float32"))
i = relay.var("i", relay.TensorType(ishape, "int64"))
u = relay.var("u", relay.TensorType(ishape, "float32"))
z = relay.op.scatter_add(d, i, u, axis)

func = relay.Function([d, i, u], z)

data_np = np.random.uniform(size=dshape).astype("float32")
updates_np = np.random.uniform(size=ishape).astype("float32")
indices_np = np.random.randint(-dshape[axis], dshape[axis] - 1, ishape).astype("int64")

ref_res = ref_scatter_add(data_np, indices_np, updates_np, axis)
# TODO(mbrookhart): expand testing when adding more backend schedules
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Any chance you got it to work on cuda? I haven't gotten back to this TODO yet :)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi! Unfortunately, no! For the moment, I just need it on CPU ^^ !

for target, ctx in [("llvm", tvm.cpu())]:
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, ctx=ctx, target=target)
op_res = intrp.evaluate(func)(data_np, indices_np, updates_np)
tvm.testing.assert_allclose(
op_res.asnumpy(), ref_res, rtol=1e-5)

verify_scatter_add((10, ), (10, ), 0)
verify_scatter_add((10, 5), (10, 5), -2)
verify_scatter_add((10, 5), (10, 5), -1)
verify_scatter_add((10, 5), (3, 5), 0)
verify_scatter_add((12, 4), (7, 2), 1)
verify_scatter_add((2, 3, 4), (1, 3, 4), 0)
verify_scatter_add((2, 3, 4), (2, 1, 4), 1)
verify_scatter_add((2, 3, 4), (2, 3, 1), 2)
verify_scatter_add((2, 3, 4, 5), (1, 3, 4, 5), 0)
verify_scatter_add((6, 3, 4, 5), (2, 3, 4, 5), 1)
verify_scatter_add((2, 3, 8, 5), (2, 3, 1, 1), 2)
verify_scatter_add((16, 16, 4, 5), (16, 16, 4, 5), 3)


def test_gather():
def verify_gather(data, axis, indices, ref_res):
data = np.asarray(data, dtype='float32')
Expand Down
1 change: 1 addition & 0 deletions topi/python/topi/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
from .broadcast import *
from .sort import *
from .scatter import *
from .scatter_add import *
from .argwhere import *
from . import generic
from . import nn
Expand Down
16 changes: 16 additions & 0 deletions topi/python/topi/generic/search.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,19 @@ def schedule_scatter(outs):
The computation schedule for the op.
"""
return _default_schedule(outs, False)


def schedule_scatter_add(outs):
"""Schedule for scatter_add operator.
Parameters
----------
outs: Array of Tensor
The computation graph description of scatter_add.
Returns
-------
s: Schedule
The computation schedule for the op.
"""
return _default_schedule(outs, False)
165 changes: 165 additions & 0 deletions topi/python/topi/scatter_add.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, too-many-arguments, too-many-nested-blocks
"""Scatter Add operator"""
from tvm.te import hybrid


@hybrid.script
def _scatter_add_1d(data, indices, updates):
out = output_tensor(data.shape, data.dtype)
for i in range(data.shape[0]):
out[i] = data[i]
for i in range(indices.shape[0]):
out[indices[i] if indices[i] >= 0 else indices[i] +
data.shape[0]] += updates[i]
return out


@hybrid.script
def _scatter_add_2d(data, indices, updates, axis):
out = output_tensor(data.shape, data.dtype)
for i in const_range(data.shape[0]):
for j in const_range(data.shape[1]):
out[i, j] = data[i, j]
if axis == 0:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
out[indices[i, j] if indices[i, j] >=
0 else indices[i, j] + data.shape[axis], j] += updates[i, j]
else:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
out[i, indices[i, j] if indices[i, j] >=
0 else indices[i, j] + data.shape[axis]] += updates[i, j]

return out


@hybrid.script
def _scatter_add_3d(data, indices, updates, axis):
out = output_tensor(data.shape, data.dtype)
for i in const_range(data.shape[0]):
for j in const_range(data.shape[1]):
for k in const_range(data.shape[2]):
out[i, j, k] = data[i, j, k]
if axis == 0:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
out[indices[i, j, k] if indices[i, j, k] >=
0 else indices[i, j, k] + data.shape[axis], j, k] += updates[i, j, k]
elif axis == 1:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
out[i, indices[i, j, k] if indices[i, j, k] >=
0 else indices[i, j, k] + data.shape[axis], k] += updates[i, j, k]
else:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
out[i, j, indices[i, j, k] if indices[i, j, k] >=
0 else indices[i, j, k] + data.shape[axis]] += updates[i, j, k]

return out


@hybrid.script
def _scatter_add_4d(data, indices, updates, axis):
out = output_tensor(data.shape, data.dtype)
for i in const_range(data.shape[0]):
for j in const_range(data.shape[1]):
for k in const_range(data.shape[2]):
for l in const_range(data.shape[3]):
out[i, j, k, l] = data[i, j, k, l]

if axis == 0:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
for l in const_range(indices.shape[3]):
out[indices[i, j, k, l] if indices[i, j, k, l] >=
0 else indices[i, j, k, l] + data.shape[axis],
j, k, l] += updates[i, j, k, l]
elif axis == 1:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
for l in const_range(indices.shape[3]):
out[i,
indices[i, j, k, l] if indices[i, j, k, l] >=
0 else indices[i, j, k, l] + data.shape[axis],
k, l] += updates[i, j, k, l]
elif axis == 2:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
for l in const_range(indices.shape[3]):
out[i, j,
indices[i, j, k, l] if indices[i, j, k, l] >=
0 else indices[i, j, k, l] + data.shape[axis],
l] += updates[i, j, k, l]
else:
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for k in const_range(indices.shape[2]):
for l in const_range(indices.shape[3]):
out[i, j, k,
indices[i, j, k, l] if indices[i, j, k, l] >=
0 else indices[i, j, k, l] + data.shape[axis]
] += updates[i, j, k, l]

return out


def scatter_add(data, indices, updates, axis=0):
"""Update data by adding values in updates at positions defined by indices
Parameters
----------
data : relay.Expr
The input data to the operator.
indices : relay.Expr
The index locations to update.
updates : relay.Expr
The values to update.
axis : int
The axis to scatter_add on
Returns
-------
ret : relay.Expr
The computed result.
"""
if axis < 0:
axis += len(data.shape)
assert axis >= 0
assert axis < len(data.shape)

if len(data.shape) == 1:
return _scatter_add_1d(data, indices, updates)
if len(data.shape) == 2:
return _scatter_add_2d(data, indices, updates, axis)
if len(data.shape) == 3:
return _scatter_add_3d(data, indices, updates, axis)
if len(data.shape) == 4:
return _scatter_add_4d(data, indices, updates, axis)
raise ValueError("scatter_add only support for 1-4 dimensions")