diff --git a/python/tvm/__init__.py b/python/tvm/__init__.py index 62265eab111f0..0c4ca139c6318 100644 --- a/python/tvm/__init__.py +++ b/python/tvm/__init__.py @@ -47,10 +47,9 @@ # tvm.target from . import target -from .target import build_config # tvm.te -from .te import decl_tensor_intrin, create_schedule, tag_scope +from . import te # tvm.testing from . import testing @@ -64,10 +63,6 @@ # others from . import arith -# backward compact for topi, to be removed later -from .tir import expr, stmt, ir_builder, ir_pass, generic -from .te import tensor, schedule - # Contrib initializers from .contrib import rocm as _rocm, nvcc as _nvcc, sdaccel as _sdaccel diff --git a/python/tvm/autotvm/measure/measure_methods.py b/python/tvm/autotvm/measure/measure_methods.py index 44e6de934649c..698ddbc68dd70 100644 --- a/python/tvm/autotvm/measure/measure_methods.py +++ b/python/tvm/autotvm/measure/measure_methods.py @@ -33,9 +33,13 @@ import numpy as np -from ... import ir_pass, build, build_config, nd, TVMError, register_func, \ - rpc as _rpc, target as _target -from ...contrib import nvcc, ndk, tar +import tvm._ffi +from tvm import nd, rpc as _rpc, target as _target +from tvm.tir import ir_pass +from tvm.error import TVMError +from tvm.target import build_config +from tvm.driver import build +from tvm.contrib import nvcc, ndk, tar from ..util import get_const_tuple from ..env import AutotvmGlobalScope @@ -581,7 +585,7 @@ def _check(): return not t.is_alive() -@register_func +@tvm._ffi.register_func def tvm_callback_cuda_compile(code): """use nvcc to generate ptx code for better optimization""" curr_cuda_target_arch = AutotvmGlobalScope.current.cuda_target_arch diff --git a/python/tvm/autotvm/task/code_hash.py b/python/tvm/autotvm/task/code_hash.py index d5358ec437e4d..3076970f84c96 100644 --- a/python/tvm/autotvm/task/code_hash.py +++ b/python/tvm/autotvm/task/code_hash.py @@ -22,7 +22,7 @@ import inspect import zlib -from tvm import schedule +from tvm.te import schedule def attach_code_hash(s): """Decorator for attaching a code hash to a schedule diff --git a/python/tvm/autotvm/task/topi_integration.py b/python/tvm/autotvm/task/topi_integration.py index 1a381069112e8..e1c09133eb234 100644 --- a/python/tvm/autotvm/task/topi_integration.py +++ b/python/tvm/autotvm/task/topi_integration.py @@ -28,8 +28,8 @@ """ import tvm.te._ffi_api from tvm import target as _target +from tvm.te import tensor -from ... import tensor from .task import args_to_workload, DispatchContext, \ register_task_compute, register_task_schedule, serialize_args diff --git a/python/tvm/autotvm/util.py b/python/tvm/autotvm/util.py index 54001d3338ad7..01d50e86a88a3 100644 --- a/python/tvm/autotvm/util.py +++ b/python/tvm/autotvm/util.py @@ -24,7 +24,7 @@ import numpy as np -from .. import expr, ir_pass +from tvm.tir import expr, ir_pass logger = logging.getLogger('autotvm') diff --git a/python/tvm/contrib/peak.py b/python/tvm/contrib/peak.py index 1d987a5aeea49..2906410efc405 100644 --- a/python/tvm/contrib/peak.py +++ b/python/tvm/contrib/peak.py @@ -208,7 +208,7 @@ def measure_compute_mad(total_item, item_per_thread, base_type, bits, lanes, def extern(ins, outs): # pylint: disable=unused-argument """construct measurement function by building IR directly""" - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") diff --git a/python/tvm/contrib/tedd.py b/python/tvm/contrib/tedd.py index f15b7d489eeed..68e15f2b1ddd8 100644 --- a/python/tvm/contrib/tedd.py +++ b/python/tvm/contrib/tedd.py @@ -282,7 +282,7 @@ def get_leaf_itervar_index(itervar, leaf_iv): def encode_itervar_relation(obj_manager, rel): """Extract and encode IterVar Relationship visualization data to a dictionary""" rel_type = type(rel) - if rel_type is tvm.schedule.Split: + if rel_type is tvm.te.schedule.Split: node_type = 'Split_Relation' rel_dict = { "type": node_type, @@ -290,7 +290,7 @@ def encode_itervar_relation(obj_manager, rel): "outer": obj_manager.get_dom_path(rel.outer), "inner": obj_manager.get_dom_path(rel.inner), } - elif rel_type is tvm.schedule.Fuse: + elif rel_type is tvm.te.schedule.Fuse: node_type = 'Fuse_Relation' rel_dict = { "type": node_type, @@ -298,7 +298,7 @@ def encode_itervar_relation(obj_manager, rel): "outer": obj_manager.get_dom_path(rel.outer), "inner": obj_manager.get_dom_path(rel.inner), } - elif rel_type is tvm.schedule.Singleton: + elif rel_type is tvm.te.schedule.Singleton: node_type = 'Singleton_Relation' rel_dict = { "type": node_type, @@ -377,12 +377,12 @@ def encode_schedule(sch, need_range): dict : dictionary A nested dictionary """ - assert isinstance(sch, tvm.schedule.Schedule - ), 'Input is not a tvm.schedule.Schedule object.' + assert isinstance(sch, tvm.te.schedule.Schedule + ), 'Input is not a tvm.te.schedule.Schedule object.' range_map = None if need_range: try: - range_map = tvm.schedule.InferBound(sch) + range_map = tvm.te.schedule.InferBound(sch) except tvm._ffi.base.TVMError as expt: warnings.warn( 'Ranges are not available, because InferBound fails with the following error:\n' diff --git a/python/tvm/driver/build_module.py b/python/tvm/driver/build_module.py index 336db833e24bf..67eb22414abdc 100644 --- a/python/tvm/driver/build_module.py +++ b/python/tvm/driver/build_module.py @@ -89,7 +89,7 @@ def form_body(sch): """According to the given schedule, form the raw body Parameters ---------- - sch : tvm.schedule.Schedule + sch : tvm.te.schedule.Schedule The given scheduler to form the raw body Returns @@ -113,7 +113,7 @@ def lower(sch, Parameters ---------- - sch : tvm.schedule.Schedule + sch : tvm.te.schedule.Schedule The schedule to be built args : list of Buffer or Tensor or Var @@ -286,7 +286,7 @@ def build(inputs, Parameters ---------- - inputs : tvm.Schedule, LoweredFunc, or dict of target to LoweredFunc list + inputs : tvm.te.Schedule, LoweredFunc, or dict of target to LoweredFunc list The schedule to be built args : list of Buffer or Tensor or Var, optional @@ -328,7 +328,7 @@ def build(inputs, A = te.placeholder((n,), name='A') B = te.placeholder((n,), name='B') C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name='C') - s = tvm.create_schedule(C.op) + s = tvm.te.create_schedule(C.op) f = tvm.lower(s, [A, B, C], name="test_add") m = tvm.build(f, target="llvm") @@ -340,7 +340,7 @@ def build(inputs, A = te.placeholder((n,), name='A') B = te.placeholder((n,), name='B') C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name='C') - s1 = tvm.create_schedule(C.op) + s1 = tvm.te.create_schedule(C.op) with tvm.target.cuda() as cuda_tgt: s2 = topi.cuda.schedule_injective(cuda_tgt, [C]) f1 = tvm.lower(s1, [A, B, C], name="test_add1") diff --git a/python/tvm/hybrid/util.py b/python/tvm/hybrid/util.py index dbdfaec716dc0..6c019893bf20a 100644 --- a/python/tvm/hybrid/util.py +++ b/python/tvm/hybrid/util.py @@ -72,7 +72,7 @@ def _pruned_source(func): def replace_io(body, rmap): """Replacing tensors usage according to the dict given""" # pylint: disable=import-outside-toplevel - from .. import ir_pass + from tvm.tir import ir_pass def replace(op): if isinstance(op, _stmt.Provide) and op.func in rmap.keys(): diff --git a/python/tvm/relay/backend/_backend.py b/python/tvm/relay/backend/_backend.py index cbc4079b9e619..df0347bd2bae2 100644 --- a/python/tvm/relay/backend/_backend.py +++ b/python/tvm/relay/backend/_backend.py @@ -26,7 +26,7 @@ def lower(sch, inputs, func_name, source_func): Parameters ---------- - sch : tvm.Schedule + sch : tvm.te.Schedule The schedule. inputs : List[tvm.te.Tensor] diff --git a/python/tvm/relay/backend/compile_engine.py b/python/tvm/relay/backend/compile_engine.py index f3a0c01a661d7..a51e4f7bad115 100644 --- a/python/tvm/relay/backend/compile_engine.py +++ b/python/tvm/relay/backend/compile_engine.py @@ -80,11 +80,11 @@ def get_shape(shape): """Convert the shape to correct dtype and vars.""" ret = [] for dim in shape: - if isinstance(dim, tvm.expr.IntImm): + if isinstance(dim, tvm.tir.IntImm): val = int(dim) assert val <= np.iinfo(np.int32).max - ret.append(tvm.expr.IntImm("int32", val)) - elif isinstance(dim, tvm.expr.Any): + ret.append(tvm.tir.IntImm("int32", val)) + elif isinstance(dim, tvm.tir.Any): ret.append(te.var("any_dim", "int32")) else: ret.append(dim) @@ -130,7 +130,7 @@ def get_valid_implementations(op, attrs, inputs, out_type, target): flag = True for clause in spec.condition.clauses: clause = analyzer.canonical_simplify(clause) - if isinstance(clause, tvm.expr.IntImm) and clause.value: + if isinstance(clause, tvm.tir.IntImm) and clause.value: continue flag = False break diff --git a/python/tvm/relay/backend/graph_runtime_codegen.py b/python/tvm/relay/backend/graph_runtime_codegen.py index f58a9b0d5ccd5..762210dbe4288 100644 --- a/python/tvm/relay/backend/graph_runtime_codegen.py +++ b/python/tvm/relay/backend/graph_runtime_codegen.py @@ -36,7 +36,7 @@ from tvm.runtime.ndarray import empty from tvm.relay import _build_module from tvm import target as _target -from tvm import expr as _expr +from tvm.tir import expr as _expr class GraphRuntimeCodegen(object): """The compiler from Relay to the TVM runtime system.""" diff --git a/python/tvm/relay/build_module.py b/python/tvm/relay/build_module.py index 6d9c850cb7ffa..22e0b916e69ac 100644 --- a/python/tvm/relay/build_module.py +++ b/python/tvm/relay/build_module.py @@ -23,7 +23,7 @@ from tvm.ir import IRModule -from tvm import expr as tvm_expr +from tvm.tir import expr as tvm_expr from .. import nd as _nd, target as _target, autotvm from ..contrib import graph_runtime as _graph_rt from . import _build_module diff --git a/python/tvm/relay/op/op.py b/python/tvm/relay/op/op.py index d2a05af0d978b..6be7d4d4f870f 100644 --- a/python/tvm/relay/op/op.py +++ b/python/tvm/relay/op/op.py @@ -183,7 +183,7 @@ def schedule(self, attrs, outs, target): Returns ------- - schedule : tvm.Schedule + schedule : tvm.te.Schedule The schedule. """ return _OpImplementationSchedule(self, attrs, outs, target) diff --git a/python/tvm/target/build_config.py b/python/tvm/target/build_config.py index 8782d24d2da97..c105175d3e261 100644 --- a/python/tvm/target/build_config.py +++ b/python/tvm/target/build_config.py @@ -35,7 +35,7 @@ class DumpIR(object): ----------- .. code-block:: python - with tvm.build_config(dump_pass_ir=True) + with tvm.target.build_config(dump_pass_ir=True) run() """ scope_level = 0 diff --git a/python/tvm/te/tag.py b/python/tvm/te/tag.py index 78c89402d8ee4..1022875ce3dda 100644 --- a/python/tvm/te/tag.py +++ b/python/tvm/te/tag.py @@ -80,11 +80,11 @@ def tag_scope(tag): B = te.placeholder((m, l), name='B') k = te.reduce_axis((0, l), name='k') - with tvm.tag_scope(tag='matmul'): + with tvm.te.tag_scope(tag='matmul'): C = te.compute((n, m), lambda i, j: te.sum(A[i, k] * B[j, k], axis=k)) # or use tag_scope as decorator - @tvm.tag_scope(tag="conv") + @tvm.te.tag_scope(tag="conv") def compute_relu(data): return te.compute(data.shape, lambda *i: tvm.select(data(*i) < 0, 0.0, data(*i))) """ diff --git a/python/tvm/tir/generic.py b/python/tvm/tir/generic.py index 8a9cf8eeb50d4..88be5b1dfd640 100644 --- a/python/tvm/tir/generic.py +++ b/python/tvm/tir/generic.py @@ -16,7 +16,7 @@ # under the License. """Generic opertors in TVM. We follow the numpy naming convention for this interface -(e.g., tvm.generic.multitply ~ numpy.multiply). +(e.g., tvm.tir.generic.multitply ~ numpy.multiply). The default implementation is used by tvm.ExprOp. """ # pylint: disable=unused-argument diff --git a/python/tvm/tir/ir_builder.py b/python/tvm/tir/ir_builder.py index 6e6b1128e6cf7..885b8475082ed 100644 --- a/python/tvm/tir/ir_builder.py +++ b/python/tvm/tir/ir_builder.py @@ -98,7 +98,7 @@ class IRBuilder(object): -------- .. code-block:: python - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") A = ib.allocate("float32", n, name="A") with ib.for_range(0, n, name="i") as i: @@ -158,7 +158,7 @@ def scope_attr(self, node, attr_key, value): -------- .. code-block:: python - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() i = te.var("i") x = ib.pointer("float32") ib.scope_attr(x, "storage_scope", "global") @@ -200,7 +200,7 @@ def for_range(self, begin, end, name="i", dtype="int32", for_type="serial"): -------- .. code-block:: python - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() x = ib.pointer("float32") with ib.for_range(1, 10, name="i") as i: x[i] = x[i - 1] + 1 @@ -243,7 +243,7 @@ def if_scope(self, cond): -------- .. code-block:: python - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() i = te.var("i") x = ib.pointer("float32") with ib.if_scope((i % 2) == 0): @@ -268,7 +268,7 @@ def else_scope(self): -------- .. code-block:: python - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() i = te.var("i") x = ib.pointer("float32") with ib.if_scope((i % 2) == 0): diff --git a/rust/runtime/tests/test_tvm_basic/src/build_test_lib.py b/rust/runtime/tests/test_tvm_basic/src/build_test_lib.py index a04e2b80b6618..bf7e60a1df6e2 100755 --- a/rust/runtime/tests/test_tvm_basic/src/build_test_lib.py +++ b/rust/runtime/tests/test_tvm_basic/src/build_test_lib.py @@ -29,7 +29,7 @@ def main(): A = te.placeholder((n,), name='A') B = te.placeholder((n,), name='B') C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name='C') - s = tvm.create_schedule(C.op) + s = tvm.te.create_schedule(C.op) s[C].parallel(s[C].op.axis[0]) print(tvm.lower(s, [A, B, C], simple_mode=True)) tvm.build(s, [A, B, C], 'llvm --system-lib').save(osp.join(sys.argv[1], 'test.o')) diff --git a/rust/runtime/tests/test_tvm_dso/src/build_test_lib.py b/rust/runtime/tests/test_tvm_dso/src/build_test_lib.py index c3e397d12ace8..cb7353ff70abf 100755 --- a/rust/runtime/tests/test_tvm_dso/src/build_test_lib.py +++ b/rust/runtime/tests/test_tvm_dso/src/build_test_lib.py @@ -30,7 +30,7 @@ def main(): A = te.placeholder((n,), name='A') B = te.placeholder((n,), name='B') C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name='C') - s = tvm.create_schedule(C.op) + s = tvm.te.create_schedule(C.op) s[C].parallel(s[C].op.axis[0]) print(tvm.lower(s, [A, B, C], simple_mode=True)) obj_file = osp.join(sys.argv[1], 'test.o') diff --git a/tests/python/integration/test_dot.py b/tests/python/integration/test_dot.py index e7dc7e95eb2bb..c66e596ef50cd 100644 --- a/tests/python/integration/test_dot.py +++ b/tests/python/integration/test_dot.py @@ -30,11 +30,11 @@ def lower(s, args, name="mydot"): s = s.normalize() bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) - stmt = tvm.ir_pass.StorageFlatten(stmt, binds, 16) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - fapi = tvm.ir_pass.MakeAPI(stmt, name, arg_list, 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, binds, 16) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, name, arg_list, 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) return fapi diff --git a/tests/python/relay/test_pass_fold_constant.py b/tests/python/relay/test_pass_fold_constant.py index 5e1cd8d8b69df..cc362a266aa50 100644 --- a/tests/python/relay/test_pass_fold_constant.py +++ b/tests/python/relay/test_pass_fold_constant.py @@ -55,7 +55,7 @@ def fail(x): raise RuntimeError() # the fold constant should work on any context. - with tvm.build_config(add_lower_pass=[(0, fail)]): + with tvm.target.build_config(add_lower_pass=[(0, fail)]): with tvm.target.create("cuda"): zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) diff --git a/tests/python/unittest/test_arith_canonical_simplify.py b/tests/python/unittest/test_arith_canonical_simplify.py index 3d17bf1ad626b..b4649a4ba75ee 100644 --- a/tests/python/unittest/test_arith_canonical_simplify.py +++ b/tests/python/unittest/test_arith_canonical_simplify.py @@ -23,7 +23,7 @@ def __init__(self): def verify(self, data, expected): res = self.analyzer.canonical_simplify(data) - assert tvm.ir_pass.Equal(res, expected), "\ndata={}\nres={}\nexpected={}".format(data, res, expected) + assert tvm.tir.ir_pass.Equal(res, expected), "\ndata={}\nres={}\nexpected={}".format(data, res, expected) def test_mul_sum_simplify(): @@ -197,7 +197,7 @@ def test_reduce_combiner_simplify(): # Check that the remaining components are the expected ones. for lhs, rhs in zip(simplified.source, reference_simplified_sources[j]): - assert tvm.ir_pass.Equal(lhs, rhs) + assert tvm.tir.ir_pass.Equal(lhs, rhs) # Test that components with side effects are not removed side_effect = lambda *xs: tvm.tir.Call("int32", "dummy", xs, tvm.tir.Call.Intrinsic, None, 0) diff --git a/tests/python/unittest/test_arith_deduce_bound.py b/tests/python/unittest/test_arith_deduce_bound.py index 3d5a3298f19eb..5baabd16c615b 100644 --- a/tests/python/unittest/test_arith_deduce_bound.py +++ b/tests/python/unittest/test_arith_deduce_bound.py @@ -19,7 +19,7 @@ def assert_expr_equal(a, b): - res = tvm.ir_pass.Simplify(a - b) + res = tvm.tir.ir_pass.Simplify(a - b) equal = isinstance(res, tvm.tir.IntImm) and res.value == 0 if not equal: raise ValueError("{} and {} are not equal".format(a, b)) @@ -83,10 +83,10 @@ def test_deduce(): e3 = (-b)+a*c-d res3 = tvm.arith.deduce_bound(a, e3>=0, {b: b_s, c: c_s, d: d_s}, {b: b_s, d: d_s}) ans3 = fdiv(2,c)+1 - assert str(tvm.ir_pass.Simplify(res3.min_value)) == str(ans3) + assert str(tvm.tir.ir_pass.Simplify(res3.min_value)) == str(ans3) res3 = tvm.arith.deduce_bound(a, zero <= e3, {b: b_s, c: c_s, d: d_s}, {b: b_s, d: d_s}) - assert str(tvm.ir_pass.Simplify(res3.min_value)) == str(ans3) + assert str(tvm.tir.ir_pass.Simplify(res3.min_value)) == str(ans3) # tests for `EQ` op res4 = tvm.arith.deduce_bound(a, a == b, {}, {}) @@ -158,21 +158,21 @@ def test_basic(a1, a2, coff): res1 = tvm.arith.deduce_bound(a, e0<17, {b: b_s}, {b: b_s}) [x, y] = [res1.max_value, b_s.max_value] if coff > 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify((x * coff + 3 + y) < 17)).value == 1 + assert (tvm.tir.ir_pass.Simplify((x * coff + 3 + y) < 17)).value == 1 # expression containing variable a is on rhs res1 = tvm.arith.deduce_bound(a, tvm.tir.const(17, "int32") < e0, {b: b_s}, {b: b_s}) [x, y] = [res1.max_value, b_s.max_value] if coff < 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify((x * coff + 3 + y) > 17)).value == 1 + assert (tvm.tir.ir_pass.Simplify((x * coff + 3 + y) > 17)).value == 1 # expression containing variable a is on rhs res1 = tvm.arith.deduce_bound(a, tvm.tir.const(17, "int32")>= e0, {b: b_s}, {b: b_s}) [x, y] = [res1.max_value, b_s.max_value] if coff > 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify((x * coff + 3 + y) <= 17)).value == 1 + assert (tvm.tir.ir_pass.Simplify((x * coff + 3 + y) <= 17)).value == 1 res1 = tvm.arith.deduce_bound(a, e0>=17, {b: b_s}, {b: b_s}) [x, y] = [res1.max_value, b_s.max_value] if coff < 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify((x * coff + 3 + y) >= 17)).value == 1 + assert (tvm.tir.ir_pass.Simplify((x * coff + 3 + y) >= 17)).value == 1 test_basic(0, 4, 4) test_basic(1, 5, 4) @@ -190,21 +190,21 @@ def test_complex(a1, a2, coff): res1 = tvm.arith.deduce_bound(a, e0<63, {b: b_s}, {b: b_s}) [t, x] = [res1.max_value, b_s.max_value] if coff > 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify(((x*3 + t* coff) * 4) < 63)).value == 1 + assert (tvm.tir.ir_pass.Simplify(((x*3 + t* coff) * 4) < 63)).value == 1 # expression containing variable a is on rhs res1 = tvm.arith.deduce_bound(a, tvm.tir.const(63, "int32")>= e0, {b: b_s}, {b: b_s}) [t, x] = [res1.max_value, b_s.max_value] if coff > 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify(((x*3 + t* coff) * 4) <= 63)).value == 1 + assert (tvm.tir.ir_pass.Simplify(((x*3 + t* coff) * 4) <= 63)).value == 1 res1 = tvm.arith.deduce_bound(a, e0>63, {b: b_s}, {b: b_s}) [t, x] = [res1.max_value, b_s.max_value] if coff < 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify(((x*3 + t* coff) * 4) > 63)).value == 1 + assert (tvm.tir.ir_pass.Simplify(((x*3 + t* coff) * 4) > 63)).value == 1 # expression containing variable a is on rhs res1 = tvm.arith.deduce_bound(a, tvm.tir.const(63, "int32") <= e0, {b: b_s}, {b: b_s}) [t, x] = [res1.max_value, b_s.max_value] if coff < 0 else [res1.min_value, b_s.min_value] - assert (tvm.ir_pass.Simplify(((x*3 + t* coff) * 4) >= 63)).value == 1 + assert (tvm.tir.ir_pass.Simplify(((x*3 + t* coff) * 4) >= 63)).value == 1 test_complex(0, 4, 4) test_complex(0, 4, -4) diff --git a/tests/python/unittest/test_arith_detect_clip_bound.py b/tests/python/unittest/test_arith_detect_clip_bound.py index 217169f194e57..d6953713f14b4 100644 --- a/tests/python/unittest/test_arith_detect_clip_bound.py +++ b/tests/python/unittest/test_arith_detect_clip_bound.py @@ -23,15 +23,15 @@ def test_basic(): c = te.var("c") m = tvm.arith.detect_clip_bound(tvm.tir.all(a * 1 < b * 6, a - 1 > 0), [a]) - assert tvm.ir_pass.Simplify(m[1] - (b * 6 - 1)).value == 0 + assert tvm.tir.ir_pass.Simplify(m[1] - (b * 6 - 1)).value == 0 assert m[0].value == 2 m = tvm.arith.detect_clip_bound(tvm.tir.all(a * 1 < b * 6, a - 1 > 0), [a, b]) assert len(m) == 0 m = tvm.arith.detect_clip_bound(tvm.tir.all(a + 10 * c <= 20, b - 1 > 0), [a, b]) - assert tvm.ir_pass.Simplify(m[1] - (20 - 10 * c)).value == 0 - assert tvm.ir_pass.Simplify(m[2] - 2).value == 0 + assert tvm.tir.ir_pass.Simplify(m[1] - (20 - 10 * c)).value == 0 + assert tvm.tir.ir_pass.Simplify(m[2] - 2).value == 0 if __name__ == "__main__": diff --git a/tests/python/unittest/test_arith_detect_linear_equation.py b/tests/python/unittest/test_arith_detect_linear_equation.py index 6a80bf08899cd..c6e6b753a6926 100644 --- a/tests/python/unittest/test_arith_detect_linear_equation.py +++ b/tests/python/unittest/test_arith_detect_linear_equation.py @@ -22,14 +22,14 @@ def test_basic(): b = te.var("b") m = tvm.arith.detect_linear_equation(a * 4 + b * 6 + 7, [a]) assert m[0].value == 4 - assert tvm.ir_pass.Simplify(m[1] - (b * 6 + 7)).value == 0 + assert tvm.tir.ir_pass.Simplify(m[1] - (b * 6 + 7)).value == 0 m = tvm.arith.detect_linear_equation(a * 4 * (a+1) + b * 6 + 7, [a]) assert len(m) == 0 m = tvm.arith.detect_linear_equation(a * 4 + (a+1) + b * 6 + 7, [a]) assert m[0].value == 5 - assert tvm.ir_pass.Simplify(m[1] - (b * 6 + 7 + 1)).value == 0 + assert tvm.tir.ir_pass.Simplify(m[1] - (b * 6 + 7 + 1)).value == 0 m = tvm.arith.detect_linear_equation(a * b + 7, [a]) assert m[0] == b @@ -39,13 +39,13 @@ def test_basic(): m = tvm.arith.detect_linear_equation(b * 7, []) assert len(m) == 1 - assert tvm.ir_pass.Simplify(m[0] - b * 7).value == 0 + assert tvm.tir.ir_pass.Simplify(m[0] - b * 7).value == 0 def test_multivariate(): v = [te.var("v%d" % i) for i in range(4)] b = te.var("b") m = tvm.arith.detect_linear_equation(v[0] * (b + 4) + v[0] + v[1] * 8, v) - assert(tvm.ir_pass.Equal(tvm.ir_pass.Simplify(m[0]), b + 5)) + assert(tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.Simplify(m[0]), b + 5)) assert(m[1].value == 8) m = tvm.arith.detect_linear_equation(v[0] * (b + 4) + v[0] + v[1] * 8 * v[2], v) @@ -61,11 +61,11 @@ def test_multivariate(): m = tvm.arith.detect_linear_equation((v[0] - v[1]), [v[2]]) assert(m[0].value == 0) - assert(tvm.ir_pass.Simplify(m[1] - (v[0] - v[1])).value == 0) + assert(tvm.tir.ir_pass.Simplify(m[1] - (v[0] - v[1])).value == 0) m = tvm.arith.detect_linear_equation((v[0] - v[1]), []) assert(len(m) == 1) - assert(tvm.ir_pass.Simplify(m[0] - (v[0] - v[1])).value == 0) + assert(tvm.tir.ir_pass.Simplify(m[0] - (v[0] - v[1])).value == 0) if __name__ == "__main__": test_basic() diff --git a/tests/python/unittest/test_arith_intset.py b/tests/python/unittest/test_arith_intset.py index f248ef082651a..8352d9cf22ddf 100644 --- a/tests/python/unittest/test_arith_intset.py +++ b/tests/python/unittest/test_arith_intset.py @@ -28,7 +28,7 @@ def err_msg(): return "\ndata={}\ndmap={}\nres={}\nexpected={}".format(data, dmap, res, expected) def equal(x, y): res = self.analyzer.canonical_simplify(x - y) - return tvm.ir_pass.Equal(res, 0) + return tvm.tir.ir_pass.Equal(res, 0) assert equal(res.min_value, expected[0]), err_msg() assert equal(res.max_value, expected[1]), err_msg() diff --git a/tests/python/unittest/test_arith_rewrite_simplify.py b/tests/python/unittest/test_arith_rewrite_simplify.py index 9f58ef4506fa8..c8c3b0bd9a3b6 100644 --- a/tests/python/unittest/test_arith_rewrite_simplify.py +++ b/tests/python/unittest/test_arith_rewrite_simplify.py @@ -23,7 +23,7 @@ def __init__(self): def verify(self, data, expected): res = self.analyzer.rewrite_simplify(data) - assert tvm.ir_pass.Equal(res, expected), "data={}, res={}, expected={}".format(data, res, expected) + assert tvm.tir.ir_pass.Equal(res, expected), "data={}, res={}, expected={}".format(data, res, expected) def test_vector_simplify(): diff --git a/tests/python/unittest/test_arith_stmt_simplify.py b/tests/python/unittest/test_arith_stmt_simplify.py index 12a60db855f73..45f083342410b 100644 --- a/tests/python/unittest/test_arith_stmt_simplify.py +++ b/tests/python/unittest/test_arith_stmt_simplify.py @@ -18,7 +18,7 @@ from tvm import te def test_stmt_simplify(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") n = te.size_var("n") @@ -27,12 +27,12 @@ def test_stmt_simplify(): A[i] = C[i] body = tvm.tir.LetStmt(n, 10, ib.get()) - body = tvm.ir_pass.CanonicalSimplify(body) + body = tvm.tir.ir_pass.CanonicalSimplify(body) assert isinstance(body.body, tvm.tir.Store) def test_thread_extent_simplify(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") n = te.size_var("n") @@ -44,7 +44,7 @@ def test_thread_extent_simplify(): with ib.if_scope(tx + ty < 12): A[tx] = C[tx + ty] body = tvm.tir.LetStmt(n, 10, ib.get()) - body = tvm.ir_pass.CanonicalSimplify(body) + body = tvm.tir.ir_pass.CanonicalSimplify(body) assert isinstance(body.body.body.body, tvm.tir.Store) diff --git a/tests/python/unittest/test_codegen_c_host.py b/tests/python/unittest/test_codegen_c_host.py index daf5b0eec5e2a..1604ffb2293b6 100644 --- a/tests/python/unittest/test_codegen_c_host.py +++ b/tests/python/unittest/test_codegen_c_host.py @@ -74,8 +74,8 @@ def check_c(): binds = {A : Ab} # BUILD and invoke the kernel. f1 = tvm.lower(s, [A,B,C], name="fadd_pipeline") - fsplits = [x for x in tvm.ir_pass.SplitHostDevice(f1)] - fsplits[0] = tvm.ir_pass.LowerTVMBuiltin(fsplits[0]) + fsplits = [x for x in tvm.tir.ir_pass.SplitHostDevice(f1)] + fsplits[0] = tvm.tir.ir_pass.LowerTVMBuiltin(fsplits[0]) mhost = tvm.target.codegen.build_module(fsplits[0], "c") temp = util.tempdir() path_dso = temp.relpath("temp.so") @@ -92,7 +92,7 @@ def check_c(): tvm.testing.assert_allclose( c.asnumpy(), a.asnumpy() + b.asnumpy()) - with tvm.build_config(offset_factor=4): + with tvm.target.build_config(offset_factor=4): check_c() diff --git a/tests/python/unittest/test_codegen_cuda.py b/tests/python/unittest/test_codegen_cuda.py index 27968c69380cd..f94d8c38e3a63 100644 --- a/tests/python/unittest/test_codegen_cuda.py +++ b/tests/python/unittest/test_codegen_cuda.py @@ -198,9 +198,9 @@ def vectorizer(op): new_b = tvm.tir.Shuffle(bs, ids) return tvm.tir.Store(store.buffer_var, new_a + new_b, idx, all_ones) return None - return tvm.ir_pass.IRTransform(stmt, None, vectorizer, ['For']) + return tvm.tir.ir_pass.IRTransform(stmt, None, vectorizer, ['For']) - with tvm.build_config(add_lower_pass=[(1, my_vectorize)]): + with tvm.target.build_config(add_lower_pass=[(1, my_vectorize)]): module = tvm.build(sch, [a, b, c], target='cuda') a_ = np.array(list(range(64)), dtype='int32') b_ = np.array((list(range(4))[::-1]) * 16, dtype='int32') diff --git a/tests/python/unittest/test_codegen_device.py b/tests/python/unittest/test_codegen_device.py index d6a44fbc9b12f..88abca8d28207 100644 --- a/tests/python/unittest/test_codegen_device.py +++ b/tests/python/unittest/test_codegen_device.py @@ -70,14 +70,14 @@ def test_add_pipeline(): Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') Db = tvm.tir.decl_buffer(D.shape, D.dtype, name='D') - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B:Bb, D:Db}, 64) - stmt = tvm.ir_pass.Simplify(stmt) - fapi = tvm.ir_pass.MakeAPI(stmt, "myadd", [Ab, Bb, Db], 0, True) - fsplits = [x for x in tvm.ir_pass.SplitHostDevice(fapi)] + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B:Bb, D:Db}, 64) + stmt = tvm.tir.ir_pass.Simplify(stmt) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "myadd", [Ab, Bb, Db], 0, True) + fsplits = [x for x in tvm.tir.ir_pass.SplitHostDevice(fapi)] # lower the floordiv(use stackvm rules so it works for all targets) - fsplits = [tvm.ir_pass.LowerIntrin(x, "stackvm") for x in fsplits] - fsplits[0] = tvm.ir_pass.LowerTVMBuiltin(fsplits[0]) + fsplits = [tvm.tir.ir_pass.LowerIntrin(x, "stackvm") for x in fsplits] + fsplits[0] = tvm.tir.ir_pass.LowerTVMBuiltin(fsplits[0]) def check_target(device, host="stackvm"): ctx = tvm.context(device, 0) diff --git a/tests/python/unittest/test_codegen_extern.py b/tests/python/unittest/test_codegen_extern.py index 3b6b5edb88518..4104af8644397 100644 --- a/tests/python/unittest/test_codegen_extern.py +++ b/tests/python/unittest/test_codegen_extern.py @@ -26,14 +26,14 @@ def test_add_pipeline(): def extern_generator(ins, outs): """Manually write the IR for the extern function, add pipeline""" - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() with ib.for_range(0, (n+1) // 2) as i: ib.emit(outs[0].vstore(i*2, ins[0].vload(i*2, "float32x2") + tvm.tir.const(1, "float32x2"))) return ib.get() def extern_generator_gpu(ins, outs): """Manually write the IR for the extern function, add pipeline""" - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", (nn+max_threads-1) // max_threads) diff --git a/tests/python/unittest/test_codegen_llvm.py b/tests/python/unittest/test_codegen_llvm.py index 0eae4b9fc3e46..45554c5475a3a 100644 --- a/tests/python/unittest/test_codegen_llvm.py +++ b/tests/python/unittest/test_codegen_llvm.py @@ -23,7 +23,7 @@ import math def test_llvm_intrin(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = tvm.runtime.convert(4) A = ib.pointer("float32", name="A") args = [ @@ -34,7 +34,7 @@ def test_llvm_intrin(): tvm.tir.Call( "int32", "prefetch", args, tvm.tir.Call.Intrinsic, None, 0))) body = ib.get() - func = tvm.ir_pass.MakeAPI(body, "prefetch", [A], 0, True) + func = tvm.tir.ir_pass.MakeAPI(body, "prefetch", [A], 0, True) fcode = tvm.build(func, None, "llvm") @@ -79,13 +79,13 @@ def check_llvm(use_file): def test_llvm_lookup_intrin(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() m = te.size_var("m") A = ib.pointer("uint8x8", name="A") x = tvm.tir.call_llvm_intrin("uint8x8", "llvm.ctpop.i8", tvm.tir.const(1, 'uint32'), A) ib.emit(x) body = ib.get() - func = tvm.ir_pass.MakeAPI(body, "ctpop", [A], 1, True) + func = tvm.tir.ir_pass.MakeAPI(body, "ctpop", [A], 1, True) fcode = tvm.build(func, None, "llvm") @@ -148,7 +148,7 @@ def check_llvm(): tvm.testing.assert_allclose( c.asnumpy(), a.asnumpy() + b.asnumpy()) - with tvm.build_config(offset_factor=4): + with tvm.target.build_config(offset_factor=4): check_llvm() @@ -263,7 +263,7 @@ def check_llvm(nn, base, stride): c.asnumpy(), a.asnumpy()[base:] + 1) check_llvm(64, 0, 2) check_llvm(4, 0, 1) - with tvm.build_config(restricted_func=False): + with tvm.target.build_config(restricted_func=False): check_llvm(4, 0, 3) @@ -391,7 +391,7 @@ def test_rank_zero_bound_checkers(): def check_llvm(n): if not tvm.runtime.enabled("llvm"): return - with tvm.build_config(instrument_bound_checkers=True): + with tvm.target.build_config(instrument_bound_checkers=True): A = te.placeholder((n, ), name='A') scale = te.placeholder((), name='scale') k = te.reduce_axis((0, n), name="k") @@ -653,9 +653,9 @@ def vectorizer(op): value = new_a + new_b return tvm.tir.Store(store.buffer_var, new_a + new_b, idx, all_ones) - return tvm.ir_pass.IRTransform(stmt, None, vectorizer, ['For']) + return tvm.tir.ir_pass.IRTransform(stmt, None, vectorizer, ['For']) - with tvm.build_config(add_lower_pass=[(1, my_vectorize)]): + with tvm.target.build_config(add_lower_pass=[(1, my_vectorize)]): ir = tvm.lower(sch, [a, b, c], simple_mode=True) module = tvm.build(sch, [a, b, c]) a_ = tvm.nd.array(np.arange(1, 9, dtype='int32')) diff --git a/tests/python/unittest/test_codegen_static_init.py b/tests/python/unittest/test_codegen_static_init.py index 5eb79e5391891..3b5f17a4243a5 100644 --- a/tests/python/unittest/test_codegen_static_init.py +++ b/tests/python/unittest/test_codegen_static_init.py @@ -24,7 +24,7 @@ def test_static_callback(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), dtype) i = te.size_var('i') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) cp = te.thread_axis((0, 1), "cop") finit = tvm.tir.StringImm("TVMBackendRunOnce") @@ -32,8 +32,8 @@ def test_static_callback(): with ib.for_range(0, n, "i", for_type="parallel") as i: A[i] = A[i] + 1 stmt = ib.get() - fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) f = tvm.target.codegen.build_module(fapi, "llvm") a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) @@ -45,7 +45,7 @@ def test_static_init(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), dtype) i = te.size_var('i') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() handle = tvm.tir.call_intrin("handle", "tvm_static_handle") ib.emit( tvm.tir.call_packed("test_static_callback", handle, Ab)) @@ -56,8 +56,8 @@ def test_cb(sh, A): return sh stmt = ib.get() - fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) f = tvm.target.codegen.build_module(fapi, "llvm") a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) diff --git a/tests/python/unittest/test_codegen_vm_basic.py b/tests/python/unittest/test_codegen_vm_basic.py index 896b95d314815..e2ff4875e6fd7 100644 --- a/tests/python/unittest/test_codegen_vm_basic.py +++ b/tests/python/unittest/test_codegen_vm_basic.py @@ -36,9 +36,9 @@ def tvm_call_back_get_shape(shape0): n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), "float32") stmt = tvm.tir.Evaluate(tvm.tir.call_packed("tvm_call_back_get_shape", Ab.shape[0])) - fapi = tvm.ir_pass.MakeAPI(stmt, "print_shape", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) - fapi = tvm.ir_pass.LowerIntrin(fapi, "stackvm") + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "print_shape", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.LowerIntrin(fapi, "stackvm") run_jit(fapi, lambda f: f(a)) @@ -52,15 +52,15 @@ def test_stack_vm_loop(): Ab = tvm.tir.decl_buffer((n, ), dtype) i = te.size_var('i') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n - 1, "i") as i: A[i + 1] = A[i] + 1 ib.emit(tvm.tir.call_packed("tvm_stack_vm_print", i)) stmt = ib.get() - fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) a = tvm.nd.array(np.zeros(10, dtype=dtype)) def check(f): f(a) @@ -73,7 +73,7 @@ def test_stack_vm_cond(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), dtype) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n - 1, "i") as i: with ib.if_scope(tvm.tir.EQ(i, 4)): @@ -82,8 +82,8 @@ def test_stack_vm_cond(): A[i + 1] = A[i] + 2 stmt = ib.get() - fapi = tvm.ir_pass.MakeAPI(stmt, "test", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "test", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) def check(f): a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) @@ -97,13 +97,13 @@ def test_vm_parallel(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), dtype) i = te.size_var('i') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n, "i", for_type="parallel") as i: A[i] = A[i] + 1 stmt = ib.get() - fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) def check(f): a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) diff --git a/tests/python/unittest/test_hybrid_script.py b/tests/python/unittest/test_hybrid_script.py index bc8483f37a834..3e90442d6ee8f 100644 --- a/tests/python/unittest/test_hybrid_script.py +++ b/tests/python/unittest/test_hybrid_script.py @@ -24,8 +24,8 @@ @pytest.mark.skip def run_and_check(func, args, var_dict={}, target='llvm', sch=None, outs=None): def tvm_val_2_py_val(val): - val = tvm.ir_pass.Substitute(val, var_dict) - val = tvm.ir_pass.Simplify(val) + val = tvm.tir.ir_pass.Substitute(val, var_dict) + val = tvm.tir.ir_pass.Simplify(val) assert isinstance(val, (tvm.tir.IntImm,)) return val.value @@ -182,7 +182,7 @@ def fanout(n, a): assert isinstance(ir, tvm.tir.For) assert ir.loop_var.name == 'i' assert ir.min.value == 0 - assert tvm.ir_pass.Equal(ir.extent, n - 3) + assert tvm.tir.ir_pass.Equal(ir.extent, n - 3) #Check loopbody ibody = ir.body assert isinstance(ibody, tvm.tir.AttrStmt) @@ -215,7 +215,7 @@ def fanout(n, a): assert value.a.args[0].value == 0 assert value.b.name == 'a' assert len(value.b.args) == 1 - assert tvm.ir_pass.Equal(value.b.args[0], ir.loop_var + jloop.loop_var) + assert tvm.tir.ir_pass.Equal(value.b.args[0], ir.loop_var + jloop.loop_var) divide= rbody[2] assert isinstance(divide, tvm.tir.Provide) assert len(divide.args) == 1 diff --git a/tests/python/unittest/test_ir_builder.py b/tests/python/unittest/test_ir_builder.py index 689f6fa32839d..9106be843b489 100644 --- a/tests/python/unittest/test_ir_builder.py +++ b/tests/python/unittest/test_ir_builder.py @@ -19,7 +19,7 @@ import numpy as np def test_for(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.size_var("n") A = ib.allocate("float32", n, name="A", scope="global") with ib.for_range(0, n, name="i") as i: @@ -39,7 +39,7 @@ def test_for(): assert isinstance(body[1], tvm.tir.For) def test_if(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.size_var("n") A = ib.pointer("float32", name="A") tmod = tvm.tir.truncmod @@ -60,7 +60,7 @@ def test_if(): def test_prefetch(): A = te.placeholder((10, 20), name="A") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.size_var("n") with ib.for_range(0, n, name="i") as i: @@ -80,7 +80,7 @@ def test_cpu(): def test_device_ir(A, B, C): n = A.shape[0] max_threads = 8 - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() Aptr = ib.buffer_ptr(A) Bptr = ib.buffer_ptr(B) Cptr = ib.buffer_ptr(C) @@ -115,7 +115,7 @@ def test_gpu(): def test_device_ir(A, B, C): n = A.shape[0] max_threads = 32 - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", idxd(n+max_threads-1, max_threads)) diff --git a/tests/python/unittest/test_lang_buffer.py b/tests/python/unittest/test_lang_buffer.py index 6fff8c828adf7..9203fb1c7b348 100644 --- a/tests/python/unittest/test_lang_buffer.py +++ b/tests/python/unittest/test_lang_buffer.py @@ -36,7 +36,7 @@ def test_buffer_access_ptr(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((m, n), "float32", strides=[n + 1 , 1]) aptr = Ab.access_ptr("rw") - assert tvm.ir_pass.Equal(aptr.args[3], Ab.strides[0] * m) + assert tvm.tir.ir_pass.Equal(aptr.args[3], Ab.strides[0] * m) assert aptr.args[0].dtype == Ab.dtype assert aptr.args[4].value == Buffer.READ | Buffer.WRITE aptr = Ab.access_ptr("w") @@ -48,17 +48,17 @@ def test_buffer_access_ptr_offset(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((m, n), "float32") aptr = Ab.access_ptr("rw", offset=100) - offset = tvm.ir_pass.Simplify(aptr.args[2]) - assert tvm.ir_pass.Equal(offset, 100) + offset = tvm.tir.ir_pass.Simplify(aptr.args[2]) + assert tvm.tir.ir_pass.Equal(offset, 100) assert aptr.args[4].value == Buffer.READ | Buffer.WRITE v = te.size_var('int32') aptr = Ab.access_ptr("rw", offset=100 + 100 + v) - offset = tvm.ir_pass.Simplify(aptr.args[2]) - assert tvm.ir_pass.Equal(offset, 200 + v) + offset = tvm.tir.ir_pass.Simplify(aptr.args[2]) + assert tvm.tir.ir_pass.Equal(offset, 200 + v) assert aptr.args[4].value == Buffer.READ | Buffer.WRITE aptr = Ab.access_ptr("rw", offset=tvm.tir.call_extern('int32', "test_call", 100 + 100 + v)) - offset = tvm.ir_pass.Simplify(aptr.args[2]) - assert tvm.ir_pass.Equal(offset, tvm.tir.call_extern('int32', "test_call", 200 + v)) + offset = tvm.tir.ir_pass.Simplify(aptr.args[2]) + assert tvm.tir.ir_pass.Equal(offset, tvm.tir.call_extern('int32', "test_call", 200 + v)) assert aptr.args[4].value == Buffer.READ | Buffer.WRITE @@ -67,12 +67,12 @@ def test_buffer_access_ptr_extent(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((m, n), "float32") aptr = Ab.access_ptr("rw") - assert tvm.ir_pass.Equal(aptr.args[3], m * n) + assert tvm.tir.ir_pass.Equal(aptr.args[3], m * n) aptr = Ab.access_ptr("rw", offset=100) - assert tvm.ir_pass.Equal(aptr.args[3], m * n - 100) + assert tvm.tir.ir_pass.Equal(aptr.args[3], m * n - 100) Ab = tvm.tir.decl_buffer((m, n), "float32", strides=[n + 1 , 1]) aptr = Ab.access_ptr("rw", offset=100) - assert tvm.ir_pass.Equal(aptr.args[3], Ab.strides[0] * m - 100) + assert tvm.tir.ir_pass.Equal(aptr.args[3], Ab.strides[0] * m - 100) def test_buffer_vload(): @@ -80,8 +80,8 @@ def test_buffer_vload(): n = te.size_var('n') Ab = tvm.tir.decl_buffer((m, n), "float32", elem_offset=100) load = Ab.vload([2, 3]) - offset = tvm.ir_pass.Simplify(load.index) - assert tvm.ir_pass.Equal(offset, n * 2 + 103) + offset = tvm.tir.ir_pass.Simplify(load.index) + assert tvm.tir.ir_pass.Equal(offset, n * 2 + 103) def test_buffer_index_merge_mult_mod(): @@ -93,7 +93,7 @@ def test_buffer_index_merge_mult_mod(): A = tvm.tir.decl_buffer((m, n), "float32") A_stride = tvm.tir.decl_buffer((m, n), "float32", strides=(s, 1)) def assert_simplified_equal(index_simplified, index_direct): - assert tvm.ir_pass.Equal(index_simplified, index_direct),\ + assert tvm.tir.ir_pass.Equal(index_simplified, index_direct),\ "index_simplified=%s, index_direct=%s" %(index_simplified, index_direct) idxd = tvm.tir.indexdiv idxm = tvm.tir.indexmod diff --git a/tests/python/unittest/test_lang_operator.py b/tests/python/unittest/test_lang_operator.py index 7e2ec78e8b4c7..23c594022faf7 100644 --- a/tests/python/unittest/test_lang_operator.py +++ b/tests/python/unittest/test_lang_operator.py @@ -71,7 +71,7 @@ def test_const_fold3(): for tvm_func, py_func in [(tvm.tir.all, lambda a, b: a and b), (tvm.tir.any, lambda a, b: a or b)]: for v1 in [0, 1]: for v2 in [0, 1]: - assert tvm.ir_pass.Equal(tvm_func(tvm.tir.const(v1, 'uint1'), tvm.tir.const(v2, 'uint1')), + assert tvm.tir.ir_pass.Equal(tvm_func(tvm.tir.const(v1, 'uint1'), tvm.tir.const(v2, 'uint1')), tvm.tir.const(py_func(v1, v2), 'uint1')) x = te.var("x", 'uint1') @@ -170,13 +170,13 @@ def test_if_then_else(): out = tvm.tir.if_then_else(cond, lhs, rhs) out2 = tvm.tir.if_then_else(not cond, rhs, lhs) out3 = tvm.tir.if_then_else(not cond, lhs, rhs) - assert tvm.ir_pass.Equal(out, out2) == 1 + assert tvm.tir.ir_pass.Equal(out, out2) == 1 if cond: - assert tvm.ir_pass.Equal(out, lhs.astype(out_dtype)) == 1 - assert tvm.ir_pass.Equal(out3, rhs.astype(out_dtype)) == 1 + assert tvm.tir.ir_pass.Equal(out, lhs.astype(out_dtype)) == 1 + assert tvm.tir.ir_pass.Equal(out3, rhs.astype(out_dtype)) == 1 else: - assert tvm.ir_pass.Equal(out, rhs.astype(out_dtype)) == 1 - assert tvm.ir_pass.Equal(out3, lhs.astype(out_dtype)) == 1 + assert tvm.tir.ir_pass.Equal(out, rhs.astype(out_dtype)) == 1 + assert tvm.tir.ir_pass.Equal(out3, lhs.astype(out_dtype)) == 1 elif cond.dtype == 'bool': out = tvm.tir.if_then_else(cond, lhs, rhs) assert out.dtype == out_dtype diff --git a/tests/python/unittest/test_lang_schedule.py b/tests/python/unittest/test_lang_schedule.py index 4888d5bb918f4..dae43bb2bbf2d 100644 --- a/tests/python/unittest/test_lang_schedule.py +++ b/tests/python/unittest/test_lang_schedule.py @@ -199,7 +199,7 @@ def intrin_func(ins, outs): assert(isinstance(ins[0], tvm.te.schedule.Buffer)) assert(ins[0].shape[0].value == n) return tvm.tir.call_packed("vadd", ins[0].data, outs[0].data, ins[0].shape[0]) - intrin = tvm.decl_tensor_intrin(z.op, intrin_func) + intrin = te.decl_tensor_intrin(z.op, intrin_func) assert intrin.op == z.op assert intrin.reduce_init is None assert tuple(intrin.inputs) == tuple(z.op.input_tensors) @@ -228,8 +228,8 @@ def intrin_func(ins, outs, sp): assert(sp[1] == w) return tvm.tir.call_packed("hw_func", ins[0].data, outs[0].data, sp[0], sp[1]) - with tvm.build_config(offset_factor=1): - intrin = tvm.decl_tensor_intrin(z.op, intrin_func, scalar_params=[v, w]) + with tvm.target.build_config(offset_factor=1): + intrin = te.decl_tensor_intrin(z.op, intrin_func, scalar_params=[v, w]) assert intrin.op == z.op assert intrin.reduce_init is None assert tuple(intrin.inputs) == tuple(z.op.input_tensors) diff --git a/tests/python/unittest/test_lang_tag.py b/tests/python/unittest/test_lang_tag.py index c2bdd4b91606a..6cfc0b12464e5 100644 --- a/tests/python/unittest/test_lang_tag.py +++ b/tests/python/unittest/test_lang_tag.py @@ -19,7 +19,7 @@ from tvm import te from tvm import te -@tvm.tag_scope(tag="conv") +@tvm.te.tag_scope(tag="conv") def compute_conv(data, weight): N, IC, H, W = data.shape OC, IC, KH, KW = weight.shape @@ -41,7 +41,7 @@ def test_with(): A = te.placeholder((n, l), name='A') B = te.placeholder((m, l), name='B') - with tvm.tag_scope(tag="gemm"): + with tvm.te.tag_scope(tag="gemm"): k = te.reduce_axis((0, l), name='k') C = te.compute((n, m), lambda i, j: te.sum(A[i, k] * B[j, k], axis=k), attrs={"hello" : 1, "arr": [10, 12]}) diff --git a/tests/python/unittest/test_lang_tensor.py b/tests/python/unittest/test_lang_tensor.py index 92a42fcfdee87..762b3fe751802 100644 --- a/tests/python/unittest/test_lang_tensor.py +++ b/tests/python/unittest/test_lang_tensor.py @@ -113,12 +113,12 @@ def intrin_vadd(n): z = te.compute(x.shape, lambda i: x[i] + y[i]) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_extern(outs[0].dtype, 'vadd', ins[0].access_ptr("r"), ins[1].access_ptr('r'), outs[0].access_ptr('wr'))) return ib.get() - with tvm.build_config(offset_factor=n): - return tvm.decl_tensor_intrin(z.op, intrin_func) + with tvm.target.build_config(offset_factor=n): + return te.decl_tensor_intrin(z.op, intrin_func) vadd = intrin_vadd(factor) @@ -159,8 +159,8 @@ def intrin_func(ins, outs): "gemv_add", x_ptr, y_ptr, z_ptr, m, n, l) return body, reset, update - with tvm.build_config(offset_factor=n): - return tvm.decl_tensor_intrin(z.op, intrin_func) + with tvm.target.build_config(offset_factor=n): + return te.decl_tensor_intrin(z.op, intrin_func) vgemm = intrin_gemm(factor1, factor2, factor) @@ -264,7 +264,7 @@ def get_B1_realize(x): x.func == B1.op and x.value_index == 1: ret.append(x) ret = [] - tvm.ir_pass.PostOrderVisit(stmt, get_B1_realize) + tvm.tir.ir_pass.PostOrderVisit(stmt, get_B1_realize) assert stmt.node == C.op and len(ret) == 1 @@ -290,8 +290,8 @@ def intrin_func(ins, outs): dout = outs[0] return tvm.tir.call_packed("op", dinp, dout) - with tvm.build_config(offset_factor=1): - return tvm.decl_tensor_intrin(P.op, intrin_func) + with tvm.target.build_config(offset_factor=1): + return te.decl_tensor_intrin(P.op, intrin_func) A = te.placeholder((1, 64, 16, 16), name='A') P = pool(data=A, kernel=(3, 3), stride=(1, 1), padding=(0, 0, 0, 0), diff --git a/tests/python/unittest/test_pass_attrs_hash_equal.py b/tests/python/unittest/test_pass_attrs_hash_equal.py index 19cd72cc50a73..b3587cd7cb3db 100644 --- a/tests/python/unittest/test_pass_attrs_hash_equal.py +++ b/tests/python/unittest/test_pass_attrs_hash_equal.py @@ -21,28 +21,28 @@ def test_attrs_equal(): x = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4)) y = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4)) z = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3,4,1)) - assert tvm.ir_pass.AttrsEqual(x, y) - assert not tvm.ir_pass.AttrsEqual(x, z) + assert tvm.tir.ir_pass.AttrsEqual(x, y) + assert not tvm.tir.ir_pass.AttrsEqual(x, z) dattr = tvm.ir.make_node("DictAttrs", x=1, y=10, name="xyz", padding=(0,0)) - assert not tvm.ir_pass.AttrsEqual(dattr, x) + assert not tvm.tir.ir_pass.AttrsEqual(dattr, x) dattr2 = tvm.ir.make_node("DictAttrs", x=1, y=10, name="xyz", padding=(0,0)) - assert tvm.ir_pass.AttrsEqual(dattr, dattr2) + assert tvm.tir.ir_pass.AttrsEqual(dattr, dattr2) - assert tvm.ir_pass.AttrsEqual({"x": x}, {"x": y}) + assert tvm.tir.ir_pass.AttrsEqual({"x": x}, {"x": y}) # array related checks - assert tvm.ir_pass.AttrsEqual({"x": [x, x]}, {"x": [y, x]}) - assert not tvm.ir_pass.AttrsEqual({"x": [x, 1]}, {"x": [y, 2]}) + assert tvm.tir.ir_pass.AttrsEqual({"x": [x, x]}, {"x": [y, x]}) + assert not tvm.tir.ir_pass.AttrsEqual({"x": [x, 1]}, {"x": [y, 2]}) n = te.var("n") - assert tvm.ir_pass.AttrsEqual({"x": n+1}, {"x": n+1}) + assert tvm.tir.ir_pass.AttrsEqual({"x": n+1}, {"x": n+1}) def test_attrs_hash(): - fhash = tvm.ir_pass.AttrsHash + fhash = tvm.tir.ir_pass.AttrsHash x = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4)) y = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4)) assert fhash({"x": x}) == fhash({"x": y}) diff --git a/tests/python/unittest/test_pass_basic.py b/tests/python/unittest/test_pass_basic.py index 57d37f73825a2..f7eaa217683bd 100644 --- a/tests/python/unittest/test_pass_basic.py +++ b/tests/python/unittest/test_pass_basic.py @@ -21,19 +21,19 @@ def test_simplify(): tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod x = te.var('x') - e1 = tvm.ir_pass.Simplify(x + 2 + 1) - assert(tvm.ir_pass.Equal(e1, x + 3)) - e2 = tvm.ir_pass.Simplify(x * 3 + 5 * x) - assert(tvm.ir_pass.Equal(e2, x * 8)) - e3 = tvm.ir_pass.Simplify(x - tdiv(x, 3) * 3) - assert(tvm.ir_pass.Equal(e3, tmod(x, 3))) + e1 = tvm.tir.ir_pass.Simplify(x + 2 + 1) + assert(tvm.tir.ir_pass.Equal(e1, x + 3)) + e2 = tvm.tir.ir_pass.Simplify(x * 3 + 5 * x) + assert(tvm.tir.ir_pass.Equal(e2, x * 8)) + e3 = tvm.tir.ir_pass.Simplify(x - tdiv(x, 3) * 3) + assert(tvm.tir.ir_pass.Equal(e3, tmod(x, 3))) def test_verify_ssa(): x = te.var('x') y = te.var() z = tvm.tir.Evaluate(x + y) - assert(tvm.ir_pass.VerifySSA(z)) + assert(tvm.tir.ir_pass.VerifySSA(z)) def test_convert_ssa(): @@ -42,15 +42,15 @@ def test_convert_ssa(): let1 = tvm.tir.Let(x, 1, x + 1) let2 = tvm.tir.Let(x, 1, x + y) z = tvm.tir.Evaluate(let1 + let2) - assert(not tvm.ir_pass.VerifySSA(z)) - z_ssa = tvm.ir_pass.ConvertSSA(z) - assert(tvm.ir_pass.VerifySSA(z_ssa)) + assert(not tvm.tir.ir_pass.VerifySSA(z)) + z_ssa = tvm.tir.ir_pass.ConvertSSA(z) + assert(tvm.tir.ir_pass.VerifySSA(z_ssa)) def test_expr_use_var(): x = te.var('x') - assert(tvm.ir_pass.ExprUseVar(x+1, x)) - assert(not tvm.ir_pass.ExprUseVar(1+10, x)) + assert(tvm.tir.ir_pass.ExprUseVar(x+1, x)) + assert(not tvm.tir.ir_pass.ExprUseVar(1+10, x)) if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_bound_checkers.py b/tests/python/unittest/test_pass_bound_checkers.py index 7abccc137c432..b3390972ab008 100644 --- a/tests/python/unittest/test_pass_bound_checkers.py +++ b/tests/python/unittest/test_pass_bound_checkers.py @@ -20,7 +20,7 @@ import numpy as np def collect_visit(stmt, f): ret = [] - tvm.ir_pass.PostOrderVisit(stmt, lambda x: ret.append(f(x))) + tvm.tir.ir_pass.PostOrderVisit(stmt, lambda x: ret.append(f(x))) return ret def lower(sch, args): @@ -37,12 +37,12 @@ def lower(sch, args): sch = sch.normalize() bounds = tvm.te.schedule.InferBound(sch) stmt = tvm.te.schedule.ScheduleOps(sch, bounds) - stmt = tvm.ir_pass.LoopPartition(stmt, True) - stmt = tvm.ir_pass.RemoveNoOp(stmt) - stmt = tvm.ir_pass.StorageFlatten(stmt, binds, 64, True) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.VectorizeLoop(stmt) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, True) + stmt = tvm.tir.ir_pass.RemoveNoOp(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, binds, 64, True) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) return stmt @pytest.mark.xfail @@ -201,7 +201,7 @@ def collect_branch_stmt (x): # before instrumentation assert_bound_instrumentation(stmt, check_attr_stmt, 2 * 3) assert_bound_instrumentation(stmt, check_branch_stmt, 0) - stmt = tvm.ir_pass.InstrumentBoundCheckers(stmt) + stmt = tvm.tir.ir_pass.InstrumentBoundCheckers(stmt) # after instrumentation assert_bound_instrumentation(stmt, check_attr_stmt, 2 * 3) assert_bound_instrumentation(stmt, check_branch_stmt, 2) @@ -213,7 +213,7 @@ def collect_branch_stmt (x): print (branch_collector[1].condition) def test_in_bounds_const_loop_partition_llvm(): - with tvm.build_config(instrument_bound_checkers=True, partition_const_loop=True): + with tvm.target.build_config(instrument_bound_checkers=True, partition_const_loop=True): n = 21 A = te.placeholder((n, ), name='A') B = te.placeholder((n, ), name='B') @@ -233,7 +233,7 @@ def test_in_bounds_const_loop_partition_llvm(): @pytest.mark.xfail def test_out_of_bounds_const_loop_partition_llvm(index_a, index_b): - with tvm.build_config(instrument_bound_checkers=True, partition_const_loop=True): + with tvm.target.build_config(instrument_bound_checkers=True, partition_const_loop=True): n = 21 A = te.placeholder((n, ), name='A') B = te.placeholder((n, ), name='B') @@ -474,7 +474,7 @@ def test_out_of_bounds_tensors_with_zero_shape_op_with_not_zero_shape_llvm(): tvm.testing.assert_allclose(d.asnumpy(), d_np) if __name__ == "__main__": - with tvm.build_config(instrument_bound_checkers=True): + with tvm.target.build_config(instrument_bound_checkers=True): # zero scale test_out_of_bounds_tensors_with_zero_shape_op_with_not_zero_shape_llvm() # in bound diff --git a/tests/python/unittest/test_pass_combine_context_call.py b/tests/python/unittest/test_pass_combine_context_call.py index 189dab70be0aa..e51d4d874ec9b 100644 --- a/tests/python/unittest/test_pass_combine_context_call.py +++ b/tests/python/unittest/test_pass_combine_context_call.py @@ -24,7 +24,7 @@ def device_context(dev_id): return tvm.tir.Call( "handle", "tvm_thread_context", [ctx], tvm.tir.Call.Intrinsic, None, 0) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") A = ib.allocate("float32", n, name="A", scope="global") with ib.for_range(0, n, name="i") as i: @@ -36,8 +36,8 @@ def device_context(dev_id): ib.emit(tvm.tir.call_extern ("int32", "fadd", device_context(0), A)) body = ib.get() - f = tvm.ir_pass.MakeAPI(body, "func", [dev_type, n], 2, True) - f = tvm.ir_pass.CombineContextCall(f) + f = tvm.tir.ir_pass.MakeAPI(body, "func", [dev_type, n], 2, True) + f = tvm.tir.ir_pass.CombineContextCall(f) assert f.body.value.dtype == "handle" assert f.body.body.value.dtype == "handle" diff --git a/tests/python/unittest/test_pass_decorate_device_scope.py b/tests/python/unittest/test_pass_decorate_device_scope.py index 1cda4d9b0c3ff..327cfd9ed5484 100644 --- a/tests/python/unittest/test_pass_decorate_device_scope.py +++ b/tests/python/unittest/test_pass_decorate_device_scope.py @@ -32,8 +32,8 @@ def test_decorate_device(): bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) - stmt1 = tvm.ir_pass.Simplify(stmt) - stmt2 = tvm.ir_pass.DecorateDeviceScope(stmt1) + stmt1 = tvm.tir.ir_pass.Simplify(stmt) + stmt2 = tvm.tir.ir_pass.DecorateDeviceScope(stmt1) assert isinstance(stmt2, tvm.tir.AttrStmt) assert stmt2.attr_key == "device_scope" assert stmt1 == stmt2.body diff --git a/tests/python/unittest/test_pass_equal.py b/tests/python/unittest/test_pass_equal.py index cc62bb1863fc9..873cb7be447ce 100644 --- a/tests/python/unittest/test_pass_equal.py +++ b/tests/python/unittest/test_pass_equal.py @@ -27,9 +27,9 @@ def func1(): def func2(): return te.exp(tvm.tir.truncdiv((x + y + 1) * y, 4)) - assert tvm.ir_pass.Equal(func1(), func1()) - assert tvm.ir_pass.Equal(func2(), func2()) - assert not tvm.ir_pass.Equal(func2(), func1()) + assert tvm.tir.ir_pass.Equal(func1(), func1()) + assert tvm.tir.ir_pass.Equal(func2(), func2()) + assert not tvm.tir.ir_pass.Equal(func2(), func1()) def test_equal_compute(): @@ -48,7 +48,7 @@ def func1(): Ab = tvm.tir.decl_buffer((n,), name='A') n = te.var("n") def func2(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n, name="i") as i: A[i] = A[i] + 1 @@ -57,8 +57,8 @@ def func2(): A[j] = A[j] + 2 return ib.get() - assert tvm.ir_pass.Equal(func1(), func1()) - assert tvm.ir_pass.Equal(func2(), func2()) + assert tvm.tir.ir_pass.Equal(func1(), func1()) + assert tvm.tir.ir_pass.Equal(func2(), func2()) if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_hoist_if.py b/tests/python/unittest/test_pass_hoist_if.py index d93ebbc91a7a1..f6bdbd6130f44 100644 --- a/tests/python/unittest/test_pass_hoist_if.py +++ b/tests/python/unittest/test_pass_hoist_if.py @@ -32,7 +32,7 @@ def _visit(op): key = op if isinstance(op, tvm.tir.IfThenElse): global var_list - tvm.ir_pass.PostOrderVisit(op.condition, _extract_vars) + tvm.tir.ir_pass.PostOrderVisit(op.condition, _extract_vars) val = [(op.then_case, op.else_case), ("IfThenElse", tuple(var_list))] var_list.clear() elif isinstance(op, tvm.tir.For): @@ -43,7 +43,7 @@ def _visit(op): return node_dict[key] = val - tvm.ir_pass.PostOrderVisit(stmt, _visit) + tvm.tir.ir_pass.PostOrderVisit(stmt, _visit) for key, val in node_dict.items(): struct[val[1]] = tuple(node_dict[child][1] if child in node_dict else None for child in val[0]) @@ -53,7 +53,7 @@ def _visit(op): var_list.clear() def test_basic(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() l = te.var('l') m = te.var('m') n = te.var('n') @@ -67,14 +67,14 @@ def test_basic(): ib.emit(tvm.tir.Evaluate(n)) stmt = ib.get() - new_stmt = tvm.ir_pass.HoistIfThenElse(stmt) + new_stmt = tvm.tir.ir_pass.HoistIfThenElse(stmt) expected_struct = {('For', 'k'): (None,), ('For', 'j'): (('For', 'k'),), ('IfThenElse', ('i',)): (('For', 'j'), ('For', 'j')), ('For', 'i'): (('IfThenElse', ('i',)),)} verify_structure(new_stmt, expected_struct) def test_no_else(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() l = te.var('l') m = te.var('m') n = te.var('n') @@ -86,14 +86,14 @@ def test_no_else(): ib.emit(tvm.tir.Evaluate(m)) stmt = ib.get() - new_stmt = tvm.ir_pass.HoistIfThenElse(stmt) + new_stmt = tvm.tir.ir_pass.HoistIfThenElse(stmt) expected_struct = {('For', 'k'): (None,), ('For', 'j'): (('For', 'k'),), ('IfThenElse', ('i',)): (('For', 'j'), None), ('For', 'i'): (('IfThenElse', ('i',)),)} verify_structure(new_stmt, expected_struct) def test_attr_stmt(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var('l') @@ -113,7 +113,7 @@ def test_attr_stmt(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.0 stmt = ib.get() - new_stmt = tvm.ir_pass.HoistIfThenElse(stmt) + new_stmt = tvm.tir.ir_pass.HoistIfThenElse(stmt) expected_struct = {('For', 'k'): (None,), ('IfThenElse', ('i', 'j')): (('For', 'k'), ('For', 'k')), ('For', 'j'): (('IfThenElse', ('i', 'j')),), ('For', 'i'): (('For', 'j'),), ('AttrStmt', 'thread_extent', 64): (('For', 'i'),), @@ -121,7 +121,7 @@ def test_attr_stmt(): verify_structure(new_stmt, expected_struct) def test_nested_for(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") @@ -137,14 +137,14 @@ def test_nested_for(): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 1.5 stmt = ib.get() - new_stmt = tvm.ir_pass.HoistIfThenElse(stmt) + new_stmt = tvm.tir.ir_pass.HoistIfThenElse(stmt) expected_struct = {('IfThenElse', ('i', 'j')): (None, None), ('For', 'l'): (('IfThenElse', ('i', 'j')),), ('For', 'k'): (('For', 'l'),), ('For', 'j'): (None,), ('IfThenElse', ('i',)): (('For', 'j'), None), ('For', 'i'): (('IfThenElse', ('i',)),)} verify_structure(new_stmt, expected_struct) def test_if_block(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") n = te.var("n") @@ -170,7 +170,7 @@ def test_if_block(): data[i * 3 + j + k] = data[i * 3 + j + k] + 0.6 stmt = ib.get() - new_stmt = tvm.ir_pass.HoistIfThenElse(stmt) + new_stmt = tvm.tir.ir_pass.HoistIfThenElse(stmt) expected_struct = {('IfThenElse', ('i', 'j')): (None, None), ('IfThenElse', ('j',)): (None, None), ('For', 'l'): (None,), ('For', 'k'): (None,), ('For', 'j'): (('For', 'j'),), ('IfThenElse', ('i',)): (('For', 'j'), None), ('For', 'i'): (('IfThenElse', ('i',)),), diff --git a/tests/python/unittest/test_pass_inject_copy_intrin.py b/tests/python/unittest/test_pass_inject_copy_intrin.py index 5920ed780b9d2..8c34e344d73ea 100644 --- a/tests/python/unittest/test_pass_inject_copy_intrin.py +++ b/tests/python/unittest/test_pass_inject_copy_intrin.py @@ -28,14 +28,14 @@ def test_copy2d(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) def cb(src, dst, pad_before, pad_after, pad_value): assert dst.strides[0] == l assert dst.strides[1].value == 1 assert src.strides[0] == l assert tuple(src.shape) == (m, l) return tvm.tir.Evaluate(0) - stmt = tvm.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) + stmt = tvm.tir.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) def test_copy_pad(): m = te.var('m') @@ -50,16 +50,16 @@ def test_copy_pad(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) def cb(src, dst, pad_before, pad_after, pad_value): - assert tvm.ir_pass.Simplify(src.elem_offset).value == 0 + assert tvm.tir.ir_pass.Simplify(src.elem_offset).value == 0 assert pad_before[0].value == 1 assert pad_before[1].value == 0 assert pad_after[0].value == 1 assert pad_after[1].value == 0 assert pad_value.value == 1.0 return tvm.tir.Evaluate(0) - stmt = tvm.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) + stmt = tvm.tir.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) def test_single_point_test(): A = te.placeholder((1,), name='A') @@ -71,17 +71,17 @@ def test_single_point_test(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) def cb(src, dst, pad_before, pad_after, pad_value): - assert tvm.ir_pass.Simplify(src.elem_offset).value == 0 - assert tvm.ir_pass.Simplify(dst.elem_offset).value == 0 - assert tvm.ir_pass.Simplify(src.strides[0]).value == 1 - assert tvm.ir_pass.Simplify(dst.strides[0]).value == 1 + assert tvm.tir.ir_pass.Simplify(src.elem_offset).value == 0 + assert tvm.tir.ir_pass.Simplify(dst.elem_offset).value == 0 + assert tvm.tir.ir_pass.Simplify(src.strides[0]).value == 1 + assert tvm.tir.ir_pass.Simplify(dst.strides[0]).value == 1 return tvm.tir.Evaluate(0) - stmt = tvm.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) + stmt = tvm.tir.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) def assert_expr_equal(a, b): - assert tvm.ir_pass.Simplify(a - b).value == 0 + assert tvm.tir.ir_pass.Simplify(a - b).value == 0 def test_copy_pad_split(): m = 4 * 3 @@ -98,9 +98,9 @@ def test_copy_pad_split(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) def cb(src, dst, pad_before, pad_after, pad_value): assert(dst.elem_offset.value == 0) assert_expr_equal(src.elem_offset, tvm.te.max(xo * 4, 1) - 1) @@ -111,7 +111,7 @@ def cb(src, dst, pad_before, pad_after, pad_value): assert_expr_equal(pad_after[0], rpad_after) assert_expr_equal(src.shape[0], 6 - rpad_before - rpad_after) return tvm.tir.Evaluate(0) - stmt = tvm.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) + stmt = tvm.tir.ir_pass.InjectCopyIntrin(stmt, "memcpy", cb) if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_inject_double_buffer.py b/tests/python/unittest/test_pass_inject_double_buffer.py index 314902b3bdf35..0fe3f614796b6 100644 --- a/tests/python/unittest/test_pass_inject_double_buffer.py +++ b/tests/python/unittest/test_pass_inject_double_buffer.py @@ -22,7 +22,7 @@ def test_double_buffer(): n = 100 m = 4 tx = te.thread_axis("threadIdx.x") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") ib.scope_attr(tx, "thread_extent", 1) @@ -36,17 +36,17 @@ def test_double_buffer(): C[j] = B[j] + 1 stmt = ib.get() - stmt = tvm.ir_pass.InjectDoubleBuffer(stmt, 2) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.InjectDoubleBuffer(stmt, 2) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert isinstance(stmt.body.body, tvm.tir.Allocate) assert stmt.body.body.extents[0].value == 2 - f = tvm.ir_pass.MakeAPI(stmt, "db", [A.asobject(), C.asobject()], 2, True) - f = tvm.ir_pass.ThreadSync(f, "shared") + f = tvm.tir.ir_pass.MakeAPI(stmt, "db", [A.asobject(), C.asobject()], 2, True) + f = tvm.tir.ir_pass.ThreadSync(f, "shared") count = [0] def count_sync(op): if isinstance(op, tvm.tir.Call) and op.name == "tvm_storage_sync": count[0] += 1 - tvm.ir_pass.PostOrderVisit(f.body, count_sync) + tvm.tir.ir_pass.PostOrderVisit(f.body, count_sync) assert count[0] == 4 diff --git a/tests/python/unittest/test_pass_inject_vthread.py b/tests/python/unittest/test_pass_inject_vthread.py index 89285912f7729..8fbd8295d2388 100644 --- a/tests/python/unittest/test_pass_inject_vthread.py +++ b/tests/python/unittest/test_pass_inject_vthread.py @@ -25,7 +25,7 @@ def test_vthread(): def get_vthread(name): tx = te.thread_axis(name) ty = te.thread_axis(name) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") with ib.for_range(0, n) as i: @@ -40,9 +40,9 @@ def get_vthread(name): C[i * nthread + tx] = B[i] + 1 return ib.get() - stmt = tvm.ir_pass.InjectVirtualThread(get_vthread("vthread")) + stmt = tvm.tir.ir_pass.InjectVirtualThread(get_vthread("vthread")) assert stmt.body.body.extents[0].value == 2 - stmt = tvm.ir_pass.InjectVirtualThread(get_vthread("cthread")) + stmt = tvm.tir.ir_pass.InjectVirtualThread(get_vthread("cthread")) assert len(stmt.body.body.extents) == 3 @@ -54,7 +54,7 @@ def test_vthread_extern(): def get_vthread(name): tx = te.thread_axis(name) ty = te.thread_axis(name) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() with ib.for_range(0, n) as i: ib.scope_attr(tx, "virtual_thread", nthread) ib.scope_attr(ty, "virtual_thread", nthread) @@ -72,7 +72,7 @@ def get_vthread(name): cbuffer.access_ptr("rw"))) return ib.get() - stmt = tvm.ir_pass.InjectVirtualThread(get_vthread("vthread")) + stmt = tvm.tir.ir_pass.InjectVirtualThread(get_vthread("vthread")) assert stmt.body.body.extents[0].value == 2 assert stmt.body.body.body.body.body.body.extents[0].value == 2 assert len(stmt.body.body.body.body.body.body.extents) == 3 @@ -80,7 +80,7 @@ def get_vthread(name): def test_vthread_if_then_else(): nthread = 2 tx = te.thread_axis("vthread") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 100) as i: ib.scope_attr(tx, "virtual_thread", nthread) @@ -92,7 +92,7 @@ def test_vthread_if_then_else(): with ib.if_scope(i == 0): B[i] = A[i * nthread + tx] + 2 stmt = ib.get() - stmt = tvm.ir_pass.InjectVirtualThread(stmt) + stmt = tvm.tir.ir_pass.InjectVirtualThread(stmt) assert stmt.body.body.body[0].else_case != None assert stmt.body.body.body[1].else_case == None diff --git a/tests/python/unittest/test_pass_inline.py b/tests/python/unittest/test_pass_inline.py index d332add3d92dc..ad0591d3a7c16 100644 --- a/tests/python/unittest/test_pass_inline.py +++ b/tests/python/unittest/test_pass_inline.py @@ -22,15 +22,15 @@ def test_inline(): A = te.placeholder((m,), name='A') T = te.compute((m,), lambda i,: A[i] + 10, name='T') stmt = tvm.tir.Evaluate(T[10] + 11 * T[100]) - stmt = tvm.ir_pass.Inline( + stmt = tvm.tir.ir_pass.Inline( stmt, T.op, [x.var for x in T.op.axis], T.op.body[0]) print(stmt) - assert(tvm.ir_pass.VerifySSA(stmt)) + assert(tvm.tir.ir_pass.VerifySSA(stmt)) try: # pass in int array(wrong argument type) # must raise an error - stmt = tvm.ir_pass.Inline( + stmt = tvm.tir.ir_pass.Inline( T.op, [1,2,3], T.op.body, stmt) assert False except tvm.error.TVMError: @@ -41,12 +41,12 @@ def test_inline2(): A = te.placeholder((m,), name='A') T = te.compute((m,), lambda i,: A[i] + 10, name='T') stmt = tvm.tir.Evaluate(te.exp(T[10]) + 11 * T[100]) - stmt = tvm.ir_pass.Inline( + stmt = tvm.tir.ir_pass.Inline( stmt, T.op, [x.var for x in T.op.axis], T.op.body[0]) def check(op): if isinstance(op, tvm.tir.Call): assert op.func != T.op - tvm.ir_pass.PostOrderVisit(stmt, check) + tvm.tir.ir_pass.PostOrderVisit(stmt, check) if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_ir_transform.py b/tests/python/unittest/test_pass_ir_transform.py index 564831f52fcf8..cb7417a7a54f2 100644 --- a/tests/python/unittest/test_pass_ir_transform.py +++ b/tests/python/unittest/test_pass_ir_transform.py @@ -18,7 +18,7 @@ from tvm import te def test_ir_transform(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: @@ -37,7 +37,7 @@ def postorder(op): if op.name == "TestA": return tvm.tir.call_extern("int32", "TestB", op.args[0] + 1) return op - body = tvm.ir_pass.IRTransform(body, preorder, postorder, ["Call"]) + body = tvm.tir.ir_pass.IRTransform(body, preorder, postorder, ["Call"]) stmt_list = tvm.tir.stmt_list(body.body.body) assert stmt_list[0].value.args[0].name == "TestB" assert stmt_list[1].value.value == 0 diff --git a/tests/python/unittest/test_pass_lift_attr_scope.py b/tests/python/unittest/test_pass_lift_attr_scope.py index e774dc427e1ad..0831565dc155b 100644 --- a/tests/python/unittest/test_pass_lift_attr_scope.py +++ b/tests/python/unittest/test_pass_lift_attr_scope.py @@ -18,7 +18,7 @@ from tvm import te def test_coproc_lift(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") cp = te.thread_axis((0, 1), "cop") value = tvm.tir.StringImm("xxx") @@ -35,11 +35,11 @@ def test_coproc_lift(): A[j] = A[j] + 3 A[j] = A[j] + 3 body = ib.get() - body = tvm.ir_pass.LiftAttrScope(body, "coproc_uop_scope") + body = tvm.tir.ir_pass.LiftAttrScope(body, "coproc_uop_scope") assert body.body.body.node == cp # only able to lift to the common pattern of the last two fors. - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.allocate("float32", n, name="A", scope="global") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: @@ -52,7 +52,7 @@ def test_coproc_lift(): A[i] = A[i] + 2 body = ib.get() - body = tvm.ir_pass.LiftAttrScope(body, "coproc_uop_scope") + body = tvm.tir.ir_pass.LiftAttrScope(body, "coproc_uop_scope") assert body.body.body.body[1].node == cp assert len(body.body.body.body) == 2 diff --git a/tests/python/unittest/test_pass_loop_partition.py b/tests/python/unittest/test_pass_loop_partition.py index 739f01fb68e46..7ec35e618aa3b 100644 --- a/tests/python/unittest/test_pass_loop_partition.py +++ b/tests/python/unittest/test_pass_loop_partition.py @@ -20,7 +20,7 @@ def collect_visit(stmt, f): ret = [] - tvm.ir_pass.PostOrderVisit(stmt, lambda x : ret.append(f(x))) + tvm.tir.ir_pass.PostOrderVisit(stmt, lambda x : ret.append(f(x))) return ret def find_top_produce(stmt): @@ -28,7 +28,7 @@ def f(x, ret): if isinstance(x, tvm.tir.ProducerConsumer): ret.append(x) ret = [] - tvm.ir_pass.PostOrderVisit(stmt, lambda x : f(x, ret)) + tvm.tir.ir_pass.PostOrderVisit(stmt, lambda x : f(x, ret)) return ret[-1] def lower(sch, args): @@ -45,11 +45,11 @@ def lower(sch, args): sch = sch.normalize() bounds = tvm.te.schedule.InferBound(sch) stmt = tvm.te.schedule.ScheduleOps(sch, bounds) - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.StorageFlatten(stmt, binds, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.VectorizeLoop(stmt) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, binds, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) return stmt def test_basic(): @@ -63,8 +63,8 @@ def test_basic(): bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert('if' not in str(stmt.body.body.body[0])) assert('if' in str(stmt.body.body.body[1])) @@ -79,12 +79,12 @@ def test_const_loop(): bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) - stmt = tvm.ir_pass.LoopPartition(stmt, True) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, True) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert('if' not in str(stmt.body.body.body[0])) def test_multi_loop(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() m = te.size_var('m') n = te.size_var('n') with ib.for_range(0, 4, "i") as i: @@ -95,12 +95,12 @@ def test_multi_loop(): with ib.else_scope(): ib.emit(tvm.tir.Evaluate(n)) stmt = ib.get() - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert(not any(collect_visit(stmt.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse)))) def test_multi_if(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() m = te.size_var('m') n = te.size_var('n') with ib.for_range(0, 4, 'i') as i: @@ -115,8 +115,8 @@ def test_multi_if(): with ib.else_scope(): ib.emit(tvm.tir.Evaluate(n)) stmt = ib.get() - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert('if' not in str(stmt.body[0])) def test_thread_axis(): @@ -134,8 +134,8 @@ def test_thread_axis(): bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert('if' not in str(stmt.body.body.body[0])) def test_vectorize(): @@ -161,7 +161,7 @@ def test_vectorize(): assert(any(collect_visit(body.then_case, lambda x: isinstance(x, tvm.tir.Ramp)))) def test_condition(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() m = te.size_var('m') n = te.size_var('n') with ib.for_range(0, tvm.tir.truncdiv(n+3,4), 'i') as i: @@ -169,20 +169,20 @@ def test_condition(): ib.emit(tvm.tir.Evaluate( tvm.tir.Select(ib.likely(i*4+j 1, A[i-1], 1.0) - yy = tvm.ir_pass.RewriteUnsafeSelect(tvm.tir.Evaluate(y)).value + yy = tvm.tir.ir_pass.RewriteUnsafeSelect(tvm.tir.Evaluate(y)).value z = tvm.tir.Select( tvm.tir.Select(i > 1, A[i-1], 1.0) > 0.0, A[i], 0.1) - zz = tvm.ir_pass.RewriteUnsafeSelect(tvm.tir.Evaluate(z)).value + zz = tvm.tir.ir_pass.RewriteUnsafeSelect(tvm.tir.Evaluate(z)).value a = tvm.tir.Select(tvm.te.floordiv(i, 4) > 10, y, z) - aa = tvm.ir_pass.RewriteUnsafeSelect(tvm.tir.Evaluate(a)).value + aa = tvm.tir.ir_pass.RewriteUnsafeSelect(tvm.tir.Evaluate(a)).value assert yy.name == "tvm_if_then_else" assert zz.name == "tvm_if_then_else" assert isinstance(aa, tvm.tir.Select) diff --git a/tests/python/unittest/test_pass_storage_flatten.py b/tests/python/unittest/test_pass_storage_flatten.py index e246c994239b9..e8a78cbc5209f 100644 --- a/tests/python/unittest/test_pass_storage_flatten.py +++ b/tests/python/unittest/test_pass_storage_flatten.py @@ -33,8 +33,8 @@ def test_flatten2(): Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') A2b = tvm.tir.decl_buffer(A2.shape, A2.dtype, name='A2') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) + stmt = tvm.tir.ir_pass.Simplify(stmt) def test_flatten_prefetch(): A = te.placeholder((25, 100, 4), name = 'A') @@ -43,8 +43,8 @@ def test_flatten_prefetch(): j = te.size_var('j') region = [tvm.ir.Range.make_by_min_extent(i[0], i[1]) for i in [(i, 2), (j, 8), (0, 4)]] stmt = tvm.tir.Prefetch(A.op, 0, A.dtype, region) - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: _A}, 64) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: _A}, 64) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert stmt.extent.value == 2 assert isinstance(stmt.body, tvm.tir.For) assert stmt.body.extent.value == 2 @@ -64,8 +64,8 @@ def test_flatten_storage_align(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') A2b = tvm.tir.decl_buffer(A2.shape, A2.dtype, name='A2') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert(stmt.body.extents[0].value == 17 * 8) def test_flatten_double_buffer(): @@ -73,7 +73,7 @@ def test_flatten_double_buffer(): n = 100 m = 4 tx = te.thread_axis("threadIdx.x") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") ib.scope_attr(tx, "thread_extent", 1) @@ -87,18 +87,18 @@ def test_flatten_double_buffer(): C[j] = B[j] + 1 stmt = ib.get() - stmt = tvm.ir_pass.StorageFlatten(stmt, {}, 64) - stmt = tvm.ir_pass.InjectDoubleBuffer(stmt, 2) - stmt = tvm.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {}, 64) + stmt = tvm.tir.ir_pass.InjectDoubleBuffer(stmt, 2) + stmt = tvm.tir.ir_pass.Simplify(stmt) assert isinstance(stmt.body.body, tvm.tir.Allocate) assert stmt.body.body.extents[0].value == 2 - f = tvm.ir_pass.MakeAPI(stmt, "db", [A.asobject(), C.asobject()], 2, True) - f = tvm.ir_pass.ThreadSync(f, "shared") + f = tvm.tir.ir_pass.MakeAPI(stmt, "db", [A.asobject(), C.asobject()], 2, True) + f = tvm.tir.ir_pass.ThreadSync(f, "shared") count = [0] def count_sync(op): if isinstance(op, tvm.tir.Call) and op.name == "tvm_storage_sync": count[0] += 1 - tvm.ir_pass.PostOrderVisit(f.body, count_sync) + tvm.tir.ir_pass.PostOrderVisit(f.body, count_sync) assert count[0] == 4 if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_storage_rewrite.py b/tests/python/unittest/test_pass_storage_rewrite.py index 562df4e43d713..c74225d3a4be7 100644 --- a/tests/python/unittest/test_pass_storage_rewrite.py +++ b/tests/python/unittest/test_pass_storage_rewrite.py @@ -32,17 +32,17 @@ def test_storage_share(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.StorageRewrite(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageRewrite(stmt) # verify only have one allocations. # verify inplace folding works num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) assert num_alloc[0] == 1 def register_mem(scope_tb, max_bits): @@ -61,7 +61,7 @@ def test_alloc_seq(): register_mem(scope_tb, max_bits) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: @@ -72,18 +72,18 @@ def test_alloc_seq(): A[j] = 1.3 body = ib.get() - body = tvm.ir_pass.StorageRewrite(body) + body = tvm.tir.ir_pass.StorageRewrite(body) num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 200 - tvm.ir_pass.PostOrderVisit(body, verify) + tvm.tir.ir_pass.PostOrderVisit(body, verify) assert num_alloc[0] == 1 def test_alloc_different_dtypes(): def stmt_generater(dtype_list, length): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() base_dtype = dtype_list[0] global_a = te.placeholder((length,), name = "global_a", dtype = base_dtype) assert len(dtype_list) == 4 @@ -129,8 +129,8 @@ def verify(n): body = stmt_generater(dtype_list, length) offset = offset_generater(dtype_list, length) - body = tvm.ir_pass.StorageRewrite(body) - tvm.ir_pass.PostOrderVisit(body, verify) + body = tvm.tir.ir_pass.StorageRewrite(body) + tvm.tir.ir_pass.PostOrderVisit(body, verify) length = 1024 dtype_list = ["float16", "int32", "uint16", "int8"] @@ -159,17 +159,17 @@ def test_inplace_rule(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.StorageRewrite(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageRewrite(stmt) # verify only have one allocations. # verify inplace folding works num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) assert num_alloc[0] == 2 @@ -191,16 +191,16 @@ def test_storage_combine(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.StorageRewrite(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb}, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageRewrite(stmt) num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert (n.extents[0].value == 16) - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) assert num_alloc[0] == 1 @@ -225,22 +225,22 @@ def test_storage_share_gpu(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A[0].shape, A[0].dtype, name='A') Bb = tvm.tir.decl_buffer(A[0].shape, A[0].dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A[0]: Ab, A[-1]: Bb}, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.StorageRewrite(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A[0]: Ab, A[-1]: Bb}, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageRewrite(stmt) alloc_stats = {"global": 0, "shared": 0} def verify(n): if isinstance(n, tvm.tir.AttrStmt): if n.attr_key == "storage_scope": alloc_stats[n.value.value] += 1 - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) assert alloc_stats["global"] == 2 assert alloc_stats["shared"] == num_stage def test_parallel_alloc(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i", for_type="parallel") as i: with ib.for_range(0, 10, name="j") as j: @@ -248,10 +248,10 @@ def test_parallel_alloc(): A[j] = A[j] + 2 body = ib.get() - body = tvm.ir_pass.StorageRewrite(body) + body = tvm.tir.ir_pass.StorageRewrite(body) assert (isinstance(body.body.body, tvm.tir.Allocate)) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="t") as i: ib.scope_attr( @@ -262,7 +262,7 @@ def test_parallel_alloc(): A = ib.allocate("float32", n, name="A", scope="global") A[j] = A[j] + 2 body = ib.get() - body = tvm.ir_pass.StorageRewrite(body) + body = tvm.tir.ir_pass.StorageRewrite(body) assert(isinstance(body.body.body.body.body, tvm.tir.Allocate)) @@ -288,17 +288,17 @@ def test_inplace_rule2(scope_tb = "local_TB2", max_bits = 1024 * 1024 * 1024): Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') Cc = tvm.tir.decl_buffer(C.shape, B.dtype, name='C') Dd = tvm.tir.decl_buffer(D.shape, B.dtype, name='D') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb, C: Cc, D:Dd}, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.StorageRewrite(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, B: Bb, C: Cc, D:Dd}, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageRewrite(stmt) # verify only have one allocations. # verify inplace folding works num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) assert num_alloc[0] == 2 def test_exceed_mem(): @@ -381,19 +381,19 @@ def test_inplace_rule3(): B5a = tvm.tir.decl_buffer(B5.shape, B5.dtype, name='B5') Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name='B') - stmt = tvm.ir_pass.StorageFlatten(stmt, {B0: B0a, B1: B1a, B2: B2a, B3: B2a, B4: B4a, B5: B5a, B: Bb}, 64) - stmt = tvm.ir_pass.CanonicalSimplify(stmt) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.StorageRewrite(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {B0: B0a, B1: B1a, B2: B2a, B3: B2a, B4: B4a, B5: B5a, B: Bb}, 64) + stmt = tvm.tir.ir_pass.CanonicalSimplify(stmt) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.StorageRewrite(stmt) # verify only have one allocations. # verify inplace folding works def verify(n): if isinstance(n, tvm.tir.Allocate): assert n.extents[0].value == 70 - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) def test_alloc_seq_type(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: @@ -411,13 +411,13 @@ def test_alloc_seq_type(): A2[j] = A[j] body = ib.get() - body = tvm.ir_pass.StorageRewrite(body) + body = tvm.tir.ir_pass.StorageRewrite(body) num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 500 - tvm.ir_pass.PostOrderVisit(body, verify) + tvm.tir.ir_pass.PostOrderVisit(body, verify) assert num_alloc[0] == 1 def test_alloc_seq_type2(): @@ -426,7 +426,7 @@ def test_alloc_seq_type2(): register_mem(scope_tb, max_bits) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: @@ -440,18 +440,18 @@ def test_alloc_seq_type2(): C[j] = 1.2 body = ib.get() - body = tvm.ir_pass.StorageRewrite(body) + body = tvm.tir.ir_pass.StorageRewrite(body) num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 200 - tvm.ir_pass.PostOrderVisit(body, verify) + tvm.tir.ir_pass.PostOrderVisit(body, verify) assert num_alloc[0] == 1 def test_reuse_small_buffer(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: @@ -469,7 +469,7 @@ def test_reuse_small_buffer(): E[j] = C[j] body = ib.get() - body = tvm.ir_pass.StorageRewrite(body) + body = tvm.tir.ir_pass.StorageRewrite(body) num_alloc = [0] @@ -477,7 +477,7 @@ def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 800 - tvm.ir_pass.PostOrderVisit(body, verify) + tvm.tir.ir_pass.PostOrderVisit(body, verify) assert num_alloc[0] == 1 def test_replace_dataflow(): @@ -515,7 +515,7 @@ def compute(a, b): def verify(n): if isinstance(n, tvm.tir.Allocate): assert n.extents[0].value == 268435456 - tvm.ir_pass.PostOrderVisit(stmt, verify) + tvm.tir.ir_pass.PostOrderVisit(stmt, verify) if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_storage_sync.py b/tests/python/unittest/test_pass_storage_sync.py index c6c6b0fbdb391..9edfa95754355 100644 --- a/tests/python/unittest/test_pass_storage_sync.py +++ b/tests/python/unittest/test_pass_storage_sync.py @@ -36,11 +36,11 @@ def test_storage_sync(): stmt = tvm.te.schedule.ScheduleOps(s, bounds) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') A2b = tvm.tir.decl_buffer(A2.shape, A2.dtype, name='A2') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) - f = tvm.ir_pass.MakeAPI(stmt, "test", [Ab, A2b], 0, True) - flist = tvm.ir_pass.SplitHostDevice(f) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) + f = tvm.tir.ir_pass.MakeAPI(stmt, "test", [Ab, A2b], 0, True) + flist = tvm.tir.ir_pass.SplitHostDevice(f) f = flist[1] - f = tvm.ir_pass.ThreadSync(f, "shared") + f = tvm.tir.ir_pass.ThreadSync(f, "shared") body_list = tvm.tir.stmt_list(f.body.body.body.body) assert(body_list[1].value.name == "tvm_storage_sync") @@ -54,7 +54,7 @@ def meminfo_cache(): max_simd_bits=32, max_num_bits=128, head_address=tvm.tir.call_extern("handle", "global_cache")) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") @@ -65,7 +65,7 @@ def meminfo_cache(): ib.scope_attr(cp, "coproc_scope", 1) A[j] = A[j + k * 10] + 2 stmt = ib.get() - stmt = tvm.ir_pass.CoProcSync(stmt) + stmt = tvm.tir.ir_pass.CoProcSync(stmt) body = stmt.body.body.body blist = tvm.tir.stmt_list(body) assert(blist[1].value.name == "cop.coproc_read_barrier") @@ -76,7 +76,7 @@ def meminfo_cache(): def test_coproc_sync2(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") ty = te.thread_axis("cthread") @@ -93,7 +93,7 @@ def test_coproc_sync2(): ib.scope_attr(cp, "coproc_scope", 2) A[ty] = 1.0 stmt = ib.get() - stmt = tvm.ir_pass.CoProcSync(stmt) + stmt = tvm.tir.ir_pass.CoProcSync(stmt) def test_coproc_sync3(): def __check_list(tvm_array, py_list): @@ -102,7 +102,7 @@ def __check_list(tvm_array, py_list): return False return True - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") @@ -119,7 +119,7 @@ def __check_list(tvm_array, py_list): A[0] = 0.0 stmt = ib.get() - stmt = tvm.ir_pass.CoProcSync(stmt) + stmt = tvm.tir.ir_pass.CoProcSync(stmt) slist = tvm.tir.stmt_list(stmt[0].body.body) push_st = slist[2] slist = tvm.tir.stmt_list(slist[-1]) diff --git a/tests/python/unittest/test_pass_unroll.py b/tests/python/unittest/test_pass_unroll.py index 8995395b64d24..165edab55f4e9 100644 --- a/tests/python/unittest/test_pass_unroll.py +++ b/tests/python/unittest/test_pass_unroll.py @@ -20,7 +20,7 @@ def test_unroll_loop(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() dtype = 'int64' n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), dtype) @@ -32,28 +32,28 @@ def test_unroll_loop(): stmt = ib.get() assert isinstance(stmt, tvm.tir.For) - ret = tvm.ir_pass.UnrollLoop(stmt, 16, 8, 0, True) + ret = tvm.tir.ir_pass.UnrollLoop(stmt, 16, 8, 0, True) assert not isinstance(ret, tvm.tir.For) - ret = tvm.ir_pass.UnrollLoop(stmt, 15, 8, 0, True) + ret = tvm.tir.ir_pass.UnrollLoop(stmt, 15, 8, 0, True) assert isinstance(ret, tvm.tir.For) - ret = tvm.ir_pass.UnrollLoop(stmt, 16, 8, 0, False) + ret = tvm.tir.ir_pass.UnrollLoop(stmt, 16, 8, 0, False) assert isinstance(ret, tvm.tir.For) assert ret.for_type == tvm.tir.For.Unrolled - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.scope_attr(tvm.tir.const(0, "int32"), "pragma_auto_unroll_max_step", 16) ib.emit(stmt) wrapped = ib.get() wrapped = tvm.tir.SeqStmt([wrapped, stmt]) assert isinstance(ret, tvm.tir.For) - ret = tvm.ir_pass.UnrollLoop(wrapped, 0, 8, 0, False) + ret = tvm.tir.ir_pass.UnrollLoop(wrapped, 0, 8, 0, False) assert isinstance(ret[0], tvm.tir.For) assert ret[0].for_type == tvm.tir.For.Unrolled assert isinstance(ret[1], tvm.tir.For) assert ret[1].for_type != tvm.tir.For.Unrolled def test_unroll_fake_loop(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() dtype = 'int32' n = te.size_var('n') Ab = tvm.tir.decl_buffer((n, ), dtype) @@ -65,7 +65,7 @@ def test_unroll_fake_loop(): Aptr[j + 1] = Aptr[i] + 1 stmt = ib.get() - ret = tvm.ir_pass.UnrollLoop(stmt, 8, 0, 1, True) + ret = tvm.tir.ir_pass.UnrollLoop(stmt, 8, 0, 1, True) assert isinstance(ret[0], tvm.tir.Store) def test_unroll_single_count_loops(): @@ -78,7 +78,7 @@ def test_unroll_single_count_loops(): stmt = tvm.te.schedule.ScheduleOps(s, dom_map) # all parameters to UnrolLoops are default values except for # auto_unroll_max_extent which has been set to 1 (default:0) - after_unroll_stmt = tvm.ir_pass.UnrollLoop(stmt, 0, 8, 1, True) + after_unroll_stmt = tvm.tir.ir_pass.UnrollLoop(stmt, 0, 8, 1, True) assert after_unroll_stmt == stmt if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_vectorize.py b/tests/python/unittest/test_pass_vectorize.py index af545aab8648a..2ade843361c02 100644 --- a/tests/python/unittest/test_pass_vectorize.py +++ b/tests/python/unittest/test_pass_vectorize.py @@ -20,7 +20,7 @@ def test_vectorize_loop(): dtype = 'int64' n = te.var('n') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, n) as i: with ib.for_range(0, 4, for_type="vectorize") as j: @@ -28,7 +28,7 @@ def test_vectorize_loop(): stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert isinstance(stmt, tvm.tir.For) assert not isinstance(stmt.body, tvm.tir.For) assert isinstance(stmt.body.index, tvm.tir.Ramp) @@ -37,14 +37,14 @@ def test_vectorize_loop(): def test_vectorize_vector(): dtype = 'int64' n = te.var('n') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32x4", name="A") with ib.for_range(0, n) as i: with ib.for_range(0, 4, for_type="vectorize") as j: A[j] = tvm.tir.const(1, A.dtype) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert isinstance(stmt, tvm.tir.For) assert not isinstance(stmt.body, tvm.tir.For) assert isinstance(stmt.body.index, tvm.tir.Ramp) @@ -54,7 +54,7 @@ def test_vectorize_vector(): def test_vectorize_with_if(): n = te.var('n') x = te.var('x') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, for_type="vectorize") as i: with ib.if_scope(x < n): @@ -63,7 +63,7 @@ def test_vectorize_with_if(): with ib.if_scope(i < n): A[i] = 2.0 stmt = ib.get() - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert isinstance(stmt, tvm.tir.IfThenElse) assert isinstance(stmt.then_case.index, tvm.tir.Ramp) assert isinstance(stmt.then_case.value, tvm.tir.Add) @@ -72,41 +72,41 @@ def test_vectorize_with_if(): def test_vectorize_with_le_cond(): n = te.var('n') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, for_type="vectorize") as i: with ib.if_scope(i <= n): A[i] = A[i] + 1 stmt = ib.get() - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert isinstance(stmt, tvm.tir.For) def test_vectorize_with_ge_cond(): n = te.var('n') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, for_type="vectorize") as i: with ib.if_scope(i >= n): A[i] = A[i] + 1 stmt = ib.get() - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert isinstance(stmt, tvm.tir.For) def test_vectorize_if_then_else(): n = te.var('n') x = te.var('x') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, for_type="vectorize") as i: A[i] = tvm.tir.call_intrin("float32", "tvm_if_then_else", i > 0, A[i] + 1, A[i]) stmt = ib.get() - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert isinstance(stmt, tvm.tir.For) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, n) as k: with ib.for_range(0, 4, for_type="vectorize") as i: @@ -115,7 +115,7 @@ def test_vectorize_if_then_else(): A[k * 4 + i], 0) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) - stmt = tvm.ir_pass.VectorizeLoop(stmt) + stmt = tvm.tir.ir_pass.VectorizeLoop(stmt) assert not isinstance(stmt.body, tvm.tir.For) assert isinstance(stmt.body.value.args[2], tvm.tir.Broadcast) diff --git a/tests/python/unittest/test_pass_verify_gpu_code.py b/tests/python/unittest/test_pass_verify_gpu_code.py index 724165385d809..6e138a29b3e97 100644 --- a/tests/python/unittest/test_pass_verify_gpu_code.py +++ b/tests/python/unittest/test_pass_verify_gpu_code.py @@ -20,7 +20,7 @@ def get_verify_pass(valid, **kwargs): def verify_pass(stmt): - valid[0] = tvm.ir_pass.VerifyGPUCode(stmt, kwargs) + valid[0] = tvm.tir.ir_pass.VerifyGPUCode(stmt, kwargs) return stmt return verify_pass @@ -49,14 +49,14 @@ def check_shared_memory(dtype): if not tvm.context(target).exist: continue valid = [None] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=type_size * M - 1, max_threads_per_block=M))]}): tvm.build(s, [A, B], target) assert not valid[0] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=type_size * M, max_threads_per_block=M))]}): @@ -86,14 +86,14 @@ def test_local_memory(): continue valid = [None] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_local_memory_per_block=4 * M - 1, max_threads_per_block=1))]}): tvm.build(s, [A, B], target) assert not valid[0] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_local_memory_per_block=4 * M, max_threads_per_block=1))]}): @@ -121,21 +121,21 @@ def test_num_thread(): continue valid = [None] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=0, max_threads_per_block=N - 1))]}): tvm.build(s, [A, B], target) assert not valid[0] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=0, max_threads_per_block=N))]}): tvm.build(s, [A, B], target) assert valid[0] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=0, max_threads_per_block=N, @@ -143,7 +143,7 @@ def test_num_thread(): tvm.build(s, [A, B], target) assert not valid[0] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=0, max_threads_per_block=N, @@ -171,14 +171,14 @@ def test_multiple_kernels(): continue valid = [None] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=0, max_threads_per_block=N - 1))]}): tvm.build(s, [A, C], target) assert not valid[0] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_shared_memory_per_block=0, max_threads_per_block=N))]}): @@ -202,7 +202,7 @@ def test_wrong_bind(): continue valid = [None] - with tvm.build_config(**{"add_lower_pass": [ + with tvm.target.build_config(**{"add_lower_pass": [ (2, get_verify_pass(valid, max_threads_per_block=N*N))]}): tvm.build(s, [A, B], target) assert not valid[0] diff --git a/tests/python/unittest/test_pass_verify_memory.py b/tests/python/unittest/test_pass_verify_memory.py index 336f341d61cfd..3747caed1586a 100644 --- a/tests/python/unittest/test_pass_verify_memory.py +++ b/tests/python/unittest/test_pass_verify_memory.py @@ -37,9 +37,9 @@ def lower(sch, args): sch = sch.normalize() bounds = tvm.te.schedule.InferBound(sch) stmt = tvm.te.schedule.ScheduleOps(sch, bounds) - stmt = tvm.ir_pass.LoopPartition(stmt, False) - stmt = tvm.ir_pass.StorageFlatten(stmt, binds, 64) - func = tvm.ir_pass.MakeAPI(stmt, "myadd", arg_list, 0, True) + stmt = tvm.tir.ir_pass.LoopPartition(stmt, False) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, binds, 64) + func = tvm.tir.ir_pass.MakeAPI(stmt, "myadd", arg_list, 0, True) return func @@ -60,7 +60,7 @@ def test_verify_memory_all_bind(): func = lower(s, [A, B]) for dev_type in gpu_devices + other_devices: - assert tvm.ir_pass.VerifyMemory(func, dev_type) + assert tvm.tir.ir_pass.VerifyMemory(func, dev_type) # Computations are not bound. @@ -77,9 +77,9 @@ def test_verify_memory_not_bind(): func = lower(s, [A, B]) for dev_type in gpu_devices: - assert not tvm.ir_pass.VerifyMemory(func, dev_type) + assert not tvm.tir.ir_pass.VerifyMemory(func, dev_type) for dev_type in other_devices: - assert tvm.ir_pass.VerifyMemory(func, dev_type) + assert tvm.tir.ir_pass.VerifyMemory(func, dev_type) # Computations are partially bound. @@ -101,9 +101,9 @@ def test_verify_memory_partially_bind(): func = lower(s, [A, B, C, D]) for dev_type in gpu_devices: - assert not tvm.ir_pass.VerifyMemory(func, dev_type) + assert not tvm.tir.ir_pass.VerifyMemory(func, dev_type) for dev_type in other_devices: - assert tvm.ir_pass.VerifyMemory(func, dev_type) + assert tvm.tir.ir_pass.VerifyMemory(func, dev_type) if __name__ == "__main__": diff --git a/tests/python/unittest/test_pass_virtual_thread.py b/tests/python/unittest/test_pass_virtual_thread.py index a6675ffe9ba11..2d96696eed882 100644 --- a/tests/python/unittest/test_pass_virtual_thread.py +++ b/tests/python/unittest/test_pass_virtual_thread.py @@ -36,9 +36,9 @@ def test_virtual_thread(): Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name='A') A2b = tvm.tir.decl_buffer(A2.shape, A2.dtype, name='A2') - stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) - stmt = tvm.ir_pass.Simplify(stmt) - stmt = tvm.ir_pass.InjectVirtualThread(stmt) + stmt = tvm.tir.ir_pass.StorageFlatten(stmt, {A: Ab, A2: A2b}, 64) + stmt = tvm.tir.ir_pass.Simplify(stmt) + stmt = tvm.tir.ir_pass.InjectVirtualThread(stmt) print(stmt) if __name__ == "__main__": diff --git a/tests/python/unittest/test_runtime_extension.py b/tests/python/unittest/test_runtime_extension.py index 1dd9bc8a19f2a..375b99b0ad315 100644 --- a/tests/python/unittest/test_runtime_extension.py +++ b/tests/python/unittest/test_runtime_extension.py @@ -33,13 +33,13 @@ def test_dltensor_compatible(): n = te.var('n') Ab = tvm.tir.decl_buffer((n,), dtype) i = te.var('i') - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n - 1, "i") as i: A[i + 1] = A[i] + 1 stmt = ib.get() - fapi = tvm.ir_pass.MakeAPI(stmt, "arange", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "arange", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) f = tvm.target.codegen.build_module(fapi, "stackvm") a = tvm.nd.array(np.zeros(10, dtype=dtype)) aview = MyTensorView(a) diff --git a/tests/python/unittest/test_runtime_micro.py b/tests/python/unittest/test_runtime_micro.py index 9e39898fa084e..28fdb11c3de4b 100644 --- a/tests/python/unittest/test_runtime_micro.py +++ b/tests/python/unittest/test_runtime_micro.py @@ -47,7 +47,7 @@ def relay_micro_build(func, dev_config, params=None): mod : tvm.runtime.Module graph runtime module for the target device """ - with tvm.build_config(disable_vectorize=True): + with tvm.target.build_config(disable_vectorize=True): graph, c_mod, params = relay.build(func, target="c", params=params) micro_mod = create_micro_mod(c_mod, dev_config) ctx = tvm.micro_dev(0) diff --git a/tests/python/unittest/test_runtime_module_load.py b/tests/python/unittest/test_runtime_module_load.py index dfe03dbbec388..e7771e3c6721c 100644 --- a/tests/python/unittest/test_runtime_module_load.py +++ b/tests/python/unittest/test_runtime_module_load.py @@ -57,8 +57,8 @@ def save_object(names): tvm.tir.Store(Ab.data, tvm.tir.Load(dtype, Ab.data, i) + 1, i + 1)) - fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) - fapi = tvm.ir_pass.LowerTVMBuiltin(fapi) + fapi = tvm.tir.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True) + fapi = tvm.tir.ir_pass.LowerTVMBuiltin(fapi) m = tvm.target.codegen.build_module(fapi, "llvm") for name in names: m.save(name) diff --git a/tests/python/unittest/test_schedule_bound_inference.py b/tests/python/unittest/test_schedule_bound_inference.py index abb8d7e146515..484aa503e0667 100644 --- a/tests/python/unittest/test_schedule_bound_inference.py +++ b/tests/python/unittest/test_schedule_bound_inference.py @@ -113,7 +113,7 @@ def test_bound_fusesplit1(): bounds = tvm.te.schedule.InferBound(s) assert isinstance(bounds, tvm.container.Map) idxdiv = tvm.tir.indexdiv - assert(tvm.ir_pass.Simplify( + assert(tvm.tir.ir_pass.Simplify( bounds[A1.op.axis[0]].min - idxdiv(xo * split1, l)).value == 0) expected_extent = (idxdiv((xo + 1) * split1 - 1, l) - idxdiv(xo * split1, l) + 1) @@ -121,11 +121,11 @@ def test_bound_fusesplit1(): for j in range(1, 6): for k in range(1, 6): vars = tvm.runtime.convert({split1: tvm.tir.const(i, "int32"), l: tvm.tir.const(j, "int32"), xo.var: tvm.tir.const(k, "int32")}) - comp_ext = tvm.ir_pass.Simplify(tvm.ir_pass.Substitute(bounds[A1.op.axis[0]].extent, vars)).value - exp_ext = tvm.ir_pass.Simplify(tvm.ir_pass.Substitute(expected_extent, vars)).value + comp_ext = tvm.tir.ir_pass.Simplify(tvm.tir.ir_pass.Substitute(bounds[A1.op.axis[0]].extent, vars)).value + exp_ext = tvm.tir.ir_pass.Simplify(tvm.tir.ir_pass.Substitute(expected_extent, vars)).value assert(comp_ext == exp_ext) - assert(tvm.ir_pass.Simplify(bounds[A1.op.axis[1]].extent - l).value == 0) + assert(tvm.tir.ir_pass.Simplify(bounds[A1.op.axis[1]].extent - l).value == 0) def test_bound_fusesplit2(): m = te.var("m") @@ -143,10 +143,10 @@ def test_bound_fusesplit2(): bounds = tvm.te.schedule.InferBound(s) assert isinstance(bounds, tvm.container.Map) vars = tvm.runtime.convert({xo.var: tvm.tir.const(5, "int32")}) - assert(tvm.ir_pass.Simplify(tvm.ir_pass.Substitute(bounds[A1.op.axis[0]].min, vars)).value == 2) - assert(tvm.ir_pass.Simplify(tvm.ir_pass.Substitute(bounds[A1.op.axis[1]].min, vars)).value == 3) - assert(tvm.ir_pass.Simplify(tvm.ir_pass.Substitute(bounds[A1.op.axis[0]].extent, vars)).value == 1) - assert(tvm.ir_pass.Simplify(tvm.ir_pass.Substitute(bounds[A1.op.axis[1]].extent, vars)).value == 3) + assert(tvm.tir.ir_pass.Simplify(tvm.tir.ir_pass.Substitute(bounds[A1.op.axis[0]].min, vars)).value == 2) + assert(tvm.tir.ir_pass.Simplify(tvm.tir.ir_pass.Substitute(bounds[A1.op.axis[1]].min, vars)).value == 3) + assert(tvm.tir.ir_pass.Simplify(tvm.tir.ir_pass.Substitute(bounds[A1.op.axis[0]].extent, vars)).value == 1) + assert(tvm.tir.ir_pass.Simplify(tvm.tir.ir_pass.Substitute(bounds[A1.op.axis[1]].extent, vars)).value == 3) def test_bound_warp(): @@ -369,12 +369,12 @@ def intrin_func(ins, outs): aa = ins[0] cc = outs[0] def _body(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_extern("int32", "test", cc.access_ptr("w"), aa.access_ptr("r"))) return ib.get() return _body() - with tvm.build_config(offset_factor=1): - return tvm.decl_tensor_intrin(c.op, intrin_func, binds={a : Ab, c : Cb}) + with tvm.target.build_config(offset_factor=1): + return te.decl_tensor_intrin(c.op, intrin_func, binds={a : Ab, c : Cb}) test_func = intrin_test() A = te.placeholder((20,20), name='A') diff --git a/tests/python/unittest/test_schedule_schedule_ops.py b/tests/python/unittest/test_schedule_schedule_ops.py index d83dc96032152..8d10ceea0b48a 100644 --- a/tests/python/unittest/test_schedule_schedule_ops.py +++ b/tests/python/unittest/test_schedule_schedule_ops.py @@ -145,7 +145,7 @@ def test_inline_mixed(): def check(x): if isinstance(x, tvm.tir.Call): assert x.func != A2 - tvm.ir_pass.PostOrderVisit(s[C].op.body[0], check) + tvm.tir.ir_pass.PostOrderVisit(s[C].op.body[0], check) def test_scan_inline1(): @@ -311,9 +311,9 @@ def intrin_func(ins, outs): "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) return body, reset, update - with tvm.build_config(data_alignment=16, + with tvm.target.build_config(data_alignment=16, offset_factor=16): - return tvm.decl_tensor_intrin(z.op, intrin_func, + return te.decl_tensor_intrin(z.op, intrin_func, binds={w: Wb}) @@ -363,12 +363,12 @@ def create_buffer(t): binds[z] = create_buffer(z) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_extern(outs[0].dtype, 'vadd', ins[0].access_ptr("r"), ins[1].access_ptr('r'), outs[0].access_ptr('wr'))) return ib.get() - with tvm.build_config(offset_factor=16): - return tvm.decl_tensor_intrin(z.op, intrin_func, binds=binds) + with tvm.target.build_config(offset_factor=16): + return te.decl_tensor_intrin(z.op, intrin_func, binds=binds) def test_schedule_tensor_compute2(): diff --git a/tests/python/unittest/test_schedule_tensor_core.py b/tests/python/unittest/test_schedule_tensor_core.py index 5dbe04f93d385..ae2301caffa33 100644 --- a/tests/python/unittest/test_schedule_tensor_core.py +++ b/tests/python/unittest/test_schedule_tensor_core.py @@ -35,7 +35,7 @@ def intrin_wmma_load_matrix(shape, scope): BC = tvm.tir.decl_buffer(C.shape, C.dtype, scope=scope, data_alignment=32, offset_factor=row * col) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] @@ -44,7 +44,7 @@ def intrin_func(ins, outs): BA.access_ptr('r'), col, 'row_major')) return ib.get() - return tvm.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) + return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def intrin_wmma_gemm(shape): @@ -65,12 +65,12 @@ def intrin_func(ins, outs): BC, = outs def init(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_intrin('handle', 'tvm_fill_fragment', BC.data, n, m, l, BC.elem_offset // (n * m), 0.0)) return ib.get() def update(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_intrin('handle', 'tvm_mma_sync', BC.data, BC.elem_offset // (n * m), BA.data, BA.elem_offset // (n * l), @@ -80,7 +80,7 @@ def update(): return update(), init(), update() - return tvm.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, B: BB, C: BC}) + return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, B: BB, C: BC}) def intrin_wmma_store_matrix(shape): @@ -91,7 +91,7 @@ def intrin_wmma_store_matrix(shape): BC = tvm.tir.decl_buffer(C.shape, C.dtype, scope='global', data_alignment=32, offset_factor=n * m) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] @@ -100,7 +100,7 @@ def intrin_func(ins, outs): BC.access_ptr('w'), m, 'row_major')) return ib.get() - return tvm.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) + return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def test_tensor_core_batch_matmal(): diff --git a/tests/python/unittest/test_schedule_tensorize.py b/tests/python/unittest/test_schedule_tensorize.py index c23a878c5a397..28a3ae875fc7e 100644 --- a/tests/python/unittest/test_schedule_tensorize.py +++ b/tests/python/unittest/test_schedule_tensorize.py @@ -25,8 +25,8 @@ def intrin_func(ins, outs): xx, yy = ins zz = outs[0] return tvm.tir.call_packed("vadd", xx, yy, zz) - with tvm.build_config(offset_factor=16): - return tvm.decl_tensor_intrin(z.op, intrin_func) + with tvm.target.build_config(offset_factor=16): + return te.decl_tensor_intrin(z.op, intrin_func) def intrin_gemv(m, n): w = te.placeholder((m, n), name='w') @@ -52,9 +52,9 @@ def intrin_func(ins, outs): "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) return body, reset, update - with tvm.build_config(data_alignment=16, + with tvm.target.build_config(data_alignment=16, offset_factor=16): - return tvm.decl_tensor_intrin(z.op, intrin_func, + return te.decl_tensor_intrin(z.op, intrin_func, binds={w: Wb}) def intrin_gemv_no_reset(m, n): @@ -79,9 +79,9 @@ def intrin_func(ins, outs): "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) return body, None, update - with tvm.build_config(data_alignment=16, + with tvm.target.build_config(data_alignment=16, offset_factor=16): - return tvm.decl_tensor_intrin(z.op, intrin_func, + return te.decl_tensor_intrin(z.op, intrin_func, binds={w: Wb}) @@ -100,13 +100,13 @@ def check(factor): dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[z], dom_map) - assert tvm.ir_pass.Equal(out_dom[z.op.axis[0]].extent, factor) - assert tvm.ir_pass.Equal(out_dom[z.op.axis[0]].min, xo * factor) - assert tvm.ir_pass.Equal(in_dom.items()[0][1][0].extent, factor) + assert tvm.tir.ir_pass.Equal(out_dom[z.op.axis[0]].extent, factor) + assert tvm.tir.ir_pass.Equal(out_dom[z.op.axis[0]].min, xo * factor) + assert tvm.tir.ir_pass.Equal(in_dom.items()[0][1][0].extent, factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[z], out_dom, in_dom, vadd) - assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]), - tvm.ir_pass.CanonicalSimplify(vadd.op.body[0])) + assert tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.CanonicalSimplify(body[0]), + tvm.tir.ir_pass.CanonicalSimplify(vadd.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [x, y, z]) @@ -133,13 +133,13 @@ def check(factor): dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) - assert tvm.ir_pass.Equal(out_dom[x].extent, 1) - assert tvm.ir_pass.Equal(out_dom[y].extent, factor) - assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor) + assert tvm.tir.ir_pass.Equal(out_dom[x].extent, 1) + assert tvm.tir.ir_pass.Equal(out_dom[y].extent, factor) + assert tvm.tir.ir_pass.Equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) - assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]), - tvm.ir_pass.CanonicalSimplify(gemv.op.body[0])) + assert tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.CanonicalSimplify(body[0]), + tvm.tir.ir_pass.CanonicalSimplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) @@ -157,13 +157,13 @@ def check_rfactor(factor, rfactor): dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) - assert tvm.ir_pass.Equal(out_dom[x].extent, 1) - assert tvm.ir_pass.Equal(out_dom[y].extent, factor) - assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor) + assert tvm.tir.ir_pass.Equal(out_dom[x].extent, 1) + assert tvm.tir.ir_pass.Equal(out_dom[y].extent, factor) + assert tvm.tir.ir_pass.Equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) - assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]), - tvm.ir_pass.CanonicalSimplify(gemv.op.body[0])) + assert tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.CanonicalSimplify(body[0]), + tvm.tir.ir_pass.CanonicalSimplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) @@ -180,13 +180,13 @@ def check_rfactor_no_reset(factor, rfactor): dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) - assert tvm.ir_pass.Equal(out_dom[x].extent, 1) - assert tvm.ir_pass.Equal(out_dom[y].extent, factor) - assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor) + assert tvm.tir.ir_pass.Equal(out_dom[x].extent, 1) + assert tvm.tir.ir_pass.Equal(out_dom[y].extent, factor) + assert tvm.tir.ir_pass.Equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) - assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]), - tvm.ir_pass.CanonicalSimplify(gemv.op.body[0])) + assert tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.CanonicalSimplify(body[0]), + tvm.tir.ir_pass.CanonicalSimplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) @@ -204,13 +204,13 @@ def check_rfactor_no_reset_multi_reduction(factor, rfactor): dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) - assert tvm.ir_pass.Equal(out_dom[x].extent, 1) - assert tvm.ir_pass.Equal(out_dom[y].extent, factor) - assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor) + assert tvm.tir.ir_pass.Equal(out_dom[x].extent, 1) + assert tvm.tir.ir_pass.Equal(out_dom[y].extent, factor) + assert tvm.tir.ir_pass.Equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) - assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]), - tvm.ir_pass.CanonicalSimplify(gemv.op.body[0])) + assert tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.CanonicalSimplify(body[0]), + tvm.tir.ir_pass.CanonicalSimplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) @@ -237,8 +237,8 @@ def intrin_func(ins, outs): zz = outs[0] return tvm.tir.call_packed("op", xx, zz) - with tvm.build_config(offset_factor=2): - return tvm.decl_tensor_intrin(y.op, intrin_func) + with tvm.target.build_config(offset_factor=2): + return te.decl_tensor_intrin(y.op, intrin_func) A = te.placeholder((5, 5), name='A') B = te.compute((9,9), lambda i, j: A[idxd(j,3) + idxm(i,3), idxm(j,3) + idxd(i,3)]) @@ -275,8 +275,8 @@ def intrin_multivadd(n): def intrin_func(ins, outs): return tvm.tir.call_packed("multivadd") - with tvm.build_config(): - return tvm.decl_tensor_intrin(z.op, intrin_func, name="multivadd") + with tvm.target.build_config(): + return te.decl_tensor_intrin(z.op, intrin_func, name="multivadd") def intrin_vadd(n): dtype = 'float32' @@ -291,14 +291,14 @@ def create_buffer(t): offset_factor=16) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_extern("float32", 'vadd', ins[0].access_ptr("r"), ins[1].access_ptr('r'), outs[0].access_ptr('wr'))) return ib.get() - with tvm.build_config(offset_factor=16): - return tvm.decl_tensor_intrin(z.op, intrin_func, binds={x: create_buffer(x), + with tvm.target.build_config(offset_factor=16): + return te.decl_tensor_intrin(z.op, intrin_func, binds={x: create_buffer(x), y: create_buffer(y), z: create_buffer(z)}) diff --git a/tests/webgl/test_local_topi_conv2d_nchw.py b/tests/webgl/test_local_topi_conv2d_nchw.py index 484143a1cdd52..0d9b7776096a2 100644 --- a/tests/webgl/test_local_topi_conv2d_nchw.py +++ b/tests/webgl/test_local_topi_conv2d_nchw.py @@ -60,7 +60,7 @@ def check_device(device): w = tvm.nd.array(w_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx) - with tvm.build_config(auto_unroll_max_step=1400, + with tvm.target.build_config(auto_unroll_max_step=1400, unroll_explicit=(device != "cuda")): func1 = tvm.build(s1, [A, W, B], device, name="conv2d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding)) func2 = tvm.build(s2, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding)) diff --git a/topi/python/topi/arm_cpu/bitserial_conv2d.py b/topi/python/topi/arm_cpu/bitserial_conv2d.py index 1f6f68c37b4b1..bdda496f8fb81 100644 --- a/topi/python/topi/arm_cpu/bitserial_conv2d.py +++ b/topi/python/topi/arm_cpu/bitserial_conv2d.py @@ -214,7 +214,7 @@ def _intrin_func(ins, outs): return_dtype = 'uint16x8' def _instr(index): - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() if index == 1: # reduce reset irb.emit(zz.vstore(0, tvm.tir.const(0, return_dtype))) return irb.get() @@ -271,8 +271,8 @@ def _instr(index): return irb.get() # body, reset, update return _instr(0), _instr(1), _instr(2) - with tvm.build_config(offset_factor=1, partition_const_loop=True): - return tvm.decl_tensor_intrin(z.op, _intrin_func, binds={w: Wb, x:Xb, z:Zb}) + with tvm.target.build_config(offset_factor=1, partition_const_loop=True): + return te.decl_tensor_intrin(z.op, _intrin_func, binds={w: Wb, x:Xb, z:Zb}) # ARM specific schedule that using custom microkernel def _schedule_spatial_conv2d_nhwc(cfg, s, data_pad, data_vec, kernel_vec, diff --git a/topi/python/topi/arm_cpu/conv2d.py b/topi/python/topi/arm_cpu/conv2d.py index 72ed4da510bd8..25b338e06b5f8 100644 --- a/topi/python/topi/arm_cpu/conv2d.py +++ b/topi/python/topi/arm_cpu/conv2d.py @@ -345,13 +345,13 @@ def _conv2d_arm_cpu_winograd_nnpack( cfg.define_knob('winograd_nnpack_algorithm', [convolution_algorithm]) assert N == 1 - with tvm.tag_scope("winograd_nnpack_conv2d_weight_transform"): + with tvm.te.tag_scope("winograd_nnpack_conv2d_weight_transform"): transformed_kernel = tvm.contrib.nnpack.convolution_inference_weight_transform( kernel, algorithm=cfg['winograd_nnpack_algorithm'].val) if autotvm.GLOBAL_SCOPE.in_tuning: transformed_kernel = te.compute(transformed_kernel.shape, lambda *args: 0.0) - with tvm.tag_scope("winograd_nnpack_conv2d_output"): + with tvm.te.tag_scope("winograd_nnpack_conv2d_output"): output = tvm.contrib.nnpack.convolution_inference_without_weight_transform( data, transformed_kernel, bias=None, @@ -399,7 +399,7 @@ def conv2d_nchw_winograd_nnpack_without_weight_transform( W = (IW + pl + pr - 3) // WSTR + 1 assert N == 1 - with tvm.tag_scope("winograd_nnpack_conv2d_output"): + with tvm.te.tag_scope("winograd_nnpack_conv2d_output"): output = tvm.contrib.nnpack.convolution_inference_without_weight_transform( data=data, transformed_kernel=transformed_kernel, diff --git a/topi/python/topi/arm_cpu/tensor_intrin.py b/topi/python/topi/arm_cpu/tensor_intrin.py index 7a656b8af0404..135c87d595117 100644 --- a/topi/python/topi/arm_cpu/tensor_intrin.py +++ b/topi/python/topi/arm_cpu/tensor_intrin.py @@ -76,7 +76,7 @@ def dot_int8_int8_int32(int32_lanes, dtype='uint'): def _intrin_func(ins, outs): def _instr(index): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore(0, tvm.tir.const(0, '%s32x%d' % (dtype, int32_lanes)))) return ib.get() @@ -107,5 +107,5 @@ def _instr(index): # body, reset, update return _instr(0), _instr(1), _instr(2) - with tvm.build_config(offset_factor=1, partition_const_loop=True): - return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) + with tvm.target.build_config(offset_factor=1, partition_const_loop=True): + return te.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) diff --git a/topi/python/topi/cuda/depthwise_conv2d.py b/topi/python/topi/cuda/depthwise_conv2d.py index de11dc6683691..db9da844e3afe 100644 --- a/topi/python/topi/cuda/depthwise_conv2d.py +++ b/topi/python/topi/cuda/depthwise_conv2d.py @@ -167,7 +167,7 @@ def _schedule(temp, Filter, DepthwiseConv2d): b, h, w, c = s[Output].op.axis # num_thread here could be 728, it is larger than cuda.max_num_threads - num_thread = tvm.ir_pass.Simplify(temp.shape[3]).value + num_thread = tvm.tir.ir_pass.Simplify(temp.shape[3]).value target = tvm.target.Target.current() if target and (target.target_name not in ["cuda", "nvptx"]): num_thread = target.max_num_threads diff --git a/topi/python/topi/cuda/nms.py b/topi/python/topi/cuda/nms.py index 2b3f38e79eeab..e008dcdb1ce24 100644 --- a/topi/python/topi/cuda/nms.py +++ b/topi/python/topi/cuda/nms.py @@ -78,7 +78,7 @@ def get_valid_counts_ir(data, valid_count, flag, score_threshold, id_index, scor num_anchors = data.shape[1] elem_length = data.shape[2] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) @@ -141,7 +141,7 @@ def flag_scan(flag, prefix_sum): batch_size = flag.shape[0] num_anchors = flag.shape[1] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() flag = ib.buffer_ptr(flag) prefix_sum = ib.buffer_ptr(prefix_sum) @@ -201,7 +201,7 @@ def out_rewrite(data, flag, prefix_sum, valid_count, out): num_anchors = out.shape[1] elem_length = out.shape[2] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() one = tvm.tir.const(1, dtype=out.dtype) data = ib.buffer_ptr(data) @@ -373,7 +373,7 @@ def calculate_overlap(out_tensor, box_a_idx, box_b_idx): num_anchors = data.shape[1] box_data_length = data.shape[2] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) sorted_index = ib.buffer_ptr(sorted_index) @@ -498,7 +498,7 @@ def invalid_to_bottom_pre(data, flag, idx): num_anchors = data.shape[1] elem_length = data.shape[2] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) flag = ib.buffer_ptr(flag) @@ -557,7 +557,7 @@ def invalid_to_bottom_ir(data, flag, idx, out): num_anchors = data.shape[1] elem_length = data.shape[2] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) flag = ib.buffer_ptr(flag) diff --git a/topi/python/topi/cuda/rcnn/proposal.py b/topi/python/topi/cuda/rcnn/proposal.py index 03907a50c0af8..3546448cd3063 100644 --- a/topi/python/topi/cuda/rcnn/proposal.py +++ b/topi/python/topi/cuda/rcnn/proposal.py @@ -71,7 +71,7 @@ def predict_bbox_ir(cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, r tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") tid = bx * max_threads + tx - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) @@ -154,7 +154,7 @@ def argsort_ir(data_buf, out_index_buf): """ batch, num_bbox = get_const_tuple(data_buf.shape) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() p_data = ib.buffer_ptr(data_buf) index_out = ib.buffer_ptr(out_index_buf) nthread_tx = max_threads @@ -229,7 +229,7 @@ def calculate_overlap(out_tensor, box_a_idx, box_b_idx): max_threads = int(math.sqrt(tvm.target.Target.current(allow_none=False).max_num_threads)) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() p_data = ib.buffer_ptr(sorted_bbox_buf) p_out = ib.buffer_ptr(out_buf) nthread_tx = max_threads @@ -277,7 +277,7 @@ def prepare_output_ir(sorted_bbox_buf, remove_mask_buf, out_buf): rpn_post_nms_top_n = get_const_int(out_buf.shape[0]) // batch nthread_tx = batch tx = te.thread_axis("threadIdx.x") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.scope_attr(tx, "thread_extent", nthread_tx) i = ib.allocate('int32', (1,), 'i', scope='local') i[0] = 0 diff --git a/topi/python/topi/cuda/sort.py b/topi/python/topi/cuda/sort.py index c1c622ff1d30a..f9e535e133fac 100644 --- a/topi/python/topi/cuda/sort.py +++ b/topi/python/topi/cuda/sort.py @@ -86,7 +86,7 @@ def sort_ir(data, values_out, axis, is_ascend, indices_out=None): elif i > axis: axis_mul_after *= value max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) values_out = ib.buffer_ptr(values_out) if indices_out is not None: @@ -110,7 +110,7 @@ def sort_ir(data, values_out, axis, is_ascend, indices_out=None): values_out[base_idx + tid * axis_mul_after] = data[base_idx + tid * axis_mul_after] if indices_out is not None: indices_out[base_idx + tid * axis_mul_after] = \ - tvm.generic.cast(tid, indices_out.dtype) + tvm.tir.generic.cast(tid, indices_out.dtype) ib.emit(tvm.tir.Call(None, 'tvm_storage_sync', tvm.runtime.convert(['shared']), tvm.tir.Call.Intrinsic, None, 0)) @@ -185,7 +185,7 @@ def sort_nms_ir(data, valid_count, output, axis, is_ascend): elif i > axis: axis_mul_after *= value max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) valid_count = ib.buffer_ptr(valid_count) output = ib.buffer_ptr(output) diff --git a/topi/python/topi/cuda/ssd/multibox.py b/topi/python/topi/cuda/ssd/multibox.py index 9714194271f05..30784f45a5914 100644 --- a/topi/python/topi/cuda/ssd/multibox.py +++ b/topi/python/topi/cuda/ssd/multibox.py @@ -60,7 +60,7 @@ def multibox_prior_ir(data, out, sizes, ratios, steps, offsets): ty = te.thread_axis("threadIdx.y") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() p_out = ib.buffer_ptr(out) in_height = data.shape[2] in_width = data.shape[3] @@ -180,7 +180,7 @@ def transform_loc_pre(cls_prob, valid_count, temp_valid_count, temp_cls_id, temp num_classes = cls_prob.shape[1] num_anchors = cls_prob.shape[2] - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() cls_prob = ib.buffer_ptr(cls_prob) cls_id = ib.buffer_ptr(temp_cls_id) @@ -292,7 +292,7 @@ def transform_loc(loc, loc_base_idx, anchor, anchor_base_idx, clip, vx, vy, vw, tvm.tir.if_then_else(clip, tvm.te.max(0.0, tvm.te.min(1.0, ox + ow)), ox + ow), \ tvm.tir.if_then_else(clip, tvm.te.max(0.0, tvm.te.min(1.0, oy + oh)), oy + oh) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() loc_pred = ib.buffer_ptr(loc_pred) anchor = ib.buffer_ptr(anchor) diff --git a/topi/python/topi/cuda/tensor_intrin.py b/topi/python/topi/cuda/tensor_intrin.py index 214ceec0faf61..468e2cd21fa8e 100644 --- a/topi/python/topi/cuda/tensor_intrin.py +++ b/topi/python/topi/cuda/tensor_intrin.py @@ -56,7 +56,7 @@ def _instr(index): if index == 1: return zz.vstore(0, 0) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() vec_x = xx.vload(0, dtype='int8x4') vec_y = yy.vload(0, dtype='int8x4') @@ -69,11 +69,11 @@ def _instr(index): return _instr(0), _instr(1), _instr(2) # body, reset, update - with tvm.build_config(data_alignment=4, offset_factor=1) as cfg: + with tvm.target.build_config(data_alignment=4, offset_factor=1) as cfg: scopes = {x: x_scope, y: y_scope, z: z_scope} binds = {t: tvm.tir.decl_buffer(t.shape, t.dtype, t.op.name, data_alignment=cfg.data_alignment, offset_factor=cfg.offset_factor, scope=scopes[t]) for t in [x, y, z]} - return tvm.decl_tensor_intrin(z.op, _intrin_func, binds=binds) + return te.decl_tensor_intrin(z.op, _intrin_func, binds=binds) diff --git a/topi/python/topi/generic/__init__.py b/topi/python/topi/generic/__init__.py index b9db1560e5883..bf45bc30a42d4 100644 --- a/topi/python/topi/generic/__init__.py +++ b/topi/python/topi/generic/__init__.py @@ -28,7 +28,7 @@ # create schedule that dispatches to topi.cuda.schedule_injective with tvm.target.create("cuda"): - s = tvm.generic.schedule_injective(outs) + s = tvm.tir.generic.schedule_injective(outs) """ from __future__ import absolute_import as _abs diff --git a/topi/python/topi/generic_op_impl.py b/topi/python/topi/generic_op_impl.py index 864bd936a268f..f4695d3db3ee3 100644 --- a/topi/python/topi/generic_op_impl.py +++ b/topi/python/topi/generic_op_impl.py @@ -90,12 +90,12 @@ def _bind_generic_ops(): """Bind generic operators for Tensor.""" # Check __op_priority__ to make sure the binding happens only once. __op_priority__ = 1 - if __op_priority__ > tvm.generic.__op_priority__: - tvm.generic.__op_priority__ = __op_priority__ - tvm.generic.add = _make_bop(_broadcast.add, tvm.generic.add) - tvm.generic.subtract = _make_bop(_broadcast.subtract, tvm.generic.subtract) - tvm.generic.multiply = _make_bop(_broadcast.multiply, tvm.generic.multiply) - tvm.generic.divide = _make_bop(_broadcast.divide, tvm.generic.divide) - tvm.generic.cast = _math.cast + if __op_priority__ > tvm.tir.generic.__op_priority__: + tvm.tir.generic.__op_priority__ = __op_priority__ + tvm.tir.generic.add = _make_bop(_broadcast.add, tvm.tir.generic.add) + tvm.tir.generic.subtract = _make_bop(_broadcast.subtract, tvm.tir.generic.subtract) + tvm.tir.generic.multiply = _make_bop(_broadcast.multiply, tvm.tir.generic.multiply) + tvm.tir.generic.divide = _make_bop(_broadcast.divide, tvm.tir.generic.divide) + tvm.tir.generic.cast = _math.cast _bind_generic_ops() diff --git a/topi/python/topi/intel_graphics/depthwise_conv2d.py b/topi/python/topi/intel_graphics/depthwise_conv2d.py index 618ef50481b9c..a54941315a1a3 100644 --- a/topi/python/topi/intel_graphics/depthwise_conv2d.py +++ b/topi/python/topi/intel_graphics/depthwise_conv2d.py @@ -168,7 +168,7 @@ def _schedule(temp, Filter, DepthwiseConv2d): b, h, w, c = s[Output].op.axis # num_thread here could be 728, it is larger than cuda.max_num_threads - num_thread = tvm.ir_pass.Simplify(temp.shape[3]).value + num_thread = tvm.tir.ir_pass.Simplify(temp.shape[3]).value target = tvm.target.Target.current() if target and (target.target_name not in ["cuda", "nvptx"]): num_thread = target.max_num_threads diff --git a/topi/python/topi/math.py b/topi/python/topi/math.py index 0fceaadfc09c3..5b6b9ab8da754 100644 --- a/topi/python/topi/math.py +++ b/topi/python/topi/math.py @@ -22,7 +22,7 @@ from . import cpp -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def identity(x): """Take identity of input x. @@ -40,7 +40,7 @@ def identity(x): return te.compute(x.shape, lambda *i: x(*i)) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def negative(x): """Take negation of input x. @@ -58,7 +58,7 @@ def negative(x): return te.compute(x.shape, lambda *i: -x(*i)) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def exp(x): """Take exponential of input x. @@ -75,7 +75,7 @@ def exp(x): return te.compute(x.shape, lambda *i: te.exp(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def erf(x): """Take gauss error function of input x. @@ -92,7 +92,7 @@ def erf(x): return te.compute(x.shape, lambda *i: te.erf(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def tanh(x): """Take hyperbolic tanh of input x. @@ -109,7 +109,7 @@ def tanh(x): return te.compute(x.shape, lambda *i: te.tanh(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def cos(x): """Take cos of input x. @@ -126,7 +126,7 @@ def cos(x): return te.compute(x.shape, lambda *i: te.cos(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def sin(x): """Take sin of input x. @@ -143,7 +143,7 @@ def sin(x): return te.compute(x.shape, lambda *i: te.sin(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def atan(x): """Take atan of input x. @@ -159,7 +159,7 @@ def atan(x): """ return te.compute(x.shape, lambda *i: te.atan(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def floor(x): """Take floor of input x. @@ -176,7 +176,7 @@ def floor(x): return te.compute(x.shape, lambda *i: te.floor(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def ceil(x): """Take ceil of input x. @@ -209,7 +209,7 @@ def sign(x): return cpp.sign(x) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def trunc(x): """Take truncated value of the input of x, element-wise. @@ -226,7 +226,7 @@ def trunc(x): return te.compute(x.shape, lambda *i: te.trunc(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def abs(x): """Take absolute value of the input of x, element-wise. @@ -243,7 +243,7 @@ def abs(x): return te.compute(x.shape, lambda *i: te.abs(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def isnan(x): """Check if value of x is NaN, element-wise. @@ -260,7 +260,7 @@ def isnan(x): return te.compute(x.shape, lambda *i: te.isnan(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def round(x): """Round elements of x to nearest integer. @@ -277,7 +277,7 @@ def round(x): return te.compute(x.shape, lambda *i: te.round(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def log(x): """Take logarithm of input x. @@ -294,7 +294,7 @@ def log(x): return te.compute(x.shape, lambda *i: te.log(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def sqrt(x): """Take square root of input x. @@ -311,7 +311,7 @@ def sqrt(x): return te.compute(x.shape, lambda *i: te.sqrt(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def rsqrt(x): """Take inverse square root of input x. @@ -328,7 +328,7 @@ def rsqrt(x): return te.compute(x.shape, lambda *i: te.rsqrt(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def sigmoid(x): """Take sigmoid tanh of input x. @@ -345,7 +345,7 @@ def sigmoid(x): return te.compute(x.shape, lambda *i: te.sigmoid(x(*i))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def left_shift(x, n): """Take n bits left shift of input x. @@ -364,7 +364,7 @@ def left_shift(x, n): return te.compute(x.shape, lambda *i: x(*i) << n) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def right_shift(x, n): """Take n bits right shift of input x. @@ -383,7 +383,7 @@ def right_shift(x, n): return te.compute(x.shape, lambda *i: x(*i) >> n) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def clip(x, a_min, a_max): """Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. diff --git a/topi/python/topi/nn/dilate.py b/topi/python/topi/nn/dilate.py index eab612df9ca14..f628fadee96e5 100644 --- a/topi/python/topi/nn/dilate.py +++ b/topi/python/topi/nn/dilate.py @@ -47,7 +47,7 @@ def dilate(data, strides, name="DilatedInput"): n, len(strides))) out_shape = tuple( - tvm.ir_pass.Simplify((data.shape[i] - 1) * strides[i] + 1) for i in range(n)) + tvm.tir.ir_pass.Simplify((data.shape[i] - 1) * strides[i] + 1) for i in range(n)) def _dilate(*indices): not_zero = [] diff --git a/topi/python/topi/nn/elemwise.py b/topi/python/topi/nn/elemwise.py index 292dbca71b4d6..1315a48cc0ef5 100644 --- a/topi/python/topi/nn/elemwise.py +++ b/topi/python/topi/nn/elemwise.py @@ -21,7 +21,7 @@ from .. import tag from ..util import get_const_int -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def relu(x): """Take relu of input x. @@ -38,7 +38,7 @@ def relu(x): return te.compute(x.shape, lambda *i: tvm.te.max(x(*i), tvm.tir.const(0, x.dtype))) -@tvm.tag_scope(tag=tag.ELEMWISE) +@tvm.te.tag_scope(tag=tag.ELEMWISE) def leaky_relu(x, alpha): """Take leaky relu of input x. @@ -61,7 +61,7 @@ def _compute(*indices): return tvm.tir.Select(value > 0, value, value * calpha) return te.compute(x.shape, _compute) -@tvm.tag_scope(tag=tag.BROADCAST) +@tvm.te.tag_scope(tag=tag.BROADCAST) def prelu(x, slope, axis=1): """ PReLU. It accepts two arguments: an input ``x`` and a weight array ``W`` diff --git a/topi/python/topi/nn/fifo_buffer.py b/topi/python/topi/nn/fifo_buffer.py index 32008855bd129..de283e0de4eba 100644 --- a/topi/python/topi/nn/fifo_buffer.py +++ b/topi/python/topi/nn/fifo_buffer.py @@ -22,7 +22,7 @@ from .. import tag from ..transform import concatenate, strided_slice -@tvm.tag_scope(tag=tag.INJECTIVE+",fifo_buffer") +@tvm.te.tag_scope(tag=tag.INJECTIVE+",fifo_buffer") def fifo_buffer(data, buffer, axis): """ FIFO buffer to enable computation reuse in CNNs with sliding indow input diff --git a/topi/python/topi/nn/flatten.py b/topi/python/topi/nn/flatten.py index 63636b98c138e..11fe0d854cb26 100644 --- a/topi/python/topi/nn/flatten.py +++ b/topi/python/topi/nn/flatten.py @@ -20,7 +20,7 @@ from tvm import te from .. import tag -@tvm.tag_scope(tag=tag.INJECTIVE) +@tvm.te.tag_scope(tag=tag.INJECTIVE) def flatten(data): """Flattens the input array into a 2-D array by collapsing the higher dimensions. diff --git a/topi/python/topi/nn/mapping.py b/topi/python/topi/nn/mapping.py index 101bbd80087c2..12558a8c33a2a 100644 --- a/topi/python/topi/nn/mapping.py +++ b/topi/python/topi/nn/mapping.py @@ -21,7 +21,7 @@ from tvm import te from .. import tag -@tvm.tag_scope(tag=tag.BROADCAST) +@tvm.te.tag_scope(tag=tag.BROADCAST) def scale_shift_nchw(Input, Scale, Shift): """Batch normalization operator in inference. @@ -44,7 +44,7 @@ def scale_shift_nchw(Input, Scale, Shift): return te.compute(Input.shape, lambda b, c, i, j: Input[b, c, i, j] * Scale[c] + Shift[c], name='ScaleShift') -@tvm.tag_scope(tag=tag.BROADCAST) +@tvm.te.tag_scope(tag=tag.BROADCAST) def scale_shift_nhwc(Input, Scale, Shift): """Batch normalization operator in inference. diff --git a/topi/python/topi/nn/pad.py b/topi/python/topi/nn/pad.py index 6617c3aa8237a..8fe53374f2b56 100644 --- a/topi/python/topi/nn/pad.py +++ b/topi/python/topi/nn/pad.py @@ -21,7 +21,7 @@ from ..util import equal_const_int from .. import tag -@tvm.tag_scope(tag=tag.INJECTIVE+",pad") +@tvm.te.tag_scope(tag=tag.INJECTIVE+",pad") def pad(data, pad_before, pad_after=None, pad_value=0.0, name="PadInput"): """Pad Input with zeros. @@ -56,9 +56,9 @@ def pad(data, pad_before, pad_after=None, pad_value=0.0, name="PadInput"): raise ValueError("Input dimension and pad_after dismatch : %d vs %d" % ( n, len(pad_before))) out_shape = tuple( - tvm.ir_pass.Simplify( + tvm.tir.ir_pass.Simplify( (data.shape[i] + pad_before[i] + pad_after[i])) for i in range(n)) - pad_value = (pad_value if isinstance(pad_value, tvm.expr.PrimExpr) + pad_value = (pad_value if isinstance(pad_value, tvm.tir.PrimExpr) else tvm.tir.const(pad_value, data.dtype)) def _pad(*indices): not_zero = [] @@ -77,7 +77,7 @@ def _pad(*indices): return te.compute(out_shape, _pad, name=name) -@tvm.tag_scope(tag=tag.INJECTIVE + ",pad") +@tvm.te.tag_scope(tag=tag.INJECTIVE + ",pad") def mirror_pad(data, pad_before, pad_after=None, @@ -116,7 +116,7 @@ def mirror_pad(data, raise ValueError("Input dimension and pad_after dismatch : %d vs %d" % (n, len(pad_before))) out_shape = tuple( - tvm.ir_pass.Simplify((data.shape[i] + pad_before[i] + pad_after[i])) + tvm.tir.ir_pass.Simplify((data.shape[i] + pad_before[i] + pad_after[i])) for i in range(n)) assert mode in ('SYMMETRIC', 'REFLECT') mode = int(mode == 'SYMMETRIC') diff --git a/topi/python/topi/nn/softmax.py b/topi/python/topi/nn/softmax.py index 8765a3558c366..c414372ade935 100644 --- a/topi/python/topi/nn/softmax.py +++ b/topi/python/topi/nn/softmax.py @@ -20,7 +20,7 @@ import tvm from tvm import te -@tvm.tag_scope(tag='softmax_output') +@tvm.te.tag_scope(tag='softmax_output') def softmax(x, axis=-1): """Perform softmax activation on the data @@ -78,7 +78,7 @@ def _normalize(exp, expsum, *indices): name='T_softmax_norm', attrs={"axis" : axis}) -@tvm.tag_scope(tag='log_softmax_output') +@tvm.te.tag_scope(tag='log_softmax_output') def log_softmax(x): """Perform log softmax activation on the data diff --git a/topi/python/topi/nn/sparse.py b/topi/python/topi/nn/sparse.py index c4f686e08d7df..b37bac2a213ae 100644 --- a/topi/python/topi/nn/sparse.py +++ b/topi/python/topi/nn/sparse.py @@ -158,7 +158,7 @@ def sparse_transpose(sparse_data, sparse_indices, sparse_indptr): def _csr_transpose_ir(data, indices, indptr, out_data, out_indices, out_indptr): """define ir for csr_transpose""" - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() data_ptr = irb.buffer_ptr(data) indices_ptr = irb.buffer_ptr(indices) diff --git a/topi/python/topi/sparse/csrmm.py b/topi/python/topi/sparse/csrmm.py index dc7afec4b2cac..8dc08949505d2 100644 --- a/topi/python/topi/sparse/csrmm.py +++ b/topi/python/topi/sparse/csrmm.py @@ -57,7 +57,7 @@ def csrmm_default(data, indices, indptr, weight, bias=None): _, N = weight.shape def csrmm_default_ir(data, indices, indptr, weight, out): """define ir for csrmm""" - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() data_ptr = irb.buffer_ptr(data) indices_ptr = irb.buffer_ptr(indices) indptr_ptr = irb.buffer_ptr(indptr) diff --git a/topi/python/topi/sparse/csrmv.py b/topi/python/topi/sparse/csrmv.py index 82cc0c2fa14cb..c0aa1b41449cf 100644 --- a/topi/python/topi/sparse/csrmv.py +++ b/topi/python/topi/sparse/csrmv.py @@ -54,7 +54,7 @@ def csrmv_default(data, indices, indptr, weight, bias=None): batch = indptr.shape[0]-1 def csrmv_default_ir(data, indices, indptr, weight, out): """define ir for csrmv""" - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() data_ptr = irb.buffer_ptr(data) indices_ptr = irb.buffer_ptr(indices) indptr_ptr = irb.buffer_ptr(indptr) diff --git a/topi/python/topi/sparse/dense.py b/topi/python/topi/sparse/dense.py index c3099b7df367b..9f01405b14f39 100644 --- a/topi/python/topi/sparse/dense.py +++ b/topi/python/topi/sparse/dense.py @@ -59,7 +59,7 @@ def dense_si(data, indices, indptr, weight, bias=None): def dense_default_ir(data, indices, indptr, weight, out): """Define IR for Dense""" dtype = data.dtype - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() data_ptr = irb.buffer_ptr(data) indices_ptr = irb.buffer_ptr(indices) indptr_ptr = irb.buffer_ptr(indptr) @@ -127,7 +127,7 @@ def dense_sw(data, w_data, w_indices, w_indptr, bias=None): def dense_default_ir(data, w_data, w_indices, w_indptr, out): """Define IR for Dense""" dtype = data.dtype - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() data_ptr = irb.buffer_ptr(data) w_data_ptr = irb.buffer_ptr(w_data) w_indices_ptr = irb.buffer_ptr(w_indices) diff --git a/topi/python/topi/transform.py b/topi/python/topi/transform.py index 49c71bd3320d1..036191bc6ead6 100644 --- a/topi/python/topi/transform.py +++ b/topi/python/topi/transform.py @@ -158,7 +158,7 @@ def strided_slice(a, begin, end, strides=None): strides = [] return cpp.strided_slice(a, begin, end, strides) -@tvm.tag_scope(tag=tag.INJECTIVE+",strided_set") +@tvm.te.tag_scope(tag=tag.INJECTIVE+",strided_set") def strided_set(a, v, begin, end, strides=None): """Set slice of an array. diff --git a/topi/python/topi/util.py b/topi/python/topi/util.py index 94c6068c7b216..b4e772991ebbd 100644 --- a/topi/python/topi/util.py +++ b/topi/python/topi/util.py @@ -100,9 +100,9 @@ def get_const_int(expr): """ if isinstance(expr, Integral): return expr - if not isinstance(expr, tvm.expr.IntImm): - expr = tvm.ir_pass.Simplify(expr) - if not isinstance(expr, tvm.expr.IntImm): + if not isinstance(expr, tvm.tir.IntImm): + expr = tvm.tir.ir_pass.Simplify(expr) + if not isinstance(expr, tvm.tir.IntImm): raise ValueError("Expect value to be constant int") return int(expr.value) @@ -122,9 +122,9 @@ def get_const_float(expr): """ if isinstance(expr, float): return float(expr) - if not isinstance(expr, tvm.expr.FloatImm): - expr = tvm.ir_pass.Simplify(expr) - if not isinstance(expr, tvm.expr.FloatImm): + if not isinstance(expr, tvm.tir.FloatImm): + expr = tvm.tir.ir_pass.Simplify(expr) + if not isinstance(expr, tvm.tir.FloatImm): raise ValueError("Expect value to be constant float") return float(expr.value) @@ -144,9 +144,9 @@ def equal_const_int(expr, value): """ if isinstance(expr, Integral): return expr == value - if not isinstance(expr, tvm.expr.IntImm): - expr = tvm.ir_pass.Simplify(expr) - if not isinstance(expr, tvm.expr.IntImm): + if not isinstance(expr, tvm.tir.IntImm): + expr = tvm.tir.ir_pass.Simplify(expr) + if not isinstance(expr, tvm.tir.IntImm): return False return expr.value == value @@ -166,11 +166,11 @@ def get_const_tuple(in_tuple): """ ret = [] for elem in in_tuple: - if isinstance(elem, tvm.expr.Var): + if isinstance(elem, tvm.tir.Var): ret.append(elem) - elif not isinstance(elem, (tvm.expr.IntImm, int)): - elem = tvm.ir_pass.Simplify(elem) - if not isinstance(elem, tvm.expr.IntImm): + elif not isinstance(elem, (tvm.tir.IntImm, int)): + elem = tvm.tir.ir_pass.Simplify(elem) + if not isinstance(elem, tvm.tir.IntImm): ret.append(elem) else: ret.append(get_const_int(elem)) @@ -206,7 +206,7 @@ def simplify(expr): out : Expr or int The simplified output """ - return tvm.ir_pass.Simplify(expr) if isinstance(expr, tvm.expr.PrimExpr) else expr + return tvm.tir.ir_pass.Simplify(expr) if isinstance(expr, tvm.tir.PrimExpr) else expr def ravel_index(indices, shape): @@ -214,7 +214,7 @@ def ravel_index(indices, shape): Parameters ---------- - indices : tuple of int or tvm.expr.IntImm + indices : tuple of int or tvm.tir.IntImm The input coordinates shape : tuple of int @@ -239,7 +239,7 @@ def unravel_index(idx, shape): Parameters ---------- - idx : int or tvm.expr.IntImm + idx : int or tvm.tir.IntImm The 1D index shape : tuple of int @@ -247,7 +247,7 @@ def unravel_index(idx, shape): Returns ------- - indices : tuple of int or tvm.expr.IntImm + indices : tuple of int or tvm.tir.IntImm Corresponding coordinate of the 1D index """ idxd = tvm.tir.indexdiv @@ -283,7 +283,7 @@ def select_array(i, j): now = tvm.tir.const(0.0, dtype) for ii in range(row): for jj in range(col): - now = tvm.expr.Select(tvm.tir.all(idxm(i, row) == ii, idxm(j, col) == jj), + now = tvm.tir.Select(tvm.tir.all(idxm(i, row) == ii, idxm(j, col) == jj), tvm.tir.const(matrix[ii][jj], dtype), now) return now @@ -378,12 +378,12 @@ def within_index(b, e, s, i): bool expression that is True is the array position would be selected by the index and False otherwise """ - bc = tvm.expr.Select(s < 0, i <= e, i < b) - ec = tvm.expr.Select(s < 0, i > b, i >= e) + bc = tvm.tir.Select(s < 0, i <= e, i < b) + ec = tvm.tir.Select(s < 0, i > b, i >= e) ss = te.if_then_else(s < 0, ((i - e) + (e % te.abs(s)) + 1) % te.abs(s), (i - b) % s) - return tvm.expr.Select(tvm.expr.Or(bc, ec), tvm.tir.const(False), ss.equal(0)) + return tvm.tir.Select(tvm.tir.Or(bc, ec), tvm.tir.const(False), ss.equal(0)) def make_idx(b, e, s, z, i): @@ -415,16 +415,16 @@ def make_idx(b, e, s, z, i): postion: Expr int expression that corresponds to an array position in the selection. """ - bc = tvm.expr.Select(s < 0, i <= e, i < b) - ec = tvm.expr.Select(s < 0, i > b, i >= e) + bc = tvm.tir.Select(s < 0, i <= e, i < b) + ec = tvm.tir.Select(s < 0, i > b, i >= e) # Clamp to array size - b = tvm.expr.Select(z < b, z - 1, b) + b = tvm.tir.Select(z < b, z - 1, b) ss = tvm.tir.if_then_else(s < 0, (b - i) // te.abs(s), (i - b) // s) - return tvm.tir.if_then_else(tvm.expr.Or(bc, ec), 88, ss) + return tvm.tir.if_then_else(tvm.tir.Or(bc, ec), 88, ss) def is_empty_shape(shape): diff --git a/topi/python/topi/vision/rcnn/proposal.py b/topi/python/topi/vision/rcnn/proposal.py index 3d2c09e884e60..23bd24d22fb3b 100644 --- a/topi/python/topi/vision/rcnn/proposal.py +++ b/topi/python/topi/vision/rcnn/proposal.py @@ -104,7 +104,7 @@ def predict_bbox_ir(cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, r """ batch, num_anchors, height, width = get_const_tuple(cls_prob_buf.shape) num_anchors //= 2 - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() p_score = ib.buffer_ptr(cls_prob_buf) p_delta = ib.buffer_ptr(bbox_pred_buf) @@ -184,7 +184,7 @@ def argsort_ir(data_buf, out_index_buf): The result IR statement. """ batch, num_bbox = get_const_tuple(data_buf.shape) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() p_data = ib.buffer_ptr(data_buf) index_out = ib.buffer_ptr(out_index_buf) temp_data = ib.allocate("float32", (1,), name="temp_data", scope="local") @@ -246,7 +246,7 @@ def calculate_overlap(out_tensor, box_a_idx, box_b_idx): return i / u batch, num_bbox = get_const_tuple(out_buf.shape) - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() p_data = ib.buffer_ptr(sorted_bbox_buf) p_out = ib.buffer_ptr(out_buf) with ib.for_range(0, batch, for_type="unroll", name="n") as b: @@ -285,7 +285,7 @@ def prepare_output_ir(sorted_bbox_buf, remove_mask_buf, out_buf): """ batch, num_bbox, _ = get_const_tuple(sorted_bbox_buf.shape) rpn_post_nms_top_n = get_const_int(out_buf.shape[0]) // batch - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() i = ib.allocate('int32', (batch,), 'i', scope='local') p_sorted_bbox = ib.buffer_ptr(sorted_bbox_buf) p_remove = ib.buffer_ptr(remove_mask_buf) diff --git a/topi/python/topi/x86/tensor_intrin.py b/topi/python/topi/x86/tensor_intrin.py index f3e39c8198131..955b6b4ad280d 100644 --- a/topi/python/topi/x86/tensor_intrin.py +++ b/topi/python/topi/x86/tensor_intrin.py @@ -82,7 +82,7 @@ def dot_16x1x16_uint8_int8_int32_skylake(): def _intrin_func(ins, outs): def _instr(index): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore(0, tvm.tir.const(0, 'int32x16'))) return ib.get() @@ -110,8 +110,8 @@ def _instr(index): # body, reset, update return _instr(0), _instr(1), _instr(2) - with tvm.build_config(offset_factor=1, partition_const_loop=True): - return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) + with tvm.target.build_config(offset_factor=1, partition_const_loop=True): + return te.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) def dot_16x1x16_uint8_int8_int16(): @@ -165,7 +165,7 @@ def dot_16x1x16_uint8_int8_int16(): def _intrin_func(ins, outs): def _instr(index): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() if index == 1: for i in range(4): ib.emit(outs[0].vstore([i*32], tvm.tir.const(0, 'int16x32'))) @@ -192,8 +192,8 @@ def _instr(index): # body, reset, update return _instr(0), _instr(1), _instr(2) - with tvm.build_config(offset_factor=1, partition_const_loop=True): - return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) + with tvm.target.build_config(offset_factor=1, partition_const_loop=True): + return te.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) def dot_16x1x16_uint8_int8_int32_cascadelake(): @@ -245,7 +245,7 @@ def dot_16x1x16_uint8_int8_int32_cascadelake(): def _intrin_func(ins, outs): def _instr(index): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore(0, tvm.tir.const(0, 'int32x16'))) return ib.get() @@ -287,5 +287,5 @@ def _instr(index): # body, reset, update return _instr(0), _instr(1), _instr(2) - with tvm.build_config(offset_factor=1, partition_const_loop=True): - return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) + with tvm.target.build_config(offset_factor=1, partition_const_loop=True): + return te.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) diff --git a/topi/recipe/conv/depthwise_conv2d_test.py b/topi/recipe/conv/depthwise_conv2d_test.py index 5498645f59920..a2b527356662c 100644 --- a/topi/recipe/conv/depthwise_conv2d_test.py +++ b/topi/recipe/conv/depthwise_conv2d_test.py @@ -129,7 +129,7 @@ def check_device(device): print("success") for device in ['cuda', 'opencl', 'rocm']: - with tvm.build_config(auto_unroll_max_step=128, + with tvm.target.build_config(auto_unroll_max_step=128, unroll_explicit=device == 'rocm', detect_global_barrier=False, restricted_func=True): @@ -218,7 +218,7 @@ def check_device(device): print("success") for device in ['cuda', 'opencl', 'rocm']: - with tvm.build_config(auto_unroll_max_step=128, + with tvm.target.build_config(auto_unroll_max_step=128, detect_global_barrier=False, restricted_func=True): check_device(device) diff --git a/topi/recipe/conv/test_conv2d_hwcn_map.py b/topi/recipe/conv/test_conv2d_hwcn_map.py index 47e1601f4487e..69bda79555a99 100644 --- a/topi/recipe/conv/test_conv2d_hwcn_map.py +++ b/topi/recipe/conv/test_conv2d_hwcn_map.py @@ -77,7 +77,7 @@ def check_device(device): w = tvm.nd.array(w_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx) - with tvm.build_config(auto_unroll_max_step=128, + with tvm.target.build_config(auto_unroll_max_step=128, unroll_explicit=device == 'rocm'): func1 = tvm.build(s1, [A, W, B], device) func1(a, w, b) diff --git a/topi/recipe/gemm/cuda_gemm_square.py b/topi/recipe/gemm/cuda_gemm_square.py index 6e482b044a3c7..196bf72e23a33 100644 --- a/topi/recipe/gemm/cuda_gemm_square.py +++ b/topi/recipe/gemm/cuda_gemm_square.py @@ -146,7 +146,7 @@ def check_device(device): print("average time cost of %d runs = %g ms, %g GFLOPS." % (num_runs, t * 1e3, GFLOPS)) for device in ["cuda", "opencl", "rocm", "nvptx", "vulkan"]: - with tvm.build_config(auto_unroll_max_step=128, + with tvm.target.build_config(auto_unroll_max_step=128, unroll_explicit=(device != "cuda")): check_device(device) diff --git a/topi/recipe/reduce/test_reduce_map.py b/topi/recipe/reduce/test_reduce_map.py index 96f94305b5b4a..31f9bae7426c7 100644 --- a/topi/recipe/reduce/test_reduce_map.py +++ b/topi/recipe/reduce/test_reduce_map.py @@ -64,7 +64,7 @@ def test_reduce_map(in_shape, axis, keepdims, type="sum", test_id=0): else: raise NotImplementedError s = topi.cuda.schedule_reduce(B) - with tvm.build_config(auto_unroll_max_step=16, + with tvm.target.build_config(auto_unroll_max_step=16, auto_unroll_min_depth=0): fcuda = tvm.build(s, [A, B], "cuda", name="sum") diff --git a/topi/recipe/rnn/lstm.py b/topi/recipe/rnn/lstm.py index 172362fdda148..4076eb6a4614c 100644 --- a/topi/recipe/rnn/lstm.py +++ b/topi/recipe/rnn/lstm.py @@ -188,7 +188,7 @@ def check_device(target): print("Time cost=%g" % eval_result.mean) # set unroll_explicit for more readable code. - with tvm.build_config( + with tvm.target.build_config( detect_global_barrier=DETECT_GLOBAL_BARRIER, auto_unroll_max_step=128, unroll_explicit=False): diff --git a/topi/recipe/rnn/matexp.py b/topi/recipe/rnn/matexp.py index 94ec5bc392f1d..9991895ec8dc3 100644 --- a/topi/recipe/rnn/matexp.py +++ b/topi/recipe/rnn/matexp.py @@ -127,7 +127,7 @@ def rnn_matexp(): s[SS].bind(tx, thread_x) def check_device(target): - with tvm.build_config( + with tvm.target.build_config( detect_global_barrier=detect_global_barrier, auto_unroll_max_step=128, unroll_explicit=False): diff --git a/tutorials/dev/low_level_custom_pass.py b/tutorials/dev/low_level_custom_pass.py index f9b3ea3c8245c..298b24f6d046e 100644 --- a/tutorials/dev/low_level_custom_pass.py +++ b/tutorials/dev/low_level_custom_pass.py @@ -72,7 +72,7 @@ # # IR Visitor # ~~~~~~~~~~ -# We can use ``tvm.ir_pass.PostOrderVisit(stmt, func)`` to gather information from the Halide IR. +# We can use ``tvm.tir.ir_pass.PostOrderVisit(stmt, func)`` to gather information from the Halide IR. # ``func`` is a function callback. This function will be called before exiting the current IR node, # i.e. post-order visit. Then we leverage side effects to store the result of IR visit, because the # return value of ``func`` will be ignored. @@ -113,7 +113,7 @@ def vectorize8(op): extent = op.extent.value name = op.loop_var.name lo, li = te.var(name + '.outer'), te.var(name + '.inner') - body = tvm.ir_pass.Substitute(op.body, {op.loop_var: lo * 8 + li}) + body = tvm.tir.ir_pass.Substitute(op.body, {op.loop_var: lo * 8 + li}) body = tvm.tir.For(li, 0, 8, tvm.tir.For.Vectorized, 0, body) body = tvm.tir.For(lo, 0, extent // 8, tvm.tir.For.Serial, 0, body) return body @@ -122,14 +122,14 @@ def vectorize8(op): def vectorize(stmt): global loops - tvm.ir_pass.PostOrderVisit(stmt, find_width8) + tvm.tir.ir_pass.PostOrderVisit(stmt, find_width8) if not loops: return stmt # The last list arugment indicates what kinds of nodes will be transformed. # Thus, in this case only `For` nodes will call `vectorize8` - stmt = tvm.ir_pass.IRTransform(stmt, None, vectorize8, ['For']) + stmt = tvm.tir.ir_pass.IRTransform(stmt, None, vectorize8, ['For']) return stmt @@ -159,15 +159,15 @@ def vectorize(stmt): # Thus, a good place to put this transformation pass is just after Phase 1. # -with tvm.build_config(add_lower_pass=[(1, vectorize)]) as cfg: +with tvm.target.build_config(add_lower_pass=[(1, vectorize)]) as cfg: print(tvm.lower(sch, [a, b, c], simple_mode=True)) ##################################################################### # Quick View # ---------- # This tutorial gives a quick view of writing a customized IR transformation pass: -# - Use ``tvm.ir_pass.PostOrderVisit`` to gather information on each IR nodes. -# - Use ``tvm.ir_pass.IRTransform`` to transform IR nodes. +# - Use ``tvm.tir.ir_pass.PostOrderVisit`` to gather information on each IR nodes. +# - Use ``tvm.tir.ir_pass.IRTransform`` to transform IR nodes. # - Wrap up two above to write an IR-transformation function. -# - Use ``tvm.build_config`` to put this function to TVM lowering pass +# - Use ``tvm.target.build_config`` to put this function to TVM lowering pass # diff --git a/tutorials/language/tensorize.py b/tutorials/language/tensorize.py index d80a7ca584450..4290606268375 100644 --- a/tutorials/language/tensorize.py +++ b/tutorials/language/tensorize.py @@ -106,7 +106,7 @@ def intrin_gemv(m, l): offset_factor=1, strides=[1]) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() aa, bb = ins cc = outs[0] ib.emit(tvm.tir.call_extern("int32", "gemv_update", @@ -115,11 +115,11 @@ def intrin_func(ins, outs): bb.access_ptr("r"), m, l, bb.strides[0])) return ib.get() - with tvm.build_config(offset_factor=1): - return tvm.decl_tensor_intrin(c.op, intrin_func, binds={a: Ab, b: Bb, c: Cb}) + with tvm.target.build_config(offset_factor=1): + return te.decl_tensor_intrin(c.op, intrin_func, binds={a: Ab, b: Bb, c: Cb}) ###################################################################### -# Here :code:`tvm.decl_tensor_intrin` declares how to execute the computation :code:`c.op`. +# Here :code:`te.decl_tensor_intrin` declares how to execute the computation :code:`c.op`. # Our implementation simply takes the inputs and outputs, # converts them to pointers and emit an external function call. # Note that tensorization requires user to specify :code:`offset_factor`, @@ -255,7 +255,7 @@ def intrin_func(ins, outs): aa, bb = ins cc = outs[0] def _body(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_extern("int32", "gemv_update", cc.access_ptr("w"), aa.access_ptr("r"), @@ -263,14 +263,14 @@ def _body(): m, l, bb.strides[0])) return ib.get() def _reduce_reset(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_extern("int32", "gemv_reset", cc.access_ptr("w"), m)) return ib.get() def _reduce_update(): return _body() return _body(), _reduce_reset(), _reduce_update() - with tvm.build_config(offset_factor=1): - return tvm.decl_tensor_intrin(c.op, intrin_func, binds={a: Ab, b: Bb, c: Cb}) + with tvm.target.build_config(offset_factor=1): + return te.decl_tensor_intrin(c.op, intrin_func, binds={a: Ab, b: Bb, c: Cb}) ###################################################################### # Note that :code:`intrin_func` now returns a triplet: diff --git a/tutorials/optimize/opt_conv_tensorcore.py b/tutorials/optimize/opt_conv_tensorcore.py index 2fa4fd7ef33b5..44b9de3b99ffe 100644 --- a/tutorials/optimize/opt_conv_tensorcore.py +++ b/tutorials/optimize/opt_conv_tensorcore.py @@ -159,7 +159,7 @@ def intrin_wmma_load_matrix(scope): BC = tvm.tir.decl_buffer(C.shape, C.dtype, scope=scope, data_alignment=32, offset_factor=256) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] @@ -168,7 +168,7 @@ def intrin_func(ins, outs): BA.access_ptr('r'), n, 'row_major')) return ib.get() - return tvm.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) + return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def intrin_wmma_gemm(): @@ -189,12 +189,12 @@ def intrin_func(ins, outs): BC, = outs def init(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_intrin('handle', 'tvm_fill_fragment', BC.data, n, n, n, BC.elem_offset // 256, 0.0)) return ib.get() def update(): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() ib.emit(tvm.tir.call_intrin('handle', 'tvm_mma_sync', BC.data, BC.elem_offset // 256, BA.data, BA.elem_offset // 256, @@ -204,7 +204,7 @@ def update(): return update(), init(), update() - return tvm.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, B: BB, C: BC}) + return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, B: BB, C: BC}) def intrin_wmma_store_matrix(): @@ -215,7 +215,7 @@ def intrin_wmma_store_matrix(): BC = tvm.tir.decl_buffer(C.shape, C.dtype, scope='global', data_alignment=32, offset_factor=256) def intrin_func(ins, outs): - ib = tvm.ir_builder.create() + ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] ib.emit(tvm.tir.call_intrin('handle', 'tvm_store_matrix_sync', @@ -223,7 +223,7 @@ def intrin_func(ins, outs): BC.access_ptr('w'), n, 'row_major')) return ib.get() - return tvm.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) + return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) ############################################################################### # Scheduling the Computation @@ -331,7 +331,7 @@ def intrin_func(ins, outs): ctx = tvm.gpu(0) if nvcc.have_tensorcore(ctx.compute_version): - with tvm.build_config(auto_unroll_max_step=16): + with tvm.target.build_config(auto_unroll_max_step=16): func = tvm.build(s, [A, W, Conv], 'cuda') a_np = np.random.uniform(size=data_shape).astype(A.dtype) w_np = np.random.uniform(size=kernel_shape).astype(W.dtype) diff --git a/tutorials/optimize/opt_matmul_auto_tensorcore.py b/tutorials/optimize/opt_matmul_auto_tensorcore.py index ce983fba660ef..490ccdb9373aa 100644 --- a/tutorials/optimize/opt_matmul_auto_tensorcore.py +++ b/tutorials/optimize/opt_matmul_auto_tensorcore.py @@ -287,7 +287,7 @@ def tune_and_evaluate(M, N, L, dtype, layout): print(best_config) with autotvm.apply_history_best('matmul.log'): with tvm.target.create("cuda"): - with tvm.build_config(): + with tvm.target.build_config(): s, arg_bufs = test_gemm(N, L, M, dtype, layout) print(tvm.lower(s, arg_bufs, simple_mode=True)) func = tvm.build(s, arg_bufs) diff --git a/vta/python/vta/build_module.py b/vta/python/vta/build_module.py index 8633a9b07156c..4c33d36d69b56 100644 --- a/vta/python/vta/build_module.py +++ b/vta/python/vta/build_module.py @@ -24,13 +24,13 @@ def lift_coproc_scope(x): """Lift coprocessings cope to the """ x = ir_pass.lift_alloc_to_scope_begin(x) - x = tvm.ir_pass.LiftAttrScope(x, "coproc_scope", False) + x = tvm.tir.ir_pass.LiftAttrScope(x, "coproc_scope", False) return x def early_rewrite(stmt): """Try to do storage rewrite in early pass.""" try: - return tvm.ir_pass.StorageRewrite(stmt) + return tvm.tir.ir_pass.StorageRewrite(stmt) except tvm.error.TVMError: return stmt @@ -71,17 +71,17 @@ def add_debug(stmt): (1, ir_pass.inject_dma_intrin), (1, ir_pass.inject_skip_copy), (1, ir_pass.annotate_alu_coproc_scope), - (1, lambda x: tvm.ir_pass.LiftAttrScope(x, "coproc_uop_scope", True)), + (1, lambda x: tvm.tir.ir_pass.LiftAttrScope(x, "coproc_uop_scope", True)), (1, lift_coproc_scope), (1, ir_pass.inject_coproc_sync), (1, early_rewrite)] if debug_flag: pass_list.append((1, add_debug)) pass_list.append((2, ir_pass.inject_alu_intrin)) - pass_list.append((3, tvm.ir_pass.LowerStorageAccessInfo)) + pass_list.append((3, tvm.tir.ir_pass.LowerStorageAccessInfo)) pass_list.append((3, ir_pass.fold_uop_loop)) pass_list.append((3, ir_pass.cpu_access_rewrite)) - return tvm.build_config(add_lower_pass=pass_list, **kwargs) + return tvm.target.build_config(add_lower_pass=pass_list, **kwargs) def lower(*args, **kwargs): diff --git a/vta/python/vta/intrin.py b/vta/python/vta/intrin.py index b1ed7a13fa622..407fa96164c0a 100644 --- a/vta/python/vta/intrin.py +++ b/vta/python/vta/intrin.py @@ -75,7 +75,7 @@ def intrin_func(ins, outs): dout = outs[0] def instr(index): """Generate matrix-matrix multiply VTA instruction""" - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() dev = env.dev irb.scope_attr(dev.vta_axis, "coproc_scope", dev.get_task_qid(dev.QID_COMPUTE)) @@ -104,7 +104,7 @@ def instr(index): return (nop, nop, nop) return (instr(0), instr(1), instr(2)) - return tvm.decl_tensor_intrin(out.op, intrin_func, + return te.decl_tensor_intrin(out.op, intrin_func, name="GEMM", binds={inp: inp_layout, wgt: wgt_layout, diff --git a/vta/python/vta/ir_pass.py b/vta/python/vta/ir_pass.py index 723558357e6aa..4f8deff285a64 100644 --- a/vta/python/vta/ir_pass.py +++ b/vta/python/vta/ir_pass.py @@ -83,7 +83,7 @@ def _post_order(op): fail[0] = True return op if gemm_offsets[i] is not None: - if not tvm.ir_pass.Equal(m[0], gemm_offsets[i]): + if not tvm.tir.ir_pass.Equal(m[0], gemm_offsets[i]): fail[0] = True return op args.append(m[1]) @@ -96,14 +96,14 @@ def _post_order(op): raise RuntimeError("unexpected op %s" % op) return op - ret = tvm.ir_pass.IRTransform( + ret = tvm.tir.ir_pass.IRTransform( stmt.body, None, _post_order, ["Call"]) if not fail[0] and all(x is not None for x in gemm_offsets): def _visit(op): if op.same_as(loop_var): fail[0] = True - tvm.ir_pass.PostOrderVisit(ret, _visit) + tvm.tir.ir_pass.PostOrderVisit(ret, _visit) if not fail[0]: begin = tvm.tir.call_extern( "int32", "VTAUopLoopBegin", stmt.extent, *gemm_offsets) @@ -138,7 +138,7 @@ def _do_fold(stmt): return tvm.tir.AttrStmt( stmt.node, stmt.attr_key, stmt.value, body) return None - out = tvm.ir_pass.IRTransform( + out = tvm.tir.ir_pass.IRTransform( stmt_in, _do_fold, None, ["AttrStmt"]) return out @@ -194,7 +194,7 @@ def _post_order(op): new_var = rw_info[buffer_var] return tvm.tir.Store(new_var, op.value, op.index) raise RuntimeError("not reached") - stmt = tvm.ir_pass.IRTransform( + stmt = tvm.tir.ir_pass.IRTransform( stmt_in, None, _post_order, ["Allocate", "Load", "Store"]) for buffer_var, new_var in rw_info.items(): stmt = tvm.tir.LetStmt( @@ -260,7 +260,7 @@ def _post_order(op): if isinstance(op, tvm.tir.For): return _merge_block(lift_stmt.pop() + [op], op.body) raise RuntimeError("not reached") - stmt = tvm.ir_pass.IRTransform( + stmt = tvm.tir.ir_pass.IRTransform( stmt_in, _pre_order, _post_order, ["Allocate", "AttrStmt", "For"]) assert len(lift_stmt) == 1 return _merge_block(lift_stmt[0], stmt) @@ -283,7 +283,7 @@ def _do_fold(stmt): if _match_pragma(stmt, "skip_dma_copy"): return tvm.tir.Evaluate(0) return None - return tvm.ir_pass.IRTransform( + return tvm.tir.ir_pass.IRTransform( stmt_in, _do_fold, None, ["AttrStmt"]) @@ -314,9 +314,9 @@ def _do_fold(stmt): op.loop_var, op.min, 2, op.for_type, op.device_api, op.body) return None - stmt = tvm.ir_pass.IRTransform( + stmt = tvm.tir.ir_pass.IRTransform( stmt_in, None, _do_fold, ["AttrStmt"]) - stmt = tvm.ir_pass.CoProcSync(stmt) + stmt = tvm.tir.ir_pass.CoProcSync(stmt) return stmt @@ -381,7 +381,7 @@ def _fold_buffer_dim(buf, scope, elem_block): break x_size = x_size * buf.shape[k] next_base = i + 1 - shape.append(tvm.ir_pass.Simplify(x_size)) + shape.append(tvm.tir.ir_pass.Simplify(x_size)) strides.append(x_stride) assert next_base != base base = next_base @@ -492,7 +492,7 @@ def _inject_copy(src, dst, pad_before, pad_after, pad_value): _check_compact(src) x_size, y_size, x_stride, offset = _get_2d_pattern( dst, elem_width, elem_bytes, data_type, src.scope, allow_fold=True) - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() irb.scope_attr(env.dev.vta_axis, "coproc_scope", env.dev.get_task_qid(task_qid)) irb.emit(tvm.tir.call_extern( @@ -562,7 +562,7 @@ def _inject_copy(src, dst, pad_before, pad_after, pad_value): src, elem_width, elem_bytes, data_type, dst.scope, allow_fold=allow_fold) - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() irb.scope_attr(env.dev.vta_axis, "coproc_scope", env.dev.get_task_qid(task_qid)) @@ -578,7 +578,7 @@ def _inject_copy(src, dst, pad_before, pad_after, pad_value): else: raise RuntimeError("Do not support copy %s->%s" % (src.scope, dst.scope)) - return tvm.ir_pass.InjectCopyIntrin(stmt_in, "dma_copy", _inject_copy) + return tvm.tir.ir_pass.InjectCopyIntrin(stmt_in, "dma_copy", _inject_copy) def _get_gemm_intrin_buffer(): @@ -649,11 +649,11 @@ def _find_basics(op): def _do_fold(op): if _match_pragma(op, "conv2d_transpose_gemm"): is_init = ".init" in str(op) - tvm.ir_pass.PostOrderVisit(op, _find_basics) + tvm.tir.ir_pass.PostOrderVisit(op, _find_basics) if is_init: # create inner most block - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() dev = env.dev irb.scope_attr(dev.vta_axis, "coproc_scope", dev.get_task_qid(dev.QID_COMPUTE)) irb.scope_attr(dev.vta_axis, "coproc_uop_scope", dev.vta_push_uop) @@ -665,7 +665,7 @@ def _do_fold(op): inner = irb.get() # TODO(@tmoreau89): This is only a temporary fix, please take a look. body = op.body.body - while isinstance(body, tvm.stmt.IfThenElse): + while isinstance(body, tvm.tir.IfThenElse): body = body.then_case args = body.args res_tensor = body.func.output(0) @@ -686,7 +686,7 @@ def _do_fold(op): condition = tvm.tir.const(1, 'int') # create inner most block - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() with irb.if_scope(condition): dev = env.dev irb.scope_attr(dev.vta_axis, "coproc_scope", dev.get_task_qid(dev.QID_COMPUTE)) @@ -719,7 +719,7 @@ def _do_fold(op): tvm.tir.call_intrin('handle', 'tvm_tuple', *tpl), inner) return inner return None - ret = tvm.ir_pass.IRTransform( + ret = tvm.tir.ir_pass.IRTransform( stmt_in, _do_fold, None, ["AttrStmt"]) return ret @@ -740,7 +740,7 @@ def annotate_alu_coproc_scope(stmt_in): env = get_env() def _do_fold(stmt): if _match_pragma(stmt, "alu"): - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() irb.scope_attr(env.dev.vta_axis, "coproc_scope", env.dev.get_task_qid(env.dev.QID_COMPUTE)) irb.scope_attr(env.dev.vta_axis, "coproc_uop_scope", @@ -751,7 +751,7 @@ def _do_fold(stmt): return tvm.tir.Evaluate(0) return stmt - stmt_out = tvm.ir_pass.IRTransform( + stmt_out = tvm.tir.ir_pass.IRTransform( stmt_in, None, _do_fold, ["AttrStmt"]) return stmt_out @@ -775,7 +775,7 @@ def inject_alu_intrin(stmt_in): def _do_fold(stmt): def _equal(x, y): - return tvm.ir_pass.Equal(tvm.ir_pass.Simplify(x - y), 0) + return tvm.tir.ir_pass.Equal(tvm.tir.ir_pass.Simplify(x - y), 0) def _flatten_loop(src_coeff, dst_coeff, extents): src_coeff = list(src_coeff) @@ -794,7 +794,7 @@ def _flatten_loop(src_coeff, dst_coeff, extents): next_ext = extents.pop() if _equal(next_src, vsrc * vext) and _equal(next_dst, vdst * vext): - vext = tvm.ir_pass.Simplify(vext * next_ext) + vext = tvm.tir.ir_pass.Simplify(vext * next_ext) else: rev_src_coeff.append(vsrc) rev_dst_coeff.append(vdst) @@ -854,7 +854,7 @@ def _flatten_loop(src_coeff, dst_coeff, extents): if loop_body.value.name == 'shift_left': alu_opcode = env.dev.ALU_OPCODE_SHR lhs = loop_body.value.args[0] - rhs = tvm.ir_pass.Simplify(-loop_body.value.args[1]) + rhs = tvm.tir.ir_pass.Simplify(-loop_body.value.args[1]) elif loop_body.value.name == 'shift_right': alu_opcode = env.dev.ALU_OPCODE_SHR lhs = loop_body.value.args[0] @@ -895,9 +895,9 @@ def _flatten_loop(src_coeff, dst_coeff, extents): lhs_equal = True rhs_equal = True for i, coef in enumerate(dst_coeff): - if not tvm.ir_pass.Equal(coef, src_lhs_coeff[i]): + if not tvm.tir.ir_pass.Equal(coef, src_lhs_coeff[i]): lhs_equal = False - if not tvm.ir_pass.Equal(coef, src_rhs_coeff[i]): + if not tvm.tir.ir_pass.Equal(coef, src_rhs_coeff[i]): rhs_equal = False # Make sure at least one of the source is identical to the # destination (in-place computation) @@ -916,20 +916,20 @@ def _flatten_loop(src_coeff, dst_coeff, extents): assert len(src_coeff) > 1 assert len(dst_coeff) > 1 assert len(extents) != 0 - assert tvm.ir_pass.Equal( - tvm.ir_pass.Simplify( + assert tvm.tir.ir_pass.Equal( + tvm.tir.ir_pass.Simplify( idxm(src_coeff[-1], env.BATCH * env.BLOCK_OUT)), 0) - assert tvm.ir_pass.Equal( - tvm.ir_pass.Simplify( + assert tvm.tir.ir_pass.Equal( + tvm.tir.ir_pass.Simplify( idxm(dst_coeff[-1], env.BATCH * env.BLOCK_OUT)), 0) - assert tvm.ir_pass.Equal(src_coeff[-2], 1) - assert tvm.ir_pass.Equal(dst_coeff[-2], 1) + assert tvm.tir.ir_pass.Equal(src_coeff[-2], 1) + assert tvm.tir.ir_pass.Equal(dst_coeff[-2], 1) if env.BATCH > 1: assert len(src_coeff) > 2 assert len(dst_coeff) > 2 assert len(extents) > 1 - assert tvm.ir_pass.Equal(src_coeff[-3], env.BLOCK_OUT) - assert tvm.ir_pass.Equal(dst_coeff[-3], env.BLOCK_OUT) + assert tvm.tir.ir_pass.Equal(src_coeff[-3], env.BLOCK_OUT) + assert tvm.tir.ir_pass.Equal(dst_coeff[-3], env.BLOCK_OUT) # Apply tensorization of the loop coefficients src_offset = src_coeff[-1] @@ -945,16 +945,16 @@ def _flatten_loop(src_coeff, dst_coeff, extents): src_coeff.append(src_offset) dst_coeff.append(dst_offset) src_coeff = [ - tvm.ir_pass.Simplify(c // (env.BATCH * env.BLOCK_OUT)) for c in src_coeff] + tvm.tir.ir_pass.Simplify(c // (env.BATCH * env.BLOCK_OUT)) for c in src_coeff] dst_coeff = [ - tvm.ir_pass.Simplify(c // (env.BATCH * env.BLOCK_OUT)) for c in dst_coeff] + tvm.tir.ir_pass.Simplify(c // (env.BATCH * env.BLOCK_OUT)) for c in dst_coeff] # Flatten the outer loops if extents: src_coeff, dst_coeff, extents = _flatten_loop(src_coeff, dst_coeff, extents) # Insert ALU micro-ops - irb = tvm.ir_builder.create() + irb = tvm.tir.ir_builder.create() for idx, extent in enumerate(extents): irb.emit(tvm.tir.call_extern( "int32", "VTAUopLoopBegin", @@ -973,7 +973,7 @@ def _flatten_loop(src_coeff, dst_coeff, extents): return irb.get() return stmt - stmt_out = tvm.ir_pass.IRTransform( + stmt_out = tvm.tir.ir_pass.IRTransform( stmt_in, None, _do_fold, ["AttrStmt"]) return stmt_out diff --git a/vta/python/vta/top/op.py b/vta/python/vta/top/op.py index fe89341d9df80..2198ed4c191f7 100644 --- a/vta/python/vta/top/op.py +++ b/vta/python/vta/top/op.py @@ -45,7 +45,7 @@ def compute_clip_vta(attrs, inputs, output_type): a_max = attrs.a_max const_min = tvm.tir.const(a_min, x.dtype) const_max = tvm.tir.const(a_max, x.dtype) - with tvm.tag_scope(topi.tag.ELEMWISE): + with tvm.te.tag_scope(topi.tag.ELEMWISE): x = te.compute( x.shape, lambda *i: tvm.te.min(x(*i), const_max), name="clipA") x = te.compute( diff --git a/vta/scripts/tune_conv2d.py b/vta/scripts/tune_conv2d.py index ff02485b515bd..6d0b5d435b3ba 100644 --- a/vta/scripts/tune_conv2d.py +++ b/vta/scripts/tune_conv2d.py @@ -49,7 +49,7 @@ ('resnet-18.C11', Workload(env.BATCH, 7, 7, 512, 512, 3, 3, 1, 1, 1, 1)), ] -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/scripts/tune_conv2d_transpose.py b/vta/scripts/tune_conv2d_transpose.py index f09ba4d2566f7..087136797c5ac 100644 --- a/vta/scripts/tune_conv2d_transpose.py +++ b/vta/scripts/tune_conv2d_transpose.py @@ -42,7 +42,7 @@ ('DCGAN.CT3', Workload(env.BATCH, 16, 16, 256, 128, 4, 4, 1, 1, 2, 2)), ] -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/scripts/tune_dense.py b/vta/scripts/tune_dense.py index d738c99965bd2..e54de1d4ea70b 100644 --- a/vta/scripts/tune_dense.py +++ b/vta/scripts/tune_dense.py @@ -38,7 +38,7 @@ ('lstm.dense.4', Workload(4, 256, 128)), ] -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/scripts/tune_group_conv2d.py b/vta/scripts/tune_group_conv2d.py index 1119d273a6b9d..72f9525320eff 100644 --- a/vta/scripts/tune_group_conv2d.py +++ b/vta/scripts/tune_group_conv2d.py @@ -47,7 +47,7 @@ ('mobilenet.D9', Workload(env.BATCH, 7, 7, 1024, 1024, 64, 3, 3, 1, 1, 1, 1)), ] -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/scripts/tune_resnet.py b/vta/scripts/tune_resnet.py index 10af0ab079878..1de35c0242032 100644 --- a/vta/scripts/tune_resnet.py +++ b/vta/scripts/tune_resnet.py @@ -61,7 +61,7 @@ def parse_arguments(): def register_vta_tuning_tasks(): from tvm.autotvm.task.topi_integration import TaskExtractEnv, deserialize_args - @tvm.tag_scope(tag=topi.tag.ELEMWISE) + @tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/tests/python/integration/test_benchmark_topi_conv2d.py b/vta/tests/python/integration/test_benchmark_topi_conv2d.py index dcffed9993529..b3c36e85d56b1 100644 --- a/vta/tests/python/integration/test_benchmark_topi_conv2d.py +++ b/vta/tests/python/integration/test_benchmark_topi_conv2d.py @@ -62,7 +62,7 @@ ] # FIXME: we need a custom clip operator to circumvent a pattern detection limitation -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py b/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py index 45a601742dce0..90cc21fc8405f 100644 --- a/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py +++ b/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py @@ -54,7 +54,7 @@ ] # FIXME: we need a custom clip operator to circumvent a pattern detection limitation -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/tests/python/integration/test_benchmark_topi_dense.py b/vta/tests/python/integration/test_benchmark_topi_dense.py index f9451f5f77f00..95c491a6d7239 100644 --- a/vta/tests/python/integration/test_benchmark_topi_dense.py +++ b/vta/tests/python/integration/test_benchmark_topi_dense.py @@ -36,7 +36,7 @@ from vta.testing import simulator # FIXME: we need a custom clip operator to circumvent a pattern detection limitation -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py b/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py index 3670eb4ec6738..1d5838ce8cda8 100644 --- a/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py +++ b/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py @@ -58,7 +58,7 @@ ] # FIXME: we need a custom clip operator to circumvent a pattern detection limitation -@tvm.tag_scope(tag=topi.tag.ELEMWISE) +@tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) diff --git a/vta/tutorials/autotvm/tune_relay_vta.py b/vta/tutorials/autotvm/tune_relay_vta.py index 0aa6343d01c4d..16c8b3e1ad884 100644 --- a/vta/tutorials/autotvm/tune_relay_vta.py +++ b/vta/tutorials/autotvm/tune_relay_vta.py @@ -298,7 +298,7 @@ def tune_tasks(tasks, def register_vta_tuning_tasks(): from tvm.autotvm.task import TaskExtractEnv - @tvm.tag_scope(tag=topi.tag.ELEMWISE) + @tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype)