diff --git a/python/tvm/relay/frontend/onnx.py b/python/tvm/relay/frontend/onnx.py index 7ae1225b2412..1236b0dbe054 100644 --- a/python/tvm/relay/frontend/onnx.py +++ b/python/tvm/relay/frontend/onnx.py @@ -18,7 +18,6 @@ """ONNX: Open Neural Network Exchange frontend for Relay.""" from __future__ import absolute_import as _abs -from functools import partial import numpy as np import tvm from ... import nd as _nd @@ -81,6 +80,16 @@ def get_pad_pair(input1d, kernel1d, stride1d): return [pad_before, pad_after] +def onnx_default_layout(dims): + if dims == 1: + return 'NCW' + if dims == 2: + return 'NCHW' + + msg = "Only 1d and 2d layouts are currently supported" + raise tvm.error.OpAttributeInvalid(msg.format(op_name)) + + def onnx_storage_order2layout(storage_order, dims=2): """converter of onnx storage order parameter to tvm storage order format""" if storage_order not in (0, 1): @@ -88,11 +97,11 @@ def onnx_storage_order2layout(storage_order, dims=2): if dims == 1: return 'NCW' if storage_order == 0 else 'NWC' - elif dims == 2: + if dims == 2: return 'NCHW' if storage_order == 0 else 'NHWC' - else: - msg = "Only 1d and 2d layouts are currently supported" - raise tvm.error.OpAttributeInvalid(msg.format(op_name)) + + msg = "Only 1d and 2d layouts are currently supported" + raise tvm.error.OpAttributeInvalid(msg.format(op_name)) def dimension_constraint(): @@ -135,6 +144,19 @@ def get_converter(cls, opset): version, cls.__name__)) +class Unary(OnnxOpConverter): + """ A helper class for unary op converters. + """ + name = '' + + @classmethod + def _impl_v1(cls, inputs, attr, params): + assert len(inputs) == 1, "Unary math op {} takes 1 input, {} given".format( + cls.name, len(inputs)) + op_name = cls.name + return get_relay_op(op_name)(*inputs) + + class Elemwise(OnnxOpConverter): """ A helper class for elemwise op converters. """ @@ -142,8 +164,8 @@ class Elemwise(OnnxOpConverter): @classmethod def _impl_v1(cls, inputs, attr, params): - assert len(inputs) == 2, "Math op take 2 inputs, {} given".format( - len(inputs)) + assert len(inputs) == 2, "Math op {} take 2 inputs, {} given".format( + cls.name, len(inputs)) op_name = cls.name conv_ops = ["conv2d", "conv2d_transpose"] if attr.get('broadcast', 0) and any(x in str(inputs[0]) for x in conv_ops): @@ -160,26 +182,48 @@ class Pool(OnnxOpConverter): @classmethod def _impl_v1(cls, inputs, attr, params): + input_shape = infer_shape(inputs[0]) + if 'auto_pad' in attr: + attr['auto_pad'] = attr['auto_pad'].decode('utf-8') + if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'): + pad_tuple = [] + for axis in range(len(input_shape) - 2): + axis_shape = input_shape[2 + axis] + stride = attr['strides'][axis] + kernel = attr['kernel_shape'][axis] + pad = get_pad_pair(axis_shape, kernel, stride) + pad_tuple.append(pad) + pad_tuple = tuple([val for pair in zip(*pad_tuple) for val in pair]) + attr['pads'] = pad_tuple + elif attr['auto_pad'] == 'VALID': + attr['pads'] = 0 + elif attr['auto_pad'] == 'NOTSET': + pass + else: + msg = 'Value {} in attribute "auto_pad" of operator {} is invalid.' + raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad'], cls.name)) + attr.pop("auto_pad") + + if 'storage_order' in attr: + attr['layout'] = onnx_storage_order2layout(attr['storage_order'], + dims=(len(input_shape) - 2)) + else: + attr['layout'] = onnx_default_layout(dims=(len(input_shape) - 2)) + return AttrCvt( op_name=dimension_picker(cls.name), transforms={ 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad) + 'pads': ('padding', 0) }, - # very weird attributes here in onnx, force check - ignores=['dilations', 'auto_pad'], - # TODO(zhreshold): make sure ceil_mode in onnx, and layout? - extras={'ceil_mode': False}, + ignores=['dilations'], custom_check=dimension_constraint())(inputs, attr, params) -class Absolute(OnnxOpConverter): +class Absolute(Unary): """ Operator converter for Absolute. """ - - @classmethod - def _impl_v1(cls, inputs, attr, params): - return _op.nn.relu(inputs[0]) + _op.nn.relu(_op.negative(inputs[0])) + name = 'abs' class Add(Elemwise): @@ -387,50 +431,6 @@ class MaxPool(Pool): """ name = 'max_pool' - @classmethod - def _impl_v8(cls, inputs, attr, params): - return AttrCvt( - op_name=dimension_picker(cls.name), - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'storage_order': ('layout', 'NCHW', onnx_storage_order2layout), - }, - # very weird attributes here in onnx, force check - ignores=['dilations', 'auto_pad'], - # TODO(higumachan): make sure ceil_mode in onnx, and layout? - extras={'ceil_mode': False}, - custom_check=dimension_constraint())(inputs, attr, params) - - @classmethod - def _impl_v10(cls, inputs, attr, params): - input_shape = infer_shape(inputs[0]) - # 1D Convolution - if len(input_shape) == 3: - return AttrCvt( - op_name="max_pool1d", - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0)), - 'storage_order': ('layout', 'NCW', partial(onnx_storage_order2layout, dims=1)), - 'ceil_mode': 'ceil_mode' - }, - ignores=['dilations', 'auto_pad'])(inputs, attr, params) - #2D Convolution - if len(input_shape) == 4: - return AttrCvt( - op_name=dimension_picker(cls.name), - transforms={ - 'kernel_shape': 'pool_size', - 'pads': ('padding', (0, 0), revert_caffe2_pad), - 'storage_order': ('layout', 'NCHW', onnx_storage_order2layout), - 'ceil_mode': 'ceil_mode' - }, - # very weird attributes here in onnx, force check - ignores=['dilations', 'auto_pad'], - custom_check=dimension_constraint())(inputs, attr, params) - - raise tvm.error.OpAttributeInvalid("Only 1D and 2D maxpooling are currently supported.") class Mul(Elemwise): """ Operator converter for Multiply. diff --git a/tests/python/frontend/onnx/test_forward.py b/tests/python/frontend/onnx/test_forward.py index fe690b1fb28a..386adf872ff1 100644 --- a/tests/python/frontend/onnx/test_forward.py +++ b/tests/python/frontend/onnx/test_forward.py @@ -1827,7 +1827,7 @@ def forward(self, input): relay.frontend.from_onnx(onnx_model, {'0': input_size}) -def verify_pooling(x_shape, kernel_shape, strides, pads, out_shape, mode): +def verify_pooling(x_shape, kernel_shape, strides, pads, out_shape, mode, auto_pad="NOTSET"): x_np = np.random.uniform(size=x_shape).astype('float32') if mode == 'max': @@ -1837,12 +1837,20 @@ def verify_pooling(x_shape, kernel_shape, strides, pads, out_shape, mode): else: raise ValueError("Pool method {} is not supported.".format(mode)) - pool_node = helper.make_node(node_type, - inputs=["x"], - outputs=["y"], - kernel_shape=kernel_shape, - pads=pads, - strides=strides) + if pads is None: + pool_node = helper.make_node(node_type, + inputs=["x"], + outputs=["y"], + kernel_shape=kernel_shape, + auto_pad=auto_pad, + strides=strides) + else: + pool_node = helper.make_node(node_type, + inputs=["x"], + outputs=["y"], + kernel_shape=kernel_shape, + pads=pads, + strides=strides) graph = helper.make_graph([pool_node], "pooling_test", @@ -1860,65 +1868,53 @@ def verify_pooling(x_shape, kernel_shape, strides, pads, out_shape, mode): tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5) def test_pooling(): - # MaxPool1D - verify_pooling(x_shape=[1, 1, 32], - kernel_shape=[3], - strides=[1], - pads=[1, 1], - out_shape=[1, 1, 32], - mode='max') - # MaxPool2D - verify_pooling(x_shape=[1, 1, 32, 32], - kernel_shape=[3, 3], - strides=[1, 1], - pads=[1, 1, 1, 1], - out_shape=[1, 1, 32, 32], - mode='max') - - #AveragePool1D - verify_pooling(x_shape=[1, 1, 32], - kernel_shape=[3], - strides=[1], - pads=[1, 1], - out_shape=[1, 1, 32], - mode='average') - #AveragePool2D - verify_pooling(x_shape=[1, 1, 32, 32], - kernel_shape=[3, 3], - strides=[1, 1], - pads=[1, 1, 1, 1], - out_shape=[1, 1, 32, 32], - mode='average') - - # MaxPool1D with stride - verify_pooling(x_shape=[1, 1, 32], - kernel_shape=[3], - strides=[2], - pads=[1, 1], - out_shape=[1, 1, 16], - mode='max') - # MaxPool2D with stride - verify_pooling(x_shape=[1, 1, 32, 32], - kernel_shape=[3, 3], - strides=[2, 2], - pads=[1, 1, 1, 1], - out_shape=[1, 1, 16, 16], - mode='max') - - #AveragePool1D with stride - verify_pooling(x_shape=[1, 1, 32], - kernel_shape=[3], - strides=[2], - pads=[1, 1], - out_shape=[1, 1, 16], - mode='average') - #AveragePool2D with stride - verify_pooling(x_shape=[1, 1, 32, 32], - kernel_shape=[3, 3], - strides=[2, 2], - pads=[1, 1, 1, 1], - out_shape=[1, 1, 16, 16], - mode='average') + for mode in ['max', 'average']: + # Pool1D + verify_pooling(x_shape=[1, 1, 32], + kernel_shape=[3], + strides=[1], + pads=[1, 1], + out_shape=[1, 1, 32], + mode=mode) + # Pool2D + verify_pooling(x_shape=[1, 1, 32, 32], + kernel_shape=[3, 3], + strides=[1, 1], + pads=[1, 1, 1, 1], + out_shape=[1, 1, 32, 32], + mode=mode) + + # Pool1D with stride + verify_pooling(x_shape=[1, 1, 32], + kernel_shape=[3], + strides=[2], + pads=[1, 1], + out_shape=[1, 1, 16], + mode=mode) + # Pool2D with stride + verify_pooling(x_shape=[1, 1, 32, 32], + kernel_shape=[3, 3], + strides=[2, 2], + pads=[1, 1, 1, 1], + out_shape=[1, 1, 16, 16], + mode=mode) + + # Pool1D with stride and autopadding + verify_pooling(x_shape=[1, 1, 32], + kernel_shape=[3], + strides=[2], + pads=None, + out_shape=[1, 1, 16], + mode=mode, + auto_pad='SAME_UPPER') + # Pool2D with stride and autopadding + verify_pooling(x_shape=[1, 1, 32, 32], + kernel_shape=[3, 3], + strides=[2, 2], + pads=None, + out_shape=[1, 1, 16, 16], + mode=mode, + auto_pad='SAME_UPPER') if __name__ == '__main__':