diff --git a/tutorials/autotvm/tune_relay_x86.py b/tutorials/autotvm/tune_relay_x86.py index 22a31b79bd0d..93a073170388 100644 --- a/tutorials/autotvm/tune_relay_x86.py +++ b/tutorials/autotvm/tune_relay_x86.py @@ -37,11 +37,13 @@ # Define network # -------------- # First we need to define the network in relay frontend API. -# We can load some pre-defined network from :code:`relay.testing`. +# We can either load some pre-defined network from :code:`relay.testing` +# or building :any:`relay.testing.resnet` with relay. # We can also load models from MXNet, ONNX and TensorFlow. # # In this tutorial, we choose resnet-18 as tuning example. + def get_network(name, batch_size): """Get the symbol definition and random weight of a network""" input_shape = (batch_size, 3, 224, 224) @@ -73,6 +75,7 @@ def get_network(name, batch_size): return mod, params, input_shape, output_shape + # Replace "llvm" with the correct target of your CPU. # For example, for AWS EC2 c5 instance with Intel Xeon # Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512". @@ -121,6 +124,7 @@ def get_network(name, batch_size): ), } + # You can skip the implementation of this function for this tutorial. def tune_kernels(tasks, measure_option, @@ -165,6 +169,7 @@ def tune_kernels(tasks, autotvm.callback.progress_bar(n_trial, prefix=prefix), autotvm.callback.log_to_file(log_filename)]) + # Use graph tuner to achieve graph level optimal schedules # Set use_DP=False if it takes too long to finish. def tune_graph(graph, dshape, records, opt_sch_file, use_DP=True):