Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-1385] Use existing code for JSON de/serialization of BlockId #289

Closed
wants to merge 1 commit into from

Conversation

andrewor14
Copy link
Contributor

BlockId.scala offers a way to reconstruct a BlockId from a string through regex matching. util/JsonProtocol.scala duplicates this functionality by explicitly matching on the BlockId type.
With this PR, the de/serialization of BlockIds will go through the first (older) code path.

(Most of the line changes in this PR involve changing == to === in JsonProtocolSuite.scala)

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@aarondav
Copy link
Contributor

aarondav commented Apr 1, 2014

Neato!

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13645/

@andrewor14 andrewor14 closed this Apr 2, 2014
@andrewor14 andrewor14 deleted the blockid-json branch April 2, 2014 17:38
@andrewor14 andrewor14 restored the blockid-json branch April 2, 2014 17:41
@andrewor14 andrewor14 reopened this Apr 2, 2014
@andrewor14
Copy link
Contributor Author

Accidentally deleted the corresponding branch. Please disregard.

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@asfgit asfgit closed this in de8eefa Apr 2, 2014
@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13687/

@andrewor14 andrewor14 deleted the blockid-json branch April 3, 2014 02:47
andrewor14 pushed a commit to andrewor14/spark that referenced this pull request Apr 7, 2014
Bug fixes for file input stream and checkpointing

- Fixed bugs in the file input stream that led the stream to fail due to transient HDFS errors (listing files when a background thread it deleting fails caused errors, etc.)
- Updated Spark's CheckpointRDD and Streaming's CheckpointWriter to use SparkContext.hadoopConfiguration, to allow checkpoints to be written to any HDFS compatible store requiring special configuration.
- Changed the API of SparkContext.setCheckpointDir() - eliminated the unnecessary 'useExisting' parameter. Now SparkContext will always create a unique subdirectory within the user specified checkpoint directory. This is to ensure that previous checkpoint files are not accidentally overwritten.
- Fixed bug where setting checkpoint directory as a relative local path caused the checkpointing to fail.
pdeyhim pushed a commit to pdeyhim/spark-1 that referenced this pull request Jun 25, 2014
`BlockId.scala` offers a way to reconstruct a BlockId from a string through regex matching. `util/JsonProtocol.scala` duplicates this functionality by explicitly matching on the BlockId type.
With this PR, the de/serialization of BlockIds will go through the first (older) code path.

(Most of the line changes in this PR involve changing `==` to `===` in `JsonProtocolSuite.scala`)

Author: Andrew Or <[email protected]>

Closes apache#289 from andrewor14/blockid-json and squashes the following commits:

409d226 [Andrew Or] Simplify JSON de/serialization for BlockId
gatesn pushed a commit to gatesn/spark that referenced this pull request Mar 14, 2018
* Revert "Bump Hadoop to 2.9.0-palantir.3 (apache#288)"

This reverts commit bb010b8.

* Revert "Hadoop 2.9.0-palantir.2 (apache#283)"

This reverts commit 65956b7.
bzhaoopenstack pushed a commit to bzhaoopenstack/spark that referenced this pull request Sep 11, 2019
Add --debug option for docker-machine for tracing issue
arjunshroff pushed a commit to arjunshroff/spark that referenced this pull request Nov 24, 2020
cloud-fan pushed a commit that referenced this pull request Jun 21, 2021
…subquery reuse

### What changes were proposed in this pull request?
This PR:
1. Fixes an issue in `ReuseExchange` rule that can result a `ReusedExchange` node pointing to an invalid exchange. This can happen due to the 2 separate traversals in `ReuseExchange` when the 2nd traversal modifies an exchange that has already been referenced (reused) in the 1st traversal.
   Consider the following query:
   ```
   WITH t AS (
     SELECT df1.id, df2.k
     FROM df1 JOIN df2 ON df1.k = df2.k
     WHERE df2.id < 2
   )
   SELECT * FROM t AS a JOIN t AS b ON a.id = b.id
   ```
   Before this PR the plan of the query was (note the `<== this reuse node points to a non-existing node` marker):
   ```
   == Physical Plan ==
   *(7) SortMergeJoin [id#14L], [id#18L], Inner
   :- *(3) Sort [id#14L ASC NULLS FIRST], false, 0
   :  +- Exchange hashpartitioning(id#14L, 5), true, [id=#298]
   :     +- *(2) Project [id#14L, k#17L]
   :        +- *(2) BroadcastHashJoin [k#15L], [k#17L], Inner, BuildRight
   :           :- *(2) Project [id#14L, k#15L]
   :           :  +- *(2) Filter isnotnull(id#14L)
   :           :     +- *(2) ColumnarToRow
   :           :        +- FileScan parquet default.df1[id#14L,k#15L] Batched: true, DataFilters: [isnotnull(id#14L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#15L), dynamicpruningexpression(k#15L IN dynamicpruning#26)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
   :           :              +- SubqueryBroadcast dynamicpruning#26, 0, [k#17L], [id=#289]
   :           :                 +- ReusedExchange [k#17L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#179]
   :           +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#179]
   :              +- *(1) Project [k#17L]
   :                 +- *(1) Filter ((isnotnull(id#16L) AND (id#16L < 2)) AND isnotnull(k#17L))
   :                    +- *(1) ColumnarToRow
   :                       +- FileScan parquet default.df2[id#16L,k#17L] Batched: true, DataFilters: [isnotnull(id#16L), (id#16L < 2), isnotnull(k#17L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
   +- *(6) Sort [id#18L ASC NULLS FIRST], false, 0
      +- ReusedExchange [id#18L, k#21L], Exchange hashpartitioning(id#14L, 5), true, [id=#184] <== this reuse node points to a non-existing node
   ```
   After this PR:
   ```
   == Physical Plan ==
   *(7) SortMergeJoin [id#14L], [id#18L], Inner
   :- *(3) Sort [id#14L ASC NULLS FIRST], false, 0
   :  +- Exchange hashpartitioning(id#14L, 5), true, [id=#231]
   :     +- *(2) Project [id#14L, k#17L]
   :        +- *(2) BroadcastHashJoin [k#15L], [k#17L], Inner, BuildRight
   :           :- *(2) Project [id#14L, k#15L]
   :           :  +- *(2) Filter isnotnull(id#14L)
   :           :     +- *(2) ColumnarToRow
   :           :        +- FileScan parquet default.df1[id#14L,k#15L] Batched: true, DataFilters: [isnotnull(id#14L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#15L), dynamicpruningexpression(k#15L IN dynamicpruning#26)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
   :           :              +- SubqueryBroadcast dynamicpruning#26, 0, [k#17L], [id=#103]
   :           :                 +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#102]
   :           :                    +- *(1) Project [k#17L]
   :           :                       +- *(1) Filter ((isnotnull(id#16L) AND (id#16L < 2)) AND isnotnull(k#17L))
   :           :                          +- *(1) ColumnarToRow
   :           :                             +- FileScan parquet default.df2[id#16L,k#17L] Batched: true, DataFilters: [isnotnull(id#16L), (id#16L < 2), isnotnull(k#17L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
   :           +- ReusedExchange [k#17L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#102]
   +- *(6) Sort [id#18L ASC NULLS FIRST], false, 0
      +- ReusedExchange [id#18L, k#21L], Exchange hashpartitioning(id#14L, 5), true, [id=#231]
   ```
2. Fixes an issue with separate consecutive `ReuseExchange` and `ReuseSubquery` rules that can result a `ReusedExchange` node pointing to an invalid exchange. This can happen due to the 2 separate rules when `ReuseSubquery` rule modifies an exchange that has already been referenced (reused) in `ReuseExchange` rule.
   Consider the following query:
   ```
   WITH t AS (
     SELECT df1.id, df2.k
     FROM df1 JOIN df2 ON df1.k = df2.k
     WHERE df2.id < 2
   ),
   t2 AS (
     SELECT * FROM t
     UNION
     SELECT * FROM t
   )
   SELECT * FROM t2 AS a JOIN t2 AS b ON a.id = b.id
   ```
   Before this PR the plan of the query was (note the `<== this reuse node points to a non-existing node` marker):
   ```
   == Physical Plan ==
   *(15) SortMergeJoin [id#46L], [id#58L], Inner
   :- *(7) Sort [id#46L ASC NULLS FIRST], false, 0
   :  +- Exchange hashpartitioning(id#46L, 5), true, [id=#979]
   :     +- *(6) HashAggregate(keys=[id#46L, k#49L], functions=[])
   :        +- Exchange hashpartitioning(id#46L, k#49L, 5), true, [id=#975]
   :           +- *(5) HashAggregate(keys=[id#46L, k#49L], functions=[])
   :              +- Union
   :                 :- *(2) Project [id#46L, k#49L]
   :                 :  +- *(2) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
   :                 :     :- *(2) Project [id#46L, k#47L]
   :                 :     :  +- *(2) Filter isnotnull(id#46L)
   :                 :     :     +- *(2) ColumnarToRow
   :                 :     :        +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
   :                 :     :              +- SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#926]
   :                 :     :                 +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#656]
   :                 :     +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#656]
   :                 :        +- *(1) Project [k#49L]
   :                 :           +- *(1) Filter ((isnotnull(id#48L) AND (id#48L < 2)) AND isnotnull(k#49L))
   :                 :              +- *(1) ColumnarToRow
   :                 :                 +- FileScan parquet default.df2[id#48L,k#49L] Batched: true, DataFilters: [isnotnull(id#48L), (id#48L < 2), isnotnull(k#49L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
   :                 +- *(4) Project [id#46L, k#49L]
   :                    +- *(4) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
   :                       :- *(4) Project [id#46L, k#47L]
   :                       :  +- *(4) Filter isnotnull(id#46L)
   :                       :     +- *(4) ColumnarToRow
   :                       :        +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
   :                       :              +- ReusedSubquery SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#926]
   :                       +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#656]
   +- *(14) Sort [id#58L ASC NULLS FIRST], false, 0
      +- ReusedExchange [id#58L, k#61L], Exchange hashpartitioning(id#46L, 5), true, [id=#761] <== this reuse node points to a non-existing node
   ```
   After this PR:
   ```
   == Physical Plan ==
   *(15) SortMergeJoin [id#46L], [id#58L], Inner
   :- *(7) Sort [id#46L ASC NULLS FIRST], false, 0
   :  +- Exchange hashpartitioning(id#46L, 5), true, [id=#793]
   :     +- *(6) HashAggregate(keys=[id#46L, k#49L], functions=[])
   :        +- Exchange hashpartitioning(id#46L, k#49L, 5), true, [id=#789]
   :           +- *(5) HashAggregate(keys=[id#46L, k#49L], functions=[])
   :              +- Union
   :                 :- *(2) Project [id#46L, k#49L]
   :                 :  +- *(2) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
   :                 :     :- *(2) Project [id#46L, k#47L]
   :                 :     :  +- *(2) Filter isnotnull(id#46L)
   :                 :     :     +- *(2) ColumnarToRow
   :                 :     :        +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
   :                 :     :              +- SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#485]
   :                 :     :                 +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#484]
   :                 :     :                    +- *(1) Project [k#49L]
   :                 :     :                       +- *(1) Filter ((isnotnull(id#48L) AND (id#48L < 2)) AND isnotnull(k#49L))
   :                 :     :                          +- *(1) ColumnarToRow
   :                 :     :                             +- FileScan parquet default.df2[id#48L,k#49L] Batched: true, DataFilters: [isnotnull(id#48L), (id#48L < 2), isnotnull(k#49L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
   :                 :     +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#484]
   :                 +- *(4) Project [id#46L, k#49L]
   :                    +- *(4) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
   :                       :- *(4) Project [id#46L, k#47L]
   :                       :  +- *(4) Filter isnotnull(id#46L)
   :                       :     +- *(4) ColumnarToRow
   :                       :        +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
   :                       :              +- ReusedSubquery SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#485]
   :                       +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#484]
   +- *(14) Sort [id#58L ASC NULLS FIRST], false, 0
      +- ReusedExchange [id#58L, k#61L], Exchange hashpartitioning(id#46L, 5), true, [id=#793]
   ```
   (This example contains issue 1 as well.)

3. Improves the reuse of exchanges and subqueries by enabling reuse across the whole plan. This means that the new combined rule utilizes the reuse opportunities between parent and subqueries by traversing the whole plan. The traversal is started on the top level query only.

4. Due to the order of traversal this PR does while adding reuse nodes, the reuse nodes appear in parent queries if reuse is possible between different levels of queries (typical for DPP). This is not an issue from execution perspective, but this also means "forward references" in explain formatted output where parent queries come first. The changes I made to `ExplainUtils` are to handle these references properly.

This PR fixes the above 3 issues by unifying the separate rules into a `ReuseExchangeAndSubquery` rule that does a 1 pass, whole-plan, bottom-up traversal.

### Why are the changes needed?
Performance improvement.

### How was this patch tested?
- New UTs in `ReuseExchangeAndSubquerySuite` to cover 1. and 2.
- New UTs in `DynamicPartitionPruningSuite`, `SubquerySuite` and `ExchangeSuite` to cover 3.
- New `ReuseMapSuite` to test `ReuseMap`.
- Checked new golden files of `PlanStabilitySuite`s for invalid reuse references.
- TPCDS benchmarks.

Closes #28885 from peter-toth/SPARK-29375-SPARK-28940-whole-plan-reuse.

Authored-by: Peter Toth <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants