diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala new file mode 100644 index 0000000000000..ea10bde5fa252 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala @@ -0,0 +1,157 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.evaluation + +import org.apache.spark.rdd.RDD +import org.apache.spark.SparkContext._ + +/** + * Evaluator for multilabel classification. + * @param predictionAndLabels an RDD of (predictions, labels) pairs, + * both are non-null Arrays, each with unique elements. + */ +class MultilabelMetrics(predictionAndLabels: RDD[(Array[Double], Array[Double])]) { + + private lazy val numDocs: Long = predictionAndLabels.count() + + private lazy val numLabels: Long = predictionAndLabels.flatMap { case (_, labels) => + labels}.distinct().count() + + /** + * Returns subset accuracy + * (for equal sets of labels) + */ + lazy val subsetAccuracy: Double = predictionAndLabels.filter { case (predictions, labels) => + predictions.deep == labels.deep + }.count().toDouble / numDocs + + /** + * Returns accuracy + */ + lazy val accuracy: Double = predictionAndLabels.map { case (predictions, labels) => + labels.intersect(predictions).size.toDouble / + (labels.size + predictions.size - labels.intersect(predictions).size)}.sum / numDocs + + + /** + * Returns Hamming-loss + */ + lazy val hammingLoss: Double = predictionAndLabels.map { case (predictions, labels) => + labels.size + predictions.size - 2 * labels.intersect(predictions).size + }.sum / (numDocs * numLabels) + + /** + * Returns document-based precision averaged by the number of documents + */ + lazy val precision: Double = predictionAndLabels.map { case (predictions, labels) => + if (predictions.size > 0) { + predictions.intersect(labels).size.toDouble / predictions.size + } else { + 0 + } + }.sum / numDocs + + /** + * Returns document-based recall averaged by the number of documents + */ + lazy val recall: Double = predictionAndLabels.map { case (predictions, labels) => + labels.intersect(predictions).size.toDouble / labels.size + }.sum / numDocs + + /** + * Returns document-based f1-measure averaged by the number of documents + */ + lazy val f1Measure: Double = predictionAndLabels.map { case (predictions, labels) => + 2.0 * predictions.intersect(labels).size / (predictions.size + labels.size) + }.sum / numDocs + + private lazy val tpPerClass = predictionAndLabels.flatMap { case (predictions, labels) => + predictions.intersect(labels) + }.countByValue() + + private lazy val fpPerClass = predictionAndLabels.flatMap { case (predictions, labels) => + predictions.diff(labels) + }.countByValue() + + private lazy val fnPerClass = predictionAndLabels.flatMap { case(predictions, labels) => + labels.diff(predictions) + }.countByValue() + + /** + * Returns precision for a given label (category) + * @param label the label. + */ + def precision(label: Double) = { + val tp = tpPerClass(label) + val fp = fpPerClass.getOrElse(label, 0L) + if (tp + fp == 0) 0 else tp.toDouble / (tp + fp) + } + + /** + * Returns recall for a given label (category) + * @param label the label. + */ + def recall(label: Double) = { + val tp = tpPerClass(label) + val fn = fnPerClass.getOrElse(label, 0L) + if (tp + fn == 0) 0 else tp.toDouble / (tp + fn) + } + + /** + * Returns f1-measure for a given label (category) + * @param label the label. + */ + def f1Measure(label: Double) = { + val p = precision(label) + val r = recall(label) + if((p + r) == 0) 0 else 2 * p * r / (p + r) + } + + private lazy val sumTp = tpPerClass.foldLeft(0L) { case (sum, (_, tp)) => sum + tp } + private lazy val sumFpClass = fpPerClass.foldLeft(0L) { case (sum, (_, fp)) => sum + fp } + private lazy val sumFnClass = fnPerClass.foldLeft(0L) { case (sum, (_, fn)) => sum + fn } + + /** + * Returns micro-averaged label-based precision + * (equals to micro-averaged document-based precision) + */ + lazy val microPrecision = { + val sumFp = fpPerClass.foldLeft(0L){ case(cum, (_, fp)) => cum + fp} + sumTp.toDouble / (sumTp + sumFp) + } + + /** + * Returns micro-averaged label-based recall + * (equals to micro-averaged document-based recall) + */ + lazy val microRecall = { + val sumFn = fnPerClass.foldLeft(0.0){ case(cum, (_, fn)) => cum + fn} + sumTp.toDouble / (sumTp + sumFn) + } + + /** + * Returns micro-averaged label-based f1-measure + * (equals to micro-averaged document-based f1-measure) + */ + lazy val microF1Measure = 2.0 * sumTp / (2 * sumTp + sumFnClass + sumFpClass) + + /** + * Returns the sequence of labels in ascending order + */ + lazy val labels: Array[Double] = tpPerClass.keys.toArray.sorted +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala new file mode 100644 index 0000000000000..342baa0274e9c --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala @@ -0,0 +1,103 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.evaluation + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.util.LocalSparkContext +import org.apache.spark.rdd.RDD + +class MultilabelMetricsSuite extends FunSuite with LocalSparkContext { + test("Multilabel evaluation metrics") { + /* + * Documents true labels (5x class0, 3x class1, 4x class2): + * doc 0 - predict 0, 1 - class 0, 2 + * doc 1 - predict 0, 2 - class 0, 1 + * doc 2 - predict none - class 0 + * doc 3 - predict 2 - class 2 + * doc 4 - predict 2, 0 - class 2, 0 + * doc 5 - predict 0, 1, 2 - class 0, 1 + * doc 6 - predict 1 - class 1, 2 + * + * predicted classes + * class 0 - doc 0, 1, 4, 5 (total 4) + * class 1 - doc 0, 5, 6 (total 3) + * class 2 - doc 1, 3, 4, 5 (total 4) + * + * true classes + * class 0 - doc 0, 1, 2, 4, 5 (total 5) + * class 1 - doc 1, 5, 6 (total 3) + * class 2 - doc 0, 3, 4, 6 (total 4) + * + */ + val scoreAndLabels: RDD[(Array[Double], Array[Double])] = sc.parallelize( + Seq((Array(0.0, 1.0), Array(0.0, 2.0)), + (Array(0.0, 2.0), Array(0.0, 1.0)), + (Array(), Array(0.0)), + (Array(2.0), Array(2.0)), + (Array(2.0, 0.0), Array(2.0, 0.0)), + (Array(0.0, 1.0, 2.0), Array(0.0, 1.0)), + (Array(1.0), Array(1.0, 2.0))), 2) + val metrics = new MultilabelMetrics(scoreAndLabels) + val delta = 0.00001 + val precision0 = 4.0 / (4 + 0) + val precision1 = 2.0 / (2 + 1) + val precision2 = 2.0 / (2 + 2) + val recall0 = 4.0 / (4 + 1) + val recall1 = 2.0 / (2 + 1) + val recall2 = 2.0 / (2 + 2) + val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0) + val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1) + val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2) + val sumTp = 4 + 2 + 2 + assert(sumTp == (1 + 1 + 0 + 1 + 2 + 2 + 1)) + val microPrecisionClass = sumTp.toDouble / (4 + 0 + 2 + 1 + 2 + 2) + val microRecallClass = sumTp.toDouble / (4 + 1 + 2 + 1 + 2 + 2) + val microF1MeasureClass = 2.0 * sumTp.toDouble / + (2 * sumTp.toDouble + (1 + 1 + 2) + (0 + 1 + 2)) + val macroPrecisionDoc = 1.0 / 7 * + (1.0 / 2 + 1.0 / 2 + 0 + 1.0 / 1 + 2.0 / 2 + 2.0 / 3 + 1.0 / 1.0) + val macroRecallDoc = 1.0 / 7 * + (1.0 / 2 + 1.0 / 2 + 0 / 1 + 1.0 / 1 + 2.0 / 2 + 2.0 / 2 + 1.0 / 2) + val macroF1MeasureDoc = (1.0 / 7) * + 2 * ( 1.0 / (2 + 2) + 1.0 / (2 + 2) + 0 + 1.0 / (1 + 1) + + 2.0 / (2 + 2) + 2.0 / (3 + 2) + 1.0 / (1 + 2) ) + val hammingLoss = (1.0 / (7 * 3)) * (2 + 2 + 1 + 0 + 0 + 1 + 1) + val strictAccuracy = 2.0 / 7 + val accuracy = 1.0 / 7 * (1.0 / 3 + 1.0 /3 + 0 + 1.0 / 1 + 2.0 / 2 + 2.0 / 3 + 1.0 / 2) + assert(math.abs(metrics.precision(0.0) - precision0) < delta) + assert(math.abs(metrics.precision(1.0) - precision1) < delta) + assert(math.abs(metrics.precision(2.0) - precision2) < delta) + assert(math.abs(metrics.recall(0.0) - recall0) < delta) + assert(math.abs(metrics.recall(1.0) - recall1) < delta) + assert(math.abs(metrics.recall(2.0) - recall2) < delta) + assert(math.abs(metrics.f1Measure(0.0) - f1measure0) < delta) + assert(math.abs(metrics.f1Measure(1.0) - f1measure1) < delta) + assert(math.abs(metrics.f1Measure(2.0) - f1measure2) < delta) + assert(math.abs(metrics.microPrecision - microPrecisionClass) < delta) + assert(math.abs(metrics.microRecall - microRecallClass) < delta) + assert(math.abs(metrics.microF1Measure - microF1MeasureClass) < delta) + assert(math.abs(metrics.precision - macroPrecisionDoc) < delta) + assert(math.abs(metrics.recall - macroRecallDoc) < delta) + assert(math.abs(metrics.f1Measure - macroF1MeasureDoc) < delta) + assert(math.abs(metrics.hammingLoss - hammingLoss) < delta) + assert(math.abs(metrics.subsetAccuracy - strictAccuracy) < delta) + assert(math.abs(metrics.accuracy - accuracy) < delta) + assert(metrics.labels.sameElements(Array(0.0, 1.0, 2.0))) + } +}