-
Notifications
You must be signed in to change notification settings - Fork 28.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
213 additions
and
0 deletions.
There are no files selected for viewing
103 changes: 103 additions & 0 deletions
103
mllib/src/main/scala/org/apache/spark/mllib/rdd/VectorRDDFunctions.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.apache.spark.mllib.rdd | ||
|
||
import breeze.linalg.{Vector => BV, *} | ||
|
||
import org.apache.spark.mllib.linalg.{Vector, Vectors} | ||
import org.apache.spark.mllib.util.MLUtils._ | ||
import org.apache.spark.rdd.RDD | ||
|
||
/** | ||
* Extra functions available on RDDs of [[org.apache.spark.mllib.linalg.Vector Vector]] through an implicit conversion. | ||
* Import `org.apache.spark.MLContext._` at the top of your program to use these functions. | ||
*/ | ||
class VectorRDDFunctions(self: RDD[Vector]) extends Serializable { | ||
|
||
def rowMeans(): RDD[Double] = { | ||
self.map(x => x.toArray.sum / x.size) | ||
} | ||
|
||
def rowNorm2(): RDD[Double] = { | ||
self.map(x => math.sqrt(x.toArray.map(x => x*x).sum)) | ||
} | ||
|
||
def rowSDs(): RDD[Double] = { | ||
val means = self.rowMeans() | ||
self.zip(means) | ||
.map{ case(x, m) => x.toBreeze - m } | ||
.map{ x => math.sqrt(x.toArray.map(x => x*x).sum / x.size) } | ||
} | ||
|
||
def colMeansOption(): Vector = { | ||
??? | ||
} | ||
|
||
def colNorm2Option(): Vector = { | ||
??? | ||
} | ||
|
||
def colSDsOption(): Vector = { | ||
??? | ||
} | ||
|
||
def colMeans(): Vector = { | ||
Vectors.fromBreeze(self.map(_.toBreeze).zipWithIndex().fold((BV.zeros(1), 0L)) { | ||
case ((lhsVec, lhsCnt), (rhsVec, rhsCnt)) => | ||
val totalNow: BV[Double] = lhsVec :* lhsCnt.asInstanceOf[Double] | ||
val totalNew: BV[Double] = (totalNow + rhsVec) :/ rhsCnt.asInstanceOf[Double] | ||
(totalNew, rhsCnt) | ||
}._1) | ||
} | ||
|
||
def colNorm2(): Vector = Vectors.fromBreeze( | ||
breezeVector = self.map(_.toBreeze).fold(BV.zeros(1)) { | ||
case (lhs, rhs) => lhs + rhs :* rhs | ||
}.map(math.sqrt)) | ||
|
||
def colSDs(): Vector = { | ||
val means = this.colMeans() | ||
Vectors.fromBreeze( | ||
breezeVector = self.map(x => x.toBreeze - means.toBreeze) | ||
.zipWithIndex() | ||
.fold((BV.zeros(1), 0L)) { | ||
case ((lhsVec, lhsCnt), (rhsVec, rhsCnt)) => | ||
val totalNow: BV[Double] = lhsVec :* lhsCnt.asInstanceOf[Double] | ||
val totalNew: BV[Double] = (totalNow + rhsVec :* rhsVec) :/ rhsCnt.asInstanceOf[Double] | ||
(totalNew, rhsCnt) | ||
}._1.map(math.sqrt)) | ||
} | ||
|
||
private def maxMinOption(cmp: (Vector, Vector) => Boolean): Option[Vector] = { | ||
def cmpMaxMin(x1: Vector, x2: Vector) = if (cmp(x1, x2)) x1 else x2 | ||
self.mapPartitions { iterator => | ||
Seq(iterator.reduceOption(cmpMaxMin)).iterator | ||
}.collect { case Some(x) => x }.collect().reduceOption(cmpMaxMin) | ||
} | ||
|
||
def maxOption(cmp: (Vector, Vector) => Boolean) = maxMinOption(cmp) | ||
|
||
def minOption(cmp: (Vector, Vector) => Boolean) = maxMinOption(!cmp(_, _)) | ||
|
||
def rowShrink(): RDD[Vector] = { | ||
??? | ||
} | ||
|
||
def colShrink(): RDD[Vector] = { | ||
??? | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
109 changes: 109 additions & 0 deletions
109
mllib/src/test/scala/org/apache/spark/mllib/rdd/VectorRDDFunctionsSuite.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.rdd | ||
|
||
import org.apache.spark.mllib.linalg.Vector | ||
import org.scalatest.FunSuite | ||
|
||
import org.apache.spark.mllib.linalg.Vectors | ||
import org.apache.spark.mllib.util.MLUtils._ | ||
import VectorRDDFunctionsSuite._ | ||
import org.apache.spark.mllib.util.LocalSparkContext | ||
|
||
class VectorRDDFunctionsSuite extends FunSuite with LocalSparkContext { | ||
|
||
val localData = Array( | ||
Vectors.dense(1.0, 2.0, 3.0), | ||
Vectors.dense(4.0, 5.0, 6.0), | ||
Vectors.dense(7.0, 8.0, 9.0) | ||
) | ||
|
||
val rowMeans = Array(2.0, 5.0, 8.0) | ||
val rowNorm2 = Array(math.sqrt(14.0), math.sqrt(77.0), math.sqrt(194.0)) | ||
val rowSDs = Array(math.sqrt(2.0 / 3.0), math.sqrt(2.0 / 3.0), math.sqrt(2.0 / 3.0)) | ||
|
||
val colMeans = Array(4.0, 5.0, 6.0) | ||
val colNorm2 = Array(math.sqrt(66.0), math.sqrt(93.0), math.sqrt(126.0)) | ||
val colSDs = Array(math.sqrt(6.0), math.sqrt(6.0), math.sqrt(6.0)) | ||
|
||
val maxVec = Array(7.0, 8.0, 9.0) | ||
val minVec = Array(1.0, 2.0, 3.0) | ||
|
||
test("rowMeans") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVector(Vectors.dense(data.rowMeans().collect()), Vectors.dense(rowMeans)), "Row means do not match.") | ||
} | ||
|
||
test("rowNorm2") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVector(Vectors.dense(data.rowNorm2().collect()), Vectors.dense(rowNorm2)), "Row norm2s do not match.") | ||
} | ||
|
||
test("rowSDs") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVector(Vectors.dense(data.rowSDs().collect()), Vectors.dense(rowSDs)), "Row SDs do not match.") | ||
} | ||
|
||
test("colMeans") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVector(data.colMeans(), Vectors.dense(colMeans)), "Column means do not match.") | ||
} | ||
|
||
test("colNorm2") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVector(data.colNorm2(), Vectors.dense(colNorm2)), "Column norm2s do not match.") | ||
} | ||
|
||
test("colSDs") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVector(data.colSDs(), Vectors.dense(colSDs)), "Column SDs do not match.") | ||
} | ||
|
||
test("maxOption") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVectorOption( | ||
data.maxOption((lhs: Vector, rhs: Vector) => lhs.toBreeze.norm(2) >= rhs.toBreeze.norm(2)), | ||
Some(Vectors.dense(maxVec))), | ||
"Optional maximum does not match." | ||
) | ||
} | ||
|
||
test("minOption") { | ||
val data = sc.parallelize(localData) | ||
assert(equivVectorOption( | ||
data.minOption((lhs: Vector, rhs: Vector) => lhs.toBreeze.norm(2) >= rhs.toBreeze.norm(2)), | ||
Some(Vectors.dense(minVec))), | ||
"Optional minimum does not match." | ||
) | ||
} | ||
} | ||
|
||
object VectorRDDFunctionsSuite { | ||
def equivVector(lhs: Vector, rhs: Vector): Boolean = { | ||
(lhs.toBreeze - rhs.toBreeze).norm(2) < 1e-9 | ||
} | ||
|
||
def equivVectorOption(lhs: Option[Vector], rhs: Option[Vector]): Boolean = { | ||
(lhs, rhs) match { | ||
case (Some(a), Some(b)) => (a.toBreeze - a.toBreeze).norm(2) < 1e-9 | ||
case (None, None) => true | ||
case _ => false | ||
} | ||
} | ||
} | ||
|