diff --git a/python/tvm/autotvm/task/relay_integration.py b/python/tvm/autotvm/task/relay_integration.py index 7471ca3d6c8f..20976d649606 100644 --- a/python/tvm/autotvm/task/relay_integration.py +++ b/python/tvm/autotvm/task/relay_integration.py @@ -133,6 +133,7 @@ def extract_from_multiple_program(mods, params, ops, target, target_host=None, tvm.relay.op.nn.batch_matmul: [topi.nn.batch_matmul], tvm.relay.op.nn.deformable_conv2d: [topi.nn.deformable_conv2d_nchw], tvm.relay.op.nn.conv1d_transpose: [topi.nn.conv1d_transpose_ncw], + tvm.relay.op.nn.conv3d: [topi.nn.conv3d], } topi_funcs = [] diff --git a/python/tvm/autotvm/task/topi_integration.py b/python/tvm/autotvm/task/topi_integration.py index 10a4f09b11f1..3b788fddcc90 100644 --- a/python/tvm/autotvm/task/topi_integration.py +++ b/python/tvm/autotvm/task/topi_integration.py @@ -94,6 +94,7 @@ def __init__(self, allow_duplicate=False): topi.nn.bitserial_dense: "topi_nn_bitserial_dense", topi.nn.deformable_conv2d_nchw: "topi_nn_deformable_conv2d_nchw", topi.nn.conv1d_transpose_ncw: "topi_nn_conv1d_transpose_ncw", + topi.nn.conv3d: "topi_nn_conv3d", } self.topi_to_schedule = { @@ -112,6 +113,7 @@ def __init__(self, allow_duplicate=False): topi.nn.bitserial_dense: [topi.generic.schedule_bitserial_dense], topi.nn.deformable_conv2d_nchw: [topi.generic.schedule_deformable_conv2d_nchw], topi.nn.conv1d_transpose_ncw: [topi.generic.schedule_conv1d_transpose_ncw], + topi.nn.conv3d: [topi.generic.schedule_conv3d_ndhwc], } # function reflection for tracing @@ -129,6 +131,7 @@ def __init__(self, allow_duplicate=False): topi.nn.bitserial_dense: lambda x: setattr(topi.nn, 'bitserial_dense', x), topi.nn.deformable_conv2d_nchw: lambda x: setattr(topi.nn, 'deformable_conv2d_nchw', x), topi.nn.conv1d_transpose_ncw: lambda x: setattr(topi.nn, 'conv1d_transpose_ncw', x), + topi.nn.conv3d: lambda x: setattr(topi.nn, 'conv3d', x), } self.allow_duplicate = allow_duplicate @@ -231,6 +234,15 @@ def _topi_nn_conv1d_transpose_ncw(*args, **kwargs): s = topi.generic.schedule_conv1d_transpose_ncw([C]) return s, [A, W, C] + @register("topi_nn_conv3d") + def _topi_nn_conv3d(*args, **kwargs): + assert not kwargs, "Do not support kwargs in template function call" + args = deserialize_args(args) + A, W = args[:2] + C = topi.nn.conv3d(*args, **kwargs) + s = topi.generic.schedule_conv3d_ndhwc([C]) + return s, [A, W, C] + @register("topi_nn_dense") def _topi_nn_dense(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" diff --git a/topi/python/topi/nn/util.py b/topi/python/topi/nn/util.py index c2c5c2bf6505..aa73e849427b 100644 --- a/topi/python/topi/nn/util.py +++ b/topi/python/topi/nn/util.py @@ -47,6 +47,42 @@ def infer_pad(data, data_pad): wpad = (TW - IW) // 2 return get_const_int(hpad), get_const_int(wpad) +def infer_pad3d(data, data_pad, layout): + """Infer the padding from stages in reverse. + + Parameters + ---------- + data : Tensor + data stage. + + data_pad : Tensor + pad stage. + + Returns + ------- + dpad : int + padding depth + hpad : int + padding height + wpad : int + padding width + """ + if data_pad is None: + return 0, 0, 0 + + if layout == "NDHWC": + _, ID, IH, IW, _ = data.shape + _, TD, TH, TW, _ = data_pad.shape + elif layout == "NCDHW": + _, _, ID, IH, IW = data.shape + _, _, TD, TH, TW = data_pad.shape + else: + raise ValueError("Layout {} is not supported".format(layout)) + dpad = (TD - ID) + hpad = (TH - IH) + wpad = (TW - IW) + return get_const_int(dpad), get_const_int(hpad), get_const_int(wpad) + def infer_stride(data, kernel, out): """Infer the stride from stages in reverse. diff --git a/topi/python/topi/x86/conv3d.py b/topi/python/topi/x86/conv3d.py index b7a88cb2d574..4a6664eba0e4 100644 --- a/topi/python/topi/x86/conv3d.py +++ b/topi/python/topi/x86/conv3d.py @@ -17,66 +17,359 @@ # pylint: disable=invalid-name, unused-variable, too-many-locals # pylint: disable=unused-argument, redefined-builtin, no-else-return """Conv3D operators""" +from collections import namedtuple import tvm -from .. import generic, tag +from tvm import autotvm +from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity +from .. import generic from ..util import traverse_inline +from ..nn.conv3d import conv3d, conv3d_ncdhw +from ..nn.util import get_pad_tuple3d, infer_pad3d +from ..nn.pad import pad +from ..util import get_const_tuple, simplify, get_const_int +from .util import get_fp32_len -@generic.schedule_conv3d_ndhwc.register("cpu") -def schedule_conv3d_ndhwc(outs): - """TOPI schedule callback for conv3d +Workload3D = namedtuple('Workload', + ['in_dtype', 'out_dtype', 'depth', 'height', 'width', + 'in_filter', 'groups', 'out_filter', 'dkernel', + 'hkernel', 'wkernel', 'dpad', 'hpad', 'wpad', + 'dstride', 'hstride', 'wstride']) + +@autotvm.register_topi_compute(conv3d, 'cpu', ['direct']) +def _declaration_conv3d(cfg, data, kernel, strides, padding, dilation, + layout, out_dtype): + """3D convolution forward operator. + + Parameters + ---------- + input : tvm.Tensor + 5-D input data with shapes: + [batch, in_channel, in_depth, in_height, in_width] for NCDHW layout + [batch, in_depth, in_height, in_width, in_channel] for NDHWC layout + + filter : tvm.Tensor + 5-D filter with shape [kernel_depth, kernel_height, kernel_width, in_channels, out_channels] + + strides : int or a list/tuple of three ints + stride size, or [stride_depth, stride_height, stride_width] + + padding : int or a list/tuple of three ints + padding size, or [pad_depth, pad_height, pad_width] + + dilation: int or a list/tuple of three ints + dilation size, or [dilation_depth, dilation_height, dilation_width] + layout : str + layout of data + + Returns + ------- + output : tvm.Tensor + 5-D with shape [batch, out_depth, out_height, out_width, out_channel] for NDHWC layout + 5-D with shape [batch, out_channel, out_depth, out_height, out_width] for NCDHW layout + """ + out_dtype = data.dtype if out_dtype is None else out_dtype + strides = strides if isinstance(strides, (tuple, list)) else (strides, strides, strides) + dilation = dilation if isinstance(dilation, (tuple, list)) else (dilation, dilation, dilation) + + if layout == 'NDHWC': + _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout) + if cfg.is_fallback: + _get_default_config(cfg, data, kernel, strides, padding, out_dtype, layout) + return _conv3d_ndhwc(cfg, data, kernel, strides, padding, dilation, layout, out_dtype) + elif layout == 'NCDHW': + return conv3d_ncdhw(data, kernel, strides, padding, dilation, out_dtype) + raise ValueError("Layout {} is not supported".format(layout)) + + +@autotvm.register_topi_schedule(generic.schedule_conv3d_ndhwc, 'cpu', ['direct']) +def schedule_conv3d_ndhwc(cfg, outs): + """TOPI schedule callback for conv3d Parameters ---------- outs: Array of Tensor The computation graph description of conv3d in the format of an array of tensors. - Returns ------- s: Schedule The computation schedule for conv3d. """ s = tvm.create_schedule([x.op for x in outs]) - output_op = outs[0].op def _traverse(op): - """Traverse operators from computation graph""" - if op in s.outputs and tag.is_broadcast(op.tag) and len(op.axis) == 5: - # schedule bias + bn + relu - n, d, h, w, c = op.axis - fused = s[op].fuse(n, d, h, w) - s[op].parallel(fused) - s[op].vectorize(c) - if 'conv3d_ndhwc' in op.tag: - conv = op.output(0) - kernel = op.input_tensors[1] - # dilation stage + output = op.output(0) + conv_out = op.input_tensors[0] + kernel_vec = conv_out.op.input_tensors[1] + kernel = kernel_vec.op.input_tensors[0] if isinstance(kernel.op, tvm.tensor.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() - - # padding stage - data = op.input_tensors[0] + data_vec = conv_out.op.input_tensors[0] + data = data_vec.op.input_tensors[0] data_pad = None if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: - # fuse pad h and w data_pad = data data = data_pad.op.input_tensors[0] - _, _, h_pad, w_pad, _ = data_pad.op.axis - pad_fused = s[data_pad].fuse(h_pad, w_pad) - s[data_pad].parallel(pad_fused) - - # compute conv - C = conv - n, d, h, w, c = s[C].op.axis - s[C].vectorize(c) - if op != output_op: # fuse bias + bn + activation - _, _, _, _, c_out = output_op.axis - s[C].compute_at(s[output_op], c_out) - else: - # fuse batch, depth, height axes - fused = s[C].fuse(n, d, h) - s[C].parallel(fused) - - traverse_inline(s, output_op, _traverse) + + kd, kh, kw, i, o = get_const_tuple(kernel.shape) + args = [s, cfg, data, data_pad, data_vec, kernel_vec, conv_out, output, outs[0]] + _schedule_conv3d_ndhwc(*args) + + traverse_inline(s, outs[0].op, _traverse) + return s + + +def _conv3d_ndhwc(cfg, data, kernel, strides, padding, dilation, layout, out_dtype): + out_dtype = data.dtype if out_dtype is None else out_dtype + + assert isinstance(dilation, int) or len(dilation) == 3 + if isinstance(dilation, int): + dilation_d, dilation_h, dilation_w = (dilation, dilation, dilation) + else: + dilation_d, dilation_h, dilation_w = dilation + + DSTR, HSTR, WSTR = strides + batch_size, in_depth, in_height, in_width, in_channel = get_const_tuple(data.shape) + kernel_depth, kernel_height, kernel_width, _, num_filter = get_const_tuple(kernel.shape) + + dilated_kernel_d = (kernel_depth - 1) * dilation_d + 1 + dilated_kernel_h = (kernel_height - 1) * dilation_h + 1 + dilated_kernel_w = (kernel_width - 1) * dilation_w + 1 + + pad_front, pad_top, pad_left, pad_back, pad_down, pad_right = get_pad_tuple3d( + padding, (dilated_kernel_d, dilated_kernel_h, dilated_kernel_w)) + + pad_d = pad_front + pad_back + pad_h = pad_top + pad_down + pad_w = pad_left + pad_right + + pad_depth = in_depth + pad_d + pad_height = in_height + pad_h + pad_width = in_width + pad_w + + out_depth = simplify((in_depth + pad_d - dilated_kernel_d) // DSTR + 1) + out_height = simplify((in_height + pad_h - dilated_kernel_h) // HSTR + 1) + out_width = simplify((in_width + pad_w - dilated_kernel_w) // WSTR + 1) + + # pack data + DOPAD = (pad_d != 0 or pad_h != 0 or pad_w != 0) + if DOPAD: + data_pad = pad(data, (0, pad_front, pad_top, pad_left, 0), + (0, pad_back, pad_down, pad_right, 0), name="data_pad") + else: + data_pad = data + + # fetch schedule + ic_bn, oc_bn = cfg["tile_ic"].size[-1], cfg["tile_oc"].size[-1] + shape = (batch_size, in_channel // ic_bn, pad_depth, pad_height, ic_bn, pad_width) + data_vec = tvm.compute(shape, + lambda n, C, d, h, c, w: data_pad[n, d, h, w, C * ic_bn + c], + name='data_vec') + + # pack kernel + shape = (num_filter//oc_bn, in_channel//ic_bn, + kernel_depth, kernel_height, kernel_width, ic_bn, oc_bn) + kernel_vec = tvm.compute(shape, + lambda CO, CI, d, h, w, ci, co: + kernel[d, h, w, CI * ic_bn + ci, CO * oc_bn + co], + name='kernel_vec') + + # convolution + oshape = (batch_size, num_filter//oc_bn, out_depth, out_height, out_width, oc_bn) + unpack_shape = (batch_size, out_depth, out_height, out_width, num_filter) + + ic = tvm.reduce_axis((0, in_channel), name='ic') + kh = tvm.reduce_axis((0, kernel_height), name='kh') + kw = tvm.reduce_axis((0, kernel_width), name='kw') + kd = tvm.reduce_axis((0, kernel_depth), name='kd') + idxmod = tvm.indexmod + idxdiv = tvm.indexdiv + + conv = tvm.compute(oshape, lambda n, oc_chunk, od, oh, ow, oc_block: + tvm.sum(data_vec[n, + idxdiv(ic, ic_bn), + od*DSTR+kd*dilation_d, + oh*HSTR+kh*dilation_h, + idxmod(ic, ic_bn), + ow*WSTR+kw*dilation_w].astype(out_dtype) * + kernel_vec[oc_chunk, idxdiv(ic, ic_bn), kd, kh, kw, + idxmod(ic, ic_bn), + oc_block].astype(out_dtype), + axis=[kd, kh, kw, ic]), name='conv') + conv_unpacked = tvm.compute(unpack_shape, + lambda n, d, h, w, c: conv[n, idxdiv(c, oc_bn), + d, h, w, + idxmod(c, oc_bn)] + .astype(out_dtype), + name='output_unpack', + tag='conv3d_ndhwc') + return conv_unpacked + + +def _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout): + """Create schedule configuration from input arguments""" + dshape = get_const_tuple(data.shape) + kshape = get_const_tuple(kernel.shape) + if layout == 'NDHWC': + n, d, h, w, ic = dshape + kd, kh, kw, _, oc = kshape + else: + raise ValueError("Not support this layout {} with " + "schedule template.".format(layout)) + + # pad_front, pad_top, pad_left, pad_back, pad_down(bottom), pad_right + pf, pt, pl, pb, pd, pr = get_pad_tuple3d(padding, (kd, kh, kw)) + sd, sh, sw = strides if isinstance(strides, (tuple, list)) else (strides, strides, strides) + od = (d - kd + pf + pb) // sd + 1 + oh = (h - kh + pt + pd) // sh + 1 + ow = (w - kw + pl + pr) // sw + 1 + + # Create schedule config + cfg.define_split("tile_ic", ic, num_outputs=2) + cfg.define_split("tile_oc", oc, num_outputs=2) + cfg.define_split("tile_ow", ow, num_outputs=2, filter=lambda y: y.size[-1] <= 8) + cfg.define_knob("unroll_kw", [True, False]) + +def _get_default_config(cfg, data, kernel, strides, padding, out_dtype, layout): + """ + Get default schedule config for the workload + """ + if layout != 'NDHWC': + raise ValueError("Layout {} is not supported".format(layout)) + + static_data_shape = [] + for dim in get_const_tuple(data.shape): + if isinstance(dim, tvm.expr.Var): + static_data_shape.append(1) + else: + static_data_shape.append(dim) + data = tvm.placeholder(static_data_shape, dtype=data.dtype) + wkl = _get_conv3d_workload(data, kernel, strides, padding, out_dtype, layout) + _fallback_schedule(cfg, wkl) + +def _get_conv3d_workload(data, kernel, stride, padding, out_dtype, data_layout='NCHW'): + """ Get the workload structure. """ + if data_layout == 'NCDHW': + _, CI, ID, IH, IW = get_const_tuple(data.shape) + CIG, CO, KD, KH, KW = get_const_tuple(kernel.shape) + elif data_layout == 'NDHWC': + _, ID, IH, IW, CI = get_const_tuple(data.shape) + KD, KH, KW, CIG, CO = get_const_tuple(kernel.shape) + else: + raise ValueError("not support this layout {} yet".format(data_layout)) + + pad_front, pad_top, pad_left, pad_back, pad_down, pad_right = get_pad_tuple3d( + padding, (get_const_int(KD), get_const_int(KH), get_const_int(KW))) + DPAD = pad_front + pad_back + HPAD = pad_top + pad_down + WPAD = pad_left + pad_right + GRPS = CI // CIG + if isinstance(stride, (tuple, list)): + DSTR, HSTR, WSTR = stride + else: + DSTR, HSTR, WSTR = stride, stride, stride + assert (data.dtype == kernel.dtype) or (data.dtype == 'uint8' and kernel.dtype == 'int8'), \ + "Do not support inputs with different data types now. ' \ + '{} vs. {}".format(data.dtype, kernel.dtype) + return Workload3D(data.dtype, out_dtype, ID, IH, IW, CI, GRPS, CO, KD, KH, KW, + DPAD, HPAD, WPAD, DSTR, HSTR, WSTR) + + +def _fallback_schedule(cfg, wkl): + simd_width = get_fp32_len() + DPAD, HPAD, WPAD = wkl.dpad, wkl.hpad, wkl.wpad + DSTR, HSTR, WSTR = wkl.dstride, wkl.hstride, wkl.wstride + out_width = (wkl.width + 2 * WPAD - wkl.wkernel) // WSTR + 1 + + oc_bn = 1 + for bn in range(simd_width, 0, -1): + if wkl.out_filter % bn == 0: + oc_bn = bn + break + + ic_bn = 1 + for bn in range(oc_bn, 0, -1): + if wkl.in_filter % bn == 0: + ic_bn = bn + break + + reg_n = 1 + for n in range(7, 0, -1): + if out_width % n == 0: + reg_n = n + break + cfg["tile_ic"] = SplitEntity([wkl.in_filter // ic_bn, ic_bn]) + cfg["tile_oc"] = SplitEntity([wkl.out_filter // oc_bn, oc_bn]) + cfg["tile_ow"] = SplitEntity([out_width // reg_n, reg_n]) + cfg["unroll_kw"] = OtherOptionEntity(False) + + +def _schedule_conv3d_ndhwc(s, cfg, data, data_pad, data_vec, kernel_vec, conv_out, output, last): + # fetch schedule + ic_bn, oc_bn, reg_n, unroll_kw = (cfg["tile_ic"].size[-1], cfg["tile_oc"].size[-1], + cfg["tile_ow"].size[-1], cfg["unroll_kw"].val) + + # get padding size + padding = infer_pad3d(data, data_pad, "NDHWC") + DPAD, HPAD, WPAD = padding + DOPAD = (DPAD != 0 or HPAD != 0 or WPAD != 0) + + A, W = data, kernel_vec + A0, A1 = data_pad, data_vec + + # schedule data + if DOPAD: + s[A0].compute_inline() + batch, ic_chunk, idd, ih, ic_block, iw = s[A1].op.axis + parallel_axis = s[A1].fuse(batch, ic_chunk, idd, ih) + s[A1].parallel(parallel_axis) + + # schedule kernel pack + oc_chunk, ic_chunk, od, oh, ow, ic_block, oc_block = s[W].op.axis + s[W].reorder(oc_chunk, od, oh, ic_chunk, ow, ic_block, oc_block) + if oc_bn > 1: + s[W].vectorize(oc_block) + parallel_axis = s[W].fuse(oc_chunk, od, oh) + s[W].parallel(parallel_axis) + + # schedule conv + C, O0, O = conv_out, output, last + CC = s.cache_write(C, 'global') + + _, oc_chunk, od, oh, ow, oc_block = s[C].op.axis + ow_chunk, ow_block = s[C].split(ow, factor=reg_n) + s[C].reorder(oc_chunk, od, oh, ow_chunk, ow_block, oc_block) + s[C].fuse(oc_chunk, od, oh) + s[C].vectorize(oc_block) + + s[CC].compute_at(s[C], ow_chunk) + _, oc_chunk, od, oh, ow, oc_block = s[CC].op.axis + kd, kh, kw, ic = s[CC].op.reduce_axis + + ow_chunk, ow_block = s[CC].split(ow, factor=reg_n) + ic_chunk, ic_block = s[CC].split(ic, factor=ic_bn) + + if unroll_kw: + s[CC].reorder(oc_chunk, oh, ow_chunk, ic_chunk, kd, kh, ic_block, kw, ow_block, oc_block) + s[CC].unroll(kw) + else: + s[CC].reorder(oc_chunk, oh, ow_chunk, ic_chunk, kd, kh, kw, ic_block, ow_block, oc_block) + + s[CC].fuse(oc_chunk, od, oh) + s[CC].vectorize(oc_block) + s[CC].unroll(ow_block) + + if O0 != O: + s[O0].compute_inline() + + # unpacking + batch, od, oh, ow, oc = s[O].op.axis + ow_chunk, ow_block = s[O].split(ow, factor=reg_n) + oc_chunk, oc_block = s[O].split(oc, factor=oc_bn) + s[O].reorder(oc_chunk, od, oh, ow_chunk, ow_block, oc_block) + parallel_axis = s[O].fuse(batch, oc_chunk, od, oh) + s[C].compute_at(s[O], parallel_axis) + s[O].vectorize(oc_block) + s[O].parallel(parallel_axis) return s diff --git a/topi/tests/python/test_topi_conv3d_ndhwc.py b/topi/tests/python/test_topi_conv3d_ndhwc.py index b95b13d403b9..c613f68d062e 100644 --- a/topi/tests/python/test_topi_conv3d_ndhwc.py +++ b/topi/tests/python/test_topi_conv3d_ndhwc.py @@ -36,7 +36,6 @@ def verify_conv3d_ndhwc(batch, in_channel, in_size, num_filter, kernel, stride, A = tvm.placeholder((batch, in_depth, in_height, in_width, in_channel), name='A') W = tvm.placeholder((kernel_depth, kernel_height, kernel_width, in_channel, num_filter), name='W') - B = topi.nn.conv3d_ndhwc(A, W, stride, padding, dilation) a_shape = get_const_tuple(A.shape) w_shape = get_const_tuple(W.shape) @@ -57,6 +56,7 @@ def check_device(device): return print("Running on target: %s" % device) with tvm.target.create(device): + B = topi.nn.conv3d(A, W, stride, padding, dilation, layout="NDHWC") s = topi.generic.schedule_conv3d_ndhwc([B]) ctx = tvm.context(device, 0) a = tvm.nd.array(a_np, ctx)