diff --git a/python/tvm/relay/op/_tensor_grad.py b/python/tvm/relay/op/_tensor_grad.py index 41808b59492f..b55f51707f12 100644 --- a/python/tvm/relay/op/_tensor_grad.py +++ b/python/tvm/relay/op/_tensor_grad.py @@ -17,16 +17,25 @@ #pylint: disable=invalid-name, unused-argument """Backend compiler related feature registration""" from __future__ import absolute_import -from topi.util import get_const_tuple + from topi.nn.util import get_pad_tuple -from ..expr import const, Tuple, TupleGetItem +from topi.util import get_const_tuple + +from ..expr import Tuple, TupleGetItem, const +from . import nn as _nn from .op import register_gradient from .reduce import sum as _sum -from .transform import collapse_sum_like, broadcast_to_like, where, transpose, reshape, tile, \ - strided_slice -from .tensor import exp, negative, power, less, cos, sin -from .tensor import zeros_like, ones_like -from . import nn as _nn +from .tensor import cos, exp, less, negative, ones_like, power, sin, zeros_like +from .transform import ( + broadcast_to_like, + collapse_sum_like, + reshape, + reshape_like, + strided_slice, + tile, + transpose, + where, +) @register_gradient("log") @@ -250,3 +259,59 @@ def conv2d_grad(orig, grad): end=[None, None, filter_h, filter_w]) return [backward_data, backward_weight] + + +@register_gradient("nn.softmax") +def softmax_grad(orig, grad): + """Gradient of softmax""" + return [(grad - _sum(grad * orig, orig.attrs.axis, True)) * orig] + + +@register_gradient("nn.bias_add") +def bias_grad(orig, grad): + """Returns grad""" + data, bias = orig.args + return [collapse_sum_like(grad, data), + collapse_sum_like(grad, bias)] + + +@register_gradient("nn.dense") +def dense_grad(orig, grad): + """Returns [grad' @ weight, data @ grad']""" + data, weight = orig.args + return [collapse_sum_like(transpose(grad) * weight, data), + collapse_sum_like(data * transpose(grad), weight)] + + +@register_gradient("nn.batch_flatten") +def batch_flatten_grad(orig, grad): + """Returns grad reshaped to data dims""" + data = orig.args[0] + return [reshape_like(grad, data)] + + +@register_gradient("transpose") +def transpose_grad(orig, grad): + """Returns grad transposed over the complement of original transpose axes""" + orig_axes = orig.attrs.axes + if orig_axes: + dims = len(orig_axes) + new_axes = [0] * dims + for i in range(dims): + new_axes[int(orig_axes[i])] = i + else: + new_axes = None + return [transpose(grad, axes=new_axes)] + + +@register_gradient("negative") +def negative_grad(orig, grad): + """Returns -grad""" + return [-grad] + + +@register_gradient("sum") +def sum_grad(orig, grad): + """Returns grad broadcasted to data dims""" + data = orig.args[0] + return [broadcast_to_like(grad, data)] diff --git a/tests/python/relay/test_op_grad_level1.py b/tests/python/relay/test_op_grad_level1.py index 8d4c18b0ce6e..7498b141421e 100644 --- a/tests/python/relay/test_op_grad_level1.py +++ b/tests/python/relay/test_op_grad_level1.py @@ -15,10 +15,12 @@ # specific language governing permissions and limitations # under the License. import numpy as np + import tvm from tvm import relay +from tvm.relay.testing import check_grad, ctx_list, run_infer_type from tvm.relay.transform import gradient -from tvm.relay.testing import ctx_list, run_infer_type + def sigmoid(x): one = np.ones_like(x) @@ -30,6 +32,7 @@ def relu(x): np.maximum(x_copy, 0, x_copy) return x_copy + def test_unary_op(): def check_single_op(opfunc, ref): shape = (10, 4) @@ -93,6 +96,20 @@ def check_binary_op(opfunc, ref): check_binary_op(opfunc, ref) +def test_softmax_grad(): + data = relay.var("data", relay.TensorType((1, 16), "float64")) + fwd_func = relay.Function([data], relay.nn.softmax(data)) + check_grad(fwd_func) + + +def test_bias_add_grad(): + data = relay.var("data", relay.TensorType((1, 16), "float32")) + bias = relay.var("bias", relay.TensorType((16,), "float32")) + fwd_func = relay.Function([data, bias], relay.nn.bias_add(data, bias)) + check_grad(fwd_func) + + if __name__ == "__main__": test_unary_op() test_binary_op() + test_bias_add_grad() diff --git a/tests/python/relay/test_op_grad_level2.py b/tests/python/relay/test_op_grad_level2.py index 33d7ecfc91b4..8e809250d1de 100644 --- a/tests/python/relay/test_op_grad_level2.py +++ b/tests/python/relay/test_op_grad_level2.py @@ -15,13 +15,13 @@ # specific language governing permissions and limitations # under the License. import numpy as np -import tvm + import topi import topi.testing +import tvm from tvm import relay +from tvm.relay.testing import check_grad, ctx_list, run_infer_type from tvm.relay.transform import gradient -from tvm.relay.testing import ctx_list, check_grad -from tvm.relay.testing import run_infer_type def verify_max_pool2d_grad(x_shape, pool_size, strides, padding, ceil_mode): @@ -129,7 +129,32 @@ def test_conv2d_grad(): verify_conv2d_grad((1, 4, 16, 16), (16, 4, 3, 3), [1, 1], [1, 1], [1, 1], mode='first_order') +def verify_dense_grad(d_shape, w_shape): + data = relay.var("data", relay.TensorType(d_shape, "float32")) + weight = relay.var("weight", relay.TensorType(w_shape, "float32")) + fwd_func = relay.Function([data, weight], relay.nn.dense(data, weight)) + check_grad(fwd_func) + + +def test_dense_grad(): + verify_dense_grad((1, 8), (16, 8)) + verify_dense_grad((1, 4), (3, 4)) + + +def verify_batch_flatten_grad(d_shape): + data = relay.var("data", relay.TensorType(d_shape, "float32")) + fwd_func = relay.Function([data], relay.nn.batch_flatten(data)) + check_grad(fwd_func) + + +def test_batch_flatten_grad(): + verify_batch_flatten_grad((1, 2, 3, 4)) + verify_batch_flatten_grad((1, 8)) + + if __name__ == "__main__": test_max_pool2d_grad() test_avg_pool2d_grad() test_conv2d_grad() + test_dense_grad() + test_batch_flatten_grad() diff --git a/tests/python/relay/test_op_grad_level3.py b/tests/python/relay/test_op_grad_level3.py index c5469a34b903..9324555b59dc 100644 --- a/tests/python/relay/test_op_grad_level3.py +++ b/tests/python/relay/test_op_grad_level3.py @@ -15,10 +15,12 @@ # specific language governing permissions and limitations # under the License. import numpy as np + import tvm from tvm import relay +from tvm.relay.testing import check_grad, ctx_list, run_infer_type from tvm.relay.transform import gradient -from tvm.relay.testing import ctx_list, run_infer_type + def test_clip(): ref = (lambda x: np.where(x > 10.0, np.zeros_like(x), @@ -38,5 +40,24 @@ def test_clip(): np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01) +def verify_transpose_grad(d_shape, axes=None): + data = relay.var("data", relay.TensorType(d_shape, "float32")) + fwd_func = relay.Function([data], relay.transpose(data, axes=axes)) + check_grad(fwd_func) + + +def test_transpose_grad(): + verify_transpose_grad((1, 2, 3, 4)) + verify_transpose_grad((1, 2, 3, 4), axes=(0, 2, 3, 1)) + + +def test_negative_grad(): + data = relay.var("data", relay.TensorType((10, 4), "float32")) + fwd_func = relay.Function([data], relay.negative(data)) + check_grad(fwd_func) + + if __name__ == "__main__": test_clip() + test_transpose_grad() + test_negative_grad() diff --git a/tests/python/relay/test_op_grad_level4.py b/tests/python/relay/test_op_grad_level4.py new file mode 100644 index 000000000000..5db1d9391a9a --- /dev/null +++ b/tests/python/relay/test_op_grad_level4.py @@ -0,0 +1,35 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +from tvm import relay +from tvm.relay.testing import check_grad + + +def verify_sum_grad(d_shape, axis=None, keepdims=False, exclude=False): + data = relay.var("data", relay.TensorType(d_shape, "float32")) + fwd_func = relay.Function([data], relay.sum(data, axis=axis, keepdims=keepdims, exclude=exclude)) + check_grad(fwd_func) + + +def test_sum_grad(): + verify_sum_grad((4, 2)) + verify_sum_grad((4, 2), axis=-1, keepdims=True) + verify_sum_grad((4, 2, 1), axis=(1, 2), exclude=True) + + + +if __name__ == "__main__": + test_sum_grad()