diff --git a/nnvm/python/nnvm/frontend/keras.py b/nnvm/python/nnvm/frontend/keras.py index 7af8cf8833dd8..f647a644bd2be 100644 --- a/nnvm/python/nnvm/frontend/keras.py +++ b/nnvm/python/nnvm/frontend/keras.py @@ -180,7 +180,6 @@ def _convert_convolution(insym, keras_layer, symtab): else: kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape weight = weightList[0].transpose([3, 2, 0, 1]) - dilation = [1, 1] if isinstance(keras_layer.dilation_rate, (list, tuple)): dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]] else: diff --git a/python/tvm/relay/frontend/keras.py b/python/tvm/relay/frontend/keras.py index 2648a5a6637b6..5d5e50ff35598 100644 --- a/python/tvm/relay/frontend/keras.py +++ b/python/tvm/relay/frontend/keras.py @@ -203,7 +203,6 @@ def _convert_convolution(inexpr, keras_layer, etab): else: kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape weight = weightList[0].transpose([3, 2, 0, 1]) - dilation = [1, 1] if isinstance(keras_layer.dilation_rate, (list, tuple)): dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]] else: diff --git a/python/tvm/relay/frontend/tflite.py b/python/tvm/relay/frontend/tflite.py index 3c3808d097120..59dd7e01da9ad 100644 --- a/python/tvm/relay/frontend/tflite.py +++ b/python/tvm/relay/frontend/tflite.py @@ -155,7 +155,7 @@ def get_tensor_value(self, tensor_wrapper): if tensor_wrapper.tensor.Type() == TensorType.INT32: return np.frombuffer(tensor_wrapper.buffer.DataAsNumpy(), dtype=np.int32).reshape( tensor_wrapper.tensor.ShapeAsNumpy()) - raise NotImplementedError("Not support tensor type {}" + raise NotImplementedError("Tensor type {} is currently not supported" .format(str(tensor_wrapper.tensor.Type()))) def get_tensor_type_str(self, tensor_type): @@ -171,7 +171,7 @@ def get_tensor_type_str(self, tensor_type): return "float32" if tensor_type == TensorType.INT32: return "int32" - raise NotImplementedError("Not support tensor type {}".format(str(tensor_type))) + raise NotImplementedError("Tensor type {} is currently not supported".format(str(tensor_type))) def convert_conv2d(self, op): """Convert TFLite conv2d""" @@ -442,8 +442,8 @@ def convert_conv(self, op, conv_type): conv_options = DepthwiseConv2DOptions() conv_options.Init(op_options.Bytes, op_options.Pos) depth_multiplier = conv_options.DepthMultiplier() - assert depth_multiplier == 1, "TF frontend have transformed it be 1 " \ - "no matter original value be set by 0.25, 0.5 or any else" + assert depth_multiplier == 1, "TF frontend transforms it to be 1 " \ + "regardless of what original value is set to 0.25, 0.5 or anything else" else: raise tvm.error.OpNotImplemented( 'Operator {} is not supported for frontend TFLite.'.format(conv_type)) diff --git a/tests/python/frontend/keras/test_forward.py b/tests/python/frontend/keras/test_forward.py index 8817d4faaeaa4..0794db987892d 100644 --- a/tests/python/frontend/keras/test_forward.py +++ b/tests/python/frontend/keras/test_forward.py @@ -21,7 +21,7 @@ from tvm.relay.testing.config import ctx_list import keras -# prevent keras from using up all gpu memory +# prevent Keras from using up all gpu memory import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto()