diff --git a/python/tvm/relay/backend/vm.py b/python/tvm/relay/backend/vm.py index bfdf3b616153e..a523722def61a 100644 --- a/python/tvm/relay/backend/vm.py +++ b/python/tvm/relay/backend/vm.py @@ -26,6 +26,7 @@ from tvm import autotvm from tvm.relay import expr as _expr from tvm._ffi.runtime_ctypes import TVMByteArray +from tvm._ffi import base as _base from . import _vm from . import vmobj as _obj from .interpreter import Executor @@ -34,7 +35,9 @@ ADT = _obj.ADT def _convert(arg, cargs): - if isinstance(arg, _obj.Object): + if isinstance(arg, _expr.Constant): + cargs.append(_obj.Tensor(arg.data)) + elif isinstance(arg, _obj.Object): cargs.append(arg) elif isinstance(arg, (np.ndarray, tvm.nd.NDArray)): cargs.append(_obj.Tensor(arg)) @@ -43,8 +46,12 @@ def _convert(arg, cargs): for field in arg: _convert(field, field_args) cargs.append(_obj.tuple_object(field_args)) + elif isinstance(arg, (_base.numeric_types, bool)): + dtype = "int32" if isinstance(arg, (int, bool)) else "float32" + value = _obj.Tensor(np.array(arg, dtype=dtype)) + cargs.append(value) else: - raise "Unsupported type: %s" % (type(arg)) + raise TypeError("Unsupported type: %s" % (type(arg))) def convert(args): diff --git a/python/tvm/relay/prelude.py b/python/tvm/relay/prelude.py index ddb9302b0810b..94a75749ce5cc 100644 --- a/python/tvm/relay/prelude.py +++ b/python/tvm/relay/prelude.py @@ -33,11 +33,11 @@ def __init__(self, prelude, dtype): self.dtype = dtype def get_name(self, canonical): - """Get name corresponding to the caninical name""" + """Get name corresponding to the canonical name""" return self.prelude.get_name(canonical, self.dtype) def get_var(self, canonical): - """Get var corresponding to the caninical name""" + """Get var corresponding to the canonical name""" return self.prelude.get_var(canonical, self.dtype) def define_tensor_adt(self): diff --git a/src/relay/backend/vm/compiler.cc b/src/relay/backend/vm/compiler.cc index af425a4966d02..6a3c580aa56e2 100644 --- a/src/relay/backend/vm/compiler.cc +++ b/src/relay/backend/vm/compiler.cc @@ -31,17 +31,13 @@ #include #include #include -#include -#include #include #include -#include #include #include #include #include #include -#include "../../../runtime/vm/naive_allocator.h" #include "../../backend/compile_engine.h" #include "../../pass/pass_util.h" #include "../../op/op_common.h" @@ -73,8 +69,6 @@ using namespace relay::transform; // (@jroesch): VM passes, eventually declare as passes. bool IsClosure(const Function& func); -void InstructionPrint(std::ostream& os, const Instruction& instr); - // Represent a runtime object that's going to be matched by pattern match expressions struct MatchValue { virtual ~MatchValue() {} @@ -156,12 +150,10 @@ TreeObjectPtr BuildDecisionTreeFromPattern(MatchValuePtr data, if (pattern.as()) { // We ignore wildcard binding since it's not producing new vars return then_branch; - } else if (pattern.as()) { - auto pat = pattern.as(); - auto pattern = GetRef(pat); - auto cond = std::make_shared(pattern->var, data); + } else if (const auto* pvn = pattern.as()) { + auto cond = std::make_shared(pvn->var, data); return TreeBranchNode::Make(cond, then_branch, else_branch); - } else if (auto pcn = pattern.as()) { + } else if (const auto* pcn = pattern.as()) { auto tag = pcn->constructor->tag; size_t field_index = 0; @@ -173,13 +165,12 @@ TreeObjectPtr BuildDecisionTreeFromPattern(MatchValuePtr data, auto cond = std::make_shared(data, tag); return TreeBranchNode::Make(cond, then_branch, else_branch); } else { - auto pt = pattern.as(); - CHECK(pt) << "unhandled case: " << pattern; + const auto* pt = pattern.as(); + CHECK(pt) << "unhandled case: " << AsText(pattern, false); size_t field_index = 0; for (auto& p : pt->patterns) { - auto d = std::make_shared(data, field_index); + auto d = std::make_shared(data, field_index++); then_branch = BuildDecisionTreeFromPattern(d, p, then_branch, else_branch); - field_index++; } return then_branch; } @@ -633,7 +624,7 @@ class VMFunctionCompiler : ExprFunctor { // and emit a call to allocate the data structure. auto constructor = GetRef(constructor_node); Emit(Instruction::AllocADT(constructor->tag, call_node->args.size(), args_registers, - NewRegister())); + NewRegister())); } else if (auto var_node = op.as()) { // If we are calling a variable, it must be the case that it is a closure so we // emit invoke closure here. @@ -675,16 +666,13 @@ class VMFunctionCompiler : ExprFunctor { } void CompileTreeNode(TreeObjectPtr tree) { - if (std::dynamic_pointer_cast(tree)) { - auto node = std::dynamic_pointer_cast(tree); + if (auto node = std::dynamic_pointer_cast(tree)) { VisitExpr(node->body); } else if (std::dynamic_pointer_cast(tree)) { Emit(Instruction::Fatal()); - } else if (std::dynamic_pointer_cast(tree)) { - auto node = std::dynamic_pointer_cast(tree); - if (std::dynamic_pointer_cast(node->cond)) { + } else if (auto node = std::dynamic_pointer_cast(tree)) { + if (auto cond = std::dynamic_pointer_cast(node->cond)) { // For Tag compariton, generate branches - auto cond = std::dynamic_pointer_cast(node->cond); auto r = CompileMatchValue(cond->obj); Emit(Instruction::GetTag(r, NewRegister())); auto operand1 = last_register_; @@ -707,8 +695,8 @@ class VMFunctionCompiler : ExprFunctor { instructions_[goto_offset].pc_offset = else_offset - goto_offset + 1; } else { // For other non-branch conditions, move to then_branch directly - auto cond = std::dynamic_pointer_cast(node->cond); - var_register_map_[cond->var] = CompileMatchValue(cond->val); + auto var_bind = std::dynamic_pointer_cast(node->cond); + var_register_map_[var_bind->var] = CompileMatchValue(var_bind->val); CompileTreeNode(node->then_branch); } } diff --git a/src/runtime/vm/vm.cc b/src/runtime/vm/vm.cc index a3b11d46a4fb2..11281c398c818 100644 --- a/src/runtime/vm/vm.cc +++ b/src/runtime/vm/vm.cc @@ -583,9 +583,9 @@ void InstructionPrint(std::ostream& os, const Instruction& instr) { break; } case Opcode::AllocStorage: { - os << "alloc_storage " << - instr.dst << " " << - instr.alloc_storage.allocation_size << " " << + os << "alloc_storage $" << + instr.dst << " $" << + instr.alloc_storage.allocation_size << " $" << instr.alloc_storage.alignment << " " << TVMType2String(instr.alloc_storage.dtype_hint); break; @@ -771,12 +771,14 @@ void VirtualMachine::InvokePacked(Index packed_index, const PackedFunc& func, for (size_t fi = 0; fi < dt_cell->size; ++fi) { auto obj = (*dt_cell)[fi]; const auto* tensor = obj.as(); - CHECK(tensor != nullptr); + CHECK(tensor != nullptr) << "Expect TensorObj, but received: " + << obj->GetTypeKey(); setter(idx++, tensor->data); } } else { const auto* tensor = args[i].as(); - CHECK(tensor != nullptr); + CHECK(tensor != nullptr) << "Expect TensorObj, but received: " + << args[i]->GetTypeKey(); setter(idx++, tensor->data); } } @@ -823,7 +825,8 @@ inline int32_t VirtualMachine::LoadScalarInt(Index r) const { int32_t result; const auto& obj = ReadRegister(r); const auto* tensor = obj.as(); - CHECK(tensor != nullptr); + CHECK(tensor != nullptr) << "Expect tensor object, but received: " + << obj->GetTypeKey(); NDArray array = tensor->data.CopyTo({kDLCPU, 0}); if (array->dtype.bits <= 8) { @@ -984,7 +987,8 @@ void VirtualMachine::RunLoop() { cpu_ctx.device_id = 0; auto shape_tensor_obj = ReadRegister(instr.alloc_tensor_reg.shape_register); const auto* tensor = shape_tensor_obj.as(); - CHECK(tensor != nullptr); + CHECK(tensor != nullptr) << "Expect tensor object, but received: " + << shape_tensor_obj->GetTypeKey(); NDArray shape_tensor = tensor->data.CopyTo(cpu_ctx); const DLTensor* dl_tensor = shape_tensor.operator->(); CHECK_EQ(dl_tensor->dtype.code, 0u); diff --git a/tests/python/relay/test_adt.py b/tests/python/relay/test_adt.py index 32bc22f9031af..4b660856b8853 100644 --- a/tests/python/relay/test_adt.py +++ b/tests/python/relay/test_adt.py @@ -114,6 +114,40 @@ def tree_to_dict(t): return ret +def vmobj_to_list(o, dtype="float32"): + if isinstance(o, tvm.relay.backend.vmobj.Tensor): + return [o.asnumpy().tolist()] + elif isinstance(o, tvm.relay.backend.interpreter.TensorValue): + return [o.asnumpy()] + elif isinstance(o, tvm.relay.backend.vmobj.ADT): + if len(o) == 0: + tensor_nil = p.get_var("tensor_nil", dtype=dtype) + if tensor_nil.tag == o.tag: + return [0] + return [] + + result = [] + for f in o: + result.extend(vmobj_to_list(f, dtype)) + return result + elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue): + if o.constructor.name_hint == 'Cons': + tl = vmobj_to_list(o.fields[1], dtype) + hd = vmobj_to_list(o.fields[0], dtype) + hd.extend(tl) + return hd + elif o.constructor.name_hint == 'Nil': + return [] + elif 'tensor_nil' in o.constructor.name_hint: + return [0] + elif 'tensor' in o.constructor.name_hint: + return [o.fields[0].asnumpy()] + else: + raise RuntimeError("Unknown object type: %s" % o.constructor.name_hint) + else: + raise RuntimeError("Unknown object type: %s" % type(o)) + + # turns a scalar-valued relay tensor value into a python number def get_scalar(tv): return tv.asnumpy().item() @@ -685,6 +719,16 @@ def test_iterate(): res = intrp.evaluate(relay.Function([], expr)()) assert count(res) == 12 + +def check_tensor_array(ta_mod, ref_res, *args, dtype="float32", + ta_ctx=tvm.cpu(), target="llvm", rtol=1e-5): + for kind in ["debug", "vm"]: + ex = relay.create_executor(kind, mod=ta_mod, ctx=ta_ctx, target=target) + result = ex.evaluate()(*args) + got = vmobj_to_list(result, dtype) + tvm.testing.assert_allclose(ref_res, got, rtol=rtol, atol=rtol) + + def test_tensor_expand_dims(): def run(dtype): x = relay.var('x') @@ -693,16 +737,13 @@ def run(dtype): expand_dims_func = p.get_var('tensor_expand_dims', dtype) tensor1 = p.get_var('tensor1', dtype) mod["main"] = relay.Function([x], expand_dims_func(tensor1(x))) - for kind in ["debug"]: - ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm") - x_np = np.random.uniform(size=(1,)).astype(dtype) - result = ex.evaluate()(x_np) - got = vmobj_to_list(result) - expected = [np.expand_dims(x_np, axis=0)] - tvm.testing.assert_allclose(expected, got) + x_np = np.random.uniform(size=(1,)).astype(dtype) + expected = [np.expand_dims(x_np, axis=0)] + check_tensor_array(mod, expected, x_np) run('float32') run('int32') + def test_tensor_array_constructor(): def run(dtype): x = relay.var('x') @@ -710,15 +751,12 @@ def run(dtype): p = Prelude(mod) tensor_array = p.get_var('tensor_array', dtype) mod["main"] = relay.Function([x], tensor_array(x)) - for kind in ["debug"]: - ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm") - result = ex.evaluate()(5) - got = vmobj_to_list(result) - expected = np.array([0, 0, 0, 0, 0]) - tvm.testing.assert_allclose(expected, got) + expected = np.array([0, 0, 0, 0, 0]) + check_tensor_array(mod, expected, 5, dtype=dtype) run('float32') run('int32') + def test_tensor_array_read(): def run(dtype): mod = relay.Module() @@ -728,41 +766,32 @@ def run(dtype): read_func = p.get_var('tensor_array_read', dtype) tensor_array = p.get_var('tensor_array', dtype) mod["main"] = relay.Function([l, i], read_func(tensor_array(l), i)) - for kind in ["debug"]: - ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm") - result = ex.evaluate()(10, 5) - got = vmobj_to_list(result) - expected = [0] - tvm.testing.assert_allclose(expected, got) + expected = [0] + check_tensor_array(mod, expected, *(1, 0), dtype=dtype) + check_tensor_array(mod, expected, *(5, 1), dtype=dtype) + run('float32') + run('int32') + + +def test_tensor_array_write(): + def run(dtype): + mod = relay.Module() + p = Prelude(mod) + v1 = relay.var('v1') + v2 = relay.var('v2') + tensor_array = p.get_var('tensor_array', dtype) + init_tensor_array = tensor_array(relay.const(2)) + write_func = p.get_var('tensor_array_write', dtype) + tensor1 = p.get_var('tensor1', dtype) + tensor_array1 = write_func(init_tensor_array, relay.const(0), + tensor1(v1)) + tensor_array2 = write_func(tensor_array1, relay.const(1), tensor1(v2)) + mod["main"] = relay.Function([v1, v2], tensor_array2) + expected = [3, 7] + check_tensor_array(mod, expected, *(3, 7), dtype=dtype) run('float32') run('int32') -def vmobj_to_list(o): - if isinstance(o, tvm.relay.backend.vmobj.Tensor): - return [o.asnumpy().tolist()] - elif isinstance(o, tvm.relay.backend.interpreter.TensorValue): - return [o.asnumpy()] - elif isinstance(o, tvm.relay.backend.vmobj.ADT): - result = [] - for f in o: - result.extend(vmobj_to_list(f)) - return result - elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue): - if o.constructor.name_hint == 'Cons': - tl = vmobj_to_list(o.fields[1]) - hd = vmobj_to_list(o.fields[0]) - hd.extend(tl) - return hd - elif o.constructor.name_hint == 'Nil': - return [] - elif 'tensor_nil' in o.constructor.name_hint: - return [0] - elif 'tensor' in o.constructor.name_hint: - return [o.fields[0].asnumpy()] - else: - raise RuntimeError("Unknown object type: %s" % o.constructor.name_hint) - else: - raise RuntimeError("Unknown object type: %s" % type(o)) def test_tensor_array_stack(): def run(dtype): @@ -772,24 +801,20 @@ def run(dtype): tensor1 = p.get_var('tensor1', dtype) write = p.get_var('tensor_array_write', dtype) stack = p.get_var('tensor_array_stack', dtype) - l = relay.var('l') v = relay.var('v') init_tensor_array = tensor_array(relay.const(3)) tensor_array1 = write(init_tensor_array, relay.const(0), tensor1(v)) - tensor_array2 = write(tensor_array1, relay.const(1), tensor1(v)) - tensor_array3 = write(tensor_array2, relay.const(2), tensor1(v)) + tensor_array2 = write(tensor_array1, relay.const(1), tensor1(v)) + tensor_array3 = write(tensor_array2, relay.const(2), tensor1(v)) tensor_array4 = stack(tensor_array3) mod["main"] = relay.Function([v], tensor_array4) - for kind in ["debug"]: - ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm") - t = np.random.uniform(size=(1,)).astype(dtype) - result = ex.evaluate()(t) - res = vmobj_to_list(result) - expected = [np.stack([t, t, t])] - tvm.testing.assert_allclose(expected, res) + t = np.random.uniform(size=(1,)).astype(dtype) + expected = [np.stack([t, t, t])] + check_tensor_array(mod, expected, t, dtype=dtype) run('float32') run('int32') + def test_tensor_array_unstack(): def run(dtype): mod = relay.Module() @@ -797,15 +822,12 @@ def run(dtype): unstack_tensor1 = p.get_var('tensor_array_unstack_tensor1', dtype) v = relay.var('v') mod["main"] = relay.Function([v], unstack_tensor1(v)) - for kind in ["debug"]: - ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm") - t = np.random.uniform(size=(1,)).astype(dtype) - result = ex.evaluate()(t) - res = vmobj_to_list(result) - tvm.testing.assert_allclose(t, res) + t = np.random.uniform(size=(1,)).astype(dtype) + check_tensor_array(mod, t, t, dtype=dtype) run('float32') run('int32') + def test_tensor_take(): def run(dtype): mod = relay.Module() @@ -816,16 +838,56 @@ def run(dtype): lower = relay.var('lower') upper = relay.var('upper') mod["main"] = relay.Function([v, lower, upper], take(tensor2(v), lower, upper)) - for kind in ["debug"]: - ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm") - t = np.random.uniform(size=(10, 10)).astype(dtype) - result = ex.evaluate()(t, 2, 5) - res = vmobj_to_list(result) - expected = [np.take(t, range(2, 5), axis=0)] - tvm.testing.assert_allclose(expected, res) + v_data = np.random.uniform(size=(10, 10)).astype(dtype) + expected = [np.take(v_data, range(2, 5), axis=0)] + check_tensor_array(mod, expected, *(v_data, 2, 5), dtype=dtype) + expected = [np.take(v_data, range(0, 9), axis=0)] + check_tensor_array(mod, expected, *(v_data, 0, 9), dtype=dtype) + run('float32') + run('int32') + + +def test_tensor_concatenate(): + def run(dtype): + mod = relay.Module() + p = Prelude(mod) + concat = p.get_var('tensor_concatenate', dtype) + tensor1 = p.get_var('tensor1', dtype) + v1 = relay.var('v1') + v2 = relay.var('v2') + mod["main"] = relay.Function([v1, v2], concat(tensor1(v1), + tensor1(v2))) + v1_data = np.random.uniform(size=(5,)).astype(dtype) + v2_data = np.random.uniform(size=(5,)).astype(dtype) + expected = [np.concatenate((v1_data, v2_data))] + check_tensor_array(mod, expected, *(v1_data, v2_data), dtype=dtype) + run('float32') + run('int32') + + +def test_tensor_array_concat(): + def run(dtype): + mod = relay.Module() + p = Prelude(mod) + v1 = relay.var('v1') + v2 = relay.var('v2') + tensor_array = p.get_var('tensor_array', dtype) + tensor_array1 = tensor_array(relay.const(2)) + write_func = p.get_var('tensor_array_write', dtype) + concat_func = p.get_var('tensor_array_concat', dtype) + tensor1 = p.get_var('tensor2', dtype) + tensor_array1 = write_func(tensor_array1, relay.const(0), tensor1(v1)) + tensor_array1 = write_func(tensor_array1, relay.const(1), tensor1(v2)) + tensor_array_concat = concat_func(tensor_array1) + mod["main"] = relay.Function([v1, v2], tensor_array_concat) + v1_data = np.random.uniform(size=(2, 3)).astype(dtype) + v2_data = np.random.uniform(size=(1, 3)).astype(dtype) + expected = [np.concatenate((v1_data, v2_data), axis=0)] + check_tensor_array(mod, expected, *(v1_data, v2_data), dtype=dtype) run('float32') run('int32') + if __name__ == "__main__": test_nat_constructor() test_double() @@ -853,5 +915,9 @@ def run(dtype): test_tensor_expand_dims() test_tensor_array_constructor() test_tensor_array_read() + test_tensor_array_write() test_tensor_array_stack() test_tensor_array_unstack() + test_tensor_take() + test_tensor_concatenate() + test_tensor_array_concat()