From b45ae898b0ea6dfcdecde68b23d36853551b8361 Mon Sep 17 00:00:00 2001 From: Animesh Jain Date: Tue, 19 Nov 2019 05:10:06 +0000 Subject: [PATCH] [Relay] Convert Layout Pass. --- include/tvm/relay/op_attr_types.h | 17 + include/tvm/relay/transform.h | 20 + python/tvm/relay/op/nn/_nn.py | 41 ++ python/tvm/relay/op/op.py | 17 + python/tvm/relay/transform.py | 28 ++ src/relay/op/annotation/annotation.cc | 2 +- src/relay/op/device_copy.cc | 2 +- src/relay/op/memory/memory.cc | 2 +- src/relay/op/nn/bitserial.cc | 2 +- src/relay/op/nn/convolution.cc | 2 +- src/relay/op/nn/nn.cc | 2 +- src/relay/op/nn/pooling.cc | 2 +- src/relay/op/nn/sparse.cc | 2 +- src/relay/op/op_common.h | 2 +- src/relay/op/tensor/transform.cc | 2 +- src/relay/pass/alter_op_layout.cc | 358 +++-------------- src/relay/pass/convert_layout.cc | 146 +++++++ ...{alter_op_layout.h => infer_layout_util.h} | 42 +- src/relay/pass/transform_layout.h | 362 ++++++++++++++++++ .../relay/test_pass_convert_op_layout.py | 360 +++++++++++++++++ 20 files changed, 1091 insertions(+), 320 deletions(-) create mode 100644 src/relay/pass/convert_layout.cc rename src/relay/pass/{alter_op_layout.h => infer_layout_util.h} (83%) create mode 100644 src/relay/pass/transform_layout.h create mode 100644 tests/python/relay/test_pass_convert_op_layout.py diff --git a/include/tvm/relay/op_attr_types.h b/include/tvm/relay/op_attr_types.h index 741e8b4788286..54ea707905e57 100644 --- a/include/tvm/relay/op_attr_types.h +++ b/include/tvm/relay/op_attr_types.h @@ -29,6 +29,7 @@ #include #include #include +#include namespace tvm { namespace relay { @@ -132,6 +133,22 @@ using FTVMAlterOpLayout = runtime::TypedPackedFunc< const Array& args, const Array& tinfos)>; +/*! + * \brief Convert the layout of operators or replace the + * operator with other expressions. This function will be invoked + * in ConvertLayout pass. + * \param attrs The attribute of the original node. + * \param inputs The input symbols of the original node. + * \param tinfos An array of placeholders, use for getting the inferred shape + * and dtype of the inputs. + * \param desired_layout The desired layout. + * \return new_expr The modified expression. + */ +using FTVMConvertOpLayout = runtime::TypedPackedFunc< + Expr(const Attrs& attrs, + const Array& args, + const Array& tinfos, + const std::string& desired_layout)>; /*! * \brief Legalizes an expression with another expression. This function will be * invoked in Legalize pass. It is a target-dependent pass. diff --git a/include/tvm/relay/transform.h b/include/tvm/relay/transform.h index ddadbe4fc31db..52be6a0f37817 100644 --- a/include/tvm/relay/transform.h +++ b/include/tvm/relay/transform.h @@ -532,6 +532,26 @@ TVM_DLL Pass CanonicalizeOps(); */ TVM_DLL Pass AlterOpLayout(); +/*! + * \brief Given a dest layout, this pass transforms the expr such that most of the ops input data + * layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms, one + * at the start and one at the end. + * + * This pass is not a part of relay.build and is expected to be called between framework-relay + * parser and relay.build call. This is very helpful for hardware backends that support/prefer only + * type of data layout. + * + * RFC - https://discuss.tvm.ai/t/layout-conversion-pass/4009 + * + * This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define new + * layouts for conv2d ops for now. Most of the other operators try to adapt to their input layout + * using the InferCorrectLayout infrastructure. + * + * \param desired_layout The desired layout. + * \return The pass. + */ +TVM_DLL Pass ConvertLayout(const std::string& desired_layout); + /*! * \brief Legalizes an expr with another expression. * \param legalize_map_attr_name The Op's attr name which corresponds to the legalize rule function. diff --git a/python/tvm/relay/op/nn/_nn.py b/python/tvm/relay/op/nn/_nn.py index cb2ecc9764950..ff8d54b43d08e 100644 --- a/python/tvm/relay/op/nn/_nn.py +++ b/python/tvm/relay/op/nn/_nn.py @@ -245,6 +245,47 @@ def legalize_conv2d(attrs, inputs, types): """ return topi.nn.conv2d_legalize(attrs, inputs, types) + +@reg.register_convert_op_layout("nn.conv2d") +def convert_conv2d(attrs, inputs, tinfos, desired_layout): + """Convert Layout pass registration for conv2d op. + + Parameters + ---------- + attrs : tvm.attrs.Attrs + Attributes of current convolution + inputs : list of tvm.relay.Expr + The args of the Relay expr to be legalized + tinfos : list of types + List of input and output types + desired_layout : str + The desired layout + + Returns + ------- + result : tvm.relay.Expr + The transformed expr + """ + + from tvm import relay + data_layout = attrs['data_layout'] + kernel_layout = attrs['kernel_layout'] + data, weight = inputs + assert desired_layout == 'NCHW', \ + "Currently only transformation to NCHW layout is supported." + if desired_layout == 'NCHW': + new_attrs = dict(attrs) + new_attrs['data_layout'] = desired_layout + new_attrs['kernel_layout'] = 'OIHW' + + if data_layout == 'NHWC' and kernel_layout == 'HWIO': + # Convert (NHWC, HWIO) to (NCHW, OIHW) + return relay.nn.conv2d(data, weight, **new_attrs) + if data_layout == 'NHWC' and kernel_layout == 'HWOI': + # Convert (NHWC, HWOI) to (NCHW, OIHW). Depthwise conv2d. + return relay.nn.conv2d(data, weight, **new_attrs) + return None + reg.register_pattern("nn.conv2d", OpPattern.OUT_ELEMWISE_FUSABLE) diff --git a/python/tvm/relay/op/op.py b/python/tvm/relay/op/op.py index 355496e42b489..382f667b86a92 100644 --- a/python/tvm/relay/op/op.py +++ b/python/tvm/relay/op/op.py @@ -196,6 +196,23 @@ def register_alter_op_layout(op_name, alter_layout=None, level=10): return register(op_name, "FTVMAlterOpLayout", alter_layout, level) +def register_convert_op_layout(op_name, convert_layout=None, level=10): + """Register convert op layout function for an op + + Parameters + ---------- + op_name : str + The name of the operator + + convert_layout: function (attrs: Attrs, inputs: List[Expr]) -> new_expr: Expr + The function for changing the layout or replacing the operator + + level : int + The priority level + """ + return register(op_name, "FTVMConvertOpLayout", convert_layout, level) + + def register_legalize(op_name, legal_op=None, level=10): """Register legal transformation function for an op diff --git a/python/tvm/relay/transform.py b/python/tvm/relay/transform.py index 540c1f5b79cd9..1f91272769b4b 100644 --- a/python/tvm/relay/transform.py +++ b/python/tvm/relay/transform.py @@ -460,6 +460,34 @@ def AlterOpLayout(): return _transform.AlterOpLayout() +def ConvertLayout(desired_layout): + """ Given a dest layout, this pass transforms the expr such that most of the ops input data + layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms, + one at the start and one at the end. + + This pass is not a part of relay.build and is expected to be called between framework-relay + parser and relay.build call. This is very helpful for hardware backends that support/prefer only + type of data layout. + + RFC - https://discuss.tvm.ai/t/layout-conversion-pass/4009 + + This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define + new layouts for conv2d ops for now. Most of the other operators try to adapt to their input + layout using the InferCorrectLayout infrastructure. + + Parameters + ---------- + desired_layout : str + The desired layout for the transformed expr. + + Returns + ------- + pass: FunctionPass + The pass. + """ + return _transform.ConvertLayout(desired_layout) + + def Legalize(legalize_map_attr_name="FTVMLegalize"): """Legalizes an expression with another expression. This pass can be used to replace an expr with another expr for target diff --git a/src/relay/op/annotation/annotation.cc b/src/relay/op/annotation/annotation.cc index f5674fa06adb0..6835525c35854 100644 --- a/src/relay/op/annotation/annotation.cc +++ b/src/relay/op/annotation/annotation.cc @@ -30,7 +30,7 @@ #include #include -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" #include "../type_relations.h" namespace tvm { diff --git a/src/relay/op/device_copy.cc b/src/relay/op/device_copy.cc index 51aff4154f735..3b997a273fa5c 100644 --- a/src/relay/op/device_copy.cc +++ b/src/relay/op/device_copy.cc @@ -33,7 +33,7 @@ #include #include "type_relations.h" -#include "../pass/alter_op_layout.h" +#include "../pass/infer_layout_util.h" namespace tvm { namespace relay { diff --git a/src/relay/op/memory/memory.cc b/src/relay/op/memory/memory.cc index 8f6dea01b3b18..25c1b8a1d221d 100644 --- a/src/relay/op/memory/memory.cc +++ b/src/relay/op/memory/memory.cc @@ -29,7 +29,7 @@ #include #include "../op_common.h" -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" #include "../type_relations.h" namespace tvm { diff --git a/src/relay/op/nn/bitserial.cc b/src/relay/op/nn/bitserial.cc index d70f1af9b1648..d651baeccb4ce 100644 --- a/src/relay/op/nn/bitserial.cc +++ b/src/relay/op/nn/bitserial.cc @@ -26,7 +26,7 @@ #include #include -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" namespace tvm { namespace relay { diff --git a/src/relay/op/nn/convolution.cc b/src/relay/op/nn/convolution.cc index 65e71bec4dea8..7c503217fa2f1 100644 --- a/src/relay/op/nn/convolution.cc +++ b/src/relay/op/nn/convolution.cc @@ -27,7 +27,7 @@ #include #include -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" #include "convolution.h" namespace tvm { diff --git a/src/relay/op/nn/nn.cc b/src/relay/op/nn/nn.cc index d1f7325b7e758..2847a452431f7 100644 --- a/src/relay/op/nn/nn.cc +++ b/src/relay/op/nn/nn.cc @@ -32,7 +32,7 @@ #include #include #include "../type_relations.h" -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" #include "../op_common.h" #include "nn.h" diff --git a/src/relay/op/nn/pooling.cc b/src/relay/op/nn/pooling.cc index 8915fc5b6a762..b8873181e9605 100644 --- a/src/relay/op/nn/pooling.cc +++ b/src/relay/op/nn/pooling.cc @@ -27,7 +27,7 @@ #include #include #include -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" namespace tvm { namespace relay { diff --git a/src/relay/op/nn/sparse.cc b/src/relay/op/nn/sparse.cc index a2d89c40bca89..7cf8a27f3b56f 100644 --- a/src/relay/op/nn/sparse.cc +++ b/src/relay/op/nn/sparse.cc @@ -27,7 +27,7 @@ #include #include -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" namespace tvm { namespace relay { diff --git a/src/relay/op/op_common.h b/src/relay/op/op_common.h index 5cf9851ecb442..7fb767d6c0051 100644 --- a/src/relay/op/op_common.h +++ b/src/relay/op/op_common.h @@ -32,7 +32,7 @@ #include #include #include "type_relations.h" -#include "../pass/alter_op_layout.h" +#include "../pass/infer_layout_util.h" namespace tvm { namespace relay { diff --git a/src/relay/op/tensor/transform.cc b/src/relay/op/tensor/transform.cc index 203a0411d3c40..46d7e5a6fe111 100644 --- a/src/relay/op/tensor/transform.cc +++ b/src/relay/op/tensor/transform.cc @@ -36,7 +36,7 @@ #include #include "../op_common.h" #include "../../../arithmetic/compute_expr.h" -#include "../../pass/alter_op_layout.h" +#include "../../pass/infer_layout_util.h" #include "../../pass/pattern_util.h" #include "transform.h" diff --git a/src/relay/pass/alter_op_layout.cc b/src/relay/pass/alter_op_layout.cc index bbfb97c56dc2f..bd89c5123bd7f 100644 --- a/src/relay/pass/alter_op_layout.cc +++ b/src/relay/pass/alter_op_layout.cc @@ -36,7 +36,7 @@ #include #include -#include "alter_op_layout.h" +#include "transform_layout.h" #include "pattern_util.h" namespace tvm { @@ -44,325 +44,73 @@ namespace relay { namespace alter_op_layout { -// Make a transform CallNode -/* Performs 2 operations - * 1) If src_layout ndim is smaller then dst_layout, expand_dim is inserted to match the dim size. - * For example, src_layout = C, dst_layout = NCHW16c. The src is expanded to NHWC. - * 2) Call layout transform with new src layout. +/*! + * \brief Container to instantiate a Node for alter op layouts. */ -Expr TransformLayout(Expr raw, Layout src_layout, Layout dst_layout) { - if (src_layout.Equals(dst_layout)) { - return raw; - } - - // 1) Check if the shape lengths are different. If yes, expand dims. - Expr input_expr = raw; - Layout new_src_layout = src_layout; - if (src_layout.ndim_primal() < dst_layout.ndim_primal()) { - int num_new_axis = dst_layout.ndim_primal() - src_layout.ndim_primal(); - new_src_layout = src_layout.ExpandPrimal(dst_layout); - input_expr = MakeExpandDims(input_expr, 0, num_new_axis); - if (new_src_layout.Equals(dst_layout)) { - return input_expr; - } - } - - // 2) Insert layout transform on the transformed src. - CHECK(new_src_layout.defined() && dst_layout.defined()) - << "Cannot insert layout transform because there are undefined layouts"; - CHECK(BijectiveLayoutNode::make(new_src_layout, dst_layout).defined()) - << "Cannot insert layout transform because there are inconvertible layouts: " - << new_src_layout << " v.s. " << dst_layout; - return MakeLayoutTransform(input_expr, new_src_layout.name(), dst_layout.name()); -} - -// Memorize layout transform so we can reuse internal transformed nodes -class TransformMemorizerNode : public Node { +class AlterTransformMemorizerNode : public TransformMemorizerNode { public: - // map from (Expr, src_layout, dst_layout) to transformed Expr - using TransformKey = std::tuple; -struct key_hash : public std::function { - std::size_t operator()(const TransformKey& k) const { - return dmlc::HashCombine(dmlc::HashCombine( - std::hash()(std::get<0>(k)), std::get<1>(k)), (std::get<2>(k))); - } - }; - - std::unordered_map memo; - static constexpr const char *_type_key = "relay.alter_op_layout.TransformMemorizerNode"; - TVM_DECLARE_NODE_TYPE_INFO(TransformMemorizerNode, Node); + static constexpr const char* _type_key = "relay.alter_op_layout.AlterTransformMemorizerNode"; }; -class TransformMemorizer : public NodeRef { - public: - TransformMemorizer() {} - explicit TransformMemorizer(ObjectPtr n) : NodeRef(n) {} - - TransformMemorizerNode* operator->() { - return static_cast(get_mutable()); - } - - // Transform layout with memorizer - Expr Transform(Expr raw, const Layout& src_layout, const Layout& dst_layout) { - if (src_layout.Equals(dst_layout)) { return raw; } - - std::tuple key = - std::make_tuple<>(raw.get(), src_layout.name(), dst_layout.name()); - auto& memo = operator->()->memo; - - auto iter = memo.find(key); - if (iter != memo.end()) { - return iter->second; - } else { - Expr transform = TransformLayout(raw, src_layout, dst_layout); - memo[key] = transform; - return transform; - } - } - - using ContainerType = TransformMemorizerNode; -}; - - -// TempExprNode during layout transform -// Instance of this expr will be Realized to normal expr ultimately -class LayoutAlternatedExprNode : public TempExprNode { +/*! + * \brief Container that provides the transformation function for alter layout.. + */ +class AlterTransformMemorizer : public TransformMemorizer { public: - Expr value; - Layout old_layout; - Layout new_layout; - TransformMemorizer memorizer; - - Expr Realize() const final { - // NOTE: use a copy to discard the "const" qualifier - TransformMemorizer tmp_memorizer = memorizer; - // fallback to old layout - return tmp_memorizer.Transform(value, new_layout, old_layout); - } - - void VisitAttrs(AttrVisitor *v) { - v->Visit("value", &value); - v->Visit("old_layout", &old_layout); - v->Visit("new_layout", &new_layout); - } - - static constexpr const char *_type_key = "relay.alter_op_layout.LayoutAlternatedExprNode"; - TVM_DECLARE_NODE_TYPE_INFO(LayoutAlternatedExprNode, TempExprNode); -}; - -RELAY_DEFINE_NODE_REF(LayoutAlternatedExpr, LayoutAlternatedExprNode, TempExpr); - -// Call registered FInferCorrectLayout of an op. -// Parameters are the same as the parameters for FInferCorrectLayout -// Returns inferred_input_layout, inferred_output_layout, success -std::tuple, Array, bool> CallInfer( - const Call& call, - const Array& new_in_layouts, - const Array& old_in_layouts, - const Array > &old_in_shapes) { - static auto finfer_layout = Op::GetAttr("FInferCorrectLayout"); - - Op op = Downcast(call->op); - if (finfer_layout.count(op)) { - Array > inferred_layouts; - inferred_layouts = finfer_layout[op](call->attrs, new_in_layouts, - old_in_layouts, old_in_shapes); - CHECK_EQ(inferred_layouts.size(), 2) - << "FInferCorrectLayout should return an array with size of 2"; - for (auto x : inferred_layouts) { - for (auto y : x) { - if (!y.defined()) { // inference fails - return std::make_tuple<>(Array(nullptr), Array(nullptr), false); - } - } - } - return std::make_tuple<>(inferred_layouts[0], inferred_layouts[1], true); - } else { - return std::make_tuple<>(Array(nullptr), Array(nullptr), false); - } -} - -// Call registered FTVMAlterOpLayout of an op -// Returns the altered expression -Call CallAlter(const Call& ref_call, - const std::vector& new_args) { - static auto falter_layout = Op::GetAttr("FTVMAlterOpLayout"); - Op op = Downcast(ref_call->op); - - Expr new_e; - bool modified = false; - if (falter_layout.count(op)) { - tvm::Array tinfos; - for (auto expr : ref_call->args) { - auto ttype = expr->type_as(); - tinfos.push_back(tvm::placeholder(ttype->shape, ttype->dtype)); - } - Expr altered_value = falter_layout[op](ref_call->attrs, new_args, tinfos); - if (altered_value.defined()) { - new_e = altered_value; - modified = true; - } - } - if (!modified) { - new_e = CallNode::make(ref_call->op, new_args, - ref_call->attrs); - } - - const CallNode *new_call = new_e.as(); - CHECK(new_call) << "Can only replace the original operator with another call node"; - return GetRef(new_call); -} - -Expr AlterOpLayoutRewrite(const Call &ref_call, - const Array &new_args, - const NodeRef& ctx) { - std::vector inputs; - std::vector normal_new_args; - Array > input_shapes; - - // NOTE: discard the "const" qualifier - TransformMemorizer memorizer = Downcast(ctx); - - // fill incomplete state and flatten tuple - auto push_back_one_arg = [&inputs, memorizer](Expr arg) { - // We always expect LayoutAlternatedExpr. - // This is used to convert the normal Expr to LayoutAlternatedExpr. - if (const LayoutAlternatedExprNode *inp = arg.as()) { - inputs.push_back(GetRef(inp)); - return inp->value; - } else { - auto inode = make_node(); - inode->value = arg; - inode->memorizer = memorizer; - inputs.push_back(LayoutAlternatedExpr(inode)); - return arg; - } - }; - - for (auto new_arg : new_args) { - // NOTE: do not support nested tuple - if (new_arg->IsInstance()) { - Tuple tuple_new_arg = Downcast(new_arg); - std::vector fields; - for (auto x : tuple_new_arg->fields) { - Expr tmp = push_back_one_arg(x); - fields.push_back(tmp); + AlterTransformMemorizer() {} + explicit AlterTransformMemorizer(ObjectPtr n) : TransformMemorizer(n) {} + + AlterTransformMemorizerNode* operator->() { + return static_cast(get_mutable()); + } + + /*! + * \brief Defines the call transformation for AlterOpLayout pass. The new layouts are defined by + * used for different targets using a packed func. + * \param ref_call The original call. + * \param new_args The traversed/recursed args to the call. + * \return The new Call after calling the packed func. + */ + Call CallWithNewLayouts(const Call& ref_call, const std::vector& new_args) override { + static auto falter_layout = Op::GetAttr("FTVMAlterOpLayout"); + Op op = Downcast(ref_call->op); + + Expr new_e; + bool modified = false; + if (falter_layout.count(op)) { + tvm::Array tinfos; + for (auto expr : ref_call->args) { + auto ttype = expr->type_as(); + tinfos.push_back(tvm::placeholder(ttype->shape, ttype->dtype)); } - normal_new_args.push_back(TupleNode::make(fields)); - } else { - Expr tmp = push_back_one_arg(new_arg); - normal_new_args.push_back(tmp); - } - } - - // old_in, new_in = state[inputs] - Array old_in, old_out, new_in, new_out, new_in2; - for (auto inp : inputs) { - old_in.push_back(inp->old_layout); - new_in.push_back(inp->new_layout); - } - - for (auto arg : ref_call->args) { - if (arg->IsInstance()) { // flatten tuple - Tuple tuple_arg = Downcast(arg); - for (auto x : tuple_arg->fields) { - input_shapes.push_back(x->type_as()->shape); + Expr altered_value = falter_layout[op](ref_call->attrs, new_args, tinfos); + if (altered_value.defined()) { + new_e = altered_value; + modified = true; } - } else { - input_shapes.push_back(arg->type_as()->shape); } - } - - // old_in, old_out = op.infer(old_in) - bool success = false; - std::tie(old_in, old_out, success) = CallInfer(ref_call, - Array(nullptr), - old_in, input_shapes); - if (!success) { return Expr(nullptr); } - CHECK_EQ(old_in.size(), new_in.size()); - - // if new_in == 'undef': new_in = old_in - for (size_t i = 0; i < new_in.size(); ++i) { - if (!new_in[i].defined()) { - new_in.Set(i, old_in[i]); + if (!modified) { + new_e = CallNode::make(ref_call->op, new_args, ref_call->attrs); } - } - - // new_op = alter(op) - Call new_call = CallAlter(ref_call, normal_new_args); - - // new_in2, new_out = op.infer(new_in) - if (new_call->op->IsInstance()) { - success = false; - std::tie(new_in2, new_out, success) = CallInfer(new_call, new_in, old_in, input_shapes); - if (!success) { return Expr(nullptr); } - } else { - return Expr(nullptr); - } - - CHECK_EQ(new_out.size(), old_out.size()) - << "The number of output nodes should keep the same during alter_op_layout"; - CHECK_EQ(new_in.size(), new_in2.size()) - << "The number of input nodes should keep the same during alter_op_layout"; - // if (new_in != new_in2): insert transform (new_in -> new_in2) - Array transformed_args; - size_t pt = 0; - for (auto arg : new_call->args) { - if (arg->IsInstance()) { // unflatten tuple - Tuple tuple_arg = Downcast(arg); - std::vector transformed_tuple_arg; - for (auto arg_item : tuple_arg->fields) { - transformed_tuple_arg.push_back( - memorizer.Transform(arg_item, new_in[pt], new_in2[pt])); - pt++; - } - transformed_args.push_back(TupleNode::make(transformed_tuple_arg)); - } else { - transformed_args.push_back( - memorizer.Transform(arg, new_in[pt], new_in2[pt])); - pt++; - } + const CallNode* new_call = new_e.as(); + CHECK(new_call) << "Can only replace the original operator with another call node"; + return GetRef(new_call); } - CHECK_EQ(pt, inputs.size()); - // state[node] = (old_out, new_out) - // (handle tuple output) - if (ref_call->checked_type()->IsInstance()) { - Expr tuple_output = CallNode::make(new_call->op, transformed_args, - new_call->attrs); - Array fields; - for (size_t i = 0; i < new_out.size(); ++i) { - auto rnode = make_node(); - rnode->value = TupleGetItemNode::make(tuple_output, i); - rnode->old_layout = old_out[i]; - rnode->new_layout = new_out[i]; - rnode->memorizer = memorizer; - fields.push_back(Expr(rnode)); - } - return TupleNode::make(fields); - } else { - auto rnode = make_node(); - CHECK_EQ(new_out.size(), 1); - rnode->value = CallNode::make(new_call->op, transformed_args, - new_call->attrs); - rnode->old_layout = old_out[0]; - rnode->new_layout = new_out[0]; - rnode->memorizer = memorizer; - return Expr(rnode); - } -} + using ContainerType = AlterTransformMemorizerNode; +}; -// Limiations: -// 1. the altered op should have the same number of arguments as the previous one -// 2. do not support nested tuple arguments +/*! + * Limitations: + * 1. The altered op should have the same number of arguments as the previous one. + * 2. Do not support nested tuple arguments. + */ Expr AlterOpLayout(const Expr& expr) { - TransformMemorizer transformMemorizer(make_node()); - auto fcontext = [&](const Call& call) -> NodeRef{ - return transformMemorizer; - }; + AlterTransformMemorizer alterMemorizer(make_node()); + auto fcontext = [&](const Call& call) -> NodeRef { return alterMemorizer; }; - return ForwardRewrite(expr, AlterOpLayoutRewrite, fcontext); + return ForwardRewrite(expr, LayoutRewriter, fcontext); } } // namespace alter_op_layout diff --git a/src/relay/pass/convert_layout.cc b/src/relay/pass/convert_layout.cc new file mode 100644 index 0000000000000..1db4422b0c016 --- /dev/null +++ b/src/relay/pass/convert_layout.cc @@ -0,0 +1,146 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file convert_op_layout.cc + * \brief Alternate the layouts of operators or replace primitive operators with + other expressions. This pass can be used for computing convolution in + custom layouts or other general weight pre-transformation. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "transform_layout.h" +#include "pattern_util.h" + +namespace tvm { +namespace relay { + +namespace convert_op_layout { + +/*! + * \brief Container for the transformations for ConvertLayout. + */ +class ConvertTransformMemorizerNode : public TransformMemorizerNode { + public: + /*! + * \brief Initializes the desired_layout. + * \param desired_layout The desired layout. + */ + explicit ConvertTransformMemorizerNode(const std::string& desired_layout) + : desired_layout_(desired_layout) {} + + /*! \brief The desired layout for the Convert Layout pass */ + std::string desired_layout_; +}; + +/*! + * \brief Container that provides the transformation function for convert layout. + */ +class ConvertTransformMemorizer : public TransformMemorizer { + public: + ConvertTransformMemorizer() {} + explicit ConvertTransformMemorizer(ObjectPtr n) : TransformMemorizer(n) {} + + ConvertTransformMemorizerNode* operator->() { + return static_cast(get_mutable()); + } + + /*! + * \brief Defines the call transformation for ConvertLayout pass. The new layouts should be the + * desired layout as specified by the user. + * \param ref_call The original call. + * \param new_args The traversed/recursed args to the call. + * \return The new Call after calling the packed func. + */ + Call CallWithNewLayouts(const Call& ref_call, const std::vector& new_args) override { + static auto fconvert_layout = Op::GetAttr("FTVMConvertOpLayout"); + Op op = Downcast(ref_call->op); + + Expr new_e; + bool modified = false; + if (fconvert_layout.count(op)) { + tvm::Array tinfos; + for (auto expr : ref_call->args) { + auto ttype = expr->type_as(); + tinfos.push_back(tvm::placeholder(ttype->shape, ttype->dtype)); + } + Expr altered_value = + fconvert_layout[op](ref_call->attrs, new_args, tinfos, operator->()->desired_layout_); + if (altered_value.defined()) { + new_e = altered_value; + modified = true; + } + } + if (!modified) { + new_e = CallNode::make(ref_call->op, new_args, ref_call->attrs); + } + + const CallNode* new_call = new_e.as(); + CHECK(new_call) << "Can only replace the original operator with another call node"; + return GetRef(new_call); + } + + using ContainerType = ConvertTransformMemorizerNode; +}; + +/*! + * Limitations: + * 1. The altered op should have the same number of arguments as the previous one. + * 2. Do not support nested tuple arguments. + */ +Expr ConvertLayout(const Expr& expr, const std::string& desired_layout) { + ConvertTransformMemorizer transformMemorizer( + make_node(desired_layout)); + auto fcontext = [&](const Call& call) -> NodeRef { return transformMemorizer; }; + + return ForwardRewrite(expr, LayoutRewriter, fcontext); +} + +} // namespace convert_op_layout + +namespace transform { + +Pass ConvertLayout(const std::string& desired_layout) { + runtime::TypedPackedFunc pass_func = + [=](Function f, Module m, PassContext pc) { + return Downcast(relay::convert_op_layout::ConvertLayout(f, desired_layout)); + }; + return CreateFunctionPass( + pass_func, 3, "ConvertLayout", + {ir::StringImm::make("InferType"), ir::StringImm::make("SimplifyInference"), + ir::StringImm::make("CanonicalizeOps")}); +} + +TVM_REGISTER_API("relay._transform.ConvertLayout").set_body_typed(ConvertLayout); + +} // namespace transform + +} // namespace relay +} // namespace tvm diff --git a/src/relay/pass/alter_op_layout.h b/src/relay/pass/infer_layout_util.h similarity index 83% rename from src/relay/pass/alter_op_layout.h rename to src/relay/pass/infer_layout_util.h index 49bf35c8a81f6..c204bddc89e58 100644 --- a/src/relay/pass/alter_op_layout.h +++ b/src/relay/pass/infer_layout_util.h @@ -18,18 +18,20 @@ */ /*! - * \file alter_op_layout.h - * \brief Alternate the layouts of operators or replace primitive operators with + * \file infer_layout_util.h + * \brief Utility functions to alter the layouts of operators or replace primitive operators with other expressions. This pass can be used for computing convolution in custom layouts or other general weight pre-transformation. */ -#ifndef TVM_RELAY_PASS_ALTER_OP_LAYOUT_H_ -#define TVM_RELAY_PASS_ALTER_OP_LAYOUT_H_ +#ifndef TVM_RELAY_PASS_INFER_LAYOUT_UTIL_H_ +#define TVM_RELAY_PASS_INFER_LAYOUT_UTIL_H_ #include #include #include +#include +#include "pattern_util.h" namespace tvm { namespace relay { @@ -193,7 +195,37 @@ inline Array > BinaryBroadcastLayout(const Attrs& attrs, } } +/*! + * Call registered FInferCorrectLayout of an op. + * Parameters are the same as the parameters for FInferCorrectLayout + * Returns inferred_input_layout, inferred_output_layout, success + */ +static inline std::tuple, Array, bool> InferCorrectLayouts( + const Call& call, const Array& new_in_layouts, const Array& old_in_layouts, + const Array>& old_in_shapes) { + static auto finfer_layout = Op::GetAttr("FInferCorrectLayout"); + + Op op = Downcast(call->op); + if (finfer_layout.count(op)) { + Array> inferred_layouts; + inferred_layouts = + finfer_layout[op](call->attrs, new_in_layouts, old_in_layouts, old_in_shapes); + CHECK_EQ(inferred_layouts.size(), 2) + << "FInferCorrectLayout should return an array with size of 2"; + for (auto x : inferred_layouts) { + for (auto y : x) { + if (!y.defined()) { // inference fails + return std::make_tuple<>(Array(nullptr), Array(nullptr), false); + } + } + } + return std::make_tuple<>(inferred_layouts[0], inferred_layouts[1], true); + } else { + return std::make_tuple<>(Array(nullptr), Array(nullptr), false); + } +} + } // namespace relay } // namespace tvm -#endif // TVM_RELAY_PASS_ALTER_OP_LAYOUT_H_ +#endif // TVM_RELAY_PASS_INFER_LAYOUT_UTIL_H_ diff --git a/src/relay/pass/transform_layout.h b/src/relay/pass/transform_layout.h new file mode 100644 index 0000000000000..21a82a603c20b --- /dev/null +++ b/src/relay/pass/transform_layout.h @@ -0,0 +1,362 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * + * \file transform_layout.h + * \brief Common infrastructure for transforming the layouts. This is used for AlterOpLayout and + * ConvertLayout pass. */ + +#ifndef TVM_RELAY_PASS_TRANSFORM_LAYOUT_H_ +#define TVM_RELAY_PASS_TRANSFORM_LAYOUT_H_ + +#include +#include +#include +#include +#include +#include +#include "pattern_util.h" +#include "infer_layout_util.h" + +namespace tvm { +namespace relay { + +/*! + * \brief Memorizes layout transformations to reuse. + */ +class TransformMemorizerNode : public Node { + public: + /*! \brief The key for the memorizer map is (Expr, src_layout, dst_layout). */ + using TransformKey = std::tuple; + + struct key_hash : public std::function { + std::size_t operator()(const TransformKey& k) const { + return dmlc::HashCombine( + dmlc::HashCombine(std::hash()(std::get<0>(k)), std::get<1>(k)), + (std::get<2>(k))); + } + }; + + /*! \brief The memorizer map. */ + std::unordered_map memo; + + static constexpr const char* _type_key = "relay.alter_op_layout.TransformMemorizerNode"; + TVM_DECLARE_NODE_TYPE_INFO(TransformMemorizerNode, Node); +}; + +/*! + * \brief Container that transforms the layouts and memorizes them. + */ +class TransformMemorizer : public NodeRef { + public: + TransformMemorizer() {} + explicit TransformMemorizer(ObjectPtr n) : NodeRef(n) {} + + TransformMemorizerNode* operator->() { + return static_cast(get_mutable()); + } + + /* + * \brief Memorizes and transforms the layout. + * \param expr The initial expr. + * \param src_layout The source layout. + * \param dst_layout The dest layout. + * \return The new expr with the dst layout. + */ + Expr Transform(Expr raw, const Layout& src_layout, const Layout& dst_layout) { + if (src_layout.Equals(dst_layout)) { + return raw; + } + + std::tuple key = + std::make_tuple<>(raw.get(), src_layout.name(), dst_layout.name()); + auto& memo = operator->()->memo; + + auto iter = memo.find(key); + if (iter != memo.end()) { + return iter->second; + } else { + Expr transform = TransformHelper(raw, src_layout, dst_layout); + memo[key] = transform; + return transform; + } + } + + /* + * \brief Helper to transform the layouts. + * \param expr The initial expr. + * \param src_layout The source layout. + * \param dst_layout The dest layout. + * \return The new expr with the dst layout. + * \note It performs following 2 operations + * 1) If src_layout ndim is smaller then dst_layout, expand_dim is inserted to match the dim + * size. For example, src_layout = C, dst_layout = NCHW16c. The src is expanded to NHWC. + * 2) Call layout transform with new src layout. + */ + Expr TransformHelper(Expr raw, Layout src_layout, Layout dst_layout) { + if (src_layout.Equals(dst_layout)) { + return raw; + } + + // 1) Check if the shape lengths are different. If yes, expand dims. + Expr input_expr = raw; + Layout new_src_layout = src_layout; + if (src_layout.ndim_primal() < dst_layout.ndim_primal()) { + int num_new_axis = dst_layout.ndim_primal() - src_layout.ndim_primal(); + new_src_layout = src_layout.ExpandPrimal(dst_layout); + input_expr = MakeExpandDims(input_expr, 0, num_new_axis); + if (new_src_layout.Equals(dst_layout)) { + return input_expr; + } + } + + // 2) Insert layout transform on the transformed src. + CHECK(new_src_layout.defined() && dst_layout.defined()) + << "Cannot insert layout transform because there are undefined layouts"; + CHECK(BijectiveLayoutNode::make(new_src_layout, dst_layout).defined()) + << "Cannot insert layout transform because there are inconvertible layouts: " + << new_src_layout << " v.s. " << dst_layout; + return MakeLayoutTransform(input_expr, new_src_layout.name(), dst_layout.name()); + } + + /*! + * \brief Defines the call transformation for derived passes. The new layouts are defined by + * used for different targets using a packed func. + * \param ref_call The original call. + * \param new_args The traversed/recursed args to the call. + * \return The new Call after calling the packed func. + */ + virtual Call CallWithNewLayouts(const Call& ref_call, const std::vector& new_args) = 0; + using ContainerType = TransformMemorizerNode; +}; + +/* + * \brief TempExprNode during layout transform. Instance of this expr will be Realized to normal + * expr ultimately. + * \tparam TransformMemorizerT The derived TransformMemorizer type. + */ +template +class LayoutAlternatedExprNode : public TempExprNode { + public: + Expr value; + Layout old_layout; + Layout new_layout; + TransformMemorizerT memorizer; + + Expr Realize() const final { + // NOTE: use a copy to discard the "const" qualifier + TransformMemorizerT tmp_memorizer = memorizer; + // fallback to old layout + return tmp_memorizer.Transform(value, new_layout, old_layout); + } + + void VisitAttrs(AttrVisitor* v) { + v->Visit("value", &value); + v->Visit("old_layout", &old_layout); + v->Visit("new_layout", &new_layout); + } + + static constexpr const char* _type_key = "relay.alter_op_layout.LayoutAlternatedExprNode"; + TVM_DECLARE_NODE_TYPE_INFO(LayoutAlternatedExprNode, TempExprNode); +}; + +/*! + * \brief Container for the layout alternated expr. + * \tparam TransformMemorizerT The derived TransformMemorizer type. + */ +template +class LayoutAlternatedExpr : public NodeRef { + public: + LayoutAlternatedExpr() {} + explicit LayoutAlternatedExpr(ObjectPtr n) : NodeRef(n) {} + + LayoutAlternatedExprNode* operator->() { + return static_cast*>(get_mutable()); + } + + using ContainerType = LayoutAlternatedExprNode; +}; + +/* + * \brief Used with ForwardRewrite to transform the expr. The input args are same as + * FForwardRewrite. + * \param ref_call The reference old call type to be rewritten. + * We can make use of the op and type information. + * \param new_args The new arguments (some of them could be TempExpr). + * \param ctx Optional context information about ref_call. + * \tparam TransformMemorizerT The derived TransformMemorizer type. + * \return The rewriten result call, can also return nullptr, + * which indicate the rewriter should use the default fallback + * rule that realizes all its input and compose the call. + * + * \note The ctx can be used to provide extra information during transformation. The ctx is + * templated to reuse across AlterOpLayout and ConvertLayout pass. The steps are + * - Extract the original layouts. + * - Use ctx transformation to get a Call with new layouts - CallWithNewLayouts. + * - Extract the new layouts from the returned Call. + * - Transform the original call to reuse the new layouts using TransformMemorizer. + */ +template +Expr LayoutRewriter(const Call& ref_call, const Array& new_args, const NodeRef& ctx) { + std::vector> inputs; + std::vector normal_new_args; + Array> input_shapes; + + // NOTE: discard the "const" qualifier + // TransformMemorizer memorizer = Downcast(ctx); + // TransformMemorizerT* ctx_transformer = + // static_cast(memorizer.operator->()); + TransformMemorizerT memorizer = Downcast(ctx); + + // fill incomplete state and flatten tuple + auto push_back_one_arg = [&inputs, memorizer](Expr arg) { + // We always expect LayoutAlternatedExpr. + // This is used to convert the normal Expr to LayoutAlternatedExpr. + if (const LayoutAlternatedExprNode* inp = + arg.as>()) { + inputs.push_back(GetRef>(inp)); + return inp->value; + } else { + auto inode = make_node>(); + inode->value = arg; + inode->memorizer = memorizer; + inputs.push_back(LayoutAlternatedExpr(inode)); + return arg; + } + }; + + for (auto new_arg : new_args) { + // NOTE: do not support nested tuple + if (new_arg->IsInstance()) { + Tuple tuple_new_arg = Downcast(new_arg); + std::vector fields; + for (auto x : tuple_new_arg->fields) { + Expr tmp = push_back_one_arg(x); + fields.push_back(tmp); + } + normal_new_args.push_back(TupleNode::make(fields)); + } else { + Expr tmp = push_back_one_arg(new_arg); + normal_new_args.push_back(tmp); + } + } + + // old_in, new_in = state[inputs] + Array old_in, old_out, new_in, new_out, new_in2; + for (auto inp : inputs) { + old_in.push_back(inp->old_layout); + new_in.push_back(inp->new_layout); + } + + for (auto arg : ref_call->args) { + if (arg->IsInstance()) { // flatten tuple + Tuple tuple_arg = Downcast(arg); + for (auto x : tuple_arg->fields) { + input_shapes.push_back(x->type_as()->shape); + } + } else { + input_shapes.push_back(arg->type_as()->shape); + } + } + + // old_in, old_out = op.infer(old_in) + bool success = false; + std::tie(old_in, old_out, success) = + InferCorrectLayouts(ref_call, Array(nullptr), old_in, input_shapes); + if (!success) { + return Expr(nullptr); + } + CHECK_EQ(old_in.size(), new_in.size()); + + // if new_in == 'undef': new_in = old_in + for (size_t i = 0; i < new_in.size(); ++i) { + if (!new_in[i].defined()) { + new_in.Set(i, old_in[i]); + } + } + + // new_op = alter(op) + Call new_call = memorizer.CallWithNewLayouts(ref_call, normal_new_args); + + // new_in2, new_out = op.infer(new_in) + if (new_call->op->IsInstance()) { + success = false; + std::tie(new_in2, new_out, success) = + InferCorrectLayouts(new_call, new_in, old_in, input_shapes); + if (!success) { + return Expr(nullptr); + } + } else { + return Expr(nullptr); + } + + CHECK_EQ(new_out.size(), old_out.size()) + << "The number of output nodes should keep the same during alter_op_layout"; + CHECK_EQ(new_in.size(), new_in2.size()) + << "The number of input nodes should keep the same during alter_op_layout"; + + // if (new_in != new_in2): insert transform (new_in -> new_in2) + Array transformed_args; + size_t pt = 0; + for (auto arg : new_call->args) { + if (arg->IsInstance()) { // unflatten tuple + Tuple tuple_arg = Downcast(arg); + std::vector transformed_tuple_arg; + for (auto arg_item : tuple_arg->fields) { + transformed_tuple_arg.push_back(memorizer.Transform(arg_item, new_in[pt], new_in2[pt])); + pt++; + } + transformed_args.push_back(TupleNode::make(transformed_tuple_arg)); + } else { + transformed_args.push_back(memorizer.Transform(arg, new_in[pt], new_in2[pt])); + pt++; + } + } + CHECK_EQ(pt, inputs.size()); + + // state[node] = (old_out, new_out) + // (handle tuple output) + if (ref_call->checked_type()->IsInstance()) { + Expr tuple_output = CallNode::make(new_call->op, transformed_args, new_call->attrs); + Array fields; + for (size_t i = 0; i < new_out.size(); ++i) { + auto rnode = make_node>(); + rnode->value = TupleGetItemNode::make(tuple_output, i); + rnode->old_layout = old_out[i]; + rnode->new_layout = new_out[i]; + rnode->memorizer = memorizer; + fields.push_back(Expr(rnode)); + } + return TupleNode::make(fields); + } else { + auto rnode = make_node>(); + CHECK_EQ(new_out.size(), 1); + rnode->value = CallNode::make(new_call->op, transformed_args, new_call->attrs); + rnode->old_layout = old_out[0]; + rnode->new_layout = new_out[0]; + rnode->memorizer = memorizer; + return Expr(rnode); + } +} + +} // namespace relay +} // namespace tvm + +#endif // TVM_RELAY_PASS_TRANSFORM_LAYOUT_H_ diff --git a/tests/python/relay/test_pass_convert_op_layout.py b/tests/python/relay/test_pass_convert_op_layout.py new file mode 100644 index 0000000000000..95445250784fe --- /dev/null +++ b/tests/python/relay/test_pass_convert_op_layout.py @@ -0,0 +1,360 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +"""Test alter op layout pass""" +import tvm + +from tvm import relay +from tvm.relay.op import register_alter_op_layout +from tvm.relay import transform, analysis + + +def run_opt_pass(expr, passes): + passes = passes if isinstance(passes, list) else [passes] + mod = relay.Module.from_expr(expr) + seq = transform.Sequential(passes) + with transform.PassContext(opt_level=3): + mod = seq(mod) + entry = mod["main"] + return entry if isinstance(expr, relay.Function) else entry.body + + +def test_no_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 64, 56, 56)) + weight = relay.var('weight', shape=(64, 64, 3, 3)) + y = relay.nn.conv2d(x, weight, + channels=64, + kernel_size=(3, 3), + padding=(1, 1)) + y = relay.nn.relu(y) + y = relay.Function([x, weight], y) + return y + + def expected(): + return before() + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +def test_conv_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight = relay.var('weight', shape=(3, 3, 64, 64)) + y = relay.nn.conv2d(x, weight, + channels=64, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + y = relay.nn.relu(y) + y = relay.Function([x, weight], y) + return y + + def expected(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight = relay.var('weight', shape=(3, 3, 64, 64)) + x = relay.layout_transform(x, 'NHWC', 'NCHW') + weight = relay.layout_transform(weight, 'HWIO', 'OIHW') + y = relay.nn.conv2d(x, weight, + channels=64, + kernel_size=(3, 3), + padding=(1, 1)) + y = relay.nn.relu(y) + y = relay.layout_transform(y, 'NCHW', 'NHWC') + y = relay.Function(relay.analysis.free_vars(y), y) + return y + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +def test_conv_bias_pool_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + bias = relay.var("bias", shape=(64,)) + weight = relay.var("weight", shape=(3, 3, 64, 64)) + y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), + data_layout='NHWC', kernel_layout='HWIO') + y = relay.nn.bias_add(y, bias, axis=3) + # a useless tuple, which will be eliminated + y = relay.Tuple([y])[0] + y = relay.nn.relu(y) + y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout='NHWC') + y = relay.cast(y, 'int32') + y = relay.nn.batch_flatten(y) + y = relay.Function(analysis.free_vars(y), y) + return y + + def expected(): + x = relay.var("x", shape=(1, 56, 56, 64)) + bias = relay.var("bias", shape=(64,)) + weight = relay.var("weight", shape=(3, 3, 64, 64)) + x = relay.layout_transform(x, 'NHWC', 'NCHW') + weight = relay.layout_transform(weight, 'HWIO', 'OIHW') + y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) + + bias = relay.expand_dims(bias, axis=0, num_newaxis=3) + bias = relay.layout_transform(bias, 'NHWC', 'NCHW') + y = relay.add(y, bias) + # a useless tuple, which will be eliminated + y = relay.Tuple([y])[0] + y = relay.nn.relu(y) + y = relay.nn.max_pool2d(y, pool_size=(2, 2)) + y = relay.cast(y, 'int32') + y = relay.layout_transform(y, 'NCHW', 'NHWC') + y = relay.nn.batch_flatten(y) + y = relay.Function(analysis.free_vars(y), y) + return y + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +def test_conv_concat_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 64)) + weight2 = relay.var('weight2', shape=(3, 3, 64, 64)) + y = relay.nn.conv2d(x, weight1, + channels=64, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + y1 = relay.nn.conv2d(y, weight2, + channels=64, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + ret = relay.concatenate([y, y1], axis=3) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + def expected(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 64)) + weight2 = relay.var('weight2', shape=(3, 3, 64, 64)) + weight1 = relay.layout_transform(weight1, 'HWIO', 'OIHW') + weight2 = relay.layout_transform(weight2, 'HWIO', 'OIHW') + y = relay.layout_transform(x, "NHWC", "NCHW") + y = relay.nn.conv2d(y, weight1, + channels=64, + kernel_size=(3, 3), + padding=(1, 1)) + y1 = relay.nn.conv2d(y, weight2, + channels=64, + kernel_size=(3, 3), + padding=(1, 1)) + ret = relay.concatenate([y, y1], axis=1) + ret = relay.layout_transform(ret, "NCHW", "NHWC") + y = relay.Function(analysis.free_vars(ret), ret) + return y + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +def test_dual_path_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 32)) + weight2 = relay.var('weight2', shape=(3, 3, 32, 32)) + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + y = relay.nn.relu(y) + y1 = relay.nn.conv2d(y, weight2, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + y1 = relay.nn.relu(y1) + y2 = relay.nn.batch_flatten(y) + ret = relay.Tuple([y1, y2]) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + def expected(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 32)) + weight2 = relay.var('weight2', shape=(3, 3, 32, 32)) + weight1 = relay.layout_transform(weight1, 'HWIO', 'OIHW') + weight2 = relay.layout_transform(weight2, 'HWIO', 'OIHW') + y = relay.layout_transform(x, "NHWC", "NCHW") + y = relay.nn.conv2d(y, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1)) + y = relay.nn.relu(y) + y1 = relay.nn.conv2d(y, weight2, + channels=32, + kernel_size=(3, 3), + padding=(1, 1)) + y1 = relay.nn.relu(y1) + y1 = relay.layout_transform(y1, "NCHW", "NHWC") + y2 = relay.layout_transform(y, "NCHW", "NHWC") + y2 = relay.nn.batch_flatten(y2) + ret = relay.Tuple([y1, y2]) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +def test_bn_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 32)) + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + gamma = relay.var("gamma") + beta = relay.var("beta") + mean = relay.var("mean") + variance = relay.var("variance") + y, _, _ = relay.nn.batch_norm(y , gamma, beta, mean, variance, axis=3) + return relay.Function(analysis.free_vars(y), y) + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + + # Check that there is only 1 NHWC to NCHW transform. + has_lt = list() + find_op = lambda x : \ + has_lt.append(isinstance(x, tvm.relay.expr.Call) and x.op.name == "layout_transform" \ + and x.attrs.src_layout == 'NCHW' and x.attrs.dst_layout == 'NHWC') + relay.analysis.post_order_visit(a, find_op) + has_lt = list(filter(lambda x: x, has_lt)) + assert len(has_lt) == 1 + + +def test_resnet_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 32)) + weight2 = relay.var('weight2', shape=(1, 1, 64, 32)) + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + y = relay.nn.relu(y) + y2 = relay.nn.conv2d(x, weight2, + channels=32, + kernel_size=(1, 1), + data_layout='NHWC', + kernel_layout='HWIO') + y2 = relay.nn.relu(y2) + y = y + y2 + y = relay.nn.global_max_pool2d(y, layout='NHWC') + return relay.Function(analysis.free_vars(y), y) + + def expected(): + x = relay.var("x", shape=(1,56, 56, 64)) + weight1 = relay.var('weight1', shape=(3, 3, 64, 32)) + weight2 = relay.var('weight2', shape=(1, 1, 64, 32)) + weight1 = relay.layout_transform(weight1, 'HWIO', 'OIHW') + weight2 = relay.layout_transform(weight2, 'HWIO', 'OIHW') + x = relay.layout_transform(x, "NHWC", "NCHW") + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1)) + y = relay.nn.relu(y) + y2 = relay.nn.conv2d(x, weight2, + channels=32, + kernel_size=(1, 1)) + y2 = relay.nn.relu(y2) + y = y + y2 + y = relay.nn.global_max_pool2d(y) + y = relay.layout_transform(y, "NCHW", "NHWC") + return relay.Function(analysis.free_vars(y), y) + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +def test_scalar_convert_layout(): + def before(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight = relay.var("weight", shape=(3, 3, 64, 64)) + y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), + data_layout='NHWC', kernel_layout='HWIO') + y = relay.add(y, relay.const(1, "float32")) + y = relay.Function(analysis.free_vars(y), y) + return y + + def expected(): + x = relay.var("x", shape=(1, 56, 56, 64)) + w = relay.var("weight", shape=(3, 3, 64, 64)) + x = relay.layout_transform(x, 'NHWC', 'NCHW') + w = relay.layout_transform(w, 'HWIO', 'OIHW') + y = relay.nn.conv2d(x, w, + channels=64, + kernel_size=(3, 3), + padding=(1, 1)) + y = relay.add(y, relay.const(1.0, "float32")) + + y = relay.layout_transform(y, "NCHW", "NHWC") + y = relay.Function(analysis.free_vars(y), y) + return y + + a = before() + a = run_opt_pass(a, transform.ConvertLayout('NCHW')) + b = run_opt_pass(expected(), transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + +if __name__ == "__main__": + test_no_convert_layout() + test_conv_convert_layout() + test_conv_bias_pool_convert_layout() + test_conv_concat_convert_layout() + test_dual_path_convert_layout() + test_bn_convert_layout() + test_resnet_convert_layout() + test_scalar_convert_layout()