Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SPARK-1154: Clean up app folders in worker nodes #288

Closed
wants to merge 11 commits into from

Conversation

velvia
Copy link
Contributor

@velvia velvia commented Apr 1, 2014

This is a fix for SPARK-1154. The issue is that worker nodes fill up with a huge number of app-* folders after some time. This change adds a periodic cleanup task which asynchronously deletes app directories older than a configurable TTL.

Two new configuration parameters have been introduced:
spark.worker.cleanup_interval
spark.worker.app_data_ttl

This change does not include moving the downloads of application jars to a location outside of the work directory. We will address that if we have time, but that potentially involves caching so it will come either as part of this PR or a separate PR.

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13644/

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13678/

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

val CLEANUP_INTERVAL_MILLIS = conf.getLong("spark.worker.cleanup_interval", 60 * 30) * 1000
// TTL for app folders/data; after TTL expires it will be cleaned up
val APP_DATA_RETENTION_SECS = conf.getLong("spark.worker.app_data_ttl", 7 * 24 * 3600)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For Spark configuration we use camel case: see http://spark.apache.org/docs/0.9.0/configuration.html

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, will fix.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13688/


case SendHeartbeat =>
masterLock.synchronized {
if (connected) { master ! Heartbeat(workerId) }
}

case Worker.AppDirCleanup =>
// Spin up a separate thread (in a future) to do the dir cleanup; don't tie up worker actor
val cleanupFuture = concurrent.future {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What ExecutionContext is this using? Is there a default one created for actors?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is a default one for each actor, yes -- from its actorSystem.

@AmplabJenkins
Copy link

Build triggered.

@AmplabJenkins
Copy link

Build started.

@velvia
Copy link
Contributor Author

velvia commented Apr 3, 2014

Most comments addressed.

@pwendell
Copy link
Contributor

pwendell commented Apr 3, 2014

I think something weird happened with the diff... seems to be showing a lot of changes.

@velvia
Copy link
Contributor Author

velvia commented Apr 3, 2014

@pwendell I did a git merge master and for some reason it didn't display as a merge..... :( must have gotten confused about multiple remotes.

@AmplabJenkins
Copy link

Build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13706/

@aarondav
Copy link
Contributor

aarondav commented Apr 3, 2014

Mind doing a rebase to simplify the diff? It'll be squashed anyhow when we merge it into master.

@velvia
Copy link
Contributor Author

velvia commented Apr 3, 2014

Sorry, but how do I do a rebase safely, now that I've pushed? I've never
had good luck with rebases (other than rebase -i before I push.... sorry
should have done that.)

On Wed, Apr 2, 2014 at 6:00 PM, Aaron Davidson [email protected]:

Mind doing a rebase to simplify the diff? It'll be squashed anyhow when we
merge it into master.

Reply to this email directly or view it on GitHubhttps://github.com//pull/288#issuecomment-39402284
.

The fruit of silence is prayer;
the fruit of prayer is faith;
the fruit of faith is love;
the fruit of love is service;
the fruit of service is peace. -- Mother Teresa

@pwendell
Copy link
Contributor

pwendell commented Apr 3, 2014

@velvia what happens if you just close and re-open the pull request? Will that work?

@AmplabJenkins
Copy link

Merged build started.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13739/

@velvia
Copy link
Contributor Author

velvia commented Apr 5, 2014

Hey guys - think everything is addressed. Jenkins claims the build passes, but for some reason there is a Failed message at the bottom of the PR. ?

@pwendell
Copy link
Contributor

pwendell commented Apr 5, 2014

Jenkins, test this please. (just running on jeknins again, think the travis one is a false negative).

@@ -537,6 +537,21 @@ private[spark] object Utils extends Logging {
}

/**
* Finds all the files in a directory whose last modified time is older than cutoff seconds.
* @param dir must be the path to a directory, or IllegalArgumentException is thrown
* @param cutoff measured in seconds. Files older than this are returned.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Don't need to rev this again just for this - but is there supposed to be one space or two spaces after the parameter name? It's inconsistent here.

@AmplabJenkins
Copy link

Build triggered.

@AmplabJenkins
Copy link

Build started.

@AmplabJenkins
Copy link

Build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/13793/

@pwendell
Copy link
Contributor

pwendell commented Apr 5, 2014

@aarondav look good to you?

@aarondav
Copy link
Contributor

aarondav commented Apr 6, 2014

LGTM, would you mind bringing this up to date with master (looks like a pretty trivial conflict).

@pwendell
Copy link
Contributor

pwendell commented Apr 7, 2014

I just went ahead and fixed the conflict and merged this.

@velvia
Copy link
Contributor Author

velvia commented Apr 7, 2014

Thanks Patrick!

-Evan
To be free is not merely to cast off one's chains, but to live in a way that respects & enhances the freedom of others. (#NelsonMandela)

On Apr 6, 2014, at 7:22 PM, Patrick Wendell [email protected] wrote:

I just went ahead and fixed the conflict and merged this.


Reply to this email directly or view it on GitHub.

@asfgit asfgit closed this in 1440154 Apr 7, 2014
andrewor14 pushed a commit to andrewor14/spark that referenced this pull request Apr 7, 2014
standard Naive Bayes classifier

Has implemented the standard Naive Bayes classifier. This is an updated version of apache#288, which is closed because of misoperations.
pdeyhim pushed a commit to pdeyhim/spark-1 that referenced this pull request Jun 25, 2014
This is a fix for [SPARK-1154](https://issues.apache.org/jira/browse/SPARK-1154).   The issue is that worker nodes fill up with a huge number of app-* folders after some time.  This change adds a periodic cleanup task which asynchronously deletes app directories older than a configurable TTL.

Two new configuration parameters have been introduced:
  spark.worker.cleanup_interval
  spark.worker.app_data_ttl

This change does not include moving the downloads of application jars to a location outside of the work directory.  We will address that if we have time, but that potentially involves caching so it will come either as part of this PR or a separate PR.

Author: Evan Chan <[email protected]>
Author: Kelvin Chu <[email protected]>

Closes apache#288 from velvia/SPARK-1154-cleanup-app-folders and squashes the following commits:

0689995 [Evan Chan] CR from @aarondav - move config, clarify for standalone mode
9f10d96 [Evan Chan] CR from @pwendell - rename configs and add cleanup.enabled
f2f6027 [Evan Chan] CR from @andrewor14
553d8c2 [Kelvin Chu] change the variable name to currentTimeMillis since it actually tracks in seconds
8dc9cb5 [Kelvin Chu] Fixed a bug in Utils.findOldFiles() after merge.
cb52f2b [Kelvin Chu] Change the name of findOldestFiles() to findOldFiles()
72f7d2d [Kelvin Chu] Fix a bug of Utils.findOldestFiles(). file.lastModified is returned in milliseconds.
ad99955 [Kelvin Chu] Add unit test for Utils.findOldestFiles()
dc1a311 [Evan Chan] Don't recompute current time with every new file
e3c408e [Evan Chan] Document the two new settings
b92752b [Evan Chan] SPARK-1154: Add a periodic task to clean up app directories
rahij pushed a commit to rahij/spark that referenced this pull request Dec 5, 2017
* Bump to Hadoop 2.9.0-palantir.3

* Update deps list
rahij added a commit to rahij/spark that referenced this pull request Dec 5, 2017
gatesn pushed a commit to gatesn/spark that referenced this pull request Mar 14, 2018
* Revert "Bump Hadoop to 2.9.0-palantir.3 (apache#288)"

This reverts commit bb010b8.

* Revert "Hadoop 2.9.0-palantir.2 (apache#283)"

This reverts commit 65956b7.
bzhaoopenstack pushed a commit to bzhaoopenstack/spark that referenced this pull request Sep 11, 2019
cloud-fan pushed a commit that referenced this pull request Jan 3, 2020
### What changes were proposed in this pull request?

It is very common for a SQL query to query a table more than once. For example:
```
== Physical Plan ==
*(12) HashAggregate(keys=[cmn_mtrc_summ_dt#21, rev_rollup#1279, CASE WHEN (rev_rollup#1319 = rev_rollup#1279) THEN 0 ELSE 1 END#1366, CASE WHEN cast(sap_category_id#24 as decimal(10,0)) IN (5,7,23,41) THEN 0 ELSE 1 END#1367], functions=[sum(coalesce(bid_count#34, 0)), sum(coalesce(ck_trans_count#35, 0)), sum(coalesce(ended_bid_count#36, 0)), sum(coalesce(ended_lstg_count#37, 0)), sum(coalesce(ended_success_lstg_count#38, 0)), sum(coalesce(item_sold_count#39, 0)), sum(coalesce(new_lstg_count#40, 0)), sum(coalesce(gmv_us_amt#41, 0.00)), sum(coalesce(gmv_slr_lc_amt#42, 0.00)), sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_insrtn_fee_us_amt#46, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_insrtn_crd_us_amt#50, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_fetr_fee_us_amt#54, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_fetr_crd_us_amt#58, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_fv_fee_us_amt#62, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_fv_crd_us_amt#67, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_othr_l_fee_us_amt#72, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_othr_l_crd_us_amt#76, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_othr_nl_fee_us_amt#80, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_othr_nl_crd_us_amt#84, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_slr_tools_fee_us_amt#88, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_slr_tools_crd_us_amt#92, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), sum(coalesce(rvnu_unasgnd_us_amt#96, 0.000000)), sum((coalesce(rvnu_transaction_us_amt#112, 0.0) + coalesce(rvnu_transaction_crd_us_amt#115, 0.0))), sum((coalesce(rvnu_total_us_amt#118, 0.0) + coalesce(rvnu_total_crd_us_amt#121, 0.0)))])
+- Exchange hashpartitioning(cmn_mtrc_summ_dt#21, rev_rollup#1279, CASE WHEN (rev_rollup#1319 = rev_rollup#1279) THEN 0 ELSE 1 END#1366, CASE WHEN cast(sap_category_id#24 as decimal(10,0)) IN (5,7,23,41) THEN 0 ELSE 1 END#1367, 200), true, [id=#403]
   +- *(11) HashAggregate(keys=[cmn_mtrc_summ_dt#21, rev_rollup#1279, CASE WHEN (rev_rollup#1319 = rev_rollup#1279) THEN 0 ELSE 1 END AS CASE WHEN (rev_rollup#1319 = rev_rollup#1279) THEN 0 ELSE 1 END#1366, CASE WHEN cast(sap_category_id#24 as decimal(10,0)) IN (5,7,23,41) THEN 0 ELSE 1 END AS CASE WHEN cast(sap_category_id#24 as decimal(10,0)) IN (5,7,23,41) THEN 0 ELSE 1 END#1367], functions=[partial_sum(coalesce(bid_count#34, 0)), partial_sum(coalesce(ck_trans_count#35, 0)), partial_sum(coalesce(ended_bid_count#36, 0)), partial_sum(coalesce(ended_lstg_count#37, 0)), partial_sum(coalesce(ended_success_lstg_count#38, 0)), partial_sum(coalesce(item_sold_count#39, 0)), partial_sum(coalesce(new_lstg_count#40, 0)), partial_sum(coalesce(gmv_us_amt#41, 0.00)), partial_sum(coalesce(gmv_slr_lc_amt#42, 0.00)), partial_sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_insrtn_fee_us_amt#46, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_insrtn_crd_us_amt#50, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), partial_sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_fetr_fee_us_amt#54, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_fetr_crd_us_amt#58, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), partial_sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_fv_fee_us_amt#62, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_fv_crd_us_amt#67, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), partial_sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_othr_l_fee_us_amt#72, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_othr_l_crd_us_amt#76, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), partial_sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_othr_nl_fee_us_amt#80, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_othr_nl_crd_us_amt#84, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), partial_sum(CheckOverflow((promote_precision(cast(coalesce(rvnu_slr_tools_fee_us_amt#88, 0.000000) as decimal(19,6))) + promote_precision(cast(coalesce(rvnu_slr_tools_crd_us_amt#92, 0.000000) as decimal(19,6)))), DecimalType(19,6), true)), partial_sum(coalesce(rvnu_unasgnd_us_amt#96, 0.000000)), partial_sum((coalesce(rvnu_transaction_us_amt#112, 0.0) + coalesce(rvnu_transaction_crd_us_amt#115, 0.0))), partial_sum((coalesce(rvnu_total_us_amt#118, 0.0) + coalesce(rvnu_total_crd_us_amt#121, 0.0)))])
      +- *(11) Project [cmn_mtrc_summ_dt#21, sap_category_id#24, bid_count#34, ck_trans_count#35, ended_bid_count#36, ended_lstg_count#37, ended_success_lstg_count#38, item_sold_count#39, new_lstg_count#40, gmv_us_amt#41, gmv_slr_lc_amt#42, rvnu_insrtn_fee_us_amt#46, rvnu_insrtn_crd_us_amt#50, rvnu_fetr_fee_us_amt#54, rvnu_fetr_crd_us_amt#58, rvnu_fv_fee_us_amt#62, rvnu_fv_crd_us_amt#67, rvnu_othr_l_fee_us_amt#72, rvnu_othr_l_crd_us_amt#76, rvnu_othr_nl_fee_us_amt#80, rvnu_othr_nl_crd_us_amt#84, rvnu_slr_tools_fee_us_amt#88, rvnu_slr_tools_crd_us_amt#92, rvnu_unasgnd_us_amt#96, ... 6 more fields]
         +- *(11) BroadcastHashJoin [byr_cntry_id#23], [cntry_id#1309], LeftOuter, BuildRight
            :- *(11) Project [cmn_mtrc_summ_dt#21, byr_cntry_id#23, sap_category_id#24, bid_count#34, ck_trans_count#35, ended_bid_count#36, ended_lstg_count#37, ended_success_lstg_count#38, item_sold_count#39, new_lstg_count#40, gmv_us_amt#41, gmv_slr_lc_amt#42, rvnu_insrtn_fee_us_amt#46, rvnu_insrtn_crd_us_amt#50, rvnu_fetr_fee_us_amt#54, rvnu_fetr_crd_us_amt#58, rvnu_fv_fee_us_amt#62, rvnu_fv_crd_us_amt#67, rvnu_othr_l_fee_us_amt#72, rvnu_othr_l_crd_us_amt#76, rvnu_othr_nl_fee_us_amt#80, rvnu_othr_nl_crd_us_amt#84, rvnu_slr_tools_fee_us_amt#88, rvnu_slr_tools_crd_us_amt#92, ... 6 more fields]
            :  +- *(11) BroadcastHashJoin [slr_cntry_id#28], [cntry_id#1269], LeftOuter, BuildRight
            :     :- *(11) Project [gen_attr_1#360 AS cmn_mtrc_summ_dt#21, gen_attr_5#267 AS byr_cntry_id#23, gen_attr_7#268 AS sap_category_id#24, gen_attr_15#272 AS slr_cntry_id#28, gen_attr_27#278 AS bid_count#34, gen_attr_29#279 AS ck_trans_count#35, gen_attr_31#280 AS ended_bid_count#36, gen_attr_33#282 AS ended_lstg_count#37, gen_attr_35#283 AS ended_success_lstg_count#38, gen_attr_37#284 AS item_sold_count#39, gen_attr_39#281 AS new_lstg_count#40, gen_attr_41#285 AS gmv_us_amt#41, gen_attr_43#287 AS gmv_slr_lc_amt#42, gen_attr_51#290 AS rvnu_insrtn_fee_us_amt#46, gen_attr_59#294 AS rvnu_insrtn_crd_us_amt#50, gen_attr_67#298 AS rvnu_fetr_fee_us_amt#54, gen_attr_75#302 AS rvnu_fetr_crd_us_amt#58, gen_attr_83#306 AS rvnu_fv_fee_us_amt#62, gen_attr_93#311 AS rvnu_fv_crd_us_amt#67, gen_attr_103#316 AS rvnu_othr_l_fee_us_amt#72, gen_attr_111#320 AS rvnu_othr_l_crd_us_amt#76, gen_attr_119#324 AS rvnu_othr_nl_fee_us_amt#80, gen_attr_127#328 AS rvnu_othr_nl_crd_us_amt#84, gen_attr_135#332 AS rvnu_slr_tools_fee_us_amt#88, ... 6 more fields]
            :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_308#777 as decimal(20,0))], [cast(gen_attr_309#803 as decimal(20,0))], LeftOuter, BuildRight
            :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, gen_attr_143#336, ... 6 more fields]
            :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_310#674 as int)], [cast(gen_attr_311#774 as int)], LeftOuter, BuildRight
            :     :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, gen_attr_143#336, ... 6 more fields]
            :     :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_5#267 as decimal(20,0))], [cast(gen_attr_312#665 as decimal(20,0))], LeftOuter, BuildRight
            :     :     :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, gen_attr_143#336, ... 5 more fields]
            :     :     :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_313#565 as decimal(20,0))], [cast(gen_attr_314#591 as decimal(20,0))], LeftOuter, BuildRight
            :     :     :     :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, gen_attr_143#336, ... 6 more fields]
            :     :     :     :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_315#462 as int)], [cast(gen_attr_316#562 as int)], LeftOuter, BuildRight
            :     :     :     :     :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, gen_attr_143#336, ... 6 more fields]
            :     :     :     :     :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_15#272 as decimal(20,0))], [cast(gen_attr_317#453 as decimal(20,0))], LeftOuter, BuildRight
            :     :     :     :     :     :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, gen_attr_143#336, ... 5 more fields]
            :     :     :     :     :     :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_25#277 as decimal(20,0))], [cast(gen_attr_318#379 as decimal(20,0))], LeftOuter, BuildRight
            :     :     :     :     :     :     :     :     :- *(11) Project [gen_attr_5#267, gen_attr_7#268, gen_attr_15#272, gen_attr_25#277, gen_attr_27#278, gen_attr_29#279, gen_attr_31#280, gen_attr_39#281, gen_attr_33#282, gen_attr_35#283, gen_attr_37#284, gen_attr_41#285, gen_attr_43#287, gen_attr_51#290, gen_attr_59#294, gen_attr_67#298, gen_attr_75#302, gen_attr_83#306, gen_attr_93#311, gen_attr_103#316, gen_attr_111#320, gen_attr_119#324, gen_attr_127#328, gen_attr_135#332, ... 6 more fields]
            :     :     :     :     :     :     :     :     :  +- *(11) BroadcastHashJoin [cast(gen_attr_23#276 as decimal(20,0))], [cast(gen_attr_319#367 as decimal(20,0))], LeftOuter, BuildRight
            :     :     :     :     :     :     :     :     :     :- *(11) Project [byr_cntry_id#1169 AS gen_attr_5#267, sap_category_id#1170 AS gen_attr_7#268, slr_cntry_id#1174 AS gen_attr_15#272, lstg_curncy_id#1178 AS gen_attr_23#276, blng_curncy_id#1179 AS gen_attr_25#277, bid_count#1180 AS gen_attr_27#278, ck_trans_count#1181 AS gen_attr_29#279, ended_bid_count#1182 AS gen_attr_31#280, new_lstg_count#1183 AS gen_attr_39#281, ended_lstg_count#1184 AS gen_attr_33#282, ended_success_lstg_count#1185 AS gen_attr_35#283, item_sold_count#1186 AS gen_attr_37#284, gmv_us_amt#1187 AS gen_attr_41#285, gmv_slr_lc_amt#1189 AS gen_attr_43#287, rvnu_insrtn_fee_us_amt#1192 AS gen_attr_51#290, rvnu_insrtn_crd_us_amt#1196 AS gen_attr_59#294, rvnu_fetr_fee_us_amt#1200 AS gen_attr_67#298, rvnu_fetr_crd_us_amt#1204 AS gen_attr_75#302, rvnu_fv_fee_us_amt#1208 AS gen_attr_83#306, rvnu_fv_crd_us_amt#1213 AS gen_attr_93#311, rvnu_othr_l_fee_us_amt#1218 AS gen_attr_103#316, rvnu_othr_l_crd_us_amt#1222 AS gen_attr_111#320, rvnu_othr_nl_fee_us_amt#1226 AS gen_attr_119#324, rvnu_othr_nl_crd_us_amt#1230 AS gen_attr_127#328, ... 7 more fields]
            :     :     :     :     :     :     :     :     :     :  +- *(11) ColumnarToRow
            :     :     :     :     :     :     :     :     :     :     +- FileScan parquet default.big_table1[byr_cntry_id#1169,sap_category_id#1170,slr_cntry_id#1174,lstg_curncy_id#1178,blng_curncy_id#1179,bid_count#1180,ck_trans_count#1181,ended_bid_count#1182,new_lstg_count#1183,ended_lstg_count#1184,ended_success_lstg_count#1185,item_sold_count#1186,gmv_us_amt#1187,gmv_slr_lc_amt#1189,rvnu_insrtn_fee_us_amt#1192,rvnu_insrtn_crd_us_amt#1196,rvnu_fetr_fee_us_amt#1200,rvnu_fetr_crd_us_amt#1204,rvnu_fv_fee_us_amt#1208,rvnu_fv_crd_us_amt#1213,rvnu_othr_l_fee_us_amt#1218,rvnu_othr_l_crd_us_amt#1222,rvnu_othr_nl_fee_us_amt#1226,rvnu_othr_nl_crd_us_amt#1230,... 7 more fields] Batched: true, DataFilters: [], Format: Parquet, Location: PrunedInMemoryFileIndex[], PartitionFilters: [isnotnull(cmn_mtrc_summ_dt#1262), (cmn_mtrc_summ_dt#1262 >= 18078), (cmn_mtrc_summ_dt#1262 <= 18..., PushedFilters: [], ReadSchema: struct<byr_cntry_id:decimal(4,0),sap_category_id:decimal(9,0),slr_cntry_id:decimal(4,0),lstg_curn...
            :     :     :     :     :     :     :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, decimal(9,0), true] as decimal(20,0)))), [id=#288]
            :     :     :     :     :     :     :     :     :        +- *(1) Project [CURNCY_ID#1263 AS gen_attr_319#367]
            :     :     :     :     :     :     :     :     :           +- *(1) Filter isnotnull(CURNCY_ID#1263)
            :     :     :     :     :     :     :     :     :              +- *(1) ColumnarToRow
            :     :     :     :     :     :     :     :     :                 +- FileScan parquet default.small_table1[CURNCY_ID#1263] Batched: true, DataFilters: [isnotnull(CURNCY_ID#1263)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table1], PartitionFilters: [], PushedFilters: [IsNotNull(CURNCY_ID)], ReadSchema: struct<CURNCY_ID:decimal(9,0)>, SelectedBucketsCount: 1 out of 1
            :     :     :     :     :     :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, decimal(9,0), true] as decimal(20,0)))), [id=#297]
            :     :     :     :     :     :     :     :        +- *(2) Project [CURNCY_ID#1263 AS gen_attr_318#379]
            :     :     :     :     :     :     :     :           +- *(2) Filter isnotnull(CURNCY_ID#1263)
            :     :     :     :     :     :     :     :              +- *(2) ColumnarToRow
            :     :     :     :     :     :     :     :                 +- FileScan parquet default.small_table1[CURNCY_ID#1263] Batched: true, DataFilters: [isnotnull(CURNCY_ID#1263)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table1], PartitionFilters: [], PushedFilters: [IsNotNull(CURNCY_ID)], ReadSchema: struct<CURNCY_ID:decimal(9,0)>, SelectedBucketsCount: 1 out of 1
            :     :     :     :     :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, decimal(4,0), true] as decimal(20,0)))), [id=#306]
            :     :     :     :     :     :     :        +- *(3) Project [cntry_id#1269 AS gen_attr_317#453, rev_rollup_id#1278 AS gen_attr_315#462]
            :     :     :     :     :     :     :           +- *(3) Filter isnotnull(cntry_id#1269)
            :     :     :     :     :     :     :              +- *(3) ColumnarToRow
            :     :     :     :     :     :     :                 +- FileScan parquet default.small_table2[cntry_id#1269,rev_rollup_id#1278] Batched: true, DataFilters: [isnotnull(cntry_id#1269)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table2], PartitionFilters: [], PushedFilters: [IsNotNull(cntry_id)], ReadSchema: struct<cntry_id:decimal(4,0),rev_rollup_id:smallint>
            :     :     :     :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(cast(input[0, smallint, true] as int) as bigint))), [id=#315]
            :     :     :     :     :     :        +- *(4) Project [rev_rollup_id#1286 AS gen_attr_316#562, curncy_id#1289 AS gen_attr_313#565]
            :     :     :     :     :     :           +- *(4) Filter isnotnull(rev_rollup_id#1286)
            :     :     :     :     :     :              +- *(4) ColumnarToRow
            :     :     :     :     :     :                 +- FileScan parquet default.small_table3[rev_rollup_id#1286,curncy_id#1289] Batched: true, DataFilters: [isnotnull(rev_rollup_id#1286)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table3], PartitionFilters: [], PushedFilters: [IsNotNull(rev_rollup_id)], ReadSchema: struct<rev_rollup_id:smallint,curncy_id:decimal(4,0)>
            :     :     :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, decimal(9,0), true] as decimal(20,0)))), [id=#324]
            :     :     :     :     :        +- *(5) Project [CURNCY_ID#1263 AS gen_attr_314#591]
            :     :     :     :     :           +- *(5) Filter isnotnull(CURNCY_ID#1263)
            :     :     :     :     :              +- *(5) ColumnarToRow
            :     :     :     :     :                 +- FileScan parquet default.small_table1[CURNCY_ID#1263] Batched: true, DataFilters: [isnotnull(CURNCY_ID#1263)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table1], PartitionFilters: [], PushedFilters: [IsNotNull(CURNCY_ID)], ReadSchema: struct<CURNCY_ID:decimal(9,0)>, SelectedBucketsCount: 1 out of 1
            :     :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, decimal(4,0), true] as decimal(20,0)))), [id=#333]
            :     :     :     :        +- *(6) Project [cntry_id#1269 AS gen_attr_312#665, rev_rollup_id#1278 AS gen_attr_310#674]
            :     :     :     :           +- *(6) Filter isnotnull(cntry_id#1269)
            :     :     :     :              +- *(6) ColumnarToRow
            :     :     :     :                 +- FileScan parquet default.small_table2[cntry_id#1269,rev_rollup_id#1278] Batched: true, DataFilters: [isnotnull(cntry_id#1269)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table2], PartitionFilters: [], PushedFilters: [IsNotNull(cntry_id)], ReadSchema: struct<cntry_id:decimal(4,0),rev_rollup_id:smallint>
            :     :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(cast(input[0, smallint, true] as int) as bigint))), [id=#342]
            :     :     :        +- *(7) Project [rev_rollup_id#1286 AS gen_attr_311#774, curncy_id#1289 AS gen_attr_308#777]
            :     :     :           +- *(7) Filter isnotnull(rev_rollup_id#1286)
            :     :     :              +- *(7) ColumnarToRow
            :     :     :                 +- FileScan parquet default.small_table3[rev_rollup_id#1286,curncy_id#1289] Batched: true, DataFilters: [isnotnull(rev_rollup_id#1286)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table3], PartitionFilters: [], PushedFilters: [IsNotNull(rev_rollup_id)], ReadSchema: struct<rev_rollup_id:smallint,curncy_id:decimal(4,0)>
            :     :     +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, decimal(9,0), true] as decimal(20,0)))), [id=#351]
            :     :        +- *(8) Project [CURNCY_ID#1263 AS gen_attr_309#803]
            :     :           +- *(8) Filter isnotnull(CURNCY_ID#1263)
            :     :              +- *(8) ColumnarToRow
            :     :                 +- FileScan parquet default.small_table1[CURNCY_ID#1263] Batched: true, DataFilters: [isnotnull(CURNCY_ID#1263)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table1], PartitionFilters: [], PushedFilters: [IsNotNull(CURNCY_ID)], ReadSchema: struct<CURNCY_ID:decimal(9,0)>, SelectedBucketsCount: 1 out of 1
            :     +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, decimal(4,0), true])), [id=#360]
            :        +- *(9) Project [cntry_id#1269, rev_rollup#1279]
            :           +- *(9) Filter isnotnull(cntry_id#1269)
            :              +- *(9) ColumnarToRow
            :                 +- FileScan parquet default.small_table2[cntry_id#1269,rev_rollup#1279] Batched: true, DataFilters: [isnotnull(cntry_id#1269)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/small_table2], PartitionFilters: [], PushedFilters: [IsNotNull(cntry_id)], ReadSchema: struct<cntry_id:decimal(4,0),rev_rollup:string>
            +- ReusedExchange [cntry_id#1309, rev_rollup#1319], BroadcastExchange HashedRelationBroadcastMode(List(input[0, decimal(4,0), true])), [id=#360]
```
This PR try to improve `ResolveTables` and `ResolveRelations` performance by reducing the connection times to Hive Metastore Server in such case.

### Why are the changes needed?
1. Reduce the connection times to Hive Metastore Server.
2. Improve `ResolveTables` and `ResolveRelations` performance.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?

manual test.
After [SPARK-29606](https://issues.apache.org/jira/browse/SPARK-29606) and before this PR:
```
=== Metrics of Analyzer/Optimizer Rules ===
Total number of runs: 9323
Total time: 2.687441263 seconds

Rule                                                                                               Effective Time / Total Time                     Effective Runs / Total Runs

org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations                                   929173767 / 930133504                           2 / 18
org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveTables                                      0 / 383363402                                   0 / 18
org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin                                         0 / 99433540                                    0 / 4
org.apache.spark.sql.catalyst.analysis.DecimalPrecision                                            41809394 / 83727901                             2 / 18
org.apache.spark.sql.execution.datasources.PruneFileSourcePartitions                               71372977 / 71372977                             1 / 1
org.apache.spark.sql.catalyst.analysis.TypeCoercion$ImplicitTypeCasts                              0 / 59071933                                    0 / 18
org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences                                  37858325 / 58471776                             5 / 18
org.apache.spark.sql.catalyst.analysis.TypeCoercion$PromoteStrings                                 20889892 / 53229016                             1 / 18
org.apache.spark.sql.catalyst.analysis.TypeCoercion$FunctionArgumentConversion                     23428968 / 50890815                             1 / 18
org.apache.spark.sql.catalyst.analysis.TypeCoercion$InConversion                                   23230666 / 49182607                             1 / 18
org.apache.spark.sql.catalyst.analysis.Analyzer$ExtractGenerator                                   0 / 43638350                                    0 / 18
org.apache.spark.sql.catalyst.optimizer.ColumnPruning                                              17194844 / 42530885                             1 / 6
```
After [SPARK-29606](https://issues.apache.org/jira/browse/SPARK-29606) and after this PR:
```
=== Metrics of Analyzer/Optimizer Rules ===
Total number of runs: 9323
Total time: 2.163765869 seconds

Rule                                                                                               Effective Time / Total Time                     Effective Runs / Total Runs

org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations                                   658905353 / 659829383                           2 / 18
org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveTables                                      0 / 220708715                                   0 / 18
org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin                                         0 / 9960681                                    0 / 4
org.apache.spark.sql.catalyst.analysis.DecimalPrecision                                            39616060 / 78215752                             2 / 18
org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences                                  36706549 / 54917789                             5 / 18
org.apache.spark.sql.execution.datasources.PruneFileSourcePartitions                               53561921 / 53561921                             1 / 1
org.apache.spark.sql.catalyst.analysis.TypeCoercion$ImplicitTypeCasts                              0 / 52329678                                    0 / 18
org.apache.spark.sql.catalyst.analysis.TypeCoercion$PromoteStrings                                 20945755 / 49695998                             1 / 18
org.apache.spark.sql.catalyst.analysis.TypeCoercion$FunctionArgumentConversion                     20872241 / 46740145                             1 / 18
org.apache.spark.sql.catalyst.analysis.TypeCoercion$InConversion                                   19780298 / 44327227                             1 / 18
org.apache.spark.sql.catalyst.analysis.Analyzer$ExtractGenerator                                   0 / 42312023                                    0 / 18
org.apache.spark.sql.catalyst.optimizer.ColumnPruning                                              17197393 / 39501424                             1 / 6
```

Closes #26589 from wangyum/SPARK-29947.

Authored-by: Yuming Wang <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

6 participants