-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Relay] Add pass for getting calibration data from a relay module #5997
Merged
Merged
Changes from 13 commits
Commits
Show all changes
27 commits
Select commit
Hold shift + click to select a range
373a462
add simple pass to extract outputs
seanlatias 9da5b2e
complete pass that collects all function inputs/outputs
seanlatias 91d0f09
add analysis pass for collecting outputs
seanlatias 7c1e0ca
reorganize the files
seanlatias 08c8664
add the first test
seanlatias e2d1281
update test with tuples
seanlatias db0bf7d
clean up Python code
seanlatias 3e29023
Merge branch 'master' of https://github.com/apache/incubator-tvm into…
seanlatias 84ae166
merge with upstream
seanlatias 0c76cf4
clean up transform.py
seanlatias 4f13b0c
add comments for cpp files
seanlatias c4f2746
Merge branch 'master' of https://github.com/apache/incubator-tvm into…
seanlatias 22b10db
fix lint issues
seanlatias d188d4c
update submodules
seanlatias 81ac706
modify files according to the review
seanlatias 1bf93f9
fix style and typo
seanlatias 02b9294
fix lint error
seanlatias 52b6116
add checks for repeated function calls
seanlatias 604c907
fix lint error
seanlatias 031d79e
merge review comments
seanlatias f68ecba
small simplification
seanlatias bf24218
revise the code according to the review comments
seanlatias 9ccd88f
add username in TODO
seanlatias cfd1e20
use IRModule directly
seanlatias c1eb082
use better APIs according to the review
seanlatias 1cc0c45
apply comments from the reviewer
seanlatias 79fd577
retrigger ci
seanlatias File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Submodule dmlc-core
updated
14 files
+2 −2 | .github/workflows/githubci.yml | |
+1 −5 | Makefile | |
+1 −1 | README.md | |
+0 −5 | appveyor.yml | |
+12 −4 | include/dmlc/base.h | |
+22 −42 | include/dmlc/logging.h | |
+1 −0 | include/dmlc/omp.h | |
+5 −33 | include/dmlc/parameter.h | |
+0 −3 | make/config.mk | |
+2 −2 | scripts/test_script.sh | |
+41 −2 | test/unittest/unittest_logging.cc | |
+0 −11 | test/unittest/unittest_logging_throw.cc | |
+4 −11 | test/unittest/unittest_param.cc | |
+6 −8 | test/unittest/unittest_thread_group.cc |
Submodule vta-hw
updated
from db6515 to f1c338
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file src/relay/analysis/get_calibration_data.cc | ||
* | ||
* \brief To get the calibration data, we need to perform two | ||
* steps. First, we need to prepare the module that generate | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
* the tensor values (GetCalibrateModule). Second, we need to | ||
* generate the mapping between the values and the subgraphs | ||
* (GetCalibrateOutputMap). | ||
*/ | ||
|
||
#include <tvm/relay/expr.h> | ||
#include <tvm/relay/expr_functor.h> | ||
#include <tvm/relay/analysis.h> | ||
|
||
namespace tvm { | ||
namespace relay { | ||
|
||
/*! | ||
* \brief This function returns a module that will be used by | ||
* the relay graph runtime for collecting the calibration data. | ||
* To do that, we first make all inputs and outputs of each | ||
* subgrpah into the final output (i.e., the final output is a | ||
* tuple of tensors). Then, we change the compiler attribute of | ||
* each subgraph. Finally, we mark all subgraph to be inlined. | ||
*/ | ||
|
||
IRModule GetCalibrateModule(IRModule module) { | ||
class OutputCollector : public ExprRewriter { | ||
public: | ||
OutputCollector(const Map<GlobalVar, BaseFunc>& glob_funcs) | ||
: glob_funcs(glob_funcs) {} | ||
|
||
Expr Rewrite_(const CallNode* call, const Expr& post) final { | ||
if (call->op->IsInstance<GlobalVarNode>()) { | ||
auto var = Downcast<GlobalVar>(call->op); | ||
// check if it is a subgraph of the original graph | ||
if (glob_funcs.count(var) > 0) { | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
for (size_t i = 0; i < call->args.size(); i++) | ||
new_outputs.push_back(call->args[i]); | ||
// need to flatten the output if it is a tuple | ||
auto* fn = glob_funcs[var].as<FunctionNode>(); | ||
if (auto* tn = fn->body.as<TupleNode>()) { | ||
for (size_t i = 0; i < tn->fields.size(); i++) { | ||
new_outputs.push_back(TupleGetItem(post, i)); | ||
} | ||
} else { | ||
new_outputs.push_back(post); | ||
} | ||
} | ||
} | ||
return post; | ||
} | ||
|
||
Array<Expr> GetNewOutputs() { | ||
return new_outputs; | ||
} | ||
|
||
private: | ||
const Map<GlobalVar, BaseFunc>& glob_funcs; | ||
Array<Expr> new_outputs; | ||
}; | ||
|
||
auto glob_funcs = module->functions; | ||
// module is mutable, hence, we make a copy of it. | ||
module.CopyOnWrite(); | ||
for (const auto& pair : glob_funcs) { | ||
if (auto* fn = pair.second.as<FunctionNode>()) { | ||
auto func = GetRef<Function>(fn); | ||
auto* gl_var = pair.first.as<GlobalVarNode>(); | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
// we only collect the outputs for main function | ||
if (gl_var->name_hint == "main") { | ||
OutputCollector output_collector(glob_funcs); | ||
PostOrderRewrite(func->body, &output_collector); | ||
auto new_outputs = output_collector.GetNewOutputs(); | ||
if (!new_outputs.empty()) { | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
Array<Expr> fields; | ||
for (const auto& output : new_outputs) { | ||
fields.push_back(output); | ||
} | ||
auto tuple = Tuple(fields); | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
func = Function(func->params, tuple, tuple->checked_type_, | ||
func->type_params, func->attrs); | ||
} | ||
// inline the function if it is not main function | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
} else { | ||
func = WithAttr(std::move(func), attr::kInline, tvm::Integer(1)); | ||
} | ||
// reset the compiler attribute to null | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
func = WithAttr(std::move(func), attr::kCompiler, NullValue<ObjectRef>()); | ||
module->Update(pair.first, func); | ||
} | ||
} | ||
return module; | ||
} | ||
|
||
/*! | ||
* \brief This function generates the output mapping between | ||
* the calibration data and each subgraph. The key is a | ||
* GlobalVar that corresponds to each subgraph and the value | ||
* is an array of integers. The size of the array is always | ||
* three. The first value is the offset the points to the start. | ||
* The second value is the number of inputs. The third value | ||
* is the number of outputs. | ||
*/ | ||
|
||
Map<GlobalVar, Array<Integer>> GetCalibrateOutputMap(const IRModule& module) { | ||
class OutputMapper : public ExprRewriter { | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
public: | ||
OutputMapper(Map<GlobalVar, Array<Integer>>* output_map, | ||
const Map<GlobalVar, BaseFunc>& glob_funcs, | ||
int* offset) | ||
: output_map(output_map), glob_funcs(glob_funcs), offset(offset) {} | ||
|
||
Expr Rewrite_(const CallNode* call, const Expr& post) final { | ||
if (call->op->IsInstance<GlobalVarNode>()) { | ||
auto var = Downcast<GlobalVar>(call->op); | ||
Array<Integer> info; | ||
// the first value is the offset | ||
info.push_back(Integer(*offset)); | ||
// the second value is the number of inputs | ||
info.push_back(Integer(call->args.size())); | ||
// the third value is the number of outputs | ||
// we need to check if the output is a tuple | ||
int out_size = 1; | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
auto* fn = glob_funcs[var].as<FunctionNode>(); | ||
if (auto* tn = fn->body.as<TupleNode>()) { | ||
info.push_back(Integer(tn->fields.size())); | ||
out_size = tn->fields.size(); | ||
} else { | ||
info.push_back(Integer(1)); | ||
} | ||
output_map->Set(var, info); | ||
// calculate the offset for the next function | ||
*offset = *offset + call->args.size() + out_size; | ||
} | ||
return post; | ||
} | ||
|
||
private: | ||
Map<GlobalVar, Array<Integer>>* output_map; | ||
const Map<GlobalVar, BaseFunc>& glob_funcs; | ||
int* offset; | ||
}; | ||
|
||
Map<GlobalVar, Array<Integer>> output_map; | ||
int offset = 0; | ||
auto glob_funcs = module->functions; | ||
for (const auto& pair : glob_funcs) { | ||
if (auto* fn = pair.second.as<FunctionNode>()) { | ||
auto* gl_var = pair.first.as<GlobalVarNode>(); | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
if (gl_var->name_hint == "main") { | ||
OutputMapper output_mapper(&output_map, glob_funcs, &offset); | ||
auto func = GetRef<Function>(fn); | ||
PostOrderRewrite(func->body, &output_mapper); | ||
} | ||
} | ||
} | ||
|
||
return output_map; | ||
} | ||
|
||
TVM_REGISTER_GLOBAL("relay.analysis.get_calibrate_module") | ||
.set_body_typed([](IRModule mod) { | ||
return GetCalibrateModule(mod); | ||
}); | ||
|
||
TVM_REGISTER_GLOBAL("relay.analysis.get_calibrate_output_map") | ||
.set_body_typed([](const IRModule& mod) { | ||
return GetCalibrateOutputMap(mod); | ||
}); | ||
|
||
} // namespace relay | ||
} // namespace tvm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import numpy as np | ||
|
||
import tvm | ||
import tvm.relay.testing | ||
from tvm import relay | ||
from tvm.relay import transform | ||
from tvm.relay.analysis import get_calibration_data | ||
|
||
|
||
def check_data_size(mod, data): | ||
assert len(data) == len(mod.functions) - 1 | ||
for key, value in mod.functions.items(): | ||
if key.name_hint != "main": | ||
assert len(data[key]["inputs"]) == len(value.params) | ||
if isinstance(value.body, relay.Tuple): | ||
assert len(data[key]["outputs"]) == len(value.body.fields) | ||
else: | ||
assert len(data[key]["outputs"]) == 1 | ||
|
||
def test_synthetic(): | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
# A module with two subgraphs | ||
mod = tvm.IRModule() | ||
|
||
x0 = relay.var('x0', shape=(8, 8)) | ||
y0 = relay.var('y0', shape=(8, 8)) | ||
z0 = x0 + y0 | ||
z1 = x0 - y0 | ||
z2 = relay.Tuple((z0, z1)) | ||
f0 = relay.Function([x0, y0], z2) | ||
g0 = relay.GlobalVar("g0") | ||
mod[g0] = f0 | ||
|
||
x1 = relay.var('x1', shape=(8, 8)) | ||
y1 = relay.var('y1', shape=(8, 8)) | ||
z1 = x1 - y1 | ||
f1 = relay.Function([x1, y1], z1) | ||
g1 = relay.GlobalVar("g1") | ||
mod[g1] = f1 | ||
|
||
x = relay.var('x', shape=(8, 8)) | ||
y = relay.var('y', shape=(8, 8)) | ||
z = relay.var('z', shape=(8, 8)) | ||
c0 = relay.Call(g0, [x, y]) | ||
c1 = relay.Call(g1, [relay.TupleGetItem(c0, 0), z]) | ||
fm = relay.Function([x, y, z], c1) | ||
mod["main"] = fm | ||
|
||
x_data = np.random.rand(8, 8).astype('float32') | ||
y_data = np.random.rand(8, 8).astype('float32') | ||
z_data = np.random.rand(8, 8).astype('float32') | ||
data = get_calibration_data(mod, {"x": x_data, "y": y_data, "z": z_data}) | ||
|
||
# Check the number and orders | ||
check_data_size(mod, data) | ||
tvm.testing.assert_allclose(data[g0]["inputs"][0].asnumpy(), x_data) | ||
tvm.testing.assert_allclose(data[g0]["inputs"][1].asnumpy(), y_data) | ||
tvm.testing.assert_allclose(data[g0]["outputs"][0].asnumpy(), x_data + y_data) | ||
tvm.testing.assert_allclose(data[g0]["outputs"][1].asnumpy(), x_data - y_data) | ||
tvm.testing.assert_allclose(data[g1]["inputs"][0].asnumpy(), x_data + y_data) | ||
tvm.testing.assert_allclose(data[g1]["inputs"][1].asnumpy(), z_data) | ||
tvm.testing.assert_allclose(data[g1]["outputs"][0].asnumpy(), x_data + y_data - z_data) | ||
|
||
def test_mobilenet_dnnl(): | ||
seanlatias marked this conversation as resolved.
Show resolved
Hide resolved
|
||
dtype = 'float32' | ||
ishape = (1, 3, 224, 224) | ||
mod, params = relay.testing.mobilenet.get_workload( | ||
batch_size=1, dtype='float32') | ||
|
||
mod = transform.AnnotateTarget(["dnnl"])(mod) | ||
mod = transform.MergeCompilerRegions()(mod) | ||
mod = transform.PartitionGraph()(mod) | ||
|
||
i_data = np.random.uniform(0, 1, ishape).astype(dtype) | ||
data = get_calibration_data(mod, {"data": i_data, **params}) | ||
|
||
# Check the number and orders | ||
check_data_size(mod, data) | ||
|
||
if __name__ == "__main__": | ||
test_synthetic() | ||
test_mobilenet_dnnl() | ||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We may need to think of the semantic for the module with control flows, which has to use VM instead of graph runtime.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Per offline discussion, please mention that this pass only works for the graph without control flow.