Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PYTORCH]Matmul fix for batch_matmul #5604

Merged
merged 1 commit into from
May 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 42 additions & 8 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -1242,13 +1242,47 @@ def _impl(inputs, input_types):
return chunks
return _impl

def _matmul():
def _impl(inputs, input_types):
data0 = inputs[0]
data1 = inputs[1]
data1_t = _op.transpose(data1, axes=(1, 0))
def _matmul(prelude):
def _impl(inputs, input_types):

inputs_0 = inputs[0]
inputs_1 = inputs[1]

# Need to check input shape as batch matmul must be supported.
a_shape = _infer_shape(inputs_0, prelude.mod)
b_shape = _infer_shape(inputs_1, prelude.mod)

# When performing a batch matmul, we need to properly handle N-dim shapes.
if len(a_shape) > 2 or len(b_shape) > 2:
# Convert a and b into 3 dimensional tensors.
a = _op.reshape(inputs_0, [-1, a_shape[-2], a_shape[-1]])
b = _op.reshape(inputs_1, [-1, b_shape[-2], b_shape[-1]])
# Broadcast b to match batch size of a
new_b_shape = list(_infer_shape(b, prelude.mod))
new_a_shape = _infer_shape(a, prelude.mod)
if new_a_shape[0] > new_b_shape[0]:
new_b_shape[0] = new_a_shape[0]
b = _op.broadcast_to(b, new_b_shape)
# Transpose matrix dimensions of b.
b = _op.transpose(b, [0, 2, 1])
# Perform a batch matmul.
output = _op.nn.batch_matmul(a, b)
# Reshape output to original dimensions.
return _op.reshape(output, [*a_shape[:-2], a_shape[-2], b_shape[-1]])

# Otherwise a simple dense op will get the job done.
if len(b_shape) == 1:
input_1 = _op.expand_dims(inputs_1, 0, 1)
else:
input_1 = _op.transpose(inputs_1, axes=(1, 0))

out = _op.nn.dense(inputs_0, input_1)

if len(b_shape) == 1:
out = _op.squeeze(out, axis=[-1])

return out

return _op.nn.dense(data0, data1_t)
return _impl


Expand Down Expand Up @@ -1695,7 +1729,7 @@ def _get_convert_map(prelude):
"aten::alpha_dropout" : _dropout(),
"aten::mean" : _mean(),
"aten::chunk" : _chunk(prelude),
"aten::matmul" : _matmul(),
"aten::matmul" : _matmul(prelude),
"aten::expand" : _expand(),
"aten::Int" : _int(),
"prim::NumToTensor" : _numtotensor(),
Expand Down Expand Up @@ -1755,7 +1789,7 @@ def _get_convert_map(prelude):
"aten::rsub" : _rsub(),
"aten::embedding" : _embedding(),
"aten::one_hot" : _one_hot(),
"aten::mm" : _matmul(),
"aten::mm" : _matmul(prelude),
"relay::tensor_array_stack" : _tensor_array_stack(prelude),
"aten::add" : _add(prelude),
"aten::add_" : _add(prelude),
Expand Down
34 changes: 34 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2064,11 +2064,45 @@ def forward(self, *args):
verify_model(Addcmul2().float().eval(), input_data=[input_data, t1, t2])


def test_forward_matmul():
torch.set_grad_enabled(False)

class MatMul1(Module):
def forward(self, *args):
return torch.matmul(args[0], args[1])

# matrix x vector
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(4)
verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2])

# matrix x matrix
tensor1 = torch.randn(10, 4)
tensor2 = torch.randn(4, 10)
verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2])

# batched matrix x batched matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(10, 4, 5)
verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2])

# batched matrix x broadcasted matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4, 5)
verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2])

# batched matrix x batched matrix
tensor1 = torch.randn(1, 12, 14, 64)
tensor2 = torch.randn(1, 12, 64, 14)
verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2])


if __name__ == "__main__":
# Single operator tests
test_forward_add()
test_forward_subtract()
test_forward_multiply()
test_forward_matmul()
test_forward_rsub()
test_forward_onehot()
test_forward_embedding()
Expand Down