diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala new file mode 100644 index 0000000000000..693117d820580 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala @@ -0,0 +1,89 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.evaluation + +import org.apache.spark.annotation.Experimental +import org.apache.spark.rdd.RDD +import org.apache.spark.Logging +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, MultivariateOnlineSummarizer} + +/** + * :: Experimental :: + * Evaluator for regression. + * + * @param predictionAndObservations an RDD of (prediction, observation) pairs. + */ +@Experimental +class RegressionMetrics(predictionAndObservations: RDD[(Double, Double)]) extends Logging { + + /** + * Use MultivariateOnlineSummarizer to calculate summary statistics of observations and errors. + */ + private lazy val summary: MultivariateStatisticalSummary = { + val summary: MultivariateStatisticalSummary = predictionAndObservations.map { + case (prediction, observation) => Vectors.dense(observation, observation - prediction) + }.aggregate(new MultivariateOnlineSummarizer())( + (summary, v) => summary.add(v), + (sum1, sum2) => sum1.merge(sum2) + ) + summary + } + + /** + * Returns the explained variance regression score. + * explainedVariance = 1 - variance(y - \hat{y}) / variance(y) + * Reference: [[http://en.wikipedia.org/wiki/Explained_variation]] + */ + def explainedVariance: Double = { + 1 - summary.variance(1) / summary.variance(0) + } + + /** + * Returns the mean absolute error, which is a risk function corresponding to the + * expected value of the absolute error loss or l1-norm loss. + */ + def meanAbsoluteError: Double = { + summary.normL1(1) / summary.count + } + + /** + * Returns the mean squared error, which is a risk function corresponding to the + * expected value of the squared error loss or quadratic loss. + */ + def meanSquaredError: Double = { + val rmse = summary.normL2(1) / math.sqrt(summary.count) + rmse * rmse + } + + /** + * Returns the root mean squared error, which is defined as the square root of + * the mean squared error. + */ + def rootMeanSquaredError: Double = { + summary.normL2(1) / math.sqrt(summary.count) + } + + /** + * Returns R^2^, the coefficient of determination. + * Reference: [[http://en.wikipedia.org/wiki/Coefficient_of_determination]] + */ + def r2: Double = { + 1 - math.pow(summary.normL2(1), 2) / (summary.variance(0) * (summary.count - 1)) + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/evaluation/RegressionMetricsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/RegressionMetricsSuite.scala new file mode 100644 index 0000000000000..5396d7b2b74fa --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/RegressionMetricsSuite.scala @@ -0,0 +1,52 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.evaluation + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.util.LocalSparkContext +import org.apache.spark.mllib.util.TestingUtils._ + +class RegressionMetricsSuite extends FunSuite with LocalSparkContext { + + test("regression metrics") { + val predictionAndObservations = sc.parallelize( + Seq((2.5,3.0),(0.0,-0.5),(2.0,2.0),(8.0,7.0)), 2) + val metrics = new RegressionMetrics(predictionAndObservations) + assert(metrics.explainedVariance ~== 0.95717 absTol 1E-5, + "explained variance regression score mismatch") + assert(metrics.meanAbsoluteError ~== 0.5 absTol 1E-5, "mean absolute error mismatch") + assert(metrics.meanSquaredError ~== 0.375 absTol 1E-5, "mean squared error mismatch") + assert(metrics.rootMeanSquaredError ~== 0.61237 absTol 1E-5, + "root mean squared error mismatch") + assert(metrics.r2 ~== 0.94861 absTol 1E-5, "r2 score mismatch") + } + + test("regression metrics with complete fitting") { + val predictionAndObservations = sc.parallelize( + Seq((3.0,3.0),(0.0,0.0),(2.0,2.0),(8.0,8.0)), 2) + val metrics = new RegressionMetrics(predictionAndObservations) + assert(metrics.explainedVariance ~== 1.0 absTol 1E-5, + "explained variance regression score mismatch") + assert(metrics.meanAbsoluteError ~== 0.0 absTol 1E-5, "mean absolute error mismatch") + assert(metrics.meanSquaredError ~== 0.0 absTol 1E-5, "mean squared error mismatch") + assert(metrics.rootMeanSquaredError ~== 0.0 absTol 1E-5, + "root mean squared error mismatch") + assert(metrics.r2 ~== 1.0 absTol 1E-5, "r2 score mismatch") + } +}