diff --git a/nnvm/tests/python/frontend/tensorflow/test_forward.py b/nnvm/tests/python/frontend/tensorflow/test_forward.py index 856d469cc5cb..a11b724a7516 100644 --- a/nnvm/tests/python/frontend/tensorflow/test_forward.py +++ b/nnvm/tests/python/frontend/tensorflow/test_forward.py @@ -121,8 +121,7 @@ def _test_pooling(input_shape, **kwargs): np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 with tf.Graph().as_default(): - in_data = constant_op.constant(x, shape=input_shape, dtype='float32') - + in_data = array_ops.placeholder(shape=input_shape, dtype='float32') nn_ops.pool(in_data, **kwargs) if kwargs['pooling_type'] == 'MAX': @@ -130,7 +129,7 @@ def _test_pooling(input_shape, **kwargs): else: out_name = 'avg_pool:0' - compare_tf_with_tvm(x, 'Const:0', out_name) + compare_tf_with_tvm(x, 'Placeholder:0', out_name) def test_forward_pooling(): """ Pooling """ @@ -208,19 +207,19 @@ def _test_convolution(tensor_in_sizes, filter_in_sizes, filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): - in_data = constant_op.constant(data_array, shape=tensor_in_sizes, dtype='float32') + in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32') in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32') strides = [1] + strides + [1] dilations = [1] + dilations + [1] nn_ops.conv2d(in_data, - in_filter, - strides=strides, - padding=padding, - data_format=data_format) + in_filter, + strides=strides, + padding=padding, + data_format=data_format) compare_tf_with_tvm(np.reshape(data_array, tensor_in_sizes).astype('float32'), - 'Const:0', 'Conv2D:0') + 'Placeholder:0', 'Conv2D:0') def test_forward_convolution(): _test_convolution([4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC') @@ -236,10 +235,10 @@ def _test_reshape(data, out_shape): """ One iteration of reshape operation with given data and out shape """ with tf.Graph().as_default(): - in_data = constant_op.constant(data, shape=data.shape, dtype=data.dtype) + in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.reshape(in_data, out_shape) - compare_tf_with_tvm(data, 'Const:0', 'Reshape:0') + compare_tf_with_tvm(data, 'Placeholder:0', 'Reshape:0') def test_forward_reshape(): _test_reshape(np.arange(6.0), [2, 3]) @@ -258,14 +257,14 @@ def _test_squeeze(data, squeeze_dims=None): squeeze_dims = [] with tf.Graph().as_default(): - in_data = constant_op.constant(data, shape=data.shape, dtype=data.dtype) + in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if squeeze_dims: array_ops.squeeze(in_data, squeeze_dims) else: array_ops.squeeze(in_data) - compare_tf_with_tvm(data, 'Const:0', 'Squeeze:0') + compare_tf_with_tvm(data, 'Placeholder:0', 'Squeeze:0') def test_forward_squeeze(): """ Squeeze """ @@ -321,10 +320,10 @@ def _test_sigmoid(data): """ One iteration of sigmoid """ with tf.Graph().as_default(): - in_data = constant_op.constant(data, shape=data.shape, dtype=data.dtype) + in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) sigmoid_out = math_ops.sigmoid(in_data) - compare_tf_with_tvm(data, 'Const:0', 'Sigmoid:0') + compare_tf_with_tvm(data, 'Placeholder:0', 'Sigmoid:0') def test_forward_sigmoid(): """ Sigmoid """ @@ -338,7 +337,7 @@ def test_forward_sigmoid(): def _test_argx(func, data, **kwargs): with tf.Graph().as_default(): - inp = constant_op.constant(data, shape=data.shape, dtype=data.dtype, name="c0") + inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0") func(inp, name="argx0", **kwargs, output_type=tf.int32) compare_tf_with_tvm(data, 'c0:0', 'argx0:0') @@ -486,11 +485,11 @@ def _test_resize_bilinear(in_shape, to_shape, align_corners): shape_data = np.array(to_shape).astype('int32') with tf.Graph().as_default(): - in_data = constant_op.constant(data, shape=data.shape, dtype=data.dtype) + in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant(shape_data, shape=shape_data.shape, dtype=shape_data.dtype) tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners) - compare_tf_with_tvm(data, 'Const:0', 'ResizeBilinear:0') + compare_tf_with_tvm(data, 'Placeholder:0', 'ResizeBilinear:0') def test_forward_resize_bilinear(): """ Resize Bilinear """ @@ -565,30 +564,17 @@ def _test_pad(input_shape, paddings, mode, **kwargs): x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) with tf.Graph().as_default(): - in_data = constant_op.constant(x, shape=input_shape, dtype='float32') + in_data = array_ops.placeholder(shape=input_shape, dtype='float32') pad_values = constant_op.constant(paddings) pad = tf.pad(in_data, paddings=pad_values, mode=mode, **kwargs) if mode == 'CONSTANT': if 'constant_values' in kwargs: - out_node = 'PadV2' out_name = 'PadV2:0' else: - out_node = 'Pad' out_name = 'Pad:0' - with tf.Session() as sess: - graph_def = tf.graph_util.convert_variables_to_constants( - sess, - sess.graph.as_graph_def(add_shapes=True), - [out_node], - ) - - tf_output = run_tf_graph(sess, x, 'Const:0', out_name) - tvm_output = run_tvm_graph(graph_def, x.astype('float32'), - "Const", tf_output.shape, 'float32') - np.testing.assert_allclose(tf_output, tvm_output) - sess.close() + compare_tf_with_tvm(x, 'Placeholder:0', out_name) def test_forward_pad(): """ Pad """ @@ -810,7 +796,7 @@ def _test_l2_normalize(ishape, eps, axis): inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): - in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype, name="Placeholder") + in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) nn.l2_normalize(in1, axis=axis, epsilon=eps, @@ -836,11 +822,11 @@ def test_forward_l2_normalize(): _test_forward_concat_v2() test_forward_multi_input() test_forward_inception_v3() - test_forward_inception_v1() + #test_forward_inception_v1() test_forward_mobilenet() test_forward_variable() test_forward_resize_bilinear() - test_forward_pad() + test_forward_pad() test_forward_lstm() test_forward_stridedslice() test_forward_gather()