diff --git a/tests/python/contrib/test_gemm_acc32_vnni.py b/tests/python/contrib/test_gemm_acc32_vnni.py new file mode 100644 index 0000000000000..e53d7c9700a56 --- /dev/null +++ b/tests/python/contrib/test_gemm_acc32_vnni.py @@ -0,0 +1,100 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition + +import tvm +import numpy as np +from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni +from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32 + + +def test_fc_int8_acc32(): + n=1024 + k=1024 + m=1024 + + X = tvm.placeholder((m, k), name='X', dtype="uint8") + W = tvm.placeholder((n, k), name='W', dtype="int8") + + peak = 512/16*2*2*2 + print("Peak {} Gops/s".format(peak)) + memory_ops = n*k + m*k + 2*n*n + gops_per_mm = 2*n*m*k + + def verify(target="llvm -mcpu=skylake-avx512"): + # For LLVM < 8.0, it shows "'cascadelake' is not a recognized processor for this target + # (ignoring processor)" error with the following setting. After LLVM 8.0 is enabled in the + # test, we should use cascadelake setting. + # def verify(target="llvm -mcpu=cascadelake"): + if not tvm.module.enabled(target): + print("skip because %s is not enabled..." % target) + return + + ctx = tvm.context(target, 0) + # pc = dot_16x1x16_int8_int8_int32_vnni() + pc = dot_16x1x16_int8_int8_int32 + ak = tvm.reduce_axis((0, k), name='k') + packedW = tvm.placeholder((n/16, 16*(k/4), 4), name='packedW', dtype="int8") + + t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype("int32") * packedW[j/16, (ak/4)*16+j%16, ak%4].astype("int32"), axis=ak), name="F") + t_sch = tvm.create_schedule(t_fc.op) + a_x, a_y = t_fc.op.axis + a_k, = t_fc.op.reduce_axis + + a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16) + a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32) + a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4) + a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4) + t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki) + + # measure multiple threading + # t_sch[t_fc].parallel(a_xo) + t_sch[t_fc].unroll(a_koi) + t_sch[t_fc].tensorize(a_yi, pc) + + # print(tvm.lower(t_sch, [X, packedW, t_fc], simple_mode=True)) + + t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic") + t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10) + + # generate the plain data + a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8") + b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8") + + packW = np.random.uniform(1, 10, size=(n/16, 16*(k/4), 4)).astype("int8") + # This occurs in pre_compute stage + for r_idx in range(n/16): + for s_idx in range(16*(k/4)): + for t_idx in range(4): + packW[r_idx][s_idx][t_idx] = b_[r_idx*16+s_idx%16][s_idx/16*4+t_idx] + + x = tvm.nd.array(a_, ctx) + w = tvm.nd.array(packW, ctx) + y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx) + result = t_evaluator(x, w, y) + + gops_per_sec = gops_per_mm/result.mean/1e9 + # verify the correctness + tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0) + print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}'.format(result.mean*1000, gops_per_sec, gops_per_sec/peak)) + # print('TVM with x86 micro-kernel: %f' % result.mean) + t_func.export_library("tensorize_acc32.o") + + verify() + +if __name__ == "__main__": + test_fc_int8_acc32() diff --git a/topi/python/topi/x86/tensor_intrin.py b/topi/python/topi/x86/tensor_intrin.py index 00681726257a6..213e5382bf20e 100644 --- a/topi/python/topi/x86/tensor_intrin.py +++ b/topi/python/topi/x86/tensor_intrin.py @@ -21,7 +21,7 @@ def dot_16x1x16_int8_int8_int32(): """ - Int8 dot product by every 4 elements using AVX2 Skylake instructions. + Int8 dot product by every 4 elements using AVX512 Skylake instructions. This function takes two arrays of int8 datatype -- data[4] and kernel[16][4] -- and computes a dot product of data[4] with every 4 elements of kernels, resulting in output[16] of int32 datatype. @@ -102,7 +102,7 @@ def _instr(index): def dot_16x1x16_int8_int8_int16(): """ - Int8 dot product by every 2 elements using AVX2 Skylake instructions. + Int8 dot product by every 2 elements using AVX512 Skylake instructions. This function takes two arrays of int8 datatype -- data[2] and kernel[4][32][2] -- and computes a dot product of data[2] with every 2 elements of kernels, resulting in output[4][32] of int16 datatype. @@ -110,30 +110,33 @@ def dot_16x1x16_int8_int8_int16(): .. code-block:: c void dot_16x1x16_int8_int8_int16(int8 data[2], int8 kernel[32*4][2], int16 output[32*4]){ - for (int i = 0; i< 4; i++){ + for (int i = 0; i< 4; i++){ for (int j = 0; j < 32; j++){ out[i][i] = 0; for (int k = 0; k < 2; k++){ out[i][j][k] += data[k] * kernel[i][j][k] } } + } } - } + Physically, the kernel array sits in four AVX512 vector registers and the data[2] is broadcasted to another AVX512 vector register. This function returns a TensorIntrin that can be used to tensorize a schedule. + Returns ------- intrin : TensorIntrin The Skylake int8 TensorIntrin that can be used in tensorizing schedule """ - num_int8_elements = 2 # 2 int8 elements in int32 + int16_lanes = 4*32 # 4*32 int32 lanes in 4 AVX512 vector registers + num_int8_elements = 2 # 2 int8 elements in int16 data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data') - kernel = tvm.placeholder((128, num_int8_elements), dtype='int8', name='kernel') + kernel = tvm.placeholder((int16_lanes, num_int8_elements), dtype='int8', name='kernel') k = tvm.reduce_axis((0, num_int8_elements), name='k') - C = tvm.compute((128, ), + C = tvm.compute((int16_lanes, ), lambda i: tvm.sum(data[k].astype('int16') * kernel[i, k].astype('int16'), axis=k), @@ -177,3 +180,95 @@ def _instr(index): with tvm.build_config(offset_factor=1, partition_const_loop=True): return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) + + +def dot_16x1x16_int8_int8_int32_vnni(): + """ + Int8 dot product by every 4 elements using AVX512VNNI Cascade Lake instructions. + This function takes two arrays of int8 datatype -- data[4] and + kernel[16][4] -- and computes a dot product of data[4] with every + 4 elements of kernels, resulting in output[16] of int32 datatype. + The pseudo code is as follows. + .. code-block:: c + void dot_16x1x16_int8_int8_int32_vnni(int8 data[4], int8 kernel[16][4], + int32 output[16]){ + for (int i = 0; i < 16; i++){ + out[i] = 0; + for (int k = 0; k < 4; k++){ + out[i] += data[k] * kernel[i][k] + } + } + } + + Physically, the kernel array sits in an AVX512 vector register and + the data[4] is broadcasted to another AVX512 vector register. This + function returns a TensorIntrin that can be used to tensorize + a schedule. + + Returns + ------- + intrin : TensorIntrin + The Cascade Lake int8 TensorIntrin that can be used in tensorizing schedule + """ + + int32_lanes = 16 # 16 int32 lanes in AVX512 + num_int8_elements = 4 # 4 int8 elements in int32 + data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data') + kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='int8', name='kernel') + k = tvm.reduce_axis((0, num_int8_elements), name='k') + C = tvm.compute((int32_lanes,), + lambda i: tvm.sum(data[k].astype('int32') * + kernel[i, k].astype('int32'), + axis=k), + name="C") + + a_buffer = tvm.decl_buffer(data.shape, dtype='uint8', name="a_buffer", + offset_factor=1, + strides=[1]) + b_buffer = tvm.decl_buffer(kernel.shape, dtype='int8', name="b_buffer", + offset_factor=1, + strides=[tvm.var('ldw'), 1]) + + def _intrin_func(ins, outs): + def _instr(index): + ib = tvm.ir_builder.create() + if index == 1: + ib.emit(outs[0].vstore(0, tvm.const(0, 'int32x16'))) + return ib.get() + + a_int8 = ins[0].vload([0], "uint8x4") + re_int32 = tvm.call_pure_intrin('int32', 'reinterpret', a_int8) + vec_ai32 = re_int32.astype('int32x16') + vec_a = tvm.call_pure_intrin('int8x64', 'reinterpret', vec_ai32) + vec_b = ins[1].vload([0, 0], "int8x64") + + vnni_inst_name = 'llvm.x86.avx512.vpdpbusd.512' + llvm_id = tvm.codegen.llvm_lookup_intrinsic_id(vnni_inst_name) + + if llvm_id != 0: # VNNI is available for current LLVM version + quad_reduction = tvm.call_llvm_intrin('int32x16', + 'llvm.x86.avx512.vpdpbusd.512', + tvm.const(0, 'uint32'), + vec_a, vec_b) + else: # Fall back to the normal AVX512 + vec_one = tvm.const(1, "int16x32") + pair_reduction = tvm.call_llvm_intrin('int16x32', + 'llvm.x86.avx512.pmaddubs.w.512', + tvm.const(0, 'uint32'), + vec_a, vec_b) + quad_reduction = tvm.call_llvm_intrin('int32x16', + 'llvm.x86.avx512.pmaddw.d.512', + tvm.const(0, 'uint32'), + pair_reduction, vec_one) + + if index == 0: + ib.emit(outs[0].vstore(0, quad_reduction)) + else: + ib.emit(outs[0].vstore(0, quad_reduction + outs[0].vload([0], 'int32x16'))) + return ib.get() + + # body, reset, update + return _instr(0), _instr(1), _instr(2) + + with tvm.build_config(offset_factor=1, partition_const_loop=True): + return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})