diff --git a/python/tvm/relay/frontend/keras.py b/python/tvm/relay/frontend/keras.py index 090bd4c5b646..f5f9ad5dbe85 100644 --- a/python/tvm/relay/frontend/keras.py +++ b/python/tvm/relay/frontend/keras.py @@ -320,6 +320,75 @@ def _convert_convolution(inexpr, keras_layer, etab): out = _convert_activation(out, act_type, etab) return out +def _convert_convolution3d(inexpr, keras_layer, etab): + _check_data_format(keras_layer) + weightList = keras_layer.get_weights() + weight = weightList[0] + + if etab.data_layout == 'NDHWC': + kernel_layout = 'DHWIO' + else: + kernel_layout = 'OIDHW' + msg = 'Kernel layout with {} is not supported for operator Convolution3D ' \ + 'in frontend Keras.' + raise tvm.error.OpAttributeUnImplemented(msg.format(etab.data_layout)) + + dilation_rate = keras_layer.dilation_rate + if isinstance(dilation_rate, (list, tuple)): + dilation = [dilation_rate[0], dilation_rate[1], dilation_rate[2]] + else: + dilation = [dilation_rate, dilation_rate, dilation_rate] + + kernel_d1 = weight.shape[0] + kernel_d2 = weight.shape[1] + kernel_d3 = weight.shape[2] + # in_channels = weight.shape[3] + n_filters = weight.shape[4] + + dilated_kernel_d1 = (kernel_d1 - 1) * dilation[0] + 1 + dilated_kernel_d2 = (kernel_d2 - 1) * dilation[1] + 1 + dilated_kernel_d3 = (kernel_d3 - 1) * dilation[2] + 1 + stride_d1, stride_d2, stride_d3 = keras_layer.strides + params = {'weight': etab.new_const(weight), + 'kernel_size': [kernel_d1, kernel_d2, kernel_d3], + 'strides': [stride_d1, stride_d2, stride_d3], + 'dilation': dilation, + 'padding': [0, 0, 0], + 'data_layout': etab.data_layout, + 'kernel_layout': kernel_layout} + params['channels'] = n_filters + + if keras_layer.padding == 'valid': + pass + # calculate the padding values + elif keras_layer.padding == 'same': + in_d1 = keras_layer.input_shape[1] + in_d2 = keras_layer.input_shape[2] + in_d3 = keras_layer.input_shape[3] + pad_d1 = _get_pad_pair(in_d1, dilated_kernel_d1, stride_d1) + pad_d2 = _get_pad_pair(in_d2, dilated_kernel_d2, stride_d2) + pad_d3 = _get_pad_pair(in_d3, dilated_kernel_d3, stride_d3) + params['padding'] = [pad_d1[0], pad_d2[0], pad_d3[0], pad_d1[1], pad_d2[1], pad_d3[1]] + else: + msg = 'Padding with {} is not supported for operator Convolution ' \ + 'in frontend Keras.' + raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding)) + out = _op.nn.conv3d(data=inexpr, **params) + + channel_axis = -1 if etab.data_layout == "NDHWC" else 1 + if keras_layer.use_bias: + bias = etab.new_const(weightList[1]) + out = _op.nn.bias_add(out, bias, channel_axis) + + # defuse activation + if sys.version_info.major < 3: + act_type = keras_layer.activation.func_name + else: + act_type = keras_layer.activation.__name__ + if act_type != 'linear': + out = _convert_activation(out, act_type, etab) + + return out def _convert_separable_convolution(inexpr, keras_layer, etab): _check_data_format(keras_layer) @@ -743,19 +812,27 @@ def _default_skip(inexpr, keras_layer, _): # pylint: disable=unused-argument # 'GlobalMaxPooling1D' : _convert_pooling, # 'Cropping1D' : _convert_cropping, # 'UpSampling1D' : _convert_upsample, - # 'UpSampling3D' : _convert_upsample, # 'Conv1D' : _convert_convolution1d, + 'Conv3D' : _convert_convolution3d, + # 'Conv3DTranspose' : _convert_convolution3d, + # 'SeparableConv3D' : _convert_convolution3d, + # 'MaxPooling3D' : _convert_pooling3d, + # 'AveragePooling3D' : _convert_pooling3d, + # 'GlobalMaxPooling3D' : _convert_pooling3d, + # 'GlobalAveragePooling3D' : _convert_pooling3d, + # 'UpSampling3D' : _convert_upsample3d, + 'SimpleRNN' : _convert_simple_rnn, 'LSTM' : _convert_lstm, 'GRU' : _convert_gru, # 'Bidirectional' : _convert_bidirectional, # 'TimeDistributed' : _default_skip, - 'Average' : _convert_merge, - 'Maximum' : _convert_merge, - 'Dot' : _convert_merge, - 'Permute' : _convert_permute, + 'Average' : _convert_merge, + 'Maximum' : _convert_merge, + 'Dot' : _convert_merge, + 'Permute' : _convert_permute, # 'Embedding' : _convert_embedding, # 'RepeatVector' : _convert_repeat_vector, @@ -867,7 +944,7 @@ def _convert_input_layer(keras_layer): etab = ExprTable() # Set global data format. - assert layout in ['NCHW', 'NHWC'], "Layout must be one of 'NCHW' or NHWC" + assert layout in ['NCHW', 'NHWC', 'NDHWC'], "Layout must be one of 'NCHW', NHWC or NDHWC" etab.data_layout = layout for keras_layer in model.layers: if isinstance(keras_layer, input_layer_class): diff --git a/tests/python/frontend/keras/test_forward.py b/tests/python/frontend/keras/test_forward.py index bf47e88da0bb..57f64015767d 100644 --- a/tests/python/frontend/keras/test_forward.py +++ b/tests/python/frontend/keras/test_forward.py @@ -398,6 +398,28 @@ def test_forward_mobilenet(self, keras, layout='NCHW'): input_shape=(224, 224, 3), classes=1000) verify_keras_frontend(keras_model, layout=layout) + def test_forward_conv3d(self, keras): + data = keras.layers.Input(shape=(32, 32, 32, 3)) + conv_funcs = [keras.layers.Conv3D(filters=10, + kernel_size=(3, 3, 3), + strides=(2, 2, 2), + padding='same'), + keras.layers.Conv3D(filters=10, + kernel_size=(3, 3, 3), + dilation_rate=(2, 2, 2), + padding='same'), + keras.layers.Conv3D(filters=1, + kernel_size=(3, 3, 3), + padding='valid', + use_bias=False), + keras.layers.Conv3D(filters=10, + kernel_size=(2, 2, 2), + padding='valid'), + ] + for conv_func in conv_funcs: + x = conv_func(data) + keras_model = keras.models.Model(data, x) + verify_keras_frontend(keras_model, layout='NDHWC') if __name__ == '__main__': for k in [keras, tf_keras]: @@ -426,3 +448,4 @@ def test_forward_mobilenet(self, keras, layout='NCHW'): sut.test_forward_resnet50(keras=k, layout='NHWC') sut.test_forward_mobilenet(keras=k) sut.test_forward_mobilenet(keras=k, layout='NHWC') + sut.test_forward_conv3d(keras=k)