diff --git a/LICENSE b/LICENSE index 1eca980dbf93..ded6a01562bb 100644 --- a/LICENSE +++ b/LICENSE @@ -242,7 +242,6 @@ 3rdparty/miniz/miniz.c 3rdparty/miniz/miniz.h - example/gluon/tree_lstm 3rdparty/tvm/3rdparty/cma 3rdparty/onnx-tensorrt 3rdparty/onnx-tensorrt/third_party/onnx diff --git a/example/adversary/adversary_generation.ipynb b/example/adversary/adversary_generation.ipynb index 0dda371a8f41..9f8cf993d446 100644 --- a/example/adversary/adversary_generation.ipynb +++ b/example/adversary/adversary_generation.ipynb @@ -2,7 +2,6 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, "source": [ "# Fast Sign Adversary Generation Example\n", "\n", @@ -10,15 +9,12 @@ "\n", "[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. \"Explaining and harnessing adversarial examples.\" arXiv preprint arXiv:1412.6572 (2014).\n", "https://arxiv.org/abs/1412.6572" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [], "source": [ "%matplotlib inline\n", "import mxnet as mx\n", @@ -28,39 +24,41 @@ "import matplotlib.cm as cm\n", "\n", "from mxnet import gluon" - ] + ], + "outputs": [], + "metadata": { + "collapsed": false + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Build simple CNN network for solving the MNIST dataset digit recognition task" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "ctx = mx.gpu() if mx.context.num_gpus() else mx.cpu()\n", "batch_size = 128" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Data Loading" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 3, - "metadata": {}, - "outputs": [], "source": [ "transform = lambda x,y: (x.transpose((2,0,1)).astype('float32')/255., y)\n", "\n", @@ -69,22 +67,20 @@ "\n", "train_data = gluon.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=5)\n", "test_data = gluon.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Create the network" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "net = gluon.nn.HybridSequential()\n", "with net.name_scope():\n", @@ -97,73 +93,63 @@ " gluon.nn.Dense(500, activation='tanh'),\n", " gluon.nn.Dense(10)\n", " )" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Initialize training" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "net.initialize(mx.initializer.Uniform(), ctx=ctx)\n", "net.hybridize()" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "loss = gluon.loss.SoftmaxCELoss()" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1, 'momentum':0.95})" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Training loop" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train Accuracy: 0.92\t Train Loss: 0.32142\n", - "Train Accuracy: 0.97\t Train Loss: 0.16773\n", - "Train Accuracy: 0.97\t Train Loss: 0.14660\n" - ] - } - ], "source": [ "epoch = 3\n", "for e in range(epoch):\n", @@ -180,35 +166,39 @@ " l.backward()\n", " trainer.update(data.shape[0])\n", " \n", - " train_loss += l.mean().asscalar()\n", + " train_loss += l.mean().item()\n", " acc.update(label, output)\n", " \n", " print(\"Train Accuracy: %.2f\\t Train Loss: %.5f\" % (acc.get()[1], train_loss/(i+1)))" - ] + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train Accuracy: 0.92\t Train Loss: 0.32142\n", + "Train Accuracy: 0.97\t Train Loss: 0.16773\n", + "Train Accuracy: 0.97\t Train Loss: 0.14660\n" + ] + } + ], + "metadata": { + "collapsed": false + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Perturbation\n", "\n", "We first run a validation batch and measure the resulting accuracy.\n", "We then perturbate this batch by modifying the input in the opposite direction of the gradient." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Validation batch accuracy 0.96875\n" - ] - } - ], "source": [ "# Get a batch from the testing set\n", "for data, label in test_data:\n", @@ -227,32 +217,30 @@ "acc.update(label, output)\n", "\n", "print(\"Validation batch accuracy {}\".format(acc.get()[1]))" - ] + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Validation batch accuracy 0.96875\n" + ] + } + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Now we perturb the input" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Validation batch accuracy after perturbation 0.40625\n" - ] - } - ], "source": [ - "data_perturbated = data + 0.15 * mx.nd.sign(data.grad)\n", + "data_perturbated = data + 0.15 * mx.np.sign(data.grad)\n", "\n", "output = net(data_perturbated) \n", "\n", @@ -260,58 +248,70 @@ "acc.update(label, output)\n", "\n", "print(\"Validation batch accuracy after perturbation {}\".format(acc.get()[1]))" - ] + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Validation batch accuracy after perturbation 0.40625\n" + ] + } + ], + "metadata": { + "collapsed": false + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Visualization" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Let's visualize an example after pertubation.\n", "\n", "We can see that the prediction is often incorrect." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 16, - "metadata": { - "collapsed": false - }, + "source": [ + "from random import randint\n", + "idx = randint(0, batch_size-1)\n", + "\n", + "plt.imshow(data_perturbated[idx, :].asnumpy().reshape(28,28), cmap=cm.Greys_r)\n", + "print(\"true label: %d\" % label.asnumpy()[idx])\n", + "print(\"predicted: %d\" % np.argmax(output.asnumpy(), axis=1)[idx])" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "true label: 1\n", "predicted: 3\n" ] }, { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADpJJREFUeJzt3V+IXeW5x/Hfc9JsNbbMmLbGkAQdgxwZAxoZY+EMJy1tgo2F2AuluSg5IE0vIrbQi4q9qJeh9A9eSHGqobG2ScVWDConsaFgS0p1FI/G8VRNSWmGJGOxpCnIjJk8vdgrZYx7r7Wz1989z/cDw+xZ715rPbMmv6y997vW+5q7C0A8/1F3AQDqQfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjCDwT1sSp31mq1fNmyZaVs+/Tp06Vs97yhoaHa9p0lrbYmq/O41X3M0n73rNref//9rm1nz57V/Py89VJDrvCb2W2SHpS0RNIj7r4r7fnLli3T+Ph4nl129eyzz5ay3fPS6i5731nKOqZlq/O41X3M0n73rNqmpqa6tk1PT/dcQ98v+81siaSHJH1R0qikbWY22u/2AFQrz3v+DZLecfc/u/ucpH2SthZTFoCy5Qn/Kkl/XfDz8WTZh5jZDjObNLPJubm5HLsDUKTSP+139wl3H3P3sVarVfbuAPQoT/inJa1Z8PPqZBmAAZAn/C9Jus7MRsysJekrkvYXUxaAsvXd1efuZ83sHkkH1O7q2+3ubxRWWQd1dg3V3Z3XVE0+LrfffnvdJTRarn5+d39O0nMF1QKgQlzeCwRF+IGgCD8QFOEHgiL8QFCEHwiq0vv5szS5z7jJBvW4NbkfPuuYlll71r5HRkYK2Q9nfiAowg8ERfiBoAg/EBThB4Ii/EBQ5u7V7cysup1doMndSnmldQ1l/d51dhPW+TcZ1O5RKb2rb3p6WrOzsz0N3c2ZHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCatQtvVkWc199HoN6XOq8bbZueX63tFl6LwZnfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IKlc/v5kdk3RG0ryks+4+lvb8oaEhjY+P59klOshzb3revvQ8ffXPPPNM6rr79u1Lbd+7d29q+/z8fGp7HovhGoQiLvL5nLv/rYDtAKgQL/uBoPKG3yUdNLOXzWxHEQUBqEbel/3j7j5tZldKet7M/t/dX1j4hOQ/hR2SdNlll+XcHYCi5Drzu/t08n1G0lOSNnR4zoS7j7n7WKvVyrM7AAXqO/xmdrmZfeL8Y0mbJR0pqjAA5crzsn+FpKfM7Px2fuHu/1tIVQBKV+m4/cPDw74Y+/kHeQz4vIaHh1PbDx482LXtlltuybXvO++8M7X9ySef7HvbTe7HT7ufn3H7AWQi/EBQhB8IivADQRF+ICjCDwQ1UEN3lylyd10eGzduTG1fvnx517ajR4+mrjs7O5vanqcrr8my/i2mTdF9MTjzA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQld7Sa2bV7QyFWLp0aWp7Vp/0tdde2/e+d+7cmdp+4MCBvrc9yNL6+bmlF0Amwg8ERfiBoAg/EBThB4Ii/EBQhB8IqtL7+bOm6Oae+s7KHEY665ivW7cutX3Tpk2p7Wn37J87dy513aj9+FXhzA8ERfiBoAg/EBThB4Ii/EBQhB8IivADQWX285vZbklfkjTj7uuSZcsl/VLSNZKOSbrL3f+et5g8/dlNvkagzume8x6XLVu2pLZnjb2f5sUXX+x7XeTXy5n/p5Juu2DZfZIOuft1kg4lPwMYIJnhd/cXJL13weKtkvYkj/dIuqPgugCUrN/3/Cvc/UTy+KSkFQXVA6AiuT/w8/YggF3H5jOzHWY2aWaTc3NzeXcHoCD9hv+Uma2UpOT7TLcnuvuEu4+5+1ir1epzdwCK1m/490vanjzeLunpYsoBUJXM8JvZXkl/kPSfZnbczO6WtEvSJjN7W9IXkp8BDJDMfn5339al6fMF15JLnX3pdSvzGodbb7011/rz8/Nd23btynfOiPo3n5qaKmQ7XOEHBEX4gaAIPxAU4QeCIvxAUIQfCKrSobtRjjxdXuvXr09tHx0dTW1fu3Ztavvs7GzXtquvvjp13ax25MOZHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCqrSf//Tp06Xdfhr19s68brzxxtT2rH78LIcPH861PsrDmR8IivADQRF+ICjCDwRF+IGgCD8QFOEHguJ+/uCuv/76XOtnTcH2+OOP59p+Hkzbno4zPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8EldnPb2a7JX1J0oy7r0uWPSDpa5LeTZ52v7s/V1aR6N/NN9+c2n7DDTfk2n5WP/+pU6dybR/l6eXM/1NJt3VY/iN3vyn5IvjAgMkMv7u/IOm9CmoBUKE87/nvMbPXzGy3mV1RWEUAKtFv+H8saa2kmySdkPSDbk80sx1mNmlmk33uC0AJ+gq/u59y93l3PyfpJ5I2pDx3wt3H3H2s3yIBFK+v8JvZygU/flnSkWLKAVCVXrr69kr6rKRPmdlxSd+V9Fkzu0mSSzom6esl1gigBJnhd/dtHRY/WkItudR573YT7s3uZnh4OLXdzHJt/6233sq1fh6L9X79rN9rZGSk720vxBV+QFCEHwiK8ANBEX4gKMIPBEX4gaAYursAWV0zdXYFbt68ObX96NGjqe1r1qxJbX/iiScuuqaiZB3XtL9Lk7tnq8KZHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCqrSff2hoSOPj413bm3yLZh55rwPIWv+qq67q2nbppZemrpvl8OHDqe1HjqSP45Lnb0pffLk48wNBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUNzP3wB5r29Iu3Yi79DcBw4cSG0v89qMJo+TsBhw5geCIvxAUIQfCIrwA0ERfiAowg8ERfiBoDL7+c1sjaTHJK2Q5JIm3P1BM1su6ZeSrpF0TNJd7v73PMWUOa3xYjY0NNT3umfOnEltf/jhh/vedpa8/fR5/uZNvoYga99TU1OF7KeXM/9ZSd9y91FJn5G008xGJd0n6ZC7XyfpUPIzgAGRGX53P+HurySPz0h6U9IqSVsl7UmetkfSHWUVCaB4F/We38yukbRe0h8lrXD3E0nTSbXfFgAYED2H38w+LulXkr7p7v9Y2OburvbnAZ3W22Fmk2Y2OTc3l6tYAMXpKfxmtlTt4P/c3X+dLD5lZiuT9pWSZjqt6+4T7j7m7mOtVquImgEUIDP81r4t7FFJb7r7Dxc07Ze0PXm8XdLTxZcHoCy93NL7X5K+Kul1M3s1WXa/pF2SnjCzuyX9RdJd5ZSILGm39GZZvXp1avvGjRtT2z/44IO+951X3iHPmyqr7pGRkUL2kxl+d/+9pG43hX++kCoAVI4r/ICgCD8QFOEHgiL8QFCEHwiK8ANBLZqhuwd5GOesft0lS5aktqf1+65duzZ13ZMnT6a219mPn6XJw4YPwjUGnPmBoAg/EBThB4Ii/EBQhB8IivADQRF+IKhF088/yLL6jLP6+fMM3T0z03EApp4NQn92J3n76Qf1916IMz8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBGXtmbYq2plZ6s4G+Z78Ol155ZVd2+69997UdR966KHU9kceeaSvmlCetPEbpqenNTs7222o/Q/hzA8ERfiBoAg/EBThB4Ii/EBQhB8IivADQWX285vZGkmPSVohySVNuPuDZvaApK9Jejd56v3u/lzGtqq7qKBCZV+fkGcM+cVw3/kgKvPfxNTUVNe2i+nn72Uwj7OSvuXur5jZJyS9bGbPJ20/cvfv97IjAM2SGX53PyHpRPL4jJm9KWlV2YUBKNdFvec3s2skrZf0x2TRPWb2mpntNrMruqyzw8wmzWwyV6UACtVz+M3s45J+Jemb7v4PST+WtFbSTWq/MvhBp/XcfcLdx9x9rIB6ARSkp/Cb2VK1g/9zd/+1JLn7KXefd/dzkn4iaUN5ZQIoWmb4zcwkPSrpTXf/4YLlKxc87cuSjhRfHoCy9NLVNy7pd5Jel3QuWXy/pG1qv+R3ScckfT35cDBtW4uyqw+4WHm6Aivr6nP330vqtLHUPn0AzcYVfkBQhB8IivADQRF+ICjCDwRF+IGgKh26+5JLLvFVqwbznqDR0dG+181zS27Zyr7lN8/txmlDVKMzhu4GkInwA0ERfiAowg8ERfiBoAg/EBThB4KqeorudyX9ZcGiT0n6W2UFXJym1tbUuiRq61eRtV3t7p/u5YmVhv8jOzebbOrYfk2tral1SdTWr7pq42U/EBThB4KqO/wTNe8/TVNra2pdErX1q5baan3PD6A+dZ/5AdSklvCb2W1m9icze8fM7qujhm7M7JiZvW5mr9Y9xVgyDdqMmR1ZsGy5mT1vZm8n3ztOk1ZTbQ+Y2XRy7F41sy011bbGzH5rZlNm9oaZfSNZXuuxS6mrluNW+ct+M1si6S1JmyQdl/SSpG3u3n0w8gqZ2TFJY+5ee5+wmf23pH9Keszd1yXLvifpPXfflfzHeYW7f7shtT0g6Z91z9ycTCizcuHM0pLukPQ/qvHYpdR1l2o4bnWc+TdIesfd/+zuc5L2SdpaQx2N5+4vSHrvgsVbJe1JHu9R+x9P5brU1gjufsLdX0ken5F0fmbpWo9dSl21qCP8qyT9dcHPx9WsKb9d0kEze9nMdtRdTAcrFsyMdFLSijqL6SBz5uYqXTCzdGOOXT8zXheND/w+atzdb5b0RUk7k5e3jeTt92xN6q7paebmqnSYWfrf6jx2/c54XbQ6wj8tac2Cn1cnyxrB3aeT7zOSnlLzZh8+dX6S1OT7TM31/FuTZm7uNLO0GnDsmjTjdR3hf0nSdWY2YmYtSV+RtL+GOj7CzC5PPoiRmV0uabOaN/vwfknbk8fbJT1dYy0f0pSZm7vNLK2aj13jZrx298q/JG1R+xP/o5K+U0cNXeq6VtL/JV9v1F2bpL1qvwz8QO3PRu6W9ElJhyS9Lek3kpY3qLafqT2b82tqB21lTbWNq/2S/jVJryZfW+o+dil11XLcuMIPCIoP/ICgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBPUv5DLnMbZADooAAAAASUVORK5CYII=\n", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADpJJREFUeJzt3V+IXeW5x/Hfc9JsNbbMmLbGkAQdgxwZAxoZY+EMJy1tgo2F2AuluSg5IE0vIrbQi4q9qJeh9A9eSHGqobG2ScVWDConsaFgS0p1FI/G8VRNSWmGJGOxpCnIjJk8vdgrZYx7r7Wz1989z/cDw+xZ715rPbMmv6y997vW+5q7C0A8/1F3AQDqQfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjCDwT1sSp31mq1fNmyZaVs+/Tp06Vs97yhoaHa9p0lrbYmq/O41X3M0n73rNref//9rm1nz57V/Py89VJDrvCb2W2SHpS0RNIj7r4r7fnLli3T+Ph4nl129eyzz5ay3fPS6i5731nKOqZlq/O41X3M0n73rNqmpqa6tk1PT/dcQ98v+81siaSHJH1R0qikbWY22u/2AFQrz3v+DZLecfc/u/ucpH2SthZTFoCy5Qn/Kkl/XfDz8WTZh5jZDjObNLPJubm5HLsDUKTSP+139wl3H3P3sVarVfbuAPQoT/inJa1Z8PPqZBmAAZAn/C9Jus7MRsysJekrkvYXUxaAsvXd1efuZ83sHkkH1O7q2+3ubxRWWQd1dg3V3Z3XVE0+LrfffnvdJTRarn5+d39O0nMF1QKgQlzeCwRF+IGgCD8QFOEHgiL8QFCEHwiq0vv5szS5z7jJBvW4NbkfPuuYlll71r5HRkYK2Q9nfiAowg8ERfiBoAg/EBThB4Ii/EBQ5u7V7cysup1doMndSnmldQ1l/d51dhPW+TcZ1O5RKb2rb3p6WrOzsz0N3c2ZHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCatQtvVkWc199HoN6XOq8bbZueX63tFl6LwZnfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IKlc/v5kdk3RG0ryks+4+lvb8oaEhjY+P59klOshzb3revvQ8ffXPPPNM6rr79u1Lbd+7d29q+/z8fGp7HovhGoQiLvL5nLv/rYDtAKgQL/uBoPKG3yUdNLOXzWxHEQUBqEbel/3j7j5tZldKet7M/t/dX1j4hOQ/hR2SdNlll+XcHYCi5Drzu/t08n1G0lOSNnR4zoS7j7n7WKvVyrM7AAXqO/xmdrmZfeL8Y0mbJR0pqjAA5crzsn+FpKfM7Px2fuHu/1tIVQBKV+m4/cPDw74Y+/kHeQz4vIaHh1PbDx482LXtlltuybXvO++8M7X9ySef7HvbTe7HT7ufn3H7AWQi/EBQhB8IivADQRF+ICjCDwQ1UEN3lylyd10eGzduTG1fvnx517ajR4+mrjs7O5vanqcrr8my/i2mTdF9MTjzA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQld7Sa2bV7QyFWLp0aWp7Vp/0tdde2/e+d+7cmdp+4MCBvrc9yNL6+bmlF0Amwg8ERfiBoAg/EBThB4Ii/EBQhB8IqtL7+bOm6Oae+s7KHEY665ivW7cutX3Tpk2p7Wn37J87dy513aj9+FXhzA8ERfiBoAg/EBThB4Ii/EBQhB8IivADQWX285vZbklfkjTj7uuSZcsl/VLSNZKOSbrL3f+et5g8/dlNvkagzume8x6XLVu2pLZnjb2f5sUXX+x7XeTXy5n/p5Juu2DZfZIOuft1kg4lPwMYIJnhd/cXJL13weKtkvYkj/dIuqPgugCUrN/3/Cvc/UTy+KSkFQXVA6AiuT/w8/YggF3H5jOzHWY2aWaTc3NzeXcHoCD9hv+Uma2UpOT7TLcnuvuEu4+5+1ir1epzdwCK1m/490vanjzeLunpYsoBUJXM8JvZXkl/kPSfZnbczO6WtEvSJjN7W9IXkp8BDJDMfn5339al6fMF15JLnX3pdSvzGodbb7011/rz8/Nd23btynfOiPo3n5qaKmQ7XOEHBEX4gaAIPxAU4QeCIvxAUIQfCKrSobtRjjxdXuvXr09tHx0dTW1fu3Ztavvs7GzXtquvvjp13ax25MOZHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCqrSf//Tp06Xdfhr19s68brzxxtT2rH78LIcPH861PsrDmR8IivADQRF+ICjCDwRF+IGgCD8QFOEHguJ+/uCuv/76XOtnTcH2+OOP59p+Hkzbno4zPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8EldnPb2a7JX1J0oy7r0uWPSDpa5LeTZ52v7s/V1aR6N/NN9+c2n7DDTfk2n5WP/+pU6dybR/l6eXM/1NJt3VY/iN3vyn5IvjAgMkMv7u/IOm9CmoBUKE87/nvMbPXzGy3mV1RWEUAKtFv+H8saa2kmySdkPSDbk80sx1mNmlmk33uC0AJ+gq/u59y93l3PyfpJ5I2pDx3wt3H3H2s3yIBFK+v8JvZygU/flnSkWLKAVCVXrr69kr6rKRPmdlxSd+V9Fkzu0mSSzom6esl1gigBJnhd/dtHRY/WkItudR573YT7s3uZnh4OLXdzHJt/6233sq1fh6L9X79rN9rZGSk720vxBV+QFCEHwiK8ANBEX4gKMIPBEX4gaAYursAWV0zdXYFbt68ObX96NGjqe1r1qxJbX/iiScuuqaiZB3XtL9Lk7tnq8KZHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCqrSff2hoSOPj413bm3yLZh55rwPIWv+qq67q2nbppZemrpvl8OHDqe1HjqSP45Lnb0pffLk48wNBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUNzP3wB5r29Iu3Yi79DcBw4cSG0v89qMJo+TsBhw5geCIvxAUIQfCIrwA0ERfiAowg8ERfiBoDL7+c1sjaTHJK2Q5JIm3P1BM1su6ZeSrpF0TNJd7v73PMWUOa3xYjY0NNT3umfOnEltf/jhh/vedpa8/fR5/uZNvoYga99TU1OF7KeXM/9ZSd9y91FJn5G008xGJd0n6ZC7XyfpUPIzgAGRGX53P+HurySPz0h6U9IqSVsl7UmetkfSHWUVCaB4F/We38yukbRe0h8lrXD3E0nTSbXfFgAYED2H38w+LulXkr7p7v9Y2OburvbnAZ3W22Fmk2Y2OTc3l6tYAMXpKfxmtlTt4P/c3X+dLD5lZiuT9pWSZjqt6+4T7j7m7mOtVquImgEUIDP81r4t7FFJb7r7Dxc07Ze0PXm8XdLTxZcHoCy93NL7X5K+Kul1M3s1WXa/pF2SnjCzuyX9RdJd5ZSILGm39GZZvXp1avvGjRtT2z/44IO+951X3iHPmyqr7pGRkUL2kxl+d/+9pG43hX++kCoAVI4r/ICgCD8QFOEHgiL8QFCEHwiK8ANBLZqhuwd5GOesft0lS5aktqf1+65duzZ13ZMnT6a219mPn6XJw4YPwjUGnPmBoAg/EBThB4Ii/EBQhB8IivADQRF+IKhF088/yLL6jLP6+fMM3T0z03EApp4NQn92J3n76Qf1916IMz8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBGXtmbYq2plZ6s4G+Z78Ol155ZVd2+69997UdR966KHU9kceeaSvmlCetPEbpqenNTs7222o/Q/hzA8ERfiBoAg/EBThB4Ii/EBQhB8IivADQWX285vZGkmPSVohySVNuPuDZvaApK9Jejd56v3u/lzGtqq7qKBCZV+fkGcM+cVw3/kgKvPfxNTUVNe2i+nn72Uwj7OSvuXur5jZJyS9bGbPJ20/cvfv97IjAM2SGX53PyHpRPL4jJm9KWlV2YUBKNdFvec3s2skrZf0x2TRPWb2mpntNrMruqyzw8wmzWwyV6UACtVz+M3s45J+Jemb7v4PST+WtFbSTWq/MvhBp/XcfcLdx9x9rIB6ARSkp/Cb2VK1g/9zd/+1JLn7KXefd/dzkn4iaUN5ZQIoWmb4zcwkPSrpTXf/4YLlKxc87cuSjhRfHoCy9NLVNy7pd5Jel3QuWXy/pG1qv+R3ScckfT35cDBtW4uyqw+4WHm6Aivr6nP330vqtLHUPn0AzcYVfkBQhB8IivADQRF+ICjCDwRF+IGgKh26+5JLLvFVqwbznqDR0dG+181zS27Zyr7lN8/txmlDVKMzhu4GkInwA0ERfiAowg8ERfiBoAg/EBThB4KqeorudyX9ZcGiT0n6W2UFXJym1tbUuiRq61eRtV3t7p/u5YmVhv8jOzebbOrYfk2tral1SdTWr7pq42U/EBThB4KqO/wTNe8/TVNra2pdErX1q5baan3PD6A+dZ/5AdSklvCb2W1m9icze8fM7qujhm7M7JiZvW5mr9Y9xVgyDdqMmR1ZsGy5mT1vZm8n3ztOk1ZTbQ+Y2XRy7F41sy011bbGzH5rZlNm9oaZfSNZXuuxS6mrluNW+ct+M1si6S1JmyQdl/SSpG3u3n0w8gqZ2TFJY+5ee5+wmf23pH9Keszd1yXLvifpPXfflfzHeYW7f7shtT0g6Z91z9ycTCizcuHM0pLukPQ/qvHYpdR1l2o4bnWc+TdIesfd/+zuc5L2SdpaQx2N5+4vSHrvgsVbJe1JHu9R+x9P5brU1gjufsLdX0ken5F0fmbpWo9dSl21qCP8qyT9dcHPx9WsKb9d0kEze9nMdtRdTAcrFsyMdFLSijqL6SBz5uYqXTCzdGOOXT8zXheND/w+atzdb5b0RUk7k5e3jeTt92xN6q7paebmqnSYWfrf6jx2/c54XbQ6wj8tac2Cn1cnyxrB3aeT7zOSnlLzZh8+dX6S1OT7TM31/FuTZm7uNLO0GnDsmjTjdR3hf0nSdWY2YmYtSV+RtL+GOj7CzC5PPoiRmV0uabOaN/vwfknbk8fbJT1dYy0f0pSZm7vNLK2aj13jZrx298q/JG1R+xP/o5K+U0cNXeq6VtL/JV9v1F2bpL1qvwz8QO3PRu6W9ElJhyS9Lek3kpY3qLafqT2b82tqB21lTbWNq/2S/jVJryZfW+o+dil11XLcuMIPCIoP/ICgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBPUv5DLnMbZADooAAAAASUVORK5CYII=" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], - "source": [ - "from random import randint\n", - "idx = randint(0, batch_size-1)\n", - "\n", - "plt.imshow(data_perturbated[idx, :].asnumpy().reshape(28,28), cmap=cm.Greys_r)\n", - "print(\"true label: %d\" % label.asnumpy()[idx])\n", - "print(\"predicted: %d\" % np.argmax(output.asnumpy(), axis=1)[idx])" - ] + "metadata": { + "collapsed": false + } } ], "metadata": { @@ -335,4 +335,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file diff --git a/example/autoencoder/README.md b/example/autoencoder/README.md deleted file mode 100644 index 9db075e680f0..000000000000 --- a/example/autoencoder/README.md +++ /dev/null @@ -1,37 +0,0 @@ - - - - - - - - - - - - - - - - - -# Example of a Convolutional Autoencoder - -Autoencoder architectures are often used for unsupervised feature learning. This [link](http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/) contains an introduction tutorial to autoencoders. This example illustrates a simple autoencoder using a stack of convolutional layers for both the encoder and the decoder. - - -![](https://cdn-images-1.medium.com/max/800/1*LSYNW5m3TN7xRX61BZhoZA.png) - -([Diagram source](https://towardsdatascience.com/autoencoders-introduction-and-implementation-3f40483b0a85)) - - -The idea of an autoencoder is to learn to use bottleneck architecture to encode the input and then try to decode it to reproduce the original. By doing so, the network learns to effectively compress the information of the input, the resulting embedding representation can then be used in several domains. For example as featurized representation for visual search, or in anomaly detection. - -## Dataset - -The dataset used in this example is [FashionMNIST](https://github.com/zalandoresearch/fashion-mnist) dataset. - -## Variational Autoencoder - -You can check an example of variational autoencoder [here](https://gluon.mxnet.io/chapter13_unsupervised-learning/vae-gluon.html) - diff --git a/example/autoencoder/convolutional_autoencoder.ipynb b/example/autoencoder/convolutional_autoencoder.ipynb deleted file mode 100644 index a18ee558cdac..000000000000 --- a/example/autoencoder/convolutional_autoencoder.ipynb +++ /dev/null @@ -1,538 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Convolutional Autoencoder" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![](https://cdn-images-1.medium.com/max/800/1*LSYNW5m3TN7xRX61BZhoZA.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example we will demonstrate how you can create a convolutional autoencoder in Gluon" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import random\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import mxnet as mx\n", - "from mxnet import autograd, gluon" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data\n", - "\n", - "We will use the FashionMNIST dataset, which is of a similar format to MNIST but is richer and has more variance" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "batch_size = 512\n", - "ctx = mx.gpu() if mx.context.num_gpus() else mx.cpu()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "transform = lambda x,y: (x.transpose((2,0,1)).astype('float32')/255., y)\n", - "\n", - "train_dataset = gluon.data.vision.FashionMNIST(train=True)\n", - "test_dataset = gluon.data.vision.FashionMNIST(train=False)\n", - "\n", - "train_dataset_t = train_dataset.transform(transform)\n", - "test_dataset_t = test_dataset.transform(transform)\n", - "\n", - "train_data = gluon.data.DataLoader(train_dataset_t, batch_size=batch_size, last_batch='rollover', shuffle=True, num_workers=5)\n", - "test_data = gluon.data.DataLoader(test_dataset_t, batch_size=batch_size, last_batch='rollover', shuffle=True, num_workers=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAACBCAYAAABXearSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXm4VmW5/2+q0+QQ5iwITkwOCKKghWLOSuZsNqk5HI+WiXoqT9ox09LqKr2wKK/UIjNLvRrMIU3AMENESHECkUkEHBFTGk51PH/8fjx9n297Pb1uNnu/77s+n7/utZ9nr7Xe9YxrXff3vnu9/vrrAQAAAAAAAAAA7c2bevoGAAAAAAAAAABg7cNHIAAAAAAAAACAGsBHIAAAAAAAAACAGsBHIAAAAAAAAACAGsBHIAAAAAAAAACAGsBHIAAAAAAAAACAGsBHIAAAAAAAAACAGsBHIAAAAAAAAACAGsBHIAAAAAAAAACAGvCW7rxYr169Xu/O68E/eP3113t1xXlow56jq9owYu2347/9278l+69//WtD/3P66adnx6+++mqy3/GOdyT7rW99a1bvL3/5S7L79++flX3+85/v8FpvetObKo//9re/ZWW9ev3jsb/++po/tu4ei3r/fvy///u/a3wfZ599drIPOOCArOzOO+9M9rRp05K9aNGirN7w4cOT3a9fv6xszJgxyda+dMEFF2T1nnnmmYbutyvas5XGYlcwdOjQZM+ePTvZG2+8cVZv5513Tvbdd9+99m9sDenusajz4v+/vp6j8v90nPrcpf+nc1dXjO0Seh9+7295yz+2ln//+98rz1H6zY2uG3Ubi9/73veSrW2wYsWKrN52222X7Hnz5mVll156abJfeOGFrr7FTsEetfVp5rH45je/OTvWubc0V44ePTrZP/3pT7Oyl156Kdnrr79+sv/nf/4nq/f2t7892ZdccklW9q1vfat02x2i82vEP+9Z15R2Hou+5lTtAb/+9a9nxzrvPvroo5Xn7Ip3hK6g0TbEEwgAAAAAAAAAoAbwEQgAAAAAAAAAoAb06k7XpWZ0DasL7ezeVxea2dW2s0yYMCHZhx56aFa2cuXKZM+ZMyfZG220UVZvp512Svaf/vSnrGz69OnJPvroozt1j60uB+vg//ReKuttttlmyf7hD3+YlS1fvjzZd911V7J32GGHrN4GG2yQ7He9613J9ra45ZZbkv3kk09mZSoPe+qpp5KtMsCI3OV68uTJWdmUKVOiIxp1DXZadSxuvvnm2fEPfvCDZKu0ZN99983qffazn032yJEjk73PPvtk9S666KJkX3HFFVnZpEmTkn3PPfck++KLL27k1tcK3T0W3Y2/aix6v1QJrM9xVVIGl+qpjO+2225L9vPPP5/V0zGs4zcil2Y2Olbe+c53ZsdVMi8/X6MSh1Ydiy7rq2pHf15a749//GOydX71/1u1alVWpu269dZbJ9tluiqhKcn6uoKeXhdhzWm2sahjrLPyWB0TPhavv/76ZKsUeu7cuVk9HZunnXZaVqbr6YMPPtipe+xq2nksejgJle4de+yxyfa1T/elzz33XFb2+OOPJ7s758wSyMEAAAAAAAAAACDBRyAAAAAAAAAAgBrARyAAAAAAAAAAgBrQrSniAaAeDBs2LNme+n333XdPtsa+0Lg/ERHrrrtuspcsWZLsP/zhD1m9d7/73cl++umns7I+ffokW3W8EydOzOppbBRP/9gsKR87Syn2hMbruPLKK7N6733vezusF5HHZdIUw7/85S+zervsskuyt9lmm2R7HJLevXt3eN2IXGOtem49d0Se0vOUU07JysaPH59sjSHV6m3bCJq6durUqVmZpix/9dVXk/3Rj340q6fxfD75yU8m+5VXXsnqaewDP4e23bhx45K9zjrrZPXOO++8Dn5F+6N90dMZe0wXZYsttki2xjTQeTYi4te//nWyR40alWyPJbN06dJkz5gxIyu74YYbkq3z5DXXXJPV05hhGrfG0RhJpXTx7UgpRskXvvCFyjKNi6bxoXws6hztsUwGDBiQ7GuvvTbZHuOrJ2NaAKwpOsY0ZmBExAc/+MFke78/8sgjk60xgXy/oHPn/Pnzk+1r2rPPPpvsBQsWZGU/+9nPkv3aa691eN2IiIULFyZbY+9F5HvbZkxX3kxUxaSLiHj/+9+f7OOPPz4rO+6445J9zDHHZGVnnHFGsnVNa4X5E08gAAAAAAAAAIAawEcgAAAAAAAAAIAa0BIp4tW9qtG0oSX22muvZLtLrqb2U/dBTSMXEdG3b99ku2vYrbfemuzf/va3a3azXUQ7p/yrC82WflNxCcdJJ52UbHeJ/POf/5xsT3esaDprHffuzqmut+qSG5FLXFQ2phIZP6enE//0pz+d7K5wtW2msfiZz3wm2SeeeGJWpvI8n//uu+++ZH/kIx9Jts59EblURVO633TTTVk9lSXp/0Tk0kK9pwMPPDCrp1JAT8W92267JVvneJeNNUozj0VH5Zhf+tKXsjKVlqgEacMNN8zqab/X8esSHn3u2qYRuURI66nsMyJi4MCBHfyKtUMzpYjX56/POCKXHRx++OFZmaYm1n3JsmXLsnoq29S04CrFjMhlCD4/6/3r/Owpc7WeSsgiqtMguwSuUVf6VhqLypgxY7Ljiy++ONk6B/br1y+rp9JAlfq6xNbXOEXbR/9v5cqVWT2dHx977LHK83UFzbQuQudotrGoa99ZZ52Vlb3jHe9Its81VftNDUsQke9BnnjiiQ7/JyJis802S/aLL76Ylek7qK6ZPh+ut956yXbp59ChQ5Ot+yxfbxp9f263sVhK277jjjsmWyVgujeOyMMZfO5zn8vKdJ5sFjkeKeIBAAAAAAAAACDBRyAAAAAAAAAAgBrARyAAAAAAAAAAgBrQEjGBGkVTuJ199tlZmWqsVYPpeuv//M//TLamRx07dmxWT/WCrvHUOCSqvb/sssuyev/1X//Vwa9YO7SbxrOONJveWnnooYeyY41p4Rpc1T1rzAlPQ656Zk13q7F9IiJmzZqVbE+HXnUtvyeNabHddttlZRqDQ9Mnd5aeHosay+Pcc89N9l133ZXV0/aYN29eVqaxR/R8/lzf8573JFtj9mgqzoiIBx54INkapyYij22i/cD7y+LFi5O9xx57ZGWaLlvjq4wcOTKr57GPqmjmsej86Ec/SvbBBx+clWm/13XR44toHBKNb+D7B4374yl5ddyqRn+TTTbJ6h1wwAHJ1jTka4PuHoseJ0njB5T63vXXX59sj3umKdh1TNx+++1Zvf322y/ZOk49DbzudTxN8R/+8Idka4wEv3ett+uuu2ZlV111VbI1ZuJb3/rWrF47jkXl4Ycfzo433njjZL/88svJ1lggEXm8Lo3x4XGk9Pl5bBA9v7bVpptumtXTeWDUqFEd/Iquo6fXRVhzmm0szpw5M9m67kfkY8DHh86Pb3vb25Kt8XZKZfp3P/a4PLoWapnHq9U4Qz5OJ06cmGyNV+Mx+xp932+3sViKK6zv8pMmTUq29h3nxhtvzI6PPfbYDut19vl3BcQEAgAAAAAAAACABB+BAAAAAAAAAABqwFv+dZXmQtOhurvWihUrku3uferyqrIQTTkcEXHOOeck+9JLL0329ttvn9VT+Yu7/qlL9rPPPtvhuSMiPvvZzyZbU/xFrH03+HbGXfBW01lXvCOOOCLZ6r4ekafdLbn+NUvawK7kQx/6ULI13WZE7pruqWpV7qNlLuWqSiXvaTp1bLsLrUoMdJy6VGWDDTZItqf31LSROie0KppyXeVQCxcuzOoNGjQo2SeddFJWps9SXae//e1vZ/VUMrLvvvsm26ULW221VbL79++fle25557J1jne+fGPf5xsn6+1fbWPHHXUUVk9T2fdDmgbuyu0PheVNbsERce31vO5TCUtXqZyMJ0PfdyrlK/d1kGfn3yfspqTTz658hwuKdMxNm3atGT7nKxz4TrrrJPsnXbaqfJa3jYqzdR9zuDBg7N6Or69L40bNy7Zup62y7pYYq+99kr2lltumZXpXlH7iUo2vZ6un94vXnvttWTrGhmRt6uORd3PROTzsktJ77jjjgBoNlSernOPSpUjchmyS091Xtax6POhjr/7778/2T6nVr0LRORrskrDqt5jIvKxHfHP829H160zvu9Rtt1222R/9atfTXbpfc7n5AMPPDDZd955Z7K1Pf/VffQUeAIBAAAAAAAAANQAPgIBAAAAAAAAANSAppGDNSqXUXd9zTYTkbvIuRuWuj+rG7PLElR2Mn78+GS7m6y617qLoEaJ19/yzDPPZPU0y8Ps2bOzMj/nanoy2nizsjaeibp5qmzPJTPaL0rXbcd2GjFiRLJ9vKk77brrrpuV6bGOFZdhqWRLn59noFK3ei/TMadu9C45Urw/DRkypLJuK3LGGWckW+egE088Maun0o/hw4dnZZqhSJ/XMccck9V7/PHHk61ZEz27hWZp1HaKyN2s586dm2x34VapsGcC0f/TvuTXakdU0uGyEF3v1HXe5ZI6vvW5+7jXdvVsT/qsdZxqBs2IXA723e9+N9oJn1s828xqXH6p7eQSMs3gpONUZWIR+VpV1Z4Rucu6Z2JUOZP2EZeeaTZWP3/v3r2jI3z+b0cOO+ywZPsz02OVoPjeQedRHc++zurzrJIdRuR7TW8bLdMsmRHIwaA5Oeigg5KtsnUfR1XvWBH5HFglDYuIeOWVV5KtEnS/lh77mlm1nvp8WJXp1q+tex+9v7qhz1L3G7vssktD/+/9Q8/h7+v6jqByMJfoIgcDAAAAAAAAAIAegY9AAAAAAAAAAAA1gI9AAAAAAAAAAAA1oFtjApXi/pRipnzhC19ItsYc8JhAmu7Wefnll5Ndpb2OyDX6qvtzHafGFVKNdkQef+iPf/xjsj1Vqqa6Vg19RMSECROSrTE82jG2TBWuyezMb+9savZvfvObyV65cmWyP/3pT2f1zjrrrGRr6mS/tuK/S+t5TJtmbm/tsz6OSrGwtK6OiVWrVmX1NP6SxmjSFKAR+Tjy56WaXNV2u95aj3XMRuRpr9sBfSYvvfRSsjVVZkQe02XmzJlZmaZX/fWvf51sj2WibX3TTTcl22MC3Xbbbcn2+EMLFixI9uLFi5Pt8/+wYcOS7emX9f80Ro6mle/ovloRjzWiqXF1HEXkMXfOPvvsZPtY1HbUuCEea0THn4+be++9N9lLly5NtsfcGjRoULQrpTgUSt++fbPjiRMnJlv3HhF5X9f4QB7HcPLkycnWdN8aj8v/T/8nIk99rLEVPEaF7oHmzZuXle2///7J1phDK1asiHbnkEMOSbY/M51vdT3yWD+6R1DbY3D5XkLRPYfGdvI9qq6FGmsFoFnZc889O/y7vx+W4rNUxZNxdC+l746lPb7Hoa2KOeTX1f32nDlzsjKNfTRmzJhk33LLLZX33u5UvX95TKAnn3zyDZ9bY11G/HMszNW0Qpw7PIEAAAAAAAAAAGoAH4EAAAAAAAAAAGpAt8rB1FXc3eVcTqKceeaZydaUd57GViVfpZTV6mbnKVqr0lK7a5m69PlvUTdD/T+XC+m1VZYREXH66acnW1OUu/RMr116hq1Io7/H26bqmZT63HnnnZeVqZRBZSe77rprVk9dtb19q9KytoKLYCOUUrPrOPKxqG7rmh6zJMNS+ZG78aoLu84Bfm09h6du1Pv3+61KadwqDBw4MDvW/qfPS2WPEfn85M/14YcfTvaiRYuS/dBDD2X1dOyopEzTuUdEHHHEEcnWuS8il1CoZOS5557L6t1zzz3JdjmYph3Xcb9s2bJoNzRdbETe110ycv311yf7lFNOSbZLUPS5q9SnlPLc52+Voj366KPJ9vHmx+1ElYt6RC5n1NTfEXkb+jhVpk2bluyxY8dmZSr31DTCKreMiNh6662TffTRR2dlG220UbIfe+yxZPv8r+PNJYh6bb3H6667LtodlaI+++yzWZnK/HTseJ/R8aeSMh832me8ffRYz+fn0L42dOjQAGh2VOqqIQV87dN5yfc3+q5QesfSPb5KcVXmGpHvc33vWZX63euV9sq6pxsxYkSy6ywHq5L7qaQ5IuKqq67qsF7p/VPXvoiIc845p6F76Gx4krUJnkAAAAAAAAAAADWAj0AAAAAAAAAAADWAj0AAAAAAAAAAADWgW2MCKaX4LJ5uTfWPr732WrI9JpDGI1Cdc0SugdZ4Ph77QLWVJc2eavtcR606QD2H31PVdSNyvfgPfvCDZGvsjIj2iwPUGVwzr8+klOrx/e9/f7I/8YlPZGW33nprsrXPecwTjYfiNBr7533ve1+yPfWgxz1pJjRWjo9njdPjcaw09oHG+PLUx/r8dMz6uFddtqfHVo21aqpLcX+8zM/ZanhsEE0Zrn3bNegDBgxI9pIlS7KyJ554Itk671500UVZPe0XqlXXOS0iT9968sknZ2Wa8lTvcdy4cVk9nWs9Ls78+fOTrX3J53iNy+JjvVXweAQ6PnzsaDwYbUeN2+KU1kWdez0mmvahGTNmJNvnjtK1W53Ss9t9992T7e2kcS58jdA5TmNt+d5GU7/rfXj8LB1jfr/aphpbwdPs9unTJ9ma2jgi72cap6gd8Tm1KuZkRJ7mWeco3+NVxSjx+BO6furaF5Gvabru+lrncVSUvn37JvuZZ56prAfQnWg8NR0ruteJyNcZ7/erVq1Ktr5f+Jqmx6V3Qi3zMaXjVMez7qEj8vnb3zv69euX7H322SfZF154YdQFfw+sWmu32Wab7NjX00bwuHy61up86rGbtF9UxSzqbvAEAgAAAAAAAACoAXwEAgAAAAAAAACoAT0mByu5Ql1yySXZscp41L3W3fu0zFO/q2udpopWt1tHXQTdXbCU8k/d+/TePQ2h/p+7xGtK3pEjRya7f//+Wb3Fixcn210Vm8XdrLOU3Pu0rCSJ0+c/atSorOyb3/xmsqdMmZKVab/QtlDpVkSeFv6HP/xhVvalL30p2Zpa3lOOn3rqqcnWdNjNjsobfbyp22NpjGnb+RjTMaHul0OGDMnqqaTMz6EutCo5cldRddH1caP3odIJl0g1KxMnTsyOzzzzzGSrvHTDDTfM6qmbrMurPvWpTyVbpZTef4888shka1pNdbeOiHjve9+bbB/3KpNQV++PfvSjWT2Vwvz+97/PyjQ9vUosXbKp0ppWxWVAelwai7pGNrp2+DjS+dbbUdPC33nnnZXn0DHsffKll15q6L5aEZ1bXL6j8ipf7+bNm5fsvffeO9nTp0/P6t17773J3mGHHZKtYy8iYu7cucmeM2dOVrbxxhsn+7DDDku2z7vaf1z+oC7ym222WbQzpd9X6vc6zzUqT/Z+ofOm2l5X11av5/1Q2XHHHZONHOz/oXNeKR10lVTlhBNOyI51HZs9e3ZX3GKnaMbU1qtxSamOD+2XHpZg0003Tba/w6lUTOcrXz81zbxKq13KpccelkL3ILrX9HvScap72Yh8n6vSsHZA5z/fUyilvch+++2X7N122+0NXzeivCfSd++99tor2b/61a8q/8d/i7Z3ad7tavAEAgAAAAAAAACoAXwEAgAAAAAAAACoAd0qByu5FKqbsWfGUNdYxd3q9P/UTS8ij6Z+yy23VJ5DXaM1O4y74Kq0y6UNGn1cXRU9S4a69/n5VV6jbmnjx4/P6qlLdqvLvxzvI51xSVUZy80335yVTZo0KdnuKqoSMHV7dnmCupseeuihWdm///u/J1uzE6n7fkTufl+SazQbOmbdHVzHortV6rHaKm2MyN1aVcKjmfMicndaH4s65vSeXEqqZX4OHVfqJtwqcjDtyxF5Bi+1NdtLRN6mjzzySFam40XnIM0AFpHPcaNHj062y191PvXMF9ttt12yL7744sr7HThwYLJVflk3XIKirsoPPPBA5f/p3KYy14jG5beKz9EbbbRRh/V8vdfjwYMHZ2X33XdfQ9duVkrPbquttkq2r+X6fy4Jv+2225Ktc5fLAjXznUohVEoQUc4WpTIEnUPvuuuurN4uu+ySbJWeReSu7vqb2xF9zk4pq6m2ne9NdG+oa5+3le4lXK6t59c1zUMKaFv5mulZ5epCleQrIm/D0h5VZZtf//rXk+0yZpVuu/zZpZqd4SMf+UiyVbq9bNmyrJ6GLHC50fPPP7/G97EmqFQ2Iu+Xuu/2cBylTE0qzdExURof+q7ne16VmbvMS8+p91HKCujnr8qM7RmpfW/bCvg7emfQzJv+nlHFG3mf1uevoRJcDlY6Z3dKwBQ8gQAAAAAAAAAAagAfgQAAAAAAAAAAagAfgQAAAAAAAAAAakC3xgQqaWQ1forrbFVHp/pJTz2qmjqPOaHa0FmzZiXbYwepll11nA8//HBWT+OheKwfvV+NZ+Qaav2drgfUc2hcjQ984ANZPU096NrxUjq9tY1fW9ujlEZY+4jrXvX/VP/uaZ1Vh3/33Xcne+rUqVk9fV4e00bjAGnKP4+foO3msVc0dbnG2NC+GJHHRfAYGF2h+15baOpMH4va3h7DR2OWqD7aY5loX9BxqmMvIo9V4H2mKr2np8LV9vf0m9pHe/fuHe1KKc2vzkEReQyQm266KdnnnXdeVk/jo+n487VAU4br2IvI22P//fdP9g033JDV81hCVWgfKcUd6wotek9QitWhce4cXVt17vKyEjqePZ37xz72sWRfeOGFyfbYB3oOjz/R6jGBSjEBdKx4DBfFYyjp/+mY0HUrIt/b6L7E9w0aL2bnnXeuvLaOZ49ld9RRRyXb9zY65nzv1G4MGDCgsqy0z9X10/eyutbqs/T5SsesX0vr6tzuMURK495jsbQ6VbF+fH7SZ156p9E4JCeffHJWNmbMmGQfd9xxyfa94bXXXpvs73znO1nZiSeemGxd+0455ZSs3he/+MVk+/5I96WTJ09O9tVXX53VO//885NdFaO1p/A+q6naNd7VJptsktXTNtbYWhHV/d7Hop5Dy3zO0zhrfi3di5bmfR33vkfV/9M+qfEUI/75PbYV0HbTdSUiH5va1hH5u5Omhff3xZEjRyZb49f5O4I+89mzZ2dlGmtJ32N0nEfk76Y+X+vxz3/+8+gu8AQCAAAAAAAAAKgBfAQCAAAAAAAAAKgB3SoHK3Haaacl213i1H2u0VS1pVTR++67b7LdbU9dwFSms/nmm2f11GXdU9/qfamMxX+XulaXXHn193s6xi9/+cvJ1nSSEY2nUV8b+LWrpBVv5B71mahLn0t0VKqiqa09pbdKu9xtb+jQoclWmZf3OXXz9N+iKZc19aenWtV6Bx54YFbWbHIwfdZqu4ulygP0GUXkUj6t567KVePbXXL12K+lUgftg95W6urpKTz1nO3sAl8ai54ifvjw4cmeMWNGstX1PCLihBNO6PB/3O1dJUwuXVB5ykEHHZRsd0tX6Z+7c1elXu3JOXJtUZIduzTz3HPPTbY+C5ct6bpYen46hj3NvEpd1QXbXdRVQjNq1KiszCWA7YSuA88991xWVpWyOCJi0KBBydZ9Smke07nQ90p6fpfLq0xQ9yLbb799Vk/v48knn8zKdL72NPbtRkk+7BJqRdd9lShE5POetmNJXuBrqcoSdG532a+udy6Fb7e1sFGZl/btPffcMytTuYruIS+//PKsnqZcL6Hn+93vfpeV3XzzzcnWuVavG5HvN7/yla9kZddcc01D99HMeD/Ufb6mhd96662zerpWNbr39L2J7jl0fvU5WvtTSV6o627pnVBDmkTk66S+j7oErhXR9/DTTz89K9Pn7+8ghx12WLL1/d/bZsKECcnWNpw3b15WT5+ry6Srwr7o+3lE3n/0PSgi35shBwMAAAAAAAAAgC6Fj0AAAAAAAAAAADWgx+RgngFG3aQ8M4m6DKuLnEs/1M3L3TnVRXKnnXZKtme10OP+/fsn2123VNpVyn6hrs/ucqj36+fQ86tszF3sP/GJTyTb5WBrg6po+BFld1qtq2WlrBWl7Dwq6bvyyiuzsqVLlyZbo7h79qPDDz882QMHDszKli1bluySK7721b59+2Zl6k44bdq0ynoqjenJjG6NoNkG9Dn7fauru2awi8ifpz4/l4W4FGQ1LqfTa3kbq7uo3rtLINQ93sdYqb+2Oo3KoTzLjWZtOv7445M9fvz4rJ7Oa9ru7pp98MEHJ1vbIiJvb5UueGahd7/73ckuSYWrMhW2Cy7N0d/rz3b06NHJ1mxenoGqK2RzOhZ1rdJ2i8jbZMSIEWt83VZBpUPLly/PyvT5u4xI1w9dxzQ7UUQujdC9k8vGtO197tYybRuXuqsMtyQZLI3TdsCfn+J7ygceeCDZuv9w6YGGB9C+4BLO0l5K1z+9D9+jauYl35d75r5moSrLV0Tj/U3nRc1kGJHL81xOdfbZZydb27CE76MVvd8jjjgiK7v//vs7vCd9b4n45xASjdyHj1ntZ57dqqfHsGeFUlnt4sWLk+19W3+vrk0R+VxcklWqTFrnPH831XqltVTnYn/OGrLA10W934ULFybb19ZW5Kmnnkq2z0GlvblKtLQflDKrqXRZ18uIPCvxtttum5VpH7n33nuTveuuu2b1St8oHnzwwegJ8AQCAAAAAAAAAKgBfAQCAAAAAAAAAKgBfAQCAAAAAAAAAKgBPRYTSLWzEeV4MqrZq0oTHpHrVl3jqSlXVQPtOkK9lsaicL21Xss1varrVK2ga/lL8UWqUsS7TlTjl2h8oIiIb33rW5Xn7yzaNm8knkZnYm8MGzYsO9Y+s8ceeyTbY8loqj1t90MOOSSrp3GpFixYkJVp7AONa+JtpulCXa86derUZGsMlFIK57Fjx2ZlV1xxRTQTGlOk1H91TJRiZqlO22OZqP5a6/k40mt5SkzV9Wq8L41/EpGnofS4TytWrEi26oLrhM/JGptH28Ofz2abbZZsjVXw/e9/P6s3d+7cZHu8Jp3zNE3u3nvvndXT+BulOAXtmBZe0XgWEfk6qWlOI/L5UedAX9M6E/fB4wrpmNOYbh7bqU5orIiqfUNEPsZ0fYuImDx5crK17adPn57V0xgip5xySrI9VoZea9Gcg9ATAAAYSElEQVSiRVmZxmcYM2ZMsm+99dasnqYa198Yka8H7T4WNZ6lozFEvK7GAfK4lbp/1Wfpe1Rdnz1Gie5zNe6Px4fSfbTH4mvWeCONpnovoenXx40bl5X9+Mc/7tyNVdDo3KpzdUQeM3HmzJnJ9vTS73nPe9b4PjzmVzPha5qi8YJ8Tq2aeyPysVNK2679qxT/q+od1s+p6+7666+f1dN5wO9D97k6P/g5WhGN7eN7BV2ffH7SmFwaB8jnXX12ulfyWFPaD55++umsTPe5+n+PPvpoVk/j9HlcoUZjd3U1eAIBAAAAAAAAANQAPgIBAAAAAAAAANSAHpODfeADH8iO1RXKZSaltGqKujOW3Pa0TF1hI3JXOnX/cldJPV/JDVfL3A1Q3RFL96tyCH826gJ3/vnnZ2VrQw6muKuz/j53H9XfoO5yI0eOzOp9/OMfT/aQIUOyMnWHveOOOzq8rqOuop7mWt0AXWKkz19/p6d11dSDM2bMqLy2pnB0eZSmJRw8eHBWpmnNmwF91n369Em2SxRKqWurUgS7O21VWmSXqqj0wNtH3eD1Wu5arRIk7wvq6llK59rOXHfdddnxCy+8kOyDDjoo2TvttFPlOb72ta8l2+fdefPmJdtTc2rf0jnBpbH33Xdfsn1O0D5YkjG2Ay6TVvr27Zsd67PQ8dHZfl56turOrpJYlws1s/Sgq1F5rc6Lvh/QMpVkReSSHZ0zlyxZUnkOrefrkUojnnjiiazsoYceSrauVT6eZ82alWyVXUfk82tp7W4HSuNBZQ4R+f5E28DlC3pObUeXtJTkI/rctV/oPsWv5b+lWefRQYMGJdvTpeszUglyRC6vUumky79UOl5Cx1VpPlXZrO89dE72sfLYY48lW+XVF1xwQVZP18UTTjghKxs+fHiydd4tvWf5feiz6gk0JXxE3te1P7usUvcwJdlmKQ15VbiPUqgSl9/qPqb0rqvzvss7dS6petdqVXTvVgot4WNs4MCBDZ1D5whd7/x82keWLl2alan0TCVr3oZaz9/1fL3uLur5RgMAAAAAAAAAUDP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAO6VZC96667JtvT+j3zzDPJ9hgiqpMspVEtpWPX/1PNpOuyVZ+rsQpcx6mUdLxVqcYj8t/l96G6Qk2t67pvjWXiz03Tl3cVmrpU4wNEREyaNCnZroXUZ65ppP25avyPe+65JytTzbK2TSm1pZaphjoi1457KkVtG9UOq746Io9l5W2j19Z6HvNEz+/Pw/tMT6P9uRQXS8ei6/IXLlyYbP19nnJW9deqsXZNetXY9ntUW/txR+dUNOZQXWMCaWrLiIhNNtkk2bfffnuyXSt95plnJlvH29ixY7N6DzzwQLI9/abGxdJ28lgERx55ZLJvvPHGrEzjbmkb+hrSDvh6pGNs6NChWdny5cuTXUqtXBUjohQXxOdlfe7aTzyO1IMPPphsn1N9fLc6GrPCY/0oOv95LBONVaDxyzQtbkTehrrf8Dhq2l/22WefrGzYsGHJ1phwnt5W19pddtml8j503fA94YsvvhitzhuZX6r2mB5fRNtb90GeIlnLfNxUxbv0WCMaR8XHusfyahZ0fOj+OCIfHx4fTeM7/vd//3eyjzvuuMpr6X4oIt+jlt4ZGkXbyWOlaXw8jVt0zTXXZPX23nvvZPtv8eezmtK7lcfP8TW/u9H3iYi8r2sb+PjQdw2NBxXxz3v01fgYaLSNde3z9VnbVe/d+5b2XZ8bte/qPqsr+mAzofu4iIgddtgh2T5P6r5dn4PHhpo8eXKydS3U5xiRr4s+PnTe1H7Wr1+/rJ6WaXr7iIg5c+ZET1DPNxoAAAAAAAAAgJrBRyAAAAAAAAAAgBrQrXIwdS12ty51tXJ3uSrc3VxdtEpp5tV2FzJNt6rnL6XHLKUNVDc0d21XV7EJEyZkZerud9lllyXb05DrtV3+VXJj7Szqgqpu+xG5tMDlNfocVP7kMjjF3dTVDVX7i0sV9FpqP/LII1k9dVl313l1GdQ+4ikXNdWxt6+6gKpbr6dCV7dql381m0u8u6iuxn97yY1Z3f7VldjHc1V6T3dtV7duT1Wv7pfaJ93tXaWHKiuKyNPJV/3+VqIqxXAJlxHpOFBX6ssvvzyrp89LU8m7u7VKAf0Zq8uvpks+8MADs3oLFixIdkki2qypjbuK0m/3NULnqNL/ldLkVuHSySoJyooVKyrPUbqndkD3AKW20LXPpbeagv2VV15J9r333pvV22233ZLtKd0VXe80hX1EnkJX51aX8pbSTev+SPdbKneIaL61rzOU9rLejvrcde9TOoc+Zx+X+mz9HHp+bUeXSuj/+Trua34zomEmOjpuhNmzZ3fV7fQImj6+HfF3Dd1D6zzq65FKWH3PUZWqvbQeVcnQIvKx7mVV49vHm/ZdleNHVL9ztlv4At2LR+T7Up9P9bdXvX9G5O8Zui76Gqnrkb+bahvq+Urv/C5jRA4GAAAAAAAAAABrDT4CAQAAAAAAAADUgG6Vg6k7srtCqQufu6Rq5iZ1+XI3QP0/d9tTVz110XK3Lq2nLnbuVqfuZe6Gq66Fej53V1PpymmnnZaV6W8+/fTTk73VVltl9fSc06dPz8p+8pOfJPsb3/hGdAUqzfB2UqmGyz20PdTNzt3I1a2u5C5dkidU9RGVbkXk0ePdZV3va/vtt0+2u3KqBKWUOaDkoqn9zKVOLlfsaVRGVZISqYu59ouIvH20n/uzVffXRjOReRtUSSzUVd7xuUPHs1+7Ljz++OPZsUpQNBvLXnvtldVbtmxZsnW8eWaWrbfeOtnz5s3LylQupPJRPV9ELqv0DCZVeH9pVB7XzJR+QynboP5faY5qlFJ2MJ3nXMJZdU/tiEqDtW28X7obvKJr1axZs5Lt40il3Cq9Uhl3RL4G+xqvdXVO8HG/7bbbJtv3ArqGqBxYs6C2C6UMWr5/rcp46mNR26QqW6efz/cVeo7Snkv3aj6nljJqAnQXLrnR/YLK1r3/aniIk046KSvTvae+I/r6qeNIx4rPmyUJvo453e9vs802WT2VI/n+SZ+BSoI97EGrM2XKlOx43333Tba/P+j8p+vsiBEjsnrapirBc5m6rn0ux9Pnr+ux35PO5d5Hego8gQAAAAAAAAAAagAfgQAAAAAAAAAAagAfgQAAAAAAAAAAakC3inovuOCCZGusiIiI3XffPdkjR47Myq699tpkqw790ksvzeqpHt612KrJ1PgGnp5PNZQaN6SU5rQUf0j1pKW4CqVYIxoH6O67787KrrrqqmTfdNNNlefoKjSWgMcnUr2jxxnQ2Dmq/fd0fYprfVVfqe3m2nT9P405o3ZEHiNo5513zsr0nKpD9bbW9vU2rIqtUPrN3keaLSaGPtuqVJwRuRbbddQa16UU60dTyas+13W23q6KtqPOAR4TaO+99062a3X1uB3iIHSmT22xxRbZsbb3/Pnzk3388cdn9XQ+ve6665KtMYAiIm6++ebKMtXyaxt6Cuk99tgj2RqTytHf32zja20zderU7Picc85Jts7fpefSaLp4P4fW1TmhFJ+r3dtnww03TLbGg/D0wEuWLKk8h/b1QYMGJdvn3Q022CDZOo/7Oqv7F0+Tq7EoNB6Nzw96Txqjwq+nv7kd5lanlFLa0d+vbeDnqIrzURqLGhPDz1lKJd9oLBOAnsLTu+v+UvfTuseLKKd+r4ol6ej40P/xOF6Nrq2lejqn+pqpe+DOxEZsFe67777suBRTVPuBPhNfq1atWpVsfca6Xkbk776+tuoap9fytVXfJUrxGbsTPIEAAAAAAAAAAGoAH4EAAAAAAAAAAGpAt/rfairhs846q7Je//79s+PFixcn+6KLLkq2u3+pi5zLwdw9bzWeOlNdXN2VS2nUzVfP5+5fev477rijofPtt99+DdVbW5x66qnJPvzww7Oyc889N9l9+vTJytRNXZ+dp4VVFz5/Xur2qc9OJVkR1S6Q3ma/+93vkn3++ednZffff3+y1aVUUxJGREyYMCHZCxcuzMq0f6rbqEoAIvLf6S7W7sbd06g8QMeYt0HJnVbPoZIeH29aT9vAU85rv/A+o9fW87sLce/evSvPX5oHWp2Su7/icpRbbrmlwzKfu1Xu8eCDDya7X79+WT2VkbnMV2WbTz/9dLJnzJiR1dOxo/OI80YkGq1IqR1nzpyZHasrdGnMlqQmjV5bz+GSv0b+51+dvxWpeg46biLylMX+DFTCo204cODAyuvq//gzVpd13x9palyV6/r8ryntfe+lc7mm0/W5oySBa1VefvnlZPse1Z/1avzZ6vPT9c7bUfcfvq/QNU3lZd7v9Jwu12t0TgBYm7h0tuo9wWWUuvZ539Zz6DhyGZaOq9K+QudAl1xWScB8ftC9j6ePrwo74udodfQZRORzkK45EXm/0Pb11O/6vLTd/d1L+49/e9B+oOfz0BI6xzfL+oYnEAAAAAAAAABADeAjEAAAAAAAAABADeAjEAAAAAAAAABADejWmECNpt3TGEDOnDlzku2aZNVFuhZP9YGq53NtX1XKP7+WHjcat6CUYrOUJtfvsQo//9qOffHzn/+88tjvediwYckeOXJksg855JCs3pAhQ5Kt8QIi8jbVWEKuCb7zzjuTfdtttyVbYwB1Fo+poRpV1xxXxajyNPCaTn3atGlZmcen6Wk0vaK2gWuPNSaL90Ptp6qPdq20tre2scdI0Oe+YMGCrExjDmmKR4+RoPpwf+Z6/naLJ9NojJWdd945O9ZU0d/73veSfdlll2X1NM2mju0pU6Zk9apicPm1jzrqqGR/5zvfyepNnz492dttt11W9vzzzyebWBb/oComlLeBzueN9hmvp+upjrc6M2DAgGRrPBZf+5YvX55sn7uq2sPXI40fU0rHXmprjbGxcuXKZHsqeUXHXkQes0/H6eDBg7N6v/3tbyvP2Sp43AedD30e0rhPGkPxhRdeyOppG+i66/sgXU99f6njW+/JYzTqOXX+jmiemBZQb7zf635a94oe2/FHP/pRsr/97W9nZTrHVr07+rGe32NT6trnsb+q9iMe11D3TKNHj87KdAxrunLfU7cbOjd6rFWPb7Ya33toH9F10fdASikun+LzrvaRpUuXVp6/O8ETCAAAAAAAAACgBvARCAAAAAAAAACgBnSrHKwkpSilolT3uRtuuCHZ6s4XkbuDeQpoddfS87nLl96j2iUXeP9dev/6f+6etv766ye75Pqs52gmOYq7Ruqz9OeqMiq13Q2zO2k09bf2F3WBj4jYf//9u/Semp0qGYH3S3V/9f/RcaD9xN1fNX3yokWLku3SM21Hl4ptvvnmHd5TKaW9uhNH5O7AVS6mrUqjEl0fKyoNOPzww5O9bNmyrN4BBxyQbB1Hjz76aFZP5Q8u5dJ5RsffnnvuWXlPl1xySVamUlBPWV1n1G1d27grJHMlOVhJ8l0nVLKl84ymX4/I9y+aZjwiH7fabr4H0mM9h7dTlezaz6/9xV3s9Vo+n2o/UPnuk08+Ge3G+PHjs2Pds6pUOSLikUceSXZJglK1l3W0zOdvbR9d01TmG5H3Q5e4ADQDKn+KyN8DS3IoHWO+p9Q9q86HPgaqxpHvpfT/fMzqtfR+9f0wIg894XtlldgqjUq3W5UZM2Yk++CDD87KVIqltr4TROTPrhQqRt9VvB/osbZ9SXat8t+ehN0wAAAAAAAAAEAN4CMQAAAAAAAAAEAN6FY5WAl1Wyu5uCpXX311dqySApclVGX6KkkD1DXP3fv02KVP+ls0yry7kGkGkIkTJ1beR8mlryq7S3dQip7eCjTaz+AfaAamY489NtmesUbdZD07jLrhqpu6Z3nQLF2vvfZast3FUvu9y7zUbVbdhtdbb72s3tSpU5O9ww47ZGU6Tn1eaXUalYO5+/GsWbOSrZKO//iP/8jqqSu1nv/QQw/N6mnbuyxEXbU1o8Kll16a1TvnnHM6vFbd8DVNn0VJWtKZ9aMkGyvdR6NS3HZHM1keccQRyXaJw5VXXplsz8CndUvu51qmmRL9f3TudklCleShlKnVpe5bbbVVsnVe92xm7YhLwBRdd7RNfVyqtKEkd9EylzHr3kfnBF8XkYBBs+PvITqfNSrfd/n4kUcemexSRr+q90ofszrGfF3Ue9RsV1dccUVWT/eefh8+T7cT2p7+nqHPxCV9uo5tueWWHf49In/+VXZEPnf7vKhrl867fk/aDxYuXBjNAJ5AAAAAAAAAAAA1gI9AAAAAAAAAAAA1gI9AAAAAAAAAAAA1oGliAnWGU089tadvoVsoxWpo9xSA0Fx43J7VeKycG2+8Mdlf/vKXszKNv6PxDTwmhOp/R44cmWxNEx6Rx09wra7el8bBGDBgQFZPU5nfddddWZlqwjU+UDtQmj9Uu16KDTFp0qRkL1myJCs75phjkq1xQubPn5/Vu//++5PtGv+DDjqow7Kjjz46q6dp4OfNm1d5v+0eL6jRGHIR+fNUuxQrT8s8rlop/pD+X6OxGtp9fdtmm22S3bt372R7Gvjbb7892Z4K91e/+lWyly9fnmyfkzWelra1n0/xuAUaw0fbU+89Io/7M2XKlKxsxIgRyZ45c2bltdqBUlwsZ9GiRcl+17veVVlP42lVxfaJyNdPjx2k96G2py0uxeMolQF0F7/4xS+yY90r6li55pprKs/x+c9/vvJ4iy22SHa/fv2yen369Em2pqZfsWJFVk/HlcdX1Lle5+8S06ZNy4533333ZFelK29VSrFndc7Ud4mIiFWrViX7ueeeS7bvParO7/FF9XjTTTfNynzuXU0plrCviz0FnkAAAAAAAAAAADWAj0AAAAAAAAAAADWgpeVgANC9qMurutoOHTo0qzd8+PBku/vl5ZdfnmxNB+6SI5UYqAzLJUfqXqvSrYiI0aNHd3j+M844I6rYf//9s2OVKahrcDtQktuoi+u6666blQ0ZMiTZV111VbKvvvrqrJ5KtNTF+tlnn83qqVu1l+23337Jfvzxxzv8n4i8P95zzz1RRbtLjEqUZBsbb7xxst1FeqONNurwHO4GrRKR559/PivTdKnual1Xxo0bl2ztzypdjcjnrtNOO61L7+GOO+5Y43M8/fTT2fHs2bMr644aNWqNr9cqvBE5hs57us66lEvHmKc77sy1VIbtc29pvijJNAC6C5dX6Tqje0iXaCkl2abKal1iuzYp3dOCBQuyMn0GulZUyZRaCX0OPudoGIF11lknK9N+UJIu67uF7nN1no3In7/L4PUdR+v5/Kky6RdeeCGaATyBAAAAAAAAAABqAB+BAAAAAAAAAABqAB+BAAAAAAAAAABqQK/ujI/Qq1ev+gZj6GFef/31Xv+61r+GNuw5uqoNI7qmHXfcccdka6rGiDyVsDN48OBkH3/88cnu27dvVm/LLbdMtqZk1LTCEXmKTY2lEJGnqvdUolV4GtD11lsv2Y899lhD5yjRrGPR04c3ujZssskmlf+jumrtL54C+89//nOytd0jcv37U089lezOxqTQ39nZ9a/ZxmJn0XhLw4YNS7Zr2TVGjWrvvQ00FetLL72Ulc2dOzfZv/nNbzp5x11Ld49FjzPQaGptjWngsSI0FpbGIyiNZ61XGrN+v3/5y186vI/StbyPaJme3+PneNyFKtplLCoaz8Lnw/XXXz/Z+tw9Ht6LL75Yef6VK1cmW2OleHyV7qRZ10VonJ4Yiz73jB07Ntka42XGjBlZvfnz51eeU+c2javjc2+j87dSijWj5+vJ2IXNNBb1+Zf2fLo3jMjXD7X93eTVV1/t8Foei033rB4jU2Mc6nrscYoeeuihZH/4wx/u4Fd0HY22IZ5AAAAAAAAAAAA1gI9AAAAAAAAAAAA1oFvlYAAAAAAAAAAA0DPgCQQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP4CAQAAAAAAAAAUAP+D/fLABOCduBWAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(20,10))\n", - "for i in range(10):\n", - " ax = plt.subplot(1, 10, i+1)\n", - " ax.imshow(train_dataset[i][0].squeeze().asnumpy(), cmap='gray')\n", - " ax.axis('off')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Network" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "net = gluon.nn.HybridSequential()\n", - "encoder = gluon.nn.HybridSequential()\n", - "encoder.add(\n", - " gluon.nn.Conv2D(channels=4, kernel_size=3, padding=1, strides=(2,2), activation='relu'),\n", - " gluon.nn.BatchNorm(),\n", - " gluon.nn.Conv2D(channels=8, kernel_size=3, padding=1, strides=(2,2), activation='relu'),\n", - " gluon.nn.BatchNorm(),\n", - " gluon.nn.Conv2D(channels=16, kernel_size=3, padding=1, strides=(2,2), activation='relu'),\n", - " gluon.nn.BatchNorm(),\n", - " gluon.nn.Conv2D(channels=32, kernel_size=3, padding=0, strides=(2,2),activation='relu'),\n", - " gluon.nn.BatchNorm()\n", - ")\n", - "decoder = gluon.nn.HybridSequential()\n", - "decoder.add(\n", - " gluon.nn.Conv2D(channels=32, kernel_size=3, padding=2, activation='relu'),\n", - " gluon.nn.HybridLambda(lambda F, x: F.UpSampling(x, scale=2, sample_type='nearest')),\n", - " gluon.nn.BatchNorm(),\n", - " gluon.nn.Conv2D(channels=16, kernel_size=3, padding=1, activation='relu'),\n", - " gluon.nn.HybridLambda(lambda F, x: F.UpSampling(x, scale=2, sample_type='nearest')),\n", - " gluon.nn.BatchNorm(),\n", - " gluon.nn.Conv2D(channels=8, kernel_size=3, padding=2, activation='relu'),\n", - " gluon.nn.HybridLambda(lambda F, x: F.UpSampling(x, scale=2, sample_type='nearest')),\n", - " gluon.nn.BatchNorm(),\n", - " gluon.nn.Conv2D(channels=4, kernel_size=3, padding=1, activation='relu'),\n", - " gluon.nn.Conv2D(channels=1, kernel_size=3, padding=1, activation='sigmoid')\n", - ")\n", - "net.add(\n", - " encoder,\n", - " decoder\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "net.initialize(ctx=ctx)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--------------------------------------------------------------------------------\n", - " Layer (type) Output Shape Param #\n", - "================================================================================\n", - " Input (1, 1, 28, 28) 0\n", - " Activation-1 0\n", - " Activation-2 (1, 4, 14, 14) 0\n", - " Conv2D-3 (1, 4, 14, 14) 40\n", - " BatchNorm-4 (1, 4, 14, 14) 16\n", - " Activation-5 0\n", - " Activation-6 (1, 8, 7, 7) 0\n", - " Conv2D-7 (1, 8, 7, 7) 296\n", - " BatchNorm-8 (1, 8, 7, 7) 32\n", - " Activation-9 0\n", - " Activation-10 (1, 16, 4, 4) 0\n", - " Conv2D-11 (1, 16, 4, 4) 1168\n", - " BatchNorm-12 (1, 16, 4, 4) 64\n", - " Activation-13 0\n", - " Activation-14 (1, 32, 1, 1) 0\n", - " Conv2D-15 (1, 32, 1, 1) 4640\n", - " BatchNorm-16 (1, 32, 1, 1) 128\n", - " Activation-17 0\n", - " Activation-18 (1, 32, 3, 3) 0\n", - " Conv2D-19 (1, 32, 3, 3) 9248\n", - " HybridLambda-20 (1, 32, 6, 6) 0\n", - " BatchNorm-21 (1, 32, 6, 6) 128\n", - " Activation-22 0\n", - " Activation-23 (1, 16, 6, 6) 0\n", - " Conv2D-24 (1, 16, 6, 6) 4624\n", - " HybridLambda-25 (1, 16, 12, 12) 0\n", - " BatchNorm-26 (1, 16, 12, 12) 64\n", - " Activation-27 0\n", - " Activation-28 (1, 8, 14, 14) 0\n", - " Conv2D-29 (1, 8, 14, 14) 1160\n", - " HybridLambda-30 (1, 8, 28, 28) 0\n", - " BatchNorm-31 (1, 8, 28, 28) 32\n", - " Activation-32 0\n", - " Activation-33 (1, 4, 28, 28) 0\n", - " Conv2D-34 (1, 4, 28, 28) 292\n", - " Activation-35 0\n", - " Activation-36 (1, 1, 28, 28) 0\n", - " Conv2D-37 (1, 1, 28, 28) 37\n", - "================================================================================\n", - "Parameters in forward computation graph, duplicate included\n", - " Total params: 21969\n", - " Trainable params: 21737\n", - " Non-trainable params: 232\n", - "Shared params in forward computation graph: 0\n", - "Unique parameters in model: 21969\n", - "--------------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "net.summary(test_dataset_t[0][0].expand_dims(axis=0).as_in_context(ctx))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the original image goes from 28x28 = 784 pixels to a vector of length 32. That is a ~25x information compression rate.\n", - "Then the decoder brings back this compressed information to the original shape" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "l2_loss = gluon.loss.L2Loss()\n", - "l1_loss = gluon.loss.L1Loss()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': 0.001, 'wd':0.001})\n", - "net.hybridize(static_shape=True, static_alloc=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Training loop" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch [0], Loss 0.2246280246310764\n", - "Epoch [1], Loss 0.14493223337026742\n", - "Epoch [2], Loss 0.13147933666522688\n", - "Epoch [3], Loss 0.12138325943906084\n", - "Epoch [4], Loss 0.11291297684367906\n", - "Epoch [5], Loss 0.10611823453741559\n", - "Epoch [6], Loss 0.09942417470817892\n", - "Epoch [7], Loss 0.09408332955124032\n", - "Epoch [8], Loss 0.08883619716024807\n", - "Epoch [9], Loss 0.08491455795418502\n", - "Epoch [10], Loss 0.0809355994402352\n", - "Epoch [11], Loss 0.07784551636785524\n", - "Epoch [12], Loss 0.07570812029716296\n", - "Epoch [13], Loss 0.07417513366438384\n", - "Epoch [14], Loss 0.07218785571236895\n", - "Epoch [15], Loss 0.07093704352944584\n", - "Epoch [16], Loss 0.0700181406787318\n", - "Epoch [17], Loss 0.0689836893326197\n", - "Epoch [18], Loss 0.06782063459738708\n", - "Epoch [19], Loss 0.06713279088338216\n" - ] - } - ], - "source": [ - "epochs = 20\n", - "for e in range(epochs):\n", - " curr_loss = 0.\n", - " for i, (data, _) in enumerate(train_data):\n", - " data = data.as_in_context(ctx)\n", - " with autograd.record():\n", - " output = net(data)\n", - " # Compute the L2 and L1 losses between the original and the generated image\n", - " l2 = l2_loss(output.flatten(), data.flatten())\n", - " l1 = l1_loss(output.flatten(), data.flatten())\n", - " l = l2 + l1 \n", - " l.backward()\n", - " trainer.step(data.shape[0])\n", - " \n", - " curr_loss += l.mean()\n", - "\n", - " print(\"Epoch [{}], Loss {}\".format(e, curr_loss.asscalar()/(i+1)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Testing reconstruction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We plot 10 images and their reconstruction by the autoencoder. The results are pretty good for a ~25x compression rate!" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAD4CAYAAAB7VPbbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvWe8XVXVvj1QsQKBkJCQQiqBhEQ6gRBaIIAoIE1BimAB8UcVBfUvIGIBFSygPHZ/IihFRVSU3psGQpASEtJIJw0CKPqIvB98mc8975w13Qmn7LPXdX0aO3Oetdeefa2Me4y1Xn311QAAAAAAAAAAgNbmDV19AwAAAAAAAAAA0PHwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAbwEggAAAAAAAAAoAa8qTO/bK211nq1M79POfLII5N92mmnJfuHP/xhVm/lypXJnj59erI33njjrF6fPn2SPWbMmKxsyy23TPZ5552X7DvuuCOr9+qrndccr7766lrtcZ2u7MO60159GNE8/divX79kjx8/Pit77LHHkv32t7892f/617+yeltssUWy586dm5XdddddDd3HWmv9X9N29LxkLnZ/WnEudgfe+MY3JvuVV15Zo2u84Q3/939fr7zySrebi7pWRVSvV/Pnz88+L1iwINl/+9vfkv2Pf/wjq6efn3vuuaxs3XXXTfbChQuTrWtwRMRJJ52U7EcffbTN+2svutNc1L5be+21szLd1/79738nW8d8RETv3r2TvWTJkjb/xv9u2LBhWdm0adOSrePnTW+qfiTwfbe990z2xe5Pd5qLjbLJJpsk+5lnnmn36x911FHJ/vnPf97u118TuuNcHDhwYPZZn8MnTpyY7P/93//N6ukzwwMPPJBs3xe1nq+1hx56aLL33XffZP/ud7/L6l133XXJ9r21vWm0D/EEAgAAAAAAAACoAWt1pjdKe78V3H333bPPxx57bLJHjx6dlen/mLzwwgvJ7tu3b1ZP/+6ll15Ktv9vzDrrrJPsp556KivT/4HTt8j+P3jLli1L9g9+8IOs7Kqrror2pDu+2YWcVvlflhNPPDHZu+yyS7KPOOKIrN7y5cuTvf766yfb59vIkSOTfeONN2Zl6n333e9+N9nq8dfZMBe7P60yFzsS9fKLyL1xf/Ob3yR71qxZWb019fBZE7rjXCx5Au22227Jvuyyy7J6zz77bLLVG+otb3lLVk/XXf8fz/XWWy/Z8+bNS3aPHj2yep/73OeS/fDDD7fxK9qPZpiLVV4x2s4Rq7ZnI3j/aB/sueeeyfb/We7fv3+y58yZk5XdfvvtyV7T+YYnEDjNMBfXBPdCv/TSS5OtHiVTpkzJ6v3yl79M9uOPP55sn/ejRo1K9sEHH5yVbbXVVslWT7xPf/rTWb0LL7yw+ge0M91lLg4dOjTZv/rVr7Iy9Xz91re+lexPfvKTWb0f//jHyX7zm9+cbH/m12eLW265JStTb1f1kN1uu+2yei+++GKy3/Wud0VHgicQAAAAAAAAAAAkeAkEAAAAAAAAAFADeAkEAAAAAAAAAFADul1MoBNOOCHZHhNINdEeAVx1z2qvWLEiq/fWt7412arZ00xFERFTp05N9qabbpqVaeYN1Ya+4x3vqLwnzfgQEXH99dcn2zOYrQndReMJ1TSz3lpjZEVEXHzxxcl+3/vel5Wp7lbj++iYj4g4//zzk62ZSTxTn8YC8zVBP2tcBM9Yc/TRRyf773//e3QkzMXuTzPPxY5G4xZ4xqDjjjsu2R77YJtttkm27s8DBgzI6l1++eXJvvbaa7Myjbf3la98JdkaFywiYubMmcn2+F8af+/3v/99S83Fn/70p8nWeAkRES+//HKy3/a2tyX7n//8Z1Zv8eLFye7Zs2dWpnU1pqGemyIiLrjggmR7HI32ptnmYqOxcnbeeefss8ZR0nH+kY98pPIahx12WLJ/8YtfZGUXXXRRss8666zKa+g+u/nmm2dlH//4x5OtcTWd9ogPxL7Y/Wm2uahnTc38FJHvO/78pei66etce9Do9TWWrcYfiojYaaed2vWeustcHDt2bLL9ueDpp59Otmbz/sIXvpDV0/g+9957b7JvvvnmrN4OO+zQ5t9ERPzxj39M9pNPPpnsrbfeOqune+tHP/rR6EiICQQAAAAAAAAAAAleAgEAAAAAAAAA1IBuIQdTl74vfvGLyVbZVUQuvXr7299eeQ2VYXkaOE3hpvKyDTbYIKunbtKe9lPd5fWe/H7/8Y9/VF5D7+vMM89s895Xh+7i3tfeaDt2Zurh1UFdqUeMGJGVqVyq2VxtlUWLFmWfdb752NY1Z+211062pxnW/jrwwAOT/bvf/S6rp27qer2IfC6qlMHT7qr7/T777JOVeXrd10td52Ir0cxzsaMpycG+/e1vJ/vwww/PylSi9dJLLyXbzyBbbLFFsktu+s8880yyXdKk87tXr15Z2de+9rVkn3feeS01F1WmPnfu3KxM21zlYN7+Kjvwc5TK+DSVvKYtj4i45pprkn3VVVc1dO9rSjPPxQ033DD7rFJETQ0dkfeP8r3vfS/7rOmrlTvvvDP7fPzxxydbzxERuYzsnHPOSbbLUfRs8oc//CErO/XUU9u8D/2biMblYeyL3Z9mm4sPPvhgslXOE5E/f/mY9f2k6t/X5PnZnzkVXV9Lc9HDL+ga8bGPfWy178npLnNxxx13TLaHZfnTn/6U7FKbf/nLX062yurmzZuX1dPnAD1DROQp6KdPn57sfv36ZfV0zH3gAx+ovKf2ADkYAAAAAAAAAAAkeAkEAAAAAAAAAFADeAkEAAAAAAAAAFAD3vTfq3Q9qvtTbZ/rOKvif0Tk8UX07zQ9n5dpWjm9dkRZT6pxEqriAzmlWCb6+zWFHfx3tF09JtChhx6abE0RHhFx3XXXJXvWrFnJ1rSDEfk487hRrsOvYrPNNku2pheMWHVsNROagtbHtsaVeMc73pGVVcXT8rmomuif/OQnyfY20ev5PNXr69rhaeAHDhyY7LvuuisrGzRoULTFmsY+AOjOeIwvRXX0ukdG5PFlnn/++WTfeuutWb3+/fsne/LkyVmZrjMah8bjiekerLH9InL9/nnnndfGr+he6Nqlsdn8DKTrqbajrtVOo+up4/EP68oNN9yQfdb4VMuWLcvK9Hyi/eMpjTVuyNe//vVkL126NKt39dVXJ9v3po022ijZOmZ8zuo80jhCXlfjVrIPQrOgcYA03mtEvj7edNNNWZnGlNPxXIr/qvV8bdT5rDEsI/LnTI1NqXE1IyIOPvjgZOsaEBHxwQ9+MNntEROou6B7+957752V/fWvf022xun5+Mc/ntXTNVnjFnqcu4ceeijZ/mx3wAEHtHm9TTbZJKvn12wG8AQCAAAAAAAAAKgBvAQCAAAAAAAAAKgB3UIOpjIblfe4hEpdzD2Fnko3qlz9InKXXHV3dTdZde/zdNPqxucpdKvuyd0M9bd5iltonJJr8pAhQ5I9cuTIrGz99ddPtqZtdzdMdQf1lI5nnHFGsseNG5fsYcOGZfXULfzEE0+svN9m44gjjki2j9/S/Pj5z3+ebHWXHD9+fFZPJVvqfukulXp9d+t94oknkq0pGX190LVD5WUREbvuumuyXSoGHc9nPvOZZKtk8De/+U1Wb/bs2Z11S1DB0KFDk+3zXl23VQLraVTVbd8ll5raXNNvuxxV57e75utcbwXUDb4kl9f9Sc8o3nZ61vE+1POMXt9lY88++2xD996K6P7kEnGdA94/VedBl4hrSneVpz/66KNZPT37TJw4MStT2UkpTIGOkxUrVmRlBx54YLJVDgYdg0tLVAJ0/vnnd+h3l8ZISR7cFey2227J9vO6omvln//856xMn7m23nrrZF9++eVZvcMPPzzZjzzySLI9bIfOv0mTJmVl+pzw1a9+Ndkf+tCHsnoaVsElvLrf6bz87W9/G63M4sWLk33ppZdmZdpGeqb3dfL2229P9sknn5xsl3zttddeyXaZr6KyXJf0Kc0STgJPIAAAAAAAAACAGsBLIAAAAAAAAACAGtAt5GAqzVEXvnXXXTert3Dhwjb/xlF3Z5dr6fU1erxnllI3L3eZVvdIdfF66aWXsnr6ecCAAVmZ/p1nPoEy6mbnMj7l3e9+d7I9m4n2jbpB+zgoZR97//vfn+xNN9002e72p9lwTj/99Mr7bQbU7VTbSDP/ROSuqytXrszKNGq/zjHNgheRSwx0XrqLpfbxtGnTsjKdi3ofvXv3zuqpW6mvK2eddVayVQ5GFpSO4bjjjss+a/YaHXPXXHNNVm/ChAnJLmU8gtdHadyrG73X0zXhlltuSbbLHIYPH55sX1d0vS1lY1FJzk9/+tPK+20FdNyX+kb3J5UlDR48OKtXksvpGlpq/zqj8nE/u2nbeoZK3e/0XOr73dSpU5OtMgfPYqnnYd1zI1bN2Pka3o863zzbnKJnLvbF1aPRttt4442zz7pOasbD+++/P6v3y1/+Mtl+ttH9tCTrajbJVwnNmKfj158FdI/41Kc+lZXpnjFjxoxka/aoiIjly5cne+7cucn254n77rsv2T5PVeKs8/mYY47J6un67eEMdN4ee+yxyW51OZj24VFHHZWV6TjQ9e6xxx7L6um6q5nVXOKqz+hz5szJyt73vvclW88s/l3av82yTuIJBAAAAAAAAABQA3gJBAAAAAAAAABQA3gJBAAAAAAAAABQA7pFTCDV/ak2daONNsrqaapt1WpG5LEKVNtcShGvWmyP96KfPf6Eagw1XpCmvo3If5frfVVz2Ldv34DG0XSW3m+K6oU9bo3qrRtNu+vxpVSDrKkqfbzouF2wYEHl/TYDmsZd9eWeilO15prKOSLXOuvfeRpS/axt69+l/fOe97wnK9M5p33q6W71+n4f++23X8DrR+eb9+HAgQOTrTE1IvKxpOlfL7zwwqyeplTVGAnQvpRiWJRipOk81b3b55uuxZMnT87KNOX26NGjk63rcEQ+vi655JI2fkXrMGzYsGRr23nMGV0LdW/y9Vnb1dOTax9qX3ssGY9/WCd22WWXyjId63369MnKtH+0PT3mpM45PQ/7HNA9bejQoVnZyy+/nGw9D/sZRmNpeEwVjW8xZsyYZHsKZihTig2y3XbbJfuggw7Kyn784x8n+9xzz032DjvskNXTuCQamzIijw2mMW38PKzPNF7mzzVdzUc+8pFkf//730/2yJEjs3q6j2macP+85ZZbJnv69OlZPW0/nX+bb755Vk/jeGk7+33pPNX4kxERu+66a7KfffbZrOywww6r/LtWZqeddkq2xwHWVO26p3mcNn3+0jJ/h/CNb3wj2d6/Dz74YLJnz56dbE9b/73vfS/Z/lyvsS87EzyBAAAAAAAAAABqAC+BAAAAAAAAAABqQLeQg6kLuOJuXdtss02yPTWepoRW98tGU6qWUqD6NdR9V91/3b1s//33ryxTKZqndYT2QV2plyxZkpWpq7u6Pbubu0r61P3QP6vLp48lTRHZLGkDq9h6662TrW3k7aJpEtXd0su0D/y3V7m9uyTPPyvqxqwu8GpH5K6Znt5Tv1vTe3qaSChTkmYeeOCByb7qqquyMk3futdeeyX7yiuvzOqpLOaiiy7Kym677bZkq1zB5/2pp56abHcv/sxnPlN5/3WilC5Y3aRdjqTrgK4djspOdH2NyNdRXZddqqJng1mzZlV+Vyug5yMdzy6z03VSx7amEo/IUyLrfPO6ekbxNbjZJCKdyTvf+c5k+zj31M6KngN0rfSxrfuiSlBcZqJ7nO/Pmqq+JM10iZmie6tKZuosB2s03XujqDxvwoQJWZk+72g/qQQqIg+F4Xua/p1Ksn0c6DPNvHnzsrI//OEP1T+gC5gyZUqyx44dm2x/jtSQAJ4O/Ac/+EGyf/Ob3yT7vPPOy+rpfFap+tlnn53V0/mx7777ZmU6ZjStuUq8/PrwH/QZS2VYEfna269fv2T78/Sdd96ZbJW/ujxL19cvf/nLWdndd9+d7FNOOSXZKueMiNhss82S/a53vSsr+9rXvhZdAZ5AAAAAAAAAAAA1gJdAAAAAAAAAAAA1gJdAAAAAAAAAAAA1oFvEBNK4AKqz9dgqmqbSU/5pfALVCnpKTNVnauwD/y797OmOVSuteKpPTc3qKauVko4cVqUqZoXqgyPy2DSeQlVjW6i23mMfaLp31ZNG5KliNX6Cj6XBgwcnW7XDERGPPPJINBMaE0jnomvIdQ54fAidz5qe1mPx6LjXtKQeW6YUQ0S1wDrHPM6C9qvfr17jve99b7JJQ/7f0XGh89JTbE6aNCnZqsePyOO76Ty64IILsnqaTtzn4vjx45OtcWW8nsZMqHNsizXlpz/9abJPPvnkrEzn0bXXXpvsHXfcMaune7KnNNY9dP78+cnWmH8R+drkc72747EQ/VxRhbaJ7jkamzAi4plnnkm2r8m6rpfitOk8rRul2CpVe1pEdcw0P0/qeVP3T1/LNN6Lx8HwM2tb14vIx4yfQ/Ucrevr5Zdf3ua160BVHCCfH1X1fC6edNJJyd5jjz2ysp/85CfJ1nOZxzLRuCkadyoi71Od66X5rPGkmpGquEylZyxfQx9//PFk6xzWlPAR+TlG4wV5nDV9FijFS7vnnnuSTSzY/46eD+64446srE+fPsnWFO6leIS61o4bNy4r0zHi19C1/P3vf3+yPR6hnoFOPPHErIyYQAAAAAAAAAAA0GHwEggAAAAAAAAAoAZ0OzmYutK59OOuu+5Ktkp9InIX81JqU6VRl2ZPo6nXVNvdfe+9995kjxgxovL6/jshx12u1U29f//+yX7Pe96T1dO0qe4GvWDBgmSrnEAlfP5dPubU1fbZZ59Nto8Ddb9vNvmXo+lv1aXc+6BqvkXk8jot87TtKs3R67ncT/vO3TTVdVkloX5P6gbq0hIt0zGEHOy/UyXNdEmk1vO1UFO7nnPOOcnWORWRy7w8Fa5LJV7DUyfrmPZ7rDNVsj7nmGOOSbaniNe1U6ViDz30UFavtMerZEHXW+8rd8dvJXRPi8h/u/aNS911Dqg04qmnnqr8Lu9DX+fbuoeIesvBNtlkk2S77ErlOL7f6T5WGtvaj/o3ngJ72bJlldfQs4neo0tVdC/0PtVzjMt7IafRdPHe/nvvvXey58yZk5VpKnQtO+SQQ7J6mgLb126ViulY8r7WMaJn4+6E/yb9vcuXL8/KtB9U3nn//fdn9aZOnZps3Ztcdqf7kaYJj8j3RZ2zLj1T/JxbJe9sdXQt9DOe7nHaXt52Oje13zS8QEQu89J549fUOfb0009n9bRM31d0JXgCAQAAAAAAAADUAF4CAQAAAAAAAADUgG4hB1M3PnXd6tu3b1bvyiuvTLZHgtco4uoG6O7N6tZVlSksInev9ewj6sKu1/AsD+pa6BIIjUTucjPIcfc+7Q918zzjjDOyeuqq52646l7bq1evZJdcYX2MeGaV1/Co/6Vo9c2GShFK2bbUNdMlBTqH9be7TE4/l2SVJalKVaYIl//pGuPXV1nFzjvvHHWkUffjkjRz2223TbZm34jIM594Fj8t23jjjZPtshhdd5988smsTNdQ/TuXd+q63sqSotWlSjbtLtgqC3nssceyMp1HDz/8cLJdfrnRRhsluyrTZkQu9fT7aGX3eJUnRORzTG2XP+h56eqrr27ou3xfrJK6l+SddUPPC74v6rnOx2xVe3pbar/quuZrtMr8VCrr19D7KJ1NfA3Q+azrMqwen//855OtWfsiInr27JlslXVF5JJn7Sc/o0yYMKHyu6syVc2ePTv7rH3vMhmVaDcDVdI7l8cqvs9o1l/NMrXFFltk9bbaaqtkX3XVVcn250+dY0cddVRWpmchPevouHCqZLl147bbbku2j3PNvnXRRRcl2zOHH3744cnWTKW33nprVk/nm0uo99xzz2R/97vfTbY/A+p3aYbUroSRBAAAAAAAAABQA3gJBAAAAAAAAABQA3gJBAAAAAAAAABQA7pdTCDF08eqLnbJkiVZmWo3NTWnxw7Qz/q9Xq8q1khErgPUtJ3+O2bMmJFs1f5G5BrVqvTG8B9cd68ccMAByX7ggQcq/87jS6nWXtvfv0tjy2gsgIg83WO/fv2S7fFKFI2HEbFqGuyuRttC55jHI1DNsmuxNd6B2h5zoCqe1urEm9C/03nqmmqdp752qD580KBBDX93K9FojJVS3yxatCjZH/nIR7IyHffjxo3LylSTr+nEPb27zpWtt946K9M4T43OKU/h3IpU7WNVMYAc7wPF98Wq+ez7osZT8FgNus5ommv/Lp2nnpK3lBK9O6BxZSLy9VXXtVK8w4svvrih7/JUx0pVbLeIiJUrVzZ0/VZE+8fXEI2PVzp76r7o8ev0DKJzwFOI61rs81nvQ/vRYzvpPWna+oj8nOtxvbqS0tm8q/A5q+ndd9hhh2T/8Ic/zOpdd911ydb9M2LVeHav4Wuyxv0p7c+6Xvg5VM+28+bNq7xGM+P7jM5NP6Pq/qHt4nPAU4W/hrez/t0RRxyRlelc1LKqmKIRq8atrCv6nOZr17Rp05KtMcu8D/V8r9cYM2ZMVk9jHGo8woj8+XHo0KHJHjJkSFavR48eyZ45c2Y0A3gCAQAAAAAAAADUAF4CAQAAAAAAAADUgKaUg3lKdHXjK6VyVtdYd7+skgy5u6i6g6krtLv1qpus32+j7tnqtunX0M96H/obI6pTPNYJdwMcP358si+44IJku/udurD7eNFxoS58mnI+Ipd5eepMdeecPn16sl2Oou7Am2yySVbW1XKwRtPY+tjWOeBtq591DpfSXuq8d9d2db31NUH/TvvbXfFVvuDuolX35VIJdeuF/+Ayyyp0nPsc0JSbe+21V7J9TR42bFjl986fPz/Z6v7raeBHjBiR7P322y8r85ShrUZJAlYlI9D+iIhYsGBBsp977rnKslGjRiV71qxZWT2dV7r2+mdN2eoSCB0bBx54YFb21a9+Nboz3k96ttG1yvtM28QlRlX4fqfrqc4jXzNdUtvq6FhUfO/Qc53vF9q22le+p1VJnF2Sp39XOt/o3PH9Xvd4l8zo+KraZyMalxK3FyUJmJ8VFf09JWlsoxKzgw46KNl+Tv/617+e7K985SvJVslJRC758mcY3dO033wuat/479ffrOPK91ad6/3794/uSGl/87ZVOfmvfvWrZLtU/d5770229pXL6QYMGJDsY489NivT/tJ21/0S2kZle4cddlhWdv/99ydbU7j7vnjllVcmW+ffqaeemtXTvtH+jMjXWpWA6XkyIuKb3/xmss8666ys7IMf/GB0BXgCAQAAAAAAAADUAF4CAQAAAAAAAADUgKaUg2k2GEddG92tS12Q11133aysKiNRyS1av6skVfEMJuouqq6w7jJcirKvbsPqxui/q5XlYO6+WeWafPfdd2f1tI3uuuuuZA8fPjyrp33qUf41mry6inof/vnPf062ZgPz79O+dpdSzbzgmWwmTZoUXYlHt1fU7dv7qiSD1PbUueP1qlyyfd7rNdzFXutqBjCXqpQyilTJvDxT2NSpU9us113w9l+dLGxVqCxLZZruJrvFFlsk+8wzz8zKbrnllmRfcsklyVZ3+Ig826JLM6uy/XmGFZ3DI0eOjFanKmNeo33/qU99qrLM93GVFt1+++3JHjx4cOXfuZRE70vnpY9dleLqWt4K+NxRV3Q9z7i0R93jG8VldrrWujxIKZW1IipFVVzKpX3iGdR0X9S/K8lYdNy7BFb3I58fVfup97euj6V9V8u8LZppX1yTrEol+ZdLl48++uhkT5w4Mdm6N0VEPPzww8nWM5aGF4jI79elsRoaoirzYkS+TpYyTulaq/Ivv4+BAwdmZd4GzUqpH32vUvmkPl/4XFRZ8w033JBsP1doKAqX/Kn0TPfCRiW7dead73xnsl2ipRm3n3nmmWTvvPPOWT2dfxo+RCWbERGf/OQnk+3riM4rHUt33HFHVk/X4T/96U/RDOAJBAAAAAAAAABQA3gJBAAAAAAAAABQA3gJBAAAAAAAAABQA5oyJpCnmFSNq2o1XXf++OOPJ9tjqyj6d6X0m3ofnnZR9ZquwdVrqlbQ9b5PPfVUsl0fXpX+1rWmnuK4K9GYPaW0miVtbkn/rv22+eabJ9vjImm6aY3LU0pjrvFiIvIYIto3rqnW8aga7YiI7bbbLtkaj8HvV+9rwoQJWdkVV1wRXYnHvVGqYvv4Z48lUNXHjcYh8XSeHvtC0bmo/V0aCx6HxPv1NZopJlApZlmj7Vqq5+ufzgNNGauxfSKqU8RrrK6IiFNOOSXZW221VVZ2zTXXJFtjOXm6W+3r9dZbr7Ks0ZTIugZERPTu3TtajTWJA6RxC/bee++sTGOkafrciIhddtkl2RojYdNNN83q6Vz0dUVjVWgf+z6unzU9bCvgsSKqYrP5+H3yySdX+7tmzZqVfdb4dVWxD72sDmhcFB17PqdK64vGtNT1ttHzUimmnl9D6+p9eEygUkxLPRfp9Zs5JpDGi9xtt92yMv19b3vb25KtsUEj8n1/9OjRWdmiRYuSrfPNx8GRRx6ZbO1Df6bRseRxep5//vlka7/5uNLf4veh/aZnYL+G/p3H1vQ1ulkpxSnz33TSSSclW5+xnnjiiayexpO5/vrrk63PJxH586ifffSZTvvYnxdnz56d7NJzUp3Qc8ScOXOyMn1O0P596KGHsnpjxoxJ9pe+9KU27YiIW2+9NdnHHntsVqYxvnSNP/3007N6Bx544Ko/oovBEwgAAAAAAAAAoAbwEggAAAAAAAAAoAY0pR+fSmwictdVdbVyF3B189K0e/53jboql9wH1SXbZQnqfqnyBU1Z53ja17/85S/J1hSP7qbZTKxJ+s015eyzz062u+tqKk1tO+8nHVc+JrTf1CXa01LvuOOOyb755puzsq997WvJHjp0aLLdlVPHkstpupqNNtqosqwkBys4YHNIAAAgAElEQVSldNf+atSdXWU7Jdd2v4aOSZVNrE469Kpx7e7xXUl7pHNXV/mI3MVcpY0ReVuqG7mn+9bxM2nSpDavHZG78n7+85/Pym666aZkq+zC71ddqX2drEq36muC/p2uARGrrjOtgM6l0t6q/O53v0v24sWLszJde7fffvusbPLkycmePn16sl1uqWugnwU0/ar2v6aAjcjHncvNujuXX3559llT1+r49bFdkshXsXz58uzzxhtvnGxdQ3Wfjcj3gzqkOva02a9ROmsuW7Ys+6x7YWkuapnac+fOzeq5RE/R/aIk49drlORrOherJMBdgUu2Tz311GS7xFnbRPc0fw7Q8fz0009nZdpXej7wNOorVqxI9ssvv9ymHZGfe3yd1OcMLfP5pmuyjyX9bfp3fg0dF6U0881M6XlOZXwR+bzVs46eRSJyOZjie47uWx7SQ89WjzzySLI95TlysFV53/vel2yXg6lcUsfzuHHjsnq//vWvk61nPj+/6LnHn9d1bF188cXJ9jAvKqceNWpUVvbHP/4xugI8gQAAAAAAAAAAagAvgQAAAAAAAAAAagAvgQAAAAAAAAAAakBTxgTydN2qY9W4DK5b1ZgQrvdVDaXartnWzxqPwL+rKk5RRK6H1/v1elX37tfQ+23mdIwaL8BjyUyZMqWha+jfud5W0zZqPY9HoG3pcUMU1YC7Pr8qFbGnftS4OEcccURWpmkDVb/t8St0zLnuvqv19aX20znmKbm1T0oxfEoxE7RtS2lOS/G5tG4pda9ew+eYj6/XUK14V+PxiVR37mnQta7a3nal9Ur/Tsesz6PHH3882RoHxtN2a7wY/y0610vxE7Q/fL2uGge+7moMjAULFmRlpbnQXdH5V4oDdOWVVyZ75MiRydZ+i8g18B5HSuMd6BrgcdBUi++xo3RN0NS9PmdVo9/McfTWBI/To/uJnjd8fmy11Var/V1+DR0jpThtdYgDpPTv3z/ZutaU9jffg6riKHkssqpr+vwtxYnT+ad/V5pHpe/T7/KzQFdywQUXZJ+17Xyv0nVC44n4HND9yc9n2l7ali+++GJWT9tfr+d9rc8gpZiW2v7eZ7ovev9qLKFS3B9tN98X/XmtO+JnPI2vtffeeyf7iiuuyOo9++yzydY05HpejYiYOnVqsn/yk59kZZrm/Jhjjkn2tttum9W75557ku0xLevKsGHDku19o3NTn1X8zHfuuecme6+99kq2jwk9p9x2221Zmcb6US666KLssz4jN8u5hJEEAAAAAAAAAFADeAkEAAAAAAAAAFADmlJb5KkQq1y7Ne32f7uGuudpesaSu666UZakH56uryr9Zgm9p4hqV7GSe25nc/TRR2ef1W3SJR077LBDsjUNn7uWqvurt4m6wWs7eJv069cv2erK6/2k7uwuH9Rr6lhyN0y9J3eB1zGj7rWeLlS/y126PRVhZ1Mav1rmfVBq9yqpo0o9IvI5W0o5XHKr1PYspdUsyWKq2qDRud1RqKSqJKF1SU3VWuYp0Xv37p1sT2uq15wxY0blPep3vfvd7668p9///vfJ9v50OVsjeB/qNXQsuXu83pfvIep63Oqcfvrp2Wd1k54/f36yda2NyNNGq/wvInd7171j7NixWT2V0Xr/6N6qfeoyCu3/KjlnqzBt2rRk65nI51hVum+Xuyje/lUyr1aUSq4OPXv2TLaO0VLK9ZL8Vtu9JOvSv9FU4BGrrtlVlM65ui/6OKkKq6DpsLsal07q2WvgwIFZmf4GXTN8zGsfeptov2lblmReWs/3Pt2DXGKkn/U+fN6XQmjomUsla75/Vq0dEc2drrxKMheRzxeVf0Xk7aJydH/m1OcXTQvvc0/PVjvttFNW9sQTTyT7+uuvT7bvrUozPQd2JV/5yleSfeyxx2Zld955Z7JViu7yc53rKuvylPNab/HixVmZjoMBAwYk2+e9zqPdd989K9PQCSof7GjwBAIAAAAAAAAAqAG8BAIAAAAAAAAAqAFNKQdTl6mI3I1PXSDdJUspuSyq66S7v1Zl4vLrVUlaInIXxEZdJdVVPiLPNqFuaM2UHewTn/hE9lld2K666qqs7Etf+lKyNbvM6NGjs3raN+66qm6Z6m7pEq1Zs2YlW2UyLvnStvQyHXNqe5YHvYa7aOrflaL5V7kjRqyapaGz0Wj2jvaVZwRRd2d3T9a/0zYrZdkrZfTTttWsHl5X+7g0j/w+qvqgq+fi7Nmzk/3QQw9lZTo/3LVb+0rXNZddaTvcfvvtWZn+nY4RlZD5d+l89u/Se9S1LyLfD3xvqLqGs2jRomSXMjuWso+5XK6rWRM3/JL8WTOAeabDefPmtfm9KoOJiBg/fnyyTznllKzskEMOSbZKwNRtOyLir3/9a7J33HHHrKwqW473Y5WUtBVRN/JRo0Yl28er7oXbbLNNsu+7777Ka7sERdtf52Jp7tUBPZvonubnCt3rNbNQRL4mljI6VUm0POuNzgnPhOXS67bu3ev5WaBKDu2hADoblXt4Jib9fXoOjchlOpoFVmU+EXk/eRvoPNAylclG5HuQ7tV+vlSZksqGInIJiu5vvm/pmPMxomu53rufV/Usq2tAW9/XTJTkYDo3XaK12267JVvn22GHHZbV099+7733Jtufa/SspnKhiFwypHPHnwkVn6el83Ero5kxTzjhhKxMZet6DtV+isgloxpiwfc0nZsf/vCHszK9/q9//es2/yYifzYdM2ZMVtZV/YYnEAAAAAAAAABADeAlEAAAAAAAAABADeAlEAAAAAAAAABADegWYnnVP6oeVbXwjmvZFdVbu75VP6uetKTXK6WKLsWdUTTNa0SeirAqJlJXoBpr1zuqjnaPPfbIyjTOg/5W1x6rtt7T62k7a+wXb1eNS1KKaaOxalx/q/FLVBvq+nxNjev3q7+tlJZaf5en2l2xYkXl/XcGHqNI54GORY+ZpXF0tE8j8vGsmmqP97J06dI2v9fjGeg49D6oigm0cuXKrJ6Oye222y4rq0qLXJrPnYGOlVJ8GNfse4ym1/C2K81TjS2g8Sb8Go3GrdE54eNA21+vX4pDUirT+ebjVtvK1/WuSIVbil9Uio/UKB7L6zVU1x6Rr+0zZsxI9pNPPpnV0xgWvvZqHJobbrgh2b4Ha7wg7x/9zaUUzPpZ4zG0Io899liyjzzyyGT7PqOfhwwZkuxSTCBH1zwdj6U05nWgKqW7nxt1vr3zne/MynSuazwnX8uqzpseS02v7/eh8aH0fjUluX+XxyGpiofoZ5jORmPleNwN/d16vojIY6LpOuPrU58+fZLdt2/frMzXq9copVzXmCR+ptZ29bO/pjjXPVJjAPnfef+WzqWK7ov+W6riSzUDpT1b2+Xwww/PyjT+0uWXX55sXTcj8vVws802S7amJI+ImDhxYrK33nrrrGz69OnJ1vN+1bmzLeoaE0ifLfxcq/GVnn766WRfc801WT09p+he6jGHNYabPy8OHz482Z/73OeSPWXKlKyexlD0awwaNCjZTz31VHQWeAIBAAAAAAAAANQAXgIBAAAAAAAAANSAppSDuQufuiKqq2lJDuYpiFWeom527uqp362usO4qqW6a7n5XlXaxhP+WAw88MNnqrlvlbtpZaF94G6t8RF31I/KUieoO6S582pYlWUhJIqdlJVdVreeprXWclSQZmvrT+0Z/m44DHy9a5ik8Nd1pV+AyIL3XUhrbu+66K9meRrpKguLtp+61+r3e3/p3jz76aFam/aXX8HGnY1elLxGrSsdeo6vlYDo/3M1b5TADBw7MyrQddE65bEw/l6QA+l0+XtYEl/aoW29JetsoVWl8I/I1zde3rkiFq2tUe0huXOqo+4y2y4QJE7J62q86L3/2s59l9W6//fZkb7nlllnZ97///WRr6vdNNtmkoXuPyPtE572PT+2rVnePV1f3KrlcRN4OmgK7hKbZjYjYfvvtk61joiukks2EniO1D3wN0ZTGKt2LiDjggAOSrdJJl3mpDEjH+Z///Oesnu5P3j9z5sxJtsoe/Pyh+6LPdR1fuo90tRxMJTV6DonIzyIuU9eU8SqD97ONziNvryrZVGnf0vOQn5VUFqhS24iISZMmtXmPO++8c1av9Dyic7iUIl5/s/+WZpaCltYllUtqW0bk81klf34W/OY3v5nsffbZJ9kq7YmIeN/73pfs8ePHZ2Ua+kPn23HHHZfVGzVqVLJVrhaR91cz90d7o/u+/25dk1Su5VK9H/3oR8nWsf3BD34wq6eyMZeYL1y4MNkqF917772zero3eB/uv//+yb7pppuis8ATCAAAAAAAAACgBvASCAAAAAAAAACgBvASCAAAAAAAAACgBjRlTCDXo6pOT+NDTJ06tfIarktW7WApno9qeqvSxUfkGlwv08+qm3YtrcY28ZhAVekaPV5GZ3PiiScm+2Mf+1hWphpK1a1H5HELtM09boHGNvEYMfq5So8ekafIrErTHpG3v8cO0rSdP//5z5M9bty4rJ7qhfVvIvK4M3p9H5uluB8aO6MZ0L4rpRQ944wzkj1v3rysTOOSqB5+wIABWT2NhfCb3/wm2f369cvqqZZfx1lEPoc1VoCntlYt/sknn5yVVWmsPTZRZ1OKiabomhmRj1nVOW+44YZZvUZj4JQ06BpnoNH4aL5O6vxWTXV7xAfy31iKG9XVqcZPOOGE7PPuu++ebN3TPHaEjnufOwcddFCyNX2y72kam0LjnHjsA53bHutn2223bfMavgfrbynFtdF4HB4/TvtR43u0IrrmaexDX591njYaE0jTF0fkMTZ0jPj+WbeUxfr7td09JomuIQ8++GBW5p+bDR8LGqNEf7/P2c6mNPb0jObnNX2e0LHt+7zun16m5xmdi75H6hqnqad1rY5ofM9UPI25jkePYaRUxdyMyPdJL1u6dOlq32Nn4bHiFI0TM3ny5KxMx8a+++6b7MGDB2f19tprr2RrjCndLyPyc5afc6+//vpkP/DAA8l+//vfn9XT/dTjyehZqPSbuzt+ftGYhv48qv2ra9L/+3//L6unzw+nn356sm+44Yasnl7jAx/4QFb2/PPPJ1tjsfm5RGP97LnnnlnZpZdeGl0BnkAAAAAAAAAAADWAl0AAAAAAAAAAADWgKeVgLiVS9051yXrqqacqr+FSoqqUsaUUglrm6aBLf6cunCXZmEpQPG1dldt1V6elVv7nf/6n8rNLajTdobrpeQrVWbNmJVvTr0fkbVLlfh2Ru2Wq6+Vvf/vbrN61116bbHXJjFhVYvYamk4wIk+DvGzZsqxMUynr/XqK9JLMpKslR/796t5YmgOaCtfxVLari7vC3nLLLa/rehG5S7ajrrbq4q1u4c2Muybr55KkFroeld+ef/75WZnOP5UJl2THJdSN3NdelRGo/MjdszXd7Ysvvlh5vyrZ9fVQJWYLFizIytTtWu/X9/vevXsn29MutzK69/l+pOcel35WUZJ5lc4ldZCAKbqmapv5uCxJWDtTQqd9V/pelf64zKQq9XhX9317fL/+bpcFz5gx43VfvyO5/fbbu/oWmobSWFCJ1oc//OGs7Lzzzkv2T3/602RvtdVWWT1db++4445kP/TQQ1m9nXbaKdm+JowePTrZp5xySrJd/n3rrbeu8hteo3QWbyX02dE/H3LIIVnZlClTkq1rsvZZRD4OlMMOOyz7rGciDVsSkYe80L3Qz96aBn7atGlZmf+2zgJPIAAAAAAAAACAGsBLIAAAAAAAAACAGtCUcjCXCFVl21q0aFHD16jKKuOZDPS7ShkC1M2wFI1d3fQ90r9miZo/f35WpvdYdU9dgX5/KSvQJZdcUvlZXRc9QrpGe99+++2zMu1TzXjksgOVuBx++OHJdhfNNWHSpEnZZ5UZPvroo1mZyhA064NK3iJyt32VG0Xk0qfTTjttDe749eF9rHIMnRMl+Zej8r3SGKpyUy+5vvr1tK7OKY/arzz22GPZZ5VO6PVL2dEA1gSVMUVEHH300cl2iZauFTo/XF6q657vM+oavd9++1Xeh8oldf3S7HsReQYTl9TqetinT59ku/xbJbfvec97sjLN5KH7qcupf/KTnyT729/+dtQFlSSMHTs2K1u5cmWyVbbnfaiu86XsqXrucdlY3aiSQ3n7+VlFWRMZU6MykJLMq1Eefvjh7LNKY+oiR4HWQc91Lu/54he/mOxSRmadR6V6em52Saj+XSl8iGcVriNHHnlk9lnPDhMnTszK9PlRz0Qe+kP3TA3x4O0/cODAZC9cuDAr02ch3U99b/3hD3+YbH9+OPfcc5N94YUXRmeBJxAAAAAAAAAAQA3gJRAAAAAAAAAAQA3gJRAAAAAAAAAAQA1oyqAWJX25aq9LMYE85oemedRrqMY9ItdnVsVciMg10P5dek2NXeO/S8scTaHbaAyVzqA9vl/b0tN7t0e6747ksssu6+pb6FQ8fWKV3tXjf5TozHSypfgMjaJ6cV0fPG4KwOvl7LPPzj5rCnZPw63xfKr2nIg8Ba3HC9KYY9ddd12yBwwYkNXTdaBXr16V36Vx2wYPHpyVqX5f146tt946q+fxfRS95uLFi5Ot+2Wr4/FXdF2bPn16snfZZZesnq7RGtPA2/+BBx5Itseh0jhAmurY4x3WDT0D6lz0dNCeMlhZkxTx7b1/erwS7VeNXejo/Kt7fChoHvS85uNS9yMf977XNkLp2Wi99darLNM5rPPNY9JsueWWyf7FL36x2vfXCniMHe0336s0bfugQYOS7X2rZxjdC5966qms3pVXXpls7YuIfCzpuURjAEXk8RS9TGPZdiZ4AgEAAAAAAAAA1ABeAgEAAAAAAAAA1ICmlIOpm3tEnrZNXZrV3SsiYsSIEcnWFLQRuaRDr+futJrqTV3x/Z7U/dVTxKtb7wsvvNDm/flndcGOyOVrVal1ATqaj3/849lndUPVcXnXXXc1fM2OloC93u9VWUxExCGHHJJsTfF71llntc+NAfz/nHLKKdnnM844I9k6DiMiDjrooGRvvvnmyXbXc3Wh3muvvbKyffbZJ9nqiu4SZ507KnEppYbWvS8id6/W9K2rg8vZqlA3cXer99/W3SjJwe6///5kn3DCCVk9dYPXtfvggw/O6ulZpCRx0PtwOUXd0HbS1NMuX/BU1Mraa6+d7NWRV7cnpfns96RSG7X9rAzQVZRkqrfddluyhwwZkpXpnrHBBhskW+XOEbkMyPeZKly6rPc4d+7cNu2IiB//+MeV1/Rn0Fbl5ptvzj7vv//+yfazzcUXX5zsmTNnJtv3f12jVY6v7wIiIiZMmJDsfffdNyt7+umnk33DDTcke911183qqax+m222ycp+9atfRVeAJxAAAAAAAAAAQA3gJRAAAAAAAAAAQA3gJRAAAAAAAAAAQA1YqzPjc6y11loNfZlqqiPytG2qa7/++uuzeqq323vvvbOyGTNmtHkN17yr5lM1gap5jsjjHXiaeU3pru3reutSKlaN1aBaU9X8R5RTjiqvvvpqtdh7NWi0D6H9aa8+jFjzfrzooouSrdr/73znO1k9HduulS7FmegsSnE1tt1226zsmGOOSfa0adOS7b+5UZiL3Z9mmIuNonuXp23X2DDDhg1r828ich29xjCYM2dOVm/58uXJ7oiUp3pfuo6saUyE7jgXS+uplt19991ZPe2b++67L9mXXHJJVk/jnh1xxBFZ2ZlnnpnsZ555JtkazyYiYr/99qv+Ae1MM8xFnVc77rhjspcuXZrV0znhMS2177pqjyyNrbFjx2ZlX/jCF5Kt8YLuueeerN6FF17Y0Hd3x7kIOc0wF+H1013m4uWXX55sj6E0f/78ZN96663J1mfriDzOrqaB9zh3GlfI4x0qAwcOTPaoUaOyMv07j4v4rW99q/Kaa0KjfYgnEAAAAAAAAABADeAlEAAAAAAAAABADehUORgAAAAAAAAAAHQNeAIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANSAN3Xml73hDW949TX71VdfLVVtiDe/+c3Z5/XXXz/Zw4cPz8pGjhyZ7P79+1dec8mSJcmeOXNmsv/5z39m9Xr37p3sIUOGZGUbbLBBshcuXJjs+++/P6s3derUZL/00ktZ2SuvvFJ5j2vCq6++ulZ7XGettdZ6/R0HDfOGN/zfe9pXXnmlXfowIuKNb3xj6sd///vf7XXZ1eZNb/q/Jeitb31rVrb22msnW9eLtdbKm0Gv8b//+79Z2Ysvvpjsf/3rX6/vZtuJ9pqL7b2eQhkbZ+02F1lTOxddP/797393+31Rf8/uu++e7NNOOy2rp2cWXSd97dDr+Zqpn5977rlk33XXXVm9K664os16HUF7racRzbMv1oWOmIvsi53LG9/4xmT/61//aom5qL+p6hwaka+jpXvUca7Xi4jo0aNHsvU584UXXsjqdWYbNOsZVZ+HIvJnhk022SQrGzNmTLJ79eqV7EWLFmX1ZsyYkeznn38+2ToGIiI22mijZOv7hIiIESNGJPttb3tbsqdMmZLV+/3vf5/spUuXZmXt3T6NPi/iCQQAAAAAAAAAUAN4CQQAAAAAAAAAUAM6VQ7WHu5O66yzTrIPPvjgrGz77bdPtrpnReTuYOpCphKyiIg+ffokW93B/N7VLdrd9qokKMcdd1xWb/r06clWN7GIiF//+teV14f60FEuoB3tWqrurz7HJk6cmOwjjjgi2UOHDs3q6TzV67lLqH52+YK6el5wwQXJvueee7J67S2/7Axwde9cmkVO2MzoXHS3d/38jne8I9k+jnW/cxl2o+tWaW602rzR37PNNtskW93hI/L2d1d3xSQ6WZl+Vnmku+LfeOONye5oOVh70owSMJc/++eqf9e5qH3lZbquuZy6o9ujI+Ziq83vZqejzk7tPfY83MC2226b7H333Tcr22mnnZI9YMCAZPscU2nR5MmTk7148eKs3qBBg5K93XbbZWUbb7xxsl9++eVk33vvvVm9L33pS8nWZ8eI5ly3Itp/Lvq+1bdv32QfdNBBWZnuhdr3K1asyOotW7Ys2Xre8OeWgQMHtvm9Efl7g379+iVb+zMiYr311kv2d77znaysPc6XazIO8AQCAAAAAAAAAKgBvAQCAAAAAAAAAKgBvAQCAAAAAAAAAKgBa3WmfnZN06iqnlnTnu6xxx5ZPdX2/eMf/8jKquL7aDr3iFz3p6n7XPf697//Pdmeck7TzOm9axyEiDy+ketVVQ/62c9+ts3vXR1IEd/9ac9UuO3djz179sw+f+9730v2jjvumJXpPFANrscj0LJG1ynXDGvsA51js2fPzup9/vOfT/af/vSnrKy910jmYvenmediZ+LxuTSu1+mnn56VDRs2LNkaQ2bdddfN6mlMII998MQTTyR7wYIFyfYYDI8++miyZ86cmZVZWt+Wmovf+MY3kj127NisrCp2h8cR0DOLr8kat0BT4Xrsg3PPPTfZHn+tvelOc/Htb397sj0G3vDhw5Ot6YgHDx6c1dMzq8Z58hhcOq98jr3lLW9JtsY58bPsddddl2yNUxmx5mfRKtgXuz/NNhd1z7n66quzMo3TUzrjlWIe6XlT90K/nn722C9V51yPP6Tr8rRp07Ky/fbbL9ntMS+baS6W4ouOHz8+2bvssktWpnuXxun1vnnzm9+cbI3Zo/tbRL5mOnoNPdtsuOGGWb2HHnoo2X4+8lhFr5dG+xBPIAAAAAAAAACAGsBLIAAAAAAAAACAGtCpKeLXFHWbVbe3hQsXZvVUhlWShahbnbvmaTrTv/3tb5X11EXQpWdVLn16vYjcbU/dySIiNt9882SPGjUq2epOBq8P7RtPoar926zpF7salYDdeeedWZmmUFR5R0TEs88+22H3VEqzqPOtV69eWZnK1/y3HHPMMckm/WzXonOWvuh6fJ/dfvvtk73DDjtkZTo31fb1VaUro0ePzspGjhyZ7JLr/DPPPJPsT3/601nZI488Eq2KShxcoqVtpPubS77UDV6lCl5X3eN9HPj6WlcmTpyYff7Wt76VbJWGReT9o2dbH9tV495lK9pXXqbzT8MSbLbZZlm98847L9knnHBCVnbAAQckW8/NAF2Jrks/+9nPkq2p2CMiXnrppWT7uVHnmO5PPhd13fNniEau52VVdkS+nus+GBFx4403JnvXXXetvI/ujsvP9bNLwnX9K4Wd0P7QUBUuB1OpmId20bVcx5X3tY4Xl+i2txysUfAEAgAAAAAAAACoAbwEAgAAAAAAAACoAbwEAgAAAAAAAACoAd0iJpCmftM0mK4P1DLXQGtd/ztFtYOqE3UdYSk2RVX8oZIW0cv0GiNGjEj2ww8/nNUjLsaao5rPAw88MCvr3bt3srXNPZ6Eph6sG5/97GeT7TEgli1b1tm3s1r4fNP14r3vfW9WtuWWWya7leOJNCuqo+7Ro0eyPRVqe6cshv+Oa95VN1/aZ3Vf9D1M912PSaNlut/7Nfr165fsIUOGZGWtNoe1HTQlssdp0TgG2q4rV67M6ml8Qu9fXSff+ta3JttjZXi68jqhMUm+/OUvZ2UaB6IUs0nxmJP6WftqdWIC6T1qmdfT7ydfrigAACAASURBVNKxFRHxiU98ItnnnHNOm/cO0NnstNNOyR48eHCyfZ3TOC4+7vUsoWtgKZ6PzkWfy6W9UMtKz7d6TV87xo0bl2x9rmmFM1EpnpL+Po/rVBUHqFRPzyUe564UR6/qu/x+NS5waUx0Js1xFwAAAAAAAAAA0KHwEggAAAAAAAAAoAZ0CznYwIEDk11Kq65ucJ6OvcodrCQLUfc7d0svpZmvSilecpn2dHT62zTddildKKwe22yzTbLdnVnlYNoX7oY5a9asZJ9//vlZ2R133NHm37mbofa9y8vcTbWr0TG73377Jfv555/vittpN0rz6LTTTkv2scce2wl30/qUUq326dMnK1M58Pvf//5kX3311Vm9q666KtlVazB0LOp+r3KhiHyf1P3Tx4J+LrlM65z1PVg/u5ym1caGSt/WX3/9ZLskV+VgKgfyelWypIi8XbWe72mt1sarwwYbbJBsX8tK8gwd61V95dcoSQ/0s19Dr6+yGE9zrf3qfawSej37+Jka2gfvmyo5rJ9R68amm26abD0/+/jVzyXZjrbnCy+8kNXTdOCKPy/qHPN9UefiOuus06Ydkc9hf16sSj3eCnKwErrW+LivCu1SkvSVpH+lM4Wibe5jrkp61pXgCQQAAAAAAAAAUAN4CQQAAAAAAAAAUAOawx/JcHdkzQijZS4HUze7kruWugi6y5e6b5XczUsRy6vquWtYyb1PXYPVLbDkqg1lvO323HPPZOsYi8hd+tR2eYJmzPjZz36WlanrqMql3M1T3RjPOOOMrOyWW26JZkLd29XFtbu7IOs8dQmeuhdD++CusIMGDUr2Rz/60axs7Nixyd5www2TrXLEiIg//vGPyfbMSNAx+Jq6+eabJ9v3NN2TdS8sSb7cdV73fL2G788qq3XX/FaTUKus2WXwip43dA/y9U5lJt6uSqkPS3/X6mimTB97JbQfdO74eNWxXZIe6FxRyYl/LskSSudNHUMqQ1yyZEnl38DqoXN23333zcq23XbbZOs4uOKKK7J6zzzzTAfdXXMyd+7cZOvc8Tmg88PnqT7T6Vlizpw5Wb0FCxYku5Q9auONN052z549szKVj+pc9Hmpe6GevSPyvXXFihVRRxqVIPtepX9XyiKun9f0DKF7qz9zdhV4AgEAAAAAAAAA1ABeAgEAAAAAAAAA1ABeAgEAAAAAAAAA1IBuERNINdallJWq2Suly1Ttpuv+qtJbum7ev7sK/V7XEarm0+MnaBtoHAy/32ZLId7M+LgaPnx4shttRx9XpRSMqjnWlPOuBdXvHjNmTFZ22223NXRfncX222+f7FaLrfEaHt9I016X1hhoHF/H+vbtm+ytttoqK9too42Srfp5jYkQEbH//vsn2+Mi0FcdQ2mfVf17RB7HoNH9s6TL1+v7/lmnfXHcuHHJ1tgWHntO20tjjXgMF52L3ofazmr7ualV94ZGGD16dLLXdN3Rv/O5ovF3tB99rujfeWytRuef9qPHTdH70JhuxARac0pn1JNPPjkrq0ot7vvnpz71qWR3RHygZotT+uCDDyZ72rRpyR4xYkRWT+eLj22NuzVz5sxkT5kyJaun8YcUj1erZ0qPV6t71XrrrZdsj6uma6zOvYiIu+++u816rUZpPS2tf6X9SJ/Dtd90bfXP/l26T5Zi5emcHTJkSFY2efLkZHfmeRVPIAAAAAAAAACAGsBLIAAAAAAAAACAGtCUcjDHXVlfo5Ra1t2/1OVOba+nLnilFPGlVHKKuhm6i7q6cLr7YJUczN14W9n1r73xceTSq/ZGx4y6HLrcSD+7e2mzpdrdY489ku1ura2CS/zURVclLeoyDKuHpz/t379/slX+5Z/VJddTvn72s59N9vTp07MydePWNdld2UvpsZGUrYrvn/rZ90WVD5X2zEbR/nA5mO6TrTZPve122GGHZFdJCyLytUvHtkomInI3dZ9jOl/0zOLjYHVSo7ca++yzT7tez8+NugbqOuprWXvMMaUkB1Np7qRJk9r1e+uEn+/32muvZKvkztG5uNNOO2Vl5557bpt2RMSzzz6bbJ3Dvp6qDFv/JqL5zoGaIv3UU09N9tlnn53V22yzzZLte7uOdb3eCy+8kNVbuXJlsnX++bPG888/n2xv2ypZ7UsvvZTV02cDT1Wvv7OV8TVt3XXXTbY/Q2tbluRgOuf0/OdS6NJaq9fQvbV0vtx4440rr4EcDAAAAAAAAAAA2hVeAgEAAAAAAAAA1ABeAgEAAAAAAAAA1ICmjAnkOjrV+qkm0ONKqN7O9YGqtyuliNdraj3X6OnfldJtllJK6/X9t+hn1V57PWgcTW8eETFw4MBk/+1vf+vQ79Yx7bFG9LsXLFiQlTVbHBJPy92KeP/oujJ27Nhk33rrrZ12T62AzoHevXtnZVtuuWWyS2tc1V4QEbHJJpsk+8c//nFWpnEM9D48pprG2zjvvPOysnvuuafyvuA/aPy60p7ZHpTiD2k8hUWLFlX+XXekX79+2WdNfaxxI3weaeyJhQsXJvuxxx7L6mmMIY8rVBUzweeRxsqoA7qmjBo1qtO+t9FU7+2Bz2edR3vvvXeyv/e973XaPbUant794IMPTranrK5Kbe1r4bve9a5k+9jU8aPxVfwMpPU05XxExE033RTNyhNPPJHsj33sY1nZMccck+x3v/vdWZm2ocZF83iFGm9O1wCNvxYR0aNHj2SXYrWp7c8Cl112WbIff/zxrKwusWG9XTWWZM+ePbMyjbVailGnfV16h1A6l1Y93/m7DB1Lfr96/c7sTzyBAAAAAAAAAABqAC+BAAAAAAAAAABqQLfQFqkbpLoluruWpnYuuXKVUhpWycYcdRtzl9yqlHP+vVrPUwqqi5qWdab7b6vx4Q9/OPtc6t/2Rl2nXY6gbtaeFrKrpQvuAqlyj1bFx4XO20MPPTTZyMFWD127NA11RO7m6ym9NS2r7gXuHl/aG/T7tD9dKjR8+PBku2s+crBVcemBuzh3Fr4vqhxJ0/O2Aptuumn2WftA3c9971A52JIlS5I9a9asrJ6mHx46dGhWpvNK29zb3+dwq6Pt7mtPq6Jnlc033zzZLoHo6jNMs7POOusk+/jjj8/KtC31+SYi3zO1ns9FPc/od0XkMiUdt8uWLcvqqVRMJfERETfffHN0B3wf+NnPfpZslaNH5KEitJ01NEdELu3Sc7w/z2m9Xr16ZWV6ptZ6KmGPyGW7LtdrZXRsq5wqIqJv377J9r7RMBvaXr4eVcnKfR3Xzy6N1ed8vd9SyBr/LV0V6gVPIAAAAAAAAACAGsBLIAAAAAAAAACAGtCUcrBSRG11s3P3KY0A7u5yHpH9NUoZTBp1Y/X71fvS+/UMVHq/Jfla6TdDGXW9nDhxYlZWkgV2JO6uq2Ou2aL8u8uiSnC6qv06G80ysMcee3ThnXRv1BW9lEFH2zsiXzd1zXSXax2bPm51P9A11LNN6DU9gxmsissLNthgg0777lLmRJX5dXTmx87Gx71Kr3Scl/aSu+++O9nz58/Pyh544IFk77LLLlmZtrnKTFxCWzc5WClrbaui42vAgAHJ9vNNnaQrjaLn/ZNPPjnZI0eOzOppG3uGI5dDV1EVniIif8bRuV1aW1tlX1TJ8IwZM7KyzTbbLNm6p/nZRMtcrqfoOcMl0yq107XdJXnMo1Xl5/p858/4VZm+S2FASuu4zlm/htatytoXkc8/PyvpmVVDIHQ0eAIBAAAAAAAAANQAXgIBAAAAAAAAANQAXgIBAAAAAAAAANSAphQvu6ZYNZOltOpLly5Ntmvq+vTpk+yqlKpeVtJg6t/5NfQeVQs6c+bMrJ5qSP0a+tv0Gq7phTKf+9znkl3SUHel3lbHi6bxbQZct1rS07YqGvuof//+yS6lYoX/oG00evToZGtqz4hcz+2x2DQugvaFxzypiqMWkceFKcVI0FgIHi8IVmWrrbbKPmu7d2bMMJ97rZyW2mMVaJwKHc8eP0Hb6NZbb022x0zSVMQe50KvX4ohUoqP0Yro2aLRWC3dHV1/NTaYn2E6M75Fs+JnhQ996EPJfu9735tsj6XVHntQ6ZlJ1wi1/X51zWmVmEC6Rzz33HNZmbaTnk28fzS9u66jvvfpnPA+0DVV29mfCeuK9pPvVfpuwONA6vqkdulZT8e9z4HS3lo1j0pxhTyGUY8ePZKtMQ07GjyBAAAAAAAAAABqAC+BAAAAAAAAAABqQLeQg6krXSn92uzZs5Pt7n2a8k/doktSLrXdvVw/e5n+nbqGzZs3L6unKR932223rExdxfR3+m+GVdlhhx2Svf/++yfb3ZK1LddU2qP96y7xVe61Xk/vY/jw4VnZgw8+2NB9dBSeArqOaSp1LJSkmcjBVnV/3W677ZI9ceLEhq6hqVsjqmUnnq5V10xPp6ufq9ZnR129/e/gP3zgAx/IPneVC7vvwYMGDUq29+NLL73UKffUUfia3Oi6s2LFimRPnjw52b4faT2XNehepW3u0kyfm62OyqZVDtaZksjORseNrqMuy6iTHEzXPw1Bcdxxx2X1Dj/88GTrfPP10/dTRedclSQ0Ip+npT1Mv7skBxs2bFhW1gohKvy8oGO71C56HtQ5UHpe9LVR1ws9X3emJKi74HK80vOIlmn/+n6nfVO6ns4Bv0bVvPJxoPunj7muerbCEwgAAAAAAAAAoAbwEggAAAAAAAAAoAY0pRzMXSDVHa8kjZo7d26yS5ICdZ8uyQHUlctdrtV1y13DtK7+FpeoLV++PNnuol7lVo8cbFU0QnxExBe+8IVk6zjwcaVu9Y1m9ChFhfcx4uOiqp729aabblr8vs7GXbvriK4D2lclV+1WR8elSiHGjx+f1dt9992TrbKA0nzzzEKNtrn2k889db1VF26vp67anuUGOdh/UPf/7bffPivrKhmQ92OvXr2SveWWW2ZlLsvu7uh+ora3yZIlS5L9/PPPJ9td1rUPPRuL7pl6BnI5WNXe16potkNvi7rh2Y9aDd37XGp66KGHJnvChAnJHjhwYFZPZYKlvVDb0s/+uh+VZLiljFM6h3Vdd4mX/uYBAwZkZS5P7Y64bFPXPV0PXbJTFfLB1wB9vvNnPe1jPfvMmDGjoXuvE6VnJ5dXVWVr8/1Or1E6Q5bCw1RlFS/JDP19gO+1nQWeQAAAAAAAAAAANYCXQAAAAAAAAAAANYCXQAAAAAAAAAAANaApg1p4HJKqlL6u2Zs/f36yPa6E6vTU9jgPVfE/Sin/XCdalY7Odacar8Y1pFWxYNZff/02/71uaMyHr3/961mZpubUlIIaCyQiHyONxnfxMVdKWV2F97WOQU1tvDr31VFsvPHGXfr9zYzHPvD0lR1NaX1q9O9K6U81BoHG/YmI2GKLLZL9zne+M9mbbLJJVk/XQl3XfS5qXASPW1CVitq19bpmlvTheh+l2HE+91ohFW57cMghhyR78ODBWVlpDWw0lfma4NfWvhs6dGhW1lVp7NsLT7ldlVrW/13Xp1I6Wp1jvqZpDBS9Rkf2bXdA46TULR5SRL5G9+zZMyubPXt2p95LKXaH7mn9+vXLykaPHp1sPUP6nqZxG/1ZRePjlOKQ9OjRo8178rVJ90Xfj3S/0zJ/dtD28HlalVq+lGZe7z1i1bhI3RFvM11j9exQOrtrG/nzp17P11QdQytWrEi2n29g1TiN+tnPHtrmeh70sa1zp9F9zOezrvmlmHA6XvyM2lXxX/EEAgAAAAAAAACoAbwEAgAAAAAAAACoAU0pB/OU30rJtVFd6dzducp1uSQ9UEqpwUtSjNL9qrufu4apG6h+l7va1glNw/qNb3wj2SNGjMjqqfumuv55H1al1o3IXXS1zCUzpbIqSnIET7/Z1RKUVnD1bU9KbtFLly7t1HspSWO1zFPLrrfeeslWeam6wEfk7vLuhqvjQt1pPe2lruWlca/rX2kelWS4eh/ukquuwTpnXVqj13C5n0vY6sRGG22U7NNOOy3ZpfbrTHz91r5zSWt3l4N5inudOzrXfU1oVK6sbenSBS3T7y2lzK0DdZfp61jr6jND7969k+1nw8MOOyzZLgfT/VzXMd/7dP/0c7tKwLSenxX0c+mMp/PZ11adc6V08aVzgl5Dr+/fpX/nc730vNbMaDv5WNC1Um3vb71GSRKk1/CwIFqm661L8GHVeaRSOk+xXpWq3femqvlXCgHj6DjQuVN6v+BzTH+bhrbpaOq1UwMAAAAAAAAA1BReAgEAAAAAAAAA1ABeAgEAAAAAAAAA1ICmjAnkMSyqdHQl3aWjMXa0XqPpFL1eKSWjlpW0uiWtaZWusKu156W01PpbPa6H1i21q+q5d91116zs4IMPTrZqeD3Ns8buUL1nKV5FSStdul/Fx63SaApP1ybruO0KPAUq/B9drdnWvvH5NnDgwGR7TBRdQ0qp2XU8l2LslMa2XkPnlOviNaVqaX7o9TQdb1t/p1Rpwn3P0Pvy+eyxIVoZb9sf/OAHydY1WuPwReS6dh+THRmLpzR2PcVzd48JtGjRouyz7l06n31/ror54bG19O885lNVHL26xQByunovaCY0flhXsN122yX7qKOOysp22GGHZE+fPj0rq4rT47HgNN6Y7wk6J3QN8nNUVaxKP4fqWuVzrComVykmkK8Jut/pvfu+qNfs6jiV7YX+jk033TQr03bRWDN+blFKMUa1rzx2zfLly5Ot/dO/f//K76or3q6lsV3VH6X4dWr7vliiap76GajquyIievXq1eb1SrGI2oN679wAAAAAAAAAADWBl0AAAAAAAAAAADWgKeVgnppX3abUjdndpNR9y92w1DVT7ZLrZMl1S/FrqEtn6Z60zFOxVrmsN5qGvKNQ11h3gVbXW0/Nqeky1R3S3ftUqqISkYjcpXLx4sWV91FFqQ/dDbcq3WN7tH9pzPnY72rXW+RgObrmdHVqVJ1T6koakbu9u5RLx1vJ7dTnhKLzVuu5rNU/V32X3ofPMf2s7tgld12fY7qW6BxzuUtVqs+2Prca+ts/9KEPZWUqL1T3dZcNqKSiM2VXpT3YJdTdXbr0/PPPZ591bPfp0yfZLl3QOaf7eEn64deoknd6m3a0C3uz4etvFY1Kf0r/XrVWltbrklRC8bVX9w4/i1TtAS4l7Wz0Pn2P1j3Dpfa6L+g4999dklBXSTNLoQIU7yc9K3vfuBS3re+NyMecl+lzh9bz5xG9L18vSmE4mhmV8vk4eemll5JdkoPpmaBqTkXk487lYIq2s57vIsprR13wsabt6n1TJQdrtO28P0uSS6V0/dLf6RhEDgYAAAAAAAAAAO0KL4EAAAAAAAAAAGpAU/q3b7jhhtnnKglOyd255EJbiijeyN/437ksoSqyvEt9FHfxrspO5fKcznQbi4jYcsstk33kkUdmZTvuuGOy586dm5Xpb1D3WnedU3mGS0nUlVWv4a62VS53LufQcVXq3/Zu15LbqLvremaKzqZRyZNnyVCJQinbn0uV1oTSHKgq83vS+/XfUpWFY8CAAWt4x+2DylwGDx6clQ0dOjTZc+bMycp07mj7lySRXlblXuvuuo1KqKoyKkZUr8O+Pmgf+v3qmqzf5S71PXv2THaryYjaQtv2+OOPT7bLwapc2L1NuirzVklq7fKUrpZUv158jmmWo2HDhiXb557KCzRjms8BXeNU+heR709VmVQjVi+zSiug60YJPb+5FFX7R9evRqVcvuaVzrk6NvTvfMzovPezp8v1X6Nv375t/ntnsWDBgmTfd999WZmOWT976O/TNimFJfD1T/tGz/ulzF6l/VPnppfNnj072TrffN/SM6RnbqvKlOzrvd6j/5ZSxqxmZtCgQcluVArfaJgRP7fr37m8sGqeeqbgRqWfrUwpW3Ip7EEpS3dVmV+v9D5A100dB6U9uFTWmeeo1jvVAgAAAAAAAADAKvASCAAAAAAAAACgBvASCAAAAAAAAACgBjRlTKBSHAnV3HocHdXRefydKk2m66urdH9+TyXNnupzVeOpaXYjIqZMmZJs/y2NalI7OyaQxkEZN25cVqZa5EZjgXjsAP0NpRSq2g6uVa/S2HocGL1Go2PO278U30cpaXi1DVwv3NXpVhtFU0NHRKxcuTLZHi9BY+6o9tznlGrNtZ1LelzXzWt7VsXCicjnn2vqVb+v99HVMYFK6TG1HXzcV8WD8DFaWk+0HbQtSylUFf8u7ZtSzBYdIz5eSilU9bPe++LFi7N6VXEuIlZdZ7ojrqk///zzk61xgDwmhI6hZon3ovdU2o/9LNDo3tSs+Ly85ZZbkr333nsnu5Taes8990z2X//616yezpX58+dnZVVt7vOtWcZIR+HjrSreo8fU0/1c98iIvG1L5wVdv0qxKbXM90y9D/1en/f6uVevXpX3pN/lcWc6m6effjrZvr4/8cQTyR41alRWNmLEiGTrXPGzgva1z7Gqs5zPWd2f9XyhqckjIp577rnKsnnz5rV5j55aXO+3f//+WZmuhTpG/DeX4n91l/g0Pmd33333ZDf6m/xson2scYBKZwWPF1QV69T36tKYrAu9e/fOPmublJ7FSvFftc1LZ0idwz4O9JlG+9fXB3228DL9TEwgAAAAAAAAAABoV3gJBAAAAAAAAABQA5rSL9pdUtX1Tcs8tam6Pbrrqrq/qluXpxmuco9017yq9HMRuVuauoltttlmWb37778/2e7qqa5opdSDnZ2SV3+Py0z0c6MpU1eHqrSppTTFJdlYST6oshZ18fVruEt3I3i7+RhUPF15Z6Dt0miKeq/35JNPJttT4WobLlq0KNnDhw/P6m2wwQbJdtdJRdcHdZ/2v9PvXbp0aVZv1qxZyS65vesY1DTLXcGyZcuS7a6r6pLvkoSqtnSX9VJKzCpJgrsp69xR2113S3K/qvvweqWyqnt0+ZeuFz4vvR07G5cx6XjWNWXIkCFZvSOOOCLZ++yzT1amEuWSNLMqfbLTmenXS/IFlVv43tpVaew7ir/85S/J1r7xvtAz0AEHHJDsSy+9NKunbelysCqJvLdx3eRgulcpfl7QNUX3yIi8rXVfLI1tvd6SJUuyerrmvfjii1mZ7l2aKnvOnDlZPd1Pjz/++KhCv2vDDTfMyjo7ZIHesz8jaLs+9NBDWdnIkSOTrf1ZSgvu50Yd9zoXfS+p2hf9fvW3eB/qeq1z0eV4um8tWLAgK6s63/n96m/xPbMkoW4m/BlO5YCls09J1lclj/V21fbzMaNnfF1f/byhc1ZljXVi8ODB2Wdto1KolFJoF+0P7QsfL6U9Tf9O99nSHuznKP0teo8dvZfiCQQAAAAAAAAAUAN4CQQAAAAAAAAAUAN4CQQAAAAAAAAAUAOaMiaQx0xRVB/tsUZU2+ep5FSbXUr5rTpC1eV5DAvVGHqMjarU1h4nR9PFaXwPv0ajKZM7A9VUayrOiIixY8cm23Wvqn/UPmw0xXpEdRwm13jqZ9V1uk5X04J7bB/V56sG3/XuqgV1HXXVWCql7PYU210Rv0K/sxTbSX+Hz4E777wz2TfeeGNWpnEHdCz4ONe+K2l/tc08NoX2zxZbbJFsHwv6efvtt48qVBNeijHVGbEPNEaAjtGIiMcffzzZQ4cOzcq0T7X9S+PXY+zo36ldStuu1/e4b1Wx2LxM1xUfB/rZ70PXGY1h4OuufvZ79JgM7UVp3Ghsiosuuigr0xhzqjXXfcXL/PoeQ6uKUrylrkLXHD8LlOKEtRrLly9Ptu5jPXr0yOrpHNA1wddubTvdIyPyfVzHra8dnbH+dSW+vugc0/nhe8SUKVOSfckll2RlGqNG272j27IqhmJEHl/mgx/8YOXflf5d22N1zntrSuk7dJ+cO3duVqbp5PU84CnXtU+13/27S3HJ9MxSOr/oXPRxUBUXU39HRL4feJwZ3Vv1fv08rHumxzLpLiniPcaLniV8zOo80L/z36pl2gel5x8v02vo93o9fb7yeGKtvN5qu3pcXR3P3l66r6ntz1/a/jqfvZ7ORR8H+t26dvhZSdcO3zO1TG0/27c3zXGaAwAAAAAAAACADoWXQAAAAAAAAAAANaAp5WDuzq6ueuqS5dIZdd9yV2h1B1MXLXf5qkqx6q5mipepm5e66ZVkXfPmzcs+q4t3STLT2XKhe++9N9mTJk3KylRGc+CBB2Zl6srYv3//ZLt7aqNpnhVvA02pp5IOd6E86aSTKsu0D1VaeM0112T1xowZk2x3Da5K/e6/Q12IPUWrp33tDNRF2F2hlSqpT0TEb3/722T72K7C3bi171ya0yjqSnnPPfdU1lOXUJ17XlZy6+1sOZi2ua+FOp5VwhkR0atXr2SXZIoluZ9+n/aNz1n9O5VTuURH29WvUSULVKmff5ePR5UL6X14Sl5dO0oy0/ZEf4evh5/+9KeTve+++2ZlS5cuTXbJBXlN587rpSQz0rYsrYdOlfu9o+PJ+83vq7ujc1El2ttuu21WT9ukJLnX/vD0tHoNtTtKKtms+JlD57CWeb3bbrst2XfffXdWVnVe6GhK/f3ss88m288iffr0afN6JVlxM+HrTpVEy/cqPYP7eVyvWTVX2vr8etHruaRMpVx+FtD7rbL/G83av45LM/Vs6/2he5DuOb43VZ2R/GxSkojqNapCWUREbLfddsn+xS9+kZV1tGSoK9F2dTmYPnP585e2s47nkhysSpoXkfeNnmX8HkvXqPquiPy9hz4j+/NIez9b4AkEAAAAAAAAAFADeAkEAAAAAAAAAFADmlIO5u6FVVm63AVZ3d5dHqEukeo6565h7g5bRaMu63o9v6eSy6lmh9DrdbUru7a5t/+f/vSnNu2IvA9VjjJy5Mis3vDhw5M9bNiwymuU3GlVUqVZqqZOnZrVa7Svn3nmmWTvt99+WdmJJ56YbM9Ip3+nLroll+tHHnkkK1u4cGFDypaBqwAABytJREFU99ieNCpr0rHoLsgus2l21IXdJXkjRoxItraHZyTqbLdonQPeT9ofLgdasGBBskvyS51v7taq393oPNK/8fVT77+UXabkiq/49fUeS+2mlDKGtCe6B7kcTCUXpYxqJTfjUlaLKvy36lyvynro9bysKmumj7tSZkytW8pep/u9rsP+d62A9qn+1kazHJZkdd7+KjssScparY3/G7p/qBTE1xeVRje6bnYlVWMrImLgwIHJ1vms+4tfozvifaj91t36sCPoLpmp/Eyge1Xpea60llXJ2Ev7Vkl6VsqkV5KKtbIcTNvLM/qp5NnbtdTmSqNnQ/3scjBF9wI/A5UyY+tn3Vt9/CEHAwAAAAAAAACA1YaXQAAAAAAAAAAANYCXQAAAAAAAAAAANaApYwJpPJyIPBWz6q09FeWyZcuSPXny5KzsxhtvTLZq6vr165fV0zgfqrP0eD56DU9pr/elv0VT+kZEzJw5M9mqtY/INYEaa8a1oN1Fj6u6S01T6Skrb7/99k67pzVBx1hExBe/+MUuupOOQ/vK9f3bbLNNsnUuej92Vbrb9sDjc3lKz9fQdMwRnR/7oNG5X9I2l+65GVIWR1THH+porfTqpC5/PZTiN337299O9plnnpmVDR48ONm6B22wwQYNf3dVm3mcGP1cGhd6PY8L9sQTTyRb+27MmDFZvZ49eybbYyto+2jcn5UrV2b1/vKXvyT7sssuy8q8bndH2/zhhx9O9iGHHJLV0/VaYxNoquSIfDxuuOGGWVmPHj2Srecyj2XV6jGBfN3UWD9bbbVVsn3N6G6x8rQf/SygZ1FdE+67776sXnePCQStge+tOmY9vXhVnBgfyzoHdI/09VDX6FIcPV1TS/Ffu8tzX3uga+hf//rXrOzggw9Otu9j2kban96uusd5vym6Z3oMVH1e1z3S+0nr+TO/vmPQOLEd3dd4AgEAAAAAAAAA1ABeAgEAAAAAAAAA1ICmlIMtWbIk+6wyKnV7dzmG1vNrXHzxxclWlyx1PY/IXczVfdBTQarrn7rweV29XsmNfsCAAdlndQdTOVirpd+E5kPdL++5556s7LDDDku2uk7eeuutldfoDuh89nSb7ir8GjNmzMg+18lFtxlolfbW/cJ/00MPPZTsc845JysbP358sgcNGtTmv0dEbLTRRsl26bK6JFelX/d71DStnjb6gQceSPa1116blc2ZMyfZ6pK9++67Z/U+/vGPJ3uzzTbLyqZPn57sadOmJXvq1KlZvd/97ndtfm9Ea++ZkyZNSvbChQuzsl69eiVb1+e+fftm9fTs5PJzPc+oVM/buFXmZhX+++64445kT5gwIdkvvvhiVk/nc3doI10H/Eyt80jDHkyZMqXjbwxgNfG03vr8uPnmm2dlKs3RvU+fHf2zzhWV3kbkc8XlYLrGapmutRERs2fPTnZ3Drewuug6OX/+/KxM11eXsFf1jT+va7gHfaZx2ZiOH98Xtd/0TOV9qP3mkrJHH3002brWIgcDAAAAAAAAAIDXDS+BAAAAAAAAAABqAC+BAAAAAAAAAABqQKfGBFJdnuvcVM/nOuof/vCHydYYPnfddVdWTzV7rvvX1Jx6H562vSp9st+vXqOUDlX/rvSbFy9enJVpWtsdd9wx2RoHISLXItZJJ1oXOirVbmkuapnH+jn//POTrbE8vvvd77bzHXYs3q6qE/7jH/+YlWnKR42D4fFQdD77+tMR/ahz32OWdWe8rRpdaxUf02uiq/bvqooN9XpR7bmv4Rq7xWPgzZo1K9k69jwegWrUPQaeftY54L9d06prTKDly5dn9TSOnsdgqOqD66+/Pvt8++23J9vj1Wi8Lv0ubzfV4vv3ekyG9qAr56L2lZ5zfvSjH2X1dtttt2RXxT6MyNe4mTNnZmWXXnppsjfYYINk33bbbat726+LZktBr2P2kksuSfZzzz2X1dNU8v4bmiFGkN+TxtW49957s7IhQ4YkW9cij4PR2ej47W6xCbsjpVTmr4fSGbU9+MMf/pDsyZMn/3/t3UEKwjAURdG4/+VmA46Elw8VFIXCO2daqKVIEy/lexzLdSY/e/4Nec6TyeudcyXzezhn1+T9y33jXFtzHt67/eUdniMvv7iuvF/5nFnr/J2cc5zWOvcEeY451ynnJOYeb+4T8nxzzby63r33cSyfTfMcORMovy+frBPfrIveBAIAAAAoIAIBAAAAFHjc6dUxAAAAAP7Dm0AAAAAABUQgAAAAgAIiEAAAAEABEQgAAACggAgEAAAAUEAEAgAAACggAgEAAAAUEIEAAAAACohAAAAAAAVEIAAAAIACIhAAAABAAREIAAAAoIAIBAAAAFBABAIAAAAoIAIBAAAAFBCBAAAAAAqIQAAAAAAFRCAAAACAAiIQAAAAQAERCAAAAKCACAQAAABQQAQCAAAAKCACAQAAABR4AtsFOibRgZuZAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(20,4))\n", - "for i in range(10):\n", - " idx = random.randint(0, len(test_dataset))\n", - " img, _ = test_dataset[idx]\n", - " x, _ = test_dataset_t[idx]\n", - "\n", - " data = x.as_in_context(ctx).expand_dims(axis=0)\n", - " output = net(data)\n", - " \n", - " ax = plt.subplot(2, 10, i+1)\n", - " ax.imshow(img.squeeze().asnumpy(), cmap='gray')\n", - " ax.axis('off')\n", - " ax = plt.subplot(2, 10, 10+i+1)\n", - " ax.imshow((output[0].asnumpy() * 255.).transpose((1,2,0)).squeeze(), cmap='gray')\n", - " _ = ax.axis('off')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Manipulating latent space" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now use separately the **encoder** that takes an image to a latent vector and the **decoder** that transform a latent vector into images" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We get two images from the testing set" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAACsxJREFUeJztnduLFdkVxr9le7/ftdXWUdFRCUJkCMYEEaOo8zIP4hWCoOBLAgkEzEzyByiCeRCDIEYnD9EYiKAEYYjaAwbjoNHBqENPa7z1qPF+v7buPHR5sven59Q5fbbn1LG/HzRdX+06Vbu7V++9au1Vq8w5ByHKpVO1OyDeD2RIIgoyJBEFGZKIggxJREGGJKIgQxJRkCGJKJRlSGY238yazOysmX0aq1Oi9rD2RrbNrA7AtwDmAmgBcBTAMufcmQKfURi99rjpnBuSdlA5I9IPAJx1zv3HOfccwJ8BfFLG+UQ2uVjMQeUY0kgAlz3dkuwLMLPVZnbMzI6VcS2RcTq/6ws457YA2AJoanufKWdE+g5Ag6dHJftEB6QcQzoKYIKZjTWzrgCWAtgbp1ui1mj31OacazWznwP4AkAdgG3OudPReiZqinbf/rfrYvKRapF/Oec+SjtIkW0RBRmSiIIMSURBhiSiIEMSUZAhiSjIkEQUZEgiCu980bZWMLNApwVqDx48mNvu1q1b0Pb06dNAnzx5MtAHDhwIdGNjY6AfPXpU8Nr9+vUL9JgxYwLds2fP3HZ9fX3QNmnSpECvXbu24LWKRSOSiIIMSURBa20JXbt2DfTz588DPWvWrEDv3fv/RId79+4FbUOHDi147jRevXoV6E6dSvt/f/nyZd7PPnjwINAjRowI9FumVa21icohQxJRkCGJKOj2P4Fv/5m+ffsWfa779+8H+vHjxwWP92/XAaBXr16B9n0e4E3/jdt9unfvHujm5uZAp4UaikUjkoiCDElEQYYkoiAfKSEtnnbixIlA9+nTJ7fNPgvHbgYOHBjoFy9eBLpLly6BfvjwYaA7dw7/THz+urq6QLe2tua2e/fuXfBcsdCIJKIgQxJRkCGJKHRYH4l9BfZbmMuXLwfa92PYZ+G4DvtAHNvh41mzD8TnY+2vp3F8bNeuXXgXaEQSUZAhiSjIkEQU3hsfif0UTn9NW68qlSNHjuS258yZE7TxWtuVK1cCPW7cuECzj9OjR49As4/07NmzQPPP5uczca5UrLU1RiOSiEKqIZnZNjO7bmanvH0DzezvZtacfB/wbrspsk4xI9LnAObTvk8BHHDOTQBwINGiA1NUzraZfQDgb8657yW6CcAs59xVM6sH8KVz7sMizhMtZ5t9Is5zToPzqJcsWRLoTZs2BdpfWwOAQ4cO5bZnzpwZtN26dSvQhw8fDnRa/hE/QnThwoVADxs2LNCjRo0K9J07d3Lb7E9xXGnixImBfsvv8Z3mbA9zzl1Ntq8BGFboYPH+U/Zdm3POFRppzGw1gNXlXkdkm/aOSP9NpjQk36/nO9A5t8U591Exw6OoXdo7Iu0FsALAuuT7nmg9KpI0n2jx4sWBXrhwYaA5B/v48eOB5ljQmTPhmzFmz56d2/bzf4A3/al58+YFmuNCHNthv5V9Ks4x4vP5xw8fPjxo27x5c6BL9S3zUczt/04A/wTwoZm1mNkqtBnQXDNrBjAn0aIDkzoiOeeW5Wn6SeS+iBpGkW0RhUw/+89zv7+mtGDBgqBt3bpwdr17926g/Wf1AWDDhg2ldKUgHKvhdTxu5xgW/w04RsZrb3x+/rz/sw8ePDhou349vC9qaGhACnr2X1QOGZKIggxJRCFTPlIp5fd27NgR6D17wlBWqbnJpZb+K1SD6Pbt24FO84nYh+Lzpa0rcj6SfzznpnPZQPa/uGwh5COJSiJDElHIVKptKdPs8uXLSzp32vSQdm1O5fDP19LSErT1798/0KVOXZx6y33lsAh/3p9K+fFvZtmyMN68ffv2gsfnQyOSiIIMSURBhiSikCkfKQ3/Fp39CL59T0sxTWPr1q2B5ur6/iNGnJLCaSV87bRHutkn4vPxo1b8uPmTJ0/yXstvA4CVK1cGWj6SqCoyJBEFGZKIQs36SGmPXKeVmmHWr18f6FWrVgWaywr76a7sd6SlynI7+0Dc93KWb9Ie954xY0bBcxWLRiQRBRmSiIIMSUShqj4Sz/08n5e6Hlbos8zOnTsDvXTp0kBfvHgx0IMGDcrbl7RyxWml/RjuO/+eOG7EPpYP+28csyr1FV750IgkoiBDElGQIYkoVNVHSounlMOKFSsCvWbNmkBPmTIl0JcuXQo0+zmc1+P7FhwnYvjnZM3X4va0V5OyD+X3lUvgcOot51K1F41IIgoyJBEFGZKIQqbW2qZPnx7oRYsWBdr3a4YMGRK0TZ06NdAcL2FfgF+bxY82p8WGfL+EfZi0OBDrtOPTcrz5+LFjx+a2OebEeVYcL+OSPPx693xoRBJRKKY+UoOZNZrZGTM7bWa/SParRLLIUcyI1ArgV865KQCmA/iZmU2BSiQLj2IKbV0FcDXZfmBm3wAYCeATALOSw/4I4EsAvy7l4ufOnQu0P7cDb5bf89eoeL3q2rVrgeZyevzY9OjRowPNfgo/ysyvXC/kI6W9sovhuBG/hov7wv4fc/78+dz2xo0bg7YbN24EmvOR+Pdy+vTpgtd6TUk+UlJv+/sAvoJKJAuPou/azKw3gL8C+KVz7r7/H1moRLLKI3cMihqRzKwL2ozoT8653cnuokokqzxyxyB1RLK2oecPAL5xzv3Oayq5RHJdXV3wDFhTU1PQzjELXsPyfQX2E/h5e/4s5+Vw7nLaq604H4nbyyEtz4p9MPZz9u/fH+h9+/bltvlV8fzKiFLzwfNRzNT2IwA/BfBvM/s62fcbtBnQX5JyyRcBLM7zedEBKOau7R8A8j2mqhLJAoAi2yISFV1r69y5M4YOHZrTu3fvDtr9+Afwpl/irwPxq6X4+fvJkycHmsspMxz7YX+N/RL/2X+Od928eTPQXAqQSzdzjIpjYIXyjd7G+PHjc9scP+Ofi+sIlFoj4TUakUQUZEgiCjIkEYWK+kitra3BKwz4teXTpk0LdKHYD+d3c8415x+x5rU69h3YD0mrA1mojf0QhnOrfD8SeDNmxWtxfD3f5+J424ABYZIGv/ZUPpKoKjIkEYVMVf7nYZjflOinOPCSCA/ZPPXxLTi/JYiP57I5PM360w0vYXD1/LRHtDnMwbfsrNPSgv23bPPvcNKkSYFml6CxsZG7p8r/onLIkEQUZEgiCpnykUQmkY8kKocMSURBhiSiIEMSUZAhiSjIkEQUZEgiCjIkEQUZkoiCDElEQYYkolDp0n830fZU7uBkO4tktW/V6teY9EMqvGibu6jZsawWlchq37Lar9doahNRkCGJKFTLkLZU6brFkNW+ZbVfAKrkI4n3D01tIgoVNSQzm29mTWZ21syqWk7ZzLaZ2XUzO+Xty0Tt8FqsbV4xQzKzOgC/B7AAwBQAy5J63dXicwDzaV9WaofXXm1z51xFvgD8EMAXnv4MwGeVun6ePn0A4JSnmwDUJ9v1AJqq2T+vX3sAzM1q/5xzFZ3aRgK47OmWZF+WyFzt8FqpbS5nOw+u7d++qre0XNvcb8tC/3wqaUjfAWjw9KhkX5YoqnZ4JSintnk1qKQhHQUwwczGmllXAEvRVqs7S7yuHQ4UWTv8XVBEbXOgiv17KxV2Gj8G8C2AcwB+W2UHdifaXtbzAm3+2ioAg9B2N9QMYD+AgVXq24/RNm2dBPB18vVxVvr3ti9FtkUU5GyLKMiQRBRkSCIKMiQRBRmSiIIMSURBhiSiIEMSUfgfIl7sIAGpIRsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAACZRJREFUeJztnUtsVdcVhv+Feb8JD2Nsg4OwKjFAqhRVoFYC0SJoJmFUBUHEIBKTVmqlSCRph0zKpLNOkEDpoHJVqZWSQSSrRNSoUIE9iKgJAkwRD2Owzdvmadgd3Bv37D/xvde+y/eew/k/yeL851zfsxP93nudvddex0IIEKJaZtS7AeLNQEYSLshIwgUZSbggIwkXZCThgowkXJCRhAtVGcnMdpnZRTPrM7NPvBolsodNdWbbzBoAXAKwA8BNAN0A9oQQvinxO6mdRm9tbS15fWxsLNIzZsz43mMAGB0djfS8efMi/eLFi0i/fv060g0NDZEeGRmJ9JMnT0q21ZnhEMLKch+aWcUNfgSgL4TwXwAws78AeA/AhEZKMwcPHix5/e7du5GeP3/++PHs2bOjaz09PZHetGlTpK9fvx5pNt6iRYsiffr06ZLfP81cq+RD1QxtzQBuJPTN4rkIMztgZj1mVtP/elFbqumRKiKEcATAESDdQ5uojmqM1A8gGVi0FM9lkm3btkV6+fLlkX7w4EGkk0Pdhg0bomtbt26NdHIYBIDjx49H+vnz55HmmOvZs2eRrvHQVhHVDG3dANrN7G0zmw3gfQBf+DRLZI0p90ghhDEz+xWATgANAI6FEM67tUxkiqpipBDClwC+dGqLyDDTHmynldWrV0d61qxZke7s7Iz0nDlzIp2cG1qyZEl0bebM+H/rrVu3Iv348eNI8/QAx0SnTp1C2tESiXBBRhIuyEjChdzGSOvWrYs0L0usXbs20q9evYr03Llzx4+vXLkSXbt06VKkt2/fHuktW7ZE+uHDh5E+fz5++OW1uTSiHkm4ICMJF2Qk4UJuY6SdO3dGenBwMNKcA5SMiQDAzMaPFy9eHF1btmxZpDlNhOeROB9pwYIFkX706BHSjnok4YKMJFzI7dDW3Bzn4JVLf+VlkGRWJA+DTU1NkeahiofJCxculLxXFlCPJFyQkYQLMpJwIbcxUltbW8nrHPcMDQ1FesWKFePHLS0t0TVOreXf5S1gCxcujDTvSuG0lDSiHkm4ICMJF2Qk4UL6B99pgtNIrl69GulycUkyhuIt2cnlE+C7KSp37tyJNC/PlJvjSiPqkYQLMpJwQUYSLuQ2RuL1rHKpHJz6sXLl/yu9HD58OLrGKSr79u2LNFc2Sc5JAd+Nsa5dq6ggSF1RjyRckJGECzKScCE3MRJvuWa4tAxvEeLfb2xsHD/u6OiIrvHa2f79+yPNa228tsaaY6o0oh5JuFDWSGZ2zMwGzaw3ce4tM/uHmV0u/rus1HeIN59KeqTPAOyic58A+CqE0A7gq6IWOaZsjBRCOGlmbXT6PQDbisd/AvBPAB87tssdzj/icsdc2o+vc/nkM2fOTHivrq6uSHNMxPNE9+7dizTHWDyHlUamGiM1hhAGise3ATSW+rB486n6qS2EEEpVqzWzAwAOVHsfkW6m2iPdMbMmACj+OzjRB0MIR0II74QQ3pnivUQGmGqP9AWA/QB+X/z3c7cWTRPr16+PNM8bseZ8pOS8EQAcOnRowntxWRuGXxHB5ZA5PssClTz+dwD4N4AfmNlNM/sQBQPtMLPLAH5W1CLHVPLUtmeCSz91bovIMJrZFi7kZq1t6dKlkeZXVXHpGJ534vJ+PFdUCs7RZjge43mmLKAeSbggIwkXZCThQm5ipDVr1kSa543K1UPifW+T4fbt25HmfCNeiyv1ugoAePr06ZTbMl2oRxIuyEjChdwMbfxGSE7dePnyZcnfP3fu3JTvPTAwEGlebuG3CvAW7TQOZYx6JOGCjCRckJGEC7mJkTg1g+MSrtbPb5Q8ceLEhN/NSxr8OM/LK7xFm5dI+A2SWUA9knBBRhIuyEjChdzESJw2wjESlzTm10Dwax+ScIzDc1Ld3d2R5jdKcgmd+/fvT3ivtKIeSbggIwkXZCThQm5iJJ4X4jQR3rLNMRW/Cmsy8JZrfuMkx0hcTjkLqEcSLshIwgUZSbiQmxhpeHg40rw9abL5SUnKbR/i7+K0Xp7TyiLqkYQLMpJwQUYSLuQmRuItQTyXw1uAOH+Jty8l4ZiH4e3g/F2cC6W1NpFbKqmP1GpmJ8zsGzM7b2a/Lp5XiWQxTiU90hiAj0IIGwFsBvBLM9sIlUgWCSoptDUAYKB4/NjMLgBoRsZKJN+4cSPSnH/E5fjKvXIiyWTL0PC9OJ8pi/NKk4qRivW2fwjgDFQiWSSo+KnNzBYC+BuA34QQHiX/CkuVSFZ55HxQUY9kZrNQMNGfQwh/L56uqESyyiPng7I9khW6nqMALoQQ/pC4lKkSyb29vZHmksQct/DcD6/NJfOXysVI5fa98fVS+eFppZKh7ccAPgDwHzP7unjutygY6K/FcsnXAPxiepooskAlT23/AjDRn5xKJAsAmtkWTuRmrY3303NONud08/oZ79fnHO9S8LwQfzdrLg2YBdQjCRdkJOGCjCRcyE2MxHAON5cgHh0djXR7e3uk+/r6xo/LzSONjIxEmj/PmuewsoB6JOGCjCRcyO3Q1t/fH+lVq1ZFmt90XWobNS95MFzumKcDeOqBpxqygHok4YKMJFyQkYQLuY2R+JUQu3fvjjQvqZSKkcptR+LtRxwj8eM/l8HJAuqRhAsyknBBRhIu5DZGOnnyZKT37t0baV4i2bx5c6SPHj06flxu+xDHSBxv8TyTSv+J3CIjCRdkJOFCbmMk3p7U1dUV6aGhoUgn00aYcmttnLJy9uzZkterKcVcL9QjCRdkJOGCjCRcsHLju+vNzIZQ2JW7AsBwmY/Xi7S2rV7tWhdCWFnuQzU10vhNzXrSWlQirW1La7u+RUObcEFGEi7Uy0hH6nTfSkhr29LaLgB1ipHEm4eGNuFCTY1kZrvM7KKZ9ZlZXcspm9kxMxs0s97EuVTUDs9ibfOaGcnMGgD8EcDPAWwEsKdYr7tefAZgF51LS+3w7NU2DyHU5AfAFgCdCf0pgE9rdf8J2tQGoDehLwJoKh43AbhYz/Yl2vU5gB1pbV8IoaZDWzOAZNX0m8VzaSJ1tcOzUttcwfYEhMKffV0fabm2efJaGtqXpJZG6gfQmtAtxXNpoqLa4bWgmtrm9aCWRuoG0G5mb5vZbADvo1CrO018WzscqGPt8ApqmwNpq21e46DxXQCXAFwB8Ls6B7AdKLys5yUK8dqHAJaj8DR0GcBxAG/VqW0/QWHYOgfg6+LPu2lp3/f9aGZbuKBgW7ggIwkXZCThgowkXJCRhAsyknBBRhIuyEjChf8BBBgORVqd9YYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "idx = random.randint(0, len(test_dataset))\n", - "img1, _ = test_dataset[idx]\n", - "x, _ = test_dataset_t[idx]\n", - "data1 = x.as_in_context(ctx).expand_dims(axis=0)\n", - "\n", - "idx = random.randint(0, len(test_dataset))\n", - "img2, _ = test_dataset[idx]\n", - "x, _ = test_dataset_t[idx]\n", - "data2 = x.as_in_context(ctx).expand_dims(axis=0)\n", - "\n", - "plt.figure(figsize=(2,2))\n", - "plt.imshow(img1.squeeze().asnumpy(), cmap='gray')\n", - "plt.show()\n", - "plt.figure(figsize=(2,2))\n", - "plt.imshow(img2.squeeze().asnumpy(), cmap='gray')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We get the latent representations of the images by passing them through the network" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "latent1 = encoder(data1)\n", - "latent2 = encoder(data2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We see that the latent vector is made of 32 components" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1, 32, 1, 1)" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "latent1.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We interpolate the two latent representations, vectors of 32 values, to get a new intermediate latent representation, pass it through the decoder and plot the resulting decoded image" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAACBCAYAAABXearSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3WmMXlUdx/GDC/vSZVraaaEtpS1d6AIFoYSqBRUqpCAISCIkShBBUZREjb4QQnjhQmKMJmCihqAoCCIKmoJhL1vL0tZSoHTfpmVaWmhR2XyBHH7nN3MOT6fzzDzz3O/n1X9679zn9p57zr3z5Pz/Z4933nknAAAAAAAAoLl9qLdPAAAAAAAAAPXHl0AAAAAAAAAVwJdAAAAAAAAAFcCXQAAAAAAAABXAl0AAAAAAAAAVwJdAAAAAAAAAFcCXQAAAAAAAABXAl0AAAAAAAAAVwJdAAAAAAAAAFfCRnvywPfbY452e/Lyq+9CH3v+O76233tqjO45JG/asD3/4wzF+8803u6UNQ6Ade9pHPvL+UPvGG2/QF/ugerRhCLRjT6vHmNoX2lDfB/bYY49O4xBCeOed9/8rb7/9dvZ4ul9Pq8e7TQiN2Y467oQQwt577x3jj370o9n93nrrrRj/97//Tba9+eabncb6OyHUv4313nv77bebqi9qe/Tv3z/Z1traGuO99torxnvuuWeyn/a/1157Ldm2Y8eOGG/btq3TOIQQ3njjjV057V1Wjzb8/3F7rR31/zRkyJAYH3fcccl+I0aMiPG///3vGHs/0j6m+/m2tra2GC9ZsiTZb8uWLTEujcvd4Z133unzfVGf8zNnzozxnDlzkv0OOuigGL/66qsx9jbUe8LHRd1369atMX7ggQeS/ebPnx9jvw+6W61tyEwgAAAAAACACuBLIAAAAAAAgAro0XQw9Kx6TxlE/fmURPRNOuUXfRNt+C6dZu3pC7qtlILSm8+mqoypnuY1aNCgGI8ZMybGmtIQQtpuq1atSrZt2rQpxjrt3VNV6n2Nq/Ru069fv+TnCy+8MMZTp06NsaathJD2t/Xr1yfb1q1bF+Nnn302xvfff3+yn7ZxPa55b6YU1ts+++wT44suuijZdu6558ZY01H23XffZD+9Pjt37ky2aTrYypUrY3zdddcl+z388MMxrkdqWDO3YQghnHLKKTG+8sork20tLS0x1mefpqv6z6XrpW184403JtuuvfbaGGvaEjqnz79LLrkkxjNmzEj20/TaUpq0pT0m23Ip1EcffXSy31e/+tUY1zsdrFbMBAIAAAAAAKgAvgQCAAAAAACoAL4EAgAAAAAAqABqAqGySkv+oXFp7rX/7LUoqlL/o1FpH9t///1jrEvkhpAuofvyyy8n2zZs2BDj0jKs6D6eDz9s2LAYn3baaTE+4YQTkv0OPvjgGHs9Ga1NsWjRohgvW7Ys2U/ry1Sp9kt30xpAIYRw1VVXxXjKlCkx1tolIaTLjntdJ61ZsXHjxhj//ve/T/a79957Y7x9+/ZkG8/aD6Zt8LnPfS7Z9sUvfjHGWpPLx0Ndonz48OHJNu1XZ555Zoznzp2b7PeLX/wixlp3xo+BjsaOHRtjr0Oi107rLmkcQtqGXpNO+9Hhhx8e48suuyzZT5eMf+aZZ7Lngffp82/atGkx1mXaQ0hr8/h7qdL+XKono/VpJk+enOw3ceLEGD/++OPZY+Bdes31fdPHMd1Pazf5O5C2r/dF/VnHZK/xpe9RbW1txfPvKcwEAgAAAAAAqAC+BAIAAAAAAKgA0sEKDjjggBiff/75yTadXuvLaj7yyCMxbpRl4KpEp/HptPevf/3ryX66pKoukxpCCL/+9a9jvHz58hgzfbbnHHjggTG+4oorYnzyyScn++kSq7qEcQgh3HLLLTG+7bbbYtze3t5t54n36fT1EEL45je/GeOzzz47xp6Coj/7NFxND5s/f36Mf/rTnyb7rV69Osb0090zevTo5Odf/epXMdaUr9dffz3ZT6dWDx06NNl25JFHdvpZDz30UPKzpqBom4ZAu34QnYquaUMhpKl7On3dlxvOTY8PIb3++g50zjnnJPtpn503b16yrR7LVDebcePGxfiMM87I7qepk/6uuddee8XY00W0DXTs1RSmEEKYNGlSjHVZ+RBC+M9//pM9r6rS/qJpfJoKHUI6bmoan6f0aXpQKQVFf8+frdqGixcvTrZ5uifepddQ07A8HUzfUfW9xdtRj+ftqPvq+KrjcAhpyt+TTz6ZPQbepe8p+jfC2rVrk/00ZatUIkTHU+832qaaNuZtOHjw4JrOvScxEwgAAAAAAKAC+BIIAAAAAACgAvgSCAAAAAAAoAKoCWQ0d1eXPfUlHjV38Mtf/nKybeHChTG+5pprYvzoo48m+5HHWR8nnnhijH/729/GuKWlJfs7M2fOTH7+whe+EOObbropxj/+8Y+T/Xz5W3Sd1rMIIa0NctJJJ8XYa0poHrXmAYcQwvjx42N8+umnx/jb3/52st+LL74YY5bb3DU6Fn7yk59MtmkdLq2X4HVISrnwuny8Lk/urr322hjr8tUh0Ka10LoFl156abJN6xFoHRJ/hmkbe30obVeNjzvuuGS/p556KsZe40uXKEdHEyZMiPEpp5ySbNP20P7mfUPb0Jc9zm3zWgdjxoyJ8RNPPJFsoyZQ5/TaXnTRRTHu169fsl+u5oTXBPL+p7QN9Hha4ySEdEljPx41gTrSvx+0BpfXTttvv/1irNff21Db12vlaR0S3U+PHUIIAwcO7HS/EKgJlKPPuwEDBsR4x44dyX5aJ0Z539Dr7uOtPkN1P68jpTVq/V5AR9OnT4+xXi+/dlp3S3nf0Lb22oTahrpfrZ/Vm5gJBAAAAAAAUAF8CQQAAAAAAFABlU8H8+laF154YYyPOeaYGPs0QOVTpqdNmxbj22+/PcYrVqxI9ps7d26M77rrrmSbLrGqS9jp1E4/ZlWX0/UpzD/60Y9irClgPtW2RKdg6zLX5513XrLfX/7ylxhr+mAI6ZKqvtSueuWVV7LnWKU0Fk/J+8QnPhFjnb7uKSg+xVnpFHY9/p133pnsd/PNN8f4d7/7XbKtra2t0/Pw/qXTs6vS90JI07U8NVbv39JyxjrGlejxZs+enWzTa/6b3/wm2bZ06dIY61TtKvWvzujz79Of/nSMNZUhhPSa6XX25W51KrQ/F/WzStPe58yZE2N/Zi5YsCDGpBW9S6+lpvHlUhVCSJ9H3gf0eJ4ClJv27mPylClTYnzvvfcm21atWpX97CrTVOZjjz02xu3t7cl++m6ifUzH1xDS9Gp//8gtKe7teNhhh8XY37NK78RVNXny5Bhr+s62bduS/WpNQdE2rLUv+rF1eWxPuacNOzd16tQYeyqf0tQ7Hcu8HUvvqLl0MG+rUnonOho3blyMfWxU+u6p7zbehjrW+ruNtn0pndrflxoBM4EAAAAAAAAqgC+BAAAAAAAAKqDy88u8kv7nP//5GNc6Vdmn0OrPOgV+5MiRyX6XXXZZjC+//PLs8XWKmk8vW7RoUYzPPvvsZJumsTQznYIbQgijRo2K8a6kgClNNdB40KBByX4XX3xxjHVFjxDSdtP7QNO/QgjhhhtuiPHPfvazZFtpKmoz0Cmvs2bNSrbpdddpsp7mUFpBQ2m/bG1tTbZdeeWVMdaV4UJIV7LasGFDjFeuXJnsd+ONN8b46aefTrY1W3qYXmdNsxsxYkSyX60ryOiU3NLU6VL76v1zyCGHJNvmzZsX47vvvjvGa9asSfbT6fHN1mad0et+1llnxdinQusU51rTL306u/Y/3c/TFzSF159pW7ZsifGyZctiXIW2ytE+p1PgPQVFxzxtm61btyb76TYfa/U6l9LB9Dnpz2cdQ1lh6n26Aq1eT08h0PQt7Zfejto+pVQi7X+eYqmpZ77ypr5fVrn/qaOOOirGOlb53xL+d8d7vA1L7zbaVtrWPj7rz424OlEj0jRITSXyNtCUP21jb0f9u81TM7Uddez1vqjPZNJoP9iQIUNirKuKltpQx1p/fmo/8ued/p2pbe1jdyP+PcdMIAAAAAAAgArgSyAAAAAAAIAK4EsgAAAAAACACqAmkOXmag50dyxBq7mbnv/elXx4r7Ogy3Z6/n4z541qXufhhx+ebNP8d8/d3F1eK6NEz1HzRP2eGzt2bIw9n7sRc0i7k9Y3GDBgQHa/WpeerpXn6uoxdAwIIe1jgwcPjvGECROS/VavXh3jxYsXJ9uarfaF3qeTJk2Ksee763hVGgv1PvD21J/1+F7nYvv27TH2+mua4//xj388xnfccUey36233trp8ZqV1k7Smh8+bmrtIG1HX75a+6mPc7m6FV5PRGvGjB8/Ptk2e/bsGN90003Z82jmZ587/vjjY6z9w+t/aO0DHUM3btyY7Kdto/0yhLQvavt6v9ff8zZ84oknYqx1ZarUZiF0HOe0now+n/bff/9kP38+vcfbQMdH7b9Oj+/9Xvvs0KFDk21LliyJ8a68FzUTb0O913WbX39dtl2vuY+F2qal+lzaF70OZqmeop5j1fqf8r6j7wt6Xbwd9d1Q39X9/aa0vLj2dR2zvR2b7R2yu3kbaq087Sv+XNS+qPVafVl5fff3fqTH1NjHxUb8e46ZQAAAAAAAABXAl0AAAAAAAAAVUPl0MJ8a5lP1Go1PF9Upgl1dDr2v69+/f/Jzo0xrzZ1HaTqoT8dulP9LvWiKwsCBA5Nt2jf1mnUl/WtXePvoNNPS9Gk9X++nzdaOmmqQWyY1hHSaul4TT7XS45WWG9ZtpRQUP76eo071Pvroo5P9/vrXv2aP0YyGDRvW6b97H/C0oPd4WmVpKXltYz2+T61Wfi+MGTMmxjrd+9VXX032a+ap837fa+qjTj/366+pDH4Mpdfc7wNtw9LS4np8nW4fQggtLS0x3rx5c4y7O3W70fm11dRMfc74O6qmb2lbeV/R6+ntnet/Xm5Az8O36b1Q1XQw72O58dTHT21DHau8H2kblt5L9Dw8Tbp0/GZ7L+kqv7c19VGfcd6O+l6h19mXiG9tbY2x3zParr5NeXoSUj5O6nNG3+U8nVb74qZNm2K8Zs2aZL9DDz00xt4Xa23DRhwnmQkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABla8JpHUFQkiX/OsLSvmHzZzvq3nPWicihDQ/s1RfpLd4zrbmFde73k0j0Fx2XRZ33LhxyX65PPd6144o9Sn9bO9fmlvc7O2o96zmSntuvebQl+pXdMf10toW3sdyNTBGjx6d7JerVxJCc4ynpXoypdog2if0OnR1fC0t2eptp3SsP/XUU2PsNRhWrly52+fYqGqtQ+J1C3Jt6PWTtLZg6dqVlj3W3/MlzkeNGhXj5cuXx3jnzp3Zz2pGfl10HFWl2lradl7DTI/vn6Xtr2OCjw+leoXN/oyrhdcX0Voy2h4+nurPet+3t7cn+2mdRF+ePNeGTo+5Y8eO7H5Vps/9ENLrrnVi/FmlfVPbe9myZcl+WocwV18vhLRP+dirz7hmeBfpbrqEewhpLTqtp1Rqw/Xr18d4wYIFyX5Tp07t9Ngh5OuG+pjZiHV7mQkEAAAAAABQAXwJBAAAAAAAUAGVTAfT6VpHHHFEsk2nxDficm5Op5X6tOFmnq6rU2N9aXGdKqnXxJfH7C3eLrqMdhXaUKezH3nkkZ3+ewhpO+p18P1KaUa1yn2Wb1O+n6aSenpEs7VjLtXAp7/mrmtpSela0/28rUtpDfrZus2ngWt62PPPP59sa4YlrP0+1OeHtlWpHZUvEV9KUcilUpaWr/Z+NGDAgBjPnDkzxi+99FKyn07rbsQp2LujtGy7KqUM6Dbvi/qz3we5PuBtqH1T36lCSNOedMz0dmq2ND7nKVq5d89Sqo+mg23bti3ZNmjQoBj7vaDtWHo26X6N8v7USPr375/8rH1Rr2vpvU7bbe3atcl+mjpZei/Rbb7fq6++GmNP/cS79LkSQv5dotSO69ati/HSpUuT/fRZVerPpb6oqXykg3Xk73L6/NDr6qmZatGiRTF++umnk22a7uefpW3qz2fViO8izAQCAAAAAACoAL4EAgAAAAAAqIBKpoMpTcUJofGnvPpUwlqnDTcbnXb7yiuvJNt0+qtPue4ttU65Lq2M04z0/n355ZeTbTr1Vqcx+yoZpemXXeFTbXVaqY4PpVSY7j6nRqP3rLaNrsIQQjrVXa/Jli1buv2cap0irX3R20lXe2m2FL4QOl4jHTu1TX0VGZ0Krf3B21FXqqq1PXw/fY6VVnnTFTqGDx+e7KdjRyNOwd4dnib1+uuvx1ivpaezaxvqNWlra0v209VrvG1yfaKU+ldK28ylz1RBKf1ZeQqetqOuruYpKLpSlR+j1lS7UrqZP/+qyFMdcyla3rb6nHz44Ydj/NBDDyX7TZgwIcZDhgxJtuX6WGmMb/S/b3qLr9il16k0Lmk73nHHHTF+7LHHkv1OOeWUGLe2tibbcivweR/VzyIdrCPvizp2lVZd078Xb7zxxhh7OQBdLcxXcsz9XeDPYH1WN4rqfGsAAAAAAABQYXwJBAAAAAAAUAF8CQQAAAAAAFAB1SpA8n+55YJDaPxcS88jr2qeqOZ1eh0S/dnrx/QWvc88xzhXb6NZad6z1gHyfNmdO3fGWGtY+H3e3XWfvH20DklpmXDNvW/2vqjtobnXvgSttqFeV6//1JXrVapXUqolo/t5zraeVzO2of+fNB9er4vX+9B21Hjz5s3Jfno9a71+PuZpPR9fklfz/vX3dAwNoblrX5SeEaX6Fdpn169fH+MVK1Yk+2ktGa+Zlat15u2k94/Xklm1alWMq/bsK8ktS+1jmfaxxYsXx/jZZ59N9psyZUqMDzvssGSbtpd+ltfV0NpgPmZTE6jj3w96D2u7ef/QNnzggQdivHDhwmQ/rfk0ceLE4mfn6Hhd9T6W4+2Tq9Ppy4vrO+s999wT47Vr1yb7zZs3L8bHHnts9jz0menPz0asJ9NI9t577+RnfRZq+3obbt26NcZLliyJsdcSnDt3bow/+9nPJttytZz87wV/P24EzAQCAAAAAACoAL4EAgAAAAAAqIBKpoMpTyUpLevYCHw6tk7nr5Jap7U2Snvq1F0/d00jqsIUa/3/6//dp0rq9Fe9ft5nc8uydpUfQz9bp5X69FydAuzpKI04luwOneaq18v/37nluT2FsyvT1P2a6rTtUhqLnq+nM7300ku7dU6Nzq9Zrh39/67pC5rCs2nTpuzxurpEvKak+JigbaypKs8991z2fJuNj0+a8lx63uk1WblyZYxfeOGFZL9p06bF2FORcsf3qfj6e97XdZzMLW9fBX5t9Wftf572o2PqU089FWPvA21tbTH2FAi91jo2evq89mftb36OVeXXNcf7rF7LRx99NMbaZiGEsGjRohjPmTMn2aZ9Tt9LPKVP3ymr1sdqVfo7sFTKQVMkV69eHWN//ujy4qX051IKYakUAUIYMGBA8nMuvdbfDbXdSmUnNG3a2yL3fuljdyO2ITOBAAAAAAAAKoAvgQAAAAAAACqgkulgpdQSTWfw6bq9RaeX+XREnV62zz779Ng59bbSFE2d0tebU5ZzK3z4tOrSFMRmp9MoSytL5VYzCSFt49zqNbuidHzl59ve3v6Bv9MstD10WnopHay0Kld3rA7WlbbXdET/uRn7oo+VBx10UKf7eVqq3uuagqwra3SVX2e9t/x89Wc9j40bNxaP2Uw8TeDAAw+s6fe0b65ZsybGulpXCGmKlvcpva56j3gakaakeHqKjq/N3E4fpKvvlzp2PvPMMzH2PvD8889nPyuXNu37dffKm83G+2Kt97M+Z7Qv+juFrv5WGic1Lc3PqdaUtSor3eelFbs2bNgQY20730/7pr8j5f6+87G3Uf4ebVT9+vXr0u9p/yv1X02D9/fX3Ep9/u/dUa6iuzETCAAAAAAAoAL4EggAAAAAAKAC+BIIAAAAAACgAiqZZDho0KAYT58+vRfPZNf5EnNaD2DEiBHJtmXLlvXIOfWGUaNGxVjbM4T0Gmn+redK9yStEeNL5pbqJzQjzXWePHlyjD1/VmtO7LfffjH2duzuPFvPxc7VbPLaTrnltpuR9j/Nxda86RDS3GnNaffr05XaIH6MUk0gz8N/z7Zt22rar1n4NdLlwEvjo9bn0vFL68eEkI5zXW3jUk0g7WNag8HPo5lrzfhSuEOGDOl0v1KNNa2DoMsch9CxTlZOqX6F1thobW1Ntg0bNizGCxcurOmzmpHWUgshv0S815fT9tJ3PH8e6ZLxpfpp2o6+X0tLS4y97hM6tmFuKWq/rmvXro2x9ktva60l43XatNZPaQnsKtUK7aoDDjgg+VmvoV5bb5/ly5dntymtX6ftHUJ6D5Wen9QEKvO6TtqGGns76dLvJfp3gL/n6v2jfd3/pmnENmQmEAAAAAAAQAXwJRAAAAAAAEAFNN7cpDrRKebXXnttjMeOHZvs51MuG42nKwwcODDGxxxzTLLtvvvu65Fz6ik6HfnSSy+N8ciRI5P9dFpgb6bl6GfrFESdVhhCCAcffHCMdfp1CCFs3ry5TmfXeyZOnBjjmTNnxtjTF/T6adv7lMrc8oy7IrdMZwj5McH/XdOiumOp+kbiy8yed955Mdb+Vms6lR9P+0et7Vnq275Nz6uU/pBLk+hs377IU4dmzJgRY00b8NQSTesrpT360qm18GNo+5fasbRfqY37utGjRyc/61R0HUO9L2qbasqXP498qntOaal3Td/1dBRND2u2cXJXePqCXk99xnkJgC1btsRYUzN9P00b82dVLlWiVG7Az7eZ+1itPEUu125+fdra2mJcSiPSPutpRHq/aPv6WFha/hzv8jIM2idKadLt7e01HV+fi5oa5scvPVurUCpid5SWY9d+6X1Rx9MS7WP+O/q80zb051sjPu+YCQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAFNWxPooIMOSn7+5S9/GeOTTjopxl7DoK8t7ay5iGPGjOnFM+l+WisnhBCuv/76GB911FEx9loypfoxjcDvsaFDh8ZYl88NIYSlS5f2yDnV05QpU5KftR215oDnSmvfrHedp9ISkrmaQJ5bPGjQoBh7HrkvYd0XaI71V77ylWTbZz7zmRhr//O+mFu6VsetrirVbvI20zxtHRO8NpEv+dsMtA2+9rWvJdt0vNH6IqWaTVqbwJ+zXampV2pHfz7nltFuxHG+O+k10jpOIaRtpWOSjznaN7X/eV2TUg0MpfeV1x/S8/A6M9pW3VHPra/S2kghpNddr5/3Kb3W+jt+LWut1ab9yPtbldunFv37909+1ntb283fKUpLged422gtL+3b/ll97W+a3uDPu9wS8d4Xa62Bp/3Zf0fbq1RPBmV+XWttQ39nzSm1Ya7+lz9LS/W/egsjPAAAAAAAQAXwJRAAAAAAAEAF9Ik51DqtS6db+nK3F198cYzPPffcZJsupe5pJ42uNCVXt3kqQyNNA8214YABA5L9Lrjgghh/6UtfSrZp2pROdW/UFA5tm9IS2DoVVdOjGlEuvcfTQs4666wYX3HFFck2TUXQqZg+tVqXR9U2rscUdb0nS1PiS9O4NU2mkdNT9Lw19qWcTzvttBh/4xvfSLblprz6crQ6TVavoy5r7dtq5VNtdQldP15uar4vu6qpMX11iXg/77Fjx8b49NNPT7Zp++g45ClC2k/1PmlpaUn2Ky3bXpomrXRcKaWKKZ/O32zLV+s1nzlzZrJN72H9f3s6mKYE6buTp13rWF7ql3rNdyWtvkppfE6vy/Tp05Nt2ue0D/j9q+2t70/+Xuvvx0rvBW0P7196vl1J9WxGek0OO+ywZJu+p+h19TSQXFt76mSub4eQTxkspZw0w1hYD/369Ut+zrVjqS+WaNuV0vX0+D720nZl/izR51NuvAuha38nez/Npe55G/rvNQJmAgEAAAAAAFQAXwIBAAAAAABUQI/Oxc2lBIUQwsknnxzjyy+/PNmWm57s6QuDBw/OfnZfSwFTtaZK+BT+eqTNlKb7H3nkkTG+6qqrkm2e9tXZ8UIIYfTo0TH2KXY6vb2RUt3e4/d07hz933Xqqd/DPfH/9M/QaeTf+973km2TJ0+OcWm6s06T9vtSp0RqapindGj/1mm3fl/oNNlaq+97Oorehz5lU6da59LhQkhT+Xxs6un7Va/X7Nmzk20nnHBCjDUty1O0pk6dGuNSepC2m0+P1mm4el19+rW2oR9DU0203fz6d2UavKYJh5D2vxUrVtR8/HrR+8bHBn0uanto2mwI6fPUj6Fjaqkf6Uo02gc8hVPvhdLKGNrG3t9qbUe9X4cPH57s99JLL9V0vJ5WGgf0/+b39sc+9rEY6xgcQvr/098rpWjpGO8rUvo4kDtHvQ+8f+ln+TNeV1Espek3Urt1F+2zs2bNSrZpKm0uBdn30/eqjRs3JvvVugJjKc1Ez8PH5UZ8B+sJ+p7nfdGf++/xFYi0DUvpr6UVifyZnKP3QV9Nca4Hvbc9JTb3fPJnVS593K+r/t4rr7ySbNPxN5eq7+eLjvy5pe8fpbQ9/7sjR8fhzZs3J9smTJgQ49KzrxGfadxVAAAAAAAAFcCXQAAAAAAAABXAl0AAAAAAAAAV0KM1gbQewRlnnJFs+9a3vhVjrxehueKaW+k1BzzvthFobmhXc6g1r9CX6dTr4cfPLVu3OzTnedKkScm2n//85zE+4ogjkm2rVq2Kca3Lu5fqDCjPu8z9vz33s7Rsu36WXuPSNfVj5OqhlJY99uPXKw9Y89q9dsBPfvKTGGutrhBC2LRpU4y1HT3XtbTUpd5Deo38XtDf0/P1vPtal6XO1c7wbX7fafvoefhnlZY+rkf9hFL+uC4FfvXVVyfbXnvttU5jP2e9Dr4tV7OiNAbp+Oz52/p7fj/m8u5L17/UhqW20M8ujQk9RWumXHPNNck2fZ62t7fH2O/tKVOmxNj/D/oM1WvkY2VuadNSny3dC/q5vpS51r4o1SbSWGuthJDerzrG9Aa9Dlo3zOn/29+BtD97/8iNw/6OJavRAAAOaUlEQVR+pD+XxsLS+0auDpzfH6VaJvo+p/dZX6if8J5anx++37hx42LsdUh031L9TL1Opb6i19nbUY9ZGjdzy5BXmdYX8edYrg1LS0XrNfbrr89nr0OiY0Spr/j9g45K9dNK9SL92ZWjfcdrd/nfUTm0Y9mWLVuy23J/z4UQws6dO2s6vvax5cuXJ9u0vlupbmgj1nVqvDMCAAAAAABAt+NLIAAAAAAAgArotXSwT33qU8k2neLsU+x0Gly9p8Tljq9LOrrS0pk6DdCnoekURN+mU9h1GrdPW9y+fXuMn3vuuWRbPaZT67T7E088Mdk2YsSI7GfrtFm9xj5dLjdN2ek19tSFXNqGpxHlrrEfo5RmWFo+Uqfy6v/T93vhhRdivGjRomRbvZbw1OusS/aGkC4N7vRe13Pz/5O2SSl9qzTFXNtAUz/8nimllGm75lJaQkj7kbZbCOm0ev2/6O+EEMKTTz4Z461bt2Y/q7vo9fH7d8aMGTH2Ket6LXNL1YaQXstS39HjeZ/Va67juqfo6BRpP49cyogfQ6+5L8OqU371eMuWLUv206XFGyH9Qaf8H3roock2TZPTNCN/hun/17fp/1Fjv7b6s6aeaew/+/TsXDqSP++3bdsW47a2tuzxN2zYEGN/9jVC271H+6kv65xLHerfv3+yn94HpRStXAqyb1u5cmWncQghrFmzJsbej5TeV96G2vaPPPJIsu3ee++Nsfb70vjcl5RSVrW9/Tmj4622sb8D6Dug9g8dh0NI3ys0jTuEdGl5/T1/11mxYkWM/T5plvbaVdqPtK+EkC4VnUv5CiHtL6XrqPv5s2rkyJExzo3jIYSwfv367HlUmY6bCxcuTLadeeaZne7n7zfaPqVrq7+3bt267LZaPwsd+d9OuTG0lPJaovtpnwqhsVOXPwgzgQAAAAAAACqAL4EAAAAAAAAqgC+BAAAAAAAAKqBHawJp7rHnRWqerdff0ToQteb21Zr35/V8NM9df8drYmguttaRCCHNc9ec8DFjxiT76fK/vnSsXis9xx07diT7Pf744zH+4x//mGyrx9K4mo+uNRlCSGukeP0KbUPNhfecea2ZUFoytlQTSP/fnnevnnnmmRh77QO95ppbOmzYsGQ/zeP3uixaF0FrOnitjLlz58bYc5PrlWuq97bfU0uXLo3x8ccfn2zT2l2lejvaX7zv6GdrW5WW4NZz9NzoBQsWxNhrbowdO7bT43ltFK2Z4PV89D7XWgr6uSGEMG/evE7PN4T65+L79df7yNtQ+4vev96PtH39euWWFfbz0J+11ovWWQohHTO9tkVLS0uMc0vTh5DmaXutBt2m/5d//vOf2f0aIc9bx1QfG4YMGRJjve/1eoVQrjmRWwLanx16DL22XqdC7yGvRaX15PR4XodEn63z589Ptj3xxBOdnoe/TzRSTSC9xv6cyd1j/tzSZ4b/jv5caw1CrRezatWqZD+9z4466qhkm47/Oq57Gz7//PMxvuuuu5Jt2r6N0Me6otZ6OL6fji+rV69Otmn/0P7n10jHBB1Tvc+uXbs2xkuWLEm2HX300TEu1QTSOneld6kq0T6m93kIIZx00kkxLtUE0udfqQ9om/qy1NqfSzWBfGxER35tSzW5VK11evQYXucuV8fNxw5/p0Sq9J1CqU5bV55BOu76Z5W+h2jE5x0zgQAAAAAAACqAL4EAAAAAAAAqoEfTwXT669VXX51s01SK2bNnJ9t02rum6ZSWUfW0EJ0CVprKq1NjdYqgpl2FEMIPf/jDGL/88svJNp0CpukLmkoSQgjTp0+P8axZs5Jteo5Dhw6NsS+D96c//SnGPh2uHkt46jS4P//5z8k2nep8zjnnJNu0DXUpXG2zENJlL32btmEuNSyEdKqtpnz94x//SPa74YYbYqxLSPs5aopDa2trsp+2jS+1rlNFDznkkBj78oK6hK5PM6xXGpFOd/XlY7/zne/EeM6cOck2Ta/S+9lTUPT4nnKpbadTXH0as057f/TRR2OsSwyHkKYb+PWaNm1ajDWVz9MvNa1FU5NCSO8n/T1P69Npvt73SqluXVVKw7rzzjtj7Oltmqo5fPjwGHvqnPZFTQMJIW0r7TueyqXbNH3OxzG9B0ePHp1smzlzZox1XPep2JpW6al62qY6Jus9FkKaDuH3Uj3a8IPoPXb99dcn23Rc0mfhMccck+ynKQqachJCOo1Z285TP3LtqONrCGkKil8vXT5Z7x8f83Q8LD1jSsuhl8bNnm5HPRdPt8mdp48tL774YoxLqaZ6Tbx/6Dig6WCbN29O9tN3nRkzZiTbDj/88BjrmODn9OCDD8bY348acUp8vZTSgLSvhJCOe5rqo3EIaXqy9ln/LB3bnn766WSbjvWatun3jD4Xq9RuJXod/F0u9z7j7zb6PCpdV93mKUs6Juu44veLj6/oyN+R9PmXG19D6DhO5+gx/O807XP6HPN2pP+V+TNIU6/1vdHb0EsT1MLvl9x7o/f73niH/CDMBAIAAAAAAKgAvgQCAAAAAACogB5NB9Npbz7t9Oabb47xH/7wh2SbTqHSNB1d2SaEEA4++OAYH3HEEdltOv118ODByX46Ve/222+PsVd0r3Vqnk7v82nXf//732PsqUpK//+1rnpWLzqVzqfV3XfffTG+//77k225NvSVozSlavz48ck2TcXSVDFt2xDSVWNuvfXWGPtqZqU2zE3L1Gn0/nOtU/26ozr97iqlCuoU8Ouuuy7Zpqk0unqUrwSkqVea9hhC2l66UpOnd+oqZbfddluM29vbk/1K109Tx3y1OVVayUOV2rj0e/Xop6Vj6jRlTQ0LIf0/6DXxFLlJkybF+Pzzz0+2aVqIjgOe4qArDel46mOhXn8fEzQVUM/RV9dZuXJljH0qtV6rrrZhb9DpxL4KZe7/pCv6hJD2gR/84AfJtokTJ3Z6PJ/urKvg6Ipq/lzUscOnyl9wwQUxHjFiRPZ89V3Ax+x6pDj3pFrHep/aru8Kp512WrJN0+z0+D7NXVeI0r7jqdArVqyIsabph5CO6/oO5/1+8eLFMW6kldp6m14zX1lPU+9KaX3aPqX+kFvRL4R0fNSUMn+2ev9GylMdcyuoeRqo/15OaUzOvYt7inOtK1hVmY+B2j76PuLp7r7aYy08PS+3EpnfM3392Vdvfn30HVP/5vD+0JVV1/x3tA31nXpX0tR7CzOBAAAAAAAAKoAvgQAAAAAAACqAL4EAAAAAAAAqoEdrAtWqVPdGc95LS715vnWj6+l6IvXW1TbUfGavgZHTKDU+av2svtSefq6a46qx50prPq4vI63tVWvbdfWa6b3WHbWX+lLbvafWvug1XHSZZ63LE0Jam0frOnlNBL0vas1p92NozRi9X7w9693/ervta31GeD0krc9yySWXJNtOPfXUGGudHv2dENI+rHXz/Jz0s3Wp8RDStjv00ENjrDWGQkjrAPV0La1G4eeoNV2+//3vJ9u0zpPWyivVWsotgRxCWh/joYceSrZp3Zq99torxvfcc0+y36pVq7LHrzJ93/FrNmvWrBhrO3otmEWLFsW41uXF/Ri5Z4DWVQuBmkCd0Wun9ZlCSGvJDBw4MMbeTrXW6Sk977T2iO7nNYG6UvOkarx+mj6D9Lno7zClOpM5WhM1hLS25p577hnj3q7/2tf4e4+OXS0tLTH26+g1KGuh77whpM9CPZ6/y3blfqm3xjsjAAAAAAAAdDu+BAIAAAAAAKiAhkwHA3YF0yT7lu5I80LP8rRNX0q4nrojjQ/v8iVtb7nllhjXurRprX3Wl7h97LHHYqypSp5KWu8xoZSC2qj0mvzrX/9Ktn33u9+Ncf/+/WOsKVkhpG1fa2qhLy1+6623xnjkyJEx1iXsQ+jY9t2tL7ZhCOm1XbJkSbLt+uuvj/H48eNj/OKLLyb7LViwoNPjlfiS5Js2bYqxpqN4CifLi5etX78++VnHuGnTpsXY00I2btwYY72XvT11m6cRafqLLlHtfdbHV3TkKXOaFqlpfZ5ypM/JWttRU75CSN+tNPY+q22MjrxttB/os8rfZXNplaU23HvvvZNtuTb09+RGfJdlJhAAAAAAAEAF8CUQAAAAAABABfAlEAAAAAAAQAX0aE2gUr4dup/nEHcHzZ9sxPzGZqP5+t2piu1Y63L09fgszyHuDlVpQ72WpWdIV9pwV2qL7Lvvvrt8/FroOO21eOpN75vSPdQd1za3LLUvm1rvdtxvv/12+fgfRJeMrXftBr8+69at6zT2e6nWMUKvpR9DlydftmxZjH2J5dI9redfarfStnr1xXq3Y+nazps3L8almllaX6Y0Hmq/2rZtW7Ltb3/7W4yHDBkS44ULFyb7aTuW+nNJqR3r8VzsyTb0a/Dggw/GWGs5eRsuX748xnqN/Xi6zeu5aR2u1tbWGGvNqBDyNU86+7yuqNc7ar2fi3pd/G8lvYZbtmzJnocuJa/XwevO6D3p9aHuvvvuGA8fPjzGzz33XPbc69GOvux5d+jNNpw/f36Mt2/fHmO/Vlo7qNSGenyvlabj6ahRo2Ksz8ue0JW/+ZkJBAAAAAAAUAF8CQQAAAAAAFABe5CWBQAAAAAA0PyYCQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAXwJBAAAAAAAUAF8CQQAAAAAAFABfAkEAAAAAABQAf8DK5G1n+VBYMIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "num = 10\n", - "plt.figure(figsize=(20, 5))\n", - "\n", - "for i in range(int(num)):\n", - " \n", - " new_latent = latent2*(i+1)/num + latent1*(num-i)/num\n", - " output = decoder(new_latent)\n", - " \n", - " #plot result\n", - " ax = plt.subplot(1, num, i+1)\n", - " ax.imshow((output[0].asnumpy() * 255.).transpose((1,2,0)).squeeze(), cmap='gray')\n", - " _ = ax.axis('off')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the latent space learnt by the autoencoder is fairly smooth, there is no sudden jump from one shape to another" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/example/automatic-mixed-precision/README.md b/example/automatic-mixed-precision/README.md deleted file mode 100644 index 334828ab1cce..000000000000 --- a/example/automatic-mixed-precision/README.md +++ /dev/null @@ -1,29 +0,0 @@ - - - - - - - - - - - - - - - - - -# Conversion of FP32 models to Mixed Precision Models - - -This folder contains examples for converting FP32 models to mixed precision models. The script allows for converting FP32 symbolic models or gluon models to mixed precision model. - -## Basic Usages - -AMP Model Conversion for a gluon model, casting the params wherever possible to FP16. The below script will convert the `resnet101_v1` model to Mixed Precision Model and cast params to FP16 wherever possible, load this converted model and run inference on it. - -```bash -python amp_model_conversion.py --model resnet101_v1 --run-dummy-inference --cast-optional-params -``` diff --git a/example/automatic-mixed-precision/amp_model_conversion.py b/example/automatic-mixed-precision/amp_model_conversion.py deleted file mode 100644 index 22af4f39b780..000000000000 --- a/example/automatic-mixed-precision/amp_model_conversion.py +++ /dev/null @@ -1,201 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os -import logging -import argparse -import mxnet as mx -from common import modelzoo -import gluoncv -from gluoncv.model_zoo import get_model -from mxnet import amp -import numpy as np - - -def save_symbol(fname, sym, logger=None): - if logger is not None: - logger.info('Saving symbol into file at {}'.format(fname)) - sym.save(fname, remove_amp_cast=False) - - -def save_params(fname, arg_params, aux_params, logger=None): - if logger is not None: - logger.info('Saving params into file at {}'.format(fname)) - save_dict = {('arg:%s' % k): v.as_in_context(mx.cpu()) for k, v in arg_params.items()} - save_dict.update({('aux:%s' % k): v.as_in_context(mx.cpu()) for k, v in aux_params.items()}) - mx.nd.save(fname, save_dict) - - -if __name__ == '__main__': - # Faster RCNN and Mask RCNN commented because of model loading issues - # https://github.com/dmlc/gluon-cv/issues/1034 - gluon_models = [#'faster_rcnn_fpn_resnet50_v1b_coco', - 'mobilenetv2_0.75', - 'cifar_resnet56_v1', - 'mobilenet0.25', - 'mobilenet1.0', - #'mask_rcnn_fpn_resnet50_v1b_coco', - 'simple_pose_resnet152_v1b', - 'ssd_512_resnet50_v1_voc', - #'faster_rcnn_resnet50_v1b_voc', - 'cifar_resnet20_v1', - 'yolo3_darknet53_voc', - 'resnet101_v1c', - 'simple_pose_resnet18_v1b', - #'mask_rcnn_resnet50_v1b_coco', - 'ssd_512_mobilenet1.0_coco', - 'vgg19_bn', - #'faster_rcnn_resnet50_v1b_coco', - 'cifar_resnet110_v1', - 'yolo3_mobilenet1.0_voc', - 'cifar_resnext29_16x64d', - 'resnet34_v1', - 'densenet121', - #'mask_rcnn_fpn_resnet101_v1d_coco', - 'vgg13_bn', - 'vgg19', - 'resnet152_v1d', - 'resnet152_v1s', - 'densenet201', - 'alexnet', - 'se_resnext50_32x4d', - 'resnet50_v1d_0.86', - 'resnet18_v1b_0.89', - 'yolo3_darknet53_coco', - 'resnet152_v1', - 'resnext101_64x4d', - 'vgg13', - 'resnet101_v1d_0.76', - 'simple_pose_resnet50_v1d', - 'senet_154', - 'resnet50_v1', - 'se_resnext101_32x4d', - 'fcn_resnet101_voc', - 'resnet152_v2', - #'mask_rcnn_resnet101_v1d_coco', - 'squeezenet1.1', - 'mobilenet0.5', - 'resnet34_v2', - 'resnet18_v1', - 'resnet152_v1b', - 'resnet101_v2', - 'cifar_resnet56_v2', - 'ssd_512_resnet101_v2_voc', - 'resnet50_v1d_0.37', - 'mobilenetv2_0.5', - #'faster_rcnn_fpn_bn_resnet50_v1b_coco', - 'resnet50_v1c', - 'densenet161', - 'simple_pose_resnet50_v1b', - 'resnet18_v1b', - 'darknet53', - 'fcn_resnet50_ade', - 'cifar_wideresnet28_10', - 'simple_pose_resnet101_v1d', - 'vgg16', - 'ssd_512_resnet50_v1_coco', - 'resnet101_v1d_0.73', - 'squeezenet1.0', - 'resnet50_v1b', - #'faster_rcnn_resnet101_v1d_coco', - 'ssd_512_mobilenet1.0_voc', - 'cifar_wideresnet40_8', - 'cifar_wideresnet16_10', - 'cifar_resnet110_v2', - 'resnet101_v1s', - 'mobilenetv2_0.25', - 'resnet152_v1c', - 'se_resnext101_64x4d', - #'faster_rcnn_fpn_resnet101_v1d_coco', - 'resnet50_v1d', - 'densenet169', - 'resnet34_v1b', - 'resnext50_32x4d', - 'resnet101_v1', - 'resnet101_v1b', - 'resnet50_v1s', - 'mobilenet0.75', - 'cifar_resnet20_v2', - 'resnet101_v1d', - 'vgg11_bn', - 'resnet18_v2', - 'vgg11', - 'simple_pose_resnet101_v1b', - 'resnext101_32x4d', - 'resnet50_v2', - 'vgg16_bn', - 'mobilenetv2_1.0', - 'resnet50_v1d_0.48', - 'resnet50_v1d_0.11', - 'fcn_resnet101_ade', - 'simple_pose_resnet152_v1d', - 'yolo3_mobilenet1.0_coco', - 'fcn_resnet101_coco'] - # TODO(anisub): add support for other models from gluoncv - # Not supported today mostly because of broken net.forward calls - segmentation_models = ['deeplab_resnet50_ade', - 'psp_resnet101_voc', - 'deeplab_resnet152_voc', - 'deeplab_resnet101_ade', - 'deeplab_resnet152_coco', - 'psp_resnet101_ade', - 'deeplab_resnet101_coco', - 'psp_resnet101_citys', - 'psp_resnet50_ade', - 'psp_resnet101_coco', - 'deeplab_resnet101_voc'] - calib_ssd_models = ["ssd_512_vgg16_atrous_voc", - "ssd_300_vgg16_atrous_voc", - "ssd_300_vgg16_atrous_coco"] - calib_inception_models = ["inceptionv3"] - gluon_models = gluon_models + segmentation_models + \ - calib_ssd_models + calib_inception_models - models = gluon_models - - parser = argparse.ArgumentParser(description='Convert a provided FP32 model to a mixed precision model') - parser.add_argument('--model', type=str, choices=models) - parser.add_argument('--run-dummy-inference', action='store_true', default=False, - help='Will generate random input of shape (1, 3, 224, 224) ' - 'and run a dummy inference forward pass') - parser.add_argument('--cast-optional-params', action='store_true', default=False, - help='If enabled, will try to cast params to target dtype wherever possible') - args = parser.parse_args() - logging.basicConfig() - logger = logging.getLogger('logger') - logger.setLevel(logging.INFO) - - assert args.model in gluon_models, "Please choose one of the available gluon models: {}".format(gluon_models) - shape = None - if args.model in segmentation_models: - shape = (1, 3, 480, 480) - elif args.model in calib_ssd_models: - shape = (1, 3, 512, 544) - elif args.model in calib_inception_models: - shape = (1, 3, 299, 299) - else: - shape = (1, 3, 224, 224) - net = gluoncv.model_zoo.get_model(args.model, pretrained=True) - net.hybridize() - result_before1 = net.forward(mx.nd.random.uniform(shape=shape)) - net.export("{}".format(args.model)) - net = amp.convert_hybrid_block(net, cast_optional_params=args.cast_optional_params) - net.export("{}-amp".format(args.model), remove_amp_cast=False) - if args.run_dummy_inference: - logger.info("Running inference on the mixed precision model with dummy inputs, batch size: 1") - result_after = net.forward(mx.nd.random.uniform(shape=shape, dtype=np.float32, ctx=mx.gpu(0))) - result_after = net.forward(mx.nd.random.uniform(shape=shape, dtype=np.float32, ctx=mx.gpu(0))) - logger.info("Inference run successfully") diff --git a/example/bi-lstm-sort/bi-lstm-sort.ipynb b/example/bi-lstm-sort/bi-lstm-sort.ipynb index 5d18be35e079..df9a9c597dfc 100644 --- a/example/bi-lstm-sort/bi-lstm-sort.ipynb +++ b/example/bi-lstm-sort/bi-lstm-sort.ipynb @@ -2,37 +2,35 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, "source": [ "# Using a bi-lstm to sort a sequence of integers" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 1, - "metadata": {}, - "outputs": [], "source": [ "import random\n", "import string\n", "\n", "import mxnet as mx\n", - "from mxnet import gluon, nd\n", - "import numpy as np" - ] + "from mxnet import gluon, np\n", + "import numpy as onp" + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Data Preparation" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 2, - "metadata": {}, - "outputs": [], "source": [ "max_num = 999\n", "dataset_size = 60000\n", @@ -40,11 +38,12 @@ "split = 0.8\n", "batch_size = 512\n", "ctx = mx.gpu() if mx.context.num_gpus() > 0 else mx.cpu()" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We are getting a dataset of **dataset_size** sequences of integers of length **seq_len** between **0** and **max_num**. We use **split*100%** of them for training and the rest for testing.\n", "\n", @@ -56,68 +55,68 @@ "Should return\n", "\n", "10 30 50 200 999" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 3, - "metadata": {}, - "outputs": [], "source": [ - "X = mx.random.uniform(low=0, high=max_num, shape=(dataset_size, seq_len)).astype('int32').asnumpy()\n", + "X = mx.np.random.uniform(low=0, high=max_num, size=(dataset_size, seq_len)).astype('int32').asnumpy()\n", "Y = X.copy()\n", "Y.sort() #Let's sort X to get the target" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "source": [ + "print(\"Input {}\\nTarget {}\".format(X[0].tolist(), Y[0].tolist()))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Input [548, 592, 714, 843, 602]\n", "Target [548, 592, 602, 714, 843]\n" ] } ], - "source": [ - "print(\"Input {}\\nTarget {}\".format(X[0].tolist(), Y[0].tolist()))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "For the purpose of training, we encode the input as characters rather than numbers" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "source": [ + "vocab = string.digits + \" \"\n", + "print(vocab)\n", + "vocab_idx = { c:i for i,c in enumerate(vocab)}\n", + "print(vocab_idx)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "0123456789 \n", "{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, ' ': 10}\n" ] } ], - "source": [ - "vocab = string.digits + \" \"\n", - "print(vocab)\n", - "vocab_idx = { c:i for i,c in enumerate(vocab)}\n", - "print(vocab_idx)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We write a transform that will convert our numbers into text of maximum length **max_len**, and one-hot encode the characters.\n", "For example:\n", @@ -125,31 +124,30 @@ "\"30 10\" corresponding indices are [3, 0, 10, 1, 0]\n", "\n", "We then one hot encode that and get a matrix representation of our input. We don't need to encode our target as the loss we are going to use support sparse labels" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "source": [ + "max_len = len(str(max_num))*seq_len+(seq_len-1)\n", + "print(\"Maximum length of the string: %s\" % max_len)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Maximum length of the string: 19\n" ] } ], - "source": [ - "max_len = len(str(max_num))*seq_len+(seq_len-1)\n", - "print(\"Maximum length of the string: %s\" % max_len)" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 7, - "metadata": {}, - "outputs": [], "source": [ "def transform(x, y):\n", " x_string = ' '.join(map(str, x.tolist()))\n", @@ -158,28 +156,35 @@ " y_string = ' '.join(map(str, y.tolist()))\n", " y_string_padded = y_string + ' '*(max_len-len(y_string))\n", " y = [vocab_idx[c] for c in y_string_padded]\n", - " return mx.nd.one_hot(mx.nd.array(x), len(vocab)), mx.nd.array(y)" - ] + " return mx.npx.one_hot(mx.nd.array(x), len(vocab)), mx.np.array(y)" + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 8, - "metadata": {}, - "outputs": [], "source": [ "split_idx = int(split*len(X))\n", "train_dataset = gluon.data.ArrayDataset(X[:split_idx], Y[:split_idx]).transform(transform)\n", "test_dataset = gluon.data.ArrayDataset(X[split_idx:], Y[split_idx:]).transform(transform)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "source": [ + "print(\"Input {}\".format(X[0]))\n", + "print(\"Transformed data Input {}\".format(train_dataset[0][0]))\n", + "print(\"Target {}\".format(Y[0]))\n", + "print(\"Transformed data Target {}\".format(train_dataset[0][1]))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Input [548 592 714 843 602]\n", "Transformed data Input \n", @@ -211,103 +216,115 @@ ] } ], - "source": [ - "print(\"Input {}\".format(X[0]))\n", - "print(\"Transformed data Input {}\".format(train_dataset[0][0]))\n", - "print(\"Target {}\".format(Y[0]))\n", - "print(\"Transformed data Target {}\".format(train_dataset[0][1]))" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 10, - "metadata": {}, - "outputs": [], "source": [ "train_data = gluon.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=20, last_batch='rollover')\n", "test_data = gluon.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=5, last_batch='rollover')" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Creating the network" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 11, - "metadata": {}, - "outputs": [], "source": [ "net = gluon.nn.HybridSequential()\n", - "with net.name_scope():\n", - " net.add(\n", - " gluon.rnn.LSTM(hidden_size=128, num_layers=2, layout='NTC', bidirectional=True),\n", - " gluon.nn.Dense(len(vocab), flatten=False)\n", - " )" - ] + "net.add(\n", + " gluon.rnn.LSTM(hidden_size=128, num_layers=2, layout='NTC', bidirectional=True),\n", + " gluon.nn.Dense(len(vocab), flatten=False)\n", + ")" + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 12, - "metadata": {}, - "outputs": [], "source": [ "net.initialize(mx.init.Xavier(), ctx=ctx)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 13, - "metadata": {}, - "outputs": [], "source": [ "loss = gluon.loss.SoftmaxCELoss()" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We use a learning rate schedule to improve the convergence of the model" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 14, - "metadata": {}, - "outputs": [], "source": [ "schedule = mx.lr_scheduler.FactorScheduler(step=len(train_data)*10, factor=0.75)\n", "schedule.base_lr = 0.01" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 15, - "metadata": {}, - "outputs": [], "source": [ "trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate':0.01, 'lr_scheduler':schedule})" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Training loop" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 16, - "metadata": {}, + "source": [ + "epochs = 100\n", + "for e in range(epochs):\n", + " epoch_loss = 0.\n", + " for i, (data, label) in enumerate(train_data):\n", + " data = data.as_in_context(ctx)\n", + " label = label.as_in_context(ctx)\n", + "\n", + " with mx.autograd.record():\n", + " output = net(data)\n", + " l = loss(output, label)\n", + "\n", + " l.backward()\n", + " trainer.step(data.shape[0])\n", + " \n", + " epoch_loss += l.mean()\n", + " \n", + " print(\"Epoch [{}] Loss: {}, LR {}\".format(e, epoch_loss.item()/(i+1), trainer.learning_rate))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [0] Loss: 1.6627886372227823, LR 0.01\n", "Epoch [1] Loss: 1.210370733382854, LR 0.01\n", @@ -412,82 +429,68 @@ ] } ], - "source": [ - "epochs = 100\n", - "for e in range(epochs):\n", - " epoch_loss = 0.\n", - " for i, (data, label) in enumerate(train_data):\n", - " data = data.as_in_context(ctx)\n", - " label = label.as_in_context(ctx)\n", - "\n", - " with mx.autograd.record():\n", - " output = net(data)\n", - " l = loss(output, label)\n", - "\n", - " l.backward()\n", - " trainer.step(data.shape[0])\n", - " \n", - " epoch_loss += l.mean()\n", - " \n", - " print(\"Epoch [{}] Loss: {}, LR {}\".format(e, epoch_loss.asscalar()/(i+1), trainer.learning_rate))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Testing" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We get a random element from the testing set" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 17, - "metadata": {}, - "outputs": [], "source": [ "n = random.randint(0, len(test_data)-1)\n", "\n", "x_orig = X[split_idx+n]\n", "y_orig = Y[split_idx+n]" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 41, - "metadata": {}, - "outputs": [], "source": [ "def get_pred(x):\n", " x, _ = transform(x, x)\n", - " output = net(x.as_in_context(ctx).expand_dims(axis=0))\n", + " output = net(mx.np.expand_dims(x.as_in_ctx(ctx), axis=0))\n", "\n", " # Convert output back to string\n", " pred = ''.join([vocab[int(o)] for o in output[0].argmax(axis=1).asnumpy().tolist()])\n", " return pred" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Printing the result" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 43, - "metadata": {}, + "source": [ + "x_ = ' '.join(map(str,x_orig))\n", + "label = ' '.join(map(str,y_orig))\n", + "print(\"X {}\\nPredicted {}\\nLabel {}\".format(x_, get_pred(x_orig), label))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "X 611 671 275 871 944\n", "Predicted 275 611 671 871 944\n", @@ -495,92 +498,88 @@ ] } ], - "source": [ - "x_ = ' '.join(map(str,x_orig))\n", - "label = ' '.join(map(str,y_orig))\n", - "print(\"X {}\\nPredicted {}\\nLabel {}\".format(x_, get_pred(x_orig), label))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We can also pick our own example, and the network manages to sort it without problem:" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 66, - "metadata": {}, + "source": [ + "print(get_pred(onp.array([500, 30, 999, 10, 130])))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "10 30 130 500 999 \n" ] } ], - "source": [ - "print(get_pred(np.array([500, 30, 999, 10, 130])))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "The model has even learned to generalize to examples not on the training set" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 64, - "metadata": {}, + "source": [ + "print(\"Only four numbers:\", get_pred(onp.array([105, 302, 501, 202])))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Only four numbers: 105 202 302 501 \n" ] } ], - "source": [ - "print(\"Only four numbers:\", get_pred(np.array([105, 302, 501, 202])))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "However we can see it has trouble with other edge cases:" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 63, - "metadata": {}, + "source": [ + "print(\"Small digits:\", get_pred(onp.array([10, 3, 5, 2, 8])))\n", + "print(\"Small digits, 6 numbers:\", get_pred(onp.array([10, 33, 52, 21, 82, 10])))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Small digits: 8 0 42 28 \n", "Small digits, 6 numbers: 10 0 20 82 71 115 \n" ] } ], - "source": [ - "print(\"Small digits:\", get_pred(np.array([10, 3, 5, 2, 8])))\n", - "print(\"Small digits, 6 numbers:\", get_pred(np.array([10, 33, 52, 21, 82, 10])))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "This could be improved by adjusting the training dataset accordingly" - ] + ], + "metadata": {} } ], "metadata": { @@ -604,4 +603,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file diff --git a/example/gluon/actor_critic/actor_critic.py b/example/gluon/actor_critic/actor_critic.py index 6d4474b4f239..8a043f3f04d6 100644 --- a/example/gluon/actor_critic/actor_critic.py +++ b/example/gluon/actor_critic/actor_critic.py @@ -20,13 +20,12 @@ import argparse import gym from itertools import count -import numpy as np +import numpy as onp import mxnet as mx -import mxnet.ndarray as F from mxnet import gluon from mxnet.gluon import nn -from mxnet import autograd +from mxnet import autograd, npx parser = argparse.ArgumentParser(description='MXNet actor-critic example') @@ -48,16 +47,15 @@ class Policy(gluon.Block): def __init__(self, **kwargs): super(Policy, self).__init__(**kwargs) - with self.name_scope(): - self.dense = nn.Dense(16, in_units=4, activation='relu') - self.action_pred = nn.Dense(2, in_units=16) - self.value_pred = nn.Dense(1, in_units=16) + self.dense = nn.Dense(16, in_units=4, activation='relu') + self.action_pred = nn.Dense(2, in_units=16) + self.value_pred = nn.Dense(1, in_units=16) def forward(self, x): x = self.dense(x) probs = self.action_pred(x) values = self.value_pred(x) - return F.softmax(probs), values + return npx.softmax(probs), values net = Policy() net.initialize(mx.init.Uniform(0.02)) @@ -74,14 +72,14 @@ def forward(self, x): with autograd.record(): # Sample a sequence of actions for t in range(10000): - state = mx.nd.array(np.expand_dims(state, 0)) - prob, value = net(state) - action, logp = mx.nd.sample_multinomial(prob, get_prob=True) + state = mx.nd.array(onp.expand_dims(state, 0)) + prob, value = net(state.as_np_ndarray()) + action, logp = mx.nd.sample_multinomial(prob.as_nd_ndarray(), get_prob=True) state, reward, done, _ = env.step(action.asnumpy()[0]) if args.render: env.render() rewards.append(reward) - values.append(value) + values.append(value.as_np_ndarray()) actions.append(action.asnumpy()[0]) heads.append(logp) if done: @@ -93,12 +91,12 @@ def forward(self, x): for i in range(len(rewards)-1, -1, -1): R = rewards[i] + args.gamma * R rewards[i] = R - rewards = np.array(rewards) + rewards = onp.array(rewards) rewards -= rewards.mean() - rewards /= rewards.std() + np.finfo(rewards.dtype).eps + rewards /= rewards.std() + onp.finfo(rewards.dtype).eps # compute loss and gradient - L = sum([loss(value, mx.nd.array([r])) for r, value in zip(rewards, values)]) + L = sum([loss(value, mx.np.array([r])) for r, value in zip(rewards, values)]) final_nodes = [L] for logp, r, v in zip(heads, rewards, values): reward = r - v.asnumpy()[0,0] diff --git a/example/gluon/audio/README.md b/example/gluon/audio/README.md deleted file mode 100644 index 39006e301722..000000000000 --- a/example/gluon/audio/README.md +++ /dev/null @@ -1,115 +0,0 @@ - - - - - - - - - - - - - - - - - -# Urban Sounds Classification in MXNet Gluon - -This example provides an end-to-end pipeline for a common datahack competition - [Urban Sounds Classification Example](https://datahack.analyticsvidhya.com/contest/practice-problem-urban-sound-classification/). - -After logging in, the data set can be downloaded. -The details of the dataset and the link to download it are given below: - - -## Urban Sounds Dataset: -### Description - The dataset contains 8732 wav files which are audio samples(<= 4s)) of street sounds like engine_idling, car_horn, children_playing, dog_barking and so on. - The task is to classify these audio samples into one of the following 10 labels: - ``` - siren, - street_music, - drilling, - dog_bark, - children_playing, - gun_shot, - engine_idling, - air_conditioner, - jackhammer, - car_horn - ``` - -To be able to run this example: - -1. `pip install -r requirements.txt` - - If you are in the directory where the requirements.txt file lies, - this step installs the required libraries to run the example. - The main dependency that is required is: Librosa. - The version used to test the example is: `0.6.2` - For more details, refer here: -https://librosa.github.io/librosa/install.html - -2. Download the dataset(train.zip, test.zip) required for this example from the location: -https://drive.google.com/drive/folders/0By0bAi7hOBAFUHVXd1JCN3MwTEU - -3. Extract both the zip archives into the **current directory** - after unzipping you would get 2 new folders namely, - **Train** and **Test** and two csv files - **train.csv**, **test.csv** - - Assuming you are in a directory *"UrbanSounds"*, after downloading and extracting train.zip, the folder structure should be: - - ``` - UrbanSounds - - Train - - 0.wav, 1.wav ... - - train.csv - - train.py - - predict.py ... - ``` - -4. Apache MXNet is installed on the machine. For instructions, go to the link: https://mxnet.apache.org/install/ - - - -For information on the current design of how the AudioFolderDataset is implemented, refer below: -https://cwiki.apache.org/confluence/display/MXNET/Gluon+-+Audio - -### Usage - -For training: - -- Arguments - - train : The folder/directory that contains the audio(wav) files locally. Default = "./Train" - - csv: The file name of the csv file that contains audio file name to label mapping. Default = "train.csv" - - epochs : Number of epochs to train the model. Default = 30 - - batch_size : The batch size for training. Default = 32 - - -###### To use the default arguments, use: -``` -python train.py -``` -or - -###### To pass command-line arguments for training data directory, epochs, batch_size, csv file name, use : -``` -python train.py --train ./Train --csv train.csv --batch_size 32 --epochs 30 -``` - -For prediction: - -- Arguments - - pred : The folder/directory that contains the audio(wav) files which are to be classified. Default = "./Test" - - -###### To use the default arguments, use: -``` -python predict.py -``` -or - -###### To pass command-line arguments for test data directory, use : -``` -python predict.py --pred ./Test -``` diff --git a/example/gluon/audio/transforms.py b/example/gluon/audio/transforms.py deleted file mode 100644 index 8b76d131cdb1..000000000000 --- a/example/gluon/audio/transforms.py +++ /dev/null @@ -1,205 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# coding: utf-8 -# pylint: disable= arguments-differ -"""Audio transforms.""" - -import warnings -import numpy as np -try: - import librosa -except ImportError as e: - warnings.warn("librosa dependency could not be resolved or \ - imported, could not provide some/all transform.") - -from mxnet import ndarray as nd -from mxnet.gluon.block import Block - -class MFCC(Block): - """Extracts Mel frequency cepstrum coefficients from the audio data file - More details : https://librosa.github.io/librosa/generated/librosa.feature.mfcc.html - - Attributes - ---------- - sampling_rate: int, default 22050 - sampling rate of the input audio signal - num_mfcc: int, default 20 - number of mfccs to return - - - Inputs: - - **x**: input tensor (samples, ) shape. - - Outputs: - - **out**: output array is a scaled NDArray with (samples, ) shape. - - """ - - def __init__(self, sampling_rate=22050, num_mfcc=20): - self._sampling_rate = sampling_rate - self._num_fcc = num_mfcc - super(MFCC, self).__init__() - - def forward(self, x): - if isinstance(x, np.ndarray): - y = x - elif isinstance(x, nd.NDArray): - y = x.asnumpy() - else: - warnings.warn("MFCC - allowed datatypes mx.nd.NDArray and numpy.ndarray") - return x - - audio_tmp = np.mean(librosa.feature.mfcc(y=y, sr=self._sampling_rate, n_mfcc=self._num_fcc).T, axis=0) - return nd.array(audio_tmp) - - -class Scale(Block): - """Scale audio numpy.ndarray from a 16-bit integer to a floating point number between - -1.0 and 1.0. The 16-bit integer is the sample resolution or bit depth. - - Attributes - ---------- - scale_factor : float - The factor to scale the input tensor by. - - - Inputs: - - **x**: input tensor (samples, ) shape. - - Outputs: - - **out**: output array is a scaled NDArray with (samples, ) shape. - - Examples - -------- - >>> scale = audio.transforms.Scale(scale_factor=2) - >>> audio_samples = mx.nd.array([2,3,4]) - >>> scale(audio_samples) - [1. 1.5 2. ] - - - """ - - def __init__(self, scale_factor=2**31): - self.scale_factor = scale_factor - super(Scale, self).__init__() - - def forward(self, x): - if self.scale_factor == 0: - warnings.warn("Scale factor cannot be 0.") - return x - if isinstance(x, np.ndarray): - return nd.array(x/self.scale_factor) - return x / self.scale_factor - - -class PadTrim(Block): - """Pad/Trim a 1d-NDArray of NPArray (Signal or Labels) - - Attributes - ---------- - max_len : int - Length to which the array will be padded or trimmed to. - fill_value: int or float - If there is a need of padding, what value to pad at the end of the input array. - - - Inputs: - - **x**: input tensor (samples, ) shape. - - Outputs: - - **out**: output array is a scaled NDArray with (max_len, ) shape. - - Examples - -------- - >>> padtrim = audio.transforms.PadTrim(max_len=9, fill_value=0) - >>> audio_samples = mx.nd.array([1,2,3,4,5]) - >>> padtrim(audio_samples) - [1. 2. 3. 4. 5. 0. 0. 0. 0.] - - - """ - - def __init__(self, max_len, fill_value=0): - self._max_len = max_len - self._fill_value = fill_value - super(PadTrim, self).__init__() - - def forward(self, x): - if isinstance(x, np.ndarray): - x = nd.array(x) - if self._max_len > x.size: - pad = nd.ones((self._max_len - x.size,)) * self._fill_value - x = nd.concat(x, pad, dim=0) - elif self._max_len < x.size: - x = x[:self._max_len] - return x - - -class MEL(Block): - """Create MEL Spectrograms from a raw audio signal. Relatively pretty slow. - - Attributes - ---------- - sampling_rate: int, default 22050 - sampling rate of the input audio signal - num_fft: int, default 2048 - length of the Fast Fourier transform window - num_mels: int, default 20 - number of mel bands to generate - hop_length: int, default 512 - total samples between successive frames - - - Inputs: - - **x**: input tensor (samples, ) shape. - - Outputs: - - **out**: output array which consists of mel spectograms, shape = (n_mels, 1) - - Usage (see librosa.feature.melspectrogram docs): - MEL(sr=16000, n_fft=1600, hop_length=800, n_mels=64) - - Examples - -------- - >>> mel = audio.transforms.MEL() - >>> audio_samples = mx.nd.array([1,2,3,4,5]) - >>> mel(audio_samples) - [[3.81801406e+04] - [9.86858240e-29] - [1.87405472e-29] - [2.38637225e-29] - [3.94043010e-29] - [3.67071565e-29] - [7.29390295e-29] - [8.84324438e-30]... - - - """ - - def __init__(self, sampling_rate=22050, num_fft=2048, num_mels=20, hop_length=512): - self._sampling_rate = sampling_rate - self._num_fft = num_fft - self._num_mels = num_mels - self._hop_length = hop_length - super(MEL, self).__init__() - - def forward(self, x): - if isinstance(x, nd.NDArray): - x = x.asnumpy() - specs = librosa.feature.melspectrogram(x, sr=self._sampling_rate,\ - n_fft=self._num_fft, n_mels=self._num_mels, hop_length=self._hop_length) - return nd.array(specs) diff --git a/example/gluon/audio/urban_sounds/README.md b/example/gluon/audio/urban_sounds/README.md deleted file mode 100644 index 4ad76ff114a8..000000000000 --- a/example/gluon/audio/urban_sounds/README.md +++ /dev/null @@ -1,117 +0,0 @@ - - - - - - - - - - - - - - - - - -# Urban Sounds Classification in MXNet Gluon - -This example provides an end-to-end pipeline for a common datahack competition - Urban Sounds Classification Example. -Below is the link to the competition: -https://datahack.analyticsvidhya.com/contest/practice-problem-urban-sound-classification/ - -After logging in, the data set can be downloaded. -The details of the dataset and the link to download it are given below: - - -## Urban Sounds Dataset: -### Description - The dataset contains 8732 wav files which are audio samples(<= 4s)) of street sounds like engine_idling, car_horn, children_playing, dog_barking and so on. - The task is to classify these audio samples into one of the following 10 labels: - ``` - siren, - street_music, - drilling, - dog_bark, - children_playing, - gun_shot, - engine_idling, - air_conditioner, - jackhammer, - car_horn - ``` - -To be able to run this example: - -1. `pip install -r requirements.txt` - - If you are in the directory where the requirements.txt file lies, - this step installs the required libraries to run the example. - The main dependency that is required is: Librosa. - The version used to test the example is: `0.6.2` - For more details, refer here: -https://librosa.github.io/librosa/install.html - -2. Download the dataset(train.zip, test.zip) required for this example from the location: -https://drive.google.com/drive/folders/0By0bAi7hOBAFUHVXd1JCN3MwTEU - -3. Extract both the zip archives into the **current directory** - after unzipping you would get 2 new folders namely, - **Train** and **Test** and two csv files - **train.csv**, **test.csv** - - Assuming you are in a directory *"UrbanSounds"*, after downloading and extracting train.zip, the folder structure should be: - - ``` - UrbanSounds - - Train - - 0.wav, 1.wav ... - - train.csv - - train.py - - predict.py ... - ``` - -4. Apache MXNet is installed on the machine. For instructions, go to the link: https://mxnet.apache.org/install/ - - - -For information on the current design of how the AudioFolderDataset is implemented, refer below: -https://cwiki.apache.org/confluence/display/MXNET/Gluon+-+Audio - -### Usage - -For training: - -- Arguments - - train : The folder/directory that contains the audio(wav) files locally. Default = "./Train" - - csv: The file name of the csv file that contains audio file name to label mapping. Default = "train.csv" - - epochs : Number of epochs to train the model. Default = 30 - - batch_size : The batch size for training. Default = 32 - - -###### To use the default arguments, use: -``` -python train.py -``` -or - -###### To pass command-line arguments for training data directory, epochs, batch_size, csv file name, use : -``` -python train.py --train ./Train --csv train.csv --batch_size 32 --epochs 30 -``` - -For prediction: - -- Arguments - - pred : The folder/directory that contains the audio(wav) files which are to be classified. Default = "./Test" - - -###### To use the default arguments, use: -``` -python predict.py -``` -or - -###### To pass command-line arguments for test data directory, use : -``` -python predict.py --pred ./Test -``` \ No newline at end of file diff --git a/example/gluon/audio/urban_sounds/datasets.py b/example/gluon/audio/urban_sounds/datasets.py deleted file mode 100644 index 51c040c8f162..000000000000 --- a/example/gluon/audio/urban_sounds/datasets.py +++ /dev/null @@ -1,179 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# coding: utf-8 -# pylint: disable= -""" Audio Dataset container.""" -from __future__ import print_function -__all__ = ['AudioFolderDataset'] - -import os -import warnings -from itertools import islice -import csv -from mxnet.gluon.data import Dataset -from mxnet import ndarray as nd -try: - import librosa -except ImportError as e: - raise ImportError("librosa dependency could not be resolved or \ - imported, could not load audio onto the numpy array. pip install librosa") - - - -class AudioFolderDataset(Dataset): - """A dataset for loading Audio files stored in a folder structure like:: - - root/children_playing/0.wav - root/siren/23.wav - root/drilling/26.wav - root/dog_barking/42.wav - OR - Files(wav) and a csv file that has file name and associated label - - Parameters - ---------- - root : str - Path to root directory. - transform : callable, default None - A function that takes data and label and transforms them - train_csv: str, default None - train_csv should be populated by the training csv filename - file_format: str, default '.wav' - The format of the audio files(.wav) - skip_header: boolean, default False - While reading from csv file, whether to skip at the start of the file to avoid reading in header - - - Attributes - ---------- - synsets : list - List of class names. `synsets[i]` is the name for the `i`th label - items : list of tuples - List of all audio in (filename, label) pairs. - - """ - def __init__(self, root, train_csv=None, file_format='.wav', skip_header=False): - if not librosa: - warnings.warn("pip install librosa to continue.") - raise RuntimeError("Librosa not installed. Run pip install librosa and retry this step.") - self._root = os.path.expanduser(root) - self._exts = ['.wav'] - self._format = file_format - self._train_csv = train_csv - if file_format.lower() not in self._exts: - raise RuntimeError("Format {} not supported currently.".format(file_format)) - skip_rows = 0 - if skip_header: - skip_rows = 1 - self._list_audio_files(self._root, skip_rows=skip_rows) - - - def _list_audio_files(self, root, skip_rows=0): - """Populates synsets - a map of index to label for the data items. - Populates the data in the dataset, making tuples of (data, label) - """ - self.synsets = [] - self.items = [] - if not self._train_csv: - # The audio files are organized in folder structure with - # directory name as label and audios in them - self._folder_structure(root) - else: - # train_csv contains mapping between filename and label - self._csv_labelled_dataset(root, skip_rows=skip_rows) - - # Generating the synset.txt file now - if not os.path.exists("./synset.txt"): - with open("./synset.txt", "w") as synsets_file: - for item in self.synsets: - synsets_file.write(item+os.linesep) - print("Synsets is generated as synset.txt") - else: - warnings.warn("Synset file already exists in the current directory! Not generating synset.txt.") - - - def _folder_structure(self, root): - for folder in sorted(os.listdir(root)): - path = os.path.join(root, folder) - if not os.path.isdir(path): - warnings.warn('Ignoring {}, which is not a directory.'.format(path)) - continue - label = len(self.synsets) - self.synsets.append(folder) - for filename in sorted(os.listdir(path)): - file_name = os.path.join(path, filename) - ext = os.path.splitext(file_name)[1] - if ext.lower() not in self._exts: - warnings.warn('Ignoring {} of type {}. Only support {}'\ - .format(filename, ext, ', '.join(self._exts))) - continue - self.items.append((file_name, label)) - - - def _csv_labelled_dataset(self, root, skip_rows=0): - with open(self._train_csv, "r") as traincsv: - for line in islice(csv.reader(traincsv), skip_rows, None): - filename = os.path.join(root, line[0]) - label = line[1].strip() - if label not in self.synsets: - self.synsets.append(label) - if self._format not in filename: - filename = filename+self._format - self.items.append((filename, nd.array([self.synsets.index(label)]).reshape((1,)))) - - - def __getitem__(self, idx): - """Retrieve the item (data, label) stored at idx in items""" - filename, label = self.items[idx] - # resampling_type is passed as kaiser_fast for a better performance - X1, _ = librosa.load(filename, res_type='kaiser_fast') - return nd.array(X1), label - - - def __len__(self): - """Retrieves the number of items in the dataset""" - return len(self.items) - - - def transform_first(self, fn, lazy=False): - """Returns a new dataset with the first element of each sample - transformed by the transformer function `fn`. - - This is useful, for example, when you only want to transform data - while keeping label as is. - lazy=False is passed to transform_first for dataset so that all tramsforms could be performed in - one shot and not during training. This is a performance consideration. - - Parameters - ---------- - fn : callable - A transformer function that takes the first element of a sample - as input and returns the transformed element. - lazy : bool, default False - If False, transforms all samples at once. Otherwise, - transforms each sample on demand. Note that if `fn` - is stochastic, you must set lazy to True or you will - get the same result on all epochs. - - Returns - ------- - Dataset - The transformed dataset. - - """ - return super(AudioFolderDataset, self).transform_first(fn, lazy=lazy) diff --git a/example/gluon/audio/urban_sounds/model.py b/example/gluon/audio/urban_sounds/model.py deleted file mode 100644 index af23cb946e2e..000000000000 --- a/example/gluon/audio/urban_sounds/model.py +++ /dev/null @@ -1,33 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""This module builds a model an MLP with a configurable output layer( number of units in the last layer). -Users can pass any number of units in the last layer. SInce this dataset has 10 labels, -the default value of num_labels = 10 -""" -import mxnet as mx -from mxnet import gluon - -# Defining a neural network with number of labels -def get_net(num_labels=10): - net = gluon.nn.Sequential() - with net.name_scope(): - net.add(gluon.nn.Dense(256, activation="relu")) # 1st layer (256 nodes) - net.add(gluon.nn.Dense(256, activation="relu")) # 2nd hidden layer ( 256 nodes ) - net.add(gluon.nn.Dense(num_labels)) - net.collect_params().initialize(mx.init.Xavier()) - return net diff --git a/example/gluon/audio/urban_sounds/predict.py b/example/gluon/audio/urban_sounds/predict.py deleted file mode 100644 index 0c3631173667..000000000000 --- a/example/gluon/audio/urban_sounds/predict.py +++ /dev/null @@ -1,92 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -""" Prediction module for Urban Sounds Classification""" -from __future__ import print_function -import os -import sys -import warnings -import mxnet as mx -from mxnet import nd -from model import get_net -try: - import librosa -except ImportError: - raise ImportError("Librosa is not installed! please run the following command:\ - `pip install librosa`") -sys.path.append('../') - -def predict(prediction_dir='./Test'): - """The function is used to run predictions on the audio files in the directory `pred_directory`. - - Parameters - ---------- - net: - The model that has been trained. - prediction_dir: string, default ./Test - The directory that contains the audio files on which predictions are to be made - - """ - - if not os.path.exists(prediction_dir): - warnings.warn("The directory on which predictions are to be made is not found!") - return - - if len(os.listdir(prediction_dir)) == 0: - warnings.warn("The directory on which predictions are to be made is empty! Exiting...") - return - - # Loading synsets - if not os.path.exists('./synset.txt'): - warnings.warn("The synset or labels for the dataset do not exist. Please run the training script first.") - return - - with open("./synset.txt", "r") as f: - synset = [l.rstrip() for l in f] - net = get_net(len(synset)) - print("Trying to load the model with the saved parameters...") - if not os.path.exists("./net.params"): - warnings.warn("The model does not have any saved parameters... Cannot proceed! Train the model first") - return - - net.load_parameters("./net.params") - file_names = os.listdir(prediction_dir) - full_file_names = [os.path.join(prediction_dir, item) for item in file_names] - from transforms import MFCC - mfcc = MFCC() - print("\nStarting predictions for audio files in ", prediction_dir, " ....\n") - for filename in full_file_names: - # Argument kaiser_fast to res_type is faster than 'kaiser_best'. To reduce the load time, passing kaiser_fast. - X1, _ = librosa.load(filename, res_type='kaiser_fast') - transformed_test_data = mfcc(mx.nd.array(X1)) - output = net(transformed_test_data.reshape((1, -1))) - prediction = nd.argmax(output, axis=1) - print(filename, " -> ", synset[(int)(prediction.asscalar())]) - - -if __name__ == '__main__': - try: - import argparse - parser = argparse.ArgumentParser(description="Urban Sounds clsssification example - MXNet") - parser.add_argument('--pred', '-p', help="Enter the folder path that contains your audio files", type=str) - args = parser.parse_args() - pred_dir = args.pred - - except ImportError: - warnings.warn("Argparse module not installed! passing default arguments.") - pred_dir = './Test' - predict(prediction_dir=pred_dir) - print("Urban sounds classification Prediction DONE!") diff --git a/example/gluon/audio/urban_sounds/requirements.txt b/example/gluon/audio/urban_sounds/requirements.txt deleted file mode 100644 index d885e0beec7e..000000000000 --- a/example/gluon/audio/urban_sounds/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -librosa>=0.6.2 # librosa is a library that is used to load the audio(wav) files and provides capabilities of feature extraction. -argparse # used for parsing arguments \ No newline at end of file diff --git a/example/gluon/audio/urban_sounds/train.py b/example/gluon/audio/urban_sounds/train.py deleted file mode 100644 index 8a55c5b5bc67..000000000000 --- a/example/gluon/audio/urban_sounds/train.py +++ /dev/null @@ -1,157 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""The module to run training on the Urban sounds dataset""" -from __future__ import print_function -import sys -import os -import time -import warnings -import mxnet as mx -from mxnet import gluon, nd, autograd -from datasets import AudioFolderDataset -import model -sys.path.append('../') - -def evaluate_accuracy(data_iterator, net): - """Function to evaluate accuracy of any data iterator passed to it as an argument""" - acc = mx.gluon.metric.Accuracy() - for data, label in data_iterator: - output = net(data) - predictions = nd.argmax(output, axis=1) - predictions = predictions.reshape((-1, 1)) - acc.update(preds=predictions, labels=label) - return acc.get()[1] - - -def train(train_dir=None, train_csv=None, epochs=30, batch_size=32): - """Function responsible for running the training the model.""" - - if not train_dir or not os.path.exists(train_dir) or not train_csv: - warnings.warn("No train directory could be found ") - return - # Make a dataset from the local folder containing Audio data - print("\nMaking an Audio Dataset...\n") - tick = time.time() - aud_dataset = AudioFolderDataset(train_dir, train_csv=train_csv, file_format='.wav', skip_header=True) - tock = time.time() - - print("Loading the dataset took ", (tock-tick), " seconds.") - print("\n=======================================\n") - print("Number of output classes = ", len(aud_dataset.synsets)) - print("\nThe labels are : \n") - print(aud_dataset.synsets) - # Get the model to train - net = model.get_net(len(aud_dataset.synsets)) - print("\nNeural Network = \n") - print(net) - print("\nModel - Neural Network Generated!\n") - print("=======================================\n") - - #Define the loss - Softmax CE Loss - softmax_loss = gluon.loss.SoftmaxCELoss(from_logits=False, sparse_label=True) - print("Loss function initialized!\n") - print("=======================================\n") - - #Define the trainer with the optimizer - trainer = gluon.Trainer(net.collect_params(), 'adadelta') - print("Optimizer - Trainer function initialized!\n") - print("=======================================\n") - print("Loading the dataset to the Gluon's OOTB Dataloader...") - - #Getting the data loader out of the AudioDataset and passing the transform - from transforms import MFCC - aud_transform = MFCC() - tick = time.time() - - audio_train_loader = gluon.data.DataLoader(aud_dataset.transform_first(aud_transform), batch_size=32, shuffle=True) - tock = time.time() - print("Time taken to load data and apply transform here is ", (tock-tick), " seconds.") - print("=======================================\n") - - - print("Starting the training....\n") - # Training loop - tick = time.time() - batch_size = batch_size - num_examples = len(aud_dataset) - - for epoch in range(epochs): - cumulative_loss = 0 - for data, label in audio_train_loader: - with autograd.record(): - output = net(data) - loss = softmax_loss(output, label) - loss.backward() - - trainer.step(batch_size) - cumulative_loss += mx.nd.sum(loss).asscalar() - - if epoch%5 == 0: - train_accuracy = evaluate_accuracy(audio_train_loader, net) - print("Epoch {}. Loss: {} Train accuracy : {} ".format(epoch, cumulative_loss/num_examples, train_accuracy)) - print("\n------------------------------\n") - - train_accuracy = evaluate_accuracy(audio_train_loader, net) - tock = time.time() - print("\nFinal training accuracy: ", train_accuracy) - - print("Training the sound classification for ", epochs, " epochs, MLP model took ", (tock-tick), " seconds") - print("====================== END ======================\n") - - print("Trying to save the model parameters here...") - net.save_parameters("./net.params") - print("Saved the model parameters in current directory.") - - -if __name__ == '__main__': - training_dir = './Train' - training_csv = './train.csv' - epochs = 30 - batch_size = 32 - - try: - import argparse - parser = argparse.ArgumentParser(description="Urban Sounds classification example - MXNet Gluon") - parser.add_argument('--train', '-t', help="Enter the folder path that contains your audio files", type=str) - parser.add_argument('--csv', '-c', help="Enter the filename of the csv that contains filename\ - to label mapping", type=str) - parser.add_argument('--epochs', '-e', help="Enter the number of epochs \ - you would want to run the training for.", type=int) - parser.add_argument('--batch_size', '-b', help="Enter the batch_size of data", type=int) - args = parser.parse_args() - - if args: - if args.train: - training_dir = args.train - - if args.csv: - training_csv = args.csv - - if args.epochs: - epochs = args.epochs - - if args.batch_size: - batch_size = args.batch_size - - - except ImportError as er: - warnings.warn("Argument parsing module could not be imported \ - Passing default arguments.") - - - train(train_dir=training_dir, train_csv=training_csv, epochs=epochs, batch_size=batch_size) - print("Urban sounds classification Training DONE!") diff --git a/example/gluon/data.py b/example/gluon/data.py index 7d0f882eec7a..7769f605cc47 100644 --- a/example/gluon/data.py +++ b/example/gluon/data.py @@ -174,7 +174,7 @@ def next(self): image = Image.open(fn).convert('YCbCr').split()[0] if image.size[0] > image.size[1]: image = image.transpose(Image.TRANSPOSE) - image = mx.nd.expand_dims(mx.nd.array(image), axis=2) + image = mx.np.expand_dims(mx.np.array(image), axis=2) target = image.copy() for aug in self.input_aug: image = aug(image) @@ -183,10 +183,10 @@ def next(self): data.append(image) label.append(target) - data = mx.nd.concat(*[mx.nd.expand_dims(d, axis=0) for d in data], dim=0) - label = mx.nd.concat(*[mx.nd.expand_dims(d, axis=0) for d in label], dim=0) - data = [mx.nd.transpose(data, axes=(0, 3, 1, 2)).astype('float32')/255] - label = [mx.nd.transpose(label, axes=(0, 3, 1, 2)).astype('float32')/255] + data = mx.np.concatenate([mx.np.expand_dims(d, axis=0) for d in data], axis=0) + label = mx.np.concatenate([mx.np.expand_dims(d, axis=0) for d in label], axis=0) + data = [mx.np.transpose(data, axes=(0, 3, 1, 2)).astype('float32')/255] + label = [mx.np.transpose(label, axes=(0, 3, 1, 2)).astype('float32')/255] return mx.io.DataBatch(data=data, label=label) else: diff --git a/example/gluon/dc_gan/README.md b/example/gluon/dc_gan/README.md deleted file mode 100644 index fd41d198a69d..000000000000 --- a/example/gluon/dc_gan/README.md +++ /dev/null @@ -1,69 +0,0 @@ - - - - - - - - - - - - - - - - - -# DCGAN in MXNet - -[Deep Convolutional Generative Adversarial Networks(DCGAN)](https://arxiv.org/abs/1511.06434) implementation with Apache MXNet GLUON. -This implementation uses [inception_score](https://github.com/openai/improved-gan) to evaluate the model. - -You can use this reference implementation on the MNIST and CIFAR-10 datasets. - - -#### Generated image output examples from the CIFAR-10 dataset -![Generated image output examples from the CIFAR-10 dataset](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/gluon/DCGAN/fake_img_iter_13900.png) - -#### Generated image output examples from the MNIST dataset -![Generated image output examples from the MNIST dataset](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/gluon/DCGAN/fake_img_iter_21700.png) - -#### inception_score in cpu and gpu (the real image`s score is around 3.3) -CPU & GPU - -![inception score with CPU](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/gluon/DCGAN/inception_score_cifar10_cpu.png) -![inception score with GPU](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/gluon/DCGAN/inception_score_cifar10.png) - -## Quick start -Use the following code to see the configurations you can set: -```bash -python dcgan.py -h -``` - - - optional arguments: - -h, --help show this help message and exit - --dataset DATASET dataset to use. options are cifar10 and mnist. - --batch-size BATCH_SIZE input batch size, default is 64 - --nz NZ size of the latent z vector, default is 100 - --ngf NGF the channel of each generator filter layer, default is 64. - --ndf NDF the channel of each descriminator filter layer, default is 64. - --nepoch NEPOCH number of epochs to train for, default is 25. - --niter NITER save generated images and inception_score per niter iters, default is 100. - --lr LR learning rate, default=0.0002 - --beta1 BETA1 beta1 for adam. default=0.5 - --cuda enables cuda - --netG NETG path to netG (to continue training) - --netD NETD path to netD (to continue training) - --outf OUTF folder to output images and model checkpoints - --check-point CHECK_POINT - save results at each epoch or not - --inception_score INCEPTION_SCORE - To record the inception_score, default is True. - - -Use the following Python script to train a DCGAN model with default configurations using the CIFAR-10 dataset and record metrics with `inception_score`: -```bash -python dcgan.py -``` diff --git a/example/gluon/dc_gan/__init__.py b/example/gluon/dc_gan/__init__.py deleted file mode 100644 index 26fa2cec6dd9..000000000000 --- a/example/gluon/dc_gan/__init__.py +++ /dev/null @@ -1,16 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at - -# http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. diff --git a/example/gluon/dc_gan/dcgan.py b/example/gluon/dc_gan/dcgan.py deleted file mode 100644 index d7c36a0a3a67..000000000000 --- a/example/gluon/dc_gan/dcgan.py +++ /dev/null @@ -1,355 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""Generate MXNet implementation of Deep Convolutional Generative Adversarial Networks""" - -import logging -from datetime import datetime -import argparse -import os -import time -import numpy as np -from matplotlib import pyplot as plt -import matplotlib as mpl -import mxnet as mx -from mxnet import gluon -from mxnet.gluon import nn -from mxnet import autograd -from inception_score import get_inception_score - -mpl.use('Agg') - - -def fill_buf(buf, i, img, shape): - """Reposition the images generated by the generator so that it can be saved as picture matrix. - :param buf: the images metric - :param i: index of each image - :param img: images generated by generator once - :param shape: each image`s shape - :return: Adjust images for output - """ - n = buf.shape[0]//shape[1] - m = buf.shape[1]//shape[0] - - sx = (i%m)*shape[0] - sy = (i//m)*shape[1] - buf[sy:sy+shape[1], sx:sx+shape[0], :] = img - - -def visual(title, X, name): - """Image visualization and preservation - :param title: title - :param X: images to visualized - :param name: saved picture`s name - :return: - """ - assert len(X.shape) == 4 - X = X.transpose((0, 2, 3, 1)) - X = np.clip((X - np.min(X))*(255.0/(np.max(X) - np.min(X))), 0, 255).astype(np.uint8) - n = np.ceil(np.sqrt(X.shape[0])) - buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) - for i, img in enumerate(X): - fill_buf(buff, i, img, X.shape[1:3]) - buff = buff[:, :, ::-1] - plt.imshow(buff) - plt.title(title) - plt.savefig(name) - - -parser = argparse.ArgumentParser() -parser = argparse.ArgumentParser(description='Train a DCgan model for image generation ' - 'and then use inception_score to metric the result.') -parser.add_argument('--dataset', type=str, default='cifar10', help='dataset to use. options are cifar10 and mnist.') -parser.add_argument('--batch-size', type=int, default=64, help='input batch size, default is 64') -parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector, default is 100') -parser.add_argument('--ngf', type=int, default=64, help='the channel of each generator filter layer, default is 64.') -parser.add_argument('--ndf', type=int, default=64, help='the channel of each descriminator filter layer, ' - 'default is 64.') -parser.add_argument('--nepoch', type=int, default=25, help='number of epochs to train for, default is 25.') -parser.add_argument('--niter', type=int, default=10, help='save generated images and inception_score per niter iters, ' - 'default is 100.') -parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') -parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') -parser.add_argument('--cuda', action='store_true', help='enables cuda') -parser.add_argument('--netG', default='', help="path to netG (to continue training)") -parser.add_argument('--netD', default='', help="path to netD (to continue training)") -parser.add_argument('--outf', default='./results', help='folder to output images and model checkpoints') -parser.add_argument('--check-point', default=True, help="save results at each epoch or not") -parser.add_argument('--inception_score', type=bool, default=True, help='To record the inception_score, ' - 'default is True.') - -opt = parser.parse_args() -print(opt) - -logging.basicConfig(level=logging.DEBUG) - -nz = int(opt.nz) -ngf = int(opt.ngf) -ndf = int(opt.ndf) -niter = opt.niter -nc = 3 -if opt.cuda: - ctx = mx.gpu(0) -else: - ctx = mx.cpu() -batch_size = opt.batch_size -check_point = bool(opt.check_point) -outf = opt.outf -dataset = opt.dataset - -if not os.path.exists(outf): - os.makedirs(outf) - - -def transformer(data, label): - """Get the translation of images""" - # resize to 64x64 - data = mx.image.imresize(data, 64, 64) - # transpose from (64, 64, 3) to (3, 64, 64) - data = mx.nd.transpose(data, (2, 0, 1)) - # normalize to [-1, 1] - data = data.astype(np.float32)/128 - 1 - # if image is greyscale, repeat 3 times to get RGB image. - if data.shape[0] == 1: - data = mx.nd.tile(data, (3, 1, 1)) - return data, label - - -# get dataset with the batch_size num each time -def get_dataset(dataset_name): - """Load the dataset and split it to train/valid data - - :param dataset_name: string - - Returns: - train_data: int array - training dataset - val_data: int array - valid dataset - """ - # mnist - if dataset == "mnist": - train_data = gluon.data.DataLoader( - gluon.data.vision.MNIST('./data', train=True).transform(transformer), - batch_size, shuffle=True, last_batch='discard') - - val_data = gluon.data.DataLoader( - gluon.data.vision.MNIST('./data', train=False).transform(transformer), - batch_size, shuffle=False) - # cifar10 - elif dataset == "cifar10": - train_data = gluon.data.DataLoader( - gluon.data.vision.CIFAR10('./data', train=True).transform(transformer), - batch_size, shuffle=True, last_batch='discard') - - val_data = gluon.data.DataLoader( - gluon.data.vision.CIFAR10('./data', train=False).transform(transformer), - batch_size, shuffle=False) - - return train_data, val_data - - -def get_netG(): - """Get net G""" - # build the generator - netG = nn.Sequential() - with netG.name_scope(): - # input is Z, going into a convolution - netG.add(nn.Conv2DTranspose(ngf * 8, 4, 1, 0, use_bias=False)) - netG.add(nn.BatchNorm()) - netG.add(nn.Activation('relu')) - # state size. (ngf*8) x 4 x 4 - netG.add(nn.Conv2DTranspose(ngf * 4, 4, 2, 1, use_bias=False)) - netG.add(nn.BatchNorm()) - netG.add(nn.Activation('relu')) - # state size. (ngf*4) x 8 x 8 - netG.add(nn.Conv2DTranspose(ngf * 2, 4, 2, 1, use_bias=False)) - netG.add(nn.BatchNorm()) - netG.add(nn.Activation('relu')) - # state size. (ngf*2) x 16 x 16 - netG.add(nn.Conv2DTranspose(ngf, 4, 2, 1, use_bias=False)) - netG.add(nn.BatchNorm()) - netG.add(nn.Activation('relu')) - # state size. (ngf) x 32 x 32 - netG.add(nn.Conv2DTranspose(nc, 4, 2, 1, use_bias=False)) - netG.add(nn.Activation('tanh')) - # state size. (nc) x 64 x 64 - - return netG - - -def get_netD(): - """Get the netD""" - # build the discriminator - netD = nn.Sequential() - with netD.name_scope(): - # input is (nc) x 64 x 64 - netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False)) - netD.add(nn.LeakyReLU(0.2)) - # state size. (ndf) x 32 x 32 - netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False)) - netD.add(nn.BatchNorm()) - netD.add(nn.LeakyReLU(0.2)) - # state size. (ndf*2) x 16 x 16 - netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False)) - netD.add(nn.BatchNorm()) - netD.add(nn.LeakyReLU(0.2)) - # state size. (ndf*4) x 8 x 8 - netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False)) - netD.add(nn.BatchNorm()) - netD.add(nn.LeakyReLU(0.2)) - # state size. (ndf*8) x 4 x 4 - netD.add(nn.Conv2D(2, 4, 1, 0, use_bias=False)) - # state size. 2 x 1 x 1 - - return netD - - -def get_configurations(netG, netD): - """Get configurations for net""" - # loss - loss = gluon.loss.SoftmaxCrossEntropyLoss() - - # initialize the generator and the discriminator - netG.initialize(mx.init.Normal(0.02), ctx=ctx) - netD.initialize(mx.init.Normal(0.02), ctx=ctx) - - # trainer for the generator and the discriminator - trainerG = gluon.Trainer(netG.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) - trainerD = gluon.Trainer(netD.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) - - return loss, trainerG, trainerD - - -def ins_save(inception_score): - # draw the inception_score curve - length = len(inception_score) - x = np.arange(0, length) - plt.figure(figsize=(8.0, 6.0)) - plt.plot(x, inception_score) - plt.xlabel("iter/100") - plt.ylabel("inception_score") - plt.savefig("inception_score.png") - - -# main function -def main(): - """Entry point to dcgan""" - print("|------- new changes!!!!!!!!!") - # to get the dataset and net configuration - train_data, val_data = get_dataset(dataset) - netG = get_netG() - netD = get_netD() - loss, trainerG, trainerD = get_configurations(netG, netD) - - # set labels - real_label = mx.nd.ones((opt.batch_size,), ctx=ctx) - fake_label = mx.nd.zeros((opt.batch_size,), ctx=ctx) - - metric = mx.gluon.metric.Accuracy() - print('Training... ') - stamp = datetime.now().strftime('%Y_%m_%d-%H_%M') - - iter = 0 - - # to metric the network - loss_d = [] - loss_g = [] - inception_score = [] - - for epoch in range(opt.nepoch): - tic = time.time() - btic = time.time() - for data, _ in train_data: - ############################ - # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) - ########################### - # train with real_t - data = data.as_in_context(ctx) - noise = mx.nd.random.normal(0, 1, shape=(opt.batch_size, nz, 1, 1), ctx=ctx) - - with autograd.record(): - output = netD(data) - # reshape output from (opt.batch_size, 2, 1, 1) to (opt.batch_size, 2) - output = output.reshape((opt.batch_size, 2)) - errD_real = loss(output, real_label) - - metric.update([real_label, ], [output, ]) - - with autograd.record(): - fake = netG(noise) - output = netD(fake.detach()) - output = output.reshape((opt.batch_size, 2)) - errD_fake = loss(output, fake_label) - errD = errD_real + errD_fake - - errD.backward() - metric.update([fake_label,], [output,]) - - trainerD.step(opt.batch_size) - - ############################ - # (2) Update G network: maximize log(D(G(z))) - ########################### - with autograd.record(): - output = netD(fake) - output = output.reshape((-1, 2)) - errG = loss(output, real_label) - - errG.backward() - - trainerG.step(opt.batch_size) - - name, acc = metric.get() - logging.info('discriminator loss = %f, generator loss = %f, binary training acc = %f at iter %d epoch %d' - , mx.nd.mean(errD).asscalar(), mx.nd.mean(errG).asscalar(), acc, iter, epoch) - if iter % niter == 0: - visual('gout', fake.asnumpy(), name=os.path.join(outf, 'fake_img_iter_%d.png' % iter)) - visual('data', data.asnumpy(), name=os.path.join(outf, 'real_img_iter_%d.png' % iter)) - # record the metric data - loss_d.append(errD) - loss_g.append(errG) - if opt.inception_score: - score, _ = get_inception_score(fake) - inception_score.append(score) - - iter = iter + 1 - btic = time.time() - - name, acc = metric.get() - metric.reset() - logging.info('\nbinary training acc at epoch %d: %s=%f', epoch, name, acc) - logging.info('time: %f', time.time() - tic) - - # save check_point - if check_point: - netG.save_parameters(os.path.join(outf, 'generator_epoch_%d.params' %epoch)) - netD.save_parameters(os.path.join(outf, 'discriminator_epoch_%d.params' % epoch)) - - # save parameter - netG.save_parameters(os.path.join(outf, 'generator.params')) - netD.save_parameters(os.path.join(outf, 'discriminator.params')) - - # visualization the inception_score as a picture - if opt.inception_score: - ins_save(inception_score) - - -if __name__ == '__main__': - if opt.inception_score: - print("Use inception_score to metric this DCgan model, the reusult is save as a picture " - "named \"inception_score.png\"!") - main() diff --git a/example/gluon/dc_gan/inception_score.py b/example/gluon/dc_gan/inception_score.py deleted file mode 100644 index e23513f5055e..000000000000 --- a/example/gluon/dc_gan/inception_score.py +++ /dev/null @@ -1,110 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -from mxnet.gluon.model_zoo import vision as models -import mxnet as mx -from mxnet import nd -import numpy as np -import math -import sys - -import cv2 - - -inception_model = None - - -def get_inception_score(images, splits=10): - """ - Inception_score function. - The images will be divided into 'splits' parts, and calculate each inception_score separately, - then return the mean and std of inception_scores of these parts. - :param images: Images(num x c x w x h) that needs to calculate inception_score. - :param splits: - :return: mean and std of inception_score - """ - assert (images.shape[1] == 3) - - # load inception model - if inception_model is None: - _init_inception() - - # resize images to adapt inception model(inceptionV3) - if images.shape[2] != 299: - images = resize(images, 299, 299) - - preds = [] - bs = 4 - n_batches = int(math.ceil(float(images.shape[0])/float(bs))) - - # to get the predictions/picture of inception model - for i in range(n_batches): - sys.stdout.write(".") - sys.stdout.flush() - inps = images[(i * bs):min((i + 1) * bs, len(images))] - # inps size. bs x 3 x 299 x 299 - pred = nd.softmax(inception_model(inps)) - # pred size. bs x 1000 - preds.append(pred.asnumpy()) - - # list to array - preds = np.concatenate(preds, 0) - scores = [] - - # to calculate the inception_score each split. - for i in range(splits): - # extract per split image pred - part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] - kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) - kl = np.mean(np.sum(kl, 1)) - scores.append(np.exp(kl)) - - return np.mean(scores), np.std(scores) - - -def _init_inception(): - global inception_model - inception_model = models.inception_v3(pretrained=True) - print("success import inception model, and the model is inception_v3!") - - -def resize(images, w, h): - nums = images.shape[0] - res = nd.random.uniform(0, 255, (nums, 3, w, h)) - for i in range(nums): - img = images[i, :, :, :] - img = mx.nd.transpose(img, (1, 2, 0)) - # Replace 'mx.image.imresize()' with 'cv2.resize()' because : Operator _cvimresize is not implemented for GPU. - # img = mx.image.imresize(img, w, h) - img = cv2.resize(img.asnumpy(), (299, 299)) - img = nd.array(img) - img = mx.nd.transpose(img, (2, 0, 1)) - res[i, :, :, :] = img - - return res - - -if __name__ == '__main__': - if inception_model is None: - _init_inception() - # dummy data - images = nd.random.uniform(0, 255, (64, 3, 64, 64)) - print(images.shape[0]) - # resize(images,299,299) - - score = get_inception_score(images) - print(score) diff --git a/example/gluon/embedding_learning/README.md b/example/gluon/embedding_learning/README.md deleted file mode 100644 index ee3a0eae5c39..000000000000 --- a/example/gluon/embedding_learning/README.md +++ /dev/null @@ -1,93 +0,0 @@ - - - - - - - - - - - - - - - - - -# Image Embedding Learning - -This example implements embedding learning based on a Margin-based Loss with distance weighted sampling [(Wu et al, 2017)](http://www.philkr.net/papers/2017-10-01-iccv/2017-10-01-iccv.pdf). The model obtains a validation Recall@1 of ~64% on the [Caltech-UCSD Birds-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) dataset. - - -## Usage -Download the data - -Note: the dataset is from [Caltech-UCSD Birds 200](http://www.vision.caltech.edu/visipedia/CUB-200.html). -These datasets are copyright Caltech Computational Vision Group and licensed CC BY 4.0 Attribution. -See [original dataset source](http://www.vision.caltech.edu/archive.html) for details -```bash -./get_cub200_data.sh -``` - -Example runs and the results: -``` -python3 train.py --data-path=data/CUB_200_2011 --gpus=0,1 --use-pretrained -``` - -
- -`python train.py --help` gives the following arguments: -``` -optional arguments: - -h, --help show this help message and exit - --data-path DATA_PATH - path of data. - --embed-dim EMBED_DIM - dimensionality of image embedding. default is 128. - --batch-size BATCH_SIZE - training batch size per device (CPU/GPU). default is - 70. - --batch-k BATCH_K number of images per class in a batch. default is 5. - --gpus GPUS list of gpus to use, e.g. 0 or 0,2,5. empty means - using cpu. - --epochs EPOCHS number of training epochs. default is 20. - --optimizer OPTIMIZER - optimizer. default is adam. - --lr LR learning rate. default is 0.0001. - --lr-beta LR_BETA learning rate for the beta in margin based loss. - default is 0.1. - --margin MARGIN margin for the margin based loss. default is 0.2. - --beta BETA initial value for beta. default is 1.2. - --nu NU regularization parameter for beta. default is 0.0. - --factor FACTOR learning rate schedule factor. default is 0.5. - --steps STEPS epochs to update learning rate. default is - 12,14,16,18. - --wd WD weight decay rate. default is 0.0001. - --seed SEED random seed to use. default=123. - --model MODEL type of model to use. see vision_model for options. - --save-model-prefix SAVE_MODEL_PREFIX - prefix of models to be saved. - --use-pretrained enable using pretrained model from gluon. - --kvstore KVSTORE kvstore to use for trainer. - --log-interval LOG_INTERVAL - number of batches to wait before logging. -``` - -## Learned embeddings -The following visualizes the learned embeddings with t-SNE. - -![alt text](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/embedding_learning/cub200_embedding.png) - - -## Citation -Sampling Matters in Deep Embedding Learning [paper] [project]
- Chao-Yuan Wu, R. Manmatha, Alexander J. Smola and Philipp Krähenbühl -
-@inproceedings{wu2017sampling,
-  title={Sampling Matters in Deep Embedding Learning},
-  author={Wu, Chao-Yuan and Manmatha, R and Smola, Alexander J and Kr{\"a}henb{\"u}hl, Philipp},
-  booktitle={ICCV},
-  year={2017}
-}
-
diff --git a/example/gluon/embedding_learning/data.py b/example/gluon/embedding_learning/data.py deleted file mode 100644 index e3b96d6c7dd8..000000000000 --- a/example/gluon/embedding_learning/data.py +++ /dev/null @@ -1,158 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os -import random - -import numpy as np - -import mxnet as mx -from mxnet import nd - -def transform(data, target_wd, target_ht, is_train, box): - """Crop and normnalize an image nd array.""" - if box is not None: - x, y, w, h = box - data = data[y:min(y+h, data.shape[0]), x:min(x+w, data.shape[1])] - - # Resize to target_wd * target_ht. - data = mx.image.imresize(data, target_wd, target_ht) - - # Normalize in the same way as the pre-trained model. - data = data.astype(np.float32) / 255.0 - data = (data - mx.nd.array([0.485, 0.456, 0.406])) / mx.nd.array([0.229, 0.224, 0.225]) - - if is_train: - if random.random() < 0.5: - data = nd.flip(data, axis=1) - data, _ = mx.image.random_crop(data, (224, 224)) - else: - data, _ = mx.image.center_crop(data, (224, 224)) - - # Transpose from (target_wd, target_ht, 3) - # to (3, target_wd, target_ht). - data = nd.transpose(data, (2, 0, 1)) - - # If image is greyscale, repeat 3 times to get RGB image. - if data.shape[0] == 1: - data = nd.tile(data, (3, 1, 1)) - return data.reshape((1,) + data.shape) - - -class CUB200Iter(mx.io.DataIter): - """Iterator for the CUB200-2011 dataset. - Parameters - ---------- - data_path : str, - The path to dataset directory. - batch_k : int, - Number of images per class in a batch. - batch_size : int, - Batch size. - batch_size : tupple, - Data shape. E.g. (3, 224, 224). - is_train : bool, - Training data or testig data. Training batches are randomly sampled. - Testing batches are loaded sequentially until reaching the end. - """ - def __init__(self, data_path, batch_k, batch_size, data_shape, is_train): - super(CUB200Iter, self).__init__(batch_size) - self.data_shape = (batch_size,) + data_shape - self.batch_size = batch_size - self.provide_data = [('data', self.data_shape)] - self.batch_k = batch_k - self.is_train = is_train - - self.train_image_files = [[] for _ in range(100)] - self.test_image_files = [] - self.test_labels = [] - self.boxes = {} - self.test_count = 0 - - with open(os.path.join(data_path, 'images.txt'), 'r') as f_img, \ - open(os.path.join(data_path, 'image_class_labels.txt'), 'r') as f_label, \ - open(os.path.join(data_path, 'bounding_boxes.txt'), 'r') as f_box: - for line_img, line_label, line_box in zip(f_img, f_label, f_box): - fname = os.path.join(data_path, 'images', line_img.strip().split()[-1]) - label = int(line_label.strip().split()[-1]) - 1 - box = [int(float(v)) for v in line_box.split()[-4:]] - self.boxes[fname] = box - - # Following "Deep Metric Learning via Lifted Structured Feature Embedding" paper, - # we use the first 100 classes for training, and the remaining for testing. - if label < 100: - self.train_image_files[label].append(fname) - else: - self.test_labels.append(label) - self.test_image_files.append(fname) - - self.n_test = len(self.test_image_files) - - def get_image(self, img, is_train): - """Load and transform an image.""" - img_arr = mx.image.imread(img) - img_arr = transform(img_arr, 256, 256, is_train, self.boxes[img]) - return img_arr - - def sample_train_batch(self): - """Sample a training batch (data and label).""" - batch = [] - labels = [] - num_groups = self.batch_size // self.batch_k - - # For CUB200, we use the first 100 classes for training. - sampled_classes = np.random.choice(100, num_groups, replace=False) - for i in range(num_groups): - img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]], - self.batch_k, replace=False) - batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames] - labels += [sampled_classes[i] for _ in range(self.batch_k)] - - return nd.concatenate(batch, axis=0), labels - - def get_test_batch(self): - """Sample a testing batch (data and label).""" - - batch_size = self.batch_size - batch = [self.get_image(self.test_image_files[(self.test_count*batch_size + i) - % len(self.test_image_files)], - is_train=False) for i in range(batch_size)] - labels = [self.test_labels[(self.test_count*batch_size + i) - % len(self.test_image_files)] for i in range(batch_size)] - return nd.concatenate(batch, axis=0), labels - - def reset(self): - """Reset an iterator.""" - self.test_count = 0 - - def next(self): - """Return a batch.""" - if self.is_train: - data, labels = self.sample_train_batch() - else: - if self.test_count * self.batch_size < len(self.test_image_files): - data, labels = self.get_test_batch() - self.test_count += 1 - else: - self.test_count = 0 - raise StopIteration - return mx.io.DataBatch(data=[data], label=[labels]) - -def cub200_iterator(data_path, batch_k, batch_size, data_shape): - """Return training and testing iterator for the CUB200-2011 dataset.""" - return (CUB200Iter(data_path, batch_k, batch_size, data_shape, is_train=True), - CUB200Iter(data_path, batch_k, batch_size, data_shape, is_train=False)) diff --git a/example/gluon/embedding_learning/get_cub200_data.sh b/example/gluon/embedding_learning/get_cub200_data.sh deleted file mode 100755 index 4cf83e757dea..000000000000 --- a/example/gluon/embedding_learning/get_cub200_data.sh +++ /dev/null @@ -1,34 +0,0 @@ -#!/usr/bin/env bash - -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - - -EMB_DIR=$(cd `dirname $0`; pwd) -DATA_DIR="${EMB_DIR}/data/" - -if [[ ! -d "${DATA_DIR}" ]]; then - echo "${DATA_DIR} doesn't exist, will create one."; - mkdir -p ${DATA_DIR} -fi - -# the dataset is from Caltech-UCSD Birds 200 -# http://www.vision.caltech.edu/visipedia/CUB-200.html -# These datasets are copyright Caltech Computational Vision Group and licensed CC BY 4.0 Attribution. -# See http://www.vision.caltech.edu/archive.html for details -wget -P ${DATA_DIR} http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz -cd ${DATA_DIR}; tar -xf CUB_200_2011.tgz diff --git a/example/gluon/embedding_learning/model.py b/example/gluon/embedding_learning/model.py deleted file mode 100644 index f82240e2cd56..000000000000 --- a/example/gluon/embedding_learning/model.py +++ /dev/null @@ -1,230 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - - -from mxnet import gluon -from mxnet.gluon import nn, Block, HybridBlock -import numpy as np - -class L2Normalization(HybridBlock): - r"""Applies L2 Normalization to input. - - Parameters - ---------- - mode : str - Mode of normalization. - See :func:`~mxnet.ndarray.L2Normalization` for available choices. - - Inputs: - - **data**: input tensor with arbitrary shape. - - Outputs: - - **out**: output tensor with the same shape as `data`. - """ - def __init__(self, mode, **kwargs): - self._mode = mode - super(L2Normalization, self).__init__(**kwargs) - - def hybrid_forward(self, F, x): - return F.L2Normalization(x, mode=self._mode, name='l2_norm') - - def __repr__(self): - s = '{name}({_mode})' - return s.format(name=self.__class__.__name__, - **self.__dict__) - - -def get_distance(F, x): - """Helper function for margin-based loss. Return a distance matrix given a matrix.""" - n = x.shape[0] - - square = F.sum(x ** 2.0, axis=1, keepdims=True) - distance_square = square + square.transpose() - (2.0 * F.dot(x, x.transpose())) - - # Adding identity to make sqrt work. - return F.sqrt(distance_square + F.array(np.identity(n))) - -class DistanceWeightedSampling(HybridBlock): - r"""Distance weighted sampling. See "sampling matters in deep embedding learning" - paper for details. - - Parameters - ---------- - batch_k : int - Number of images per class. - - Inputs: - - **data**: input tensor with shape (batch_size, embed_dim). - Here we assume the consecutive batch_k examples are of the same class. - For example, if batch_k = 5, the first 5 examples belong to the same class, - 6th-10th examples belong to another class, etc. - - Outputs: - - a_indices: indices of anchors. - - x[a_indices]: sampled anchor embeddings. - - x[p_indices]: sampled positive embeddings. - - x[n_indices]: sampled negative embeddings. - - x: embeddings of the input batch. - """ - def __init__(self, batch_k, cutoff=0.5, nonzero_loss_cutoff=1.4, **kwargs): - self.batch_k = batch_k - self.cutoff = cutoff - - # We sample only from negatives that induce a non-zero loss. - # These are negatives with a distance < nonzero_loss_cutoff. - # With a margin-based loss, nonzero_loss_cutoff == margin + beta. - self.nonzero_loss_cutoff = nonzero_loss_cutoff - super(DistanceWeightedSampling, self).__init__(**kwargs) - - def hybrid_forward(self, F, x): - k = self.batch_k - n, d = x.shape - - distance = get_distance(F, x) - # Cut off to avoid high variance. - distance = F.maximum(distance, self.cutoff) - - # Subtract max(log(distance)) for stability. - log_weights = ((2.0 - float(d)) * F.log(distance) - - (float(d - 3) / 2) * F.log(1.0 - 0.25 * (distance ** 2.0))) - weights = F.exp(log_weights - F.max(log_weights)) - - # Sample only negative examples by setting weights of - # the same-class examples to 0. - mask = np.ones(weights.shape) - for i in range(0, n, k): - mask[i:i+k, i:i+k] = 0 - mask_uniform_probs = mask * (1.0/(n-k)) - - weights = weights * F.array(mask) * (distance < self.nonzero_loss_cutoff) - weights_sum = F.sum(weights, axis=1, keepdims=True) - weights = weights / weights_sum - - a_indices = [] - p_indices = [] - n_indices = [] - - np_weights = weights.asnumpy() - for i in range(n): - block_idx = i // k - - if weights_sum[i] != 0: - n_indices += np.random.choice(n, k-1, p=np_weights[i]).tolist() - else: - # all samples are above the cutoff so we sample uniformly - n_indices += np.random.choice(n, k-1, p=mask_uniform_probs[i]).tolist() - for j in range(block_idx * k, (block_idx + 1) * k): - if j != i: - a_indices.append(i) - p_indices.append(j) - - return a_indices, x[a_indices], x[p_indices], x[n_indices], x - - def __repr__(self): - s = '{name}({batch_k})' - return s.format(name=self.__class__.__name__, - **self.__dict__) - - -class MarginNet(Block): - r"""Embedding network with distance weighted sampling. - It takes a base CNN and adds an embedding layer and a - sampling layer at the end. - - Parameters - ---------- - base_net : Block - Base network. - emb_dim : int - Dimensionality of the embedding. - batch_k : int - Number of images per class in a batch. Used in sampling. - - Inputs: - - **data**: input tensor with shape (batch_size, channels, width, height). - Here we assume the consecutive batch_k images are of the same class. - For example, if batch_k = 5, the first 5 images belong to the same class, - 6th-10th images belong to another class, etc. - - Outputs: - - The output of DistanceWeightedSampling. - """ - def __init__(self, base_net, emb_dim, batch_k, **kwargs): - super(MarginNet, self).__init__(**kwargs) - with self.name_scope(): - self.base_net = base_net - self.dense = nn.Dense(emb_dim) - self.normalize = L2Normalization(mode='instance') - self.sampled = DistanceWeightedSampling(batch_k=batch_k) - - def forward(self, x): - z = self.base_net(x) - z = self.dense(z) - z = self.normalize(z) - z = self.sampled(z) - return z - - -class MarginLoss(gluon.loss.Loss): - r"""Margin based loss. - - Parameters - ---------- - margin : float - Margin between positive and negative pairs. - nu : float - Regularization parameter for beta. - - Inputs: - - anchors: sampled anchor embeddings. - - positives: sampled positive embeddings. - - negatives: sampled negative embeddings. - - beta_in: class-specific betas. - - a_indices: indices of anchors. Used to get class-specific beta. - - Outputs: - - Loss. - """ - def __init__(self, margin=0.2, nu=0.0, weight=None, batch_axis=0, **kwargs): - super(MarginLoss, self).__init__(weight, batch_axis, **kwargs) - self._margin = margin - self._nu = nu - - def hybrid_forward(self, F, anchors, positives, negatives, beta_in, a_indices=None): - if a_indices is not None: - # Jointly train class-specific beta. - beta = beta_in.data()[a_indices] - beta_reg_loss = F.sum(beta) * self._nu - else: - # Use a constant beta. - beta = beta_in - beta_reg_loss = 0.0 - - d_ap = F.sqrt(F.sum(F.square(positives - anchors), axis=1) + 1e-8) - d_an = F.sqrt(F.sum(F.square(negatives - anchors), axis=1) + 1e-8) - - pos_loss = F.maximum(d_ap - beta + self._margin, 0.0) - neg_loss = F.maximum(beta - d_an + self._margin, 0.0) - - pair_cnt = F.sum((pos_loss > 0.0) + (neg_loss > 0.0)) - if pair_cnt == 0.0: - # When poss_loss and neg_loss is zero then total loss is zero as well - loss = F.sum(pos_loss + neg_loss) - else: - # Normalize based on the number of pairs. - loss = (F.sum(pos_loss + neg_loss) + beta_reg_loss) / pair_cnt - return gluon.loss._apply_weighting(F, loss, self._weight, None) diff --git a/example/gluon/embedding_learning/train.py b/example/gluon/embedding_learning/train.py deleted file mode 100644 index b8a5bf2716c1..000000000000 --- a/example/gluon/embedding_learning/train.py +++ /dev/null @@ -1,255 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -from __future__ import division - -import argparse -import logging -import time - -import numpy as np -from bottleneck import argpartition - -import mxnet as mx -from data import cub200_iterator -from mxnet import gluon -from mxnet.gluon.model_zoo import vision as models -from mxnet import autograd as ag, nd -from model import MarginNet, MarginLoss - -logging.basicConfig(level=logging.INFO) - -# CLI -parser = argparse.ArgumentParser(description='train a model for image classification.') -parser.add_argument('--data-path', type=str, default='data/CUB_200_2011', - help='path of data.') -parser.add_argument('--embed-dim', type=int, default=128, - help='dimensionality of image embedding. default is 128.') -parser.add_argument('--batch-size', type=int, default=70, - help='training batch size per device (CPU/GPU). default is 70.') -parser.add_argument('--batch-k', type=int, default=5, - help='number of images per class in a batch. default is 5.') -parser.add_argument('--gpus', type=str, default='', - help='list of gpus to use, e.g. 0 or 0,2,5. empty means using cpu.') -parser.add_argument('--epochs', type=int, default=20, - help='number of training epochs. default is 20.') -parser.add_argument('--optimizer', type=str, default='adam', - help='optimizer. default is adam.') -parser.add_argument('--lr', type=float, default=0.0001, - help='learning rate. default is 0.0001.') -parser.add_argument('--lr-beta', type=float, default=0.1, - help='learning rate for the beta in margin based loss. default is 0.1.') -parser.add_argument('--margin', type=float, default=0.2, - help='margin for the margin based loss. default is 0.2.') -parser.add_argument('--beta', type=float, default=1.2, - help='initial value for beta. default is 1.2.') -parser.add_argument('--nu', type=float, default=0.0, - help='regularization parameter for beta. default is 0.0.') -parser.add_argument('--factor', type=float, default=0.5, - help='learning rate schedule factor. default is 0.5.') -parser.add_argument('--steps', type=str, default='12,14,16,18', - help='epochs to update learning rate. default is 12,14,16,18.') -parser.add_argument('--wd', type=float, default=0.0001, - help='weight decay rate. default is 0.0001.') -parser.add_argument('--seed', type=int, default=123, - help='random seed to use. default=123.') -parser.add_argument('--model', type=str, default='resnet50_v2', - help='type of model to use. see vision_model for options.') -parser.add_argument('--save-model-prefix', type=str, default='margin_loss_model', - help='prefix of models to be saved.') -parser.add_argument('--use-pretrained', action='store_true', - help='enable using pretrained model from gluon.') -parser.add_argument('--kvstore', type=str, default='device', - help='kvstore to use for trainer.') -parser.add_argument('--log-interval', type=int, default=20, - help='number of batches to wait before logging.') -opt = parser.parse_args() - -logging.info(opt) - -# Settings. -mx.random.seed(opt.seed) -np.random.seed(opt.seed) - -batch_size = opt.batch_size - -gpus = [] if opt.gpus is None or opt.gpus is '' else [ - int(gpu) for gpu in opt.gpus.split(',')] -num_gpus = len(gpus) - -batch_size *= max(1, num_gpus) -context = [mx.gpu(i) for i in gpus] if num_gpus > 0 else [mx.cpu()] -steps = [int(step) for step in opt.steps.split(',')] - -# Construct model. -kwargs = {'ctx': context, 'pretrained': opt.use_pretrained} -net = models.get_model(opt.model, **kwargs) - -if opt.use_pretrained: - # Use a smaller learning rate for pre-trained convolutional layers. - for v in net.collect_params().values(): - if 'conv' in v.name: - setattr(v, 'lr_mult', 0.01) - -net.hybridize() -net = MarginNet(net.features, opt.embed_dim, opt.batch_k) -beta = mx.gluon.Parameter('beta', shape=(100,)) - -# Get iterators. -train_data, val_data = cub200_iterator(opt.data_path, opt.batch_k, batch_size, (3, 224, 224)) - - -def get_distance_matrix(x): - """Get distance matrix given a matrix. Used in testing.""" - square = nd.sum(x ** 2.0, axis=1, keepdims=True) - distance_square = square + square.transpose() - (2.0 * nd.dot(x, x.transpose())) - return nd.sqrt(distance_square) - - -def evaluate_emb(emb, labels): - """Evaluate embeddings based on Recall@k.""" - d_mat = get_distance_matrix(emb) - d_mat = d_mat.asnumpy() - labels = labels.asnumpy() - - names = [] - accs = [] - for k in [1, 2, 4, 8, 16]: - names.append('Recall@%d' % k) - correct, cnt = 0.0, 0.0 - for i in range(emb.shape[0]): - d_mat[i, i] = 1e10 - nns = argpartition(d_mat[i], k)[:k] - if any(labels[i] == labels[nn] for nn in nns): - correct += 1 - cnt += 1 - accs.append(correct/cnt) - return names, accs - - -def test(ctx): - """Test a model.""" - val_data.reset() - outputs = [] - labels = [] - for batch in val_data: - data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0) - label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0) - for x in data: - outputs.append(net(x)[-1]) - labels += label - - outputs = nd.concatenate(outputs, axis=0)[:val_data.n_test] - labels = nd.concatenate(labels, axis=0)[:val_data.n_test] - return evaluate_emb(outputs, labels) - - -def get_lr(lr, epoch, steps, factor): - """Get learning rate based on schedule.""" - for s in steps: - if epoch >= s: - lr *= factor - return lr - - -def train(epochs, ctx): - """Training function.""" - if isinstance(ctx, mx.Context): - ctx = [ctx] - net.initialize(mx.init.Xavier(magnitude=2), ctx=ctx) - - opt_options = {'learning_rate': opt.lr, 'wd': opt.wd} - if opt.optimizer == 'sgd': - opt_options['momentum'] = 0.9 - if opt.optimizer == 'adam': - opt_options['epsilon'] = 1e-7 - trainer = gluon.Trainer(net.collect_params(), opt.optimizer, - opt_options, - kvstore=opt.kvstore) - if opt.lr_beta > 0.0: - # Jointly train class-specific beta. - # See "sampling matters in deep embedding learning" paper for details. - beta.initialize(mx.init.Constant(opt.beta), ctx=ctx) - trainer_beta = gluon.Trainer([beta], 'sgd', - {'learning_rate': opt.lr_beta, 'momentum': 0.9}, - kvstore=opt.kvstore) - - loss = MarginLoss(margin=opt.margin, nu=opt.nu) - - best_val = 0.0 - for epoch in range(epochs): - tic = time.time() - prev_loss, cumulative_loss = 0.0, 0.0 - - # Learning rate schedule. - trainer.set_learning_rate(get_lr(opt.lr, epoch, steps, opt.factor)) - logging.info('Epoch %d learning rate=%f', epoch, trainer.learning_rate) - if opt.lr_beta > 0.0: - trainer_beta.set_learning_rate(get_lr(opt.lr_beta, epoch, steps, opt.factor)) - logging.info('Epoch %d beta learning rate=%f', epoch, trainer_beta.learning_rate) - - # Inner training loop. - for i in range(200): - batch = train_data.next() - data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0) - label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0) - - Ls = [] - with ag.record(): - for x, y in zip(data, label): - a_indices, anchors, positives, negatives, _ = net(x) - - if opt.lr_beta > 0.0: - L = loss(anchors, positives, negatives, beta, y[a_indices]) - else: - L = loss(anchors, positives, negatives, opt.beta, None) - - # Store the loss and do backward after we have done forward - # on all GPUs for better speed on multiple GPUs. - Ls.append(L) - cumulative_loss += nd.mean(L).asscalar() - - for L in Ls: - L.backward() - - # Update. - trainer.step(batch.data[0].shape[0]) - if opt.lr_beta > 0.0: - trainer_beta.step(batch.data[0].shape[0]) - - if (i+1) % opt.log_interval == 0: - logging.info('[Epoch %d, Iter %d] training loss=%f' % ( - epoch, i+1, cumulative_loss - prev_loss)) - prev_loss = cumulative_loss - - logging.info('[Epoch %d] training loss=%f'%(epoch, cumulative_loss)) - logging.info('[Epoch %d] time cost: %f'%(epoch, time.time()-tic)) - - names, val_accs = test(ctx) - for name, val_acc in zip(names, val_accs): - logging.info('[Epoch %d] validation: %s=%f'%(epoch, name, val_acc)) - - if val_accs[0] > best_val: - best_val = val_accs[0] - logging.info('Saving %s.' % opt.save_model_prefix) - net.save_parameters('%s.params' % opt.save_model_prefix) - return best_val - - -if __name__ == '__main__': - best_val_recall = train(opt.epochs, context) - print('Best validation Recall@1: %.2f.' % best_val_recall) diff --git a/example/gluon/house_prices/kaggle_k_fold_cross_validation.py b/example/gluon/house_prices/kaggle_k_fold_cross_validation.py index 420e6fc53c8a..52ddf0e28048 100644 --- a/example/gluon/house_prices/kaggle_k_fold_cross_validation.py +++ b/example/gluon/house_prices/kaggle_k_fold_cross_validation.py @@ -26,11 +26,11 @@ # The link to the problem on Kaggle: # https://www.kaggle.com/c/house-prices-advanced-regression-techniques -import numpy as np +import numpy as onp import pandas as pd from mxnet import autograd from mxnet import gluon -from mxnet import ndarray as nd +from mxnet import np # After logging in www.kaggle.com, the training and testing data sets can be downloaded at: # https://www.kaggle.com/c/house-prices-advanced-regression-techniques/download/train.csv @@ -56,26 +56,25 @@ X_test = all_X[num_train:].as_matrix() y_train = train.SalePrice.as_matrix() -X_train = nd.array(X_train) -y_train = nd.array(y_train) +X_train = np.array(X_train) +y_train = np.array(y_train) y_train.reshape((num_train, 1)) -X_test = nd.array(X_test) +X_test = np.array(X_test) square_loss = gluon.loss.L2Loss() def get_rmse_log(net, X_train, y_train): """Gets root mse between the logarithms of the prediction and the truth.""" num_train = X_train.shape[0] - clipped_preds = nd.clip(net(X_train), 1, float('inf')) - return np.sqrt(2 * nd.sum(square_loss( - nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train) + clipped_preds = np.clip(net(X_train), 1, float('inf')) + return np.sqrt(2 * np.sum(square_loss( + np.log(clipped_preds), np.log(y_train))).item() / num_train) def get_net(): """Gets a neural network. Better results are obtained with modifications.""" net = gluon.nn.Sequential() - with net.name_scope(): - net.add(gluon.nn.Dense(50, activation="relu")) - net.add(gluon.nn.Dense(1)) + net.add(gluon.nn.Dense(50, activation="relu")) + net.add(gluon.nn.Dense(1)) net.initialize() return net @@ -123,8 +122,8 @@ def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train, y_val_train = y_cur_fold val_train_defined = True else: - X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0) - y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0) + X_val_train = np.concatenate([X_val_train, X_cur_fold], axis=0) + y_val_train = np.concatenate([y_val_train, y_cur_fold], axis=0) net = get_net() train_loss = train(net, X_val_train, y_val_train, epochs, verbose_epoch, learning_rate, weight_decay, batch_size) diff --git a/example/gluon/lipnet/.gitignore b/example/gluon/lipnet/.gitignore deleted file mode 100644 index 9a6ee993b157..000000000000 --- a/example/gluon/lipnet/.gitignore +++ /dev/null @@ -1,3 +0,0 @@ -__pycache__/ -utils/*.dat - diff --git a/example/gluon/lipnet/BeamSearch.py b/example/gluon/lipnet/BeamSearch.py deleted file mode 100644 index 1b41bc0020d1..000000000000 --- a/example/gluon/lipnet/BeamSearch.py +++ /dev/null @@ -1,170 +0,0 @@ -#!/usr/bin/env python3 - -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Module : this module to decode using beam search -https://github.com/ThomasDelteil/HandwrittenTextRecognition_MXNet/blob/master/utils/CTCDecoder/BeamSearch.py -""" - -from __future__ import division -from __future__ import print_function -import numpy as np - -class BeamEntry: - """ - information about one single beam at specific time-step - """ - def __init__(self): - self.prTotal = 0 # blank and non-blank - self.prNonBlank = 0 # non-blank - self.prBlank = 0 # blank - self.prText = 1 # LM score - self.lmApplied = False # flag if LM was already applied to this beam - self.labeling = () # beam-labeling - -class BeamState: - """ - information about the beams at specific time-step - """ - def __init__(self): - self.entries = {} - - def norm(self): - """ - length-normalise LM score - """ - for (k, _) in self.entries.items(): - labelingLen = len(self.entries[k].labeling) - self.entries[k].prText = self.entries[k].prText ** (1.0 / (labelingLen if labelingLen else 1.0)) - - def sort(self): - """ - return beam-labelings, sorted by probability - """ - beams = [v for (_, v) in self.entries.items()] - sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText) - return [x.labeling for x in sortedBeams] - -def applyLM(parentBeam, childBeam, classes, lm): - """ - calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars - """ - if lm and not childBeam.lmApplied: - c1 = classes[parentBeam.labeling[-1] if parentBeam.labeling else classes.index(' ')] # first char - c2 = classes[childBeam.labeling[-1]] # second char - lmFactor = 0.01 # influence of language model - bigramProb = lm.getCharBigram(c1, c2) ** lmFactor # probability of seeing first and second char next to each other - childBeam.prText = parentBeam.prText * bigramProb # probability of char sequence - childBeam.lmApplied = True # only apply LM once per beam entry - -def addBeam(beamState, labeling): - """ - add beam if it does not yet exist - """ - if labeling not in beamState.entries: - beamState.entries[labeling] = BeamEntry() - -def ctcBeamSearch(mat, classes, lm, k, beamWidth): - """ - beam search as described by the paper of Hwang et al. and the paper of Graves et al. - """ - - blankIdx = len(classes) - maxT, maxC = mat.shape - - # initialise beam state - last = BeamState() - labeling = () - last.entries[labeling] = BeamEntry() - last.entries[labeling].prBlank = 1 - last.entries[labeling].prTotal = 1 - - # go over all time-steps - for t in range(maxT): - curr = BeamState() - - # get beam-labelings of best beams - bestLabelings = last.sort()[0:beamWidth] - - # go over best beams - for labeling in bestLabelings: - - # probability of paths ending with a non-blank - prNonBlank = 0 - # in case of non-empty beam - if labeling: - # probability of paths with repeated last char at the end - try: - prNonBlank = last.entries[labeling].prNonBlank * mat[t, labeling[-1]] - except FloatingPointError: - prNonBlank = 0 - - # probability of paths ending with a blank - prBlank = (last.entries[labeling].prTotal) * mat[t, blankIdx] - - # add beam at current time-step if needed - addBeam(curr, labeling) - - # fill in data - curr.entries[labeling].labeling = labeling - curr.entries[labeling].prNonBlank += prNonBlank - curr.entries[labeling].prBlank += prBlank - curr.entries[labeling].prTotal += prBlank + prNonBlank - curr.entries[labeling].prText = last.entries[labeling].prText # beam-labeling not changed, therefore also LM score unchanged from - curr.entries[labeling].lmApplied = True # LM already applied at previous time-step for this beam-labeling - - # extend current beam-labeling - for c in range(maxC - 1): - # add new char to current beam-labeling - newLabeling = labeling + (c,) - - # if new labeling contains duplicate char at the end, only consider paths ending with a blank - if labeling and labeling[-1] == c: - prNonBlank = mat[t, c] * last.entries[labeling].prBlank - else: - prNonBlank = mat[t, c] * last.entries[labeling].prTotal - - # add beam at current time-step if needed - addBeam(curr, newLabeling) - - # fill in data - curr.entries[newLabeling].labeling = newLabeling - curr.entries[newLabeling].prNonBlank += prNonBlank - curr.entries[newLabeling].prTotal += prNonBlank - - # apply LM - applyLM(curr.entries[labeling], curr.entries[newLabeling], classes, lm) - - # set new beam state - last = curr - - # normalise LM scores according to beam-labeling-length - last.norm() - - # sort by probability - bestLabelings = last.sort()[:k] # get most probable labeling - - output = [] - for bestLabeling in bestLabelings: - # map labels to chars - res = '' - for l in bestLabeling: - res += classes[l] - output.append(res) - return output \ No newline at end of file diff --git a/example/gluon/lipnet/README.md b/example/gluon/lipnet/README.md deleted file mode 100644 index 89c27a11330f..000000000000 --- a/example/gluon/lipnet/README.md +++ /dev/null @@ -1,254 +0,0 @@ - - -# LipNet: End-to-End Sentence-level Lipreading - ---- - -This is a Gluon implementation of [LipNet: End-to-End Sentence-level Lipreading](https://arxiv.org/abs/1611.01599) - -![net_structure](asset/network_structure.png) - -![sample output](https://user-images.githubusercontent.com/11376047/52533982-d7227680-2d7e-11e9-9f18-c15b952faf0e.png) - -## Requirements -- Python 3.6.4 -- MXNet 1.3.0 -- Required disk space: 35 GB -``` -pip install -r requirements.txt -``` - ---- - -## The Data -- The GRID audiovisual sentence corpus (http://spandh.dcs.shef.ac.uk/gridcorpus/) - - GRID is a large multi-talker audiovisual sentence corpus to support joint computational-behavioral studies in speech perception. In brief, the corpus consists of high-quality audio and video (facial) recordings of 1000 sentences spoken by each of 34 talkers (18 male, 16 female). Sentences are of the form "put red at G9 now". The corpus, together with transcriptions, is freely available for research use. -- Video: (normal)(480 M each) - - Each movie has one sentence consist of 6 words. -- Align: word alignments (190 K each) - - One align has 6 words. Each word has start time and end time. But this tutorial needs just sentence because of using ctc-loss. - ---- - -## Pretrained model -You can train the model yourself in the following sections, you can test a pretrained model's inference, or resume training from the model checkpoint. To work with the provided pretrained model, first download it, then run one of the provided Python scripts for inference (infer.py) or training (main.py). - -* Download the [pretrained model](https://github.com/soeque1/temp_files/files/2848870/epoches_81_loss_15.7157.zip) -* Try inference with the following: - -``` -python infer.py model_path='checkpoint/epoches_81_loss_15.7157' -``` - -* Resume training with the following: - -``` -python main.py model_path='checkpoint/epoches_81_loss_15.7157' -``` - -## Prepare the Data - -You can prepare the data yourself, or you can download preprocessed data. - -### Option 1 - Download the preprocessed data - -There are two download routes provided for the preprocessed data. - -#### Download and untar the data -To download tar zipped files by link, download the following files and extract in a folder called `data` in the root of this example folder. You should have the following structure: -``` -/lipnet/data/align -/lipnet/data/datasets -``` - -* [align files](https://mxnet-public.s3.amazonaws.com/lipnet/data-archives/align.tgz) -* [datasets files](https://mxnet-public.s3.amazonaws.com/lipnet/data-archives/datasets.tgz) - -#### Use AWS CLI to sync the data -To get the folders and files all unzipped with AWS CLI, can use the following command. This will provide the folder structure for you. Run this command from `/lipnet/`: - -``` - aws s3 sync s3://mxnet-public/lipnet/data . -``` - -### Option 2 (part 1)- Download the raw dataset -- Outputs - - The Total Movies(mp4): 16GB - - The Total Aligns(text): 134MB -- Arguments - - src_path : Path for videos (default='./data/mp4s/') - - align_path : Path for aligns (default='./data/') - - n_process : num of process (default=1) - -``` -cd ./utils && python download_data.py --n_process=$(nproc) -``` - -### Option 2 (part 2) Preprocess the raw dataset: Extracting the mouth images from a video and save it - -* Using Face Landmark Detection(http://dlib.net/) - -#### Preprocess (preprocess_data.py) -* If there is no landmark, it download automatically. -* Using Face Landmark Detection, It extract the mouth from a video. - -- example: - - video: ./data/mp4s/s2/bbbf7p.mpg - - align(target): ./data/align/s2/bbbf7p.align - : 'sil bin blue by f seven please sil' - - -- Video to the images (75 Frames) - -Frame 0 | Frame 1 | ... | Frame 74 | -:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------: -![](asset/s2_bbbf7p_000.png) | ![](asset/s2_bbbf7p_001.png) | ... | ![](asset/s2_bbbf7p_074.png) - - - Extract the mouth from images - -Frame 0 | Frame 1 | ... | Frame 74 | -:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------: -![](asset/mouth_000.png) | ![](asset/mouth_001.png) | ... | ![](asset/mouth_074.png) - -* Save the result images into tgt_path. - ----- - -#### How to run the preprocess script - -- Arguments - - src_path : Path for videos (default='./data/mp4s/') - - tgt_path : Path for preprocessed images (default='./data/datasets/') - - n_process : num of process (default=1) - -- Outputs - - The Total Images(png): 19GB -- Elapsed time - - About 54 Hours using 1 process - - If you use the multi-processes, you can finish the number of processes faster. - - e.g) 9 hours using 6 processes - -You can run the preprocessing with just one processor, but this will take a long time (>48 hours). To use all of the available processors, use the following command: - -``` -cd ./utils && python preprocess_data.py --n_process=$(nproc) -``` - -#### Output: Data structure of the preprocessed data - -``` -The training data folder should look like : - - |--datasets - |--s1 - |--bbir7s - |--mouth_000.png - |--mouth_001.png - ... - |--bgaa8p - |--mouth_000.png - |--mouth_001.png - ... - |--s2 - ... - |--align - |--bw1d8a.align - |--bggzzs.align - ... - -``` - ---- - -## Training -After you have acquired the preprocessed data you are ready to train the lipnet model. - -- According to [LipNet: End-to-End Sentence-level Lipreading](https://arxiv.org/abs/1611.01599), four (S1, S2, S20, S22) of the 34 subjects are used for evaluation. - The other subjects are used for training. - -- To use the multi-gpu, it is recommended to make the batch size $(num_gpus) times larger. - - - e.g) 1-gpu and 128 batch_size > 2-gpus 256 batch_size - - -- arguments - - batch_size : Define batch size (default=64) - - epochs : Define total epochs (default=100) - - image_path : Path for lip image files (default='./data/datasets/') - - align_path : Path for align files (default='./data/align/') - - dr_rate : Dropout rate(default=0.5) - - num_gpus : Num of gpus (if num_gpus is 0, then use cpu) (default=1) - - num_workers : Num of workers when generating data (default=0) - - model_path : Path of pretrained model (default=None) - -``` -python main.py -``` - ---- - -## Test Environment -- 72 CPU cores -- 1 GPU (NVIDIA Tesla V100 SXM2 32 GB) -- 128 Batch Size - - - It takes over 24 hours (60 epochs) to get some good results. - ---- - -## Inference - -- arguments - - batch_size : Define batch size (default=64) - - image_path : Path for lip image files (default='./data/datasets/') - - align_path : Path for align files (default='./data/align/') - - num_gpus : Num of gpus (if num_gpus is 0, then use cpu) (default=1) - - num_workers : Num of workers when generating data (default=0) - - data_type : 'train' or 'valid' (defalut='valid') - - model_path : Path of pretrained model (default=None) - -``` -python infer.py --model_path=$(model_path) -``` - - -``` -[Target] -['lay green with a zero again', - 'bin blue with r nine please', - 'set blue with e five again', - 'bin green by t seven soon', - 'lay red at d five now', - 'bin green in x eight now', - 'bin blue with e one now', - 'lay red at j nine now'] - ``` - - ``` -[Pred] -['lay green with s zero again', - 'bin blue with r nine please', - 'set blue with e five again', - 'bin green by t seven soon', - 'lay red at c five now', - 'bin green in x eight now', - 'bin blue with m one now', - 'lay red at j nine now'] - ``` diff --git a/example/gluon/lipnet/asset/mouth_000.png b/example/gluon/lipnet/asset/mouth_000.png deleted file mode 100644 index b318e56dfd21..000000000000 Binary files a/example/gluon/lipnet/asset/mouth_000.png and /dev/null differ diff --git a/example/gluon/lipnet/asset/mouth_001.png b/example/gluon/lipnet/asset/mouth_001.png deleted file mode 100644 index 60bd04ab18ae..000000000000 Binary files a/example/gluon/lipnet/asset/mouth_001.png and /dev/null differ diff --git a/example/gluon/lipnet/asset/mouth_074.png b/example/gluon/lipnet/asset/mouth_074.png deleted file mode 100644 index e5e0d78e2450..000000000000 Binary files a/example/gluon/lipnet/asset/mouth_074.png and /dev/null differ diff --git a/example/gluon/lipnet/asset/network_structure.png b/example/gluon/lipnet/asset/network_structure.png deleted file mode 100644 index eeec2cb0b645..000000000000 Binary files a/example/gluon/lipnet/asset/network_structure.png and /dev/null differ diff --git a/example/gluon/lipnet/asset/s2_bbbf7p_000.png b/example/gluon/lipnet/asset/s2_bbbf7p_000.png deleted file mode 100644 index 6495d2fa5b83..000000000000 Binary files a/example/gluon/lipnet/asset/s2_bbbf7p_000.png and /dev/null differ diff --git a/example/gluon/lipnet/asset/s2_bbbf7p_001.png b/example/gluon/lipnet/asset/s2_bbbf7p_001.png deleted file mode 100644 index 2a7e269f14de..000000000000 Binary files a/example/gluon/lipnet/asset/s2_bbbf7p_001.png and /dev/null differ diff --git a/example/gluon/lipnet/asset/s2_bbbf7p_074.png b/example/gluon/lipnet/asset/s2_bbbf7p_074.png deleted file mode 100644 index eabd392be49c..000000000000 Binary files a/example/gluon/lipnet/asset/s2_bbbf7p_074.png and /dev/null differ diff --git a/example/gluon/lipnet/checkpoint/__init__.py b/example/gluon/lipnet/checkpoint/__init__.py deleted file mode 100644 index 13a83393a912..000000000000 --- a/example/gluon/lipnet/checkpoint/__init__.py +++ /dev/null @@ -1,16 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. diff --git a/example/gluon/lipnet/data_loader.py b/example/gluon/lipnet/data_loader.py deleted file mode 100644 index e3cc24bfcc63..000000000000 --- a/example/gluon/lipnet/data_loader.py +++ /dev/null @@ -1,94 +0,0 @@ -""" -Description : Set DataSet module for lip images -""" -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os -import glob -from mxnet import nd -import mxnet.gluon.data.dataset as dataset -from mxnet.gluon.data.vision.datasets import image -from utils.align import Align - -# pylint: disable=too-many-instance-attributes, too-many-arguments -class LipsDataset(dataset.Dataset): - """ - Description : DataSet class for lip images - """ - def __init__(self, root, align_root, flag=1, - mode='train', transform=None, seq_len=75): - assert mode in ['train', 'valid'] - self._root = os.path.expanduser(root) - self._align_root = align_root - self._flag = flag - self._transform = transform - self._exts = ['.jpg', '.jpeg', '.png'] - self._seq_len = seq_len - self._mode = mode - self._list_images(self._root) - - def _list_images(self, root): - """ - Description : generate list for lip images - """ - self.labels = [] - self.items = [] - - valid_unseen_sub_idx = [1, 2, 20, 22] - skip_sub_idx = [21] - - if self._mode == 'train': - sub_idx = ['s' + str(i) for i in range(1, 35) \ - if i not in valid_unseen_sub_idx + skip_sub_idx] - elif self._mode == 'valid': - sub_idx = ['s' + str(i) for i in valid_unseen_sub_idx] - - folder_path = [] - for i in sub_idx: - folder_path.extend(glob.glob(os.path.join(root, i, "*"))) - - for folder in folder_path: - filename = glob.glob(os.path.join(folder, "*")) - if len(filename) != self._seq_len: - continue - filename.sort() - label = os.path.split(folder)[-1] - self.items.append((filename, label)) - - def align_generation(self, file_nm, padding=75): - """ - Description : Align to lip position - """ - align = Align(self._align_root + '/' + file_nm + '.align') - return nd.array(align.sentence(padding)) - - def __getitem__(self, idx): - img = list() - for image_name in self.items[idx][0]: - tmp_img = image.imread(image_name, self._flag) - if self._transform is not None: - tmp_img = self._transform(tmp_img) - img.append(tmp_img) - img = nd.stack(*img) - img = nd.transpose(img, (1, 0, 2, 3)) - label = self.align_generation(self.items[idx][1], - padding=self._seq_len) - return img, label - - def __len__(self): - return len(self.items) diff --git a/example/gluon/lipnet/infer.py b/example/gluon/lipnet/infer.py deleted file mode 100644 index 746df9a05e72..000000000000 --- a/example/gluon/lipnet/infer.py +++ /dev/null @@ -1,52 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Description : main module to run the lipnet inference code -""" - - -import argparse -from trainer import Train - -def main(): - """ - Description : run lipnet training code using argument info - """ - parser = argparse.ArgumentParser() - parser.add_argument('--batch_size', type=int, default=64) - parser.add_argument('--image_path', type=str, default='./data/datasets/') - parser.add_argument('--align_path', type=str, default='./data/align/') - parser.add_argument('--num_gpus', type=int, default=1) - parser.add_argument('--num_workers', type=int, default=0) - parser.add_argument('--data_type', type=str, default='valid') - parser.add_argument('--model_path', type=str, default=None) - config = parser.parse_args() - trainer = Train(config) - trainer.build_model(path=config.model_path) - trainer.load_dataloader() - - if config.data_type == 'train': - data_loader = trainer.train_dataloader - elif config.data_type == 'valid': - data_loader = trainer.valid_dataloader - - trainer.infer_batch(data_loader) - -if __name__ == "__main__": - main() - \ No newline at end of file diff --git a/example/gluon/lipnet/main.py b/example/gluon/lipnet/main.py deleted file mode 100644 index 8e5e7569d271..000000000000 --- a/example/gluon/lipnet/main.py +++ /dev/null @@ -1,47 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Description : main module to run the lipnet training code -""" - - -import argparse -from trainer import Train - -def main(): - """ - Description : run lipnet training code using argument info - """ - parser = argparse.ArgumentParser() - parser.add_argument('--batch_size', type=int, default=64) - parser.add_argument('--epochs', type=int, default=100) - parser.add_argument('--image_path', type=str, default='./data/datasets/') - parser.add_argument('--align_path', type=str, default='./data/align/') - parser.add_argument('--dr_rate', type=float, default=0.5) - parser.add_argument('--num_gpus', type=int, default=1) - parser.add_argument('--num_workers', type=int, default=0) - parser.add_argument('--model_path', type=str, default=None) - config = parser.parse_args() - trainer = Train(config) - trainer.build_model(dr_rate=config.dr_rate, path=config.model_path) - trainer.load_dataloader() - trainer.run(epochs=config.epochs) - -if __name__ == "__main__": - main() - \ No newline at end of file diff --git a/example/gluon/lipnet/models/__init__.py b/example/gluon/lipnet/models/__init__.py deleted file mode 100644 index 26fa2cec6dd9..000000000000 --- a/example/gluon/lipnet/models/__init__.py +++ /dev/null @@ -1,16 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at - -# http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. diff --git a/example/gluon/lipnet/models/network.py b/example/gluon/lipnet/models/network.py deleted file mode 100644 index b8f005a961c1..000000000000 --- a/example/gluon/lipnet/models/network.py +++ /dev/null @@ -1,73 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Description : LipNet module using gluon -""" - -from mxnet.gluon import nn, rnn -# pylint: disable=too-many-instance-attributes -class LipNet(nn.HybridBlock): - """ - Description : LipNet network using gluon - dr_rate : Dropout rate - """ - def __init__(self, dr_rate, **kwargs): - super(LipNet, self).__init__(**kwargs) - with self.name_scope(): - self.conv1 = nn.Conv3D(32, kernel_size=(3, 5, 5), strides=(1, 2, 2), padding=(1, 2, 2)) - self.bn1 = nn.InstanceNorm(in_channels=32) - self.dr1 = nn.Dropout(dr_rate, axes=(1, 2)) - self.pool1 = nn.MaxPool3D((1, 2, 2), (1, 2, 2)) - self.conv2 = nn.Conv3D(64, kernel_size=(3, 5, 5), strides=(1, 1, 1), padding=(1, 2, 2)) - self.bn2 = nn.InstanceNorm(in_channels=64) - self.dr2 = nn.Dropout(dr_rate, axes=(1, 2)) - self.pool2 = nn.MaxPool3D((1, 2, 2), (1, 2, 2)) - self.conv3 = nn.Conv3D(96, kernel_size=(3, 3, 3), strides=(1, 1, 1), padding=(1, 2, 2)) - self.bn3 = nn.InstanceNorm(in_channels=96) - self.dr3 = nn.Dropout(dr_rate, axes=(1, 2)) - self.pool3 = nn.MaxPool3D((1, 2, 2), (1, 2, 2)) - self.gru1 = rnn.GRU(256, bidirectional=True) - self.gru2 = rnn.GRU(256, bidirectional=True) - self.dense = nn.Dense(27+1, flatten=False) - - # pylint: disable=arguments-differ - def hybrid_forward(self, F, x): - out = self.conv1(x) - out = self.bn1(out) - out = F.relu(out) - out = self.dr1(out) - out = self.pool1(out) - out = self.conv2(out) - out = self.bn2(out) - out = F.relu(out) - out = self.dr2(out) - out = self.pool2(out) - out = self.conv3(out) - out = self.bn3(out) - out = F.relu(out) - out = self.dr3(out) - out = self.pool3(out) - out = F.transpose(out, (2, 0, 1, 3, 4)) - # pylint: disable=no-member - out = out.reshape((0, 0, -1)) - out = self.gru1(out) - out = self.gru2(out) - out = self.dense(out) - out = F.log_softmax(out, axis=2) - out = F.transpose(out, (1, 0, 2)) - return out diff --git a/example/gluon/lipnet/requirements.txt b/example/gluon/lipnet/requirements.txt deleted file mode 100644 index f1fcda31d98f..000000000000 --- a/example/gluon/lipnet/requirements.txt +++ /dev/null @@ -1,7 +0,0 @@ -dlib==19.15.0 -Pillow==4.1.0 -scipy==0.19.0 -scikit-image==0.13.1 -scikit-video==1.1.11 -sk-video==1.1.10 -tqdm diff --git a/example/gluon/lipnet/tests/test_beamsearch.py b/example/gluon/lipnet/tests/test_beamsearch.py deleted file mode 100644 index 069cbaee8e7f..000000000000 --- a/example/gluon/lipnet/tests/test_beamsearch.py +++ /dev/null @@ -1,42 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""it is the test for the decode using beam search -Ref: -https://github.com/ThomasDelteil/HandwrittenTextRecognition_MXNet/blob/master/utils/CTCDecoder/BeamSearch.py -""" - -import unittest -import numpy as np -from BeamSearch import ctcBeamSearch - -class TestBeamSearch(unittest.TestCase): - """Test Beam Search - """ - def test_ctc_beam_search(self): - "test decoder" - classes = 'ab' - mat = np.array([[0.4, 0, 0.6], [0.4, 0, 0.6]]) - print('Test beam search') - expected = 'a' - actual = ctcBeamSearch(mat, classes, None, k=2, beamWidth=3)[0] - print('Expected: "' + expected + '"') - print('Actual: "' + actual + '"') - self.assertEqual(expected, actual) - -if __name__ == '__main__': - unittest.main() diff --git a/example/gluon/lipnet/trainer.py b/example/gluon/lipnet/trainer.py deleted file mode 100644 index df5c86ece9b8..000000000000 --- a/example/gluon/lipnet/trainer.py +++ /dev/null @@ -1,232 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Description : Training module for LipNet -""" - - -import sys -import mxnet as mx -from mxnet import gluon, autograd, nd -from mxnet.gluon.data.vision import transforms -from tqdm import tqdm, trange -from data_loader import LipsDataset -from models.network import LipNet -from BeamSearch import ctcBeamSearch -from utils.common import char_conv, int2char -# set gpu count - - -def setting_ctx(num_gpus): - """ - Description : set gpu module - """ - if num_gpus > 0: - ctx = [mx.gpu(i) for i in range(num_gpus)] - else: - ctx = [mx.cpu()] - return ctx - - -ALPHABET = '' -for i in range(27): - ALPHABET += int2char(i) - -def char_beam_search(out): - """ - Description : apply beam search for prediction result - """ - out_conv = list() - for idx in range(out.shape[0]): - probs = out[idx] - prob = probs.softmax().asnumpy() - line_string_proposals = ctcBeamSearch(prob, ALPHABET, None, k=4, beamWidth=25) - out_conv.append(line_string_proposals[0]) - return out_conv - -# pylint: disable=too-many-instance-attributes, too-many-locals -class Train: - """ - Description : Train class for training network - """ - def __init__(self, config): - ##setting hyper-parameters - self.batch_size = config.batch_size - self.image_path = config.image_path - self.align_path = config.align_path - self.num_gpus = config.num_gpus - self.ctx = setting_ctx(self.num_gpus) - self.num_workers = config.num_workers - self.seq_len = 75 - - def build_model(self, dr_rate=0, path=None): - """ - Description : build network - """ - #set network - self.net = LipNet(dr_rate) - self.net.hybridize() - self.net.initialize(ctx=self.ctx) - - if path is not None: - self.load_model(path) - - #set optimizer - self.loss_fn = gluon.loss.CTCLoss() - self.trainer = gluon.Trainer(self.net.collect_params(), \ - optimizer='SGD') - - def save_model(self, epoch, loss): - """ - Description : save parameter of network weight - """ - prefix = 'checkpoint/epoches' - file_name = "{prefix}_{epoch}_loss_{l:.4f}".format(prefix=prefix, - epoch=str(epoch), - l=loss) - self.net.save_parameters(file_name) - - def load_model(self, path=''): - """ - Description : load parameter of network weight - """ - self.net.load_parameters(path) - - def load_dataloader(self): - """ - Description : Setup the dataloader - """ - - input_transform = transforms.Compose([transforms.ToTensor(), \ - transforms.Normalize((0.7136, 0.4906, 0.3283), \ - (0.1138, 0.1078, 0.0917))]) - training_dataset = LipsDataset(self.image_path, - self.align_path, - mode='train', - transform=input_transform, - seq_len=self.seq_len) - - self.train_dataloader = mx.gluon.data.DataLoader(training_dataset, - batch_size=self.batch_size, - shuffle=True, - num_workers=self.num_workers) - - valid_dataset = LipsDataset(self.image_path, - self.align_path, - mode='valid', - transform=input_transform, - seq_len=self.seq_len) - - self.valid_dataloader = mx.gluon.data.DataLoader(valid_dataset, - batch_size=self.batch_size, - shuffle=True, - num_workers=self.num_workers) - - def train(self, data, label, batch_size): - """ - Description : training for LipNet - """ - # pylint: disable=no-member - sum_losses = 0 - len_losses = 0 - with autograd.record(): - losses = [self.loss_fn(self.net(X), Y) for X, Y in zip(data, label)] - for loss in losses: - sum_losses += mx.nd.array(loss).sum().asscalar() - len_losses += len(loss) - loss.backward() - self.trainer.step(batch_size) - return sum_losses, len_losses - - def infer(self, input_data, input_label): - """ - Description : Print sentence for prediction result - """ - sum_losses = 0 - len_losses = 0 - for data, label in zip(input_data, input_label): - pred = self.net(data) - sum_losses += mx.nd.array(self.loss_fn(pred, label)).sum().asscalar() - len_losses += len(data) - pred_convert = char_beam_search(pred) - label_convert = char_conv(label.asnumpy()) - for target, pred in zip(label_convert, pred_convert): - print("target:{t} pred:{p}".format(t=target, p=pred)) - return sum_losses, len_losses - - def train_batch(self, dataloader): - """ - Description : training for LipNet - """ - sum_losses = 0 - len_losses = 0 - for input_data, input_label in tqdm(dataloader): - data = gluon.utils.split_and_load(input_data, self.ctx, even_split=False) - label = gluon.utils.split_and_load(input_label, self.ctx, even_split=False) - batch_size = input_data.shape[0] - sum_losses, len_losses = self.train(data, label, batch_size) - sum_losses += sum_losses - len_losses += len_losses - - return sum_losses, len_losses - - def infer_batch(self, dataloader): - """ - Description : inference for LipNet - """ - sum_losses = 0 - len_losses = 0 - for input_data, input_label in dataloader: - data = gluon.utils.split_and_load(input_data, self.ctx, even_split=False) - label = gluon.utils.split_and_load(input_label, self.ctx, even_split=False) - sum_losses, len_losses = self.infer(data, label) - sum_losses += sum_losses - len_losses += len_losses - - return sum_losses, len_losses - - def run(self, epochs): - """ - Description : Run training for LipNet - """ - best_loss = sys.maxsize - for epoch in trange(epochs): - iter_no = 0 - - ## train - sum_losses, len_losses = self.train_batch(self.train_dataloader) - - if iter_no % 20 == 0: - current_loss = sum_losses / len_losses - print("[Train] epoch:{e} iter:{i} loss:{l:.4f}".format(e=epoch, - i=iter_no, - l=current_loss)) - - ## validating - sum_val_losses, len_val_losses = self.infer_batch(self.valid_dataloader) - - current_val_loss = sum_val_losses / len_val_losses - print("[Vaild] epoch:{e} iter:{i} loss:{l:.4f}".format(e=epoch, - i=iter_no, - l=current_val_loss)) - - if best_loss > current_val_loss: - self.save_model(epoch, current_val_loss) - best_loss = current_val_loss - - iter_no += 1 diff --git a/example/gluon/lipnet/utils/__init__.py b/example/gluon/lipnet/utils/__init__.py deleted file mode 100644 index 13a83393a912..000000000000 --- a/example/gluon/lipnet/utils/__init__.py +++ /dev/null @@ -1,16 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. diff --git a/example/gluon/lipnet/utils/align.py b/example/gluon/lipnet/utils/align.py deleted file mode 100644 index 48d0716aaedd..000000000000 --- a/example/gluon/lipnet/utils/align.py +++ /dev/null @@ -1,83 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Module: align -This is used when the data is genrated by LipsDataset -""" - -import numpy as np -from .common import word_to_vector - - -class Align(object): - """ - Preprocess for Align - """ - skip_list = ['sil', 'sp'] - - def __init__(self, align_path): - self.build(align_path) - - def build(self, align_path): - """ - Build the align array - """ - file = open(align_path, 'r') - lines = file.readlines() - file.close() - # words: list([op, ed, word]) - words = [] - for line in lines: - _op, _ed, word = line.strip().split(' ') - if word not in Align.skip_list: - words.append((int(_op), int(_ed), word)) - self.words = words - self.n_words = len(words) - self.sentence_str = " ".join([w[2] for w in self.words]) - self.sentence_length = len(self.sentence_str) - - def sentence(self, padding=75): - """ - Get sentence - """ - vec = word_to_vector(self.sentence_str) - vec += [-1] * (padding - self.sentence_length) - return np.array(vec, dtype=np.int32) - - def word(self, _id, padding=75): - """ - Get words - """ - word = self.words[_id][2] - vec = word_to_vector(word) - vec += [-1] * (padding - len(vec)) - return np.array(vec, dtype=np.int32) - - def word_length(self, _id): - """ - Get the length of words - """ - return len(self.words[_id][2]) - - def word_frame_pos(self, _id): - """ - Get the position of words - """ - left = int(self.words[_id][0]/1000) - right = max(left+1, int(self.words[_id][1]/1000)) - return (left, right) diff --git a/example/gluon/lipnet/utils/common.py b/example/gluon/lipnet/utils/common.py deleted file mode 100644 index ec96b6879653..000000000000 --- a/example/gluon/lipnet/utils/common.py +++ /dev/null @@ -1,80 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Module: This module contains common conversion functions - -""" - - -def char2int(char): - """ - Convert character to integer. - """ - if char >= 'a' and char <= 'z': - return ord(char) - ord('a') - elif char == ' ': - return 26 - return None - - -def int2char(num): - """ - Convert integer to character. - """ - if num >= 0 and num < 26: - return chr(num + ord('a')) - elif num == 26: - return ' ' - return None - - -def word_to_vector(word): - """ - Convert character vectors to integer vectors. - """ - vector = [] - for char in list(word): - vector.append(char2int(char)) - return vector - - -def vector_to_word(vector): - """ - Convert integer vectors to character vectors. - """ - word = "" - for vec in vector: - word = word + int2char(vec) - return word - - -def char_conv(out): - """ - Convert integer vectors to character vectors for batch. - """ - out_conv = list() - for i in range(out.shape[0]): - tmp_str = '' - for j in range(out.shape[1]): - if int(out[i][j]) >= 0: - tmp_char = int2char(int(out[i][j])) - if int(out[i][j]) == 27: - tmp_char = '' - tmp_str = tmp_str + tmp_char - out_conv.append(tmp_str) - return out_conv diff --git a/example/gluon/lipnet/utils/download_data.py b/example/gluon/lipnet/utils/download_data.py deleted file mode 100644 index 3051eb2a9e27..000000000000 --- a/example/gluon/lipnet/utils/download_data.py +++ /dev/null @@ -1,112 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Module: download_data -This module provides utilities for downloading the datasets for training LipNet -""" - -import os -from os.path import exists -from multi import multi_p_run, put_worker - - -def download_mp4(from_idx, to_idx, _params): - """ - download mp4s - """ - succ = set() - fail = set() - for idx in range(from_idx, to_idx): - name = 's' + str(idx) - save_folder = '{src_path}/{nm}'.format(src_path=_params['src_path'], nm=name) - if idx == 0 or os.path.isdir(save_folder): - continue - script = "http://spandh.dcs.shef.ac.uk/gridcorpus/{nm}/video/{nm}.mpg_vcd.zip".format( \ - nm=name) - down_sc = 'cd {src_path} && curl {script} --output {nm}.mpg_vcd.zip && \ - unzip {nm}.mpg_vcd.zip'.format(script=script, - nm=name, - src_path=_params['src_path']) - try: - print(down_sc) - os.system(down_sc) - succ.add(idx) - except OSError as error: - print(error) - fail.add(idx) - return (succ, fail) - - -def download_align(from_idx, to_idx, _params): - """ - download aligns - """ - succ = set() - fail = set() - for idx in range(from_idx, to_idx): - name = 's' + str(idx) - if idx == 0: - continue - script = "http://spandh.dcs.shef.ac.uk/gridcorpus/{nm}/align/{nm}.tar".format(nm=name) - down_sc = 'cd {align_path} && wget {script} && \ - tar -xvf {nm}.tar'.format(script=script, - nm=name, - align_path=_params['align_path']) - try: - print(down_sc) - os.system(down_sc) - succ.add(idx) - except OSError as error: - print(error) - fail.add(idx) - return (succ, fail) - - -if __name__ == '__main__': - import argparse - PARSER = argparse.ArgumentParser() - PARSER.add_argument('--src_path', type=str, default='../data/mp4s') - PARSER.add_argument('--align_path', type=str, default='../data') - PARSER.add_argument('--n_process', type=int, default=1) - CONFIG = PARSER.parse_args() - PARAMS = {'src_path': CONFIG.src_path, 'align_path': CONFIG.align_path} - N_PROCESS = CONFIG.n_process - - if exists('./shape_predictor_68_face_landmarks.dat') is False: - os.system('wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 && \ - bzip2 -d shape_predictor_68_face_landmarks.dat.bz2') - - os.makedirs('{src_path}'.format(src_path=PARAMS['src_path']), exist_ok=True) - os.makedirs('{align_path}'.format(align_path=PARAMS['align_path']), exist_ok=True) - - if N_PROCESS == 1: - RES = download_mp4(0, 35, PARAMS) - RES = download_align(0, 35, PARAMS) - else: - # download movie files - RES = multi_p_run(tot_num=35, _func=put_worker, worker=download_mp4, \ - params=PARAMS, n_process=N_PROCESS) - - # download align files - RES = multi_p_run(tot_num=35, _func=put_worker, worker=download_align, \ - params=PARAMS, n_process=N_PROCESS) - - os.system('rm -f {src_path}/*.zip && rm -f {src_path}/*/Thumbs.db'.format( \ - src_path=PARAMS['src_path'])) - os.system('rm -f {align_path}/*.tar && rm -f {align_path}/Thumbs.db'.format( \ - align_path=PARAMS['align_path'])) diff --git a/example/gluon/lipnet/utils/multi.py b/example/gluon/lipnet/utils/multi.py deleted file mode 100644 index ce545b572de6..000000000000 --- a/example/gluon/lipnet/utils/multi.py +++ /dev/null @@ -1,104 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Module: preprocess with multi-process -""" - - -def multi_p_run(tot_num, _func, worker, params, n_process): - """ - Run _func with multi-process using params. - """ - from multiprocessing import Process, Queue - out_q = Queue() - procs = [] - - split_num = split_seq(list(range(0, tot_num)), n_process) - - print(tot_num, ">>", split_num) - - split_len = len(split_num) - if n_process > split_len: - n_process = split_len - - for i in range(n_process): - _p = Process(target=_func, - args=(worker, split_num[i][0], split_num[i][1], - params, out_q)) - _p.daemon = True - procs.append(_p) - _p.start() - - try: - result = [] - for i in range(n_process): - result.append(out_q.get()) - for i in procs: - i.join() - except KeyboardInterrupt: - print('Killing all the children in the pool.') - for i in procs: - i.terminate() - i.join() - return -1 - - while not out_q.empty(): - print(out_q.get(block=False)) - - return result - - -def split_seq(sam_num, n_tile): - """ - Split the number(sam_num) into numbers by n_tile - """ - import math - print(sam_num) - print(n_tile) - start_num = sam_num[0::int(math.ceil(len(sam_num) / (n_tile)))] - end_num = start_num[1::] - end_num.append(len(sam_num)) - return [[i, j] for i, j in zip(start_num, end_num)] - - -def put_worker(func, from_idx, to_idx, params, out_q): - """ - put worker - """ - succ, fail = func(from_idx, to_idx, params) - return out_q.put({'succ': succ, 'fail': fail}) - - -def test_worker(from_idx, to_idx, params): - """ - the worker to test multi-process - """ - params = params - succ = set() - fail = set() - for idx in range(from_idx, to_idx): - try: - succ.add(idx) - except ValueError: - fail.add(idx) - return (succ, fail) - - -if __name__ == '__main__': - RES = multi_p_run(35, put_worker, test_worker, params={}, n_process=5) - print(RES) diff --git a/example/gluon/lipnet/utils/preprocess_data.py b/example/gluon/lipnet/utils/preprocess_data.py deleted file mode 100644 index a13fad88af7a..000000000000 --- a/example/gluon/lipnet/utils/preprocess_data.py +++ /dev/null @@ -1,262 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Module: preprocess_data -Reference: https://github.com/rizkiarm/LipNet -""" - -# pylint: disable=too-many-locals, no-self-use, c-extension-no-member - -import os -import fnmatch -import errno -import numpy as np -from scipy import ndimage -from scipy.misc import imresize -from skimage import io -import skvideo.io -import dlib - -def mkdir_p(path): - """ - Make a directory - """ - try: - os.makedirs(path) - except OSError as exc: # Python >2.5 - if exc.errno == errno.EEXIST and os.path.isdir(path): - pass - else: - raise - -def find_files(directory, pattern): - """ - Find files - """ - for root, _, files in os.walk(directory): - for basename in files: - if fnmatch.fnmatch(basename, pattern): - filename = os.path.join(root, basename) - yield filename - -class Video(object): - """ - Preprocess for Video - """ - def __init__(self, vtype='mouth', face_predictor_path=None): - if vtype == 'face' and face_predictor_path is None: - raise AttributeError('Face video need to be accompanied with face predictor') - self.face_predictor_path = face_predictor_path - self.vtype = vtype - self.face = None - self.mouth = None - self.data = None - self.length = None - - def from_frames(self, path): - """ - Read from frames - """ - frames_path = sorted([os.path.join(path, x) for x in os.listdir(path)]) - frames = [ndimage.imread(frame_path) for frame_path in frames_path] - self.handle_type(frames) - return self - - def from_video(self, path): - """ - Read from videos - """ - frames = self.get_video_frames(path) - self.handle_type(frames) - return self - - def from_array(self, frames): - """ - Read from array - """ - self.handle_type(frames) - return self - - def handle_type(self, frames): - """ - Config video types - """ - if self.vtype == 'mouth': - self.process_frames_mouth(frames) - elif self.vtype == 'face': - self.process_frames_face(frames) - else: - raise Exception('Video type not found') - - def process_frames_face(self, frames): - """ - Preprocess from frames using face detector - """ - detector = dlib.get_frontal_face_detector() - predictor = dlib.shape_predictor(self.face_predictor_path) - mouth_frames = self.get_frames_mouth(detector, predictor, frames) - self.face = np.array(frames) - self.mouth = np.array(mouth_frames) - if mouth_frames[0] is not None: - self.set_data(mouth_frames) - - def process_frames_mouth(self, frames): - """ - Preprocess from frames using mouth detector - """ - self.face = np.array(frames) - self.mouth = np.array(frames) - self.set_data(frames) - - def get_frames_mouth(self, detector, predictor, frames): - """ - Get frames using mouth crop - """ - mouth_width = 100 - mouth_height = 50 - horizontal_pad = 0.19 - normalize_ratio = None - mouth_frames = [] - for frame in frames: - dets = detector(frame, 1) - shape = None - for det in dets: - shape = predictor(frame, det) - i = -1 - if shape is None: # Detector doesn't detect face, just return None - return [None] - mouth_points = [] - for part in shape.parts(): - i += 1 - if i < 48: # Only take mouth region - continue - mouth_points.append((part.x, part.y)) - np_mouth_points = np.array(mouth_points) - - mouth_centroid = np.mean(np_mouth_points[:, -2:], axis=0) - - if normalize_ratio is None: - mouth_left = np.min(np_mouth_points[:, :-1]) * (1.0 - horizontal_pad) - mouth_right = np.max(np_mouth_points[:, :-1]) * (1.0 + horizontal_pad) - - normalize_ratio = mouth_width / float(mouth_right - mouth_left) - - new_img_shape = (int(frame.shape[0] * normalize_ratio), - int(frame.shape[1] * normalize_ratio)) - resized_img = imresize(frame, new_img_shape) - - mouth_centroid_norm = mouth_centroid * normalize_ratio - - mouth_l = int(mouth_centroid_norm[0] - mouth_width / 2) - mouth_r = int(mouth_centroid_norm[0] + mouth_width / 2) - mouth_t = int(mouth_centroid_norm[1] - mouth_height / 2) - mouth_b = int(mouth_centroid_norm[1] + mouth_height / 2) - - mouth_crop_image = resized_img[mouth_t:mouth_b, mouth_l:mouth_r] - - mouth_frames.append(mouth_crop_image) - return mouth_frames - - def get_video_frames(self, path): - """ - Get video frames - """ - videogen = skvideo.io.vreader(path) - frames = np.array([frame for frame in videogen]) - return frames - - def set_data(self, frames): - """ - Prepare the input of model - """ - data_frames = [] - for frame in frames: - #frame H x W x C - frame = frame.swapaxes(0, 1) # swap width and height to form format W x H x C - if len(frame.shape) < 3: - frame = np.array([frame]).swapaxes(0, 2).swapaxes(0, 1) # Add grayscale channel - data_frames.append(frame) - frames_n = len(data_frames) - data_frames = np.array(data_frames) # T x W x H x C - data_frames = np.rollaxis(data_frames, 3) # C x T x W x H - data_frames = data_frames.swapaxes(2, 3) # C x T x H x W = NCDHW - - self.data = data_frames - self.length = frames_n - -def preprocess(from_idx, to_idx, _params): - """ - Preprocess: Convert a video into the mouth images - """ - source_exts = '*.mpg' - src_path = _params['src_path'] - tgt_path = _params['tgt_path'] - face_predictor_path = './shape_predictor_68_face_landmarks.dat' - - succ = set() - fail = set() - for idx in range(from_idx, to_idx): - s_id = 's' + str(idx) + '/' - source_path = src_path + '/' + s_id - target_path = tgt_path + '/' + s_id - fail_cnt = 0 - for filepath in find_files(source_path, source_exts): - print("Processing: {}".format(filepath)) - filepath_wo_ext = os.path.splitext(filepath)[0].split('/')[-2:] - target_dir = os.path.join(tgt_path, '/'.join(filepath_wo_ext)) - - if os.path.exists(target_dir): - continue - - try: - video = Video(vtype='face', \ - face_predictor_path=face_predictor_path).from_video(filepath) - mkdir_p(target_dir) - i = 0 - if video.mouth[0] is None: - continue - for frame in video.mouth: - io.imsave(os.path.join(target_dir, "mouth_{0:03d}.png".format(i)), frame) - i += 1 - except ValueError as error: - print(error) - fail_cnt += 1 - if fail_cnt == 0: - succ.add(idx) - else: - fail.add(idx) - return (succ, fail) - -if __name__ == '__main__': - import argparse - from multi import multi_p_run, put_worker - PARSER = argparse.ArgumentParser() - PARSER.add_argument('--src_path', type=str, default='../data/mp4s') - PARSER.add_argument('--tgt_path', type=str, default='../data/datasets') - PARSER.add_argument('--n_process', type=int, default=1) - CONFIG = PARSER.parse_args() - N_PROCESS = CONFIG.n_process - PARAMS = {'src_path':CONFIG.src_path, - 'tgt_path':CONFIG.tgt_path} - - os.makedirs('{tgt_path}'.format(tgt_path=PARAMS['tgt_path']), exist_ok=True) - - if N_PROCESS == 1: - RES = preprocess(0, 35, PARAMS) - else: - RES = multi_p_run(35, put_worker, preprocess, PARAMS, N_PROCESS) diff --git a/example/gluon/lipnet/utils/run_preprocess.ipynb b/example/gluon/lipnet/utils/run_preprocess.ipynb deleted file mode 100644 index 7a25e9b33517..000000000000 --- a/example/gluon/lipnet/utils/run_preprocess.ipynb +++ /dev/null @@ -1,194 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from download_data import multi_p_run, put_worker, _worker, download_mp4, download_align" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## TEST" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]\n", - "5\n", - "35 >> [[0, 7], [7, 14], [14, 21], [21, 28], [28, 35]]\n", - "[{'succ': {0, 1, 2, 3, 4, 5, 6}, 'fail': set()}, {'succ': {7, 8, 9, 10, 11, 12, 13}, 'fail': set()}, {'succ': {14, 15, 16, 17, 18, 19, 20}, 'fail': set()}, {'succ': {21, 22, 23, 24, 25, 26, 27}, 'fail': set()}, {'succ': {32, 33, 34, 28, 29, 30, 31}, 'fail': set()}]\n" - ] - } - ], - "source": [ - "res = multi_p_run(35, put_worker, _worker, 5)\n", - "print (res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Download Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "## down\n", - "import os\n", - "os.makedirs('./datasets', exist_ok=True)\n", - "#os.system('rm -rf ./datasets/*')\n", - "\n", - "res = multi_p_run(35, put_worker, download_align, 9)\n", - "print (res)\n", - "\n", - "os.system('rm -f datasets/*.tar && rm -f datasets/align/Thumbs.db')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "res = multi_p_run(35, put_worker, download_mp4, 9)\n", - "print (res)\n", - "\n", - "os.system('rm -f datasets/*.zip && rm -f datasets/*/Thumbs.db')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "## download single 22 th dir\n", - "#download_data.py(22, 22)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preprocess Data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from preprocess_data import preprocess, find_files, Video" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "os.makedirs('./TARGET', exist_ok=True)\n", - "os.system('rm -rf ./TARGET/*')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]\n", - "9\n", - "35 >> [[0, 4], [4, 8], [8, 12], [12, 16], [16, 20], [20, 24], [24, 28], [28, 32], [32, 35]]\n", - "Processing: datasets/s1/prwq3s.mpg\n", - "Processing: datasets/s4/lrix7n.mpg\n", - "Processing: datasets/s8/pgbyza.mpg\n", - "Processing: datasets/s12/brik7n.mpg\n", - "Processing: datasets/s16/sgit7p.mpg\n", - "Processing: datasets/s20/lrbp8a.mpg\n", - "Processing: datasets/s24/sbik8a.mpg\n", - "Processing: datasets/s28/srwf8a.mpg\n", - "Processing: datasets/s32/pbbm1n.mpg\n", - "Processing: datasets/s12/sbbaza.mpg\n", - "Processing: datasets/s28/lbit7n.mpg\n", - "Processing: datasets/s32/pbwm7p.mpg\n", - "Processing: datasets/s8/bril2s.mpg\n", - "Processing: datasets/s20/bway7n.mpg\n", - "Processing: datasets/s1/pbib8p.mpg\n", - "Processing: datasets/s16/lwaj7n.mpg\n", - "Processing: datasets/s24/bwwl6a.mpg\n", - "Processing: datasets/s4/bbwf7n.mpg\n" - ] - } - ], - "source": [ - "res = multi_p_run(35, put_worker, preprocess, 9)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/example/gluon/lipnet/utils/run_preprocess_single_process.ipynb b/example/gluon/lipnet/utils/run_preprocess_single_process.ipynb deleted file mode 100644 index 4311323206e1..000000000000 --- a/example/gluon/lipnet/utils/run_preprocess_single_process.ipynb +++ /dev/null @@ -1,360 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from download_data import multi_p_run, put_worker, test_worker, download_mp4, download_align" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "tot_movies=35" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## TEST" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]\n", - "5\n", - "35 >> [[0, 7], [7, 14], [14, 21], [21, 28], [28, 35]]\n", - "[{'succ': {0, 1, 2, 3, 4, 5, 6}, 'fail': set()}, {'succ': {7, 8, 9, 10, 11, 12, 13}, 'fail': set()}, {'succ': {14, 15, 16, 17, 18, 19, 20}, 'fail': set()}, {'succ': {21, 22, 23, 24, 25, 26, 27}, 'fail': set()}, {'succ': {32, 33, 34, 28, 29, 30, 31}, 'fail': set()}]\n" - ] - } - ], - "source": [ - "res = multi_p_run(tot_movies, put_worker, test_worker, params={}, n_process=5)\n", - "print (res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Download Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Aligns" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s0/align/s0.tar && tar -xvf s0.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s1/align/s1.tar && tar -xvf s1.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s2/align/s2.tar && tar -xvf s2.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s3/align/s3.tar && tar -xvf s3.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s4/align/s4.tar && tar -xvf s4.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s5/align/s5.tar && tar -xvf s5.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s6/align/s6.tar && tar -xvf s6.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s7/align/s7.tar && tar -xvf s7.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s8/align/s8.tar && tar -xvf s8.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s9/align/s9.tar && tar -xvf s9.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s10/align/s10.tar && tar -xvf s10.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s11/align/s11.tar && tar -xvf s11.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s12/align/s12.tar && tar -xvf s12.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s13/align/s13.tar && tar -xvf s13.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s14/align/s14.tar && tar -xvf s14.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s15/align/s15.tar && tar -xvf s15.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s16/align/s16.tar && tar -xvf s16.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s17/align/s17.tar && tar -xvf s17.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s18/align/s18.tar && tar -xvf s18.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s19/align/s19.tar && tar -xvf s19.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s20/align/s20.tar && tar -xvf s20.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s21/align/s21.tar && tar -xvf s21.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s22/align/s22.tar && tar -xvf s22.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s23/align/s23.tar && tar -xvf s23.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s24/align/s24.tar && tar -xvf s24.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s25/align/s25.tar && tar -xvf s25.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s26/align/s26.tar && tar -xvf s26.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s27/align/s27.tar && tar -xvf s27.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s28/align/s28.tar && tar -xvf s28.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s29/align/s29.tar && tar -xvf s29.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s30/align/s30.tar && tar -xvf s30.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s31/align/s31.tar && tar -xvf s31.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s32/align/s32.tar && tar -xvf s32.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s33/align/s33.tar && tar -xvf s33.tar\n", - "cd ../data/align && wget http://spandh.dcs.shef.ac.uk/gridcorpus/s34/align/s34.tar && tar -xvf s34.tar\n" - ] - } - ], - "source": [ - "align_path = '../data/align'\n", - "os.makedirs(align_path, exist_ok=True)\n", - "\n", - "res = download_align(0, tot_movies, {'align_path':align_path})" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}, set())\n" - ] - }, - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "print (res)\n", - "os.system('rm -f {align_path}/*.tar && rm -f {align_path}/Thumbs.db'.format(align_path=align_path))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "### Moives(MP4s)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s0/video/s0.mpg_vcd.zip --output s0.mpg_vcd.zip && unzip s0.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s1/video/s1.mpg_vcd.zip --output s1.mpg_vcd.zip && unzip s1.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s2/video/s2.mpg_vcd.zip --output s2.mpg_vcd.zip && unzip s2.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s3/video/s3.mpg_vcd.zip --output s3.mpg_vcd.zip && unzip s3.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s4/video/s4.mpg_vcd.zip --output s4.mpg_vcd.zip && unzip s4.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s5/video/s5.mpg_vcd.zip --output s5.mpg_vcd.zip && unzip s5.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s6/video/s6.mpg_vcd.zip --output s6.mpg_vcd.zip && unzip s6.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s7/video/s7.mpg_vcd.zip --output s7.mpg_vcd.zip && unzip s7.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s8/video/s8.mpg_vcd.zip --output s8.mpg_vcd.zip && unzip s8.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s9/video/s9.mpg_vcd.zip --output s9.mpg_vcd.zip && unzip s9.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s10/video/s10.mpg_vcd.zip --output s10.mpg_vcd.zip && unzip s10.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s11/video/s11.mpg_vcd.zip --output s11.mpg_vcd.zip && unzip s11.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s12/video/s12.mpg_vcd.zip --output s12.mpg_vcd.zip && unzip s12.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s13/video/s13.mpg_vcd.zip --output s13.mpg_vcd.zip && unzip s13.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s14/video/s14.mpg_vcd.zip --output s14.mpg_vcd.zip && unzip s14.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s15/video/s15.mpg_vcd.zip --output s15.mpg_vcd.zip && unzip s15.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s16/video/s16.mpg_vcd.zip --output s16.mpg_vcd.zip && unzip s16.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s17/video/s17.mpg_vcd.zip --output s17.mpg_vcd.zip && unzip s17.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s18/video/s18.mpg_vcd.zip --output s18.mpg_vcd.zip && unzip s18.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s19/video/s19.mpg_vcd.zip --output s19.mpg_vcd.zip && unzip s19.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s20/video/s20.mpg_vcd.zip --output s20.mpg_vcd.zip && unzip s20.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s21/video/s21.mpg_vcd.zip --output s21.mpg_vcd.zip && unzip s21.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s22/video/s22.mpg_vcd.zip --output s22.mpg_vcd.zip && unzip s22.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s23/video/s23.mpg_vcd.zip --output s23.mpg_vcd.zip && unzip s23.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s24/video/s24.mpg_vcd.zip --output s24.mpg_vcd.zip && unzip s24.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s25/video/s25.mpg_vcd.zip --output s25.mpg_vcd.zip && unzip s25.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s26/video/s26.mpg_vcd.zip --output s26.mpg_vcd.zip && unzip s26.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s27/video/s27.mpg_vcd.zip --output s27.mpg_vcd.zip && unzip s27.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s28/video/s28.mpg_vcd.zip --output s28.mpg_vcd.zip && unzip s28.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s29/video/s29.mpg_vcd.zip --output s29.mpg_vcd.zip && unzip s29.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s30/video/s30.mpg_vcd.zip --output s30.mpg_vcd.zip && unzip s30.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s31/video/s31.mpg_vcd.zip --output s31.mpg_vcd.zip && unzip s31.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s32/video/s32.mpg_vcd.zip --output s32.mpg_vcd.zip && unzip s32.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s33/video/s33.mpg_vcd.zip --output s33.mpg_vcd.zip && unzip s33.mpg_vcd.zip\n", - "cd ../data/mp4s && curl http://spandh.dcs.shef.ac.uk/gridcorpus/s34/video/s34.mpg_vcd.zip --output s34.mpg_vcd.zip && unzip s34.mpg_vcd.zip\n" - ] - } - ], - "source": [ - "src_path = '../data/mp4s'\n", - "res = download_mp4(0, tot_movies, {'src_path':src_path})" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}, set())\n" - ] - }, - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "print (res)\n", - "os.system('rm -f {src_path}/*.zip && rm -f {src_path}/*/Thumbs.db'.format(src_path=src_path))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preprocess Data" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from preprocess_data import preprocess, find_files, Video" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "tgt_path = '../data/datasets'" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "os.makedirs('{tgt_path}'.format(tgt_path=tgt_path), exist_ok=True)\n", - "os.system('rm -rf {tgt_path}'.format(tgt_path=tgt_path))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "res = preprocess(0, tot_movies, {'src_path':src_path, 'tgt_path':tgt_path})" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}, set())\n" - ] - } - ], - "source": [ - "print (res)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [default]", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/example/gluon/lstm_crf/README.md b/example/gluon/lstm_crf/README.md deleted file mode 100644 index 519c3b89f9fd..000000000000 --- a/example/gluon/lstm_crf/README.md +++ /dev/null @@ -1,36 +0,0 @@ - - - - - - - - - - - - - - - - - -# BiLSTM CRF model -This example demonstrates how a [BiLSTM-CRF model](https://arxiv.org/pdf/1508.01991v1.pdf) can be implemented in Gluon to perform noun-phrase chunking as a sequence labeling task. In this example we define the following training sample: -``` -georgia tech is a university in georgia -B I O O O O B -``` -The second line is the IOB representation of the above sentence that is learnt by the model. **I** stands for in chunk, **O** for out of a chunk and **B** for beginning of junks. - -The model consists of an LSTM layer with 2 hidden units and a CRF layer. The CRF layer has a state transition matrix which allows to take past and future tags into account when predicting the current tag. The bidirectional LSTM is reading the word sequence from beginning to end and vice versa. It prodcues a vector representation for the words. The following image is taken from https://arxiv.org/pdf/1508.01991v1.pdf and shows the model architecture: - -![Image taken from https://arxiv.org/pdf/1508.01991v1.pdf](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/gluon/lstm_crf/bi-lstm_crf.png) - -You can run the example by executing -``` -python lstm_crf.py -``` -The example code does not take any commandline arguments. If you want to change the number of hidden units or the size of vectors embeddings, then you need to change the variables ```EMBEDDING_DIM``` and ```HIDDEN_DIM```. - - diff --git a/example/gluon/lstm_crf/lstm_crf.py b/example/gluon/lstm_crf/lstm_crf.py deleted file mode 100644 index 6cdc6e95a383..000000000000 --- a/example/gluon/lstm_crf/lstm_crf.py +++ /dev/null @@ -1,241 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -"""This example demonstrates how the LSTM-CRF model can be implemented -in Gluon to perform noun-phrase chunking as a sequence labeling task. -""" -import sys -import mxnet as mx -from mxnet import autograd as ag, ndarray as nd, gluon -from mxnet.gluon import Block, nn, rnn -import mxnet.optimizer as optim - -mx.random.seed(1) - - -# Helper functions to make the code more readable. -def to_scalar(x): - return int(x.asscalar()) - - -def argmax(vec): - # return the argmax as a python int - idx = nd.argmax(vec, axis=1) - return to_scalar(idx) - - -def prepare_sequence(seq, word2Idx): - return nd.array([word2Idx[w] for w in seq]) - - -# Compute log sum exp is numerically more stable than multiplying probabilities -def log_sum_exp(vec): - max_score = nd.max(vec).asscalar() - return nd.log(nd.sum(nd.exp(vec - max_score))) + max_score - - -# Model -class BiLSTM_CRF(Block): - """Get BiLSTM_CRF model""" - def __init__(self, vocab_size, tag2Idx, embedding_dim, hidden_dim): - super(BiLSTM_CRF, self).__init__() - with self.name_scope(): - self.embedding_dim = embedding_dim - self.hidden_dim = hidden_dim - self.vocab_size = vocab_size - self.tag2idx = tag2Idx - self.tagset_size = len(tag2Idx) - self.word_embeds = nn.Embedding(vocab_size, embedding_dim) - self.lstm = rnn.LSTM(hidden_dim // 2, num_layers=1, bidirectional=True) - - # Maps the output of the LSTM into tag space. - self.hidden2tag = nn.Dense(self.tagset_size) - - # Matrix of transition parameters. Entry i,j is the score of - # transitioning *to* i *from* j. - self.transitions = self.params.get("crf_transition_matrix", shape=(self.tagset_size, self.tagset_size)) - self.hidden = self.init_hidden() - - def init_hidden(self): - return [nd.random.normal(shape=(2, 1, self.hidden_dim // 2)), - nd.random.normal(shape=(2, 1, self.hidden_dim // 2))] - - def _forward_alg(self, feats): - # Do the forward algorithm to compute the partition function - alphas = [[-10000.] * self.tagset_size] - alphas[0][self.tag2idx[START_TAG]] = 0. - alphas = nd.array(alphas) - - # Iterate through the sentence - for feat in feats: - alphas_t = [] # The forward variables at this timestep - for next_tag in range(self.tagset_size): - # broadcast the emission score: it is the same regardless of - # the previous tag - emit_score = feat[next_tag].reshape((1, -1)) - # the ith entry of trans_score is the score of transitioning to - # next_tag from i - trans_score = self.transitions.data()[next_tag].reshape((1, -1)) - # The ith entry of next_tag_var is the value for the - # edge (i -> next_tag) before we do log-sum-exp - next_tag_var = alphas + trans_score + emit_score - # The forward variable for this tag is log-sum-exp of all the - # scores. - alphas_t.append(log_sum_exp(next_tag_var)) - alphas = nd.concat(*alphas_t, dim=0).reshape((1, -1)) - terminal_var = alphas + self.transitions.data()[self.tag2idx[STOP_TAG]] - alpha = log_sum_exp(terminal_var) - return alpha - - def _get_lstm_features(self, sentences): - self.hidden = self.init_hidden() - length = sentences.shape[0] - embeds = self.word_embeds(sentences).reshape((length, 1, -1)) - lstm_out, self.hidden = self.lstm(embeds, self.hidden) - lstm_out = lstm_out.reshape((length, self.hidden_dim)) - lstm_feats = self.hidden2tag(lstm_out) - return nd.split(lstm_feats, num_outputs=length, axis=0, squeeze_axis=True) - - def _score_sentence(self, feats, tags_array): - # Gives the score of a provided tag sequence - score = nd.array([0]) - tags_array = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags_array, dim=0) - for idx, feat in enumerate(feats): - score = score + \ - self.transitions.data()[to_scalar(tags_array[idx+1]), - to_scalar(tags_array[idx])] + feat[to_scalar(tags_array[idx+1])] - score = score + self.transitions.data()[self.tag2idx[STOP_TAG], - to_scalar(tags_array[int(tags_array.shape[0]-1)])] - return score - - def _viterbi_decode(self, feats): - backpointers = [] - - # Initialize the viterbi variables in log space - vvars = nd.full((1, self.tagset_size), -10000.) - vvars[0, self.tag2idx[START_TAG]] = 0 - - for feat in feats: - bptrs_t = [] # holds the backpointers for this step - viterbivars_t = [] # holds the viterbi variables for this step - - for next_tag in range(self.tagset_size): - # next_tag_var[i] holds the viterbi variable for tag i at the - # previous step, plus the score of transitioning - # from tag i to next_tag. - # We don't include the emission scores here because the max - # does not depend on them (we add them in below) - next_tag_var = vvars + self.transitions.data()[next_tag] - best_tag_id = argmax(next_tag_var) - bptrs_t.append(best_tag_id) - viterbivars_t.append(next_tag_var[0, best_tag_id]) - # Now add in the emission scores, and assign vvars to the set - # of viterbi variables we just computed - vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1)) - backpointers.append(bptrs_t) - - # Transition to STOP_TAG - terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]] - best_tag_id = argmax(terminal_var) - path_score = terminal_var[0, best_tag_id] - - # Follow the back pointers to decode the best path. - best_path = [best_tag_id] - for bptrs_t in reversed(backpointers): - best_tag_id = bptrs_t[best_tag_id] - best_path.append(best_tag_id) - # Pop off the start tag (we dont want to return that to the caller) - start = best_path.pop() - assert start == self.tag2idx[START_TAG] # Sanity check - best_path.reverse() - return path_score, best_path - - def neg_log_likelihood(self, sentences, tags_list): - feats = self._get_lstm_features(sentences) - forward_score = self._forward_alg(feats) - gold_score = self._score_sentence(feats, tags_list) - return forward_score - gold_score - - def forward(self, sentences): # dont confuse this with _forward_alg above. - # Get the emission scores from the BiLSTM - lstm_feats = self._get_lstm_features(sentences) - - # Find the best path, given the features. - score, tag_seq = self._viterbi_decode(lstm_feats) - return score, tag_seq - - -# Run training -START_TAG = "" -STOP_TAG = "" -EMBEDDING_DIM = 5 -HIDDEN_DIM = 4 - -# Make up some training data -training_data = [( - "the wall street journal reported today that apple corporation made money".split(), - "B I I I O O O B I O O".split() -), ( - "georgia tech is a university in georgia".split(), - "B I O O O O B".split() -)] - -word2idx = {} -for sentence, tags in training_data: - for word in sentence: - if word not in word2idx: - word2idx[word] = len(word2idx) - -tag2idx = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4} - -model = BiLSTM_CRF(len(word2idx), tag2idx, EMBEDDING_DIM, HIDDEN_DIM) -model.initialize(mx.init.Xavier(magnitude=2.24), ctx=mx.cpu()) -optimizer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': 0.01, 'wd': 1e-4}) - -# Check predictions before training -precheck_sent = prepare_sequence(training_data[0][0], word2idx) -precheck_tags = nd.array([tag2idx[t] for t in training_data[0][1]]) -print(model(precheck_sent)) - -# Make sure prepare_sequence from earlier in the LSTM section is loaded -for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data - - neg_log_likelihood_acc = 0. - iter = 0 - for i, (sentence, tags) in enumerate(training_data): - # Step 1. Get our inputs ready for the network, that is, - # turn them into Variables of word indices. - # Remember to use autograd to record the calculation. - with ag.record(): - sentence_in = prepare_sequence(sentence, word2idx) - targets = nd.array([tag2idx[t] for t in tags]) - - # Step 2. Run our forward pass. - neg_log_likelihood = model.neg_log_likelihood(sentence_in, targets) - - # Step 3. Compute the loss, gradients, and update the parameters by - # calling optimizer.step() - neg_log_likelihood.backward() - optimizer.step(1) - neg_log_likelihood_acc += neg_log_likelihood.mean() - iter = i - print("Epoch [{}], Negative Log Likelihood {:.4f}".format(epoch, neg_log_likelihood_acc.asscalar()/(iter+1))) - -# Check predictions after training -precheck_sent = prepare_sequence(training_data[0][0], word2idx) -print(model(precheck_sent)) - -# Acknowledgement: this example is adopted from pytorch nlp tutorials. diff --git a/example/gluon/mnist/mnist.py b/example/gluon/mnist/mnist.py index 8066379df05a..121fcdf12250 100644 --- a/example/gluon/mnist/mnist.py +++ b/example/gluon/mnist/mnist.py @@ -71,8 +71,8 @@ def transformer(data, label): def test(ctx): metric = mx.gluon.metric.Accuracy() for data, label in val_data: - data = data.as_in_context(ctx) - label = label.as_in_context(ctx) + data = data.as_in_ctx(ctx) + label = label.as_in_ctx(ctx) output = net(data) metric.update([label], [output]) @@ -93,8 +93,8 @@ def train(epochs, ctx): metric.reset() for i, (data, label) in enumerate(train_data): # Copy data to ctx if necessary - data = data.as_in_context(ctx) - label = label.as_in_context(ctx) + data = data.as_in_ctx(ctx) + label = label.as_in_ctx(ctx) # Start recording computation graph with record() section. # Recorded graphs can then be differentiated with backward. with autograd.record(): diff --git a/example/gluon/sn_gan/README.md b/example/gluon/sn_gan/README.md deleted file mode 100644 index 054416fced09..000000000000 --- a/example/gluon/sn_gan/README.md +++ /dev/null @@ -1,61 +0,0 @@ - - - - - - - - - - - - - - - - - -# Spectral Normalization GAN - -This example implements [Spectral Normalization for Generative Adversarial Networks](https://arxiv.org/abs/1802.05957) based on [CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset. - -## Usage - -Example runs and the results: - -```python -python train.py --use-gpu --data-path=data -``` - -* Note that the program would download the CIFAR10 for you - -`python train.py --help` gives the following arguments: - -```bash -optional arguments: - -h, --help show this help message and exit - --data-path DATA_PATH - path of data. - --batch-size BATCH_SIZE - training batch size. default is 64. - --epochs EPOCHS number of training epochs. default is 100. - --lr LR learning rate. default is 0.0001. - --lr-beta LR_BETA learning rate for the beta in margin based loss. - default is 0.5. - --use-gpu use gpu for training. - --clip_gr CLIP_GR Clip the gradient by projecting onto the box. default - is 10.0. - --z-dim Z_DIM dimension of the latent z vector. default is 100. -``` - -## Result - -![SN-GAN](sn_gan_output.png) - -## Learned Spectral Normalization - -![alt text](https://github.com/taki0112/Spectral_Normalization-Tensorflow/blob/master/assests/sn.png) - -## Reference - -[Simple Tensorflow Implementation](https://github.com/taki0112/Spectral_Normalization-Tensorflow) \ No newline at end of file diff --git a/example/gluon/sn_gan/data.py b/example/gluon/sn_gan/data.py deleted file mode 100644 index 754aa2c992b1..000000000000 --- a/example/gluon/sn_gan/data.py +++ /dev/null @@ -1,42 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, -# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb -# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dc_gan/dcgan.py - -import numpy as np - -import mxnet as mx -from mxnet import gluon -from mxnet.gluon.data.vision import CIFAR10 - -IMAGE_SIZE = 64 - -def transformer(data, label): - """ data preparation """ - data = mx.image.imresize(data, IMAGE_SIZE, IMAGE_SIZE) - data = mx.nd.transpose(data, (2, 0, 1)) - data = data.astype(np.float32) / 128.0 - 1 - return data, label - - -def get_training_data(batch_size): - """ helper function to get dataloader""" - return gluon.data.DataLoader( - CIFAR10(train=True).transform(transformer), - batch_size=batch_size, shuffle=True, last_batch='discard') diff --git a/example/gluon/sn_gan/model.py b/example/gluon/sn_gan/model.py deleted file mode 100644 index cfd7f93e8dae..000000000000 --- a/example/gluon/sn_gan/model.py +++ /dev/null @@ -1,139 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, -# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb -# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dc_gan/dcgan.py - -import mxnet as mx -from mxnet import nd -from mxnet import gluon, autograd -from mxnet.gluon import Block - - -EPSILON = 1e-08 -POWER_ITERATION = 1 - -class SNConv2D(Block): - """ Customized Conv2D to feed the conv with the weight that we apply spectral normalization """ - - def __init__(self, num_filter, kernel_size, - strides, padding, in_channels, - ctx=mx.cpu(), iterations=1): - - super(SNConv2D, self).__init__() - - self.num_filter = num_filter - self.kernel_size = kernel_size - self.strides = strides - self.padding = padding - self.in_channels = in_channels - self.iterations = iterations - self.ctx = ctx - - with self.name_scope(): - # init the weight - self.weight = self.params.get('weight', shape=( - num_filter, in_channels, kernel_size, kernel_size)) - self.u = self.params.get( - 'u', init=mx.init.Normal(), shape=(1, num_filter)) - - def _spectral_norm(self): - """ spectral normalization """ - w = self.params.get('weight').data(self.ctx) - w_mat = nd.reshape(w, [w.shape[0], -1]) - - _u = self.u.data(self.ctx) - _v = None - - for _ in range(POWER_ITERATION): - _v = nd.L2Normalization(nd.dot(_u, w_mat)) - _u = nd.L2Normalization(nd.dot(_v, w_mat.T)) - - sigma = nd.sum(nd.dot(_u, w_mat) * _v) - if sigma == 0.: - sigma = EPSILON - - with autograd.pause(): - self.u.set_data(_u) - - return w / sigma - - def forward(self, x): - # x shape is batch_size x in_channels x height x width - return nd.Convolution( - data=x, - weight=self._spectral_norm(), - kernel=(self.kernel_size, self.kernel_size), - pad=(self.padding, self.padding), - stride=(self.strides, self.strides), - num_filter=self.num_filter, - no_bias=True - ) - - -def get_generator(): - """ construct and return generator """ - g_net = gluon.nn.Sequential() - with g_net.name_scope(): - - g_net.add(gluon.nn.Conv2DTranspose( - channels=512, kernel_size=4, strides=1, padding=0, use_bias=False)) - g_net.add(gluon.nn.BatchNorm()) - g_net.add(gluon.nn.LeakyReLU(0.2)) - - g_net.add(gluon.nn.Conv2DTranspose( - channels=256, kernel_size=4, strides=2, padding=1, use_bias=False)) - g_net.add(gluon.nn.BatchNorm()) - g_net.add(gluon.nn.LeakyReLU(0.2)) - - g_net.add(gluon.nn.Conv2DTranspose( - channels=128, kernel_size=4, strides=2, padding=1, use_bias=False)) - g_net.add(gluon.nn.BatchNorm()) - g_net.add(gluon.nn.LeakyReLU(0.2)) - - g_net.add(gluon.nn.Conv2DTranspose( - channels=64, kernel_size=4, strides=2, padding=1, use_bias=False)) - g_net.add(gluon.nn.BatchNorm()) - g_net.add(gluon.nn.LeakyReLU(0.2)) - - g_net.add(gluon.nn.Conv2DTranspose(channels=3, kernel_size=4, strides=2, padding=1, use_bias=False)) - g_net.add(gluon.nn.Activation('tanh')) - - return g_net - - -def get_descriptor(ctx): - """ construct and return descriptor """ - d_net = gluon.nn.Sequential() - with d_net.name_scope(): - - d_net.add(SNConv2D(num_filter=64, kernel_size=4, strides=2, padding=1, in_channels=3, ctx=ctx)) - d_net.add(gluon.nn.LeakyReLU(0.2)) - - d_net.add(SNConv2D(num_filter=128, kernel_size=4, strides=2, padding=1, in_channels=64, ctx=ctx)) - d_net.add(gluon.nn.LeakyReLU(0.2)) - - d_net.add(SNConv2D(num_filter=256, kernel_size=4, strides=2, padding=1, in_channels=128, ctx=ctx)) - d_net.add(gluon.nn.LeakyReLU(0.2)) - - d_net.add(SNConv2D(num_filter=512, kernel_size=4, strides=2, padding=1, in_channels=256, ctx=ctx)) - d_net.add(gluon.nn.LeakyReLU(0.2)) - - d_net.add(SNConv2D(num_filter=1, kernel_size=4, strides=1, padding=0, in_channels=512, ctx=ctx)) - - return d_net diff --git a/example/gluon/sn_gan/sn_gan_output.png b/example/gluon/sn_gan/sn_gan_output.png deleted file mode 100644 index 428c33315023..000000000000 Binary files a/example/gluon/sn_gan/sn_gan_output.png and /dev/null differ diff --git a/example/gluon/sn_gan/train.py b/example/gluon/sn_gan/train.py deleted file mode 100644 index fc4e87d632fe..000000000000 --- a/example/gluon/sn_gan/train.py +++ /dev/null @@ -1,149 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, -# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb -# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dc_gan/dcgan.py - - -import os -import random -import logging -import argparse - -from data import get_training_data -from model import get_generator, get_descriptor -from utils import save_image - -import mxnet as mx -from mxnet import nd, autograd -from mxnet import gluon - -# CLI -parser = argparse.ArgumentParser( - description='train a model for Spectral Normalization GAN.') -parser.add_argument('--data-path', type=str, default='./data', - help='path of data.') -parser.add_argument('--batch-size', type=int, default=64, - help='training batch size. default is 64.') -parser.add_argument('--epochs', type=int, default=100, - help='number of training epochs. default is 100.') -parser.add_argument('--lr', type=float, default=0.0001, - help='learning rate. default is 0.0001.') -parser.add_argument('--lr-beta', type=float, default=0.5, - help='learning rate for the beta in margin based loss. default is 0.5.') -parser.add_argument('--use-gpu', action='store_true', - help='use gpu for training.') -parser.add_argument('--clip_gr', type=float, default=10.0, - help='Clip the gradient by projecting onto the box. default is 10.0.') -parser.add_argument('--z-dim', type=int, default=100, - help='dimension of the latent z vector. default is 100.') -opt = parser.parse_args() - -BATCH_SIZE = opt.batch_size -Z_DIM = opt.z_dim -NUM_EPOCHS = opt.epochs -LEARNING_RATE = opt.lr -BETA = opt.lr_beta -OUTPUT_DIR = opt.data_path -CTX = mx.gpu() if opt.use_gpu else mx.cpu() -CLIP_GRADIENT = opt.clip_gr -IMAGE_SIZE = 64 - - -def facc(label, pred): - """ evaluate accuracy """ - pred = pred.ravel() - label = label.ravel() - return ((pred > 0.5) == label).mean() - - -# setting -mx.random.seed(random.randint(1, 10000)) -logging.basicConfig(level=logging.DEBUG) - -# create output dir -try: - os.makedirs(opt.data_path) -except OSError: - pass - -# get training data -train_data = get_training_data(opt.batch_size) - -# get model -g_net = get_generator() -d_net = get_descriptor(CTX) - -# define loss function -loss = gluon.loss.SigmoidBinaryCrossEntropyLoss() - -# initialization -g_net.collect_params().initialize(mx.init.Xavier(), ctx=CTX) -d_net.collect_params().initialize(mx.init.Xavier(), ctx=CTX) -g_trainer = gluon.Trainer( - g_net.collect_params(), 'Adam', {'learning_rate': LEARNING_RATE, 'beta1': BETA, 'clip_gradient': CLIP_GRADIENT}) -d_trainer = gluon.Trainer( - d_net.collect_params(), 'Adam', {'learning_rate': LEARNING_RATE, 'beta1': BETA, 'clip_gradient': CLIP_GRADIENT}) -g_net.collect_params().zero_grad() -d_net.collect_params().zero_grad() -# define evaluation metric -metric = mx.gluon.metric.CustomMetric(facc) -# initialize labels -real_label = nd.ones(BATCH_SIZE, CTX) -fake_label = nd.zeros(BATCH_SIZE, CTX) - -for epoch in range(NUM_EPOCHS): - for i, (d, _) in enumerate(train_data): - # update D - data = d.as_in_context(CTX) - noise = nd.normal(loc=0, scale=1, shape=( - BATCH_SIZE, Z_DIM, 1, 1), ctx=CTX) - with autograd.record(): - # train with real image - output = d_net(data).reshape((-1, 1)) - errD_real = loss(output, real_label) - metric.update([real_label, ], [output, ]) - - # train with fake image - fake_image = g_net(noise) - output = d_net(fake_image.detach()).reshape((-1, 1)) - errD_fake = loss(output, fake_label) - errD = errD_real + errD_fake - errD.backward() - metric.update([fake_label, ], [output, ]) - - d_trainer.step(BATCH_SIZE) - # update G - with autograd.record(): - fake_image = g_net(noise) - output = d_net(fake_image).reshape(-1, 1) - errG = loss(output, real_label) - errG.backward() - - g_trainer.step(BATCH_SIZE) - - # print log infomation every 100 batches - if i % 100 == 0: - name, acc = metric.get() - logging.info('discriminator loss = %f, generator loss = %f, \ - binary training acc = %f at iter %d epoch %d', - nd.mean(errD).asscalar(), nd.mean(errG).asscalar(), acc, i, epoch) - if i == 0: - save_image(fake_image, epoch, IMAGE_SIZE, BATCH_SIZE, OUTPUT_DIR) - - metric.reset() diff --git a/example/gluon/sn_gan/utils.py b/example/gluon/sn_gan/utils.py deleted file mode 100644 index 1a77a6e90ec0..000000000000 --- a/example/gluon/sn_gan/utils.py +++ /dev/null @@ -1,49 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, -# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb -# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dc_gan/dcgan.py - -import math - -import numpy as np -import imageio - -def save_image(data, epoch, image_size, batch_size, output_dir, padding=2): - """ save image """ - data = data.asnumpy().transpose((0, 2, 3, 1)) - datanp = np.clip( - (data - np.min(data))*(255.0/(np.max(data) - np.min(data))), 0, 255).astype(np.uint8) - x_dim = min(8, batch_size) - y_dim = int(math.ceil(float(batch_size) / x_dim)) - height, width = int(image_size + padding), int(image_size + padding) - grid = np.zeros((height * y_dim + 1 + padding // 2, width * - x_dim + 1 + padding // 2, 3), dtype=np.uint8) - k = 0 - for y in range(y_dim): - for x in range(x_dim): - if k >= batch_size: - break - start_y = y * height + 1 + padding // 2 - end_y = start_y + height - padding - start_x = x * width + 1 + padding // 2 - end_x = start_x + width - padding - np.copyto(grid[start_y:end_y, start_x:end_x, :], datanp[k]) - k += 1 - imageio.imwrite( - '{}/fake_samples_epoch_{}.png'.format(output_dir, epoch), grid) diff --git a/example/gluon/style_transfer/README.md b/example/gluon/style_transfer/README.md deleted file mode 100644 index 1d4ef43721be..000000000000 --- a/example/gluon/style_transfer/README.md +++ /dev/null @@ -1,134 +0,0 @@ - - - - - - - - - - - - - - - - - -# MXNet-Gluon-Style-Transfer - -This repo provides MXNet Implementation of **[Neural Style Transfer](#neural-style)** and **[MSG-Net](#real-time-style-transfer)**. - -**Tabe of content** - -* [Slow Neural Style Transfer](#neural-style) -* [Real-time Style Transfer](#real-time-style-transfer) - - [Stylize Images using Pre-trained MSG-Net](#stylize-images-using-pre-trained-msg-net) - - [Train Your Own MSG-Net Model](#train-your-own-msg-net-model) - -## Neural Style - -[A Neural Algorithm of Artistic Style](https://arxiv.org/abs/1508.06576) by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. - - -**Download the images** - -```bash -python download_images.py -``` - -**Neural style transfer** - -```bash -python main.py optim --content-image images/content/venice-boat.jpg --style-image images/styles/candy.jpg -``` -* `--content-image`: path to content image. -* `--style-image`: path to style image. -* `--output-image`: path for saving the output image. -* `--content-size`: the content image size to test on. -* `--style-size`: the style image size to test on. -* `--cuda`: set it to 1 for running on GPU, 0 for CPU. - - - - - - - - - - -## Real-time Style Transfer - - - - - - - -
- Multi-style Generative Network for Real-time Transfer [arXiv] [project]
- Hang Zhang, Kristin Dana -
-@article{zhang2017multistyle,
-	title={Multi-style Generative Network for Real-time Transfer},
-	author={Zhang, Hang and Dana, Kristin},
-	journal={arXiv preprint arXiv:1703.06953},
-	year={2017}
-}
-
-
- - -### Stylize Images Using Pre-trained MSG-Net -0. Download the images and pre-trained model - ```bash - python download_images.py - python models/download_model.py - ``` -0. Test the model - ```bash - python main.py eval --content-image images/content/venice-boat.jpg --style-image images/styles/candy.jpg --model models/21styles.params --content-size 1024 - ``` -* If you don't have a GPU, simply set `--cuda=0`. For a different style, set `--style-image path/to/style`. - If you would to stylize your own photo, change the `--content-image path/to/your/photo`. - More options: - - * `--content-image`: path to content image you want to stylize. - * `--style-image`: path to style image (typically covered during the training). - * `--model`: path to the pre-trained model to be used for stylizing the image. - * `--output-image`: path for saving the output image. - * `--content-size`: the content image size to test on. - * `--cuda`: set it to 1 for running on GPU, 0 for CPU. - - - - - - - - - - -### Train Your Own MSG-Net Model -0. Download the style images and COCO dataset -Note: Dataset from [COCO 2014](http://cocodataset.org/#download). -The dataset annotations and site are Copyright COCO Consortium and licensed CC BY 4.0 Attribution. -The images within the dataset are available under the Flickr Terms of Use. -See original [dataset source](http://cocodataset.org/#termsofuse) for details - ```bash - python download_images.py - python dataset/download_dataset.py - ``` -0. Train the model - ```bash - python main.py train --epochs 4 - ``` -* If you would like to customize styles, set `--style-folder path/to/your/styles`. More options: - * `--style-folder`: path to the folder style images. - * `--vgg-model-dir`: path to folder where the vgg model will be downloaded. - * `--save-model-dir`: path to folder where trained model will be saved. - * `--cuda`: set it to 1 for running on GPU, 0 for CPU. - - -The code is mainly modified from [PyTorch-Style-Transfer](https://github.com/zhanghang1989/PyTorch-Style-Transfer). diff --git a/example/gluon/style_transfer/data.py b/example/gluon/style_transfer/data.py deleted file mode 100644 index d2b4ab6650ed..000000000000 --- a/example/gluon/style_transfer/data.py +++ /dev/null @@ -1,125 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import mxnet.gluon.data as data - -from PIL import Image -import os -import os.path - -IMG_EXTENSIONS = [ - '.jpg', '.JPG', '.jpeg', '.JPEG', - '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', -] - - -def is_image_file(filename): - return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) - - -def find_classes(dir): - classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] - classes.sort() - class_to_idx = {classes[i]: i for i in range(len(classes))} - return classes, class_to_idx - - -def make_dataset(dir, class_to_idx): - images = [] - dir = os.path.expanduser(dir) - for target in sorted(os.listdir(dir)): - d = os.path.join(dir, target) - if not os.path.isdir(d): - continue - - for root, _, fnames in sorted(os.walk(d)): - for fname in sorted(fnames): - if is_image_file(fname): - path = os.path.join(root, fname) - item = (path, class_to_idx[target]) - images.append(item) - - return images - - -def pil_loader(path): - # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) - with open(path, 'rb') as f: - with Image.open(f) as img: - return img.convert('RGB') - - -class ImageFolder(data.Dataset): - """A generic data loader where the images are arranged in this way: :: - - root/dog/xxx.png - root/dog/xxy.png - root/dog/xxz.png - - root/cat/123.png - root/cat/nsdf3.png - root/cat/asd932_.png - - Args: - root (string): Root directory path. - transform (callable, optional): A function/transform that takes in an PIL image - and returns a transformed version. E.g, ``transforms.RandomCrop`` - target_transform (callable, optional): A function/transform that takes in the - target and transforms it. - loader (callable, optional): A function to load an image given its path. - - Attributes: - classes (list): List of the class names. - class_to_idx (dict): Dict with items (class_name, class_index). - imgs (list): List of (image path, class_index) tuples - """ - - def __init__(self, root, transform=None, target_transform=None, - loader=pil_loader): - classes, class_to_idx = find_classes(root) - imgs = make_dataset(root, class_to_idx) - if len(imgs) == 0: - raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n" - "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) - - self.root = root - self.imgs = imgs - self.classes = classes - self.class_to_idx = class_to_idx - self.transform = transform - self.target_transform = target_transform - self.loader = loader - - def __getitem__(self, index): - """ - Args: - index (int): Index - - Returns: - tuple: (image, target) where target is class_index of the target class. - """ - path, target = self.imgs[index] - img = self.loader(path) - if self.transform is not None: - img = self.transform(img) - if self.target_transform is not None: - target = self.target_transform(target) - - return img, target - - def __len__(self): - return len(self.imgs) diff --git a/example/gluon/style_transfer/dataset/download_dataset.py b/example/gluon/style_transfer/dataset/download_dataset.py deleted file mode 100644 index 6d32d94abedc..000000000000 --- a/example/gluon/style_transfer/dataset/download_dataset.py +++ /dev/null @@ -1,37 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os, zipfile -import mxnet -from mxnet.test_utils import download - -def unzip_file(filename, outpath): - fh = open(filename, 'rb') - z = zipfile.ZipFile(fh) - for name in z.namelist(): - z.extract(name, outpath) - fh.close() - -# Dataset from COCO 2014: http://cocodataset.org/#download -# The dataset annotations and site are Copyright COCO Consortium and licensed CC BY 4.0 Attribution. -# The images within the dataset are available under the Flickr Terms of Use. -# See http://cocodataset.org/#termsofuse for details -download('http://msvocds.blob.core.windows.net/coco2014/train2014.zip', 'dataset/train2014.zip') -download('http://msvocds.blob.core.windows.net/coco2014/val2014.zip', 'dataset/val2014.zip') - -unzip_file('dataset/train2014.zip', 'dataset') -unzip_file('dataset/val2014.zip', 'dataset') diff --git a/example/gluon/style_transfer/download_images.py b/example/gluon/style_transfer/download_images.py deleted file mode 100644 index 9f7b30057e54..000000000000 --- a/example/gluon/style_transfer/download_images.py +++ /dev/null @@ -1,20 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os -if not os.path.exists('images'): - os.system('svn checkout https://github.com/dmlc/web-data/trunk/mxnet/example/style_transfer/images') diff --git a/example/gluon/style_transfer/main.py b/example/gluon/style_transfer/main.py deleted file mode 100644 index 816487ae9fd5..000000000000 --- a/example/gluon/style_transfer/main.py +++ /dev/null @@ -1,231 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import time -import random -import os -import mxnet as mx -import numpy as np -np.set_printoptions(precision=2) -from PIL import Image - -from mxnet import autograd, gluon -from mxnet.gluon import nn, Block, HybridBlock, Parameter -import mxnet.ndarray as F - -import net -import utils -from option import Options -import data - -def train(args): - np.random.seed(args.seed) - if args.cuda: - ctx = mx.gpu(0) - else: - ctx = mx.cpu(0) - # dataloader - transform = utils.Compose([utils.Scale(args.image_size), - utils.CenterCrop(args.image_size), - utils.ToTensor(ctx), - ]) - train_dataset = data.ImageFolder(args.dataset, transform) - train_loader = gluon.data.DataLoader(train_dataset, batch_size=args.batch_size, - last_batch='discard') - style_loader = utils.StyleLoader(args.style_folder, args.style_size, ctx=ctx) - print('len(style_loader):',style_loader.size()) - # models - vgg = net.Vgg16() - utils.init_vgg_params(vgg, 'models', ctx=ctx) - style_model = net.Net(ngf=args.ngf) - style_model.initialize(init=mx.initializer.MSRAPrelu(), ctx=ctx) - if args.resume is not None: - print('Resuming, initializing using weight from {}.'.format(args.resume)) - style_model.load_parameters(args.resume, ctx=ctx) - print('style_model:',style_model) - # optimizer and loss - trainer = gluon.Trainer(style_model.collect_params(), 'adam', - {'learning_rate': args.lr}) - mse_loss = gluon.loss.L2Loss() - - for e in range(args.epochs): - agg_content_loss = 0. - agg_style_loss = 0. - count = 0 - for batch_id, (x, _) in enumerate(train_loader): - n_batch = len(x) - count += n_batch - # prepare data - style_image = style_loader.get(batch_id) - style_v = utils.subtract_imagenet_mean_preprocess_batch(style_image.copy()) - style_image = utils.preprocess_batch(style_image) - - features_style = vgg(style_v) - gram_style = [net.gram_matrix(y) for y in features_style] - - xc = utils.subtract_imagenet_mean_preprocess_batch(x.copy()) - f_xc_c = vgg(xc)[1] - with autograd.record(): - style_model.set_target(style_image) - y = style_model(x) - - y = utils.subtract_imagenet_mean_batch(y) - features_y = vgg(y) - - content_loss = 2 * args.content_weight * mse_loss(features_y[1], f_xc_c) - - style_loss = 0. - for m in range(len(features_y)): - gram_y = net.gram_matrix(features_y[m]) - _, C, _ = gram_style[m].shape - gram_s = F.expand_dims(gram_style[m], 0).broadcast_to((args.batch_size, 1, C, C)) - style_loss = style_loss + 2 * args.style_weight * \ - mse_loss(gram_y, gram_s[:n_batch, :, :]) - - total_loss = content_loss + style_loss - total_loss.backward() - - trainer.step(args.batch_size) - mx.nd.waitall() - - agg_content_loss += content_loss[0] - agg_style_loss += style_loss[0] - - if (batch_id + 1) % args.log_interval == 0: - mesg = "{}\tEpoch {}:\t[{}/{}]\tcontent: {:.3f}\tstyle: {:.3f}\ttotal: {:.3f}".format( - time.ctime(), e + 1, count, len(train_dataset), - agg_content_loss.asnumpy()[0] / (batch_id + 1), - agg_style_loss.asnumpy()[0] / (batch_id + 1), - (agg_content_loss + agg_style_loss).asnumpy()[0] / (batch_id + 1) - ) - print(mesg) - - - if (batch_id + 1) % (4 * args.log_interval) == 0: - # save model - save_model_filename = "Epoch_" + str(e) + "iters_" + \ - str(count) + "_" + str(time.ctime()).replace(' ', '_') + "_" + str( - args.content_weight) + "_" + str(args.style_weight) + ".params" - save_model_path = os.path.join(args.save_model_dir, save_model_filename) - style_model.save_parameters(save_model_path) - print("\nCheckpoint, trained model saved at", save_model_path) - - # save model - save_model_filename = "Final_epoch_" + str(args.epochs) + "_" + str(time.ctime()).replace(' ', '_') + "_" + str( - args.content_weight) + "_" + str(args.style_weight) + ".params" - save_model_path = os.path.join(args.save_model_dir, save_model_filename) - style_model.save_parameters(save_model_path) - print("\nDone, trained model saved at", save_model_path) - - -def evaluate(args): - if args.cuda: - ctx = mx.gpu(0) - else: - ctx = mx.cpu(0) - # images - content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True) - style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size) - style_image = utils.preprocess_batch(style_image) - # model - style_model = net.Net(ngf=args.ngf) - style_model.load_parameters(args.model, ctx=ctx) - # forward - style_model.set_target(style_image) - output = style_model(content_image) - utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) - - -def optimize(args): - """ Gatys et al. CVPR 2017 - ref: Image Style Transfer Using Convolutional Neural Networks - """ - if args.cuda: - ctx = mx.gpu(0) - else: - ctx = mx.cpu(0) - # load the content and style target - content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True) - content_image = utils.subtract_imagenet_mean_preprocess_batch(content_image) - style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size) - style_image = utils.subtract_imagenet_mean_preprocess_batch(style_image) - # load the pre-trained vgg-16 and extract features - vgg = net.Vgg16() - utils.init_vgg_params(vgg, 'models', ctx=ctx) - # content feature - f_xc_c = vgg(content_image)[1] - # style feature - features_style = vgg(style_image) - gram_style = [net.gram_matrix(y) for y in features_style] - # output - output = Parameter('output', shape=content_image.shape) - output.initialize(ctx=ctx) - output.set_data(content_image) - # optimizer - trainer = gluon.Trainer([output], 'adam', - {'learning_rate': args.lr}) - mse_loss = gluon.loss.L2Loss() - - # optimizing the images - for e in range(args.iters): - utils.imagenet_clamp_batch(output.data(), 0, 255) - # fix BN for pre-trained vgg - with autograd.record(): - features_y = vgg(output.data()) - content_loss = 2 * args.content_weight * mse_loss(features_y[1], f_xc_c) - style_loss = 0. - for m in range(len(features_y)): - gram_y = net.gram_matrix(features_y[m]) - gram_s = gram_style[m] - style_loss = style_loss + 2 * args.style_weight * mse_loss(gram_y, gram_s) - total_loss = content_loss + style_loss - total_loss.backward() - - trainer.step(1) - if (e + 1) % args.log_interval == 0: - print('loss:{:.2f}'.format(total_loss.asnumpy()[0])) - - # save the image - output = utils.add_imagenet_mean_batch(output.data()) - utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) - - -def main(): - # figure out the experiments type - args = Options().parse() - - if args.subcommand is None: - raise ValueError("ERROR: specify the experiment type") - - if args.subcommand == "train": - # Training the model - train(args) - - elif args.subcommand == 'eval': - # Test the pre-trained model - evaluate(args) - - elif args.subcommand == 'optim': - # Gatys et al. using optimization-based approach - optimize(args) - - else: - raise ValueError('Unknow experiment type') - - -if __name__ == "__main__": - main() diff --git a/example/gluon/style_transfer/models/download_model.py b/example/gluon/style_transfer/models/download_model.py deleted file mode 100644 index 8d0a855a3dbd..000000000000 --- a/example/gluon/style_transfer/models/download_model.py +++ /dev/null @@ -1,31 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import os -import zipfile -import shutil -from mxnet.test_utils import download - -zip_file_path = 'models/msgnet_21styles.zip' -download('https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/msgnet_21styles-2cb88353.zip', zip_file_path) - -with zipfile.ZipFile(zip_file_path) as zf: - zf.extractall() - -os.remove(zip_file_path) - -shutil.move('msgnet_21styles-2cb88353.params', 'models/21styles.params') diff --git a/example/gluon/style_transfer/net.py b/example/gluon/style_transfer/net.py deleted file mode 100644 index 2ca992a8ee18..000000000000 --- a/example/gluon/style_transfer/net.py +++ /dev/null @@ -1,296 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import numpy as np -import mxnet as mx -from mxnet import autograd, gluon -from mxnet.gluon import nn, Block, HybridBlock, Parameter -from mxnet.base import numeric_types -import mxnet.ndarray as F - -class InstanceNorm(HybridBlock): - def __init__(self, axis=1, momentum=0.9, epsilon=1e-5, center=True, scale=False, - beta_initializer='zeros', gamma_initializer='ones', - in_channels=0, **kwargs): - super(InstanceNorm, self).__init__(**kwargs) - self._kwargs = {'eps': epsilon} - if in_channels != 0: - self.in_channels = in_channels - self.gamma = self.params.get('gamma', grad_req='write' if scale else 'null', - shape=(in_channels,), init=gamma_initializer, - allow_deferred_init=True) - self.beta = self.params.get('beta', grad_req='write' if center else 'null', - shape=(in_channels,), init=beta_initializer, - allow_deferred_init=True) - - def hybrid_forward(self, F, x, gamma, beta): - return F.InstanceNorm(x, gamma, beta, - name='fwd', **self._kwargs) - - def __repr__(self): - s = '{name}({content}' - if hasattr(self, 'in_channels'): - s += ', in_channels={0}'.format(self.in_channels) - s += ')' - return s.format(name=self.__class__.__name__, - content=', '.join(['='.join([k, v.__repr__()]) - for k, v in self._kwargs.items()])) - - -class ReflectancePadding(HybridBlock): - def __init__(self, pad_width=None, **kwargs): - super(ReflectancePadding, self).__init__(**kwargs) - self.pad_width = pad_width - - def forward(self, x): - return F.pad(x, mode='reflect', pad_width=self.pad_width) - - -class Bottleneck(Block): - """ Pre-activation residual block - Identity Mapping in Deep Residual Networks - ref https://arxiv.org/abs/1603.05027 - """ - def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=InstanceNorm): - super(Bottleneck, self).__init__() - self.expansion = 4 - self.downsample = downsample - if self.downsample is not None: - self.residual_layer = nn.Conv2D(in_channels=inplanes, - channels=planes * self.expansion, - kernel_size=1, strides=(stride, stride)) - self.conv_block = nn.Sequential() - with self.conv_block.name_scope(): - self.conv_block.add(norm_layer(in_channels=inplanes)) - self.conv_block.add(nn.Activation('relu')) - self.conv_block.add(nn.Conv2D(in_channels=inplanes, channels=planes, - kernel_size=1)) - self.conv_block.add(norm_layer(in_channels=planes)) - self.conv_block.add(nn.Activation('relu')) - self.conv_block.add(ConvLayer(planes, planes, kernel_size=3, - stride=stride)) - self.conv_block.add(norm_layer(in_channels=planes)) - self.conv_block.add(nn.Activation('relu')) - self.conv_block.add(nn.Conv2D(in_channels=planes, - channels=planes * self.expansion, - kernel_size=1)) - - def forward(self, x): - if self.downsample is not None: - residual = self.residual_layer(x) - else: - residual = x - return residual + self.conv_block(x) - - -class UpBottleneck(Block): - """ Up-sample residual block (from MSG-Net paper) - Enables passing identity all the way through the generator - ref https://arxiv.org/abs/1703.06953 - """ - def __init__(self, inplanes, planes, stride=2, norm_layer=InstanceNorm): - super(UpBottleneck, self).__init__() - self.expansion = 4 - self.residual_layer = UpsampleConvLayer(inplanes, planes * self.expansion, - kernel_size=1, stride=1, upsample=stride) - self.conv_block = nn.Sequential() - with self.conv_block.name_scope(): - self.conv_block.add(norm_layer(in_channels=inplanes)) - self.conv_block.add(nn.Activation('relu')) - self.conv_block.add(nn.Conv2D(in_channels=inplanes, channels=planes, - kernel_size=1)) - self.conv_block.add(norm_layer(in_channels=planes)) - self.conv_block.add(nn.Activation('relu')) - self.conv_block.add(UpsampleConvLayer(planes, planes, kernel_size=3, stride=1, upsample=stride)) - self.conv_block.add(norm_layer(in_channels=planes)) - self.conv_block.add(nn.Activation('relu')) - self.conv_block.add(nn.Conv2D(in_channels=planes, - channels=planes * self.expansion, - kernel_size=1)) - - def forward(self, x): - return self.residual_layer(x) + self.conv_block(x) - - -class ConvLayer(Block): - def __init__(self, in_channels, out_channels, kernel_size, stride): - super(ConvLayer, self).__init__() - padding = int(np.floor(kernel_size / 2)) - self.pad = ReflectancePadding(pad_width=(0,0,0,0,padding,padding,padding,padding)) - self.conv2d = nn.Conv2D(in_channels=in_channels, channels=out_channels, - kernel_size=kernel_size, strides=(stride,stride), - padding=0) - - def forward(self, x): - x = self.pad(x) - out = self.conv2d(x) - return out - - -class UpsampleConvLayer(Block): - """UpsampleConvLayer - Upsamples the input and then does a convolution. This method gives better results - compared to ConvTranspose2d. - ref: http://distill.pub/2016/deconv-checkerboard/ - """ - - def __init__(self, in_channels, out_channels, kernel_size, - stride, upsample=None): - super(UpsampleConvLayer, self).__init__() - self.upsample = upsample - self.reflection_padding = int(np.floor(kernel_size / 2)) - self.conv2d = nn.Conv2D(in_channels=in_channels, - channels=out_channels, - kernel_size=kernel_size, strides=(stride,stride), - padding=self.reflection_padding) - - def forward(self, x): - if self.upsample: - x = F.UpSampling(x, scale=self.upsample, sample_type='nearest') - out = self.conv2d(x) - return out - - -def gram_matrix(y): - (b, ch, h, w) = y.shape - features = y.reshape((b, ch, w * h)) - #features_t = F.SwapAxis(features,1, 2) - gram = F.batch_dot(features, features, transpose_b=True) / (ch * h * w) - return gram - - -class GramMatrix(Block): - def forward(self, x): - gram = gram_matrix(x) - return gram - -class Net(Block): - def __init__(self, input_nc=3, output_nc=3, ngf=64, - norm_layer=InstanceNorm, n_blocks=6, gpu_ids=[]): - super(Net, self).__init__() - self.gpu_ids = gpu_ids - self.gram = GramMatrix() - - block = Bottleneck - upblock = UpBottleneck - expansion = 4 - - with self.name_scope(): - self.model1 = nn.Sequential() - self.ins = Inspiration(ngf*expansion) - self.model = nn.Sequential() - - self.model1.add(ConvLayer(input_nc, 64, kernel_size=7, stride=1)) - self.model1.add(norm_layer(in_channels=64)) - self.model1.add(nn.Activation('relu')) - self.model1.add(block(64, 32, 2, 1, norm_layer)) - self.model1.add(block(32*expansion, ngf, 2, 1, norm_layer)) - - - self.model.add(self.model1) - self.model.add(self.ins) - - for i in range(n_blocks): - self.model.add(block(ngf*expansion, ngf, 1, None, norm_layer)) - - self.model.add(upblock(ngf*expansion, 32, 2, norm_layer)) - self.model.add(upblock(32*expansion, 16, 2, norm_layer)) - self.model.add(norm_layer(in_channels=16*expansion)) - self.model.add(nn.Activation('relu')) - self.model.add(ConvLayer(16*expansion, output_nc, kernel_size=7, stride=1)) - - - def set_target(self, Xs): - F = self.model1(Xs) - G = self.gram(F) - self.ins.set_target(G) - - def forward(self, input): - return self.model(input) - - -class Inspiration(Block): - """ Inspiration Layer (from MSG-Net paper) - tuning the featuremap with target Gram Matrix - ref https://arxiv.org/abs/1703.06953 - """ - def __init__(self, C, B=1): - super(Inspiration, self).__init__() - # B is equal to 1 or input mini_batch - self.C = C - self.weight = self.params.get('weight', shape=(1,C,C), - init=mx.initializer.Uniform(), - allow_deferred_init=True) - self.gram = F.random.uniform(shape=(B, C, C)) - - def set_target(self, target): - self.gram = target - - def forward(self, X): - # input X is a 3D feature map - self.P = F.batch_dot(F.broadcast_to(self.weight.data(), shape=(self.gram.shape)), self.gram) - return F.batch_dot(F.SwapAxis(self.P,1,2).broadcast_to((X.shape[0], self.C, self.C)), X.reshape((0,0,X.shape[2]*X.shape[3]))).reshape(X.shape) - - def __repr__(self): - return self.__class__.__name__ + '(' \ - + 'N x ' + str(self.C) + ')' - - -class Vgg16(Block): - def __init__(self): - super(Vgg16, self).__init__() - self.conv1_1 = nn.Conv2D(in_channels=3, channels=64, kernel_size=3, strides=1, padding=1) - self.conv1_2 = nn.Conv2D(in_channels=64, channels=64, kernel_size=3, strides=1, padding=1) - - self.conv2_1 = nn.Conv2D(in_channels=64, channels=128, kernel_size=3, strides=1, padding=1) - self.conv2_2 = nn.Conv2D(in_channels=128, channels=128, kernel_size=3, strides=1, padding=1) - - self.conv3_1 = nn.Conv2D(in_channels=128, channels=256, kernel_size=3, strides=1, padding=1) - self.conv3_2 = nn.Conv2D(in_channels=256, channels=256, kernel_size=3, strides=1, padding=1) - self.conv3_3 = nn.Conv2D(in_channels=256, channels=256, kernel_size=3, strides=1, padding=1) - - self.conv4_1 = nn.Conv2D(in_channels=256, channels=512, kernel_size=3, strides=1, padding=1) - self.conv4_2 = nn.Conv2D(in_channels=512, channels=512, kernel_size=3, strides=1, padding=1) - self.conv4_3 = nn.Conv2D(in_channels=512, channels=512, kernel_size=3, strides=1, padding=1) - - self.conv5_1 = nn.Conv2D(in_channels=512, channels=512, kernel_size=3, strides=1, padding=1) - self.conv5_2 = nn.Conv2D(in_channels=512, channels=512, kernel_size=3, strides=1, padding=1) - self.conv5_3 = nn.Conv2D(in_channels=512, channels=512, kernel_size=3, strides=1, padding=1) - - def forward(self, X): - h = F.Activation(self.conv1_1(X), act_type='relu') - h = F.Activation(self.conv1_2(h), act_type='relu') - relu1_2 = h - h = F.Pooling(h, pool_type='max', kernel=(2, 2), stride=(2, 2)) - - h = F.Activation(self.conv2_1(h), act_type='relu') - h = F.Activation(self.conv2_2(h), act_type='relu') - relu2_2 = h - h = F.Pooling(h, pool_type='max', kernel=(2, 2), stride=(2, 2)) - - h = F.Activation(self.conv3_1(h), act_type='relu') - h = F.Activation(self.conv3_2(h), act_type='relu') - h = F.Activation(self.conv3_3(h), act_type='relu') - relu3_3 = h - h = F.Pooling(h, pool_type='max', kernel=(2, 2), stride=(2, 2)) - - h = F.Activation(self.conv4_1(h), act_type='relu') - h = F.Activation(self.conv4_2(h), act_type='relu') - h = F.Activation(self.conv4_3(h), act_type='relu') - relu4_3 = h - - return [relu1_2, relu2_2, relu3_3, relu4_3] diff --git a/example/gluon/style_transfer/option.py b/example/gluon/style_transfer/option.py deleted file mode 100644 index 5faa52259d7c..000000000000 --- a/example/gluon/style_transfer/option.py +++ /dev/null @@ -1,109 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import argparse -import os - -class Options(): - def __init__(self): - self.parser = argparse.ArgumentParser(description="parser for MXNet-Gluon-Style-Transfer") - subparsers = self.parser.add_subparsers(title="subcommands", dest="subcommand") - - # training args - train_arg = subparsers.add_parser("train", - help="parser for training arguments") - train_arg.add_argument("--ngf", type=int, default=128, - help="number of generator filter channels, default 128") - train_arg.add_argument("--epochs", type=int, default=4, - help="number of training epochs, default is 2") - train_arg.add_argument("--batch-size", type=int, default=4, - help="batch size for training, default is 4") - train_arg.add_argument("--dataset", type=str, default="dataset/", - help="path to training dataset, the path should point to a folder " - "containing another folder with all the training images") - train_arg.add_argument("--style-folder", type=str, default="images/styles/", - help="path to style-folder") - train_arg.add_argument("--save-model-dir", type=str, default="models/", - help="path to folder where trained model will be saved.") - train_arg.add_argument("--image-size", type=int, default=256, - help="size of training images, default is 256 X 256") - train_arg.add_argument("--style-size", type=int, default=512, - help="size of style-image, default is the original size of style image") - train_arg.add_argument("--cuda", type=int, default=1, - help="set it to 1 for running on GPU, 0 for CPU") - train_arg.add_argument("--seed", type=int, default=42, - help="random seed for training") - train_arg.add_argument("--content-weight", type=float, default=1.0, - help="weight for content-loss, default is 1.0") - train_arg.add_argument("--style-weight", type=float, default=5.0, - help="weight for style-loss, default is 5.0") - train_arg.add_argument("--lr", type=float, default=1e-3, - help="learning rate, default is 0.001") - train_arg.add_argument("--log-interval", type=int, default=500, - help="number of images after which the training loss is logged, default is 500") - train_arg.add_argument("--resume", type=str, default=None, - help="resume if needed") - - # optim args (Gatys CVPR 2016) - optim_arg = subparsers.add_parser("optim", - help="parser for optimization arguments") - optim_arg.add_argument("--iters", type=int, default=500, - help="number of training iterations, default is 500") - optim_arg.add_argument("--content-image", type=str, default="images/content/venice-boat.jpg", - help="path to content image you want to stylize") - optim_arg.add_argument("--style-image", type=str, default="images/9styles/candy.jpg", - help="path to style-image") - optim_arg.add_argument("--content-size", type=int, default=512, - help="factor for scaling down the content image") - optim_arg.add_argument("--style-size", type=int, default=512, - help="size of style-image, default is the original size of style image") - optim_arg.add_argument("--output-image", type=str, default="output.jpg", - help="path for saving the output image") - optim_arg.add_argument("--cuda", type=int, default=1, - help="set it to 1 for running on GPU, 0 for CPU") - optim_arg.add_argument("--content-weight", type=float, default=1.0, - help="weight for content-loss, default is 1.0") - optim_arg.add_argument("--style-weight", type=float, default=5.0, - help="weight for style-loss, default is 5.0") - optim_arg.add_argument("--lr", type=float, default=1e1, - help="learning rate, default is 0.001") - optim_arg.add_argument("--log-interval", type=int, default=50, - help="number of images after which the training loss is logged, default is 50") - - # evaluation args - eval_arg = subparsers.add_parser("eval", help="parser for evaluation/stylizing arguments") - eval_arg.add_argument("--ngf", type=int, default=128, - help="number of generator filter channels, default 128") - eval_arg.add_argument("--content-image", type=str, required=True, - help="path to content image you want to stylize") - eval_arg.add_argument("--style-image", type=str, default="images/9styles/candy.jpg", - help="path to style-image") - eval_arg.add_argument("--content-size", type=int, default=512, - help="factor for scaling down the content image") - eval_arg.add_argument("--style-size", type=int, default=512, - help="size of style-image, default is the original size of style image") - eval_arg.add_argument("--style-folder", type=str, default="images/9styles/", - help="path to style-folder") - eval_arg.add_argument("--output-image", type=str, default="output.jpg", - help="path for saving the output image") - eval_arg.add_argument("--model", type=str, required=True, - help="saved model to be used for stylizing the image") - eval_arg.add_argument("--cuda", type=int, default=1, - help="set it to 1 for running on GPU, 0 for CPU") - - def parse(self): - return self.parser.parse_args() diff --git a/example/gluon/style_transfer/utils.py b/example/gluon/style_transfer/utils.py deleted file mode 100644 index f869512ba1ca..000000000000 --- a/example/gluon/style_transfer/utils.py +++ /dev/null @@ -1,229 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import collections -import os -import numbers -from PIL import Image - -import numpy as np -import mxnet as mx -import mxnet.ndarray as F - - -def tensor_load_rgbimage(filename, ctx, size=None, scale=None, keep_asp=False): - img = Image.open(filename).convert('RGB') - if size is not None: - if keep_asp: - size2 = int(size * 1.0 / img.size[0] * img.size[1]) - img = img.resize((size, size2), Image.ANTIALIAS) - else: - img = img.resize((size, size), Image.ANTIALIAS) - - elif scale is not None: - img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS) - img = np.array(img).transpose(2, 0, 1).astype(float) - img = F.expand_dims(mx.nd.array(img, ctx=ctx), 0) - return img - - -def tensor_save_rgbimage(img, filename, cuda=False): - img = F.clip(img, 0, 255).asnumpy() - img = img.transpose(1, 2, 0).astype('uint8') - img = Image.fromarray(img) - img.save(filename) - - -def tensor_save_bgrimage(tensor, filename, cuda=False): - (b, g, r) = F.split(tensor, num_outputs=3, axis=0) - tensor = F.concat(r, g, b, dim=0) - tensor_save_rgbimage(tensor, filename, cuda) - - -def subtract_imagenet_mean_batch(batch): - """Subtract ImageNet mean pixel-wise from a BGR image.""" - batch = F.swapaxes(batch,0, 1) - (r, g, b) = F.split(batch, num_outputs=3, axis=0) - r = r - 123.680 - g = g - 116.779 - b = b - 103.939 - batch = F.concat(r, g, b, dim=0) - batch = F.swapaxes(batch,0, 1) - return batch - - -def subtract_imagenet_mean_preprocess_batch(batch): - """Subtract ImageNet mean pixel-wise from a BGR image.""" - batch = F.swapaxes(batch,0, 1) - (r, g, b) = F.split(batch, num_outputs=3, axis=0) - r = r - 123.680 - g = g - 116.779 - b = b - 103.939 - batch = F.concat(b, g, r, dim=0) - batch = F.swapaxes(batch,0, 1) - return batch - - -def add_imagenet_mean_batch(batch): - batch = F.swapaxes(batch,0, 1) - (b, g, r) = F.split(batch, num_outputs=3, axis=0) - r = r + 123.680 - g = g + 116.779 - b = b + 103.939 - batch = F.concat(b, g, r, dim=0) - batch = F.swapaxes(batch,0, 1) - """ - batch = denormalizer(batch) - """ - return batch - - -def imagenet_clamp_batch(batch, low, high): - """ Not necessary in practice """ - F.clip(batch[:,0,:,:],low-123.680, high-123.680) - F.clip(batch[:,1,:,:],low-116.779, high-116.779) - F.clip(batch[:,2,:,:],low-103.939, high-103.939) - - -def preprocess_batch(batch): - batch = F.swapaxes(batch, 0, 1) - (r, g, b) = F.split(batch, num_outputs=3, axis=0) - batch = F.concat(b, g, r, dim=0) - batch = F.swapaxes(batch, 0, 1) - return batch - - -class ToTensor(object): - def __init__(self, ctx): - self.ctx = ctx - - def __call__(self, img): - img = mx.nd.array(np.array(img).transpose(2, 0, 1).astype('float32'), ctx=self.ctx) - return img - - -class Compose(object): - """Composes several transforms together. - Args: - transforms (list of ``Transform`` objects): list of transforms to compose. - Example: - >>> transforms.Compose([ - >>> transforms.CenterCrop(10), - >>> transforms.ToTensor(), - >>> ]) - """ - - def __init__(self, transforms): - self.transforms = transforms - - def __call__(self, img): - for t in self.transforms: - img = t(img) - return img - - -class Scale(object): - """Rescale the input PIL.Image to the given size. - Args: - size (sequence or int): Desired output size. If size is a sequence like - (w, h), output size will be matched to this. If size is an int, - smaller edge of the image will be matched to this number. - i.e, if height > width, then image will be rescaled to - (size * height / width, size) - interpolation (int, optional): Desired interpolation. Default is - ``PIL.Image.BILINEAR`` - """ - - def __init__(self, size, interpolation=Image.BILINEAR): - assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2) - self.size = size - self.interpolation = interpolation - - def __call__(self, img): - """ - Args: - img (PIL.Image): Image to be scaled. - Returns: - PIL.Image: Rescaled image. - """ - if isinstance(self.size, int): - w, h = img.size - if (w <= h and w == self.size) or (h <= w and h == self.size): - return img - if w < h: - ow = self.size - oh = int(self.size * h / w) - return img.resize((ow, oh), self.interpolation) - else: - oh = self.size - ow = int(self.size * w / h) - return img.resize((ow, oh), self.interpolation) - else: - return img.resize(self.size, self.interpolation) - - -class CenterCrop(object): - """Crops the given PIL.Image at the center. - Args: - size (sequence or int): Desired output size of the crop. If size is an - int instead of sequence like (h, w), a square crop (size, size) is - made. - """ - - def __init__(self, size): - if isinstance(size, numbers.Number): - self.size = (int(size), int(size)) - else: - self.size = size - - def __call__(self, img): - """ - Args: - img (PIL.Image): Image to be cropped. - Returns: - PIL.Image: Cropped image. - """ - w, h = img.size - th, tw = self.size - x1 = int(round((w - tw) / 2.)) - y1 = int(round((h - th) / 2.)) - return img.crop((x1, y1, x1 + tw, y1 + th)) - - -class StyleLoader(): - def __init__(self, style_folder, style_size, ctx): - self.folder = style_folder - self.style_size = style_size - self.files = os.listdir(style_folder) - assert(len(self.files) > 0) - self.ctx = ctx - - def get(self, i): - idx = i%len(self.files) - filepath = os.path.join(self.folder, self.files[idx]) - style = tensor_load_rgbimage(filepath, self.ctx, self.style_size) - return style - - def size(self): - return len(self.files) - -def init_vgg_params(vgg, model_folder, ctx): - if not os.path.exists(os.path.join(model_folder, 'mxvgg.params')): - os.system('wget https://www.dropbox.com/s/7c92s0guekwrwzf/mxvgg.params?dl=1 -O' + os.path.join(model_folder, 'mxvgg.params')) - vgg.collect_params().load(os.path.join(model_folder, 'mxvgg.params'), ctx=ctx) - for param in vgg.collect_params().values(): - param.grad_req = 'null' diff --git a/example/gluon/super_resolution/super_resolution.py b/example/gluon/super_resolution/super_resolution.py index 52bfc2241f82..75535168cf88 100644 --- a/example/gluon/super_resolution/super_resolution.py +++ b/example/gluon/super_resolution/super_resolution.py @@ -30,7 +30,6 @@ import mxnet as mx from mxnet import gluon, autograd as ag from mxnet.gluon import nn -from mxnet.gluon.contrib import nn as contrib_nn from mxnet.image import CenterCropAug, ResizeAug from mxnet.io import PrefetchingIter from mxnet.test_utils import download @@ -133,21 +132,20 @@ def get_dataset(prefetch=False): train_data, val_data = get_dataset() -mx.random.seed(opt.seed) +mx.np.random.seed(opt.seed) ctx = [mx.gpu(0)] if opt.use_gpu else [mx.cpu()] class SuperResolutionNet(gluon.HybridBlock): def __init__(self, upscale_factor): super(SuperResolutionNet, self).__init__() - with self.name_scope(): - self.conv1 = nn.Conv2D(64, (5, 5), strides=(1, 1), padding=(2, 2), activation='relu') - self.conv2 = nn.Conv2D(64, (3, 3), strides=(1, 1), padding=(1, 1), activation='relu') - self.conv3 = nn.Conv2D(32, (3, 3), strides=(1, 1), padding=(1, 1), activation='relu') - self.conv4 = nn.Conv2D(upscale_factor ** 2, (3, 3), strides=(1, 1), padding=(1, 1)) - self.pxshuf = contrib_nn.PixelShuffle2D(upscale_factor) - - def hybrid_forward(self, F, x): + self.conv1 = nn.Conv2D(64, (5, 5), strides=(1, 1), padding=(2, 2), activation='relu') + self.conv2 = nn.Conv2D(64, (3, 3), strides=(1, 1), padding=(1, 1), activation='relu') + self.conv3 = nn.Conv2D(32, (3, 3), strides=(1, 1), padding=(1, 1), activation='relu') + self.conv4 = nn.Conv2D(upscale_factor ** 2, (3, 3), strides=(1, 1), padding=(1, 1)) + self.pxshuf = nn.PixelShuffle2D(upscale_factor) + + def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) @@ -219,8 +217,8 @@ def resolve(ctx): net.load_parameters(path.join(this_dir, 'superres.params'), ctx=ctx) img = Image.open(opt.resolve_img).convert('YCbCr') y, cb, cr = img.split() - data = mx.nd.expand_dims(mx.nd.expand_dims(mx.nd.array(y), axis=0), axis=0) - out_img_y = mx.nd.reshape(net(data), shape=(-3, -2)).asnumpy() + data = mx.np.expand_dims(mx.np.expand_dims(mx.np.array(y), axis=0), axis=0) + out_img_y = mx.np.reshape(net(data), shape=(-3, -2)).asnumpy() out_img_y = out_img_y.clip(0, 255) out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L') diff --git a/example/gluon/tree_lstm/LICENSE b/example/gluon/tree_lstm/LICENSE deleted file mode 100644 index 441cb8a1d7de..000000000000 --- a/example/gluon/tree_lstm/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2017 Riddhiman Dasgupta, Sheng Zha - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/example/gluon/tree_lstm/README.md b/example/gluon/tree_lstm/README.md deleted file mode 100644 index 8e3b385b77b0..000000000000 --- a/example/gluon/tree_lstm/README.md +++ /dev/null @@ -1,46 +0,0 @@ - - - - - - - - - - - - - - - - - - -# Tree-Structured Long Short-Term Memory Networks -This is a [MXNet Gluon](https://mxnet.io/) implementation of Tree-LSTM as described in the paper [Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks](http://arxiv.org/abs/1503.00075) by Kai Sheng Tai, Richard Socher, and Christopher Manning. - -### Requirements -- Python (tested on **3.6.5**, should work on **>=2.7**) -- Java >= 8 (for Stanford CoreNLP utilities) -- Other dependencies are in `requirements.txt` -Note: Currently works with MXNet 1.3.0. - -### Usage -Before delving into how to run the code, here is a quick overview of the contents: - - Use the script `fetch_and_preprocess.sh` to download the [SICK dataset](http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools), [Stanford Parser](http://nlp.stanford.edu/software/lex-parser.shtml) and [Stanford POS Tagger](http://nlp.stanford.edu/software/tagger.shtml), and [Glove word vectors](http://nlp.stanford.edu/projects/glove/) (Common Crawl 840) -- **Warning:** this is a 2GB download!), and additionally preprocess the data, i.e. generate dependency parses using [Stanford Neural Network Dependency Parser](http://nlp.stanford.edu/software/nndep.shtml). -- `main.py`does the actual heavy lifting of training the model and testing it on the SICK dataset. For a list of all command-line arguments, have a look at `python main.py -h`. -- The first run caches GLOVE embeddings for words in the SICK vocabulary. In later runs, only the cache is read in during later runs. - -Next, these are the different ways to run the code here to train a TreeLSTM model. -#### Local Python Environment -If you have a working Python3 environment, simply run the following sequence of steps: - -``` -- bash fetch_and_preprocess.sh -- python main.py -``` - - -### Acknowledgments -- The Gluon version is ported from this implementation [dasguptar/treelstm.pytorch](https://github.com/dasguptar/treelstm.pytorch) -- Shout-out to [Kai Sheng Tai](https://github.com/kaishengtai/) for the [original LuaTorch implementation](https://github.com/stanfordnlp/treelstm), and to the [Pytorch team](https://github.com/pytorch/pytorch#the-team) for the fun library. diff --git a/example/gluon/tree_lstm/dataset.cPickle b/example/gluon/tree_lstm/dataset.cPickle deleted file mode 100644 index bdfca53a8390..000000000000 Binary files a/example/gluon/tree_lstm/dataset.cPickle and /dev/null differ diff --git a/example/gluon/tree_lstm/dataset.py b/example/gluon/tree_lstm/dataset.py deleted file mode 100644 index 5d6b766042d6..000000000000 --- a/example/gluon/tree_lstm/dataset.py +++ /dev/null @@ -1,231 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import logging -import os -import random - -import numpy as np - -import mxnet as mx -from tqdm import tqdm - -logging.basicConfig(level=logging.INFO) - - -class Vocab(object): - # constants for special tokens: padding, unknown, and beginning/end of sentence. - PAD = 0 - UNK = 1 - BOS = 2 - EOS = 3 - PAD_WORD = '' - UNK_WORD = '' - BOS_WORD = '' - EOS_WORD = '' - - def __init__(self, filepaths=[], embedpath=None, include_unseen=False, lower=False): - self.idx2tok = [] - self.tok2idx = {} - self.lower = lower - self.include_unseen = include_unseen - - self.add(Vocab.PAD_WORD) - self.add(Vocab.UNK_WORD) - self.add(Vocab.BOS_WORD) - self.add(Vocab.EOS_WORD) - - self.embed = None - - for filename in filepaths: - logging.info('loading %s'%filename) - with open(filename, 'r') as f: - self.load_file(f) - if embedpath is not None: - logging.info('loading %s'%embedpath) - with open(embedpath, 'r') as f: - self.load_embedding(f, reset=set([Vocab.PAD_WORD, Vocab.UNK_WORD, Vocab.BOS_WORD, - Vocab.EOS_WORD])) - - @property - def size(self): - return len(self.idx2tok) - - def get_index(self, key): - return self.tok2idx.get(key.lower() if self.lower else key, - Vocab.UNK) - - def get_token(self, idx): - if idx < self.size: - return self.idx2tok[idx] - else: - return Vocab.UNK_WORD - - def add(self, token): - token = token.lower() if self.lower else token - if token in self.tok2idx: - idx = self.tok2idx[token] - else: - idx = len(self.idx2tok) - self.idx2tok.append(token) - self.tok2idx[token] = idx - return idx - - def to_indices(self, tokens, add_bos=False, add_eos=False): - vec = [Vocab.BOS] if add_bos else [] - vec += [self.get_index(token) for token in tokens] - if add_eos: - vec.append(Vocab.EOS) - return vec - - def to_tokens(self, indices, stop): - tokens = [] - for i in indices: - tokens += [self.get_token(i)] - if i == stop: - break - return tokens - - def load_file(self, f): - for line in f: - tokens = line.rstrip('\n').split() - for token in tokens: - self.add(token) - - def load_embedding(self, f, reset=[]): - vectors = {} - for line in tqdm(f.readlines(), desc='Loading embeddings'): - tokens = line.rstrip('\n').split(' ') - word = tokens[0].lower() if self.lower else tokens[0] - if self.include_unseen: - self.add(word) - if word in self.tok2idx: - vectors[word] = [float(x) for x in tokens[1:]] - dim = len(list(vectors.values())[0]) - def to_vector(tok): - if tok in vectors and tok not in reset: - return vectors[tok] - elif tok not in vectors: - return np.random.normal(-0.05, 0.05, size=dim) - else: - return [0.0]*dim - self.embed = mx.nd.array([vectors[tok] if tok in vectors and tok not in reset - else [0.0]*dim for tok in self.idx2tok]) - -class Tree(object): - def __init__(self, idx): - self.children = [] - self.idx = idx - - def __repr__(self): - if self.children: - return '{0}: {1}'.format(self.idx, str(self.children)) - else: - return str(self.idx) - -# Dataset class for SICK dataset -class SICKDataIter(object): - def __init__(self, path, vocab, num_classes, shuffle=True): - super(SICKDataIter, self).__init__() - self.vocab = vocab - self.num_classes = num_classes - self.l_sentences = self.read_sentences(os.path.join(path,'a.toks')) - self.r_sentences = self.read_sentences(os.path.join(path,'b.toks')) - self.l_trees = self.read_trees(os.path.join(path,'a.parents')) - self.r_trees = self.read_trees(os.path.join(path,'b.parents')) - self.labels = self.read_labels(os.path.join(path,'sim.txt')) - self.size = len(self.labels) - self.shuffle = shuffle - self.reset() - - def reset(self): - if self.shuffle: - mask = list(range(self.size)) - random.shuffle(mask) - self.l_sentences = [self.l_sentences[i] for i in mask] - self.r_sentences = [self.r_sentences[i] for i in mask] - self.l_trees = [self.l_trees[i] for i in mask] - self.r_trees = [self.r_trees[i] for i in mask] - self.labels = [self.labels[i] for i in mask] - self.index = 0 - - def next(self): - out = self[self.index] - self.index += 1 - return out - - def set_context(self, context): - self.l_sentences = [a.as_in_context(context) for a in self.l_sentences] - self.r_sentences = [a.as_in_context(context) for a in self.r_sentences] - - def __len__(self): - return self.size - - def __getitem__(self, index): - l_tree = self.l_trees[index] - r_tree = self.r_trees[index] - l_sent = self.l_sentences[index] - r_sent = self.r_sentences[index] - label = self.labels[index] - return (l_tree,l_sent,r_tree,r_sent,label) - - def read_sentence(self, line): - indices = self.vocab.to_indices(line.split()) - return mx.nd.array(indices) - - def read_sentences(self, filename): - with open(filename,'r') as f: - sentences = [self.read_sentence(line) for line in f.readlines()] - return sentences - - def read_tree(self, line): - parents = [int(x) for x in line.split()] - nodes = {} - root = None - for i in range(1,len(parents)+1): - if i-1 not in nodes and parents[i-1]!=-1: - idx = i - prev = None - while True: - parent = parents[idx-1] - if parent == -1: - break - tree = Tree(idx) - if prev is not None: - tree.children.append(prev) - nodes[idx-1] = tree - tree.idx = idx-1 - if parent-1 in nodes: - nodes[parent-1].children.append(tree) - break - elif parent==0: - root = tree - break - else: - prev = tree - idx = parent - return root - - def read_trees(self, filename): - with open(filename,'r') as f: - trees = [self.read_tree(line) for line in tqdm(f.readlines(), 'Parsing trees')] - return trees - - def read_labels(self, filename): - with open(filename,'r') as f: - labels = [float(x) for x in f.readlines()] - return labels diff --git a/example/gluon/tree_lstm/fetch_and_preprocess.sh b/example/gluon/tree_lstm/fetch_and_preprocess.sh deleted file mode 100755 index a9b9d28612f3..000000000000 --- a/example/gluon/tree_lstm/fetch_and_preprocess.sh +++ /dev/null @@ -1,25 +0,0 @@ -#!/bin/bash - -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -set -e -python scripts/download.py - -CLASSPATH="lib:lib/stanford-parser/stanford-parser.jar:lib/stanford-parser/stanford-parser-3.5.1-models.jar" -javac -cp $CLASSPATH lib/*.java -python scripts/preprocess-sick.py diff --git a/example/gluon/tree_lstm/lib/CollapseUnaryTransformer.java b/example/gluon/tree_lstm/lib/CollapseUnaryTransformer.java deleted file mode 100644 index a0ff1936cb88..000000000000 --- a/example/gluon/tree_lstm/lib/CollapseUnaryTransformer.java +++ /dev/null @@ -1,53 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -import java.util.List; - -import edu.stanford.nlp.ling.Label; -import edu.stanford.nlp.trees.Tree; -import edu.stanford.nlp.trees.TreeTransformer; -import edu.stanford.nlp.util.Generics; - -/** - * This transformer collapses chains of unary nodes so that the top - * node is the only node left. The Sentiment model does not handle - * unary nodes, so this simplifies them to make a binary tree consist - * entirely of binary nodes and preterminals. A new tree with new - * nodes and labels is returned; the original tree is unchanged. - * - * @author John Bauer - */ -public class CollapseUnaryTransformer implements TreeTransformer { - public Tree transformTree(Tree tree) { - if (tree.isPreTerminal() || tree.isLeaf()) { - return tree.deepCopy(); - } - - Label label = tree.label().labelFactory().newLabel(tree.label()); - Tree[] children = tree.children(); - while (children.length == 1 && !children[0].isLeaf()) { - children = children[0].children(); - } - List processedChildren = Generics.newArrayList(); - for (Tree child : children) { - processedChildren.add(transformTree(child)); - } - return tree.treeFactory().newTreeNode(label, processedChildren); - } -} diff --git a/example/gluon/tree_lstm/lib/ConstituencyParse.java b/example/gluon/tree_lstm/lib/ConstituencyParse.java deleted file mode 100644 index 346138c6a06d..000000000000 --- a/example/gluon/tree_lstm/lib/ConstituencyParse.java +++ /dev/null @@ -1,253 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -import edu.stanford.nlp.process.WordTokenFactory; -import edu.stanford.nlp.ling.HasWord; -import edu.stanford.nlp.ling.Word; -import edu.stanford.nlp.ling.CoreLabel; -import edu.stanford.nlp.process.PTBTokenizer; -import edu.stanford.nlp.util.StringUtils; -import edu.stanford.nlp.parser.lexparser.LexicalizedParser; -import edu.stanford.nlp.parser.lexparser.TreeBinarizer; -import edu.stanford.nlp.trees.GrammaticalStructure; -import edu.stanford.nlp.trees.GrammaticalStructureFactory; -import edu.stanford.nlp.trees.PennTreebankLanguagePack; -import edu.stanford.nlp.trees.Tree; -import edu.stanford.nlp.trees.Trees; -import edu.stanford.nlp.trees.TreebankLanguagePack; -import edu.stanford.nlp.trees.TypedDependency; - -import java.io.BufferedWriter; -import java.io.FileWriter; -import java.io.StringReader; -import java.io.IOException; -import java.util.ArrayList; -import java.util.Collection; -import java.util.List; -import java.util.HashMap; -import java.util.Properties; -import java.util.Scanner; - -public class ConstituencyParse { - - private boolean tokenize; - private BufferedWriter tokWriter, parentWriter; - private LexicalizedParser parser; - private TreeBinarizer binarizer; - private CollapseUnaryTransformer transformer; - private GrammaticalStructureFactory gsf; - - private static final String PCFG_PATH = "edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"; - - public ConstituencyParse(String tokPath, String parentPath, boolean tokenize) throws IOException { - this.tokenize = tokenize; - if (tokPath != null) { - tokWriter = new BufferedWriter(new FileWriter(tokPath)); - } - parentWriter = new BufferedWriter(new FileWriter(parentPath)); - parser = LexicalizedParser.loadModel(PCFG_PATH); - binarizer = TreeBinarizer.simpleTreeBinarizer( - parser.getTLPParams().headFinder(), parser.treebankLanguagePack()); - transformer = new CollapseUnaryTransformer(); - - // set up to produce dependency representations from constituency trees - TreebankLanguagePack tlp = new PennTreebankLanguagePack(); - gsf = tlp.grammaticalStructureFactory(); - } - - public List sentenceToTokens(String line) { - List tokens = new ArrayList<>(); - if (tokenize) { - PTBTokenizer tokenizer = new PTBTokenizer(new StringReader(line), new WordTokenFactory(), ""); - for (Word label; tokenizer.hasNext(); ) { - tokens.add(tokenizer.next()); - } - } else { - for (String word : line.split(" ")) { - tokens.add(new Word(word)); - } - } - - return tokens; - } - - public Tree parse(List tokens) { - Tree tree = parser.apply(tokens); - return tree; - } - - public int[] constTreeParents(Tree tree) { - Tree binarized = binarizer.transformTree(tree); - Tree collapsedUnary = transformer.transformTree(binarized); - Trees.convertToCoreLabels(collapsedUnary); - collapsedUnary.indexSpans(); - List leaves = collapsedUnary.getLeaves(); - int size = collapsedUnary.size() - leaves.size(); - int[] parents = new int[size]; - HashMap index = new HashMap(); - - int idx = leaves.size(); - int leafIdx = 0; - for (Tree leaf : leaves) { - Tree cur = leaf.parent(collapsedUnary); // go to preterminal - int curIdx = leafIdx++; - boolean done = false; - while (!done) { - Tree parent = cur.parent(collapsedUnary); - if (parent == null) { - parents[curIdx] = 0; - break; - } - - int parentIdx; - int parentNumber = parent.nodeNumber(collapsedUnary); - if (!index.containsKey(parentNumber)) { - parentIdx = idx++; - index.put(parentNumber, parentIdx); - } else { - parentIdx = index.get(parentNumber); - done = true; - } - - parents[curIdx] = parentIdx + 1; - cur = parent; - curIdx = parentIdx; - } - } - - return parents; - } - - // convert constituency parse to a dependency representation and return the - // parent pointer representation of the tree - public int[] depTreeParents(Tree tree, List tokens) { - GrammaticalStructure gs = gsf.newGrammaticalStructure(tree); - Collection tdl = gs.typedDependencies(); - int len = tokens.size(); - int[] parents = new int[len]; - for (int i = 0; i < len; i++) { - // if a node has a parent of -1 at the end of parsing, then the node - // has no parent. - parents[i] = -1; - } - - for (TypedDependency td : tdl) { - // let root have index 0 - int child = td.dep().index(); - int parent = td.gov().index(); - parents[child - 1] = parent; - } - - return parents; - } - - public void printTokens(List tokens) throws IOException { - int len = tokens.size(); - StringBuilder sb = new StringBuilder(); - for (int i = 0; i < len - 1; i++) { - if (tokenize) { - sb.append(PTBTokenizer.ptbToken2Text(tokens.get(i).word())); - } else { - sb.append(tokens.get(i).word()); - } - sb.append(' '); - } - - if (tokenize) { - sb.append(PTBTokenizer.ptbToken2Text(tokens.get(len - 1).word())); - } else { - sb.append(tokens.get(len - 1).word()); - } - - sb.append('\n'); - tokWriter.write(sb.toString()); - } - - public void printParents(int[] parents) throws IOException { - StringBuilder sb = new StringBuilder(); - int size = parents.length; - for (int i = 0; i < size - 1; i++) { - sb.append(parents[i]); - sb.append(' '); - } - sb.append(parents[size - 1]); - sb.append('\n'); - parentWriter.write(sb.toString()); - } - - public void close() throws IOException { - if (tokWriter != null) tokWriter.close(); - parentWriter.close(); - } - - public static void main(String[] args) throws Exception { - Properties props = StringUtils.argsToProperties(args); - if (!props.containsKey("parentpath")) { - System.err.println( - "usage: java ConstituencyParse -deps - -tokenize - -tokpath -parentpath "); - System.exit(1); - } - - // whether to tokenize input sentences - boolean tokenize = false; - if (props.containsKey("tokenize")) { - tokenize = true; - } - - // whether to produce dependency trees from the constituency parse - boolean deps = false; - if (props.containsKey("deps")) { - deps = true; - } - - String tokPath = props.containsKey("tokpath") ? props.getProperty("tokpath") : null; - String parentPath = props.getProperty("parentpath"); - ConstituencyParse processor = new ConstituencyParse(tokPath, parentPath, tokenize); - - Scanner stdin = new Scanner(System.in); - int count = 0; - long start = System.currentTimeMillis(); - while (stdin.hasNextLine()) { - String line = stdin.nextLine(); - List tokens = processor.sentenceToTokens(line); - Tree parse = processor.parse(tokens); - - // produce parent pointer representation - int[] parents = deps ? processor.depTreeParents(parse, tokens) - : processor.constTreeParents(parse); - - // print - if (tokPath != null) { - processor.printTokens(tokens); - } - processor.printParents(parents); - - count++; - if (count % 1000 == 0) { - double elapsed = (System.currentTimeMillis() - start) / 1000.0; - System.err.printf("Parsed %d lines (%.2fs)\n", count, elapsed); - } - } - - long totalTimeMillis = System.currentTimeMillis() - start; - System.err.printf("Done: %d lines in %.2fs (%.1fms per line)\n", - count, totalTimeMillis / 1000.0, totalTimeMillis / (double) count); - processor.close(); - } -} diff --git a/example/gluon/tree_lstm/lib/DependencyParse.java b/example/gluon/tree_lstm/lib/DependencyParse.java deleted file mode 100644 index 445cab805cc9..000000000000 --- a/example/gluon/tree_lstm/lib/DependencyParse.java +++ /dev/null @@ -1,159 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -import edu.stanford.nlp.process.WordTokenFactory; -import edu.stanford.nlp.ling.HasWord; -import edu.stanford.nlp.ling.Word; -import edu.stanford.nlp.ling.TaggedWord; -import edu.stanford.nlp.parser.nndep.DependencyParser; -import edu.stanford.nlp.process.PTBTokenizer; -import edu.stanford.nlp.trees.TypedDependency; -import edu.stanford.nlp.util.StringUtils; -import edu.stanford.nlp.tagger.maxent.MaxentTagger; - -import java.io.BufferedWriter; -import java.io.FileWriter; -import java.io.StringReader; -import java.util.ArrayList; -import java.util.Collection; -import java.util.List; -import java.util.Properties; -import java.util.Scanner; - -public class DependencyParse { - - public static final String TAGGER_MODEL = "stanford-tagger/models/english-left3words-distsim.tagger"; - public static final String PARSER_MODEL = "edu/stanford/nlp/models/parser/nndep/english_SD.gz"; - - public static void main(String[] args) throws Exception { - Properties props = StringUtils.argsToProperties(args); - if (!props.containsKey("tokpath") || - !props.containsKey("parentpath") || - !props.containsKey("relpath")) { - System.err.println( - "usage: java DependencyParse -tokenize - -tokpath -parentpath -relpath "); - System.exit(1); - } - - boolean tokenize = false; - if (props.containsKey("tokenize")) { - tokenize = true; - } - - String tokPath = props.getProperty("tokpath"); - String parentPath = props.getProperty("parentpath"); - String relPath = props.getProperty("relpath"); - - BufferedWriter tokWriter = new BufferedWriter(new FileWriter(tokPath)); - BufferedWriter parentWriter = new BufferedWriter(new FileWriter(parentPath)); - BufferedWriter relWriter = new BufferedWriter(new FileWriter(relPath)); - - MaxentTagger tagger = new MaxentTagger(TAGGER_MODEL); - DependencyParser parser = DependencyParser.loadFromModelFile(PARSER_MODEL); - Scanner stdin = new Scanner(System.in); - int count = 0; - long start = System.currentTimeMillis(); - while (stdin.hasNextLine()) { - String line = stdin.nextLine(); - List tokens = new ArrayList<>(); - if (tokenize) { - PTBTokenizer tokenizer = new PTBTokenizer( - new StringReader(line), new WordTokenFactory(), ""); - for (Word label; tokenizer.hasNext(); ) { - tokens.add(tokenizer.next()); - } - } else { - for (String word : line.split(" ")) { - tokens.add(new Word(word)); - } - } - - List tagged = tagger.tagSentence(tokens); - - int len = tagged.size(); - Collection tdl = parser.predict(tagged).typedDependencies(); - int[] parents = new int[len]; - for (int i = 0; i < len; i++) { - // if a node has a parent of -1 at the end of parsing, then the node - // has no parent. - parents[i] = -1; - } - - String[] relns = new String[len]; - for (TypedDependency td : tdl) { - // let root have index 0 - int child = td.dep().index(); - int parent = td.gov().index(); - relns[child - 1] = td.reln().toString(); - parents[child - 1] = parent; - } - - // print tokens - StringBuilder sb = new StringBuilder(); - for (int i = 0; i < len - 1; i++) { - if (tokenize) { - sb.append(PTBTokenizer.ptbToken2Text(tokens.get(i).word())); - } else { - sb.append(tokens.get(i).word()); - } - sb.append(' '); - } - if (tokenize) { - sb.append(PTBTokenizer.ptbToken2Text(tokens.get(len - 1).word())); - } else { - sb.append(tokens.get(len - 1).word()); - } - sb.append('\n'); - tokWriter.write(sb.toString()); - - // print parent pointers - sb = new StringBuilder(); - for (int i = 0; i < len - 1; i++) { - sb.append(parents[i]); - sb.append(' '); - } - sb.append(parents[len - 1]); - sb.append('\n'); - parentWriter.write(sb.toString()); - - // print relations - sb = new StringBuilder(); - for (int i = 0; i < len - 1; i++) { - sb.append(relns[i]); - sb.append(' '); - } - sb.append(relns[len - 1]); - sb.append('\n'); - relWriter.write(sb.toString()); - - count++; - if (count % 1000 == 0) { - double elapsed = (System.currentTimeMillis() - start) / 1000.0; - System.err.printf("Parsed %d lines (%.2fs)\n", count, elapsed); - } - } - - long totalTimeMillis = System.currentTimeMillis() - start; - System.err.printf("Done: %d lines in %.2fs (%.1fms per line)\n", - count, totalTimeMillis / 1000.0, totalTimeMillis / (double) count); - tokWriter.close(); - parentWriter.close(); - relWriter.close(); - } -} diff --git a/example/gluon/tree_lstm/main.py b/example/gluon/tree_lstm/main.py deleted file mode 100644 index 41e4f4f13ed8..000000000000 --- a/example/gluon/tree_lstm/main.py +++ /dev/null @@ -1,191 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# This example is inspired by https://github.com/dasguptar/treelstm.pytorch -import argparse, math, os, random -try: - import cPickle as pickle -except ImportError: - import pickle -import logging -logging.basicConfig(level=logging.INFO) -import numpy as np -from tqdm import tqdm - -import mxnet as mx -from mxnet import gluon -from mxnet.gluon import nn -from mxnet import autograd as ag - -from tree_lstm import SimilarityTreeLSTM -from dataset import Vocab, SICKDataIter - -parser = argparse.ArgumentParser(description='TreeLSTM for Sentence Similarity on Dependency Trees') -parser.add_argument('--data', default='data/sick/', - help='path to raw dataset. required when preprocessed dataset is not available.') -parser.add_argument('--word_embed', default='data/glove/glove.840B.300d.txt', - help='directory with word embeddings. required when preprocessed dataset is not available.') -parser.add_argument('--batch_size', type=int, default=25, - help='training batch size per device (CPU/GPU).') -parser.add_argument('--epochs', default=50, type=int, - help='number of total epochs to run') -parser.add_argument('--lr', default=0.02, type=float, - help='initial learning rate') -parser.add_argument('--wd', default=0.0001, type=float, - help='weight decay factor') -parser.add_argument('--optimizer', default='adagrad', - help='optimizer (default: adagrad)') -parser.add_argument('--seed', default=123, type=int, - help='random seed (default: 123)') -parser.add_argument('--use-gpu', action='store_true', - help='whether to use GPU.') - -opt = parser.parse_args() - -logging.info(opt) - -context = [mx.gpu(0) if opt.use_gpu else mx.cpu()] - -rnn_hidden_size, sim_hidden_size, num_classes = 150, 50, 5 -optimizer = opt.optimizer.lower() - -mx.random.seed(opt.seed) -np.random.seed(opt.seed) -random.seed(opt.seed) - -batch_size = opt.batch_size - -# read dataset -if os.path.exists('dataset.pickle'): - with open('dataset.pickle', 'rb') as f: - train_iter, dev_iter, test_iter, vocab = pickle.load(f) -else: - root_dir = opt.data - segments = ['train', 'dev', 'test'] - token_files = [os.path.join(root_dir, seg, '%s.toks'%tok) - for tok in ['a', 'b'] - for seg in segments] - - vocab = Vocab(filepaths=token_files, embedpath=opt.word_embed) - - train_iter, dev_iter, test_iter = [SICKDataIter(os.path.join(root_dir, segment), vocab, num_classes) - for segment in segments] - with open('dataset.pickle', 'wb') as f: - pickle.dump([train_iter, dev_iter, test_iter, vocab], f) - -logging.info('==> SICK vocabulary size : %d ' % vocab.size) -logging.info('==> Size of train data : %d ' % len(train_iter)) -logging.info('==> Size of dev data : %d ' % len(dev_iter)) -logging.info('==> Size of test data : %d ' % len(test_iter)) - -# get network -net = SimilarityTreeLSTM(sim_hidden_size, rnn_hidden_size, vocab.size, vocab.embed.shape[1], num_classes) - -# use pearson correlation and mean-square error for evaluation -metric = mx.gluon.metric.create(['pearsonr', 'mse']) - -def to_target(x): - target = np.zeros((1, num_classes)) - ceil = int(math.ceil(x)) - floor = int(math.floor(x)) - if ceil==floor: - target[0][floor-1] = 1 - else: - target[0][floor-1] = ceil - x - target[0][ceil-1] = x - floor - return mx.nd.array(target) - -def to_score(x): - levels = mx.nd.arange(1, 6, ctx=x.context) - return [mx.nd.sum(levels*mx.nd.exp(x), axis=1).reshape((-1,1))] - -# when evaluating in validation mode, check and see if pearson-r is improved -# if so, checkpoint and run evaluation on test dataset -def test(ctx, data_iter, best, mode='validation', num_iter=-1): - data_iter.reset() - batches = len(data_iter) - data_iter.set_context(ctx[0]) - preds = [] - labels = [mx.nd.array(data_iter.labels, ctx=ctx[0]).reshape((-1,1))] - for _ in tqdm(range(batches), desc='Testing in {} mode'.format(mode)): - l_tree, l_sent, r_tree, r_sent, label = data_iter.next() - z = net(mx.nd, l_sent, r_sent, l_tree, r_tree) - preds.append(z) - - preds = to_score(mx.nd.concat(*preds, dim=0)) - metric.update(preds, labels) - names, values = metric.get() - metric.reset() - for name, acc in zip(names, values): - logging.info(mode+' acc: %s=%f'%(name, acc)) - if name == 'pearsonr': - test_r = acc - if mode == 'validation' and num_iter >= 0: - if test_r >= best: - best = test_r - logging.info('New optimum found: {}. Checkpointing.'.format(best)) - net.save_parameters('childsum_tree_lstm_{}.params'.format(num_iter)) - test(ctx, test_iter, -1, 'test') - return best - - -def train(epoch, ctx, train_data, dev_data): - - # initialization with context - if isinstance(ctx, mx.Context): - ctx = [ctx] - net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx[0]) - net.embed.weight.set_data(vocab.embed.as_in_context(ctx[0])) - train_data.set_context(ctx[0]) - dev_data.set_context(ctx[0]) - # set up trainer for optimizing the network. - trainer = gluon.Trainer(net.collect_params(), optimizer, {'learning_rate': opt.lr, 'wd': opt.wd}) - - best_r = -1 - Loss = gluon.loss.KLDivLoss() - for i in range(epoch): - train_data.reset() - num_batches = len(train_data) - # collect predictions and labels for evaluation metrics - preds = [] - labels = [mx.nd.array(train_data.labels, ctx=ctx[0]).reshape((-1,1))] - for j in tqdm(range(num_batches), desc='Training epoch {}'.format(i)): - # get next batch - l_tree, l_sent, r_tree, r_sent, label = train_data.next() - # use autograd to record the forward calculation - with ag.record(): - # forward calculation. the output is log probability - z = net(mx.nd, l_sent, r_sent, l_tree, r_tree) - # calculate loss - loss = Loss(z, to_target(label).as_in_context(ctx[0])) - # backward calculation for gradients. - loss.backward() - preds.append(z) - # update weight after every batch_size samples - if (j+1) % batch_size == 0: - trainer.step(batch_size) - - # translate log-probability to scores, and evaluate - preds = to_score(mx.nd.concat(*preds, dim=0)) - metric.update(preds, labels) - names, values = metric.get() - metric.reset() - for name, acc in zip(names, values): - logging.info('training acc at epoch %d: %s=%f'%(i, name, acc)) - best_r = test(ctx, dev_data, best_r, num_iter=i) - -train(opt.epochs, context, train_iter, dev_iter) diff --git a/example/gluon/tree_lstm/scripts/download.py b/example/gluon/tree_lstm/scripts/download.py deleted file mode 100644 index 6537ef1ff655..000000000000 --- a/example/gluon/tree_lstm/scripts/download.py +++ /dev/null @@ -1,106 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Downloads the following: -- Stanford parser -- Stanford POS tagger -- Glove vectors -- SICK dataset (semantic relatedness task) -""" - -from __future__ import print_function -import sys -import os -import shutil -import zipfile -import gzip -from mxnet.test_utils import download - -def unzip(filepath): - print("Extracting: " + filepath) - dirpath = os.path.dirname(filepath) - with zipfile.ZipFile(filepath) as zf: - zf.extractall(dirpath) - os.remove(filepath) - -def download_tagger(dirpath): - tagger_dir = 'stanford-tagger' - if os.path.exists(os.path.join(dirpath, tagger_dir)): - print('Found Stanford POS Tagger - skip') - return - url = 'http://nlp.stanford.edu/software/stanford-postagger-2015-01-29.zip' - filepath = download(url, dirname=dirpath) - zip_dir = '' - with zipfile.ZipFile(filepath) as zf: - zip_dir = zf.namelist()[0] - zf.extractall(dirpath) - os.remove(filepath) - os.rename(os.path.join(dirpath, zip_dir), os.path.join(dirpath, tagger_dir)) - -def download_parser(dirpath): - parser_dir = 'stanford-parser' - if os.path.exists(os.path.join(dirpath, parser_dir)): - print('Found Stanford Parser - skip') - return - url = 'http://nlp.stanford.edu/software/stanford-parser-full-2015-01-29.zip' - filepath = download(url, dirname=dirpath) - zip_dir = '' - with zipfile.ZipFile(filepath) as zf: - zip_dir = zf.namelist()[0] - zf.extractall(dirpath) - os.remove(filepath) - os.rename(os.path.join(dirpath, zip_dir), os.path.join(dirpath, parser_dir)) - -def download_wordvecs(dirpath): - if os.path.exists(dirpath): - print('Found Glove vectors - skip') - return - else: - os.makedirs(dirpath) - url = 'http://www-nlp.stanford.edu/data/glove.840B.300d.zip' - unzip(download(url, dirname=dirpath)) - -def download_sick(dirpath): - if os.path.exists(dirpath): - print('Found SICK dataset - skip') - return - else: - os.makedirs(dirpath) - train_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_train.zip' - trial_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_trial.zip' - test_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_test_annotated.zip' - unzip(download(train_url, dirname=dirpath)) - unzip(download(trial_url, dirname=dirpath)) - unzip(download(test_url, dirname=dirpath)) - -if __name__ == '__main__': - base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) - - # data - data_dir = os.path.join(base_dir, 'data') - wordvec_dir = os.path.join(data_dir, 'glove') - sick_dir = os.path.join(data_dir, 'sick') - - # libraries - lib_dir = os.path.join(base_dir, 'lib') - - # download dependencies - download_tagger(lib_dir) - download_parser(lib_dir) - download_wordvecs(wordvec_dir) - download_sick(sick_dir) diff --git a/example/gluon/tree_lstm/scripts/preprocess-sick.py b/example/gluon/tree_lstm/scripts/preprocess-sick.py deleted file mode 100644 index abbcc5fac844..000000000000 --- a/example/gluon/tree_lstm/scripts/preprocess-sick.py +++ /dev/null @@ -1,122 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -""" -Preprocessing script for SICK data. - -""" - -import os -import glob - -def make_dirs(dirs): - for d in dirs: - if not os.path.exists(d): - os.makedirs(d) - -def dependency_parse(filepath, cp='', tokenize=True): - print('\nDependency parsing ' + filepath) - dirpath = os.path.dirname(filepath) - filepre = os.path.splitext(os.path.basename(filepath))[0] - tokpath = os.path.join(dirpath, filepre + '.toks') - parentpath = os.path.join(dirpath, filepre + '.parents') - relpath = os.path.join(dirpath, filepre + '.rels') - tokenize_flag = '-tokenize - ' if tokenize else '' - cmd = ('java -cp %s DependencyParse -tokpath %s -parentpath %s -relpath %s %s < %s' - % (cp, tokpath, parentpath, relpath, tokenize_flag, filepath)) - os.system(cmd) - -def constituency_parse(filepath, cp='', tokenize=True): - dirpath = os.path.dirname(filepath) - filepre = os.path.splitext(os.path.basename(filepath))[0] - tokpath = os.path.join(dirpath, filepre + '.toks') - parentpath = os.path.join(dirpath, filepre + '.cparents') - tokenize_flag = '-tokenize - ' if tokenize else '' - cmd = ('java -cp %s ConstituencyParse -tokpath %s -parentpath %s %s < %s' - % (cp, tokpath, parentpath, tokenize_flag, filepath)) - os.system(cmd) - -def build_vocab(filepaths, dst_path, lowercase=True): - vocab = set() - for filepath in filepaths: - with open(filepath) as f: - for line in f: - if lowercase: - line = line.lower() - vocab |= set(line.split()) - with open(dst_path, 'w') as f: - for w in sorted(vocab): - f.write(w + '\n') - -def split(filepath, dst_dir): - with open(filepath) as datafile, \ - open(os.path.join(dst_dir, 'a.txt'), 'w') as afile, \ - open(os.path.join(dst_dir, 'b.txt'), 'w') as bfile, \ - open(os.path.join(dst_dir, 'id.txt'), 'w') as idfile, \ - open(os.path.join(dst_dir, 'sim.txt'), 'w') as simfile: - datafile.readline() - for line in datafile: - i, a, b, sim, ent = line.strip().split('\t') - idfile.write(i + '\n') - afile.write(a + '\n') - bfile.write(b + '\n') - simfile.write(sim + '\n') - -def parse(dirpath, cp=''): - dependency_parse(os.path.join(dirpath, 'a.txt'), cp=cp, tokenize=True) - dependency_parse(os.path.join(dirpath, 'b.txt'), cp=cp, tokenize=True) - constituency_parse(os.path.join(dirpath, 'a.txt'), cp=cp, tokenize=True) - constituency_parse(os.path.join(dirpath, 'b.txt'), cp=cp, tokenize=True) - -if __name__ == '__main__': - print('=' * 80) - print('Preprocessing SICK dataset') - print('=' * 80) - - base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) - data_dir = os.path.join(base_dir, 'data') - sick_dir = os.path.join(data_dir, 'sick') - lib_dir = os.path.join(base_dir, 'lib') - train_dir = os.path.join(sick_dir, 'train') - dev_dir = os.path.join(sick_dir, 'dev') - test_dir = os.path.join(sick_dir, 'test') - make_dirs([train_dir, dev_dir, test_dir]) - - # java classpath for calling Stanford parser - classpath = ':'.join([ - lib_dir, - os.path.join(lib_dir, 'stanford-parser/stanford-parser.jar'), - os.path.join(lib_dir, 'stanford-parser/stanford-parser-3.5.1-models.jar')]) - - # split into separate files - split(os.path.join(sick_dir, 'SICK_train.txt'), train_dir) - split(os.path.join(sick_dir, 'SICK_trial.txt'), dev_dir) - split(os.path.join(sick_dir, 'SICK_test_annotated.txt'), test_dir) - - # parse sentences - parse(train_dir, cp=classpath) - parse(dev_dir, cp=classpath) - parse(test_dir, cp=classpath) - - # get vocabulary - build_vocab( - glob.glob(os.path.join(sick_dir, '*/*.toks')), - os.path.join(sick_dir, 'vocab.txt')) - build_vocab( - glob.glob(os.path.join(sick_dir, '*/*.toks')), - os.path.join(sick_dir, 'vocab-cased.txt'), - lowercase=False) diff --git a/example/gluon/tree_lstm/tree_lstm.py b/example/gluon/tree_lstm/tree_lstm.py deleted file mode 100644 index e96fe26bf9b6..000000000000 --- a/example/gluon/tree_lstm/tree_lstm.py +++ /dev/null @@ -1,154 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import mxnet as mx -from mxnet.gluon import Block, nn -from mxnet.gluon.parameter import Parameter - -class ChildSumLSTMCell(Block): - def __init__(self, hidden_size, - i2h_weight_initializer=None, - hs2h_weight_initializer=None, - hc2h_weight_initializer=None, - i2h_bias_initializer='zeros', - hs2h_bias_initializer='zeros', - hc2h_bias_initializer='zeros', - input_size=0, prefix=None, params=None): - super(ChildSumLSTMCell, self).__init__(prefix=prefix, params=params) - with self.name_scope(): - self._hidden_size = hidden_size - self._input_size = input_size - self.i2h_weight = self.params.get('i2h_weight', shape=(4*hidden_size, input_size), - init=i2h_weight_initializer) - self.hs2h_weight = self.params.get('hs2h_weight', shape=(3*hidden_size, hidden_size), - init=hs2h_weight_initializer) - self.hc2h_weight = self.params.get('hc2h_weight', shape=(hidden_size, hidden_size), - init=hc2h_weight_initializer) - self.i2h_bias = self.params.get('i2h_bias', shape=(4*hidden_size,), - init=i2h_bias_initializer) - self.hs2h_bias = self.params.get('hs2h_bias', shape=(3*hidden_size,), - init=hs2h_bias_initializer) - self.hc2h_bias = self.params.get('hc2h_bias', shape=(hidden_size,), - init=hc2h_bias_initializer) - - def _alias(self): - return 'childsum_lstm' - - def forward(self, F, inputs, tree): - children_outputs = [self.forward(F, inputs, child) - for child in tree.children] - if children_outputs: - _, children_states = zip(*children_outputs) # unzip - else: - children_states = None - - with inputs.context as ctx: - return self.node_forward(F, F.expand_dims(inputs[tree.idx], axis=0), children_states, - self.i2h_weight.data(ctx), - self.hs2h_weight.data(ctx), - self.hc2h_weight.data(ctx), - self.i2h_bias.data(ctx), - self.hs2h_bias.data(ctx), - self.hc2h_bias.data(ctx)) - - def node_forward(self, F, inputs, children_states, - i2h_weight, hs2h_weight, hc2h_weight, - i2h_bias, hs2h_bias, hc2h_bias): - name = '{0}{1}_'.format(self.prefix, self._alias) - # notation: N for batch size, C for hidden state dimensions, K for number of children. - - # FC for i, f, u, o gates (N, 4*C), from input to hidden - i2h = F.FullyConnected(data=inputs, weight=i2h_weight, bias=i2h_bias, - num_hidden=self._hidden_size*4, - name='%si2h'%name) - i2h_slices = F.split(i2h, num_outputs=4, name='%siuo_slice'%name) # (N, C)*4 - i2h_iuo = F.concat(*[i2h_slices[i] for i in [0, 2, 3]], dim=1) # (N, C*3) - if children_states: - # sum of children states - hs = F.add_n(*[state[0] for state in children_states], name='%shs'%name) # (N, C) - # concatenation of children hidden states - hc = F.concat(*[F.expand_dims(state[0], axis=1) for state in children_states], dim=1, - name='%shc') # (N, K, C) - # concatenation of children cell states - cs = F.concat(*[F.expand_dims(state[1], axis=1) for state in children_states], dim=1, - name='%scs') # (N, K, C) - - # calculate activation for forget gate. addition in f_act is done with broadcast - i2h_f_slice = i2h_slices[1] - f_act = i2h_f_slice + hc2h_bias + F.dot(hc, hc2h_weight) # (N, K, C) - forget_gates = F.Activation(f_act, act_type='sigmoid', name='%sf'%name) # (N, K, C) - else: - # for leaf nodes, summation of children hidden states are zeros. - hs = F.zeros_like(i2h_slices[0]) - - # FC for i, u, o gates, from summation of children states to hidden state - hs2h_iuo = F.FullyConnected(data=hs, weight=hs2h_weight, bias=hs2h_bias, - num_hidden=self._hidden_size*3, - name='%shs2h'%name) - i2h_iuo = i2h_iuo + hs2h_iuo - - iuo_act_slices = F.SliceChannel(i2h_iuo, num_outputs=3, - name='%sslice'%name) # (N, C)*3 - i_act, u_act, o_act = iuo_act_slices[0], iuo_act_slices[1], iuo_act_slices[2] # (N, C) each - - # calculate gate outputs - in_gate = F.Activation(i_act, act_type='sigmoid', name='%si'%name) - in_transform = F.Activation(u_act, act_type='tanh', name='%sc'%name) - out_gate = F.Activation(o_act, act_type='sigmoid', name='%so'%name) - - # calculate cell state and hidden state - next_c = in_gate * in_transform - if children_states: - next_c = F._internal._plus(F.sum(forget_gates * cs, axis=1), next_c, - name='%sstate'%name) - next_h = F._internal._mul(out_gate, F.Activation(next_c, act_type='tanh'), - name='%sout'%name) - - return next_h, [next_h, next_c] - -# module for distance-angle similarity -class Similarity(nn.Block): - def __init__(self, sim_hidden_size, rnn_hidden_size, num_classes): - super(Similarity, self).__init__() - with self.name_scope(): - self.wh = nn.Dense(sim_hidden_size, in_units=2*rnn_hidden_size, prefix='sim_embed_') - self.wp = nn.Dense(num_classes, in_units=sim_hidden_size, prefix='sim_out_') - - def forward(self, F, lvec, rvec): - # lvec and rvec will be tree_lstm cell states at roots - mult_dist = F.broadcast_mul(lvec, rvec) - abs_dist = F.abs(F.add(lvec,-rvec)) - vec_dist = F.concat(*[mult_dist, abs_dist],dim=1) - out = F.log_softmax(self.wp(F.sigmoid(self.wh(vec_dist)))) - return out - -# putting the whole model together -class SimilarityTreeLSTM(nn.Block): - def __init__(self, sim_hidden_size, rnn_hidden_size, embed_in_size, embed_dim, num_classes): - super(SimilarityTreeLSTM, self).__init__() - with self.name_scope(): - self.embed = nn.Embedding(embed_in_size, embed_dim, prefix='word_embed_') - self.childsumtreelstm = ChildSumLSTMCell(rnn_hidden_size, input_size=embed_dim) - self.similarity = Similarity(sim_hidden_size, rnn_hidden_size, num_classes) - - def forward(self, F, l_inputs, r_inputs, l_tree, r_tree): - l_inputs = self.embed(l_inputs) - r_inputs = self.embed(r_inputs) - lstate = self.childsumtreelstm(F, l_inputs, l_tree)[1][1] - rstate = self.childsumtreelstm(F, r_inputs, r_tree)[1][1] - output = self.similarity(F, lstate, rstate) - return output diff --git a/example/gluon/word_language_model/README.md b/example/gluon/word_language_model/README.md deleted file mode 100644 index b2516a46b39a..000000000000 --- a/example/gluon/word_language_model/README.md +++ /dev/null @@ -1,104 +0,0 @@ - - - - - - - - - - - - - - - - - -# Word-level language modeling RNN - -This example trains a multi-layer RNN (Elman, GRU, or LSTM) on WikiText-2 language modeling benchmark. - -The model obtains ~107 ppl in WikiText-2 using LSTM. - -The following techniques have been adopted for SOTA results: -- [LSTM for LM](https://arxiv.org/pdf/1409.2329.pdf) -- [Weight tying](https://arxiv.org/abs/1608.05859) between word vectors and softmax output embeddings - -## Data - -### Wiki Text - -The wikitext-2 data is from [(The wikitext long term dependency language modeling dataset)](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/). The training script automatically loads the dataset into `$PWD/data`. - - -## Usage - -Example runs and the results: - -``` -python train.py --cuda --tied --nhid 200 --emsize 200 --epochs 20 --dropout 0.2 # Test ppl of 107.49 -``` -``` -python train.py --cuda --tied --nhid 650 --emsize 650 --epochs 40 --dropout 0.5 # Test ppl of 91.51 -``` -``` -python train.py --cuda --tied --nhid 1500 --emsize 1500 --epochs 60 --dropout 0.65 # Test ppl of 88.42 -``` -``` -python train.py --export-model # hybridize and export model graph. See below for visualization options. -``` - -
- -`python train.py --help` gives the following arguments: -``` -usage: train.py [-h] [--model MODEL] [--emsize EMSIZE] [--nhid NHID] - [--nlayers NLAYERS] [--lr LR] [--clip CLIP] [--epochs EPOCHS] - [--batch_size N] [--bptt BPTT] [--dropout DROPOUT] [--tied] - [--cuda] [--log-interval N] [--save SAVE] [--gctype GCTYPE] - [--gcthreshold GCTHRESHOLD] [--hybridize] [--static-alloc] - [--static-shape] [--export-model] - -MXNet Autograd RNN/LSTM Language Model on Wikitext-2. - -optional arguments: - -h, --help show this help message and exit - --model MODEL type of recurrent net (rnn_tanh, rnn_relu, lstm, gru) - --emsize EMSIZE size of word embeddings - --nhid NHID number of hidden units per layer - --nlayers NLAYERS number of layers - --lr LR initial learning rate - --clip CLIP gradient clipping - --epochs EPOCHS upper epoch limit - --batch_size N batch size - --bptt BPTT sequence length - --dropout DROPOUT dropout applied to layers (0 = no dropout) - --tied tie the word embedding and softmax weights - --cuda Whether to use gpu - --log-interval N report interval - --save SAVE path to save the final model - --gctype GCTYPE type of gradient compression to use, takes `2bit` or - `none` for now. - --gcthreshold GCTHRESHOLD - threshold for 2bit gradient compression - --hybridize whether to hybridize in mxnet>=1.3 (default=False) - --static-alloc whether to use static-alloc hybridize in mxnet>=1.3 - (default=False) - --static-shape whether to use static-shape hybridize in mxnet>=1.3 - (default=False) - --export-model export a symbol graph and exit (default=False) -``` - -You may visualize the graph with `mxnet.viz.plot_network` without any additional dependencies. Alternatively, if [mxboard](https://github.com/awslabs/mxboard) is installed, use the following approach for interactive visualization. -```python -#!python -import mxnet, mxboard -with mxboard.SummaryWriter(logdir='./model-graph') as sw: - sw.add_graph(mxnet.sym.load('./model-symbol.json')) -``` -```bash -#!/bin/bash -tensorboard --logdir=./model-graph/ -``` -![model graph](./model-graph.png?raw=true "rnn model graph") diff --git a/example/gluon/word_language_model/model-graph.png b/example/gluon/word_language_model/model-graph.png deleted file mode 100644 index c621518c57be..000000000000 Binary files a/example/gluon/word_language_model/model-graph.png and /dev/null differ diff --git a/example/gluon/word_language_model/model.py b/example/gluon/word_language_model/model.py deleted file mode 100644 index ec6e700a854a..000000000000 --- a/example/gluon/word_language_model/model.py +++ /dev/null @@ -1,64 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import mxnet as mx -from mxnet import gluon -from mxnet.gluon import nn, rnn - -class RNNModel(gluon.HybridBlock): - """A model with an encoder, recurrent layer, and a decoder.""" - - def __init__(self, mode, vocab_size, num_embed, num_hidden, - num_layers, dropout=0.5, tie_weights=False, **kwargs): - super(RNNModel, self).__init__(**kwargs) - with self.name_scope(): - self.drop = nn.Dropout(dropout) - self.encoder = nn.Embedding(vocab_size, num_embed, - weight_initializer=mx.init.Uniform(0.1)) - if mode == 'rnn_relu': - self.rnn = rnn.RNN(num_hidden, num_layers, dropout=dropout, - input_size=num_embed) - elif mode == 'rnn_tanh': - self.rnn = rnn.RNN(num_hidden, num_layers, 'tanh', dropout=dropout, - input_size=num_embed) - elif mode == 'lstm': - self.rnn = rnn.LSTM(num_hidden, num_layers, dropout=dropout, - input_size=num_embed) - elif mode == 'gru': - self.rnn = rnn.GRU(num_hidden, num_layers, dropout=dropout, - input_size=num_embed) - else: - raise ValueError("Invalid mode %s. Options are rnn_relu, " - "rnn_tanh, lstm, and gru"%mode) - - if tie_weights: - self.decoder = nn.Dense(vocab_size, in_units=num_hidden, - params=self.encoder.params) - else: - self.decoder = nn.Dense(vocab_size, in_units=num_hidden) - - self.num_hidden = num_hidden - - def hybrid_forward(self, F, inputs, hidden): - emb = self.drop(self.encoder(inputs)) - output, hidden = self.rnn(emb, hidden) - output = self.drop(output) - decoded = self.decoder(output.reshape((-1, self.num_hidden))) - return decoded, hidden - - def begin_state(self, *args, **kwargs): - return self.rnn.begin_state(*args, **kwargs) diff --git a/example/gluon/word_language_model/train.py b/example/gluon/word_language_model/train.py deleted file mode 100644 index d08c07ec921d..000000000000 --- a/example/gluon/word_language_model/train.py +++ /dev/null @@ -1,225 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import argparse -import time -import math -import os -import mxnet as mx -from mxnet import gluon, autograd -from mxnet.gluon import contrib -import model - -parser = argparse.ArgumentParser(description='MXNet Autograd RNN/LSTM Language Model on Wikitext-2.') -parser.add_argument('--model', type=str, default='lstm', - help='type of recurrent net (rnn_tanh, rnn_relu, lstm, gru)') -parser.add_argument('--emsize', type=int, default=650, - help='size of word embeddings') -parser.add_argument('--nhid', type=int, default=650, - help='number of hidden units per layer') -parser.add_argument('--nlayers', type=int, default=2, - help='number of layers') -parser.add_argument('--lr', type=float, default=20, - help='initial learning rate') -parser.add_argument('--clip', type=float, default=0.25, - help='gradient clipping') -parser.add_argument('--epochs', type=int, default=40, - help='upper epoch limit') -parser.add_argument('--batch_size', type=int, default=20, metavar='N', - help='batch size') -parser.add_argument('--bptt', type=int, default=35, - help='sequence length') -parser.add_argument('--dropout', type=float, default=0.5, - help='dropout applied to layers (0 = no dropout)') -parser.add_argument('--tied', action='store_true', - help='tie the word embedding and softmax weights') -parser.add_argument('--cuda', action='store_true', - help='Whether to use gpu') -parser.add_argument('--log-interval', type=int, default=200, metavar='N', - help='report interval') -parser.add_argument('--save', type=str, default='model.params', - help='path to save the final model') -parser.add_argument('--gctype', type=str, default='none', - help='type of gradient compression to use, \ - takes `2bit` or `none` for now.') -parser.add_argument('--gcthreshold', type=float, default=0.5, - help='threshold for 2bit gradient compression') -parser.add_argument('--hybridize', action='store_true', - help='whether to hybridize in mxnet>=1.3 (default=False)') -parser.add_argument('--static-alloc', action='store_true', - help='whether to use static-alloc hybridize in mxnet>=1.3 (default=False)') -parser.add_argument('--static-shape', action='store_true', - help='whether to use static-shape hybridize in mxnet>=1.3 (default=False)') -parser.add_argument('--export-model', action='store_true', - help='export a symbol graph and exit (default=False)') -args = parser.parse_args() - -print(args) - -############################################################################### -# Load data -############################################################################### - - -if args.cuda: - context = mx.gpu(0) -else: - context = mx.cpu(0) - -if args.export_model: - args.hybridize = True - -# optional parameters only for mxnet >= 1.3 -hybridize_optional = dict(filter(lambda kv:kv[1], - {'static_alloc':args.static_alloc, 'static_shape':args.static_shape}.items())) -if args.hybridize: - print('hybridize_optional', hybridize_optional) - -dirname = './data' -dirname = os.path.expanduser(dirname) -if not os.path.exists(dirname): - os.makedirs(dirname) - -train_dataset = contrib.data.text.WikiText2(dirname, 'train', seq_len=args.bptt) -vocab = train_dataset.vocabulary -val_dataset, test_dataset = [contrib.data.text.WikiText2(dirname, segment, - vocab=vocab, - seq_len=args.bptt) - for segment in ['validation', 'test']] - -nbatch_train = len(train_dataset) // args.batch_size -train_data = gluon.data.DataLoader(train_dataset, - batch_size=args.batch_size, - sampler=contrib.data.IntervalSampler(len(train_dataset), - nbatch_train), - last_batch='discard') - -nbatch_val = len(val_dataset) // args.batch_size -val_data = gluon.data.DataLoader(val_dataset, - batch_size=args.batch_size, - sampler=contrib.data.IntervalSampler(len(val_dataset), - nbatch_val), - last_batch='discard') - -nbatch_test = len(test_dataset) // args.batch_size -test_data = gluon.data.DataLoader(test_dataset, - batch_size=args.batch_size, - sampler=contrib.data.IntervalSampler(len(test_dataset), - nbatch_test), - last_batch='discard') - - -############################################################################### -# Build the model -############################################################################### - - -ntokens = len(vocab) -model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, - args.nlayers, args.dropout, args.tied) -if args.hybridize: - model.hybridize(**hybridize_optional) -model.initialize(mx.init.Xavier(), ctx=context) - -compression_params = None if args.gctype == 'none' else {'type': args.gctype, 'threshold': args.gcthreshold} -trainer = gluon.Trainer(model.collect_params(), 'sgd', - {'learning_rate': args.lr, - 'momentum': 0, - 'wd': 0}, - compression_params=compression_params) -loss = gluon.loss.SoftmaxCrossEntropyLoss() -if args.hybridize: - loss.hybridize(**hybridize_optional) - -############################################################################### -# Training code -############################################################################### - -def detach(hidden): - if isinstance(hidden, (tuple, list)): - hidden = [i.detach() for i in hidden] - else: - hidden = hidden.detach() - return hidden - -def eval(data_source): - total_L = 0.0 - ntotal = 0 - hidden = model.begin_state(func=mx.nd.zeros, batch_size=args.batch_size, ctx=context) - for i, (data, target) in enumerate(data_source): - data = data.as_in_context(context).T - target = target.as_in_context(context).T.reshape((-1, 1)) - output, hidden = model(data, hidden) - L = loss(output, target) - total_L += mx.nd.sum(L).asscalar() - ntotal += L.size - return total_L / ntotal - -def train(): - best_val = float("Inf") - for epoch in range(args.epochs): - total_L = 0.0 - start_time = time.time() - hidden = model.begin_state(func=mx.nd.zeros, batch_size=args.batch_size, ctx=context) - for i, (data, target) in enumerate(train_data): - data = data.as_in_context(context).T - target = target.as_in_context(context).T.reshape((-1, 1)) - hidden = detach(hidden) - with autograd.record(): - output, hidden = model(data, hidden) - # Here L is a vector of size batch_size * bptt size - L = loss(output, target) - L = L / (args.bptt * args.batch_size) - L.backward() - - grads = [p.grad(context) for p in model.collect_params().values()] - gluon.utils.clip_global_norm(grads, args.clip) - - trainer.step(1) - total_L += mx.nd.sum(L).asscalar() - - if i % args.log_interval == 0 and i > 0: - cur_L = total_L / args.log_interval - print('[Epoch %d Batch %d] loss %.2f, ppl %.2f'%( - epoch, i, cur_L, math.exp(cur_L))) - total_L = 0.0 - - if args.export_model: - model.export('model') - return - - val_L = eval(val_data) - - print('[Epoch %d] time cost %.2fs, valid loss %.2f, valid ppl %.2f'%( - epoch, time.time()-start_time, val_L, math.exp(val_L))) - - if val_L < best_val: - best_val = val_L - test_L = eval(test_data) - model.save_parameters(args.save) - print('test loss %.2f, test ppl %.2f'%(test_L, math.exp(test_L))) - else: - args.lr = args.lr*0.25 - trainer.set_learning_rate(args.lr) - -if __name__ == '__main__': - train() - if not args.export_model: - model.load_parameters(args.save, context) - test_L = eval(test_data) - print('Best test loss %.2f, test ppl %.2f'%(test_L, math.exp(test_L))) - diff --git a/example/multi-task/multi-task-learning.ipynb b/example/multi-task/multi-task-learning.ipynb index e615559441f6..42d972425db2 100644 --- a/example/multi-task/multi-task-learning.ipynb +++ b/example/multi-task/multi-task-learning.ipynb @@ -2,14 +2,13 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, "source": [ "# Multi-Task Learning Example" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "This is a simple example to show how to use mxnet for multi-task learning.\n", "\n", @@ -25,13 +24,12 @@ "etc\n", "\n", "In this example we don't expect the tasks to contribute to each other much, but for example multi-task learning has been successfully applied to the domain of image captioning. In [A Multi-task Learning Approach for Image Captioning](https://www.ijcai.org/proceedings/2018/0168.pdf) by Wei Zhao, Benyou Wang, Jianbo Ye, Min Yang, Zhou Zhao, Ruotian Luo, Yu Qiao, they train a network to jointly classify images and generate text captions" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 16, - "metadata": {}, - "outputs": [], "source": [ "import logging\n", "import random\n", @@ -39,133 +37,133 @@ "\n", "import matplotlib.pyplot as plt\n", "import mxnet as mx\n", - "from mxnet import gluon, nd, autograd\n", - "import numpy as np" - ] + "from mxnet import gluon, np, npx, autograd\n", + "import numpy as onp" + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Parameters" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 99, - "metadata": {}, - "outputs": [], "source": [ "batch_size = 128\n", "epochs = 5\n", "ctx = mx.gpu() if mx.context.num_gpus() > 0 else mx.cpu()\n", "lr = 0.01" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Data\n", "\n", "We get the traditionnal MNIST dataset and add a new label to the existing one. For each digit we return a new label that stands for Odd or Even" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "![](https://upload.wikimedia.org/wikipedia/commons/2/27/MnistExamples.png)" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 3, - "metadata": {}, - "outputs": [], "source": [ "train_dataset = gluon.data.vision.MNIST(train=True)\n", "test_dataset = gluon.data.vision.MNIST(train=False)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, - "outputs": [], "source": [ "def transform(x,y):\n", " x = x.transpose((2,0,1)).astype('float32')/255.\n", " y1 = y\n", " y2 = y % 2 #odd or even\n", - " return x, np.float32(y1), np.float32(y2)" - ] + " return x, onp.float32(y1), onp.float32(y2)" + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We assign the transform to the original dataset" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 5, - "metadata": {}, - "outputs": [], "source": [ "train_dataset_t = train_dataset.transform(transform)\n", "test_dataset_t = test_dataset.transform(transform)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We load the datasets DataLoaders" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 6, - "metadata": {}, - "outputs": [], "source": [ "train_data = gluon.data.DataLoader(train_dataset_t, shuffle=True, last_batch='rollover', batch_size=batch_size, num_workers=5)\n", "test_data = gluon.data.DataLoader(test_dataset_t, shuffle=False, last_batch='rollover', batch_size=batch_size, num_workers=5)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "source": [ + "print(\"Input shape: {}, Target Labels: {}\".format(train_dataset[0][0].shape, train_dataset_t[0][1:]))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Input shape: (28, 28, 1), Target Labels: (5.0, 1.0)\n" ] } ], - "source": [ - "print(\"Input shape: {}, Target Labels: {}\".format(train_dataset[0][0].shape, train_dataset_t[0][1:]))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Multi-task Network\n", "\n", "The output of the featurization is passed to two different outputs layers" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 135, - "metadata": {}, - "outputs": [], "source": [ "class MultiTaskNetwork(gluon.HybridBlock):\n", " \n", @@ -173,165 +171,142 @@ " super(MultiTaskNetwork, self).__init__()\n", " \n", " self.shared = gluon.nn.HybridSequential()\n", - " with self.shared.name_scope():\n", - " self.shared.add(\n", - " gluon.nn.Dense(128, activation='relu'),\n", - " gluon.nn.Dense(64, activation='relu'),\n", - " gluon.nn.Dense(10, activation='relu')\n", - " )\n", + " self.shared.add(\n", + " gluon.nn.Dense(128, activation='relu'),\n", + " gluon.nn.Dense(64, activation='relu'),\n", + " gluon.nn.Dense(10, activation='relu')\n", + " )\n", " self.output1 = gluon.nn.Dense(10) # Digist recognition\n", " self.output2 = gluon.nn.Dense(1) # odd or even\n", "\n", " \n", - " def hybrid_forward(self, F, x):\n", + " def forward(self, x):\n", " y = self.shared(x)\n", " output1 = self.output1(y)\n", " output2 = self.output2(y)\n", " return output1, output2" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We can use two different losses, one for each output" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 136, - "metadata": {}, - "outputs": [], "source": [ "loss_digits = gluon.loss.SoftmaxCELoss()\n", "loss_odd_even = gluon.loss.SigmoidBCELoss()" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We create and initialize the network" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 137, - "metadata": {}, - "outputs": [], "source": [ - "mx.random.seed(42)\n", + "mx.np.random.seed(42)\n", "random.seed(42)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 138, - "metadata": {}, - "outputs": [], "source": [ "net = MultiTaskNetwork()" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 139, - "metadata": {}, - "outputs": [], "source": [ "net.initialize(mx.init.Xavier(), ctx=ctx)\n", "net.hybridize() # hybridize for speed" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 140, - "metadata": {}, - "outputs": [], "source": [ "trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate':lr})" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Evaluate Accuracy\n", "We need to evaluate the accuracy of each task separately" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 141, - "metadata": {}, - "outputs": [], "source": [ "def evaluate_accuracy(net, data_iterator):\n", " acc_digits = mx.gluon.metric.Accuracy(name='digits')\n", " acc_odd_even = mx.gluon.metric.Accuracy(name='odd_even')\n", " \n", " for i, (data, label_digit, label_odd_even) in enumerate(data_iterator):\n", - " data = data.as_in_context(ctx)\n", - " label_digit = label_digit.as_in_context(ctx)\n", - " label_odd_even = label_odd_even.as_in_context(ctx).reshape(-1,1)\n", + " data = data.as_in_ctx(ctx)\n", + " label_digit = label_digit.as_in_ctx(ctx)\n", + " label_odd_even = label_odd_even.as_in_ctx(ctx).reshape(-1,1)\n", "\n", " output_digit, output_odd_even = net(data)\n", " \n", - " acc_digits.update(label_digit, output_digit.softmax())\n", - " acc_odd_even.update(label_odd_even, output_odd_even.sigmoid() > 0.5)\n", + " acc_digits.update(label_digit, npx.softmax(output_digit))\n", + " acc_odd_even.update(label_odd_even, npx.sigmoid(output_odd_even) > 0.5)\n", " return acc_digits.get(), acc_odd_even.get()" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Training Loop" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We need to balance the contribution of each loss to the overall training and do so by tuning this alpha parameter within [0,1]." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 142, - "metadata": {}, - "outputs": [], "source": [ "alpha = 0.5 # Combine losses factor" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 143, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch [0], Acc Digits 0.8945 Loss Digits 0.3409\n", - "Epoch [0], Acc Odd/Even 0.9561 Loss Odd/Even 0.1152\n", - "Epoch [0], Testing Accuracies (('digits', 0.9487179487179487), ('odd_even', 0.9770633012820513))\n", - "Epoch [1], Acc Digits 0.9576 Loss Digits 0.1475\n", - "Epoch [1], Acc Odd/Even 0.9804 Loss Odd/Even 0.0559\n", - "Epoch [1], Testing Accuracies (('digits', 0.9642427884615384), ('odd_even', 0.9826722756410257))\n", - "Epoch [2], Acc Digits 0.9681 Loss Digits 0.1124\n", - "Epoch [2], Acc Odd/Even 0.9852 Loss Odd/Even 0.0418\n", - "Epoch [2], Testing Accuracies (('digits', 0.9580328525641025), ('odd_even', 0.9846754807692307))\n", - "Epoch [3], Acc Digits 0.9734 Loss Digits 0.0961\n", - "Epoch [3], Acc Odd/Even 0.9884 Loss Odd/Even 0.0340\n", - "Epoch [3], Testing Accuracies (('digits', 0.9670472756410257), ('odd_even', 0.9839743589743589))\n", - "Epoch [4], Acc Digits 0.9762 Loss Digits 0.0848\n", - "Epoch [4], Acc Odd/Even 0.9894 Loss Odd/Even 0.0310\n", - "Epoch [4], Testing Accuracies (('digits', 0.9652887658227848), ('odd_even', 0.9858583860759493))\n" - ] - } - ], "source": [ "for e in range(epochs):\n", " # Accuracies for each task\n", @@ -342,9 +317,9 @@ " l_odd_even_ = 0. \n", " \n", " for i, (data, label_digit, label_odd_even) in enumerate(train_data):\n", - " data = data.as_in_context(ctx)\n", - " label_digit = label_digit.as_in_context(ctx)\n", - " label_odd_even = label_odd_even.as_in_context(ctx).reshape(-1,1)\n", + " data = data.as_in_ctx(ctx)\n", + " label_digit = label_digit.as_in_ctx(ctx)\n", + " label_odd_even = label_odd_even.as_in_ctx(ctx).reshape(-1,1)\n", " \n", " with autograd.record():\n", " output_digit, output_odd_even = net(data)\n", @@ -359,75 +334,99 @@ " \n", " l_digits_ += l_digits.mean()\n", " l_odd_even_ += l_odd_even.mean()\n", - " acc_digits.update(label_digit, output_digit.softmax())\n", - " acc_odd_even.update(label_odd_even, output_odd_even.sigmoid() > 0.5)\n", + " acc_digits.update(label_digit, npx.softmax(output_digit))\n", + " acc_odd_even.update(label_odd_even, npx.sigmoid(output_odd_even) > 0.5)\n", " \n", " print(\"Epoch [{}], Acc Digits {:.4f} Loss Digits {:.4f}\".format(\n", - " e, acc_digits.get()[1], l_digits_.asscalar()/(i+1)))\n", + " e, acc_digits.get()[1], l_digits_.item()/(i+1)))\n", " print(\"Epoch [{}], Acc Odd/Even {:.4f} Loss Odd/Even {:.4f}\".format(\n", - " e, acc_odd_even.get()[1], l_odd_even_.asscalar()/(i+1)))\n", + " e, acc_odd_even.get()[1], l_odd_even_.item()/(i+1)))\n", " print(\"Epoch [{}], Testing Accuracies {}\".format(e, evaluate_accuracy(net, test_data)))\n", " " - ] + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch [0], Acc Digits 0.8945 Loss Digits 0.3409\n", + "Epoch [0], Acc Odd/Even 0.9561 Loss Odd/Even 0.1152\n", + "Epoch [0], Testing Accuracies (('digits', 0.9487179487179487), ('odd_even', 0.9770633012820513))\n", + "Epoch [1], Acc Digits 0.9576 Loss Digits 0.1475\n", + "Epoch [1], Acc Odd/Even 0.9804 Loss Odd/Even 0.0559\n", + "Epoch [1], Testing Accuracies (('digits', 0.9642427884615384), ('odd_even', 0.9826722756410257))\n", + "Epoch [2], Acc Digits 0.9681 Loss Digits 0.1124\n", + "Epoch [2], Acc Odd/Even 0.9852 Loss Odd/Even 0.0418\n", + "Epoch [2], Testing Accuracies (('digits', 0.9580328525641025), ('odd_even', 0.9846754807692307))\n", + "Epoch [3], Acc Digits 0.9734 Loss Digits 0.0961\n", + "Epoch [3], Acc Odd/Even 0.9884 Loss Odd/Even 0.0340\n", + "Epoch [3], Testing Accuracies (('digits', 0.9670472756410257), ('odd_even', 0.9839743589743589))\n", + "Epoch [4], Acc Digits 0.9762 Loss Digits 0.0848\n", + "Epoch [4], Acc Odd/Even 0.9894 Loss Odd/Even 0.0310\n", + "Epoch [4], Testing Accuracies (('digits', 0.9652887658227848), ('odd_even', 0.9858583860759493))\n" + ] + } + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Testing" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 144, - "metadata": {}, - "outputs": [], "source": [ "def get_random_data():\n", " idx = random.randint(0, len(test_dataset))\n", "\n", " img = test_dataset[idx][0]\n", " data, _, _ = test_dataset_t[idx]\n", - " data = data.as_in_context(ctx).expand_dims(axis=0)\n", + " data = np.expand_dims(data.as_in_ctx(ctx), axis=0)\n", "\n", " plt.imshow(img.squeeze().asnumpy(), cmap='gray')\n", " \n", " return data" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 152, - "metadata": {}, + "source": [ + "data = get_random_data()\n", + "\n", + "digit, odd_even = net(data)\n", + "\n", + "digit = digit.argmax(axis=1)[0].asnumpy()\n", + "odd_even = (npx.sigmoid(odd_even)[0] > 0.5).asnumpy()\n", + "\n", + "print(\"Predicted digit: {}, odd: {}\".format(digit, odd_even))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Predicted digit: [9.], odd: [1.]\n" ] }, { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADeVJREFUeJzt3X+MFPX9x/HXG6QGAQ3aiBdLpd9Ga6pBak5joqk01caaRuAfUhMbjE2viTUpEVFCNT31Dxu1rdWYJldLCk2/QhUb+KPWWuKP1jQNIKiotFJC00OEkjNBEiNyvPvHzdlTbz6zzs7uzPF+PpLL7e57Z+ad5V7M7H5m9mPuLgDxTKq7AQD1IPxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4I6oZsbMzNOJwQ6zN2tlee1tec3s6vM7O9mtsvMVrSzLgDdZWXP7TezyZL+IelKSYOSNku61t1fSyzDnh/osG7s+S+WtMvdd7v7EUlrJS1oY30Auqid8J8p6d9j7g9mj32ImfWZ2RYz29LGtgBUrOMf+Ln7gKQBicN+oEna2fPvlTR7zP3PZI8BmADaCf9mSWeb2efM7FOSvilpYzVtAei00of97n7UzG6S9JSkyZJWufurlXUGoKNKD/WV2hjv+YGO68pJPgAmLsIPBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCKj1FtySZ2R5J70galnTU3XuraApA57UV/sxX3P1gBesB0EUc9gNBtRt+l/RHM9tqZn1VNASgO9o97L/M3fea2emSnjazne7+/NgnZP8p8B8D0DDm7tWsyKxf0mF3vz/xnGo2BiCXu1srzyt92G9m08xsxuhtSV+TtKPs+gB0VzuH/bMk/c7MRtfz/+7+h0q6AtBxlR32t7QxDvuBjuv4YT+AiY3wA0ERfiAowg8ERfiBoAg/EFQVV/WhwaZPn56sL1++vK3lb7755mT97bffzq3deeedyWUffvjhZP3o0aPJOtLY8wNBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUFzSOwFMnTo1WV+xYkVurWgcftq0acl69n0NuTr591M0zr9s2bJk/ciRI1W2M2FwSS+AJMIPBEX4gaAIPxAU4QeCIvxAUIQfCIpx/i4oGqe//PLLk/Vbb701WZ8/f/4nballQ0NDbdWnTJmSWzvrrLNK9TTqySefTNafe+653NoDDzyQXHYinyPAOD+AJMIPBEX4gaAIPxAU4QeCIvxAUIQfCKpwnN/MVkn6hqQD7n5+9tipktZJmiNpj6TF7p7/Be3/W9dxOc5/0kknJesPPvhgsn7DDTdU2c6H7NixI1m/5557kvVt27Yl6zt37kzWZ8yYkVt76qmnkstecsklyXo7zjnnnGR9165dHdt2p1U5zv8rSVd95LEVkja5+9mSNmX3AUwgheF39+clffQ0rgWSVme3V0taWHFfADqs7Hv+We6+L7v9lqRZFfUDoEvanqvP3T31Xt7M+iT1tbsdANUqu+ffb2Y9kpT9PpD3RHcfcPded+8tuS0AHVA2/BslLcluL5G0oZp2AHRLYfjN7FFJf5X0BTMbNLNvS/qRpCvN7A1JV2T3AUwghe/53f3anNJXK+5lwrriiiuS9XbH8Q8ePJisr1u3Lrd2yy23JJd97733SvXUqp6entq2jTTO8AOCIvxAUIQfCIrwA0ERfiAowg8E1fbpvVGkprJevnx5R7f9yCOPJOsrV67s2LZPOCH9J7Jo0aJk/aGHHsqtnX766aV6atUzzzyTW9u7d29Htz0RsOcHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAY52/RHXfckVu79NJL21p30Tj+3Xff3db6U84999xkfenSpcl6X19zv6Ht3nvvza29++67XeykmdjzA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQjPO3qJPXnq9ZsyZZLxqTTk03XTROv3jx4mT9tNNOS9aLpnjvpNR3BUjSs88+251GJij2/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QVOE4v5mtkvQNSQfc/fzssX5J35H0n+xpK939951qsgk2b96cW7v++uvbWveGDRuS9SNHjiTrU6dOza2dfPLJpXoa9f777yfr1113XbKemlNg7ty5pXoa9dhjjyXrTAGe1sqe/1eSrhrn8Z+6+7zs57gOPnA8Kgy/uz8vaagLvQDoonbe899kZi+b2Sozm1lZRwC6omz4fy7p85LmSdon6cd5TzSzPjPbYmZbSm4LQAeUCr+773f3YXc/JukXki5OPHfA3XvdvbdskwCqVyr8ZtYz5u4iSTuqaQdAt7Qy1PeopPmSPm1mg5J+KGm+mc2T5JL2SPpuB3sE0AHWzeuxzay+i7/bNGlS/kHS448/nlx24cKFVbdTmRdeeCFZv+uuu5L1ovMIisbiU4p6mz9/frI+PDxcetsTmbtbK8/jDD8gKMIPBEX4gaAIPxAU4QeCIvxAUHx1d4uOHTuWW7vxxhuTy+7fvz9ZL7osdufOncn6E088kVsr+nrrw4cPJ+snnnhisl40HGeWP+qUek0ladOmTcl61KG8qrDnB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGguKQXSWeccUay/uabb5Ze9/bt25P1Cy+8sPS6I+OSXgBJhB8IivADQRF+ICjCDwRF+IGgCD8QFNfzI6m/v7+t5VNTfK9du7atdaM97PmBoAg/EBThB4Ii/EBQhB8IivADQRF+IKjC6/nNbLakNZJmSXJJA+7+MzM7VdI6SXMk7ZG02N3fLlgX1/M3zKJFi5L11JwAklT093Pffffl1m677bbksiinyuv5j0pa5u5flHSJpO+Z2RclrZC0yd3PlrQpuw9ggigMv7vvc/cXs9vvSHpd0pmSFkhanT1ttaSFnWoSQPU+0Xt+M5sj6UuS/iZplrvvy0pvaeRtAYAJouVz+81suqT1kpa6+6Gxc7C5u+e9nzezPkl97TYKoFot7fnNbIpGgv8bdx/9BGi/mfVk9R5JB8Zb1t0H3L3X3XuraBhANQrDbyO7+F9Ket3dfzKmtFHSkuz2Ekkbqm8PQKe0MtR3maQ/S3pF0uicyis18r7/t5I+K+lfGhnqGypYF0N9DfPSSy8l63Pnzk3Wh4aS/+S64IILcmuDg4PJZVFOq0N9he/53f0vkvJW9tVP0hSA5uAMPyAowg8ERfiBoAg/EBThB4Ii/EBQfHX3ca7ostnzzjsvWR8eHk7Wb7/99mSdsfzmYs8PBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0EVXs9f6ca4nr8j5syZk1vbtm1bctlTTjklWd+6dWuyftFFFyXr6L4qv7obwHGI8ANBEX4gKMIPBEX4gaAIPxAU4QeC4nr+48DSpUtza0Xj+EX6+/vbWh7NxZ4fCIrwA0ERfiAowg8ERfiBoAg/EBThB4IqvJ7fzGZLWiNpliSXNODuPzOzfknfkfSf7Kkr3f33Beviev4SrrnmmmR9/fr1ubXJkye3te1Jk9g/TDStXs/fykk+RyUtc/cXzWyGpK1m9nRW+6m731+2SQD1KQy/u++TtC+7/Y6ZvS7pzE43BqCzPtExnZnNkfQlSX/LHrrJzF42s1VmNjNnmT4z22JmW9rqFEClWg6/mU2XtF7SUnc/JOnnkj4vaZ5Gjgx+PN5y7j7g7r3u3ltBvwAq0lL4zWyKRoL/G3d/QpLcfb+7D7v7MUm/kHRx59oEULXC8JuZSfqlpNfd/SdjHu8Z87RFknZU3x6ATmnl0/5LJX1L0itmtj17bKWka81snkaG//ZI+m5HOoR2796drB86dCi3NnPmuB/FfOD++xmsiaqVT/v/Imm8ccPkmD6AZuMMDiAowg8ERfiBoAg/EBThB4Ii/EBQTNENHGeYohtAEuEHgiL8QFCEHwiK8ANBEX4gKMIPBNXtKboPSvrXmPufzh5roqb21tS+JHorq8rezmr1iV09yedjGzfb0tTv9mtqb03tS6K3surqjcN+ICjCDwRVd/gHat5+SlN7a2pfEr2VVUtvtb7nB1Cfuvf8AGpSS/jN7Coz+7uZ7TKzFXX0kMfM9pjZK2a2ve4pxrJp0A6Y2Y4xj51qZk+b2RvZ7/R3c3e3t34z25u9dtvN7OqaepttZs+Y2Wtm9qqZfT97vNbXLtFXLa9b1w/7zWyypH9IulLSoKTNkq5199e62kgOM9sjqdfdax8TNrMvSzosaY27n589dq+kIXf/UfYf50x3v60hvfVLOlz3zM3ZhDI9Y2eWlrRQ0vWq8bVL9LVYNbxudez5L5a0y913u/sRSWslLaihj8Zz9+clDX3k4QWSVme3V2vkj6frcnprBHff5+4vZrffkTQ6s3Str12ir1rUEf4zJf17zP1BNWvKb5f0RzPbamZ9dTczjlnZtOmS9JakWXU2M47CmZu76SMzSzfmtSsz43XV+MDv4y5z9wslfV3S97LD20bykfdsTRquaWnm5m4ZZ2bpD9T52pWd8bpqdYR/r6TZY+5/JnusEdx9b/b7gKTfqXmzD+8fnSQ1+32g5n4+0KSZm8ebWVoNeO2aNON1HeHfLOlsM/ucmX1K0jclbayhj48xs2nZBzEys2mSvqbmzT68UdKS7PYSSRtq7OVDmjJzc97M0qr5tWvcjNfu3vUfSVdr5BP/f0r6QR095PT1f5Jeyn5erbs3SY9q5DDwfY18NvJtSadJ2iTpDUl/knRqg3r7taRXJL2skaD11NTbZRo5pH9Z0vbs5+q6X7tEX7W8bpzhBwTFB35AUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4L6L4bahh5ke9v1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADeVJREFUeJzt3X+MFPX9x/HXG6QGAQ3aiBdLpd9Ga6pBak5joqk01caaRuAfUhMbjE2viTUpEVFCNT31Dxu1rdWYJldLCk2/QhUb+KPWWuKP1jQNIKiotFJC00OEkjNBEiNyvPvHzdlTbz6zzs7uzPF+PpLL7e57Z+ad5V7M7H5m9mPuLgDxTKq7AQD1IPxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4I6oZsbMzNOJwQ6zN2tlee1tec3s6vM7O9mtsvMVrSzLgDdZWXP7TezyZL+IelKSYOSNku61t1fSyzDnh/osG7s+S+WtMvdd7v7EUlrJS1oY30Auqid8J8p6d9j7g9mj32ImfWZ2RYz29LGtgBUrOMf+Ln7gKQBicN+oEna2fPvlTR7zP3PZI8BmADaCf9mSWeb2efM7FOSvilpYzVtAei00of97n7UzG6S9JSkyZJWufurlXUGoKNKD/WV2hjv+YGO68pJPgAmLsIPBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCKj1FtySZ2R5J70galnTU3XuraApA57UV/sxX3P1gBesB0EUc9gNBtRt+l/RHM9tqZn1VNASgO9o97L/M3fea2emSnjazne7+/NgnZP8p8B8D0DDm7tWsyKxf0mF3vz/xnGo2BiCXu1srzyt92G9m08xsxuhtSV+TtKPs+gB0VzuH/bMk/c7MRtfz/+7+h0q6AtBxlR32t7QxDvuBjuv4YT+AiY3wA0ERfiAowg8ERfiBoAg/EFQVV/WhwaZPn56sL1++vK3lb7755mT97bffzq3deeedyWUffvjhZP3o0aPJOtLY8wNBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUFzSOwFMnTo1WV+xYkVurWgcftq0acl69n0NuTr591M0zr9s2bJk/ciRI1W2M2FwSS+AJMIPBEX4gaAIPxAU4QeCIvxAUIQfCIpx/i4oGqe//PLLk/Vbb701WZ8/f/4nballQ0NDbdWnTJmSWzvrrLNK9TTqySefTNafe+653NoDDzyQXHYinyPAOD+AJMIPBEX4gaAIPxAU4QeCIvxAUIQfCKpwnN/MVkn6hqQD7n5+9tipktZJmiNpj6TF7p7/Be3/W9dxOc5/0kknJesPPvhgsn7DDTdU2c6H7NixI1m/5557kvVt27Yl6zt37kzWZ8yYkVt76qmnkstecsklyXo7zjnnnGR9165dHdt2p1U5zv8rSVd95LEVkja5+9mSNmX3AUwgheF39+clffQ0rgWSVme3V0taWHFfADqs7Hv+We6+L7v9lqRZFfUDoEvanqvP3T31Xt7M+iT1tbsdANUqu+ffb2Y9kpT9PpD3RHcfcPded+8tuS0AHVA2/BslLcluL5G0oZp2AHRLYfjN7FFJf5X0BTMbNLNvS/qRpCvN7A1JV2T3AUwghe/53f3anNJXK+5lwrriiiuS9XbH8Q8ePJisr1u3Lrd2yy23JJd97733SvXUqp6entq2jTTO8AOCIvxAUIQfCIrwA0ERfiAowg8E1fbpvVGkprJevnx5R7f9yCOPJOsrV67s2LZPOCH9J7Jo0aJk/aGHHsqtnX766aV6atUzzzyTW9u7d29Htz0RsOcHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAY52/RHXfckVu79NJL21p30Tj+3Xff3db6U84999xkfenSpcl6X19zv6Ht3nvvza29++67XeykmdjzA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQjPO3qJPXnq9ZsyZZLxqTTk03XTROv3jx4mT9tNNOS9aLpnjvpNR3BUjSs88+251GJij2/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QVOE4v5mtkvQNSQfc/fzssX5J35H0n+xpK939951qsgk2b96cW7v++uvbWveGDRuS9SNHjiTrU6dOza2dfPLJpXoa9f777yfr1113XbKemlNg7ty5pXoa9dhjjyXrTAGe1sqe/1eSrhrn8Z+6+7zs57gOPnA8Kgy/uz8vaagLvQDoonbe899kZi+b2Sozm1lZRwC6omz4fy7p85LmSdon6cd5TzSzPjPbYmZbSm4LQAeUCr+773f3YXc/JukXki5OPHfA3XvdvbdskwCqVyr8ZtYz5u4iSTuqaQdAt7Qy1PeopPmSPm1mg5J+KGm+mc2T5JL2SPpuB3sE0AHWzeuxzay+i7/bNGlS/kHS448/nlx24cKFVbdTmRdeeCFZv+uuu5L1ovMIisbiU4p6mz9/frI+PDxcetsTmbtbK8/jDD8gKMIPBEX4gaAIPxAU4QeCIvxAUHx1d4uOHTuWW7vxxhuTy+7fvz9ZL7osdufOncn6E088kVsr+nrrw4cPJ+snnnhisl40HGeWP+qUek0ladOmTcl61KG8qrDnB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGguKQXSWeccUay/uabb5Ze9/bt25P1Cy+8sPS6I+OSXgBJhB8IivADQRF+ICjCDwRF+IGgCD8QFNfzI6m/v7+t5VNTfK9du7atdaM97PmBoAg/EBThB4Ii/EBQhB8IivADQRF+IKjC6/nNbLakNZJmSXJJA+7+MzM7VdI6SXMk7ZG02N3fLlgX1/M3zKJFi5L11JwAklT093Pffffl1m677bbksiinyuv5j0pa5u5flHSJpO+Z2RclrZC0yd3PlrQpuw9ggigMv7vvc/cXs9vvSHpd0pmSFkhanT1ttaSFnWoSQPU+0Xt+M5sj6UuS/iZplrvvy0pvaeRtAYAJouVz+81suqT1kpa6+6Gxc7C5u+e9nzezPkl97TYKoFot7fnNbIpGgv8bdx/9BGi/mfVk9R5JB8Zb1t0H3L3X3XuraBhANQrDbyO7+F9Ket3dfzKmtFHSkuz2Ekkbqm8PQKe0MtR3maQ/S3pF0uicyis18r7/t5I+K+lfGhnqGypYF0N9DfPSSy8l63Pnzk3Wh4aS/+S64IILcmuDg4PJZVFOq0N9he/53f0vkvJW9tVP0hSA5uAMPyAowg8ERfiBoAg/EBThB4Ii/EBQfHX3ca7ostnzzjsvWR8eHk7Wb7/99mSdsfzmYs8PBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0EVXs9f6ca4nr8j5syZk1vbtm1bctlTTjklWd+6dWuyftFFFyXr6L4qv7obwHGI8ANBEX4gKMIPBEX4gaAIPxAU4QeC4nr+48DSpUtza0Xj+EX6+/vbWh7NxZ4fCIrwA0ERfiAowg8ERfiBoAg/EBThB4IqvJ7fzGZLWiNpliSXNODuPzOzfknfkfSf7Kkr3f33Beviev4SrrnmmmR9/fr1ubXJkye3te1Jk9g/TDStXs/fykk+RyUtc/cXzWyGpK1m9nRW+6m731+2SQD1KQy/u++TtC+7/Y6ZvS7pzE43BqCzPtExnZnNkfQlSX/LHrrJzF42s1VmNjNnmT4z22JmW9rqFEClWg6/mU2XtF7SUnc/JOnnkj4vaZ5Gjgx+PN5y7j7g7r3u3ltBvwAq0lL4zWyKRoL/G3d/QpLcfb+7D7v7MUm/kHRx59oEULXC8JuZSfqlpNfd/SdjHu8Z87RFknZU3x6ATmnl0/5LJX1L0itmtj17bKWka81snkaG//ZI+m5HOoR2796drB86dCi3NnPmuB/FfOD++xmsiaqVT/v/Imm8ccPkmD6AZuMMDiAowg8ERfiBoAg/EBThB4Ii/EBQTNENHGeYohtAEuEHgiL8QFCEHwiK8ANBEX4gKMIPBNXtKboPSvrXmPufzh5roqb21tS+JHorq8rezmr1iV09yedjGzfb0tTv9mtqb03tS6K3surqjcN+ICjCDwRVd/gHat5+SlN7a2pfEr2VVUtvtb7nB1Cfuvf8AGpSS/jN7Coz+7uZ7TKzFXX0kMfM9pjZK2a2ve4pxrJp0A6Y2Y4xj51qZk+b2RvZ7/R3c3e3t34z25u9dtvN7OqaepttZs+Y2Wtm9qqZfT97vNbXLtFXLa9b1w/7zWyypH9IulLSoKTNkq5199e62kgOM9sjqdfdax8TNrMvSzosaY27n589dq+kIXf/UfYf50x3v60hvfVLOlz3zM3ZhDI9Y2eWlrRQ0vWq8bVL9LVYNbxudez5L5a0y913u/sRSWslLaihj8Zz9+clDX3k4QWSVme3V2vkj6frcnprBHff5+4vZrffkTQ6s3Str12ir1rUEf4zJf17zP1BNWvKb5f0RzPbamZ9dTczjlnZtOmS9JakWXU2M47CmZu76SMzSzfmtSsz43XV+MDv4y5z9wslfV3S97LD20bykfdsTRquaWnm5m4ZZ2bpD9T52pWd8bpqdYR/r6TZY+5/JnusEdx9b/b7gKTfqXmzD+8fnSQ1+32g5n4+0KSZm8ebWVoNeO2aNON1HeHfLOlsM/ucmX1K0jclbayhj48xs2nZBzEys2mSvqbmzT68UdKS7PYSSRtq7OVDmjJzc97M0qr5tWvcjNfu3vUfSVdr5BP/f0r6QR095PT1f5Jeyn5erbs3SY9q5DDwfY18NvJtSadJ2iTpDUl/knRqg3r7taRXJL2skaD11NTbZRo5pH9Z0vbs5+q6X7tEX7W8bpzhBwTFB35AUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4L6L4bahh5ke9v1AAAAAElFTkSuQmCC" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], - "source": [ - "data = get_random_data()\n", - "\n", - "digit, odd_even = net(data)\n", - "\n", - "digit = digit.argmax(axis=1)[0].asnumpy()\n", - "odd_even = (odd_even.sigmoid()[0] > 0.5).asnumpy()\n", - "\n", - "print(\"Predicted digit: {}, odd: {}\".format(digit, odd_even))" - ] + "metadata": {} } ], "metadata": { @@ -451,4 +450,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file diff --git a/example/multi_threaded_inference/Makefile b/example/multi_threaded_inference/Makefile deleted file mode 100644 index 10c0299cef26..000000000000 --- a/example/multi_threaded_inference/Makefile +++ /dev/null @@ -1,65 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - - -CFLAGS=-std=c++17 -g -Wno-unknown-pragmas -Wall -DMXNET_USE_CUDA=1 -DMXNET_USE_CUDNN=1 -DMXNET_USE_ONEDNN=1 - -export MXNET_ROOT = `pwd`/../.. - -CFLAGS += `pkg-config --cflags opencv` -LDFLAGS += `pkg-config --libs opencv` - -ifndef USE_CUDA_PATH - export USE_CUDA_PATH = /usr/local/cuda -endif - -ifndef ONEDNN_BUILD_DIR - export ONEDNN_BUILD_DIR = $(MXNET_ROOT)/3rdparty/onednn/build - # Cmake build path by default - # Uncomment below line for CMake build - #export ONEDNN_BUILD_DIR = $(MXNET_ROOT)/build/3rdparty/onednn -endif - -ifndef ONEDNN_INCLUDE_DIR - export ONEDNN_INCLUDE_DIR = $(MXNET_ROOT)/3rdparty/onednn/include - # Cmake build path by default - # Uncomment below line for CMake build - #export ONEDNN_INCLUDE_DIR = $(MXNET_ROOT)/3rdparty/onednn/include -endif - -CFLAGS += -I$(MXNET_ROOT)/include -I$(USE_CUDA_PATH)/include -I$(ONEDNN_INCLUDE_DIR) -I$(ONEDNN_BUILD_DIR)/include - -# If MXNET_LIB_DIR env variable set use that, otherwise defaults to MXNET_ROOT/build -ifndef MXNET_LIB_DIR - MXNET_LIB_DIR=$(MXNET_ROOT)/lib - # Uncomment below line for CMake build - #MXNET_LIB_DIR=$(MXNET_ROOT)/build -endif -LDFLAGS += $(MXNET_LIB_DIR)/libmxnet.so -lpthread -L$(ONEDNN_BUILD_DIR)/src -lmkldnn -Wl,-rpath,'$${ORIGIN}' - -multi_threaded_inference: multi_threaded_inference.o - g++ -O3 -o multi_threaded_inference multi_threaded_inference.o $(LDFLAGS) - -multi_threaded_inference.o: multi_threaded_inference.cc - g++ -O3 -c multi_threaded_inference.cc $(CFLAGS) - -clean: - rm multi_threaded_inference - rm -rf *.d *.o - -lint: - python ../../../3rdparty/dmlc-core/scripts/lint.py mxnet "cpp" ./ diff --git a/example/multi_threaded_inference/README.md b/example/multi_threaded_inference/README.md deleted file mode 100644 index 627cdb229368..000000000000 --- a/example/multi_threaded_inference/README.md +++ /dev/null @@ -1,19 +0,0 @@ - - - - - - - - - - - - - - - - - - -Please refer to : https://github.com/apache/incubator-mxnet/blob/master/docs/static_site/src/pages/api/cpp/docs/tutorials/multi_threaded_inference.md for detailed tutorial. diff --git a/example/multi_threaded_inference/multi_threaded_inference.cc b/example/multi_threaded_inference/multi_threaded_inference.cc deleted file mode 100644 index 82ed99242f94..000000000000 --- a/example/multi_threaded_inference/multi_threaded_inference.cc +++ /dev/null @@ -1,356 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * Copyright (c) 2017 by Contributors - * \file multi_threaded_inference.cc - * \brief Multi Threaded inference example with CachedOp -*/ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "mxnet-cpp/MxNetCpp.h" -#include - -const float DEFAULT_MEAN = 117.0; - - -// Code to load image, PrintOutput results, helper functions for the same obtained from: -// https://github.com/apache/incubator-mxnet/blob/master/example/image-classification/predict-cpp/ - -static std::string trim(const std::string &input) { - auto not_space = [](int ch) { return !std::isspace(ch); }; - auto output = input; - output.erase(output.begin(), - std::find_if(output.begin(), output.end(), not_space)); - output.erase(std::find_if(output.rbegin(), output.rend(), not_space).base(), - output.end()); - return output; -} - -std::vector LoadSynset(const std::string& synset_file) { - std::ifstream fi(synset_file.c_str()); - - if (!fi.is_open()) { - std::cerr << "Error opening synset file " << synset_file << std::endl; - assert(false); - } - - std::vector output; - - std::string synset, lemma; - while (fi >> synset) { - getline(fi, lemma); - output.push_back(lemma); - } - - fi.close(); - - return output; -} - -void PrintOutputResult(const float* data, size_t size, const std::vector& synset) { - if (size != synset.size()) { - std::cerr << "Result data and synset size do not match!" << std::endl; - } - - float best_accuracy = 0.0; - std::size_t best_idx = 0; - - for (std::size_t i = 0; i < size; ++i) { - if (data[i] > best_accuracy) { - best_accuracy = data[i]; - best_idx = i; - } - } - - std::cout << "Best Result: " << trim(synset[best_idx]) << " (id=" << best_idx << ", " << - "accuracy=" << std::setprecision(8) << best_accuracy << ")" << std::endl; -} - - -// Read Image data into a float array -void GetImageFile(const std::string &image_file, float *image_data, - int channels, cv::Size resize_size) { - // Read all kinds of file into a BGR color 3 channels image - cv::Mat im_ori = cv::imread(image_file, cv::IMREAD_COLOR); - - if (im_ori.empty()) { - std::cerr << "Can't open the image. Plase check " << image_file << ". \n"; - assert(false); - } - - cv::Mat im; - resize(im_ori, im, resize_size); - - int size = im.rows * im.cols * channels; - - float* ptr_image_r = image_data; - float* ptr_image_g = image_data + size / 3; - float* ptr_image_b = image_data + size / 3 * 2; - - float mean_b, mean_g, mean_r; - mean_b = mean_g = mean_r = DEFAULT_MEAN; - - for (int i = 0; i < im.rows; ++i) { - auto data = im.ptr(i); - for (int j = 0; j < im.cols; j++) { - if (channels > 1) { - *ptr_image_b++ = static_cast(*data++) - mean_b; - *ptr_image_g++ = static_cast(*data++) - mean_g; - } - } - *ptr_image_r++ = static_cast(*data++) - mean_r; - } -} - -void prepare_input_data(const mxnet::cpp::Shape& shape, const mxnet::cpp::Context& ctx, - int num_threads, - std::vector* data_arr, - bool random_uniform = false) { - for (size_t i = 0; i < num_threads; ++i) { - data_arr->emplace_back(shape, ctx, false, 0); - int begin = i * 100; - int end = begin + 100; - if (random_uniform) { - mxnet::cpp::Operator("_random_uniform")(begin, end) - .Invoke((*data_arr)[i]); - } - mxnet::cpp::NDArray::WaitAll(); - } -} - -// Run inference on a model -void run_inference(const std::string& model_name, const std::vector& input_arrs, - std::vector *output_mx_arr, - int num_inf_per_thread = 1, bool random_sleep = false, - int num_threads = 1, bool static_alloc = false, - bool static_shape = false, - bool is_gpu = false) { - LOG(INFO) << "Running inference for " + model_name + - " num_threads: " + std::to_string(num_threads) + - " num_inf_per_thread: " + std::to_string(num_inf_per_thread) + - " random_sleep: " + std::to_string(random_sleep) + - " static_alloc: " + std::to_string(static_alloc) + - " static_shape: " + std::to_string(static_shape); - std::string json_file = model_name + "-symbol.json"; - std::string param_file = model_name + "-0000.params"; - auto out = mxnet::cpp::Symbol::Load(json_file); - std::string static_alloc_str = static_alloc ? "true" : "false"; - std::string static_shape_str = static_shape ? "true" : "false"; - - // Prepare context -# if MXNET_USE_CUDA == 1 - mxnet::Context backend_ctx; - mxnet::cpp::Context ctx = mxnet::cpp::Context::cpu(0); - if (is_gpu) { - backend_ctx = mxnet::Context::GPU(0); - ctx = mxnet::cpp::Context::gpu(0); - } else { - backend_ctx = mxnet::Context::CPU(0); - ctx = mxnet::cpp::Context::cpu(0); - } -# else - mxnet::Context backend_ctx = mxnet::Context::CPU(0); - mxnet::cpp::Context ctx = mxnet::cpp::Context::cpu(0); -#endif - - // Prepare input data and parameters - std::vector data_arr(num_threads); - std::vector softmax_arr; - std::vector params; - mxnet::cpp::Shape data_shape = mxnet::cpp::Shape(1, 3, 224, 224); - mxnet::cpp::Shape softmax_shape = mxnet::cpp::Shape(1); - int num_inputs = out.ListInputs().size(); - - for (size_t i = 0; i < data_arr.size(); ++i) { - data_arr[i] = input_arrs[i].Copy(ctx); - } - prepare_input_data(softmax_shape, ctx, num_threads, &softmax_arr); - std::map parameters; - mxnet::cpp::NDArray::Load(param_file, 0, ¶meters); - - for (const std::string& name : out.ListInputs()) { - if (name == "arg:data") { - continue; - } - if (parameters.find("arg:" + name) != parameters.end()) { - params.push_back(parameters["arg:" + name].Copy(ctx)); - } else if (parameters.find("aux:" + name) != parameters.end()) { - params.push_back(parameters["aux:" + name].Copy(ctx)); - } - } - - CachedOpHandle hdl = CachedOpHandle(); - - std::vector flag_keys{"data_indices", "param_indices", - "static_alloc", "static_shape"}; - std::string param_indices = "["; - for (size_t i = 1; i < num_inputs; ++i) { - param_indices += std::to_string(i); - param_indices += std::string(", "); - } - param_indices += "]"; - std::vector flag_vals{"[0]", param_indices, static_alloc_str, - static_shape_str}; - std::vector flag_key_cstrs, flag_val_cstrs; - flag_key_cstrs.reserve(flag_keys.size()); - for (size_t i = 0; i < flag_keys.size(); ++i) { - flag_key_cstrs.emplace_back(flag_keys[i].c_str()); - } - for (size_t i = 0; i < flag_vals.size(); ++i) { - flag_val_cstrs.emplace_back(flag_vals[i].c_str()); - } - - int ret1 = MXCreateCachedOp(out.GetHandle(), flag_keys.size(), - flag_key_cstrs.data(), flag_val_cstrs.data(), - &hdl, true); - if (ret1 < 0) { - LOG(FATAL) << MXGetLastError(); - } - - // Prepare data structures and lambda to run in different threads - std::vector cached_op_handles(num_threads); - - std::vector> arr_handles(num_threads); - for (size_t i = 0; i < num_threads; ++i) { - arr_handles[i].reserve(num_inputs); - arr_handles[i].emplace_back(data_arr[i].GetHandle()); - for (size_t j = 1; j < num_inputs - 1; ++j) { - arr_handles[i].emplace_back(params[j - 1].GetHandle()); - } - arr_handles[i].emplace_back(softmax_arr[i].GetHandle()); - } - - auto func = [&](int num) { - unsigned next = num; - if (random_sleep) { - static thread_local std::mt19937 generator; - std::uniform_int_distribution distribution(0, 5); - int sleep_time = distribution(generator); - std::this_thread::sleep_for(std::chrono::seconds(sleep_time)); - } - int num_output = 0; - const int *stypes; - int ret = MXInvokeCachedOp(hdl, arr_handles[num].size(), arr_handles[num].data(), - cpu::kDevMask, 0, &num_output, &(cached_op_handles[num]), &stypes); - if (ret < 0) { - LOG(FATAL) << MXGetLastError(); - } - (*output_mx_arr)[num] = static_cast(*cached_op_handles[num]); - }; - - // Spawn multiple threads, join and wait for threads to complete - std::vector worker_threads(num_threads); - int count = 0; - for (auto &&i : worker_threads) { - i = std::thread(func, count); - count++; - } - - for (auto &&i : worker_threads) { - i.join(); - } - - mxnet::cpp::NDArray::WaitAll(); - - std::string synset_file = "synset.txt"; - auto synset = LoadSynset(synset_file); - std::vector tmp(num_threads); - for (size_t i = 0; i < num_threads; i++) { - tmp[i] = (*output_mx_arr)[i]->Copy(mxnet::Context::CPU(0)); - tmp[i].WaitToRead(); - (*output_mx_arr)[i] = &tmp[i]; - } - for (size_t i = 0; i < num_threads; ++i) { - PrintOutputResult(static_cast((*output_mx_arr)[i]->data().dptr_), - (*output_mx_arr)[i]->shape().Size(), synset); - } - int ret2 = MXFreeCachedOp(hdl); - if (ret2 < 0) { - LOG(FATAL) << MXGetLastError(); - } - - mxnet::cpp::NDArray::WaitAll(); - -} - -int main(int argc, char *argv[]) { - if (argc < 5) { - std::cout << "Please provide a model name, is_gpu, test_image" << std::endl - << "Usage: ./multi_threaded_inference [model_name] [is_gpu] [file_names]" - << std::endl - << "Example: ./.multi_threaded_inference imagenet1k-inception-bn 1 0 apple.jpg" - << std::endl - << "NOTE: Thread number ordering will be based on the ordering of file inputs" << std::endl - << "NOTE: Epoch is assumed to be 0" << std::endl; - return EXIT_FAILURE; - } - std::string model_name = std::string(argv[1]); - //int num_threads = std::atoi(argv[2]); - bool is_gpu = std::atoi(argv[2]); - CHECK(argc >= 4) << "Number of files provided should be atleast 1"; - //CHECK(num_threads == argc - 3) << "Number of files provided, should be same as num_threads"; - int num_threads = argc - 3; - std::vector test_files; - for (size_t i = 0; i < argc - 3; ++i) { - test_files.emplace_back(argv[3 + i]); - } - int epoch = 0; - bool static_alloc = true; - bool static_shape = true; - - - // Image size and channels - size_t width = 224; - size_t height = 224; - size_t channels = 3; - - size_t image_size = width * height * channels; - - // Read Image Data - // load into an input arr - std::vector> files(num_threads); - std::vector input_arrs; - mxnet::cpp::Shape input_shape = mxnet::cpp::Shape(1, 3, 224, 224); - for (size_t i = 0; i < files.size(); i++) { - files[i].resize(image_size); - GetImageFile(test_files[i], files[i].data(), channels, - cv::Size(width, height)); - input_arrs.emplace_back(mxnet::cpp::NDArray(files[i].data(), input_shape, mxnet::cpp::Context::cpu(0))); - } - - // load symbol - std::string static_alloc_str = static_alloc ? "true" : "false"; - std::string static_shape_str = static_shape ? "true" : "false"; - std::vector output_mx_arr(num_threads); - run_inference(model_name, input_arrs, &output_mx_arr, 1, false, num_threads, - static_alloc, static_shape, is_gpu); - mxnet::cpp::NDArray::WaitAll(); - - return 0; -} diff --git a/example/quantization/imagenet_gen_qsym_onednn.py b/example/quantization/imagenet_gen_qsym_onednn.py index 060709c4cc27..d0a8bd15a252 100644 --- a/example/quantization/imagenet_gen_qsym_onednn.py +++ b/example/quantization/imagenet_gen_qsym_onednn.py @@ -183,7 +183,7 @@ def get_exclude_symbols(model_name, exclude_first_conv): rgb_std = '0.229,0.224,0.225' epoch = 0 net.hybridize() - net(mx.nd.zeros(data_shape[0])) # dummy forward pass to build graph + net(mx.np.zeros(data_shape[0])) # dummy forward pass to build graph net.export(prefix) # save model net.hybridize(active=False) # disable hybridization - it will be handled in quantization API else: diff --git a/example/quantization/imagenet_inference.py b/example/quantization/imagenet_inference.py index f361f00263e9..7d51408d350a 100644 --- a/example/quantization/imagenet_inference.py +++ b/example/quantization/imagenet_inference.py @@ -44,8 +44,8 @@ def score(symblock, data, ctx, max_num_examples, skip_num_batches, logger=None): for i, input_data in enumerate(data): if i < skip_num_batches: continue - x = input_data[0].as_in_context(ctx) - label = input_data[1].as_in_context(ctx) + x = input_data[0].as_in_ctx(ctx) + label = input_data[1].as_in_ctx(ctx) outputs = symblock.forward(x) for m in metrics: m.update(label, outputs) diff --git a/example/recommenders/demo1-MF.ipynb b/example/recommenders/demo1-MF.ipynb index a6c1ad71958c..e7d2ebbb5b0b 100644 --- a/example/recommenders/demo1-MF.ipynb +++ b/example/recommenders/demo1-MF.ipynb @@ -2,7 +2,6 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, "source": [ "# Matrix Factorization (MF) Recommender Example\n", "Demonstrates matrix factorization with MXNet on the [MovieLens 100k](http://grouplens.org/datasets/movielens/100k/) dataset. We perform **collaborative filtering**, where the recommendations are based on previous rating of users.\n", @@ -13,101 +12,106 @@ "\n", "\n", "For more deep learning based architecture for recommendation, refer to this survey: [Deep Learning based Recommender System: A Survey and New Perspectives](https://arxiv.org/pdf/1707.07435.pdf)" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": false - }, + "source": [ + "import matplotlib.pyplot as plt\n", + "import mxnet as mx\n", + "from mxnet import gluon, np, npx, autograd\n", + "import numpy as onp\n", + "\n", + "from matrix_fact import train\n", + "from movielens_data import get_dataset, max_id" + ], "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "DEBUG:matplotlib.backends:backend module://ipykernel.pylab.backend_inline version unknown\n" ] } ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import mxnet as mx\n", - "from mxnet import gluon, nd, autograd\n", - "import numpy as np\n", - "\n", - "from matrix_fact import train\n", - "from movielens_data import get_dataset, max_id" - ] + "metadata": { + "collapsed": false + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Config" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "ctx = [mx.gpu(0)] if mx.context.num_gpus() > 0 else [mx.cpu()]\n", "batch_size = 128" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Data" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false - }, + "source": [ + "train_dataset, test_dataset = get_dataset()\n", + "max_user, max_item = max_id('./ml-100k/u.data')\n", + "(max_user, max_item)" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "(944, 1683)" ] }, - "execution_count": 3, "metadata": {}, - "output_type": "execute_result" + "execution_count": 3 } ], - "source": [ - "train_dataset, test_dataset = get_dataset()\n", - "max_user, max_item = max_id('./ml-100k/u.data')\n", - "(max_user, max_item)" - ] + "metadata": { + "collapsed": false + } }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, - "outputs": [], "source": [ "train_data = gluon.data.DataLoader(train_dataset, shuffle=True, last_batch='rollover', batch_size=batch_size, num_workers=0)\n", "test_data = gluon.data.DataLoader(test_dataset, shuffle=True, batch_size=batch_size, num_workers=0)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "source": [ + "for user, item, score in test_data:\n", + " print(user[0], item[0], score[0])\n", + " break" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "\n", "[38.]\n", @@ -119,153 +123,33 @@ ] } ], - "source": [ - "for user, item, score in test_data:\n", - " print(user[0], item[0], score[0])\n", - " break" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Linear Matrix Factorization" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "plot\n", - "\n", - "\n", - "user\n", - "\n", - "user\n", - "\n", - "\n", - "linearMF_emb_user_fwd\n", - "\n", - "linearMF_emb_user_fwd\n", - "\n", - "\n", - "linearMF_emb_user_fwd->user\n", - "\n", - "\n", - "\n", - "\n", - "linearMF_relu0\n", - "\n", - "linearMF_relu0\n", - "\n", - "\n", - "linearMF_relu0->linearMF_emb_user_fwd\n", - "\n", - "\n", - "\n", - "\n", - "item\n", - "\n", - "item\n", - "\n", - "\n", - "linearMF_emb_item_fwd\n", - "\n", - "linearMF_emb_item_fwd\n", - "\n", - "\n", - "linearMF_emb_item_fwd->item\n", - "\n", - "\n", - "\n", - "\n", - "linearMF_relu1\n", - "\n", - "linearMF_relu1\n", - "\n", - "\n", - "linearMF_relu1->linearMF_emb_item_fwd\n", - "\n", - "\n", - "\n", - "\n", - "linearMF__mul0\n", - "\n", - "linearMF__mul0\n", - "\n", - "\n", - "linearMF__mul0->linearMF_relu0\n", - "\n", - "\n", - "\n", - "\n", - "linearMF__mul0->linearMF_relu1\n", - "\n", - "\n", - "\n", - "\n", - "linearMF_sum0\n", - "\n", - "linearMF_sum0\n", - "\n", - "\n", - "linearMF_sum0->linearMF__mul0\n", - "\n", - "\n", - "\n", - "\n", - "linearMF_flatten0\n", - "\n", - "linearMF_flatten0\n", - "\n", - "\n", - "linearMF_flatten0->linearMF_sum0\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ "class LinearMatrixFactorization(gluon.HybridBlock):\n", " \n", " def __init__(self, k, max_user=max_user, max_item=max_item):\n", - " super(LinearMatrixFactorization, self).__init__(prefix='linearMF_')\n", + " super(LinearMatrixFactorization, self).__init__()\n", " \n", " # user feature lookup\n", - " with self.name_scope():\n", - " self.user_embedding = gluon.nn.Embedding(input_dim=max_user, output_dim = k, prefix='emb_user_') \n", + " self.user_embedding = gluon.nn.Embedding(input_dim=max_user, output_dim = k) \n", "\n", - " # item feature lookup\n", - " self.item_embedding = gluon.nn.Embedding(input_dim=max_item, output_dim = k, prefix='emb_item_') \n", + " # item feature lookup\n", + " self.item_embedding = gluon.nn.Embedding(input_dim=max_item, output_dim = k) \n", " \n", - " def hybrid_forward(self, F, user, item):\n", - " user_embeddings = self.user_embedding(user).relu()\n", - " items_embeddings = self.item_embedding(item).relu()\n", + " def forward(self, user, item):\n", + " user_embeddings = npx.relu(self.user_embedding(user))\n", + " items_embeddings = npx.relu(self.item_embedding(item))\n", " \n", " # predict by the inner product, which is elementwise product and then sum\n", " pred = (user_embeddings * items_embeddings).sum(axis=1)\n", @@ -275,16 +159,34 @@ "net1 = LinearMatrixFactorization(64)\n", "net1.initialize(mx.init.Xavier(), ctx=ctx)\n", "mx.viz.plot_network(net1(mx.sym.var('user'), mx.sym.var('item')), node_attrs={\"fixedsize\":\"false\"})" - ] + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\n\n\n\n\nplot\n\n\nuser\n\nuser\n\n\nlinearMF_emb_user_fwd\n\nlinearMF_emb_user_fwd\n\n\nlinearMF_emb_user_fwd->user\n\n\n\n\nlinearMF_relu0\n\nlinearMF_relu0\n\n\nlinearMF_relu0->linearMF_emb_user_fwd\n\n\n\n\nitem\n\nitem\n\n\nlinearMF_emb_item_fwd\n\nlinearMF_emb_item_fwd\n\n\nlinearMF_emb_item_fwd->item\n\n\n\n\nlinearMF_relu1\n\nlinearMF_relu1\n\n\nlinearMF_relu1->linearMF_emb_item_fwd\n\n\n\n\nlinearMF__mul0\n\nlinearMF__mul0\n\n\nlinearMF__mul0->linearMF_relu0\n\n\n\n\nlinearMF__mul0->linearMF_relu1\n\n\n\n\nlinearMF_sum0\n\nlinearMF_sum0\n\n\nlinearMF_sum0->linearMF__mul0\n\n\n\n\nlinearMF_flatten0\n\nlinearMF_flatten0\n\n\nlinearMF_flatten0->linearMF_sum0\n\n\n\n\n\n" + }, + "metadata": {}, + "execution_count": 6 + } + ], + "metadata": { + "collapsed": false + } }, { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "source": [ + "net1.summary(user.as_in_ctx(ctx[0]), item.as_in_ctx(ctx[0]))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "--------------------------------------------------------------------------------\n", " Layer (type) Output Shape Param #\n", @@ -304,21 +206,18 @@ ] } ], - "source": [ - "net1.summary(user.as_in_context(ctx[0]), item.as_in_context(ctx[0]))" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": false, - "scrolled": false - }, + "source": [ + "losses_1 = train(net1, train_data, test_data, epochs=15, learning_rate=1, ctx=ctx)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [0], Training RMSE 6.1854, Test RMSE 5.2134\n", "Epoch [1], Training RMSE 2.9043, Test RMSE 2.1358\n", @@ -327,15 +226,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[3126]: Change learning rate to 2.00000e-01\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [4], Training RMSE 0.7585, Test RMSE 0.9467\n", "Epoch [5], Training RMSE 0.6742, Test RMSE 0.9301\n", @@ -345,15 +244,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[6251]: Change learning rate to 4.00000e-02\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [9], Training RMSE 0.6210, Test RMSE 0.8793\n", "Epoch [10], Training RMSE 0.6100, Test RMSE 0.8764\n", @@ -364,16 +263,20 @@ ] } ], - "source": [ - "losses_1 = train(net1, train_data, test_data, epochs=15, learning_rate=1, ctx=ctx)" - ] + "metadata": { + "collapsed": false, + "scrolled": false + } }, { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "source": [ + "losses_1" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "[(6.185443237304687, 5.213418274168756),\n", @@ -393,41 +296,40 @@ " (0.6019688241481781, 0.8687770996883417)]" ] }, - "execution_count": 9, "metadata": {}, - "output_type": "execute_result" + "execution_count": 9 } ], - "source": [ - "losses_1" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "The optimizer used for training and hyper-parameter influence greatly how fast the model converge.\n", "We can try with the [Adam optimizer](https://arxiv.org/abs/1412.6980) which will often converge much faster than SGD without momentum as we used before. You should see this model over-fitting quickly. " - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 10, - "metadata": {}, - "outputs": [], "source": [ "net1 = LinearMatrixFactorization(64)\n", "net1.initialize(mx.init.Xavier(), ctx=ctx)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "source": [ + "losses_1_adam = train(net1, train_data, test_data, epochs=15, optimizer='adam', learning_rate=0.01, ctx=ctx)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [0], Training RMSE 1.2345, Test RMSE 0.7134\n", "Epoch [1], Training RMSE 0.6484, Test RMSE 0.6597\n", @@ -436,15 +338,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[3126]: Change learning rate to 2.00000e-03\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [4], Training RMSE 0.4531, Test RMSE 0.5900\n", "Epoch [5], Training RMSE 0.2978, Test RMSE 0.4903\n", @@ -454,15 +356,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[6251]: Change learning rate to 4.00000e-04\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [9], Training RMSE 0.2613, Test RMSE 0.4922\n", "Epoch [10], Training RMSE 0.2311, Test RMSE 0.4868\n", @@ -473,43 +375,39 @@ ] } ], - "source": [ - "losses_1_adam = train(net1, train_data, test_data, epochs=15, optimizer='adam', learning_rate=0.01, ctx=ctx)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Visualizing embeddings" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 12, - "metadata": {}, + "source": [ + "ratings = np.dot(net1.user_embedding.weight.data(ctx=ctx[0]), net1.item_embedding.weight.data(ctx=ctx[0]).T).asnumpy()\n", + "ratings.shape" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "(944, 1683)" ] }, - "execution_count": 12, "metadata": {}, - "output_type": "execute_result" + "execution_count": 12 } ], - "source": [ - "ratings = nd.dot(net1.user_embedding.weight.data(ctx=ctx[0]), net1.item_embedding.weight.data(ctx=ctx[0]).T).asnumpy()\n", - "ratings.shape" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 13, - "metadata": {}, - "outputs": [], "source": [ "# Helper function to print the recommendation matrix\n", "# And the top 5 movies in several categories\n", @@ -538,24 +436,28 @@ " print(\"\\n5 most controversial movies:\")\n", " for movie in top_5_controversial:\n", " print(\"{}, average rating {:.2f}\".format(str(movies[int(movie)-1]).split(\"|\")[1], ratings.mean(axis=0)[movie]))" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 14, - "metadata": {}, + "source": [ + "evaluate_embeddings(ratings)" + ], "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "DEBUG:matplotlib.font_manager:findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000\n", "DEBUG:matplotlib.font_manager:findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0 to DejaVu Sans ('/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Top 5 movies:\n", "Schindler's List (1993), average rating 4.18\n", @@ -580,199 +482,58 @@ ] }, { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHzCAYAAABbrYK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0b9lV1/uZa+3m15z+tnVv3brVpQLEhCaAAYMPnmAwgtijYoOKkNf5VBDF5hkYojyfA7F9Nu8pQpRGnjikcQQYNCIhIQTpQiWpSvXNbc49/a/ZzVrz/THX/p1fXe65VZUU1C3Y3zHOOOf89t5rzdXsved3ze9cP1FVevTo0aNHjx49evTo0aNHj48V7tU2oEePHj169OjRo0ePHj16vLbRE8sePXr06NGjR48ePXr06PFxoSeWPXr06NGjR48ePXr06NHj40JPLHv06NGjR48ePXr06NGjx8eFnlj26NGjR48ePXr06NGjR4+PCz2x7NGjR48ePXr06NGjR48eHxd6YtmjR49fN4jIfxGRP/Vq23EriMiPi8hX/BqW/zki8uFfq/I/FojI7xORp0XkSEQ+9RbHj0Tk/lfDttcCROSdIvKuE459rog88+tt02sNd+J90aNHjx49Pjb0xLJHjzsIIqIi8uBNn53ovN7JuJXdqvq7VPXf/hrUdW/qu+yVLvtjxc1jqao/qaqvfzVtugX+PvC/quqKqv73mw+mzx8DEJFvFZG//etu4a8hROQJEfn8V9uO30x4jdwXPXr06NHjY0BPLHv0+E2IO4mAvRbxG6j/LgMffLWN+PXGb6Dxu6Pwm61ff6O09zdKO3r06PHqoyeWPXq8hiAip0Xk+0VkT0R2ROQnRcSlYxdE5P8Tkesi8riI/Pml694pIt8jIu8SkQPgy0XkM0XkZ0XkQESuisg336beLxKRn0/1vkdE3rR07K+IyLMicigiHxaR3yEiXwj8NeBLk5zyF9K5C7mpiHy5iPyUiPyDVO5jIvLZ6fOnReTasmxWRH63iPz3ZO/TIvLOJRP/a/q9l+r7rHTNnxGRh0VkV0TeLSKXl8r7AhH5kIjsi8g/AeQ27T+p/3462f68iPwTESnS+Z09v5Ds+dKbpZEpWvY1IvKLyYbvEpHB0vGvTeU+JyJfsRzpEZG3i8ivpD5/VkS+5gS7nYj8DRF5MvXnt4nIuoiUInIE+GTjR0+4XkXkQRH5SuDLgK9N7fm+dPzF5tx/SH12KCK/JCIPicjXJVueFpHfuXT+l6c5cJjK+rITbDpx3orI7xGRD6Yx+XER+cSb+vuviMgvAhMR+Q7gHuD7Upu+Np33ljTH90TkF0Tkc5fKuE9EfiLZ+MPA6VvZeJO9f01EtlP9X5Y++4xku1867/dLuk9uUca3isg/E5OSH4ndN+dF5FvS3P6QLEmZX2RcTpy36biKyDtE5JF0zj8VkVveG/LavS8eEJEfFZEbaWz+nYhsLB2/JCL/MfXfDbHnw83PrBvAO+WEeyydP0h9cyP1x/tF5NxSWS9lvr9AKXCL/vpVz9/0uRORvyoiH031f7eIbKVjncLjz4rIU8CP3s7WHj169HjJUNX+p//pf+6QH0CBB2/67J3Au9Lffxf450Cefj4HI0QO+ADwfwAFcD/wGPC2pTIa4Pemc4fATwN/Ih1fAd5ygk2fClwDfitGRP4U8ARQAq8HngYupHPvBR642e6lsn4c+Ir095cDLfCnU7l/G3gK+Kep7N8JHAIr6fzPBd6Y7H8TcBX4vUv1KpAt1fUlwKPAJwIZ8DeA96Rjp1PZfzD1419MtnzFCX1wq/57M/CWVPa9wMPAXzhpLJP9zyz9/wTwM8AFYCtd/4507AuBK8AbgBHwruXygOeBz0l/bwKfdoLdfyb1wf1pjP8j8O23m28nzUfgW4G/vXTspcy5OfC21EffBjwO/PXU538OeDydOwYOgNen/+8C3nCCTbect8BDwAT4glT+16a2F0v9/fPAJWC49NnnL5V9EbgBvD217wvS/2eW6v5mbH7+dmwOvesEOz8Xm1Pd+f9Dsq9r468Av2vp/O8FvvqEsr4V2Mbm3AD40dSXf5Lje+fHXuK4vJR5+/3ABka8rwNf+BvsvngwjW0JnMEWpr4lHfPALwD/AJuXA+CtNz2z/rfUviG3uceArwK+L9nqU9+s8fLm+7fywvtu0V/c/vn7vwPvBe5O7fwXwHfc9Lz8tmTL8CRbX+yd1f/0P/1P/7P800cse/R4baHBnJDLqtqo5Scp8BmY8/sNqlqr5cX9K+CPLF3706r6n1Q1quoslfWgiJxW1SNVfe8JdX4l8C9U9X2qGtRyJCvMeQyY0/JJIpKr6hOqesvo1wl4XFX/jaoG4Lswp/8bVLVS1R8CaswJRFV/XFV/Kdn/i8B3YM76SXgH8HdV9WFVbYG/A3yKWNTy7cAHVfV7VLUBvgVzWG+HF/Sfqn5AVd+rqq2qPoE5brez51b4R6r6nKruYE7dp6TP/zDwb1T1g6o6xRz4ZTRYn6+p6q6q/twJ5X8Z8M2q+piqHgFfB/wReWWkby9lzv2kqr479f9/wJz4b0p9/p3AvUuRogj8FhEZqurzqnqSRPekefulwA+o6g+n8v8+5jB/9tK1/0hVn07z/1b448APquoPpnH+YeBngbeLyD2pzX8zzc//io3Zi6E7/yeAH8DGFuDfpvpIkaS3Af/+NuV8b5pzc4yEzlX125bunS5iedtxeYnz9ptUdU9VnwJ+jON5eSu85u4LVX00zZNKVa9j5L+z8TMxUvuXVXWiqnNV/W9Llz+nqv84tW/G7e+xBjiFEd+Q+uYglfNS5/vtcLvn7zuAv66qz6hqlfrqD950778ztbF7H5xka48ePXq8JPTEskePOwsBi7YsI8de+gD/F7Y6/kNJRvVX0+eXgQtJwrQnInuYFHVZyvT0TeX+WSzK86Eke/qiE2y6DHz1TWVfwlbJHwX+Aua0XBOR7xSRCy+jvVeX/p4BqOrNn60AiMhvFZEfS/K0fcxxup0U8TLwD5ds3sGiuxcxx3HRH4mc39w/N+MFx8Vknd8vIleSDPDvvIg9t8IymZ2S2nqzfbew7Q9g5PhJMWnmZ51Q/gXgyaX/n8QiLa+ExO2lzLmbx3I7EaHuf7CI9AQjhu8AnheRHxCRTzih3pPm7QvaqqoR67eLS9e+2BhfBv7QTW16K7aYcwHYTbZ2ePJWhSzhVud398e7gC8WkTFGmH5SVZ+/TVk39+Ut7xNeZFxe4rw9aV7eCq+5+0JEzqVn1bPJxnct2XgJeDIthtwKN9d5u3vs24F3A98pJt39e4kAvpz5fiJe5Pl7GfjepTnwMPZ+OemdcEtbX65NPXr0+M2Nnlj26HFn4SlMprSM+0iOi6oequpXq+r9wO8B/lLKqXkai/5tLP2squrbl8rR5UJV9RFV/aPAWeD/BL4nObk342ngG28qe6Sq35HK+feq+lbMkdFU1q+q7xXAvwf+M3BJVdcxSXCX+3Wrup4Gvuomu4eq+h5MMnepO1FEZPn/E3BzHf838CHgdaq6hjnvJ+Zpvkw8j0nYOrzANlV9v6p+CTZ2/wn47hPKeQ4blw73YFK+q7c+/ba4uf0vZc699MItsvkFGIn7EBZlu9V5J83bF7R1aUyfvU0bbtWmb7+pTWNV/SZsTDZvukfueZFm3er851I7nsWktb8f+BOYY/9K4MXG5ZWet6/F++LvYHa/Mdn4x5dsfBq45zZR/Zvbe+I9pqYq+XpV/SQscv5FmHz5Jc93TD49Wvr//AuMOfn5+zQmtV6eB4M0735VW25na48ePXq8VPTEskePOwvfBfwNEbk7bb7w+cAXA98Di010HkxO8z62Ah2xnKTDtJHDUES8iPwWEfmMkyoSkT8uImdSZGcvfRxvceq/At6RIoYiImOxjXRWReT1IvI/ikiJ5dPNlsq4ikkdX6nnzCqwo6pzEflM4I8tHbue6l3+zsV/DnydiLwhtXddRP5QOvYDwBvENkzJgD/PTQ7bS7TnADhK0Yb/6abjV2+y5+Xgu4E/LSKfKCIj4G92B0SkEJEvE5F1NcnnAbceNzC58F8U23RmBXOov+s20Zjb4eb2vOw5dxJSBOlLEgmrgCNOaNNt5u13A79bbPOoHPjqVNZ7Xkabuiji21J7BmKbpdytqk9istivT2PwVuzefDF0538O5qz/h6Vj34blgr4Ry817JfBi4/Ji8/bjxWvhvljF5ti+iFwE/vLSsZ/BCOw3pWfdQER+221sOvEeE5HPE5E3im3SdIApT+LLme9YXvDbRWRLRM5jEcquzbd7/v5z4BslbVgmImdE5EtOasRJtt6m3T169Ojxq9ATyx497ix8A+YI/zdgF/h7wJep6i+n468DfgRzRH4a+Geq+mNJXvhFWC7S49hGH/8PsH6bur4Q+KDY7qD/EPgjeovcM1X9WWyjlX+SbHoU28QCLL/nm1J9V7BIwdelY50DfUNETsoBfDn4n4FvEJFDbGOSRTQi5Vt9I/BTSfr1FlX9Xmz1/jvF5G6/DPyudP428IeS7Tewfv2pl2nP12Dk9hAj39910/F3Av822fOHeRlQ1f8C/CMsv+1RbBMOMCcULML1RGrXO7A8r1vhX2ORsP+KzYs5tvHIx4L/F8vl2hOR//QxzrmT4IC/hEV/drB8t5MIzy3nrap+GIs8/eNkyxcDX6yq9W3q/bvYQs6eiHyNqj6Nbfr017DFiqcx0tG9K/8YtonVDvC3MGJ4O1zB7pnngH+HbULzoaXj30uSLKY5/HHjJYzLi83bjxevhfvi64FPwxbnfoAlUp/674ux3O6ngGcw2epJuN09dh5bFDzApKg/kc59OfP927HNhJ4AfogX9uftnr//EFN4/FB6Zr4Xm7sn4SRbe/To0eMlQyy1qEePHj163KkQ+9qMXwbKjzHa2OMOhdhXvXyVqv7Iq23Law39fdGjR48edxb6iGWPHj163IEQkd8n9n2Tm1jk9ft65/k3FkTkD2B5bj/6atvyWkF/X/To0aPHnYs7iliKyBeKfcHvo3K822WPHj16/GbEV2HfH/pRLJf2lc6F6/EqQkR+HNvo5n9J+aI9Xhr6+6JHjx497lDcMVLYlDD+EexLi58B3g/8UVX9lVfVsB49evTo0aNHjx49evTocVvcSRHLzwQeVfuS4Rr78uwTdzDr0aNHjx49evTo0aNHjx53Bk76nqZXAxd54Zf1PsPtdzCj3BhodnYTFFbzilYdQQUvSqvGmTOJzIM1UwRUIUTHMG9ooyOqEKJDRAnBMSpq2ugpfUsVMwSlcIF5yGiqHHxEBDIfaIOnyFqa4CmygCooQtN6Mh9QFRBQFUZZzaQpWC/m7NUDnCiqgndxYZcTNZuiQ6OQZQFJ5zmnC9tjtP87qAreR9rKk5et1Qu0wUEQXG4qK+cUL5GqyRABkeMyYhQyb+cFFbT2lMOaqEIbrD2Zi8ybHG2FvGxp6owsD4Rphh+3tLW3wgQQtT8CoILkkcwHmiqnGDS0wREbh2QKomhwOB9RQJfaJ6LE6Oza1i/6qsgCdZ0xGDTMZzl46L6SK/ORdpZBEY/HPfVnW3tbTklNF69oFIiQFYEQHapms3WGgDcbiQKtkI8amiZD0pjkWaCpMmt3FMgUGoE8mi3B5mKRBeomg9bmBV5BQWpBM+szl0eYeHQUcS4SqgxXBGLjzCYFCcAwoo0Dp8lWfUFfSi1ooUhj7dAiInNn9ThNYwRE6wMqZ8Vkau1aKltS9pI6u0YCaGb1ae0QBfVme6w8eH1Bm4ipL33qdBUki2gQO28Qkdqh2fG5rgjo3L/gs25eSWNtI1p/vKAfCz3+ZjZJdYWl9hfWdj8VYpbaEcTanisEWbTPVVZvLNJcbJb6NFWNt7kkrdWnAhJB89R3SeAoDeBSH6qdg0IswKU9S2MBLvV1zNMcdWmMQrqlgJjxwm/v9NYXEpZsSOerLI2bWlmaK6629ks029WDlgqt2HUOsim0K6m/0xLkwr705pDA4n7yFYTCrhWsD/3s+Nrojx8LnR1+JouyNLO+UJds92a/a9NnwfrFNXaMVJak/gml2RwG6ZbwNoaL8sRslZDmsDc7YnHcX4vPsd/SWv1x6WviO1uskcmGZCPO/o6lHXPNcR917ddUdleuq5falaU2BzvfhTSe3ZzWpXmhx7Z3xySaHerSHEs2dmO/sCMe19G1WZ19tlyOBNJ9ksY+pls6zU8Jdm47BN8c2xLz42Pqjvu6s7vrE+tfpR2KjbOkfu/q1+Myu3tnMZfTPO3GiphuC11q/2LQjsvs0LV/cUpmY4Aej4fVoyBi4xHT3I9Wp68U9en5kfrahe7eUGIux/YkG2KW7pdGiZk9I6K3foi5LPrN5pUSSjunuy/VpbFQq9u1SvSS+kpTfwuuOa7f15GYOyQq6uyaUNixrl5X6+K58oJ7RuS43EzskdOd293PgDr7Q6IunkHqBVFdlGMPTU19n8rNBNeYfa7V9MwSXBtT38qiL2zOaDo3LuokXSNtelar2nUdbioTQJqIeuuTzma8W4y3Lu6d7qY9nr84gdi9z+z8RX90/3e/nSBNsDLd8eeLOpOBEs0eFipCWWqL9etyf3c2Lp4NMYJzx3937e/K6/pfl8au+7y7SZYRu0m4PNAKqi/494VG6dIvveWhm9GpJuXkU2510Us981fhkN1tVT3zMRfQ40VxJxHLlwQR+UrgKwH81gbnv+YvgVOkDMnRF9zVkrDZQOugiGw+m9OupAdjGckOPO2KPf391CGtmIMZhVgocRSQyrE+ccSBorkyziL5jcyc5fRS6Rw010A7VvxcaNYC+Z5HHcRSUW+OKwKr6SU5GCqD5z0IVFuRYtfRrEdcI0hympqtQLbnaTcC/tCj5+f4ZwaEUikOHPWand+9/F0APxOaFV28dIt9IQwgDOxB0mwEBlcyqtMBP3H2ok2Om6uF+qEZulMwes4TSnu5hIGa4+ug3BEmFyPDa47ZebM75kp+JMzPRPzc7HFNevnVQhgq42eEagvaoSanHfxcCKXZlR/YeZ0D3DkF6iHft6fS7K6Aa4TsyOHn1t/ZRGhWlcENoRl3zpHadYfW582qnUdyVIsDaEdWR7kD9bo5gX5uTnGzau3xlTmqg22oNjubj53bzrlXb/PGVXZOzCA/hPxImZ+x8Sh3zVmoNhXXCMOrVm82h3YAxaHZ1DmSANMLkfKGwzVWpoRunOx3s8qC8BUHSrUlC4dFoo1BKCE/Mkc7Zub4uSo5vZgT3owhDGFwDdoVmw+xsOP5odVXHCqTC2LtT3MrlPbju03+08uj2Ddb8kNzWGanZeHEZlNrL87qzSeQHyrzLSGbHTu2fq7sP6SMn3HE7Hg+SSIBfpZs7N6XMTm3IxheVZo1mw/Z1Potmyn1ulDsK/WGEHIY7CiuhWpTyI5s7NqhtUcCtGP7e7CtTC5a231lTp6rrb3Z1NqqYnWpTzZcs/qyqRILwVdKcaA043Tu3BzCZmz2uyZ95oRQ2FjFXBb3QjbVhbPtK6jXxJzauTlPYWhzc7ATmZ8yxyJmUO4qsYBQmAOXT63P5lvHhNfXdk+GIg2gS86pCMWRMj9lc9sFtbmYmx31qs3pck9pVoXBjYhrlWbkaFbMaYq59Xm3GNEOj59VKMxPC+WOEgZWTrUuZHMWZLgdC36uZHM4uiiMn9PFc8k1Vk47sD5xrZWfT5VmJIu51I3VgtTq0u9oc9glchO9UB5G5utuMdektT6KuTnjKMRMyKeRduiQoAsH3Mozh74Z25zOp9bR6m3edURp2cbBXmC+7slnSrVmz6p8psfESaA4jDQjc7yzmc0rdTZuzcieVwi4xvo7mynt4LiObJbsjRByO7fcj8TM7G2HsmhPPlMjRZlQ7LfMzuSEUiiOIiEXsrlSrzjymTn2vopUa55sHq1fBo52IBSTY2bXDN2iHzsyo17IppGY5p6fRZpVTyjsfgjp3lkmyOpS/0/igiTF3Pogq2wuu0bTs1jIJolILDm3EnSh1QpFIjMOmrGjOIwLZ9jVEV9bPSF3hKEnlEI2i2TTQLWRM9iuaccZMTM7smlAMyE/aGnHGerAzyNh6JAAfh4IpXuB028kzyXCbuPROc7ZPBAzRyjcghz6KixIUywc0qaF46C4KhBLT/RCftRQrxe4VvGzFs0d0irt0FPs14RRRkzEKhaO4vqMOMhwbSQMMiORTvDT9KJxQhh4G7fDZkHeYunJ9+Y0GwO7H6Li6kDMHbH0ZEcNAO3YVmfUCX7eIm1EFMIgIzuY064NcFULToiZszIKnwi14BrrCz9vibnH1S3q7TzrCzvXTWviMDfi5QU3b83OUY4/nKNFZsSubtHcI7XZopkD55AmEIsMsmOSJlUAL3aeN7LVkUVU7doIUjeQJ7e6adFBjlQtUtXgnBFHOB5/EaRpjRSHiObZghRK06Y2OCREaMMx8fUe6gYdFHZMBKYzGA2TAzGDLDNbZnP7rCysjBDs+pjuz2UyugSt04qn8xADkudGAqv00s8yqJv0IvFo2yLeoSEel7dMABPx1WZpn62XmVquHZmP4fYn3gY/ot/z5Md8cY+XhDuJWD4LXFr6/+702Qugqv8S+JcAKw+d1wv3bvP8tQ0euvsqjzx3lvHKnKNpRj5uCK3jM+5/kveFB3DDFvYK3LjB3fD49QaeGxC2GsQr+bDBPbyCf/CAEBxF3nJxfZ+HH7lItpMRVkDvnREax2i1YnJtDHkkBoFMWdmcMtkfIkcZ5998hd0fuYvpm+ZWZyXIvRMuntrn+d012idXaMeJ6G42VFuK1p7xmSNmv7JBGCn5rqcdR/yhJ44i/vkBw0/c4+jxdeYXGoiCNoK0QrnjaD/liObxMe1GwE0dcaNFs5yYKXEUkVagiFRnAkRoz9YMHysJpdKsKr6C7IkB9dmWMPD4GUwvBaQVwticlZg54kqgqoU4iFSnNJHrDD1b4R4dUt1X4a8VhEFk/SOeo7thfgaalYivbFU1XJ7R7BdGcu+rCMOcwTXH9IEad5jhKqFdixRnprQfWUEzjJwr1FsBBPzEHobNqZYw9JQ7jmacXrAXZxQ/Nebw3kgszZkZXHdMLra0K552NZDvemb3NQyfKKgfmCFXBoT1lnw7IwyUelPJD4R6zcirRCNo7SiSHzpCAcWeEEpo1wLDZz3tSGk2A/XlQPlEScyVdqtleC2nHZhT7ufmVHWLAvWmUu4Z0Z5dUvKJEAZKHERCIVRbirSJ2MyFel0ZXDciH1YCMvdMnOInDl+DRCF4W+RoV5VyT4gBqnNmt08OdjuEyRvmFE8MEIXpXfbAHmynOoPVNz+jFB9OUYuR2bv1y3D9zUqx5xar6PPzgfKaOR3VlvVdKIV2bES9WVGOHmjJ9jL83IhNM8acXw/u0Mg2FUzPgausze2W2etqmJ5X8kMhb2Fyt1LsCeWefe6CUOzD4f0p0tBAdcrONzJmjnIXEVInzM7YwklH6Jr1SLFnCxfN2IgGp22cmlXr23YERWuLDa5NJDA7JjExT/NkCPNTKYJ2Rth4xEgRCtN1RzuGtccju58g3PWelmbs2L/fMbymiOsWSQCB2VmhOLB6ZqfB13bcVbIgsypweNktoh8IuNbIrTojo/nU7uN2BCvPGGGeXoDTP6/Mt6AZ23wuDsUiNrtGTgZTu4easbU5mypH9wVWHvc0Y6FeBRVHNlXCwMhgR+5dYyQ+lMLsjDC6oszOCMWBkh8aAY+5LY40K/b35KKy/lFbnAmltS2bLUWcxPq5HXcLWUo7NKe8LWHvE5TNh4V2KORBj+dYYyR4eF1xQZmdOp6/rrG+2vkEz/C6kh8os7Ejr404tgNQ78hmSnGkTM95iGmRZ0VsoSIRyjAwQt2sgK+F6TlHuWv/L4hVk54pGTQjsyMUVpZrjaD62uqabwq+drYw4YVyX6lXrE0xE+ZnYPUJtSgSFgnav98x2Dbb6xFUa55yXwkFzE458iMlK82WZsXhGjumXqjWHaPtSLUuxDxPpFPIJ1BtCNlVpR3BcSaNs3kfhWacoQKD/YifK/WqwwVrV6iNnEIXkVOqDXtuNSPBl0JxaCRVopHytnQ0I3teZHO1hbuZzbN6xebfYMcIbjNKhD+RPF8rvo60I28LAnkXPReKw0DM7Rk1O+UY7BppVgftwFGvCcWhI59Eit0aSouGZVGpVz3NyBEzoTqV4+dGzGMugE/3pkuRRcXPW2Znh+RHER15QumoVxwrz9X2TBKIpaSouxH16ZnMFn0UQumIuZAfNsTcUW3k5JNjxzoMrU4JkAPt0JMfNMTSU69nlDsNEpV6lOGa2DlShNyhXij2G0Q9cZQT8yQ3cPaMzCYN0kbm54b4uZGqduSQNiPfnVOdHzG4MqVdL1Ev1OsZEqHcroilJxSO6tKI/CggqS8QIQwzXCLKMRf8PLOIXCKVftbQbAzIDmvCKCdmsohWhmGOhEgsM9ysNZtWywXBjsUQf1ShRYZUgTAucLUR/nZziJ8YGdLcG7mtWsK6ETLNHG4maOmRKiCJ5OkwhzaiQ4+b1miREcscUUWmFVrmuKpCiyVpw6gkDjKkyHAhoIMSHea4/akRwUTwdGCET51bRDJpGnQ0MCIZoh0rciOheYZM55BnSNUcR0bzHJrWCFyWQZFbHVlmv0OEzB9HU52DGNG2k6HocSRW4+JaWRmhh0fH5/lOmebs70QOJctAI5JIszoHTZPsao6vW4a4Y3K5/PcJkBShfq1vdfa2zxvrjZ2PnRyfhA/8YvVuVf3CV7zgl4k7afOeDNu853dghPL9wB9T1Q+edM2FN2zol77rbTx8cJ7MRc6UR3zK6tN8/5U3cvd4j/1mwH3jG7zv+r1c3VvlrZcfYzWfk0vgPdfu46GN60zagg9tn+ULLn2Yg3bIB67ezaeefZZJKHj4+jkub+6SSeC3n3qE9+7dz889dYnPue+jAGQukEvkfVcv8yfvex8/duMh7hvf4Eeefj2XNvaoQsZbT3+U/7b9AKVvOapLnnzsLOcv32BzMOPhRy7y4ANXODWYEFX40PZZMhe5e32fe0a7OIl8eP8cuQ+cGRzx3qfv5S2XnuAnP/ogMQh//s1/EzX+AAAgAElEQVQ/yg9d+yQ+ce0K77t+L2XW8vjDd/G1v+P7+c9XP5kqZKwXMx65cYZh0XB+5ZAP/ty9fOqnP8pHbpxhPitAlPGwpo2OzdEMJ8oz1ze57/w2z+2tsTaa40Wp2oyD/36K+mLDxqkjRmXNle11Puv+x/mZp+7h7MYRa+Wchx+/wP33XCN3gSpkPPHEWcgio7U5o7JBRLn+5CYX79/mDVvP88PvfROb9+0ynZdcPrXDM3sbTJ9b4a1vfpiDesiVySp16zk4GhIqz7lz++wcjDi7ccT+bEBdZ8Tg+NwHHuGJoy2uHKySuch0XrC1NqENnqNZybCs2b22CsDGmSPa6Di6ssLW3XvsPLuBX6txLhKDZzCsqT+8xvobb7D91AZbl/Y4mg7IssB8VuCzQFEEQnBsrEzZnwwJwRFaT5hmIEq+UuO9MhpUjIuGp588jRu1XDyzx7PXNsiKQEzyX4DPve8RPrx3jiefPQWVx6/VrK3M2D8Y4X2kmeRsnTtg76NbDO855MFT2/zCI5cYbsyZ3RgiZeTyxW12JiMOD4ZcOLvHwbykqnLaxhNnGYOnc3jjISEI3ivVc2PkVEWsPS4P6E4Jopx+YIftx7Yozk1pm4xwlNlLvXK4SnjLZ32In/rQg7g8IF75hAtXeWz7FLOdIW7YMl6dc7gzhsqclMGpGSJK+WNr7H1qzXhrRpk37FxZJ9/OiPfMCQc5MmrJypZ2nrOxdcTh0ZDQODjKIYCOA5cvbfPUc6fQxrFyesLkcIAeZVBGk4NOzSnVUzUc5rDaINsFcRyQYUBbhy8DedEyvzE81t4oZBs17UFhiob1lvGZKc2vrNHcXeOvFLSbLf7IE081uOsFen5OnGemltgu8JXQnGpNTtoKeJBaiBsNcpShZUQKkzDL1MNmjX++JJyrcds5cahoGTh/cZerj5w22W3lOPfQda5eX0dnnmI7o76rgdohgwCpXAB/4E22qyTJryKNKTLiMOAPMtQrca1F8kj+TGmLNWda1s4dMXt4g5grYbO1ftys4VqJhER2Bhb9ry805Fdzmk1TUywUD5uBfN8RRrZw0g7VFCJ7nljataFTBwwgbDW4Q1toIHbRWVMvtOOIFoqbOVwjFLvC7EIgO3SUe8LsjBJWTVmSHwquTfV5ZXDd0awp0RsB9zWEUhlsOyavr5BJRr7rCEMlbLUUz+fUZ1vyGxnFri3aZBNHfSrY+I0i+V5yiqIpUfJDt5A3x4yFwkEi1OsRCbJQTSzkms6is8WB0I6UdjVSblu50dui0vSC9eFgW2jWLGIahseS4mZdGV6xRZdYWJ31hvXt7HJD+XyGnwk+LXK0IyWbGmlpVk1hIwGqLWV43VQOroZ6XReLEcMryuy8LAh9taUUu+bQGUm0hatYQDtQin1J0kwWUe12nGTN3sYbsQh6vS60Qztvcm/L8LlsoRIwYgvlblJ0TJIKICkJXGNqi4WkWEz10A5Z1N/V1c0z6wMWigj19nc7TPf8vJOhGtk3pQGLCKlEXZxvfWgLVdlUqTaE4bYSchsL9Z3U0OSLzYr1b3FgiyQ2F5W2TNHGnIVkNQzs2jCE+Sll/VFTU+QHiq+hPIhMznuyqSkHwsDmImKR/5VnIm0qo1OclPuaFg5szLuFBxWLJlerthDlG1t88ZUdD4UR9GZkUWYXoFqzSLVJeDvJu51XrTlG1wLVhrPFuC4angvVqrD54RnzsyUSlHbgOLjXsfZkJJsnQpL4Sr3mbPHAm00hl2SLLhQV6mCwGxaLBBIhmwTCwBFKRyiE8bNzmvWcmAsH92RsfqQhpD7PjwLNil/Iq03JYQa0A5/Gwt5boXD4ecQFRVq1CK0TJudzhjcCvgpGjgtHs5LhZ4FsFiyCmaLD1VbB6MkDwri0+2vWQuZMyltZxBRYkFgtMpMst9Git6rEQW7EWMTKDZHZhTHjj+7Rbo5w04Y4yMj2Z7TrQ1Ms7M3MDu8X5JgYjVx2RNQ7pGqIK4M0DolEJ2Lo9g4t4tlFGLP0DOzKgOOy2tYilW1rRLZtjf2Js0hmF6H13iKhy7zjZsnuSViKqMb5/Pbn3gY/ot/zAVX99I+5gFcAn/7JA/2Zd9/zipfr73rkVW8b3EHEEkBE3g58C5a59K9V9Rtvd/7ggYv6wDd/BVWV4Zxyem3ClZ01iqKlmuc4p2yuT9g7GNFMcoYbc+aTwnLqanec84WRjVmVU+0M8asNcafAbdUWkdwtyM5NCa0nL1ra1hPmma1Yl/aE0t3CnLkyQOPw45ZwlOEPMnOg9jP0dI1sF2huUai40SDTDFmrYbskDrqVG+ylt17THuXIzCQesYxIygfUYUAqb/l6LmnZu1yqOr1gxpag42YpkjFQ3FwW0koJKYJYKpryMEWtfLdVo9dLpDEnpVmN+JlL0lhZyJNCqYuyYhlxlXlRvjKH1R95y2FzatLglZbiuYKYQRhHsiOT04ZRJDu0lWVfpRd1csiyqclmw0AXsmU/E9qVSL7v0KVFQnv5H/eTa4RsJjQrkTiwfsoOzalEIJtY7oxm5iy2Q5NJ5YfmqMYckJSTVijZxKFeF5LoRR6PkiKrqV+K1AdJdgxQ7DrqdSWMA8WuSb66vCKX8pzyA5NatiOoTkWyqdDlJFlOj0UBu5y+/FCYn44U+9YmPzc5dRhqkpwdy5NjzsLBh+RoViwk4NlUiLmRguM5YnaUuyb1AZMh54cW/QuFSYF9teRgJzVOZ2MYpPEamWx5fsrstMiTRR7rTSU7EnNck4x1IWNOMsOun0KSwbrWnOpyV6hXrUzfsMjTWuRjpXbU60px0GnizN5FW5JkUN1x3lU2Z5HX5WtzLjtJcRcV7HIlO+n28TiZg1juCM3K8bzopJi+snYOti36Wu6YDLReZSFl9lWyJ+/KS8faJL3tVFWJlHUOtq/s784eX3FMoLtEltTOMDRpsWtSfllXZjiOPtbrQn5kn7UjWfRtlqS1Me8idyafJvW/RcGSQ5h1Echj6WVxYBHEbJqkoykymk11QdgsJ80IaZev6IJFk00umc4prNwuZ0mzFDUc2/FmxciY5dFZO8pd+50fWiQMZxEjsyPNmTVJUltLCYjpvo55N1cshywUQjY7bp+k/mlWUr8KxzmOSd7dzZ12nGwo0hxvjse8WbFyu7EOhZBPdCFJ7p4f3Vzs+qwjMJ1MXJ09U1wDxZHZ241PO0qEDDuvPDDZbEfMs9lxekUol6S62Bwy2atSrZocdSHHT4SkPDgeJ9emZ2Od7r+Btacjfd190tndkciO7HQ5dfasOZYoh06q3EV8sHkj4fgd72uT30afJKcpT7H73DUm8fW1kk8i802/SE0IuZGletUtZNDFoR2sVzxZFZNcU5PaIKVfpHEzKbmpJpZh94IzkpXmsaVbCL6OhNKRTaPNqy5/MLBQX9icl6SCMSlxl7fqmrjIwYu5S/VFu4+H3ghTkq6GIkXLOklokujaYkG0aN/I42cxzfdUXmtETAJkRw1h4Be5nqE0abVvoklb20j0jmza0I5z/Kwllh4/a2lHuUVTVcHL8b3iHX7WIqrE3C+iln5/TrsxMDl07ixf0okRsNybrFTs3uxyIf2kJowLFjmPQCxNFuvqYNE7b2WR5K4LKa0XpLKyu7x3YCEHliZA5mwsppVFFVVNemobMSz6VZLcF+eO5a2dfDSEY2mqd0bqnLNI5bKMtos4LhE8aVojbi7JaLvjXR84sahhRxSX8zBTGS8oP0Y0kTkRWeRCEjpW7o4lqd1nsOhvnBjZXJbYLp+3qHZZLvsifCSFKhfR048BdwKxfPMnD/R97777FS83v+ujr3rb4M6SwqKqPwj84Es9f5A3vPHs80zbgjp6dmYjRqOKw50xFy/soMD1vRUAts4dMJmVlKMG7yProxlH8xInynReMJ0XZFmAPBIqDystGkFnnuzMnFPrEzYHM65PVpg3GaFoaVvH+sqc/cMhTaGMzkxo6oyQOYqyYTax7vWDQL5WkecthzPP6PSUpvG46AhOcV5pV1uk8qzfvc/B4ZCibKmujdi8tMf+/gjxynjQMJsUxMqT3cjtBXN5TmwcOvXIKG14Mo4WNSmjyVLP1qgoG5sT9p7asPzKyxOao7S0GYW1s0e0wdG2Ho2CPj0ibJnkNg6s3LhZw15BON3gy0CoPMWzBeM37XBwNITGEYJDJh4u1Dx4fptHnzhHfjWneP0h090hLos0qxF3qkaPMkIpxKGt8IdBRFdbWhX8jZx4rkIbRywy4kpLNmpp9wqTewroKOB2PM3IolVho7XNV2pBNxo0CBxmVAOFDYtg+amjXY9IJfjzM+pZbtfMHfPVhmy1IUahulaixTHhDgIkkhZHcfHic+OGOMnt/yKSX8sXG+TE3Gzxc6G+UBNmBbFQZNzSzh1xrSXOjHhLys+NmQMV4rkK/1xJO44WOdouLdpUCPFsjbtWWB5RrrhWmJ9vIVOaIAv5dLdxkhYRP3UMrzgmWyaxdbWQTYVm1doiAebnUt7xEnn2M7O/ev0M3S2MWCey064oMVNwSu2MfIfWHKp2lKIsKQ+5WTFJbLWlxELxlZHZ+rRJr2OpKd/pmPChQjuOJiXHSGyx76jOBPI9RxBoVyMSHOWuRbGYSMpRTFGV0pyjmEE2F6YXLBLmJ45saiRpftqiAp2zkE3NaWtHVme7orYosBUZPeeoNpVQWhvMiUttHlveprRCvWaENQyOoynNuvVJyJV6zRYFYgntmk0m3bcoULNiZLtZMVJe7liUJxbH+drTu9JCQMr91UR0q3WlvGFkQQLEobHrZcfdNTA/Y+MBx+S8za0vBokMu9qI0+ysSbEkmCy83DVSWK2bPC3kifAnuXeXCxoKecFnobB+ldaikqE06Wv09lszI1jqYXqXLPJ3Q8kix1jFIlrNmkWPwNptiw4WbYp5twggizxYX1kUrKt/cMPqqVfTAtCqkbByT6nXzJ6OcLcjiyzlh+bIz84aaW0HNhaI2T25Wyj2oM2PJcrZRJneZTJty50zu6qNRMxJY7fabZAiaUMeI90kUpwfGQk2Uswi11fUCK/Jzq2f80Nd5FzGlLNb7ivzkcPPoBnaefNNi8zEJA/3iWhWzuSnlmd43L9dnm8oZJFjHk2gwXToFoS1W4yJeYp4rspiQShmkkjv8ZxtB7bAGT3oIJFOD+0w5Viqkcj5hkW0mrHdb36xmNDlWCaSe2i/bcHD8jHbocPXgXpsOZXN0Bah8qnJdWNmZQz2ItW65Yg2Y1tU7chhtWHEocvF7CTMEpW2dLhgxDQUtujREdCYQYyCDk3eu8hn7uaut/zWas0xvBFQD9W6Q6KjOIomVU75y2AE2TWKYvLb+bpndL2lWbHcSnGJmAqEgT2vQymUu4F25NMilJHZLr/aBSU/tMgfQChsdS2bWX5oM3IUByFdmy3Is6sVPw/4KtKsWZQwmwRLT9mtqE6VxMKRH7Y0q9ki0qiZQ8Vks/VGiauj5aQmGa6ruvw/I3cx96m+SLOaGzFOG/1EL2StWm5p6dOCol8sKmQTI7JxmOGnLSH3tgePswhg9M7+9kJ2VBOHKQczWK5pl+8pPiaCm6UcZJMS+3lLLAvLw3QQ1oeW9xiUsDbATyp7twRFQkCHxTHhk8xIIFhEMJFHdc4ijd5b5LHIj2WqIRzncYa4kMcuy3A1N2lxtzkRnQq1u1YVohihvRVRFUFjRJzlnWrdIF3EsiOZIYDzlleZ8jDtuC4IpGTZcYRSErG9iVxKkshqCEiXY3oinNX9cRDLHr/2cC9+yp2LqMLjB1v8wsOXeXD1Olef2+DPve49XLp4g3Fe89xTp/i0S8+wvjrjcDIgBsc9W7v8lnPP87svfJDpRzZsR8+rQ+ppzsZ4xtqpCfmw4U9+2nuJRzm//9M/wGBYM6kKogp7v3yKo2tjVoYVze6AcVGzsTblwr3blHnL5z3wEeRayWx7xOkL+1x40xUQpW08R8+ska9XnF074sFz2wyGNZ/9usc4t3XAb/ukR/l9b3k/h5MBn3X/48QoDM5N+IzzT3Hm1CGx9sQojFfn9vAaKG/5vA+CKKfPHHDv664ieznjsxPytYo3v/ExVn6pZPTQHuvvL9nYnAAg6zXtqYby51bIRi2SKflaxWRacnlrlywLXD67YxGsUcsbHnqGlbUZZy7uEWsPUcifL9BrA1wWed1bn2D3+TV+5+s+hNaeUz+dk5+dEYMwzBrcQcaFn2qJ0XHv5eusvn/I6O4jRuM5btziamF8doKWwaRvWSS7njN44IDVtZmRua0amXraaYastLbR0pkKokUV83smPPjmp9g8d8DgSoZs1WjjyEdN2jwJ8kG6LgCrjUUyPzgmHzas/UqOq4Xz9+zgfOSz7n/coqyDAFG4cPkGUgbwSVY2bClPzyivZqytzbhw77ZNyMbISn4oRpTP1eQHjmYjsvGBkvquhmJf0NZx9mcBAT9zxEHk0qc/y+iZDFcLxZ6QPVeSHwlaRj7/9R/Cn59x+gOOOFTctYKw0XLXTyphLaAX5/i1huHmDL9q+SNuLgwvHiFbFQwCKBw90OK2atz5OWE1svqEEZWw0XL250y2OHjeclCH1xxbD+7QjiPtaoTtkmziGD0ryKUpg21oT6W6KkFHgThUVh8zsqcjy4Ud3n8AmPxvcEPTbotCs2ZOzen3ZYSN1ghoC81m4KFPf5KwEhk/Y6v3xYGRWy2UeiPiZo7RG3epN9OqcwaHD7QMdiwqql5ptsxBq883ZFOh2E+7256pkPWa8dNCfgDdLo7FXorADpXBDWXlaYuQn/4lJZaR6oE52WHaGbK2vOZuI6rqTGB4XRleE7Y+aPWrN+LtGiN+03taQqFUpwKuFtqtFsSIzeqjns2Hsdy/2jbJ0rTBiq+E6SfPmN0VKXct/FBt2ph0u9rOLgZmF1tGzynNRmByb6B93TSpHGDtiUizpuSHtlFUvZ42FWuNODUbMeUQGvkmQvGmPZpVZX7WosbVphGawbaRplAI89O6iJaFwhYTzvx8a6T6SAlDjsdjxXK5pbX6Yw5rv/0qYaQcvb6hWVPqdcXP4fA+2+irHSl85j7jZ5W7frpaEJVsZuQ7/+wdkwQmtEMgwuCGUuzB7Jwe554dKvkRzC62tunPUKg2heZNEyNvq9b+0fUWiSb/rDaNSLXjLlqqrD3ZLHZV7TaM6iKQ+QGL3WnDAGZnbCEom1i0NmbC6jNhYXOzBnXaGGx2xhzddmh9Odixvm1XMOe9VrKJRY9da1FEzRKhHFmUrv3Mw7SoYxGs6XlhvmUEae3RCc0YqlMwuh6Yn5ZFn3Wqi8N7rM/mp9ICQDQbbaxNllgcKu3Y8n6rTWG4o+QTpd6AZmR1o1CvC6PtaJt+JRWBa1PUNCkZ6jUjx0XaiKc8jJarmTYX80ki2skuZ2fEiFOEvU+yKOjwRmC+ZW5MteYWixE7b5st6sinkejh6C5PvSrks2gqnDHME4kMJQx34iLa2oyF6V1GXLO5svJsQ/Q294/uduRHLZPznuIg0IytjLYU6lXr+8mFTv9sJHaw05o0dN2c6OF2w3zTUey31Ct2rQSYb3pmW55sZhHD/KBlesbhZ3ERZZ2c8+x8Yo6rlWK/pdoS6lXPfMOnPGPh8JKn2vDMNy0C24yEYq9eRNSH1xuaoWN62jPYsef4/FRukcik9Og2NJqeyWiHjvLajGYtY3rGoqLNSMgntsdBvZFTrXvqVUezllFtevxhRTO2fM96PSeUjvmmT7sIO+an8zRG3qKh84BrokXShz7tWK2EUYaKRUzr9Rxf2cZArom0A0+5PaMdZ0llYRHObNLYBmmrmV3vLP83ZiYl7fIxCUp59ShtgJPIpneLjYvqjcwIb+Zwh7a5Ucw9YWDErl3J0cwRBhkSI25aH+/A3EbCyJRtWloOK41tJKTOIVVrn6+U4G3RIg5zI5KlR50jrg2Jq4MF4dM8QwclcVDc5AxHpD0mbBLSDrPdJj0xEtbHaFnYhjsxouPhC8voyO7Nn4kgmUdXx+jKKEUhdZFTqfO5kd6UNyqjYapX0bq26GKKjMpynmWKzGrT2oY+Ue3vYHmfi9/dT/d/t6nQaxpK0PiK/9wpuKOksC8Xd71hU//0d3weXiIfPjrHWzYe47HZGS6Wezw2O82pfMLZ4oCojndf/STevPUUj07OcLqccNAMFl9DctSU/NZTT7DfDpmFnMNmwLQtuDDaZ68ecnW2SulbDqoB47zm3OiAnWrMm9af5SNHZ7kyWeOe1V0A5iHjnvEuk7bkRjUic5HdasRhVXLP2i7TtuDxG1ucXTvi1GDC85M1Htq4zgdvnGe1rDiYD3hgc5sb8zH3r27zc9cuUWQthQ/sTEZsjadkLnJYlZwfH/Lk3iZb4ym5C9yYjokKn3b2WZ6ebLBWzFnNKt5/5RJelMPJgM21KZkP7ByMGQ8rZlXBxsqUSVUwnQwI04wLl25wajjlo9unaOqMtspY3bDr5nXO3Rv7PPr8GbY2Jlxc3efD184yPyxZ3ZrYrryihOioq4yH7rrGXcMDfuLxBwDI84AIrAwqtoZTogo7sxGFD0zrfJFTOBzWTKYlg0Fj+XjPbODXGsbjOZc3d/mlR+7m9PkDiqxlVueoClVjkmgR5WhvyNrmdBGFzbLAqGwWX/0RVZhOzYNpJzmrZ46YTUt4eki72dJ9JcfmmUPKvOXKc5v4QWAwrJkelQzHFdPrY4rNOW3tyQr7api2yVhfm7Ba1jz59GlOnzuwHNHrK/hRi88Ca+M50yonBEe1P2C4OWNtNGdnf0y7MyA7NaPZHTA8M6Wa58iVknimZmNzQhO8fc1K2XCwOwLg3ru3eeKxs+RrNc1hgQyCfV1I7XArDXK1JGy0lGsVqkK9XyKDwGBUM9segVc2zh5yOLGvwWkmOa4MxMMct9bYV520DoKQrZk83OeBZm8ARWTrzAG7N1bRIJSrFdXegHzVvqomtuaoZGWLPjFGc7XIcvo6k8HmnPDoCs2Zxr4aZ9wyGNZUT6wS1luTrDuM6Hul2Jyb/ZVFVWUUcDdywigaga68ScG7r4zIU+5l5SgvTGgfXzGn6LTlQgJItEWEbCcnFopmyuD8hNm+MQC/l1nO4NjKQhTZrBeRaj9zi7zLOIpoZptuhQ3LVdRxIBu2hOsDdGgLFH43g7sqso8OqC42Nt8qb3mTkwypzIHOjxzz861F4UcBguAPMotGpl2n8wOLPNVnW8rnM5o1Tc6MWhu9SeCBF+zI3O1YnU2EZt3yCqU1+fboqYzpPS3Z3vHGIBJtZ2lXOeLQcie7r+8IA5NQA2RHQr0Z087LLkWfbZfqWIA0LHZztugyVGdtA6x6M8mmx9HahbWzi0KXNyx/sotG+9SudqSL/MjR887y8mqrx8+E+dlAue3TLpTHUtdiT5JzawS6XUnR9Nyk2baxWeo7r0bQ9x2htJzImL6GQ53l0lWbJtfPj1Ie4SWLPrcj6+tYGLkeXRGmFyyqbTllxzmG2eRYtmr1WrS6y1v1lSwkzflhiqgleV4YsFjwiOnrXDQj7dKdIst5knOnXaTVs9hYrNthNwzs/CZFdLMjs6nbyKjctUULFbs2nxhRs93QobyRIv5Du5Ykx+/y6bryY9rl18/snFBY1DiUsti8ydVGZMs9I5qdpHr561ZcrYsUimbFNmgKJQup72In55kuIueuMvIqqb3FoTI7bRs0udpIKfz/7L3Jr2xbnh70rW430Z7+3O41WVn5ylmNH1W2QWLGhDFjBBNP8Mj/ARIzxIABExAj/ggkqhBC2ELgAW6oTpXO7uV7973bnD5ONLtZHYNvrbXPTTurrKq0sl7hkK7uvedE7Nh7x46I37e+LjGEI0rSbL0JOFxKzN6HxCzG4u1EBPTAcKVgyLgGzcWQXIOTJfalSkdlmTAl3llur8YssQ6wcwYkVVvOa95MNT25kkan5+JnWromtyElB8tUWRKfSIgBxJgCgyL6E1kWQPRAQFztY5HTRknmWPUBw5EqTLKdke1rbx36I1WOZVxI6CGifvAYjhTqe49QE7BRTRAwriTaK4txrT9IDVZ9gEvssnCA7nyR+YpIz6NdKPpGI0qyLy0pTOf1VWLrkjxadR5unkODREkmfirdFGk7MrGdwpLR8y2BkhooC5aDTzJhX8KEcnqrHBxTZZH3lfLikFJm5eiLPJmhQild2iY5rklsawJ6sdIlwVb2yZcZQknvjjkhV08JwTHJicUwkiEFKMHVZEDhfGEGs3Q8J9OWW2YynefjMnDNybRP2M7Y9wVMIqS03CehQAVnhACh1Ify1yKtFROw/XNYyxgjYk6m/Uvc/npIYev4f//By1/6dpsXX/zKjw34lgPLo791EX/3v//PcdrscVHv8NXhGL+xfI9//PbXcdIeEKPAj765wOnJDt87vsYfvnuB75zeoZIOM23xsn3A73/5fXx6fI+f3JziYrVD7zT+3vlX+J//n9+FWlmcHO1QpQ7Hk2aPrW3w5mGFF0eP+OZ+jZPFAbV2+PLqBALA89MNXn91hsuX99h2NY7mHXyQWNYDvrw+hhs1/tZH7/BnP32Bdt1DqYDd+wVm53sc7mYQtUfVWPz6xQ3+9Acf4cWnN+itxrIecX9oMatH3G9nGG5bzC72OJp3DAL6+hk+//hrfHF/iu2uBUREvGpgXuzR1hZSBvzW2Tv8ky9+DVIF/Nbzt3i7X+EwVOi6CkJGLGY9TmYdfvLNOUztsF50GKzGb5xd4c+uLwEAfVfB7QzmZwfs7yl/vfz4DqNT8EGyI7RiSM+n6zv8sy8+xvxftDD/0Q36kVKNoecHnR8JVhanB+xu5oCM+OzTd/jhj59DLS18p6FbB6kCjpcHvP/qBEfPH/HwzQqL5zuGD71u4ZYecmUhZKSVKQh8dHGPr2+OEL3A+ekW77864YC9p1QmHltgY/Dx99/hq7cniKOCelQwHzI5yCIAACAASURBVO9RGYftpkXVWgyPNRAEZqcHhCAxHAziQOb22Se3uL5bFSmyWnMSDDc1v4hPRsjrCn4eIBeU5prGwb6bEfC0Hqa18G9miCcW0Qkgha1EE4EqQFbJw3tbF0lrqCNi4yH2lBIJD4SLEXGvMb/cY+gNQhAIOwM5tzg53uPm3QqiS5KTGbfZflGh/6wHItD8sEF/wcoYdzEWQAcA0AFwEtVqgP9qDrzogTcN8LKDP2hUbw3sOiA2AfKg6LXtZUqmDYh1gLlm2m6sYpKZC8hHBrfYMwv1QOZSbTTUQWC8TODeSai9hG/p381VQLENgBcwDwr2iCm/vo6o7yW674zswbytpx691qP5xqB/RRBXvTWJ8YkISwdzbWAvCW7VRqG+leheeTRvFLpP+HO9JZsrO4nFVxL9KcNYwiygvlbon1vIvaKvVRGoMLkz+eUSSFEHgfEkFGZAWEoFhaPnt3vlCxD0xw716wp2TRluUBxQM1ubfc8AsP6XEo/fC9A7Sk3lmCSGSa5oNgRKbhEQdcTqX2qGhZxTbhwqDlWzNxL7TzyaK5UAEQqDofeC4OpRFN+qdASNOU3YzQkAs4d2PAqYvVGwC7LAaiCY8ksy5L6NZbv1LfcRUZSqIzWmhOA506XNTiJKArXsN9adKJ5cX1NZ4GZ8rqgo3/U1QdC4iph/w/Nr56Cnekf2ePF1xOGSwLA/J/DjMZLhlpaptfM34oMhHqA8ub0ScA3g03mrNgJPQ210xzTY7SeTFFoOKPuqDzzO5ZdkHPNz1PexABXXEBSoMabk1gkMVg8oXm/VM0DG7GMJnim9eUneigxu5CR3zX2aIdUziUBAR2BB9vXwjDVb2feMkCpzkkf08JyJzbP3HrsXCWxY1v2ofgryUUPye7qIxVuP7kQlCSr3nQsScZLsSlFYz/YmJLZRlN+bPetYuvPk+9vHcry5KioH+ZR+zlyj4yfvqwgEXNU2YDiSBejmPtPZtcfuuSLYrUR5bbM82uxjqZ9RA/fftkzFpQyVibXDKn0fZTCTPhPMIZKBTV7Z+ZWDr2SRAefamlzrQwDL10gPfIwe+H52KWE4BxS5WaoY0TzvOY1W9wE5sTjKpOAwIl2zMclY03UwxlK9kj2e3ZlCveGbIVfV2JWCPgTIMaA7N8XPqveeFScPFvuXNep7B99KqJ5AzLeKnZTJbxsSWMz1KqGSkGNIlTW++DGjBKqHAeMRF41DJfl7Adi5Rn0/0gfqI3yjIC19rGbrSpVIrjcBQCZ1CJAj2dSQJMJTPQg9maXyZfRwi4rpt7mfMQFA2ZNpizVZTrkfEJqKnsx6Yjazl5N1KpTIh0pD9iOiUpCHHmE1g+hGMoXOTz7MpiLgy2BNKUptQyBb6T1EPzIxNkagH1hDkgN5st8zh/0AlL5aC1ElltTaSQorJDAMEPMZYtfx/wAQyWrGvB9SIo4jGcsnoLFsJ+3rv86D+fQWc2LtXwG3/HUAlr/3eR3/rz948Uvf7uzFz37lxwZ8y4Fl/eqj+NF/+1/APlbQ9xpqYCy/XQLDqcfJH0rc/3YEzgbM/qhFd05pWg4vEYHSt6DTKvYsYPETjbM/tnj7H2oMFx6n/1TBLij7UgOHlvHEo7nSqFJ6XR6gRPL4jMcciMyWXqT9C4HmFuguYpGS2TkmucmKnZAi+bTqOw4z1YbDm2sojeou05CSlADtDf1Aw3HE/Btg/wqYfw0cnvO5d991aN5omB3v7xtg+WXA3e8INFcp3rxJkvj0hVnfA7uPI3wbsfyphNlzqMi+JcqcIhavBTbf95j/TOHwKmD1Q4n+nF92+sDV7/5sYiL0gQPI4RkT7x4+A6V9+XWoufquxojdx8DsLWsMcsCG7iIefw04+VNg95HA7G3E7iOB1U8jdh+LEpSh95TCuZlIlQ4eh3MFtwDMY5JWJanVuI5Y/4jnwM4p8xqXrA7ozjkA9RdkIObfcJvdZcTpH0U8fspqiP6Mq+P9GQNkqscpdfHoX7IzMA9+1YahJbuPeQ7GVZI/nXMglh5ornm9zN7xuMwemL2N2H4q0NwwiZC9f3wtZlcB248l9J4DQXPPL/ztJwKrLwIePhOQVmD5ZcTt71Bmafap3mE29cSZLuJwQcYqVxxID6y+dLj+XCOXwLfX9KzVtxH1NuLxE4nuMmD5U4nmIeDutwTO/0XA1d+RkCOfq7mOSWbIwTFKoL0POJxJHJ4JnPwgYPuKlQwu1Vec/5HFu3/fYP2TVLcwxMLg9GcC87eUwvVnAssvuQK9eyVw9CPPASslPdqZQH/K16i7YGCL2UXc/bZA+15g8Y3H4Zyr+e0tQzJ8RVbi5m8rSAusfxJQbzxufttg/bNpUB6XwPqLAFdTFog49TqaLRmTeRqsu0v673IHag4KOv0Th5u/TQZy+TqgP5KwS2D9U49cZD4uJYZjgXHN9377PjIsZc1ht72hv8rOJZp7SvP648yyCczfeXhDmZ6vBVZfUcYnUo9nVMDsXcTsyuFwoeEbDu03n0u8+j8G3PxOw55Kz6oK1Uesvhyx/bhKfsp8XQusfxQ4DLessBjWKZBpJrD+0pUexMO5wvy9Q3eiC/Cdv7XYfmxw/MMe15+3WH/h4GuB/oh9rnYusPyGrIjueb0e/diiO9fYfixw/v86HC4U1j8d0J8ZmK3H/rlh72Nim0QA6q3H7pnC/Crg/jOFl/9oh4fvzSEd97e5p49v+bXF7fcr6I6gZ0j9lrn30s7Se33Nzko1Tp2LzZ2DcBH75wbdOc9Ze8uBbVwIzN85dGcas/cWm18zOPrRiM2vVVh+7VDf9Lj7rQXmVw7jQiXwRwYoy27HFQfg0z/pIWKEa1gtwcqNiNmbHve/0WL5tUV/olE/emxfalS7iKM/3aB/vsDhXKO9ddi+0qgfp7qSKFDYpnEusHptoXcW3bOG19FK4PSP93Azg/7MkJm+d/CNxLBWECFi/saiuzBwtcDs2qG+G9A9a1DfWyAAD7/eYH7lsPmOgeoijn464HBRIUpg+WUHtzDQO1ZmHC6rIiWtHixljSuN7kRj/ZND6Vys3+0wXMwBKVKQjGZ/pCPTFLSAsvSUd5cVAds7C18z/VP1DuNxhSgFZl8+4ubvHqN+ZACOrwQWb0YcLiusfrKHbzRUZ7H53gLtrYN5HDlIGwU31xjWCu21pYe0VahvekQtMR5XaN53GE4bDEcai697/v76gMPHS7Rf72GPG0oxBdCfaKx/sIU7qpnCuhkAH+GOaoxrjfZdj/GohtkyOGdcabRXZHPs0qC+PgBSYvudOeZfd7CrCtVdj+G0QXPTAyFgOJ+h+XqL/tWyBB7pnoxfdT/ALRPj5SOqt4+AkhieLRGMQH03wC4rSBtgbnawZ4sEHC3sqoJ56MmkLyqYqy1iQ0AzPFug+WaLwycrzH50i+HjY1Tv9xgv51C9h77ZYXyxgt5ZyHsOMO5yDbXtMZ7PUb/dIsxriNEhtAbqsYdIgMsvagLBjnJY4QLgPIHXrIHoBkpDT5esI1nWiCmMyLzZMGin0pCbPSs/Rsuqj8c9Jauzhs+1nkPs+1TrERI7WBPoGU2AFgJENyCuFwSXuwPCYgZ5/0gWMET+nUCh2B0IsCoDdD1ijAR01rKjskvMoBCAVojbHUTTIHYdxHKBuO+A4CEWc16Puz3EasH7Pw3tSV2Y8dBNYC55OGOMTHFtG+7fMExAVAjkWpDY9RBtA/hABlEIspHOTSAxyWOjcxB1nbouP6wdyeBTCDF1YP55txi+9eE9v/d5Hf/PP3j2S9/u4sVXv/JjA77lwHLx2bN4/l/9Q6yWHZbNgO8fv8Pbbo3n7Qb//Ooj/N7Fa3x//hb/6OY38Ic/+JiR+r3BYjag0h63DwtUtU21EWTnvnN8i83YIkSB11cn+L1PvsI//+ojSgQ3NeqTDsNdi/qkwyen97jez4s8MQYBpQPOVzt01qDWDiftAT94ewHvFMKgcHy+xeanxxDnAy5PN3j77hhCB4RRwcxGeKfItv3xM/zm3/0Zfnx9hm5bo1mMGDqD6Chx1KsRq+UBd+/WgCd79u6LU3z03Wu8/uIc7dkB3X3L5FsrgCAYyvJsILP3dQt3QibGrAfYffry6BVi42FmFiFIsoqdQn3WwQ5cPg97g+qWbMbiOxvYf3qM/rmH7ChPi1XgduoAKFZv+Lct4okFdhpn37nD9ZfH9EseNORBQr88wPYaeKjIqEWQvfp4j3FXQfSUOMaTEXFUPCYVcf7qATc/O4GwCSjPA37js2/wwz95RcZtaRE7zcqE4wF+U8Ec97C7CuaGPZ/SCthjD9Qe8sEgzDzMrWaAy4kFnISwBA7tO4XDKwdUAc3rCsOZR5x5iE4x/TUC8jt7jPcNZCdRf7TD+OUCoYkQqxFhZ8jEBQGYAPWgU1AIWUrhRfKgRGBtgUcN4VKdwpLnRe9Yh9G8Mew0BaDvNfwysMO0InM3nHpUdwr1HbD9noe5l7Br9lnaVUD97AD/4wU9lCsL+b6GP6UvVm/JIMWZh7nWqO+5gGGPPVnCY+5L81ZD90B3GRCqiOZKYThNab06FiYkNJRetm8U7JILF3IQU/dmk4NNgFAzLRhikgOKIOCamMC3wPa7HtV9Dqbg4kS1ERhOOQjqA2WNekepJ2sKyFwFQ5nkuAb6S4fFFxrjiqwUg1AA970DFv9khlAB4wqFgezPA2bvCKabK0l5YACCTqxYk/YnAkNKBJYjgMT2Zcnh8quAm88FzE4URjB32y6+JOMDJHnlEashxjU+SJ2lny6dHwe4ZYTZTMwSkOR3cpI4xiQ3NDvg8fsOsy81E2YV0D1Lss2Wi1oAF8mqDX1uecHG15R8mi1ZqXHN13j5FRc+WEPB87J4HTEciwKo9YHyRwBlkazaRtz/FgOSqg0ZwZM/TecgoHQ8ZlCXqzbkMEkh9SHCt6L0XkbFxZMMJsc1ygJb9kYiAMuvp4UZIEk/O+6jeeQ226uAPgFqu5gCXUTgcdJPymqI4TilyNrEUi0ETn5AID+uUkWCR2ERc/JuZsTsnIwcBKbO27QAYLYR+jDJEnNAUZRky+gbJDAYjlOSb5Il2gUXVaIAbJJ4NrdMzc3pmbm6o97Ess3DBSsk3Gyqr8gLgSIAzR2TUgE+d72JhQ3TPRfqpAX2LwTmb2Kp9sjBNuZAr/Xjpwr1XerdXPFcZGau2gXsXijU91z4qR/ZOWkOAduXGuYQC/MpIplTb1AWZlwzpeNKF9EfS7S3gf8+kgSPSpSUX+l5nubvLIZjjaAFTArRqbYe/bFCfyIxf+tR3zvcf1ZD94mh3ofCHo4LifrRw9cSLqe6JpCqxojqMTAERwnYVmD23qI/M5A2otp6qI6P9S0XjRhkxARcZRm2058aVI8ew1qhuXcISqT9TMFBRsDsPMyjRX9RQ/XhScJ2Dkzj8UYtCgsoPEGEm0k0VwOikXAzxYTmSqB6JGhgZ2fAcKxhdqEkNgPsR603rOUYjgxUHwqDKF2Aa9mrGZWA6nx5/lCxjkN1ZCJdq2EexxRsxRRZ6QLsKs0sIRbvreod73OwTGEF4FtWeNTvD/CLiqE2WkA9jvCrCmo3Jhkq4I5byMEln2SAsGQPQ63hW00f6OghRvoGcwWI2g0INVfn5WApV81hPbXhe8x7uHULc7NjwI9jwI9I8ld5GCcAqFXp2ZzSbQNEPxZwHGsDcegZ1JP7LZNXkSm0STKbpb7ZVzmM9GP6QAB86PhxnABlxgQip9MCQFMT1OaP7kiPZQF4zgFSTTUj+ZZltj6l44ZQvJU/L3f9+ef/hbcQEe1f3mf574Dlv/3btxpYXvzmafyP/6f/BAvNi2ype2xdg6Xu8cX+FGvT4223wvP2Efdji+1Iz1StHbZjjeP6gDe7NU7aA2Z6xLv9CmftHp8ffY0/fXyOLzcneL58xHascbuf4XR+gBQRd/sZls2AbV/jbLEvnY13+xm0Cjid7bEbayyqAauqx+vtEWrlsR8rnM722I41Gu3gg8Sm4z5JGdAah03XwCiPh4c5vvvyGi5I3O5nMMpDyYjHfYOjRVf8ie+37HlczXrshwonsw7f3Bxhueiw2zdYzHv4IKFkQD8anCwO2PY1nJfQKiBEgRgF+q6CNg5tbbHvKhwtCbTbysIHiRAB6xUEgLayGKzGdt/g/HiLm/slewH3FdoFJ9qYt3vL+paqJkIYeoOPL+/w1bsTxCiwWHXoDjW08VAqIEagqSxGp9EdaqxXewzWwDmJsTM4Ot5jt2+wXHTYbGc4P95i19c47DmtKu1hjKc3dFQ4Pd1hs2vgBo3ZckDfVZAylP0zlYO1PK6mHTGOGkoFeC8Rg4Ab0oJB7Wl5cPQGAmDqbBClciZYCSEj1kcH7PZN8lwqxEFBNg4i1dv4TQVzNDBBV0aEUSF2iZlYWEQnIU2A32sGBrUObmegFxbeSUpxRaS/TUb6KQGIUQILC6Eiwl5jdnbA4XoO1PS1Ricoca0CZJP2eVRcXFgOsA8N/Zle0JtXBUgTEO+YxBtVBJYOsVeASVJOJ1FK5fL3ROuBLvnvRoG48MAosbjcYfd+wcWOXPXTc39ErxB1/gIEFwVi+pO/31IvozpIuFML0SvIXsAfu5Lsi6Xj/g8S0Lx/7nuLOjIxtw0QViA0AaL1EHcGLATnOY2GCyJqoyGsgFtxwBFWsOanU5DJ5xYM61ZiktpFE9MihwAkuxbhBWRPBjf7GgE+NswC6ivFJNx1gLmTECGl9QoGBbklwbwIKH65XB9Sqm8iQ5R8ywFXd6L430T+iE8yu6Aj1Ej1hXmUBdQXr1eWbR6Y5ltt+DfrdgT8LCI0EWqbrru06QzssyexPGd6DXN1BAEmjVu+mthbhlkJDGce7RsFt4jlWoiCktgoY5Lt4oPuSGmRElBZ2yFHpPM9SVWzbDxKFKmwGgjczS6FEj1J+4WcAHwO3HnanVjqY5KnUThMNUQRxR9och/j7Mn9s+Q0VbcQyCWP4Hyq48neVt+mFNl0PmSq6/BtPjcJEBsUr2JOV2XdChc+GLzEn+l+eo18w+371I1pdijXVU4Uzn5Ak2picg1PqQFK6b0Z5OX9z7JaNUzHm32BGYBnySgTUqek4yzfzP2IWYaZAXpOjlUjk32zHDeqD2We2YcHEIzntFnXTj7KD2qZjECTFAx5EcHOCGrtnCFCylJ2a2dTXVHuR8wsfknnVdMx+4bnQo2pfiS9J8xhktpm6XDQoiSpFrlrqvLRfSzHz1AeFJ+i8NNroMaYvJAEkQT9oUhb+Tz0m1LiGcs1WryIUpTEX2lT+nVkL6XuyQZH8fT58wJYLEC6VPF4QPUedqXJJKf7iydS4Czvza8lPwvJ+EsbWJ+SGbQcbCNZ0cJkWfolAcphERNrXdHPSCaTv5c2JKmvnFhtgL8PkWxmIPAGANl7QIoihxUhlm0WEIh0PCEUv6Uc6b2kxDX1WErJahNgChRKNSDZewkAcKFUm/C7iPJXymDF5BN9Os8ryfOTK0+Awo4WsAlMjOXPV31IQfCZa06ehAMhJ9bm/sryc8/tZHCZgeVTyevTbUg5yWX/ols5xm8/Y/m7n1fxH//+Lx9Yrl++/pUfG/AtB5aLz57F/+B//E/x5mGFYTAIo0I1GzHctfSFBQHZOoQ0qIdOM0yjCtNgKyNEpzgwHhT0nkyJPaKXi8Mph+bQhJTiGUvwR6yZUhkWHrACwkoydRHsZUSaueuAaCLMRrHIu/Gorhnb7eaBw0KfvsTi5GWi74pMUw6qCAowyUsUdOpcXPC+woPpo28N7AkZrDwQZCZH9fT0lIkw+VNyz6Wf8Tij4vCl94mFmMXSewnNwVL3rLow96qwS8A08NV3ArvfHFB9U5XnUj0HUL1n2qeb0xM1HoXyXCoVpecVcuGn/krfcN/lkEIxQqqISAOQ8EghLCh1EL7hQApMLFiWqOaB0C5iWvVMIComIBCQiq6TjFaQ/dKHLDdEGXry6yfstC95sC3dbbNpYM2DdqlMSPvmZhHzN1y9z7LocmxmGk7Nnv/OfX2hSttIA2F+3qiA9or+saevkdmn6zN1Q4YaqDYoPZYcwtPgu0c5frNLMuqAUnieAy4y65drNpDPi+PP1cCficSgyST3ZtplCglJ13Kop2NRY2Lm5um4+klaqtO/S78igFyUDvBxIZWm5+2FmvfNX95ulutDULoIc7l4CQop3ZxpHyPZMm6Tw2aWXZo9GRuzI2OUuwDzwPV0eMsBIvn1z0Nn7pIj6BFTJ2L+jpUow2IGkXLkPrmWssig6K8LhixeGcrnAip5/qSbzpV0oHwteddyR6u0sTA/SCCXyY1pwLexDNB8g/E1MQe+vtzXBAhTyEyuECkhOGq6bvJniGtFKZjP58bVojB35pB8hzYNu3X2vJG9yoyVrzObJQrwy/tfnjsN8zJVf4gQi98qs3jZU5eZZtZ5kCHKwIcMSupN1Bm4iMKuSBdLYE9mkPTAfaP/j/ugRtoUOPDG4rHk5waH+Qx2CmBNUt0MxjKoysEo5bMvA1sAZh9SqAqS5xGp35DPJdMclwGL6UJhzrwRYD1DfMJ2JWYugUXdheQ/nHon83BbbQPGlSrXcv5cjALls7feeNg5ZbZPPXd2wQOQGQw9IVn4mmVghMTMiXLMBDkJEMjMCk1AJioymGpIQCFGVmk0qjB1dslaBx5nuqZtYB1GAkD5GpK5a9ETsJCJnypLcsqpGkM5h/naY70FQ3Lyvj99/wMJTA9kEoPhHCNCRK64eerhFO7njjsS2MQn+5vlxDmBNRgJ6cO08AdQ3jn6qdYCgNoN7IuMgOx54YSWyay5K1PEXK2jpscnjyPBo2d9R6r0QIjJ08gXT6Tfh0VFQJaOmc9dQ1pfgGdmHTODWBizGKefhzABufDkGANf96gl8KQT9QOQ11s+V2YZbQJXSpJRrCtuU6sPAm8+6K98yizmfdPs4ywA+inDl/snc4jO021l32WuB3FJkirE9LskUYWURRpbmMqndSIAASQwAbswHR98ALT+AFDG0U77JyW3k/Y9+gChpjdpkd3+a/79592+7eE9f9OB5V+rHsu/zO3tZoVZbbGa9bh9WCBGgfaMwT2ZAesPFZT2iHWqiqgdRFrGd04itAr+0QArB9tKQAcIFRGjJoMUBVkaFeFlAjl1gGgdw2IkWR8RBeLCAUGwHuPMQjUO/qAhdAQ6BXvioOYOfmNgj5kgKQYJrCy8pmQzNB5Ba0BGhIVHaBSwcLAHVT7Q/SoBwyAQGnYVlnLzQWE891A7CT/3DJepA4QTGNahfLnACchBIhomYUJFhBkgekk2ZcHH2ksPsdOIFQNUVCcQcmT+gsDanjqoR6LX0AYGzWw0huOI+qsa40lifQaB8cxDP5KRsGsuAPia+zBc8HwEzclChNTzFxOQnEeoQwoaEYBbeai9YhIm0sA8i4CM0DsJt2AXpU7yT9UTuDKxUqC/CJBWkFhREaEmmxFTLyNi6mCrI/NsxgRAIwM6VJ+SGsdUbK0B88gvHIa18HrJx2d2sqyKF/YoeXelE7DrWEDY/hVZLQAlCTMvEMT0zt2/iJi9TcEliWHKTILwHCRtulbyoOna9KEtgCGlMta3Am7BbY/r9OYK9B6rnkN7d8lBVx0ojcshLmZHCaFrmZTp5iigIgNMfeB95IjSgal69vsdnscCwHOBuFvm4BVMATy55sGze5GeK2B4wVoH1XMgPTxLCaUigd0EXlVPHy6Q2CFFH7De8zz55CGm1FFAdQxAGY5FkXH6WT63BLN2AQxH9JKOS6Dacv/HNYEqh1hRAIi0aaCXAnbO56xvE9tmUNgR34qyWm92BCAldMSgBLREkcBvINjvT7mfXE3nvmVgqg+YAGjI4ELAJ6CbWahqEzEe07c8HHHxIVQ8jgKmDChFbRNQppoKUQmM8wnAS5/lkATX0qaKCw+4Nc9hZqSyrNi19JTnnkq9j+X199VUd8IgEgHfsE/P1wBDf+jJHldJGpuYx2AA76fjz6E642rqz8wsKIapBxHIixexSK8zU5fBuJ3JsjiTgWzQMklUOYRyUYVAx84FwshjrR4jA2IOMSWPpmstJX9OC1apt1FRPgsQZO4v+Zki8wKITkxTSkIl8BDT9hL4FCE+AW/039rZBNBFYDqpbQVsWgxTaeGjO1YJjMe0CMBrI+/DuJBc1EhS3f5YFXCkxg+ZtacLBlGyw1F3ObmU568/1mQYa1lCaaRlqA4A+CgKE2f2Af0xN2oOMQVoCbhGJvmnQL1hZ2Nm2cYFAV619QhmSvvNgDwza6GScDN6Mt1ClZ/bBT3F0ECUEiKm1NLkYae3n/8PmRkV4He2J8BEWojwlYTuUqXGGODmCqoPZMlSDUbUrCJxcw049lPK1OXoK1kWRoIWUL1P73f6TaMWVLoIINSSYLmWUBnIpkUyNzdk+0JEZrxcq7mYs3fl/U52TcBVBMWYV1PITTU9p2s1hAskwBwZQtU72IWBPrgSnIMQ4GYGKoOMiqBOps9lERhmI4xCMAoqA1KA4TYJaJYFoVrz3NWyLC5n4MOFkOTxcwGh1ul9QzAprC+9lbGhNBUhIEoFuICY5K9icIAkMA3zushaY+6MzKmq2XuZQZ9W9HAqhSjI4GVZK/fdFCCYE5WfhuqQ9UtAtQDQOAFJkd7gMT7prwwTWAQmUBkiz1MGdSnlVeR+y3yOQ2JJRULeOQU2XcvFa/mkExPZe/l0++XpM2BNyb4/z5z+/O2vUa3GX+UW8Bcc57f49q0GljEK7N/PsRfAycsHKB2SjFKhu2+h5xZCBoRBERyOEu1xB+cUnKXEERFQJsAcDbCbGicvH+C8wtlij59+cYnFskfXVfAiIgaBaFPNQevo9RMR9VGPtrbYPMygTYDbG8SZRzUfIUSEh4bQAXJXQX+yw3DXQq0tghfAKOnRi2Ay7NUcQhG4xCXrFsTRiNAroAmlPgACbulBFAAAIABJREFUrHm4WyAqxZ7F+wridEAIGs1Jj7GbAxUTICEjIiSa4x79XcNZd+YR50zoFAdNQNl6QAGhCpCtg1p52F0FfdHBPtT0zSmBULGYvvpkB/9nS/hLi7hnlHWcO8iNYRrjlcThOdlaqAgxKrRnBwzdAqEKgIkEklWSELYO4lBBvOjhBgVVBcRBQWw1awg+7eFjDZwP8Nc15MrCV+mDZkzSvJmHuDcpkMlDjBJuFgBF5WZmod1MwC88fBRQO6atqr2EO3HQDxq+DRAW7NKUBFlRCoSlh9wrDv5z9hxKqzhUaaB75WAeFPzKAVuFKAmSmMYJmE0C7vU0VJERDghNQPNOw7dkZ4OO8PMA7CXccUCsIkHykUd9reCXHrtWQHYS/XnS4AlAjRLDhUeV0jndLEB1CnbJGoiYjtXPAsQoYFdI8fcC/XOGPvXPHJn09xpqTyBuVxF2HQmE7SQzs8vAeoNBob/0mL1WCMnL111EDKcxDfKscohVRNxKMvPHHu03GsMxe+yiAvwsQH+jpmRPybClnG6aKyO4QgKMRwHrHwrc/z0LdUsfq5uTpc6Jpdk/GGqUagzfRCBwULMLLiZ4SwAg6gSUVnytpJMY10lSKMgSuzaB75Esz7hEYYmC4SJEMCntM9WGVY/0beoDE0qba9Bn2gL1HV+H4TgtlASy+9IK6K+4KDKuKb/NDJVdpsURmRZiFhMDTQ8XkPsVpQP604jmmr7J7FccjwV8Rd/k4RmVAM0NF3KaW4Jkd8zgILukl1SZ6TmCBrAVsIv0nDKDseRbbfiYYFI1yJbnFRuBmADnuGZwWX+WFAyrBMLTEKi7SKB7EAnUEaxVW57X4TgFaS25qDKcpEUDCWBLcHd4lsLFhsmH2J3Hcu4ymPU1Fx3aa3B2qlLvYmL5+nrybCICYQnIMbFWcQpFIhvF69cuEkBLXkizIzAORhSwLQKKJ5WsGEGerwjCDucK0lOK6Gr2S1YP9HgGR5+kr8nyNl1Ady7Tghw9lUFPx1E/pNCyHUF4lmWyh1UgzgUQuN9R0QsbJb2NYw4ysk+kwZEhRtUwAWQRgXFB0Fo9kqn2TQrZmwtUW8DOFfpjLs6IgNJbCaSFkLxfMj2+4mJf0JJAODHO4yJ1ECoGDNUbAkZfP1GpaAHTUcIpAjCuCC7NIYNaVlh0p5Kdo4kZD4aVHRDA/kLy+l0KrF47uEYWySzAbWUWcVjLsiAhIuBmEt7wPqony42YXq+7iGEtqeCYERxKI9CdalQ79ju6lo/XQ4Rwiiy5QpK5AmrgIuy4VNB94PM1Au27AcOqgj4E2LlC9egwHjE0TA6B/klDQOvrSTIblAAUATU/L2Va/NJQA8G5CBHjml7UeBBAo+hhHAKEi3ArBX3wPD9aYmwV6tsB41rDSG47OHZZVvcjok49kgm02oUGlSgyLfgxZKm6H4EY4VuDmPZV1qowrdlLGZMsNktifZPA8SMtVGRPJSCBUGuypzEStPYOQUvI0cHPc70Ut6/2OQBAIMxqQEuI0ZVqEACITUv/5G4EDEN3RGJKRTcyzEhzdYq9lhqx1mRZVSISlKJXM0YygFmiGiP9lqMFjKbvsqn4HIc+PX/Fb8gSvCOmFFityTrWT+4zDdf0ej4FoZnB1KlKRWtCI+cmBtsHhg15T+bziWQ1h/b8K9LXp0Dy/yegMgLwf4OB5bdaClt/51X83n/397F7mEHeGg7pSbIKFWHu+AESNQdGt2CoiEzskm9j8r5QmqrvNSDp85EWGE4CqkeZ5If07viaYEU/aH6QH8hG2AUH+moj0F0GmC1lnmrgwKQPAt0LD/MgJ/N8YlV8w5CRUHFf9T5F3Keo/XJcFVme8SigvpWlkyyvtLsZv+T7Ew6Iw3lAfcMeOTmmlegsLwRK+EVmkYLhwOdmQJTc5zw8+ApkuI5ikYiEOqK+kegvPRY/UxjXwHDpMP+ZJuiSYKjP8Yj6T1oWmyfWajzK/W4c0HKsvu7ABN7+SddYks6N64jZO4aY6ENiDvrkWUmeHDeLaN/xseMSxUvkkszQLqcBrn/msfyxwnCMcm4Apu32p8kzMpCVaq85fI3HEfOvRfG5uRmTaw/PCQIB7k+VmLz+jP16ALc1HvHc2WVEc5fYuRlrAkIa9LuLmK4flO6ycc1BXPVpMcTydV58LdCdp145zfsGLSb2JLFA+gDsPmIdQvY65bThKIH9S3b65Y617jKiuaJnyc4FhgRGosqsLQfV/oxgs7nioLx/BbRXAv1JYkXSOaUMkSyh2ZH9GdYC/XnE0Q840AtPwCUdC+3tKqX9zjmUybzfLbB8nV6PJbD4JsI1QHcuYA4pTMVkKQ6PUw3AcML0UxGA/UvWRzR3iZFUfBzAQVoNwHBMVnrxMybldueSAS0nkyy5euT7dP8yDcsLXkv1HT1FwfB11R3KeyIqlGqInMCbGcjsd2vuCMR1z365oJMEODIlOMuHRUTp0OvOBNqbmHxy02vFEKRYht9SC+ES25qkuos3AXYmMJwILF4HHJ5JzN8EdKcMOBkXopyb7EejLDp1BqYhvL5nv58aU0Lujsxac8dOvcxA148Bh3MOkWZLZupwITG7Cti/4HMDBEL7FwLte6B5CNg/kwwSaoEm1T10ZwLztwF2IVIKLP1w3TE/b91cQB+mZGHHRiZ4I9DeBgxH/HzsTwVm72MZ3r2Zwp5yWE79EItfstpReptrO7KEvNoFLug0Av0xv0OaBx6v7iPam4DDhcT8HZOAZ9ce+0sFPdC3t79kdQOBFmWMrp3ASzAEfbObNGAmiaWdkTXJjOAEuPjZIDwXZ4IiMGoeAsY5wQkrMFJlBnhuTBdLd6FdSNg5gVjzwNfGzvkcVQqpsXMBVzNRtzvTXFTpInTPLsbqkQzfuGTAjJ0RBC7eeoxzfqfVD7748QBgOCLTJ32EHKd6jf2lxuzKlfe56lkd0Z1qLF8P8DWvLTtXMDtf2C6m/6qkYuBj1JBer5ZhRfWDw7gmw6NsJFPaB9iZxOzKYjjSqDYOh2cG87c2XVMKqvdkMjv2HWZVgfSxgBsRWPkRkkSYqgSH7sygvmdwTHdmSkpvcz1gPK4gHOWyOgXddOcVqkefFq7IcCJJheVIya7eO8RKwqb+xlzP4WYKZucgrEd/2aK+TQE9iVWUnknD9W0PmxJpVe8hBw/VWQxnbWJrCbZV5yA7B3vSJMuNm8CdEpAuQD/0QIwIjWE67cOA8aRBdd3BrWuog4WfGUqOH3q4o4bH3FtEJckmDlNfYzSK0tdZBekCxOjgZxWfb/SsAXkicRXdiLBqIYZUC9YYbs8oMqxCQO2GxDQqiMHyeRID/bQnMvdLyscDotGIbQWRQntEl+o8AhnNXAsSE0CElASBubKkMkyU1QrC+SmEx5IFLb2RKWk1Gl2OAU9lpTpViwDlviXIRwpguyf7WFcTaEzHAqBIdJ9KYiEEovMEdElqK+qK98mBPTEgDiMlroLS1xLWk7dpHURiYf+VupF/09sT0PltD+/59z6v4v/++xe/9O2evfzmV35swLecsYQT2F4vIPcKwlK6hgioO83V79sEMNZcuZZWQngmGbKagl+gIgDxoKEPZELMnoPtuOY2s49tXBMIhUGjvkk+njT8ywdR5FZ6L1A9TJ6qKv0uvlNM+ksDmWspHdIHfjnHbgKboRIwW8rAfPIPZSlZVJKr9BHQSWKnO8r/pAPmb9KKfkMQ0tzwb4DeK8a1p3LtrIiIvH9OR4xSoL6LmRCivE4grZynQSutOLu5RP2QpE1vNLvOHrlqPR4LzP5ZC31IBdZaJJ+XoOfvGVe5hWPVRH2fPDlJRjV/5zEuJFd0b6bV++aagKB65OukDzxPwqWAhZmAUUxqZOpqGsLH5PuRQJQKzW1MwDVVRCQZXRRcQbZzUXxr1SaiPwPm73wZFrliH9FecSiNGqiuCaCqh4jqIcnKkv9H9wyBaG6nYR+B11swHJSHI8n6giEijphKq3dpMPL59eYQDkjIMfI8RrISNrI+5aB5TeQ+t/ohAZYuFrYiCiAKfnnKkaA1Sh5/9mo1N6mq4T4FPYwcqn3NxFqzj6g3EXbBffKVLMEVZps9ThNr194GCCchokCz8dADQWzfEUTN33tslUb9wEWaDLohUKo0qk1Mpe7JByeA+ZuUHLkJlAQmH9HsOkBEFoDTT8hV7ObBw7UKxqbjSUNr/cguNbMXmF/5tMIdyWzoiemrHziszd5xm+0V5cJmHzAuyDq4mtdFTl9lzQtfA3MIcA2Hg+ae/w6GoCsHhETBvkyzJ6CoH5NXyyaZcc//qyF53yqJ/jhJF4fp3EfF9061oz9OpvCT+jGi2kUmOI4S9YZBHqpLksGary8ljAQgAErKrHQRzhG81A9J+ikj6keP3lGipw8R1T4gdpPEt9o4+MrANcDs2iHLSOsNh+X6gfJ56SSaO5RewXHJcyCdQLXxcHOJcVAwXUAwiq+RoFTQzkySo/L6qB8CPyeCKL7S2fsR1VbBLlTqQgxokq+uP2YRfL0JMAcuHpl9gB7YKaqHqeez2nq4VsI1AtWWQ104MwRsPV/v5de+dPz5mkmZzQap4iGi2gVUGwcIQHcheeMkmluLw4XhED8wzVQPEc2tpYxSTDJxCEDvPfoTjerRQzpZvJGsPWI1CIRC9UCDuYiA6giugiIrqjueg+rRQfUekIYBNSFC7zyUDRDB0I/XebJdVYV6ILtW7fm3tBF67yAtj5dyboNq4+Baw2t45yEHJsqarYVsNdTBUdrZSJhHSiV1T4AYlEC1DzCHiRGRgwdgUO1YHSKcRDQScgjQB4fhtGZfoQ9TwM/IjkU10OMmBwVIAfMwYFwptDeWElIPmK1DMAZmM0CO7C5UqZtZb0eoTnIQTz5TNYQUhJMHeEAEBb23kKOBmytUDyOrVR4HVLWC2VkgRMyylNUIqM6iEgKqd5Qu24DQauhD4H6eNGTP5kwfNduxgAW1HxCdgTcSZmcRjIIcHEwgYBODR3XPFFW3rKfU00AgLEKE3qbajhCh7/ZAjNAHk35HP6W0AXKw0HvFz6KDTdsIUz+k9WmfRoRWQ3YW6sB+RtnoAiCl9RCHAWJeQe3H8jgRIsHjsoHa9gn8OSghILqRoMpHxEZD9I5MHgCR5aZCUKI6jAR3ShV/pBQCQUuI3kJYhzBrIPqB94tMaZWPPeITICccvYNitGTonIfoBdNYLXsshXWUttZV+v1IVrHrCfKEgAgEbSIlwooUthNHC0gBYQxBYgXEQw+R+ihjSI8xBrCW/07AMCe6Ruch0u8iwN/vk29BCp6XHP6TVAIlcOeDUKAnYLBPbKgPEMozvCcEgkmlSl9lTKxledwvCunJP081Jr/oFv8iNvNbdvubLIX9VjOW7a+/iB//N/8A/baGauh3nM0GdL1BDBLuoPHs5T3e/eyUXsIji9grVjLM6DlEABAF6hd79Dct6tMOUkZ09y3UnKX2uK6TTIJF90ICvlPQMwf3kEpjW18SN4WKkNcV/NqxqsIzzVC0HrFXEI7SS3fKNEuoCPWoEC8GiKsafuEBL2COB7i7BkjhNWHp6HVcOpgrA/d8gLxmYqc7dpC7qZw+zD3MnYabB6heUro4CvilhzxIFrUP3C83o7/PLSiLpM8h6el1LMl+5pFevgySQhMg5g7mdV18S/bIQx1SiMUgWGURATEK6I7gqHvhmcjYTX5LIDGm95SkulkaXseJIaF3Eghzj+a1gVvEclwlGEVygJ69k+guAvzSo3lrEEyEa1PwQx1R3SkMlw71e42oKZuMOsJsOESojuyk2Qh0H1tUVwxagkRilxmo058TqOVwmHwOxCBRPUgMl46VHB3Z3szCSk9JaE6QzN5PfUgySIHiFzXbKeETggsF3UUCMFuB/acOzTvNNMmRixPCUR5aPUgmJq5iCc6RI2thfB3RXMskrwwEEvdkhCl5BoQFmjsyg3kQrx7Z05nDpNyMwVEmeRXdLLHCMfk5qfZK/kLKTvWBLGHUXODICy1uEeHmAe0bhnnk8yAdt+sbPjZ7w3xNaapdpaE6TD4wes1SQE+g5LG5feLbTN95vp7Y+pKiuWIQTXslprClzDiKpBJILHn2K5K5RjqPEf15lglTVipdYl/T+ynvVxRkk4YjUTpqcyCUHNlzqvqJ6csMfw44yWxnDoLJ+8mkRS5eBZV8peZDht+na64oB6pJCZB9iFFlGaooIS75PrpL+xonxl1aLhK5lr/PacHZs5YZMemyXJjXVKldSV7XesPETbK2fO7mhgtKuiMbqnd4ksKIybcnU3jSmgsFw5FAtaEXVyYmNZ/rekP2WwS+PvVDGqzE5LnMHi5fc0EjP166WNjh9oZMLcNmYmEvS4BU4IJhMGT7D5e8ToDs3xRJEkp2Unf8bCkl8YYy2eZ2YlKzmqG+j6XiJTPV+fqwS1HCosqiYJt9lryPmyVVxRhRbbn9HFAFTN5JN8seYSTpZUr9tNMCSlDA/IqguD/OklS+jnlR1baigNRhRUZcjcCwFGg27IbVAxe12C3Lc5TTUnPfrBpjWeDIITvjklLOvADiGjEtPgElcKj4mVMYkXQRtpUp3TWWpFrp+LzjMrGMibnMwLnIdk3ywD7Zrh5SaElKW80JqNkrXG1Def/k7leRFljIiBPwujbVjaQAGV9PYTmulTC7UFJ8fS1h9r6oRSj/5OMzuykHMppPb1HLCZCOAeNKw2w9QiVTHY5HTlP1Df2fUZPBZuCgw3hk6GF94EKAnVMGK3yE7nxh1+3KwOwdXJNksprBQ6FWRe7qZjq93jwHdqGTvDawrmRmoHrWfuSbr1lHInyYQKDgNuAIyOXIxYkMqNR+hJ9XlKyOPGk5VEh0FrFW+CDE5wnDJ3rKQENjCNR9nIJzYoRbt9CPfaolobRVdinsx5G9jE1iNdM2IQXZz7T/sa4KyEUIZByHcQoWSz8XORiovKARpd4jP18O8CmLHROrWP4OP/e79O/4NBwImEDnMEw/AybWMgcAPUnuzcDzg9tfBliGXwBS/w1uf10Yy//t989/6du9ePnmV35swLccWDbffRlf/df/AHZT03doJaAj5FYhNAHmUcGu6bHL6a36ID4YygACjdAEqB1lsr6J0J2AXbOWoHqQTzx2QDRp0POAcKJIbYcTDvJ2xch94SmVtSmIxKbhPRekI3DQdgt2Cw4nHuZRMlCjiUWyGzW9Yn5GyWz3LJAp202smc/pmUmOKRwls2ZLc0cwBETjSUhhJfw2kCnx1s84xJidQH8aUzImv7CrjSh9eG42Ba0wll5gXAe0VzIBm/TlnQbTcR0RPtvD/OECWfabj0UlhlgfREnoLBUJefAXk4fHtRH1A0NPcsJqTkIVbhqYqgcOz6HiOSa7yqHKLgguQg6MGEBQYrktNZDV7Z4JSi9Tsmwe6u2SQCanszKYhoNrVMB4zA5G1X94rZZYfjvJU/Pg7hv+Hkl27OYoaZlPawmyp44hLIkB7egFK+xzTLLeNGAGPUkxt9/1WHyhysKAa1GY73HFfcgD6bhkmidlu+k49yjJo1GkMJzldN6CmY7RLlG6FJ8mfuZznmXYdklp53AkimRZxMTSphRL32RWPisHCDCCFkl2TK9aHnyrTZIGOjLQmbEe1xzoc2CLtBwy7XzqAswAIqdv9mfA4qspACR7SQpoAqC6iOGU14u0CTTuuU/SpuPI388CyNUb9X0sw6CbEVD4FFhSznGSuLtZ8k82fFwGPAxaydcmAYZdiAnMJaYq1x9wAOSg7Gb0RDZJtls9RtgZ2fv6PpY+QdeKMqTnJFVficJo0TMIREGAQU9lkh8fUTqagejTJGo1Ug6NyPe49BH7ZxKz96EEtyBSbsmBOEIPsUhhC7ixEd2ZRH2fqgtCYjc8SniMa7nfuuNz+1TrEDXS/okUXCUwe0/WO6ei5vCfpwmq/TEZeXYe8jps7kOSc+bPT0pT7ZyPN6mawlfA7DowSXdESrTldah7suLd8RR+w8UVXtPZv5r/VDsyqK6RKUk4A5pYAo7sTKZk11j2P3crmkMoQIwM+PS+y9+TuqcE1TeiVFaYfUhglwDP7HjOXMvPRpPY1gz+MpgyewIg21IKO6zpm2seqEzRfZySYX1MUlbKUEUConzhkMDNpKpRnYeb03dYbci6BSM/+OxUiRW1c1WqThBBps5HDMcmXY8e3alOjHQsnwm+Fqk/kmzw4cKgvXEl6TUnrTL1epIoPwWEagglpCcnsuaOR2nJcvpGFRCmOw+70ARmyN/zOZiHj1MDwRI/MwIX81ICa0mJBRKbbTEc1zAHBzEG+Bn7Gd2cFha9p9w0V3y4VkHZgKAk9G4k8F0YAkuBct/sbeQ+8jxDiCIRVkNi+FyAO2qgDg52WaG662CPGui9pSQ1REjr4RuCQKase7hFBdU7+NYQrElJqWulp15JLcnKWs/k2CSZRSTbGasUYCMlz0+SyubOSGHZURlrU4AV/Y55WMTUGen9VMGhud/QijJXJVHSZ5WcgntCoFzZsnIk70v+v0hgs4C73DVpHUoKq9GFdX0qhX0KaD8ICnJu2hcA0TkIKcl46rRPT2WrT9NhnSPgAyYwl9+DSnLbKjG0OSwpy3HzNhPIfMpePr39Qgzy5zCU33Yp7OefV/F//V/Ofunbff7q7a/82IBvObCcf/Y8nv+X/xAxCByf7rDdtThe73H9fk154ZzUhX2syBbumfIqVGQo6tYAOpI11Kwd0acd6tpBy4CHb1Zozjt4J2Efat7nwESGaCLkwiLsDYvuWwc/qCll+dYgXg44Odrj5vURg2s6hbhwELmzsBPwczKnce7Rrnq4Hy/hno0QdwZh7gtzyPvLxOJEiOMRpnYYr2YQTkBc9BBftXBH6c1fBbKaS7KQoWaia1h4wAmoPZlBYQVizZoRIA/wiYmaB8Q57w8vYDaKAS0dQz2qjUT/akTzukL/8YjqHb+UnwJyFl4/YQofJIZPB4h7hvuIkIbgJ585ek8mEwEp8EdC9hL1ncDhE4fqWmE89aivNYZLx1RdEaF6rp76Iwd9qzlALgJkJ0pojAhkG+UgSiqs8CLVWJDBG4+4ABANCqsxDaYE7HIUpW7CzSP0VrAbsCHb2lzJEroiPI+pvwyo7iXMNrEyKeBE9fScqn4C2q6lB9MukvQ0JceqntLh/pQA9/CCixlRTSvllPNNASxBExBXjwIupfnmhYT8XDnMRo5MZK3v6Ol084jFV7IwV3ZJoG2XfHx9T7AyrpNs7l6gv4iYvxYFELJSh4siMYFP35KJbd9HbD+lJ9Uuk7dWcP9WPwEOl6L4aXPHW7UBumdceGlu6EmFBNr3AocXqVYmITP6IJP0/ZDZJ4bk+JagLS8CuHl6vSPZZ/NIsNmdcyFk/pqBMNUmL6qQPePiywTmgZQ+mz5aKXdHCbRR6TkgmGB79ocBw0piOKEUXbrk8U3eabtk+m69IfDMqb3FK5sY4iy15eufFkQigYLP1SqBbFu1SczfnscxrhjwopLHNhgCzv1LYP1j4HCRA18oy+3ORZJrk/WUDmivA/oTWUCPbxMITnaB/pQgc0wAuD8jmM03u+D/dx8Byy8I8kSkBDmza9lvmwNdfEPWTvVcLEDk61jf0wurdzzmkuKaQJzueAyZKdYJ2GbQrMYEqPf5ReTjswfZzpOX00wLPTotRuS6mexrzKA8S7jzOQa4uFI9RgzHEvXDxHg2iYHMCwcASgWNCNymrwSGFUG3Scm51Y4/H1cC9UMoKa9coOPv+lPev7njdVdvKbsOBsUvWm8m9qM/5nM0dyElr0Yczghk6Z9kSI50lOlLy//Xj/TUBk3JdZW8tmqg5Lc/UphdO/hGYJzTC1vtAg5nTJwlaJ+YbTWS6az2IaXLRozzBGp6sqKUSEf0RwpmH1LIT1JHpIWILFuOQhQvMPMKyDAGxZ/P37ri3VQHh+5ZA7N1OFya0iHZ3lD+nDsjeW0ROAadPZQE4EFxnzPQ1Xt6HdUYMC4V6geH4Uina94hGAmzc+jPKpi9Z5COZNiR7gKq+xF2ZQrQzJJju+A2hGOirO4myaxwBFLmkRJcyrItQaUUSRbsS2ejNwkIa5GSjWWy6fgU3qMK0+gbSW8pv44hxwSWHaX6PndIagmz4b5nv2e1GRmWcxgRGlMqToQPGNcV04H7JIlNIFMfLPd5cAiNKZ8jcpz8faFShS0LFfdV+IBQKQLdGCEfO/oQtaSst8s+xQS0UpVKMKz/kCOvHbnvEeZNkeoCIFCVecGAPkwEAlYm1Uqyj3UFZD9lrv0YxsJG8ovOTGyfTSxsqmxBjAShT9lG5/FB56TR9F12A0oqLEAQmAdVIQgOgYlVTLfMUIrKEIzmGpJ0f2EM4jBOHtC07QwiYz6uzFqm//9CSexTOe4v+n3et78BwPL3/y0Ay5f/Dlj+1W/z7z2Pf+d/+M9wsAZKBqyqAY9jjeu7FZp2xKweUSmPq4cF7LaGmlss5z0e7ubQtS+l83VjUyJ0YBrsj5/ho+9co3ca11crCAEcnewwWA2lAmrtcfN2jZcf3eKb16dQM4dnpxvcbuewo8Z6tcfd2zVOnm9wf79gob0VOH61wf3NEubKwK480ATGfqcydVV7hLsace6ga48YBcJDBSwtopOAFdBLC7xu0Xy2wf6bJWLj+YVWeeC2RqgD0KQPYAEIFRC9BLaaYLiXmH+6wfb9AupRwx9bsgcPTF4LVYRwAuHIQT7owoaENsA8sC4FMsLcGNgzAnf1oOEXlLxWJz3sdUvAKoH21RaH6znUVjG85lnKWY+AaDwTafesMsngPqaOUbUaEd81iHWEfmQSqkgASDiBaJiQ6uYcPEMTEVWEWQ+Ir2eltB7gcQGgLPlZjzAoBjy9rWBPCU7Nlgywb1AYHz+j70hvCcT90qN+azAee8y+UVPa6UjwFBUQ5w7q3kAfBIZLB9lJmEd6KV5+AAAgAElEQVQJNw/FQ8teSFGqS6KK8GuH9osK3a+NEDuN2RuJ7lnA7K3E4VmSVFWRCwwmpvTGCDRcRIigTHY440BW3wv05wHmUcI3key9F9CJmQ8myZpTcBOCQHNLQBn1/8fem8XKlqVnQt8a9hTTiTPemzfvvZk1l+2qtFtuut1y0xJICAMS3RI8IzXwBBLDA1K/IHjjEfEAD61uWbwhBEiNZCEh8QCW6Da0i7ara/KQWZlZmXc6Uww79rAmHr611o6TLpfdUpXsbDmk1M1zTkTsISJ2rO//phhiZScgmaVVAhgvKSNmdQh7T8s7gsMgCRSZbBkgHJNmZx9RTpyqVVwVYBce9SsF18T3XRXZCk+2P8RaixSQJQ0Xyq5O9yPAMfMQS95jpcWcwNUXyEMDNXKIIS2BcJKXkjGkSoF1F6ljjgyX6mMXYdwPgOdDtyIDucTamkVAsefrqoap8iGlfBa7KQgrVeeIgAwiXYVckRI02ffhDDlsDJ7HLMcoXa2Q5dQEzARU44oDIN3F53QEaK5i+qzqp+5T3cX3fEhDDqC+AYYIYKt77n+xpye62E/Ho2LvqHR8new87vNp9OFuk5+ZkmLdIrO0KWDGq7QQpYR2OKWqgN2o3OfhnIm0lNfx2G0zvSbHrLQ0ExtM/3UcSgREWTXfO+OJiNLx9HkM6B5xuwmcJ2mstCC7KukZTgwyU2ujFDqC5qRiCJq+0CT5Tt2cKTArJcMiKxlSjQgls6qL6aqKgKk/ZcJpFQOLKCPnviQZaGJXpZ3CfkRkffWBAJv1OGSWEyuZwOe4YGplueW5ToFF0hKMuyjHT/2hw1rm4cBxoFl9R+YxhRCZWRxERGAlbUx/FUy2TZ78oiUD7AsywK5iGBCADObUGKWpC/a0Jpb/WBVRbRwTXiPLyJRmgi81TnLT9N5MQUGp75HdriHXkaS/DSuJeuPz8UpLRliNIQ8kfAR540KiueVFMwFPr8jaDicSRRdifQwy25g6Lcf5BNzV6GEWCvpA0JYCh3w1LcIJCkP02BP4uVpOCoxYX3LMdKZuyqAE1MjnTAoL1bm8yC+2I7pHNaQJKBJwdQSu7LaMva1x3xlK5NCfF6hvDVylciCQVwKuVlkaa+cKunW5FzKx1Ko1sEuG8riCQ4vk80zSY2mZOptYU90a2EURvZg+15TQ2hMimylR7EYedyEJNC292ccST+F8ltMGxeEFBEFsYjGFcfDNQ2ZTGEcGtCpYR1JIyAPXSaFQzFuIwTuhZFASYiqtSEzjsRw1+jAR/YvHwTe549JzCJRDf0JgIFAEhokZTccjUn1M6sA8Sm7lA458mpE9Dd5PtSPHHZqIjOM4lZgHayGUpAfzuBMz7f+PAZZ/KhySgKcPfwEs/5jbXwDLn8Kt+fKT8NX/+t9DoR2skxiMxjAUcLsCzXkH5yTGXQlReBS1xXgo6IOUgGws/KjIVspAGa0KvLK7dIGZJGyylwRtpYdoFSPkC4ZUAEBxr+gn9IjSWEkP4iARCp8ldAgAVIDcK1ZwxMVx+luaqvq4sHcLDziB0FDSm9i9sLBQN0X2oameQMEtPMo3iguSWOHhy5C3HzSBiW/81OnkeQ5SMmvy/CWvIADIMR5vEdnNWNGg94JdkTJKcmc+eyZDrMqYfaQxnPsYjsT9CjqgvJWThFcd+XgWHsW9nLxwCjDn9JCyU1HQOzoIymqbqQvSF7F/UiZAMDF5Ccy5mou59PzSxECRWFGhenpDi3v6D7NvycTXL75mQRIgJV+nJ0maWU6EKfjHzunZK7cip/QCEfB6MoxBIicPkx2J3lw7VRekBN9ij5xMmcBwksDSSzr5Tm3s2xzPWQPiqriAifIwLp4iuAABQn6+6Adkfx/BVPJaZhnZMDEwx116GUAfEBfZyCAodX4C8fxGyfEUNDN9HkSIct4WuQcxPY4Jl+m9Hf2C0WsmXVz0l8jsclq8yXECXMlXebwwFfEY1Ri9i4G/S+xJAiNp8AJwu9lzmPYvgg8T5c25lD4NbOK+QfL4kveNBfN8/iIm/aZjjG8t3i9tX0zy6XS/9Pr6CFqlYS2FHJCvBz56OfPrnIYxElkKnv2Ufcj1DsLRr5hk1dKG6f2kRPR08j4JOKaBAc/NFEqWfGkAcvCJ8MgMjTSRuUqv1dE5T3LXXPIeP6tJCp28uCIwNKmIgVNq5P0RwVB+nY9Y58lfiuzxYxgUsucx7QfwEJTk60SYXu/0e3H0+cj7fHQ86Za+B1JgT/JdBiVy0vG07emzx88h91W6CeiQ7Yzy6CgZViZkP58e6JP0sQ4jf/6i5PVYhhqUyH7AxFAffyZ8vJ7nDtp4no8l4Qx5ikObyBp6LeAK/py6MYF47rN/dnpeFTtQgbgdFf2U6T1gQgQlYL9jlL8mgOLVxATbmsFWtpbQAwOudBdD4dx0bMcya3G0fkrnOAFY7hNZSzuL2w7IYW62kdDdBFJT2m1iFVOabGLnde+Y7mp8vB6FnHyrkpczASDjow8TQJjkxezTJeslrI8DtCiVNj6/V46PNRyxSEFxYa+MZ9hNlPkmCXD+HAZ+r6XfJ3ZT+EAJbepeBMgMus+sQ6OXMwfJaBmBFHI6q3A+eh4BaaIUOP5MAOf4+ZYyX1fS9T8dR5LrJtmx8AGit9lXmRLwuT8+SlkBHHstj/ZdeA9fFQSZib10rA4RMUDoAauYuyiPLiQJ9KX/x/Q6iMHkxwetpmAoAA/8lMcAMAHQtN308/FjjgDrA8D4427HwPD4Ps4h+SsBPGQmQ/gjYT4/dht/moCe4B/UmPyz3v48AMv3frEIv/EzAJbPn778Mz82YII7n8tbegte3yzhvIRzEmVpcfZkg25TYzXvUSxG6NIhvD9HsxxQn/UolgOUpsSzOe2gGgt4YHHRoliMEKNEddoDOqBY99CrEeKqJxNoBcTpCD9zqB+1EDML0TjMf/4OYeagrzqgoGdzdtlCnA3snxRxRRGBqJ/HD9/CkdW56uFXXP26E4tQeYh3DuyZrHyWxIY5fZiwEm5tEc4MfO1hziwlnaOAeT7APDLsP3zeIVQEhPBAmFuylIHSVDdnwA1CXJg2js+3dlDt1FXmG092zAqCzOj7NM8HfqHPLf1K1wpuEeU/dUCxUQSTdcigEh4Qo8BwSf+EXTlABJhzC7N20DuJ8cLBLik5NWcW5Wsa+e08YDxz8GWAq7mIo+/OM4Qo1sq4MsBGWWoCJin8xtXI4UDwie0KEfCQNatuVJbCuiZkvyOiTHM8dZCOINHOfQaK6sBkWgQCXVcGhvFEr6dZEGAm6WpiMA9PHPpLD1cxCEcfBM6+4+hDXHmCcRlglgFeB/TnIXs67Zw9i64OGNcB0gkEFVDdEGSqCFCXf0CGdVwzMdXVDDRyMx6f1yH6JqNPriLQFpaMZrmlD7K/4peQLzggcM3E1tpZrNyI1/0UXjKsQwa+XlP6C8lFuzkJ+dzqmLZqllxoJk+pbievpS/5GFdPIDPV5tgZH5M8uCmwKIXZuCYyaIrvh7wADsnLOAFNYFowky2dmD2GbfA/JkyH7LlkfUfcrwjsEmhNj0+MXwLFZaywSKDD1siLWTOPLHdSMs1i9UVBabKdxfMSzz+rgxAZwpDPqRrJaPqSQMnO4mvkI+gskf3T9FNH5nGgrDWliqbAlLxQLRD9SohF8MfDGN5X9Xyf+NRvGEG/6iZPHwI/j+MJF+cZ6NqjYUSsK/Gxn87H4BgZk4yTbLTcJn8kGRo5IoaXIDNeZiFyCI6rpmO3tZgkrYrdk8IBw0pGxj1eB8qp/kMEZM9pqpVJqdz6QDCTQnzUEDKoTOc0+bWVmVi5BMgSuGI9DBmH9F5L76P8Xose6JQGbJsEulIXL+WkQdEHOcZgn2rnYzcoWcMExumlJ3NJRikdOzIYS/5JDjfitVKKB9UlaciS2Mf0vIlp9Jpy2AQabS2nL3gRAXZMBHcl3x9eC9iKFShkH+NzhxhupDlMYNAP+x8TS5kGBGRlCTxY4UM/p48/J1CvRnpKVR8TlSNwVB3vm7oj6aEkCEgBO2Yu4+crgs4IAlXqmayYJKtbymp9JXNQXAr8UQO9jpS2Sx5PTSYtBQgl4Ezvucx+WfY3IgNqs2QNiS8lZajbmIw6ev4+Dh107GlMwDG9Hq5W+Vy7msccFI83RFDrlXxQRZL2wTYKZqF5/1rFwQQBnS9V9qIClLSGUsI1ehqEVfRP+lrlsBppPbssFeWzkASBflbw94LH4GYaiMzwxGAqwHoG6oCgNSSfqJZkIAuyhkGwMiQUKoYY0d8JTbICWhL0evo6E0MJ5yl31WrySTrPnwH8Ea8kgNw5KeUEKo1FqEsErchO+nAUUCQmcJpYTgChiF2V8TEhyWElf/fgMem/tG0AQgiCQR8gtKYnU0hk3+XRfY9De6bOzYnlFLH/Mv39x4LKFKp0/N9f3D53t881Y1k9fRae/4f/aQ7EcFUMCVg6lG8m2V11J+FKSt3Sl3BikRC4CNctv0j6sxCZSKC6lpQAAtC7tHCiRGpc8TG+oKewupY5gMbWBG3qEMMW8n4waTQxaQAyAwREn1og01ZuuZhLMqtiBxyeBMw/EZM0rqI0sNgxSbRoBYZ1wPr3gPYJJWtyBNpn9O0VW6B9Tp9frn6IK7GUvpoCXcyCgEuAzOnxZD6l8BV7LmyrG0rgdDstcil74gLv9V+3qH9U8IvS0MNXv4kpjDNMcj07sXFmzgX/cBq9eXqSCuqW2yv2wO5LFrOPecFKrEOupgAyAynHxGQc1T7EknqziL7RWcjVL/pAWV2xiyEjp7Fu44aewPpGYFzTh5cWjPUNpXzdFatuzJLHJk08jgMvkuU9A3fSQlZ30f9UCeyfBpx9B+jPKB2sbwPaJwLV3cMAkiAmAJeSHl1M9CwOUdZ3yU4+hFgefx2DahQwrPmZoQcNGM4D5h8D/SVZpHLD+9o5w3VSuujuOUvoXZKndUyRPDySGJeUTY5L9kWaFcvbxxVfv903BlQfVSg3kcGQBDrdlcDsJdMtUyG8Tx1wamL1klxUmjAt2qMHUneUP26/RAlwqgtK3YUp3EcfKB0sd5Qt+pLHahsxdW1GH+jJBw67ZwqZUY8hUPV1yAXwib1hKMaULqp7Lm7tgu/F+QuHcTkx9KnUvbsSWH5IL9rhEbsk1Riwf6IIxmIyZdGG6Nvi66wGwM55TIlddiWinzOgufHoT/ihdVXsOIweRrMQqK95/EAKNOF7JPkhdR9Q3U+BMqYRLFq/8fT1lWQUVGQ1g5jSVXHEFgfNawAEMKTk1bgf0iL3RdpaYFjH9+hMYPmpRXulcoetV5Q9+iPfc9nyvAXBYJzDhUTRMshHd3z+csfaF2DaTlr4ixBQ3XtsvqhzDc+4EmiuKdvrTySaOwIJM5tSSnXvY9gPwZMy3Ocg+DcRgHEho0/VszakFBGkEjxJF9C8sbFYHjl9lGE/0V8bWWJpA7pzifqe/j1bi7wgH5bcL+GB+sZiXHHR358KLD9hII4yrCdZvLCwNaubhD/ybEbgoMYA1cUU0rmCHENOvR2XU6poc21xuKQ8o7pnv6UaeA7K1kP17Glk2jFrT3h9JuhMzKBwgO6YGLp9p0J9zyTT4USivncxUdRP7LgHfXtJGikBM5coWh/BrsyAHUDudswS2J6smZ1JVPeWFVczFcOqLFwVmaDIgM4+3qN/NJsYOwFUtwO2X5hR+m0Dk1IFKFXtfZZzlpsRrtaUlzqmupZbVur05wWqewvVWZhVCQT2W1bXA+xc55AlOTqYVQlXEXSqgRVIXgsULYfhSdrpZpoD28TqlTKGStFLqPcG42kFvUtg0TMMJ3oOXa2hDrHewoWciupmmp5DKXJiaxDsiVQD96/Y8lgJjil9DQVTY4WJ99lH4CYEZG8hBwNzOYfesK4kSUjlwBCbUCiodiTQ03xdxEAWMEtQfRwizEv6LAsFGVNaISXEaFlPctLws9oOCErlZFi5OSDMqomJNBZhXkf5LIGnaPscguPnNaAEH1fFFNm2J+DTiuCt1JD3ewI4yTAev5qx71IKoNAQ/Qg/byB37QTkEkuo+LMwlnLW2DcZygKijxc+JYF+AOpqYhuPPZbp/4EHzGcYDbsmlSLjF4HcjwvwAfAguEeUBUIbu+i0nu7rfPZfApj6K71H7tKMvsosi/0sK/kTkmAf3u3ocZ/zVNj33ivC//ozYCy/8OxPZiyFEGsAfw/AN8Cr5b8bQviHP839+FwDy9OvX4Z/6e//2zivWizUABMUfnRYwweJUllIEeCDwFyPuBtmuO1nOKsP2JkKjTbwQWBwGo022A41fBBY111+3Hao4YKAALAoB7ggYZyC9RJaehxMgYtZi84W+fc+CBiroJVHpS1cEHBeolQO7VBm2W5VcP+cl+jGAlo5jFZjXo3Y9xWMUSgKh0erHbZ9jd5orJoe+77CMGo8Xu/wertAXRo4L9GUvHCn5wOAcWSY0Greozcap7MO910NDuwEhAgwRkOIAKU8pAioCov7XYOydBAiQIiAddPjvqsxKw22hxrWSpSlQ9eWkNEPOZsNGEYNazR0YSEEsGgG3N7PETYllm9vj5VQaA8VlPKx9zfAOQGtPVazHpu2iWoOgbK08F7AWgUhAorCoTtUaGYDhp7jedsXEMpDlw7OKlyc7rDrKgxDgeAEdOlgBo2yNrBGwzsBpacWoaoy6LsS3kjUixF1aTAYjXHkgsi1BdScZirvBERknZWOq+e4D8ELBh1pMruijPKkAFTzEWbQHOr1CvAConRQhYfdM4AhVdWEvUZx1kOpgP6+xupyj+31PE4Z4klUAXAConbAfYGwZLWNrC28UTg+2bJ09PHuCnpZJQcq0J7fI15AHBQThat4TKMEtJ+kQKMk8z5GqZEVCDMHGJmTkVE5iINGSNU78SacABzZ9rydJAN0gj7heGyy5eTHz/k7yoBD9tQCYF3QMsq0nWAg1kEh1fqEMqoDnIAw1HSFMuTAqqBDlniHuYW612QvqsD91CF7Ucky8jwIK5ge3UrK1I+YbNUJuCWDooQXcA0Xu6qVDIuKcmtIytPJ9HGIpVtJj2scKgUNuJL7kBKnj2W6ZLJCltAHyfOpDlFmbQg4k3T0WEIKIMufg6LvNIBS7HFNZUSxo1e22MdgJ1YdcrgQA6qOJZt5WGcmFlal9PzIniMcPU5yUMALEVi9E+ttUpdwGvRIw9dURdl+qt9JlSk+VXlYstE6hlYlyalwPNdpe6lCJygOEVyF6FvD5P2rkGs2gkb2UQLIydMpBRmI7KyYJNJJAp4GCFNw0CRfNUsGPqVqFT4RQbMvpyFaen7h47mKQ70kLU7ydYKuifnMnlI/DWUgkJO2c2JzPAY58lh99DQnm0C6jiRZeLrv8fOn85reA6mqIyVUc+gbB2lRHaCiXxLgIMQ1IktF7XwaBB57YpMcPEvwRw4aErOfmK80jEiy2OPBUPJEJ8adnaZR2lpMScdJ6YCjz4xMNUbxdfY6+j5jVUti1vnZmyTRrkxMKs+NrQmSyzbAxQT0FEZ0bA/Ism4xscdUlpClT0nBSS6bZK/Hkn9bCaj4mhxLiNPjklw4nZMk03WlyInHSQKdzr/XIkuFMzuuwA7gcep1TecuAfs04OL7IDKxvX+Q7puOMUlX8/cPkNnIdGwphTdd1yih5z4fD8KPb/mYoqcTcVsqVaFEeS+fjx5JABCGgP3Yh8mBomACbUzf5b7zMTIC1uRrzAm11mdpbWI+j2tChHHwpY7vA5+l0cK4LK3NTOGRtzGDwgT6EhuZQKNS8fmPZKSxQ/PB4xImSGyjkg/B4LEMNTGP6e/e8f+DxwNZbAKbx3jjWH4b75PB50+6/XPgsfwzBpb/PYDfDCH8PSFECWAWQrj/ae7H5xpYrr72KPzLf//fQmsq/N4PH1MuavmFptYj3K5AuR4wHgqoysEdNPRNES8mAW7GRFB1kHCPB8hXVfQJxoXNyqO4jReWAAwXjt619QjxqoKvAvReQhguBsiGCQxXFsW9omRUhux3DI8GPk5PISOUpUU2NS5O9IELSlfyC0wNDD/RG3oMh8cGsw8JRtJCYjyhFLLYCphVTCW9YLVIktD5IqC64fEkOVqW6FWAWbKexEcvnSujjLKYQjrMysNXPG8IwPxjhe6RR3XLNMP+3RGz3y/RPfZoXkocnlmoE4PiB02WJCYpanUr0L3lUN0q6D0wnlJeO1w4zD9WsHNEEMNF43jhMPtQY7jwaF6xoHxckwlMjJ5ZBZR3aXFO5lgOky/Ql3GhPsZ+wVv6lfL5tkD9RqB7zPdAsSdLpQbuR38R0LwSD7yXwrGug4EUXOwULdmf4TTeP75OSarpC/ZgJrlmuUFmvDdfoX+0vEvA4TMLSnDb3WXA4mOB1EdY7AGIh12JZAW4XVeSUUyvf3cVMP8RH394MjGq9ZuAwxNg9ikys9M+Ze3MsA44+25A+5bMtRLjCdl4FRfqumfwixrJhJZ3IvsAgyTjR0kyq21O/oDpr8D0nlRDyJUgKa1V9chVLAz7mKok9IGvQXMdZb2xLy4l70pLlnj2ggvNLqbN6gMXGIlxT+xT6q5Mr43uYsroIQbg1LF/M3Bx2T4RaF5zn3WPHDrjiwhCNHJQS+qwIwscciVGnroEMtjHC2CzZDWI6pG7DxPrqwaCuf4yVp5E1hKYgEQKmxGxCoPycYL5Yh+4+IydgnYGLH/kMc4ZbtOfxQV3fB59YK9k6nvMQANcpJXbkBNa2SdIZYJK+9axB7DaMpU0yZhT/Ui5I6uauiATm1ltAop9QH8mUezDAy+r18gstO55HLNrH/sSQ5ZgNndkObszmY8pMXH0vfF9y9CUSY7qtaBsNP5tXIrM4if/JZBCcoBqy4oC0zChlceHvOCtdh79mucggSQzlzANg3qGE8lr/zhVoQRF76ONvZlBANUuxNcpoGw9hpWKFSNkMss9zzW9hUlSyWCY1BGaQ2cUpanjgkmxrpjCUsqdg6simyrJWqYanezhLBi0Y2uB5ScW/anK55feb4Fq48AKIwU1+FxXUt07jEsVJcW0UiRw74uHHtrjoJ08oIqACCFEeaeFbdQkzY3BLww1kvlaozuXk05TsE7ydvqC0tVy6/he8/yM6IND96hE82bE/u0Ks5cm+qUlyo2BWegMMvIxNhL6QNmsGjzMkq+TcJTZElArqM5DOg8bOyaDFKjuBvSXDM9Rg4NIvY5LpoYW25Fy0UCW08cuR9ZXeIgQMK6rXEkiRw7KVMt6ELMqUN5xoe5mmn8H2Ie5HeHmRfycBcAF6P0Is67JaNbR8+kD1KbHeDWHGhzkwcCtyuyTTGykHCyClDBnNcqbDsPVDMX9AN9o6M0As655Tg4jXFPweMdUf0LQ40sNvelg1w0B20C5qjBkM92yguoMX/PBTZJU6xGaArIdACHgmyKDO19qhgENJgMq0RtkD2JkUUVPVhfWsV/ysyCtLB6mrsbQGjEahLqcGEZjed/RRHbVPPRMfja8JwTKX5NPM9WPHAPLugK6fvr/FM6Tqk+6no9NDKVzgNYIff8QVCaQqPVDKWraVpS08g0aAaQZ+a8UCH2cWiUw6/2DVNnPgsc/FZjM5zhwG8PwJ9/3j7n9eQCW33yvCP/gZwAsv/QnAEshxAmAfwLgi+FnCP70n3yXP783LT2ez+9wO86weavGSdXj9Z4snhQB4gz4yvoNrqod/qfv/CU8e3aD6/Uc3gtIGWCNgpAB3kn82le+j398/gzGKtSlwZvbFdbLA9qLCnZUKGuLVWQZn63v8f7sHM5JhCtAyoCTZsDtZg5oh6+e3+GH12fQhUOhHHZtDddrPD7f4o1YUalRWHgnYQeNrz5/iT94cQVdWHijIUoLrTy+dn6D3399SfZS8AvTOoHZqsewKCGlh9mXkI2FUh6l8hiaGvVpj/FCYzHvEQDsXi8AHSBLh15V8EsyPKGIY/0iMmyVw6hKYD2iWAwwny4wNg6wkszYVkOcjlgue+yu55ifdQhPAbep0VVkqqrFgO4pk137nx+wWvJCtz+tuAipPMTcAl7gcCqwvGixFyuMXx7hO345Li5btCc1k3ADIPrIwKmAw5dGlMsRbdEAJwZhUHCPPPrHXMSImcX4SELfFtm7KUaJMHMQmgm5xWzEcCihaot2UTHgaObINA4SrpFwjYdrJIveTy3URsPXHjgx6EOF8cyheq0xPBuhbgq4MwM4AbVTCI8GWOVhPpxBvHPAftZEpseTWXQC8ALDY0D0ks/Z8aPYfKIRVgbWCbiKabnFRjGQ52xg4JQXSAFT+3ck/LmBuCvQASg3EuPKc19lZGw8oA4S4p0W3V2N8pbP52cerWCvpXk8whgJMUiMKwk/8zArgWJDZGJOHOCZwHvzDQF7OaJ4VTDV9UmL9tM5ynuJ8ZR+U7d0UDvW05gV32P1JxyGbL8Uga8KKL+wQ9uu0F/6zND52qN+pdFfWZS3CubEo9hI9FdTyEuxYChVCnrqLwDfeJgTsolMNyZYlwaQg0D/bIQcSlZfvG1Q3OnoYQuUqt9IiMBUUncxAoOCaiXGE4H6VqC7pLfNzulRlecidmty8IOg0V95At+NxHDlUGwkzNojiID6tYaLwVXCA+bUYv3tArt3PYTnIMHOCaaqOxE7OYH2qYduAXPqQQ+iYtJpHGal+hNXk2QeT5H9kkGxazYDpAqZkfSai/HuMZlSJgLTQyudRPskYP6pwLAGbC9iumhAuAJc5eEridS9CkRfbExvHM44PJFGQMRhXfNKROZIYVxRxtc+iYv4KqB5TTn1cJZqe2SWfI9nHnYuUV9zH10tclgSBBlA/xJonwKzTyXGNSAtE0d1x4oW1QHdlYrdr2Q+7QyYvQTaJ0B1L/j7LcFTfRMrWXoQ3M+5reqOMndgYoC8nu4vT+glkwY4PJ7YE+kmAG5uFfpzwL+S6M8mCTAZckAOldoAACAASURBVMlKkB0yQ5N8wbsZh115EBEHFa4C+nMdmVw+ZjgTMFtBL2kcUuqDnLo3GybPmuXU1ZnYpnGlKAnXPG/JZ2ljDyeg4QrANdxWlSTvcciljIatKa+ub6fQFFdQ6jmcyMjsT15W+rMFmtfxvR9Dq1IybdHGALT9JOmXI6L03GcfKQc1Oqbi8vFT0i+HCcOKclo1qsyIukqgu+B3TnPj0Z0z1MY0iUZE7CBV6M4khC/hSoH2SZGBqKs5HHBlrMo5TDUow1pz0BH7LSGA4uAxaJ37RosDBx9mJlDtyG5KF3C4IOhubmK/asXtCA+0j2fQfWACblnwuGaK5yf6ecelgjKRSYvsYVkpVqusFYQrMK4UEBlK3Xr0ZwpVrZA6fFMNSihqdBcFpGMCq624zbqUGNcarixQ3WmMJ5rprwcPXwnogwJQxddEAqFBf0YgaxasO2HiLK8h41pDDoF9m8ZjXJeUA5cEMOO6gOo9MCvi54uBQkGAHkzjEVZVZl31foRZlihCgK90rkoBkP2eqo9yXyWg9wq+omzWlwT6stSsKmlHso9awqXtj3wuoSV8pSPjqSAPI/yyJjj2gQA4MpIoVGQji6gMMshdlABBeVNmSW4QAqGKabKOSa2hLAhMm4qSVOcQZjXlsN5Typs6P6uS+2gsICjDFqnUN1WDpFsRfx/BdRZWlGUErQ6QRQSO0ScaAkRTk9VMwUtSZn9lgqniM5hGpO38hBt9m+In3ufzcxNw+Jkcy4UQ4h8f/fx3Qwh/9+jnLwB4A+DXhRC/COC3AfzHIYT2p7kTn2vG8ovfnIdv/Hd/G5/uV/jm+QuYIPGvn30bhXD49U9/Fb98+hH+39t30NkCl80eo9P4aLPG8xPSNjZILIoB27GG8xK///EjfOXZK/zKxQf44HCO3/wnX8ff/CvfQiUt/q+XX8JhKNEeKkjp8Veef4RvffoUX768xvs35/jX3v0ufn93hVeHBUIQqLVFO5ZYVAP2Q4Vnqzv84e0FfuXJD/F7myv8tYsP8A/e/ya08phVI1blgNEraOlx085w93qJd55fo9YGP7w+wxcvb/B7L64gpYdSlKgumgG1tvj4k3P8whc/wXc+eIKLyx3+lbe/j//z1Zdxt59hHApcnO5QKofbdoa/8ewP8b9965uYXx5QKId5NWLXV2hKg03b4OnZPe67Bjc/PMUvvfc+NmODN/s5ZqXBuye3+NbHT1FVFt+8eoFvffIUF6sWL65P8LW3X+F7P3wL67MWPgg8Xu7ww+sziO8v8Nf+1W/jOzePcVp3+L0fPMG/8N4f4lsfPocbFDBIzK5aHO4aLC9afOPyJX7rg3fx7OoO277CX7r6BD+4v8KmqzEMGovZgH4s8N5bn+K3/umX8Fe/8Yf43ptHBNCvFlhctdDSY7dv0MwGvH2ywYvtCidND+MlLmctvvPxW/CDgmgVHn3lGoPRuP9wjbe+8gYvXq+xXrfYbGdYLHpsXy2AIFCe9nBWIbyp8Mt/+ffx2x88x2rVYbtrMF/0OBwquF5Dlg7np3vcf/sCl7/0CtuuxqGtgABUDVfg4wdLrL52i/v7OYKRKN4UTL2tLX75Cx/hd/+Pr2F4YmI/J/DkS2/w8tuPoN/ZwzsJ8f4Ml7/8Cq9uV3wf7/kFUJ4MuDjZ424/Q/inK+AXdhheziCcQPGkRfV/L7H9eQNReqzP9jj0Jcau4HCljV9sKqA67TG0JerFiPXigDd3S+BFDWEF7BUBFzxQnvcYb2umDM88Lp/d4c3LExTzEe7FjAx+J1B+dRvl0xZ9V8Je11g+22L7ZgF9q1F9ZYvDiwXKywOG2wbCCpy+c4f2WxcY3h4phxIBqvTwVkDclvCNj7JSdnjCA6e/q1D+m2/w6qMzQAaouaV0+aYELgaoj2vYlUcoPMrXGq4JDJMSBIfV0z26XQXR0j+2eF+hfdsjXIwoawP//gL+eQd80jDx2QmEsxHqRQV9IJg1J57y3JXB4nsVul/sEF5XqG4lhlOPUARUbxTGU4/T7wjc/OqIs39YstPxr95i/71TSAOMj+yD+h1hBJpPmfZsFlQnSEM/uVoauJ5DGVgOLWYfaYwnAboX3O6CAw19q2EvDPR1AV8GLD6UsHPg8AUDPTfARw1srKU5+a5C+zf2KH5nwdqapy3Ed5dRMosYihVQv1YYTj3W3xfYfDVEL6zIKcgM3QH6x5bSYA0OIc4cpbcR+NoF/d/jqUf1RuU+XABwc4/mhUL3xKH5RGE8jYqHxx5nv0uQsfkycPE7Aa9+JfblPraoXhRR2kwliI8Jx+UO2H3RoflUof+FDvJTakqrW0ppXUWwe/J9AjOzYuhRktH6MqC6ldknzZAvMsf1bcD+ObdT7Ag4gxQ4PA5wDft/2ZkrMJ4QyA5n7Jy1M2Bc+1hPFNC8JpAbzqhOQGD9zPJD9m9uf3HA+rcr9Gdk7aleIUisrwPap3yMawLOvk3/6f4dj+pOorojyz//lEyxWdCf7aMvdlgT3B7e5vkrN+wftTXrXxDI2uuOvau6i0xvT0WAcNyPcYkpsTlW3egDYBfA4kce1Z3D7c8XWZlhUp9qlCaXG9ZuDKccPKghdpcOQPsW1Shy5ACivo01K4qeZ4Jk7tvstcfhSuZu0jL6cVMKqqvpCYcA9s8Ezr/j0D5WqO7pB+3PJBafOmyfRzZRke3XsbqHYUTcDsLE4IqoLEpSZrNkOvHstcXmCwWqjce4EJi/9tg9VTFwi4y5GgPax9xeOn++YEdptfE4XCqsPhrRvlVAWmD+YsDhqoxSVmQf+Pylwf7tkgx2Q49rd6ZYQ9R6mLnE4kcjxhMN1ZPFK3dkX9srjflrC1dKHK7oYy7agHJj0b5VYPbGwswVxqWE7gPqG4PusoDu2CnaXmlU29SBytTd+s6iP9MoWnqgq42DWSjUNwbDmtff+UcHdG812SO9+HTEsC4w/7jF9ssLLD7sMJ6W0AeH/qKIn18y6QwukhmgJR98sbUwS/pBq5sBrtFQnYXsLEIhYdYVJbegZ1cNPntHh7OKQLm1cLWC7sgAq95G/7sEFKtSIAS9wJ1F/3iG5kULXxKoqgNBaUqpBSi1lYOBPWkgnI8hbjIy8bH2ZtMhNBEMpuTgQkHuevhFBXkYEUqNICVk22fPpzgMURrLVNkHPs6mIqsZWdgssU09mcYiVEWuSOGCI7K0VUmvZ6oRkZLsp1QIfU8/pz8K6Tn2cQITeD5md4/TcX/cLYJP3/c/+X4/4fbng7Esw//yM2Asv/rsJ9eNCCH+MoB/BOBXQwi/JYT4bwBsQwj/+U9zPz7XwLJ+8iw8+i/+I6hWonktUewY6hFklP3dUfbVPqVMT3VRshSnk0ku6MooPYsei9kbh36tKMe6o5Sl3HOCmTq90gQ0qKnvjNH5QH/BL+AkL1KGU0uIKEuMXw7lZpJaBQXU95RHCcf9TL6FFM6QUgi9AmY3LOkdlzJLg/pzieaa4RrVhnLFYheOotkRu7F8fNwkr/QaebLXn0lUGz5ntXXozhTqO4/9ExW/4PnFGCTQXHtc/5LE5f/HUAnbUMrWr8WR/IlMRpJxFZ3H7m2N5ScWXgv0pxL1LXvaZtcOu7c1Fi9cPtem4TkYlhJ1LBEvWn5BFZ2HrRgaMS54TOWeHWZe83VL561oKQNLEfPbdxRWH3mUG4vhVMdJMTB/7bF/iwsKryl7bW6Ymtg+Ulh+amErTpdTBP64oEys2kTmQQKzaxc9RSzsru84DTxc8QuVUloGcDS30ZPXe9z8fIHmOqDc+Rj0wfdBUOxnMzOJcsdEwVTNYBuJcmNj2p6ErQTqO4f7LxZQQ8DsxmH3RGP+mmETKUa/2DGZtz/ll7nwQHVr0F0VLBgfA8xC4nDFL8L6nq+lbvmFa+aShfcbj9mLAdsvNlj8aMTmC2VO8mxuHCVLnu97ACjvRoynJdorhcWnFmYhUd1Z2Dlft+Z6RHdZctpdMHGw3DoECXTnGvWdiwmJInt2ds80Vj80cLWEbh0Qkxm7M4XFC4PuXKPaOqje43BVwFUCJx/06M9KLoJi3H5QlIsdHhXwhcD8paVM9ESxH29N1sVWAs0NQ0BcLdGfKtT308RXDiwIDyr2390xfXlYq8gweOjOYf+khDIJ8DguvG5NrlFgHYvIUsHqzsCVrBmAB8rNCDtj56yrYhqkYsBOCv0wS80C88Gj2BiYVZELzIMUKO9HQJAxaF60GM8ajGuN5tWA4bSENJER0nzO6tUe3dMlghQoDhb9WZmvQ7pL7zGHcV0wFCUA5ZbnMfnlir3BcFpRomgCit2I/rJGuTHorio0L3sWtyuBYmcwnpQotyamYyIGlxiYZQEzl5i9HDCuC1Rv+hwY4upY/G54Dso7Bp24SkL1PP7ytkcoFOxcZ7mgsAFqPyJUCnZeZHkgJKKH66h2pJRQvcuhL0HwNfFawlcKwykZnWJnyTQggXL26CVvoFkWqG56wAXYkyrXQfhSZlZHHxzGkwKuFtCtR31NGZtrGI5mZhq6c3khXN4NsMsS6mBzr5/eU2ZolwVU5xC0gDCev58VMKsySy5DIVHccRFnF2X8N+4nuPill9FBdAbjoznZod2IcV1BOqaNqk0Pe95AdhZydBjPGuj9CLvkcxb3fUzblNB3B/hZCUSPnWsKFLcH2HUDvenhS40Qg2RSwIuwPnvY3LyE2vU5mVMeRkDKmDpKP5uvNOAD9KbLj5GdJatTaojBwJzPyGjFVMygJdRh5AK+UBDdiP4LZyhve8jO0LMHkMVqCkorO4PQsH4iCAFI8PFVwfCcmLwq2x72fAH9ZktmqlD5OiIOAxftZZSkRhmkW1RQ9weEuoDoTQYdqVPRzyvIbQdIAXs2h369hV809OjJKZjGNwXktsuBNJBgCE7qRJzXQPT6wVgI6xCaCn7G0B0xWsAyBIifHUfZ5lEVhp/VkIf+wc+iHwhOYlCN3LXwJ3MC8P2BATjHvY8VuxnDrCazdyzfFILhNlLAL+cQ/cDtp2AbgPLVpgK2ewgp4c/XkIc+A61QFpCb/bSdQxdTUAXZwF1LKafWBEFFMYEja3P3Y5g3EG3HkBxjyFIu55SihgAUBUI/QGiFYB07H+PzhmNpazjyJKZtCokcdqMU9zF2RsrVEn674/tpMee2rYWoax7DOAIyvq+iRzG4KIk9rjyJ4E2U5VHQz/T3xD76wwGyqfkcRz7OLIUF8rEFYyFyCNYfAx6TrDb9/0+4fd7rRr7xXhn+59/46QPLrz//E4HlYwD/KITwbvz5XwTwd0II/8ZPcz8+18CyeudpeOvv/CeQ65HScCMBKzH1UALCSOiDgLmcpvQqBlD4meME/8xCbdlNaRcOUAH1iwJmMcnzKK9jNUb9UmNc+ehZmv6eYtFz2AIAV0fwWAZUrxTMysPNPMpblT1SyRcpYugC02bpu+wvKS30JRdk+iBincDU15jub+chetjICqie+9G+ayE7BpGEyqP5RKO/8AxasOIoYCHA1wHVa365DBesHHENvZepomPxocTuSw71S97PNon1QQ7eSGEnqmc1hC8YRpJCIopNLLpvJslcEPRwFjsZQVaqeRCUFd5SPqU7eiuLLc9FdUdgf5zAKzwDVew8Ttu3lDgWe5E9b6mEPrEHCDE191bCLsiCLT4SMCvkUnt9oF+x2E9yuqQREZ5yQN3Sf9Y+BaQR0C0ZBwZpCFT3MQXX8LnK+8nD5yomzQ7nIfr7KFus7tjvVt3Ts2QWIldt1LcE+8dDinKDHAThakSGSzw4V8n3CZDdSN7B4965VDejRrIbTKpErrZQIzB75XF4JNFfBCw/oASv2PPxZhGHGiMlnbNP+dqmCo5iT2ZE90c+RDAtVY5TSqtXPOch1mqk8616YFzz53JDZszM+LgUuOFjdH8qkw+SCb6sQeG2hWO1hm6Rvan1zXSehaPcbzilh67c8vG2iQOjA+V5kDF5thbwsf/RF0DzOuSkY2FjkusIDOcC1S0/P2bO941XlBCmIVS1CblDM9WAJH9Z6lMUlsOx4VRAdZQLpsoSsxRZrio8GZ3k07RzeiK95rmgXJLpxrPXHu0jma8P8KlPkPuR+1olt1+2AcNSwMQKi2LP1yB5YJPkkq/b1MvoyiQVJABlEXtMrRWRPTuRR95DBpSU24A+SlWlCRjWEosXZJTSvqWKkdzxGD+r0sb3tgsYVmSLhpXMQSRqCGRguskDWxy4SB3nHBamQZwyQL+m/zL5SocTprHO3rjcGeljBYYauK/VPQd86VhTMjR99lPHYwpVAYBy7zHOZZRZehzOVU6Eru+jX0whDvj4c/KX1hvui6um5GL2mHKAl6pX6luXvY/NtcF4otGfKOhhGip1l5qv8YHDGFdNnZFyDOjPFNQY8jAvncvks+a+8X3jY7hNuSErNqwVJaKraZvJq8haDfoe5egxnnDIk6plki829Wum3spUw5ErSTwHrGZOryO/NySKnYMao9wS7I50lcqeaF5PY2ejC9knmas/Yj9qGoCwfiLAzBVU7+OwhRJPNfhYTxL/HX0M8YlDHAGo3tFLKcGB0AmHXUUcsokASMt6D3ZE0m/oY/WGnXEIU9xzwKB39Ewm72xKeLWLAtV1l8+PLxVUZ+DrguxcfJwvZGTtDIcKhYTsHaRxsIsSuqW3MSh6Kl2t6fk8WPgoPU2MYJKU2kUJ1fO+aiDIcbMSaj/CJxkyQFaxUrmfMtV9iNHCNwUHSJ2FHC3DbyQI6Kso11SxCzOF0qRwIEQgHUL2XQJ4GOSTBgNKQHQj/LyG7Ecc+xJDoaMXODz0WRYaGEae85pA+oGv0rqpNuSzPZQhTHUjQ5TJ2pi8WiZje7yoGTtVmKRAnuP7p33NPZNkKnMqbLodMYkZ+H4msCfffKB/MgFfKSawGmW5UJT2Pui1PA4DSiBSyIf3+Um3z3kq7J8VsAQAIcRvAvj3Qwg/EEL8lwDmIYT/7Ke5H59rYLn++lX4tV//W9iaGtZLzGL6a295MUrproX0uDs0eLza4WAKCAC7voKSHlp59EZDS4+nJxt856O3UDWGiaBBYD7v4YN4kKiaZKN1aWAc00r3dzPM1x2ECBgGjeW8x66tYfsCzbJHt6v5eXQC9ckApTyqwmCznaMoLYauALzA/KTLj+9juusw8F+3L6AXBnZfYH5xQHvXQFYOZWUxtGX0EApIHeB6hflph74vKJNLUXFOQBQeQnmEwIRTIQPK0kLKgK4tUTUGSnnsb2dIyY1QgdelXlF612ruy7ZEddZhuKtRn/XorxugdhAyYL7q0XUl3C56EOYWi0WP/Q9PEIoAdTrA7gqg9CgaA9OWQEzxlJ2iTzDehBMIBWWGKDxgJdTSILypENYGIUoAhYmL07MBri0gughG3zrAXDeQMdQJhYdoFUIZKOVsPGQv2SXaS0osKw+9GrmPYQKQD1JZo4cxlB5ilBCG0r7hLQ4rAMCtLcHH6wJu7iHWI8JthVA7+kdPR4RBAUZAxjTVIAPCwkG0yV8KwAHCC/iFhborIltCwOhqDwR2jIoA2LWFvtOUNVoBtZdMMZ05DlFiyJWPIJygnIuw4l7moKNiK2CejcBe83kOAubMoXqtYBa8PwTreEJBUK9bAXPqEWSA3iqGQe0Eyp3AuKQcUMbtu5rhSnbtUNwrloIbAIG1NDKmgaY+SWkExjN6F4MCzIlDeauY7qk4OBAxZVR4dpKyn1NkqR2AXNGRuwIDoPfT0EaNfI5Ub6FGAbPgsMc2AamHVB8IflQXZY276BONaZVyJKM6nvL1SYvTohXoL2LA1TsWai9R3TBwSzgB1aUAkTgIq/jmS6msTI/la8/O0fjWDBNwTbcEsuySALW6o08x3d+V3O8knUuA3M74Wo6nfP10h9zPOXsV0F2IPETzGux9HSYJo+qjOqPCFFalkJ8nhT0VBw4DigNBcrkhQObnfkpTdeUE1IXn71KFUBpspeCjFLSTXufUn5n8iUn26UoOZsxM5JoiXzAkqrpjCJXwVKV4Pb1nEqhP3kUfk2RZNB+HKT2HRSmRVhoOkOibQ+zXoyRUdRyyqZ4STjuLao0lB1NB8djS8U41QwH6QJnocVLr7DUVNqm6QjgOfFRPQO6LeE4Kkfc1JbyK6AVlf2sc8HQhJ6WOaxHVQBwO+DTAia+L7mKAWKDKRh8IvtNrkK/pISaJDoGDqxOCtWI/pcimJFuVknkFjzFV4rBmJ/oto4pADxwm2lrkiiKv02tD/14aFqVaGlfGLsWYbCoNw5TS9UEaBnu5guqYVNOSAC1VRSEDwlTpkvap2vncnVl0rCUZF1TcuELkf9npyW15FUH0jnU1tmbYkhxZv5IUPUFwO8KzfiWBaw6iPUIE/qm+SDr6OauNi9dgmZUEHPrFOpoIeOm/ZQgh3yf0eNqa+2YbGQcK/L5mHVQaEnEAn6pcfCWg944s/xCrY0ZuR5oo74y+d2lCVgMI6+lzFFT5qIMFkvwUmJjlEBAK+SDNVg5UE0ibfLjxb1GuGpSg4kDQJ5kY8KDk9DghIEd+efhSQ5qYIqtkDiZ6kKiasJJhRYqvYt3a4Nh7aT1Crfn3BGSFgIgMa07FTSE9D4DYZ+SkQkzMbHh4vwddl/FvfK3D9Bj3Y0AlgNy5ae3EmB7fPgNAM9gzdvJCCkmmNN2OgOYfuf0Y1vTH3UIIn/vwnm+8V4b/8Tcuf+rP+wvPP/3TAMtfAutGSgDvA/jbIYS7n+Z+fK6BZfXu0/D2f/UfwI0SclMgyAB1kGTRVg76XsE1ATgxkNcFfBVQbCT9P5qL6pQ6Oj4xqH5Uwpch9mGKvFCVAxdzbkavkz23KN7o+DwspPex+1J1It6P+1js6ZsJMmA8d1CdRLGRcPXE8tkZg0PsnF8OuuUXolmwJB4+LmyXAeW9wOHZ1N2YvmQzcxEXekx9DDl9Ni9IxunvviSTkErnXc0F5rhmvUOxn5iVxHAFFTCe0gPkSjKBQQLllovIcRUwexUDF0pgPPGoX/NiUW65oEvno74R2H3FoX7BvjobOy27S/qn0pQ4Rfv3Fzx+s4p+pMjYJYbOVWlhmrwsmICKRK4RSAvf/pyBIvThEOzoQ5IzB5TbmNpac7siAIdH9DpxERpyyIZZxQXQEFmzOTtHxxPuT1ogmeW0SDx+HeobMmvslARSVH9aPIuYPunLtKDk+Zp/zB5INfLYjuPZ7Syen+gp2z8LmL0gY8uET7J4QQj0VxGABC6ihzX/1S0XS8Np7M+UZBXNYgIawylfj8SYsVeV21ADF80AstcoSdLHpUB/GXD6PXqdIKYqh3I7+bbGFc9h6rQEyCwyLTV6ywzPQ32NGCCTFsgid6T250yFDVrk40vH7CtK513Jx9jZtLit7tnV2T6WmbFOlQ7lJgbgXAmUO+QFa30T0F9MtQmunhjQrGpwPM5xKXLfI2spKJPnApOgy0c2yZcx2VZMAT0qbmM4IfvoamQ20Gsu7BEl9K7mzwzjSP9yIdfckAG0NZlTOwNmbzzaRwrVxsM29BuKyJzqPkTJK89VSowt2tgLGhfrqUe0uSbrlK5Z1Zbsm50l8BZ7Igf2Nlb3lIcnG0EQlIwPK5GvF/Vt7FttBOo7DzPnv+0VJev9iYpS8QjsosVgOJFobph829x5dKcSyvAc1nc+9mZSbq97Lp7T+0F3k00hJT0ndUgaKDSR9RtWEraO7PyBwCRIoN54HC5pXTBzifrWZca2OIQHzGwK//GxxzQxlBCU6APIzOa4iIv8yJrWd7QopPRW3bF3EwC6M1oLbC0yIEtAjR9YPm9976EP7KtMtoL6zkUGVmTvnCspwQ+Snr7ukr7f5BccF5SDBwUcLjTqDWXfphGYXfP5bM3k2LT4D0LAziR0R0uD7jwBtqYNpL7lAl+4kKXgrpbs44znLrGBQbJWIigBs1ARBPO4dOuzVDxtz8xVZktdRfDltUB5z/7RckdfIJNc46LdBpiliooZLrQTiKJaQOV6ESodaPlQA9nX1HU5npARdpVAdW9iqA2gO0umTQm4SgE+gS8fFTiS94k2ixQoM5xVKFrLz9dhYgeFcRhPKxRbA9fouK+Ox7HSKO8j86oEdO/IOPYW5rSO59Oy31IIlLcd+sdzCOuhD/QsZoDlaDVICa92VUHvKIXW9wPcggylW5VURuwG2JOK2+sMgpTsnxwsA3U6+0d+Fo7spC9k3hYwMY/CxITYyD6GmmwnhICblRAhQO2G/De5jV9cx92QKWHVOvhZBbnvKFOuNEQXGczj+xd6YgwTwIs1IUkqnMN3InuZwWIClXF7oakgumFiIY99kSFwW7H3MrOZNvoWpcgJtJlJBAiOLdlaSIUH8tskmwXituy0/8DkzQQo7VWKPydfZZLHep/TYNMtfIb1/Ge6Bf+5l8L+wntl+B9+4+qn/rzvPf/kz/zYgM85sJx95a3wi//tv4Ntx/G8lh7LeoCSHp9cr9E0I37u8hV+59O30e8ZRmKMglIezqrM6rWv52ThRgl4gcXZAUNfoKz45lXSox8KjLc1WamzAbp08I4XCrsvsLzaY38/gywd3K6AnFv4UWFxesD+bkY20Ur2+5UeQnuI6xJ+ZbG6aNH1BcNhYu+ivamhLzo4q+APmomlY6RWFP9fr0cGtzjBAJzrGcQocfHFW1xfLxGMnJi2xDzGBFh9q2HXjH6HJvuG2uUkTF8FMoQA4AUQuxtlR1YJ6xHqVQX/Vg/9YY3xykLtFMpbie6pJQv5uoAaBJ789R/hg+++BZwYqJesaQkqQF92MLc1xMwh9IrHFYDytcZ4wX0Tc4swKMiDIrN1Ei+IIkBvNFY/d4Ptd84ZSHJbQFjAPhkhrwu4hSe7GVlMCMTYTLKYxT0TO1XsEQwXI3BfMDlxZIhG/UrBLFlNow4S808ENt80THMViImyHnqrMjOSuuPGc8fz7QSlyJLMZnmtYs8aGSEI3lcdyMKt2U8pUAAAIABJREFUvyew+wJgLg3KFwXM2qO8UQiSDJXugfaZQ3knYVbhiN0C3IygPwHR6p6BFPt3gfX3gPuvx2HGnB2KxWZiOhhAwkVzeScRdIBtQFDtuaDdP/eo30hKiGcElGbOIY1d8tjGNetg7DzkFEzgmMkRGC4dyluJYs+0VSCyXIOAraMk+w1ZVkonCayGc4fqmhJsXwTAx+GHA5qXBKppEAREkHctMJ5OA5KUpGpnlHGn0JThjMMENXC4sfyAg4FU1yMsZd3NK5E91eMp2UN9iEzbWmSADCD3UBY7Hp+r+ZE8HkboA/d/9w73hQvkyPjF4UB1h9zdOJ7EAUkM5qD0WyB10UgjUL8hq8HpP8G5XTAMZjglE51qXPSBz5UHUWMaRgTsnwKzVwLjku+v+gYxHTSyU4f4uQKHFK4SefjRX1BiXuzZU5gAVnofuIYMp+4Cq08EWDu05vlJ20gyXt0RmCcwXrSx3qUFZtce+7eSlJWSbldRguxqqgooX42XNM3BVbllVYzw/P/klwcQ2SIyWiYPaUQ+XjVE8D9gsj5UQLUNlBA7DmbqjYeZCQJkIIPkVI/S3Hr0axGPIVZuHMhaqgj2hsgSJlZVBIJ3GzMFdB+mblAR738b0z/3BF7SsdfQLAXkGFBtCeDrO4bTdJcS5TagvnUw89i9F4D+hJUwxT4yjmI61uaGA9XhJMpt73hOxoXIuQUJ2KshDvocZbz9qcT8pUOxs9i+U+Vz42LtUpL/1jcO7Vs6Ph8yw9hcW+zf1rlnNMl7EyMnXMgMZ0iDgkrkepWim9Y+Lga+2IbBOGkwMy4lqi2B1rhSKPYew1rBzATKNqC6d7AzmcG4NAHN9Qiz0LA1Qb6ZRVbNEmC7UmSPdX+mUW55vps3Bu2TEsIDzWuDoOkNHlc6M6i65/Pp3sd0V4nZiw7d4xr64KH3BuNpSbnszlEK6wJUz4qTYu/gC7KAtlGwM/q5XaUyIPWlzOCMAFigvKVv2c6ZIl60Nkq1J9Y0aDl5kROhJsh8jusC+uDiUEk8CMCxjYLqmbyapLxBkpV0M50ZSmk9XM1aEt9oBCXpvd+MMKsSXgtUrzu4ecEqlJTWasjaBpGCdsgAytFmya1wDmKwsOf88GfAOk4ADFJOHZrWQ46WPt7oaUUK07lv6ZPVEuIwwC9nkLsDQl0hVApyPyDUBVInpXARhBmLMKsghgiIa3o4hfUM5Nm19JceV5IIMXlbo384+1wTUM1fwHICewBBp1bT830WCyTwmepFkoTWe8CHSSKr1OT/9DHw5whIBufycwfnCEDTLbGUPwZ8Ht8+i1M+74zlP+/A8nNdNyIAzAqDy6bFq8MCq3LAvBhQK4vqkcVmqPH//OG7+Pqzl7ie8YLRG43z+QHGKfzak+/if3/xc1i+0+Pli1N88flrvP/BI7xzeofvffwYB1Ph4nyHi1mL73/8mAufqw7mUGB12mKza/CNtz/F7378FMZoyMLjYr3HMNf40tk1vvX+c3zt4jV+gCu8c3qH7/zgKZaPd1jWAwrp8Xq2gHMS+12Ny/MdXn10htlli74rUT06wBqF9UmLrZxBaQdn+YH0XsCPErPZADnvMVqFbl9BLSzcoBCCgCw8ROFRVgbjUEAISl6rymD3ZoHFz91BiIDRavR9lHoCQOkhTzyJryCglMfYllCVw6PzDV78wSXO373D+azFD+xbqCqL6hv3cH9wAjzp4dsG6mREVRkcnIDfKbz/8SXUxYCytBifBoSbEvACZltBLCyqxqA3NdZXO+z2DcYnAUJ5qBcVrASKdQ83UxA/qoHKQRYewQv4mcW66XF7YTA77XAQAIxE8bKEf95BAfBWoj7p0bcldOmAD2dcaJ87FqpfdLBuhjC37Cg9G2GKAnJpIALQNRqicpAqwJYFNhce5XLE6GvU5x2G1zOImcX/z96b9Ni2JehB32p2e9ro4/b3vnzZVKUrTWHhAtkyMESCkpAQljwHJIb8ghwwsQDJAxCSjSxgwBzbPwGJCQOMbbLkqsqmXr737rtdRJxmd6tj8K219rkvs6pMkVLmK3Gkqxtx4py9127ixPrW19nCE3wbCXlQ8NcWsnJo/88Gxx8MwCJAaw87KbhWwl+yNX2qFeTIxYbQS+hHHfb9Anbp0W57jPea98JxCdd46IPMCXcApZGbfwl8+B3Wh9w8/4CvPjuDGBSDq75tcJwkhBPYfYvg1twYQASo9wStoSALoHYa8mkHc19jEohpqwL9K4PqiwLdcwfZS/SvJjQ/LWHXDkNQcI2HGiSwNBhbC/lQoHthAB1QflnANQHt56wLMVsHO0qEwsMueBBuRS9vWglt3ggcPvEYf6tHuCs5DoBS2TJgeMxVfdVJ6IOEW1n4UWL3PYfijsC23EnYhrLb3RWrTxA9jpR2CfRPHGQvcHjJFFFfefRPAooPCm7l0N/o3IMaVIBfAa7xOLwQaF5LHL/FBQY5KrgSuP9eIJOKKPGMdRa+iJ2UhqqDUARII2FWVAb0jyhXps9LYDr3UAPBq2tiJ+0ZGf/UP2tWAebSQt/HGHdLUGhWXLRxTZS7hlgDYgBzxs6+BFzLewLi4ZrjsG30aL+PiwUlpcTdDSf0buUBoeBqen69BoYrSlxtGyssamC8pJdWTgTm3aPYnxqA7jL2pcaFgfZL9jy6GtmHnbpjh0uP8p7nafNHwN33wI2EBPjpO3YlYFZcyCj2s9pDODKZ04YLCmoQURIaoDsCpbQAIByTTMPbWTZpVoC0TEv1mscwbvmHp30dQbROSo7I5h8DDo8lXPK3LgRsO6eIlg9kWM0KgBBRwcDrG6QimHZkz/trdiumhQ2mm8ZKk6hmsAtuc1qJLIPOyo/Y1coeUrLGSdrtqtivaTnGcUMgGCRwvFUYt3Nnp3AEwoen7Inl5w7fJw3/p78QON7yHHePA+QkcfYHHuNWZJnycBUXOqWCPgIPrzSqe4XxnMB5WnMhwmvAtjJWc2gU3eynpRc4YFopMsAi5JCzoRWRAQ4IJUFkCts73qqcAOtLAdtGX2tUA+iBxzmtJXuCL7lQcbjV+frymvPc2ErA3mhIx21Ue4/hXCLIMoPX4y3rbXSUoTIoTWL1uUV/yfoRQLGH9rLIcl9pPEyjMa0Kylb3DsKTkTZLAUACDcFqf1Pzvt4QKMopUAlQk3mdlgrYEhAyyCrAbTTGtWL4Xa0wnCuUx3hsqdfVC9ha0iNsS4znRax74XvMSqH6QA+u6sn0lj5A2IBxq1HdW/hKQhkfP4dUXhCTRsE1scu0IqNmFgoiKEp2a/4tMCsFOQaEZQF9tLCtQlB1DP+y8IWEXRRR6SHhFgWCljCtzmmqQSoEzU5SNViyvwEo7zxco+CqGsXBIKzqzBYGJeHqeXocCgl9PyA0BXxkNK2q6ClNi1UNgai9XNGzqSVBohLwm5bPWQ931nKh5zgyLMk7ekUjm+iXFT2YUW5Lea9ieJMQOTwJk0FoWacC74HRZjCKIfZdnkphhYh2IRtZzACME8KyjZ+BfmYjATKcpzJbFetorAVkZCmrkiFBWueKkTBNuaoknPhFU5flR/tI4UDAx32Wsa/yl7KZf06wzzfl4cMvB9F/GR7feMbyb/0P/zE6U+L9sYUxCuNdDUigPe8wdFE3J0AfY6wyCDKQNSw9QqfJYln640I5s3Qi+vaSnw4yINQeEAHyoOmz0vToSRt9XQHwNZkU+NkzAUk5GgJZKzHwl114+uJyz1ftoTsmlwYVJ6GDhFs5CCPoA2w8gmbIjm34BxUAvA45eEQfRf6ZL2JpfEN27tSnBcT9lmCFguVxq5EMBwIgR3qCbMOOQdVJ+CZAdhLlg8B44aFGsgLm0qJ6reFKsjVuQTYvecsoqeW+1SgoVQ5Jtgj4MiCUAcUHiXDCdpm1gzAyeuiQ/T5kZOgdcjUrC+TEiQ59dcknR5+a7gkSUshP+SAxbTxZv0AvnN5L2KVH9UHBK3rcbBOy/FGN7Obz0feGwP2EOGnzJcOJfAEkb5Vt4oQsBhilkCO7CFBjlNPGnjzbsk6iek9W1CwDiqPIgUy+4MRxPOc26nfAcDmH6qR7IElAzYK1E16TsUqMjK9mT1x+TxlQ7qOfsOMkMPUfApHhOkYmTcwyPWkjGxGlxq6az4U+YmbxJL8XHrB1nGTEQCdhyYqqkRLbJA1OY01esyRvTp5AFtTPTEeSy6bx2Ha+VxJblpgX4eI5jWFKSV6rBuQKg9RjmCavXnMsvuTz0tAn50qOX0TwmryrqkeW5akxJbbO3r8kMydLg7m3MJ4bacleJdl0Efv9sgctBYsE5O0CZE9sy2so+LGVJZNAlIfaWd7pqpnhlJYMmKtEvk/URFCUmFcVz4sIBJXShTltW2GeoFrKj9OYgPkc5YL7eGxBxGAcObNbruAYygdKlYPi5FhNyJ69xGTxdy2xIiEzeEEilt2H7PWTdg7RSiFCKVBNjfFeWDAIKV2zxLqlffJGizLY8oRhjR8NIsT7OH3vItsYA3WkO2E7C6DoQw77SZJ5rwE98j3lYU4YV9N8nzNcKGQglcJ0uP/UnYicEJ7Oa2LQhCebZhsJs6D8m6Fbc3jR6ZjUFCJbEnJnY/ob5hUl3LaO0lUghwqpzC6G7MGkn+80IV1k366aeOLUGL2p2cowhyclBjh9NqTPo/T+dMzZP6rT3z0eWwr2cZVAEdOuk0cxeQvTOUzXKt33riKQS7+HCRTJk/2mcB9pTvzsMfzn9D7Jn1nRa5hDWywBUHGw7EedKL0NkgngavBzbUUiDKNs9/Q5XvcYClVQMsvFIMXrPzKoSPVkNblYENk+mTyoEsIGSDf7FeUUWTAVw4CMzyxaULQmwYXsXZTWwxdzQm9mATFfv9SnCR/idaJEN9V6qKNBiFLgXM3hPITx8DUTaeU0B+5kgJRYu5P/vZb0T0bQk+SxHyXKJn+ii0BPJ4mqpy8yMZpxX8LG504DdayjRDUyfpkhPA3WOa3gyPuMwUM+zPLYX1bbESWz/IWJf5hPf34K0k49jM79ojT1pC8yA76vg7xTgHfi08wy1a8FAqVgno8A5Onja/v9sySywUx/6s/+vMdvCmP5v/yTm1/5dv+1Fz//tR8bAMg//yW/uQ8pAv7gs1t8/m6LdTNAKY8nL95jcdGh29W4OD9AqgDxusLF+gjIgOqmw+L2iPasx3Z7hF5PEDrS9CpANA5/7bd/gmI7QhiB7as7LJ/uIK8GVLcdpbBHDVyO7IarHfyZgb0w8CuH6uUexb1EKALCykI97RAah83zB4hRQF/2qLYDoAiIcDEymOPxAHczQk4C5sLy/VWAPJ/gr0cUmxGhcfCtR6i4Aih+6wDxpIddefjnPf091wPcwmN8atC8FTBbB7d2wPUItZlw9f23sBsPv7awT0aYc4fp0sKtHCCA8ukxhg4IiOsB5dMj3KMR0+MJvmWwyOJzCbmdUL8T6J8bFDsJ/emeHs0PGuONhX8yAALY/EjTF3lj4J4PDDY5M/S83Vi4MsA9HVj7svSon++x+ImCeTbBLj3s0sNsHUTryOI8GzkZfzqQubi2CDqge2FhFwSV5szBXFiMZx7TizEyNQF2TZaS4S5A/VZi+NYIt+Gxp8ATc2OgO4nh1jJwRIPnaetRvxPA9/ewiwDzaoAvgOnlQHD4wMmnPgg0bwOm7/RwdUB/4+ErwJx7TBufAZIvE3ME9LcEk/0zg/q9yKEwEEB4NsSJDCet1T3Q3xAMjxceZsVFgONzh+G3ewxXLoI6dspJB5iVx+qnnChPZwHDlYerAvonDv1Ty944yTCawycWwlEyeXxhyVwcEhsSMETpaveUzOHmxx7jWUD3nRHlQ8DxlUH7JVkhBCbcQrDHcDzzGC8C9r81wbUBF//Cofv2RDndecig7/jdEdU9x5pk3HZBX6x0wPG5Q38dmKx65XF46dB8FdDfBvRXAf21x3geMjs1ngV28j3yOD712PzEQ1qgv/WwC05odt+1OD7jJM2VrNJp3gYMlwGHlw7lLqB7RFZSGbIg/aOA7nHA4nPKCeGjXHVNGfG04cJG89Zn/6aKpeXlPuD43KN+H9B+FWKgDSf4/Q09jsdnlH8GwUCW+l3AcC7Q3wZMG/pGd991ODznNg8vPYYrnsPEcFHmSyAvJ2D3qWfgyhR7+GKi7f6lj0E5AfsX9EDuXwWonvvqr0WuIUohPr7iftLxCAt0t5xAT5sZ3FR3HuMG6C8F+msBVwvsPuX9keSzh+ec+B4fc6GovxU4PmJibP2edUXDFSce04bn5PiUrGT7xuP4REQGh8Bk/4pjnFZ8j+4C+iuB4VxkH2j1ELD7hGMIGli+5qRImoDdtwjkvCa7x4UPyp0TIE2Jx3mRJS4g7F8I7F/x+BdvLL2FkhP+8uAxbQWUAbpbAozdS3ocuyuJ3ScC9b3DtBJ5AYehMZR5Sge0bx2atxbdjUB/JTBt43FFL2J/ze0P5+zCSyDR1gL75xLdlUR5JJtY3zuoKaC7UTAtr6OM7Fb14GAWAsdHkmB9CGjeWexeKBwezfVb3ZXMQLK+dzg8IVuWfKrDGQNJ+guB/kqiOHiYVqJ9bbD4csRwRnlnuff0+VZkUYcz2him6O8cthz7sFEojqwF6y4VuiuJh5cqpuoK3H9bwSwkTJSpTksyb8drBdsweVUN6e8+WU6vOEbdMfioODLFtdg5VHcxgK1z2D3T8IXA7plGdWcAAfTnimO5phdSOC6qmKWKYUGSvk7LtFtpAuq3A6aNgi8Fjjca+mDQ3WjYpcoy1PLDgN2LkvVJAKaVwuFpiXFb5DAaNTi4WlHiOjq4RmI8L6AGh/FMY9pqlO87+id7Ju9W73p01yX66xLVVx2GMw1hA4rdRFAkYgWM5sKU6lir1F9o9FcFEGtkvBYZ5HQ3Fb/3AdOmhOoM7EKzdqdUMCsNsyr4s56SXX3XYbiuIDuDaVNA70eo0cGsNORg4GuF8azCeFEC3sOsS+j7AdNFHT9/mGhqVwXGyxq+YU+k8KzsccsSblHAtRr9owV8ITGd1bBLpr/6QkLtR8j9APXhAFdruEVJ5vpyAbco+b1SCErBrmtWE20aIAS4VYUgKYF1qyTnFjPbV2j4RQXRDRk4imGCbytAzRUyCSyGRY2wbCilXdTwqxZBK4S6IgBctQTjBWtQ/GaBUOhY0+IR1gv4s/jhHAKlswDgPBNp5Xy9UnJrWC2A1QJi0fJf/BoAWdTIPoqqhKjSqq3PtSOYImMpBZ+PoFakkJ5YQyKEIKh0EVj7wDGkf8H/4vfBRynt/HWwJ5Us39BHAOAgfuX/flMe32jGsnr1NDz7u/8ZzKGE3EW5Su0grAQcyCRVHrKXcUU8MHSmQmSAQl5lTp6s9nOJ8YzF6dKSXRKWkjCzirUbC/qmUliKjmzSeGPR/kzTd9XHVLjI2ngdMN1Y1D8vyEKtPKr3lEzZBX1xqaw9bTsUZJBU+j6uGidWS3ezxMi2DBFSAyfo1QemVFZ3nAQFQebFtoBXZMASU5CkY+UDJ4hjnMxX73mjJs+Uq4D6AyeOifVMNR7Vncjl19Jwwl4cJIQB+mcWzWcaKlUeWNaFyFFkJiet7qZEwJS6aFsyPsURuP9ti80f6I9CaXQfQ0xOmIKg+P503OWJX2vckiFMnsvkj0oMiRo5AU2eMBWl/GpI0riYBGm5qp+CMcyCY+TACIJUDLcRgfdBdUcGadpE5iJ61FyDjxIrpzW3lRInpZvZO2mQgVBKYHQ1GaXMDmJOmGQ1CtnW8YzHnbxwdsGakaDYvaqPMUBGcuKuRuRqE5cYw+jr09GflOR1qVg8MVauQa7PSQFMeiCAKfaRBYghOc1XAd0t711I5EAdllyLnAoKz5+7KtZ9FDPzQKZKzOxbPReK817heW/eRkB4zeOVkTUQIW4fPEazoNzNLBm6kxJMeU9y3HLkfZA8gvX7kKWRTGgUqD9QpuhLvh4iMc4hp3ume4/pjRxD+RDytm1DEDVcxYTOLuSQKDnNaZXDRZIRRiaqEvl6kmkMSJU5Sb7pY2pmiFUvlGkKtK8Z6pJ+B1PoV/7dPLHuFLFeJQVNJZYrs+eZ6ed51j3BhppmD24K3xnXMnsnq4fI7AmyeQDQfGBFR/59NTGJU7KndlpJlLGyRk0M4UmhMImVVRNTYBOjWnTs3U3MpB5iafuOATCmjSE9NYGiPmXPTlj77CuLgAwCsDUBFwII5FaUWTYfHMe69/l/08p4Hlz253lN5iZ9z20SbNtazCylCfl6Jbk3ABQHShQT6JU2ZHYxbZvnwOc6jtSNy6ClEBdRQk4INa1E89bCl3ONCjtBKaU0rUTzjj8fNgrVPrKWAigODOZxDRm8xLCqkT2xygQmmUrk47ctJan8e0VwHQTgGgk1pC7bAN07eCVysE4QiKmeIdd6kK0Tefv6mEAZg318KeFLMo7peHUXg2cCMsM4bTTqdxOBWQSdAMcXIkBNoM+29BL6Qp4wbCKzdUVn48KZhhpc/IyIfj4XoDsG5NhGodgZMnAAXMFjSoxgDn6P3sWgBcTkIUKAWRbZz5j6XZPf0BcSqjMER5WKbDIZYX2YYDYV74nYq0r/ogY8xwkAqreQg81VJsIy2CXJMIMWubOTf58KqNQHaj18paH2A1yUo6bxeC2hekPQVM2eQwBkJq2fQ3kmi1BGa8Bk4duS8tP069lPcJsG6jgBxsIvaspNJTL7J6xnr2fcZ6r/CFpCDGYO05nMHMwjBFnJ+JwYpvw5gLKA6EcErfi+GLwjjEWoS4hhohdynFhXkraXgoLS194DVUnm0ro5vOe097KugGEkkKsr/j8ZdoUCCP1AMCgleze9J9BL4T1fT5VNwNEHwLvZc1lVfM5G9lQpdnRG72SYpnk7SgHG/Jn+yfT4MwN+vv7ab7jH8rd+UIX/+Z88+pVv96+/+Nmv/diAbziwbD59HD75b/4ThCDQdyWEAKRy8E7BW4HFesDhQwsxKITKQVYOwUnIgrowNyoIFRB6BX2n4Z8OwNtqnigAZAfTJ7YKgKUcNeiA8qajvHaMenVBYIsp1lUU/NAXk6CkNUpm7bmBumd9g12zLoEVCooT09YjlB5qp3LEvWs9qncK46VD+V7BLmdwR4lmiJ2UAm7hCdosw27kwFVfaSgDTayo2qu8wg5Q4mnOHGQnc3emPlKuqjv6qFTa7pI+MP5BDPkPq+4oOXVLBrl4PXdIEkQGlHcSdhXgykDW8Maj2AlMZx6qlyjvOcEWgZPxaRNI3llkQCitgFccly95/BBRAhylpNKKLLlj+EuUMoU58de2DMRJINtsQmaeKGONcl0fAdJA+SrA8ak+yopTLYYC6jcMWPEVIAyyRyrVPiRp4an8xy65X9XP0kPpouQ0MpUZWNbIkipfANUHBsEkSV6SUVbvY/ek4cS8ekAOYVETcr8jgSKBbGJg5soJLrroo5j/bxiu4soIFLo58ESmaoXI4pjFLFFM0s0MvtxJtUR8T5LzTps5aVj3s8RTOD6XQFmSqyZJZ0qsTZJV+rn4s/Ta4hi3k9JdVeyA3PJ9KcU27SONNwXVpLGLMKfApiAW3fMeG84JtFiREmWmCnNSa0/JnI0LyqnD0Cx4vUQ8Z77gAsZpd6RN1Rh9BG4eeUHFNsgdoqdgMWie65TImh7Szu9N8kk1RUAeYgem5XjmNGC+JkjeiwloSlp3Y9VHmOWkS1YdJDkvwVC81+L8YE7xna9lOubyQGAzLWX0Z3G/eogLAEPIUlER5ns3XX8RkBM2pYmS6WGWlppWxH5OgfJAcCsjYE2yVRUBPH1ukXUG8jaBuBDk5ns2LdrJE/ArbeC+G35esIqC/Z96TECLqavTkmFeKUE4gfb0GuEIJhOgBLj/FCqUrouIwUVJ6usjMCk6spvKhBz0Mi1lrOsggEvA3CtuWw9cFMgVFElWGz2FKZzF1jyXrhB58SbJXBEAPcbKjhNpaWZVG5mrIlh9EaJkOMpyRTzOgaA5HY/wIX7WcLEsLV7oztF/V4q8SKeHed6TgnmUYaBOlssKzDUc8T4SdpappkTWHIwXFSbChsxSqtjD6Yv4+995yktjCFQC89LFPsxKRsBL2etcyeFgFzpPRaQNczhROoWC96srZU7JnSX8IYNiVnuE/NriYAlqO8tzXCkEKaCPJvsMU59jlrSnYwCAEHKwjrAeamQQTwIrcrSwy3Iea6DcNwfoLMtYCUI5a4h1G2qw8IXK7/uFQB3BZFy9G+Bbgic5WEqpjYNbVhF4Ely7pqBc1nler1hVAu+ZPFvQQxiUgBxslNQSYKeqEBH9jvAeYjD0NAL0Umo+H8qYEBvBpnCezGSq2ogS0VCVEMYSZEqBXLVxKokFCCQTwFWSfZbFSffk12W06XHqU0ydlqnfEvg45fXr4Thf31aqHAE+SpTN7z/ZXpjMfJxSzq8/Cej5f407viaL/aZLYf+yA8tvtBQWALwXCAFYLAcsFgMuNkdI6SF1wPGhwfriiKA9oAL8sUC9HFFWBgJAUVtI7QFP4LdYDvAbC+GA3/6rP0NoHPR6wuWTB1w9uwNUiB5NIBQBZtKoL3rIy5FS182E85sdRBBQVwNWj/fQ6wlh6SBXBr71rEFpLdyZBZ73EK3DdGWhthPEJ0f41gMLi3I9wl8YhKVlD2LlMZ176O1EZvJRB3s9QZyP8Jfch5oE7NYilD5LW1Fx5dZX3LfbWPjnA/S95urmysEvHIQTCC84o/a1B573CDpguuJ2pnMPd2ZZvt1GRmAQmG4sV61XFqEMKO8EE1T3Cub5iOIgssfUbii5nc49XM0U1ukswC8cxiuHoALspWFNyZnD+GrAcONht44s57WFOeeH6XjlYDYew7WHawLsiwFm5Vn1sQocazH3eZk19ym8mGsvRsCsA6aNx3hJ6WQAMF3SnO6agOGRJfBbe4YZLALMuYM543mdth5m48nK6Dm106wJbpmgt16dAAAgAElEQVS2Gcd8niajITONZknWfLpwufOPibScCNg4hmmTai0C7CLALkP0E8ZJVMPn+icOtg2wbcB4TqA8nAceT8lglenMM73ynmOZNpQwMimW+1Y90N+EODGO/s4+JrNeuugrJEDob3hcZhXZzlWSgc4T/DEej9c8D9MmwKwJVMYLD9vwe9ZWzPdYSpZ1BUHhcBlTKC8900kXQCi47+mMFSW+nFM8E7ttazLOvmTiq1lyom7aODGu5yTRJAeFjEmkay5umBW9rMmTOm54rsZzTvBZd8PJsoue3MSKc/GDstG0b9tGOXQdvWaO9RlyRD4PIUpa2cknYBdkXm0bfZ0VFwvGLVB/oJSViwHx/opMpa3JSgNko4dLgfGck/zj4znkxqwEw1y2ZC5tmxh8wC4+9u8liSnZb94b7BPlOZ/W0edtQz7+dDy+EBjPRD7fZiky45wWlforBqx0VzJPzNN5ClGe6qq4zSVfm0C2rbkfAoyZceyvuR9bcbL48IkkAx2vn/C8J4dziWlD2Sa7TQHTiOzP5KICv6enc/YPFgeC62kdF5viBNwsCB5tIzBuCYhcLTCuef5sFe+dAugvKOs0raDHNILkaSEj0GE6qKsIipOUn+MRaN47uELkYB0EoLuWMeQnZJVHArhmpTCuZWaxbS3gSolxIzEt47mO9SIIBHymlTALmWWr41rOHs+CTC/PkcgMnStFPJcS04L/eC9FNnTB+hHTyNxPSR9fyEEyQQr057FWZAzzfuLxCk/20zY8f7ZVTGYVIt8LrqSn0lVkRHM4T8kpEet9eA6Sv3BaSbhGYdwogtGtRnG0OTQnxHPimtiNGBlxsyDQ85rbc7XiokyjCEwRwZ6NfZWNZJVIfN6sFMGe4nkMWmA809G3Sl+jL5iQ6ioG1ZgVQcB4puHqyERGT6gvmfhqWwXXxOPVAnZZzGAx3rfjeQE5OobcNCozwq5SeR++5PjMKiahGrLArtG5UkOODq6UGM4LejqdJ+sp0vgp5RUuIJSUziJ+7Rruxy1L+ErBV5os6mgQCkmWEyD7WpORs+uastaYDBsKRWBuPINwKgUxmtiNyXvTVxx/UOzBhBDwtaaXU0qG8JTxNYUClIRbVpmxDKdsW1vRh1noXwSVgiBSxAqSoORcD5K8kWVBplFKSmFTtUhFOWvQKv+bAZznPpT6mPHMAUCarG+UwKKuCBbTe1JAj1IQUpI9jIBOlCVEUUAUxQxitcZHXlGA30fJa05/TQA4bRP4mL1Mstg/6x+AJIf9yxTe86v+95vy+EYzltvvXYe/+Q/+NpZ6xPthgd1UYV2O+NC3aAqDySncHxpslz2ECNjHWpKqMCiUh5Ye+6FCAHC4b7E9P6AfS0jp0e1qYFQozwZIGeC9QFlajKOG9xICgFSe1SVOYuoKSO1RVBbWzpUmAOCNhK4snJXwVqJdDxACaEqDd29XEJKJrWFXQp6NCF5gvepx/+UacmEQgoCQAX5SUJWDG+Iq3iQhF4aJpZ1GsTAwgyYLOyqIkgwtAiAKDyECvFEQB4Xipsd0KCErBz8pCB1X0SYJ3VrYY5FDjWRt4TuN6mzA9LqFvJjghvie+xKL5zscXi+hNxPsvoCoWKdSVhbDoQQGxUoTAKJ0wL4gs2slUEZGeJIE7jogOAG50/ANZcx+6SAmCdjIGgMIOgCFhzgyKTQHLAFkYh8PcLuC7289024fNHzlM+MsvIDfGMj7gtvzAqF1SLUsolcQ6wnhoUSQDFHyZwZiVwAqIMgAEQQZaRUiQyCgOnpbVSdR3kmMFz7vT46RUR4or4YXPDc2jr0XsFeG6bK95LEBEEZADWSDgzqpCYm+yPHcQR8l7NoDjgsfeqdgL0mnyAcN3/pce6J7ekKHa5/ZVtuEmDZJhsJXlHSbs7jwoAPUkRKt8l7CbOKijObrUtKnPgpMFzxGOYns3SToPpGAKsBsHNRRAbFKBYihS4JBTCKel1TbARBMJxl1XpE3glL1g5iTFSPrnoOeVGS9MYMfNfJ9qp8Z51QfMp2FzJAnwDOz3MihUOnhmhD7DAVDkHaCwUI9faZypJTVx3qQxLgPVywRL+9Y6xB0gIpMfJDcjllG5jZWwyS5dwo8crEOwqwi26dnlks45GsjYniUWVO+jpD8p/HcFif7ATLDmZgvX3CxoHlLptnFQBsXmcv0HjWchDBV8zi9QmZE1UQQla6N7k6Yy3Ler224CGKWs9w9sUOJTeIvSdx3BPKnoSWqJ6tfHMiiJzbVF7E/U4uZ4V0mWRxygm5i2xPjqYb5Pkr3s61j12sKnQpx4aCc91ccQl7EUMN8H5LN48+T6iCFr+T7ViRGb1ZYSEdm2EQWOzGZ5Y7HkSTLwiN3kOqen1VmKXKYEhDZaw+4Jh0/FxESQ52qXkwMw0q+0nTNkk1ATRyPCCGrNBIb6wtkC4mwBLYpFCfdRyloC0BmJ/UQMC1Elvl6zesmAjIgFz5kVjL5SVmTlAKbRD5nXsXxRcaevsv5XKiYrJrk3wzlij3TUZbLhSkZ2UPkvtO0gCajTYXe+CgXN2lRlvUhaSwqBgip0efPG1/E6xO4eJKAizRcsEyy5ZT0mj4T5BQZUkkvqSsllUN7nxdobCVRdMxqcFHinc5hYj75mTcvTFCx47LU15cCKoUzyaQ68VCDg1kVUJPPDLYafQTS9OGeBhf5MlbbuJPAIRdi4FTqwp0rQ3wZA4QmB18xzCgF3CBEqXEZ5z0u5CAhKAFhTkJmTmS6KaRIHQ18oSCNy4xo8rLKyQEukOkMgcC3opQ3yXNhPXxb5OAgYfgLSCDrICKjmcGWB8RkyCaeModJApu+14rBPVKS4dSzfzGFPKX3i5gES2bW87VI7HsCafHrX1Y1cgIEP/r+9BECvZKJEc09mYLjPH1pqhv5+na/tu1/JSwSQeZfBsbyf/zHj3/l2/03X/70135sAKB++MMf/rrH8Bd+/Nf/3d/94e/+R68wBY2HscHvXf0MvS+wLCd8e/0WWnv87vXP4YXAT99c4j/49J/jGGgSCgD2Q41/49Fn+OKwwSc37/Bv3fwUf3I8w/6rFX73uz/D33z1R3hrl5iswvdvX8MGhUebHZ6d3QEa+Ndvfw4jFKQKKCuLv/L4SwQp0DYTLldHnC07fHhY4Ppqh34s8R/+1j/Fe7ToxxLTWODJ2QNWqwFPzh9w17W4enSPurK4XB9xu9zj8fUd3uzX2Gw6TFOBi4sDNsseRWPgJaAbCyEDLrcHOCUgJFipAYHltsf3Hr1B2Vr0TsMbhdBriMLj4skDDrsGunbQhcNm0+Fs3eFwrCFkwPXlDutNh/1DC+iA0GvUFwPGDw3KywHPr+6w+9kGL7/9FcLCoe9LBAk8unrAFLuegpXQhcfvf+//wr88XEKWHmFSOL/eox8qfOeT15ALi36ghPns6oChr1B+UcJvHLBwKFoD5xSElQgy4MV3vsL9rsWn3/0SD3+ywfUnH3C8a1Ff92hXA1TDAminA8Kg0V4fMVkNYSXK7QirgGI9ob3qYLXAy0/e4P7LDUIVsHqyJ5D6oiIQNQS6jx7f4ebmAR+OCwYWtYZdqBsDdBryfIQXAsX5ALXkokLz4oAfvPo5vnh7hovffYuj1AiGgU5+5fB7v/PH+MIvsLjsMJoC20c7BjNVAd5LFNsR6ssK7sJCLizKz0uIl0eYUuDi+T3q7YB+IeCbAC+A7//1n+D1YYXzT+7RPzQQTqC86WCkhCg95EMB4YGLT+5Qng0YgoZTZHEROKFefPoAoyLrVAJ+y8TAUALF+QDUHmGSCI2HPJvgLw1w0Ag3I+TKwhaCPZxPRtgggZWF3BpYLRAg4B6P8F4R6K2YLGzOHdaP98CfNDDnBK/iWQ/1aIC/K2EvKREKmvovd0aZk68DhJVwrUf56gD5WQ2z8QhXE9AzPMMuIpO7SX/ABcLzAVYKCC+hPjlgggKcgL82cGuH4oOGawOggOGFQf3siNEWUL2AtGTn9UFhunAQj0fYJkBMCqEA/KseOGpKvG8mqJ3G8Jhgv3tuIa5HmEWAuzKQtyMmr+DWDJsSLztYryCtQPU79+gLCTkogjhHQORLoPjBA/pWwCFNiJKXlddw+qtHiHclzDJgejrBXVnYGjwmL6CPrCPRPZlEXxLwuoWHOfPQR/q8h++MEEcF870e5ecFum9NKHaKr7+1ZGZLieHaQyCOrwD8pz3k+4J+3ouAaQvYdYDXAWYdt58Yyo2H7gWmLdnM4ZGD7llJoyaB4zOP8l7EgKsAu+JrigdJT3IBdM8tynuJ8SJgvKb/vXvqsfgiBhd1kU0PAv0ThjL1tyEuaHARaNoG1B+A/QsgKIHDC0ro+0ceehDobkNO/AUE9t+yUD3HMJ0RJI4XZLUhuADQ3/jc/Xp8FjDeOkxnvGeHWwYpVXcCh1dcCOkfEeT3N9xOuQd2n3Dxxyx4nSFZ7XL41EEfJPobnt/ygQFG0lL2Pm0CXEsZ9uE5xzReEAT0t1GGPQDjeQoGEuiveD685uRbmoAhBiwN1wHKcEJvF2SRh6voAY8MsFky4Xs8F5jOBfavAhZfcHvH54B0InqxuW+7ZNAQFFny8Zyv6SJz3rwPmLaSCw81a1O6a9Zf0A/Hfe9fglVAkaWtDgHDBdntJIW3y1QJI7J1wNYCdinQX3JxyrYistBkqKc1LSX9DY8tFILsvACOTyV0H8cfRGTfkwSaftrhUpLB12RgmX7Nif9wLnOoUncr2Zsamf/DcxkXCSS6W4YP9VcSemB40bgVKAbKgseNiunAAofHiim8jcDupcK0VrEGRkZ1jsDxMT9fjrcK5YFyY68FBEBf8xCwf6phG4nxnEmph8cKeiAQ764UAf4UEAqB7ooBRsoC/aWGi9Lnw5MS3W0BKIH+QmPaKMgQfa87+gJdLXF4XKA8ehwflWje06sqPTBu5+0eH5VA9DzbRuF4W/I+37DXs7stoSagvyogQBa2e1zDNYqLYLWMDKRAiKmy01mZ02p9FRk9KTBc0r+oJjKpdlkAksA/KEGWUwpASUzbEtIF2BUlvAz4iRHwUSZt1xUgBcxFA32c4FY13LIEFNlYEYBQU5rrlxUEBHxTUEZdawJEgIsKdUEW+HxBkBuDf0T0bIampLy0KQFJJjXUBZlH6xBWDVDqzJSGNnokteY+kk9S6/lrFX/RUoqtUgS3SjHMR5MBF1XJcfQ9nxeS20my2SjhRXqtjhr9BC5jxQoiwymEIFv69X9A/Flc6Ejy2r/A48f4v7/84Q9/+Pf/whv4FTz+2//+v/zh7/+dNQLEr/TfP/x797/2YwO+4Yzlk+9vw9/7X7+Fe9fif3v4No62hBYeB1uhjJn6nS3xO9svsLc1fnR/A+cl2mLCw1ijLQz2Y4VPtu9hvcSXxzX6qcDFooMSHutywE/uL7A71lg0IzbNgONUoi0MBqvhg4CxClJ6rOsRzkv8/Ksz/ODF5/hst0GpHZyXCEFgUU646xos65G/F0Hgq7cbNIsRWnn4IFBqjvnYVzCjRllbbBY9+qnINHffVVgsBrw4u8Mfvb2EEJTkLhcD1vWI98cWzkl4L3C26jAajbY06I3GoatRlhabZsB+qOCDwNCXECJEVtRDKbKzV5sD3tytALCqxUwam1WfmWAlPe4OLaxRuDrb482HNQBgu+7wsG9QNxMOuwZSBTy9usOfvD4HAlC1Bs7GDxUREOL5CQGoaoN+X+Hyao+HfQNrFNrlyIU1J7Fd9nj7nmPSpYOdFIQElHaYPtRA7cj8RlCIIFAtRzirYA8FUHgUjUHwUX4Ux6G0hx0VpPbs+L0r0Tw6YOhLeCMhDhph4WZWN7HBRrKmxgpgbRBGhfa8wzgW8FYiDAqytfC7AsXZCHNXAZWH6BUB6V2F0FrIwsMfNUTlEQaF6rznmDvNlf0DWVm1MvBGIngBmMjeCgAjj1ftNFN3WwcUARgkIAG5MPDHgv/vC8hJwtcey5sDDl8tIUwcf6e5ymskxPmI8KFCqDz0vYJ/OsDHc4hJAoWH3GvuS5HdlZOAv5rISJfzSqQoPEKvIBoH7DVBXkV5OmSAutdwDaXGXGVmfYtwsRqmDFzZdYLPReYordD70qPYsV/Rl1zxV0cZGVcJ13iE2kOMEupAFsJcG4iRK7n6QUYGgKyp2RDkykHCX00QHwpO8lcE4tBkjdUxeuCMgK/m41WRFRae3mhhkkQzhZ3EYytYV1S9U5g2Hn7pUL7RZAtPQlgS+5gZOszeT+miD7gOJ1H9QLHjcxBkCQFEplySVZME33KkRzDoKG3feuhOQB8Y/qXGJB0PcyWIRAxCE5nBJGNKn3R5L5l0HcD7L9YKiTjWxGKpKfqno9JATrFCZ4ivi55N21JaXd7H3sV1rCuKFUNBIndrmmWUu0dPcmLVAN4v5Q4xnIr7VePMAjN8KmT5frmjzDiFjrnoTaZU/Rd9w5mxG5GrQJKE1RfzsaheoNzP+02dl2TLkSXZupvH7hrkELPhfPaz0sPL/ZZ7+liDQA6QUiOiZDygfpuky8i+4xxKlbyZZQzq6k+Y6hN/YxoHfZ+xXsbPHtbkvSQAiNVKTQwpi5UxAMFcek/at20peU2BO+ma2IYpvim8i4FrZG5TcNFH1xGsbTFNBI51qlPBXHMkGXxEnzDHkvy5AHJYHuTMkvsCqHaBnZNnEvW9x7gWKLr5WhddyNfcLAXqu5DDm1I1Sgr2Ko4cY3mcj1VN9PQGSWbUtBLlwcO0ia1ErvKhX5VA08ZQqsyATpTuqpHPAWQp0+eDtCEHH3kdw8Si1Dz5WYUlgD9l/hHoE/UlJ/imkageXGYW+ToyqXYhUd5bmLWOYw/RMxrl7IKAOyXo6qOL7CVyYmuqpUmhSCIGMaVjSs9z+4mBJZsnLb2fPlZ1SONhlhrFIdpblkVmYBMrmdlaGyCNi+NQEVzKzI6K0WUWMjOYkeEULtDrWUTWMC62U4Ybj8k4hCiHDUpkD2uuL4lez/w8QPZREdClGhPRDQz9MRahrSH6ka9bNHlMubZkmCjL9dFn6hzfe+w/em3CBKKpZ0ZTCmBM8oMIGk+wQ0ghQlLMQT5JsurnqpFfWpNycnx/Gpv59Ycfhj/1Z3/e4zeBsfzeD6rwD//xk1/5dv/Gy5/82o8N+IYDy/V3b8K//z/9Pj6MLUanMViNq+aIoy1hnIIQAYtiwroY8L//wbfw177zU/yzLx5j6go8eXSHz39+jhfP3+HtfoG2Mng41HhxdYc//tFjLJ/uIACcLzr89MfXgBMQrYOuLKra4HDf4Pxyj/2hQQgCl2d7vP7yDPVqRFFYHHYNqobsljsWgAxYnPWwVmJ60wIrQ8mqF5DaQ0oPc18DMkAvDcIXNa6+/xavvzgje1ZSXgovoEoH/6YGLkb4Y0FgszIIvSZ4sBJCBlxcHDAYjcPrJf+YdJSFlu/JhrjaAylJt1OcIC8c6vMBw0MFWElZqWAYDwoP1VgEJwg6Vha6trC7EiJ2R4aCfyTlSJaxvO0wfbngcR0kJ/+NJ3j6yRJ2ww8ctVeQTzuoHy0wPDWsdZkEqvcSw43Lk3WIgOrVHtMfrWG3FiLKbGVPiamYJELpUdwp2A0n9Tnts2SAkls57u/ZEepHS+geOD6jx1MOMWBp6VDcK5hbg+VZh/6PNmSPNgxbMluP5nOFMXo+hRewGwt5VAgXE4KVKN4WMJcG5ZcFJXNpgn8zQb6j1lBaAXNpoN8VOSTJbB3UQaF+JzCeh9jFOMuvVB8LuhecpE6XDnrHIKY08RAeUJ3A8Nih/kLRv7hgaIEaJN935lC9VwgqcEIeCBjKOxkntnNwUQ5DijI9V83Jx65h32r1RsGsmQZsFgRNwgo0bxneJKfYxVgR0PgqwFXs6/QlJ5/TJmC6dFj8REevp8iJrakn1DZMfS0O7BctDpS8MtlYwuuA9rXAeM5xMvRIYNpwbDJOQs3Go/xA8J2CZFKBvC9j0vIkmFRcAimxlinPBFvlTuTE3pRwDHBb05pgtTgKjFumLgfF86UPZFpUT+ZLHxja5KpAAJVCnyI4Yv0G7wF9FLm79lSWOW2YBh00fa7SiVz54vUsNU1BUOOW57S84/tT32eScZoVgYxZ8nkGBxF0wMevY9hS8iEWh5NxxU7S077SJIf1FVOSg4gpuw2BnNcxyfhIb6dZzhPbnDodJ/1mSU8qvXDIfaQpEOo0OThJdYt9TNmN/aHl/QyYAbJHaojSTkNGsjjM6c9JwpskkkmqWz6Q2ZlWHG/zlj5GE32WyX+dgEV17zFuKNdT40k/YgSptpklqLaOzHXL+6e6D6wTGU8CmcooLV0QnKkRmLbs8gwqXTtuM1W8pG7LtF/dI9/LKWhqOJdMFlbIsk7bIIcuZWAdw33YMwo07wmQbBtl0VHCm4KObBNDnGLqcwp/8gVQ34cI0CltTWFFEJTEBoEMYqWN0tKRAMs0SQJKQDUtZZapjmuJ8kjgl+5xZQjEKD/lvZS2l2SuXs/S0HReXMUkXdOSpWw+OEyLGHzkEWW0MXQogp8kh60efA4XKo4eZsGQodwRGrsz8/lNoBTIHsjUwQlEqWny2Z6EKLnUIxrAZN0YWOQLgeLIBF1I5O5JX/B4zYLjEpadngRMBN/pdQgJ2KZ7QqJ5M8KsiizNtI1EsbcoDgbjeYViZ+Banf2davBwlczP575bHwj4YmdmkremPs003vRwlYyf8T56pDXKhymDxCSRlYYBQ3K02UspnM/H5CsFOTiCTMFzLo8j02nbcu6mFIKSWCViGu/H8tJQRE9mTKwV3uf3ByEgnMuhQMK5HBqEEBgCpCRyH2V6CLKl4tgTQI6GlSOOwT7COqbLGhtBqfwYuCWAGZNs0+tyLcrXU2G9R7AOInk/Tx+xtzM4VosE5xnck+S4J0m1OazH2l/Y/ulr/pUeJwE+33Qp7Pd+UId/8I+e/sq3+7de/fGv/diAbziwbB49C8/+8/+Ck7cD/ziofp7ASzsnSKYUQwjkUvhUz+CL2ZNT7ALlOjVw/1c8Lv8PGYMl+Ic3hYGkSoQ0YUp+JxHiRCfWM6QEQJZ/cyLg0yQoTmamNSdBcuLEgBN5+m2KY8jemGkbvSQWWLx2GNcyBmLwD8vxqcDqJyFXLNhFXJFXcyVAdR9gFvTR6OMcUZ4S+9JKcerb0/08qXKViH+kkFmPcs9qgPoDJ0oi9qydpk+6Mv1R4jaWrx12zyjXkXaevNHjweCLckfwgPgcWQnBVfkaqO88umsF3Ydc+O4q7jdF8Cd/m22RvXVqQk6bdJVgdcMUMG4ZIiFjV51pU0gI5gTS6K+q72JJOXjuUlG7XQioOJ7+RmD9U49xFUFgO9c82GYuak/H7DWv+eIrj2EjkTxQagho38UV68CJhStnFqU4egxRNqbHkGsZ+N4EeGKNQkrOjL4jaUMOTPko3TFO6KqdY6hDLXKqqTRzqmdiHIZzifaNhxoD+nOJJtZGpGRPPXACqwdeY9OIfM36S4nFa5fvreQtqx8cjteUbSXGJBWqA3OhfZogqzFgXEssvrIwSxXL2ONEKk4c0wRNBGBcSVbG7FntkK4lV7l5PUwrUfQhru57HG81qgeuuLuCvig1kcFwMTk0PXTnczXLtJSxZiPWvFQCRc/rXz04HK81ipgmq3uPYavQfOAJsvW8Oj+uFYrOR7aCQSNq8pAjJ2TjRqK656RVWiY+pq9FlOrRS8VV/2LvYBcyflYGyDHALFl9ERQ786o7S2ldTMrk77zjpLCW0fPElfVxo1DuPYqjy1K7BKTU4POYpPGwC4Vix2N0NXv7pA2wrUJ5b3B8XKG+iz+vZK7c0J3Paco+sh1myYCV6p7XXvfRExV9WQCyX0za2UNW3htMa3rBXC2zH5G/05yk2lbl3w81epiVigwbq0ykY6JouYteqtgTJ1yAMp4hJ0v2FkoToA8GZlPQExfBDMDt2ZYpoCIEmIUmO+KRqzJcLePfOJ6/oIDqvaH0L4LEVEKfAIGcOIHjOeekXg1kmGzchy/oxcsT9hDgWh3rRoBiZ3LqJ89HQLHnB5BdFoAPuQqFKbJMGvWFnAFACAQKsbYjgYRpwy7IxCr5UkIf4mQ3MnwIQChnkMEFNpFZHTkxhVR1DGORk4MwntLD6DkD8FEFRgqKUYNlgAsA2Rm4JQGAOo6YrhaRuQvzsYQAvR/hFiXUYUSoipxCCg+CDSHgtSRrFUN48v0YAYuLiaMikL0S1sOuKuj9mGWXQcXrvRsBJZg2OsVqCCnhFiVkx+uQ6kF8o6GOUw7R4YHxtb/wfHyEQkF20wx+CgVYT0Yujo3diQryoePXleb3A0EaXCBYUXKuECk15GgAY5mA6j2ZttjBCGMp8xwMQluxIqQp6EUcJ4QFAVT2GlYlEJ+X+x6hqWZAdAqQymIOr3Ge4wJmD2ZMRg1lgdPgHWEsxGSyfzGDL8eqk7QdVmjYXB2S9sNzLeYTm8aTQGJ6faz7QOp5BHK4T7D2l9dypJ9JmWtCIASrPaQCvCOTmPyMKVjH2jkYyDlQkuXmsX3ND8lf1fj7EmXC+ZGAXfRVBmshtP4FNjJYC6EUgnNzAuxpQu3Xt5mYTSHxZwXzBB8ohQUIVP+Cj98EYPndH9Th7/+j57/y7f47r/7w135sAKB/3QP4//JYbHs8+Rs/x3EqsakGKOnx47cXAICm4gfutppQKAcpAn782RXOLg7YNAO+vFvj0dkOh7HC/a7FKgb8fPhiAxQBt4/uUO5bvP23S2zPj/h3n/wxfvRwi8/eb1GVFlo5fHi7xvbigLo0eHe3wrdu3+IPv7hG3UxY1BMOfYX7ty3Wj/aQIqAuDSar0PUVlPIotUM3lHBO4nAssLjo4L3AcKggtEe7GNE7iWks4EaFop1g+gLoFep/7wN2//QK4pMjnJOQ0sNOGvJ3RvQ/XyEsLWAk5YPrCd5K1MsJ+88XePS9N/j8i3OUiwnOSWtcwYAAACAASURBVCjlURQO1kqYSTNMCIAdFf2cPm5/KBAmifNHD7j78TlC6yB6ibBw2JcOftAQlUMYFIrVhEU7YrdvoH9aYzp3aK47PDu7x2d3WwyvFyiuerjPWrJAL3v4dxX01QClPe7fNyi2A4rCoXvXQowS5W2H+2NJBtcKoJr4f+khdgXCwkJWDnU7oT9WCIMig1l46JWBPRQc30iWU0gyxtuLA+6/XDMMaFBoHx3Qfb4EJFBdd/B/sIR5MSLJrIKTEJqeQ3jB93UacJRBypdHmHcNukcC4ZxhTPVywvjFIrIBnivFFVeTxSQZ/lM73DkBWU3wnUbSNn7QnsFETkAsLaQKDGL6qoa4niiPHcm8wQkII1h1owLkUUFeD8DPG7J2twbyQXMSWHG5mR69eHACZMB9oL/yjsAj1dCEkkykOki4tYcwEoDD/qWA7iSmcwc5JWkQYvgPWfLpgmnBvvKQI/186qrD7nWNoCl51bs4kRecOIcCs+z02QD1kxqqFxhuHD2D5xbFnUaxk5i2AXffV6zD2ToUH9ScEroIDBxa8ZjDzQD5ZQ27CVB7nov6dZTTVpSw1l/FJNY6QE3xvWCIUnjRA581AGKSaRvgVxb6XQHhAHMOtD/TkI5MohqYfptY3iBiWMy+iLIsQB/oa1ODwMOnDJQiqKZENRQeZey+VQOvEwM+WKXTvBV4+FQCUW6rppgmCuTKkBDDc8bzALMWqF8rmI1H/YYqBspfydq7KqB+V8KseCvqLjJ1tcz9uklSK2z8WSNQvynz8/ooYgKymtngyBbqTmE6o0RzuCAjrgZABA05ArtXJYoDcHxK1lwfBSdRIYWpIKbOJra2jOeG4WaJAUNk4JLHrogyVN0VGC6B5i1iom8MkKmY1tx+KdBfz/2yviCrKqcAu9AnIVGAvFW5eiaFByWZK4CcjixNvD/WQHXH1wxXQHkPjGesDhJh7rJN8sOZIWTHblrMfHjBCgo1UMaaFgnbtx7DeVzoMyc+Qp+YYy7occEuHsNE0GMX6R5FBHZFlACHvPCphwK6p+eSgV9k0NLiXJCxV1qAvZAxhIaLWnExU1OGuiglhrNYUbILgChyn2uSG6eAoCQRdSVB72kNifAVTAss3rCH1BWUxALAuBY4+8MJ3XWRA3+SXNjrFBzUoDhE1jm0qO8CxjX3A8mFXjKaDaqdw/hpCzVykTEt1lFqG+t2ppDTiPU4V6UATDFuPvg5VCjKPfVZCVcyXTaxrNWONxH9sbOcFABcVXPRIdaUcNGuQblzsfJEZJkrLrntovPozzXqezJn7O1suFAUWWAufHDRaPEnR3RPWt7rVzXvM5lky8jX1ld8vji4nKqrO1bCpMWv9Fx6uIodqGmBJXV8zswsA4MApugWnYVZagi3BALPxbTVKPYOqrPwNUE5z1UEPB5wjYI+2o8qUrgDJuiq0UN1EaxIXifVG5hNDd0Z/j1UMblXS6j9CLeucqhPqjQJSsy+QiADdTEaylidi+qbFKhz0sNpPWAdgvcIC/Z5in5CTooVguxgYHo9tKKMNbHZTQUxThxrXcbPC59DivJxC8EKkwTK++Ej8JcXYhIg9Z5A9bTSxPvM1AohEIYxMq0ElSh03g7GEdDxvDiX2coQ4v5U7Nl0Ln/90SO+PsHRECJg/v8fv7GPbzRjufrubXjxX/2nOHy+xqNvvcVXH9aoa8pPp2OJop1wvu5wHEscXi8hWovgRUxW1cAgobcT7LHAp5+8xo//2ROE8wlSz2mvq8WAh4c2y1qrf95i/H4P7wTEuxK4GuEHjfPbBwDAh8+3AAB1kAg3I1NZj5oyyyhT1W9KqFcHmM8XgAAWLx9weGigKwv/2QJu5dD+TEP/3h127xYQo4KYBPzSQT0ouDMLUXiUtYH5YkEvxLlF+WUBs/GobjqmsU6SklIj6NE7Sti1o6ToQeV00qABX/noKxPZixV0QGgokw1loCwWAGRcbfeAv56gv6hgzi3Ktzp3XPqCMsLmtcTxBaWsPiachrMJoeNr5SA50ZeArz3kJDmGxyNCnCCKXkJHb5xdUkZprwyKrwrYlZ+BR/LEXA8o/kWLaRvgNhbFBw2zdRCjRKg8ZbtBRBaSQU7SANOtRfmVhm0ZcJKSUfUxTsoAIFAOKyeZvWSuSv2ePD3TFbtGXRXgthbiqPPPpSVQSAms0hIUmJWHGiRc7VHeqXmbHpjOPPRe8Nq+Uwg6es4eBMZLHr/e8/wGSYmoNALDpUfzOvpJG3rQupu5vzOlw4ZYo5NkqtOG/rmUvFl9oN+uiL67BBDsgmmi09ZDGoFiJ+P58dAHgmU5kelMclbbUu47XlKGSyY+5O7MNPn0CmhfC0zreE1Hvk4fBap7VoaIlEg7cPKnBuD4zKN+I+duUUHlwLSlf1JY5E5MVmPwvLgqSos7ysNcSaCWAEcCJNOWx3x86tF8NXsp1YAsbXX1LKkNOvrfHpCTThPI0D3HsP6ZR38pKZ0VBBS2Qe4IPT4OqO4FzIL3JdNpkRUTrubXcuJ7p1X0AtpYFRL7MXUPZNmipU9QOKD5KmA8T/64ebL9kT8uSRzfBEwbgWnLfepjPJ4SqN9TolnsKEm1MeGzfeMxbmXs2GSvpu4Au0jSVo7R1TzH4zlQvwuxTgFx0n0ip5xmySIEj9FrAhj6wvhciF4zr9MElu9LrLRpZ0ksEGWxAVmhkZ6vPgRWrzSUocLTP5jBng9UMSwYUqO7EBUqc+KpcJjTZiMYSsoOALNctaEkGhGolLsQK2Mi61pzgSD5b1OqakqYTRUXSTbs6vl+qu5DrmXRfcgMOuLnWlLtsPc3nndPJYAIAdV99FGKuF/H/RYdgZyKoFL3lHemzs9TeX5a6Cl6j3FFCejiS4PdyxK2FqjvfN6HdDPbnthmVxAYpf7QBF71GDCuKEWVFpgWAvWD5zmKx6jHmKAaVTlq8hjX6iOVQpAEnNNSoH3n2XV69PmzHQIYN/Qu2lpS8VDJrLTQY0C5c3OaKuYFHd4rs+qi3Lv/h70367EtO9CEvjXt4Qwxx40735ycaZcxpbagaQEPLZCallC3aBASL7zwivgJvPCIBAIhQEI8wD+giwd+AK1+ANRdk6vKWbbTmc47x42IM+5hTTx8a619btrlVrcs2VnqI4Ui4gx7Puesb30T+zOTqqm+degvTNqeCJmAqp1L1LcO9kgV1YoaA4SLsEtVPI8ySVULIxQi3EJBDhHV3YjxtIIaQvHu+UqmZO1YgF3u6BQ+Qg6eTKlINSeK1S3s2fSF0SfrnVQfSqC6G1mPkhQgwpEtzwm1AKB7z8RVy/3guAIQY0CsqISQI+Ww3lC1IWxAqBT03sLNDPTecj8aXfyYOSlWby0QAnzqt4xKQK8GxFoVoMVOy0gWGECUEn5uoDrL50hBsJdlrzGWHs0si41aQu5H1njkW/YKHtZsjI5gMsldY62RLTrIjHdKfc3gLSZgJ7wn8+qoNEBd8bnJiylyb2R+nZKJPWYdicjeyEMm9JBF/GYybPZappRXoXWRvwJI4DZwnd5DGIPYdUBd01+ZV+E9hNGIh6yo978kfc21JNE6CPMNruvQZ5mOaYwRcRjwL3r7XWEs/+c/ePYbX+6/++Hnv/V9A77ljGUtHf7+B3+KfzT7GC9ujvDk8ha1crhodvjR2/u4Wm4w0yP2TYWfdBU+uf8Wf/n8HozhTFaQCu1swGaTPhTOByAK/GvPvsKfvn6Apra4Wm5gvcJu1UDsNfaPHU4WHfZ9hfknO2y2LYITGKxBCAKQEfVJT5N45XA07/E2MthmsewhRcRKRvjeMAQkJYnGIKB1QN8EVKc9Otvi907u8KObOQNMjj0wSvhFwMNHN3jx5TmOzje4ljPEBmiWA/wrhqYY4zBIA3MyYNaMuHuzJJPlAaSQkSgJUEKFUmkRZfI4SHZLyj23y2wk7ElAmAXE2qM96TGOGr7XWCx7dKaCviUgC7Wnv7KKqN4obL8/4OpqhesfXXLwOwg4KyFaMpthOTIExwqokxHy5y3BohcQnUKcO0CA95kI6ABx6YENPYmLx2vstg280lBrRd/e24ZdwMcOzWmPoZsTOJ0NkIq1LXGQ8AJQbzRVOU9GHJ3s0b09gRzpP1SdhN4LjOe+1GwEk0eC9MPlm3/cI64qBrW0DvGjAeFdA9V6hEFBv5PsvJwRtLdPN9g/X0DtJdzSAxJQdxwIukXyxSjA7MhgiSAQFx6jF2Sq6oDuSYC+1ZRcCgBRlOqGGIC4dAg3FfSOg/jt0wCzSSmK88jj8ectnAFO/tYbXP/5BfyJg7rVGC896tca44VHUGRDVc++TXOjMF7Qp+orILYBGDREAPorTlx4H+GOCOZziAoCWBtiJVQnCW41PZZ2GdPgm8BTJoCQfZgiBXGMZyGBA4GgE6CYR0DSqyhCYosEyBD2IoVJCHSPHBY/0xA9GTs/D6jfch8oi0+9hIsIfzXAHlUQAWjeSAa2HBNg+UsCELvk+qqVwPYjj9nXCv0l+zjrayaUIgLRRPhWorpjCikANG8ImoOJ2DxlHUB/j+9NP0usaEzMTqq08A2Pn1mL99gwBIK7/Scj2i+YCitW9LcFTcDm2ohQk23Kks9gIvRAOXF/SUAeBRNd29fv922qARgXwPYpmUz3eID5qmaFx1qkPk1RQCZ7THNhvcRwThAaVQoHiTzPLvVj5gmHnoIT9Bf0tkbBAT8DiATDay6SxF/nihUOmOTAntFqDfTnAu1b9pqaLc9dM5LxsQuB7pjPb97xOb4lQzOcRbRvUCTucqTU3814DrZPgPlzHpMMFnQnsHtAa0Hu+5y9iggqYv9AvFeV4mY8X8dfRKw+kmjfxALofc3tr2/T8lM9BgT3Rw2sSqnWgNVZZg509wSaa4K84YR+5fEYEJbHJ7N/2UOcl23nKcBGTNJ55TPYTO8lNYFh17J7FKClw1cCUkb0p0wuHY4YgmXnEovnBLEZ5AOczMjbsE/eR2WB1UcVP+NnwJjqcKICWa4EDO1SwGxQZNDS8XrLNhexnwB8d07LBL2/qbvSA/ulQHMXsb+gDF46mVhkUYJ1ohDl+OQeUGUlYOjXzMB180Rh8TygP1YEPWkyRnS5k1OkqpYAPz+oQElVLr4SZQID4H4Npzr1tNK6IGPEcEJpd3fPwNW0COQE25g6NsNhv2jFzs5qE5LFhICgv6rhagmxUDAbXySFAODmBKc51dYkX6a9MqhXfqo9AVKolYebU94dJTs1dRdhtg7dpYGbNTAbj1CzZ9NsPcZjjebaolqNGI8rStCHwLTYO7KQZufgjigtJhNZodTIaAmRrsWomPA6nNWsZwFtAbqjJNq1iqBYqAQGCcihBNw8BfZoTi5zokEitKlTU0v2WUoG+ojeITa6yKX5uclzHhsNte4RmooBPglQihRAJZC8qEIgtpTd+kZDr3tASkRDQBlaQ7tDWx2E+PjCCJLpDJT+WgJUYV3ysgKxqckEGgMxWN5fV8WrGeuKAHQYuY8p7IczRwfA8qDzEiGQscxgVCnAOXomc1Jsfo0+gBGVmdjEbODOIDtJuIvU9xDIAhCHvZv59ivCfIQQOHjGv7z9Dt6+1Yxl/fRJvP9f/hcwtxpuFqD3EnrLEvvseQxp0G22TAwkq0XmQwTK3JjeyPtyOMZwEUqCIT2YEQiCDM1pgN4yYt3XlM4BaSbaZUmVAMTE8lBKxpCRKDijbza5r4+DqijpXdOJNcnBHUEzAMTNchciv3h9zf2Ujvdl72YulRdJPhYFw1dEEGXWuAQYHNxyAqBvMqNDlkd3BCZIMqbxKKZEQlGYNYBsTV6vtGm2fJ22NQU0ZObL1ygdYtKhJH26Oe9DAnEEBskrmaRmObwjb7/Ps/MpTCN3yeWwG+EYRFKtUPyODIDI7AEHPDENYLPMLqoprCOvL0oUFiUHueTtP9zvfCwLKGgZkhJzwXpab5bnlbRPjxIuk1mdKNN5qfm4XRJc5F5BcQAWcjBLvj/KtO8poMWnrr2cXlnCNZJfMrMWJaVyAPQuor/gdYAk06s2vB5CzR7ESfKYfMtJ0WK2sRTJ624KWsmMC5CkaMmzzGsE7w0imZYZk4wrMTiJDbRzggMAKZCG2yEtJV45SfK9pNUE1gh6phAMSusSmzFkgMT3j0lBMs07epQzY6U6DiLMLqI/SwPa9D1brSOG4zTb7lGYM6aDch+rDdnnfK50xwGz6if2LJ8TnVIsKV2LKV1x6j3MSaH5WiGbw22jNHUKc8nddcCUilltyU7VqwA346C6ueFnUr5WESgvlDZXFkyfHVniyvWR0XINwZxrEsMkpx/1jU7IQx+snYvyXg85yX+f+9rS6RKTj9a2ZIuy/JWfcdxHsltJipj85vkzcFzkdNDU5RdRwIx03L5qOyV9muztNQQjmYEyHYEMQ3BSaEyIrIFIbFvuXaXcL71f3bTtUQD12qM/ZRG92YeS+JnDofJnT/YsBy3QvhnRXZqS6CltLJ2KMcn68muKBx4ogTsEJVNnIEvr32dVM/ACOIhn6uYUMpTPn7QEGONRAknpM7ra+Pe8z+yR5DZUm5A873JiNlM/oxrol1W9h2/o76SiQKYuy1COaWZfdUdmrIQTJcBIfy2ZyvFI0/fr6TdWnS+sW/7uDVUOOGIaKc+th2tV+W02DqHKfuIJrGVvqWuTf9jG6fqOiX1LCaL5ORlEhUrSP9374kszW7J0zIiYmER+foryuRWlKIyetImdjDkohuxhrOSUlJoYPuFikU1mRrN4UrWAN2l7chfkQeCL3FuERlMGqgTUdkRoDK+RzhF0pfernxvIMUD2FqHSxWMaDZlEOfrJz+qSvFTL6ZrM22gU1KoHtERoNGRnSz9kNAoIEXJvi080p6mK0fF5B4E7USmIEIr/VPgUwJOBTGZzhaBPNN8OuyaNLseDJz5/IYuJbdRq8nAClKMmr+R7MlMp0zXn32cWAwEfDlk9IQpzCR8m2Wx+bfZ1CjH5Og/ZR+cgjHkfzKVbLExmYicPk18BHIbp5PqPmMKECvBMIDXGSGYy/f3e63/V8n7dLYZvvcfy0x+08X/8gw9+48v9Ox/9xW993wBA/rOf8jt80/TO2WOPOPewxx7jCS9oe+rg5hEP/sYrNJ+uMJ4EuBNH0BYExpTm6eeM1w8Lx6j5Teq7qmNhCVQn6I3yBJihDuyuqyJL0TuRvojIAFJuygHceBQToyDQfTSWwXROwfNtRHjQYzgN7N4zkWmUAzBceQwXHtJyZl9aMYEVTbCs95SeDecBWb41nrD0PjMx9S1fG+rIlEgA7WsO6HSXJHsSJUHTzXKIzVSwnQf9lBIyxdJXHMjpLWfH1UgJW073VAmQsvibi6lvcoF9nimfUhlzObY9DtD7BIoVy9EzYDLb5N3qeN9wxtAj1RGIqQHoz7lunySPAEHqeBIxnBAI5SJ43ad0Sk15ZQZxGcQKjyn103EdMkmb8vp8PYGkfKx0iuR3c3BAskWRYMq0nJz2KZM/zez4vKjpudt8HAoDJyIwexNh1sDsOY9Lcx1hNskzlZQhuktl3fv0excxexFLcA7Pea4DSNI+cIY+A+lqzdeabURzE+DmDFeiBI5yyCzDNNsp7VU4HsscwiMc0F3wfFdrnjO9j6hXEaqLJW2yfRsxnMZyvKVFGdCqngN2NaAE/hCg8rFqwwFljrCvbxl45doUCBUZq1/dpWu65/q53XxetaEfqtry2p1dB3RXfE8370J5vuoYHKV6lCCuqBKYNEworTaxAKXhVKLapJTII3b4VRsGDS2/YghPtUkyu8BjxNqOWEKL2puA+o6yxeEkebEcUz/z88yOgWNMYWXolQhcl+4j6k0orwN4f3sd0F1wIs3sIxavfAJyEdUuwOwig8b0BILMLpaQITuTnJwYD853YKhWljAORwL1OtDjlWRx9Tpg/sol5ofezGobKO/dhwIU63VaV/rcye8T0wU+b5ySVEXgPtR3gaFTd6H40eq1R73iE6WLMPsIswsYFymcrGdC6xTcxGMtPUFe+y6guXGotgG6J6Cu1h7KRlTbUGTewkfUd7546KptQHPjUyhW2lcfYfaBrNAu7YOPaG881BhLvURz61FtQ9m/HLQlbYSyEbrjMfWJSRpOTUpBRQFSvpaUhu4D9BDQXNsD2XaAGtJxHAjqTApFki6DPc8JgQTW6M0kkLWtQPvWQo3cR9Wn7x5JhnB3nwxktaFktVqxXxiR99W3FjqtW0TAbCwBXJK1inS86lubvIuhgErpKcOULqK9thyAR4Irs/EwW0/gkq51OQZUtyP9i52DTvUSamSwkxwDqrUtsl81hMISF6/ezsNsXWHHqpVlQNHaIupJHqp6D721qG56BjaNAWbnCEzSfoVKFvYsA7tqbaEGppPSsxdQ3Y0wWwu9c6juBrg5VVV6ZxPIElApuCd7B1XvUsKpKnJN4QLUekyptgSVejVQMbCzrNDoPZNSpaBXcyQoiVUCWmNA9a7n9g6pWsQT0MuBwDFqCb0ZCCSFgNoOXA7ADsaZRlQSejNC7Ub4WQW1G2AXSe7pAsOQVPYs+hJ8JHoH0VkC2jz0u9kxrbXRkPvc7RMg9yOEC1OoUQ5VkunvGCF2/SRxBSg1FQKys8XnCBcoWVUEZlEIiH6A6EcCuJGhRFCSQG+0fMw6YBghhpGs4rYjQMwVIrMmTUiRVYyV4eRPCgyCD3x9qilhUJLh/Tl1FZiAY9fzsX4ArGW4UdcjWsvXDyNBmHPsmTQaMXscfaCMdRwRrUUcxvd+YEe+Tkjk3ktozX3M8lbvJ8ZSpTTcDC7zfYdDI8/gISEEGUopyv/0W8pf+ZMfgxS/tMxv6y1A/MZ/fldu327G8qPH8dP/7j+DVh6j01g0A0anEIJEiKTLu30NbTyGzkAbz77IysFZhap2cE4ieAm7qrG42mK/rSFVZO+hjFAzB609n7OpoBcWrtMQJkDIiNl8wPZmxkCZAFTnPWyvsTzusLmbQdeu9CWGHcvM5NwhDAqypkwSVgKSXYA4HQniUrCMUBGh04XFg4iQa40w94CKEDpysmlQgA6Ak2n6Nl1k5uBvOc2aFi2BIhOLIIAqUDI7MPAGXkBEkUBELNsYsx8zVXyUKpM2wKwU3DJJAFtfAoSiiFy+itBvKyAC7oJBMmGWZ7eQlpv8eVYU76XwAnIU7AV0ySvXRiYCrxR9j4Okn0UDYZ4qVNK+Rk0ApDoyHm6WQmtULLJKaQX8gh5M1dP7GLLcNQLCCagx9QMGsL6kz2mpfL60E/sVFdlcd1C9wVAASu/omyKAiQeflWZHJj3UsWyHdJMXNLNtqmeNR7WmZzMYILQBei0L28iaEpFkaNz23KNoNpPXMiffZjZVHk4IJhkrDkB3tRKwy1gALSLZ+Jyki8SiqWHyQeZzk8NeyCSklydvKAdg3O7MwKs+e1JFmfBhqAePjRpSd1+dJjzSczNzlxnYnFILMR0bLiv3TGLqZWxSlUieHE5AGpjAb06Izt5Zu+B5yiqHnBacg3Nyl2FQnNBwM06I9BdULGRp4OE6c4VHZpze+8me1IgyaWDnaZJBoshIARQ2eVJgTJMbvpp6BgEy+75BYdsPAVzpskvJ2ZkhLEnQ+mDZyBNWaaIlewTz211M2+1mia3PrKZACSnK6boAynWd+xKjEuWazc/LqcY51MY3B8E1bppwUmMsbF5WN+g9r+/s1yznPAEr3/CCZZALSmdgVh1kRYibJU91Cs8pHrs0UZcTn4MmK8b1ERwGNfkic2iN8Dyn5bM7K1rkdNxlYo2l5eSLm4kyUab7lGQtUjp1Oh75eo8aKdWcx8/ORZnMA6Zro1xvCcSqMaaeyPS+GslGZi+osglQJW9rloKqPl1bCZRn1jcnRucka2U5OZJTsZmSmydEQkkePkyzFoGsaK6aySDzPSVHOu9ZbRIVCrOuxlium5JifTDBSFlrSgV2qZbEp/3UAnpgwm5OWkfkhEDQooQclVTlg/ewHKeaETlO25wZd6p4RHkv5PejSOvOCe+QE1tPxZMovt7MBOeaEZESfX09JUZHmapcxgDfpqRiz2Tc/Hkt/ZTwDPB4uEYxMCeiLI9hPb4Aat+wC1JZhuDonS0JuT4xt5T0Uu7qUwWKHP3EpkYm9UYB5MoPAPQ7JjAbk30DPu1zYsiF9Qi1pr/SBfjE7Moh+yzTRIpPqbapegTABGxT8i9c4DoEJa05kZkLSucv/R+lJNuZk1M1g7UQAoGhVpMk9VASmgFc7qysDNlPo8vvaV3+fTY0s6DZt5lBaU5xTV2WqMz7bGHGBKkiJIYAcShJjanr8jBlNi9XyF9Kti1VI3m9OFzUwXoPE2N/HXv514Sx/B/+4MPf+HL/7kd//lvfN+DbDiw/fBwf/Ff/OXTlEYKEHyWEihDXFT2CnSKTOAuQcwv5ouGgOgChISiRg0ygCRBJ0plrFcLlCKwMcsl3ng0G+AGuctDNwLAUt2BoSVAoKZsy9Tv6GZ+HQDADJBBlKcNV+ynkhANVMoKhSsEqAXBHAWYlkySW23QoF4wJNHJAMAEduwwF8Ph5QPtCYTw6ADYgCMoDVpEYVrsMTJZMQMYtuP6SkLg6AGme2xxlLN/aoQLUnmAgGAIqgOxh1Cw8Z2hKSP2DKCAkD4jHk5BkyyiDPzVmtlQU+Wne/6hTUl3qSczHjl9WByE7gmyyGvKXLpcRNNMuc3l8kbxqlGOdmW3fTmxvZl3lSKmq7lKQSDt5yXIiIzANCmJKJJQWsDNuV7UCunscFOgdAVx9I9gruJ0AYB4kHxbAl4FGlke66X4AJZExM7bABBZycmZJhEQewL8vrdU9CpOVly9tCmuxEzjNg9Y8KC7HKe0z5dwoNR0czKQ3t3h/4JTL2n2NqWsR037nQJwssZaJBcxgI7Ph7wVpRD4nv6eDmQaaGVyXdMp0fwZN0qVycYMS7PEe0PPT//Rv5o42VkbZUwAAIABJREFUFJmw6pnwqTo+5lqy0AUQpG3LMrxcBJ4H0PnY5O5Dvu+5LNXxMy0olIEkN5I/ynJyxKdidXY0igTw00B/N1UXZWCbgaTueL4LWKsn9j77H3PAzqHEtMjTkwIg7yPDTyaAmm9Ffq4Bk8FvmMBgnojIKayZrS7XQZKrl2OVQJkcOTjOjFwOj1JjLFUyQYtJupkG5wX0i6w0iOX9kmW6ua9Q+inIJgOKfMvvnTy5IlOvnSyyu0niGAXPUZ5MiFLAm0kKq2wsXsNYjqWA7gm8skeuAGiZwJagqoXvr6n/MJ9vXlPxPXCTa3UOAQaAIm1lvUc+p9Nr8j6V3skk5c5gK29TPkZF9hu4jkOQn9dXuh+BIgstE6f573yLZGpj8SIKqC6k2pP3P0/yJFJeBzB9fk4XJgpYyxLUzLqKdGxlYkUPz3vZx8jX5moWXxNMiBDLoLpUx2g5AS4j0vs7lO2KigmoIdWTFPAoJgCdAWNmT1mLc3B/zNdfeA+05cAcAn2Zzs1UwQIAqnNFBgsgVd8ISJvAYNoGnv9QzlVmJwEU+arw3N98Hvg9MB0TXpeySGghBIJRieETBZwIn0BV9iwmAIgkpWYy6sG68vOASe5aJJt8vXChAMTyW0uI3hIYHoK3Q1lrDtgJSVKauyetIzDMUtac2JoAZu6pLOfosNsyg9EQ8J5U9vCWg3kOfYtZOpulqzFOlSD59s3l5b8Pq0C+KdE9eCz6gPdCdw7lsN9c1+E6/zlu3/Yey+/8oI3//R98/Btf7r//0Y9+6/sG4NsthdXa48HVHeazAX6rUc0sEIH2gw2qkwHRUFp6+eQWYWsw++wOUaei+AigDghHDoiAPusRL0aoXmD589T/llimzCipjsApNAGxolQppgARe+QR65A8UBG4GIp3zzcB5k4iXIwEcDoiLDzCFemeeDayW1FFuAUlsXYRYC8dqpUsM6vw9ImKq57gq+Lg0B4TfPkZt8meBj720Q7juS8ArL4RaF6qMugKFTCeevg2wi5TouhGwD0aMDzmsUDgfcIDsmdvpvrOFmYrIP7GCnYRYS8cqjsxyXklQaU99ugfOtgn3E/G7HNb3Ylj0X3LY9xfUBbVvBHono2FFTJrsofS0WtWrQSGMw/dCQz3HKKK2D913I4lZYCz52ICJYmtGq48pBMYjwNsSjZ19yykBeYvI8aTgP6BI5A2MTGAEcOHPfbPbGEuh/OA6o7ngVJfsnbdI4/hkscyKkD98I7nVk1yX2mBUAPdZwP6ewHdQ8p0th85ynA1BzSbDwOqVaqRqJmOOlyQwdw9Dlh/6hAMma76NqK7PzG+WfprjyKGy4DhLBbQMZ7wfzfjczPIkiPQX/LYdVeB12zL7TE7YPeBx3AeYBdMjO2uYpJmMyV198kIX1Gqu38YUK2B/VOP7pEr7JjP3aGZLUrgtL/yMOtY5MTbDzyTXa8jdo8okdzfjxiP4tQlO0dKvwS2z7jvwQD7B5wsqdaxsCHBMIxG75gYm1nX7bOA7l6SmKZjUq1jmhQiEN18wGOSJbS7x2k5jyPuvhuxfcxBpRojNh8HMl0G2D2aUh0J2IC73wvoz/ja/cOI8YRdp2YdsfmI2x4lcPt7QHeV+jErejjdXGA8Flh/EtBdUlZLWR29u7rj87dPKe30NTCcCuzvCwxnnAAJmmmx3VXq/DxliJNvge0Tgf29KSl0f58D3Lvvsqx+OOPgeDwS6C4FhhMOnoZTkR5jgM7t9/hbBBRmr7sHDGdcPtlSfpYMp4Iey4Z/d5ei+EurbfL09rx2u0sGodx9CgJzw+t2f18kOXxavgVWH0k0dwGuZcKoXYgyILdLUXyBu4f0SfqW6+nPBIZjge0jCTcDdg9kST8djiXsjPu/e8jJBF/RzzscSayfSdg5H7ez1Eu843G++0Rh80xg9RFTcX0D7B7SUzkeE7gMZ9yG8UgU5m3zVBbQ5Cv2vfZnEvsrCTtjgNHmqSygNwoBOxPYX/F5eojY3VdM262YgNtdSIzLKVV1/ZRerv2VRH/OflVlWbexu899Wj9TqQYkYFxKuJqP6Z6y42Ep0Z2RVXKNwP6ewvYRa366c4HtQwU7E6XnEyDoXT/VcA23aX9PYlxKbB8qbJ4ySMabadJ0nEvYhcS4kASwCQjvrlQBkWoIqNaOQT8zejPlSAbUNUnmP5fJ00457/6eLv9nhs81Av0Zk1TtTGLzWGHzSGF3X2FcSOwvFNnGiszb7kpjXKoibwxawM0VunOF8Vhjf6lhF4qMWQD6M10merYPDUSM6C5ZgdJdUO4btYRvee729w2ZtVpiOGPAjN758r9vFD2ZtYJvJfZXptw3nOhS1bF5UiNowXWFyG1KbO/ugQEiw4P29ypsnzSwS4PuooJdGvTnBuORgV0qqM5BrwfYpYZd8gLt79VMnN2O8EbCLg3cTKG/bEpaq09+UoDA1B5X3OeHLeTgsL/PGbz94xnskqExbk75rHCpU3ZZ8T055zF0yxq+NQz5iSjeSDc38E06zkqUJFh1s0U0iQ0UAr6lDNW3BvasgT1tIDz9nqGeZjFEZv0Ez1uYVRAxwh81ZCobQ9+mpPczaokwq6ZKEevgT2YIJ3Ne/8czQEmG8YTA8B0AqEwBmznZNXtKhfN8fgrfgWbiK6Sc7m9rgk2tWDeSQGysDeKsKf7L2NZMlq2r0ocppITQmr8VA3aEVgzq8Z6/lQKUgjCGvkwp+Dt3ZgoJiCxfTfueE1+zxxLgevKPUkUWK4wmUP1n/fzL2+/87VvNWJ597zL+vf/972Fja3y5OoPzEtYrGOVxMutws5thGJn6KSV7I7e7Bkp7CAEs2gHrXfPeMp1VCFayqqMOVBKYgLDTgI6QladUdlAwjYPdGUpNK05bS8PHvZWIg4KoOL0evYQ0HmFUkFWSwAIo3YMmsJakoZTEzC3s3hSZbHvWoXszg5ilL+g1+y9iHQAZIbdJHusFa1X2mumknvsCfSBzbQK3a6cRdQACv2BEw6RW1B7oFKW2Y5qltIJAfc7tgxeQMwe8rYGLAXhXI7Qe5miEXdUQjQc2GtXVHsNNCzGmZFMTAY8kI5Wl5kRYgdAyMTXMPOROIfcg+oYptWKQkAMBtNopsrlJkipGMsGxiqjeqSJzZBl35Pa6aaa9pPEFpD7AHOIUYO6SnDekmdXGQ20VEAT80sPcKQQ9ySgBkJVteK7lnl2KEEnCKg8YyjR762uGGAVF9lzYxI5awD4aId8ZsskxSUFnpMLkKIoMzrcR1WpKq82MRA4lUsPEVpd1blIYjEWa3Z4krLlSRabXmY1M6awE2pQKionVyIP8xGRJy+2sbwQTWj23S3WcGBAOsMf0IIogEBSBlxxTj2Yky5zZe9/EIskNOqW21gQb3A8GUuUZ5fE4YPZcwrfT+zkqwM4j2fEmQnoBYZMc1wPVRtAHjUldkAG6PSZTklnuLM21S55XJLYus5LBJKA5pPOWgqL0nr9ZmUGQnRk8NXB5rBlhpYj0KaAryROlB4YTsuul1y+rJzJDesCaZrannKPq/cdzGNUvsVMHLK/qmWSq+hSO1aGEDqkBhfnMkt+idsiT/Enum0OyMnuYpayHgVW5pgWS66xvE+jqJ6Yos+6sueExPew2zGFXuYsys5++RpH/Apw8sMtpsjAHOEUx9Rrm6zmqg88Jh8IA52NW0nV1ktUqUY5rZrpcM7HFqp/qLlizw2oS6UDZZmIbs4c4Ky18nQKQWj4/M8tqjOWYlrCyxD6VYDF7oBD4hqSYAUEx1WxkBo4yXd1FZOlpTMFbOYAps/8A3mPslSUDHNNEVg4Iy/Lawlym86X6NOlUCdQrSkujnAKSMruWJaeFWUvHMCgCdE5aTYyhrwSqTZiYwsQuuyb3bJItLYmyKWQKQAn3kj5NgmWprEQJUmpWPl3jAv0JJzKKTBwoyoLJmxyKNDtfByEFQDHIKDHlST4KZGmpTIqcWFjnYAias4+W7/H8+S0OZL+x+EN9o9I5iRNTGTkpDSR5qo3InZaFic3sb/6cyUrNgVUhfF8EhASyRUSRx5LllsW3GtW03mAYdmR2Dq5RJVQpHzvhY5HKMlCNfxcmFiCDm2mRAxkwv+9T2NJhIFUEQckBc5cDqjLLGKWAHByXkcKRZJaypmXDhUkKG+MkfQVKuA9TW8mmlgCiwuZOj78njz24lb5LmySkWYYqBfswZbovM6CHwT5Z9hoIxvN+FSY0+Ul53NK6lfzVrGdmHVNFSJHD5uCfwxCeGIoPNI6WzOSh1zLLYPM2Hi4ffwVz+qtueZ++9YzlLP63//CT3/hy//7Hf/Jb3zfgW85YCkT8fy+f4Iu7M3x48g5SBvxbj3+GfjR4t5vhYrHDs/NbeCcRo8B63aJpR4QgcLbcAQBmzYiq4jejfdPi+09e4t/53o9x/+kNdGPx2bNXWCx6qKWFah3CliOU+TGLvszcQi8t/vb3Poc0HmenOwhBf+Tlozv825/9JYSM+OTZa8Qo8OTxOwgJ1Ef8ZjathTAB5xcbnD9jdKeaObh3DWTlcfboDvOLPebNiOayA2SEbizkxYAPv/cSZjkCTuLR915D1B6Lqy3q1uLo/gbihqkvzXmH9qTHw2fv8ODTtxBVgDQB1eUeamkh5mRtVeVRnfbQbyrorYJaONz7+B3ah1vUT7eICwdV0zf57IO3iDcVzj99B/V1g/kHK4hewfYaYuagKk8w+uMFgfXcsyN0L/H4szcEkk1Ac9EREKoIfTTi7JMbVMcDLj+7hrjXwz/ugcuB+wnAPNtBBIH2kxXUIPDo916TxTix9DE2Hvq7a4Q2INYB8w9WqO7R8BXOLaJJADASSITLEebjDVnoqwEwrFLAkUWcOzTXEuadRrgYEaoIuZewVyMHZrMAd+YQn3Rkve/4ZRtOLMxGQD7ew554RBXhq4jq4zX8sUP7mt9Svo5wJx7VjUwywojx0nHS4EEP1RFIye+vCRCSpLi+FrBXFhDA+HFHmfRxgD0JEJ9uEe4NjK9/OpQkYnvPor7mjL2bBYz3HcYrh+Gegz13rNhoOdhw39nz9fccumcj5l8D9a0kK97Gsr7xgU0Dc8CeO4wf9KjWAt1nA6pbQbZ5ELBHEeNpQPfxCHc5kl3+TscQpr1A/4zHc7hyhYkPn21h1gS4dsmBynDpMV7x2HYfjqyzGIH+2Yjh0qO+lth+4tA9dOge8Pd4TPa3v0/mfjwO6J44svBBYPuhK3Lw/sMBw1mAW0TsnzjUNwLVnUB/5bH/ZIQcgd2HDnIk8JMW6C/JgDOYSBSgbY/IoA+XHnbBrkg1crBabfj5ZTbA9kOHsz+LmL9g6NTia6C+YfjVcBownkZ0V4nNf8fEXbtgEJVrySDvPrLYPfVkRC4DussJkEtHED2chzKY335sEcVhHQiBxu6xx3DGQd7+QUS1ArYfOzRvI7fjMmL2kgPh7XdHuAUAQTDoK4YXuRmXm8OwAKb2VquI7kGEPQL2DznQ234QSjWJWwDbp/Qj3vzQsZP0EZnd3P9Z30X0F3xtrv/IkvHmXUR3n/uzfxhhl2T+qRhIoCmS/cySZ3tE4Ln6DmtCYpJwuzkACewfEQDqXYRbkPHNQN1XKMm79GoKZJkpBCtAtk8YKtS+JQM/HqUKF5HY1pE1IghAf5kSgmfA+mMOUvvEFEdNFjQz4GYXMXvDgLPdY4HuHtlYCMpjoxTorhKbe8pKhfFkqiLaPOPy1BAxHAvUa6ouhlOyrlmG7msyr8OJwPpDCV+ziqO5Jau9eyCKLHk4FeysdLzGxiORApACXANsnpItHU5FCcyyc4HZW4/5a4/+VMLsA/QQsX2YnntCpjgk4OhmQHfOx3xKbN1d8f/MMnvDbdg+VLBzgkfbcttcS5Z5XHLCzOy5//2JLIx8lj7v7ktU24Bq41GvPGavLXwl0N54bB5rjAvJypGXDr4S2F+Sce1PZPLIeqghFrDPsCuylpnFba8thiX9mft7Cmbr0Z2z8sO17Pisby329xS7LwWZ5919DdcymMnVlMWy4gSo7iyyx1H1AbsHFcYjifrWwjUSaiBbXb8bYJcKw4mC2Xn2jkbAbDyqFfshVcdqJ06g8b3cnypsH1UJMLJ2xOwcgiFbyg8dAd9KqJEyTDcjYzucati5xnjENN3+rIJ0ZGzN1sI3CnrnUpq0Sr7RiP6swnisi1dXDR7DuSlhZCJEjCcG9tjQm7lnEFGoFOtXlgZurtHdqxEqBd9q2AVRf5QC+q6DHBz0ZoDPbKeSCLVC0GSDRQTc3MAd12Q5Z/Q2+tYASVIbGl3Y0CyxjUbBHTcQA0OcwqwiGJ9VENYh1IYsZ5ICh1mqLhECqCuE4xliYxBmNcRgEWYNw4JSqm+sNcFm9lpqVVJjo5IIixQW5ChLfi+FVoq0rPQaKQvjSc9nAoNtQ2YyMZZl/G3S+c4BPzpJd3OYTw7yAabXSYnoffoJ5Qchlt+/9icGvCfJ/ZbeIoAA+Rv/+V25fasZy6PPruLf/l//Y7zaLdGNBk9O7tA5g95pdKOBVgEXsx1ero+wWs1werrFYA3GQTPcxwso4xG8wsf33+LLd6cwxuOo7TE6jV1fwWiP0WoY49B3FbTxmDcjVpsWi3mPXVdDaw9rFSeoRoXzsy1W2xZKBYyjRgwcdJjawTsFtzGQcwdTOYydgTIBbl1BH41wg0I1s3CjwmwxYPtuVuC/0AREQkVEJ6EbC7utgCBgliPsbQ0x84ijhKg9l9snc+AoSxiPOBoZCOQFWck6T9NGMpbxgL0UYGDP0vG3Dji5v8HdzRxSB4YL3dYoYTXHI/y6YlCNjmQ/o4DYK3palzYdD4E4Sq5/pxBnDCOSK4OwcICTEG2aLt6kD8qWz8GgyvL1EScK4qqiv7Pih47oFGIVABMgNppMq5WAIcOLQUHMHOTbioEwrQdk5HNNhNonz2fry/KgI6IJkDuF0ATotWKQj4iIMw8x0NMrz0be96pBOHGQa26/8GREIUA2udOFbZN7WdimqOLBbCwgB1JB/tzyPAoATgCth7wzCDWZ3qjYqUffTUS4GKFeU2YTBQiog6AUec5tNu80Qwo/2mJ8OUesAtR+kuFFGaG67N2hH1Y4gVgTZAOAP3KQnYJZs4pHWPZGZr8sZbWJlfWZtUrhSFWEuWP/HbeRkwzmTiImViskP62vUghQYuQEUOpuIpBCe1DCfEogSfoesscBbZKC2+NQ2MgS3tGlap46wi8DZMf9YCqpgFvEwgC5pYfeqOT3nGqLsg9OdyjevqiSXzewWkh4sBt2nljrFKZEmTxSwjLv13t2TJqVhJ/FMiFS+krzTHqkTLu+SeckddNKLwpzLNLnUA5j8k06dpL7XN9xYO1nMYH6lJJ94NV1MwLPaHhMZPbbZSVAPKgGymzXbupxzD5MgH7h7h6PgZuT2S61GIUdIaDLYCdX2WTPXWY6Mzs2Hk3MW3NDiatO7Kveo+yLTWFB2XeZA4j6s4jmRkwBS0kKncNuoiKjOpxM1U3Zk6d3ZHej5HOCEhiPMdUjZTWB4+TCuCRYtkuB+oZAK/uSx2N6rbMP01cTG5x93YfsrBoIOn0zecbzsoCpViiHSOXjqXoyibxmJ/8fr51YQoiy/9LXCXi67D0lu1OtCZwBQLhYroFQibRclLTk7C3Pn4n01icmapyUJjkAys7fP1c6bbOdiZL0S4/3FCKUgRAiwViuWDlkTgFMNTL75KONlAIzMfwgTCgcsE7puJhtYqXTcxCRkn2Z+pvB4SGLnStvgqJ/Nq9D2YnxBDLjTzluvfFwTfIzjmQAgyGjdrisLBFGTOnDLZlIaSODgtL7lDYCBggJH+HmiiCynljUsiwAeh9gc+/oGJJaRpaJjsxEMtiN3xWqD3AzCb1LzGJEYZ0P/bmulTBbn9JoyWz6RrIHMzGhxdZwwMjKkfJg1sUoqN6X1N2oBFlTN52zKAX0dkRodQGkQBr2jAz0iYq+yyxHVr07YFLle4ynHBzDfUZXwFquTYELiEaSITz0dSamTgwWueIk153I0RW2tnguAcCH0jsZaw3RjYh1RUYzxMJAZsksPc6J2f1GtYiwDlAKJdUX4OOH3s18H6btzX/HkZP7IrOiOGAabY7fjxPwSyxo/CZT+k3McejH/DW3Q6wSh+HXPPPX334XGMtPfjCL/80//PQ3vtz/4OM/+q3vG/AtB5aPv38c/73/7R9g5ypIEbF3BqcVE0mGoPHHbx6g1h7daPD09BYv10f4mw++xE/Wl7jrGvwb97/CP71+BCMDOmtwOd9ib5msIUREZw32o8HlYofdWKFSHkoG+CBRawfrFVZdg3k94uFihTf7JWZmxNvdAr3VaIzDSdthbw1Gp7HtakgZcLkkq1lJj8FrfPXyDFf3VjAyYNU1GK3GDx68wE9vz7HZNTg72pd1+iiwGyrsNg3OTneotIORAdfbOQFWFFjOelTK48WbEyyPupRuzvO8Xrc4P9tCyYB3qzmaxiJGgW5f4+p8hf1QwXqFWT3ibtPi7GgPJQNutzP0uwqL4w7dvsbpMRnf/VCh0g4uSMwqi9Ep/vYKg9Xo+sTwtiMGq2FHDakCnFVQKqBuLEIQ6HY1Hty7w7prsNs0mC97LJoBb2+XmM8GbLcNohc4PtnDRwHvyUI7J3G86MuxWe1a9NsaqvIwlYP3EnbQECJSfqwiTMNUYKkpX65qy6LvrsJs3iMEif2mxsXFBu9uF1gsenS9gesNHj+4wS++uIRaWvhBoT3q4ayCGxWkjlDaY9xU0DMHbyXU6xr+/gD5poI/tzAtJwPEoAhSZ47pvzJCyIjgJOrWwlkFf11DXgyYzwbs9zXcuoI56RE8EWgMAmFDf4yYeUQnoFqPYCVU5RECC8xjDlN62wDH3IZxVUP0ErFN7O1OUW7cKeBkBNYGs0db7K5nELVHdJyYQBDc97VJIP3gDTlIyrA7zcfSfTCRUu+thrnsMG4qyK0mgFxJjFcO1RtNtlbGsh7RekQvuAwJTjy0DmFUJTUZfXpMRIjWAxtDwCsjQpO+/GoPsdOcaMjy28YhriqYO5nWi2ndEWi/MnD/yg7hecvliAQQk1TbXGvYEw9hJWJ7INOeB+iVKinEvk3bkCcLIsjWn9r3JgVUShcGAL8InDhQEbKT8AuP+dUO/c+WJQk3tAnAB1FAu1lLjKdkZvN2lOCqOk6vTfJztZOco0ieczmQPbFnDnAE1XrDgSKDiwhEQxVR3UrYZTqWKdAn1xDloCUAZcIgyx55X/Kug+B0eDJi/nnFPtS9SAApy6y4LL0X6O6HkkastwJumbqHgWnwnmTjWZptj1i9pPqpz1cNTIEOhse6ea2S7zOWxNn6lv3D0goM5x7NawV7FFGtpmAvyrjThEaq3JGOFUh6J0oPcA7woswVJWQqKoLpEj6VvKNmy+eEmpMMkFNqb5YQ5+erkQDuUG6dQVnucM59lVnaqXq+himuE0g/fF6+HYY1+SoFfgmUtOUpNAolKVn1KGDY7PLrEtOc0mbHYx67HP5W3YkyeWHWEfZIFCA5Hk+hViWoLQV/1TdxColKgMHN0rnIoWBqCgtCQJH/2sW0Lc11LDLtUg+05zaLQO+w7gj+1RBLR62IcZJgj9ymLOPNEw8MyUMJocrnLOgkRVZg32mLIrlWPdCfiZLwmycYsjzYJylvvYnoT8gAd5eyVEVlGWSeDIlSQHcEm4isw8nHTYRYEppzim35G2kiraH3WY2sRMlJuUWinBJxMwiUltUwQTFEihPPXN6h7FiOqW8YB3+n12dp+BTgJVLNUEyfHaEwsznkx7VkUF2rketvdEeQ6eYKeufL59lhABgiwbJZuxToxPClvEy9pwQkVARmWZ4rBw85eviZgd6OgBCU8CYQGioFOfgC5OTg4OcVZOcgR1e6PLNENBoFkcCqGB2ilJTeHqS7CusRWgO57lgfkvo3fylVNafCZpYSYIgQMlCW5f/3wF6WwyqJklR7eDsEgiEgZmB6mA57sKzofdkOoRQTXb8hg31/+X8FJomBzOhfg1TYT34wi//1//HZb3y5/9Enf/hb3zfgWw4sT757L/6b/8t/gje7Bb579ho/W11gbkbsbAUfBRbViKt2gz958wD7fQ1TOSgVUGmHi9keP319gauzNV5dHyPsNM4erjBYg901ewTU3EEbVyZamspis2uK9eB4ucd6M4MQEW5UUCZAaU9WstcwrYUbNIQOiE5CVh5+ZzjIFhFSxzINrbXHcNNCzi1MzTfN2BM0REtmD6OEWlrIL1u4hwOwNmT6vEB90tPL2LoCUBDIQqJTZPJcYuwEIGQEthqx9dCtg1QB9rqFOBohJICXNcLlCPGuQjyziIMEqgB5Z6C39Mz1DxyrQXSEOB0RRsWBvk4AwElIHWC+aDBcOQKFUZK9rCJgAvQ7A39vRHT8tFczB/lVw4HVLKC6VhjuOcheTgmYVYTaSYQmQm8otYwNj4NeK4hne9g70iLVjYI9CYgN60fo5QPkKFHdSozHlBmqjkmSoQ0EBT2rS/wRPaXCSSAAeidhTzxgAtSNQajIduobzb91RPtSIdQolSH0huWBNBmh6lZS8pkGf+6IX756w9Tf7DuMhoNYdkFKMlECxRNnjwlucvKqWXM/IID2tcD+QYDZSthFQHUn0V8GqJ6sZV5/VMDRT4HNB2lQkLbVzTjQHi88zC19p2ZFqZfu0qB9L9DcCOyvODAzaaAfDNnF8YjshepFGTDbI76f8mDLN+xurd8RJNpFSF5OsngZPNgjAopo0ralbll63zh4VyPZqcz2ZTAjHDB7GbH+BLx+PUpQT2FEGy5T75EGGhyg2wUQdES1EYWxHI9ZR+JrDlLywN/seOx3j+lRrd9x/VmyWa1F8ekBKBUReVDbn5ElPLzpDiXciJ5MpAFnAgvpOFYrDr5z5UdOGy7sVgIFqufzXIvkf0vyxTTYz2wTkBhJrYB2AAAgAElEQVS4BEDMBqVGotpE2EVmOydWrr6L6C5EOucEeMO5KFUoZpuY7yRPzRJa1m8kgKqZTBsVt9FsY/JLHlSLHHgv2ZM5sW5uJlCtyKBFjeJDDMkrmN+Hdpk8dwngENRFDKcM2qnvyD6JkNYhCUr6M7I1amTYkLRk7zLzGQxlq9LhoLaD+6N6TjB4I1Jlw8T2UX4KtNdpMkJOTKUa0t9poqCkkyeGXPgElEauq9py22XyUje3AftLWQbTauTvfG3M3nrsrhSiQuleFYGeQjunT013BCTdOT9v6k0sjJ9dMEVYBL6vXCvQ3AXsLyTaG7JyGYiqkWFTvmKwTrVLgLDOPkleV9WGnZ96iClYCBiWfL5tBXtEJaW1UfDc+CqFEx0sWw38n9eLKOm0ZCiZ3DsuZWFDAYIYVqCEsky9D+hPNcw+kDFrGH5k59z37IvUfYCdK0piU3prUFye7iPMzsO1fG3xH2K6ngmKA3wrUb+zlJKmVOL8nPzakEBQTo+OKQU4g62SuivoS4ya4MQ3srC3epfYwdS1mr2buvOlYqQE7wTALgnQYvK+FrBbpdflepF0vJkSi8JG1neW1SR7Jp6GigAt1KrsA7+jPXyj30uqjUamCSSHKChJ1ZuxVIhkL6UcfZGwytEjpK5NmQBY8VHKDGRTSmrxZEZEJeFnBmpvU4L4xGYKFyC6Ee58zt7N0aXvtEiwaD0lrS5AjBaxSn2dB5UjoTWQvQOGkZUfwMQe5pTZDBC1oucyxqlWRKkJGJYL6GA8LwT7LSuGIcXKcB/6kdLXwy7K/NpvJsjGSJbTuSJ9jcOBvzEmn2eIBJYh8rnZtwkQWOblZ4/lr2Ap/3l8lt92j+Vfd2D5uyPK/Re4daPBj/7iCe7WM/zh60e43XE0tOlrvPryHF/fnOAf/5PPsP3ZMaQK6F/N0XUV9n2Nn72+wP2zNV58dY4wKFTXGjdvj7B7O4M5GgATEG4qBC9xvtxh6Aw2PzlBuK2h/nIGv9e4eXEM12m4USEOCv62xrCrEJ+3kMbDe4nZUY/oBZrFAPlVyxCZyiPuNZd/U8N8PsOwrclAvGow3LQY384I6pwErISuCZz81pSBhTwfICveP9y0lNNZCfmygdhpzH5SQd4agtLUs1kv+ZroBGWeAnDrCv4XMzI6ApC/aDjQ6hXCsSNrJAAMCnJgl2P/yGL+BWcF9VYidBryTqN5o4EkTUWvsPx/2pQuS+mxXFNq2rzUkGtNALEyUCsNuVPwI784wixAbyTscfqCrEOa/Q+Y/0LBnTqoPUFl/U5CjBJ6oyiPfN0ChiE84zmTV/VbA7WXWPxUY/YLDb0RaK6BWEeyYz6HhRDs56CY5muD9iuDKCiPNSuCdX1tEFqCNdEpqEGgupMwKcVXbyl7rd9JshkR8AuPYID5VxK+icXb174WMLcS5k7CHQU012Tclj/j8kKVQnokGZPmmgP35ppA+vjH9D/qrcBwz5M52qeOy1sJu+QxnL+IaF/JlD4c0VwLQIK+04q9lqxRSQE7noPO5ecazbVA80pBb6eKl6DJJJk1ZZTSA2ZNoDh7KVCtgPnzPCvORFJ7RJA2XLA8fv41k5DbVzL1UAKLLyXG01CkcNIi1XzwOqxW6QNARNS3lHFKn6SmzcR2Mfqf5yJUcerynMVS2wLB2ptqhcJouTn3u7mOaN8wHdi3EXKgD1J4YPELLjcqENDvMvihJ89sJGYv6N0TATj+CdC85TU2e800X71nKE/7NmL+nIOvkx8TaGVWJiaGQ++B5VcRy69DCbXJEwjDCQf49d1UDzJ7FWE2ETqxM8ITgJptRH9JwFWvgOVXlARHSS8m2bNYAI6bcdsIFoD2DffTzRJ4sihJvEc/97DzPIGSGKLEts1ehwKc7JIg2C6YyBySlNIuU8CNYrVIf47SbRnU1B2pRm5DfZeOkyCbksNq7Dz5Nudg7Yrga6tNCunR2QvIc9BdccAfBVCvODht3hHs1XcxVYUk2WlKJa02vA7qVURzFwqIrzY8t3bBxNzZm4DjLy1m1wFqoGyzfUdvqdmmmhDLbW9uA6p1xP4qh9OgMG9RcNntjYfpIuavHNobD98QsATNazBvS1AC7U1I9S8Mp6k2MYXqCLgGqHaUGc5f+8Ke6T2vtxw+NH/toDsCkCxTXn7t4BuBYclBuUqBM1EAZhtQr0OaBBA4+gWTWhnKE+AbMla6J4BcvHKobx1cIzB/7VJwD/e7O5fls6Nekz3KQUdmH1GtfWGqRcyS11gSavP2+lqWc54ZMLMPqFc+Sd9lmhzgscr1O0c/79G8s6jWAaoLGI4V6juH/oT+PzuXaK5HAtqavsgsUZ29HsgKKlHYO2UjzMbBLhR0F9DcjBiPFFTn4WsBs3EF6Oidg96S6RpONVQXIC0Zx3GhiscREahWll2TIaK+HmC2BH16z/MatEB9mzIdNhahkpg93/P9KQCztQhGwKxH6M2I6naEWVsCttRDqfcOkALjsSZA7jx07wsoVp2DmytUqxGqJ2BRe8fOys7BrEeE1EnpWo3m+RZurqFvdnCtIvgzEqqzUDsL1yqo7UDGsFHlOSJEmLsebm6gdgOkCym8jPJTANA3O7KGOZRH8HPSzTXEQLmqbzRBnRBQnYVc7SH3I5k8T1YwKvZsApiqTSoyitHQhyhcgOws169UAWUiRojRMbinMhDDCLndA6MFLJlIuekJFLNkdrR4r8NSSv6fl7nvk28x2X1yXYkQBJojvZYxg8YQEBczgtVhhHC8nqK1XFfuotSaP9lDmf6PIUwyVoC/vSeAdA4lsKfrv/F4QLQOMR6wlZgAZrTuPX9ldI4MpPfl91/1w9d+Q7r7LbxFCHjI3/jP78rtW81Yzr7zIP7wf/pP8eL6BBenG1gvsfrxGfBgwNX5Cq/eHuM//P4f4o9vH+HF//UU3/8Hf4E/f3uFzfMjREVws/ybb7HrK3x2+QY/ubkAAMR/dIp7f/drLM2AP/rRM7QvNOLvb1AZh7ay+PT0Df7vH32K03sbrDczSBlgKocQJIbOYL7ssf/iCOHEof2iQvfBiOYXFc7+1iu8/MtL1NcK9iggXIzQlcfl6QYvXp4CAJNmew0MCk8+fIuXf3Qf7sShfmngvrOHFBF2VdNTl+QrYe4ht4p+vpVGPB8RvcD3PniJHz+/QtgY6JVCqCNmLyT2/2oHvK3pf2soq1NHFuGW9I4+77GY91j/+Axmy+f4hmDLPia7ePSnFdq/8wavX5wATnJ7zkbEvYbcE+iM5x4fffoKP//Th4gqon6nIH+wgv38CMc/eIfrl8cQA4FknNEDOf+5xu6Zg9pL+FOH5ssqJU5G+I96qJ81EJ9tIX60xPBxj9mfNdg9c2TUHg3AXQVxNqD+vEV/6dG+UoiSoSYiAmHpMD/tsFs1uH//Dv3/eYXNRwHhwkJem5LymkEJPtxjMe+x/8MzjCcBOLGY/3GD7XdHzH5aoXvsoddkGePcQV8buCMPfTLC/GgG8cMVuucLAMDiS4X9w4DHP3iF5//kAfyCfkVxr4e/qwAV0bwwGE8CzFrCfszz1LyR2H9ooW81+1DPB8RXDXBvgP6ygfjOFu6rOUITsfwJzYfrzxxmX2nsnzjMv9QICug+sBC1h35ew6wF9t8ZUT03UIPAcBEoL1xQnuobytNEBMbf38G95WRD/ZbXbtTA7IXE7lEATnneFz/V2D3hMe8e+uQtlJh9LdHfi6huCT7tHGjfsIpiPAk4+qnE5sOA5o1Efy8gzDyOf2Sw+oHF7AtDqdxawM6Bas2aFb2j5HJ4PGLx5xXcnFU2sxeyACk3R2KRKH/sHjs0LzR0B+yeek4UJCAdFdC+EgXQBQ3sn1mojcLJjznYW30CLH4hsH8QYY8CRBA4+lyiv6QcUm8EzJ4Aun0lsP6+xckfGqw/DpwoWSu4hYcIgp8By4D5LyTW33UwdwqzFwKr3x8h9gqLL1SRj/aXZGrt729hNzXqFwb13YE/LLF7q399wPH/WyNKYP1dD9kLqE6geZcAwEDP4ew1y993jyLslUX9tYHeCTTXlCCOx0B1B6y/63DvHytc/zBi+VMOCrdPgfod/WXdPbK7IUkst9+xOPmnrFDoL8hQ2zkZ0P4ion0tirRyPOGkQncpJsb1jjUo1Zqg8ugL+t1YLwMMp0Bzzc/+HNxz8pfA9jGZ6fZVRH8uMH/B5NT2XcD6QwnVJQmpJECtbyO6K4H2Dbfz7M887j5RqNYRq08jFj+XcHOC87vPOCGQWWMkWW8JBQqU0FYrHmOAEtajnxJIrD+QGI/J5DVv+dkyHnHfdg8F5i/5+/Rzj5vPFOq7iPZdxO2nEouvCfCDEqUGZjgPOPsTge0TTg6c/6nH9gG33bVkYbMccn81HQs1ROwf8Nguv/YYjhh6U60jNh8KzL+OhXmcvwrYPpKchLgQaF9H6NTD2Z/zfXj6OQe324cMHmtuA4Yj1rcEBZz/mUV/qrD+QOL0c3oEfQ0sXhKYMTyIIUaIwOJ5xP/P3pv0XJol6EHPmd7pjt8c8UVEZmRmDVljtxsDbVkYIXfDyiskhNoWSFgWXiAWLAGxQBawAYRYmAUL/gBu75BY2KjBaqqru+2uLtecQ0RGRsQ33/mdzsDiOee9X1RlqxurrKps9d18w733ve98z3OeafmeQPUqoLry6MYSxZLvaw5YN5MvwsAcBwVsHktMnvuB/cwXDrsTTVZwR6knfZjx3D9ggmtf8Ti0cwkTWddiQeawnXHiIF95bB6qmK7Nyp/5T3os3jOYfmK5fncOu2NGaZfXDMBRXUA75T0o24TBmysCkC0ddmcao1c96hONdipx9P0G24cZihgKVN5wErCZUYJuC4GDH7WwI0WQt/XQtUM/0aiPFIqFQzNTyFd83/qRQnnjkS8cPY41J0q2DzTKW4e+kihuLHZnBqOX3RCeU1122D6kysfmAqYm4z153sFWCt1Uwmw9ylc17CSG6fgA1QSyvQAmH++wfVLBFgLV6x71qUG2cgSTlUT1YgdXaPhMYf1WhvmPa6yeFjj4owW2702RLS26mYbsAoqrGut3RihuIyjNFLqZgVlbtEcG1bMtmvMK2W2Hbp7BbCzUpoOd5ejHGvlty5Cc6KkUzkNfLNG9dQjRe6hdj+6ohN72cIWGrThZkN0RzLrSQNU9RGMRcoXBQykl3IiyVzvLoVYdn/cBctcj5AqidXCzArLpASmhrpawpzPKXJ2H6B3kukGocoi6gx/nkJsWocwgts1ethoZxaAVK0sOJlC3K/jJKPolJUTdDs+HzOylrjHAR0Swyd7OyHQCBJhSQNTtm57K+x2eKZE2Abl7XZsIkZnUXLbfbCHyLCbNRhbTOUpXnUPoOoiyHHyaw2f8WR6fwW76pvmzvfczHr8MjOV73xiF/+4fvv9zX+6/94U//IVvG/A5B5b520/Cg//iP4W5i2mcUX7XzzxUTblOP3fIbhSyhcDmCwQgZkV2w6yB+ozv6x9wgNUeO1QvNLp5gNdkw3TNwaLPKU0MhUP2yiBo9i7uHjJwhHI/MkX5rYArgMnHAeun/EJfv2eR3SjonRg69oKMNQmvJZpDzsTLNprys1STgCH2X/QY6gAADi5TXUDQey+PywEb5Y/JB8MvWMrtstXeP3G/jD2Z1VO1gq75JW4LBk5sngSYrYBZccAre0Q/EZe/e8ti/KGGWXMgBBEGVjFbcqAZFAFFfiNjNyW9OWbDfZKCP9KALb/jOm7eIsvWjxmwYUsOgJtT/rQxOEPaxIikGVkGZCQfFX08As2Zx+QDye2I4SrZKkkOyVjIngClvOSgNUgyOd1UQNUc7JbXfC4VpfcTngv5HbD8Ro/p9w0HtAvuE59R6pqi7H3Gz7UlB7PNIdkFs2Wf3fhFwOZR7M+Lnj29FajPLaY/0tj+qzVG3y7Jhr706CaCcfbRB5U8UPUJAVd5FWIKIqWbZkOWxGxi6bqJz62j5FByED36NO6TjimWk485KE77vLrg9ultOkcpS3QZfWdmK1C95CBN1ayU6KcBsx/vPUf9hCE08x9wMCks2VTVEmTkd3x/tgoxZZKD9GGQP+cANIVksD+U29SPeV4A7D4sL0L0tTFVMl8EwFNyqeuA7aM4KK0ps+smAsUNz6V2RsZP1WSb2nkECQ95zlSXMczER6+cSxI2MlDtEVBccd/bKspPiygd82SMU7Lr+m2B6jVBWGJss3WUDxZkqlwmsHvIgXmQ3L7kD8sXUQoXGVoAg9+rn5BFdQUw+8ixl/BEoIrn++S5QzOXyNcB3Zgdltk6DKxT2i7ZMXE1JZbuTiQ7NTOG4HRTAbPeBxx5Q5Bx8xUD1VJqWiz4PlZaCExeWHQjCVsKrN8GJh8D2ZbHwWzpd8tWvJ67sUC+DHsg0RHYbc8kzCauR8v3lNcefSUH2W2+CqiPJIpbj9VTidGrAFuQjSQDxaCRvhJRVhqwO2X9QToPpY1hKyOC7Wzr4/FhImmQBBq7Uwm9C6iuPZq5RHXtUB8qjD8l2NANGVyCJjJOKaHVKwI/rj/vB9W1HySSANBNCCZk9Ce6jNdRNxHIF36QelJmK+I6R2bQ8ftH10lKyqRR3QRkG4cgRPQVJpbaYXumka8pE+0mZFuCBMbPanTzDOsnGsUdwZ8tJYpbS5lpIZFCX5q5QnVl0U4VVAybSZLtIMHORYFhHdgZSbBUXdn9Odh6QIro64syTimYQrp1ZPAMJXr9RA+eTJcL5HcWrpBwOSdsdb2X2Zqth8/I0LucUs7myCC/5XuEowy2H2uYjUVzaJCt3VC9kTosdW3RjzX0zqE5NDBbD9U4dHMNs3LoJwrZiqzl8mmG8o7Sy+KqRXOaQ7YBunYwiwb9QQFbKKgUYmMDZM9+TRHIFvKgCsjewY7MIFkVNkR2kIyaHRmCtygXdbmErh1sSQbS5Qp2pCN4axG0RD8vYFYd+kkG2TlACehFg/ZsBJdJ5LctuhkBXz/VyK8avi7ErslxBr1s0TyoUH6yRn9cQW97BEWPol41cOOc9R8uwBca3ijodUuWVAh4o6C2Ley0gF41vNeOM9aEdHYfhCPpQRR1CzcbMXAn9lCqNZlcN2LSrYhsq68M1OZeQExv4WcVJa8e7LtUCqLt2BuZG4hdi1AYyNUOflpBtBa+yiG3HKyFMiPz2VsCwQQIxxXEth7+ZgrknulDZshGlkyGDVUBsWsQioyy1gT2gD8ZrAlBcGfMz7wm+RUHGWry5yrJ56KvcfBbJhZVazKfAAGjZP8ljEZo2jdAaXAOIssIMn/Kg/lnftxLg/28eyzf+8Yo/De//dWf+3L//S/+/i9824DPObA8++ph+G//4VfwrD3Gx/URvjH+FLd2hNoZfH/1AIf5Du+NrnBqVvj7P/hr+Hff+2cAgG/fvo1Nl6MyHQplUekOf2n2HJfdFH+8OMdvnX8Lf/+jfxO/9dbv44PmBB9ujvGbx9/HP775Eq7rMf7WW9/Cq26Of7p4gkp3GOkOF80Ej6sFPlgd49PlDP/6+TN8vDnExLTQ0uHZ8hAPJyv8+PIEh5MtHo2X2PQ5amvwm2c/wP/5+iswyqF3CuOsxa/OX6D1Gj9enyJTFt95eY6vP3yFZVfim/NP8Wx3iHdGN/jdy3fw5fklvvXybZxN17hYTfDNs5d4vj7A1w5fofMatTP44O4YR9UWy7bAOOuw6TKcVFtIBNw2Fc7H1Bf+8PoURjv8x+/+3/h7v/M38IUvvMbz6wMczza4WoxRFj2kCHg0W0ILj7FpMdIt/vGHX8Tf/Mrv43/71l/F1770Aj96fYJHR0s4L/G33voW/pcf/xsY5x3emtzhn3z3i3j76RWOyw2erw7QW4WvHF/g2foAr69mAICvvfUKH94cwXsBIQK08kNw0ulkAyMdjosNvvX8KYIXeP/8AoumRGM1FusSk1GDR9MVVm2By9UYTw4WuNqO8NXjC3z/5hSPpitk0uKPPnmMo/kG86LGi8Ucs6rG1YKdAEXZYf1qgvyoRggCs3GNQltcLCbIMotMW4yyHi9eHeL8wR0WuxJNncFtNH7jV7+H33/9BEIEfPX4An/48jHq2xJ/6f2PUSiLm2aEkWnxo+tTPJyt8Hi0wHeuHtLjezHC6GyLx/MFfvjsAUxhoY3DwXiH6+UY46rBal1hPGqweDVFdtCgyHvkxsJ5gdtP5vhXvvEhni0P4QOwWI7gdxrT0w3KrMfduoLWDlp5WCfR1Bn+2hd+gm+/fAt9rzCuGuyaHH2n4RqF6dEWubG4/ugQIfd48tY1Xl7P4RqFw9MVTkZb/OT1CSt2DteoO4Nx0WK5K9E2BuNRg822gN0YTE436DrOpnaNwXy+xeJuxATjnYbQYUgLnh9vsLgdoZy0qNc5pPYYTRrMywYvfnQKddTivQdX+OEH5xC5w+nxClc3E/itgSgtpA7wTiDsNJB5fO3dT/HPf/AEonA4OFpjuRrBdRIq83CdhNhphNxhdFhDSo8QBM6nK/zkO49Zg/I2/5/nFptFieOTNa4/nUGNLSbjGovXE8iRRTVqsf10gre+dIHnPzrDV7/+HN979hChUzg4W8F5idVdhaePr/H8jx/i5P1r3CzGcLc5yocbzEc1Xn56CLnU8GPHTtiVwem7N1huS7S1AVYG2ekO7V0B0TDMqTjfor6qAE2ALEcW4S5jd6wI7J0VgG8U8mmL7qLC2ReucXVL06t8VsBOPPRxA/+iAs4bqI8KuHcauKWhT7uTyI9rOKvgOoXQKMg4iZe/s8buakQVggoIucfbb1/h+Y/PEHIHfW3gRkwddjFdWDjw99hz6yuH6iOD+isNxG3GicJ5TKQxAerGwE0c32sp/+4PPIIIEL1kONUnGfqZR3Gl0B4ReLkJfdBuwlRLfVJDfDBCd+BQfaKx+1ILET3naqGHSQk3cyjmDdrLaBWIMngAcCW3xWw4ySN6Cb2Lfakdq2raQ+57nweYFQFcd9ajfJaRiV8KbJ9aVM80+lmsJVrQAqAaMQTmpIRhPK4hPyphS/qC81uB3TnTgO2I/lxb8vPgOdEpLH3dQQCQZOa7GWtrZM8JSLWjv1lvOEFy+/XY87rkxKqwQHsU0I/J/pcXYkjg7Q49Rs8ltxVcV7NmirO0YkimRfSKdjPEfcQJDWkpc+8n9DhXr5m6q6I31uWALbltaV8gyqpVx0mN1EfaHnLCsbzia5rj+JyNk5erJMfmJGzqltVb7ovF+wxumjz3WL4ruQ6Cnu7RS5CJX3Mb8lugPQTyOwwy75TYe79/spsD40/ICLuC/lNdcwJRddEvvQvR80tWnaE/AdtzYPKM+64+pdogTSav3uVkSz8m+54Cicw2RAk0mdfmQL4xsSPc3oNtdgG7YzK57XSfnhsEg5aKGzLhlFfTVyv7gPpYDmFUq3cFJh8FZBtOSLRzTvIAQDsTKO44KVPeOlZ1ZCJOBHGCp7q2qA81dMPJiWztIS3QHEi4jAy77D3auYZ0IeYNONQnGsWdQzdW0E28zmNXaYgSZJftE3OzRY/mOIt+dAtXqBjOs+8LHby3scczCMp+vRbI7lr08xwuk4OPNFu0sCMz+HWDAPLLGt1RMUxc6G0PV2l4JSEjUyijjFmEQCC9buFLw2CeXEN2jp7QXYeQaQLeCPxTlYm628GPcwzJszoyjh5ATLiF9QPjmqS3flJA7hg0JJpuYDd58fo3QaoQBM9KDZ7MkEe/6LYGipzS3rqGMGYPTBPwU3IAnz/dk7nvwfyMgKDPwiXxdSGEz30q7LvfGIW/99tf/7kv929+8fd+4dsGfM6BZf70cXj8n/xncIUHphahUSiOajQ3JdRGIpy1kK8KyA7oTizMHZMcAQCZh6gVZOzNy29YHdHP2QW5fT5FfivRvN0BjYReUUqqt4L+tSP6U2QrOHALuFcQL+F1QD/zrHS4MrATj+qFQv2AN0DR78umi2uB+sxDxoGSHcd0RM/uPlVLuJyDEBZZ83PciHI+Dr48shsVZZRkOcfPBXaPuG6prNlNLbIrzYCPIkT/477+wY4DigvOenZzSmCDwFASD9ATuH0cMHopUJ+SVd09cpS69gw2AQCzobzO5QJ1DHdJgTLlpRwYRg66yES6Igzsrdnw2LicX6T5rUBzHJDfMCGyfC2HAYJL2xIY8gKQ1eun6UuF+yQlBTLcJmD5RW6brmOYi+KgJ/U/lpf0LzVHHFDlC/brmRWPgdkyPbK4JpPXTck+qjZg/Q5QvRJDWmM35XKLmz2bmsJL2gO+n6waWdL8loONbh4oo4teIr3jwEvvyByWl/feP6V3M7+LYSnbyIpPySi6nFK2JOmzFdnF/Cb6Axugne8Z1H5Cv6TwYehSS8l/3YTrOrrw2D6U6KYcQG0fRWmdALoZ95/sYmplZFDbA7LOk08crn5Forzi8TFr+qjWb9OXWJ9QdpnCN7whQ5dkmOVVwOYxB4jVa/oHXayOAGIYTRy0Va/JqAYJzH/i0BxKNIdkamUfZZl2P1hNrODujCqE+Q+B7TkHcWbHQePulOs1/tTTXyji9s0Z1NKPebxVH31fjgXwqRph9VTg+LsOzgjUJxJ5LFvfnLNrz2f0cqo2YHRJKVtzmJiUOHCdcOBcXFO6KPv9fhSe54E3YgjB2Z2S1WU6JFkhWwg0JwLZgtu2O5WYf2hx81WN6Uce9TFZkXzJY9GPyTontYS0DICpjxTlrMswBKrYgtK67ZkcOh/zlcf2XGL0kgEtquM+K689NucSkxcMiYEAqksf0yeB3bGE2ZGpzVcc4Jp1QHVtsXxqUNx67E4lyhuuc3FLr6LZ8Xz0isx4tvVopxLlrcPybY3RhY8+VY/mQFHSOBMYXTrYXA5Jt7phGqjq9myt2XnYPFb0RF9fPyJjXl15smGZRHOooBt6+Oojyhd3xxKjC4f1I43xK3pU26nE/IOOvYCBTGsKgpHdvqIBQmD9SN9LHw3Il8hQOk0AACAASURBVKx56MYC5Y1DO1WUhWqBbMPQmOZAkiG+dWgOyBZ6JdCP6RGkh9TFzsCAdq7QjQTydYDeeZitxeLdHLoJKO7o02/mCmYXoBp6AbfnGcorC9URECSG2xa8xoqbHnasUFy08IVCc2iQL/gFs31oIjjiPS9b8zO8EUNAjOo88rse9Uk2pJL2I4nilq9tZ5L7ugkxIIbex5S8ly0thA9oDwxDcOLzuvZQrUN9kqF61Q7VDbK1aE8KZLcddo8KmA1B0Ohli35i4GLSKROM6QV0uYJqybK6nMBd1QzlUbWHWXdoTgpKW0caxXWD9iiHajy7GBUrMnaPx8jWPeABWym4gqy0WbQMl2ks7MhAWg+9bGEnORnJ1qEfk5nNLraw8wKyc+inGfKrHbqjCj6TKF5v0R6XyJYdGTWAUtBdh/6ghLAequ4RlER3QCCTX+0AKYdt9Eaim2UorgleXGnYC1lGEOI8+mkG1XvABehFg/64Qna5Qf1kiuL1Fm6UQa1aeiBHBnrRIBQabsRl6JsafpxBLWvYg4rsaW4gNw38uCCYbGzsdSSLCOsHwOWqDGrTMWUVIPsoJcSuHZhCNxtBeE8fZU52L0TGE5EpFXWHUBiIbZSztjHl1EQGz+h9CE8IQJ7RH+k95arWMUjHuSGAJyjWk4Qig2jvJbdqRfAXZa/Is33ozv1Qn+ixhNYEcF1PMJgZeiDjeiB6LEUCj0nW+plAjoE8whgyhKmLMgFFJQFLv6RI2+Pf9FXel9mG3v4MuOR2fAawfOPpz1q3f3Gf5V8Ay3/5j881sCzOn4Tz/+HvIlwUUG38ElpQAtgeeYw+pa/DjsLgJzQrDiSTdDMlSDJ0Q8QZ3ehB+td2GP1eNQyKXQ50B55exRe8yJIMMA3g8gXlovkt+9Py2zgIroHVewRD2YrLtwUH6P04YPQC6KccFGcryl6Bfdrk6JXH3fuCMfgxFbK6CLGom4PJfsIQDZdz0Lp7SGAUJGecB2mgJaDV2zgwNCJGw3NGM8k687s4eBKcCWSCJ/eZ2RB0FFcC7REwfhbQzQX6itLQ1E929ysOxSuN4oayv/qMYHPzWKC8ipLSGE8vPDB67bF+Qn8PAw3CUEreHHJQv30kMPvAY/NEoryM0rgod6WMKURfFwfKSXoX1N5DFySw/lqH0//LoDmMVQBx8FneBKwfSxQ3lHpCELR0E4F+Csw+8DF2ngNc1XIg2R4RkKRKgNmHHrszyf9llCR6tZ/1BsAZ01H0t404i7s740x5iv8vrzy2D+QgY3M5B+7NMUHL6h2B8Qs+lxIddzF6vj3gzK3eAYsvM3TGsCkG3VSgiJ6ezbkc3qt3AduHEtNnbliWHfE4qYbAozmSqC4cdicK7QGln8Wdx/qxQnnlsXsgB8/ZALrAfSM7YHRpsXpLY/cQOP0Dh92pQnHr0RxK9GOB2Yd8Pl/se+0AyvWaI4nRaw+vgN0DrqfXAqu3JSafJI8If/hYLm+2PH+K2wBdE7R4IzB6TYCJwBCTvmJBeZAMqOknwPF3KBnbnNMD1cxlBIYBxR0HrrszenRSAml6Xb4mSFNtYPiMZvE9BK+v6prbKRxBXgo6KSLABChZDJLb6jJg9qGL25Z6/Agc1o80Zh/3sJXE9kwReEZQxXRLib4kc9CPOEu/+ILE+BN66MzaoZspni+1x/aBxvTjDosvZKiuGMjSHAj+HoM/UkJrkPSsZauA6sqiPmLVSfL3BSVQ3lAG6Y2AzQUmz1vsHmRDjYDZeuxONMobi80jjflPWthCoR9L9JWE6gPyBeWXxZKAtLroUZ8Y1IcSs2c96iON4pZhKMVNj27GfrpmxiqVbMOQk76SyJcO7Uxh8nGN5pRdvLsThfFLC1tKZEuLzaMM2dYPILIbS1QXlECmbbNllAV7DGxHfheBy9ygPuL1XN5wuS4TKG752eV1j/ZAo3zdYvOkQHFrKZU8yaB3njaEUqK46bE5z3jtb6LEdxsw+6hFP9ID8GYQDc/JbqqQ31n0ExXXk88V1x2CFqhPMpgN10N1gbUQAPpKxuAbnl/lqwaQAv3EoDnk9974kzam9qoY/OXgCol+JGFLidkHNbq5gS0l8jsLaT2awwzFNUNc+qlCtrDYPuTxH3/aoZ8ogqDbDiGTEJ1HyCRsqeM5QjDlcw2XSzTHBuVlD9U6uELBLFt0hwW6qcL44y1caZim6gMZnZRQKoB+YmiTWFuGyNQWamfRnBQcW1zWWH5xjOKW0lRX8HxoDzRGn+zQTzOYVYfmrES26qF2Fj5jeIvPFbwSMBsChmQvEZ7P6U0POzboR/QCulLD3DZozisUr3eAEGjOSk5AW4/spiHrFO9/ou0RcoPmpEB+26KfZsjuWngj4UqmpArn4TMdAaFAc1ohv2spJ1016A9L6FUL2Vj0hxX0skZ/WMXqC9CPrCXy1xu4UTYAWLnpIJyDm5XD+ngjKd+/2cCeTBCMhF623B+pisRI6Ks1AZB16M9nMJcbuEkBfb2GPZ5AbTvYGcGvXNXoz6bQqwai5mywmxNM2oMK+mrNvxc7+GkJ0VgCtDKDG+fQi5qgprcD0BNdD38woY8xBIRxCdFZ+NLQ/2g95LYFrEPIM8hdQ09iBI1ivdunt4ZAaepqC2SGMtboZxSWwT8ACBybdkiFHVjAzW6QuCbWD0YzxTX5E+MjeE8gmGcI2x3EqELYNRBa8TljCBazjJJUHyCKnOtY1xAlj1VoGnoih8qPALTtHjAm0JeAnrgXHpQ6MwGuJ4BQNxBlQcayI6splBpksUMCLIDQx6RY4GdBbAKOnwU69zvhzT8/51LYd74xDv/1P/j5A8v/4Evf+oVvG/A5B5aTLz8I3/if/0M8GK1Q6Q6vdjPkymLVFmisxnG1xcc3hyiyHo9nS/zg1SlO5hsAQKEtdr1B22vkxuLiaobRpEGZUerZ9hqbbYEs7zEqOqy2BSZVi22ToV4UKGYtvBcYlS06qxEC0DYZ8qJD2zAjPs97TMoW14sxZpMdbi+myKctlOJF0uwyKOPQbzKMDmvs1jl05tjPuOGNaHq6QV1nEDLAWUre3CpDdbJF1xpo49A1mt2HVkIIoG80hArsOCwcTGEBEWAMbwy7RQldWgSAia8AfM+by2heY3tXAr1EdsCOxqODDW4XY+RFh92yhNgpyIMO4TKHHztAe0wOdlhfjwArIUo7bId/XTAV9ekWCILBQ+MefmOQegPVrINbG4jCoRh1qO/KmGQrIAoHZTxcLxFqDTnqEW5z6NMa/V0O6ADRykHuJzoJddQiBMGuRRkgcg+sNULhIWoJKCBIVorgpIXfsPsw5AFi1rEj0Qn4TkGuNb0bUwtYCbWRcIcWiHJN0UqEykEu9eAfk72AbIHuxJHp1gF+xJl0uVFDnUcwAa70MEvFqhKFodfQVw5qw/j/MO8hbs0gK7vfh9ad9cg/zdAdO8idhBs5QGKQJ3qDIe03u1YMA6liB2Iv4CtKZ/IrhX7CwbErAnQtYCsPKLDv0AN24iFrShaFY9WJWSmYJSV/vvTIrxTaI4fsTjFwqcDQrZdCdLwBXOGhGobn1I8s5E5G3zMlVt2RQ3YryTK3QIhgHeCkSnfkobaSbPlj1tFkC8oBk7RSWrLxTGsNKC8k6ge89opLst12xGAc1Qm0h57namRV9ZaArj3y8EVA8ZpdhmZNfy19zBzQlxdkNVVDOVlzFFUHIJBmvP2+4y8F77RHHsUVmbluygmpoPl7KrnPFmJgUb1hXYvL9x2IQe/Dh+oH/D9rJ/bsssuj19ZFr3acDEuhNKqhj1w1TEvePqIiYfM4+pqnlF6azX7CI3nEk3Qvv+NEhq1YzcLKgJjO2lABIfs4+dMA3YSMf/IIuowTVs0JJ8S6KfdZtsDAdCbpYT8B9JZMvOrJ6rYH9L22B/TF2jF9wt5w3frRvmdPxyRP2VPOWFyHCPgicx297HrLyQBIIHUgpjoVIF2HBM7eYJB99lTTc5IteltTN6LqyHxXr8Mw+dUcRRYZ9L2WF/QgAxiUItKy/idJE9MkYOp2FJ7MNrD3CadaE4Q4CaA5YaLi5Fs/jkx2TFK1IypTzC7WJMVuyn4soLcBuuF6NAcEqbrh5ybfq7Rkyuvj1KlI4O0KMvhpvbJNGKpDpA1oJxLZlqCvOdz7fimTjUnERazqiZOQ+ZKsYTr/XMHzR/UB7ZT7TjcYajWEj95rQa8uwn4S1hb8f7Hk/aGdRkmmQ+yZDOhGMkpLyQLbghOB3TimzsZKDtUmGSWGYCF6B/eVKGnyJiXE9hXDcdL6JJ+p2VjUxwa65mSBreTgjdVbMoXCBficxy15I9Mksq14nLKl5aSDC+gmir5Rw0oWTj5omLUdsha8FtBbOwBw1Xp4w0kDr4H8zsJnnJzLlpww6mYaxW0f5aUaetPDZwo+Yz2HHSved1yAWffopwb5bYv6rEB+28dOSjKDttT0feZq8I2m5TEdV0FvbfR+9rAVQ8Nk58maKcFakHtA2eVM4E29nVD8fhDWMyFWkqkVAZCtjT7OmNLqw9BFKVz0bXaxkzLVjUQw5QszvB+eabHCe4gmAs/AyhK4AEhAtBYh16wyUYIMqFZDNUz6W9Tt4Kt8o4fyflfl/SAegIDXxqTWe4E+vHnxGvgT60ZUBNVKUdoaAegboC7VjGjN5YRAoPnT1SHevwGW+XGfATDv93D+SY8/Bz2Wf96Bpf7TX/LL+5CRxvh0M8Oj8RISAYXqsQglpAiorcHTo1u8Xk/w0e0hiqJHoS3udiUKbbFtMygRsK4LjKf00VWmR6F7bGSOttc4GNXYthnKvEdrFcHkYQ0hAgpjUXcGSnqMixZ3QWBUdLBWwXYKubHwQXBd2gyycJAyoKkzaOOQFRZCBGDUQ4iAvOrRNRpFxRk6k1k4LyGVh5QBzknkeY+6lGibDGXVom0MlHFQyqNeFMgmHbKyh9Ye251GVvXoawNpPIL26DsNmTt4J+CthJAB0nigB6Rx6FqC0iA8nOPzi3UJIQKaXQZ4IKgA30uEmUU+btFdVejHmmAQHtJ4eC/5mqmFujSwLdPzAEBpx9lMAGoUbxAmEEA6yUqW0kLkgGsUgvEIraJHR3vYecfX6QAY9k4KxeScILj89q6gJ0xE8Jx5COMRnIAoLdAqBBXYEQoQ+AEEr6Ul8FUxrCmLqTyB8mFYARjPXszCQxoHCM0SehvL15MPaOSZjrpV8BMHX/BLSTaUHgMMaXJjBzj6xoYv95yhUHACQu6ZddkJuIlDqCXQ0Y8VBIGdCPFmLiJzKgJkLeELVhz40gOW+wkm7I9nHghqW+7XIAUQJzKHGfeYmOt1gEjPSaA7CNwuxKoPwW0KgssGd12ULGPYbkRPinAEgd6w3sLne/l2UAEhyvNchqFKJQiGa/UTMJFY7WtGZFQvsKAeQJw86WYBqdvVxwlk9oUCVvHYJalcEARCqVNS9HwdEOXSZVy/uI0uF5COHZsuptK6PAyVBwDoIZzEjlLF/SD7CEgsYpdmBAlh79XqpwE9CDC9AXzapzoM64MQQ696rk8/ifUsvCTh9b3P1QEyUOqNQLDlJ1wGAsEaQEAB8DwSlvvBFvHcxP74p33WT1JpeuzSNICJITI+4/anAvgkzU/HVcTBX3rYEsP9gscq7v9AoBoEwVs6jxABo09pzlGlMShTRnsPVACZVJ+lbSPYCoJy3HRu+AwMi3FcHoOsxOD7Syymy9OKRrAdmVwBfq6uGcjDsCD+ZMqtiNdMqsLgOtErFo+rBxDPJ68pqydQSufUXonCCQOuH8BajqAAL6PfrBDDue2NgHdxMssg1mUQQNObFtU0URGT2PMkmx56CfOwr6speOxTR6ZXQMj2+4brGxnDGD5kc4FQcT37UgznclI2hChddhkGtYmwcYJlJAf7wv2ye2fEAIqD4Pre38/CA84AQcZgO7c//2whhve5TCDEr6d0vrZTOQQfpc8JEex6dQ+8qnjfFGK4fyJwe1OHoq3kAG6DBHzGYyAcB2YM1tM8L+I1gMDzOQUgse6DgFsoAgmvoppAYvAKutib6bQYjmNIE0QZJ7ZcoYaAHwDop2boyLSleqPLMr1H9gG2YmKt8EA31QTFAOzYxOMVWc04wRKUgB0TsPZjEyfQuC3ByIEBdYVGSD2dke0lyIzAMcqiffQchggEhd2zW14TeIt7oTQJVLJfU/A5LfcVJd7Dm6RI4/GCwAB6vCI4xL3XINOsKUG8d+s9Y5nO/VAYBCmBWF0CGSgRve9xjBUjIfkmJYZOy5AbSlmNJpPo/JDyChDwDqmvUcL9RiclgKHGJG4zbASFIfwssBwWLLgdKa02AkYRg7p4Q4nv94HMZfA/Cw4j2E3gN8lxB4D5ZwGVf44e/peoHuTn/fhcM5b5u4/Cu//930Gzy+BrDdFIDl56Qf9hLdntqMhi6BVnzIaBa07WismRHEiYVSxVFyHWeXDAqzrOxKcAAg4oOQOcitpdkeRQqYA6lkKbMFQYZCsyNPml4uy9xMAsDQxDZI1UzcGfqjmoSq8NOvqXtmJgdERgwIDsI0sT/VlJkuoNgxSAxCLEgvkktyu4XGEFgt77FdPAUW/5GvoC+eUjLfv/1k89ygu5r+gAl5/6G9P/U2hAkvcmBiXoPXjhzDQTaF2sMWB4AmK4BIZBYwogSNLTNIDXOzIaKaWVX8QYUjHTgCXN/ANxu0w8B7ZxkNTvByxpMJgGPOmeIFwCEfG4p20SccBi4wAt1i6k16b9nnxf0vJzAAZDAEBxEz2QKjIhgedVki27TOw9lwd7z65sAZ9Hpk/vJdou575JfrFhMBYH/mmWPSVukhXZJ8iqGJIBT68ZZ+K5fqrd9+XJPgZRxNcOQRZpkAkM3Xi2IKvAnkBeX9JxcJgG88Jzm1VLKW43F3sZdyzTVi3/ny3DMDhN5xZLwCk5lh3fZwsOmJKXS3ZhGKSzTDwCBsEZ9pRUquuw72rswjDQs4WAjx2W6XxL25UqB5J01BZkN1Ighs/2xzbdJ1KlBRCPRxyIJzY1PZfCONI50k3IZqRBtnDxuN7bl2ZHRietE68Znnxknu6tRwf0FX8O15NL4GMPxNO5nAb0IuyXpyKrlc43Ecg+Skfpr4jnU6pXMFsWzYs4wGAAB2JYSBiudwLJCBoySoldTuldkAK6DYM3WHiCGbMji5eOny3p9/QRIOpmPyBLx9EWZHqSrzJdJykxNtkh0j2GXZsYBmjdWELHfkSey2LYZxz48/PS4Dzt29SnmEru6X/cdzQKz23gNcDlJDbZbGL9RR9i2Iin/DnwOXY7xn1Q0DOqOsqlub+4gqoPg40iBa8A9JUi8PpK68fOwT3gSAnHACDbeP2LCORjgE1i1HRNBs1rAdV4Tj6YCIhzrn+Sw3rFewOv8Xi8AEgXu1PDm4BbtQ4uV28MmEMEX7L1DERJasC4v1TjYEeUhQd5bzs6StSl8whCoJ9o6K0b7hMEgRGMpHRNvz9npAsQMdSlH2uo1sfP9WTf1mSTfCaHTkvZewILLZFSXfkmAI6AS+0sQhYBCUBwpSI4AUGj3vI1CejJLkrqIwvIxFYJ0fs3tplJv+ma4Pp6LYeJGuEDZGsH+adwHkFx+a40rNgIewAoYw/kAACFiEydYz2IJ0AZ7A/R9xmMgujdUAUyHEcPCBfBWlzW/fcNTOD9n0IQWMX9KizPA9nYzwRWQYg905dAWpKJWrcHZDEVFW03rI/o+sFbyc9T+7oP5zEE5qQU1fvLSkmsiPeTCCjf+N8br0/hAvJnQeK9KpE9kxh/hp9a5r1t/5n/pfcFz9mL9P4E3K39zHV6A2vcB4//fwHlnwPG8unXx+G/+ge/+nNf7t/+8j/5hW8b8HlnLCVZtPl8i7rM4JyE7RSk9oCXkIcOrlfATQ4za2H7gn2JXgAqIBt16O4KmHmDbpVDtBLyaQ1jHLavR2TgosSyrxVv5MbDWgF4ATGywNLAzjxZtkaSNaos3MaQrckd0Cgg95BLjfqJhejYbRZGPcQujmRjkiME+DNw1t+NHZmiWY+w1VA7BkmE0sEtNdzIQa8V7MwRRBsP0VDuqdYMDLBzJhYGFSDHPXCVw1cOslbDZ8pewM4shJUwtxL9OMDOHGQtoxwwUEraSRSvFeq3e4x+YlCfMmSnfuCgdxL9jD19csebruoE2ncayKssgjKB5pwBQt2M26dXKgJjjzByMBcG2xgARFaF+yNbCmzfZsejHbFvcfvlFsXHOYIKEF6gH4VB3qm3ErYk41i+1Ng+YNKirvk6s2aiYjjqoD/NoWoBO+LUtc8DrAB0TVmrKyNb6BjcpDdkCrM7rkt2x5vj9gknNMbPBTZPQhzYMJgIMkoNrygdVTWTEPPbKLk85MQAJUz05gZN9iC/I7DoAwNzdg840UEJIpMQhY1yQwdkd4I+3cCB/vZRGIKEXM792s3oOQ4GULt9emN7EMFdR9llfs3C+r7iOlYvBepTTriYNSsf6mOB9iSguBDwOeto4CO7pAD4uN+2AqoR2J5zEFfcsK5HbwS6GUOHnIjdjdt9ZQhn9JmMmC2B+gGPS3EbsH0ECEff6vYRGePEjhoqsNHNWIPiI4uTx6TC7SMur5vwWOhtHKRaekM3jziz4nKC89V77F8MgoO+FPiTrTiorU/pHW4OuT+7Ofsb2fMnoW2g51AT6HQzhi/ZEatTyksCzvpM3GNmRAQEBLWpkieBmcTkZauA9gjwq1jDIYB+Jt6YeNE7YPOEUsvmiCCSA3wxVMVIR/CVL1m/Ub2OsswoKxYuoD2gv9lle5atuGWIE6suuP350g+JifUxf8peRFYjAryWMlFbEuC3B4r7/lzGjk6gK9mvuH2wT3Asb1hPYjb0iNYnEvmdx/otiXwR0BxHr7bZJ0O6TAyAqjkQKBYBi3cVRq8IWNoJJ/GKuxQ2FCdRoi8UcULRq70clVJKDAyf6gPqQ4GgJKpLh+rKwWcC9SGBgdkwfKu8jTUni4D6UKG4I8CtjxTyJX3Asudu6sZi6IvsR3KYCNmeyjg5JlAsfWTjBBZfMJi8YMehbgLWjxWqK4K35bsGZs0Uz24iB9lrO1P7RNPIQiLQO+sMga50GHyunByJvvy5ggj0X8s2oDmkbzNbe3RjhT7W36g4sZMv6MlULf2ru1ON8trCtB6rtwzyVRjk4tnaDz7QbqJZp9EGmDU9moPcVLLmJU0m2lIgW3m08wyyJ7B3uYiTZx6y9einOtaIRNCbg9UpM41sGcNGQMAYJK+NbqbhMhOlyR52pOKEBmXCsvOQnR+AKXxAO+d6662DPeD/i6sGu4clVOPRTxlk1JzlUA2XwdA8h35iEJRAtu7Rj8hgUtIJuLFEftOiPWToj9508CW7BeHpJRU+IL+s0TyokC069FNDAF1quEwiW3boJwbZsoOMNSUuJ/BzlYFsHaTzcKVGN+Ky9aYnyJtk0NsedpIP4FX29Bh24wyqtrCTDKqhD1Z2Hk5nUHVPgNhY+lWXLdyY4TrBSPgsBh8pATsuIGxgGNAog2z4XmljlYv18HlG/+hdDcRKDV9lkA3TXwHA5xpq18EXEeC2Fj7XQ7ek6CzcrISse8CFoZOS/ZMObl5BOM+k1tzQn1lkkE1Hj2SecX16R3ApJcS2Zv/kksEGflRCtB1CkdHLaXQMG9IEoKPyXjhOZB97G+tMGr4OluDSRKbR+X2IT57twW6Uy6LrCSqTz7ONtSPWAkXGn0H+jHxVSEnvZp4D3iOkQKJUT1IUCG23X9c0EzAkwqohoGiQ3Ca5630/5Z8ie/2Lx+fv8blmLL/yzTz8+v/6W5Ai4MfLE3z14DU+WB3j148/wh8vz1HpHmf5Cv/v1VN89eACF80Eq7bAPK9xXY9wWO5QqB7f/u57+Bt/+Z/i//jR1zCf7vDN45e4aCb43sfnePjgDg9HK3z/8gyTssXl9RQPTxfYtRneO7zGj25OoKVHZzW+efYS37k4R5n12NQ5jLHQ0mOzy2GMw3vHNwCA7370CAdHaxxWNRZ1iW2TodlmmM13WLye4OzJHa5uJ/gr736E3/2994GjFt946yX+6IMnqGY1jsY7fPLiCIenK9zdTKBzi0fHC3zyz85x8JUbHFVbPL89QN9pVFWL1e0IQnuIm4ySxcJBbDXCyELsNPRhQ/B8WwASODhf4u56AlN1CF7Ctory2F4CAdCVRXhZwJ92CL2EuTToH3RAL3HwYIXFYoSDgw1uX89w/HCJ64spgXjmEDqFX/nSc3x0d4jVXYXxnLLi9csJJudrNHUGPKvQn9HrqHML22nIqwxu7PD03UvUvcHFiwMgAPMHaxjtcLccwTYaKnesfrgacz0BeCsROglZOJwerXCzGKPfGsiNppzQCeCgg9Qe+R9X6L6xg90aoBc4fLLAts7Rva4QsoDJgzXWV2OI3CFsNEQQkAct5wMuCw5qThogCLilQXFSo90ZVN8r0Jx6uKmDyB0lvcssStcCzGEDe1kijBxUaREuCwQToNcSdhzZgdJB5pRQF1mPKu/w8vkRZblbjVA51jEc9dCXBu68hbjOUF5K7M4dzFqinxIU27GHmHdQLwq4IsDP+WVWTlq0L8ZkxXWAmnZwrYK+yMhMvrVFd1dAVJRxh1UGvZLoz3qgFwP1LHdkAYLxkJ1E0IHy3zIAluAy6IDsjucUJFA/7QiENxrZQkL09CAmqZvPPdS0h/lRieahhawl9FagO7FQKx5L4UHvaB5iH2mcvfb0hGbX9B/1h5zQ0DvWM7gx/aOqifUVFeXS2ZVCYDgnA5Uy/m6P6W1NUt/uvIN5lXEi5YBeTXfQQ18bSEvPqFmqwQ+m2qgSkOx47Q44sVR8eYn2B7MoVeNz7SGl0rKVEH309wURB8/8fNUINA/Z05smpMydQrbkpEY/85h8pNAehMG3WT/wrJPY0hMqPBOq1+/3KF6YQUGxZ6SBdk6gF57WkB+wO9Ws9ui6vgAAIABJREFUxdB7CxB8djN+zugTTnC42MGa+n29AYpr7gOXA82xh66Zip0Si1OHqnAEY9tHVIf4nB7KfsyJK0PbPCWd2R5oFzfsbs0XVAEUVxhAOUBVxegFsH3MbQgyMXAYwrXSciEoSc4WYpBJ57d7UF1ekv3sx9ymyTMmAq++7FC8jJI5zeXkNzyft48Cytd7lrI9EOhnAaMXDGhLAU+JIU+qBhE4GSAs5ce784DRJwRuLnYA7x4GmCX3jWr3rJ5uAhbvA9VLMSQOD2A5TjPbkl5Vs+Y6dXOus97FxOAzOTD1AAY/YJKc+hworrj9tuLkjjfYqwn8XpliohLGxd7d6pJBXymgLPlW2wMGuXVzgdFLVmikOgevBUYXDrsTiXwV2X1NBlt4gvLElGYbBsZlK4JRW0alQJTBzp71WL2lsXkCnP6Bx/aM6b0IZPqbAzmoTqSlx9Vs2Dur+gBdB3QTOShSpN2rmIJM/k6PbiQZJBWiBFgKmJ1n4nDLtF0bg8SoFOF2mW0YAK5ZOeweGIL3iYzsOc/j6pqeStV6qNqjm2v0Je8ZZsvkYLOmH9+WZISbA07wqi76XmOicLawaA/NECbFTmE5+CxdzsnnbO2weM+guvRxEoDbki8sbEVQKVyAzxjyZDYeQQvIjv5N2fvoByerKiJbS5ksoBp2dmYLsoHdjIBbtWTLVMvleSWQLVr00zxed9Ei08Wqj9j9qXc2st6eTGnn4QsF2bDqQzU2MqKRjR9nZFmFGABwUJHlRGRIJRAydm5K6wkaMz2kzHotobZMvvWZZqdmfIgokRVNT6AI7L2YALqzEfJntwSUsetSJHDa7cEp36cYOFSzTzIkdvUeAzkw0nXz5sA6YYIiJ/OaGYK/xHgmVlRrAs+yQFiu+TprI+sqB1DJoKB7701AE8Dg4Qxx+Uku+1mPe7Ukvmn+5Nf9KY9fDsZyEv7LfwmM5d/58v/zC9824HMOLPN3H4X3/6f/CFJ6LNcV3MbQ/wZAVA7YaohOwM8sdGE58Jf0zQlPQOBvcjJxO4VQOOSvDdmqkjc2s5ToJ7yhphCUFMiiOoF+Fis/akH5ZysGqa1qBWRHFuz+gNrOHETL96R6AhbKC3QzTw+ZYqdYe+ih2r1nI0mxIMhKdQecidcbgebcQa8lZMvwDjsmK+aqmIyakZGh/I6sjuw5IOmnPrKlrE9JATOy45dothLD4M8VYQjcKF9J7H61hv6o2A/KtgL9xMNnAaIX7Fgbh5iuG6C3kmzXhp/N52KIQhXgSlae+IyfEaK/sD+2KJ/HWTdBD1t+x/oM1UbfmwpxXbmtSRKcpJH7IBmgH1HiKC3ZIWnB99VcD1VTciXj/qeEkssfjkdkBL3hQNWsoswtHisZZWTdjHUx8AwVkS1fkzxe0g2YDO0Rj7neiv262z2TYMu9zFLXlIc2RwQcNg4svd4HofQHDuMPNdqDOBjWe2mjN+BAL6YKqyZKKufcp3rHZXYzsmzFNc+ffMGBoyu4bqpFZFr3n6vqeA71BAau5GeTxeVy7ShWmxRRYtnuB6zdDPd8VhyECrdfzyR1ReCgtzkRqF6RXRN+/95+TCl3SJJUz/9JFyXesfNN2r28N0lkbcXl6Jrbq3fcxkHuuqUUzBuB5oRBNwj83CQv9WZ/HNO5kpQJqqVsGOC+Fo7spdlEWR+A4oYVGkOYTxwUB81BfZJoE/jFHruU2urflG8GTVlwe8ifAINZ8jve77oZB/T0tIlBZq1iaEtKQi0WlLHaai/NTd4uppLGcyoyrLrZrweiTFHdS1BO14qtgHwZ0MzJeKZtTnLflJYMYO/7U2Q8y+swyI5TGu7AUPZR0ttikPebLYFCHpk+W96TygrKPduJHK7lNOC2pRyqM4AobY9+Tl1z2Qn0AJFt7HisZZTGdyOeo6onYEgTDfmCLIwzAqrn9jgjBum52Xm0c8lzp+d+lZbHwuv9MU/BNqplAq6JATHCBWRbssh9xdoKW1AyqxsG0QAYJJXShjfSqBEwrId0lI1S9s3vvFSjkyTIrErhtjgjYrgP96HqAmXCtR+SjVPFCYGeHN6XEn6TZHa4v/b76yTJ9tN5luTEA3CJibD0gIvI/PkBXAlH8GIr1rm0cx2lxoj7guBExG1AANoDzWoWJSgnlYLpuzYMqa7eUErNxGAMPtOguD9FBEX9WCNbdAhaUgobX6MaP3glEwADEPerhzMEkC6nT5GfHYbUaBEC+pGGWcXwG+fRVxpmQ9mnqzRUTXbQFWQKhyTdJC0V6TpliE0w9CQKT2mviOwhhIBq7OB1DEoOkuhBstwxYyHJaoOS8ViQiRTJrxe/R2UdvxDu14YkyWoCSp6sY1AKwUhAUlrL88IPclcIMopBCIQyMpvZXpYr2/1yRdMjFHwNpGQNiN/LUX2VQzjH98a6EggBX+WQ24avs26oEUEfl32vjuS+FHYI2rknl33D+5jkpZGNDEYzXTYxgwkIpmqRn6n1iH/fC+sJzgPe4Y1k1gQME6D8k1jD+xUkKTVWCtaKpEeS93q/Z0Lvh/rcfyQ280+TxP65kML+BbD8pX0U7z0KX/wf/zZWV2PIjWKJueEAWHZiSE68P5jTO87gqwawUfomWwKIEGfK7ThA7QSyNZMSXQYUNwwQAAjKVBN7DNdiMO8DiB5OQPTgF9YoxIRGJkkCwO7co7iUQ9mzcHtAIOMAhf6VMPgyu2kENIIDENXsB1yD9y9K57xBlLTtZ/EBDsz7cVp2BDfAkBqZPJypUJohBdwOs8YAJn0WEx03HDD1Yw6+WbvBwV9zRJlj8mYGtV9mWr8BNAUO0gdPpdx7H5OvzFZMh+Tgi7POerv3UqZ+yuQ96iYc5HWzPahIiZZJXplen+Rf3YTHPr8Vw4DWrHls03bpbRxot1yO2USmYkS5aErChEzrHGLQAoakw3xBmatZcdlvDMxGnEVHAKYfe7QzgX7CbbVjDLUkqmUYh9fA5BOH7QM1+LCG8I5sXz8jbUB15dGXEv0IQ32M2dD75BUGqZjZ7Jctu70XLR0nXacKF/qkkgc1+TeHczF6zlxGgNLN+TnZmoPN1IuY5I2Juck2/F+24ufSZ8XBtexihUUcdOsasdMzMpSRfQAwBHO4jNsEYAgrSRU6Zh2GzssBIBRJqkkA34/2bJHsCcSkDQP4S8xe8g1LSxBjtgRq/IyUBolh3YMQ6KaCYEKK4Vq7X5Wiuv3vuiHYaWb7/cUJlgjet+x11DUliGndbL4PpEnBKtIFlpSv9gN+P4SexBUQfK/qMcxumx2BEOWlfFlKAlWdRztRvM82HBD1FQEEgMi+cH8nUMF9vH+eB2kP8qUjSEXgfgtSDBJJ3TKpUzoyRfSSi8HzSH9cvCfE8yBfRiYoSh91s2eC2LdJoKUbdlNmGxawCx8GTyM9yXuQlQBnN+a2+igb5b5jofxQoC45EeQz8UY6qK1i8nJMJ9XRbyziYN5lkW1aWzRHBvmSPZPeCLQTAl3dxGMeQbiuCTZkF+L9dw8EIcj0JA+hitLLfswglnzBAa7eObRHhiCmJUjxhqyQCICq/R40CAzeRh9DV1THQWm639pSxvOQ57xZk1kTAQxm8fd8ij4M9zTZcfA9gKXPAGchgkrVOtiC52HyRBKMiuHeoNK+iqd6EGDh/V0HO2bhfX7XDeExZLkUVGPRzTKYdc9aEZ32neDnRyAnW4dulg2g0eUSqvOQbfriYdBMkALynmfOq1jdsSMIZAcnP9eVOnqTuRxhPdzIDFUnHL9Y9NOcbFvyroHnEFKYixCQnYvbTICXZKRuVhAICUGpqSDwS75oHyWygz+z1FA7C7mLVSF9BErR9xhiqA0k3khLFX2UmNY93CQfalF4QyGolk2PkJJIcwW56QafJQ+iGHyRPiP6l53lpIjkNg+Mn7oHzO4/XGCHpXODlJW5ABGM1pGxa1mnkcDi8FOrfe9kquEwGnKz24NeG6WxyUsZH6m7clin+2msbn+e7AGhf9Nj6RzX7af/n9JhvWcwTwKuqb9SCISU0qrUzwK9BPCSVzKtWwKc6by6/3cEliEEoO8x1I0Yw78BgtjPetxfXgKqP70uPwU2Q9/hX/TxywAs3/76JPzn//uv/dyX+3ff/51f+LYBn3OP5ThroaTHb3zze/irsx/jR/UD/OHdE4QgMDIt3hnd4A9u3sLdrsRXTi7w3YuH+Hfe/j4AYKobPK8P8Xx7gIfVEt9+8TaeHC7wa4ef4B99+iXMyxo+CLy8m+GvP/0xXBBY9wVu2wovFnMcj7dYtxnOxhs8Hd/iH330RYzKFmfjDT66PkJZ8PdPlzO8c3CLdZ/j5d0MWjvMlUP55R6/8fCH+J3LL+D1Yor5eIddm+Gdg1tc1SPM8gbf//Ac8+MNqrzDWbVG4wzGpsW3f/gOfuULn+B7r87wpQdX6J3C6/UEXzm5gA8C3339ENPxDi+fHQEqYH6ygRAB7x9d4oe3JyiNRWl65MqiUD2u6zGsl3h3do1Pt3NcrsfYrgo8fnAHHwSeTm9xVY9RW4Pr9Qj1ogC8AL7UYntTwBy0+PWnH+GD5TF6pzDJW7xeTvBv/+b38dv//FcRnMBXnr6Clh6vNxMU2uL17RQnB2tc3DKC8vxoiU9eHuKvfOlD3DQj/Oj5GUazBtZKPDpcwnmJ568OMZ7VuH01wfx8hbo1aNc5IAOEChhPa2Ta4cn0DoWy+N3vvwehA44e3GFZF1iuC4RGQZYWyji4lxXmX7zFtGjx4uoAdqcxP9ngi0dX+ONX53BW4vhoiWfPTvCld1/h4+tD9I1G6BQmJxu0rQHyHoWxWH06Ry0DzKiH/7Rkeuy0R/tpDvekRpZbwFisX0+wm/QQnxaov94w7fc6R8gC1KSHjwmmwUrUDxVmby/QbAsUZYfuuzO0v7aF93Jg56uzLV5ejTA6XWJ5MUJ+VA/fBVJ63N6VkLnD4cEWN98+Rvteg9GkweZqBH2nYf6tGzin4L51gM1fbhDuMoSxg740CE8auJ2GyBywNFDHLdxtTsZJB5SnOyxvSmRXGv2BByY91Cv2AbrKI79VaE8cZCPgyjjADAJbKxBGPeRGk619vIHt9CAPhg4AHD8XADYGQQSgoE9ZtoB6d4N2UQBWQE56hGUGtSG7ZE96FJMW7esYaxqAYAJGH2s036w5Af1pAdkFrL5q6aW2aacBov3/2HuTXdmyBEto7e401t72df7cPdrMyMqoSqQEhGDCiAFDfgAJJFRSiaZAUBJ/AGLIHzAriikgJARCJRiUVFSizMqsCHeP8OY1t7f2dLtjsPY+x55nQCYQKMJTadLTfXav2enNzl57dRLmKfnh9gLHHw9YXR2xe7eECAJ6K0eFgZtF+AsHfWfYk5tkoe56wOxnJUI5dZyGgnLgcsPak6iYGKx3rJup7uRYZ9K+8FQOLC3UN+zW0wdqFruXHrHyKG4M3IwKDARg9lahu6aPOEoJs6PcVR8T0Oq5bXYdEGoPtWf1jb3wWHyucfgha1/MQaD/yKJ8YzBcBpiNxPDSwbw3kFbC7BNLeEbVQ/eMXuNQKPhUm6OPAmZPsGRXSP5oXgsEAhLhZQfzi4oApOexZC9uhGp5LAB6acsNg576q4DFlxLdZYQa6AUPhvuepb3dM4/6rUL7ysNsCFoWXwP77wGyZ51A+UhAPqwTKN9zQnD2TuDp9wHhVQpPEyPzHjUlr/tP00Rjmowjkw+0zyLKJ7KJ7fOIUETU79U4UdddAasvIvavBfY/9jj/I4H99wSKrYJdcOLQ7Nn1a/ZcbkhKiVxZU2yo5BhWGt5QpgqAHvlaotiDA+MIqF7Sy3nHc5IDoHSTQGap6cMO9BM3z+UoE9atHEGiqzEGsFWPVHm012SxdSvhS5E6lJHqVNiDWz6xTsbOBdprgWJH/3b1EKEbmXzCCuUuYvcJu2ldSZ8ye5I5Kbh469G/MJOCIKk96rswVsj4ehqwL7+W2L+m5L3YknG1c9a5dOfslzZHsrNDmpTi5JhAca7GShM3q9g7fCHHShZlDbozgcVbgf1rhfltwPYH1MpnGS4nWTjZkQPW8rHPE6bS0hcMEIS7iiwwkJQwgeDWNAHthYLuCug+pIkUXnfmSL+tbotxUsMcuYxhzRCc7ozdoOWOTCsk0F7qMWzJzllzIiIgLw30wSMUBi6x2e2FRrXxUyBaoAe4vqdvWPgIVSm4j2fo1hKLt5ay3SV9pNnHWr/vsPt+hSgE5jcWcgiU1x7JDFdPZkx8lTbCzhWKLfuDh5WG6gLk3KSAKIYNSRfh5gr66MmClgqIJWTv4Wd6DEtiwrhAKDlx4CtNYK3JpgYtoBtPz2WhPkiRddfz1I3tPwgwipIM9XBeQh8s1HEYk2CjUbBXM+ijpQT2JKhIDA5hTomusB5BCMhjh1gXfF4ayGOHsJ4T3EpJgK7UyIKKNvViGg1xbEfZLIrEroYAaHZr5vAgxIh4eQk0PZ8XZvpbP5CQPk16BSBmM4JCYya/JoB4bCgPrmvEjp2goioJXH34kOkMESgSs/FBTckEMuMpoP5VbOWfY17/avgu/V+nwv52PqpXH8eP/u7f5eCsmeSJoYwoNhLtS4cX/1Di7g+B4lGi/dSiemvgUk+fcICfxdHnpnqRoufJtrmarJqb0ffSX6SZ15hkexZjDLoa+DzH8QMYZ84BnJQk55t1RLkhg9E+J3NaPcSxPN0cyKBxlnxi8VyNlI7IIJVcKWD29NXUd7z5Cp+YRJfYTU2mrHkJLH+BFL7Cbcp+It1SRugrkE2TmaFJ667o+Tl+BBT7HDVNFq7YYWS4clKoL8mwRclgkvlb9hpGIdBdAfUdQ0PcjOvLPX/DGQcUxY61HQz1IGMxJNlgZkDNjgyibjBKHWc3HrvvqdEjVD1yv8oH3lhz6qFdisQMerRXMjEAHBzZZWKYEyOUJY9RZ+lNZgX4+enPsn+F0sTDRwxGKbYRriYLlhk4u5gYPt1E2BW3n7I1Mcr0Vl9aHF6ZsZJhOGPnXX8usPw6oEvM6bAmm6CbHPSS2R6+T3iMEj8RJ0nW4p1n0fqBy4iJccjJm6qfWGS7EOO++sQm5PRW9sdFlDsyZmbP8+aNQLEn4w+Rmc4TZi4tK8vd8gBQDVP3H082Rsmx7hmMUhyyl4ryxZCYyPwwx+nc5TAPVrVgTCd1NQNq+jOJ6ok3KzubUlX7M8lBZ2KVo6JMc1hMLKXu8uc8jh6qYDjI1E3A4SMF3VCqWT0GuDolierpcxkVxv3J6gruE7+DdAtUT35M9bR1lv5Nr/UmfY4OcTxulK1OssysSMi+s9XXFnauUichvV+uJFvVXXKwksNjgk7L6/i68sni+LKALwSKQxgH5pkFFSFCdRHtpRq/B3UXKBO0SUooJmk0fYMhSVe5nGrL56on40u2UsAcySIqy/UMc0lPWi1hZxLlzifmcpptN4cAu5Aotx7tpWZirGcXYHeZuuscz9mwUmPAT7Fh+IevUqhWLUYGNifk+kKg2HvYORmmzBSOaa0gs6YGsleZ8WQ9BUZG3hzJ/vVretvGZM4A+Eqmz3VKSC3ExETaOF4bOUAmP9jVGRN7d1KvcLJM3SRmM9dEpHOUuzHlwEG8r+h987UcQQYioJInTQ70uCHEsT4iS3OLxwHDWQGflp1ZRrOzsEtDL10h4Ss59iJm2afZT32IAEa2FAmEAJRXurn+oBJDRFZhjAx8Omc5/ZbBQTF58MgE8vsp/c0F+JmmMuPoMZxpVHfDdF1JTOcoyUZzF2NMlRmuZsCK6gNZPymgWge172EvZny9DWNSqz7aBHb4ftk6+FUB/dDCXdbIvYs5eTWzOVlWChcALRm+4yPkwICaLDVFAPyqgGocfKVH2akIEbJziFqOqatZ3mrPKqjGjUnPshnIJGo5nqNsC8lsYqg0l5cZQOspPU3smWwGhHnJ/keAIToZQKRzKDsylPz8qPG5sB5hUXEZlWbwjvWs40j7jwzkvs0GnjBwYV5CHvtJWpq8kB88bJJ7asUQnMwgpg7JqE/8gkrxd3VJCWyWhDrP/knryHxW5cRefpvNPA3iOZH5IiRmU+tx+1kDkpjTXCGS9zFQLiqMSRLVDxNnow8TK6m/xS+NoTp+2qbTBNjxy4XS1+ynjKc+SXsSQJRTYb/NWH6bifxV6zh9nADK77oU9tOfLuPf+29+/Zvwd37yP//G9w34KwAsv/dv/4esiEgzvNkTqHqM9QoQnP0sNrzpDisO+rsLoHpM/qTkoSqfCEJmtyxAFp6Dwjwwtqf+p+Q7kC6i2HG5ud7D15x9ZmojJTIygdL+jAPuXBSeB85RTsESo9QtDRbcbJLzuRmSXCmOaYTCp6qBll6pYh/HXrDsO5I2rWOWBjQujnUYYy9a9gWmAbJM+2OOBBmshcA4a1rsA44vFAFE6kMzTdquNHPePGMZeJa+6paSvvZS8jgoATvjNrsZb0RFGiDbmRjrWEY5Yh7EJ5lbLqLO3iXdE4Dy+JycpxwYkQbiJpWk50Fklg1miV8eiBdHyg+BSaKWkxqL/SSDy37KLO3L3pygxPj7oAV0y5CGfK6yVywPsl0tUOx5o3GlQLXxGJZTMTZBWEi+oOm6UpbyuzwgzPs8JFAo3QQGs88sH7tcqSAdJUR2Jkff01g/IDjzW+zD2NWGSNDjk4zRlXm6k+cpaIFhzkqH7LkCMAZNBJNSSdP7pScAER70hCUAO8zpExPj9ZgG78lflQfP2WeVJYo5JdM0TGoMBQfFdi7H7ZOO16A5MKkyf+6LwwQWcjItgLHmxOynZMthNSVq5vOp+gkc5PNabn2S4cpx3T75vfLAisBejMvTbRh9WxnE5gdlgjGdSzECjlzLEEqRAP5U56DblCyaklIzOOF5SddqKl+nRSAf4wCfEhWD5vEK5qSEHIBdKugmYKxFSJJp1U3+NjmE0QuWX+8LCd16+ugaDurzwCOUBIzFPozHzhw99N5iOE9pSiBgsEsFmYCotIHAIpW7QwJma0c2gymdLIGXQxiPd5ZIqsZR7jj6xVLNh2MACb17ArrL0ksmVCobxv688XVJCusLCXNgmEmWiUZJHxuZWz9OULA+I4G5FMQiBw+7MiODIjz/Jl2EPlr4VNcQlBwTQvk5k2PBPL/nk3Q0vTbLK0OpRpCESPDtazI8Yy1EOt/S0pvlZ+YD6eYHQSHp+skMD3c4kjE6kViyg4+fzSyJzMmgsnfwcwPZujFkRQ6OqaSLcvwsZBmtCBGi93zP4Edwog49g1WKEzmlPKm5OLnm6B1kKmqUWRaawVlg4uhhgF9Xo7wTIUxVFkn6qY4D9+ekw0/4+IEMVFqfJJl5m5AG9HGUdIbaTM97j1wlEmsDuWtHxguRr5WtJdt1WjFR6JE54/Z3lJ2m2o0PpKMAmTKTGLy2R5hVPPc5MCYEhNIQ2GXwkpNDAUArHouU3MobhJ8AzmltBzBJOp3n/uQQG+dHhitfX2KwiLNqlGCO5z5Vf4wexXDS7dhbpqvmWgwlx20Qg51SVTOIO5GtAuA+d8N4PPnGBO66fmL2nB8BW+wHCCX5txE8pmOVakliCExgDWGUfo6SVef5fgDRWkCqCWBl0CYkQaBU/Al8+Dpges34XBAoG839Pt3P7IXUepLknv7+tMfyNIQnT6Kl94w9lRnEnizrg4eQQAyIIUJI8atfc7p9IX64L/8PH78NwPKTn67if/IPfv2b8O/+3v/0G9834DsuhZ2tO/zoX/sCn8yecD/MUUiH19UGf7x7hcvyiL0tmdjqFRpHOv5ZvcduqFEoh4dujnXRwkWFXV9h3xf4g+u3uOsX+PHiFv/tF7+P3312CwCotMVNs0RrDXqr8XK1gw0KEhFDUPib52/xj+8/xvdWj/jF7gIhCigR8c9ff4V/8vAapXL4/OYK1+d7BKuxrHo8NjWerXb44uYKf+v1G3y5vcBM80O+70pczBuUysGnEe39YY6Xqx3+2TfPsVq1eH62wdFyv2ptcRhKHIcCZ3WL3mnc3J3h4uyIVTGgsQafrJ7wj3/xCX7n9Q1+cXeJV0liuu9KHJsSP3l1g95pfP7+GuvVEd4raONwWbW4b2aIUaAuLO63CyxmHZ6eFnh2tcPm/Rmun28xWI22KbFc0EyqVMDjhi3m+l/oMC8H9FajDxJHLzGvBtxv5yhLC+cUXjy7x81hAecVyqrH5lijNCl9NApsDzWWixbb7Qwvrre42yywmPXYbmcoa4u6HLA/Vvj+9SPumxme2hJa88v1uKmhSg/fKZTLHiEI2EMBUQSUtUUIAs4q1LMBZ7MW7x9XKEuL9lhCyAilPbxLs6dBoKw5I3cIAmVp0Rwr+L0BCq5P7jTqT/boOoOytLCDRlUPsFaje6yglz1co2HmFvZoYBYDvFMoSofuocb82RHOSQw3M1x+f4OHhwXioJi8aiKgA2AlzHKA+GIG+9EAWXgIAN7SMKwKj+AFwtFAzimpdK96JvwGgWglhAnQxsNuS0BFzC4aeC8x3M4Qaw+hA+KgIHqJWHmIVkFfdbD7AmbVw24qiCpAFh5KBQxPFcqLFv1jzZF7EYBecXujAGQEnIBZDbCtQfHGwH5sERvFwK29hmoV5KdHDJuSAKUIiC09U2bdw7+voV72sK2BaDTMVYvhqQJKD9FoJrp6wX+BKgRxZhGOPD9CRogniWgALAfIe6bzusvIPhcRARUhj4o1KFcBkHweVg6iUTA7Abtm2i0UoHaUI46dtWW6DjoB4QWE4wSHW0fojYLqBYazgFgF6CfFFF6ZwrQAuKWHsBLQHKiajRzTWYfzwACygcuMKYDJbBTsGd+nejWCPUjAzwBhU5jYeYA8CECKMcxLRMAtA2QnoI8Sw0WqT5oFlLcK/ZWHPprRx+4LIBoB2U2VMLl8frgQUCmgq9jltMrI7txhKq8fLj1mXzFUSnjArYDZNwr9hUCxNeiuwqgiKR8F7FKx4ucVcFJ0AAAgAElEQVRR0pMYDXI/Z3VPSa5qszSSINzs0qRgqpEZzjRVIF1KgZUmKU4EomTAVndJ9YovqRbQrUgThPRfNy+nmh7hMfq73WySOtpFCn/bi9HjnUPGEA3cPKlS1rmvOAVJ1ZQ3V/di/FueqBCBjDT9jCZNUvL8k+EvxyAtSnwpSzcNknyd94pRZZO8+VRjYKwnysqYPCnrZtNzTjzxOYOk+F47r8hKN9zWgQ4HmAPGZGHuBMbaGzejouNUSiscJ3hzr7S00/H1FdU7rkaS4caUISBGVp2pqWIMOMuTGcw+mI0haGNA0PzEa54mQCA4CTR/5zEsJklwVujYVVIXnS9Q3we015xUDGnyUHVcp7QRrqpHhYT0SFJOXovFPo6dtnYmqIZYcWK12nJSKiiqUMwxjuFMp2FjnICYj35dldhgMutI0txUcZQYcm84QRr0fDxmLiXGSpvCfmqZJn9ZfZMnCm1N6XP15McJjXGydEXlQJ7AosqE4T5RTx2orqJSJMtw6XX3nGRKstzscw96WpZuOJGj2lRdYsmQqy7A1ZMP2uzJguccgNOJuDzJlIOWAE6YyTTJ48vkze3JOmcZreoyYJ3Y7fz9Sp8kCAhT1UrUkhMOaR3TpAFBfDCKjG7qDYVMn9HULxqMInua/JBRKciThNlQGtacZC/jaW8kMPotY2UI0HNoUAg47cHMYUGnfZji2x2aeR8yK+r8yASLBChjkg4jpEkGvgGIYQLyJ6FBp1LY8SaVwOqvepwSYEIBsf9/Dyz/+vH//+M7LfLV6Y772f4Kd+0CjSuw1i1WpsOfPj7HTA/YDRX+9OYFzsoW+6HEn9y/wF07x5vDGlJE7G2FrzdnaKzBbj/Dn22e4V+9/Bn+0f2n8E7i1WwLFyX+6d1zvHlY42GzQIgC980c267C7WGBu/0C/+ThNY59gc82V9gca3SDQWs17vsF7vZzAARa67KDCxL7vkDTlHizXcMNCl88XaLUDu8f1rjbLrB7RxD7brfCm6c1GmswOIU//cUrrNcNXJAopMPdYY4vvr6GFBFffvEM7WCw7So8HmcIvULTG9zuFji0Jf743Uu8fv6En799BtsabNsKbx/WOLYF7KHAn719jm82a/i9wePXZxishpIBn727hvMK290MD7s5hsbg+eIA9b5EiALm1mB3rLC/XcAdeBz3hxqP//QK+rMaP3p5i6YpsT3WeHqzRgTQvl/gcbPAfNajawsMTxW2fYX9ocbu3RKHrkR7KNF0BQ5Nhd2hRrit0FvOhbSDgbur8TuXd4hBYBg0Ht+cwbYGv7y/wNPjAkNT4GLeoOsM0Eso7YEg0N/XBJWdQnQS3gvYTkOpgOPtHG/eXsBvC7SHEuptCXFTwvUa4WCA+xJlbdG/n2HoNNybGdqmhN8bFPdphC7opQMAvzfo2gLuvsIwaPTHAtVbgxgFRKNgNyXMvYF/P0N8LCBEhHlUON7MIf5kCdkLtIOBeCwgBgnVSpRvDcFaEPA+fYT3Gv5gICSBYPFlieAFis9rVO81glUoNgL6bYmw46C0WAyIjYZtDGbXR4hWormbY+gM4AVEqyB1RHGjUd4qzD4vEE1E/JrexeAVzEah/GUJvy3gBoXiQXEC4hsN86Ch7gtKoXqFYtWjXPYQg4SQEegkJdW9hNkpxFbB7CRkD9heo/7GQAwS2BrIXkJ2EvZQsBKkNRB7bpftNETlUX5dQJ4NEAcN9cT3CitQPEnEDT2YcqOBrcHiKwnVSMSO6+TJSjdQx2qc2VsOLNSeg43qjs/LewXVEOwBgNpomK1E8UQAqfcEVrKVCDMP1QksvhYoNgLVO41iy4Hz/I0EgsD8jcD8m+Tp3AnUNwR1chCsQDmyFmX2jn4/dZSpKoXXA1SEHCTTmpNXtHgS7Bjd5oENE6lNqvOobyVUJ6DScmUCVuZAsGx2EqvPkcAWO2EB1lPIXgAftdAHdsKao4DuBBZf8zCqRtJq4OmPrO/oSVQDJe3Spu17oky42HE5sksD9CKifAT3tRVjCnP5BKiG+6Nb9sHKAahvBfs/82s1Q9pUK1A+ETzzd6xZMbvcaRoxf0sQKnvAHMQYllbfEhjO37A3VlpAePoqq7vE6jaAainZVwMwexdTgjCBrHD0CpabCLMn4KByIQGjhmnY1SOVI/VdZkEYEiZTtUxOmqXPD1R9HCN0k1QggWCvuouo72OSU0dUDzGBBfpHyyfK9N0i9d9u+Pf6IYyKlgwyq3uCkfIpjuAuS/fruzD6Ruv7AH2MqRKDwUTS8j3VY0T1FMZANt1MacHmwPCr5RuHxTufQGmkAiSFO0mbk3TjGJZF+TLfX6SQsRzeJuIkL8/L023aHs/jlZl503DbzG46N6qjH3MMZmsCimNEtfWoHz2kBWb3/DmsxLid5VNKRg0EsKblegnGCNyy1FoN6Vw2EdWDZU1PAs7lxhHotan/eAioHt3IyJsclJRUJuXWAwIotp4yaxtR3w1jkq85elokuojZu54Ko52H7vi6rIYqnyxESH9rA8zOozgEFDuH6onVIcXOp+TjJE0fIspHTq6ao0+TMzHVf/B4m8MJAxsn9UVxCCj2FspGmKNLQJ9BUqZxSVorYA4Ous2MKyXXIkQU2wGq88kXSVAoIgOxVJ9Cp46O18zeEwAGMuc5lTcYCbMbKLV+bKGOA9S+GxUVmaHWhwG69ZQap9uEPgwEl5ZsumzdFMIjBdSxh2oGdl62liCyGZgQrCVEricJgaAS3D7Z23R+BURr6QHVMnmmE6CzHlFKyG4gA6tlArxylM/GLHtND2EdZbiJlc3PRT8ktYQc/ZiQkkxoBqxZ2ioEl28d4BylqFIiOp+SZeMIQKMP/F3kzxEUJgAbk2w2/xsfIX7w+/+r1/yFqbHfkYeH/LX/+215fKelsOUPPoqf/Gd/G94phE3qlAMAQzYH4GAgqsifRYBo+XvZS3Y6hpR2ubYQRw29l7AvBogml3rxyyinyfLuxYEaAtLsloCfsbsOUSDUgZUflh15rAuJ47YAgK8DiicGBfgFmYLcJyZsqskwMSXQSkTFgQYCmYXiUcGuwjijnWeEhWPfWl5nrg2JWREqGQLi63yT54Ay+yJlzzTd7HeExOhBDQWPQ3/pEasAtUsrjWngKabeMV9N3XD9JTsUVSeSZzPddAfBfeh4rHyRmII6VRMEDvpUJyCdgF2QwQgqp1sK9jE6esnyoDrPhoeC22x2lFyGMnn3IiA918ebWmKa0vEvdgwSAThAPGUixpqRNJjL8kg/S5UpyRvoKz5XA0Z/rfRkLaLksqXjwDgk7x8TVDGm++bz6WsGurgaH9TNRDml1ubXZ4kfE/8wVjYgSa3HhMwyeQE3/L1d4oNKE28wynTHdUZun0rhGdkPaFO6cpbGSo8xAEOEk/23SZ7eTb9jnQvG/j1xuu9pvb4AlOXr3AwfJPyefpfmZaqe63Lz6W9yIItSPmH0/0qX2BAxndvsnc0eXldzearl8vK5yRJSkQbuIvK9wWCsGvG1GGtUyIpgTPzN3utJxkmZvU7r0Q3GeqFcu5Ol7PS/iXE7cjqsnefBG5JcU4yVDK4W43X2oVyX0upQpkqY9H/VJWYs5mNBmXpe3+gNLFK9SbrWxmszXZ/5ugkpGfhU0p737bS2J8vPh1VOIU3bms6LGjD6UvPv8/WWqzyCxlj9ka/D8Zina9LOpucfXD+C7xtlu6nOIvspg8JoD8hJp5k1zQAqH5/8+1yNATG9P5+THPCiEhhztZg+M/l7JrFcMtmWQpHYuiTNNQ3Tnvmhmd47yuMz+LK5UzFNNsQ4ft6zbP80CyBoMcqls2RbhGx3CGNS7Sjb1WLsaT2tFMnLG78HHD2hBI85zZmS3qDIpsWT88L06Q99oKdS/sy0+VJMCbuJHYxq8o4HM6U952Ou2oBQTis7Pad5fzO4cTUDbaIUsHOJYs+KDtV61oNkOXteXPpc5kRYXsO8EQuXGcSYKjwo+c7BS5MUWozJvaxiCWO1SVSTfzbvp+opu86D/Cyt9uVJgEy6pk6vfdpxGIyTU275nRMwrA10Q1AXCgIyNzMEOyfDR+ECmUQfR98pLT5JQu0SYEv1Ilk6yfovSZYwBeqoLqW7CkxgK/lKc1rt9D6mwopIOXEo9OQ5HS+iMLKF+TiM6bEpoZZS3ok9zFUisaBPdkyXzdJ/LUdWkQuMk/w4J8eGOHkmM3iL8UMPpWKVSZQiBdgkD60U4+uF86Okl9dp+HNM4wQG4yQvPk2V7foJNJ56FBN4+3Y67CjPzY/UkTn5PE/+5hxGSWuuUDlZfn4eY4RI+zj9+S+JQU4A5Xc9FfaTn67if/QP/sVf+3L/g9/7H3/j+wZ8x6WwdWHxb/2N/w1ftFf4R+8/gVYBndXQMuDFco9vtmsY5XE9P+Krx3M8X+/x5mENrQOcVSiMRwgCMQq8vtzgOBS4e1wCnUKsPS6ud3h8cwa97lFUFgUAozxmhcX9bg7bawgJuF6hXnWwg4a3EuWM0sqhoVRPPG/gjgWunu9w/34FVXuUxqGvSkBEzFYdmm0N9BKLFwccHmaYXR1x3FcQAJyT0KWH3RuU5x3EoNFXGmqjYS8d9NLCP5SoXx3QvlkwvfOhxOX3n3D/fgVheFeXhQfe1HA/aSiXPBjE2gODBEyAmVn0uwJ6aRGshG811F7BX1vIo0K8GOC8xB/++Jf437/8GK8/vcNXP3+O9estdp+fIV4OePl8g3efXUOsB7hPPH70/B6f315hKEuIXgIrB/FoIF90GLYFB1ulQDQBslVw64DnP7jH7Z9dI5xZoFe88Uvg5Q/vcPtHz+GfD8D7Av5FD/NNgeGlhT9oxNJDzBzClyXsmnJB2bFgPl4NwN4AC4voJNBLlFcthpsZbBCIZYCw/BkKBb+ipLB/Rlmk2ioOiq96mJ/X6K48VCvhFwHFg8TwzKE669C9myEuHaQJUF9V6F47iE4ilgHFvaZE7qJHcBJir4EoIC57soiSckb1wwO6p4rpqL1Eeatx/NgjLh2lnkWA3FOWGd8U6J85qKOE6slA9WcRfumhDhLhylIFc1NA/2iP9mZOFqxjEmd/zi9rVwN+4SFbiWIn0X1koR81io1A9yIAL3r4o4beaFhwcKIage6Vw49+/A5f/a+voRuB5nd6zH5eov3dDrFXgBecxCkC5l9qhDKiWwJ6L2CXEc/+uRts/pcXaD/yUEcJPw8Qg0B5L9F94qF3EvbMk83qBaKO8IsA/TON4TxiuHaYf07ZU/M7PWY/K2GXDMcyexbOuwWTTe157rMTUH+wxfGXS8zeSXTXEVFF1O8lfJm6VluB4w97xF5CbzWqO4HjJx6zbxSaj/wIaMt7BTkA7UtuY0iTFcVGJlaMEz32ysE8aASdJnE0O2/nX0vsfuIgvIB5kugvAbcImL1Ro0ec6aURfuWgDgrlQ5JopWCmcpPOX0nwmutkfBlH2SfA6qMogcVXAvsfBJQPElHwGEUBLH/BUK1QUop5+DRg9XOJ40cR1SMnWIY1k1erWyaDhoIA2s7zJBBlq8NqYsqCiQg6Yv5mSsZ0NRm0/adIfbpMCz2+Fpi/idj/IGD1OQ9y+zzCVxH6IFE+cYIgd7bm0LDuOmL5S6C7EFi8YfhWFEDzUUT5QKlpnogZZakd0D2LWP8MaF5yUijLen0dMf8GOL6SSb6KMQVWt1wGB/JIgWQTQCv2BObCA+1zgf6CbKrZp3MW6PdvXwjM3gLdpcDsPXB4zXCk6jHi8IlA+ZgnKnJwECbQrvidOP8m9SkvCATtktu0/oXH9nsK5gD051y3rxlIVu4ITprnDNpy9cTASjtNIITUZWr2ZELtQsDVDLFbf8ZraveJZMrqnt8jdslwrvn7gOaZGLMAyk1MtUAE1k1KvrVLiWCA83/mcXzBpNjVL8OYF5BlqYDEMCfrDfA49GuBxVtPaWkC6f1awRcC9YNHfyYnL36aXFMJxLbXBHHVJgVu6Wm5vgBmdwHNM5VAr0TOQbAzhfOfp/oEJXB8rlBuc/0RWfphyddDcOLGVQLFkefNl5SBNs812e+nxKDuPfYfaSy/dhiWcgTerhJYfjXg+NJA+ojiABQbh2Gtx55SiAlgDmsGGOWJgOoxwtUKzTOF+Y1Dv1JjrVT1SLC4/8hgfsPalyyJVckXrPrU51vrlHRLwDOcceioktffHDwUADdX4ySGXTBoKgNg1QMuhTDZuUT1YNE+KzB716M/Nyh2lLsHLVDfRNiVBiJgdgzNGS4KmINDe1nSY6zoMXYLw+7N1sGtSrgqhWg1fI3sPUQUCfjqsYrFnpWU1ZYMIYpaoH7fJjmsgGoG+GU1BSWFyK7NRQl16OFrAykEYsk0U5HksVGbNClIMCt6i1jXlMceBsRZAXmI9Lm2NlWyBPpKU71JEAKyYQBHrEtEkfymiRmMBohKQXSc8RaBr0NPpjTWJdnJ/H+RfJshIBYGwusJ8DlaaCCyfzqBvrKgBzqvo8y9dUyfjdbSh4kTcCg0hJjYSqH1FLQjBNeTWVGAIJoL+IsH/OIEjNq/+OW/zY8IIGRW4q/g47vNWH7ycXz9n/9thPcVGbF+ksH05xzIHD4JKJK8bjiLKJ94c3UzDmTaa0pa2mcB9S1nTGc3Ec3L5AUaUpfdIsuhGCtf33A2LbNjUZKJqx4ZRFNueSMpduwsLLYRh0/pBRp7NSPG5Fmznzw6cmBEv3AMzckelTwL7ioOINlBeCJPsZxlHdZTAmx1nzoZ08z97DZg/7HE7H1MMfIipdcJtM8iVr/ggFFaLgPA2JkZJQdglHHRx1PfRbRX9Jy4VIZebCJ0xzCh48dksxZf5RsfmYv9p+BAU09F5lEBs5uA40sG2/TnSeI2RPRnEt0lsP6MnhZz4ACo2DJsSR858EE65lHQP1NsObjuz1Mx/CXleSyDBy7+1KO5lik9kV/QxZ7sEdlfbuP8bUjHSLBfciVgmhwQFdFdyHHQmAeZxS5yAHUgw5BDWY6vuF1ZvtVdcZvMka9pXsjEYEayT56Dzzx48yVTUbtLgfm7gOMLOaaB1g8BQQH9irH0w4rvM23E4+/xvBd7Xiv9WU4qlXAVUgfelO5a3weYY8DhpUJ/LjC74fsyOy4t93s4owyw2HPAVt8FHD6S9PjMgcU3AXZBZqtfSRQHyuyGBTs6179wjNRPv4PggMunsCe7IHOWmU67FKjvA7wR6M8FFm88fCGw+57E+oswdSC6PCjiug8fcf+VjWgv2P03u+UA1BuB+omz+8Oc/qL9awVIYPENpXr9mp4gDvw4WKofmUjbnUuYJjNCvKaHhUC1CWPKqWmmQK1cITG7czi84s158c5h94mmZPMYxgFav6JM9viSA9b5+5A8Ysk/lboTuzOJakMmqV+T/VRDKr6fTzex4sCuRlcLdBcCsxvesHOyar+SqJ88js8VVl867F/rURJ3fKZQbRhs5guB4kh2whfcx/qB29ZdqJFFKvYB3ZnE7MEnJhRj6FG/UmO6su4CmmuN9Wcttj+qMX/v0vmT4/d6ufE4PtcojgH9UnJAXEm0lxKLtxw413cW/blGufXo14rhUDN6PZUlO5QH7u2lxMWftDh8XEH3+fok8Cr2Hs01E2R1x2MmLf9v5wo+M4daQKegJlcyoMrsKMXrLwy6M6buVhtep64SWH7T4/iiRH1v0Z9p1LcDjh+V0B0Td3efVKgfmKoZFaAPHt2VSaABaC/4+Vp+06dwMIFQyDHMSXVMu62e3Mh6DUt23ZaPPeyqoMftwLoH3YekWEjpryFC9kyANTsHZQO8kXALhWEhMX9nCbbriR0EADvn+SRYKDCsJGY3Fvpo0T6vUN0PCIVEd2lQbBzsUhMI3lt0FzxnqmUolOr5czhjoFMUQLEdEDSrbYa1xvzrI/zcICgJsx/g5gauVjAHx30pVWKymPCq96xEGM5L5J5N6UIKSCKQdAuF6rZH+7xKoUhkJM3eorsqUN32CKWCHDwOH9eoHizMboCfGeijhV0VU0WFQAqvSWxaraG3Pex5BVcrFE8DQqWgNz2G6xp6zxGznxEg+kqhvGngFwXVHa2D7AhuhnWBYjvA1zqlySbW1E/hV6KnH264rNM2aqijhVsUMJsOCAH2Ygbz2MAvygl4KTKH+pjCiioD2dixJzIsCiBEyN7BXtTQmx7y2MFdLyGSRNTPCgYT5e7MXUufX4zoXyxRvt9jeLZA8XYLfzGH2vfwc4IXtW3h1zXk4NkTKQT8ooTsHWKhGViU/INhUVJq2luEWYWwKKD2fUp0lSPTJfqBgT8JcIVFRf+h0QxHEgJy2xBYlQUTXPNPKSknzcFA1jHMJwXfRKMZKJR+F+uSgDIFDUFKArqUJCuajsvO3Y39wGNzEn4UU7JqBmeirhDbDqIqyR5mhhLgMT7tvwRG9vNX/g3A2Gd5AvxO/ZdjamtmJnNi67frPrRGbFqm4iqJmNNz8755ymWF0ZPP8v/LI8TvPGP58U/X8d//r/+lX/ty/+O/8T/8xvcN+I4zllARv/vqBp/pKwytQWw1zEbBScCfWxyURrywmP14j8evzyCXFk1VwhwE7FmAW0jYlafX6nJAKwpIK9BIyl6v/tYt7v/oGUMNQNYgaiBeDLBNBV/FUWLla0ofu8sIuw6AUBjOAspHAg5fCAzXFvmQ5xlh4QD3aYfwZYWoJ/leTnKNmsCmvgUOn3B9/sUA97aAm1MCaheA8GSAzAHwZUQoBfqPe9iVQXknR5/DdslBzu6HlHlKRzO9W0SYA+WW3TOycSLw781zAsn+gkDn+JMe9Rcl2h/0iLLEcBFgGon+jHLd4UygS+EQ/tmA+v8o0T7j7Gl/RgmKnwUMK4HmexbmkTcbfaR+bv8Dj8UvOXBzlUB/RrARCvajNa8Dzv9YoH1OcNldB5T3koxJS9kswGALgHUYwzJCnvO86paS3/aVw2HLTq/mZUzsj4AvBXY/HbD6kwL7H3jIgTHyugXaVx7VvUR3LRAfCE7NkbP4/YVH+aCgj8DuDztc/MOSfh1JYEsmIKJ9FqAbiWHNc9xdRhQbzu4jAsfXgXLlip6w2U1MExBilAFmdsTWrHLxFUF4ey7ha4H2Ok1WzIH2GpjdSAzf76Cb1BvYcTIhV024OVkmEXKFCX1stlZon3OSZfO7SF4/gvnqnmxN+7GFORgU+4juihLo9lmkV28vMSzFCIKki+jXAvP3DGLY/9CjelA4vhaobwl2fQ1UjwHHlwq6Ze1OsQcGTblWv6b/Lipe+7kqZlhzhj8nNoeUtNlfAItv+Fo3A2Iv0L5IqcytRPM8122QFQkFELRE8xHPy7CQ0H3E4WN6IbsLbqNqxeiPcgue49ktAzhyRQsg0V8INC8Czv5MYFgJDGf8rFF2p9Fe5yRfDrLtAtBfCdjVJH/sLqfexFw+T1mygPQew5xgt9gD/UpgSMwRIFA/IC2XXsPqyaP9SI5yuC6BbN9IdOcEp8Oc+zm/ESlFW6C9IhgVkfUsQQtW3nRkM5sXIvUfMmHVzrhOX/B9fidGBqlfSSzeBvRrMU6I6SbAzgTa5yW6S4FqI+AqiX4tyCBdSeiO58cPPB6+JKjszwVmdwLNM4lyK8dgkPZSotoQzHZnEusvLfqVQnslsXjjE/NLlqQvknTZZglemlAbmFAsHTAsOLjyht9j3Rn30RwIsvNxppc14vBCpc8SEKVCuScbZ+caw0pA9wRqutNoLyTqB6AM/FwRUHOyzhsBWwvYJSeR+nPKYBdv2c/nSwLnfsWwmWoDTsA1Mk2IEETT38nv2+5MjhLsKHNdCcF17mLsLiVWqSbFLRS6tYJdCMzfIdXLqFTD4+ELifaKTGCx07ALJiy7mZqSphOb1K8kdCtxeEmwW9/xut5/ZLD6MsKuFNQdQ1qCFrDzFJwmS5iDQ3+uYWcS6roeE4BDoeDqbM+IGNYGuS4lVAr9mWaycWFglwre8J4UtCKzlVKjma6scHwuUe6SDNkBvipga4nZ4DCcFSi7BF6r5HduUuKwEuguNIqtHKtNpA0QlcKw0qgHKif6NUPAYmKK7ELBbHpEwyRiCU76lQAgAVcpFC29baFUlN+DclBf6fRdp1E+0qfo5hrlfQtvNNorA9V52IWG7D3cXEE1CiJI2IWG3iu0L6qUAiwTc80gGbssuR9lheKhYRpvpREKieKRY5LhukbVWwL5QpJVKyQ9coqMoAYoHQ2cBIk6VfIoCbsiGLSrgpNlxwF2VaDY9Awp8zy/srHoLyuua1FClBpRSybl6gBoCbtIEzANr4NYKojOIhaGoLQbEI2GX1ZQAEJl4Of0XxQNPxuh0FBNR+AlJcK8gtoeecBzUq2SiFF9APCED/DnS8imZ/1JAqNhyaoYeE8ACRBg5p/RsJLk0I5AXBQFcujOyCgaM0lojUY8HCGqCrEj4IyDBYKHWHAgGY89RF2P0ujxvRlM+pTSmz2SYfI0iipF+0Pig1RZkba/HyCK5FtRagreEQJCKS4nB/6cyGNFZivT4zRF9rtMdP31Y3p8t7nYIPDl0zn6+xryvoA68uZKs7ZAdSdhvi6w+fwC9VsN3Jcwe4HyQaC8UQyz2JANEE/F6C80e/rybj67YjBFQw+g2ZMxiI0eQwjKTZIVJo+kdAJ6L1NSITsCETkwlgeGfhRbhmXQ/8SAFXMQ0AcGTphdirvvJ79YTuvTrYC6LVDfsnA6y3yqB8rXVEfAqA+AekigEhi9hcWGh04f+VqfwgOyDxER0AcyZvrIY1k9ki0qH1M1xwPDX8RRk8HSDFaQXsDNkxRwz8GRLt0IoIDshyGwK3ZA9cagvuEx4fsiiieVM3Bo8D/kAAlKqfQ+9d85MqXlA2fvhScYUy1vdsLzn9mx77N8SiEiLUuy5dJCH1lNojqB6oEeIWmB2ResMahuFYTne8cQhYaBJrnihEEa3B5pgeE8Qr8tRx9QKMhOqS550vTx8toAACAASURBVBKAzwy48BglYlHz2OiGgS8mJTMCmPxLiem0yzhWm6iWQCb7+4odGVBfUiqn+oh41PS8pO91BjtMLLhukSYmuK+s7Ejl8UVMwTJkhlWH0c8mj+rPJT8yoEOO1TTBJMBzlj8nnDRRDWsv6psE+B29lGNdio1pUJ6WnSSg0k/HtnpiAEeoeCykRQr+wFiQnR8x+dyiYFiLGmKSwiU5kUqerp5+XLuIY9qpOSRfnuT5yn7B7JcUgSz9eJ2ksBXhgNk7prpKT3AeFI93uQ9JMpeW5TECLZHCQXyVPHDi5BhoJB8YK16U5bUQJdlZym2ZUjl5xTh50q8ZRqTT5591QyLJ/oB+KcdBq0whKjKnn+ZrUU9S3PFcpcROXyTJa55UFtl/KRJASlJezevLzcTIKopIBjYfw7zsJk0e+IIgMic+qiFMNUplrvwR6fMfR3+rnYvUg6uSV41Ah0A5pnRLbkuelMgVP/0Zkyn7pUiSYzKEbsbjW+ymWpt8XwhGcMDextHnbFp2bnJ7eSxGr27yMYoQ4WuFU090FOy4jHr6Doo6r2fy9uV+2hycQk+rGP150uZ1kGkMhhN3rN/J7+U+saaK3bu5miR7OtVAEMR1Y0xLVUMYPebCs/pIWiSJaEzfAxJ2rnn9pA7a/kJQQhl5jFTrUlCMAiJ9v7lX0zQOdqUhPSfbTOPoT1QiSQ+B9lojGgnVcfLDzdSYUBoUQ2HGii8l4CuZAmA4eUfvdBhrsURIctx0nFwGWjUngnI/pVsWCFrCzhV0G0YfpAgRypIZVT2ZxCy9jZqMrJ8ZTiKkzklXyyQLBcKMjKy0ESH1YiLycxwNE5Kl/dCDys8O/x8LOfo2+bmTSbIpUycm60/00fPz7HjOVb639IHey561KFHK8ZwGQzCvGnZg5tqPKAUQwPqaGCF7D9mQ+YuGkxH0NQpAcvtDbUa/eP7sh0LRd1kZQAnESqeJAkPGtCErmL2PoVBQqVczH18OeNQot4xVMTGZmYxzqSYmAxtNhjEqRWDnybzmkJtoNEKVgF+MiGWBqBWiTumtCTyiLBLwPDknQgCJ9YR1yEmryLUcBWtL4jCQtTytcHHJm6nJboq65rKqioCuLBKQ5P6JXIGSwa9LLG4O6okRKMsP/omymGSvSnG78nrz7zJ7KQT/FgIBYupF5f+/5bWUcpTj5n/jezKgDf83/zII/jZj+h18ZCnsr/vfb8vjOy2FffX7Z/Hf+K/+dYQo0XqDp6HG28Ma67LD89kOt+2SNRV9hYu6wWM7gw88+Fp5PJ8d8PawwrrqsO0qOC9RaI9jX+BqcURrDfZtiaqwUDKitxqzckA3cJbGp28vJSJckFjXHR4PMygV4JyClPy5mndQMmBwCrPCQoqIm80SUkYUxqFpSijtMasGxCiwP9QoqwF9b1BV9MiVxiFGgbY3KAoHJSK2mxmq+QDvJbyXqCoLozx2+xpCRgQrEZ3E2dUB1nN7vJdQKkCJiLZnOmnwEqZwmFcDOqvRd0xumdcDQhQIUaBN23i1PuDuaYmq5nqbTY1iMUCICNtrvLze4t39GkXp0LcG9bxH3xsei0FD6YB61qNpSvhGwywG2KZgrYWTMLVFUTq0TQGlWA1he43n16xGub9bIQYBVTn4XkEavi/2EqL2KCpL9joI+vtKz/7eVkGWHsFJIAgIFWFqC9saVIse3aEEZITSAa5XMJVDiAK+0VzO3HE9nu+NnYJKXtQYBISavuykjvA7A1QeqgjwewO1GhCcROwVxCARSw84eltFqyCcYJhUESB04MAyCIZQ6Qikugp4MQVSzRwnOaxANGkwLiOgIhNvTYCwEnHm+X4kEFhERB0AFcfli5YTLNGkkKkZ/Zws5BYIM8+aEyugdhqhTmZ8HRlkFfP/T77cZPygFqN6eUS7LyG3humyKtJ3q/masPAQrYTqZKrboKeSvW6RKa8ujxgwsvChDFCtHIOvoiFbCgCyEwh1BDz3g71600THNFDPoFQw5GmgnyvoOIXk5OOeQY+bQGQoImLBgYrsiQikTRMgkWDSVymUKmLyGs6ZwOpL7mf+O9UQZL1UywkbmY5zDpERafuzukFEjBMjOZCK25aAi50Aaq5zQEyTTgBCiTTg5LpURw9lXmaW42cm7zTohEFI3E7VT/5OkcLPcgjVWJ3heG4ZDEa5ffaAjkFQPO0AADsny0tAye1jgiz3IYej5YAoAGOwzGlglerSeRdJNWII0nKaaE6vzLYDXhMYO32BaZk+TSzk12UFSgazBFuYQozyqtN6M2geA47MdI5i6gvOgVB5G8xx8lpmT2g+TqeWhSgx1l5klYNuMAZT5TChD5aRQG6+NsnoU84cU1gRO39T+JWdzn3e3w+OrU7vr+hjhDyZnEjAP7923IaTkB1XM9yM74uTUiNNyvhqugbHrl1M5ymoKWgsL3vsos32kLzdguDR7NPnPab9E0jdv3yfstN5Hz/buYdX5EkhgnMGrHESY1imgLkUKHQaUpRB36jqOFlflAxQykmwvhRj13CU/H7J/cinn5fceZsnA1jdgQ+Oz2moEYCRXc0duHzt1HWbO24Z6BbTdZzqPCKS7/jkebrOmNZKhYrs03FJ/sh8jESeAEzBOeN5SRMA+ZoQjn2n3PY4hmtlth3A2A8sPKszQupHnT6A6Weczkd+LS8m9nmKFEIUpWBAUKlHmXHUktUgrRtfA4AgF2B4UAayUkzpryfhP+K0JiSH8Jw+z9+Vuev11P/owygr/pX+xBx0M8pZ+V7hf8U6AYyVJXnZ+X358avWkwN5cmBQPNk24APp7QcS2NPuy289/lJ45K+AFPb1T9fx3/v7//Kvfbl/7/f/+9/4vgHfcWBZ/+hV/Jv/5b+Ju0eCNFM4tPsS1892uH9Yoqgsnq0PuN/P0d3MoS86uF6jWvTjAFc9b2G3JeTCQhuPYVtCdJSORh2BBABE6REbmslRBMBKiNoh5vTZo+YA3guo1QB/TJUNaeBsHiXTWjt+CdprC1V5xLsS8WKAeGCqbZx5yMojHAz0agC+qscBp/CAPQswTxLDJcNl8oAv1AHqkGaQLyxw0Azm8QLFrSZ7safk1S3D2Ivny0iQoCL0RkO1Av1Ly/1oJFQjIL2AncfxZuuriPnXEvsfe4ieN1TdMAFXH1Oqq0uD0ipArS3Mz2qmyZYB5Y1GKHgMym8K2GVAWHqoLfv9ZFpmMGl2vQTKJ5GSTCN8HVE8SQznTOLN/XuZBbbnDICRjiwwJNC9tChuNYZnDqLjKKbYig+CTcgKMy1WNxzEtt8foB/MOMARnjdku4qobgnGfJ1SdFsxDprcnDJKX0UM65j67Pj39qVnBUY6bv1VQCgi9F4y/XUWUexT6EcnYHZAfxnHDkG7iigekzRvHVOMvEgeJA5wh3WSNs8YXpLl3P1FRPE07bNuRAJnaXCj2NVHxoLvaV97VG/pNwzmZPCfMaRMA2pHqaluMcqiM7sKAOUjk0rdjAPMqFM/3hHorsi4+4rX5PIroL2apKY5jVcNZFdz2u6wjqjvBIblFKqiWg6O86Aagr5fuyTjrTpKeX1iaYPhILPYcl9yuqocctcekpeZA/uggOZlTGoFbl8GCsWGnurcXafbdAyfR+iDGGfk9ZFy49lNxPEVz0GxBZpXEbP3nO0XCfT5iv+3C4zJvfQRpxqNlCw6rKlcCJr7lgdlquUJsEuej2JHua6bYwQ/OvX/5bAOen0ZvJI78XSTB8gxSfDFyIC5On0PpGoFf5ICm7en2McRWFC2S59wfUef8Ow2qwcIsqXlsfYlWVi7mJaZwd9p2qoaeIzMMQ18IzAsqE6waV+L1AM5LEQamJIlo2d2ApfDmv7l9poBKbqdwFRmrkzD96k+hSQNZOmU5UBeuoj9xwrFdgIruuG2FAeeE+GR0oBjkhwj9QdS8pqTWbMcM3eOZkBijmlwLsg+5n5KmRhDNcTxWPkyfUccwwhKoiBLWz/Qm3s66W2OAc21ouqj4Xqko8928d6P22Dr6VgIj7GvERE4PldYvnXwhRwHshkAQFBiXO6SjPZCoNwlz7AWKHYeoSAY6S5VSh+m93VYkRXMIC3vpy/5GVM9GTwe4zix2MkPPE7ORAbn+FrC7D26C53YeQIWO6dUtdzTH0yWncmzZu/Rn2t4I1Du/AgEVB/QXTHgJPvqVfLgMjTHJuZWwRzpa9ZHP1lflIBO1Rqu1tAHi1CSGdSNh/QBdpYsNRGQA/dVdx5uptL3jh9fn9Nex87JxtMretcjajl6Uoe1GV8jIsNvMtAEEsgd+x6TdDqBKp88qOxv9Ailgq8UzN4CIcKuDIrtALvgT7cwkJ2nv/Rgx+dRCXpSbUDuhkSIDNJJ/ksIAf14hDufJTCeJJYuAD7CLwqoxI6O4E5LqMcjwnoGuJDk+gSHUUnIwY3XifBxTIeNRjE1NiXDCuvJvA2OgTtGIxoFeaB/NMrkqdQKUUrII28AYVlP73MeEILe0EOOm49p+anGI7GKwvkRtIrM2mXvpBBcVk6dLcyU3JpBZ/aJ5gqSfEwySyrE6OX8do2HKMzkj9QKMTOnWVabvataIbbt5Ke0bpTCjp7L9IjWQWQ2NwNLyc9p9P5DmeyvAJ48VBGx73/l3/4yj98WYPl3/v6/8mtf7n/6+//db3zfgO84sFz8zov4/f/i32GXovKoC4ufnN3irl/gZzfXeLY+YPAKt59dQl93sJ2GLj2U9gip/y8kBtO3CqIIOD8/4PnigM/eX8M7iU9ePOJ2t0B7LMk2JYCplhbr1RGbzZwMmglwrYaZWYTIO70pHNbzFrd3K0gT4DcF5Moiev49RgBBQO41wtJB1Q5+U0CfDXBHg2LVY9jzy1SWHqEje4YIqPWAuh5weJpBHBSKFw3clwvgVQe/MxBzB/W2hHtmIWRE9AJyp7H4/ha7xzkwSDIwJkAUAdhrsku1g7wtEcqAOPeAjJAbg7B0TI/VEcWdxvBqQPGmgP9+B/llBXvtyIYlcCxaBXXkzefyD25x88UVsLSQdwX8hYW5KWDPHfRWwy08t2XhgF6h/kaj/d5A1k3n2S1A7xXchYPaaPiFhzoohOsB8t7Arz30A1NH47kFdpqA52xAfCgJiFceoqN3FEhVInVEmAXIJpXdJxa62NKzVz5I2FUYB4bFExNT1VaPUf12GaAP9DblNNrqnUb30pGxGShtHS485CBR3Uq0LzzMViZmQsBVZNmiAspHyfTNjYRdRvg5JxPcgmyQ2dKnhwi4tYdJ0mE3IwuoOgmzS57bPQd77YuA2TsJu2Dg0ylA9BXZNvMkoQaB/pIez2C4/PqNHkvK83qjBoKOKDYS5YaBVvYsoH6j0HzisPiFRlAEZHbJ4xdNgD4ojDUyvUB1L9Bes5g+sxZRAnYVMHsjMZxTgpsraljonSTXNjGBNWVx1b1A+5yVNKoV8DPOqhfb5K09Th7VYpc9lzxGoQTsIrB+J80PzL8iWPN1hC+B2VuB7jqi2KUbvSMgVj2DcuQADGcp0CuxSm4WYbYC9X1Ed0GQMz4i0L6ImH/D5R1fEazqhsBVDkmunsC36smGZFYqM3Z2zhRbEcDKnoGBUUGnbTqfgL9uCHKrWwJLORDwtc/4WSgfk5y8JwDdfR9YfM200bEOpmA4Wn0rRvYNAObvAroLCTfDyPzJIQENR19gZhTLLY+/SlJsEVJSa8/Jj/VnIEB33L7uQqB8SgFhiTVTHcFm+UTJcXcpUGyYLFs+YiySj+rDBFmAYLy7oi+5eSlQPmC8vjIjZFPwFesSJmYt7zMnTehrH9aCgWJpAseX3M5yw1ArXxLMuhkl0lERlLuKctNhTVl/+4zrKjapLmZksMRY3QExTSb052KcHGC/ILfNzgkWu3OG60DSt+wqBjZJz6C0YUEw503y5MrUu5j2UbcRzTMJX/HYikiGrHlGwF1uU0VNkmYXB36H2ZqeU1fyw9Sfcf98yWNcPwSCyj23aUjhXsqCvt3+5BryqZIlJaxKz/OTw5YYyjQx0r7EKEnOAV65oidLJItjSMFY9HxmVi9PqtiZRP3gRjaPKaes4ujO+EUlXUT16Cmv1kjS7NQhefBoniUptI9wCYjpNozBUaoPGBbqJMHVoXlmuG0Dv+/MwaG9Lri/KYHVG8G+zY5VKaP8ODBoaDjTnIBKfkkRIqrbHt11CXMg+Cx2FsPScB17h+FMo9i6sQYlaEFP5tpwPYbLGZZJsnzwUL3HsDJQLUGxXaqxuzK/PktmCZJSKrdnz+SwMqjuWvSXFczBwc01zKZHKDV8rVhrMjeUKvdhDJAqNj18pZNEW0JaD7timJD6P9l7t1Db1gQ96Ptv4zbva+21b+fsc06dqjJtd5too+ZFJEHykhfFBx9EMCgoiAEVoX0QRVCJDz70o+2DGNCYQKKgPooKghHbRtJtqk111amqs+/rPm9jjP/qw/f/Y659uqpb0lV2nTYDNnutueYc9znn//3fzUXIkfLK0BnKkSUnl8s4ImU21twN8PMKejcSPGoJv2khbIQcPMLMQB0cPZohITQEa6p32YNpyWy6QMmsEkBIkEOW/GqJJElSFBlwbDTkbkDq6iwHxYkpzSAxCcGQn+xfFBkQiuNAiW0OxpkSX7PfUwyWr5GCPytJ76N1J5bwIVvpT35Pfh99BQv4LGctgPErQE9oTdD4UJoaIp/7QffkAwZTyp8c4PPA5/n7Limekmb/LpafB2D50S+t07/y1/6xn/p6/+1f/u//yI8N+JoDy/qzj9M/8p/+s3j5boPqB/U0S+9XrE2QY+6oNCz+Hp54dD9iTYHec5DXX2SpR+6MnH1ZZvxOYTksh84sTpWmQSr7FbNEaY/JS5gEAUb3ij4Wu2KKrF3xeeNZ/tLYZlbsaURzKXMMfvY0lX4wx8Gb7jH1Ek7sTnWSxenhgTeu4UD08ElgHULex/oGUxy9GoFxg6mLL1ZkGQtIgMDEbNV3meFoH0iWEiZ/1XARsfhCYlxh8qMVtsd3CatfuUL/P17wtYIJovuPGZld3fK4CjNU35G1KEs55tBkiV9P5onSudNAIikeM5MjI3afykkOxuAhDizHM24nVARJ3WuB0gFYzuXyB5EhMnn2OzSY/Kj1XcoJs6fHleWA8AOZVqkmGE7dhfNXTNC1qxN7Ud1z8F7fCdQ3eWAzsLz7eCEnuVnxT6qcUNy9pTdJHxnjX99xZtzsmHo6nMkP2Cc1MH223M8QvBe6NxzsHZ+TGU2SNRBkozhYtSvea+17DuzdDFP5um/FNKArDGRzzX2K1eleAzIzqDmwLoyXb4H5KyYBz14zPdauBBY/5KCX7zm+T6p7yrn2nwicfYchKP0jgdlr3hMFSOmeg05f54CXVmD2OmL7mURzQxahz+e2uk/TgLrI/0KDDBIEtt8ENt/hYLo/I6Nkc1Jw0qxZYMCQyImjBBn1Dd8zAAfqbpalcjbBrplMLR0wex9w9y01VT2UdGI1JNS7hGAwMYb9RfZdjjm5uMveyYHeMbvi4Nsc+BlS0oKLVPHwXKC+5zEDfGx4xITiJIF6S9lrkgLVIeL+GwqrL0IOzcmD61kJHToteuC+hFagvo2ZQeMg+/BUos5s8exNgJ1LVIdcZZBTWeu7eArbeSSnJNr2hv2MJ7aabNZwJrMfl9dyXDIgrbmJORTIob/Q0MPJ+xhqMYGRmAPRAO5ncxs+SLFt7rifxYcZNSs6ChOrMqApLJnpmRhbfJGl47EwaAyRArr3Hoen9DkvvrQY16xwGNYK1T6SoWpy8vCS2/etQLVnem5JhHUzvh/NgUmz+hAwnOspiE0GAOmUGlyYpSKXLHUVEwuawbT0CeaQwUvFpFsAMNucLLrM4VId03h9R6bNLhWqHaWOUWef9yFi3KgJpLfvRvRPako0VU4U3oYJtKshwq401BhRbT2ikdNAk3UQAqqPqLYObq5zbyRQ3zEwJmU2NVT0JppdgO6ZpKt7DuBLxyoiMJwp1NuI+oYzZqFWUINH/6SBshHN+wGHF12WkIqJgeZ3MoOM6luH/lGFahem2gqRgYLv1OTpjLUgaIsJUTHtlqnlBEd+plBfZ5CS+xKTkVOSLf2fmb3s/cRgublGdWspybRxuubFV5ikgLkdEFsN3+l8LyTI3sMvKqghPOgtzSE7VX6tEtD7nMZaK+ijmwb88ujgz9ssESU7qXoP2TvE1uRryn7J0jsZOg193SPVCrJ38OuWvkojofYj3FkHfSCTiwTIwSOZLCsdHAFhayaQIgePsKghB4/Y6FNH5+Dhz1uovYVw4cQ2AhCHAXHRQcQIYT09nll+Wno2hY8nltIoMowlhKZ0UYZIn2KITIAt/ZRaIXYV1Ps7QCkmwvYjUPGcoDITOBQhMrSnJMkOdgoFSm3N10nxYUpr2Q8lyURqTSCqFZlNJSEmVjEzlEUyKwTQ51nNzGymGOl5fOid/CpgEwLJWkDmv0lx6rH0no8DDA8q1SOFTYyR1STOnXoyczrsB8vDjksh8JOWh1jl685Y/nEHll/rVFjZC7z9zaeoB4HZy4ThgoOkca05oM1hEnYJzL5MEF6jfZ8Zh8SZ8O5tHmCds0Nr/iUTDe2CM4Hnv8UUS3NkRUL/SGL2MkvMBs5QlwQ9NVDeNa4kRJLo3keGYawEqm2EOXJWe/PdiNtvczbTHDjwXfwo1xac8zlJswoCibO0JsvZ+jOJ5ffJAHRXAVELHC+Y0ugbhniU2eLQKqx+N+ZQB1ZOJMFqBN0nNDeUipXS8WofUd0HJMFOxfYywhwTpE2otxLbTyWWPwi4/BWJ9e8Au08FVt+PqO4E1t+32H1sKM3Ki50LDBcC+//1AuuXcWImqm3AuDEw+4Rqz1oG3XPgqYcIuzRY/66DmysMazGlOo4rgcVLj2FDWdT+GasPXA7/KIXnzY2H9Bp2LrB46WCXChBMH0TiYKu6z6FEx4jZW4ftJxVKsXe1jwiVwuxdwOGJZLdcTsHUY8LsbcKwUWh/6GHnigMwkdMSX/OcXf+iwvnfDkyBPaMhrr3y0IPCbSux+JLgq7uM/OLuOfuvbJjKqfcvgIv/M6G+8xg2+uQ32/IY5q8S5l8OuP7lFouXjIGvdg52aZAE99U3QHvpCSTnmlK7Q5w60up7SrHMUXIQVAGrH9gHqYkeV79cY/ODMDEMSCmHljj0FxW2nyisv+8wrhT6c4nN7/S4/RNtrpFAlroJ1LeeJeCJs+TjmcH9NzRWf+eAYOZo7gKS1BA+YfZqAD5qoMeIYaVg+oRqGxAaAZEUZi8HmE0F6ThAbO4S+nOFxY84UPRzRTallhhWEtU+oHsnMHvjoGyE62o0dwnd6wF2w6Amc/CTtyg0NGDNvpRoLx2qrYNvWnSXHoCeJLbdZaDMTRl0lx7SJeyjQXfloaxCc+PhZwr7Fwqb34mUUG6B1Q8dDo812kuLw9MW0iV07wmMlCMTAgDV3YjhosmDVA1zTDDHCH0MsEsNcwgwW4tYK9x9s8HmO0f4hclMFweTxdcUDcO2lj8aMG4MhAfqnZiSZru3liE1Zwb1jUM7k2iuLUJVo9qGHNZhUN8HtG962LOGQUeHgMMzg2qfMHs9AinBrQykS6j2TPSUIaF7O6KaUdpXEh+la1DfWBye11h8cYD0M3Tfu8W4eoT2nUVdSdiVRve6x/FZi+bKor0S8C2TPOsbCzUYhFaie91D+gb1+x5JdTBbh/FRhe6dyzJEiWqbZYhzjeqO9QtmawHRQPgEt1Co7j2CMZi9HjFcVKju+d5Sg8dwUaPaejTXmEJxyncBEkGc2fIeFGPA/S8sUO94LfUQMH+dYJcK5mYAUgO9txCxQX05INYalRaoXt1Dfn4G3fsJTDB9PEGOkcnVjWRi6I2FvjlAjTOyQQsCEX0M7Ah8O5I9yoN7NQbo2x66bzCeVTA7Vn6Yvc+hORG6NVnentA/qaH3Fmo3QMQ5hE84PqvRfv8GcdFk3xkZKEjBFFcjofcOaQKyDnpv0cUEaQkmhyctqnt+Vpl9gN6NSKrjuvZkWOS2R1ySAhY+IswqqN0AdQ+ERY3YMDRG7S2lz4cBYTNjpdh9j9hUaIBcxSEQjYI6WsRKA7KirHT0ENZDDgpy8Ggzo6Mu72E2da4MCxCWEyaxVqje7jC8WMG8vkeSa57vux7VcUBcdoAQUL0mONISblVPxyQqNQEupSXM1RFVoyHvjwibGdTdkTUaxxEiJrinK+irPfyjOYx30LdHAJRoyqGC3g4EI/WJwUNgEmpSEup2B+E6JCOhr3uEJTsYk1HQd0wgDfOa9R6bjuxtoGcuKQnZE1Cq+56g6WYPOA8tgTCrYV7fIFysWDFyf4AYKsSuJjCrFfTlFnHZQfkIMVqIIUH4ACUlOxhXHeR+gOoqyLsDsKK8VV3dIy06grfR8hhtQyDXNRDbA1Q+bnXfE4iVa5fPZ5GSiqHIbRxUkZPGBCEZwgOjAUMljbjfUwIaud20WRIMzlqI3YGgymjgvgeaGhhGprEeeojKQB0N0jBCaE0gdThCiFlxyPB4RAD6AaJrWX2SuyJFUwPOQTgC+uJdFEqybqSu2SmZWT2hNdJ2B1FVSNYyHdZ7wHuG9miNeHsHMZ9BSIYB8csxB+CkhFTOB4AfmwrrPdddpK2lRgRAso7nqjCaAB4G9iTvIbLMFYGsbgoBctZ+wErGDBLLcfzY5Q9iMb+GS/g5Ctv5aS9fb8bykxfp+b/5r0EfBL1zVUDqNUQTgK1GqiPMrYY786jfGIwfWQamAEzw7FlozgcoBxRNgLijBCE21PkLKz8I+5iSNSMY2JE/NUoAi9ophEWAyAmxJZkTkf5EfaDXMZ1Z6Nc13LmHvqGMUwQgdBFylFnOQ6li805ieMKZ1xJc4Vb0FibFigcGW5AJsY/I2pYie7IrAscXHs07DbeIYOx3yomEgqmvBhg3cWJK6VkT3Jblc4ZzgvPhcUBq7jVnIgAAIABJREFUA8x7w3MiycKO5yxRHzeRMfz3rAYp0lMmgp4kcEmSMa3u5BRe4ueUOipLX6HqKTc8PuX1KpMG+ijgZ3G6pnoQEA6ApCyQEieBcRNR32ZWIcvZ7Irrai/JnEWdYA6UkLL+Axge85zrnsnAIntMIZBrFlL2sfE6Sc8JifFRRHUjJ4ZaBDGFdfg55Z12Q7lraHIwS77Hqh2Zt9CQndQHyiGLd5Opp5Q7Jgnsvu3RfqkROqbA1jcnlqf49PItDrvO/ZmBqbx2BcjxdE5EPLHHdk0WuyT5lvvcLunNLD5CXr/MWqqTfzJU7Dn1nZgeZ/UOphoWAFNqrnSYpKfNezFJPvXAY/AznoviB0X2WM5eiklWaddUBZS/FzamXPfiR2uuyRyKwImnImUtjCuTP0/HXEJPyn77ju9/nY9Z7/mYdMhyx+xJXJ2OgwxvYYceHHPe/kOpJQMukNMzuT41njyqiJlhz6EqJaGXfj4+p4T6FH+k7/I9JouCgY+FmtuT40k+6BaUDZrDifmyS8p0RUhobsk2lmAJPPjsKfJNft6VlE3uf+m65fs1Pz+mHPBBZt13ZEwKW4QE1PcRwzlTL9WAXAmT5afZ1+s6esPUgFwPkT+jNaaQGqYXk+kvCadFylmutfRkpekd52dENFQY2CUVBeW9EnP6rswhPcryeHx38iuqkc+THjmZNnsRsyol5endon4oCa2FGZ7OMbj95jbCtVmiGThRFGox+TuTBKodWeAiBy6J0tFQrlokqlM4TZWl0n3Kkkc5yWHNIftoGzGlUBe/ZmEgJ98ksme1zSEz+fOheF5d7hMFGF4zKXy6k3S2MNoilkqgBDcvoSgfMs4i5BCcfK59c6rombpHHyRDR8OE3SJxLZ9f9NEG9BcG5sBeSz/LtRuNhB4jU4fzcUpH+Wp9H+BmlNNKmzBuFOr7MPWJurmCGuMkxS3BMvQ0avq9F5xMKj2iADKDRhmtmyvUN449pfpUi1I8o9EwVRUAk7aHyC7SXO/kOwXhE/QQ8iQDmUu70tD7B97OzAqXlFzp+T0XMospXZqSbss/dWRaqFtqvjfHgGBYL2L2uYdVCkgbMvvJ/loRIitTSqiNEB8chwjZYyn4t0kmmcerhSVNgrUmam8ROqa0ipj/5dCj8t1XpKexy4mylvsuXKBkVWcPpBBMrhV5P/L+ycOIOKun8B7h4+TF5AnKry+LyFUy2c8JgCC5MJzW8R43+kM/odFkR/N5KKnPCNkTqVX2MCcm3GavpLAOKae5itFiqvlQctqfIpstSbPJOoiuwQdLuQeHkaA2RP4/he4U6S4TZtNoIXLK7uSrLPUiDwOHHvZuPlgmWeuP69p8+Lyy3QyK/26XnxfG8l/+q//4T329/+4/8N/+kR8b8DVnLIWJ+Ojvf4ebQwe3r/Htj97juy8f4x/91g/ww+0G1/czPP3sCu/v54g3Gi9eXOP11RoAmPa5sZAiIdxVaC56zNsRVy/XQB6QP/r4DlfvlxBzhxQk1LsK6UWP6CWkjpAyQqmE4b4mYJ17SB3RPtnDOYVxV8OZiHozwF520GcD0nUD22SJURXgnzFRNXQSUABWFiIKNE9GNJXD3XfPkEzC8YUH6kgf5mUDX0fAREQopC7A5dFJqhPVEzpCPR3hthU/sEdKh8y9gv1Wz3CgO4VUR6Q6IFoJv6QfMLURejnCv+kghwwwZYKIAsfnAVg7uFhDX/TwVsMvIsN0zgPchgBvqAMHab+4x+6yg7ASoYnA2kH+qCYYlGSdkQTiLGBoIhbf1egv+IUmwEEH5cQRUIkpnxcW9XcajM85+5zq/GEVgdhICA+YrYS9YLKo3kmkOmE8j9NAAgCwtqi/15ANfcwPtNAJeh8lMJ5FxDZg/viA4xdLIHv21ChgzwOa1wxFijLBnvP18khPhXp6RNrOsPtlx9TXkdJptwkQbYA/FxC9QqgS7IWHsBKyp88ztII+wT95D/e9JdQguC9NhOwl3FmA7BWGR8DslWTNjgLsJqB5r5EUMFwE1sZ4wPT0ZErHtE4kgVQn2HVCc5l9nC3l4W4dUV8r9E95rGbIYNSdJlP8MmapFgfFbh1QXbOWpf/Yo/uhxvgoIswikmJ0IsEF7yXfEWj7jr2wzRWBkEiAn8UcvCNw/NSjulTwC4L4qAhAWAmUPaDzCD9TlPO+CFh8VxGoZhCXJGBn9HAWybkagftvAwAl6rFKsDU7QyGA4zP6YSGA5i3DS9rLhO3nnIToH6cp4VVccYC3/yxPFqxykJMV2D8iEOufcQJI9wJ2xevYfalx/Cxi/R2B/nmkZN0Bxxce6ihRX8kJfAKcYNj+QkTzljPrpWtUWo5rVA8cn9DvmQSl2MU/6ltKPkNNUF7dEkj0j3OK68BJkeqWILBfCXRvebzme8Dus4T5lwR4/RN+ofsZFR7KFg8a97G5JBAdlxlMBeRuSKC9ykDGsZu0e0/WPLSUdibFLtX5q4jtZwLVloPr0ApsP+dE1erv5MqamL2nPUOJhkeUhw9nAlWiemXxo4j9c1YRHT6jJ7S8//snQPtOYFzRi9hf0IoQaqC5Irit7xL6i9PxASl7TTnQCzXXF2sCV7OnCsHPBJorSqT3H4vpvVPdsRfSd8Dyi4jDRxLtu4RxKbD4MmJYC+w+lVj+gLLt2etchVNxgBqaLL+3rEBRI/dx/1yh2vI8HZ8X6bnE/iP2qo5rAvDhEV+TjgTjSQrU9xHHxwSRyuZk3ZArYI4pB7xlkF8B/Zz7P3sdkUzuS23oIbbz/P55QrVOsRPUtwnIFT4pT5gM5/TBDo8EzI7bPj6S7Id9ydepkZ8Jh6f0eNZ3kec+JKRKZt9m5MSAIZhOHS0Zs/cBvqGMmcE2BK2mp0eSQXA5BEsJJBkRGgbx2KcKszdUWdgMznutUW8jjk8U5q/CJN0ezvRkRQEIUMeVyiFyWQovJESdpboZ0PYXFY6PKftOSkD0VFzU2zhNhsWWHa6zN/RN+prKi1hJTjA1lGOPC4nuigB4XEqqGg4Rdq3QXDsyz480qj0lxfWNQ6gUq4RCQv/IoNoxEdZ1rK9RjnJo6RL0MSK0/NLUhwA9BIwrk8GbwnBuUG0D9N5hPK+nTtrDRzWUTehe9xguGjSXA/fdSNhHFZorhviYewu7MZA2Yjw3eZsBvqEqobqzEFJgeFTRw5kAsx1hz3LvZiMngBpyqJHqA9PbJWtoohQwtxZ+1RAwZsAZWgPMqPAItYLZAYjszETKDLuivDjVuQ1gVrFnc9OgertDbGp2bPaegTxHh5TlubFSZKGXFTea18UQoHpi8qaEWEu28oMgHqWQRESaN5D3B/oUp3TZhLieQd4dThUnKU0/P/RlllAhSDmBPPGww1I8kN6mdOqoDPEDmazI1S3Jg/JXIQFn6e0UBIdCSc4LlG7KEjpUgofyNrg+nQGpwu8HF4UC9zWJP5TH8udhSQDiw6jwP2bL15qx3PzCRfpz/9k/DR8l3h6WAICQBD6a3+PNYQklEgav8dnqBr/99hmW3QAtI5b1gKvjDCGHuByHGueLA3yUuLqbo64dxtFgtTjifjvD2XqPwWmEIOGcgjEBTeWw27doWgslEqxXsKOBVBGbxREhStzvGzSNQwgSKQnY0UCIhJQEZjN+Ex0ODZaLI45DBTdqzBelmkTDe4nxUEHVgRUmTsFUHsEr+PsKZj0iJQFtApxTmHUjdncd6pllpYiMGEYDN2gG+EQB7A3Mox4hSEjBJN0QJGIUSFHCDxrVzMINGag6CaETZBUgRYI7GDx6usXV5QJPn97h6nYBbQLGQwWhIqRKDHOTcaLMlEoYdjVU45GCQHQKuvGIUSBaavSFjkijAmRCuxrQX+cUjLztODKVFAkMMtobiI4fLu1sxPG+BUSCkAm4N0gNgTciK0ekTPDbCjCR6xs0hJUMFHpfIcwi1NIh9IqTBJnZEQ3poOQkH9cR4qggH42ItzVSlQ34TeBzEge9ZmnhLxuImOsvRIJIAqmKZNaj4L7uDLBwZA8GxXCmJkDsMmAWgLnWcCsCHdEGCB0RjxpiZP1GzM+TPUFt0gmpCUAUEE5yssAkqKOEX3smFScOkJPM9SISE0AXIweaqSKQB4Awj1OVh/CZ+crTwakJBMaDRHw8Qr+q4c7I2AsvpkmJ6lYyfReYKiP8giFMSWe5ZhMBkaYEX3lQSHWC7MXEiAGYUofLPkpHZrtUipSFs868luBpyqxxhBwkzIFstrTi1EcZMO2ntGLy6tpHAdWVgp8nxHlgL+0g8uD/lCQc2gQ55r7SOd8PYRGht2Sn6UEW8HMCRbsuPjjkCoQEc8/nPozdpxeNxzlVbSAn9IrMhO8ehCAJINZpSvB1czKJKgNc3TPkyG4iu3iPDDxKEtPjzfvTNTvVb5zAUqx4rJBM85VWTKxuqSRJmus0e3Gq6mgIhkvQSqiZYlwST908JxaDwE1aPmZ2p0TPWOegpNzjTZDJ9QInFrewfw+rMR4yw4h83ZRgnE4APFZ8Tspv7Um5gtPrWatxOj/Ff87+TEzXlvcTTmnEmQH3HaZe2MLuukVmMEeex+IxL4qOwhCrvrAxfE35udTJfFVFwAAmWi1Kd22pSaEKg4C5vNdCw9eaPdnmUttS7QiSJra1gEZNpi5J/nxKSs3sV0OQa5enQJ0SVBNyh6Q5ZC/jg37Y0rfK/IMHXl+Z2fCc4sr7s3QpYnovlOtVKnnK48XDPlXMqOylz4FGbs5JGT2kKSRI2RwmZEtab/pgXfx8Exl45YTkzKoWbzEnTE8/K5eDnPaZZc19lK7LnmQF+FYSPMvTcUyfc4XVEmJ6bTQEeCm/Vo30qJe6kdINaucS7VWA7yTXKZh8G4w4VXFEQIaUWcsc4hNP6wAye509s6zPEbnPM00dmx/U0gAITa430TmRusk+8j5MQT/0FucuzVyJUpjyqJiaXNJqSwdtqR8p52ViTfGQFc7fl+J0nHIMgOTnlBrDgxCiwphHSowPFqE1kC4QVNowMZncSAYNmSWFLoylI0AtwT2Z1SO7eqoUSUpNoT4fKAJc7pMsSbH9iFQZyna7BmJ0BKtNzfX6QA+okvzbw3ulsInjh/LTSQprSudNIhAtYO6BvLUcZ3ogr52ksoXpLOxlWddDcFkee7j8hDTYh/v3dfdYPv+lTfoX/6s/81Nf77//J/+bP/JjA77mjGVIEpX0eHfc4NWX55CtR9wbvFVn7EfcVahWI37z7hOkBLzf11DvK7yuycCEeeQMbS9w93nE8dUc+iBhZYtYJ9yMCvpdhdtXDUooECIQVw7DlwvEKiK8aaGPAm4Zmax5p/D+qQF2GnovMeAkx0svBuB1C5GA3ayC7FmRcfeRgHpTA3XC7r4iS+gF/CpA36tTPx2AGAD/xEHvFNSbGU+EAESbcJQtzAgMFwr1e4XDE4/qSrPPFif2A9czmNwvlwAIDcR5hPACszuB/qmGdJSeiigesCYJjRW4UgvIO4O3/gzNKwO7jpi9ZuLo+Cig+1Kjfx5QXysMTzxWL+6A315A2gq+S6wvmWvoUcAtIqpbRUlyoly3f67QvVEIDT2s9W3FWe7HAe0bBbtK6C4F3FLBdwk21uhu86C+y7UOScEui0y1glsk6ERGUtwYVANgLwLa/7vhwMsJhF6i2UqYHUOd9CAQtZqqWlj5QBlwfNeh2oLF3hEYz3LnY8zBPXca3S3TSFWWJOsBcJ2CX2jKDPc8t+OZJFsGSun2n0joXiD1p8fNTrOu5q1GUhmUzRLaNwJuKaeKDX3MEkCoaVCohzxYXwDVraGvtwGG84TFFwKxEth9FlG/4brb9wLHJwnVa4a22AUQDjIHhyR0b5goavZkBY8fJ7SvFesedg2qHTi9mGWFapAPZIIC1V1h3AR6KXH2fwHbzwlyYsVz1Vwm6CMLs+2abGAZLCeVg4QaSQnsyPM+boDmhgFGbiEgRx6nnwH1LcO4Ft8DkIDd5xJ6z7Cq6l7mSpuUz1Opqsm1MldkXfZHzfCmtYTNsnDpgOYmYfeZRHWXAVVFr7ebUUIdNVOnqy0HMb7LnYLXCvUd3w++Bcwuy4Idk0JDLdC9Z6CN75jEKh3QvcEUupIk/cVJA8cnOXmz4mO+43EgZvAQOWhrrnmN7Yr3X5FOM72U12X+MmL/kUT7npUg1Y7rLXLfEiQVdfaVbyh5lw6obyPGtUSRWuojz2lzk6b+Pjs/pZYikSFrbpgq29xEjBuG+iRJdo7hTXxO/0iiOaTcF8j73rcC3Tuyb+016zrmrwPGJe+nEmxU3zFoyK7EBGDMMcHtRJZb89xHxcd9IybQUiTNZk8fve7TJFdWFhPoUpbS3aSA/lxO8sypnmQAZu8Cj+Mmwi4kmruIcSERGqC9ijg8UfS3Z8ll7Aso5D6KkZMo3fs4SXzb6xwilWW5UXM/3ExOklc1ZvVApCS32maPe5a4Sg/YOQOZ2NXJUKoi+fSNgIvA/JXP4IL36SS9zbU8yy899k+pnqi3aUrAnb/JSatJoTpE2Bnvk/o+YlhLyAA0N4GdkgfKLn0rJ+8+J0YizFFO4G7qLIwEM+NSYvbOUcKZARyAqXuRMn0JJB5XqOTUx5hkBoJDQppz4qnahxNIrAWqO4/+wqB973B4blDfR0jLe7VIRUu4UAHPwAnQC58Qa4E0Cph9yAmsEXKpoI8R+pilutnzX19b2HUFZRnUVICsb3M6bd7mVKsCsCokJ6vGWgFgiFGoJOrrEXZTobqzOSDH0CMLnfsiGSQltUB17+AWrE7hd2mA2lsk0U77USZczO0Ae95kL3Bg8NAYmJYaE8zeTXUddlOjuh0xnjeoL4+wmwbV3Qi7rulTvhvgFzWki5CjzyDJMJDHa+jdCL+qoX2RR7LjUiTAz5nmKhKmEB4AkPsBYdVOCa1Jywk0TQzl4AkCfYRwgay9EJA58ZVf0gLCeigAoreQUmCq8YiZjSwS1MIGAgwRiuD2nScgzCyiGCzBXwaCcrAncKokvaWVmepHxOCnbYrCbPowSWhLaiycp/IrJYb3SAlRV2RDvQeMOQHJwi4WyWkBiDnkp9SSFMCZct+lkJmxzFUh6WGPpRAEyp4VJFNNyo/t3owfsKk/aRFC/L7M5t9b/uiXrzVjWX/j4/T03/mL0K1HDAIpCVZ59ApQCaIN/B0ARnUqVwdONRb5PznKSaYVMouCmEvrJVgCH0EQ5wW7H/MMqijl9cDkkyo/h2WAPCrEJqJ+r+Dm2ctpM6ORPVehTWQMcg2DyEmufu2hdorMw16euvxmuVw8D9jdkvtT6hJKYm0SgD0PUNlPKm2uYmjz7KU9MQCQTMY1d1kW1iYIJxC7CLWT076pXsCuYx6Qko3yTZoSYQEOyPWO8j960jj4LTPYus9l854siRwpxwtthD6SMdN7geEx6yOKN7VUZNgN5bduwYqEUiMBAPaM0sMSSoTMwISagKx0CZod5XtJkR2Jmt5IvReT77G+5oW1KwIAswOGiywbXfL/WOV0yCzPLJ7E4Zw3l8pS1FLWbXY50TeXnpeuw1CRYapvCexCmzB7KXF8FjF7JZnGesNjcjNed7tKWHwB9E9OUfrF8wXk2elEAFjfYUpA9R0m72qSp/L08YwgbmJmRLlemX3J3rDixWQvJM8juz0F3BJMmFWndFxzBMY1k3kBrksfuV67zDP9IqfNWmD3DUxVKaEmU1DeEyoDRjIVlGdW95SdRkMGqywlkda3BIClb7H4ztyC50UESgXNlufPzYHZSw6afcfjVQOmZGeVWRnf5tTmzPQU5sctTqCK28sl2gKQNhGwL9m/2V6RHfH5nCSJqfIj1AQyhR0ze6aiApiYi3Lu1JDBpKNEskhQ7VJMjG3xaZo9gYU5Zo+1O6XOmn2amKXhkThNWvSUdxYWRyROBhUmqd4m2JmAmxPEyXx9QsW/P0waLmBS92nyS1P+mMHeARn4pskjq2zCuJFTl2V9T58nQ9ByJck9gVKs8kRNT9Z3YqYKy6i4b9InDJscftYK1FsCPBlOzy++Ppk9a3ZBCSJSBtb7CDuX0/WQnuBVjfzZ9Hw9fYdMtrULOYEx3WdwN2appKAP0s7EBz5QZdP0mgKojhecwEkSqHdp8h6OS4Fqfzp3SRLQx8xQ6TFN8lD6NAkcY+5FLb5ONUTYpYLr8r0ST4BTpHwtQW8jJ88i643OFZRNU0JuCZYrjHW1DdOxKxvhZpz9FCFN+xdMXucY6ZF9AAjNMUL17IssgDCqXPfRR4SG3YolzbUk4gL5PrOs6yhMXtKAayXquwDpItxSw+R02sJwAYCyTK8tY4eSvF0+J2UBuhlEsi+U96MaItQY6XkMCebg4Wb69/wvPQOMSsLrlNSaAUrIKbOFnTM5DIu1H5R0lnMZajmFK/mFgTp6gihgSgpWY0RoFfSOIUciJsRasWeyVkyX3VG2Gio5BVSFhudBjkwNDq2eAqBilX2AOQQoVRLBSKiBQFOOAVFLqMEjtAaqdwiNnhJzY61zrUcZTAmo3YDYVQRugkAvtprs4bwGYoI6MMSndFQWthIgQynLa0vlRk5FFb2DcJSyApgAcPFIIiQC5JSmMUypBBEpMWW1rk7VIZlZFNaxEqT4KfPP0IoATkn+XoDpw75JILOZZEmnBNnCWmbQ9hC8TqCw/P4Veevkr4yRgDFv9/eAywdLSXOdlvRgfWUbBZCmiFTA7cMlJdaMlDCiHwssHxzHj/vbw9W5nxDy8/9i+XlgLJ/90ib9C3/lz/7U1/sf/qn/+o/82ICfIWMphHgB4C8DeAJCsF9PKf2aEOIMwF8F8BmAHwD4Z1JKt4I5w78G4M8DOAL4Cyml3/x9tyETVOvxJ56/wxfXZ5AyYRwMvADqmYUdNGQdcbY6YHdsML7rINYWQiYYE9DWFreXC3TrHsebDu2mR3/VQXYen37zHb74nWdImoE+cZQQViI1EXJHb6IwEavNAXdvlhCdR+oVzNJi1o3YblvEJLBeHXH/cgW1tLBjQ9ngoFC9OGDsDVIQCEmgno8YbxsOAC880n0FBMCsRjhTQVYBzhjARIj3huFAg0TqAoKXEE5ABIEwixCthxsU1FYjLCknjBrA0iHuDPscj4oMUZ0QBeh523jIrYY7i8DcIR01hBETqDRPj0jfm8GuI1KdAyPmEWnh2XVZAfW1xPCMzK59FJHuFCVJMsvmMlMMqRA6ykFSlSjjfDQiHQy8JHvq24RkElwXoO81Qs1ORySF2CTYTUTYeCCZLDel/yiphLBICF5kjxnBitsEzL+vMZ4l+vy8hF1HyFHAdxH6IBGrCLc8DRT6Z2kC6gjA/rMAOQoMT+iL811C6BjCM24Y0hQrMBBHAt0bMQGf4SKiuhdTLYyfpxy+wsAgNYocNMR1MoAIiCsPt60gR2B4lGWBq4TqJfsxq0PEIXsPfe7UZOCLwPE5Jxz0nn6oEnhTBpwc4HNyoEgNQ3sKmFJ9/lKWBI5mKzCuEppLgm/hWT8STYKfJYznPG/DYw7KywQHfYpkFRFP7E5J8g0Nj59sBuW5scL0Je47BveM52kKiKqvMpMRCVTHs1PoUpHM+hkycwAcPmIoUZFBhoYSzGgEhCCocsuT5DCpHJqU5bR+XiSyAuoaGM6y9C5gAlz6eJLuAZRUqp49fmRvCfSqXZx6LQ/PMiu9z6BkJgjEZgxySiKD9X3C8Sk9onaJLNc6ATuzB4Zzjn9cR6Ym1NnnaIDYApACwxkBNsEZj6OwlSVYK9RkXt08S1azbLK/IKCQY7mGBEtuTuABmaWrXsBXHLz6NofRpCwtzUWhvqPPklVGp/sE+fNiXHNyQXqgu6QHsUgk3Vzg+FjkCQ6RmTqye6ERk+yVky/055bXFfYuGvqz1EA2LUlM/6eYJbYJAMTUxxkqbqu9TjkVFlNXZFI8L9O6unz/58mdcn5DJfI5kXAzATc7TUgpl4N1Ur4vAxAWIvdT8v3hcjCQSDlgaeBxl/5HNSaYI3I3JPLkY8KwJjssA8NykC9FFMC4JBB0Cwlfc/2mTxjWepIPjyuB5g4IOtfvnEvUkZ2VUzhVoyapc6zE5MENFSeHCos9bKj0ODyTqO/IMnbXmY1JyHK9/B5uJEwG7wUM+0Zj9iYnQGdQW+Slfac+kEAWaabrKKEsANfNqMIItZiCiUIrEWvu83BuYI4RCSdAl44EironQ+ky4xoVmc3ivQxzso9Fjmv2AW6uGKzVSlT3Ab7VfB+0egq5KRMiQAaGDQNvhE8ZAMocrKTJ5rmE8awmIF8ZmD0H9dFIxFbkJGc5MZqhUYCkhJQSbwHlIiegz6pcbcZQnFgr+E5BDRFuWeVANEHAPzNwcyYo+xmHkaHhJIc+ZFBcrqXAJCWNuRoGIRE0KgHX6Qm8x4pVHyKyN/JUOcLakNBqCJPDkkZWkqQCjpSYKkSSlgS0QAa3Yuq85MkVrD1ZNWQ6lUDo2il5HTiFyMTWIBoFc30gy6kJOGNn8r65k1suRsSmgsxy1om1qyt2PgKngB03ItUackhIlSLAVBlYlsCdDCoB0CspJR9r61OwUK4+gZKZbS1a5wJWy6yHOgFNpcggpnTyK8aE9IALfAgARdkfACngBC5/XD1Ikbvm8/FhgA/Z3YfnawKZPw5U/jFMg/3/w/IzYyyFEM8APEsp/aYQYgHg/wDwTwH4CwBuUkp/SQjxbwHYpJR+VQjx5wH8RRBY/mkAv5ZS+tO/3zbqTz9Oz/+Nfx1Jpcn7leoI4STMrYR96qCvDUJL039SiT6ySKmp3mcfUx54lxTI0CTEvB6o/MayBG71TS5Tn9ETFOoEP49Q/ak3UVkBNzsV3qtBwC8j2pcKw0WkPA0MC3FLDozLl19h2aTjYKKUs9O/lVC6uPwsIckEfZSYkg/zl2t1R4ZM9wKhSoiZqXvorQoNQZpwAnKkZM5s8+sO/DvAwRcy8GSKo8iJiwQdvgSjPInQx1xJMINlAAAgAElEQVR4//jE4DVXZD18R+masgBSPhYJqCMBxORLUkXuRQAR2pTDXABzz3NvdsDxORnLUKfpfHIGGVPKpQgEs0mRNRTh5H9LGmguWUSvjxz8FUZu8jqFzMiNyMck0FwB+xf5HLXcx1gDiEBzneWmd+y1jCVkRvF86V5MDE8JJSqdpX7GQalbJbRvxeT1OUlbMSW8lgGqGinZNftcGp/TXctgJknkWgSCnuqe+8frmrfb8ToWFjJUmf24Iwhw3SmVlaEemQXOx1H8V3Z12odQZ6lqHgAX9s3N8/E6yjqrLe+P3TeA+pYsrhq4nf5xwuwlQcHkkVOAPpAxmVI790D/lOe5uU44PD8lbkadWdGB/aElyATIrFwlJp+e6nnNdH9ikpmImrs6G953vj356aTjwI9y7TRdn1hhYjFEBksysNMuab6OiZsCwwWw+i5ZHbvOiZYRU0eqz8CuymyUOSbsP2IFTkkxjZkRBDIzp3kPlkTQkvBa2MLQ5GCWzHSW4y0D9MljeE/AqA+8vvqY0NyRSQtNBtWeAKgkuoYaU9cjshxTZxmnXfL+l54TTOOa8lj6sU4MZmHQS2+u2RNwkakXUy9oYV0BsG7mTE7slDnwWje37AJtbym7LL5Plf1e1T5i+0JP3Z96JNtYWMdql9mwzJ6pMX8ecX5hqvUpyabFS+e6zP72ZNd8Laf3XPFrNrcB/blmUuwsV0QZ3mvVNk3puWoki1fv4nTfmAN7E8elnDyCypKFLBVU7TW9efWWgTX1LsDXkvcmTmmyyjKgxc3VBMZKiqsIWQKdmT2RyG7253rq8SQzdmILhU84PjaotwHSJgxnBK0AGV4I5LAYAjSzdTg+q7NUN6I/06gOcQq6Ka9lAmrpcqVh2s0UGcKYptTW+tZj3Gje6/leLMcsEuBrwX0bI9xC5xTR02e+CAm+lWivLMFfyqynkajuRuw/6Rho0wiYfZzk78VXq8ZTeioZvuzxc/QChkay6sRF2JWZUlzN1k3dlrrPzF2l2HN5Y2FXZurq1D3rfyAIuqa+y8wSuqUhEM2MZXVPxlGOAW5hUN1buCUBjt6TLZQ2QPqIaFROZWYVlkgJ6uAQOkOAJshYFiZS5H7PWCuY+xHRKDKeY5g8iKUjU+a+SX3dw5+30Pcj3LqBGjyiYRVLAZXq4IBcE5OU4O+SbGJYNJTIPgA2UxdlTnlNRpLtM4osqlETEy9dQJHPFo8jnEfqagLQ3rEfM6RT8mtJdnUM9BGDO8ldgVNgTgnEAQiqtDoxlgU8ZVA3sY7luWUbxRuZEhnKzGQmo9lVWUBlSZQt6ylMZ2EyC+gs6y/ny/sPf//qktIkdZ2Wktgq5IesZWYqIViL8tVwnmnJILJ0Vf5E1vIPWlL8Q4X3/Lwwlv/8X/knfurr/Y/+1F//A49NCPEDADtw9sT/LM7Fz4yxTCm9AfAm/7wTQnwHwEcA/kkAfyY/7T8H8D8B+NX8+F9OvNv+phBiLYR4ltfz4xeVIJ4MiIPG2cUWx6HGNy+u8Op+hf2mwdPNDuZFxMvffQxsRiBIVK2D1gFCAIfLDmY1IkUJ21aASnj+4hoxCby/XiLdV1i/uMPt1QJiFRB6jf5JQNproIqoP+8x7mvo2iMGhXBvkJ45PLm4w5dfnqNZjRAiob/sYNYjxr5FemT5vDrCLwVQRahrg9hGJBPhJSAbD3cwQBUBS31VWAPqTiPMybr5TwZIleB6DXFU2Hx2i9sfbJDaAL+UlAFfGYRzB4yKd1AnkGYBdg1q/fcasY6ICw9cG7gFEB5b4B2/cNLHA+JVDqipItnMJw7mneEXqADcEwfVV4hrh+gq7D4PSFWEPKqJdXHrAH2Q8E8swkEjmQh9p+FXARUU3ILhKWEVACfQvWRYje9YYh+6CL1X9Fk+9XBzmQumCeqLJFj3An4OyE8P8K+6abBQBnIAB7Bxw2AbNUrEGhjmZBwLcA+5msXPE+yKwJMy1QgkiVgn2PoEDuw6wtxL2CUwXEQcPomYf6ExdEwq1Vt62Pp1gN5JtJdkjfSRKaLVllLicB5RXyrYNQGfPgr0K4LYaFL2UPJY7YagNn3riOF1C72nLLi65zrVSJA0nhHcjGf8UispoH6eJm9M1GkKZFGWKao2cTvjeUS6ZW2K7Qg4oibjK62AOZAVcXPkkBaB8SKi2slcL4ApKdXsBcQAHF7EEyBCnvzIUmbf8fECzqJmIuvwiNeA3qvMulrKNFVPxre9JKsqIlDf8FgJCCi3Fv7EXlZbglA3471hF1wHIJBmyGEeHAyWChR9EJM/jUwdj7sAAN+IqfrCd6f7rbnKjOeC8s0CVkslh8uSR7sCqjsC2vGcbGOZYADohxvOCCQKE8l1cVvmgMkH2D8me+Vnp/oTZHA5Zp/kcMZ7xOwJoopfldJbkaXRZIrLxMOwOVW0mH1mLWdkbOr7CLuiXzU0PD/NNf2SHKwDZpfDYRTX2T8WqG8ySyt4zQ/PE85/K6c95kms41P6PXlPiEnGF1qB9jJOgSx6DxyeUZYbKwGXr8PuY6ZgMlCE8tvdC4nZazH5IkXg8QG8PknynExVJQoTS+k6AltOvfPeNEeyryJiqk8heMrv2cUpJZX3h+L6t0BoBSwy8Gnpw4yG59xnUORaOUlR7UJN4FcPKU8IiZMc9Jglt2cSvslJyUFOzKN0rIxxuVLDLqgs8ZnFq3dk5EIt0Z+RSWuvElJiEIzr8uSNAnS5D2tOUErke80yjVRZ3recHBFZIh7gZgYhScSqypUe2Tveko3Vw6kKhmA6wXWUAUdN9tJ1pdKB29QDMJzpfI4otR1XWbosBKI8XcekyBZLn4NbckUNpdknpUY0EuLA7yM1EojGKjNyPmJ8ZMgMdmKSBicl0Z9rVPsIfYjwc/o4VZ5AtivNvtSGbKJv+FkaWqaylr5fJqk2BKBjZH+rZuiNuXdwKwO0ZGg1CijOuQyVhJ+RORXWwzcNTAG8bQ7ny8xiaPK9NQbAZMbYBYS1QX05wM+rzK5y+2qkVHVYV2jeHxHmFWtKvKFsVABuVUEN4eQxDYnsZAKUUVNoDvuhA8LcQN86xM6QGcwsY+nlLROyCpjYuqglpKWctlSAaB/5WqP4WEyIhkxtwTJFdhs69o2KYQCUROgMk2CFQKw0pGd2Z9ISdl2juhtZ/aMlRG8nhlT4DGALI6pkBrcKcnRkLHPvptz1SCVxVQjAgz2kvT29Np1AYTIaqAzEoc9AWQPFyiWzvAOAsJndFIK9q0o+8H7y/k9tDXEcTqmz+gEEeAg0U4KAJxCUkp2aoshzee6FMeydlAIQGuzopAyZhyYofy1LZip/j1S2gNeSHPv3WMr/L5Y/m1K6+lmtXP7BT/nDL0KIzwD8QwD+NwBPHoDFt6BUFiDo/PLBy17mx766rn9JCPEbQojfwGGP6CREr7Dbt/jmxRWetVuczY4IVuH99RJfvjxH96WCeF8jjRJu1DhezjB8sYBZjQhvOwQvoZcW8AKXtwtYr6B0QJIJQiTU85FflAcFcV1BWglhIoZjhXTQ8NctZrMBcuFQNw7v/+Yz1MsRw77CcKyAKsLd15SA3lZQB0k2FIDYsY5BrC1gEpovDWWwOkIahvdAAvVqQNg4qKXD/pse+ocNHq33kHUAJLD7rXMsv6sgBoX6vGcCrMjrrwNE9prKqsgkgCQTzGYAdgzr8c8s0qDY57cICDsDbCzWv62BkJnNe41qK6C/uYfvEqqZpd/zoOEXgTP5iRJNt4lorgSwdPCzCHlvyHSNJ6a4pI8iCcjWMwXWAWYzIs09QheZZnrG5FThBGavJNbfvgEApCpywD/3iJoSUveu5eCuThCPRwao1PQs1jcC5k4SyFZkZJMhUEKWe4aW6Zl2E9BcSoyPApJOUyJn7AKqWwmzfeBbHfnauPJkrxUQPx6gDhLu3KN7TZbcPbME25+OBDISmEJuDhLDU4/uDUGl2ZIRHJ6EqTMz6sJkBQzPApr/fYbmveQ123gcv20BQTBzfE5JsgwAZEL3nscwXgREQ6YTANxZgJ9FAhMF+E8H+C6h/9hn8JwZ6EPut3zmCHabzM7MGcJkz8Lk66UEi/5BASCZhPE8YP+LlgmuCz63e0tGHZnBdQte//higJvT87r/BFNyql1H2FVmU5cR/RPWILh5wv03Qb/sTuD4jIxGrBPGDcHZ9ltcz/EjdiKWcznpcj4/4Pipn9h6uyCrhgSILI8dz8lsisiqBLtKObBJTDLQWOHk124S7JLbcMuE3Wc8X4UNArieUIuJqTw+pmIgVgRvdh3RP2aIDhLXYzcEvG4B9J+6LOMkW1nA5XCRYHaUKA/nCcM5ZbfuH97B5jCdEvKz/WWH4UlAtUtwS4FxTaBsV3FiHodzAd8JHD4S+X3C80OvIoGFCOkDsH14RqarJMUen5W6FmD3eURzlZniIaF/ynvG7FgDsvssws8x1Xq4ucBwTlBrVwL9EwLUccXB+HhWjjvi8FxmWS+Z4NCclAG7T3MCaZar9k850TGcE2j4hmDl7lcs7FJgOBfoL+gdPTznz7Hm/gBZ9mnIyKYs9Rw3wP4Fr4nrRGZBi/yawGX/QsIuxRSKVOcQpHHDyQK75PERFGY2uD4xp6Hic8e1yJ5CMuPjisc7LiX6i5MUl5NIrHQ5fAQcHmeLhOBxHx/LPGGRMKwUDo+zR00TTNtF9mPuI9xCYPdCwi4E7EJiXDFMJxgBO1cYNgL33zAwPb2rJQ3VdcDhucD20wp99gofzxV2nwgEw+sSK3ZyDmuuc1wT/A5rhWCA/XMJ30r052qakIpV9izPBPYfKRweK0hXJkwoIR4Xgt7THVNIk+Z+hYrHVapVkhJZbps7KG1Cf2GQBHD799XYP1cYFxLHx6zOCBUlsXYu0J9LjEuF+nJAvQ3YPyPbNqWr+oTDU0pf3VzDNwLDRjEQbGFw+23Nc6AFfCcxnjfYfqrhW06m9o8U7FwiVBKHj5rJmwpB6W6pSnOz09Du8EQjdBVTXyvF+pWdxfGx5mO1YkWKj3CLCqGWPDetRhICdlPDd5TF2oXMrDf3TY0Rw9OOz5srBEOm0DeKgUZKQPqYvZ1MgLULiTAz8DOFWGvEWiLMK4wbjbCsKbvNnZVubmCXiudfCxw+pnR1PGOfJAQQWoPQKNiVphwXZHpjJeGWFWKtEFoNuzSQjq91SwPRO0AKBuUoidjxuRACft3AnlUIjYZf1UhSoLoeYM8axM5gPKvhHy0mNtSvGoSZQcq+09iaKQnWr1pgtJOUNXUNYldNQTupMTwWAHHWIKxaAr+YkBpDxjMzmKkyBIizBmKwcE+WSF0N/5itCP7JCu7JMvsVJWLXnBjVtoboxxPgzKAyni0Qz5dIqzniao64mSOuFwSoUk6yVtHUDP4py1d7Lb/CbqYQTs954McUSn7wDyGcQGUo6bK/91/K60x/DIBngkBMP/1/Py/Lzzy8RwgxB/A/A/gPUkp/Qwhxl1JaP/j7bUppI4T47wD8pZTS/5If/x8A/GpK6Td+0rrrzz9Kz/69fxUpSGCUZBgGAUQGqjRXEsO3BiSroLZkvBApTdU5gEbaDBYuLPSrmoPEJk3S1OqOqYJumU6M1tpDXxv6z0SCm58qBKQTsJsAfZTQh+zbmlMGaZdklCCA4RG3bXYMotFHkQN0MEkTS3x/SUxNhumkdsNAGyRuE+Dg351Rbms3KdcFBNQ3apLJ+VlC90rg+DxLNDMoQiIj45YR7VvFAf6c+1pCcyav2Hli3YEVCC07D/2MyZluzplzs+dg0835PPeLR9R/q2NAxwNJaNmn+oagSTrOTtsNE2VDw9frHnmWt+w3B0lka3it6hsOfqZ6hfweK6xlrLJ0N+9TSQc0W7J50hcfE2V4UxhQOvnY2H8Xsfi+hF1l6WjDwX+RdoY635wxB5fk8JoiXbXLk/+v1BjEiuf6Yf1ACakpNRPTsWSptj4KjGcJix+WDkB8UJfhZic5ZTTcx0lCmysICkOle0pPyYyenqss5bl2hRzYgCkVNFYnX2Fo+LzC1KkBGB7zupbaFsTCxjDAp8gwXcfEVrfEBLCTYPjM7jN6VIdzgtpJfqjyNcoeyJKWWVJw63syYNJmdkJz/8YzYPaanr/xDKhvcjjOIUs+jynfZ+KBZJcgXVkCoGqbAZzi8VR3/EwYzshEhYb3cHNTKhXwQXKoXfBYkuJ6Zm+47VBRThsNck0AgaW0wJBDdZLiMZs9GddS2aAHrt8uc5psCa5xaZKOJgHYdYny5zXxLab6geouob6nfNQuKBvuHwnMX0WylJMMO8u0m8JkpimgZzjn+dE9PwfYJSrQ3EaMKwmzPxXZRwOmwq4pzdRDSfXk/ROa03uvvxD58zWH2szFJA3WY5Fq8ryW9x/l3AQWJWiqvBeau4TjYzlJfNurOIXt9I8pqS7yZTvnZ5myDPmp7+jRs/MiBT71dKpShRNTlvyTYfNtlpPn4CDfUtqcBGXaw5lE957+vCJFPj7mtoqM0rf5c6io0RKPu9rFU9BQBOysBN9gApQlrCgpnmeVE0yHlUR1SBgXlOHSf8ntFSkvP1cSmtsAO1eTDLi5DYjVCZjV9wHDhsyZsuxRHFdk3fRQUmHpP0z6FP7jOrLZpqd3skh6+ZnJVNxxpeh1LJUQnnLGIgVn9QSm75RQS+ieEsdoZGbP01Rj4WfZg5nHPsEINDcM6vFdDsjL9Si+OYXbVbuYZd8RvpPQx8h928dpglANOZwnpUnimqRgmuoQ4JZmklULzx7JqAXrMqSY/IAxB93YtUb7zrLf0VIiWySVvlNk8kIC5MlPWV8PU58jIiBHj/G8YXWHT9BHhv3oPeWZhYnzHcEbA3SYbCvdqeYjCaC6J6tmV9UpFTYD5+p2zOebIT6h1dBHRxYtpUmmK2JiVcfoMT5iv6WfG+i9g5+TnVS9m54jAqWeSUuIMSB2Bvr2SHAWElKtII92quhIQnzwGDJjKncDUl3kqmmqBklSIrYasvcQIZzYR+u5zixtTTX7IBEoT43LFnLbnwakKSFVBvI4IHYNJawPxtepMafgoRygww9qBTGMBFbOn/yVhUEsKalS8u9F/gpwPT8uZbVIcEP8ELSVpUhmhUD6St3IJHOdPKISojJIw3B6Tkwn1lMKJOtOEtcCKEsKbA7uEUp9yGB+dflxIUQ/Yfm6h/c8/aWz9M/9l3/up77e//gf/Gs/BPCQifz1lNKvP3yOEOILALfgJ+Z/8tW//zSWn2ndiBDCAPjrAP6LlNLfyA+/KxLX7MN8nx9/BeDFg5d/nB/7iYvsJbq/3bAoe88v1jJ4Gc8k6puE9n2NUFPSVN+eQkuYKinRXmU50BfNg/Q/SrvUyEFE+fLiDL5A/bdM7khLp0Gu5helbxJmr2UOAMnekAQEk9BccpArfML8RyURNmH93eJ54/ZFiDn2O6f8CUx+qSQS6nsOisyxSKCA/4e9N4mVLkvQg74z3Ski3viPmVmZWZXdlGi6BbjUXhnLEhIyg4SQkJHYWEjsQGLBBrFkxQpYWGJhvKBlWsACC8QCqzESbWQ33eCmTXdmVWVVVmb+85tjvMOZWHznnPv+6qpy266iKlsO6dd7/4uIO8eN851vMgdG/EcRcfR58pw0/LbLdSUM4Ihor3NUf5xN8xpcUeQMM1MU0/ES9M5MS8nwE8kS5mAkC7YfSixfeUxLWQrHvRFYvIjYvSfw+H+o4askfzQC3kToMaLaBfRnCnrgc8rSdzOcKDS3vLlJxy8V17Aaor7j9t1PRwwqHzsOBLorh2nJZEc1RdiWA6ppmdMUObCaVkxO7C5Q/FbekMkYzmUZcAqPMrBRg8TqpQNeZmkaB/D+OVmeeh0xnDCdUrpYOsO84QDs5Pss7hY+lhANaelbyp1w6w80qxmSzy/72HLfWR5Y+YpeKxF5rgvYbgRWzxLgOZZwnUB34XH7TymcfeIotZtmX1GUAovXvOY5KCY70N54AqBrBlSMRwJHXzJEIvfPTUcSQXNgmUMs1BjR36jig6o2IflmOGiLEqjXHuOxgl1ItNe+gOco2b0GAGavUO08Fm94/vPgFuD5KGmNgdKw8Uhi8drCLhW6i1iWN60k2kuHYa1Qr7lse50qYJJXqr0GqjsH3yq4Gwmz57q6C3rRRGTFjXRMWjS7JI0bYvJKaQzHEt2lT+yu5zlLfXrBCL7WzX4vNXBbpiMFXwl0l66EatDnKKB3Hsc/iOgfVUkKJ7F4McItNLrLDKo5KJVTKBUEoZ6BQT6m4nNKHus7SvDIZs+JmSIwzCcPXNtrpGoHBdV7ytJayWqE1C/na/oaXSuxeEP/KCLSAJWDUdcpNDcWuvfJZ0omTI0e1ValMBR+UOxSo9pY2KUux6e7THK21FlXtxJm65PfjoOR8USjvrEJPDEYRY0sWZc2lGTN7Ds73nkO/FsJs3MQU4BbaCxe876rBoeoJMNLRt4vVl8QNEgXsXgVGEgSCWSQPLcIHLDqHVGmW+g0QOf+ihCREybtgvtYrVGknPW1BWJEdyHL9evr2X+npgC7nEvg6bUL8C2rHeoqySIPFm5hCGZW/FmSbS39V2ajoQ8OnZE87rf0zdmVRnOd5G4hQg703pmNLrJGlQBDSAmkcvCobgC3MohSwGwmqF5DDT6FS0VEI8lcGb5P7yzGsxpRCTQXPYFgY6D2E4NdJJljsxEEGl1VkkJzZ6A6WAKEPKgVgFtWMJvx7QF3ShCVk0d9ReAQjCRwcQFuVUPvLZ9Lg1u3rNC+nhB0Cr9J8lJz06MGvwflVMPcDWndIgFKk7x+AUalaoi0DDXOLE4wCuow8fNgPUJXQW0ZYx0qDREjqjv6/dRQQa4PiF1NwGMUzK2Y/XXpmoqVhpgczIEyTTFaRKXQ+AAxsnpDDhOE9azWcB61JZgyPhIATo4gtdKQw4QqyRtFTlK1Ds0hd5C5ORnVOojKQN/xXOr1vfeFQJCTtlfYGuIwottPwGRRHQxgHap98h56ynfF6GZgBIA1GjXgPOR+hBgSExgCpHX0IEoJ7OYajuJLTB2LIr9upKQ2VoasJUBGD0nE4gOEFCjJscM4J7hqBek9a0Ly/mkNrLfAooO8TfHnGRBqBbHd8/dU3fGW11BKQHoCNH0vVEfIMuEgVPIw9kjAUc9g7P7PGCC0nrseM8C7zyBmgBcSAMxgMv9NCp6vGBB9QDwcGPYDzBMgu4lgsU/1LXlfE+jNKbDl9f5Hg8HMQAopEO0/gOi6v53/5PGjHld/AtD852KML4QQjwD8lhDi2zHG3/5pbsTPMhVWAPhrAD6JMf5n9576nwD8ZQD/afr5P977+78vhPhvwfCe9U/0VwIIbUD35y9RKY+Xr0/x3tMbnDQ97oYWlVc4TAbb2w6IArLycMbDTQpKB8QoIFXAFsC0q6BuDL72z73EF99+UgZ2saXMVOgAqQP81qA6GbFZ15CdQ1U7jPsK2KU0k5WF1BG+V3j8zh3evDmGOGhg4RAPCu2jA4ZXC0QTARmhlhZhUsDaIFYecpCIpxNiBI5OD9g+O2LRPbh4MUrg2EK9qinztAL+2AEmAKOCSl1fvgtMsDUeovPAVhcZaVh6CBOAdQLHCw94yjRlz/qQ0BIk6DsFAST2UyCK5M87clB7CX/qIHYasbHYva/hHljIrcbml4BoPNB6dEcDXnyjS1JaiaiTj/A0IqwCxJ7JtmIgeBEO0NuI3YcpiXGS9BsOAtNHPdTzBm7FRNbhiUPzmmmx9oGDWiuoETg81ejfcYAEzA1vhrnKQY0SLhXPhyrNYh9SCNFGzWX3e2D3fkqYXXpUVzoluEbsPpAMQxoZ0iRCGnQYHv/qRmD7Icrf7SqgfS0pldUSIcmA5TQHSPlWQPXsr3RdxHhGnxVTSkUK8hGwx2kEGhIg3WqMD+gRHR6SKZcjv7DqO2D7DbK/4xkTbF/8hTTAHiSaS6aNum4OcjHbJN9ZRKydghroPYwqQvXA4YnEdAY0aeBrj1iTI52GXRLMisCJDOkTMx05+KzuBFNWI6AmVu+EChguNYZzMr52SWo4V8yIoEqdz8ZLuEWEryOaK538hxHNdZL+nUVMx+w8nVZkQsdTrn73rqFMVdHLFAxSXYmknNUJbtMiVc9Uc32EPnBfgyLz5FpABEXGz3D9wzlZ5+2HigEggb2euax+PE8M1UGUMKOgeY42HwWYjcDuPfatCi9KBY3eM1jm8Dj5oCKw/VrLazFNDOie+5IZaF9TgZCreaIC1KgKSx8UPXftG05YjGdkAzObnYOexrO0nQYwOw3hGXaleoX2ihNtOYAqajJ39ToxeCm0KCpgOgGqOwU1aNij1A+6YhhSTpR1rUF7yd+rjcJ4ygk+OQKQPJ8A2W67AtSgqRbYILG8gDmvYJciBUfxNaHipN94wmOd/anZUyldhJw0U1pjTOcOGM9q6D2BlV1xm6WjHJne0TlcR/jki0wsF3sJ+dWaK1ZCBdS3mjLoFF40nYgyESodJ5+272k0NwmQNylh2gF4mvYleURZS6ILs83JUlGSaZevNfaPZWHMq43C4bEsIUVBIXk4KwbGGSC+pxle5SLsQpfzp4Z0HJZzcFK9rmBT2m9WRmTW8PBEoL3U5bhUu5h8kUAUDdclAD1UPDenAs0DBqW4TqBeNyUEh7JQQISG9xZfFxaaFSsMZYoKWLxxGI8VhhOJxYUmG5rYY1bHxNJ9yQlO1ssEQ+lrc+spu3VAfedxeKihrJnDygJVAYs3GtnGYRcSeFyxvmQM7PZMQDoHDYmQql2auaJFuIjxVEG6tnS7MmiohZq4TXmSjuy0hHzSFsbWdRLeMDzIN7JMZAUtUvBOTAyqp0x0JdHcOE6kbBsyiynROQPioMVbvZsAIEIHhgsKqMFDWU6o+FqmCQwywKr3KfQugaUkZQ2VRHVnObkycltEmgg0W6bS5VoWAPPkR5LR+kZB711Kl1bpu24zNFYAACAASURBVMsDx21J0s29mwip8mSgdGc6qVCt2Z2ZU2JFiIU95cRYOl8J3MimQmjorYyKybhi4sSi7AlUQ63LcrDqUkosICfPoJ8QEDsm/MdKkym9F+wTjSrHVAycSIoAmUjnEYyGCAGiHxG1KnUjUQhASf491Y7EtiYAzOE9qcYkhkCmd7KITVUmXkpVCUD203ugrmZ29H6PZalOuddfmUF0jIBzEJr+zwxCM8sZfZiTX326qUr9x9nVkhobkyz2JwDHGAAoAtH4E5jPr8AjRsD/nKSrMcYX6eeFEOJvAPizAH6qwPJnmQr75wD8bQD/L5BLA/Afgz7L/x7A+wC+AOtGbhIQ/SsA/iJYN/Lv/CQZLADUH74Xn/xH/wElsKdTAXRXHz8AAHoaqwB1o8uXXlh41nCcMjE2mDm5NXurRACijtAPe9hDBX1p4LsAOcgUOZ9mHLsAvVaswAAAQZ9cliy6lYccJSWYK9ZZ5AqGLMt1XSwppEAKjenSAMcLRJ37JoFokiTnjnLYYDhwFAGwpwF6LcvAPqerZmmYmpCS25JXUGPuONPcJuGB6TjQO1inG+3E5NsoUcJGqjU9VllaqneUZUpLSep4nro4LQfi9IWlk5YG2rnXUY6pk3JN0KD3grUJZ6zu4IAplu3Lki+3SDLZIe1Xkv5TzpYSY1MXZR5835fhkd1Og/EhM7YosrKcrCpyEnedQO+B0tAcdJM7InONhV2ya3JaYZbgJQlbDo4ByKy7ThTp7XSSWNMN1zOdoHS3qZG/5xRW6djZV625LVkGmztOg07L2vJ3s+eA2Owoxc2DQHqu5vVmWaSv5/32TfpOsCipr65DkQarniy4XeYApXQMrmLyTM5JoyyUF6mzkMDC7FPgiQdZn4nvp0+Ug3qzjcjBLtxHetHUCKienkCeG/rBctVHTpPVPYHZ8jmPgxpZyD6tOAjL/Y45FTYnpkbFgT+BzyxvrTaxfH7tEfe7vYwpjj9dEx0H+tU6FhCY1Qf5OnUNgXZzxYF3/5BKhKhRPGm+St2HqXdTj5Rk5mOaX5MTLbOsNydpmh23OWjui/QEBlky62sG3biGvkY9RMpsE5t/eCRRrVMy9cBrL6d1Aii+QeESmIxJ0hhRUmxzIuZ4wuMrPKWzoQIWbxIwkDMwcZ1AcxPK+a7ShFkGW/lemwOgpEUJcimBOUMsFSZZ4lnYYKDUVughKR8SKJQ2Fk9nMLOEMq8vdzhC3E8r5bnJVSGZpdZDTMwuj0UGNVGm5UZKV6s9lRGUEHMDq20oAUIicrsy811tfVKjJE+iyYBgTlv1tSiftyxZDOkzb7uUnnpH1YAekiJlRTbF7H3Z/1zXwXAZHiM1UAKqUx9pBlTKxgJo7FKiubL0z9UyKXGokgCA+s5iPDGJuY6wy5n9tyuVElQJoPIxFI51IDIdd2mZZBtTv2A+H2ogQ11SXu/VjvD8yrlTslWljzX/3+wdXKfSfWFmboMmY+7auc6kWlsMDyqoIZRzpUbWpvgkJQXIdOZ15MkHvXdMaM1s9OhhO9aI6N7DtQRVuR8yVgQXriWLLuKsOOLFEIvsk6E2oSgKcupqZo71ZoRfVghKQu8mhFZzfw8TQpJ8Ck8QKZJ8NdQ8Jr6WqG4HhMYUkEbgA6ieTHZUZCpFYkP9oirAjtJgyxTYwZFJHqkQEDbJitNYgRPAGsInoJQYsagk5GDJyvoEhjN4mhwQgLCsSkosYiwdmFlJVrp4XaDc1QfErgZCSpY1ClGR4S3ryevIwC8DOwBvdWPmR+6NzMdJqwLuohT35KaiAEiReyardHyd/9Ey2PsgEGDSaw7jyb8nlrYwnFoh9gMBYQKAf6zmoyiBEnhLry3hPfcTWWOYWc/EgpJp/REA8t7jLdxxfx/+BIxkDHHetn+Exy+CFPbxr5zFf/s3/6Wf+nL/i3/+v/uJ+yaEWACQKVB1AeC3APwnMcb/5ae5HT/LVNj/A4D4MU//iz/i9RHAv/cPsw6hIp58/RpvLo7hR4VqNeHyeoX4cEIcidS64x79fkmQdjYBkyLLl9iU0AWYGwV7xgtVOLJ3oQqw+wrwAn4ZyOTJgDgyeERtFDsmQw0R5voMd+RZTRIEIFlj4rvI1M5Tj/pCYTqh9NMvA1nCKkLtGARjlwkQA4i1h7lMzGLyzIRVQOgl/JKgNjNNIvk17SoF0UQgnAQIL1Bdyzk1VaIwJ4IVkHBVJFgWgHQC4yPuQ3VHIFwNItWb8H3jgwQqU4UIFrEwG9k3GGWEO2JdAtlSrstXEe0bmRIII6ophdos5sqY7IN1SyafSkvv1vCA2+DbiPa1xHhO4JgrWdjhJiAnDiKiAZBZmFUkkF9GVGsOOnIya9C5n5DA3lcEZb4GhnMOhjKAn47TTPUqQl2Kss8++e6k5fuYUspQDrtiv6LZ8TX9Y7KclEKTBYqa68gBLqXeo07sQsOBPZkbkcB5Wl8Ch4E5UFA9WZ0c5iKn2T/qWq47vyYD7uFhYodAwJ0DYHi8ef6qbVpGRyCKwIH94YT7pqa5UuTwdJZXZhatvp39o2bP9w4NPWyuoyeOvW0E5zlgJVdbuBalpkKkSY7hnBJp3wDjKYGLGmbfFetA+Jrd1wTMloPE/qEswJjeXHrrfJ26NNP63EJA73mcpiMeR/YuzpMEIjJNVKbBLwS3HckzmAFc9iL6NtWxLMh87d4TqLaUyvaPRWHyEGegowb6AW3MgyeCOLKR/OlahrBkdikDGt2na3JJFtzsGfDiFryOhjSplas1CICA/lxCp6RTs+PnYzhNYTyZ5UpjAtfyM2d2aXJGIHnouI7xWKYaBh6fqAXqVBGSa27qNYFVc0twJDwABfRnBLl2IaAP6R4j0j1xQqmQ4HEgqAxmThWVnnL43JkqApNRhQcmI9Hc0utJv+R83Ko9a0DyxFTuYlQTgTdTLdM1kNjPKEV5r3QRw7EskzD3+yDbmwjb8FxNS3oPi19xE9CfK5g+TWB4FLA7rQTZ8vTe7F8UgezZeEypbnPjsX+soYcIQEBNAeOZgu4jqrQu1/EzMKXE0nzOfCULWB1Omayaa2CiBKZzjeaOsl67UPAVa0pcLSAS6NY9qzyGUx5fevQSQyaB/mHFfV8R2ApPWb20orB7aozlmPqW1SQyWQHGEwU1ZfaRn2lped6zfBlIoUFjZg/5HUBmlIBXJuldYcyMwHSkU/ibKMBWTvw8uqWA2XjYlSIYT55JvZ+9jkEJ+FaVapWoyOz5WpZakag0hoc1qrXDdGSgB0/2LNBi4tL2TCcVzNbCd5qS6L0r/xc2FqCpew9oBgKpKRS/pRo4rhnPagLmVKExnbdQBwchInxH6W6o+aUZaoIooQWCTl7PYwN9IEjUIcIek21Uo0/VJh6yd/BdVdg8X7NzUlqfAFMoNSRuWUEdLPyygtpN8MsKciTIjEZC9g4wc/KuHB3cqqY1RhGQRsPwnygF9HYsCa1+WZM9BAjYEkiUu6kAb6aegu9RChiBuGwgRktAK3j/FoJ9lFEpJsdWKZRn9DMTmD2Rzs++RpNBXShJrrFOwD5GguS6AsZpZvnugcpSOzLe67bMy8xJr0IAPoHNXElyH7ApyeWn44DsdU1yXCjF5NbSeylmABmTtNf9kBT5/kNJMrSVmcFm6cyU8+sS43lfJvu2DPg+TPgR6wHeAp9CAfEfA1j+ojx+TmE7jwH8jXT8NYDf/GmDSuBnyFj+//E4/6cfxH/hr/4lTEHjyAx4t72DFBF7V+NiXKJRFoM3WI8thIholIOWHjtbQ4oIGxRq5bAZGygZMHmFj46v8LDaYedr/M7LD/HPPn4BFxQ2tsHt0GJVjbgbWqzqsVwYtXKwQeFgDU6bHtd9h4fdHjd9h0fdFq/2R2i0w9VugY/OrvFiewwlA4SIMDLg9tCi0g6V9jiMFZYNl33a9Hi9XaHSHkJETG7+0E1O45sPLvBidwwjA5QMeH55itWy574ah5vtAst2LO/r6gm7oYb3EkoFHLWzGXvTN7BWYdWN2OwbSBnRNSNW9YSbQ4uzrseLqxMsFwNTc1XA0Ff42sNbfPbZYxw92sF5mbzmAf2hRowCVW3hnISUEYt2xO7Q4HjZ4zBW/FLzfM4ojxAFfJAYBoMHJzscJgMtAyanIUTE7nKB0ycbTE6jrSw2+wZPTze43neotMMwGSgVYJTHZttBGw8pA7yXCF5C6YBp0GgXE6xV5TgIEeGshjYOU2+wPO6xvV5AVh7RS6jKIwLQ2mPqDdrliOFQoW65b1XlMQ4G3knESWL1YI/9tkHd2rKOft3g5MEO1ivsb1tUS0qeY5BwOwPR8By3iwmHZyvEVZr8CGB1jJWQtUcMAtFJmNbCWYW6tbCTRrD8m+0NICNir9A9OOBw0wFWQCwdJ1tkhFARqvJwewPVOcQANN2Ew22L5nhECALTbQO5tFAqwDsJcVFzMmTFG7o5HuEmjXhIEp82Jdz1GvVZj+l1x4kCz25Z2TiEUUFUyTurIoITlGSfTcBVjbBMtKsXUCvLVGIRIaxE1BFQEaLywMYgLjwHAE5SCi4AudHAgxFhr4EoIDqHOEnW6iwdq3skABNgLgzsiWdsezrO0BEIHMCLhUPsFeReIdYRsQoQB8UqnYFSXZcngFL0u75TcCfzBFU0SboAQG2T97ELUPv5SzfLsVmzkJiZiKIYgADXuVXsn61jCvPKzB27ecUoEU2E2ik+LyNUL+GWHiIKiJFl9UHxHOqNKjqSqIDQBiAAei9hTzyEE6huFOxx4ORYDUTDDlgIzB24gyh/z+XiruMEUWjY70u/NjeZXag5qCupEpAmMLqA5o3CeM51ui49nyexi0xdzDLUgJLKPJ5FyDzBBdDG4PmPbBFTfKXlxFWoqbaYTmKR7uaeSyb9cjJOeKomokBRt6RDXxQYWdGQw7aYpMxjonezXDe/J9RxTuqekLz36XVVRH0rYFd87n73bVFfJHbcLTiJJ6fEovZcVq4ecu2sPlBJVmwXs+LCp0me8TRPyMzHmunO87bnEDOZJoI48ZEmPNNEFHMAsp8fhXXyFdeTA6PMnq+pb5MioME8aaBmhQcnymgVyAFgUaVjJufzxc9hOl5pcjMzwPnv8d5YN7ObruNyc/9nvhajArqLwKoXwW1mjgInv3IFTXPDpFsG2CAB33T52XkyLAeT5fCmfKyzUiYrAvJko0x4gP7luZs3qvlzlKW9JbQtxDKp4ytR5LXCM9PAthJ6yEmtBO88f3xO+pxBkY5NI5MXf2bhqEaIaTIgT2i+rSLInaZqyuuYmWqA4N3syMirBI4z613t6AXOagFEgv7c3RolX+urpM7yOfRLFDWTPvj5XGoxM5NI13N6zuxdkhsnljSxsdnvnG+xOfQos85zF2ag1zezpRIQU4C0nr2gLvmwAQLi5L+Wo0OoGRaEe0wrXCiy2sJE+1i2HYkBLhUnk0NoUyCQlOX9eVki+2/vJ7Nmz2MCk8IH9mXm5+89RPaTZiYWeJtdTMt/K/wnA76y/YnFzBLa1Mf51uMem/kT8ci9dX/Vw3se/cp5/Lf++l/8qS/3r3zrN3/u+wb8jMN7ftYPAUDLgI+Wr/G/PvsmXrbHWFYjPlzc4Nn2BN968By/88WHePd8jYWZ8MXdKXwU+PD0Fq+2R1hUE9ZDA6M81vsOSgb8nc8+wr/yzT/E77z8ELttg2eLUyzMhO+8fAzvJN6oiOAF+qMeIQoIETEMBjHwA/06HOP8dIcvbk8xWY1/5uwV/vDFOzhe9eg/O8JnIsI5hW88uMbHXz6FEBFKB3gjsd4YrJY9rFe4fH6C3aM9pIi4WTc4XvW4ec14TrOcYA8VvjBnuNt0CEHgaNXDO4ntroWpHPqxwrCrEIJA8BJCRGyuF6iWE6Z1DbVwGAeDEPjtHSYFoQJurYYf6InzXuAwUEv7/OoExnis1x2EiDg66mHvanwZz4AI7HYNQgJI0gQ07YTDqyXGscbTX7nAixdncE5BPGux+yhg/HKJeD5B6ggpA/aHFkfnewyDQZgUrm5XCLcVHn90hclp9H0FuVMYJoP+sgMe72GvWjQPrzH0FXZ9B7FXrC4xAbL2GO4aLM4PcFbD7zRcQ4A2yArBCciLGv7dHuGyQawDsAJ05bF9vQJMQAwC6jV1lf7EwwdwsP2RR9ga9JOC3Grsjy2kDtAva7hVwOHTE8Q6YAgC6nUN2xDM3V0vgQBUrwz8Rw7+roKwEjICsVeAB/ZOQo8CXigIL+hxPAeqS43pVEIOEtARbstZ9elBRP3tln2TQwUsCDTUTuJQNdA3moNuCSy/rzGd0KPozgQB6JsakMAAQPQKg2shrIDuJVwEQh1QvTSQjsAHKsJcGbgE9uoLBTkJTCeJRd8ojKJBfUdvLHtBBXBZQ5iIaCWqK4XpiYPcKbRvJA6ooEaBqBTUQcJsBYanAs2Fgj0KQCB4oRdWkWUeJCAj6iuJ/psjsNOobiWGVkOMkr2ijyPUmsdJjqbIqYNhMnEUCtHE1GFKGbgamJbspcLRtw36RxHRCWDPShd7KqB6nhd14PZJJ+kztYBIftJgItBrhMcj6s+aAm70K/ob1UA2PGigvuIgyZ541K/o38oMOgc59M22F2QG3QKIKklvpUDoZQE0UbNGpnvBjtbpiMtjfUmE3lOmVt3S69le5GRfBdeSwVcjZXHVmqx2fUPwJfYSIiUCI8oEXCL0WiJqYPllxO59KgyEBc/nNAOimLxq7ZZAcFqJJGMlE68GSWn1XqC5pK8bYe7LFImxU5ZApblK0mbL30Xg612HMlDUB/4uRw7G28skp5WA9QLLFxHX5xH6Tha2P4MoXyOx2ECoZtARNI9BdZd+rjn4z7UsBF6iLGf5krLr8ZggpVonFnhPkCJHqg+WL/j36UiguiMoMDuCleEBGfV6HXF4LNHc8vo4SE4YZJm9GgmQhgcR9S2tBtLxPC5fUHLrax5/s41QlUD3hqnkWW3hFkw4znLr6XhevtnR0yk896+7yExrBnMEbYfH/Lw0t6z2oQWE7GO1iZTAL5nIu3gdsX1XEeQ4yufVEAtAMfsIN6Ew2yr9Xm0Ddk8pwaUPWVJCnaXhAewurRK4lijAR/cEk36X2N5OQFsysxBI2+ZKD6caI/ZPFI4/m7B5v2La8U2AdASw41EKixsjzCEUFri7CKyvSdJZ6QERBMwhwGw9du8YNCmQrrnx6M8VpAeaK5vk5ALTsS5SXDEC04LhdboPsEuJ6s5hPGPPZX09kQndhZS2THVUfT0BT2p2aqZEW92zk9RsPaSL0DsP36rSGdncOEzHHCJWa0tf5rliN2cfEBQZ3ebWkY2tBfQ+FNm59DFZAdjPCTAszbUS9c0InNeobyb0j2vIKaC5jSWR1i0UqjsLXyv4lsqJ+mbEdFwxwXZVpfuaQn3VY3jU0oqTEnHVkIDgBAQjCxsvXITe5/A5D2Ek1GFiAJqPwHmLKAT0nkFgYvQIrS5Msho95bQRBHlKvCXLjUlubG4OCLWBuT3An3bsyhwtwqJmaFIKNYoRlO6CywuLGuqQQ4fY9Sksj4mYLGB0kvoSqKlhKtdWrNl1CYAy2pCY0yTVFYcBMGR4hQ9kOVM/5g9LVREjYAwZ0cwuDinYKHdwAgxDqgyic2Q/AwOIyhhdScptAUpkgTkEKD9UYnJTcuyPH/DfA6D2x7/snzx+/o+vNLDcjg1+74++gd8zX0d7NODNtMKtadE7g9fPzvC3dh1sb/D5548401QFnJ5v8fHzpzCVw/UVEyFk5RFua8TWozvu8T9//GvQxiNMCs8uziBlgDtoiIOC12QCNlbyfRNZoJOzPdbPjyFPJlw+O6Wk9mTCb3/xS7B3Na4GDRWB7c0CcqPx8asFByKth3zZYHx3QNgabF828CcOYlDYvUkSXhlxta0gegUcW4jvLyCWEddqyb7KUWHtJMSNgesCnNZQrYe6qmAfAvFAkCIEMPma8t61QQiJVQGBSzCAO3NQdxqhinA7hWBTX6EO8KGC7CXqa4n1kwrNtcLYelQXGtN7ZGLkrYJ94HC4qSBHymm3f/MJxEce3koYDwyvF2RPbiqwID7A3CpssABGieZCY3jiIK3A1R88gjt3MFca+iDQL1rIXmJ/sYDeSXz3k/egNxKiS12LVxLTA0DcGCgA/X6FKCPqWwW3VNB7BoVIybCY0TQwO4F4UMAtw3vEIsBcmcJY2FUoQUbSCUyvWkgJqDVvgtFo1C8VogGEp6cWULCDTHJJAX2QsEccdOteQP1Rl2byuR3DwyR9vKxQ3QqESqV6kojqQkN4ge6Zhm95/Y3nAWYr4camyGilTdKrXsHsBMR1zcHtBLidhNnGJOUVqF6a2UuqIxb/V8sqEUfJcXUnoA+awUl7kXyiAtW6ooT5hp13qheUtRpJsNUzuKR9M3frxVsCD2RZbMtjV60lulf0NnavKemSE1kYtZcpPEXCbJFmsbmfZg/s3uf+6x4wz6viE0U08InpMtcaesdBpD0CmkvKkNXEgBfpKFvLrAtrCRhgJN+w5/LoM6B/IGCPI7pXAn2QqK+T/7EWEFHC1xHLZxHTCftbzSFi/45kbctNw8HnAUW2TlmhQHMtMNnUJ3kAotKob7JskrJb9gqy2kMfInQPDDIVqvcJ5NQETvTcztJiaVmvEhQH69WaDMjuPQmzJ2ukBsrYfcN+xvqGktjdu5S/6gO3L2qCtmoz+08BlIodlZZdXxP46rRt3QVlpmYfcXgiSp+lHAFVA4sX9At3bwjOqnVMjAYlnFEB3ZsU5GF4HdR39CfnblX2ZJI1rTYRvRZoLiPG8ySdBWtKsh86B9gIRzalvZBoLglAqi1lwvpAybOyyROWKjBYH0XgBRAU0888J/4Gxc98MJT3ml1gpYFK2zslP+QmYtAC3RVn8oWPKXU71X9cznLr5TMmlActsHgVUugKUN/legwkrzwZzONPU7jXgaDL7HOVBwGxGiO6y4DhVMIcAvQIDMcEd93rQEZPcMAqooRdpJqbHeWo2/cUqi0QBUFOfy5Rr8mMCc97Wnvt03VOsMckZ14LegxAlInNYmUOXw9ESXmsOcyVLJlJk1bM40vB/cs1I9Ud35P9tfSG32NARKqh2kZUW24b2lSlsyMzpcYI1XvQRwG0V64wTe11QDBMRO8uWQ/TvZkwPDBo1slj6Vkz0limYGcAF8zshTUpFEpNAe2NT35bhuPokZLxzMLpg4dvCR6jyr5N+iaFC6hvA+ToYfacXMoe2aAEqp5AkX5Vj+rO8RptJZqLA8aHHaSNqG5H2FhD9x7VeoJbUBrLZGRWpeSwm/aa26UODgoMBSNzF9O9mhUmIaUTy8nDbDzc0jB1PPLaQwRU7yFHBzUYmM0EvzBQB65T+Ai1Z7BE1KZ4VaWLEINDPKphNgOEZ/BMtbbIwTJqMyVWsSLDnlKNWbEyFZ+nCBHRkXUUhxGxriBHyn2FC4Aj08kU5QBzm8IcU1K9mBxibZgO6yOEs8BhQqw003C9B6SA3E30VYbAACDrIHeBMtnUUZnlrLKXc2iP83x+ZPqqmCxltPdlryFARPo4xWQLCKQvUxBUptqT2HCSXPTjzJIe+pkl/KG6DwHLEB6tEPO2AHPaLPiZzN7PkgILFHbybZDJdNq3KkdSii1fIH9sciyAPxX9lfcf/sc6Bb/6j6+0FLb+xrvxl/7zfxcxCuxvWyAIyF1KHTshQPIdL1p9PCG8blJiW5Lu1GRYgolFzqUO9OwJJ+BXAdWVoiwtS5w0v9yytIUDffr63CKmqhJun+4p98oz2UCadW3Yx4hIORY7D9NrQVlcDqwJmjPxWTInvIA9Yo+l2dDPE3Us6y+BJYcUAhRESSv1FYN/IFGCbbJEyDexeJaylAiYfUF6T4bDLUJil7ie+lrg8A7DcqJJ+7YRJYhnPOXgNMu9slzK1yk0pyL7Iq0okiZfzwPxnDo5nXAW1awpbcoyHIDnM3u+csBM0CBTYWcvlq+zlC1tS/793v6GmozPcMafedY+y7KyZw1A6acDZhZDOJTwpuLpSp4t6d6edQdQ0klFRFmXTQmY42nA4rksgATgccl9lAS+lAPZhSgz+a6d9ydL2fRAT+niJVJy4Px+VlKghCBVa4b8VGsuwx7NrJPw93ooMXtL9f7eNeMpt8vPVxsCGLsQ5ZqSE1Ji5+wBzCFBMg2gQ42STOkTM+RbUbyRpeOvm+V53ZsUipQYCwY9kZ1xXeqqBAqroQYUCRdDKsg25eueryEQyV5PAMVLWdbREmAx5VMUCVuW4+UAFuEA37Kq5b50LEv3KHXjbH8eQKuRxzMY3ndyh+P9MKio0/nT9wJn8kPO13jU9IPlfQsVj0n+PGWmJ/cfSpvAah+LPDQfm/y6++FjeXt8heItzK/Jfkj6v0T5nNDbTZbDN0B7FYonM9c45fvvWxK+XMMjUxhUkpzmbslql+SNcWYaWdFE0Fdtk5dvyvs2B93ogcdoWsgStHP/mJZJmdSHGIUo94hcT5WlgBlQyOTDpO8TKWV6PpaseWKnYw4Iyt8b2Z+r+4hpRTCpE6Cm3xIpeVWkeygH53l/MyjlOYpFwqimOeQo11u5NvVAps9yfn1UTE+Vnh7Kcg/IXkWBEuyUq7NKwFHkPuk+hVMpPjctJbs1h8DJi/z5CrliaU7rZeJt+twIzBJpiTlUJaWxymkGD/naIigg81Q+8z6mChdVgGi+Zl2XQJ7nxIpwMbHfDAdSY8B4qmG2viSL5joiTkbMDEsO8sly8cyiqYmMovRULeXrL9epuFbB7FjRUgBRritR+T7B/9Pzm0KSUqDN/fAgEZKEc/L0Og6e11it3jouckwpqjJ3WlLKGWoFeILUkrLqA6KRlIC6wJqYBMb4nSHTOWFFjMzBOp2BHGwJ5mENikVoDNm0EBmYY31ZHw9kRGg09GaAX9UEeUXmSqAV6yQPzbUXpYsSiDWXWf4eqklswwAAIABJREFUCYIZDhRn5i4AIoSyDezQTL2UGZRpRVAlBOWdUtJ3KESpJRHWUWp6X5IqBISjp5LbzX3Ix3P+EIi3mcT8/5xIm1NUc0BQBql528I9+Snw9rK8fxtQ3g/Nyfuo1NvP/XAwUQ7+ya9JIT5xvFf1U5JmQ1mfuLeMeD+AKC/rH/SIobCf/yiPXxQp7L/51//ln/py/8tv/Tc/930DvuKMpVIBXz+7QYgCn+MMXT1htBq/fH6J27HDN371Gn/3xYf4C1/7Hv63L34Zv/pnP8XvfZfs5lE34OLiGM3jHYzyeOdog0+eP8HDB2vsxwrWK0yTQvvehLtXR/RPHTu888E1Lm9XcFYBmpHK06CxPD1gfL5COJ3wa197ie9cPEIIArY3iKMETISQEauTA/bfO8bqz1xje6hhbxssH+2xu1wAXuCDjy5wve8gf/cE8VsbVCpgd7mAWjj4jQFUhGwd5A8aHN7nTVodJOI3BkgZ6VOcJKwOqFuLsTfAdfKvOYnxqYX+vGENQBdSUFFMAwsCwuaDLfqXS4iTCfFVA7f0mB5GLB/t4foK7z++xvc+e4LF+QHDpODvGgwGqG8lzC9vMHy5QmgCpnc8FscD9nctMErUF5rR9b++xnjTwlwahA96+IOmD67zgBN49xtXePm9hww8ejwBo4K5UfDvD7CPFI7O9ui/fQJ75CEWDkJGVJ+2cF2EO/EQ4xyzH1r6zyApEZV7BfdLI/Cqhvlgj8NFh/aFQv+uoyfKsvIidAGAgntkARGh31TF5xQMpYrNlUT/OBQJYmw8fX6PRoStgbljxUf7WqJ/6inVi0A4coBN3ouDRDhy6L5flaTd4R0HOUh0zyX6J3niAZhOQpoASV6PlDDsvz5Af7+Bt5xosEesNxlPeTzUVmFQEbGK2NaUG/o2wh15tC94CxieeHq1eokoJcazALfgJEbzRsGuItOPIyCCQv+EkwmhjrBLToLk5Fg9CEwngfKzBHbcihUu6kAAJmtWlUxnHkff1ugfxZS4DPhTi+V3KkxHcziTGgQGzYmYYJBkraIEI/mGx2P9ywBERPdSYP/unLgctMB4HtBcyDlEJU16ADyn3WtgPOP/x44+t/5xhEhgKRimHasxe6FESRfOQOrwhBM6qy8IXG/+jMPyewa7bzgsf6AJeOMckFOCoAaBwztA94qDb9cKTEdcdjyZJ2T6R/ysuhSKc3jKdN1gyDQ310ifab7HriKaS1FAYV43JY9kWg+Pma7sUgKw2RH0Z7CPwOPnG8AuI9oLUf5ujzipMJ5xO1ybKkGWnARpbiM2HxIkZTYWCYS1V3N9R/8QWH3BwfL1rynIkWFPvk0MoEh9wanCIS7S8c9dwSFN7iRgOR2LxBKhhLcAgOnntOLpWKC+iTg8oWyTYTRk1PZPJeW1EWjuPHZPWZ8xnoo5jCdNwrl2DoWaTgS6V1zftBKYTsiOD2dpgkimiYqJ+5aTJkWIqHYRzZ3H+kOD7PHKAUTTMc+L6siK+gYAyMaffnfC+uuUejP9OR8TAbvkdojIiRlpAX86y16jkqg2EYdHlKX6ilLc+o5es8NjsrPmwHAeNUUcziXqu1Qlsk0TJ9U8WSM8z/u0Sv6xNPE3rSj/rXYBtiPTrwfKSHVKAB7OJOq7wAmbdL/N4Dj3EOdeZukAu6BCIANsk/qWi69XogQ5lYkMoFwX0gu4hSyJvTkxN4PS/pyAs956bD4wOPqcXbf7xwrLl45px6e6pDPn2pH+TBefYa5MUVZhOBFob7h/qmf/bU4UFg6ICVjapUFzZaFG9pZOR4osqxJlUkv3HtORhtl5TMcaqmfSrV1pSBuTzJUMYEigNQpANAz9k0amXln6DEOu/ehYHyJ9hG8UU3rHCHNwsMcGZifgDb+/fGvQXA7YfKND99oytdfG9D0pUa0tpqWm17h38JoMY6gUO14T+A1GwiQ/ZGgV9GEGDvakSaDUI1YEafZBB/iI2GrIiUBfuAh1mDA8aFDdceZWDg5+YSAi+1EzUPSLuvTpZs9j9k9mUK42A8RgEboa0Uj4sw56OxLMAvRJDrRwyP2A2JDljkYx2FYIxBAQli0nNaxn/UhvEZKcVISAsNDFExmFIFgFCATrFOufQKJwYMjQ7oBwvIBc7/kZ0wqxriDCSJBamdk/mbtDhwmxqQhePftvYTTQD4gelK3eA3pCpwRaaXDfSylyWFGtZoDnHKAJIsVigTgMlMZ6z05N5ziXk4OAEugUMc+o83HfB/1jH+FP8qJf7Afnof70MpZf6TPkrYILEh9/+RSHZytcvjzB4Tsn+PvP38UPXj7A3/o/fxX72xa/9dk34b67wieXjwEvMOwrXHzvHOZ5hf22webTU3zy7AnabsL1330C/7+fwX58BHvXYP9Hp5AHCbzfAwJ4+eIMIQrEvUZ43cDdVRBbjfE7x4gmImwM/uDjDzBct8CnCxz93zUQBRbfrRCthP+dUwgvcP35KaY3HcQosbtrodYa1ZXCF88fYP9yhf6bI4Z9heHTY5gbDfNpC3OngCCgP2+gBoHuCw21V/DLgOaPWuBZi/b/aYFeQb1oMPYGYWvQvpKoX1SoLxROfruBPQnQewG9S9KUgaym61j70W8bRBPRfNyifSNw9KlG/drA/f4JzHc7fO+zJ1h+1+CwrYHPFhCtQ3MhMZ57uG8fQe8F6kumDDgnoS8MqiuOqA8fONR/8whyo2FPPJq/36F6ZTiAuNY4/kTj4vcfY/Elw0WO/qBG96VGeyGAqxrLTypsXq+weMbk3bO/XUO8qQnsTETzUmP5hYTe05e2+q7G6jP2cy6+b8gUv2wgvKAH8wcKeg+YO4X2hYLZCjRXEme/r9DcCIi9AgaF+k4UNqa54g1BDYDeSbSv6emTW432QmLx9+hT7F4J1DcElWYrcfpHAvW1hDBkws2dQvdaAl7g8DXHAdgINK80jj6V9OL1AkefkfnrXioy6McWzaWE2bKLMlzVJQm3fQOc/iErX7rXAmonYXYCR9+TqK/IzksLLJ4LHH1CoG92QPtcobpRqG8lqjVQX9ND9+DvsX/TLwLaVwrH31YYzyOWn/N1CEDsPKo7geNPgVBFdC8jYmLa9Y7L6V5IPPz9gHrNQWZzRdmkHGSRui2eMZVXXxm0F7Gkx5oNU4HVBLRveK22F5SFuhOHo88DutcR03HE8afA8XfI7Jx8h4y6WQs0V3PwjOoZ9KL3BAEE6EB3GWA27EbsXgL7dwmkl8+Bs4+ZhHry3ZBqewjM6lsg114AQHPNfSD4Bc5/lx5PtZfwhoDersh8TMcR539oMT518DVw8m1g/17A9uuUSa6+jLzG9tz3DJRzuitAsLZ4HbB4ScDXXEb6AhvuV3VHmWl9F5Nfj167UAPdS4HDY1YHAcD5J44Sz8hQleE84uR7HtNxhBoi2jcMnJE24uhzV5hqaSO61xGHpxHtVYTZcRtyzUtm0ruLgPouorsIhWHLLFFzJVCvA9QY8fTvTOx93ERUd7F4+6ZjlOVS7gi0NwQB4wnlo66jN669iFi9cMnPR1WA7sma5wqS9jJieCjw+HcPpbKn2sQi4623AYdHAjffNASuFbejWnP/sgQ3+/XojUvKikNAdxmgBmD/lLUy7XVAexFmqSt4zYUKWL3wsAuB8Ujh+DMLaSMWrz19Y5uAo88pT7UrkZJeeX0df2bp5bsMmFLSrbTA2XcGsrKbiPYy4uxjW3yfD/5gj3rNa7vaRAynIlXscFJj+cIX1YO0QHMX0L2xZb3TCmiuPboLD28oUdY9wWdWwEjHc2QXBFJHn/VYvvKotpTSTkcEnPtHlNSbfcB4wr8tXlnokXJVc2CnY5bStpcWZh+QfZDLFxbVlizN8vmY7qF8b7XlddZee+g+wOw8qq1Hc20RpWDCcU9ZcbUNlJtKpuQuP99jPJJF2XF4qLB86bF7R0HvPY5/MMFsHQNuxojqzqG5stApYCYmsJjZ1dXzEfWdQ3MbsPziALNx2D8lKIQQqK8mTCsJ3bsyuB5PDfbvGJidQ3tl4VqJamPRvtoT9D+qYHYe/QOD6s4xnfqBQZYGSxthNhP0gd5N3TtELSAnVuzIKaDaWKoltpaTgEbAtRJuoWCXmqxzH4oUvrkYoDYTQiXhG4XqdsLhnRbthYVZD4XVV1OAtAGuU6ivB1ao3PYEbCNTdc3dyAmnywPVIi7CdayPEYEdk/aogrk5wNwcYI+YwhqM5LK0TOyqgL4boTcDosmJwIllTeymHCzErocYyVzq6x1kYkP9wiAqidAogslUSRKlRFg1EIFMc/X8lp2UlYYYbFFfRCMRFk0BnHI3Ug4rBGJTQ12tyUBXGupmR0A7jASb/QjRT5C7A6WxuwNlrEJAWAex2fM1u6Tpt45S2cpA7oYk005JtPfVh6lmROz7OQhIScpl4/z/eE8K+xZ7CMyM76FHHCcIJWdQCSDu9wDIQMbJkqUNEXEYyvJEVSFOE5eVUmjfDhNKjGpOwU2v+XH//vQ8BEKUP/V/vyiPr7QU9uibj+Of/6/+El7vVohRYHQKh0ON1WKACxIupZf2hwpSsoTWHzTgJFMnR8UEyoWFlAF2W2NxfiDDBkDIiOgFvY0RkOcjjPEY9xXioKCPJrheA1YygbJXnJHuHMJdhWgC5EEhNGlGpkrTsF5AjApRRUBGLl9F+h29gJwkoowp+ZLy3gychBXlZ32lMJ4F1ogsGdjiHlioO01pnObrwsJzuaNEaAKqa0VwuZGl25J9lhGxTUbvXIOy5brlKOAe2rTtkgExW5bX+0WAmATUKGAfOOgbDd+m6WEdycq1ATKlKYaGUuPqlt2VIQWOTOdMmhRWpOoKDjxzx2iO7A9VZNfmvQRHNZApioLpkmbLGXGRWCURgOmxI5vZczbenTpUbzTcKs7sWs19DVUsvaX22MPcqTkVMvnE1DTLjIUHt38UCG1AdcNrxq4iulcSwzlTGn1m3FKKZn6/2TCxUu/J7vk6pYVOAu4ooL5kuIq0lDn7NsItIsxaktEb+cXPVEXKkVkNQi+hbzjIUYMonqz+HY/2hUrsBxKLwWAbe5Sk2CrSO2qzpJZhI1memxMw5cTO1SxppnyV71U9j6c9CWifM7xG7ylRDRVl4Zy1JxORQ17uy8pjYvrUkMJZkHx8Kskw03dOlh3nBEomeqZzpriPb7FbCfRkOXDuA9UpxCXLbEWY5cdZ2nm/m5SAjwAm96NmX+l9GaUak/xbcFA/nsw1GCFdW9Kl5MiJ7JbrRJLQpvetk091QOmpzceIPtT5mKgkdc6MbpbKqzGif8jPWXvJDshQc3ulT9uSZJJRJWm64vHQ+7QvuUNT8u/tVeqARNqO5H/zjSgy2xl4JHn0SiQ2MlWd1JTNq4nXv2tTEmeqXIm5izIkuWVFaW/u7tQHYDhLaawHhuOU9FvNYx5Mvm5SYuW968p1ZPxyumnuds1dpLmzMqZ/99Mus6xZuliuzWwryK/LstR8PQQzV/5k1jt/fu5PaGcprMqSfoEiua52rFOpN5QQl6TPThSZee7LzdeZ9PM20T7AyZ0M+OpNTIE8osh39Zgk2ILnwOxDSSzNn618T86dnjmdNGjed0yfZbjJ+928LQPPzGNOOs3HIae25mCYbEvIPZX88HPQmiW4pd9ToqSlAij+xdz9GaUoSar1hifG17IwiTlwpoTSOLKB1dbDtTIB8lCWGUxKLq0lgaYWiQlF8ZTaBetKyEgq6EMoUmU1eLiFSvcLyh7tkoylT5LWfA8CUIJpMqAP9xjILF2UNhRfdJYFqyRnlj7CV5KS22oenMopyVm1ZC9oku7G+1JGTaDIBQO+JduZnxM2wK7MDPYm+h3dwkBmqXBMaamW4ChXklD+Lsp5zfvL+3ySyyaJbK4zkdbDHtUw24nHxQYmpRZZrCwpt/l4RCkge4fQUUIrbAAUa07YJ8maD+HolRbWl/RVSotndjVvj7C++CxjlQJ3hECoDeQwzb7KUhtyT1aaei3fksLmY56ZvmFC7BqI+4mswLwc4EdLYHMfZl52lvHewwFFsiolYgj8aS1K5Uj2SOZakrxdWZL9wzLVEGapcAaS/zBJsD9CIvtVT4V9+CsP4r/xG//qT325f/XXf+Pnvm/AVxxY1h+8F7/+l/9DDI885CRKimaOdPctZ8LtChieOHRfaIQKZYA+vWvRfr+CXXEwnQvpfUNJYnvJgZ9bcuCsU/deHtBluY6v7vn28uc/DSpj+qKNgl+8rksgIEn09AGlVD5KeuFCGgi2lxww+QqwxxH1FUGSXXEfmqskiYqpZ+949q+VQWSaac8Dl8y6MdkRc1y8yv42IPsC7ZLbWyUvZ5aXlt65Oy5jOuYgISqCQSZLppMUuS9mlzoMFc/L4jnlaFGShRhPGdzRPxRlncC9QZYiG2BXHPiNpyJJOlFm6aOgHHD5DOgfijLQtYt5wC4tz71dMujj8ITbUN+mxEPDnkQkH5+vE7NxLpL/LknSRl4barjn40xAw7VA95rP1+uYuueA8QSo15SkDeez77QMwNt0rldkorrLgMMjCbPjYMs3GVzNaZI5BIRMTIRbMLq/uY7Fb7f5iBJLCP59WiV5muXvvGY4IMrbe9/DVO1i2S9glqDl6yf70YLhQEANsYAFPaauQo/UETl7wXIgShSUyI1nBAlmz/3NAJMgNfXa+dmjC6RKgSR5zJ8j4QkQdB+LPFf4+fxQGpv8qs28Dt1TDuqbFFzT85jkgXyeUCjexykWT5OvKa3MYThB8/wNJ7LI8HzqWtRjQH+milyv2qXwk83sq3SNKP2RamTi5eqZLwmTGehkX58IQHPLQJEMAqLgclxLaSLEPJDnIBGo9gHTgt4qn4Oe2pTuaXke6k2gXDH1DUbJbWtuA2wriwdOeuDwQKLekJXLnYM5sMN2DERCBgrqXihOkujm+4yy7IBs1kzVtK1As6ZUMyhKHqWNGI8VzJ7SSpV8q64mu0WfIUoXYq4niIpAwC4oi/aG58BXInXHcvm2lekeOgOXXAUgU8ovgNIfe9+jF4x4y+9KBkame43DcKZh+lCAgq+47ObWoz/XJQQney+FB/QYoHce/SODakNGyK4U9D7AN/T8FT+gJzCwRwrCAdNKorkhYzUt51oHkWorXMcuzaiA8ViV3krdE1TpgcBJpeNujzhxVryEaf+L1LTm92m1tRhPKPtjQiv9j9InWWaSMvuGXsL8ez6GMn3GzJ4+Q19R0qn3fK3rVGGOfM0ApFxTkQGea9kPmcGWsvOg1tcKavQImstWI4+l8BH6wLCWXBmBCKjBFeBjV5QIms0EtzRA8mgjXSP5+mAIjiw+R9co6MFDr0fY06YAqBxcU4BUHqgn2Sl7Ig0DZUayam5hiidShAg5pB5GlWStkvJStR3hjxv6GGtdgIrwrMQooC1SGpol2tASYrSIlUaodfEnQgrIA6WlCEBoNCAIHHOoTf6sRC0hDxP8oi4eQrUbEbqKoF5LqMTyFTBXG8pDEzCDEKVjkumrTGLNn+ccqBOVgBgsYldDHEZKRDV9j1FLhucACK3h7zF5ObO/MgOvzMwVj2BEbAxEP7NvhXED6JmsK3oqa1PkrCLQO0lgmgCcTP7U0dILOYxAU5PxS7LW3IHJGpMErGIEnCMTmGWq92Slb3kg87ZVhstNz0Xn56TWGGYfJcD/3weLeTn3jwPwNshL3srZr3kfaCYwH2OSxSbQ+8N1I8AfX+9PeMQQgX+MHstfFGD5r//Gv/ZTX+5f+/X/+ue+b8BXXAoLL9B/zUJagWrNQYLZkTXwHZmQ/lGEXQUsPtewR5xJbq4F6jvKU6Xn/+1RACQH9PU1ExR379Mv1FyK5O/hQG54GAtoK2mUSMzZvXS+agu0bziLXm0on2uuCEb0wL+JAByecrvMjgNbNXFw1T+Ykw8Xz0QJfJEWWH3OxMHmOiagw3U2V4kB21M6lr1Aquf6utd8fX3Lkvb6NkLv5hAaleLZXcftX33OAXh7mdiynvtvDkD/aN7v9oIdcmbHWPwcSjMd86dwXJeagNUPkpyvByD4O8N1COb1gdJFyuyA+oaSuOwfGs4Futdphrvn+jOI6N4QKC1exgJGmut5tnM65qBYOvqH2gv6zHwNDOeM4l+8opdBeJ6L4QG9RLqnNLG54Q2wuaLcyyRZGzvLeC53X2N65XicCro1cPQ5B36Hx3NQUQao7FqjTLBac90X30pgys4MjtnxC9/sOIhur0ICAkxWXLwMWLxKoSeBx+j4uwSUruH1Va8DzJ5pod2bgPaKUic1URaX96/eBHRXAXbBc5Q9ONKyv23xmjKy7Qfz34JiKIpdCOyfSuyeqgLGmjvKA3UPLF956J4gfvHGw3U8z2S/CCKCESlcSBRJI0KqArgO0IfIkJd0zMdTSgLrdUR7GVBtYpkMqfY8F9Uuor4LcB0BY33Ha1KNBBfdVUD3hhK6/oGkZ3AbcfQl5armwGvbtQJ2MXfERQmYJKMkQCAYU0n2t39CX+y0FNi8rwuT2txRXhe0oJduKTCcEhgtXvsE0ihN3b2jKAnsA5q7AGUj6m1Ad+lg9oFVBTYSBKjEnvmI9obXyrQSKanVJ7BLVgsAEIHlSwdlI9rrgObOY1oILF5ZArxbhnhMK5lqJnwKoUnpnQoYVwLd5f/H3pv8WpLl932fM0XEHd+cLzNr7uqq6pYoUxQpWrKpBReGBQPyAPtfMLww4L/AS+8M/wGGJ8LwwtDOgOGtAcMwQEiERVHu7qru6soacn7DnWM6gxe/E3EzuylRBmiQRegCDy/z3XsjTgzvvvM93ylQruIIpqWKQnG4Esal2EcmN7KtyU1Pt5A/QZL2GlBBft4uNbOXfgRqRV5cKdchgy55T3WffWcpUWwC0cDi245oFdNXfpTcDp9TLlcltCeGciXjmL3oCaWMw1dy7qNRTF73+fhi9stFVEwCwBTZH8QIOHUG4igoVp7Z05ZoFO2Jpp8JaJHfd8v0VY8vNeVKxjh9IVLTUGmWX9WQZEFBpeP+o1W0506YxYWmPbOU9x7TxRFUdidWjiUl6gcOuwty/2+FGQOYvuwkLMcIKPRTPbL2uk8ZtMr++5kwc+Vtm+soNIdrR/W6o1z1+fpIeqmwTYpYKIqVJxaK+qrA1pFyJVLL8q7H1mEcS3vu8HOTqyQszYXD7j2mjVQ3HbYOmEZSTomJYttjd3K9+oXFtBG79yLrvO+wjXywuk0rYwJsEwT8KvElAnRLRz+zAlBzAI7N6ae2DrhNT7+0dAs3hmIlDd1pgV21+LmjvG0yMNG4TUex7nCb9sjEqQG0O/nczGMr1lIR0VxPMbVH9xF31xAmFlP3xwAXpegXDnsraXFh5rD7HntfQ0yEqUV3Ic8JpAbDL0vi1I1AymxbdOPpHszEWzgvMAepDjHbRsCVUehDPx5LmBbEyhKWuWprXo7AQrcec7eT/c/LUQqqO4+92cmiV+UEjA4sYuOJlcNuGsy6Rh96/OlEZKVWY19vCbMSfehkv7MSvWsEUGuN3tToTT2G7WAUZnUQgGmPMkq8nIN4Ms2g68geqrrD3GwE8HQ9en0YASdKEQsrgLDtxgAe1Yq8U7UCRvW2FimpMSNTqNoMBrV+62cSBhRFutpJUm5yVsaqlCSzDv7HSSXgb2AwfRBQGQL0Ii/FZ5bRGJTLdR/WCpOo1Fvf3+yVTLu97NNa0pAU+9YcOsi2vZd9Dv8eWMeB0RzGk5NuR4CodAan+Z4deioHgKv126AyCih+8wtj5DljZHt/xte/sJLkXz3+Ujy+14zl4rOH6ff/2/+I68mG23bGwrVcFjue1qfsfMm2K7nZzfjg7J59Lx+S19MthfY0wWFV5OALmmB5cnPO3//4p/wv//Q3WZwdcCYwK3qcCXw4v6MOjj9+8ZhZ1bFvCj65vOGL11f8zUdPWXUTfvHykpN5w8V0z6vdnN988Ix/dvOIwnrmrsMnzdO7E4I3fHh9y8x2NMFyV0+ZFR19MNzvJ3x8eUsXDMui4Y+fvsPj8zVdMKwPE6Zlx9T1PL05pax6Tqc1zgQmtufnzx9wujywq0u0jpQur5ipxO5QURSeWdlRd47eG2ZVR0xwPq059A6nI33UdF7CXCau53Y3xZpI0zpO5jUhKu5eLnGzHm0ixkS0Trx3uuLFdsGyavnmi2uuP77hbjPj4wc3/Oybh5AUJ2d7TiYNjbe8/PYMPfOcLA/c3yxYnu+ZFD03q7lIkmuHqzy+NyidmEw7utYSvMa4QPAG6wLzacNqPcO6wLsXK17vZuzWE1JtuX7/js4b1usp2iSWiwN3r5dS6KgTahJIjeH0esvq2RI970lRMZm39L2h35S4ZSsS6qSwNtB3ln5bcPZwQ9M5VEar3htC0ESvSQeLuzPwgz2hN3Bb4h7v6VuLGhdBE37vmF/u2a8noBPTecthV1JOesKXc/wiok46Yq/lM1on0sGiZz1F5Wm2JebWERYB3WjSWYervEi/7ybMr/bi3S0ixga6VYnZGnjUjuPWv5zgP2iIXqPXjnTekVqRZeuNRT1oCOsiS7iBXqEaw/yDNfUXp/gzCY9SvTBezPw4TlXlCc+tGxOa7V7kzmmaw4u8QnkFpz2pNahOy4r0JKBaA/Oe1MjPk5FIfgC17Ig7CTihiOiNJeYx6ia/NqijfHzYDxAneVwHYVxQEBcee+eILhEnIimHPNHuFH4ZMDtDOOvRWyudmnuNP/eQK17sxhByGFYqkvh49joHiGQWq4qoXPGja0OcBYoXlvBxDc8riKK28OciZ0dBmEXKVxICNaRR+4UwRGkSUbVGd1lCV0v4lsn/D5V4Xc1OGAm/iJhDBlDnPdNfFvhponunw9y5McjLbTT9IpKs9F6GKo2MlPaKUCQWTzT1dRrDWnSraC8Dxb3Bz47BTt2pXBdTa+xeqntMI+NEIT7vrKoYtlNs4XCdRln6IHXvlxEPKhOmAAAgAElEQVTdKdxWpNrSUyjycgnHkNdJKrFs3+0U/WxIdZVgLp1Dr+xBApzKOwmBSgYmL5QoNeZyvpOC7ixQ3hncNqfzFhLslAxj+vDAhLudLBh0pyJrV7nUfii4N60stg1qlWjJHlbprDwmFL+hMslhU0PgzpjUXct5063sU7ors9f6lSgPhrTe8j5xeCzjmb6URZY35aTRMfZ46h7qa1molEU7RrnzoNqxewluGoOshsTfeFxQlGoTkXIPC1nt2TFxedjv5EYWOEwr4UfFSsBqzMc+pLcOyazRqZw2LZ9jEkDzhox2UJD4LIOvM8uck521T3lR6I36nKxgkEXHRHWfOFwKO9oth45aWfwDWdTtc+XNcB7dflhIPKp0+pmwupNbkQ0PCcWTu8DhyrytLLJHebmr5XwN7yk3mWHvjym+ScuCQXMmVSihOEqPu5n0u5pW7ut+Kh7msWYjVxYNPucxRTwxSmsHaTdJEogHOeogww6lVM0M25GQJAEYvpIFiX5mKNaeUIlkeEjKNp1IhU0Tx0WdY2BVfq7NbPle2Pkwkc/sIQ3ctHEM5TJ1lK7MJIsH/cxmyStS2VLI/t3O46eyAGcaP7LOuovCBL8RBBQLYbGHxQqz70UWXJqjiiEi9Ew4nhudvZaDZFzXnjiRRQB96AjLCjK7nJwR36cZdNrqbda6FdaciLC3zhwZ2ZxWi1LH8J/coympuJk1HBJih/oRgCiLZHT9sYbkVxNZB2ZxSJ6FI3MK4rssnPgrtTqC35SOoDNF0hBGBL8mg32T2ZT//hl4JCfQft9TYS9/fJn+wf/4D/7ct/sHv/sHf+HHBt9zYLn87Dp98F/+J0zLjuvpDp80tXes6oqUFB+e3vGzV9fU64oP3rvh6+8uefz4DqcjMSlOq5qfPbtmPmtYrWa40nN9umVie2rv+O7lGbNFw+V8TxcMdefYHUp8aymnPdOqpQ8G7w2l8+zrgqvTHc+en2HKwNXZFq0Sr1dzHpzuePr8jHLW4VzgsCtRJlGWPYebKZOLGt8b+oPDTDzOBbrWMpnK6lPpera7Ca7wHF7NmD/c4b1hWrXsDpUsdDWOciYgrKx6wucL/AeSFqt0ZDbpcDaw2kwpq579tkJb0S+FnQWTOL3asXq6RAVF9WiPMZEQNCFoSbg9GOzGwPs16skE/26Lfl1w8ukddy9OUC5iqx5jEl1rMd9UuK2i/RtiPg87R3na4L+dEa860t5mf6qApgeXG15+cYV7eCD47DOxgRA06WVF8e6e/usZ5r0D/cvJmPQaTwXkoGB2VnPYlqS9RS9kpTzdlqSFp3ju6E+iVM3cW+xHO4LX+FcTmSAsPMW8o389IU0D9sZJDcxVS+wMZmVRjxrCfUmqAvQas+zQTybCaLtE0onJC8Phhx32xuHnAdVr1Lmkxc6+sbTnAj78aWDyraW9jJJgGxS6UYRJ9sKeR5j36FflmN5rGkV3EShuDd3jjuJpQX8qQEBNPCkq7OuCMI2SrHsawEZmPy/oThL9hRgJ3b2hv+rBJMpvZPt2r6g/7HCvnbxPJybfCohrzyKmU/hJZqMm0u9ZbBRNHv/0G8vhw575LxzR5rCa+RuTF5XP0SSgt5bpd5rDb9aYpxV+HiUEqVf0n9S4Lya0V4HytSFU4jtNLlG9khRf3WiqV5rmgTBIg5c1FuJX1u1QzC7AYfZUs38/gILpN4Z+Lr5Pu5MJSX8exN970DkwRuTvm08CySWm31iaq0h5pyk2MsmvH8ofxfnXmsMjkfdVd4rDw0j1WtOfJOxO+iHra1FEgMidTQeHh5HpC/EvhUqeD6X0baIkAGnwJc6/FeakuYR+IUFb0Sb6s4iuNadfwObjDK46xklsyNerWMvkZfd+pFhJEur0RaK5lEl8eyGAsLyH/buJ+deK9WeBxZdGlAfpWOnxZq1PmMjkvbqTdNEwyb5ZK9JvSYpN7N9BkpGRSfzhcWT+tR69rs2FBBAd3knMvpVUX9PKuZOu1sT+XSjvRN5rD9A8kH2VdwKcqtcScjR5raivBDQOIVBJiVQaBdPnWU7fSdLuIBUv76N0kG4Th0eKySs5j0P1je5FYWAPR0m3pG1mIJTl7e0ZJJNE8ZH9gc2FSKWLTWL9iaa8k9dNXokkf/pCJsz1Azj7WWT/SO5fAcgC7nUQkFCtIirA5kN99GUqAWlJi1S9XIm1wO1Equ32osxoTyUFePoy0p6I/N1XAjTCREBOeZ/G61ZfCXNfrrL6ZhdZ/0Ck3LoTFr89zYmvGagdHuoctCTMfXdy7B8FmL0IHC619H8GaE4Vs5cCjg4P9AhUVPaQJq1GoJWMnNNiK+B58LL6qSgbpP83v3cr4EJ8h0d7gsm1Jd0sM+bZGjIkzB4eaObPgkhxcz1TN5MOy8MDzexlYH9tOP1FR33lRpA5+EXdQeTZKCg2kX4uybPlOozpttWdp7lwwjQvNNNXnsMDm1UHIvGsbnt27xSUaxlLe2ayjD1R3ntJpO2PvlO3y75Po7AHYeaTgcWTmu6swNRRejdvepoLCeeZvuw5XDsmryWFdvBZai+JtG7n6eeismjOjChlXvVj2qw9yGfq/pFjchMEnA0y5KmAQdsEmnM3VgRNnzW05yWTlzX796ZMnje0lyXlTUsyin7pcJueWBr8VBQd1V2Hn1jcpqM7K3AbkUeb2kvCrBMw6tYNYeKkSzOHFQF0J5bytiNUwpDZ3ZFVHYJ//Ekp/u0+ECo71r7owUea5b2xNJhdJ8mwrfRKRqsxe5H46rofWWMAfRBfZarEx5lKkdWmSSHfKyeAcVJkYJZGsDn4NfWhIU4rCf4pCwGFZSEsqrMS6jMRj4iqczrspEQ1XZYXi1R3BIwDkHS5HGLwXA6PpmUM1ul7GJjSvn9b3tp3kl7rf33bY2flsA2Tk2T/RbUif4Yk9q+CFPavOrD8XteNhKRpOzmEta2oe8fE9XTe0tQFPw9XAqpc5PV2Bgl2TYkPwgK9Ws8BODQSxpMKz/PbE0DAjNKJw77kaSv7SFETOkNqNa2CENQIfrrOEjvD69UcoiIFxeu7JdoE+trxIi4hKtp9QRsVdBpMou41qtfyfq9RB0O0kWbnUL1mv7fgEgdbklpDb4RZ2N1PUTrRNZbYWMzUk3pNsykhKhqvYZ7Aa7yXSdO6yR8MKtHv5d+h03nFTUFQrO9n6FaYlnotLApBgY3g5bUK6FcF1kI6WKKF1WqGajVqZ+hnmj5Xd0QHzYNI3BTCYgVFezeRft9eCxtVKVSniNHxMp5ga0V3W8mHeK8IpVSGaK9obifYqOjuK0ynCFa8teogQUzawz5NoJPzmu4LYZg6RdwZ8ZI2itQb3EZR30iCq2ny6uKtoz8YYWq8rPArpYh3JTozJ92qEPbIW1kFjwWuE6ohOGFnANReJgG61cLSqALb6DExNBmwazOyFPqgs08YdCf3lW4U1CLZtith40yrJIDIK2EaNZh9niDVWsZZK9w2x8q3Fj879s6ZjUwSSGDWdmRURnnu2kq40K0AumE1vdhooknYKKv9IWhsLXJVYc3k5rBrYdsgr0AfZNVbeuSESfSdkp7QBOpVierBrfTYkcrzUiat9zqDJAmHikaClszWjL5Z0yghH6PsK3qI1uD2Ku8fubYduLWwoqYBlRTJSGouQCyE/XM79ZaXurwxhKlIjd1W4/Y5aCVIvytk9mCV+ypb6bBFSe/qIMcdrvkgb49WtqezH3nspvRQbIRlHXpctf+V59e5IsMr1J0kIPczsNuBWcnfewi9GuXIuodiJXURSYs03O0h1ZC0lrTZBMW9XDO3kUmw9gKyVQITIM7k+E0OHjIduRpCwKPu8z3ls389yLUZgJJuoXqppR8zZPZom0HnXvyZ5UrJtWoTMbO5bpu3Vct5cBu5/+Q52bbbSsqp22ZQVcn2ANgLANBZ5u52aeyPVNmX53Yp13MwVjSY3F2rvVgElB98loPcWu6PaEF1It8eakSG3zt7yAssRlHeCsOVjDCVxTrfb5WA4aTz8+rIaA1fRa4TiS7X0Riyb5HRoztIiO1BgJY7ZC9YHBKLj53HcNym6WUcOuQKqiAdsLoXMK2zJ9JtRUKuPdmPKAsNZLbLHlLuuhTmrNhK9UZSjH2exU4AlHhu1cjY2SaNHk+Q6x8KcO0bxxdE8u1LMypBdCcdoHLswjbq7CEdQPnAcgrTKK8nJWI/pAXLOMvMmo5BYl3CKZHMDnaEYivS5cH+MLCXthZFwVA3QpZJD9dvGONwnVQcEnUjbp9l1+2gBhCQKj2oIsMeak2S1SKTbgTAKS/9kUYrUW34iG2HACM1eubdPkhKa67e0SGOoUVybrK/MuT+UKWw+0AsRBIfqiEQL6FSRGefZrmO2Nrnz0Odr13ut7Ti4QUwjQAYYS1ziqtCQn+G+yfLknUbMEa896qPGCWhPvYQRGYLqBAxvdgydCshMboTFlC1RwDjdlnqnKtMdB+FcOx89opGVB9RXr4b5Nh1ZsfGaqM+jBJfYeBA9f2oFNG7TlhVo1BNFICYeyZVSMIAZiZR9eHIMKYkIT8jqyjVX/iAMpkx7kRmm9pOGMa2E3/nEJAzyGAHkNj18vOBvRy8m0a//Rrk3n/LSzkwjwiTOPSnpjw+6XvNvsyY5EtpqRZR6m32cQjvCUGee9OE96sgU2l+7fEG2FRa/cvaMf9SP/4ypbj+eT++10eWEuh/umB/KCl0kA7HqNlvhbHs+6wDWjv+zjtf41473jlZM6s6zmcHPr1+LWmy9xX6YPA3E85O9vzeD77kd9/7WmosguIHD2756OoOYwMpKopXltmiITyfMp21nCwPnCwOpNpwcbJn/rOC+aIhesXvvPctpgw8vljjXjqur9e4aQ9VQJWBk9MDZq+ZTDoWyxqWOYUmCtiaXR24ul7z6bsvKU8a3KQnzT2mDFxcbpnOW957/4brizWYxPz8ACZhS8/sW41aOXQVUC7y7/6NP4atsK1ouH68olh0FLMOikhx0XB9vZLJZK2YndX81mdP+Nf/xi/44P0b6e2ceMo7hV70UrthEuf/VPFbH34rqbYJAZBlQJ93lPeKky8U5XnN7//oc3St+fDjlzJRmXhSGQWIT0XS+Xd++BX9SWDxeMvses+nv/Ed7qTl8uM7UInLd1coD599+pRYJK4+uCe5xOTRDs46wonnBx++wp21YOUDa/loKz66y1YyaSbS6Th9mbh6/575+xuSSfgTj18Efu93fkp/EohLj2kVk1cK+6AmnvbYnUIve5JLPP7sFe6DPdcf3tHPhc0r7oX9KjZQXB9IVuSVScP7P3pJerfOnldhHcOjlupWJh/JJuwHO+bfQX/h6R56VK9YfnpPqNKYzBmKhHl0AJVwj/cUa4U/Cfgzj3rQCqNaJdxv30tQ0TISH3QsvhXvYDj1Iu/sFPpxjX10oLoFlPRZzj5e47YQPmpI1y3daWL2XADdIDHrzyLpYUvSwnzEKnH1oxuKFVSfrLE7OQfJymTbzxL9MtKdBbqzQPXBVhJzX0TKD7foXhF/UI8AbPHJStjOs4ifJcI00V4Ewse1AMXHDd2l1DFMfrTCn3nK20R3FuivesofbGg+aOlOo3ToPeyZvYj077Ysf+tWJi97iB80wkg5SNctfhFpzxLdUu7l0y8DzYcd8f0aP4H2YU90cPrLIEE300T7yI8MpK9EItgvI/U7IXecMibIJgPzZzGHq0B77UcvqMm1GipAcynvbx572vOEn4mf1u2FAW4vA/0i4ReJ/qOG+l2PrRPtZaQ7STlkKrF/V17vpyKt65bQvtPRnooEs9gmuqVI9pp3evwssf0o0v5GTbmJdOfie2zPI80DqdroZ3D4qKefC5PXXKScsiuT18P7nlDB7mMJI/GVBPO0Z4nuNHF4HOmX0P5GjZ8q2jPpwdz9uKW6jzQPAyrC7kPP4bHUaJhWxr/7gc/nQI7l8DhK3+c+sfswYOpEe57YvQ/1jxuaS+mALDYClLY/FD/v4Lvslor9h37se7SNeLhJwhpHp8aKl36RGc4r8aQPATMDoDhcCziJTmpj9u+K17VcRSY3sg9JO05sPpVjbC6FGWyu5DOgPVUcHgvgOTyUQKhQSh+lpM2KR3T2rMPtE82FMK7D+IcOwcNj2U+/PMphfSWgsr4S5jApCVDTXvyx9ZWiPRE2uJ+KNxSkm3X3QZKxOEW58vQLqarxOVDs8EgqX4bApsNDqa2o7j1+Avt3JHSpX8o4TS3BZOW9p1jJa9xevKLNhXiNd+8IyxutdJI2Z4r2XH7WT1UO6QI/k/N0eCSsa7GNbD9QtKeafir9l36aPZILOcYBbB2uNM2ZxleK9UfHjtvtB5ryvkd3EVuLj1eqRzS792ThdfOBpnzdyNguNM2ZjLs90ZIXcNPl8C/5inkZf/fYcLgyuE0ni4KteNvRMub6wuTgLVmokzEa8ZXONIcHhm6ucetOWFGQfU70mNjanBlsLXLbbm4we+mYlPAgYen6maZbaFQXaU4N0WlUiNhtR7KK9qKgz8Feg5ezOZMOz5QTbFVIRCOKi8OlVJTUVwV+ZjCHni77VHUnHvBQKtpTi9l3tCcGU/fU5xZde7qT7BlNifrSESorfZdTTf3AjWya7jx+YkY2cwhE8hMjPtVXK2JpiVbTnhf4mcVPDLvHBRI2WNCdFJkJzIA7RvR6LyynM2AlYKc7K2Sb25ZQGkJlCbOCMHPEiSNMrbzWmWMIkIY4FXlpmjj8spLJap/DmYyW530gTnL3ZSE3R5iX8vy8JE4LwqIkVY5YFaTCkQonTOR8IjUjQ9DPEMLj7NuBPoU7gsrcnTkCx8LJ660ZfaUYLf+3Jr9UtqmsPb4+RUhRvJ4pSZ1IEg9l8h41dHQaPUpW3wwbGmtN8lcKQZjNFMd//9pXTMevPy3853v2SChi+vP/+svy+F5LYcsP302P/ov/FAD7rMwrKDBo9XUQD090UqMg4T7iz9Bt9ra0apScjVH+lUyKD9cSJBOqYwn5WG2QfUGmZawwGDwo3emxMD7kfrshHMFtZRIFwqSY5o1kUy8TvCFhEeQ4hih8nQNl/MAWNLwVT9/PZWU9OllVb0/lOLplXt3f5tfk7Q2BPUSZIPazDAayd2hIiY2lJJm2Z2oMHRkK26tbSR2dP5E/8KHM6ZyzLJuzsPusZ/65w2YGyO4lvXT0H2VvQixEgtWeqjEIJkzkg/9ND9CwHJKUnDvdDQxN9nkcZBKk/DHFNVm55n4Odifb6BZyvVUSVkMCTyT4p7mSSeDQFzhInIY6geExMEPNuRorAdz+mNoqq7q5xmCTBGg5mby5LAPrluIrQst575cydvE4pSy/EXlbsZZwpXItkqxiLeEx/Uy8Pf1UXvsmS/OmR2s4FqmmUJQrYRUOD7IPykraZ3Omx1CipBkDj6KTa6TyNSHlgvjdG8eyEa/RUB8wVIeESn7HyrVsNzj5WbnOQTetnAPdyaR4kM2FQr4PgUX9TAKGhhTRoQKmvpLwp4GNGCZZ3SLv41S8SCSoryT5sVyncfsq5uN5o2KkX6jMzojsbkiklWChlNM6c/LvoJaKwkSYntFzJZ9HMrY+J9bKvZSvh87+ufxZ8mbgjO5ljH6Si94HtZETRsx0+Vzmqg/bJMp1oF0aTJ9Tc21mNBu5j4dJrqRkpvHYh4UD28Qs2ZOU1OE+TLnU2rTHahFbp3Fs3VxTbI+sinTzpWOarsq+rzyh7mdS4yCMUqJdGKqVyPnUG+drOBfuEOkWcq8MqbyhUFluF3NIjoynupPtDPdwdIrZ847m3Mm579NY9TJMuI+sWhoTSd+svxjYJ6mPOJ43FXNgViKzVfJ7lQyEwQeWr4WKMtZoh8qLY+m9n2rsIdItpY5iYHh9ZonsQWSVSUtw0lBzkZQE6PQLc2STMluXjBrP95t/I4ck2aRFLqj9cD4l6Vf3eeKXqyBCqWVfWWYpn3/ibRu6DqPL4LmLdCcW20g9hWkCYSKsmoopqwOEMTmmh+bzlIOFojn66FT2sA3nelB5DMoIucjCBodSU6w6/NSO99zwGNJjQa7jwGzFsYYCkXfuJUHXT2xmpWV8di8yPr9wuFVLe1nhtgOjFY/zD60IUytJr3a4XvEtL14shkqRHDozyCoh+zY1aIVu/dHb5+Wa6D4QJk5CYnwcX6/7QHQG3XjCzGH2PVhNqCw6A6lB3mkO4vELlYQGERKxsnIcWknoTgZauvWyXR9RdS8BQVqN21O9ePwGvx9WS1JtTpFNNjN7Uc5BckY8gbmSI1ZOkmJnWcrZh3E7wiSGMbwnWS3Js8Ycn88ptqr3xGmJCpKayxBYo7WweaUAOlISkDbeF3n7vT96ETNDmMribSYvSjDPWF0yMIFayzZjHLso6XoBawPYy68jRpLN+4OR0Rw9jH9a0msIsp2hHiTLSsdaEGtHv6PKjPFQF4LWpLZFwm+0gLvBB+n9kXmUN8l3m8OEBn/mMNYhPGd4nTHH54DYtsfOSedgAI4DM/lmgNCw7V/9968+/orVjVz8+Cr9O3/w7/25b/d/+jv/3V/4scH3XAqrbSTtLf/gb//fPPnggt89e0Kpe/5o/QFdMJwUDc/2J3y3OuHDsxWfP3nE1eM7nAlYHfls+Yr/6/mH/LXLl/zh//Fjfvvvfc6X95f8m49+yR/fvcPu9Rln5xvu9xNmk5ab+wUfPbzhy58+5oPPXlDowElZs+tLfvr5u5hFjzcB5wJ//foFT9bnfHr2ms/vHnA6qfny2wd0RcCYyPXplgfTLZ/fPKD+eom5rvGt5dP3X/B6P2N3qOAXM65++yV1byEY5lXL/W5KfTvhBx+/pPGWQ1swLTsWhejp1m3Fy19e0p839OuS2iQuH62530wp5jUTnei8YeY8ISra3lFYT4oaOguFp/n8lMWP77AmYnSkNAEfNX1T0jSOvnZU84762xn7T+QDZf9RJ37RFwtOH21o1lPssqb9ySmP37ulf2w4q2q+fHmJ1hH/csrigzVNXRCjZrk4sK9LiklLu5tQR0VaFzz++DU+atresnq5oDpr6L+ZcfnjG+63U37znaf8oz/5mPnDHbu7KcokHj2858z1fPXikhgUDx7d8vUXD9GnHfG2IM2CsKVPJyz+3mtWO+nR6A4FykTU3+o4rCZUy5bdfYW7saiP9/jeUPx8QvjRgX5VUl7UxKiwNtJ1FvPlhO4qYLaGcNpjZj3pZUWcBdyy5ex8w8v1gvbllFRGzh+u2Tcl3dMZh0cQqwTLnuqLivrTjvfeu+Xp61Mm0479qxn6oNn+KIg8uQzQGIrzBvtP5hze96CgPK/xvSUGhbGRcF+CV9jrA/afzcXLedIzWbTU64py0dJ3luWiZvPFGeGkZ53A3SvCOw2zRUN9KCn+ZMr2Uw8ussu9rqmI2JVl8VVi9RkUn2xonyzgYQsvSlQviyv9mYTazD9csXmxQHWKNA/QaspXltXf8jlUSUJwVAC/TOizhrAqjr/vrSZOA+7Osv7bPews868M6fdW7F7NKF849h9GYc4LYcLNSmS/61nC3Sd270nv6vSpALHD7+9IX8xlYebCi1IgKPRZy/QfT/EzWP8okoqYZdsBd+NYfJVYfyKMpSwaRapXhvYijj2zcelRe4M9aFSfvYiNyinKmtVv9gJCNgaSIpx4yucSIuTnefZpE8Wtxm1FIl1fSf1RMkh37V6Lp1SDoCsJ65k+d/gpHN7z0q2Ze02TgnAi59A0ksx8eDdS3hiaxz1mY0kmoXvD9IVi+3Fg8kzTXoj/lqRoH3r03mAPSsKNpsOinXjxunMob+WYkxWPpdtJT2uYBczegBYZXvVaYw+w+yCge83kpeLmtzUnP1Pc/03xGUcnkuJ+kdDBMPsO9p8pio38LDqp09m/I5J2P5f7TfeWIr8PZAy3v1GKZC3KAli5Sqw+hTJLfyWdmbFLtFzJAh0weiKTFW+qz/UpbpuoH0jw0fSF4nCdUFFWzMo7xfxZpF0q2rMje9idas5+Atv31Vg7M3ktlTuhNFQ3ifYjO4b07N+NzL/VlHdaFlI6AeV3PzaEQnqATXdMYG4uEouvGStrmnM1Ssf72SAhl7oOexgW7WQxp1zJ8djDcdGlX4pSorpVzF5Edg8d3Ykswu0fS4p6dyoLddFCdwbVa5g/h+27hsNjw/wJxEIqleZPI/WVlYWxJrH6oebsC/Ef7t5TzJ7K4qDpRIY6qMbS0Ie5T5TryPpjg9tmZnmQ93cJHttxUWisg8mqgd17cPpz+V3oZ+q4sJHl5qIesFR3Ut/TnuTUXAXz55LqHEpFsXHMXnhWP6zoTiVNvM8e0HKTaBcKV1uikWPWQRZhVp9olk8i7iALMbZJ1OeK6U3EVyXRKKY3XpJojaKfVIRSan9CoWiXinIjEtlhoWKo0CHJOU4K+qkm6YlIb730itomjf2doaiIVmU/aIltE3YfMkMvtpFQKIp9xB4sTfZzdnORxA4VP/YQ6JaSWL34uqF5UI4+UBWHxd5IfWGzrD4xeV5TX88o7jt27y+YvuzpzkrxRLaRfmFx+5B7NIffVwGpIm1O+JmVQJ4sbe1nFt1Fypua5tFcemo7Acl+qseqnCEYyG07urNSWOldh942+Mu5yLdrCepJRo/g2c+sVNXkxYFYaEn61UpqXkAA8rYhlgIwh3CfWDnszQ5/MUN3AT8vKF7tCKcz9L6VRNrcmamHfWdwqDsv9Si53kVva/Fa5rTWgRxKKcFsIttR6ui7NMJEM8npvr1IVUcAO4A2749g8g0AjNbZE5o9GwNjOPglux41nci/U0IP4NcYUtsKWwmkmNnMN6tJnDmG+/zzqkh+5ZH+Rf7M79Ej8s8B0X8FHt9rYDlzHaePN/yT23eJSfEP73+LRdXidOT5/ZJ3L1YANHXBXTWFCC/ulpRlz7Ts+d++++tcXOz44v4Kf+H5w3/2MYvrHf/r//47/I1t8ZoAACAASURBVO7f/ZxvXj7ixgZiVLzaLUmd4RdfPsTUmiffXbI4O/DFLx+hK8+HH7/k6e0J/aFgfrnlH/3kB5h5zxfA7c2CWz0ntZpq2XB4PufWBr77+QOYe6lLKT2zacs3d2ekpNA/mdNeBG63M9p9gS0922+XMulrNd++PsPfVrDo2T0/g7/5kuefP8A9PKDPWrSJ4CJ6bbmrZsTGcr9zIg/ttKRYPujElznrCY1FbS3tJMBJYP3lmaSE5sRPXQRSUqROUzx3NNeacqdopxp3bygv9rR/cgpXgfV3J6QyUH9+im0Uu6Zk+82S2/MO/bRi8ddu2dYzNi8W6EZjDorVoiCVkgibogKvwEU2Tcn2dobaG3RQNGGC6xQvn55RvLD8rHyArjX1L06wEZJJxGvFlz95jOoVGHjSX2G3Gm/Fr4pOhPuS4qB49eUFaRIoXjrSRcBsCg5Lh2403cZiO4U9KNpnUyAzzlliHX85J1SJfhbQWwmxCRNNmAUu/tBy91uaNIlUzxz9xvD1rsC9csxWin6u2b26ENlsl+VoZ4lgrfSori33nz/CniYOywJbizy5cwm31nTXCbs26EuZWLt7CWlQzxbEi8jil5p+CWWeJO/0hPMnkbuZwm0Kuplj/oMN7ecnpFmk/mWFUaCSlcnZQRFflmz3jtkT8ZJWzy3dqYTXNNcCoCcvhQ3cODisJkxvNI0pWTzRhCpPzm8MzQPPdjWluDW4rcjW7F4CS0LpcmKj1PF0JwkiLP7PKc0DiEY8fqFKTJ9J3cJ2bsWT2cD66QK305x8mXh9KR5P00C/kHNla+h6zeJrmVS6vZEqmw723804/VYm4ElZ6WwtoOsrTr4KrD4x2I0mTBTLLzWHR5rJC8X+MSyeJHbvivfT7bIqYC8r87uPIsUzBxrm32TW90RTvU65TzNx9keW3Yfw4B9H9g81u/csbgfTF7D+RCYVbqOzh04YFrdTxFJBC5MXhu4UogflBXjGUl5rmuyL/MJmVlk+M8tVoj1zzL9NvP6dyOlLxfwPFcFJN2F1k/vvyP2qQTF9LgzT5IVMSqfPLbsPJERHe9A5cffs88DmQ4NpzKiuOPkq4CeKdimM7PS5HdNTu6Uw7trD9JmAItOA8jB7Fel/aTOIEInxyS8Tu/fEO1fdqNw7q5h/nfIkVlHeRzYfadn+ae6TbQVgJCsKlPI+oj2sfiisvGmkIklFUQyohLBlDVK9ckvupYTJLwSkhUK2GQrxeC6/SlkFkDj5UsCbzwE6bh9IWibe7TnMv8uVSnee5swyfRU5PNQUOxnD4VoYZrfL1wCRYFY3idnLns17jmInPZumViyeSApuucngoU2QNKZJOC3+P9vA4huRdN79SFOsYfHMs3tomNxGio2Ag+g0/QyWTwKmS/iJpr5QhF4x+47Ri6dDolwJeLj4qQTZzJ4y1uP090dPna0T1SsBcGabmO0i5TqgomX+nUhC+ulEgMm3Hf1cQI66Z2SUh/TSbiYBO7aNcnwbLVVBW0ldre5zpcuJ/Hzo30xKQoe6uWbxtWJy61E+0c9NVnAIYFt8KzUpu0eG5Vc9oSw5+arDNIH2rGDybE99eUKxjaIq0uKZNL0ksU7uI/Yg+9S9orzv6edWJKdZBn3ypVgS5l9uqB/PM6NqmD5tOLxTCYCKSJ1L7akfT4itgDPdK6I1lPeB8rahOysp7lu2H82wh4BbNXRnFTokiq2mvrAUa0/1dMf+4yVuGwiVzqBN0VxIoI1p7NgNCkjw0c2e5tF87BedtZK2qktJVy1vAu1FSfViD8xESptg9u2BfiELgu6+oX0wIRqRKOvMWA9fyQqwdpsOP3PY204Ycp9w9zVJa5rHU/GE5rAcs2tpHs0pb2phZQ+e9rzE1gG7aYmVpbxtRgY4TJz4KZ14L92mlS7PGHGrVvowW6kFSQphYDuxoaAUYeIw+xY/s6guYrYtWI296YiLSjyXTWYmBzC4qUmlRbWeuJxgb3ZyXmNCbxtcH97o7RQgpzI4HatICif+zN6jY4SQmVBAr3ekqkAdmvGaUTjYHY4S2BBJ0wq1F4O4CsKSjkxo25HmU1ht5f0pZjY3+7GdE8azOgYAAaPHUlkrnsmqlLoTY6Rnc/SkhjekrxHl7K/7L0NA5fCg1HtUcVxIfqvC5I3kWAXE5vsvh/2r/Ph+S2Hfey89/M//M9xK/jiEqaR9YhP2tSOWiXTWMfuTShiJhaxeVjeK9lxWk9tzCXZRQeR0h3+tJt2KHGP6THN4L2C3EupRrMULM6QuHt73TL+x+Kl4wWZPDN2ZSDjdVibCYZKoXsuHja3h8DgxfSayND/Pk5rXIjMdUgX9XJIkuxNJNxxCO0wrMtgh8r2fJdxeJkC7DyJXfwSrTxWmVsQyF8CX8l4nn2tjfL3OXZn9Mk9K7oXREDmqTOSiY1zlDpVM+LpTSW7s5/L+5iJx/v8k9u8I83C4ThSbY2ri/lEGBM/F62RrkSBPXmXPy5Ixyr09zQmP9xI7H4osY82r8CJNlDFJQiPs3pNV9GECmgwcHso5jo5RRipJgVnKHGWiFQpJZGyu1DiptPUxKl4KvPM5r2GIvfdTNQZURCfnwu5l0hBKNSYohmqQvMrkqrkQ1sDtRLrq9rKtIUhjkH7aOqcXrlJOC1VjuXhSjIEkh0fCIlV3ecVSSXhKP5OEzvpS5ITzF4H1h5Zik8a491BAcyXArp8q/Ex6ObtlDuPxIu3zM5nsT26ivC4nL0rCpYxFe5nIhUqk0fUDWb0fPF3i0cty1u1RNpiM+DPry2NcvhTCyzUvV8dagEGCPkh6u4WcP92LLy1MpAdTglhkgrt/lIFLZoQEBMk1q+4Du0dmrIAQeasca3sm16m6k2NGC7MxfxalYzJLcqM5+qaGbsVhvAKqFSg5r+6Q5X3Zb2kbSeLs52o8h/WFgOBqdRybrUVmO7lLqJBozkSeShJppaR5Zn/nVGFqkcZGK88PLM1wXlydJIHzVWD72FJsE9Uq0JwZurli8dTTnBqZ7B0im/csi2de5LROPHaml3GU6zjKv6VSwRNKTbsQD5okd0ZhLUtNN1dMbwPtwuTzJb8vSZGljzL53z80nP28lwRKhOnxpTAn3Vz8XEMASrTSTan7yOHaUa7l/cLMvNFLmXtaZWIrTExzrll869m+a5nciR+yvtCU6zTe/6ZPmEbGGQqVA3JSlgcf5bntMrM4c5G8DYmxIr9tac8cvtKjJFXlz5KBzUlaJMb9zBzlqggwUkGu37C/Qf46bH+Q5ps6yqIDwla5vdxzKib6iaZcyWRs/8hS7KT300/ES5iMIlRSr2Aa8TqaxuOnlvbcERxUdxL6Il5Aiz2I/zBaRbIiQbUHkWZGJ1JhP9XYXaA7tdgMNCWwyBMqg1t3tBfl+LlkD4H23GIyeyZsVRorGIauzUE2F3KCqWkCfm5wW5EDS3+nSGmHZNP23I2pqeVtB0bRLZx0XGZ57hAa0y0c0+92+EUpQCNEwsxBglCJV9DuA27T0VxPcgKqnEsA1Ue6k2LsrOwXbmTcJBRIUklJ4GdWZM2blubBFLfNvYldQIVILCx+ZilWrSSVRpFHqhyaY3cd/WmFaXz+nRLJalJK0ksbjz50+LMJuhZZrc4hO4OUNFZOWLcImNxX3Hr8ssIcOpncpyTeRSf7VI0nLErZ15Bg6uMIXEJlpaKjNONzyYq/c2DEVOcFYLW9sHV7kcMqH8efhblUa+iDbEtvG1LhRBbrDPhInBfoxr+9PZPltoV9G6T4CBpJYy0L9O4wPheXU+mmHKSswNDlGBdTAZGdJL6q3pOGrsz8emE3g3RWwiilHV6bqhK92krFh1JHyewwDx96I2M6+h4HmeyQ6Fq4LLHN8trMKhLjW9LX4/HmQKUslwXG18qkcPBdvSG7TQm0gRjkO0j6Kxwls0a2nUIcpa+jxPaNMY2S3SFF9lcf/5JJPG8xld/zVNjzH1+lf/t/+A/+3Lf7P//d/+Yv/Njgew4sl59dp7//B/8+L/ZLpq7j0WTD63bOaXHg6f6Uq8mOgy/46dOHlFXP5XyPM4E+GPZdwemkxqhIHw1PXlzw2Tsv6aOhzV2OMSkmrmdiewrt+ZNnj3l0tiEmReMts6JjXVdMih4FbJqSq/mep3cnXCz3hKjpg2biPKvDBKVyuqECpRKV8/ig2R9KXOFZTFoKE1jXFaXzHNqCwsqHwnY3oSh7rIns9xWPL1fcHyZUzmdvtma3r6gmHW3jKKuepi6wLuCcp2kczgVOZzUxKVa7KSlBWXgKG9jsK2LQFGXP4X7C6dWOfV1QVT1dZ7E2sl9NsJUnAc4Fml3B6fme1fMlxVlDDJoYFNN5S30oCZ1GmcSDyw136xnVpCMlJVUrLypOfnRL2zvqQ8HJ8sBuX2FdoL6f4BYtxiT6zmKdp28tsTWUy5YYNMHLtk9yP+XpxY71WljFatoRo6KrHdrlyUwcPjAh9oZi1qFUInjDcnGg85b9ekIKCnRCrxzpoht7FMvrA11jUS8qzPt7uk1JsWzpa4etevpVJZNBk4Rt1eBOWvpVyeLRlr63+N4Qeo26L6RPMcs16TXohCoipgjwzUTkjUUiDR2SOqFqQyqzJLOIUu1Sekn4zem+etaPHY/Ki4RIeUWcRqpnluaxlzHaCL1GFZI8om0i3hfy2rlH76SvMbmIPhhJ0nWJMIljn2RSCVPrsZMunASpfll43EuHP4mYrZYFnyJhFj0pQtw72X9QmI0lPmhhJ34Xs5fk2zCTJOBUBXRtcuedeDCHnsrheqIgTQPm1hGnEdUK8A/TmOW4Im8l/wwkHbZfyPGZvRGJ5kFLsJNO6EZTrDXdUvxLYSbVKn4pNS+6V3SnInuFI7PoZxHdiizSHjT9MuA2kkDcLxM6gz4gBxvJsbi9GheKSNBehCz9jdi1zv5sWaQZ5Lf5Isgx52Tj6BLmIMccJrIwgRZ/8eAJf7MTc/ArKy+BQ8VKH9M4a0V3LhUkUvUinvVkhXGVSb7UzwwS3zDJIKdRI9M8JMT6KSSbxm2HKiccZ+Dfz2WhxC+SSF+Xst1oU5ZqZjlsr8bU1u5Etu02Uj1i6qO8yM9yl2SWMQ49i/m0jUFRfpb9x4Nnb1CGTXOibQZ0gw/WNEfZpEry/36eFy6yL705l3PrNpKI2s+OMtjBx1ve54W1DP7tXhYkhgW1WIp31jay0Dd8d4fj38BQMnrVh1TWaGShwbTCrhZr8ZYrL/dcUvJa08ii2uSVMK8py0DHbr4ozOQw9uEcmS570nP3Y8wkQ7TixY9WFnqGRNqhImQI/5IMANmnpK9KOvGYXqqOYxgSZ/t5TkLVImE37XGBQEVZUDJv2K5MK37WQeYKWd5cqfH5lM9T0oyZDP1UWM9oFa7OPm6TQX/u42xPpHbEV7B4GmhPNL4cQEiulxkWkeIbEts3chNsK4sX3VyP91a1CjQnJr8ne0phZKG1l3OmvdwXg1ezWgW6uXlr0WTwMg8+9GIfCYU+pgU3kW4hloZyHagvjFStdMdFC7cTz7I95M/AShaWUALYh9yIpGSBI2ko1kEWQI34Yge137DANdTzmEa8uW8uBPi5wTRy0ENdSSiPf1+0F2ZP+i1N9hG/seigc+IsjH5d4tGbO0hgQyWMqN1LCJCMx6P6QJgX2RPs8TOHacLIdCYjf2NVH4mFQffZa5lBfnLZM7vvjr7aNgPdzo+dkwP4JSTxnI7SUGQbRl4zgHnV5/7KfSMe0UGqCsRKQoiG9yTzxvtDBvmDZ/QNMKyGZFoYQTC/ggVG/+fgfXyjw/JNOWvqOgGfKR/LAFSVfitVVj6wwvi+4fGnYpA/o47k+95jef7jq/Rv/ff/4Z/7dv/hv/Ff/4UfG3zPgeX0k0fp4//qP+Zk0tBHjVGJ1WHCYVeibWQ5r9ntK3xrWZwe2LxYjJNbZRLTactuNUXZOAIOvGL5YMfm9Zzl1Y7N7Qwz8cRek6JCmSRgI0/IbRHoD24EByhk0pwUSks6a187JsuG+mYqaakuEndurF4YJzT6CEp0LX4yVUbZX+4npDbgEmbWy5gaI2Xr8/yLpkDtDRjQB02cRJj7cRsoUHcF6bSXuo9cKA/Ih2YVMC8KYpGIiyBjSoDX4o2zCbM3xKsO87IgVLl4epm9hRPpD4yzILUVOTkzVlHAUadJLlG8NvhFnvhakT6iIFUB1cgfPLPX+NMgAGnu0bdunOCHecRuNf2Fx91YARwg4z7x6I1FeUU49eAVbm3ozzzuVqR4SWeWZ5akKmAnk+c4jL+KY09iqBLtVRjBRnsepI6kTGOvo61V9tHlQKgk2x7K3UMl/Yq6VZS3Wgreg0yyqluVQ3vSCCDa85jrGgSkFBuNnybcJm97njIYSMy+Ew/cEHKETmMJ/fSZSNv6ZWTyQv5I+6mkrAr7N/wBlonjMPEcqgiSgyqz5gMwcFth05PO1Q61TJBDmZi+VBweJqrXObhkIhUKdi/HVKyFcfJTAVG6FSXBMLkqV8Jg1ddR6k1skiqTN+wIJr9nUA7UDyOmVRQrYUj95Dgp0528JlTil+vnwwRYftaei7SXxFtAprsMnPxE7pXuFEg5mOtE5Kgq11W0p0cwMZy7wZ9HnhBFK72JfpZBVD6/YZLZ5RsZ65seNZ9DmKIVQGFqcpm6JH1Gc5yo+uo4hlDJ66pbYbijfdtTB8L6F2sZLwjoRMk1FCZ+kCWL1LfY5n34zOiX0J6LvFEl+b/bCQBoLtV4fMPvmJwrUWUIWMlAdi7jGMBcvzgGf1V3aQyMcrs8qd+J784e5NiKtfQ0mk5ATL9QORVWjeFLUqlwvHmGMByiMLq6g/paVCNDxcwQ3hTKHGzkBRwN3YeDF3O4tgPjPYLNyBhOVq7TOMHu5nI8poPmQsK8wkSqFPqForqNtGfi26zuBLgA472s/FEaqr1IiA9XohQwDZnBTzl5UzG5EWXC8PfF7eVctPkcFnthXk0OMfJZYWEaAT6+UlSrQH1m8BNFsRM1TrkVhlZqc6Iknhr5HbX18VjdQeoxurmmOddU90dVQrmOOXBMqkW6pR77PtuleAH9RFQRtslhUL1s17QSjOX2gf21HcOhfKVEltqlERC6WjpuB0AzsLy2jpnxF1VHtAKmin0cg5xs9uQNrK+f6NzLeWTSi7UnVHoMiTKdXG/TCICBrLSZ6sx+C6AbvIl+anBbT7+0mFreIwxqlk32IlEfOlT9RAKUik3Ivj8JeQqFvE/3EV8J6JIANEkqHfZh90GY5SbgK0l3NXXMXtsglRKJEeAPTKRpA/3UjuNzO0+0wnAPTKyfGOwgUUzCUIbKoIMA7VAd96GbIGmrtR9DjmIpYx39jE0Y2VMAU8s+RxltDg8ybcDPXQ6w6oUZ1VIlJbUfAtDGsJ3MzOnuCBolgCjgTyfCSubtqwHgvMEoqj4I89rK+IBjIFEGfao/Mp7JKFQr/sM0KaSv0lmRiuY6kRH8GT0CuIGVFa9mehsU/mmPP2UuLz2d4VcY0TcA4MBswltg763tWTsyk28F7QwP72XcQw3Jm6BvYC6B1HW/XkPyq9v6sx7pT9nH/8fHvwKW//8/9J/9kr+8j5QUP756yXcvz3h9v+Dp8zPqQ8F8WeNcYL2ZMpu2VPOW/h+dsXy4Jd4XpKQIrWH/1Qm6CHBTcnq6Z3m+B2D73ZKzP7ICRKtA2MiSbDnrSK3h8fu3oBIpaPrGCvPTKwgKVQRmJ42wS60mPBdzU/+LBWbZ4Z4XxL0sdadpQLWa6YM9+qAxWyNXxEZOf3jH5Ttr0sFIZ9/LErWzqF6jtwb3xRR1V2C2RsDe2mJvHMUzR5pEkkrwuCG5SPlViWo15S8r3Dclbi01JNV3Dt0qYaA0qFZjXxSExy3aK9ytZfKkoPpG9lPeGapXlnDiKb4p8Fc9aRIIZ57ipR2ZGBUkkCSceLrHnXib1obyhXjOpl9bAUa9hH8Ut9LDp1tF9W0hPry1eDtPfmIpbwyTz0uKO035yuAve05+avDTxPInDj+PhEo8VCpC9U0h5fFFwt5bZk8s/mFH8dqOQSfaQ3flKW81s2/zKnGnsBvD5IVm+TNLca9pHkTCD2vK1wZTK/5f9t7s59Ysv+/6rLWecc/vfMY6dWrq6sHloe04trvdTpxABoUgQQhXXBCJK27h3wCJSYBBIC4REQHLRgkmsePEkd22u9t2ubumU2c+77znZ1xrcfFbz7Pf6rSJhRzZFWVLpXrP3vuZn733+q7vVO058pcGF3tGjwUk5acC2Jp9mVCwCdQHlsFLGSR2fYDjT4TpKu5ZbCpfpumVYv1mQ3nisKknPxUAlp9qkrnGZSKldrHHDqRKorxjpV/TQ3ahWb9b92xAeqXIT6Urc/BCU+57ULKO8tBT3Lbi6b3W5K802ZkiPw3djTEkCyVBJkoYk8FzRTOG7V3b9zaWR076A7fCim1/rMAbz+iZYv2akyCV+456L0gxEXB5+DuK5FrYruGLEBzzVs3gZQi0OZVKis3Dltn3AmDfhN7CjTCW0Ubk19mFgLTtXcvRNyE7C4PiAkZPYfwpjB7LYBwE2BXHAn7yU6losClMP5RtNmM599EW8jPF5IOI5TtWpNcljJ5I5cf0I2FoNq9btrc88SZ0UnasTSqMU7SF5HqX3Ly5K0Cq2hM5/PIdSz32nHyzZf2aVH4kc3mtuOVFPruCwancr9UerN50bO7K/ZSs6JnA4XPp3TO1SLvTuWd7R2o8XCwgJd6E78wIRk891b4A3HLfUx0IQB4/ccJAxZCdSyDT5JGnOPLk58I+VXuy3PQDemlyHDoQVw/lmmRX8t50LlUazRi2x+LVTBee7FLO/eSxo7gVgkQy2b5qYfxUKicGp554KaCyOvBs7ioGZw4bQN72loCn9Frk14NXAnJmHznyc8/ehxLvH23k/MpEike1AiKbgWL1QHH82xXlgTAe1SwwxvviHW5GiuJEBlPtUJJ5IVR3RASZ407CLkmiIgUfvrJUM8X8C4rNLd3XlmxvKfIzR3Es6cb1RDE4lW15DeNnlmqqQs8jfVhNO1CsXpO6jvU9zfq2Jr9wTB5b8ktHtafY3JbqjMPvVNQjkZe6RMDs9ljkyJMnrUii9wRUFoeazS0dQJuwUNVEvsdWdyRZdfKk7VN6r982vcy5Hglbly6lg7EZKNpUkV+58N6IqPLMPm56ljFZOdZ3DV4pVvcNywcRuvEU+5r1Xc3opXxoRy9akrWjzXTPTCYrR7J2VGPF8n7E4Ey8oPHWM3na9AnKydJJd6cXUBkFJiyqPMMXNdVUU+wbolK8knHhRMqcK4p9w/BlxeaWYXsU9f/Hw/pOxOC0IVk5ssuGai/CpiIzTha2Z12Lo0jqNRKRUGfXLcpJ7+XwRUVUONZ3Y0zlKI5FolscRgJIE015YCiOIqr9iPS6QVlPM9LEq5bh867iRFQei4dxsGFotseJ1Ip4CeBJrmt07djcTdEd02c925NUfIzLlmpPpMI+UtRTkT67RAeG0+GMYnssX3D5aUl2VlLtxdhUXm8HBq8V6WVJeRDjYo1LNM00FmBZCxjIX25kmdpRnqRE65p6lpBcbMW/2Mq66llCtBGgaWNNtKqJz7dU+6nUj4zivipEmFSR3JpClqn3s5BkLCyjLhuU88RnK3TZYDY1ZlNLKq8Hl0a0o4Ti3hizqYWRTCOZ0FEhRdeIhFeVEqSjWteDSh8b7DQT9pEg+U0ieX6YoFcFPk9w04HIb+NI2MCbqbFBEtt7JpVCr7eopXxxq7qRFNlSlveR6QG3z0K1SeefhB5Mq6KS8J04km3Ark4keCT7R5f22o+vBYD7qhZQ6V3fQ4lWAii1QqXJLlnWO5TRvTRWxRE00qWpIqlCUUr1/3XvUXEk6zL6//M/jOEH9lx+3h7/EqpG/izVjXyuw3v20i1/7eA7fH3vQ/7B+ZdITMvT1Yz3Dl7w3ugZ/+0HXyONW75+92PObo8B2O5d91LX/I2G2hkOH665KEfsp1s+iI84P52S/s0L3ogbPn15QDwrybKGQdIwPpjTWMN7rz/n/Zcn3NlfsixTJlnFJC355PKAe7M51XjNs/M9GDe8feucJ5M97u/NWe6laOV5Z3ZOpByfrvdZVSmzLxVYp/mZk0/4pU++zP3Jgu88useth5dkUcvVZsCb+xdcFCMGcS0hP5uE6d6Go+GGD5+eMNtfsylS3jm8YlmnfGnvlH/86E3y20tipxl/oeLF831mh2tmcUtiLLGxnK1GHAy3KOX59NkhP/HGYy7vDHn04pB4WGFbwzBtGGUVZRPx9mTJ6mHKzx5/xP/64Y/yVx++z9/L3+NH7j3nohixKDKs09yeLsmjhkhZLooRV5sBqXashgPu3Lrm9GrC3nTD+VMB/VUdUV7l/Bs/9nv8o0dvo4HtA7nWcdZwb7rgDz+4y8mdOVejAW8eXfPo8JA7BwtWZco4q9jWMcsP9/DHFaNxyepshHqtIo8t1UNHFLdEkaNpDO8cXvHx8IgsrxmYXQ9qVcYc7q1oNjmvTVcsy5T5G8JAv3v7jO+q+8QnBctZwsmdOacvZjx47YJlmZJElvPLMQ9OrnmcHKKXEe2DUnpVjcd7+NK9V3zw8pjpZMv1YsjrR9c8fnmArwzbr5bsT7ZcHQ4ZjUt8E1EeRNw6WvDik0PuvPeKNGr55OUhUWypnw2g0dI56WF7IKz78HCLexMmSUNRJZRFzO2jBeeLEeqOo5hnxMNGJkasAuNR2tM8bKkXKfG4Joocq3jI7S+eUbUR69sp20VKNGjZjmPMyhDd33Ay2fCiNNTHiruvXXJanfDejzzi8XyP1SbDXae0ueXsSJFMK5rTHB9pmv2Wwaxg9UaEm7bUBwazVxErz+LtnHvvveLx00NObs+Zr3OabUJ9aBjfWrEcjsF4klnF2U/l6MKTPFyxvhhg1non14w8g5MN12dD9u4umF8P8UXE7PaSuZPr6wAAIABJREFU+ekYm0b4WyVNbfA6pp1YMB5dGMb3l3AfVk8m1DNN8s6C68GE7J05rDLyewWrJxOUVUzfvOb6dAKNIt6rqE5lQkmXivawYXy4YXU9IBk0YDWR8tRZwqufjIgerDFvWdYfT9D3tiKr1wNc6jCFxqYOP2qJhyIl35zloL3IoitNci0TGM1RQ3QV4VKPGzXQaMykYXuWygz4QU06aCg+HmHvlJTrCCJPPK5pNjE2i2kmDnNUsj7PyO+tWC2nuAcFV8MUn1pRTpSG6iCi2RMAEM0N7X5LOitZPx32xe66UjQntcjyspbrYU47lmNqJy3FicEbT/16BfOYempoxo7JR5rtWzXtIMamYPdroosY/YU1V9kQH4lc2R1XuCSjPLGoWU07zLCpoxlrqkNHeilBWJKG62kmMjlhCul9ja809Z2Gq8uU4rZjk8g5TV9FtEPxCTYjT7Nvia9lMkk5YV3jDWwmIidtxz5Ie7vkWJH5icTT0x7X1KsIey4JrvWtFptK+u/qvmZ71+ISQ3koQTteGVZvWsojLZLmrKsMEXXIego2cygnYWGmDEmsUy9VWhZckrJ6wzJ8Zqj2hPVvhw5TKKLCUJwotvcsw08N27sOXcvkUhtAfDsSSbfXntFTTZsblm8JW28TYTqXr+8UENWBDNLLI7k2w+eGzR1PeiVANFmY3h/fjAzzr7SMP4jY3pHJuHZgxKsbwfpWhM1U8Ijvcgk29wz5qe/9pts7Hm+i4LVVZHNZptqH4TNRTLSDLj/B9xUznCQ0I5mIageRMOfzXWdpPQavMjZ3RX4t+Q2ewUtDNQXdJFIZVBqWD2H4HKqxAOhmIBMNXsmkULkfFBqZyEOrqWJzImms5SHoNqIeKfARqwcK0xjaVFFPZL9Xr0GbphTHWuqyMgU+Fn/2WDF8Kce4OYmCN11AfXsYUc4EkNtUsb6r8ToWP/u5E196LEFo2xMBouVM+j6jrccdalyiSOeGcl+jWshiBVpAzPZAQEh+7Sinkg6bLgRIr+7GUosUWNdqlhFvPTYbin91ElPsGZTNQyfmmGLfkF9ZVncN6dIDCeW+IS5Ehum1otwzZFdQzQwuHsj1aiUFt0t1rvYEZDejTCS8zuNHEShFFEsXaCeP7kBvtReFyidFvIyxuUwWJAuPSw3OJLJMYEFtatCRpjpMGDwvpNsy1agmwg5idG2l3qW2+FjjoxntQBJlvRlSHmXkrwphNQMAVZXGZTFqkEptWmIwC8DoIKFNsZMMvb5RkeI9vhYfKk2LH2ZQNf3fPgQC+SQWL23nzewqV7QSdVjHaJouejkwiMN8FxgUgKpsWKThaC3gNPgo0WbXXWkdqvNOxjE0zS6Y5waAVezYR5UkP1Aqe/OhguT5Xz/+bD8+11LY0Tu3/Nv/2d8hj1uWZUpsLEZ7vFeUTYRWHqMd2zIhSVpJNfWKttU4p/pZAwUMBhWr+YDBpGSUVWRRy4urCXFsaRpDW0fglHjwFKjIYSKHC16vJGupCjH3e6vFPzZoiZOWcpUSZS3tJiadllTLFJU4/DaSgVqrUZETqWsVJKvrGEYNvjbipcsamlWKSi1Ke7xVDMYVm6tcPHNeQa1RgxZfGVRi8W2Q54KAhw5AxA5fRPKaC8+VIlEldlL9kIjBnUb1fhuMeNw6bZbaRKhZDWcpbmRFxtt5AhstVQipFzlnFmbzKg3TRmTFW4PXsk5VK3zm0GuDTz0+s7K/Ohxb97eiT4xVhcGPWvEXetV7aZRTqEpkuz4XT6IuFHYkM9gSwqNQjbxH1wqX7bx1PpG/+/cYdn2D3bkOBhddi/fQazlOZRV2ZGUA6ulTfDtGsevDc6nHbERm28kGdS1+OV3KwMQNHPE8VHuEcCpd6tAh2XncQLeqT7NUTiSpupFaDbMOMpTIyzbXOkicwvK16l/vzocwuiFIZ+RIrmRw1PW4SmfazutmE7+T1Hp6v5eLkM+KD2mbbvd655PsWM9oEwbQeiejjDZKArhUWI8V5jNeyXnzCqIgM+7U5D4cW7SVGgxTyQDNJUGaWYRjDCFO0ger8LEAUeXEp9id8667U4X0U5f4IBsOvrFwvqMwABUWT0CVS4UtUg1o20lyZRu6kvXagSeZd2X1YX+Dd6m7V13aVX2EU3wjyEjZIGkN+9vVKqhwv3brcrHIO+UDEu5nFTxmCqpDCQzrvFDS1xiknnVYR7TzSvlItiGdobKOju3s+li7dYjvSzatG3lPJ6ntZJ7CLAVQZHaST2dECtzJxvtr0vUJh3u+kw3rdsce+3COTCXb6STRvS/XCMPdBZEpvztnnby1k592UlcBzbsQtJvnqwuZ6u/zzqta78KqenlwCPrqzp+cG9/7Ebv6i44Bc/ENHyhBJmlDd2mwEXTdlS6S8Lautxa6z5N8fzbDHcOqvLyvGUlAWBd21t17aHrVhW7COUe2q6wPx/fZ+7WTaNtkd/9191oXkkb4TJtK9q37fuiuo/q+cWV3X6jg+wR6+a10mErIVbwN51oHr2NEHzjV1W24SLyX3bnqezHZXcM2VaShqqTrA24zkbO6KCxnhQHt/LrOiBfSGT7TWdrJKrUN79Uq3Mey3psezG7fTfBUtpnaeYO7+zZcI1O7sP+EFFq/+35AtqPsrs/UpapncOO1DSmuYZkAFnr5Zzj/Lgn3RRgDdN2n3XF116DzMfcaOIdUhzT+hr9Z1ALtwGBKu/NhQi+x1N0xdfcf3e+ukm5YJdJXm5ndsnTXzn9mnVJ1Eo7x5v0UmLiud1QHaas3OgT2+f68qMpCpPtOUfFsBm+nQsBjF3gTPME+0qGSJHQph+fxHq9Dt2c3pgJhPm+8v2M+UUoAVidfNVoCfLq+S612LOTN3subj676A+R4u/d02/h+qe/Nv7+vu/MHSm27upIuTMf5f95X+Uct33k8/7gY5IZk9vPeY7n37rH/i//jv/snvt6/+zP/zZ/6scHnnLFsmoj9QcGzqxn182EfTqAsuMOa5HEq6YyzFjuPaEeW5FokjaobjOUeH3tWqfTulRcx+sWUxQjsviM+02Rl8BUdOhnoxo7kaYZLPNlSQg9s5okUUk1xIIEXysYStDCBZJmwfLdBf3tMZuhDLJSL+jAFrwLgKCOqPU90kREVnY8nRY9AuZh66hi+1Og6Y5SK/ylZirwv/SgKnpuYzQNLci2Jtt2ALF6Jl8p0nqzkxqDNyHo2dz26NgxO5QuzG9S0mQxAm5klfx5R3G8Y/F7O5p2a/d+MWd+XDrvRI/Gm2RT4yorq1YDRxxHZpcjXkg9Tlm86Rp9q6j2I1sggMjIMXnmuvwLDjxKaAQy6YAkDq4eOvfcVy4cwfmzY3IXJNxNWD8QH1gxlX2cfOsp98RbGazHn11NF8rF4j1wiA9v1Fyv2fyOhHSjqmeyHj8SftrmjiFfit2pGnskjmRlevWU5+XUojoxIDk8Ug1ewvq+pZ+KBbKwBBZOPpcZCBpIyWGgHis1dT3YtKbooxeauY/RYAF96pbn46Zbsaczge7K/g1fSv5jMZb0ugeGHsH5NtrF8Q5EtxGeWrGQbxaEi/USzeghRoRi8gPnPVqRPc0wpUkqbhEG7g+VDLamha0l9XT2QUI9kpSiOFOsHjvRc9+nC3ogscflQAmpGTyPGTy0XP2SYfOK5/rJ8FnAyc1/NlKTOTkWeN3rpWL4mctPbv6bY3FJy792We27/u5ardw2DU0mA7fxyXmuKE0kirkeK8gCO3pcB2MWPeg6+rVBO9V7HeiyyxvEjz+ILIhs1FVx9BdKFYu9Dy/I1AyVMH4l3rB5LqMjlDwuLsf8HMkhdvaaYvC/ded0AePRMQOjyzeCPNAAhFbeTTQ6kZiKZywCwDfdpsoDRdz3XX5BB6vQjCaNxkfT82USJ7G+iqaciWwV5n/K7AX9+Jb6p7ZGk67aZojhW6FL8k3GorHCxgIrxM8vmliFei4RUNzB8qpg+aoT5GCoGp5brLxhOfqvm6t2Ewbl05m1vh/tiKVJK5UWmWU005aF0MeaX8lq88WxPpPYBD+Onth9U21QxfNmwfD3GpiIJza4ti9djRi8t128bDv6gpR1oin2FS4SdmH3asngjYvjSURxrpp+0FPuG7S3F/nel7uTg9xuKg4jhy5rl6wnxNgTQKMgvBRhUU6kaqfYUt/9ZyfKBJIEXh3J8LobJY8vmWOwJXUKxhKzId1KbC5huB3J8fRCMhsmnNS7RbE4iNncUUSnXtBmIhHb8tGXxZszk05btkWH8tGbxRsLohSO9ali8mZBfigzRpuJl3B5rAUWNpGbrBg5/rxbfXfAO1iOR8A7OW1b3YvIrS7EvwSz1UPoPZx9V1NOI9R1DfuYoZxpTeLK5DPSqyc4b6GKRwcaLhu3tlGaoaQZyr6CgmkqK7eBMehfXtyOageLwDwqWr2W0uSRK52c1mzsp2aV09C0fRIxeWLZHcu2Of6ehOBB53/77W+r9hGhjwzmMya9a2kyTXTbYzOAixea2Ye+7Zc9CTT5pqA4yikPD5JMSlxhsLv5pXYduxFWLbj3lYYyLFMPThjbX6FqCa+qJdFTuPyqYv50Hz6hcs3Ql4TqzjwqacUy8rLn+woDRy5Z4JfulW0d5IDMbydphCgFwnQ+xGUehJiShOIgYPa9pRobhs4rlGznTj7e42FCcJH3P3ejxluogQzmP2bZE85L2IGd7nDA4qykOE/JTqcOQxFZLtG2ppwnZ2RaXxaxeyxg/Lqj2U/J5TTOIyE8LaB2b10cMn6ypDnN8It/ZphZJbnZWYQcRzdiQXjbkTwuUtZT3p+LdLGzvz4wvNzRHQ5Gvblpc8HqqELoTXW/xSURypSjuDsmfbyhuD8mfrqhuDUnPt1QnQ1TrSV+tqG6PiTYNZlnitaY5HBDPS5r9jPiqxA5jolWFHSSYokGtC+zhGBcbdNWK7NUhYTatQxUV7eEYM5dKjuZoRDQv8bmwlC7WZE8XImONNHqxhVjYThUbqQNxrmf+/DBDL7f4NBbWcS1gR0WGPhE1idDXG9x0CN6jV1v8IEUvNuKhLGt8nkrf5ChHr7ay/qbFl5XIP+NYPI7DXKStSbxjGUOlB9biRwOpFvFe/q4aaAvIM5HGlqGHMk2EudQaXzf0oTs96AwALolRWuPLauetBFQsrKkvS0hT8E7WA6go6utFsFb23VrxV3aM5R/BRv6Rj39Feiu///FnSbr6J/34XDOWky+c+J/7hb9F7Qwn+YrzcsQkLjktxmybmLdn5zzfzKjaiNoaWqs5GG4ZxyV7ScGTzR4az9PrGcVVzk99+SN++9l9rNUY49ifbGit4f7kmsRY3j8/YbPKMLElzxrGmXxQiyZivc2YjgoSY3l1OWU62RAbh/OKbZWQxg2L1QC8Ih9UPXMaRQ6lPLERT6gxjum4YJjUvLiakKYtTWPwXlFvYyZ7W1aPpxy8ecX1Ykia1UTGYZ2m2AQfxLCmaQz1Nma8t2V1McTkFpQniixNFZHmXdqrJY4tbWsolynZpMJaRbNMMcNWgo40qDCt7s4k/dTl4cshFWZxsFfQNAb3bIC+t5VE18ZgK0P+cUrxRk06qmjqCH+V4BPP8HhD8WRMem8tz3uF1g73PMdOJDjILCLU7ZJ2LdJLOwzb1R6Mx1yL9E8fVLjawDpC78kXvC2NBBlNWkxiaZeJBBoNHMSO+CzG3i9Rr1LwCpc6/NCijId16FbKhYmNxg3tNiI+j/EPCpxTuELeY4YNvMhkP2pF/lKzvefChIHC3qrwQXZoFhE+8iRzTT0TuZkC3P0S1ypYSoemN8Im2JHFrA0u8cRzjUuFLfRG/JXF6zV6FeFS189oK6vwqSN7HlPPXD8Ln51qtvdblBdGN7vQbF8TCnX8QcT6dUkiRQtD1gSJn0uEXbQDR7TWNDNJRq0PLPHCYLaKduR7mWHXu6i8hNjo4M1Mr6E8kHCddmKJloaoVJS3Wulh3Ircyw66GglhHbNzjUtkuY4JbYcStNOxQl1Ikikl2Mim4fVIGEMfCXhafMERFRL004x8kMyGlNJUmIt4GRJLSwEE1X7oCl2qXQLuIMgLB7JMfqooDyTYSHnYvN6SP436apB2KExqslASzNPuaoWacfCSevrk2O43x+ae/FTv0kgb2N6WbUZb9RmGN7sQP2NXV6HbHVsswSqyTheFjs+1LO9i8bBWe8K8JkvxUpoCykPfM1XJXM6nKQVoFccyCG0HArDkQggraAq55+INVFNJOW27EKHAErZDCXmKSpl46IJ+OmbUZvRBNqaSCYauCqiXVQ7kuLoqpi7VVDcC0rv9UmE/O/CXLDrG0PdeJRRMHrfM34okfXUTmMom3M8hYbIZSXAQIIFBpQ9JnYF1sTKBYoruvAuLZTNFfiHBItsTmcCpx4p04WUiaB4YDgWDM0kbtYkwSV36qgvJrd7IsTVDYZWUkyTa/CywiNUNlr6EZOMp9qXmQoX00HjjqWYCsLuKIxfJxE/PHpruOoivNZtLXU33Pm3lXisP5HjirRzr5raWyZFU9ddU2zDRVvge7OsW8kvL9tD0rORNVs5HkF1LZ6e2niaXEJ8OsDZD3Xe0dgx7dh2eD0m6yUr+3QUbdexfx/pGpWN7ILJLr0MAEdAMNfHWha5S31e72BCe04wN8cZSzmTfdXMj8OggkkTbKtxf3tMMNMna9RUyLlYCahv5Po8KR5tLmmh61dAODcmypZrFpPOGehrRBet0ya420X3AjG7ke8EmOiQe74KrTOn69zUj0y/rYkV2Kes2pUPXDpsL5ZksG6pZTFRIeIyPZALDpor0uhVAGepmgD6IKCoszTgW9jFWxMuGei/BJYo20yRLS7SV5eJlTXWQkSyl79PUsp/NMCKZ1+KntF58mt5jBxG6EeZS1xLak8wrbB71bCYIO9cOJB3dbMVr3Uxi4uWOxhcWV5jPaFVJum0WidKituK9HEZE6wZvNNGqCt/JMbqx6FVJezCU87ttgqS16atbfBKhyhZlrVSf3KgG8UbJ641FbSsJ9WlCmI4PrGeoRlGBpVRFJT7LpsXn6Q5cdswmfIZlFOZZuiuV8/hUAGlfcWKtAMwbFSSfqRu5EbzTg0StoJLxlW/Csj172sp90rYCiMPzvgkJt99fQ/IDHn8sPOL8vxKM5c/9D3/rT3y9//vX/us/9WODzzmwzN6863/mF/42rdM8fnlAlLS0dYTSnjhpaVuDnSfcenjJ2eWEOGmprnIZeEdB6hmkoum4olqmEsCTOthEpMdbyqsMXRiilaI+CBURxqOWu7zvaKNo9i16q0VmN7CSotqITNKsxYvi98OsznWMSx26lvfYWYsqJcBGWZHi6UZ8QFK/gEhGFahGsf/OFcvfPZCB/dyIlHCtsIMAAIYip7T7DThFdBmLdLGVxMtkqWlGDpdIXYSkTYrUL9rC5oFFNUqqBYJc0sU+eH0gub2hPh+g9yrsPAENw0cR1b6nnVrS0wibi8SPry7YXgxIziKySwmCqafC/MYLjXpnTX06QJcCaOKlpn67QL/IRJrnxcPTJTHqCuqTluxFTDN2wtoYT3IlPjOXeAYv5ZzVY7+TkKkgo1xLhYSpFM3Mkp5FJEvY3naoVhEVimgD6y/W5I8S2oGnnTqylyJJLe61jB5F2FgGnvVMBnjVvqeZWKK1+MbsrCV7mqBDGIYppQO0S4v1RsCWKaW2Ir2S6wCwfdCSnkYiXdTCdFV7AmZwgXleSxdqvNrJGKOtDCTbkQyEXRwAWBHSKH9sjvvNWQ9Getmkg819F6SNArqqAwkQ6gaFfYptJOE221vSsdoMobzbkL6KSefCqiVLJV4rI5LQZKF6hq7aE2CgWxkUb19r2fuOoTiW/a/2BNDFa6gOdsDLVAHwzEQGnJ+FBNgAalwExW3L4IUJ0i+5X2wnN72WQKHRE5ES9+s5FaAHsn/tUO6VauZ7mfL4U0mOLPcV8Ub2u5NNRoUApc196cV1sYCRwcvQTZsKsK0OHJNPZBDcyyrDte0CbOJVUAgE1txm4neyiXSlogRcD58LY9z1tJowwN8eK0bPBaR0susOeHcy1WYk6bgu2tVgwC4FVt4jIKGahU7Ziep7X5uJVGi4EFDU5gGkhc5SXQu724zUZ+SgAMNXjnoUpHtRSBmNAiPtIV6FJFgr98nglYAUH+R2Lpb3lAeiJrC5nKc6BM1kl57tbcX4iaM4Cl6yqe7TQFGQn8trUunhe0WIi+VzUE8Uycr3jLfXkKw91VTOU7WnyC538mwQgIAXxYDUXnjSpcfGUBzpPtQsnfteKpusPKvXNPmp7+WcHfjqPIPdvzvZbTtQvazQprLM8KX7TCJqm+0mC2wioLUZBvBrd2BRWyj35fqC1H0ky9BJGxjMjhXPrp2k+k4NLsiq8ytHM9glqkZlqA0ZC/DILxz1eDdZEJUSwmOC3LY40AzOLDZRbE+0sNlGUc4Uo5e2l0N28tfufJja99LrNtN9DYcpBcR4o6gmmvwiJJUORN5oGs/2UPehQl0PabKSeowuVdUm8v5kZdkeRX3oD8j5dDEMT1uK/Yj8sqXcN6RzJ764IEsFuR7d/dPVh0jNjEhJde2pZoZkHeSYrZzfZGmlTmMo/j9vBMx2AFQ5BFgZRTMymMr1UugeLLciCbWJ7sFZMwy9piosH/oktfWU+zHpdUs9C92LzhNtHfXEkF00lAcSLqQ84DzJvKIdJ7SZId62tLmwvNlZRT1LgsTZ9ZNjXbBQvG776ox2GGEC25ksauqpBPY0Ywk0irYN9TSRTk/PZ+o8bGoC8DOYQkKRXGrQAVR2abOqlU7Vdpxiiia8FmPWNT41uEhjyhasp52lwghvmn6iSVdt371pB6En82bYjVISxpMnu6fKRv7duh5IemP+OemrqkN4T9PuGMguxCcyUDfSh5kIO9j3YZaVMJ2BIRSQKkmxPk9RZS3bzFNhLJ3Dp7J/alsK0EtiYT5vSmLDuj4jWVVKgGMj2+o6KFWoPPFliUoSAZhtKwyElmPq+yw7oGqteD6V+mxIkPf4Tqp7MzH2X8BSft6B5ezdY/+NX/j3/sTX+398/b/6Uz82+JwDyztfnvm//j//W+SmweDQynMYrxnomj/c3uYkWfKs3GPRZCTa0nrN0NRo5XFecV6NGEUVpY3YtgnrOuXHj55wHK/4/dUdlk3GF8annNcjTrcTKhsRG8u2idnLChLd0nqDxjOIaj5ZHHA8XJOZhstyyEG24a3hOf/0/A1GScVlMeBksGbVpJ+hwa3TDOIa6zVFE3NntOCyHLKXbnm5mRBrR2pa1k1CrB2bOsFoxxf3T/l4cYjzinvjOZ8u9kmMxXrF3dGC710cc3e64GI7xGhhNRNjqdqIPG4ompgkaom143IzIE8aBnHDq/mYKHLkSUNkLFp5sqjlYj1kkNZcLoZMRyXXywFvnlzwwZMT3rh/zvl6iAL2h1uuNgOKQr7QxqOCuo2Y5CWvLqbcP77mepsTGUtsHFUTYb1if1CwKDI225Rb+0s2dZBcBG/s/HzE3XtXXG9yhlnNYp3zxVunPF1OiY1juZV8/r3RlsvlkChyjPOS1hqulwPyvMZaTRxZrNNs5jmT/Q11E+E9TIYl81VOmraURYLSDtsa+X6NxaPb1oZssPtSa1tDljYUZUxTxAwmpTC31hAnLUp5yk2CbzSHt5asi5TyIifZL2mqCBM52k2MGTZoJf7gdhMTj2qadYIZtLhWif/WK+K8oa0NOkip80HFdi0yPm+19HYqj2s1w3HJ+nQEHrLDgvr5EDdpUcYRJRbb6t2ARIPdRqjESkXOMoXYMZyWbC4G4sGNPGbaYFcxg6MNVRVjlwmqVjCTAYAvDeleSX06AKekh3LQynHWpvcMp8OauhL2Wh/UuMsE37Hg2hPlLfYqxedWvLiRh0x+gPR16Bh1SvpG92t8q9GLCI4rGaRvI8y4wa5j9NrgJq0wu6H2JrqOsCPXB+CgQE1qYaGDV1iVRhjavRai0COayf6IT1LRzuQ1at1X2qhKgwGvPGpgYR31XtebtSkopBfzXH5o6yOZSOp8ld4E0GE8ZikSfpdKcEvvS44kcAYbujq762mVhNRMpNeT4OFVLTR7YcJKg6mVpPYOxRutKyXXLfYymXZkyV5Fn5mI8sZLvdBCkhM7plo3qk9dlokcR7TVqAbQMrGja9V7IXuvbfDzukT8s+VJS/4iohn53hvZ+Vx9LPvoQ0WRD2C277hsoZ458eEG1ro7LgFkoVuzgmYqEw7FiUw0dQnCdEqDzPeTa67LzFDBhxu82Tt/JL2XtHuv11JHFK8EiDejEP7TvVYGmetKJoOitYDlLg3ZdX2WEbseSbWrjXGRLGcTYcpvepvrqSe7UrSZsLRd56Q3od6nlUmSzhvbDtl5VG/4asVXFyZRwnZNsevflGCc4F1FJv4AXCosuDBo9B2q3USfKQXwRlsBMtWe2Bm8ksmPqKQHTLoO5yf0fHa2EWUDc13vGO5ozQ7k+Z1vtZukk3MvkwqyLbUDftAzgi6RSYg2uwEWc/Fwtjm9ry5ddvJmFbx3u+vU+XF1EyYC2KkLlAsTMLnqfcFRIeekqzLCi4ezCZL6bj+6SaOoELAOYfKy9v2kROd7bDMB/VHhqMe6DzFKVi5IqEUq33V+dpObMjkhvZXJxvUAv7OlRIUP1o4AyEP3ZectNXXol/Q32O9wf0lqr5XgqcJJ2u0mVK0UcpB97QoygdB5Sr1SRIWVKpdwrUwpkunOU2oqF/b/xu+bD6x7WKfrPZv0MmWvEEa07tg/drUjracdRqG7MqgCSqn/6JbtvZ3+pgqiOwdSQeKSCF23wm7eYCj7fsvYSOIs9FUv4udUslxXbwK7SpOOpexAqfc7T6YOvsyO2QygtV9GKWEw4QcwliJhJo526+w6NJ37LOi82VN5sw7lBhD3Xb3JHxHQ0wPPH/D4fpziq+oHvu+P8/ga+FNwAAAgAElEQVTXwPJf/uNz7bG8XI355i/8CNfvOeKjgqaKODlacPbdI9JLTfbnLil+50AYhQcto08j6q+uZWBuPHcP5/zeR/dQxnP0/ySc/3zFL//2CdmX51R1hP9gxEfvHPIjd59zth5R/u6+SKs8vLxvUXs1fpnIACdxmJVh8SAn+adj1vcdT28X3Hp7yZMPT5jeW2B/dZ9vv3MAxhNdCoO3fqth8n7M4i9cszwbMfoo5vkbh5A4pt9K2P7UhrY2DMYVzfsTmokjvTC07275J4sh1mrcOuZ5sk98FtMOHBh4Odzj1v8V870/Nw1dmYrB/RWVdixPR8RT+XVua4MvIqKFYT22qGHLwT9KKQ8Vl69Z8jtrtudDSBzxaQynir1LT/nvNBz9YsaHP3OX2fuG870hxfdmTD6GT398hKo1h9/UIeAgZ/2e4sXxkOxZzONGc/SrCedfazALkffoRvE0n3Lw9iXxd4Y8/5LGXyeSinmrwlvN3m/HvKiOOPwtzeKvbhj86ojv/pwn/7Uxp+81JKcy0H1xNIDUwbOYV8dDVN6SfZCxPcg4+U0oZ4riAbzxf9c8/g8z7Dpi+vsxth7h3vFsUk98rbG55/6vWMoDw9mfT4ivNfuPYPvXa/y3phRvVCQvElZ3a8a/mzJdecr9lKPHlvy84eP/IOX4H8U0X4LBqaLYj7Efjnjz71ec//CINPhQX/vNihdfG4ik7H7D0a9HbO7E7D9xLB/GFA9rZr+ThBCQmNnHDU//UszBdzyn34h4+39qePxXRA9m3yxwVymjRwbdZBxsPYt3oFmPuP8PW9Z3YuZf9LQRzL6rmH9J5L+Hvx6zuasYPYk4/4Zm8gcxxS1PdZbw4FdbdGu5/GKCthE2Bf/xFPuw5fifGaYfbnn280OKhzV3fsXw8usD3v5ftlSHGcVBxPYkJr2WMvbtHcvoD2Pan64YfDvn3t+/5oP/JGPwwlDta279hpMo/v94i/mljPk7MdmFCkFAEfVEqj+ufiwmXmhu/4bl6V+OUQqOfwtWr+W0Q+kdVc9y8pVi/NizfCPhzj+uePKXE7yBe/+wYXscc/1lzfCp+AHPv6FRhWH4TKpZHvxyhUs0p19NKG5b7v8Dz/Ofizj+TRi+qigOEy5+WDzSr/+fa1799Jjhs5jhK8vzv+yYfSemnkSMnzr2fn/B1XtT8suWZN5IyubDhPkXNA9+eYvXissfypl+0rC5HbN8qPHa0w49h99SrO8qHvy9C+wo5dnPj6mnwgzjYfvAk51F3Pm1ihdfTzEl7H1gBfxYmL8pg7DZx5aocHz6bysmHykGF47hsy3r1wa0meb8JxzDJ5pk5Vm+qbj/KxWP/yPH8S/C2Y9H5Kee2Yc1mzsJmzsxo2cyqK5nmr3vtQw/XnLxE3ss34DJI0lvnH3SYkpP/mTB4795CMigefzE8uIveB7+XUszkZ+hi/cMsw8cV7Hh6FstT/4aTD6IOPx2RTM25KclT39+xPCFSE2HLx3X72rGn3qmnxS8+HrO7CPH1ZcM40eeq/dg9oF0H04fNbQD8aFqKz7D+Zspg/OW5yeak99ytKli77fPOf/aMflly+lPGPY+tKFkXpFfis9vc2KYPpJO4HagGTwvWb+WS09h4WjGhqsvCrq+9RsV+ccX2MMJlz80Il1aJt8649N//zazDy3ztwyHv9/w/OciTn6rZXsUsXwDXv+751z85GEPLuKN+PWirbA6+ceXADz/G7clNKaQ36Wjb20oTjI2tzSzDyuWryeMnzZ4o0jmNZt7OZdf1gxfeo5+a8H5V6cc/+or/Chn/qUJ9UgxemFl8J5qBh9ecvnnT1i9JnUx42cV8eWWZ//mPqaC0XNLet1y+ZWUwZlj9LjADiKe/nzC8Tdrso/PWPzEHVZ35V6YvxGRrDyH37zm+r0ZB//4OSjF+TfucvDtBT42nP7kmPzCUe7JcSUrR/TI4VJFsWdwCQzOHOM/uOD8a8d9sJhNFMMzy+B5yfmPDjGVZ3BpSRYtxVHSV8Qka8/wWYE3muI4Ib1u2dwRz+XgvCVet5T7CcMna8zVuu8/LN44IHu55vRn9jn6zpqL94Yc/JOXuMmAyx+ZhXAexeRJKeFMmRHGsRYGsh4bRo8Llm/kzN5foZ+8ZPlzbzN4UbJ8M2f/N885+/oxgwvL6LtXuFGKOVtw8Rfus/+dBXYQUx2kbG4ZRo9r4nlJvZeRPV1QPNxDN47se69o7h9SHabkLzas3hyjnGf0Tz6m+uHXSZ/OWX/xgPG3X7H46m1AMfndV8x//Bajx1v0uoTW4qYD9HxDc3dGNC/Riw3trRnLhwNcpBh/b45PTQ9QvNFc/tCI6Xc26GVBc2tM/GJBczIhWpa0k4zNvQxVixR8+L1zNu8eMXz/FRffuMfs1x+zfe+e3Ndas31rn8GjOXaa404yqVV6/4zyjUPSx1esv3LE6IM57TQnfvSK4iv3UB6S0w3q/AoOZjQHQ5F+Nw7l4eK9nONvFtjUoBJD+nKJHWdEL6+hafDbAvWVhwIei4b2IKfrE41WFWZdCwvZOuwkJXp2SXP/ELOpUNsKNxui5xvcdEB0tRbWcFPg9saoZ6egNGY0gLrBHU7Riw12b4x+dgazMWpbYm/vC5vpPUprqTbZFFLHcXaJOj6A0ws43IfLazjaRy3Wvb/ST4bgvHgtAbc3QW8K8UDOxnB2KYxhxwhqBXmYFapq8V+CyE3XG4giweZlicpljOHLMiwv4M7XNXo8klqSqvqMhLZnI5NEXlO6f657KK3wYX/+WDSXd//i93wOHv/aY/ln9DF799i/85//HbZ1zFuhiuPOaMHj5R5XyyFvHl+wrlOKJqa1Gq0djTUMkgalPNsqITIW7xUHwy0fPz9iOC750VvP+NbpXbxXfPn4Fe+fn1AWCSZylOuEwUSmbkXarnBOMRmWrAJjBlAVMQf7a5yHxUr6NNfrjDRrKNcp6bCmXKYo48nHsj7vVV8DwacD0ncXRNqx2mQY42gbg2s0cd7gneb2wYKXl1PaRcLszpLFfECUtsSxHFO5TYjTlqaM0LHDNZoHdy759OkROKRuYpFCJGwFTUiVbbSkuo4btJbtJllDU0W4jUzHJ3sl9umA/M0lmycT9FGJO8/QtcIeBkavMgweR5QnDjduwSmwivxwS/lqKGxRYtGRxy5i9KSRCo3LjOyooDobYPYqbKPFe1grovsbqnmGGba4ywR9WGEXQepRa5HFHm+prjPwinS/oN4m+EqjMitpuA7QEC0M7VGDKoQx8sbvPJjhPaqW5Fc7Fi9ptDL4+wXuIg0yZ4Pda9DLCFMr2rEDizBdx42k2TrFzXTe5MrQzFyfdGu2kp7beVfTM0O954g2wrr4vYb4WUJ9YEkuDLpVlHcakvOI+rjtfZs+8pKSWxjS84hm7CR1NQWXObIzI2yFg2Zm+zRgtEisdRm8MhPbp8/aWUv2JOnZHhcLQ4WSfU0upZtT5M2O7CyivCVSXm/Ctsa7lFZJUxWpcHwWkyyUdGS2MsseBd9fs2eFtRp6FPQpq16LZLQ8sZitJlqLlBgNw6ea9RviiTWFsG6qlRqFeib+UK9Fjjh4pSiOpb8yOw89pFMHTuR7zcgzfiQBUO3I0w5EYr29Z8mfm555qfY9phR5cD3dySfFDyfLRVtFspTkXhe8kt1vSrXvGT9S2FzCt/JT1UtxlVN9eq/0hnby5vAlE7xo7dBJwu4mJI9GgcHSO7bEheReXQc260JRz8TzqVphe6o92dfhS8/mtiK7gtXrjuFTTTOW7WXnAurqPU96EeSvYZyQzD3FkepZNRcL49ZJGptJYB2D97IeiywXOq9gFx7mGH8qYUC6EvZK18JyFSeq9xsmwZuYrOiDiJKFsF+mlPOUXtPXWEQb+nTbLuk1vfKsH0j/a5fC2vkC66m8biqRiuoWmUSM5HzFK99XHigvXtRmKF7EZqx6L2e6FIlqPRaZr6mCZLYSGW+y8H1vp02hPBQQ14wD0xaAk1RiyPmMCvm+2NzRsh/BB9gl33YBVM1YEa9l+/FaUoqLQ5GVp4sgd56H9NSUAISkP7PzujajIGVfyjZNHWo0tKxDtxKkBXJdo0pkp8lKmJo2lxoTE+Sy2oo/sjjQZPMwkXRL6jqUg3JPmDUxn4s/tOuxrMeq74ZNF471bROYOpExZ1cy6KzHAkq1DeFvSgLrOglzVArj1vk8bwR9Y2rP9lgzOHM94xUVTuouri2bW53XEUavRBbbhTaZxpMuXEiW1X366032yaYSyhUvLet7CenCUk0Mw5c1m9sJUSVSVGUlUGhzKyabS/BVm4kvU5ZvqacRycpSjw3R1oXj1cHCIoyibj3pVSMget5iM5HVNiODV4gMdhoRFcGHGQb5pnG0eRTSty1tLuBYt570upUQrtwQr2V5rxTRNkh58yDT7ZSQid6lxBpk32exeCuHEfFGJLXxspZKj9xIAFCsaYdib4iXIuuNlzXNJCFe1rjUgBUQ72JNsmx211KLUsMr1TOIpmjFKxqLDNZrJcE/VhjF+niIKcQr6BKDqWz/Xd0lx5ptjUsiTNHgEpHl4n3vmfRGCZsYrrfLY/RWxkRumKKXBW6Q9sxlB8RUUeNT6fPs1ue1RtdBSlHVfZhQnwbbJcUaIzLZNBEWsqykuzJNUOutAMU0DtsJYTzWCYMpg8/dwLoDnW2Ldw6VpTu2kh1bqOIYX9egb0hbuz7LDije9Gp2Hsvu+e5nrOvetO4zIUF/5ONfAY/l7N1j//X//m//ia/3F3/2v/xTPzb4nAPLW1/a9//p//ZVXtYzChtzVcuISwfNyFU1JFKOg3TDZTXEodg0idSQKEdmWlqvaawRyWIbU7YRRR2TJw2zrOByO2SSlWybGOs03iuGSU3rNNs65mC45WqbM8tLqjaiaCIOB1uWdUprDXVrMNoxzUu08mybGB30U0Ut6xxnFUUT0VhDFrcUQQIaaQn/aa3GWk2atHjAOR0CweS5qo5IkpYsblkXKdNhwWKTM8orijru12OdxmhH3UQSkuMEbHdhRZFxNK0hSxrKOkZrT1XGRLGlbQx70w2rbcZstGVTJSigKGOOZmtOryZoHWQmTjMYVDinqWtDktgQQARp2lJsU9Ks7oFvFDmKbUKchF688O/u0ak2srwWgG9kn5X2/d99DYwC10h9S1fLooy8r60NynhsGaGMI85a2trgaoNOLEnW9oFDw2lJWcZo7fBO6mlcbUiGNU0VoZTHOyXVMsqjI4cysj0I0tLCoCJ5zmQWW5oeZCrj8e1OukgIXMEqolEj8l8HrowE+HfVMY3egVRFAK6IHNMqkYs2QfPllFTXgADqSIAT7sYoqvPndOuLHKoyIkHdGPH8pg41kNGXtwoajS51LyvVeSvMfavw4xa1NvihDZMVgn5UpfGx+Fg7v4mPPOQWtRFgrGz3Cy5A16XS1SeMu8g7sSocK7vXoK+00UGq2ckfvQGfeJG3Qu8plXRn8T+7VKpW+mvQXY/utISAEpcIUPUGmRRplIQOVcGDPHCYdZikiIKcMUJqfLzsY1f7ohrVy1A7SahIzFTvgfPhmnQSOJuFihcrz7tOatdVooRr2ckEO0+yJC7LMZuik53u1uv5bKVIMpcKGBfT12lIrcxOdtj3KyqR04rMtUsa3g0OXHftggS08/XelF12z+ta/NQi+RWpqUgpBWR3y3ZSwm7nBcjfCI5qd6CoC4ABmRDpJKZd/UV/jAFwmFrOq492ksvunPaf1f7GCPdFqE/prklXlYKT13xEYD522+zvq+4CKPqAJhXkp7ol9PR99joAu3qhll1Fi915L6PtTlJ6M+BJPHa769kFAekQcNVVqfQ1KOGc3wyB6jzjhHu3/8yG4+0qR2xCX2ciDJ4KFS2+r+uweQDoUQABmr42o6+S8Tf2q9uO4bP3g+++U+gDi7rz1p3fm55jF+3On9RZhPva7s5Tf50cfQCaqW4ARS8eY2UFtPaySed39R2dtK/7n/P9PeRNSK+2vq/Q6eqo+tqasH2CvLf/9433SCUNoIIH94Y/rbtfbspTO8+xsmGCMJLX5Lyofh+1lTqRvuInEuDcnU9nus+k3+2TlqAgkabSBwr1/lP/fecpyFe7WhOXqPCd5gMT+tnKlpvP6Ua6ZjvfaHdu+q5K5/tqGqnxCL8V4bp0cmlvROoKoG/IOFX7ffvZ3njtxrVV1vXn2SsBoBIwJK/Jm25ITJWsq7tH+of30FWoBBkxLmyrA6udD9J5AYU/qG6k65iEnbz1pvS1acN5dzs5qvu+/bi5zzefu/l356H0flc74p2AyxsPf3M7f1QtSrev/4KH/z5w+//n8WcBWE7fPfFf++/+5IHlL33jv/hTPzb4zPDp8/dQynPdDnlZTrifXXE7W5DqllRbnqz2OclWAHy8FAnWvMy5PVhilGNVp2zahKKNyaOGt8YXXG9zvn7rY/7Kgz/kx46eMUlKfuLkCSf5itRY7oyWDJOa1LS0ThJmF2XGLC+5O5xTNBHDpOG6zIm1Yz/f8pfuf49RWlO2Ec+vppwM1sw3OfNNzmIxwGjHqkyZ5SWv711zcTkWgDjP+fLRK9K4ZZA2TIYlg1Q8grenS754fMrfeOv3SWP5EGdxy/nplMmgZBA37I+2AjLzknFWYbR4Jn/o+CWjXD6UeVpjjCNPBcis1xnDrGZ+PURrj1Kew70VdRVxvL/kajEkjlvO3z9if1CwfDHmrZMLXrzc497hnLaKSBJLFFlWV0M2p0OabdKDMK0lKfbe0TXWarJBHTyMniyvxRM5qNhcDHj7zhlp1jAZF+SDitl0w3aesz/b0KwSXju5wm5i4tgKkAygwESW27euMcbhreL4cIlWnnqVMJkU2G1EnDcMJ6UAUq84uT3HbWLKRYrWAjjrKsI1GvtqgK3FZzmYFtSLlOl0K4DSKyg1JnG4TYyrDSa27O9t0E8zxocbkkGNySxunmDylnRaotYR2aiSHlDj0etIPHLGk+8X2Asx5CQf5ahCy+9CpRnMClStUKVGJQ4VO/LDbQCEHj0KDGnw5AGoy0RA5f/L3nv8yrbd+X2ftdaOlU4ON737EvnIVieqA9o2JBtSwzIg2DDgiYM08djwwH+A/wIHyIO2rZntgeGRp4YHQgsyHBots6UOJF+Tj3zpphMr7rSCB7+1dp37mna3YAIkG13AxT2nTtWuvdfeVfX7/b6pdOh1JgilCqjKMbvYQOnJDnrJBe00WE19KZkiYeJQZx1mY8helJjXBWon280e7VC1RfUa80WFWvTos5b8Tc702Zryi4LsOsdsjDRthz16PhDmllA7issdamqpf1CKi2+AoAK6lWYtf7IlW0nOaXZvxiYu5F5MsmYOXzvRGeYeTjuKGwOnHeq4J5SecNHha49uFBwMkjVZBNxM6OSogDtwmEajrSIcDvjaoy46/MFAvkyiLHAzQXx9LShwcW3I76WJtdEt1+x0RL2kwOovB+yhwy0c1bWOxZCifmkwvRg32dOB+o2iuNfiGtxExPTQ4SspyoYjNyK1BHGKdUU0UyoD/ZMeV4kTro9NKnrfELhKvoyzbUTiHg3SPFaynfJOUO3+yI16OVfI6/WnTsyXMkCJ5hCg/0YzaiNtJTE71ZVEYNg6yL9oulXeiZ7P1ZL32p14QQEPPVkTC3cLzYVoo5oPu9HUyueiFfRFYPJCqMGuSvmCe81evhbzsqyF3VMbm5YgcVN1RMqivhOkQegXgWwLzRMnqKiVSKW0zeYsjIZbIds3wSDIc8rzzDeM+ZhJX9rPA+2p7M/0y0CxitfEQRDdZHRbTa7J/YEgoyETI62H2sqUITk2UZaI0op5VXsScLU8rn4tDrKbd+S1+7mcSxsbOG1h89zTHUUEEkZXWG/kmFFyn3JCdfW5oOmpCS3vAu2pILpyXclQxBfyGvkmxGY7yGAjCAqbGs9hJqZCwhyQ3MLUEE7eeIZoAORqiZkhCBIszr7qLd1jv1AS6xOguVBj89We7ItiO5HmqF8IcupKGQTkG0F0R6MrE9FtBcNCEM/JtadcBoptoNjI2mwfSyRRe6yo7uW9ZivYPBUnWuWh2PqxgVQ+7AcoTii7KMh3fmx0+5mYLzVnGldGA6ZMYmbaI2nIs6hLbU7kSUmvCKJDDEoeH4sjzBDopxpbKqYve4apOLLaSpGvHT7qIou1w8aMS9N7ydB0IQ4ofDRMkoZgd2ZoD8XILt84hloMk4KGfiauscPMjEitq3TMYVWj9lMcer240zaOEHM17VRT3g7iGBuNmACGmaY7zKJjrca0Pg7jFHrwmM7THefYqRHqqxcXWW2lMbaV3G+nBlsbhmkmKGhsdPP7jmzTYxrL7lwG2kEr7FROmivNaBA0LPJ4TeVou0fYglG4SSYaSb/P7gxG44uIQrqAr3JUK6hpahiDUYJcukAoDaGS1/WTAjcvZR1Sz2XF/CghlaEuxJCnLsBoQpETJqXsl1b4w+nbjZzRhIRSgpj/FDmhKiQ2pYw/Vyl4WAlK+vCWGs6HJjw+SMzKj2kYlVKo9NjkRuul2Qxv/fxnNZdf/feX6eZRP/F/Pyu3n2vEsvrgSfjN//bfZzfkXN/MKaqBflegCycoVO5xOynaUQFMGJEfNWiJkkhT2cbA3KKvCjGRWCn6S4veGkFmQFCaIhpnOKGp4ZHCtFPYmZfiJcYWqF6+AN3UY7YaNxXqYH/sUIMeC9A0mZcvzji9LILETuRSbPtCvsB0REf81FFcZ29NcV2ZEBWJEugPJD7ATj1mp8epq49FaXKZTfehAqaVx9nJnk43ToaNFKkqBsWbVpGvFbt3hPo4LMRGXfdqDG33ZaB4ssX+YCYGHrWnfilUwuSG6oqAj+YG2Wa/7RTtYGdhDM3Omr1xhqvEHEPF9XrIZ3J1GNc3mXJop3BFpGVOJR6jvNEMB3Ies2gAUtypaFiRqJuCdiSkJjmCJlQixU+kNcq2sm8JgfO57H+xlP2SMG15PT1ElKZLX1Cyryq5okdUJOSyP6aRbeRrOb96UBRLQSdS4Wl6KZrzrRqn77A38UgIhp2FMUKjP5B1SdN3OxFTkYRi2Vr+nvYvFZlpyZNhhWSHSiGLkrU3kc6XYgH2WZgR4YroSjLvUA7Q++D6FHSfRQrpECmUIW4zGV0Mc6ivHhxj3M7D10iZov0Bo/GITghaPIZ+IT9njbjc1ldSdPnigRFH2CMY8n7Zv09gvy7pnIwh6JF2qnvZ96xhRNBSY5Oa0xSNke3kmmmP5XrRwwNkJdJdxaJfrk2JJRHKnekEKRpjPIJQ5FwptMx+Lm64D51TXbV3WzXR4VW56CI7e3CdRpQR9hP8hPyIAU4Y4zhSgHowsk8JjRrRwDgYspPoRDuXwljZROWN12YrdE4C5NEN2BVSCKZj1TbEInuPRg1ToeEVm4AtBbVMhi5ZE8Zgejm4+HXRCVU0aHHnfWgEIk6damz60uuMyE63v8bT30wbG8l4/hKCklxVUzZmHqmfpguju2hqTLJWcmpBruOslf0Q59VI7UzoWUSnElo5XrMRlU2GM64QMxf5rFKxYZHHaStNuTfSlKdrJGWjmt7THpho8CL75UpF1khMR4ojGWueEe0iOsRK0auCoGoPjXQemsEImhzeQrmC3iM+Pl5XrpQmplg57ES0xUn7mNbblXKilQ8jOpqaGHlPSdzHMM/25zA2bYKWyfViWnFOzXd+RK8EzZTvhWROk65dFcKIghFfR66nEFFHtaeiahVRU8nAFBfoGBUTiGYyZnRfTcig8kKFzVqHreLfY2OXngcQMoWJTZ0rxKk2mc7I4zWmdW+dt2Bk3ZX1+MKM75dgFPnGyvvYKEHdlETbBKUwrcVVmVBPc41uLL7MBDFLSF90qU3Zl7joShwpq2qQ+A9lvdBRtx1uXo2IYFAKHemnvszQvVBY1eDByDHpdsBPCnGLHdxIbQ0m0k1TX6MZ0cFkqCP0Uz9CMcr6vQFPQu20JpQG3QwErVHe7yNBUjPngzSFCVXsB5K5z+juGv+XA3uAQI6OqQ8asAfIZSglFxMQp1nv36a72tjE5dl+v7wnJARUq7eQS5WMiRJF9aEuEwSZTDTYoSe5woa2e7ANI83jVx1oYWwURyrsX7QX+UtAhT34xkX4l//hv/sT3+7/8q/+Vz/1Y4Ofc/OeWdFxt6v5N9/9I36/foe/e/FH/MH6GVkU/bxsDvjjzx/x5OwerQKvl3PeOb6j94Y3qxnfevQlH9+d8duPv8f/9Me/xt/7pd/jf/zOr3F5uOF2M0E3OflBi/18inm641eefEmmPL/3o3f5+uPXXO+mXM7WfLlasFxPOJi2uKDYbSt+4elLvn91ijGe09mW18s5AN0s5/Roy6zsOCp3fLE+5Pa7J0w/WLK6m/D40R0vXh5RzzuaVcXloztB3GzGyWTL6/Wc1aomzx1uPnB2tKbKLD/69IzpcUNdDFy/WmAvLTooqmnLyXTHy7sFAH2bU087Lg/WrNoKpQKbpsQ5jbOG2axheT/h3/iFP+F3P/2QqhjYNiVZ7siNY1L2vHh5RDnt8V6x2xZ8+O5rPj045sPzG75cHoyZl9+6/IJ/8idfZxgMv/gvfcL33pxzWHdcTxao1lBdbGnqCflhi+syLs6XLLc1/bpE556wLCjOdkxL6bLWmxpnHEOT8/zJDdu+4OaTI8LUkU97oe7eV+iJ5fxkxc1yim1zlPFiBHTa4e5KhlOPmQ24NmN4KkhpCIr+synVe2uUCjTrisPDLXfXc3QR3Uh1oG+yPdUU0Zr2y1L0iltDftHQvpjAWSeRN5/OcAuLKj3NNOP0/VsGa9g2BTp3eK9RAZrrGvJANh1QP6oJFej3tgxNztNHt3zx8pjQGurTHZNi4P5uSlY4utsKn2n6C4sqHVnhaJocU1n6VUF+2DKsSnRt0S8r3GXHfNGwXtZkpaXzGttmmNIxvFQsSTcAACAASURBVCpxtUdNHKE1mF/e0rY5z89v+eT7l/QmYJaGp7/8ii/++SVu6lG1o/64ZPOBpT7d0d3VdA/otfl1RvOORQ2a5x+94kefnNNZLYOWSnSk/QH42mOnWhxGO9Gqzp6uWF/NUIUjOD2ipWFq6Z8D20yGLicDLHPIAv0RYNhTXwOEw4EQ9bej5rXw5K9yum9KjmkwoM47XGdEo7nM6A9FbypZZ6JlDJk4vc6/XbL6hV4GUla6SBPjhhLi5U8H1K1MuP3CMj/dsnw1RzmFbhT+TAIrs6iDpteo0stAbJWTLfcT4ZAHgpJBkSvD2LAkRrPc7/EzR/E6k9zPw4HsNsMeWnGbRTSzANlVLrrPApbfdDIo017ifh4P7O4yfKTzutpL/NGdoj33FE+3DD+akTWiRZVBCqA9+VLTPrIUt4bJS8XuImCPLGYVM1/f2TBc1eNQq7iNea5xWJWtBW3KGlid711d8xXs3h0wq4xiGYcqLjboU0HG0kBwOJChTnkjzWJ3KgOvfKlYfSAXhXJKhgq9FN3lnaBywYjekjjA0IOiO3OUV2bMpewOA/UbPQ4+TJ/ihjz1C0N7LusolGehCuOl2eyOZUAj+lNZN8kx1WSNIJ35Vo96TVfHY4pZp/lG9Lj5Cihg+1SNVF4ZJqaBSUTiBmnWhplcR1kjf+9O9vrjYQb52pA1okvNV4HmUo2xPflGGs3uODB5KXEszbGiP1Qoq+lOA9PPDK5mHCwEbXAFLD71rJ9pUIKm2qmin8t1m20F+XW5rE2xDnGAo8emXluJBpq8DFEbKL+Xyz3d2fRhRIt9ERHJnR6HQTIQfDBgyWVY4wuN7vc6VEHABHHdPCnEsXcX6A40zTkcfqxozmM8l92/brfQuEriWoaZIKOzLzz9QqG8lsc+oMqmzFJXQnUnuaAPKb8pC9Tniu5Qke3MqGd1ZTo+GQBNrmB3ZiiXgX66b8yzzrA701S3gWGiooPvftggjWK2pybnGVmThp5y/etBx9gSuXZk3/yo9RxmivLeo51kY0qEkBO3WSNDAdN6hkWJ7gLdUSVDpUUuje6DWBOI56hQ0sAnimypMK0Zm3XREksD6o0CLTmKIdOxuROTqu64FGfZVqigwUC+yRgmGcGIFjRFltjakG9M/EzyuMpgYlZmtpXYE9M6tPW4OhuHI8Mso7jrxybaNFY0n0hzm4YG+EDIDWbbE3KDqzI59rsdYVpJc6fUvoH14vGgu0Ea7kFyMEMtzaJe7giTMmoyi7GZVyHgq3Ic8inn3m5kk8srQB4be+f2aOJX6a6Rdqu+giSOt0z0nqFpIC/AS5Ot8phtaUzUYGpxj9Vaji9tN6LgIUanqDyTzMs/x5wn+L9gA/qzfAv8lXnPz+qtfP40PP2P/hMxCXGJdy9fJhCRozJ+kSdUYNjrGGwddTR6j9ANixADsffmF75E8ggzQQWFMrK3p3d11AMF+QJxJaO+B6LOJr62IGlS1IwaFx3DvmOhku1EewJRK5LtqVZZG9GRqK1KiEhC0BLykb5A862E0qfAehHix2NvGXUaQcXX9HtdzjAXhCxZvrtSkLNk+677iBZ5ea7poLkIVG/UqCUKap9HaDrZh2Eqf5t9EYuHaNWvvCAoJg6jHppuJMMS84Cylkw80v3yYR9t7pHfx2y4PobU6/3fXS3ndVgIajOiDpFiJ2jRfl3T9gT1EvQmIVauYtQkDTMxIQFBv+qriCr4/XlKmisJnI/6tFr0dVm7NxBJUQfZVgqgrJHnBgPdMUxfxMJhn/ss2rqIWAnFLSKNSl5LzEDUWGClokxQb/UWepWKs2wbovZLiqJ+Hh+XS9GcEBxt5eeEWqVr006kQMm3jCiBzwVlUF7OT3e0R4bSsYuGLV2DIRY88ThHZEAm+aaX19Ej0iXFTYjHSxA06GF8g7Z7JNXngq65UlEuvSBSMKLlCQFN7z0XKXQoxjB2V8pjTReRzXiOx4zRiFK6Utwp+7miuttnAGY7WdOEBiSb/ocaphTgnsLPk+bMTqKByyBaqESTE8Rpj4AGzZh5mO4fNWdOGrvyLoW7S6GZTFiM9ML7SArNuMYpjmBEzhJTYNgXrEm3pW3A9BIan3Racr2oMa9Pji3meE4V5SrsUdoHhisJ2QMpfLsDoerp+B7NdgEzyBpA3F+txuI9rWnQMEzkGPOdoFPe7B+fzvdoCKPlveozxcMaYYyu4AFS7SQ7MV13yktRZXqPLSVuwT6IlRgmMaNx2B9z0BGBTE1UagAiKmkaiWyQ61FR3gvSJYU+kpkIEUmMaIFjr90LeyRZebkOBd3WI6rmSkG3EsqVtHHyflTj+SaEUWeXjkmOPYwo1V6jGrcRNXkpszEhZIJyS7MxahIHzzDNxsiIRM9TPsR4BsYmytZG0DfkuT7XQt3zCCXSBrLWMcyySMOUnTadi5mJkpGZ4i6EfSHbDEaRtQ5vdPzckjXKtlHbnkuD6yp5vEShCGU0mduMKOLDeIlMUENl5Vh9odGdI8T7Et0y5HJ/am5w4c/oOLVNaHSMsniAQurBSaPjAtp6fBbROy0GN7qx+EkuzVFCLGOmpN4N+DobtYfKB9lWYMyr1L2sodkOEHWCQetRQxhyg24tvjCiVbRenFCjgU2K2gilQXVOmqVE7fTyeRxMiu5Ix2xQzu1jOzLJW036vqBU/Bzfv0/TfXhQnTRsakiC14CyDj+p9iikUiQDHGXdXouZZ5I5WRViqhP1jWqI0SRa77eb9I/J2Obhzw8RxIfRJYMdG7O3kMdEMU3aSuei+2tEJB/eF/8fcyOTNhIEdXz4s7XSmIKgq7DfH2Nkf/gxaOPDSBH9Z51g5W8/pvf4Czq+hq/oOP9Fbj8TiOVHF+G3/uG/9xPf7v/6r/2Dn/qxwc85YpkVjsO/dkOZWd7czbGD6PWUluzE+1vpRuwyx1zuGNYlD41O8nlPtylAB1RrGM68mI3EJsJsteSyzSz0kVNYeNTO0OcevBqpp7rX+DJSOzQxG0++LEMlI2XVCaKRH7a0V/VoPGK2Gl+J/ojKo9YZYW7JrnLskaA9zAe4zwWNCRCMOJL6Wl5TDUrcTAOYjZG/dzLBHg7deEzJQAQQqm2ke/oikJ01gm7tpDDzE4fqNaHwZMsMV3vJt1sZ7EJQjvxOi8NpRCA47diWpWjVejV+2A9zxIDDCTVUD4r180jTbYXeq6zCzfx+TXIpSM1UYc8GTG1Rn9exCQsMByoaSkTaaYCQyWR6mMnxuzKiE9GcJFEpgfiFL2YqKUjbHjjye4MvgiAg93o0ukhTZZ+lRlX2PTmmjrl0W0EBhkUsCo1QbwVZQgxxokunK2Mj0KpIDQ24ep/9FXcTdSIF6TCPhimdYph7to80+Raak/2HdJrky8AFMUKJGXIJpfJGaMT9QqjFxVphJ/J8ZWV/pViV/WrP0nAkjEHtIYWWt6CCYpiGuB5qpEwLJZiR8it5fXEfkplKbMBcJc/PGqHmahvpYKUcW7ZOFDJZ/0Q9dFW8/kvRr7k8fRHLWrs6jPl63dEeyUxDnbdMarzQuF2tR0OcfiHDKWAcDmgrJyY1fYmqGLI9PTQNcLKdNJ7JkMVV8ng7FerjMN1TzvuFGqnS6RjyTaTxdmngs9cK7gtIOQ+bZ4psK4OvYPbU2tHgJDYOrVZjQ9+cPxhSZYwNlx6i1quQ69NnjMWX6WUgI4Yjieonr9OevG20MxbMXg5IBnIy2EjDg6zd68qKNTHig7H5cLUMCkZjm2HfUCdKrfIR5YtUV+Xk+nGlDB6E5inTtaCluRqm8tlgK0FDTCvN/jDVo8SgV/v9l6GWGqnItlZ7qmie6JpqpJ7m8dx/1XBlbJKswWdIM6z215YrFa4lFtGMFPRiDd1CjdefrE/6nNX7UPoB/Im4laZB5zARXZnQS6URMl2iP+6vkWQik3IgXfmgaw7APDVR8f9oVjNShSMyl7SLkBquaCCj1DiQAHm/5rt905uQQ1vtDWeyRo3UWqH7x4FZJu6rqVlOAwdg1HkGo8ZjePg+SEY1Kii6QyMU2izSRl0Ycx5V7I47k437rHxgWGTR6ElhKz3qEl2p8YUeh3PikqpHxDRdB8PMSHZkdBV2ZUTYIGrviM2fxtYa05lIv39gvqOBKukn9p8ZDw2pHiKV3kgWY6KeBpNLA+sD2c5JA9wZXCHXvz8oxm2YXqJ0RqOc0ozrKfrHqOu3ARVzJV1pxgGYq0wcjOyzIdGiV0w04Ycurrp3IxoXco2KDrBpQP7QBEjlQmmVGsfjpvnYBI+3RKGOAyn/4LIet+k8oZIvwqR1RClUN4ir6uAgN9Icx+Y0xAYxxPMR6kIa3bLYD0eS/lApfJFLg5xuiWpqonYy7XNqNsf3XhCk0TrAEDKDepCDKR+G8fHhwb4/NOjxHvJ83J4azYAerFOIyGLan3S32v+c1nOksqf9jc1mSChobG5V/P+tJvOrDrA+SDP7593+EsSNBP4KsfyZvR1/8yx89A/+Q+ZFR+ey0f101UrsR50PbPucKrcMzhCCwnnF4AzOaYY+o6p76mIgN47r5YzZpEUr+Oj4Df/7n77P0fGGu7sZSgXOT1fcrqY4Kw6n9aSna3OU9tTVgA+KYTAY42nW1RgjsltVmNKhgNm0ZbWuR5fSrLTYPsNknrywNLc1Zmpxq5zypBE30uhaaxv5sNCFUB6DjzmUVpNPBoY2o5r1dNtC6HStQZfyOKUDvjOozBM6A16hp4O4juoQ6XxIELwOFJOeblOicze6nyodhLbX5HGyZ2A2SOh94WS7iW4YQ+OBMUoiNcTFcSturE18bYXQAGtH2MVtFNK468LJPg5KsinjY/VswK+F/oiK4fW5uG2GqYNBaFpi9mIEwZp5yNOHtpjghCyMX8jKyaDAl/Fxvd4X0k0cMuQyKVVOjfrUdMyilQ24Y4teZbIdHTCrGL0Rv7x85VGDjohlGBt+FaM4pCnXEVFTDAsxmEkGKkJbjMVjJa+dXBG1lWY1OZXuNXhKhhQ7g+kUQYuJTbYSy3k3k4iRVJSkb11fewmXj4wAVzxcr/26+TJEDZwaIzZcEffXSvSHL4QuOhbKOpBtZF1hX3TrnjEGZJhFJEsxul9mjaI/kqY+OYkSBLV1E7kGkhlHovP5XPS9xf0eRQEZUORLHZH0QNZKow2ylj661fqozR1miZ6ZGogQw+elyFWW8fhScz5GrfT7BiUF2XfHnskrHUPk5ThMJ5rWxIqws4BJ+tbYsICsk89BkPS4ToZYqAJBmnSfMbqmgjAwinvojmTQMbIR4v4nvbNpGVHmUQ8aWQhpGDA22IVsM5naJD1parJtLfueXDhNF/c1HktyHE0xIPlKtpka5oRgjyh2pDgmbayO5/gh+i7nMF0zxKicfcNLHFDYWpr3tH3lGVkBKuzZKol1Ekxs1sL+XKRb2r+Hg6wR5Y0siHy7R6iSm2tyIE0a3nR9JIQ+IcKC8qo9bTE6Wyamg2yYMapEkHZBbiX+Q5Bx5ffo/Yj+uj1rIu3jQwZDcg5NLAE9pCEXIyPi4fGi9tdLuqUYk5Gp00f0N9ah+fZBBIjer2HSP4/OomF/rokDr2GqRu2nLQU5T+6taViTIkfMIJ9XI6qf6uBIb+0X+xiWfCefo66QNehn+8/J0dUzIq/pvKT91G6PaD90nJXImD0qHrQi6wS9Ts6rSSeb9OLjtR+1p/pBk5saW2UZ3X0TS8B00hS6Usf1FPQVGLWiIVN7jWc8xw8bt9R8pvVMOuZg1LhtNaLgex1pthPEMrFLHmp/E4Mhub3qYY/OpjXVQ9pvoa/6QgsltRSkWTuhjbpSYwYf37dqdIxV1uMj6kwII3IsJ1uh+kj1jNrSEJslPQhqqJwfaa2phkkI8BijYf2efhoiLTdSU4m/jxEiuSCvaBjdWoFRSxkdYx9mQY6oZDLReYiaej+eJ4wZ0dCxkX3gHKucl/u9l8el1x8kN/Otm/dvm/M8bIRTM5rQVdgjiBJXELcRP+fSfV91g/0xmsu/qN7y590VdvHRRfiN/+Y/+Ilv9x/9rf/yp35s8HOOWO6WFVd/cMHybj9914N8EWwfK8IbyT1rfaRdniryVWDWyJdZ1gSa0wlsAnfPFCff97RHU9QO/ujglFkO6r7k0Vqmp92kYj7A7lIxfRHweUVJMvlQFG2g6mVif/HC088LinVgFqeP20cKdVdz3EnWl8sVwZRjlpmdKBZLL1NFG2jO5tRX4pqXiqKsgfakYPJaqFPlvdB0XJ5HalZOdxBNYWKmWh7d7LxRlGsfKXCKrE1FiexfH7UmPlNol0cKXE4ejRjynWf9pMTnUN5L1l19raNFvsEMsHpHc/BDh60ldP7u64b6KlCuPNnW0x0a+vkUO1HMv3BsHhvK+0DWBrqFoVx6dhdZzGaDYpWhXaBbaOwko7rxtEea+lY+dIdadEqTNzIVtqUi6xTzH7VsnlW4Yp+P5jOpJodaUa4DzYli/rnDF2rMmSuXgWIV2J3lFFuPywXVq689ysP2wrD43NLPNcXS0Z4Yslb2Q9ArFTUZgelrWL6bc/R9oZD0MxO/2GWam6bxPlOUKzdS4ppTafbyXSCYMKIetpRqTVuZzHcHiukbTz9TY4RActRzhdD6ypW4+rlSsT3Pmb1yMl2uZMpe3UrQ++Yyi68nBWo3V0yuXCzaPNvLjOrejc9ZP8mpbx3DRI+5eLOXA81JNha/0oAqyqU8Lm8CQx3Id7KWthKUc/rKMkx1RICEBpd1AVt5oVXWsUiMdEAz+Ghpr2S7W9HQdYeafBuEohbpfQnJcIWmPdTMv7T4TOiBysm+uCKMVDfdy5d0e2wEyd3IJD/bOdrTnPLe0h2YWNzJNQ3QnGZMriz9Qqb49dVAd5iN7zttA1kjToiEEBGhgO4CKrjRSMVWUkRV1wOukn3sDjO09REdU9RXFtP7kbKX6IHby5zZFz3Dwsi1tHNy/JFql28cdmJG0xJXaLmO156QQXnd0x8VdAea6cuB/iCjvB1oT3LKO4srNcNMi+nPVArgfCuujIBk6TWefDXQnpWRfhyobizdkeTtmc7hM40rNPnGYqcZttZkTSy8tIqGIorqZhA918TQzzV54ynvJPdO9+IEOXnd4UqDKzX52oqhSSOB9MVdj4tojqvjcXcSDTDMjNA8a01xbxkWhnzt2J3nVHeRNjlIHl950zEscuxEEJfifmBYSG6f0G1lGyDUSm0D5U1HUOIs2R/Ie0Led/Ler990bJ5VTL9o8aUhv2+xixJXGvL1QHNeUt4P6NZhpxkmUj99oSjvBvqFfN6XtwPDLCPfWTF0qc0YhyGmQE5yAtd2pFMmUxRf6DETMDUQehCa60O6uh4CppXj648KlA3kqwEiIqWdR/WiP0v01/rLDXZRYaeSTQjgS0O26vBFhptEl89SMgurqxY7zXGFZv7ZEBtWOQ/DvBBUykq2ox6EejgsCrKtlSZgNFBRgkwNbkTqfJEJ5XOaY1b9aOYi1MSoj9sOuDoXOmdpWPxwiLTOgG5S3mDA1RmzH7W4Oheq7CQju2sIxuDrDLOL23FS8PvCYHYx73A34GfFSP10k5z8eifNRgjYg5LJzoL3cRsBtCK7b7CLCj0IvVM1PRiNL3N8lYFWVK18x/giw2w70SfGXEUVAm5eUsR1SpmKhADWMVwekL9Z4+cVyaRGOYc9qsnfbPDTUo5j0+2potNKzGziLeQGc7/BXhyINvFmg1/U4ALFriNUOWrbRkSwkDzH+y32fEH+aomfVaIZnJSyj6sd7miKXjXksakKxkSaaU6xafGTCr1tCFVBPqJxMeex64V+Gn9XzkPXE6b12FSFTLbHYAmHc3k/bxuhj04qyXvseozW0qClhkopcF7McjY70RJOKnTT7RvFLCJ3dYnetfLc1Ow5H/MexelUVSWh7VBZNjZgwTpB5oxBZRmhH+Rxmy1qOiEMw0iTDQ/osm/pD7WK24vfEyljMi8I/iGl+KvTsYiaD1b0kunuGBuiHjScYwP4UEOZIkHeQmXdvlF9SL39yu3nF+b6q9vD2891Y1ktOn7zb36HRd5S6553qxt+o/6Ef7z9Bp80pywyQQy/bA55uVvw3mSN9ZpMezSB+77m/XLHzua82c25/DsSTfG3jr/L//zyW+TG8TdOvs/OF/xwd8LHd+cc1zsOi4bDouG+rymN5a6b8MO7Y+qqY1G23DYTfuP8U140B7w3veFle0DvDS824s8+K7oxM/O43tG5DOc1uXHshpyn0xXXzYxaBS4ma+7aCXdtzWm9Y92XPK63eBRfm73hn968Q2ksR9WO17s5ISgWxnLX1rg+52i2pTSWzklO5q+cfMk/v33Mpis4W6xorIzKtQo0Q85h1fCdLy5ZzBseLVZk2vNmO+N0smU7FDTRBOj85J6rz855+tuv+f7LMx6dLlm3JdtVzexvL1lta/LM0bc5X3/8ktt2yiTvuVseUBcDfsioZ1uuro84OblnN+T4IeNgvubFx0949u41r24XvH9xzaYvyYLi5uqAi6evuXl9ysXFNZ/eHPPe6Q3f/fySo8fXvLk+pCgcTw/v2Q0FJqyYZIJW3+1qqtyy63Kc0/SFZbuusBFVTtEjnQ6EAO2uoJr07K6mlMcNQ2GZVx33f3rGwb/zhtevjrk8W7LZ1WgtRs9NG/NHM0/f5dQnS+bAesjYNiWTquf9oxv+70/e4fnjG5ohZ9OW7NYlRT0w9BnPzu/Y/aPHbN8fuHx2y5vrBYtFw/2bOZdPb3l9dUDoDLPTLV2XYauBzaZC6cDBfAfA/XJK8Ipq0nN9W0PuyUqHXRXc/7onqyzvnN9yc3fAzWDIcses7rhaTtHaM5u2LFcT1oXlZLHlejnDvjAyPZ9a8smAc46itLT3FdmdYvOkJT9ZcnVzwMXJkjefnKKmltAbqsOWoc/IcsvQZ8KyySQbNdwX3B4JxBacIOOmcCjtGXaFUNe9ElQ4QH3Y0m5KQeEzR+g1ZmJxncHcavyJReeeLLc4a/BeEe4K1FFHWBbc/jqQO9RG0GE1dbDRqAHCcZz29prZyYbt53NCQsm1Qu0CHHq4N5TXmv7Y4xcRLVdOEPLKCeOgNcyO12yXNaZw8EWNnQcorRj+AKH06NLBjUCE5dMN7YupUOdzUDuhoWMs5i4DH52otVCxwtQJUj6x+G0G+cAbp2EA04BP9L+Y46mcbEOfdvjbgmyrGSKlPeQBTI7qFGqANzoXM5hzQ36tcZVc26ZTDBc9WelwNyXKapTXmF2in2rsQqJXXC1rZ7ZFjD1RBG3AgN5p3AJ0Y8i2iv7MC+q8Nfi5wyw17sBgVkaMg+ae/NZgZzoa7giiS6jEHbVRtKca0+/p8UFXQjHPxJm7fJ1hJ2HUOYLElDSPhJFgOhPRpEwQ5zpEmr5Y/iZHZmWrMavTG3ENbn9JonFMzE61E/lqzVeKchl15QW0p57yTuNNTTBw80u16PlNgWnElEiFjOpK0R8KSyFfiyFRvpQhWtZko4a3PzC4KpBtMrJGjZVZdxyobmRwk+0UKuRjJqatBW0XA5hi1N87Ifow/TIIndnu9f7dcSEU9jjctBOhSFbXoovXVrT/5V081t84eqAHz8Vte6XwWYXPxcinO1ZMXgnSePe1GVkjA7D2LKO8VSOamm0D/aGK1zQkJ3fxJShH7X5yAE9ux9kuonbRAVi0xPXoD5A10fm4A9NVMuyq45DOFTL88Yn6HEbktT8sSW7A5V1gmNV7tgJCVa3uA91C0EZXRWfkIJr25lQzuRJtaP+NMtLjFdWtZ3dWy3ZXnuQa2x9MxkEryD7mG5FQuCIZA1Xj/g71ZFy7h8jqMJUBqc9n4tsQHYCzLjC8X8nwwwkaKYNSRfaoxJYyoLTv1mPUi+keMEksMdpksdd2fzgh33kZCG19RHsXUWurxLTn6zOqG8vu8UWkPstjfaFwxUJo2mb2FsLrCk2xtLgnc1yt0cNi1LUm5FrcbvWoHYY9e0U0t1piVVoZHOVbK9fTbqB5Psc08rnlin0ephn8qI1Ngxuzs2AO38osDUaR37cSK+LiOWQuAwEfxuGGmxWYXS/NfxxCSBxJ/D0w0mhTo6ZaCweziGKLFjbpUUOm0c2ALzJhYjSDDCwS+vnjTHyiMU+oCt4y9ok3nZDMJAVIqOoDqm6i0gbvRbNpLUmbqQDCgxiRt5rLh9Tb8Gfv+zG3t1DM/x8ay5+FW0D9FRX2Z/U2/+gynP6n/zEAl2dLlruaX754wR+8fEJzW3N0ueJsuuXj7z3m8MmK5WcHXHx4TQgKoz27rqDpcoYuQ7+oCE9bLk+WBOCs3vJHv/8e0w+WZMbR9jnDYHAvJ0KtOe2ZLxq2W3FW/dqjN3z/9SknB1te/+kpoQhMz7d84+w1//Q777E437D7+BD1bIcPCrfLUDuDPukxP6qY/OId212J+v6E4Z1upF2wzmExUE87mi/m6LMW84Ma9dGGy8M1N9sJu03JYtGw/ZMjhsue07M196sJ2fcmmF9Zsr2ZSPC9Dujck+eOdiPfUjrzKBNQX4h2sX/Sk10VUhTOpUj3Vr5BQmtQvWL2I8Pmuad+pbG/usH84Qz/y2u625ryjcF92OAGTf5ZSXWr2DwXbaZa9HBV4qeO7C5DPd/hXtWEowE2GfqoJy8s2e/N6f66OKLq+4yDD++4/+ER1RstGXfXBfrZlvCjKfbQYTYa/aRhWJbonSZ/uqW7qzAbg5t6yDz5VS4UzW2M/MgDp7+vufpNJw6hV3ksVhTtux3FiwI7DWRrhekUzTsDeiM00uF8gEGj2xgzczow+14hRcChFKD5GlZ/bWDyw5zmGy3TP67YfDBQvs6o36gxdqA5D0y/UCx/qyVsMlRQ5Lca5RX1a9g8j3RWJxpDNwkU94rtM0f90rD7esfsOyXNhehrfRkIWaC4NVIIRuOp9txz+F3F+jnYmce0QrXtTxx4OPhORnsqPQgfBQAAIABJREFUtMfNu5bF9zJ2jwN27ihujezzROiiw6HE19i5o/4yo1xKbp6beGY/NKw/sBz9oeh0h4UUyz6HyUtFeyp5i+5koPii4OSPAy//zsD0uyXdibhOugK271mO/plh8xzql4phLnTO/iAw+0yz/mggu8uYfapYfU0Qy8UPFKsPhLo66gqd5Cg2Z4H5p7B+V9Z9/ik0p2qMXEHB7qnDbLU4VMbsxvIusH2i6M4tp79nWH0AkxeCNg9TRfNIsiAPvyfaLDHHCtx/I1BeyxpnbaQjzhWmleLSRSOXzTuew+9IU5bcUE0H26dhpI1mOylQD78vBdryAwg5+6iYQ6EFH34Mq3flWIoV4COz4IloXes3UqhsnkF1I3rgyStptLojxe6RZ/apHnMspy8CN3/dcf5/Gu6/Jvrc+krQ6P6AMYMyGYFNX3t2Z5r2TK5RWwtTRJgHgbtvaoo79nrQ54HjPxbkXTnoD6G6Dqw+hNM/CCw/EEfN+k2gWnq6uWb3SNBxV+zNwqZfQHUfuP9QU90IW+XgB4H7r0N1LcV5fSPsg/ZUXmv6ynP/oWb2RWDzjmL6pTQOk2vP8j1DcS9sl/J27xbaHyhmX3p2FzpmSYbRoTNRhVHS8HWHUjSUt4HJjcMVms0jcenMGy9MjTvZ19kXntX7mumXwlrp53DyJ5bNYzNSiVOOocSrKGYvLT5X3L+fRRMuoUDOXjj6qaY/UEzeSAZiMiDLGjFg2j5SZC0sPnXsTjXT18JM2J1IDFSxDiNDQFtYvWvEwfRKjsW0gduPcrSV82p6yV8sVoFiI0Xy8r2MxaeCWPRTTb9QzL+0bC/kmMqVp59p6lt5zOaxYXIljIHthRmP2WexyYo63fZQ3iPaBqpbx+ZxxrBQFPeSWVqsQmwshZE0ahq1mFslffD09YArNN2BHvMgTR8Ebb633H9QcPBJP2qqTefF3Kd1LN8tmb6xbC8y5p/1NGf5qCVWPlBfWVwVdZF9wDRCNR2mOjqeyudScd+zfVJR3Vl25xkHH2+5/2iGGQKzz1vsNCNbD2yf1VTXAyoE+kU2si0mb3r6eS4uqKcFykJ519MvcnwpzVt3YNAOZp+saR5NyRrH7rJg8YMtu8c1rlDMP9mwfWeGaT3FsicYMe7J71raxxPyVUTXck13mGMrxeyLLhp6RYRcK5qznOmLDt1ZhsMS07lRSxkyYR64iGjPPtvRnlVUr3c0j6ZMvtjQPJpSv9wSckN7WlG92eFmBf0iR/eyb8OioLhq6E8qijtB+YvXG/oLsT3WnSO7WuMPJrhpHs2I5JpsTwvKG3FxTccXSoPe9CPyOZzOUM6T3TcMxxO03Tf4otH0YyNnbja4oylqiPElVYZet4KSAmRatJm5EZRZa0KZCTJbF2Mdm5BatW0J0dUV7wlFBiGgOguZQW128veuF0R1vSPU5YiiKuvGjEoV6bOhyAWh9V4cZL1HdcI2GJvJB0ZE8mT1NqXVGGnkshi/M0QXV6WkaRx6cYW1FpyT5jI1kA+3EZ/31bzKH2sc9GNuIxob/J+l7v4L3H4WqLDzjy7Dr//XP3kq7O/+7f/ip35s8HPeWJ79wkn4t//7v8svTl/wWXfMaQzIK+M4+nevP6IwlqtmxjcPX/Pt6yd86/RLrrsp06znUbnkk90pH81e8z98+7f4t37pn3Hdzfjnbx7xN598wvdW5zRDzvsH11yUa/6vq3f55eMX/B+vnvOrZy942SzItOek3PLx/RnP5ve0Nue2nfDBwTUvdwterhb8+uXndD5jNVT0zvBses9VO+MXFi952R3wv33yAU9O7zHa882D13z75gn/+qPv8t/9wW/x/PENT6ZLfrg65oODa6w3/OGbR3zt5Io/evGIv/HuJ3gUf3T9iEfzFYW2fPtHz3hyfs/drkapwIfH16yHimnWY4Pm3ektn+2OsF7zbHrHTTdl3VeUmUyBbpoJJxEdLY3FBY0mcFA2LLuaq62YIs3KnrtdzXvHt6y6isvpirt2wjTv+HR5xK+evWA5VFw3M2ZFxyzvsF7z5eaA+82Ew9mOdSNj8tPZluvNlKeH99w2E6zTTIqBdVtyULf4oHg8W/Ld63NCUBSZ5Wy65Yv7Q4bB8LWLK7ZDQWszdl3B+XzDsq24uZvx6HTJsqno+0w+j4KirAaq3JIZx/PFHZ+ujri6mzOftkzKntv1lINpw+A026ZkPukw2uO80EqaPmdetyyKjlfrOV2foXXAGE/X5mgjDXzTFBzMdxgdKIxj1Za0TSHIcrx/uakJAapqYFr23NzP8F5zdLDFaM+mLTme7vj8xTHffPcln90doVRAq8BgDUOfkReWPHMyMGkLssyz25Scn66Ylx2v1zPKzNEOGbOqY91UbG8mnD5a0lvD+n5CXg/0u5xq1mMHw2K+Y72tMCagVCAERbsqmR3v2NxNUJmX7Ng3E0LtWJyI3e5mXVFNeoY+Y2gzstIRgNPDDXfrCd5pbJNRzjuMkaiX5rZGVVELogLBK6aLlrYpUFq+bIwJ2MGQF5a+y/eDzkY0uOawl4FN1NEGJ3rOrLaiVe4M1aLDDgaTObrrGkqPqcR5xjUZprZ4q6XJn1pM7gX1dNKwBStuFeYmJ1x0+MGgjKeoB+wgmu3dqsIUDrssRnMv5RTqsBe9cObRmccPBnpNtugJgFvnkq+be8iD6IQrh35TSjTJNiOUTrJ4c4/Ko146gBo0+b2mP7ViElbJ1F1FLbbaZIJKAuiAnljUqxJfB8rzHe1dJXpnGHXFWI3q1fg8NSjZrg4Ur3PRv2oZ0iinYGphk+11zV40wKFymPtMNL9RTysQmRKdauHRG0OIjtv5nZac2cpjGsn/JZfBiWqMaDWjHlm3YpoWStElm23UTYeYh9spXOVH/bQ7tOiNQXcqxiQEGSIURKMvxoxcHSNr7MJh1kYanTwIbfhGCxrYSHNvp4K4Fvcy/EkRDRIpIuhOtlWRdg0hD+QrLUOWiQywJJ9WtNfDPBpuReOdpCtMGcLwQKfYCCrrizBqDtMwRnSjcT1KcZ8u78RczEaHcmA0VMuaOPA6i+jVEJHCgnEwl143NdG+FA1w0nkn/WsacPSLvdY26UF9GV3YZ3Kn7iTypT9kzHFNxlOuiJEnlTTvw5TRcKmIWbvDBKpbcRlHRcfwqD9O8SBZI1rT5PqdkMykaR1RTy+RK66SRrFfqOiMzWhIVNzHTFctTtsSkxFiRIwMFBINXvkwIszJeTtpS0cjnujCW6zDaApFSMccnarvw7h/rhR9ZLkUKUS+jTppszf5SprMpEnOt3sn62T+lbTA4/UVHWWFKixrX0QpUL6Txruf6fE85k0YHaKHWlFsveTEZntHblsp6ls/DkWyZBilRNNqK3msj3rSJBFR0X1ZpCyBodajW7PLRZOqrKxVsZZmY5gbyjtLe5yhnTglp8+05Pqd8kCTDtNONFnrR3dgW5nRqdqVOiK0D5xfo1GVKzXZzo3n2bQuOt96cQOGsbElBDEjguikGyR+xKixUQ1Gjz4MwWhMM4x041A9cN+NzepIu00RJfAVum4QOnCZkRx0VWffairVYPd6zHhLOtsxTzO5zabXS68VHWpD0+ybT22k8Uu61eQk+9CJ9iFFNgT53Yd93Mj/1y14aTD9j3GZ/QveflYay1/7nb/3E9/uP/7t//ynfmzwc95YLj66CN/6nb/PSbXlB7enbLYVk0mHjbTG49mON/czjhc7qsxyu6vpunxsAEKAInPcX8/E/OaulC+lg5560rG+maJMoJz2dE1OWQ+0y1IMcYIiDBpTOVwjJjmpUFQTizYBt8zR84FwW3Lw7j3bXUlZDWyupqjCo69z3NyhaifUmutiRNiymxw39UKFC2DmA26bC/VtOqC/rLCHUhArq9GHwmcKbyrUWYdb5WDCvsgEzHTALYvR1ZUsRPdaCJUjv8rFQdZD/TKjeZKKVLGYyxY9fF7jLnqyasBe11I460CopDj0E0+2NIRnDf6qIuSefGWk8PJicOMOLPmiw72ayHNnjuLLnOHQx4I4yDq6B0Vtp1HHHeG2FNOO2pOtDfbAordGzGIqKfpMo7AzP9LCQhEwGx1jO4RWp3sptELpMfcZpoXh0EvBWopDb35vSEY1AUYX0uHUYpYmFlQau3DoTtDL4l7RXHqKSFtzZSDfRJfVWCCixEjG7DTKiuOhncjO2rmTNS091QuhH/ZHnvJaMywEXesPwt50KEB5q+kXYW/woKPbajI4yaWwKpaCOgr1KuxdAz2j0Y6vA2atxcdprbDzQHGn6I6jPf8kMHmp6Q/3xh0ShyP7n3IW843kvaXCPZmPDHMpKLtjKVzVgzgGV8XCehDkt1jFzMZ4TkHMdspbxTCV/c22iubCU78RR8zUICB/RndSLO8e7417QsxntFMpptUgBWt3JNRHbaG5EPTOTmKhbJEiMjmzRgdc0aTuCzU9xPWIRXtaI6HBSVGcoku0FcpevpXX6BdyzHYC2UYKRbRE4aQoHu2Q4j2PRXrMzBR0OBoLedmn0cgmCE3RNIzxKokml21igT1IA5AKU5Sgtc2pGg11kitqtkUQy22MSLKRDtfFKKRoHjTMhBqZqGwuXo+jUUq7N5zZXcjrlPfSHIxxI3ZPW9VWivzUQKRrO+nqbaXGNUkup+WtZCdmUT+cYn+KpTR4poP1O1KY59tAvg20x5KjmEx/iq0gjCkqw5WSWZhcbX0eaYwXojdPYfXJ8GZ//PJ7vg0jSitIojRGyaBmmCvqN57uSFPeeYapGq/nYhWjfuKa2BqJ/IiRKNlO3lebJ4r6zT62RYxsZP03TzXVdRgNjCTDUTTc+sGapjgVlyfHW8b4F1kHua9Yi+7ddEKJtJV6QD0kNh4xcsnKz/kuiL53I7rJ7iBpfxMdNYwoZR51zOncjcY4VraRsiyHiaLYeKFlzvT42LF56aWJs6U0QCbF6WSKfiafDdW9Z5iIxjf5EWRNGKOVipWjOc2iaVV4YKgktOWsDUITBYmSmejoGJwMkxzD1GA6T3k/sDsvyDeeYabHhkr3e+fUbOtE63wvmmciRbK8HQhGUMDirmc4yNGdH/XkPtdkjWOYie45NYq683sjnkyiN1SMXtGD39NHU/bjSnTQ8l70DHOJeDGNl8iXqO8FcHlEOndWGirrcbnE0thpNjYsPlMUywFbG7KdpT8oKFaDaImjBlv2KUiTZjSu1BQ37ej2aue5uNsqhWktwzwXjXznCEajO4uvM3AhHktqduNjHtBXH8as+DITHX8ziE61ytCtFUMeFeNSUmyKMdJIJrppbOb8JEe3D/K/tEbtxGwmOcaGIq7p4MRcJ9FUU2MYnxcyjV4LmorzI4V1dGN1HtpOHGjLQjSjCam0shbpfKouoqZJW/pwe6kPeEsj6VFFTsqhTL2CyjJBQIdBflZKUEylpeFzbkQlx0iTr8SPvEV7jSZFIWVq/jmUWADftn/uY/7fbj8rjeW3fufv/8S3+09++z/7qR8bkMIgfj5vgzP86LMzvv3pM85nG6q6p8wtmfEY41k2FbbPuPruKS9uDtisamaTFqUCs6oTpKTL+eb7LxjWBWpq+Vd+5WPOj2MI4aA5OV3jrCZ04vZ6fLHCNxk682S1pax6ykVHVjjUOuPdD16DV7jOUJ/vODzckl/usF7jv6zp2pzF+YbgFPnzLYeXa1jl1LOO6r01Zj5gakf5tRUh95SHLfMLefzh+Zr8oCM4jT1wnD69Z3GxQS16XGdwTUb9zhq3zDl6skRvDOqwJ5sO5LOeuu55/2uv8GXg+Ok95UFLebHDHAn1djixHD1eQuFpnliqk4bZ8yX5Qcf8co1tM+zZQP1xifeCkBRPthAUR5crwmmP6jTFhyv8dUmYOCafywfo/NmK4tEWX3vMbCB8NiVkQXRiVklTOXFUhy3F65zipJWYFx3ABLKLHeXHNdnFTjQEs0Ga44gGhQ+3uGOLLzzuaYs67AmFNI4UEsDOwQBq7/CaraTqzt/d0J9F59VDK9EuCobzAW9gOLbY0wF/1kuDHJ1s9XGPPbaQe3QrSELzkXyBKK/Qz7eUN3p06uSyw808plGU12LkY09E35E1e2Rj8qWheJPh6kB37jAXDe2Fw7SM/4M0fv5wkIiSqcOeDvCkwU09rhDKqyukibVPO7qTgKsC/Td39JcDbhKwj3r6RwP5WpFtNZPPDe5Rh2kVzfs97knL9l3L5KUUGvUrze6xw068RLLkMP0iFi2XrTTUMy8Fdi/6sP4w0J57dl/vcFVg90GPn3h8Hqmvjzp0rzBNzO7MIVy2DFOhGuZLaQJtLUX69omne9KLHs2Dcort+wPFCtrHgzT+vTi4dudOmtheXDK7c0t/aimWMmTojrzs32lgeNbTvDNgp4Hpl1rC5oM0x80zG6nLsqanfygGPL4IbJ86ipUU0P1BmmbEbR957DRgGqG3JsShPZMCtHlmGWbSfGVbQYdMK43wMA90J57NO14o0y+l2bFTaM88w0xoxdv3B9pzT3GvaM9c1PIFuuNAex7YXYZRa+Yq2D23o0tjfyANQnMuurzkjLp5z9Iey5AEhGbpKkG80v76UuI0XHSCtTEXdvPcS07nvTSr3ZGgS91JYPuOZ/PcYydw/62B1Xtw/3VBntpTabi6Y0F42rPA7nGITbQgSN2pNFa2liZ2WAjV1laK7bNAtgtsn8g+yxoKDXqYShbm9kmgO5S12F0odo8i6tRJ47O70OMwYP0+DDPF7TcNrmKMQRgWcr+r1BilsL3UpHD69lSxeUeovio28Kn5t7WiOdFsn0hDunlHHEg374jZ2jBVdEfSYNgaNs80w0yK4qChOdNvGTK1p/L6/YEanWWTk2/6e79QbJ5omhPN5qk0v825GqOTxERLYadCk3WFYpgo2hPFUMt+7C4UzZnC1orqztOeyONdAc2Jxk5lkGVLFQcmKmoFHcrB9pE0gP1CsX2iaY80tob2QLO9NGJgt/Fj5I6tZL+HqdBk20Mta3OgWL4nx9KcaPq5DPC2l0L/bU412wvD9lJM2vqZojkW5sLuVLN5rMe4l36u2Z0ZdmfRvTxAPxOTMZAs0cmraLw2F33d7iwbH7+9FKOubqGxtUSabB8Zto8Mw1SosLsTM8aQeAO20qNOsT0u0A6as4xhIue1OdL0C017aGiPDK7SbC8020fFSG3dnWpW75YMM3n95Yc1w0TTnub0BxkhU/QLja0N3cKwfio6PFvJfvcLQbuak4zuQFMsB5pTeS3T+dEFWNlAd5xjJ4Lq+VKe3x4ZXK2x0yw2bJphkrF9JLrb7jCnXwgq52rD7lGJaaWh9tE4yef/D3tv1mtLlucH/dYU057OeO+5N7MqszKzquk2dLcBuWUJhBACAwLEAxJ+YnjxGw/wBXhk8BvTF+CLgAR2W24sU93tpp2VVTnd4dwz7immNfHwWyvi3Orqdksuqyttb+nonrvP3hErVkTsvf7/3yRhVzqhspJjXrHjpDoHVysEJeErjeHMwK40xssadmXYcAg0w5Kjn8zI7ELT0Gk/INQaQUmEUk3usG6pIGzAcF7Crg2iklPzQo40aIomobGlRn+1AELEeF6nwlzAnlSISuL4gzWgJUJB7wG/LOGXJfM2bUBUClEp+CWNj2JlJmOhaJKB2+OB+1dyKlyjUQjLiq8BWCTW5YxKGs1CzLBQ9xdrhPMT+MsNxGjhz5bwF+sUSQIWm86TPluVLCq7YdZcCkHjotM14maFuF7y382KRSVA5DFGiKKAKApE5xCdp6mQDwi7PabMS5s0lgCEkojjODvCpqiT6D1iMi6KPiD0A0LPMYV+QBjtP/Lnnz9+tR/facSyef69+Ov/4X9NKsQustPfcuETNJ8b19Sa5NBogB3GLBbP9teumm3TM01FWoZK+1KgP6U+Kndic15dDvwG+DfTzh1d01JPMa4kO+rJul0mm3xv2CEWgeHu3tDZsnoIGFccv0joRO6cRiUYpl3RKTMYfgmrYaaN5IVHUALVg0f7TE37X1w77L+noVvqaHK+V1D8Ii92MYWMy6n7OuWHCS4YclD5uBCoHwKCYjfeF2LS9ojA4/MlFzeLV6kYS2He2elTujiFmlOsP1vw25SXWBzZje7PBDZf+ml+J1t3YEYCE70od5izbTvnUWBccL85k1K6iP5UotzG2V7d08GzP1UojoE0l9T1FgHQfcC4JF3GlVwQuXQ83pAmwzy7iMOVQnPLjrG0PI5M81EW7Dom+stTG/lgBPpT6pZ0T/dERBoP5OPpTyQ2X1rYpZqC1osDXWFdWgQoG6GPqXPdBzp3pqw028gpPw7I6Ga+Hub5sTWdQNVInZrukotqz1wzgMYKmSLFsHcJ3bJjz31xftQYodLxsIsfYfbsAtulmizrqWEkRck2vBbzHOkhQB883JKaHd2ye+4rOaFKoRDJeZddbV+KFPUQpkXl4u3IBYzJ2XV01XULOoYyLiFdg1sHu9bT2HNkie7Z5bcLLkK7SzM5wAaT7suK5z6kjDwaeRBZMEef9sEOum04h6qfg85josqNSwVlOX/Z8RKg/isqge5Co9gHqM4DksVIDrSP2TVQA3KMCIWYYzfA+6bcku61+77G5qcjfK1gDo6uph1jALK+K9/HwidULEa6jo6B1/maET8i5c4FzQgACJEy7+gKO66pbc45ecFImO0IuynoChrptDpsFHQXUezcdNwhRR3wfEtIG+ieW3HhrHqiPRmxebpfX/K6dbWEOfD+YGajTK8HzN7BrvSE5vi0j7x/CAHdOXjDhSE1iZGL3ifB9nGirNGNVgSg2FkEJaFbi+G0RHXTwS8MXK3pCvu8RPlgqU9Tgu62MUINYYq48CZFLAAT/c6bhNRFLryFD3ALw/um9XRUTQhO1HSJDZWadHBy8FCHAe605pgDiH61FsFwEc3mXEKpai5wZfc+QqQOI3x2m825iT5CtURN3ILFDhSvfTl6hLQoz2hVvidCzi9MuYQiAmJ0cKtycqsNRkH2DpBANNTNxdoAIcA3BRGoTCtMx/E0e1Nan2IlElK4HxClpMlKz+tF7wf4RQF1GOBXFdRhQKgN92VI0Za9g1+VkO1IF1OfkC0tIUbH/EMl4BcGsnNEtlJkRVgWk+lKSE6xQUuYmwPcxRLCesjeTmhZrA1/T/M06eVi5L6yeUuMCFUxjUWOROBEl9x6Nw3krktzoyFComYaRUQtXevC+imaIqwayGMPaIVYUDcI7xEXFY1l2gFhXUN0lsfeDnOxYzRiqSH3HcK6gTj2QGG4bc2CTPTD7PCaC4nCQPSJU501g4mm+R5S54lyTqY3WdOXkD3e+H4urLSaY1as4/NScr8Z8RtGxGVDvaJS/H9dskiTkq/rByA7ty4X3EeO+8jRH3k/jjTSyQV2HCGMQXaEFUpOER65gBNaMTMzucAKIRCHcaa2Ps3AzON+ikSORB2FppNwfsRfVKiFAFGVdLZNMSBTpEjSTwolZ+rqlE2ZzHx+vq7Ixj0/70AL4M+TSxl//n3fcSrs8kdX8bf/t//sl77d//vf/pt/4ccGfMddYX0JqP/kBrdfn6F+RQ2P6ti5tSu69Q0nEbsfRhSPpEKaHc1YYsrSyuHk4wnd+ugWxy5o9zygecUFjV0I9GcABFGj5luVFlQpYLtmAVhsBbrn1PYUjwrFnloMVwu0LyOKB8kA+DUmqs54QkOQvI2gScEbTmkC48tsIiIhB+DxRxKrr0jJ8iWSJTzSAoQmIMWjwP6TgOJRp4D1tBgrNILmcY9rMekpXJNMRmLE/W8oIACL1ywIMnXLVdSPbD+jKcZwFuFfKxw+jLj4MZ0Eg+F7mJ0nsP84QFqgfpdoWC8lmuuI9oWYNDZqVFMmX30b0T4XyQWP1K4xjd1XLKZy3Ev3jK+zK8bIxNTVr28YT9KfCzTvWDzbRQo/P8l5k0B7FXH++xzr9hN28s0xotgDd58YVHcRDy8ZGVG/i3AV0L4E1l/MtCfXACKyU56D26MgkrL5Calgx2csmosD5727JP2VOZURw6lAsU0Njy1w95do7OELomxB02SC4dF0ECzvI0LJ7nF3KWEOIrkCMs4gU+2GM4lix8L59b+qsfwKKA7s4HcXEou3LC4ef02iugWy0cnxhURznZCf50QXygcxhcbT6IRIQfcsYvUzhXIXsPuBwuIVsPs4uYWOQHVHpA0ROFwpmKNEc+vQn2rsP5J4/nsR+w8U6ruA7oIL4+Urh2Ej4I2CXSKdP95nu1ONzU9ZpHUXEs014AuFw4cCy2/jpMNhU0djOGGzY/sDic3PWOS1VxLt8wrrrzz6E6LKi2sPu1IY1kRX+nNe48//LvPTjs8lqns2OKKgMVLzlgVzeykxroqUiyjR3HB+zZEIUqZwBkNjF33ElC939xs0/1h+S9pjVIzPAQQbHCcKQWO6v05+kimtYi6kSzYiTBvQPjcTfVKNNKSC4L0jYkRzw8ZUlPwMMAfSqIudTwYjzF7bfaRx/ocO3ZlCfUdNUXcuYI5zwwaC90x3JmFXAs11gOnYDJAO6M4EigM/P1dfx1TwS4xLBd0yhibr9ap74Hilse49dh9prL9iQdqdqxRHJKF6ieMLjXIXYGuJxbVFf6bRnbPJsnteYP3ViP5co+5TLMWCcSXS0lymuywwrCSqbcC4kIzsaAz0EHF8JrF8k3RYQaM/VampQgQsKo3qgfMEzEhWRiuZ80djlSiAw8sCdpkMg6791IQwe4f2uUHzjs6uui+w/7BEfe+AkBp3az1dx9JF2EZNkTuZOnvyBRkS9oTmYa6RLPo9MHwgaSRTs7gdTjT0EFA8OvhKoX2mUd8xPkd4Nl1kqbD7pOZniedn5+I1aYH2nMYxrhLY/EMLtyoYQbOQqG8EEbITNmrWPwOOV2Wi73qY3Yj+WYnKkRbZXxjUNxbHFwZRCCxfjxhONaSNqN90cMsCZjfA1wYqaMJYAAAgAElEQVTj2kANbPAV25FI1qbAcKrRvE004RABJWDXJfoLg+WXvIZdQ0diSBbtunOIQmDcsGFQ3o8IpYSvNVRPWibAptr++xVMGyBHjVAKhFLBLhVqFzBuDKrRY/dJg/q2gHkcWBCmKBV/WsIcWOgGLaFaByE03LKA6hyCkhif1ygeFHyjUdx1GE9KZEsXtzJQnce4MdCHgtFCCU0DAL8oMZyXqG57jv3IgtTVCuZgIQoNX2mYuyPCskL/rErxOxrFXYvxvIF5kBDeY9wUKEeH4bKZjKpEYOZjedPCNwVdUHsHtR8gugGhMXCbEvowwi0LyMZA3+zhl2VqliapRcUlpnu2gnm3n9Zu9qxB4QLcSQXTDrDnC5j7FvasgXABuudz6mghU2ZjWJQQUsKvS+jbA/xpA7XtGFUyOprgVAZ2XUHvBxbVzs+mNSEgbBYsgrVCXPB9oSpIeXUBctuyOI2RPQfNbMh4toE4djOVNBoWw/3IKBStIPLfVksWtlqxqNWKhj65kFSK2zL0BohVQQpoYYCuh1jUgHWYSj8hILQCyoJ01sqwsE1RJRO1tK6ArmcxWVcsCvueRa4QiG0HKQRps33KgfR+RiZ/Pn5EKqDWLNqlgMjFaFnyNcMAUVcs6Luex6Uko1HwPrU1ItFiJf4E3TUmd9SJNvsLHkLhvaI0/mMUlv/88U/+8Z1GLMtPPohX/+1/BXiBHOguumSyUHLRI0aB6kaie+lhtilwXTFEPawc9XUDaXh2Tf2Xa1KQ9KlHeaNhV2GyqM9mB1GmfQRMuiy+LyEB6R7UvYCrGQ4vAlA8SoybAH2kcYOIczGStUfCMxS9upEpvzKjMEi6KFIDiy3pfllzwjdzIRk0pkUtLfJF0vnEJGRnMDxAzVlUCb2IpORFDUQ163LkQMpYLgBz0HixJ0Lsy6Q36bjgtssA3bJ4dIv5GKIGynuiQONphD5QRyeTyUmUdJ/MGp6s0fEl4wVi0iQBfD43CPJ4stlDnov8uow2S0daatYR2VV6aUINM2qdg8qFz8U/tYa0uE/7SppJt+B1g0hr/uZ1RH8pEsWVlL3sBJjzJhEwWeernvTGrL1j8Pn8nuz6mPV9ocBEqRSBGim75Ie2XSbNXkJ9zT4h8g2w+cJj/6GazTWAifoox/lY8znPdvJI14Wv0mv8bIShesyLnZJzm48jFHMRqntSGCGp9ctIge7YGMjIWdZguYaF97hiwyMH0yNkjWhiDFgW5tn5MmvfxhWfm7VE83aREMGQ0OUcXj7pCAekcZJJMG5yAwaTAyKdTanfkwMmFEk6jtGlEPuMpAvPQlBZLtb1kTRfn4Pc5fumGk81QOYYpyiI7ECadXXZDIRozmwMorvZqCO/N89vPi8iYHKezdpLETmv+b5yNabPl0nfhnSv5M8CjUl/Oc8TJmpmdjQdVmLScAadGkn3ZFIwP5Bjn+65pWCgvaSOb1izWJV+ZmXYRqS/z8wKX2KK0FAjWQTZHEX3fI9p4xTknscfJfWUuSjODJNc+KqBbJOJLZL0lUTCY6JR8v2cpMRcSEU4s4OJ5gc9u7RmAxc1RvQnEuUu8DhMzhnGxGzJFFhE7jsoNs1MGycdM4AJgckxDVGIqRgWERNTIl+fxSOR6Wxgw22wuMzMnvycdPxuzWYmviA6JD0mJN0bXutEukXKRk73jpx1qN6knNvl+xpWxnuIhLwmhN0hIe2J/TLGiWGR9atBi8R84fyYA108faUSIp5iNDoyDZj3KKfPUzmGGWFP9/qEfMVcbMuJuWAODr4mxdMcHOySCK7uPVytUx6xg13oxGIi+inSHNI0JyaTn/xZESf9ou490dKjQzBsGubXCJdMYtK4cnYv73Oiu9FIahbTNjMqzcaYSvMYJraBsD6hlRKMiiGaHKVIesLM6kksABcmnaJvNMQY0nNI80itJQD+3cWUMUpUUfYWflVBDsyWzK/ntczmAL/E0zmwRLnh44ROi5TvGUo9u7ZKHoPwAWLwE6Kc9Y3CegjrEUqDHM/BHST2iE86yLQf4SPRzOz4GiOilBAhTCY27zmspmKYSK+bdZEAi84c4ZHNcfK+czGatyXEvN+M+nUJ4U1F64RKjpbPA8AwAlpTBzlla+rZ0VVKop/4Mwo6n5BWqd5/PudhPnVxFXI6DkaOzPdNLiIn5PPn9/WLUMz8+NPyLv8x4kZ+VRDL3/pf//Nf+nb/1r/zP/6FHxvwHUcsl+WIq6tH3D0u8dvf+xYhCvxo+Q7Xwxq/f/cClXbwUeD18hxqYXH26R5GBtggcfe4RGk89IXHumL35tWrM/xH/9bfw6Nt8Krd4Hq/wr/xOz/B/3v/Ab65OcVHz+7xdstKZN30dNM81DjbHPHZyS1+/O4FSu2x3ddokt7zrG6xHSo8HhqMvYb4eIS0Csp4KAB21AgiYlGPOFu0+NnrCyzXHexjg9WvbbFrKyzLEYOlC+muraBVgI4C/+b3Psf/+e1nOBwqLJY9Drsazy52uN81+N7FI758c44YBT58/oCHtsbhocHv/NpP8YfvrhCCwKIiraS3GsNg4EeF5arH7maJ1eUB46hxsT5i35dYVwNevT6DqS38dY3Fx1vs367w6b/wDf7o73+Ek0/v8XC/hFARZydH3L5bAy8d5D9ocPI719h3FaxVCF5i/ds7vL3dQMiIbm8gFw5SRggZUFUW7U82+NG/8jW+eHeBs80B1/drSBXQv23w7Ie3ePfFOV788AavX5+h2XRoDyVOTo94uKPl+AcvHvD2boMYgQ8uH/H69gRDpyAM3TuHA3MDRaeApcWzyx2urzeQOmCwCqYZ4d80UFcd7L4AZISqPYYPaY60+HiL/fUScuEQegVZeQy9gmgVmg8POP6mxPhqgfMf3uFhu0BI+YyQEc1yQPvtEtXLI7p9SXfQTkOMdLNcXe3h/v4phjMPfZRwi4DyRYvjuwbqdIDbFZC9RDwbp/tAiIjQaZQnPYzxONw1kAcN8/KI7qslVB9hvz8g6Artx5bH0zgEKxFHBVF6RCdh3hrYM4/FsyO6r1cQz3qsFj0e75YovzUQXmA8CYjnI4SMCFZC7AzKB4n+owHNuof9fA35yQHhp0sEE6EPEsMzB3MyYNEMaPsC475AuR4wbCss/9ig+5db4E1F4yoAYpBYffSI/U83CAsPMXLxFEv+3TxoRr4AUA8afmMBJ1HcKrh/fYf2oYYYFB1UrYTZKthzB7lXiCYgLl2KkwkINR0/AaD+dIf9fQOMEnKQNC9aJJ3uysJ8XWJ8aaFvzeRyadcesYjQO4XyXqC/pAMpi84Iv3EQvUL1VmE8DfBnFsWrguyGRwH/l/cQ/9cK4xroX3iYRy7oxucWoidCFz/sIL+sEyVToH/uIHs5ua6qswHuYJhVabkQ0x0dSNUgYDfMqkRgA81dWjRfFDRgUmRzdB84QEUU1xp2FQHJyJrx3GPxtcJwGuHWAaufKBw/DPArD3lQdEUVmBxFg6bZlOoEVM/5Kx9YaIxnXDCGU4vymwLDhcfhkVpjc5DoPh5RfVOg/8Ci+alB/5wxKnIQEIGshuGcDSsW9hKupjlW1AK7TwIW30rsf+RQv9IY1xEmNfDUIKEPQH/JgrnY0oCq2AocP/Kov2XUhq85bjkC7ScW9VcmmQFFiCCnIju7qKrUkMkNHzUo6rI31AQvvpFTniI1oXSnlW42c9It/1bfRBxfAg8rgfJGznKL1OQyLabcwPKRxkr9M+pe5ShR7FIDYwH0ZxGLV9SU1u8UxpOI+i0bTP0FG6D1DTWSugXwQk1GTGrAZIRV3pMZks9jFBzn7lNABCLv2S01lHRTzc0Y4XmO7EpMDq6+4rE2b9iYqt9FtM8Uxg0dZHVLxopKgAodYtl0kCOPDWDDLCRToWw0lKUwABt81Q2ZBHYloA+piabZOCp3lGscX7CoXLxmoekaxcilDwQu/sBNpjxsQHF/x5dkmNgVsP5SoT/lPRe0IYK/j1i+oWawfSZRPurJ3XU4UejPJUyKdBmXyZ14IcgUeU7GQG4iqlGjvZKobk0yJeIYzDG5p6Yi3VWShfzIRXpufnSnRDmbdx79mUKxpztrsfM4vjCQNqJ68BhO+LfcQCDtmwV9UIZFpKccJGjmWqqeEpbiwIJ9WEnUdx7jmvNhjpxjV0uYvYevyJhwpUR1Z9E+N1i8oSmR6g2GE4Xm2mIsqbnMFP5hQ8ZGde8RSoHqZkR/WaDYunROiOjmZluxs/ClSuZ0YmoasBkWMJxoMoi2dood8csSkALDaUkzogDYtUZxP8ItNIrHAfZqieFUo77mc/pIWrDe9XDrivRiF6B3Pfxpk+jd1Lzquw6x0ghGQbUj6dlH0q1DkSngjBiJSpASrWWi+ZJCLbMb7LoBXICwDu5sAbUfEJYF1O0e4ZQ5l/rdDrE0LKL3ieasJNBUNPXJDrcZTc2Pp+6w+3Qz6YQw/jzNNiOf3rOwLAwwWrq7jpbopQ+JypsyLwGIp0Y+mBtZ0+NpoSm+0zYw/8w+vtOIZX31vfjDv/7fzA5yyYyifIhT6HB/xiy1/OGSH66iVbdd0OI76/HsIiFRSAHKq7RgSs6aysbJoGA4oQV4Rs4yWsMPfqIjRODi+/pOPyMTQSWrbU1toR5mBztf8Msh6wnVkJ3pAo7PFZTll4oaI7Y/UFi8TZ1Bk7V6mI0epu4ob2TThkkbahs60uUOsunSF0J2CdR8r/T5y47zqfoIu5QoHxy6Cz0dmy/SsfQR0ke0F6Q5jis56Z0AJFfGmDqfdPhTQ0SxD/CVSDpX/j0HJwct5u54iBgX1K+SDsxrub0k9TM7ngJzB9/WpIoR1eEXoi/EpMF8qg/M3XDp4vSavMgJWiTKJQ0ZdBeo1Vqp5CrH8fKYk1a1ZDc9684ATFbz2T2w2Hn4mrS7chumfek+THMhHfWHOdDbtGFCHnIXPyOS1Ps59GcFqpsB/WUJ1QdAAsOaiwmilmLSy4kn+jBXy0mzihjhFgqqT+ci6X2JNpFOqtuAca1Q7DykDRhOzNSRV8PcNfelhByTrk4RyYySiwlXc1Fj9kQApI8QjvsGAHNw6M8MdMfFzXiiITz1d65RE+pLVEBAH6mVUz33LdzsuugaNWnughFzuLYRKHYW8BF2ZRAKwWDuSkH1Hq5Rkx5TpGtRHyx8pSFtwHhCeqs5+DkLLT2iENP8+kKieKTtvG/4oaD3Fm7FzrO0gYjFwcJXKi3uFKQNDO1WEtSCzpqiqAR052dXRSNhFxq68zTGaAzU4NFfFNBdgN6njLxNMd1D0lKfN54WKB7p2KgPKYdM0XhDDQGqc/AJmcl2+1m7FpSA2Y3JqVXS/fFxnMYoArPxhGMenhqS9nelUb86wK3K9zrfGanKcyki4CsFvR8hbIBfcM6iIfoSjJyOIxg1aajl4BAVzUd05yekR6ZIgWgk4OOExohED/MLA70j5dFXmkiOkpN2T3WWYwYgBzcdt+wcoCXPb7r3M5ISGgN1HLm4jIBbGMYSZKQ7cN/RqPR8TNuISYtHgxLZZ9QD04I2xxvABUDTlEh4ag6l9ZDtCL8sIUcPue/hN9RV5lw+ESNCU3DcAVCHkewFSdMTMRD1gRLUJ0oxO2jGCNlZuNMG6jjC14bIlQsQ3kN0I8KmIYXRR/hVyc+fzqbfQ5oXBr5DiERbNNPzcrAIi3JGxdK2EcDjNYqZfZiRLQiOVbaW1MimmOYzzy0kEEsDuevo4tmNEKOl/tA6xKaatxcj53BIi/9+TOdLMyNx35MqmQxbsmYxFhpye0RsKlIFjZo0h4gRoqe+L2v4Ys3rCqOdUDPRj3QLtW5a1NPq3hAxCwGxKiHbftYkZiTMJ9Qw6QSn/MPRznTPfkRcNRDHDrGg/i9vUwwjC5TCcG5ULhoCsvPnexmKWS/5ZN9PETzRP9EKGmpdsw4ymkTHzMibD1OuYiyT7jK/J8bJ7TTW5XvjmYom6+axSDHNWzao4WvS/rSe9ZBGc0wA4BzRwLqmtvQp+uccdYz58z65ogqtOeauo54y00RDmDMhn0R1QOsntFTxfpwHN8xjyQ/JbUwIZUY58zaUYlE4Wv6eUMc4jvP2nj6yXjfnV+a/p8JQaM33GvOe62vM48+Pp4ViGvtTzWSm2MYQZ7rtL3i8p7P8zmssX8R/6X/55SOWv/vX/oe/8GMDvuOI5fnFDr/xn/4R/urJT7H1NSQiGjVgJXv8re1nODEtfvfmY/zl81eo1YhH2+Bl9YhSpLxGu8DBl/iseYf//Sd/BX/9k7+H33v8Pv6/d8/xH3/6Y7wZNji6AiEKnJdH/PjuJQBgt13gtz98hYMtUSmLpRmwG2sszYAQBf72H32Kv/rrX+DgShTSYWN6XPcrvN6tcbJocVkdcNMvoUTAs3qPv/P1x/gPPvsD/NHuCoPXMNLDR4nXj2tcro64WtCltncGlba4ble4MiNCFLioDjgxHf6Pbz/DZrWHUR7vjktcLXfYjhU+WGxx0y3hosTgNEav8KPTG9wPDX59/RY2Knx9PMPrwxqnVYdV0eNgSyzNgFeHDU7rFnddg03ZQ8uApRnwe199H6frFt1oUBcWddXjygxo9Ijf/fwT/Gu/9jn+4OYFinLEzW4JYxw+u7wGAHx+f4G2L7GsB7xY7fBHr65wujnCeYnSOFy/22Cx7lFoh340GAeDT57fQoiIz18/AwDUzYjvnz6gtQXubk8gVcDl5oBV2eNnt+ewVuH52Q6PxxohSJwsW9zvFlAqoNtWkIXHYtVjf7/A2eUWj48L5i5ahaqyWFUDrncLLOoB/ch4mkI7WK9w3FcwpcOqGSC1w3EoMFiNoTdQKmDRHPH4ag1zNuDZyQHXX53j8sNHPO5rVJVF3xXQxqM/lCgXI8ZeQxcel5sDdm2Nk6bDq6/PIY8KoQbKsxZ20Li63OL17z9H88NHHPcV8xM7BSzIrS1qCztoLFc9uq4ARIRtC6jSI1iJxWaP47crFM9bfHJ5hz9+9RzhCFx++IgYBe5/coaw9IAAqvWA/qGCrB2U8fCWlKlgJcQROP94i9ubFYrGwo0K4m2F8HyA0oEOyiNS1iKgqpHRNyLi5MUOh2MFNyisTg/YPzQw1wX0Z3t0dzUX0wUgpIc0AX5QkMYhHA3kwiJYAdEpxFrCpGxT32tIMyKMCrAaOaMxWAlYCagIBA1ZOeC2xObTBxyOFexDyczItYU4GEQdIRYOpnQY7yvonYJvWPAiANhYxIMGygAEBX2v4U4BRKA66zFcN4nDnOiLG8usSyWhBtLh49JB7kiJgwRCw/lGKCDbNMdLB3moERYe8qiAiwF4pyCiYhajB/z3aAscBkWUsgzAUUIMAqEmYio7jahSIWYSFd4pRFUgNB5i0CjvFWn+QrO5sHIQe8Pxrx3EsUAsA2RbIZ6OUNcNpkzOkHMQGYske4moNIRPEoNtWoxIFtj6KOA2AdEUs1zhYsTiDyscv+9R3hDRFS5pQuMJfBXhm4DqnYYcgP55QDQRxW0atyZq6BcKeqvga8YIiZBo1Oce1WsNt8wRNXGSE2TJA3XecaIhmz116iIyUka3jC5SraCztKhglwHFg2SkzJibT3QP1keiqW4ZEUxEeScnxJGaakwZisUDcPxeQHnfYNxwjNT7M1boKU0dmUqfqNa+ShT6ZfoyTDTKjBpLRyfeqLktaYkoesPXjJtM048pymc9UZl1DwwbTJE0qic6F3RNVPFIqn9M0ggRqCkv78XUWHUVsyfLh4jjhw10m6QHi/n7W9oUixOIJBePMx1cWmA4w5OoGf6r24hxQwp+NsYKKjdeE2rcURJQ7OlIXN5jyrTMiG9u0mV5BuLsDCwdG8O2WU0NXl9TchAU3W/LRxoD5mYzpQtJgtIminMfAbGepQFPIonY8NxMTWnu/3SiZRdHZqH6glTn6oFNjqDpl6BbLrJNl8wDBaZcSelIqRZ+biQXhzxGYNhIrL51aC+JBDY3YTrubFIHkH5+fK5QbsPclBegLnkfYGsB05FaLh33X986uIWazPmA1IhODVjp4iRLyKZs2dgt65OLHU23zMHTtC5Tf5M8gw6wkkZsKjXq3BPZTqL2ZnM4xnxF2KWCOXg2e1yiEisWmDrpXnPDUfg4NRFDweaX6t17+ZQisOEJiYkiTLptmAptaf1kJCQcXWzd8pLU5JEFrkhxJ5zfJxTS3FCzyaAo0ZRFbxFLnejPiVbrkqmXEuxJeRbZsdAQYzJcWlaQh57FcSq0RTYryqf3afGW3VzzeKrE9Gr7qYgXAOIwTAZDkAIi6S2nbSAfTpxQSvHk+HKupSzU+xmXwHtFqciM3Bj+PH4/v/KPrC39p/HxnUYsV792FT/+m38Dp02Hl4stxqDggsLRFdj2FX50eoMvtqSDahlwHApUhYWR81XZOw3nJQ7HCkJGnK5a/NbFK/zu649xOFT47MUNhIi43q/SawJikFguSIWtCosQZAqSZ8yJHTXKykLKgJfrHb59PMGyGnD96hTLiyO8lyxy2hJSecQgoY2HHTWk8qTVdwamttgsO+zbClp7DL2B9xJhVHj58h7daND2BYKXqOsRh0OFsrLwXsI7Bb83gAmo1gO84z5K47A/1NCG9FNnU6dSRvi8nbdL0jYvWhTaQ8qAfjQIQaLfl5BbDf2yRfhyAX81QNwXqD/ao92XwN5AbEbeNBGQtwUpKZcDc0APJepVj/augVo4+J2BaByEjBASqJsBh7dLmJMB9lCgOunhnYTSAfbLJaNBXi1w8uk97r89gTnt4e5qxNpTaysj1udHdF0BezSQFefTJyps7NOnUxGgbwr45wOEiogPBaKJUOsRUkTYLlELewndSriXA6mEbwuoTw4Y7muUZx2Gh2rKGJV7NSHDahRwVyPiQNMdWTkubLyAelvCnTrqglWEvtfwdeAi7nyA/uMGww8GxCCgHjTEix7xVQ1/4lBcaxo2NQFiEJBXPdTnDYZLGkXABI7bSUQTWABtGMvSfGkwbhg5Ehdp/xFAFJAd6aZhydeqewO/8EDtIVqN8p2atMYigGHsSwd9U6C8E2hfBmBjod4WcM8sqq8L6mrBxascBHzDoieqiFgHiFahvpZoPx0hd5qh8Y8S0gn0Hw0wbwtGXAxiyu1ktppIRYiAPgiMz5llWt5K9M+Y/SqCQNQBaqcZ3n0S0Hyj0J9HhDKgulZwiwh76lHcEi0azwJkJ5PmOKJ+w/M5nDMapbxXGE6ZUZpzQu0qLfC2AnZF6mmUEW7FLFTdcl6LLY228kIdYHEwJKqpLxlVYo6JRbAKQOBxq577Uz3nvr+Ic8GLWUOdNdfSkgqbF82ujklbnArCJQPtfc3CKaPb/bMAfeSc2jWplPsfMEPVLXhs5QPQnwG+YRGV96F6ZkMOp6RNqlZMz0OQzTGcUScdFI9zOCGN1exZ6LgFi5PxJKK+FuiuuA85zhTN9nlE+UhKZ3kH9BcsTsqHiMOHAtUtaJ7WM75HH+fCjxRWzqHuqMVmxmlEdcPzWTzShEz3c96nHDFlfWY6puoTXdQA5ZZsBNfM+txxzdfqlgt3WwsM5yzwdEsaa3XHIsnsaeCWKaW+Apq3nMusy86a3qxrVT21pocPkxut5XNqZKHRX3AbrmEREgoB1bEQG9cpn3PHv5NFQRZPMJhcs6kJJJ3ULVLh50m9zWMzh+TyvWKRVW6pUTy+SHTPpDG3S5pE5SzK5ppGXfVdgO5DMjhjkXa8Istjzv1kQZwZGtKTKqoG5pnmc+tq6pqnnNA469KzjjpKHmexj1CWplPmGFPUCCmeiHRnX772pDgbMWlH1cD50D2L58U7j35DGvVcmJMRQw0s761c5BSHgO5UoTjSDbs/VxzvmoZm7YWGshHllm7Rcojoz0k39cm92heJitrRlVt3ZLbI5Bhtlypd83FiI1V3dKwudollEWY3e3PwGE40qgfHosoF+FpNDAEAUF2ASyZYAGmpeW5Uz3M+nGiYvZ+KWdUHMkiSu7WvZ61ueWcxnhhU1x26FzXKu5HsiAei93ataDJVEh0PRqC6pYu37jx8xfEFTffnUKqkr005lcVcAGZnbeaCcptIv2dWQ0aw7Vk9of+kooLshdFPrAIk0zI5OCLnCS2PT8yVJmZBQqOF9RC9RViWkL1DqM3k3Ct7NyPwpZlYAJlaKyw1oqIdZuQ1u81qNSOc2bEWRJ6jVnjPMVfTLVs8RTkzgg3M28mPhHpDP0GDgdmtNqOsGWkGiKoCf6KgFMn59k9kWD55RB8gnhS5v/A1eQzD8Ge+7s96/Koglv/i//xf/NK3+3f+3f/+L/zYgO94YVl+8mH8+G/+DYy9Rtibme5pJeLKwVwb2DMuoGUnEaoAvVPJ8S6HrycK6IpaK2nZ8YEEoko6micZg0FH+GWAfqRboBxF+oClaYjuuCChDihOaIXuBLqXDmar6F7bi4mylwPlXRVT2Di769w+JlMdgFqm4dJDHem4KQcuEFUv4JZchAfD/Y0bap1EENOxCMcFnG6ffICkBbuv4pQZ6Eua6ORFSzbvGM4jgo4odhLDaUB5L+GaiOqWC0K7CqjeqamDfPy+A3TE8nOen2wGkhd9wykXk6FMC6MB6C75N1/xOHJA+7gJqK+pjdIHMZmQMF8vBaYXHAs7pJy7aZFoiQbkuc/j9uUTQxOXguGvBEQy2gk66YMKvr95wwVY1iEVj0D/LM1lyAt9FhPDGUPvsw4o63XoKsvn7IqoAs0jgP5ZMpGqOSflY0R/luiiCcGQI1GE8h4YTxl0zwVzWuQmI5bczS8fge1vjlj+wwKqn8ehBo65v0iL06Tp6i94Xkh3FnBL0KG44Lh9CZgdF8R2zUJAtxHdJRfKwxn3L1J3nkHiycm5TzTqNc//6mdceHKByjGZHR189TGZJUUiEaHkMTXXHJddJMfehgtmc5jnIMcCBcP3dlcRi2953Ifv0dk4G6jkogLAZErUP9F4NEkAACAASURBVON1X91yAd1fzBFGOZvUHPme7lJMZlki0AnXNWlhKfHefRQKpNB4bjcv6DPiEhSLFWoXuWi3CZmKgtt+ek1n8ypX0+gnH0/OUBTZVEWL5Fwdp3GOa+oEfQEsXwWMa7reLr9lgbV4E9BdMvbGF7O7dDbJUgMLpWBmJMUcaZ5EijfnzC4F6lvSnrP5jjlGdJdc+Ok2Qg8R3YVEdR/Qn0m+XvMc92cC5RaobwMOLyWqOzrNllu+ZjgVqG8Y05Rp98WBhkHKZiOgmMymIoYTCdXRfGnxNqA/zWZRAtVDhDdEf8bk6Jqdv3kvcd9sILEQjJJFpC84N8WBKM+wkROyVW45vyLwOI5XCou3dCWu7wPaZxJq4OsOLxSqhzDF3QCYjJIATHTgxbWfIppEIMJFp16iUGpkLFR2c1ZDhB4YnZILqXEhkwYQKTIpfSekBafpwhQdNC6oOawfSIG3NRGlYhdgF3KK9Wne0W3WNgLFkbID20iUW6JQw1qiOPA5VwPL1x7jiu9v3rlJL5ejgaSNCVFLVDrBrMb61lEegSxZoEttLpIYuZMMfTQgh1RErlgE6OQgnV2OXToec6B+kOZ6MRm68e/1jcW4ZoxNf0ZdIM8BCxu7zhmEmKnlY5KXNAkFKyVsI1HsSMVWXcC40Sh2PB5fE3H0hUDzdsBwWkAEFo6qJ/3c1cmQKOsRBRBKCZmyKLO5UBSA3RhKGIyE2VvYlSFNPUT0FxWKxxG+UjTxcYyqcbWC2ZMGz3lg0SY7B3tWTaY8Gb3TuwHjaTUVbW5BWUBeu+g9i4GoJOy6QPHQYzyvUb5rMZ7VMLsBbllAxAh1pOtw3h8kqEtM0S+cAwN1GJkd6cJElY4JeZQpiiZqORd265r0aCEmNC9qSSo3AHUYZqp3MgXKhj5Iz2XTnimyJVGdxZgos85PBVpUioWdVnxfQghFP7LQC4FuqqkQFNZNlOusaYylgRgs/33692n9llBFpWZqbKbBOk9qtBA0/QFm2nR+ZBrwzxnrZEptdKlgzUVjpvlmbWXw1FQKASg1G+s8QTyj9zNFd9rtn1J7/FlmPvm9dvxHvuZPe/wqFJaLH72If+l/+i9/6dv9u//ef/cXfmzAd5wKCw/0+xIQNM+gvoRf/k4yR808aKheJPoSC0fhwQKgBMxesjC5TR8sAxcBOVC82Iq0CE83WQ2Ye5WQibnwU32iVu1EMnoAzDFnxfGLq7hVpGkNs9GFCKRfyRF0qi0j9JHbLB9oegAkylJPzWN5k7LQtsmpM4p03CJ1yUWiEEku8k8xUbR0B3Lx5Wx0gNR5z4sTsxeTe6p+0iF3NRep5ZZ6uuJRoroBuis+T6QDsybVA3r/5Es2sS5ITUlOnjHNRUIGIDhWcwREEBPaEauEjAw0PZGONHuiCHx9MIDzAnKMNOEYMHUQyweeT7PjYisK7jsXH/qIaYEtIgu1vCgvRiRkL0VueEB5TIsxEVKhHgBIopWMrYlJm8eFte54Xn2J1HFPBcaQXUKTo+chZagmmpl0LJiimgvdjAToLjkRB44jX4863Qsz/Sqi+aKA2ccJAbGLtOCSbCJIx3nRbYRO3f9cEIYBia7FAiy7noaS0SmMe+E4zSGSEuNmalowaW46oiAIRHeqW44B4PFXt3EyxtFHjtuka9e0Ed6KNMcRMdHrIOkKGlN2bZRp7jXPo2tY5JR3nN8ouF9zjKnYi4hDQqdSE0P3EfVbvjdnNuojGwb6yCYTF+qcl1zQCpfcWn1ylU3NrnyfIQJo599FKqoyjUulc5ZpbCIA1X2g03OivBV77l93YioWfKARS0x/Fz4hJun8Cw8guWXqnnTWrP9WuXmVrhk1UutdbPM1ld1IBfyIdL7SNZmohXkcURJ1UjYVnYkOZ/acQxljQnZY4JSPicrmYzK0iclghOeKZiT8vDHpuIod0Sb1GKfr3hwBZYHqgcWISmOW6XyUO7qM5nzZ8jEkh1mOpdzy868Ary01AHqguyQpqBHKztEfxQGTJp6O1tSU8v/5viVCJa2YChRzFKlIium8RpiOWmNzYBHM44nTMXBhy887085OuJNLrI+Qkp97IlGxIRJ6GCKipJGJHmIq1gA1BBSR916BgNjO5ypTnaN8klea9OWmDSlnNSRDFOoTpWPervRzkadshL6P0/WnLM+fGgLKPVEwEQA9UHNsWqDcpdfkzGgXk0adBYrMObeDA2BIKQQmh1dpA4pDhGod7MpA9R4iUHML8P2+VDDHJ9sbWSQw6zMgO6UWeyBn4WYNv+oD5Ehttz46mDIhZkZCSAE1eIT+6f5yjq6E9AG6pfY5lDTQkS5C9h7CBmgjoDoHKQVEpL5OOBZFamRWL+mXYcoRlS5AtfNCPOeaysFDeDqMCoD7ze/3HHvW7OqWOnDRRgSnJhdY0xKpMxFJn5tzRCPnNVEzlaUTK88bEUs5OKisZ9ZEBREAEfg63ToI66EPlvdl53hcLaMt4OP0nPAeUSpmkY4OKuV0quTeCoupCMz7Ez6SHhoC4JJ7K+bXTVTOlLsqO8eIERcAESEs5iItO3Qn7aoAkTwhkmbVOhZ6MT7RNfI+EDnDcuR5mCM9yEgRzifNqJ/iRaZtZSpsP3IMPvCaGCyLvJ8vEAtQG5ofeT85P9TaqYh9r5h03N90FaWczJg1njFyf0/mY9p+nDWcMUaIGN5HJH+uePyFxeSfo5Dkm/8p4L/+M/L4TiOW1aeMG9mcHgEARnvc3q7w4vkj7vcLGONw2NbAwaC4bDE8Vjh7sUWhPQ59SXrq9Ql06eBuKpx/8oDdscJ4LGBqC9trwEr86NM36JzBN9+c003ztoQ4G6FUgBsVTOUw7kqIwk+/qwWpsCFIlCW1deFAaqowAfGoUZz1pKzuDOTSIgYBoXg+Xlxs8fYPnyFcjJAmQMpAauhmgP9iCfGDI+x1jeKqpRPoTbbLC0CnoDYW4hs6bcbas4gqPYSIuDzf4+ZuhWAVTG3hrELsFfTSwnUa4qDphFl6auUAiIJ6MHFXQB8F7EmA3km4VYCwAng2ILSaNMyFA3YG4nREfChQ3ir0H1rIylEL5wXkQUFc9fCPBQvIlYW8KSA/6ODf1ohFRKzSB3TOArECMBHFW43xIjtdAqqTcGcO8GKiWorKQzwYSCvg1p5jFCzK7SrArz3KNwbjD3pEJyF3GqoVcKuAWAUU7zTsmh/+qhfwSy5EzIPEeOU4FhWJjhcB+oGaNhEE6YWO7pjSJlfOIBAbB3VvoHox0eggiFYPF2mMkY2BUCS6qY5QR8l4mD1dYtkIoJunXbGoDQZTXAtpOhyHL+nmKZxAldBeXwfIQaK8F+heeMQ6YPNjg+6KqPa4JiXSLdjMUD0Xq+M6LfgMt89mB6b9Dxce+iBTHIlImXtgt7liUSZHAd9ERsyMzFvtPvDQOzk1MEQkCqqPCcnreE55IfL/dkV6lTkSoc8FunCAW0W4JkAf5NQACiaifscs2alBEJDietgMyjosObJRxHOB6T15X7oVU7SDXbNYy1RYadnkaF8ENK/kRB0WYW4oiICklcK0gAa4L0YCPRmXjnSPLYkYQ5Bm6eusjUPS+NBps71i42SKOGkSbTJr1xxpp3Tspbtlf8lx2RXnXLczNXM8YUGeNYI0aMJkRuVLUkOLHQtpu5wzgqOiq+hwlvJmF2LSkzFSiYh7ptPmWKBMpRtO074SQq5bItq6nampjn4znEfNxkV2GB1OMDWXWLyzUZddVRljJCa9IgRQPpCiSZMgTPo4NgrJ5BjXAvUNEdwoZ4olCzYeT3/Jc1PdxglBz1oy6YDjCzEhn+aYonuGhOTn+BCJydwrN91yM0pEFm9jQvqpCU3NoNRwY5YwpiieoJE0aUj5pkTL9cCi29Xz9Z+bGiI5gfpkKJe1feNaTEh5sScCnJsCUQm0lxLVAz8zo+R1okbAprxk3dMELxfP44oxK1EKZqUe5ripchdgm6Tf1HM0ke7ZJPKFmKKhlKUxXUZCy8RCyNpH2/B4ARrVZTM6XyYzsi4xBfwc7ZIpo5kSG4xA+eAxnCo0by2GMw1XChTHwGgWH6fok7yNqHj+i32YzNXUSORYxDhHoBhSNjNKmg3ydBemMdDMjxTU7O6Z41ikJSoJcPt2SSpqsXXcl6cJmrRx2pc5ehrWdWGKQQlGTqZy1bsBvqK7aVACrpEotg5IhbRPmsX+3KDYugktBTBRR4nk6hTlQefWnLk5nJcoHkaiqAcizb5WibaqpnnPTQU5eNh1QTQ1mX6Rlkqqp7QewSiijjFCdi7Raw2qdx1CkQ32LHxNNE/vekaUJPQzN3N8k5oXQ6J/PjEdEi4gVCy+JqOsTH1NGsfJAGdMCKQQgJJT8RuVgDz0NGeybjZDqsxkNgXrAE0jqqgVzZaqAtlMCWCTCdYxE9OHRIuV82tCMjOyDugHFqUhvl8E5jiT/JxSfyKuBABin5DPhFbyd5FMk9J7Q5yLyLy9n/8/nhSaqZj9cxWZMXzn40YWP3wRf+OfAGL5e//+rwZi+Z328i20w4urBxhN7aCSAX/lsy/hg4QxDi9We/zmx69w8r1HhCBQnfY4diW2xxpaBry7XeP0fI8QBdTFgIddA2M8Pnh5j+WCN8/HP3iHn92c4fXtCYQJ8K2GvuwhBLBZdSwkW4PlxRFCRXinUJ928INCWTpcnTH+IAYBvR6haofYaqjNCDcq+EEBlYeQgDQBoVcoSofXn19CftBC6gjfabhBAwLodyXciwHjoUD9wQHDtsLhzRJnL7aMZQBgTgfEALgzB3E6sjj0AvGgEYPA9atT4KYEegl3VyGmOAe3LSBawmJikBBt5l0B0UnEo0bUEeMLi6gj3CpAno2Qo0A4asijgmolYqtZzL4rgSDQfzxAtArxsYB61BCVJ/V2UFAnI2IREFsNvBhgdwVCSZ0cBonJlOJeQ/Y0YxkvUpFrBeoPDtQQegHZSsAJyIUFjtTsuQs7IYlRRvRXDv7EQYw03xB3BdSdQWg87IsR+igBKyZdIAT1dvCAOkpEA4hRQliJ4kZD9gIIRJpVzw/g4TRgOAtTQaMOCuZ+ns8oALdMnVGf9tULGoEIFg2+CdAHAXWU8E2YNGMAizrhiEaFeqYayTFRuhL6O26ICDTfqpkWGQGzk4gqMtt1L6HvNba/NcLVkRRsJ5DzUN06TAt93VGryBgJGqmokQUVdXsyxVuEVHBEhJImJkFhOtYcIaF6FtAmIeCZGh4VoFoxIbdRJ1RIsuiashItj9VXPL9IBakceYwAqeu647H0FyzSzIHzNKaiUHWAcKS8q47Nie7K0+G4JoIugNmAI5KSO+W+7jk2UmszE4LU8OGUBYxLuZs05JjpzG5JtE060sxtk5D9dC2ZHZHIbL6S6a9mTx0g0X+O5fAR58EtMOnKyApgEZuzaoUj6s/zwyJMjpyDnD+qD5iQY5WQcyAxFxrg8H1uE2kfruLvSPMUBRE9V7Oo9GVuEszIrD5iLtAXmFDg44epOEr7DUkLyYX2/LpMFdYtqcOczydU7UMqTDsWHxntlJaO3sNZzpDk6xGA4VROx8B5TsWUYDHlS2oFx3W6HsuZ3iVHHq9bCJT3McWJiKkADyUR8HFJFkPOzZUjx6gTjTn30XyRnJRdoiDHuZAWntuOUsAuSYU1h1TESGogo5qvjawtFWlbvmCREopp+MgZtSHdY2rkeHzFzwOyfARcJSbX9XKb8jmPnMdxSYqtObIZ4wsx7X863oSCQswoadDAsJJwVboGDQtBaZlDGlJRQyr+nHVqlzzOcpeosgNp1mwExemzi7EVPLf9ho7aMpvbpAzJHNUhIseCSBdxEalDZCYlb4TuUqdoF0WzG0F3deEZIxI054m5wCIh8IAv6f6dc28zpT4kV3tXyfQZHqFbIoEyu8abzKZKhZZL9F4Xp4JNuuSQnmjBmXHAOA5JZ+kxTqhrzurMjvO+Ig00inR/jRFuaeaMzITYx+wov6Brt12RGkw2VKJeR0xjIi2WiLKIYByIEvA1HYejkdC9T3R9IpwssDnfygZmWKbvOt05ZnKmPE+3LEhVTfmYIpvZ+IhQa4RCwexJnxUhXReGVGe97VjoJeOeYFSK8wgwDx1UotSGQk0ZlMIRmSOimhBQl1DZp4hodgFWCjAaYVURHVSKTsFCINZloto+MdFJuZ4xu9EKMe07NqSxidFCOE8EMwQgu+d6ai9j+oGULEyzG279JNjYaL43ayKTw20MYS4qk5stnOOPUkQ+tQKkosMtwNcIORWHQgi+P+tCw/toZi4qhRDUVoYIoeQv/IEU8082BvqOPwLEL/3nV+XxnS4srVd4/eUFbu9WKJTH9ljj8/sL3O8a9L3BV3en+OL+HN3/cw6lIuzXC+YligijPZQO2B9qhFGh/HED32v0vcGr12fohgLlNwW+en2OqrIQIiKOvKDVHy/gR4m72xXGQwFTORy/WSHsDOpmwPjVEhglDtdLvHtYJQOZCH9Twe8KVOcd/LZAcBKmZq5dDIAUEaII8F6gvGqh/4DCKll4IpmWXzrqTQkIoL1ZQC0soCIeHxf8oi498GWDGAWanxnoryqIQQJFwOLqyAWCT+6RCwesLXTjoJYOcmWhzgeiWQ8SWDjUpx3UwkGYMNFa1z8uIKxAca8Qb+gUdvnhI2KR3CcbBzEoalo7AXNdINYeF5/ccyEpmB8HK6G+qFHcsGg2n9fQK4vyVnHMZYAYJeRewz8fIa0ABonqTbK/7wXauwblOwW5sHS/9EBMCCgCoG8NYCKNbnoJ86hQvDXQB4n6rUDYOMSrHsU7DXVnYNcecmVR3tEUo36jUGwlYh3g1h7VO25bRMB+f4A/dZBLm8xV+MVf3Uqc/QHdMfUhFTgFgKWFHAXKR4H1T+YPx+pWQFrSZ0MZUL+V0DtJva+OiI2HWwY0rwVps+1c+MGEhBhG2BPPQlMgOWOKSccaNanTcmBBAQDFg4TdBLgTh9U/KKAGgWIn4KuA8p7a3Vyo6paFa3XNcRePkvE6Dnjxtz31QC8GNG+IRJb3wPqnfA9RT2A884iaaGUoaW6z+ipivOL8UZvIhaU99TM195B0ZoLU9Kg5T9GwQAFYxCzexAntdU2ckA3SkoHNT2hQ0196VHcRq68wFRXZ1CYUpEHWbxWatxHFY4RdB9iNh26JxJojUL+NjDWy1DYX+4RARxZMbkFEsXwgMrX6JiZ9IzWSEPyX5yiiuolYfk0tbLFNBksyYjiPE+rWvCE91TURds1iPRo2EIKJWH0JjCeBxVdEihvivKme48pU4ahYMAeVdLNtnJDfoIDuReACWXGOXMPtFTsWZ/rIhbLZx8mBE2CBN25Ir9XdvAhl7iC345acq+4qwDW8N6q7SJTWU+dtjhG+oqGRbnkd6j5yHGOcZARukVCRSKSyfsfxqIFIsxpYPOei6/AR52P5OtA9NOkPiz0pnc07Hnfel4gs0hCovV68oaaxugtE/UbSVoVn0VVuifocPxDoz4H6LsC0EfVtQPkQk6EN9brVY5zGP25m5NPVnDs1psgqwSKLVN8AlSip9W2gljbJLYbTJKnwLKqqR15n0pFOnYu5IhVh5S6hHZ4FU0aNs27YG+pV6cJJRFj3EfUD9ZtEZdJ38YpNoHIfUOxZeBfHgMW1g/Qp5sUnvXYtJq2k6gOKnYfugOUbx6xCw0JnSIU8jXF4LGqkDpZyAF7rwgPdGXWiviQq3J8zOzUooEyU0+oxbXskrTcbyWRqt22ILklLva/wQPPOQqaC0yREb1wJLF6PGFdiyoEkcphdXIng1Xd+0mYixlT8+9TMIi3W7H2KlJpRYgiwQVRLSE8092mElSvF1ChR3Yx6zsZxIbmmOthaTjFKaggwB5dMjQJ8zULebEe4RkJ1AcXWwjwO02uiFFCtgxwD9MHy+JcJEe08Y40cEchxpaAGPyHtxU0H1yj4UlJzWUuMG03Ka+8Yi3SwGNcK6mhhGw1hA9TAOKcc4wMArtapcIyTi2qm9krr034ZFaQfmduIRHMVNkB6RkCp3hF9lQKyTdEwKpnrHHvqSFMxGBqD4fkCvmF0z//P3psEWbLl6V2/c46Pd74xR2RGDi/fWFPPEy1kgBoM6BawYMUSwY4dC/YgtsLYscdMBjuMBTIZwkwmIYmeu6pe1Xv1psx8OUTGfCef/ZzD4u9+I19LamMorKuwvmbXMjLiDu7H/fo93/mm3lNK67BDYQxdaLrFbwWBhj5wpwOZLuqqYaoaWqn12QKvSuqsVFYI6OurTAKzZRtVX58CIpt1DlV2wTU9KI3DO8YzjvBJLNLa/vWaFupGpLx1A1W9rWTBOogjSXwNAogjVBKjoujOc9lLYcPwrlqkZwydxeeFAMqmFsbSmLuQnbq+81pqLf5V7yX0p69SattOjuu2P//5O9YK6G1a/Nv+0r+6/Uzefq6BpXMK1Si8VWy6xFeAJGlosog0lv83E0d5ncoKs9V4r1hlCW1taBsjtQ8zjw4tWsmXZRrXNI9LTOiIA8vefA1WEVyFtInHxBbfaMJBg/cKP24x04aiiIQtiRx61KC0l3TP0AqY8lBdDKS2oNG0jaHesduqBqU8TRZR3iZUO06SXRVSLWA8OrYEpSJIWqJ5KWA0drhWWCjbatp7cuFpB5524GFWQ63JlglR0mDGDWiPDjzpUBJjbWFkdRuZ4FS7ViTCjcFuAnTgsIeVfHn1zIRDwGOuKOpQJKGlEmDXKtAweKWw90ownqyM8LHHLyORRg1bTK2o91swXuSgWmSbPrWozMCkQR+UxMNaAogqSeQbn6yFPXIde1cbAbUehpMS32hUKyBJhQK2+qAmF0IzEzBEq3CV6SSLEnTkslDYnMHdxE2FffE96KCTeOUBZhFs31v8q8I+VHORynrjsfMGmzp8K2XtzbArKW9lIHUjx8omQORILyT5sjxshYWsJJnWdXKvPuHTlAg4LxEfV9MdGM822RRg8FqknsmNE0AXdXfTjUkkq8jRUibQPrqTo6hGSSl9dsfQNeNOjhsLSClnRhg2JYxMz0Q0w7vQop5RhM7vO2+6fZeT7o7dRBhF47fSPdf5Xk0hjKf4WjupUgR24LpKDQnC6vdfwfZ4FweuY01FOv02C2QqmbC2O802lVOAi0yIJTlVAG89ldcRSakSuXInWQs3bL2+vbxTugxFgik1FML0BHk3yR50YUtDRbEvyaLtQOSZuhEJsI07sJp2/tSOdewDeryR98wPlbDRSkrsfdAFysR9+JXsc7VnZbGgZOszbSaKZscKo9T5lpWTsZWKDAFBkjIrbGnPegWFgNEw460UzE562TEpyss54CLx1uLBTluSa79NK5XjLeew78LTer+f+EaF9Qsz7nyorYDVMHe4yG8Zuv4a5SLZFt0xu8FG2EPbgZUwEyDcs0vKCeNVj6ViQgKC5LrRpgJcmlHHFvYJyZ331QcCxqLNXW+yV+Klezu4TJgctn7ffsx05yeUa6swgaq9893eBbix7ZbtPxt9WFpYSOhbNVXYUMYzqKSeIVq7rZy0TdX2Gg4CeLae30KAVd9t3MuCxWcnwL5nI4X5k/2QFGBPtBFw0fZySCfHqP+8b/uJFfhAEV+X1FNFNTXbz7u8p3zGe6+3ct01QcnY6ebuet4fN9spCXq2XYCe5C+0iQQP9bUbppTn9D7ksPAd8Oy8n4V4JyXcrpOvVqJEKXfD7lrWUo+NzC1CJYsomduCVRf0tTGdLNbTsY/CJvYVGOLrb2i78KNw026PiVd3sldn5ByUWheNTfW2G1Z16aW9/1UApwBUk9ciq/ZdsFl3frlA4RKzXbjDeewgFBlvZXGR2gIrmwTU024RuAv1EYZP40yXTly0hKtazo9JRHxTi0e1S2kNM3vX7aqAVlKBfV+34RGWz4EpulCkUK5psj0aXbXo1m3ZTACbGNnfxnVjLSmt3gjT18uLXaBFpttLMLUSwFo2qLLumF3ThfNICJFq3J10tQOPsq0CasXkKxJYH2ho7TZRVueVsI59iE3X99p3s2KUAD4tfyfQIsnV0sPqIklk9YEWgPhWH2jPYG5vPSDVSn7u3zcMtt2nvMVgfuO5cMeY9v2exqD613ibJTSGbVKsNm+9drAFijI8Xh7bv0/HWCpjvslGdgyoPFb/hXdlzF/YdfnzcvMguOGnfP9Zuf1ceyyPvrXj/6e/N+F/vPkNik7T82yzwy/PX7AXrvl7b77D4WDFL0++5kW5Q6xbPl0fsp9seJHNGYUV07Dk45sjfvfej/h0c8SPLo/YGeY8fbnP733nB/zx1SnzpGAUVuxEOdYrZmHBokn5Bz/5kF975zmt03xycciTvWtuigFHwxXTsOSfvXxEsUr49juveLWc8lsnz/jD8wfspDknwyXjoORPrk75N48/5e9++qtMhiX/2snn/OM3T3gwuQXg1WaKdZrz1zPefXzOpo44HS/4+M0xTR2QDiqOx2teryY82bnmi+s9xmnJukj4zuEZP748pG0No7QiMpaLxQitPWFoSaOG1gqY/WDnks9v91luEn7nyWf8+PaI60yYz9mgoGoDlPLcLof87gcf8798/i3+7Xc/4R88+4DvHJ3xJ88fcH//llUZU9Yho7Til/Zf4rzmh9fH1K0hDlsOBxt++OKEo70liyzFGPGh7o83PHu5x3BaMh0UnN9M0MozHFQsrkYo4zk8XHC7HvDh4QXf/8kDvv3+S3787IQnpxcsipTWyoVxtU4ZDCumacnrN3NMZPnu/Vd8cn7Et4/O+Px6Hw/81skz/umrx1RVwHhYohWs8xhjHIFxFEXErz98zk9uDradnZOk5OnrPaKkIQgcSnmKPOZwd0lkLK+up4Sh5btHZ/z+p+8QpC2TcU4Strx+sUs8LfnO8Rk/enPMyXzJ69sp93cWnK9H5HmMd4o4aairkF988IIfvj7BtoY4qWlqQSrvH13y6etDchqWPQAAIABJREFU+V7OA7797is+OzsA5WnLEF9p5scrjO6lJp7LF3MevnPBbZ6yuhqKP7STLKvcoKY1YdwyTCtuXs0Ip9LJ6i8SvvtLT3mxmlJUEXUdSB3LUpjq0eGGk8mKz744RrWa8b0VqzdjvvvR11xkI27XA7xTNKsIVRr8wEo/5ouE5qDhtz/6gn/2+x8S3suo1jHJpCIILM0Pp4x/+ZqrNxPiSUW1iTGxxRaG4U5B+XSMHThOHl/x5scSyWuOC9qbZNvnqCuNG1rCUY19k2KOc5pFgrKK4cmasojwZwnxI/k5/DKlnnV1JVYxONlIxc9tjFlr0g8XZE+nsFeRDqX3tLlM0aVi/N5COjpXEcODjPKrMXYoKdScFswmOVfnE8JBQ5w0pFHD5dmUwVcR0W/c0FhD+dUYf1jJd+irROpaekA2aZnsZDStofp6hK7FO6xrTbjUtCOHHTrCW4ONPeYkp8kiwkGDe5WKDHmvwSSW+Ecp1Xdy3HWM3qlJ0pr8bETy2lAeSBck2uMPKsZ/mLL5zRz9dUqz10gQRqukd3LmtknbduTYe3TD9ee7Ig0OBIy6PVlAUMaR/DgVb6yGZqclfR5SfVhI1U/kiS+MVG28Vqy+V5N+FWFjkd4H1yHtXkP0JqRNRYJtY090K1Uo7U5L8iqknjlGzzXZiSe5llTmXnKMQ2TeDuzIMXxu2DxpmX/fsHq3Y+c7j3Q9cwxea4oD1wEVtQVZQS4LNV4LmHJdKJpNBDQr1/slYfPYwrSB24j4WpK88/uW8FbjA0guFZt3LKOnhs1jS3xlSN94Ng/pAps61rHp/NIjOT4u8WAVwxca3UlHq5nfgt30QlEcdP7ctPcKS0r49DNZHFi957YVPZIurIivFdWex0YC5nwAg1dakrL3RcVQzx0739cd+yiLYumFAO524NFWvLvVXIBvfCWsfbHfBapZkX2Ha0V+7IiWeusPtoln8qUsdPThY7Lw1o19BspLSrYPYPi6B3Cyj9VMEsbDtSwK9eMBogToA+iKg05CeyP7qGth2ZuhLOrEt578+M6fDaIsqacwfu63nuP8UBZWoqXfpgj31TPDM0c1FZl/ciOJyH3tigug3BOvbpsKM7y+r5k8tzRDLanKXhYjRq+krsamivjWEWWOfM9gky6leqyIFxJ4Vewr0qu7upgok9+vHmlGLxzNUDF63XLzUcjwtSMsJIF4cOkodkWmaxr5rLQDxeDSSaqwk/ClaCM1J5sT6bsNM9el9kJ605IdBndhV7XfgmBlIVpbbKIJVy3ZSURya2kGkrK7Po1IFlYWKWth5OuxxlSe5FpAaH4YktxYyrlhcNFQ7obCvMaaeNGCE/9o72ENcmHseml5fFPRjKNO0eNFxts4yp1guy993YkLBVTW84ho1QUMlS0u0LhYkn2bUUC4bsTbCR0LqzsWVMC7MKYWl3bhkJn4Ok3RSKhR2eKSoKscMei8EYAaanR9F5CE99+oJlHWIlUi7TaR1keBgPLusTjQ6ww3Hgp4Lmp6jye2l/LarWz3G52VIOmzvV+zrzXx/g6AVrUwmN7ji2ILLNFKGE0nj/VVvQWUfWAQ3Elh/2X1I38++Gd7cw7X+zz/H9x+FjyWg/eO/Yf/7d/6qb/un/7uf/2Xvm/wc85YKuX5s/IhGxtzU8uS6LenZzTecFFPmCc5h/Gai3rCPzl/h1Wb0nrDF6t9Khvw+fU+X2/mAhxNyapJ+Dfuf8bvHn3Mk9MLrqoRjyc3vF5N+Ox6ny9Xe6ybhNZpLssRv/DwJas64Syb8GTvmqyJ8MD7ows+XRxwMNnw2x9+wUU2QmvH63zKTppzmQ359PaAP7h4iPWKTzZHJHHDLC34h6/fYyfNWVYp8yhnVYgefrSbo/HkVUSgHGUW8bsffIz3iqINORhv+Ho5oypD5knBg/kttTU8mt+itaRGXq8l4CcM5YK73KRkRYxzmh+cn7DOY9o64B+9eMKqjKmqDkxmqYCTlzOOd5d8tdljmNZ8ne3w26dP+eJmD4CbPOVovCYILIt1yv/6yUecl2N+ef8lZR3y5s2M739+SpLWTGO5MHxr/1y2pUjYP1iRvRmyLmNOdpcMBwJukklFELdc3kxI44bSBoTjWsD06QVGOaxTOK8YxjVKQfZyzLqMOT66xXvFpxeHeA+fXBxyOlsAcFZMybOYJo/QCnbSnGoVk18OWV0PcV7xTz97Qho2ZFcDVlnCqkzweUBTB2QXQ5xTuEZTtwHLIiGOWz7Yv6B1GmU8u7MNi8WQsy/2iSYVcdTy8dkxs1HO2WJC2xjerMbUtSzFu0LGHOAHL+/JtfUspshidmcbosjy9HoHYxxh1KIiR2MNbW1wTkMWgPEsV/J5uLkdcvV0B5W2xKYlyxKwimjQEB/k4mP18CuPv6YuQm5vRlum3TUadVDy/U8fsFwPKM+HAioXMYcPbsBDnsXEQUs4rdCFomkNZtzwxeUeN8shrgP7e/eW8qEN5EukmYu8+/vnJ3jjqc+GUGuSqCEKWuqpLGLQaqpFAq3CloZwVFPkkbAMsePsfCasxcjSVgHBTolLJFDKTVrQAoJ96JmOSszaoBrF5mqIrYVpKDaxMLHTnk6C5Chjb5TdJeVp2CwGwjjUhnyVSNepFdayagLU8xQzqamrQIKEUos9rpiMc64uJuhlQFsbsnXC1dUYvPROLs4m5K9H2KnFZSG+Y7q8EVlx+mANtWZ1PaRtxR+GFgADbCXLw4NMti+RoC9VGJoy2II8vQywWUBxZHG3sVQVVYb85Qg9rySUqQHuFQJeioBi38NZIimJVqTXPnRUjyvcyG593TrXXD6fb8FZO5KALJSHZYjLQqkUqqXOSW86dmod4kMv/aEdq71+R57ng44FWwTS++rZ9lLSqSW2iaUbmUi5UUu52yXPAl53rFbits9VTp6fHzvChaHcU9hJF7B1r8RGImNuUwgy6VUVttVvt6OeOWHKGrbVRdGtEmnyzN0FHa01+iIS1jfyFEdOAplWEurlA4hu5JjGV7IoUO52DKiSwKje8+y1qAlMIR7lHvgVh37LJppKWNzsvtuG69QTR37kiG40wUaRH6kusEm8kvFN5+Ouuh7LTBGutfSnroXRa4ayDVIzpCn31Bbs9UnrPXNqE7/1AffMYbXTeYLfmkO6EOJrWRiodrokciuMvqQNy3FshxLa1O8v0EnPBWD2vkybdHLpLqAp6Dya9USOd3ZPfIrt8A74u+iuIsgr8VTbmK0fOFpBeq5IL9S2TswFUi/UV0aFGwHQxU7P0Mr+5wciiTVdUFEvzbeJ7KOoGYRprEdyjlUzAZV97VCQ3e13z9A2qVyzcbLt7bDzshoBxMLmC/h1gYxltPBbP3AzMoxeua03c1sn1gr7rBtRRvjudfrj+jbbCnyj1unteppqLseyTbSELnXeeUnWtsL2+l72LYm5faCSqf02QVmqiaSipU1Nd86I1NmFwj7r2gsL2m2XjfU2GElZj4s0baq33s12YDq2XZhoZT2jFyXRWl7DJvKd4CIJ2IlvarwSZreexXcsaNClO3dpsm1q3mJG7Zalq2dSf+ICLenAQ/F4utCgqq4qqA8ach0gNJKmixP21cXBndzWe1wSCIjsalN6memWGe1lpyB+TKP4Rn9lH+jTM4mdRHV7V289/m3vZ9Ol0b7NYmp1J3XdfrC7b03voG2/ASRVEOCtxVt757nsgW1/72Sv27939/55P89k2N1N5qs/7fvPyu3nm7H89o6P//P/gvnBmqPxmkFQE2nL62zK+XLMBwcXfP/LU+JRxb/68Cv+8fN32JtkPJrc8MVij50052w1QWvHYjkkCC1J3HA6W6CV54df3WO+uyEwjqyMOJqueXE1o1nGTA43RIHldjkkTmrisOVovOYyG3H9bE56vEFrj1aeuglI45pNHrM7lQTb2/WAtjVo7WivU5LDjDCwrM5HhJOa5jZGjxuipMUYxyCuuTybomORzaZpTVUHRFFLXQekcUPVBBjjqGv5t3oxQh2WW+ZvkyXMpxnrPME5xaO9G55fz2nqAFdIoquZ1rhG4ytDOK7ZmWYE2nG9Hgo7t0zkSyh0qOsIv9PAJmB0f8X6egiVJt4rmI0KLq4mqKsIN2sZzgpheC5SDt+94s3ZnNE8J1t1RnKv8KVheJCRXQ0kobYMOL13zU02IH8xlknQozX5KmE0K9icj1CDFt9ocCJrREEwbATwbULSvZy6CrGrECKHSYT1otVEV4b5L19ysxrQXqd444muDP5Jjj1LcbMWSk18ZahOGpG2LAPUQYVdhQTTmnYdohKLOY87T4XHDS3JWUj9boHbSOKv24h0SllFeCtprj4W2a/JNO1+A6VGTxr8dUyQS+F99rhjfLoJvE8c4XWAvVeizxLa/VqSfa9TvPaYSSM2h1cJ7VCSUduBvFf6IqA8sfhAZlG61AK+ai2eVjpf3lzSa13qiA9z2q9GMqkvRUYpYQte/J03obAuj6VrLLo21Pst6YtQ/Iupp521kp5rvAQwAW7colcB0VJT3mswiwC7V6NWoUge5w2jH8dkD6SzFQ3tSJKAkwtDuS+LI0GmaSeO+NIQrmH9rRoqjRpY1CLspK+Kes+SvA4oj1qUU4RLTXSr2LzbEl0ZkcglIh8Ou4TaaCETvHricNOW9GlEcdKSngW0Q098pcgeW1Tdh/7QSaEV9dyRXEgKr6m63tTOdxmuO09dDeWRZfZjTTVTlAeOcCUVQcWx27JUulG4wDN6IRPK4sh3nbOSEuxiCZqKrzXVTleNUkgPK0jaq3KShGsTaIZ3FS7JlbAibSqAKCjEm1vPHKOnmvU7junnms2p+FejlQT11F3/bDPsOv5aiK8V2QMBcLqSMRg97zoSM8ge+K10t++hjVZdcA4yPvGNYvNAnteDCd11oeoKyv27Pt4wh/xYKp7SC2GY7uSnkN0TJs0FkF5JCEw7YtsFmh8pJk8dV7+oGL6U7Ukv5Pe6k9gO3ohcUibvbLtK2wEk1z34kzEQ36FMjstdYd/iW6nQsYl4A70RmXKxLx2t1RwGF+LJTK5kHMo9GL7wFAeqS2+V90yu5X2qmfSLulCxfqC2/bNB3rGzA9newZknO5HzzcXyfBvC+pEwmrqR9xi9FC+npPX2E/u7VNZmpLb7qawE5SyeaKmb0ZK8Wu2IvLsPV6on4qs1tWf9UIvfthJQFW7E/1lNFeOvG6pZcJdo66SzVAKdZDyH59IzaqpOau9EChyvHPmBoe+g7KudZPy1AL6u9qqaK0YvHfVIjm1YiJS4GuutdLqvVDG1Z/3AsPNpQz0y25qUamoIc0exI/tTTxSjM4szXS9mz4yu5QcbCTDqa7yaodom2WoLw1cV64cxpoZqIkxiNTXbqhYXKMK1JTsOSRZWgn24kwInNw3FfsTgvCI7jqU6ZtXSjHrGzdEOBWglNzXlTtQxddIn2qYaGyoG5w3VPBCmcNOKTLdLLO1rVnQtUtxm0ieqOkl6HRuiVUs9CWgTYQ4l1VWYSRcKqAtySzWXgJ820aTnFcVhTLxoKXcC0itJeI2WDTYxNCNDvBCmsJ4KCxotG+n8zBrWj4ekV913Y5cW6yItXtLOR2lTs/Ve4gWghlm3fZEW8Nk4qVqphB1sZzIf0b2P08vrBpuGdhRuPaBegS4b7DhBV1KL4gN912XZz6u9p50khDe5AL9Ao6oGl4jCTvWhP10nphvF0r/Zs44d4ykX8i419u06Eq0FhGmNaq2E9YD8rBVEodSVOIcfJPJz93hau+3G/EYqa7/tqmMe++CeuEv6KisBiWEobGR/64Dk28mu3naMqDFbsPgX9lf+y2Sub6fF/v8gFXbw3ol/77/56TOWP/ibf/svfd/g5xxYTj449L/x3/1H3BQDWqtZLgfowDGf5ORVSFWF/Lvv/4hn2S4/+vqYKGlp6gBbGIJBS7uMMNMa7xRHe0teP98l2SlJooZpWvLiYk46qMluUlRlukAYxXx3zc3VGKU7jQUSsGNXERjP/HDF7ZsJOEW6l1O+GuEnDTSa0X5G9vVE/m9lWfrw3i2XN2NMYGlWMcGogZcpweON9HQ2SmSEkwa9CBk9XtL80ZzyvRIWshquTwpJeE0tOrKiuW40aI9ahfjQgZHtDZamqzUQD5MdWQhEWmXWBjuT6g6UlwTUVuESRziraC8T8eX1wSjDBn2WdOmbijb1nffSC8iYOfyoJTwX32K0VNSPKqk3WQTMvnXN9dUYtQhxQwEtqu58LYFHpVJdYnItPsXIyz7VGl0qTn/hjGfP9wmuw26C4LETS3QZ0MyEuRJvpsId1PjKoGKLzwN03rERQDuVACN3GxFsNM3MEi5Mt4rtiBa6q/SAdmzRlazoOwN2aKW/sBK/Y70v1SG6EjYrWsjqqg8EeKpuhV/ChtSWQTG1hPDgJN3U7JcEPxlQ7VviS2Ezen+djZFxaCSxFH+XJOpCCVepZ7Lin1woqh1hEkwpUf7Vrqc9qkm+iLGpBNSYXGpboougS4gUYAPie2xGnmbHMvs4ID+WCb6uZFtt7LsVc02bdOdAKExRuNDbffMd8HIRXU/eW3Iz1cn/QtnOPsHUDvwWuNVTAUVtKuebKe/YmXAlIFp6PxXFkSNcikwLJcBl+FLRDIV5KPY7dvJKtqevtAD52+CNoppLuiiebdJtfCtslnnrOxXe8nV1QCl/3GCWgXg0vYC4pgM28cLTjOX86SefLob4uku57RgoYcfuKk7agSe56pnKOwbIa3mcrroO1bIbu1RketVcjl+06oDWpWf1RFJn4wWo1tN2vsG+2kJX4gntfbI2km3VDZS7AgJ9cHc+hhuZ8Lddz6JNIFrIpL+aS+hRnz4pbMOdDLFnOYJCEmJ70GJT2Y5t/UbfzenZspUg7FafttkHvgSZMDAuFDCiu7AZ3QjQCHLx65a78hkMctmO5EYAmk0632LuKWfd+di9r42VMFEdI6MbAWRt55+VNFC+MZ427vdPJIw2Ybs9LpJrgOyM/Ny+VR/SjOT9+p5VXcvvwq5T9e3zD2DxoUiKo7WExvTXDdQdwOnPr7t9ujuX+uClZqC2Hk9T9768nhlUxGs5Lm2itiFYfbVL74eMsq6yJBJQ2vtPQc57SZ8VgBeUwt6Fud9W2kQrR7lzByDD/K6SpZjrrgfUUw+1hBBpkaMGhdvKYU0toTNh7qm75/aVItIz2X2PN9LHWewG287PZCFexzaVmo1iP6SaKobnDhvfVQ+hRE4pYUeaaC2T+z58J6jc1tcYVA5T3tVDiZfbUu4EhLm8hmo9NpHvQhd221dLBUjfGassxLc1xWFMkN0xRz0glBqTjo1L9RYQtqnp+jm1dG8aJV2eodqG9vT720zMtq7EddUiqnWg75jlZiyP6eWlpgOiunuPehpIFUkXuGMTAUBephndvslJ4Y2kwdrYYIp26780eY0dRRLa0zracSSgsHaSOms94XVOvTckXFXbsWhHobx2J/dUtgvXsR4fm60MVTUON5AaDl233wgP8p3XEbgDj9224kCXtbCGgZZAni4sR2cFdjZC5xUEhnaSECxySYntfZYg4NE6kZx2zKJ4L7u/9aCrkf5KlRXfBJlKiXS1bkSKG/cL2e4uyTYvBVz28lbXvV8HDre9lv1+dvvY+yv7mhHV1468jR3q5g6A9gmzbz3G17VIYa2V57/93E4K+7ZM9s/f3k6Q9d7jq+pf+Lj/K7e/Apb/399+rqWwHsWr5RSlPHujjNGk4HT/lt2BsIIPD274+19+xMfPTjjYW1FXAeNRwenpNbNJzsMnF8wnOdNJzptPDtAD+UC3TnO5HuKyAKMdv/LBM5LDTJJhc8PNqxmDSSnAUnuUkZ5JlbZEk4rll3MJphk37I0zhg9WHB0tJNAGmD2+xcQWlQXE05KLp7vszDKc0+i0xVmFPaipXwxJJyXxvCS9v5YgoHnDepliv7shHjSMHy5xe1I8pncqwkEjrF3UojYBWEV8kpEe5ESzio8+eEn4ZI16nDF774b03SXxbkE4qiFwpO8uUYUmWBqSnZL0ZEN8uiGcy0XFJ47o1jA+WhMsDN4LeJq9d0O91+IGDn0/J9wvaMaOcK2g0fhHBeOHS6oDYVzNMqDdr7l+Nsc3WkBWrdm7t0S1inC/EDmcU4QHBebxRkBlbAluA+LDHOUUr2+mmEWAPy2wIyt9kwraB6WE1+xWJMcZduTwhZFKlNcxyiriGw33C9SDjGAR4G4kvbbZFblbc9AQrhTRQlOd1jQHDcFGsf/gFq896YcL7FBSZPEd8NmzmLVh/KUherRBN4rquKU5aPD3C9zAkl4q2pndhgv1/Zn1zDH87k0XxKHgZUo79LJNY4cdSImxKRRu4MAp7ElFsJHnl4ct9bsF9UFLO/Db+oD1u5bqsCW9kG/xzZOWZq9BLUKKRzXN/Yr0zEhX31VAc6+mTaHacTSHDeFabUG12WjWj5x4hA5b2pFn+ELO6+Awx3ZywWilCNcSJmNTCZGq7jXU+y3N2NM8KTqGCtS31iIzHPdJkYr6wwIUVHsiOaxnjmpX2Lk29diBp9yXhEWCu9RbF0sdTX5q8dp34TieatcxegaLb7XkDyz1pJNsDjzVXHoji9OGzSMrgJOOKfMimdy812AaeX0XCCMGUO45qrkkt5b7nmpHnpuftgyehVv2Z/jSU81AahDE46UryB+0xNcSuFJPJJnTG/HDFYeezROLrjtQuIbBmaI49GT3PdXMUxw4Nk8ayj1Heq6258nWl+Zhc8r2fPBK+lWLA+kQDbtQoHJfvH71WABPfigLBdkD2+2np5l6wpXvOgO7DsukA7Q9U7enyO67bb2ETcCm4iUrDjybU2EZAVbvOmzSA6hu/GayeGBjYRzrjm0t9gT85cfik2vGcmyKQ0lv9Ur+5pXqWE1YfmglrGjWbUckyanlnnj+JHwJ8nvdNWOoGL1y1GPxwm3uC9janGhZBAil8qLYEwakr/AINzJWzUDSTNGwfqRYPbkDpm8nt0ZrYSjxkB8JYN2cCrisdhTrB2xlks1QSZhTF9IjSb8CjAaXjvxIUU0V5Y6i6RjRZixqhzDzFHvqzgda+rsQp4Ewnc1IwKtufFdDche41QyERWuG4iWsJgL+oo1nc6plLGeSUlrsyfUvXnbnf7dfyUK8e/VEtm1zosn3Nc4ISxdtnAQvBWyDi+qJohkqNvcM9VhRzYSp90ZY3809I2AwlH2rJorswFDNZRttrKROZipSTBcoqs6vV+yobW+sV1CNpS6kGahtCm2batpOVhuvXAeouuMfa8pdzfDCsTkRdjEsxLvYDGQ7mqEmKB31xFDNZBFX6lRMt7Ain0tdO/L9ABtril3ThSppqokwjs1Y+hA3xwF992s1M1Rj2Ufd92+GeivfDLK2Y891N16aYi8kyFoJ5Gk85V5IUFjyg5BiV8ay3AsxlSXIrVR9GEguK2zSp3/7rstYC8jvqkBcJMcmWrRkxxFBYTG1o54EIvGdhthEYypHPQ2opyHFQYwpLfUkIFzV4pUsWsr9Oxav3IswZUszCalnIeV+hEtCbGzQtaU4SQW0dmE1PtDY2NBOU4JNjR2GtCO5y8KBIT9J5Po3jahnMS4JRIYaGgkEqhoZS6PwoaHeG2BHMe1EKkJsGkqibGhop1IR4qJAZPKDiHaa4OIAn4b4KJTwnckAHxsBUq3FrCsBoLHZMq2qqIXNBHnOMMGnkQT5dKDODWJUUW0ZSN+xh246xMcRbiLWFzce4uajLWDtq0nwHj8Zduyku2MGncePh/jRADVI5d+h3O8CdUTuuv19D4Z7EGit9GK+PTf3XY9lH9gTRfKvUpL02staO2mrPNZvf/bWfePeM5beum8A15/n21+F9/yM3pIn9/zv/fd/k9ebKbdZyslsxRefHzM+kuz7tguMeTi75fufn/Lo4SXX2YBB1HC9GNEuI5K9gqoIGYwqvnXwhj/8+IkwVQ8KDndWvHq+i0os42lBlscMBhXeKzbXA4JBK9UlUUv1dIw5zanzkHgoPr8qizDnEe5eifk6ob1XYc5jbOJg2jCd5SwuR+wcrrj9ei5gZT+nbTVRZKlrQ3uV4gNPeGtoRw6zW+HPEsz9HPtyIIzYYU7zcoibtKgswA8sNIrxyZrNMsWcx3gtKaRBqajfLeBKfGc+lsRCFUqXZHRl0B9sGCQVy5/soOuOfRgIWxgsDPH7K9T/McX++orq6xHqqMQ8TWkflJgXCe3YYQqNOymZTTNuXs5EzqggfJCh/3RM8WFJMqgpXw/xoWd+b8nq8znJpSZ70jB4GlLNO+YrFtlfM5Vux3pfgjqaDwrCn6RU71SoW+miDJYBXnvsUMJbknOR4jVPCvTLhHZmJQXViGYuOIsIV4r8YSv+u867AgLuxr9yxdXZFLMS74UPPcm5oXhckzyPtv62ZioXu6Rj+/QvLeH3p9gEygeSyjv4OsBFMPq1K5Yf79LMW6KrAP8kwzYG9SYhWiqqHUd8qyneqTA3IcOvNasPW+JLQzPxhCcZ+odjQFjn+rAluAkwtUjcmiHkH1VEX0dUe5bo1hCuFdkjSd+NLgJMV1niImEe62lXN5A4Jp8E1LNu0ryG/Ndz3Bv5ggpyqSsJVx07O/XYo5rk85h4AcuPLJOfGJbfFn9jcBNIRYiB4SuZzNczSC6h3JWxmfwoYvVhw/BpSLnrcbGEg9x+xxPfdF6azn8VdPLH5FpSL4uHDeOfhNgYimPL+Cv5Iu77Hm0kjGp6ocjuOdILTZDB5oFM9pNrRT0V5nj6ZefZSu8ApSkUw1eS6Lj40DP9TJMfe+pdiy40g9e6Sw8VcDV4rdg8EGbehZCeC9iqPyrQzxNJDk0d6WtD/l7N3v8ecvs3StwiYvqJYfGdlmBlGJx1vrEuIROEmQ1y6TuNVp0PrBSJYz1W5CdSOWITRbEvY9amnuErSWYtO5Ax/cKxfFdS/YXcAAAgAElEQVSjGpEq29QzfKmJllIT0bNoq/cdu3+mWHwA8Y3IDDcPJXBm/MKyfGI6wNRNnHcdwxeaoLhj8poRXZKsZ/KUbf9ofqQYvJFtim9Exjp56ij2NMM3jtv3NcMzAfHVTDE4FzA2eC0TcxdKKM3gzLN+KNs8eiks7O7HAiCShSc70oSZsHbNWN7LBwJURy+FoZx/3rB4Em77E3UtcuPdjz03H4k0eVvBEQkjKYy72vZK6pZtT6RynmgjlSU3H0mHrEhGJcRlc08zuJB06GglIG383LG5rxm8kfqK5TsBybWjmsl43vnRBMhWcwGA889bSTsNodgVyXiQe9Jrx/KxYXDuOwbSs36gCXKYfVFTTwPyA40pRQ6bXkpCrgvkc9UHxaweaaZPXScBFV9sfqjY/34rQH0i19fkRs6dvgYmWouvsNxTjF9ISmrb+QqVg2JHEa88+YEcn2jtyY41uobRayvJw4XIkE3jO/mp33Zb9hLY9FbYNhC2MN8PiDLpaKzHBhsrkltLPepAceZo0g5wRrLdppHzI1o78oMAF8DkWc3ycdT5k+WYRxthO8evpFqjl6I2qWJw1WIKRzsw+ADyfUO0Fka0HmoGV8L41SPN6HWNjTXr+wGzL2uqWUBy05AfRAxfVzSTzkjqoNgLmDwrBXzuh1J/UlnqWUQ70EQrCfsJCvEb5/uB1Ks0kjg7OK9wRrM+jRi/FBAXLVs2JyHTZ8L69HLa9f1YAnciJYnFRlhfYW5ljONbYbfqWUgzlNcvdyM5FuclNg2wkdSk9Iynsl6CbjYt7TAgWlRUuzHRoqHaiUhfZuQPhiSXFdVOLOnIm4ZmHBKUlmBdo8qW6mhIuGmodmLS1xnVwWAr2Y0upWLEJQHNNCIoWlQtXZa9TNXcZLR7I5GuNhY7lu+0ZhR0igNPeFtuw3J02dJOEnQt/ZfhbSEAcxRjloWAPSfVI8GyW3jvg3a6IB1V1Ki6oT2aSWrvphT5aVHjxgk6E6ApfkqDzrvXiYU5VVWN7zoofRLf/d95+TcrhIXc5PjJCJUVUssxHgqQ2+Tyc+eZ9IGA3G0VSVXjm+abE+ueHUxT2ZeyRCXJHaAzRra3rqXD0hipHOmktL5thZW0FsIAX1ZbVlV+9xYI/fPBPX8RHnnrsT//4T0n/t2/85/81F/3h//ef/WXvm/wcw4spx8c+oO//Z/x3uElizKVsJbJis++PsK3isG8oHgj/rCDd645fznn9OEVjdNc3Y557/iCLy/2SOKG1eWIdF5Qvhnyq7/4BT86P6LIYkaTguPxmovNiKIKqa5SmZzPKmxrsFWXvpVYvFMEUYv+yQj3vjCQ3zt9yY/OjiVA5/MRzX7L6YMrXrzYJbwMaQ4bVGGY3l+yyRKZwB9UaO1pVxGz4xVFFXK6u+CLz48hkPqMeNCwP9lwsRzRNgE2D1CRVKCMdnM2i5TgPMKeVMRpQ1MLW6uUp7GGqgzZmWZcLUbYVYRKLMdHt1yvhrgvR/iHBe5NwuidJVke41oN6xAfW+Z/HMK/c0P5B7sU9wWsDHdzmsagfjKkeacUz6ZVDJ8GVL+Q025CwrF4R9EQLA3BOxuq8wFqVuNqA6Vmdm9F/oM5wbdW5OdDglmNbTRh0lLnISZyJD9MGf31Cy4/3cMNHPF5QPOkgIt42/04ee+WxbMZZq+iLQKC6xCbiqcxyBX1XsvRPzS8+Z2WaFRjvx7K7x9W+ELi6dWgZfRn8uWzfr9FtYro2tC+l8PrhPjxmuJ11zVaCbNZHlt2/0hjY1j+tZLgaUJ90BJdBtQ7Ek0+eB5Q7gtIsIknPdds3m0IlgHtyDJ6FlAcOoZfa6pdT3XcEp8FKKu2srp6KlLQeubY/yO4+E2PqhXqqMSfJ9sky6CQx5pSAFI1l8oMlIR2lPsWHzsGz0KasTyufFATXoYiXTVIj6cSUOdCARDBRtHMReY6/RxWT6B+UDP+s5jVd2sGX0RbFqoZC8ttSukujG819sMNPBuy/8eO1/+WwywNLvaMnhqGZ47Vf7iGP5pS7Yh8s56I9LI4tgQbmUijPekbGTuzCroETN/1UYq011TC3hQHjvFTTXbqaYeO4QvZns1DR3KpMQWsvtMQ3AYi684Uw9eS3OgCaEeO0TPN6kNL+tKIZy8WEOmNF4DZSUVNKR2KPWMcrgUYbe6L3DO5FHBU7QjY3/3jjjUZyRiX++Kh7EF8dCuT4uGZ+ATzY4/vg2O6oBzdKNI3ivUTS5BpBq/v/Ib1TBYgTCnnw+aRJX1jRELfdDLc8M4D6kORKadvFMsPLdPPDNm9zst45ckPRGadXqpt4E56IcC62BNGNbkSls0HIgE2tQDDfmyTG8/ttzw7H3cs3kL+Hm7ouhQhuy+dloM3UkeS3HSAuJNwDs4960cSNpNcy/PTcwGp8Q2UB15Y3KGMXZsIQ6ctBFknkfWyyDB5KnLO6bOW5TsBQeYpDsUH2Ut60ZI2WhwKyO493dHKU+50Us5cpKmbUznWk6+kx7JNFOVcE5QCUFaPBMg3I0V8K4B4/Ey2odqBvR9Y1qem6z7tgk2qO3nq+GVDMzIdqyd+U9XC5EVLvmfI7ilmnzvyfU286Oo6vGxHsS/nQXop7OzoTCaMm2NJGh2euY65g/lnFbfvxdJL2fVfJreO1QODtrLvpvKUcxnXeCkewtUjAcnptSU7NrSppKH2vsnxq5bs0DB+KX2G1VQqgKK1ZXUqi2T1RMBlkAswN7WnnEtnY7zwDC4asuOQetR5MkeKwYWA2PxA0kUlkEbqZXofpXKdZLUVRi/MHc3gzleYXkm6abxy2yoQkaELQ5kdGuKV9GymNw5de8q5+LSDystr176TfEp4TFAK8xlu7LZiJCgst+/HTJ63VDNDctWwuRcRFp70ot6+X7EXkF401NNAxmqsSBZO6mA8RIuaajdCN55wJYCsHXQ+xqMYZSG9qCj3I6JlSzUPSa5rqllIm2hGLwrKg5hoIcfC5MIUKg821rhAMTgraIehbIOG5LoRyXEif49vGrJ7MYM3tSxYGkW0qKhnwk66yFDNA6K17H96XlHPQtJXGfnpiPimphmHRIsK1ViK4yHRsumAeseGX+ZUeynRbUUziYSFjQ3RZUZ1OEI5T5A16LymnSbiibTiD1XOUxzEpOelpK82TtJaI0OwqaF1qKqmOp1LZUvWYCeR5AkEivCmwEeByHPLFhcagqs17cEEnTcoK35FWofqA2kQGasPDXqVC6iLwjv/JIg3MitFktpa3CgVWa1S2/oSvS63Ula3O0HfrgVMrjL8MEUVFT6JtvJbQLyUgTCmerHZymNVa0X6Gglw7d/3bU+ovIAEBfm2FfDYtneS2E6GqsJQeiqVAtWJH50VINkxsD1DqYIAX9f/vL/ybV+ltd+sNXn77+6bz/PNn/Oh/N+4/SwAy/TdE//u3/lPf+qv+/G//1/+pe8bQPCXvQH/b26JaTjZWaKV57cOnpLZmJ1QwmY2dcxeuiE4OuPzmz0Ohhuy/Yij4Yq8jfhwfsHLbMZ0VGC0Y3R6TdkEfPi9cz4av2FZpVyGQ47Ga5xXHIw2mInjTTKmqCJO5kuskw/PKKpYlLJ0PUsKvjSe2aBkEDbcVgOSuBHAW4TcO1hIeulOwez+DVUbkFchWjsOd1acOcV0klM1AbP7OdYpxoOKTR0xOtwQaIf1CqM8obGMBxVKlQwPal5dzTg5vuEmT9nZW3NTzdjb2chnM60w2hFox8VtwnAg/59PcupBRVFELPOUg+mGN480eMWD756hlSeNGtnXHSjqkNvvacIsoXmnZjgryG5SRknFTTWkeVgxGNSoYYVSnk0zwRcB44MNs7TkzE+ZjHOWk4F4z3cqjnZWXCxGmLFImr/Ym2C8IpjVzCY5dWvwQH2dsH+04PK7MNMOdVhhlKcetASBxR5UWKu4f3TL6+speq/CBJZ43pApGM4KqjLEK4+2mstfMYx2cvIsxu026NMa6oDhYUa+SgiilvX7LYROwKfV1C4mCiz1vtRNMG1IhxXFmxFlIsE4V7/pwCrCwNI+LtFAHXhM2uKtorivULWiOZULdK4j9KCl7Xyu9dhjR5biNwuaPCQa1VSNEo+sVcIG7zbYVQCzhvO/FkBsYezBKdRBhV9E+J2K5jrGlAp7WLMOQ9xIGGoCR5FKgivKUxwZfOhoQo+KHDb2uHmDDh3l2GAWAc1YGE0CTxNqmDQ0PmT1jqE6aAnjlvw4QoWOZuop96ULlNBRBR5Cjyo05f0a4zRu7Lj5lsEMK1xu8EPL5jFkDxQ+izFzjx1bKqPxgae4Bz52+EJL0E8uAFwPW2zocXlEfdiZ+rXHhh7bKlxgsDstWRvSjl0XXmQoDsSPWxgB4Sp0tCOp8Gimjk0ggLM6bCG2FHkkYzTWuEhAkh06vBIGaVsNsnPH8OtcUi/radep2gqAVFYWFVTbSx9FttsOJQW0SR3WKuzAUSae+NJQ7ggL6qKOadYK8LjES+LoQdfdGnmKQ7Y+2Xbgt4sE0kUpjFs78He+3Eh8tiiNriV4J1rIAku503mLh54s7HzA2ndy4k42OZYe1DZFUn4ndLUNauvHbYZdZ+bY046AwFPsiS+2msmYhRtNtefQrUjwmqknR4Jb1g8l9Cq+FmlwftR5um3XVziSxRYXe+q5jG89VVuWDUTa6gPf+fCEkYcuMMbD8nFA06Vs2vgOjFdzZMIcSCepDZVIo7teQUngZMvUeuPxXpEfSoiM19BMxJNVT+U1dK0ksdRLGJEAX0Qiu6+pO7lvPe37HOnSI2H5OEQ5kbX6zr+pQtgciYxSjpuwif0Y6LrvVJTHV1NNM4FVJFJLYWGF+dRWtvn6o4R2IMeybYTJaobCFvtalAHNQEk9SGd76vfXhZAdmW39hmr7GhoBdC5U5PvSi1hPBKy3SUAzUfjOYys+Ukc91LRpLz/upLcu3NZ5qLZb9JoIeG/TblyNlx72vv4BOY5e6a2f04ZS/SKeQKjHhnaoiDJFsdcV3Pe+2lrqQVzXEeo1bE5EzaItNFrhlYBkG6nt+7VdV6TXRt4zMoS5nBvl3HThRWbL/tfTQNjxLlG22A+7bko5tm2q0FbYUBfGtKnIsG0Sd+eDotyP5fEe2qEwie3AYENFNQ+xkYxdtRvTDDRehYSZpd6JxJuqBVjq1lPtxNhY08Zquz+uS4RVDqrdEK+gGct4iXRYrpPt0Gz7U5uREe9npGkTTbWXdj2+gXyO0gA77ZjiSG+DdpTzNNNEejPjAB9o2mEgCbUHQ1wk8mBvFCYSMIrzXUaCAecJcunidJHuZMPgQ007jTFZswV7PtCSvKpF/mwaRztJ5PwxChdJAqybyJzPpQG6keRX7ZzIWt9iIV0SbIGWSwJ0XuOSEF0L6GSYdH2/VuSvUedh7Dss0y40x2hoHX4o7+tnolrqPZQetp2SHgS0lgI2lXUQhXitUVrGVdmOAQzeAnNvA7/e89j/3fSpxx3jqLWAy7ZFGS0yVUAl8Zbd9NYJo9kFDf1zYk1DlxDrOyb0X0B0vZ0y+1e3n8pNKWWAPwJeee9/76f++j/PjOXuR3v+P/4f/nWeZrv88OyEXzh5xXfGr1nbhH/05gl//ehLAK6qEX/05pT/4PEP+J+ffZedYc7lZoi1mid71/z41RG/ePqSi3zMi9c7/K1f+Sf83c9+FaU8f+PhZ/xvz9+nzCNcJsmiR8e33K4HvLN/zavllLIK8R6Rr1YBv/zgBX/26h7jQcXp5JbvP7+PNp75NGOVJVTLhL3jJctNQlsFTGc5y+WAIGppq4DH96746rMjfu17X/KnX5/SFgEmbXGXCX7UMtmVGoR3d6740x8/BuD08SUvvtrHTDsjtlPszjeM44qvPjuCwDN4FpK/WxMNa5rzFN8FyeidGtv5MVWjYVYzm2csns8kQMdJb5vJJJb+l77zlD/95BHRrGI+zrl4ukuw0jRTS7Ax2MOK0bTA/sGc/L2Kh/euefUnx9ixVBWgQK8N6qjk/t6C5y/2UIHjwfENN3//RLrfFARL+eJrJ5bkPKAZOdx+zXSWs/5sjp20/Mq3nvJ0scPNxQS9kgmSD2SJ2Q8s+ycLrr7cgWmDzwP2ThdcX4/wrYZaE6wNw5eK/F+RKo/6JxNMobYSQTdqwUmokWpl0uoV+HFLeBESLiUkRu1UBF8n1Dsikdx5/4br53M5FqnF3AYS5hPLpCu6n1FepYS3Bv+owFklKa8ji5k2+MsYN22IXkcEG0W573AjS3ATYAeOINcyqfbCLoUrjbJ322cTmfwHa83wlaI4gHYoYx/dCrMa7BaYT4Rx/fbvfMYff/oYGkVyEVBPJdW0OHKkbzTNVFb/7TsF/qILcPIQLjT1QUuwCEiuFdmplfGqFO1Og14F25RcGwt46nsSdSOTnmipqGZeUmfnIj9NbiTYph0Ke2eqzjPSxd5vQ1s6wOJSObfMKpBeuYWi2u3DWoQJW3+7ZvbH8iVdHPR+WC3VDyORjArA8fh3ctSXAykrX/dhOeI/VC00xzXhubyWriQgKsgkddVFwu5VOx47EbmzCyUkSBJVHZMvNIvvNUQXMrEOMkW157Ajy+B5uC0s1w1bKXAz6hJioy6Rdcy2KgAlvs74UpiTcC19fvENHcgTJs2UClPI46tdCamJr6WfL8gRYGyE4ctO5Pgo30s87wKM6h1LdGMwlQQotSnEtwLAoiXdOIis1NTQDAQYmYqt3C5eOrIjTbT2bO53Mu6x7G9yJcfaawk1MqW89vBVl3S6EXmqjUTSGK7ls3DzXcfsE/H0Dc9EIhxmntVjRXoBwzeW7NCwfscRZJrdjy2b+4ZmJPUSzbh7by1BQ6YS72UvSW4HnZT4iSa+FaAeroVRTS9F5qocDF9LeMnifRi9lLAgU7ENuJl9btn8n+y9Sa9tWYIe9K1ud6e93etfNJmRWa1LBdgjZOEpJURn7BEzhG0YlpjSDRBQYH6ABQMLhgyZ8QsQsjxwVlVmVGZERvua259md6vz4Ftr7/siKyttyJQzSrWlp/vuuefs7uyzz/rW1z1VMG3yrDqep913ybpmhjB3AB5fCFSXPM+6m99z3VLKag6Uuw7bdz8n5sB+xnEjoLo4gRIRE2ubpL12QUZRD3FKTq2vPfYveH0W95QlhyKFD93HSUraXUjUV5Qx58UcYmLLuV3dk22NklLbUMz+UwD0aibfZ7Ejo1/dBfjkbexPBeor/l7feAxrNUtk+4jyniyrdEB3xv5FBu7QY8l7CRnN4xP2cubuQoBMcXXr0Z8qSkEHSpIPzzVUD9TXDodnGs0lv5v2zzWWX3v0JzLJ9PlemSQdbS802sdMop3CaSzloVmqOi4JutXAICGz97Arpq7WlyOEDeielNBH3rf7E4XqloFAOTTLNUxitUsF3dIbOawVynuPca0mBtEm4BYlj1kNIVUaCYKMyHVlBYIaI1THapDy3kMN9EQCQHk9YtwWUGOAa5gsG5XA4tUAVxMMiQj0JxrFwaO4GXF8UaG+sgSJPqbQIHZQSsuAnyKxrYiUOzPpV0K4CLMf4RaG8tyjhXABw1mVrCuRx6MFZO/hFhq6TYE8LiCUBEbF5RHDkyX0wc4eRC2grzvEBCRj8myq4whfG+ibI2KpYU8biMh6EUgB2Y5zr2RtIHr2STIki2xoLDTEoQOMRliU0zblcUAoDUKtoY7j1EOJALKdIOMY65LJrUbTG5nYxVgZiHZgMI8UiFUJ2faTZBYiH4d8pwokh/dASohhZICP0WQs8/LNUJ2c5loWiPsD11MkoJvXrzV7LKUCYkBsO4jsuVQMI4qpRiR6D5FZySxtzb/ntNqftzwI+fm2h/fUHz2L3/mHf++Xvt4/+ff/23+hYxNC/CGAvw5g/VfA8hvL4ntP43t/9PexqAimCuXRjga7fYPFomeZeMcOte3THe6/3AALhzhKiMqjrC36a3bP+fsCkBFqZVFVFsf7igXylWfoThD05pkA3Bv6GEkYAABTWxUH8/BiSllF6QnYdAQOLKSXpUc4sKYi9gr6XsGt/JTampNMVSsRLkbETkPUDtFJiFYhVtyP2CtARFZFpC8EbCxrQHREcaMYXrJNN63KI3oJ/daw3sJm+QJngWPFYzKXBAHxxEKoMFWRyFEiLB0lvE9GiL1OVQgET/KogPMBcVcg6gB1UBCex+KbABEEZM/OuOItB9u+oowvl1DHMkxJtIhAqFlWL08HiC9qls4fJIN13hjYCwt1ayaAFcrIIKCBzItfsaJCHSRCmaR+KYlu8o6qCHOnCCRXjgnAgeezvFYIJsKeBMiO/W7jllJQt5zTH1XPege74fGYncRw4WHuONAMBYGdcALVJVksBi7QP2oOZB9cEyefpfCp9mARYPb80s/ddrnKQwTA3AvYNUFUMATWZidZsfGavqhxTQmqcGSM8msRAUSRJJxiAqsiJZVm0MOeOEowzT1BSzCp5uIOZP9KYPG1QH8eoQ+ZCZt9nP2LkRUjO8n3O5LR6h4TlOU0WEp9CTBz/1kONIqCYMU33LbwDI9RY6qwSMmWPgFs3YkphVKOSOmvlEj6iiXuJvUbuia+U0pfvxEp7CRO58HXvIYyCLNLDvBkYkyCmcGg7oFxzWMrdgR4uk3SvLSfwzaiusmJrymN0yaGLDGgmQkqbzkwt6vkrxwwXQfSUraZE2T1kecsFGTCcmUHB5lMtgXmzwGASYobJV9bvyErqDskRofbdHVOCU37kOpGdJfYrDL/Pl9D2W8JYAJLLqW/AlzPsOHvvgbKG1ZYIHI9viLw89WcUmuOBI5qIJDpHjGUpzsXU3qt6ngO8qIGglERkdbN7TSvCcpUP9enZBaNic4MS8lT7nkATrCeAEwC0tJR4grB92xKJX6Q9puBY/YS2oVAeU+mzVes6uB+xokVFp7BObbhfYEySTmdU3Mge8trnB5Jm8rtfSEmoMawI4Hi8LMJrVHNxxQlaznGJbsipSNApBeRoS3VHX2H+ZyoMSWwrsnC1jcsvXdNqmoxvJayZ9W0PE5bc/9cJabJALtMfZNDTCnmIrF+DNbRfUS/JbCMiuAwB27xnMSUniqm3zPjlwEtjysxz4WgP3Ngqqs5BggXEUqCr6AF1BgYwmNTiNc+1XA0vOZyIEuxDw+SbgOGjZpCkoaNRHFIHaw+wpeSgUzHwOuhJ6jKYwtXyyS59qwj8YAaAhCAULL6IyTApjsPlxNXFY+Vk2MevpJTSqvuPLsh03XlaonylvLWDOikDVNarLRhSpaVNkJ1gfcJzcAg9kUqmIObzre0BHu+VNCdo5dxCFCWiaxZkpr9l8GQmcznRLeO3ZCpg9LsRvhKQ44zWOL3gUcoyUSq1kGODqHUPIeB28lyZoZi8VypztITGSLXGSNBok+Tx0pCOnZJisHPfZAP1i9ckr3GOAXtCO/TOshChqqAHFMvpWFoT9RkE6Ek02ABriNLWTPIyuArxIkFFA8qQWJVEBhKSQ9lToBN8taoJJnJPM5/mDybfY+5p/KbbGGu9Mhg7xsdkkIIMpLDAJQlYEdKYh8+L8tbM6h8kDo7Ldm7KeTESsYQIaRA/PMYTAAI/98DfH5dgOWH//MvH1j+6X/wi4GlEOIFgH8M4L8D8Id/BSy/sax/43H82//7H6DzBndjjdu+xtvrNcrK4veffoV/8uVLFIXD2aJFiAL7vsToFLpDieWmQ1NY3Nwv8OSUEY9fX2/w7OweX74+QdlYbBYd3rzeQsjICo8gsF51CFGgbUu4VsMs7JTIJJWH6w10ZVmeHgRg5SQ3bJoBw2Bge+awqyLdKERMzweK1YjxpoI56WFvKqAK0JWDazWWZy2G3qAoHYHvzgAbC106+Fc1zIsj7KARWq7fbHu4qxrqdIB3cpJsYmUhdYA/GIJZKyFqB1062F0JUTFeXaiIMCqo0sPv2cdY1SOkjOjakvUob2vUzw7TepfrDvvLJYHo0uLR+Q5X/+wR3DnZK3ExwA8KzabD8NMVwsUI3BZTpyMCsHi5x+HtgkC40xCjgH7UwVuFeE85IqLgfh40ok79iGcDTOkwvmkASTma3im40xlEiyAQBWWZ779/ic9+/AgoA4RmeBHKAAwS9UWL7rKBWlv4XgGDpJf0osXw8Zp9lSvWo6iDgl95VCc9+vsSZjnCDRripiArPArgYuBkghWIZQCcgIgCsXGAk/T2FemzeD4gBoGTkwNuPz1hn2ETABWh9vQiyk7Cbx3MJTsVAQ6GM7iETl88jUO1HDF+tcDpRze4/dMzRDUD4lxujZCAYB0gRoGwdtBXhvKuZUSsPMx6hH9dJ0kbgZ3beuj1iPCmguoF7Dn9oMNTVtYIJ1Dc0BNpUxIuAJSXCuNpQDwdob9mB2iUQKjIjJq9RP/UTZMuIrDvMyqyGeZAcB0MgZTwAsN7A6qflrArzvALx4FmZlTd2kPvUoXMivtSXip6TkEvadAE3cWdRPfCQVgBfZRkFM/mCYXMapeXEtFgYtPlVUFG+k4SUI8MRpJWvAMEo0xF9Aeu1zcB1SsmDLrkrwwmJgDEbeXrIwdShZKglb2iMwAFCIYzkJSWrKqvmKZb3HJiQ/VkaqUHEAjCfRFR7Ak+cvBP+zQm/yoQVIQaZ5YyV2MEEyfQbQ58PUFoujY9wXhQCaSK1M9Y8xpUPa9Hu2DNS/uMEywAr79cUSPHGVT7Eij2wLAF7Ipe2VCyZoRMIpIEM4HlBxUnCHxtdxHRvCGTHAquW3fcn2BmsM3UUkwVIexUnIH29HufgQ+Py5ecyJEjE3gBTAE3wXDdDPEB2icRzSuCgeGUx5EBeWaDdZ+lkjw/xX1Mg2WCcF9h6vx0S8DsyEpm9ZpwDNbxJUOR6isGVkWVko4jWduYrxsPFHcRuaYkFFy/6gjY3IL3HdXRf2lX3A+zjxjO6B8NiutyCwJmnlcypMMpAWixS8m5iucyT26IgHf8mVUGy54e5Q/SZC4AACAASURBVOZNIJjWBERkKHmMuXQ+aDFVl0jL6902YpoEynLOXC/jaoL0/kySPdVzRYxb0OvL91bANsnf6rnemGS95hinShbd8adKEyJBc3+jBMp7+jtNF9BvJeprJuTaRk77VN2GqbvSVRLFgZ2W+XW2liiOnDTI4Fh4Plf37Dt1pYDp6NHWfcC4IrhVXUB3zsAjX0h4Q9AOQbl3cSC49rVMEzG8V/qKYFsfPcFmBv+5tmWM9EaGmMKPmOwpfWR6a8NgH9eoJFGV03akpWx13OipHsVXKnmY0+N9AISAPjqMG8NQoRjhlmaSPRf3I0LJ1FsRI4RN1RsxphRZgmK7SmAuAmY38jpqDPQhsYk+IAoBmfokc/2JrzX03cB74AMQ6GvDGhTHfYQLU60JQqAMtrcQg0M0D9xoSjBoSAgC/t5i6qpUElFKMpP5NVIQKGZwmlNaQ5j3J78emAN7gJkd7Jk0O4FbIfi6h7Uf30xhzTLfFN4TXQKp73Rhhlkam3yW76zzAe6IGTCnOpJfuIT4l8Jj+SsClp8BuHrw0D+KMf6jh88RQvyfAP57ACsA/8VfActvLNV3n8e/+b/+Xdx0Da6+2JLhM2SsEAGYCHOtWWOwtMDOsDB+QWASU8AHwIGRaiW/HCTZDwjALVlvYHYM0sishW7F1EHFLybKReUophAUiFSG7NIAzrKr0FURAmR+MhNAudHssRGBkjOWfTN8pLzmzGWWwfDLOrFwkgNNaTmArK4EhhP+HhPIEk5MheOZpWCoAwd8romQPg0u7zmI0C2Zlsy4TLPbRUR1yYH77iPKJgEOeKobJm0GRZljZgcelm67BY8XmAdW3aM0oC7mQVWWn2XAZA6YqhRyXx8HaBx45IFhdzEnc2YpXx6wQHI/fBqESjefj+GUbI5dcN0AX5uPwTV8fu6MywOekMIh8rqkxTv9ZnZB9gKgD8tXTPN0DWVaKoEC4Xk+y1uJ7Z+FSSKmRmBcAcuvWK5eXbNgHILr6S4Su5ISHZHe53HD9RZ7vsfmOJeGZ89QUGn/0+y12XPAZw4zq3l8QTChhjTgHGdWJhgem+6AYcOB1LjmtZF7FEWa/HQLMXUZZrlnHlBSDsjkx3GZgG4anGQWJ3ubAKQycyTWigmjzSue09wlGDQHu+aQHk+9gK6i/LN5/S5rA3DQW+wZ9hKVmFgImY4hA/K8z/k9z2EjU8/ekcdR3eU+wFQDUs8sKuV687Uj8uStn7djOt4Hhi0H1Gp4dx9y4mZxCOhP5SQ3DYqJmlGk0Jo0iJaevq2oyNwETbbELvghqG5zeXr6rKcOPTXOg3Q+DvrSHAesxZHVElmqycASShnzsapUQJ+Zpyi5j65K/rU0ALb1PBDPhfI5XIWvI9uYz2UUYhpk6yHCG0wD6dxf6UuB8s6jPyHrMzGBIck0BWAOrGHI3YXcd243D8rJes3BRazgCKmvMLN2ZHuk5znjdUymSXcBdjn3+GVp8MNj0h0BIWJmh8ni1JcjDs8LXhctAU7USMeZWMM+dR2OYUqpDYWYEnwpfUzf+3G+DqVlqml3KrF8zcol1nzw+WRgOPjP0k/hYkqoFFA92bAokCZI6NXMQGE4MQy18Yn5TYy8SBJZEbK0P39niWn9uicTlz+LkPybtAF2pScmTo0ESNIGhJIgJTNQIgWx5EXaMB33cFIwFfRAZg0B0H3qd1S8xoMWE1ihyoe1GNKSKQyGjBmUQFD0kOrep/sYP1uqp58slGTrxrWB2duJZZ2WNEgX1vNnYviCkZCDh4iR61RikmdGISB7B78wDJgp1OwrBaZeRr8wEDZAjvQc8n5DBs/XhvfkECn3LDRy3yMA+EpDtRbCB4RC8zhGD3UYpu5Eed8iVmZi5+ACYqX5mUnrzgBKWM+/xfw+EVQBIEuoZ6+iHB1CpacOSihBz2DyNQrvGcizrCCGB0mnAWQbfQS0hOhGQAqERUkJqhD0IlZmAjxicDPAipHgy/mZQcxsn1bcVghkG5MnUvR8TAyW743R0/+hVAK3au6hTI+9k5IqEnB0bgZ/DxlOIQBr5/7HskBse14vRcHX5c5IIeb1OP8uq+jcu2xlpNd+YjIzaMxLAucTG5n3M70uDsN0HKIoCCrDDDR/ZvmLwnv+vOUvCbD84H/6+7/09f7wP/xv/sJjE0L8OwD+IMb4nwsh/hZ+RcDyWx3esywG/NtPfoCP2yf4pDmiUg43fYNaW9Ta4tPbU2ze6yFFxOAV1OOI22ONQgDOSZSFg1YeIUgsyhE+CtwdGvSHAmbdY1UPuN03aIyHUR4uPS9EgXYoMPQGdTMgBImuLXC6PeLmboHt5ggpgLtdA3cwWF4c4XuDJ6c7XO6WWFcDjl0JqAA3aigd0O9KiN/tIURE3xVYLHv4UcONGh2AMCjIDzq0hxJVM0KIiONVA1F7CBn599IzTfZoMF4Ai/MWx+sG1baHGzWZNxmhSo9gCVKlDkyzNR5ae3T7CtVygEz/74NAHBSG5xGy9Cgqh6YacHe3gPvNEe3lAqfP73BTbSFXFqZwOJxUgAD00kI3A56ud/jRT58CYIDO4apBddJjd5c6lrxA3zjEVsP1EvF0xLA3lC0HAdEqYG2x2bS4/3KDWHuITkFsRoQDfa9wApBxlipXAePzCIySUuGNRewVROMQDxowESePd7j/yQnCmtUYQlIvYzepssUL9oo6CQw8d7J2lPqqNHkh2O0YLka+D71Gte3hnYS7qiC2I+KuABYO/a1BNBHyZESwEq2VgBUQS8fEXRHJYlYe3VKgewnuuwBZThnRfkdAFB7tZQG/JQu8+x0P0ZPNkz1TM/3KT/sHETHsFeTzDru7EnLgF0ZUYWYBL0bgqBGLAH2r4bYW8kAPnd2wqzPelIgFJbrCkmnwKw9RO/RvSzIBpxbqXsOfjBw0dgqtFay2qT3fSy9gdoA9DdCnPcQnDSc17BxwYw7srpQjPYXRRMhBQrUi1bQoMoVbj+Ka1QPjY4vhVBF4JaBGWWAgu3piWe8iAPt4hGgV3ELODOI0mRQYeFRGhMbBXGvojsyi2XHiKNQBwgpKnSMDfsQgp4kcfcygi7454YFcKJ5fK4dU/7Mmw0qPJj3NciDLJxwH2FFFhgh5kRJ203M9oHpWstgNJbCIKSRF018KIPVOJun0Xk4st91wskyOEqojG2uXEvVrieE0YvE1GUv6TBkEJBwDhlxNXyxCeo+UnFJwXQNIqzCcBhQ7sq88vzMwLHZAfxYZ1BMI0u2aCbvDGRlH9m7Sm6s6yUmfVWIw00STL5lUXL+h5FK3YvJ8+ioxRCXoE+8NclCNbikdrl+LSabrFhLFvcD+PZ2uQUyTYgAQJWXroZiZSk5Kzd4g6QE5cJLSLnhMuSLG1TIlvaZ9OJCJrC+T7LjnY+1zTtwFPa/TVcD9d6oUSBIhgkZ5nfeL+2jXmHyKw0bPLCs4CSEtJ3pcTbZRt5QgS8dzmeWiN79ppkmOOYyHMmyAUmUROUETDLfnS04KBgXUV5z4CkVigDsNX1NqHAwn17iPSYbfRfhaTBNbeQJQuNS12Sfp7DEmTx8fr66Tzyz1dA4ptZRMY6o/SeA5Hw8EPb8icBIgV8xECcSnGq6mR3P3vp5AeFScnNp9YGAOnBhTA6XIxS5CWZWklhq2yXJWIMq0Dh/TBJSZ2OrMxLaPyBgOK4nqjveCYc3QHHo/wyThlS5NWmgB21AG7IsyVcVg9my6EsEQECMC45LsZp5EGldySq/tTxX7OsuKEyAZvKNONTqc1ECMKPZkD8cVr28ACMrAHAtKwBcK4lkKl1FkiKdJw57gW/czG+krMpfDqYE5eLiGzGiepBCBoJ1M+gL66OEaBXN0TGgdPOxSQx/9NDESjIS0JdQYpgkHCKQKkwIiVFMFCVDw2ABACJi95cSIEhBjmCdAEiCeliSxVb0DmmIC0aFQkL1FaIppIizLaBkO5SmDfQCsoSXgAkHvYGdADlCyqnKnkSQoVHL2R/rA75Wc8Jr6LaOixFdYNwF+0Y98vCwgrKOqP8l432Ub43Q+IAUwWgK+LI3V6aaUk2JDQIwjIDQgJEQO2cmBPBmsG/MucP4mqSXELLv9Zg3JgyXKn/unv1p+8fJvAvh3hRB/AKACsBZC/B8xxv/4l7mRbzVjWb7/Ir73D/4Q4xOLk4s9XJDo/2QLfNjCWQUEgfKTkob25yOqzwuI39shRoHhVcMqir3B8tER7p9u0b8/oloP6C9rqI2F/LzijO9vHOCsZprpfYPixzX65xayVcAZZYvYGcoxn/Uoflijf8KCdpgAWXmETqN4q2HXAfq8h39dA+cDgpOof1Kie98CVgBlgNxrhJVD9UWB/ombwJDaWPhOoXhjMF44iF6ienbE0BvozyqMj0mTFW817MsBzZ9UcDVYoTFKqKVF9ALBUt4KAEJEuL2BcBJRM2HTfFIxNGXroGomro6dAXaUcjZfSxxfMtRlOKd0Z/HeDscvVwyQWfgpnKf8QcMo+H/tANtrRM+7QvlFgeEZw0tcHRGqgPJKofn9Gxz++BT2JH1rFYEAr3LsyHw+YPHHFbrfbyG+rBFlki0+5wy77CXiKb2h5tOKaYZrj/KtIkv4loPe4SzA7AX8hz2qeoT94zVEEBieWsjGQX1ZwW48qte8ifZPHEQQKN+oWaL5eCTgjED9lU7F1GSjV58CN/+6w/LPDIazyDRSFSFGieqtTEEwEaGOqL+kD9I1EfbUY/1DzZTJgh49f2Kh7jTKaw72hedgSQ0C/VOL5U8M2mcEK+FihLw2UH1iQkdgOKeUdP2xQncRMT63kHca1aVE+x0LOIH1x3pOcvwe60LaDyzEIFHeKOgDpXVypLRPH1g5YfYC608jbn+bIG/9Q43ji4jlF8lrZ1Ny5CbCXtAXS8kUgeTqp8Dd3+yhP0s9mUd6+na/RYBK7xhZ9OyzlCPQX1BeWt4wpEdaYPk5sP8w+StNhN5JqJHeV7eMWHwhcP9bHrEIWP+JQdSpG/Io6AF96iA7ieKOHZ3Fjkxpf8YKk+qNhFtGFLesD+ke8VoaNwGLL9N74yh57B5T1uhqgqPlVxGHlylk5RjRn/F57bMZQIhI5ndcc5u6E+jPKfHUHVBdkQntz3mtmD0H7nbNY1h/Atx9H2hei8mLOJySuVfJJwkA+w8CijuJ6pqD7fYZk1b7C76vxQ7Yfd9j9WOF4Syi+Rrozzh4r64TgzYQCABkxatLMsjjhkqJ5jUHlb7ic8w+pbgued1XbyS6px7llYK0ZN33HwCbPwMO7zPA5vA+oPc8Z9KT2Tq+4HO6C4Iw1wC+YJ/l4X2g+RrYfwAsv6CctvlKoH8EbH9ENrc/J5hafhVS8itwfCaw+inloeUupkAWqgDqt6mTM/B9U2Pq4HzDHspcKcPPKsNaXCNweCHgFgGP/584MexjYo31EPH2rwOn/0ykahSy7dU1Wf/9S4HNpwH9iZxChHSf2M3EQBdHMqK799XkH5YuTsoHX5KN7s4kqlsyuGrk+QqK7HBmR9XA9Y5LAVeTrQ+GAHHxloAnV5SoPmL1lcPNb5oJbOuO50539BaqMeL+A436KqC+djg+MejPKFvtTyl5bK643vrWI2hWsSy/dohCTB2ex6cM2alvmQobJT8j/SlBqe4IHgloxKQSqK8DDk8VdE/1QGbCi0PA8RFBVLFjUI5t5HQ9u0qg3AVOCNQCzaWDcBHjVpNRT0z98bHC9hOL3Xsap3/aY9wY9lYe6TdVNmLxyiIqAddIyMQ2ByNg9p71IdduAiyukVQc7An8MstNtZLH8alBc+mgW4/2MTsj1UgWOPsZQ5Kg6lSP4guG47RPCCpWn/VwC81AnvOCrHk6p9W1g10plHcWYiTgCimJ1ReUi/pGU6paSXZ4XttJEmp2BCy7Dyp2btYKQQmU1z3cqoBdKdRfd+gf1xNgqt7y9/rLA44frlC/7jGclijuKEUdTksU9wR5bkFwbvaWDO3gMW5LblcKSBcQtEQ0EsIG6P0At63IUGbGUQnYRqO66mHXBVnfB8y5Og6UD28qekOVmCS0dmlQXraIRhFMthZ+UZBtVZL+SZD1nbyPiUGFSB7VdiRo1Io1IKWBut0zsXUYEauSAK0pyZ4aPakEZJu6L9ueXZaHlnUj1s2vL8y7dSOjJbNXs/sSPvA1bT/LYKUErGWv5EMG8oE/MsbIFFnnmfYaI+Iw4mFCa+x6iLoCnEP0IXkvGdITx/FdsCglos3Sn9lPCeAv9lQ+XGL4WVD6L7H8OjCW1UfP4wd/9MtnLH/0t//rf+Fj+yvG8ucsdT3i6d94hfOaCRCvj2v89r/1I9z2DW66Bh9ur/HD7SPsbxb4/vuv8eniDC+3O4QocPbkFXpvsBsqlNrhk5M1Ti726EeD9bM9tPK4OTFYP9njpOlwfWxw7EoUlUP/1KE5a7F+2WPfVfBeAo2FtQon6xZXHypI41GUDufrI673C2zPdngtT6Brx/7IIBGsxOqkRbs1ePz8Fle3K0jlUZ626LoCdqnx5P1r7NoKxabF/lBjcdrhGAREESAah7ocMY4a5rd2iINGVY84lDV04dCfB4Rzi3rVw3uJRT0gRoHdoUZR8MPtvUSxJTgOUeB0c8TlU4b1lKsBIdWd3AwaxZMW/W2F8USgfHbE4BbwiwBRO1TG4bi2CEcNsxqwetLjfreYQmgK7dFsR9xdLllnUUVAB4xnyaN3X8B+p0eMHJBBU66MAOiFpQ/1kYUyAd1j/s03AVg62FBA1OzwxAAIHVA3I45PNaAiTDPC9g3C0qHVemIAY8vwo3ZXIV7QL6mXFkp7DGcOsnLwFcN75NIidBpRKZRnHQZRw9QWdlAwJz36sSGLUkZUbyWGE0AuHMYNpdix8mRTrZli/bOULhRMChUeQOlxfK4QmsQmmkjP5lFPHiCAQCloAEWAHIBQBEhIQLKqRHjN1MBFhLCSjGcEogEwSoQqoHsWKelquJ829SGKXsFu4uQdDYYMkj1zUDuVvGoCfu2gBs3BquZ67FIj1AF2oSbQI62A6gSsZ+ei6iSvm3uC8uhT52FitXwJvm+HFGKUPHxyJEvnGtDfuldkzk4txKDQ9QpyjHArph27ZUBsJWTy9PkKZEESW29XSQqZmEHhyAr4miDWHMXU7xhqD+klfYqlwLDl3+yKLLcckyy14zr9IqA/ywM3hnvk95sBHRlwe5Q3GtIxyAchsY1lhEtss24z84okhWdIlXdI9RFkUMaVgNs6DKOC2fE8VlcEt+OTCNUKmBZQHcGEXVAiXV1l2XJMIT+stFFjxHgWYPYKbkk7QPa+jRuyS9m7l32AiNz3kJIipaWEW/W8ZoVjKjFluQLVFScsCN4ixm0KaBGUOrplRHlPabMvuP7hREyfhXFD9nIO1SGgna7JSFvCuBaJFeY1YBs+VuyzN4y+MXnDwaZIsmTdUbYPZOYrTimjDLR6IBkHWTRXk6nWrcCY2DZfpMmDJEctr9nHmGXpQfPYuvNZCkipMd+PPvn+TAd0p9SaymQVyKFRwtN+AWDah+z7UylQKgqe79hxv+xKwLRMMgXE5AEUHjDJL5q9p+gzK8gaGl+SmQwqbW+MyXdID7AvBCXVaYLJ1jxvMrwrg5dpkJiZI15XyZNsyLZJF+GMQJCzJN20Ae2FSnYCWi6k5fOjJpuaZc5BC/RbTuD1p1QZZFm37oH+JMs0OUHiN3KqxkAEih2BWHXr0J0TJEoLjFsz+QpdmdjXIWLcaB5rukZsncN/EnBMILM/NxOrqPoAe6ohegJKX/C4RQAQwLCdOFeNZFCpBiafZq8o+y7TvW4KCFLJfsD3To4BopFwhSDTVxkUQiCWTKV1tUJ5PWBca0RpoDuCWPZW8jKL4L3A10xjl46TKPpgMW7InAXN47TbckrtlWOEXxiCZ0NwXymZvp8kYgKfwge4paF8Oc7HoVqXrh8B32jIuwE+BRbpIQXjuAhXsweUwT3cd1/piXkUMQX7jAxCypJR32jo+wFuyR5L6eZQHxGSXDftXygUmLKa6kqCQKg19B17L4WdPYNRSQLAdL2HdTN7ITUjsKOUwANQGQ2rTaJRBGqlhuiTjH7yWkoC6AwK8/9lJLuZ5apCkOXU6Xk+zOzjw/XkRSmm1Go9S+eFYLVInJ8nqpJeyxiZ+GrdDCZN9lOE+WeWviKFHSlMUlvxi5SwMQBQlNd+y5dvL6X3i5dvNWPZfO9Z/N7/8p/AeoXj2wVDUhR4kxCA7Bke4rbpwx0pURJpQIaLAfLrakoGlYOEPpC9EAHonjomqy4YVJI9LG4doA7pSzBye/TYxSSh4//1kf17UWFKJMshGtlToVqRqiH4f4ADx1xroKbkS6ZkQpKtyJ5GSqIogcuMg1vEVLfAQT0Et8tBKgdldhmg0/ZyDcbwxKF8TbYsqojyJvlPdZKNbeLkCY0qQniB5rXA7rctlh8bjNuYZn8xffnIkftj9qmrLaWejhuGhIxrnjPhKRnLNRHltZiCHHwe2CSJYTCYAFn2SRV3BAqhiGheAd1jMV0HuSj+YeBHDuvI6ZluQQbNLVjlMK7oNwVmVkK3wOH9gOVn7FQDyAIIz237IibWicmoxS0HH6HgNsyO4MZX3J/MQuQQCabLAvvvepQ3CtXbOdwkFExUNAfK+syerNf6p2EeJO/4WPayqiGdI598X30aFBdzOEkOQ8nnN1cUDFsGb+R0TFZTiCm1VA5zpYRdRNSX9HgeXgosv4w4vKAvNCY5W7Gn52/c8PznQZyrUxKpwhTKkpM5x/X8mQtm7hx0dfK/xiRzTCEou48CTn8gpsTV/L4PJ2SD3EJAHwkc+jNec/VbekWz9zDoWdo3nIj0vvN9HVciBaUgfW7I1uTQCtfwMXPg51m3ad2B7E/ucgM4WPEV98euOOBSQ5yCPXTLz1r2RY4bgu9iH6f711QpkcJlgNnDbI70KWa/py9475CWFSM5hAbgNlRin3K1iXQR/alEeRd43GE+p/nz8DAQJ0+WuJrJrDk11tXpPpY8x1HOSaDSkU3qtxLlnkxcfyKw+SmrHfK5JQvE+wArNSg/lJ7XlC8JTOsr7qvueBzVXUB3ImE6joJtI7B469GdKjJ6xzTAb8k0jEv6M20tUN/mqgsCFNPGKUF08nomBtEXIqWAZnRLRklEgg1fzgDHHOMkV/QlZYfZX+gLHqfwEcNawrQp7KRI7G+ZEmSbJI8XQHXPIBfKOgNcJd+59lWubdAp2VRhkkS6iuAyKAE9hOm6GtYckNOHmiSohwC7TP5JpOPzQEjeUGnppRzXavKSDhvWY/hCoLxz6E81wXACR8U+YNjISeaaQdDkQY2Yj7sN9JwCqYoi30Po7wxaQHesr+C9lpJJrnh+z+SYWBKdPImWQTehlJNUNsr0+cwSyZiuc8tj1keHHFp1eFmivPMpTCY9N/tDfZz9kYlZ5fdQgFukjkItIIcA3Xn4SkG6MPk3g2HvpNnThxdKnhM1EOSNWwPVeYI+gQQu6TvNck7VOvhKMyTn6BCNTPcuP4GIUMjpvPhSQfq0Dz4Q6AmyhKFSUEf6K31TTOfA1wr6YKftyoHVG6HUkK0ls1eb5A+lpzGUGnJwcMsCqrUIpYZqR/hlATEGsoBS8jxmcJa8kiHVfGSJcig09K5PntzAao8QJk/p5N9UaUwAQISAUDMwMR9HNBLq+MC7F+MsPZWSktDc6ejDBBJFN/C9NJohO0qRrQRYN6IVmUqQSczM4dQvCcws4kNfZ2bvstcxJ7qmxNfpefln3ueH4PDhY9nDmT2dD7smp+c+9HjKmR18uI285P2TgutKctrQ9XOlSN5OrgrxD4ElfnZ9+W+/gLn8tnssq4+ex/d/BYzlx/8SjOWvcvlWq5W9k2jKEd2xAEREXHjofQJzC4dQ8eKUPZkc4UQCMWm2fW8QdERMf8sz8C7JFEWci6UFkHxMPnnh+EWYJX3VVapGyLPG6Ud5PYMTu/aTn4uDYqY0RgmyAZpeIuHzQIRAiUE5EnbN/YwyVyNgWrcIQHEr5qRIcL/NPvm7EpLtzyKEJTsjnGCnoOAAsHxlWKItAX2UqSqCMfEhxcTnoKC83aABMWSPVAqo6AR0l5P7OGDxKdEyz35LnwYkYwbTnOEXce4NjJKDSTUmsF2m6P/kFcrMQh7Y5uoMXxHEQiaJWBo0u0X2ufD5/fvs+Bq36T1JkrKQZntVR6YsJDA9bpGSNN9NLsx1BqHk+9+fpfcprScYgi9fzQAqlHECt0ACVCkls3qrIIe5csIuMQ3oMsAMhsxWfyonNibLFVm/gEn6aFdJwvV8/uy4moxVLiwfzsheZp+OrznocQ0ZL9XnHZiBnnQZsPO9zOEy4zpdoymhUrc8jv58Zt7MIcItEmuoeNy6nX1C+RqbfoqZ1clhTiJEhgPtI0SMKG9lCnOZ6wGinkvhbcN1Z7aBPjkCkwnA6/x+Jcnt+cwYiEDQO8kfy3QtjpiSOkVkd58vBIYTMhvjmte1r8TElI4bgkckJnVc5+tdTNfnFHCTQCmAqUpj+gxGTHLbccXjRmTJvV1SYuhqyvMQkyeuAHJ3nV0m5rXJ1xXX5QsyhlGQgVMJyNsFz6evMLHuwTA8JjNAUxVHJOALBhPYj5rXiS+RWCTeO2zD7UQ1s1xBi8lPl4OEcuF73qZ0SXqW6iKE5z1j8nEeCMz6M3ob+xOCSk4kpPOYBqj0RAqU+5lhdJWYQCmZR+6HtDxOn0KobCPJSguRXjv/DAaz3LLm43Yxs1hks8k4B5WYtFRn4UomeorIbbk6ya9X6TNWyimkKssno+Ax+TKtv2adxXTfSANPn4CabQT6jYKvxOQBzRUgTP5kRyRBvCB4FZhkzraWk+wzKEp+Y/ITZ1A9rvWU0uqqB8FHgu8xwPtuLqUng4qJiQ4lz5tOvjxXSwwnKlVH5M8uwTLrTdJAPnUiZpBKv51gAmqqEfGVS+z3/AAAIABJREFUmgKWghGwSzUxnLzn8hwCgF1K2LWGXRCsZTAaCp4DX0u4JRki6eIUfMVrNPVFLvRc6TEwfMhX3Gdv6GUcTgomoSoB1yhEw+qLUMh0TxNTgNK4NtM2fKXI3gmBoCUDf9K+hYJspOw9xrR+JAbOlyr9kwhKwi003NJMQUG+ISsZao1QaO5DrnFJn8FgJNyqgF+WBI6jh9uUGB8t4Et2SrIWgyqYKMUUBMRzqKfzFBXZxVyfEY1CmLom0/XbmAkwhuRzDIsSbmEwJ6Ey+CdUms8tFUFuaSZZbij1BLjJEBKsRqMQC4NYaLKgD5JXY10g1vQMRq3YOWmoaCJQTfeluqQ8NbGBseKNMAf9ICbmWcr5WAtDQKYVgVZOc801ITk8B2AYj1ZkIgvDf0bzXwakmaXMS/I6xhgRnYMoDIRW/GcMhNYQWnNSRGtA5gmaxHpKxX/e452qknw9aP2z4DYtQkkIIaZ/7yw/D3D+ZVwipjaJX+a/X5flW81Yrn/jcfzOP/xP8Wy9w21f4/nyHs/qe3zdbfDFfounix2+Pmxwu2+gtUeMAiEIOKuhtMeyoVzzZHOEEBFXl2v87odf4XfXX+P/+ux34JzCRxdXeHtcoh0NjocKRengrEJVM0Cna0uUlYVzEmNnIGSELhiEUxUWp02Hr+/WKLTHsSuwXXW4uVsiBkAZDzdqxMSMVcsR/b6ErhxDbY2HdxJSBRjjIUTE/maBi8f3cF5iWY746nLL19YjukOJzbbF7idbiCc9fM8b9enFDve7BXyrcfrkHoe2ohLCKSjtGS7WGejSQekA98kS7sJCFh5lZTF0BqZ0GHYllmctjrsKi3WP41crVE+OGD9dwZ+PgBe4eHqP69slqzU8k3K3z3a4u1lAqIjYK5w82eH2qw0ggOKkx3hdsfLDBMRBASqiXA4Y0z7ZY4H12RG71yuolUW4LqAfdbD3JS5e3OHy6y1lpkcNfdrTX7s3iDpg+2SP+/sG2BuI9YgwMjwGAActOkDqMPlO/d5Ms5qoAsxrA7cmow0doXYK4cxCXhn4DQN+hGPgjugYMrTcdNhfLyALj2Y5oPtkDd8EmO0AqQLij5Zofu8Wd69XgIoQRw1zEBhPPOTaAm9LhC2jaHNXqPAC5Uc7HG9r6EsDvwgMJGr1NEkQTUz7GaCvDcR7LcRPGk6WXFhglFB7RSnllr8Ly4mY5uKI/rMVQdjaAk4SaDcO9Q/qqb5iPPcwtwr+ZY+wN0xVDpwUCY1n2NDWwnxWwjdJhvjIQZiAzckRd6/WXO/KIvQaYpSIIqJ6qzGcesQiQt8puFMHdZ8qWFQEvGDNjASKK8XBb0W5rF3xcdkLdrZayfUWAbKTlCSeef7/KGC3gZNNAPzSw9yr5Hf1kJ1CqALUeoT8vEYE4LYespVTkJE6KgItzIoBX5LhH7/XQbwpGYSzYBcsDhrLTxXskpNJAKb0ZbcMWHypYBc8t9XXlOvZVIEih1Rrcp16THWc5Lu5fsQtKC8Ohr7MqIDiLvk7daQH80C2SYDhROWlmlhHaYH2PTedK7um39kcma5cXZMttauUwruJiCsH89ZADgwWUoOA2TPZOQcL5fCVPNFF5p7grLxLXaxVnPpJ6RWVsKuA5rXEuKECI2qge8+i/txMjFBOx/Vl9l9SskopIMOXVC8mUG6XVCJkllWk3tHqCth/GJl43AuMpwHFjYSy9DcXd2QphxOy/OOWnlhfEtQ/7B3VxxlAAwS7Zo+JnQwl0D3m+nOa9ZTSLcigHp/xsyR8kiynifmcUj3VY6RJkBymo0YG6viCwNPX9OSOG06yDecR65/wNe1THqvZ5/MY0T1+kPqcmLVQcPLDrgiOc49o/Tbi+FykdGhM/ldfzZMlOalXpfRoVzOsSfg4pS4HQ5XDuGaQUHmTqj3WAvrA+7O0iW1VyctZUXL7kInPigL2XsaUjJtu8YF+3PIuTtdC9p6T/U6ToUmazs5hAdVFLN56jKsk0VRpssnmRHFuq0rn3C4Iik1LefPilcfhmSLr7OaJCTVEHJ8oqD6iTPJa3dObaVItSU5t1wMBMcE8UKbU7ygZwAMBjAs5seO6p6Q5p/E+TCOuri2OTw3DdwqB8tZh3OpJJhyUQLHzE3vHCStOSJT3Hr7KkzwEzFQ+RLiFnNhq9mSyA1QlWbR0ZMSLvZ8YY7dQKG8t7JKeT18r/qwUmdtCzixzOgaqrtJxHh3sikBXd2Sms3IpSsFOzJQMDJCFRYzTdT15Q/eWacapViRKAV9rssbguvTBTiFC44YJwKp3yP2QsmMKsK8Ncr+k7BxiAtJ+YYCUuCt8RKg0ZDsiNAXUfpjAtHhQDfJOb2auC4lxSrCNqbMSAGJlyAhr+U59yfR3o6fkWTHaCcDmnktIOU0QcD8eMJ8ZxAIEjjmBNstnBZnKaB8k8GY8kbefEmujZxItjKGvEw9f8nOY0J+3xPD/Swr7a8FYfvd5fO+P/sEvfb1/9h/9V//Kjw34lgPL5ntP49/63/4OPrs9gbUKUkZIGdHuS0QnIUzAs0d36KzGzevN9Dq5Vxy4jxw8w0TohYW/rCDPB0jlYdsCQvHmLa4KxNwLaCLUZoTfFUDpuY7cGfmm4SB4zWqTWPIGpXYKfu0hjwrRsNcw6sRqjgy7EYPk4Lij/00fJOwjCwwyyXcF/NJDtcmfNsipLkV1HLyrnZpYWuEEQhEIXEbJAWDy2OhuDnbJCYNqEJNnQkTArTzUQU3sK/CANasCRBSAE4hlgNqr2fuXGNdoIvQ+sxuJRRWJsdRx6iG0J2k7APzWTX2O9Dhlpoc+KjkKjFt+66mWPhn72EJdGw4k+FbArTlwdouIYHg+VJ+SKyXPjRo52CzuZ4YoGLLPwpFRVD1l0UFniS8ZYTkw5ZLpl6lQ3RJE59qRUEaY+5TUmtYhknQzh65w1p/rUz0ZVd0SkPiS51GOfJ5uGZYjBw7KpxCf9JxQcnCUZbbSpXWP6XiK5E1KTLivgf4FA62kA/pHDHTJg4qJKUxex9w/6Ku5ekdabtuu+X/dkqXkBYgkLyfIyDUyk4QtMUbZY4aIJJ1OlS5JGpzZKd0lJirJd32ZmFCRrrmQWOrEYuue3r7MVuf6nupKzAz0hte9bjHX0ngkaWUKx8nSUMvjtylJM6sbZBrk5wFnloBSFoppkG0OmCSoUVIOPK6TZzYNXF3NdNBcxTL3+KVeRJdY6JjewxITM8+QF0yhK+aYJZR8jWsSiByRZLpMAzVteixi6kBUPWWQmbXTDyTUuuVgPB+TSLI9yjoxqwmQZLU58bMUSZXAwXIoZmAoAqa6kSgSyLid5bJuwTTRKMQkf5U+vvP6DDhznyNl85HXnEv+SUtA4kqB4ZSfuRxUk2XVvqY8OfdFTunCZr5WdUdWPku2M5tY7iiHjYJyXyAlfyZZctQzINTd/DkL6oEUOZEDWcI+VS4lOe7D6yID7Mxm55qWzNDn+p6oyIYWO97L8/Wf36dsF8hhMpkFRkwscMDksYry3boZ3c2y3SwFztJWbwT0QA9mZiFz+FC+XjI764tUedPIia3NICjLSHOisO7CVGGTt53rXXJ1Vj5ugKxvrnRRNk7VLA/DWx76ZzNbmv26+TmhEPQzaoFxJVHeB35uS+5zrnqRNiQZq4Q5+hkYjbP3mN9JYWIeoxRQvYdb8AJQQ2Ti6UJPj+suTN5CEfg5gEjgKvkJ8/e0TEE7cpilh7nfUfgIZZlKmveFn9c5EXb6u0z77gJczaoPmWpBgiGDxeRVnhuRGDg5Mj1WDh7RyJTUypRWMnT8LgoFmVj4JFctklS3cwhlBl2Raaoq74+AHFinkq/ZLCeXQ3pdBKT1ieEkCBQ2ENj1BIMT45oAKJSYmbYYISzrSyDIYArvKXMN3N/cO8mTFx6wlZif2w+sAUlBQKHQkH2aLXJJ/porRHJCK5BkyPqdQB1h3cRqTp2UWarrA5nJXF+SGdEQZu+ldWQuhaCsN8tTv5nA+kDiKjJLqRRiz9kaoTXBoPeAkIAdMclmgXeltSnAaJLd5moUYPr9HUntnwcqY/jZh/4yAMv/8VcALP/Orwew/FaH92gZ8PGrR1g0A0QR4ZyClAHff/kGP359gdWix1dfnEGUHsvzI477CkVlcf6SgTp1OWKwGtYq+FcNFh/scLhtENqCDNp9gbByePrbb/H2Zg3Xa2CQiK8ryEcDQjJRi8YhBAmcjFA6ILytEFYOCAKLsxZ2reD3BULDD5c5H+CsQtgZxLWH3GssP7zH7rbhbJ2KcCsHtLxRhZWDbhzk2wr+xAG9hDwf4A8a8lkH5yTQarI1o4TajvC9hmgVYp38F6uA2CsydE8H2F0JuRxhjIc7lrDHdCnoBEQ7CX9iCZQBAmgAYpTQBwW39AxhAOAXHvGJRTgaguazETEIWMF0UvF4wDhKSBMQbwrEIsI7Bf94gLqkjNkvAuSRj+FgEBKwghfAxsJpzQRJByBIuHMmpYq9RjQR49azuiMKiFGgf24ZNGMi2bSakmhhsxwporqS6F5aCCth7iQAAsawDDD3amJuhBfwq4CQAPJw4SCcgD2NEwOY+/CiJlipriUO37MovzboX45Qdxqhiqneg4Xuqk+gsIgYHnvIXsK+N0C+KVHeSOgWOL5kVUb3OKQ6CmA44WBNKMA1nmxUkg2Hgt48fRSpVJ5yUV9ELD+X6B7HBOYlqs8LDBcewgssP5PoLlLH4yqiuJVwTZyAWu5NBCgPVSMwNvTpmp3AeBLplx1ygqYAxnmQO24J8tVIJqm/8ChuOSnSvfDQ9zJ5TEVi2Qims291SME7+iAm5ms4JUjPATZ6EJSLB2A84T64JsnWnUB5LXB4n+cdgeE8BJFZ6p0mEHqeO2Bmu3wdUb+Vs7dQZXaM50ym485/Oz4P2PxIwq5n8GfXZLAyAyYcgXiWmosI9OdMcM1MVAb244aMmG6B44uYAGBiBiPPldnP9Q1ZgglgqpuQ2ZspgWGbwI1L24rzRItPNREysZPNKzF1zEpLD2OWgLsKEJFBK5RBZ3A6b9OuGXDTbSgBzfLoYTv7jFVPxgngdZzrMBDThEVKL+1POSnkwffOLjCllbpmDhcq7iMO77PWRkRKr4MChi2Z21zvoQaec8P8N3bCnpNhC4Ys0XAyd6/KGNGfpnOcZLGseEnAKgDaAu1jCV+krtokgQ5KAMm/258Q6I1bsnbtE4HqiseQpeK+IIDOXbj5HpO91iKw7iKDJNeQXQ0KqSYCGE4kdEtvp7LsU3XNDA7tgoBYJBmwdLPcWESCVYYF8ZjNgZ+RYUsWxzYEvP2pQHmfmKtC0Ae753PHFcE1BHB8oqawo6DZmepLrouBQwTHIjB9NTOLvhCTZ9XWin2oAz9741JAeAWI2fs5bOTsq7SJRRvoT2UdBwFmZkXZ65q8r4WYWEFf8f8ZhLqKCa71lUd3ppjO2hMQiwD4NVOVQ8HJOFfJqQN5XCd2MZDtEyGFVnkxTaJElSZGEOEadl32ZwamDXC1nIAefbwEdLEXyVsaUdyOcEsDV6dU14rnpdhZhAXloMOpQXlj4ZaKEyL3ZAl169OEIKWxZjdiOC3pv0zeTV9I+JrAUQ1hSruVLmI4Maguh3RfNImd1InhDHCVAlIAUe4LVUPAuDIo7i3sxkD1lN4OZxXK2wGuMZxE8ApqCIiaLGJ/UaO4G+FrDdVldk4iBjWBy1DqaTI8KgV3UsLsLEJN6asYZ8AiR4/ogVjyukGM8IsCuXtTDZ5spg3EOUZA9I7psBEQoyOTGPnBiUrz92AIJgeLKCXksU+SWQGYJA/O1SHO8yc4gQpglr0G3mMgBAGm0QSfNZNaYRIYrXhTyoxkTNUiABBXTUqFDXNVCSbeYGYbHy4ZEFoLUacamTEBY0UpNUxB8BfFO37K6TkPwXGS4D5cGAYU35HTvrs8kPGG+OcCzW/j8uskXf1lL99qxnL5/SfxD/7xv4ePFpf4wf0zBAj85OoMAPDXnrzCP/nsPfwb738OAOidwY+vz3G+POI4FhicQlNY3B1qfPToCl/db/B4tcfHnz8BAPzuh1/haX2P//v//T0gAtv37tCPBh9dXOGur7HvS+wPNU42R2zrDj/54TOsnu+wu17gr330JS7bBW52C7hXDRYf3GNdDYgA3t6sEbyALjxOVi2EiGiHArurBZZnLV5u7/DDL56gqCz8p0vgZYfVssPd3QIvHt/icreEHTXOT/Z489kpzEmPurI4HCr8jQ8/wz/98gWlpVXA8qTF4baZqkUuTnd4/dkZfuc3v8DHry8AUAIrVERRWRjjcbhtoCuHDx5f4/OrE/gE1rXxCEGgKByawuLN11usz4/Yf7nGi++9xVeX20km7J1EbDWWjw8otMP9boHgBKSOaBY9Dvc16iX7P72TsK2Zal5QBrx8cY0vPr0gCK78JBX+3ou3+PiTp0kyK1Ge9BhbAlPcFRCnA6KXVHjogOgl1OsC4v0W7rIis6OY8CpVRAQQrIQuHWKQ8JcVYpXkkBsLWIliM8C+rclUr5gY6z9fEHQ7Sda6V0BF9lpUHrFXKLYD/JcN/JKxjHo9wt0XgIrQS4v4qoJ574gYwWM4JmnPXsI9GxA7jZcfXuLt/RL2ywXUsxbhiwX8qYVZjIhBwu3SyNaEJP8U0K2EawL0ow7uqkZcOCy3HY5frHD2nVtcfb6dGOXipMe4LyCOmvJXL6CvKTd0Gw9hmQ7qto7fPipC7nUK7SAjOz5OSbGC7Gm4GKG/LmCfjhAHjVgFiE5S4rjxkAOlt+WVwnDugbVF9WcVuucOYkx+sZVD/VmB4fsdw7WWrFIRuQ/TRIhhDpQJJnVANgTEdh0QCnZ6Sk+pqPCCEteDpE/2JMDcsj5E9WSUyxsJV0dEA7gmAAqIMqK4UVCtQPfhCH3FSQ92JRL0+RJwJ6nHchAIdURxLTG+N6L+UYnhLMCveF3FdB7FKICLAeaTGsMTnvviRk3ManGbvIerOQ03GNbyFNfsFx3OWEWSWTBfR0jHgZBryDraEwdzq8ky12TwZEoIhaAyAbVH83EJ6YDjSw99lGn9rBxpnzMttrwR6B5nxjGivJITYywdMDzyKC7ZsRkNEFRiyBIjWNxTDipTmmv+XXgec3lNf3LzmkBWJSZ/3MSJNazfUnaIpGQodgLdkwBfByw/1VPwVw4Ry32eUYDgPrHW/XnE4it2dC6/YMCTtPQaV2/5npZ3cQoBy8CZzBPXlT3EGbgjEii7isBPpYArn8K7ckiVT+qCzIRPtSjnwOIVgVH7WKDYE3wLj4nt1B2BY5YAl7dzqBArix6EYWkeg10QrIwnnNhYfhXQnUrYFfezfRpR3qbk3ZLPdYuZFV98xTFCf5pBL7B4w9Awu2C3ZX1JSWtOss2AWg3JA6d5zupLMot2QRaxfSJQ3BPAkyHF7OtXWVmQ5K6Bxw9glqY6VrSMSwYzDWtKS+k/TcygJRgvjmRLh61I6yDr7EsCX6YJU/K5fO1ZWZIqWaLihEAOYbKNQLmLaM8lyl2YgGhUAu25JJAfyWgzHGmWtYYH42STpMPSMTyqeeMwrhXPnWWw1fKVx7AhIM4McJT0uxZ7vg9qJOiwNSW1IoU+ZeB7fKxR3tMrW9569GcK5X1IE0oS5Z3H8bEmYB95nrozifqa9TGZdTVJ0moXlMkWhzBNmpiDh68k7EKivPXwdapaSWoBORJgSh8nJnbcavpmC4nyzqI/M9DHAN17tI8K1FcWqiNTN24NyusB3eOK9STnJczewTUK5VUPSMEqkcyW2jDLWoWA6h1cY6A6B+ED3KpIEzJMzC3vLGWsht5dfT/AbUroo03saGJEC7Ke41mF8qqDrw3k6JL0lWFE0SjAMfxIthZ+VZIp1RJBS0pjuxExsbI5mEi4QID5MKQnyVFDVZDtzP5NoyH3R1aQ9AN/WgdYh9hUgJIQ+5bgEwSb0WjWjwBkEp2fJa7ZP5oCdkRVEnx6z37M/LocMpRVDD4AIYX3aM3/A/Tv5roRm7ow8+uBmTFN7KPQ+uczkd9gMr/14T3ffR5f/g//2S99vT/+u//lv/Jjwz9n701iLMvyNK/fGe70JpvdI9xjysiZrElUS7WGHQKEEItuNbChlyzYwxIQYgWsgCWwoFcgUIHUNDNdUHRXVVdkRWZkRGQM7uGDzWZvvOM5h8X/nPsssrKrKXUVnVnUlUzmbnbffXd8dr7zTfySA8vFdx+H7/yHf4PVtozmVajKngBs1yXKBCaTlq6ztHclk9MdfWcF0HRa/JDRw1cdNDS7HHz8Y5Q7htpiSod3Sn6uAmwy8fF1BmUCfiv1FWdP77m+nqNtwDVmv53JIL69ABReGLheQemFbSs8eipAZ2gsamMIUwe9FjCSwEO+Xx/AbDX+pBcWEiDzqJ1B9YrZ+8J+KoXs8zqTgCIvbJ6vxHsWikCIoT6qF6b0oVdP7wQEmEbjKg8+sjJ5IGReXjMdYJl0hMIMhVwCkexaZif9kwZ1UewlXAr8RDSXqhcPi+pj/+VOvF9uJr/XW0PIk6xUwpLGgvlOidcwAgzdSeKv8jIYdBMfB4LCRKpBjZLmFFwUsjB6QYNFknmjN8xVMqgfJuJdE+lOgCCvM7u9vHiUkhHlgINIa5P0rLgTD9xQhSib3fulXCmsr6kjo+pFWpvksYktTIOz1CWp+8TqRVmpIc7Ax/MxCONntzLQt9vogeuIxxIZQh3205ZReqq/boMAYvF8rDlJkf+6jx5Hr75WNp6usx4EtIVMwqWS/HSYJAaM0a+W7lGRAUfpsZWfJ7DiokQ5mDDKdZPUWA9yne12f11S0q5IGYUxTSmPKnrz5IZgvDZ6iOchSnfVg7916T1dGZ8nL9sxMSQqhbuke8BFSeN4DYufOT9J7sg+lCjJWlMdQz8P+2Csbr/N9D4Pi98fblcksYzBRcLoMHYaJvClgvxeD9FrNtkDJJBtuDJKDB+EViUpp2nk/+n+SYskrzJ2BCamJYXm7KsQ1MiMp+oPCWeK20ty1AcDcthfw8S+jbK+B88hMEqtk58sLcM0Hk+8T3S/P6bEqO2l1LHzsXuwfofI26z451I6eJrwED+nhCAlJkjkyPIMDmVkJN1+e8MksYVyEAnEpn1JzFYC2lLD8PXzkfoex0qPJBEf7zMV00MZw77knt4D6JQynCYGTJOug7B7yu/P70NG8eH1T/eJjpJcn47f7dlCW0fwZdUoI0+9kyLBJgZNhfhsJGZv/1ylXs6g2YMgohw03/sCffIHxmdDeUZpdZLCuuzrcllvpdYkhRHtQ8XS8YYoFY6S2z4IWC0fyP20wnRJeho9rFFmO543GP2JIvMOX3u2lQsMlf7az9P1FiAlO5Y8pollfXgfJLlo0Eq8jIWO+/GAAYpyY+X2nkRf6DGgJ+1LsHpMgU2eRTX4WPUhwMQbkcfq3jNMhHEU1tfIfR+Td027f/8kR04/S+m9KgSRsuYG00jSrWmdPF/x53JPO7zds9UC1oSB3J+TMG4TED+j1V+TBafXj17Hh+dHger9H9uO7HAQmWw6J70AcdU7fJmPCbcp0VZFWbFyTkDcwwRYpfby0CSTTTLSxFw+DPJ5sCSvZLrm4/IwdTaxhD+7/w/XhT2QfLDOiBsSy9j1pHTYr0lhYWQ9R0nsz25v3OwDcPsn4RIf/kIAy7f+vT97YPnZX/3FAJa/1FJYgCezFaeTLbf1hNw4eq/J9J7iP5rUtIWhKXq09mgdpHeyAO8VWgfyo5rMONRUfued5o3jFVermfQndhalPUOTYU9qtA6gDEXZ0+uAd4pdm6MzGdUV8xY3GJT2uMFALuDHFI7gwWMx5UDI3AhAvVfo3OEnYEqHGxRKe2GjIP5OofL4kM4DDEp+H0DZGA1eeNpORtW6GNDa0zdGwJD1hAJh/LwSUJn+6ETAGkyA0qEzj496jNALS4R1UaUTH34bgXLlJATGhOj3kh5BN/WEzGN0lBrG8JXxr50JBO3BxtCeLBDygNf7DxVfyR8jl4M7GOSY4366aVwvAVodCLnsl4odmMrtE0b9JIJQLccbMj2GnoQ8oKMPU6o3BFT2R8LcBaUIRcBVEvwiwEZFJiSMDFBi1ZyJoCqGz7hCGCcVwBcyCA1Bje+l+lgAjoBXV4aYkBj3PQJgbx8MLPQDUJbssMmH5+U1vgj00avYzyKIjgA02LBPH43bTx7M5IHzuchobR39pEmOF9N6XRnAqzGAREXAmnyUPgtjemzyw/kYTuLKMHrJhliTEVTYe/SylJAsnk7TqAh844AgJjAHEwen8X4eU3rjJEIa5IXYxZc62FwR0FoAvByvijLlEINJ1Oi1TAm76dybTo0yK4jsVfKQxgF3V0lljYoTEkn6nBJTk8/WT+R6JSltCu9I7FjqaUy+ULuRN1YBcIwJ1UkWGjS4CET6aQSvCeyo/b/TedJOWJ0EBNKSgLGL19PWsj0TAYnq9kAsdR+m7rwEsIRFUyMYfsiWPqx3CBpMvA8AdDwXe4/h3rsqD8keMAajxgmNoON19owdjimwJ6Vy4vd+Unkz2S89RDlpvJdTcrCOPtgRbEavstRIqeiPfSCXHfb3sDNyXInxSceTzoE3CowAnGEqzNxQ7gfT8iypCPASA6zGz5/kAUy1Pui9JzRVXCVfbrp3lY9VIuk+jPd28qxCBNSRQXzohfZWjZNb6fR5G73waRIlekgJ+/tw7JTso58weiCH8o8D0gS2Ht6LaYJhHMQH2X8/DrTT87n3ZPoIXqV7ML1eJlaSvNhlcd8t2Dbdyyp+nsRnKfr+0vOuXcBZxrCdNGmRJnZ8TEhWLoyTKOlvRQrTSf9OSxr86wTo4gSEH6tm9PgexImNNAmVwEYC3GliIsTwF+X24DKdp70nMwKcuN/ja7Xag17P1yS4CVSnChvi8ZkBeb9ABFdxbBNTacfezU6Y3XRtpM81hu0oOQfp98kvLdUjXdGXAAAgAElEQVRh8kyETI+VK3Ly1HgOgxIwiRMQ9jVA7OOxdn4Ei8FoQrkHh8mPiZf+ZOL5Tdde+bAHbbG+ZKxEGf2IfH3xSA+l9xLq00YmUu3re4IxAqoSKFNqDzJT5cfDOhLn9vuKnPev/X/0x6aTGFfL7N6fCQIGB//HgV4Iwj4mUPhzwKBS+7HVfp/N14Es8fPrZ4Hiz7CWf6rl/0/psb+kyy81sDzIxMiTa8c//eYnvG4PeLNY8uPVmxyXO55Mlvzw5gm3qym/+dZX7Iacs3LDcb7ltpvSeoNRgS9WJxwWNbfNhM4Z3j+44Y8u3yTPBr5/dsHb1R1fbE+Y2I7PlqcYFVg8aihNz7PlMWfTDbf1hPdPbpjZli9Wx4Sg6AbDyXRHO1iM9izrkt4Z8sMtISiUCmTGY7VnmnW8Wi2ojnqOqx0hKK53E8rDDc5rTidbPnn9iKen9zx7LXLfR2crpnnHqilZlA27PmPb5nzn5IplV/Hs6gilYPF4w6xsmWUdy7ZkXRcsHjcYFdAq0AyWedGy7XJy41jWJavzOcdv3dMNloOqYfCadV2wu5qCDszOtuw2BcZ6lA68c3rHzXbCalPx+HjFQdFwW0+4uDjAbSzzd5fMy5beGda7kjwbKLKB66sFB0dbdk1OCHD2ZMOrL04pT2pCgCIfqJsMPzewzDh8umJ5N6WYdrS1oC5tPUXRMwwG5zTTScvRpOZuJ6meISjKbODmZkZe9Qy9BRVw9zlv/vo5l8sZ7VL6TLX1lFVPczHFvr3FAn1nsW8MMhl5X3L2vWtuVxOOv7nj4tUhp2+suL5YQK/Rpz1+lVFeWtz3Nvhdzvx4S9Nk+M6CV8Iy516YcBWg00web6m3BSpzDMsCVbqxRiSbdgx3JWjxdLqpJMz2dwXqcc+wsajKMZ039L1haC2+tgL6A1KbUzhmH+fsfq3GbzMoHHqZ0b/RkZUDPJswHEk/m8odYWsZjsOYyNoXmlAKk66nPeE+J3tvR3sxwa40w5OOfNLRv5riZ5Loile4mWewHr0z+AG6swF0IJv2DDcl5YWh+16Nq41MeGwtyiv0cQuvS9xBj2qMeFqPxANktlq8xgFUDMQiQHZvcFXAnzjUZICoFNCNws0dxXlG/X4Hg6J6kREK6GaecNijbjPCaUeoDXZpGfKARYKudu8OkrR7neEqYUT7Rz35RUZ3OqAGTfXC0DyWACSfBboTR/naSshRJsxweyKTQAnAqkHK6lPwlIvhSCqB56AIE4dZmtE3m60Uu7ccIQuiOjBhPP781lC/IRMiibXUrWKwsT7JKXQrHtoE0pVX9JUMvLsTh90YJi8V6/c9xa2meTyQ3xlhkb0iv4+DrCCM31DJgMHWagQvwyQGPmUBtRRfsO731S0JNKQk3ZTQ2jwSGWp3IMyyyIDluO1OgEv9OJBtFd6EMcXVbhXllWL7NEiw1aFMBjRnnvJaj6BTOwlC8jYwfSXy1xGsbyWMZPFFYP2ODJZFkhylt0r8mLoV6ahyIg1Ox6a7vZzWFdL7qlyq/YkhV9PY4aoV9SORrA4TSUvdnkFxJ9vwVuSnzalMegQLdsPIuPhYq5KvpS82scDNcWD6KlW5yHu1c8iXEqiTPKzNqUhfTfOgr7aH7Ztq7IdVEWDaWrpxxcfLKA2tzxjZ/PI2UJ8pYacbSdhdvyOe0ZTWCnFiZKGilDawPZW0Vj3svaLShRlZMy/PSXXtaY/0KFVN25qce0lajkDOFbIvykO90HLvNCFOsEgSbXMk5zSxhInl7CfqQaAQtMeK6lK6TF0m20ns6FApqtvA+qlhcuXppjKATz7VfBVVHSiaeUzGnch9mG3EQ2q62OF6JAPxodDkW0mH1QMUK8/ukaG6EYnq7GVPc2JH4GvrMDKr3u6DrhIIChqKlaObCcrJtj5KptUYcpWYd5HTarKdj6m58izY2tNXeuwNTbLZoGV7pk2TNSK9rR+JF1TtpIc02zj6ucFuBZy0R+ItlARk8YdmW0d9llPe9NSnGeXtEP2iClNLLYmL9Tb5cpDtrh3diSW/Fxms3Qlz2c8lZVYPAV/ZkcUVdlbqdIrrjv6wAB++5mk1rZNezUkmk4FGM1RmTKo1dezftGqcUTGbjv6oxDQDymiRj/YOX2ToToBmyMT+YLadsKq9EwVCVew7YbeSSkvn8fNSWM4EvIx4OUNmxKdZWFTTEyaFvFcVWVCtUXWLn1ZyPXYNKB29myJJCFWxT2vNM0mJBZG5wh60pqWXLlEyKzLYuF6oU+SyAGGVZ5BkrMPwdeCXvJVK7VnIFCqUlnSsic1knP/Y71da7+d4NH8ZlzQu/Yu66H/4Kr+4y0074Yd/9B6fXJ1R6AGrPBftgqt6yo9fP6b3hmnWMSk7fnp/yo9fvUHtMp7tjrlpJ3y+POWT+zMWRcOHL56QGccb0zVD0Hz/7ILvn12wG3L+8O4tcu14uT1k3RRcr6dcbmds+gKjPRPbcX0/Y9vnfHx7xvnLI3ZdxjsH9/TO0DnDqim4v5uiVOD2csFmVzDNe9re8vr6gNfrOUeTmvvVhNt6wifP3uD2YsGuzTHa8+Pnb3Iwr7lczcAr/oXvfUBpB263E7ZNjo836fGk5g8+f4eb7YThusI7TQCulzNerRb8lbOv+MbJLU2XMc06lnVJ21u2Xc7l1YL7umR1NUNNBrZ1wbToqHtLaQempVAU2a1lczMh3OcoHegvKwav2TU5+kvxn3702RNul1PUxqJrgwK6wdL2lsPZjtX1FKM9YVBs65w8H+jvRXunIivZrgu63lKWPa41UDmaLkPdZeSZAIuwsfibgt2qpK8zXGt49+iOwWtWN1O2mxLnNDc3M3TmaTcFrhbfqNkazu/mLKYNeMjOc8IqJ7OOkHna+5K+tZgXJd4rjJGAodWuZOgst6sJBMWmLtBri10awjIXFtQGhs6iV5auswQv0uskXdb3VkCbArsy7FYloRcNW35jYGPRGytMtTNgAmYjqb9mY+hXOfmdwWbDGLC0Xcn5842AOrPTmK0RptgEuoOAbxODrvCFF1Cp4sDBKbIrizIBuzEwKLJJh2o1xYVB1Qa7NPh1BgraXYbqFQc/BTaWEBT5rUblnmypydYKs9bYO4tuY+XHzqDXlqG1qJRY6xTKBkKvyZYi53brDLNT6LUlu9OYnXgss3tDtox/fGqDqZPkSEuXrAYyj7GRye8U2UYGJtUVY8WK7kTa6xcD5jyXPtWl0DxuIh7N2VcyQMtuDWYykK8kBTlfKcqv8nh8IvdO8uJU4YCXDtf8Ps6mO2FY1aDIlyqmFIN71FHciCzbtIp8qZm81COLxiD7n99qAXVGmNRUDWIajYrXGiXsphqEfTJRaiz1I5rJK0W2lfOoW9kvV4rMtrhT7JMaibH+kAKTghEpc7YWQCHeVPFNPkziHY/VxxCkVoBzcRse1KPsU6KzdQzwsQKOXRErbdayL7oTIGKbQHEvElLdCjjPtpCtNamXGETi6ItAcSeS6yQVNYkpBvKVHLvdyUA/GPEiljd7Jh4v589V0Q/Zy5fphDFO/cSyvUA/k3/rThjD1M+bbWD62pNtY4iUC9hanrfiLoz7lPa/vI69yl72T5J45Tokls/WgXwdxtel5NvJawFqxb28l2kFVJk2hVJFuWgtdRr5KjJqVlHdeop76datrjx2F7DbKLePUmiZ8BCgB3JeytuwTySOUtZUw1Ld+NG72JzJz7OtnJ/ydiBfBfKNJ9+Kj89uA9WNk3Mepa2jFDlKhvFyHNkmjEmvKkq47U5AUXnnR4YZL2CYKJJJyczFymPrWHVSyH1qa1Gr2Fb2BaBcevQgcth84ynvXQSywhAW927PrqZbQkG+8ZhWjkfuvzBKvX1kSe1WQFC2k+tQ3g7YRs6JHuJrh8S2ynVPagYVwNSyXrZxsW4kYGuPbeV8Jk+nCpCve1EmND5eL7lHdA/ZxmHbKEutHdnGyWdaI9u3W4fdOWG6oxRax+sTrEwGDJXGW0W+HBj9cF4kvb7Qe7Y0BPKVI1/34jte9zHMyAtYbRzZOnruPGPSrN06dOvIVwPKy/+VD+N+KRfI1gN6kDoQ0wyyzfUgadK9VLEEq0dQqXuP8pK+q3qHXtVyz0WQaWtHth32DFwENKbuUYPsl1SMCDhUg5fU3BgmxOBRbY+KCbuqd4TcChCM0l7lI8hKMlcXUE0v68SUWuU9yjlU0+1fu2thcKhdi6rlixBQzf7fqZpkTIRNi/djoA/Oi4y17eSr66Fp5QsE7CX2Mp0DHx7Icz2h6wkJpLrotVQRWjyoHSFVjiRvZZTUBuekjsTv//21r4frPUyR/cvlF3b5pQaWpR1497vnPFpseNEcUbuMw2zH9w4vOTvcMLUtSgWKbCA3jqen97zYHPKoWNO4jCezJWfVllVbUk1aplnHR+eP6Zzl1eaAH12+wVmx4TeOXnDfVZwv5zRNhopM331TUWU91/UMBTSDJTOe48crymygHjKOyy3TvGNRtpTTjhAUj9+8lz7L7YRuMBwsdkyLjt5rirInN47JQc3RozWZdSx3FYeHW1bbUmT3medHyzc5LreUuTzQdZ+x2pUs65L5QY3zGhY9edFT7wqyzLFdlZw3c1ZtyeA1t/UEoz1Ge3xQVLOWEBR22qN0YFq1+KBouox1m7PcSBN7/7jDVI5gA3k+ECbCcvadZZh5vNeUBy1DZ7AbjT/o2e0K2sHQDwLM6DVtb1G5yJMBzLxn0xSE3OMfSIQBbDmgdhbvRWraD4bQGuZP1ujjjmreErxC6cBPr07ZtjnowGJeM/SG2UGN77X4WweNG8wYBHH1+gBMYHizIxSO9f0EBoUqZbQ3zDzGeNomR/eK07n0nioFqtF4LwDFF+I9TT2ENh/2NTWAsW5kHcNxL7LeTuPLgDIBei0gOg72gwn4xgqb12vcQmS5vhQtVVAy62WWlrCzhF4zDGYEmm4qM9Cq19BLaI3aGeg02aRHt5q+sQzxugH0hw5fW5E1Kwl30q1IelWvJOzFRs+fkQHw+l0BK92qYJgJePZZoDv04iU7kFla1UsFTsgCJneMtQg6jAFNw0S2TZTp+sLjqsAwjQyeBjcRljdJz5SXHtF+jviEa8Nwn4MTT+1QSf9oewhmF6t3DHSH4ktO1T9ywwnDGTJJBzWteG3dNpN962JYzzQI+xXrZ1xO9JumgZ+iuNO0J16uZQRf2kUvZZJybq2kn8JYj9PP5VyJdDHW3RSp8oY44FajnxP2MsfEVmSbJFFjlP02J2FMDA1aBro2MouSXqv2vslajR4+keWpuH8xOKYV0JU8o9rFGpbInqnoU+2nAjj6mRJP7QB2HathvCTSqoHY1SrHYZdGvHVR9j1M5PX9VACx7D9fAwvi14tSu1oxxPRZPewlvSlARzpQE7Mn4LM7iCm0KskLiaA6nt94/SRRdS8NTYN30woAG727QY7JZ9JhmCST3kb5Z9yWHvbrm1YYPe2EPYO9LFqYVkZPqsgQ07WR/fGFJLB2c9l+GvhLxZMaJcvynEXJaAumDjRHwhJlW2iO47MVz29KCE4gvZurfQVLqrR7IOVOEtp2oSVAR0FxK4DQx3Ce3SPLUMlx6lgz43PYvmlIcsvUZZh8zPpnvKLit2QPWuIzLCybvBbk/O/li7Kf/USkntkmkNVhZPFMtw/9eVjfgoL6yEQ5t4AJPcAw0Q88vOkcCQPZLjT1iaSyJglsks3arfgO03uBgOJRHpwknPEzTlKeBdCmLk4UscYnVZYgvsUoPXVllM+GgLd6L68fBLAleazPJIjH1tIx6WIPZpLrulJYN1dqSdXt9vu2vw4xMKiIEtsg2w0GqTxhv64v1F76b2Ufk1zWFQaf61iVJKwmyLZ8bhgqExN6I3uf7c/fMI3nOjP4wkQLgh5fT0B8oEZSdJPvEh9iwmoe72GRkbrSoAbxggYj7y/bMgSrBSzGcCBfWnxu8FVGyLRIcR/IlDEq/g2MrJxS4+g7GDMCQBUCocrFo6mUMHTRrzlKWxOLqDVhWhKmFX5WCpAsi/Hf8lxGFjKFAT1kJGMwUChzYTPLQljJqpQvYEx+hRjk44WRTPuiNMoaYWxhDyhTcmsM7BkrRhI7GX+mlEIZgzKGVG/yD/v6CyGFDcQ/1n/GX78gyy81sGyGjK/+8AnPP37MB9dP+J0ffoe/9ez7/C8/+S6vP37Ef/s7v8lXf/tdtv/zIy7vZ1z/7ae8vlvw2z/6VT76/Al/78fv88Gnb/P8/JjuRwd88dvv060KPvjkHQDajw743Zfv8t988qt88nvvUm8LwrMp5ncOuHh9yPrvPOKrD97k+etj3HXB60/OuLw8gN8+4fYnJ3z64Vv84efv8MXLU15eH5L9zoLN3YSL58dcf3ZM98mCelOg/rtjLm8W3CyndB8e8PrHj5j/13NWnx5x9dURu03B/bNDJmXH7tWMouz48v94l2fLI67u5rTPZ9x8eIb/4ACtPdlvH7K6mvHob+W4Dw8YVjnb+4rQGp4tj/nqizP6Hx7S9Jb7+yl3rw64+fSE9ou5ALmvKoqPK24vFxyVNW2bsd6W+GdTVK84+19z/E3O7HPL5npK9WVObh3FRxXVuWF7OaW5rgidYfYcHv9PAsa3m5Lh0zmLScP0mWX390+Y//2S7mKC+4NDeF2wXlZUX2U4p8lfZXTbnPWF0AHluXxITb+U7+XLjPrjQ4oPK/rP56iNIXtR0Oxy7l8tsJc5q1XFcFPi/u8j7KuC4z+w5FeG4qNK/lieTwRoXWboKxmpTw9qyktL2Frmf7fCrjX1usDtLIvP4OJ+Tv5phXsxIVtphs4w+3HO5JWmfJmhG8Xj/0sxnzZMnxvc5zPMFxXDxQTVaGZfKfLnOfbWolvN5JVm+kcls59anixWHHysKG40xx9oFj/KOHq0xqxl25PXmukzg1kbqgtFtyyYPdPSg+rkw8XcWY4+EPno5FyR32hUpzn+yFG9lnPX3xfScbm1KBWYvDQUV5bJV5Z80TL9SqMmA0oHHv9uoLpUTF9ojj8wqE6T32vCoKnONW//jzW+8mTzlpMPAtjA0ceB4kZYtvmnlslrxen7t5iDHrvS+IuS6kLz3n91jVJw8EFOdp1RXmuqSwGts6+EicuXmvJSk20EnBS3Cj3tUZ2iuhAAbpeW6UsBv6Fy5Lcmsi2RybQiNfQnPfrpjupSUk1lG5rqQsWAHKkaya8M8+demK9GRtmLzwRgFbfw5v/pmL4KFFdixpqcSy3H9KWkjpavo3x0EOnd6YcD2UaRrRWLz4V5OPoxqEXH4aeO+bNAtlQc/ziw+DwyWjd67Kk1O8XsZaC6CmQrYcSztYCxw7fvUQ6mLyWwKoseTLtB9vFeztvkXKSO/Rsd8y9hciH/n5wrqnOp5TG1ktL3txqqy4BdGWYvhd0obhWnH3aUN0ESeJfyHrqXWg+7C0xeiZ+4vA0jqCtvA7OXfvTj9O+22AaKdzYc/cTRnMLkdaD4/pL588CwcJS3AvaHSWD+lefok4HJpRe2s2b0Aete1qmuPd0iMDkXAO4z+fnspcdnMDkPTF8G6fNUwsplWyhvhZ2eP/PYHZT3nvImcPhTT3cgLF5KA7V14OjjgWBhcilsTHEfmJ47pucen4s8M18FhjLQf6fm4IuB+YuBxVcDh585qmvP/OUwMpbSaSky48WzAbuDbuGZvxjG47PbQHktxzi99BT3nsn1wPR1LxMtVUwrbWH2ykkS7EJYPZEdwuy1o7oNVNfha0m2PoN8Iywq0UOaGD7l4OgnO5GczmUd28DxTxq6eaA9CZGRlMmGfBWorh2zlx35Shi0s99fjr7stG7qRrVN4ODjtYTruMDiy57DT1vsDop7zzBh9A8XyyD1LbeBfh7Z9lzSXPN1kPUj06l8YPmDgepGrn1WBznG6IHNV4Hpq57qdhCp77HIUL2B6magXDqGqWLyqubwx2uqa0Gy5VLqR+5+w5GvPet3oLjryXYCgJojAcpDqZm+ajn4ssG0gWznsbWwncX9ICmxtSPbDJT3wq4O0uSAy6BYepFvxg7R5XehuOuYvqjxmZIJrz5gGk95K+xitpPOT9N6YRwRJnKI+5OtOvQQyJcyEV09X0ePMBQXO7k+64HyuiO/78mXwtjZ2mN3Dp9rJq+E0evmimw3oFsJNTKtI18OEZwOuFImhqYfXwmb13thPWtPvnZRLj1Ieu75knZuyJatpPOuO/KbWhjVQdJhJQFaUl31EMhudwLoB09x06BcoFvYeE9ospstuhH5qmncCD5DZABdJRUwZtuRrTrs9RrdDOh1PX5GJd+v2XSgIbvZkl9tcYXBrhoB4zOpGrG3W/E3+oCue3Tn0N2A3rT4KsNPMvRyi17tUI2wgz7TmJfX6G2Lajt0N8Dg8LkZPZuqEwms2rUxEEkLa9n1woRuawGkXf81wJaAq2o73KwgSVYxWhJhjRFG0nmRtWrZ95BZCQMiguvYWwlIuqvRso0UsNPLveSXq1EGG4YBjBEWsx8IbSt+0GEYpbYhrue7Xr43Lb5pCb38zLftz/+Kvwtt+6fGCr+IS8pP+rP8+kVZfqlTYc/+iZPwW//pX2fdFfTO8MZ0xW7IeW92ywc3T5hkPfOs4Siv+d8++zb/1Lc+4fcv3mLwmqYWvVdZ9hTW8S++8wH/5We/yTePb8jNwEdXjzmZ7gC421X4oPBeMS073prf82J9iPOKu7sZh4fCYOXWcXF5wKOzFeu6QClo6pyi7NhdTXn63jWrpmDzYsHsrRUn0x1fPj/jV7/1gg+/eEqZGEPraJuMp6f3fPnsDDsZ8E5hrCcExVtnd5zfLzDGs72rsJXIDbTxOKdZzGq2dcGvP33JHzx/mzwfaLY5rDLMSctk0gorpyQV1w2GatKxWxewzJi8JdP026s4CjNBpIBFT7PNefL4npfPT3jvG5dcb6Y0dY6/LMmebKmKntW6wq8z7EHHyeGGXz99yf/w4Q+g1WSHLcZ6Dmc7Li4OmSwattcTJic7dldTkQo+2tG38ociKwbauxK9Nag3GlxrqOYt9aqkWjTU64LD4y33NzPwMD2u2V5OZWBUOXTucPc50zfEE/or777ii9tj6l3BZNqwfjVHTRy27BmaDHOex9AheS6mj+R1+qLAHQ7MTrfsvlzg5wOqEbbLrgz63a10dzaWw2O5H+6/OKJ6a02zy/GNRW8MnLXMZg1V3nO7nNJvculYXVYihdVBwpvWGaoaCK2hfJXRPBo4fLpiW+cMTUZwiulRTf/RguN/8pKLz04JJmB2MYzIBkkhDiIZJcD8nRWbTYl6XYos8aBHX2cop7Dvb2iSFLkVtjtsrEjw5j2uMVIfsujRywxOWrgq8IuByVFN/WqG7hTlN9bUz+eYxzVu0HBT4CuHng6o16UkDisBaL7wzN9Z0f7wkO7ICwN+3NA3dqwgsWvDcNqLl9LKAJxBUV5pmjOPOm4pPqkYJtLPifXY20zOQQx/GYONHjXkH03wFoZv7/A3BcWNoXkk3tLy3DKUQapWBgWLHps7wvOJdDqeOsxOEpLzk4butiS7ixUh7zao8xJfecLEUX6Z0x/IrK07GlDWoy9zeLOVazsII5NfG4ZZrCPZGvxEakmESYRspWieOFSrxAM6yCSI3UhCbyDWeGTQfbtm+oeVMJP5PuRJDZJw2c8CofBUL6zIoqM01TSK4aSnfJFLHcPjgemXlvoNT/Va0y9E/tme+AcBMAJqk0+yX4QxzXfyStOc7fsXU4pxeSkDugRqpl8Flt+NSbQVVFdSN5JtFO2RZ/JamKft2x5fBMxGky8V7XGguJWqknwpwT7DJPorj2VfVRCZ7epbnvJS0x8IcE/Jxd1CfJwpobc5EWlv96Z0z7oSihtFP5P1JKAn4Cae6pWhPfFRiqwiIyhA3xUCBpNEdP1uHKSqeJ4nEjZ18LFi+xZMXsHuCcy+gu1TmYQwNay/5aheSY9jYm3VINfQ7mR/XCnVLCM7F5lXb/dhTCoC8H4WKG+ihzATqWpzIv5O8SmGOPEh7GE/l/0eJsLEltfi0RymxH5OOaZuLlLm4k78mq6U+2P62rN7rOkOxM8pfb2QRQlvexh9s6W8f3EP7bFMVJS38l7FnYDJYCNTXAvDlK/l3NZn8m/dx3TZyDr2M8X0XIBZXynaI2Emxz7TLPapRsbLtFFarIStdTlj12ZzokYptOkE1M5eelbvajnGR1Itkm33qbOJnRRpsPhCs228PnNht4eYwpxUDKYNdHNFHvtWh0pScduF1I3UJ8IiF/ex/iNTtHMt7GOfZMMiSdW9gNl+oimWkkraLiJzZ6UipDnUTG4cpvas386Yvxhojs1YUWJaqT8pl46+0mPQVb5ymM6zfTMjX3th4Cth46fnUhcyFIps5+nmmnztGSp5z3wp45ShMnRzQ75y1GeWxbOG7RuF9GkWwiZWVx3tUSY1Jb2ATFcZ8V3megwbMrWjX1iK2x7de/qZxVUa0wRslKS6TD538usd/XEl0lSrx/TZYBVD7Ne0tUN3Dl8YzLYfgRaJwXTCzJpdh6syTDOM8lrlPMFodOcYZrn4LCO7FrQamUzdOVTvwWpU72Q7u46gtQDMh4v3hCJDtb3IaOsOPy3R20Z8kk3L2BWZZ9BLlUrIrLCUvXhDMeLBDEYL8HyARFTzoH5kTIv1wlomiatSUhkCIosdpbvyvmG5gqLYh/2kmhJjBFQ6J3UiD3yU6fjG5WHqbfr/z1u8xz8AvX/a5RchFbZ4/2l4+u/+63/m2/3ir/9b/9iPDX7JgWXx/tPwvf/oXxM2rC6kky/34mNTSC9ep1CPG9xOfGcjBR3TVtXWoI46/CYjO2rwLyfkt9JvZ7+9ZvhkLjK0XAYEVA61jcEoUS4YSoe9yRgWUjwvEkSRB469ekUApyhuNe2x+DZ8EbAbzTD1mK2EF/RzP9ZiFLcmpoMyDiRdEfvfchcO7ScAACAASURBVJGUdUeSpGZ2Cv/NGvWsihUS0J4N4rEz0d/TR/lFkPc2uxj/Hgcfqe5hOJAYz+zWkG0U9WNPcadpHg3YlcHNpEuvO3FULw3hN1eEP1rQHXnyO+kCRMHwqEOtLdlS40rxtPVzGTBu33YU13Kd2mMvfrXoiernMgiSqHliwALs3vRU53oMUNk98Rx/qKjPVEzFFF+VraWg3u4U+UoxTOIA+E4GijoOFNsY/FFdKdojGbB1Cxkg9gcyg+9KYaxsLfszTGUf+jljOqRtojfsQLZhd7Kvs+daBp0G2hP5f1BScD/7StEeg+qFcQC5LtOXsPxeIFtJGX0/k8Fjd7D3eqUevJQCW78hTFO2kYFaUNAfBOafw/33ZbBfnWvqN3z0rMUBbCPhMSoyS91CBni6l8AO8SFCdwDtqTwv1WvNMIXySu6Z7kAG5vm9DI7qx4rqIrB5W6SJKVUzFdDbRiSm+UqOo34k56JbMFZsuBxmLwPbJwpTy/ZdIb+3jfy8uJMBt8tlkKwc1I9g9jzQHidpoiRt9rO9X1CulwyClRMmpD5T2FiL4SNLYLeB5kyeD7tjn7q6QySgJso/N4wJqN2hsKIkQBU79toD2QfT7s9zqvuYnAc27yjsRradkklTb98wUeTLEMGQACbTyP0yVDJgLZaBdqG+BqJdJoP8bBN9WTambToZRNenmuI+jGExs1cSVNIeKeZfOZpjTXugmFzGe6GVAawrFHYbWDzr2D7JRomnK+Q5A+k09Fa8at1c0S3E+5dqL0wrA+zqxtNP1Vj1Ud471m9ZJpee3al06LlCjfUoQyXsWp+SWyMT1s8UQwXTc09zpJmeuzEkZIiJwLaJzNQ69gAaYYbaA015J4Nfl6kxpGUoFJMbR7sw0ku5i2xbFiVpgRFkp3qUlEKrByTdM56vdiGMQL4JEpQyjb7gmBDbV9Jz2M2UMJWZojk05FsBB2n/kyxTKmjkHqluoly/1JImq+U6lTeO9tBgm9RzGWgPpOOxuhrwuaY9kLoJb8QTaJsITIYwnjeXKyaXQ/xcNsKQZkp8kY2nPZQBeVbLJFY305GpDuPrtRP2rFuYCFp8DI9R1MeabCe+wpTGmq2lDzElzHqjsDsvCamdSAyTJNO0+2qPbCVhMboXD10X9zdf+7FLMXlapdZDfI4ohSsV+f1Ad2glkOiyZvmd6VilYluZEDOtsH4+15jGsX1aYnfC6mnnRcppRO6pBgEq/dxgai+yzAD5fYcvRNYp9VCBbN3THudUr7a4WY7LND6T+ybbiG/RTewIbHyuGSaG/L7HFRobAVc/tdg6aYURcGMU7WFGednSLwSs+VxjNz0Yhcs0djswzDN0L52SdudQzjNMLCbWkXijya+3+DLDF5ZhKpUfACp2RupmkGTewoJS6DaF3iSfpUJ3DldadCugTPmAqyzZXUN/WIrHsRkIRcwjaAZU3TEcTzF1L4E5234EZz43mGUTU5QtvrJj5YluhrHiIxhFMAa9E8arfzSX6pLCSN+lD/sgHe9RTY9fVOhdJ4E8m3ovK42ALeQSIKiSJ1FrQpkJM2m0hNvULWExFU9k1wsgbDv5nroqlSJYI4xiqvDQWuSrMEpZE8gECGUOq83Y/6jKAtqO4DxqUsp2huHr/khrCNsaZeXchi6+X/B/XMZaFNFPGffhIegDAZ2ZHaWyYZAQo9DFzkovLCvRK6mMke8/s53Umyk32Z+AR9I+Bv8P7rv8f7H8wgDLf+fPAVj+y38JLP+Rl6PvPQr/7H/2z2NU4FGx5mV9SKYdy65Eq8DEdlSm5/P1Kb918iV/5/KbPJku+e7sguf1MX3QGBX45P6M5a7i1x6/4nc/+wbvvnlDrveRzN9eXHHZzrjczbnZTlAqcDLdse1ynsxWnG/n3G8qThdbplnHXVMxyXqawfLGdM12yCnMwMVmTjsYFmWL1Z6X14c8Pb1HqcBB3vByfcA07yQIp8uo25x3ju8kHTYbuN9WTIqe27spv/rOK54vD5kVHeumYF62rJuCbjA8OVxxu6vY1uKt3G0LFvOaadFho6fycj2jynt2bU6R9WTGs2kKiqyn7TN264LHj5asdiVaB8pswBrH+RcnkHumxzW71zPscYMbNO+8ccv5/YL+yxnz79xRZAMX54fQaCg9+bTjvdNbXq/nbO4noAPfeHLN518+YnosZse+N0yrlrtXB5hFR/CKLB+oil6kuL1G24DvNbbs6bc585Mtm2XFdNFQ70SuOj/bSCpvZ3GDoSg7hsGgVKBdFaChWjS4n8zJf7CU160zyDy2GnCDJnQaZQPKevw6Y/p4S9cZ/MsJT37lgpvNBGM861dzDp+uuH+1kEFL6bFXmYREvN/grwtm7y5pGvkDNFxX0V8ifkO0MITl0w31smRyWNN9tmBYOBZvrFndTjGFw+0s9tbKIH7mCZWjfJ7jvreFZxP6sx4VE3r9zoINmFvpF02doOXLjPaRk3RXgEFLOmzmyT+paN4c5I+/9Zi7jJAF2UcF2dLQH4osCR2w9xb3uENf5VJQfuyxJw3uvMJXHrMRf40vPLrV2I3CdIrmTJJdWfSwzChuDP13apQKDPc52UomU/yBMKM+l5Alog/XZ9I16RYO1WrsWtMfyPEUV1b8kFMvtSWtjkEVCld6qteG3Xs9emso7jT9PDDMnAQGeUY2Kb8zDBORtLpKfu5jH6grg0yeTAUodWcO1SkmL42kkF5pvIX6nZ7s1gqbFPs1gxGw7fIQ90nSWlOdiLeM9QSpasVNPdVLI6xhDONpzh4wh330v3oorzXNqY8dqDIxMEzjRIoNEYRHr10ux5RktXYnKarKw+y5ZvdEGL76iRO590TWNQ2jly55ZF0lx2B3QIDmLJDfq3GCKHlBfQJgsc6jO/Yil14Ke/bQA2kaSS/VTljb4l5AWnMiTGQ/l8mK7iC+dy3AM9syTlI0p4HpCzVKKlNHq3KynoBExo5IFWD20rN9Uwv4jF2oqefRtMJANcfiRdSdAPM0sZH8e/g42dMo8iWxEzAmom5lorA9VGOaar6UtNvqMu6rh+lLT32m9/UmYZ9wmrYjAVFqrB4aJsIkBrOf7ACZ2KluhV1zeWTKvMiAm2PpRrQ7aE4FMOuBryWBDpWKE4OMNR6J7UshN82ZBDslZnDzlqK6ikBOxUkNH6KkUSZchlLu99mrgd2ZHftzE8PochlslreefqbG9GCZaFJMLxzbR4bU85k6TW0t51fFoJ98G9nAtaSuBvvgmnZynN1cJttAgHk3VWO4DcgkiTfyvTnU5BtZp1x6umlMfN0KIC/vHe2BGTsnIZ7HUpFvBaDaRj5X27mhWDn6qaa4dzRHhqAV04uefmownac5MpS3sg5K0U2FVSzvBIDrXt7XRHZvKLVcm0ZSXW0bsDsvPZidAMeULuszmL4WptHGyQHlAv1M2M5+Kp5Ju3MME0N7oKOM240TdSm8qJsZ8o0E/fRTi905YQ9rT3cY/3blwmbarWyvuOtoTnPy1UC3sGRrR9DQz63Ia4u9l153XkB0I1Ujygf6qaW463ClERnsuheQFmtnglGyH4VmmBrKqxYfAavd9PSLXCZG1h0MnuGgEClrOzDMC5Fpd16kq/UwVrGAgHZXZSKB3fWEyIwGBbqJDGMEyLoZ9lUoIUharJH19abBlzm66eR7N+BLO9aHJLCu6m4PavNsz+gpJaC1H/ZAt+0IRf61oJ4wrWS9xHL2g4DftJ3UnZmWEIFplo2gFCBsYzhF7K1U8fcpoCe0HcraEQiGrhNQmeSwMSn2jy0JiP68nz34HkL4R5LD/iWw/PNf/tyBpVLKAL8HvAwh/HNKqW8AfxM4AX4f+FdDCJ1SqgD+c+A3gRvgr4YQvvyTtv3mD47Cv/Rf/DO8Xd7yRX3God3x4eoJ78+umeiOF80hC9titeMny8cA9N5wUm7ZDTlWea7rKY8ma96Z3vF8e8Qsa7nYLZhmLV/cnXA4qcf30yrQDpZtm3M4qWkGOwLI3Dgq21MPGfO85XI746BoMNqz63MuVzMeH6xZNQVtn/F4seYgr/lqdcTJZMu6KzAq0HvNLO/YdDmFcSgVcF6TGceulw+NTVPw9uE95+s5zmsBiF029nYu65LMOuouo20tee4w2tP1Fq093zy94SevHqN0IMvcmHh6UDW8vj5gMa85nW05X82x2jP4OGse+0HrNqNrMqbzBqUC3mv63mCMpyo66jbHOc03zm642U1pB0PTZASvKauOk+mOu10lAUNAvctZzGuaTo4vy+SDsO8ts6pluSnJMkeRDbS9ZXdfUR00aB2odznGyH5pI0FAZd6za3IJsglKPt9MQGsJFsoyh9aeYTAMvYl+eC9hQ8Ugn9OdQZnAdNJSNxn9JkcXDmUCrjVk5UC/yskOWlxv0CaIPzVAUfXUK4lRLGcd7S5DW3n/oTfYPEp0ekMIiqwYGDojia1OkR3Ih+a06ri/mqHLmNJn4z7mjqGVsB7VaULhwCv0ZMB3ibKSpFVlZADjG0M26+R1jQzGMAG1NTAfJNW18JGFl9frwuG3IpUNhRM1wKAx5YDbZCNjr3OHb42sX8sAws56htbAoFGNJpRxBNIlEwuiGhhEVRDKOArOPGpnpWM1C9Ar1HQgdGbsbVU7I/vqxRNJQFjCQwGraAiZF+mxBj9xqNqgzxrCeZTjVk62k8fajigLVa3Cz+L53GkJkMnDCJRDLoPlkHlRRMRKF195GWTFZF/l1NiNGtI+tJpULmh2muHQYe+lLsUdDRQvMrpjAeW+EJBbXhnaIwF87nCQ67IzsepBAGOS1ZrInAtIlePRwx54BCMhQLqLaoBClBIAePGqmk6NYHeYe+xaj5LibC1VIMEKuE+BTjpKYu0ulasrXBXQrby/q0Sym2SdqUsz9ZASFMPMo1sVw1Fit2AZxvqHFCqUZKBBJ/lf7J61Elg0TMLIBNqNgAgJv5H9S9tUQeTY/Twm1MZBclJ0pJCYfi4AGwQEgagCdAzwkV8I6/8QRKQ0Xknxjfc78Zi8MMAhdTzG5NnUP5u8pXYbOw8jaAo6guoFY2CM6cZbCm8ZAWDymdpG1h0qxh7RlO4KUZEwZww6SgoRSR2Nxxp7aFPwSwKnKUE3KEaJ8Qhm+33gULbdX8PENKd7ylWMvsukwkgAU5Jdw75PMQjgBR4kqwaRHzthUrWL68drlZJjtdtL48fjNAKuTCMsqMsi+C0U2W7fffnwmg5TFf1/6fWM4TkJmAa9nyBKkwJjd2nYn6eUFuuKFDS1By3Kh3gOhWkNRo1hRCowym6lZ1PtWeL4bJk2jBJVFeKEgIkKjFZYf9ukvkqRErtCxWspDFo698XS0c1FBmr6GA4Uz43pQgzAivsWQ3lUkIoVW+97OSXBWLY7drDG8yX3TFSA6RRGJJ9rKfAoeSVToFPq7EQxBgT5LALRyOyilXTFashWAlR12nYSCmm+JmHWTryjqo/d4BHEqmF/HZTzUh8y+BgmxL5HU6Xj8Xir0TEwKF0/qXnR6NR9OfgHIF1kqMEYVJKVxpCgYEVKmwJ5JGk2gsPBMfZeDlFumkDjQxZQCwgdZachyDYSS5rSXkGAZOrFTL8DRrlsksIaI37MFPQTYsjPQ4YxbSctPyuB/Qf97ucsfzGA5Vvhyb/9Zw8sv/xX/s1/7McG/9/0WP4bwEfAIv7/3wf+gxDC31RK/SfA3wD+4/j9LoTwLaXUX4vr/dU/acO3myn//Sc/wLWG4nnBMJEP9w8P3gUDxZWhn3n00xq+mODebuC64HknfWyukpS6Cx7z4Xtb/MuJsBK5zOjrQdHdH8uHd5mSKcEfDGyujsiXimXsnnOlyFr1AM+PPKZRrDcPpJ3XiufvzMjvNXj44mxGttToXnFzdiSy0CAMw/1OWI1giP1qwnBIyl+gfTzw7O8djv1s1ydRXvqmx58f0R3JwLD+Zkt2keO3ChdlY5OXgY++uyBbyaDLIYOiwcK1htkdbN4ouV8sWHxiGWxMgRygtRAy0L+yIv+yYPNUk59nDNPA4hPN7mngvgoUdxoT4MtsRncifrXyQmNaaI8rrjeHtEd7L9X0haY+qGL8P9z/Ws/kWYafBjbtnLyVAdX6XWFCzKnHfLSgOQsUa0X9ZKB6JWzVoMB+DNmZwsTCetMwerfqx56hlzCT4cAzfRnB7aNAsYsS0VZ8P7qH+qCSEItX0C1ydm87Hv1dzfqdgmoL3Txj8Sqw/I58zpbXin5RwtnA4qOcoSqoAAJMLgLrd0UOrJzCxtqE+u2e4twKcwW0x5byWrE9CsxuFOWN9NUN04AJ0C8c02eW+rHn6CPF6n1NcaPINhbbyOx7/YYAjsRmTV/A3a9ryldWWJSwZ2ryteb+O2A6Sf8rb4T1yTYyQGmPlMxg36rI8kh63vRVYP2ewn1/Q/VhxeQ8cP1XPIcfau6/bzC9sGhBQbCGyatAdyD3cXUdqE8tm28OnPyhpjk20sV3KgP/w48Dd99XTF4rdm8a8tUeIPUzOPxUsXukaY8D82dyfu+/JwFKdhfQbi8N7Oea8iawDCVHP1a4XLP8rZ7qdU51JdJTl8PBF472QNEdZNht4O4HwnrOPlVMLj3Xv6FYfKjYvAtJczr7Sgak27clVMjHFM7F54FuoWVwnUNzBtMX4jkjaIIO5NeGg5/C6n2F3WYUNwq7MwwVHP1kP7u/6YQRGboM3SuqC2FH2kORS1c30lFXP1bMvwgEK16x5KerrmRg15xofAGHH3tW72nsTkf/mgx2Hv/ewPptS3Osmb0M3H1P8/R/H7j7Tka+jJUaSqpRiqXIJl0u/rp+pqWH8krOVXsg10vkwYr2CI5+4sfBrs9h/rzj6jdyTAoQugnszjSTS8fd9wzHP4o+xbf1CFzmzz27My3ewLliei7vVZ8qDj/zLL+hOfrUsX2kmV44Vu8a8eoVsWLBi0x181RT3AW6WnHwuWP1nsE0wiBOzuV9q9vA7pGWAXWU76og+9DN1FizIemue4ZPOZhcOYKF5XtWpNg1lDexo1HB4ecDy/csB18M3H/LcvRJz+aplWqWtePuW5bJxb7wvp+rkZkSFlSA29EnA2oIDFMZANfHEshULIWhLJYCIrK1PDv5RpiufqLZPDFMLjymjd2MV3709Q2xaxEl53j6omH7tKSfiofx8NMeXyi2jyUka/ZqoFsY2gNhymcvO+6/nROUsKsHX4qPLl+LTPn+W1YCl+aS4Hv6w4712xnewvGnPf3MYHcyIG8PNFktnY35xkWLgmb3SDO9kFoJEysdXGnop5rypo+fpRl9pchqYRyLpcMbRX0mQ5/qWt4rX8kgvp9qXKEo7kRKnLyO3sp3FWDxZUt7nJHfD6zfzplc9eguWmu8fH6DgBUVk2Oryw4VAs1JLn2Mc0M/0VSXPcPMUFx37J6UTF/s6I5yhkpja083txx+2tCc5bhctmPXLd1RSb8QVm+ohNmUJFOp/Ph/2HvzWNuy/L7rs9ba45nufN/8qqq7q7ur7VY7HmLHtuwQYkcKmYgiEgQEkFAUgSIUM+U/AhJ/AxICKVIiLP5BDJESKSDAENtEOHG70+52z901vHr1hjufcY9r4I/f2vu+amI7kt3G7vhIT3Xr3nP2sPY+56zv+k5SsWEoX+zwWcLm9ZLyosdOY69kSCjPGnTnqB5OmDyraY8K+mlksGthECcve+zEkG49pvNkVzV6XVN9/Ajdyrj3swTdB/KzHc3dKT7TpBuLcgnZssenGt17knUj3sYipZ8lZDct9b2S6btrqscL8suG7lAknOWLHe3phGRnMZuGYAx2LydZtbhFhq4tbpKS7HrsNCW9rFDO4WcFrpBsgOSmJuSRwesknMftTcXHGAJ2v8RsW3yRYmcZaEX+fE3IpG9TbxoG6WuIKa2qd/giQa9r3MEUc7MTZlAj8tc0GRlJZT06BAnJKVLxUG5rwiRHrytCmqCsw08K9LYi5JmwiUNqbNsJyJyWqF0N+3PUtiaUOco6wa9tJ+xl18vvm45YAA6tFxCZJiKz3ewE/MXni9TWEqz7EAgcFwmKYmQgx9cAKs9u60Oi5DVUtbCUcNszObCMfU8IQf4+vOZVMPlPAJK/l5WU/9SP7+JT/I4ylkqph8DPAv8Z8DPAnwQugLshBKuU+kPAXw8h/DGl1P8Wf/4lpVQCvAROwm9wgJM374c//rN/ipe7BT4oHs6XfOnsHlli2VY5h4uKMu2Zph3vXR+O7GOiPau6IDGeLLFcraekqeMTx+d87itvQBpIy54Hx0ueXe1xtLfjzmTLF771iHTS8+jkhg+u9snzniKyaNtNQTntxvfLyXzH1W7C9mrC5ECSVbX29LsMvCJbtMwmDevNhIO9HZcXC5Lckhc9bZNiEqncCF7hrBYmKoCZWMJ5waNPveTJkxPMtB/Hw3eG0Gn272xYXk+5c2fFtsnZnU+l623REZyWQJt1BrkDqzETK8dWp2PATpZbqmcz0Egh/V1ZIdJnOe5QSusBQual2L4x6FlP8m5Bd9eid4Zw2AmrVktCqTppOdjbsfzyESgo3lyxPZuhSktaWLpVLquPOwE4JML4uD1L9iKlO4l+jolFXWb4gx5q8amQeeg0utH40qNnPb4W+aibetReh9/Jl0yyNNiTHnOd4nM/VoLkl0a6BYvYOWYV4XENLwrczKGsAAKSAImH1qBaTcg9uop9egGypaJ6ZMmu5TzC6zV2nUnnoQq4PUd2ntDveWG0EvAzK9diK7UgEBmIiZfAmKl0Q9pZwOfi4c0ujVR61AIgh5XSpFJ0h47yeUK374U12Ig8srkrATTKgZ17YTadsEe+lOMxtazwyuq1oj10JJVGRbaj2/dkNyJZRQEe0p2wRS4XAD+kHCa1YDBTiS+yPZKFFqlBEXmkqRXtqSW9MeQ3avSq9ouA6uUYQOShhFtWKmnk2PJLQ7/wURI5PDdK5rLY19bKOblMtu3TuD3NWO2SX0toycCAFVeKdl+8uS4TX/LAmtkyjFUbyom/tTmWBSSfQrcvizv5tbAy/TSgnSJo8UtmK0V96pk91Wxf86RrFeWjjD2QkoYovk1bMtYF2ImM8bCwlDSvsGdxJX+omni1Y9MVwh6JhFJYP+0E6ExeCuiX+ydOkA9u2SSQoJehggQYmUGfxe2XskilfGSy9C1zNyxiyPYlBEX8s9JNWd1RlJcClssLkZvKwhrYqYS+hESuwxAKlG4iK6Nk8Sup4/kOtRbpIO2UxQOQY9BdoF8o0rWExEzOA/1EtmlaKbkXH3Ggui9AqbgOsbaCsWMRJK1yqPsYeiAHsCle1ijrzAWIFtcBV4iUM93K84UFk21kyxDZt/he2xMvpTcidRyYJh/7LIf+wgHogryuuPHsTkWOaXoZg+qOLGpKYq+8tj6K/s91HMs4RkM3pi1jAml7ew3tBKZnTiSXRs51YOIGienw3KAZ6zykxuHDzJR4YwXo9rPYe/oKozYwVsFEn20RazFKTfqKB9WnxKAY8ZFqG8bAmrQSf2q+Fm+ny4i+0yGd1mMLTdJ4upmOftpAdWzitY6BNpFhM61IMoewHJfKPiCy6rWnOknI15KE3E81xbXDliqGDwm4JgjoNK10LJpG6j4kUMijW0+3l5DufAyP0iQ7H72CjCyYaUSqqe2tRzYYeR8Ii8Yr1SMynj6/ZQx1K6+3EwGzwch9YGqHzzW6FcWEnRp058cuTpdpsrWln5n4fnQCwHcWnxups7EB0zi6/XQcr2wlHt/Bz5luJUl2VApERlP5ECWoTryQk0RqaRJFuhYvpM+k9sM0lsG/aaepMJ5GmD7TuiiN1beBOl7Gxk1TfCIyV93GFFYXRlDkYoiPLxPMupXvxTxFdRZcIOSGkBrMusHnopZRvSPEmg2z2hESI+AuNcJOgshWy0z8n9bd1oG4yGJm6a38leHz1gtAtE62CePPagjpeWW6HIyW30d56fiarmdMin01rAdumUgQADh4GdOUMdV1CPEZGEytbkN+QKSvaXLLVg77g+jDjNKO34SZ/PbHq1Dgu4Kx/E+/A4zlv/bPBmP5XwD/ITCP/38ELEMIg/P2A+BB/PkB8BQggs5VfP7lqxtUSv0l4C8BmIMDPvfe41FCeL6YYb4yY/2Jmum04fx8D3WTyoS50uz2S/QqgeOWsM4EaAVFqBL6RvO5mwkkgfRlSnmRcTaZoiaBswcpL/tDVKOxqefdr98jqICrJmwOLel5Sr5V9EVB+GiFe1ny/G6C/uaEzEBlAuYqBaswqXjA/LtTNq+Du8q5flGQtIpkl9N8T0V4XuDvtbhtgq5iEFGUZrlOk20VVz93nzKF+pG8YSdPEup7DtNqVv0eptJcXh9jGkUaPVVOpSQbI114i0BoNSHzhLMcm8ZS7UpjfYE5N3DiSDYxROE8G7/c1VVKula0x550mUhQx05hZ4b+wJNeiF/G95p02qFeTnF5IJzlXPV6ZAardEHaKlgabJGRrzTtiSXZCbjRFik832b0C0mztNOAazTlmabxqVQxNAo7DwxhO9mVwTaafC1/673G9Tn5WsvEGuisrI4nWx0nA7Kq35yKh840MrmqlxkqDZh1EgumFT5KBpsTJ0CmMiQ7AUTyBRyYvS3Jm8VSUeUFKruV76SXCa4Iwlh3UZ70IhPmKKZLphtYfdJRXJjxuutW2CJXSG2FdqCtjqEoEjwUjAC16XtJDPpRpL0amZTiTAChbhXlS0N7dAuibGHo9yIQqwXwZktwuSZdi2wwu5GV8HQN3YEa++1AgGhxIcy0dNFFOV/cN1qAULoSX5orYgp6K+mo6U7AUnEhni479xQvzPjeTzdqTFMsz2OY0kRTXArr6hOpPBj8UkMvoJ0F0t0AuOL75UyYWOWgPQyjdE53UqvRz0TumG7E12iaIfJ+kCTeBioNoMC0jH7C7EaN6ZbJTq5JSBDpLnJfL97WTC48m4+K9yxbgSb6uwAAIABJREFUi9xL94wTap8LgPKZwmyJtSkyIU9q2a+PAMy0YaxgqO8osJJ+qrxi8iLQHEtq6QBcywuZZPezKD+zAlKH0CPTQLaS1+U3cmxBC0OZrzz1sR67BHUf6JS8xk6JYybjWt2TsKYi+vx8FvtICxkP3QfSrUz2J2eSaNktDIwhOINnSt6T6RaGHtCkCrhSkV/H0KPoqatjkmUaw36G/s9kJ6CyuJC6i7SScdO97L+8cShnpBs1kdTZbCVANVvLf/upsLKDnE95oLoNkipWjk2ZYAskbdQLw5zUAk5Mr9hN1Lj4UVxFQOoY2bHyWpI707WAq8mNsKTllYQskYZbJq329BMzBhzpNo5NBJ4gdRTpWkC4BOVIz2S6le330VOYrcMoEdVWvJmDvFXAniRfeqNivUUYk02TWio9glYCdJMPp5h6I6yvNzHQpxLvabsQH9/kwlEfGFIbyDeBbqpJK8/kRcvuYUGIx14f6hF0Fkvx5NWHZvwMEhAZRrCnXKC8FvDWFIbJubCrLlWkO5EyaiPHndQC1NKdHeWb9ZEwl9oF2rmmWEK2srT7CaaLQX1ewOgQzJSvJQV1dy+lvBTvetKA8l7A1sbSHqVka0c3H1YENMoGkkHumwkIc6X0KRaXPd2eJKDaqXQNu1xeq3sfpcZBgnxSCRcCaA9SAao2YGKwTz3JUBap44gdkknl0S6ImjGCS+K1VyGQrXtcKkBYWVmkMLUVqadWkZm8BbPisZTrkq76GJAjAUEoUL0n2/WgFcnO0x7lEhrUe0Iu56yDj2mr0u0ZIuhWPuC1GpliUUFIyqpprCwGNP5D1X6msajGYo8kGVa1wvYrHWT8rBegp5SA1lRLOFGiMVUvMlUH9A5fplJR0li81gIaE42uhDGUlOZXJKO9FQnr4I9MDKruogzVE3wi56mV9Fgqhd7UI1AMWQpNJ+E+Sskasvf42QTlYwps20ngDkDb3aa9Dl2SzgsAHCSyfS9BP/Pph6SxIziNXszQNHJOkXFUSgnIs/Fc2lZA5CDd1TpKX/2HAWv8OQzPGx6/WWDP8BgY1e+GR4Dwu6h38rf78R0DlkqpPwGchxA+p5T6w79d2w0h/A3gbwDsffJO+KMf/xpX7ZSvnt+h7xLcWzvyzOK8Jskt5mHH/YMVT84POZxX3JiZ+IkST6hipcVey6OP3fDseo/2usQ9atg+gsmspflgjr5KcVNPfrfC9ob83pbdssSl4lGzc497ICCV8xJ92tIvczh14mFqjJRyH/RgFarT8LjGvZgQSo86aunXGf1RQHUG8gBXGWQBP7fQa2H8Ys+ee6Nhu0tIrxOSpaS0Nnc87PeEq4yQeagV6l5Dt8rECwfoyuCzgD10AnJ3WhjMTuESYW98EWDW00wsai00SD+TlNL+UUc30RzeX3FzPeP4eMPVN47IH22x35zjJhLgwnaCO+pRW4OeB/xHKsLLUmS9NqOfBZrHPcllip15gg6YnaGfewlSeXOLfWcm6bKxQkP3ivQHb/BfOMAuPM2x+MWypaZ+rad8mtLP5DzTtYIYxiKBHgo79fQLT//RlmA1rBNYWMzLDG2hX3jsVGHnjmSXsPtoj2o06UrqILKlgNf2xDF5auj2AuULM7JH1UMnvr9Vgi8D3ZEjuzDsHnmSjUK6DhX1HeiPLaqVaxp0oD/tcVcpeMjWivrTNdVKrqOdCqAMBpr7jmQV5YszkWZPnml2Dz3ZUpPfSKhIfXJbS9DvS8pwfqXx37/Bvjsj2Ql4qe4LGwcSuOLTQHYtssPdY0e61KOvpXpsUb1CBblf+pmAzt0jj75fY746pbhS7B47Jh8YugMJd+j3wdSyOGHqGIjRMXqp2gcde1/MaI8EAPVzj5mJrDQ/Ey9heyTScuUiKMtE8t4fxlX/mTA8/d4QLBJBay5AxGXCvvULz+SZyNWvf9CSnSUUV0pk4dGaajphVbOVnJubyoJGthYWMr9W1HfCbfpnLwChXzB6HX0m41qfChsYFtDe7cnPolRICUDsO0U/12RXEExg+0iNvr5spWI3ZaA+jYnQp+KPLC+kNsPFnsMBPFX3RMZczdXYVZjfyM/1qSQMo2HyQkUwIeec1MJgzp4Kw9buKfKlAMRszVjj4FNoD4QJ8KnGFYp+KlUU1T0Bla6M1RMHKqZjyud2dS8AOoZwBFInAHH7ULr/TCtM2vp1xeRMU58GFu8wypnbA2Fby7NAdVeCgpqpsH5BQ3VXMX0u+x0Y2mwb2DySc4EILBthBHf3FEmjsAUU14zhMLsHiZx7CeV5vIciG9ztqXG8qzs61nxEP2Nkr7t9sBNDsRS2qj4WObQkkAojnexg9kIqKyZnws6Wl576SNMtBIyu3jAj06mtSHfjN+sYelOfSLepy2VRRRj6IdREJKv5UhYG2v1EJOJWAGIwSmowtgLITSPMZrsXGaGdMKvdnibdBIqlw2Wadl+PEuyk9rT7WljzyHTVh3KNyyvP7o5m9RFDcSVJxM2hYnrm8UaYUm0F0PZTxeFXLcuPpdH3J/dbvhaJ981bJeWVsInKy6IGQLMvycHBQHktk1XTC/upfLStpAqlBQT7CCT7maHZF3AqqcPiy9NWPkdsYURqeyyLjsUyjGOrLZjGs3mYMX3Zs32QMjl3KB9uWdQoS94+zCgvpcYjrQRs9FOR3e5el86dTHsB2RtHdSelvOhj4qt8ZnZzQ3nRU5+kdHuGbOOwU/kcGTyMQavY0Sgg2pYC1NvDlOKiI905+plB7Rz1aSYSZyDdCgDrZ4biUvbbz4yA5DYQEkmbrU8zkjoC8M5LMuusBA3dfib7tYF03dPvZfg0xXSefpGQri3toQTkZKuebNXhciPy2pWnvleSL3va/ZTyRU2/n+OmCeXLin4vH69j0IqQ3CbKKp8QElk8Uz7gc0OyaQmpodvLSLcWn0j4jU81uhUQ2J1MSW9EudYdT0g2HRqwsxSX5WQ3rXgnXcBsW2EeNbgyRcd+yWAUZiMdlVgv/1yQSpBEi+S17QlaE+Yi3QlGgKfqhFlU25owLcBoQpag1xV+VgjYbWPITQjCMiZGkmUnsadJK9nXpEBvdrdz49kEta3AB8KsFL9nCCLPVQq1qSJoTgTQJgmqMFDVIlUdAGMEempaSqptmhJcZB4RKWxc9xSwmaaEXSUgE1BWPJvBOVSaCMjsJSlWOSfs56uP38hv+f95XmRffwupsL//+M4/vpOM5Y8Bf0op9ceBAvFY/pfAvlIqiazlQ+BZfP4z4BHwQZTC7iEhPr/uIwR4VNzwc9/4JNk3SqaXgILdj+/wz0oOPnnNzdcO8ftr9JOS4z94if9fj9n7M8+5+Pv3Kc8D+s9eUv3iCbuf3NG9nPDG37Vcf6qMUrQS3nIkj3aENqF9OeHo85rmT3bSJbcbIsWhuCro/twN5f+ScfmnPdnzhHQjk45uX3H45cDLn9TsfynB1IH5X7ih/Tv3qO4k3P0zz3j3nceYVpH+wA2b7YLJM0P3fVvciwmz9zXJLjA9czT7hvawpDkOnH5OVm/txEiK49cKTn61p/0r19S/dofsrR3uF8oxkv/4Cy27eylXn06481nP9VvCzCU1NH+4ons65e4vBc7/Rc/R3ytksuXFB9hPYacy7v4jx8t/taD8WsG6KLj7JceLn5hy8B40h4a9/7tEhcDlp1ORZNYz/r0/+Xf57/72n6C6o2kPZLJ8+WNgDy33/3eNLQzrNwQ0n/yq5bmesf91aA81mzctR18URmG1PODur/bs7iZxwmdIqkC3l7B4R+Lq61OpUZAVS5lUTl86dn9xhf57B6xOwTuFWlhYpex/Xe4lO9XsHgYmTxOOvmypXgjjd/M9cPqPFNp6No81k+eG6l6IVSZw+vmYaPhDO7JfXDB77tg8NMKA7gLrNzT9NOALz+FXHNtVyuUPw/Eb12x++YTTz1me/csOewh7X8ik/+8sJ6kUxZXh6CsdNx8T8LsNmnu/ZHn/zzsOfy7HZYrlJwKzJ3qcIB7/agVGcfYDJcV1IL+RyoHFkw77xZLL71WcfNFSHxl0r7j72Zr2IOXZT2rpI9wLHP8/jqATFk88xXXP0z+SkqwNi3due9iG8IvpU816kTE/C0wuPNs3PflS0y9kslueRzZpqrjzD9e8/NEFx19s2N3LyFaK5hEcfbll80Oe4klJSBQnnxd2QXeB5sgQtHjqlIP9b3Vcfibj9JdXXPzAAlfA0Zd6tA2sX0tpjuDOZ1tWH82YPbfUR4lM7Hthd2YvLPlly+YNqeU5/EpHtzB0c83Rr22x05TVGzntgeLkc3D2Y4rTz/ekG8uLHys5+XzL+Q/m3P1jT3n284+YvAzMXvS8/CHxa+690/HyR3JsCfkVI1NynibM3pfPp24uE36fBva/1bF6I2P1Juy/E7j55xuSb5XM35dJ9eJJi2lzvIGbn2owX5+ge1g8sfRTkSIu3hP/2/otz/1/ENjdSdAujJ7U2bOO9jDl4vs0xUvFvb9/xcUfPGT5loDM/EZqG+ZPapSf4HI4+FrDs58smb50NIcJ2SowfdmzeZSy/3Yj79nXJDZ1eiYdc/OnjuZAc/DVmt3Dgj6mie69a3nxowl7b/ckjRtZBl31VHf2ePR3XvL0T99l/rSln+ScfG6DLRZMX/YktePqUwWTc095YUk3PWlVjkBq+lL67myhOPjcJec/ccLhF5bsXp+TX3WUl8LW1CcymZm/I2Xmk4uMds/Ql4q99zqe/lTG6Wf9WEp/9b2KB//XmtUn5tKvl2mUFU8fATaPEsprTzvXTM8t5ZMNN5/ZF3bxpUygCYHuh+YQBJDkS48rNNk6MH1ao1zB/Ftrth9dMH1/R/8Dc7J1YP5eTTebUNx4imuZQA3Hn60c69eSMRBn790Gs+3IDwp29zPSbWD/nYb6RH6ePe+YfyChIipIima6sySbjuUnZmRbT5UYjn5tSzAaN0m4fisn33jym57145y0DpRnDfnSUB9nXP94z91fkvAS0xmmT7bYWYZygWmiqe5mlC8bgi7Yvq45+YKleLGl//590rUlXXeUFyn9PGH2zJKdbfFlyurPlbz2PynSrRVQdBnHcD/DZ4r50xaz69FVj9srSJqMybtr3CLH7ITJcdOMAjDblv6wxOWGbNlS3y0o365RAfpFhk9SksqTbq3II4HmJCdbec5/IGPxrmfxvuXlj6QUy0B50aEbR7KKpfTMKd+5ZvP4joDdy4Y0TzBVR+Hh5tMLps87spuGdm/O5HmNTw1Zosie3pA8PABi+umyJ73c4tM9smWLTw3pLga1uEBysSb/QPPsX7jD4u2dWBSWFenxDFcIwEpWHabqwXv6ownZ2Zb+cEJ6tSP1geRoGtUFgexixwc/fcjiK9eE1FCf7FO8e4k7XtAcTCluRDEw+DlLGLsbfZGi6x7T5iTbDl8muFSTX1SoXYMrDyneucAdzEnWiBS17qkeTMie3RDKPCY1KZJNC0aRPl+hujlmVaN8oNvPUb0ju6zweSLXFkSm2llMatCbGnu6iF5Sh3Ja/I5FRv+wpPxgI0xglqBWPe3DPYovf0CqlIAxpTDTDLNpcHslycaSRsbSbCR8RnU9fjFBbTtUngkjua5wR3M4u8SUJaHIUCEVhtB5/N4UvWvAe2EVtUbtasJsIoAu1pIo52mPJmSXO6kPcQ69roTRdA4mpbCc1kkliFLCaHYdzKfQ9ZL8utnGuXBATQrCzUq2P6S4ag3bmjCfELY7VJGLTFVrQtPCfEI4F1Fg+DYp7ZD6irWg9IfBXAzoCdbSffp10s9+HX3nhHB9g68bSYHtLereKeHp87FiJIQYPvTKJF6fHgPgXpxh7t358AR/eLwaLgT4px/8RtDg98bj9z2Wv8WdCGP578dU2P8R+J9fCe/5Ygjhv1ZK/TvAp0MIfzmG9/zZEMK/9Bttd/+Tp+GH/pt/hV2foVVg16VsdgU/+Ogp//jZQx4dLbmuSuo2Q2tJ7Tye78bnlUVP06Y8Pr7hfDOj7RLuHaylkkN5XqwXOK/xXpEmjlms9NhtCkzqOFxUXFzNyQrL0XzH1WaKsxptPO0mJ5t1pKmjrjLSzNIuC+4+uma5ndCsZCk/mVjcdY7a7zCJo18WmEWHt5q87OmaRPwoXliv4BU6cwSrZTGq7OnrFJ14fGcoFi3NTUF5WFNfTNCznsmslUqN1mAKy3TSYp2ma1Oc1ZLsarUkpyYet0spD2rqywmkHlNaXJWQTnuy3LI7n5LutdjrArXXScVFrwmNwcwsPjJL6joTxjUg1RaJpI7m0472ukQVjtCLpGZMCfUKeo2e9igtclpUIPQanTuRLrexfqLXqNKKv7MyYzInhfgth5L70BjMKsEdd5jM41ojSaaNAa+YHlfsLieoXktXaUxFRYOudPQDITUdCjnGWH+haiPpqr14FJVTMOvl3EsPKqBrg59b8XQWHt1o3J7FrI2kdDYaP4kftg5YWNQyFYlvGcZkQV+KrM7sxHMZ0kHqJcxdupIaDADdRNaqlHRR5YUdVV6N/lF3t0MtU/GNapFBj3UmOpCsDXbuyG4M/UxkdSENJGvpEh2SKXUfk0TbWKsRpaIuEwZ8TK3cE18rXuGmEuqUVJp+4aQqpBAvl+4UzT1H8cLQz+X8fSKsnu5FDmynMtZDQM3g5/KFpJYmG01/4MguRQbkM25luzGBz04lvTWpiXUNUhHhikBSCyvT7YuEcKjqaI+djPMkkK2kqsOVUsXR7Xu0Fba13RdmzJa3VSBDf+LgNQwa+oXUTLgMugNRBkBUCWzVOM66FxbeZ4MHLiazpkPiYmQ794S9HrxUA7MZTGRYrTCVIhMOZGth//q5eE6VVaPHzjRyHFm8li4XT2ayE+ayuBQvootJs+V5oL4bPYeJvKfTrTC02kn6qGmF1cxWRI+Z/Dfdyd8BQhp7R4O8bvCamiZ6TYfQqdWtnPl2CV0Y38kLkf3aIsp+L4XFG7yrwoqJL3L3QPy/bpjzdrKvwVuq4rh/u/cVIvvuB1nvK995sRt47FOdqDG9dPCGDj2NupO/S+eisMZDmqsko96mVppWAoCSSl473Ee6E2mpNyJ/7/Yg2zAm8HZ7wkj3M6niSCpGdnBYKNJ2YG5vu09NK1LroSbEFVFqfSILRv0iyqQj0B9YYVuocTzs0L9pbwOUhnHVTvyiLjLbxY0fKy2G8TdtTM5tb8fYdCLZ7adqZI77qfhaB4+eWDdk3CSJk1FmPrB2Q1+nj4oF5eSYbK4obzw2V6S1eAFtLmFawkjGqhLHmJ5qS9k/ihi8E72VE41Lh47RKNedKKbnlnZhxnF49RoP1SA+SlKHcRoe2oWxdzXdWOqTVNjU1o/BPyhGz2W2kjAe5YnMqoQgoYWBdZm+3Yce7j3xNadrO0pabanj55GE+XSLZOwNtaX+UFdoMIqkdlEyHOJ95Uffpk81aWXp5ilJJZJmkebG3IT4GPo8Te0kgdeGGBjkMa0HLSxzspNFgn4/x1R2BGM+N+hWthuMEolwEJZTDRLi1uJTI78LQXo5ewGabppF5tNI/UcdAdZwPUIQSWwWFSmRIQ2pkQ7MaS7g0UMoU3TVEaLcdkx+HT47jJIQIC2dmyqE277IQUbrParpxFs5+BdDIBQ5qpJo4jCR4B3ybEyBVV0vr/FRluq8yGKb9sNhOQNjWeS3Uty+v+2fHDyS0Q8arAPvbo+jaQW8Dv2Wr3o4v10G+8rjnxqL+EDou9/8eb/O43eFx/KNh+Hef/JXftu3++Rf/2v/v58bDLzy7+zjPwJ+Rin1LcRD+Tfj7/8mcBR//zPAX/vNNhRQnG9n3J+tOCwqjA4c7e3Yz2r2ZzVvLi7Y7AqUCmSJpch6rrYT3jy85ON3L8gSx8G8oupTNk8X7M9qnNe88/yYJ1eHbDcFWnseHKxYn814ebnHdjnBb1KMCVyvpqS5RanAza6kuSmYTlq6OiWdduzNar73zguODrbMJy0kgZvNhCLrmRzUqNRLT+O9LZ95/AHTsmNxd8PevCI0huam4O7Jitms4bV7V8z2K7JpR3CKct5wfLJhPm1IC4tJHemkl3Pda9mb1qADygSqXU5Ryhvx+x8/ZVflWGsoJy13TlZkhYXWwCYli1UY/Ttzjh8umR7UpKnj4HRDXvTszqYULxOpyVhqykmH+qDkow8vUJ3GLzPKaUuSWXzpWHxJEtPuPL7GTCzlt3KclTAfkzlU6lG5fAnq1JNOO6mUMAG/zAgBZns1s6OK/GsleEVykzA/2mE2Ur1h1gl+T45bD3UWmUf1iiR1JLNewm2covxCCa3Gr1PyZxnlYU31bEayTGBqmZzs5Fg6AcL5dZRezC3Kao4+m5AdNAIuQYDjgYxtdmUIhSP9IKd8qZme7kivEpnc1Yb09a30JK6lMiIkoJtY1L3W6EbBwpK/m5NdaybPBMC6qUgys0sjPksrryufJajSomuRSdtpwC+sgPk4kSrONeULCVK68w+V+Dof1Lj7LWwT/MLCfs/0iUFZkRGHNPpZ9y2YQPlSMf1AfJa6GdJZA24iPYSLdyBkAXu/Jb+U8SpfKpHmrjT5TZTC5m4MdFETh+4Vi2+CXvR0h048Qxk09xz6oBVf8FSkvFITECeRXkKN3MyLT3Du6A8de98CX0gYk88CZidAW0fJcXmm6O719Pue6XPxg/qJhP4op/ALS3/oKC5iyMklLL6p6RcBe2BF8rfRJDvF4m0t/tNSUlizDex9Q40VEb4Ise4iMP1A5IJoSdItL6IUbSfnoXsBOEGJeiBbyXPtLNDPBqAO0xeBxbuB9tCPoUyugO7YRaArk1aXBSYvBKTbKaPMdwhU6Y6ceEmXEjo09EZ2hzJ26U5Ad1JBd6/H1ET/sKI4J6Y3q3GyT5DfZZsgctCFdAkmlXggpQQefB5oTm99T+tP9fK8GD4UUhmT9sCTbgPdfmD7mhcJZydj5DOYvS8Aqp8JIHEFLN4bQqoQAG5g+7qTsVbyOx0rIkIiUs2he9CVMsb5MrD3rh/BQnMamD9zpNtAspOAG90HXCnAN1uFMcxn+sKPILK4DLSHsHvkmL5wTM8ck3MvoAOigkSkuvVJoFgG2qPA0Zd7vBHJ/eTMM1RcJHUEk3Ug2wYm54HyyjM593R7sq1+IX5i6UqV/YhXVo6vuBJ/p/K34TxyzwlQzNfi8wSRHWZbuYbF0hEMtPtEaa2nWDoI4p0tzz1pJUCTIKE+ykuKbVoFyms3gsmkCbRHin6upBcygdkHHbMXvagfzqSfcOigtGX0fe48piPW2si2xTcbpayZnLtPYz2Kk05OF/2wyt2GHA2/N52E9qQ7PwYcEaSKI9t6kla8luWVLIzm1z3KB8rLjm4WJbVTRXHVy3FlIsFuDhXpNnoCvah4tJXj9MlQowGz5/1YkWE6CRpKKlEp2FKTbh26D8y/vqI+iiFEO0lVlj5STXnZYwuFy3XcX6B8fyPhRhMJtbGFop0bkm2PcpBfd7gMirOa+jhh9VqKqS3dniFdtuRXDaaR48ovawFxCwFxeKkQqY9vU2iDVuTXrfTSzjTpusd0AvaylSTCJrX0VvYzjc/lszW/qCRQqBWPaVJJYi1KkWw7XKFJrxsBhInCTqSew6eaZBVDGCtLP0uExe4D9d2ckBqy60Z8n4kipHGxtEgi+PbYaYKdyXmjFMlNhV5VmF0bfZQCgLsD6bH0WawciR5IgP6wkITYXGSmvkwlCKhIhAF3QWSz6RCyI32SI6gsU3TVile8tSKTjf5JP8sFpBnZbsgzgtYCIkOU3Bot4UKHC8KkwB/MUb3FH8zwh/KzitUhquslLGhaCoPp3K2XMgTCYgbDv/kU9mbyr5f9YbRIXvMMipxgrbCXr4BKlWXigQRUlhF6K7UgEUgqY2S/r/RUhth9GdwrdSQ+/Mb/nPvu8Vl+Fz9+RxjL79Rj/om74TP/1V+kcwalAp01WGdou4Qy76nblNePr3nnTKj22bShd4auS8gyK+Aq79hWubyPjae+kQJ7M7NkeU/XJQSnUCYQvKIoO0mCblJM4vBOGMquylDGk+aWLLNsV6V4+bxCl/LlZBJPv8qFqQuIaTz142K7axLSiXQN6tTjrSZ0+kOrdzpzhOtc2DOvUKUjVAY1E4DrqwSVeznmRHoHiQyimVrcJvYPemQWasTHqFNHcMIOAvKzB9XGUITEj4ye8mrsGVRdZPl0gNSTXGTYAxvTRoVlCTMBrqpw6NTDyxw3HdLRZIU0qDAuc+ha33ZbdQKuggGfe3Sr8RNHep3Q7wnrpXqFjz2IutP40o3bMithBYfkVwLoVvoJlROgZPechIhUkiirbDzuNES2Us55ZLsc8vogr3FTJwAxMnfpVlbIXRl9PoUEPAiLqHATT3oj1Q9BBwjx+H0ETlbhC5HPmq3GLRx6Z8hWkko7JJQqK9c1qSQp1U8kpGqYxKfrCKwig5RUwsDpGObjylhjo2IPnZFzNtWwSi5/a08s+aURxqUTP9kQbkSQa+TzgC3D6FcU5kJhC2HudCfJtUExrogPTJxPw7jtIV0WYpdf7C3UvRrZlwEImEaYOpcLuJMgp1tWb0gjVWFgkCKb26oRaEm5egSf6pa1GLY/3IfBML4Ph6L2V9+XA7MzgCSfCluZX8fAHB9fo+PbrrllWofzTGqpeRk67ob9JpVMqO1MkmaHjsVXk1blPXp7fEOC7NAzOHQsDs9XTlgskGPJl5LIOpxLSGIyqZfrrawcB4wfEbJPxW2C6Ezkv0N4zzCOQwfh2N9nhak0LSMz9mqabboTwONi96J0dApb5iPzOryXfcrYSzj097nIQgUVz8Xcdi/akpHtk/RWSWL12SsXMzCmSvqU2MUo72Vthb0bGIahq3LYt4QSyd+TOozeVPEVC2hv90SSmNSD35Gxw1Cudxj7PocuP9MJmJZFr7hP9+H9D0mnY19eDKORtNtAfaoxjSwYDNc5FdVAAAAgAElEQVTFp1KXU9x4+pkct+kj0zswwa+MCyoyvSth6cZOysgwvtovmNTxcyeGDIXbOeXIznUL2bePY21axhL6Qb4+nN/QFxiUGplRn8r/uwyynYDVoG67ElUQmXeIHY5Dwqzyct5Je/u9IP2Q3PaVxs83ueklddblEnwy9FTaXI2hOQNjq4JsO6093VSPtS2v9jkOvYyvJqACMdhIApFcLt5J094GKBEYey9lEUHYxgHoDWylMNFDN2MQENcFVAjo1tPPJXhIPi+G8VG3nsbk9mcYrq8wkK7Q43tEBUQmHsHY8Fy5TkAM2HG5vmVkO4+dGEztxwTcYNT4fNPKAoM3cWxjkqo3wlwGo0g2nVSXRD/kt48jRKbT+lfuBUZwqLzIjH0mIT2SrmvH7wC8FwZSK3QbP3BcnKMMKavDc60f5Z1BS4AQSbzZh7+FQMikimToqwyRAVRDEiwIi6hfpWsjABz+PrB/St3+TilhMXsrIT4gIDRWgYySUmPk3JvutqPy27f96sM5gvcCKl+Rr46psENqrDbCWA7HO4b4iHQ1DEB2AJfAb6li5LuFsfzr3wHG8t/43cFY/k70WH7HHl2X8OJqj3LSMs075nnH5XZKu8uwfUKSWl6sFwwl3DdXM3TiURra+H5a3kwhKPRVir3TjvJE12mKeU9zNiVMLFig17QK/GVOmFl8pigmHdW6QC9T/MTRdobWFahYak8vMdfZpKdvEszGkB1XdE9mwjjkfiw6142m7+IKm5YkUjd3EppipbjdNwlJq3D7DtYpwSqRUuqE2d0N2/UCs0ykSgEgCYTSg1O4KoHcSQF97kAFVGMIKuB7JeXuMythRaXIVoMKkASp1TDS6+cLYQOHig0389ApaKRP0eVGCuR7Yaxsp0S62WlcgKxW4A1uLgEx3bETSeJaSwVGiGmcVsJcJOxEiuyVh2SZiKyqktL64kLT7auRGekKheoEyAFy3I180CfVkKwqk/R+HkiXZtyH6tU4YdOtyCFBAnf0zpBd6BGcuTKuONdaUj+NyCV1K2ErulMReBnskYXGgId0qUU2mgugSTYKO9PjpCS/UtSnoPYdodLorSGp4qSvk5oGO5HKivY4jOmgeqVxkwB9lE0bSXG1kzCCjGytcYVMUrOllmL6Ts45aRXdvhyTcpHF2g/kF9KvN0wyki0jc6h6mYi6OG5ZTG5VViZQCUqAWzdIFGOXI5Kw6/JbEKR7kenqVuEmAvyVlTJ5FRjZTt0rAY+D17MkptXG8J1MwFq2jtuLUtpsGY8t3Mpi+3mI95oAImWFNdvdF6mnxPzLeY9grR2OQ9iisRQ8rhCZRiYd+VLAop1AWkFoBYRJeq0Au6G+RPcxbGc5yH7jvbwvAKW4hvZAkW4C7eEwEYhAMUp76W+B1lgfEWS7yW6YiMrkzqcS9OMK2U5SiUTWlVC8EDlmvpTzS6pbkGnaECeDwsIkTaDbF9ZLW5m8SVJuBGaRLc3WIlsdJmMmzguUh2R7W/QetAAD7QIu3CbkDkybslEuudBk20BzJGORbQb2SjEkIJNIn2O7p4WZzNRYpaJbKC+EtexjCJBPZDu2jAB2CJKJ16O4kb/prYAVW9wmu44gP4IMYcoga8I4BkOqqYvBR+nOYUstktKpgMABPCZCymCLQW4JqajcxroTkW8rXCJ1GEXs6yTej0HHhOdOEmSzZWQyIwAegnwIYexo9AaKG0e7Z0b5tHLCqA2ps/kyMoARtPYTNYL9pJFxdpnsR+9EVjoAv+H6pFUMVttCeSn7M+tAN9fYTJFvQgTKgXTtR5mlT4bZPORLy/Z+SraLwMEFSBTllcWWWkKOLKRbT3tgyNYelyv6qWwr615JDVUCeEjlOkhFjQAZl0qKrU8U2VqumQoiF052HlfGZPFKPLSm82RLj880SQzOG8F2fH5SOQGpCnTrsNNYDRME+JjWS3J2TH0VpjN+x1m5ptrJQl1W23g9A8oaqfEo5L8+MfF960WKauV40p1jqH8xnR/BYVKJ3NSnGnyQc6idMIsH4qNVDpKdxU4TlPVkS3kzu8KQX9a4aTbWiRDTXFEiVxXQHMivWgncqZzITzsBbS7VqN5LvUcjgEt5Yf9UaiS8ZyIJqsRrrqxHWy+/b53IVrMkhg1JsFJIhMFV1t9WijCAQwGVuuoimES2qWSMcEHOw7moVPLjNUHLvaO6WFUSAdMQ0oMdVgiDVIcMktY0GQEnvf2wvNQBWhOyFGWHZFctgT9FJsE7A0h0ktKsnAcria3E7kzpqXS32y1NfJ4dAeqHgOOrybAwsojBWtnutwPQoWLEdZAksRtTSWiPMbegcngMgPQV1vLV/bzqoZQ/eL6rkmD/GXr8nmYsD986CX/pv/8JZqblS5v7NC7hL9//eX5p9yZ/+93PcG+xpveG//xj/wN/4Vf+Lf78m/+Yq37K81qW6r/04h5/8ZO/zD+4+ijOa/7ona/y3379R5gWHZ8+esHG5rw1f8lNP+GL1w+YpB2TpKMwlkXa8PnLB8yyju87+ICvb+5wvpvxkb0rvvDyPv/2W7/Iz777I5xOt2y7nMYmnH/zmOnjNYuy4d/9yP/J3/rgx7muJ/zo3Xd52Sx4++aYH77zhNYn/Pzbb/JnPvkFfFB8aXmfb704YTZrsE7z6GDJ17/xgM+89YTn2wXTrCPRnnuTFV+6uIdSAaPDuN2vXtwhMeJP3Csb3v/SPXSv+Imf+DV2LmPb52gVeLFZkBjHT9x9m8t2xs9/801Oj9eEoDidbnk4WfJ/fPOT/MBr7/PO8ojjyY5Z2nKQVfzCex/j9eNr3vsHj5n+gSu2VcGfevPX+IUXH+Ofu/9Nfu6Dj/NgsebLT+8BsLeoCEGxPJ/zw596m7Nqzvl6Rt8l7M1rtnVOs834yKMLWpvw4qunmHsVeW750Qfv8itnj/jE4QW/8vQRRdFzZ77l5XrO9mwGieetjz7HB8U3n5/ie80f+vg7/Mr7jzk52JBqz9OzA44Ot+yajO7tBeZ1McF//M4F37o4pm1S8qKnXhccHG9YbyaYxNEtc04eLqnajKbOONjbsd4VTIqOXZWTf37K9nXL93zqKW9fHNNclRzcX9E7w+6DOQ8/fs5P3/sqf+sf/xg/9amv8HNf/yR/5OPf4Cs3d7hczTje23L1y3do71jxZmae198844OLA0JQ5EWHc5quTjEvcnhck2aWJHE4p2mqjLDMOHrjhsuXC/7Ax5/w+bcfy2LCxPLDH3+XL5/fpdrl+HUKuYdWs7i/4dH+kmVT8uz5Icl5yuMffMa7z47ZP9hRNRn+7Rk+C8w/tmT1dG9kzQFU7pjMW7xXdG3KfFazVzY8eXosbLZXlO9lNHddXHQQ6W/yaEe7zpkc1FRn0reaHDf4DyZwvyFc5OJLrTQhC4Tc8/GPvOAbb9+D1PORRxe8894pOne3HuOrkvJpQv3QMr2zo3oxk1X43INVkHrSaU+/zMcOS7MzUToaJ+1xwef0I1ecf/NYOlUPWul/NYH0KmH+PVfcvHtAmDr0KqG4kPAje7dDX6Vkr21FAeEUr33knCdPj1kc7dhVOW6ZUZzU9O9POfnUBWffOoa5Rd2khMMOlpmk+p70qNbIostMfKV+4jCrBH+nJThFcpaJAmDRE6oE1Unipos+1PxM+k6L1zZUF1PSazOy1bYMJKc16Ren2Gmgnwe5rlHNUDxLaU4tambhRgKX+nng8NcUV58R/2u61rSHnuROhfrWlO7IUZwl9DOPm8e0zplFPynweRiZxnQTWSQN/UmPuUnIbsS/2z3oMFepMPNOUZxp2mNh9bO1oj2Icr0rPXpi+5ksJuy94zn7YSJglkWIbBmlkfNAcSUpztm1FvbtWtGchMiyRZb+bs/kvVS6WYu4KDGNDE1UAwwqiHStaE6FdTYNpGtoTrldrIo+4KQS6XG3J8BWx4WA5tSTX2qyjXyvDSxwtwj0+569rxk2r8ek4fuOZKtHNjhdK+bve1ZvavqZJ9mJqiGLvmC0VDBNnim2j+X35Zl0lvYLaF5rKZ7kUT0g/xbvOa6+18hi0EL8qoPsOqlg+9izeFvTz0R63O0Jy+cjE5juZJFiYF3RsSd1cVuTMywolRdhDLOq7soYH/9qYHc3skKRmc02sjCRrWUBoT2AyQsZf5fJAofyjAB96EW9/j7P9D3zCuspiwDNiac801L1MlGxpgO2DyRdOK081R2DLeK9ur1doOn24gLgtTDdyg6yc1n8yzaBzWO5D22puPxhy51fFH9fcySLGMWNZ3dXuhtlUUYWLdIIxNNKPocGWXBSSYLy3ruStpsv5RrOnjv6UkcfqEhfdS8y5fxapNM+gd19LeOlGDtSTSesmY6As59IUm67J3Utw+LF5pFm8Z6XHs+4wGcLLTVE17KYoYLIy3UXaPc13VyxeM9KN2bl2d5PmFw6upkmjwC/OZAgK9PJwkpahVe8qLJ408005ZUVIFsKuygqE7lmrhBA3M00+cpjGgHpwFg5Mj4iYz0AaJdrfCb1Kf3MkOwcpvc0RxnFhQRH+UzALEZhKoudphH4O/ABN0lir6YkwhICybrBLorI4jp8Kp7RkGp0bQUIDvPuCHp1bWPFyi2j6jMjbKkH5X2U3sbkVe/lddUtc9cfTUkvtqAV9mCC2bYoF3DzXNQLq0YAdmrQq2rszlR9BJpaC8AcvJFFBlqjqka6OyNIDXkmQHmzkyTaridUDSoxhOH1bSsgWhtCVTHUlQRrUdkrqbDf7sP8NtB5+7wPA19fVb8ZPPh1H79rGMv/+DvAWP6bvzsYy9/TwLK4/yg8+Kt/FdPC5LnIN/qpfGll0WuTbcRXoXuRthRXYTTZ9xPp2rKlsArlhWzXpzB94alOhl4m+b2L0fe2FMlbuhYJnhQQy0pseenZ3ZOJXXEVJZzpID2ToAOCfEkU17LKvL0vXxTaQnUqX7KDr2ZYBR/kSUkjXzbFlR+DBwBZOZ4rZs8869c15ZnUF0yfSRm57sJYVq9clOtEqY9IimJ4xDZQnQhrmq98lI/Jl1u3kC/F3X1hYiRmXiYEh1911Md6lAMGLZ6cbB24+ema+S+WY5JhWgXqYy0ddEOxeZRYZetAfSIpp8rJuWbrQLFyVMeGpB4mAjIeJjJPSSvj2k8Vkwt57iD1yjYyeUm3geZQ9gvy5Tv7QFZ9h2tkOsg3jm6qJV7eCfuSNFLG3S0Uk4vYJReZlHTr2D5IRonasNIuX+oKF6WRs5eOdm7kfpsK+5RWckzpEPoQy85NB/lKvogHxq2fxXqA2NNWH8k91O4rips4Ocml0NxlMkHu5vJcbeW4BlmfyAMV2dZjmsD1JxNmz/0YXtEuNNlGaDifSLT/5MLRD9KuOObdTFOfKObvO7SD7V1DceNlnOswdiuGRJgskNcpL8e6e6A5+lJPc2DiPS5fqpOXPdXdVN4Hc5FRDXLdfqZYPOlp9xP6UknVQJC+OZfLBMe0IvvqJ3qsIKmPNXvv9qBgdycRFmfj47go8rVMNvqJGhm1zSPN3rtOEmoPDGnt6Us99lXmm0BSySRxciF+IW8Uk0tLUIp2T74oh/vIp3I/uEyR1tJNt7snkf0+kf47qXsQ5l75QLeQioL6OMGlMLkU/1U/k5X3bGWxU0N9ZCiv3Mh4DJ16SS0T4Dpek7QSNmgIIhnYpnxp6adGKhaue6rTjOLG4jKpuOnLuL3mVbmZIr/uaY5TtA3Uh5rFkx4XGaZm35DWcg/kSyf1GZ2wmcV5TfVgcvt5ftnRHGfjRK+4jNfqXkpQcq8mtRxzUg8eRGGGfKZIto5uPyG/sdiJsCHSf6nwmUK3YSy3ly5NNQaPtPtS5dDNZKxDokh2DhUCdiIAoJ+JsiHbSH2D7iU4JUTJ3hB8kq5tHBsdv5Nil9/O0cWwlmxlo5rB0e1n5NctrkjG8+n2EmGtKkmk7WdGOiS1GmWlKsi+slWHnaUoG7DTRFJ3lUgIvdGxRkJTXIlPcGBumtNcvt+c3JfZSsJPfGawpRk/35KdxWw7uqNC5IepIr9sI3Mk1zJdd7giGf1++XVLcyqmzaGKws5TTCXeLztJRvbMFUbkkoVGd16SUXORDQ4yRhCgoLvoW4sVE4P3T/fiayPR1HdKJu+tCUWCm6bYMiGpLTpKLAngJgmmkgoKN00xrUNXHd2ppKdmVzV2ltEvUnTnoyohoFuHqTqau1OKlzuaezOyZYuyEu6ie5H9hdSMiaVummLWnXjmYgDMAC7sNMU0Dt30koC6bglFgp1l0rvoAqru8ZNUAEFrRzasPyhJdr3ILaNfTnVW2C6lxLdXtYQyw00ydCf3pXIBO8tIlvKB7BY5ydWOkCaE/BVPoPUiM57n8loPupF+RHc0l2CbSYaOaapq14zVFsEoASWdxU8ydCWvC1oJO5cYAQhlil5V+L0JetviJ7mAqLitECsqxrqN3n5YBjrUaQy/955QCrPK0Bup4rGsNoTFbPQq+vlUfI3JbVeyVIYYAVsD26fl9cEMNTZB/paYyNJpCcFxXgDYtoIh+GZIMx2OeZhv2yh/7XvxLradsJDWorQWgPbKQyklnZOJkefFMJ1g7RjCo/JcOieVkoqQgT0Vn5ckyGYpgxdyDNwZmMdvZwyHAJ7IGN7WjcSkLefiuWlC296yrrEfE61GMIlzUZr7T8Abg/R3eM6rj1+n4/K7Qgr7+8Dyd+dj+vF74fg/+KucPFzyycMz3l4ds5c3PLk+wDnN3f0NT947QU8sRwdbLp4ecPhgSd1mvH50TesSnpwf8sadK97+0gPCzPKR186p+pSz8z1QUE5blILdqkCZgFIBdZ6jH1QioTUeaw3BK3ydUB7UNGdTmPUkueVkf8vLy/+XvTfplSxL0IS+M93Jpje6P5/CIyMycq7KKqqobolBSAgh1iwRvWBo6A29AiRaQC6QaKkFYtFs+AEs2NI7hJAQEhJdSKWurKzKIWYPH56/yaY7nYnFd861F1lZRSs7S5kBZZLL3d8zu8O518zOd75phfOTLa7+9Az62R4hCNhtCVF6SBUhP6uAd1vYbUFGpSZjYN4Y4F2uzCgd4J2E9xLRJ0mMpj/Tj9Ra6dKhLB32LxaQJyPEiwpu5dGc7zEOZpIMX/7ZOZ585w2utrPJQxqcBEaJxcMddp8vIUcB9ZT7Xs563NzNmGy7L1B9XMJ+swNeVvAzD6iI2XmLfWJnzGKEdxJhbyA7ieqthPs+GUF7WaN42MJ+MZtCTmLlITcaoQ6YPdij/WIOLFgHEosAuWAarf/pHO7JAPWmRHzaUZJsIoqbQ28iVISsHMKogEECOqI86hE+nMOeOehbPS0yFBuB4RsdglUwl+yRtOcOokwrc61Gca3gywh/zD5R2UqElYNca+DBgDCkVee3Br6OCGWAXiuYrUD3HmtphAPcIgJnA+Jtgeq1Sp5E8Jw/UXBzMJCl8dA3Gm7l6QWVEbHxMFcGwUTIgamj3aMAs5UYzj3qFwrdEw85CISzETGQxcpeOLcIEKsR5uMKiALDQ3ZSqlbCrTwgI+Y/NRhOKQ/un1iYaw3XRMSlRfVpCQSgf+SYsiqTh3DuYe4UFp8C668D4XxE9bMSw0lAfcnFCbuMk4R1XHH7UTP4p7hRqK4ENt8bUX9SYDxmGJAIwP59i/KlIRu1pzQ2+6N0KzCceKhOonktsH3PQ+8pwx6OI+ypYziSitCthLA8jtVPJDYfMPF28THZiOGUSa56L9A9swxZ2iUZ4x0n8N3DCD/3WPxMo31Mdql5w8WK4YQM1uwl+y2FYw1Nf85rBXByXl+mjsU+pa2mhNTtex5HP5JwM8Fu1DeU6/Zn2b9E+bCrmerpKy62jEdMsI0qws05Rs1LgfYRmUi9B7J5u39A32xOPu3P2JNpdkDUOeRFYPdOgNkKFGuey+qnwO13GD40HHN/1TUXqnwK2smBKaqj7647E7CrCLNOnX8D5bTN64jN+0BOgDZbgf48YPkhw1qqm4jdO5Q02yXHoT/jYk/9lsBUePZhFsnHa7ZA94B/646/m38GbL8GVG95DtVbyq3LW3pFg8oLh+xVLO8idu8ILD4hU1NfBXTnksfzNDEyaUFRd1zs6h4I1G+TXzjJVl3FxUXdRtg5e15FBGYv4pS+OhxLgqyWzFh9GafFre1z/p++Q2D1cUD7QE6yfN3Rd2c6LjyZ1Em5eX5YGDA7+iddzUXA5pL3aAZwxYbM0HCSFrV2ebEzTJJWX/IcchJufRXQH0sMJwJ6x0XB5tLh+juGwUsd35fjkmMnIu/3/SOygfMvRty9X8AuxLR/OYKLMHM5LVLYmcDicwa47C7Y+5gTanWHabHM1SBwvWVoUPsgecp18gD2h0XZvFB4v9MyeyiLbYAaI9pzLlb6UkyLkLoPGJYKumPdy7jUB7m+i2jPFJorj/aci2jsm5TT51NeAOECABcvxgUBeXXj0R8rFPuA4s6hP2Viambc7FxyIbP18LWE2XjsnhYo1x5679GfGdiGi2lyzIwp38eIXOSMArBLDdVzgSZKYPaix3jMfsfuvEB9OaI/SxU2d6x3KTYeZmu50Fpy0SovMOjOw5eKcvOSixR50Ua3DNgZTgzqtwyn8aVEsR4xropJ/jocay6OCIHydsRwUqB602H3vMH88w7DaQmztqyEWRjovUt9uRzb4m6cFhPGI4PijscqR4J31qkE6PUAX5uJQYxaQo4ew0mJ8nZkGI8QU82M8BGqI2jKCbBcuNCTJ1OOfgJAsncE5pueoLkjUI2lgRgsK1l6e/BiGgXRWVaNlFyRjFpC7HvEWUUQXRYExaU5LBTk542OXZfbjpUlw8i/E5CdpLWDPXgsEwsZC0MgHQJiWRBIZ7AW4yE59j4Izr/P9SJaI44jROqfnDyWmW3se4imJkDNIDTLW1N/JZAktcn3+SXckeWy92Sv8RcASiHF4efZ0/lLPH4jgOW7T+Oj//I/+pVv99N/5z/9tZ8bgF9LKuyv7OGsgigDbtYz/PDtIxjJipA/ePIZpIyotEWxGoAIXF0tJlAJAD95+RCv7paQMuDNdo7y8R7wAlJElIohM3FQ0CrgfLGDSmCjrC38nP/2nsNX1yOUCoCI6PcFmkc7CBnhncLoNMrKYteXwMUAYzy8VYAXiE7C9wr21MH2mpLBKjDgxgmE5x28k7CdwbAvEKJg/cbOoKgsZs0ApT3iwKqQ4BWG3gASkDLALTx9kAJwg8L2zRztUEA8GPDyeoVxMFAqQKr8QSMwjpp1GE3g8a9L3G4aKBUwdgboFYYzj+DJGhanPfSdRrsrIfYKogiwvUbYE6iZrUD3yMMOGnbQEMcjYqScL2gATrCGI1V17N82KdAnAjJCNA5hZzAOmuAiLW6FUUEEAXPcw5epRiOF0ggVAUd/XrEaMGzKKRDGV4HVCQuP7plF6DSECgg6wp54XpdOQb2kTDJosq+iVYAO9FAWnj5TGaGvDeBYbSEc6D392h5uzv2F5x0rIJ7sWcky8wyf+eYeIaXhjkeR5+CB8qjnZGiUCGWAaiXUHb8swtkICGA447b7C4eoIvrzANkzFCiOCmKnISLglgGqF9BbibgpoLrkLd0qxMbDHRFgwgns3/HQe4H+IRNlfU2wglQHIzxgbhXsioXkfsZjh+REGyIidqwlCVVILD5L4aMiqKyfUusXygjUHuOZx3jE+y4qAIFyRjvjRNDNyErlaxcKHpPeMQwoqphkhYLhVxVBdA63AZB6ZlNC4xmlg3Jgx+ZwEqc6lGAiRC/pvy0jhsd2CkaBpL83p2YGA6y/wSTOqCIEDlUZvoqwM3B1f+S5Dmc+FauzpmM8Ase4TKFEKqdgMrwnB+1kb924iph/TmWAr+iZZUVEqnlI3//t43gIwpEEdK4GhCXIGZPdXKaJ6HCcEkUXBDOsGEggakeQobpDl+14TAlbUJQMj0e4V0OSpJ0loLfZ28w/rAlhrywraXi85TXldLrH5L/MacY55EQNBB3tI4Jq6eiTzF5Gs8/nlDzTc97jUTO5NvtfxyNuL8v27PxQUxEMU02DAdoL+uX67GPFIfQnCoKyYkPG2c0EghGwM5EYUExqilwRFJM/M/s27fKQeipikliWQHGX7p8U0rR5zu8WNdCf7Cpe++xnDErAlWK6j4TDlDYbCsp/bZMkpwLoT8UUZhU0jx9IoUilmCpB1EBlQGYreSHzOBDs9cdqUuLk5NYM5gCCd9URTG+fFocwquz91Ac/LZUIXKzYXxh2n9bcRhS8p0wbMCw5ZnLktkXABNYYhoNpNpO9tNJR7ukqvscyGM+f6QzH4d9qOPS+dicKQQHlrUN/opOXVnxJITQs6JeXlqCQKgSOVVBku6MU02t9SYAJpGug6J+MUiS1kJje90EDw7FmquuM9RAiAG6mUnJ0XmQT8CkAKCgx+ZrJACcwna4plEjvXXpJg04gyfI10sZJbuorBV/I9F5MwFExGCh7Pn0hoVoHX8kpmCcHUGXWuj9nqqqrydzr7udYuCQDNbuAkJhwiJTCqoBcdwJQjRZKyonl4NL7ViIaifG4TJ/LEkFLuEWJWMiJHYxKwNcaxdZOoUB5//crQ2LaN0Jk6iqoiJiClUoFX2uCvRARmoKsrpaIBdPfQ2UOgA8ElRNLWRYIlZ4YbZQFWfayIAgWAkhBRTwWzd/n45NkPGNdTkA2pU5Oz+FBp+cpeWADhSAgLQzZVSUnJjf/fmJWpfhygFCMZFGtRRzuMYXpOaIwB/by/vUVAjCGYFKmZFkhDqAyJ70qdTgHIQEhIZT6c3+mn//cfr6qj3vBvL+yP78pj680Y1k+fxaf/P2/AwAIXrDrcK2B84GhOlcNiksN925PqdkuzWhSkoKomKg6u9ij+2SB0IQUFiKgWjGlfAKcMEYFYGUhbgxj+TcS9pjJneWNwHCSJIezZKpfMyimP2dAypTgIAiQQtp2/ULBV2QAdu9bVK8MhlOPxelvDW8AACAASURBVM8Udl8jw1JeKYwnKQrf8kt2/jmw/iAimoj6pUL7zEG1EuW1pEdnFVBdSfQPwpRkaTZkBGLjodZ8M0srYI88yrc8Dl/SsxRMmqytAvROwh6RobIrD70l6zb7XGL32z3KjyuMRwQCahDwRUSYebLF/2uFm+/RK+XOLcxrdm7lbr7MrDD5lSCruOMHXg4jsXOOmW4FRIrLd/OA5qWETSmUdnUY9/5BgN4L1G8E9o8ZtKB6Ml+qJavilh7mNkm+LFBdCbRPYpqARhQbif6hQ3GtoHpeR4iI6pJytu7Co7hjcI9dRrhZgOp43CZNrs2WoTDtc4v6MzMxb75i2En2JZU3BLF2kXoY9xLxWzuoH86nPjeIOO1LtwTRDI1g6IpIdQo5vdFsgd27ATgfUP64Rvd8RPNhMcl+JwAT+dqchhg0wUyx5j7688BE2QcOix8b9KcMtsmTYLMRKQmRlRXNS0nPGggy1MhqhvYxg3iiJoPVnYkpPAfA1KdY3vC6d4/IOLkm+dp2ZPz6U/rkQgEwfZMTyO5MoFgDwykOnrGR29FbweTWlA46LhmuVGw5GZeWk3w7yxJDepjGY9atyJHeKt0SUJY3rGAo7zjWQQGb71rMPjSHROMUgORJFCefHY/Bl7w+IqYqh2XA7HN6/kKRehzTo1iT2VIjx7i5jAnMYApVEiGBhFpAdWThdIsJZJd3BAXjgjUquefQl7wP7vcx1m/IroaCTGv7UKC6IoM6rggAm0tKiMcVx8ZXOCTpJha0uqM0tj/j2JodjyEHx+iOY2xSDQcnpcDsNdm6DKrsgh2KrjkEa6mekm0GKPG88rXI9gWRrKI+ScDVmJg4JZKHi4Axp9DaGV9frg8ppq5CAgWUKXsj4BrK4W3z5aTR4ZhMZpasM5AIKf0TqG7C1EHpmsOY2xmZtt0zgaOfprAyxWNmwjDHKBQ8tt1jOdkQ1BhR7AOGBWstWEtCGX37QKHY8HvLJRCFCFRrnsdwRMa2PyEwKO9iCrdBklPzs7B56+ErgWFxkOWbVGkyJDBZrpNPb5YSQyOl7uUmwFWUzweD6R6Okqmp3SlZ2Sqxpjl9VFrKcwEyqdUtZfjlnUd3qmG6gP5IJtn7IXXUVWKS+AedElY9pmPKQNSXBOa6J7DK/q37UuthSWbRNgLjXGDxBdnGcu1hdh52odAdK1R3ZJh0y5qPcS5R3h1AlExdib6QX0qDDZoewOFYo7yjjL66dmRWE7hylUSx9fw8S3Jh1bNKw5cSxcZiXBroPWX8vpIwWwfpI8alRrFxcFX6jkuyZdUH7B8b1G8dzM5hOC4YlAOCV5Uk19JHyoBjZKhOBFRPRtTNCBLU4CFchPCBUm4fuLClBKTlcboUxCMHT7AqCX4ZCuTgFsUk0c7+QtU7+FpD2AA1sGYkM4e+Mdy2FFDtCN8UUJ2F7Czcqpo+S9RwYLWiEhADvZJZkuorDTV4DKcVzNYCIULtB4KfIjGA95Jc5egmBhRSwjdm8i3CR4b7SAk/K6C2/QG0xYhQGshtS0ltZSAGxxTX1EUZjZ48j5w4aIhtS7DmA8FkAofwgTLVPHdPEuAvpcBmvyRwOI57/kn2WHpKao2ZwF6W3AKg7DZGSlljZEDPvUdsO4iqInvo/cR4HqpDsofMI8Z46MG8f2zAP10a7M+xqV95Key7T+PFf/GrZyw/+3d/MxjLrzSwXHzzIj7/B38bAsDZfI/9WKBQHvvR4G49w4PTDV5/fgLIiKPzHfZtiWfnt5AiYjuUuNk0qCoL5xS66xrHjzbY7GoUhcPQGZS1RVVYLKsBt20N6xS6TQUhI0xtWU+yqbA42WN7NUOxGKG1R/tmBnU0whiPuhzhg0TXG7irGuJoxGzeY3fXIEagmo/or2tUpx0K47Dd1DClw6wecPtyheK4h1IB3ku4USFGMp3VYph+7r1ACBJ+bygD7TSWD3bYvF5Azi2ik2RBAZTViHZdwzQjTld77PqSYTCDgZR8jt0VTIHVEdVph2FfoF70aC9ngIooXxmEb+wRXtYI5yNiq3H+7Ba36xnC6wr6SYvxtprqPKIC4smIorIYbmpARAgroU972DVllqgYIgMBVmycsLIETgCVh1AR+mVJmeOevYzYGH5RiQi5sAhWQez5JYq5QxwkUITEuqWk2JGTwVAFVK81hvcGRCdSki4QawbS6I2Cn7EWxJeAP7GU+d5ouMcDQ1Iqj9iTyRR7DbMVGM886s81fBUxPrIoXhuMpwTibslaEmHp3fQV5ZJRAn5O6WuYO5QvDYIG6kuB7QdMiYs6orrUGE78xM6arUD/fIS6TenBTqYvQC4KCC9Q3kjYWaQk+jON/kEgOzwwmdYtabgt32jYZQLdxx7FlcJ4yn2Vlwq+IYAMhgsWkGTr9JZy1N3zgFBwAcQuAqq3ZH7sKiKCx59rVIQV8CsHc6NRvxLYfMfC3OppUcLOIvzKofnEYDgNMGvJTsuS8mU7j/BVnJi0oDl5rt9IdA/DxLwBiWndEsA2rwU233IQg0TzipLb4Th9oTqCZHrKUgVLvjZVhJsHVJeK12zMq/0E4H4e0LwgywEQUHYPAhdHZPYip9CPlKJr5xwP10TUl2KqvshF8W5O6elwHFCsRbqWAASw/RoXcMwuMy58rt7zPKVNXacjptTSKDKDQ2Cu+gRUS55HZphz3YpdRBR3lOdOf6/FlFY6HnH7eQyqq5TomtjpYiMOBff9AUCLAOQqiu4BJa++wrQgoFOvpvSJJZQMackVC3bObWZwmutkzJaMrGkxgcz2gmPL8J2Y2F6CXN0yXVf1SL2GyY99F2GXqS6oTL2aR8mzH/k6NzvcW/RcprTY7BksxVTl0ryO00KPLw51CK5JCb/HBHfd2UG66ksCel/z/ab3capsmTzyIS+myInd9VV6XcV95eoVep0TU5lYToALFjkQR7qI/pjvCaaLYpKGuoZMsByQ+h8j2of0qufAn+FEoFjHyX/dnUs0bxj40p3IafEqy3DVwO3X1wydsTOCd91Tepu9/dIeVCqqP7DZiJju31zlw4qN5OE/lVNtS7E9pPQGzfsmn6cvxMR4+yJdw3S9hCdbysoOAvzsI67uDsAWArB18hUi13xgqjLx5uB7z52e+T7I9SWZNSTwTdUlisnB3YkmsJ7Tt8yQnZAWZwnmpY+YpLDJ12u26TWeclfXqHSdFZo3FsMxg2fqtxZ2qaB6VoawKktBDSH1R3LbcgzwtUpy6UMFCmug6Pk2e1adBCNQXY0YjospadbOVKo7idCdh11omK3DcGxQ3Yywcw3d0i/vZgzTISOvpnoQAClFl88NRh7qSUzygLcWQcupw1J40jnDWYHyil5XqnBC+hwPE0gLpT6AFy0nFlymsJ6oUp9moaDXlMLeH4MpIXaSwTKxVXY2VZE4xNR9mdnO7ItFCAS091hLSLC+JNd43OuDFKNlkA5AVtF5xOQXFclbGusSou0Tw1lMstg/9/hSGmv6d5ao5n0mYBlHgroJhOb01pDGKKXIxvvbydvIvtBf9Mjg8S97/H8JWP7nfwXA8t/7a2D5z/y4+O5J/Lf/x38VV8McNkp8uD7Deb3H1pY4r3f4k8sLnM33eNhsIRHx0foUSgb0VkPJCCUDYhRYlAOsV7hpaxjl0Q0FjPYotEc3GrS7ErpwOFm2uNk0OFm2GKzGZlujrCy8l9Da48Fyh88vTzCb9RhGjbEzU/9lUVnM6gEhSKzXDR6cbbAfCjjHDs4QBJzjh0KwEogCqvAIQUDKCO8kytpi7DVmix7b6xkAQJgAkcx0SgeEKFBVFu2mQr3oMQxkaSfQuC8gk6xXyMiuTCehKwchA+y2xPHDDba7Gm6gHklVDr7VKJcDAMA5BT8oNMse7dsZnrx7hS8+PUVxNBD8BgFdOgSvUDcDht7AtgYigdtoJeYnLXZv5pBz6vXDzkAvR7hNATm39EhGEBQq1p3IkwHhugSWFkKmL4IuAbydhpg5IAoCSgCi9qxk0RFQEbAC5qSH6w0X9XRAvCsQq8DfpwkFBglz3MNuSui5hdsbqI2CbwLOnt3h+pNjbjMAIibm0ARAp0mQiIAX7AANQKwCkzo7fmj6YweRqkeiSccWADGyvuXo/Rvc3c0Qo4C4LhAa+ljlThOUzegvDAVBWmi4SiwHOZ1DLCLEIIAHA+K6gBgFzJM9xjcNhKcs0dUHkJRluVFFqI5SaL1RBBkPLVTt4HsN0SnKlzvWpYQkCxe9hNpLuKWH3imERz09tjMLXJXQO05oxxP+Xg6U2/qFh77VCAUZXF8x2VI4sHLE0pMZSlbGhIKT7FwLc/jiB8YnFvrKHCaGjn+7RYBM46U7epLsitJrvUvSzJjkdEmKqfcC/VlALMO0UJAlnFFhSvvUrUieJt6PxZ2cah7ISrK/0824iJClgFluOrH0FVlVnyoScp9priGxi7QgYAXKm/Q5oSKk54Q/FOneDRzXYMh6y5G/i5r3d9RkkaNO419F+loTq+Or1P0oE2u/TkqM+zU8uSPUxFTdkTyfYwI9XkyT/Kz4IJspJoly1PcAbZZdC8DOyEaPS4JN16Tr0RFUqoES5uKWjGpOGLUzHmtmhTOgz0D94JFLMst0HkyMzcwgn8teQv7bF+nYRwLm3FF7P2UUgh5TN+MYAphqTdyMLDgrWJDSQxOATqA+L0iMxzwW3abKE3NPXrxjT6gcDmMiPMco3zM8UR6PT7JtvTs8N59f9nyOK3pxfYVJvit88gIPODDhQ0z34aG30uzT56/Cl4DfeMRJ++SR9JgSV4djgs/Mwup9RPeACxy6JfAqthHSpqqRlDSL5NHO4XW5viUHkflSTOdlawG7ZEiedIeqkHys03s8ya7zokuUBIJZImpnnNgre0j1LTYM/DPtAezunkqU1/Hws6QiCVqg2IeD7DIe9pMTWIEEcD0BuStFCjY7bGPq67yvLgk8l3HBhNXcwelNqvsZw9T1mRc7XEUwev9v04b0nhdTT2z2hE71KOm504JDrulQ96W7fI3qGTzF8KgDCwyk653CtISPGFcaZuenDk5fSqjOTzUpuetSuDh1dOZqmFAcWFs1eLKpAQSYWsAbOZ238JTTCsdaEl8zIEv4ANeQSfUNwaSIgMqprZ7hRaHUBJI6AdisLA1xCmIS9gDURJa5pq5J4djRCSHIaqbfi84e6kmyBFaJKTBJ3O+rzEFBmZkUgr7K/MjjbPQhiEeRbRTWUf4qxSEwKMbkI82M4gFYT9sDfo7pDNM2p2vrD9uL1gIyeSn7/h47mcBn9lr+ZXjjFwHeX/CIMTIs6Jd8/DWw/Kt/fKV7LG83M/yjj76L9qqB2mhIB9zuOOH96JyR9y/1Cp8u6VWD5IRROEwx9r6KuMFhsmStQHHHL+92GVHeCSw6frnfzeYQOuJaz1DeCFQSiLpG2fKL541aoQAwqhp6ALRg9LybAcJX2FzMYTYCpQb2f1zRk6EBMQLFCBh5mPDYRVrpT6usxQYYjipUAeiXFZaXlLz5WiSPDmVlOfF14YHxqISJfG0w/DKqE+PgyxRskMrFfVVA9cDMAu3FCcwgMNsgpQ8WjPYuCx5XFdFcC/QPCixfCbzZPMTJh8BwbKDMYaIGANvvKBz/oeGXQBfRn6fI/UWBozW9JGrkJBBCQ/U0+ZvUu1ddRbiGHqPxuEH9OqJ7UGH+ghK92auI7sxw9brQlJXeplX7yqC444p7fgQznyYK7eOA4x8L+EIxOn+XV70j2kdzLF5z20XM5ySxvjvF6U/SZF2QAaDET3FiuOa2fYkp3j0oOU1qEYH+rIDZYAIxriHjkidgd7tTLF8djll3lK3lLr5gNKrriHElofcRdq4pu0zeI07Q2d23f1QDApi/iHhb1jj5YfJu9UAujUYEhiN+KaiRASDdQ43mNScS3ZsCdl4kOV+c1NxmB7QXBq5mwEp1G7G/0AxEuavTvagxexlSPyFg5wyrqK8od2wfGqw+DFN6bU7BzenEh95Fng9DIsQ0tjk0JGhg2xZYfRQSC5EYgUJgOFKYvQrYPWNnoBqA/pShFvMvAvoTAr76ism/ZKoC5CgRpcTRh/zC648EynVEfyyge7Is9XVIHjYG7JS3vEbVHSV0TMUF7Fxy0uyAYcVrW2wjzD5g95Sz8/kLj/5EIgp2JkYVkcvU23OJYDTcDFh96A/F8WlSmj1jOcikeyChujiB1CwDtTOB+sahO2Zaa3+c/FUpIdc2cpq8tilFd/OuxuyNR1BggvEusrvUcIKpxgBX8h6tr0JiZxI7mvyEiEBzRZkfZcECxSZgOGKKrukYeNKeKcwuLbZPNeZfUILpCzExM+Wa8slyEzDOBJorj2El0Z9IzL/w6I8lFp9bjCuNYkN5YZ50B8O0XfYsUqbZH0ksPx0xrhjQYhuJcntI1u2Pubii7IF90gPfF7bhhDYzXfGGTKs3As0lJ3jdmZ7SvZu3frondRfRnSnUVz7dGx67xxqzVx66ZbotP3Ppo6tuHLpzzQl2+n7SLbD4fISv5CS3dTUn1Wbn0Z6T6cqVDzl5ub4c4SuF7kyhuvUYF3wvFNuQwrEUlI0TCJ+9HlM6sYGr6U9u3lgELeAaxZTYO0dv4aDgC4H5ixF2Sd+ZbgNM69CvC5R3Fr5UGFYK1bWFGg18IbD6eIBrFHwpUb/pp9TYoAXsQjMMxwgUtyPcTCMqATtXaF72iIZhLGrwsHMN1yiUt/bQ05j6EMeVofxyDHAzDV8xCTeHzaiBwChKYPmRxfZ5heomJQsXZOmUlWheHSa10lWoL0em1SrOMeyM18nsmBjMVNmD/9BsRoRSYzgxqK5G2IVBcdNjOK9QXg9AiLBHJYRjnUZ51SMUagohUvsBblmh2Gim7c40zM4ilAp2RhaQoEhBb4e0rxLVVQ9fa+jtCLsqobc87vG0htmMGE64CkMpOTssi5sewShuazcy/dUFuFWFqCRUZ+Fr+grVboBb1Sk9NyUjF7lPU0JveoKsACDOUFzuEeYF5G6EX5Z8/bKivLazEMc11G6EbAdEoxEahuK4ZQV918MvSuh1B1Ubpti2A+Ksgqw0ZGfJ9PnAoJuUBCvnNWQ7AFJA2gpyP0D1yeMYItQdaziilBDDCJXAldIKYt+RcUsgTxrNKo57oE9k2epoCSx9AKxjoq1nx2ZMr5ukr1phSpTtBnoWnWdgjpQHMHcvPRae6cNQ6gD0CsP9hsDnWkf2MIO5gRUq0JpeSSn4fHVvH8AB/GX/Zg7lyT7I+wCyLIDRTn2VwmhKX4WYmFWEkJjNvwBU/nxQz/9feiuj+H9/zlf08ZVmLKuvP44P/97fhao8fvvZC3y+OcZJ3eLF3QrDYLCcd2j7AsOmxOOnN3j5yRnOnt6hGw2acoTzEpttg6K06F/NEGcezaqDlBF9V8D1GqYZEYOkBDUC0QvItwXCmUUcJYrVwETYKOA3BWYP9thfkk1szvfwXmJYV1ic77B9uYBaWUgZ2KHXMChFvi2AiwHBJYZq5iFGSTar9BCSrCeigDQe8aZE82yLcdCUwG4NRO0QB4ViNcC+bhAXDvWHBfoPBsTE+qnKoaos9neUwtp9llEAYk9QllktBAH9sIUbNUzJcKE4KohOYvZCoXtA36g9dTC3GuaDDbpXc7JWp5ZM0iBRv9SoLyNuft9BzSz8poCcWZiPaoxHgSvhRw5irxGLgPnFDsOfrWDPHOROQdok10QKjzm3MJcG9tEI/ZbHT2YgAIFMnHx3j/G6gt4q+DogFhHFW0o7i1t+KPoCaF4JbL/uIIJAcc2fjyce4mhEaDVEr6A6TgrHBw5iTKzcipLWqCO9p8ces481fE1mqbhlmfj+uUdxLSkxDIA9dShfaRR3IgWIAMNxwOJjehJdfWBLgk6A8phsqtpLFOsk0bSUcJbXArv3HarXGnae/L0pvMbccJIjnMB4wsRccyshLUNY5CCgO4H+wkH2Ekc/EmgfMZhk+y6lrG5GSZcagPJWoL2gxNHVMW2H43n004C7bzCxcfVT4O5bEYtPyJ6OR/QcZw+yWZPdCgW9lc0r4Pa3uAjkS3b1RQnsnzvMPuN5lTdM2cxeQLMHtu/7lCoL7J/QZzz/hH4+uwiTHBSBrKKbRyw+YuiOCMDqJ0D3kKyk2UiCzfPAQKgtfYO6pVTv9lsC41HA0Y8kds+B5mXy0Clg/5Sy48VHwP4Jx0/1EfsnZOh0n1ifjkxQfUX2pz9h+ubmfWD5Ia+7nfFn0nNbCGQay1t2EjaveY8MxwIheTSDBsZjem+P/yzg7usEUkwxxeQNlY4LHaEA2gtBf2cAqz+Sr2n/lP7k+jJi/UG6lt8G5p8yiVa3yau5oKSU7BP/rfdkj+xcoD9hCqsI9AEScEZsnwmoxNDplt7X2WdZnsrxMTugu4g4+WHE7hnri+ZfxOlzavuOQHmXWMyWi0vlmq/fP+JC0/Y5a5baCybhBn2Qq2YGs7rmsaqBwT2rj8KUtrl7pGD2HKfyhkwGw6WAYk+Zpdlzku/qxG4meSaAyW8pPK+ZHrgY0x+LyYt493XFxbFHHO/dUybu0v8rsPyEIDlLmc3+EC4TFT2EUQK7x2pajJQjfa2+oKey2DHpVg2YFpCYqsp/z94EDCs5eTW7UwlXE/QWW4Ja0wZ0J6xZqt9GmC6ivHO4/aCAbuPkteyPyDaalozj5h2N5WduqqnpjykftTUnU/OXDsMRK6F0HzDOJGavLVytsHui6BtPMtdim5QuSjDEJ6W91lcO7QM99WVGzfuq2KeqsBEot2FanAW4cGC6iPLGIhQS/YmCGiJclQB5G1BsHLZPS1S3BPk5QCdXlfQnCrPXFvsLg/kXI/pTWhemReB9mEKRghEob5ksy6qtAF9I6NZDDQHjSkOOEXYu0bwe0T0soNsAOQYEI1HeDtg+b+jr3Fp0D8vJl19fjbAzpr+6RqVFppBCbATM3qE7M5AemH28gz2uoHrHdNi1xXBWIEqB+lWP7qJCsXYwW9bGAIDqLMajMkmjA3ylYBcawQjMvugn/6ROoHY41qjfjKxYqTVU5+Aag+zvtAvaHXTnJyBbfbFD984C1dse46qYqlv6hw3K6x6+0nAz1trovUOoFNTe0t+4Zfqr3o1wq3JKetVvtwjLmoA3yVPl6GGXBVRLsA8lpk5JaVk1Ax/gTmdkNEcHPysO4DAklk9KiMHCz0vo2xZ+VRPEuoBQaMhdh7CsIduRVSkpFEh4T89mRSCGwiDXhGC0iFVJ8JurTxIABcCfKwmx6xCbij7LSWqrD17Ntj94MTsufsTSQPQj4BziYka2ct8dwCnAY8k1KuIe2LGW3khjEIeRgFcIxC6xE5oMaRwGpsI6d5CqJk9lHNOxJgnsfQ/nzyfAfin19S96ZND5z4BbflMYy0d/7+/+yrf76d/+T37t5wYA6gc/+MGv+xh+6cff/4f/4AdP/83vUgIKiW+dXOKyW+Cd1S2EBjpr8G998If42XCG9baBqh1GqzF+PkcnFYbBILQa7zy6wYOHa1zfLvD7736GVdXj9y4+x2A0xqAQfjqHdwpRA//8B5/gSlVQxuN7z19iM1YYB4NvP3mDHQzauxrP332L9aahfFFFuCF1wy0HPD5Z4+blCnKQqM9bbtcphCiwPGnRBxZjVq81ive2sD3ltAICDx+usd9XmD/cYXfToFkMGPYF9K1B83gPu65g5haoAppFj34ZEXuF5rSF3ZZQpYcxHuOmRIgCYmug9uyoYwmzxAgFKMCcdbCdAQYF3xqY+QhdecQyYqgFmmc7uHnAk8e32L6ZYxwN5CAgn7WIW9J55k5huHDw3+7gvYS4KSEHgdNna2x8ieJOovrmBuO+4D6PBvS3NcLKwcxGeKfw4JtX2HUV4AWqd3YIUkCdUVIcDHDxjbfY3s2gW640+6XH00e3GP9kxWCl0wEhCpRvNM5/9xJrZVA+bjFKCfX1PcJ1Cf2wwziL8IsAfacRIIEk25UjgaPeaIQmUMI3kKkobhXsUYCASKv3lIYeffsWa5QQg4B4twVuC4QiAnMPN2e33HAcYY89ZbJWobwTcAsg3AuFEs9boA4ITkL1EnYZYS8siiuF+L0dhvMAeZdK5ANTYZmoCzSvJPrHAaoTqK4kxgsHv/LASLBsTzz+jX/l/8bPPnpCgPx7a8QXNbqLABgm5EYJ4MEApwXKawk3p4R09oVE+40B5kZDejJ343FEmAeIUWE8T4mI81Q3ooDhkUPzzhZ9X0B66tBCGbmS3VKKmSV+4zHZSLtKPsOzLDFmbYsIAm6Z/KlGwJ5Q1mp2Au1zBwSBYiMxPBshW67o2qOA9n2H6qWGGjnZ7h9Qbmv2BNFRA9IRIJffv4O9qbH+RoTZEpAjCvRPPISXyUdHxYPuBboHQHUr0J9F2CVB5fidDqNU8N/eI2xLKAfsn2WWmwmhTCkVCKXA/mv02bqGybQiMkW1e8gaEF8L7J8R5LMSAEBEkoQK3P6Bhd4oqgWSZHFc0bfia/q4uoe8JrMvgPU3I6KU0B3QPxRpcUJg/4T+TbMn+BOeYHU4jxhOmCY7ftBDbAx8zUl9DqNxMzFdu/GIxxUNgZZvWIVi5xGhFChvKVPsz5NvUfJzqHvsoTp+3uYE1+6BwLgQ030QDVi1kAATAMSCiwntBce4XPN5GYzrFrArLkzsnwGQBJ7tIyBKiXElcPU3PerXMsmd6SkVgQsBoRLYP+HP+lOmtEIK2JXA7hlg9pRhjkuCREQxMYn9mWQAzolA90Ci2AG+TvJiQ59jPjc7FxiXEr7JAXKC41dy+1EzbbR7ICegaHbszbWNwHAksfsaz0k69vXun6WwKA+0j8Wh31MD41KiP2Vth5tx3ILhvmwjk/+Xk/FhJaAsF3/sgmnMdkY5a/tYYjjmtspNnBJDXS2wfY+LFuUuQjlgXDLhMxiB9lwx1ElxjFwtoZKij4oOejwZxsOFtWIX0J0piq187QAAIABJREFU7N7hIolKHcLFLmD/SLHX1wMCAv0JP6/tgvUm3amEjBKuTjU/C0nwn5jJYGRKuBXs1kzH68s0Zkbg8g8UZq9iqsPgz8YlwTXrLWJiQSN8LTGsFKQHhqVC90BiXKX0SwgIUKpq55qKjQD0p5qujNMCug/YPDcwHe95X3KBxtX8rlZjRH+qIQPIIJcphGhBZld3AaHSaB8auLlhkFJJQC1d8lNaXq/xuJiULO2TGuXGYTgpEEqFkJhx6cEk1MQaCwj0pwbljYOvFdrHJUwbMK648NudG4SSY19ddvAzg+G0YNjUWUXJcq2hXISbG4SKYHk8LaHGCF8RNCN1uApwIcwtiulY7NIk73FEWFRUJUsGCLllAUgBvR3hFgXlriZ1UqZuylBqCCnhliX/X2no7QC17RFLpqyHQpE5dpS0uuMa+rZDmJeAkpCDQ5iV9FMaRdAo2QMKSanq9ptHMH2Sw7qAqBTiok7soOC+ujExlBqQ6Q7xAXFRE8AuG8ieCa9iR4ZVdAP9lP0I0fWIsxqoiukYRGJgURZkQQX4YaMUYjdQquoDGVRrAWshypJPKwsCwmEAnINISa/sx5SU80J8KW1WRF6vaB1kUTAkKKXCCiXTn7SNyEU6acwBdP5Fj5/vA/0lHh/hR69+8IMf/A+/9AZ+BY//6r/7b3+w+Jf/5q98u+v/+X/5tZ8b8BVnLBffvIjf/4d/C1fbGf6ldz7E9TDDabnH//H5e5hVZCQB4PbtAn/jWx/hH3/8HB88voQNCu/Mb/En1xfoRoPd1QyQEe89v8THP3qE4qLFcFuhPO4hBPCvfe3P8KDY4n/66HfR7iv4rcHjd6/w6ifnECcjfuvZS/yTP/oavvc7n+BtO8PrT07x7W+9wJ/+5AkQBRYXW3gvYUfNYJzC4/hkh11bwRiPVdPhbl8jRoHSOPSjwb/+3p/iH/1vv4/ya1uUxuHubgZsDFbP1tj9+BjH373C1c9OUT3ZoSosNtsGeFUSPOgAOAnRSchBwi8dmrMW3794if/zx+9jdtTBOYm6tPja8TU+vj3Fo+UGb3Zz7LsSUkaMn86hn+2xnPW4ulqgng/oXs8hW7Jx46lnsM+rBvJswOPTNXqnsf6jM9gnI6KVOLlYY9+VMP94gd37Dr/7nY/xar/E649PoY9GFKVF+OMV+mcjHj+5wdUfPsTjv/ESn/7pBeLcQxqPsDco3irEr7dwNxWZu1uB8bdauFaj+qzAcBpQPt7Djhp+UFClRzPryeb+0Qr9U4tvf/AF/uxHz+iFDAIwAfrKoPnmHbZ3DeqflBhXEfFZh8Wsx+bjI0RDn6IaBdyjAWVj4T6aY/mda9y8WWJ+2mK/rlE0I8a3DaIgGDj6ISdT+9/tgLclnn3vNT799Jy9pW9KhCqgfKswvDcAa8MJ12/fYfN6AciI4lIjvNdBaQ/7YoZ4OiL2CvULg2IN7N4J8CcO1WcF+gsHFAGiU1g9XWP70yP6EEPythQBcmkhX1Tw84CoWZ0BAEd/KnD7LwwQKuLof69w83tukmcU1wr2yYj5Pymx/a2BlTAamL2Q2H2T6bLdYzKh8w8V2icB4lGP4o8bdE899EaieSmw+cAj6ojmczLi7WN6UWMRoDZkpO05g5FEp6agHRyPKH9WYTymD0g6AV8HlFesu8kBRdFEqJ1CqAP0RkLv6b0rv3+L7kdpLDyrSY5+LHDzLw6IvcLqhwahYJCNvbAoXxiMK060zEZO/ZnSAu0ThkhUb9TEIA0PyEaPRwGqpyfUrQLqF4pg7p0O4U2F8z8Etu+QtXazALOTiTkiIJ1/GnHzW9zX6Z9EvP0dymxddfBsFWsmAXO1X6B7b4DYGKiB4TOhoKR9+WECYRcRdsGeU9WJKQV48nlpej7rNxL9KX2W1aWk17Flsu76Wx71KwW7ZEqzGgTKK94b0mLqOfRFSgbeEjDWl6wGMRsxSb19QUtBZqAQuXhgj5jKXKaEX9fQ8zv7IqI/ExhOI2Riy3NQye5ZOpeQA49SUJAiM17c0T/KoBgeV64c8QXQP2AY0vIjStZ3T8mAhlQLcvRTj827Cu3FQUYck4WiWFOWPJwIStlBQD1/GdCdSfjk+ZQu4va7AfNP1eSTVB39V+U6oj+S2D+NmH+OKSV3XPEeEIFy+vqG23Q1j33xGXsTRYjQfZKAvw3YP5aTb3XzLYfjP0rhKh07DnO4UPPG4fYbZI9yHydTR3lNq1syygUbgSafX3lLxjkUPIfqjmygiLQMZC9t+1CgeUPG0pUC19+POPmhmAKQsn93WBGYzL8IaM8kRIyor9nNSTluRHdOQEa/sEB1k7oi52JaaACYTCwCmWA7JzjPMuPhKHXGDhHz1w77hxrlJmBYykkCnetnlp879McKrkoBP0XyU84JFLOk3XQR2ycEZEcfjrj9RkEmPL2u2EcMC0qlEYHqhvJmnSpcXMl022ElUd16hELAlXLyiEpL6S+fH+BKierWYX9hyNoKyqhziFNOv70vz84hQO2ZwtFHPdoHBHemDVPdiXARuydMYs1hTP2xgmk5zqoPGFdqen6x9QRojUIUAv0Jw3+iFihuRmzeq7H4bMD+SYny1kF4gsHm8y22X1+yUqYnO2sbgeatm+5ZOYbEdA5oH6XXR4Jm3TJ5V/VkYaVNfyeJdHlLGbHqPTs3Gy5WVG97+EbDG4moJfTOwjcadqZQv+4JQiOg9w5RCtozhoDiag8/J7D0lYYvJS7/uQIX/9cA6QLMVYtQG/iaPh9z08KeNECMTK4tFNR+nDySUYgvh/cUOrGOJdNmEzso1y39kUjeVcN6DrhA6XFOXA1hCu0JixrCeoR5Rb9mqaBudnDnS17Xq83UdZm9kGHZQG5aTP2W1lFyu2h4LGPyQaYkWtENk+8xDgPEkp1acZsiyzN7mABidI6sZWYyY4RQEtG6L/s187/z/zNzei8t9n6K7JcSa5O38y8MAPqnePxGMJbP/4oYy//gN4Ox/EoDy/k3LuLv/Pd/C7uhQIwCLkjUhcW2raBUgHOUsEoZURiH3a5CGBR7CJ3E/KgjqARg5iPsmt2Fi6cbbN7MGRpQO4RWM6G0DIBNHwaNQ7wtgKVDdGQzRMkQGdSeiyqd4mt6CbWy8G3qqpSRXYsbBo3EmQcGBrdAAPBgn96xgzABcX+wwgorEOvAn0dAbAwneVVADhSAZFehtGQ+Qn1vFcgEiL3iNsaUmjaKKRiEoSSCMlydkg08E1WhALWXlJc2HrCS6bFFgOy5Cpa7x+LDAfG2gNnQkxMKMlcicmILTylmBKYuQah796KgdHM88VB7xdTTgavqahAYzx3ZxSL5TlKXYVRANJyghiIilOnY7j3y5JY9e5FdkSmcI9YeslUIJcdH7zlpcDMemxoE3Iz1KwwVYYpp1GTXAEyphQR4ACLHNSfSqj4F0/gkbe3TZbNkdYIC/ILpeNUbjeHUE1CdBMxeSHbVmTgFdshBpAAYINe3iEggo7cyBZqIFMzDe2xcZf8eIHyqlukpGZUpsZF1GQLjMsLsyciKwH3o7lDFI+0hWEGOiVV0BIMAQVT9hoX107VSBE6qE9O9kbeV+x7VkIBQAkb3xy+Ye/K+WTovyWMTIYEURylwMOk4fQJiiudm52ml1Iqp6iR3T9LXTPAyLhIjIg8AJNeZsFqDk+YcHJMDcHLiqmvSvZGtK/dCX3xJMBJSD97Uv5lAoE6ppYzpp681g1ufqlOC5u8zyAz6UGui+tRfmfaZjz0zPDk5Nr93WVtyeK2rMQG1UKT01mMeY74OZnd4fvYe531l2WUOUIkSU6F70MlHHgjQROT1kx5ThUm+36ZOxTQOEAyyycE12Tc99RQqsKJD877IYyUcX5N/HyV7E82OAMHsKBcGkNIvU4dgI6YakykcKtBPmYNC7CKF3vAtz3RQQ1CC9NnEf9w7B8vjjnkSlcY613NkWTzvX46LnRE8Zc9svt9Y08Bt2IbnkmXR7Kg8BBfl+0B3vMZqTPuJmGpBckgPeyAPn5spKy5JO2NKTb0XlJMkt3w/H+7lfL6+oow5+4S5DUxVMNP32PR5fQBmWVYpAn2vrhSHQBudP9fFwY+YmU95GPecKCx9ToI9BAIJTzmgK+n75XmKdA9zm0z3PRxbzH1+EUCMye/OahDbMMQnJ8NKGzEsFUwXJg9oBpTSs49SukiJuiJA8UXyfxoxhQvpjt/3wTB4J59frvOYJJghLVDl74UUcuNLqqhyvQtlxIcE3Px5robACpIUrONqAbNjxUvUYhob3TOIR/jIcQIBbCiSZFOJNDcg2yccQ3Xk4OErfTjONKZB3QOSluE+unUIpWI4EHietHuQOWZt2KGeJD/y9WGFSU5gIxAXqe/xvieUSbJh6paUvU3nw9TWHKATJTs14SMVIoWGsJ6MdTse2DVgSn+N97opp+AeAFMViCSwFDb5E2M8hOvcD9DJf5IfE0ry7wzavOeYJiAXpYAYkp9SSob/5P1n+e3PY4FcfZK2N9WQpI7P6NyX/Z5AktQmT2UGkeHe8QP4pepG8rYBbv+vgeUvfPw1sPwVPMrnz+Lz/+bfx7AtkdM8xZhKzpcOeq3hlh5qOcJv0wdKqpLISX92ztV4d2ahrjlbjZLgRJ/1iJ81UL04pDI6ASwt1KsSuhcYl2FKqYz60PuoeoK24u6wGu9WHmovoVp+IMYUfOpWHvVLJk8Kf5gMs9tSTN6z7iGljXmiqsYEeuqUQllFFLcHX45dEizqjhN5X3CyzKoGgSi5HcaDHyZedskPeb3lcbJQ+vCa8YyeODtngie9hpTbySFJZQTTHseTgMVPFXsWPVkE1QkMZx7ljZrAimrFFElvl+m4VNpemjj2ZweAYzYEQXrHiZXZpclpBlv+MOn1ZZqMp8lxTAB2XEU0LymhDalkPIO18YhgqL049Cf6EhhOAuafkUmQyfOUJ7Wu5vHZGRmh5UcS/ckBgGRQMBylBMviMOHKBefFFujPON4Mvki1EMVhkmYXBA45ZXCqgugPwGQ4wpQoGVRE/VZg/W2H5nMNs8UEJAiO6TPLSZi6YypidcNr058eUj7z78d0DG7G61VeM4mxP2M4lms4llExwIogNfncKjIC41KgexDJtC0FVAf4GmBsPr18usXkKYoSk5ctXyc7J7CjHEwczk0ReCCFBvkq+Z/WSAEbfJ7ZHoCabuM0CWcZPfdTX/L90J8JmE1McjSOtdlzMmgXSLUXTFc0Wx5PdZ0YH8PxdI2Ygq3YnRkniWdmXHzF0Kooed/4kqmG44oT8fptnO5lOfIYmYwqUN1we8MpUF6n98A+T2R4H+kEGLPEU/f0S5rkH9R9nIKpmrce7UMFvecYuFpMdQp5Qp8noeORQHEXp3oHX6QJa0fQUW44mfAmVWrcMDwo969mtkv6QygTQJCUAaPueA+pkedQbLgv15DZGo4kqlRhYdoAV6dJkMCU/ptfW9+w2qK8Y3ehGshO6SGmQKE4+SKnHkgwWCpoTKDGl5g6Q/OihdkHSB/RHSu4mZiCuXTHYxKeHrzqLmCcSxTbgN1jhflLTghziFKUBFvlxmNYKbiK+7ezzNqx3zEX3QMERwz5Eii2hz7HYclra1omTw4ryfTW1A8qHb9HeA0ImIIC6hs/AZBhyQl8fU2WKEs8M8OWQXK5YehNPrfccVlscjUEj3VYsuOy2LLaAjFOqbVqOCS+HsAB7wnXyJQiGyYQmQNnhMsrOOmz1WPanxo4HmRzxdQrKUdWbfiKk3A1BgyrJBdNgE/3DLcq1wRR0gb4msynGtJEOUT4OjHLe4KxKJH6IDGloEZFya/uGP6lxsDeyTVzF+xcJ5ALmA0/7FgB4icw5moF3XuC0QRW7Eyj2DK4SLjMYAaMRwZm5+CNhO48xpWB2djJe2g2I4bTaqr1yD2Y1eWAqCXHNUSoLgEwQ3ZQpDTTKAT0boRd0sTMdNUMbCnfVq07JLvWGmpvyfK1Fm5RMggogUw5OLglA4ZyHYevDWTv4JcF9HqAnxWQLdk64QJE7xBrQzA6sG4jgz7hAuAjYm0gOn7R+bTPLHFVg+e+AMrI9z3CrGJ4UKkhBkc2LwMzcwCZHHx3AHs5zVWl595n6e5Vg0wVIcnfKHKq632vY9pO1IrgMAXkIEQyhPmRAnsQAo8BOPg587/LgttLwToxB/P8ReE94j67mJlFxddkdjJGxNH+OYbxz/VY5p7Ne4+/FH/8JX7Lr3zdyPNn8dF/9lcALP/D//jXfm7AVxxY1l9/HJ/+138H75zd4sPPH0CoAGU8lIrwXkCpiOFNg1gEzM5a7G9qBrzMHIITKBuL/q6CrBzEZYlwNkLcFgRKG/qupE2Mmo7QG3YR6rWCO3L8wMo1EpEsX471x8pCvSzhjjyES4xVy8lC7hjMq6x6L+BmBEvjqWeFBQC9lvBNSuE8HaA/qWCPKPkDADUKDCmYRfYC4cxCXRbwFWVwwQA+MZnCC4QyoLhS9O/lugZBIBslWFvhAb1j8EuOZ2e5OMFxqAOqVxp2EaAG1jW0zxzUXiFqShNlLxDqiCgiUJEhVXsJP+ex5/26OYFd95AMoK8zA8brq3oBX/DLNf9O71ISY8Vx1q1ItQacnIbEHPYPPHQruSgwZ0BLZjs47pT9jUd8vrQETP0ZJ+1qIAA3OzFF3vuKPY8hsR/jKkkbgWlFOFc0MHk0TqvEXCUXqQaCskHdCuRIf1/HSXJnF5GLBnkc0vmx3oLgy5eYJk253y0fZ0hVDrkbMIPN8oagNIPsmA49poAeTtyRSt0Jcl2qIhhXMQEnMXXB+ZLbmL2kPNDOeW55jM0OaB+nRZAeX+qQy8AmA6NgMAUFqZHAVaZjVCNgG0rq7ILHPjGDqVJCDTzW+jKie0gQoHpg6v6LBE/9iZjSkNVI8JoBaGZN8kJL85rPzwBKJkDCWPp0DzeHsUMCL6pLP0/7YZpt9v0dqgNc6taz8wNQ5iQTUxhIVAfAmVfnoxITG5pZrdy/Z5cCekc2JwNSO0+LDrlnseJ9l1OGM6CwM4YWiRCnxSGX+gWDAso1FwOE4z1YXROUAIfXuFpMzJAaIkwLtA+46JBBstkdALxuM2N3GJPyLsInFhWCgN/OxVQfksOG2DGZGB57+F7I4+YLMYFkyMP7IINtV7I6YlymBQwNVOuDTDI/gibzJTxBiG0okcwP3ROs2Hka1zb1JqaFKtMF2FqmonmCyWEpJ8at2BPAThUemhJH28gv12JIoLrzGOdctDQdx9+ljk+ZPGbSEYyXmzCxa2qM0/2Vqy4yqDL7cGD8BOsgguZih9kHJuum/efwmem4EqAJhmMtApOdeU8cFgLus7xRAOXaw87Zlfj/sPcmsZaleX7Q7xvOeOc3xouIFxmZWVmZ5ayuqi4b2nK3ACPMFskLIyFv8A4bDEgGGyRgA2KNkNgAArFASEhI7IzaCIGxjWj3VNVdQ+cc03vx5jud6ZtY/L5z7suq6q5sV5boavlIoYh47w7nnHvuvd/v/5uCioygDTGxNQas3a/PkDtW1GsCStW4IUyG31G7ihGeWzlcl/wcZXVG/7nZd2TqyjFZPEo/k42LkvG4UBZi990Rz3F/HGaimCyrxcAsDiA3kQM49AkfQ9UEIjwGg2Y/ZXWGFFAN2S5KK3leZMs6jD6Ju2cU2SnJ61RvDGs6bIBsHbp5ysoO0zOuEtLS2y8CQTIZUBlfN1Z2DOBYIrJxDnacQG8MmVkhENKeEQsDoITAEKijKr4Rg5LRs6oYCFTqWLcBnhfLgYDsHLq9HOltC1dqiM6z3iPTkF1kM/u+ydrCF5qgUUp4Ha/jxsLnmkxo66LnD7CTDDLKSSFE9EfGQQR4rffnVZgYrpMlZAxbQ/9jIiE7MnJBSsjODnUiwjgEpQAlIBpD8Bk7M4e0V+sG8CmcZ3Jw9CZS7urYR6nV53/vd0nCwjp2UDZMxxVNh5CnlLLe67X8sa3fh89VhNwDkcYMwPDHqj7u3SeEsAORw4fiPdzQA87YVxl+UldmCLvk2Psdlz9p+wIBPr/4jOVpOPkPfg7A8t/4p8DyZ96yp4/Dg//w36bUMRCI2Cnlf/2iue9a83lAciMZ+qB2iw9dceFECaAY7qPrXXk2gNgNt2MgezatD8nwKRePyTrKhiyGibNqWTgeBCWErBPZPV9fESGjPK2ffN+Xf/mE7IodkQHqF9U23/2+lza6lIvw3WKhZx2Z1lg9ILMmO4KKXqJ3vwNN1RjSBttFQH4Te9U6Jn2md0ybzG4ptetlcQAXOM1BGKpdikuGc/TnsvexyG7H+slut8DuJXq9ZIkJl7vUyH5RGkRktuLCuT8XuHdJ95K/vpKlXZAR6UvGfZQy9kAaMgKVePy91BHg/7vJjnlSNeVRNr8njQoYzlO/wDDj2NVWRylVvltI9fULZkwmSW8Dlu+G6I/jax707ryla/qRyMaG6HPrWd2dbI+SxoBuHhNO6930X7VhYHb7x+6DV3rWrmfxVMProZuKIWm09231TBuvzTDI6oTH4PMyE14D6TpAtWF4HGl4fj7/nHExuwkD89P3CIpA5qYPKunlij2oUx39Wz1wM2NWgdhMDFLP3i9HMLdjkfqkUBWHoASzPL7eYyUcBrD1o1LDfnMpkFR8HWxB0KI6grd2xs+THkC6NILVvu4n2zFRPTPsEvq2guSxBUkf2cAWOnAx5XgNFDes17Cxb1B1iBUiDHvpmTjdBnSjHjiEYRDA8vnYYycx+LV6+Z204R5Lz+spCLIlZrSrw1HtTtam2jCwgSEGjfQVHcP7NLLnyuzklEHw+YLiYEc30evWhSHZ0yVxfy2frwdU6doPjJvNeR32nxd90f0gixykmNzhZOMGFq4H6z1TaQqJ/M7F88t96SWi0oSBHUUIw3H2IKsHN/q+vLIHZoLH0Y3I3iVbhoT1skjKAH2U1XoCsigHpLRXxO5H+s96KaXPBGSU4XJwshsmUvIaJZOxWsVrPl83Vkg3rAygZFlAb/0Azm1JhlQ4svey4zGohpLFnTSU+8QeTAIlEcEF1RKs3+jrLXqmUFj65ZKthct48lXjGFYDDK8tgQmBqDTxOaQY2MT++u39gT2QHMCw3oU/uYxMorQeLlNRYuoHECRdGKSdsvOQrYUbJTAj1qKoltaFwVsXWVndOA6DJEOBpPMQse6kB3fS7ACdMJ7sWUPZp7BhAFZeywGM+VQN51l2BKRBip3P0u4Y1KB2AMyN0x1Qi+eoB5794/VSUGE8QqYgawNfMDm0/7zrAVlQURJaW0BT4igbgq++WoRyU/4bWu5sE63lficKsrEDeCNQswSuWhIYAj8OnuLt6UEE01HzhJJTpeJziSgr5eveS1IhBHyR7LyPJnZstnZIWkUICGUGUbVkCe+xgaLpeF61AozdgcCmQxgVZB7jdSDcPVbzHggMiYbo2cPh956saP9vYAdE+xTZ+9JX7xG8J1uo9U6WqvWOzewrSXovY1zzD0E5PTDstx7YSRHv5/G5upF+cw4DoxlZyeHnwE66e/93P/oc/fP86M/+qO2fAss/dPuTAix/oXssk9SSCZs6TA432NyVKCYNKjVCcqdgT1qImxRu5HF4eotrs48wp55QZxaJ9mifjck0Zh76VsMedXh0covz6xmSDwq49zYMs7kugNQDgp5GM3dMYNQBOGzhOwXRKNgDh/yzFPUjC6gAOaIXU+23yL5Ton6/hlABbptArdSwwPETpmvkz1MmVEqWwoeRo0dz3qF7nTMl8k0DUSlgbBEMQ3oggWQpUR9YyFqhPQoYPVMMSwHgSwfoAJNbpN8tsX1iIScGvtaQlYKMDF3vMUzvJJo3WpTTBt1dge4RgFZCbRSyG4H1LzcYfTfH6qsO+WuF7ddb6LMUqhaoHzrIlhURx7/BDr71W/xwL14oVO830C8yLlJ6P14XZWVv1hDPC9iFpddxZiAqjSACFt9VuP2mQ36u4d7dQv7BCNsnHrqSaACCnDQMDLGqBewkJqUCqB4FZNcKLn4plmcBN/+MgbpNkF8LtPNA5nBiIe+YBFe+ZK/h9rFnfUQtcPsti/xVgvXbFslKwWsyxDICE58SEK6/YlG+oMTZtQLrN+mzLM8IJOyIA4r8guCnLQI2pwHjZxLbU4/yTKDZE6je7jD+gxTtIqDdstKiPg6QjkEpestBRe8tDKnH6BOF9ZsB5SuB6iGvp9ELMl3VCRfL+ZXA9hGPa/xMoF0A9SE9pMU590F2AtkNnxOBwwQAaPcofc5uWHpenfB+048EKzQ+DgOY2zwOaBsR5byUdtupQ/lco7gKuP62w/hjjfqY8mNbsEZl8bsK9ZEYwF/vCwuSATXcN7KiwgOL7wdc/opHcku9bPWIrG92J9DsB0w+Y4WEGQfMf0hgtHo7Brw4YHVMX6eq+TrLjguo9VtkuEfPJeqTgOKcoBIC2J4Q7I5eslPWTDn4afcETC1gRmTlkg1BtbSsMKmOJbLbgNVbAtNPyLhVRxLlhYfNBaoHZGG2IrLaDtj7IfsrN4/lwDIHSYZbWAFpJdZPOFQrrgi8NicqXmdk4aUBVm8DRbzm0k0/qGBNSLoGhOM1c/DbAddfF5h+wnAWgLUc7UxQ1hgrKbwSA5Bq9phamS4xeBd771xzKAZmX9dAdRwwfsEAmaQKWB5LssQHAqNXAXdfjZURMUAmvwlYvq2QXwdUE3a4bh8JjJ+TvVu9ITH91GH5tqJPdw5kd7xeywsCbDPi0CVbUjab3Xlcv68wfhaiKkCiPpAorj3u3laYf8TXw5R8HBEkg2ZUTACNQ69uvFsw6xa4+Rr7L8cvffRDBmxOFPI7Aqn1qUJ54bF9wL/XpxLjFxwaXP2Sxvwjj+1xD8oAUyoOCcaKQ43Ibl5/LUFx2Q8kAkavyTA2jyUmLyzWT/Qw8CmuPexEoD7kuStuPOq5QnHjUR3owfdJkC93QTcLCfdAIbvzSNdHaq7QAAAgAElEQVQe6dLi5r0MqqH3Mb912DxSyJYExcna4vr9HOWFQ7py2DxMACgkFZlZ1QLllUMzVygvDIQLqI4TFFcWLpWoHitIC6xPFaRhYFCQQDdRfP0coNuA4tJgfZpBBJ6jds7BS37rsHw7/Zw6AFEJ4FImxwbBDsvqOGHYDoDqWKO4cpA2YPNQY/pJFxkuXr/dXoL8xmD5dj4EAE2edbBjhXaeDj7HbOWGwWF9kA4y1SCY0No+UMhvLWRr0RyUSLYOzZ7G6KzF9nEB1XpozWssWRus3mLdCAdiEjYTyJYe6V2Hdj9FurKwpQI8kN22CBDYPipQvG7R7nMCN/pkheZkjOy6weaNEYqLDttjSl/zyxbbRwXKsyb68iKzmMe+0OMR9NrAThPYMQN8iosWAYDLFGTnYOcZuplGdmvgU1aEZBdbuEkOM9ZIb1tUT0oka0pkixdrVE+mSO86dIsU+WVg/cjrCgEC9ekE+XkFn2q4ec5+01db2FkGvWzRPBghf7GGmyRQNfickzGSuxaqs/DjNFaAKKCgvLbdy1C82sLsj+ByhfS2gS9TAk/rIKBg90ZkJXMNn5EpVlpSZjulcVg0FvbBDPp6Cz9mF2YA4MsUcqt3ibBxs9Mc+mJF4J5kBF5ZClE18NOSbGeiIbc1wnQUFxF+ALwACF4Db9d7IoVSTIKtWzKYqy3CfEJ2dLUFkgRhXPDfIQBFzr8bTi5FmvCx5G4g9rmtaSlhzTJWhfSAuIsLnSz2dTpHsO08uzfThIE90Q8aQoDQ+sfrRvqtB6hfsL/yp1aS/KJsf0oO4ydtX4ixFEL8KoDfCSFshRB/FcC3AfwXIYTPft47+Edti/cOw1/7n/4iPlgfIdcG/+LeD3DWzfF3X30Nb8+u8aS4wfdWJ5DCQ4qA62aESdriMNtAS4fvXD/E1/fO8Q9fPEXXJljMtvil/TN8sDzErx19hF9/+R5Op7d4WKzQeo0PVwe4XI/RNgmeHN2gMgm+sf8KL6s5Xi5n+HMPnuO2K/DdVw/xF974BMYrfPfiBEVq8NbsGmfVFIfFBhfVBOs2xa88eIaPVgc4X0+wui3xxqNrtE5hv6iQSosPrg9hjMLXT87wmx88xcHRCu8sLvGd1w/xL73xQ7yo5jjbTjFOOtzUJW7uRvjVtz/C3//OuxgdVuhajaLoUGYdVlUO02l86/QFLqoJLlZjvHVwjVRadF5DioDv/v4T6HmH+bQCwAHSo+kK55sJUuWwbjKsLsb41a9/gP/nH72H9/7sZ9h0GV5dzzAeNShSg9fXMySpRZm3OJms8ai8w9/7B99E+ZQxin/+4Wf4vZsHcF4iVQ4vX+whn7X4pZNX+I3vvYVk2sJZhfG4wep6BJU7KO0wKlrsjypUJsHl7QQhCBws1jh/ucD8cIO3967ww6sjhCBQZh0aw5nJdp1jNGmQaYerVzPsnSxxczGFUAEHhys0RqOqMijlobWD/f4UD3/lFS7XY2yvSvzK+x/hH3/6Bv7M4zOcbyaouwTTosHNegTnBFPBMwPvJbbLHGKrkR5VeO/4At8/P0Z3l+Hg0RLLTY4ss9hcjPDgyQ2qNsWirHFTFWjqFLNJjasXcxye3mK1zdFdlhg9XGNzNoaqJZInW6SJhZIeQgQs1yXCRY7s8YZVLiLgrcNrnK2m2NYp8txgkre4WY+QJBabl1N89Wsv8Go1RV1lyHKD6uUYcr+FtxLHh0u0RmOzzSGVR7vMUSzY6eq9QFOl0KmF7TTeOz3Hx5f78DF51qwzInUJCOWR5BbdJsV4r0L94YxBRDJAGAmMLMppg+rFGJgZlJMW27sCQgZABEgd4FYxdW+p4J/UkCLAthr5uEXXJnCNgtAeoVMoFjXqy5LDhDGrRhCAbNqyj3Vq2OMKQBUOUnpW1RiJtOzQ3hQ4eHyHq/MpkssEZs9C5A6zeYVtlcEsM8iRYY9tpfk8hYNQAUlh0N3mgAfUvEOSOLSvRjh59wKvXuwBQSB/kaB50kHlDsED8/kWUgDXny4QMg+Rsqd2Pt/i7sM9ZKcbNK9HDMTKLbyVSM5TQABm2k/uMSTdCisQUg94QT/1WsLMHcTI4uBgjcvnC5SHW1SXIwZtFQ5yoyCOW8hnOYdkpy2ECPC1hqgVQuE4FCgs1IsctvRQtYRPyKS3xxZqQ2m7rOJiQweEsUNykcClfRCUH0LC1FZG9gIwM0e/dukgNgrJUkJ9bY36uoBaMT3YZyGGTUnYqcPkA431OxayYqCWywE3dkivFLoDB1XJOIizGP0wg5mEgXXfhZoAdmYhRxbiPKNdQHNAY8uAPpTKpwH2SQNcZcN3jR87JFd6YD2l4fknW89uWJ8EFOcK3ZxAR1iB9thCrxQl8nek3ofuSxDsN48M0guNbo91M9mVhJmx87WX3fehR2a6k9D3bH3P3gfNYwgaGL0Q2D7mcK1XZ/TDp3QlYHMOoXTNXto+3CnZkO1u9+jrN5Mob48+ewQxBFf1oVnNicPomRrUCmbEpN4hHCoFXBqQX3OY0U1Za6O3PUsemeMNvc+9X143O4UAQAZfdTt23RZA8ZoDHV2RjW/3MciakzWi/z7EOhMMagnV8bmC2ilWhOV10s7BPtqWLFR9BBSXHG65FMMgafuQAzczRvTPUhETBFUtsuMgK11GOXyvfkoFsjuP6oGkmicHPZ+SPbG9YiRbBmwfcFBUvuZgRAQ+Ty91toWEGVEuLzwTqLO7nQc72XD/XC5QXLC3dHzu0Mzk4HPenHBItHoTGL3CIHvuA3fGZ7x9tiJrHiL77VKgvIqy7jaGX9VULZiSj91OYtLxlhJRW8jBtzpI1SMgd2nPdGOQYwsP6CjRbScKxbWFGashhCnZetT7CuWlY3/qGxqTZxY2qiSEJXPfDxK6uR7UMKphX2hQggz52lKBFNntIDkk01uGASWVhVexciXaCvTWwGsJnykqeW4b2EkWZc8WdpQgWbYw0wyycwwW0hIhlVCVBaJHtZfqysrATVPI1g2+UShBJjd6RYX1A5PrxtnQr0lWeMf+y8ZANAZ+Vg5MMjoDtz+Gut4AUrL7clKSldTRA9mH9BhLwLrepdYCZFoRAsR6C5QFUNU7BrFnS30A2haQnweSQsl7TOnOg8kPQzX8+8eSYO9vfypSYU/Dyd/5OTCWf/3LZSyFEL8G4J0Qwn8nhDgEMA4hfPJT7/cFgeV3AHwTwDcA/PcA/hsAfyWE8M//THv9M27FVx6Gh//p38DJ/hI32xJZYnA83qDUHX7zg6c4PF7i8nyGp08u8enzQ5SzGkfTDa42I6Ta4uZ8BpE6qMTDv87x5OtnOB3f4v/+g6+wO1IGeCuxWGxwdzeCVAEuLlKFCihHLTa3JSZ7WygRcHc2RbZXI3wwhn3SYD7fQsmAq+sJF363CXzhh4Wq0p6L84sM4rhFuMgoE1tYnD66xsvLOXCVIcwNVOpglylGx1vUn03gZ5ZT0cxhb77F1Ys5uxetgLAyLn499vc3uLkbwTcKcqPhUw8RBMSsg6815kdrbKsM6vsj2HFAeNTANXEiFpnM8KCFrzRGBxWqszFC6iFqdiu6ow5YaYSRQ1Ia2Jsc40crbF5MIRcdXKOQvUxgv1LDrVJkrzVZwcc13DKFqiTc2EHfargHHeR1MqSU+olFcpUge3eJ9gczpEuB7VMu/IXyCF6g+EGObhZgDw2ECgi1gtoouCmZW2F2CaSfS4rtWMVgx6z+6BYMRjLHBrACaqPox22Bbs8hiYFPds+g/ChF9YaFXiq4sUd6LSG8QHNskZ9r9gGeboFPR1AVF2fZDRdn7cLDTxzSCz18Odq5BZIAlTmE1xkQvZbZtcD6HQbu1CcOspHwxy3EdYrsRnIxLABzYCBahdGnigFDBx44aJH9sED92CC51jALLlp94ZDMWogPRsivBDZveugNOwW3px75a4luQeZw85aDMIKps0lcGANoj+PPG0rBXemRLCX9tk8Nyk+TGCbFxahPAPuoxeS3cjKDX3VI7iSk4zmTjcTohRyqK8zUI3/NazAoIL8E2j0uZHv5cl81ITuyi8LG/stAKXt+KbmgzSPIGfE1aA7oDfZv1tA/LJHdkIXtU2SDAvSGzNzlv9JAflJwsR7lzbJjaNT0I1ZVqAaonhrkZwn0FqiPAkavmICbXYsh0bN+5JBdqgEMsF8y7lvJ6o8u9nb6JEAaMSTKCieGxXCyDtg+7CXaYvApAkB2E9Du0zPay8p1zWvMjPG5YKN2L6B8yWvSjO8F0CCeZxfl2oY/7xb3go4sMPvE4faraidBB3ZBNlEu3deStIudd7f3nUoDQNI7GxSQX0fPayngM4KI/CbKyNvo+40BVtLwOHoQcj/lua+3UG1AfUAPdXEhhroO+vz4nVcfsceyD77pj605oB9ZxWTOdsEwpeqE5xzA4MFM1wSRQ6jRvWqXnl3rU1j76/Z+IqpP6P3tU477JORenu3TKH+Ot2336FdFAFM1uzBIxfsFv25Ya1LvRankvZCx3m9pone2m1JxEKIv22vKjhHIJJsx2eSddSSek7nA6Nxj80giWTGwanTuhuPim5fnxeYC+a2HMgHVgeS+HVD2q2t6cMsLJqaaUgyBQrrZWQXS6FPuQYjNRfQs+yEEqQ89yu5ilUcu0cT+UiBemw2Prxvz8V2sZOlZS4BghbeXg2ez91+7lIBO+Oh1TinVTjcEKC4RQxKyLQTGLw22JwmKKzd4VUevWlQP0gFY8TWh/1M3Ht1EIdn6KDXf+VpdKpCuXJSeqxi8trufGSlkdxY+YTBQkALJ2hFkNQGqcfCZxNXXExz+Tsf9zSmzFp4gTFcGzUGOdG0gOo/mOIPeOMqNu4B02cGOkyh5xgCwVE0ZdLKxQ+2HTwWSFd8ofbJr0DIqGuwgg/bRSwtPGbct6L3VlYEtk0E+7DNF6X/nYScJ9NrATBPoraUU2Xr4MqGsNVHwKc+BXneQrUX9aIxkaxkipATMOIGu4jqqs2iOS+SvK/o7jadkNgT4kj2esnWUE8cQIbmu4A4mtAN0lj7NCPr62hLROnY6AvRNNoZy3br7PFjTcfDm/U7q6jz9l2W+82r2iappQhaz6QaZbihziKohS9jLcRGBYL8JwT7LECjF3dYIP+qHjMmuoijInMbHEVk/waIns++mDIayX3QGfXfl55Jf74f5/AQv6OC9VIr3/UO24BxElM3+qQCWf/vnACz/xpcHLIUQ/wmAPwfg3RDCV4UQDwH8zyGEX/2p9/2CwPK3QgjfFkL8xwBehhD+2/5nP/Pe/wxb+c7D8O3/6q/CB4GXZwvIxCPcpcjPFPw31zCvRhAWyN9aw1oJ7yTwWQk79oATCCNenHKlUb65wnadI/8gj6b8ADdxSC/VENySvrFBfVECuYe+TBjg8sAgfcWFdPvQAEYOYCm91EjWAu0iQABQb2/gPhrDjjxUxeoMnwLhUQPxMueiKaagtvt+eIy+Mw7RD2KnHmorOVEeUb45einZH7cUqB9ZzL+ncfetDqJSSG9VLFwHspvoI9VcQPZdfd2C027VCNSPLYQRBBKBRenwvI1PAHvYofgogysC8kuB1Tc6zH4nxfqpR3YrobdcrHcLh5AGpJcK0gnkF+zHm39P4vZXOiRnKdIV026zK8r70iU9m7oPe4kLSTPG8HzVQ4KEdhFw8LsByzdlDA7hl395FrB5wn/nl/zSqg/jwsrFiP0RQV55JqOPlFPqfnFVPfTIriWqJxbCCeRnXC3Vjy2mP9SDL0439DKaiUB95JHdSJgpF3v5lYBLdn7S8jUXdKuvWeSv9JDy2s53wTjpkh7Y/JryzfJcwMbFt0u5AG8OgPwKQ9Lo+pQeTjPZBeV0M07ZN48pV5t+BFz+BYviRQJhORnvKzEQuGDtOwfLc4F2TjmlroGrbzFMKFlSllo9CBg/I5vSHAZ0xwajD1ICkDnTSLdP+LmSrOJCGFzwdxMmqBavOd3fPvF48A+Bm69J5Ne7pE/VANuHYrgOvKYk0kwEbMHzIDzTbEdnXCCuvuKx/7uxvH0kMH1usXxTo5sRnK7e8Rh/SnlldcJzld3xeku29Le6LIbZeGDzhO+H8XN65rYnEumKUk14gsPigr7O6pjApLggGMpumeI6Oveo9wU2p2SKEOhZLi4JmNJlwPU3eB3sfRdYvcUp/fh5GNiV3h949y4ZpfJ1L63j9ZwvyRr0nlCv6SG1BQOI+lTSIHjuxy88AcM2oDpi1Y40AfltgCnEAA43jwX2v2dx8zWN/DJAt2RQ0hVllNUhve3pOqBdSF4zF+wy7CaUEnczMQD2yTOHZk8OSbjZKqbAxoCh4tqj3peYf9Dh5r0M5aVj8fxYUNZ5qsnMBHopbRm7CzMmF4+fe9SHEnvf77B8M8HowsMUIiZwYqj+aPYIpsorj/Ujhf3vd6iO9MDauVQMacmbxxLZDZ9TmughNTvgBQCuELGuhN9LPXhJtnz86iGlx/mNH6wPuuG5z295LpJtQLOQ0FXA6NzC5QQStuhZI4vNQz3Iwc2YycPlFcGcGfE8u4Sy5GzpsHpDo7giy5RsPFZPNJJtwOjcoJsq9inesU9SOnD/BMN9+uoOl5OxSlYO7Z6GzQg25x92lOWOCDDSDY+tWbC7s7imVDQooLjyyO4Mmv0EesuORFMSDG6PJKQFRucO9QHlsqOXDdoFF7Eu673d9HPqLUFOH+wzelGj3aMcVjUezZ6OXmQHEYBuqpBsYxKt5vsg2VpURylEAPJrLprZl0iAHKRAsrK4eyflZ1EXE3xvHLYPNGYft0xJdQHLpynypUd+xcexhYLP2E9ZXnSoD1OCpK0bgmv01sInEs2+ZkquEtC1QztPkN2a+P0s4HIOQpKNZVhPTsCmageXSbicXlszVijOGrhCo5trJCs7eP6TFdmydk+juOxgC41k1aF+kCNZWaiG4UDSeDR7CaQL0T8LIAQkK4OQyqETMruqIRoLc1jClgr5eYX2sESyNlDbDt1+QRYv4boJLkS/qGZth6RkvNvLkV1W6BY5io+v0by5D701cIWGsEyFNdMUqnFIbmv4XMPnCRACzDRFfraBK1NIw4AfVRPc+ETB5wp6YwZAIyylz3LbwE+L4ec+1ZAdgWKI9STJdbXzQAoOTmVj4SYZ9MsbhDyFHxf0dcZNWL9jFBumtg5ezh4cZinlrpuKALDpELKEIUF9wI6UDOjJKZcVPsRuSfopB7DoPMFkDw6tQ1ByF/4D0LsZAtB2TIIF8GMBPgDBYZry/71vM26hM7GHknJXkfMDbmAcTQdoTXBZ1dGTKSmHVYrS1zRBiNJbSElw+KNezT+khgTAj7OVAH3DfxpSYf/kA8vfAfDLAH4rhPDL8WffCSF846fe9wsCy/8TwN8F8K8D+OcAXAD43RDCL/0sO/6zbuU7J+Hw7/y7OH50CyU9Tid30MLjw7sDaOlhvURrNJbLEuNpjc1nM8jDBlJ65LlBph3qLoFzEs1tDllYJJnFo70lrjYjNN+dY/yta6zWNNjYTQLIAH2VoHjvDptVgcVig9W6hF2lkGMDIQNcrZFNWlijMZtucXc3wny+xe3tGDpxMJsUybhDUXRYrwqI65Q+za2GyDxk4oGzDL4IkPMOUnokqcWkaHFxMUNoFEQrMXt6h84q1JsMSW5hXhcoHm3QPJsAhy3U85xplPv8spIJJW7BSsjLFP6opQQRgG/0zv90owEJqKcbjIoWNxdTTPa3WJ9NgMRDrjV84ZHcKvgnBMX2sANqBWEkOy6dQL5fw/9wDDPzwMxQbtcplPMazbMJ/MRCtIqMYgDkOE7Y7lKIRYdwnUHstwhOQCUeeF5APt0ifDxC+u4K1YsxDt6+we13D+BOWoRaAyqgWNRotilCrSHySB9sEsAD408UtqdcBEECfmYglwl7K0sLbBKkhxXcJ2PYhYVacTLsJxaiVsjPFbo/UwOvcvYvFg7JpIN7XSC/kGgOPPzYITtL0L3ZQFyn7AQNwOzJEndXY6SvEnQnBuwXE0iudPQOAv6NBtnvFagfOoTCQV8lSN9Zof14yotekE2yBwbpeYLugcH4Bymqhx7iqEVedNheliieJ2i+0kJFGaXdJ9PazQLcxAMTw85VCSD1UJmDfJbDjjzEXgf9WQ7zqEMIwPj3s11lzojJwHqlEB7X0B+UKC6Bu69b6GmH5Hslmq+0SJ+lA/tny+jZeaeCWadQKwWfB6itRPkqAu0zzcfWMTV34Xk9BgHEROWgA3zuyeC+10BcpcgvI/jvJIrXEvWJI+Odeug1vVp6K9Du+wjEBNzEYf5djeYAaE47pK8TeMXan767FG9WGP2D0eCvFR5IbyXafY/8ggvxdhGGWhMRYopxxiFU3wcL0LNZvAaao/gSWg4x2j0CeUo7A0ICJMtYtzELw+JeWg6EGDzD58W9wa+ZOei1QrIkmyo8hnTePqmYoIk/695skH2cQxiCoGafksj6seEgy3F/en9ueSbQzcG02Zae1j7hN1mJoaoovQPsGGiijPJ+r63qeLw+Ye2RaoFu32H2fQ2fcEBhpg77v6Vw917A/PsCN99kmrNqONzqpvRQjz+jF7gPXvEJpYmrtwneu1iXpGr6VzenAmZKj/HmMYd8xWsxhFCtnwLpksMC3UQZoACao4DxMwLNdsHBkC3pm82vQqysQOyc5HnQW97Gjji4G39KH6stRGQdeV7qo4Dx81j3UlH6OTrjgMKO6OPtZhwAuZz3TbZkIhk2wzTXu3dU7Fzleeh7LG3B18PlfAyb7wBxfch90NueJaWHVTUEcLpGrO4JsZKLVTuqBbLrgGwdsH4s0e4FzH9I5reXkaar+BxH9MSOzh02JwrNAVUA1ZGMDDVZw9EFq0wu/qzE4W8zCbc+2NX0JBsONHrpJSW4ZGrTTUA73bH57VwMFSUuj7U8DgPbyMoTDg3KCybm9kMEaSLbXXG4AgFMnhv4VKKZ7xbCqgtYn9IfbcYCiw8MNica7UKguNq9L4prpvf2DGfPEOvG4/arGvMPuYC3OZ+rOpIYv3RDBUzPmkobsDrVKC89sjt6Qk0hkC/9wFb6ZNexqlrWtvQg2ZRkhvMrg26uoaud/LNdMMVUN5SoJls3VLDsUpol8mvD+hPP23VjifKCww/VerKVhUQ7UyiuLEOzCknp6Uwj2bohkMmnDBjKbgyagxT5ZYvqJOMwYT+Dav0QyKS3Dj7l8bHHmHUw6R1ZU9ntAof6VF7hA/KLGnaSxhAlsoHNgn5eGYOTACA/28DOc0pSQ4CsOtgF13r98Q/hbLFnMyiGOUEK+FRCbQ2/21J6TeH9LiTIergioQe4sRCtgR9lEMaheTBC8fENw4HqjrUmLUOShI1hP5HhE62Bz1PIjlJW4fzOW1lEn2Oid3Ui3jNo6F59CHs51Q5st2QX0Rkgz3aAU8kd6NxWEFlGwHcfdN5jC0OIktckZQiQJ0ANbUcZ6/2uS+/p++w9mrG3c5DCfgGfZYhs6o/5Qf8Y258IYPnkNJz87X/nS3/cz/7Nv/VlAsv/N4Twz94jFkcA/tGXCSwfAPjXAPxGCOHvCyGeAPgXQgj/w8+89z/DVr5zEn7tv/5X8WrFRXddZXC3GfReg7zosHk5xezxEnujCh9/dgTYuNJJPESjEHIHdBJiZHF0sMLtuoRpNbBKIGsJ+bhCeFYi6AC3sEjKDs4o7C22uDqbQdQSIYbFqK2E3bOQGwU/NwPISlZcJGcXCupbSzQfTRmyMnPQ0w7uMkf2cAvz6Rg+j4BHAXLRwm0T6GtKR9OlQPs4dm0+qiGeFUg2DCKxC4v0UsM87qAuUnZ3biT8UQcsEyRL+ilYAcEFpFor6Fid4ePxia1CcaZQPTWQlYJqY3CIBXwGAkAvgIcN0u8XaN+roT/JId7dQP32BPUjBzHvIF/Rd2b3LB6c3uD15QzJs4y+mAnZWlf6HZDdUNaZX0m4NMDssRalPTFIbjSrIRoumlUl0B47hgCdWhSvNOpTA32nKXMdOySXGqpj92jxWqKbBnRHFvqGvaYiRJnfooP6lODbZ7F2pJc79v6hJx1gJYrnGt2eh3xUIfvHY7R7DH1pDzzySy6y/EkD+TJH+s4K1SrH+HsZQQC42FC1QLcIsGMHVUvAE0SYfQt9G7/sLgW277fIPs3QPm0h7hKMP5XYPiKoCkmAMALJikxBshKo32uQvMgoC92SIe3mIT4fWePihYb89hLth1NWtNQYFuYQBDJBEdhAkDHXW0pkq5MAV/jIpgsCoZRVLM2hhz/qkHyWobgQWL5vMfkDjc03WmCrodcSei0QErKG3SwCgRdk/tJfvYb7P/ZRPSAYqU4dRCtw+JvAxZ9nANVQJaMC+lqQ8TOBbgo0hx4Hvy3Q7FPKW5zLIRimfC3QzhgQNXohsH1IhhECWP9yg+RZhvxSoN0DzMxj+qGEzRk6o7cMX4IAJh9opMuA5bvA+NP+fLD/dvQCCFJg80Z8nWOacX4VF6yWCclmGkFSJWAnAbagV27v9wKuvylg5xbT30/Q7gFBU6bqCiYZbx8LtHueEnQvMP0Bg2FcjqFGxSeIEjOyun3/qi2Y3JxsyO6aacD0Y2Bzys+CbkalgjQCk2dk82zBRfnqLeDoNz1uv6pQXhAc1Yfc73RJEIlAdrOdUYJdnNM31i76jl1+VvsEmH3kYUtKGF0KTJ473LyvkN3wNukyoHogUFwELN8B5n/Ac1k92HV/Tj8J2DziIr464j53U57/vd8jy1q8ZnpttvJYvaGgalbQJGsCWi6QmRZbnQCHv+2xfItdnfUxn9/lBDebx32qMs+3S8mcc4HM947N+bi9LDBIgdFrB5cIbE+oJGHIFa+tIAmsNqcCs498BBUed19leFF56XDzrkZ+FcORUp6bdiGGTt5+2/u+G/orbS6GEJ/yioAu2VIyzKoWJviOzskEr08ViguP9ROyhumSQMyOxNBx6zLWCTqA3pUAACAASURBVJUXFtWRhhmR9Z59QvlkdUC54fjcwWYC9YEEBDD72GJ7rMjan5EJdYlAtmYQT3VAX9/mlKz3/COH6oDTkulzi2aukN+SmevGrM5SHZOllQmo9yj7n7zYMSyy82gXGi4RKG5s9AOKmDQcBt+crhyqowQuYzAQEOdXDR/Xa2D02uHuHc2Qrji8KC881o8V9n7QwRUSsg1YPdUYnfshfdYnEt1UDnU76ZodqdmdhS0UbMnuyj69efLCoNnTyG8sNicJxmcGtpRopyom/QrMPmlRH6UQLiBdO+iNQbdI0c4omW1nCvmNixJYpiInG4t2kSC/7OAyifowQXbnYEuJ/MZg8yjF+GUH2XmsnuaYftpg+zAbknR1zccdnXXwWqCbaejaI7tpIazH5umIKeUrSlr5/jWoj8ge9/JZqoT4vsjPq6EWpDopUJ7V/PtlhfYwR3bdot3LEKRA8bpG9ahAsnZIli0QApqjEunKoN1LUZxVaI4LZJcN7CSFqizUtoWdFbClgq4c9LpleE/fgbpq4KY5vYYAezA7VqrYXFHR9boClIDPNNSyYUemC/C5hqwN4AJC/Led5lBVRxkryGyGHszp3nsuIasOfpRxCLVuyFTW3a6O5F7XpagahDzF0GkpBMGjsYBWEJuavw/0UvY/h3UIkxJiWwPO0zdpLMSmQphNACUh6pYS1j711kdJq7U/nsgaPEGlEAhtB0gx9FQO3ZVNQ7YTBKFDaqxzlMR2ZgjtGZjKnjX9Sdt9qeyPynN/9KZN80f+/o/a/qQAy4f//pcPLD/9t75UYPm3ALwD4C8B+M8B/DUA/2MI4b/8qff9acBSCKEA/L0Qwl/8Evb1S92y0xjZKwh69FINVSH95HAIjBgHFBcSZhIGz5RLd+EFfSCCrsiwqC56JTyGKpG+KkBXBB7pkjJO1dCH1hfduyL6ojqgD40wk4D8SgwSVBay9xMlTpkZ5U4GQ8UFanMYkN5FRkPwPvpetUffHdiHOPS+Jmkx9Ki1exiCH9JbSqZ62Whfo2Bz0GfYCKRLMZTKs74kno/oCczuuFjOL8iiVA/pdUs2PF4RayK6WcDsA8q2zHi3f+zQ498sQ8eQ/GkmAXqzqxzo5bq970t2nMDXR2Ko4kjWfZw7n7+L5F5fE+Jj6EMQfb3CruDexYVvH/TQ7HNB3gOuZLOb6EuDQWbaJy2qFkNIhYzTcYLIADMV8XohE6Hr6Fmr+Z6zOT1u+XWUL8bEymTDlFVd8Ry1+2QwpKNE1Bac0PayvtknHpuHXByaEfex3xcEDAEgxaVHN2GQgc9isIYGILlYZn/ljmnqJWgi+oVYl8PJra7ISqiaC/h+UZvfBlZrdCH2PsaKkC33tU9TtaWA3pIR6WZiAGTFtYdwwOaxjPUcYagvUe3O62VKAgNpgG7O8I6+Psfmuwl+X8thC4Hiisff+8HaiaSkcEMg0uyLoeoEAMbnDqaUaBZc/OqGjEe63u1H76HMVgHNnKyOdJQ39v5GaZgU2cwVdLvzidJLJ2KYBdCNBIpbT6Yj4WvYh3ToOgweOp/EbtX4XvOax53dBdT7EumGC3AR6FUc6j0EGZl2uqs0AeJ5v3HYHlG+lt9QxlheO1QHimmakZXUTRg8ZEHu/HvSAsnWMV00ykj7a7Cvzej7DPu+xT7dVMbFpxlJJNu+ViMMXY89gNM1f1Zck9lJNx7tVEE3nPDbTKC8tNic6OGzOr/lbXUTBnZIdYjdlwHtjMAoXXvKrZcO3SReAIK3CzLWtzQED91Usb6nrxkKPRsmBwaoWbBXsE867X+fbAmsNg81Ji8sugnftww+8ZBtQLtQSCoPHwEjEP2eEkjWDi6PC1kb0Cx09OCRwe2rP/jepa/tczUY/aH5HQPE/kN6w8yYbBd7GAWSTQR3E55nacJQgYIQOyYF+Djxd6qyqI8z6MojqSxsrgapqU9YKZIsDcwsgXBAdlmhOS6hGi4mu5mGrhxlrBXrR/TWkmmKxyAckN406BZZ/IyPSclNgK4tzJj9lrqKDJLAIPskix4gnYdL5CBR9YlAujLxPLHOhNe5GN4nycagm2fQtWVNR+sQEgkX+x37Gpg+fCUkCkGz0kM4VoXYklUj0jj6/LYWIZWs94g1KkOdivHsdzQE8q7QrAyqd9URwlICKUIY/IVBCsjOwUwzqNZBNib2M3J/e7AVFHsafSKhVi1Crof9Fq2BG2esQ7GsHvGaktjkroErEkAKqA2Bn50VUJsOsmrhy4zpqkLwsUKAG6WxxsRxP4oEctPAzkuobYugFD2GLgy/C1myq6npLEIaexddGGSjwjn4nABHNl2U21LG2vsWQ8oPajJ1UXIZ9w0ARN1RUlrcY+9CQEgTyl5trATpaztkZPbShCxi/H3QBE+i9wre90Vat5OwasXbSLkDh32AjrG8XQ/C+v837fB8kDLe11ByGjsm76/nhRCfZwgBAr2m2QXsADumMXgM9SH3t77qpP998Du28X41iY+dlz07eQ8kDvvV3/4+M9k/5xdMhQXwi++x/AUAlgAghPhLAP5lUF/3v4UQfv2L3O+n1o2EEJwQwgshZiGE5c+4n1/qlpUdZqdL+CCglcONmEFNDLptgnTa4mC2wdmHh5idLjFPLJanBbq7HIcP73BzN4bvJMJDA79JYRL6GcweH7vLHcoPU1SnDFaRW4XH75/h0w+O0Z14oJPo9gBZS3T7DrKWCAsDcZNw8dIC3d6u6sLPLaojT3lmYYFlAggJMw6UjnogvdLoFi6WnNPo74461KUGAqV49QOGj9i5pdxyz6ObCYTMY+/RHW4/WSAkAWqjhu40WzAtUVQK9dcMcJsO7AccoBomL44/0ti8aWEWwOhTjfa0g75MMH//Grff30d40GD8WwVW71qkVwrrt1k1YiceoXRwlwnslOfi9Ovn+OzjI9x+XWL/d4D1VzyyKwU7DrClRzO1UBcpVBOTDtdkw7p9Hn+y5IdNt+fQLfj/bt9BLyVcztshKCQbYPUWwzb6MBsAMAuPcKVY9ZGH6L2UuHvfQ3SCQFkA4bSG+qSANPRsBtlLHAmmmwP6V82Uj9P7LtNrBTNnrUdzQICjag4E6uOA0UveV3ascegeGJQfcxpQzVi5oVrKJutD7nZfG+JPGsqYYwKfcCKG1wDZNWV2wgGqE2j3A14fcaGkKn6ZNocewgqUr1nLYUuP0XOF5dtkE2TH5002At0kDlVmUe5YAX0wiq6Bdh9A4LDFjR29vdcSYsH0RzkWMBMJl/P261Mutq2Pfa+SzydclHjOyfT4hOCyHx64wkMageoR603MCMgNUB0QDMgWCLGqQG8JpKqTyJzlUQKoCA5dvhsk+ZgEaScBXkt0C9725l2CKIa10GsZBNAuyPoJDyyf0nfXzgFIDnVUw9t0U/o8TXwtggS2j4HiXMBnAt2E7Fovz1s/1bHPk5JLMyEQXD8Fph8K1Ee9Z5UVRLtzxNTS9amkFPE2DH7YvjtWWD6ecPzblry+XRwecDAQX894fM0egUj5mlUXPlHopvTzpmuBdk8AkvUOLqaS0rMZGedzevjaOYcvXNRLdFPKMvs0T9UwIEaE3f5QakdP0mbBwcj6VCHZELBwAEEQ24xZAp9so6+xBLZaUeY35h/hFUZnHrYEbr+aIL/2lCw+UTAjfg4mFYFluuUAINkCLsoOq2MGvUgD5DcWzZ4cAH95Qa9TM1PAFEgq1o00e3z9ujnBcrql17u4CnA1hxMcECS7Gg8JtFP6GqUFNif0aquO56hKJYpLDmlUJ9CN5QBc21kP6gXWj1lREgQHJt3kfkomBxs+1lWYQnwO/AcRA3tWAWEiYQp+ZqVbj25EcLI9Uiiv+ooPAm9p2UmJnAOwfr9dpjA6p+xTN9H/OlbRGymxeUhfVnHrsXmoYtcp+xnNSCFdOVSnI6iGlSMq9qaaUkM6oN7XKC4t2oMULuX7WYQ4LMkLBMFwoL4T2CsqCbqxigMygezOoHqQonwNNAsNZQJ05WEyNQygqkPNoY/T8KlgFcqlRTchY5XdWtixIjjNBVQj0OxpSKuhGo+gBYQNaBcJko2DGemdRDXwuvYK0DVBs094/duRGs6ZtAG6cjCFGuSg2XUHM9bIX9dojjkF1ZXjYHFr0B4UyF5XMPMMqrLwZQJbcj/9LGWH50hD3KsFAXYDLQ6JErJysTOUPaABWgmoyqDbKxigYzy6OX2PZp5zyDJLUGw72EnG53Ee0BJ2lEA1KtYhJdCNg0skpJXw0xR6YxCUhNclunmKFKB/tHWwoyT6IvNBitrNU6RX1QAEm8Mcui453GgovxXWwyX55/o1WRcTh0NKIoxTqMhYdns50suarGQE/kEI+EJDbbuhUzO4OI2RgGgdkFFCDOvgJhlko4C6o4eyamCOZ0heLz8fmqMV/Y49WJQSfjZinYiSOxCmJJCnBHKRIRQAWUbvCaTjz0OiIbQCNhWQZ/x/z3JqBTQdH2/CChPhPKW6synQdgSkSTJ0X4YQIKQcwnyEEPd6KA2g43PHYwjG8Fz0ya3OQVhLKWz/XIkmcwkQYA64dScv7z2XwViI++fsD2EtQwifk+P+wm7/5Gren/v2I4TiFwKTn7v/F5TC/q+gifPXAWz7n4cQ/uYf9wm/zK34ysPw6D/76xAy4HC2wbLO0TYJzDrl4qxwCBUvVDkyCDcZ5GEDt0qB6OuDFSiOKnSdhlumg8/Pdwoyc+ynXGuE0iGfN2g2KdCyMwo6QNQKWHQIbT/5khBW0Kc0ZRdjUGTbQhKYsqqAIANCSp8ZfQAERbKWBDXxdnZK0KlqBgLJWjHaP/XDY8s2xsEnAUGzj9OVXKgLQz+eaBRCQkmSWmq4ESWhwogYTR5YAaACZCPhJuzpdLlHyD1EI4d+yOyaKap6S2Bg9uhrE0YweTUep11Y5C8TMkwzdiLaCasGZCVjbHwY2FppxOAX8/F8+MxDb1ScPBKE5FcS9YmF3igk690U3hZM9uz2uT86ykURFyKQGBI3veJzs68rQK8pUzRTz8cT4LlxDNVxZRgWNUAM+Ul2j61qyj1dHuhdqylTJiNMWW56F0MxBGWqrmDwiGoxpIOqhsdjpgwPsiP6GtNbObBfvNB6qRrBq8/I9PYhTcIRkHlF756wGFhY1XAx7DMypcKx9mDweWYBfQM2mRoxpFYKE9l1y7979tmM+djpLRlWVYshqbL3q3RzsvxD7H+sDrBjvibC8lwgxGFD7xPE7ph7htiW3BdpoyQ0ViC4Ij6f4GOq6Jlz2Y617mP4h7TUyJ53s8j+pzHIqSM7zUUsWe1uyoApSt128sh0xdsmGwyKgKB43xAZXlv2UkzeB+B+ZXcYqghUzQWyLSNwTONxR/YzaAw1Gr0iwidgMuUynhe/Y0p75s6nGNQbLkMEcdEXWEdWPspXi4sQQTt9ZHpLdk52gIoBNn3RfFBieF/ILqa4xtdVV7t+RURAIy2GdNShCgS8bTfjbbspZai23IUOSReQbMnISkvGM9kC7UwMPkEzIgPag+ceTLlsF67Th5rI+H7gtUQ225Rid+7uqzrifgrH47fZvfeD423716Af5rnI/PddlwjxuCN50E2ZlNqNY+hOyvum64B6T5KhjmmywkVQKcVwztk1SbDcv291G2KAz64btAfT7VQMaa99yJMIGO6f1DvVxAD+VQ+MsEtpVQLpxqPeY+hTz0734JmKC9Za6KgwMCVZ9t7niEAmuZvuPF8MRQKSjUOzR290rxxQ3W6NQsAQr6+adRu9BLkbSSR1GBJWEXiOhA+w2e52fZ2FNJFl7l/jqNRgai7rKlT08VGVwvdmnxZL3yv3of98kobPoWvPsCAb4FI5fEdJEwZ2V28dXCEHJrkHerJlUI/wvbqBLK9wvG+QDPDxmSTLG2KCraH3T5p4kQcMctRkbWALFWs+JCAI4nwiIWwY3s9DlYWLtRVaQBj2QQ7Hk6shgMgngv9OmcKarLoIbARE5yGth5mkrN6YJExbjQm0LlNQtYXP1cDI9onNQcTPGE/AK2wYmNX+8dU2rtWSXdqzMA4+1UMSK4N14hdQZNWYQOsZKNQ5Hm/rILxnIFBnB6bTZ+yzFm3Mf8gSyIqJusI4dlfWMSgogq6gJRnVWN0RMg3R0sc5MJI949l7F++lpQ7gMIIs0ZldOM8gY42MoHWAMUASJWz9el4IylETzX33kQ0Vgs9/bxuksPcZSSF350srBOsGlrsHogNIvs9eBj+Ays/JWiPLG+6FHg3bH6eXMrKafyoYy3/v58BY/s0vVQr7vwP4y/8khOJP4L1/4va/APiPAPxfAH7z3p//XzcpAnwQSBKHZZ3De4FvP3mOZNoinbfIyw7ZXg1hBMaTBpgZeCsBGSASj2TaQowsmm06PKZvFb7y8BJio6ETh8XBmv14IqC5zQEjgcRDzTuI3NGnuU4gEg/IgFB4hIMObmEAHZA+3iJkHuqkQsg8wnELXzpAAcmdgis9fEHvXMhdBFqBQSkLC6QEg+GIOfTCARgzIlscNQPAUMc1F2meQDLoEKssHIQOCFmU6JQWkAHIPIKI4QYZfaI+8wgjR7ntSsHuG4Q0AFbwbwGEcYwPP2ogOwGzcMheawTNLzg7ddz/uUPxjB927ZOWnsuxQ3KrAIfYARcIblL698y+hbACeiPgJ47HE29n546LFxnQLjxZZAPUb7WwRUA38wQWKSCsQHIjYSce7kELVxBk2Am75rzuE3LjF75DBDMewglkN5IVG7lHfk0ZslcAJEGmWTgIS2BIYEM2E55dg64IAxNnnzZDr19z5NDNfey9C3EAseuO80mUAldc4NQP47luCZBMPEZdxdTiPC4+dfRTzqLXLu/BC32L+UVM+qwEVE1Q2c0DulmUGUruK88vWTIXr4me7VUN/9hJlLhO6DPsgXZQAd3cw4wjQKt5Tl0e0B542ElcyJZ8PbuFo4+1BeB5TD3QdhnQzXm9srIEQ5dd9aCX1GAI3fBpiFJpAu0gOcgxI3YGCkfw2gNrsss9AIsLmXgOfErQXB+GgYV18WeU2obYY8j7t3thCNXpq0t6CbIZBbRzPqauKPvtayqkJYhwRYCuApJVQPWAAM6WiFUpGOS2tsQArHvwzX5AxMRTpgW7jMy27i0ogT83I57DoPh7aeK+BCC786gPeY0EwTRe2ZEl5P24yDMTApFuCmxOCfxcBL5ATNaNKb5mxMcRIcp3VWSqVc9g7xKJee7JNNtCDEDsfn1Gs0dmSgTuv8uZuGxHBON9BYmMwM2MKc22OUHY9mS3Ly7jQr5dUN5uRgSoLhNDArE0PD7h+NrTw4qBzXTZrh+yf00p548hPVlcqLvoC+w4QNs+FPG6YnhNDygo22QwTFARwGc7H6cZ8XFdGqsv4rF0E/qL7YheQq/4GtVHcbCjgWZB+beMATtmItDsyeH1TzdMz21nUe5vwk56WxP8ujQOZWLlh0+ixaCNwC0XQ++gy8Xw/z4gx8VrlWykgBnRYyhjthppGYbD2Ly3XYgI5BgGIzyY8it3VTDdSKAbSbRTOcjS2ylRXL+v1X5kLxUfrxtJ2FwOQwYInlebxWNwrBiRluypqh2ExQAgg/z/2HuzGNuyPL3rt9ba45ljvnGHzLyZWVnz0O6mjWcLJARCxuYBCdkC84AsEEJgN288AY/wApYQD0ayJQubNwQyoy1hWnQ3arurq7qqq7KycrjzvTGcOOOe11o8/NfecbNcTWU32ZLd8pZCEXHinH3WWXufE/tb3wTlgQTz9GxuXz3iTQ/0laTmTkQG2o5Cz2A4blIHwiCZ7jscq4WhmYegnJHG1Fbk/SNNlxtsomlHkgiLlzRbmwr72TN+7Tiiy01YgAhAvLV0k7D47SHeNHRZAIutJMuqLjBVnXhFXZD3trNkuK0+jGXhTjMwfxglMtzO0c4SScY1GjuKqA9TtHW0M2FFVevosjAOF0JllEJ3ThJhrShLXCYgyGYRNtYibU4MNg/pstbjUrlNtxaXGtpJjMtidKj9cLHBpZFIg03omowNNjXYSTKASl22Q1UIgdnEKLpp6IjsHN4Y7FQaA4aEWiXg0mstlSR5LKC26VC2vz29le+C/NyDxkjGQxILwHQCQv0okzFERu6TxLfSWISp7EGnn47wswl+ksvYR5n4K7W69TxqFeS4/ap4YEitFd/mKEeNc9R4hBplqMlYvmuNMlr20wPHfh9Kifw2ANjheYwRVvMnvZLGCIP5k4mww/jUP3r7T9t+mlT3n26/X9sO+C2l1H+rlPqv+q/P8sDPxFgCKKVy4A3v/fv/Pwb6uW4HXzr1X/2r/xb3Jyu+MLngph3xtFgwTyqe7+ecjTb8cHlGZzVvH1zz4fKYP3L3E3ZdQqwcWnlelDMO0z2/9ugt3j69JjGWy2JMFnW01mC94uFsSeMMz3ZztPJc3ky5e7Rm3ySMk4bUdNxUOdYpzqdbfvjsDmdH6/56izTq0Mrz6OKQo8WOWDvWZcbxZE9rDc+vFjy8c8XVbkwcWaxTGO25Xk44Pd4wilvqLiLSDqU8z67nHM33FHXCvfmaXZOy3I8w2nE82fNsOed4tuf5xYJs1HAwKajaiMNRifMK6zSxscTaopVnVeWUbYRWME4aXq2nWKuYTypMeE6tJE1xuRtRvRiT3imodglx3qIUvHF8w7LIubmZcHy0ZV8lTPOaV6/mqH3E3XcvGccNmyalqBM2V2MOTrfs9hlJ2qG1oyxS3jhd8ujikCTpQkWMYTop0dqxvJoynlfsl7k8tkhxTmOLiHxRobWnLBJm05LIOJY3IgGZTCt2uwwTWdqbDIwnmrTYm5TJvQ1GedY3Y3yjGR0VjNKW1WaE0g7bGlwVMT3ZUVUx7TpleiY/T0Y1u31GljdsX07BeHTWwaX0kcZv7qmfj4nOCozxRJFlv87xpRF2OLfo2OKXKX7aobQnm9RUL8fCLmtQiSVKO2xn4DLFjS04BcajSk10UmFf5nBc460mn1ZUZYLbR2BFGqvHLSa2+EdjusOOZFbTbBNUZcju7NHa031vRn0iV8jxoqZbZviRaOdUGRYDph1qJ52lam/QRzXuJiV/ZijebEkWNfbpCDu1mHUkiyQhEVc3StKJawPao0cdbhuTXBnir27YX47ASwgWgDqv6DYJRA5VGNkPoJrw90PpVtWlwU07cEqY+tzBtJP/47VBdUqqhTJZ6Ki/XOKdIvk4w+ae7qhFFUbmdN7inbxeXSrinR5AsBpZzMuEbmGJV0aY2xi6icOnjuxZTHUm3aa6g+a8JbqK6VNdTSUBPFGh0O2tZ9qG6iFgqMMBYd11pXGLjuRZLImxoXS+OrP42Il6QSHnUWEYPdcUd8Un3e9PwNkt062syMRlseJWlmwqRXWvxWwM2aVm/6Z0slZ3OpKlkQWPvRp84T0D4yIB9fFOfOZ25GkXEr6lvEiYu0nwo5+IxBzk+dpDy+hRJL7yUjpG06Ww9PFGgqF0JzU3Oshxy3NLemVwIU23ncs8Jiu5f/5KU506khstv78UX316owK7HBaVrtXgIa8Pxf/eZeJ3ro4FIDUzeV09425qmcfqNPjl41tm2GsBTvE+jPNMFuJGz9Xg/e2ZYq8V+wee8RNJ3U1uRDafLUUm3SykR7ZXAUjaJ6JcCayZ3CYBRv3cqLBA07PffXhSspXHulB91DPGpr5l7HUrTDGEfcSfZp3bmdw/3njiAnb3BBTqWpjWeiGMeVSIZ3Z3TzpCs5VUyNgs9KHOZL7SlSyC6Vb2W55IIJPXkpRrKlnIMBVDpUzPHPY1T8lGwLkkH98yzfFePM69ikGqSgj5B5IoG1WyyOGj27mR2g9ZCOhGISW3Ds8R5hMljO/4paU4M4NX26a3Kpa4YGB6u1QN8l4b30qyo0rAe5fLvm0inZztWAdmWRgh3XqKE012I/LpZqrD8fOY8J42jaTp9ox636HZe5KVh/yyG/osm5kw4iJplhqV3rOsGwmmcpH4U5u5ISrd0DdpU5FPj64ktEeYTRmHJK8KM9dODMnW3vZdNl4YaiQZN9pbmoVUoOzvpORXLfVBRLy1ci4uIum6zPTgUTalpMSa2tHMItJVi02F2fWqB9YOXduhmuX1hNt2GpEtmyCz9kNtC0C079Cdo5vEt4xqZnrhDrpxQ51HX3Giazt4Y/vgJh3YXdXKB7lqxZs6sJowAF3dhBTeqsFliYDR2AysMUFlpcsWn0SofYVPE3RRCbDU6taX2vdIJlLJMrCSoeMS7yWBtmpRbTcwoK/7Pj/FQsJtLUnvsez33deHvF5ZEsfCIvYey7D11SRKKWErQwfm65v/SdbzZ23e/YFgLO/9R58/Y/nxf/C5MpZ/8afd7r3/Gz/zsZ9RCvtngP8CSLz3D5VS3wL+U+/9v/K7HeznuX3pG6n/S//9n+T7u3ss4oJNl/Fzk8d8WJ0SK8v/c/0W56MNzivOszWPikM6Z3i0OuCdwys+Xh3iveKN+Yo/cvgRf/ujn+cvf/HvUriUX1m/w3m24eP9ERfFlKqLeGu+5OdmT/j25gF3sg3fX53zYj3j/mLFHz76hMflIZ9sD4m0o7WGOmjzT0Z7VlVObCzfOnjKi2pO4wyJtrwoZtwbr/lkc8ifvf8dfrg75+l+wUFW8Mn6kMO84O3JNb/y4i3++fs/4lcvHvLvPvz7/Cff/pd5+/Sa62JMGnXM0ooXmxmLUcnL1Yyfv/eExhm+/+oOv3jvMdtWvBWdMzzZzHkwW7NuMlLTUduIo2zPuskp25hJUvPjlyfMpwVfPLwU4FyPaJzhONuxrMe8NV7y5fFzfrC/y7ev7zGKWzSeP3XyAf/Ts6+xLTPO5xu+MLukdYZYW763POfJkyP+hW98n+t6zG98+Ca/8O4nfPf5Xc4PNjx6ccTR4Y6vHb+gthHn2ZpJVPM3f+sXeeNsydloy8v9jElSc12OmCU1N1XON4+fc1lNqGzEYQ1DiAAAIABJREFUKGr47pP72HXMe198TtnFXKwnnB9sOEgLHo6vuWwm/PIPv8Cf/cZ3+PXLN3hnfsVH62Penl/xm6/u8dbBDZtavEGPnhxzfLZhvcs4WeyYpxUfXR7RtRHjccUfu/cxf/fD9/jS+QWjqOFVMeXeeE3RxTxaH3A+3fL9j++iI8edkzWjuGVVyiLEyXhPbSOqLuLV40Oyo5LpqGKzz3jz6IaX2ykHo5JNldI5zVsHNyySgl979BZ3DrYcZgXf+fED/s1f+FX+h4+/weG44NnVgjRr2a9z/tWvf5u/8+FXOZrtibXjT519wP/85KsUtTDJPYC2jWFxuMN7RdXEnMx2OK/46uELnuwPeHxzwDSvuLieYSJLd5nzha8840fv32V6d8soaalbWUG1XpFGlnHScFPkaOU5nuz56uIFv3l9n+v9CK08m8sJ8aThF998xK9++BC3jxmd7Lm/WHOS7/iHzx4MCxcnix2rfc6d+ZblfsQ8r3j8ozOyO3tOZzsePTpBZx3eK/7Qw8f85uMHoDwHs4KmM1in6TpNFDms1SwmBVnU8cmHZwAc3F1jtGe5GqO0LKI4p/nGg6cUXYL1mo9fHTEa1ey3GSdHW9b7nK41OKtwreGLb73gRz+4z3tffkrRJjz58ITR2Z62NXzt7gs+uD6hrmLePF3y5HrBe2eX/OBXH9IdS/etyoW6UTcJ/qDBd5p43NBd5bz3lae82MzYrnMWB3tuLqco4wUERw6cwneK0UFJ+WKCPqwxRl7rfFqwWo3xTpGNG8ZZw9XTBXrc4vaxqC5azTffe8x3f/MhLBree/CKp6uFLFBcpfhxR7SMmX35mvVmjNZOFqjWiYx7H6HmDaNxzf7ZVNjGkcXknczZThZfissxyiqSk4J6nWE2hrtfe8Uobnj//XuS1h07fKdZHO/YfLTAzTp0YhlNavabDHYx0VFJd5UTHVXYV7kwisetpBCvNd3ciYLCKcZne/bXUiGgt4bkwZ728VgA98TKQtBVijqtUcrz9tkVH/z2PVnIcKIqaU/bQNeByizqJoHjGreNidfB33ivgueZKDHysFgQWFd9p6JbJZhCo+5W5KOa8ocL7J2G6EVCe9SRXAjAdlNLtIwwD3fUyxwdrBUuAGKOatxeaq/MpMUtU7JXJigxBCh1M0u0MrdM+tsbyn2KeZEOLKvX0J50xFfi81RvFLTrdOgcbuYOTmr8MsGUeqjE6SYOU97KR7uRqCVMJWBXFgNg9ExTngWrQRQk/pohGK28Z4k2IbjonYrsu7kA/yxUrRwE+beR+2YvjCxAhJA908Du3ZbsWUyyFZDYj6k8lcTueCfAuZ1LKm8fiBVvJHDO1JJu7WMYP1GUp0F+Hph0m8nzxbugDBiJ53/01NAcyOKHVwyJyTb0mHa5yObjffCLTuR35UQq7mJZPIj2iuxaXqPqYPvQM30k+9y+LYssqhN5/fYdx+ipFq8xwnr6SID+7g1FdsUgve/tGT249Sr4rit5/uxa2PM+zK5eSH+qS4TtzkLv8P5cMXnq2N8T//HopRtY3OJMixfdy9ybVhY9ykNJQR4/kyC23T1DdeI5+i0BePl1R3UYic+5EEl4fiWMeVSL1LrLYXwhYWJRGdj7WHz3kxd2YLvjvScuJGFXgtw8+zuG7EZ8ytnKDqy3KaViRXl5X3cjOYfjbYfuPPu7iYSYXXZSxbKQ6pR2LMA1XbW04+iWoQ7EWbJuQydpTH7VCFBshEFVzrN9kMo4t90APJVHUmzLFpcYumkiYUiTBNUKSNSNhc6hvKebp0SragggsqkRGXAkLGcPQAFhEkNvZ7/1wV26qFF1gx/nQX6rbuW0vUy3l7F6f1sTohSqam6BX/Qa6xiAprduYB1VkuCLQryZ1g2gUsWR1JLU9WsP9yLlhdvn+4ntH8EofxB6LP8JAJYASqkEeC/8+r73vv3/uv/wuM8ILP8h8M8B/+drRZnf895/7fc43s9lO/3Kkf+X/vqfZd1k3B+tyE3LL44/4rvlAz7cn/CHZo95Vi94Uh7w7ccP+Lk3njCOGvZdwpujJb+xfMC98YrvvLrHwagkNR0/f/iY82TNX/vgj7Ld5Pzb3/q/+d72Lqsmp3WGZzdzZqOK+9MVWnkOkoIf3NzhW0dP+V9//GX+zBe+x9/58KvcWWw5zne8N7ng/3j2JfK45emLQyaLgmlWczbasm9Tbqqcuo04GJU8fn7E/GDPF48v+GB5zJ+++2Ne1TO+f3mHNxc3fHB1zIODFR88P8XtI/7EN97nh8szEmOJjeWTp8c8uLtEK09tDa8u5zy8e8WrzZQkkhWeuo0oNhlx3mI7w2RSkScty/WYO4cbFlnJBxcnOKeYjSuqNuJ4sudiM8EYR13H4TPH0zYR755f8KOnZ5yfrrhaT+haw8nhlkg73pje8GsfPiR6mnL0cxd01rBcjclHDU1j0NpTb1NO7qxZria8e34hF+UfnzC9s6WuY9o64vx0xeXNlHad8vUvP+bpeo7Rnm2R4pzCO83p4YZ1kVMWCfdOVmyrFOcVo7Th8mbKeFRTlgnOK7R2tJsUjCcetbjnOZxXTMcVi1HJPKn4zo/eIJ1XNEXC6emaoonZXkxQjUYtGvJRw/4mZ3JYkEQdN9dTTGJxFxkuc5hZE9RdClsaYQ8VjI8LmsZgOyPAQHmU8SRJR1PHuE6hbhKSe3uqmwzVat587yWP3r9Dfr6juBqJPNoq6DSkFrWJpe/TKaazkt1OrnBMJB/S3UWOOmgY/VZO+S3R2dpGY5YxduyEad0b3Fx6WE3scK8y4nt7lILqOpfnDFLrxemW3fsHpO9u2F+Mpf8T8J1GlQY1a3C7GGIJuSK3YBXp85h24qWztTEiNy8VvLWnuwrxvIGBA8TbPO7QmwgUuLGVi+mbVJ6jiCASqTYueHJq6VHVWyNyasCszeALdbmHsYRn+VSCnED8vXZqUa2WOpe1plk4YQG/WuEbjdpH4m2upUKlPQx+D+Ml7OrwlpGTcB1Fe9ISXce4uPeheamaAezIDd7r9NJQnbcDC4nuNcbyzRTSnRntFc3CYzMnoVtTO0hR82cR5VsN8asYl8gDk7UwBvWJVBBJL6HHjRxmr8kupCpHOkI98UpARHXqMIWAiYHZTIU1rY9kXspTkffqVnzVppBjUB85knVYcVfyfDr4uHWrhtfUTRy6klCibiTy5cljxfZtqWaxuciaTSUVN+1MZNTZpbCQ0svpifeSEL17IKyf1yLHNrWiC+Dg9QTseuFDuJH4k72+TQefPIHt22CK3lcXWC2FAM0dlHckqbs/ztGewHBy69UzDExJfhlSshcCRuS1M1wQmkr+nl1J16nI4wUUmYpbVrkJDGTw+Mrc3p4jNpPzSzeKdCl+Y5sGD20pNTRwKxGNdyEQ7CYAo1TYmWQljF28E/aqOgrs5V7k281UwJJuxVtsM0JitICLeO8pTm9Z+CGltpA0b1OFwKIp5FciYW9m4vusjtTgLe4l08lW2M12FBJhPbQjAXQiOZcwomahRBbdQR1Yz97jLN5GYXeVDSoKG7ydlciO0TJPceGpDjXZMnRdhnCw3r/sjCJbOeqZYva44+YL8eBfFXYLtJV9xNvbDAHxb8qxkmRd9amE6GQvidrKCShzkbBH7ViTrSzNOAQp2eB13bsgDRZQZmMBeM1EDQqF3hOtW+kDxSOJz5dSPeLM7Viy6/D/IoCuqLAhoCjYIRovgVKegcHsAazuQopzEypWJnpIVM6uGwkzShT11GBa6em0qSK7aqmOYqJCEorjvaQyKwfZsqE8ToYEZ1M72qkhvRGQFxXCekY78ZsCQ7Jwz2B2IzOAOhM8n10mgUzaerrMEO86TNHQzrPXvJniL9WNwyXBh4q8X20srKnUFhmiohveg7rpJC0X0J2TsB/Ax8IQqk5AmxslwmpqDb0EOaTXqtYOSbh4P4QI6W2FT6VvvK888UpJam0PEF8Hi72v8ieSW9FqSLlVdSOA7idxQM96vub9vJXDvsY4OofvLKoP7Ok6SZx9Hfj1vtnXWcafxlr+rO21RNk/EIzlL/3lz32/H/+Hv/R5MpZ/GvgbwCfIf8AHwF/03v9fP/OxnxFY/pr3/p9VSn37NWD53c9SlPn7uZ1/9cD/pb/9J3l/d8ayFiZkEtfc1CPySOSj78yu+N7ynG2VksYdRju2VUqkHZvtiDfPrrkpcpTyVE1MGnfsipSvnL/iqhyzrxPWqxFR2pFnLWWZMJ2UFFXKm0dLnq3nVGXC22dXbJqU5WbMG8c3fPjshNGkRmvHdjkmHjXkWUtVxzTbhNFBSV3HJEmHtRqtPUp5uk6TZy2b5ZjF0Y7V9YQo63ABmESxpS1jfKvJD0qqfYJvNSfnay4vZijtmc5LrNOoYIAr9imu1SJD9KAnLa4xctFvwsp3p/GlkUCiyKEjj90H83ji8DZIBA9ltcluY0bHBW0T0ZYxyji81ZjUYhvNeF5RPJsQnZQAIkFVBIOHR8dyQSxyfEe7Szi5u+Lqw0MJC0qCZ7U2IofcC8jAKQlVKiQpNz8qaZuIrpTfVWVITgvap2P8YYvvu0tDoJI+aEjSlnKdiSRzLf8E3KwjGTe0r3K5EArSS6IgSS0kQMinwoSQOOKLeEjEpdGYrcHOO7BKmJxNNAQfmVKHUBwkqAlQrYQh9cFNeAEQ7qTBV3Jlqis9ACJdKlwWwEu/IJk41DYcJ8/ALPTAAqcYP9EU9wUodHOH2Wpc4vHHDeZ5Chrc3QouUkkULrX4FJ3C5pJs3F/QuUwAiR07zE6jrLApLnMkSyM+qiQAiVhem9kH6WIZgEqhBj+nrhm8f9LNGLynQUbZ+0X7gBMf2A+bCUjRNbQLCYYCbmt+/G1dTr+5RJ5bWyXdrblchPcSNhdBvJe/NYd2CI2S+iJPH1/vDdjA1PQXFF4zyC37+3bB26sbBtmfCuPKriTcySUh+ElDN3YSprO/TS3WjQQZmUoFL7Q8n25v/Xe9t6w5sKRLI3JPJ3NhahlbN/Ghh1TGn6ylMkh1ISE17S/AufWWBgZGhXH3fX7SJSpAOdqr8JpkPvr993VIquM2VEmHCqAw5r5SqAdJ/YV5O/YkGzX4MLWFaCe1SfFOQEfv9zOtfI9KYU5sfusf7S+ue49uP3fK9ZU9kKwEXHnFEARlShlPX9nUy35tFvbdCaCLSgbmx9T9+Stjzi8DWzW9lUj2nkZvgrwzU2F/PoCvW3arP+/7io7eY4xn8JMKKBBA24dR9edoN+5DwcLDTD8nInkVoCD31VZ80y4R0OQSQrWKeFXR/Zz6cA6owYPZy621lcCiPpirDy2SUJ7XwE15G1zVh3/1dUIuEqloX6GTbiQoqe9C7cOC+gTo1wOTejmyVLfIfvqtD4Lp66G6XKS4NhGQ1gctyftTHtdMldwnFUmpcv39ZWw2kdt7cNiHKplaHv+p1+OCJLbxtwsEqbBnfS2Qi9QQdKbDceo/400tz9MHNg1sVHjPgBwTZf3gTY33jm6kB1Bmk5DWnUm1jg7MmM3Cwlrt6UKQUX9c+/3rtp8HN5ynt0mr8liXCkD3g9dTqm5MLaFDzUyAoO483ciEz4IACD1DmJIN3tdo39GNJLXXR5+WSCqHVMX0oT7W0eURppJrCq8UpuqweTTMj1SxSEJutO+GihndOnTd4dIgB1UKl+ihLqaXsvreSxiAma7aW1AYEmh13Q2dljgg1AWp1g639xJY+VnYRZQa9oP3Q+IsRuO1HoDjADZB/Ip9oFB/PLJEuipBui6tkwqVIJtVVSNpsVrfBgD1EtrXt9dBX6gx4fUk1v62HtAGcCn3c/i6EW/ma/JW3/wOAPZ3et6fsnnvhwRa/xrr+bvd/imw/GxbIBT/fG9/VEq9B/wt7/3P/6zHflYn7PeVUn8eMEqpLyil/irwK7/nEX9O27rJ+PWbN9m0GbsmZRQ1dE7TOc3T9Zw06vjfP/gSL67nVE3McjPCecXRuADgcLHDOk3dRmx++4jT2Y6bp3OUglfFhOevFlRNzDv3L8mylrqJ0MaxfLLAe3gVpIoe+NGjO1xcz5hPSj55dcTd0xV1FTPLanRsMcazfTaj2aScnK9FqlZGNE1Es0qJIkt5neOswQOjeUndRujE0lURrja4XSxeu3UMxpOnDfmkJhp1XF1PRRIXUnDLfcL+8QxrNa4KZvnMEs0bkX7FjvSoZHKyF/+kln9kUd7hK4NtJKQomdewjVABzLjLDHeZoTJLcTmmqyNMJh84JrWYjzOwirqKJZDo0ZiTxU4A7ExWsZJnMVyl5KMGnotMLp2LBNRPO/Te4EuDfpWiGk2UWtSiIXmeQK3hKsWMxf9XVzH2OsVkFlUbdK2obzKRcVW9EQxhzxwkP8wp1xnKeOJXCW5s0ZVCbQUgm+NaAlpaMVdEVzG0iuiowsee0ScxZt5AK4wKHlQk4EtbSC4iJh9FqGWMzx2jj2MJPPLCuLk0VNA4CQcyhSZZGmENa42dOEY/yIivI0aPI0wp0imz08RbLWDOKZJrQ/ZCVi9nH+pB8tQupGqEEIAiKb3yffJY9tPNLW7kyN7P6GZWAqRqg+4UPnF4LbUqOIi2Gje2ZFeaZKmJV0aYraUZgEX+UhNtDC6GZKNAe+KNJtppspcRupXQo3gtYCEqBSThIL+U0CY7ciL72irSG0U3sXQT8WjGGzUAt2QlvkcIF7WxLAK42BOvtbAFrbplCYwk3uoW0isdwnA8k8dIynEIIsmuQjBM5tGdQrWa5EY6XU1NSNYVj2FUKEbP9AA6dCcSP1OHNFkrc56sROoXlbIf3SrincxDshZQZypFs3DS2dkKMycXzXJB2s6FHUtXMH6qyC+klkdAu9yvnw/dqKFzNlkJYOxZs37udSvsYDuG/JVI6MRLCH04ULyXi/++wkc5YQB7cBMVMH4q4zUhxCi9ViRbgjfOE+17QOkDWCbU3DCAq/09R7qSdFcVAHt26YMPVRg+l8gCg2n8AAqySx8WAW7/F+QXbqhegQD+M8iWMu5k7Ydj1eUCxNKlMEMQgodKWHzghv5RZ7jtQ3UC+Ewt58v4uTBzvVSxZzaza092Lcm03Vhkl/mFJ1164p1n+sSRXUkNjSTzElhkYd3Slbzmwx+0Q5puvAsBTzsvHsDKk66cVIaE5FibQnMA0d4P4Cze+sGPl107THW7vx609p206dbJ63GeZCMLQ7qT+Yk3PoTvhLqf0gcAosiv3VBnorwnu5FxFWdyDLOV7Fe3nnTdz0tgDh1kN47sRtQQ8U5AngtexPJI4xKYPrNEJSG9OoRVGam8eX3xwCbCZPYAyiZKvIYhOVU3YXEqSPZ091qwkhY/ZR8WlV850rUl3bjQjyySyvSmGzySysH4RTsECfUALi5EMppsHTaW4CITZKlxIcdk9nEpwL4PZFGSMAtyrmfXcvyzq1ZknVetAPBYwo+GFFcvybXxzhJVjmRjSbaWLldDQm1fx2IaR355CyJsqsS/WEtQULR3xBuRhkoQVgDZM01USLpqO5LwqmhvB++ksO7CrCbrlnjX4SJFei0X//GmCWmyWoKJOk/+osQlmvRSVj5MLcwgHqKyoz6KiXfdAJSVlw5Rua8VQNkKeI1Wlfzvm0ToxhHtmk8DSufDgonBNG7oMo12TUi2NZh1RbTuV2HA7BtJus0jXBz8mlUrLKR1EtITfJQulZ5Rl4dAn86hrABTXTTia7QeXbYCSJ0balOwXjo0vUdVASjGBh9HuDQWuWtgH/WmgM4KeAzprj5LII7wqTy3T2K5TalboNaDuygAuyHd1QmojCP50iEwKInla3jsawE8fWAPSN0IDIzlsE/n8G03sJDe2luZa7+v17+Hr+H+ofrkJ7+GnszfTYrsP66b/336+ny3+PVMHe/9j4D4szzwZ/ZYhu3fB/5joAb+FvC/Af/Z73KQn/vmnOa3P7mLSSz3jld8/+U5TRWR5i1da3ihvTBxlYEJOCceMus0TRexKwz7OJHwkrnlk0cnHD5YsVqPefVqgW81tYKPXhzjrWK+KNjucjCepkho64jtPsNbhck6/MuMclzTlRHPHh1hJh0vr+cih7TCmpF7rq6mAg5jjx55XK0pywSswlaG7X5yy0gFwKdiJ0rEVkv/YKpZXszEh1VEqMiTTBqaImZzNSYadTgL1S4NK48KnVi8V7jcobWnKWPqrfxdlQbdKKKDCldm6HWEO69olhl60eCdEt9SBPmTmErFjF4YigegXiak7+yoLnPc3KEiT7eV889UitXfvwPvNsKaKmgPHbpS7Jc5SQXbl1OitaGbWsy8xewVzcjjUocuNF0qQTSqUxB7qMGuY6KdQa0kTr31ibxOp1CZxVVRqHLRuIkleRFLX2LihWkcSXdmu1B0py3Jixh9ndIcOEiFlXNdSG3cGlqXghfmx64SVKtxE/GedYkhfymdmd1ULhYnjzTb9zzt3BNdxtiJQ5VawMMuyMScyC3jnSZaRtjcC/DLGSo++gTIPiDB1ArThPvI+ogwT0ER6XRg9baaZC0MWjMX6aSPQoR9p4j2mm7ar37C/DsJ7QTSZUxx7hj69eaeeCngsJ3KnPnXktl85ImXivoAbO5IVgaz16HLUNiGqBBWs5t40itNcxDO6SBPpFMkSwHMURH8UiEdmCCxU07hUvBa+imLc7lYTJcK3RhcJBf7+/tqSN7tA01MBc0Cxs881cltlU+yElmpqSS4xabCqppKwHpfiVIfyZjSrTBi8UYuEHUrCal25Jk8EpmfbiG7kG7MqARr1ZCo28wFbEV7SSTNLzy7t2D6cajFQcCgiyS4RDfAOMxzkPMBUi+kZK4kJVSovulHmvKOJwq9kkONAnIs491r7EMhYMRUkF+EJEsjfxu/8Gzfkg8gUwpgFG+RMD2SSKvIL+SCvpkJsT+k7jZqCJLJLnt2T2SVuBBisxfGoMsFwKQ3kvzaA6VehokTH5iykF35IWlWgKCnym/nQXk5B3b3FaOXns1DkQXibue9G8m48mtHdailXqMVBlGYGpnj/CL0hWphpnw4X+PCsz/XAwPY++ii0mM9Q6Jt769MN+I5NC1UCwE6yd5TtyFcJSTT9j2hugU3EzniwEYlQRLrCTUXwoxFpYSkZFcCbJKNMILKe7JlmPNI6l/64+eULJLEex/knMJqKSsARD6XBNx0qSKqgcDUxjsBnMnKsT8TX1t1oEXCupDnjwtP4iRFM9m5gY3swV5UyoJStrLUM7lgN60j3bjwnvLsz0LISynnWv/418NuTCPHvFckWIkQIN5DurWUh2Y4XhCqWHaeeq5J14547/AREnrjw1yF+pBo76iODFElAEo5jTMCor0RUJlddxRnsTCCQSoqPk+Z8x4kojzx1tKNdVAgeJLW0xwkZFct7cyEc0UYQRcHqfTYYBNF4oUZdJEiXXU0s2gAlfHWYkOtig9ptsoDVryHpnTUh9IHml3UtHPpoOwmBrN32FzLQsK6wUcpUWmJdg3aJrhYE+1aulFEduWGhFgw8r4E0mVLNzIkNzV2FNPlkiSrnBcJaWAUu0lMvO2GoBwfUkDlvHOBoWzpxobsQkBiHGnwnqi0IfX6tk9VWUl81ZUlbgWkxUWHMzowfjL3ugkS084Ff2lMtGlRuVSIuES6PXuW2gfGMNq3Ij8FTNHisl6eGv5v1xafRwKGshizbwQcdQrVvCYfdSGER2tUKfdRNoyxcwIYIzOks+KCVJYw7jowiqH3cgi+cU5kqn3oTttJGmtR4NNEwGrdCBDLElRRyc+5vEnUZn+7v9fDeuBToM07N0hlfd2gUpEa+KoG78LtNXQd3kcCKq39VPKrD8FBA1sZQKe8aX+CofTuU9cW/W3DpvRP9WD+E7v944+P/4FS6q8BfzP8/heAf/BZHviZU2GHB0hx5th7v/ldPfD3Ycveued/4b/5C7xczujqCN9qVGLRVwn+tMbfJPhMLkBVZvFlhGoUuta4LEgakX/YfXpln0rZV2f0XYntWDxIXoEfWaKbCBeLAV83Uj3Rpxv2rAEIoyP+IWgf1OiLNEi71FCT0F+I9TK4vrohvTK49LYHrZem9AEK2bUKfXmhg1L716LAFc2sX5kWyaUL7E03Em+UKfoIfnBp6BJsbysleone65K1buKHsIFu7sieG6ozS3ZhRNqXeZKlphtJEmTz9YL4B6OhqL2Z3aY5mgA4TK2GSP94B+2sZzc8eajK6HKo7lgmHxnqIwljaCciZWsOPi2pzC7lArKdyEVk7/GRXq8gYVTi/cqWtzULUSX30S3UBwwSQZtKOqSLGHx3LmaQ/fWdjvWhzL+pRP4YBe+U8kFeF06tdiyP7SWSfWJhD4K271rSSzMUmqc3Aoz63/suQG8gXQbfUs3g7+m7DeONeJZc6skuFeuvdkw/iERKVAvQSdbgUpGPeSMX1DaTBM/xMxlvN1ICyEo1sES9/K+Z90BA2JL6UJGsRbaogrQwvZE51a2MJyqCV2suwGz8tPdHifdMdeFC7zVpXd8b6WIZa3pDkJuK7LAdKapTmH4iwL4d33rEulzAaTOT+Y2K4OWqBdDUByrUz4i3rO+jK4+lm3T8rK8yYZAHuoiB1TGV+Ne6TObh9X5G0/hQT8HQedgnWCZbH3o1hdXIljInXgnQcbGcv8pLyma/5Vf+tjPRy377fkoVehvbKYFBDV2HTt7z3UgRb/3gF2snimQlxzzZyO02VWRLAV494EtX8lkiQCgwNI0fKl96L1qyllTQvjOy774DOQYgF9+vMzx9YqhpPMWZZnThKI81+aULckc1dEqmG8/2DU12KSAj2clc1IeK8QtHtdDkSxfSWoVF0a0ACtMK82cTNaSB2lQxe9JJXUXPlu0EHGgryZkQQl2C1zKqblMogcEj18tyvYZ8Kf936rmmmcocZDeeZiyf9aMry/a+IVvKeEzjKY+lO3F0aWkmGtMSKjDfjpTEAAAgAElEQVQEoNYzPby3XXjuyQthp3oJIwRAu3KUx4Z040K/oySH6s4PEs6eXZNE0cBSdVLpISyenDdx6TGVSCvbUJORboLHLJOU0qgSz1o9M3RZGFcmVSGm7kNWDMnG4mJFPTdkN5JG2kzEq9hOpHoj3lm6XBPtLd3YUM8EpEoHrxtqO+q5JlvaAejI4wzNTJPe2FspZ/Ak+kgNTNcA3LZO3oOpnM821cIClo7dvZh8acN5qolKR3VoGL1sBwBYnMaMX7WoLngOPUMSqrKS2Kq6W4moN4p429HOImHb9tLNGO866gMBYNr2ctGg1OjTTzthKHVlsXkk/sGdSEajQhJTnVEBKHfYWBPtO3yiaccR8b6T75s21HQI+9ZNYkzR0Y0jAfpVkLwqYRtdLpUfprLC2HWOdp4OSak2F6bQlC3tPBV2rha/n80MppKxRZt6AF3VcUZ2UdDNUumyjKRaxY6E64hWFe1hjm4cumjBKGweD4ms0b7FZhFm14h/0Xn0vqZbhKCuRsDLIB0NUlOXx+hdAxp8GqOaDh9qSQDMthLmT2thJCORu/rUoLeB0YyjgXVUdXcrWe1BVBwJExgZSW2tG3ndfWdlZFBljU9iSWjVSiSr/e9Gozo7yGFRCunDlL/3vw8eyn4LslScl8d5L/fr79N7IJNYxvfatb//HcDl4J10FvRPVIV03e3z9GDRmFv/Ywj+wVqRsfaA8zXJ608L5vmZ2x8Ej+WDB/7eX/l9kML+lc9VCpsC/x7wx8NNvwz81977n6lD/qwey/8O+HcAC/w6MAP+S+/9f/57HfTnsZ195dD/i3/9z/HB6kTCdPDkpuXDzTEAd8YbIuVIdccH6xP+8Mkn/MrFQ07yPZG2/ParO9w7WPNiPeOP3f+Iy2rC890cAKU8Xzl4xXU95uObQ6ZZTR63bOuU+9MVj9aHpFFH2UZksZzkR3lB2cVc7cZ0TnNvvuaDZ6fM5wWrmzHfeOsZP74+xmhHnrRkUcfVbswfufcJv/b8TR4sVrzaTUgiS1En3JluuSpG7MuUto4wsUVrz9Fsj/OK1W5EU0eYyDLOG6omRinPJK+p2ohZVuOB54+PyA4qmipiNKnZrcS0ko4bmirGRA6l5c3eljFff/sZP748pi5jlAZnFVFsiZOOcpvx8P4lHz054fB4S9NFwrYCUWRpLkckJwVNkaATWV06nO9Z73KaXZ+DD4cnmzBeKDYZ+bSiuB6hao05qul2MfGsHhYMousYe9bgW827b7/kw9++S3qnoH45YvHmis0uB69wNsiBjUfnnShCrlKmb64pq5jFtGS5HmPLiHjU0hYxqjLExyXWaniRYRdhad8qTh7csNrm2M7g9hFm0uEvU9RJjbtJJGim0aA90bSl28UQeWaHe7ZPZuKxTC1+F6FrSXicf+mazQ+OsHdquElI7+6xnRYp7nWMnXWYnREZ7NslXZ++uY5JzvfUmxRVGkmZdPCVP/oR33n/DRmz8hJgMw4re7VG9R7To1rY+W2M3pvgM/GYSouXctHgV5ICadMgd0u8BOU0BrOKJOwn+Pd0o7Bjx+Rsx/7xTPo5D610oJ620AbJVqvxqSV9Hsvqcy7+TG8genOH/9GE5m6L2ht86licbal+41AWXoIUU3UKO3FEG007D/5HQD0oiL43plkIa+dyCcKxwY/Y+y/jraa616J3RgJwDi3R1ghQnImPdvREFi2ivSRB7h6KTFq3EvTiMke0FYbB3mlQyziAUDUAPN3J4kVyowMIFfBlH1RwlYo/VoNPHdEyIioU7cyJr7KUyoz0RgfAKQE1LvWfkryaSqoFohCuE+0U7VQWqdKlSLRtH5SjJHDHJR68LD6NXil2DwJrHMApiAy5G/nhPdqNhWFu5158bcGrmNwIKK8PbkF0N/F0E0tyY0huQhdnL9Ft1VAhIv4oAZ7JVvpC+4qV8TNhenUn8zZ6qagXssAUb9UQRGOzsLA1vpXN2kykqs0cRi9CdUZYeEg2t/5LE8Btz3B1E8/8A9jfC7UgmsEHm14Lc9z3lnaZ/C0qZBGpX3hziYwrKiSQJqoIkmxPeXZ7jJQXgFofeEYv1BDgY8OChPRChgWYw1vvq2kYGNPyTObRZjK/+StFuhYA3IfoKA+TZ479uVzEu1gWktqJ7GPy1IfFOjlOPSDtPZkukWPqjTxf/kqRLaUTtsvVsJjTL4Z6rYaFz56BzpYSJlOeKZKNLDhUhwFk7gOjX9x6/+K9LPZ4LWOvZ4qoup1zF/egUOajPpB9qdDNCZDsZIFp8Ak6eXxUBvlz8PdGlac4DhUW4RJJWwHcxYkEXJnmNoAo3vnbRUIH+dJSHhiSfd/fKUDbK+gyTVR7dvc02bX45WwqCaYuhnqmmT3ppDbECIC3iSLZSZJpL8cdwL3pe0Y1Xa7Il9KpWR0Y4kJAdu/fVJ4hwEcWID1RJSFAzUQPLPHQzxmkrsIGO6qFkUWTXunR+0UzOb4iRxfPZHUYYZrgi0ylR3TyoqWeSzhPf070IT+mduGcUgKiDyWwpzo0TJ7VFGcp+WVDNzK3Ka5RkPM6j6kszUFCvBNwHJVWFnciHeqGGnyi8UrRTuTvfW2ICv2LygqDKKyyFnBtHc7o8NmmSVbBo9h7BBWIDFpLb6fzso9OFlZcbIR1fY19U9ZL5Yjn1l8ZOjmjbS2LakWDnWZSORIbVNlCr5gIwMsbg2o73ChFbwth/YyWgJ+ixmexMKGRuQV2wxic9F9aO4zN5yk0rfyu1CAJV3V7y16+7nPUWhJbjfgyewmtD3UjKo6FyYyMeCi1EQD6enWIDwyl1uKP7AIw7rdPAVrHp8KC+tt+YvsD4bF88MDf/8ufP7D86Jc+V2A5BirvvQ2/GyD13hc/67Gf1WP5lcBQ/jngfwEeAv/G73G8n9vmUfzyh+8CoJGagMf7A+6MNzxfzqi6mB+vjvn69Cmt09Qu4kuLCwAaF5HGHfOk5O2jaxoXcZCU3BlvsU5zNtqxtwmRtux2GRerCasyZ55WfLw6xDpF3UXsioyjvODN6Q2f3BwQa8tmm+O9IjGW2Uy8kuxifvjqlFHasLka01rNcb6jqSPeX50yyWrKLmZXZKTGsrkeo5RneTljlDWMpxXeaWbjigfTFdfrMV88vUBpz52DLWUdczTdk6cN+yrh7YMl96cr/ujpx+AU1TbF2yDlKCJM4hjnNXHakY8EwOkfjVH7COcVXzl7idIQJx1x2nFysKXcp4znJc+Wc6JXCV84vOKLxxfY2hDHliTp0Ac1B9MCXxlcYzg52HJ1NaVrJSxIFYaTszU311OqMuEbZ885Ot6SJa2sko4sk3HF+LigLSSlY3xYyoXLNiJbVHxhdgnzlqPpHh97TsZ7sqxFa4eJHKSSQurKCLuT0J/dLkMpScWdjitMZmnXKfGoJbnWeKfgRSbeQgUqlavduo0EVBZCS5jIoloBsKpVmMwO4KnbxujCYG4i8qTFh7RVpTzplcEfNtixZZbV4tVLOoi8KES8yKntRJ43vdKkS0mNHT0WPWxUKI5me0wunlMfiV9HKwfGE20MZmtg3oL2mJsINbKoRuHHHZNJRZK2kvDay4YPmhBqo/FeZLo2cwJqxxY/6jCxJbqUYmxdSWDP+P42rMor9k+noHwIcNHiUS0MqtPEVxFmp4OHNKQVWmH4o0LRvBjjI9ArSVzFKdY3Y1Qn0f4qJL7qFsxWLiJUK2O0uaNdp9iRx53WJDcapi3t1GFqSW31qSSv2kwkeL1EMV6ZIdgGkLlMhJ1uJ552Aj7umS8EVO5E7mwaSD9JUVYJGFt0uFjAgm4lYMk0Ur3QTcTjt1jsA/hUpFcGszZ0M0s3kovHwQyJAKm+m68biXrAHrZkl0beI0Yu6m0ibJ1LA5udW9JleD1pvw8JctK1JIW6JIS9bBXZlYBZEIDZjSQ0p7nfSLBR6NvUdbiotuIJ7YN4BNDJWKKdAtNfiIo82EfiL7W5H2ouXCIX+TaTC+3pI5Fm6lbRTkU2XJ66ART46Na/KgsNr/0DCKyKiwQw2ozBVytVGAI+RXrrhyAbCenx2JGApvJEFBNeS1CSC/7cdsqgYDC17LedeJpF2M/wmvygDtH2lkHuxgKoo70E4vTBLb3M3ffsY+KHsJ5k/emQmJ6xb2fh+ed2AKh9p6gwyDKmHsDszzU6MPwuCsFDVsBVdaSGapJ2JqCpT77tOzDR8nwukflzkbC7ycaTbOS+7VjRjuW1oUI6bJg7m0C2duSX8vhmqoYOT5FLy9NEpRzTvlvTGwbAI/7ncDHbs6mhrsNUAgptLsxrVAmo1F2Yj8AY2lzGqBwU51I50oyF6e63Hgj1ADbei3qp97S6SNQIvY+znhq6kaIJbHa6ccH7qMN72VMdynnUs+D9Vp2I/NbUMkYJoArhPJohxEcYYFECtCMBPv24ulyCf/q5iUtJr3Um1Io0DhfdSptdLF7oLteDNDnZueGzz6Zyv+pIAmLasSbeO1wiz9Mz3S4wvt6oIf0Y5DVs3xK5rmklOdYmativqSTxFc0Q3iNjldqQZiYTZBMtsvJd8C4GeW8PzHTjBjmsTfQAEqPK0o2jXkFKvOuETe1kEa+dhJqOUUwXGFGXmvB/22HKDrQiCsypDyyc7hy67IY0V5tHAgKdv5XFWocdib8RraWvcgCGagBsLhEpqEtCCKAxUi3Sy0NTAW8+0ngjtR/Ke9worIApJT+33W2KbEiNxQXwHKSqynn8KJNxxBE+T8V3GSSpPolFdjukrP7E9+GNoWWfPdvaA/QkQcXBT5omAioDiJQ6kujToBJ43UP5k5tvu+F+/c/Dl3W3X10nX+3vna38p9vvavt7QP7a7znwdz/LAz8rsIyVUjECLP/Hz9pl8vu9Oa/41htPeHt+BcAb+VI6F6sRf+jBUzqvmacVv7F5g1cfHjMxNZG2fLg8YlXl7IuUysZc7CcAfLA+4V+78w+oO8M7k0teFVMuiin/zMNHfOPecxZ5ybrO+NN3f4xSniTqGOc1mWlZJCVpZKlthNYe5xQaTxp3HIxLfGb50tkFNqSalnXCrk05PdhKBYbybKoU2xmeX8/55rtPOM23KO3xXnE4Kjk93DDPKr5/cYev3X3Bqs4ZjWremN7gnOJqM2ZXZNxdbPjx9TGd0/zyy3c4uLtGJ5bxvKT4eMbZ21fYbYz3iruHawCU8bz9Jx6RnhX88NkdLoopdhsTRRalPLsqxdeGh4dLZuOK7qTluy/u8qPrE2g1WjvuzjbcPVqz2o1ILg1fees5B1nJeFaRZi0Yz+TBhl2Z8q9/89fJRw3ffn6fq4sZnTWk8woUjNOGJOp4981X+LDv/Esr1EGD7TS//PRt3jy/pnMaXWgeXR+gtePO4Yb7Jzdkk4bkoArGL4Z/gM0+YbvOaa0hzRruvnWFfZUTf33N4XwP5xXFGx2Tg0IAavC1Hi72qMxC4njn9EpknZHDZY7ppITIkZ4VjE8KfOSZfeGGcSJym9nDFXHa0Rw58IrR2Z6jbI/++hpjPMlJwcG0YDoOIQazFpU6irdbbAbtJqG8b8nGDTzcU7URB/M9fpPw8FvPsFPLbz29RzJp6E4a7Mjh9xGHx1vG767JpxVubMEpOqsxxpGM5O2rLLgywo0s/kGJUp74vQ3qoKGbW/H31obpuMK/UUptQwf6sCE2FrdoGZ3v+IWf+zHMW7yG2RduRFZ90MCkpZs54o3i5HRDs/C0Jx0+dfjcUj9oMCcV7cwOn0R60uKdoj52xAcVdmqxRy3NsaU7aaX3UXn8xOLHluyopDmy+CJi/sdf4XcRLoLqfiNVIp0k27ZHHbOzHW5i6e7XLL55RX3eyYV76kB76qNwvtyt6HLPN7/0GDdyUpGSOuxpg6kV9f0Wm3mSh9tBHpm+saM495TnHT6zVMfCniYrYYPXW0FE44drqjca7NwSL+qQ4Ouoz8JYjhuaOwKOXerE9/huSf5RCt/cwKzFjh3dSMCIHTtcHIBJakWaDDBpsbkTFjeC5tDRjUXy3s485d2O4o6jut/Snsr8ukQunGcHhbAvx+2t1zfx2FQk+u3UUZx7mq8Usu8DJ8d83Mm4Uk87F9BcvNEN7GJ9KCC3mcvCRjPz7O5LGm47c9QHAkKiQlGfWpq5XEgX547yzNPOnSyClLK/5rST+pAjR3XiaRae6txSnirKM5Grdoct3UjCcpq5p7zjKE97Ob9i87UGr6E8t9jc0x52lO/UVKcWm0L5pYryxFOeeqr77S0bXCt27zXC1E4dysLuDU879uzvu+DZBZyMr506moU8dzuThYv6QC60XCQy7HYKuwcC3KsTN6Ty2iSk+J6EFN+NLAJ0E1k8uPmyHCObQHHeAzIo7knoTh9G1E4ltAkEoNULWWCoD2SubMKt7SAAo/74V0fCVO4eiJ+6mcvt9aEA2S4sNnglMnivYf3QDEywyDtFglwvpMKkOlTy87HI+SsRGrE/M7RTJawzwk66RJ5TB0m6SxSrL0J+JRfINhYJeT1XQfod5t+H1F8TPJA+AOqRVJxs3lZs35APn5svSADZ6j1NvdBDWisamoWA1uooSLdLTzdWtCNYv2VoR7fs7+ahYfI0LEgFcNnLlcfPpa5lf25EVm5FemwTRXUosuBmrCiPNcWppl4I8+diRXWgAsiTearninqq2N010ncY/KddKjJqFNRzg4sU1SKEGWUS/lPP5PX1+/Fakd4Iy6ysMKK7c5EhR6WjOJXX2MuY25GW+hMj4z54X/yh7UhLuBD8v+y9WaxtW37e9Rtj9nO1e+327HPOPbd3leMqx3ZMORCjCCmEiIQHhBR4hxfABEVAyANBClIQIuIFkFAeAEuAACHxEimQPGDhkMTYplzlsm/dW7c77e73Xu3sxxg8/Mec+1S5Uo1VFRyLKW2dvddZc812rTW+8XWyv2ONCxXR9r7KpJkGAygGAYJOgck0JtEUxxE21vJaYwmJK49jv56my2W7NpL9rvbF66o6S72IaOYh7TTExppmEkno0CyWPsdA0Y49kE2FtTSZyJLLgxgXCajscpEF2zzCpKGwn9bJa/rXamcJNgnRrUiDAbpZhksiVu+NcIGmOcgFVHnmU1mHGce4LBJvp1IS5OPBp9MixbajVMBt00kqbBRKaqyS+9GO+shuBVoNYBgtXlSsvQ/g6RnLSBhPEPayO5gIuOwZxF522y99UE4PCKNQ2FHn7n+MQWWZgErlWc3+ZwChEgykAo2Ko29/faVQUSjPgeF3Fejf80MQoML75/5jv7gfw8+Pdkmdc9thd+X3/Hs8f1h+UCnsLwF/Cfg68M8DbwD/nXPuF39fu/sjWuZfOHInf+3fYJQ2HI623JY5l9dTwrgjigyHkx2rMqWoJGhnNKkYpzW7OiYKDEWVoJQAN2sV1mjm0wJjFcvlyF8sPyscCYhY3owJ0g7basazkmKX4hzSa7jMpCLkckJ4G6LeKFDa0exiqeOoA1RiCGNDe5dAZggSIzJDn/5KK+EzOrJSCaIdWMVoVrI9GxPMWswmGp5j6oAw7TCdJowMXRsQJR1KOerbjGAizye2st83wrQEx+UgA3WJyDlVLmDCbUVKSigDu/nhluXZFF1o3KIlOI+xqUgDQVis8EFBsxX5q7OKMDZ0N6lI716EFG+1YKQ+w+YGVQa4zBBNGtpSklfRSEhR6affA0e4DDFHDc4ooouI9sR3H9QButKSPBt4NipwcjzTFr2MRD45MhA5CccZWVxsUa0GC+lFQPlmg96EA/shSaP3lR7hOsBkFhc5wk0gLGSraKdGfK2RnIPwTryLNnFkF5pqX6o2JADGDw58b55yIidspzLwCxoZKCsD0VpTLyR8phtJKmq4lnqQaKsltdQIE4UTiWNYiIQxudN0mcPkMnAPt9rXPSjqhR3+H15LV0yklzG7kgGmMFIO1TJE+ve1BN3IDcmlkvZ5X3zeh/30f/fSuGYu7KEy955dKVoXuWi8ht3jvjNR6j6cErDRJ+IKY3QPcMKthO7oTjzJ9UKkrOmFHiScPdMTVAz1Jb3Htk8x7X2xyrNMkhbqWVUnbM7opWJ3KtexD0Pq+/F6f3K9J8+TuoY+5ZMhsr/34OqG+8Ai5RkxK5JQ1fUMJQMboIy8dlj44JwbQIsE1YYivezPvfXgo52K7LGXb/Y1G+J1FS9lL+nr6z368JheYoqS/UjuRFoa1HJcIMfWB5X07JQNGVJljWfm+kFrvHLDoLrL8ddMttXLE62v3+iy+0CbwB9D63sWxc+rBuamHUkoTT0T6V965agOpX6mr45oZnKM0Q7xjO5pwsp5H6QP5qqdT82U9eKVJJrGazf4Q4d7JxOvaT1X3vPrBkZKAn7U8J6RvkRZLyzlfmwnUk5vAwF2fRhNcievGW/cwK7FGzf4nvtKjr6MvveCB00vgfVMkhZ5qOvrMAr5DNMdQzWJC+Q4op2EzrS5Giox6qkaGKHQV6447ffVp6AGtX/uzAdNRfJYO1LDOtFOznWyEoap99H2nvI+UKdLhGmUGg5hp7rUB1kpf88p78eeyj43YzUcf7y1tCPZZ+vPe7Lq/ZwaEymiUgbAwjqK1LRnBHsPY1ha6plUJSVrJ39PRdLaV7QoJ/vWJ8g6rTyDew+YAA9woJ7L3/HW+ntHD1UioWcY5VzKNRKpL4OvPCwk8TTamWE/e28peGa3snR5IP+OtL9G997YvsNTAtCM+HK1oss18VKSW7txQFjYQWocVoYuE7DkAgEHNtaEhRk8ovSvrWXCwCnpi9RdH3Ll7lNekRRXG2i6USCBOj45NWilMsRpRbgVH2W/2EDYSGEs/RislgCd+6oTeTxc1dg0xIUiV+3l4DbUON9BqWvpl1TW+f5IkaYGVSey1s4f72sSUWCoG+nDe3Tjpa3GoetWkmDBh+7IvzYV9lRZK2E+CEMJ8tggOX0t5KcHcC6OxJPZA7zX/ZG9XLVPWbVWPJdaw3frsvyObbgolOd7KewgV+2638NWOudQfcBPn+jqWVnXiSRYhYHUjLQNRPF9HYmRfXA+zIfeW+lTYb+vr/L1wJ7vsjjrRHL7+1z+wEhh/+0fgxT23/neUlilVAr8n0CChLf+L865//Af8tz/C/gl59z/4//+Y8B/7pz7499vP35QYPn6hh3CLwTOuf/g+678Y1ymP3Hs/uwv/ws82+wRBQZjNc/OFszmBe8srvno5pA/fvo5gXL8rd/4Mn/8y9/iG1cnlEVCGBmaKuQnHl3w4YtjfubN53zj7AF7k4Lzl3v8a//Er/I/fvqzWKtpapGHpmlLU4c8Przj6cU+Wlt+8vScz+4WfPHwgt8+f8A0r3g4XvHVzx8znlS0XUBVxEymJe/tX/FiM+fyakqUdnRNwHRa8s7imk9uDzBO0XUBTR1hqoCfe/9zfuv5I0mdjQxp2lIWCd06htgy39+y3aVDrk9Xi9z08NGSqg1Z5CWvbqeYsxybG3Teoc+kYiK+CWgn8s3jRp2kwu7XmHVMOG1I0pbdKpUakk2EXtTYu4T4sODB3pqnLyUp9/jBkovPF6hRh9uFqKGoXqSUBA69DXGhI9xo2rlBT1q++Oic3/nwEaPDgt1tBp0mP9zRfDxFvVGIlDhpKS5HIt00Cp112E5zeLTm6mwGWryaq/UI02iCWIC20o7oZUxz0AmIBJGfZJbkLKQ+Fdnt/GDL6vkMXSnsYcN4VrL7VDy2fW8j+7X4Us/GhNsA97DC3saoeUPwIqU9bKXnswzAKeKrgPRLS8oqwj0bwaMSe54KyMx8p+V+jblKpZfTKAHw2qE2Icp4EJpLIq5ySDdmqwkK6Y8kksEKjUY3ApJd5MTvaRThKqSbGvoC9nAZDF2DNjdoD9xtZohuQwllOmoIbiPsQQPL+F4i6T/jbSwVIs1CPJY2l3J7gMP3r7l4NSe6jGi9x9KkFhc7omVAdqHYvGWIl5pu5IbeRQKHapQAT8trfYEOXSm6uSHYBJI8uxbvoI0lmbY5bQmW4QBgnQKXyHpBKbUeveSy9yIG726xH409KFPUB4ag0MOAGysAVjfCYLlQJkX6GovqSMC5STzD86Am/jwVIG5lsqAbOV8d4BNnS0WXCbDIzxXbJwaXWPLPI5qZI70RJi3cKXr5q8kc6aX3KXop4uSpYvNEJjz6nst25AgrCdwymaOdyOQCVryDfR1Kfi4hSX2/Yy+7rPcE9Atjdr/9bmSJNnK+kxvxb+rWh3758+MU1AeW9FIPZfY29j497+er9yzxUkuY0773WDoPPmMBmD2IbqbCrKVXjupA3QMqJ+xceqUoHoh0dfLCsHwvoF44Rs8lxEsAgk+c3Qq7F22UJMGOGPyA9Z6TvtFYvJfliSM7U5QPHMm1TPYEpfdD1iLHza6luF7eED6EyEJ1ICBv98gw+VRuXglTg2Tp72XPAvYD8XglQVy9ZzUs5Vwkd15yGgmIaEd8W8hVULqBJZx+Lv5JmXBxw/u0mamh01N1MgGRXt9PLlQHMokReS+ibj2TmApLKhUxbgiTCiu5LvFKroVIY+Xa55dyTvrEWqnxYfCoJnfCZJpEwHgPEnuQXB76NNxA/JrVvkw+2UjW/fZeUzX0Oqa33jM4EUCdLN0g6exl0Lq9nxTo04J162jHfcWLGmpnwkImPKKtgNewFNCcrNzAwEalJOS6QCY1hP3sQ3IsXaqHZFEJ+RLpbH51P5nhlCIqJUgJ5DWbsSK9E9mqDdUQ4tTLYbURABVvLbqRSpBe5ttPPJlYyessBRyaSBHv7AAo+4Taak8CkGwgEx26tQMY7D2N7cR/ADtHWDmqPQlY0q38Lh7LftJOPi/6oCUTSxVLdRBJYm1hacbiA43vGtppJN2WqbCSyngAPw/JLhtM6qWikUwOBqUEN0VbCQzqstB3ZgpgDap78GESTVRIWJELFCbVsl5tJJioNhK+tLuXULpQD1JS3VlMGmLSgGjdiOx1FBFuW0nMHfkAACAASURBVFTdDuE+urX++0kAabOXEN9W4Bwmiwi3jbCC1tLOUqJ1LRUn6xqXvsayeWCptzWEgQBREMDrAWmfSqusHUCfTWP0psClCfQdmD4kiD7Ux18/+X4NUE07gOWh67KQfXZ5itqW9/v1OhbwPkYVRQIMwwDq5v7/XuuUVErh6kYYz9eTXntpLOC6DhWGAir7ZNfv8E/2r/Xdlu/EKX8oPJZ/4ccALP/d7wssFRK+uvUq1L8L/AXn3D/4Ls/9Y8D/BLzyDz0A/rxz7je/3378oJzy9rXfU+DPAB/8gOv+2JZHyR1/+fRvsbQJ/+nzP4NF8V//if+W/2P7RVZdhlaOeVRyEG34l77y68zCkixouarHpEHL882cx6M7Dt7dclbM+PLpKz64OmbvaMPTasEiL3lresOvfO0LTI631HVEFHdkYctPPjqjMQEfXh4RRR0/N3vKq+2MuyLjhZsTxobH8yWd1WzGCcZqVk1G0wV8+c2X7CUFv/LVL3L88JKvv3jIlx+95OV2RhcGLMYF1+sRX395ylvHN4zChlAbPrw+4p2TK95975oPVsdkYcunbcjjvSWrOqXpAlrjo9q15Z3pNV85/Jy/O38b6xQ3yzHtrOMXv/whzzYLrjYjlII8abhdjbBNwMGjJU0X8LMnL/haeEpnNZPjJVfLMW7W8JMn51ineevRFfvpjlWdMfmJM+ouxDjFcb5h1WTM4pKvfvyEJ4+ueXE9Z5zX7HYpqtVkecPntwumx1vaLkAnBhdZ3ju45utnY947uqGxAbsmpkhTTh/ccXU3YX++ZbnNiQLD3tGGug1ZbXL+6BvPOdtNATi/mmE3Ee3cMj2WntKu01KrYhRHXzkH4MXFHnUb4nKDa0KSvKUqY8KHBaYLyHP54NpejCllGgX3sCJJG4ogIooNzcyQTGuai5zjd264WY4JD1s2L6c8eveSq8AxG5VcVCF6HeJaRXa6pdwmpA+3VNuEeFrz/vEVn90uaPKQILDsjQtevVxg55Yw7dAXKaO3VkzSmqYLicOOsokYJw1nNwKEuzqAMiC5DmjfrljMdtzdTEhGDcdvb3h2vuD4cMXF5Qw17nAOHh8ueR4vCK9ilHbohwXBxyOaBy3J45KmDomTjt11zt7JmvU2w1YhTx5ds64Sls/m6EXNapeRzSu6q4h33zvjkxeH6MiSZQ27NIMvFARFQj0J0JGVMeNtLB7G1MmEhGeK9aJhf77l6vkeutCYiSGa1TSLYFAP8KBFv8pxRzV2G8lkhgFGHXbsMGUoXpZHJd0uwp522DIkANpHNWwj/tQ/8zX+1td+CldJBUw9FpBVTwwuNyQvYt78xad8utjHdAHh5ylu3NFVEfG7a+rPJrg6EBlubCF0dOMANWtQGrrLBHVc4YBuFTM63mHeBnc1kgHfz24IHBSPQtwypp3C/tt3lE1EFhjW4RwXeinttCP/szcsXy2g0TQj8e7a3GJqPQD0sFTU+yIrdrFFpx3qImH9noHMoO8i7LQjuo6EWe3Z5tAR/8Id1VcXtBOLOq7pupTwnS2NGQ/hM/FSUe870p9eUWwT1GVC8VZLfBVKz+V+Q/gyEalWAMooqoct9YHG5YZ2Iqx+tNbYUKSE9aGcv2AjzEX5UxVuFeOUI1r5ECajWP10A50mLEJe/mlLeKfpFi2FiYRdPmrJPo+p9y261R7UwO6JkZTqDNIb8YjaAKrTDvdTJd1lTnXomf5HDjvpiK4iorWi2pdO05uf74gvQvGy1sLgtRMrSgGlSG4DqkM33J7tfkdYRJhEwDcOTG5JL0P407fUH+0x+xYsf9KRXmjKE4uJNSaDZmbJLjTFk47sRUi98HLQn2qJX0WYFC6/4ojWMtCKNmrwakqgkngWswsBas1MmHdJVL2XtZbHEmoVL4W5b0cCaPrBqUkddicTMlUoSc89m97lsPPgpx0Lo5ude1Z6JOvGSwGPOFi/a5l9FEiQkmewy2M3qANuvwSLbzgq3/0ZlsLuJneONlWsf75i+hup+AbzQKS1nWN36plOC/HSCaHSCkB0yoPEPeUDnBT1gteS1OVaOSWA08SvJVAHXh7a+0VTmeQJSwkdipduAHbbhwHTp5Y2U5K4vLsHyef/pGL0wicN76DNtByXr2sR76r27KNMDAjQFeAb1FAcKcYv9ZBOnKwsTqmhhiraSVpv0+nBY7ydBkQ7qebZ+0gShpuxwobiaVTOkd0IM2wSAenxxjPLCYDCbYTR7jJNfez3p7lXFZT7wt7W0+g+5CcL7r2VSuS/LtA04xQbKtI7Q9BYikMNDhItIUX2QewnYyzNVP4vbQQo13sh0VaO0cSKSMmEQb0IfSeyhPy045BwZ6hmIeltSzsOUbHG+BTjoJb6k9eBbDvSpDctzsl91eWaoAro5uJVtIFPzM4i0FDtxUTrTjybmiGZ2aYR3aivMNG+CqrFZBEmk/Tdej8l3EoPpo0CSbPNYgGtkUaXHWaUoFsjCbmbWpJjkwibx+iyxWYhymWeOdZo00IWS5hPE/iUWgFtLgnQVYdNowGk6qKGzmD2JhIG1BkJ9OllrUrdhxA5B7knLV5LfEUpSae1XgartYBav55KPHhs7t1yr/dTKqUG9vY7gbD6PdUnrwUivQY4f9gmiz+Ii3L3qp5/lIuTk9fjucj//MP25C3gZxCF6r8IfOV7PPfblh+6bgToY2j/d+fcn/yhV/4RLqP3H7g/98t/jnWb8vntAudgf1xwtR5zON1yu8v5px59ylk547e/+Zhg3GHWEapVTN5YU35zjnlYYSsJhWlejMjfXGOMJgoN200qia6fz2HeEr5K6CZWpKMa9DpEHfoUMQvuLkZ1ivHbK9bXI5JpTduE2CJEZx3OaOK8ob7JiBcVxmhMEaIiC6sItWgYjSu26wzXaUnyjO/fXGHS0W5jYe7KEJUYgrNk6H/kVYp7UJF8kFE+aYlnNe2VeG9Vp7CpJbkMhHUyPk1xZIURbDXpfkl9keO08wllIvUMNoEkpdaavUcrCRV6OWd0tKPYJIQvE7qplcL34xL7MiPaaOp9Q3xSUF9nxLcB7cwSFJrgrS31MiU5i3Bf2KJ/d0y9b3CxI74JWPzsJRefHuAiKymxfh2tHc3TMTbywSKZJd6vaKsQ1pEkaI47aDT585DqSLxPNhFvkotFMusSK3UxsSNeCcNTnXSkh3L8qlHYeUf8MqKdinwV5fsOR7JOvW9IzwPKd2uiixjz0Kd+anCpYXy0o/nGjPZJzezXUspjR/2oRa+EZXOJwym/X5EjexXSTtwgLUzeXtPUEe4sHVJJlQF3XGPLkOg6FG9Xp0hutIRwbEWeVh36TrY3t5iPxyLFmlji4wL7yVjqXsYOm7hhYNocGrnesSW+DIfQl7DQZBeK3SMvTY2FmSvebEnOI/HsHcmgF7xctlaY3HoJsPcRTQ2qlW5N6z/KbATqYUny9VwYwJShmicslVznTlEdd4SrAOsBjgwUlJfLOenlW0u9Dj5UJrmVihTtGbZuIt64/FzTTJ0PqhF5WrSVvs6gkoFdM3c0+xZVC/PZzBz5K035wJJci1S5rxOKlyLzqx43TH4nZvumgQCylwHlQ4Oq/fWZSLVNM/H7uxJGM72RQJGeWe0HvGEhstZwy8AmtRMBHsmtJtowDML7Spt64chfCTsJIlstPXMnTKGXMnuWpk+dRUlwUXamqI4czb5h/HFIOxHmrd5zxEsZLFdHwjibkST0Jrf3A3L8ucQJKycSXdl+dWDJLjWhTz/tJda7U1/lE98zhcriAy7kWlaHcr2irSJ/pQYPYTuF7Fx8U9UBpDcM91Z5LGFKPRPdh/4oJyCkXsjxdCOpNNo9lGMs3pBKo3YE+bmwhPHqvm9S+jmF1WvHEhrkPBsXlF5+C+QXItUuTtSQ6Ko7YQDbqWX2kQcia0e9rxi/EHDSzIRVW/6k9JKGpQzme0lyuBMWs/SsbriDdGnF1+ag3pf7PdrKMabXcgy9eiFaS7BUM5Fe2PxCWLWemQxqqc7pQ3CqhaS69nUkfadkemvpErEvtCM1AEa8DD67sVRzNVTivN776QIoDzXRxrOIu/ue0F4GHa+FNcPB5g3N6JVPTa0c8U6AeHGgiXa+s9HLafvngB/4K+kyTVbiExxdGOppDzbuwXJ6Z9k+CEhvLbuHmtknUuPSJfdJxiaW+zEqha1NlnYIqOm7KJONYXccDEE7Ir1VXsVgacci0e2De0YXRoKTgGouDKELJMV1dN6yPY0YnXfc/kTE6MISb4wPtWGQ51Z7WiS8hcWkimjbs7q+Ysdvt1cH9JJZ3Vi0cazeShi/bO8rWFYGFyqquciDRxeGZqKJN1aCgaJ7uWgfqOMCRbxpqefRUONSz3y9TCKBPM6zvMr0qbSWeh4Nct+gEpYSIFpL/UlQSc+kai31IiG5rWmnMfGyHnoy20lEuOtQ1tF4ZtRpqUpxocZFGhtook0zdFdaX1HSp8W2s1QUBcuaIcF1VQqIqltcHNLME+K7Chf1oC0kuCtwWYwZxQSbyleCGKlGqTrMOCYomnvQ5/s5MQ5d1LgkxAUB2teeqLJPtbpnCF2aSA1JGqHXhYDBtpPakqIapKouiQUEdkbCeno5bA8atwWkiciJewmtUlDcs5YDHrBu8DXKBQlxG8EjKn4tCKiXv/ZAspcRW+clsxYV+NRYgCi6B4zDtr679PU7sUnPkMI//oxl+ujHw1h+8u99/1RYn+76m8C7wH/pnPtL/5Dnfd0592Wl1J8A/iPgrwN/xTn3le+3H79fYLkH/Lpz7t0feuUf4TL7wrH7yn/1r/D25IYXxZzOai62Yx5O14xDCer5jZdv0DYh//TbH/Orn7/N6WJNHjWkQcssrvjm3RFaOc4+OeT47Wt2dYwCZlnFi7MFAPsHG5ouIIk66jZk83xKsF8znxZM04pPnx8K4xM69mY7luscB0SRwVpFW0YcHK65W43Yn2+JA8PLyzlx2jHOau6+uYAHtXgns44o7QgCS3mdE81qujZgb2/L7fmMfFFQ3OYEoxZ7nRCfFJJ2upPRZTauKW5zVGQJz2N4c0dbxASJQQcGa0XfMxpVrO9yMB68OuTxWcluneJ2IaOTHbtlRjatKC9zwnkjXtRGJLcEjmAdoE9LdGCpNwn5vKTcpBwfLzk/n7O3v6X++/vUXyrQWlI8g3EnVR2pgVYT7VW0dykklnRSU91kHghadBEM4D1JG4p1KvtciUQSGHyow6IdhA5VBmBALRrUWYo5aFAb+RZ3mUUVAfqwwqxjlPd4Ou0Ipq3UllSSHDe8vvHbCJz8HjhUpWHaoq9izMwQrAMZEDcCfMOd9n40kaHGV+G3pQSa3JJcBdTHBu3lp/phiXue040lFVW33g/mJZ26k9oInMKMDelFKLLGSio5XGQJlzKj2+5JRKWqxY8a3wY0e1K1Ea0lJMdFbpBGyyDfyyGXAlh7Oaw+rjC3CeFWo2upycBBvBIGqh88ushPaynoZoboTio++rTTXqZlEpF1Nocin+0rO+K1ojySfWnHwtrV+9anawoAa8eybryR8I/e95ddKsoTkYLptk96dIRbLYzDvgz4o7UARoX3CnlvXu+P632xYeWDTBKp8uj7K4Naov0l8VTAWvGGIbrTBKWi2RMg1UwkabWXf+bnMnDvgVM79RMGCvHsBvc+1/48jZ4rqkORbvbdreXxfQVHn4Iar2H3UOSnkpzJ0O2qOkivZdvC/DiSpSK5FW+i+FrvWaR6T+Sn5bFMrGgfBtJMRUoaVAioyO+3n9xKD2k7YkhglX0S8DaAO38/mUSA0bAoH3gSMfjDTCLVFSBhKyhZp/drdhlDCivcyyH75/RVJn11xSDvXDJ4LKt9qdOwofR3Fkd6SCbt/YlDZUQI7VTOm6Styj71vbDRjqE39f5ecT5RVEBjVEgXZ3+svW+zrzJxSkJpxMvpGa/NfW1FdSCv03eWWt+R2vs+cd5P2XsVQ/FbOn8cwpC5wesbViL11J2wZiYROWr/mn2liLJSFeICxJvpE2hlG94vGwoAk1oJPwgM8B7M+7FGX/NhYgFfIN7LZiTMW1DLvaUspEsv1/Xe3f5zJll7ADVSwz70Xam91zVZOsJa6jr6c4HDV29IyI1uHau3AqKt89LUez9m3x0M/phLOb/JytCOPRPk+1JFJqqGkCATK5K1QdeOZhp4b6sd/LJ9JYiN1MADaCMVHiD7GlQWk4lXPmgszTQgqMQrndxJ92fv9e1rQkyixMeZ3EtndefQtcWkwSAXlnvL98n2lSWdlyG/9p7su0N1K0AwaCyBrzEBBrDYzEJ064g2ne8DlaTX3nspabLim9SdB95FS3mSEq86nBI21SmRsw6+Tr9uWJihi9QkevAIhrsOk4fo2gznVRmHTYQtdFqYOJvId4xu78FWD5CDopEAHC3MblCJtFRqn7w/0jiCXS1yV639vinp9ixbCDWqbmkPxoR3pfzdGvFeJ4FIX33nJSAAtekElEWhbK+XuHr2zmktnss4GvyTqqxxYSBS1747E8RD2Utf40h+94/3wT6Df7PvuOxB3WsAdAB8oZ/xcA7XtKgkHmS8gDwWBlI/EkfisVRKjqf3WPY+Tyuprj3z+F17M3vP53db+nAgZ/9QeCzTR4/do3/rL/7IX/eTv/QXnwLXrz30N5xzf+O7PVcpNQf+V8RH+Y3v8v9fdc79jFLqPwZ+2zn3P/SPfb/9+EE9lr/NPQUaAIfAX3XO/Rffd+Uf45I8eeRO/9q/jq1CoquQ9qBDFwE2k5suPYvoMifsR+DoJr7kfX3v7+hGPtVuYkmuA+pDQ7ARZqUbe8aje00ic2TAQXSnQUsISDfCa+ORwddMvpTjlcws1gvH9FO4/ZIjO9cy+xlBO5PBIchsd5fjmUKoFyK1Gj8TSZGN5cM5aBT1viW+lS67oIVmIoM9p2X9LpMBWvlQWLW+zF4G7Y7iVAbCr8/k94OceAU2EYlTeu0HGUuZIc+uHav3pFogLKE8EQbHBTKALE7cIEnLL2S2u/jJijce3HLzd0699EYGd+1Y2BMbyXaqfRmMpreynvQBygBQd9IPp31uTzMVJqUvvO9fS7fiLcvOZZDWjmUd3dz7nOqFADPdSEri9BPpsJN4eYYeORmYCBvVTBzj5zLoqvcci9+5LzOv9xT5uciOXNjvizBu0ZqhF7FnP6oDH/4zlmvW3x/ZuQ+GaXxAh28K6nKYPjXcve89XJ7VTG4Um/c79r4WsH3MwM5k15bOR+z3gRlhIYmM5bGAhaAB3ci+J3cCylbviXyuTxzs/UfKCvukWxi/EHZDGdg9ckw/84mNPrAmqKE8km3UC7k2QY0wSA/Ey9azb/HaUR6Kp23vA98/52D7hoRYTD+3rN/SJDfC2Dl1H0bTpTB9aqnnmnomvzdjRbWviAqR2w1VDUr54BxH8UAxfiHvo+JUkZ07okLSC7tcWCYbSWplWIj/zsQw/1AGvcWxJr+497e5QBggNCy/4Nj/mmLzREDj5LmjOLoPhXl9/yXMQ85Zfi4MiQ0gvZFzEjSSEooWdmrzWA8gqssdo5dybfpjDBoBB8v3NPOPJNCkOBb5YjvxXr21SCSbqQTTgNwb2yeQXimaOcw/srgArv+o4ug3HJtHmtnnhnJfmCGnYf1EC9MzknAf3dx3ARYniuxKmKZyX9i2ZuYljRPF6ExqGWwk+z06M6zfCDGpvO+VEVAa7eS9ll3LxEV5oClOHcmtkvN1quX9NFWMzwzNSNNMBRTWs3sQnF8bdkdSK1MvBAwKIypAymQSoJLeijwvqGH9Lkw/ZgijqucCWuK1vF+chuzSp6t6htbE8rkbbb0/LoDsxgxJn31KaXZjWT+Razn7zLA9CZi86igXAZNnDcVxRJcp8mvD5lFIcucHcD5oyCRenreV7ZtYMX1uJATHB8HUk2AIbul9iiZR/rtDQC1KgnPquSK/lKAaG/v7ZCeAoe+DxEkdRrI0NNOANpP3aXpnxJvt/XX5ZUczFYarSxXzT2qK45gu9R5B75HUtcOkmnKhye4kxGb1lmbvW2Y4T8lKWLmwFFAgwTqKdGmGigRlYPMoZPyqEzYVAV5dFlAchcw+qeirJspFSHbdiffOs2Odl0hKbY8iv2wwsaaeS6r06KylywMv65SKkPyiZf1mxPzjhvIwIrnrKI4jsqsO3VrpOqwtzTy8D8QxvoamsZIeOhXw1WWaLtPkFw3VIiJZdlSLkHgjA/xmJkmkTkF+VrN7lJIsDUFtCHYtJo+o9iPijaGeBSR33X2YTWVQjaUbhcSrBhtpmnksoMo4gtLQjkOSuxrVGopHI/JXJd04GoCgMo56LyK97rslNdGuI7qRL6by0YR41Uri6jgkrAzRTUF9NKKZh2TnNe00GrYZblvCZYmLRLLZLFLi24rqMCN7vqE9zNG1GcBftKxo9jOCUs7t4FvcNNhQE64r2kVOuK4wubCCGIeZpeJVBHTtg3O8n1KvC8zeaAjaAcDI56wZS6prsGtQTSfy06q7B3dthx0ngy9TdVaA4XKLy1N5/rrEZTH6eoU52hvCfXTRCBCNAgnzUUoYR+dQTSuMZN3gwgDVmfswnqaV3+MI2g43ymC5Ro3y+/+Po/tQnh4U9j2S/Xb6Dsq6ETlqmgxhQX2yq7ypFO51+anW8ncfwONDe/pk2eExwJXCnCpfSzIwmX5xxqC8lHbYHt/OkH5PYAm8Hurzna//wyx/yIHlD3VsSqm/AhTOub/+Xf7vbwIvgT8F/CxQAv+3c+6nv+/r/oDA8slrf3bAhXPu//MymfkXjty//N//aWojXZChtpyOVqzblHFU89vnDyhuckYHBQfjHa3VrIqMJGrZFinvHV9xtpmQRR1XqzF7k4K7TU6zi5nvb6V/EjiebVhXCUWVCMO4GnG4WHP+ag+dGEbjirYNOZxuOb+b0JYRJydLru4mmCLk3bcuKNoIYzVKOb6wd8nv3JywXOeSGltE6MgSJx37kx0vXy2YLnasb0YcHK9RynG3GjGdFKw3OQ8Pltzscuo6ZJzXJFHH+Wf7zB+u6aym+miGOW6Y7e1Yvppy/ORWPJa3Y+bzHXFouF2POJxtccByl2GtJo46OqNJog5jNWUZk2YNedxyuxoRhJY0bnk4W/FsOScKDJtdyttHN3z49ITRrGKSVdwsx0RxxzSvqNuQMLAYq9hsM+Kko9zFBJGhXaYEkxZ7F5McF7TPRrgATr5wycXNDGuUVHXsYrJpxeO9JR9965RoVtNWIZO9gs35hGhWEycdxvd08o0J1UkHsSUaNbTrhHDcYm4SXC4sqeoUp+9ecbvNqXbxvSdwncImwqWG0aJkt8xQgZVBUeCwnSKILN0qJpw1KG0xZznRwx1KQXWbMjosUMpRbBPitKPaxhwcbri5ngDgjCKflxijaaqI+XzH3fkUrGLvdEXThexuckHRgSO4jQgeFczGJZsipW0D7F2CSw2qCIiPC+plOoQbYYR9VdoRxIb9+ZbLz/Z57wsv+fjV4dBnGj2PaY46VKdh3Ir8WgGdIprWWKuxdwnJVcD8KxecP1uAU4TThm4dSyrvoiHNG6qXYylGf2tD8XI8MPo3T/dQ0wZnNGHa0pYRKnCwjmDScnS45uLVnGAZYsZW5NhFJNcg92FEoxbTifeGdUR4WKK+NaI5NETzCvWJT3B+b0ezjaHWBDsfWJRbCUmqA1RqcK2G0EoA1PM9gp0WmbdVJGchzdziQoeuNMkbW9omlBm1sxS7L4nI5kRSinVscMsYrCI8Lmh3MaO9kt1NTnQVEm08expbgp3GZg4XWlRmCEKLuU4Id1pYZQDliG5C2j2DroWlsIl0jJrc71ftQx1ahVm0wrpXGhc4oo2kB/dy2m52T7dEy4B20YF2ZJ/HlI/Ew9eOHd2BBFBFzxKaQ1lHFxo7Now/itg9Fva42TeSDB058pcBxalQrUEtDLpNJQk5ugtkwJ46zFSuoWoU6UVAO5UAItXJes3cQuCI7jQuEhY7vRSPYXwVyGTNniFZlNS3mUj596yEOcXiMWzmFju+VwOMnym2j9wAMHuprnL3TLoyEuAk6cTiOcSz3P1rRmuZQGgnzicMK7qxMMIAXXYfBNSNfZ/nTiaprK+fC3cyAaeMIn+pKE4FQPehTdFGvJzptUwE9V7J8oEhexUMbKRJZELMRjLZ4UJhtuOVGiYkcDLxYCNY/A7sToWdbv1Ep+pkwiteCrNcL3xolIXyzZbsWUR2KexVdeBZxI3vn1SKdipezLCUbSkr5yaoZKJRNzIJJEm4UBwLW1/vO6bfEpluH9BTHViyczmPzdwxeiGsVHHqmH1L2MFmJsC9HcvkZh8EVM9E7lo8UMy+JRJZkYAK+O9ZbmWk0sT5ntN47YbJtvJY9jm7spSHmnAn8mbAe1QlTMkkajimfjIo2ggzbFI5D4Mk1nmJ9likwcZLhUGe0wf+9CFH7URCmUR2LBPIex931NNAfJp+Qjsq3JB0qjr5u0/aDUtHPdWMLmWCocvk3JjIM+A+BbmZKNI7mcDrmWMbStBPuZCAIUlI7sOF5Lw6pQYGMyztkAxcz+S7omf0k5VMSrlA+RoS7//0r5fddKJSifXAoPZ9rX1wkDL37G3QypvVxIpk2WEjqYDJz0WyWy4CsltDuDPsTmPGLxqR7y7CAWxnl+3AYIJs0wUKE/dpT+K9NLFnsyNFelnTTaKB9QxqK9+lncN4BrRfTBYQ3whYbmYxYWEGtk85UK2hPkgHAK5bg942dPOUoDYCOAGbhgJU4xDVdJg8RjedANumFYmrT5N1SklwT2uwiXg/Bay5IUCqZ35V3bOXPhyoqEVSmyWoyktTjZEwIGtFftuzjEqhOp/CuyuFvXy9dgSgrCCJcUUloM9Y/zx7nxAL0jvppbMq0LjX/JdyAuy3hQF9z6Xvx/zDACx/6ccALP/97w0slVKHQOucIfPQzgAAIABJREFUWyqlMuBvA/+Jc+5vfpfn5sA/h7CV31JKPQC+5Jz7299vP35fUtg/KMvovQfu3f/sX6WsI94/vkLjiIOOy2LC5XrMw70Vb4zuaJ3m7/3dP8I/+ye/ynU9YlVnlF3Ei/M93nl0xW2RkUYdx/mGXZtwXeSM4pZxXDOPS752fsrhZMflekxTR7x/esHL1Yy39m753bNj9mc7Ho5XfHB5zHsH13xwfozWjif7t5ytp2jl2Hw8Z/TOis2LKW7UMd0ryJOGq9spv/jOxzzb7nG9HVHVEV88uWDXxbQm4GozQmsBKbYNODhas9pknCzWJGHHs+s90qRlu01Js4ZimfETb51Rm5BJXDOPC371a19Aj1psHTA/3JJEHRfnc4K0I0larNWYTmOdwixj0sOS070Vn//2KXbWEdyFcFJjCh+jnRpYRey/fceDyZqPLg5pqoijgzWrf3DE8Z94xYuvn2AWHUFieHx0y+efHYkEaVFRX+TERwXvHl3z8eUBTRnx4HjJqxcLAUVGEe9XOKtQn+R0TyrijzMZQE46Dh+suHq+x+hoR/lsQnBcsj/fcrseDcCCzKACJ2Cp0hw+uePq+R7JoqSpfET4dYzNxKeo5g1cJSJhHcmgsssd2gewmG2EqjVMOtQyIn+yZvdqQrBXY24lGMhNW2g18VU4hMRgYPR4Q/npVGRluSE/KKieTbDzFr2KmL615Hiy4dPLfcyrHN16lmSpKN+vJeH2QYva3YNIVQYyON4pki8t2VyMwSlU3hG8SlBPCoJvjqjerFG7kKDQdFNDdlBQLlP0OhxkqLqQAJvusCW8jOhmIk3VHbQzK7JbBel5KMmsjyvsdSJS1blFzRrsNkKXGjtvCW4ieFBj72KpSonATDv2fz1k/baoBAgcwVbTzby3c9QRnceiHDgusB+OafcEkCkrg/p24lP5PIhop5bouCT9e2OKhw4bCiMVbjU2cp69lzRS3Smq05boLpRexbE8DjIYdxrSKy+5LRTJndSMmLEhPQsxuaPLJS0V5LyoTsn9knoQ0infxyaAQTc+OAVoDjvCpaT16lJYX7Pfkn+UUD40BDvxK5Yn4k0Nd0rk07FXS/hrYENAi7TXKYaAHxf47fpKlHYq/mLdKcKNugcBjSLcwvbtjnAbeCAqyozkRg/SWV1D8XZL8irCaYc2yqdQCuOe3jD0DqpOBlLFmy3pqwhdMwSf9N5IkwrIsqH41bpUEkq71+qX0xvpMwS5buFODYqM3tPa1+QEtTCFkY8h6JNP24mAAm2ETTc+tdQkXuLssXav1EDD6IVj+1gRbRhk6u1ErmG9EIDaAz+T3Msth0RiLT/JUo5PGdmfoBLZqm4YUm6jnfheJ09l/3Qnkk9RSggQMLGAqvTGV7UYhuTdzduW2bc07ViOPz8Xxtik9/5Ep2HyzLA9DUQhUAgAKQ9ke9mlACwbCFM/JOBmAr7yS8vyvYBwC/W+93HeuKFXUqpo3KDo6H2nXS4gVRtfS2IELCVLJ0m043u/aTuWfe2l3MmteE1tAOOX0vWY3Yh3VPlrKRUwcp4Gb6ZXEulW/Js9Yx20AoabqYS9AL4eRKSmzcTbDrxnUneQ3rSc/ULC9HNLujQs34kGyWi0lc+WLhNViPEgtK8eCWsBf20uCa3lgR7Atw1hdGloc009U4zOLWFh2D6MBhlyVDi0EUDYp8MGjQC4dCldnb0HU3fyu43UAN6kGkXul3hrh77LaCOS3XakSdbiPTQ+8AgYvKnR1lAtAuKNpctEQtun0ppIEbQO3TjilTC5zSwkqK1IyRcBXarIrwy6kbTZnhUPK5HG2kQTlJZqPxy2Ge4s9TxgdNbQzEN046tSnCMoRQJsQ1EVRKuGZi++rx+xDF5KtCK+qzF56IONFGg1sMjhth3YPNVZbHKfWekCYZVdoLxkvBsqRUwWojyQdKEeQKULlchufRAPimEd1RrxWI4TAchlOzCgJg0Jl+LRVK2RLktfRzKwqK9JR/HBOC6LBRR2RiSwfRdk24nk1TOPqqyxo0xqTooKF0fyuGczXZ5C3Qx1LT14/LYQndflsOY1gNjLYJ0TdtI6VBwJSNTq/nnfyTwaIyDQ91W65v5a3DOsv9dj+T2BpnW4tvm9j/+Ayx8UYPn43/zRA8uP//L3BZZfBn4ZUZ5q4H92zv3VH/V+6B/1C/6jXKxTbHcpUWSIdUccdMTa8PJ6TtdpNnXCy2LGr37wPtm7K/63X/tpii5m20rq1xsPbrnejuhMwNVvHXNRTHy6asg4rrkuRnz11SOOplsOsq34C1vNN58+QCvH8/WM2biiqGPu6pw0btm0Ce11Rhq3LKuMk4n4M0/+yCWbl1PUrCEdN7RdwOX1lCyv+ZXf+iLLUhK42jrkd1+dcL6e8PSTI5xTjJIGFTiivKHpAtzznEVasKpSpiMxMy3mO8pdQpS3vFzNeHU744Nfe4u//9nbTE42BKHl+HSJ1pZQW6aLHdNxSRJ1wlQ2AWYXkR6WdJ+OeXqxT/Cg4OTBHfk7K9KsQSXCUEQvEtRew90H+3x4fkT3dCwe0NUIkznOlxN4UMsH62cpnz89JJo0HD5aYq3CpQbz6Zhtk9Bc5QSR5W6bo1PD2+9cEBSaMDQ4p+ieVBzub2jeLWVgNmq5/WCf6cmG3VWO22uwL3KqJqJrxfv55nsXRFmLazQ0mni/4ur5HmhH92wkbFiriVcaPW6ZP1niVjHKKLq9jvCwpJ1a7LSD5xnRhzn5foEbd0QvY8IHBdubHCYt1irSk50wAS9ignVAUCjipwlq1hAW8hYzE0PwQAxU9usz4jstKZ2ppf71BR89O6GrQ9yiJbkTZqI8NbgyoHujgkYTlJr2xYjoOsSNO5Hb/pE1zdfn4gGNLUo7ukVHW0SSXHkZoxpFN+uY/U5IdTaCwGEnUggfTFrcQSOD+FtJtgumrXgQ96VyIyg0+TMJO8KCqQPpCdw3hCtN/rUM1SjUcUX6NMEetCTfyEgvAgnZ0ZJiun5XJOcEDjfqcKFj8nFIeFCiNiHtzJC9DLAfjTFvl0R3Uq+iWvFJOiWhMdFdSHPiZz0/HrH+ciOpm9cCttqJpT3sPMsjA+f60DD7RkS719EcGDn/raI+7og2mnCnKN5tJIxo6qTa4kqRPwtpZ5Z20ZG/CuhyCRCa/W5AfKsxqcxox6vXBqorRfmwo14IOAkqxeRDkYWlZyHppZYAnvOY8pEcc7SWMJ/sQgugOTI+zEgAYlArxp9rZh9qlBEPpsyky7aamWX8uWfXAkd+Jvd3cq1oZ9IbGpbS87h7bIlvAqKNIr3QpJcByY2meNwNYTfNnmP0cUR91JHeKNqxFTn0816q7wHFTphJHEx/NyKofDdoJ2AouRVgNX7mqPcd3UhknLqF9fudZ3/ktdZv+XTMqZOKlIUVj+1GkV45kluo59KxaCOR39f7ApLilfNJo7B7KAxNcWIJGgFd0RZfcC+MXnbpJes72LwJ2aWwUbPPZJCT3KrBc9qHHykDo5fOB4N46Xwlj/X+wsinaZaHApKzS8f0qWX00g0y++mnsH1DwFQ7FoDdTgVINBNFO4HZp8KC9X7ToBKp7fwD8cRNP7PMv2Wp9xS7hxL6o1vZfrR1bE8DkpUTKfxOBmfpjSOohK3rcunNRAtIHJ0bH2YjqZ7JrTBYex/K+di8ed8hOvvU0I7VUA2ia5FYqw5GF5ZkaSm9b3f+sbDx20daGM1U0Y0U41fyuvmFZf6JkRqVzwzTp5ZqTw0SaBMDyleQIOCwnXiw4T2eJhYAWR5oqc5ohcVrxwKcwhJhUQvp22ymcuyJl7F3qVR2rN+IGZ050lvD7ihk/Mow+7Rl/MqQLg3RzpJdW7angdRxLDTjVw3KCaDtMt+1GwnIStZyTaWTVGMDkW7XM00zDRi/ksF4dmckYOiuk3AkJ3Jg3TlGZx31RCai0jtDl2rKReil1QZlIb/yskoL2bW5708tLOVBSJdpxi8a+f7cGLSB7Fo+P9tckV02VHsBUeFIblvS20482yvphIzXhuSuRTlHeRyzO4mIV90wqZJdd4xftpSLgLAyxCuRJ4/OG8LSp4UaqPZDzxgq8lcVNlFMP9lRLyKy8wobSwBQuDO0k4Bo3aEbYYabhTCCykmwDwiYUw7CTUuzl0gliVYk57uhYsT5vkoba4oHKWYU0Y5DSWutO69esER3JenLNS7QdJNYGEStsEmAiwRU9ompqnNYDw5F5SDyZRf4MByl0HUn/knnsEmE3tVEdyVoJKgnCSQUSGtU2fh+UCspsHGIi0P5N08EhObCKgrIrLwXU0Ik8fUkzjOJTusBVPbdmD14vJeS+w7MtvM9qT2te38MgDCQYcjQowmoMESFEhikAg11DbqPWbYCHo0RUPl6/2XPVPZ9lj7cxxn/45z823X3gNS/zus/7jUp7f+//HCLc+7rzrmfcc592Tn3Uz8OUAn/mDOWyRuP3S/8N3+epx+cEK310AVnQxlg5WcyWOtGjuRaC0uxUQSlSHaiLdRzwIlcKF7KF9r0qaVaaLaPHONnMoPWZTI7i4Pq2JK/EK8kIAOxGT5xUGby02uGtLlqrtHGsX4LJk9llT5aXII0xNvYR7mHhXiYoPeLyUxrdXCfiJhdOMLaSal1oIb0wGjn2D6SAc36bQkzCWoGeVx2LT4kZXyghZf52FhmAaOdY/22IrmTbYe17wKzDL6e8kT65IoHjslnsPyi4/A31RAXn13I7LWNYfuGSJ6yS0e8c2xPNaNzy91PaCZPJZQBfNn3WGZz129q0iv5e3wmaYnaOLaPNJNnls1jzeS5pTjWTJ8aNo8C4vX9jHp6I7K2cl+TX4lnqFqIn6g4FG+sbmH5Ux0PfkUPAxNJ9pNzVJzoIT3SxDB+IdKozVtw9JuW4kDkR+VCEgCrhZIo+pX3QoUw/8RST8QfpTsZCLQjzfaRHtIZnYLySJIXdefIrywXP6/Jz5QvtPe+2CPtr5kMPtNb7++8tGxPtaQolk66yiJFcaBJl47V2xJaM35puf5pxeiF3PeRLwFPl/JluTv2Eij/f5tHAfmlJb0Vv9f2DUju1NC3F5Yijdo9CChOHZNPYf5xw+XPJcw/Ntx+ISBo5N4anckgObs27B6I5230qmH3IGb1ruL4NzqKw4D0Tmb6u1Sx+KBm80Ys93Xqu+g6YUF2p3LdTaQojjR7H7eYWHP7xYC9Dw3aOGwgs/7NWFMtNKMLw/pJQH5hibeWu3cFRB/9ZsXy3QRlYHzW0Y60lNYvLddfko7P/d81BLVl+zBk/LJj8zgcfGvT5+L72h0FMjBaiVQx2bjB11bPtJeiyWCl2hN5XnrtmH1ecflHM3QL2a14RV0AkxedDJIrRzPRchyH8h6dPjU+pVKOMVp3Q3x+suzoRgHbE+mdS1aWqLC0owATyQx9ftlRHIXCfOyJfzIsHdlVS70XymDQweqdiIPfKli+n5FfGmysqOZyz4SFdOP1lQfVXkAzlfOWXZshkbJcSLiIiRWji25gj5ppQHbVsDtJBJAVjvS6YfMkYfSq5e79mP0PKtpRSLUn7LmNIL/s2J5GpHeGak+8ifUiZHccsPdhzfZRzOyTimYekVzXlCep995JGmd6ZzCpos21Z1s0B7+1Zfskl3qOsSbxyZvpTUt5GPu+SUsz1t6nKIyQDYWpaj1L1HshAfJXFU4rigcJxZFci9GZJICaWJNetxQnEaNXDdVBRP6qYv12xuisJVo3bN4ayQDdQTMJSG9bdiexJIJa2e9o59j7ZiGpl6GmHQd0qSbaWdLris2bOflFQzOVa9pM5Vpk5yXtJGb3ICK7EaYqLJ10Ayqo/DULWmHQ8vOGoGxpFildrqlmAbNPxcPYTCJfFdGiOkdxkmAjxeTTHeVpRpdqsquW6LaiOs2Jly1Yx+5xRnrdsnsQ4QLF9GlFtYjlM/D5lnYvJVzX2CSk3k+Il8KUJdclNgnpxhHVImT6/7L3ZrH2bPl912etVeOez3zO//yHO/a93e1ud9vt2E4swIJYlggoGCyEiJAigQRBct6B5AGB8oDEExIPvCGIhE0ewFKCIhsriWPaeGi323379nDH/3zGPde41uLht6r2ud0eAo5Fd+SS/jr/s8/eVbWratde3/WdvrPGZhG6db3MsDpIGDzdCuuURehachFcZtCVRVct5fEAbxTpdYXLxJeqK0s7iLG5Jr0sWb06lLAd330Ht9TTiOGHa2weY4qGxVsT8it5fy6XrsPOq2gq14fHmELkkHYQk1xuaA4HVLOY7LKiHcWkL9YUD8bkTzf42FDtpxLsEynyJytcFkmXYtWilwVuOqA8zskuS5pJQjwXr6GLtfgSyxY7jIlvtrg8pjwdkD/d0MwyonVNM0lJLjYo7ynPx2RPljT7g97jaEJthVmUuEEsvY7LSgJorKU9mggrWFtsajCbBr3aYg/HwtpVVkJuAOWEJYwul5JWCtSnY5JnS5qjEfHLJe3RmOh6Q3M0kh7M57e0x1N01aI2Mnnu9kbobU07zcSvmUSoosYNUnTdotZb3HiInWaYRdkH2XCX0ZuN0StJDGtPZpj5FjfO8EbjI010sZS00zhCL8Q/qepGfs5XApCyBFXW+FEuPZCREX9kWcv/46hn4ZTzUJT4yUj2oapF2rpcQ5ZCWcnPqpbE1m2BiuT1vglALCSzqiTB17WksnbexqaRfsi2RY2G+PVGtjMaioy2aVB5LqFBm0KAYBTt1l1VwgB6v/NH3gGQGL3zVuo7YBNkX/NM/l+Uwkp2CbBai68yinqQ2PdY/n9d7vgv/4VgLP/TPwPG8j/7f+ex/LNafqCB5fBTZ/7ef/03OJquibQjixpuigGJsSzLlFf2bmmdZlFlXC1GJElLbCyNNSRRS2wcq0LMMGnc0ljD3qDg3mjBO5cnfTiadZqmMTRFTDKosa1BKc94VJBEluvFkDRt2SwzBuOK6aDg5c2EvcmWg8GGbz87ZjCs2CxypnsbFrdDlHHiTdsmItm0CmU8tozIxhVVETOaFGxWGd4psmFNVYgEwtWGbFKRxC2ruWi60mFNuUqJ8wbnFVp5mmVCPKmFCQsprjq1+FZLdckiBeXFe1ZEkFpwCrU1MBaqx7catHSEKeNwTTczhSS6zkrck4F4qVoFsQctDIZZRNjcyWOh1kC1WuSjV+J3HOwVbG9z8TtkVuS2QWLWpbCqQYsvDaoIKa6VgUq+AEena2EPay2pmplFZ8H75oFpgy8MqjSogwq3DL4E7YluI6lb8UgXoRcvmI8CG1QrEQyApHVuNC6TzkA3sOiNJOz51AljF/bXpQ4ij1mJ1FCXYvCyU4sqhXm0mUgevRY5qx1IvUf3mMslOlBVGlPq0BEnXi1dKtmPRkKd4rXUkehGPGDeeHQtQDHaBCnZoSW5MX2Ko029VMlsDGjfS/W6QCVdy2SCyCt135Fnh5bsRUR14EDL32wu++KNyOBc5InXGmcCy5DLT1OKJFV8YB5TqT7FUzXyvGgrx9AmMtEiM7y7iREb0lmrfUnBNWXw6QGmUPiY0NEIduD759hMQKkpVF910YxEamoKOedei5zSxYjf84Uh2goDB6Br1UtoXSLyUZf6/hz6SJhVXYX9iHbHNV4Lc9dJLaOt1GgAPSNWj3f+NZfQ162oUHNh6iCF5U5yajguePpgINXKpNEufZcQICJPbYc7314SJLs220lMu3RN3UgYU3ojk0SdjFGCsUKNiduln2bXnu1JqDHKZN+yS5nE03XYblBMdeEyuiHIh+VvupFJuuwmJL+GyQkXEkGBPjjJlL6XVHZyUUm3FU9dVxHRyUPlGiSAO/k9WckETZfG2h3bqAzHNGynDaE1PoSrSYE9fQKoD+E9Xd+gbnf7nSw9PpL+yHgNuJ1U2GthMV2i+rTPLsVXJKoC7mRySiR7XaKrvA8VJnqEEZUEV8Rrtw1pyVGoCVoKw9cM5W/xdnfuXKhM6So1OqZfJj6D76324R6xu6ZMLUF0co8Mr7M7r2gXIFQeihe0S+btji3IpEK5t5todUl4/yEQL6o8dTjP7SAcTy37UxzIvck0vp9oUTbIbQeKZCO+Qt34vmdSAoVk4qcNAU7S4SnnorumxZ+o+qTWeqxl4i5SNLkmKh1RIYmwLgqfsdb3YX9dcBFKOizvXvdy7CTMKt4GOWshfY3Kyt9UGySLml1yrBIJs7a+n3SKNzJxYmrfJ7zq2oe+Q4KfWFhAXfu+/sPFut+XLuhM2SCBVYAS9tqUDt16mpEJ56Tz7IrUVFtJae1ClHQt9+N2ZDCFC37K8P494D0m1JQoJ3+LStv/7rWS99jukmuj0srnxnSBSOFviQBpbySlVdeBIbsDhFysPxHYI3Jaja5aXBpJAmzrZIIm1JH0KdNVI12QsQmVKO1OMhq+n1AKVbZSJeIc3pg+3VbXu1AlqToz6KLBR53PU1JgvVGoSipEaFoBgnfWo5yTx8Nreh9k0+7Ce+7WixjTs5CqYxutMKKqDV7QDqi1u2TZbvHeS0el9zsgGepPuuOqVEh+9Ts2UxhF9z0gFYAOzH7X8kfJXf+45c+B5R++/Dmw/OewpK/c96/+t/8RxXVOchWh2lBpgIR2jN83VLPdl7zNQsDC9u5NGspjGaTGaxn05i8U9V64IW92/pNmIgyS155oI9KeLsa+OnJkFyLFa8cSCCFG9xBDH2RbyVxYVN2o3pAfhYj6bt+TRQh2WIsnxqaEyG153z6SsINqT/UD16gU9jW9lQFrtFHiqaq6m4v4o4bPhC0VNiVE8Bf0HXXxKtQRDIXx7QayyspAavma9Oi5WHxm+QvN9twy/NhgUyjPLPkTYaWaiex381pB9k5OVISBVCvsZ7KE8kC233eKWZHCRdsQs7+ml9yUB7JPzYh+EJXOQ8dcLQMtr0Tm1g5V3+8nybDikan2AkNaQrUnMrbiRB6LtrKdZCGvbwa79NnsWgZ/2zNJhS335Iu8OJTE1/JAzkU7kHXrhj48xJSeqKRPHO0GPt0A3CYhjTeR97M+VyQrGD21LF4TcFNPAsO+H+SWK9ieeabfoR/MxhsfAAN9p1znZROJqKyjY9JsqnovVD1RRCWYQkB1PZFjaioZkJUHkoyrPD2DmF8Ju9zmIiWMtnIc0rlneyqDaJfswEK0keORBIleO9zJ6bpqiS5AI14JWxyvZPvdwN1m0tM4euJpc4JXxyNpzKJGiLc+JC/K9WtzWc/mXDF47vu+vHTuJe1ztovq7wak46fCuoJcT8LYh/CQ0A9Y7cl6vRbWefKhJMaaWkJB2lzRjLpBXvjsahkwlfuKwcuQhDrenQfdSu9evO1+lwTiLnymHYivjjDo7/oRlfdUM40J3X8CsnbXRedl63xf/b0pMPXKCVveDDTlgSSyFkea0VNRDEiNgYAMU/oeMCgn4KzNRRUQr+Vat4lsd3ui+8F8upDz3Hm3olIG/Zszxf67VgrRpyJT3B5phi+dpGePVA+Gsrmn2NekCycs8FyAV8cId0CgY6zvJqJ29xFT0zPD9UQx+chSjUWBUhwpBi9dn47sFVRTxeDKsTk2JOvgZQsAMJt76qHqQYVsQ2omugCV7aFcE+lSjm+bieeunBrSlTCh+aWkqkaVDIC3B4YkSFidIcjV6I+7N3L+82vXM1vaSl1H58/rwFIz2A36460n2kpfYNUBpTgcowCqqrHuQaxuhc2OtpZ6GmFjAVwdmOm8htltS5trqolc6OMnFZvTRNZphdEs92Pi0GdYHERkc2G2y33N9L2m99SlNw0uCb2L3lMcRmQ30odoCofNNKZ0lPsR+WUjAElLCAwKtscxg4tGvvNzTZtpkkWLzaX3MAqpqFIL5WlGmvS2DZ8vCZExpaMdmj5ops0F+LlYES+tAJrKsr6XMH5SgYNmHAUAJ8mvqnW938w0AhTrSUy8bmkmkaxrZbGpJlk0VPsJybLBK0W1F/cTDvmLsq/kUNYLS5hF1LOI7FJSW021qxcxRQtaCXtZtsJmT2PiRYPNjOxL7dCtC39LeibYxboHbjYVkNWOhJVObmvMtgHnaA4G6NrhEk1X4aG3DS6PsFlEvKr710vvYyNMZutweUw7SYlWNdVhTnpV0ExT4puSdpqia0s0L2j3BuhyB0ZsHmM2jUhTa6nx0FUjzKiXz6VLIgFjnVS1DeE7ZSOy0EEqvsbW4qYD9LbGJxE+NpI2O99K2I33AvScE4axq/yAHtT52EivpNGy3m2Fz1L0eisJrk0rQTdVLayjEc8kSYxabnow5vNU+ijTROSenbeyqlFJLGCztbvtg/we9qNfjJbHYfeaUG3yiVTY/rEAhFsr4DD0YXaLiqJPAscO7HWpsEqDs7KvwSup4vCaptkBXRDGMkn6oJ5+CWE8/fruJL8CeOdRAcj6u2DzB71u5PyBf/hnACy//Z9/fwDL6E9+yvfxoj1xZClzS/PAwipGTWpcJV9uy88GBi61RM9S1GsbquuMClBekVxrqQ+JHG2qaSegRw2ly8IXtxeQtpWePju2qFrjRy0QY4/Eq1QfyEVeHocZeUVIuAvde6kMjpuZRTdR6OCTYI167GnG9JUgLhFg2AV3dLPhugLlurRCxepVcIkwWC4Rxoh7Jf79LMzGe9qJw5UKnDAy8UpRHEvHXrSSigHlA6MQGKd6JiEoKNieChNTvFaTPU56tqE8kcTCdiiSYylEFwmgLgQUo9ixRI8zmqmA6XomoHf7qKW9Mv0MdQf047X4x3TbzTYKyDWl1DA0Y1mvj+R9J6tdFH87lJCPzQMVugtVv25vBFR0+ybAxlMcS9l8edTNDMpAvx0IEC+OBf13klivoJxpqpmcD5DBaTPesTkoqA4lSKWZ+J4xy192g1nZz44da6ZOwEWpUE48c+pxxPKRoZ55koWwMC6VgJF2QAgHUawfQL3nSK81yqvQJ6aoJ7K9euZDYiIUp5Z2oQW0p7K8Lc2jAAAgAElEQVT9rlrDxVDHkHgVZtshChJpm4BLYXNf2DWbEaohdPABSp1EOvfYXGFLOY5tLq/TFXAHzJT7u5AR6XEMISKtpFV67Xsmq/MtSf2M6pmMaiqya+k7VAHwdpUnCrwKKZCy/4zUDkAXAujLfXmvdScND8mQupXBdXXoGDzTNEHOTPeeDGzDZIRJ5PW6he2J7lmf4kDTpQm2uVwfnUwaJe9pcyYSaJcIC4HeMWtdKXsRytzjlaeZCHAuD+RnV6OCQqSnVfjcJaECSUG07lggAYQuCsBqLNdKV5UUr+V8VqHmox4JE9YMVO9zU06YMZxIfdfnGlMI26QD8yzHInQ8pnJcuxqJZhjYQy+dhC5SIZQFAYuhq3GbBa9aJGC+8/Z51TGFATBqRZPL5zUq5LH1fcX+Nxwqpgf2yVJ8j9VUQG6T77yLEgijejYrvRV2DCBd+n4CrhkIMwNyL+nuK3WYHBHmfff/NtXBtqD6sBpldeiapE+ibDMBwO1AKlNY7RIrleuOXQCsJkxCrT1NupugqkOfotdaQok2d18beiqD5aDNQbcC4LyW68brHTvnzK5XUlcChL3x2FzYC2805UwJe7cSiXtUyv53rKbXUvMRF47toVgFTB6qOzACVktHM5RKmu5z53VnY4nudC3qYJOQMBqbiW+uHZpQCaWl59GF+iqjSOfCxrlYAll06/t1GqCeRr1s2WvxZLpU03XLtpkW1s0TqkkCm5xoTO0CuBfgFZWe8iAh2sgYoANaUidiSJbyfBcYO2HcBGQqrWhzE6w2AmKxnnYiMnUfIUBcS1ppM457ea1MRjlsbvr16ka+F5tpIqAvVtwd4ikPaEUziNCpVIC4VF7v0gibhn0ZRpjSiow31pjSBrAmrKDL0x54dsDbRwqXReE1DpcYXGp6htIbjQvppD4cIx/JcfaRRrdO0k675+bBI9ixZh0YCWE9LpNzSBSYyrUwWD41OwASG3wWCcDUWkJ08hjTOkg05UlO9mwHVpQVttHrcO+2nk6y5PMEb0zwR8aoqglAMhFg66DrlXSjgbyXVvXg1+2lO9a0tRBHn6gX8Xkqr4fAEhqUD95IrSEJIK1jIo1c83S+xS4Mpwv9ueuT7KpH4li8kWUlz9H6k+mqzu/AYhecoxW0Yd2R4RNLeB6xVON0oFQphTcC9oljAZz8EYtW/TGWKpM723AeFase0KpeneO+G3/+YC4/uJzen7j8QDOWX/rhzN/77/5DAH7+9LeZ2wEP4mv+6fpTfPX2nJ87+wqvxJf86uqzPN7u8crgmi8MP+KmHfFxdcB5estFM+FXnr/Fv3n+NX7l4m3+/fPf5Meyj/jFxZf4tRef4mfP3uGvTL7Kl4vX+L31Q/7x49f5hU//Gs/rGQ7Fs3JGqlv++uE/4Rfnf4GpKfjHV29gvebfPvtdjqIVv3T5Jc6zOb9x8Sp/8fgDHhd7fGp0AcBv3zzkR/YeM28HDE3FP3r+Bl88eoJRnh8dfcj/9OTHeTC65ccmH/E/fvDj/OTpBzzZzviR2WM+n3/M3734CSLl+JHJx/zDi0+jledvP/pl/t78S3xtfo8f3nvKB5sDFlVOHjXcH8zZ2ITDZM03VyfMEumlcl5zUw2YJCUfLvZZlymfOX7BvXzBcbzi29tjvjU/4sXVlNlUKkseTW55Y3jJ//zln+Tf+/Ev887yjEFUk5uGcVzy1ZtzPnxySDaqefXwmsNszdPNjJ8+/hZ/74Mv8Gh2yyiuuKkGDKKabZvwCw9+lf/qO/86f/nsXa6bIfMm5yRd8fc/+AzWav76p7/M/3nxFp/fe8qvPH6Lzx0/49XBNVub8Hu393ltfMUkKvm/Ll5FK8+n917wvJjycHDLNxYn/Ny9r/DLLz7Ps+WE8p0Zj378CSf5it+/OGOWlzy9nPFXP/1V/unL1xinFfMi5/pqzJsPXvJ8NeZHT59wWw0orXxJNs6wl265rQZ8+PwA7xQ68kzGW5LIopTnwXjOb73zGucPr0mjlg+eHXKwv2a1TTmYbHj2fI9PPXwJwDQtuNiO2TYxl8+nzI7WKOVZbzJ++vVv8a3FMZerEV84fcrTzRSAF/MJs9EWrTyJsRxkG67LIQ9Gt/z6t98gzRupwvnKKfnbczwwTGuu5yOO91ZcLYdUi4yje3Oub0a8ce+Sbz895ocePUPjuSqGPP34AGLH3sGabZlwOluRmpaniymxsbRO93Uve6Mtz1/O8K1GrSN+6AsfsqpTXv6jc9ofWpNnDcfjNd/58AQazec+/THffHHMv/rat/gnT15ju045P57z+IMjhscb2lbTNhEPjm+YJiW//9VXiI4LhnnNap0zHJYiSX9/j9c/+4z3nx1yerTAOk3dGm4vx2STiurZEGY1+ahinFe8fD4D7RlMyvD97ajriGFesdpkDPOazdf32P/CJVnU8tGTQ4azgu0yE1n4JsZMapGdL0RSr0eNSNcHNcXlAGJHPAw1K5Fjb2/N4t0D3EmFLw2H9xas/+9DqkMLszBIcAqTWM4OFjy9nHF6uOAg3/K1dx4S3xrcoxJba2g0ZtiijYRqtVeZgMmDkuY2FRlxoVHHFWlWUzwb4WMPkUNnFmMc5t0h1bElO9lQVzH+MmXy6pzFYgCLmORki/vOiGZmyY4K9O+OKd6qRD69jSBxmFvxouLBzVoIMmyVWfRl0nezuvMSLlNc5qRCZdaVpnYz6B69NajjEjtPJNl5GeMTh6q11H3stWBVSAtWtAcN2Ueyjc2jlvQiojpuSS8N1XnD+fkNL/7guO+ubYdSdeIjjzuq8dsIM6mxcwnvihca8/ZKzl3i0Mso1Lwoxm/OWX4wE9b1sEJ/lH1Cvh5vFDbxfU+nciKpjhYBFL1R4C4yTCGTZy75Lim6Aze0mJXpZc3xUqjqZuTJLzTbB9KzvPeu9IZuz0R2Hy3upCePBIgOXii2p76XpnaBRPVxS/Yklt7fwa4DefNAJkI7VU+bywSY/uKC8r0JyVz1bHQz9f37SG/CpFsAzaYUtYpqRd6uG0UzlO00E5lYjLbSe5wsZJ0uqD0EiEBxLnU4/WSdl5/rT1cM3017RllUDkH1MxRlULKSMB3ChGx1IOdIaiyCmiQkF2/OpXdXt0GZciOA9uaLluPfMGyPZV/ThaMOeQYuFnVGcaxIr2U9XYWI8vQqhq5uRLX0DPKOARW/erWnGD11bI816cKzOQtdqVdhEiN8NFysehWAbmR72dyzfKSlX3g/dDWGPmrd0mcrOCOTEfW4SyEWdr8Zql5S3S1dwFTH0upG1DnpUtQANqWX9Oc3ToKFgnS4v2Y7pj0KaikvHuVqIrUm1UyTXzucoZ+YiEqZ8EmXTqpMvLDrbSZSWBtDHhQJ8Vr81dnc0gwN0TaA/XCcsouKek+sMPW4q1KRiYxkJYC7zTXx2oqfc9Vg80hUM5npfeAuCrJbD9GmpThOiEqR8OraES8b6r2EeBMCcJQiXlbYYRzYWtdXgKjaiZe3cSKnVcIoeyPAWbdOfKnpDlh1tSHtICbaNuiyxSXiB3aJwWzq3nfrY5HYuiwCpaTKRKkQ8hNYQ61RZSXMZwDtd//OdzOJIP7SwFB24UUEKW3PtEZGWFml8JstapCH4B1h7H1ZCVtprYDVEN6zu+gCeA8+zO+W5X7P4hyuLP/45/wxy/cNY/k3/gwYy//i+4Ox/IEGloM37/njv/UL4r9rlfSj5ZY4b6hvM1SliU622MagXqb4kwouU+ldU8K+lGeWaK3Rr63RXxtTvlHirSYe1KjvDLGvlvA8JV5r8aUpaKe299vFCy2DlaMKd5WKX+tBifkwox16XCqsZt8td68i+SilOrQoJwOZ+kDqHdr9hugmxg4cow8M6x8uMc/T3gNjamEWy1MZXLRTS/40QlnYvl4zeC+h3hP/mstkxjVeSDKni0SG2ydV1rvIfZvJwKkdin+smQoroWW8GmaK6Quz20H4ogbsfsPka4msdyn9Z6ZSgQ2QKP3iQcvwgyiEYMDysw16bchfaDZvNOQfxtjc04w9w8ea4mRX8G2HjvTCyMBhIDURLpLtxyuF/8KK8iYjfxz3X3AuFbau2oN6JhJlm4mEuD5sUZUkYXZVCMoKa1uetgw+CrOq3SRa4lFOkd4Ehm0k++UiSG/kdTYRP1/+UuSzXWVFtFEU55bRB+IHvesxs7kwdbqW45ldB9lmYANdSu/76vxcnVw6mcu5cokkkDZTT3odBi2NDLTiJWweerILkRaW+0HWrCU0ptwXZnT6DXm/q9cd2UvdV2XIcZR97eTgpvKsHsHkA1g9EjY7WYo8t3ueMHL0ktyokP32kQwwpUsvPKZ3dRHdwE58Y550vpPBdhLeNpPPQLKU/b87uBQfo9QxDJ9o4pX03HXJne1AWPXZN3cVF20efFXVbjCmW4nCLw/k/Hbevs4L2knHi2NPfqF27zWRwWC5L4+ZQtj1rrbC1CG59FgRbYI8NZGB0OBC6gtWDxXxJgxMg38u2nrWDxXZlQz4Ok9hVPjA2Mjgx6by2c6uVO9vM5V4/tLb0HMIfaJqfulYvK5Jb+klqVGQ0Vb7kgqqrKR4JiuPjbvAMTk+nRzd1MGDOJDt1GN5fj2W/r9k7kmXjtVDgymlz68dyL4kS8/mNDBSY0UyF59geagk8CmW92JTFcCDl8FmvvPmmjLIXAmf/TB4bwfCVLb5zm+qre8DsFb35Z48fOGEXVbCLld7qh/U6xrirUOHUJ96IqxQduNYPjKk8+DHi+W52ULWFRWSWNrmiiZXZAtHHdj9ru9w9Nz2Pj2bqnA+A5MbK8oDCYKSwCfYHhvpQoxlH5SnBwbxRqSLnUzdGZEOd7JdqS+RY6qcAIWuO1G5EAIXwpY6z2RU+b7WomMiTSMS484e0X1eTB22MRKQkS5tkKJryj05Hp0fNd7KIL8eywA5WTlspqgmIUAn+GflPLneYwcdg4QEVOUmSN0DMCk64GBpcx08xa7vP4y3Xra/drRDYfdVK0ysVxJAZTORrTdDkfiOntZsTxKy2xZdO8rDmPSmxeaa9b2I4Qsb6k5U38GYzFuRJE+jcE+ytHlXSeFoRqZndXW4bjt5s24cNjOhPgKiIvgOrTCuIF7JzkKjK5GpRuuGehZSU10nYXa0mch6k0WNzSLaoazDlLbfH68QaWlpcanpGV5dye+iaogwle19jZKKqkMIUEJUWKq9hOyioJmIedlUjnYYkV6X1NNE/MKlRdcWl5j+PdTTmGRe443GbCX0pR3GmK10UNI63CAWGW1QHumika7H4E2UfQphOY3DDiVYqbteXBaJHHld4QYJelsLIwqo1qEXG9xo0IM61Vh8EqFXpYCgJAbrsNNc2ObKiqcxgMJuUVUjzGPd7Ng963bJrkrh8xi92H5CwuqzWKS6VphMtS2D1DbqAaCqG/FS1g1+mIuUNomlS1Lr8Np452M0RmS4Ssn+KCXS2kEmoLEDdnGEX4Uv4S7oCOQ5SSzJryEZ1q/Xu3WDhAmVlXgwq0q2d0cWe9fz6a2VYJ8/JNFVhWPhAxD9I5c7VSY/8B7L8wf+4X/yZwAs/9afA8s/9XLvszP/N3/pJ3ha7THQNalu+eb6hFcG11g08ybnuhpynMkHYj/esGwzUt3y3vqQvaTgMF2zajPeuT3lM3sv+IObM55dTznaW/Ez997l7z/+LAeDDZ+dPqfxhspFtM4Qactvv3zAyWjNfrrlg+U+r05ueG9xwPV8xF969X2+fn3K9e2Iv/T6e7y3OOSnTt7n11++xkG+5XI7ZJJUxMZStDGNNdTW8On9l/zui/ucTxc8ns/QyvNo75Z3n53wE698wLweECnLos55Pp/wcP+Ww2zD71+c8ZP3PuQrl/fxXuE8fP7oOd+4OeG16TUfrfbIopabzYAfOXlCYWP2ky0bm/B8O+HBcM6vf/wap7MleSQBQDfFAO8V5+MFqyalaiNqaxjEDc9uJrx9dsG7z054cHRL1Ua8Obvk9y/PSEJVyL3RglWT4bziJF9xUw14e/qS//3rn+dT91+ilec7Lw9J05bTyYr3nh6xt7cmiSzbKqFpDVFksVYzSBtGacXji32mkw2NNdyfLvjGN+8zO1uSJQ1pCG1qrCFPGqxT3N6OODxY0VpNUSUcTdbcbnMmecleVvDxfMb96YKbYsBym1FXMXvTDa3VWK84G6/44OKA/emGcVpxs80p6xjvFa8dXvN4PqMoY2bjQl7jNJttytHeik2V4JzmfLogjVq+8fSU0bDkfLrgYjMKjGhGbByN1dRtxMFwy4v5mPpywOh8ibWaYp1ydjLn5c2ENG14tH/Ld14cMRqWbMuERwe3PJlP0dpTlTFtbTg+WnK7GqCUJ4ocZSG66sGgwijPcpnjWs3h0Yrb5QC8wpaG4V5B22qcUzRFjI4c/8qb3+YrF+dUTURVxQwHFXUTUa4TZvu7MCpvNbP9NcvVgCRtUMpTlQm21ijjGYwq6tpgW4MrDTqz7M823MyH5IOaskiIk5amjrDbiMOzBbfLAXFsqauIOGmpbnLMuMEuYvS4IRvUwiCuI/zA9pLqZFRTL1IZQOUtSnvsMpGamk3GdLJhuRrQlhFR1mJbjS8MetjiaoPaGLKzDW1jaK8zfOyIpxXtdQ6jBt9qdGpx6xgix/7JktubEb6ISPZK6tsMYkfyPKZ5UKFjRxRZnFPY1pBmDcWNhFbFoxoTOcrLnOyowDlFPU9RjcbnFr2IcAPH/vmc29uRSNsLA4mDVqFakfGpWY1+nkkg1ahBhfAk7xTqJsFHHjWtMU8zmv1Wwqf2a5FZFkZk/kEGD8K+xu/l1K+UUtETSZiUjx261PjYS+iVBlVrDh7dcvXxTI55IXIyv1fjK1m3LhV2JBNeGKmg8dGdwbUDH3viW0Ozb4nnMgBt91r02uCGMtOlSx0mXyRQqz1qoFGyb6kjvo566Wgn6zdl8ECPLKoROXi0VrRjkarXE4epJQTLlKrv23SRx4WJty4MSVmI19Jzqxx96FNz2JI9k5qfbhLFxTIRqWpFeiVhXm0Ilep85M1YpOzliSXaSLp5O/B9Em5nr5AS98C2hXCoZKHFWrFVPQOpQueoi6V/VFdyiOupgM/0Wpi08lDqR+qZky7UYEVwEdT7DpysM1mqMKEYekk3ingpk2DN2Pd9uiDHvBnL5FcHEF0invAuVKmbpNSthEApJ92q7UgmCjppvovoC+5d0rFpMrkTb2RCK1nIddMOILuRiZ0ueKqbHOvWF69koqXrPG1Df6hNZRIUQujUncAwl+wmDifviQdXKnJ8P+HRefjl/YSgpVqY00623nlNXQz4nUy8C8rpXpvedtJ21W8/XgZgHgX/fhv2KRdPcxcohRJrQ3bjewVBH8AUEuNdJOxluRf6PqtuAvCTEzYiS1bkNzLppYIvOt7K711SvLbSwykTD3Ku6rH6RCerNwLctaVfT5uJBNlr1bOZMkkj2wD6iZd440JAkqQ6iyza0+TCQNYTTToX9rEZmTBZ0zG4vr+3mFoet6n4ZbuMgWpq0Nb3kwIu1j2IEa+2+FF9YAC7EDObaeJVCxqc0WjrgvTVYvOQRmwUKsh9lfOoxkp6cEjdVZXtQ39cEmGKRlhJLwAX5GcnI1Z3ex+VEhayG8N7v/vdOflOqBupG+lDhpqdR7K1u27MuzigY1nvdFECfZ1JH/5TNwIqncNX1fd6MrslgM3vCfS5y1r+s+KQ4NH0VfXP9vw/ZPlzYPlnv/xAA8vBm2f+p/6Hf5dtk3C1GqK1p9jKjFk3QB0MK5xTpHHLcjXAVgalPb5VqMjL9WwVybimrQ1+meAzi4od2njcTYI3HmKPzmTQqROLKyNUrWWQWUToYYO3MjhNDwqqmxy0l6RU40FDNGxoN7Hc5MYNdpGA9phRiy2MJLZ6hbpK5GaVOtSghbXMrnnj0YV4XvLzNdX7E1zm0JWSxNGt3JDcqEWvI9zAoioZ4InPUAYdXks3oTBcwvTiFXYs5e0+8fjISZKq2zGVdiil8D63MphcB6Y4Dh5PugGDoh04TCEBR+51kYB1iw6DPB+YVbMyeONxA/m/HVuihcGlni6pFA/tQUN8FdMOHLrSvdRM1apnofuU0TsSn64g3Y4cqlFh4BjSPAuRjulmJ+UxhaIdy3HV9U4upGtFO3SYKsiS1sKO+Ehmw00lf+/Y3I519XrH/JpK9Yyv8uCMsFO66QY0wkbaoUMXMgCuD4RVjzZhsGHEg9oFznTyJ6B/zJvuy0HR1ah0RffiYVSUh503MwRHBdlZJ3HT1Y7Z9kZ+twNh4LoETZvJwDR/ocV3hhzD7txJ0mLwd2WhS7Em+I66lFcJB4rXqpdN9mmnCpHklXK8Oh+UgIUwAEplEC39bTLwk/NFH1ojITmeZKl6NrXbz2QuvtEubKlnQDf0nYt3U0c7lqpboiIM+oJvtGP4YZeyapOQhklI3rTyXrqE2rtJoHcHoKaU96cbqKb0n0fd7j6XfQqrDoNCJQPlbh3aBlAQBuSqBQlokv2LtvTl5MLsB29msrumOpkf0HdUdmFDeGHy03lIpOxSRgnMSqgSMnX3eZTBngQCqT6Z1BTCXMZ3Q2vMzg8pEr3d412xuW5DEFUZXheYTlPugF8XCqVr+azXMxnwt0NCWmnwhiaq962aMhwDt1MMRIWwdE0IlJLjE0rdy13KKOwUHzbbXQcqgApT+p3UL9pde20AC+1Ajsnd60033Web/vh0kke5voQ51rXsYz0JrG2XNBuul7jYAY+uyD7ZCAiQkDuRerpo9zrd7H7HQzZ3ARx1AUmqv1ZQYV8C8Eo6aWisSDbCQtZDCahqBvIT2LHm3b0zXD9tpog3rmfnO7ApT9ht11TC4je5hBJ14EW5cKzsTgHSXT8Sjre7lkztd/e2EPyULl34DAS22HrpWVxbmpFIJ5WT+12XmtrmAn5043eMa7v7jum8txLGE15/h8XqQI98JzjqWRTSgMXPKKBR7tndfbJnOc3u/vzdnxMXOhmlN1F+N4G57D4r2oak1k2Lj7V4L1sJ6tG1+x7wJRejMNEuBOuAMKEq1K9I1yNo69BFix3IY+0w6r2epmixmYTvqE6OeqdD0qUiJb3Lbtos2kk5lbC+LtkBJV3bXTqqkzTYDrAJMFN4Ix7Pu/uO9T1gk3RdLUFCHaunlKyrdZLq2vc+ipcTpXopqzdKGMvOi6nZJcB2ATxtl2br+vX3jJ8KnZUEcGcDIOzSYGH3mrvj+S6M5+556rbVP0eLjJVuNXcY2K7GJIT9+A4Idl7K8HeUlmTZLmQneDhV59Ps3hN8ksn8rsV7v3vNH7f8C8JYPvqP//kDy2/97e8PYKn//96BP82iFFxuhjy/nnI2W7Jdpfxrn3oXE1maOuL4YEkWtzzav2VTpJweLNg7XHF8vODBg2tU5BjvbUknFVqHma1Rw/7xkkdn12hjefuHHjM6W5NMZIbEzCNMbMn3Cnx4TX645Y17l6TDmnivpFpkkDjGx2sevXEBieP8wTVtGZHvFQIky4j8SYQetoxHBef3b8iHNX4dwVElg/9Rw3S2JT9dk51I9xKHFT53lNuEN370Y6KjAn9Skc1KouMCl1v2jldEZ+KdHD9Y4hOH3q/IDgtG95cMTze4w4b4/gb1aIOdtbhcWAhzWggLAeijEn1SYu5vSV5ZQ2bxsUevIkxq8Ynn6O0rdK04eOtaQGKpaM8q9GElX/alYvjlAd5IcbspFfZeBeeFyHUB7kknGtrjT0uUVez90BUucbhxiz8vhZVwEoCEV0zfvha2w4LLHM3MYkcOO/C0U4tLPXbgsCcV9cMamzt0KVUdzVSem11q7Csl8UoRrzRe+zAIFR+WHTgBQlaAZnXUEq81/vUNdmgpH9W4VOS13tCzPeIpUdTnNfWepdmT/alPWspjS7wUcNnmUlyva0XzWkkz9pTnjcyAl0oAT2BlJHVQysjjtaI8bUnnUB1YykNHveeoDiz1nqU6tjSjLmnV00wcLpZ9azNJCC0eNMQrRXViKY8t2aVUZJhCgpVcIn608kgKxrvZc90oilMn/+5ZbObJrjTlsaMZy/ks77VkV5KyLAyGPJ7dKJqJE7n2F1e0A8/wiWL9hsh3instzUiSl5vPbEUyO9glG7vY00wEGDQTx/ZcvuCakcMbGDyXSpbtfUd55Nieeap9kVduX2nIrhXFiaM89GRXHt9VMwwFXG3uO8oDeb6PoB5LKnC159meO2F39pz4qNYhVXno2d5zfYE7elfd4WJZRwcehTkQcOeMPLc8dqQ3nuzSU0/pE3SbsWx3+aajnkiCcbLqUpA91cxTnHjqCaxedRTHfgfypvJ4Mw7b2Be2KtrK4LY8komQaEvfu1keKNYPZd2mhO09GZCvH7pQdQPVTI6bi0OacSbgtB3uenhdLPvqIyhOZaBvc5Hv1uNwbIbCeMzfDgNIL8dle08A4fxtYXqKE0V5SF+bEW+EMbKpJAPXU/l7PVZ9IrENQC3eeFavCFBrByKrNqUEWzWTHXiLCli+DtWBDObTW5HqNkPF8nXoQqfqsQreLCiOpOu0Bz/O9wE9LgQdbU8VxaFMhmTh2rCZCnJMOS4SAibX9vqBfFZMLdLndCFpt93EVDeZYAPQjddeJMdTkc02Y8X6vhZAmMDmXPpry33dV5t0k2fre1rSixuoJroHuOWBpOt2kwKuA6uZBFN1kxam9iwfGVb3NduTEGCzL/67rvJifa6JgyS4nKkeZG4PJSAqWzhh1xYugMadD7GeKOqQBFzuyf60mcLGimqqqSa6B2bVRLE5kXVuTjVtqsjmlvU9kXVWE00zUDRDTbEn0lybqn6Cpgs+6tJt66HIoqup+AvjQs6dKcWTqFvP+lzCSlYPoh6UNQPN9tiwPTTCbAW2a3sYYRONTTTtQLpUXaSIto70pmF7JGxZcSizoMWhoTg0PZDXrWdzLyG9bXGJolp9r48AACAASURBVB1qin2DzZQwtUPpy7SZ7Lf4IDXbkxiXaOqJoZ5FRJtWEm9bR7UXEc8rysOYOqT4NpMIm2oJQ0p0SFg1EoIUSVCQrh2bs4TtSYKpQl9wAM0u0RQniUzMDaRnVDmPHURERZAuDww2NaxeHaKsp9qTkKHiNEM1jvIwk6qP2oUwI7n+m1Ekz6kdzThGVy2bhyMBkBqUFYDajmLaYdwnybrEUO9n2EGMSwzFmfR02lFCM8toJik+CiC1dZjOH5lF+NRQ7+c0syx4ETV2mEpXaBZjh4l4IpMIl8f4LMKOU2EeB4kATY0wjSFIR0KECCBTmD6XJfhI43OZxfPDDD/KRaKaxbhRLt2YmSSqEhlIYkmdVQo3GeCTGDcegta46VD+H+SqbjwUiaox+CQW9tJo+RdqWfxoAIMcBjnqzr/e8xhFeOdQUdT/wxgBgMYIQxmF92ktKkk+CSq7wTp8D6j03vf/ut//yMV5PpEi++fL9+3yA81YDt888z/63/81BnHNbZkTa8cgrrkpBmRRi/WK5y9nDMYVWksylVaSJAvQtAatHd4rbp9OOXp4y+1iSLtMMJOaOLZYq5iOSrZVTLHKpP9xnRCPapxXorKwcgPU2hPFlrqMGI7LXn6oFDRVJF2V2hOlLcZ4osiyWQizmWQN1TplMC1oGkMcW4oXI/SsJopbAauRIx9XFKuUbFRTLlN0KiEczSrBDFtcq/CNRkVeAkZaTZRabG3wrTCz3eSWUp5hXrFYDdDKS99lo1GpxVsF4X2hPThFOq6oXwxgJt2Q+UFBcZuj8xa3jYgnIhX0uUUZh44deIVrVT/FHKUt7WWGTzx62OC2IluLJxXNrUSRmmEjYRqNBiMJuRjR9ehVqJUZW1RmYRlJj2Rmd5K7SuEOGvzWoGuNyxwqb2HRSULCBeTBxy7I+wLDZgI4TC1+E6HHDX6RyHsqDXSMbUitVeEY+SiwwcqTXUSUpy045P9njawXiG5i2omV5wYG2uXCpKpG4QZhZrcU5lg1AobbicVsREpH5EmuREbY5gK8bCqsuI9Cv2UqjLHNHcrvui+FvZRuzexSU57IwCgqJKwDHfyzThCyrhXNvjDZbmgxQZYZrfSONQgz9Xf7KtuhAwPRsjP+y7Gyme9lZj4S4KucTA50LLUpJdW3Yz+6Y9v3Vk4kZMTHQe7XMdpjRzzXwXvo+15Lm3l0qXpGWbWqn+HXIWAkWgtz2+YCXIHeswv0U3Adm9szw+HY2SSkOC534SnJfCe7q/eEXdCtvPdoE86ZEvDsI096bWT73SR0YDGlp5Tep9q9ru9B7BjykBLqQgdol8rsYtleMxK2J15KFVE6l+NW7UlIi1cCProaIhuurY7ZUoFVU1ZYvvJQ9Uxax+Z2LJ8phUlrhvTnVDyb9MfXZr6XUNp0FzbSMXAdI4gWz3A72IGsbpG04MBeBxCWrEKoS7QD9H21Uim+73j9SUUByPPitSQbNyNhvIVVkueZYpfInN4GmV+0Y6JsKvsJd4Jo2K0/KhCWOniXdR2Om6ZnbVW7u0Y6pYFu6atlOua879is6MNgekkk4l+tJyrULcl10OZyrONNNzmg+p5QU/veK9r5WvsexyZMECTCLnZsWteX6CJhZvruzpBCjKdPKjalnPsu/Rh31yd859rt+i/ZnetOMtpJNbtjBbJ+Fwv4NI2cW21l3TaRazoqd/7Vrju131Yt9582VUTV7v124TVdDVKnSiAA63grYTPSlSoA0FS+T2f+BHPZ7Dym3bUbbx3lzBBVPrCFgTEN3tb+2leSMCz+1vCeA+gEObfd81RgXzvPKypcG6nc26Kt6//epQR/Yr/C850JYVTbkAqshTHuvJ+dz9dmmmgjCbySEqvJbmqpMBlLh6WockI/ZSSg2pQueFIFFPeJubo7P0EeHFJufdivzifdJf5GW9szp3erfjp/qHwXWWF4ofeH+igkLVsPdzomJa1XGE9TSseljwTA4/2OzQTQgYXsgm0C49wlz6rqTm2Hczt2s7HydxtS6BuLChUjPbsciXdTNXbHMBotHs6QSOv7pNeoD8mRVNXg++x8lF2ybrcvTStptNYJ82gDWO0GhXCHXQw/29CR+V1/93WDiowwmR3g68N5/I6BtPaTTOr3bOcPZy//yOXPGcs/cvl+YSx/oOtGJknJXz3/PSoX81vzR/y10y/zzfIM6zW/evEWn5++5F8++Q6fyl/w33z9L/Nffu6X+Y3VG1Qu5rcvHzBMa96aXfC7L+/zN/+lf8hptODvfONn+Zm3v8rTYsZZtmDeDHh79JzKxbyzOqP1mp+YfcCH5QGxsvzO9UPemr3keTHlJFuxalO+dX3Ev/PK7/Hb84cs6pzP7T3j1x6/yTQvWZUpbx5c8urwmq8vzpjnJf/Boy/zvzz9Egf3Nowj+VYdRhV7b2y5rkc8KybczIZcrYfsD7ccn7xgHFfkpuEPbs54c3rJ82LCKK549+qYzx8/5+lmys+evsNvzR9xVYxwXnG1GrI/2koy6dNDfvqtb3FdDTmfLBlFFa3XfPv6iJPxih/ee8r/+vUv8trZFS9XI87GK662A9QZ/FtvfJXfuXnIXrZleL/mw/U+j69m/IWHH/Ob7hVmky3bKuaHT5/xZD3j5+5/hb/74Y+RRS1p1PK+PeTkYMmPHX3Ml1++wiBu+ItH7/NL3/gRlHbc21+yGGZo7Xg0veWjxR6312NOTubiOR3f8u71MQ+ncx4vpxwNNxznK749P2K+HlCuE+6d3mKUx3nFs5czfv7zv8v/8dGn+dLpY55sZlysR7ROk0Qtt7cjTo8WeK9Yl6n4FMuIw4dzbuZDDl65ZVMmRAeW9TJnMikw2lHWMed7Cz54ecCXHn3M7z+/R/l8SHnW8G/86O/xKx++xdmnlhzla755dcz8xZgf/6lvcJIu+frijPPBgl//6DX+yht/wONij6+/PCWJLMsPZrhJy+xwzWab0jaGLG9487OXbJqESDluy5yijmnXKa/eu+Tx7YzJoOTlyyneKV55eMmmTthWCWWRYFcxo5M1bx5c8gdP7xEnLeVRgjaetoj4zBces2pSYm359tNjtPGcH855fLHHZFTStAb7zTHNec3h0ZKb+Qi7jYhHNW+cXvLux6eg4N7xnBfXUw5na8ZpxfsfH3N6dotWnhfvHIvceVLjrcJVhlceXfLheyecv3LFi5sJo0HF3qDgo4+OyPcKilXKZG/L8nKEOmpRkeV8tuLp10/QpyU/8+a7/IPf+xzptCQB3KHCPhvAUUVdGdJJRbNKcYlmcG9F9WKMyixfeO1jvvLOq5AGidGxQ12kuMTjZjX7extUSNl9fjWFy5TJa3PmzycMjjakcUtkHJcXE1qvGEwLqg/GVG+VjMYlyxdjeFDTbmJGhxteny5478URnz5/zovNmMvrMZ99+Jx3fvsVjt6+4uJqQjVpSQY1edowfzFGFwaXOdLPrdg8HxNNa+qblOR4S/18iDqocI0mukiwI0d+uqZ4OsJnMlmi9ureX9lOHNP7C1brnOpZhj8t2YwTfOIYHW+oyhjz7pDyyDF4sKL+eEx8b4P71oj6pBX/ZZjcMaOW+nFGe1JBaTBrkbKbs4LmZY5qpHLI5Q41lAmd+LjAvzfEDgTwSxqpZvvpCnUT4w9qoqcp7ciRXRr0FxcUz0eoSuEmLWXk8Y0meRH1QVwA0Vr17KlqhclObw2b16WWaftaS3wd0Q4d0VpT7QtQX3+pwDzJRIp9rSleq1GFkUmXSpM+WNO+M6bec/jEES0iuTYyCRPb3hPJu3LilSzvSyVTfV8k3TaT97l90KJLmdyKVjIx5I0nf24oH0qwWHFuGTw20od84Pr01+TKUB21jD6MWL/aktwYmvsV5nnaS2KTuSIqJKjMJV4mHYDh0xCC1tKHetlM9s0F31s9laA31U2ShUmH8WPH4lRRo0S+vlWktwLg66moJUbvR30vsDfyuupA5PLKEzpSPc3UkdxqksWuTkQ5CdLCQ34h4Vz5S8/iTdnH6Tc11d5OOu4ikSOaMkzKbKX/WBJY78ocA6BtJDzKa+kdNpXGxSFEq4T2ALYPLOmFEf+oCh28A7k+TCnhVc1EUY/pO5O7WrB0DvNPKQbPEDCjRP7tp13qqsbmBMAOi0859r8qg/tmJP7Dck9RzxTxUkCOqVQvXa6nwqjGa5m8GT5zbE8MxYln9i7UIUCu63btFBGmDlU5gbmU3lcZtC8fadKbkGgburfTpQ+qCgncajM5RzYROfr2yBAVnnqmJFzOQLpyRFvH+jyizRSDS0VxoInXnvzGsrqfUk0FCOsmgLsw+RCVPlRZ6d7DXE0iJh81rO/Fu5CrdFf102aKwVWLU4p6In2d3aRgeRDLRIWSUCYQ0OtN1MuWmUbSb6pBVw6XmyDJ3fW8qtbTDoQljgobKmDiHWsc5L82VJu0uSG9FQCtPNQTkfWKlDghuS5p9rMe1KpagF89iUNPKT2AVK1IfKNFJXUtdduDVbIYvW2whznRvMBOh2AUfpztbAl1ix8k8jOATqCX3eqqwaUxRFo6O42Wns6ygSwRcNfJaQOb2Hkr/TCBpkUVIQE2PM9HErSlIrOTvK42Io31XtjLtpX5+yiCbSEBPVrhrQvJr3fAZLe9uzLc7x7sf5cf808DLL9vlh9cTu9PXH6gGcu9t4/83/nfPsPvrB7xrcUxn5294Fkx4aoY8TNn3+AX3/8iP3X+Ad9cHLOpE7KopXWaFzcTkqRlf7SltoZtlfDGwRXfvDjmZLrCecVhvub10RX/4MPPUJYxg0GFAl7fv5JB8maC9YrWGm4XQ37k0cd88+oYox2fOrhkWWd8fLtHbCzjrKJsI3748BnX1YBvXx9RFAlRZDmdrbhcDWlbw739BYsiY7XOmYy3zPKSi9WILG7ZVjH3ZwsuN0Pe2L/ia8/vMcorFqucOJEPfLFJSbIG2xryQcUwralbg3OabZmwN95ycTnh9fuXfHS5J5NhtSHNG+o6IoosbRPhWsXh4YrLJzPiaUUzz0j3C+qLAfffvGA/2/JsPeH+eM6iznn/8RHUGjNu+KHz53z1/fuY1OKuU37+p36TX3v2Jtc3I7yXGgYAazVtbXh4esOHHx+RTSqU8hTzjPP7N2yqhG2ZCNO7jcgOCt46vuDrT8945eSa9792Tnxvw/F0zc1mgLUSOBPHlu0qJfkwg0+vZFutwd6mjM+XLG8HDCYlxSrj7PSW5+8dMb2/wHmFVp7FR1N87DGTBhsYypMHt1xcTtCxYzrecvvRHn5gUauI7HxNscyIspbZZItSnv18y/V2yNXFhHv3bnj2dB+1McQnBVnasLwcMT5as1lnaO1xVkkITCJfmvGgxhhPljTMb4boRYzfr8kGNVFkWS9yhpOSPGm4+nAfPauxy5h4r6SZZ3LD8hDvlzTLVEBB7Dh9eMOLjw5kBjZxDPcLto/H+Mzy4JUrHj89IBtX1GXEYFSxfj6SQdfK0B42qLURdrjSDO6vqb81oTluODmdc3E5wReRBNzUhjhrd8e+NJjMir/ZOHxtMEuDO6oZjCqadya0g8C47tfCxlSGfF8Y8XhU08xTyCz5uKLcJDv2edLAbYJuYfD6gu17037w2kuttZiy0v2C+nKA116O1TqBRqLtSRzxVYzNBDw8ePWSVZmyWuf4i5TkVlOeN+IB3m+hEjadVhEvDbPPXXHzjQP0/S1NEZM+Tqge1FAY0kP57OhS4Y7CF+IqFk/URtMOnRzXWgvbPLREt1JzES+1sN8K1KCVMKaPM2FSBr5nqKK1pjprSF9E1DOHz2V9PpcnmBtRBtixxSwlpdLFHv//sPdmvbJlCXrQt6Y9xHTiTHe+mVlZmZVdVd3VjY3b4PYgLBoJnrBkCQn8ZAy88B8AI3j2O0K8wC9AQi35gZahMeq2e3R11pjDzZv33jPHuKc18fCtteNk0pPAJWWWOqSjM0TEjrWHiLO+9U1lYIjO6YDqxxWf+6hH8aMa3TOL+lOT5LoS/bkft3f+aI2bH5+OHi9pWQVSvtFJXhwRlhai0VBbKgLKG5mYMk4wc7rxcEZPNQCy+FbALQKKGwk5CPSnAWFpgV6hvGCdSHGtYI8DqjcKbhZhTxyqzw3sIjBp+zigvpAMrAnA8MiieG1Gb6ibEfDkGo7ujGxueN7B/LAmMOzI7OrmHru88Ji8YCeim6b7Kk7Qi7sEcmumMYtANjgzjOWKMvIogPlHEtv3PaafKtgZUF0TuLQPmWo8LA8sb679cHWk9PxKws1i6saVGBYEjDL1/IYiQjXsKy5vJbqzgGIj4Ys4ArGoOf76NdnZ4ThAtQLFJqfqErzrnTiw2BNwW3cS9RX9sK4ig1rdUBbtS4LJox8oNE/ISGd2kceAwKl9mFK050D3wGH5fc3e1AVB5n0g0i/Focok+3R7Sp3LW8qcQ0F5s50x0Xn2IjFYijLv8o7ASbfctq8IFs2O0u36MjGfqTbDbLktsycAtnOGMbWPImafUs6t9weWkX7hDKgZoBM0xtcUiRW2NVlul/php6/iyNi2DwSqG87HhiOGLvkKqK8imodMK84+Y19Qlq0GglWzO0jKTYOR9VQDFxb2D+UowZ698qm+hEE57WkCkAmUZs/r9jmrTKKkYsLsyQyaJqA90WNycL+gp9XsAnZPNPqlwPwzDzuh797sYkqJ91BDwHCk0c8l6hvWhsxeDeiX5Dhyr2ux8dg+Myi3EWbnEVLqcHXH7Zp9wLBQqG4dhjmTdmXattl7Xj9tSr1VScrrAuxEj6As+z5FjOiXhv2qDQPgfCWhujAG8CAziUisqA2wC436sy3CpMCwLKF3NqX1OvjaQFqPYVnCbC09olqO21K9JwgMgJ+XUK1FNIoAsdCAC5C9RZSSVSKDg58WUNsOYVKQ6bQesTSHypDMTt4DYaKziBVzPUQ/8DGFIQsa6F0dw3u+BCxHP2ROcs11I/nxKbwnti1ZTaUAqYCQH+8RrWMabLpfKMmAn7x9gPeFCGE0Yga5f9ot3nvO/8fbV4ax/C9+Bozlf/WXjOX/75sUES/6U/xkc45fO/8Iv796hhAFWmvwcXOGRdXDBoVSOVwNU8xLsoHfenwJLQP+6KfP8N13P8dK1Widwd94/jF+vD7Hq3/1EPY7EhNtqSpwEvOqx3eOL3DRzbHQZB7rgsmXv/D0DX7nR9/Au29d4s16jp0t8eLuGKWxuPv0GNP3rnBzO8Nn9RI/ef0AQkSUpcXxtEVjDZ4sN3i1WiBGgaO6g5IR+67A4DT6XiMEgeZmAne0RdMV+N0Xz1HXA25X0xFUxigwnXfoOwM/KPhSQoqIbjBoricwiwEXnx8DOmDdVZz8TgeY0qE0DkfTFjfrKYSIePZohc9enmJ63qBtCoiJQ11a9DriajPDXVOj//AI5q94vLk6wmzZQoiIrjP441ePIHWA3xkcv73Cb3z6bbRtgcWixWbDnod2VeHR0zvs+wKfvDinvEgF7K8mkHuFy9UM7rqGOunZlacDursKf7B7BrEx+ASc0AYvcfE7j1D+4gr7qwmlufsCRW3RP1LAroTcaIQiYPlsjdWrBYQVKE48WhnR9Oy6Wn2+AKoAMxkQ68DJ8psSmAY8fOsWIWk+pQy4vVyw561ywJVBe1fzH9GgcLtigNSuLeGchNhqvHp9DASBOHewbyZwAVi+u8LmoyXiyQC3M5g/2mLnJTswNxpOBcQ3JTZFRPl0D39VoF602L1cQJ70mB212L1YoLUC8lGP7z1/id/76VsIXqG4VvRHnlkmmKbQnQCJy5sFE0t3BUSn0LycUQo8SLz84QOgiBg+n0L2Avu6YD/eVsGdWggVAKmgNhp+7rG/mUAWEbAClx+fIk4cyguNwQvojcTwQBK0aQI2u5BQe5WCZALMRsLGAg0AZQDxqIP8tAaMx/PzO7z+35+hlRFyqyAuJ9Am5WB9uADeps9WOCAGgfJG0p/6gyVgYkrbjJi80GgfUY4lOwFczhDPPPRWwfcT6IFBRqGOiJEpoVEAxa3Gxc0jDKceaiehLAEGosDshcTeGfgnPcRtAbPhpOv2B6dQvYD6/gzujJ4x84b3u1u+rj91kHcFZdcLC2wMJaqLCNEq1BcSzVsO5lYzxVQISp8jUNwqDCl0zM4DzFaiWEkETbYjmAgxSJgdZ9N9EaF2Ek5FVG80dEN5qbUCkwt6FH0dYSf0TVc/qVLqpgBeVAxfkvSbQkaEImL6qUL7kMe7+/455CMGLw3LA8DNFTrSCujXJYYjTnAjElvlKd11kzh+lRdkA8s7+iGDidBbMiztg4hiJYF1mWpoALPTCBqwR/Rd+grQK826m5qpoNU1J7WlI0sTL8yY9llsBIqVSiEuEfVlhJuyUqgJFXQD2AWBT/Ynlit+BlTXmgBuRrY0poCk4u7A1MlBjIFa5Upg/5TnS1qgumA9VVRA9VqN4VsAF0NmL+iT9KVAdU3wVnYMPhKOIE2n+hy9J6iSA//enZC1rVYC9U1A0zHgrLqSKO9YvwMAi08CulMGg4kAuHnE9HOZqo+Qaq14LoflQTasWqC+lKzJKViHolqRgrJ4LYRSoLxTKHYR5YcRm3fI/kWdpMoKye+agnCCgN4zmCafg1xjQvk8E2WZ7koGlownk2nL25iAQpaiCsw/jaPsOWhg+jnB22QbxgRT3RIs6pY6b9OkUJ7ZoaplWCQGryJwY4ck61PKdUCunSKYizB7yo11Q5CmLCWzOaQnp7TWl5SkNucS9a3D/gFBmt4L1DcerpJwFeXF0zc8DvOX6fkh1b4YiWrFY9ofH8Bt9mWqPiYZK38u15GgbEqrwDCTKPZMeFV9RLHzyA30+X06/ywwBdYwvEZ3EWbPwCLdH+S6kwsHN2EYYLUK0ClordzwGImQzxtDj6qrAVEUED6mcKXsofYACBJFZE9msXYEOi0QtIFueHzMxvK4pn0tVgOiZtorwJoXOZCphI8MB9rbMWRHDim5NYEc1RFQqc5TEhs0Q44ExsAg2XuG8UjKvM3aws+Z0qZbdwCHLoyyWuEC9KqFW9ITqe9axNIALiAqBRE8ZOdG6avo7CGMCJTRwgMIAbJ3EG0PoRQlrUZDtAOEFAR9OfwnS01z6E+bZK5a8W/dMAYaIQQyqllG6+8F7dwPBBKC94d4CPuJEbAWwhhEkZPMvihrFVWJmOpORPJ04kuVI0IpQKWxmC9BkvtMZQK+MUYC2a/zLR6sEj+Pt681Y1m/9yR+8E/+IbrBwGiPCOCt5QpaBPzBh2/j2x+8xI9ePcT5yQYXPzrH5PkW3kuczPcYnMb1yyX0IjFog8JbT25wuZkBALpXU8SaoTtX6xmcVWMNQVQRYuKxPNlhdTdlrH/kJFeZALcpAB2wPN8RjFwtILYpqjmFzUDHxCxRwy/nFmFvoNcK5fsbNLsSZW3R7QqgV4CI0GsNd2ZhLg3ssUOx7FmpkGRhcqO5bRMgTEBsNJaPNyz1NhHlpUL39gAM8pD+qtIEcqMggoCvA1kJAZgrM/7z8HUgk7c/pJNGAbhnLHrPUrnJZxrNNweolYY/Yjqt7FlIHgXGNFRfR4SpR/nKoH86cOwLh+KNQbERaJ4E6C19ce0zh+q1poToQRglBFFHzD9SaM8j3IIprnpHBijU9NWF4tA1qjr+Q8jevvpCwi4iJp8nyVTH1NMIoFiTTYmS3j29lUlOw226RUD1WtFXGAHp6LMTnuXiw3FM6YypHPxWjB2NbkowIAf2FrYPA8LZAHldoLhjl6RqBKavItYfsKsy+xezr1F1AuWafYq+zBM/Tsql4+OnLwV2z5iEmhmY7pxVCJmJyAxSsaF8sboSsAuMq+WhYIn5sGRPqbTA7psO9ecads6gF9nn4BFOstghh3HiJSL3e/Ka/qruFGMfZ17ph0g9mNXBZ2V2KW009SOONQFTjAnHAINj7PTgX8oVA0jbNvuDL43l5ny93IuZPVu+wKFDr02JsB5jNUF1kwJxIsaU1Ch4LdcXhwTNKIBhyYk4wG0PR9zmfWlif5oSdhUnz75KE/uW12iW/rGwnmADIDMkQvIzJhkcIsb04lyLESUwueD1kWVz0iGF02BMz1XdoTqBwIjsjZvw+JUrntfqmpN/4Xne7ewQYAOQmRgWSV4WkJJmye7kscqBMjRWY6QQnZosgG5iCj4SqVaBTFR1y2L07J+LkpK3PNHO6bRRcEy6jSg3WQ6ZfIfpMyMzb9KSWSpXcayzEJ4AYZizDqFIUsHciZn9jnZ66JJkF2scPYnDPAXDJJ8kwSUBC4Nv0rFxZK+Cwdj7afZIXsZUMi+S9y8lpUbFY2D22TfKv+cgG5u8ptKT0RsW/N+iu+R/TNvLFRTFNqBfEsiqIabtCxRbnlQRKOuUqQtTWnZe5k5OMljpPafpa6Q0lF6/6s6jOdcj6FE2oltKFLsIxDhWS7iSzHEU9DkiklVU6TrMXZwmdahKxzGUGzJvw1SiWnmOMZMlKYwnaJ5TX/CcZgAZU42ELyS9h5WA2QV0xwQ2Zudh50x8DZr35Z7LqA7XHo8ZazHoNQXMxqE/MXAVuzC7E41i4zEcaUgXUd1QRulLOXZuqiFAdSHJMCP03o+gzE40ivWA7ryE3nu4qSLojhGyD3BTBdUlgJR+z+mjsqe/T+9d8isKdKcakzcDw3pK+iTz9SUHBuHIIaC4adA+m8Gs7dhpKWKEN3JMjs1eSWkp99R7B+ED7MyME+fiao/+wRTKkjFUfYBMDJ7eWwbuJE+iHDzDbKSA2lu4JQ3J5q6Drw1CpaC3A0Kh2Ps50VCbAWFi+FyBFMhj4afFYZsClJgKQDUEmKFmCJPoPWTTIyzq0e8qrB+rO6Jm+qze9ojJryish9y3CEdTRC0hWzsyh1HL8fgLHyHaHmFWcXEhV3UoOYJQOE/Q58OBRczhOrn6I3kio9HpupOUpubnWgeUBVnEzErGSNlqiajZ4AAAIABJREFUTpwVXCAQ3T0ZaQgEfvkWAyAkvyt1+Lv3ECa1E9z3VApJf2f2awKIw3BgPzNbmYJ9vnzLPsz7P/+pmOTnqcfyyfP4zs+Asfzhf/3VYCy/1sDy+BfO47/zP/59bIcKLkrU2qKQDrfdFEZ5rNoahXa4vF1guWgwOIUIYBg0lAootMfgFLyXvO6dxNGc7JsPAne3MxwtG3SDgXcSpnDp/SEhRIRSAX2vIQRQFA7OKXqXnYI2qbPOS0gZYEyqEklhPm1TQCm+EW1jIAsPqSK84/K+TFUoSpOdKUqHYaCsNXoBpRk6FAEEKyFNgN8UlCL2GpARceCHoJkNCJ5jK0qHvjEQKhIoqywtkICMMJWDTfdLk3wLVo4BPpARsaHk0e4Nu/z2BnJmEXoFMx1gWwOREnNjrwAvICYOMckOVe0ZMrTXo/wTVkJUDP2JqwI4YgosREQcFEThoUw49A1OHMLejHJEFIEMmYjpb2nMJgC9ghgEYslZv/AJYKb9E2UA9noE2RCA6NiJJzr5ha49YQXi1HOBIbFJ9GlwEhcLLkWprWJnX+khdlxUiJrblw29c8IKhhi1cgxZiUWA2rFyRe3ShGvmILea9TNOQDjBBYQyQK5ZxB0VECsPBO6falJwT/JPZYkhkJiDIu3nIMZqEtXJ0QPGICMgCgb9QCQAaeIYLJJvuqFML1QBeqPg5wFqJ0ejRNB8TizSeIJIZdcRxR3linovEMrk94rs/tNretLGrsDkK5MDFyoQUrVFcdg3gvtDHxsnYAR/XDVn1YxushfpAEh9ddhODhO5nxKsOo4RgcA+FAcZWw7PCCVBeZbh5ZoZ3aSFCkE2L8oktTw6yBNzDU2UcawlkAmIjvukDwsMY8efScEvPh3DFLKTFzx4TgGV9jmH5oyhKTHVzYBjy4sQukngOoXK5NoPX3M/VJ+AZeA2csjMeEzy2yYrqxJ4ux8yk6/7MUylO4BqXx0e5yYcc17oEhHjey+HvbiaNSvD0eH85aqJLKX0ZVosuBcC4+91HeZwInGvXiTX2+RKhvHaFwdAm6te8rWQ71fdYQwA4Ou06ILDNZ33hYFLSOfh3uvlW3pMHiOPy2E/c2XRuPh0L8Rl3C93CBZSycMoQhyBWAa9/ExhLYqvxLgoIGJMoUyH+h/p4xjKkxcTMujmvieWKBfWp4CcHKTjKvoMc0BOvk7yeQ4qsY/pGOZFLF8c3h/5es+BWzn0Z6xqcYfrJe+nCEzeHQOS7gUHZeCcF4pyQFFQh47TXHGSQ2PuV3aUiR0NRqSAIaQFkPiFVNpDLUi6Fk3qdxSH6yvvt+7j2Ck5Xtt5X+MXPxPyPuaxisCxyxQao4YAVxEg5kAevWcNiQhxTGQVIdfMiC9Wp6SOyFDkCpbkb0zvz/vXEADIIYw/j8FjAmO3JKtQGOzjC5lCp8IYUhSMpGdRCejOw1UqJfKK8dxHCUAKqNaPIFpEMqJffBy3qXpWkZChJFjLv+dwnCwLlYNHSB5L6RLwizEF8gT6IzPTmFlDH1m5koAqAILJDFpz7ckhWwcj25jeK2MnZQKGX2DwQiTQTOE/6AcCSoAAM4f23Je3AgSe91lJ9Sf3WI4gOAPc/Nr5fiEIMjNgvB/6k7sv89+8v7dvXwSYMYcN5QCiP+v28yKFffI8vvOf/wyA5X/z1QCW8s9/yFf31nuNT9cn+Hx9hFVbIUSBZ5MVFmWH3VDg8XyDXVfCbQr0TqHrDSrjcDxvMK0GJsUKsFj+YgJTONyuKJkdnIapGNAhRMRs2qHdlxgGhe6mhtYes6rHfNoheIndqsZy1kDrgKoeUBgHYzyKwiEGifP5HlJG2EGjawuEXsENCtNJz3L3KBCCQBwkitpCG4foWaYuVcB+VUMIoCwtxCUDXcrKoiy52lQUDrKRcFaRQRQR5tpAVh4x8DSHRkPKgLce36KeDICIkDoSBAJAx45P0SnEXsI39FvGTlHOOUjK9zYKdldAbjhupMmW0AH4aErVRemY0tpLmDtuV6V+UL829OOddFBrDVl4IADToxZhZ1C/osEeawN5VZANbTXczhBUbxXTZCMgBgm9TY+XEWqjx6talD4l04K9l51CcaMwdnp2CsJJxMS2Ci8gWv4XL2/or5QDJ0wQAMoA1Un2jRYJYDQSonZMHe04oyquNMGrDhCNph/TM+hDWAmzkYCmDEz0EuWNhD/KM6nD9Z1leBgSIN9LlNdqTDVVN4YA1ZPZFbUHKk/ZJzi2XMQuvED9Wo69o1HH8TjEIiJWlACbDe+XvYTaEhwWa0nAJROgmrsRZAoPVNeJrbOcEMTao1gLAqZIMFSs+NrCijEhF0GgvCNgUp2A3ouDNFBTGgkJFCvuB0AAz2RMbkM3YgR9iIDZckGBSbLclmr5XLOT8CUZ3epajPuPyO0AZLJzj6nwQHknoJJk0Ozz5DBNbjPQTAwkGQKmxIaCY8zHoFgjMaEEjmYnRpDCbWHcr9xRyn3i+TM73q9aTmBDmSfuHEOWQ0ZwHFED0fB1gwGEJegq1hiBpm6Q2FAeVwIkMvj5Pe0mBOQQTFsVHiMo1XuMyabCs/syT8wz25qL3cvbtFiR5ySe2zY7HPoZc+VTOKS8ikDGevJGpAnyYfKcewnt7ABEhiN6EvWe2y3vmMgZEziJJgHGPcFJdR1HcK0GoFhFmF0ceyVzcEsGn5mh0+3hnBVrPkd1Saaaqmby+IsNt2ea9JiWv2cgaHZxPIY+petW13yMSmxjsYnQbZL9rSnLLNcB0gLNY753s1ogJ7xmBk23EWYTx3RXETIo499Un9jH1NdqUrOVtBHFnq+Za1SAe9tP9SgZVKqe2/IV5aSqz77I+IUFgJA6XTPw0y3BqwipM1KI8fjk99uohMgAJgEvSqczOOV5dokJzsDWNLz2GNiS2NXUcQqkc6X4OBH5GKTjqNtABnjIzHhKf97z/0ref/ZksroHAFQbRqBlmnA413v+zGMVx8f4xMQS5EaOzwNm61mDs/JJOkw2NoNplcCeTPJReS/xVQ0ESEELyD6OIFLaOI4vKIHy1t5bjOB+hfQadiJRruwIJKMg6y0HMr9coBEwm4GMcaqbYeqvh6tlCtwR46JIDsQBgOKmJajdMelUhAjTuCSPTamw+tAHGRXDcISPY38sgTaBCcGpg+w9fC2ZcCv4vBz0k1No6SskeJatZU1JkrqybkUiFBJRC/hKQ1o/vu7IbN4DQlEJIIFLMTheS4WC6Bzg4yhzFS4c0miBUfpKuTSBHAExZak5kAcuAUgfACkhup5hPkodFgSMYihQiCMYFIkJjVIkGW8Ci84Dgx27PPMXZPq6B97iYJOHUh4qQqxNzOU9MPgnSF1HYPylhNr7NSN/oVsGlX8e+Py63OLP4OsrcvtaM5ZHv/Aw/if/y6/j92+e4s3tAufH2zHZ82jS4vXlEr/yzmf48c05dncTTJctmm1JoCQBWAHUHugVjp+ssdnVCE4i7jTE1OH4ZEdPXadgzlrYXkPIiEdna7y+XHIQa4M4c1BFQLBk0/TRQOYxCMirAuFhD6wMHn/rCq8+O+XzIljT4SRM5eAua4jTHtELxF5h/mCH3WpCJq3yZOMUP7DNYiBr+roCZISfJdlMqs3QGwU395g+3GN/W5MN9JyAm7UEvr3FcDmBGFhvISpPNlEHiI0hUzdxkBflOIsLdYC5kxieWpw92OD2RyeYvrvG9s0copdcbZ17HD/aYPViSZYyAqfv32C1mSB+NoGfBIKsVh1YsSKg/qRA+5aFWlHu6p71EDcF4ukAeVFyclcA8WkH+aKCfWhR/7RA+9xBeAF90sFuWU8SFb1lxVqifeKgt0x69DP2dOrHDYa7Cmov4U8szOsC7ihwUqsiigsC05BYCj8NiCrC3FH2Go8tyo9KDCcpJOTMo7xSKWAlAiZCGg9lPMRPpgjvtsBnNSeqkd4tiEhQZgk2cdoDV2VKeZQY3umgX5ewxw7wgqmQ7zpARhRHPYa7iuByYWE+KyG/tYP/6QxBAZPXAv1xhJ9E+CkZxJgmdfKDHfrXE5g1AaCdZ8AHtG9biFZBtQSp/QNH2XPDkAl3xP20c8p47cJj+kKjfRgQTwbo1yXKW4Hd+xbV5wbdI8cxejEyw3qjRiYjy2ur99fAby3ZN9mxVzNOHCY/KjGkTsVhSY/acOy5PzqivpSws4jhOGD6QsFXQPuUPs8soZVDCopJNSDdAwaPiACIf2MN9+GC9SEV+zEnr2QKLklF648HiJ2G3knUFwK7dwLq1+zs9NMAs1IEnR5ovzGgeG0wPHBQO8XFgiq9dwzlz9IBCIltjgCiwPwjifYR0zmLO4bOSCtQ3tC7Wd1E7N4hExvmHqKVMGuJ6obhHZl5yoEr5QrolxirRUJi/6QlyxsMMH3JgJOok/8xyb2X35fojwXaZx5HHyqsP/A4/V2J7TsC9QW335+l5NGYFxyQ5GdA98hh+qmG2XIMEATqxZYy6/rNgRWzc2D+IuDyr4HnJALlDbB/RhDZnwDVJT8qm6fsitV3GvNPgN3bvM67M0qQg2Hf5vKHAs1jgcnrCDtlEMrmXYHqGmgfUtKdJdfdWWLLphFHPwa275Ch3b3jMPuYQTLlLdCfcAxjXUbB8JbmcQq1ScCTIUBMEvUGmL/gpHPzDQbtyJ7JqvtnPL/LHwDbtwVmn0XsnwocfRSwe8I00cVHAde/IrD4KT2jiAS2+Xxm1tfXHMt9r057zgn84hOP7XMFs+exiDqDWHocXU2PYXUd0Z2ThVM9gbidJuAik39wB0wuAoa5wHDE+6avCZB2z/h+mrxhL6WvGOhz/COP/UOF4YgLEsWGr1nfBNhaonnEQJ3ujK+9+DigP+L+Ty4CXC0wuSQw2T6T0M1BHlzsDtuYvQwjM1euA4YFexerW586TdnNmWtZMsPcHfNayLJi07DOw5cExdM3Hv1SHpjuJE/eP5U4+WOH7kSh2AU05xLFlkAwLyS0ZxJmT59lkUJ1CGTpe9R9RHvKCfbslUN3rFCuA/YPFCbJY9kdU37dH0sc/6DH7bdLlKuI+trBNA7daTHKk4eZJHj1GH/WbYCdKpQrgoP9I4Niyy7O+ppeS7Pz7Ml8bDC5dOiP2B0pPQF1e6JRbj1kHzEsFEwTUKwsRIjYPa8IuocIN6G3sVhb7J9WcKVAfePQnmoUu5B6ZQPM3o0grz/WmLzusX27wvyTFu3DCuWdxXCkEZVA/aZD+6iC3nuYrUVU7MmsrwbYqYbZO9iZhllb9GcFqsse0gb0p1ViKJGCePg5KHyA7BzcvITsXUpHlfQXCmBYFlzYuGoQCk3J7c5S5tunILpJwRqSQkHthzFMJyoFPzWUyhYasuF9wgeElOwKJRBKDbXrKZ1thlEKG0oD2fSIlYHYd2QdfYAYLBACwtEUoukRpxXDeIzmfUoSHBpNKWwCb2MgjxAQTYdYl/x5sIBj4I/IXkop+dz7zGTGBFme69yY9MoPQ4X7wT4xRqDtyDgqdWAd832Z1UxS2v8X8/mlXss/9/bzIoX9z34GjOU//mowll9rYDl9/3H8tf/hP8JtO8HN7YzSTh2gS0cWckXgBYDSSID9gKmzMOp4kDBWAXBklKQjW+CrJOEz9OtFCcoRM0sX7knu7kmkwoQyR72XY5pg7oiTVsDNCFZkz9TDLFnUrcBw5iAblVYkyWrlDsLsVZQ9HxsVC++TwuOwP0lqEsoIs5WwU8obpRMJKBzYHjuL40qiPXOQW4JuldIOc4eebgWGJX2MwRxWvosV0yLNiuyWXTCYxU0TK+YFIBnGAeRVasFagJQSmdlCNwt83TqivJWjx1G1Am6WxrznRCuY5HFK8jNp07gEDl7J9I9euiTva7iyHgyP4XBCH6duyDC5SYQ7caheGso3DQM63JQs1tgvF8h8yIHnFZIT/9zPJoIY5W6hINNh50nKp7mNLIXMCZpmc/Ap9sdMfNQNmTg3IfOVUwxdndMHD12EWeKXZXmZXcjySmkPUsUsvQvmEIyRn3f/NaLh5NqXqR4APLbCcUKWmSIWoycmxKT7shdRI3lNvyhRk44eR67oH2RtecVftxiB0xj6YpG6JtOEMLESXIUnW1VdJwYtsWwQ7LbTmUFL58VXfF6xiaOsL3vgyBZGuAnPT9RkpYYjAZ32O7/H1IDxMyB3XsrhsN++5Gv74rAPvk7jk4DZcGKv7o1vlOTdk3jl7WfWB7h37btDiia9ejxXWYKoW/rt3CT5PJNcM/dk8hrlc3zB6oHMApmGx0d1aaU+h9msOUnNXric5phlhVnuyvd3khsOZA8pfzwkWqqery3tvWOgD/t4X37HPsokF5SH4wV88ZjZOcNlfMnfs5e33FBOmLcfTJK7ynQddxg/r9Vw+Bn8OIa0qTNSIE1Y+Rjp4sgk5XGM0sQE3vP+ccfSdTbEcTIPkLnSKYQmM1sHOSBQ7CJceUgEzSmhwZBJyp8huuN4+D1ddwXPkfQ8X94ImDaO76/sjR3fU46TzbFnUfJ9Mky5XXmPmBi7BuXhvZ79mWRrA4aZHI9hlt7mW95W3k4eC2IGfgGuph8yFIJyyRDH3+/Lk7PkMwfZ8Nq592KRrKZ0B1aP7y+R/Jb0HfqK0sf7kmT6GmOShvKxuXsRSV4btRhZP9nz/0IeC+XIAaGUI9OYU0t9SXYvXzfBCMg+1VjozNKKMc3UlzJJW5FkqRJyCOP3qEUKoMmS3OQDDVn66hCNhC8VVO/paZzxA1iECGmT53OUX+djmTopVZb0RvoWTQKm1o8AksxZ/iy+dy0pVm1kGXHeLllHeiRFiAilZqhNzJ8jIvmqCVh86oQUPrN+BHPCJ1ZTJBlroSBs7uJMn4+lPkiIbUAsFYN0wNcSvSf4Swxc3v+oKWPNKbH573D0QEIConf4QqdklnmGQMCWwVcez70eyeyxFO5w0Y6/3wvTianb8gsdlhkw5sqS/DpKfgF83vc8jp7J8cUCRu/k/b/ntNcv91DmJFjvASHpscxvR6XYY/kn+Cu/fPsLY5GfA2BZP3ke3/lH//qB5Q/+268GsPxaS2FDFPBRwgd6DqtFj2eP7uAGDecU5XSLHpPjlgzc1CIUYfTbyY4MV6wDymUHFAyu8TMPexQw/eYaYeGgN1y5DDNPhnNuudpfBsSUnhhmnvcDoxTPLjxkKr6XDpDPGkrxegERk7dNgCxeTN6n5JlTHf13whIoqkaQ8ROAfWAxLCKGI65SIvmeggH/iZUEXf7YoXvgDr4sGWGnhwRHXx3CFxABc6WhG4JXl0ro5UCQFFT+MI4IRw5yIPNiZ9zX3E0nkkdNNQTEsQyQJ8Mooxx9I1MPX0a4WYCbMHVS+HuAOZfQJ19ZeZsBONCfeYbizAjOKPs6TMCjRgLAafJseYzcJGJYBsrNdPIEthyTnfOfdfXSUKaXwn7cjCBaWr5Gfxo4cYwEjFEniZylzzAqbqt97iAC4KYhyejEGAQzHAVKGM1h0hnKdD5ymMwgIPsEKjdpH4t4SNlM4FEEYPd2GENbxjCNIn3dmzTuvmVHn1/2wAVD+WZ/yoTODMZ8HaF39NjZWRpbL8aS8GGRwN80onvsEqDn8fAVQW8oCJBDAQzzg/xv9OCBTKlq07WbgOhwFKG6A9jIkjkCeD4GgcfSVwkspfePm2CcyGTJX54UtudxlNraeZLzGYEcdKMT8xc05XzdWcRwHHme0wQzmC+ChQyW++ODfNJXZIV8xQnzsODxjZp1CsMi1UKYw1cOLfIlEniLEI6SxzxZH5YR7YM4Ts6zhFS3/L09S5ULU7I0bsbr3yXGKvsFM/CUPYOQ5JACc3puz9V8z4+eQWCcfNspx9gfSfhSjJ4+X7LWgSwKmR9fCtg5ZYLZR4mQFzHI5ohAoMh6AI7d1axbMG0cF3NCSiKlXDh9ft3zBdo5QU+/TJPdlDiZF1LclJNSV4oxzCiDCYI37mtm5Oh5i6OsNRhgmAk0D+mH9jXDYAjAgX6RVBsVATyTNgPsBGjPeD58kY8dQ2t8mfaj5Pm1df58JHtG8HD4HAsa2D+SZBtnAt3pIYgHOIT0ZE+pN/yyEwFXc79Hia7ndeZK7sew4DkYr2sjMMwl2tP0eZ48kf2C15IaklRR8vzlxY1+IdGcy1FqysUHpCoPAd2FUc4pPfejX3Ky6wuONYcSqfYAPFwl03Um02dXCuRJckfKzMMIGlUXR1DuU7VGDr9iiFre1xxEJ1CsWF3Bz1aB7lgxYEmL1I8IDFPJyoyFhLRkIL3JC8wigScBX8oxgdQXfCzHJhkGU8qUtprAV7jnX4yAnSpup1aQg2fqagKz0oUUriXT/qSQKkdwyo0gAT+eJzehXDKUcty/7CGMksCqP614ngp6De1Mj97HYDhmOXhI68dFq6i5r3aZmEAt4KYGsZDwE41QKIRSEdglsCdChK+5wmLnhoB2So+iL9UIHt28OCzqDA6hpI3F17zgQ2Xoa5QCyN5IRekqAPZM+pCAYIDsBvja0L+YQnkyOPJTg1DymOfwHRESEA1grUfyWHLH40HWCl4/yNJcS4AZs6Q0BfXEyiDWBUavZKrtiGX6m9EQLvk+7aHPcgzgkUmumoJ5DnLX9F3KA0hNslXEOKbBQkqymzqtbuVwnj9JWhoDhBAQKgFMgABSKj5P5W0qAtEEKnku5Ch5zWAx3pfB5vvTV5bE5hCfcUx/2teXkmf/8vbVu32t60ZCEDDS49cef4z/89W7+PXnP8TrboH/8Okf4IfNQ7xd3eJ/+o2/i/d+9RPMHvWYqgEX3Rzvza/wzz7/ZqojkSiUR6kcqocOL9ZL/IN3fwe/u3kLD8sNfqd+G//ev/kh/u/bb+CP/+gt/OL3PsP3P3uMx9+4xsRYzE2HP3z5FHU9oG1KHD1e43vnrzHXHV42SxwVHX5w9wCDU9hsJ/irv/pjXLUzPJ2u8ZPVGW5WM7xzfodPPz/D0fEe3z1/g4flBv/bR9/FLz18g8tmjn1fQMqA9XaCo3mD752/xm998g38vQ/+EL/x6bfx/ukV/vDlUxzNW1xfLrA83eHxYoNNX+HRdIPf/+wZ5tMO69UED843uF1PUdUDrNWoCovearTbEpNFB2sVkLoj4/t7qNKh35WYzju4bYXJrMc/eO938L9+/kswyuO9xTX+xZvn2C4qhE2B995/jc9ulghOwfcKv/zuS1w0M9wZB2s1xOcViu+ugFWNx3/9NVyQmBU9pIj44cuH6HSJX/u3/hj/4vO34L3Edx+/xg+vHqDZlYhO4sHfuUCIAm9uFzAq4G/9zZ+g9Qa/9+YZ+s7g5GiP2z84J6iZefzKdz7Gv/z+uzh5usLt9RxybfBX/u0f4Xc/fQvLWYvqbYvtbz6EeXuPv/32T/BPP/w2YqsBE9CfcmKzXO5xdzMDooBcaey/x9SLzgvU8x7bdYWnT28BAJ9/dIYn717jW8sr/Kb4BRTLHt1dBTEIPHjvBoNT6D46xi//+g/w49sz3F4uMFm2aN/MEGsP+ywCO404dcBVAXdqcfyhwdVfD3jyzSsMXqFQHq9+eg44gfjNBt98cIuffv8J/aACCKek9v7G+x/h//qXH8CdecjKY1IPaLsZhsceDx+v0P3GA6x/0UJtFP7W3/w+/vmLd+CDQLcvYKYD9jc19EmHo386wc3ftnC2gPzGHuGPZ9C/skLz4yP4KuCd9y7wqX+E4gcK9oMGgxcIe4OT79zh6sUxpt/e4GTa4PVvPoOdRbhzC9EpqOOe135xluTpEX/3ex/i5X6JH508Hvs3yzcG/bNUYF9TFl5daaw+cHj4zi02v/UA/XngotHbqcsTwPzRFs2mBu4K5KXp5jFgjzyElRjOHPpGIZQBkMDR9zV2b3Pie/6dK7TrKexVDfvcQtwUOP/gGrd/eA577KDmFuJFDbdkyBKedHCf13j4SxcYnMbm904xexnx9D/+GP/qkycQtwUXVgIB8LBMCa2VxPCtFsWPa8z+2jV2v32GYRmgTgTcJAAKUMc9wpsK808kmicR3RmBsbCUaqtWcmHomxs0f8ROUBG5uHP6777Ciw8fYf6xxO6dwGTgMyC81WL+z2uYHbD6lQEnDzfo/tkZ2ocB1ZXE7nkCqw+A8o7gp/lux0qjf3UE6QT6U0/VRVowKNbA5hctZj806M4i3JlNgVqAnFrMfrfmQsWCYL15IjA8GiC3XNCycxanbz6gjP/2wwUBqYuYfvcO++8fswJCEQACBJvdWUSxIoDbPwsQXmL3VkTTUDGiO/ZQCgfMPuPjogGsE5h+HnH9KyLJxhkiYucC7XOLyccG1Q3DVprHybf5qyvsf3uJ/jRQRu4PbHdUrOdYfByxek+Oi2jCU1I7LEVSIgB3C4X2qcP0Yw3hgeahwOQNJ2FXv0xPcfa/RoWx17J5y2H2kUZ7TsbQJ79YZtYzo217Avy7X4oIE4fiUqd9lyNznQHp0ccen/8HHke/V0ANwP4pqJBIi0h2TvVNMEw7BoD2jJNS6VLn41SOwA0Ado8V+mMCnu5EQHcAArB7pqkKUMBeCxz/yGP9DQU5UIbdPAsYPtaQDuiXCvV1xPInAy7/agmdUnPp9RPj4ll1RRDbPNJjunJQIi3UCPRLqiKq64jmjB8F3Ql7IXPvZBRAfcOFAy5mSUwvQhobMLkMuPh7Axb/R4WgC7QPBYIqML2w8KXE7okelQbSUQbrJgLVjYSdCpiGwJgJw2Qam3PJzsZtRFAaw0Jg/jnQnvI509cBxc5j/7TCMBNj8nCxDaNSYPO2GZUQxT5AtQG7x3r0Ivst60W8EQhaE2gXGvWtR/OI8s/uWKKYKyhLNtwXAvUtpcyqxxgAVN153H53gsWn3OdguFBT3bGP0s6m8EagPxKoVmQVh7nhgoeNUL2GGgLaM43Ziw7Nk4rvnccTXj91PS4K9ifTtHgW4epyZPTNhsE86/d5P/srYwLjclQ/xKVBubLojyYhCv6oAAAgAElEQVSHvspQIkoBP9HwlYTsA8JRgeqq5eKTkQjHVVJzCKi+gNoNGB7MCLSnEpNXHULJRFo5eMh1g+6tZWKjI0G3lqw2MQTceu/gphpm1ZNZlRKxpsxCaAk/LSBbhvqEE7YS5HRZYT3CpIC63TMFVkj45YR+0ABgltK+AgAlIGxBQKsEZbPzelxEkJsGiBHheA6x7yiNLcwBOAIHz2iMo8xW9MOB4YwRqCt+tw7QCrHrDxLYGCAmNcODvOe2hSBzOQwQRXFIjeUknnUjAKL3B3B5z4OabwdGU33960aAg8ri5/D2tZbCnn/nNL73T/4Rns5YcD8EDYmIZ5MVfv/mKb59fIHf/On7+OXnL7GzJWamx10/wXm9Q+cMXu0WY7flm/UcUkY8WmxxsZ3hZNLi05dnePrkFouywyc3Jxh6AyFYaD+ddwhBom0KzGYdSuOwa0v2MSYApmTAvOoxeIW79RRSBZSlRduUqCc9hkHDGI9h0Hjr7A4X2xkEgEk54OLqCHGQOHm4QYwCs3LA51dLTGcdhkGjKBy6zqCqaOwOQULJgBAFpIjQymPflgzXAaBUgB00TOGwmHS4uDjCo0cr+CCxbSp4JyFkRAx8vN0bmKmFKSgrjlFAyYB9U8K3DNyJXkKogNArnD3a4G49hR8kJosOfW84xn2B6CSqRY8QBIZ1iZPHa2x3NUzh0O5LfuiriOgkVOFRlBZ9bxAGBVl4qtuiQLgtIE8G+LXB7PEOu6sp1MwytRbcRrCkUMpZTym0CTC1hbcKoWVJPABARsi1hnrSjEAEyfdZn7Ro1/kDW9CLW5BqkXuFuCRw06WD3RcMHwIQdgai9hArA9UIxHda+OsSceYBL6AmDn6QEI2GWAwIVjGYRwdARYithn7Qwt5VEF6gvFawc/r5ICPkTo0y61iwf3JMrAUYwDLxZLzvDAGTAKXfOqB6UaB/4PmYFAgEGYEiQF8UcAuGDMUqQDQEenHmoG7N2EFHto6BPygC5EajvJFonzqgCAw/CgwOiiqOITe+iggLB/QSZqNgTxzkXqG8luiecMxRUjYmBrL1xQ33P+oIkRJ/ZfLzugXl5Hqd0nedoG/zKPLYTBywNinsh+x6eaPQPaYp0Nwyst/NUhefJCNM2Tt9Y2ZLWbabsBrH3OqRuRWRTLivyH7rRoyMsS8BPwsoLxXchLUq97seizVZrWAi7NJj9pHGcHxIgjQb1tWEXCM0ZFkkwUb7iBvSe/mFhFbVMsgny8cBjBL4kPyU0pIFzxUlOYiHk7mQKmUoVTc7if44YPZCon3AfdRNkjnOmaCbU3uFI+PpakrIVcuxqu4gvx6WXP0H2CXZLyOqawHPelv4IkINrOcpNhxnlDwPI0A7jdA78QXmOOiI+ooAIjNxqge684Dymp8NZpeYbmCsnOmXBM3NE25TRPov7RxjBUmWVmf1hIiJrW/ym46Tet3E1CdIBnhYJIn7VqC+orQ1M4+6oRzabCO6UzF6Oc2Om+yP+TMrRZCCjihbN3sye3nfhyMxVvvcT5Idw4Aq+nSzjNqXfI5qE6Of2HX6TVM3bGLhVeoqdHVKQrUMGooqgTHNceqG+2G2vK7IjNL/JwcCU5Xko0z+jaPUff7Soz+S6I4JCkwT0Z3IkW0UPjIRNqs78qS/i1BJUj2qEwxZb+nY7ajbfM0f5OVZLaFbbj9LikXIEnvKhKMCqlvKb8l+Y5QUDwuBch3RnohRLRFSijMTYSO8OUjCs7pklI5GHiez9eiXamTOq5XHMOXnm+7DqCppHiiUm8AgGkmwXOwCVJ9qbvYB3YmC7iLKlYObKLLIKVhHhAizC7BTAlpXSph9gJ3JsXaGVSNJ6pqqYHQTYGesGdFtCgIyrFcxzb0AnRBHeXK5cmR4vyQDVl2qRWkp0VV9wDBX7NucSVS3bpQCi1RlolvPczRNgXorC2/49/ZBiXJlx3TYnPwqAgOY7ktxyUJyfMXajiFADHRKPY6gBDXUmr/Lg/Q4alafhIIsnbSJVXRhTHkVNgBJGhsVJaQMzQGiIdMLgP2VRhH4uRRUNTj+Ld0nB4exuqSgFJjSXHeQtI7sn+DvShHIpYTX3HMZCwO5bwEhECYVRNeP7CeAkR3lB+M9yS5A8Og9/ZUxku0EEBv2aAljEPsBQquDnDbLZe0B+I0YI4URfeGWvZr4ErD8M24xRsS+/3Mf96fdvhJS2MfP4zf+03/9UtgP/7uvhhT2aw0sp996HP/+//zv43WzgBQRPkicVnv80eVjvH18hx9fnOOts7uxduRmM8V80uNuPcXRYg8pgKZP3TxRQKUE2ElhsWkqvHd+jU/vjuFSHUmMwKS0KLVDBHB5u8DpcodNU0HKCCEi+l6jqiyM8mi6EkJESBlxPt/hdj8Zx971BjECs0mP3b5iQuyig/cS7abC7LjB7maCh09W2PcFdtdTvPuNC3x6cYrptEOf5b7JkFFVFl1nIEWE3RSQE4fomXg6f7BD1xkczToMTmG7rlFNB9hBwzsJbThj8k7BFA79tiRYEoA2Hlp7hMDEWdcrTBYdTmcNXt8cQarAUCMRxzqV4CRU6eF7xVCj6xL6YQNEwbqQIDjuvYY4Ggj4Iti/qSKTX0uPkMZmOw1VMG23azmr8o2GLFnR4jYF1NwywTYInqtGoTpv0e/5+NhqVqK0mr7PCMwfb7G9maKYpYoUHSBkhG81e0C9gNimVFcdCaKTjxdbgzjxBNhpn6TxCJ2GmfcIQcJvCtaN7DUwT7M+GRH3KTV2lgJ/tgaylfBTD1QBcqUhH3VYLhpcvzoi0L2cQEw8q1Z6iXBkIfY6pZ8KRB0gao5FtIrgqvAcZ+UBx/RabMwovwbAflUdD0A1hRixbiSy87STTJ8NPG7Ci4OcroiIdapfqQJyJQ28YL+qT/UuToz9qAiAXmt2o1aB4U+dSGxEknwnmbjoJRN0B0GgbNI2B5FqOwieVCfhE+jOnrrsZxMBCFUEPHgOND3H4zaS1/B+N2WYhDF8KLN/uZIDSCFLxyFJa5O/N41Fpu3m/lP7wKJ4ZZhIOg2j3FivCQz1nkyzm0RUlwwHyn2vuQ+NE9QkF2/IwPmKQUoHTxxGlmkMdImHiW0GdfcrK3wdx8RdBAJt4ZJ03xLU2nmEbg+Ab1im2puI1GEakT2beifG+hc3paQzS2xFYCLuWHPiU7VKktxGw+1l/7AaCFiDIVhl0iQ94tITLGdmb1jwWOQgo3G/krw6+5TtnN9zd2t3ElFfCrJcyf+cE3hzv6qveNyzd1b1SUY84TGXjj7eLLN2M94vPYH1sMBYO5K9yzn1Nne/Zl+zrwh2cwfm6OVMnlxvDuc2L2RkqXQOsckJrDnJNlfGZDmy2R2AWj4+udJC9RjlxsEwSVgO7OEEKJ0224O3VSbQm497HndegNANQUeWNGafafZl+4r7ZnY838PiHsBJ1+kwJ5DzpYBq4yj7t3MudOiWYLDYRbgKY9fl/XoW1qIcjqkvD55HV1NCnnty82sPC4Hqlu9rX+EL1Sjjcb/nXc8JyARrmVFO4M6TDVKWcuL7VTnZU5q7ZqM6eIBzYnROi71/HoMSMG1Av5Ao14HyXnU4xmNVTZIHZ6BtGoJEXwjo/gBY8013yYOb2EjKctN1GGK6znhC83FWXfK+lnJM3dVNwLBQo89VDocU1VBwESP7cnnQkRJ/BXQb4CYE9XrvEYxEKAX0ziOUEsIlb2pHnyvfewFuolLdiDx4McFxByO/8Hv2DTPVmIBKdR7RyAT4fAKAafy9QygPIr9QkJmktNeMoUDSHryQblZA9h5ycPz8TeATjtLcWJrx9/G+8QWyT1Qg5zcAOPhE78tLv1wXkv2a+TVCHAFk1IpsJUAAmKS1X3g+QL+mkgepbfZJZoax6yDKErHrDs/NE2XvgXAv9TXVjYyey3uvk38fOyz/ApUjX/e6kb8Ell/h2/Rbj+Ojf/xfoqwszuc7XG5mmNc9Ll4toSYOR/MGt9dzoFM4frrG3asjmCWZxroeoGXAejWBMgHhTYUwCZBTS7lXbzAkNkrKCNfq1NmoOQGfOdZ0xARmVDj8vFOAAjCzMJXDsC0wPWnRvJxBHA8QEvA7DdkqhLmDvjGUjQFkfCIAz/qF+E4L1+rE6AkmvDoBfcYkVKgIsVfAwiF2CnJqEe8KRBNRvWaJfXjQI3qCPVM49BcTiOWAYMmeAYktioBaDhAvSSG4UwtZelT1gOZqSuDXKpg7Cf9uB/lplRgLAfG8gb+ogQCEOkBMHcRNgfKGnpjmmwPgJNROwh876GszdhGGOkC2ks9bDsBlyb/1BDSQEaIIwEYjlgHFpcbwbGCi6zQHDPGfMyLgFx4Igq814/OLKw07D6wHSQEVZi/ItJkAc8XAHj8NBEQBEE6iuFaQDmjfoWSvuJXonlroOz3KIP0soLhJDFgNFCsBZYH9W0xSDSYmryZDjMoVkyNDSTasfkN5Wigj7JwSu+GE2wxFhH1oUb3IZc/86k85cR6WAdOXEs0jsg72xEMMAiZJoPROJD9hxPwTCTujFHGcVCr+XF/KMdLfzg7H1NeR5zDQ+ygHQA38pzUsmYxbXQPtI/o/M7s1eZ38ZxOQTemB/ozA02zJiOm9xOxlxN13mYhqZ5zkCw9s33OY/1SPTNn9MBTdAO1DeoDLW4HtNz2KW4VizYmvnabJA8jICU/gMXshsH9Ohm/6ShxkmTuCme5BJCBInujqhiv3zSOep9ln3LfyRowSxe4MKRWTHkfd8fx05zyGIYWpmC0DdAg20iS5j1h9J+D8t3n+23OmdAYj0J2nzxbN14uKUj4A6M7pL869jm7G67W+zJJNJpBCAsKRSYuKIAGJcTN7gge9AwNAJLB/RgBtdmTQjn4acfcLTGAdFmk/LwgyfMVzmn2vubqjO+VxNTvep1pOAM0+YvuO4HPAsTSPI2afYUy37E7FmGo7ecNQIwaExTFgp30ooHc5ATeieShQbPnz7qnA5CJi/5h/G44I0oICynUCR2nBodgShEgLtA8EZp+TVZxcejQPFMyOx61YxzHUinLDiPaEqZ8ZiKqe33NwEhldvkcmbyJ0FwAh0J4ImIZSzuahRH0V0J5LVLfcj+qawUBuAiw+9WjPUoJxwCh3NC1DcJi2KbB/KJHrblRPT65L3tb6OiTPYgJ5CYANRwQw5Zr7XG4iVB/QLxQ7Lh330xuBcuPRnCmGIaXalHLrsX2qoQbWrIgIdEsCOzUQLOwfShSbiOrWo3moGdbUYwRv1ZpjK1ecPHcnCsWeLN3+kYLqMI7FpJoVVxEMiZiqW/qAbplXjxKgbcl6tsc8dsU+0itb8r3nDVmaasXJ7DCX4+KLLwXqGw85ROwfa0wuPWWUAISPsHON8s5i+1aJcu3RHylMLix8LWFrOXZb6i6MzFxm0YaFSioIDzsny1beWLQPChRbj2Gh6PE80lB9hG4YHqQbj+ZhgeqOE2k7Uylgy8PsHOxEs9ZjwnmD2TEtlaA1oF/SJ1ldD3BTDeEifC1h1hb2yCAYgeqyR3deorxl3YbwEW6qofcOoVIIKVwoGAk7p1ezuhoQFYGk2VL22Z0UqG4HvkapYDY9fG3IRNqA/thAtYHnb9VjOC5RXTRons9QXbTwUwPVOnpqJxpmMyAUCr5ihUZ53TJwxwe4qWHFSamg9hY+hQ5J61PoDn2Nh75GwC4MzIaMJRUnlGoKFyA61oO4RQXpAiWohUpstBxDfaAlRGIYxeAQSwPZDEBk1Qd8RKyYDJtBViw0pac+MKHVefocU9iP6IcxgTXWBUSXQJ+m51P0AyWpKeFVdMMIHEfGUalRmsrJG18jasXHh0AA6Ty+UP+RbzmZVcrx55i+C2MQrR3ZxBHUCYkxtMcUlKfG8CcCyvy8ETzev/1ZQPJP8VP+XADLf/gzAJb//VcDWH6tPZa1sjg73mLXlbBewTmFXzp9DS0DVk2NwWk8eXyH1z89R2811NxCKUpZC+3QDQblxEKpgOZEAb3E+Sm3JyX7HRfzFts902WVCoiVZ0vGxEJrj3ZfopoOOJ3vcbmiPt7GAnCCQErxjeG9RJx6erm1h9cKYeoByZATVSbWsJdQCwu/NbAlgK0hcyTSKlQZIGYe4VWN4lkD22lAKhSTAb2tICQQFwS9/RmlkUXl4L1EcJIeysTYwQvEykOoyPEGsrbDkQOCIJAe1OjjQQQB6b5CDIBdkmGDFVBBIhSUdMqpO/yzriLkBzvITgOVR2xKCBXhTi3lmnUgW9bIMUXW7AWGY49gUtJHAD14muBxOCUD52asL3FRI0w92a3MtAUBv/AQReACWgFEE+GfsMpEDgL9Cb0XCPSzxf+HvTdpki1LzIS+M93JxxjfmC+HysqsqpZabQgzzDDrFcaCPcaOBnYsMAN2bFhDA2tWLPkdLLRC6kbdNJJaXcrMysyXL98QLyJ8vNOZWHznXI+sLknQaplVycrNnr2IcPfr5w7ufr7zTXWAPCoE5SFbgv5QSvrZOtaW2AUn/KGKgA4IZZJaaiAWgJ959I2A2UjE2qN/HKEOKskgCbZsSrjNCaiuAcazMK3chgKQiYnxFVlD1yQWsaKU0pdxkpMen/HLOpQ4XSchAdU5H99fM4gkp7sy2ZfMkoiY0oF9lY5TCcqYFg52TKuqgkAsDGllPySp6JzsVCwoHfN1wLiiN8kuwySjxcoCew0ryEqKIJKkLkB33LavcgqvnIJxGG4Up3DBDIpzGAoCWTJfCowrvt/MXsIuQyq5J1AcLjCFAAWd2Kck00UaE4Jk8mMvCKBy4ElxAhLBELTk7sWo6dmSPrFDBZk2X1IaGnqm+4YiqYUM75OjgOok7Iw75mYRoxWndFTO82AXnJQPZ3we95/gLiqygkISzPqKclKXQnaKbQrdmZN1y5P7KAm4xlWqfllxWwyc4ukel1ypyR2Gbh4xdjlBmV8e+Zp1FcN7XJ0e2+CBFI/jDSnRmuMh6B8XSRa646p8DorKzKCrKNH0ZWK6DBAXeQFETEDFNkDuMIzmxFbnvkVX85pxc/C90SMBR17z/Rm3dXySw1swVXwMyc+ZJaa+oldOOiQZalqokalXMcki83FwtZySPccl30i5UB4CP5BNhhROdXyskmw2TkyU6iOTSiXQK0mm8UE4VZQMAPJlujYSMxcVtzGlFxuGDFnH8aoRsLWaEnT5e1o8mkue/5ieC8CVMrG5YmICcyCPKwFlT2E2w1pNxz4zjUjhOb6gby2DchHlKXwss4cCKcX3FCyEiNTVKCdWWaQaEUSgX538rb4AQZ+LsDmJNjFjiKfFKogEvGsJlRZZQyFgZ5rBRel962a8PsY5L/zuSk/pwTl4KGgBUaRwKwHKaBOL6usUQmQYzBO0wLDWDLgq5SktV6gUMJSY4rQPuZvT1RJB83M5WDEl49qFToxn+o7Pn9sLQ5bWcnxRy2nbvuI00JfydC0pPianwuZMTzlGhBJwjYI+OviVhogch3QR3kgIzW1BlFOSa4iYAtmiFHDzAlEJuFWZ3pcF+yqDmtKHcydjMHJiBaMSUD6kfZSgxNOkAKMkfU09nsHIqTNS2MAEYCUAJRB9nBhCASCWBIW8NiRkCCnEh9JaESP8jGFCKgQEo6Bc+m4TYvIEZmksg37UScZqNELNv8nUyQmRpt+FwcMwH2jFfsl8v1b0TRpNf2Z+fPJOIkQC1Mi0XUhJx0++PwfwxJj8lPKUIAsktvYBW5pYUJFrQoT4oUQ1+SmFVoj2AfCbtvOAgczb8x5Ca/7/q8Dlw9tfE87zd6bH8u/w7TeesfyP//f/CP/y7hHe3y8QI3BxdkCMAt1o0H2zwPzjLZQM2O6aSa5a1SP272eo1z1m1Yjbuzliq3H+bIPxDy5R7CKO/8EB9vsZWabLHh9c3ePrP3nKL5iVg9ABsVfsgOwUqvMeUga0uwpSB0o0N6lbcWkpOVw6FN+UGB45VBcdhtcNZZZHjeLJEeO7Bpg7xIFfjKL0EHcF02EHJrS6RyPqr0p0zxz9ZY8HRCfpmRNA/VKj+vdusf3iDMUHR9hRA6/LSeY3+06i/g/fMeDGsN9R+CRnUxFilBDLkSueL+kzZLBGnGo63NpDbxTcykMdFNSLI+JXM9gLh+YXBt3jwC7Min7DMHcoXxUYno84v95h/INLVmp80GP+xzX2n3pWqlyxt3KSIyZf3LgMmL2S2P/IoflOY1xyldwtA8q3CsOlp+cvAMWtYvrmykM4gfq14oT40mH+pcG4iinUgYySPpxYHzWc5I5mJzBcBMRrdkxO1SBpn/3KwdzqKXE1qJMcLfvWouJk3X7SQ76qJhYw159kxmk4DxDnA8LRUBZqecwRKRWkPy2geqsQyojhyrNj8kgwPntJFss19AvqjiBj/o3A9if8kJ99o6BbYPcpA1zMQST/E99LxS5N6tNxyZO46j2w/1GgRHArUeyA7vdbNP+kwXAWp7RKbhM4fGpRvtUYLunXrN4oxFRrUt5FHJ+nSXWu5kj+J6bQElyoBFy7RxHlPdM0s48qJ7qq7iQfLW8J6tonEbOXIkk8kXrgyADJ4QQMzA44fBSgW4HqXZoQJDmmaxKb3SawooHqFinIhkxgf0FgzmoWyi85WT+xi/01x6IGTla6S4Jw9mZi6tpcfB2x+Wliw+4FhnPK86r33D85UvrUPk71P6l2ptidJIi6A05l7UwszfJHc+DYXSNg53y82UcM55x4SguMZxHVO3Fi8hMLtf2MnZeu4mdH85YMGwDMv/M4POckWx+5/cwQsisyTkmauQ7HHOIkHR2X9OQBJzCWq02ad+xMdBWrT7orgXJDxvdhgIuvBfSR1+CwFpi9JgNX3bEKJddxuJqLBLpLnrQu1V0IYFgBy28CuovkbWt5XsclezC7RzxOzRteS+UmwjasYcmyx2DI5k11Hfla9RH9maTc07OyBsAkz4yCoGxYUerZnwlU9wwk6dd8HwOY/JJ50u9S2rDwp4TfqBjCwj7HiOXX7D7UHa+LcuNx/2MDc4yob9kZ+bASJm8H4DUwrCWq+zDVnug+Vdp0AYenCqtvHMa5TAmsvEZZvo7JU8uFH56P2WuL/kIniTrPbZRZbsoFvu5KotzEyWtoUgVOdyExe+P5Wgm4+TKx2XsGxyAiyTblVL3DOi5eBwBgDp4ADASbmaEcluyWLHYedq7gUkhOlEC/JhMZFNC89xjnlJ2W9yPswuD4mIxgsc/MJo9Fd05GN8tH67dkDH0pUG4s7IwBMiFJVs2Rzw+aXaDlnYOvJYalQn3r2NF4ZlBsXQKGYvJBBiWgRkpCXS1h9vQAZi+jHAOGc7KFoRDQR49xpVFsHZCkoKZ1cLWGr8iyqiGg2Ixon1aobi1co5I31TG5VSQpaOfhK4Vibyf5qGot3KqEbTSKzQi97dC9WKG87TGcM0BH+gg1eAQloXoHX2sIf6pMYbpqgGs01BCgege7KJIMFAzOGRxTXhMrLHtL4CWAUOoJ1Jr7HqExENZDjqxCESkVNqfWqmNSjNkERHsHaAlfG6iOLKfsLKKU8IsSetMizMofhOwwDTalpYZAEDlYiLZHWM3IBveWfZXWk8kcHZnG5F8UbQ8oRWZzGOnTTCE6Uy3LYBGXMz42hMR62lRj8hDondhHSMnHOQ9YMq1iYE/m1DcJYPJZAhBSkrXMoNBQMhuH9IZy9HyKqkI8ttPLhraFKAqCUaMRjy1TX4sCsPb0OZNeU+ikmnOOP/91mCQEhIfy2/+ft18bxvK/+FtgLP+H3zKWf+ObGxX+6NULtNsa6JnQdzOsKA1dW8gA7Lc1QdLrEi4xPN3QQKmIcTvHCK6wujOH+6/OIZ4GdNcC8bsZQsMSdG9r/OJdzdVUAXrxbgtK3Ur6A8duRtlO6qnEUULlXsm+4KpxYnjMvYLbzaEdEAZ668IXc2gBxGPBCf9ZgNwyHS+OrOFwTYS6NRhXAeYuGdp/UcHO6cnyTQQkcPjTcxS9gI0zBo34DHI4wXv35QV0pE/MJ2YMSJK2QSBsq8k/JTzgcgejTJP2Jw7yPb/MpQPwxQzmIICo0V8HlHcSvhIQXmG89Gi+KhAV0HxR4PjqArIkkCj/vMbxWUD1mqvz2FeQI9A98ShvFZyXkCNYNl+AAS7pNSlxlEkaKSHvTwXw1Z1Aea/pZ1K5+5KrwsIJCMmeTLsMMHsxeRd8QXmp6gheijuJcKgR1WlCHyqJ2XcCdmtSWAkn9uOaLF95LwiaZwGzb1gQXv6relrZ56wTUwUKJMGJvK0ZmDECxw98WoVmJ2ixBYRTk2+sfKdZ2F4TyByfM7GyvCUj5esk8XsUYbZyWuXe/K5D862ermPdnsDwmHonzZ4TSdek+31E873EcJYqbEqg+ucN9/VWYDwDxicjqj8vUN5FDHca5Z1AFIqeOnPyY5EhTIB1w+qN9pnH8ucKvufqPutQBKpbTOA3y0nZ/0l5b7FNUjl/SpwEMNUeREmmQziCSjUQyJUbTJ2dqkvdj4mRKvYE/Znt6q8pM/ZlStsMSIEkXOQBkrxUAH3D68zOeUxn3xIkB0NZZNRAdSMe1HskH1rBvwN8jeY1t6E7srdqiBjXYupXlI7dotLFFJgTp1CSKFJlis4dhwnARx6H8i7JX3tg9KnDtOAiiq+AxUsWvrsZAVux4aS/u5QwB4aqZN/asJapI47HSo08tzklNDOXmXmVjq+bgZduWQfSPpJQA5L879SvOJwJzL4nUNYd/WdyBModQaAaMaWbZq9j9kVm0KWGiPaaYEX1nJDqNoUoJaBrZzyGIgFzOyerY44cX7E5HUfpyJKWG8pQkY63Q5zY9ZBYv3JLFYEaCLqnbksFeAVU9xHHJxLz71l/VKRwFV/yOhRBJIaK505ZAlr2ESZQWwuUO0pjsww2qyCGczMBQlcJhrukYBsRKBcdlgLFnq9r53wd3ROI5xCb/DdzDHCVxLCUE7gjuOYknQ2NfgIAACAASURBVP69mOo0gPrGo19T5aEsCKIMa1ZixNShqTvWuMxfs3LLNiK9j+nbizrJiw2/f9gTmiTh51zoKrch/Z01HEzTpS9P9THV1ETWZVhKPUWFaT+UTQsVZfLlRV4D40KiOMQpkTTXgajeU26KJMkdGaSTvW12LiepbWYNfa0IfiyllfQiCpiDT0FJHv2FQXnnACiMKzJQykaozsMuNcceIor7EeNZCZFAYdQCMdUy6Y4fhNIGxCCghtQpKUDJrFQTIFc2QLiIcW2S9SNAOAU9eggfMVyUKO8cPYiB1w18hNmNsMsCuuXjMHI70nvYZQG7MDAHR5ax0YjFDPpgEQUoRU37r1qHsCwIECsN1TtEaRC0QLEZYVclVM9+zVgqHo+jZcBOiPANnxuNgmwthPXwq+Qn9AGq8wgpKEcdk1w1gzkQfMrWQo5+YkPN+xYRinLWzkIKQf+jIHsqXKBfUiQJ7egYppdkt6K3U5elHCxCaSCtm4J6APD6GywBYwrFEUN6nkgs9Wj5GACxKih3lawdiVUBZHAHpDAecWIo/QP2c7RAVXK8KcQHQkB0A18ryVOn24OE2BjCxDpGHwCXVrpyTQkACEmP5YOeygwqo3OYfKDeE1Q+ALv/mrT2l36ebr9lKH/jbr/RjOXi88fxg3/8X+J81k6VFf/w4gv84f1H+PLuEj86f48//YNPMT6xWFwcMQwGZ4sWx6FAZRwezfd4uVnj88t3+L/+6MdY//gOtXGYFwO+encBuy/x6Sdv4ILEy3fnAABtHMbOwFQO58sjbu6W09+d1WhmPdovVoiPBywXHa7nB3z9/pyy2X0FU1sY43F830DPLaQKEH8+x+zfeY/NdgbclIgXI/2bNyXKDw6QMmIcFYrCYxw0qnrE8VBhPu8RATin0B9KxFGiWA0Y9wV04xBfV1DP2ymJ1g0KP/3oNX7++hpXSUJslMd21yAcDCAjZpct2pcLBpxUHrOzDjECQ18gBiDuKPNdf3yPzbdrhtIIQOmAGAX8UaM6S3UctwRUeqcw/+k9Nm8WEE5CrEaINyX8PKC64PbHtw2aZwd0xwLxroS8HOB3BrKXUI87hCig/6LB+HEP+a7A7NMtdt8vgCpAHBTE2YjQa8AJpno+6uE3BaqrDmOvgZuSDOiNpudxyc5S01jYI2fl8qgQ5o7BPaOCmlmor2qMl57yWie4ULCy0N+XsI9GqDsDP/dQe7KJWDjIm4KR9T86ovyjOQ6fJC/mkwFxUJh9aXD8fCCLrQCz4co1JCA/PMK+q6EPEvNvge3nEWFlIe/NFNrRfC8xnEf4kpLB8r1E/8hDDgLNp1vsb+Yo3miGxaTKiljQmwoA/uMO/mBQvtEYrjxQMSVWbzWqG4HDzwagUwwMKD3Kb8vkEw1TEikCEM8t9OsC9VuBwwumt+qDhL1wmH9B5lofyKrKUWD8tON18m0Dt/LQW4X5S4HN7w8ovi9SoAg9p4efjShfFhgvPfSOUmDVJ2YdmJj22TcKx+ce0USoo0y1CzGNRSGkcKNQ5lRYfnHNk3+THhqG04zXDnpmEd5VTDVNLFFUwPjIYv7zAscPPPReYvklcHjBxR6AzF73hEmuxUZiuAyo3kouktwp1G/jVONA1jWxsp8OmP9ZSXB6GQk+GzLUDFGJqN4quFnE8hepv/A8wq7pF4agF1q/NyjvEuMZCXKjIjvbPaLEtbwn+9h/NKL+qsD8JXs/fcXFkOHao/5OQw1Adx2x/Aq4/z2P9b/Q6K/IZpf3BL5TUE3Dc0sfKRNW3Syifk1m05ec8DZvInY/5uINADRvJI7PAs7/H4H9h0DzVuDwAftq2xcezUuF4TxC9fSOhrQw1l/x9SYGT5Apnr0E9h9T9uyqnBIbKRuveRxEpJSvfSJQv6U0evF1xN3vAPOXqX+yS2D7ELH9LOLi/xY4PCOIVD0XJ4C0QJFCn3QbYZdk1stN8rQKeopXPyeotLMkzyuA+l3A/oWcroP5dxHHpwLVDaW64zLi/E8jDs/l5K1UY5z6P+mfI1DurlPX7VHA7NNY5ilwqs++VTK1xZaLKP0FFzXMnos7i28ChlUCbkmCmkNWqk3EOBPoLyn9LXYR9fuA979L/1n1Pk6A2+xODLSdA/VNRHPjsf9AIwoC5v6c12V9QxC8/Mbi/vMCrgZWvwiUZy8JDqdOy3gKI8pdpdVdnNhWpsVy4c+0BMb00MdpsSWok++12JIVtTN2SebtcgEkJ4oyLVW3DJFhgmySBy8F5t97HJ4ozN54evDPucjpai48mC6iXxGEm5bH3xcC5hgwLiTq955KhEudklq5SDCsJOq7QGA7l6hvHe4/LbD6xkK4iO5Kw1UC1X1AzhTQfUjjk6jfWdiFmhY+ogBsIzF/NRKcjhHjUmL+bY/dxzWkj6jfWXTXBtWtm9RCAKB7D9tohIIhOVEKbluRHfZlUlUkqXB3oTF/NbKjs5KobgYMlwVrQfqAcaVhDmSFi63DcKbRvOqx+6Tm+Ob0i4oQ4So1sai5r7N6N8AuDcq7AYcXDep3IxlMH+HmZgrr0fsRodZMjB14bKSPBO73bpLW5hoSs+nTe1Mh1Jog2gf4WsNseth1BdU6yN4lH6iFXVXQrWW1SGcJLAHIdoSfl5Cd4/dnAopy9ASKkj2m0SjIbYtYFgzSSXLXWFPmKjv6IEJVQLYDYqkhDz3CvILcd2Qf2x7hYgnRDohNCdGNiFWqMRkchHUI8wqitwSkpYHYt2RHM5M5jIiLxKaGU8ovAKDtyFJKgdgPEFUq3k0+zWgthNaIbQfR1BOTGZ3DlPb6gEHNjGQcT6wl78ipRPJXymBjiBBSnCSwMfz1rOZfcft1YSw/+c//7TOWf/Y//nowlr/RwHL+2eN4+d//11itWwgRMToNJQNGq9FvS5w/2uHu1RooAtYXB7R9AdtrLFYdrFMpxdXA7w0lq41nqMzzDupLAgq1tGhmPQ4vlynxMRVkz9KqyygQZx71Lwr0jzjB1RsFv+CHljwfEKxkNyIA2REo+dc1VJ/YTQBYOoiNoe/o3DOBEwCcYPLjsx7yZcWAmZVndUWnIPrkmZQRceaBQUIO8uRPmQWoIxMz1ZFBMzlwRi1H+L3h8/OtDFAbDX0UBB3py0um5M5QRZQ3TMQsb+m/8WWEPaP0tLiXGK75c/WaH7bdMwc5SgYV3TCVFOCEsNiKVHrPCSNX+gQg4uRLs7MIv/A4/2cKhw84HjeLKLYEHLkUPKfyiQAmcu4k3CqQaeqTbyACZivg5pw4b3+MqWrA1XFi1XK6otlxkjFcMAmzuhXorikntdcWzZcF7DKmagWGqlQ33I/jcw/zEBRJMjtktuiFE6kAflyRFR2uPervKTvKniuZ0xM9UOxP7ImrOWbdiuk1QjqWCIB0AvU7sjLjWUTzisxU9lmqTkxjLzb0x+VJKuW4QHfFceZ6AjvnBMxXZEyLe/bvHZ+y6iIH1pgjxzuc8VybA9BfxKkyY7hgX2KxiTi8ICAAEjMYk8xzSMxi8tpJl0JnUil9lDwe3SOyd+WGf8t1EVlKKC23WewYkqJsksZGegynxM7cOpPCTszhxGLZBWXBdnbqFiy2lMfmMQqfmTOCCzPJNgGRisZzMiMlbzyOzes4+QPHJVBmNtZxX6objisqoLpPoMRhqobIyavSkq1GYPAQwOMxrtP57E7MWpa92plAeR9Pjxu5z5y88rzqlsepuiHDFApKe3XL7fiSrxc1pYcxVVOwtJ1sm+rpwRSe25c2hd0cmJ4p3QNG1BOE2BlZouousD4hAZjsNSu3ifHsGUQzLEUqeE9hSSvuW2ZJIRPwmpFtc5VA855BNLlGo7oPaK8ZPGNnPG6hyGDrJEf1BaYKCnPMSZmY0jLzOFWPSRLpchJpQJJrkg2ev/bYP9VobjyOj5miWd9yfGTr49RbqEbKeJVloE17xb7IYsdgLdPS59yfC8zepICcbSAwVZSAulpM1R7jXEJZBgzlAJqgAD0kUNaxyoIJpHEaz7CSia0jqBiWrKDQPa/z7lyiufFJDSEnYDysJVRPYMI0VnrfxqWekk+HFaszbMPjVd15tFca9a3HuJQTw1zdjjg+TpNdgamexRwYhiMtvWy6Iyure548WzP8SHgyrOXGwc4JxmRKG+VnFusucnWK8AwCsnMFOdIvCZBZzWwoQLbUNWpSPkgbU3Ipk1L52Uu2alwXlLGWEsX9CLsyEC6ivO1hVyXkGDCuyADmgB5fS+ijhxoC7FzDHB18waoOOXiEUk3VHawRCVCdxXBRodiOGM5LmL1LAFChvCVgM3uL7A0OhUpMHtlBc9dhvGymKg3dUVbqG42gWKcRCgXdWkQlJ3+jbzSKmw5+XsDNNKQNUJ2DHP2UmBoqBdlz3HLwkC6gv6xQ3vYnL6gSUIcRodAM0pH0M2ZghwD4eQG9SxLJVDfCz02ep1CoCQRGIbgdLZnQOjrAeYRlDXlkwphb1QwDciFth8x39lCKY484rwEXIEaLWFMuIB6kwk6prC55FR1lyigMopQQIfAxRnMbOXwnRqAsTqxmqhD5gS8SSOyoJGvZ9RM7ia7n8/PPAOJixtfoBwhjyCJKOY31YfUHkACicwzv8QGiSA0Kx2P6Ui8AO7KOJI/ZewJHpU7bS1La8MsVIQkoCiVPabAPGNNfeUvPiXb8qx/3V9x+bYDlf/a3ACz/8W+B5d/4Vn74QXz+X/23CGWEagnAdMsJjUvNHuaAaaKai7x9lSftSeKpMXl3snQlGE5ac0CISnI+RE5ufXGSl+ZSauEYfFFsYjKog0ERqSeu2HBF+vCJw9k/V2m1nZ1cdiamWPk8gc9JiCKQzSjvxRRZr/qTNFB4oLyP6C/5ptQtX0+OEW4mTo9L7RbmwAmxHE/HJKrThLzYYuprA9JEb8fHdNcRi2+4apwnTTaFa+iWK+Bmn05Qei3XkA0odjwuvsyT+ZgmBKnzbqD3ixPx03kOhuCheUNJjk7HyxxZej4Vc6fJRbEjGCh2Jy9ZseM4dBtPXrKWCY+QKZSgEFP6Y05ILe8prx3WXPHPPW3SMvxDWk5ifSkmn1Gx52q8awgcq01IPXb8YsrXj3QEM7kLLV9TusNU/nx8pKbJW0x+LtVHSjgXPIf1fcDxkeTxn2cAyzFVtwH9BRdDVJ8kcOskF+s4uVdj5PGpU6dhwNRlFzSB7RQmIzFF3uebyQEj4uTFyrcc1Q9g8szx/cj9KPcR7aVEsef+MFkyoruUk9+N5yOBkCR1zeeQ8jmyEsUhwDYS3nBi7GrxgzEzgCMf4xRWlAJUcqm57vm44sht6e4kvcwywqDILmR/Xe7bY89bApJJHtivKafTKXVTDSmlsqIMt19LlMlrGFS6DszperYNARQEUOxSpL9Jr5MCX7wRk5RzXPAYm2MKUjKYJsx64NjzYpEaY9pvOfXdiZgqFTxBSn5vyRyOksaV6xNi6uYzew9fczt5P/LEXY2clLNKIAGtDDhSV2J1TzBAqXs6HknSrIcIW4vp2ioOnmEmidXRQ2avBMzRY5zzs5V1EDwv1b1Df6YTSOP55+ci/X6mJbOh2wA3k/Su5cCbFOYjB8oiXQIUeXXfF2ICiw+DXnJ/oC9PdoRcz+BqdgoGnQJVjJhkjOOcZfVyjNMiHMDjLYcAX6vEEkW4Rp2e3568dQCgjwng6LTokcNLItgzmJik3PGnelY5PKzrUV1IgUFiqmrQnYdd6ATcMNUxAJkVDvAVpZ/6YDGeFUDA5AM81d7EqVhexEhZ5srwGrABw5mm9zD9TnVB/o5LE+4c4gLA1UxbNZsBdl2m7+Q4AdZQsKYidx3yGpOQLsAbCTdTKDcP2JS0v8gBNErAHCxCCnqJWkLaANkzlTQKka5zSQmq5tj00RKg2TCxQZkd4hhDAjv4QQ0G70wAQtBXGGomuyJGqCPZMTzYn9OXJifpWX4pe4doJIQNCI05+RFVeowA1HFELMhmibR/vJ4k5MC6jGgkhA8cs+R3pxg8gV6ZQmWSxSNXZUQjoY4j3LKCakcCKusJ6nLlhJRTjYZwAX5RQh7GFEgjKGHtHUR48Lo2AaMkBZ1krjnMJqet5uOh5CktNYE6ZEDzEFTln5WEOHaIVQkxjIhNRYlq2j68n87ndL4ebEP4MIHCSaIKcBwxpnGfjsF0H8DHJq/mxPw9AGoM5VGnbcdIRjB3Qma5aVEgjuMJtHl/eo54ENgTw4kx/OXx/vJjHtaOeM/+SaUIRLOsNgHVyUeZpbG/gpX8NwrjyX2Z/wa33wLLv/3bb7THUhgPd2WxvjhAiIhuKFA3PXwQGPYNyspiGBXcqKF0gOs1TG1RVvzycE6hOxaQJqDbG5TnHZxT0NrDWY12UDC1hTYe7ajhW8Z4i4NGXDhWjAhAqgh/0EAQUEuL484AlYcuPcrKot1WkCagvymZBKsj7v8BAJ3TGCTkzCIMCrAScpH6Fp0ATP6ACBjPNVB7diuWAWph4VsNUQTk7IXoJESrEGvPGpOrkR2DZQCCYJdhFExZfXCTvUSYcyVw3GnWUMwdMCigCGitYJ9gq7D/SMKXAaoTGC88zFbBXrFXUQ0C3XMHMUjEIrKIPkaM5x7HVOth1571IlXa/9pDHOhVjXOyxr4mQxjKkL5EBI5PJX2v9xLjuYPsJSWQLRlZSuQE9p8FRBmhdwqhCIhFhNpL+MajuFdMkxUMMtp/5lDcqMQIRkTDyZIcyMD1l5wMRx3QXwoUG4HhKiSmkSxr+ChC70HpCyKGls91M+7D4UNOLO3awWzVVF4fipjCTwTGc3YwUo6VEkQ1fZZT2XxK1BSebJc+CozriEPPZEU50sMbTJyknN0V2V9WS3ARxRecr5bvWWvBACCJ4Syxow0XXOyCLEMuqB/XZBw5+PS4g0jJqvSl0rsamfKJlIArwPTZNPm3C8AuAsxBYNywwkMNTHbtB+q38qIPKwQ45nHJYAsuYBBMlHcC3SNO1suNYtXDMnUx2jSpGul9K2+Bcc1JWnUn0oJBWnwSAuOSHkvVAS2SF2kr0T4lwC7vBNxMMOhophLTnBahtmkCqPMCk5gm0PYgOGEPgE7dihDAfpHZ6pOv1ewTIztLwN6k+x2lga6mtHMCbwn8AynddcmEWt0x4TEvqFGOhVQbw2OiOyQGRkx9ftkjOZwJlPcS7RMy0uOKx2UClSm0KqeMqp4g0dViWnjJtR7tNes5XJP83MlvPC6AIl0n/YVM5ypiXEtUt5FprBIobyMgCXjdjEnCGfxmP7E+chFN2tTPl7yzmY22jSGbnybbXAzhgmF3mcKsLGAKgf5MQjo5+RnVmBaC0iKFnXOBKvciCo8psGcwlAWPC07Wyw2ZPD8T08IFWbkkiZ4J1LdkLqtbhu+4Jv3tTP6gl1CNaTEuJqCv+PycbBqUhEkZGrYBir1keu1I1jhohi3lMZtjhH2sUe7YgegvFNne46mnMayZThoKLhzqVGjfnyVvbFqcoPeSdSgiKLSXlHR2l7w4XSl+wLaWG95XHAm2bCNR7MlM92dcaMohPeU2oF9S6pjTUcO1QX3nMC4YtsP9B4oj/XvduZo8rg/Beb6pgQAuM3u24QJIf1FMi0R5EYCJvJRyhkLCzsjyBiVQ3ju0j5l+Ki1fSw0BdqmmsCPXVBPzqQZ23wpHKaZd6gm8FzsypxBAsXWpsmNEf1Um6bNmn2NKgC03iqm1PQN01BggbYAvFV+r83AzLmZpJeAbDTXQH2oOYpK5lncWdqGhag05eMSUNitixLg00EcuWISSCfFRCxT3rAIBTgtMvpIwh+RfzImrIUKOAfa8gZ1ryAU9kMWWPk2zywyqJaPYWqAWcDMDHVjh4SsFOQZILZnG2ln4SnNBoNLQhxEhJcjKwTGAR0v4FVc0RQJIrjEwu4EgUD5YBDiOkwcyzAt6J1MQT5wzTBCx4uKKNRPYlYcB/qymdLV3XGRLiwTC+gnUT+Ay90I6f0qClfJUE5JrSKzj36U4AWeA4NZoCOvIbGamMiXECiknIC2cT2mwKSE2Rr4mgHhkuM4Pgn4yyBYPGFMjEJ2fGMUJtOYAHsExCqUIwpVCrhvhJiLBe77FmHyVcrofAIT4K4DlX1Y38qv//Jtzi5hIrL+Lt99wxvJ5fPLf/TfJeE7/Vf1GoftJD/V9ifCsh3hbwp87FK8M7AcjxMYgmgjZMYAjR6CH6wH6dQl7aSH3GmHp0HxZoL9MiZiHLKtIrN6GqaHFlv17vmFq57gOCAacYKfuwmIjp8nBcBkw+1ZiXAEQDGkYV/RTmQNXi+2CATjtRxbla5MqAChl7C8jir1I6ZUxTWg4YcueLFZTpLTKEqjeialUmVJB9gW6GlNcvW7JnilLMCBT0bzqMXmBfJVTLSmXFAEYziLqt9yWGhL4SPUOlPcB9VtMsiBfURJJppTl5+aYPFQ6sWgrMtBT2Is6JYW6GaY3ZJ6MB0M20y5ODG6WSTLgBVNNgzkkMJDL1eMpxISl0ydwoHumRgKUJwaVJJopOKTYkKHrL8RUYG52ycN1c5LTTvUD4ITQV5yoVrdIE8nT2KQHuiuyxs07StkoN+QxlmkSm49vZsR1jyTXopfI7OIEWkSgdyymFMtcym1nvEZ86ph72MtHKWg8JVKm7Wama1yK1J2X6jB6ygxzEXdmPIDkTZtxQil8qgCY55CNyJX9JLHLcqMoCA5yGEm+vrMXqj8/XfNqJAs7pWjq0/E5FZ5zsqi7DHS5DTXwWoyZmZVJRZDkmqxRYBCQGuPEkg4rMuY5mKh5H3B8pFDs+Z50NVAcmApa3Qf05xL1+zDVDigL9hoeT8d9Kno/5s6+zGqTyY0iXU9JOZGDVqTFgwJzTCxavubYSYhUiE72TzpeG8uU7pmVBOU2QNkTi+lLoL4NGGdy+vxrbuhPEwEYk9ICEai2Ht2Zgkn7IQIwe2MxLtXE6gl/knVmPxdTUBVMYuz6lURxPHWt5seqIWBYqRRek7xAQkwMJAQBTJTsPnTJ11YcA1QOpTmEqfLBVQQt7ZWCaeMkg3TJO5blm/PvB/QXxQQygsoLPPydvYJh8gVWG89qilLCVQLz1xbDSsE2EuUuwOwd7EJPDK7uyS4jAvV7i/3zYgJsWVoqQjpu6Xd+/sX03eR/ICUlIy4nbxkVMRJFSgsd1knGmnxz0obJu+krCVcKVHcOwkeMKwJDvh9YID+cm4kN9oVA827EcGYmVjQH4UAA40Kh3Lh0npI6wBJUBSOZMmpkqskAio2Drwiu5MhxTd2MSNe4C0wkTWwrmWaG3xRbB+kjK7JSwAqZO+6b6gPBXYwIOiXIHh3c3EwBQHnsZmvhZnqSmNpVwRAafWKsdWsxnJVQQ2AFR+uhBg8300BiZPmZlBeeJPSRC7iqpd/PNUyW1YcRblEQGAGUeAIIlYEcHJNOtZiYT+EC3LyA2fQYL+pJYhrMDxeNRYxQ+wFuWbEDcl5A9S5dU3JiokVMDGPBYB1hPXxjoA4D2UgAbmaYyDr6KRE1SsHOx8S2ynZENApuWcLctohKkelM7/eoJT2IWk7SWmEDmc3DgFCalArLqo5QGUQlmcQ6r+hjnKXgnkIzXEci9VFauPMZ9LabjvfECiYGMCeyAnzO5BksC3ofc0+kTyyh0Q/YWXdiGHM1iBAQ+5Ydk6NFmDdJturZIVmY9P4SBLlJghqT11GEyL7J4dR9OY05M5SZVX3YR5lqSU5j0SdGMktR64pBP3l7WvH3fDzwACj+MhaQ6lcjuB/0X6bXHQa+z6z7AYuaWU0+NjAESIoTgxoiRGJpo3M/DAb6y24h/uZLYR//LTGW/9OvB2P5Gw0sZz9+Ev/h//afAADu+xo+SAxWoylH/M75G/wff/EZfvr8Da6qA/7p6w8wK0dU2uG+rdGUI6SIuKqP+PLuAn1X4Hefv8KfvXmM4Vjgkw9obPrudo0YBD6+vsXr/QJGecQoUBcW3393js8/eY3eGdy1NUKQaMoRg9WYVwNuUq+lMR6lcdAqoFAex6HArBxRagcpIrZ9hc2uQVE6fHrxHn/x/hI/vnyPP3n1BGVpsagHvPvqAtef3GLXVnBWwY0KUkdARHz25B2+urlAUTj0vYG9rzB7dMS8GrA91ui3JUQRcHF+wObPLhCfd0AUkMojBInlnB/Ch2MFNyqsz444azp89c01TEOGN0aBri1QlA7Pzzf44i+e4OqDexy6EjEKDMcC19dbvH29ZiDOoUC56vGTR+/wJ//kY4RLi9mqQwgC7V2Dat1jOBaYr1vsb+Zozlu0tw3gBKqrDnbUMIXD8LYh2yoi1lcHbN4t8OGHN3j5Z49x/fkN7nYzLGc9Lpojbo4z3N/NEY8a0BH1eQf/rxZwL3qEkZMVoZiWJwSwOjtit68RrESz7GGtgntfA0sLXTjYQ4GrJ1vsjhXGjt7Qy4s9br45g1qPQBR4dLHFm5sVTOngnUJ4VyHUHj/97BX+/F+84NhT4IyeWbi9weLRAd3P16h+vEXXlpCKH7z2UABOklXeFHjy+Tu8frtG7DSqiw7+izmqn26gZcB22yAkBl02jpUzMrICp5dYvNhhv6uxWrUIUeDw1Qof/f3v8d3tGuO+gGgVg3bOWV0SqohYe0jjEfaGixWrEeJNheLjPbpdxfuOBnJmEbcFZCfhL0cUjYW9qemxfXbE8KbB7Pkew6BhdyVkqyCHVG+yYveouTGwlw7zyyO6L1acdKjUFTl3qL8u4P7eAe5djVilftGlox/YBGBQZMUbD3kguxivB8jvKx6TgRUyUQLQEXonYc8dhCNzKM5G7kMv4NcOolco3iv4Mk4Eh/50j/7VHHIUMHsB+3kH+U0Fe+Gg9gryeQvx5Qx2GSAvBvhtQsGVh3lTwF46VC8NhisPsR4R7wvEOsAsBtgtA3vmXxgcfzawsuiNxnAeEJcW1TclfJXY517ArtMX/NxCvS7pUbzyMPcKZidgV5H7IDElywAAIABJREFUlQC9fWQhjgryYoD8toZI4Nk1Ec1rieNHDsV7xeqWqx7+pkLzvUR/Fejh3imEC4v1Hxa4/wcO5VtNBlsCkBH1a4XhLE6ePBGB8tMd4j9dwc3IGNtlQKhSnZGMmH+tJ4vCcEkvcffYQw5UHpS3MjExwOEFWe9gGGTUfC/R/qxH9UWFLGkeHjnMfqExriLcswHF1xVCGbH8Eth/RKZ9WiQTXEwarxyq1wauiajfCOw/c7j8Q4X7nyWJd8FxuBkrWLonPAdmR996SMxluQH6cySAntJWHRcK2sccr265H34eoPcSZsdFgP6Kfmp6uFl9M/9aontCBcDsVcThA7KbPtkohEfqD6SveVxzUWP2ivdHKdA+jRNLPn/JYzD7XmA446LV/hMPs5E4+/OI4UyifcKwJDvjMS42EuU9F5raJ2HqeF18LaE7Vt5QRkt/um0ExvWpZieUDB5CZFBUPlaUSnMhK3uMj8+pAGif0qtf7Ak6hjNg/RenmhOf+lHNntd1/Z6fEeOK4158y0WTUADVXUR3kXpoE7uc7Qe652KPHJF6WLlQ17xOTPfIa9kbLtrOXwXsPpInT3fNc+4aYPZ98txJstCm5T4XRyb09udMf15+FSbPcf2ekui8X1zgFZi9DhhnlNYfnissv/Ho1ykFPXA/V7/wGBYEu80NQ3NyV2d9G7D7SGH2fYCrBbprgdmrMMnITUdrweZHCsuvPYa1xOKlQ3utU5JwwLjk+T08VRNDLwI9z8WWEnpfUC5e3tOb2V3wu2f2xqK9ptqouvM4PtaI+oHvWHEBDGClimskVQkLSfn7QqK8dxjXGvoYMJwxvViNAd25RnEIqN8NCEbi+KTA7M2I9lGB8p7sbrFPYUAbB9U79Ncl5BARSgF9YDKw9JRZZ+CcQ35CQd+raxRcRcVF/foItywpe94R6KvWJYaTEmC7KqGPXFCo3vesX9ESej9M8uJgVAKMAno7wJ5VkL2Hak+SYNmlRYoEwkJlKEdO0l/ZjicAKQRCU0z+z0my3A6IVQnZ9j8I6gnzikB7e0A4WxIUdwmMSTmxnlNS7C97LEMgYFTyVIeSmNOcOBvbHqIqEds2yXMTywpM24x98ol5DxhDSeyDBFkAUxKsUOpfu49j+SWMEsOvTo/9/3j7dQGWP/pH//aB5Z/+z78Fln/jW/nJs/h7/+s/QjsatG2JqrJodxVU4RG8QIwCZW1hR40YmFwqZIQbuSoSDgbmrIc9Uhtoagt7X0LvFOqfbHDcVwhHA6iI5rzF0BcoqxHtpiYb4AVQBEgTEKzkZLd2wMHAXHZM9zymCW2nEAtKI6OJlMGKtI0U1COsQPGoxbAr2UuZJnHwgnLPOgBVgLpNUpUAuLWjxDWIaUzRpNcpA8N9FLchLweIlxV8w3RPu07hPAF8TGTqaaw9hIqQNwWla5EhQNMEvwgM4ykC5aglJzRRRRR3agq7cM8HxIOepKxRR6AMKL43sGcB0QToew1fs/fS3Gm4BY9LTgKFjFAda0fCJx3wsp46IO25Z+2KTEyjidB7ykH92kHuNYp7SRZ3zjFSZppWkSvWybj6lKTpZhGhCtAbghW79tB7hZjSRVWXZK41k0R9EVNCpkj+VE4Yc1po/jlKstihiLDPRpS/KDGuAiWgGhN7LUdOiMc1J5m+irBLSkWrd5SuupVnX6d8IEnM7E4CcG7G8bpURaOPZKm6xwF6L6BbTgR9GVPoDDs23TygeqemxEU5At1TD32QlMGGFNqzFakvDAjq1M1p9vw/FJQTR81z5ZqYujlPjLCvY/JxCYyriGJHmetwzuf4KiYlAllPgBP54SxO+zlcBpitPHkpsywxSePy+4RpsSdGOz8+bzPXVQSDxIDx93GNqSLFNfRXIyafdmJE83sEoBd5WJ8AXn78cIapFkTaE9tVbIH9J5xcmz2lnWSDME2sTfImD+eJWU2dnNKdxho0pqoTfUyps2l/mrdk63KFDMOvMB1Xu4iYfUcpbGasXZNY6yMDi1jrw5+rO4bSUC0gHkyCqU7wFVn9KE6sNeWy6XxEjtXsTteum/F3NfJAukZMPY+uJnsexcmrnXsMMzsrPdL7O05srExSTV8xqXNYySnx1RuywMOa3t3c2zr5zecM/hnOki87cvtq5LYzUEJikbMvmf5nSlGlpdIghw1Jy7qUYc000moTYFPHZrHje6a+DROIYMhTSjV9qHp4qMA4csI+LFlVAvB6UDZOFS0i0i+7f0ZG3bSZVT+duyIdk+w9p/f65PHNLCmQVCjvw5SSGlSW9mOqxcle5JiABftE5XR+8nsz+58z8ys8xz5JvOODa6ISk486hx9xG8lXnuSpOXyK/cIC5c7DVRJ6yIBLTPJx0waym8DkVZUuQg0B41xN6gCAIC1/ZjCsLUC6iO6SXtDsZQYAX0pUtxZ2rmBnEuYYJuWJ6h+AHM8QINWRdaNMPBKADXFiWUXEFCKESMASJTspKRFWkDbAzRR0R9ZVHz18xWM+LpjEmisz7FLD7NLvCWj5BLSiEpO0d/J9Rkz+VF+S5YxKTJ53CFabMHwrSYxtoKez4KIuPzcp7w1lvgDAcddqqnVBJHuKAOS0Upm3EyJiISFGzhNCoci4xgjpCPx8bZD9t7JLSbdJCZPZthzAE0o9BRXJgcx6lII/+wi/LOnvtSfJafaIRsO5B4Qg4EuJr5nJhY8Q/UCGMUbExMZlL2k0CqJ/yDiqiT3NvZbwgUxmCtmJSk7ezWg0a0Py8wtDEJgqTPhi4ocMY/Ztpm0jJJD2K3yOIgPILIPNftiHnZcAWc2HfszUiymU5PnyfgKWcRwpmc23h6mxf21/5en+vwuM5Y/+078FYPm//HoAS/nXP+TX9yZkxNuXZ9jfzXC5PsAoj3/3069hCq5mXF7sYa2CeFkh9BrupoKUEdFL6II1C94pNOsO5p2Bu6nw9JP3OPvd91hWA+KmwOMPbzG/PKLdVfB7g+71HOqevka9sBAyIliJ2aonqAQAJ2Df1Sgft3j2+98DKqJ8eoTZKKiLASgCfZV7DVk71N9piMZBXQyw380mIIlANkrOLcLVCNF4ftiKCPGsw+Knd5CNgwgC5rKD2UiYxy1B5tKh+doAIqJ+ckBsPPxBY/GzO2DpYB+PELWHnFuIxkOMEsIKVI+PqL4tIO4NwtUI9fEB6pMDsLIQPZNdF19ohJlH851GPLeov1Nonh0ge1ZRuDNHJuxNicWXmiBoxuOtbg3EZwforYRs6YOJRYTaabgnI+TZiPqVAj5qCXZXFuFJT1D5bY34vEf1XqL86RbFrYK9tvQFLh2/uOqI5Wf3EAODQIZPe4yXHsU9ay8mSaUHmm/ZbYmVhRzJbkQTgZLpvvbco3mpoVsB3wT4OjB453nPRNU1Uw/92gEJVA7nEcN5YC3Di4GptQMBaf9ihF0FLP+4hJ1HmL1kVcIrAXNgwI59MVDCnLyeqhfAeoTqGWCkW4HFzzWlzQ5wH/VkCzTg5gH9Y4fucYC0ZIzK9xL1O4HuqUN5x25ON4toP7IYzgJCETFeelZuHATKW4Xuw5Ey2nVA95Me1VuF+i0nqZAEDP1lQPuBg/DA+uc87vbKQh+B4YMRq59z0qsPAq6O8FVE95Me3VMP10S0HzqEArj6ZwHdxyOq9/R0+oJdjuPvtKjfsZtVdwTKdhFZyXHLxOJxHbH4SqJ/7DCcR5QbMi3dE49hHdE/9vAN2Yv+OqB+x4qW8TygvOeX1HiWJqcK2P3OiP4qYjiP6B6nio5bAt3jjyxmryLaJ5StL78KqG4IzMdlRLEl8BqXqXdxSUl6f8lOx/N/GcAwK6B+F2EOrGrY//sdHv2fEc3riOOzCDnwMYcXAe3jiGHNmpJQkl2ZvWSgkV2yN9XXwPbvWXSPU9LqMmI4p7xbWmD2OuLwAcO/zIELBccXAdV79l+qHlh9wUTY3U94ToYz7vP8u4jd5x71O6aBuhpYfBswrAU2P2HVRfZYigBc/zElfsN5qjFJVSNqiKhvIg4vIsY1cHweYXbA9mc+vWe5z9vPA+xC4O7vB5hDxHARMZwxQCv7It08ycJniVW5oBS3eRfQPuUx2HwOIPJ1XENma1jKBBxSGm0bcXxCUHn/M77XQiFSiBllzrsfkXkJhYBtBHzyjzKYC4lJjGjehQlQAAz66i8FDh8SSC5eOdR3BLiHpyot/BBIDRdM3+0esZZk+5HC/qNcScMJfkjha8oS3EgbMX/l0dwEHJ4LvP89if6CQLBMEvjtxwy/Gs742XB4qrB4RTbg/jOJw3PKcgHKuHOIkp3Tx1vsyXStvxjRn0lsPuf5DBpYfOtw/5nC8TFlkDnALQc+6Y4gXvcRs7cOrhLY/ih9Hq8EDk9lAogCzVsL3Qf0a7Jm1b3H8bHEsKDX0jYC41ymRQ+BwxNFf+cYJ1nvuOT52T9TsI2AnQn0FzLJr5kyGzTQnSt05xLDSqDceJRbj8NjhWEp4A3QXuUaioj7Tw1mr3rMX42YvbFo3tr0/g3YvaB/cvuJmby13YVCd0lvp6skmrcDxqVm2NSOFSOuohS7P+NjzNFhXCqoLpBB7AOOjzXGpWJ6rKTX8viEsmk5Bgxrhf0HBr6Q0K2HXSheI4VICa/jFC7lKzKL/bnG/KtDClyiV3T27RF2oWHnEvpg0Z9rmL2F2VsUmxFqCEyJRbJYOErN28cFjk8MlKWk2C4UdO+hjw7HJ1RshIKpsPARrtHwlQKrSgh2ukdk74a1gblr0V2XKLYjXK2gdwNU72AbnToqJfrrEocXDZB6MfV9B7sqUqekh+os3NzAzQzcgsmwcqTHMdQadlHAVxr9VQW3KDBc1hiumomdK26O0Dd7yH0PN6ccNmoJd1FDduzYBAC3rGDPavq9z2oGCSkJ2VmEpkBoCsQELrPMNKwahFkKWOoHgtGR/ZZTPYgUiAl8hkWF2DDZNRqF2JSIVYkwq/nhUlAWnKWzcTmjVHc1JwhsKv4N4DaqpKLJAC6DtyldVkI0NcS8gZg9+H9WT5JWURQMA8o9mXn+nYOGnCOzqR4E+yTZa8zJs0oB1k6sZLSO/3yY/iED0L/sXwynf7+9/VrffqPDexpjsXx0wI8vblAph95rzPSIz65ucNc3+Gh5iz/xTzD82OKT9RavtitcLQ6QZxE+SJSXDtuhwqrs8fXHCo3xMDLg2XyLV4cVmmcHzIsRSkQIERGCpFzSKpytjig0Za1ZGgsARnn0jYUQEbNqxKIYMDvrsKh7vH1qsGgG2MKhLke0fcnKk8+B9apFPxrgBYOI+qaAiAKrZUvm1Tjc76kjc5XH2bKF8xL1bMRoPOZNj/6nHkoFiOuIurTYfCKhGodCe4iLFjEC83LEoXSo6hHeS4TAkAqnA6SMUCrg8NQCRcBs2UPJACn4d8wGjIPB4ROF5dUB+34JVXi0HzqcaYfuaoC3Cs2qQwgSfVngWBjI6x5GBhjj0XqBRWmxuXAwyxFu0FCFhzcaRW3RVCM2H2k0hYNbWjTzATECdiSbWRiH7onDUkSMlw7NWYfWScjGISh++Q1WQ50NcL1GUTrEwqFHBdE42JkkQ6wDhmigXxwRvIRdptXEhvJkv3aQhUf/iAAflUf0At0jAW08xrVneJLSULWHS91hfu0ghiQTVBG+Dgg1ABOgagcPoH0i4RceoRGIOuD4HAhlJKMdBI7PI/yZg28kRBTQpYNdFogmYtSc4LqVg+wU08SvI/yM7LOcWwQnMUaDqCOGi4DOAGLm0D7WGM8CQk15bqw8m2ZkhJuRIRYBCRxQxigl2V5fJebVJBZRR8AQ7B2eC7iZh24cuicGCAL7j8hg+wIMYAIQrQQMwZ2oPNxM4O5zBcCjvyZwR1RwcyB4gfZJhGtOsi4IbmuwKVG5CegvEmNdUUYVC76Wn7NX01cRwwUQi4DuWiOUDHbqrxiU4puQJvDcb1+R7feKDMFwRqkfvED7VCAWAeOKk7YoMNW1jOsTUxtasr9qFLBNgLQK+xep/xMC/YVIvkoBvzM4PFf0O5dh8rHm4B4ISjn7y5ToKpFeJ06MoLASQRMARRMRIhk/CKB9lM5VTNUxiSHvrkUKj0rXUwUIT3AvBx7vnDI9nLOeRw0M0PIVz4VwBNJREvgenir0F4mBrJGYh5PsUHp2XCKxm/og4eZJFjjLHZSAHGRKUSabPqyTF14LBMWwoWAIMH0V4ZxAd5G6D+ciydsSC1Yl6eMMEIH7FQt6foNJxymmEJzkm/QFIKrcpcjvmshsNoSZSGw1wR+MQHfOa4WdiicvPqKY+iEfglFXY6rM8Yb77stTErWI/JurACW4n1Gd2Gk3o3dUxMRaHnhd5OOSvYyuSQtOFf8fFnJKcxaBXlbXCAwLmVhjjp3jS75EU0zBX0ywjugvFBn+NE4GbzFE1c4oZ/Ylw7aiUhPoHFcpMdjzcaEAuitmCGDaz8TWJnVBTtt22aOY2NGcCk6WM3ImI9M5R1JWlCc2k0wNXycKoD9T0MlfLX1KQo7AOJcwkqC6vy4nmTeTfAUABlHZhoyenfN7IzPS+dafF9N+MylZIOQuU5OY/pLeYztPx79WUyq0SwnLCCeftSjUlBIfFeAaPl9WDCySLk5MoC9EUmIkBnVZJFaYUs3+qk7XlMC4Yi0F60Ae1CGVikFBUk4KCxGyt/s0dQxapjoV/IDNdDOdGD7+PbPefA9SsuwXFfdlRh+ibwqmGguQTUznW41MqQ1aTM8JpSYzm1g5X0iY1sHPClaeFCf/aGaqATKkBOOKHtdVBdnpKVk3SjH1UoZap+8XTTbSk2kkayz5Ogl4RgEILRGj4JuhVEAg0BZGE4hJIJYFk4YrQ9bSBb7Rwwm4xcxQCsHnpdeKQjAAR/2/7L1JrORbfuf1OcN/iDnizjlnvnmocpWr7LYtD9AYFqbVahaMzQLUSC0hudmCxIpd75BZMEjdajVCApagFniBG1u0Gw9ll8uvXMMb6r2XmS8zb94x5v90zmHxO/9/3Fe4bIO6pCrLIYVu3Hsj/nNEnO/5TlqI9CD+TGFEoxS1fdyCwJgge5PtxEYPZpss297jMmUw2wYMKaknibcugbh9bZLufJNtWi5mtx/AzfRb2f4dQJVVBuAv4K+EP5Vd/XG8/VmZRT/utx9rxnJbJyyu+nzjyV0eL2c8Xsw4K4YUznK9zXmymnF1NqKf1Txfjrg7vWZdpWSmITGObZPQS2rON32qeUYvrVlXKV9/fI9NmdI0Gh8Uw7QUwFgk1KX4CRLjOX05YZAJJV/UFq09k15BcZVzb3aND/DBy0P6WcU4LbFZwzAvMcZT1gnDnjyeTtfiwbTi3wxBMRgVhMJQNZZBVnF+NeJ4umQ8KEizhsvrAUoFJv0tg17F5csxxTalKBKqIsEaj84bkrShqBKc0xSblDenL9HGM8pLDkdrHh1ciAc0r3FXGVVl6e1voTToCCqvL4aM+wW3pwvCs5zQd5SVJQwct/bnoAO1M9jUkT5L0DpQrFLSfo0pFMm3+xxOV5RlQjKoWSx6mKGMTEKtO09btUpZbzJUqbHGEyrN+nTAdp2JfDkgx98GysqiBw2bSxn59YclyUC+2ctPRniv0Imj3iY0RUIyLQiNJnmZkJxZ1NLic3ln14WcUzyEjSXNxXPnN5awVxH2akzmIALF2WgD1tMfFCJVJoKosegwVSVpuVlekVwb7LhCZwL6UVAf1uhBjZlFv4SFEBNyDw4X2C2kzxOSuYFGiXcz9+DA9zxNX2azk7kmvMxwJxVoGN9a8u795+AFTKhGekeZ1ITK4JOA7zvGJ0tsvyF9abHDGhWTZ0Mi8tneuJDjkXp8bWgGvgsisksNByWqVqDleDTDQMg9SnvqsQMXB+0DqcjRlcJuNNQaTMCPHKGJg9hhQGcOn4oUWICeRxkBhSH3XUWI7zt0paO0WEBueeiw10aCuDSQ+U66ZtZaJNxG9sVlAXVUyvHQwvCqWkfGFqg05qAku9SYQvxjIlEWUOLyIOcjFyl0ceTF1xoHtM0gEIg+UgN2qUgWWiTGPQnF2txvqGaB8tB3YUObW0F6TYt43IYx/CgRf17bw+kykRA2g4AbeJqxl/3LfOdR1XXLXgc2dxuaYaCeOpEtJ/FaSzzlvpeO1sgwVns+Du6j7HDkJG3XiYcwKCj3XAcos/M4+EslVRhgfTuCgVz8fwIKRcrdSp6bgaeZeOpRoD6oaeto6lEQcJxJMFrr3Wt6wsyaUlJk22Pj08gqx4TkarILIzPb2D+ZhSi/ixMcCWyPPNsj36WtulSk5620tAX11RiKoyYy9xI4Fowwv/VI2N62bqoeyrGoBztZddOXVGifwOZIUUdvna6EifRWQqJcLnLcpieAWRhgmSS4OfDQtbz/tkeKVootNU8C1NsQsDbBtXcmctamL6BfgtUUm2NJNXYp1GMB7NVYGNZqHKXElfgat4eqSywGkS/7RAKSJGROtqEaS3CatwI+i305F3VfdfJauxZ2t+lDuQ+rOwJwqpGwjdVY9qEaiYTZG9k2dGTEw24SoBoLyNsc63gORE5stlIv1fRj1VeQ66KVr6JkX+02ThqNZaBf92NdTynvsbon6ozNocZl0slZ7AnjuN3XsRbJS79tX3eyW+VhfVv2pw2GWt3RsRpo119KgHTpKKdG1jcQGXM50aKgUQJwfaJo+pr1rSj1VrtJgrqnJXTLKMqJ6STh5cwStKLY010VUjFTrE+ymOzaBuUp5g+NbLuWEK5yaqnHhmoirGlbM1MNDXXcnqDk/Dd9TdMX37EAXB2vPY3PNMXMROCtqUamswv4WI3kEi2vyeV73VtFsWck1CoysD6VChj57FPUQ0nldZmhikwtWlHupZ2kuNiLILlvohRbxQ5bSRRXTaCc2hiWFWW/WknP5iSLYU/gM0M5S3C59HS6nqTPthUy9SShGWeEVIPWuH5KPU47wNkCQTeIvd0afJZIemxuY8KsQ1VNrHtRnXy2GeeECFbV9zGNqg3G0bLe6miIH+TUe30whvpoSH0w7KSzMjaJtTFZGkHzDZlsVeMnA/x0iJ+Ndo8ng50k14ed1DaxAiiVIlS1gMRWSusjs2itAE0dZbc360mM6ba9vQfnhdFVEZz+WfdYb/JXtx/t2481sLTa8ze+8E1+4ZWPqJzhlekF77845P337nFrtOSTj4557eEp47xgkFV89OKQEBTfO9vno6eHXG9zzpZDGmcYHa24XvTZVglZXvNodkE5z3lyNuPjs30S4xkPt7x+5yVv3j3l4nqISTyXiwF50uCcZvPBlIt1n/HRisob5ss+dWUpa8v7H96iXma8+M4RzmlCgHvjK9aLHK3g4nrIepXz03c/pakNdydz8V8CyyLDrS3zbc6mTHCNpj8oub4eMN/0qBojgRr9inqVYqznaj7gldvnlNuEpjYUi4x37z/n//j6u6Rpw/PTKZ9+ts/H5/uURUKe1jx68znVdcb2vM/th+csX4xYriUs42rZ56PPDnFDz4O75ygFSb/i6fM90knJ6uWANG2obtWUpSV5npIkjnriSL56xbPH+7jC8ouPPiJcp7iNZTracufeBf5FzmsPT6HSDAcFD956weJiwPhgTe9wQ3CK4DSMaoz10CjKVYYxnlcenXJw91oYYxUwvQafB+4cXouX/CLBpI4kcVBomlsVzcQTBo7Qc1RFwhv3T5neXoANkHicU9i9AjQ8un2OPk+w1kFhGN5acfp4D0ygLBNhIZcJZlSDV5h+I4ygDmxOB2TnimaR4itDvU0wmUPZgK8N3itO7l8yfnSNXhpUozl7MhPm4o0V6pU1IfEYK3GoIfNMby0Y3V+g14byVo1yMPlaBiaweDbivQ/vohcWvVeS3lnDuOburUv0ylAdCuhbfjaWSYQDR1Ma1EUKjzYEG0hfW1CcDgRMJR4qzezhVQcg6oMGvxY2NH+SCqB7dY3aGAnqGctxGLxzhb212dUiTB35cwtOoRJPepoI+3avwK8t6fFGPGxbja4U+pMe/VfnqEqT31lJ1U2t8ZOasFejt1rCe6ywdz4NFLcbKDTJtUEXMgDTG02zX2MvEvyDAv0kJ6wtxYNKKm086K0mmCDb96RHceLE5zrxlMeN+GPPDKN3L2RQNBSpcRg24rstFMWxw00a3NDjpg3JUvy69cwL+3erIWQBO6mkmqeB1ZsV2ZnBPlqx9+Uz7EYG/c3Qi3RbRXCcIecqAlNTKtJzGXAlc03+Wez+KyWdOFlHz9naMP3iOcmlwVRw5yvPqV7bYjYaP2nYfGlL0LD/pZcEJfvYet7ylxZ/f8vgscFulEwQ1IpqFNjeaboEWkBqbrJA/sXrzq+rvDBB1aEjWSjWDx2mgPRSQpJ8Fhh8kLJ+o4ppzyINb/2jBAizmt6Zovez5xT7AdcTKbjLxA9t14rsGgnlmYpHt+mJJ3F7FMjONfUoxM7N6FddarIrzfKhgPHVK47sWgB3PQpcv+s7/2x+alnf9Z0/2KXIOZqLvFbYQGiGsHwowFzXgWok4TX9Z5p6GGXRuTCBQYtcu61qya4Um/sN+UX0Va9FCr65HbraGZ/C9iR03tVmIICuOITemWL6PUeyEo9qPRJwlC5DlzTdAtHlKyLdTxdBKnOG4t+tplG2HMOfqomiOJDjs3zoqYcCVIOBzYmimir2vttgN/K64iAw+CxQHNAF/KRL2NwWIGlK8XX6RKpr8rPIilpYPYDlQ/FWVyNFOYvgOoPsMpCsBHATWjlwILtuO0hBxw7e7Fq8rXYlSdPDJ7L96Tx0PaIoWaaLjPX2UJhfn8SwGScTKPVQEqmVFwl1NVbCmmt53eCFpCTnF9JrWo1l+enSM3guqoV6oGIPrgCxJMp8XaoiiDQUM/HZKic+VgnIkdTmJpd9vn7NMP3Isbol7GSyDvTPvATSBLqE5Lbbd30ktSP5lafuaZKtJ7+Syh+XQDExZNeOxX3L+FMXu08zAAAgAElEQVRH79yxuiWVM+VEsZ2Zjglf3rMxMVr2oRposrmjd+EoJppyFD2ZkVlONj52yxrSlUhus6tG0qhXddebqnzA5YZ04VjdliCecmbJ5o6mr6mmlmTpWJ8k6Cpg1450IT25ybJhfSshP6/xaZtmrUivCtLrBrtxuMywvpVgC5lQM4UAkd5phV0U5Jc16XzXuViPE8q9hLpvJXW8FMtR70WBdlLhYhclbpBIeq3VJPNaPKm1ly7UsiG9KCS0x4VOPmuXpXhIxzkhEZms+EJ912OpQpBkW6XQZU1yFWccXUAvt8KU1rIPQSkBV5GlTV+u0JuS5HKDqmrs1Zbk5RJV1R1wVHWDahwqdnCq2JEZrCHkKXq+Rl8t0RcLeXy5RF+tdgmyTUMY9iWBtm4ITSM1JFkqoNBaupoRpQVoAhjT+SmlS/MGyLxxU0bvKk3i4w6Y3rgrI5Jaldj/1zJ+LG/hh3D/Ebn9WIf35K/eCSf/xa8ynUqK6ZOzGd5r3FKSK4ejgsX5ALW2JCcb/KcD6XXUgd6wJE9rri5GJL0a/a0hxYNK/I2DmvAyF5YogB7VhBiOE7ZWBnsTCc0xgwa3sqhGE3QAHcQ76MAf1DLRVGnyvYL6kyE+86i9Cr9KpDuy70gurQT8FJowcOiFJdhA/zOD+plrVucDutLhSpOdGqo3tpinOfVM2LUwalA6ELzCnsnAv3eqZYb4USHbParRxtGc9rFHW+p5ht7I3ILve7CeZFCjP+iLj+ukAq+YHS65/mQaEzgt/Wea1RsVgw/TyGQEwkmBepl1Mkk3E8/j+JspuoLrnyqFEVrJoLL/ROSiKGjGDjs3uL5neH/B5oMpwQgb4ftx9Dqq4TohpIHhR5bVKw3ZmYQrZBciFVQeTKUoXykItSY5SwhAE0FNm3yoa7quxc3dBjJPcppIMMy9Spg1AK/oP7bYDSzearBzQ++lYvl6Q/7CUpw0HSuWXhjsSgJxBk/ET7V8JOsjwPZ+jWo06YUmu5QZ7paBGX1PZuPrkbBOZqvY3nXoQryZ4bU19r0hppaBk8/ktbqWYJ3D39NcvSOStPLQSZVOrbqwnGoqA9m991oWIvZnbna+0um3hbVQjQxOpcolHtNC/Fvre478hcjg7FY8bOmVDBaLfUl4HH+oWd8N9J+rKNeC1lu4fFU8n1JdIkE/vfPA9Vsiv0TD+EMJDzn92cDgiaEaC5MH3KiniMmac8XgWeDiq570UpOfxW7KvRCDZ1RXIeJTmL7vuXpLwOjwU5H+bW5JXY5qJJ0zvZZzb9fQfykDzfkbwpoMHys2J4H8TNF/KQOxcibbNngWWN8WNsQUgfXdCH7i73Yr0tLsSlg0n8q+LF4L7H9DmKV6qDqmqThow3sCw8cyCE+X8n7Z7gtgsW1H41BYrtl3ApfvCvDpvxAw08pDfSL7ZMpAcaiEQQqybUHLwPbqLekmHHwWWD5QzN73nH9R0W/rhIoYLjOJxzVWNblcalsGp571saacKRl0R6a1HiryS8/ikbwXko30Tq7vQv+ZAFkClPuK9FpSOntnntVdea+m14FkKwBxdUfTP/UU+/Jz8UiTrCC7FnZo8rFnHv9WjSG/EGCRXctxlUoEARIQAcBISapmrhg9qVg8SknW8vx0KaE2bQBOsvJcv5IwOHWxEkZASNDSxZnOBQBWI2GZxp+6GLgCmyNDupQ6l4u3LXvfdSzuGfGHHmnyKzlnPlGMnjZsDuTzzUT2V0CVoxobkpWU2C8e7gZZyUp+aifgJL+WgJ1kI9Uryu8Ce7J5wJZegMbSk13WbI5Tipki2cRQm0RqRzbHCcVMkc0FINqNVOvYMpCuRKpeTDTZUv6HguVd2a/sWkDD5lDvArgcjB6XbE5S7NbTOy1Y3+2RXUn9xvKeFUA5UF1XZrpyND1NNRCgk648+UVDuSc+xrb2JtkE0rlje2CpRorRZ430q/ZFxlj35fX5lQxwq5HBlgIU64Fi/FhqOLYHluzaYTdSeSFeYE16WbG636N/WrE9FB9mNU2pRoZk7buwJruVqpS27qScyAC7d16zPUgwVSA/K9ke5+SXFeVUqlKagTB9upLjml6XbO70sWsnFVEjYdvShZPU0r7FxO5K1QRMIdUpykmYzfYgjesqpPuxdPhcntv0Da6n6b0o2J7k9F4Usr0uUO/lJJcFzTRD+YBZ1zTDFJdLGNHgyYZmJP69ZC7dkJu7fXovCsy6wg0zzLLADTJh+zY1m9s9kkUj/sxFRTPJSJ/NWb+xT//xAjfM0JXUZdSTnPRyK57HWGmSXm67WhOfGEysHbHzgmaSCzAralTpCLnFZ1ZYwRBZ7XFKeingT9cOqcAReai53oD3+ElffIVVE8N5dOysjGExEeT53KKLBjfKMPMtOE9IpSbF9xL0shBAFEFcWz0S+jldZUhVQ5aiFuudFzJNBMy1ATfWoDYFoZ+j5ivCZIi6uIY8E59l46AoIc8EqKoIxCJo7R47J9UjdUMoqy6Yp0tvDcIItgCvuzmHyjJCWaJslPzWNzTfPgioTFIBlCH6JduE2ZvhPFVNlxr7p8lZgxdg+qfd2v9Ff+WPfSrs8b3w2r//Lz6855v/5Y9GeM+PNfQ/6i355Te/y9uD5zgUq0MpxF01Gd9dHvPV2WMu7gz55tUtvjB7ztdG95jmWx4ML/FB0zMV5bHls82Un3jjj/gnn77LOC/51Uf/J//w6S8A8Pr4jFWT8nwz4St7T/jDy3s8Pp/xiw8+Zlln/Et7H/Ab529xf3DJ//3iEf/mg69zXg95Xkx4upry14/f59efvc2/c/8P+K/dL/HOrZc8HFxwXg75dDljsc35qZ94AsDT9ZRNnfDqO+f8sz98m7/9t3+DjzaHfCs/5tH4EoBvvLjNo3cv+dYnt/l7f/N/47evX+XrT+/ySw8/4puXJxgVePOdl2Sm4Tc/fY2TyZLaGQ56a5qg2cvW/P53vsDem0uGRxecb/rkScN800NrzzuHp/yRuUO9Tvn5Nz+iCZoPLg/4qa98yNl2yPOrMathxt/40nv874uf5F/5+ff4rY9f5dHhJe+vboMJDA42fOH4Oe+9uEWySvjif/RNHq9mjJKSP/nsFrf3FnxmDjh5eEHjDF84eM7vfXafr95+wnkx5NsHfR7cueDZxYS/dv8xzzdjKme4/vYJP/k3v8WH9w+YGcfT/oz/+Ku/xX/79V/CJI6mstRbw8+8+glf++QB2Zsbfvn++/zuywecjca8efuU7/zJPXq3VjTLnPpI8ZOvfcrXP7pPvef46S98xJPllMvFgOoyZ3p7wWIzJbu/4iCvuOgPCWc5X333e3xz7xaJV4Sx5u1bL/nON+/hraaZNbg3K8KTPre/eMq2Tjg/GzGYFPSziuaeZv3eHtWtmqRX06xSVg8tLvWY29JuPvinAzavO/wg4AK8dnjF9/b7qOMSf5GiGoW5vaF5PODW62ecrY+pjysGe2ten17z0fk+xeMR+dvXuN+b0X+u4Rev6P3miLOfC2ADhydzQlBUjaGsLJsHge3LPuPbS3oqsPxwir6zIc0a9G9NqaaQvzC4n1hRnPUIiWd0vML93ozFazD44gX3ewWnl3c4/Mop579/TD0O6Eph7q/ZLDKGB2tW2RAzqXjnzgve++gukHL4zktePN5DZZ65TmkmjoevvOST/Ajda6jbWpCBl5CrFxn20YrtRY/yQHPw6JLVSUb4v8YM/rVTNpdj1NOc4nUZyeYf5JSPSl6cyGyynlUMfi/h+c8b7n/lMz79o9voWnHr7Zc8ezHDPk9591/9gE//0etSHXB/i1+KF9LdKtFNzuqRgPzw6lomaJwlXcLiVS81F6NAtec4uH/N+Ysx+7+bdCmq9UACiCTtVHH1roDb4qfWhK8PaHpQ7ksSr7tfcHFsOfhdi0tFdrh66GWCqtaE1JNMS+rCcjq1mIOC9VmOXUtXbjWNiY95wI8bsqcp9otz6t+fiG+yiOm6M0Vxu0YVhuxKURw5qs80zaOCsuyxvStf5OULi2pge1fqSnQtbKVdK9KlYvlA/K7BaLZ3a/qfJnFyQyTMLg9UMRnbp55kKf2L1SxQH1Sc/FPL5c9V2N9J2dxz4CDvm5iACev7juFnMiGga8XmniM7NYyeeooDRbpQbO47Qqz4mX2gOP1pAbtt56q30H8u4HzvO47LrwTqocWuQTfijXOJYvUwsPeedH9evaVJrwxo8cNuT2Qiox6CdpISS4DtsYDj9QORDefnOvaWBqnIGArTXBx6ti81mzuBZKNY3/Mcf63g2S/0Wb9ekawSlg+RvuG+TB4MnkHdk5qHumfIrz2LV4XpRUkacX4Z8EYzf8cx+2MdJzhkMiePbN38zUA614w+VqzuKdRjzeJBLn5CH32UM5E2oizFnmJ7FEROmEHPK4pDkSvvvSfP25xI1cXoCfTOHZtboJwGZVkfGYoj6L0IbE9E6qrrlPUtzfhT8flevGuYvi+BPeU+5OfCfiZr2P+Thsu3EtJF6LywxaGh/6Li5VcknCwYYYKHjyWcZ3sobPbigcVbOqa2OIiTbSMBkbb0bGeGJnoml3ct2dxTjmVyZHMik6e2DCzuGfa+E5i/opm/kpOspc6l2DNsjkT6aNcwe7+k3EtockXdjynLvdjjGxKW9w3Tjxqavo3HOWN1R7P37cD8YUKyCmRLGUBnL9cs71kGL2RAvt3XbA8U0w+BkLC6k5BfSThQ76JBO/EhFkeW3llDMdWYWiZfl/czJh9u2B4k9M5rNkdJZK0TtjNDOreYdU1x0heWbZKxOUpRPpCsLfVAszmUOpBsmNL0DdVIMywd5UFK3VeYaYruW6qpJU801cRit57VvR4uVTS5gOrR1Zb17RTVjKRyZJixuieAXYXA9kj6MpthQjmRWhHXT9ie5PSfbalmKTY31EORla7u5axva46/toWhMHsu04B0f7pMak6aUUo1tigHvc/WVAc5+csNbedicSzWmuyypDjMyc5LfGZwuZXE2b7FLmuaUUJ6sSUYTbM3gBB2faTzEqzB9xJJ4J3mpGdr/CCnGeckF2uq4yHJ5VbAazoBq9HzjQQAxY7O6qCPbjxmLf5GXcZgoYNZNwb2ue0SbvWmIqS2e4wPhDxBVY2kxWoN/VyAZFVLomyaSHBQ6w1vAWkIcLVADQcCmBMry4AOYALCntY1KkvF99k0KBoCoNqUWtj5MSEG+nzeYyk782cIKH8Q4Pyr24/k7YfKWCqlpsA/AL6AELV/B/gu8D8DD4FPgH87hHCllFLArwH/OrAB/sMQwh/+WcvPHt0NJ//5f9L1+OnEiwe50YRKo3JJJnVZgGkFc2HyMIG2ykOtDZhYbzHyIj81AbvSkekQP1fbtRZ0IL2WZM2uJFuJHEw7kXTpUkWZXZTgQFdm34ZymELCM1pmqcmlP6qNjA9GBgz1SMJEfNrWW8gMtsuF2XK5MHtteXewsn2uJ14ZJ00q4jPx4jtK55p6ELptkzJqYfvqYayfiANG3dClPkqBNLuahkp1vqy26qGNkSf6lXQtcq/iQAZerSSp9ZOpIFI25doZdWE6TCXHTmQ24r+TGoTYS9duepwQ8zFUpvUlNX05Pmhw8dgFJexIuy/KiYwru1KdjECCSISp0rW8nujp0rUMwn0S9yPuY3v8vJXX2o1sn7dyvCT2XlgqXclxausN2kqFtvNLBTlnpiQmQwo72Pq/2mW0kkV/4zNe6g0gRHaq7ftzedzvhtjVJj9NGasknLBfLtstu2Wj2n2D+P/2eo+9iKqJ9Q091SXVttUM7XXgMnl+y5q5GOwiB5zOn9SeF3ej/y7YuK64LaohXnORyYnX5+e2s7djNttzqpywc/V453UL0b/VBW/oeM6KnbFe1yJ1k2v2xvlyoWMDpRpEEkiF4RXGOlmIjM9u5XcQps6ndNI1CXlp3wfyWvEQqu76SFbCuiXr0HkSJSVSagfaW7rYsXLi25Hj0u5He6zFE6qwawkpKSciafOpLDNdBcqxpHo2ffGuhXidhbi8lkVrvYlt2nIbuqKr3XutGsX+Qiv72Fa9dB7CGKqiG1m+TyVh1+XxM6TZvTfaipf2+U17bd8IF2m3x9vdMtvPJlsKm2cLkRAmG+keTDZSUZFsPE2uu+NmCwFjQUn6qYvJsTpWYrR1Kt21TPt+3/nuJMF0dw1LjYewvC2jWA1ELtn6zWzhxSN3I+TC1AHdtIE1LTOpY8/g7rMwKGHu2m1tP0db+XKTRZATQ1ZMJceiPbfeynEKWnXVPe37yBa+C9/RTeheg4pVG6H9rJDl6lpYwpYpbiszOhl1W1cBJMtGPHaJwlS+O4Ym9iC2YTOtcsEWPoIHoiSz7SikC6AxZXytBbP1EjITv/eUv7G9PQEesg9yXHZ1NjfeH2WsnonP0ZXHZzpep6HzUIrcM1aFuBg809aFALrywm4ZhU+0SDDr9gTuriNdOvEhgjCT8bkg/wtWx3Oz62cMcRvaig/53NyN83yiJcAmhgqZ0svfKtdtq3IiWfWRCW3XIQ9Cdw5UAF25rstRl072K/Y4dsmitQBDFQKqljRXnxh01eD6KboWeaeKzFkwGl01HWOIv7FOH6QipGzwqRX20QWwwpC1+yA+Rt9Vu4S4j50P8sZNla0PUHUACI8s88YYWTUSfhNiFyQ2fgA0rmMoQ5rspKg3uiFV3cgxbNNVI5unGifVIc535/Fzt5ZZbBNW6yjjNTe27cax5k8b03eBPaGTqoYbbGK3jDaEB+L+uB1T2LKoN9nC6HvEGAGVSkX2My673Wbvf3CdSCuPvcFI/qBbaLfN///3Wf4oMJb9HxJj+d6PCGP5w54G+DXg10MIbwFfAr4N/GfAb4QQXgd+I/4O8CvA6/H+d4H/5s9buNKBr779MXmvIjRKZN4bS6g0ZljDMqE5rAg9R1hbwtBhNhqzsOilwV4kHTioD6QyQjnxLRGkI1LVCrvWInEtpRuyvCvR4yEJ4AUYagf1WEJQmln0Xm0U2bkGr0jmGj+TMBtTxi+tJs6eTjy2UDFgQuRuvicJiu2y07nuZl6bnjBByUpqKuxWYbcCvJLY42g2URYZPwMErEF6JWEipkB6Awt5nQRgeJKV9DS6PJCsZd/yM0WyUJ3PqPON3W5EOrnnyC8kFMDngWQVj0kF7pUt6y9vsSvZXtcP0b8mo+kWlAcr4R395wLmZJsEZOaXcryKQ086l7TIdN6CSbpaDgFlsm/JMgL3CrJrFcGpMDguk8Hr+lHD8EkMQxhJcEiwAoS1iwEgNkjlxVq2odz3JKs4YIxdh8lSglnqiQzwqnGgmsh21EMBSsFIx6HyMdBkJB+QEhQSOkAu/YDiTWpL0HXsP2z7QVtQVU0DdiP/03FQny5ltj/EEIi2izJZQXHsZXC9jWEeE8guZRC/viMBPT4VkFkPpZ4inQtQKw/C5yYLgtkN/pcPZSCXLIP0JzZQHEntRTUhJiPK3+uh/J6fy/5vT6T6wqURkKWyL62PqgXLrQcMJEglu5Jro9wTQGUK8aHpJkip9wZMlE8KUJfaDrsWoFYcyLakS9kvl4sfy67lGLgUygksXpHl905l25JNoB5KiEqxpzBb8XQVB/H9a+gCT7qfY/lf0BKgUuwL8+MTOWbVWNZlSqmHqCYC8EwZ/WRWnrt8pFg9iAB1GyKYFh9aspL6DFPJYNnlO2DW+tOaGCpiYvVZM1AsXhEQ5VORqwIUe5r82lPsS/9jNZX3silj4IuRgJR6qHYTHOlOFpysBVh4K6yTdkHCayr5XwtKs7nITNuJq3b/80tPORMgbQthqaqJrNNuJKAFJLE1XYZYfyNgsR62QAnyK9kfHZNlm54MpFWAciqfp5sjQ+/KSUqshdVdI2mVmQDC7Z6EvPgEqqGwh9LJKPvvUiVhJj0Vw2vk93TtyeYel8H6RLM9EEDQ9BSbQ+k1FKltrN24cJQTWU62cGwPdAcwvBUQWY5jBcdAsb6lWd0yJFvfTZwoL8EzbXJqNRQg4zL5vcmkViO/cvFzKMr0928E0EQgUvc1LmUn7dyIH3m7Z1jela7EFiTVAy3gxEgAzfpYS3F9X7E+kn5CU0cP4UrOSTmRocfmILJ9GlZ3UgHaKwEZyVqqS6qR7o5vspb16iaw3bOYUmovCJBey5ddMTPYtZOeyxsTK66nI6gVaWw1MgKuUtX9vR5qirjczaGlmFmanpIAGgflTPoiXU9A4+qOBKLoSkCBbkIXPCOTHfIYwJQ+Ts46mr5hc5RKMnSuMaWjnNoOqNcxPKc4zDCFkyCbnngAzVbkusVRJhLPkSSaequox1ZksTElVYAUFAcpPtXUY4spHdVU/IJ23VBNbrCD+xlN31CPU8pZFpk/Qz1KCFb6HU3R0AwsPpNU1XJflGJ2WeJzg+sJSPKJlvCbVEJs7LLEbBp02VAc9tC1o9rvYTYVTT9BOU8zSHADCblpxlnHFKpa/gfQjFKR2/YSdO3wmRWJaiVAs57mAtCcl0qQ6KU01xvpwgRh+WJdRkgMzTTHTfI4sFS7jsq2czJ2V7agVHkvVSGxN7INxAl5gnJOQJzRIm31HozGD3P5vf1bmsiESJrswGUTtysEWXZVy+MI3micvF7fAJCt/LX9u1ISstPKXa2R/7UdmWkiXkWt5R6PT1cfAh2jqFr/pNK72g9rQbdSXQtZJpLZ6IHswHQIqFQkvuKfNCildj/bu7VyN7p73AX9fN9dJfYvj8fyL/HthwYslVIT4JeAfwgQQqhCCNfA3wL+cXzaPwb+jfj4bwH/fZDb7wBTpdStP289qzpj1JNEUN9oVKUl6RIIfZmuvvfgHJKAzWO4xl6NHzmavZqQeBjV6F4jADSNoQn9AI1807pMBrnNSJJBiWmbqla4cUM98TGdL9YWGBncNUNJPwxJoNp3UBqaQaAZS5efz6VHMCRBGMtSEdJYx1AKMKpmsmzXCwL4elKjIN4mqAeBaixf1tXtmnocwMeKhAgsvBHWT8CJLKvtBXRZiIBCPqSagVRtNCNHPZTXrB/I9ha3YmjHuIoR8bJNybTo4v2DkmNXHjiqWzW+1vT/uCfJoYa4TxK2opwi6Bi+EoFQPYLqqImslQzAi702MdJTTdrzEz2AQfZV+ViHYWLi4WhXsl2NdoxLe2xcJsC22BcgBeBNoJp4ir1Aueekm3Hm8Ums2+gFfE+WVU92ANVlcSDf8yRrAcZNPCdtkX257zvW0uWyv/UoVnn0hcVq2ajmqCYYSQpt4jnwifzuMzlHTQ/MRhIxpXA+xIQ+kcSVUzmv5b5n+1op2zpq8HFbmzyeq2EEvXPp1GzTQ30ioLBlpFwe2N5u5Joby7VSjSJbbUPHsraMt8skFTNEdjFZy3EQ0CHHoU0VrUcCLuqhimwesU9QjpNLBTS7TF6jaxnUN7H2QpjCHXtS7Mly2roFlxNrC+hqKuphiKEq6nOgtb2GAZqRSEWrcVzeUJgmCR6R60A7ARm6gvLAg96xrhC3Oyde87tJBp/Qhaa4XN6T9SgCgF67DAFUsGPJdQSFkgIqg+Kg5HzmF7EYnt05lC7JyGCG3XKqGPKSLKW3UnlwiawvnQuIaYFpO6nR9HbMc3btYxJjW7MRz9lARWY7At9aZLYtkHapMOYujyAs1nlUox271uRSadKCNp9EOWFkau2mDW9RIi0eybUQdLu/dExNW+mRrEL3bReM7Iup22OpOh+ujX5EYVbbOooQwR1RBaK6dXhLB7DbVFeXxaqOTCS17fmoe+LlNUWgyXXHqjW5ou5J9Ueylv/5mKbaJs82ERyqthrD0zGEbaWCSyX50iUI0Eihq3tIdxUtEI9VEhUn6e49UPciUM7bbZP9DEaOozDCIi0MRlFHz2PQu/qTNnW1ZRclyTRuR646BlcqN+TcKi8dncKyxvM6kBqNjoFO5O+EeA5aJkoJM9nWWeSXLqaH6q56ZVd1oSITTJc2HbTUe7g8dp1a1bGUkvYrEwt1X/4f4oQOyLXRpqEKAJF9lX2L77lUQIBLtYDOGyx0x1AFAaF263YTBXFCLlgBse1nU5vyaQrfsaNBxwmf7tpRuJ4mJDJxJGy+HK+mZ2TbIiBpk1pDPE5yHKKXLbLG3b6lwkwGJfUoPtVdXYbPrLCOkXEMWqGdADtJpLX4RAvL6EL0Onp5XWTU28/ekLRv1iDA0nv5GYj9lImsMzGRoY3Pi/2MIZGqj2C1sJAm7i8CKvHgBtIJ2Va0tOqPtkZElY3sm2f3+hbMNU7WkVipDHFOWNXa4Saxc1IpaByqcfh+umM7W8ayuQlubQcKVeOkQqStDIkpsKHtiozMZEgTwqYQlrQo5f9ltXvcPs+abj2kyW4/tCY0jlBWUJbys6qhLKEsO8D5/TelY8BO3ewkrTekrS1w/Fzn5Q2Glu9nStv3wl9UPfmXpG7kL3N4zw+TsXwEnAH/SCn1daXUP1BKDYDjEMLz+JwXwHF8fAd4cuP1T+PfPndTSv1dpdTXlFJfaxZr3v/WXc6/dUDek1Ce+2+cEgB3kZEPK45PrnnxByeoQuMuM/SwhlqTTQrUxmCGDTZ1JB/1UGvD7dfOUA5+9qe+i2oUh++e4ccN40fX0HOo1EvIjg30HyxQtebuGy9JH65gWuFOZOTnR04Cco5q/KRmdHeBnRvy+0tQItM0a406Khl+z9BMHby9BCAk8iXic6kScLNGQM3Aobxi8MTgbpcU9yrM/TXKKdKfvJI00KOC/ELh7hX0nlpcz+P2a6lx2Gvwr2ylV1CDu1vQ3C6xbywJiUhuh+9ckpwlmI2mOaqoXt9CAPvOguTawMMN/W/0qGee6TcS6kcF/X8+xHxpHiWBwmBmZ4bsWcLoD2UW0KeB7SulMJP3CuxaUY+9sKbrKCMeBoojR+/ThOK1ku39mnLfU099TJc0XZXB9thjt4rtkSeZq8hECkjN/tpl9HNJ9UO959GlgInemer6/9mRg3AAACAASURBVOy1xeWB4ssb7Fa+XO1WUR04xh9IqXbvqSG91FT7jvqwYfShYfvlDd5AcexoBoH1KzXZlWLyXfmCak4qJn9iWL3SUL22FUYy96xer6lHgeFjTTqXNFFvYfiJxLZv7zWsHzaM30shwMnvyKTA+p4kVQrI8aTXiuLESbXCz11RHDmaHqzeqqgmAkDzc9mfwRNN/4OM4tBz8NsJ9dBTjQPb247yuGH1as3yDbm+kpUMjFf3vXgAh4Hlaw3ZJYw+0sy+YcgvZLCzfthExlRx+595yr3A5U8ERh8rrr/YcPy7gYOvQ+8MUDB/3aP/+iWbk0Bx6Ln6uYrNbc/ee5r5Ow35uaRd9p8LW3751Ub8ZQNJpEwWUBx4TBHIz2H5Vk01E4ZxcyJs5OHXPddve8oDef9sjwL1GIZPA6sHntm3A5vbgfXtwMEfyTFavO6E9bVw9W6gOJQJg+JQnjN8HGgGcPllT/+ZJGgOPgv0TxXZFWwPpHc0Pw+MvqdpegLwiiNhNuuhgLc7vyUqB7uB4RNJsBw8DawewP43A0d/ICC8/yIwe9+zviOv3dwObA8kfGb0aaB/Kvu6PZRzVU7h8osShFPOpHezHquOFVQBticSDJVfBabfcywfKsafCJsWDPRPA3YduH5LgMH6tmJzS9F/Frj4ogQObW7J4LD30pMuAotHUsWQnwdW92Wg3XspEz3bA9XVUOQXgdFjz/hTz+qeTAis7wlQXzxSpAt5jW7g8l0BTBc/AbPvNmxOBDRm14FyBoMXns2xgPimJ+zQ6o5s3+hJYHlPM3juuX5DvtbOv2iwW7qJC+UCl+/K98j4U8fmSMJ5rl6X963dCmARGbji+jXTyb19qjrFSAv4XAR44mtUHYusfGD+qmH+SDN87tj7dsXoie8mQdK1MLOjp471LU26ChT7uktevfiiiuBTxaoKovdRmOrhM8foidznrxiKtg6jB/0zT7oObPYNw2eu6/cs94SpVg6u3rCsb2mmH1Vs9zS9c0/vwnfAvHfpGbx0mCoweOkoJ5qzL4mXTdeB6YcV80eaYir1GNnCCyu7r+m/dORzx2bfMP60ZPCiwRvF6pb4ZMuxZnXbMP6kwluYvV8xelKxui3SyeHTisU9KwmmM0051jF8Ss53NdRs9w2mFjZ7dcewOTTMH1mW9xI2++KjXt221L14HY40dU+uie2BoZhJiFJ+4SgmRthkHyhHmiZKi8uZYfLRhsHTgtGTit65I1l7Rp9suHg3w6eK+Sspkw83uEx8lpdvpWwOragCtj4y9UY+2w+ixLcIlHsJwcL4/aXUXRjxP+bnNcv7OfVY0ljrgSa/bFjez4Qh3XrqsWV1L8PlGrsV5jPEeg3lAunSYUpPOUtIFo7rV3OqsWX04ZJqbMmuKuqxZfjxiuIgpThMGX5vwfYoI1k1DD9ekl1UKBfIX2xwuSZ7OhfA4wPVLOXi3QF23dA73Up35EI8B9vjHLupCUqY06CBG9LcapqyPckp9zOylxvKgwyzrin3MvLnK7bHPbKXa+x1STXLsIsS3XiK4z6b+yMAXG5J5gXVJMWsKsxW1lfu5xS3hjSjlORqKwBvkEjXZW5xvYTNazN8z1LcHlEdDbBL2e42STV9ckUzyiJQ9NRHI/E8Jga9LqkOBzSzPmhNczgShjSmv/p+ipv18QMJ8wmpFaC/P8BPBujrNUSAqddbQj+T4J0I9EI/EwlwnuLHffFojvuEoYDU0M/l+VpHT2QEpMf7hCyBg5kA0tkYjvbipIjC74+Fua0b8VPmaQcqUQqVZ6jZBLU3Q03H8nh/hppNJSBHKVSeo9IElSQoawlR1qr6Pdnmouhksm2oTggBlVhJg23rUSLr6Kv6c3dJmW0IXeJss2NHv+8e6uav6kZ+DG4/NI+lUuqngN8Bfj6E8LtKqV8DFsDfCyFMbzzvKoQwU0r9E+DvhxD+Wfz7bwD/aQjhaz9oHeM3j8O/9T/8Cn9wepej4YonV1O0DmxWGZPJhsWqx/HegtoZNqV0PPpao3TApo76vAejmuAUvVHJ9qrH4e1rzj6bMjxcU9eGpra4hQRQ5Idb6tqggGadyExWEtCJE6VAYSRRVMeZ5MwTCtMxmMmowjVamNWlJaQBrIegUBsjQHSRglPC5tkgy9KgVwYOSvwqId0rqEtL2FhUqcEGKYbXAWUC+izFDRz0HPo6kfoLE2jNGaowmI3G9T2qVpJ+awL2SoBWGDWyfVlcZuoJpUh6SbxUalxmhEEj++sV6IBZGNy0QS9EsuP6nt7hhuqToQyQItvBpMbmNeHTgZzIIBLa7EwLQJxJiEi7/3olPY56VMNZRkhFluyzQHphqCcyqxgM0unXCGj3iZTUtzLYoAWsq0ahCw13toQXUrasK0mgtUtN0/eENC576lFVW6wur7Ur3flLXN72DwbcxGGvLOO3L7h6PBPf7sCTXRiqqe88mtWBIz03wuIq2ebkSkI90FLNoSol56i3W34wMsjUtYBju5FKDD9u0CuLLkQS3fTkPLdSbTduSC4s2dtzig8mXVpn0w+kC0kzbr29LRjx0SuHEia9GQR0lBvrKk4KzDX1UFh3u9KYqgXtoUs9RUvtQ3Es4L714aVXAlyrw4b8WYJLhen0qTC/veemK3MPdtcVaUqFj32NLQOeLNpZdZmcAMDLcfJJQDvZLp8FlLTSxMRbRXYpYTooSOct4yTMVD0OXSm9+PRE+uoyduxMlCI3A3mP27XsVzoXNs5uoJzF6ocoUxfWHHqn0reXLKUrsu1fJPrxXBbBTh6Zqr5sT3a98x/LSaOTUiexAqIe7I6R3dCVvLtMZMgiLY3nt2j9ZMJ4eyPvm2BEVl2NRL7qkyh/jp2Qra+1lep6K/tiKmEEW8WEKWQfRJ4s8mW7iczpTB63PtcdywrZdWR0ozxaNbvtwEcp97XsdzWBND4/XUQ5YlRryHsm7psV1rz1LFczCZVpQWI1Esl6sMJeSj9ilKG7nWRX2MEd033z/xC9tJEtq8ay3abcMdbJUtZpt9FnuZJk5XQuQLsayd98ZBVNGbrOwa6TVAuoFcl+ZJ1TAQB2SycLrgfR5xsln3Yrz2/fX/VQSdJzZIJdLqyw9ADG4xmZ7mJfYQuRmbdsp25C571vesJS9M8lZbft9mxvNsrTm56AjVaiPXjhqAc7r2IwUVZqYsjVRmTT6VqkiU0uNSC9Cx/91KFjZm0hADTZhuhzDzGIiF2foiWyfLJfrXwa4jJK8Ssna2GYTJT9uuSGB64laxo676uuZdtMJf5lFQJNFj2mAXzcLxc91NncS2epD5QjQ++ywWWauq86f7At2s/+yJLW4XN+zXpgRA4MElITpcKt/1fsEwq79QKco39X/NyBcmKk8mNP0mRtZEJdrskua+nKnNoohxbA4rK4fgWm8LhUYyrxvLbrMNEDG4z0R9qti97VQNMTIBy0whaOJjfd/10mtSLVJCG7EvDnE03TM2RXJeVeht06mczZSAiSdgG7rKj2crkeSo9d13irO9mojnJau67xqcFlRoCwkWVrF8Qj2nhCYjCrUpJlnYSRoZWoA3xkMaP8Vr5rjTxWiqA1aGFGfT+V7kqjaHMHlHO75bSvjX5nVTY7n+PNn07ktKqoCL1MmEVjxMt5g8FUZSWsaJbu2NX2a6IN8AF5vTVdYmzwHhXlqy0mUErtpK03l9X2YzYifw3Oi++yZS1jt2Vo19fWjLTdmt+POW4mx/5F8IgPhLr685/3A24/Kh7L1/+9f/Eeyz/+tR8Nj+UPE1ieAL8TQngYf/9FxE/5GvAvhxCeR6nrb4YQ3lRK/Xfx8f8Yn//d9nk/aB3912+Ft3/t73A8lOTTSbblq5PHPK8m/PbzV3h1di5JptdjvFfcmi1YFBnjvMRqjw+KopFvk2dP9vmVL7/Hr3/rHY4OF5w+nzLaX3N/es26TtEq8L2PjqU2pDbMxhumvS2Xmx7LVQ8fFMEr9qZrruYDZpM1vaRmWyektuFq1cc5TXWVc/LggqJKWK5zrHW4xnAwW/LyYsx4tCWxDqM9L57PePPhc773cp/RoODqakjWqykuc8bHK4oyka7I2mCto64sTWXI+rUA2KDI85rNKsMmjnqbcO/OBasyZVum1LVBawG2rtGcHM5ZFhmr6z46dQKgCwu1wgwbtPbUyxS8Yni8Yv1khN6v8E6hrccYT/hogH1jyXaRo3QgeZoy+clzlpscYzzriz56adCNov/GNctFD6WCdE5qLx2f87RLdVSVgnEjAP2mVgYEDA9q/Iuc5O6a8qInnYRZwMxKmsKiU4ffWuygxtUarlN0A27k6D1J2D6sMFcWN3aoWqNnJf4iEz/tSYl+mgubbAJqq8nPDNtXys9VkiinCCqGKI0aRt/I2NwKNHs1VBqSALWCnoNaY+a2q1FpAbAfiBdGlZr8paHci7LKqUx8qLXBbkSumiwU9ThgVyqGNKkomQqEvQp1lYr3c6Gpx1FunXl6TxKKA08Y11BKn2C150BDemZwfQGB5YH4LbuQiEokfMFGgDP0ZGeG8tCRLHQX4lTuOzluBgGR8XQ1BzXmWtKAbARmzcSRXJkYgBMIfUd6amNFiUyUmLWMom8GBakA9dRjYriWrmVgV0092aURiWoHQgXgtGFKyVpk1aYS0Kka8akmCwnBcn2RdmdnMSyjFGBSjwU06hp8Bnalun7O4sBLz+OFwvVkX9JrRbnvyS405Z4wo0GLtDe7jgXlRsBkspZ1Z+dKKlSWrbQ0oJvoJ76WZbcATPzJ8lg10AZMpUtFuSfgObtWHYjpQpEyWX8LdLMrAVP1KL6tlIDtZLHztG7uOPKXpjuerTQ6P6cLYfKWeEzleNcj2WbtIlBMBCA3PXB9qWsRX7OATh1lpXYjoFOCxCRYy2yV+GePA72XuwmEFjDXAzmvsNuOdttdJkA22HgdbNvwJNXJq9uJAblmd0FULpNjks2FMU5WUlFSzlQHoFWUB+pGQo6yKwFx4tWTayRZhi4kS/x0dAFgdisAP7sMVFNF72WgnKr4niN6AdXnnteC0VYS23qDm0Ec7EWgNHrq2O6JH1NCdKIcNo37mApbW02ENRZQKEzt+ElDMTNd2JBMJMT30Cp0TLeuBPRIhYkchzTWhNQDqeSphqqbMOrSUdvtyeT4J1tPMREgWMz0Dsx+X/iSBAHtwGDv0rPdk0F8k4s3N9yQ5FUjkci2YN9UO7msN3Kt2BjuU/fEF1uOJLQqv2zYHCUC5lS7bi1djY2sL9l6dCm+TJ9Ej29Pka4kAGq7rwX4xrCnJhc2lBBIVj76PLWcTx/kPI+0sNOFeFrtxlGPDE2mpbsyhi+1HZatHLiVRSerhnKWfA54yr7LsTGll4qVjacZiFQ4v2yoxobeaSWe00THqpOK7XFO0NA7LammkhDrMo3d+hhAFtcRJb/pokHVnnqUdOvWrVS7DTmqxRcr4UqeemRF1quI4Tzy3Py8oDiSHu10XuMykd6m15LUatY15X5OshBNezOw2HUjMvDM0PTET2rWNT6zNH1Ddr4VT2YMFKqnGXZZY5YlIbcxuCjE5SUSkGR2+6kr10llW5+nBBK5CCrFh4oLhMx0sttOG9hiqJvS3LLuAFcwBuU9N8N92r+p5QY/GaI3xeeksy1QU8sNYdTfPc5T2c+tqOjCqA91g1ptuuqRLnwIBLzeTGt1XhJftRZQ2LKkG0mvV0ki8lkbtyUynDQNwXmRy/ogDKQxUNd8fwVJe/v/JIMN/se+bqR/fC+8/u/+EIDlf/WjASx/aC7YEMILpdQTpdSbIYTvAr8MfCve/wPg78ef/0t8yf8K/KpS6n8CfgaY/1mgUtahOH85ZlMm9LOa58sRF8WAF/MR23VG1RgW5wNwitHxik8+PqK3t6WsE7KkZlNkFKuUbFChCs2v/8m75MOS1AjVvvpszMdO472mmGeozFPMM8zcclFrLvUAXxpsv8EtUpRTXCnwFynnW4POHL1BxfnZCJs5eNyD/YaXF2P8KgHrcdpiLi2nlSFUmvn1JLKoGnue8L4+IQS4ro0Uu5cGnGJxNiQZVmyWGaHR1NYTao3OHdWTAX5Wk5ymrA8seEXthGI7vR5RnwlTq0ygLhMBR1vDs9UBelijLhMCiTCHOqD6DldpXG1RtSY9N6zUgOxaUyYim/WHFW6eYrJAuU2g1OAUulLM/+iA6rhGpR57ZWkmDfrKsnw8RpI4A6rUeCVsaTLX1FMJWvJ5IFRiwOg9Tdg+qEjOEupDASuu0minKC976EICMrwKNBuLXllJ7Es9POmhMmE6lQfm0k/ZDtDtlZUvxyqHNA7cr1JMqdDnwlwS4qBmI12mzf/D3ps8y7bl912f1ewuu9Pe/t1333tVr0pVkspCCMtgMwUizMARBBAw84Aggr+iJhBBGIIBBgxDM2PCgBH/ggkjLFBjqVTN6+69p892d6th8Ftr53nlkuUQKlyl0I64cc85mbn7zFzf9e1OpccyVJHywaCcnOdxDsVG4Zaa+p3FzVOCKGAO0mMZ9iLrDTZS3WnGtF+hSszXQQbRfiyFDW6PgU9ZQmt6NZXGD6uUEnyf4vETc1lsJazJBfnCKB80biySj0ehEkC27XFgSpDApnEVcQtP+WAliGguYAe0BCP1Ct2rSZ5JhOpWWOf6VhgJNwd1U0hScp0nBuR660HRXMH624HmJwW+FrAsTKxUNYwpwCpUJEARqd4bxlVIr5cyedNqyjV0l4lF7lN3Y5sG8lWq1ki+peYdU1oummkbdpv8a6OAtqIXb6WvI/WNpr8QGWsuXo9GS2BUYu7KhwQoduJtsm1iuTpQCSSbTgbr9SgS7tlXwqiWayVsmRZmKKfihlJeM3sfJGQme9MS8+wT+2r3TN1/MjhNzFSaECi3ck2kekFAvvIxpU4nhqs7Ap75V5FxJUXw3bkAhPo6+4lTSq6G7KU0KUnU12rqprQHoGZKxrW7o68OldKadQqjWkmYVH8K1X3ENkcwU60FbPenKnn4ks9tLq8v15HDc9l/V0O1lvXZAxCguToybFGLXHlYicx2/1JAm8gtZXxV3csx65EprCtqBASeyHtT93I/2hYgJnY2TkxgDiWyfZRwt/kRSA8rNQFjM0xvC0kuXijp6jzTE2AvNnIvlbswsXLVJrB7YR6lMUfKO/GI7l4aqocwsczBimTVFwo3FwZJhZzAnUDcoIgm0p4Le4NOycM6+1yFhasfAtvXVtQ0kNhKeV8oL12nvpRJo8Vbz+HSTKygL+V6lLvA6DXVxk/nvXrw2C5yeJISZ7Vcq2L/iH1LzLr2wuBpD3ioegG05TZOScTlNk6gJs9HiiJDALAeowQPDfL+DUZRbQPaRbpzS/3g0UOYQn9IgULduVRu9CtDc+umCbhgSInfkuo7v4oTyxi1AGrbhikoqXpwqGin5FkzeElDD2D3XtJi02PFXvbL1woVZV3F1h29nTaxaQqKvXR+6iEmNhSK9ci4LNBDQHuR0cprwLQe3Ygn1XQe4yKq0NOkiR4E6NjW4xP7anov94s+MswStCOJrSqC3Y342iSVS0hsqnizzWHEn9fo3UgoCsq1xzUGu5cQxWgLolEUG4dvDL42EvzjxdMZGwGBtvNoFwhWHycBkhzX+lEmN5O0VcXkNXzk/bPbEd2lGo3OERfJHO8COiXFKh8ltVYn4NiJBFYNDm2Tx9QFYTATKFQxQkrIndhM58UjGSJRW1Q7iKzVeQnb8YGpliMnvCIMp+zsI4bSe9QYv+alzL5NqU6RZN9ozRF8jk48qEpNoUNTDUneZnzEKGYAqDU8lp9mxjImNrXvpwAfeV2653149Lckn/1Z6bB/nlTYv1p+oZefd93IbyB1IyXwQ+DvInM3/wvwIfATpG7kLtWN/H3g30HqRv7uP08GC1B98ip+9Pf+U4bOEoOCTSFJqyqxNzZSXRmGM7lZi42GIAzENIuZaj+KjbBBdn+cFS/XMoOuAiK9OhWJW07DzAXyOlVj+EbemAIAZP25niFa0sAB+otUPN8e60jcTAbj4xKRcKa01u5StulrmSWf4vWjDGzGZZLypJ8hS3uYQg8IMjg2LSJdaWFcMdUzZAlcHiyNqyNLonsZ2Fb3MlCbZpBHAQ3zLyO3v+WZ/cRO8kA9ir9NO5EGNlfHYJIsic01C6ZHAnTao2zN16SCdzVJ2Hwj10NCDVJtRGZJZqnGoj4et5ul1NYk/wuFDCYlVOJ43MMJrH4kyYzSMyfnOQ/cs9xQZo/TuUyBI/Yg1zXPoOfI/+ohTkEZ1YPM8MtAUvyhuTMtFPm+SSxNLwOc9TcF6BQ7WW8+ZypI2qmbyX1khmOJe3+msXthD0JKQRWmR8BEsZV3nk7VAraL5PTQqGXfXCNfiMVeBmZyjCJr7c5VOodyTmbXQbxJLk61J8WeaQCaUzAFXETqtdQ6ZBYid+ahhMVwjcj6XKOo1gKgJARITTIhe5B0yf5EBhH53o6JzPaForkLEkAyFybGF+Kxq+9yYAhpYJuAwyQ3O4bTmEGOyZdqClzKFRc5pTQYOYdZ5mf6SPtEU91LwES/UsyuA/2Jpr4XAGB6GZSPM03RSim7GQTgBKModykVN9dnaPlX7kTCZnoZOLk6g7HjZ7cvFLNrT5sG8drHienJrKJrErAdRVYo+y9MTLmT90DUivnbgf2LckryzINHM6SqiiEyuxrYPy+n/XCNgISxkV7D4hBSlYeZZH15kG87AT++EkapSGXyUR0/s3K4S7CyvXLjGZYmgQmp2cjHkWtDojmel7we0wkzZA+B9sKy/Lxn/6KcmCrTy4DX9HKOm/cD/Xkhg+CUhiqBYJpi71Eu0p/bxIRFxrkgnmLnJY20l/eVfGik74AUCCPvSZ+SPI0klZaKau0liXSIAuQM6X/xe2b5pHhcew7Pq3QeJRjFdJ4hJYrmUJ9y46a+vgwOQqknCXBed07Vtm2AEHFzg6v15NXztZ5YlmgV5WZkWBYTC5f3K1hFuR1F0th5uvNS3qNOJKDKpVqOvASm2o7jZ2GUMJggn3W5bsS2XlJBF4UkspYyaVPddOKhS+sNKfDFDJJIKgmsIol0s0LGBUmWqWJSIQwePQbaZw3KR4qDwxcaMwpYycDOdlKpYXcinZSqiwR4RrkOevDEQqPGgG9sYvZk30NpZH86f6zomFl5bm0lLEeDGiSARg+eUBrMfsCt6ql6w83lHOjBT0E+6nEdxugJZUootVpSU61Gu4BuhbkDeZ12AV8ZYc98xLTCKPnKyHk5jISZJI0qJ4AkV3/o3uFOa8x+lIRVrQm1xWx7VNcTFw2qH4m5osJq/Cz1MbZOwJLW4ALutMZuewHIRUpt9VGAV51maXyUuo6mPN5DSbKqO+lvFHZukOekwJ+oNcpL0E4+hgyiQl0Ko6hBHXqoSgFm1vwzbGHUGr1vJ1YSpY7ALYiHMae7htUMfbsRsJh6HOO8QXW9rL9KSakpuZYhMXmPpaQxTvLXaZ+GEaz4FlVxZITjOEqSqtZJkqon5lDOvT2udxR2NDoPwTOlu8bwNTAr5zwcw4JyGqzSTFUfo5u8lRgt+wdHNjEcgXJM4UZyAzzaxk9XnPyLLH9ZGMv/8OfAWP63vxiM5c8VWP68l9W3n8VP/uv/hO9evuftYYVWkZ9cn7GY9ZRWbv52KHCJdWyqgRgV231N0wzUhePm3Yrl5Z55NbA51Dw/2RKi4rN358wWvchIS0/wmgisFi27Q4UbLPVsoDuU1LOB9qEWb2TjiYkF0pXHGPkGdYN4Is1yxPcG1RrseYcbDHFIb06vZBZYgZ2PuFZYNDQ8e/7A1fUKXQhzpo1nPJTgFHYx4m8r1OmAsQF3XYs/sQ7Qa+zJgDtYYVbvK/TpIK9/qL92Ps9ertnta9xdDctUqXKw2JMBf1/BYmR50rL9bEWcexg0utOTh1MVgbOLLXfvVyL3vBywlYMfz3HPB+JB/KaqCujSw9sav/SSvquFjYtlQFUettI5qpx4TeuLlqGzhINFt4awFH+n3Rh8EyRs6MSjGievbTx6Iz7WqCPF2jBeSnCTGhUY5P+IyFCDorgzjC8Gka/aeDy+KqA7kWjFmaf6qhCJaSMe1XwOYu1RvUF34v/UncKvPPbO4ufy3FiILFX1Wli8RUC3emIhtRePZV5UL49FLfLd8lYYCt3D+Hqg/kGFryNulsJ3tNTegDCSRIhVBC/7Xr4rUvqlYlyEyctbbIUdjMlflyttAGKqdfGLQPFgMAfxXAJTJYzpE2BPbKubxVSJEig2WhIqSWxdSnfNHYUE0F5eI/2HkhbsZikp2QirXWxTP2svzIr0sylcOg638ix+aDk8D5hBZKTFVnygpk+go5e/h+TXBCbZNVH2Y1gF6muRBBdbjavjFKASCnle9SCJmWZICcRJ7hcR9lc5SQ4utgqfGPB8XuxetjucZsZO/JD53EQt7/kMUKRXViYBQCYhHvdfZqCe+0ftXl6fQ6ryYg8y+ZQ9eVl6ln2LOYky946qNPh3TWZcE8PWJzCSqllybyWPtjfOI+UmSW3nsr5c5wRp/ZGphsW2TInO5ZajNy+myZXqCILyevJxZD9v3uecZlvsYPcmMHurJc01MaW5T9O2MlGn0uSHsMEkb6lcs+5cUeyZvHk5WTj7ZHNPra+O10uudZocSAAsJq+g6Zgkij4BfZmMS0AyyU9zn2qekNSjyF2LxMg9lri6WaqnSccoYS7J0zrGyU+Y5ZLZq52vfZb9Ss1Q6n5Mk0LSqcoxBbdIz5vJhFa+H/I1CcVxcu/xfeRLEsBkmoCU9x6TLFd5eZ8NS3WcUHPH90A+t0f2U7yQPvl9fSG/6zGmpFc5Fl8l3+VS5LLZ35kngJq7mNLDVfKTPuqbTBM8uX/V1YpqI5Mwtk8+1DyBi4D9fmWEWa5SH6lR06SOAHEYFjKZ87gTN1e75CUqUScUe5lUKfZhkhwD2taw8wAAIABJREFUk4c3s7D5MywnxkaTeyHTCtNniptpTBdFHqtIrKdIVEMhrGW0evJRKp/S10ud9jVOkmPtZXKl2MqFCqV4Ku1eJLw5Pbc4OMaZnSpXopWKFV/qr3lGpaNSthOsHGuecDC9yEplHx2x0FOViN2PE9CW7s0g66+EMZ3SYvWx5zeW+tjvGVM35hhE4jor0L2b0lQld0DAuACtKJMIEWE3BycJtEqlzlKDOQyQGfMiyWJTT6byAm6jThMD6WdAAGhZCLDLdSGZ7cwdliB1JfuWaI0E+0w3Tt5mAtvDKMAty17z+nUCrePI42XyWJalgNjMaObHE6hT1hIfv3byg8q+xHTOp25L73nc6zmB9/y87Nf8s5a/ApZ/6vJXwPIvYLn4zpP42//jf0RtRmrj+GJ3SmE8J2XL2/2K2jpOypa7bs5hLOhHy9msBaAyjrt2htEBpSKbQ82sGlnVHV/dn/Dm4o732yVaB0LQ4gNUkUNX4UZDWY1UhcMHzaLu8UGzbSusCYzOEIJiOevxQbFvK8rS0R4q6mZgGAzGRIrCEYJmGAxNPeLTz/NmYLNpKKr0YZ2AsTYerSPDocTW8obWOuKcYT7rabuCqpLtlNVIu5VkXDcalA4Eb6jqQaS9uxJdBJSOaBVxo0HbgNZh+tzyXhNGTVE73GiYzXvatsQ/lGRfl16OxKAoasewLyVp97zHD0b8jfcVsQzo2mFsYDwUmDp98AQIo8HUDt9ZlA0CjLcFFBGlI9EpdO1FOlx5mcwbtAQKBRkgTEDQRFRr0Gc9RIU/WAHrlYfOQBHk9yJ9cB6MBBRFJlkXCtnvwUBQEnqUpLhEJeCwCrL9Ln1Ql0FArI3TRABOTetWPgGhCKaV0KRibXCzMAHqMPfgJXTIL4TmNjt5LkUEp6bXqKCm/k+/9AK+tchBQ532wYtk1q28gGIbsXuNWwaiSs/Nkl8tQUVuHqdBn+lEZhuNAEwJGXq07jZV7nhh3l0GpUm+rJOky80DppWwo1CHSRmQw0aKrWK4COhOpcGNhC3pMfWIJhloHvCTZKrjeUAftMhmT8X3ZNpUqdCkbRqR7iovwMt2CldHFEhVy0wApsiOpcJFJ3Bl98fCeD9LnbLbrBxIoUBO1A6+RDpaK5Ht5m7SPJA2fQ6QUlPICaRBdXMEmr4UIG0G8VGKd1a2k315Uo8g103CeeS+jFZkxMOpePp0mjQhCvPuZnlfkjzZpa7StO1iK+oI7RTl/dHrmHtnx7mAYFFopP1I4NandH2TJKoC+NPfMmgNRyloXnJPKTAx2SCArb5NSoVUNWI7uYZZghtKJqDzuFs1VwxNzH7a12IjEtMMlnNwTFYMZHVDruzJ+/UYDOcQnXGhpu1lBtAMR7Ceq06yDFX6WdO9szsG5BRbkfYWu+M6i4Mw2Nnfq+KRwVWOr4XATJMH9tH+Bhnsu1pk3yD7LL7eR0xBTKE2deqpzN7nBMaE6WQK9ZL+0zi9P9xMTWqFHMZjxvi1yYncj5z92VnNorzIg12VGMlO6m3kOss5Mf3xGtlOgMckZ01gt9glhcYjL2auLcmKC0kqj5NPLgPBok3gPgXnZFCaWf4cxJNrMPI6cq9mnighZvl5nPbNJIY6KvGP+lJPvmoJkopHpr/Wk5S22HtcradrNnkzExCM6Rr6InssxZdoOpH0ap8muKwASuWlIsX24gXNPj9XS7hO1FJ1U6395D3V/ZFZ1n3ALQzF1k8MMAgwzX2kvpJJDbG0qNRvKkyofI8Eos2hbipJguU5ObDHzQx6CAkAHkGzGUOSYev0eAK06f0l1+0ogSWC7v0ELGPxCDiCSH+TBJwgfZTygEh7Y6ovUSFK/ycCJh8vKtWaACgX8PMS3Tt0OxILSejNDDAaCe6xmUEUuSxOvvenrkcXxNuZ1pu9j9GKWkBlL+QwCgua+ygLi+qGI5B8DDC1/hqzmh/HaNShO4LTGI9dmXBkS+EY3JPlufk1zomsNQPGyWebgPDjGpKQwoCyrPZnJLr+eWpGfunDe56+jt/6OQDLf/L3/wpY/n9eTr79LP6d//lv88X+lKvtIn/e4IOmMJ71esbJyQGlIqM3xKjoukKe4zT1bMA5jesKimYkeI2/rWDp5H1kItErimYUxtErcJr6tGPoE3s2c4RW/CbFfGDcVqjKE/vHVIGwjM2qo72aUV22jIMl7C1oMDOH743MLDoNOqIbR3Bafk/ME5mtrB2hN/JYWpRPbF+n4WSE+1JSWx8/xykBMSsnYCnPSjtFbAJmPhJuK2LjUTbC1kqyKKDbI3OnnvUC2nREbyw86VHvKvzKY7ZGwmLmHkYl6a6rEbWV8JY485i1wWe2zEgfaDQCDPXeEGYCGmIps61Z3hyqgBp1Aj8JFBXpOVGBBxXE9+ebMM3Q6kHh5xL44pceszOEQl5v96mT60QCeiZwNw/TdlUOpBkU/tRh7y2hkFlm5RMrc+qFhXQCyoanbvJt+iYkRiozIsdgCoKS+pcotSuhlAAZgiLWnuLeSmJqtjsMAojMQVhRu5NBzrjM8s0kiz4J07GHMlLeG9wiCPv5SHJoEis5LsPEDtt9Yld6AWv9kzCBvqgFyBR7AWkA7lRSbu1e0T0LFGstoUAR7EEGVeVGJYmysJKmU8QCxkWg2GlhSF0aSB5SD2CTOjFrCUbKabbCmqSk13R/2oOie+Gp30m8v0veTOksFDY3B+pELVUx5qApH1IVRQIVUUPMqaOnEsxjOmET+/M4+VojTNdaeWEniRLsk18vkjfZF2GHhL2MNknwbUr8LeWeMJ34UHNqbtRMntDcd2n3amJP87XOYEonOTYwsU2ZTcqJqMon0DU/MmoyABQp8ziH3L06zkV+Pi4EOKHkuDK4c408L3sefSnP00O6TqlPtlyn2ozheJ7zOXd1kuumCQOf61ouVAqwSQE9B9leuZZ91yNTAEtOqS230J9IqqtvxCfp6mN/qbx/5Gc3k3UNK9neuFBkr2gGF1mCPbG0Wv7X7hHQSe+lnLqaU49tK/fDuFCTxNoeOAbyHMT/Zvdx6q/MwT31nci07SENmBH2Kg+sM3smxyz7btsUwJP8rSZ5Dotd/JrkHKSD1M2UsI4JcNsujQMSc4Y+Mqs5IMunPlNfKur7OH2O+EquT7CZgVYUB5moASbA6JPfD4QdnBJx93G6n3MoU7YXiOz5yA5mX2WWqReHR+Avpa0GIyB3AqLxCNIzux+snEfbxel9FpWswzUCVnL3pvJy/syQJqK6I5DpTiV0SN4Hkraagd9jZs8MX2fMQFjLHC5k+gQghzCF8UQDw1xTrQVUDQtDcQjiY6zScfapTzf5KfP6Mwto0nXtTw3lVjyS9hAY5+LbJMapyiRa6fM06fgysA2FQvfi4zStTyqGHOiVGOG9n1jN6VgfTwQkqXOWw2dQ6SuRGY8zS7FzjCvxaebE2ahEPgwIYExJsqYTKXK+Dib5JEMGcRqUi2myIb2mF1mwSmAolAIip45HDWY/yjV7JP/Nx6I7AY9onSTHybuZeoLVmLot9REgT5LcIqvSongxxxQKlJ+XA3syS2m0/JyBXWb6HvkvVfJTToDykcxXZMtagoGyzzJvIz8HZBveH4Hjz0h//enHJszgPSjptHzMXMZhnECnMpo4PGY1HzGWP/37n9Jv+dNLjJHY9/9Cz/1Zyy8MsPwPfg7A8r/7xQCW+s9+yi/u0jvL716/4N1myW5XE6Pib7z8MR+cPrBez7g43zGvBqrCsbubcbnYU1Ujy0XLYtXinObiRCIFx+uGp+cbopGwmHI2olRkcdqiFNhCpJ+q13QPtbB0q56idOAVs9MW1xWUq564t5SrnmLZY+cpGbTXVIVDpaCZMBj5tArgNwJs9cZiHwxm7iYW0DxYdCueErO2mJkjPpTgNHY1SDCNFrZIHaRGZLboQUXK5cDzN7eYvUg6iwctrNFsEIDohL2Lpby2+KOZ1HAAqEh9ZajfWpovrDAgRliLMGqKGwu9Jp4PhFHL40Vg/oUm1kGYw718mOrUkakd4BTNlczE6dMBuxbWUPdyjMVOUb+zAvq2mpN/aggLz/KHGhWUDFJXjmIr26nfWcxBCxj2CnNQlA/qCDi9SjUXSoJ49gY1CsCu34mss7qXx8sry/KPLKZTNJ9bqmtDLAOhDhO4UJ10ToaZp1hrqYgYoP5KPKbFVgsD5UUOWWwUce6pr/QUTBMSIDMHqbvQvaZ8scelBFeCYvaV5vwfizdi9UON8opiJ0FBelCYQVFsNMVOAJgemSSi4vmVXs2oob4ymE6Cddws4hthoWZvE1AMsi+hiJT3sq3qXgJ8QsnEJpb3ArL8qUONAu5klllNDGM0yXfcSy1LsVYTw3f+B0GON4XF6D5NGiAD/iJ1moYiUm6FNTStYvZWej+l7zQBK0eSzcLsrYTe6FYCbLSH5kr+RoTqThgQnaSv5QZJnE0/205kneVWBs52JzUWepDjqm8T2NvI+qs7NSXNhjIB270kwxZ7qb2wnfiETQf1tfjZTA863Re2FaBpW7l+JoUnicw57e8o52j1o0B9wwQoZUJDthGNgLzqXga9xe4oWxVvdJzCg+ob8UrXd5FQiF+3uieFzxxlqPYgYCvLSrNMNYOyYivdouU2bcvJfpJAY5Y4ayfnKiooHyLFPmIPkn5p20h9G1l8GaeKjeYmiLzWZCAmj5VbYRyzf7DYxik51vSRciO+4GInLEG5jcy/DJJa2so2TSvrsompKnYChJqrxPCmBNfqIU7y1MyuZqAGArKDEcCWPZFZJlqto/go+0ixk21FI9dJmFIJuCn2kflVkDTQmPYbCSAq1wJI67tIuY0Uu8R6DnGqnrFtpDjEKRlU/jFJRJWPzK795MnVHppbmejJAS/KSa9pNFDfy76YDqptZPHOY1o5Bkn+ZGIri106pwl8qJhAeJD9sN1ROltu0ufcEKnWnmqTgluGNAnTxlR5kb7QE1AtdwE9RgnPGSWkSDthGbXPHug41YlIEi8UWz/JKYtdEKYzhdpMrG+IidUM4t3dBcq97MDysw5fiV+3StvOrGkGgNpBsQ8Uu0D14ASYKmEbkTk3qrUM1F2Vtx0ptl6krVZRPjjKBzdNRghDHCnXLlXqBIqto9h4OeYxUOwctgvYvccmoKW9PFY+OEwXsIcg/ZlpQkCyF/x0zHpMgUULTX07pkklhd3JOoNVk6dYhUj54GSSYOuFZRyCeER9Ov9bn8CXyFO1C5SbUeo8Co2biwy1vD2k4xtwtZHnjgKW7cEnICnANktvtQ8ToEQpzH4UGaoisYtaWMWI+FODMH96kH3Sj2SwkkLrU0WYJLgqH8RTqgSkmnYU0BfT++puLz/34iENjT36NAE1enSXPIVGJQ8s6G4QljL5UVXXSyqrz9fEC2MZgvRPjinUJwE3lUFY/hvCWCofpiqRDCizf/NrQDEvqXf0sZ8xloWwlo8SXicf5mNv5fSCBCR9IIYgHktrpYbk8eOTzDWxl4mVVEqlv4VpG18jsvLfQzjKYlPdyc/858PXA4H+avmFXcz3v//9f9n78Ode/qv/4b/8/r/xH79m70s8iifLPf/4Bx9xcbLn8mTHF3/0jOfPH3g+3/Ll1TnffHHFQzej7Ura+xlF4/BRGKt/69d/nz+4eo6LmuK6wFwMfOvFFdebJcOhYLHsGB5q5q+2fOeDd/TKsL9aQBl58eKe+/sF85OO9rbh9MWWphrZ72rsT2qef+ea7bbh9HxPrzV25ojAb37rJ7zfL/mVT97y/stz6hd7zl+v6fqC2aJnNe/Y7RvK5wfCtuT1d98zovnGh1fcdY1IoZxmcXEgvG2oP9oSV47hiwXlywO//vItP3z3lDj3hKAJRr6An7xcs4sFeu6Zn7TY2cj5sy3+cqTvC5588MCvvXzLj/0Kd+aIUWPf7PHOEE48n75+z931ir/11/+A634OOhJ2Jc3zPeHDHkwkbgqaN1vOn2/YHyqRiS08v/3dH/KTck592jM81OinPfaLiubba8IXM8yoKH7jnt5bwjzQv3aYe0v7xrF4vqM1lvl5i3uoOP/knm1peP7JLYexoDzrUecD41CiBw1Pe5ERz4O8Nlpmr/b0ShOLyLPvXbN5mNM/8TTPDnA+0pYWPwu4k4BbBn79Vz5nHUtGNOFy5OLlhv2uwZyOjMtIOB+Jo+Hkr90ylJFhHqm/ueVvffNP+NHbpyy+d0c/FOg3LZ2y8Lrj+at7XB2ZvdpzOFV849O3XF2dAgpzKsx5sIo3//ZPeO9mRGfRn+4wzzs+eHPL89d3vDc19lWL35QUv7qhi5b4qhN5rlboVwfst/d0Y4H6oMN5y+x794wlhNYyPhsZXo94I97R8LonDgbzzT19sIQ3Pd0qfYF80EHjGWbClhYnvQRidQb/omfxZE8bSqJWPP+1K/ZXcy6+d0Pz/MBuM2N4Ksk3298YGBuFfzpiNobulWf18Zr+riY0UeSf39yhngyodxXLf/OKTdegvrujrTTu+QidYTz12L1muAwsv3NPfzNjXIJ71TPMZPDmazi8kkj7/oWX8vhvrRnWNf0ZvP7Nr7g7zAhW0X7oGF447NriFpH+eZD011cH+hrGxtBcKdzf3OB2JcN3WhYfbWhrhb0tGBeR6nsPHM6gWyr0d3bwrmL3JuJm4L63ZywVwxPP8hsPxIuRw4lCvepQtyXjJx3x2Qg7i/+gI5w5OBS4hbA+618JDB8PnH28ZjvTOC2+2/1HjhgVsVD4maJ97aSHdRnpXnjcmaP71kjfiGby8JFn+HCEztJfRIbTSPdmhNctw1mgvLHsPgx0H44ELPVv3dH8o5r73xop7g3dk4ivof1kpF9K+u9wJuFUfg5nv33FZjfH9Ir+XNjK7tOBEAyHjx12a+jPFP0FHN6IL3r97Uh/IV2fw0rRvgzM3ik234ioqPGNYvvdge4Th38xEtuC/SthsPcfBqp7zfZj6L/Twb4Qv6tTbD8RQLb/QFjD3aceV2raZzIQ3H86UjwYNp9KHczmE+gvI+2/0qE2Bd1TYWp2n3iGVQpYKqB/ErCdpn2qGM4gVIrDC/Ht9WcSSDScCnPkS9nH7qVnPI3oTnN4AbvvDuhtwe5DSa+9/Zsj8x8b7n5d2BM9wvDvPtBvZriFor9QtM+F5eueig9u92HEzcH0OgEWcHNF+xSGc9CDZvchgKI7V+xfaA4vhR1obiLtM83mU2GTb//VKPdqLUnN/anm4btyzP2FsOvaQftEsX8Nw6kkGA8niu1H0J2L53jzDU33hFRhEVl/Kj69YSWIsb0UlUx3odl/ECFo1r8mfkVQdJeK/lKk5v2ZhECFQrF9o+lP5dwKS6roTzTrb6UJnY0EjGEUuw/M1P2JlmNpnyV1DsJkuVqxf6XpLqUzsX2iKTeSBNtdaHYvNaZXHF5o+jNF+wJ2H4oqYv2pQjmpEhlWhsNzWbcvtTB+M832jTBE2sH2jUkgQ2OcJN6Oc0t3btl8QzN/F9i9tBivuP+WpdxJKu/2TcG4NFz/a1BsDYdnlu7UgBJGbpzLfkej2Xwsfrlhabj5DZ1k+XK+zSg/r79h8IWmuzDMrj3336pQQWSwt9+rKPaK/QtD+8QwzhVRKe6/Lbr2cWE4PDO42mCcTCZuPirwjQalaS8MvpLAp82bmt1r+S5oLzUYzXBeEQstyoQEdHavSswI62+UzN6PrL9Zo6Ni/9SCEeZ/+2EFWjymflGwfV1R7AOHFxXaQ39ZYrrI3a/WzG48oTYcXtb4maE/KyjXI7HQ+NriG0N5tcMvK9xJJSFGWoNRtM9quqcVoTbYFCTWvVwkAJUnPj2hsoR5IUFM1nD4cEF11xMry3jeiPXjrAGl8MsSULiLGUob3FlDaAoUCn9SCeA9DERrCUv5PVZWmMx5TawKAZPOE5YNRHBPV5hNSziZS3DQoiYWBWHVoNAin21KAYBGi1TWB6kdyR2XSkl4UE6OVQrKUl5blShjhOG0Fgq5r1QIsFqI9zMEKAqUlteqwoqSok9eTK1QVSXbR02MMiGg8vqVYgoYeuzf1BqFANKf+U+n9aGYAoT+HMsP+f233//+9/+nP/cK/gKW//zv/Tffv/zuv06+w/6i/r37P/73f+nHBvxyS2GffPci/p1/+LdpfUFIBoBn1QaP5qpbMgTDb558zj/8w7/O6aLF6kAEtl1FCJpl01HogFaR/VDSFCOF8Xy0uOOP10/46uaUj5/f8Ha9wnvNrO75xtktP7i7BOCj0zt+cHeJUZG2F63VvOmJUbHezHhyvsXowLarOJ+1XG/nLJue8+bAH/zxKygCL1/c89WPpeajbgbafSVdlbuSb334nt1YcrNeUFcj+0MlN5AOzJsBrQOHrqJvCy4vtjxsZrx+cs8P/+QZ2IjqDOasZzHvGL2hPZRcnO0ojOfd9QlhlOqSIvkwjQ18+PSOH372lPlpS1OOrLcNLy/WfHFziu8si7MD+y+XxLlD3xeYlwfGTUV91tFtKpYXe3abhrOzHfe3S6r5wPDlHC56TOFxXcHy9MDm3RJ0BKfQy5HghCX2zhCvKrjsCYMRefG+xDSO2UzkD7tNg7YBvy3QMwc3FWEuPZQEuPj4nrt7qYKpT3q6h1pqTp4MExM9HJJmcG9Rq0HOxaCpL1q62wZ0xC5G1I8bxguHchp70RI/m+OeDKhNQVwI6PWLJCM1Mqi1lx3+XQOXPa+f3fOTHzxFzR3sCliM6KtKvJGDglORLYunMYCBaEXyWz/f024r6IxIfE8H9Ge1ePheDigdaRY9h6u5+C5twGzstG7lFKEOUAbUwVC/3NN/vpDP5aXj/OmG+x+eC+M98+itpdiI5zFWkpaHiqitxXQadyLsvPLyAR+LgG4Nix9pdh+JXNbuFcMHA82fVAynQcKJFiNcV9iXB+KfzBmfjejU5Vm/s/QXHrMXH6hKvll36ihubfJYJR9l8n1qJ0yhcsKGjqtIqIMEG1lwT0bMbYFfOfTBTH7DLGnLASZRQ5gFins9Fc5L2nEEJanS5Z3BLUSu3VwrDi8Ddqsmeee4EildsVN0l9I9V66FGdZv9lLto6D+StKpqzs9BdxEA91zR3VlKHaK3acj9tZKgNMiUj5IVQzJX2c69bXglewpHFdy/1V3iv0nI9W7AjcXqXmxSf5XDbP3Ejg0LiPNe0X7PCaGJAUaJd+rPYgkV/o4U5fkALmPrbsQxrPcHENxpCNSZKrHWpocGCRA0CWmPPdHuhn0l57mrcE1yTtowS0Dix8ZSXOuoLyH9nmcGHQ3kwCnYicgJ1fKuBlTmm5md4dVkurao2TX9FJpooIwtt2FsLlufrwHzCPmLadI65EkEU2SYS+/2wMcXkTKe5nQyMFGOUjJHqT/UgVJyz75AfSnx4Ad2x2lyrkvVCel13Ai7HlOnJaUWEmejkoqctqncq3KjXgmc/px+SDg2DciYy32TJ5SXwqj7qvkPbQCGLoLWP44TkFVto30JwKamysJENKjSHVnV0c5bE5Rzsxu9k4enmmRkZ8JC276YwBOf6JpbiRdur4LE2PZneuvdTDmfcsdmjl1Pfs/gYmRLLfCpI5zlVhReZ7yTJJxX4v8Nqcu52TxqCSRWju5Ps1tqvgo0kRBAra+yn5CYW7z30MpLHB3qphfedZvLPN3IUmEJWzJJEJqbLLcNf2vkhe6Vonxl2tX7sLkjxVPpppShsutTGjkKh85PsXupWb1mZ/kvkViMocTm7yiSfHQShJyuXZ0F5b6zuFrPSUY557KHBbkK+ndzLJf5SPdmaFaB4q9YzixU5JvkcKLJvmzAntI5zOl+ioXKR8GhvNSpLhaEoDHnDqc/J5HOa4kG5f3g0jUTwpMJ/sxLkRKG7U6+iMrw+TH9MJojquCYu/S9TRTz2X2uQ4npch1E7tvUpKuGr0E+gxHFlV3I6G0cm1SNQm52/YwgpUgI9V7Ym1RncNdNBRXO2JViHw2Jc5m+WxUCuX9JMOfpLI8ksOn1021IZlB1EqSeLU61pcokfXiU3LtrIZ+EN9mTn0F+Tkd1ySZtclb6cOR2YRjymxK9o3DyNdqQnyQ31N9SMyS3okB/TNA4Z+WEPt4nb/s4T1PX8dv//t/8VLY/+u//8WQwv7ceiz//1g6V3DbzwlRcdMuWJQ9D0ND7y2jN5zXe/7Xz/4aF6s93WjZ9yWllRty2XTs+xKrA005cvcwx5jA+cmeP3x4Sjdaqnrg3UY6PNxo2LqG/7t7SbcrmZ90/N7bF9TVyG5fc7o6cPcwpzOBvispSsfdes6rywcOe4lzPNzOiOeK9b6hPusYOsv1wwJsYDbv2W9q6rmAPILiR1cXaBPQOrJ9mGFKjzYB7wwPtwuW53u8VygVWe8aQtB8cXuKWcq3lw/yWEje0qJ03K/n+FFjS0/VjGgd6bqC6DTOKz6/OQWvOOwqWlWiTORqsyCMmnI+0B4qWI0UpSNWnhhkxrbflygb2F7L8bR9SRw0XV9Tv9rjRkPw0tW5uZnLINVGzImbPpO0jrgA6llHGDVqZ3EmoktPWTq2V4sprVWtBjCRsnZ0TSHgqAzgFXcPc0JnxSfX2eRh1SgFw30tYT4+GThsIO4LKAJmNTCOBlV7bD0yHkpMGVGD+FbHhxpjIvQikcUpCdexgYjIpGMV8G8bwiygouLL//MFahnEcztz0Bnxk2qRqcS9xTgIKdwlzJ2Arrmn21XY6xJ36mTd7ysBVF5RvCvxdeTQilRZPIMC1lQCf2HlUHtLeW3pnzncHy9RRSQ0cg7vvjwV365C0nId9K9Eum0e5KMhpO5JqfaQDjXxxILykoDbvpAvgtCk4+wFjMWcvHtVySB/W6KWgeJagI8+aIIVGXdIPlKVZLluJR7SaKBfBAHhcAxSCWryCIaTEb0uxF+oIipJsFVnJsAfdQr3SdLV8kHTX8g1zGFF40kgkEKDGqiu7dH7WEaGJWSPZ/b+9hkjAAAgAElEQVQPZt+ir6SPVHxuIi/2n88ko8HJsRQ7nVJUxSvpG6a04f4sYtYG02fpoYDnmMKFin0COKNIZ3MgTkT2SQVJmS3uJUSqutWSjnpUtrN/mXysRgCZadUUiqMRMGl2agJnMoAG6yVMKGomOXcOEQrJV+iatD8KYgEqeRIlvEVNIToh1alI/Ulk/pkRP++QwOxagUoJzFa24eaK+RdSxTQuJG3WV0w1MMNKukD9ubw3gKn6qdyIj7PcHANlxln2OyYvpJKE1gxEMjDzpfgw9SB1TbmeY1gen5fPf3kvEw3FnglkiAc4gcWUlLr4TI4DBbP3yVeZJZT3x2TaItXQlGumgbl2YPYyyM4hYcGIhFxFUpVGGm/OSSBQwK0uBOAGm6TYPklIk2zZHgQg1dfHOiWVngOk9OPs3xSw25+ITNzNFd4yTTyEFE7kZtLHOSzUlBDsKzkfOdXWVwKM2kuNPYjkfEr8TUnF1V6SX7NX1ZcK60T+PC6YpPG+Fh/pYz+vL5mCjcZFGqhHpjAe8VuSqrfiNPWfZdBjo4+hUEbkuKFUk4xZOwF7kCYcGkW1FjA6fyeyUu0h+qOP09XiaRV/nwCKyYM4SrCRHqQSJRRKwFV6rfJHkCqTAmkflEL7SNEHTn8QppomE+QYlJPnqRiJUVJjXSP1T+NSJKNuZibZ7DiXgJ8hPVau3eTdlM8nqfEp9/L94RpDMIrmZsA1dqqwMZ3clygIKdFWZNNBXlMZolZEK0qTodSYLhxrZ1yWM4MZJeAnWk0otQBNq7CDgMvs1xRPdQog8hISpCNQSK1QTneV6peUBjuIZNh0UhljDimMJ9UgYbX0WiqmsB2R46bk2BDE0xgiKqpjbUoClVkKa/YjoS6FlR2TZNR7KbnWJNZPi/QUOVY1Skqv3nWEWS2gMAfi5GAdkM/NDAazJzKDTqXEi9n2RzksMCW5PpbCTiE9KYlWKaZakfx4jMQQUmLsEfAR4yPQl2TDSsnnZDom9XhdHIHmFAb0uI4kLyHKNtJx/qVYfnk5vT9z+aUGlsNg+cPrZzin8T8SJsa0wm4UO8Vnq0DzlWFvoP1wpP6iQO2gexoZU1CG3St2s8j8WgYrbTdnnMmXX7mVQQQKml0aUBZwege+rjAzee/VAwzjjFkBtmvQTRpEWbjp5lQljEXDYg8qFuzeeGZfGU4eJLhhtYl0F6fMPURTUwVY3UXcvKR9FqluFPGUVF6eZrdLUL9bUjQwX6cZ15Q8t7iNSfYa8XXBOJ9TBfHHtE8js7tjP5/dwdLnL3uItqLZQVTFsd7AwarLX9xSYn54Ebn8f8RHcnguA8fyIdKfS9rhcFKxCLD8LLD+ZEntmaL23UwGJP2JlRj4VBY+rCrmvQw+yo08t7usUnBKzWIjA6XZu8Dug1kqKy9Z3URUkJlWCcywjEvxT7VPimnfxkUlvZKlwTePghnSG9w3pZS030MoKmoPsysJ3tk/rzFDZPHWc/+ppblOBev3ErceSkW5jriZSfUEmsOzGruP2FZzeGGEvejEu3R4VlBs45ToWD9IcfY4L4SxmxWc/mDk8BTapwXVbQJEuyj7+BDoV5rhxHLxewPbDwqqbaRf6XTvRrrzkvou0J1Cc2VZvBXf0P6ZSQNndSy1b0iDwIJqIyyFbSVVcHbt6U8VepTXFTsZTIVCwjOyVygaTbnz7J4bqk0K0rBqqhy4+/WC5Y/Ee9WfSAl7cxtE/oR4z2wXqe9Hbr9bMn8bGFbCvLqZVAWYMTLM9ZQoWm09D59UlGvxXOUuRgmtkdl9ifHPnxpy79cPnsMTTSgVpz8YGRea7kRjxuzZUiw/Gzk8tQLotLAcYyP3erUVH82wlC5KX6TZ5xSoIUmRIvtbfi4epXGmqe6dpC5GGWjtnhtmNyK/6pdKfGVOzo/pYwIrgXLt8JXGzUQimMNEolYMi2NgS/tEU2wjy8973NwwzuRLOIfXlNtAd2qY3YySGJl8aPbg6S4sxEh9J+xDfTuw/qikufOpX1TCNqJKdQn7MLEk2kWadx3bj0S2ZTvxeg0rPYG3YS6yKjNE2Y9zI92QiUkeFpJsGQzUd2PaHyhaj6s05384MqwsxdbRn9nUpVmBgup+ZPFWBsb9Sv43Q2D2bqC7LI/szMbhZhI8ohyUDwN6aJi/G9L9IimetvW4uRF2pBD5YrF1AkZKPdU0SNWKhJIMK5N8bYFQKsaZZvF5j+kcw1mFcnHqNuwuCpqbgfZJSfN+YDgtpvXvXpY0N/KzBD1FhqUkcTZfbmlfL9F9wPSB7ol03AQLs7c9blFgOk/7pKC+dYxLMx1z+SCF9eNCBnZ2L2mfpg+oELH7kfZZg68Us3e9eN5aCUnpnlbYvQwA7cEzLsUHX932hEpkkihFsZVthEJSLk3ncYtiSs/VCURVtz2+sRT3HYRA/3SO3UuaZPusorob6c8Lio0TL+EgHjx8xNcGuxdfXH/ZSGerVrjGUOwcysvncNQK23l05/GNxfRewEypKdejdFFW0v/p5sI8lfcDbm5FeXCzT8ySvHfcsqT67J7u43Ppkuz9VNHh66SuOLgEXD3jqpI+SBcY03UxncM3UmWhB894VmNaRygMdtvjZ4WAGqvRhwF8YHyyENA5ONwydZiue3Q34Jc1ZttRLWpUO6L3Lf5cnh+tnrZlth1hUaP3PX5RoRNw8osSu+nw8xJ7vYWykPvOGPSupT6ZSeKpUmA1xbKCGCmutoR5jZ8XFHcHiFH25X5PAVJnMUhwTJhJX6Rb1diHDhUCat/iL1eYux3m2Qlm8yipdHSEkxnmZkOsS7kGRqHXB5F0tr2AucISjUENI2ZXg1Hoh71IPTPrNowURfJHZhYwV4YoNT1H7WTdejGDGFHdIEDs0BETmMuATO1b+Vv2OqYk1thUwvL5IOvLvZJlASESux69nEM/HPfxcVgPHNm6EKbQnbhv0VVJ7Ae099APROemLss4jsefQxB5awaWVSnPTymukk7riUE8kaoqBQh+zfuYwN1PeTRzWM/EBCh9DNFROjGYCsbxuD1jplTYMIwiZ/3pJQHF4N0/Azqn5TEj+pdkUX+JgeUvtRT21a+exn/wv73mx8MTfnf3AZV2/NP1M76xumFpO/7J/St6b/nWyRXv2xUfzB74ndtXHPqSZd3zjZMbfrS54LLZUWrPw9BgdeAn92f0g+U3X33BH98/YVV3bLqam69O+OST95xVB97tV2y6ihgVdeHoneHlasOPb86Z1QOLauB6swDg5dmatw8rLpd7xqCJUZhEoyJ3uxlniwN32zll4ThpOt4/LLk82bFpa5wz1OVIiIpF3bNpa77z5D1f7k64WS9QKrKad1x/dcrick+MiqoYeXiY8+sffsXvffmCp+cbtl2F9xrvNUXhpWLEa0rrOXQls3rgpOn4/OqMJ+fS5blrKwrrabsC7wx1M/DxxR3vd0uMDjyd7/j9L5/z8bNbfvCD51y+WnPeHPjR9TnjoaRe9vyN1z/GR8U/+vwNQ1ewWLW0h4rV8sDd1UrkmPcLlquW3a4m7Apef3zNV7cnAASniV7x8sU9D/uGw31DfdITI5SlY7+rMdZP+3exOPDFHz2FpUPZVEkCzBY97b4UOW5v0UXgex98ye/83sfoxUjVjAyDZTbr2V4tOH+xZrOdobTQMN7JdTs723H3xSlo8RoCuJuGszf3FCawbSuGvpDju1liyoCxHqWkFgbAWuk37buSMGqaZcfhei6sae2xhSMEhR8NobOoTmMuemzh6dYVqgxwX3Ly0QPbPz4lXI7EXnx0gHxilVIlY4owve7lB3d89cNLSb9VCFvZSrKeXoxH6fF9TX0pkmCz1/jzkWo+4EaLbw2qNxKW1Br06UBROrrrRqSpz1rclzOKD/YEr3G9hZ2waHoxYgvPcFdjDhq/8hTLnvDlTGSAZYDaw6gpbi3+dUfYFKi5wxRBEpsBc9Gjf9QwngTsRYe7Euly83JH99lSGCArUlY9aMyzFv+uIV4MqLskgb7sCb2hfFcwXDooIuXbAjeL8KQn3lZwOlDPB/rPFuhB4U79dD7oDZSB4r0Ur4fXHcErqcIpAvq6FPZlTJUwo4RIhUr2iyKgekNxp8WDqsA+WNxCQqj0oI6Mr474uTDjAHojYVp+IfJg08l1H08C1bWR1FrFVH8TSqma8U0kNJ7yyuKWIicNrzq4rqaqGIUkHFfvLcOZp3lnOHzgKO9FZhwKYQVVzHLkzAQj7L2G8lYznMik3Xjm0a0EQtmDhEWl5p6vJwNvRB7XvXCs/qll+7Gnfm+IhUhf/TxIONNB0T/1VFcZHCmGk4hbBso7g6+E9ewvAvWNpruQROBxKcxKfS1Mbu4T9c1RwuqamJKWJSRKjZL2K2BRUnx9Had9dY0kDwtLF1ONiZrYLjNAfyqTR9EcWU2RESvcHIoNjCsJfOqeiFRYj3B4KQnGRJED60Fk17nOo3/iKe4N9a1MkGUJ7bhg6hXNKba+YeqpFNm2TDR0lyKhdXOpuqnuZd/dPIVIjUgNSwqLcgsBsMHKxF+umwmlPE/Oify9eoDuUoKeopbJpGF5rGkZl3LMvk4TiWs5ToD6WljQkEC1m6upyqbYxamCqH2maN7HqfdVJLeKcQGLz2Nad5KD7o4JtNEIeynVLCmYaGBKBg5GJK3tpZpqZEIhzK+vobk59ncenilm73PNR5IEpwlZ0yfGNKkETHf8PZSybyZVnJQ7OT/lNia5bbIENIr6PjOQ6fodZAIrs7wqHFN3QSZks6y82MvE2pjqYGS/IuNMUxwktGn/3FCmAKkhJQzL94gw+uNcS+KtVRQpHGhYpO+NMU16HCTMx80ly8EmNjEYYVK1SyxswgfdmaHaSD9nfefoT6XjMk925QlBkIm1mJJ8TRdwcyMhQ1pY2HFuhFGNEV8ZqdAZI0XyWIZCQ2IjfS2fG7lqRLmAr03qkhQprh4C40L2Jz9H3tuPGEDAV4biviMm1lVYQak0iSlVVqXOSl8da0x8bSXF1icGOUleozkmyyovIUPChCawpUEdeuKsEtY0SWijSR2Zj9Jos2w2s45Ra1Q/iOfSmgl4Z8Cck3NViF8HmY/WwaMqE/nCGUUW6/0xFdYYAdM5xMcYka6OTl6XU2AfJ8D+rECff87ylyUV9lf+vb94Kezv/INfDCnsLzWwrD76IL78L/4zjAmEL5skAQQ9Kvqnjvq9pXvuKG8MwxNH9a6YmItQSP+cFJTLQEPSFdUkdXNNpLnKlQUykMpfHno89mrpUb60hxMZKPRnMuCw6Ut5nMv6QimDllwiDXytBw3EE5S/tHV/7FTrz2XQkaPzTU9iyNRU4OxmKaUxyBf6cCr/j4skC6qhvpKBjHipRGria4nEn9IpFVP8e30jzy82cnzZd5QL4Zc/iWzfiGQrGjg8jyw+V3QXchz9uaSUFjumHqzsh8rVATm1MnfSubmkTo4L8YTZVs5/+9Jz+nuacaGmL8zsmSu2Ed+oSfo0DbZSHUGOtg9lkkml/c/R9pIYJ9up75InKvlychfa44j6HEVvhpjYi0f1A2kQIQySsLPj8lhuPqyONQA+yahy151tI4fncp3788jsS5E95S8fPZCK1eX8VPe5kkMYmOIQ6c6yDEj2U5gt8Q3VN3HqFuxPVUoIBUK6R62iuQkcnmlZdzonw0pNLOHsnQxsYvIyhUI8X74+XsvuUqF78VY1NzFJ2B6dTy8SRV8r6lthJvN7SWRPkf5UBk5uJo+V6yj3ciB5pOTvLhXVDyeKxVeeYaGPSZOkwVIXE+smLFt3KkxaTrR0lQwibR/pl0li5kU2qR3C4i5T7YE9Vj5kOdw4Pw5UMzPjKoUZ5cs+10DYPrOe6Xp3qeoivS+y/9L0GahIgmV3IqEa2kXqexkU+EJ8WXqUdY3pPNk+Tj7MLCfMA9WooV4HfKGmovicsgnCUKOgWodp4Lt/piXxdIy051o8jbk7juP6c8G99jJw1aO8ZkySu+Ig28kl8tXGM85lUJMHo/3SMLsa6U8txSEkYKCmYvjiEKZ1y+enDIbGmaZ+8NM9MSw01Ub6+VTInraUmhqF9S4OwnCXO2GMM1CSGp6A6QL9mT3WLySFg/gcj94xUUrEaR2mj9LnlxjKzGpn+SWAaYPUPCRJYrGXCggUlA+O/ryYBvOTJ1crqruR9omwE2aI2IOA+SwXFHY+effGiN17hhOL6QK+1tjD0SOWmWY30yndNia2KqXgRqmYkO9UYeaCVYRS9kOeq6bkVekBlPNi955xmVLBh5i+fxTV/Zj6Ew1mCPSnFttKCqqbCUOjQkyDc0ALOLGdP6aJ5hqPeDwv0aqp69BXBnNw+JmdvG9RqQkguHkSaoU4MYzDaSms7eG4nXFl02dzViLI/WX2I+NpRXnf0z5rqO6H6ftDH0b8qhSGT4HuhMVxjTkCFR9wi0Kkqp2XlNIQcYtySlQlSZtDZShvDgwXMwEjiQ2NOsktoySqBqtRPkgFB1K/ESqL7t3EFupR6jZMOxLqArMWUOQXJWYvCam+ElloruDQLkzHNo13ulESTTl+b+ICuh/xqxrdOXCBsCjlZxCwNBzBlLCXB/5f9t4kxtI1PRN6vumfzhhzREbkzcx76w7lKpdx27RlusUCxAaJwY1gxQIJiQ2bBu/Y9hYhEGwwk2DDCqmRegGyBAJkuW23y5bpmm7dMTMjMiIzhjP+4zeweL7/P3ndVWW3uqz2bXw2OZzpn8453/M+kx9nEC23VW0a+CLhNdB0QwqrqDuCI6MAFxCMglyX8JOCXsNA64GIyaQhTwaZ6VeASmcRspRJrT5wH4RASKjUgIuprFoB1hF0GQ1hHcGYEBBNO9R7hDTZJaD21R+JIeP5p4FUvPVyWTiHkJidrNX5ge38ynPeXp8bTU9ln8KapQibLcGbcxBpOgAukXJKE6yFiJ7I0Has/+hf01pAKqBrf7KvMU3xlZCcPoXW6H/08c6RpdQaoaq+ss8AIrAkC/qVbQB2r9WzpD/rFpnLr73H8ugvCFj+1385gOXXWgorVMDB3gZvbmbA2ENkDqFSyA4riMqgfocXof7mFu6LCU5//QrPf3wyhKzACdhD1nzguEFbaXR7EuZBopt5BBPQ7SNO3OmVsmNPtmajETLHgJxKoHy/AzqB5kAiJB5dy4Q90Ymh3qE9tOgm/aRMDAEXdr+DWmqGrZiAdj/QGxWDXkQAPVt5QHvgITrWapSnDEPwpvdvUd9fX7RQSw23Z4FGwiw4XTRLgfIsDCXmchoXniHAa7Ia3gD1eQdhJZI7ieaAP+D1Mafa0gL1I4vkVqM7b1GfKMhWQnZMiZQOqGJ6ZNBAe2SRPzdo9jgdrw/JINRnjsciBpO4lAv4/Jol7904hli0GPrQ9JZJfvWxQ3Gp0BwEmKVAc+hZU6EJmpIlF0ftjD84yUpg+SHfvxt7Fs43Au2BQ/FSsRz+uGd2KO3tgUNz4BGSgOyK8rluygCWbhIYdKNZN1Kd0fDWh7Ns3nXIXyruy7T37Ai0U/YjCsfAF70FqhNuk1kBTeD+pw8MXnEZhxj1AQcEZi3ItlT0DqpGYPWeR/FKsvB+xfdn6TuDbWQjKOuOx5XMERcEzR4BUTeNrMQowBuJ+qgHs5Q9D96aWmDxIeWpZkvmoTl06K4ViuuA1btAfsPzHCT9X9URF5vJgttlM7ImdhT7N1smV+oKaM84vMluJQvbCwIoDmgoL+1GXNB0E4H6KGD6KUEl31MN/qw+DIWMCO+nN4fnO0hgdAmmJ7b0uNX7XNz7BKj3A9KFGPx41bFAdgeUj8iAJQtJD5wVaGf8TKkYxJI+cGHpMqDZj/7BB4FuiljNwmOS3gPbczIy0pK1ko1AfrOTGm8f0bPUxk5IO1JD9QeAIYik3hfI3wRUB5IsVMpj3g+KggAgAWn5Oeo9qvBkrYpXZNdcKuCVxPZCYPSSQxbVAttHXPC6/vwVHOSYTc8CSdZslGKogPBGkrGL28BAEBkZKcEi+xiikt2RAZJOY/VEYnzJ1ydjxPCU/A1TRsmksE/RZoJ+QitR70uMr1xkBgU2Z4pdjyOCH13R8vD2oEdaiXqPIKkH2t1YIVnyuLrjvhuQz0uW/H4bwHuy6wtkn6jgZ7sJWD6jPNYbXl8EosDoGlhfKBQ3PAZeC1RHEqoKcMagPJHI3/QDPg6aXAqsL1Ik674TMiC753edVzEZNjJT2b3H6h2NZK3i4CWGRu3JYShnc1aktHGw0de3eAO4AzF4YXUdYEqBLudnozpkN20vwzYVq0ZcIngucoHxtaBUf0IJe7rysKmEO0k55JoKJFFSX88lslyi3qO0ePrcojrVkaniazZBxWFPGJi7ZibjkIXDISWAbqzYsykJcptZBLeO3kZT8ru3HfN4mFKj75UUVqA6VgMo79NR6QsERNCwqcDoRsKlEs1+inYi4ZMUydKy2/Ew2Q1yALg04QCr43ePzaMcXgnUxxrZnYTLUpi1RX1gkC5V9CbLYRiAUPC4n2bQpYfedLAjDZdLyIZrBdkRbHcjGStnDAcRD4CbpagODbK7DnasYFYKLpcQYw1dOjRzA6MlXMb9AiKYlgLJskM7M5T+2sDKD4DS7shE2oKg2SwFumkCMTIcFhkJMTKQrYdLmVYbhEBIJNqJgQgBzV6K7LpEN0/hc01mzwYoLRESJh7rrY5JrDs20I345df7KfW2Q4AZHicr+xUWTlhKRH1hIFKFYBRBdqwhCUrCpwp6SWAWphlZwzZWh/Q9lalGSPRbvkemwoYIpIYuy2430JBlzWRXIQiipYQsawJTgGmsbRfv7xDyAujsADqD0TtmMQQ+vgd5+/OBTQwhAEWkyyNAFVpRjipFlKZK+iKtY+qrtUDGHJGvALsevEqz66GMjLjQmu/VdoPMF85BKMpkRZYS4DsHoRTBrZIDAO7TX/mF6QH1ljw2/v2nE17qzwaff3X7p377WjOW2Xvn4Vv/5b+HRFu8vp/COwFfa6hRhySxqBYZ4AXgBY4eP+D2s30+UQLBeEAxOVVMW/haQ24VfNYDNwl32kDcJwP7ERTgx+yW9GkYQkwAgoRuTNDUHjgIK5DcE6i5PMAnHrKW8Dk7G2UMI+nLuBHZiW7uoNeKwEGA5fAeQ8qjqgXsyMOs2aHIxMW4gM65oWbJBUDPQHZz7hOi/Axg2IhsuHgItDIx3TRK9kQAugOL9BWDVlQV92tsoS9TBn1UDGUozzx0xW2rnzQw1wmn3vE5QQf2VcpdgEHQTL20RQwFqQRcSmkdjf89OPRRUsdtM0vJ8BsQ6Pf3JwumLLo83tf1i2bAFQHprWSJPRgO41PK2lTsaJQdgalPgGRBeZ2MnXyqiRIpEwY5o2wIALNbsqAAgXc35QK0l9x1U4/sjUR1HM9ZlMm5jEEftiAzrZodgEZkmtp9x67NWAbP47KTXNUHu5RNsqp8us352n3SqbAEcQj0DQMEd90sIL0XQxqobMm2J0uBZj9gdCnQzOOiLAeveQcUl7sAEmAnESMI5vv1oKedE9DLjvUf2Ru5KymP7HGf4DkwQpEZ9QkGls0nZM05CMEQ4iMcwa2uuE+6pi/abLgQN1uqAIQjOz2EoDT0yAaBgcEdpINxyJEsAsozglkRf8dtEYNgsq8mhwbF9+/L5Ps0wv5c6JILb1OGr4SI9AwWFRIxLCYGgqiGMsBkSeDmjYhdkzGpUmFgNXk//262YWA/bS6Gx/TpmNJGhjzj4CK9J6DkdkX2OTL/LiOw6dk2l311X1ysdqDEcpcaanMOXHqmuE++7AOa+qAbl/LY9oE53pDNf5tJ5nGPKoWEj+m9yl1BYOqMiMwrBgZYNWE3ZIjHKllxe3pfZ7LxKGPdhM14rFQbdhLImJA5pG8m/LwM127cTgQCl6AJ1nqGtAclXkfVSGRe++3rJY5ex23udu9B5jRKHOPnYPTaojzU6EZMVqWfmI9JNj3DCzRzieK13wUISUEGVxF89NswBC7Jns1FZO93YVoiMMlT+F3voksIYPtQmyDF4BlSrR9YZrP10TvL1022Pn7meqVFPL6ZGFjdZq6QLh3aMdlss2FQDHsbY0JoR1azmygmqOrorW4JYM2WPlfVENTINnYlSlaCqCYM12TPTvbhNEHuGNhB7qujpDN2cHZjyVTWQg4gDKCUsldzkOWM6amHJiapxmFEyn5Il8no84+qgYAY6rM75/y8CJiNRTuNIM/FcxIAvSWoVV1kcyI767IIxiPLa0earK4j6JOtAxSHSOx39AhGDn/KliE6svWQjYXLNHyqIBumlkIAPlX0iGq584zFhb9PFZlTozhA7nzsnPRMWu0f1z/Xk82Epz+074zsfX6Ue/ZeRD8wmt4oCOcBKSA3Lew8g6q6QU7qMz08v5eZAvG7VwgCxNoOjxUNjwtciINvyk5DqiAaRxAYGdSBGY0M5cCWdpZ1H1UDP8khGktQZTRBXazmQO/T7D2RUhI0xrAd+Jjm2oNJG32MbYcwyiHqdvfcPtEV2L3+W+djYEJt3Na2g9AKwTq87Zvs/y60ZqJrDzh79vLt9+sBaP88pRCqt/yy/bZE3+U/MWMJ4J+JVNijx+Gjv/UXwFj+1l8xlv/Et+AE7u7H7HLcK7F5KJBdGsjWoHyvhbk1TKibOCz+30OkNcGD8GQ4uJgWwDZDthBkjmqJk98F7n6R4Cd9vSuVTx4kbG0gHYFDu8egCYgIMOKPUM9w2lFAcSlRHQPJg2YiZamGFMrm3QbZJym6KaP0m70AvVHQpUB9ZpFdaRSv6BkpXilszwmEkqXC9v0We39gIBx//NJ7oD6kv2r8kuyFS8lwmbUaYtW7SWQGToHsjgDBh4CQAnojkTywK80sJPTGIBhg9EJGSS4nh6oWmH4KLL4ZPUEHrDpoJwH5J0wAzW8DNhdASDwmPzID0Ns88ShekrGQLZC0EXScBUy+5JfR9jygeBVQH+ziBTYAACAASURBVAgcfcL0wTJIZLf0oDRzLra3F8De98l2ybdkq31KomxZ/l0dSdSHTI4UPZCWZFXS5W5B7lIRQS7Q7AOjL8EOv9eMP89eR8B1RcA1/RSojhn2AwFURzze6YNAfRCw//0Q5YYBqiEDN37hsX4isfcjj/JYIivJRCZLPnb8MmD5PsHs9McK9QEw/dJj9UyieBWweUymsLjxPH8jDPJQ1XCRlywpW85fB7QzATvm/1UnAb7mMShuAtRzHmPtKSWuDzkoKF6T2fEG2P+hw/odLlBcR0YMIcBsOT32MU4+WQXoa0pmx1cOi/cVhAVmnxDEeAOMXgFBhYEpqQ4lytPIOM5FDGMiUJ987rB4T0HXfO0ueq72f2ixfqyGdMr1Y4HJC34Ow57A6BWPizM735HXAukiwGwJJnsWXMWy+s05weP4kgFK6YLfL15Tkm22lGpWRwJ7P2bojy0IgLIHgqt2Fj+Ht1ww20ywpL4LsCkZsd5rxCRDvsf42mLxHhnJwz+x2DxSMNvAfR4LJAsWxNf7Mhapc2GqqzAs7E3pmfwYgPTBop0qNDE0p/cbjS8dmjn9T8Ubi+0pqwe6Cbd98sLBbHdyWrPl+Rlf8fzrNd+n2hcobj3yNy3Wj1MUbxyqfV4f7YTgK7/3qGcS2dKj2pOsgOgltzFopZ73YJOMF2WIHttTjfFVNyRUmi2Zr2TFhez4mlJnUxKMjF47NFOJ7khgdENglb10cIagphurwW6w+AbBlohyV7N2qI40jv5oi25s0Oyb4belPJSYf9bh/iOD0TXPARMfJXRkyboRmbse9Ob3fhj69DLVel+h3iMbr9qAyfMW20eGAN8BMqa8SuvRTiQmL1sgAKsnKcavOkppxxLjqwbrizQGL1ksRwZeC4xecQHtcjVUUQgHnPzOEsuPJkiXDragBLY65Dmffxz3d08ju7PYPjJIFwza8amE1zHR0nMwkazDAIJ0zUFgdm9hVh2agxQhFdCx9sHmEcQ1AbricR9dd/TnRXAKT2CW3VkGFd0xlCsoAasFipsOLpFIl26QSZuNG4CLWXboJgYuk8hv2jjwUDDLFosPC0xetNDrFs1RRq/dio8he+VhNhbdWA+DR4DyYyoMJIQNyK82WH40Q3bXoT4wMKUfAoSy1xXSO4aVBZkgKIYRycaim5Ex8olEsurgFQFceh8HMAJIl9ye8lGO0fMtulkKs2pRH2XILzcIWsJOUgLT2g3SVdlYmHWfLKoHRq4+TJC9YaBNOzfIbiru1FuLe5srJHcV3DhhsNBYQ5cdROVgD3Mkyw7dNOE+9uDyLUDXzvm7nr5YwM2LKO81SO5KsnVaQm3jl1oEfQAgNy1Epgl0c4NukiC9XAKS4UR2mjEIaFZAxHAivW4QOklwW0eAWDXscVxW2H5jD8XnK4YKaQkkCuphyzCf5C0GessprmzaQb4pGsvORs19hBDwRlFCnCioZQXRtPDjIrKHCWWxRkAsy50s1nvIGPDTH2dhHbCtyeLFdNZgNOTdCmE2JkhcbRHGBURZk2nsmb884983JX2LWkG0niDNMLAI1iLUDQN3nIdoOoLENAGabne+e7CnFEJdD8E+UNzu4KP3U0mEtt0tqIUgeIzHL9gaQwJrYvhZEWKoHgkuBgUBABzTXXumNEl24K8HlQAgxU9nI/80qPzTgT1vBwf91e0v9e1rzVimjx+H9/7d/xjVmYef2njhA+mkgf9sjG5K9i+oAFfErsHcw0waVkdMW7hlAuiAyQ8Myl+poD7L4DJg8qXA4p9roe8M7MxBrdk1V59amAcFO/UDywgJ5FdMzGwOHfRGwo7j/QBCyn5B2VGSVz52UBsJe9RB3xnorUBzxOd5BUDGH+839Ca5nHLBbkI/Tc9a9tH6/cRfn5cQPxyTIdWUdbZHDmahuJkd0F60EKUGxh1CrSCshKxYT6G3ZEBVzfj/bhK9cWkYpJOj5wSZvXfLp2HwFtoiYO8HAne/7JDcszohvwm4/2XGdEN76DuD7A0XYotvsUMwMAgVuhLs+rsjMO+74KpjgsL8zmP5nhwkh92IFR2qJjOmK4IGrxlukd4qspAx/KKXcuqScsrRVcDmiRiCN7I3BNoujUELGffRbBnCIUIvY6RfsJt55NdkJvvXb2fsqdueUbI6+wS4/06AWbOTUG+j9zYybYPct+jlmwHZnRiAxeo9snwuDRi/IACTkcHUJVAfRZltPCblKcG+yzjskJYgs50F7P/DWHL+DmWc6R2weeqRPEjWBhR83/qAgMYWlG66LGD+Q6A6jOmqAoMkUlVMzq0P5NDt1zMduozezj3WPrQzsn224POTFUFWsx/Z2G1kbgsyjuUp90FXO59lz7QBEUTH4+RSYPKCQ4Se3TXbHYuoa4K19TsRpAQCgHZKYNwzE80BOx6FJVPT10psz+gThiDo6uWn1WHvRcKwqOdnVsBEMGQLMbC4ug7QJWW1fQekanfhItKStXd5lChPCG7bGYG3dGGQDA7l04LP7722QVHmGSSGEJT0IX4ZiT5ghV7aek7JYH7rB2/u+Nphc6ag2jD0F1bH3J90xdel742Av++xbOZiYJ6zO26rzShlHN04lMeS+xjPh1e7lOt0EXbSWIEoX+VnQ7WIfkUCX9WEwVvaTngtDJJOQRZsfOmwviBIR/zuG6Rx8TfPK7J83YhBJkHuJJCmDGgmEunaY3OmkD1EFs5gCHxRXc+0IQal+CHR12Y87tlDfN3IQqcrekTbqcDo2mF9rlC84bHvtzVIMqk2lwNDaHMmBjdTxdCVkve3Y75Wdu9ZhfFWqKJqA+q5QrL1MBuPdqrQFQL5LRknn1AqqtqA7LZDO48pvBuHdqq+4s8OUgyBPsnawSe999EPycOD37iQsW6jQ4hMYl+xUe9x+5OFhR1F2Wkboi+dDJnNOCj0KgL0il5Ms3Go99TABKcLi/XjBOmKrGh+a1lpET3pNnY7mg0Tfs2Gnl4IwKws02sjG6xqj+y2RnWSI1nTB+pSgoN2pqFaD7N2g89QdR7OkBXqqy7MqkN9nCJ70w6ptEGTtZQd6zWogPFk+VJFgBdZTr3p4CK7pssOtjBQlUU7TyLryO8kW+xeBwFQlYXLdfwNIKtkczVUZwQhIF1ktyuLbmx4PeZkErPrckibNQ8VfG7gDdlGV1Cemryp0O1n9K7mmttjPUJCgOZybndys4UfJ2Q2K8vux8ZBOD/0QMqKQTt2nEA1DLORHX2dQQB608LOUqjSxvoiRV9nBOlBCMimQ0g0XG6g1g2Ec0yl3bYQ2wp+NoIrEqgyAicX4CYp9LKCT01kRj19liFA1JZMpNFk9mIyrawtQbL3wxBCdBa+SCE3FUKRAi5Q2polTIRtOwJOrQZGsfesvs309QAYHcHuV9jGeBueBwDLDcQoB+qGMlbvCfgiUxmqGiLP+H5lRUBpbeyRdMD+nCm32y1EnpOpBCiXBXaJsm/dQtMS6Aa/822uN3E7BV8bZDfhenAZGdkofR0ksd1PYRn/McBiGNhX97Mf+DNufxkYy9HR4/DRb/z8Gcvv/jc/m7EUQjwG8D8BOAFXD78VQvgvft7b8bVmLJOiQ/1LJfKswzcObnFTjmGdQmMV3PsrnI5LvLqbwb/JMH20xup2hPOLe2ybBNlsCwB40AU7Eu0EWBlMf+ke1kvMfqnC5nYOMW5xMi1RtgabRUFf5khC7TfwMXFUaQfxyKEtE6QpEzKReCSTFmnaoWkMxo+WuL+cI/3mBrJKYI0BvIB+tkH3fIT8bAPvJboNuyNDrVBJQBw0SFILrR18baC0R71KkU13qVhtzdPYPmQovr1Ec1sg3avhPxlzAf3uBl2rkY0aJAD0vkfnFFxcEHSthm0lvPEYjWtsP5/BhgB5WsNk9Ftaq+C2Butf7pB8maJ9VgMrg5A76FuDw++8xvXzfdz9WoBMHey0Q7dIuCB+rWHfLylP9gLh/RLL5xOEzKE95OIbIsDOBYqjLcqigBp3KGsNOAGROODDCjc3Y4i8pRT3wxL+KofbbyGXBj7zsPsEDHrcISwTNPsemHVQiYO7zOHmFvpOozqNgReJQvNOA5NZ2OsczREBsJk1aJYpIAPMnWZK4qMavtJIXmvU7zcIpYbILTaFhpq1wCV1rG7isNAKyQNgn9a4G6cIOqA5cFAHDerbFPkrhXaPX5D1qUfxXKHZY58jjhqUJsPqQwe9pD+rurCQtcT6mQAEWev62EJVEm5mkX+RoD7mtofcwe4JJLca6w8opW2nAW6vQ32QoJ0HBBPQHDqyg2OH5riB+H6ObhLQ7APtowbNTYJgPNzIY/S5xuYx0Ox5SoejRNtnHuZBQXiJ9bsefmKRf56gfuQw/lShPohS7RBgx0B70qFq1DBUUQ8a8x8C9fsNzJcptk88zFJC1QKbf6GE+UGB9XtMYoXg8RGOQVHVOZNW/WuJ8rFloqmnz7ebMSEPATBLeqDXxx7THypsn1lsRcD0Bwb1GPTnbjhYaY4tRCsHGW9+Q3CwftezX/RTMyRpSkuAVB3zeGav6WuUHUFkc0jw7hIOaoobgjQW2MfFuga2zxz2/4hetHYGmC0XuuU5B2E+5aIVguqKIAWq0wCbc1gRdEB7aKEfNLI7Mup9sFMP8tppQDunhzdIJo5mtwLNTA4BY8t3JeoTh+RBwY4VylOP6acS28cOsuM1ZAuC0KCpMEjvuRC0Y/pH0yWHEu00BmWlYvB41nOJzTtxYJNSgr195jD7nkKzR6C7fhKQ3wDNYUC4EqhO6IXP32AopN9ecPBCMCtQ7wfIKPPfvAMUV3wdlyqUZxz8+ITA2qVUDQBM8qSqQ2L1LjC6VAia8uf6gP2e1XFA9oZSy805j5VqAsrDGFamZZRSkjnenml2RRp6onm9SqRrJms2MwJn1XJIEwQ/I9JKlGcCxTXVGe0sYPJcoRszACvM42BCK4L5CNwggPKsT5qVrN9ZBnQF0E0F0jsOJFwqGVZVU0p8+x0NvWXyaR9OVR+awTupGnqOg2Bw1OqRRjtlqJnsANVKPHxAgGc2lPdXR1QF9Omizb4AhEF+57A9VUPiqc0IZgtNf2Z+T5a5OpRIl5Tobi4UzJrXsK4CzJahQc1E07soWbfkEgObcd+dEWQWNwG6JNtuyhD7OTW8EmhHcpC5y45ezHqPQ0wRJJbPJsjvPLpxinpPYPqcUzTVEsBVhwRk2zOFyUuL9YXG/JMO7UShmUmEMx09sSnSBRlemwmkLmB7kkL4gGTjUR8YqNYgXVjYnJLHZqqQ3UsGllUBdkRgb7TA5lxT/dAE1PsKzgikaw4x2qlifsOMbLQRGAAzk2M1pAPGL2o0hwbaSHRjhfymQXdEH6Y8yFHvaWR3Hbp9/o7ZXNHHmQno0qM9yAApsHmSwxmB8WVLhWOhB9BbnhgENY7SagEt6AdHoVixs2+gawV/lCK9a9EcJsheNyhPE4xe1qgPE6T3Hew4QVfEHmUt0U0UvErZkTlOoCqL6mKEZNEHSGXsw1QCdpzALDV8ZhC0QJfm6D247cSQaR2RvTSbCFYbCyiBkBh0hwWBcAhwmYbIDaAY2ORTbpOsO7jcAP3nv7Fws1GUDzu4vYKSWe/hRykgBOSmpsTX6Nidqcl4GjWwqLAOvkhjCBF/g0KqIMuWya8A/5Ts0BzqRNoOyBLeHz2WIspqw2wMsa0A16fISojZFBACIqaMo1covC1vBYCmpV8yMaxI6QFvBJhCRVmttQSfUrBOJLLDPWklEnqFesja91YON/8WeP4zQKaQYgcuv+63fzq7YQH8Zgjhu0KICYA/FEL8dgjh+z/PN/laM5bzj47D3/m738Zvv/kFfP6wj0nWoOo06tbgaLLF5e0cAcD+bIuqNZjlNR62OeqKF7o2DsY4OCehYyVEVaZwtyny8w2kDNguc0AEJHkHKQOkDDiZrvHla/o1fcdFXz4i0Ks27FXTxsG2ClgkkEc13CrBB+9f4ccvTmDyDl1lABkgtYdvFYIXkImDbxXQSuyfL3B/OwFaCZE7hK2G2avhHWs1ylUGbDUwYq0GXqfwRfRSTixCrTA5XaMsU1Z2NArCeIiFAQ4a+JqmH6EDQidZZeAERK0g91pI5RCej2CnZFd9Fj2lex32DtZYrkYoRvVQzfHw+R70MSU43SKDaCQw63B8vMSb+wl8paEfNMTjEv4yh35ni+aex1ZuFXzBiaBeKfjzGr7UkIWFuszgEi7ek5MS9sUI/qCDeDAI+y3M8xTteUdvivGAF8g+TVEfO4TMQ64VhBNwUwu5VQhJ3I8k4NF7b3Dzxyewxx2EDMBWQ7QCPvWADpClgh85QHuItQYUcPj0Hos/OYQtIps79kwdPu2gcge3NhC5hU4c/BU7/VzhoVcqemUDxH4D3ymgjmzXtIPfGIiGckZ1UsG+zjH5QmLzmME+ds/y/OQWQgWIVxn8SYPk8wzNieV5DwQfqt75fMPYsvLk8wzigw3aGwZB6LUcvumFBbrHDbA29Nh2fD99p8nqHTiYeQP/smBS6h4BWHqnUD9uUcwr1M8nyG8kth/SY9udtkAroTaUTnczD1VK2BnPQ/ZGojn0EGc19A8L2BEBc18Lkd5LNAceshVwGY1gIsRAokOL9JWGT4Bu36L43MAboPuohPo8h94Kvl7FP21BP2/7tIa8TbiPz7ZoHzKMvtCoTrgwyl4TmBL4SDQfVQhWIv0shbRAdeqQv1IEspWEGztkrygRqs87iFYOvuv0nqXkwoOS+SjB91kcIOgAfaejCoILifyVQnPg4dOA/JUaPKLdKFZuzHkNJLcK0u6Ydl3y3LczstU+BZp9/nibtQQ8oi81hgjFEK1kwXCn3rM8eiHRjRlYlb2RKJ9YzP9EY3tB363LqJ4QLoJcFXa1IZrHILnhPnnDBXz5mMMNl/A1ei8rgIHF7sYMSVINg79GlwLrZwSFwpNFZoUMkN4SPLNSJGD0goFY9anD+AuF+jAgv2Yva/pAkNgnQCMy0yJ6UmXDAcD8+wLVSTyGMTir9952Y35mzZLVKEHyfh8rMwafaAyUUU1Mtb4mO9rsAfUxPerFjYhAiHaE+gjIbwKqE4HRi4DNE8r4kzW9vek90Pchm00/mODnxBa8nsYvMDBzfXq5tMDoymP1VCJZ73ys3Zj7lL8maGv2gfSO6eH05kYWeCoGf7NwZJ91DdR79LEDQHEd4FJaSgCy6t7QgmHHAfMfMYhJuPietx7NTAwVHNUJmfBmHoH0F2TX4YHJpUO9J9lFC2Bzzse6VCBbeHTRN7w9E5h9RiZZBKoIqn3aLPI3XKD2fto+5VxFtryeM2So99wmaw44XcKQsD4ZW5f8jHUjpnvXhwKjKz9I2ssTifzWD77TIGO4VBl7dWOYkin5GetyhjrZjBLv4tajHXO/NqcKxRtKfrfHHCK0E4HJJaXdQfY9yEzcrecS+Z1HdShRvKZE3CUEnX3oU7IiwN2eSIyuyewmGz94ZHXpUR5p5PcWzWzHUgtPT2x+x/7cZiqRrtinCwDlqWHqcM3u5GzhhhTlnsnut0G6AFWHIVXXa0EZ9m2H+tBgdNmgOkkGVl12AemCEmRdebLLOftXkwU7dnVFr67ZWLRzg2TVQVYW9XE+eCh1FRk5R/sGJeMEwgixD7Vit6nLGc6X3TRAZKtVZXdoCICsLBng6Om0hWEPK8Bk3YpyVAZ6MV3XJwp6VcNnZvCAukkKvapjIJClL7Pp4LMEsmwQMkOfZttRZRHZzFCkBKGRxRR1O6TzcgNjCq0Pu3qQEIY+TLTdkGbbs6qibneS3B5Uvh3goySBa//6wCC5DU0LkRhKXpuGUlUlKYcNfpDKDixmL8n9R4DlTwaTP0syG7r2J9/357j9pWEs/82/AMbyv/3H81gKIf5XAP9VCOG3f57b8bUGlum75+GD//zfx+p+BPWgAS8QdCAwEIBZcFHbzj38yEHfa/qI+pCd2AsGRNIsLpi84UTdpWC3VvTu2VH88UmZfKjqGKBhuVjpxlzYNQeBgSx1TEZMAZbehyHNkWmEfL++J6zvv9LRdye7fsLPH2c7Yn1IdRK9je1ukdbf+mAMFYNYVL1Lf0yWXKSqjtuqy/gFEcMbzJaPa+YByVrs6iH6ihbFx9kxX9frMKRtFq+YLNkH2tgYTtPsB3QTj9FLFdPyKG+D5J/tlIErsoupp5udfLFPjO0rPPo6h+H++P/diF4syna5WOvGYuhF6wM8VB/ssuVirZuGoV6mD0qQHSWc9YGIibtRihflr+1elJg2GCS2suPjpeNxFT4Gl1RcvPoon+vPlXBAfUBvpjfcZgamxAV6lGPqmiyRbHltDPJjvfNR9t10MsoFAcSFFh8XZAyQ2bC3bvzyrcTCZBf0sj2nt1B2IS6wxVdSeb3hddlX3fTH0+U7GasuWZWSrKO0VzEsqA+C8QmGPrhkxUVlN+YitQ/l6ZkNXWGQOfZhKX2Ijh0B2W0YQpP6c+MTXrPpw64vzaUMc0kiA2LWDGapjrmIzd/EEB9NnynlyFwYNgeUPhbXlF62EzEs8HvPsK7ISJZnlGT33weqiXUysYaD/qrdOe2l2C6NgCCe5/5G5ovnxxYCzZwSbpdy/6TD0InXTz57SarN8ZUFkVe7epMQQUp/3Lox4vVFqXmXC3RjgeINgUD2ENCO4nZnbwFDsbsOkvVOkhrE7nuEnwsJvWU4ULIOsZqD03FTBpRHBI+64ndxMyfz2YcDBcm6mD7MJl0GlCcS2Z3/ymOa+Ve3FcCwzUA8vh3lqvRS8/tddkze7UOC2glZtCFMygPtiMevlzSna49mKodz3B/rIZTKCGQPjsmrGZk51YJe2T1Jb3kMtUlXfpCJVnsxnXjl0E76JPIwpML24UfthJJ04eh7JagU0BVlqZTs70JuuoL7q2t6ylTLupluREDQRcltsmVHYXmsmPQro180ApBuTI8usOsWDFIMAAYSaCcq+ggpp+2rd8zaMT209fCG7GG6pAzZ5gL5nRuCjMzWwSW7gKFmrpCs3CApZshXQL2vkS74A860WLLSzVyhuOmGAJ0+gKZf9MvOw8f0U2FDrH2J4CNwH3TlB5ls/51qttx2vSVYk61HeWowuuoGWXrQYggS4nd9gCmjJ02IKP31cLmCN2Kw7/QApwdDNqNkV7gAXTvYfFedIjoPKAFnGGjkUgW9JQCUjqFGwnrYkYbZdPCafsVeNi9rB1doyMZBtg7dNIGu3FAnozrP4BqADNzI8Duk8xCdhyo7dHsZw336EKD4WDtOmMAaa0W8lgzH6SWwnsyZz1mF0lei9B7Svi6Ff9dMobXcX58oyMYOLGNINFNbY+0KU1vNwLiJlvaoYBSE9wznyc0QAhS0hKgtmUdFuaratqyKUQxAQheB3FuhQdzAeP1U9LYO4To9oPMMsoFWO6mr84P3cagZ6R/n2S8pmg4heyuoBxiAJCni+B4+7PyV/e3t8B4h+HznBrlsqGpKXbUeJLJCfXUB+RPxQA8ErSV4jPUlsHYHSt+SuQ7eyrhvbwftCPGWx/Lt0J7+3/LtH66fjk3+WQCW3/w3/qOf++v+4X/3m18CuH3rv34rhPBbP+mxQoinAP5vAN8OIax+ntvxtZbCGu1wON5i+8lsYMDyS436/RbwAupa49/6jf8H//M//FXkP8jx6//an+Dldo6PPzuDyxTya4npv3iD65f7+Hd+9Q/wdz/+Dppa4+zvGfzN/+T38N37x3j+9y/g0oAPfuU5Huoci02BD4/f4HvPz9AGASwNivMN/u33/gh/8PAEzxdznBcVnn98AtcIzL8vcPc3Ophrg4u/doUvrw4oJZ3F4I3zDX714gW+e3WBi70lXt7PUTYawQkUkwbVp1P4kwb6MkW3b2E/6CA/y9GNAmQCdO9QlgkBCCuQ3irM/vprtFbhWwdv8Ht/8g0AgOgE6guPyQ8Mjv7Vl7j8nQuUZx5hQlRs8g7VNoFcauRP1xDSw/5wzuTYDti8Z5FdazRPG4QAhJsEF79yhUWZw69zrE8lQishS0Wf30Zg85RSVACoGolgAs6/eYPrPzrFs3/+BV48zNF9MYYrBLrDDullApcA9QkHAd96/yV+9PtPByD35G99ho//r2cwv7iE//05yg8aZJ+n6B63sAsDdVIhPC/Q7DHMqHy3w/jHnJJVv1RBPs+AZ1tYAN0qxdNnr/H6/zhH9c0a4j5BkGSKmn1g+lnA4kPAnTUwqYX57hjVCb28QRmo9zawn41hJ2QGhSMLahYS3bsV1PMMNgee/Y3n+Oz1AWyrMfluhvoo4ORXr1H/7hlW70c/7nkDNauw3WRQzzP4NKDZF9gWXFialUD9rQrm0xzt3EMe1ZB5i3qbwnyW4Tv/0sf4o9/5ANkHS/g/mCNZAuunDMVZfhiQ3jGJFRLIfuMGd79/wvPzzQbJZcKFzYYDC4BgIQhKDnUZUB8C9qTF+AcpXAps3rUwS4X8tcDmqcPoYo3lKkPyZYrmtIN/adAcO8hGoDkE0juJ9QcMowoKqI/8kMwLAJtkx8T4NKD+axXkZzmCCoPvN7sV2F6QjWr2uci3RUDyjRXy/22K7XlkJbIAaQnc+G8C+O050Bxb6GWs6kh5XMtTMiZBA0n0ywFAaximZUceqlPQG2B7ETB+zuHMu//K5/jep+coPkkiU0igl6xiCq3n0Gn8MuDho364EeAvaoSHBLIRCFJifBmweJ/bqOqAh2+zQiZ7TR9yeSqxPffIbwS6f3mJ7X2OdSeRX+qhqzW7JcDffIPXe1DA9il/zIsvNYprMi3dmEyZjWmw6/ct5KSD+TSHqqO09ICDsW4sUf9Chf3/M8PiQ/q9g+Y+zn9MMLR+Fj3jZwKiA6pzi8knGtIGlCcCwVB+27NLXouBEbMjgdmn7C91CaBrXmvtjMBy8QEw/5jSURsZW1WxckR4oD5g8NPokj706iwgiMjCR9C7PZPD1W9P+wAAIABJREFU9QwQiL35tYCjvx/rVixlzie/Bzz8AmW05SNKyLbn7DCuTnidmDVZUHqv2aXrMtYFbZ46jF4qqIrnIVkErB5rVqKMBTbvcPDV3ZEVac+ByReSAVKtwPJdib2PPcpTEb3OCg/f8dj/rozsCQca1aFAdeox+xjYPKYUdvqpjN2qwP2HmtfxMmB85bF8xsoUlxKAr58oJCsgvyUbFRSwOaUcd/QqYPUOq1nGVxYP75uhJiVZB+icC756X6I+BGafEnQtPgRmPwbqPb3zYfaA1wW8/hWJ/e/xvG9PJIooa272KBNtZ2QNyyOFh18I2PsewWN1oJA9OHSFRHkshwCk/I6g22uB7aMIuCVQ70lMLi39ngGojgw9pjMJUwWECX20LpHQpUB5pGAL+lybmUR+7+CMRHVISbHOWP/iMmD6hR+6Z1ePNbIHyoqbmYJNBeoDdq5uTjWSCMi7QmB8ZVEeawSpYcqAZO2wPdGYXHZYXxim/F5TKjy64Tbld1GeHb3gPhGYvLRQdcDmUYJs4aC3QLNvUB5JTJ5b2JFEO6XUdntM1hNCIH/donyUMxTrRCO/d6jnCuOrFvWBgezI/HnDkKD6kADSZmRVZReQ3XcxIMggWTnkV1vUpyM0c4XRZYOgBLYXOVTjkd/UqA/5YdOVRztRrFZJJFxiMPlkheZkhCCAzSOD2ecN7j9KcfTHW7RzAwQ+1ycCxZcW9XEKVTNsyaWKLOd9h25EOamqPFQlUT7KkL9uh37QdqKQ37YI42QA0gCGECQkGrImiBVSwKca7Yy9oqkkwOz7PH2qoLcdwXLn4NOEns+yg52n0BsCO68lZK0QjIRaVrBHU0jr4QoNfVdBtB2qZ3tIX1ccqq8D3LyAWtfwRQK5rslUejKMQUrA+J0X0zn4aQFRNpHh3DGdsG7HNsq3WMGeqQyB4NXoQX0pHBnUr6TSAoP/fACuUT4bvIfIsh0YDgFQEdRqDV8v6O90HqLvuXwr5TVYC3V8BL9Ysnu0v7313vjToFbhJ9+8R+h+yn1/dbv984BmIcQYwP8C4G//vEEl8DVnLOcfHYen/+l/gKpJkKctWqvRfW8K/14FuzGYHG/QNAZtaVBMa1SvxhhfrNB1Gl2nMCoarF6PAeORjlo0qxSPLu5xdbmPycEWm2UOfZXCfLDCo/kKV4spyocc6bRBc5/DzGvY2xxqv4GQHkoF1IsMQ6hP4iEfDOWU8Zbt12gvRwgyQOy1CE4ilJRryoMG4TpDSAPy0w3K2wJ6qWEPOgjtESod5UkCGFvkH6co328GT6ZaariJAxIPIQPUdQI7c4DxEJUa/JDiSYmupMcTAKACYAWlmFbEL2MBN/IIYwuxMgiph14q2H0LtYyfeAHIhq/R7TvISiK52KK5Gg2MkZ9ZpqpKwE65LaboEJ4XcGcNt3ul4LMAtZEQT0rY24zy4rMNypsRROBk16wk2gO+D7eTTJBPAvRaottzEHn8EXnNmhgdOzPJSAaoin2fIWcHKQJQnG/QfDwdpJb1kxbmxsTuOPZ7upwSyTBi3UzQQNBhOA5qwxoU2Qp0Zy3S5ym8ib2AGWWgwZANNGvJGpkY6JIsBcF05pFda9SPW6gHjeKVZBdnYBcqAmAnjlU4EwfRSISc/h+9oL9HlZSdpnfxPaL80WumALfTMOynHcV90gHJg0LQ9LS5PACeTK3wYlgwky0kyNs8c9ArObA6faiUS/j6Zs2Fe9+j2c4DZc92F2TT9+QFGSte9igZTNZiqD3pmXVvMNyf3VL+GGSAdFzgekMWv5sG6I1AdeFgHiRUQxbEFgyAKs8CggFEF7c3BmM1Rw56LaErgWbfx/TlyNAJAlG9FQNr1OwH5G94XdpxfEzC6yFZCFRnHvmrWK0S2d5utKsTqU54HFS7C10avwCDk5ZAfchjKht2fTJwhJ9Nr3nNJcsdOyk7gilWIfCy7IOS+veXLeWk7Swy0aMImrZkErsxGebtBWWyffWK3u5UEy4jW7x6j52zrATi6yWrXeBSN+Z2Fa+47azH2b2mbDEwcj4G1DTzKFuMVSBMOo6hPlMmTfcBQbpkomw3iUz6W9LNdg5MvqSH0ie8v0+DBviaZsPO0t6PqhoCqGbWV6pwG7yJTLZmkJXe8mvHK+zqOFzsE04QGTG+l9c8XyomqfbdmekqYP1Yxv5PEetbGHJV3MTk4jjkFzG0qHjj0Uw5+OiZ6l4F4GL9Sl/hIS33TVd95Q6Z4fEVgVp1IjB+4YdaEwAEp7FOxhYC+Ws/AAy+Fpn5nkVspwSE1ZFEccMBgWoYtmMzfiZ1HQbGvp0y/EoEnrdsEVnZ+DvRFXEQc2VR7xGw6YbvZcodQOwKMdTBMFSIzw+Sx0F4MspeATaTSLZ99QkDkbqcUlCAMs12LJlIK7hP2QMZYpdSvuuNYEdlQRazG0sEyaqQZo8qHF37+ByehxCvdxGYjsvALDnUjwRJf/Ps8xo21+jG3AldxmoUG9COZTynHkGIIZSIXms/hO90I4nsrkOzb6BahjqxtoNBPu3c8Hi/rtAcZlCNHxKX+4RpSAzMqaq5z8IF+JRpwsnrLarH01jHwhAiaQPDdYxkX2Xss6SKgwm6NlcM8CokzMrBJ+yN9KZnkMnMCh+QLFt0YwNdWrK9ShCsWQ+v+R56E6WhRsJHpk3VdhdQ1LCKo++xhCRz3NfH2ImBqiKQUruuS5eTLRWONSgDs9t5AkzrCURjFUl/DQvvY7psDMPK9BD2E5SIFgRWp8jFFmGUkS11nnUlWlLN0ocG9axfXxXSgzPnv8J4Cud3clQpCC6NJuMZWc6gFcOIej9mHxhUt0Ni7QDqurcYxreZ2bdDhKxlQE9/68ElsOu0BHbsphQM6+nluf1+9QE/w+uEgTUdqk3+HLfQNH/2g37K7S8FY3n4F8RY/ve/+WfumxDCAPh7AP73EMJ/9nPfCHzNgWX65HE4+zv/IYIV0PecsKpGxHoQBoHoLReZyR1L7ZMlJ5pehxg7L2BzdhqadZ+gGKeoZ7vFHAIXkLbgojtZ7RaZvVyyX7zUB1wUq3on3ex7CvvOPm+4sEsWsWS85AKkOo4l8FGuazZ9iiOGCXIQQLpA9AwIdAWQLoHNBRe7IWKu8pSS3r7HTnj6ZboR/TV9Yf1QlB64H+0sLqx8lLnNxFD8Tl+Nx+ilxPbCY/qZxPpJ4NT6gBP10QsyB7YA6lOyGL08sD7gPrVzSgzbqYiJjVwc6DJg/RSYfNkXWu9+6PuFZjOPRfBHAsV1wPaCHpx2wseNX0ZvleeiqhuJ2E8ZZYxxUVaeBhTXXNh1vdwtj3LHfW5ndUywVdxwkVSeBRz+MRdUvWcrWfO82RxDf2BQXNz2/9fOYrF6zkUyuwR5Lts55bsuYwDGw0dA8Wo3/R9d0e/TS/dcysV9fRhDSA54fsyGSZX1XMLl/Hd9wEVeuqCHK4/7q1oM3X7SIpa08/3SBd/PbChJrQ8obQ6SzBp9H1EuOufiPr9h9cbyPYn5jx0W31CU0kZPEysyovQ3AbJFQDMV2F4A+99joqeMUkhpgckLi4cPNLLbtxJhmzAkueZvPLpCcBF855nc+khi/NLH2gV+R3jNIJH0ntUa6SJ8JYxldO2weofbmj34YXFttkyQlS2lp6YK2J5KjK88NmdyAD6jaw9nWNbuk51EO33wQ11DEAQN6ZIAg14sHvfJpcXymUYQlOV2Yy4WijdkSaSLC/6UEksEIFv4CKZZ/p0uY0LoiF6toMjg9AsknocwMJXFa496LpFs+JnpJeDZwg91I7oJ2JwpzD/psLnQMSyFC+JkHZA9OLRTSih1xc9N7y3LHlidka482pEc2OPi1kcpLGspxpctlk8TsiOWaaPVvkb24LA9UxhfWXgtUM85yPIJkN1Hn9iWICFdOQbjTAXG1w7VniL7lEqYDRmiZOMZ7JFScmkLyXRXy3NRvGFFizM8X33ib/bgUO+rKDslCPQ6Amyz++z0bFbPniGwjgNCYHuqhyTbZBMG2azZeDRziezeoZkrZPcO5bFGfmfJ7p0apCsOxGxO2W073rGT7ThWnNxaqNajG3HY1RUEy+mDRbOn2QE5igs3wc+iqlju3nvr3pavImAATH2qb3bvkCxaVotIRDBjCWAPGGiTPnTwSqDZp/cuWVo0+1ykqyYgWXYDKyQ7j3bObevDaEY3lhJlJZiqOtJMNVUC3VhBbwlIVMNFqjcMhsnu+oqL+EdCEJLc14OEM2gCGpsr6JIgoJtqhCgL7j15vR3CjhSy1w2aQ3opXCyG16WHyyVGX27gxglE61GeZ0gfLFRlhy5PVpn0dWasdujl3y5V0OuOaauZRLLo0I01kocG9UmO/OUWvjBwWbzmjUR6U8JNEwIV56E2DUJq0M4SqNoNXsEgBVzO15edQzdNWQeSaLR7KfS6g88UQd9II7mrIKxH9WiM7HUJN07gNb83VGW5DwFACEx5bT30ogI6i+54Eiu93NDFKzctfGEoVe0oi9XLBlAR1PT9kIIhO3pRwx7k0IsabpxCbVu4UQKEAL2oYGc5VNkOXZG+SCCrDnaeQy3r6HV0CImGLFvAOoQ8gc8Neyn7Co4oERV1Cz/KIeoGUApulkNtW/hMEwwKAX23oWw01ZCbGsHoXf8kQKmq0fQoZgl9jkZz/yJzGFJDUBjBl+gswrhgbUndUDZbNTs/Yv+n0V8JyQltS+nqUBciKWc1Ue4rWRcitCbwy1KEuiFYKzKCvRD4fCkQypog7q2AntB13NbgMVSL9AE6JjKSvZS1//8eYA4pumEHGCN4hBCD7BchRJAZWdEeFP8kSez/T3osR4ePwy/86z9/YPkP/oefDSwFD/7/COA+hPC3f+4bEG9faynspKjw7WeXWNQ5jj9cI5EOP7g9wdl0hZfLGSbvN2itxi/tvcE/ePEYv/7Oc5TW4L4ewSiHL24OcLK/QtkaTLMGme4wNg3+8PvP4A8qaBk4NJIBRjkYAHtFBeclXrzew+PjBzy/3sdHj6/xo8sT5EWL/VGJ+y0TDqT0WF1PkOzVaL8YQb+7wfY+pnalHn/zwx/jdz9/Fyf7K9zcT6G0Q7NJ8Y0nNzDS4bYc4e7jA+hHJdr7DCJ3mO1tUdYJKhHQ1gZCBMznW9zfTKELi/KxQAhAlre4mGzReYlXPz5CSDxEI7F9BwiZh0gcGgFkRQulPKQI2DyfAgAuPnyNRZVh82KKTeEAK6AnHdxdb1rkomr63gLL/RF01uF+nmLvZIXy1RTdX9+iuxxh9t4Dnk3W+FHzDn2vMmB0VGJ1W0CPO1S/aNE2BiEAxwcrXH95ALVlUNDDtwBMLZIvU3QzD70WyO4FHn7ZQo0smqsM2XtLbP54hvDtNR5qA51YdKsU1RNA5ha+0siuDJo9j+Rsi+r5COJRhQDANQpSe6wmCfRWotvvYO75Jbn5TgvxYNDOBM5/9Qpv1mM8XI0Rcod8VuPOT+CeVghvUviphdiy0gaZhygVzEJCfLDBIid15C5qqBcZqhPAJx7F0xXa78/QfauBeEigTios35fwjUJybeDOGnSbDNICqw86yM5g82sVxMsM/ryGSSwerkbwiUN9JHH67RtcfnEI0QkkD2Qq7VELc5OgO2aITjtXcKcNtu94+PsUyR0ZynbPQW8UgvRwcwv1YLB9RDna5qmH3kokHyxRfznhvuQC7ZGFSD3knYHXHIA8/JKjDP3UwRuF+sxClmQA+3TT0Ys+zMQhu1FwRYAdBdx/i6BcV0BzZCEKC68zlOcezZ4YvJ22ALJbsoHbC6arunmH9vMEzaEH4NHOYvhQFgZGJ2h6geqDgO05Bh+18GDP4EUHUUvYF0znJSMmUb7fQN0buDRW7KRheB038dBrCZdKJsNqprgmS3q6t+dkiosrSnnbJzXKBwYH9cYtN3EISmP1iy1EpZCsJHtTbwxBWwaIwMEXACAEuJHHMpC9Z2iOgN7sBjkuk2j2BMpvtFB3RD/pfWRuPX3XtlBopxzCVecOshJI73iNCAc0ewSC9ZFDUAbNPn13+W1AfURGq51otDNuljcchpXfbJB+lqLZJ0hr9hS6McG9CGAwRxyONfOAZpZGdpXez/Seybr1oYbNwdTPUT9IY6BNO1Vk92qFdgKkD5rhMx5wuUZ5GtBdUoZa7Wum1G4YnNWNgepID37FAXQ7hfIoJmRPAGk57KvWPNcQlALbPH799Z7tt/zHZku5vvA8D+2EKo3NUw6QvALSBcNguomAqjkoqvd5bdX7EvUB4BIdz5OAzRS6iYhe+wA74ucnvYt+9pmACBr1XFL2eUC5KCtTEjQzAeEVdBkAySRaXQHZvRoY0vrAkElfcRgR9G4f9JYBQ82tRLLSA5itDwTaseEANHprqz2mKfe+RLNHxm17JpHdhkG+6hIM4UnNVMZrCehGhqqHJiDIBOWhRH7HOhUIoH1XI30gqNZ1QDPnYK8dZ2QIHYdlzYzDjepgxGtuLGJlkI4+bU2/saFcXnYKSax50bVHeUSQ7XWG6kDGACeyhTmAzbmCV2MOJVKB6kCiOpDI73QcApB1L49lHHhxiZUuyRZ3Y4HxS8Hzsa8hHLB6RyMfKyYpm3GsSxIDK+6yUfTKRuZ4bOLnQEDXGs1UwmzZz1rvSeR3aqhF8ck4Mv4SSSoHH2szlcj+P/berFe27EAT+ta0pxjPcO+5Y6bTdro8V5XqgZbqGQk1zTNCTH8BoX7q34FAvDUI9S9A8I5EQzdN43KXy21nOjPvfM98Ytjjmnj41t5xrl2Ni24XOMEhXZ174kTseUesb31TKVOwlUD/oMLuqUZxx4mbYqPgCskQHsf9UkNE1Vj0zxYYVhrCU97bHWtO0JxniFpgmLNSJiqgPzJQHQGJTD2nZuc5sVBp9GuNQkm4SkHOdWI1w6GKpeF6ZO9hVxnkkMPNFDIpYJc6MawS2U2SsFY8D1JLYJ4RyCZALkLJapMhJwgv2GdJ6Wtiz0/mZEkzhVBlcDNWvgAg8F0UZBpdYDrsaoWgJYN7APo8jTr4Q0OA3LZwqd9UbxQ9oUZPDCcA9nHGyFTVzBBoVgViIFspeoswLyCFIJAd/ZRFxt8Hi6gU3xtjktJqgtosAdOqYKJqAsFRCjKY4+N+Iux9iapWBIijHzN5SKNSB8+kExAqKdlG4On9xFyKzLByxPuDB3Za7z1prPotPZdS4IMU2T88/u8+/hzAfwzgXwghfpKe+wcxxv/hd7mSrzVjWTx7Hj/99/9zzvKP6kxLOZedcTbZlfx9WFI6FiWmyHGfJ4lYCuIYJWPtGf1e+W0KgUlyPZZccz2uYHCKT8E8pk7l7qlUvT86SP5GueAYrGGX9IqNsraRjRzW9PVEwUGQbg5diq4iWyRthF2KqeB9jIUfQzymYCCb2MYli+zt/JDUOIag2OU9mZgC+hMgu6X0iMETDKup3o6SMjJUs7dky7IN2SSzI3uo29QzmPNLCOB2tA8OvYxmz4HVffZQ9Ymtu2H4S3FDydPI7Jqasrb8LqbSaDKKRZLGZVtuh27JbkrH4AqV+g+lJZvAL+I4JRMuX1rcfidjGM42TtfQxERrMmsA0DyQE+vQnpC16U5E6tmLEzNnZxx8SQfsH8uJOTM191f1ZPbGYnUGcCTGLg1Y5+8c2mM9XTs+576NzJBuuR7dHo61T8E1IRMpgY8Dotl7j24tp5CRcRmUhpGxYtcbnwe439k+TsyfsvTbmDqwRy51zI0dftmeg5H+SGD5wqE+U8g3ZE+HefKSpWMuksS2X/E45ZuAfsXtsxUZt2lgdhWmxMuJKcq5D2M4RpSYEj+ra3qI1MD9GjsoTZIaisAgG58B1RVTDLffMKlDEVNS4shCVZfs6xvmjJXP6jClI7KigD2B0lEaZZowDSwnGeTAY0c2nAXxquP1OZ5bU6eBl4vwqUR+mMvpmpWW12Bx4+FLOd0bY/AYfYdx6l6UngmZInCd3lBWKAKZk2FOWSGAqfdQOg4kRkmgbiOKG4/2RMO0YWImReSgvDuSyLcxSVVTmItkHUkwXI7PuF7dBEpDVQovcQxaaY8V8h3ZV+kjbEmAJF2EHOLEFuouUNa45f6P5123Af1KId94iLF6oaacMJgU5HQXphCbkIl0LMLUU+pzmdJcYzo3lAryM54suuoOZfEylaofJJj0p7kZ0yzZIepQP86Y4Llz/Dz2ZBXHMRRZyDDdr8NSIb9z07abrUPIOeBVbUhy4sMMv+rJwo7dkwD3QXWUHLpSIttSwik8tzuKwwCWYT8pJMdGMn1aQNrAeg0g+RE97IL+yfF51Ti4OQewuiGT6IskEa0pL+zXBmbnk5xQTgE6wUiMYTVBCZi9pfKm0JMSYlgYmNphWGrIgeE3IckGg07qBRug9gPcIkdUgvdNBIQL0DW7H0d2U0Sy/uMxG9lnOXj4Uk9so680hIvQDQNvmKTMvkYACZSkgJoYJ3mmtPT20QsXJ5ZP9g6+yrhfgkoP4QJCqaH2AxCAUDFMxlcG5raFWxcQNjAQJ1Id5WesvBA2XYcJAKjaMo20GQhkBncANoUh67csKOWse/h5DtlYMn2R0k2ATKNf5qzdCIDsBoQim9hFxMjKi4zMHgAG4yABqYwM7SGVNH2mDA6hTD2R1iNUGWWj6V/MEgARgiE8mSbLGCL8UQW5T4OttB1icJP0dHqktFMoRc9hO0D0A+IYanPveMVM06OYZ8nn2CJmhuArSUpjmRN0pUAe7qPja1I6qwgRMTcQ+5YSVCk+SG8VbT9VeCBEvqZuWN0xhuoYzZ9j2A/wYRjPfY+i5D7GECDuyVPJIOTTcmLdQMxIasS6oXRVKcSOybUiy8hQjiwp8KG8FfgQ1DmX2Ef5gUQ1JtmryAwZUuBDyeu4bQCBZJK7jp2Xh9f82u/A36xKJB5kuP86j98bxvLf+1tgLP/hb5fC/j/x+FozlqLwOP67b3CxneM7p1e4amc4LhvctBUu7ub49tkVfvHmDD/4+BV+8uoZfvD8NTpvsO0LDF6htxoP53tshxx1n+F01uCuKfHN5RZfXp0gZhZ//OA9hqDw1eYYRnmcX6/w6GSDZjC4u52hmA2Ylz3qLoOUEbPM4vL9CkcPdvBBYpEPqHt2DG1fL/Hk25cYvILzEvu6gFQBs7KHkhFDXWDzsYEyAXlhMa9aFNrhfLtAvy1gUx1JuehQZRbrssPFbo5h0BgaAyEjTMHOyxgFtp3BelVj33C2LAaBHz59i5988RFWRzV+eHqB7VDgxc0RMu0Re4NBAF4FWKsw1BnmRw1238gxm3VonUJ7XaL+o4jlcY1Nm+FkvcfdvoJ3EqIcsPtsDfmshu00q1KshGwl6h/3ECIiKxy6bQ6hIiAPEqRiNmBXZxAyorYK1apF+34OOAH5gJrRZmMAEyELh+Wyxc22ZC3JzHECzwvWqnQS+rSDbQ2rXbYZ5g9r7K8rIAqITgJLi+tGA2ZgTcldBqhIX+dtCVU5+L0BkudUzAZELyAEUC07bG7otR3OK8TS06faK4hBsCJj7WBmFuKLCvh2DTcohNoAOkDmPD/RSVaO6AiRe2BjUDypcfN2xgHVVsJVEe4hGa2oA2RDX6jZCYgg0D12rHY56hGdhMr9gUltFe7+1APwUBuN8GBA7BSgOcOYXWoMjy0wSMhGIswd90NGoOUXo94r+IcW2GmolgNje+IgdwphxvoL2UnEVPWy+0SSHR8EYgaoHRCKiOxGcvLiiWXty5qssBwkxEcNbKehbgyalsdv+LTF9iaHiHGSagtPb6g9iklqlOpUbjV8FXDjBGLB/ZYDEE1EyAK3T1HWbtf8MtvfaPQPHWQXEUpWxvgyIuSso5EDcPt9xZqbu+TB3Ei4OQMjEFk1oxKbWr0VqD8C8kv6cYMZvaEiJelyG+wyILtR0ySPnUfoWkENIjEerNaJkv5ld+SQXSVvddApECkc6j4kEmAU0A17LSmRFYhgFYld8vUQnOwCgGgEdE1PbNTcPp9FqIH7PqwB1ek08UX/cMiA2Us9+S133wS94VZA9twnSErl8yuZWEpAd3qq4/B5hIgCquF+5DdqkiD6IkL1rGmxizglUutac/LvI4n+OCV5R8DUvEY3il7WYR1hdipJEDlxhiBTJQsn56QFgiIzp2sAApMUeExn7te0UwBgL2lUk+ydHkZM3lmm4GoMCzJxnLTTGI6QkprVtO8MWuIkmqsA4elJCwrJ65vB7DmpWFyRzeM2ceLFFWQqETlJKTytDNImr20Eyks9+VCj1BiTtTkRQptDdkfLhrTsgVQp2ZrM3D3vcwoCipKTVMA4gZnBF9w/1RNIuZLvFYGy8uaRQLbVk8xU2qR2mI6Tga4jpMs4OaQ5KSYCoFrWQoxp0rrj9T/6NUdPrhzoxY8prTwo3mumyThJ1HGf8jteuzZN3ukmTinDwQC6zVLSLNLEIENfxklNOztI64E0AXbL1GTdkpkeLS/BCBQ3nIjJt6wCiZJpxkhMLSKQbzTaUw1vwEmeCMiHWQqySoyO5+SMnVEq3J7oKWFaOsAVJXQXoTszpfWSheekTVYnZi4DdFel+yJiWJJNHuYMNJK2IBvax4nJH1NwEYHmgcLsvUPIBfolvaYm+UFFODCpPuN7hI8YVgrlpYUr1TSBA6QJoYbL9SXl6lGmiaiSkygisMdT1xl8IQ+s5I6yYWm5PF17nn8BhJw+T2nL6TiMybSuUFOyrnAVQs5l4nTG75cQJzAcx9TqlKqr+iSVloDaDvAzwwmJykDPC/hcJXm3h1tk0Nse8XRBz6f1kK0luF7NeC/2HjFXEI7puIewnINvMuSaPkpwO4RLktqmY0/lCKZjRFhUBNpaAqsZE22FABYzIAFsERdp/Bcmv6Zoe4z+ylgmJdp9sJYkvFMSLTBtn5gT8MauhzxaI/bDQUo7gtFxjJ7niH1PADvWjkyP30yklfr/2mMZUx3Kv0kq7B8ef/vhowLmAAAgAElEQVSPrzVjWX77Sfyz/+o/wq7LcTqv8aDY4/O7U/ggEKPAUdXi28tL/OzmMd7fLPHoeItcO9RDhhAF2sFM3ZWnRzs8X9zh7X6F3mksiw5n5Q4/efcUZT7g49UtNkMJ6xWezDf4xdVDzPKBEtI+Q6Y96j7DUdXiel/haNbCR4G6z6BERIgCSgbsmxy2ziB0gFAR61WNZdHjcjeHEBF9ryEEcLRoEKLAvs2htUffG2SZg5YBm1crVE/2cE5CqYDcOLggsd+UiFbi6OEO3WDQNRmqeY9mxw+O+apFvSuwWjXY7ir4XkHICF1Y2H0GWAm1GuAbDTMfEIKE7zRgBarTBm2dAxuDOPMQKgB7g/nTLYafrhE+bdjbuTeIlSOoLDxiz3AePO65Ph0Q9xpi7nB0tMd2V0Ebj6HXBMbGY3g1Ax72UNrDdQYq83CbDDABqvQIThAgZYFgLnV3QjDEaP6wxv5yBqgI0SWZqozI1x38F3P4xz107mDvCgYbmYDYK4KlMgBZgL4y8LP0bbO07PqUkWFMVQByD7HTiGWALBzERQ4/Y4+osAIx55dVLD105eDuOEsqCo9oJeSeUlRIQNUS/lEPISPE+5ydi+sAv6TnCQIES2nABx0hj3rEiwKhCFALi3CdIc49RKPYX6kj9FYi5CyQd2VEcSXRPnXpi1MQmJkA6AhzrSkPdQJu7WHuFBNWU4hT8V6xgzMSDEES2MlBMEjICkQToe8U3NKjeK8RNaWuCAKhDCjfKrgywq7IwBDA8YvELT1kR8mmPfKcOR8I4MxWJqAQ4asAVcvp9QCmapX8ViKoFJhUMmzH5xFmL9Efe+Q3CsOa50h1AGTyMm/JyIecgUpmJ7mvnuFPISdw40CUagZ6rgkgo6RUEgBC6jQclqw9Kt8p2NVhAgXgQB+Sfu1x8iDbiOk1dhETeEnHJiWiQqRzOUsDUQuIwNof4emHEqP6Ip33KGMClQQ9UTJ4SLX8mxivBWACIT4nwPxw3Zhqb8ZaldEbPawism3yH3aYJKMhZ5CPLw7ALahDCFBUVEjwPCRZak85qvAENsIdam6k57J1k3znSQkiPSZ1yOhDH4NrpnApMXqdWdk0emFHkDyqFnzOgTjkQd2S3aVTo3l+ogZUiwl8jJ72D6qhRj+9TwFEiqmyYy2QXYjp3pbD4eeYYFudB3THcgJwuiUgtXP2UHIgflAYjHVVo2rElQzDkQ6snwgEViIAo9/e7CmvRcSUyBsMFTcAEjMeUxUDl/tBcNG9c+Rm3JZsQyAWFUH6sBTIN6xZYcop94/VT2Sv1XA4d8BBUaS6VImUFBqj6gGC2yDd4f9jCNKoUHDlwQ87TlyMXZ9jLQyQwOVYZeRjql051NzkWyoORjXDMOdn0uibnL2z2H2UTQqdoMWUtDplF+CwDTJVkwUFmDZMDKw3AqYN6FNFi7JpX+pD52QcvWkKqf5jrO9J4N0jsaOc0Mq2fgoGUn1M3a2sV5EpT0BEoLhi+I/wVApEfWDkR7Y+KjF5uoNmdU3QYlouq1SQvKVJlZH6RcfqGwAH5n8I6bMngegYYWcapnYT0By9m2L83PQx+Ww92e+M6a1mO8AXOgF8AkWRWGSy4gRGdq5h9g5Ri+k1IwstEysdcjVtU5SULMNTzaH2A2KuyGanIKNg0ndQYtqE9QSPBX2XEILPtQPCrCBT2pF5nR73XjeCzXHfx/2ewnbGtxg1MenT89ZNUljR2w/CfBAToyolRNORMR1rQkZ29d62IMYDkzr+PkpjnfuQ2fSHdUz/FxJjl+VvhALdf8Q4hfl8UEUyPv46BvP/Ix7LH/y93z1j+b/9N78fjOXXGlg++cE6/of/6N/Gq+YIn90+wNl8hx+v3uByWOAvrp7go+Ut3tVLnJQNrtsKhXZ4fb1GjEBZWGhF5qhuczw7ucMXrx7gyeNbfGt1hX/8xbfgW4U//c4L/PT1U7JXAETuIU2AAGAyh3aXA07iG9+4wMv3x9CZR/ASRTmg3hX46NENXnz1AHACak0/oz0vcfbpFa5uF/C3OWLhkS969JsCCEyOtS9n+ORP3uDzlw+BXkEvB7gtDSqPPrrBxb98gONPb3D1cg0AyE46+FcVwqnFbNVifzXD7KSBlAG7C3r9RJ8+BD3Bj18k4KIihJWIuYfcasRjixgE9JWBWzuonUIwvE7MWQvvJdm7VKzuG43svcHw0EFkAbFVBGy1hjzt8Xc++RL/yz/5LkIRoHcKbuUgBkqiikc12psSiMDR4y32f3WM8LyDbzREK+lFKkJiRQTcPEAcDQgNyfbF2R5Nk8PvTNqHALVRnMGuCLriZY5Q+en8RSch9hpx5mAuDRmyTzoIEYHrfPKDypZelVh4yFpB1wLDmYO51qloXmJY8QvSzw4SIBEEWUwreeyqgPKNQnvG5SIC4miAOM9ZjbE+JN2GPECe9kAUKP+PEr7gwF14wK091I5fAqYW6B5bFG9MAj70DroZByTZRqB95iCsQPlWoT8N0LU4SKV7gf4kIL9hSq74dI/h3Qxx4aCvDAvie0ypqb6MUI2AWwWovYSvyIIJK+BOLeRWE8gVYOpuTk+vHNIASxOQ2aOA7FqSjfBjRYeYBmB2HqaOWPbIRviM2zB1yQJT2mvQACQQdEQ8GSAvMwJRS+AX0+A/v6GfsHyjCCKzOIFK3fC46Ya+yGFFabO0BKb5jZxqTHwepx5HgADF7ATaMwZa9WsyCtmWHq7hiH7SUebuygRCWkyAazxn4yA3v2F/pi/ZD9udpH00lFDrJgVeRQI/4fj7cMSwLrsgqAYINOyMx2Csd9E1wURIxzW/YwqtcJTbd6esMLELDoZZsYEpQTIKMq9mK1MCMDtSdU2vJEICHGMNWzcyZAfbgfAHoNI+OJTYM/CIyxzZqLGH1c54TQ5r9s+OzOXI4ARDhtTsCCBnb2IKFCIDq1ugvAioHzNoyZURixf0GtJrhsTu8PwEk7bZEdQNCfDqBHjGczACbLJBlM9mG/aQ1k8EyosD0ByBUHV+sEvoLk69sM0jMU0ABAMUNwS7475LhyRp5bVv9nEa1Js6ASqDqW+Wn/cjU8Tj3R2LCdzL4cDSqi7CNJRCIxx6QEN+2J+xM1Y6Svmr88DALctz4QskSSztC7ohqM32EbY89OuyqoWhWCOrNyYCV1dMwB07SqMUibE8MMYiHOwNUbAjdJSh7z6SWLwKky/RlVx/dyRR3CaglgKjJsCZfo7BWlFymWNqrAisaBntBMNcIN+NHaEEs7YSyHaBnaTH7KHUXZwmlFTqFB3Phxp4bhETM98H9AuFbB/IlIXxOhCUTifwOia62kqm74KQ2F72hVLezXtRNyFJ0xMwjJw8y3YWrtTT8sd1jQ/hkUKh1ARwx89o2RPU0aLAPlQRgfJymOTuSNckIpBtDkzjJCHXBwZTDvckynoEwmNwVVLOdD51jiqohsFYcWS3IpimayNU5yZwOEqQQ87kWb23k9w5akqLIQS7K42CT2BQ+AjpKB2XA4OuopYTKBYuHIDkcGDzYqYnme6YCiv7xFiKw3sBAnFoCdEmaXJ63xhGJLpEkd9PcB2BXmYA6xggVOaHupFRVnsvsGhKk1WSMuMYJ/nvBPh+LaX18P/09xFUjmDuvhw3BRRFawGpCPr6YXqvSJ2b8T5b+dd1goaAGOMU7PPXPe6H/XzteyxPn8cf/Lt/C8Dyv/39AJZfayns1hb4n8+/idZqxChwvl/gJ/EZNj2ln//i7RNIGXG9nSFGAXtRQh4PyHKL3V0FmXlEL5CXFl989ghybnG9nSFEAd8pQEX85ZsnBJUmQGUBwQv4RiNf9mjvCoKyzOOrrx5C5B72qoRYDrBWIXqB882CYMsAvjbwKgKVx+2ughCRssG9xtApoPRQM4dunwGzgF/9/Akwc1ALC/GyhHjSAzuD92+OIE4GXF/POaOW84b1J5YM7BdLYO7RvJsTxCwtohfAIBErj/lxjd35HLJyrDuJHPijI9iT1wb+yMGXAbJ0EHOLmKStw20BUTlgYxCKBKZUnFgU1JpySgBYD/CtwlfbY4QyQM4tXKrokIOAP7Zor0tKI08H3L1aIx47oKP0TDiB8KRD3BuESGYm5gH6dYFwzA+5elcQZJoI0QogSPi1AyzDHcJdhrhI8shOwJ+kD/Y8AFbCnjj2RQ2SYDiQSYMkA4cA5O8NhiOP4aGH3KsJbNlF4GsS46P3ZOui4vJGFgkeaJ45iMCBibmTGEoNrDy8P3yQSkcpjt9mEE6g/lEHbAyBquGEQMi5/X0moPYK3Sc95J3hsdIRUUWIwAAZAEAQaB97yF6iPyXLJwcBe0KQ66ok0XIKuhGIvSFz6YHhhIE0MTFZIYuAB3yZmNm07fmbDCEjGxGKwG1wApCp7mROMGqPAmQnEkMg4GYBvgpwXk1yxJBHeCcSAxMn4AAJuAXPh7QHNmBcTnYn4fscvoxwc9ao6IaMaJQRdhWRX1GuGTT32+xFCsghGPRFujZTXQQs74ux6sUXB8mUcLg38ANCGZjAi8N2+yrC7CQrVyzTouUoCc0wyWF1I9A+8kAUyG+ZohpV6uNcEMRJSxAiEjsmIthlazmA85qS3XGAPrI+7YNUPdAcJh1EAkTjttfPeL6VY2+j8EwuHo/RCPjG+pP2wT0/skTa3sS28RJnArBOEwGCg+coKBccQaarxNQBOtbSyFRRowaCa5UmCKaBao8JcAaTJK8Lng/pE1PdilTFwm23i8O2No/klOaa7cTEfI4BQ1FzO+ycADIqYEhJuSMwHmWRI3A2O3q+KQVMPZ0lr3OzA4GD5/umYKQTMfl0GTiFezJRAlnhR1bvAMbHJHDdRoQZB/GshImTX3/atnSdjIBvrG1SPZ/3hgC6O07AQnHiBJHMu5MJYDYRPifoCgt698lY08tsZwLVRYCd3Rvoj8A7EES2BQNw1MB1m3t9j8wfiJNMuztKfvPE2gR1j9FM0uWoDjkDMklGR7lstiFDHCUmVs/lYyqzSMBYwJnDvZjt4nQ/R3W4t5UlIFb3kstHL7orCFBdIWBLgWzPdbXHEsXGo1upyf/OShJKRvuVnAD69BmiASvHehQgGDUxUeNrvKGfPsqU4O3oR/YJ8FI9MCbxBrhMTVUbIwPmjUSxs2jOcphdSls1gom3CSyqgWxkd0zprRoO7KPwlJ2OYBUAsq1PsncNs/cY5mrySUMCbeqjDObAPqreU6LaeAb3uAjpI/y9EakrFT3NQJLHapidhc95kftcwjQO3kioIVWczA1U4+ArDWkDwWPExCyOLKRwTLols0kaXXX08kYtEQDIwcFXJo1XPMLMkM2UArAB0UiybFoSRA2sGhGD470GIMxywAVEIyA7BuyIGAEtmWQLAPZQYTIylxNIjBHwgUm0ozdyfB5g+M7oIVUZGcoYk49UQrQ9w3vGlFohDqDSJ6/imB4L8HM2AT6RZQcWUusPXjM9L8TBOxm5TCEEvZ0xHhjLEVSqw3X9r2Qxgd9kLv/w+Fo95G9/ye/vI0LgzbsjPF9u8GS5xePFFuushQCwawr80aMLdLscIQh879E5sLI4WtV4uNzj46dX+OTsGtW8x9lqBzFIPDjZIcscTsqGwMRJzKoe+ZoePykDVqsGcqfhrMb6wR7LowZZaSH3CuImQ/loDwDQOqBc9Hi03kLogGrZQd9qCBVQrHoMnUFR0t+nGwHMmC7qtxmyygJZoFRNAH6Q0N/eUbpYeHridKCfcjmwxzIIZJVFXlkOxg29YvqkAwK9gbHyyGYD6i9WmD1oIBVHHipn8qtwAvpJw0HWXrFnMwoo7SEzT0BpAvSbHFFFlC8MWVAnEY8HIIEsteQHZvQS+srg/C/OICoHk9GThwCYjeR2dQp40CPWGphx+erGQLYKqhfARQ5ROcQ8YPGFhCg9B08SEFYiNBpqr4DExkrLD/TZWQ05SMTEEKqGslB9nkFfGshGYvG5BgS4vq2GeZUjVAFxTu/GCCJ8mRg4K6EGykyjivArD9kLhCLA3CiojqC0fG2Q3ShEGZFf0/umakpfZUewYy419I2GbCSK95pprolRMrdMls2+4gQJAxUEsmsJs5MwW4n8ViK/4jEsLuiBUwMQigi38JxlvlEwu4Pns3pNVtEtPZm2LSWlIYsQr8rEavD1+Y1k92ZOcFlekFE1Owld8zi4hYepBda/DEmCGDF7paBqheqVQvWa61eNhNkL6A23efSU6Vpi8StN6WVLRrp8q5BtOMAd60oWX1IKm91yv81WwM0J7svLNPhfBx7rWsAXYZKWRslyetUKVO/Y2SkisPxMsl4oI5BSLUGmLwCz5zqqdwKLL9TE2I7VPcWVwPJXQPVeQPXc1tXPeGzNXmD+UgKSktooWB1TXgqYWmD2Cpi9EigvUk9mCgabvVLI7iT0PoV0Od4nwyqieidRnguc/Cxi+QVSSiMI+sZJYJvAVEXmML/hcrINz6fqgdkriflLCekE8lvuX3FFf+jsNScOdM0KnyiBxVdcv0yhSflthGq5P9VbieIKKK45oC0vGOrFzkuChPIyYvaKgKC4jodBewoQCxrpOLAGR/Vch24EZm8TYyOA5efA7HVEcUFQOntNQDl7y8mMbAPM3/A+r96IyTfoKqRuRSC/4X6oltubXxPsz995CA+svgjIbyOOfp6ef8Of2Yb9jdkmojqPyG9H1jeyumYgsNFNRLbh72afZL+G3rriNqC8IMsxexOx+oKD7PI6wC4YQjb2dOa3ZB1XXzqYfQoFayOK64h8E1FeRxQ3/Ln+IrEcjuBAOh6//I73TnkVIByDnMpLbp/qx8kTboe0EfM3AdVFQHXJQbhuIsqLgGzDcK0xjEq3EYtXAYvXjtUlDSt6imsGOpma2zZ/x9Cr+TuPxSuH/I6ApLxJAWERqC49dBtR3gTM35Cdmr13qK58Yssi1Q+a4WCmjsgToB0nT9a/skmGyf23czGth2CN4DKrI3QXJ5ZJOi6zuOU2VJdhknDmu4DZOwfdRph9QHVukW8D8q2H7gKqCwfdRZS3ZCbzjYdpUodoYlGLDYOJpKMMVLdhArrSRWS7gPLKYfbeMhBuFyAdUF3wu9s0AdV5j3zjMX/VAmCqbHXB71VXiFTx4ujFrwN0G6C6iOJ6oH8wAqb2lGy6iOptC9VyucNKo7i2gGSK9Ox1i2AE8juH8n0HXXtkG4flr+p0HDyyjU2TFXHq9tSNh+oDsruBx1YAurao3vdQXUC2tdCNR35rGRRVSIJXF6G3PRnW25aBV9uBTPdmQH7dwRUK+W0P3bjpOzC/ahki1Tro/YD8tkcUAvlVS1lrrpDd9tB3Hcxdn5jdCNV7qMbBLjNKcBOTqfesI1Gdg7ltIWtS/LJ30NuOtSmp6zJqCTEEyN5BthbRSKhNSzZSSsh9R9DW0ZcoLAGe3LaQg4PsLETTQ/b8KQZHACgEZM1jIEYvo/MEk5mZQJyIkb2UzlPKeh/kpYdo+4ldFD1DjAh4LUTdImpFOeyQAnyc47qkPLCcAIQkYIa1fI2U/H96TewHxMESOFoL9D2BZ2I0o/cH9nEEjcYgekpYY6omidbxn+M/eP/B//9V/z7owfy6PuJhgvh3+e/35fG1Zix9Akw/f3+G09Ued3WJ50d3eH+9gt9rfC5OUSx62K/m+Gn/FOo8h1/XeH+3wMmyxsufPYZ61OCrmwdYvJS4OFoiOol/+dka+mkLkzn0VkOpACEj3HWB/csKWSPQZxl2IsLfZdDrgT6+KNDuc6j3OeqFgVxYXKkZwt6g2RuUO4EocvSVQVQRu3oBFD7NxEZ6F1sF78m2ZbcKrpOIZUB/O4eMgJ97gpbjgKHOIJoULHEaEL+sMJwNKHYSfk25o93kBH+CoRlDAIQC2q8WDHjREUoFeAFAAMM+g+4FfXEuRywC+iQ71RuFkFGe17cp1ruX0LcC+F6L/rrE4guJ7VLBXBqojrUOdhEhLzPIjweoFK4xskPle4nO50AVoM7JfOU3LCOPAsg2El1FABYMoF/nBOLQCcykwf1RAFqJ7FaiPY6oL2YQAsgvNIZTevb0Lsk+Hd+TbegtHP1qPgP0nYIvx5oMsoQiAG4pIDuB8p3A9rsc0Orrw+1jdiJ5ICWKlArsCznJu4o7gU5KzF5LDAtg9RlQP00hKwLoTwNUSxlbfpt6Ox1YJQEOUqt3QHsmODiOZEoaJDbEkUGsXqsEkAgSVM+B7vZbjOt3FZlVsxEp9l8hKGD2mmwVg0EILnwhACiYvUh9jinJtIxJmqxhdpSBqZZeQb0HTClgdpiShsv3DB3JE6OW3wrKUGuCj/o5j5HZEwg0jyNUTyDYnaYk3etUSVKTTZF9koN6MkyQZMkoqZJQbWKEHFOho+JAfv+RhGrYD2n2BEiTRFOzMoJhJkwwJnsgKKVsAASGgQAMGZFDYmCHiPIqefsyUL4aCD6zDVks1SafYIYp0Vd37CJFBO+X7OBT0x3PK99H+Z0Iaf8HsjUisYRjKnS2SQEoKalYOABbMjnSpnOV0qSHJQcSpmbicPtQch/TF5RPqcAyeYxYZUEpYcjIKGVbslZIMsLF64Ctlim5l9dpeU7ZoTgC8qvEWCaPl+ri5DEMqS9QdUiAKsk9Gw7gu7UChKRUVCQ/Y5uYMc/X02fHpOp+LabjUNzS5xcVATfTYxVsKWES20cQyoF4UClEpsAk5RSevrg2qom1lC4i33pEwYoFCIHWpPux577obly+QLYPsJUkULz16I4pcdQ1/9aeyATCBUzN+zjbxUm+KQJ/HyW1uo6TpNWVAmUT4CSBBxl9phmbnUf7QDOcKXkui1sPW2kCj9c99s8LqAETCDN7doQGLYCS54GfRZTSKkuWSXe8BmTDBN/RV2p2DGZRfUSWrindUP4qbUwsIF8XNHsddZveP3BZPnnzGOTEz4wxFTvKkSVE8ozyesvvHGxl2J8r2Sk61nNISzZTTrJSpguPqbtR8HNRdwcWRbfs4fQ5E5f7NXs17VxBdQGylFCWYF26yBTfUsI0YKpuYvDoo2Xy8JhQm986Pm9ZqSEtv8/VfkAUOaKSKe03BdhsHYIxHJiGSAav0gBESv5leq8vCOBiJvm8ZApwFNx3XVuIoOEzfr/o2jOwp2PfoCsVQqaSL9NP6wpGcn8GgtdRvqp6vl/0HrFigq/wAcICqrVwy3xi4uWvpYPKIQCB+y98SH2rPi2D15jsHYJRUJ1Lnl92ZQrHfRaBab5IbKCwAcKkbXDj55ki6xcipA8Q1kMBBzmrdZAJEMI6CKsRKsO0XB8BI6cgHQLFDmKes5/TB4iWnZbjz3FimkE4iS3sCKDF4A6MXYwQvZskr8I6RCUhRhlsCPRC+sDgvTFYJ0QCQ60OEth7IUCUwfoDM5lA5gRKx47JlPL6G12Wiu+foOtYJzKMMtRRZpvWM/68nwib9m+sHrkvdY0SyVeZnvubJMICEDL8dYGyf3j8Hj2+1h7L5R+dxb/zX/8HuOtKtIPB4+UWv3jxCEJGnJzscfVmhT//0Wf4i/Mn2J/PUT2o0dyWQBBQGw35vIbdZxC1xt/78/8d/+Mvf8Bk0bsMcebxR994h1/+/Bli4TE7amGUh/UKZ8sdXl0ewe4zZMsetjWIQWB+1GD/fg45tyiqAc1VRTbtUQ+/Mfje917j5794BgAQvUT5bIf2zRyffP8dXv6zp3APLWWVQcCsO8yrHpvPjxBKskarjzbY3M4wXzfYXc4BHaCuMvi1g6wV1KOGgTS5h9ga6Ict1C9m6L/ZQdxkCDmDT/yRI1M4SotURH7awg4a6mUBe+pQHrfo3s0muWMoKGeUViD/7gbt5ytkn+zQvZ8BAsjPFbqPB5jZAHw5g5slryCAJycbvP7sIWQnkH+yQ/dygfknG2zfU/tlrjXwSQP9lzO4RYR7xMTQUHmYVQ/x2Qz2KGD+bIv2l2smbu4FhmcDxE5jKu2SkUE7rYbeUJYqnIDeSdjHwyFQqNUEYY/3sD9fYjjllztUhLql7ySmIBtxRr+n3Gqmdc4d8ldZYoYkhmNPaeszftia8wyLH1wDAOp/foryT26webGihPdWwy8CTj6+xdXFkoB2p+k9vSNoN3uB/swBQeDJJ1d49/kD6D3ZTHnWwd/mEMsBYcfet/K1RvedDvI8hz+x0BeGMskTh2zVI7yYJfkoYJ8PiK1Cca7hCsqUzJZenO75AHNuYB9xGX7OZNfiUqL59gC5IwAPcz95TPVOwK4CnnznEhc/OaOHckEvZ/98oDd4Q6+RnwWYOwZfhAzIbgXsKmL2vVv4/+kY+08I/mMZIFpJX+L3W8hXBeyxg77TiJLBPGYrYHb0EvZPLcovM4gANB9bFO8MdA3UzwKqdwS7ZDgE3KcNyn9ewc0B+aMNulcLJsUuOOgb/Zb9UYRbeUBGZJca0gpUbyNufxhQvVXsNnzaAu8KFBdMJG3+rIH6sqR88Shg+ZlC/SRi9kZg+2c9sNf0pj7iOTAb+pZnryX2zwNCGTB7odE88YgmYvaCqZjV+4jtNwkcZz++wd3LNYpzBbM9hNwQgAD1c4/lZwrDapTsJYbGE4jHJAEuzyXsgsDDzRIwBycX+iOg+3jA8i8z7D7xePDPJK5/zPfQe0r2VvZMTs3uDv6s7mFAeS45WfCYy7SrgPKdhF1wX1zJ621Yssaoe8DJgv6YQT+uIhO5/RZQXBCU7L6BFKwksHjB16iOktzqnN7H/jhi/lKge0Ava78G1p8HbL4pU8ptTMA9bfs8YvVL4Pb7wNHPgeYsyVFXvAcZ5gPUT+nnDFliiucR5TkngEaf8LA8eFrHY1FeEtDWTwS6BwHZlmx0MNyW2RuB7jRi9Tmw/UTg+K88br7PgdviRcTNDyMWX8lJxioHBhyNlVhM341Y/gpoH7KqKUr2ShLYkbHNNocgH5/zWslv6ZdszjiBtPk0TYx5QO8JLLtjMUmWzT6yKlrrRGgAACAASURBVKugB1REYPWrAFuSJYwKmL+hd3Vcz/rzgP0TiWEFzF8ynVUNkbVTMzHVQLVngutM1VpRA7M3YaptEpEMnZ3Tr4mYqpBKgf5IoHofpnopU7OHUvVAvmNvJL2Iad9agjnKtxODmKS5oxdymAu4mcDsfUDzQE4S5CiBxWuPzTcVFq8CujWTYYc5/aHZngAIYJ1Pcechh4jmoZ6AvGkIlF1Bj7kvBRavXKrIAvaPFWbnfkqC5bkXWH1pMSwV5by7gGzDGpn2WB1CfhpOBuwfK5TXEab2kzc1KqA+UyivWd+0eNFh+0mJ8tpBtx53386xeGnRPDST3FXZiPqhwvpXQ6o4Ym3R/J2FcBHNmYEayIDbuUS288juLPbPi+R59RgWagLFIgK6dpMktT/WKM8HNI9zrH52i+1318hvHfojqoiKK4vmLEO29cjuBkAKtA9z5LcW/ZFB9aZB86zi72uD/NZCuAC7Mvy+8xGq9YcQHAFkr+8wPF1zH+9Vt/hcTnVB2d3AFGwtoGpLMGT9BNYItiXUngmxqrZMva3MQbbbWvhlzt7LeQ616VgBU5mpRmYM6pGDY59lQ5+n3HcIVUG5bJKrxjJjTcqsOIDXJEPFKDUV4lBhEiMlsyFC7BvE5YygdlsDWjEptk8SWkfA9wGou48JlAT6gYxjS/ZclCUBaT9AZIb+yLo59G8qyZ8JbE4M5AhMx8fIZv5GYM9vR40hVaj86zx+LzyWJ8/jD//u795j+U//uz94LP+NH9YrfGd5gf+1/Qa21zO0bYbj0x3aPsO+zWFWPf7x59/Ew9MtmrmFVoG1DVmAP7II1yXkckDsFf77v/oRAed5Brfy0FcGv1RniCZAbjWalgE4MQ94FwTsLoOw9ByqnQJExN7PYG4VrAlofQHRS2Q3EgNyCBPx8vaIQC0AcWnRXM6gBoEvXjxE5gBzYWCPHcQg4N9VuJMVoCjjlL3A5uUKwgrsZYnyhaGvzQC404gqwp1XMK1gclor4E8l3KmHepdTprJTiAbQbwzTDBU4qyaAwVcpfVPAmgD7+QIm+cgQBULLgaTqgVXZoTFLCBGh9hLubIAaFORWw7UKeSfgFoDfZjDrDq9enkLvyQLaz5bIOoHdixWyncBw7Bmc8qLCcBSQ3UrYU4HiRiJsJeIFB/blG4VdMUPRCHSPPPSFht1p6IYVEOZOMiGzzlFccvAZpUqBFwK2VciuFexKQllKH5t5jswDy58b7D4JBH81ByPDOiDbSPSygPSUNYoI9DGxWTuGgkQpWenQaPoOHbD/6Qnit2pkLdD+5BgZ+DpTC1grcY0jMshBwGwk+ixAdwKiTtJGL5DdKty8fwSjKeV0FRDaEtIAweUobiVckaoX7gzMXiC/yaZ7Q3UG7lZPtRe6ERisRHatIHvAJB+jdIDcAf03A0IWkb0zKC4E9h8TVEoHBjMdkSlHo6H3DNeRPQAp8ebLU8zuKOm7+y4lmsM+9evFJD17o6Bb+siyDQNDRBDY1wVW2wizkQwcekg2ubiOiL8oycQFTVl05OC/P44oL3hd+tzA1Imx2mgyRA0wey0ZGiPENBj3L0uyT7dA/eUCygoUl6MPE5i/iuiPgPJcoB/I/Np5xOyVoBRwL6FrQM0B/6acmDKzj8DbAnovUmIoB6TFNb161c9zgouNQGhy+Iosnd5LBth4AXOrCGbuOPAiu8ztmr0lg13/xTGMYErp2JnIOo60vB2XJ0u+npU0BzYzGDH18wZN5tVVEi6xcvmGA3T5eQazi6jeMn0ju2Oip7Rkbs2GbKrZkSnONmQH81uyv1Ew/AcARJSTP04OgI6UbMuedQy+oK/L7ATKSzLUAO+xfBPhisTCxvE8pjRLx4Aks4sABKQXyHYxgQIyiCIQ4NHLmFj3Db2pdqCaYvU5GVs1JOAiBfLr1JN7G1Be8ZoNmUhJogyd8fkB6FA+Pkp9CZjKm4AogdYq5Dc8pwziAdTASoooySaVFzz+xSUZ03wTsPhSkfUVKUQrp2Q4ZJiChsyO3YzLL+nzG1NqpY2orgiMTDMm/x4Sa3XHrADpRAJySSlxR+a6O+axjIJpr2bPbWpPFOavqcYwTYB0XD4DiyLKq4BhTu+d8JFS3pQuPH9LoEeGl9892TZOSbrFLQGnnfO6kE5Cd2ECBvk2wOUisakEg1EAuh9VFgG69SgMe2flEGEQ4HL2ztIjCMjUuzr6tMsbx4AakdjWIKAsPXumFlPirrIR/VKiOiew80Yj3/gEIgMZzuRTNYK9q1JHXuOZQJb8jN4IlDcOQad+XJU8po1HtpPINqkfMhhke8/Qni5AVhLGk0VWLVm7fCeY2jp2dApg/g5TvUwwQHE5wOcKeqnSNihAkR2XA6XS2Za9qMWtZ22MZxrs/D1ZXJuqR8qa0lfVWuS5RMjJkuZ3qR5p8Mg2fpKgVo2fwnxEYlhV6yBdqirxZNLdqoDuAv+2UInVdSgvyW6OLGJ+J6E6h/wWvE9vLeQQkN+xS1R2lGsGIyEHn7zlCSgqCWQEf7IhGHTzbGI9eW14qG2PMM+APk6hPlMHZ2+hW8vO0N4CSkB2A2JOVlN2SQqqBPSmI3u87wkCtYSqh3s+R0/2sR8glCAjmYCXsARi4j4LCUD0dpLLisEe/jYyhEoSMPrAWpKRMbzXWzkB0fEnB9KUrqagnpFsIruo+Td7r29nAoThsH6ZQK4UTI1NyxfAJF8VYxjQ/ZTZ+6DybwAov85E2P+fHl9rYJlrh3968TF8EPjBt94AAH728+eAAJ5/cgkfBf705A2+2J/gYnOCbF2jerqHUR5VPuDydoG8sGglsFrWyLTH3ayCfzvD9/6tLyER8dMXTxFzj0+fXeCrq2N4p1BkFq0scPTRLWIUrBC5KVAdN9APAvy+ACLw4NvXOM+PkK17hF5jVbWIj4B2n6P8vID7wR6zxwO0CrhyKyzP9rDvFyif7nEyb3C9r9C+nQOPBjgrITOPPLdo6xzxj3fob+jBK09aModzB/OsQ/diAfu8B5yAedDCuQohC8A6Qm0VVj+8wdXlgiE5EZBLizx36FcGsWHdCT5qMewMqy22GqHykK2C+7jD24s1Fi8k9icZwspD3RjU3x7I+kWgexQhWwYB/cmzN/jiH34Hm08ZQpJ/Y4dmW8AUDuJxAG4Lfph91EH9qoRdRsBK9McBYW2Rv8pglwHhIatd+mMySVEDsQgQO3Yo2hUQZ/wgtaeAujUM1ukEuocOwgkMDxhe48sAv4jQ5zl8Aew/Dgz42RP8tI8YQBNVxOLjDbreYGgNK0cEZ2jdA8u6kbnD0EtWXzzo4SITaA1YG2Gf95CXGRCYaKt6JsaacwM3Dwxm6SW6jwaIWiG/ZI2KrjXsj/ewdwXKC43meWKbT9g72T1i9+KwjsDKok/Ms95SvuQXHnqjDj2GTkHNLOxCTaEnMZG9vozQb3K4JU1tzeNUK5Bj6vNTtcJw6qHvFLoHgSmvrZwSaduHAUElRlLRQzv2QprUYTnG/7dnAW7GpFV/naM9ZZ9id8qJkqgjuhPKll1FaS4EQZ7qmZraPCZg8GWgbMsACPTy7Z8zAEanrk8Ak6SxOz0E3ogkuw15ZMjRmZjqMJiiGjB/oRK7wMGsm3FQalceZkc2tn4KyEGgfeZRvFcQDujXPK6zVwL9MRlTu4qIIPuW30g0jwLUQHld1ED1LuLu+0zf7dfcxmEhpoRbV5F164/BJNiUaukLTlbpFqkfkRJKETFNHBXXAuVVRHci+HpB9ilKHg9IoHnICQxIoDtl0q1qJdw8wjZJ9poSQIdlko72wO5jAsn+hJ7ioLmNPo/IdmkCI4X1CM9tDDmwfyqn2gtfCHTHArYigyn7Q3ei2fPcDcsUmJJSZl3JRNdhdfCWDsuIbk35YHdEVmusF+Hrktx24La3ZwROo1eVHZoEWrYS2HyHTGgwQHZHEMvKitRHWRIY6UZMybRMFpVT5cnYIdmvU0qqo/9vWALSslKkPlPoT8iaCy9Zc7IFK0A0UF4GtA8I0ss7grtRWr1/KpHfxWldUQrYSk6hQGPCa3ciqUizZMzyO8pq908Jun0GJnyGNMGQwLKdCfhMQXqgT8tsjxV0F9GcsXe0W8mURpsCk1K3YVQEZe0JJx2CFkmSyuPUnXASyeepg3If0R2pBOIlfM7Jlf0TieqCcnDTBNiKLLI3iY1dSaheol8JrL+waB4k//xwYJFtxq5GgODbzgVqowlaK1ZXBJVAe03WMN9Qajl6H/s12a18E9CvNatNCgGIlJKqyFiKpFqEJugdwevo3XeFZHrwnUN/rNnhaNnfGJOU2WcSw0xC9WqqMAlGwC6zCXDauYI3gO45oVGfqWkiAAD6owwiRpiW4TwMaErhN4UiKB0iXKn43pbqDeQS7ZFElBrzL/dons0QMgllA/qTgoA/AtlmQH+SIwpu17BUtBnsPJoTsprZxsGXEq5U9CoGVp7EHe0icSdS4qtOUugIX2h0p4ZJs7lG1AKuYthOd2JQngf0a4PisocrFbKOXsGQ0cepeg9hPXyVpZ7KiFBl/L6bmcmPxioVyr2FlwiVgXABvjQEowCkUfC5ggKA3iIUadgsBJepKL0NhYZwgb7LVGcCJKCYG0QtIduUqpUescopr805KTyuE5lBTGmpyAwwWKbFtj0ZQqMJFq0DjGbiq/NMfHV+CtaBVgR4ziNWBYRLgFVJ/m2wgNYpwC75ORPAi85Pyf8QgkwlQC9ljICQDPq5z3YmMCtnFWLTEggKwSCge3/nCj6UzAqlfrt/8m8ol/19fwjg98oT+bt+fK2lsPk3n8Y//i//E1zdzZncKoDTxxtcvVpTFplS8IQTBCE9A0hUJ+AWgeAHlD1OwSqOnX8QEfnjBv07MnlTjH7ymAkPRh8FMjT9EwvRKOiaDJqwh5l33Qj0p+nmSb/7MiK/YmLk+GUTMrJLUQGqZYqjCOlvqSZCxDRg20iWqzecvR/W7JKLgvIz1fCLN2qG+ExdUI5fmsOaVQtjtLrqMXnz5DCmBCYvnUXymgF2wQ+dUAYyqYntkZYesZF1dHMOMocVE2OzxGaYmpIuu4wwmySLWwWU7yXaxwHFpYRNlRIiYpLiAkjLoYyN55ED1KDI6kWBKTY+2xA0RJ1kXqlEfBx0mzolUm7JvriSQFA3AmZPYCAdl9OdJN/Xva680eM4+tRYEg4EzTTPYCLlmnP6AykZ4oB+7NyTFhjLtaPg8c82HAAHQ29af0Sf5FjDMPa72TnIQjeURJo9rxP6V/k6Wx18Z8MqsVepvy8opGOTvJDHXJZueK7tjAPbsSS8ORPT76o/9An6nKBLNzwedi6m64nXCyYWy9QpdKbG1Nc3DtjHrryouN1qYJl8f5TO8z2mBjhUKUw9gv6e97BPXW754Zof3z/WQoxpmtkuTr18Y4H6ONs/xeunFNWxi26cQBmPtdnTt2VqMl0yefVGaSI9sXHq/qN3le9jP19Eto/YfCJRXsRpWwEmkw4LMkDcmcOkwJiSGSiYYGfgHQe6uo3Jn8hz6TPWN0hLwGTqlMJoBEwb0TwgEEDk59p4HOyc6wOQ6ji4vb4kc0c2h+cs23Hdyo73whhgcjhuY48jB3RI1QxklRAJYsbSczKWArqP6JfJ4+lZ2TAlpbpDbYMaUvVGStnUXZwGwOO5VH2cugPHcJ+xE3GswlBDTOeaaZ5jCucIckzD8ybtYXljJUW/OPgPxzTOyScYI1zO42PqgH5JoMMaBgKmYSGnz5eQQJnPkrdWk4GXPk7VF7w243Q9jp8lY2pr0GI6NjqBBlZkiEkaampKJEcW0FaUctqK4Acg2yQCgRzPH9clPJcZNIGNzyWvuzpMIHN8z9h/yGv2nnQ4AXXgsBwAk8TVZ5I+zFTNwfuYfxvPpfRxSs21cwVTc8PHKpYxRXq8r4IRMDsyf77gJOjYvShtmJ7j9yW7FfsjDbMnQ2MXCtkdpZ1q4HeiXSjoJg3KBT74WzDcL35WEUDq2sMXCrr1077Tk5rqPBy9mJCAK/UktYyC+xtM8jKGdL0qAV3b1Ok4VoscEmHphySjnF3UcOuCQC9Gfnf4gzyUy+R58AWBhxwCfMG6D3YtSrKDvZ8koyHXqSPSE3Cl+g43M/SQDm56DUJENGraJ9XRRwkByNYBYypwes1YASJ8mMAcr6EAP8/ZF5n+JjuLmBvAjeDOIxqFaOTEbI6dkWJgr+SY2BqVINjzMd1bESE3XH4K3BEjU2dTVHeShE7y0uRpnJjCsSokpboK5xmkEyOQGaa3qsTmAUx71ZTditEjGSOlpVJM6a88QIkxHKWx43piPPwNIIiUTLCdklp/jTX8jX5KpeiDvM9YyjESPK3rfqekkIijB9P7yUd6v6vy1x9TquyvS3I/eNGHbObXvcdyfvI8/vDf+c9+58v9J//o7/+/vm/A1xxYLr7zKP7ov/hPkWuHVdaitjku6xmaLkOZW0gZcFo1eL9bHBjK3MIOGkJGGOMxDApaB9Z07HNkpUWZWxjtUXcZhp4j4Lyw8F7COwmpApzVCF7A5I6fL62BKRxsa6YaE2kCwsBRn87SF10UcL3iTNA4VpQRwSrIzPP1TlCyu3BQhYPvFWuKMg+3MxB5wMOHG5y/ZYclrIRcsHtS6gDfaMBSGooA+g6thK4cQhCIQSCmHkkkFk4U4wgCwNYQkFYO4v9k7016ZNvSLKG1m9NZ6+bN7e9rIjJeZERkZGYVKokpFAgxYsKgJAQSkxqVYMSUCXNGSIgBA0aF6H4AI0CqopCKQQKVWRmREfG6e69fv95Ye7rdMVh77+MviSATiBLxnsok1/XrZnZ6O/atb61vLRkQrETw/FKHAESrEBoHcYqWfDIAS4vQKkAHiFEyviQQSIeYgYmKJkhCe/h9wagWG51bVQCcgFwY+EEBVgIyMKqlV4xU8YLZkEcJfzVCPJTwc0aApMzBUHmUm56xKIMEUgTHyOYCXDTMSZEYTgCbEeKuJMhuXC6uRcsbaHFg/mIQZOncnE0JX3nIXjJKpaPbZhCTwZJZRDfZuG4xsrEhe867QQC+DtA7Gdm3mGfXCdgLS4nXVjNLdEe5c2o8MFogIFQBxQNnCVMQPEBA7hqPYidzFEzKgkS02PczDzFEsOt5rnwZAZCfGgoIkcUrWewyozEgFGw8qI6NElcGVA8Sw4WHPooov4xFuxMYLxxkP2VUJqDrmpCLvuIgIQwwnnvIYSp2M5gLyMwU2QiBceWhRsFmShUyC6sGMjHCicxopTzIZCw1rjk/6Ev+XRoR5zID5m9otPT4PXYeGyKxgZEAcjKkUpFddVWg7PwYAVQbXxulwSzG2cxobsjUAbFYt4BdgMVeZB1lBMf5nhHBRxDT33OzCwnAReZVT6A6rVf1bEZJS0m36qYojAQEqy1lkTSlIshl1t/UhJEp3P4RYwpEsB9iwyk1GWLDIBnl+HJ63taTVJNsWmxKJGOf2IAwKwL3oCkBNguRozzsjPsxrpGbMSk3M2f0pWu5ICvqi9jQ2U/FOaMc+L7E7LmabLbuQ2xgTY2QlC2ZJb8mNjI8otSZq7ZzEWNRuN3lnoBYuAi0o2uoq2LwvJyus2TWQllsvIaAHGuiBh4PgMd92AgU+5DnJHMjS8XmQE/zHFciOq8SwDILMjBqJTYYbMNmSHEMNDjrpkaNGtlUSY0Y3XFbXcmGQ9r+YZ3ALeAKoN56mDlPStF6jPF33ZPdLNopNzOtA5jAobQBygSMc5lBa3pO9zyGlLemvMtkoiRga4JpEcgusiGBaErE68A2zKRMICuI1HwIGJZk5dLyXTllNuph+nvO4BTMwEzGUOMijhgc6JSajKyKo4eJuZn58xxBezL+cTlL08ft5HyjnUnIIeQYoXSvNHMZZaYedq4omZUiMnQhN8cp4WbxzmtQxs/PBGZdreALrr/Y0+THlQTP6fMgB5+bcOm7yJUybxfjS+jM6op47iLDGGQ81jLKWWNUSPoc6M7F9QjGf5SKADBmWorEEibwEhsujAMB5yoj0KNc99H/jYMcHeyyghxsbsR7LSGjYQ8ErylhCPYTaBLGxUiRKGXNgI/s6+OcSl/r6Cr7KE4m7kMGplFSGgoaOQljo8R0YvOE8wSmiY3UamoG5PgRmV+bgW46LolpTBLW9LcEOh8/UkRIYjKTNPdx1Ih/BFLNN0FfSO99tIz8d0xgMyQp7V/1+A7kWH7XgaX8q1/yu/sIADqjsSwG/Nn7Z1iWPayXKAqHU1diu5vjqjnih5c3uLlbEUeNGqYrMO4r9F0JpQK62xn6tkTwAs4qbO8WuJydYK3CxdkRAcA4Kvh/uoB732A17+GNhJAB475CXRvAC5iHCjACflC4vDygqgx0bSBUgB00/NuGdWGvsFx1+MNP3iC0GvNlzwgRGbA8P6FYjgRd2jPTUAWEGKchRolyNkKIgM2TA/MXVUBZWQgRoLUDRgm1HlFcdsDKQDyUlLPexPiKXYHmi2ker1iNCIYzIcWXFeAEls8ONBkpLfS7EtViILAbJMSaRjih8dBPW8zeKIh7MsaiI+isr3VmNH/0+1+jvFXc1nji9F5Bzi0++sF7qFZi+eQIqAB/LFAsRn4x9hJhlIxUOWgayJQebuUQRgVfevyb/8I/RvHyhPCyJ8AFMD7U+fcgAkRjgRUNjhBAZrqT0Ed+4Yn7En5tERaWIDU67cpRQFwMZE3nFtWtykx0KCg79UtKc/3aYvaOz5W3Cu7TDmoQ0FsFKKC418DKwDcObumjfMsiyAD7YozZegLQNA/RD5pgUgaIIYLYUWD1x3cwTw1Z9pKAWUZGWhqCJXhmWsqLIXbduV06RmrAk3EW6xGhIADTr09wC49wOZJlPxIIujpAgHNu1b2A2xi4MsAt+aVfRBfSACDogPGMgNCsPcYLh/ouMlCS8mg391D9FBJO11M2QIIAXBnQfWQweythzhzB1xOTmXE7Jwj1JQu4ce3hZx52SSbErD2Ko0D5IHksgFiUCAxXDsUBGSAiPJJp1mSvZXIcnXlmA8boDH3ibG9iel0dMJ6FHH1jVhH0F3T4lUYgAOifOqgeGDYsNIdLj+GcYKP7bCDLv+L7XRMZDU8gmhoIrgnon3ioDixS5yz8zXxiN4MOsMsks4wOuQJoXzoefw2cPrEYVwHjxsM1lKYjAMfvWc4kx2ZQ+8pBt0D7nMtRMc8xFe7dU0+muo4NgajkOHzqM5BIMl3bANXWE2gM/OwXR4JGFZctbED7yud8SWZ70k0aALondD7trwhk7QxxZpAMrY9FvTQEXc0Nz01iWoUlsCDAD1BdQPuMMuu0Pl8IuIYS3sS083qbmit2Fp10Bf+emwNzRNdjsoJFG1AcaGwybASqA+dlXbzl9udRxhrZ9f6CQFL3AcWR23h6gZz7p4aAw/ci05eyD1Vy7Q2Yv/MxEJ6AaFhH1jauT1pKgIcN7wNqIEDpzymLDkpgXAqMa4Fq61HtA4Y1We/uiq/Rp8Suc78Jiqlm6C+i+cwrsuv8XFP6K22IDYWQ42OkBboLMps+XlNcRsDpOb8jeA3zeFJazPUGQTdbX4gMZkRgfEhi6VPEhoqArTsna2xmlOqPS843moYNPa9EdB7mPCQEXYR1x2uLMt/I/PZk+rsLfnekdbhHoFQZynltLWHmAsMy5UMGDGsVQSvnJ3ldUYqZnGLNTGYjme6CLJorBEFi5yPzOZlmCUfZLCQwruhU60uB4SzmQw4e/YWGmUnYRmawyAPN9wgX0F3SmdcsyYrZmUR/UaC7LOBLGR3YI0hdKAxrlZUUh1caciAw8IWEayS6ywKqsyiONvvr+Rg3kvIgh00BOXqYOVlMs9CcyxTgPloP6TzK7cBlREZRGn4eXK0wrrmM8KgJYBZkbQFQRlsTeAnrM3iVx5HX40imFSFw5jI2mIRx0NsW8jRAtpxVhRR0nbUeXkuIweQ8T+E9fENZas62bDlr6UudgWIoNVnbIc5kSsllJGCY2McEKhXZVEg5zV0CEbgyliSD5AhQg4rrjw6zCYQCmHItlZycXBPgSwAwsqOQEnAO7tkGwXsE76c4kqKILKOb3Gd9ep+YjHsSO+o9wWQC5EJEV9jwTaY0stm/8ec78vgux418qxnLs99/Ev7dv/8v4U1/hu3Q4KuHM7T7GtV8xMvzHT5/d4FnVzs4L2GcxGg1nJMotIPzEn1foKoMxqHAbDbAeYnTtoH+UEB8fMLZssPtX1wAAELt8Mn3bnAaS2wPDeyoaV6jPUIQ8E4QADqB9brFw/WKLqNbjfBkgB8VNlcHPLxdY/7khHZfQyjeHJV20/IKB9sXbGZZGSuLAHQK9VWHsddQ2sM8VBBOIJSez1uJ+qJDf9ewyq8dqvmIYV+RvWwcghUQJ00WrXYIg4QYJB1QGwecCGSWzw84bmd8vlfA2pCNLAIB19wi3JeoX5zQv5tj/uqA4/tFlB8T/IaFhYzHBocCWBpgWyDUPjrYdrD3NULlyBoGgj0EQDwdgLc13NJRvhzZGTzvEa5rhHOD6lcV+o9H1F+W6F8wR9SvLNSW8w/CiQgOCDCCYOEsnIBfW7q8bkaI+5Js59wjaA9hJcQgIpsngTNWp+K+JENYe1TXGsMTh/ID5w7VUcFXHqHxkEd2Lf3SonpbZLmtWZM9BADz8YD6ZzX6J47rjtsjArMau+8PEK0GHBBmDmqr4VYOxa2GmwXgYoB8WyMxjWbtIAcaPBVHSrnNxqHYqVj8B6hWwl4YiBONcPSJrxNABnrjiixk9UHCxqKewMfDL3guZB/lcYFgs7/0cEsHeaJJSZI4d58YiE4CCqg+KNiawfVyBMw6oP5A99Xx3KF5pzGce+Zqzj3cwmP2hUb3ko67QQMiMq36OLlsBgH4ii6fqudy9WmS4vL5CBpPAsMFJeJq5D7pLrKnJTv9iW1MDFT72kHvZYweAdrnHqtfSJxeEnDSfIcA7ow3kQAAIABJREFUYDz3KO9lZtyKE8FkuaXk2px7FA+8vl3s7+iWhiztC89syVsBsyJYrG9ELqR9jBQZznm/qO7kxFxGEOrLCXABPBaqFXCzgOZaZCm7L4D5u4DuMs6oRQOo+pZGOMePGHPhNbd/9Qvg8ClQbgkqhk1AfS+gOhrlBEVwAEEGtLkWWXbIsYHIrmue88QcmgUB4HAuMhAuIgBTI6Xo9S0ZSh+ZsHHF95DRAMYzSsfNnPsxf8OZxOLA45EiT+yM14edc1uLI58vjgRFyy85v5jYueLIdZR7mhJBJMY3MoYRsPmS225WQHU/McN2RtOgIAlY2xcB5Y6xMwjAcC5yXqXqA3wpsoycLr88Lo/jbmSUxCKyUa7iMZ+/IcAjQBFwDXKeZlrPuOYc4/Elr7fZB4KafsN97J6K2HCJTF88n2k9s/eUW9qZyA6z83ee18iKM8JJmj4uY9brnYdtCFjLfcgmP7pl9Ex3KVEeKLGXFlh+6TCsOG9abUNmu9iciNFPgecUoHurLwlwpUOOpbH11LRK11piFQHk13rNc1dvPfq1zMA3gfPi5NE+VVDdVB+VJ0qQq72P7KxHd67JCJoQz5HMQLOI5ktAkn9zvdWeMuNhLbF4Y2HnErr1OD3TWH0xwjYKw1pSFmsCyn0EoY+YSldRxql6Os9WO7J540Ki2rvcfEBsTJyeaszfW5i5RHHyGFcK5c5G0CVRbS3GFSWvKYPTNhLVlut2FRnVcmfgS0aOAJRbJ8a9OFqM6wK+ENCti3Jukc18EhBWvYNZF9AnBztTKA58X7kzGM8KZn+epr/JyPYN5xXKhxHjeYnyYYSd6ezES0MjzlgGSTaWjOeUXyoGB99oxocAkZ108LXKLG5111MWKwRUZBaDACDFZM6TgGWtGTUCEGx2BtAyP48Q4GYl9P0JfllTWusoyZXtSOmtsXkOMpQaoo0fpMcGNyDA9PNmcnONs5fi1NEldjAIdUlTHx8oAwY4e1lMVipBPsrLBDiXaRldIpSM7GI8XnpycQ3eE0w+ks4GOxkOZTmsENPvcTkhZVAWxQRgf4Npz18Lj3xHGMuf/mu/fcbyH/393w3G8lsNLOc/eB7+9f/i38Db4xpvb84QRgnVOLhRQpUeflsSeMkA1Vi4bQk5ynijCHzOxS/rKMXUMQZADQLmjAV7kKmKI1MF7ckwjjIXchA0Eim2CmZDlqD8oMhuVCG/V3Y0JYEKUCd2Ml3D+U4AcAvGeviSToXu0b8ismh25cmeRfv7VMh5RQbALunkOFw6yiTTazSLZ2H5u0hzSnEbfB1QbCmrlIOAwDRflSSHqeDwM0ag1O8Vuu8NqL+o4OoAs3aobjRcjDqwS4di00P+bB7BHcGKWRFIuCpEmQpy95nuj2TffHy9LwmWmq+47PzFmUYKoqTTNizizDLkeUAEvl8NAramhBKIzq8PivO1hkYmdhY455mAVcfrIxUrrua6Vcf50CRtNHPuR2KcVMcCK82s+mLK5fNliF+wgseyooQyMUJmRSao3Ip8zORIQJJmIKWjmU31IKIsFnmGL3X3haNkURqCAjPnNqQZPduwMCdDEzKzWRzpvKpPlEm6Bugv6ZIbRMyFFPF4VKlIj9dgEWWW67TflJCm+S8z5zoBvm9cMb7BzmPx7qb9cE28NmPhPM108j2umuSTwnJOtNxNwBBpG+uJzSr3yOwTBOWVdh6/vN0EDNKMYfeMUlXVR9ml5ecssUnSUII4bESWeQqHDL7zXFfAJEWN8lk5kp0aLlIHGnneV7fxHFoW4uOK+wtwH0VIMsok8WNBnOZB03xdklC6SuSZwsxAyni+RsrsOL8dQ+V3EeQNERB001wq5cVcri/F5NQaUuHIv8Mjz70mthCI56KeZkzTPYWfIzqm9ueSIMRx9tU2EUQYZNfSLO8NnGUtd5Ok2sxFduRM+8nQ+PQZRJ6lTTLlPFMb5bdqJFOU5gnTMtK8Y3JVTrOZ6ZpLs4zCEUjYaPyUmhBBAEVHkFK0nBnVfYjB91zvGCW+6d6eZOW6Y2ZkiLOIxYnMqK1lBgXpoUy8duYiSzTTDKYIyLOqQDz+jq+3VZyxE/Fz4HkeXATSrhSot4zOEH6aMQ1yYmXVEGDmZN5EiMY3K5rQSBdNmEYCPjKGPs+SPnaDBXgMdesniXC87wYZcykTaBx5/s1coto5uGoSZBHcTJ9JWxNMqjjzmYBakCLOgxN8kWGdzqcIATJGbFQ7h/ZKo76PYy6RdcxOqBFQ5TzjVLB7NguAKL/tPKShVDWb16RtF3SMtbMoi4xsrPABw4bgLP3fq0csZgJxMVbDNiozompwsI2GPvHkm5WGjjOp6XX5Mzk62LmO5zHkv7loYJPAuxo8wValJkY0Hs8kVZV9nLMLAXZGNtPXzMRMs5qhjKCunUCdHF2cqY3zmFEKm2fypIjXgge8h5tFt1cXOGMZZatpzjLlVub5Tp0ko49e78HX1xqij/OeaRY1SjpDMUlxE8sXSs3lJ0bwcfxGYiKB6e/J5TXNXKZHkon6MElU/zIYy7OSUQ5cFQSSAMFkdmyNTGbX83et+J4IDBOw/MszjiJKaTNGSIBRR6DqHHLuZXpOCuZiJrAYtzFY+2vnKx8/QgiTLPb/Dpd8F4Dl+T8jYPlf/m4Ay2+1FFaIgFI6jE5BiABReLhRQqiA5aID5habp3tsrg7wtxWefXqHFEQOL1A8aKDiB+CTT27I3r3u+KW7cUDlEWRAda8YITBzkAuD2aYj4CxCNpfxlyNNghQgGofiXsEuWAhJK1DsJTYfP8Cd8QNYPDB+w1UBfhblF5osCEBZIz5uoTtB0BXXFRQoYZSUzuljssEH3NzRsEdGm/rzAWbjM7uheoHmRmRwp0aRi37VMe8xSCCUXHay0vcli63qTkI966Ced6ivNbA0NBg6aBZjATh/tUUKnFcdsxhNV0AaQaZjoKGNfNnmQkv1IoIfwSy7MwuvCPJ0R9MO4QFRsxM7vhy5XZrzfnbOgshVAXbBTnrzXtBNNPD9+iS4zDOH4dLxOJ6PqG/5nK0DZXt3kXWquF1uFtA/cxk4jZcOiy/xDYOaYh9B0hMLaYHix3t0r/m7+sk+B76nWadx47PbaohsF2e9KIWzz8csyQyaMRiuBsZzh3ETYBeUaI1PLYIE2h/32cBmdh1ioYTsWAnwueaP71nkes6XATyvxYH7niSmCZCWO8TGCMjoCuTron3poQbui//sBNswf9AsQwaDbhZgViws+ysPVxDYueqRWdRHfbS75/b0TwKGixDnpKJUMhluJGnfIHLxbheBDI2NplqxyBdhAroJtPRPHGfcbMDpE8tzEIEeQXfIjIhwwP6n4yPGgdtdHLldKR+z3HEZ/VMfAU6AXdCd1sf5tXFFgOoLglZbE3gHjalIjqCku0pAmEWM7ujQGiTQvXLon1DKpTsyW2Qsuf/DRYBuuV3tU0ps7XwyC5pdc99mtx5qiMcvusgOG8Z7CAv0VyHmM1ISmLMTQ5SIav7bX6Q8R96X+nOyeeUhTOuuIvt5FtnVdHw90Nw5DOciGz7pLmS56XgGzN+77LTZX4XskJtmJ4cN710AI0HUyJnQovWRXWR8SQJ4PjqIApHdqwXNlQxZPQTKOc2Cc3g6NhOU4TaYhUB/STBmG4HhnNLy0ws6iPoS6K4EukuJautRHjyGjUD7QqC7EjBzOvGaFbexfZZmyoBq69g8qHntdk8EkllUYifHtcDxFTP2hjVfo0bkWUXdE6iz8cTfXUHQ3Z9J2FpkUBniPUKakLeLjq28JoLiMeguyVZJE+LxlRg2IkZ/eHSXMt4LeV7NXKC7kJhdj3QpfSmzwY4rgOLIc2OaJE8VOL0kYBzOBPqNyE2RFKFhK4H+XGWDL2kIrton0bzGESCq0UezqAB9ctAtQZqteSzJZvK9BJeUeyajHltJ2EpgWEnG8FRkXIMSMA2loO2FQtEyLgSRxU2A0tYCciQgNXOyer7gsn0psrGQ6h36M4VxSWdXX/E6HqIk1VUS3YXGuKLcVJ0MzFzxdS6g2A1Z5ukaSldtTcfVYaNhFyo2fSQVRqOHbWi0Y2cSrpDxODpI42DmKoJFRSnsiu8fznVk/mg2lMCfag1cFecilaATayWhdx3GM432eYUgBU4va5hlAdcoeCWg2hGqHeG1xLjWkMahvyigtx0dXx3lpS7KVsezIn5HUarqZhrSes5WBmA8q7iflQKEgOgMfKVh51G1ZBybvRFMyu2RRkQRDJp1BTgydHZeYDivckXsk2HRoYeIxjNuUbF5U0ZgJSUZPyEQSk3w5gKCUvDLGkFK+FkFOA8/q+DnVX6dGA1dX0NAmNcIhWa+5COgKQYDGEvpqqOrK6K7K6T8pqQVIHsYwWTQKoPYoBVdZKUk4FTxuaqc5i6BXw/8EiOZjH6EgNCa0SRKQShJpvORmY7QGiKypEIIgnohJmmt/KthR5LJ/trHX2cO81vwSAqJ3+bP78rj281YfvY8/OF/8u/g6ewAGxR+sLjBr04XKJXDh26Bq+aI69MKtTY4jBXWVQ8fBErlMFgNG9ttzktcb5f4g+fv8Oe3T1Bqi/NZh0YbdLZAow1OpsQvf/YMi+dHOCcxr9kxqbRFOxbYHxs0zYhV0+PmfoUfvbzGfTdDoRyMUxisxv12jsWih/MSSnpUhYWxClJ6eM9tqUsDJQK2bYNxVKhrg2U94NBXcX0O3VhgPeswKwxuj3No5bE71lCKM5Y2RqIMRqMqLE5tBYgAKQMuVicYp3BoayxnDJkdjIaxCj7OmIYgoAsLrT2qwuD+donzywPavsLY6/i8gw8C5+sTPrw5Q72Jy3o7R/XihH5XQRSeBkZWQhcOZWVhjIKzCu6k8ez1Pe73c86Wznrc3S+QJFC6cBi3FUTjoAvHedZdBb0wsK1GtRpgRo31qsX2foFm2WMYCpofyQBdWti+gFAeQgJSelijgIeSDYLaIuxKYGUo1Z1bhFFCVLH77PilnJjsYm5gRwVxV0K/bDG2BXTlYAcFVTl4KxFaDRQexYcC5omBqi38bYXqeYv+UGF+1qE7lfCdhig9TYxaDXiRWXB9NkL+smEUx4UBBsWGQk2zpFAm9jxAP2jGnrQKQQWgpjlS6OOXgfaQRw3fOM7stnTcw9JCaM/9X9CyNc3wAgBKzyiVMkmIJA2MVsx583XqRgaog0KxlxieOITGQd1rRp1sNdzMZ/MmObCh4ev4t5JmRsVOYryM29fHDmkRAMHZUrLZIro2R7Y/VcaKJjsicHnFrc7S31ASAAsryMTGhpI5cxBWoLpXsE3gzGcbVQmBEmjZCbgzi/qrMs89Zhl1SXZZJuOTOjZgTjQwkgMdpxFjTthQEJkpSYyXGgSGCwcV429SQwkCEGaSy/pyMh0q9gQNw4XPRizSCLjaQ7eSnlMGk2FLyZlVCKDcMd5FWM5WqpaNraDYVJCOjQ194syrWUb2akZ3Y19ShpzmCn1BJQVZSb7PF4hxHWwIZeMZwQaG15P0VjqBYeMxfyPhFRsE3GE+B895WTkKlDuRAb5dTNmISU1hlgHVlsDtsXmOLziv7DUy45SAZWIbVQcMF4w4oTMocryMKye2HSDbOa65jckcyFXRtKiJf4ssdnc1NZPqe84spjxJKiuQ3ZVVNB4qt7w+7DzKdaPxUpJXqwFZNkw1xuQ0HeS07xB8fTJvUt00V5kMk9JyXB2ZVJ2upwmgqiFEdlbkBoTqydj4gkxsfcfXBs1tSIZEdkbHad3G+dI4j5kY6uIQJcBHApf+QqI4sIHGWb7JxIgz0CIzfomtlSMNkaTh9sADkNO+ypF/V32YDJwE6KxrwzeuTbJ7kT2OLs4+RnGYKM/+xjmLLHwVTYiS0ZAraYSUzHHMYnL1Tg1er4HmwcFWMrK0ZG7rHZ2CpQkouhDBKiWzyUjIxUgXGgEhG0ol8A9wX2wts6NxkEDRMdNTR0ZVOpoICUc22cwpr1dxGUkO6wvuR3kgY2wb3qeKIyNaihPnXV1B0FEcHEJs4ujW51gUV0dWMEQn6YHvT6+RIyNI1OAZo7JUPG8Cmf1NzKYap1zStC+IQFqOdNL1hZwMuwDOfmpKdF0dTfn2I+yigGoJilRnYJdVBp6uorlQMuN5bAyUQHYGuiaaCblAs5+UV2kn9l24kOcxQyEhB0tnWueiLNZRSquisVKqzV36Hh4nUBZZ0NDEbmsIEL3h/0OA6KJk9rE5T6HJkIbwDafZUBZ5GY8fmf0MgSxnZi7dxIYCBJVCAiH+LbGewU/mPgBy1MhjcyXgG46xfyUeSfeA7wBj+Yf/6m+fsfyf/6vfDcbyWw0sq09fhT/6T/9t7Nsa3UNDUOAFZqsep12Np093eP/5OTavdjh1FUHTTYXq9RHdtoasHfxJQx0V3MZCtArVjcL4WQf5toYvA/zSQtUOblAorgvOtK04Tzf7VYHupQMcUN8odK8sZl9ojOsA/6pHuKt485s5zjQeNYv/g0aoHYp7zS+BDV0/1QiMVxZqr1A+SPRPPLA2wK5AqDwZjKOCXTgIJ8iWxtOXpJy+DtB7+WiwH1M8xwiMGwe5MpBvatgLAxgJfVBwNQ1HUvFc7BkdIhxdTN3CI5Qe1bsCw3MD2SoWMgNZz5RnSPfIKTuyfFBZKpqKuqBYlIYktXIiF5wAYC4tijuN+oPA8VMHdZKw57z5l+81dCvQPXcot3Q8lQOLz8QkFScywXJkzIscRZYBV/csmlNB5Wowe68E+it2OFUs8tXAG2B1D7QvyIbNvxLY/YgSY1cDs2uB4TzAnHlU71XueLo6fRmxyE3nmKyNwPh7HcS7Orq8ErQUJ+D0MZedTDqa98zpkwPn5qo7gf6KsStqnExQ0hyeKwOkowlN99xh/pXKMtNiD0CSMTPrKL+VyCY3uhUYzjm/6GquQ3gW3d1TRJlyBBEamVGW41T8pogPGV0/U0HV3ATsv8dit7oX6C8jMAEmSXcERfM3Au0zSpd9lJKrQeSolSStdHWUdAqgvsfEuhZ8T3Gk7BuS0t7ZGwGzmKRids7jXt0jO2u6mtdwf+mx/rnIWYXpWkkskp1P8T46OpEycoczd8IAVZz/Uz3ybFwqZAHOGQbF42vnyOYmakA2ywEiKwqaodR3jyJYYm5hknwnsGAWQP2BxSYjhCL4qSe2z1UEk1VcnvA89j5G0KTCOy0jyQh1y6iRcTkZDCUpcrWLM3Mji107E1mqzvUSTKgYct9fCDQfyIQdPpL5OlJDjJJQEzBNTKidcb7TFyLPUI5rgeqejLCPcSi25r/Fiftq5nx9eWTOpQgB1ZbOooeXsdBsKS21NY1sdBugW6A6OOxf68xWS0t2lXEX3Fc1BBxfKKghYHbr0W9klsVPc3zTOU33Zt4PkQ1vvEKWICf5LARifmNAc+vQnycHSL42GyaN0/Ey8wn8JgOcovMwTVSlxM9NmktM7rZFGzAsOR/Ie2AEkXF2MW27MpTrNnd+et4D1Y7zg0k2m+YSlZncdH3B9VCa7KFbh+PLEkl+yflFArryxBlDMyfzmWfq+sQ6yhzt4irJTMc+5KiTJIF1pUD9YDGuVI40kW6SvgKIkTwe/UbRzGdrMZzpHEETBFDuHYYzneWxuvM0BYpglZ/fANU7+ELCLBjjw+uejKqJ7qzSBvTnGvW9hZ1JqM5nZ1RpuQyzLGDmcjL7QbyXH/l9OGwKNDcDxlWB4mg5C9vQPCXtF4SAPhqCqIEMG5sblK0mQ51yO2LclNllV46e2YvGcxaxUuiuCpQ7h3JvmPsZgafuHJfnQn6tsDESJYEBJSAHylrlYGFXFfR+4KyjYZSJtB5i9HAznYGf7Lk8fRzhSwXVMkvSF/y+5dygj8cmNV6RjXp8qeBqjeIwkmEtyI7KziJUKs9TCuPgZ2UGXGQkPSNSSv0Nt1d4IDQF5GlAii3xDSNJgpSQ/TjJdAtFo54Y3wElp/gS5yYZanJ9LSL7mdxXB8M5ytFM2+UcWUjBmckso81ZlHEfHjnEisEQkApBgGntJGv9NTLbMBoIrThfqTUlrsA0i2ktIMlahmGcJL/O8XnnIMoCIbKwv1EO+yiSRCTW9Tc8El4Jw/AbX/NXPX5ngOW/8s8AWP7XvxvA8lsthS0Ki90/eoJuX0M28eL1Au3XC2BQuNsuoDqJ0/9+DtNr+DsasHT7GrASr588QPQMlBdHBTiB/jljHuzaotxKiFahbsb8hTeec34STqB75iL7QjdMiID+KQf7/agAFeBXlknJPjInIkVQSJgrQ2DVS0AGjBcOsLzpd68typ2goU7hcfZ8T7ZIBwgjGYvhye6EgiyNj7OcbhYYfdALVA/cvqACxisLNA64rWjk0kY2TDHH061tBpVyFAiNQzgfYc8cGZvo6lq/LeBrT+bGxk7+hSOwu7AY1x7qFIu1EwGbW3oEHQgMnvXZHdCsPR0sVUB1L+A/7iEGznkev++grzqyVAGQJ0UWwyEyUoKMEaLrpg5wz8Y46+kfAVkAHrBzz/m5keY1zQ1lt+1Pes40PigUWwm39NC9iFLJaA4RJaLDBggyzr2uLNoXdLyUrcyMhCs5AwiwWNedQHGvowssi0X1VZ3dPJsbEcPQJ/YrqID5VwLdVcC45o3W6ygTPQr0TzzaZ5RLpkJxXHuMTyyGKxdzDkV2PDXLgOaWskZfcVmUIgdAgteJBMF6w2tgOA/oLwPMEqjvCGDho5w1AWc75V22ry0lkyDjMn8TMLtmAXj43iQFtg2PJ0AQk0Ds+MIwuqSMklvP15GFC5Q6z6d5N18SlAUdYBZkS8wyZLBlFtHYxPMnzXvZBT8nq19ym8ySYKy/DDF/kZLo4gian5zxuCcGSHc8XmU0GUnxGQlUpmOQoiYIpsMjEOyjjJuf0+bWo9zymBFocT39lY+uowKnV2S+GN0yxXrYOh7Tevp7AmhJ8ufqEGNiIkCOoJI5idy+oIFxyetv9xOL4Sya9ZzHY6ymedbkwFqcQp5nTY6YjuKI7A5aHGncUj942DmZrPFMZHku2RWayqTcQFdGF9LFxDLaxQSeWcwSNA3nEZwaguDFW4fhTOTIjfZZdDWNQKR9yntYc8fZ0dNTxXPWc57Sa7qn6hPlsa4Guo2KEQxky2wjsqxUGrImtqGple4BVwiMKwEbXVRp2OIxnFEyKzybBPmzoAkQ072KbKvI852M5uG1ZBu+rr53lCsvJ0Y1zYUm0Lr6YszmN+NS5JnIIUbIlBFEl0cy4ADlqnrguTRxbvb0XMLWqYkQUO8cn/NAfyazMQ3vQxFExmurPHDsYFxyu808gV2fWUjXsDAvTh5FzIE0Mx57Wwm6lvLrFd1FdHNNBaaMUtkzRclrBHvCI4PdYSWzYU+QMfakp7tq2kfpKLWGAKqd59+jDLTaOeiTzwAW4GfLNARk1UN0PQ3IuaHCA0XL2AoR82KT+ysjYgSKPeXCwkZXVxGluY2EbRS6J1WWSpuFive1qPzQZMPoVkuAlZ1QZZxbPRj4IgJy66dZ3ZLsZNAgIB4px4Uk+C0fBhR7E6OdmPUZCkppyz0ZyXFVQLeGsuMuymgbRbBZqhwLkpxbi4cOtlFwM41xTQlmkAJuVnK+1ZGFlB3Xx/gYAkY309w3Hbe7UBjPKqjjCEQgq49k6IIS0Pt+YhZLgmc1OAznFeSRXT0705ADjW6yKU/OkIz/T/s9KyFPPeyy4tynUvAzAkO3qiE8WcmcfWkcJa9KwtdlBJbfZBCFc5TDZlfWQBlsWeD/EstRl3F75DSzmMBnYhujkQ8KzZ+2Q3aH7Xo+5z1C1yO0HbLra3p9oclKFprL1Iqg0hjKXr2PjKRH6HtgGCDqGjAjMy7jfoVxnMyClCKofBwrImV2gQ3Oxx+XDX5CBKXTc9/8+a45w35XH99qxvLpj8/D3/rP/i38jbOvsLMN1rrDf//29wEAf+vqS9wOCzTKwASJ/dhg9ApnZYevj2dotMFVc8Sf3z/ByyXdRA6mwmA1Xi23+MPlG3w9bPA/fvl9zCqDs6aDEh6LYsBtt8BhKLGsRvggIEXArqtRaHacdscGdWVQFRbPFge8O6zQFAaXzRE2KOyHGl/9H88Qzg1+/MlbfPGwQV1YLKoBX7y9wGLdQQDohwKLWY9SOxTSo7eUoT5dHHDbztGNBUaj8ep8i9vjHN8/v8Vtt8DXHzYoK4NuW2Nx0WLV9Dj2FX765B3+wT/5Af7GDz/H2+MaSnp82C4gJWWym0ULAeDNry7xvR9c4/Y4x6wacTU74ec3VxgHjR+9usYXDxs4J2GNgh00wihx9vSA46nGk/M93t+vMJsNOHxY4Cc/+Bq/+B8+hf2M1baQHi/O97Be4v44w/mixb6vYIxGv62xvDqiUA5tX0Frh3XT4/pujT949Ra33Ry7rsZx2+Ds/IT9vsHZ2Qnb7Ry+0yjXA4QImDcDdocZ/KggC4+r8z1u/+QJVj+5w8PDAlVjMKsH7PZz1A2jWwBgHDVMr1HUFutFh+1+BrOrgMpBVQ5NM+L4MCP4lwHPXj7gfj+HEAHWKhSFQ3+osNi0aE8VlHa4WJ9w/fU5isUIqTykDOjuGqAIULVFWVr0b+dkpo8FJa2a1NUfffYl/uQXr7m+ADAeg7/L8wFladE9RBdgTalr0AFybuCtRDUfMV7PEOYOoleon54wfr6gedDcUQ47Kqj4euwLlE9ajF0BoQLU1zXMFVlt2UuIJz234U0N/7yHP8Us0kEi1A5wAvKk4DcGxfsSdu4xf3XA6csVpAGWP9hi+2FBp+GlYSF8XZGB9wJyM8LtCxpovYzLDwCiTFW2En5lUb0pMTyjhLe4V2h+vMX+egmogObzAv1nPS4ujnjYz+girMDcVRMLk8pDdJLH8mqAuK4gLLND5UFxnvlshD8WqG407NxPJldnFnKnUe4JUGwdyOarAMgAeVKZ/RHPe+Drhmz1ViPlTArPmJac9ccIAAAgAElEQVT2IwuUHs0vo+Q2sd0NAavs6WyMQHmqrwOEERmgA5hmS11sEihAxtlizgrHL3Uv0LwnU2xnAfUtGwjJoAWIDHBk2XwVUN1SEZBMvlKWZpCAeN0ifDXLua31tSazPHKW2TU8LuUHBWnJHNvlpEoQliqHJO+FBMzS50xU1U4ZpsVJ5BlUOw/ZyReI7PTSQyfH5XMHvVO5yRMkoEaBckvQnfJThSera+cC7Qs6+ooIjKWlQdK4BEJBxcK4YhPEzgjKaVA1HS8IGlHpDtEVOLqTCppdpVlT6dh4GJdxlnaMktRogpWAdH3H16Qc2CS3LQ7x/ESZrLTA/vct5p9rynnB9+8/s2jeaqieDQBXT+qW4ZzyZjkmFULcBx9jVAIBMhBZUEeQXZwY/TJ/Q2CsRjY0imMEeDG+JWVY6naS69pooMVmikB959FfSEb6xBxW6dg8OL4UqO9DZmPLPWNPigObQ8ktlQ7Lk2Oua9gIqrZ0dGW0TYxhmSHO8TJTs77nbGlivl1NxUu5jXFGmqyxMowyGVa8vpJkOCkXqn2Kt4hg8kjZc7UL2SgpSKDfMJtTmpBnipdfO253/ElmRtIG6CGC0YZNkcRmQ7CRkVnaUqC5czg91TRAiqBWRuMm24hHYF1mUJ8erhRZSuuioVDREiidnkjMbzzKLRui45nOM7qqD0jmYq7hrGsCg+NCYH5tCYZ9iE0Ezqg2NwbDhm6uNFsSeZ9VNJgSEaAPa4nZe8NlrjXqW96oaLQE9BuF5o7GM0FLqGgOlHIxvU7O4ZIS2EpRGTB6SBdg62hUBDaMiu0Asypjo0TQXKiK7rdjzNlMhKihw6wYPSAFZGvInio5SWJHSylsoQg4o7GQakeCZA9AkxUVgTLZUEio48DnhZjMhjwQKspls2EQAAyPJKERAKYIkswgJqAa2UBhbAThjCNJLGMGm4+Nd4TgcqyL7rWPQG+KLzEG2cQneC5Pa4JOF9nOFDvyeB0pGzS50hY6s5u/9hF8ltw+nun8f/r4XWEs/+hv//YZy3/43/xuMJbfamBZ/96L8Ow//PcAGRCMBKygrPXMolyMGI8lxFFTQveqxbitkGazYATOX2/x8OUGajPA9hrFdQH7YkSwAtVqgPgnS5hFYJREGYDKAaPMcRrl1yXGZ5ZM3sIgWAm51zlPUB9FLnzCzAJWQpSOM3BBQIycPyvvVQ6x93OH6h0BhuoFuk9HAgsVoGYW4aaGXxvom5ImQxcWcALlrSLjmaSxvUR1zziE408GoFMoNgPcuwZ+5nkMQLZUn2ScCwMgyb4FTRkwJCALh/BQAsmFVRDY4G1Nl9rIqMlWwj8ZIO5K+EWUJX+hMVx4+CdjjuzA0gIHjWLHKIlix+50kAHjlSOQkIHOuyvDdS/jjWRXQJ8EzJWF2sUifmCxbc48Qu2hdgopv9FXMULjvcK48dBHAeEF7MJDvuhgHirMnp7Qf7GEtGSE/cZAvy/hlnToLfaCmYV6ymIrdxL965HZmoGsmRwkiqPA8P0ezZ/VaF9bFDs627nnA/dfRrOgdZTTqID6RjNOQwDdRwb6XnPUNHCurv9xB/Wmhp0xssRXBBFBB5QPMucymkVAWBDEFHuJ/rlF8aBg1g7FXqG+YfFk1iFHbMDH2S8PsoZrGiDJQbKYnU8zbckUR47Ix8rVEfS5KFntozQvUA4qTQI4gPv9E5yT0J/XnMkSdL7tn3rU7yW6Fw7VnUK5BY6fcBZTOMAt+DvnNAOqO5mNd3RLM6j6jpJVswjQvchOzDrKolMepO5EZmRTrEJ28C3J3roSqO9ihMkcOR8yORELK1Btgf6CsuBkGGRnIYPH6p7XJAFEwPwtGTRfAuUD2dHZNaMommuBYROltFFSTJkvJcAJIIUiyuAOBDrJhTixuoyGoStyKvq5PwR8KU4DIkB4ylSrhzhPWPBc61ZkR+fqjvtmaxb9w3lA844FvJ1RSp2MvYJCjvQQLs6gRTAo3CQzZjEf5zaLlDnJbesvyPTTTZnbpGJuZZLd2oYmRONKILmzAojzoARkyShI+AgG58gOvKeXXFf1QBZwOIvGQT1ypAUANLce+48lmlsW70lyTgdtgtJhIyidbRip8fCTgNXPyVQmJ9rZuyi7j2yrqwggxrVAfcv3mgXlzum57kpkFUC5jzEklvvY3HocXkuUe35+x5XILr26C3m+djgTaD74bHg0XAjKo2tEdiUwVD7O0bmKMR/Cc5kJtNb38bNTIctL63tPk55Lgs00i/l4hlAawKwEVl84HJ9RIplk3oyUCdmFWVqez2obnYnj3GF3KVEco7KhDeg3Es0dDYNm7ymPldE12TRkx5LJFkBATTddrk8NAcNKQg8R7DRxvveRUVO1i8ZCNTC/ZmSKcFGG/kCJagJc3TllrtWe8llguuZn7y3U6HF8WaK5pQSX86IBx5cKugVmN4amOAoZWALIbKu0yCxstSfDOi45g0knaD5HkyMRZeB+coQGQViad3xsfORjrmdxYuZlEALFwcLVirLWGUFYfTvC1YpusdGYiOc7QHUeriFA4nOUCCdWV7eUx9qZRHMzcgbSethG05m2VtC9y060eabREXAmR17hA/qLAvWtic6vAeOmhBo89GGEXZZRtiuirNXCNRq6NfA6Ar0Q6EorQHnt6KFaMm3JoVY4HxstEinrUp1GgsHDgFBrMqAj5ymHiwrN2xPkoYef1wSJj+pp0VsynIWEbA1S1EjKs1S7U44FmZxdabIjjCOYkyJHiUwzl4/YzLKA6Aca8aTokih1Fcn4J4I4YR0wjAjzhrLYNH+ZWNK80NSBGgkCo6yVTwUymECOIAnD+A3QB6UQ+iFLdh9HlADIM5X/r5jHEMHstx1Ybl6HP/rb//5vfbn/8L/9D/5/3zfgWw4sq1evw+v/+O+i+JMF7JzRC/wCRO6Mu4pfts21wPFjj9lbDtoHCZz9hcfu+xLNTcDu94AmFt7LLz2GtUT7gnNaab7KLAPqW4HjRx6zN1H6dAo4vUoFLFBtWTwVRxYgZ3/hsPuU0SDd04D5G5Hnp2QsuI+fOKx+rmAW3GYVC4U0JyMNv+QOryV0NFpI4douOt3ZOQsMaVgw+OjcWD0gO+7Vt3ydbvnFlORq6QtKtyyi2pcBy1+yG6y7OIMT3StT9lv1EGCW7IKnrndxmAwRggS6Sxbg9QNnjqotCx3dAQ8/AhZfithNjyc0TAYP0lI+lb7MEZALrDHtywxYfm2x/0gzN/CMxUmScw0rCd1zX48vJRZfe4wrytGqbcDuM2D5S3adTUPHR91NLpsIXKarkaMMcoE7i4Vb7FSn+S5hWRyZucDsvcfphUQVu+/rzy2GteS2vOE1VpwCTs8pBZQuYHbjcXzOL+/l1wa77xXQLZeX5Ibjmsc/MVz3f9Nj87/JGB4erejXMrMHAOff0r43tx4pKLxo2cF2pYizXbxebMMZtzqGhh9fSczfRuv6Os7CRWOLFDWx/qXB4bWOhafMMr5kRCItJYfjQqCKRhXjWmD5leP1sfNonygcPw54+r/wS54GEyzejs8VVl9aHJ9rqJHFU/dU4OznLrMMqQMfBOfAkiNkyhR0VZzVi7EazT2vTWkYvO4qgXJnASmw/X6B4oTsMDqsJZZfW7RXGqeXArN3ZBZyZl4gU+MK5LgR3bOA7c8ETT0U5aBmyfzEauvQPtEoTh4QgGli4RudTe1Mot9IzK8dZ/iik3J55GyiV2QYxiUZGj0wBqK7kHlecX5t0J9TOqVbumf2Gw1fUCaou4B6R2bi9LzA8usB7ZMSw1ri7BcDDq8qVHuXi71yZ6PUlIWkjdEI/Yaf1+aWrpFkLySKzqNfK1R7n9mScaVQHB2OzzXqLQv4xZsR/XlBmeFMYvFVj/Z5lUGiNJw7czUbSsNKobm1cI3M2zWcF5h/3cEu6JiYZH+U5/J+IM2UL2gWEsvPWxw+naPcuwieApf9wUyywehIqmM0RH8ec+ICpZjz6xFmoWFr5v2lWUCvKeUE6PzqKhqblFsLX8kMAnTrYOcKKh2fM83XFCLLKW1Dt9H6weL4vIAeAmbvyVh4JTBsOMNd7iz0yaJ/WkHF+IqgBOxcQY4BzXWL4aLOs3XjWnHbagE5sLkibMjSzPqOkkP+X2FcaxQHh+Jo4RoFFYGI7snqUM7PGbzjRzVm7w3K9ye0n6xQHC3k6GBWZZyBI1ukWguzKrL5StAC6mTgGw0fXS+l81AtZafDVQ3bSMzeDflcqpOBPaugjwZmWZJlKmSe0StuW9izGqq36J800K2DHFye5/Mxg9DOFMrdSOlkBDpycLERRzMXr3lfClrCLDXq922USUZms4yzhXH/5Ohzca1vj3BnM84LDg7jpkL5MMDOCxTbHq4pMG5K3vduO0BKyHaEuZxBHUfIztBhNMovx7MK5W6MJmOUmErrIXtL5ssFuEWJ4r6Fr3kfcLWG6m3MfPQQgyNrVijYZQXVW4iRP6FQsOsGet9T5qklpZ4AIEQ2eRG9gb1YMOrDekZ3aJlZN2EcfFVAHjuEeR0NbzTkoYVfziCHGDGiJeS+I+CxjgBJSfhFA9mPXF78fAXFmA25PQGaoM3PSqhdl+tE0Y+cUYxAS0R5prtc8X2FpkOrEhAnUvVhXkOceoS6gjy2fP+xBZoaQSvOOzpP2WcIeQYyaM5vciGBTq/HluvQCqIfv8kAjgZoaoJCKSYw94gNFFpnQBe8h5g1QAKT/TdnDXM9n3Ipk7GOjC6rWpNhzHOdNr8+u60mwOdipEtiI9PjEcgEEOcvJ+ZU5AiTCDLjOoRSBJV/eV2/7vfH///LAPS7wFj+c2D5u/uY/+B5ePYf/T18/9kHvNuv0JQGSnosihHvDktczFt8dXMOvKtQfnJECAKzesDz5QE3pwWU9Hg4cFjJfjXHZ3/zS3y1PUN7rCgNNBL1psePnl7j8+05Ht6toBYW7qiBIuD1yzt89cUl6k2P4WaGoAKayxbdfQNROyxXHarCwnmB+w8rsp1GUGZ3KFBfdTCjhr+toJ+2MG0JWTg08xEfbR7ws//1I7gzC9U4PLvY4e2fP8HZpw84/uk5Lv7oBtfXZygag6Y2OGzj0JUMCCcNuTQI9yXC0gJGZgawOO/x+nKLL27O4Y4FyvWA4AXMroJejfBOALcV5zJnFuJEoyEAgBNQe53ld/ogYM7oaOk/6uGNRBgl5pctTu/nXKcXzO5cW4jCI/QKYpSQvYB63WJ8qMnczh2lnI2Dvi3gqwDfkDF0FwboFdRJws096neaM63JAMMLhGc9XU49IJzA7JM9ul+sKPusOdMqB5HZN3PmsPqZxv4PRoiOHcT6g8KwITtd3SoMFy4zuL6mkVEyNYIEgvYoP2i6bPYEJ+O5w+KXNHzonnlUdxL9Cwu9V5zb/aBpVtSEzKYFBdi1g+xYxDJfkb/3zy2aNxr9E4f6g2K+po9zcYrnobyP2aNxbs7NuK3Ntcx5nr4MaN5LjGcBZuWgjwrNtUD70sPNPdZ/qtG+CKhvBIZNgLQiR2oURwLO/orn2tVJZhVQ7mQGjt0Tj+JAp0HdgmxZRdCV9jdlgSbjn+a9wOlVZCfDJMkLms0aswhTpMwYMwVNjPvQwOwtYzXMkmxbcWTsRpBAcZjiJeBp8HN6FZ0+4za6Evn4JJdPNYCxNzOC4tOrAF8E1De06c/5hTHiw1U0WUqNId0C3XOP5a8khg1nTYcNGdVqm1hGRmgIS8Y0yQBNzJoc12RcAbKnZgFUdwS57Qs2l/RpmuMVlkH27XNmjybnzyz9jNLQNFMaFPdNnxjJkaJkyq34BuszXHDWlzOsZAVV/8hgp5yySRlLwBlZNXLZuqdJT3HkMQBis2zgvHJxSkYsBCSu4XqLI5k71ZO1o6QvOpDGz31iD2lmwqZYitqpbwNOL9j0KbOEMkk1RW6QJTMiFc1qykNA+1ROjqoDYv5pyFmydsb3pTzg1HhM+ZcAm2Cu5mxtMsixDUFruQ8Y4myiWXBWd9iwWeSikY6OUTIpg5VMOWIeZZRCemCI7CKZZZFNccoDP/fjkiwcYrMLiE2ekSzYuJSo9qnRJDNTqfuQpZl9NHcSFrkJMKwkI0biHK1ZsLFZHTifOC4FmvuQ5yi9YpbmsOa9pDyw+VTtafbjtcizkd2l5DUSG4pqDNnldFhJKIOcBYrABmJixvUQciaomYvM7D7OGZWGDRgTzXCS1DXNljLr0WcTG1eKvL0Aj3W5tegvC1RbspFBRhfUmcwsW7dRqHc+u6KOc4nySLMingeZGxl8v4NreCyqBwvbKOjWYVxrqD6xafyc+JINsJSRmVxw1UBH1eQQm1xwi5Nl9AmA4Uyj3NkYE8J1mYXKmZg0y5IodyNOrxrM3vbw1TQ3aRvJBsvovwGyh02B+nbMBkKJ/ZSW5j/DeZXZ8uJgCKw7i3FTotwZ2LmGPlD66mqCezfTsI3mumK2qjoZuHnBGJazCvpgoDoD1xQ8v51lQ6KiFFcdR/hSYzwvUd/0sUlEV9YEsEUfjXwKRZBtHNySN8GU/ekqBRXnLyEE5LGH3cwgjSe4TnEjhYqZn/wRg50Ak7EEjprxOfAgcI1RItm5VasINiOoS8ylkhDdgNBU3yyGQ+DfZ3X+HYUm4G0TWG4Ifrseoq4I2P4yU/mYXZQyMo8TKAWA0HUErlU5mfYoBQwDIGQ26Um5lME57ocxj1b1G3DHX4fF/I4Ayz/+l3/7wPIf/Hf/HFj+f35Un7wK/+J//nfw1c05/EOJIAPmX2h0Tz3NZVoJ8aKHVB7meoZQeBRbFWVblNWRaRMYftgBNxXqDzJangeYK4vmiyIGyCcpCYAXPdQvGsjoZgqwsDy9JCN6/Nhni/z5G6B9TjlS9/0B9a+qOPMRGbBOoH9psPynBcYVGdZyT7meXQZUH3hjKVqgfcrnhgvPTMoUEh9ZKTcLORJA9cDxY4/6g8zOgulLtb+gDM/OKO9yNQtIOQg074HD9zzUIFDdiVxIJ1MOBOD0PYPlzwp0TwJm7+hSOv8K6K9ELODJ0PUXlFWWDwr1HbexfUGTnmFDOZxZsph1DU1CpAVOLwIWXzE+AGBBSwMYj/lXEuOKmYmnl0C5435UD3GGKjJjqTAsd7E4ugwxNxSAiEHaK4+zP5UwcxrVSBOlXT2lis2NwOkFj3kqMPuLgOUXMbA9hshLC7qY9gLVAwvm/pnD5T+WOD2fGM3mhoX38bVHdU+QogZgPOMx0C3Z0t1niDJDusBKEwvuwHPRPQ2Yf839TrNXaQ6Lkjrm6SWXRV8A83cB9z/1WHyh8hxRKmaFB/bfj3EWBbD8gkV5tQ2odgH7j2UuoAl6yVYXR+YGDhceq78QqLcBu08pH9x/iphPyrknABn4QvAa6S4kdj9xePY/CTz8UKK+jSYtHbB46/DwmWJUw0bkOS45RsnaA4uM/oLbCTCLb/4156LGhUB54LEwC77m8JHA6ld87faHlNE2H6Kz6FJg83ML20i0TyTMHBmULr8MKFqPhx8ozN9xn82Cx3t2TQZj+xmbDuWezHB9TyZ69blH+1RiXBNg2hmv6+LE6/XsLzwefkAX4PM/8zi+ZKE4vyZTrDsW/0ECh08pLV58EVAdPIalRNEFFEcPs5A4PZNYvPUYVnQ1ZXwDGeogCSxcKbD82uH0TOaoCgBYfE329PhcI2jKHY+vFM7/dMTtT0vM39E0q7sgoEhOpAyN5z1oPBOo7gJmdw7DSmXjoeLIY7L6Kna6BZno+bXB/pMC1S6gO5dYvHPoLiQWby12nxaYv6e0//RURWdNKhS6c81oiEaguXdorxTMUuDs5xa7TzVWX1r0G4XV5wOOL0vogcsXbgJMxxcKm5+TYV//YsT+0xLV/8nem/xKmt3ZYedO3xDTize/HCsrq7IGVnEyRZGt7iZF2d1oWLIML2xDm9bWhgEvvfTCBvwX2CvvDO8N2QYMwwYMyDKkBjU11WQ1i1WsqszK+U0xfsOdvDj3fpHFZg9Ad0MkwQAeXuZ78SK+KSLu+Z1pEbE5pdzSlQKzhz0W9wqUK6ogguZrub506CeK7GMK21EtGXJfiHQ8e4gALF4vYKd8jyivAnTLVNr6ikmxk6cOmzON2acdLt8tUV9E1C96XD8oUV3SMwfw9d0nUJ29rgCw93GPfq5ZrVEIXhPJU9fuS0wfOYSSYS7tARUS46c9gpFY3zSozz2Wd8kaZ3llP9lVjfQzgfEzj2Lp0M80uj2Ffipw9IMGwUj0c7K09TkTVH1BBnfv0x7dXKM5lJg9dEnGLFG/7BGURHegoZuA9Q2NchlRXlpsbhRQPdNYQyGhN57ezQmTOzNjrbcO3UEJO5GoX1gGGzkys/28oK9v6+HG7CyULg4JqKr1sDMDXxHAmZVPoJRKHwSgPVCoL/wgb5UuScMXTGatXnZoT0rUz1qs79RQNsIsPVRHNqY94aLfrJmAaseaia0+wo13MlA3kqjP+yS5tGhu1KifNgiFotSz8ejnGtOPVuhORvCFRHXeQqZaDDfWUH2Aq9QuJfbQQK89GdhaQyaJ5/b2GOUFZa3FRYvN6xNMfrri++btCUafr9GejREM2VXpIrp9jdGTFqzA0RARMNcthAuwBzWCkdAbBzvR0K2HeblBd2PKlNhVBz8pyHynVFK17lk30ll0N2YozjewByMUTxbob+6heLFGdzaFtAF62aI/HEGve6jrLaAk7OEYetnCHoxQfnqO/s4hAWWlyaY2PcKshpuW0Ot+COHJXZbqYgW/P4VMrGSY1RC9g5+U3L7WQW66wdsor1aIkxFE0yGMKkpOASCxkGE+IcOZpKSZGR18iQkYim2LOEkTM0H5qbBux3IaDeE8Gc3VBkPfZIxJDkuJbRxVDOEpDJlOrRDXG4iiQOx7iOkEcb3h40/GgBSImy1EXXN7Msvp/BckqnHbDCAQwAAERVVh8Ezm5wQw9GY6gmRRFAiLJUQKEhoqRnIqbNt94fH/xO1nU2HzLaXT/ryU2NC2P/+x/gK3XwPLv/6b/re9AX+Zm1ARf+PwIZZtiQWA8bjFUk0wOtrC9hr6xONktkaIAo+uSxzfvsZL7ANlgFcR8twgnPTwY4MHN17iE32A7lTB9xL7h2uMCotn4xmM8RBWcZ0eBEZ1j/VRATm1TIV2Ast9hXK/xbocob65hj1VsNcVolGwcwfhBVTp0T9IVSY3GU7iK4mz25c4vzhheEjlsD3UEJ2EPmrQVBXURiIasnWdZqAHgYYagFJm8tpTevdEAPbvX2LZHpIZ8UCxlOiOPNRWop/Sayd8As1lYIVIlMDNFv3GwJcKesMaADuLEK9t4J+O8PaDJ/hxvAXRC6weAFFEmJUegkKa48R6VJGM6dkW248mkFbA7nkACuqNNdrPx4gm1RLoCF9JFNcCkAQTuRvRPjdQjQAOOzRtBXdkodoC3YlDf8jFAKV3O3+PiNwvO6YksL9h0adkANGw93H/9gKb5QEQI+yBB0yAeFRwsZhK3d3NHvZAoThXA8hevsEJvxul6H4Z4SYR/ZmF8AX6dxsoEbE9GzEpdaXgT3uoriSbc3OLtqyBABSXCvbIwk0U9JJMid6wM9IfWJhViX6PXrvmpoO5VoBMiZU1J4zbexbVE4N+b1cin+XIdkr/oR0zHXj9msckXTfdAatZ+hlgT3tEZRButmg3Nc93FGgP+Dy+BAoI9Hv0wlBeKhBKoH5jie5yjuZEoDvl+fV1gD2x0BcGqmd9SHlFptBOIuxEcrhw1GBzg1J21xKwtwcRqicD3B5k5jR7bjiUyIioOQsQXoKVIgyd0BsCvOaE7FkoKOvuTjzsy1TYLiIZ2EYOrOX2JPmdKiCUBLibNy1UZ6C39EFvz7i4b29biE4iaAXditTfCHp2KqCFACSwuktPrJuQtdjeiHAHDupDg1AQANsZXzeL+zyu0jOJU/YM3HBjgcnn7J/zRU4rlbBTgd6KNKgRWL3hIbwauhTbQzH4z+yUzHB5wVJ6O+bgRzf0821uSLRzOYTT9FbC1cD6loGvgW5Pwo2Zvjz9jJL15lgO/s/uMKJ6SYlv30m0h2J4LbqRQD8H2pUcfJ7BpKCPGeWz3SFgtmRQ+iltAf0mMSwHAC4px98es6Kpn5EZ6icMJPEF0M3JXPUTifZAQNqC6ayOMu88XHMjkRJG+fG3PTX0vyoG8uhGoDsQKJca/ZzVG90+exbbAwERFLq91F2YJM8+pQHbKSth2iPDoJaUNBo0BxxuRDavXPIzrNtTsCOBbt8MfY3bM243wo6JiyMMIDMEbod0gN4aTD9rsb5LP4GdsrBeN7xO2q2irF2TucIIWN0pE4gENjfoR28OKbfOCb85IId/K9DNDX3EFa/z5rQYElfJMuqhYkT1QL9HUGmnAs0RBwPdVAIogAg0BxLlIiXaxojtqUF7REuACHlxqYYuS18nmXvj4UYa/UzCGwE7S3URHWX6diyHYYmrJVylhoGW9ApmLdFPFdp9MrlZ4hzLJN0vUmprqlDxFVBdUdK+OTUo1gH9XoHNqYJZmXQMaHXJfkMR+Nzsqw1oDhUtKznzxIjhXNqJJsAV/L0fGYQiMbhp5m/nFV/7lYCdGMhawxdMaUWqDvG1IqvnKYft90ueQ0VJbtACdmpo1wgVfcP71VD/4fZKblfBD45QpCqVWTEkwwYlICcF60AKSU9jStr1pYIal/ClhG48uuNRYl572Kmh5NYx4VVvNF+HezVCIRELQ+A/ryF9QHdodlUhtQbkGKJLEtzSICoBe3OfctbaoN8zHC6MOG1Z3yow/TxCAZRwK4FQashxDWhJPyR43WVQKUKEmxguiFMHZRxVrBkRAn6vgkp9lBACKAvKZ6uSyinrEesSoTaUIBsFaAnRWoTDGUTvWEfiI+XFqmDa7JZSYaSaEkxGBJmFQSw15KoBXgVkWiHWJYTzCHtjyMRyCikJUMuS25/ZSoByVCxUdkwAACAASURBVCkoRS1MYh/VjrEsDO+XPJIi8n1RaPYgRRH4+Il1zdJcVp8oQGuCSp3AsHUM4knPDWMgrAWMQex7yHLHtr5KbOXU2AFIZpD5Ktj8JSbC/sTtV2hXfvb2S81Yjh7cjLf+u/8cMQic7K+w7Q3eOnyJTxcHuLieYD7bYt2UaC/5RlLMO8zGLTZtAa09vJcQAuh7gsBiv4XWHvNxg6fP5xAq4s0bL7HoKiw2NdplSR/g2CJGAVM4NMsKquJkzK8NRodbNE8mwMyinnSY1h0Wmxrd1iA2GjABsvAIawPoCFk7hK3G+GiLrjXwFyXEfg+lAlyvoAuPEAWiT9OkIIAoYGrL9NMlJbBCAOGqYNpmFJAmIFwU0MctbKuBIAAvMDtZwzqFdl1CmqTjD0CwCtJ4CBWBJxX8hABV7Vn4lYGcWISlYbrkE4Xtgw7mWQF/u4X6vKIU1gnoxyX83Rbxkm/yeiOZqlkHiNIjbvmmpdYS4aTn/yUlSDARQgWUn1To7reIW00J6T5TNYpnBv2ZhboyCMc9sNSsMGkkcKOFvy6gGgJw6AD0EigD4AVEKxGLCLXim1QYBVRPFNozglfRqUHyGlUkGJwEmGvJUJyaVTDluUJ32w5dpLJRCFWAXvJx3dSj/lwjFEB3q4e+NHAzD32d9wMon2nYCTsUIckU27nnts88xh8RJOotZbe+DtBpu0UE1JbSUIDgvbyU6Oesc4ljSokRs1yTzKcvI0ZPJNqjSKmsE1AdQWOoAlM9CwLY9oZDcaEYelNGqI1kZ2N6f+8OWVzvRwHmSqI6ZwiN2/MoLlgJUz9RQ8qlLxgWE0yqwem5v+ZKYfIZcPVVD3OdKgUcF/3tqUNxruArSnFZZRAH2Sc7KAGzpAw4VJQEh4IqhCwpFgHQawE3jaheEuBCUBbsK8p5VZtqCQ75elCtgN6KQfJKT2RA/SyB4XWqh0nDGYCKBZfWK9JTyhqzPK9JEt05f6+3BLJRA91+wOShTLUQGNhtX8ch/VX2Isk9uU/dPCbAwe7aHLpTLCkdFoFAN4fo5IqHPHDp5lQL5DAi2ZMRt+OI8lokr1bqLz2jKsGOeSzMivvhKx6HPMAwKwJ4acn2FwsxpI3KnnLX9pBgG+D92+OI0RMy78KzqsWseOyqc4H2EEkKm9hqR694XqDnUChp6e9ujgXKBbevvAa6PbLKlAPy3znV02xSeX3zSkVMpGTWV5R1tkcpHTUBdZkIEFeRhfcl90e1O6ZSWfqOQ0kwU12wG9OXYuiLVB3ZRQ6nGJqT1QPtAR9n9IygNCgMfZ3SJt/7NiZ5KIFqDjcSkbJU9rlS3munAsUiDom3wYjh9VFe8b5mQ393c0RWt7oMsKMkI95EtPtiYJ5zh+f2VA4SZBGQfPFx8BF3+wLVJQdwQe9CnuyY10y5YN1Idc0eyOyLz0E50mI4zzmkSXXpNZJl3W53PvM5lhZDx2bOKsi9m7mLUwTKaHNwj3T8fZSANwLFJqSkUkBvc7hNBowczFTXAe2c7Hq3p3ZVHpoprLqN9JkLPjZAH6xumZBarNkn2U/Zw+mNQLlIfutthFkznMhsAppDjfrCIRQEd65KYUT9Ti4/hPYl5jpLi3P3ZXnt6I1de7iRRLFwaA/5OVGf92gPC3rL0/umr+QQ8DTIdAuJkNJjixWBXxSU9KqePm+zTl5sKaBa+oaLhUvXgBxUNDkgqHrRoj2qYFYWdmZglhZRyySjdXC1HrIEmOxKia4bm6ErVNqAYOTQAaq29GqGIkmXLYGinWgU1z18rclqr3tKYTcWIoFJt1dCbWz6LC+gGvo7ZUupq6908u4qyNSnKftXJKs54VWJwdssLKW1HAIkltCowa8quiR9dR6xMkOCLITg71v2T4qmIyOamDzRW4TJiJ5RrSDWW8QxmVGx2jIYSCkyrT4MUthBahvjF8N7fhYLdD1/pjUZzlelsAABX5akZgltiGlBmTywOfhHiOTZlLvwnp+9/UXDfH5VpLDf+2tgLP+XXwzGUv75d/nFvdW6x3/79X+E33/vD+CjgAsS3//kNVwuxviH7/8zXHy6j9sH13jv7c9RHza4d3SJq+UIzXWF7baEc1wpe6fwjfd+yvqGZxOc/4tTqOclTg6X+Ojf3MbFvzlGuy5w/7UX+PKDz/HWjRcYjTq0z8YQOmA2aSAe1TDTHs3nU+zfuwIEYD+cof0/TuCdBFYGX333M8iFhjIeZt7h1p0LhF7h+NY1ms+mEJ/WuP3WC8RFgeP9FaKTsNcl/MYgrA1mswZFbXH7xiXiJ2O03z8EXpbQxsP8uMbtBy8QGw35soB4XOH22y+Az0b0WHoBNbEI/2QfzYsRICP8yiA4gbAxuHnzErNZg3BV4rWvPcHkdA2UAfF5CTFyiNepS2ns8O2//wPIa4P/7D/4P2F+WuO7f+cHUJ9W2D9Y4/63HxI071k8eO8x/sG//49ZpaEi5PMSZ69dQK0lvvatj2AeseaheK4hRw7FUwPzqMTb3/sY5mGZGKGI6rGB0BE3v/UE5eMC5t4a1U9KHN6/wvRjzVqHpxXkzELe2qI4VwSKM4vqYQE4geJsC71QkHc2kLdZffLv/Uffh+wE1EIjjhz8gYU+blhLcadBlBE3vvkU09cW7BotA278xhNMf1gAKsJcaYSxR/VUo3qwwOzdCy78323w5nc/Qf1ZAX/Ss+Py3ob7YSV+43f/CGHmMH3rCuG4xzu/+UkCCUDxQmP0nZewZxbv/96PEU866KVCvNPAHVvYI4vj33zK3s8HS4yeSHRvtAhjj1gEjH5SQDhg8s4V3N0W02+co3xnAb0V+N1/8M/gb3bQGybJZn/f6DON7tjDHjuEL60x/lTD32vhRwGznyjc/RuPMfvt5zDfuEJ74tmbKiOqZwr+fov9v/uEyaefaJh3l5h+pPD1v/cj4L0VmvsdZXtil5gaTMThP2da7pd+/wPMfqxh52RL3JsN+jcaHP5LhXe/81MuAr9+he7Uwe5xIm/vdhg9lUxffm+NYiEw+0hi8jfPUZ2zu1U3AsUiJTq+09D/9b1zqI7DjsPfeYLmtqU38p0t2hses48k6udySP69+e8+wvbLDXwVMf+RgPzNK4w/F+jea7D5zQ3a9xrUzwWKa4HR7z7H9nWL9jQgfGuB6iVl8sVKYHu/R/V7L9DesvDvbuC/vUT/5S3su1sc/qHA5Peeofw755AeEN9coPrGJepngtLsVeqTPPE4/buP0H9rBd0IpuAmn+rBH5G13J6RkVQNZffNTY/V+x0ThCUZ6vZrW+x9BDQ3PBnYN3tUf/sc/Txg/wPKspsbHgiA/Y0V7vzfFup7F4Ov9frrPZrbDuMnQL8f0ZwEREF59v2//zH6PSbi2info9fvdli+32PxWy3K67Twb4Dl+z0mD4HrLzu0RxGbOwHFgqD36AcBi/ctqguCweuv91i9HrD+7obVHDXBwvJdi2IR0RxHLL7bolgBq3sB088i1rcjDn7s0c8jfEGwu7nNPtJ+HnH5dQ+zirj+qsXRH1pszyK2NyOuvubhavpqx48j2tTl2h5F9FPWbURF2W9zFtHtAZdfCWhOgev3HbanApu7AdXLiOnDgOUbQPefXOP8W45JtzVw+XVe6+u7EeMnARff8Ax5e8BjdvDHDud/k8cVkhJvOxFYvM3tWr0OPP+Ox9X7EdVlQHkdE9iLuHwP2NykR3N9lxLw7RmVAFfvBbgaOPpBB7OKePkbHiIAL75r8fIbyVcbybJffiVi+Qbw7G/xnO1/6NDtC6zvCjz7TsD0kYdZR2xuCyzeAuqLAF8JXHxZ4OpdgtbFfYnrt8mWlwsOBcpFgN5GXLxPduzx7wS8+LaHsmTNL74qMH4ehkFIFMD2lExoe8jH0VuqXBZvEuCNzj3KRcT8o54Wh5HA+EUYukuzd1u6lK7qIla3Ja7fkonBTn5kw+N0/mWFcuFx9UDi5Vc1nv6GxJPvUlp8/hWB+jKgn0iMzj2ef9NwQNFF1Bce5SpgcV9hdYtS8OaI4VtBC+guYHuk6Ec/1HjyWwrFipLocuHx5Dsa00dczC9eN1jfUnjy2xr1OeXS2yMO32aftpAeWL6mEZTA1Vtc8NuxxLNvG/QTCekjVnfopVRdxMPfKRAFGEi29HjytyroTcDoaYvH36lh1h6LewXOv1zi6kGB5lDj+TfZMbk9Urh8u2TI03mPyaMG2xON9U2DqAW2Jwp2ojB+tEVzpLG+qREKgebEIBiB5qRAKCSKhWVP5sLi6kEJs7A4/8oE5UWLxZs1VBtw8X6N9e0CunG4fqNCMAKjz5YornpszwrorcfV22PojcXmZomgBdZ3KqithVm06OcazY0azUkJ2XpKccEwpfEfPUUsJPTWQq86tKc1RAQW70xx/o05Fu/MoK9bBKPQH1QwVy3sxEBtegI5F+jvHBmoVYvNvQlk7xAKDT/S9FlqCV+bofPSTwoI69HemsEejBAKje7GFFEyKEpYjzAqAevg92qIph9ClMSmgbxc0Z9pHfrbBwSGZcGOzL0x5HpLULlpEOYToLf8996ETOaCct5wMB2kvHFvgqgVYlkQ7OVuy65nauymQWxaPk9ZMOwnBfTEvocYjyivdQ6irimZTZUhKAxQlmRJYySTqRRiT8ZSaA1ZlsOXKAoIpfhVGAij/+SXkvxK//4Cg/lLehNI70t/xV+/KLdfasayeuNWfP+//4e4XIzhFwWZLy+AIkAUAeKygL6xxf50i5c/PkJxewP76QSqw5Bymjvgbr7/HE//8IyskoyQS40w8pBbheJKIhgyIW7fodxv4R6NGUyTJqJ+FCA7AbOU6B80UI+qQcaUS++79xuE8xLVC4aohILMQX9GAGRf7XkLgD3hz/OHox0n6eKbDczHNbvmLgX6aUQ09GeWlxLdQaB/8X4L8bQi+5Kmv8WSiyyzSgxoYhx8xelnTr2VTqA658Q8Sgz70p4E1K+tYH80g7/fAE/YE7j3Y4HNLaA/9hg9ZAWHCID7xgohCJT/YgLZU2rm6wi7z5Cb9Vs9xj8pyFoEeicvvmVRPSrgSy6c9YbPv70ZUJ5LbO9bTD8waM4iZbDTgNEjBVczPGf6U0XG4Zj7rFOgi+oEumMPYQX0SsDfbzH9pzVcTUklgsDoKSfVzQm9le1BBCQw/YR+o807HU7+nwLrW/RE2gn9gosHMVVhKNi3t/CNxt6/LuhzPed0Py9i+hkTQPWGrGF74lE945ul2QLLL1mopeL1tKa0bntKP2qewustpYx7HwHX75KNzJUKbixgR/TcImYGDui/vYL8wRTlFdmlfo91CMIDF990KF5oiCBQXSSf6+ciefPIIpXX3IbJZ8DqPjB+RAZQvL2G+ldTTD6PuPgat2X9OiXXsgOKFa9RgqG0wLuI6A4FNu+1OPm/CmxPyNq1x2Tf9v844PI9gdFToDlJlQqJzUMEJo+5UO32gemn2bvK10N5TdYkqh0zqDcEMSf/Hxd2V+9F6LXE5BGZNF8D+x8wNbg55t+2R/QaT3/K87J4Exg9BdojMfQpTh4StF29FzF5SIl5KCMOfhixvpmlnHxtTT8BmtPd605a7sf2jJLd8pLsmfAM4un2BOoL+i55bAKiBvZ/yLRmJv9GlNdkY67fAQ5/QDbJ1SmcqGLwDCKllG7M1OvmmFJON2LwTtDA7FP6FZuziP0PIpb3JA7+2GN5T1Heuf9FX6+IZJHMkpUhdkKGce8TJlgzcTp1Qs6B2aeB0twRWbP5Rx1efqViQFbPKo3NDUpOt2cC+x8yZXT1WpLodsDeT/nYo+dkKKePPPqJRHMqsPexx/WbCns/DWgP6CW9vq9RXwRsziSKFdnDKATWd9ht6Wvu9/WbCsWCYGr2Md83RucBzaEcgpD6PXq09z7m8SMLmoJrHJlHSliB/Y/6tOg3rCrpd5Uidgwc/sjh+g2N+ccO6xsK+x/2uHivhFkzoffyHYXRszikKIuY2LIUlNTvkak7/JGHHTEJGZGSVukoZ+0nlBk3h7wOVc/HywE/61uKfZIHlDmPnkYm+O6neXOkfHf0IqB+YdEeGmzO6Lfe/9ClgBzed/zMoTlUaA8ZAHT8rzusbxdoDwXGTwJ0S69wfU7f5Oq2RnXNa6rfS17kY0oS5x9bdHON8pKpvO1B9joCxcpDdgG+UticKdQXDMdhzUaAG2tsTzRmn7QIBRNe+wl9p66WqM4tQinRT1SS7VL2Wy4I9ru5Qj8TmDymx9LVTGBmHyp9rvOfNFi+XmPypMfVgwLTx36oy9Abhu24SgzpzjltV3UBzbFBsfTo9xS8EagvmcxqVg7rWwUmT3q4WqGfKYYVTRXmP15j/doI0gPlpYVqHdzIoDvQQ4iW3nIQ4St2Nuqth51qlOctIAXWd2qYNetBqpc9ugOD+nkL2Tos3plh9tEa29v0cZqNh2oDmiOD8eMWbqyHBOHqvIVoLLavz1AsLbyRcGMC3vHH19je26OX9nmH7qiA7CITkkNE+WwDESP8uEBzs8bo8y2Wb0yw98E1mttTVM+36I6pwKqerrG9O0VxbQdvZn9Yw1y26A8rlC953+Kqpady1dF7Oq/hRhp666CWHaWvFb226vk13K0DqEWDWOjBixmNQr9XAFKgfLEFQmCy7MV65/+rC0QlhqRdse3g98fQ5yvEqvgCs4gQEUblADpl2yOMCgw1IiFANASr8H5IoIXREOvmi2xijGQaWwbziOUGcW/CQB4h6JvUGnCOftD1ln8zGTHsqLdAYZhWvFxDGEP/Zm933s22/WJwT05j1TqF7wQmzKZaEVFRmhOTxxIA4mpNEJl7Jn3gfqYk2OgcRJbK/hzPJIA/24eJL8pmY9f9qff7826/CIzldH47fu1v/9Uzlv/kH/1X/9b3DfglB5Y33tuP/+H/9PcgEfHp5gDrvsTVtsb+qMG8bPBsM8VyW+Gdk+c4q1f4ly9vo9IORlFeem9yie8/u4NSe7RWoy4sXj7fw3jeoDQWi+UYvlE4vrHA5WKMqrLwXsJ7gXHdY3E1hjQBpnCQMmBad7hcjGEbA2k8glVQlYPWHmXhsLwYo5x2kDJif7LFi8sZitLC9hrTSYPL8ykOjla4upqwE3OhMXl9AesUpIzYXIwwP1lh2xbo1wVgJfSsR1FaNJsSk1mDtjWoKovV1YggWwCq8ihKi7rscflyhsn+FlJEdL2Gsxq+VdC1Q0wexPGow2ZTYTxusdlUeOfWM/zww9s4vX2F54/26WG1CrcOF/jsgzNUNzfoO4MYgHrco9kU+PLdJ/jJ+RG6tsD4+zXcby/QrCrEXkKNHXwvIdYa5dkWUgY0qwqQEafHCygR8fjhIRAEqsMGIQg4qzAad9isKsRGoZh36BclYAIm8wbr5xOoqYVvFNBL6HkP12iglygPG/SNQewVZOUQgxi6ROujLdrnY8SCsq1y3kLKiL1xQ/nztgAWBnHiKK01kb2iEZAjh7AxUFPL98uWzz35RGPzmkesPOrPCrRvpDfBjQZoQYRsWXgfRw5oFNMVrxXssUW916K5rjA/XmPxcA9iv0dcFBCdoIx05rkdIMMprUB35KFXSQp6aIG1RlQRcmIhVYQ/Z4eralO3Z/ZuJV/s5GOF9esesQrQFxp+Qt+tWijgRodwWeDGg5d48ukRhBWoXih6GnXkgCWl1EZNSWp3kiYkOkBsNCYPJZrjJJdNflWAwVnNDT/0xMprA9WxIzNqPp7c7xGuC+iVhBsFiEAJKCIDc9zrLfCiRKgDRg81uoMIP3P0KW8lcG+D8PkIqqN3VfaU5UpLP6YbEczmGiL2twlsb3mYhUxMqRiYzKi43aHAEGAje4H2psXoU4N+Pw2NFnKYIravdVCXZgD6UacgI0mA6urUWZlkf0yypFxabwS6+x3Kn5aUA45j8lYTbAFANKxUak7jK8/BfRSe/lMRKF8uLhS7L3uGda3vpc7dkj+rzoHVPR4TEYGgkpS5SPcrGETUz8mSVi/lMBTLnapmxaGbtAwd09v0+JZDDlcRgOeuX2AnfTQbejmFI+urG4H9Hwdcv0G/apYlZqmwr1IvqcbQmelGIDCacthQLDh8MGv6kH2d5LuGILm84lBj8og1SarndZBly4gAJMHh5iZZZL1lR2aWynb7BH1Zuge5A+5RcrurixQWNRdDTUZ8ZXinG55T6ZPs95VwJL1lndDqDqXY0hKoSktPsE/XY35tsfM0DhLBXF0SFAFVN2dYGY8ZWUD6V7nNqkvVVUk67EYMgiLYTj2YPqcp76qpdMPH9iUHJHbMMKtuTrksJa3pb9Oxy8FBmTXN+xBlSmm+DljfVEOdE9NisQuW8ymsbZVkx0lWrlpKbF2VPNo+XT+RCcxmi9QPyX2ffk4J6vaEg4hcVSM8ty8H+Zgt/b1BJxmtECiXDPdBxAD2o/xiaFmUIlUlpeMrBYFXxO6+WqC6sAMoFiEDYHzh8TIjW15YbG+Ug1ycB45+0XLpETSTXIuVT3JVJvvmyqb8niM9/dhmy0GYTFLbbk9i/MTCVxJuJKG3KWNgLGFWPtWb0TMt+wjV0++qul14kXQR3Z5Cdel2abgpgdbVkkOP1HspIiuBhq7VVLVTXvXwJX+fE3PtRKNYpLoTHyBcQCg1/y5EBCUZGOTi4P/MwMmNNfSG3Z3SBV5bPiBoeldVY2H3SoYZdQ6yS72UqaLF1/R2ShsgNx29kjGiPxqjeLEBtIRcbuH3x4AQEK1jiu6o2KXICkplszw2agnZWMRCQzQ9YklQzNcC31jktqXX1CjIdTtsTw4BQuC/Ebk/UacXk5S7AKIMIhN4hfdfrDQRAhjVZDHzfQe5L2Wo0XkCzpz+6ljjApt+n3+e5bAhJBYzJY/lSpWfrSP5824hItr+z7/fn3L7NbD867/9UgPL8rU78ey/+S+gigC/1hC1R7QSr905x8NnB5AqovigRvdOg3hVAFOH2CrMzlZYXo4Z4lJ7yMJDf1Zh9tULXP/RIcxKwE2Sd2QSEUcesALFlYKdB5QvFLoTD9ExEAURXPSOU7R5EciadgpqLeGOyMAFFSG9gKsicLeBtxLyvICwya+2klBvr9CcjyAbCb0R6A89ZCshey4w2zOH+Y80Fg8C6ucSzS2PqCKKC8XKiS6FRZQRoQxQazXsT3El0O8xPKR6YmAnAX6U0nNd7mkDupsWcq2htmTUguFC1s8dyicG/YFH/UShPQn0AZ5amHODYCLKc8lQlK2AfHuN/vMxwUxBACIiF+UIQHvqMX6kCAQqFq5LK9DP6WdjyTZ7LqsXAv2cC1MAgAD6vYDJZ3JYTItAFlAEYHPPoXqqh2Ly9ozPFRQX5uykzAycQHPCfbdTPpZZC9hxRH/iYC4I3kTcVVTkUJy8EPIVty3oiOlDBhgJz4Xk8g0uZsyKAKw7jOwjLCgb3NwhuzcsjgMXulliWCwFujk7ULc3WNVRvZSDNyv75KRNnjPPdNz6ZcTiLYKT4jqV0J9kb6L4AvNRXZC5MysMNQf9XmLE5wlYKPrtlm8G7H0o0B7yWOd6i5wuPPkMWN/hgqy8SnUIgRLIXM4NcFtzz2VzwhTebp9S2elnuxCoV/1T1WXE+g5rKAAu3EdPk6/I0HuVvZ26SQX0U6C45uKsPaCXzY14PKRNjJNnNURzkrpMU79qPyOICCaxb0uCiVxfIN2ua9ZOKAHsZwz92PuYbFB1FXD5Jfo29WbnCXMjYPQkYnWP16Ju0vHYcN8y8NDb5PtLnYe5kkM4cCCRqiVkz/8Lz5RbgNs9es4F3PaEgMmsmVhbXhEwLO8LjJ7tFs45sbef89yINDQolrxGilXE/octFq9XlAG2BA8ZiOQ+2mLFBezqjkwVEzwfOvnbchVC9iVOngb0Y54LmxQMGXCZdToXbUzBYOn1vt0xt8U6JcVe0b/nSrELbkmdrjnhlT4wHkezjejHvH6qa0pnV3ck5h8zHdZX3PYMLvoZAWqUYpeOm6oQREi9omOZOit53OyY+523JxiBYs3Ki/weonpg9NKhn0q4it47VxIADH+ffIW+4M9FAKYP2ffZHOTajoj9P97i6p0RlI0pJTsFHXmgPnewEwmX+j+lY5Ky6gJDa0p+hpgNfZfVFSXo3Uxi/NxhdUujvgoIA/hL/tIERIRnPQiA4bVfLuiP6ycS9QUrOrj9MYFCevcgCLiki8nnyN9LS7ZN9gQIPh0XehFZryE83weyv82X3D+zYbquWSdPnqP/MWiBYkVPIF9nfkiLLa8t7EQzPKuWvJYrAjXVhgQ4I5Nxpwq6CTBLC7tnUjcoF/bVJdN0q8se3b4haDy3rOc4YMBTKARM6lA1S4tQJj+9CwysUQRJvqCXMQqGd6k2JPZSD/3R0gX4vI8JdEVFf6NZ9uj3isR+SxTLVEESInTjE+PJGgxpI4rzDbZ3Z9CNh/CRVRshIhSKnsWphlkyldfXVCkVlw0QAvqjMdNdVx1rQABAskZEr3pEJRELCdmxYzQKAbW1CK8AKb1o4GcVPZ6LFm5WETyGiFBq6Kst7OGYdSFNTiwV8KOCclJBhlH2Dn5cQHbs0kQCYbHSfA0bBbVoGbbTO3obhYDoeoRJDSgCK9F5iBAQk78RRvN9pNCQq5ZJr1VBIJY8kuh5fMI0yVx7Sx9kZu2sG8J6hnqSpiPj2HbIKbJD92X+LhlkhMUaoioRmwaiqihb9Z4hPlKSeXTJ45g7N5uW4C4EAsq2xc/rsRTjEfspQyR7qQi4h5/ljsnEmCImoJjYSiCBxVc6LmOMu+TXn2Euv5BM+2fhkl8RYPn17/7VA8v/93/9NbD8S9/m75zE//h//j380yf3MK9b3Jtd4PufvwZjHKZVh8vVGO+ePsPGlvjw0zN88+1P8JOLY2yaAogC3knMZg2un85w743neHw+x960wdUHh1B3N3j77AV+8uIYUgaUxuH6coLJfIuvnDzFH3x6D/WoQ9saw8JNuAAAIABJREFUTMctFqsRisJByoi2Nbh5uMDFeoTu0ymq11fYXNe4efMST5/tU3WwNHjry4/w0dMTvHXzOT744Daq4yYNhiLGVQ8lA55/dgAz7xA+H6F+c4EYBaxVHAxtOPkRKiJaCVk7vqddM8Tn9ukVHr+Yk6HbUuaIiYWQEaHVgBOQUwttPMoysZxWotjrELyEu6aXUG4VcNwhbDTUUqO8v0T3yRTV/RXapkC4KAAFiFmPsNWAihAbjfLmhszfH5ygvUnDzL03nuPTn5yiPtmi3RSInYLcKKgbW4THI4LsCT+448RBLgxlq6MIP/WAjBBFgHlUwr3W0vs5tYhB8Dh0CkjgU84sOzlVRHG6Rf90DH3SwL2oITxw9qUXePajE4Q6cCjhBSXQEw+1VBBO4PDLL8lCpwAkWXqElQESwwmXV6cBQgdgaSAPeuzNNlj+6BDhVovQaAgToJ8VsPsO4+MtNi/GDERqFcykh3tRIxoCOEQAAcDMARsNvZCwxw6yJtsqdYC/LgATUTzT0F9aonk6gTzo4K8LmIWCPbVcrF6RfSwuFHwV4fcd5DVT+cLYQy0YI+8OLcRGIY495DKZ9BNICakXEy696dceCAJ6oeBHgdvtBcyVHIC4mwbEkUfxxJB5fCVkwp32qD8q0R0HhD0L87RgAE0j4CYBcr9H+cMazSmlk1EQePWHDAfydYTaJsbw7hb6h2PKq+cB5jItaEsCrZBYT9VyiCB70hXhuAdWBsWFQnfMienokYab8P0waMCP2dspLGA2ApvXOKzoD7jdYmlQXEtEGZmcu++gXxr4mpL03Au5veXJkmoA856L70t2rlbnEtu7DqIXGD1WaG6wSojMIFlZX3FgZU8s9LlBlBFmRXk+kMJ9Yu4VJdhpzgLDpTYKqhMDKyo9UFxzWODLmPo7BdSWsmtXk10EgO19i4N/rrF8HRg9owxTtxiCpXw6xr7idWLfbmB+XKNYpiReQzm2WRKcZUm7rziIGT0W2NxmWnB7lGuHIupngsE5aWDR3Ejn2zAwyFdJDjoDqnOgPeEworimVLd+HmFnghL4/dQPOsUgR8/bXJ1Tojt+vGPY3Ii+WJf6I/t9DoGEE8PwpDrncCHbCKJOgx23k2vrxIQ1pxzIAEB5LVI6LAc0/Zz70R5zG1Z3KRsvLyOu34mYfCaHUJj8uN1hRP2cSc4isMIod0iKENEdcDsnnwesXpPDdiACm9scmI0fR9gJWUPV8vjp1EVbXRDINSe7iqVimbtGWVEkAu8X9I55La+YQpuZw+nDgO0J5dZmHWE2HHbohsxxSNVd/V7qPN0SSIoAVFcBzZHE+FmgT/FQDkBX+Px3At08yXe3HExUi4D1DYXqKr03C1afqCRlziFKIpChDDqBc8eBQ0j+zKg4bOjmEqqNqX+U27W+JSlR7vicUQBuTLlwFEiJstwf3Uamx24ilE2BS6UYek3thFUum1OFcsnhxhAqVHMI1M0F6pcBuovox5T0FgsHO9W73taCQ4oogeVdhdGLkMKmdl2kzaFElSTz9TmBPSJQLD26uYJpApp9xedPXaau5OOaTUB7QPBeXTr4QqI5pgy3WJOllS5Crym/9SVDirzJg8cUipbSZKUne1leOfRzjfoZZbPCc4AVlEB1adEeGAL2leNQYk/zb/Y0iqWDG5G1XN0pMP9wi1Ao2CmDeXJAENUEPDc5dIesKEF4FCL1ZqYwqmUP4QLctIB0AfCRNTIxfqGaRHiysrInKxsKNTwP+0YlZO8RjIJetgi1YW/nuhsksVGIwU+ZgajYpGoSFyBCYIVJVewYwyRtHdi+MoH2GCG2HeKoHP4NKSG6VypQ0v34/G4AvrEud1JYkPkFsGMrvd/VlAD8f4w7iWyMQ4clYuB3JXfMpiWTKQqzA52v4o4/RRqbbz8Po/wqSGF/DSx/QW/la7fj2X/9XybJZ4TcKMQiQq9Y4o4IhH0LOAm5UilNjh+8bhJRPZcsIgcXkcWlQn9I+Zu720I8q8iwLXaVCzIr/NZMYMyLDSBP0Pnz6lygO6TUKwdfBJMm/2nxxxj6mDxGfA4uwrhA7PfIgkUFCEu5m/D8kAxlYvjS4CZXUkQVB5leSEBF9tgtULJkaEkJWE5WzIsX9o3FgaFjjDqZ0GiY8AkA9YsU0JGkTJQE7diB3J/oRjwWOSEyGAaEREUWMnsrZRo4kqVMpeMln196Lty6wzh0LWYmUvWU1Zk1hqqEQX6WGKX83L7kQjAYPj47TPm8OcWxWPD5gwHMkgtP3aS+zzJ71vgcZp3kZ3G3yNRbJmnKjoxQewRUF7vET7Pm4o+JjDsZYK6Z0Ft6x7KMa1gIl9zX/KGfUwB9nWRyTZJ9NVw05XMZCh5D1TPYpH4uUSzjsCBSLRekvuJiLydL5ph/NxLD8+epuFlzIa43SNcZtzGnV5I1AP2vNRehdiSG/XMjMtZRZxkimSAkqVeUKW3S7xbuMcnIpI+JHaTsitdUKhkX6TES6zEwnZ6Lr1DQD4gkZw2JXVMdr0eVfJyuSvLE9MEvAhc7MsvwAtM5VR8he+5D7ohl3H9iDWfZ75m6NBdkw7JfK2gM8kdfpmtaUbrnzY4N8yVQLsiE2hHZMmVfvW64YM1sp6sxMFdRUjLHxV7yinVMK2znPCe5gzFoLibze1n+GlIZ2zhI/HwphmqKYMRwXbJigfcDEosFpm+KAFQLJo4iMpmTLBoXv6aJQ4CK2aSi+zqdI5sHHbnwPqVjdmkQYFItRbpuc1pm7n0UgccoKqZlBiOG91KymUzz7GZyOE7lkiEt5dLDjjitF56eMVvvQF+WE6o+ARcfUS65WLJjOTB7AM9tUAxyyddfTi3txxLFOgxVF/n8AVmFwOtcRJ4nEcnGcT93So58PJFqOPK/eT64mM4Ma5QibUccfIhkT8kmtnOFYpOljUw0zX777CtUHWt+KIfk78yGH5TNoSboSa+nYulSKBETTmP6G2lj6lBM5y7u1A2squDnpHD0Kro6sXohpgJ7Hk8RAdnTgylCHGouoqb8Um/ISmbJaD4H+T1cJqZT5FRLwXRTZQN8mcHDjjH0pUwsK5NJdePgDYNZpA2QnYev8ram6zQBrOwLjQJASlKVnUdUEiGxeVACog8IlRqkmhDpvpb3jTLJUDu/u1/a96gF9NqSZYwR0ezSXtU21YhodjjaWQlpueiXjpJQESJk5+BHBaT1iRVOiaYqXQsuEDQ1FqHQgKS8MxQKqnXwlebrxiXgFSI9iZ6Mr2wcYqkgtz2iSjUd6e9l+4oXUEuIziOMDEGi2p3bocaj0Ay+6SwQ8AXgJlxgHci6A7RiomtL0BOL5P/z7CUemMMqAarC8HWTQZJL+5+2TTg/gKWY+hzhPT2IKQ2VCasKouWiLdecRCUHYCd6S4ZyqARJoCvEITkWWu28k6v1AOhEVQ1+SVHXuzedvMYPKQG26wfZ6+Cx/DmMJUxqI3wVlP7sLb9OnPuTbOMrstbo/U4W+6c8xl/49iuQCjud345f/85fA7D8334NLP/St8lbZ/G3/sf/FCPd48OLY5TaY7UtoVRAVVj0TmN9OcL0cIMYBbrWwDaGzBKA6azBalGjqC26dQkz6uG6tIpdaYh5j7AxELVjVQgANbUIViK6xF61GqKXiCKy2sJKslkAAW8EYLI5C2TcVETsU/R2LyGsSB+aAmHiIFqFOPIQa4VYpr8tPcRGI5rA+5oA9bxgtYYAZCPg5y5VaygC3j3Pmo2xpz8wAEieODFywLUBFMhEKYbPCE9wKhx9bLKVCKMAvVBwJz3QKabEdmq3DTc6qKcl3NTDHLRwz0epwkNifHuFzeMpFyu5CiRgqLtw4zDsf/bNxZmFflEM5zmYiFhGxMpDXRpEE3c+uZ7MjuoIjPzYozxX7GG09JnlhUN+LL2W9D9NA9SGzI9wBFn2IECvJOyRhVqkPief33ABd8CQmwxQpQdkR6YtVBHwgOwkco1IXrBk/1r2arlRgFmwLyyqiGLB2gwAsGc95JWh7Dexdb4kK6ZaAWEB6SgZLi/l8Piq4VAie8JyXUmoA/2bSZLtK25L1GmbwOCnDLizZ9OsmLwaZaQkvIzQS8lOUbnbrwgyegis38iS6yG8Csnzp3iOpRWDD64/8Bg9VrBjysSBnW/Q1xyM+OQJ1U2a0FeU6HqTjmvyJranAaMncgDxGXz380BmUSMdOzJ6ei1QrDgIAsjm+ILHQnW7Y15cy90AJnC7VCcGea60ZLDsNHDf0naadfobpGslVSi8CjTysCVqXoOZoZUZ9FiCxexTBDCEj0WJBIzTY/ndAEBEAmTVp4FLnybpKcjIjXeDi5AeK0t+81Aj38fVBL8M+cIgaxaRj62axBDb3X0zaxcMBmYzvwZFBqB99t3l4xjRHAnU5wTReptAUi0G4C08WcjyivePgvLxHGoTilT/kTx/lO5m+SlQn5Ph88VuQCNtTN2LTEreVSIkYAuCnCyfzSBIeAwewzyAyeAnD8rcWAzprjIdX7Pha8OOBVk0w4FJlgmrLrF77c5XJzwHNqqjLJbXAQcb0mcJdfIKCoFyGZI8eVcFIpNvNA8Msrw2D1pUl85xOpe54iTLU10lhmtZdRgqT2KqRBGBjB8k/9/NJMwmDvf3BQcEInDwUKxTZUolMDoPQzKraWICzjFd02TOMpjO+25HEqYJr3TcxqGLsbry6KdyeD0BGAAsXxtiGOZl2e3Q4amS/LjesZ15AAABVFeeUuU+ojlQqBZf9IXxfPK77ghE85CLgVcBdrwDxjw3kf7FNCgIhUjVN/Q02rGEbncAPwrA12TZslfxVS+tbgLciB5IX8ph8BJMGmYoQLVMyLVTRUCfn7eLw3YN3kkXd9vfeLixHq4lJE8kkK4Zn1+XSZKcQHSW6hKYK/obSzKYUYoBzLKiJbGJiRXkweIAJBQK0pNNzD8XPgwMYdTJi5iA8KvVH/nxglGIhYTowwCoWJGSWDYlILrMIsgBEA+1ITFSEpslry4MktlYGkpzlUidlYr/zl5JJb5QMcIfRgI5t7uWMojNfknEOAw8CLQVAW3envz/9Dcih/8ouXs8H/i8mTnMjOQrjOXgscxhO8l/OWxXBqQ5vCf/fQLSse12fsncS/lqaM+rXZXAzwebP+/2CgD9VZDC/ju//VcPLP/x//6LASzln3+XX9yblgFbW+BffXYHRhFU2k7DOUVQeT5GvdfCOYVmyxVeMe4RrcRo0mH90z3EXsEYj2rawW4KPLj9Arp0+N43f4gYBSana4iLghUWlcfBfA2hAtRCYz7fACJC7PVAxReKHFvcv/uCQE5Gyk2vDcRGofqswPxgQ7lmEDi9cU0JZsEPhurOCggC6iDFQk881FoBAdDPCy4+ewmoiOKzkiDNC4LKqUf1qIAcOahGQN/dACoCexb6hUlJqArCSlRPNGIvGUjSC8TaE7CaANky0CbqCGiCCXPFTkdVesixhdQBopNQhYc7toit4gdKK2GvK8QioHpiUFwqbJYV1FqS8RSAXkpgzyIe9BAW0EctQaOJiEVEeSEhtvSM+Bsd3Jxv9GolUTwzCHVAmDkukooI8doGJ++8HECl7Fl4r9eC/ZJrQRAlAb/nEMepVkNHAlyfWKG5Q3/Lku0uI+BYyVHfXyLeagnKARR7HZm2WSDrqQA7C0lySdAfTjvgrIPqBYorVkEU12QCiqWA3SOY8hUBRSgSs7RhGI26NAOICibCjvmhXlxKuBsdgWMCnEGzf3GXfkrZY3kt0B9QElY9I0AuZ93AsotAUCctgAjYAw/pmOqrOqC4YsBOd+wR396gvJKsTfEpFXQUobd8PrLEfNPPQCuU9M1GjV1wiwOkJzPPfsGYEpeTx3BN4NkeB+iWnlRh6dPMQLFY8Ht7yIWscFzI2lmEXglsbnEBUz+P7ABN2yAdAaNZc/tmP5GQjkCCCyQCY6Z7CtQv4rCIzSmoeR/ZZ8dBTAacxYLguXq565y0U7LzAEFnMNxuNyV4MEkayqk/uy6l489zT5/wwPJNXlf1eYTd43O+eqzJEgOr18OgimgPeZ6b4wjNtymmR6d3/Polqzfy/uUQFZXUDf2cQCAPTwhs0nHecAEubYRqAEgqJlzF4x4TMMvAXjgm4wYDditOKGPN3Z12lABoQRDoyyTt9KnL0QDzjzzBoI1D52Q3Fwlc7RYcZsW/eRUYDQx4JJhSzU5pkqWVAO+3ej0kH2cajCSQnoNJZM9zZydIQw6mmoaCjC4CYGeUMWb1RGawg2H4Tnv0il9SYQiqyeEzmfXOYEfma8HF4ZjSY05QPX5qeY2WOwWCHQmyypIDAjcSyfubXq81hrRxXxAQmi3llHay80Wv7okhsCpKpCAb/k636TWfwLirBdrj3b4NSoA0+FA2AfEUUCNTt2TUQD8hG59DakSgxDUqbp8rBVwthsftp/Sm9mMucqUn0AzMZCOo3YZhaCLdLh2XbF86f4WAHcnU+RqHAKl2T8KOObzKnZFkRslodntkrPPz5us9JOa2nfP587nKiqB+IgeFhSsFRk/a9Pw7hjGzsBAY9if3pJLlE7ATBdVGmLWDnarBd9ruEyS6Wib/roTsyShHhUEhwMEIWUS99vTgTtXgc41KoD00CIWEnTCllgA4dUama1avLfTWo9vnZ4yvFfqZhq+Sd3PD0J+YACoCoFqXBrMSdkZvphspsoU+Dgm0oZAwVy1iYoAzUA2FHO47AEcXBtbeTlNwTecHySlcgLCeIDWF2qiNhXQBcpt6K0dkdUWfwmSsh+wsfxaRzo8EXCALqsQA6oT3ENsOwkeCzHyTkl7OQiNU/BrAXGIfY13we2Yps9RUK4LCzGgWhiCvLoeAHDgmZ8P5IbgHztPvmTyRwrodqCzM7m+1AhTDemKM/B4CEChzHcCjEEx09Z7P7zxlsPlnGZQKufu/FPRSDrLZBDIB3lcpfuWfAX9mIuzAqMo/4z6/vv3C3H6pGcv6zZvxK//D76OzGtu2QHddYXqyxurpFGLsEJ2EujDwew5ndy7x7Ok+PXRlAMrA8J6CDBpMhFxoyE4MstjuzEKUAfLCQPYC7lYHcZkAnhVpUZsnSEgphxJ236N8rtHvM5QlAwR1c4v4cEw/21qjOpdwdYSbBYheQDoG9IQUCBQMJbpmkaS9gQuH/iwlXi752Dm0JZT0IkWd2QNum+p2nXeujtj7icT6dmJpNiLVApBJcuNIv9KCYUR8bDI0iPhCTUv9TA7BOLIlU5PDZwZ55IYLw1BE6E2qgCgi7CyieiGHVMfiWsDO4sBshVfY08wOEdDwWFKuxbAZOwXPYZ5MpwVQMGlh06RJnCI7OADNEf01xYILKV/HQSrdHSWWK0m7kKWlJia5aJL/JfmkL9NisIyJ7eDxsnv0ROUwkszmQOwe01c7diczRVGyJL055uMoywWW2STp74b3t+PdeVd9OjeJJZOe/3djspn9fkT1Qgzbazb8rpud/JMLWKDfB6qXu9RLO6U8m4t7DImoedGpevq0CJZ3kui8QM3n5VVWLCZAmKXSsscQkiPCbh+F30mOdfJJ7eRyGNiAUCRWJDFbr8qgg07HucGQJprPX2ZkhpL7tMDsE0CB5LnKICO/NoslfWWZIdt5+OLQnZf9bwAXy+WCC1w74fm1UwG9iYl14zkMyeOVGYHMWGWmSreUU3Kxy9+5UQrFSYCEEtsdW8/wkp0UNgf1dPPEKiXwbUfs6etmArp9BVwmdi+/tmICxEF9UXrKJMowBOdkX50veZwyi035J69f6dK2Innc0nWiux1rZMepNgUYJJd8viQTnoq0H2lBnvYn+9l8AeSAHL7essySz50X2tmTluW+qnuFtbQYfmZHBDki8jnLZQrsSUyoTEymtBGbM4ViSZ+dq3hNiSybE2J4ziy7HqTSandMiw09a1Fh+J6P2atJsFkanFmm7FvMr8fMWjPNmAtCltxjSMJtDiVGLxlWI/wO4GX2cEjl9bwOzSbsGLYspfaU3fYTDh2LVUA/kxwEJHCZ94Xvizs5LfAKi6h28mPZM+hGuN15yGyrtLtwm/wY+XHooyNDR3CCxGiHIZBpkMemIULQO3n3q4+pEpuXGWs3klBNSNJiMSyyKcvloEFlMJak3NIR0PlSUWJvE0tZUl6bk1QhgGJpEZSE9Azlybf8PiR9QD8zKJaUfg5UQQCDtMCBRFTp+rIBoVQIRkJ1/gupqcKFBGgJ1DIL6MfsoaSVJrFmiT0KlYJeW6a1+v+fvTfplSxLzMO+M90pphdvypdDZdfYxe4mmwRnE4YFwRIEaGdAC2+8sRfe2Ibhja1/oZ139so7r7wwLA+QRdCAQIgU2RS7u7qqqyrnfJlviPGOZ/DiO+fGq+4WREpNsItgAA+ZGRlxh3NvxDvf+abAQJ4mVnJEmerIhCXWL9oW0meAQUuUzab3eaMY1DOQCUwsZHoEISATAHQhAs8I0AUOUlkXxmtC4CYh654gL9NQNetG4MLhe965w1jGsQhGjYBR3AnmCXlGEJdrspkApbixeiQoFbcXDmAvMo8h1YoASNUj9IeS3QuZIeuYGD8VpbFSEhwmkJWks+Fwrl9JcfVxG0odqkbSNoUgmEyPu7LUGMYjtGbVSGQ+kTyYKbxHST4X4j4GSyCZjvluImysL/nK464E998GHJP09uvOWC4ehV//D/+bn/t2f/9//+//2s8N+JozllIEfHt5iceLFRdBpgN2mxKidCiqHvCALzzyoxbdoBlaUzlKVq2AmPeUc075G9cfDXCVh95H1koC6k0GV3rYiUfoJfzMIlQsiXcTR/kjAAQRi+PJWnYXA9NWQXAoPGBbwy+uvUKYWbSnZBiSlE92QHth4fKA/pjl1Wp/WIUNitI80TPFlV7KQK9kS4ZOOMBV/FNctJBDDP/wiIBRYP8wwMfzGyZhDD7pl56T+8qPoJKyRaa10mcaYO/3CCZg/66FcMDR4xXMhrUMw9LF7ssAOw1ov9Mg/PKWK+dVQHvfkb1UAf08UHbryOwkENFekHVNUleXc2LT3PMHP2cn0M9jCMWE52InAd2ph26Afk4/m4ySxu6Y73UZgayrAoYjhqr0cx6rcGIMbwEQwyo8GUPD8evjsfUzHlMCgcMioD31sFUczxnHnLJQHltiCtozlrrbisCuX3rYiq8ZpkDzbo9+wS6+oGNgyjzATljS3h3T79sd8xrpHf2vAEaWxVUhdnl6DLPkfQxwZZRGDkAfS+xdBnSnBPvDDICkl9aWGINO+hOP9oQAKKWScqWZY+4iU7Z/5KEaSk274wCfHyazKVEVILMEAMMRF3Zs3KaLry9uAppz3hP9jIsHXhNA1fcPrE57Gr8LbMD+IZlOEdI4cOLZnKW0ZoyyuP1DjguBA9kvU/OYuiOyI7YCth85elS7gG7JSVq3ZBfs7hFX4INgEEtzHjBMgGEmoiQR/A7KgO6IjE59LpnEqxmQomsW2W/fi0zhnGyY1zEIJE7ou2OBfpmYxCj/nN1hcVpKPO9WE7jI8riMHrX6nkBzLuCNQH1foL4n0R0zfTcBAp8B9Rmlv7tHBLrDTIyhJu0J0ztVfzgOb2KYyrHAMCcAthMxSmeHiRjrUUZ/qzl4Pb3CCIDshN2L3TGPWw2s/7CliN2bAu0pJ/3ecKGgn/G5IHkMQabFjoBuFkN5SoFhFsMyBCsUbDy25C8dpgL1mYKtxNgHub+n0JxI2JzPDRXfkzpAbcHttws5LuikBRqyquyI7JY8Hx99xUHE1FobRqlqN5ejP7g9SuCGYUVDJdHF54YZWdJueeis5K8ggXYpMVSUabYLgoGhJNhOAFt1ZHqaU55XtxCjhxjgRJ3PRW+y4aJAP5UYSu5DDel3CtCcqnGBqZ9KdHMueO7u65E1pVQzLgpIgf2FgtcC3ZHkcVQSzYmKrKUfF3lGsBoI4oTFuHjZz+X4PRSEgNlTototFMzOxe8TOfo0fSbjc6zfaJdk1lwZfYqSz3cLAjxbSLKwS4V+JmMiMD2MACB7dm/6XIzgCQDluAXHTSQ2Ln43+wgO+5lBd6ThMwE7VVFGLCkHVUmaCbTHGaTzsIWCz+ToJxU+oFtq+jkV2TQ70XC5Gpk7WyqIgWC6OzbwWqJfZHAZk2zhCcC6I9ZmDHODfpnBTjSGuYGdZhiOCtiJhi25fxlZv2GRwc4MU3EXGaWeEUgHzfH0paYHNJ43wZ6kFLbSCEJgmPK4fKbgY5/ksMjZd1kZuIkBYrqrNwrwAcOUgMtHP6Wb0DYjm4Hs7sSMz1H+Kgn2oucvRLAIyURXNzFw0wx2xv1CMClWWAK2EI8PSkD4CJatQ6hy/tvcqQQxiu/JWAciYqVHKAyZRgBhUhBUJg9jkokqdQB7qToksYsqXtcENBPIS1JY78ftj2E7WhGoZQYoi/F1MJoy1zGdNYxsJIIHvAO8g9CaoNJ5vl5I/mQmBggFpsXq5MWMioA7/kehDhAjMZJCyZ/4UWQ3I8splIIQ4mf/xPf87eMX+/G1vkLWSfzhq8d4uj6C9wJFMSAM8Yu7jymexz2GXmP15AgQASJ3MFUPyADfaOhiAESAuja4uCBAOvphXIDXlDsKJyCOe/ohtScwVIFdghMLf9oTyA0C9oh9kCL3oycuTCyEFwidRPmWABSthDztCBYnnr2BGtCLHm7uIOcDwabF2DkHCbiTAeULBZ97MjQTDzd1CDIgW7b8pdvHBEwR4Moo0e0FxEBZ6HBs4XMPV3i4+x2GY4JlX3i4KPezpwOG2WFlaZh6+hAbdkBOvlBA7uAzYN/kcFVAmDhkbymbFV7AzyzwJoe1TCTtTxxmDzfINoDeSbiLfmQxh/PhwIQNrF5QPVmTEP2Xei9j2l1c0Y9AGoHVIy5nuE93HOCmDgJkvYIG/DQC9R6QsYcyf6OQJKWJkQIAnwPZSsJlAWFmEXRAP6ccMfkrhyMPlwV4TbAmLJDfsnMBZJeBAAAgAElEQVSsekXfZmLLhpnHcOTGUnk7dchvyA4DQNCsEEkLANlLg+kTifbco1/wHIeFR3EVPZSlH0OgXBl9WIKgzRvuo1+6KG8UI/Navpbojj36Bas01ECAZCsGVMnuMDkqrsXoC+xOPMwtJ4vCcqxVvC6qFcjf8rx9RqZWdWRIhWU4UmJgbMnaDwIOMjdqKwlcj/zIQtqKgTfdqYtdjxj9Yfkq+h8Lgi+fERR0R4Jy3Z7HmPyJXvMYZewdTJP/bM06n2Eu2I0oyZalcKYgee9UzxXGkJMsjN2MEIgr2oCd0mdodqxw8foAkLNtYKKm4UKALXEIhlpGZvSUK+T0PkYWRnB8+iOCArMhm5KtgO4Eo8d3lMvF1fbE4uqG19VWGDvqUi0NAKQ6FmHZGalaLsQAkb3NY9VPFsc5ehx1rHmZvBoO7Gcmoi+QMlkXvYD5hos5SXKZfIXCE4i2x4cgLpf6KSPrm204VjYy4CbWv9gCqF77KE1DXNwRX+mblJbnOZQsqb8b5tTPItsZFRApbIgsBxlOYQkyGfbD/UvHLsUk69QNxlA0byiFBciySgvWl6RgmCgdRQDyDYHSMOH2XCZgKzF64BhQxc+HafxXxiddu/LKM8ApMpbpfnE5GJwlgeK65zWXQJaqXypKSotrSv9SrY0tBfJtTM4cAmbPOQE3DcfcK4Ixl0UJtA1k/xJhMn5+YjpoDHnKN2RmUkdlSi61uYh+Ti5S5KtDz6TLxRgQlB4qVowknyn7LiNTGqWb3YIAZqgkihsXwYyI+0pME2tQ0iLGyK5G5lnv3Rh6VbyuKQ0WlOl6LUZAHiTIUoaA4saP8lfdWLgYfpRCkdqlIrBV/Hx6w/PM1gOTaneOr9dc4Ejsouo9a03idw9/UWCUZbPPEWPAnlcCsvfoZwQgLicI9bmKzChGf17yQ7pSwU65IukNpaaqcbCVjNJvx9qU5Lc0BHiuYvKqLcl6ShfgjITPFfS6gRwY5mMLRZ+jjxLXXGOY6uidjYxnRsaUIW08Bkp35cjkAqBXMTHRUrBXMnkyNb2MPtaa6N0QFSw6BuT4A3tpPUJBqazsbGSSyfDp/QDRDQhSQsbtBXPHEJ9An1L0PYJAMsT9hijtFL0d2U4MFqLrx9eOIT+pW/Ingn+QQoHEncUKKWMIlSOgjImuIQK8kBsgAdHMEFRGljK0HVKtCFI67F3GMAQIrSCMGYGkMAbCmMNrvONr4g8SYy0FxiAdFWWwifGUMjKsdxhQpeinlPIrElh4fwj3cY4/IfzsH+d/mvH8uj7CX8HPL8jjay2Fzd99FB7/l/8dhoc9VOZgMgutHbaXU8i9wvyDFfbfX/LL+XGD8KqAPxkQLH8ZCRVYWj+xKH6c06uWecwebLF9O4V5q2Ef8EtBXWajFy6/kRjmHm7iIRsJJrHKkZXL1pyg2pMBMncI1zlC5VA8M/SsqQAdvZO+CKheSNQPfZxcxvTKLScI7cMBcq8YoLNR4wTFPugQWnomzUqiP6Ef0y0HlE8yDJOA6jL2Hk7ZhSkCYB7v4X48JUApGF4Df5BR9ucWk88NvU8LjgcME3cTeJ68FNi+yy7D+j69YbsPB2RXOkouPdgFKTF5xuj/7bsESNlKojt1mH2u0JzHcu2SEmJXBtiZQ/VMY5gHmLWI14QS1eKtRPPIYfJEYffhgMnnBu2pp6S4OoTjdKcePvcoX2q09yhHLt4ScJpdnFRkwOxpwOqXOHFKPYL9/FDBAM+aBWmB7TdYO1C9Flh/7FC+UmjPPMo3Et2SYTJmC3THQL4C4IHNR+zZTGDCVgG6FSjeMGafDE1A9YqTBVuQ6Zs+YYdgfkNg0FwwlCbJRVV7CFGp7wccfUJ2STcELwB9ibaIibQVn59/xglrc072W1oBl5HN07uD3M9Oue9hwkCc6RM5etdSsAdluOzyXP5owO3HBs05j2X9IXD85wxg8VpgmHKyX19wnKRj5YLZCCw/s3j9u4phPBlQXAWYGrj5ZWDxKdmqlMIre0TPZsD+AYHc9LnHza8QxM5/DNT3KftOsmxdc7yGKTB9EbB7GIvQn1I+Wd8PmLzkvd+cixEESMvKBm9EZPoClt8Htu8Bsy+ByaVFN1fYfoO/IOdferTLJOtjZ6R0BELlG06uu4WEqQOloZG9uvpthwf/jJLy3UOJySt+TtYfyDHwpHpDsFNdceK7faTgSiBbM2G3nxG457dkJc2eHkpnMDJ+wvP10gH7+wKTV2FMmw2Sn4H1BxLFNf2IzbnA8Q8sLn9L4+TPPbaPmCZc3LKbk548MhQuJphOXlvsHmimHt+EuIgTE1/rgPX7Mk7igckrj803JKbPwwh863OmJTfnAssfOWzeVZA9MLmkbEu3Aev3NPJVwFABsxcOq/c1TB0wezrg5lsZqkuP7WM59rKWb6ksMLswprgmqastBCavLa5+1eDkzy26hURx67A/1yjWHvt7EpNLP4KeJHHtJ3JkCb0WKFYO7VJhTDLV0XdpgNlTh/KqxzDRaE41VB+QrR12jzQmrx02jzVmLyzW72rMnjv0U4l+LrD8pMf+vuFn4pbhLcXKkTmcSZRvB/hMYvW+Gb1nk9cMY7EFmdf5U4vmVCFfM922uCVoqM8kzC5g9rzH7kGGyauei1FzjX7Kc8vXCWQ51PcM2qVEee2h+oDydYubb1dQPTsxvRHoZ5S5Zluyabv7BtWVhVkPqB8U6KcidkESNM6edeiODCbPa7hKoznNkK8shAtYfZCjWHt0MwkdtwkQvHZzFSXlHtl2wPZRPiYk91NB8N96eg0dFw1Uz7Rbsp8SzgCT1+ySbE/NKIP3WqC4tdC7AZv3Sxx9so/eRNZLdMc5issa62/OkG15TabPW/QLg2FC9higrFfvBtipGZmx1LWpa4dhppBtLMxti/rRFPltj/Y0Q/V0j+bRBHrvYLb9yPLtH0+QrSzk4DHM2a2Zrx2y6wZ2nkOvOgzLgr2R6wb92QSpZmOYawgbUH65Qv9gDr0b0J4WKF/u0J1VcIXC5Is16sdzFG9qBtYoATfJoNcthiWlJHrXw85y9AsDCKB83SAoMo7ZdQtfGXTLDOWLPRfASwO9o+Q0KKa8dqcFzN4CHjBXO7QP5yie3KJ5/xjFZQ07zWBuGwQt0Z9UyC938KWBnWUIUiB/vYObZFDrBvZ4AlX38KWB2rTsuxQCqu7H2g03ydiNmfGesbOMCbmaYFZGGayse4imA0KAOz+CGOiX9LOCstlJDtEyuRYekPuW/7eu4WcVZNsTkJb5IbX1Tnqsn5SQ+4bS2dhPGaqCrzGalSKZoVS2zIGup1Q2VomIlr2foukQJiVE3R4mwUaP20HbEVgKwaoQpRCKDGLfMJCnLAhgYyosQJnrGKRzV0YL8DXOQRiDYN3IFIYIlJkw2xE8Zgaw7DkNd32XCV8IwYqQu2Az/MUBYvjJ5FjvfvYL/wKPXxQp7G/83s9fCvvP/49fDCns1xpYlh8+CH/3f/pH+MGzC3z08A2u6wk2+wJaOzgnoZTHg6MNXq7msD+cwz5uMZ832DcZlAroXlXILmoMvcY757d4u53gW+eX+OMvHiM4gW+9+wqvNnNs9wUmVQclPTa7Eo9OV3j6+hiLRY19kyHLHIxyWK8rFFWPIhtwezXD0ckO3aDR1hmwMghTB1gBtdZwM4ds2aKvDWbLGtubCbJJj/66QHleo2sNPn54iR989hCQ9H+q+w1TbWsFzAYUkx7NVcXQndxBXDLQR04GlJMebWsgRYC9Yh9KUARMIYtS4EECOrB/stWAo2806ADIALVRI2sV7nVQzwvYuYdey0Nv3jt79M8m8POYZispSy1eabQPBojSQdxkcbU5IFSOybk5vxjkrQEkEI4GBgo1ikzSxQChPeRlDl95qK2E2Qk077APU28U7Iy9hv2xiwxSgLASkwdbtJ8sYOcOsqNs2BdkHNVOwp4NPP/CwTzN0Z86BtPEVZ+gAbPml2h3zwK5g7w1DBkSAWajMCwtqicGzQOuOJuNRL8kgA+n7EjM3yq0DweojYJqxcgIpeRalwEp5RSSAUbVE41hwQl7cS2w/cAiu1awE4YbwQlAB6g9J+nDmYUsLMJtRkb1hkmu7aknaxgwdhgKDwxLB7NSZK5nnl7R6D9LARM2gj47IVgXFtHTRfDZHzEBV23jfVDx+Is3ZKZTbYmwACRBa3vuMfuc3sLuhOmpvCcxss7ZhqCwO3coX2jYmL6arXhNmrNAT7DgMcoOsDMuzPRHAaMH0PFYyaQwTTV50II6sEfp/IKOjNUgRk9xCjXR0bua2LBUczMsCF6ZuhkTW6MMOSV52gnHsV9wQSNIjgf9iQR01StKpelJo+yX/jeMgTq7x1xY6BfRM9zSa52Cg0YPqwATUA1luWbDa5ut+f/J65hkpMOMLHnxVo6hLKn/D2AAUHEdg1zcYUGBdS8Eg2ZH+W4KOGKqMNnzdFy65sKAsFwUGOZiHMuvpMrGpNH6gos0usZXr1sck5SGayexqsaQAUye3CD5fJAx4OfOOKWKITmwT3GouODQz2OK7PEhmdfsA3aPgeJt7HQsEPsqY92KOnxm5MDxHaYidj9G4BlDU5KvWTjeA8Jye2YXRjYsvW6sGImAyWugvAmozyT6Ob253ZL3avKXZtuAdinGrscQE1YBsnHSHhi65HVNjKutGGgUotRc1+HAjiW1qeQ1JuPM/zd19DTHeWb63MshjGmr+3OFyRuHdiHHOqrkYbYx7Td5X4Pi/QFEFnXtRz9tArbOMGSoXRKgmj2PJaWwBomxixHA2MeoY6qttAydoiSX8mDdhdGv2i1in2Ht0c8kilXymvK5+lSR1Y6eymzjsLuvkW/5OhVDp3z0jqYalFRFw88hmUWAPZL9TI31MynhNqldso0/pOMW4ivprWTagOaYxylTAmvvoaJn1eUE1CnkRkZpLO+vMO5PdR7DXEE1nn7TPsDnArr2UI1Dcy+D3vuxjiX5Le8yy0xH5g1jdkyjBYD8pkc/NzA7i/7IcEwiKxsEYHYDfZ8qdj/mCrJzGOYGunYxCddhmOoxkdlsBrhSQzUWPsp/2VMp4TIJs2Ewj52YkfmUPStMUk9j8jvKIfp7jeIcYT/A5xqyswe2ONbW+ChvHYOBIvuZuil5cTzcJIeMYFTd1vBVzs/94EbZLA8ikOkEKNVNqbBSHkJ7gPF50Q8Ik5KgtRsOnkvnKJ/9CelsqqcZ95Vek5jDrsdXakGSDzIBz7vM6R2sEEL4Khs59JTLRnAJSS9lYiHHc/I/XRUy1pTEXsxx+/+mhw9/IzyWfwssf0Ef5YcPwsf/5D8HANxezgERILcaIWM1hdgryk4DIKYW4jqDSiXsnYS/10G+yQ4TPhNQPVPojhk00y8ZnGMrJgEGFQNeBjHWKPiMbKXZxgqDOkocvYjBOIHeLnD7ZivRnTgCA2AMLEmTX5eH0UeSZGSyOwT6SCuiPFIw9ETz2Nmbl6R6kT074oR3TOy09DYiiJiQeQgc6RdxsrA/SDSZTMlfPGTjuL1hzmMEgMlLMnjTLxT7HxVf0514mC3DiVzlUbxRY/iN3scvqujLSWEoquPf73Zf2kmcgJYc62zFCTy7QeON4ON7BcZOx34RfU7+MEEKEvD5IYTGZxF0xF/k0hIM5NfsIFVtDBJpMQZepDL0lPKYahhSSqTqDpNI1Rwms66gjJHpifH0/Ve3k0JmuuMwMr/F2yhBja/L1nFMGnod9T766+ZivG+CxBiykyohsjVBS3HNDrPk9cpX4cAqOk6oixvWPpg9Jx/dUfQKldxmtsFYP5CkgmbD7do4WW5PxBhgIwdO9LujFKJx6LMcptxft+TkXQ5MDhUBYxVFCpDJb+M+KiC/CaNnK4GSPham+wxjOE0Q9LdVlzym4pr3eX3BiTmZrMOEO6gYuBMLxocJJ+26TsdzmCCy6oEJt+0yHtdtkjOSBUk9jwnwJi8kpZ30rg0z+tlSf2iSZ0LEseoC9vfkeO8lljHJI6U7yGHTNnUXxgCdFHyU/G7FjY9+OzGCDtUhShExJm/aksxee0yGS/V8LqWtpqTY9PlMCawJfAvP+z7JQVM4jI4MkW7I+iTGSA309s2eOzTHauwNHaKPNCgCiW5Bdj6dYwpmKm5iiE/N0J/yxo/BOzad+4rPDRV7RW3BeguEMLJaZKwZGNNFAMB/Y+w6TDJXl4lYlwBedxsDbRr66vuJHENgdHdI5U1M7t1x7ieUlBerQ1WGu6NIAyjVrc8lvy9isE7qCE3XR9yZt5o9r3XqciUgpJR+KNnZOUy4/xRCZcsDQEpAUThWXySmvbjhhF8EpolmGwIJF6W4qYM0gcgEtlR3+Nyqjix+tiPL6Er671Iv5lizYu74P1NHoxbjdzuQFpTid5shIHK5jNUvnpJLTzmoy+V4HfSeUs5+rsfz9IbgbJioUT6agpgAQHUOtlAwO4v6IkN+yyAV1TiydXd8jqmnMn3HpPMYfYcDZd2yi4CqJzufgnBsqWG2Q0xiFWP4Dc85LhzEbfB7nSemGvZH6nqg/7LSUIOHVxJ616Nf5shuOwQl4UpNUKbZn6kadzjegWmrcnBwpYYYPFQzwFXZIY019mCOvZQ9fX88b7K9PqcPUVoP0Vu4SQbZ2VES6XIFve3oc/yJgJ+xazL6Hl1poNcN3LwYw3mE5bjBBfjKcExid2UKEBJND1/lBwCY/Je5GqtFxODiwo8/sG4Ag4HauNKT6j0iyzj2WmpFtlIIiLpl/UfPHs4QE12TxFVYAkE4h1QLkgDiCOSSJ/JOKBSiZ3OU01r3VdbyLpsI8N9J1joM3EYCoo5sOn4WwwgQKPpwYBaTBHX0d8a6ESH49/gIbXfwi94N74nv/1keyb8UDvmbAiz/g//6577df/5P/4e/9nMD8PX2WHovULcZ6jaDmfaACjj55jXUsgOcgDzp2SmoAhaLGsLSoxYKD/GwgVQBPklCa4LA7jjAzh3rBGRAdzHAHQ8MfMm5cmi2TI71RYCfOPRHHm0MGmEhPTsl+7lHd9/CmwB7NkDVgl49QQ9jQEqxJBBLvXk+A5NMg0B/auGqOFnOyTrqOiYuLgO6E/7iqh/ZOyAmoF+QnbRTbtNV7CLsLizrDALQHfsY2BJXsC3Qnjm4nF2EPiMraScezb2A4cQSBO0FhlOL/FagWwKqlmjOQwQl9P0JJzDMPWZPgPxKoTvx6E4c9J4y4ZR4qTqCWoJBVk1IK9AdAxCs8hgmDPlRkYUSjgE49JkF6PbgJRMe6E4C7JRVEz5nKI0rGH6TrcTo5dJ7gf6IE0bdEFS6IlA+XIbY98jjsNMQGQYG4njDRQZbRllr4CQ/HZ+uo/euPzBk7Sm3oVuOdVrQMLsITieRhbkRGBYBk+ecANWPWAWioydK7yLIXIVxnGwRJa9LBgBl63gvRIDZngDVJcFMt+C+VE+w1C15DGNQT6xL6BdAe5xAV/TYNTxHrwVZqQBMXnAVvDkj6GlPBUwdQZbgdelnAsPssFhS3xexXoHALz3kwN7C+t6BKdQNx8uVYqwrqC/oTVNdYDBORdDcLQW6Je9dbwRcnCS3xwKLLxy6pUB/JDB9HqIkl5M11VGC2S9iamRBL1u2IQDefiN2280IcsyWvqN+QdYr2wZkW4z+xu6I2/GKbBArGCgPTems+a0nyNwxLdZWDK7JV5yU21IwCKcQmFx6TF94FLee91yUGduK4Sv9nAsuKYQmSAbfpO65BCp1HdBP46TRcb+y57g3ZwT++dqjW5IF2T2UlF/OGbSSKk5YgcH3es3zzNecOLQn/H5SQxiTWqWNoUgV0M0JTup7lPbbgtdrqLi4sHugkO3Zw9geUQ6Zbz1MzXHNN9H7qXjddccxS1LIbsHzqM/kWGmR/GjDREbJY/Qp7zyaYzGqFbKdx1hDUUqUVxZqiKFsEWz2EzmCLtZieKj+EKKTgnjaBbsHi7VHtvOU3Lee4TxLiXzl0B5J5CuP5pgAS3cB9ZlCfuvG45aOP7qllLK48ci2Ph67jD2WvFcSME6JssMkBqmoAzBqlwq2YB2GLXjdUn+iyyI7t3dxAY+AsD7TsLlAtnYobh2GqYKtJGTnka0duiOCsGznYGrPAJwujNtNlRz9lOOfryihLW4c8tXALsUuwOxd9AlirNCQNiBbDXHhRMJWrNcwtUU/kwzWiRUc9DAyZGeoZKy64P8jsCtyPMetg88kbBl91DEYR0efoRzou1Sth9lZLmyse9hSjWxgvqYPkfuPHsKYsKo6x95GHf2ORo4AXQQgW/VwBdNUXaUhew9XHnoYhQ0oXm7H/UnLdNn2OIMzErJ1Y5BQ0AJwAWbVQrVuBIv9IoPPFcymB1yArge4iYHZ8s9hkcGsW/ojtx3Mpoeqe8jBI3u7Z9iQBODp//S5QndaUnIamMaqdz3E4GCnBmrfUz5qJNS2JSgEIAd2X7pYvaE2HVxpIFd7uEpDtfQ0qs5Rvqol9KomkKwMgWlvEYyCagb43EBd7zimrYUvNFxF1Y7sLIT38KWBzw5eyOFiRlZQMZyH4IxMo9y3kLvm4KlM6b5VxuvhgdHXKPmnaDuEXDP99W5Ca3rEEJ5Q5oD3ZBhTB2TqpoxsZcgp9z14N/m+kMcQolgTkv4fUh4AaAKTXY/Rv9hHEFzkBJTDQO9lkR8kqeNx3tlWYiiFIKi0lnLZEAg0k+Q1AcmxGzOG+6RHYinvJs6GGJj0M7yTfG34i/38JSS0f/v463l8rYElINDXGfrWwL8sod9kWH3vFCdHO8ALuFqjuJQQrcLqehr72OIH6FkJ9UXBwBITMJxaqL2EnbtxJXTyTEE2CvqtYd9eEQvQe7KIeitQvDIoriRc6SlRiyX1xXNDRrCRyFYS1WcZ5XAKKC4puUhsDgKirO5OlPvA0Be1pa5feAIO2bGncPKM1SS6oZRPbxTMVkDX3H+/9Ehl9GYnIXuB/FYge6shB6C4Esg27GrUe/YtZiuB6ZeKclgJmI1AthbQe6ZE6rVmbUoHmCvGoSc2VPUEHvtHHrLnBBFeoLnHPsX8SqJ4o1C+ZVBNCmpxhixpmrCa6PWzFT1gbsKJXuoyDPoQMiI8KOmcRKlelMqpViC7kazgaATyKwGzY4ruMAXac49hEQF1moQFSjazG8lxWnNsVM/jWvzoUMthNmQMyui/NDvQH9tE4HkSoPdkuWxBUJatyUqLmAw7xC5DGQEcpaaRWVwA+TUladkWKF6rMZ5/mDEJ1RWUQ9mKgEB13M/sC4JaevmifG/g/+0fCdiSEjYTZYbZmuAuMeTFNcfWxxRc1gocGOUEyofpga1tzhmcoWtK2Mb03ci+yYELAXrP89UN+yQTe6viuNE/xgRT1ZO51HeqDmQfgaAjawoAkMD0eXx9y0UFYfleG3sKk9Ru+0hB17w2KfE2X9+RmQ30IXLxBGiPJZqzGEK0iwsh0d7iyhi40vDfw1TECguOga55bP0RF5u6hYiSvUBJYMZ7J9tw/yl1tZ/yfpaR3SxuPbolE0n7GZNcVQvIPrDzMIajkNmNwUk9AZgzPK5sS+CclAE+MlcpfAeg1NDsA7INQQ9C7ALc8V7icYYxfIfbEhimkZVNaaOeoNsWBJtJ2dEd8zjSgkoC5/30IIeU9tCN2C75GVMDx6ebk/nTDcbEUFuIUeXgNZnHtKjD8C/AFjKGRzFMCDjso58StAcpmMiqgPZIjWmo8VdMXBAgC+oMP0PNyaFaxGVy/N5mzQSQ7bgPSo/JkHotUJ8Q/MiBAM/UXOzRLUGX2XMRid2EB2msVzxfW6mYThvvvx4orgbWdcRkUyAm18Y08eS51I2H2fuRBe2ncgTH3VKR3RVAc8b+Q5sL9FOeW7b3I+PXHjEF1iugPWWiqG5iHUhUCpTXDEvrjtRY1ZEkoUkmKXxSJhh+L07ivnaOoK6h9BIBGKY6/p7xYxhMtzQwOx99q5aA9XaISckR8Heen21LNi0IgWxtRxmntCmQJ4UCEYz2E7KJdqrGOgyXSdgJj8OWrEJxmRwDeHwuILsYUDRleI2qyWjp2kGEEDsWmRRrZyaG4MS003kEFVKgO8mZxFpQOuoyycAem7YFgtHBjUE5Pid75I2E3g8IRo4JsrLne3zOvkSCwIES00URX89tuGkG+ECPYmsBR3+i2tH7Z3YWPtMQPX83Qwi4KoOwAcOyhJ/kfG5WkMGtDHyukK066G3HsZzlPJ5piZQkKyKbGZSAaoZDDUhiDQ1rUhjUo+HnJRnfgeysagjcXJUBjuBeBIYGBQGoXQ9fGIimh3AOvjD0V7pAcBhBnC8YiCNaguSgKH/18xJjBUlkFkU7UMqaZxjrPrw/BPBkBiHTMYn1wGiOzGACmeBnawy1CeHgpXQ8R2S8X5BA6WARuo69kl2HMK34Z9syBTaxqFWJMJuMAFSUJYGukhBZRhmrtQSjd35EZiDy7CB7jYBSFAVEUQAmA8oCIs/4nshEiixO0JJMF5GRjGmvP/kQd57/6cTYn/75Cij+Gj/G8K2f488vyuNrLYW9+PZx+LX/8T9D5zT+o7PP8LQ5RqkGvG5neLWf4+9efIpX7QK///mH0Mbh4/M3eDy5wXm2xZ+sHyGTDsdZjb3L8Lad4qzY4V++ege/9/AL/P6TD/GrD17gotigcQZn2Q6f7c/whz9+F/fO1vil5RuUasAn63PUg8E863BW7nAv3+CfPvkWhkHhg/MrfHP+BuuhxHbI8cO39xAC8A/f+z7+t09/BcNViW9/5ykyafHR7C3+9PYhPn9zgt985xkmusfeZtDSYdVXqHSPT29OMckG3OwrvH9yje8uXuDz/Sle1XPc7Cto5ZBph++evAQA/D+ffYzvPnqBPhpOXm1n+O7ZK2jhIYWHDxJ7m2HVl5CCKbIn+R5/8PkHWC72MMphanq82U0xyXu8eHaCbN5B/8kU2e/eYPVijm996zmerxf47oKiNe8AACAASURBVPkr3HQVfvhn7+D3fvMT9F7hX/6rD6G3Ehe/8RrNYPDO/BY2KPzZ5w8BJ/CPfv2P8L/+4W+hOtvjaNJgcArbugD+bIbHf+cpvrw6Rr/JMT/b4Z2jFT75F+8i/+YGbZNhPqtxezWDLizsJsM3P3qJN7spVldTPHh4gzc3c5RVh18+e41//fYCIQgMg4KzCrZTODreo/1Xx8B3tiiyAasXc6B0ODreY/VqDllLnP3SFW7/6AzhwxrTCb/ktz84xse/8yVebWe4P9vi+0/vo5p22F9VEL3E+fvXuP7eGXQt8NF//Dlebec4Lms8Xy0wDArGOPSfzhEeN/DX9F3AAb/0K8/wbHUEAOh+sODk9Ntr7G4rSglVYCLxZQ45CPjHDdQXJabfvcbNiyPoeY+P7r9BPWR48vwU2aSHe16N3s5w0aL4fon22w3ycoDWDm1rUBQDlAjYf38JO2HVzsWvv8bzyyVCrYHcIXuZYZhTfh10wPn717h8eozZxRa7F3PklwriuxtIGVA/nyK7qIEfTmFLwM0cpvd2qL+Yw88chPGQmcO3H77Gn/3gMRbf15j+w9d49XYBvzVMYB4Efut3foQ//OOPgPkAcZ2xyqeMXtpeAsZDVRau0ZAbDXHewXxSon04AJmHUAHBEiBlLw36M4f8jYL7sIFtNYqnGWwRIN7dY9jmEK3EvQ+v8PZmjvAmh59bmDeGvtQj9szm1xLNOwP0rYY9schfaXSPBujCovyjCvuHnHybnUT7uIdcax537nHyhxrXv+GQXZEdQQxu8pVH+UJDOKC5cMDcIjgBmTnIlwXku3v0twVEL6BaieqVwP43G/hBMgHbCmTHLfpNjvKpQfN+B1Fr5JcK/RHDpfbvDZANfbV6J9B+o0f2mpP5fukxeaqw+yB2wvUCxaVCe84FonDRAtc5ggmQtURxHWt+juhfVq2AnXAbDKMCmofRFxx9vfk1F6bqCyYam1sJ6QTCt7cIn0whLX20248cRKw3UlFOLwIw/0xi/5Bqg+aCC3hec6GtfmyhNwrFlcD+EaXj3anH5KnE7gOHyZcK7UmgMmBNBYc39JX2C4ZJ9UdxcawVmD0J2D/gwlr9jkV+peiR3XJhLkhaDiC4f5dzYcZWQPKnugxo3hmgNhrzzzH2KLqc42N2B89pvwgo39JLPf+RxuabFsIKzD5XTP2OXruU4JqUBjqC/fWHtFZkKwmfAbPPCeJdTvtCf0TpPxdj6F/1hpaLxadM5+WCScDuHY7B8Q8ddg8UggaOPrW4/aZmQNkqsd7A7p0wBp5RJs5xyFdkd9cfAovPIoM+YR1PcQ10S+67eilgp1xcKG4Cdo+SNy8uXgQuyknH12y/we2xhobnNrn02L4jI1Dj+OiWC1XDFOPiVepNBfg8j1GMiy0ypgCrlmqL8k2ULEcPZ6rzUB0XQvqFQHnFsaxecdGhPRZjv+70Bdnp+pw2huKans+gDzJ03QU4I9AdcQyHSqC89tjfpyqgvPIxWddjf19h8eMB9T3Nap85Jf1JKpwW3phIHMbFgHzjMVQSwwRY/qjH7lGG8sqiOdHINw71Ge0ps6cM3Zq+tDHEiYsrxa1Dt1BQkbm1lSJDbsGFgygfd0agfDtg+06GfOtHm4RuAppThfLKkcHuCRJtIZBvKKU2O7LfxXWP7aMc5ZWF3lvU9/PopVVjCJhqPbojhcmrHv1CR6tOgG4suqVhqNGtg9kSVNtCwRWsjgHIduuaDLPZO+jawWUSunVQmx5QAu1ZycXpzmHzOMfseQ+XcZFBtY4MswdcKVG8ruFKQ4BsJOxEQdcOqrExPZcrOLJ3ZFUrQ/mvEPAFZaZBSah9R5DaW/hJTpAcFwaSR1JYD7FrGBbUkbGVuwbDvfm4SKJva9ijCpAC+mbPmpMqZ0ptrDwR+3ZkTUXbA1rBz+OHJ0mwFWXmcrU9VKI0LVBFD0/yaDr3VfluCPRP9kOUwnpASIS+Z3BQPzDx9Sc9lom1Hey/tUokgdy/CVLY3/zdn78U9v/9P38xpLBfa2B58q3T8A/+5/8EvVd4uVug7g12+wJ/78NP8Lw+wvef38ff+eBTrIcCn1yd43y2g5EOx3mNP339AN5LPD6+xfPVAkp5/MbFc/x/X74H9YMpvvP3foTPb09weznH8t4G07zHqikQgkDbZDCZhVIe+22Bxxc3OMobvNzNAQDLosGnL84xmzfoB42z+Q7PPzmHudeg32U4Pt9gXnTY9xma3sAohwfzDXZ9jsr02HQFpAjoncKbNwvoYoD3Em6d4fSdFa6eHeHjj1/gR8/uIa8GVEWH7a5EWfbYvJni7OEKSkbDugh4+fkp5HxAuM0gW4n/9O//Af6XP/odqNJiMavR9gbNLse98zVePz/GvYe3mGQ9vnh+xkCdLJrdvYCpekyrDtsfHuPj3/4SX94cwzmJYVCQ0mOoM8yP99iuS4ReIV+0+PD8Cn/+2UOo0kFph36TQ00GXBxv8GY1hXtd4eKX3uDV5RGwNXjw4Vu8+PIU5WmN5k0FORsgXxUQ79RwlyWyh3v0zycQ91q4RuP9b7zBy9sFpPSoryvAC0AGiEFCDKx3mTzYon4yhzjrMJs22GxLBt54agVD6SGMZ2KwlRCdRJgPWJ7scHs9hag14AB50kN/VmL525d4+6/P4WYOopPAYkBo1Rj042cOcqvIJp83sG9KQAF6K2Eveqg3GbzmxHv+zVsoGXCzmiDcZCge7NE9nUI4AfnOHuZ7U+S/e43mj09gfu0WIQjUT+bwmec5HncItxl0LaG3lNHiUQPxpMRw0QOdgtpLuKmDWXQY6gz6ykBYwC481E5i8lxg/S0L4QTMmgm0duZQvtRo3u2BQUL0EsF4QAWIViFb028bjntgZZiU+50G2acl7Mc17NZANrHjrnLIX2kIH3tJBf2uPvdQjYRbWKhbA3dkkS9ayD+doXmvh742sDMH1Uj4PKB4TVm1asnWhsqheG7Yr7rwkDVDnrxm6q0tA9zUI3+jRqbcbATaj1uYZzlUTen2MPeYPFMYZpwElm8FNt/pYd6acfLZPRhQ/ThDe+5hHu5hn00gB+4jlA7ZW00GPAe8Dph9wXRfBKD/do3wpmBysae/188tpj/M0Nzn5yu7kWi+MSB7q3lcBeXsPgsYlo6guxMIeWD9CzACHFsc5NU+i6m7W4Kz+WcSrmT4kXTA5JnA5gOPkAfotYR7p4V6XqB8zR5KlzM0yX57D/O9yViBohoxgrHp84DVN+MqadTb9ice2ZViim+Jsd6ETDuBYaor6ecEGpsPPIFkIzB5GbB/yGqY5NUMmuArVRFVLxh2pBuy4OVrymuHacD8C2DzHn3fCHx9e0xglXzXuiYrvX2Px+3zgNkXwP6BiPtgoFN37HH0CVOvhQOKt+zWNNtoI1gcPMl2Qt94fhtiwAqZVpdTZu4NrQFy4HhQ7h79qU1Mkr6hGiFb81xvfs3j6PuUUCJwvFQfpb+xWsXlwOQ5f38LDzT3yKbqGlh+6nDzsWLFThE98kuO2/ypI+s5Ecg2lI/nKwKdxCLaSiBbB+zeIftevqWaQNqA5p7A5BnZ5+aeoCx8IOufwnnMnse3/QYweUGg1C3oc8w3HrcfKZRXlFgHQZn+7h2C3OItmf8RTE/5GUoS7GzP/sggefzJfpCAlO7IHFEGfACWIkS2OjL3zZlEtiLbnm0JEPsp2eDpa4duJinrjsFMyWoye34IdWlOmAZsmhCZRcoI9xcEvOUVQ3nyrYPNJepziZPvd2hPDHYPJeZPHIZKoLhlsnD1hsCPYVqUVM+fDWhONFwmUL21UK3H/oEZ5fWJXZaO/t5s7+N7FeXVtcP+gim9zQmTiV0mUL2xsJWk1P5lj/pehtQ3qnp6bptThXzjx8qebNXDTg36GaXUCBi9tdmGflVbMgCpPlNYfNlhmGgIF72uMUxomDAZd/cgw/RFj26pUV71aI8zqN6Psm2A46C3PeqHFRnpCOCED+jnBqpxyG5bArZcw2cM8NG1G2tTyDLGOVEzIGQawyyD6hzlvoK9n/lVC+EDvFFj+I6P3k5fKOhtD58pqE0HP40Mp1FQu34EfAAQjCRobAbKhI9KAumbGm6Wj0m2ctdHqTGoYmsHiMHCT0r6Mz3Body1oydzZDWNhrhZI8ynEJsdWcp+ILNYsitTxNCfoCRlrINlAFBmDqzpavMVP2l6XizmQN0w0CclyiJ6KAF2XPYDWc2mGa9XaFqI5PGMwBIhQGQGIUl07z7Sfu+e2896RFltCIFy3n/Hxy8EsJz/FQHL/+tvgeW/96P88EE4/8f/LWZnOxyVLY6LGpf1FPsug5Ye212Jf/DRD/D7L96HcxLzirOa220FaxWqqsPZdI9VU6BucwLAyyWyYsBvv/MEf/DJR6jmLfaXE7z74SWcl3g0XeEHV/fQW4UiG5Bph2nW48nbJZxVuH+6Rt0bZNrhZj3BsMswOanhvYBSHs5JaO2wW5e4f2+FXZtjvy8gRIDJLOZVi9tthX6foZh1KLIB+zqH7TQmiwa7VQmx1TD3GthBoZp02K9LzI5qdL2GEEB7XULNexIjXpC5AbBY7rG6mkKVFm5vCKR6CTOLPUtBoKo6bDclvnH/Gk9enpAVkUA+7TD0lPGEdSoklggXLcImgzzqETygnhWwjzpgZYDFAP0y56S4signHU6mNZ49PYWoFcxFTUXHLhvZJ6E95JscbuIgphahURBWQq8l8F4NOygUVY/25QQ4GlBUPZrrEsg8EAT0W4PwqEVe9KhvS4hOQcQEUr8YACtZ35KzasUXAcXFHu0uh3xLZswvBmQvM/SnlkDspoAI9ODKTsJXDrK0ECrANVzR09cGqsUYfKQagWHpIRY9/M5AFA7i1sBXnI1mVwr9mQUUA6eEB9zCQnTsCG3P6PWFAMxRiyExUh90TNWVgQDYceIJD4SZhZAB6nUOV3BCPcwCgg5QjYTZCjTv9pDbeB1PegQryaxpTqhThU4KfQqa4C1/QTYxSayzWwI1aYHyjcD2PYcw4eu6+xb6VkepMtCdMYl2WDqmBd+3vHeyQMA3CSMQzK+ZICusgJ3xfZTTCgzTMIY09SdMBPaGk3vIgPJSojlnh2p+I9DFnshsJdAvU/IrWZTiiixS88sNsh+X8IqsVlCA3hJwJKCVEibtlMdZvpGUeprofTYBxRUZI68YiuVy9nBmt2qUIrengYFdnRjvFTkwjGvyQo4T5KC4T11H8PRGjJ2N/ZzHqWoBbwKko1SXnZYEd8UrjqmwPObiLT//7M0jgFEd0NwjKwkBTJ8QsA1zpskypAZfSahMfYr8siBIARg2la0ZeJXfCPSzgGxDVlG33IZjMPWYMDvMAqbPBNqTmDY65RiZPVm52TOPzXsSes/jhQBkdwiwCjoyU7MoT5aI9Tr0vSZQa3YETqlGpj0LmDwXZNg2UQLegVI3E3tMV4cQJVvFeyL60lP/XlBRahqZSG9izRAO148dyDiksmaH8CeXsXKlPSGjpOs0xkyrFQ5RHhqlxRHopT/TAkIKxPEx2Cn5kBOwo4yWoGP/QCBfAXofRjauOyIAAjCmvS6+tFh9aOhPLaPEO6N/0ytKmkWg7NUbSmKli9VAa0qn6Y2OYULu4H9XPVlY3YUoPSWT2i1ir+0Qg89i1U46tlQdJAJBURBAsfaoT2X06QsUN0ykznYEmClROCXcFiuHoaSkPN2XpglojwSyGE41VARMXkXWNGeAjM0FiughdiYGBDU+JglTLivuhAm5jD2bLouBZdHHnHyzBG6sQUm9mtnGwU7kKDMXMSRKRYmxqaPMtpRj4qy0ESjH69MeKZiG94fZOrQnGuWVxTBVIzhUvUc/j/VhPqB81aA9L6NkNnpCYxiSKyT0nsE+rhAwm9htCabbulxA7x36I41s48ZQK6ZfC6jWEQg2BKe2UshXw+g3ZYhTSv8V0C2tSMNUUwbtA9TgIQZPqS8ie1xTMhs0Pbu6tnClht4PUVacMVCptjG8j8BSDp4S4s5BdI41Lc5D9J7dlZmGcJ6BQ/HvAFnHxDKmLtEgRezbdJANAZPPNdS6QSgMgpZjpYlwDB9K9SZBS8p8AfZsao4HvGcgT8YOTVHfAVBJXht7L0OesSMzhvyItkcoODdLfxc+EGw6R7BZZBCbPZnI1IuZwoDuPpKk1zqCxDvBQKGPktqiQKgbbvsuQ2nJPIqigN/uxu0RiPY/3UP571I78jWvG5nPH4Xf/J3/6ue+3X/2f//jv/ZzA77mwDJ//2H46J/8F2O1SGEsrq5mmC4atC1nnPamQFAB3/zoJX70xQUmxw3uzbd4dnUEBIEQBNwgkX9RQP7KGt3nc/jCs3JDgBP3iYXOLWynIZRHWGUIuQdkgMw5+a++V2L3EWssIAMByS5D+SQbGR+IAFkr4LSDHxQmRw3qTQH5NosBDAE46+B3Bmo2QH9Wsksy9zArBTvxnIxfauS/eovue0foHvALTbSKdSJOwKzYswkBBBOgVwpu4iEGAb8cgE4BxpOFcoIslPHIn+boTxxC5Qg2ssB6lI6TfASgeKNhC/YxesPk1PH8tEfxLEN7n35VdzxAbAzya4nu3EEddxAiQH0ygVcB/aMe1Y9yNA8cggnIrsgYlZcyesHCKBnMbyVDfAxTeeUADEuP6rlCc+Ep1Yt+Ua+B4XyA3GoUbyQDjjQ7NIeph9lJdEvPyfCpgxgk/aq1iAyJRxbrRvoPyMD1S14HvVWsMWklfO4JsMoA3YgxvTe/EWMqrdkB2w8dRCdgtvTHJXlad+xHz29KqOU/6Mf0huFFZifRH3lUzyUB59mA/LmBagSa+w66Tr4MBkEJy0qQ/JqJxv2ZQ34Z/TsqxEk5/WnNhYfeCggfg0I6HneSbrkijCBODmSTulN6ZlNK8uxzTuwo9Qsjm6g6MTJWZs+JXNBMKy6uCPyki4FaINhzORAME3SHCbiocUu2JSgyO90Sh1RSwzH2GUONEkMYFA51DQajL7O5RyYvvcbrg5SsuKYUTjjK5VzG62j2BC3BAMXVIdU3bTs9+qOA6oWAK2MK8JrjCQDD/JB2PEwPnlXZA+05Q3CKKwIe3QBj8nHJbs9uSeZomGJM/Rx9xZGRSQm6wnOMzJYBX9mKzI4teH+ZPfsu0376BUF08ryWcX+ciEbQ15FNa084Kdd1iICRLFmSLpod4meNE7B+EdnUAWOyNsKBRbMx+CgBGJentNboBfVprAhuhOUxI07OvebrmDYcRmBOsELfKIO9eH97xW3JAaN/0TRhrKpQsYIhVXgMk69KD1WPWDaPEXjKHlEOx3Ppp2K8funeSwm/agjoJ5RNljeeQUYRFPQzgekLPwYJecPQKxlVXwmMJXba7MOYmOo1vbmsoaGftD1S8XNAH+7+PrsUq7d+rNpI2zM1ZYVBcp/CxfspAr8UsqQik2Rqyub6qRylnXdTcYMksziU9FKO6cjxKy75XJtTieLG8zsnnostxFiFkXyQzsR9xJCdFEomXbwPYzfpUMkxwTel8WYbsoGTVz26pRkXDYI4nHNQAnlM402JpgC3380p/8y2ByYtySJ99OIKR59ntzTxe4WAMHWbJvAlBzKbwgYMcwXZk1k1MeRItUyzDXdqahhYRoliCo1ymYRuyNp1RwbZxiIIUOa5c18ZOzl42FJBtX7sPG1PDMyWDGN6uEzC7C09w3f2JXsPW/H9wvM40ucpHVvy0arBR0WGhKrt6EnlOAu4QiK/agHJBFvVOdgJuzHHBF4b4ApWjogApFoLXyjo3UCpaGvhItCEEtCrFiHTcLmC6tz4f6q1EINj+E9K001+TuvhC41hniG7aQ81IDFlNhgFO81G76bo7SFlFkCQkqAwVo2IcJCRCufovZSAaHqESUGQ6D2ZQ+cJ6qwjg1jmo5cy3PERin6g9DQxgN4f3jsm1ip6MNPzwOHvsc8SAEKZk8EcLH4yyTWd91ceSo0M411v41fYwrvviYE9qWaE/x0ohVVq9FwG928AhbGm5Gc+D/D/YnjPT8pp/zKPvwWWf/UP/dd9AP8+DyGAR4s1Xm9n2Gwr1C8pId1tDDAfgLVB+Vqh/XaDpzdLoJdov5jhCz1DyMhsBBUgrGBi6adzCADTL1g5wh46CbeVMJscw7sD5JqgMn/FDzoTUGMf20qPvh/1/SlEFqAaoHiSsftvzuRW+aJgcNelgU7GWytg1gJuW7DmQtFDIByjQ4WnnEGtGOoj/2iJ8hoQPqPXYIh1IA0n/6pR6M488isVf7nRD+W3OfJbBsyoNsb4SzIc+QqQvULz2KN6IWErThS7k4DqqWYNRgu09xxUr+A1UN0C7QcBxRcM8xlm7GLsjwLMZYZh4bD4HFhDofhBheYcQCAoPP4XGZpTIL9WKC8ZQjN9ItBcBJSXIvZVAcPsEHpTvpQYZkB+Daheobhid1dxBXQn3PbkRUC7pazH7ICUUaVrBu/w7xK79y3KZxrZlhPyoLl4Vr6WqB86TL9U6K9yuJJdiUHTrzb9jJMH1chY9RDlePNAD9spmajyDScWx38iv7qan3Pcq5cypssC2UvBwwzA7jca4MsC8y+A9oSyItnxuKtXAsMu43kXwOwLNfYSZmuMfy8vJfJVwOYDQLYS+S0B7uzHKnaHcTKQrcRYC5G6AM0uYPdIoLjmfeUuNfaPyNYVO4HJU0qHOMEX2D0maJs99di8LzF9FrB971B7MHvKXwwup99q8lLEyaREfT9g/mN6jHTD1FW1YjIpQhrfyBjFYJgkD1RdGJkoOQDbdymntKVgeFJHv1Z7LEZfW35DANOeUAJ79EnA9rFEto3SOxHGaozuiH9m64Bszfswv2WQRojM2+RFiHUzBAu6DTA1r0O2jayOBqwVmD7l5CnVPpSXsZeyY2KubkLskaWErp/Se8jQGckaFMsew8Qc0n8XK1BGtiSG2ewD8jUBl8uA8pr+ruKWk6HUzWj+f/bepFe2LL0OW7s7XTQ3bvf6zJdZWR2rimSxiqRkCzQhaGLD1swe2Ib/gDSR4IFh2SMP/BMM2IAn/hEekbLNIk2ZlClWshpWZf/6d7voT7sbD9beJ+5LlUQapMBKogJ4eLeJOHHinBNx9/pWtwPyFQdRKZ00CAlbCUxeOeweKh53yefKVwGm8azSMEB5FRNdo8y1uEw9deEN5k43GGtYwhYolp5+MMVaDN0QDOqGTM70hWOdiCH7w2qKyPo43re89hgmTKKdRrllvuZQcPrKwRkRwTdrXqo1gZ3qGaLUTwTytcMwUWOSqnAB1WWArj3MXtBbeKtHMx13l9FX2M8Epi8dgVyUXk5fWgwTslH7+wS4JnYoFqvE1hFcjqyUUqwpscAwZRVItqXPrHpt0ZxrmD3PXaoEKZYuyhEFu2EFgaSwPPbVpcMwkUwAXvkYksbPpX4qka+Zws0hGKtY3JlEcc1gKGlFDOJhrQgEE15lH/sVA1De8GuzdajvGogQUF44vobo+8uXA+o7GbK9h+o92mPNRNWphC0kyhsLETg4mCwH2FLFv3l8vskr+uqyLeWNtpT01F3aGGKUgplip+EQYqASw25Ky8oRs3fIV3wPe0MgZSsGKnktUF302D3IkW1jsm2PMfRJdXyP6L2D7BykDdi8k2PyykK1jkzx1hIUqTCG+kjnEQQrUIQP0Fv2NrJ+yEP2Hrq2qO8XKC4aaC3RL3I2UHQeavBjt2LQAmLw0IFAS7b8W5xAnNlT+ioHh2FqoGuCiDDR0LsedppBOg+zpRdRuIB+kaG4ajHMMvoJbYDaWQQtoDY9mbpKQfaOfkEf4EozSjjl4KAASj7nOfSugxwoHzWbGGQD3s9sBWA93Dyjj1AzaMhnCrIexuCg7KpmeFA9MNAnMYmDQ5gYgtIYLOQLjSAl5KYB5iVTZmNSrXCsLZEdgUgwCupmD2iF4aSCXrUwINMYJgLmqub9tITc1DDdMHoV5bYh8zlIgqQiZ6VJ3zKYph/Ibt85gto6BvyE6JMcHMGf9+ySvMU0AiDYkxFoJtYyMXvWjuFCYh8f1/VkNWuC9OADxLRC2NVA8BCT6tCJmUJ16vYQptP37JgcyPBShpoG2/FDzmhAkokMnT38Pv2saSmRTfvoA8Gnt/xT5BxgTHwePl7cTolNz/WzwOTt2+3fSwH4L3jmaLr95YnaL9ztC81YFu89DPf/h3+MrOCHRpENrB4xDl1rEILA8dEe2zpHt81hJj28U4fgC+1HeffiZIfl6zlm5zsY5bCrCzjLlYZrGK8njEfwArqw8F5ACMBtDZB5FLMO7ToHVKBvb5CUP2qP4ASwMwiFg8wcQ0ombOEOg6QMtFVQhYPrFJnNpQHOOwgZn9/HyWgvIU8Yz6m0w3BVIogAORsQvEBwEjJz/HqQgBOjjxAA5MTC7wz0WsGeWMgdZaEpmEX0TAr0lYNoFAG4EwiZ53Y8KAvNHUStIM86yCclbBmngXnyMUgIy+fN392ifj3h1H6n4I7JJgYTgNkAeZVRgllLhp2YQI9kLxFKB9EqehNnHsF4ej63mvt10gNbM8pUg2I1id4qShXnFmKvOX2fsqMKg4Bs+TqDAHxF6SU8oPdyrDEhyxAlh1YcmIpAD51wAm7qIRuCAdVy0m3nDmpHBtnPHOReQbaC9TS5h6pvfTBGZkLXXBSG+JwuZ1WKuJVk7Eoy1map4MoQ04Al7NRD13IsKEdMcrUVvV+pVzMFWKg+prZOHcxaxX249RojYyICGcvsJi4MLOtMdPQlkh1mnY20Ai760yDB8xGPaZCAL8g083WGA9MXIuN2i/mzE4/sRsEVhx5WykuZKGy2aWIc4HMeOxcZ3/4ojAAnGDAhNqYt2ynZu1QVk63ImmYrPkfqkrWTEFNu+TrJbsVeNkkmNmhuOwEO9tmygiVIykltxeNHv2AM6ZgFVhtpIIX4ZJsI7KMvUjgOG1JXbL84/Dw9b1p0RzbZnwAAIABJREFU+1t9t6mLFYjsoMTouUvSyQTEEXgMZB+lihnBe9qOauNrCxhrdFxM8A2K15ZqxcgchziiTHLj1Keqa+5TH6tmUqesjMMwW2EEdCll2BWH349y08hwpq5XaTECaekO76PRZ2r4s9T9acsooY2MZXcS9z0er3Qe02uExFilonqyLYmZVR1GFlZ4nkdvEP1+scReYJQF8vEEfy4mFWfbBJAxgkFp6W306RxEYkAOBx8kOyfJ6qRew7E/NL6vU9jMyC6pyCJvqABJA5Akr07MfwK42SaMKcWJ1U3Pka4//jHCG52lQwTswpEF7qd8r6WuZgCx6urQscr+TjGyxl4fzmdKrE2pySpeDzr2zaYeUd0e/I+qZ++p6sN4rQ0Tsr6JJU3y1PEYyEM6si0kTEOmVdpwODeOstjUQ9kt5OjL9Dp1Nh48nIfP2oB+xuoVEfc3saHjPt763hsmDwOspkl9n/1Mxlos1uQEIcYqGNVT+ptYT9xep0fG1OUynl/6ItPxTccxneck9U6srfABtjpIWbmffgzFcZmMfycok3WFJAMfFQbpvSBcGBN4AYwMpysUsvUAlx+Od5JuByluvccJzik5jim+JiULhzE9Vjgf2VoxMpCUmVIG67Xk/W/dRhbSh5HNhIyBOTF0RwxkN0XqzHQBqe8yyMM2gxKQsQ5FJAZPKTKYhomwoo+pxNHXGDTZ0BFkxcCeBKiCUgcgmvorBzuC2dQV+gZQlfR4MpDH4/P+SdgIJIXgtt6oBUnAMlaLpAqTyBKGeF8hJYJ1nManTssESkf28nPsZJTYvvmjJG/9S2KRvy2M5W/8O2As//kvGMu/8i14AT8otIOCaBRaSWatfuQQKgux1Vi+KOBmHDUP6xzZlYY7dTA3CqqLnjETsBzm0Ncau24OtZNwZUBxIemZy5kkiMwBVsItc+itBDxgeoF+4ZG9n6F/x6O4kGjuUmaJoFG9DFh/NaB6KVHfF1CdgcgCvDMImUf+WqO7B1SfGPYoPuxhXmWwM4/8g5LBDxmQrUVMWRRwdQm7sJi9X6K5Q+Yqe6bRnnmYWkBaBsP0Zw7zn2i0J5Q/6p2AK/X4h0dfawgAeqfQ37HIX2voWqB+yyF/aeCKALXSDBHZSLiKx6R54DD7cYb6XkD1/1ZozgPya0k/n6eXz+wE9g/5AVJfV8iuebzb+w76Om57L6GuC+QrYPtewPxDieYe+zbLC4l+EWABlM/JBMheQnZRIuLJEObvF6gfeuRLTtNtGWD2AnZCb5n5NBsrRsqnhqmemyjp0GR4By1QXKpRrtfPAJ8z5GX/9Q7TH5Me6o65oNEbfiDbih7BfAns3vbsHgUgrYJqCKKGKdm9/tijekH2uTlPHXhcdPULD7OJgD6+I4trgf2jWIGyBvpjQLUKw8zDTikBZqhJXITs+Uc4X3IR7nIw1VMF9Ccek88U9t9qYZ7kTLfUAC41nAHyNXsepeXxKy/pfROeSZr1l3tUH2WsAlixo7L3AvkySvUsGcGgCNTK5wK7dwJEy9dhC8A3gnUjA+9nduyNbN4ecPQDg/o+wVh/FJBfKVQv+XuzJ+gB+HrmL8nula9D7KQMmH526DT1WZTUxoV/Cj7RNZ832/Bn+4c819ULyl1VF9nOCnB7Mp7dCUFdfs1F5O4RMH1KmWk/peTZbDkR379NPxylztzfbANgzWPdHYfYaZkkmTFp9IZhKM0Dh6MfKTR3ua9k4mNdi41yac3zU71igqXXInYHUq43zA9sZntCINvc8SiuJfSez+MzYP6Bx/6BhNwR+PcLdsRWF7GmxBPk9XNg9im7LKvXBBvdMVm6+acB/TTWrDQEVP0CyJascEmAtj0TQAreeR0BVibgc6C89Lj4TWDxI4HuhB657kigek3voa5ZI7N9HOt0OrKvCQwFHdnajNLV4jo+b4uxJ7c74sLc7KMX0BJ8lBcEZMMEKG8CdvclWfycEtj2TKB65dHGFEwgjF5O1XHxa3ZhBJVyoFQ0yUbZaRnQnEl0xyL6RwMAghpEpjnbBWzfkiivAraPJY4+IiO3fSSRbQ4Aqrjh/po9j5GIi/5sEzB71qE5z2JFiohJmWQfE0OeanrkAJQ3ZNvW72hMXjns73O4VF4z1bifiLF+qD/iccg3iZFlT+z8iQUCUN9hhU+xcmidGtNTTe3hjIpVKh5qS8CXb2Kyc5AwDa9b4QFTewynCrolkyx8uAV2+H5SQzj0dGpWoUxe2RFo0GcrUd54qIZSVQCQQ/Qwbh29kz6gP9JRCkvQoxtPqXXwaE7lKBdujyREwc/GYulgS4niagCEQbZxaM5YGaM6dl0OlYatkirGA5JsfLaxsIWC8GJkjF0hkd8M6Bc6+iENJs9bDFON9lSPQ4tsPcAVGZnExkHvLVxFnzxVQgpm52Fqi/YkQ74cIAeP/sjA7MnquSyD2fP1Z5sBF9+pcPZnLVRrsXurxORFh35hRhCJEOBKheIq+uo0vZR6P0TfdcHqkdrGag9KUIPmsRbWx9Ajh9WXSyw+qOOiDZDWw04MVD0g6AJ62cDdm0B29HJKALJjF6eOFSesNNHQ2w7DcQHVxH7Mjumr2bJGEAJuno9SVb3mZCYohZAryOUOomIVCrfH3k27IOsmeg+16egfLg3kvoOfFhCDh+yY0irbgeBwIFAU1nMV7QJlq1GyKpzj74QAfLxvZFABRGAoGaYzRECoFLsuvY/+yQHoenocraM/sm5ZbdIPCBXDeoQQBHJ5RsBoLZlCTwZ0BKnp63SzHtCK0tYQRiZyDO8xJgLHgf5Ia3E75Cf4AHgHkWWUzIow+i0TWBRKjZ5MSPkG8OUfNc+eTCB6M/+CKhFP9c5fBVj+vNw+P+D423T7wjOWd/+bfwIAkNOBQTZPZ/y+Y9JkcdxieDIZF+xQAaKPbwzDUBPhoidvo+FLD2gPMxkwrHOInqmiak8Gzs5dlK1K9PcHiL1GyDzUTtFnNHP849EyCEV07JDkcwmyS1sJ1VN+q2oJN/HQO4nhbEDxJMNw5KFqgf6eRfmZieEmcZIL0Hf4qEPYa5i1gt4zAKS4ooTTxOh52SP2y0XWSwDdqYPZyJGpCHGxqjpAWIaWyJ5eQVtyKlc9p7dP1+Iw4Y9T7PacqZP1w8hgRaZAdYcpaPIhuSIgGMBlBH12GsaJpCsD9I6Mo97HgvuMv5c9WcPiWqB+EMNFosSuueOh95SByYGAsD+iB5Cx4AGyix2Bxx5ZStMEF6BeY/QDAnE/I1uU2ARvuO+qEZFlCVA9OwylZShLkpQGjdHrFDTPVTBkW1LQSPIvecMgixSL7zMeL7M7BIKkBbKwGNkOs2OSpOwjKzSySNw+ZZhMwaxeUF7qCow9lInp6k7pwwyKxzqxm4lpGmZASkSdf8okSRun/90xf54v6Q/sTsk2VK/SopyMhW5jmIrka9J1rFqIxyBbHX4PxK7QyAzpPYNMVAQKielSPaP+zSYOGKZ8LYufCDRnYgz4SYty3fD/5DcjwOQCfZjF450d2D5vCBKnT3j9DVNeb9ma+8q+Si4QXRZ7C9cBwzSeE02QwWqDyAbWkdmI57NYerTHcvydsAc2z+wD2lMZhykBw5yJo7rhNhJYSp8HiZFJniqA18H4visPi1nhKemdPmdVQ7YOI9M1TMiKpeNv9gH1HYnqgtUHqscYxJLOsfAhMlWU8rpMjP7cIMmSqT4CzxnB7hjOkiMmW0YwE0NO+pnA/KnF7h6HPSYmctKHSPYneWgTS6abEJMqA/Z3OQhI13pi1dLnloq+X/YzBrTHrHpwhvuourhGiv2axcof2EUApvGoTwkoCN54zc6eOfrxIrsFcDvZ1sNrSk8Tu+Yi+2Vz+ha9Fsh2lAYDPI/SMigmMZ4p+MfUYfT6tYs0aKP0O12TtpDj49LAKnmOh4pAqbyyZJg0z4PP2Ldp6gAVgRb9ptynfOPiZ2TAMKVfUw58nFd8TWbPcBhbSug6MluNx/4+6yxsKePnE++jeg/hwPM6UH7cLaIvb4hsVMDI3A0TSYBobjF59ta10XMbtuLXwoex7iX5BoMUhwqKMtZRBMDHHtgk+83WNno4RfQCMt20n2sy2UNAcdGhPc9vMbthZOcYbsSqivQ/P19kTD5lKE2qxsiXHdrzgomnYw8jMMS+S723GKaaPZWNg9n06E4L6IZ+Q9n76M0UkHH7rmBwjFm16M5K6MaNQTY+4zBW7wb0R1n83Ijn2PoxnCYxeMkvCR/GfswEQnyu+H0KpEme0IBDUI+Rb8hpfa4pW+7seD9VD2NfpRwiwC1ih2lrx5Ab0dH36DM1sr7BKEpeXaDkMgQydzplEBzYWG8U9PWOdRx1R9mn93BHJdS2i8eRYJBPLkZmUwyO0ty4D2OnZJ6RpUwMYWLnFD2QochGiW3IDG73PJLJ5BuUx9zRdxnBoOiHA7uYgndiJ2ZSJyR5LAAG9mh1+DoEQGuC2fR9fN43klhvsYnBe8C5N4Af3zTxPlqzA/PWLQzxPglE3n4e5/Az8cZtpvIvGeTzhWcsZ4/Cb/z6P/5r3+4//z//2d/4awO+4MCy/PKD8Jv/83+BWdbhz1/ewdfvX+DPX9zFb737Ef58dQdKBFzvKrx1vMInl6d49/wa1/UEp9UeH746R1n20NKj6QyqoseXT67wxx+8A5072L3BvUc3eH15hMVij3nR4enFMaRkeisAdI1BUfVwTqK/rKCOO3jHQKDFYo/dvoDtNJNlLyasz9jmkNpDaY+8GFDvckxnLTYXU8ALqHkPpTzmkxbtoLF/MQNmA5NdnUB+1MJaBa0d7KDheonHD6/x5Kd3oU9bDLsMIncIVmJ6XEOKgM3VBHACes0p7fxrN1jdTCG0h1J+DDAKvYJoJMLMsmbj1ZxyVBkAHUGgCpie1uh/cIThccc6Eh0grw3kgwa2ix9CrYKcDJjOWuy2BfzeAMajmHewn0xhjy0Wd7ZYvZ5BZB7lrEX9esJwnKNY4SEoN/UzC9Ey3dXnHqJywEZDnnXw1znUKY+7t/JQrTGhhFcMTHPF3AJrgxAlyKqycFsDYQWyG4nurR6i1lAR3AaSi1B3Gwy1gdjpUearNwp2YQErIKxgXcbdHqFn4qxwwPk3L3H5o3O4iYea93CbDGqr4OYWajZAioChNpAbDXm3hZAe9rpk+JMKmHyq0H13D/eqxPwDidWvpA/sgNmdHeoPFvAlJbziTgs8LyEd00LtJMA/aA/pvZ2A7AWrR1pFObUFsiU7/1QjMBxxYBJMgF6rUeoqPNDfsRBdrG7JA4LxkLUaU2QxHaCf58g2As03G5hPCnRnDigd1BWTdlOHIgAOTtoY2nOng/m4HIcpw90BolWYfKaw+5KFWakIKuk/TD7UfEm2cji2KJ8Z2DJgOHEoXmkESXCk4t88VwQOgk48zIZDiOadHnKjoXcchgQTFQpRvgoA9k4PdZXB7Mi27h87FK9UDHLi/mQrCZcHDKcWasOaADtl2BGBnoAtAuyJhVprgo7YFzrc7TH9YY7dNzugUTBrxdffKOQXahwMeR2DcI45gEIAZbdVGNlir8k8FlcMNmGibwTTHZAlaW4ZUFwK1PeZRNsdUyEACUw/46LfTgCzAfZvecw/kBzmbDmYas+YJGu2lAkDkRGyDArSu4OflYCLwyQEYPoE7O1rOXzJNkB7yv/7oxToxOHE9jHThlPqKn2sTMj1BmMQT7YFmnNeH+WlwO5tj6MPyNCZbUB9nyz1UCGC36hIMGT3KeckO55kvgCHS8UF0J4RTKsBZHePAoobMcp3U5BQ8gKLgNHHKC2weysqBzSPadq+2ZEdLq7p9y2uycDLgcFRzR2BbMUUWNVTeps6Mk3N71XHoKX2OIJPdTsoiQMJ1RIIpjCYIMgou4yhRNkmDp4yngfdUKLrSg48hinvk20DujkXscOMjC/AIUWQZFSHVIenBVTD6hX69MkYp+GQy6Ict0n1LBxuDFPuY3Ed3pDkmyZg90COqa+6CxhKXgf5+sBgAwfQnO04DEiy1xR0JS2Bt8vjYGFHqa3LmLrazTloq2KPZD8jUAN4PGzBKpIEwLtZTGgdAnTL4YTL6dd0GcZ6HbMn6HOGoUbOCHRziXzjY8Ist51tPYZJDDwaAppjheqSQLqfSeRrB9V6DDPFMKX4GZfA7DDhZ7vqKI8tLwf4XKKb07/rNQcaQ0kvtbAB3ULR7zpTYxKuabiP0pJ9DoJeZ9V6mO2A7jSj93nLlFjVeei9wzDTo/S1n0pke88BQy5hdnaUzvqYAGtLhWzVo7lbwOwdJbFxaJKGjWZLpmyYmdHnqlqH9iwj0xxZWADwmRyltEkuno6P2vWwi5xsuA0ISY5r6EEWPkA2lpLVONAQsTfRl5rMZe8OPZM5E17tvIDqbkk+rUfIyWamwB97VEJaTxY0Nwz9MYrVJzHwJ9WNwOgo+3UEkAlIpmRWKQkQfTiwm203MpkI4VAt0nQI8wlGXyYwAt0EiP81mWz62mggBIS6hcizw+9v+zQ1AXlou4MX0jnQwxXZyz7uc5LF3mZNP/+8n/dgvnG3g2T2i95j+Qtg+XN8O/76eTj6Z/81posa59M9lnWJedHhs8/OMT3bw1oFZyWGVY7Z/S2anyxgzwaowiEE4Pxki8ubGbRx6Fc51GyAtxJZMWA+aXH1yQlC4SB0QDlrsZg0ePHZKRAE9LxHVXXoB412m0MXFmfHW7y+PBorMjAbILWHHySmRw36XsMOGlJ6OCvhGw0YD7k2CMc9snJAt4xm6CCgVwricY2h1VA535T+KqcXsnIIVkAWjimy836svoDkOdWvCSzs2QBh+IEsRIDfmdELqjdMjA2F4+OCgLrRZGfPB5gJ38DDNme3o2ZRejjroZ/nY5egngxw1zlC4QEnIKcD/M6geKXR3rH0gG4yiE4AdzqE6xwhj95G4AAapxbiKqM3sbQcdLUK6OVh//YSbmFhLg2G84Fy3QgkgwpA7iD2GnACYWaBXo7+Tb2Vo3cIANxb/MsvXhZwE4fsRqE/cwSPZwOyl4aL7SMHWUsChWPWaXgd4BcW6CTMikBrmHn4wqN6qtHcZ/dgSnvtT7jdfCkwTCjbDDogv6Lk2pWRien4OrK1RPPAAoWDeZVxUTZhnUTzbg99ZeAqymjthOXzet7DrjPkl4rgqiOY8BqYPJdoT+jdDCqMVRMA2WrhCFia++yNtAuC8PlPNJo7YfTiyZ6L5f6EibK6ZkVIkAwNas88spU8MNYTPl8CY2bD1GKzpTS0Pw6QHTBESTAQk4AvJfpjhouIgdJn4YH8WqK9Q7Y/2yRfJWWzbQyw6k7IxqbkYlclxQBDiPIbhtfsH5HxDhKwU3Zqmg37H6dPJFxBMCW8QLYUYx1H8ismr6HquVAd5gfvZhU7FoOktLW5I97wGaqWgVvzjyk5bE8J+nxOBsybxDLy3JSXZKyGKc+pasUoAQ4SyFciBmwJ5NeRcYuMOz2AfN7uhEMD2WMM8HEZAXVKNxUWqF4L1Pdjkm3Fc59qLOCjlDsmCEtH9rq+K8ZFPP1wBLbCU4o7egpjJ6PZI6oScCssDCguIys/HCTNTI7kAr8/ogfMZxEggsy12bFjMu2n2REoIwY8DXO+5nzJDkUAIwBIoVauONS75DcB/eKQkEvmRRxqSnyUw+q0gOXxTCBw+oxMNqXFIoZsMagshYaZHcFdfkOQGRTB5W1WPAHVlHqb/IL7e3IEkrcBnW6i1HeK0WdZLAkou2PKeHVDgJrtyLymEKB87WFzMTKQ/ZyfE8ISeJo6jM97uxcyeX1TmqxqEUvuJetArg5Ms3SUVpfXMTTqNIYuBbLQwkU2uuPQQzeUkqf3HZ/7wPAGCSTPp/B8PUzOZSWGVwL5hveXLkSpMgFOqgBxhkE9rIM5MMM6Mpr9XCFbOzRnmoykobRX9gH1uR5TaxPQdEYg27kIMg8hVO2xguoDihsGHKk2oD1WfJ6USBs/l/OlZTWI5+u1BQOhTONHZtZlZECDFMjWFv2Rho7VJMOU0taRzYzJvapz6OdkDLMNA4xkz+fXjR39jcnHO0w0VE8Q55OPGHxfZqsedqIxzPTYQemVgKkpDQ5aIFsN6E4MhxxaHECmYwJsftMhGBnPiYwJzX70UsIHJtjGp7UVAWnyVfqcMmwAY9ARwCGH7D1czgGl3jNEJkTwCwAq1X+ArCcZbvZfUrmgoBoyqYldu50wS0+lJluaQFNkI11pIHvLTkwhACUAFwhKty1CZgjyAIK4MiO4lOLAhib201G6KpqOtSKDpX8ySXA/Dwyjz3JMjE3ANEqBx1sCc+5NqWzwMd1V61seSlaQAIBQ8iCPlYr3Cf4NBnL0WN5ib39mlyWfkID033aLjOYXn7F8GH7ju/8OgOX/9d/9jb824AsOLPN3HoXv/i//JbT0ePLqBEIGvH33Bk8vThiC4zgJUrPh8L0AJa+LgWDFCehFD7s3KI8bdM+mkC3Bw8mDNZafHJM1m1tgkCP7xB1w3EYQBDW5g9xpFtdXDmJloPecXLojMlx6wz8S9shDxoWhHPhBxxLvFPEdZZeTmFLZxiL2jOBI13xsf8SFd5AB7shB3+jx/u0DC1lL+IILZsod5SFgI8qk2AMI1p0AlAPLgOK5gd6TiZCDQPduC3GdwU8cQ34cGZvwjS3k+zO0dxyDVaL0yt3rEbwgK9eLMQSkvBDYP3bIr8jK1I8HlM8MvapLgiSz5SIiBaZkG4HuOyxsH44C9Fagvecw/0CNC+e0yEdgjYbsmXoaFF8fgPjHkq+zu8NeRV0z+ba4FGjO6dEcJmEMkbAVpbuu4II+v+ZEP9UlJKlmex4BlePX1QsyYCJuo3rBcJf6oUP5QsHnGDsIgyTDVL3kYp4STp5zszv0CqaY/LTwzdZciAsXg1VikIbL6UO8+TUHsySY3T8iU2g2keUy3KbLuEB3BX2DTBhmmEuSBjf3WFczeU4ANHkO2AlBDn1AGGXPZkvwIgeBfh6QL8XY5ZhkgypeC81dj8WPBdozMUpWhxlBVLc4SDyDIqBwhUBzh+CNLAf3U/XA5j2P0+8L1Hf5+uQQYlrrAejQp0cfJDsuyQrpJsSpPC+TBLBS72FaPPsYusOwEgKXtNAd5jwHqWbC54gF7GIEO0Fxn7M1H19dMLm3uLglt52xWoTeRS78EYD6HhnFfMlFrc8IbvKNj9JbMsyqI/vhMzJLQcZkZY9xQWirA0smPGXHlFMLFNdcXDMohscQngCoucvHVRce/UyOXYN2IkbPGqsiotTcRCCzPST4qp4MYrGM9RZzPra68tjfUShvPOo7EuWVHxN0ExBRXZRKe7wRLDTMBMpLsmbFioEw+TaG0ET5cZI7JxBi9pTx5usAZ6I8Nfr7honA5MKhPo0+vSjBtgWvEbMneEkVKrbg6yWjmEAgy+JtSQDDBFbcqmxI+xW7KA0TaslsRXZ/Et87PaXlaf8pSQ+orjxU69EtVOxcJCuXrz2aU0UGrGI6az8lWNKth80lAVSO6GUNY9BMeWnRLfQYODR5OcAVEi6XbzBRquW1nUJt6NEW8dzH9N8kX4/XpKnZvThUB8lwAlzJU5hAEQTG0JnyklUhZkdWi+eKLJ0tyXLpvYPPJGwlofcJdFFinJjiVGOSqmiyjYUtFWwlUV4yeVb2AcVli+XXpzC1H0OEEtundw7DXKN81aJ+UBBcrS0rNjqyc4dgrgH7h8X4e+EpM7aVIntaMOjG7CyGuYZZU/LoSoKYoATBkBJk1mLATZAC3UKjetkyUXVg6i3lq+m9GCBjgE17kqG86DBMCbjoK6UnkvUYh55ISlY9VD2gP87HxF3hA1Rt4bUEpEB3nEHX3IbeDWNYjnCeqbGgfBUAaztaPlb2Dq4ykJEBDIrZD3rTwVVcW+lth2AUQV1rITcN/Lxkx6aK9R5RRgwQ4Ol1+0ZFiJtmTIe9FeITlIRas3vRns9ZESLYVSpcgOgtQWI7QNQd/FEF2Vom1N7sCIyMJkOoFEKuCW7r6FNUihLUJFVNDGLyDiZWb7BkGLsDOA4FGUeREmJTGE9iK0MgEI2PCUYDyzW37RywmAPrHX2PR/ODFDVJXVNtSQJ2zjEVNiW6xjqPEAKEEBBVSZYweikT6BRa8+dNC+Q5f5eSZY1GaNoDQI2S2OSfDElaewt3JPAphPjXOy5v3xLw/NsQ3vMLYPnze5t85X747f/1P8OXZ5fwQeDY1FhGPY4NCqu+xA8u7+E37j2Fh8DLeo4vz67wrF5gO+Q4L3e4bKb49vEz/HhzDwBwktd4WK5w0c2ghcfH21PcrzZ4tlug0HxDXu4neHdxgx9f3MXXzi+wH3JMTIeLegYpAqQIUNIjVxbzrMWqK3GS1/jh5T08Pl7ipqnwaLbCs+0CE9NjN2TIlEMzGJxVezxZMf2j6wx++cELtM7gyWqBR0dr7PocvVN4e75E6ww6q6Gkx1U9waPZCuu+xNVugpNJjet9hRAEvnZ2gWXH43Je7vA67ufMdOi9wlU9wWZfoCp6TPMer5YzvHt+g85pWC/xaLbC63qG47zG080x7s820MLhw5sznE/32LQFhAhwXsA6hVnRwQWBbtBY3UyhiwFvna2wagp4L6GVRztoeC8wK9ltWXcZtHKQAijNABcEbrYTPD69weAVWquxa3MclS2udxW+cnaFT5YnuDfb4uV2BqMcQhDo4/HwQcBahaNJg8FJbLYVTGZhBwWpPPIoZ54VHdZNcbim8h6rXYn7xxv0TuFySc9ullsqRwYFYxz6zmA6aVG32UFO7ASMcZAysK9TBKxuJjDlgPPFDk1v4LzEbltgMmvhnERuLHZ1DtsaQAacnuxw9eII2VGH7z56in/xwZdQTDt0jYHJLeyg4Qeyt6FTUJMBrtFMFO4lqjm3y0GjwzCo8TO+yAZsNiXycoDRDpubCbIJpdwpKVkWDkXZo20yCBkgANhaA5Yurv2gAAAgAElEQVRDlZDSkFsFoflHwBQW/TaDriyTinsN3ylUiwb1dQWROyAITBc19tsCIQgIEZmeTqGYd2h3sdhZBYRaIztu4Z2E7RRU7uB7hdBL6OkAuzcQWUyd6xTUxPKYAJCZgxQBzkqEIEapti4GDHV8Du2ZmCwDRDyOYpDAlMnKjJAVh4RnFcYJjC4s7M5A32jYOwMlTCpArg38hPUCCKB02Ar4heXz1ZqMfxknuDHlOTtuYZ9XCHmAPmkhPqowHHumLrcKoXLAIOjhHiKzUgb4gl5w9JL7pwPkNg61goBs6JNG9JnCCYR5HKaZAPQS5iYGXs39OGyBB1n7cwu91hxG7QSGWQCOBsgrAx+Tgrs7DqKntNhnAdkyBnipANXKOLAiW56kir4kQ6U3sQ+24SJcdgKuokTY5VGKHqXwwh3kpN5wf1xF7zQERtn2MGPiss8imxA99D6GdCXW00f/p9kyCXuY0T/uU7KzJEvmDcOzCHDow3Z5wJgWrem1ZphJDPZquL/9EY9DfiMPzxvnkQiUCGebGMgWkmRZjL5w1VAqno6Nzw9Ds1H6GUAmvhZjgnKIKbopYRogsBum9Ki7lL58KxRHDgc/qXQHCWIQlADLnkOQlBJstpEJlQffJsDHsoOXgxuvgeKG0uMkGR79cPKwbQBjKrGd8HFmx+dkAEw8ZlHOnIK5QpTFpwRkV2JM8h2VAeLAoqZE4TFpNKYXp6CplJasBioDVMPrIMjIbE7oGbalGJN08yWHPz47hFgJF8OiNMbuXuF5bESgh9jEHtjUb5r6TtOgLyUOpxqslHSdenfT6xmZ15hArLsAhAAbvbMpPVo3YWRBneHAKFUUSZtqj+KBEWngHcauU1P7UeKrWw4hhpLJvqzKAWwpkW8cq1xicrNu/C1ftBiBd7Zx6I4Usq2L0l+M0ufxehqinD+CMdmHCADpyU3yYno9cVDfuIOHGZ6spbA8l6PkNPZqpvog2fvDda/4WOEDxOAZlORDPE7i4D+VgiFCKcxGHK65z/dvys6R0ZRyTLOVdY+Qxzdk8qoaBdnbA1sZDh2mY9ps8n2m1wO8AZARwiGp9jbjeUtKKgay0iKmy+Lz9wXe2Ifb+5i2kVjM0PUjKOXv3EH2mpjdxFj+DD9nAokJeP7M2+cSY7/4UtiH4Te/89cPLH/3934BLP/Kt/zdR+HBP/mnCCbg7/7aT/HDy3v4zr1n+MMn78BaBaU83j2/xsf/4m3Yhx2yTwuob61Rr0s8fHCDFz89R36/hrMS1R9OsP66xcMvXeHiT+/iP/+Pfg//2x/+Pdx7fI26yyBFwOrlHFAB1ccGzdf5SZ9XA8q8x3ZXwmQWQ69h1xm9cHd38F5ivypxcr7B8uMT5A/2aJcFF64moDqpEf7kCPZbe8ymDW5eHEEUDuplDp+HWDkSEC4KLN67wfJmiupHBdS/t0QfwdnwqsKdr1xh/Ud3oH91BfunCwxfbTD9f0p0J0D7dg90EnI64OioxnZXwr8uEE56mMJCyoBunwF7jdnDDeqfLBh48ZUaeTGgbTLMZzVuni+AANz9fYnlNwSKC4HNtzvM389x/x9+hg//5C2UryT27zjorcRwzFRaYYH1t3vMTvfYfXaE6q0t6qczBOMx/VijfuThS4IPUVnkHxUYvtqwZiUu7mXuEG4yQAKzDxTaf3+H8MkEw9xh+rHG7j2mFJqVwm//g/fxu//yWxADvYWuJBM6TAPmH0usf8lBtgKqJvvgH7bIPirR3rGABBb3N6jfPx4XeHIQPIZe4ORfauAfXmP52TFkQzZ48mgL+68WYzl8c9dj8SOB69/kB6basqh8+u4a3fePYbZcDNUPAnwWcPxDsmzDUYB71GLxewVuvuMw+VSjWwTo93boXleYfaQYDNTzOWYfSeT/yQU2//cdtOce6ryFu8qhWjnKMcsLLhL271qc/ZHC+itgbYsM0DsFO3WQswHV98sYWhPQ37VYfN9g9S0e0/K5Rr4kkygcKzNsCbi5xfQjg7t/3OLT/ziDO7G49zsar//DHue/k2OYRE9dAzR3A+z9HvpVRlbyyEFvFe7+kcfFf9pC/2gyJtL2M8B/c4fqe1PsHwRMngv0c7Kg5QUDZtZ/v4F4UmLyVGD9DQe1lTj5IXD56/w8kzGgS7XA7Alw8yse935f4NV/EBBEwNv/O3DzDY3dOxbTj1lHs/mahV4rmD2ltGd/IpDtPS6+KzE87HHyvQy7x8DskwMrXD8guz19StYpRDZh/XVez0c/YUDP0ScWy6/osRczyRlf/92Ae3/Afd2+zTAdsw+4/hUR+2wDsjXDdoYJwc/uMddR+ZLXb/OIXtTqOT2KkGQy0/WY/GSzJ2TMrn5VYPFTYPcW2TATOyVf/bZD8dIgWwPb9xzufU/g5d/3OP6+wu4xMHkiMHnNgJr2nH6++acBy6+TaZ++cBgqidXXgOKSMuB8GeICM+Dq14DqpcT+oUf5WqL+Zovj389hS8p/d+9anP6Jws23PR78H8DFd7jgPPrwEPy0eVfg+Cce28cHZYRugeqVx/KXBE5+FHD5bYHpM4Hdo4Cz7wfs3pLIr7mQXn/DYfahwuyZQ33GRU5zT2DyNMR00oD2hCxaPyfjS8kz02KTDHTy0qE5kwiCEksG5ggm9B4JtOc8x/f/wLJgfqJQn6sx4Gj3WOD8Ty2uf0lj9sRjf1+ivOT7qrkrsPjAo5uLsXbFNLETtCPjGCTllcuvKgxzqiFcAUxecLG2vy8xfcGE02wbRg+fz+hDBICTnwxYv6ORbwLytUN9rtEtmMpLtQZ7NHf3Na5/3eP4fQlh2dF59SsGsgdmTykXXL2nkC8Dr4GJxP6exNmfdbATBVtKrN6TmD1lNysEcPqDFpt3C1QXFno34PXfqbD40MLsHC6+kzP8KwZlyQGj9JRy3QMr3M1iRVApRmA0ee2x/JpCcc3XXSx5XUpLyW2QwPFPO9hKYfM201ezHRndKrLkzYnE2ft1TJDNxooNXTu8+HsF7vyrAet3De7+wRrX356PQwNhua3ieoB0TJ+VXUB3rBh2djNg9yhDsXQwWxdTWB02jzNMX1js72qUNxxQBQ1Un+1x+RtzzJ5ZmM2A+n6O9kSiuPGoLnrYUo/HJUlcGfAjYDYW17+cY/rMYfbxDt15Bd1Qnlpctdg9ruCMwNEHO+weT5AvLcymgzcK/SKDbrh/xUWD7rSA6jyaOxnWX5J48L0aPpPo5xrFZQcIgc27BY4+rOFKDVsplM92aO9NyPi6QF9oBJXlyz22X55h/mfX2HzrFPMf3aB+d4HyxR5BCDSPJihfNfCZQneSRan/gCAF9LZHd1Yiv27H+pDuJOc1ogSqT1fw0wJ2YsbAHZdL9phu7ejjzC72cPMcet0yfdU69I9PmQ7bDHCVYShR7BENRrIHc9fBTXOoXQc7y8muZvQaCst/PtOQvcVwVkFtesi2h2g6uLM55LqGO55ALfeUvtYd/KyKybP0ZgYhEAoye+pmh1AVEPuGbOktVi/kBqJu6bPsB7KYt8J+xs5M6xCmFSAFRNNRGpuSYlPIj/MH7yaAsNvTW5mYVUMQHNrYg5RkqV3P+wFkQ5WKDKWM/ZUHf6XQGr6uf+Z6PvgA8Rd1Wsb7wf8bAOhf4vZzAyx/7R/9tW/3d7/33/+NvzbgCw4si/cehl/9n/4rhvRsJ/BeoN9lMNWAouzR1DlsrSEyDyEDfJdSsiS9jYWD32vo2UBWxokxpEY07CFUjRw9aTAeQgeEOibxDZIezEFyGhnDT0LmIRtGuKfJe4h+KWZpB4hWQg6c0puVGrv6hpmHamWcgLOrUNUSbsqE2TRlhmTFxDDlxFs1AnZGL4hq5NixF3SAL+LkzgRkVwxmcRWTbCHJCsADduEAFUb/YDDxuaOPzxUB/nSAvDbsPRwEzFaivWehtjT++/st5PMCrvJ8fROP7JLPicCFsnBRfhd7AkNcCA/zEJNdA8xGjlN8lwfYBdkRvZOxT+3QwZeORT8Po38yyeS8QfROMdQmsQ5BAq4i4EwTYgigP7fIrjTshIyIrskqqP5NpiOl1rJTMEqRizjxF4jJtuxrNFsyPrphum3y+pkNf67ag8RPWsqbk/fU7A+hG2Nibg7oHdDc9zBrSa9UlSo1oscrvq2TvFkOZDWKa8rfklfrNqsBkEnRDb2E+TV/6TXPDeXaYmQZgkTs2uR5SH69JO8VnkBV7ylb7U7INiWfnSvC+DpVf9hn1ZGtSCwMgNhXyd+n4JR0rJPvsz8KqF6y9kIOGCXfdsJt3p6Gp04++BjMEg5Mh4sMhssOU/R0nSXGSNdc4CZfWRB8HspKD6xSSkBN7IiJfraUniw89/92J2Zim5KkNvn/kmdS14fjm1gbnmOMKbc+O7A6SQoqhwNLwYANjN2PwvL18RxHX58L8XWJ8fgNs3geEnMWpdnScmFrKzGyAqohK5CYJPCjkOxBZLB8xvOr93HfooSPibgYPXX9nPLgdA6EZ5J16l+8XUuRwn3MLoxMHEDmwmzDGAYkB4yMlGojoxg/s1MybArJYTckDp5SG9+v8fwLy/RdeMS+PoyVQreDaCA4UBgmYjz/Y/q04rV4+/Podj/iMBFjx6Q3ZPLG9FpPtop+zNsMGBfbQfL3QYJeL5HeayF+RjIAKF2bug7xfRk7A8dUXTEG4JiGTNXtAKN0PQbJ86KGdPCj5HcIYx9wSrlN73/ho49Sp4AeJsWmpGOvxJgwrPoQ7QEhskd8vsTu6NixmLyHMibvinCrH/HWGtbFZNts72MlCcbKE685NFAxWZmdlPzalm/KU8dE2sjMqdZTEl2pMQGXEmM5dkqmhFteR2SofCYPn4f9YVuulJBdTJfNokrDhluf42GUwbpcjqAuVbIIF0ZJsxo8/YzRH6y3A+vIkD5f+XsZuyGDEKNnMQE2nzG9VXaOKbOIz+c8XKlHKe7hQKd+0Td7JhFu/Xzc13jurCeT19l4X/BnmYJwfkycFdaPfZPSejJiqScyAb6Cyb4Yv/bRJ2mBuB+3Oyp5zcv42cXH8eCAIDCG9gjPPktIjGmyIoXjKMmf9QOBmxCHZNXbYTW32cJbnZTCecp/Y1hPul/QMYQnPU7FfkuA0tnkmbzt+wRuMYt+BHzh82wkAKHk4XcpkAc4yHmtxeitBJCkqmNYz+1qEecoif2LUmH/TbfPpcX+bZDC/gJY/pzeZl+9F+7/j/8I9xZbWC9hlMOTH9zH/EsrFNkA5yUy5VCaAc+XR1DKY5L3UNLjcjXFW2crvN7MkJsBpbFY1SUWVYOzco/eK/z0xV2EAJQVH+M831i5GbDdF1AqMJ3VKvSdRrASp2dbbOscWnu0rcGk6tC0Bt4puFrj/MEK1zdT6Mzh0ekKL1dzHE0aXC1nyPIBubEIUUYKAEIEpkwPCt5JuF5hctSg3uVQmpLPPB/QbAtMFzX6XiMEgUnZYXk9hco8009Li6NFjd2+oDKuU0y/bTSE9jCFhTEO+1cTiMpROrjLUB03aLYFVOaYHGslhPH8X3no3GLY5PwjrT3gBWWZew14gfykoTRya6DmA4OMFjV2z+Yw5w0ena7w8cd3UZ3WaF5Ooc8aIAg4S4ncGN7jqS8x0x7eS7i9AbTHl966xKevTimFDAKqsHA7w2Tcmgl1cjLAd4pJsJ2iV3Y6wC9zqOMOWT6grTMm13pwuACQVc78OGSAAETpEFquFPVsgPcCwQuElnJK0ccU2z1TZPVKwZ5YwAk+1gpgkBBeABOLMEgm74oA2cbwgsrz67MOuMyZ/uoYWmTPmBoatIeI+yEs01rhARwNwIZpt76IgUbGQ+4Ut1vL6Dm9NewAABNllQAZr1qOQEO1ZM/6hUfIPYpXGv384O0NSfJVOg4l8gCfe8ocJUZ/bVBkS5NcMUhKJl3lx0WerAmUXQHYuYPayViyTtmSPRmglhE5pJsAfBGg1wcZpDc8j7IVgOeAoF/QA5tSWSECujsOaqvgc49sqUZJo5t4VE8V2nPeN6gQk1bj0EPG4xQHFdJRbqi6Q9CLyznMYSovxqGG6pOPlcMFOwlweUD1Qo4VMynIyZuYjJwHFK8lulMOeYKOEtMAnneB0b+qazEOVuq3LPJLFV8/rxGfUwXgszAej2zJc0WpXRyueXEAOJJAn15ZDnHMVoz7KC2HRkkGJpwYZbRjeX1L0D7e4n6nYwXE6py4HymgiHUY8ecZHyejr9VrjFU6SeaY6kRuS3Bvg0jZcwiQxSqYdBxlBHXJCxo0wd4oa1QH8J/++cgGJ9Ape+6bLTECrmxNUGMnDOVJVTRjLU58vcIzXbVbiMOxCocBgrR4A/im7Y8DS1Au6DWHK3p/C9yawzAphfDYMkoM7aE2ZQTncdiRALFuCWjTgIIDGDGmawrLaiARvaghglmz4/uxn6fhUxwapEyPzw0QRsAXj4twQL5JYUHhIIEFkG1j1U28fhJwHd8P8TyOsuAklfQYZbEiSjlT2E+SxSaPJ7eRPlOiF1aLg2fTBlYqTeUIgFMNTnntokf0cOy9TgA2jAMUW8RBaxzoJKmrbmJCbKru8DgAsIQVoi+3XbAD9La/VTdMnE1yUR8lnqyLkdGzH+I1JUbWl0FQQD+hl5bX+uEYyD7AFel80C9qS/GG3FZFVj1EnMprKYzX1+h7Tv7cIQH+VGEjY2VNrF6JAJmydDWGD5mdGwdNQVGaOtaTxF7NlPrK9weDfKQ7VL3Ag4+NHtBRzupD9NbKUf76hl9TMuAHUkDWPXxhIIY3AZCsO/hpTiAegefYZWn9GOYjolQ0jF5MjDJXIIHa9GEWZadJuprA5u1019s/B8bvxecYxBEA/tvAnfeHZNrP4wXv6dNMz+k83vBCfr5+5GdIXf9/YZDEpn7RpbDTh+HvfPuvH1j+zh/8fABL+Rff5ef35oLAbz3+GABwtZngYjOFLz1Wr2ZwXuLyxQJSBKzbYgRcFxdHePHiBMOqwCc/uo+mznBzOYeWHtZKPP/kDN//4WN8+PoMs2mDsMrQ/2SO3a6AlB5CBMyLDkNj0N4U2K1KtOscvtaQmcPNhyfIMov9TQm3ydD8eIGhMcDLHHcfLnH55BjhJsfQanz86R00qwLbpoC7LNA2GX2Jz+dobko0NyXqTcFtPa0IYhqF/YY+Nf+iBF4UqC8nCLXC9tUM9skE/SrH6tMFqnmLcJkTpKwyrC6nkB+VcI2GvswQXhYwrw3EdYZ+m6F+OUV2rRC8gPcS5sKg/2gO9SqDu8ohL3KIWiEvB4hawRQW9rIEZIC+0UBHACg/K/h9AEIQUJpeKvVpgTBIND9ZIFQO/U2BT16cwVxp1DcVZCMhfzqBDwLidQ6/M3Abg+yVQXahMT/bA59O4LYGxTMD9BJP//gh/M5Av84gdgr+soBeaugXOWQnkV0pZB+WDFW6yoEor3WbDPq0gf5phfpyAt9qyEbCbBSySw1ZK2RLvh5WkiioWiJ0EtVnGmqnkP1ZBVzlyD8uCHzjQkbuNELpUD1hWq1e8f75xznMpYGcDpCNANYGaq0IyDZMlc1v5NidGtYZ5XlLNW5b7BXUcQe1VUACOTkDndReYvJ+geqZIrjZSUp+t4rbLfkhX1xI5JcKwgqULzSqpxroJVTDf9UT1mborcDkGUFMf+JgdoI1GiDQK1/FSff9GmYrUH1qEDTBCowfF+E6esDMho/XO4HZR5Is+L0Oix9IwAruU5TaVi9FPB8ydipysV08zRBUQHElkS0JkosLiclnKiZuSlQvJcpXEtUThexGsnLBAmFiuY0rie6uRRBA8UIjW7GXdvKcUltdC5ilRHvHw5cBumZVhvDA7CN1AH6CYKm4EeiPHcrXlCCLAOQ3PDbVs9iTu/BjoE9/5NGeckGXbQ7Mn7RkeIc5g6SKK4Gjnwpka1bi1G9ZuCmLx/MbgXwlUFwKzD5jIJYtgcnz2BWZEXimFGI5kEUXDph/wG3qWmCYU1kgAjD/xI8sf/VSwE48ps8CXBGQrfmzFG6kazEG8WRrEVNdA/KVwOQ5gWC2oiJBRNBt9gH5EsivCSamz9OiFkBgzciYiJoD1UuCP0gy8kGxl1X1DEmyJYEYO2IDJi9iavANlQTzTzzMnpUk3oALtchkJlanPQtYfORGBnOYcz99RllpAn2pl1fXrMNILGYC3qyywFiPMnnpMX3mx8qR/ihWjBwJdCd8rRCU8LoMOPrYR2ArMH3m4UrE7lKM6b0E94jHE+gWlDBn2wCz5YLcTrhQnzwPoweQjGyI/boBk1cOug0xKTiGZNnUKRpGQAXwGGfbgHzlx+PSHVMSnS/9CHaLZYDe87HDVGD6nGmp7Sm3XV14qC6guvSorvwYfDRMBLoTgeImSr0zAkmzDyivPPJNQHNCplbXQL72KK89sh07VilP9ihWHkefDMjXlMhWVw7ZPsA0BEomptkWSx+BV5JRE1Tma/489ezmW49+LjBMCKZczhAgWwoUS4KZ6oI+Na8EipXj9b3yt9QEh/5YU3vkawdpA8qlgzNAcyKhG0+57rVFu2CdiKk9uplAP5XoJwLFjR2VB9nWI1/akUnOVw7NqWaYUn/oyjU7N9aDZGsbgSeZT904hhqtLLIVpaHFTT8qGjhQIautdw5BMRE3KIH8ZoDZDrfAP0Gr2XtUzykpYUiahwgBqg0x3MzDrAfoxsJserhCwmwHeC1QvG5YR7Lp4TPKVrMV5Zaq98jWPcymh50oyJYpu3rTQbVkSgFAdg5m1cIVTKFNNSGi99B7C9k5ZK93VC8tW+h1x/PTWIYHFQrDPIPqHNlGH6A2HZnd1rLOpbEEkgB/FwBZDxCDgy8MZD0ASkSPJFlMd1yxUkRKMqIgKGUHJiB6BjNhsJEB7SHaDqKzkHULWbcQ/QCx2TMoKLGQic3cNxDWQdQthw51y6/j/UQ/RODoKYG9nQYbtxPajv/6nv83DULT8HHWcluDRWhbhK7j984hWMvkWGOY9BpCZGQJKuEDhImThSF2fir15j8pIZTiPyEOX6fvP/9PyZFJ/cXt5/f2hWYsp1+9F07/238KDBJnj1borcIvnb/GD17fR70pcHS8xy/feYHv/enXIbyAPmlhMou2yXA0r7F8dgRz0mJY5/TyATi/v8bl6yM8fHCDl1dHuHe2xqvLIxRVj/pyQl9d5QATcHZng6unC6ijHo/OVnh2eYzZtMH62RGC9pje2WMYFLptDshApip3kJeMO/WFhzzt4NYZ8tMGSnl0H8+BBy3cXkNPB7hljlA6Bphc5RCnHdSzAsOphZl1DCTpJOtU/nwB96BDsBKm6uGfV+yWvCkoQbUCoXCQuSNwywNCGb9/VSDogHDaQ75mpUkKI9FrDXs2QF8a2BOL6mOD/ihOj79cY/p7FTa/1QAvCsghdhFuNQFGDOCwkwC7YJefm1vIWsEfWaibCL62CvaUHYbVE4X9VziRMlcGtkrdeRLdqaP0VAfojYSde+iNxHDiIFsJ1QqId/cIn0zYkxirV1IqrrCsNZGdxOS5QH0vjIoor7gY7mKia3vC12hnadpJX+n+HUfpWc2AEntsMfnIIChWU6hOIL/h/ULhIGqF8qVCc48VGfmKzxgEgYZqmRQbVIDZKOTXZDdSnUWSG2YbMkXla4HN1yyKC43+yP9/7L3Zr21bft/1Gc1sVrv7059z2/KtW64q24otF4FYESEIRYHgBzA8EIGETMIDiD8gBMQLDzwhISCISERCRAacFwSSnUBQrNiOm7Krv9e3O/eeZp/dr3Z2o+HhN+Zc515X2RGpInbhJR2dvfdaa/ZrrvEd304kzleadk9krFGJ/w5IICRy83nYfweu32YI2ehDPtzUM3vPyjpdSrR9rnET6Kbycw84fCGSU5I0t7zQZGtYvSJ+0dlH4qE7+KbMgNfHCDAYyQDLVsLadYee4syw93tw9UUoL2UQp1vEazoK7H9Ts72rKG5ke5tDQAn4W74RBACuxOPoS/HibW8rYd5MmuUOitGLyOYBTD4Rf6JpxFPnxuKFK67ED1jfkp7L4kr8atlaBt6rh+J/3XsH1o8U4+eSlJptItu7clzmH8g2dnPxhW3vJslwFPADUimim11IRjSK6rbUjegusr0j19PoIrJ6pAYw0cse7VaAweo10E6RL0Sq2e7HdCwSK5KqH/p118cS2lJeRrItLN5QzD+MbO9Id+PoUlJY6xPxs/bpvsW1JNbuvQvNofQq9lLQ+ih1Li4i1bFUvdiN7Fdz0BejC2DymVxnq4d6qDwRUKeYPRbA0x+fbAnVbTj8lvgOoxHw5cYysVDdkuPbJ192U/FBlovA8pH4/JoDRb6Qc1BexiGURbtUYdFKL+P6gWb8PHVd3sQhMKWbyGBZ9lk8cz4TBlN3DEyfqeMuSMWLD7I6FGDf7KtBjju6FI9fO1eJ/duxcdWJYv7Ys75vmJwGtidaEp0vBPz07FrvofO5GnoNQ6bY3krVDE3yiG6EmfK5yGrbmWJ0sUtFjQq2t8VvuP9+x/qeZXzuUR7W9wy6g/ImpO5LkWxuT/QAtE0rLM7iVUu2EZCfrwLrewa7jYyuZODf7Gmmzxz1gay4730MVhjoyamjOraMzwU0rR5Y8nXv6TTYVFXSjSTRtu9WHJjBKLLV6sAMrBhBgGK2jVSHmmwbPyVB7mXFpoVsI99tzZ75lFw3GkVx49jesoxPO0kbrRwEcBNLNFAdWYqlsITzjxrW93NMB91IYZtIvvREraRT0kfsJtDumSHFVnfiFy0vWpqDXJKiJ5rZ45rFGyNsFSgvXfIEplTZpUd34vN0pRyDfOlo55Z84WgOMuzWY9qAKw2hEODYHGboLjJ6sqG+O8ZW0js5+XDF9tEMXyimH22o7o6xG0+2bHDTnKgV2aKmujth9HyDH+cCwAot739aS5Js6nz0452vkxgJuUng0aE7jxtnyX4gn+ls0eFLI32bU0t5tqU5GeRwibsAACAASURBVFOebgilJWQGk1jAdp4JeF11uLGluKjoDkrsqsWXdkiZ7RlLXTmU97gDkUeoVkBuu1+QLVpikhDbRUPIDWZVD0yYO5pIzYgLuL0C3cjPfUUIMDDI5mpDmI+GMJ1oNbp24mfM7I51NAq92BCmY1G5rCriuBRJepLcRq3FC5mnmbskoUVrYQq1QjUdsQdVSqGcJ4xLeV9mUYv10FmplhtJaM3sADrjdAzeo+p2l1xr9C6x9jN1JXFTyXqzTABmkUOIxOSRVHm+81saLWyl90OqLCTJ6stgNj3/qUfPlmr1XRnNzz5+KDyW0/vxp3/sr37fl/t3/+Ff+6e+b/DHHFiefOEo/jP/7b9J5TKeLecA5NZhdKS0jtOrOaNRy2ZbUBTdICn1XuMbw+xgy3ZTYqxnOq5ZbUp8Cv3pVjlDIqQXSWQ5kw9RljnqOsOYSPNiTMwC2V6Dd+nG08s3myR9GDmi15hS0itNFsTTCbL8Tu/+z2QmKp+2dFUm6ZUmMj/csHoyh6nD5B79wYguSRPREVUZmHfEymCmTtYfGcJvVFouNxlxFDCTTjox815vD4y87KuJ4DTYgFpmxEKkmVFH4jS9RkdmRxtWpzOpc1lkYCNvvnHKe49vM9mv2D6bMrm/Yn0zgkoYMhTEPIBXsszDjrg1mErjJ2E43sorYh5Q9c5rog5b4k0Osw51JYZ+TBTwtrHycxHILizBiqQ0ZmkZCunK3Eu1MRv5gotZhJQ6qbzCzT3ZjYTtuD1HdmnpDr34RMcRP/ey/EzAlcj0FD6PxCISUwVNtjDiSZ2I1NJUcnPtDgJmJZ7Z7EYPHZOmkZChbKFxr9QC9DORXuaXBjcR9gxAV0o8tynoqL7rsDdGfG21sC6mUqlr0kvapFe4PWFGVaosiNlLPlUENOZLhRtHugORofZJlO2RRzkJMuqDcZSTVMr+YSrxb2YpoVM3CjcNcr3dWPGCJl+a7mtWjDBpKAHRIv1EkkbTQL5nAHpGjwDluRbfp5bJgL5uxm7VAHp7iWPIQDcit+tTO+tjCZCRICHxfZkW2ccUmFLdCkn6pwbw2e9zsAxSUPFJySBWeizF46w7qbHpfaK+EPmoCkgo01Zha2HzdJcSR9P2Zut0jJPcsn7YUjzNUD7JipNUb5DrJUbbjQWc+5KdzzjV9ph0DABUJ8CjZ0LaeWT8QgJ53DSSX6uhZ7KbCOvnRrv6I92Ib9ZNxO+LZqge6c+tHM9dPUgvUbVbSQrN1tDOIWZQXvTbkVJHZ8Lm9gzp9l4Q9rkRb3EvGybK8txEWEz4tHS0OUie1FyeN60M6n2Z/K8VQ8KmT+HQumPwn5p6VynUTXeTMm4siackmakMEFPIUPWybC95mkPfZSlVM6aNbO4pRmeyPf36IMlUx2qYHPisn7b3U4MsR96rBhliMBJuo7zcn7pZYqwrYXLdWO3uXds4gGlJKI2DfLZPRvWloryWShvtpCpGtlOWbZo41AL1+9ofL4Co1MB2qsHLveuobA4U009SANJIJivcSKW00Z00FBhSbW0jPZEmSSh7v6XuRHabr9LkjRJQa+udhDSrIs2sV0KIXNQVaVlq51UNRpgv7YRJ1k6kt+WVbKsK0OxJaFXffdm/VwVZr2njkIhKFGCdryQpFeR68lliTksln8kkA+4VH/laXm+rdL9bicS2mwjANCnhtZcY94muKCQgaGQIefKfajVIUpVL96yJxrRRZKKjBLq2YahXaWcmrUfkoNmqoznKsRuPL80gpzVtoN2zmCagm4AfmUH2qXwUj2mIdGOLH2nKS6mQMZVINoduSC0VKyHXqU9yl/7qc42tvVSepOX2fk/lQppISLLaBNzwUWpNkny1/2yGXNJa5ftCD3LYaPTAxKougToXhq7KPqVWRXZy1l5q2u9v6yTBtU9r7TyxMLtKlk62R/n0fO+/1Fr+3jpU3RKtEbCZwOrwul4Ka80uiOczclbVJiCaqktU0zL0WYYg4LVnFPvHdwN9qauyxwrKpvf0qa5dX18SduAw1ZYMPsuXE2df9pXyGSnsHyTJfcln+cfeY/knwPKP7mP05r345f/qL7PclnStHXx5YZWhZx1hnXF4/4bFcoLNHO02F4+bSwCurxyoNdntiva6lCCbCMXtrYQBXZbYtcGPE4jzSgDXNlUBRCXAZSZ+OTrpxfTn5QDIVKcE5IwdNAaz2YElPxYwpTfC4NlzKb23a013nEJxkl+p/1IOGcRCwnxMLV/27ZGX5QaFn/nBIxdKCc8JhQy2dScBMtlCJI52m6oE2A1c/Dh9wW7VbqCYsyupj0gHZwoH2iVw7rYzZilQZ1+kdjaF0ITkDfMj8aP1vZKmVjtgkwJ9YOcrspVim9Iv3SxQnpphO6ORgXjIIiqk6P21ACQJsBDvj5vs9rPvg7PrtF25fNnk1xI24nPxwrXzOAQNgYCX/EaOWXElgGbweOXClPlSBlb5SlEfy7aIPDEF08xlGfJ6+YLypTC75SVsHkRUJ+sMafDbh8D0Xqy+6zNqAQL98X0ZdPRMpwSmSB+pqWRbooHmIFJeqEG+B7ugmW4iA/s+MMZnu2ARUzPsoy92ITt2K6xOH5GvW5Eo5kvxFfWhMv0+BCsDIbsWIAE9Syvr7gNiepYMdumg3XTnfevrGnpp6kBB96AyyRW7mQzqdfKA9Qxtfy0IA5VA6igdixRs0/tISZ6wdr5bfx/s1PdERiODl26aznvRA+gdmB48cjAMRiQcY8doBiODbz9SKQBEmKji+iW5Yvrf57I/fXVB1Luahr4+wW53nysQ1tG0wjRqlxj0xC4KON2FoaiQegpL8VK1e0rel0KJ+roD04lMtJ2lz/MiDgEzPbgR5oOhO9SNklfsRuSQ/XXQe8X6MC6ZxEmDaJXuSSFdZ1MBP+1UDcd2CGwJO3Db75t485IcdCXgTruYOhllfbaONPPkHUO2se8J7cN3JCxLAFi+kdcrD8VKmL12ogepczACWqS+QTyLvbdMe1m3fenc97JUn6lB5tiHLfWfh75P09Zx8JjqBCj7aghXpmCeBJ76ABkJ8xE2u99nlwBKVqXgpgTw+v5NV6phvcO1lK5jl+ooUIhcFKgODeVCgFhUUCyFKfSlvLln+eTY66E+Q7y3It18OaxLJhI8bmKGbsk+UEj5mFjdVLXADshG20/ASPdm/5nuj4X0Rfphu6JRKQgppo7NFHrjonSqTg3Z2tNNzCD59IUsA63opsLG9ee3/24NhRrAnsg1RSYq17caAmyAAWiZSvo5Xw4rCpkWD2EC1STAFFKvo0kS0agELLlplvyFWnoxE5ALmR7CdtqDHN2EIbgoGiWMXYj40gogDVHCbYz4avv1BatErjrL5Tw0XsJ7Wo92gW6ayXoBFSN+ZDGbDjfNseuWUFhhKAtLH87jxxazdYPfMRRWZKe5wa6k81L58KmwH5Qa2M4+qXW4x4ZAKDPMphWQ+RI47QOEhAkMEAVU9rUdIbdDIE9UCuW9BPL0IOnl/sUe5L3cWZlZAY1GoeoO5bz0VvasYQrmUYn1Qylinsnf0nMxs/I+o1EuSWLrBqwV8Nf/H6MkuPYs4suBQDYF/LzcI9k0nwZ+w34YAXM9o9mDvpiWqc2OOeyc7K/Skgir1A5Yvlw10oPR74U7/jGDfH4ogOWXfwDA8lf/BFj+Ez9mb92Jf/5v/ixaRT5Z7TPNW0JUvLV3xkfrQ843Uy7O5lItcrbPwcEaoyOX11Me3rrmfDXhZLahdpaz94/Yf+WGg3HFB+/dgVzCTMYnG5SCps4oyg7nNF1jMTYwnUjlyHI1ZjypWb2Ycv+VS569f4I+aIheUYw6qlUBXlHMG5pNzmSvZnM9Ynq4RalI9e4+2esrmk/EI5rt1xztbTi7mBO9ls/8xsK8oxy3NFVG8c6I5jjAcUM5EpkuEdTYEbcWPe0ITjPdr9gsRsP9wlzkZGtF/WoDTqOT7y6sJeDH5n7oQQwXSSI8dbC0sNcRXRpNRASYRyhPKurLEXrSEZfCKBIU5bRhOmrY/oMTqi9WhE0K09kawl6Hvs6Ixy3GBngyovzcgvWLKXZhJACmDIyeWOo7cvMqLgz1g1bY10Um21NZYR9vNcSo0Oe5gMSZjJTMaYE7dJiFIYwiqpMgGjcJjO+v2byYkF8YukeNBOnYiM4CvtVQyw31+OENlx8doFoFJw36uaTeAqj9ViYyak08alGXOaZRdLc61NpISExMDEgObuYFnFR6kOTGXCowdKOH3jFT7QYj7qRDrS3FtSTw6lpj14r2Tkf+XKbwu31hO9vbTvytSpbh3qyIL4ohUMWPArEM5C+sTCpMo0iilTBzfhok8CYyDBj9zA/1OPZSZNHlk5zmSKS90YoM1q6SNHklsmM/CahOUVyIL7GbB6nQSJMWbtwnAb7k05sKONedJOeSpIA9eFROlhOzSHZj0u+SqOwe1Yy/PqI+Sp1/SvbLl7L8vluwZyF9GSkuhfnMljIJgmJgxjaPPNlSC8DPEcY+SU3HzxSbhykMaCyTJO2eyKDtOk2oOJWAq4Qc9WxjcxTIVtLXmC8U2weebKGHkJ5gI/lC5Md+xCBxdSWSmLySfdGtBOb06zE11Lckzbe6I1LhfCFy1/o4MYBWwD4RJs+ELepTUX0pYNlUScqbwmh6cC4S2Yj2itGpSE6HcI7kjS0u1cA2qpD6Do1MHoSMIUQmFHLOlBMpb8/+5jcJOKaxTA9Ii0Vk+bpMVtmKgaEuLtXAjKkokuvyUqpCyisBy72st0ugszmQ/ZR+TAFvUe2AeTSQrcSvaGqRDNvtzufYzcXr2RyqYeIrW8vvdg31iXgou6kAwT7xN1/uwmfa+S69tbiR66oPkDGNvK7ZU0PoULYSMC8J15F2X64lu02+ysTE9mxmto5s7ivKi0ixlM9BdaKTGkD2uZvK+rJ1HCa4em+dG8ukgC8V47OQJgqUvDZLbGYC/tHKPmabOPgk+4oQu03X1VrOqysFxPpCDUE+biTnu6/U+VSabZow6gOIyutAfaiHsJjiZtcd2Xv+fMr26gNzsq1c7/WBItsyhMF0I0WxEsmxK9XADrpSk68DzZ7IaX0Gzb6muBHfZbGQepZuYqTCJaX2Dmx4lj5TbSSrAj7rmV4B0TI5EWinhmLhWbxqh5oTFSBby33IjQTsqAD5wuFLQx/YJMdSMbpwtHsSYtNNzY7RTF2SthIg3U41owtHyAX86y4O3zUvfwaUl2CePrHWlxq78YRM0l/z64b2oCBkcg7KK5Hj2q0fALH2aaImgeps0eJmWZoE3q3DVkFCeGaZJMu6iBul9Fz30iSwFzY1ZCmFNgHkPixpSM+tZSzjxlZ8pKVJ5zpKuNRIwL7yAd0FqZHppNpDN55QGuyqHdJt+6RYXxh06zGLijAtxAvp+4AqhU6BPXrTSLXJpKCvBDFr8TWG0qIr8SHGIgHGPmE2gcvh740TANhIuqrqHHGc5BTJKxmLXBhIGABbzDNhNGOU550fAGmfGqu6TwOyuFwNDGQvYX0ZEwzPOYcqix2DCcSqQpUlsa4F1LadyG/rBpXAaN9L2YPNzz5i8sLKfqhPg9fv8fhhkcJ+5Ut/5fu+3F/+tf/4D9w3pdTfBP4icBZj/OL3fQP69fxxBpbzt27H+//5X6Xe5kxnNaO8I0RFjIrFusTagDFyga6vx8wON2xW5XBzVhqUiugPR7T3WuxZjr/TMJnXrK/H0GjMXsvJwYoX757s0sKOGqkuabSUjSuR9Jgriz/qUBsrEtAXU0kkTQmmGEl4jbWBLFDMGrqnE+av33BzligbrzDzFn+T7xJJbRSPZqKf7jy64vJ3bxEe1sSzglAEKANqk9JLe0mrAlUZdK0II0nI9AeO7CwTiWIRJD210ygTYWPRWwE8AuI69NgJIMwi+sYyPtXEryzYPpuSnVS0m5zRBzn1LY9NCZ6hCMSZk4CgNBiPqb4kuzaER7VIZ4HZvRWr05l0d76Q4w+gLsV7EkuPWVqiiUwfa5ZfblFb+YI1a82X/vR7fP3JfdzWYq8y/CjswOMsyLErPfm4o3sxIk48qpJQl6ihe9hQvlvSHgQOPn/FzTePcDPxa0oHphz7aCLZQiSt9T0naaWpLiOMRU6jGgnLiRbCXge1IbsWD5CpFO2xJ+aB/MwKwzxv4bl8YZhKYRpFdd9RnBnpiZx4CVNKA7cu1ZBka0V7KFJT3SjcXEBl1JK6SoDi0uA/vyH72gTtoD6Wrrt2X9jZbi9QpBoY5aE9dpilxR90mBtLttICtBAmujwXlmn7Wsf8mxnrV4WJLs9lYO+m4oPtAalpRA5bXOy8nypIcI2APlmuzyNuuvORhqnU95iNHuR/IRPg4ZLsNr+WyQ03Ewleuy8AvbhStAcCEqt7Drs2gzcVGMrT28NAcamHhNGQx2FwgobyQrH8EUlTLS8U27sxSSUlLAkE1JSXwraZWtjgXj7qxsLS6k4ktzb1peY3UuNi1yrJ63YD4JeZ374ovTkQwNpNhAUsrhMwPWCXpKrBlclbayLFtfSXSv8qNMfys1w/Ed3Ie+xGzlW2geokgVOf2NcEnvNFSk9NktTNvcjsQ/HNDlUwkaGuxec75stU4ok1qU+zl60Gu2NUVRCZb3kO1S0BI+VlZHNP5NT9sXXjSL6ScyjBJPL/y3Uvk+fiyfS5PO+SXFN3O5Aj/jkBJj1YmT31XHzZiEw2sd0949/NYP8dkUpu7qmhzmX0ItVtrKPITJ2AsL4uqJdB+lImk8qLHQCTipWdmsC0CGCZiU91e0tkozHVbmQrGfRXJ4rxC2Gt80XENpKU2k902I2ATF8Ksxq1AL12piivYmK1Zb+aAzWk0yrfgw8BmuMXCdyFnYy6m6gh3bWvUekBYV9LIqx1AuZ2Jx0dFBQkz+dUpJh2Kyzy9LnIOtupsKvbEz1UkeQr+VyOLhzre5mAwalKgFf2t9nTlDcpZCmB4vLGU++ZoftzqDCpdx7PfB2G5FqZHIhD6qsvFN1IMXvqqA/lHlIsAtWRGe5JKsjxHF0LcOyX2c40xUIkkb7Q1Ac7CWvPRndjzeRZSzezEphTCkjMtrtzUixSoFQbqI+zoUZExeSn9RFbedb3cuYf1WzvFtitgEEVoZ3pAaD27Ku8N2AqOV7tnhUQaNM9J7G+Pdu/uZMxPnM0e4bJaUOznw2sbzRqAINSQ2SGn91IS99qlRjgBKTdxCSQqsjWjm6WfJdapUAhPWyvqXy6Bj2hMPhcky87OQY+4maZyC0T05itOtr9nGzlBiZWt36QxPYgMFs2dHsF0Siym4aYGezVBnc4QdciHe3Z0T5519ROpK3jfEiGjSb5KY3aeSy1RvUewZ75DIEwKdBV9ynWs++5BAYGFOchz0QK+5JvsweOqklBOn39ifOE+Ri1bYjjQnycc7nx6cVGGM6qEZCqlNSTbGvxSnovbKZSwpzCp1hLFSJsqx1b2UtuYxS2METpqeyZwz6wJ4FLOjeAShnXvvRzv8y0zv51nwW1n3r0DPAPUSrsPyVg+TPAGvhbfwIsv8dj8rm78eSv/YegI1nhyHPH+maEtgGby8Wa507A5Cojjh1Kp9m5rUW1CnPc4Gqp3IhbK8mZUaFMIHTJM7myAnBmHaE16NzjayuBOp0WCWzyHaKjSFtvMsLMCePXiL/QHtXi3dQRe5nh9iU9DBVRjaSD0uqBLbXznaRWtYo49bt+zbUeQGzUUQBuBEKS0YwcLMQfqZzIcYdezly8e5KSqETiG0C3wj6ZTaqAiIAWUAiQXRncVHo2RUIbCGUkv5SUTVWbXVUHSLjORDx2qhJGBkSeO0TkRzBrqXtQvvfwibyz7/HsaziypawHEODhFW7PoZyW1NQkY46HHdknOW4irKepNGYrDFjMJNBHt+KDU166NokQs0h5anGpVqGXBQ6Sr5c6P/uqjv455RXZRliw7iBJmJ3C7UtIjQoKV0qnqKnUTsKpdhKv4bil9M7mMEl5k2xL/IBetr1Lx7KQEaqpJdDI1GoI/Ql5ZPzUiC/tdhxYux7IhFIAqe4UzS1PcW5wZUw+uAQEDwQImm0CSrfF69aceEmibRLrdCjybRUTELhWu+5SG4fOyn47e7aNuOu17Ks+IMlX0zd773nr9uSaLRKA6wd4cvwFUFS35RhINYUc62wtAMnnSX6tduvoZrtt6atVtBfPoQAGtevkHDGcj74Cw+cCjoKVUKF2LufKbiTkyDQi7e4DgV6Wr/b1GdmKxFCw85O2PbMj3kxTK2LyigJDNUQ/oO8ZQ5vO0yA3LuQ92ieZrGXwG/bgy7Q7UDg8n3orTfsSY5SYKFfKvmUr8YSF5JvsPZnQM4oyIVLcCJPVB6n0nZCmTT2RaYzgc/Fy1odIYFOapOjBUy/L7ztKfbkDP9lKmJnep6iT7UclGb9ImnesZQ+OerlsSBJvN0k1Hf3g+aWuxX5gL3UNwpz2D+36AbqAzR6IwY6l6WXWUmEir5d0zyRht+J/tNskAfYM0tD+WndjSUjtjxdAfSwBVf0+oYTtLG5k2cOEaAKF/TXW14m4kp1SIoHrftKj32eiHNN2T4Cd7Be75Odqd46lzD4O10GwMkmQbRDZohJJrivUsI7e62uSV1Ou8R0jtb2jGZ8KyO+PWc9O5hthXPvj3Psvh/5L2zNpadLEKrJtkufq9PtnOjl9IUmxPYvsM5EH++Rl7bs4bd2fC5W8qanWw+8kx/21oZ2A1/57o68U8YUEMfXXmPgud8fG9tUdJr0+14lxjEOIUw8MXSn3L7uRqg0BQjLmCbms21Z9V2fyImowdcCNzKcAbLNnKK8lEdWNDKYWma/I0KUKpE+ZdSOTPJpGEnSXXhjnvvcyCkjWnawnWpHyutJgKz/I7fvzLgoCI2FAGoIR0CmeSJG9tnu5gM1echqjAL02DNcQSg1+Sd3sqkh23s9ehqzRrduF4yQQY9YNYVKgOgkI6tnJvsqjl8vGTKO3HTEz6Lod2MeYmQEkymfGoJtuB0ITSJQqjrADcN4nL2QCVD6ItNX5HdBsuySv1YMMmBh3ALFf7svrAD5VMaKVLPMzvkcBfAFlzY4R/cxrlFLEvl7kM/7K/vhF7/msb3MAnC8zlf3v/c/f6/HDBCy/+O9935f7y7/+1//QfVNKvQr8bz9IYGn/8Jf8v38opf4j4N9FhghfB/4d4C7wt4Ej4LeAfyvG2CqlCuBvAX8KuAR+Lsb40R+0/JHtODhasT+q+dH951Q+55U3LvmdxQPOtjPe2j/j6XaPx+GAn3jzA752dpejyZYYFcejNVpFPrw5ojiUDks/6vjS3We8PTvl7z1/i8vVhB+795RlW3KxnRCjwnnNaj3i/r0rGmdRKpIZz7ou0CoyLlpOL/Y4/NwV1niORls+udnn4f4N7zy7zZtvnHK1HbGelUxzh1aR1c2Y0cGaMu+4uZlQjlu61qJ0ZP76Fc4bZmXDpsnZ1jnWevK7nuPpRpa1Lbl7sOT59ZxHx9c8Pj8gzz3bRYYeO6azmgiUmeN4vOE7H99hMq+ZFC3LbYnWEec0zhmO9jacn83BK07uLpjkLbWTy2R5UmKCpns8wf7YgvbxnPxkS+sm3H54zcW1sK5Z7qRn+MBICI1X5He2jMuW67MZt+/d8OLZvkhaFdijiq6xKBM52l/z4vEh0ztrNosR072KrjNMRg1XT/aZ3RGG8/jtC148PWBytGXzYoI5aPFbiy49t4+WXI/HxCpjkgKXNmcTsv2abpODV4RRhz3Lyd5YYYKiuS4hi9SvNIznNdWmQCmp/CBCeXcjlTXPS8o3VyKhPaxptxnltKU+HxEzTZg7mRyICvP6GrcuaO6LN3d6smG7KYjPSvzECwi3EftJLiB9FNCzjviklO5Lp8BIX6Y/L8FGVKexG0V3vxU58H4Hiwx36MEG9Ej6W3lWog5amqrEjwL6qKV9XOKLSBgHVCmdmt1ehzYRLgqagyDgeb+luygktbd0dDc5urHUB8IAtweBmAfCqw3+Rcn0saa+Gwn315hvTfF3GuKqRDlFtxcGSay61eAqC05h9lvCVcH4iWHzVoM9y3FHHfZKukT9mxXq8Yhu32PWZpgQiHlEBZEus8zIbrTImCuDepzR7Xs6s2P4XaXxpaQGj55Y6ruSvjt/x1KdRLoTh1kaVKfwdxvarUU3wtqPnlp8DtUDD7OO8p2S6tWO8mk2+F6r2zIwyW809XEcvMjbezIx4luZLIlWgK5IGYX9NS3U9zuy72SELEl6FwLoq3teAqxMHNjb4kqAYnMYBSQnn7Pbd6hW6leaI/FIyeSETILUt4Rdzhby+vquo3xuB4AfrCx3+1pHfi6f9eYwcvAtxdWPecafWNoDYW3L8xR8Mw2YVoPuPdGKfCm1Gu1BGDy/+UJRHyU27m4cZKF2q9i84pg8tkOVSLsfUEHT7QXyhaa6J5M3xaUMiFWAbZog8aMkI74Xh4qXzX1JTN7el65PN5EJjt7vC+KfdlM5lt1EAOz6kaThdjPI0j7YShKDy7OdNLQHtfXxrjsxJpauTXLOfvJsc1++9coLRXktcstmRvKZQnVbUZ7D9q6AwvUr8lpXQnUC8/cj1S2FCmoIrjG1sHTdVICr8rB5KOurbsk25SvxbrYHUc7HvsJuXpIDj4VxNrWww+1c7aS449SvWe96LvNVpD5UdHPIr2X92TZy86bGtDA6j4nNFvl4toroAMvXNKOzKIBzLhUrIkuW63tyGnFjGF3IgHj1QDN9Kum16/uabB1xY5Hu5gupU+kmSt7vBXznm0h9oCWMiCS5XYmstd2TFGFbf3qyyo2EIdJepJrVsWx3M1cpNEt8wu1MUSwlmVY8rrtk29UDIzLgUmpV6gM9TBQqLxLd3ufqCyVe/WmSuW4C9ZEm20iq6+ZOJvUi+5rJqWdzx5Bt4rDeYuFZPcjI1yK1rQ6tBKRtI/ky0I01+SrQTQV4wCVDYQAAIABJREFUZeuAG2uafUu+9tQHBtNGJs8btpOcfOlpZ0YqSI5Fnjo679jcyShv/NDd6EuR6bqxTt2kwji2U/EJjs+cyG1zhQ+GkCmavYxi6dMkgyFfOrqUDqu7SH2QJ79uJL/pqE9yRqc1m/sl4zMJ8imuBSg2BxnFVYcfGdxYE5WivGrp5hn5TUs3yxILarEbRzvPxGLSBLLKpVRa8ynvqj+UwKHQp8KuO6kJqT26dajG090uBQj7QBhZ/DgTOa0VAOcKI12ZkwK7bvGTXDyyIeLnhTCs4z4hTS48Pykwq0aYyrEhdp4wzdHbdgCesczRtSOMssHjGbNEbNROnt82EuQTAmiTAK0Vv2ehRTqb5wIqk4wWa6DtUD4Qy0LYyL7LUiUAWnz3VFjV91amDsshtKcP6zGSCEwbZLu8l78Zdp5LL69TShHbdvgZXpqw/25S2GE7fr8kNv7j+DD///s4Vkr95ku//40Y49/4/3ojfmCMpVLqPvArwBdijJVS6heA/x34C8Avxhj/tlLqvwF+N8b4Xyul/n3gyzHGv6KU+jeAn40x/twftI6jt4/j0X/2H5BlnnvzJQflFk1k2ZW4oHm62CNGxauHV3zzw3v86z/+W/zKi9e52UgMdQgareXC/Uuvf51fOXuDe9MF716esK1zusbyo4+e8/VvPWJye8PPPHyfJ9t9buoRL25mWOvZXo94+41nvPv8FlnmOZptePrRMZNbGwn/+XCGfrCFD8dMfvSazbbANZbYaX76C+/zW48fkRcd26sxeIVdGtxhx70HV3zl5CP+zq/9FLH0ZOOObpthR45bh0uenx6IF3CV8ebnnvPB795H3Ra/5eZsAllg/1jA6ov3joljj17awdsWph476VA64DvproxBoXTkcw/OUCryzvv35ObjFXriiFc5k4cr2taS/8YU99Mr6psSXTrUi4I7XzxjWRfUVU78ZMyDn3jGyHY8/qVX2T506EaT3d/QrAreeu0577xzXwbxZUBPO+J1LoPjWxLwQB7IzjIJpdCR/FrTHgROvnDO6UdH3H/tguYXblP/ywvWl2OySYf3mniVCwsLZNcWArh7Lawt5Z0NXWtxlUUXnniVi+zzliM/taigaB60qLXcRH/yT/0erbd889dfx520vHL/ksu/e4/NIwlLcnNPeWpp9wPjV5dsPp6z9+oNe6Oap1+9S/bGiup6hL20ZBtF9WrLT3/+A/7R73wOe1jTLXMevnrBs4t9fG0onuS0r9VMvlFSH0fcUcf4vZztmy3KRIpJS9cZ4mlJmHrGH2b8cz/7VX7pt78EJlI+zWj3wyDFnd1dsbqckJ1l/IV/8Tf4vz75HMvTGeOPLfkCFm+Jj7BnMGMeyC4tbi4/2yvLv/Lnf51f/K0/hVka6c384opmWWAWFnW3lk7Vi4LJU8367YbRBwXd29tBnhyVsN6jFxLEUb3akZ9a3CyS3dtgvjoTdhPg82u6xjL+2oj6J7boD+Wz6nNhie1G7fxgFrJX15R/f8b2TqR72GKf5QMrqryiPQiEPJAtDeFhjf64FKnigwZ9Vgx+Y7WxlC8M3USYyvn7cPKXH/Per70iAU8Wmlue0RPD9qET5r+MTB4b6qOIO3TYazuk0e5/W7F+VcKhumnk+MfOOD3dl4nktR2CwObftlRf2dCtc/a+nuH+7ILN2YTRJ3L9aQ/bh+nzMO+ItSE/s0OSrnQRyoC5nUfmH6YqkJ+6YfN0RtRRKm6utNTOfCkw/46h3Rdmrr4VRVWQRebfsegWFj/qya403UHg1q8qzr4SmXwi/q3tQ4+upYd0e0+YEFOlQfmXb/C/uS+M776AZDcV2XW0kb1v2dQLCM2xZ+87hs2jHStVXqiBCa5OItMnIrdsDgUAVw8ckw/twJJt73umjyXBuT7u/ZaRvffkGIzPAmc/BdOP9S5QqpMU3j6Qy5dw8O3A6qFIo+vjQLYWViZfKTaPfOp8FfmvH0u1j6TgxgRABchGLeFhoYjMf0+u0cufkH03ayMAODGD4xeRm7ci04811a3I7CNYvAmTZwIat7eFaW/3klz2Urye7UGgvNB0Uzlu8w8YQpfaPTUEfO195Fm8mgamiSWuD0W+PT6VqpdmH4prYfndNDD90AwhTi5VwGwfOubvWCangepQgkwkuElA4fXnNaOzHtAmRnMZRSUwgtVrMHkilSftTLav3VMpHEx6Lqt7joOvGwlE0nDwrmNzy2ArqA/VsP12uwuw66bCMh+8K1JNkXHufJREkZ5ub+kk6474Qry62SawuWMG6azINoXpXN+TYza6CDRzkVC6kTD0h9+OXPy44tZv9LUnsi8hg/lH0g0ZDVTHfYBOktfWkdFlSFUlmtGFJOxWx5qD9zoWr2WMX3g2dw3jM5Gp+lwN/aLTp562B46bkOpQMgnSagQcz554XKlYP9DMHod0z1SMzzp8qdkeG0bXgS4xsPWBYvIikK0cm3s55bWAUFsJyJ0+c6zvWiannmiRHswqMjltIEB1O5ce4EvH6mGeenBrVq8Uko5byQTI6EICjEztMV2gG0tHcn1gGJ13VCcZ+99ecvP2nPLa01fc2I2nnRvyVZBQoGmGGwlADbkiX4i3s7jpqA9zRmcNhEh7kA8hTqb24o/00ndprre0d+dpgAquNOSLlm6eJw+7ZvK0EoZ2Iuxk1ApTdcJ8KpGm+tJKemxiQgf5qAuYdUPMLfXtMcVVQ7Aas2lojydoH7A3NTG34sfMLbhAmObCaiq1+3uMQ8hPGJfoTYW7vYd9sRC5q4+8XGeiugQCP8OAqs5JCBAI46mUgD6AXhqb3jMEIMEOZPpAbFuU1iKhBWE4X0p3jc5D14octl9PjIP8NbZy/H4fc5rW8/uksH9IMuwPhcdycj9+5Ud/AIzlb/zRYCz1H/6Sf6KHBUZKKQuMgefAPw/8L+n5/wH4V9PPfyn9Tnr+z6nv5vZ96dEFw5955QNeObhm0ZT85uNH/OrXPsfFf/cK2y4n/to+uXVsuhydBX7ht3+SF5d7tO/P2Z5NqFeF9Ew2GV9b3Ofp+T6/8Y9+hM3vHhKj4nP3z/j2r77G9H3LZlHye8sTzrcT7kyWtKtcei1Lz7ffu0/0ivq65NmLfQ7uLdhcjmkfT0FFukWBH0WsCbjLkhgU2YXl17/1Bq4xOGdQtcbMOtzco1eWq9WEX/z1n5TAGB3hozGzow1ukYvKY2kJFwVmZXjvvTuYWpHljvbdOapT6JWlzDtOT/dlkL22vP7lp5TnSQrolbBgH07gomA0baAx2OcF7753l8eXh4w/yMSjuTFwVjB9bNgsS/amFZtHnkeH16ha8/D2NaZRnF7NWS9HxE/G6Aae/PY97o8XVHcC+ZUhv9bcPViSnWW8f3oioHIqnsKwzhg9Ez9LeVQNMjhTq6Fsnh9fYmrFxfWMvW9bnr3YZ3tbsb4ZoRqD6wzRacoXBrO0YIXNiAb0eY6uNPWLCfFZSXaWMZ3WjJ4b4utbkQI7kbdl5xn6uCFbK7768UO+9tF9CX3ZWh7NrqSLcCOeRjXyQ31HVQmgdUHz8bMjsrWie39G+TTDJvmrPc/4jQ9fER/l2QgUPHl+iHpSotZWZtkzz+aRF5nv2tLNo/h5Fxn1dYlfyeysWcmg+u//8o+n4yVMVnGpMXnAbDWr8ynTwy3FtWLjClafzCleiH9k/UqkuDLCAB10Ipvu9CB/zs8s5ZXi7/zDnxIvrpUBnns8Ra8s0480bplz52gh+12CWlt8GSXYSolENF8qsqUAm+YooDeGyVPIFpos8+L3GiGy2G/NsI9LbJJUmq2wnroD3QhwcPuebKXIl4rmbCwes60iRhid952KErhi1wq7kkF9OWrF3xkgK52cUy+fBbPRFNep/zPCzdvwncd36W51ZGvYey8QlQyYTaWHJGTdwOiFks/TKGC2wjL3QTLFNbgjx9l3TjCXKVVkKmy0WQmb4C5LMJHiOhK+ugc2MLqIg1dx9EQ8xdpE8j25Lvu0WbuFbCnslEhZZfs3T2ZDzYxpVKreUKhOvGwxeQi7IwdBMXpimTwPAhajHIf81pZ8nSTqSRqbX0oS9eaBhO+YSiVJHxyMK0yTGK8Extt7LeNPDPbGYDeynbYWWXuxFJm16gRUShVGSn4di5+wuBG2T3eQ3RiyTe/vRKTVVZKJPtpIKrFJ4SG5eOvGz/SQQh0NbO+GJE8WsNH9yJbyUmbglYeYC0AtLxXFZRwYeu0EaBYXmtF5JL+Ra067NHkwEy9tcS2AE6T/cvTMMDrZyvZv5Di5BAp1p4RF3A8D4BTJaHreRbLNp+XCg50g+SXzVRDWtJVroZe7+lxY8fGZ9ISOzlJIlxYWbnQu+1Rcy/nObvSQgIyWgKl2L1KcG/JlHKpBlm8KQDt8p6WbJJByImmvIVfUtwLL10XO2O4pJp+oIUE2GihWnuI6DGnP9V0JM+u7XnUDxWUngU1Lz/g8UB/J34MRxtDWkXwZBzCQr8XKkK88tk5S40oATXETGJ0FOU461bpYlTyGvSS591mma0BBvgysXkv3oEbOtWnFo6wCFKuAbSLtHOaP/SDj7I+hCjB/7MjWsr2mDuRLn67R5PkzQIDReSDbhJSG7Xd9q3UUdjlJO20VRApbaklMLsWL6fMk7YykhF9hPG0dhuuouiWhPW6smD3eppCogN04kfmuHNs7is1dkyYJNM2hwrQSbtNLo826RTdOmEv9UkjRJqA76UMNmZy7yXMB2yjwI6n2yFYSLtPsKUwTqA8EhIgfN8gkQRsprhpWD036DujIbho519cty4cW1YlH1i4a2UYrADCm6g83FiZQv5zWamV5dtNh191Qf0KMrO9aYdCSPzNqha67T403dd1hth2m8ejGEQqD2bQigdVKPJ2ZEf/mWpJXQ2FQjcOkLlTx8mrwAb3cojqHWTXoxVbAZNVIbUrjhDH0PqUHh8HbqepOanBWFXpbo7aNdFNqLexkDxb74XOS96rVFnWzEglvld7TpH9VLb/XDVQ1NC2xknDKgWGsavmbSr7VNq0zeGLX+z/V4N0ERCoLEt5jtCyrl+t+l+oROdDfY9ifUmfVyx7NP6YPRQqV+j7/+6Py+IFJYWOMT5VS/wXwMVABv4RIX29ijH001RPgfvr5PvBJeq9TSi0QuezFy8tVSv088PMAxa05+9kWrQLvPr/FeNzQZZ7tv+YY6cD2CzWhzWg6ibAu5w31VYnu/YiNxumMfNzy0dUhRAj7He3IwHXJ82KOm3tqZdCLjPfev0N5ULPcykAQAmEp3XLBZ6Aj+qxgmUlQT1QCVkC+aJabMoE8Q3enFV9mZWi9QjtFuMkxBw2hK2hOx2L3SKCw2/d012N0o7lYTtJgLw1uN0akdOcjdCkDAFUrVlUpPZRjDy7y/rfvoR8E8WNsZXDc9wZWz6ZQBvGZREW9LLAHkvTZe7nWr3qy0nF5NSXOHM9XMnh9fj2XL7WbnP37S9bPCxnYZZFvXN3hz33l6/yfv/ol7AaefPUeGHCVJV8r2olUd+itprrrKS4N9TrHLg2h1tKH6IQFKDJH5RRuk7G5F2GdUZ8E1NqSLTVhVYhfEhnAxZWlPhYZYJ9EGU0kjAAFnTNgwZ+OUHmk3RPmZvKJYTPOIQf90Qjm4iv0o8iv/ObbjMbJi9dCq7JUYxAlcEnD+lRiKkMWcTOP3UrvpXj5IGwt9R0nEsfK4vY9+ULhkh/MnY3EV7ixA7MS0pdiwCRZpKZ5q8I8H9HNoTg36M4OPjrzoYRURW3wj/cJE/h733lLPJWO9GUfKC/MUF1gFla8iguFm0pfpc8EBLSFGTyko3NFu5dYhKXh2XsnlBdGrjsnfsyb53PxBafBbDcLLD4n7MPoqU4hI5H1iyn7JqVu1gzVNyGD+Ez2QSfPZH4j3spuX9icbiIBTm6UVD0bS5cki71fzlTCXgYD1dmE6RZUUGyfjMnWWnxfH+TCRhUysOzDbfTTHPeoFvnpgRbfaEkKxlFEJfthWlCdYvKxsJdmoyXcZSWS2PJpRujZ1mWJL1N9g0u1GyuNutEs35D02Px5Nnj4tBMgNv7YUFcF7ThQ1vL3wc+Y+iO7vYBbSMn9+KlJ/rGUZqpE7mrXinaeKmc02Gsrky9a2KHiWuFLYZ3c12Zsj4V5BDk2bhKxa42OyWfmhfnspnD2a3exBnTy6ZkKik/ywU/mxmqoXVFOBhjZUlhJENlilwB7ttBkS5lwKG4UzZGEMulOvLrRwPhUglFCprDfnGIaqc/pJjtvoKnT95ERtmz8TJ5QXs7l6HfGLF9NFUppwqj3V2sP83fskKTaTRQkj15MHtZ+X/LVzts6+0hja2Gl8iW0vzUnjwJiqmOFXSnsNlCea1QMzN435OvA/jtqqGPqfY2mipSNojoR79zoRTpWW5kgaad6YCmLG0nqNTXUB5rihiS9lvqXvXeSxLWU5FK7lfdNnsn5t5sk4Wxh9r7e1V00MfkvJUANxH9nWph9JLJRV4h8dfo4MYQbT7NNVQ3JptX7GVWU45ZtIgdf05IubAL5Sr4zt3cL8k1MyZ8wfRJTAE6qVckUWSUpoYNX1qUE0k1ge8swOZN0VxXEr2jrSLEI4u0s5RhNn0hqq2l7VnQXRqRCZO9dgIhJ8mVXKGYfCZBa3TfMHzvyG53ST+U92SZQJv9lOzeMLj3dWNPNDHYbUt2LfOcWN+Ammr43dPJMFADZylPaBNi2Wvojk/eyTyG1PpCtNcEq9j/wIi9dB46/IYE6ugn4XMKBYoT544BpAuWVopvnjM89tpJgnGwr6z36RifBO8nXu/eB+OWChfG5gFo3LzCVY3TpJaBoZMiqkPIKJC3XNrLNbixy2r7rF0C3ntwFpqcCKGfPHH5apL5PT74yQ9XJ4bc7dBfwI+mDHF10oBWH324wjSdbOvwow259ug8aiiuRyeY3EsRjli1hnPWDUhl89+xiJcPQbNWx96GMCVVEvJWVQ3Ueu6iIxoBOaa4uYDYtBHm/ah3kFlN14sOcFZhFBQFUjGTXFbHMJOhHI2xlKymwIStRTUs0Fh0iqvHEIk9sY2L7spS2agy66uTYZAq1qYZeSwX0tR6q7eirSwbWcag0SYAvJL9m50TC2rSSCAvio0xeR5XnO7+m1jsJbF/hkiVZrrWoLMlgrYWmITa79FllLdEn8Pmy/xNA611lS/o5xu/htfxMgM+fPP7oPn6QUtgD4H8Ffg64Af5nhIn8T2KMb6bXPAT+jxjjF5VS3wD+pRjjk/Tc+8BPxxgvvusKkLqRL/yX/zYHZcXTxR51k+E6g808McJ03HB9KqDnldfOefzBLbCBbNoSvOGV25d88OFt8fotrfi3WoU+bgjnZfrSihLws5TQHVQCchMPnRqCdnppXO+Li3lA1Zo4lYTWcr+meTGWEKCxI1wVUjkxkgCVbj9I8f1YmKao2dVWbAz2pKZbFFJrYSSExi6NMJy1hO7EkR+YEJ2CUoKJtHecgFiTbp6Nlt7NrUG3GqIA2Ggiauwxp7kENdztoNOosUNd5uLNa7RI3+7XZB+MMI14uHq5YXerw1xZ9P0KdzaiuNIEG2mP5UZplwY/CpJaWuxmsk0tM/mhFIbErmRQ0O2lm9heS7zO0Z0SP9uJJ782tPshfbknqVopCZduLJUO3V6QtMwzi5uIZE1AlSQWNseSQpotk3ds36FXvTcDRi/k+FT3PKbSFJdSD5FfGdojkcm1+8KC6CYF03QyaKtuBWzyxzW3pFtUO/GpVbfiANSKKzXUIrQHIUXrywDetMKG5NfiGes9bhKKIQO++YewfpBkZvOUvrvUhEwY23ZffFAH35Kag+ZQlt+nzYpULEl9MiCxJ31HYXEFzT5DPUh5ITPYfYBLtpZajG4qv4eUzBksA+izG9g8EkYvW8tkgrDRsL0fsSuFS3UVeaqWyFYKP+59gBJMI5+LFAzjhelYvinyxN4D1+7J/UFm5Xe9mqMXIgGUOoldfUeevIfdJIWopHHI+LkEcWzvyjkd2KNOrlcZPMp7TJsK4aOkqTZHkN/I3+xWZH/dNA1ck3QRYHtHMXkmYS3dTBikkO0qNARAiTfONJFsC82+AOy+usLnMugsriObe4p8AeMXQYCclnPeexSHEJ6GoQIDJed8e0fAS7aS14xfBJavCPjug4vy5Uu1Fn0vZwKvo/PA6pF8XgbmaC11GL3sEeS1phF/X3mZ7gFKGNVsneS1jWz3y32WvbyuB0eji8D6gXz288Xu+NbHAhz6mo6+LqWX2bqRbF/Usuz1fS2JqyORQFZHmmIpgKkHO91EgKPp5Fz0fZx9cJLpIvWhxlQx9cyKZHvyIgygpxvvfHbbE02xEOamvBYfY/+7SBgD3VQNaoi++3Ry2rF6lFEsBKBUxxpfCOCWbRWGqJ3LMqSXM4GxFFjT7MnEgq3Sca3TPcfKun0ptR4+V5SXIrvse3S1EzBWHcg9MtvI/bmdSjWHbSQYptmTz+Po3FEfmUE26DO5xvK1LD/bBEzlqY8yso2wr/WeETZwJufT1nHove3Db7JtQLeRZt8MVSTBCIA0neyXzxX5KkhvYqbI1oFuZvAZFMtd/2HU0E00rlRMnzlJhR1rRued9B0mXZcvNeVly/Z2Qbb2uJHGbsOQwqpTYqryYGrp2tQuir/wUEBecS31IADlRUt9kpPfOAGeG08o9PB+Xxps5Wj2M0wtSbNuaohKpKC6C7T7GcVlQzcTL2C27mj38iGh1Sdwnd80dNOdLzG/aejm+ZDQ2s4zRs+30lcZhGnTtVRwqBBRXcCNLW5q0I2ksKIUbmLJVh269TRHJdlKAJZUcgRh7FIgUDfPsJWwu2bZ4vYKsqst1cMZ5YsKN80FdAF+ZMkWjYTtKIUvNPl1LWmqtSOMbBq3aEwtnspoFWaT6jaM+L+V77uutTCMtZPPCEhYT2aGkB6UGvyRqumIKcU19oAn/a+chPJEJQnHqhXAFItM/rcavaoZ+il7n2PnBDiC/K0HaHUrADKEXWAPJIZOyfNFJjUjmRVm0ehPS0u13rGALwf3mN166GWm6XXRuZ1v8jPyVJQihiAMo1Iid+0fPbiLLy1Xm10NSftSsM5L2xjbTpJke8zx3cJ7/nEePwQ9lnuTe/Erb//89325v/Rb/+kflgr7PwF/FjgGXgB/Pcb433+/t+MHGd7zLwAfxhjPAZRSvwj8s8C+Usom1vIB8DS9/inwEHiSpLN7SIjP93yMTMfVcsLp6T5vv/qc09WMDQWH8w3TvGVkO65fzBl9kqFejxzcWzAvG5Z1QZsCaeyk42Bvw3mzT3Zp+fGfeZdFM+IrP/oh/+Mv/xnMg4rXb13yzuYedtJhM09bihdPTwLxrETfqrn7xoLz5ZRmkxMbTXZl8Q9qisLRNhZjAtlJxZfuPeMbz+/Sehn8zN+6Yf3NQ6b3l1gduH66B7GvsNCgI8XdLfcOFnywuYW+1eKWOdPba6p5zmzcUFeiU+muS+xeS368pesM4fcmuFlk/9aKTZUzGbXUbcaDwxtWTcG6LgDY3IwEEAMP7l7x4pM72Epx/OAKk8KJPin2iWcjjt64Yvm7R8z3N6yKkubEM/3I8rm/+D5f/cZr/PRbH/Dr774GUaUqAPFKbT9f0WwzWBi+8OWP+eDiiPB4KlUPGrmpF4FX3jjj49ND7v3IFS5oWffZIV988Izf3T7C3G6Iyyl/+iff4Tf/7tvEqcOfOJplDoVnPK9RCtwnM3wZiRPHaNYQT+f4Q0fILOpIAn3cIqc8qfipB4/5B7/zefSsQ13nlK+s2C5GmNLhliNhp8YedVKxHY84eOWa1eqIB58742l3m8lrCzarEndVgIqU9zaY/3vO6I0l23VBqC2YyPj+8v9h701iZU3TM6Hnm/4phhNnPvfevHlzzqqyXd1GNsaLBtTqFhI7kEAg9YpuVi1YsQPUYlzCjh2tllgjthiBRAskaEy7TZVdLmdlVWXeIe9wpjgx/cM3sXi+749z0y53WzhxleWQUnlunDjxD/FHxPt8z4TNqmYP5oMeeFXCfLiG/8dzDAsCp/kHSyxfzCECOwjtLMIfWQzRwB85qJ7smrsY8PDiFtfrCe7kFKEK6BsPdacRz3pgXQMfb+G/NyW4LgJ2F4a+oMOAMHMQO4VYBajGYYgVmtcC6/c9+0F3GuZWQXy4xdoqVD+omQIJAjDx3RXcmwZuAZg/1Ng98inFl4sL9T8yGOZkmtVOYP2pxcMn11h3JTZfHkCftegHhYMfFzD/yg02/9cJwrsttpMSeKrw7q89x6v/5R0MJw76TsMtHGwnIZzA/CcSmw9dko8a4EGLdmow/bHB+tsWiMD0dIsYBdqfzJiCedSjuqrRvj9AFh7y92u4WRwXNyAA/35L1rkKaD4vcPsrAfPPFIZzh9NHS2z+j1NWm1iB2U/prxrmMQEYepfzAoGvAIBVIaEg6O9OIxAFps8idg+Ao9+PEP/qNWb/5wHu3jepX5LAYPeeZZDSTmH4dg+8rFC/IhvUnkbYeQqxKYH4uIVfFegPaT5ta6A7TQtLOsIeechWYPqlRH/IkJyDHwls3wGqa4Kmu295xJnD5Icldg8ihgcW5a3B7onD4e8qxCkXVNRnCr4GNp8OKF6ZVB1C/7PZ0G82LOIoqRRf8b5+IbB5n5VE9tBh/gOD9ScW/ksD17AKZ/PtAfUXBdonA6qnBVOcBdC8SizmFtg8CahfS9gJMMwlhkVMUkVg/WHAwQ8Fdt+hR3nz6QCxZf9rdYkkcSbzWf/I4/ZTsvDDr23gf28K4YDdAwVfRYSnEsvvOhz9DpUC3XFi9TqRgDz/r3cE1mYFrN8LaF5K9Asu7vgiQlqJYkM2vD0h0zl9JulxPGQIkRoEuiN66oKhDFX1Au05FwmC3qfuSq9TSi3DddbvAa7hOQlapL5IeqeLlcTqfcp6u2Pg4HOy1bd/xaN+pjF5mRaQnIA7Azt+AAAgAElEQVSdsKfSV8DmA4+jfyIxHAgIr7H6kAtgk+dM2NTPI1Yfkf12U4nz3/ZozwXiNeAGlSp3BBnQQ4XuSKYkWrKsrgGO/yBid6pwuPTYPKLHbZgrzJ5abL9DD7FrMMq4dct0Xl8SRC5+FLH8UKNYEzRyUY51OACP02wjdMcOR0SCR8+vPExeebSnBqv3JCXzWx5TtZToZxKX//KAj/5BQD9RKJcW7UmRnqfA6j2JxecRN99ROPudAFuzViR3c9qpwPHvE6yvHmssPh/QHktUtwS2m4dUiZS3lKcOBxq7M4nqVmJ3xr7MoBnSM3ktsHmgUKwp+d2dqsSoG9RvBvRzCWmLsQolGAk7lSkFOmB7oWG2EdUrh+5JA90xWVdvJNpjnZj6gN2JQnmtYA8MzMrBTjSGiwLTZx3c1CBOydpvLhSZ/C8jiusWdqYpHRXA5oFG1UjYRqC69ZB9gJsy8Gf2rEe/UCjuLO4+rDF7KtAfGUA06BYKZmOwOy8w+3KH4aCAa2iL0a3H9kGB619WePQP+TmtdgNWH9SYvLSQLsA3GkFzH4aLBtVVh2AYLOPnmj7J3qM9MaiuBexMIWiB6tpCZyCqCYCGwxJm2cMf1PClhOrZmVl9tUb37hTCUT6ceznNykJbD7eoCcBdgJ8Y+GkBfdvCHjVMKr5jhHSYVRAd+zHFziFMKqCi0kl2Dm5eUVI8MI3Xz0oo5xFLg6gUAW5BAAsf4A9qqO2A0BRQb5bwR3NACajLO8TCsIZkuQEAxElNmWw/AFUJ1CWJ5OzBdJ6ANwFQsesIFusKuFtBzLjaGTeUyohJw59lkqYWhpLaugIGS++kZ+hPlBKiMBBKIfb9Hw8iY3i7iuT+7X5ibPimHXx/cW8xxn/7/4/tfJOM5W8A+PsAfh2Uwv4DAP83gH8RwH9/L7znezHG/0YI8XcB/Mq98J5/Pcb4b/5J25h/eh7/w//hV/E/vvoldE5DAHh1fYAPLy7x104/x3/7j/4a/sZ3f4AvNkfYWQMleKyldli2NUIEJoXFzbZB1xn82pOn+P6rB+i+nKF4vMX5wRpfPjuBqh0mTQ8lA44nO7ggselLXL2e4713L/FqSUO4tQoniw2UDOisxmZXwVmFjx++wWdPL/DJu6/w+atT/HPvPsPvPn+E909voGTAs+UC1iq8d3KD3ms8vzzEX//oD/EPv/gIdtA4mO9w95NDfPQrz3G1a1Abh91gsFxOUNaWgUEvD6GKAN8rwAmUiw7zSQejPL766gimYW+AXZb4je9+jh9cnqPrDLQOKI2DlAF36wZhUJgudqiMw+WrAxRTrj4FL+EvKxQPtjic7fD6xyd48ukr3Gwb9IPG0Bo0sx67VQVdWdhVCTVxeHiyxLOfnmJ2sQYALOoOzz87QywDJic7eC8xvJhg8t4dNi/miI2DqRxCkNDGwb6YsJ7EBJTzHv2qxOxki/73F5j8yg1uX85x+s4Sh1WLu77C5c0M8bZgCM1Bj/h0AnfoICuHGAQDjzpqzepZj+HLKar316gLi01borusoRYDH+MFLt65wbqt0LUFTOFwPNvi5R+cASc9IIC6GbC9bFAedpjUPXpr0HUGj09v8cXTU4itgjga2AWqIxAEGetlAXEwQAhgMumw3VbwG/aFmtoCXzY4+OVr3K1r2NsSDz+4wlc/PcHswRrzqseLL06SHBso5j2GuxKi9MDaQPYCxZMNQ4p2GvWiQ/dqgocfXeLFl8cw8wH2rmQFTRkgd4qJqzoCZQCspB+kpMz48IMb3F7PEHvJ6pqDAWFtUL3UGD5psTjY4ub5AnqlIN7dwV1WOPvoGuu2xG5ZMyVXk80XQUDMB1Q/qLF74lCf7NC9miDqCL1UcKcW5awH/mAG890lts9mDLpREaIIwMpAHvXAixrRRITaw1xrhDIinAxQr0tKk7MKaBogDtP2PhyAICA6ieP3b3H1Zg59aeAOPFAEND8q0J0HIKWqHv3aG7z66TH0mpUt9oMO5R/WaN+10Nca7pDdnyIA1Sd37L4dJGACzKWBTcFO3XsDpPEILqURlh5N02PzxQGZ8o84dBTfb7B7wg6I4oqJtMUdw2Hi3KKcDIhRwD+dcLgsI/3UlkCHHYmUHoZHHcLWwCw6+FcNzJ2EayL8wmH+ewar71iIgcoFWXj4VYHZZxrdKYNc1FZi/kvXCL91guUvOzRP6fUNml49tSXzTwaUJ/v0O5e4+9/PyTKnOpzuCb3biMD0pxrDjN4wiIjiTmL49g5+a6CvNXQr0J94TL9Q2LznUb1Wqb4nwNxIDI8smh8VDAbaMPRl8qVGv4hQH2ygfneG3TsO059wKFeWgTWqF7BzeiCHE4fyNY+leiPRftrh9H8ucfsdspr9uUP9lPJ2aYH2QYBfOFTPisR8MAAHEeyEVVxYYIUIFwu373pMnnLQ7w8j7OMe6nWJ6g1TadtH3Md+QbXC7mHA5LnE5gkB5cGPgNX7BB52RtmuHJAk2WEMbnJNxMFnEt0xWfJggPaCEsnp04jlt6gusFMqF9afOIhe4uH/xmTT7iRi+hS4+zjLeqk+6E654KIGgQigfkOQ1p6K1EkLLD4jQ9sf0ks8+wKwM3ao+iZi/pnk+TFUPJR3ZCClpXd2827A9JnE6lMHuZM4+V2mB9splQKuIUiOAti+I0ZVgNlwISg/x+Hvk9W2U4HZC0/QZshUC0/gnBnwDCqFA3xNJUL1RrBL9SoxfGWuGokJlPM+13C/1u8Bi8/IePYzifZcwKyoJCDwIyCXPZNbXU0frdkFgsjEgtuJwOaxwPHveezOJOrriPU7ErNnHv1csh/Vsgt2/pOA9lSiXDKRV+8Clh9qmB09pKv3FSYvWI3SHwrUl0yQdZUY/brrJxKzpwHdQmD+zGF7pim1Tey/6iO25woikvn2BcF58zoxshOBYhtRpzCgzSMN3UYU64B+rmB2AaqP6BcS/QEDioDkFe253yZ1WEobsXlgMHnt0C8UJi97rN8pUWwCukPKwlXH/alvAspbC1crrB9rLH48YHthMHveo01s77DQaF50iEqgvShh1mSLi6VLVSwRqifTGEqCyvt9pK5R8BU/rybPW6a/puoVCDBF2IYx2CZXlrhGoXrTIhoFO9UobnuEQkH1DA0SIcLXGsXVDvawJsBcdXCLCvq2Tb7YiFAaCO8RKgO13BFsSkBuesB7xEkF0VmEphyrSiAB0TvEyiDUhjLZziJWBJ2id4CSEOsdYsOubGgF9MO+ZiazodVe8ir815jLEAhEtR49qmP4j/d7r2VOgc3AUNBrGZ0bZb1Ca0AKSmLz8wsxso9CKYLRfxpz+ReFsfzWv/tn/rz/0+/8p3/uxwZ8g8ASAIQQ/wkohXUA/glYPfIIrBs5Svf9rRhjL4SoAPx3AH4VwA2AfyvG+JM/6fknnzyIH/9XfxtaBVy+OqAkdaMY6z+3ECuGprg6IjYe+pordL5KXX4HHupOIScbuinZlWJFpgGgl87OOci4OnKFuWMghp3yS5xeyizVift+whStz54yMfZB2oOA8o1KckwxyrNEVghohk/orRj7zbqTVOpuuA9mJaG79EVYMCClP04ynDZ5CgsOQsKllMzAwYeeN67cR819hcToAwyaaYeuiaNHNEsH7cG+fH1YBEyfSqzf475BAN1HParPS7gpPWXtBz2qL8qxly8HVMjh3pd9GlBFimi384jmFb1SqiP7Y6cxDRaUmEmL5OlLIQxZetlENC/FWCKP5DOTLvnnkHxnQ5I+3rsfoHTRbIEhdQIC3OfcLegmlDjmgSUYjF16vtpLDCkbAxCRqg74t3K4N+ykY/MF/VE+lWOv3w9ovmJc//YhC877xdv7YtYcOool5Wl2IsZC8e6YcjPZcxh1dXr9GtYDMBhif8wxpazaaQqq2NKrxX46HkN/hHFAMysOfvmazxJLvUv7sYroj9L+CoyF71Hw9TabmKSjKdBoFxH1vQ7CnhLFYc4BOoe65L7H3FuYgyGylNPO6VOyDdIXJ59vmCNJHbMklMdntpR29gci+SpjGtgFiuRXy4X3uTi9uKNsUfX0o+VOxeGAjFbuuWSYSBxTMrMclVJSjH5Odopy+6rj76KgpM/V3I7qgc1jykYBjJ8J2QuYw0KkS6/LwNczKD6OfY3J51jzNQ0pPCX3Z8oB47Blp8ljmboHXc33i0w1DCq/l9Nrwc7RdEzJ15jlpj51wQqf9jGFjCB9PnqTpMk7erlypYOtc7cgJZR2wu1yeOX++YJ9iEGRaSuXcUzK9AXP3TBL9Q+OPsPmip43Jqkmae7Awb+fc5j0qSuRslfJwXSgnFQEJICJez8nyZ1M0riwl+96k3pQcyelIPsWdPJB3iUpcsQo2c1yW9Vz8PKGf+tqslbdQVqgSGmmuWdTpLL7/Lt8nm0tUK7COGRHxce4iueGIVsidSRSxlquGIgjPc9H9rKKGNmjmCSevsjyZl6brubAarYew1TtGbJtQChFCjnhZ53qub/DVGLy2iIYSh6zzBRA6hGVUG0Y9zt3ENIT6Ue5Z64Vob8NY6+oTHLIYLjfwgVELQlyBob82DnlumazBz/5OOkLTduU3KYc6PEcDjTq1x18pUevp6sZ4CIivY7SR/hSjYO0WVu4iSbDvHXwRjIxdaJh1mlgloA3OV02IBQSsvcELl2SHBqJoHl9Uu4rk98fUK2Da1jFASngK4bnRCMTsxYp89QSdkafYg4VEj7ysZr9iFEK9jR2nu/bwcPXCcBE8DEJlIRCjcxd1AyQkR39jrlvUUTAJ1mqr80IZmTvEIrcM8mgGpmYO0pWuegXag3Zu31HZE5G7RygBB/rI6WuQgBKMEVVsypFtuybHLskheC+SgnR2vH887njKFuNRkG0w15qmjsvs7w0f59WZv+4EFLVR8HKDusoZ3V+3z+ZvY+5X1JKgrHcXZkDb1I4D0+Q2N+f/5/8kgD4c05j1Yr/HyzlqGUBOEdf5f0uyvEA0nMKSemqexsIUl4bgeDfksDm8J6Y60ys3VeShMDt3PdO/mm8kl+rHfmFB5bNw/gvfPoNAMvf/fkAlt9oj2WM8e8B+Htfu/snAP75P+axHYB/40/z/BIRf+uD38b/ev0JNgcl+s4whXlucXa0xmu/gG0EinnPxNDHDq5VQGIOhAkIpwykiUEAXsL2CtIWsEcBzYMNhh/OEUxE+46DnlkoGejdvJwBg4Q/8BC9RKw8hI5QbwqERx38RkNuFcpbifYdC2Elpu+syMrpgO6dADHQL9nLCLlVBH9HA8SrEuHEAm8K+KMI6AjZCQyftIh3BbflGBrUnfs0LCvYIwdzrdE+dFA7CfV4B/+sgZ9zpToaskK+YUhNVIol9UHwMU6yQuPIwvYKei3hUwhR9qOFuUOsHXyvUE4G7IYpLr7zBq+/fw4/9ZjMO/TTAlFHtO9bzA93aCuH/qZC+UahO3cobhS6T3vo5yVCEVMQSsIIHvDnA7aygJ95mNvUBVVHVJ+uYL+3wHDsUdxIDMcBzVMFN+XQYWcRsQwwGw3fRPQnyWtYkmlhDUUauFXEg++8weU/PsdwzNdQ2sy+KNgDfpkHk/ysa8kFi4se4g9rejkHxv+XlxLdhUeceIgt5aVwTNp0MwJxOwsM3DmKsEfsHVQtB1w/8XANF0TMRgAnPXYogSgxHFJKORxkgzsQGo/iUmM4c0A07Bh0ZFDkQDDUntFj2l04eoO/MugecqARnufCTbi4ANAnq1oBvaMXrH3kUL3WHExnEe7DDvF1Sd/qlOevuBXYPvGIU4fieYHqRmD1icP0pxqbD1zylAqEW/bqqY7A398xgbU9jbBPeky+V8HOeZ7chINudSmwfRygNzzvEAmY9wLdA4/pTxVrABYBkxfsWts99EAKN4pp0SFLM6MUGI7osZVWYPeug1orzL4UaM/5BVeDUjs7Td7KhwFh4dD8qICRTEKdPhXYPSJ48EXE5DnDN7bvpK7OCCAycMZXBJu7c3ogEdk36KsIXwfUrxSKFfsXczhRVPSuTl7Qqxo0ayGioowzyojZTxVZyVR0n32P3TGlkyJwsSUDXb1DSgol0CxvgfaMCz9Ztqo6Mh3dsUheWoHN44jDHwCbd8la2Wliv1ZcmGDyKhcbQvLcqpYsj50CvmV3pVnzPJS3YEk7+HfVdUR3SuBULpmC2Z4JyBfA6mNg/mMuIvVHZFtVL1C/oaw2e1Kbl+xq3D0MOPgsSSA3BB3FHRcJhrkYAfZwoEdArjru3+EPgduPNMHnQqC6AnqzX1zwpRglr5Tn8bW0My522DkX83y9r16pL+l/9gWwfZzO7xsyOFHTEzrMBXQH7M4FZs8Ctg8lqqsIbwW2j9JCQsTYW9mdCOw8F0LpBxaYPYujdzEYAZfSRLEEuiMG6vQLgkX2eUb2apYCuwuB+g1fc5kW7ShJFegXClHTR1suKetsT+To250+D7CNQL/gd2l1zZqM7phhWoef0f8pbVqAUvR2FusIUQhsH0hU12RBKcfVo6eWQUkyLTZG7M4V6isBVwmUdwEu+RnX70gcfJG84ZJ+z36hMEwFpi+5gDDOCol9ckJAOol+TnlutRQYJhK6J9M/TAxcA0xee6ze1TDrPWAu7wJ8KdBcAn6hobuA7YWEdGVSC3DxqFtImDZCdwzQiTIvqIgEnimrdZVAtSTALZce68ca8y+4yLZ+RzN0SwLTr1w6H5rAOEa4SqE91aivHdpjjeaNg01JrTqBcDtJgW+lxPZMY/KKjynWAXZCAK/6gPZEY/oVga2dSqg+QgQNX0o0r3sMM4NhJlHdenY/FgrdaQFp94sXeushB4/hkB7CDFSDEsDCQKYE2qglgpLoTgpUl0B/ZFBeD0mCy/tVH1De9OiPS+hWQ68HhELBzioUywH9UYliTVCt1xH2sIBuPaSPsEcVFyK6AL3LYTOUUcoEZMmmRbgFg4jcxKSkYIHqMqZFB7UP7skLGtYjNiUBtwtkHq9bwAChKSA3A2LNQJtYsBIkVBr6rkWo2c8sB8fHrtpx3+KkJuirSoiup8/SKwbx5HRVrYDCEAje92fe8z7GqmAQTowEsgm4xsLQb2odRFXSr2lTQms/JN+j2Ke/JgAopASU4rpXrg8RcvRlxs5DaC7IoO8JIpVMYUKcLzMLGWOEKMweNAP8ovrTTPv3SbD/D8DyL2/f/O0bZSy/6Vv5waN48R//+5S3tWTMoopQrYSfekr8Di2w0iiW7EfUS/pq7JSsnE/Apn88oHhhMJwTnIUiIpgIcyf3IScpfdFPKBUbe/U0WOTeSugN00MZt5+izC2Lzn3JAVOvyVAAZAldE2HWBJkAhxM757BZ3nDAHBJrGlKirRr4hcrQmgSIIoeD/piBNv1hQP2GYEbvMmNCNgFAGo73bKFrIiV1IbEbDbc5HBCABEOQETWP21cEbmbL5wkG6E896q8oR1IDpWChZAWG3gK5bLx912L2QzOGghDUcdjrjzig+iqm4Wb/c3nNYVj2HOJzuEVmPzNTWtyRqcqDPg+YbCgiYFYEotV1SmpVBK9mwyHLNRwileXPxV16TMWB2E7EGPCT2U9Gr1OOpjcC1aXA5gklX67aM0x5H6XlPnnD7WTPVg7ncQ33T7UJIB3w9cv75yYshO9OOOBGtU+GzIEoamDVwO6CFQvSIg3eSImbcexqY8cft+ELjMXsrk6s3cAFhvqKA2GxSq/lGRlWkfxTxTJ5DNOCRLFiOmpOtLzPLtjEokIQMGR5kt6l66FP6a+p7sI13OccyR8lX2M5JGYtBYxExet9DN6o+VqVqdYgM5blbRz9cyKSjfVlGrAXfN3z+4whNfvfM3GTAMJOBSYvA9oTngezSYzjQADB93JEf5ykq0NiXkRivA0ZtJjDYBKbo3qynuUNX8PijoxWDlgSMYUZ1QStsy/INGY2ea8SIFMUDNk+gOcPYC1Gf8B9FQ7YPhKYPudnl+6AYUoG1U7EGFQjBzLjxZp/42qyhwCPfXe2Pw+8Dvj8Od0zaMC0ZBTz+1P1e9ZumAk0l6wrcA0BZt7XnPTJahKkVE4yREFzOzlspz8g409JG59DJmYv9z/yGtsfIzvwMMoEiw0TXm2T2MBuL6vUOz6GbCzvlwNQbJm+bSf8O5k+p/J+NFeUUhZbht0Ua4/+QBE8rXgd6R1Gxg+R51gEMp624bWSqzykTaqDmvvvi3S+O7KuwfDcqWGflsqFBz5WRKTwq5gYZp6jzIbqLl0zNVkt3Qb2lU4kq0ZyCX1igYu1h2skbCPHgJ9cdcJrT6Wk0whXkp22DV8z3YWU4hvgC5mCxPJ+pZ9jRH+oUaz9GAwkXJLWScBsHVytx0oSgjwJvfP0BKbvdJ/CjeiNlFBdHN+DwkfYqUK5dARIIHg0a/ozyzseo+oDZGIVdevhKsVrTInxWvMVgVyUZJeGuWLQUEtwF7XAMNcwGw9fkoUMBdnF4mbAcFQAkZ5Dmeo1fMkuTjXkEJX9bCQtHyNcTHOGHNnmfc8juxiHRYFiOZBVTHVFwsfUJ+kQi1QtIgSTUH1AqFn5QbZPQAyBwG1ewBv+nT0oYO4GslQxQg4ewnq4RUUAvB4wLEoU1x38xED1fG18rWFuOoTGMMwnRnomQR9iNInpk3JMf4YLECEglJrhOW3uapT8XSRDG2ozehyjURB96qgsNNnMzQBIICoF2SXWMTGHoTRj4I/Y9WQCMzuXAnogJYR1CPMGoh0QSw3hAv2L5l5QTv67SEZU9GR1gXtgMYfsFIYMpybYjEaPjK7o9swotOJ2QnjbNykZZIR+eNvDKCWZS+fJCOYeypgSZfW9IKEYeB6APVOb9zGxofdDeLK/Mm+PdSNf80/mHsyEQcYey591u8dwRjv87Mf9U24/L4zlb37yd/7Mn/e3/p//7M/92IAR3vyC3qLAX/+lH6I52iEWTGLVK4V41qM8TB08ih4r10TIiYWfBNgJwVGUDLboTx1U6WEP2eOnN4Jg9WgYB8jh2CMUEe7Uon64QTSJ6StBGd1KJdlrhD/v4RoOZvUlGYDiTkA8Ygx11GRaupMAO43w01SKXALDUSCrdeARSvqRXB1RvxEYFoGPOXNkm7Z8rlAQyI7Mn+fgFk8G+o+S7DGk2oXujM8Tk4wwFBHdeUhVCgSH/SGZCeGAOoVn5Fj00HgILxDPe0AC62/ZlITI1wAiDaQHESfffYN4NIxSue1jyllELzHM+RiABedZFmtnHCJ8RY+Q3hEw2yN+WfgyoroGhoMANaQwmgLwTRzTTH3J/VEdBz47i2l4p3+oP4oov31H2ecioj8JEIEAK6rUldcSNA2LNAzNCIijFKyySOmkZC8iuoeOniibKlQ8WYVhzuNSQz6+QO/VlACuOwsj2IcA2gufVoF5fUkb0Z3ymu1OIlbf8mPSbCj4fBnIiZQOmisLutOI21/isNt/0I9dlDKxefnWnUR0x3FcROzOYmK7uPCxexjQL/icOWREDhHDPMIfePiKIKI9Z7Lj+iOH3UWEm3Hw1TsOja7hgNm85jG37w+JDWE9RygJ/qubgGGO8X3hav5O74D1E/AaCtzP8oayvO3jMEoukQbnKJnQatYR/VEY5YzdeUB7mq6zktfa9EXg4sghEnMYcPdtB91GeqoWBDLDnOfLptdVDmQAlx+TrWlPKUntFwRUriFgHxYESN1RxPYdAtr6OmL9AbB5Qrljv2ACr3BIPYa8htszgfahx/Kv2hEgRZXBYySAS9ePiMDqQ4Ln3TkHRb1LCwgTPn73QMBN2WW6ecTrrL4OgOTCg+4iNo/Zk9gf8noxm4jdAwKpfsHXk6Ev/BxafchBPYN04YHtQzKdwwEBUU739BXBB1lQsrvKclFEdwH9MRJYJGjvTsjGiQCs35UpcZgskp0KLD9JizpnYlxMaF67BNCB3RkDavgZTfYsSqA/Emiu3Phe6E7yIgWBWXvG8BRXcx9dzc9YBD5mmAnYGRf/XJWkxDMCLxEi+gPJ1+6MUl5Xk0ENisBceGB3Tsnl7kKmeplAEB+4iJH3e5gJtCcC2wuJ7TsCuzOBYhWSNJl9n3ZK4FdsWHQflRh7QNtjgfZQobhjPcX2nCeqO5YYpgKuFOjnEpsL+tm6hUS3IIOlU6LsMCfTqds4LozsThUXXFLi7OaRhBwChqlEd0Qpit6RJUMAohBoj/h6bx4qbB8S7Lg6JeemLknh2P9oG5kYPj5vlICbKOzO+HwyLbQQNArszlKYi+S28udB/g6TLsJVEu2JGjs/gxEjuNyeK8ghYP2Ohm0ENg8MNo80QimwveBwrLsA3Tq0RxK+yAM5ry07U+gPmFLK1FmBYsnvLtZ5sEO0PeL2tw/L8XwhMnRnd2bgC4H2WI9S5SwFVtsB3kgmzfqI9tQkm4FEd6zTQkRkl6Pjdbi7MAhGjuB3d1FQltw72KkaE2bbEwM70xgWBt2JQSwkXKXQL1j5wa7KgGFm4BoNXyp0RwV8oyFixDA38EkKHCUwLAq4WjG1tnOIhYZaDegXfMMxBdfDTfnv4aAYQfBwYOAbTVlr52DnBtASdlFC+IjhoIDwAXZWMAyno8TVzguESjPBdUjyWCEgdl1ahAgQveUCg1JwsxJ2XsBN+PwIlBnDBwLOUo+g8n7yqp9XBKVGjxLeWBnEukRM92f5aphUlOgCTJtNEtsRRKZEWHFf6mod4APvs24PXoWgrNZl8CYTS7qvVSF7mICc0dyX/O+y2PslY9wDyRgob00AUkhKYdM/uB2VGEul+DitGc7jXHpMel6ZpMWjFDbuJcT5lhJjRWI27/8shPij/6m0Pz+r5/Ivbz83t19oxnL+6Xn8+L/+OxicwmZTIbQaovRQOiAEAaUC7M5AtJR8ypkFLkvE4wFxy7hqMXHAnQFS15JwYux3NGvK56KOrAZpPAMvwMeFAwd9ZUYWMZaR6ao6QiXpJABEQxbVnVjoNwb+YoC8Mim1kbIH7KIAACAASURBVL8PBR8TVWRtSSD7qteU9tkzi+IrA1/HcfuZoRWODKhvAvRKwi489FqNMlMEIFRkX4OJY0dbBOglSN7GUIbkBQWK29Qhabkd2bNjz9fcnkxFyHor0B/x74Qnm6u3klLRTiAUEcXjLfznUz4mEhjaAw+9UWR2kzQVSKC43DOWuYg+lPy93gj4Mnk/IxJY2TOtvtqzqWp4m5nOPtmoyPgi7I8fCRgTTIlUcJ+Z1H0YSZb+BLM/t9JTPikt9ykYLiS4BrBzVoUAGP0vQRMEmzuR5HcxHUvyrqYaj/kXAcuPJYoVWbsMHLNktj/keeJ52w/z9+sJMsDMrFtm3TPbm/1do9fVJ2YyefEyc9kfkj1lUiOH6AziMnOb6zhGqWGfmMu4Z4NHlj0xPlGl7ZRIcrK93y/vbwYjjOFHArEE+gAXQzJzT9lZ+n/yvgrPY8sDNtlOglTp9n83Hk8aQvO+IzOWEiiWEcOCMszqcn9+hwOguowM3Uj+w2JFttGskw9OEIxzX/geQromIMiI2xnPR+4jBdLxCLKuMi1OCJevBYweR6aG7v/91i1vO12HvuBnRgapZD5Tx2HN4/SlGL2a2TdoJwwEyd5IAKncfM+Mmk0cwzDoy437Y7H7a1Q6AiE1xL1KInXMZk8zPxu4mFHexlF2mz2J+ToRnuxXZirvh3PkDkBf7N8Tuk8sbZcWkgp6O/M1yMUQjB7D/L6Vae4bPbJpoTAz1Hs/axxDQnzKzshKA91iZFVVh1GGCXAhQsR7XuSkZMi1GJmdBfI5vOc1TSysTn5HaRO7LgjWIRJYHeXIZNTyNZHPVb4e8gDtysRmB27D1YlZ7Alm6aHeX3OuEmM3YndAmWn2nFJFkRhkyT7PYSb/CCMe0+/lyLjxGDI7mbclPOhND0Du3cznKPtN2aXJ57p/XYyf50gLtJrbd3WqQekj+gM1MppR8T3EzkskRlqiWHsEReZO2ji+L1y196Le94fqHRneUMjx85fVGfR8Zn9oMKwVya+9r/K++PFzydWcD4QL6fM/wlcMkMm1Gvl142d1HFNc9c4jFDKxqQ7CMtwmpuske9R5/iXUzhEcSCAoCdU6+EZznz2vr2Dk6IENRqbZwafnI8iG5Ode9mRK+zX/XLq+pSXoyhU6/N6Ko084358rSuI9wCHu+/d8JMtpA72Yjox49mgKl5lXSlyzXzJKSZ9lYj3DtIDckSEUjt7IqBh4FPPz5l7G5HuMWpLdTDJR+DC+r6LRENkTeX8OF+ItietbXkrvR0A2/t39ipH7VR5SJFaS3sf7VSNv+Tmde2v7fywmuH8+s99R0V8pjEG0dnxMdG4v1VVq74f8GkOZn1ckJjcOw77+5Gfc8t/Gvv8TH/cn3X5uGMuP//af+fP+1vf+8z/3YwO+YY/lN30bnEbvFDZ3NczzMg2thr2CHYf+ItDf4ssIXCum5N1UyZMWoa7UKIkya4HyDhhmSFUPgGrVyPCojjH39KoA4bZI0h2RegU5uHTHqd8vyWTJOgFuW7DjbiggXCqFH5BWpzGunlLudD9MBRhWBcMrXjM6vrrkh6drJPQuDXKCx6J6jeoS6E6yzwgQt5T+ISaZpAZkCreJgv41O5Wj9FY4oFjJke2QjqEloU3DUgmU1/vQmfnnTNob5or9fXORAnu4yjt5mUC0BOrXgPD7JDaA++Um9B65hkOknaZBqaWcUPUZJOy/wPuFQP2GMjb2donRV8TQFcG+vSJLfCgFZL8fZaKuYfiHCNyf5nUaUId9sAywD6gISYIY1F6WmIF1MAmYBnrCyiXlVW7CY8pyTfrhIq+fltH8UfMYihX31RuB6dMIX/OxHHg4zOmOw1LzmmzaMOUQw7ASDk55W5mZrq89hplEFLxe2zOB6TMyEbsLerpCIVDeBnRHTCHMQxi7OZlQWdyl1MFGjDLIfP7lhEDKTjNTkYrLXwK7Cw7r1Q0TEvP1UGwY1pJ9iNJR6uoq7mcGQcWKQ0V/KFFfBxaMV2K/OACBYsNrVXj+Lgcb1dcB23OFyRsOgcOUf6c6QN7s5YCUv/G1nz0P2DxUKO7Y3TdM5ehpZK8lj7m682iPOE2qqzgCWzXE1KUXoS/pSTNtRD+TqG7CCLr6OQeFYIDyjoNxXiTIUjqAMkQIBt1ksA3sh2SbPofKZUS5dOgXmr2Cmv60fi5Tfx/I9E04YFZ3YZROF4rvLbMN6A/SCnsC60xXJIM1TIFyHeHNPv1St3EMfvGGYGdIni5fJuYoMiiHFQABw1wlgBbTZ7pEdePH91yU7EjULT10IuxltcXaY5ip1DcM6DZAt2TpXCnQvHYEUpVMckiged2jXxjK3iyv4xwsNYKd65ACUQggshQ1pw0LH1lsn/4NcNt+RzCju5AWBrlIhzWHY9UFVkE4slLlbfrsS0BauAA7pwfaNgRbqg9QhYArWVxf3Dn0h3rcf2njmPJoNg79odnLRl1EseY5D4WE3jnuX5I7Zi9a3r7q6IvzFT/35RDG8BxpU8CWEjC7HHKTJI9TDd1lcEVfp7QRw0Jj+pJDpeo8kzYz6FApaTMCxV3yfgcBvfVjiB3lsH6skpA+vgUYhGMoTmbrc/AMEzqHMUgmFJLbSsAiKJkYygC1s2PHYVSC9RWGrB7lnwzPyeE9akvJn50aFMseUdaUiwqwU3HH30cloSoF1RKMhYJsKxJgE17CrAb4htei3lrKX41kMI2S6fojYAmF4j4lRYLsLEJlUAyBdRNFkor2DrIpoHYDmbHBMUVUCYRSU446OPhJAbXpEUsDveb7T25Zs5GBodwN8LOSoDV1N8IF+gRrw0AcANKFMfRGGgWZZKKh0nvQlo4DPjLApi6AECBzhYZRkK1FqHQCnT6luBrIzDwKQeAWI5k7o8eEVAAQUkIuN/CnB5Ct3ctCpUQsNeS6Has6RAZjWZ46WHoKMwBLHY5ZeooYoRIIFC4F/ihJuWyMBNZajX5J0XP/sN1BVCUZx8ze3QOJos8+0HvgOgPI/Pj790kJBMuOSa3HZNbMUsYkSc39k3xjJCBr07YSIxj7gZJZ5/ZA9D6AzP/OgD2nueZ/+8DU2syuplschr1fMwHYEUzm47q/nXu//2eVwv7l7ef79gvNWJYfvBMv/qN/D6JTkIcDwrKAuZGwi4BYe5hLw+j8VsLXAbKTZB8HMa7GZW8hUhdb9mGKSJaw+rIYZYPDQRjZGYKBFDaSnicq+iNdzf6sKMlcdSd8TC6YN3f80rCzwMRWRY+laxKwuGMEuhxAJmLCgT6H1kQFCLcP0Mir5L6MiGbvSQyKz+Wm6U0rMHp9fMk4+5xwmGW8+aZbyjn1ToysjK8oI63eyFFWarZJPqo5bA8H9Hdm3xc9r9wHaQlQgkll5G/2cfqjXDczaiEl167FeA6yPDTvT2Y5GJqx9/UREN5nHAkg7BTIyaZRYiyKz/UFOfBFuiSjzcm4ljK2KOiPLK+T/E/t9zWzlpnhyx5K12D0ImYmxRdcOKCki/uWPaJy4H5mpuM+w1Os997PvL3yRnAhY8N9zKA3J/1m9jCDOLPF2Is3zJM8F/sYf66kJ8ax5XO4av+eo0czgUrP/VHpOgV4Tsw6jnH5oz+1oJ8yH7fZ7sGn7O+xchX3r7jj65qZq8xw5pTWKDGu2o/sQ+B+Z49Ufm6mIzP11adk2Mx2ZyYqpN7qvHhRXzFMBdgvwASNlNwqkFlDZcnyjezdkAbg9JkhXV4s2vs+IfgaT58H9Idy7B7M11KW32dfp6vFeDz5ODLgH8+F4GuXQWnu1PNlui95Le8ntLqai2f1mzgufuXH588Ula5HBi9x/82Or51KiwkMxBLjceeFJ9Xzd4j33itxz/yJ5EmMWqB5Q+DtiwRUK4FyFTFMCUhzsmrenur3DKQvuKil2ojqjgsI1S0XTELaflZYIDGv2YOag3G4UMQkarNFYgATs2yR/GlcQMmJsvR2czEnB+Lc93Hm63WYksGL6Vq1k5TGCoz2AhGQPIYEu8OUTF9eIDG7AFenhFqL8byoIY6LMSolmWYJeN5+9nDvfdc8XlcmyeyBHL8XpON+6DYtZO04COf3Z/acZgA9zBQXUBKj6CoJZeMofeXxpeTeQoyLClRURLRHCsWWADYzmK6WI1OZP1PGMvpM5ERgmNHfyQVFgt9g7rGiEW95De8n4mZ2KxTJM7rj4kdWFNgJfYXFZv/8ZuXgJgp6S1CN9HmpWwLGzDT6SkJv/diBqDoPOzMjM0c7AcN/VEt5vhoCXE3wSGuFHhdL6IOVKFYWvlL7z9p0XMGIPUPuI5QNI+gLJWW9vBh43KM3MoO9BEyEj/skWJPDcQaEkl2V0geIIRA4a8HkWCUhB54P4QLcrOCiautGz6CvFMxdz237kB5XQnVuZCxDoXC/6kL0fkx/Zcc1wZ1sHe9vHRcUXWDdxmag5FVLhEJDdo6Jr0mVlKXQ2T8pMpCLETHLWCUTbEXvWO0x3AuIyeBMMAQHWo0eTdFbhuVYRzB5vw8y+yit2wNAKSlvzWBKq5HxfQtg3mcWs8R0sHtvZ2G4rXxzjr7IGPmzMUxmzbf0u9j3EGYvmx0xwB8H3ILn3zm3B6qZgdR6n1J777Z/vjCC4eg95a73QWa+jWE+El9Pf/1Zt1/8VNgH8Tc/+gYYy+//F3/uxwb8gjOWohMoXhqoQUD/pB5DPPxSwU4Ups8jomAnlKsVQxzALzjdshJBb+iJUR0/8JuXagyRGG4KJi5qDpKTF5QB5doIBp8kdiL5oJpX9M71C2D6nMmRUZC1CKmEl6vAgpUhbeTqZipWzuEovhSor3KIA1m2XafQvGI6YHXFAWTP6u1lZUGlLzkjUF2zA0u4/cDNwJm4j8HvCQSCEalDDAAimlcZGHB44hcggEiJX3XN4+qOmQTp6ojqSkIO9Ce6hoNqdwxMv8wv2n6oozcssSeNGGVqOeSout6zijlNsVzyCzCzvHZCpi0P2L7ikNoeUdKsU4UDIlMpx1qGWrAKYskEzGIZx8G6WOfaBwY5FGsyMKEA4g2Pf/Iyoj0lG6n6VNGwBNyEw3d9xcCP6Vdk41SfQJ5OpfRTDpHFHQDJnreggX4u+PoXqZA9MVp5GM7XqRwYklPeBVQ3/MLK5eHVDYFBrmjIDGeWy3pDYFxdA+WK++dLnls7BcQ2XyM8V1GQ0c3spxoiytXbrGCUHMpFJGgFuL/FHYFClEB7KuELYPaMvh/VcfDMMrkRKKbhuU/VFhmkjAsCBqhuQ2I0+RqbbaBnKQ3bOZRDuvQ8lgOuSGw1h+o4sl057ISJwfwCPfzM4vYjg+lLDxEjuoXaS93Sd6Oyke/TI763dc8h27SJ1S3JbBbrgGEuR8mt2ebHJL+skOyo6wNcKfcslk8+u2Yf9lRswjioMyWSr5OtOdTz/PE16We8T/XsHZQ9X6Mc7KLb3DOXFz14YGZLcFPfOOheQfgI096r1UgALTNJ3pCtk47HDfD5hmkKd0kVDq6WKRQr7mWOel9towageW3RHRsIH9G8oVRSDfvt9QcynQO+N+1UwlreJ3zE9KVPCzEBcmApvTfsJsxgkPsXIZ0ieEBi8KxAeetSOIoclQFqiCOgyox4VIDsI5rXHLaHmYLZ+FGOGAxrN8w2AcIuwM4Vv69aMoVMQFUMw3EMeCFI5zWm+gCzJahSQ0SxchgONMpVko0OYQxokTZCawK3ESQByFbqzGzmsBiA13OxDvu/33mYieK5SAypHFhT4RoF6Xm9FHdkKqsretWKO4bjFM6PNR5xrlB/1cHODIrWwc40VMsaC35nEXwFldKUEWHWFroVaZGIoMU3muDDkOVzE0OWLGhWf/R8TGZFfa1GaWfUEtGSHVWtHestQpk8XTvWdJgVw2tClWpHVpY1HK0fr2W9c+OCgbKssnCNgl5bgrQQIY2E7rhP6nYHcTSBiBHlbc/3jgBCqVFfDdw/KSAiq0RMqkIRMf8/yV+HANV5IETKUUGZqJsV0Btumymckuelp9cQQrCaRAgymj5CANB3HdxBRcY7gbvM5noloDY9/KyCsjyHKjou/g17EJPZSNHzPpUYRbPskFNX1dAzSKeTEL2HDIFASAioJBmVPkJ4z/3OktIsT5UEmCJGMpYAfxfCKGcV7UAvoHWABYQUo5xV9G7PkKkE8DrHug3rxkCcDD5lTwmn8AGyE3vQJgRE25OpKwuymF5BoOD9zqck1ECQuOsw1oQAlLy2ffJCRsSSybG5H1I4vwduSu0BnE3BQpmdDIE/O8fk1r6HKMu32c17clORwNdYK9IP3I6SZC/vs6F/3M8ZaOZgnq8xm7G/x0y6xMgGdkzm+wGMQT4jnPw6gL0fGpR/Hv847AHnnwJ4/tzfIvbn+S/g7RcaWFbzHr/0L32O17sZZkWPzhkoGVBri6np8XuvH+BvPPlDfLY6w49enuH0ZIntUGB5O4HSAaZwcDKibwv8+pMv8dtfPsFvvPcFamXx/esHCFbDRYHtroTWHo+Pl+idxlmzxsvtHDfrCQrjIEXE+0dX+N6Lh0DpcFB32CynWP5VwBiPYVAIxuPiYI0QBZ5dHqIoHCbVgG1X4GS2xVdXC9RNDwlguSsxn+0QtMd21UCpiJ1VmE463LUFZpMOV1czHB5vsLydwFQOReEwDBrOKkymHUKQkDLgzaaC0lxunjQ91tsK0QsIFRFuSsTaQ5aei2VOYPvLPLfZpxqsRNFYBM83fARwMNsB1mAx28AHiTdfHWGtIoSM+ODBFX784hRCRMQgcH52h/X1HHcfAKFlEMH0ZIvKONx8foSzTy/x6uUhNxqAYjbAe4mqsjDKY7eusUkF6+89ucSLqwWOFxvcvjmANAFKBYTCwVoF22tUzYDlbQ250hAXLWIQCD0j+k1tUdUDus7Arkoszte4XdUoa4vltoA0AX5VADoAqYYFVsIc9HBXFWIZMDvbYPNsjlgFiCFCH3WwqwKiDNCVhb0r8ejJNS7vprCXNSaP1tg+nwFBIFYeZs7ji14gBgFVBPheAYMETAAGCdE4mMpByoh+ZxAHBTFI6CPSunZdwMwGzKYt3vzwGOrdLYZlCZjI5xGRX8omQKiAYBVEq3D47i1uLueQK41QBMCw5kZYwM/SAOUFYsnqHIiI2CZ6WID+4SpAXxm4uYdeKbgTi8XxBsuXc/595RE7BTmxCFtW4kQdoKYOeMV6mc3HAXKrEKYO5aKDfT4hu3ngARkhSg95WcAfD5B3BmHmuM+Nh55Z+NsScicRqoBoAsxSMZiiDGTIdwxg8NMA4VlWHqoIcTBAPavgmojYOIhWQm8lQ6GigOwk/dVFYkYuHMJSYvVphFmq0bvsJ1QahNpDLzUgBNzCwdxo2BMHWInqpUZ/zDAhnPYIWwNzI2AfDBA7jVg6mCszMokcOAG9VVQmXKvUmSthD5JOPgKxDKiem8SqJLa/5z67SUjp0gJuFvh6ycCqnBRaFEp29brsCQbTr2MdUD0zcE2EOx9QPC+SrNagP4wobyW2n/aQdwbRRMguqQ90hEl+7lxfozoJO49M3B4AERV8GVHeqFF9EKVA80pg/ZGHGBg8lj24179cwNcR5TVlsv1RhJ94yE6ivJbwTcS2UxgWAeWVobT8JELv1Lh4ExMrv3sU6C0vI/RGwk25j8OcqpJhEVBeGtgDsq320KN8UwAijh74zJj6KilKUkJ2XlC0KaDKbFgFEFRMiz3AMFdwDZUflNVyYaK6VuhOIibPqWipXyl0J2RTymWqg9kI6FaNHcdUzUhUVzL5WSOKO0UW3/H6YZcyPchZGdGe0W/OjmMgd4jaBijv+Pz5GIqlGZUGXEziYk1xR8tDVi8Ua0OZ8kyzX3hNub+r+NzVlUJ/KHDzrQblLRCloZphQ0DXnQiozozhdNPnZNBdbVDdpM7YFRfLXCNGpYDwBT27BuiOBKrUTZ27ggEu7pmNGrta+0OR9r8alTG+wj45WgFmU8AXPDdRiLETVngzJjRLr2GnrOXpD2gNgAT0kUJOOs7+bbMFgMn4/PcXifJCVk7xBrg40x1J7mfBYxCJlJm88didSJgdF0XYaZoXlgqyxX1mhbm4lRehhOeia3coUWy4AFRsqlH1o7cBu3M9VqkwCbqE8EB7JDF96dAdMX1Wd1ywUi0rSqqlT8dBMGI2AdsLMq31bYCtxbhwV6wD9JaLCr4SsDXrS/oDherWwU4U1JBk+7VEfWnRHWmy35u9FzT3mWb2WdqQJMw1F5GmepTy6s4zBTdS1p0lxTJ3c0pKnwHATvToaRWewUdmZUcGF3GKUKr9dgcPX2vodTFKqfUmXYRNgVBxAcPXGrLzEHG6T331TNDNIDBUBnLHxQBxn7FM/aSh0Kw6MQqyt/ClIRsLALlrU4o9KMyy3MyUGk2mdduSPcw9mvKel/NrvkcOgfItkBmHJAVObOfY7dr3ZCPT44WeEIzGgGgdpFKUxxaUBUX/9jbzv4XQ3Of7wDMDzfv//4sCLv8C336hpbDNxw/i+d/9DxCPLMrJgOPZFq+uDyBEhHcSi8UWqx8dws89ZqcbrF/NqN9vOMAeHm5w8/IAcALCSqhOQH+wgRARw6Ahn9bw73QoKwv7+Yyy1vOA8kqiPwkIZVrp7SXC1AGevi25VggTD1EGNPMO29cToAwQa43m8Rrb6wZipxDLALXmMOSbiFAFmFu1/4I6TMP73ENOLXBFH2ksA8qjFv22AFrF8J4oUL2RaD8YIO80YsHuxSgZqAMv2LH2qIP8qoJvwuhNgAdrQ9ZiDJLRO4H2XYvioMdwUwEyQu6Sj6ynnLVYSrSPHBbf11h9HKDXIslROfDqHWXB5VKgP0qMmQP0d1ZwP5gzNKPhAMUEVwGXh/aph7nioC53CqEKOPodhZtfdzCXmmFGLw2GBxb62jCspxVwhw7CSpRXXIkcjuh30rlL8ir1hQZ+cXdnHnonWfEyZfru9okHvEBxx+MpbpnIqbdkfocjj/qlRn9ELy+DlwSE5yrdcOJRveTgm6XEahAYPmqhnleYPBXYPIkjQ1su+XeuArrHFvUXhpLbGw4K0XBw6s5YY1LeCLQX7JHsjxkOJCIraULJ62j+mcb2UcD0qcTuIYf88oYVBv0hQ5hUK96SR+odA4Gi5mPthInFky/I9veH/L3eCuyeOMhWon5FL+bugYCdRNSXlObOf5L8r5dM1rSzOEoX8zblQDl2exYxeSawfUyZulmzsmXyXKI7Jqvm6jyAkVXfXRAomTWBhwgC9auI1cf7QKOoWe2TZdzlrUhJvHyd3SSFsKQqob2sNMLOIqZP6V/ePuRrPHku0J0CesPUYwQmzqouSXC/Jj82mxRyFDmYs2oAY2G7tMD2scD8J6xvyXUzxYrbtPOIYpk1+8DsKZnz3P2YlRVZMl7dcIjsF2KsZ4mKwKK+5CA8zPmaF3dUOzSvU2rqhUB3EjD9UjIUKQKzpxHLT4CDH2P8u/pNQHcs6fO+wtjtKB0w/cpj+aFiIE5SHjQvI0IKeGlPCfjtDKiuqJKormOSIgv0h/Rtt+fA4kcBm3ckzAajjE317L00aw7MuqNX2awjik3E7lzCrHid7gNw9hJaEWNi85hK3J5IzJ96XP0VhdlPU69kS0Cht1SG1JcRZhfRHstR2aGTrDXL40dVQBruAb4GGcBNXvmUbMr7yiXPoU7e1OomYHch0zXCc10u+btyGRk01WFkeKNMPtg2YPmBTsnX7KcMqfrGVQLVbcCQwqRsIzB7QSCwek+ivOE5C5r1Jut3FMplYrYPKUNmPQjTYzl0R+ie3tbVY/o86XWN6FMnZ+5Q7Of0ejeXDuvHmn7xVwRI0hFouEqivnLwlUR7JNFcke20tRytCqrb14+IAAyTPXvsSznKh7OyIwcnZb80K1jkHwkpMlsOs+2xhtlxAag9kZi89Ey1fqhx8v0WvmSSKl9Tpt8yMZhVNrNnjrUqtRirfXRLdjoUAraRqK8dhrka1R7DTKK8CzAbss+qDeykvKQv2uwCVB/SNe+xfVBCtwHFyqE74qKSWXuUNz22jxuYlYOv1ciK+5I1JcJHJrRKYPLTFbbvz8c6E73z3HYfmQib9kN6hgMJS1DElFrKWn1NJjtKkMlOMmPZe9h5AV9ImG2qZpH0x7qKDJxZWwxzA9VTQdB81aI/rlAs+9Gv2p3VqC47Xj+HJYo7BuXYmWHX583Az5rBozurUb9u4TPzHOLIQutlj1BpekEL1o9AYmSmQ6nRnRSYfLFhmqxlDQoAuIMKatMjVIYMsCXDKqyHmxbp3HgC1M7uPaSGoUdy1yNM3/alhkJBbQegHxCbkum1TQmxaZnQOliEgwZyueW/AeyDdfwowx09mdkX6j09nUlCKzYt4pTx8mLTkpk0mpUkMfLvQhi9kZCJVU0e0vGWAV/HgBwh5Vu/jznsJ0tk71WSROsgjCaj6vceVwiBONj0u5yE+zOwxz8DcPyFl8LWD+JvfvDv/Jk/72/94L/8cz824BccWE4+eRD/5t//1/Dl3SGsV1AiYrOtUFYW27sKh8cbzKse06LHHzy7wHTWYb2qIWQkW2k137OvSrz/qy/w4xenQBA4P1/i8genOPjkBiFItL1Bf1dBmEAW7mKJ188PoSaO6oOBjJNaK4SzngOFDghOop702F1OuMOSoE109HCGqYPYahx+cIObFwuCsTsJ93AAthoffusrfP7ZA6gd01xjESE7ifrdNXbPp4hTD3VtAMHKB32r4euQqlAAFAFmOiB+MUn1KkCYeFQvzejnFBFkNyKgV/RO+qmH2qjRq6d39HciAPUrhd0TC3hB0Pv/svdmv5Jk+X3f55wTJ5bcbt6t6lbX0l09Pd0zw+EMOZRpSYYASzJkwNA/YMCG/Wz43a8DwwIkWa82YP8DfpZfKBqyAJs2ZRmkZI1mOEuv1bXX3XOL7Sx++J2IrOYCSvIYnCEYwMXdMmM5EZkZ3/Pd7vRUDwyY8gAAIABJREFUn+WEPPmyOmFDoo7YjaY98pRvhNHwuTAmQ4hONJEw86g2MUVlRNeJgUl9dpAkZ510WK6/7ok2UD2zUnUx95iNHhNnha2Q5FpfBWGieghVhFmPvsgleTYTAGXXeiyKD9lwQyL7VlxouoOInwf0TgswJqkgk1fT1AKas1pqT/JrTbeUJOHiwryV0JrA42TvtZKUU4VP5wIlvwMjkMpqhSslkbU+CxSXEqwxpKfGbC9f1E6NCbbiX9uX0w9+v0GKGTPxDBeXeqws0b2EXOUrPfpXh/TDbEtKuRWA1i5lrPIbAYamke1LOmtMycryXO2EOZEER+jmkuqrO/GsZhu5ZvLbYYxS8fyMMSF279kdvID7hE/U3hObNeIpG7oGo0nyYU8Kh9ozWs2xALfxOm8EIAC0x5HqlfoKG+ImjGm3rpTHD4Fdkua77wgVdkn6VoeU4+JKjt8Xwmh0c5EtN8dyU5rtGGXbQ6LukIIraZUylqbdg+DRu5g8hLpn7/d8i7UYGJIhFEiYQGGw7EY8dK6SyRZhNkRWPlSamI70+pYZ+24hIVduosZryhfJL9wLwHFTAWGjHzKdy5DGp1iJpD1fRzb3xWuq3P55w7keQZzZpwdLsFHyXqZ0Y+1IIV9yvBJQJCC7PVCpNkZk/f1EGLGsiWNX4/C6ApLvVapQysuQpOsiLy9uw+i97BbJawoUq0BzOFSGyPthu9RkW/m/L0iWiCTjT9e36eWa1cMEh4N8G2kTKCQBkpCJ3HzwKUOyMaRjFK+3gNtuIdJMuxGgpb34Mof30/E8veWPHTooVST1jSbfbmK9RMqsUiDV4A3ch0u5UsZeQpCSP7dSlLceVwi4E5Ztf00OXs1o1Jj8rL1I1ctrn1KGhSHLtzLu+cqzuyOMWXNgsLuA3YrfU/soYWmJLXvbtzwwe1G/5Qn2AoaHGpCh41P3kXapx6RgnTya/Uxky0MaLFEAp92GMcXWrh3dMnvrdanG0CEJaZI+0SGddfAAmjbQHgrYy9c9IdPJhqNE5jsRWWzIkwc1xK94Pk03gEogyjYkEXbwOkr6q7d6TEAVGX0gZFKbMkx6Df7QbJtu4JWiX2RpktaP0l+5rkWGmW2dyIcbn7yfCYReNzR3J9ityId154X9cxLGNAA1SWwdpPYSzKR7AWhDQqyfWtmH6xp3XMn6kkxaxUh229IdV9irJvkpUyDPsISYPKRGfJxlNoLH4ViyTbdP1B36Lyc5elUTS7sHcr0nlLk8pu6IpRVmMY1t1Bq92REn5dhjKV2ZDbGwY6LsCL66nqGfEiBW+Qh4B4Cpejf2Wo5gb/Bhvi1jffvvsAeLdpDeijx1BK1/DA6IXiT+KqXQxrf9nDDKalFaftYCfmMvnZUxRpTREiiUgHH0QVJgwx8Fj4Nkd/j5T1xC/OXvsfxzDiz1n/6QX9zFe82P/vcPuHq2pGksq8+XAirfTMmf5bigefVP3+HTf/KYsLaszmdkuSM0BueMSBDfFJx9+w2fvTjBflnw7v0LTidbvvfvfsz2XxxzNN3RXlQQILYac5Vx83un6I3BNwb7WQmd5v57F5Lgmnvmv19ifzaBoDg7WAugtIHDf55RHDbEQti9xb/KiXlA/c/HTO9s0YctdqPg1jL50vDZD+5TntSoew2PvvEa1QngcU4TbeS7X3uKul8LO3KRyQ3WosfeGMyyY/pJTl9b3GmPP3QUjzYsz9Y0jzrc0pF/sKI/7dG1ojg39Gc9+eM11fOMofvLvrfBTSUMKdto+I1bjn4/45vffEZ5qTi5sxIf4nduiEbqNdxRL/7RHRz+SFNcSeciCqrXmun7txTXEn6kakP1wlC+0eidFFf3B4GTX30j/YxFxM0C6psb1h/IB/nsY4v6tVvsRpGfG8pz8aH6IuInAbuSupPpU0P1YE3MYP4zQ9xmLD5W2LWA18UnBjeN7B73ZBvF/AudAnrkWNuTwNk/C0yemvGGPb9WRCtyun4hzJ/dKuxKUb0w+BKyrebRbwHf2GCatL0G2iPpQl3+VCRx1bkAweqVkh7SVtE87MQHF+CD/+kW3QpQ9jlj9crseRzBjs8jy48TY2Yi3bGnOwhMn0sqre6F6ewO0+RBLb/3MwF3u4eO5r2WyUthrI9/oGgfN7iJyNDq+453fqcGBDQd/yDSz4QZHQDr4Y8F/DRnjuXHnvbEs/w4cPxDT7YTYLC7F7n9bidsMDD5Sxf088jDf9yy+6Bj8iLJEzcwfR7hr10zfxLHG/1uuQ+TAbnOmtNAvhqOXZ5X3w3U7/W4UvpA3USAzfZRwK5g825g/aFj/mVg9qVMChTXkXwFu7NIfSYdo/mNYvGlXG/b+5Gb7/TMvwy0x/KBePxjT34r+7e9H1l+0pHtBCzY5D8tLxTNmaM8V9z/nTqVksPZP2tRHmbPIjffDJz+S8fxDx26ixz+1DF9GdjeF7/r5mEcqy3O/u9WmL4ZbB6IF7o7gNWvdjQnMjbbh3GcdJCQHAGuvpR+U7uOrD6S48pvJfl2ch7YnSm29yO+kr7E24+EZbz9dk91HmmOUspwSkqu7/sxNMlNhIU7/oMeN5M+y26Z2NlO9r28jmzvKzYPFKuvQ3kTef1XIpNzz/WHmoPPPOt3Rfa4+kA8kuvHsHmgmFx6mhPF7EXP7kz6LNtDNTKtbiIhM6v3FMVNYPVYgMvldyTFtL6jmL0M5JvI9kzjc8X0VWB3T4Dz5a/tr2US8NUerr+5D0rqJyLTLa8D9bEemcV8LYFB/UKxOzVjguzN1zUXvwbLjzsOf7pjcu4xrTxn9ryT9OgadvdE1rd+X9i94iZw+dfb5DVPaeOpDkW7SHklUsj5lx2LJx3be5KY2x7Jscyet9idnJjpq0B9R0Dm5p5m+tpJP+kDOQ/5rQC3g09rmbDoJHdgkFsGqzj4dEfUsHpXp+RpOP7BmqtfMaze0+xOBGDVR+LJLG495aUTJtFFjv5gw+5EOiclmVixO9Ep1Vhx/HsXwiLnivLSM/+yoTkU0Hf1rYzmUHP7viXfBJoDOXfXH1mqC5/CesTH2y4Nt1+TwB1fKlaPZXalm2naA423is0DTX0sE4TlZU950dNPFe1SVEK7kyylF0eaQ0N17pg+2TB9uqW4aOkWhuLGcf1hhukiN1+zFFct05cd/VRz8V1DfWyo7+QUl9LtHHJFthMgNkzytEuR7pcvN/RzQ8gU9Yl0G7YHInOuT+SNL9s6bj6wIs1cO7bv5KwfZHsAiXxWuIkmWM3kyQp720k3ZReoT3PqU0v5yRtJJt50rN7Lmfz0De1hRruUXsnmKKO8aMjWPeXrHbr1VF/e0s8tGFFila92NMeG7b0cu+qwVzWuNCkBPbC9X1Ke16g+pP3txPu9LCmuWrq5JWrF9kFFtunZneXozrN+PCVbtzRHOdlNjb3c4iqDvW1QPlDfK1k/nqJckBTgqx2rby3JLmvy8630ehYaXxj8NKd4disVIUDIDb4SeezuXkU0GrcocFM7sprm5RXmYoXetrhpJv5UDf1RiWp7+pOJfD+d4RYlqvd0p1NiYUfgGascNy+EmStsktB6/OGcMC3EA5pSZQXsavTtJp3APbDzB1PiVPoxVesIZS5g2HnUNqXaai3rcJ6wnEGMhIMphEBYTMa/0fVsv3VXfnbiw1Rt6sQcui6LnDifytfBnDibjF9jumyWJSmrRWVGGMUYJO02RuJ2yz5NN8r+pcqRUIvnduyptBmhrgldT2hb+ep6QtcTu+4rP8feyffh5+H3/w+g8hdpUSmd+Of59Yuy/FIzlrMPz+Jf+R/+Y1qfURhHlfW82s757slzupDxup5zvp2RZw4FWOMpjOOo2PG6nlMYR2l6nq2XAByWNa3PaL1Bq8jLj0+59/Vzvn30ki5kfLE+4mZX4YLmZLbl2fkhD06v6bzhejOhzHsOJzVfvDrmo/uv+fjlHZaLHcuq5qauuDif8+79S1ZNwaJsUSlX/fXtnKroWG9Lvv3OS356foezgzVX2wkHVUPjMnqvaXtLnjlurmaoLJAXjrPlisI4nlwe0e4s00VDaR3Oa7a7AtcZ8qrHWs+iaji/mVGVPdtdwd2jFbnx1L0l04HOG3pnUCpyezvh4GCHDxofNLOyxQfN5dUMkwVM5ulqSzntqFcls8MdSkV2uwJrPSEoTg82vLmZEZ5OqT645XBSE6LizfWcEDR50VOvC5SJ2MLhOsNyueXqYk4x7QheY3NHCBprHU0jekPXG6bzhq4TSYj3msWspveGvje4PuNoueFmNaHfWrKJYzZtWG8q/NqCidhZR19bJgc1IWia20IkRpOe2bTh+vUCM3GjJ1MB2gS6m4LDeytuVxOODzdc307Ji562tTJR0RrUxKGucszZDndRMXlnk4LaTOoh1mgTcL0ZvZa2dPRby9n9a978+JRYROb3V6yfHIh8+qYafZhZ5fCdgU2GPuyIrwvCYc9k0dC1FrfLUI0hTjym8ASniK34LDnsxP/qNerKwmlLlnvCF1P8LFCdbeRYbnKKk5r2qsIuG9ybijjxqJ0hu1MTv5zi77bE1ogEHJidbdhcJHY+Aiaidka8qiCezUoArsoD0SmyK4t6uKNf5/KcoDA7jT90qCwQayPeUadkPVkAp+V7UOLJ3BkwoGthB9/uRI1ZlIkdBdlNhjvtpIrtPCdUKeggD6heE9PrUfVyA616uaHy03QH52WdQ+eou9OhtnINZitNf+owN5l4Pyee7Fx8ZUP9iC+FyZa+WtBNYq6OJFXJXmZjynS0IfldA+Y2E+9oJ9v21b6aBpDpQc+YLG1qYcGVE59pdisf6n4msnAixDxithq70jRnDt2IR9WuDDE9VtdyEz6w4L4KZIm5z68VzZ1BAiVfCmHwm7uO/NKI3DxIerGKe/Y1Gtn3UIlCwa413UEgGpi8lBvmbhHFB9oqhqTsfiE+0vK1kTTpIOdhYGG7g0D1RgvbOhk6FkW2r1yShM4E9NskkXaT+JVO4OJKknKHTltAOnwzkeqL1FgmhXxK5DY9iaEVhYB2Is8W5lmNrPvQLRuVeELf9mpGE1Ogjfwtv5VJA+Xk+hm8uNkuJUynIK92CeWlyH8HLyfsGfGh11SY4HQ8qQt1WAYlwbD+odf2bWY85LLf5ZUwvoPUWHeMnsxh0kH3A2AWpYN+S7U2yKwHxUZWp4CtA7U/zpROO6R6241cXP1cJMrCxspjhkTlkKVqlyR1HWS0A5gbfKgDG+5z9mmx4zEKi+0q2ceRJU+drUMadjSMwXrFTRoPH8cE8kFpk6/TvvrEOBup4HHFEConzxu6S0d/sAZbJ1m1GiTdMgbeCuge5NBvn0dI7H4vjO+gHOAt2fbQJzn4H00nTKyrNDYxwkO4YFbH8XdIioBUazXU9Nitx1WarJZ6Igkmk8CtIQFYwohIvmA9Jh8Hq0TGW4qMtzsw5CtPSEy23YTx8UM9jAB1YVN1t2cqx/egiICdwYeZznHMJNE1v+noljm6D2Rb2XZIEl4Zv8SYaRn7YHUKfnLj36Pd8zHKxfT+O4xRkHUMCbhDhUwKPlK9J1RWmNYmJdv2fmQv48AuVxaz6fZBRanqRZJuozCnPo4dm2M/Z3q+6v3Iko5s5tu1IKn2ZGBAifvaov37QtiDUqWEnYR9qNEQ2JOYSABC8ny+FcTzh3ss/8TQmj+GxfzDy+DB/PPAWP7V9/7zn/t6/9FP/u6f+bHBLzmwLB49jGf/9X9JVjqqScv6fCb+uyMv4SF10qKbiCk98bwglAFVOWKvoRdZoV70ZE9KurMetTXk1wY3C4TjnuxFjpsFYpIbKqcwWy2+ukbRHwgTN/s0Y/OBw16J7DPbiW+wuNA0d0OK4d9XhLhZIBYBvRHPn13Ji7B/0JK9LAhZZPZEs/5aICqoXmmaU0kSrF5p3G+sKX9nzvZ+TDeriv5RCytL9UICI1DCmuzu7c+xOxBJq/KKbKvHN+T+0GNv5AbUTQOmkYoWe6vp7vXYN1b8pj+pJAhjJ/LRyXPF6iOPriU0prjUdEu5ufczkZDOnmp2ZzLz72cSTDLUBuS3iu5AAkTKc017JB/Qdi2MhJsP0llhqco34uFysxT68ERuBKOW8ArlkHEykfK1obiG7Tty/HYjPrLiSuSqgyeSKDeg+S1sH+xrRuxGGMTFD3OaU/mQthuFr+J4M5ZfqxSysl/X2B2aGJv6LOIeNZQ/riiuI9sHMHkhabmDZmColhmqX4gQv72Gn8wgClM9eZE8nEuRiuo+Up/JNTUEdQxhI+2h+By3D8SDV74RWa/dqpFF0l4CPAAOPgtsHmpMneTRw81VK2OS34ivcvaZSLyKK/FOQkrqDVCfyr7YjfxvqISpLkQqvLszVDeIpNJNpapGQIFIbE3DWO/QLVKFSoq11K1I/96uDEHJl6njmBDbHipJDF3JTWVzLFLB4nYI3SAVosPQRyo36qmrLyMlDUc2D/QoUVUhbSvJJ5WXc+ArhV1FVl+Dw58IKzVIFqsLSTxuj/a9qC4VwQ+SVRAQMH0hN66Dj0ukwnDwqac+0WOxvXb77sVsl3xkSbLZzUUOPIxrsHKDqLzsFyAM5R1h5wdv6fxLz+a+dPYuP3GsHmVjJUZ7KF2wNrF3po/Mn7bcPpYQkIFdy5r4VtdjSgM2sDuVdNU/vEjVkWL62tMsBcz7QnpOu5kezw3A5EI6WIcE2UFW6kqVqm3k5lWkjip52VLStBFpansgY6NTYm515djck+ASkLEqrj3dwoyS1+ZIY7dyXFkdMG1kdycbE2L7KnUQB+lXLS8DppeuUp3qaLzd35wPgSXdXDF/2tMcZ5IanWS1iy+cVMyUkiTbzXVi6mUs7TawO02BOpuY0pUj/VSPr5MhzdkVCluH8aa+n2qCUUxf9+maE4a1myrmz3p8pekrGeMhSdiVInt1VQo7SR2bQwJvNPJaG2Sg0ocp/aRDh6rsizCWxTqMXsCoFbs7GQdfNPSTjFCIrLibS1r6IFHOdpIHEKxCt7JNXwjA0H0gFFqkrG/tb7CKfqqxm0Bx2dId5ZhaAElMtRwhHwKNvCTWNrKdYUKhS4nKrtSpI1W25wtDtnW4iTCPIO9X+VVHf5ALsMmEqVSpB3ToBzXtPvF1GBvtZMInZops3eFLCSSSZGIzAptQmNGnPQCnAbBEq1F9GKWo+L3ncJCsmtpJmEwn7OLktXjogtHpuHSqDIq4aUZxUeMrO8pQYwqI8YX0c7ppRlb7Mbk3GE1+VYsf8aCUzsze0x1PpGolRqLV2KtaejABs2roj6fo3qNaT0wBOSHb+xsH2enQy+nnJXrXS72IThNLdT/2YYYiE1AUQHdO3iuHipGhWiXJW4mR/qDE3jboXSdsW+qvBAiLSratNXpTS9WHHyYk7Qjo1LaWhFmtRcK6bYQhbFowRtjNuh0fQwgC+nyQFNlcPJ3EiGo6YiX9Wsp5aFritBKvpNEpGCcS51O4WaMyQ3QeVRYSsOM9qhTWM3adhO0M1SUwVpCMQTl9x1f6KgfZ9nSy7758O601DMFBbp+464XFBIi92x+j1nuvJfypUth/reUvgOWfuPwFsPw5LPOPzuL3/vv/hFc3C7LM07YZ06pjsy3JrKe5LcgmDn9ZEIuAygM694TrgmhTMuWyJys8bmsxK4N5sKNb50wOa3bXFcoGuJU3wcHjGA874i6DIkha5cwJA+MVapMJaNsouhMvrEdQkEXwsg7lFEPEdZw67OsEXisvwTuZpEHGlEzqp35kX5SXfkwSE6M34nuIRcSsNe7YoTphX5SXbcfSo3qNSt67UA7MjBrDSiTlMkAWMbcp+bLTYBJw3YqP0d3rsM9y+oV8COs2Fd1PnQQSTT30GtVqbArlGTyFMogQSgHI9lokJ34A6SeO/DxDOUV36MEgntOZMD261eKlahXuyJG/yaRbM3WUSuG9BACZrbBCQ8JncSn/r+87slszBrrk15r21GN2WsY1quTdGgJW9r6jCCldUhFTWMvQMfk2W2NvjbBFk4jqZX1DoIwvhHkaWJR+Id5GYRXUyJTYTWKnStmXYAVs+4mMVVTQnvXY62zfnVq/5RUrpHM024nE1pfDjKoa/VntqaN8k1jfUkJ5lGOclBj+rnxiCJIUN9g9gEAh/s+7kWy9H5ehl3MYL4D2RPy/5SsBMMFEFp/D6rEEGLnUQxq1vDbym8RwhD0AEr+TsEO6l8TXfrFnk+JbQH0ItRkCZsYi7YEZSf7IkFIb+3li+8rI5KWiuSP7OFzHdq3GPk27FZ+l6aQSx64TW+H26/MFI1NnGnkcb10zWQP1aeQgSZmbU5V6KuW5WS3bCIUcnxl8ozqxWIn16Wd7RkuAb5LBemGgfC4ANb9OrMFUKny6uQQYFVep4xXZpi/26xn6OoeuTKn4SZ7WVkD68NoOiZHzFckzJtsqrsUH2C/knAab2MsqsUhVYsIO1HgcdivrGDpqTfL3Dem5OrFJpk6/t3KMeznyfpJGu2HiIZ3/JFHsp4wVNnYroMSXso6slnCjgTmz60i/kJqnaCScRzzScl3p1Gc6VEAVN2nyIVXeDN5Z6QkVoPv2xIZJ0mXxXwow0V0cx3YYf528rjHbn/N+JkzbwJQFK5LioZt28CRndWLgcgFpptn3U5oueR7tnjHMUk/pkBY6+GztVsKMska2OXSqDnLi4e++SOOROm/lmo+jXBhku65U4zaLtaddiLxyeIzUy6T3rz6O57CfSGXPsH2f7/21UYvndei11F7qeLIm+TS3Anq7qbwp5FupPdFOnt9PRII9LD5N0AQrlWPSTyvnK1/L59lQYyaTLCFNKIhf0aVtD/5aAcIheadVqgka6pvS5EeG+B57kZqSwKaM1aDKSOc8U2Olj4pxrLExXZB1pUmcwRuZbX3ytQ4TgEkpMTJ9OlV+qPG52c6nHs2UReCi9Id2YfSpx0yn/k0/jmfIZZJE+ZjYNz0el6Twpmuh8SNYHNhI3Yn/MmTiM5VjjuN+mTb5M0Eem+n0PpWOZ2APey++zVQ3ozuPLzNMLQE8Y5flwPwNjOMAdltJZR1+ljdLnXosHbHIRrA6JLgOtSlRa5ET+zj6aZVPjKLWAlbbTnopE6s4pLai1N53mZk9e5hqUb7Sdfl2D+YQzAPyt8FL6TxD7QlGCzgc/p+WAROMoT1DjcjbYDAk/6RzI9Aen991exA7VKH0/biffwRz/EkhPn94eSvU55c+vKe8F//qu//Zz329/+hnf+/P/Njgl9xjGaLiLx1/yeOTS/reQFTcXM5QOjCfNKg84FY59k6NmfXkk07qJABMhNMWnKYoe6rDGs5avDNkF5b2i7nUcFzlqKDAyHOqR2uywsnfUsgLThO3GXglkqs7Df1hQLWa4lzSX1WnUEedgDkTiVYAm76xuIn0JpkrS5h6kdktfEpLFEA1sGvRRKl8uM6onqT4ZgPFa4M78Oi1EYnbjUEtByNeArIIsFC9EmDdpg++engzVgIqD90oK7HXEkpkdsLMxQjh/Vqkh0ctplHM3r2lfCqhOMuTDdmNQXeK7tRRPVqPTE/5RhOLSLZK6W1bAUSmTYXZa4PuFf37NfZWo9L+5TcaU2vC1I/VAeVTSz8P4s1sNeW5Tqymp3phUigB2JWk03aH4te0V2YETQfvX4MaQoviPuG1EeBnOoWfBPxU0l9VhLDsyVeSsGs3cpNQXkoYUPOoQ/Uatwh0p17SWhFA1p6EBIoU7ZF4HAdw6RaSHutLYQb9w0bSeRHZY3mRJHinwjZ3ByFJ1iQhtjsImFbYGbuRsSbIuLWnnvqBEynj+80YtGJaKF9nwgIOEfxFFC/ejaJfBkytqF5pSdQ9crSnbgwcUkNqbgGrb/aYnfRv9vNAeQH13SAAdbgxzsDsxMsbjSSKaq+4+Pd6yis1BtP4IrHXb4TpJQi4FTmmsJDtcaC8EKDVHwgItGuoH/TYjRxb1sh5URGaU58khBFTC3BoTwL9VH73pUgkp89IfZdyg90tA32SaIpEMmLXsp7mOEk1ezmWfhFpj8KYuKtd6k1NN6DN6V5O5kth4l0Ji8/g5huweTeFAKXeznwlN1z5mjEZtltG+oNIvt4HEhElebW4kXNfXkiq7FCR4SZyPeQ3CVRWMHklrG7WyP71c3mtV+eJ2V8LGOyW6fsBIxtZn0oa6+JTYeaHdNuoBQS2R5I4i2Jk+upTuU6qVzJe2Vb2afo8jPJQojC2wUooUHsgjKfUWLBPza1jArBpXbUwlfVZpLgU3+kA/qqLkK53Aa19YnNDAlB2I/s9fZXk2QkcCSOqKK4HeSqp2zBK2ispjCrKDWyw8niUBB5lW2GS85Wwa7u7inaZQmuisFsykSGs9MC0u4mwpHa797OOYNSltNep9O/uzlIP7yayeOIZOmr7uQCP+TM/hh71U2H43ERAbHkj+9YvBOC5iaI+0dg6yTmT9LOfKrq5+Fenb/wI9OoTTbEK2G1ME1+S3GrrOD5PACVJJgrlbQIFQUBRtxAw1S7FA2t3svL6yFDcegFXyfeZNdK1KUnAcT/uedruLmC6SHnlx1qW6as+1XzEEYiZToB0cRvoppp+oinWgXwTRnAzVIHMXjjqI0NfaZoDQzfXNIeG5lBTXEv/ZnXuxomsrJb90El+6nOdgBxjom3Uauz4VCHSLuSzKBqFqQPN0lBeOrKdp10KcxwV2LUbk14BqtcNykW6mQAuYbXTtnORfA7dptlWAEq7FJ9hTMCmPZJZlmwnDD1aEaymnxn6eTaCyaG6I9jU67rppYZDCwM7SD2HXlIVIrqT11OwOk0USnLsGBbUemImHZu+lICgQcLZTzKpCBkqQazG7HoBqrlMOLi5Hc8XIFLaPrFiWuFmlpDCeXQnPawqRFTjJAgoyVpDbpLnssRPMrrDQtbzNrDOtEzcl5kA9l2Sp4Z0zQSIRSZMpTVSaVJKB++QFqt6J1LWBFoFZAZn1GmNAAAgAElEQVTI5H8jOBz6MpUiGunmVE2q+HBe2M3EVkoAUbYHcErJ70nyGgdWMEZiZoRd9YG3+zXHAJ8BhKYOTZW+0FrY1q6X4J4kw1VaC0va99Kvad4CkVrt92no33x70Xpc/347CfwPQUt/0pfS/JGey79YfiGXX2rGcvL1e/Gdv/NfsJzXOK+p8p7bncQtax3YrkuWyy1tL2+iu1VJVvZoHelqy/HxhsuLOVnh8E6PqbEmC1STlt2uwK9y1MSR5Q7vDEfLLVc3YlZROmKMdCnWlxWqkg/fatZijGw/eo3OPVoHXCcywph6GRd3N6xvJsQ2yWnS82OTfGURketamRHV1hOcRq0sLIU1VROX7u4iJgu4OoPE7H3FgxWAMqBqw+Tehu2bKWhhREH+r6ZOALICPesJu/2bgiqCPH5tiRMnfXYKxqRbr0Rm3GlhU51CHbfE65xoIipKn+HQtah6Ray8bN8pyN/yzmnQN8LcxplH1QZdK/GIAboWNjfmEWxAr7N9H2AWiYUwr/pG2GM/9QJMi4jZaPxU+g7tjcEtRJJMALMSCZKfBvHrWYhzh7m0Ui0TBZDbW+kYVMnfFXJJQR2YwmExdbpxS/st7I9KjJkS756CbJ2CBqyAbJ/WEYpIzAMmdb/ZW+k0VF7hZl78cIkBG6aIfJFqXYJMJgxjojs1+rwGBjnYOCYnDsm1kcSGOalnybYCMstXBjeLKdVQ2POQalBMo76STjvIPN/2BOpUUZMlRnBYR9QC/vu5zNDrVgDnIGm26z0LO1zLZic1K3ajZALjYOgJTOOXR6JFmGX91hi0apzhHxY3l17HIYF0SFbtF8LgDp64mO2Z42ynRrZ2YEvcRB4Pe7YyGpH3Dqyj7uTcZrUwfdK9KLJrFeR6GXxdUe/Z1+F8abeX7wIjizRKgtN5HJ5jOgGNOqXWDsztEO7jqzgmIlevFL7iK8mcIPswJPIO6a4DAMt2jEmtA/M1sqle1mU3e09g1Ht2YmCLh/M6dP+Jp1NCc7qlTBh0CwHabpJk0n4/NiSWTLnEzJWJyU2/hxwGlntIAx7Y9HyVklAVox/LF4xBXdkuJoYxpt67tMk+jv18Q5opirGGBAYmUtYt/jq5ObdbuYZclX7OhFUZWMpsK68DEBAYs2H76bz06dxEGbN9QMwAANL5Gc5Fkp5HIwyfBPPsr7EhTdi0jCyc6SSlFp1YxyRjHq5105J8fnKMQz2Wq9K+JTXO0MM4sLh2G8VbNoCVBLxIYNDu4shEDuyrinG8duSaF9A6vu5Ktb/WdjKegxx6YJAHn+GQdOuLxGwWwo6FTCZBhv0aUkmH9Uazf10P4E5kxvLZ1x6IxNXuhJGMiakTcCHHua8yYqykGaTC0suZPJPpXGm3Tw8mputll/x7Kj2ml8cMqbbKM06aDsyuLwW0Dl7EqMWr6CZapP9apMty7Qt4HZ9biOrHrgQIukpLXUmZvNeZwnQBQkzrZ59a2wepH9k5XGkkZbY0I6hWMRLM/j5FJY9fMAlAD4C0Sz2VqdoEHwm5BAP5wowSYN35MU1Vu4Avs3QNRpFOZnpMoJUHJfVNpkdfpu78yFSiFKpzxMLyRzyBcWBezQjS9E4qPaLWAjrzLLGKe+ZUxUgohdkcKkyG9UVjGLopRyns0EkJjAE/A6g0bwHRFOSzB3iy/7GwEtaTtoHNiJlBrVOtSZD1xb7/KmuYmEFVFFIRYrRUi6QU2ZEtVHoviwX5P4jcNQHG6MNXGdFBHjv8DHtJ7hAA9Cctg28zhj8HjOVZ/KuP/n9gLD/++3/mxwaQ/ekP+cVdTosNxwdbjIr89Xc+5pvVC7qY8b9cfIvnmwO+c+cljc+4bKacVhu+LA/5a2ef8rtvHvPw/g0Pq2t+232Db5y8Idee3/34fX7zgy/4YHqOVZ4fb85YdSWrtmRqZeaodpay6vjo9A2/evCCT7envK7nHNx9xbuTK35wc59p1vF8fcDkeM007zjfTPmNs2e82B7QBcO2y7m8mjEpOvITz8X5nOXRlt4bms/nvPvdFzQuI0TFq6dH2ElPUfY8Prriqp6Q3Q88fXPId771hNpZPnl5ymzW4IPm7tEKazxaRT774g7zky0PDm55tZ6TmcCmLvBe89e++xN+fHlG6wzWeKZ5z7opmNztOL+eM5/VbIuCadVStzkxKpSKhLKnbzOOPrii6eXyeWex4sVqwbTouFpNeP/OJY2zPHl+DHmgOGyYVi1NZ3mwvOViN+HubMPz2wNWr2fYwxZU5OxwzdMXR1Abpu/f4r2mqXMWxxuazhJeTTh5/4r1rkTrQNda7p/c8GY1o9kU3Du7HvH0q/MD7n3rindmt3xxe8TV7ZTCetRZxO9yudladuA0J0cbVtsSe7pj+2bKRx8+52dP75IVjiwL3Hlwwa637NqcD44v+OHze9w5XHN5M6Moe5SKrC+nTA9r8sxRWMe6LmmbVCQcFGFtwQbyRUu7KsjnHb7N0FlA3VbEr23JdKQqejbbUoKNNgUmi4TSE7cZhx9dsW1ympdTTt+9Zr0rcZ/O6O912KqnKnseH17xBy/O6HeWozsrrj8/JJaB8tGO+C8OqB93qCxgbOD9u5d8/vqY0Gvu3rnl1dMjslnPZNpwezNBXefc/c1XPHt5RD1NATNVL+EuzpAXjmZdQKc5e/eSV0+OyRYdfZOBU/jkH85OG9pVjp44sB7vDNFp2GQUF4b6Gw3lJyX1ex30Gj3riUERtxn9QyeycwX2oKWvLflLS/FoQ31VySQGoHtLf69D7TKiDZipw2ce93IiDNSBw0573GUpILPWhGUPjUE9buRxpy3BK1hbsqOG9qrEbHQC0SJjUgcd/cYyvbul+Xw+TiSoXuHut3BjyXaSSpxtFPVpZPntS3a/e0J7GLHvbdhdldirDF9EYfWfSf1Pe9ZDENWDdOKmG81sHzBjbzW+AH/Yj124aDA3Gf64l0kbp1CdPH76TLP+moREVM8zXBXp76TH9Zp+HqleadYfeAkxakUBEPLUHzqVlOX+IBBtILvJZMJj2ZO9zAVYloFsq8cQGt2liYZKJkHK15p8Fbn+1UB+aUaZu9lqJi8Um/ekG3j9gSdb6VQyLwoJEHlqH2H7rsNszAhcB5+zSrLgkIGfBCb3N/Q/WpCv96B+8Ef3s4hbevILQ7uE6hzqu1J1s7snx4qKlOeKzSMBR+1duWGy14axQiJ1sso+yPOlegS2jx3FGyMe2cm+8sdPIi6lSWcbAQuDpBWVulr1HtzpTlG9kU7T8hLChLFzVTuRSfsS2ocdsx/nMumxFQ92v9hXE2kvoHz6XJjq7UFiYrcKuxXpcFYzTlAU15HNI2FT7Rbc0b4KxBcpzfhDNQYFhSKx11rWZZr95MP0hfiUfQnVG2FdlVdjOJCbimx58zgw/0yP/uJREo9MMvWz1B1LCkRK8s7Ne1C9TAzpPPmGE1C2m0iohKkWyam8nnwu3Z0+V9Sn6RisrNdV6bxo8VkPgLafSU9syCSFeEhw9YMcfq5oe5UmGKC6DLTL5Cu9lRoaooDf+iR5La8lDbdZ6rG2yE1Fwpw1yT88E+A5e+FoluKJDUb8td2xgNtmacjaSDdVo69X9yLpFfCtx0kAAO00tg40Ryb1tia1zyTJcL2MUzfT5NuAmwpjO9TPCHiGfBVoDrPR+ytVLQJ4tJNz0S4L7E5SYlGgSoUr9Tg5E5LfdfSNJ3ZZJPJqDD4zbRw9vUToDibCQrcBP83Idp6QCxA2TWITtSJM9xOTdt3j5/lYq6L7xIoaAbBuZiEl3LqJSRLktF6txFc6yeS5raefW+yqRzdOAnm0MI3R7CushrAk8XwmgGvFK2t2vYDTBEAjiRm1MjsYSotOjxkTP11IExQKva6Jk1JkuI0wmaMHdACSNttLa20m7OnBfAR7qukk3RX2jGYCnDiHyq1IdJ0XcBnjmBcVfdh3WQ7MZIgSSmkzvtJjOSwp7Ic/JKv9115iIP6bPP4XefklJvX+tOWXmlfOleO/+uC3eW9xxV+ZfcI/uf4Gf/+f/4fcKTd86/A1VnseTG6osp551vJgfsNVN+UbyzdkKvDbX36D79x5yc6JpDSveqam47eefpN/dvUemkjtLGfTFcfllr988jmLouFvvvszupDxj19+xBerI37t8Bn/4slDnuyOuNpVbF2ODwLEvvjhOzw4uGXdF7xaz7k7WfPewRX3Tm/51uFr3j244j/41k/Y1gJa/va//3tsu5z7s1ucN1RHNfdPbgRg2YZdJ2DlaLnlR8/vSSJu2ZMZz6ToWBQNT88POS63fPj4FbtdwaotOZzU5MbzN979mOaiovGWInMcTWruzdf8zbOf0nvD3cmav/XBT7h6ecCv3X/O0aTmYFrz0Z033D+8ZVJ2hI1l11oOJzV9b7jYTfibj34GwAd3L7htS17dzHnn3jXzuxvai4rKOh4sb7HGczSp6YNhuy3RE8d00lIUjqdfnvArj19AGQhBczzbsTzYUreWR0fXnLx/RYyK3DqUgsx6njw7oSoEWDV9Rt1n+KCxhaPuM37/80e0fcbZ0YoQFA8Pb5jMWopJz3KxY76o+drhBd2qIEY4fXjNy9WC2UFN8IZZ1fLyeoHzmruLNT99c4fvPXrKpin44OycadExyXsmy5p6l9P2GZe3U3brgghMJi2hM5w8vAETcc5wdHdFtyooJx1V1eHebehvSrFABI3bWtomJyscNnfMD2qKk5rLyxmFdTz48A2busCYwL1ff8XDd644WuworONffvKQvsnQuZcJARspDxu0jjQfNphKGO4YFZsu5+hgi7GB15+coPKAUpHVqiIGxcH711ysp0wPamzVi/1jm+MuKpSC5qYkKx35ueHyZsbkdItb2zElNlSBOHf0tUVVnnLS4doMrSOx16hlR3OvZ3m4pX6/FT+zDdh8mBGFGNQ4C2+ygLnK6O711BcTMBE76aDT9CeO5e8VFHd2qDwQrnO0joSpFylz5YlfTjBHraT2OgW1QTlFlnnUqQRZxE0mXuinE2Gt32nwB4448eIjfl2gnGK3KYSpaRRx6sQ7rSIY6A8d4aCnf9Ti54GLVwvpXF04musSoiL/aEV5IeCuPQy4mcjbVZKtxzzIvp2mPrZSfu9OHX7hUK1BeYWuDSRWXmXyGN0qwsIRbWT3GztUrzFbTXMq5e/mNiNbS2qwvtuwfewwO43ZGGIpbD4HPSGLZGuNe9RIgq1LvXQ3Gvs8ZyibJzGRbimS68FPaG+lFqk7iFx9V8CZL8UCEI14gLe/uRvBWdQRX6bwrJTe2hzL4+s7gfJ1lnznic1Te2ZSWOXI8kea3fMZplNs7wd8GYVNboTldgtP9SzDbhSmUezOktd5mgLD8ogKKfAssfr2xoiEHpFE64FtV6IQkMRfkt8b8guDq4QRthtFf5DY+KFr1zBK3aORLteQC3ue30g90cB8NidDeq18dUsBY81x8kdmkdlPcpFXV3H0n+pe7etgKvnbICcurhTVGzUygYP/uj2M9HOpizFtStYt92yhpJvKerJaiZQ4E+m0S2y3XQsg052w1c2JgO1sJ88b2Da72Ssbsjqy+FjTT9N1VO3Z7agGNYUcw+D3daUEYhUXIiP2yR/rJgKMfZWkwxNhgbWL5OvEQHvxiA5geagw2t1VYyposBJa5StFv1CjEmDoGo1aCRuuJMxrCKeKSiTK64cmMZHQLvbBSr5QlNcB3cvfBzZZArfU2Hm6vadpD4ZeR9icZeKBNXsGOmuFcXcTYVC120uh+4nG9AIWvU0qmRjJGrkoNvcM3opEupvqEcQByWOqx7qibq5pF3uWNyQffbAy4ZAnkC7yXj16he02oIJsSx4r+1Lc7Fku3ccx5XbwyMr4D9kEgWwb8EViVJ3IfU06jqjlGHylZRtWZL/BymNNG0aW1M1SVkaSGPtcWExXadzE7L2bRmTBMVO0h3nypPaE3Ajo7QWEZlvpbgxVhpvlUm0ykdqYASz5MhOv5MDIRSBEdOtGBhIl110sjMhwCytMqVbi4xzCk4wSYGiMhBgdTAmTVHEyKYhFTswzYpULsANhOm0mXZqDRBYYU2DLPD3PEqtCvheWWOZQlQJUh0TYwaeZZZBlqCJHZRmqLEXWaq08riqTJFdLUE9alBEZLIPMNn0pm8mXUvuf/7ivPEflOTq3/MXyi738UkthZx+exb/zD7/Nb59/i1w71n3Jp89PibuMD7/+gs/Pj/hbX/spbcj4X3/6Ed97/CWvtgtu6xJrPNfncz587xUv13MeLW+YZB2//8Ujpv+84p2//YRvHLzmH/7+r6PywLfee0HrM3a95RvLN/xvn31AVXVjDcemLriz2HC5nfDu4TWfXRwD4H42x3x9Q7Mq+OjxS3762T104YlRYQuHMYHvvfOM/+vzxxRlR555tnXOcl7TO8Pt9VRuGF8V6Ps1eeHYXlWc3rvl4pNjOOzIrKe/LihPa5pLqYfoa8t333/GJ5cnbC8nMtNeetRljr7b4Haii1O5x9jAZNKyupxCr3nnvQusDjz58gS9SX6Lyo+S1fsPrjj/vbs8+MvP+ezLO5zcWXHx/AC76OhvU5qZVzDreXB2zdPPT0cW5Zvfe8LH/+d7TL59Tdtn1JcVmMj8ZMvmy4WwPQ8a1OuCcNphXhYSztMrysdrup8tsF9fEX5wQPyVNfpfzWm+1kr1xlErdSIaVK2JVaB8asUL9+6W/tVEKjMKeaM+PNyw+cExbhoJlUcltke3CnfgydaGe999xcV6KuyYAjvrCM8r9P2a8GyCn3vp3ywi6qCDi4Iw8cxOt/Q/WNI+6ESmnAeyT0uigoPvXbD6/RPaOx7daMzdGu9lRjv7oqQ7c2RXGeF+Q1hbpk8y6l+p4VLWXSwb3NMpqpd6jeLhhvrNBKx4T9EQvrlB/8GM5t0Otc4o32j49RV9lxGfVxJQZJB9a+SG089lXMoXGd1S0nPtRnoSlYmwzSQgaukxG01xpdk9dBw9uOH6syMmLzTbx47Jlxm7r7coHWFlya8MvohMXyi6hXgkq9eSAJw93sAP57TvN9inhdycLx3Tj3O2H/Tkb2RGXCWZanGt2D30FBeGqCPug5rq/5nQT6G965g8yfaBKL3UPoQsYjdSq2GvDHYj/Z3Kq5FB061m/kVKGFYCFLpj8bROn0kS8errnvknhuY00j/oiLVh8lRYwGjlxr56JanI2U58t5NXiu2DSH84JCdDWDjMVYafBA5+krH+d2rCxrL4acb6A49yiskLuZt35V7G2ny9IW4yspUhv1WjpHUIvmlOIrMv5UazviMz27pT5CthnwaQsPhCOh99GemPHXpnmD7V2E1kdyaAxG5h9e2O439qufr1QPXckNVQ3xE2b/oycPUtWfeQQFu/1zP53JKvRL6qHXRzYT77RWT6LAWp9JHtfZi8VrTLfbXG5GVk+0AxfxK5/QBmX4qUrz1iTD4uLwd5osh8y3N5bnMaWHyi2d2LHP5EElpNK8ExpPPZJ9lzloKUpi8i68dw7//wXP5Khl1Dv5BAoOZOZPEpXH1b0qrtljGcJr+N6WZW9sVNRVKskyvBNMKwFLeRzUPN7p5IystLAQ71HUV1LoFG+W1k8y7MnsD2oWL6TADQ7fua2TNJNAaR7danIlsuz+Vcm06x/GlKp50KkEJDtoH5C8fVNzLKc/FuZjvZTrZVHP/I0RwZuplINjcPYZJYP0k7luRiU0N7DNNnkayV/W0P5Fye/EC2uz3TI8spXk4BPtUbAQO7u4pZen6zVBQrYeLaQ/Gwrt6H4lIxOQ+s3pUE3MUTTzfT2CRF9nYvYR4ChbqFAIrBR+sKxfSN4/ZdS3UlCa79VNNXe3YSGMF2eyDPn74KoyzY7iLbuxrTwux5z8V3c4xU+KJ7OZ/dQlKMo0pjd086jqsrP4KjaKBZaqpLSYRWianUToDX7FmHmxrW9zMOvuhTP6Zne5Yxe9bRHWT0U50erzj4vCcaRTc32G3AbhzNsaWfSjpvO9eUN+KzXT3KmL72IxtoN55gFZt7hsVTRzts617G5I1H94HmOKO8dGzu2zH8aADKxUqOtZ8KCJu86ghW0x1kBKvIV55+KtdAdd7RLWxi9SNuqslX8pnSzwzFVU93kJGvHPVpzuRly/pRweGPVmwez8lXjnaZiV9166hPcvK1J7+WSb/6rCK/6dk8KJh/2dAtLHbn6BaW/LpL4TwZ/cxgNx7T+FTLIvugNx39iSTU6s7Tz6V2pF8I+FMuUlw2o99T1CIaU/e4WY69riFG/KxA106CfFwQwJnSeYcAnWgTUA0BfbsjHM4IucGsG6I16HVDWFToXZc6L6P8fbXby2CVQu0aYm5RXU+clJIsW4hfcvj7KIXNrSTGwshcqrolzsQeNoYFabWXyLZvBe1o9dUgnsSAxqb9qldyqGRpGlRRyPE2bfJBKtmH3I51JLHrJam2KIhtO4YBfWU7f9ry1uNjjLKef8vlF0YK++A//bmv9x99+g/+zI8NwHz/+9//s96Hf+vl7/13/+33Z//Rb/Jss6T1VuSaWYA8EpRi1xS8aBa8qWf4qHmznlN3FucMu22J0pFNLzLPq+2Ui90UFNRzhSoDP3z5DspGQmO46Up2vaV1lpfbBW0tz9vWBXWbE7ym7i3NLmfjcto6BwW9ESldrDM6q+j7DFt4fJsJg9Ubvnx1QnSavHKsr6YEr2ldhvMaX1uxIUUNladdF6gs4pXCKQVBE3qZTnU7C1mQmhUFb9ZzvDfi4dRAJ9JEVQRik94ovCY4TbuT/cUrNm3BtrfEm5w4l5tukQ8amDnW25IYDDc+JzpNGwyxyQhBSyiSV5Kea2DnLarwxLRPF12FM4qmzsVz6jWq0bRejErKK4JWY8IlXowp0US6XkBu31q5oXNZqhkRDVfsZJpbdSnsyMvNn+4VzmVj4BKdgc5QNzl6Z/ALMYgpxLMXKmEtUHBbV7htjmo1KqRewRuL80bAQw5ZrQlZlPG1EfJIt84haJTTqMaQnVu5sc9guy6TP1FuBL034pvdZagoYFF5Rfkkx01EfuW1APM4CfitRTdpW4BrLLrTkgacPiNca4WJ6LV0IqJorYKrQoB3ENZlSL11hw6zNZKOa0mJuuAn6Rx4TX6VZti1GrUOUSvqTSkAuZEZ7GCR12Kdke3SDHYRcTNZp/LC+oQc+i6T2ptOgptCLteZCkr8xex9YDGT8zJuP0JwkoobrWiPQi4eTV+kmWAjx6q97FtWi/dDvJKDJyfNJCOpu37wrmXyP/G9yv9VUPgJqI3BNFr8oFEYNruR9Uqvovw9ZBAtmJ1GRTlusxG6LdtoQqHQtxkmXV942Z4Kwk5kKfU2WKQzMwpbJMckr5FBOqiiGtkzDGNS7kD56oHBmsr4Ka9QXiePbDonVgCY7hUxatnfel/GjpIxru/KOI+dhBHp/+zV6O9TUZJapTNy/5ruZ0r8t8gY93NhtEIhqcJuomQ9yaMYjMgtVXjLN+rkb6ZllE1KCJjCl3sQEfMhQEXeB3Rg9NkOHjsJaxJZaj8XdlMoQzUGtw2yW5Eagq/UPnE2eYmzJAH1pfzcT3SS9qkxXMsnmaX0gg7e0/S/XG7MYiaAWpipQXgmY6+9TBKYbqg5SfLSNDba7499XF8OaBlT08l6+ql4M03/1vXhSYEpcjzRDGFWjBLMaAdGVa4ZeaoaE2eHc2a3qc4DNT5fQtxUqvoRH6V2aqyJ0j5V4wTSusWX1s9EHi1S3SHZNO1/J/Jh7REZoiaBuzQ+MSWfsh9LnTzo8hpX9NNh/+WcByvrUkGuS5N6SCXxWaXPIyVBOSbtg1JpvFM6rLg7ML1MDGVdSrBTgNH4QsBYlnotlUr7qWVfXSGv7/H9JQFNUqDNILc0TupQTDek8IJxoFM9zZBCrcMw/vIc45LkNMprwCScob2A4KwRn6N2cmyhUGStsOQh17KtXvZnCMoDuSZC6r7UqTYkGmEYFXt/sHgGZSxEAZD8miR/aoSoxasZrSZmGp8YQx3l+BSMibQKAbOhNGS1T6/duH8NKYUiEnMzBikphYT5dGGU/2qfmDyj0S6ge0+wRiphUkCPTsympM2mIB9rUH1g8GsPADPkmYz74PEMcq+ikG1L6mryeSreYjbj6JXESJjR6KFMaa267dN2Bv9i3IO04fvANPrkbR3SZAegNpyHgT39YxJb1fC4wSs5eD3Tfux9lGk9Cvk9CLAevJeEsE+IfXt76Sv+ofX/sfs0pEW/7e38N1w+4w9efv/73/8f/61X8HNY/u5/8w++/3Dx3Z/7ej+5/t0/82ODX3IpbNNY/unv/AqvXy+53Ey42lV8cHSBtY7zp4ecLDesL6fc/uRYAnt2ljwXGaXOAjEo2k3BYtLQbnOaXc7hfMff+M6P2bUW/7riaLmhOqoJURGCZrcu2DxdoFSkry1+laN1QOlAc1OiTGT3eirBN1FxeLbCNxlm3rP7eEkMiv6iQumIelYRGoO+zdCFZ3tborYGtckI5yX9VYmZ9igdyU5q4qsSWk32UrZ5eLyhmLUM/rMhOVZPHQQlbF9j0FOHyj2qchzev8V3GgLYRYcqPThN/tpKCM7UkT8p6FcFHMi247LHzHvCRMZs+qOSuOw5+N0SZQP2ZxPyo0b27dxCKcm2qjYc/ZbMlsXSE6uAeV7KB+r1oMmHWEltCzqi7++onliyZSfVLXca9EkLGooXljgX6eXxh5eYtUkJsZJIa68zSZY96ojHnRTRzxx++v+y92a9lmWJmdC3pj2d8c4xZGRGZmVWucrubty2BFiYFxBSizck6G7gB/BG8wa/ASGmJwQS/4EHqHekFsZ4qLJryIrMyMiYb9zpjHtcAw/fWvtEll0yRoXKaXGk0L1xzzl7Pvusb32TR3bLOhHZ08MWCof5X2QYLgYgY4l8+UqxQmEvkd8o+MJj9nOD6ZcESPBA9aMSw/yuxgMAACAASURBVLGFuZMYlh75tYJXQPlWYfaEwKx4nuHozzTcaU85XekZTV94+MKjekkQZbYSwmLshmQIjMfJnygmygbKDoMki6h6geqLDNMvDVmlrYSf0pemazF2adop+1OLK7KKk+ca3gRUv8ihGoJnVzFJ1i4c7MyjfGmQ30hUb+mry284WLEzJtYufqZQvhVkZnoxBtFkK4mjH0uYrUD9ycCO1aXD8Y8klj8TyG8I+nzpGd5Tc3DVfY9UwPGfS3QXjqAsDygvJcor9odWb7hP2UrA7AXKdxIuZ4k902OB+S/IEA7zgOXPBOzSoT317AKs+CVU3Aj0S4/Jc97uggw4+2Ng8jyllVIa2DxwYxCM2QnMv5TcnyqgeWQx/wJoLzxmXwHnf8pe0X4eMEwDjv5SYPaMfajVq1SvwOTY4lpg+pzMzOSlwOIJ+2XzO6YVT16SsRpmAbPn3J5+wQF2v6BUc/4VcPqjgMUvxOhhBLE0hkVAtwxjTYmwQHnJ1N7qMgahxAFmtmVib7ZmIM70a2D6goPn/QdMnJ28Jng8/fOA/Yce86/8KOUrrwKyDSA7BuuYPd+bbYCLP3aQA8GkjEEzy58TZFVvGawyTBCv64D2lGm2xfUhUKe4DuiOAiZvAoYpWcrqbYDZAEefewyT6H3TwOILj35BNu/8Tz3shKxnv2AHY/JIAnzP9FWgpHIAZi84sDr63GPzKf+Wr8hSCsf97BfA5E1A9ZosYrYlW0mPHX8vbgPmzzzMjp4+1QZMX3o0pwL9Api99Lj3f3Q4/txxMOzYGes1sHjqMEwEJq/JTC6+8shXZDSPf2aRStrzNYN9yiuPySsyZyc/GXDyE4t+IUYQp3pg8tahvPHYP5BYfB29tVc8brOXHsWtx+4DgqDlUwuXCRw9sZi+dmNgTnnlsXxqMbn0mD8jE5Y6QWcvPI5/1qFf0r+abQNmrxzBdAMc/WLA6Y87dEuJyaXD9JVjX26sbnEFAejRkwFqCDj7sxonfzlAWmD+3GL+9YDmXEbvHydNpm8csk2IzCPlrqYJWDwdKNuMqbf7C4lsy3Ta5AOk1DEF6DAkx2UC+dZh8VUP3QWUt2Gs79FtwOJpD28Ejn/aYPayx/zrDvNnPVQfcPRFC1sI2JwdpounHe/bObdBBLKXkzc9634a9pqmoKJ842BLgWzrcPIXW3QzheLWYSgFlp/vWL0igOqdRb52WH6+Y+jTziPbOlbdzPmdkK8shAUWT1tIG1DcWCz/YoX8lieyuGZ6a9DA8k/eQdqA2Vd7DBOF4l1HJnIqMX22gysEpi8azL7YoXpVI9sMmP1iDdl56MZh/mQLvXcjm1q9blG86yBcQL4aoBqmyxZXLco3LaQLUA07ROXgWVWSRxVGpVB9tYHPJKZfbjBMNYp3LVwmUT7fIrtt4Y1E9WwD3TgME41holG+reG1QPXkFj6TyK5rAEB2uQccuzfNpkd2uYPZ9gSkAiPD1p2WEDEEKBgJ2TEsUW9a5F9do/ziCiH2kuoVmcWQ6ktcgJ2YsUbEZwrqZseEVwCyGcbUV7FrIHoL2VrodYNQaMjVHvJux8mhbU2wmwCp9WQt6w5+UsRxUUDINUKVk500GmLXUOKaKkIAJss6gl5Rt0hJrqLpKJstcv7eRKtHboCazCuGlK4lyXCmn6lrU8Y6EaW+EZYT+p6VIkohdH1kJmUExNFLGpnT4BhUBCEIMIeBjOP7/5yP4DQc/jn31/8Lnsv8tj+iJPrX/u/vyONbLYUtPn0Q/p3/+d/D2/0Ml2+WQC+ZGJoFyKMebm2gdwruvIdQHmGTQW1jGEfOyg8R2Qph4wxn7BQMBmNxOgKZjn7pY4dYgFmRBfSa8iL2/YEzlnF2nQmGsXdSstJAdUwDVXuCAR/TX9n9xAEzB45hTGBkqECIgzWB7sSheMsQC1vGmdGGX7hMpAzINgLdMX1L2VrCliFGfdMbM8wwpicCZITGnrrZoXsQMnpb4ox9H1NJ02x5fiuw/8ihfMUaie7Ex8E4ABHQHzNRFIGDUFdgrFExGzF6jbINgzVSt2N+GyPM20OXHwvhGeqhGs78q57HQNdkw7zhQLVf8LylDrmUlJiWBwD9EWVlQGR5ED1VO4H6nkf1Vh56A3sOlrujWP8R/UEuS/6Y944bJ7WhmngNpDTWlAqo0/nmteJNrJeIyaS7Dxj4MXvBAWdKCE0skMs4AG9PGb7BkBAOsBkLf9jfYQZ4Hdg1eR4w+zoxQvFDFD/+qceQ1Rpcdn7HgZkrKFlUbQoV4bFWLd/HsnqwjuEoJZ5iXEe+CiNbYOMAVLWxAmLK88WBaUxCdJwpH2YM7hCBxzfVN/QzyidZORC/2PuA9kygekvfkYqx/0ELdAugehfQLchMCM9lewWU1zGZU6aeOvq3zJ774jVBiQgMlMk23G6zZciI6kLso4wMVpdAVRjZpCxK6HQToGvK+HzG4yU80B3zHJstT0bQDPBw0S8nQqxt8DzP1dvDvSFdM2Nqpkn3gChtNJFRweF5EwFoSg32WoxSvW8kUVYES/2c5xTAuB/pNayaYIpo8q+lbtAUapKSNLNdGLvtEtOTOgxVZEP6Kbeln4nxevbR3yY8g0mGKqbnCv7fGQa0lNce/YQVHP2MoSnexM+PoGS3uvbop5FJTKmabRhBRzqOqo+DyfLwWUnpr6naw2ViPAamjv2JgqxHSny1pYSNAUNZrF9h+qVAPxXj3+jXFMjXDl5HNjcyhy4TMA0rMnSU93rN455tffxcHaSs/M7i/qRrQHc81vS08XrpJ6wN8ZrryHYeLpeozySKWz8ec916yMiMJUYu2yQJaUpUjtf7RMIZgWLl0M1ZYQIAZmPRHenxWmTCKOWqXgPVFSs1bMFeyBEYOqo8dH1IMvWRKfVGwGwsU0htAm8EeGbvR18k0jHP6LsTMcWUXk/2OdqKJz4tX/gwSipTTYgI/I7XezeCjfbUwGxd7J0UY7cje0J5DKU9pAUHLaEbThrYSkF2BBWqdbCVgq5Zy+EqPSaKytjVmDodVWMRMslUVfCaTL2PKV0VLsDn8bWxgoOewPi51wKydYAUY1orU4AV5ODpZTQSuh6YsCq4HbzXcjuCkYAL4+dbDtxu2TlKOwVG5o/pq2Fk6VxpoFpLNnCInZKthSsN5MD3ey0he1aE+FwTQAFjqA20BGwCWHKsHElS1TF1VUUGUAiyoD3rTUKmmfyqZXxO0PvoAkFiO+CX6zNGFjH93bpx2ekRCsP3AqwTAb6R0BqMprRVSdaISIYDja9PUtFf7p6UkmBQSfxydyS9j+oghTX60HmZJKrp/yEcEl7HtNb3cEDqixQRLPqA9zskx8qPBCjT8nyI0tdUc+e4LyEQDCY29lc9/hZ9lt/6VNj8XviDh//xr325P/zqv/qN7xvwLQeWJ98/C3/4P/77yJTDk9tTZNphkbfQ0mPVlti0OfpeY1Z18AHYbCtUVYd+0NDawSiH3moyjgD2+wKL+R7fObrBn7/4ALZXWCxruCBQ74txvUIELOc1rq9mKKY9nJUoyx7bVQWhPYKVOD3b4OrNgl7I6xmycsDwcoL8wx36zuDB6QrNYHBzM4XOLYKXcIPEYllj32QY9hlk7pAXvFF0jUFeDmg2BY7PNtj89ATZpxu0dQaTk4Vt1zlk4SBlGLdzaDWqeYu2yaCUh+00Qq2AzCOb9ZAyYOg1hAgwmUWzjvsZq0jKRQvvBbyndMQOCkIA1aTlMREBfpAIjWZFSR+TE7VHOe3QvJnig8/e4c3NAlk+oL6cQEwtQsNv/clZjabOELyAVAxAESLAewlXaxzfW+PudgqpA/xdBn3SYthmmJzyfY/O7/DyegkpPYZtTqBkBVB4yMzBdwqqcPBRVimN56RarSEKB2k83M5ATSwW8z3Wm8k3vif8TewKzeIkhAfC1EGuNfzCcsLCSZhygL0uRg2AmPesmrk2BMU6QJRxfVsDUVrozMUEVQm5VxCDgFta6DsNezpAFxbieQk83sO9ruArj9QLKXzsUAX7KLtTzr6GwgMD5Yv54y3q6wrmTmNYOtarTChZSTJa0UtABuizBu51BZx18LWGrBV/T/UzNc+rnzjInQIkGbkkkwYAv7BAK1kdEwSgAsROUUo4CFa2qECm2YQoxQTc1ENtKdMOJsDEiZCQB8AyHEd0PD5+blk/08YBbSvg7vUIrWLS68JCblg/4yYesntPlOEpDx2OeCzo1Yty4MDXq0bClRxkqa2Eq+LgsCejmmKH8xuF7sxBNpQY2olHfqswTD1c5WFWCsNxHIg1cqx78Rn3W+85iSQCJ4JSumx2q8b6EYAAZpjTUyqcGKtbggxwFStvILkfSWIZBJCteXz6Bf19PgfcvY4VRU5Ar8mI6x3Z0bRfuhWwMcxFNxzAizjR1i89sjuJfuEP4TACMGtOYhG0CwwTTmyxF5UTZeyNjBNwEZQmkBYUxkCQ6i19uGmCDOCkUvFOYpjH7doRmKeJMTthKmt3FMZ6mv6I7HiaBJFpQiTKvFn9Q3DWngSkKqAg4/scJ0GKG4bluOxwGaVaHBFltao/TJjpOoJ2RCm1i5Ne+gD+U/2K3iPKQiOAa4B+dpjM7Bc8jtJyQitbi7ESR6QAI80JLLJziMCPk5j5nRgnC22U54o4GSlT0mrD9w8zxMAdTtbY6jChmK4NFyfwEohsj5mUastDEBBL68nquhwo37FqBIj7JeKEbfR4m5oTQMOUkympqiMqkQ8BUYHsJetDCPxS2AwnojgpkapNVBuiPDQC8z0nyAiY+Lo0YZAAbKpPAvi+fBMwlIeEz5Tgm3pLdcNJpeT5HStS4vbKGLxjS742VfI0p5L1JvGYpWMcxv3lc5RkcmIlTRSljlXdpn7Ow0RFkn5yXw6THD6llEb7gIlhONxYvJfMirHGBeJQ+2JLgeLOxW0kwA5CjLUtqR4lCE5c2DIy+luylN6w4iR5Pl1BgO9KCdkF+DxOIMbJnTSxyGTXeK8IBK6pw9Rl793XxSHsKr3GxcoT9prKOJHLPktnYipsAuOWYDF1Z/o81qJYPwIh2Q7wuY4S6SjdlAIqgm2vJeQQ60qifDfVlvicFSNi8IBKVg4Bte2YCgsQICsx1pXwwgwRvHoC524gGE6AOQHFlLyq1QHoJmDpPX9P1SQhENim1wEH2eoIIuPf08RFem70b0a1mbUHVjOBSOfIsFrLoB6A4HUYMPZlvv8IAd/wW37jqV+NTb71Hsv8IvzBg//o177cHz77r3/j+wZ8y+tGWqtx3UyxLBp8dnyNq2aKy+0MubHIlBsTOwttYZSDkgGzvEOpB+z6HMu8wXUzwTxv8fMX9/Dxg2s8f3eMP91WUMrjsw/e4YvXZzg+2qNY7mCdhJKBMlkvAC8wLTvMixZPn15ATweYzMJaCSU9zLTH9fUMR8c7LMsWX7UGQgQs5nu8vl4iL3rMFg36QcPBQyjBvstOI5916K5LDDKMKZkhCGSTHnc3M5z/gytcXi4wO6ohAOy2Bf7RZy/w1d0xNu+mELmDUAGmIOg0mYUxDpOqgzzxKIyFkR71YNBo+lPrTYHl6Q67fYGi7DEvW1ytpljOGuzbDJl22LkCIQhs384gJwP8LoNe9JBFi+AFfFAo5h1CAJp9jqADXnx1BrPoUGQDZo9vcfnqCAgCat5jf1PBTHtAAfamwOThFvt1idBJyEbh9s0CZt5Ba49mIjHsWduxXxeQ2uPrr88AAA5AGgGIqUVeDmjvCohWYnKyx+YdKTlnBeROU157lUPer4HpALfOsHp3TLBYK4QZKy/UaYfwtoA+b4AgYK8L9olOBc4uYoDSfIC9JagMlYW8M/A7A1GxQFuedDhd7nD5ZgnXGPp7bjIMCwvIAFEr+IrAECrAZwHFswzF7+2wOjJQLyv4pYW+NQiKTAhkgN4q2NMB3ZljV2gn6SFVAf60x/BkDjH1GJYOohewM8/E0yxQdlwriPOWns1fTOBmAbjJiY0DIF8WkJKARN4S7Iqa3k7VsFLDFx7la0UfYEmfoLqhbtJnEbB4oLiUqD/ykHsFnxFAogfkQF+um7kR8MDzVPqCAF7embGLU70zsYsxxMEICCpbiWwl4fcG/YmDhBz7P1MKafVGoX5A2bOu2Z3pswCnCKJkz8AdvWP8vuwZmw9BWa2qJbyhAkD24LaCqZr5tUJ34pGtos9QAeZW0b+oCMJTbyRDYMLoG5W9gGwj04TIZBeAagS6hz0mT7KxVsOsY2Kq5Wg/dS7CC2TbCDyH2O2XMeDFTgPyWwk5EPHIgRMkwhGUQQDlO4H2jEmtxXWU4lqQxahiP+CWcsj8Rh56IRWZ+myd6kGicsNTXWB2lAsX14e0WBW9yanXVNcEOUFHsFPz/HMfAbHjADf1nUoHBEuWvFvymHlzAC4IQPVaoLkIUfrNYzpUGI+xdGSMg6RnUEWgmLowfUzqHGaxVsQeAAC9uhyEJ5UE/GFQnm3I+Kf1Jv9jkOznNHugXwjKXi/EqEKgvJGsIysnxAg0zZbHgAN5/q5rAjgAY3KqcDz/cmBgT4g9iapFlIEyaCfI2DFa8FyUl0ym5fVBNQmP0wHMiPoAgL0h25/ADZDYTQKUYc7ndRtGNUxIqZiI6gNBQFld+RH0en0IG7IVAUO58ujnAtk2dueCqbPZzqNbUNnSHpHpdgUDeYYy+p0dqz+cOTDaACdBEsAVkc3NYrBQtvPA7sDk9/MYaLVjCFE/lShvGcwDIPZqsk9yqFilkfyJ/VRG9logeALy8trDNBxM9xPJYxRTVIEIHGsPnwtYeZDXIoBy0o4qp7Te/JZssG49+qlCVtMXqGIli/CBr41ex4N3mWA027rRD6wbT++oEMhX/F23HvlqQHsSL5AAmL2DtBFkeUS/KcGbtPRgukxCNZw5SrJuW5KVlRHEqS7KOB2Pt+wDA3lmhsAwpsZ6I6EGTqy6XEK3Di5XkRkNUDZ1ejqCzAB2oHYOwh1CdphKLCA6P27TMGMIkNr0cJMMsnNkTycmTkZagkMfIKyFcIlBPShx9KaFnRdRlorYqykg1zVETG6F9cAACJU+swSForOsDLEeAmSw3weVYrAIOqNPsh1GFtRXRawhISuIwRJchjCCSjFYJh1HQIkQGPiTGEzvGbSTypETu5seyScZxHuVIrxOg3UQGgScqXYEIKiMoDQkZtUYwDk+F2tL0iO9Rih5eP2veoS/4flv0+NbTOr9TY9vNWM5+e798Af/wz/D7yxf44+uHmNZNLjczVCaAd9ZXAMAtkOOn727QL0u8fDBLV59fQIxSOQXNfpOQ8iA2aSFEAG7Oscn5zd48uocJreYlB3ubqfjLH/QAWeP7nB1uQCcwOxsh92mhNQe3koEKyH2CuffucHlyyPAeKjcwfcKYZCYn+2w2xbIvizRPkz6KgAmAB0DZ8r7O9TrEvrKwC4cWZ9eYvpwg+3thO9pJeRsgN8aDnbzgDC1ECpAag+8LjjIuddCPS1hH7cIK34piF7AFx5ikMjWLGd3FWsKQhbIKG0U3MxBTSzEiwLuXg95YxAU8PD7l3j59ghYZRAnHcTbnExKwXTR7/9rX+Gn/9djhrB0Aovv3aLtDZq3U2Q3HAQMH3WQ2sN8XqF91EPUDDMJpUN2qRE+2yM8nxBEFQGiF8gf7RCCgHsyhZ15MjUC8CXZIbPhYNieDpC5g3xZMAQhMk7ZSqI7daM0GhsNc9EATyZAAIaF55eODsjfafTHBDqyE7BLC3ND5i6/40y8LWPa5TQWhRfxhicBTCywNlCNgPl0C/Enc9QfMYVU7SVcZA3VLt58TUD1SqK5FyA7YDj2TOEVAeZNBrNlZYHL6Z1kAA5gf6uGfFrCTgI760BJ7e4jD9WIyEzS53b7DwhGdCMgO/ow+yOH6oXmsmPv4nDkUb1Q6I4DsjuChXRs+xMek+VPJNbfDcjv6Hn0GUGQK1mXkGaPIYH2zGH2pcL2Ew952kE9K5CtCDZ8LKMv3jGNlVUUiHKzyEDtyaCpPjJescPPx0AWXQPNfQ/Z8RqcPZNozsI3JNN2EqKvNKB4J8Z19HMAgmBvmDIYKFvH2oWFx+S5Yg1EGRiaEidJ0+x/EICpCQr6RcD8KbD5hMEq2QpoTznAzO4EbJT8AodKhPoez1Hq/RumPGbFNbct7Z8c6Hu7+y0COtXGwbyPbNxAsLP7jsXsCx09opTsJgZLWi4rMVHZluCnnwemr+YC3QmQrYDmXsDsK25Td8RjrhuCq/acHlevuaziJsrxPVBdBtQXlAnvHhPcZRt6BhMzmZg+AKP0WHUHqW8CatmK53yYkAVpTyjhVx2ltn2sP0iMi24oRfU5rw1XRJ/knNszzHhRlu9YocH0Ux6n5oKVGElObbYRxO8JNGavLOpTBd0G1PeYniscwaHqDsDSG7J62Yqg730QaisCKzshU2n2YayOSDJg3XhsP+DgzRU8Bsnu4HIxdlGaJmD7gYx+0QNjmK89mlMJXfPclpd8P32JAtU7z0Te+wp6T5Dk1aGWxNR+rMDINx6yZ3BOPyFoSPLjMVgtUN6cOhIT85fYPpvH93WUoUvL684WIq6bjOUwEbCFGBlgn9FX6iIzq97rZAQIns3eo5+pkRVObJwIgDMC1ZVFc6q4/JJgsZsrZHuP+lSiuvYRqBHQDZWkNHnHdRV3TEztF5ry4Vi7kW3p365PFKZvLeXBwMgs5isHO2EicbtUMa01YPWpweQNGSYf5ef51sW6HA9Xxq7E1o+TcUniKjzQnBlUlz36pYbsA1TLrsVhIlHcWUqLtw6yd+iPMmSrAf3SjEyftIF1HZER1TtKMW2l4Ao5AjpbJN052ThvJPTewuUKriTTCCGgd/QUDpVml2QhYTaHv5ntgPpBgfKqH1lOHigCPq/pcfQ5lTDSecCF6IsUUK0d2S1KkSnLDYL3NNlYuHkWJ8jIEMIDcnAY5hmym2aUsLqCnym97dAfl1CNJesaJzpUM4xy2CS/hRBkBl0ANMOD7DSD3g8Ee85R3toMYBBa7OHMNERr2UfZ2vh9wf5KuIBQGibBRqZSxHXBewQV/zZEBlDKg+xVK8p4dzXTYAcLP68gNzVGma9WEG0PBjxFljKxmgDQtEARE2dDOEhPf1lWms5Vep+U3L4ocRXGjM+HxHaGKN2VChh6wEf5q5QQRYGw3x+Wn5Yb15M8k0Kpg2T2b3iEof8bX/OrHn9nGMv7/+Gvfbk//Pq/+Y3vG/AtB5b5xx+EB//iP0MwAcsPV1g/PULQgYP30iMYsjpBBbjSY/pUw8YC5/qBi/I0ATt30CuFxROg/idbtK8J4KZfK+w+cTB3EtlGoLnwjKuvDx1WLuMspCsZZT8mBDYcoLqCFQTNPcrI2gcOk2dq9OsEEQM14mBYtxwYzZ973Px2LCqvBVxGxqN6E31/78l3yncB+w84o9/c98ivYvDLmgOP7ScYB9h26nDyJwrtaWQDkl8o5zY3FwQH1ZuAux8gJvrFSooIBM7+PODmdwQWX4AeQMH3zZ4B9f0D+HJFjL5/6bH+WI6F4pt/2CN7bXD804D2RKJbHqoG+oXH5JVEe5pKxznw75cB1RuBYQ5Ur1m2vviZgiuAyVs/+qy6I6D5cED11Iwz68OUpd7NmUB+G2fCJeVyZst1LJ5w9rw9Jbj0miyOsBwYDVMxys7a84Dp1xj9hN0RMH0RPYEeWH/m8fH/MuDd7+VwBpi9CNg9JNDJbwSKuxDDMLhNyy8c1BCw/UCjn5FJ2D32OP4xZ93vfhBw8mNG9E/eeJidx+axBjzrAJZPPLYfyigX4zlafkGP0zCNg21NX6Yckq+T4SL5HUHM9BXvA/2Mf08z+t5wgI7ATrpsHZDtAuoLiX4RMHkFLJ/0ePePcwzzgLM/97j5bYXFFxwgDROB8sajXUhsHxO4mT1Bj2qB6SuH299SmLwmCKiuPPI7h3f/2GD2nAEeqj14iYMEqncetz9QKK4DJm89Vp8qZOuA6tpj/VixdH3Lz5fZkXnbfyBw/FOH/QWvmfM/a3Hz/QI+J3MlLbD9KBbRR0nc8ecddg8y2JLX+dmPBtz8wGD+teNgdKrI+CigunbYfKhR3HmoPmB/ocgAtCFWKHRojw1Uz261YaJQXrZ4+69PcO9f7rH9uEQ/E5i95Jf8+iMz+qGKlY/gI6BdEOB0MbTF5bwu5MDPQTc79NFlOx8rC3i/KW8oTds9kDj6fMD6YwOzD5hcWsjB4/W/kWPyKmBy6bB5pHHxf27w5g/nmD3ntSQ8MH3VY5hrtEs5SvOSl23+ZYPV9yoC2YED/vLaspOuD1h9ZlDcejQnEtU7lsYvng1wuYTLBHYPJZZfWtz8QOPeH3XYfphBDgHZ3sMrgfJdj5vfKTB9Q4bF7D26hWJgy95h/bHB8U8avPv9CuW1hy0FJm8cmlOFfONhizjZIoHJm2H0x939lsHpjzv0cw3VevRzhWzjUF9o5BuP8k2L/QfFKO/b3Tco1m7swaOE2KM50TxPlmBvmAgsn/SR8VBozjKo3iO/GXD7/QKzlxb1mcb8eYftoxyqDyivBtx9N8PySY/9/QzltUW/UKjesoaiuO7RLwwg6PVbf5xDdzwP2caN4GDzkcHiaY9hpqF6lteXlx18rnD7vRyTdw7ZymKYaZi9G72BzQl9kOU1z0tx1aI9L7D5UGP+3AIeyO863H5/At0F5HcO2WbA7lGBfMWKBzl4tGcZsrWFaiz6RYbdQ4NsyyAbBGD6izu0jxYwmx5BSeweFZi86WCua6x/sISpI/tnAbO1UC0L6ZlhILnszqFfGgKR3qM51cg2Hqr36JYEPNnajiCYnYc8Z8WbHQBg/8kceucQtER7pDB92cEbif0Dg/nTBmrfw5dm9AIKF7D5ZILiZkB3pFG97ce6CluyXkM3FmrXQ3SOAMN6NA8mkDbAbHo0FwX03qF4tUH3YA5VW3QnOYrrFu1pLzKLDQAAIABJREFUgeK6RRCUZGYv71B/9xTFmxpyW6P59BTeCJQv9xDOYTiuoNcdfGUAHwiSjCI7JoHmwYTrenKJ/pMzmOsadllCDI7hNAJQHT2Oes1ANWFjqExvx0G+n5J1648LDBOF6ZM1IIHhpEL2ag0/KTAcFzC3LWTdwVc55L5FKLPRH+lzTX+mUVD7DnZRIntxg+7jU+RPr2DvH0G/XSHkGfysgNx3CErBzXMEI5F9fQN3OodoLdwsh77dj/7B/nwKvesJ5pSAaHokf6EvsjGUJ9WCpBCe5MtMMtHhwTH0ze4gK43Mm2j72PGoIdd7hEkJ9APCpIBc7Q7AbrDwswlE14/SWmSGtR+7GuHiBHK1RZiUEDtWi4i2R5hVrBbJM4iO2x4y9kKKuw3CfAqxbwg4k08yejH9bg85nYyy1LErEjisJwQyhVoBXX9gBhMDmIDme52boR9iT2V+qBMB3kt5/ebrIaIs9v0kWOAQ/pOWO3wTyIrxvQOEUviVDyHH7f3Weyyzi/AH9/75r325P3zx3/7G9w34lgPLk++fhkf/5X+Cs8ke//bFz/CjzSPMTYvbvgIA3Cs2uO0rXNZzKOlRqAFSBGz7AifFHk/uzvC943fovcKL7RLdoPFvPvwS26HA1ub4/Pocv3/vBZ7tjnG7r1DlPY4iKypEwHFZ4/VmjuOqweV6hmnZQUkP5yXW2xLTSYsPFmvcNBXaQWNwCo+P7vDzN+fQ2kPKgGXV4Go9xelih8EpOC9glMfV7QxZbrGYNMiUQ2s1jHJY7UvkxmJedNh2GQanEILAyaTGXV3ifLbDly/PcHq6xbYu0O4yLI/3cJFGmuQ9nJeouwxV3mOwClXeQ4mA19dLHC93uFtP4O5ynD6+BQAclzV2fY5tmyMA2N5VULlD8AJF2aN5O8X971zhek25aZZZWKvQbnI8/vAKz764wORiD6Mc6jbD9+9d4vN353BO0FtqJbRx8F7CO0G/Z/SNChFgrURRDNi+maE4bTD0Glk+oK0z5OXAbsYAaEN/6cVii9c3Czgr6T9XXLbW7A/V2qHvKP8NAcgLelcRAJk5mNyi2+WcAS24n0IElJMe+3cTVGd7tHWGyazF9q5CNW/R7OnvDE5ifrxH/YslxIf70Ts7WzSwTqJrM7itoYzYSvZDeoHQKkB7fPL4HZ4+uQc5G7CY17h7M4esLLyNX3BbzaqChQWcwNH9DdbrivtlHKXCKrCaIn1n5J6pvr1CiDUsUAFm0mPYZZCFg99RYgwB6MLCbjmIyxYdhusSaidhTwZgoMRUPGwglYd9UyG/kuh/0KCatNg9nwPLAepNDjujL8eso7dzPiBYSQ+sAGDFgUHea4ZcqXDwyG40faReADKGbXX0K7oFB4xqo+CLGFJ1o9CfWYjSIdQayDz9mLWEOx6Qv8zQ3Ru479cGXrMzU9SKHtpYnwFHX2f2xtDXJwNC7pFdariKkywpPTYowM4c8iuNYeah+uiJmjgg95Bbnge9j1JQyUkenxPw9vcHTH6RoT+KYUMqMqjHlH0FE6B2VDOkdNdhSmompcP6ykHu+YWcvJyJaU5BWbqOk2glQbTeCbRnTCmefK1hJwHdhWWlUFxv+VqhucdU4KD4niS97Y+oGhCeUlkVZa9B0ouZjmVxI8ZQsX5OSWZ/6lBcavot7eHYtPcsineaP19rSmsF5b+p2qM7CqMPTg5UkQhHlrE956RYd8x97449srWMsr84ORblyLoGumNOrLRnB4kyfao8zq6grFQ1GJlGSIzAGeCEjak58ZFkoUGAntYsIF+RGUUgE+dyThylZbiSkyDDjNeTrSLLvRZjQJMInOgIOv5MpFL0SY6VEjay1xnTd7M1xjTfxHJ7DXQnPD664aSSbuN9QnAfknRTWk6K9HNO6OW3h3V3S04+yR5j0JWuyfqKQIbUbKhAsAWZ2nG/HdlYO6E8tV3GuhdFJj9NlIzS6Z4SV9nz/2RPY1iP5jrpjSMjrvpwkM7G64Y+XrLfDB/i5KEr6C9UPRnocZsrgeImjMcl1VHYSjBYah3QLwXKdyFOoGHstmSNSjxH0SdpU1VNn0KUyBAnKWU/40Sb13xNqovJ9pyIydeBYVKFhCvI6EobA6PidctalDBWlSRfqm4C8pVFc6ZHKXVieNXABOUhsqyJYbYFGebkEwV4jQ0TGVNt2RXqCslgpVLGmhUPG9Nfs51DP4v3JRvGsCxBxTyZ4ZsB3bFBedWjPTHIby1cSV8m5ef0/HrNJN0gEMPcKDlm6JAYzy3ltH5kZoOiJBcxwEsO9D0GCejajaywjymxdqIpp5ViDGMKcZmuoPRWdpyIED7EuiIygJTKenijYtBTIFsaCPgBAlrZDHBVNnoyZTswrTV5KaOHMghBkNzbEQjLXcueywR6E8gE/qqEVQq+rx0O0tpUFeL8N1//PkuZPI8pqCiFAr0fYvT+TwDBewghCPgSSE2g1b8XEgTEoJ/3JK0yyWbdN4HlL3svI3MKAL5t8f/28f8Dy//vH99qYJl/8kG495//p5CTAco4ZJnD4+Nb/OTnj/j8cYNuVSC70vAfNwivC7iTAerGjAEbduYRMo/qmUF/FGBPBsjMITiJ4Dk4yt5QUtKfOMheQtX8QrPHA9RKk+GIX4R6z+f0TqB9zEjH7FWG/pR1H9gY6J2E2fCLtHloMf+5Rn0/wM4dFj/XaE85aEyM5hDDMmyU9okAZN/bYH9bwlwZqE6g/aBHHtcz/VKhO6GUsX7o4XMPs1EQAwd1qia7JWMYjTdMd83vAlY/8Fj8XKF+wOvCFfShqYZVFLtHHrNnEt0RZZfNWUB5KbD5wQBzq8cUvwBg9jXoIRro5ZI2+saOKWcDGKZipwFmLdDcdyjfKGQbYPuYjCW/8DlAyDZkXbOVwP6Rw+SlItO6PwzMpAX2H1uULzRnVGc8ZosvA7aPYk0D4hdxyy+pfkkZKBN4OVjzmgPR6m3AMBcx/ZQMpyvJxELw9d0RB6i6Dth8B7H6A+iOOXA2e4FsFdDcE9A7+ov6JV/TL4DiKsCVHEi6AqMkLI/F98mDZXaIYSFkPF3BFN78Jp1PRPkgxgCJ4oYDnd1HPNfFLdAtuO3DnANM4YD23KN6JVFeB2w/TLJDYP+IxfbwHFz1Cw7w6vtMz1UtcPTE4ub7GtIysfT2t4F7f+TRzyT293kObQE0Dx3yd4psaDwPsxce+3scOKVACeEC9g+Ak58E7B7KsXw9BbYUNwHrT8nQL75yuPpX2IVWXPF4pnMse57j4i5g9wHBxzDlfuWrMLKzxTXlSs1Z7PkLiPJieqyCBOp7ZDw3jxXy24DylgxYfU+OSbfVJVk43fA4NRdktl1OJraLg90xOAPAze95PPrfOHhafcKy9XzNbdENxmTI4paDZXigX/KcZWtKSZNMNEmkXR6BhGP9xPoTgsXTvxzQLRS2jySOP7c8P/ckjj8fsD/XaE/EWAKvWtY/3PxAY/GVx/5CorxOsjyJzace02cS+YpAwGwCihUTVwmyDmmw+YaD19VnCmbD7SyvPJpzierSo1skySzrd+r7ARd/TP+cy4HZc4v2OKZgF2JUe9BvxfVU1x77C0WFwgSYP/PoZwKmxig5lQP3LcmJ+zllruvHGpO3lEb2cxHPAfe5uqY8VFom30rHJNaUZiocZaPtUjKJWAu0x7yX+oz+PhG3O1VFFCtPpqinvLK6cmiOFUzD693sAqavWWafgmaYksnvhGzrxwCTdimx+j5YYXPnoVpeX+tPFOZfezjDao5+KlHcOtZy3FeQQ8DsOdlQ3XqYrUO3ZJUEAlDeWIKGPf/enEpUV/QoLp+2uPusgG7IJjtDhkR4MqftkUS2C5i8Yon9MFNojyjFFZ4gZvKmRz/XyDYWzVkGrykjze56rD+rxrRbb1jtIUJAvuZxlzbAbB2GmRoltAloqtjfmDyPIoa02ImCLRja0k8kll80cLlCc07krfoQZaMECO2Rwux5x8G/EJQySsArifqegW6ZtpvtXARwsa+xI1gsLzs0FznMhmxre5ZDtR66ZX2G8AFmbykbrS3aYzK8/UKTZUViZnt0JzlU46BrCzs1GCYKZmtHsDsmigZKXLuTglJXIzFEoJRd7TGcVASehUL51R36Bwuy0pc1hiX9emrTA1rCG14HwnnIzsLOCwJSJWBLhfy2g+wdutMSZkvg4goNs+3RH+UwG87+2ImJvY7xntwSlMmOvkW9btCdT5DdtAy8GSgz9VVGINgzKTYYCbVnSmuSkvrCQO17iMFhOCqhImAzb9eAEBjOZ1D7Ab4yXF+mKJNddSMTK9uBYK3IgMHCHU14r9h3CJk+hOpoSm0hAdnasR4EWjGspjAM+3GRrcsM4Dz8NIese8C6g3x124zr+4bcFCDz5zzEdo8wrSglTQxmBJIieiND3UJMSq4zpbO+n7yaQKcPMcFVHQJ54jK/kVT4vu8xxPdoDaE1QttS5jq+wJNB9I7M5phQLA+psCmYx5ixZkQodWAs4zL+ihT2Vz3SOsMvgeK/5ePvDLC8+Ge/9uX+8OV/9xvfN+BbDiwX37sIf/g//Qf4i59+CLXoIUXAx+c3uGtLrDYVfBD49N4VXm/m2D9b4Hd/7wv8yRcfAZ2C6Fj3MdzrgVbh3/39H+F//Ze/C3Ovxv2jDTZtjrY3eHi0xtMfPYSvPFmmXuG7j9/iy7dn7IPsmLD68MEt7vYlUzjnPcNcZgOZk/gwiw5SeXR3BUTuIW8M3MRjdm+L3as5qvs71C+nCIbsy7/6b/0E//tPvgv0ZCxC5iFrherxBs3TOT76R6/x7McPIK2Au+ggbjIEHaDPWgyNgcpjYtld/PtKwS4cZMdSdFvF1ExJk39KHRVV/KDfGvjKQ28U7Nwhu1IYPuyY0GoFpPE4O9ri+kfnDGoB4CeOCZ+KNSkIgHvUQlyyQ1F4oLuwULMB8usSw5GDbGjed0cW1ZcZmgcO8riD2xpAB5hLfvkP5wPEXkOetUxW7SQZnflAX6mO6auDwOSlxO4jj/zBHvLPZmjux4TO43jTe5vDnwwonuSwk4Bh6aCWPcSLcmQj7CTKcE8d8ksNO4mJn2tKiMw2+vcGQbanjsEtjxqOey8LzD9ZYfN0yfCNTqB5RK9lKFxMLxX0s+7kGFYCkGUqrpiEOc7SPuA55o7Q15ldK8jv7eCeTOEqei2DoHzZfaeBelpyOyugO7eQDbstu2MPP3EoXhuC439Iv6YrefxcSZbLa67b6+hfPCfQGpYOxTtNduqsQ7jMMf1aoj1jd6Ps4sSIZDAPBKDWXJjw6YuMDF1+IzlRUwbYhUfQHnqtka3IZHkTeI1HhivV/9gJfZ/Vc806HS/Q3RtQfW0g+4PH0Wzor+zPLKZPDMFHShjdi9GrqDou2+ecUBmWDuZWQTcxvbYII+vnSg+94+eI/siA6XOB+gEZj/kXwOY7ZEp4zXBCqnlokd2qUSKfmLB8HbB9jHHCR3YYAdD6d3vkLzLYqWeAUSOQbTBW4SQWqXncY/JFxlCimBKq94IsW85rGcAYwNId89jmtwL7DzwWn0c5+UnsCs3IpqVtbO5FFjQHumPHCbItmSqfR+Bl+Z5+mSTXgR2hF1ymbqKsOTJs3TGPaxaZvbRP3gRMXxLoARgTX/MV/Za64WRFtiEYcJGlcbEGJ/lYm3OBbEtmzmwTQ0h/a6oCUi3DZnTNjs/yjRwTQFOoj604ASV7gekLTiCpmsDV5Tj4Nc94PMgwYaysITMSmU3N/szVZxKTl5TQF7ce/VSMHZn9HMhXZI8S8wSQlS0veV8dpqyOSXVICcgHLcbJheSFJRvI64tVGvSHqo5JnP38UAMEgZGpFC5eLzVZvfaU65Z9DBKKHlJpKc8OiizP9K1DfaLQXJD5U230jW5Zl+LyaBlpOWmUrwPqc07sFDcew4TnGCKC/T4cqr9a7md9IZFtGEyTfNfSHTo3izsC9mEqRk+rqfleLp/MnMsFpm8dvAL6KW0kw1Qgv/OwFUNsgmJvJfsuA5pTTrSkh24C6nOJ8iaMbHRQGNlJNQRka4fuiFL2fhqlmTaMKai2ZGiOdGGs3QHICA9V6t+kLN7lgoytPEyaiMBjkABDkqpLG8Y6lVTtk3olVUevprCpUknGz4THMFMobgbU57E3eU95eXFrYUsF1Tr0S84iSxdQXPXYP8jpH105+CxePzFFNlsPENZjWGQxVZc+2cmLGs39ktUuAvA5JzRczkkE4QNspcbJTb23o+9SNRau0vG+FmLKa4DsY2VJzsAe2TrodYP+fDpO1nkjoXc9ZDvAzQpWrfQuVtMw8EevWnoshYAv30uFjZ81vW7ov5wXfG8A5K6Fn+QQvYWbFaxGAeALDabBtpQiKwXhPYazCcx1TS+q9/Rp1h1BYOyzlNtmZCrt6RR61QDWjYA2SMlQHiW53C6Oc4we2Uaxj8sARu9lSIAQOIDWBDhTyE/yQsYkVmEM//Z+YE/dEEwnAPue3DXEahMkNnIY8Nc9Qghjkuyven78/dueCptdhD84/6e/9uX+8NV//xvfN+BbDizLTx+E8//iX6A8anA8rVH3Bh8uVvjF1RmGXuP8eIPLmwVcpzA9qrG7rSAzB2UcymJAP2gMg2JVxW1B6VrucP90jVcvTiA6iaOP7rDdlRh2cUDvBNROwp9GaUMAhAzAKkOYWEr5GtYxyMnAipBVAVVZ+KsCWDBtlHfx+OWyV/Bzy/8HAIYSuiBBELWjvDEF/ARNMBUCmD7aC4jjHn5noOc9wpviwMhWlPEliWF1vkf79YzrU4HAGOCAf5DAbABWGWVjF9GsrT18E2/eNYNyhmMPc0vgoxrBxNBGQe0l7JKhQ3KrkK0Z8DIcURqobgzc8QBzyQF+MEzsTPuVALCrPMxWMlQn8HX5pUZ/4qA3EsOphb7V9Mdu1KHbUgFuaQErWD8RwbKq5Vj1oLpYybASqB9Z6J061B5kMeZchShhlBxkHTHgqLiSqD8iO2vnHnotYaceuiZwsFMO4OVAhk5veI69CXCTQ9CQnYQxBENvBYIhCOuXHvm1GhNL9Z5prtkt6zhUzUFT8go3F36sYuCXMj/P2UqOsj9vAoYp00wJnOj9VQ1ZwNR16mMFCTsqCeRcwfoPs6OELiWxCk8/bH4jUb0N2D8Q6E48Ji8kmguCCa8xAsZsI9CeUlYJUPJnthL5HbB7RBAbdEzxHLiu4jrKKG1kIZMscOAgX7UMyanvcVBUvhVoT8MhIRSICZkc/JdXQHvMY15ehhFE6S1ZrH4RopyQ11HxDvQpnTPwpXolGF5zI2LMP9CeRNYqelXlECcBqMbnBETsGnUlPbrvh/+koBxXxMF9TTDTnmG8JrM1X5+tec10y0NQSkqsFV4guyNzj0DfdpqQ6GcccKsOsS+RzyeZYJKbNWdhZNfbE/aorj4DyiuBYULJpIkdkUFilNulwW0eWdV+Htl1H0FfwfqH7ugg0VMtmf5sHaWOseLC7KLn9yVDdXgth1E+1y2jD93E3tSTqAKIYDExqAlcZitK2UKSi7oQUze5Xfmdx/6hRH4TYo8kQU3qIM3vQpQTE0ABsYbBhbHKxOwO6awAj6srCZzMNowBN2PtRh/7TTeBlR13BKTFDQGf1/QRdxFUJzWM2ROgDKWAaSiF3D1QnGyJDKiuI1gqCIhsFStXNJlLl4kIKgOybRgDa4KkNJFSzJg4KjB2i9pKMPCnDVADPcSqI0vtjBi7RXVHyeP+QqK8DWMy6lAd0mQR6EkeJvTJShvQnGgG40igPWYAEdlogrbEeCWGUg4B+dqhOSWwEYESUN0ysGiIgUaqPwCu9LnzmmE+KZwoATX2HB+AZ3F3SGJlWA63tzlR4zVbrOj3TVJMht74UcqagKMrRAz78pFxdFCdR7+kr3eYSOR3ZCxVF2B27PXUe4vmXg5dk311pcRQSmQ7D7O1sBN1kGt2Pl7fapS6+rgN2W2PfplBN27srUyBQdlmQHdkYDb0xyIcOjD7RTaCOVsq2AmBWn4zIOgE7ggCXaEIHn2gpDSG/nB4QXAoHD2dqrFjyE57XiG/6+BKzd5NIWBnBtldB1foMXRI73r4UkPth7Hv0ms5ekSDEpCdI6No5EGuqmT8TufzXvM7WXVMbhUD3wPv4RYl01kHB1dlEI6VJQzX4aSD6Mm2ql0HXxLYJV/q+9UgSXoaDEEq+oEeyn4gIIw+V9EOBICD5c8UiKNTFYkDpKAXUyuCP2AEhsLFbesHhvYADACSkn8fLFnNLALCBPpSRUgCj4m9TJjAuYM3M3k7AYQEDCNjyZuU4u/OfTPZ9X25bPR//rWY4/9phyWAvxc9ln/PgeW3um5EyoCLh3cotEWhB0xMj+tmAiECqqqDkR5F2aNXCpm20KWFNg5FNqDKe7hswKYu2NFYOUyXNXbrEjfbCdRkQH48oG5zFGUPqTz6OoOeWgyZgVQeWWFRZAO2+wKucEwjVQGITGGWDxgGBV1ZmMyiO+4QvIAuHGyjIUuLEAQ/UzJAJD+fJpsEGfh9KgNUaUd5Chp6DJttDlFaBKmA6MHzXsBPOAK3M09QmT6zucfQa/iZg8g8QsdENsQewlDSo+hLBxdvvsEKBJviCwOgJIYFwaAruG12HoGrxNiPCCfgpw49KA2F8YATcHOCPlcE+MpD9AKh8PT+AYD2cBMxJs0iACHjzak/cgjG0xfTEjgJK8YON1+k7qvABG6Fcd+DAkLuYa517CELUT7LiglkoLdMRS+foydtWFD+HEoH1KzVgGNvoYj9fEFzvf0yyrd0DNFpxNjFxW3kPg6zWIouQVZPc3uCokeO6agEW3YSAP9e52ER4CIDkXxsLLnnMQiKx8SWcUAVtyX19vk8xv/792TBKgLfyLwgBjbBc3sAslZeAcomhiyBUA6KQ6zsSAFPKWDK6xCj5AnSE/MnLXs4hykHgC4/9BsmObAt6VMzvYBTARICiINsrwAVXyPA7SbrJMbjKzxZ08S62gKjJ8+VBDI853FCtRXjxALDspLPJ3qzyni9GIxVBqmHLoVVyTg5mwKv0jkA4uDW8HyzH47rbE8iII1A0hUYwQJ8/D36vhI7OfYWIvoq3eF6l+6wzz4CQNanxH1VBF2pUgMg+JCDGK9JaQ9JrbaM948ItoTHAdjiIL31Gf/JWFMSJOhjjtJEDtAwvj8N/IMgq6pbrlt1PAZAvGZ1TJUMcVLDBkAf0n29SawWE0HhCaBVXF56+BwQLSKjT3AyTMQI9pNnymvKOnXD56XjNgYRYqVIGCc7vKFMfrzPyLivkemDiDJYiTEhlpUHGPsuXRb3U3GbEMTBr6m4HhXBISXGEWA5MnlBCaRCeltwhxMbl+4PuiPrFeI6hMPYm2jz5A0M4/sReMxdBCjJr+3y6E9r+Bnzmv42RH+mMxgTXL3itSUcJz5YGyGgBozewH4qke19BABcXkpEDQKQcTIpMfBjP6SK1RtIx53LZcm9h7QHkCx8oFfN8dgKQfbSl2JMuU3AM+2HHIChSvJmQORkY70WI0OaqjZ4/ONnXwakpGJewIdrMF1bqmewjivi93nghEHQkaELAT6Th05FGw7f4fG1aXlBCo7iAhC0hFOxC9K+N1APgKt0vBdFT6YW47q9kvF6FnBSxs+nGNNUheX2eCMPE7CGYBqIywKPB0G4G8Hu+x7G9PkAAK9lnNDSkIMn2AuAN2oENi7nBD0nEiJw84ArzXvsvIR30TMYS6R93O7UbykGBxhFy58PkNaP8mGvJYRInx9N1tAFJrAOblwGoseR12bsvDSK4DFVdYQ4BlICSKmvNvB97wXqkIkEWUT33nlKoM46psBGBhMhMFE2yV3Tvik5MoyUx4YD6EzXfGJX3/dQJr9l6p0cr5NvgruQZLS/7HUcX/fe30MEw4KJc2OHZfJFysNn9a8Fl++HAP1tQOa39hH+yvH++/SQf/NL/u4+rJW4fHGE17dzPLs+xtvtDC4ISBmwuZ7g+dtj1Lsc4skEt28WkF+W8F6gtwq32wk2dYHmjqOm7HkG7yWwytC/mkAAqDcF+lajbTJo7SFuDYa7HOWXGXyrYQeF7a4EgkB2rRE2GZyVsFuDvBjQtRmGVQG7N+haA/WigLzO4K5zoJeoph1CL1G8NhAbA+w00EuY3MLMO5h3BnhZAoOEv8sRGgUEgfKVRvjLOZlRAcALYKcppxTA9KkGTIDeSohOMsBkpyBXGsM24zVda4hWkqUtUtIA4GsN0UuGpqwN5E6j/CoDnICoNWQrUFwpFG818jsB1UhAB4gtw1eyOwlklGiK3CG/paxM3xgUyxYi9zB3GsUVL73yrQIGAdlKbv9eo3qp6Hm0AnonIfcK5lZD1RKyVigvJbI7Nd7QdS0YYNILmI1gYIrxgAzcjoGBL9k7DbOJvXWNwOwZYt9bLEZvuD61l6heKIKqOLAStYJqJWs8JIBA5hOCQCVbC3YF9lyeCJQ0FjdkT7I7CdmKyMgx6CSFciQJJjyZRt2QGU2SNLPlQK18S6CZyuTzW67D7OIAKhBk6D1rRUY/7podjdkmDk7joLt8GwfhhgM/3QgWsg8C5aUYQZPZgaEYLSs/+iOH/I7rUY3A7IWnJA+IhfCRvWi4buFTB98BPIgBkB19j0Ew5CW/JcjUzaEzUbVM8tWxjzDVbAAYX2vWYgy34T9uW/JYmh1gNvRVpl5D2ZEt03tuqxwIuqWldLK4ZkCHtIivjxLAuE7h+B7VHoBiSj3W+3geIsNVvQ1kG3VkDSXZvSQbtRNex2Yfu/JqDvzNNjKY0f+l92Gs60iSYDnwp+opV6Rskf9PD+EOlRfZJoxS1GxLRm+UakaPstkhTmJwe82O57W443aqLqC84nbmqzACTID7ldJ4i5vAMBfHwbCuI8hNwCFKOKUN0PsQr8uA6jIgX4dxgC8t3+tNDBRx3AbhowQ0HIC0iTUf2Zbe4jIGsIx51NduAAAgAElEQVRsXsXBbr6mPJPXZGTiejKa+cbHCpcoS5zxZ7bzBO1Zur4Dz1cTfbvrgGJFCSIQgdHAdas+INtw2fSucRuTnxog+Mu29KNymw/nWHg+X6wcTO1h9uxCpOTTR98yt0tFj6jqgeTJTMdFDjw3BK5hDJFJID/bBZg9X5tYN9WTpUzLKlbuvUmBgwRa2v+bvfeItW3b07t+Y4wZV9x57xNuvu++WOVb9VyuJMDlJHCDZLCAFlhCogF0oEufpkWDICO6FkZCAgSyMZSNyraebJdfvC/VDSefs/NecaYRaPzHnOvc57ILi0JV13hJR+fsfdaaaY011/jGlwKmkzRi+XxKaIxp+/2EoRqnD41xeWSzZ8IcJpUfWMp8FQafZH8NkzouNkYPpYC8fmLPsIjRM7j9+DdtkLAcLden79zMVj7KLaG86IYxmG482dJhKh/BhUzIBQTJvrULcTFCdm9qeW9dpjGtH6SoygXStR/OmUAEvwETmUMQ8NSPB7O1JLWLQTtyHzetH8ZG0NGDuRT2SLeRaUx1DLSRsdwDW+k39fEz4zFbO4BV00SmEki2sSLDyvOro4T0tsYWBtN6slXcXwx2STYWZQOmE7lwsrGYTRdVAgqzlYRcU1tM5QX0+kCylhuU2bbCLIZ+QcZHRlO6JFXn5b2sRf4q1R5yrsr6oS9SvQaedKz56MGsigyasLqWYMTjqW/XskgUAliPbjoJ2Uk0uumGz3D/elT/3R8imPPCUPZeQrfbv2peY9Re75WsG2EPNcIc9r2Sfadk26eCBWEaozez9zCjtTwnhM9XifS7Sszud97v2EmlBjA9AMU+aEfrHfDrAbDaAb3Qg9X+ea+DZPg8A9r/6R/9z133OZnr5ySvr7/GOQGp/5g/4f8XwPOL/fhCS2Hvf30v/Ed/5df47vIhHkVpOn559ik/3N6nNB3Pqz1K0/G3n76DMZ6jyYZ1k5MnltQ4jss1R/mGv/HoS8zHFfcnC35yecJvvPkx/9u3PoSp5S/84t/mop3y9y7f5HY1omsTvvzgnEnasGwLbqoRV1dTDg/XvDG7ZZI2fPvVQ5QKJNrzK/ce82h9wLrNKZOOdZfxlb0LfnJ3wqIqGOctB+WWTDuuqjGLquBkuubeaElpOnJt+d7NfR5O7vjo8ozEOGZFw9PLfX7l7Ud8dHmG9RqlAtuP58y/fMM7eze83Mx4+Wqfw6MVq23ObFxTtSm/9uAz/sYnH2ASj3OKouhItMfowF5Z8fx2jjGeaptTjhrKrOPmbkKSxqTUVpPeGsqv3gHwxt4dP3p2RlG2ZImj6RLSxPHewRXf/ulbvPXmFcs6Z1sLON8uC8ppzfZ8jJpY3jy74XI1JgTF/mRL5wzL3z5i/5cuOL+cExqDGVnKUYO1hiRxFKllsSrptinHZwsuL2b8+pc/4VufvTP4u90q5fiNW07Gaz769AF7h2t8UKzXBWGRDfJbpp1MSFqDLi3jSc3qxRQ0jI43hO/M8T+3otlkwgpbxS98/TO+/dO3MKXcDNPM0mxTQm3QI4u6yMErxl+6wzpNYjybT+aM3ltQVxn+RQn3avxVjvJKanEOauxNwfj+iu3jGX5qhaW+zdl7447bF3PSeYO9KUQKfNpJeiriXXR7lvfffcVdVXJ1PkPFlNBQepLrROTJWthPdCDfq2luC/TGEI5a8W4eNfhNSnm0xVpZpGhvC/ILQ3O/QzWGkHhU4dAXOfrhFntToDqFn1hO799x/YNjeFhJqmxkwk1p4aU8T7+zob0thiCrdKFpH7SDJFu1slhRfLBg83xKGFuUDpKaGxSzsxXWaapXE0IqE7n0JsHejzrPVYJuBMy6whMmTiTafaptZPaThezP5wE/lUmWSgKh0ahOYw4a3GURr6EjuU3IbxTbBw5TyzZcHghTi75LhDVEvKdmo3ETJ9daCeM5emKoT8Qj6QdGnKHzUxJCA27iIRF2X1kNTpje8FaFPy+kr7MMoKOf2Ev/q14klK80m3csyirMViqXypeG6oEjZJ7kVmSDbuzRtSJbaNqZhDDV9+Lr1hp7YEmvJIypORZ/bHZpsBNZOKofdqhWDwC/uDADYwOwve9J1mpg5AR0qzgZDkPKbHNsyS8T+V2taPekjzRdx37dXBiA8qVme9+TruR19l6LucgGBiu/Fvay2QtMnilsGYOzvISF+RTat2uKnxb4PGBHIb4PcSFkLa93RawR2ouvOZDqpnZPjll38pzeP56uhPksrqS/M4vhUNKLK4sYpt6xNKaRcCndyn63bziKl0ZktzORWG9+rmb0w2JgtAfQWQvD2c52IWj5nfRV+rgw1I1FPl4fBfJbNUilu4lUNblC2NFegm8q+Xd+J8ffnDpGTw3FpYSLEWD2xHH3vhkWAdJ1oDmQ/3MFUhM0letlWgbJd69c0G08h7hI0OwxMOtJvetWTdbCeFUnivFz2f8guw+RFW926bt9z6huoZupnc80wOaBeHZTaRSJTHEY/LrFjRyzCnLuSeXZnsZOzAi8fcKQ+jqoE4yEeCVbWaBp9mTxa3ThqPf1wFTmCwGfLhNvbLaMfaK5HEdQinzpWL4lHZnpRtQUysk+s+VO0pxWgWYmXl6ILHAP+nMGOXa+CIP0tt4TkJ5Wu/7NXhmQNGGQ6vbdrCpAM5eAsa7sA5CEudMWtsea8kaCoTb3DNkyDFJ45QLNXFPeOGyhaWaK0ZWcf7pyLN5L2ftYQsNEBiwsXTPrtymA1LSe+iAh3fh4b1UkW8/6XkJ5I4w2Cuo9w+xxQ7OfDp2fpvY0+0m81wSypcUbken25wHCEKcbh41AvrhoBskuevf8YISlbOcJ2VI8l6ZxQ+9m0ApbGPJbqe9RNtDOU1kAW3WoENB1DB3KJG3WrBr8KBvAr08N2u4Acl8P44sUN0qHvky5ccROzX6u7uPvNjXdgz05rtSQLCrcJJdFl2UtElulCHlknusO1bSEyUjqVWLPpJ/HfvQecPaLKKtqqFDhde9lElnltoMk2YX19A/nBLS+Vi+i+soRYz7nsXzdV/n/CIvEtNkvvBQ2PQm/dvRv/r5v96+++i//wM8NvuDAcv8rJ+Hf/cu/wffuHvDze88B+GR9DECiHWfFii5oFl3JJ7dHfHj8nMYb9tKKV/WMH16c8ZXjc26bEY1N+Bfv/5Dfunyfx9f7fOPeSw7zDT+4ucdxueEw37BxGcu2wAfF9XbMe/tXPF7uk2rPusn44PCS2qa03nBTjTgabXh6t8eD+YKPXx3z6+98ym+/eijyV68IQXFvb0mZdNzWJfO85tVqyv3Zkq/PX/LXn36ZzhnmZc35zQylAm8c3/Lo5SG//v4nfOvx28wnNWXacbGYiKRXQZo65qOKIrHUNuH8ek45aqiqjKLo+OX7j/no5oxtmzItGowK+KB4cbGHNoGDvTVVm1JXmRBpraGc1vKz1Zye3vHq8SH3376ic4bOGpQKGB24uR0zmdZstjm+NfzGV37Cb/7oy+jEozScHi548XKf45Mlb85u+QefvYlSgbfvXfPpoxOwGjWyUueyv+Hq6R5qZAVgTjrcJiWdNtjrkux4S/dsTPHWCq1lHLdtgnMa32lM6rFL8caevnnDxdWMJLMURYdRgdWmEAmuguCk8kNZLeCpkYnC6MEarT3bTSGy6tZg24T5fMvdxRSVO9lGUOwdrllvCpzVaBNwG2FOZ/tbVncjAS2tJjvdCkgHqDXFccXhdMPlYkK7ySimDc2LMey1JJkj+WiM/caabpOJ3FoHXGtgmcC842tvveSjz+5LWNPLQlJ8Dxv0pyXtWYfOHeEm5/SDS25XI9oqJWwSdB09qCagtgZ91BAucnwf3lQLYPAjD5kX3+rGwHEjtSHLhDByJCOLrRPMTYI/adGXmciSjazOq07BzFL+JJfk5X071IQUpxvql2P0YQPPS9xRSzFpaV6N5PhKL/7YRKTT2bWhPZM0ZjfymHlL/v0RzZHHjT1mZUAH3NySxHAsAugeDO5ZkttEKk5WwoLbfQGW+XlCNxPPpc/A36/xnSG5SqNMK5Dfato9j3m4pTsvY6hWQDUi/TYLqUjxY0d6k5CsxXvq9zuoDaoT6XdfuZJdGUmM9or83FC/2aJqg9nqweMWlAQAhUzGZci9PCey58JiikdVgpoCzZkVgLwWiVm6itUkaZ+q7MVHO/HorVzn4pWAx15y2t4TL7QrYsfuWlGfeopzjWn71GNFN/Oxa1eSm/HgRiHKXtUgD0y2Akh8xsCWtAeyPZFSi182i1Uh+ZXe9fXmAp5M7AdOaoUt5LkSxuQpXwkALS40xY34RO0ohlClIsuWiagaQIpPA+MXAhhM3UtkoTqT7TWHIqvsq1ZcLmCoPwefRTAVg4Rctvt+6hOtXc5Q8eIigMiWEi7Vg2UQr6xpFOkyhg9Fv2ifANzsK7p5DFBKBWCVF1FqrQW0mRj6NH7hWbynhz7abCne1aDFD+xTAWFB7cKZepl0L6fu/bhJJdckaAGN7VQSu/O7MAAtCXwRr64dyTVKNoHNA+mGFXmhGkKR7ETApCvkGpYXAm6TrTCJPlHiXS2JSaQC5nrVoctFglxcCwgMRpGuxDdt6jBUq/T1Kb2/tQ9raqcSQpVswhC0ozupHAEJENrc16SRVU5iEFI7k4oU0wS6kR6ul+nked0ojvFY85JU8RiqQDsWMFtei7+07UObppp0G/2uKwGyfeiPCj07H7ClJqk8SR2o92TQJLUkUaebCF6jLFlHuWyfVNzLl3v/sEsFZGq789I2Mz2E7fTjV/lAspWQHdMKCLelFqa5DZjKY8d6WMQIEVwLEwi+ZxOR8J9+Oz5VpGuHHUldyTA2nCgT+goTkW3L+bczQ7oWhld+xyD5TSoJ62n3Yspv5USOnYrnFcBnO2a4lyX310nqbhTpxoKT8B4QMCq1LnoIH/Ix5Ed3IvH1uZE0Wy8sbzDC9oVEE1JNsmgIqcHlhmTVCENrPW6So7fdcL2DigAy0YP8VTknYT5VK4Cus+KVBAgi2R2AJyI9HeSzSn2uixOtd+xiXzni/Y6B/Nn6kf5nGxnFstixr0DopOcSraXnEuh9liQxNChNCJGFVUZ/3n/ZP35Watvv/x/18P6LXzeSnoRfO/w3ft+3+1fP/6s/8HODLziwHH9wL5z8h/8pe+9J32IICus1RgXWEQisb0aojeFLX3/O7/zoAemx6NPS1PFgvuCnn95jfLhl82oMpaOcNhRZh/Wa+sd7dCcdo3lF1wmg0CZgPi2w79T4ThI4pNMRgtNSVfKqkIlkUPKzV4ynNdvHM7IHG0KAZpWjEk/wivRlhn3QCCujkUln7iXg5q0KbzUnR0vOn+5DGjA3wlCpTUJ2byNsmlPglfQOnpeE0lM8TbGjgH9YE7xiNGlo6hS7Sgc/JyApua2CeUeSOexFKbLKkxrvFNoEbGMopw3VsqD8LKP5oKL4UUlz6IWZeVDh7jJIgzAuVmNGluxHYoKr36/RSSBc5Jh7W8KjsSTJaggmyMRfB0bvLdh8Oo8eU0gnrXQzaqDVkDuyFxnu7Rpe5bixp3iZ0ByIyb4PANLjDvWqwOeeUHjSm4Ru35LeJigbw1zOFdUvbglOYZ4X6FYmunq/xV/lhMKRXSWYraI+iRKttaI9i+DktCFsZDWwuEiG8BzlYPRCcfd1i9kIOHMjTyg9ZmkoLqWLzBtJUJ080bRz6KYenwaKC0N97CWMKJWuxexFKpUzE6mRqR46zEqDhuxW0e7FAI7Y7zj6NJWAIC0sGsD4SUI3DtixMGZJBc2RXOe97yXUJ0CA5sBLQNNcVoSLczmHbh5Q3U5y2xzJ88bPYHtP0bzTMP4opz4OFBcSstLsxVAcB92+pXiZYouAnTuShWF0rli97xg9MVT3JJFTOVi/bxk9TujmkjArwUsyuctvFdWZXJ/iSrG9J3LE/FrSR92oDxkSSawwAZ7JE832fsBlgclTjakDy3dle8FAfSJJp7pVpBtJFbWFYvWegNPJE836TallSSITtT2T+2d5rmj35T0dnSvWbwbKVzL5ze9kUlcfCIvSsye6he19YZN8KmCiZ0g2D/tJlshyXSbVLLZU1IeKdi6gxCe7MTf7BG6/RpQpQ+8v7f2uppbJ4va+1PtoJyFGzYFsp4o9kKYV8Lb/I7j5OZg8UjQHO0mt3GxFXmhLNbBJ41ee1Zsal+3kwqMLz/ZE0js393c+y6Ri6Eb0qbBn7R5kdwI2yqvA6i0VWTIBgfldBCpX8pz8Vp4zeingoDpV7H3sufmaJl3JORSXAiDya5Ei98E+5ZXUmZgmsH5DMftMUk0nL6VmJNkKkCuv5P1wqaSIaicgNFv0E1u5HD6TSbS2MhbXD+XeOnneSzAV1aGcT74K3L2vmT6W4KDiMrC9pyiuRI67uS81R+1UDUmo2sUxvnBsjwzFnUgxb7+UMDoXUGI68YXaPHZCLoRV023sZbwVKejmTJOtRG7cM0zNTMceVQaQ0o2kr7DZ03QjAXqja4epA7dfSiVUhxicFN/jbC2ga/lWQrYMFLeOzT2DywX49fLqfOlpx5riTvx46/sJ0+cWnyhWDw3ZKtDsCdOWL4Rl68bSlejTKLW+dWyPk0HKbQs5R9MJIxY0ZJF9BJEHN3MtLJ1HwnMm4mHsxlIbND536DawPUkYn9voqRXgYUtNunLUhyYCQc3owmJLTTvRA7hUXupQ+o5KFEPAT7aM466VOpbt/QJTx9qZi45mX1jM3leZVI7qOEM5kRU3+4n4SRupiHGFJl12NIeZsJ/LDjtO8KkmXVvqo1Sk6y+3NEelVJ8cpmQLCf55vRqlfFlDlKP6RGOqjvp0RLYQibDPDK7Q2FJTXrVImrYkswajqU4yiusOs+3oZhmmE3lou5dRXFRU90t0lPLm1zXtfk5+XbN9OKJ8UcnPVxUhNbR7OcWrDXaeY0vpgsxvGuwkJblrqO+NKF9s6PYKkk0nAC8zmG0nKa+THJ8ZkfhG5qzZzyhfbvB5IvUly3bwYyaLCpTCTXORoTrxBbrcCLjftBIYZP0Q3qPrDjfO0bVFt3YAjD5Ldj93DjcrMFcrSZsdFajOSnhP3Uni67qW3zctYZSjqpYQwaPq5axpIuE9RYZabQWwpRKqo7rIBLbd5wN6jCYUOWpTCQgtc/GGbitUlu28j6/3Ur7+szGEpkVlqQTvJHKtQgR1Kk0JTStAMs+h2zGXwcVey7bdpcFGuevnMMfrfZexSuT3lLr+01A38s+A5R/ex/TLZ+Gf+0t/nkxbzrdTvnn0lP/1t77J8Zev+JXTR/zo7ox5XnHbjPj0xRFffeMVB/mGp+t9LlcTnNMY49Hac2+64sVyxoP5glHSclOP+fff+i3+s2/9K2Rlx3TUoFTgg/1L3h5d878//wpFYrndlmgVWD+aEw5aCQcqW6w1pImjzDqKxPL4+SF/5us/5NuXD7FO0/2tQ7o/uuLDB8+5rsd8/PiUB/dveHk5Z29vw4fHL7hsJnz/J29w/OCOm7sJf+ztR/zo6pR/572/x1/+9I+Sp5ZXr/b4U1/7Mb/50w+4d7zgajmmrVJOTxbcLMc8PLzj2fUeXZ2wt79h+dN9/uQ//12+e/WARHuulmNGRUsIamDb1E3G/N1b7p7sMX6wQqtAYhz13znC/PIt60VJ8jxHv7/GWoP5rIT3N0xGNeOs42YzYnM9IrtI+E/+9f+Jv/jRn6BtExTgrHhI3z66oUw6PIof/OAtvvGNx/zgu2+Jr/LBFq0DXZuglLBz771xwaffe0D51oq9UcWLT44pz9YY4wlB0dQp41FDYjyNNbTf26N7V26Axwcr7v7+MenPLaiqjA/feIb1hvPthFfPDnj3nXMS5Vl3GRffORUQGFkhksD4/or1Xcm7b1zy9GoPHo2xZy3ltMYYYTOnk4pR3nK1mPDw8I55VvHtn7zNV99/zk+en8JVTnJvy5tHt3x2fsh41DAtGu62JXWViZz2QqJEQ+EoHme89yc+4ycvTpn8rRH1b6ywnWFvJpqoxbpgXLZs64w/8uA5v/3oTVmkeJxjp4GD9284naz45DffwWdStXH88I6bHx3iJh5VWuZ7W+6uJuAVf/znfszf/M5XSecNqIB3BvNZgX27RumAv8rRjUa/sSH5aMIf/5f/AX/9N38Be9KiU4/SAfNJSfr1JdtlIezvyHJ0uOLq40NJQ66lmgcv8l3OGvlOuc4lRCPznL19zd16RH1ZcvTmHVfP9oQ9BsLUMppXNJ/ORFZ4Gn1CTkX5aWQ0jyzlYUWSONZPZwMwTY5rumUGQUnH7U0piyAKVOLJHhXYiceVngfvXvFHj5/wP3/rm+QX0i/ZfmOLelLS7Tmya/HgBhNoThx/5he/z//5f32IelCRFx3uO3Pe+Y1H/Ph7b/LhL3zCt3/4DnqrCXkYApaKsw3towm+DLKI8SqF9zcY42kfTdCteGrLhyu21yMO7i2omgz7U5Fq+1SqblwmTKr6cIH7wZxu5lGnNeazkvt/7AWPnh4z+jgjvwncflMWRWSiGEjPtnSXJWHkGP8koz7xpG9usJ9OsIcdsx9krN5z5NdG6mAOO/CKP/9Lf4+/8nd/SWqbTiqSH0wof/mK9XcPpVf3xHH/S5dcr8Z0jyb4TOpVfMaQNpxs1SAt7cNwdCthWuq0If+oHIBze2LBQ/EipZsIyGruWcrHKeoXFmyvRhQvUua/fMHNd44HuWh1z5EuNT4Vv2+7FyLzGBg/jbUiHpZf7Sgfp/g/ssJ/PKG4jmD7nh8CrIIOhNOGMh6XHcvkXwJKRKKc3Sqab1SU35bFuXYuizh2JExjc+jxpWf244TlNzomv5NiSxi9DKzekWszfqYHtjCkDEC8OZAKnPGjhHYuC0QHP1Ds/1vPuPhf3hh6TIOG8KsLmt+Zka6EQVM9Uxw9uCgB3pOnsPggELJAeifJ1q7cBXmlGyUMp4kS12+uUN+dkt8ySI61Fb92dSqLhPatmvnfKUQOGtnabiqAsriUjtee8bVjkVvvf0/TTWK4UJTPClMktRvNn12g/6+9CAhlzrJ4XxZRRi9lm33Sb1IJW67jtWinapCCmlaY7GwRqI+FXVdB5Mw+UTSH8h6MXkSWrxZgWp0qJk+kZmbyROTS6UrYvWwVYpiS7LM6EhDes3g9A9svFAWzC8aaP7JU+yKH3t4T6a0t5PoIWwvzTzzNntSNTF56eS8yYb+Dgm4q52PavtM2UNx4XKaGlNvqUBQ4ysLo2lHPDcVCOjrrfc343LJ4Ox182srD5Z9uePg/iny+mZmB4dRtYHssixsA6/uG8tqTLRx3X0pZftnx4P+QfW7vKWafycLK6MKSn2/ZvDOhmco+N6cJ06ct1XFKUnuamaG4cxDg4hcTjr7vyBYCkG2umD2pqY4zylcNz//4iLO/29JNDPmtpNFuTyVBV3fSGWrLBFco0qUjWbcCbruAbryk2K46bJnQTbTIXp2E+7TTlHRtMbXFlQm6cbu/RyKfbecpo8dLuqMRtjBki1a6PG8r6rMx+U1DfVxQnG+xsxxT2UE6q+sO1Qg76YsEXXU732Ivj0WY+JAl6FUtNSMXS/x8JEm2iw0hS3F7I8zddtel2VlCmYFS6JsVfn8i49w5VNNJ5UjbQWJQ28j8+SDMpvsZ0JYmQyrt8OjZzaaFNCXUDaGuUUUhoM8YAZXb6vNSV+dQWfa7S2dBmM9/XI/la48vfN1IehJ+7eDP/b5v969e/Nd/4OcGX3BgOfrSvfC1/+Lfo0gsL67n/PzD5/zk8gTnNHlmKbMO5zWbOiNJHKurMbOjDU2b4N0ut8g2CffPbjm/mXF6sOTh9I7vvnhAvcxJRx1J6piUDZcXM7JRR5o6mjpFqUBRttR1SpJ4qruCdNxxMN/gvGa1zSnzjruXM0lvrRLSvRr/fET+9or3jq75/u88pJg3NC9HhKklH7cSFKQCVZXhW0M+bmURqklQJuCWmXQeTizBKvJZg9aB9rMp/lgm+klqaRaF6PEzj75LyR5u8D+e0B468b85hSqdpNCuU1RpSV7kwnLsWVABlXpYpWQnW5qbEl1pijdXbG9G8vqRJfusoD0QH1ff4alahTqtCU7hG0Nyk0olifHko47m5YjkuCbNLNXzCeqgJTjpxnS1fJkVs4ZJ2XD1fI6ymmSpGX/tlsWTOWHswCrefueCp5f7sp9VCqVjNKvl+ACzNOJ3AznnVsKFAGF5TRz/EaDoyqBOavxNjllr3FlL+jTDTgQMuP0OvUwGf5sv47UMkF6kklZ4rxFG56XIXUMq3sZwr8ZvEtmvlveFAGqdSKJqIR62HqyowpG8yqRP8U66D3vvpdsmqE2COmwwT0X+6tOAbjQ+9yivmL1zx/KTPQEfpXSW+kw8dd1EfHqmks9B+u6K+sU4pggr0ltDt++EyQ4qdi4KQE1vEukU3RrShaabxW0XIlu1c0dyF6VaMdnWTh3Fq4Ru7vG5BEv5NODmjuw8ASUyQu0kUKebBvp0yL7H0icBP7cUTzO6iUd3vbQyDKDE7lmyiwQ7iWEwlYQSyWRZukGbA49pZKLXxXoYOxGQlqwV7f6u41OkgrH6ZhZltQPQiGFCkRk0jZyDnTuSlZGkWwfZUuOyGDbTRQnsAtZveDmeQ49PoTzXkoQMg8Q0v9FU9x3prSbdKNpZGPphe+9aiKy/pIQSU1/lvOoT8Sb2KcumEfY22cj7PnqhpJs0Ed+gqWF7z1Nc6SE8pwciIJNdOwp0c6nF6X1tdiTjqq9RGXyFnUxm272dhBN20kM7EtZy86YnXWpGL6VmJF1DdSxewfowDEDP5wyBT71sVfkIXibxPcjleLJlH1YhoDXZSsVJz9z2nZlArEEQAKTjMfssSiermNQb2KWHhhjcZHZ/v14B099Tmn1hrAG6aGXSTkBdfq3i+yHn1Hv8lI8S0WR37Yf3ogqD/FKSjgVQiTQ2etstGQ0AACAASURBVK7b2FNZi/w0qSW5Od0IKGv21HDMffiTnch5mlZAWu+PbGcxLClKOnupZrIVcGXa6AVcB7qZwlSvyVCN/D4YqI4V4xdhAEPpRlh7E+e19bGAKtj5QNM1O3ll+tp1iL7CpNr5FnUH9f7Oi9h3myZVZH5jmnQv8/1conEj27Zl76+UcVrcerqRSCH7ceLynSRaOShvHdW+9Db3wUI9oEsrj43Jrzqm9gajaObyvmcrCfhppxpvFGnl6Uo9+AmLa0c3NZjGU++ZoepFt2EYYz5VknAbGfVdKFOIfkFh29ON1KWI6sBT7xuylQQjtXNDUsm5JnUYzteWkhBbXAmT2gN6kAArgHQp/sRubGK6riKppcolJGqoNUm2Hm9UvJ+rXWdllKeaxkvoUeOlZqV22MLs6lG6nVxSUpkDrjTCLnoGZjloMLUbpKxDCm0qgUrKxdRdo0kX9ZAwG1KN2Vp8ogmZHsCfG2U7kJdpVOslvbex8T4QYlJz+Bwg9HkiwUOALxIJBYKh3sQXKbrupHOyc4OcNcS0XEmnFV9j6IN1NPJc5wlZit5UQzJsSMwAAiWxVmpLlHU79nNTCdNZZOKx7CWwfWBQ74GEHXsZK1NIDGEjchWVZzuprXME74c+S6kl0Z9nJ/3PgNXXH7+bDPZ3ebyOU5RS/3RIYf8ZsPzD+dj/ykn4j/+HXwXgb158iWnW8Hw5Qyu4N12y6TKeXe/xp9/9Cd+7uc8obTlfTZmXNcs652SyprZRk689ZdLx4+dnaONIEs/JbM3L2xlH87WkxLYpzmumRUPVJSxWIw7mG6o2paoy9mdbFuuCLHPcmy95dH5ICIrpRD6QmypD64AxnrP5ipd3M9om5a3Ta17czqlXOe++ecGz6z2UEsZuNq2wXrNZlKRlF3tp5cNYr3PSsqPIO5ZXYx48FMZTmYCrE95984LH54eDNzB4TYDI8kFRdDinaZqU6bim6RLqTUYxbjHG09SpJOWqgLda2KfrKb/y3md8/+IeqXHcXk94cO+WF58cU5xu6NoE2xjSsmMyami6hBCU/L5OOD5dcPXZAclRhfcabyV4KCss9SoHqzh744ZXzw4AxE/ZJpjEk+Ud28sxpB5lAmnZ0VUpSW7p6gTds08vCwmWaQ2hSlAjy2RWsboayxeyU6jcsX+wlo7SRY4eS7+oTj1ukZEfVrRVSlpY2mWOLiy+M9JZqiRMRo8tfitAMTuosa0RcKthfLJhczkSn+JBw/HhivPHB2ACxb7cFLvO4BojQHhRQqtlAcIraDV7ZysWj/bABIIOpPsN3W2O2WtFbl16dC1f/m4k544OEqwy6wiVwUw7tPb4ZyP8SUvoNDQiodVbTchkgYH9dnh+uCjwY4dqxaNn5wJyVeLxqxRVOvSVgGhfesYnG6onU5kwnm3xj8eEB7Jo0D6X2bTZCmvoCwHoyoIvAtnJlu7FmHDQwl0qXZYbIxPuB62A570Wv0rREQT7uRXvXylAU60S8UmdNahX+TABNRGsh4MOFikh33kww0mDrxL02kgqbqdIV9K56vMwgEYfg42yhYTWJDcJdk++RM20g+dlrMcIuH2LuUlxM4tZJkMFR0ikw1S10Y9ZWvRFjptZ8lcpzRstOnNwmYtseuJJbyQwJaQSNKO8SKXNVkvQYwfd3GMqLb7KiVQoJBUiz68R+bZDAKeF9n4LMYW6OfDkt8KMtUcOvdWDP7NPNa7uWSaPEqoTP4Tg9I/JE8X2gYCMdCULAT2DmmwjE+QEUGongKy4UtJ7u1WxK1UAYH4nHZrZUg19o+s3JAlYWZFmlxeabioVLpJkLNfANNAcyaQ9Xckixvi5YnsmwLqv1BG/nfR0SgCMgNVuItesnTGkzIJUAuV3inYqgNlnMWgmAkwd60H6h9RfyPZNJQBY2VjrEv2MvTw5aIY6Gd2J1zJbqGFxQls5HtPyuTobSTeN20xir2UNxY1ncxY/G/E9yu8EQCZbIru922+2FC9kfSDb6H2h2SoCskwJwG4FkGcxQbc5iONwDKNzkUFLIFPcZqyA6Rc3moModU5EttwDVp8I+5ls5LXpRuYg/faK6xD7dXcMbFJJt2S6DXK8SkBMtgoD+BQwpHYsYi59nr2stF8Q6DtFTQv5nScokZr36cI+UZTXnupID2NHd7JP04YdKLeyj57hSxoB2X2FSb/QFBI5xx749N4+W8Q+3Cgr70pFceeHyhfTBeq5JtsI2OtG4jns025tqQbva9/X2Y6lvsUnSqTBN+Ln7MYia/apIt1GoFoFkkZYwqQOuJQhYbVnhnvgmlZhqEoxlaebGLqxprhxwzXuE3CBz4FYH2tH5IOy83DKeBU/ZTeW1FlbSEKsqWKYTQwBkooUSbztpka8lx4IATs2ZAsbq73UAIjTdUySDXE/G5GnDvU8pl+YjOmx1pNsI6vow5Dy2gNPXcWQn0SjW4cvE3S1k8CGWJkSjEK3TsZbH8qTJWjr0dsWN80FgLogUleQOpFYaRL6qpLOfQ5cqihvxXmRucb99qAtZMkQ8tNvqwehaMSnGYLIahtJlh08mD1QhJhaq3bAs25EYtunw6YiTQ7bGlXk8u8m3jiDF6Da14b0Hsv+PEPYgddhELz2f6+xtv/Ixz8VHsvj8Gt7/x8Ay6v/5g/83OALDixHX7oX/tR/9+d4tZmyrnOOp2uqLuX6bkKSOgm72b9j0RScv9pjsr+lrjLsNhEmDmSi3WreeO+Sl9dzbJXw7lsXfPrxGd/8+qd858kbuGWKnnb4xqBSz3RWsVqWJKkDFei2mfglo8+xmDXCdo5bXGfwVSKSyr2KzY3Uk+iNER+hh3y/HibX5lUuE9cksH+04u7pHkHF9MeRg1aT7dd4pzGJwz6e4KZOujNrM3QlEoCJJRu1NNclqtXREySsG1ZqNZRVuJGXfr5SJr+6VYTTBvO8wI68pKey8xemkxZ7WRCmMsHWd6n0B+55ggoStpIFko3G3tuFpKDAThzJ2uBKAUJh5AToRFBUPEtpjp2kZjoJ2ghaJu7S/xZgakmfZ7T7LoaneHRl6Hu5UFBcaqpTTygk0RMFdibJqMpqCVspPPml9HvV9zrxK76Sn7uZePtU2CV9KqewM8focUJzKAyLHckKvR3HlE4rxzt/+47qOwc0D1uSq5SkkvRGKbNn6JBTPkr/grw3+a2iOpFr42dW0j7PNe1cZHDpcnee/aS+PfAkG5lw98xet+8Jqad8looXJg809yzpZWRHM5HSZXcyAajebzBXWQy3UNiJj+wpA7OXRiYx2Qiblq60+CVPW/InOcUVbB6GnRwvDcNELtmqgSVs5wIagpJk0NnvJLRTuR7dRLpbszvZVy831a10eYaUWNnSy8CEwfNpwM49o6dGJnZ9R6fesTLVmfgsfQLtvtz3dMsQMJOuZRJlx4H2SD7b5ZN0AAXNYWStS3mtaZR4Tj00h8I+djNhWstLxfqNQH4jcsxkrckWck6uDORXmuYgUF4o7DiyXkqSYQlSDQMCBOojAUHVqZyrqSJbU/THL+dZH0oqaDfdMWc9uyMTRQFG6VrASQ9gsoUwdeMXwiK5XCb39YEaAEq2ir2iuTDE3VTY374qRwXoRhJyki1j0Mx4B6h8IvvpQz16z119uOuhTdeRxWrlOMsrAcuuEFDrMhhH2WN/XroRkOJTAS+b+4ryXH43euVZP9Tkd0HkiVsJmHGZeEbL8/i6haSR6gbafchud8fTHOxYYPHxwfRJBB1qd7/xmcg8mwMBKeMXUo2xfrj7DPV+TFfC5Jln/UAzOhd2Mb/12JESZu+5bCddhgEoqsiEtXORzXZTuSeXV57VG5ryIt6Hyh04sKVIJF2hYk+k9Bsm9Q5oppvoR0wYQm9e78YNRknC6FaARXWsSDaBfBnZxVTCevqkVRf9neWlSDG7iaSkuky2Y1phEruRfIa7idwT8oUfJKBF9DZnay/bL9TgEXWpolg4upEeQF3SxICXIEDEG6k8cblMmG2h0U62WdyJt9MnuxRjCV0RVrEbyWJLvvI0U3ldDyp9Igzx5KVIOMtrh8vl+aYLkS0Tv6by8ne29rFGI557Fr9TRgpvFPlK2D3lA+1UklN92veYBrpSvJf1oagn8kXP9KmhK9Nlcq1knwKK0nVfiyIn2c4TdCsLCunaDaE3KgS6SYKpHN0sGUJxdBdo9iQsR3deOi4zSVXtZaBBC9Bsp0bqb5YtzWEuHszLliYG6WQLG1lLN3Ra2pEhW3S0eyn5ZU17UJAuW7pZJimsW0u7n6FbT7qWhNFunpGsO9woIb/YUp+OBCz2FSsh4HMTVSUip0XL94xuHWbT0h6PSTbiGZVeTJG+uiKJQWgOvHRG6s4N4M+NM8y2kz7b3KC3LSGVv32RCePYgzwXCHkEiVHG6ke5qJT8a4Ax+hl9kaHrVn5u2p3PMfZMhiJHb2tCngroS8yuvsQ6Qp6JPzMxUkESgjCWSgkz2Yf99MC0D/XRaldzArLfn5Wivgb0+uAdFcOAQg9A+xRY2LGVfQos/MPAcUi3jXPw+LNS6ncP93n9Ef2YX/xU2H8GLP/QPor374ev/MW/gPOaSdGwqnO22xxXJ4zmFXWVsTffsK1z2jrBt8JWEBQ6dfg6QRfCEIUqwUw7XGXQq4Sw3wkTtsgFWI0tKvr58EoAqQ5DAA+VQY1F7krmoZMPpOo0oXBD2inLVFISNTsZpge8kj7I3Am7EgNt/MwKCFxr3CyySBuNeWeN+3SyA4UTJ+meffKkgpB6keRNRMLXH4fc3OIqnRNGJeR++F0/YVKxziKkAeLzdF8zEIGDWesdWxaIEkdAx7S+wqE6LceUBELmMWsz9M71skJXCPviSkFdQ19kvD4hiSE2L1OZKAeRSJqtVEv4bCcRszOHbmSf/QQ8ROAKIkf0SawNqBR27kkWOsrphHXxmbAjfdG9ywEV2TZeW03vUxT7yYeJ0rHIyvhMALErZDtmuwvgsZPXPnuRheknsd1U5Ky6FeBvtpr8Rg3sQj9ZdWV/fLIf5aLfKyZmdpPX2LfosdKdTObsKAysiKnUwNSZOjI9QY6nm8o1CYlcb4hgxkQ5YivjQYCqXKv+uvWSxH5xQHc7UOhT4gKEot0PsV80sjNhJ1Pr99GzIT2b0V+rHjz2HXA+ZZA+9p2fwjB8nn3oKxN64NkzGsRjK64E+PQpoMOCgNuxUP216NmrZCv77msRRucChPqFhIGxcrtj6LeXxpTMYftxf+laJoTtVPbZh8YM/47jcCiRV7vjGtix1z7XupPz6SZy/dOVorwUMGiL2DXabyeCKZEox+31t614TV2xG8Y6jieQ/xvOVUepc7cbv8P74HcMUC811DHNUoUds6BiL9/Qx/bax6dPG+0lh0Cc+MpkHoRFJAJGFyWkzb6iuJFxH/TueFwpwLed71JGe8+dSyX4qH+PtZXJfT8pH65FtxvHPUNpWnkdyHHYQu5zPSupYw9lL7ntgeWwQBBlnL1H8fVx1DN3vdTTlhJe00szm5kwZGn00fkkevVyAajdSACXacPuGiPXtAdx/bjsuy4hJpH29yS/+4yZTl6XVsLG9emoPdMUtADM/nc2l6TSvhezH7P9NZbPeZSlvj5BVQqXQrYRKanpekmtMIPp+vPJpS52KQoTFD8Tdje2pF4iRPmpHz5LydYPEtD+XtuPrT60p/9333UpgW67a9knLg+fkW43iINWQydnnxQMoKz0U74OnpULw7gZKoucfGakx1IYIxf7J/vfh0RjGjeAyd47p5wkn+rYd9n3VvafMZHbq8G3qOxuH/35aBuloH1oUZwneLNbhAmJEnBYJnI8r9WBKB/Ps5eeRkauT1t1uVR02HFKumzxyecXd/pE1v49DFoNEtrXWcoeAPbMoE9N7MSUvsgdU+lxo0x+D+KJ7M/NBfl3HIfDNnv2MspXVS8FjeO0l7p+Liinr/Iweidl7fsovZefjZa/Y7iS7MsI89g/XvdIGj0AU/ownD4dtmceQbbTV4P8zKNPce2B5PCS10HdIIn1n/v/z1WIeA+vAemfffwTYZB4nOG1oKB/0scfCmCZHIdf3fvXft+3+9eu/9If+LkBJH/QB/D/5lEkln/73b/Px9sTfuvJe7x9eMOHbz3jsp3ysppR2ZSnl/v82Q8+4vu39/lw/xnfunybB5MF3395n7OzGzZtxtlkRaYth/mGv/Hpl9i7t+Dy5Zxf/NJTHi/3cV4zL2o+fnxKPmn42tkrWp/w0U8eMj2saNqED969pLIpnzw/5vBgzeFow11dclBuqWzK8+s5755c8/HLE0bjmofzBT/65D7JyPLw+Ja7rcw2XFCsgdOjJZlxLKqCUd5yvRiT6ECWyYf6w9PnnB/OeHY358vHF3z/2QNOD5a8+OkxX/3wMT98co9ffu8Rt/WIdZdxvRzTbjOChX/pl77Ht16+RZ5aRmnH06s9ulUu8skImH/hvSd8+wfvkB7Ucs8z4iHNjiu+evqKR3cHVE3G/J2KdZ2zeTUeWN8kcThrKPOO7V3Jn/zwB/zm73wgTFRmcXcTOG44PlpycTGHTUJxuhGf6E9nHPz8JUoFzs/3KKf1IKOllmoGksDx/Ts6a1g8m5Mdb8kST9skEiLzbISbW+klLDvsbUEya3E3OclRhVIwLVo6Z9hcjkBB+uW1dEzWBlaJdBseO2Gpr1LcxGHmLSZxdM/H+MKjSgebhPROM/q5WxZ3I0zq6VrDO2++4qfPTlEq8ODkjovFhGaVo6cN9qbk7W++5JNnx4ROc3C6pOlS6jqVasCg4CrHjx2+UIyeJDRfrzAf1GxeTZmdrVg9m0mPY+ahsLjzUlbOG0W35zh974rltqC9LVGZh7sUfdjiKkke1pmDqxy77zBrQ/q1JfXTqdRMnHWoJKBuU3SjsCcdJneopwX22DN5e0FnDfWLMclxzYdvPuW3//aXyW4V03/hnFfPDlCZwyWBcJnTvrsR2fN1TijdMCFFwenZHVcfHeNLjxshibw3gp7DyKE2RnyfaRBmOwCJMInbtyzkjuRCnq/e2mCbBH2V4cq4qFJIMA5BSXfmXYZpFO9+8yk/fXw2dFC6MgyS0nDQwipl/9cvuXu1j75KMZWiPXboSmPOKuxVAVNL2Bp0rcnfXNN9OmX7fgc6kJxnKGD1DnSHvYdFvI4hlbETrEbfJVLnArLwoUCXFnUu/tzsTrP5+QZuM9KzLfb5CD/ypLcGO/OYtRYwFxmo4lKxvS9VIjZKZ+3MYVYGHytLiueiCiheGrqZsI/NL1YkH41xZaB66Bk9MWy+3FJ+mslCRx6oD2R8NX1oUhJQlSa7k5RjlwfCyFE+iYnECgl3uksJaaB8YahOxWtpOmFL7UiYflNLgu/2LUvxIqG+7xg9ScSTduDxhUdXmvxaPKnJRgCZqcV36ktP+cKwfb9j8sMMOxEw103Ev9juxUWPMgwBLcqDHUkH3OZtS3prhoUa1C6NuPc+N8eOkAbGjyRdGS2Kgd6PGbTaLXKEXW+lHYX4Xiqq+zKGxs8U1YkiW0iysMiE5aOfbEUx0fdrqqiI0J1IfZUF0wrLni3U4C3VXVwEsAysb3Us17o6ZvCpFtcS8jIsZuSwfEdT3Ciyu8DyXYVpFbaURR/TiFey2VfDcZTn0rnY+1zzW5FNukzOubyUBF4BJorJs4AdK/lTCmNuYvVs0Ir8TvyoyinGL8UTahpRP1Qn0R9aB4LSqBBItrB6Rzy5w+IFEgDU7Gv2Pna4VLE9FnYs3cRFlwgimz0t4LeNi0jXwnpWJxplBTj7FOoDI4sIBZjW4FMYnUe5apAOzWQr8th+QWy3KCDARbeB4taDUnSlQsfuR4Kw18WVSF3tSAmDHCtPTC3BPKMLTxuvXXEtvsxubGinu3qSdBOGcwtT2a8tFeW1ozqKaZ7K4FORc6SVpNr2izlJvQP6EkIU0NYMvZnaClubbg3JxtMcyYpH0NCVitGVG+o/mn0zVJsk9c7vmWw9uvWs3ipJtx5tJWE2v7FDeI8tNOlWvJCu0FHtIiyuLWLAToD6pIiVNA47MiQbhyuEmc3vOrqxsK8hyo515zG1o9nPMLV4GUU1IayzdgFvMtK1le3VTiSvjcONMnymd32YuZbuS6VIFhV2VuBGyQBik1WLG6eo1uPKRLyckwzVenRtsbOUZN0OYNftj4RhdQHddNj9XDycsULEj3JJkFUKPy6GBXe92OIPZ0P67M9WhgwVJIl4JdWmFrazZyz7ypFRXBmMctthUSmm6VJ9PihH9bUjnZXt+UBYrSDNIHhU0PK7ECRRtm4gTQUkZ9kOSEaQqXoP6e/ltwwBjDwvdP/4p34hHr9X+u0X+PGFZiwnH5yFv/Df/wafro94vpxxeztBm8DD41uu1mNGectyU/DG4R2dMxyVa35ydcI4b/FBDf2LISiqJkXrQLXK0YsUddwwGtesrseY0pIksT/QafK8Y70opeD9pCIE8M7gWk1fP5LlHdXFiGRpsHuO4rCibZKhoiQbt7Q3BWSecl7TVCnqVQH3a9yqT7hgkHoCoAM6d/hNShrDUey9+O28Tpg8XLJ5NCfst7BMSY5qbGcIbfzgmoC+S2WSNu0IVgvb2mhhOytDmFqR7N6WmMLBy3xgSouzDdVtST6vaZYy8U2uUqkzuc0IuUdvzcCA9hNkXwRCEumXzJO9THFv17hFKkmjpzU8KbEHdseqRO+bqbR0EVqRAqeXCXYi8lw/kZ/dSLoHu1iwbhpFe2LRa0N+o6nP3MDAqsgk97UcqtYkGwlN0Y3C7ltUrWXfG40/6lA36dD55guPbkX+FEaO7JXsP2jwuSdZGpKtoj6zmK1suz1ypEcV/FT8hu29DnObCpDwMol1YzmnZKlF8rowgz+um8r/ZXdS4bF+x5FfmiGV0ucyGU6XMfQmMh3ZnaJ6w6K3Oha8y8Q6AGns5atOPUklDLHPRKqb3Wp8LlUNroD1l1th8VNJjuy7AF0usk6fBbIbswtxWahYEwJ2GiguBPzYsTBkulNDSI3LRBY7sBy1GlgdW0aJmo2prmthitqphPmATCi7mUyAXSHP6YM9ZPsM++qf00ty6xPpSlSR+XGFjL2kih61uXgC05VcB59K6f3rvYPZUibT4rOMISyv+cOUF2no+g255n1likgPhZmoDyXldOgnjIEwKkTWaSHbqo93bKV01u1AhMt3DG/PdPYl5sDAyCUVURr9eSCS34q8Mmhh0obePyvhMn3/n09g9CrWUYwZntd3BiofGTPLkNLZjSHdxv2VApz62olkK8oGn8ZJViEMYn0gE3Y7VuBhdOmp9zR2AvmNHKuO17xnUfvrPQSzFJCuBPDkC5Gv9qx1thRg6TLZtwQqSbBHM5NeQFvu2Dk7UsN72k3kGLsxBCWAcPbIs3xbk2xl7PT1H8O5Rc/a6NLRTjTNTDO+cGyPpBPUJyJvHL9yVAdSB/L6te0Zy35cBi3HnFSBbB2kyiTKWPOl/NyPoXQjE/NupGIoThi6Ifv3LFvtWMxmT+pWRHK5+z+XClBoZ4psGQNeCmEc26kawI1PZNs9O206qQZZnyWYTsZtFkN92qmcc71n6D2MfcBO7/nLF04k9DMJl2knUtdhmj5kRklATRWGfkbpU5Rrny8lSTXoney6Z5eTWiSz7VgATTA7T6YtVGTQhQnM1n4AMqYW71y9L4nRSR27EVNhKruxJr+1bE/TQdIrdSRhqNwwjac+StFW6lSUfS0IhsiyeZGNZwuLLQ0+Sor7cB3TBvKblm6SDN9R6dpSneZkd1akurFXUjc+AlgzjHlliQE5GlP7GFYm3z3ZqsMnGpfL//UATO6lFjuOgFVH1s4FTOcx6xY7y+VeuhHpqk/0cE6mcajOSx1I4/C5EX9uBFpJ5SRsp5Yak17imiwbfB4lnpEh86lIf4MCjMIsW+w8x2w7fBkDdAJSoZKZgck0jcPlkbHMDaaysZpE6kLMqiGUqYyHdYufZOhtlKkSwVpk5VTToeoOPysHj6RqLWiNXm53EtaeUYzBOr7I0NtmYI3RGtpOpK0906gVal0RZmNU1QiT2QOwWC2iqkZ8lD17GEN1VM+EKrVjPBMj8tifZTf7x+tgx9qBZQzeDyxk/wivh/30EtoQht5K2LGe9F7R12pL/iEf5e8BLPuE2RDCFz8VNjkOvzr7V3/ft/vXbv/bP/Bzgy84sMzfeRje+M//A5zTjMYN87LmxSfHMLYEpxjtVVhrCF5hLwvMUUM5aqirDGc1vhavZWg16bRF6SBBOC+n6GknSoSbjDB2mNyRpJauEUmtXiakDzZ4p7GthLqE24zJm0vWdyNCq9EjK4xXZcR7l0hIiLIyQe6OJbofJ6ufZqvRjaI7tKjSMZlV1D/cEwCBSBz9cUv505zqg9h7GXVpZr1LQfNlvJl6hd5v4GUhctlUgjm6uchndRcllEkgWYpUqJtGuc1ICt576ZUdhQg+ZB/5jcgcuwOPWYmPyBfiy+t9eHYS8Jln+nFCfRR7Fu835J8WtHOPn0rCZ3Pg5Tw0pAs9yEWDkdRK6SmUePftfU8wkMWi+tELTTsT750t4/ntiyfSVEpknTFYQzxFshLvRgFdK9KNGoI9sqX4hbpJ2AGv+5J2m9zKF7edio9v+8BRvBL2z44k4bE5EqmoHYlPMFnJjbjdFz9mX8RdH0uJu4oTfG8C3Z68J+NnmupYwEwfJpFuJEVSd8KOuJj4qWMBu4rgtJexgryPo5eK+kiuSS8HtROZUBWXAohcKa/XDTtfonotkVFHtudWJHNJTA1NNnqQjorEVYCsj1JdZRk8JSamS45fyHu6fJehBkGeHMfUXZTHpv12ZUJd3Oz6EnvJanMQAV8u5e/Nvsyqiithqfoky25C9E/FIA0txyPBMjs5rbI7uR1RtupyyK9FomXHKnZjynXy8U8S9zE6F5Ylv5Hr287l/HqQ5CP4/L/ZclkEdQAAIABJREFUe5Mey7LEPOw7053eFC+GjByqsrqqurpJNwTCEiBSC3ttwIa99VKAN1oa8B9oayV4YwHaGTAM2IAB+x+IS+9ogBZFqskmWUNX1pCRGeOb7nQmL75z7ousZpMC3UKzDF6gUBkR7935vXu+800A96O8Z91BeUtfqtkxNXP/HtmZLLWLitejusssDo6AJ8kcH3cd8gIC/TlBbLHJ6YzHInhfHgGsCIAcMHnfdEvZ57ggYDJ7rjIogjE7p+8SILDUXe6GjNOgPKQ0SjXQz2ebFESTZOM5PZLplWmXs0T50XXPcm/pmaDZnbNrsXqIBEkyn08O2qM4BpqUm8RyJIAjHX1tIvB8qP4oW9VdnAblUQLjUkxBOe0lQaRM8lSVwmeyXDkk8EPJZQpvUcdt5qoLgK9t3oYpGVRa3gu6P96buuNxmzaBh5IAoHnj0D7RrCa5oeQzewuHlZxCcWQKTJGOfZXmkNNKCZgJpuLUV+kLAVcLVA+edRsLCZP6KUXyHIpASd/kv0znnfJasl45wCaDogzEulOF5q3DcKJQbj3GuZpkkxAC4ywH2PB9U5BPJaaqD93zGE0bJ8l5TnzN0lDpUpqrJpDOgIwTRQRFrua1kDamiST6HPVAqajqObGhek4w+FJCdQG+4gHr1mNYaxRbD90RYErLzsvq3hOsIcm4jWCyZ+T2aOfg/piDgy8kfCVRbBzsgt2VwtF/CBwl3Vn+qlqHUCkEIydZaAYSwST5KwBfSegupZ8m6acvmLJKACZgF5TBTimqNiAoMrvl/YhxZaCGMFVrlG9bDE8aJgzvLWLaxygFVJ9ktQOBdQ6tIUDV0L2fwJ5wAW6Wejp9IOgTAnJwCEYhlASa0zMhgUqmwAZEo9LkgIB56BEqAlbpwhEQSZ532dN7GY0iGxjCJEVFOH7e83tk79hpGWLyZ8b0Wj7HQmWg7w6IStE/mfosY6ERpYTsR4bntANiWfA1Azsm2U9ZMYBntEdAVRgG3cQIlAVgHcRojzLY/Pq/ypdYGIb5ZND4WN6al+yBTMvku+zH47nqhyNjCLwD9iYPZeqaFCax1Hlbzh2Df0KkHzRGwNp3mckEKvO/fwlzPLp2fy2LF4/A83vvsdQX8Z8s/qtf+3r/9cP//Bs/NmAi1b+niwCerHd4cfGA/X2D680cUUUUzYhyMaB9O8O4KfFkvYM8GyFkwO52Bu8l4rYAdCA4MwHaeBSFQ/sXJxBWQH5LeYDZSmCU8C3TTYUEg3/OB4TP5rCtQXQS6psKsQ44fLFCtBLNWQv1VYXqqwKx8ilQJPn2igj50R6y9JAHhcXTHWRHUKk+2UMe+PQ8fL6ipKxkEb1feGCv0b7voK4KFLcKwkmgYGpjvBzoTQRgNgrV5QF4XSFUkV7MNCMtHB9wbuGTB1LAPrHsYdsI4GyAbBx8kQY3DesI/Ec9Z95fHjCcB7gPe+ithPnhDsWDQJw7esQcwVX9cgc5Sgy/u4ddU0YWHcvLQ+MhBoXxhJ2RsYgwG3p8uhcOcmS65O4TJsIFE7H/wEMlkOTqiLi2BIIngXUOadAz+0IjlJF9fp7Ax15aiAD0TzwZRhXhTjz6C58AY0R/HlMojcC4ChjOAuWYNoHAlB5qZ2Qz3SxiTJK1ww88e/5mBMH+Rc/kyuRL6p87SM/tm6ct+uce7UeW4PxlqicZBIZ18j0aQP/jewalzHjd7DLAriLsixGujhhXrGNw8zB9HrLfxFcR/VnEeOYxnvDLerj08HVIs/+YAB3ZxAhXR/SXnp2NK6C75GDSvjegfR4omTw91g2YXaqeOOX1Gs4iDh9bCAfs/6MR+48c7ILrCYZga1iTUdYHDqDbT0YmTp4FDCvg8CKgP+cgvXtpEQrg/ie8NsEwZGb/oUd1Q3A0rkOqCSAbmesisoQrSk5G2DkZSoDXY/dhQFARckyTDqnPMPsHowDGZcTmJx7DmgzN7iPWgrSXPA/dcz9J+h5+lNietcDuozQZMyNIscuI9pMB/VnE4UVA+9Jh9yEwrBOD8N6A7scD9u+TUd6/ZJF9FJi8qP0Za0H68zTJZIH2qUBIdQuhYA9eUJTMicBreniPANnVAje/63H3OzyG7jKBwzmw/SSgfcbBeX8u0F5Sgjmcsg+vveT5aZ8KdE8jth+yGsE1AofnnODozwV2HwbYWZpcSOd+977A/gNg8yPeZ/0Z97G/4LlunwmMS4HDC17P4VRg9sZj9wMCHjcT2PyQXXm7l1xvf8L3ZPA+rrhv9PGSDWufHhkSu2DoTCgJNnyRJKIjmTYA2L2UaC8l2qecYBtOxTQJMS7FFEzTn3LbOe2VLBXPb/s09WL6NEkjKPk8vBBTCFC/ltj+gAPWYAgkD89EYnO5b8U+oL2QGFYCwwl9r3e/bejV1QKbHyi0lwK79wmWmree4UYlj6u9UBiWkiyrAIaVQHcmMaw5EWNaJqHe/0jBNgLtU4Ht+xr9mgyYKwUOTyXaS4X2qZgYx34t0uslyq3ntdZAf8pz7WqB/lRinFNmeP+Jhl0ItJcaeojozvSUirp/T8GVAv0ZpbzCE/jvn6sJIOeEVjsjq8uJgXTOtUB/QuVI9iWaPZ8V/ZoBLlEAw1KiO9cElYnJdJXE9qVGv5LQPUF6XnwhMC6ZvtqtJXYvNfbPFPbPFfoznbyiArv3SyAA25dmYiqZTMrqDVtTsutKicOlnkZavhTozg18LdGdKgxrQwAMoL000L1H1FyHaxQOzwuGJj2rcHhapG5Qldajp3USYAgGFoUIVysMp4agSwC790vYRmNYG+jWY/+imADz4WlK0tZA+6yEnUmMK43uaQlfSGx+a0lg3nAyUe8pNW2fGPiSYNeXTEqNRsLONezSEEwEYLhskl+a4Fx1qdZDSbKeQqC/pAKqvywxrtnB6EvJqpGRDKevyDiGgoDRVxqhVLDzVBmiJYJR8LWGPa3IbiaPdqgMRO+SN1UAKcU1aonxpMR4VsNXGnJw8LVhXYiPCA3D74QnMEXab8QIv6rptdQSoeGMaljWECEkDyrBXJzVCLWhp1NJhJMZYplmYKU8Jq4aPdWGxFzpgcy0S8TCkJlUnFSY1qEIRGNZ8P0g8IylAYaR/24qgtwc/qMSwH4MKuWRhQUAMasnMCmMQczMZWEg0naE1nxN7q8sDERVHgN5ctCPc9PxyLKc/hNFAWE0/9MaQslf/Z/WPNbvpsr+/fJ3bvleM5bLH1/Gn/yrf4qL+oCrwwJCRNxuZvBWYbnsIETEvi1RVRaXiz1+8eYMQkSUlYW1CmfLA242c3jP2gtdONj7CtV5B2McdvcNYCXMckBZOgyDhhuPttTYK5jlQBlsp2BmFrbXgJOQtUMYFYRiebwuPIKXiFGw/mPQfG0UEIpf/gC4D5sS0BFyq1G8d8DQGggVKaO1EqIIKGcj+usaqD2EiohWst+w4/6JXiGHAsW5A2RENU/vqTjAVpWDPxgGDZUBzUmH9rZh4FARABWhK4cYBfzOQFQecZAwK8pv7aak1Hd1lLAKm2b5lo779KDhl45BRY8Ta70AqgBdOfibEnHmIVqFOPOolz2Gr+YEn7VHbPVUwyEOGrKT8KcWYq8hzwem9vaszogidTkuHdQDAWbUcZp5lC0fjqGKEKNAOLGAldw3E6Z9FCYgdgpipK+rf99CbUgfhTJJcVMlB8BJA/2gpiqInBKr95Jy0TlfK9v0RS5YvQFPoBUFwUKWbebXq1bCnVqojSZjrAHfBOj9MSSpvKHvTHWUA4vEgIfGw9xreu32cvI0TXLLBCiFZfKqCGDVxb16JxAnB8NEzSqO8oayNVfHKUAoVzsIexxU58GdiGRSh3N/rPWo48R+iACGNiEx1v2xyD4UEaGOkB2DjATDWjlBkliS4dyjuFMpeARAFBjXHmYjIb2YJh3yvRcKghw5srOyvJFT6icDmMjolPdkn8ZVPPYaJgYfElMIlBxTeJTEJOsNhizk4+Ak4TGxtDkBV3omy0ZD5jCfb4ZlpPXsxXQeRaB8dZKM56TRMrGnC0q6iy3X4WZkYynVjlNYVjDcH7MnMCsfkmy4xsRe6xYTSxyK4/1AWSSOYUSJ4VUjWUw1cps5eEb3+f7BVIkS5aPrYI+hRZkVAxLbnM6d2WHab9UfpbSu4TrNITGIqbLDzbju/Huzf9TfKHn9zD5O4Chvt9gRbB5DklLaakPGmhUMiQEvxXT/CsegH3MgY+WSV40sd5KZFmKS/o5LMqGuEdPnQDoyShM4nSS+x05Gs0/vSef+2AtK4JTDwzKrmq9L7obM5zZ7MLPqYApSAtlC6eNRdZA/OvJ4z2XGNjOlWR6ez6OrubJyG1gB4h99Zv3x3lED+x77lZoYNF+lCpg5WUs1JD9sYqOpKIjQHRnizFrma2FaeiBzaJEaKZ/VPYGlLxKLLI7nOWjK3at7vjd3o/oi3c+BgLt68LCzNLCX7GzM1R66j5jCpSK3m6s2cuAOk3vzcbG7UYRc5RHxWMUhHNn1rKIIWrwj45U2wtUSZufg5oqqBJdkwObon8z3VQ78yexploVmFYEc+Xc5BPhaHcNukjzV1fzeR8C7QUHp/uM9GJiyaiibZTqxhu4c+tOCbPoYWNdRqHQPk4UVPk5eRkphPcO7hJjkqwgp+RWYXid9gBgDJa09PYKhVBA2HJnJFLojcrDRo+CnKBnoI5NPcQoUivHok01+ReGoOEAAoBNb5yP9jFoiCnFMiA0BYnCIlXm3FiStM/+cvZDckCTI1Oq4jzkYx/upKiSmOhDhuR38VazjdGz+uO4sWX3MEuZk2O+mtuZ/M2Rjem8MZIgnmSt/OTGXj8N7ACDmbSa28ruS2uNuH//21+KSEL//4T3qPP6T+X/5a1/vv97+L7/xYwO+5+E9g9W4283wcKgxDAZSRNh9geXFHtttzT7HTsPuyskriSjY3Xgo8LozBCspKXbeDLjvDPqbGmMvIQqCD3kSYS1BhRARYUhfsCpOIBBRwD6UMOsedlsygbanvwGlh31TIxZMUT2cSYg9K0ggAFTU98VWw/YKMBHL0wN2/RL9QwUkn6W61/ALD/N1gWGpoQaJ0HggCIi95uTZjUF40SMEAdFJBoUcFGIR0duKSbNFAKyE7wug9oCltLdTFdm5QQCOCbrxLgHVMgJWMzTifga39NBbxUTYVEcisqw3Bb/EmiwpO5QoG4UHinsFNw8IjUe4qiAkgIOC6iW8APzrBaQGQi0g36REhH3BZNIkj8M9Qbl8VUEldkYMAmqkj2qsWaWibWJnZwwymfxMWRZcaIiBwSHSawxnHnonp249s2dgRfFG0xfXCsqoDT2pOjHEcnwE2LxAc8Vi90lutFGpOiMNqqKgnNQTPLl5RBBAeU9gLq7JfrhZRPVVAV9mHyEgPY9NjQAgWN/RJn/cVk6Ap/jGwC4jyms+yPSe1RUQrP+YBusKmH0tYZeAvJaw8wg9iilIxJeANIAcxJQEq1tuO/cVSisQkFJfO0wDUNfwZb6MqK5UGpAjSTBFShWNEHv6QPOAVQ2g57QTELeY/IJRpIHngWAsCmD+Cw07T2x7WsxWks1tgCLJgzOLqHruPwePOTiA+6hGgWIvpsE4Imt2RABkOl8IRyCU62XqN2IqtS+3wHCWfItzMfkgMyjKx2AOrIPozxnikn10OclWHdjdh0iPYlTctsgT1cMRSElLP2GUAmaPSeal26Nk1s4JOMcVX5+lx7rlcaqeA3rhkCTaPEbdAf6RnLi8i1AD0J8ek0Lp50uy7ATKdEuw5CsBnQfnTS5yFwiW3w3SAfr+UdG5B9yMFSdR0Fdo50xp9WUKdYmpOgMJ8CU/YwZmzbcRdkmJKkfaqWvRCKiOEl2XEoF1qtLQPcFK9ubxO41AxOwfScSUAFyE6vMAjNelvubkQrmNaM0RWDExFpN3T3dHwC48g2jsLHkiQ4Rr0jURR2BT7LieYMQvJQIz+RZTwrHuIpRNHkGTttFhAidMVhWs9aj5s7IEcsID9S0nOr0Rx7TUBJhyVyMnCHjeyl3EOOPfsv8PQqLYBYxzifLhCD5sk+SoCdDpIU5S1smfG/iaMgEo0zKxttxyPbaWlF36kGTEx3oONfkXI3JqLtdBIGcbiebGwTZJ3trzda5hX6Q3yUu58+hPNXSXU3IB41NwSxfY95n8lznsBkjn6OCP8tmekmw1xCmltkppsQAm8KeGHHKDKQQKSjBMplIEco+ktmTzRPJ6pnvCR6jOk9GTEbpzQFSUjh7cdM7GhWEiqxSpp9S9E0gTCtZ3lHcDxnWZAB2g+gDpw+SX1JaJrUHRD+nmXK/wATJJUukDdkAAygeLoI4eUjkeU1ZVT8+jTvspfDz6JCP9oQAIHltLH6MnyFMHm96TEmW1hDpYAlcAaqBizDcGKofcJDAWNIGp7LhOekUBBEpv82RLlAKyt5SnJsAtDwOZSi0niaoIAaKnNzEqAagUrDNaxKaEaIdJ9j11TSZJK2I8AsQQjoAyEuSKfuQ59R6Q+pgSm2+mkDyUIb0/pCCdx/2QQhxDd3xgz2aS3b4DUB/5HWMIlLcm9nJKZvUBj+WplLymifacApv3P4FT8Z06k+8CyF8pk33nReGXf/d9XL7HpN7ftHyvgSUAzOsBD9uGvsfS4ccff4tPry4QNwXUecfkaElmSABwg4JrNcNqbumfFJ1CWDrcv14CXuDkxRabL1eIpUfzrEO7K4GHgl7EjUS4cGT5Kg/RJwN77Qk0HyrIjmlmce4gdIC8KRjrf8dUOXlvEFYO+tqQkQHovQQlrOOZx+HTFeKCX+hikJA7hsIAmOSx8qKH+KoBAuDOWMXh64hgFeROQXgBXzvuTxAoHiSGHwyoPi8JZmYRcscvT2kB7AuEEogpnVLvJEGF4yA/mIjiTsI3abY3ALGIKG7VxLJU1wL9RYSvyHyV9wKd1BPboYb0IOkERErzdKcW5trAnjoU1xrlPQvOm1caruGDt3jgzHR/EaAcH4h6Bw560gDYbCX0gR2F5oF9hm4eUF4rRJHkVAuCMLPJQEaiuqEXMegIs6U3c0iMmbSYwkBUKyaWxOwlVI8EWjlLXN6yk3D2dcT24zTIO6Rutmsed5Z9cYY4+foUPY7FQwKHB0o+heP7xiXZMztnkAsj1TFJm8vEkgGYZuHZt0jwVm7IJEESUOqex+ArsJhd0W+YqynMPs2yK0xVEvqQ2COTfJp7MQ2S45jAhE/nJyVxuhoT01c+sJdvWLMCRgRWi5QbMkm+JDjJiwjs8+ue5JRCritLXXkPJVauTpMaaVFjTs3kPmdvYVSA2WYgzHVlUKW7iPHkyKy4GhM7mnv/ig33Xyam7zG7YvY5aIjsVnknmHIZACRGLoP0qI4BNv2pQPHAwWt/ShA6dTRaXm9fY/IEktEUU8KlGtKxgWBM9ceAnKiB2etAv+T8yBLJMe2v4zkt7ymXzEE1ZHgEjKUkVHcEjMLFdF2PhfLCA/UD5drmwPNoGw6UsxxW9dn/xg5EghyGwJS3DMnx1dEz50t6Qqe+y32c6jDUyNcjJG9i4HGUm4DuTELGCJlqZsw2+dP6OAU66TuPcSH5eQBB1LDktpl+yckFMiUEJK5MDF1BEJp9oGZP4FfsCLb0wFoNXxDki8TclZtUK5JAjvQRs6vAIvcugeKBElgG5wDVxmNYqqkeZJwxHMc2SVLYRfYuJpCVJe2m434PiyPrlj+3/C6LE5uo0udI95GJnKWe2DE1xKncPhhOKOkhMqFTpRcBmF1ZuJnixEdiWKWNU2UJfctiYm0zkMuBOBmE6YgJwKpERpiWYCpoSq+jFFNno6sTmEpj1/rGw86P4T4iYgrzyZLyYcWeSDujIqPY+hQaxf3RrYcs5OSlVIkBFB4wO4v+ooDeediFhm0k9EAAbmcS5hBSHVKE7j2BeSUBy30wQ4BKEwmIcQoNCkpAH0Lqe3UYzgzkGFHe2aNKoVTQe4v+opz8osJF6EMGM3HyVIpHA3FfKuiWQTgTQBKs4Mj9jz6QLQz6WIXB9QE5kGc4MShvR0gfyD4eKKl0c3Os89CJYUzVIKFQ0B1vMGE9xnWVkmZjCslJgTybAZiZNImZQ18YNCN7O/kqhaUcNi4L/j4CcAEigbMwK6ZAH+ECf1ekLkkBCB+geno5pfVHBZP1DOVJlSGhKageSl7PqT5ICQb0LKq0/gDRDZCPex5T1UgGb8JlEEiJqRgcZa8JSIosPc2/k3IK1RGDpScyg8oc/iMEoiGohPOUpD5iGd/xWkp5BC85xVXJI6j0/l3Q+d0eyxxOJAS9pd/1cWaAJyQQjqByAqWpz3I6P2ndQh0DiHIYz69cHnlEJ5CZt/P3y9/Z5XsPLAenoLSHVAHLWY/Pri5wsd7hrRdYzXvcbFhMW5926A8F6sWAZydbfHu/glgMTIJtC5Sf1Vj8oxvcfXqKw5+tYT48wL1ucAgNXry8RfnC4fMvLmHPAtRGIZyzVsA8beGsgnxTov5oi/1DjWgFyqcthtYAGwM8ZdCOAzgAPx1RFg6jCRAiwnxdwS35QfMfdUCnoc86hDcNYkWfXwwKdhERTy3qPy8h//EW/Z+vEN/vEbwA9pqMSZ3SXRU3Jnr2TOZ00dgrjD/qEA4aovYIMiL61DF5zYoLUXrETsEqykuDo1QSAvCHNHC6T8lxNwrjRZLCmoB4V8LNPUQQiB906HRNn9Kph16NgAqIn8344HqvQ/MHDfaFhr2wkHsNuw4QnrNuwzom+WWA84qSxsSO+UD/YPOVhpszVTWUEb6WsCsPtbSIb0ump9YRbu0grzVZNwnYUw/cKkbt/9BDtwSUdhEwPrMovzbwBdB+PKL8usBw4QAJFLcK7sLCDfxyU61EKFK/ZSRwswuR5E0cGLhzi/1cwjwoSCswngSogQFFqhWABNyKA4DQBIS3nBQQ4ljJMJ5EVDeSPtALB3OjUTwItB+PqH9RwM6ZzqpSKq5dBJiNhFtGDBf0gTZXAt2TgPGUwL5sBdpnIYW8SKa8VpSt6jb3VwLjGaWmDIxhuJTZcBLDV0D9lsAwGmCsYxps8bhUz+ePL4FwykHe2DDV1S7ZzzichsT8iakCYDglqHQz1lMMa87mVzcC/Wny06qUBNuKqY8zypT0mYBqUJh6BKvbiN0PeI1irgRIrKTLhe0z0AvdpXAVw+eYncVp/3yZGMH0fLNzAqBxGVG/FcnvGDD7WqLYpBqGSLbY7LJHGNPkQPucEtViQ+8jmVYOvHNwj5sdqx3GFRJgwiPmg39zTQLNc75m/4IyX4J5Hqtuge6SAF8OQH9O9nJckKmTjkmu2bPcnfMz01wRvEobUW4i2gsJIekhzNLX7PUrNmShXC2OoLqmHNTNMEl6o0zyUAPYxF5UtwS2dkbg3J9JmJSSGhJoc0kmm0FSBguZVVVjYjnbOIW2DCuB9omCGnIyKtCvxTsTD5RcJqnqbUR3JuEasqZkZwVcQ8+tq/mzHwEIoL2QBJG1mIDP1DdbIAXrEPjtXirMvg30UGbf3olCdUsQPM4ZVJSPTyTprbIEl5RAH3ttIclQsnoCqO8DunWSeA9IvmoxJeJGyQklX9D3WW4p6xwXErZhqI7uj1LOHIIUBSs95Mj52sNTM01C5TTWcaFgZyn5VZJRFElua+skM45kRLsLjSqBfVeS/czyXnorI4QXiGkCDpHnRoQIm+oyomQtiO4C2nOF4kBJ8LBIALMlEK1vGCI0BYCd5EFvmqCqNJSNGBcmMfgML/KlwJA6LUPJn5s3I4YTA1cfPbasAZFwtZk+k64++tZczfsRkf7BmO53X9PT6WYaMgFyO6f3kIAPkFZTrltI5D7IkNioqCXkEBAq+jJzYnAA4E8Mcg0JQ38kQiHRLcqJcfelQiiTP9gFhEIiFALSFbBzheqGqbNklSOGMwOzY9gTQHBcbC2G0wLFg03rlJCW20KtE/Ofql92Dvrgjj21RkLYADs3UDYAPsKuCpTuka8SGqgB+Ag/Lwk2Nc+hW5Rp4iLSJzkSaEYjEYSA6umbhBIMJKopTZUuIJQadlWiuGl5L4QAGEUmVUr4OZNlhQtkHF1ALFKq66KeZK1i8IhKHVm6LHf1moE8dUFgmbyUBIhMjxX9iFglT6UjEA3zipMQw0iQWZpjS5d1TI4VOR1a4HHXJR6B3SklVogUOpRkr496Mt9ZMhAMYZK/RufJimdPp3MEgy4CUlESGxLozGBTSspalUK0lmxlBpQ5gGjyYSZfqPfTv6d9eGffxDvv+74v8W+qV/keL99rj2X13vvx+X/338IvPMQgGbSy1wykGSUgwZoLHVEmWWCoPdlLK6EGls8jAPogYX60hfvTJSCzb4QDTN9E+LWjFHXlILc040eZdepAeaMQZcR4EqDbY31FlGBNw5YPdd0eu8jcnNJBgOsyO4nhzPNBWjAghn9M3pXA91Rv6VGLkv423wQUdwp2GVC9JZCi7ImD5PKWM5bjSUB9JdE+DygeCIjywCR7Y8gOiSlhNZepu4ZBJ7rl34o02EdiudgJF1OnHQHOcBoQVcTsKzWVsUeZgEgB9JdpPxSloOWNZOqsTomfiRV5XCORE2oJ4DgIJ7NGsCEHgWiO79Et5Y8++cvMHuie8LVmywF8+SAmxsWmQa/ZYyoyn4q/CzJIQXPgrnoCGJGYKs6C8z39OVm77NGTo5gSRX0RUd1SwpqTdoMm2FIDUDxw//Yv+f7FFwzlKDaUWAbFgKDMTsk0gJWOLF4wBOX1W8GqCI8pTdSnahLpuP85GVXndeXAuARSih3BrU7rVV2Skya/5uNC+Oz5UinlMjNaGWDX1/y89GfHwXJet2vIJkIyRbS6jdi/BJqrIxuTn6x2kbYvCU7KB0whOroloMiSypzQmfczM4FkRuixy38rtjEBTLKoImbJL5kIOycIyumn41Ic5ahJxhhlksQW/Fzkdbo6gbskATQtK0jWfxZx+zvYZc45AAAgAElEQVQC9Ruu25eU71a3PFfDmt2CWSbKICtxPDZHKWX2ZAI8D8MJ99HOBZorplxm35kayM5Wt/w87t9jd+B3fXO5386X2WeF5FOMmL0J6E7l9F1ZbCPaS8k+w+SdjKkmY0rIvQ9wJZm9YSnpCUyMX7+WqG9TsNRcTN6wDIZFfCQL3RN4RkkGzM5EkjbzeOvbMEkdH3sNRSToMwcyi+WOvjnThhRcg4nxGU4kZleeSaqerKJ0BEYAUBxCGuiLKZm13JB5ku7oQWWqL7/7laVUM3vyZJLHukpMPsIMzvK9Ps4lGboU8OIaMqDZF6rGgJAGXN2ZhE73YbkhSJw6BDsmtJouoth5uIrPBF8cJb8ZYDVvLboLw1TYGY8LAtO1G2eSKbKJTaS3mcycSkyzK0UK+FGJZRMw+0BW8RDga5lSdhNz2dFvSPAV0vdGlkkGuMRWZw+iq8kys8ols/lZakxZJUEdoLoweQoBfn6C4j1W3ntIT6+iHOOUqlredGhfNFN6LNULWWrOY9eth+w97KpI31FH9s41MiUFOwxrg/LewhcEWmoIkDbAzjXM3k0+R19KmJbSVz6TI3whUWwtXE1Jqz44nt+Z5qRM5+CNTM8+DzdPoNaGqdoDPk4JrUFJZF+j2dmJzZRjONZvGDG9NkuM5egniSolngKuUig2I0KZWUV6J/3M0B+qUipu56bqj2jkVKsiB0dWMcmIRYwIWr7DugKA7Bzk6OAX5cRayZEAEYJ/5zgkTOxdBnw5qTYmP6TwkVUgANnQCQBGyPx7LembHC3CrILwBI1ydO9IWqEJJO26hn7oIYbxyB7qvN5AYDmrE2gU78o7Uy1IDt0RgcxiBpoTUHzsjYyRLGcIiIcOoiwQhxFiViN2Pdc5nyF3VSIzn9M2sx8yEPTlhNXcW5n/XVf8f/CAVL+873YEtE7rC4g+/DIDGcI7LOjjypDja/I4+jvr/+6SQGvM+/S3XP6ueCx/r/7Pf+3r/f3D//obPzbgew4sy49exE/+5X+Di/kBX745Q1Fa9PsSsvCIQTDsZlBA6VEvBnTXDbI3UgzsZexfz4AFTSvRShRXBv6jDvGqOtYprBJwLQJgArsg5x7FGzJsCKB/ToCS0SogVgHmVsOXEWHmARmh75L0tSErKK8LiEA/XKgCzIOCfWJRfmtYD1JEuB/0iA8FYs2yeHYRBgbrbDTZSJdqKOaBsllLqaadBxQbie49C+Ekog4QIzsaJyA+SPY1mojQBIiR3j+3CPRnjjxueVAIMw+1V/CzADmzwHUJfRCw6wC95SDTLj2qtxr9MwtIoPncoHsakg+V100OAtW1xLiKcLMweSflKOAuRqjSQ76qoVqB/sMBcsPuTQBQO8V+xhcOZkuvZg58yZMBUTNYxmw5yIfkrLcvE2OUZLvSMWlVdXICG/bCwdxqgnMdUX9Npm5ccefLO4HuaUB5JydZrS8j0xb3abCb/HD9eZiksO7JCPOGXsniXmJcBwapJBlylsF2TwOqa0nQ/rxH8fMa/SWrTYazgPmXEuMqAwwOdudfkoECeAxukbokF3EqOqfsVhwB2SxOYRwApm7H8YRg3804OVHciynoJZejs2/yWOVBiSABe7ERacCaKg2SR7W8FTi8DChvZQKtnHjJYNQ19O3pA711h+cMCjIbif6pQ3HP6+4rTDLiHDrSPWNwkXSUFD/uggTYc5mPTw2YuhtFYJVK801iHZp0T8wJeJpvKCH1DY8rs6HSURps59xOsUnbTOEkubYi17eI9NzOAUIy152sE5NngFBSblpdEzhnSSBTLzH1L6oh+eLcMSgnA8piwwAZ4RPrtxRTXUmUwHBO8Kj3lEMDZO76M064uAqTHNYlaapNvrtQZEn8sWYkM6Nml6TCW26fnwVMaZ3jIoGokcc2VZjk7tKUzhoVzyvAY8pS5ZBAmj4kv2ZiIeubgP5MIncz5gAVXwqMaTtqTHJKRTCfpdmUK3P/uovUy5jumaiP50z3fN+wyr2QiQFNn6OQQrDGBe9lNUaYA4FyPr/Kxgn8+ZTiOy7FJKHNoTrFPmJY8nW652t9CvwZ1gz7qW89di80qnv614cTgeqOMuByk7ovE0AkUOb5dBXXKV3q2EwTIjkJOcv982RF/jmfT2+STL87fm9kBi57kaMiKFRDxP4ZVTPVPcF7Bn6ZTcv3hhri5E8UHhhWEq4SKLcRw4LdlLqnBHdYqWnCVHdJvlunxG7FtNdiT08jg1f4OckVJTmwJ4P0HAzEyT4JWws0N26qCtFdmCpJeG5EAnvJfz5ESnlrCVcxYTb7VzOgBJJXOaRjtQHtE4Ny61mRYgR0y+NQ/REYCc/zwtRVgmB9eLf6JO9TcT9iPCmgO59kqBLByEmCzO+gmPyhfJ9rFNTAehMm1guUNwPcTE/3TA4VsguN5psWw3mFUAiYnYccPOzSTEyoHFkloneW16hUDL6yfmIibaOhOw/hAtTgYRcFdGvhmiSplZh8mVEImN0I32jARyB5KUOpIfv0fxvgKz0F6kQjobcDIAR8bSCtTwysQkw+0PyM5P3GzkoAkL2jbDZ3V/ZM+I2GLKBwCdRICTk6JsoWmiBViKm/ki9K4DUF68RZBdFbgqwiVXZoyd9JcfRSCnEEV7lnUklKWNP+Rq0mABvLgpUjj5fvBu88XjJDFuIR8D1mKB+vI0t0cx2KEJMUVihJYJg9lZmlzPUk1jEF9rF387tS2Ef79FeCzL9uieH7XzeizuLvVf8BgGX7v/3Gjw34nkthjfb4T198jqt+gatqgffXD9jPS5xUHT59e45y7rB9M8eLZ/e4ul3hg4/fYjeQoru7WUCpgObFHnVh0VuND0/v8LP9D1AWDnEjUf+jW9zfzlHORszqAYM1cE7ig5dvsB1LXIVTLC/3GEaNsWPtCBKL+eMPrvAXxSWikzg532N0CmPjEO9KnFzusN3V8PMAlB5FY+GdggsCunEYVxrPf/wG3745QTxoyNUIqSLMcsDYa+BgyLq+PGBRWUQA+2+WKE87hE/nWPyDW9y9XuGjj95g21eogsDDw4whQFFANA6XH2zwsG+wmnW4vlsg9ApCR+gTC/e2RvX0gO6hItt6r+Hf6yEjIBYWwko8vdjg2+EU4zri5PSAh7cLLC/28LsKfRWAXmJ2cYD/ZoWzj++wPVQYdwUW5wfg/1pj99sWZjEg3lVQlx3Djd7rgV4jXlWw5xauU5APBrgYYLSHu6nh5x59LTB7esChrqCvC4xnHig9MEoIK1F/o+CeDxgXlA3BSkAHqI0mI+MwSW9jFeB08pCNgoB/1FBSwC0c3EzCrgKi4XV1C8qGew3EEwu3MQSXS8dZzac9xJ83GD7uETsFJxXCwgGjhByB+rc22C5mWD/Z4f6bFfdPRYxPI7IXWH1doHgQcLZCf87QoXEVERYOux8qFE9a2G9niOsR+nWJ/cvcTUpWWLUS3W/1kNdFkvhROjh/JbD70CNWAfCCQU5LB7nRsGvP+hov0F+mB4Bjl+F4zhnh+V8ajIsI++MO+KYGJCXICIDeKc6k/+SA8HWT0jwjsBMYnziMawE5sHM01Jy0UHs1MYtkaAhC3YxAy584RKkhe7Lgw5qfe3vmUL02sHPKn4VNFRcxwp6n5NMIiJh6WiPQP3XQD2rqAw0Fga0agfZFhLDA+N4IsdOQg4Q5COx+5Dngv+Pgq3sSYHYS3ROP6rVC9wMLuVes9/Bk88eTRxMGIyXkYc6/Dadh+n7IQVZRKAzPLYq3GuPaUyL3QQf1aQ3pBbpLrq94EBjX7BPtLwLMXmJchaQq4PYffkwALBzBUveUQN6m7lK79DBbhe65h+okFp8Du5c8191lRHXNup/hFKhugd1HgNlg6iYNJg3Mkzw5T34BlNVuPwIAfpaYKizQvgjQe6ogKMENEF5O0kokOakaeA8MZ0B1E3F4xvfnBNhhzWNVQ5KflmCCZOCEQK6isHOR5NxIzLGY/MqhyJ21lKW2T1OiqALa56nLVdJ7GLI01pPVLx5EUicQJGfwZg6UJmdw6CsBOyNDTfBG6Wxmvykx5nF0SSLqGgLqXotpcsOXmO4Tn8DncCLQn2uYXUR/SkbMzgR8Qe++iJgmAuSYAqYCGPZSiMmLLB1l5pwgIaOu+ghfM0zKG4Hx7MicZ4/zsKLMXx9SgnQJDGt+NjIw94YTjDkx15WUxVf3rNAZ1o9AWgpSM/s49YEy+ImgMiqCwPZConyQE6jzJZmow1OVpLJpAsaTtRWBAUreCAxLpPTWOO0TwPOUfdF2fpQ6759pqAEotx77Z3pSqoxLgeYqYJyx59OXvHbjzNBPKgDbSDK4CihLAdvIKSCqOORjlClsSWBYKlYltTLJ8OU0kUT5MF9nDpR59meKE6ASgFDoTiXKbcS4rGEOAf15AnpDhJtlABpgZ7kui/aEYaVQ3nt054b9r4mVDJWCr9XEYuueLLKdCXTPa4yzFKAUgf5JOQVBicA+zigF3CLVr+jUZdsrqDHAVSpJ6wXcyiB0nCQYVwWEjxhPzDFZeCSwdnMD19An6gtJkK0EjBZASoQNRgIpbMhVClFWUyqtnRN8qt5TMjszU/Ks6unBDAWfQUoJQBUTmxoMa1RURwATyiSxNYoVJAkMqZGhQKGsksxWo7zaw62bo/d1dIil5vhgsAizkqE9ScY6pcYmaWpoSgjv+UjMIM9oxNHy/yEgViVk2yPMqwm85QRaptS6d8Fi6sTMnZexNJTFWodYl9PLJrY4ezK1PvohVZzAogiBzWaCY0p6ScVxe0q9m/AqBOtCHi8prEjk/ZQSEX8NE/n/J49lxL8fiP6eLuqnP/3pb3of/tbLP/+X/+NPL/+L38G/+eIl7LbE7e0S/RcLXO0XqFcDxj9eo/jggIdNA/N5hfvCoLuaY7hpgFFB/3mNVmvYL2cYa+DNzQliEaD/ssF4EtDvU0rq6xIHX8AFCW81ggZuPzuDCALjQwUXJcybgpHeo4SoPW6uTqDuDRafaWxFgeLnNUZNdnDYVECrcfLBA4bbBqIMKP60gV0FBHAArpYjul2F4togdhrVLwr0QkPsNVQrIUeJ4ssS7rpGZwuG0bwqAQUMdw2EE7j3JYYvF4ifNRCtguwU6tcK6kGju5pDvyqxv2+AViMW9GYWn1dwzy3spkT9ykC3EtWdgPcacqchHgyiU3A/W8A9cdDXBbq2RPVao/UFxF7D3CssP5XYrhTqj7do/+0p1Dcl9E6hVRp6r+AuLdQvauiDhHpdwldA+aqAuVPQvWDi7DyivlIoXhvI6wJuFVG/1kxK/aMawwpY/VyifxIh9xoy1XOYViBaBQSJkz9RKDaK0rd7CbsOkI7rdxcWi58VlHZ2EsWDhLqnzNnsBapvFexPOgSr0LzSDMRZO8w/NQgGKL/VCBXlvxH0qOjXBXwTEYTA+t9qSsDuNIo7hfJBwN3UiC8G4A9XHPDsJPwiwFwbFLcai7+UE+skooAMmGL/q9cabhXhhUD1lUEIEs1rie6Zh9nRbzJ/JVFfA2OloA+UTEsrsPiFxOY/HiBbhdkrjfpKQjqB+lsygcLLyWe2+IL3VzBAfSXgPhog7guGHh0EQqdR3QnMvmFCY6gjqjeK/ktvMP9KoP3YQh0URBRovmLf6snPkzRpkDj9Ewk7l/DzgJM/k4iC9xkkmdbzfwPYWqF+w5RbsxdAFCh2AlFI1G8F+0bXEed/JMmcL4D6WqL5FqhvAEQBNXKds1cS/fOAxRe8DgxfEVh8Sdmy7gVO/kShuqNHdfkl2TDhBOZfpYCbU4GTv0TyKUUIK7H8jPs2nhA8lQ8MTWpec2A++xaAIOAsNpLgJAioXqK6ljj7M4/9c9aiXP4BwY68M1i8ovqhuUqSwMQyD5cei88VyvuIYiNRbIDFVzFJTyWaNxHmQBl1sZGwq4jlF/TNmj3P5enPeAx2xX2EiqjfSJx85hEF+w+rW4LNp3/gsf2Ix606BjPVbyVm3/D+NIejhLd76bH+dxLVHY+52FNaWOwom1/+gtJmJgELrP/SY/+BQLElWJh/RVB68jm9cIsvI0wH2AWlwlEJLL7kYLtM7Ojq8wDdAv0FsPwFAeXqC6YULb/yGE4kwVFgOFpUQPOG3l56biNe/n6HcWHIwp9EVDdANAKrLwIO75NFr2+oeij2EeU9Jo9jTsWVKRCKQUECJ194NG8C2sukbOgJEIotMJwJLF4FjEuB5SuPwzOJ079w2L+UmH8TsPqFRXepUN2RYZUOaK4Tu5kSk4czwe187lHfBjJ8KzkloC6+8RjWErM39BdW9xGH5wKmA85/1kNa9k02NxHdOQe4DG5KFS4lq1P6M4HmOqK+84iSssn+XODkU8tQK00Fw+yth6tl8pcDy1eevZ8XAssvPapbh/FEY/bGs9JlLtHcsD/V1wKLrwmAdB+x+NoBUmDxteXkUEEJLgS3U24C7ILbWv/5CD0AZoho3jAJVKVkXD1SBVHsI6oNB6zVvUf14OFKOV0300aUGw+TgJQvgOrOY/9C8zoLTjDMrjz6c4n5tw4iCpQbj/6UgKl5a2EOAXrk9XeVxOzKQnoB5YDqxtIDWEvUNxZRS/RnEmc/7zGuNOZfD+jODWZvXPL5SkhPZn31+QA3Y5BTfW1Rv+3haw0BgerWon2i0/Uh2C72DF5Cku0WB4/9ewazK4dxoTD7ZsDuByXm31pUbzuMJwXqqwGH5xUneUYCgeFEob6xUCPQnWnMXltUbzomy54Y6C6iuh3hGvr1yusW7TOuwxyYvioDZbdqpLzY1wbldYfuRYX6TYfxrEDzxQZ2XaO6GQDB51h1M6A/L1HcW5iHDrp1sKsCxcOI4axA9foAvyihDxa+0Sjue5iHAaE2cI2GHjyK+x5qDFCdhRwDzNstIBV0ayE7S/Fa6xAqDV9r+FKiuGkhO4doFIrbA/ysgGotZO8guxHCRQgpIA8jkIKDpIuQLkA9dFA20hNZaMie2RNy1yE2JRNiHTtk1bYlSHMeQkiIfmSVSNtTcisERD9C7FsIISC6AXHeQG72QFlADiOfpe0A+AC579mW1Y8Q3UCwJgWwO0Bk8DbyHoRMNSW5QqQf+DfrEPuRLOVoyUxay0RYKckSpqqRifUM/K6NXZcUORGQijbPiInZjM6nvsu/Akw9ChgSQvzKOpLJLxrx/0kK+zn+9PVPf/rT/+lvvYJfw/Iv/vv/4afv6U9+7ev9zP3xb/zYgO+5FPa9n6ziP/s//hPc2hm2rsZpcZj+FqLAm2GBpR4QIPAw1iiVw5tugRAFCuVRKQspIkIUmOkRr/ZrXNY7vN/c44vDGa4OS3yyusbGVui9wcFy6n5dtmi0xRfbU6yrDrddg99av8V1PwcA7McSJ2WHh6HGy8Ud9rZE7w0qZbEqetigsLcl3rRzLIsBRnloEVAoh81QY28LzM0IISJOyg57W2I/ljiv9/hyc4rfPrvCz+8u8WS2R+cMWmtgZMD1do7TxQGrkttwQaKzBufNAdYrGOVhvcJ9X0OKiJOqw+A1OmsgRMS8GLHpK/ggYFTA6BSeLnb4ZrPCohogk5avdxo/ObvC/3P1Hj4+vcFf3DyBUR6lcTgMBQrt0I8GPvV2/u7LX+CzzTnPTV+iLixGp+CDxPn8gK9uTlBXFoX2ECLCeYkn8z12YwklIm52M6znLbrRQMmIEIFZYXHf1vjx+Vv82dtLPFnusekqaBWw2deIEVjMetTG4f5QQwjgcrnDzX6GrjfQOkCpgHHUeHl+j7u2Rm0cdj1n73Q6V7vbGcxshJQxJWYHGOWxP1RYrw5QMuBuO8OsHjA6DaM8pAzY7WucnezRjwaD1XBOYjXvoWTA9e0CT8632BxqxCjgrOKsn4g4XR1w/dUa9XkLISLabYUPXtzi6+s1itIybOpQwJQOxni0+xLRS8jCo65HzMqRDHSncfp0g/u7OXTBeFMhANsZ6MrCGA+tAg5tCQGgaQbsNjVWJy20Cti1JUIQkDJi7OhliXsNtbLH54AXECqiqkdYqzBvBuz2NepmQN8VCEEieIGishACaKoB/WjQdwWUCtPnFFHAd2TMY6qraE46dHtei2o2Yhw1BACpAoKXcL2GkBFCBcQgED1nMZtVh25XIXoBWXrK4R0Z63I2YtiXUKWnxaTTkJVDOBhAB4giIHpBNrf0CJ2GnlumSI8SUBFy5rjOXgElO2pjp6CWFn5nIGcWwSrACfaiApAmAG9L9qw2nonSEux4XXgyxyXl7bJVlH2nAjYxCsSFo6RfREBFHg/wiP2MZOUFAE0trugk+1tF+rsA92dQfE1WVwQy13E9AlvDkK4qQLQpalaQpYMAwsxTEl8FqOUIv6GUf+pBdUmGmVjkqCNi5WFuzNR5mpl/1TEsCjrSy36QCGVi7PvE9GafomGIl2wp44cA1QUhMXAjJs+56hjoFKrACbqerDVltgJuESB7OcmS834Hk7sm6XUXTsDNw7Q+RJEYl2MX6CQ3dSJN4GDyR2aZqUznQbjEqC5CksuLSYbOa8j1uCZO8tSYw6/E8e9RJpAc6cuOmpMGURx90MHESQIt07WJmhLoqJFkqzElcaYws2VOP80sKn2cWdqeK3ByTROAiRnObG3uDIxJ4uzqiGLHypNcFZTPWw7deuwdzp2sj73ZuUsyByypniFQmf2VHpADz0++X+2cDLBKsnhfcVKEUktMvalyxOQRzv2gWQKcE2qlTfLzFJgUDIBHkwmImPzEU4qr53tyr+s73Z1I0nCLdypyRIyJqWYicjCUoucMhFCk5OKYzkvyasskhZ+CuYZ3uzpDSsXN51GnGhYm7KYEbUu5su6zB5me2CjEsQvTPuoCBhCUmGpYgibwj5KBTAAgPZOBbZ2k6inBlucw2YaSNFoPya9sGE6VPxe8L46VN/kekwm8ky2Nkxf32O2bZNBJ+pz7P2mdoFSY30FH7yW3JyaWMRi+ZvKqjiFVGTEdmz73mLo2MYUMRSGgOjcFM+X6Fr0bKZ9VyesZwXRbxd/lnszco4lAf+XUJZp7MFONiXCU54YURJTlu6HSyZqV9iHJdKfF+aNM9nG4T14e4QFh3fE1j9Nlw6P3JnAZH/tHY8A73ZvAL/suHy/5b/8eYTZ5PXEY/sbX/qrl74QUVp7F3yv+s1/7en9/+N9/48cGfM+BZf3D5/En/+qf4m4zg/i6ZhAPAHPRYTwUEJ2CyIXgVQCKAH1j4GcB5Y2CXQQyD6nsXh4U6zTqVHpexslrk316UQB+5SCshHmQ7DVsOHAYLh2aLzWGUw6EqmsGP7TPA8p7if65hb7X9BqtA7dVALkGwlURbklJYjSYUgWnAV7ycg5nHtVbymLcjIMI4Y4DGDejZG84ZVjPuE7eqgMHEeOaPj67iDj2DaYZ+Q3ZBek5SAP4gM4F26GMDMpJ4SHVG4nuaUD9hpI7e+rJrNVx8jCuP7xH+4fnadBFBs3OOZssnJj8RAAHDMNpTIPLNDh5oAeuf+Yw/0JjXKTQozS+Dialq4Lno3nNig7f8Pj0gQmsZsdU1DyYcsuA+ltFqWAEv5CtmPr9crBMFPQnjcujbFMNmAZMcuQ1Nlt6VaNJg7jEMmVvWnUj0D3h9bInHuU1K2T6M+4bt8EHdLERU5pn0BwI5QAiN4+T7LL5WmI4o4fRlwwPyv4+XwC5XoIJhekcpw4/u+C58iUm2STAwUZ/FlHeiel94zqieks2Loc1qTHJACWlkWQzGBpkF+lDGjCFC+ValtnXSUa2ICCYfQ2MJyktteHgsdimDkzQ36p6MdWM+BqYfRUxnJJxq9/yO2xYc2CYA3PygC4npbK2hf/ev4yobij9czXXU96zkHzM4UCa0s35lxK6PXoRxyWPRbeUd+qOQTzVTQruMUDxwHOf00Dz4DkvvqI3Mfef5loXXyJ1EabB6UApoV1w8K939KDKkQO+XA2BCLTPBKpbrienruoMTMSjYKrDcX/o+eM1rm7JBvYXwOLLiO5CYPY6oH0iYQ4pdKbm8bjqWHWSz3ceEJrdcZDORFj+XD7E6fiA5DVcpGRDYApEWr4K2L6UUy+knbO6pdikkKCnXFeUZNl8yUTU8oEdkObA4yl2cUohHVcCZe7KFMd7i/tBmaca48TW5uMDjomfvuIxqhxoFBhoJJJ8c5xTJsteUZ6v3G0aJb2Qh+cSqgNmbzz6tUT1wOCg+oY+yXw+uwsJs48TGLEzDrBVT1lmDpMpdvGd50NOjM3SUOFToFRJ5i5LeKMkwDFtCtpKn5XiEKY0VURMnZO6YyelL9Jn7jbCp/RWdhXmShmer9mVx+EyhdB4MoX9WqHYEUTYhrUh3GfJAKVTiWJL72T2YorAZFYCswjTklVUY0B7rlHfeuRaGzny89ueKzQ3rL7wJeWpwjO0yBcyPVdYrWEOyd84JBAmj95RSnIVTMcO0WIXJkDhKlaMtE8U5t+6KVSLIFROoEaEBHIseyqDEUBgb2YGTEGRWXQNg44QI1yj6OctJcqNn3yWZh+mkKDhVMPs2SWJkNJhLX2TauCxmr1D1AI2eSejBMzOwS40dOsnGWrxQC/deFIQTCWQpQ8OvtHpGUhWVO8thrOKfyspRzWtg2odhrMK0h4B0ePJE3PfE9wrCbukJ9TVCrp1ZBlT6BKrzkb2UCoxMYhRElDJkT/7Sk+MpRjDBKxiIVkXEiKEDUBKj1W7AX5RTqAs14P4KcWXNSUx9XQKFyawQwktOzVzNYmfFVAPLaAkpaXWI9QGctMyMAcgyw+CtGg0JaRSQuQakiRvFW3PehEAufZDDJYhQNnjWBiIYeR6RjvJUidg/Oj3U0JsBqNaQRw6Ar2mpszVPZK6ftdjCZDRfAwaUz1J7rOMyVMppEQ8HI8Z1tFPGSOE1ojO/fWJr+kc/Y2psI+W0Pe/8m9/0/L3wPI//PL99lgqj//6gz/E//nqH+JORMwqi8O2wmreYX1+h04Rr1QAACAASURBVE//+D3MP9zQg7it8eR8i8NpgcOmxmgFZ8Ibj3Ix4CdPX+Pz+zM8nMwRnUB90uPJ4oCvPr8gaCsDLl484Mlsj0I6/LtvniPsG4zvOcwuD+h7A+EkuhcC9bM92rsGbR2gNwr6skXczPD85S2+Deco1j0waIwLQOqIorTo3jZYv7fBoSsxokL9pEUIAuNNTUB8Z+Df7xEGhafP73FVnAHgzL2+6OG/buBPLWAlhBXo5w71eYtuXSCOEggC9klE9aqAft6ibVJnQunJdgR6L7u5gVoP+IcfvML//UefIGaWxAuYBwXzyRbPFwd8+ekT/IOfvMKffPoequWATjSIC4cPXtziS3kBtWMf5/Jij/OmxV88dWRfqgBhJfRZB/9qBvFyD/vVDOFihH5dMEH1RYf+roI+7SFlxPB1A18HnL//gNuwhj7rMLytoc4HxP+3vXcPsjU7y/t+73ff19597z73uWokgSRkGwkndmHkSGCrgD9IFYaKSYzjxBUTTDlJQagC56+QOGUHVzlOKOzIcVzYDiE2oRxjIC6oIkYICdB1ZjSa0cy5n773vn3XtfLHu76ve0ZSSfKcOUdnZj1VXd370nuvb+1v773e9Tzv89zssfHOPe7entD2K86DBEQjPIKlW0j0NZ5ktDOlLCOaOuTC2in3ptvUuyW9Ua4s2zKi6UdUEzVcavfFosOIer2mt7ok/OiYxUXjiryG3u0IdgvM5YZymjBYW7I2WHDzM9uYlRqZRa7vSSg3GrL1JfW9PsXFisLCZHPG8Z0R4SwkKIVqpSGoIordCmpRx99LJXYR0ttasDFYcu9zm0yeOGR+us7gHUecvjQhOdIFWLEKxeMFUVZRTVNkEZIeBFz99pd57tmLxCeh9suhsragUoOqAjA9S7IfUq2qE140F5L3HrE46lOYhHrgTAxiy/jZiPxqwfb2CUe/v0lyJDTbJUWZUD+WK5OYhyoPXymxTYBdhkwfDxjcCFheaEi2FyyLEfVIx1Ot1RBYws8lzJ4pSW7FVBNDBYTzgGgp5JdKwjyhnFh9nSTCxJZytyQ4VkmT9hSe9Rb2bkWYp+dUnxlgA5i884DDF9aAgHxdo1qCWnsMlxdU0smHD5gfDclnGVFfmD9RkV2PyXdropOQ5U5D73bIchvk8Tm5HegGwKQmPYyZXbW6iJw0hKOK5sStxAXiSUF+mBEf64aMSlWFamxohobsVkRQaeF6+kwNsSEeltSA/dxQ5bfjtrjTwqHYrpEmQiwsL9aEM5Up926EmEQ3JuoVw+j5kGJNNwSqNdOxYP27ActNKB7PkSZjebVicCtkuWXhnlCsWd2MAn0dktYUS3sty2sF2XMZYoR8Xce2eLzUjNqNCvucSshbBqx/B47e1UAA/ZcjwlIo1i1TGzC/2pCcBhRrQr5hMJk62Q5fCSjWNfg73zSMXgoox7C4UjP+XMRy92yTRQycPgHxidt02tXNmvQIptfUmXn+ZMnq78Ust9XoqnlmhvmDoWZYOgdpk1h6d3VsUgv929qH2vSU4av7tts1aHvgBre06J5f0A3H6DjEJDrW8mqDmIDZFQieDzh6uyX+mDC7ok7V0QLmlyy9O2oeFS20z0/7RY0ydOjm1NofhM6kRjcFqqEWcq1jdDzXjRKTwjSE5FRluPlaQL4Jclvdl6XRrNxiNWS5oxsYNtKNh9HLkAYB+Wqg0Ti1dDmu84taPExeUElvuaKbJb1D7cesRur2HC+0rzYshToVZpf1fFvs6DHt/I7G2iw3hOHN806zAfm69qRKA9mxbkAtNiNmlyFysU8aZ3HWg9k64lb9oJuHYiXQuA80ZqYaBtoeMRQGd5RJrgZnmcD5mvaulsuQcgX6d4V8Qxhe12xY0LaFPA+7PksbCqdXQ6KFdbEuyh6mU0NkDdNLEf09Qz4JKFaFtedqjdOZNcx2Q8bXLVU/ZLmp7qnzi7DzUWF2IXQ5uSp7n11KnCO4ZbkWkcyUdSzHwuCuypLLYUBfdL5Or+rzFqOAfiDkayHDm8bNRUg0b8g3YjVMWmgf6GIzYHQjoJgErk81IjuosKGw3AhJUmXXqr5QroQaZ7URUoxjxtdrirE6Ctf9gGhhCKpEi7VAWG7F9O7B7GLC5Pma08cSVp/PyTe0DzKoDbMLKb099XSoBxHFJKJ/uyBf6zvDokidi/sRSV1pT2o/ou6FBL2I+LTExmHHGFI31P2YMK8JrKWcpMSzinKS0GQBYi3Z3UI3KuKA6DjHpjEmCjSaJA4cS+dMiSapOs7GIU0aEh8tNe5kGVOvZOecdA3NKNWsz4WOKTycY8MQiULqlR5R3WBGmWZqAlgtVluTnmA6x4x7BCcWM8gIZmhBuiywWaJS2tDtXDonWBujt8cRbQYmvTaYOtT/qxvIX81Mds6tvVSltdZqbEjj2M5IXWbb+BDrDHgEcLIu5LzDq5PcShTpYwTBmWkQQOXyTs/lW35Zwqt1rX0T9CZaUHfbNykeacYyvXrJ7vz1HyHs1ZiDFFxIuo0NMqjhNCY9CCmuFRBYNcIpnOxMIBhU2JMEG6uDa7XWkN4Lu1iLthjIN40GycdQDwzpgbKdYa7sUcty6g69k0oFEE2lkxg1mS5cAOqRIZwF55wetfDp3QtY7OrjItC7rU6arTlHUCrTBzB6WXeO8zV1z0yOA/IrJdn1hMblGTY9NSWxkWMbE40qqYZnMrPWLbTJtJ9HZR1nC6Z4KiyeLOl/PmG525AehOTXCuLbCSbVx5tfqxl8MaIa6464GCg2G+2TzCyrnxVOnmyz9JxzZ4pzibRuF1U659FqbOjfVFfBVoYWlMpABoWONXGup638BYvKC3MhPdCFWVjIqxjQoKKLw1CjC2U7+neEfENZUKmUlW0X+wivYsuqoUatgLJZyXHgMuY00zHb19uqkUaJ9O9pD1O5aonmOp42fqNlFFu2oJV3lavKAM+eUAa8lSCJOZOemTZGwx17Kw8rVs8kUkGtDGIb8bLcsvTvSMcapcfqdhk0uF10XcAmp7oojRa6sGxdVotNZVnjmTqQtkYp5VgX3qBOp727uiBqnX7jKY6tcuYpkZqGmFgo1ujiMvQgXewIauQSz3ROsBp9Ug1xZiFnr2XddyzrhmX0koszkTNGLV+zDK8ra9VKolqGPDmBaqxjCHNlrKKFnlfLLX29WilZ3XMMYKDSuXLFxVw4a/1844wxbue3dTtt2VIT6RyHOZ3srhrTyR6TU2XtlInTz5z0SB8nWtruuMqRdLEe8VxZ1+RU3UODykWHOLOayDl5al4iDO4Y5rsBg1uGsLTMLoRd3EWTCsNbDbOLKoWNZ45lrHX+wqUu+EfXK6aXYqqRmqBUw/a94uIt5tbJNXXzIj7VcTbZ2XEHNd1xqWyUjlmbXdTokibVxfrKixUnj6k5Seto2jJ1dU861826L4xuNCzXg+4+UU7HSEnjnG5rSE9Nx1y1hkC9fY0qaSV5UW4oxsqiJFNDsRJ0DrhtfqPm8enY47maxrSup03q3m+lOqrGC0MTi0ZhtKd8owWRSfT/I5cvWA6cvJkzqWO8MJ1BTVDpYwYu21LsWRxKdqwMY5TrZ32Uux5NEZK5MkpLZwYTFfo5kB4b59AbdNEhJhKyk4agtOSrYSfXTKamez+35j7RwrBcDzuWtUmhd2iUTT5qKMehy7NU06HW9RggmalRVr4a0tuvaTJlmZQpM84xNlSGsR+44kN/rOjmRljqXNR9jfRoEi0WgsJ20sTWkMkk2ruZ7VeIhXw9JiwM8UyZPkRZRX19lB2u+gHR0pKc1B0bWo5DssO6iwUpxzFiLPUgJFq0TqKOOY6k+35sZbMqtzXOhCokPSioR7HKNEOhyULCoulY/VbOWffDMymmsc6ExpkTucW3DdWdVjc0IrL9knIlJjmpNDOzMt1j2kBlnsbJPqU5+241kWisSBJ2RVXTi2l6IfFx0TF8bR4lIsqaLtS9Fejkml2mZABSapFpA10vteY3YixBoUY50hiColYJKWjMSD8+ey7rmMbyrDiySYSJA4Ky6eSa0mgEiRQVGCAUmkFyFkXi3ofBsRZw4h7TJi5zUoSgqJSNSxONIEmirmdS8gKCAKlqmvURwfFcC6yywiaxMo9tH2M/U6ayff87eaqNlT0UY8/cX8HJX/WxbRIjixySWK/L20JUi0nqRpnFLD1jJbMzcx7yMwnpq5xd257FIDz7uzXbqWtlf12OpW3lsEVx5hzrzIW0L7M+G1P7XOfiUiQ8++zT21rznnNFY+s0+xXwqLvCjoN1+/7oQ/f9cX+t+oWHfmzwiBeWa2/ftM/87F9gnOa8Z3KDjx9eYbt/yqxK2V8OuTQ85rnDTWaLjA88/jy/ffMxPnjlWb4w2+CZ0V0+cXSZflQyrTJeeH6X7auHfPP6bf7NzWv86avP8Zs3nmSll/PUyh5HZY9ZlfLivXWaOmRn44Sl65+7MDllEJUcFz0uDE742G8/Q3B1zsbKjMYERIHh0uiYT9/dZXM0I68j8jKmakKe3rjHJ29c5ANPPsenD3fJq4iqCVkfLHj52R0uPLXHldERt+Yr9OOSKDA8d2cLEUscN3zLzg1uL1a4Ox0yn2Xsbpxw53DMkzt7PPfiLvGwZOB677b6UwKx3J6PmeUpu+NTosBwnPfYOxkSBJbN8YzjZcbs5pjRxVNW+0sARCxRYHjpzgZyI2P9m/e4+/IakwunHN8b8V3v+RS/v3+Ruy9s8Njbb3NvOiSLa/ZvTBi8FHHtu15ifzHg3r0V+mOVMYSB0R47YHbcozcqWBsuuHl9nbWdEwZJxfUb62xsn1LUIYtFShw35LOk6zs0tcBxwtZT+yRhw407q4SxIeuVLBcpTREyXF2wcP164c2Maq3Wfro85OK1fU7zlNlpD9sI/XHOzsqUL95eJwgtzUGK7TeM1+fMZhnmNObC4/vsHQ/pZRXGCsOsYO8zm+ryGxuyVxJMZOm/64jFp1bhqTnlIma0umB6WzWi8bGygpI1yFFMuLOkqQM216fce3EdmZQENzLq7ZKNzSmn84zwk0OWVyvtwxs0hKchdqvAzGLS9SV1HbK2MufweIg5SghyNRsK0oYkrWk+P6S+ULKxecre9VWi05D+08dEYUP96xucvlOl2sNnjpg9u4q9vMSUIelLKfl2DbElOoqoNypkFhJsFJj9lOxuSPmOJWuTGUef2qDeqMhuJMoirjbKuK4YbGqQrMEWobJvhxn96yGTb7/D7We3MKk64DYDw2T3lMWnV6mvatxOUAjNqNHNI7EMt+YslwncymjWaqhFx7bSIP0aWwVIHmLFEi4DzGZJ9nzG1p+8xaKKOf34hm4UjTVix4YWWS1VhvVS5gx5tLiotiuycYF5dki1ZoiPA6KZUKwbmnFDOskJf39EsaGbQPGJkL9zSXg9U+npabsppZsdoC6n2b2A5dWKeD/qNo/CUjcc8h2V24ebOdHzfZrMSZFTWDxZko4Kyj3VcwaTkmYaM/lUxPE31V2/YjQPCApXcIwMQSFES2F5pULywDHc0knbq8sFnMT0bodU754RfnZIfq0kuRlTbjRE05DkSLo8zmINECg2GuITNQbCQH6xoncj7vJum0ylwbNruhC0kcbI2CcWpJ8YkG849vBSw+B6SLGmmzD5VoNNLIOXIrJ9LZrnV5UlLld04WtD/f4a3AiYPtkweClkua0bT/nTOf3PZhQTy+iLWhgvdzUCaPwFZ5RUQzHRcVqB0SuG02uaBzm7ooxo3dNNjGihhfbpk5bRF/X6Lq6nVGl3u7Ewu2YwPcPaJ5RRbI2xEpdBOX0chl+Ek6etGp09qZJrk+pGyPhFdfYVo0VbPLVdAYtBN9EKy3xXug2geqjS9nbT0ER0GxNhoVLxNu/Uim7U5GswuKny/MUF3ThITpzM2m2g1D3deIsWQv+2xmAcvU3U6Xeu/YynTxtWnlVprYlgdkXo37JkR4bZxbDrnyxHri/V9ScO7mpG52JHmVQbwnIzIMytGgE59jWZWvI13fTJN3SjsWUxm0w3q6RRmX60tCwuCOmhHmvvnqEa6MZHOVKpc1i5DYBGc3O1kBSyfb2tWNFzo7dvXF6nFlhWVHK+9rmaw7dHrD6vWaety3E1EuJTbX9I5lrctxmfTaYbEto/aQgazSltZdTpictkzfVzx8RCb7/h6G0Rky/USKOFd9u/Gy+sc1wNXP+r0DtQeepyLWBwV1lQBEY36q44nV4MmbiNGiuw+nzJ9HJCf68mKA0mDaj6AdlBzXIzJp7rHCSnNcUkYrEZML6uxXSYmy6vcrYTqbGRsZQrEYMbS5bbGTaA9KhmuRXrhmgN6XFNvhYxennJ8dN9Vl5YMruS0dvXIqYehqQHFeVKjHHxLm3vZ3pccXo1Y/yiGg+FuRYtxm0IJEcl9TDWDQI019REwunVmNXnCzUbsnTRKyqvVebRRtLJgFsXWrEQ5g3RrNR4E6s5ovFpSTWMieY1NlGGOZwV1KOUoG57MtUlOb4z7WStpp+obHlRqlPsosAMVaLb9JOu37LrnZwVmH5KMM+xWUwwyzH9TAvNXoIsS3WWXRTYQaZs4qJQ9nGQIfNcj2dtSHC67CJKbBio0ZDLzHQLPZXQArS5nFGoBfVAe2lkOu+YTX1TV0iWYkt3/8Z0LrFdkRmcKyars6Iavkxh+dWKyjdBjuVY1uz7ow/e98f9tfqfPPRjg0e8sFx/+4Zd+ekfAyt84Kln+cS9y6z1Fmz3T3n+aIuVNGdeJZRNyN71VZ586ja3jscMspIkbLhzOCbLKkQs64MF906HfNPObU6KHl+4s0mzDHn7E7dYVAl70wGboznX766S9UvG/Zy9oxHNIuLpx+7w/HMXePptt3hpbw1zfYCNLL2rU+YHfTZ2TziZ9pDAkiQ1cdgwX6asjeecLjKSSM1gev2CPI+xJiCK1cgmCCxNE1AWEYNhzuy4z2iyYDbN6A1KijwmCA1NEzAeLhlnBa88u026uyA/6BHOAux2wXi85PjmmLc9c5MX725QzRI2LxxT1SHTecbKaEEcGuZFwvpgwSvPbjO4PCWLa7aHU146WAOgLGLqaUywDEkvzSiWMaYOyIZqNrScpmTDkmIZc2XnkJevb0AZsHnliMOTAc1JwvbVQ0Qse5/dpJnUKt/NGqI7CdW2bmNLoLmiQVZjlhHxuKCpQkweIbEh7lXUVUj0xYxySwvFIDZEca1mM1ZlmPFKQXWSMt6ZcnpnRH9zznKWYhcRZI0zX4kgMkT9GuPMY8w8JlnNKY9TNWw5b/SSGMgDgnHV3TccVWpAM49gUmLrAIkNUdxQLWLiQUl1nEFgyVZz8uOMeFRQHWdE45K6CAkPY9gp1BxmGnX5qlFaU+cxtgrAQHSi0s+Wsdl82z57hyNdtFvBLkOkCGBSqQzaYXP3hIOjIaYMoQxI9kLKLY0SSe5ElJsurzXVAiDbWJIfZVrMpQ0UoRqouEiTZrvAGiF0+aw2sgS5Fhj1uFEDl16D5CE0QrS1pDpKO9VANA1p+pr5KosQO6jpTXKW05TgKO4MOYzLW7WDhmg/dhEXej2xJb4bq6nIPKDYrLUXOjHER67Xt7XoBzXQcYYt8YmTSe+WWoguVJ4TLYVorgVYdOiK1V5NcC+FQOe9GWgRHJ8EFBuNM5HRBZBJbGfOEpZCsWq0D68SmtWK6CCm2S6JbiU0mSoV6p4uoPNNZcHLVS0E67E+djgPaHpGnX4zZdfPsx42VjZf2RhnZFMqAy9GOtOVNnu1zQ1t+4ul1oW3idzcjusuT7fYaIgWAU1iyfaDTk568nRDNDszwmnz+lp2LSyFamCVnah18R8Urj91rmoOAn0tkpOAOrOdGU411p7fYk2LPhMr8xYupeupa3qWaKa3JVOhmKjKoC04qpEqHuKZdP3qJlb2UKxjfsfak1msufiZQhnl2v1f26/ZpHQ5qCah61MMc1yB2zJTdMWmSZRxr/t6/IFTJRSTM6OdtsddGmXjW/VCNXLFbvDqAqpJXMblawxxopyuN7jNlT3f04vQKUXSQ53LckU69r5VPkQLLeLqnnTKCnGmNW1fvUm077l3T588XCpTHM/UVCVcag5stNTiPZpDa2jUMu6AKxaUSSXQ86ftGbai/dyteU6TnGfElcU2IQxvG8qBY+qcxDoslCVPD7RAjpbKfLdqgyjXAg6r/bvRUrNHi7Ey1eVYC9jOWyDSy22PYmsmpIY+Kk3t+u4TtwnhFAliXO6sW0ufqU/0mIKKjhms+5r7aUI6Sa/mhEo3B1Hh3p+hEDSaj2piXA80r2K4257O1ninjZ1R4x7H8DZnxj1RrkVqey607G6TKtPfKibqXtAx8tgzoyBw74tQz53k1FANA0wI/T0tePV8aShXImd0pKyzifQYbaBsMtapDCLpej5tJISFso91L+x6OZssJDk51yNaW5eVadxYpGNvbaBmOtJoH2t8WmHjQPMzoYsXqUdxxxRLbQnzGhMFXV8mgZONhgFBUasbcdFAbZQN7cWEs5J6JSXM6zMTnqKBUJyja6XZl6Eged3lYLb9l63pjo1DqI1KUutGi8hlqZLYvDzH8p3JWV9lzNNKWONIGc6q1r7QJNaezJaBdMZCNMo6E4gyoC1ilcC+KtvSGJXNtsVhXSuLWRSddLW7zRgkDF/NNp7ro2wluK9FW6NotImO1Vbll9zva8U3SmH5vuDfu++P++vmn37VYxOR7wR+FgiBn7fW/sz9Hkfw1e/yjYvahPT7BePRgtJEfOjS5xglOfeWI7YGM962cpdeXHFwOGS0M+X2yZi3b93l0uiY2gR869WXubJ6xNXVI165tU4cNQyiks3ejA8/8ylGG3MCsWz0ZnzrxVdYy+b0hwUisJot2ZjM+La3f4EwMPS31ZH28a0DmlHDd/zxTzHMCq5e3WOc5bz3ynXqKuTq6hH9pKKflaykOZdXj5kvUuKkpp9UDPsF/X7BZLhgbbign5Y8sblPmlU8vb7H6voUY4WtjVOe3rjHU7v3uLJxRBgaTk77XBoeY4cN/axAioD46pxve+IlAMYXplzsn7AyWvL047e5tnLIe7Zv8vTuPTYHcw5PBjy1vscrd9a48PQeG8M57926zt3ZiAuTU+o6JEkrXeSvlSz3+wxGOSxD1kZzhr0CjKgz7cqCg7nGnEQrJVlU857LN3j3O16mrEPu3Fxl5533oAgY7UwZTRaET8y4fOGQ5GbMhZ0jwkHF+tqMyfaU916+gckjdi4dYo3w1PYevX5J/5uPwAgXdo5IsxIReM9j11lZndPbWJD1StYuHjObZqRr6jRqq4DhzgyMkPYr/sg7XyQeloRRQ9Yr2Vyfap9faJCeOotevbrHzuYJwTLg2972BWRY8y1Xr5NkNReu7WNqQYoQO6zpjwoktLzr6k3qImJt65TJaEm2vuTClQPyacp4c0Yvqxhuz2iOUoLIwG7Ok7v3SF9MwcLW1gnRzZTJSB1CokGFZA3NdoGZVJhBw9Yze9y9vooElicv7PGOK7cJBjXBeslovIQyILuRIIlh8VubGMfgbl4+orxYsbp7yuaFY/rvOiJYBvQuTbn6+D2CZUCxjBltzYhXCqK9RN1LRw2jS6fUGxVhrJqu7F4AKxWPP3UHMbDxzfdI9kJsYgiPYnUnjSyPb++zceWY6MKC/vYcubIguxdy7do9bGKQyLI86NF/PmX3Hfcww5pwZ0mwDLHDhiBtkCsLdRtdK5HUqFvrY3Oa1VozPCclMimVGb2yhJVKnTMvLAgLQVZKxrtTonlAuVUz+qaDrmAfXj1B1guqrYr8qZz+S+qS2hqAIRa7VWAj6F/X4r7YbpTpBJrM0AwbbGKox4b6Qkm+U0NkGbwS0KxXyDzChpbk5RRpYOXJIxYXG4qtmuWlBtM3VGND7+qUetIQTUo15bKoy+lSMD1DPW5oRg31Ss3o6SPNVF2vqC8VOg+F9urWQ8vgvfvUY0O+02ASS/P2me6691AJWik0PYNcXujifNQ4ibZQbDVqCNazWGdmlm82HL+70jxUcPmbGqkBynyaFKrBWc5p685aXqywGyXV2DK6ekJyFJCcaLHcf+YYE6vhV7YfsLiir2k90PYCMdo7jOh9orlQrhrqkZP+XluCwPxaTbFhKbZrkmPt0SwnajpWbNYsr1bOOROyfZhfaYimyoK1svp4LuRPFix2LNVY5fkmtZSr2meqsv4z6bjUai4WuGig5dWKYqvGRJDtaYGpMRJalCy3jRrxrFjqnpp/tQXlcscwuKWbAK1c/7zxVlBBb8+SnOh4Ftcq5heNRmucWuIZzC8ZZWPXXYGU6rjqHkyvwezqmXGUFm9OIhproVAN3LGdWKohzC8bygkuQkdfj+WWFqj5plAPHANcaR7m/ALMd7UfsUlhfsF28v/jd2uV1fScMVJlWey6YnShzHTT06K/Gug4y7H+b7GqvahtK8DpVe1zXG4L8wvC6ROWxbZQZ9D0tMezXNFolmqgvZ2nV4Pudbah3p6vqcS5mAi9PUsxEbJjQ3ZsCQuVorfGR6dP6CZJvmldG4voGLaExa7mlqanhig3TK+obLkc63sjnhuV6uMMj2I1wlpsK2M5u6A9n1HuHjvV4wKVoC83AhZbQde7WQ20UG6dYU2om0vlUIuXcqQ9n9LAYkNlyjaEZKamXMUoIJkb5rsh5VDNg0yk/ah1Jk5OrdeVo4DZhZDlmo5HJd3intsy3w46N+PWqdUGuHzZkKqvfZ/LzZjkpKYcBGR7hZon5dp/ChBPGzWKSoVqEFCNQhbbkZNQu948gWoUQqCv7WI3ZXo1042EeY2JA8qVmGoYUY0imiwg30goJzGHz6Q6hpbZTEPCvCY+yqnGMcV6SriomV1I3XmqRkE20cdsehHL7ZRq5CS9FgiF5U6PepIqY2gsNg277EupGo0fcS60phfp36FAo/cVa7FxQLEzxGQR9aSHfZVhKQAAG5ZJREFU6SdQG8xQ4+xMXx/f9hKCec7yygpm3CO/vIIZZJQXxuRXJphhT5nGKMQOe9h+inWSWrM+1qLSSXDr7Qn17irN5or+7K7RbE/09Rv2taCMo7NCtZfpTxgivUwjSQJXiIIWnuL6KM2rI0S+nDusPcd+2sZ8yU8bb2JbJvSrMJoeXxkiEgJ/B/gu4B3AnxORd9z353mUGcvh0zv2ff/LD7A/G3DqGMH3XL7B5w82WeYxaVqzXCY0eUQQNzx+YZ+X760hgaUuQyS0DPoF80WKbYSVlQWzRUq1jJFFRLhadFEKq6MFR9M+pgl4fHuflw/WKOZJFzWwNplxfNqnyiONK8gawtBQnaQkqznV3R7vevcX+dTHH4PNgiSryfd7iBHSrQV1FdKUIRIazDxm9cIJx8cDAF34CkhkwAjWiMYsLCOCQUWUNJQz1b8nt2OCt80o7vbp7c7Ilwm2EX2MWhfQ2eaS/KAHoSXs1xqT0EYOzGL90h3WhHcSZZQiZR3CWUAzaojHJXUVIvsJpq/sljRCuFbQHKb6v/cSmp2C9AsZH/ru3+X//uw3w16KjTXzMH8qJ85qmjokuJ45ExYXt9BXQ49sklPc6WNDS3Yv6sLn63GjcrBeQ3xXWR87qbB5CKEluxGTX6yQUiMXkoOQ6mKpY+qrWQmhRbKGYD/BbJYkWUVxlBGeRhBo32y+o6xbNHdxAs5xN5rqIsS6qIT0IKTYaHsINC6hXq276AjJGphFRLOAuqfPbVND4Mx66g3XvB4Z5DCh7Rfd/jdw9/04GajRCIvIwqAmeTmlvFoQ3k0IH5vRvDTUPsCBGm+UOzXRUaRFhnP3TQ+F2WO1MmCzgMEtYXbFEM8C8q2aaOqyKAe6CIynumve9Cz1esX4kwmLXYuNz6IIyolh44lDTj++QbQQ5k+XhAcxNtbnbd1rg4sLeHHgHJTpmoyiK3PMi8OOeTGpdS6zmgtqIp13adQhuGXd+rfUDdfElv5t3RVfXNad0MHLUcdQVEPXl9vXRXo0V+ajvlgQv5J2zGK5akmOhGpF+5LHL8L++7RPOCjPGLL0QIugVlKI6AK3XG+YfDri5G0NyZEWgNmBSvKi+VkR14a555cq0jvRmcuvc2wWo69h7Hq6Q8fwSS3kOzXRLHTMmWMnY+v6oXWuooV0PeI2OGOc2j7roFAmaX5RXX/rYcuAaK9x3VP2bnBDyLdUUtrGKxjnHtrKEPN1J+21OOdV7fcevhR0rqvFmuvrTdpecmUI25iGYlXnMJ4qO5OvK7tYD7T/VRqYX7bUw4b+9UgdjXtnURLiXJmbzLm7rmkhZ2K3wE00asLEygyen5NyrK/p8BWVpvZv6UJde4DpIjCqoY4v33T9ynt6stY9XB+oEE9VuqkSO+f+KefkqnnL1urrkO0rK6eSO3W0Vaa0jSXRMXQ9wa43tVjXfmaTKPPZu4tzqtT5bnrKrmWHytbMd9RptZjoeKSG9ERZsWooXb9z3Ve2NjsylENdrDcp7rNd+4XrnhZRYp2kN6ZjKnGSXdDir3/XUPWEaqw99SsvV0wvRl3/Zd3XIrTtF46WltqxiP17hqqvPZgqCXXnnQuvb2LtC12uB/TvmY5dHd7SXMkmhcFtdaFtxxgtrBrcZFq0VX1X6C0sxVjoHap5z2IjcNmXrsCaqFFRkzhm2Wqvbcua28AZDbVxG6l0ShITtlLms77ZJtY4j2qge/rlWEimLuIiOutrLSb6/o7n2pdbZ663d2ZIjmuWWwlVX91rW3ZQI2UaTBqoQ60rOPV/1VEWUfltvNDjCxrnrWAs0aLBJEHH8IWFvlgmko5FzPYKqlFMPQhJjmuqscpFw8Iqg2j1uBHNyg0LZRuze0uafkyTau9sUBq3uRWSHpVdb2or1w0LZejqLHRRHxrpkUy1R7IeRESzStnBNCTZW9IME0wSEJRnPahiIJqVnatsULlCz2ikiNSmk382vYj4RHtGpWgw/VjZyDgkqE3nPtvmQOprFhAuK+phogynQHiypNocEhaNMpmzQh1j+wnBVOWsUhtMEhHkOrYuTsRYdXctyrMCte29bOWoLSNZ1dgs1f7ONFFn2V6qxzNfam9mICp9DZx5D2iupHNwldcayJyvB8pKi7+W/QwCOpdYQJIYWxRIHGPz4lU9krYs1YwnDM+iQZxhjy3LM/YROifYL3GFhS9hNLu/H/G4kbGs2ffJB+774361YxORbwP+urX2Q+7yTwBYa//b+zmOR7qw7D+1a7/3H36YL5ysU9YhJ9M+Ta76nWxYauFXBSTjgs0VzTksy4i61L6DOKkppinJsOTC2glffGUTiQ0b61P2X1hnePWE6VEfmUZII6SXZ4ShYbW/5PorG8rchRacdDA8jmhWa3rjnLKMsPcybKALcWKj7qpWCI4jzIr2hWGFbN0VetD13JnUqDxtXGNr0aIwVslgvLXEfkEX6e39pBZMvyGchZiNEruMNGtuHmumXc8w3JgzO+iT3oopLlTIMlT5nFFXR5yMrVlpCGZhJ+0KC9HCL7SaYzeuWd2ccvzKRHPdxhXspfplmrqcuNq57gb2TL5XaIRLUAn1qCE6CbFXljQnCfFR2B0PgUVK3VUOKiEonPxN0MIwsSrxdZ9BNrLEx2qgZKOzCBTafLxYi5PGFYVWoOkZ7LBRxguQIugKpeQopNxo9DFdBl641DlqVhrtiStdken62aRR5obQEixDoqkWBtmhSvR0AacOiBoBIm7hq4vC5FjHGc/VLMqkWhDbyFKNDOlhSJNoEVGu2M6zKJ5pcdCaO7VSxsDl5pVjSzNoSPe0MM/2gm4uq7EaRbUh7yo/coVXX4sbNZXQjQXNymvllrpgr8bKKIULt3B150vd18LSpCpPbKWA+Zo+VnKsLJhJ0YJupMemi2r9n6Znu9dejHu+EdRDQ3wSdItUabS/rM0KVMmcLvzFOOOsQiWTbc9hNFfTnKA4k3xJu4ittf+sHLmYlbaQcOxJK4Fseu2ctbI/2+UAtkZKxhXYbY9eKwksVyz9uzovyx29TzyH5FjjNKIlnbyvSVTCGJ/qmNNDLTQ6Aydzdgzt72qot5lEiyIxWghGyzN5pXEmtUHlzJ4qPcbRdcN8R81v2miaLpPP6hiLNWF4QyNJWtMdE50ZSklNFzOj2YoaZ6KxHk6SuLBd/9p586CgUmMklcXiYnc0aqOYSFecimMH4cxsKsyVMWuL9NaYpzVMCaqzxatYVxTObJdRWPf0crTUyI/AxW3Y4Ex2CrwqX6/NzGsLjbBw2X+NdXE3Z1LKdhw2pHMflXNywuRUzYWyQ2WUQBf28dx2r5cu/PVYgxp6hw3zLe1jDEvrZJXSvTfaz/F6oGMDx1a6DQigy8rEqow0O7Bd4RLPrBr8jILuPR4vtDgyIV0xdJZ5iCtotIgFZdUWmwHR8mwOw8qqjDXSYtLEahzTJIGLS3ESWHsmXw0LNdEBuvd/VLg8SNd3Wo6CzhCqhZgzA5/WkClaGpXJuhiZ1lk3nhvKUUi+Kgzu6YPUqXSFcyspDZxplxpKafF39oSQHNcUq5EaQQGtSY5Y28lkm8QVfXPtA9TvBks1CNznSBtxoqY9TS/oxlr3AqL5WY9jmzsZ5g3VKCKe1k66qusdjBZsNpKu/zCojB5PFnSFextZYgPtVyzWU2eSpMcVn7qIj8a6TSXrWD+NTAkLQ1AbgmWNSSOVnhp339oVq0lI0BhMGHRjt5F0USrRvKJcSYjmNQTOxGhZY+MAE2qcCkbff+3cmjQkXFQ0/djJZFsJpmZCNsOEcF45s6CzXkrTSlBdPmNrFqTfB0F3OZyXGjnSaJEojVXToMa9vm0mpohe74yDbKrS1daZ1YqcGfNEIZ18tW4dUwP92xhlCts+RVcA2yhUthHUObZuIAqRvNR+SWP18UX0vm00iXN37YyDWofWVuLaoi0267r7n1fLV+2rWcPX/m/TnBWBbWFqTFeYvqrf0jnK6uHJuf/7MnXJ+cL1EZfCisi/BDbegIfOgPNZLD9nrf25c8/7fcB3Wmv/orv8HwDvs9b+lfs5iEe6sFx5Zts++Tf/IttDNaUZRgWzOiWShv3lkDhsWM/mLOqEZ2/u8EevvUwvrGiscHuxwqKKWUlzlrV+Y3/bxkv8ysvvJA4b4tCw1ltwlPeIA8Ol4TF7+ZCijggDQyBWf7CsZ3M+cfMSq6MFq9mSw2WfLNI34sG8z8Zwzt50iLWQLxJWVhakcc3V8REvn67Sjyv2ZgNCsYyygjSquTQ45nOH20yXKWlck5cxIpbJYMmd/RX6g4JeUtEYYa2/5MbhhEtrx9w6HmNMwKifd+PcOx4ShpamEZo6ZLIyp2pC4rAhiRoaExCIJYtq9mcDhlnBzmDKp2/uEojSEWlaa0xHEzDoF5zeGTHamepz9XIOTwdcWj/mped22X1ij9t3VtndOeLuwQqDQU5Vh2RJRT+puPnyOv2NBauDJXcOVgjChtEg5+hwqEH3rnEsSDSkPh6WVCcpwaBCQku/XzDdG7J98Yi711fJ1nKypKJqQpbzBFMHbGxOmS1T8lkCVhitzZnuD8hWCsoiIowa6oMejCpsEdJfW7A47GvxLxaZRgTrJePRgqKKyBfKCEdJQ3mYMdyZsZinhFFDtUh0rEUIVUCwDFh76pD9WytaNE4KZbJPYhjXXNo95PpLm/Q35yyOegzWlvTTkqOTAfWJRqWE0xC5qKuw+jQhXimoDzPijSVJUjM77CPzUJnBlRJTB2ds9jJk/eoR+zcmBMMKM1cWndgy3JirqdE8IjyJMFuF9phaCEYVZqZ9dUEuNJMaKULijSXlNEGKEAykOwvK6wOVRva0T5W5BjPLpETupZj1ClsEyhr3Gqi1p9MkqPnPMuw2QyQPtM+y1I0a6TVEtxLqCyVy7FbTFmxikUozZyV39x3UhHfTjokOl+5LyzlEm54hyIWg1s2RYOEMa1ZqosMIG1maUYOUAeEi0NiRQhfH5Vatr4N7rHq9IjyKlA1LdIMgOgmpJ8pOt4Vtk2kB1xaVTWa7XmJiVR3IUs2Pwpcy6ms5cjclPg3Id2vto50qU1qNz9yJm74ei7rhSlcwR3P3HD2dn7DUMdgQfSzHyrah7kHl+ianuuFjBg3xQeQ2PuwZc7pe0ftiQr5p1D10HuiGQXmWyRqUuuEiNZSbDcmeW6RZXKau7Xr94qkbc37W69mktmMS46m4HkBY7Dr5a4MzIlJJa3oQdBLUlo1vGeRooc+XHkjX89j0nNuzY22bTP+n7msPYzmxDF4RljvOzRt0rjPNzy1WLU3fkroNmfOZkV3frtsACEq3keFcl8NSN0K6DQ2jstnWCbllGcuJsuUtqxrmUE6cI7KLG2mzJquRGh21jGw8OytQyzGdW2x6pMV/UDlWt9bolKAQRte1j1D7B13f5uKMHY1nluW2dD2o6bH2UVYjd34njk02ep2JnOtzpn2PYeHmw7m/6mM7xi4V5yzbFrs6Jy0rq+eJMypqGSxpN7LcAtS4Inl5du60xXc1UAawSemckKOl7fKg26K3yVrHWUvb5xrPLYstNdvJDjWSpUm08A0q9/zuf9qNhWrQMmzOldixp21fpLJyQu9A3YBb12MxkE/aDQMt4KueOvZWfR2DCZXR7B1oUVesKLNqIo1sUUmrGv8kMy2uq74+ZrvBFDkmNV8J6B2pURLQGQi1DGOUGy3Icy2a2w2QJhHihek2Y7KDCpMGlKNQDaBm+n9iNOu0e70icf2sRl15XZZoNQhelUVa9QOSqT5GPNPCOaiUqdP8UTXOCfOGYj0hWhqaNCCe1jRZ2L0Hk+MS48x2gM7pFatFP8KrHWvzuru/dQWhNJZ4VnWMZutWi0GL99qxlFlIkDeOtVZ5aFDUumwJhSCvqYeJutXWBslrlbIGosVpGqlZUNhu/ljtzYyCrpfSRgE0VlnKLD7L1zRoFmb7t3OdlaI8K9iM65EUZSttGzXiGMvuOvc3zbki0c2ZLnbCM5fZJD4r9s7nXrYS1rYIBV4bC2JLHZv2Yn4Z050vI4/9cjhfdD7qheXDgi8svwaIyBR47mGP4y2GDWD/YQ/iLQY/5w8efs4fPPycP3j4OX/w8HP+4OHn/MHjG3XOr1prNx/2IB4GHpQUNrqfD/YQ8NxbdefhYUFEfs/P+YOFn/MHDz/nDx5+zh88/Jw/ePg5f/Dwc/7g4ef8GxIfA54SkceAm8D3Az9wv5/kUS8sPTw8PDw8PDw8PDw8PL4CrLW1iPwV4FfRuJG/b639zP1+Hl9Yenh4eHh4eHh4eHh4vIlhrf0XwL94I5/jkc6xBH7uq9/F4z7Dz/mDh5/zBw8/5w8efs4fPPycP3j4OX/w8HP+4OHn/C2KR9q8x8PDw8PDw8PDw8PDw+Ph41FnLD08PDw8PDw8PDw8PDweMnxh6eHh4eHh4eHh4eHh4fG68MgWliLynSLynIi8ICI//rDH82aBiFwWkX8tIp8Vkc+IyI+669dE5NdE5PPu96q7XkTkb7vX4ZMi8t6HewSPJkQkFJHfF5FfcZcfE5GPunn9JyKSuOtTd/kFd/u1hznuRxUiMhGRXxSRZ0XkcyLybf4cf2MhIj/mPlM+LSK/ICKZP8/vL0Tk74vIPRH59Lnrvu7zWkR+yN3/8yLyQw/jWB4VfIU5/xvus+WTIvJ/icjk3G0/4eb8ORH50Lnr/Zrma8SXm/Nzt/01EbEisuEu+/P8PuArzbmI/Ig71z8jIv/9uev9ef4WxSNZWIpICPwd4LuAdwB/TkTe8XBH9aZBDfw1a+07gPcD/5mb2x8HfsNa+xTwG+4y6GvwlPv5S8DfffBDflPgR4HPnbv83wF/y1r7JHAE/LC7/oeBI3f933L38/j68bPAv7TWPgO8G517f46/QRCRi8B/DvxRa+03oVbn348/z+83PgJ852uu+7rOaxFZA34aeB/wrcBPt8Wox5fFR/jSOf814Juste8Cngd+AsB9l34/8E73P/+T21T0a5qvDx/hS+ccEbkMfBB45dzV/jy/P/gIr5lzEflTwPcA77bWvhP4H9z1/jx/C+ORLCzRD4EXrLUvWmtL4B+jJ7fH64S19ra19hPu7ym64L6Izu8/cHf7B8D3ur+/B/jfrOJ3gImI7D7gYT/SEJFLwJ8Fft5dFuA7gF90d3ntfLevwy8CH3D39/gaISIrwJ8E/h6Atba01h7jz/E3GhHQE5EI6AO38ef5fYW19reAw9dc/fWe1x8Cfs1ae2itPUKLpC9ZxHsovtycW2v/lbW2dhd/B7jk/v4e4B9bawtr7UvAC+h6xq9pvg58hfMcdBPqvwLOu1L68/w+4CvM+V8GfsZaW7j73HPX+/P8LYxHtbC8CFw/d/mGu87jPsLJz74F+Ciwba297W66A2y7v/1r8frxP6JfhsZdXgeOzy1Mzs9pN9/u9hN3f4+vHY8Be8D/Kio//nkRGeDP8TcM1tqb6G72K2hBeQJ8HH+ePwh8vee1P9/vL/4C8P+4v/2cv0EQke8Bblpr//A1N/k5f+PwNPAnXLvCb4rIH3PX+zl/C+NRLSw93mCIyBD4P4G/aq09PX+b1Ywan1NzHyAiHwbuWWs//rDH8hZCBLwX+LvW2m8B5pzJAwF/jt9vOInZ96BF/QVggGcHHjj8ef1gISI/ibaX/KOHPZY3M0SkD/zXwE897LG8xRABa2jb1H8J/FOvLPF4VAvLm8Dlc5cvues87gNEJEaLyn9krf0ld/XdVv7nfreSB/9avD78O8B3i8gXUVnId6D9fxMnGYRXz2k33+72FeDgQQ74TYAbwA1r7Ufd5V9EC01/jr9x+NPAS9baPWttBfwSeu778/yNx9d7Xvvz/T5ARP5D4MPAD9qzwHA/528MnkA3rf7QfZdeAj4hIjv4OX8jcQP4JScz/l1UdbWBn/O3NB7VwvJjwFOijoIJ2iT8yw95TG8KuN2mvwd8zlr7N8/d9MtA65r2Q8A/P3f9n3fOa+8HTs7Jrjy+Cqy1P2GtvWStvYaex/+vtfYHgX8NfJ+722vnu30dvs/d3zMQXwestXeA6yLyNnfVB4DP4s/xNxKvAO8Xkb77jGnn3J/nbzy+3vP6V4EPisiqY5o/6K7z+BohIt+Jtjd8t7V2ce6mXwa+X9T1+DHUUOZ38Wua1wVr7aestVvW2mvuu/QG8F73We/P8zcO/wz4UwAi8jSQAPv48/ytDWvtI/kD/BnUbe0LwE8+7PG8WX6AfxeVSn0S+AP382fQ/qbfAD4P/Dqw5u4vqMvXF4BPoa6PD/04HsUf4NuBX3F/P45+EL8A/B9A6q7P3OUX3O2PP+xxP4o/wHuA33Pn+T8DVv05/obP+X8DPAt8GviHQOrP8/s+x7+A9rBW6OL6h/9tzmu0L/AF9/MfPezj+kb++Qpz/gLaS9Z+h/7P5+7/k27OnwO+69z1fk3zOub8Nbd/Edhwf/vz/A2ac7SQ/N/dZ/ongO84d39/nr9Ff8S90B4eHh4eHh4eHh4eHh4e/1Z4VKWwHh4eHh4eHh4eHh4eHt8g8IWlh4eHh4eHh4eHh4eHx+uCLyw9PDw8PDw8PDw8PDw8Xhd8Yenh4eHh4eHh4eHh4eHxuuALSw8PDw8PDw8PDw8PD4/XBV9Yenh4eHh8w0JE/j/3+5qI/MDDHo+Hh4eHh4fHl4cvLD08PDw8vmFhrf3j7s9rgC8sPTw8PDw8vkHhC0sPDw8Pj29YiMjM/fkzwJ8QkT8QkR8TkVBE/oaIfExEPiki/4m7/7eLyG+KyD8XkRdF5GdE5AdF5HdF5FMi8oS7378vIp8WkT8Ukd96WMfn4eHh4eHxZkH0sAfg4eHh4eHxNeDHgf/CWvthABH5S8CJtfaPiUgK/LaI/Ct333cDbwcOgReBn7fWfquI/CjwI8BfBX4K+JC19qaITB70wXh4eHh4eLzZ4BlLDw8PD49HER8E/ryI/AHwUWAdeMrd9jFr7W1rbQF8AWgLzk+hklqA3wY+IiL/MRA+sFF7eHh4eHi8SeEZSw8PDw+PRxEC/Ii19ldfdaXItwPFuavMucsG971nrf1PReR9wJ8FPi4if8Rae/CGj9rDw8PDw+NNCs9Yenh4eHg8CpgCo3OXfxX4yyISA4jI0yIy+FofTESesNZ+1Fr7U8AecPm+jtbDw8PDw+MtBs9Yenh4eHg8Cvgk0IjIHwIfAX4WlbV+QkQELQ6/9+t4vL8hIk+hzOdvAH94X0fr4eHh4eHxFoNYax/2GDw8PDw8PDw8PDw8PDweYXgprIeHh4eHh4eHh4eHh8frgi8sPTw8PDw8PDw8PDw8PF4XfGHp4eHh4eHh4eHh4eHh8brgC0sPDw8PDw8PDw8PDw+P1wVfWHp4eHh4eHh4eHh4eHi8LvjC0sPDw8PDw8PDw8PDw+N1wReWHh4eHh4eHh4eHh4eHq8L/z8JPtB5VvjafAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHzCAYAAABbrYK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0b9lV1/uZa+3m15z+tnVv3brVpQLEhCaAAYMPnmAwgtijYoOKkNf5VBDF5hkYojyfA7F9Nu8pQpRGnjikcQQYNCIhIQTpQiWpSvXNbc49/a/ZzVrz/THX/p1fXe65VZUU1C3Y3zHOOOf89t5rzdXsved3ze9cP1FVevTo0aNHjx49evTo0aNHj48V7tU2oEePHj169OjRo0ePHj16vLbRE8sePXr06NGjR48ePXr06PFxoSeWPXr06NGjR48ePXr06NHj40JPLHv06NGjR48ePXr06NGjx8eFnlj26NGjR48ePXr06NGjR4+PCz2x7NGjR48ePXr06NGjR48eHxd6YtmjR49fN4jIfxGRP/Vq23EriMiPi8hX/BqW/zki8uFfq/I/FojI7xORp0XkSEQ+9RbHj0Tk/lfDttcCROSdIvKuE459rog88+tt02sNd+J90aNHjx49Pjb0xLJHjzsIIqIi8uBNn53ovN7JuJXdqvq7VPXf/hrUdW/qu+yVLvtjxc1jqao/qaqvfzVtugX+PvC/quqKqv73mw+mzx8DEJFvFZG//etu4a8hROQJEfn8V9uO30x4jdwXPXr06NHjY0BPLHv0+E2IO4mAvRbxG6j/LgMffLWN+PXGb6Dxu6Pwm61ff6O09zdKO3r06PHqoyeWPXq8hiAip0Xk+0VkT0R2ROQnRcSlYxdE5P8Tkesi8riI/Pml694pIt8jIu8SkQPgy0XkM0XkZ0XkQESuisg336beLxKRn0/1vkdE3rR07K+IyLMicigiHxaR3yEiXwj8NeBLk5zyF9K5C7mpiHy5iPyUiPyDVO5jIvLZ6fOnReTasmxWRH63iPz3ZO/TIvLOJRP/a/q9l+r7rHTNnxGRh0VkV0TeLSKXl8r7AhH5kIjsi8g/AeQ27T+p/3462f68iPwTESnS+Z09v5Ds+dKbpZEpWvY1IvKLyYbvEpHB0vGvTeU+JyJfsRzpEZG3i8ivpD5/VkS+5gS7nYj8DRF5MvXnt4nIuoiUInIE+GTjR0+4XkXkQRH5SuDLgK9N7fm+dPzF5tx/SH12KCK/JCIPicjXJVueFpHfuXT+l6c5cJjK+rITbDpx3orI7xGRD6Yx+XER+cSb+vuviMgvAhMR+Q7gHuD7Upu+Np33ljTH90TkF0Tkc5fKuE9EfiLZ+MPA6VvZeJO9f01EtlP9X5Y++4xku1867/dLuk9uUca3isg/E5OSH4ndN+dF5FvS3P6QLEmZX2RcTpy36biKyDtE5JF0zj8VkVveG/LavS8eEJEfFZEbaWz+nYhsLB2/JCL/MfXfDbHnw83PrBvAO+WEeyydP0h9cyP1x/tF5NxSWS9lvr9AKXCL/vpVz9/0uRORvyoiH031f7eIbKVjncLjz4rIU8CP3s7WHj169HjJUNX+p//pf+6QH0CBB2/67J3Au9Lffxf450Cefj4HI0QO+ADwfwAFcD/wGPC2pTIa4Pemc4fATwN/Ih1fAd5ygk2fClwDfitGRP4U8ARQAq8HngYupHPvBR642e6lsn4c+Ir095cDLfCnU7l/G3gK+Kep7N8JHAIr6fzPBd6Y7H8TcBX4vUv1KpAt1fUlwKPAJwIZ8DeA96Rjp1PZfzD1419MtnzFCX1wq/57M/CWVPa9wMPAXzhpLJP9zyz9/wTwM8AFYCtd/4507AuBK8AbgBHwruXygOeBz0l/bwKfdoLdfyb1wf1pjP8j8O23m28nzUfgW4G/vXTspcy5OfC21EffBjwO/PXU538OeDydOwYOgNen/+8C3nCCTbect8BDwAT4glT+16a2F0v9/fPAJWC49NnnL5V9EbgBvD217wvS/2eW6v5mbH7+dmwOvesEOz8Xm1Pd+f9Dsq9r468Av2vp/O8FvvqEsr4V2Mbm3AD40dSXf5Lje+fHXuK4vJR5+/3ABka8rwNf+BvsvngwjW0JnMEWpr4lHfPALwD/AJuXA+CtNz2z/rfUviG3uceArwK+L9nqU9+s8fLm+7fywvtu0V/c/vn7vwPvBe5O7fwXwHfc9Lz8tmTL8CRbX+yd1f/0P/1P/7P800cse/R4baHBnJDLqtqo5Scp8BmY8/sNqlqr5cX9K+CPLF3706r6n1Q1quoslfWgiJxW1SNVfe8JdX4l8C9U9X2qGtRyJCvMeQyY0/JJIpKr6hOqesvo1wl4XFX/jaoG4Lswp/8bVLVS1R8CaswJRFV/XFV/Kdn/i8B3YM76SXgH8HdV9WFVbYG/A3yKWNTy7cAHVfV7VLUBvgVzWG+HF/Sfqn5AVd+rqq2qPoE5brez51b4R6r6nKruYE7dp6TP/zDwb1T1g6o6xRz4ZTRYn6+p6q6q/twJ5X8Z8M2q+piqHgFfB/wReWWkby9lzv2kqr479f9/wJz4b0p9/p3AvUuRogj8FhEZqurzqnqSRPekefulwA+o6g+n8v8+5jB/9tK1/0hVn07z/1b448APquoPpnH+YeBngbeLyD2pzX8zzc//io3Zi6E7/yeAH8DGFuDfpvpIkaS3Af/+NuV8b5pzc4yEzlX125bunS5iedtxeYnz9ptUdU9VnwJ+jON5eSu85u4LVX00zZNKVa9j5L+z8TMxUvuXVXWiqnNV/W9Llz+nqv84tW/G7e+xBjiFEd+Q+uYglfNS5/vtcLvn7zuAv66qz6hqlfrqD950778ztbF7H5xka48ePXq8JPTEskePOwsBi7YsI8de+gD/F7Y6/kNJRvVX0+eXgQtJwrQnInuYFHVZyvT0TeX+WSzK86Eke/qiE2y6DHz1TWVfwlbJHwX+Aua0XBOR7xSRCy+jvVeX/p4BqOrNn60AiMhvFZEfS/K0fcxxup0U8TLwD5ds3sGiuxcxx3HRH4mc39w/N+MFx8Vknd8vIleSDPDvvIg9t8IymZ2S2nqzfbew7Q9g5PhJMWnmZ51Q/gXgyaX/n8QiLa+ExO2lzLmbx3I7EaHuf7CI9AQjhu8AnheRHxCRTzih3pPm7QvaqqoR67eLS9e+2BhfBv7QTW16K7aYcwHYTbZ2ePJWhSzhVud398e7gC8WkTFGmH5SVZ+/TVk39+Ut7xNeZFxe4rw9aV7eCq+5+0JEzqVn1bPJxnct2XgJeDIthtwKN9d5u3vs24F3A98pJt39e4kAvpz5fiJe5Pl7GfjepTnwMPZ+OemdcEtbX65NPXr0+M2Nnlj26HFn4SlMprSM+0iOi6oequpXq+r9wO8B/lLKqXkai/5tLP2squrbl8rR5UJV9RFV/aPAWeD/BL4nObk342ngG28qe6Sq35HK+feq+lbMkdFU1q+q7xXAvwf+M3BJVdcxSXCX+3Wrup4Gvuomu4eq+h5MMnepO1FEZPn/E3BzHf838CHgdaq6hjnvJ+Zpvkw8j0nYOrzANlV9v6p+CTZ2/wn47hPKeQ4blw73YFK+q7c+/ba4uf0vZc699MItsvkFGIn7EBZlu9V5J83bF7R1aUyfvU0bbtWmb7+pTWNV/SZsTDZvukfueZFm3er851I7nsWktb8f+BOYY/9K4MXG5ZWet6/F++LvYHa/Mdn4x5dsfBq45zZR/Zvbe+I9pqYq+XpV/SQscv5FmHz5Jc93TD49Wvr//AuMOfn5+zQmtV6eB4M0735VW25na48ePXq8VPTEskePOwvfBfwNEbk7bb7w+cAXA98Di010HkxO8z62Ah2xnKTDtJHDUES8iPwWEfmMkyoSkT8uImdSZGcvfRxvceq/At6RIoYiImOxjXRWReT1IvI/ikiJ5dPNlsq4ikkdX6nnzCqwo6pzEflM4I8tHbue6l3+zsV/DnydiLwhtXddRP5QOvYDwBvENkzJgD/PTQ7bS7TnADhK0Yb/6abjV2+y5+Xgu4E/LSKfKCIj4G92B0SkEJEvE5F1NcnnAbceNzC58F8U23RmBXOov+s20Zjb4eb2vOw5dxJSBOlLEgmrgCNOaNNt5u13A79bbPOoHPjqVNZ7Xkabuiji21J7BmKbpdytqk9istivT2PwVuzefDF0538O5qz/h6Vj34blgr4Ry817JfBi4/Ji8/bjxWvhvljF5ti+iFwE/vLSsZ/BCOw3pWfdQER+221sOvEeE5HPE5E3im3SdIApT+LLme9YXvDbRWRLRM5jEcquzbd7/v5z4BslbVgmImdE5EtOasRJtt6m3T169Ojxq9ATyx497ix8A+YI/zdgF/h7wJep6i+n468DfgRzRH4a+Geq+mNJXvhFWC7S49hGH/8PsH6bur4Q+KDY7qD/EPgjeovcM1X9WWyjlX+SbHoU28QCLL/nm1J9V7BIwdelY50DfUNETsoBfDn4n4FvEJFDbGOSRTQi5Vt9I/BTSfr1FlX9Xmz1/jvF5G6/DPyudP428IeS7Tewfv2pl2nP12Dk9hAj39910/F3Av822fOHeRlQ1f8C/CMsv+1RbBMOMCcULML1RGrXO7A8r1vhX2ORsP+KzYs5tvHIx4L/F8vl2hOR//QxzrmT4IC/hEV/drB8t5MIzy3nrap+GIs8/eNkyxcDX6yq9W3q/bvYQs6eiHyNqj6Nbfr017DFiqcx0tG9K/8YtonVDvC3MGJ4O1zB7pnngH+HbULzoaXj30uSLKY5/HHjJYzLi83bjxevhfvi64FPwxbnfoAlUp/674ux3O6ngGcw2epJuN09dh5bFDzApKg/kc59OfP927HNhJ4AfogX9uftnr//EFN4/FB6Zr4Xm7sn4SRbe/To0eMlQyy1qEePHj163KkQ+9qMXwbKjzHa2OMOhdhXvXyVqv7Iq23Law39fdGjR48edxb6iGWPHj163IEQkd8n9n2Tm1jk9ft65/k3FkTkD2B5bj/6atvyWkF/X/To0aPHnYs7iliKyBeKfcHvo3K822WPHj16/GbEV2HfH/pRLJf2lc6F6/EqQkR+HNvo5n9J+aI9Xhr6+6JHjx497lDcMVLYlDD+EexLi58B3g/8UVX9lVfVsB49evTo0aNHjx49evTocVvcSRHLzwQeVfuS4Rr78uwTdzDr0aNHjx49evTo0aNHjx53Bk76nqZXAxd54Zf1PsPtdzCj3BhodnYTFFbzilYdQQUvSqvGmTOJzIM1UwRUIUTHMG9ooyOqEKJDRAnBMSpq2ugpfUsVMwSlcIF5yGiqHHxEBDIfaIOnyFqa4CmygCooQtN6Mh9QFRBQFUZZzaQpWC/m7NUDnCiqgndxYZcTNZuiQ6OQZQFJ5zmnC9tjtP87qAreR9rKk5et1Qu0wUEQXG4qK+cUL5GqyRABkeMyYhQyb+cFFbT2lMOaqEIbrD2Zi8ybHG2FvGxp6owsD4Rphh+3tLW3wgQQtT8CoILkkcwHmiqnGDS0wREbh2QKomhwOB9RQJfaJ6LE6Oza1i/6qsgCdZ0xGDTMZzl46L6SK/ORdpZBEY/HPfVnW3tbTklNF69oFIiQFYEQHapms3WGgDcbiQKtkI8amiZD0pjkWaCpMmt3FMgUGoE8mi3B5mKRBeomg9bmBV5BQWpBM+szl0eYeHQUcS4SqgxXBGLjzCYFCcAwoo0Dp8lWfUFfSi1ooUhj7dAiInNn9ThNYwRE6wMqZ8Vkau1aKltS9pI6u0YCaGb1ae0QBfVme6w8eH1Bm4ipL33qdBUki2gQO28Qkdqh2fG5rgjo3L/gs25eSWNtI1p/vKAfCz3+ZjZJdYWl9hfWdj8VYpbaEcTanisEWbTPVVZvLNJcbJb6NFWNt7kkrdWnAhJB89R3SeAoDeBSH6qdg0IswKU9S2MBLvV1zNMcdWmMQrqlgJjxwm/v9NYXEpZsSOerLI2bWlmaK6629ks029WDlgqt2HUOsim0K6m/0xLkwr705pDA4n7yFYTCrhWsD/3s+Nrojx8LnR1+JouyNLO+UJds92a/a9NnwfrFNXaMVJak/gml2RwG6ZbwNoaL8sRslZDmsDc7YnHcX4vPsd/SWv1x6WviO1uskcmGZCPO/o6lHXPNcR917ddUdleuq5falaU2BzvfhTSe3ZzWpXmhx7Z3xySaHerSHEs2dmO/sCMe19G1WZ19tlyOBNJ9ksY+pls6zU8Jdm47BN8c2xLz42Pqjvu6s7vrE+tfpR2KjbOkfu/q1+Myu3tnMZfTPO3GiphuC11q/2LQjsvs0LV/cUpmY4Aej4fVoyBi4xHT3I9Wp68U9en5kfrahe7eUGIux/YkG2KW7pdGiZk9I6K3foi5LPrN5pUSSjunuy/VpbFQq9u1SvSS+kpTfwuuOa7f15GYOyQq6uyaUNixrl5X6+K58oJ7RuS43EzskdOd293PgDr7Q6IunkHqBVFdlGMPTU19n8rNBNeYfa7V9MwSXBtT38qiL2zOaDo3LuokXSNtelar2nUdbioTQJqIeuuTzma8W4y3Lu6d7qY9nr84gdi9z+z8RX90/3e/nSBNsDLd8eeLOpOBEs0eFipCWWqL9etyf3c2Lp4NMYJzx3937e/K6/pfl8au+7y7SZYRu0m4PNAKqi/494VG6dIvveWhm9GpJuXkU2510Us981fhkN1tVT3zMRfQ40VxJxHLlwQR+UrgKwH81gbnv+YvgVOkDMnRF9zVkrDZQOugiGw+m9OupAdjGckOPO2KPf391CGtmIMZhVgocRSQyrE+ccSBorkyziL5jcyc5fRS6Rw010A7VvxcaNYC+Z5HHcRSUW+OKwKr6SU5GCqD5z0IVFuRYtfRrEdcI0hympqtQLbnaTcC/tCj5+f4ZwaEUikOHPWand+9/F0APxOaFV28dIt9IQwgDOxB0mwEBlcyqtMBP3H2ok2Om6uF+qEZulMwes4TSnu5hIGa4+ug3BEmFyPDa47ZebM75kp+JMzPRPzc7HFNevnVQhgq42eEagvaoSanHfxcCKXZlR/YeZ0D3DkF6iHft6fS7K6Aa4TsyOHn1t/ZRGhWlcENoRl3zpHadYfW582qnUdyVIsDaEdWR7kD9bo5gX5uTnGzau3xlTmqg22oNjubj53bzrlXb/PGVXZOzCA/hPxImZ+x8Sh3zVmoNhXXCMOrVm82h3YAxaHZ1DmSANMLkfKGwzVWpoRunOx3s8qC8BUHSrUlC4dFoo1BKCE/Mkc7Zub4uSo5vZgT3owhDGFwDdoVmw+xsOP5odVXHCqTC2LtT3MrlPbju03+08uj2Ddb8kNzWGanZeHEZlNrL87qzSeQHyrzLSGbHTu2fq7sP6SMn3HE7Hg+SSIBfpZs7N6XMTm3IxheVZo1mw/Z1Potmyn1ulDsK/WGEHIY7CiuhWpTyI5s7NqhtUcCtGP7e7CtTC5a231lTp6rrb3Z1NqqYnWpTzZcs/qyqRILwVdKcaA043Tu3BzCZmz2uyZ95oRQ2FjFXBb3QjbVhbPtK6jXxJzauTlPYWhzc7ATmZ8yxyJmUO4qsYBQmAOXT63P5lvHhNfXdk+GIg2gS86pCMWRMj9lc9sFtbmYmx31qs3pck9pVoXBjYhrlWbkaFbMaYq59Xm3GNEOj59VKMxPC+WOEgZWTrUuZHMWZLgdC36uZHM4uiiMn9PFc8k1Vk47sD5xrZWfT5VmJIu51I3VgtTq0u9oc9glchO9UB5G5utuMdektT6KuTnjKMRMyKeRduiQoAsH3Mozh74Z25zOp9bR6m3edURp2cbBXmC+7slnSrVmz6p8psfESaA4jDQjc7yzmc0rdTZuzcieVwi4xvo7mynt4LiObJbsjRByO7fcj8TM7G2HsmhPPlMjRZlQ7LfMzuSEUiiOIiEXsrlSrzjymTn2vopUa55sHq1fBo52IBSTY2bXDN2iHzsyo17IppGY5p6fRZpVTyjsfgjp3lkmyOpS/0/igiTF3Pogq2wuu0bTs1jIJolILDm3EnSh1QpFIjMOmrGjOIwLZ9jVEV9bPSF3hKEnlEI2i2TTQLWRM9iuaccZMTM7smlAMyE/aGnHGerAzyNh6JAAfh4IpXuB028kzyXCbuPROc7ZPBAzRyjcghz6KixIUywc0qaF46C4KhBLT/RCftRQrxe4VvGzFs0d0irt0FPs14RRRkzEKhaO4vqMOMhwbSQMMiORTvDT9KJxQhh4G7fDZkHeYunJ9+Y0GwO7H6Li6kDMHbH0ZEcNAO3YVmfUCX7eIm1EFMIgIzuY064NcFULToiZszIKnwi14BrrCz9vibnH1S3q7TzrCzvXTWviMDfi5QU3b83OUY4/nKNFZsSubtHcI7XZopkD55AmEIsMsmOSJlUAL3aeN7LVkUVU7doIUjeQJ7e6adFBjlQtUtXgnBFHOB5/EaRpjRSHiObZghRK06Y2OCREaMMx8fUe6gYdFHZMBKYzGA2TAzGDLDNbZnP7rCysjBDs+pjuz2UyugSt04qn8xADkudGAqv00s8yqJv0IvFo2yLeoSEel7dMABPx1WZpn62XmVquHZmP4fYn3gY/ot/z5Md8cY+XhDuJWD4LXFr6/+702Qugqv8S+JcAKw+d1wv3bvP8tQ0euvsqjzx3lvHKnKNpRj5uCK3jM+5/kveFB3DDFvYK3LjB3fD49QaeGxC2GsQr+bDBPbyCf/CAEBxF3nJxfZ+HH7lItpMRVkDvnREax2i1YnJtDHkkBoFMWdmcMtkfIkcZ5998hd0fuYvpm+ZWZyXIvRMuntrn+d012idXaMeJ6G42VFuK1p7xmSNmv7JBGCn5rqcdR/yhJ44i/vkBw0/c4+jxdeYXGoiCNoK0QrnjaD/liObxMe1GwE0dcaNFs5yYKXEUkVagiFRnAkRoz9YMHysJpdKsKr6C7IkB9dmWMPD4GUwvBaQVwticlZg54kqgqoU4iFSnNJHrDD1b4R4dUt1X4a8VhEFk/SOeo7thfgaalYivbFU1XJ7R7BdGcu+rCMOcwTXH9IEad5jhKqFdixRnprQfWUEzjJwr1FsBBPzEHobNqZYw9JQ7jmacXrAXZxQ/Nebw3kgszZkZXHdMLra0K552NZDvemb3NQyfKKgfmCFXBoT1lnw7IwyUelPJD4R6zcirRCNo7SiSHzpCAcWeEEpo1wLDZz3tSGk2A/XlQPlEScyVdqtleC2nHZhT7ufmVHWLAvWmUu4Z0Z5dUvKJEAZKHERCIVRbirSJ2MyFel0ZXDciH1YCMvdMnOInDl+DRCF4W+RoV5VyT4gBqnNmt08OdjuEyRvmFE8MEIXpXfbAHmynOoPVNz+jFB9OUYuR2bv1y3D9zUqx5xar6PPzgfKaOR3VlvVdKIV2bES9WVGOHmjJ9jL83IhNM8acXw/u0Mg2FUzPgausze2W2etqmJ5X8kMhb2Fyt1LsCeWefe6CUOzD4f0p0tBAdcrONzJmjnIXEVInzM7YwklH6Jr1SLFnCxfN2IgGp22cmlXr23YERWuLDa5NJDA7JjExT/NkCPNTKYJ2Rth4xEgRCtN1RzuGtccju58g3PWelmbs2L/fMbymiOsWSQCB2VmhOLB6ZqfB13bcVbIgsypweNktoh8IuNbIrTojo/nU7uN2BCvPGGGeXoDTP6/Mt6AZ23wuDsUiNrtGTgZTu4easbU5mypH9wVWHvc0Y6FeBRVHNlXCwMhgR+5dYyQ+lMLsjDC6oszOCMWBkh8aAY+5LY40K/b35KKy/lFbnAmltS2bLUWcxPq5HXcLWUo7NKe8LWHvE5TNh4V2KORBj+dYYyR4eF1xQZmdOp6/rrG+2vkEz/C6kh8os7Ejr404tgNQ78hmSnGkTM95iGmRZ0VsoSIRyjAwQt2sgK+F6TlHuWv/L4hVk54pGTQjsyMUVpZrjaD62uqabwq+drYw4YVyX6lXrE0xE+ZnYPUJtSgSFgnav98x2Dbb6xFUa55yXwkFzE458iMlK82WZsXhGjumXqjWHaPtSLUuxDxPpFPIJ1BtCNlVpR3BcSaNs3kfhWacoQKD/YifK/WqwwVrV6iNnEIXkVOqDXtuNSPBl0JxaCRVopHytnQ0I3teZHO1hbuZzbN6xebfYMcIbjNKhD+RPF8rvo60I28LAnkXPReKw0DM7Rk1O+UY7BppVgftwFGvCcWhI59Eit0aSouGZVGpVz3NyBEzoTqV4+dGzGMugE/3pkuRRcXPW2Znh+RHER15QumoVxwrz9X2TBKIpaSouxH16ZnMFn0UQumIuZAfNsTcUW3k5JNjxzoMrU4JkAPt0JMfNMTSU69nlDsNEpV6lOGa2DlShNyhXij2G0Q9cZQT8yQ3cPaMzCYN0kbm54b4uZGqduSQNiPfnVOdHzG4MqVdL1Ev1OsZEqHcroilJxSO6tKI/CggqS8QIQwzXCLKMRf8PLOIXCKVftbQbAzIDmvCKCdmsohWhmGOhEgsM9ysNZtWywXBjsUQf1ShRYZUgTAucLUR/nZziJ8YGdLcG7mtWsK6ETLNHG4maOmRKiCJ5OkwhzaiQ4+b1miREcscUUWmFVrmuKpCiyVpw6gkDjKkyHAhoIMSHea4/akRwUTwdGCET51bRDJpGnQ0MCIZoh0rciOheYZM55BnSNUcR0bzHJrWCFyWQZFbHVlmv0OEzB9HU52DGNG2k6HocSRW4+JaWRmhh0fH5/lOmebs70QOJctAI5JIszoHTZPsao6vW4a4Y3K5/PcJkBShfq1vdfa2zxvrjZ2PnRyfhA/8YvVuVf3CV7zgl4k7afOeDNu853dghPL9wB9T1Q+edM2FN2zol77rbTx8cJ7MRc6UR3zK6tN8/5U3cvd4j/1mwH3jG7zv+r1c3VvlrZcfYzWfk0vgPdfu46GN60zagg9tn+ULLn2Yg3bIB67ezaeefZZJKHj4+jkub+6SSeC3n3qE9+7dz889dYnPue+jAGQukEvkfVcv8yfvex8/duMh7hvf4Eeefj2XNvaoQsZbT3+U/7b9AKVvOapLnnzsLOcv32BzMOPhRy7y4ANXODWYEFX40PZZMhe5e32fe0a7OIl8eP8cuQ+cGRzx3qfv5S2XnuAnP/ogMQh//s1/EzX+AAAgAElEQVQ/yg9d+yQ+ce0K77t+L2XW8vjDd/G1v+P7+c9XP5kqZKwXMx65cYZh0XB+5ZAP/ty9fOqnP8pHbpxhPitAlPGwpo2OzdEMJ8oz1ze57/w2z+2tsTaa40Wp2oyD/36K+mLDxqkjRmXNle11Puv+x/mZp+7h7MYRa+Wchx+/wP33XCN3gSpkPPHEWcgio7U5o7JBRLn+5CYX79/mDVvP88PvfROb9+0ynZdcPrXDM3sbTJ9b4a1vfpiDesiVySp16zk4GhIqz7lz++wcjDi7ccT+bEBdZ8Tg+NwHHuGJoy2uHKySuch0XrC1NqENnqNZybCs2b22CsDGmSPa6Di6ssLW3XvsPLuBX6txLhKDZzCsqT+8xvobb7D91AZbl/Y4mg7IssB8VuCzQFEEQnBsrEzZnwwJwRFaT5hmIEq+UuO9MhpUjIuGp588jRu1XDyzx7PXNsiKQEzyX4DPve8RPrx3jiefPQWVx6/VrK3M2D8Y4X2kmeRsnTtg76NbDO855MFT2/zCI5cYbsyZ3RgiZeTyxW12JiMOD4ZcOLvHwbykqnLaxhNnGYOnc3jjISEI3ivVc2PkVEWsPS4P6E4Jopx+YIftx7Yozk1pm4xwlNlLvXK4SnjLZ32In/rQg7g8IF75hAtXeWz7FLOdIW7YMl6dc7gzhsqclMGpGSJK+WNr7H1qzXhrRpk37FxZJ9/OiPfMCQc5MmrJypZ2nrOxdcTh0ZDQODjKIYCOA5cvbfPUc6fQxrFyesLkcIAeZVBGk4NOzSnVUzUc5rDaINsFcRyQYUBbhy8DedEyvzE81t4oZBs17UFhiob1lvGZKc2vrNHcXeOvFLSbLf7IE081uOsFen5OnGemltgu8JXQnGpNTtoKeJBaiBsNcpShZUQKkzDL1MNmjX++JJyrcds5cahoGTh/cZerj5w22W3lOPfQda5eX0dnnmI7o76rgdohgwCpXAB/4E22qyTJryKNKTLiMOAPMtQrca1F8kj+TGmLNWda1s4dMXt4g5grYbO1ftys4VqJhER2Bhb9ry805Fdzmk1TUywUD5uBfN8RRrZw0g7VFCJ7nljataFTBwwgbDW4Q1toIHbRWVMvtOOIFoqbOVwjFLvC7EIgO3SUe8LsjBJWTVmSHwquTfV5ZXDd0awp0RsB9zWEUhlsOyavr5BJRr7rCEMlbLUUz+fUZ1vyGxnFri3aZBNHfSrY+I0i+V5yiqIpUfJDt5A3x4yFwkEi1OsRCbJQTSzkms6is8WB0I6UdjVSblu50dui0vSC9eFgW2jWLGIahseS4mZdGV6xRZdYWJ31hvXt7HJD+XyGnwk+LXK0IyWbGmlpVk1hIwGqLWV43VQOroZ6XReLEcMryuy8LAh9taUUu+bQGUm0hatYQDtQin1J0kwWUe12nGTN3sYbsQh6vS60Qztvcm/L8LlsoRIwYgvlblJ0TJIKICkJXGNqi4WkWEz10A5Z1N/V1c0z6wMWigj19nc7TPf8vJOhGtk3pQGLCKlEXZxvfWgLVdlUqTaE4bYSchsL9Z3U0OSLzYr1b3FgiyQ2F5W2TNHGnIVkNQzs2jCE+Sll/VFTU+QHiq+hPIhMznuyqSkHwsDmImKR/5VnIm0qo1OclPuaFg5szLuFBxWLJlerthDlG1t88ZUdD4UR9GZkUWYXoFqzSLVJeDvJu51XrTlG1wLVhrPFuC4angvVqrD54RnzsyUSlHbgOLjXsfZkJJsnQpL4Sr3mbPHAm00hl2SLLhQV6mCwGxaLBBIhmwTCwBFKRyiE8bNzmvWcmAsH92RsfqQhpD7PjwLNil/Iq03JYQa0A5/Gwt5boXD4ecQFRVq1CK0TJudzhjcCvgpGjgtHs5LhZ4FsFiyCmaLD1VbB6MkDwri0+2vWQuZMyltZxBRYkFgtMpMst9Git6rEQW7EWMTKDZHZhTHjj+7Rbo5w04Y4yMj2Z7TrQ1Ms7M3MDu8X5JgYjVx2RNQ7pGqIK4M0DolEJ2Lo9g4t4tlFGLP0DOzKgOOy2tYilW1rRLZtjf2Js0hmF6H13iKhy7zjZsnuSViKqMb5/Pbn3gY/ot/zAVX99I+5gFcAn/7JA/2Zd9/zipfr73rkVW8b3EHEEkBE3g58C5a59K9V9Rtvd/7ggYv6wDd/BVWV4Zxyem3ClZ01iqKlmuc4p2yuT9g7GNFMcoYbc+aTwnLqanec84WRjVmVU+0M8asNcafAbdUWkdwtyM5NCa0nL1ra1hPmma1Yl/aE0t3CnLkyQOPw45ZwlOEPMnOg9jP0dI1sF2huUai40SDTDFmrYbskDrqVG+ylt17THuXIzCQesYxIygfUYUAqb/l6LmnZu1yqOr1gxpag42YpkjFQ3FwW0koJKYJYKpryMEWtfLdVo9dLpDEnpVmN+JlL0lhZyJNCqYuyYhlxlXlRvjKH1R95y2FzatLglZbiuYKYQRhHsiOT04ZRJDu0lWVfpRd1csiyqclmw0AXsmU/E9qVSL7v0KVFQnv5H/eTa4RsJjQrkTiwfsoOzalEIJtY7oxm5iy2Q5NJ5YfmqMYckJSTVijZxKFeF5LoRR6PkiKrqV+K1AdJdgxQ7DrqdSWMA8WuSb66vCKX8pzyA5NatiOoTkWyqdDlJFlOj0UBu5y+/FCYn44U+9YmPzc5dRhqkpwdy5NjzsLBh+RoViwk4NlUiLmRguM5YnaUuyb1AZMh54cW/QuFSYF9teRgJzVOZ2MYpPEamWx5fsrstMiTRR7rTSU7EnNck4x1IWNOMsOun0KSwbrWnOpyV6hXrUzfsMjTWuRjpXbU60px0GnizN5FW5JkUN1x3lU2Z5HX5WtzLjtJcRcV7HIlO+n28TiZg1juCM3K8bzopJi+snYOti36Wu6YDLReZSFl9lWyJ+/KS8faJL3tVFWJlHUOtq/s784eX3FMoLtEltTOMDRpsWtSfllXZjiOPtbrQn5kn7UjWfRtlqS1Me8idyafJvW/RcGSQ5h1Echj6WVxYBHEbJqkoykymk11QdgsJ80IaZev6IJFk00umc4prNwuZ0mzFDUc2/FmxciY5dFZO8pd+50fWiQMZxEjsyPNmTVJUltLCYjpvo55N1cshywUQjY7bp+k/mlWUr8KxzmOSd7dzZ12nGwo0hxvjse8WbFyu7EOhZBPdCFJ7p4f3Vzs+qwjMJ1MXJ09U1wDxZHZ241PO0qEDDuvPDDZbEfMs9lxekUol6S62Bwy2atSrZocdSHHT4SkPDgeJ9emZ2Od7r+Btacjfd190tndkciO7HQ5dfasOZYoh06q3EV8sHkj4fgd72uT30afJKcpT7H73DUm8fW1kk8i802/SE0IuZGletUtZNDFoR2sVzxZFZNcU5PaIKVfpHEzKbmpJpZh94IzkpXmsaVbCL6OhNKRTaPNqy5/MLBQX9icl6SCMSlxl7fqmrjIwYu5S/VFu4+H3ghTkq6GIkXLOklokujaYkG0aN/I42cxzfdUXmtETAJkRw1h4Be5nqE0abVvoklb20j0jmza0I5z/Kwllh4/a2lHuUVTVcHL8b3iHX7WIqrE3C+iln5/TrsxMDl07ixf0okRsNybrFTs3uxyIf2kJowLFjmPQCxNFuvqYNE7b2WR5K4LKa0XpLKyu7x3YCEHliZA5mwsppVFFVVNemobMSz6VZLcF+eO5a2dfDSEY2mqd0bqnLNI5bKMtos4LhE8aVojbi7JaLvjXR84sahhRxSX8zBTGS8oP0Y0kTkRWeRCEjpW7o4lqd1nsOhvnBjZXJbYLp+3qHZZLvsifCSFKhfR048BdwKxfPMnD/R97777FS83v+ujr3rb4M6SwqKqPwj84Es9f5A3vPHs80zbgjp6dmYjRqOKw50xFy/soMD1vRUAts4dMJmVlKMG7yProxlH8xInynReMJ0XZFmAPBIqDystGkFnnuzMnFPrEzYHM65PVpg3GaFoaVvH+sqc/cMhTaGMzkxo6oyQOYqyYTax7vWDQL5WkecthzPP6PSUpvG46AhOcV5pV1uk8qzfvc/B4ZCibKmujdi8tMf+/gjxynjQMJsUxMqT3cjtBXN5TmwcOvXIKG14Mo4WNSmjyVLP1qgoG5sT9p7asPzKyxOao7S0GYW1s0e0wdG2Ho2CPj0ibJnkNg6s3LhZw15BON3gy0CoPMWzBeM37XBwNITGEYJDJh4u1Dx4fptHnzhHfjWneP0h090hLos0qxF3qkaPMkIpxKGt8IdBRFdbWhX8jZx4rkIbRywy4kpLNmpp9wqTewroKOB2PM3IolVho7XNV2pBNxo0CBxmVAOFDYtg+amjXY9IJfjzM+pZbtfMHfPVhmy1IUahulaixTHhDgIkkhZHcfHic+OGOMnt/yKSX8sXG+TE3Gzxc6G+UBNmBbFQZNzSzh1xrSXOjHhLys+NmQMV4rkK/1xJO44WOdouLdpUCPFsjbtWWB5RrrhWmJ9vIVOaIAv5dLdxkhYRP3UMrzgmWyaxdbWQTYVm1doiAebnUt7xEnn2M7O/ev0M3S2MWCey064oMVNwSu2MfIfWHKp2lKIsKQ+5WTFJbLWlxELxlZHZ+rRJr2OpKd/pmPChQjuOJiXHSGyx76jOBPI9RxBoVyMSHOWuRbGYSMpRTFGV0pyjmEE2F6YXLBLmJ45saiRpftqiAp2zkE3NaWtHVme7orYosBUZPeeoNpVQWhvMiUttHlveprRCvWaENQyOoynNuvVJyJV6zRYFYgntmk0m3bcoULNiZLtZMVJe7liUJxbH+drTu9JCQMr91UR0q3WlvGFkQQLEobHrZcfdNTA/Y+MBx+S8za0vBokMu9qI0+ysSbEkmCy83DVSWK2bPC3kifAnuXeXCxoKecFnobB+ldaikqE06Wv09lszI1jqYXqXLPJ3Q8kix1jFIlrNmkWPwNptiw4WbYp5twggizxYX1kUrKt/cMPqqVfTAtCqkbByT6nXzJ6OcLcjiyzlh+bIz84aaW0HNhaI2T25Wyj2oM2PJcrZRJneZTJty50zu6qNRMxJY7fabZAiaUMeI90kUpwfGQk2Uswi11fUCK/Jzq2f80Nd5FzGlLNb7ivzkcPPoBnaefNNi8zEJA/3iWhWzuSnlmd43L9dnm8oZJFjHk2gwXToFoS1W4yJeYp4rspiQShmkkjv8ZxtB7bAGT3oIJFOD+0w5Viqkcj5hkW0mrHdb36xmNDlWCaSe2i/bcHD8jHbocPXgXpsOZXN0Bah8qnJdWNmZQz2ItW65Yg2Y1tU7chhtWHEocvF7CTMEpW2dLhgxDQUtujREdCYQYyCDk3eu8hn7uaut/zWas0xvBFQD9W6Q6KjOIomVU75y2AE2TWKYvLb+bpndL2lWbHcSnGJmAqEgT2vQymUu4F25NMilJHZLr/aBSU/tMgfQChsdS2bWX5oM3IUByFdmy3Is6sVPw/4KtKsWZQwmwRLT9mtqE6VxMKRH7Y0q9ki0qiZQ8Vks/VGiauj5aQmGa6ruvw/I3cx96m+SLOaGzFOG/1EL2StWm5p6dOCol8sKmQTI7JxmOGnLSH3tgePswhg9M7+9kJ2VBOHKQczWK5pl+8pPiaCm6UcZJMS+3lLLAvLw3QQ1oeW9xiUsDbATyp7twRFQkCHxTHhk8xIIFhEMJFHdc4ijd5b5LHIj2WqIRzncYa4kMcuy3A1N2lxtzkRnQq1u1YVohihvRVRFUFjRJzlnWrdIF3EsiOZIYDzlleZ8jDtuC4IpGTZcYRSErG9iVxKkshqCEiXY3oinNX9cRDLHr/2cC9+yp2LqMLjB1v8wsOXeXD1Olef2+DPve49XLp4g3Fe89xTp/i0S8+wvjrjcDIgBsc9W7v8lnPP87svfJDpRzZsR8+rQ+ppzsZ4xtqpCfmw4U9+2nuJRzm//9M/wGBYM6kKogp7v3yKo2tjVoYVze6AcVGzsTblwr3blHnL5z3wEeRayWx7xOkL+1x40xUQpW08R8+ska9XnF074sFz2wyGNZ/9usc4t3XAb/ukR/l9b3k/h5MBn3X/48QoDM5N+IzzT3Hm1CGx9sQojFfn9vAaKG/5vA+CKKfPHHDv664ieznjsxPytYo3v/ExVn6pZPTQHuvvL9nYnAAg6zXtqYby51bIRi2SKflaxWRacnlrlywLXD67YxGsUcsbHnqGlbUZZy7uEWsPUcifL9BrA1wWed1bn2D3+TV+5+s+hNaeUz+dk5+dEYMwzBrcQcaFn2qJ0XHv5eusvn/I6O4jRuM5btziamF8doKWwaRvWSS7njN44IDVtZmRua0amXraaYastLbR0pkKokUV83smPPjmp9g8d8DgSoZs1WjjyEdN2jwJ8kG6LgCrjUUyPzgmHzas/UqOq4Xz9+zgfOSz7n/coqyDAFG4cPkGUgbwSVY2bClPzyivZqytzbhw77ZNyMbISn4oRpTP1eQHjmYjsvGBkvquhmJf0NZx9mcBAT9zxEHk0qc/y+iZDFcLxZ6QPVeSHwlaRj7/9R/Cn59x+gOOOFTctYKw0XLXTyphLaAX5/i1huHmDL9q+SNuLgwvHiFbFQwCKBw90OK2atz5OWE1svqEEZWw0XL250y2OHjeclCH1xxbD+7QjiPtaoTtkmziGD0ryKUpg21oT6W6KkFHgThUVh8zsqcjy4Ud3n8AmPxvcEPTbotCs2ZOzen3ZYSN1ghoC81m4KFPf5KwEhk/Y6v3xYGRWy2UeiPiZo7RG3epN9OqcwaHD7QMdiwqql5ptsxBq883ZFOh2E+7256pkPWa8dNCfgDdLo7FXorADpXBDWXlaYuQn/4lJZaR6oE52WHaGbK2vOZuI6rqTGB4XRleE7Y+aPWrN+LtGiN+03taQqFUpwKuFtqtFsSIzeqjns2Hsdy/2jbJ0rTBiq+E6SfPmN0VKXct/FBt2ph0u9rOLgZmF1tGzynNRmByb6B93TSpHGDtiUizpuSHtlFUvZ42FWuNODUbMeUQGvkmQvGmPZpVZX7WosbVphGawbaRplAI89O6iJaFwhYTzvx8a6T6SAlDjsdjxXK5pbX6Yw5rv/0qYaQcvb6hWVPqdcXP4fA+2+irHSl85j7jZ5W7frpaEJVsZuQ7/+wdkwQmtEMgwuCGUuzB7Jwe554dKvkRzC62tunPUKg2heZNEyNvq9b+0fUWiSb/rDaNSLXjLlqqrD3ZLHZV7TaM6iKQ+QGL3WnDAGZnbCEom1i0NmbC6jNhYXOzBnXaGGx2xhzddmh9Odixvm1XMOe9VrKJRY9da1FEzRKhHFmUrv3Mw7SoYxGs6XlhvmUEae3RCc0YqlMwuh6Yn5ZFn3Wqi8N7rM/mp9ICQDQbbaxNllgcKu3Y8n6rTWG4o+QTpd6AZmR1o1CvC6PtaJt+JRWBa1PUNCkZ6jUjx0XaiKc8jJarmTYX80ki2skuZ2fEiFOEvU+yKOjwRmC+ZW5MteYWixE7b5st6sinkejh6C5PvSrks2gqnDHME4kMJQx34iLa2oyF6V1GXLO5svJsQ/Q294/uduRHLZPznuIg0IytjLYU6lXr+8mFTv9sJHaw05o0dN2c6OF2w3zTUey31Ct2rQSYb3pmW55sZhHD/KBlesbhZ3ERZZ2c8+x8Yo6rlWK/pdoS6lXPfMOnPGPh8JKn2vDMNy0C24yEYq9eRNSH1xuaoWN62jPYsef4/FRukcik9Og2NJqeyWiHjvLajGYtY3rGoqLNSMgntsdBvZFTrXvqVUezllFtevxhRTO2fM96PSeUjvmmT7sIO+an8zRG3qKh84BrokXShz7tWK2EUYaKRUzr9Rxf2cZArom0A0+5PaMdZ0llYRHObNLYBmmrmV3vLP83ZiYl7fIxCUp59ShtgJPIpneLjYvqjcwIb+Zwh7a5Ucw9YWDErl3J0cwRBhkSI25aH+/A3EbCyJRtWloOK41tJKTOIVVrn6+U4G3RIg5zI5KlR50jrg2Jq4MF4dM8QwclcVDc5AxHpD0mbBLSDrPdJj0xEtbHaFnYhjsxouPhC8voyO7Nn4kgmUdXx+jKKEUhdZFTqfO5kd6UNyqjYapX0bq26GKKjMpynmWKzGrT2oY+Ue3vYHmfi9/dT/d/t6nQaxpK0PiK/9wpuKOksC8Xd71hU//0d3weXiIfPjrHWzYe47HZGS6Wezw2O82pfMLZ4oCojndf/STevPUUj07OcLqccNAMFl9DctSU/NZTT7DfDpmFnMNmwLQtuDDaZ68ecnW2SulbDqoB47zm3OiAnWrMm9af5SNHZ7kyWeOe1V0A5iHjnvEuk7bkRjUic5HdasRhVXLP2i7TtuDxG1ucXTvi1GDC85M1Htq4zgdvnGe1rDiYD3hgc5sb8zH3r27zc9cuUWQthQ/sTEZsjadkLnJYlZwfH/Lk3iZb4ym5C9yYjokKn3b2WZ6ebLBWzFnNKt5/5RJelMPJgM21KZkP7ByMGQ8rZlXBxsqUSVUwnQwI04wLl25wajjlo9unaOqMtspY3bDr5nXO3Rv7PPr8GbY2Jlxc3efD184yPyxZ3ZrYrryihOioq4yH7rrGXcMDfuLxBwDI84AIrAwqtoZTogo7sxGFD0zrfJFTOBzWTKYlg0Fj+XjPbODXGsbjOZc3d/mlR+7m9PkDiqxlVueoClVjkmgR5WhvyNrmdBGFzbLAqGwWX/0RVZhOzYNpJzmrZ46YTUt4eki72dJ9JcfmmUPKvOXKc5v4QWAwrJkelQzHFdPrY4rNOW3tyQr7api2yVhfm7Ba1jz59GlOnzuwHNHrK/hRi88Ca+M50yonBEe1P2C4OWNtNGdnf0y7MyA7NaPZHTA8M6Wa58iVknimZmNzQhO8fc1K2XCwOwLg3ru3eeKxs+RrNc1hgQyCfV1I7XArDXK1JGy0lGsVqkK9XyKDwGBUM9segVc2zh5yOLGvwWkmOa4MxMMct9bYV520DoKQrZk83OeBZm8ARWTrzAG7N1bRIJSrFdXegHzVvqomtuaoZGWLPjFGc7XIcvo6k8HmnPDoCs2Zxr4aZ9wyGNZUT6wS1luTrDuM6Hul2Jyb/ZVFVWUUcDdywigaga68ScG7r4zIU+5l5SgvTGgfXzGn6LTlQgJItEWEbCcnFopmyuD8hNm+MQC/l1nO4NjKQhTZrBeRaj9zi7zLOIpoZptuhQ3LVdRxIBu2hOsDdGgLFH43g7sqso8OqC42Nt8qb3mTkwypzIHOjxzz861F4UcBguAPMotGpl2n8wOLPNVnW8rnM5o1Tc6MWhu9SeCBF+zI3O1YnU2EZt3yCqU1+fboqYzpPS3Z3vHGIBJtZ2lXOeLQcie7r+8IA5NQA2RHQr0Z087LLkWfbZfqWIA0LHZztugyVGdtA6x6M8mmx9HahbWzi0KXNyx/sotG+9SudqSL/MjR887y8mqrx8+E+dlAue3TLpTHUtdiT5JzawS6XUnR9Nyk2baxWeo7r0bQ9x2htJzImL6GQ53l0lWbJtfPj1Ie4SWLPrcj6+tYGLkeXRGmFyyqbTllxzmG2eRYtmr1WrS6y1v1lSwkzflhiqgleV4YsFjwiOnrXDQj7dKdIst5knOnXaTVs9hYrNthNwzs/CZFdLMjs6nbyKjctUULFbs2nxhRs93QobyRIv5Du5Ykx+/y6bryY9rl18/snFBY1DiUsti8ydVGZMs9I5qdpHr561ZcrYsUimbFNmgKJQup72In55kuIueuMvIqqb3FoTI7bRs0udpIKfz/7L3Jr2xbnh70rW430Z7+3O41WVn5ylmNH1W2QWLGhDFjBBNP8Mj/ARIzxIABExAj/ggkqhBC2ELgAW6oTpXO7uV7973bnD5ONLtZHYNvrbXPTTurrKq0sl7hkK7uvedE7Nh7x46I37e+LjGEI0rSbL0JOFxKzN6HxCzG4u1EBPTAcKVgyLgGzcWQXIOTJfalSkdlmTAl3llur8YssQ6wcwYkVVvOa95MNT25kkan5+JnWromtyElB8tUWRKfSIgBxJgCgyL6E1kWQPRAQFztY5HTRknmWPUBw5EqTLKdke1rbx36I1WOZVxI6CGifvAYjhTqe49QE7BRTRAwriTaK4txrT9IDVZ9gEvssnCA7nyR+YpIz6NdKPpGI0qyLy0pTOf1VWLrkjxadR5unkODREkmfirdFGk7MrGdwpLR8y2BkhooC5aDTzJhX8KEcnqrHBxTZZH3lfLikFJm5eiLPJmhQild2iY5rklsawJ6sdIlwVb2yZcZQknvjjkhV08JwTHJicUwkiEFKMHVZEDhfGEGs3Q8J9OWW2YynefjMnDNybRP2M7Y9wVMIqS03CehQAVnhACh1Ify1yKtFROw/XNYyxgjYk6m/Uvc/npIYev4f//By1/6dpsXX/zKjw34lgPLo791EX/3v//PcdrscVHv8NXhGL+xfI9//PbXcdIeEKPAj765wOnJDt87vsYfvnuB75zeoZIOM23xsn3A73/5fXx6fI+f3JziYrVD7zT+3vlX+J//n9+FWlmcHO1QpQ7Hk2aPrW3w5mGFF0eP+OZ+jZPFAbV2+PLqBALA89MNXn91hsuX99h2NY7mHXyQWNYDvrw+hhs1/tZH7/BnP32Bdt1DqYDd+wVm53sc7mYQtUfVWPz6xQ3+9Acf4cWnN+itxrIecX9oMatH3G9nGG5bzC72OJp3DAL6+hk+//hrfHF/iu2uBUREvGpgXuzR1hZSBvzW2Tv8ky9+DVIF/Nbzt3i7X+EwVOi6CkJGLGY9TmYdfvLNOUztsF50GKzGb5xd4c+uLwEAfVfB7QzmZwfs7yl/vfz4DqNT8EGyI7RiSM+n6zv8sy8+xvxftDD/0Q36kVKNoecHnR8JVhanB+xu5oCM+OzTd/jhj59DLS18p6FbB6kCjpcHvP/qBEfPH/HwzQqL5zuGD71u4ZYecmUhZKSVKQh8dHGPr2+OEL3A+ekW77864YC9p1QmHltgY/Dx99/hq7cniKOCelQwHzI5yCIAACAASURBVO9RGYftpkXVWgyPNRAEZqcHhCAxHAziQOb22Se3uL5bFSmyWnMSDDc1v4hPRsjrCn4eIBeU5prGwb6bEfC0Hqa18G9miCcW0Qkgha1EE4EqQFbJw3tbF0lrqCNi4yH2lBIJD4SLEXGvMb/cY+gNQhAIOwM5tzg53uPm3QqiS5KTGbfZflGh/6wHItD8sEF/wcoYdzEWQAcA0AFwEtVqgP9qDrzogTcN8LKDP2hUbw3sOiA2AfKg6LXtZUqmDYh1gLlm2m6sYpKZC8hHBrfYMwv1QOZSbTTUQWC8TODeSai9hG/p381VQLENgBcwDwr2iCm/vo6o7yW674zswbytpx691qP5xqB/RRBXvTWJ8YkISwdzbWAvCW7VRqG+leheeTRvFLpP+HO9JZsrO4nFVxL9KcNYwiygvlbon1vIvaKvVRGoMLkz+eUSSFEHgfEkFGZAWEoFhaPnt3vlCxD0xw716wp2TRluUBxQM1ubfc8AsP6XEo/fC9A7Sk3lmCSGSa5oNgRKbhEQdcTqX2qGhZxTbhwqDlWzNxL7TzyaK5UAEQqDofeC4OpRFN+qdASNOU3YzQkAs4d2PAqYvVGwC7LAaiCY8ksy5L6NZbv1LfcRUZSqIzWmhOA506XNTiJKArXsN9adKJ5cX1NZ4GZ8rqgo3/U1QdC4iph/w/Nr56Cnekf2ePF1xOGSwLA/J/DjMZLhlpaptfM34oMhHqA8ub0ScA3g03mrNgJPQ210xzTY7SeTFFoOKPuqDzzO5ZdkHPNz1PexABXXEBSoMabk1gkMVg8oXm/VM0DG7GMJnim9eUneigxu5CR3zX2aIdUziUBAR2BB9vXwjDVb2feMkCpzkkf08JyJzbP3HrsXCWxY1v2ofgryUUPye7qIxVuP7kQlCSr3nQsScZLsSlFYz/YmJLZRlN+bPetYuvPk+9vHcry5KioH+ZR+zlyj4yfvqwgEXNU2YDiSBejmPtPZtcfuuSLYrUR5bbM82uxjqZ9RA/fftkzFpQyVibXDKn0fZTCTPhPMIZKBTV7Z+ZWDr2SRAefamlzrQwDL10gPfIwe+H52KWE4BxS5WaoY0TzvOY1W9wE5sTjKpOAwIl2zMclY03UwxlK9kj2e3ZlCveGbIVfV2JWCPgTIMaA7N8XPqveeFScPFvuXNep7B99KqJ5AzLeKnZTJbxsSWMz1KqGSkGNIlTW++DGjBKqHAeMRF41DJfl7Adi5Rn0/0gfqI3yjIC19rGbrSpVIrjcBQCZ1CJAj2dSQJMJTPQg9maXyZfRwi4rpt7mfMQFA2ZNpizVZTrkfEJqKnsx6Yjazl5N1KpTIh0pD9iOiUpCHHmE1g+hGMoXOTz7MpiLgy2BNKUptQyBb6T1EPzIxNkagH1hDkgN5st8zh/0AlL5aC1ElltTaSQorJDAMEPMZYtfx/wAQyWrGvB9SIo4jGcsnoLFsJ+3rv86D+fQWc2LtXwG3/HUAlr/3eR3/rz948Uvf7uzFz37lxwZ8y4Fl/eqj+NF/+1/APlbQ9xpqYCy/XQLDqcfJH0rc/3YEzgbM/qhFd05pWg4vEYHSt6DTKvYsYPETjbM/tnj7H2oMFx6n/1TBLij7UgOHlvHEo7nSqFJ6XR6gRPL4jMcciMyWXqT9C4HmFuguYpGS2TkmucmKnZAi+bTqOw4z1YbDm2sojeou05CSlADtDf1Aw3HE/Btg/wqYfw0cnvO5d991aN5omB3v7xtg+WXA3e8INFcp3rxJkvj0hVnfA7uPI3wbsfyphNlzqMi+JcqcIhavBTbf95j/TOHwKmD1Q4n+nF92+sDV7/5sYiL0gQPI4RkT7x4+A6V9+XWoufquxojdx8DsLWsMcsCG7iIefw04+VNg95HA7G3E7iOB1U8jdh+LEpSh95TCuZlIlQ4eh3MFtwDMY5JWJanVuI5Y/4jnwM4p8xqXrA7ozjkA9RdkIObfcJvdZcTpH0U8fspqiP6Mq+P9GQNkqscpdfHoX7IzMA9+1YahJbuPeQ7GVZI/nXMglh5ornm9zN7xuMwemL2N2H4q0NwwiZC9f3wtZlcB248l9J4DQXPPL/ztJwKrLwIePhOQVmD5ZcTt71Bmafap3mE29cSZLuJwQcYqVxxID6y+dLj+XCOXwLfX9KzVtxH1NuLxE4nuMmD5U4nmIeDutwTO/0XA1d+RkCOfq7mOSWbIwTFKoL0POJxJHJ4JnPwgYPuKlQwu1Vec/5HFu3/fYP2TVLcwxMLg9GcC87eUwvVnAssvuQK9eyVw9CPPASslPdqZQH/K16i7YGCL2UXc/bZA+15g8Y3H4Zyr+e0tQzJ8RVbi5m8rSAusfxJQbzxufttg/bNpUB6XwPqLAFdTFog49TqaLRmTeRqsu0v673IHag4KOv0Th5u/TQZy+TqgP5KwS2D9U49cZD4uJYZjgXHN9377PjIsZc1ht72hv8rOJZp7SvP648yyCczfeXhDmZ6vBVZfUcYnUo9nVMDsXcTsyuFwoeEbDu03n0u8+j8G3PxOw55Kz6oK1Uesvhyx/bhKfsp8XQusfxQ4DLessBjWKZBpJrD+0pUexMO5wvy9Q3eiC/Cdv7XYfmxw/MMe15+3WH/h4GuB/oh9rnYusPyGrIjueb0e/diiO9fYfixw/v86HC4U1j8d0J8ZmK3H/rlh72Nim0QA6q3H7pnC/Crg/jOFl/9oh4fvzSEd97e5p49v+bXF7fcr6I6gZ0j9lrn30s7Se33Nzko1Tp2LzZ2DcBH75wbdOc9Ze8uBbVwIzN85dGcas/cWm18zOPrRiM2vVVh+7VDf9Lj7rQXmVw7jQiXwRwYoy27HFQfg0z/pIWKEa1gtwcqNiNmbHve/0WL5tUV/olE/emxfalS7iKM/3aB/vsDhXKO9ddi+0qgfp7qSKFDYpnEusHptoXcW3bOG19FK4PSP93Azg/7MkJm+d/CNxLBWECFi/saiuzBwtcDs2qG+G9A9a1DfWyAAD7/eYH7lsPmOgeoijn464HBRIUpg+WUHtzDQO1ZmHC6rIiWtHixljSuN7kRj/ZND6Vys3+0wXMwBKVKQjGZ/pCPTFLSAsvSUd5cVAds7C18z/VP1DuNxhSgFZl8+4ubvHqN+ZACOrwQWb0YcLiusfrKHbzRUZ7H53gLtrYN5HDlIGwU31xjWCu21pYe0VahvekQtMR5XaN53GE4bDEcai697/v76gMPHS7Rf72GPG0oxBdCfaKx/sIU7qpnCuhkAH+GOaoxrjfZdj/GohtkyOGdcabRXZHPs0qC+PgBSYvudOeZfd7CrCtVdj+G0QXPTAyFgOJ+h+XqL/tWyBB7pnoxfdT/ALRPj5SOqt4+AkhieLRGMQH03wC4rSBtgbnawZ4sEHC3sqoJ56MmkLyqYqy1iQ0AzPFug+WaLwycrzH50i+HjY1Tv9xgv51C9h77ZYXyxgt5ZyHsOMO5yDbXtMZ7PUb/dIsxriNEhtAbqsYdIgMsvagLBjnJY4QLgPIHXrIHoBkpDT5esI1nWiCmMyLzZMGin0pCbPSs/Rsuqj8c9Jauzhs+1nkPs+1TrERI7WBPoGU2AFgJENyCuFwSXuwPCYgZ5/0gWMET+nUCh2B0IsCoDdD1ijAR01rKjskvMoBCAVojbHUTTIHYdxHKBuO+A4CEWc16Puz3EasH7Pw3tSV2Y8dBNYC55OGOMTHFtG+7fMExAVAjkWpDY9RBtA/hABlEIspHOTSAxyWOjcxB1nbouP6wdyeBTCDF1YP55txi+9eE9v/d5Hf/PP3j2S9/u4sVXv/JjA77lwHLx2bN4/l/9Q6yWHZbNgO8fv8Pbbo3n7Qb//Ooj/N7Fa3x//hb/6OY38Ic/+JiR+r3BYjag0h63DwtUtU21EWTnvnN8i83YIkSB11cn+L1PvsI//+ojSgQ3NeqTDsNdi/qkwyen97jez4s8MQYBpQPOVzt01qDWDiftAT94ewHvFMKgcHy+xeanxxDnAy5PN3j77hhCB4RRwcxGeKfItv3xM/zm3/0Zfnx9hm5bo1mMGDqD6Chx1KsRq+UBd+/WgCd79u6LU3z03Wu8/uIc7dkB3X3L5FsrgCAYyvJsILP3dQt3QibGrAfYffry6BVi42FmFiFIsoqdQn3WwQ5cPg97g+qWbMbiOxvYf3qM/rmH7ChPi1XgduoAKFZv+Lct4okFdhpn37nD9ZfH9EseNORBQr88wPYaeKjIqEWQvfp4j3FXQfSUOMaTEXFUPCYVcf7qATc/O4GwCSjPA37js2/wwz95RcZtaRE7zcqE4wF+U8Ec97C7CuaGPZ/SCthjD9Qe8sEgzDzMrWaAy4kFnISwBA7tO4XDKwdUAc3rCsOZR5x5iE4x/TUC8jt7jPcNZCdRf7TD+OUCoYkQqxFhZ8jEBQGYAPWgU1AIWUrhRfKgRGBtgUcN4VKdwpLnRe9Yh9G8Mew0BaDvNfwysMO0InM3nHpUdwr1HbD9noe5l7Br9lnaVUD97AD/4wU9lCsL+b6GP6UvVm/JIMWZh7nWqO+5gGGPPVnCY+5L81ZD90B3GRCqiOZKYThNab06FiYkNJRetm8U7JILF3IQU/dmk4NNgFAzLRhikgOKIOCamMC3wPa7HtV9Dqbg4kS1ERhOOQjqA2WNekepJ2sKyFwFQ5nkuAb6S4fFFxrjiqwUg1AA970DFv9khlAB4wqFgezPA2bvCKabK0l5YACCTqxYk/YnAkNKBJYjgMT2Zcnh8quAm88FzE4URjB32y6+JOMDJHnlEashxjU+SJ2lny6dHwe4ZYTZTMwSkOR3cpI4xiQ3NDvg8fsOsy81E2YV0D1Lss2Wi1oAF8mqDX1uecHG15R8mi1ZqXHN13j5FRc+WEPB87J4HTEciwKo9YHyRwBlkazaRtz/FgOSqg0ZwZM/TecgoHQ8ZlCXqzbkMEkh9SHCt6L0XkbFxZMMJsc1ygJb9kYiAMuvp4UZIEk/O+6jeeQ226uAPgFqu5gCXUTgcdJPymqI4TilyNrEUi0ETn5AID+uUkWCR2ERc/JuZsTsnIwcBKbO27QAYLYR+jDJEnNAUZRky+gbJDAYjlOSb5Il2gUXVaIAbJJ4NrdMzc3pmbm6o97Ess3DBSsk3Gyqr8gLgSIAzR2TUgE+d72JhQ3TPRfqpAX2LwTmb2Kp9sjBNuZAr/Xjpwr1XerdXPFcZGau2gXsXijU91z4qR/ZOWkOAduXGuYQC/MpIplTb1AWZlwzpeNKF9EfS7S3gf8+kgSPSpSUX+l5nubvLIZjjaAFTArRqbYe/bFCfyIxf+tR3zvcf1ZD94mh3ofCHo4LifrRw9cSLqe6JpCqxojqMTAERwnYVmD23qI/M5A2otp6qI6P9S0XjRhkxARcZRm2058aVI8ew1qhuXcISqT9TMFBRsDsPMyjRX9RQ/XhScJ2Dkzj8UYtCgsoPEGEm0k0VwOikXAzxYTmSqB6JGhgZ2fAcKxhdqEkNgPsR603rOUYjgxUHwqDKF2Aa9mrGZWA6nx5/lCxjkN1ZCJdq2EexxRsxRRZ6QLsKs0sIRbvreod73OwTGEF4FtWeNTvD/CLiqE2WkA9jvCrCmo3Jhkq4I5byMEln2SAsGQPQ63hW00f6OghRvoGcwWI2g0INVfn5WApV81hPbXhe8x7uHULc7NjwI9jwI9I8ld5GCcAqFXp2ZzSbQNEPxZwHGsDcegZ1JP7LZNXkSm0STKbpb7ZVzmM9GP6QAB86PhxnABlxgQip9MCQFMT1OaP7kiPZQF4zgFSTTUj+ZZltj6l44ZQvJU/L3f9+ef/hbcQEe1f3mf574Dlv/3btxpYXvzmafyP/6f/BAvNi2ype2xdg6Xu8cX+FGvT4223wvP2Efdji+1Iz1StHbZjjeP6gDe7NU7aA2Z6xLv9CmftHp8ffY0/fXyOLzcneL58xHascbuf4XR+gBQRd/sZls2AbV/jbLEvnY13+xm0Cjid7bEbayyqAauqx+vtEWrlsR8rnM722I41Gu3gg8Sm4z5JGdAah03XwCiPh4c5vvvyGi5I3O5nMMpDyYjHfYOjRVf8ie+37HlczXrshwonsw7f3Bxhueiw2zdYzHv4IKFkQD8anCwO2PY1nJfQKiBEgRgF+q6CNg5tbbHvKhwtCbTbysIHiRAB6xUEgLayGKzGdt/g/HiLm/slewH3FdoFJ9qYt3vL+paqJkIYeoOPL+/w1bsTxCiwWHXoDjW08VAqIEagqSxGp9EdaqxXewzWwDmJsTM4Ot5jt2+wXHTYbGc4P95i19c47DmtKu1hjKc3dFQ4Pd1hs2vgBo3ZckDfVZAylP0zlYO1PK6mHTGOGkoFeC8Rg4Ab0oJB7Wl5cPQGAmDqbBClciZYCSEj1kcH7PZN8lwqxEFBNg4i1dv4TQVzNDBBV0aEUSF2iZlYWEQnIU2A32sGBrUObmegFxbeSUpxRaS/TUb6KQGIUQILC6Eiwl5jdnbA4XoO1PS1Ricoca0CZJP2eVRcXFgOsA8N/Zle0JtXBUgTEO+YxBtVBJYOsVeASVJOJ1FK5fL3ROuBLvnvRoG48MAosbjcYfd+wcWOXPXTc39ErxB1/gIEFwVi+pO/31IvozpIuFML0SvIXsAfu5Lsi6Xj/g8S0Lx/7nuLOjIxtw0QViA0AaL1EHcGLATnOY2GCyJqoyGsgFtxwBFWsOanU5DJ5xYM61ZiktpFE9MihwAkuxbhBWRPBjf7GgE+NswC6ivFJNx1gLmTECGl9QoGBbklwbwIKH65XB9Sqm8iQ5R8ywFXd6L430T+iE8yu6Aj1Ej1hXmUBdQXr1eWbR6Y5ltt+DfrdgT8LCI0EWqbrru06QzssyexPGd6DXN1BAEmjVu+mthbhlkJDGce7RsFt4jlWoiCktgoY5Lt4oPuSGmRElBZ2yFHpPM9SVWzbDxKFKmwGgjczS6FEj1J+4WcAHwO3HnanVjqY5KnUThMNUQRxR9och/j7Mn9s+Q0VbcQyCWP4Hyq48neVt+mFNl0PmSq6/BtPjcJEBsUr2JOV2XdChc+GLzEn+l+eo18w+371I1pdijXVU4Uzn5Ak2picg1PqQFK6b0Z5OX9z7JaNUzHm32BGYBnySgTUqek4yzfzP2IWYaZAXpOjlUjk32zHDeqD2We2YcHEIzntFnXTj7KD2qZjECTFAx5EcHOCGrtnCFCylJ2a2dTXVHuR8wsfknnVdMx+4bnQo2pfiS9J8xhktpm6XDQoiSpFrlrqvLRfSzHz1AeFJ+i8NNroMaYvJAEkQT9oUhb+Tz0m1LiGcs1WryIUpTEX2lT+nVkL6XuyQZH8fT58wJYLEC6VPF4QPUedqXJJKf7iydS4Czvza8lPwvJ+EsbWJ+SGbQcbCNZ0cJkWfolAcphERNrXdHPSCaTv5c2JKmvnFhtgL8PkWxmIPAGANl7QIoihxUhlm0WEIh0PCEUv6Uc6b2kxDX1WErJahNgChRKNSDZewkAcKFUm/C7iPJXymDF5BN9Os8ryfOTK0+Awo4WsAlMjOXPV31IQfCZa06ehAMhJ9bm/sryc8/tZHCZgeVTyevTbUg5yWX/ols5xm8/Y/m7n1fxH//+Lx9Yrl++/pUfG/AtB5aLz57F/+B//E/x5mGFYTAIo0I1GzHctfSFBQHZOoQ0qIdOM0yjCtNgKyNEpzgwHhT0nkyJPaKXi8Mph+bQhJTiGUvwR6yZUhkWHrACwkoydRHsZUSaueuAaCLMRrHIu/Gorhnb7eaBw0KfvsTi5GWi74pMUw6qCAowyUsUdOpcXPC+woPpo28N7AkZrDwQZCZH9fT0lIkw+VNyz6Wf8Tij4vCl94mFmMXSewnNwVL3rLow96qwS8A08NV3ArvfHFB9U5XnUj0HUL1n2qeb0xM1HoXyXCoVpecVcuGn/krfcN/lkEIxQqqISAOQ8EghLCh1EL7hQApMLFiWqOaB0C5iWvVMIComIBCQiq6TjFaQ/dKHLDdEGXry6yfstC95sC3dbbNpYM2DdqlMSPvmZhHzN1y9z7LocmxmGk7Nnv/OfX2hSttIA2F+3qiA9or+saevkdmn6zN1Q4YaqDYoPZYcwtPgu0c5frNLMuqAUnieAy4y65drNpDPi+PP1cCficSgyST3ZtplCglJ13Kop2NRY2Lm5um4+klaqtO/S78igFyUDvBxIZWm5+2FmvfNX95ulutDULoIc7l4CQop3ZxpHyPZMm6Tw2aWXZo9GRuzI2OUuwDzwPV0eMsBIvn1z0Nn7pIj6BFTJ2L+jpUow2IGkXLkPrmWssig6K8LhixeGcrnAip5/qSbzpV0oHwteddyR6u0sTA/SCCXyY1pwLexDNB8g/E1MQe+vtzXBAhTyEyuECkhOGq6bvJniGtFKZjP58bVojB35pB8hzYNu3X2vJG9yoyVrzObJQrwy/tfnjsN8zJVf4gQi98qs3jZU5eZZtZ5kCHKwIcMSupN1Bm4iMKuSBdLYE9mkPTAfaP/j/ugRtoUOPDG4rHk5waH+Qx2CmBNUt0MxjKoysEo5bMvA1sAZh9SqAqS5xGp35DPJdMclwGL6UJhzrwRYD1DfMJ2JWYugUXdheQ/nHon83BbbQPGlSrXcv5cjALls7feeNg5ZbZPPXd2wQOQGQw9IVn4mmVghMTMiXLMBDkJEMjMCk1AJioymGpIQCFGVmk0qjB1dslaBx5nuqZtYB1GAkD5GpK5a9ETsJCJnypLcsqpGkM5h/naY70FQ3Lyvj99/wMJTA9kEoPhHCNCRK64eerhFO7njjsS2MQn+5vlxDmBNRgJ6cO08AdQ3jn6qdYCgNoN7IuMgOx54YSWyay5K1PEXK2jpscnjyPBo2d9R6r0QIjJ08gXT6Tfh0VFQJaOmc9dQ1pfgGdmHTODWBizGKefhzABufDkGANf96gl8KQT9QOQ11s+V2YZbQJXSpJRrCtuU6sPAm8+6K98yizmfdPs4ywA+inDl/snc4jO021l32WuB3FJkirE9LskUYWURRpbmMqndSIAASQwAbswHR98ALT+AFDG0U77JyW3k/Y9+gChpjdpkd3+a/79592+7eE9f9OB5V+rHsu/zO3tZoVZbbGa9bh9WCBGgfaMwT2ZAesPFZT2iHWqiqgdRFrGd04itAr+0QArB9tKQAcIFRGjJoMUBVkaFeFlAjl1gGgdw2IkWR8RBeLCAUGwHuPMQjUO/qAhdAQ6BXvioOYOfmNgj5kgKQYJrCy8pmQzNB5Ba0BGhIVHaBSwcLAHVT7Q/SoBwyAQGnYVlnLzQWE891A7CT/3DJepA4QTGNahfLnACchBIhomYUJFhBkgekk2ZcHH2ksPsdOIFQNUVCcQcmT+gsDanjqoR6LX0AYGzWw0huOI+qsa40lifQaB8cxDP5KRsGsuAPia+zBc8HwEzclChNTzFxOQnEeoQwoaEYBbeai9YhIm0sA8i4CM0DsJt2AXpU7yT9UTuDKxUqC/CJBWkFhREaEmmxFTLyNi6mCrI/NsxgRAIwM6VJ+SGsdUbK0B88gvHIa18HrJx2d2sqyKF/YoeXelE7DrWEDY/hVZLQAlCTMvEMT0zt2/iJi9TcEliWHKTILwHCRtulbyoOna9KEtgCGlMta3Am7BbY/r9OYK9B6rnkN7d8lBVx0ojcshLmZHCaFrmZTp5iigIgNMfeB95IjSgal69vsdnscCwHOBuFvm4BVMATy55sGze5GeK2B4wVoH1XMgPTxLCaUigd0EXlVPHy6Q2CFFH7De8zz55CGm1FFAdQxAGY5FkXH6WT63BLN2AQxH9JKOS6Dacv/HNYEqh1hRAIi0aaCXAnbO56xvE9tmUNgR34qyWm92BCAldMSgBLREkcBvINjvT7mfXE3nvmVgqg+YAGjI4ELAJ6CbWahqEzEe07c8HHHxIVQ8jgKmDChFbRNQppoKUQmM8wnAS5/lkATX0qaKCw+4Nc9hZqSyrNi19JTnnkq9j+X199VUd8IgEgHfsE/P1wBDf+jJHldJGpuYx2AA76fjz6E642rqz8wsKIapBxHIixexSK8zU5fBuJ3JsjiTgWzQMklUOYRyUYVAx84FwshjrR4jA2IOMSWPpmstJX9OC1apt1FRPgsQZO4v+Zki8wKITkxTSkIl8BDT9hL4FCE+AW/039rZBNBFYDqpbQVsWgxTaeGjO1YJjMe0CMBrI+/DuJBc1EhS3f5YFXCkxg+ZtacLBlGyw1F3ObmU568/1mQYa1lCaaRlqA4A+CgKE2f2Af0xN2oOMQVoCbhGJvmnQL1hZ2Nm2cYFAV619QhmSvvNgDwza6GScDN6Mt1ClZ/bBT3F0ECUEiKm1NLkYae3n/8PmRkV4He2J8BEWojwlYTuUqXGGODmCqoPZMlSDUbUrCJxcw049lPK1OXoK1kWRoIWUL1P73f6TaMWVLoIINSSYLmWUBnIpkUyNzdk+0JEZrxcq7mYs3fl/U52TcBVBMWYV1PITTU9p2s1hAskwBwZQtU72IWBPrgSnIMQ4GYGKoOMiqBOps9lERhmI4xCMAoqA1KA4TYJaJYFoVrz3NWyLC5n4MOFkOTxcwGh1ul9QzAprC+9lbGhNBUhIEoFuICY5K9icIAkMA3zushaY+6MzKmq2XuZQZ9W9HAqhSjI4GVZK/fdFCCYE5WfhuqQ9UtAtQDQOAFJkd7gMT7prwwTWAQmUBkiz1MGdSnlVeR+y3yOQ2JJRULeOQU2XcvFa/mkExPZe/l0++XpM2BNyb4/z5z+/O2vUa3GX+UW8Bcc57f49q0GljEK7N/PsRfAycsHKB2SjFKhu2+h5xZCBoRBERyOEu1xB+cUnKXEERFQJsAcDbCbGicvH+C8wtlij59+cYnFskfXVfAiIgaBaFPNQevo9RMR9VGPtrbYPMygTYDbG8SZRzUfIUSEh4bQAXJXQX+yw3DXQq0tghfAKOnRi2Ay7NUcQhG4xCXrFsTRiNAroAmlPgACbulBFAAAIABJREFUrHm4WyAqxZ7F+wridEAIGs1Jj7GbAxUTICEjIiSa4x79XcNZd+YR50zoFAdNQNl6QAGhCpCtg1p52F0FfdHBPtT0zSmBULGYvvpkB/9nS/hLi7hnlHWcO8iNYRrjlcThOdlaqAgxKrRnBwzdAqEKgIkEklWSELYO4lBBvOjhBgVVBcRBQWw1awg+7eFjDZwP8Nc15MrCV+mDZkzSvJmHuDcpkMlDjBJuFgBF5WZmod1MwC88fBRQO6atqr2EO3HQDxq+DRAW7NKUBFlRCoSlh9wrDv5z9hxKqzhUaaB75WAeFPzKAVuFKAmSmMYJmE0C7vU0VJERDghNQPNOw7dkZ4OO8PMA7CXccUCsIkHykUd9reCXHrtWQHYS/XnS4AlAjRLDhUeV0jndLEB1CnbJGoiYjtXPAsQoYFdI8fcC/XOGPvXPHJn09xpqTyBuVxF2HQmE7SQzs8vAeoNBob/0mL1WCMnL111EDKcxDfKscohVRNxKMvPHHu03GsMxe+yiAvwsQH+jpmRPybClnG6aKyO4QgKMRwHrHwrc/z0LdUsfq5uTpc6Jpdk/GGqUagzfRCBwULMLLiZ4SwAg6gSUVnytpJMY10lSKMgSuzaB75Esz7hEYYmC4SJEMCntM9WGVY/0beoDE0qba9Bn2gL1HV+H4TgtlASy+9IK6K+4KDKuKb/NDJVdpsURmRZiFhMDTQ8XkPsVpQP604jmmr7J7FccjwV8Rd/k4RmVAM0NF3KaW4Jkd8zgILukl1SZ6TmCBrAVsIv0nDKDseRbbfiYYFI1yJbnFRuBmADnuGZwWX+WFAyrBMLTEKi7SKB7EAnUEaxVW57X4TgFaS25qDKcpEUDCWBLcHd4lsLFhsmH2J3Hcu4ymPU1Fx3aa3B2qlLvYmL5+nrybCICYQnIMbFWcQpFIhvF69cuEkBLXkizIzAORhSwLQKKJ5WsGEGerwjCDucK0lOK6Gr2S1YP9HgGR5+kr8nyNl1Ady7Tghw9lUFPx1E/pNCyHUF4lmWyh1UgzgUQuN9R0QsbJb2NYw4ysk+kwZEhRtUwAWQRgXFB0Fo9kqn2TQrZmwtUW8DOFfpjLs6IgNJbCaSFkLxfMj2+4mJf0JJAODHO4yJ1ECoGDNUbAkZfP1GpaAHTUcIpAjCuCC7NIYNaVlh0p5Kdo4kZD4aVHRDA/kLy+l0KrF47uEYWySzAbWUWcVjLsiAhIuBmEt7wPqony42YXq+7iGEtqeCYERxKI9CdalQ79ju6lo/XQ4Rwiiy5QpK5AmrgIuy4VNB94PM1Au27AcOqgj4E2LlC9egwHjE0TA6B/klDQOvrSTIblAAUATU/L2Va/NJQA8G5CBHjml7UeBBAo+hhHAKEi3ArBX3wPD9aYmwV6tsB41rDSG47OHZZVvcjok49kgm02oUGlSgyLfgxZKm6H4EY4VuDmPZV1qowrdlLGZMsNktifZPA8SMtVGRPJSCBUGuypzEStPYOQUvI0cHPc70Ut6/2OQBAIMxqQEuI0ZVqEACITUv/5G4EDEN3RGJKRTcyzEhzdYq9lhqx1mRZVSISlKJXM0YygFmiGiP9lqMFjKbvsqn4HIc+PX/Fb8gSvCOmFFityTrWT+4zDdf0ej4FoZnB1KlKRWtCI+cmBtsHhg15T+bziWQ1h/b8K9LXp0Dy/yegMgLwf4OB5bdaClt/51X83n/397F7mEHeGg7pSbIKFWHu+AESNQdGt2CoiEzskm9j8r5QmqrvNSDp85EWGE4CqkeZ5If07viaYEU/aH6QH8hG2AUH+moj0F0GmC1lnmrgwKQPAt0LD/MgJ/N8YlV8w5CRUHFf9T5F3Keo/XJcFVme8SigvpWlkyyvtLsZv+T7Ew6Iw3lAfcMeOTmmlegsLwRK+EVmkYLhwOdmQJTc5zw8+ApkuI5ikYiEOqK+kegvPRY/UxjXwHDpMP+ZJuiSYKjP8Yj6T1oWmyfWajzK/W4c0HKsvu7ABN7+SddYks6N64jZO4aY6ENiDvrkWUmeHDeLaN/xseMSxUvkkszQLqcBrn/msfyxwnCMcm4Apu32p8kzMpCVaq85fI3HEfOvRfG5uRmTaw/PCQIB7k+VmLz+jP16ALc1HvHc2WVEc5fYuRlrAkIa9LuLmK4flO6ycc1BXPVpMcTydV58LdCdp145zfsGLSb2JLFA+gDsPmIdQvY65bThKIH9S3b65Y617jKiuaJnyc4FhgRGosqsLQfV/oxgs7nioLx/BbRXAv1JYkXSOaUMkSyh2ZH9GdYC/XnE0Q840AtPwCUdC+3tKqX9zjmUybzfLbB8nV6PJbD4JsI1QHcuYA4pTMVkKQ6PUw3AcML0UxGA/UvWRzR3iZFUfBzAQVoNwHBMVnrxMybldueSAS0nkyy5euT7dP8yDcsLXkv1HT1FwfB11R3KeyIqlGqInMCbGcjsd2vuCMR1z365oJMEODIlOMuHRUTp0OvOBNqbmHxy02vFEKRYht9SC+ES25qkuos3AXYmMJwILF4HHJ5JzN8EdKcMOBkXopyb7EejLDp1BqYhvL5nv58aU0Lujsxac8dOvcxA148Bh3MOkWZLZupwITG7Cti/4HMDBEL7FwLte6B5CNg/kwwSaoEm1T10ZwLztwF2IVIKLP1w3TE/b91cQB+mZGHHRiZ4I9DeBgxH/HzsTwVm72MZ3r2Zwp5yWE79EItfstpReptrO7KEvNoFLug0Av0xv0OaBx6v7iPam4DDhcT8HZOAZ9ce+0sFPdC3t79kdQOBFmWMrp3ASzAEfbObNGAmiaWdkTXJjOAEuPjZIDwXZ4IiMGoeAsY5wQkrMFJlBnhuTBdLd6FdSNg5gVjzwNfGzvkcVQqpsXMBVzNRtzvTXFTpInTPLsbqkQzfuGTAjJ0RBC7eeoxzfqfVD7748QBgOCLTJ32EHKd6jf2lxuzKlfe56lkd0Z1qLF8P8DWvLTtXMDtf2C6m/6qkYuBj1JBer5ZhRfWDw7gmw6NsJFPaB9iZxOzKYjjSqDYOh2cG87c2XVMKqvdkMjv2HWZVgfSxgBsRWPkRkkSYqgSH7sygvmdwTHdmSkpvcz1gPK4gHOWyOgXddOcVqkefFq7IcCJJheVIya7eO8RKwqb+xlzP4WYKZucgrEd/2aK+TQE9iVWUnknD9W0PmxJpVe8hBw/VWQxnbWJrCbZV5yA7B3vSJMuNm8CdEpAuQD/0QIwIjWE67cOA8aRBdd3BrWuog4WfGUqOH3q4o4bH3FtEJckmDlNfYzSK0tdZBekCxOjgZxWfb/SsAXkicRXdiLBqIYZUC9YYbs8oMqxCQO2GxDQqiMHyeRID/bQnMvdLyscDotGIbQWRQntEl+o8AhnNXAsSE0CElASBubKkMkyU1QrC+SmEx5IFLb2RKWk1Gl2OAU9lpTpViwDlviXIRwpguyf7WFcTaEzHAqBIdJ9KYiEEovMEdElqK+qK98mBPTEgDiMlroLS1xLWk7dpHURiYf+VupF/09sT0PltD+/59z6v4v/++xe/9O2evfzmV35swLecsYQT2F4vIPcKwlK6hgioO83V79sEMNZcuZZWQngmGbKagl+gIgDxoKEPZELMnoPtuOY2s49tXBMIhUGjvkk+njT8ywdR5FZ6L1A9TJ6qKv0uvlNM+ksDmWspHdIHfjnHbgKboRIwW8rAfPIPZSlZVJKr9BHQSWKnO8r/pAPmb9KKfkMQ0tzwb4DeK8a1p3LtrIiIvH9OR4xSoL6LmRCivE4grZynQSutOLu5RP2QpE1vNLvOHrlqPR4LzP5ZC31IBdZaJJ+XoOfvGVe5hWPVRH2fPDlJRjV/5zEuJFd0b6bV++aagKB65OukDzxPwqWAhZmAUUxqZOpqGsLH5PuRQJQKzW1MwDVVRCQZXRRcQbZzUXxr1SaiPwPm73wZFrliH9FecSiNGqiuCaCqh4jqIcnKkv9H9wyBaG6nYR+B11swHJSHI8n6giEijphKq3dpMPL59eYQDkjIMfI8RrISNrI+5aB5TeQ+t/ohAZYuFrYiCiAKfnnKkaA1Sh5/9mo1N6mq4T4FPYwcqn3NxFqzj6g3EXbBffKVLMEVZps9ThNr194GCCchokCz8dADQWzfEUTN33tslUb9wEWaDLohUKo0qk1Mpe7JByeA+ZuUHLkJlAQmH9HsOkBEFoDTT8hV7ObBw7UKxqbjSUNr/cguNbMXmF/5tMIdyWzoiemrHziszd5xm+0V5cJmHzAuyDq4mtdFTl9lzQtfA3MIcA2Hg+ae/w6GoCsHhETBvkyzJ6CoH5NXyyaZcc//qyF53yqJ/jhJF4fp3EfF9061oz9OpvCT+jGi2kUmOI4S9YZBHqpLksGary8ljAQgAErKrHQRzhG81A9J+ikj6keP3lGipw8R1T4gdpPEt9o4+MrANcDs2iHLSOsNh+X6gfJ56SSaO5RewXHJcyCdQLXxcHOJcVAwXUAwiq+RoFTQzkySo/L6qB8CPyeCKL7S2fsR1VbBLlTqQgxokq+uP2YRfL0JMAcuHpl9gB7YKaqHqeez2nq4VsI1AtWWQ104MwRsPV/v5de+dPz5mkmZzQap4iGi2gVUGwcIQHcheeMkmluLw4XhED8wzVQPEc2tpYxSTDJxCEDvPfoTjerRQzpZvJGsPWI1CIRC9UCDuYiA6giugiIrqjueg+rRQfUekIYBNSFC7zyUDRDB0I/XebJdVYV6ILtW7fm3tBF67yAtj5dyboNq4+Baw2t45yEHJsqarYVsNdTBUdrZSJhHSiV1T4AYlEC1DzCHiRGRgwdgUO1YHSKcRDQScgjQB4fhtGZfoQ9TwM/IjkU10OMmBwVIAfMwYFwptDeWElIPmK1DMAZmM0CO7C5UqZtZb0eoTnIQTz5TNYQUhJMHeEAEBb23kKOBmytUDyOrVR4HVLWC2VkgRMyylNUIqM6iEgKqd5Qu24DQauhD4H6eNGTP5kwfNduxgAW1HxCdgTcSZmcRjIIcHEwgYBODR3XPFFW3rKfU00AgLEKE3qbajhCh7/ZAjNAHk35HP6W0AXKw0HvFz6KDTdsIUz+k9WmfRoRWQ3YW6sB+RtnoAiCl9RCHAWJeQe3H8jgRIsHjsoHa9gn8OSghILqRoMpHxEZD9I5MHgCR5aZCUKI6jAR3ShV/pBQCQUuI3kJYhzBrIPqB94tMaZWPPeITICccvYNitGTonIfoBdNYLXsshXWUttZV+v1IVrHrCfKEgAgEbSIlwooUthNHC0gBYQxBYgXEQw+R+ihjSI8xBrCW/07AMCe6Ruch0u8iwN/vk29BCp6XHP6TVAIlcOeDUKAnYLBPbKgPEMozvCcEgkmlSl9lTKxledwvCunJP081Jr/oFv8iNvNbdvubLIX9VjOW7a+/iB//N/8A/baGauh3nM0GdL1BDBLuoPHs5T3e/eyUXsIji9grVjLM6DlEABAF6hd79Dct6tMOUkZ09y3UnKX2uK6TTIJF90ICvlPQMwf3kEpjW18SN4WKkNcV/NqxqsIzzVC0HrFXEI7SS3fKNEuoCPWoEC8GiKsafuEBL2COB7i7BkjhNWHp6HVcOpgrA/d8gLxmYqc7dpC7qZw+zD3MnYabB6heUro4CvilhzxIFrUP3C83o7/PLSiLpM8h6el1LMl+5pFevgySQhMg5g7mdV18S/bIQx1SiMUgWGURATEK6I7gqHvhmcjYTX5LIDGm95SkulkaXseJIaF3Eghzj+a1gVvEclwlGEVygJ69k+guAvzSo3lrEEyEa1PwQx1R3SkMlw71e42oKZuMOsJsOESojuyk2Qh0H1tUVwxagkRilxmo058TqOVwmHwOxCBRPUgMl46VHB3Z3szCSk9JaE6QzN5PfUgySIHiFzXbKeETggsF3UUCMFuB/acOzTvNNMmRixPCUR5aPUgmJq5iCc6RI2thfB3RXMskrwwEEvdkhCl5BoQFmjsyg3kQrx7Z05nDpNyMwVEmeRXdLLHCMfk5qfZK/kLKTvWBLGHUXODICy1uEeHmAe0bhnnk8yAdt+sbPjZ7w3xNaapdpaE6TD4wes1SQE+g5LG5feLbTN95vp7Y+pKiuWIQTXslprClzDiKpBJILHn2K5K5RjqPEf15lglTVipdYl/T+ynvVxRkk4YjUTpqcyCUHNlzqvqJ6csMfw44yWxnDoLJ+8mkRS5eBZV8peZDht+na64oB6pJCZB9iFFlGaooIS75PrpL+xonxl1aLhK5lr/PacHZs5YZMemyXJjXVKldSV7XesPETbK2fO7mhgtKuiMbqnd4ksKIybcnU3jSmgsFw5FAtaEXVyYmNZ/rekP2WwS+PvVDGqzE5LnMHi5fc0EjP166WNjh9oZMLcNmYmEvS4BU4IJhMGT7D5e8ToDs3xRJEkp2Unf8bCkl8YYy2eZ2YlKzmqG+j6XiJTPV+fqwS1HCosqiYJt9lryPmyVVxRhRbbn9HFAFTN5JN8seYSTpZUr9tNMCSlDA/IqguD/OklS+jnlR1baigNRhRUZcjcCwFGg27IbVAxe12C3Lc5TTUnPfrBpjWeDIITvjklLOvADiGjEtPgElcKj4mVMYkXQRtpUp3TWWpFrp+LzjMrGMibnMwLnIdk3ywD7Zrh5SaElKW80JqNkrXG1Def/k7leRFljIiBPwujbVjaQAGV9PYTmulTC7UFJ8fS1h9r6oRSj/5OMzuykHMppPb1HLCZCOAeNKw2w9QiVTHY5HTlP1Df2fUZPBZuCgw3hk6GF94EKAnVMGK3yE7nxh1+3KwOwdXJNksprBQ6FWRe7qZjq93jwHdqGTvDawrmRmoHrWfuSbr1lHInyYQKDgNuAIyOXIxYkMqNR+hJ9XlKyOPGk5VEh0FrFW+CDE5wnDJ3rKQENjCNR9nIJzYoRbt9CPfaolobRVdinsx5G9jE1iNdM2IQXZz7T/sa4KyEUIZByHcQoWSz8XORiovKARpd4jP18O8CmLHROrWP4OP/e79O/4NBwImEDnMEw/AybWMgcAPUnuzcDzg9tfBliGXwBS/w1uf10Yy//t989/6du9ePnmV35swLccWDbffRlf/df/AHZT03doJaAj5FYhNAHmUcGu6bHL6a36ID4YygACjdAEqB1lsr6J0J2AXbOWoHqQTzx2QDRp0POAcKJIbYcTDvJ2xch94SmVtSmIxKbhPRekI3DQdgt2Cw4nHuZRMlCjiUWyGzW9Yn5GyWz3LJAp202smc/pmUmOKRwls2ZLc0cwBETjSUhhJfw2kCnx1s84xJidQH8aUzImv7CrjSh9eG42Ba0wll5gXAe0VzIBm/TlnQbTcR0RPtvD/OECWfabj0UlhlgfREnoLBUJefAXk4fHtRH1A0NPcsJqTkIVbhqYqgcOz6HiOSa7yqHKLgguQg6MGEBQYrktNZDV7Z4JSi9Tsmwe6u2SQCanszKYhoNrVMB4zA5G1X94rZZYfjvJU/Pg7hv+Hkl27OYoaZlPawmyp44hLIkB7egFK+xzTLLeNGAGPUkxt9/1WHyhysKAa1GY73HFfcgD6bhkmidlu+k49yjJo1GkMJzldN6CmY7RLlG6FJ8mfuZznmXYdklp53AkimRZxMTSphRL32RWPisHCDCCFkl2TK9aHnyrTZIGOjLQmbEe1xzoc2CLtBwy7XzqAswAIqdv9mfA4qspACR7SQpoAqC6iOGU14u0CTTuuU/SpuPI388CyNUb9X0sw6CbEVD4FFhSznGSuLtZ8k82fFwGPAxaydcmAYZdiAnMJaYq1x9wAOSg7Gb0RDZJtls9RtgZ2fv6PpY+QdeKMqTnJFVficJo0TMIREGAQU9lkh8fUTqagejTJGo1Ug6NyPe49BH7ZxKz96EEtyBSbsmBOEIPsUhhC7ixEd2ZRH2fqgtCYjc8SniMa7nfuuNz+1TrEDXS/okUXCUwe0/WO6ei5vCfpwmq/TEZeXYe8jps7kOSc+bPT0pT7ZyPN6mawlfA7DowSXdESrTldah7suLd8RR+w8UVXtPZv5r/VDsyqK6RKUk4A5pYAo7sTKZk11j2P3crmkMoQIwM+PS+y9+TuqcE1TeiVFaYfUhglwDP7HjOXMvPRpPY1gz+MpgyewIg21IKO6zpm2seqEzRfZySYX1MUlbKUEUConzhkMDNpKpRnYeb03dYbci6BSM/+OxUiRW1c1WqThBBps5HDMcmXY8e3alOjHQsnwm+Fqk/kmzw4cKgvXEl6TUnrTL1epIoPwWEagglpCcnsuaOR2nJcvpGFRCmOw+70ARmyN/zOZiHj1MDwRI/MwIX81ICa0mJBRKbbTEc1zAHBzEG+Bn7Gd2cFha9p9w0V3y4VkHZgKAk9G4k8F0YAkuBct/sbeQ+8jxDiCIRVkNi+FyAO2qgDg52WaG662CPGui9pSQ1REjr4RuCQKase7hFBdU7+NYQrElJqWulp15JLcnKWs/k2CSZRSTbGasUYCMlz0+SyubOSGHZURlrU4AV/Y55WMTUGen9VMGhud/QijJXJVHSZ5WcgntCoFzZsnIk70v+v0hgs4C73DVpHUoKq9GFdX0qhX0KaD8ICnJu2hcA0TkIKcl46rRPT2WrT9NhnSPgAyYwl9+DSnLbKjG0OSwpy3HzNhPIfMpePr39Qgzy5zCU33Yp7OefV/F//V/Ofunbff7q7a/82IBvObCcf/Y8nv+X/xAxCByf7rDdtThe73H9fk154ZzUhX2syBbumfIqVGQo6tYAOpI11Kwd0acd6tpBy4CHb1Zozjt4J2Efat7nwESGaCLkwiLsDYvuWwc/qCll+dYgXg44Odrj5vURg2s6hbhwELmzsBPwczKnce7Rrnq4Hy/hno0QdwZh7gtzyPvLxOJEiOMRpnYYr2YQTkBc9BBftXBH6c1fBbKaS7KQoWaia1h4wAmoPZlBYQVizZoRIA/wiYmaB8Q57w8vYDaKAS0dQz2qjUT/akTzukL/8YjqHb+UnwJyFl4/YQofJIZPB4h7hvuIkIbgJ585ek8mEwEp8EdC9hL1ncDhE4fqWmE89aivNYZLx1RdEaF6rp76Iwd9qzlALgJkJ0pojAhkG+UgSiqs8CLVWJDBG4+4ABANCqsxDaYE7HIUpW7CzSP0VrAbsCHb2lzJEroiPI+pvwyo7iXMNrEyKeBE9fScqn4C2q6lB9MukvQ0JceqntLh/pQA9/CCixlRTSvllPNNASxBExBXjwIupfnmhYT8XDnMRo5MZK3v6Ol084jFV7IwV3ZJoG2XfHx9T7AyrpNs7l6gv4iYvxYFELJSh4siMYFP35KJbd9HbD+lJ9Uuk7dWcP9WPwEOl6L4aXPHW7UBumdceGlu6EmFBNr3AocXqVYmITP6IJP0/ZDZJ4bk+JagLS8CuHl6vSPZZ/NIsNmdcyFk/pqBMNUmL6qQPePiywTmgZQ+mz5aKXdHCbRR6TkgmGB79ocBw0piOKEUXbrk8U3eabtk+m69IfDMqb3FK5sY4iy15eufFkQigYLP1SqBbFu1SczfnscxrhjwopLHNhgCzv1LYP1j4HCRA18oy+3ORZJrk/WUDmivA/oTWUCPbxMITnaB/pQgc0wAuD8jmM03u+D/dx8Byy8I8kSkBDmza9lvmwNdfEPWTvVcLEDk61jf0wurdzzmkuKaQJzueAyZKdYJ2GbQrMYEqPf5ReTjswfZzpOX00wLPTotRuS6mexrzKA8S7jzOQa4uFI9RgzHEvXDxHg2iYHMCwcASgWNCNymrwSGFUG3Scm51Y4/H1cC9UMoKa9coOPv+lPev7njdVdvKbsOBsUvWm8m9qM/5nM0dyElr0Yczghk6Z9kSI50lOlLy//Xj/TUBk3JdZW8tmqg5Lc/UphdO/hGYJzTC1vtAg5nTJwlaJ+YbTWS6az2IaXLRozzBGp6sqKUSEf0RwpmH1LIT1JHpIWILFuOQhQvMPMKyDAGxZ/P37ri3VQHh+5ZA7N1OFya0iHZ3lD+nDsjeW0ROAadPZQE4EFxnzPQ1Xt6HdUYMC4V6geH4Uina94hGAmzc+jPKpi9Z5COZNiR7gKq+xF2ZQrQzJJju+A2hGOirO4myaxwBFLmkRJcyrItQaUUSRbsS2ejNwkIa5GSjWWy6fgU3qMK0+gbSW8pv44hxwSWHaX6PndIagmz4b5nv2e1GRmWcxgRGlMqToQPGNcV04H7JIlNIFMfLPd5cAiNKZ8jcpz8faFShS0LFfdV+IBQKQLdGCEfO/oQtaSst8s+xQS0UpVKMKz/kCOvHbnvEeZNkeoCIFCVecGAPkwEAlYm1Uqyj3UFZD9lrv0YxsJG8ovOTGyfTSxsqmxBjAShT9lG5/FB56TR9F12A0oqLEAQmAdVIQgOgYlVTLfMUIrKEIzmGpJ0f2EM4jBOHtC07QwiYz6uzFqm//9CSexTOe4v+n3et78BwPL3/y0Ay5f/Dlj+1W/z7z2Pf+d/+M9wsAZKBqyqAY9jjeu7FZp2xKweUSmPq4cF7LaGmlss5z0e7ubQtS+l83VjUyJ0YBrsj5/ho+9co3ca11crCAEcnewwWA2lAmrtcfN2jZcf3eKb16dQM4dnpxvcbuewo8Z6tcfd2zVOnm9wf79gob0VOH61wf3NEubKwK480ATGfqcydVV7hLsace6ga48YBcJDBSwtopOAFdBLC7xu0Xy2wf6bJWLj+YVWeeC2RqgD0KQPYAEIFRC9BLaaYLiXmH+6wfb9AupRwx9bsgcPTF4LVYRwAuHIQT7owoaENsA8sC4FMsLcGNgzAnf1oOEXlLxWJz3sdUvAKoH21RaH6znUVjG85lnKWY+AaDwTafesMsngPqaOUbUaEd81iHWEfmQSqkgASDiBaJiQ6uYcPEMTEVWEWQ+Ir2eltB7gcQGgLPlZjzAoBjy9rWBPCU7Nlgywb1AYHz+j70hvCcT90qN+azAee8y+UVPa6UjwFBUQ5w7q3kAfBIZLB9lJmEd6KV5+AAAgAElEQVQJNw/FQ8teSFGqS6KK8GuH9osK3a+NEDuN2RuJ7lnA7K3E4VmSVFWRCwwmpvTGCDRcRIigTHY440BW3wv05wHmUcI3key9F9CJmQ8myZpTcBOCQHNLQBn1/8fem8XKlqVnQt8a9hTTiTPemzfvvZk1l+2qtFtuut1y0xJICAMS3RI8IzXwBBLDA1K/IHjjEfEAD61uWbwhBEiNZCEh8QCW6Da0i7ara/KQWZlZmXc6Uww79rAmHr611o6TLpfdUpXsbDmk1M1zTkTsISJ2rO//phhiZScgmaVVAhgvKSNmdQh7T8s7gsMgCRSZbBkgHJNmZx9RTpyqVVwVYBce9SsF18T3XRXZCk+2P8RaixSQJQ0Xyq5O9yPAMfMQS95jpcWcwNUXyEMDNXKIIS2BcJKXkjGkSoF1F6ljjgyX6mMXYdwPgOdDtyIDucTamkVAsefrqoap8iGlfBa7KQgrVeeIgAwiXYVckRI02ffhDDlsDJ7HLMcoXa2Q5dQEzARU44oDIN3F53QEaK5i+qzqp+5T3cX3fEhDDqC+AYYIYKt77n+xpye62E/Ho2LvqHR8new87vNp9OFuk5+ZkmLdIrO0KWDGq7QQpYR2OKWqgN2o3OfhnIm0lNfx2G0zvSbHrLQ0ExtM/3UcSgREWTXfO+OJiNLx9HkM6B5xuwmcJ2mstCC7KukZTgwyU2ujFDqC5qRiCJq+0CT5Tt2cKTArJcMiKxlSjQgls6qL6aqKgKk/ZcJpFQOLKCPnviQZaGJXpZ3CfkRkffWBAJv1OGSWEyuZwOe4YGplueW5ToFF0hKMuyjHT/2hw1rm4cBxoFl9R+YxhRCZWRxERGAlbUx/FUy2TZ78oiUD7AsywK5iGBCADObUGKWpC/a0Jpb/WBVRbRwTXiPLyJRmgi81TnLT9N5MQUGp75HdriHXkaS/DSuJeuPz8UpLRliNIQ8kfAR540KiueVFMwFPr8jaDicSRRdifQwy25g6Lcf5BNzV6GEWCvpA0JYCh3w1LcIJCkP02BP4uVpOCoxYX3LMdKZuyqAE1MjnTAoL1bm8yC+2I7pHNaQJKBJwdQSu7LaMva1x3xlK5NCfF6hvDVylciCQVwKuVlkaa+cKunW5FzKx1Ko1sEuG8riCQ4vk80zSY2mZOptYU90a2EURvZg+15TQ2hMimylR7EYedyEJNC292ccST+F8ltMGxeEFBEFsYjGFcfDNQ2ZTGEcGtCpYR1JIyAPXSaFQzFuIwTuhZFASYiqtSEzjsRw1+jAR/YvHwTe549JzCJRDf0JgIFAEhokZTccjUn1M6sA8Sm7lA458mpE9Dd5PtSPHHZqIjOM4lZgHayGUpAfzuBMz7f+PAZZ/KhySgKcPfwEs/5jbXwDLn8Kt+fKT8NX/+t9DoR2skxiMxjAUcLsCzXkH5yTGXQlReBS1xXgo6IOUgGws/KjIVspAGa0KvLK7dIGZJGyylwRtpYdoFSPkC4ZUAEBxr+gn9IjSWEkP4iARCp8ldAgAVIDcK1ZwxMVx+luaqvq4sHcLDziB0FDSm9i9sLBQN0X2oameQMEtPMo3iguSWOHhy5C3HzSBiW/81OnkeQ5SMmvy/CWvIADIMR5vEdnNWNGg94JdkTJKcmc+eyZDrMqYfaQxnPsYjsT9CjqgvJWThFcd+XgWHsW9nLxwCjDn9JCyU1HQOzoIymqbqQvSF7F/UiZAMDF5Ccy5mou59PzSxECRWFGhenpDi3v6D7NvycTXL75mQRIgJV+nJ0maWU6EKfjHzunZK7cip/QCEfB6MoxBIicPkx2J3lw7VRekBN9ij5xMmcBwksDSSzr5Tm3s2xzPWQPiqriAifIwLp4iuAABQn6+6Adkfx/BVPJaZhnZMDEwx116GUAfEBfZyCAodX4C8fxGyfEUNDN9HkSIct4WuQcxPY4Jl+m9Hf2C0WsmXVz0l8jsclq8yXECXMlXebwwFfEY1Ri9i4G/S+xJAiNp8AJwu9lzmPYvgg8T5c25lD4NbOK+QfL4kveNBfN8/iIm/aZjjG8t3i9tX0zy6XS/9Pr6CFqlYS2FHJCvBz56OfPrnIYxElkKnv2Ufcj1DsLRr5hk1dKG6f2kRPR08j4JOKaBAc/NFEqWfGkAcvCJ8MgMjTSRuUqv1dE5T3LXXPIeP6tJCp28uCIwNKmIgVNq5P0RwVB+nY9Y58lfiuzxYxgUsucx7QfwEJTk60SYXu/0e3H0+cj7fHQ86Za+B1JgT/JdBiVy0vG07emzx88h91W6CeiQ7Yzy6CgZViZkP58e6JP0sQ4jf/6i5PVYhhqUyH7AxFAffyZ8vJ7nDtp4no8l4Qx5ikObyBp6LeAK/py6MYF47rN/dnpeFTtQgbgdFf2U6T1gQgQlYL9jlL8mgOLVxATbmsFWtpbQAwOudBdD4dx0bMcya3G0fkrnOAFY7hNZSzuL2w7IYW62kdDdBFJT2m1iFVOabGLnde+Y7mp8vB6FnHyrkpczASDjow8TQJjkxezTJeslrI8DtCiVNj6/V46PNRyxSEFxYa+MZ9hNlPkmCXD+HAZ+r6XfJ3ZT+EAJbepeBMgMus+sQ6OXMwfJaBmBFHI6q3A+eh4BaaIUOP5MAOf4+ZYyX1fS9T8dR5LrJtmx8AGit9lXmRLwuT8+SlkBHHstj/ZdeA9fFQSZib10rA4RMUDoAauYuyiPLiQJ9KX/x/Q6iMHkxwetpmAoAA/8lMcAMAHQtN308/FjjgDrA8D4427HwPD4Ps4h+SsBPGQmQ/gjYT4/dht/moCe4B/UmPyz3v48AMv3frEIv/EzAJbPn778Mz82YII7n8tbegte3yzhvIRzEmVpcfZkg25TYzXvUSxG6NIhvD9HsxxQn/UolgOUpsSzOe2gGgt4YHHRoliMEKNEddoDOqBY99CrEeKqJxNoBcTpCD9zqB+1EDML0TjMf/4OYeagrzqgoGdzdtlCnA3snxRxRRGBqJ/HD9/CkdW56uFXXP26E4tQeYh3DuyZrHyWxIY5fZiwEm5tEc4MfO1hziwlnaOAeT7APDLsP3zeIVQEhPBAmFuylIHSVDdnwA1CXJg2js+3dlDt1FXmG092zAqCzOj7NM8HfqHPLf1K1wpuEeU/dUCxUQSTdcigEh4Qo8BwSf+EXTlABJhzC7N20DuJ8cLBLik5NWcW5Wsa+e08YDxz8GWAq7mIo+/OM4Qo1sq4MsBGWWoCJin8xtXI4UDwie0KEfCQNatuVJbCuiZkvyOiTHM8dZCOINHOfQaK6sBkWgQCXVcGhvFEr6dZEGAm6WpiMA9PHPpLD1cxCEcfBM6+4+hDXHmCcRlglgFeB/TnIXs67Zw9i64OGNcB0gkEFVDdEGSqCFCXf0CGdVwzMdXVDDRyMx6f1yH6JqNPriLQFpaMZrmlD7K/4peQLzggcM3E1tpZrNyI1/0UXjKsQwa+XlP6C8lFuzkJ+dzqmLZqllxoJk+pbievpS/5GFdPIDPV5tgZH5M8uCmwKIXZuCYyaIrvh7wADsnLOAFNYFowky2dmD2GbfA/JkyH7LlkfUfcrwjsEmhNj0+MXwLFZaywSKDD1siLWTOPLHdSMs1i9UVBabKdxfMSzz+rgxAZwpDPqRrJaPqSQMnO4mvkI+gskf3T9FNH5nGgrDWliqbAlLxQLRD9SohF8MfDGN5X9Xyf+NRvGEG/6iZPHwI/j+MJF+cZ6NqjYUSsK/Gxn87H4BgZk4yTbLTcJn8kGRo5IoaXIDNeZiFyCI6rpmO3tZgkrYrdk8IBw0pGxj1eB8qp/kMEZM9pqpVJqdz6QDCTQnzUEDKoTOc0+bWVmVi5BMgSuGI9DBmH9F5L76P8Xose6JQGbJsEulIXL+WkQdEHOcZgn2rnYzcoWcMExumlJ3NJRikdOzIYS/5JDjfitVKKB9UlaciS2Mf0vIlp9Jpy2AQabS2nL3gRAXZMBHcl3x9eC9iKFShkH+NzhxhupDlMYNAP+x8TS5kGBGRlCTxY4UM/p48/J1CvRnpKVR8TlSNwVB3vm7oj6aEkCEgBO2Yu4+crgs4IAlXqmayYJKtbymp9JXNQXAr8UQO9jpS2Sx5PTSYtBQgl4Ezvucx+WfY3IgNqs2QNiS8lZajbmIw6ev4+Dh107GlMwDG9Hq5W+Vy7msccFI83RFDrlXxQRZL2wTYKZqF5/1rFwQQBnS9V9qIClLSGUsI1ehqEVfRP+lrlsBppPbssFeWzkASBflbw94LH4GYaiMzwxGAqwHoG6oCgNSSfqJZkIAuyhkGwMiQUKoYY0d8JTbICWhL0evo6E0MJ5yl31WrySTrPnwH8Ea8kgNw5KeUEKo1FqEsErchO+nAUUCQmcJpYTgChiF2V8TEhyWElf/fgMem/tG0AQgiCQR8gtKYnU0hk3+XRfY9De6bOzYnlFLH/Mv39x4LKFKp0/N9f3D53t881Y1k9fRae/4f/aQ7EcFUMCVg6lG8m2V11J+FKSt3Sl3BikRC4CNctv0j6sxCZSKC6lpQAAtC7tHCiRGpc8TG+oKewupY5gMbWBG3qEMMW8n4waTQxaQAyAwREn1og01ZuuZhLMqtiBxyeBMw/EZM0rqI0sNgxSbRoBYZ1wPr3gPYJJWtyBNpn9O0VW6B9Tp9frn6IK7GUvpoCXcyCgEuAzOnxZD6l8BV7LmyrG0rgdDstcil74gLv9V+3qH9U8IvS0MNXv4kpjDNMcj07sXFmzgX/cBq9eXqSCuqW2yv2wO5LFrOPecFKrEOupgAyAynHxGQc1T7EknqziL7RWcjVL/pAWV2xiyEjp7Fu44aewPpGYFzTh5cWjPUNpXzdFatuzJLHJk08jgMvkuU9A3fSQlZ30f9UCeyfBpx9B+jPKB2sbwPaJwLV3cMAkiAmAJeSHl1M9CwOUdZ3yU4+hFgefx2DahQwrPmZoQcNGM4D5h8D/SVZpHLD+9o5w3VSuujuOUvoXZKndUyRPDySGJeUTY5L9kWaFcvbxxVfv903BlQfVSg3kcGQBDrdlcDsJdMtUyG8Tx1wamL1klxUmjAt2qMHUneUP26/RAlwqgtK3YUp3EcfKB0sd5Qt+pLHahsxdW1GH+jJBw67ZwqZUY8hUPV1yAXwib1hKMaULqp7Lm7tgu/F+QuHcTkx9KnUvbsSWH5IL9rhEbsk1Riwf6IIxmIyZdGG6Nvi66wGwM55TIlddiWinzOgufHoT/ihdVXsOIweRrMQqK95/EAKNOF7JPkhdR9Q3U+BMqYRLFq/8fT1lWQUVGQ1g5jSVXHEFgfNawAEMKTk1bgf0iL3RdpaYFjH9+hMYPmpRXulcoetV5Q9+iPfc9nyvAXBYJzDhUTRMshHd3z+csfaF2DaTlr4ixBQ3XtsvqhzDc+4EmiuKdvrTySaOwIJM5tSSnXvY9gPwZMy3Ocg+DcRgHEho0/VszakFBGkEjxJF9C8sbFYHjl9lGE/0V8bWWJpA7pzifqe/j1bi7wgH5bcL+GB+sZiXHHR358KLD9hII4yrCdZvLCwNaubhD/ybEbgoMYA1cUU0rmCHENOvR2XU6poc21xuKQ8o7pnv6UaeA7K1kP17Glk2jFrT3h9JuhMzKBwgO6YGLp9p0J9zyTT4USivncxUdRP7LgHfXtJGikBM5coWh/BrsyAHUDudswS2J6smZ1JVPeWFVczFcOqLFwVmaDIgM4+3qN/NJsYOwFUtwO2X5hR+m0Dk1IFKFXtfZZzlpsRrtaUlzqmupZbVur05wWqewvVWZhVCQT2W1bXA+xc55AlOTqYVQlXEXSqgRVIXgsULYfhSdrpZpoD28TqlTKGStFLqPcG42kFvUtg0TMMJ3oOXa2hDrHewoWciupmmp5DKXJiaxDsiVQD96/Y8lgJjil9DQVTY4WJ99lH4CYEZG8hBwNzOYfesK4kSUjlwBCbUCiodiTQ03xdxEAWMEtQfRwizEv6LAsFGVNaISXEaFlPctLws9oOCErlZFi5OSDMqomJNBZhXkf5LIGnaPscguPnNaAEH1fFFNm2J+DTiuCt1JD3ewI4yTAev5qx71IKoNAQ/Qg/byB37QTkEkuo+LMwlnLW2DcZygKijxc+JYF+AOpqYhuPPZbp/4EHzGcYDbsmlSLjF4HcjwvwAfAguEeUBUIbu+i0nu7rfPZfApj6K71H7tKMvsosi/0sK/kTkmAf3u3ocZ/zVNj33ivC//ozYCy/8OxPZiyFEGsAfw/AN8Cr5b8bQviHP839+FwDy9OvX4Z/6e//2zivWizUABMUfnRYwweJUllIEeCDwFyPuBtmuO1nOKsP2JkKjTbwQWBwGo022A41fBBY111+3Hao4YKAALAoB7ggYZyC9RJaehxMgYtZi84W+fc+CBiroJVHpS1cEHBeolQO7VBm2W5VcP+cl+jGAlo5jFZjXo3Y9xWMUSgKh0erHbZ9jd5orJoe+77CMGo8Xu/wertAXRo4L9GUvHCn5wOAcWSY0Greozcap7MO910NDuwEhAgwRkOIAKU8pAioCov7XYOydBAiQIiAddPjvqsxKw22hxrWSpSlQ9eWkNEPOZsNGEYNazR0YSEEsGgG3N7PETYllm9vj5VQaA8VlPKx9zfAOQGtPVazHpu2iWoOgbK08F7AWgUhAorCoTtUaGYDhp7jedsXEMpDlw7OKlyc7rDrKgxDgeAEdOlgBo2yNrBGwzsBpacWoaoy6LsS3kjUixF1aTAYjXHkgsi1BdScZirvBERknZWOq+e4D8ELBh1pMruijPKkAFTzEWbQHOr1CvAConRQhYfdM4AhVdWEvUZx1kOpgP6+xupyj+31PE4Z4klUAXAConbAfYGwZLWNrC28UTg+2bJ09PHuCnpZJQcq0J7fI15AHBQThat4TKMEtJ+kQKMk8z5GqZEVCDMHGJmTkVE5iINGSNU78SacABzZ9rydJAN0gj7heGyy5eTHz/k7yoBD9tQCYF3QMsq0nWAg1kEh1fqEMqoDnIAw1HSFMuTAqqBDlniHuYW612QvqsD91CF7Ucky8jwIK5ge3UrK1I+YbNUJuCWDooQXcA0Xu6qVDIuKcmtIytPJ9HGIpVtJj2scKgUNuJL7kBKnj2W6ZLJCltAHyfOpDlFmbQg4k3T0WEIKIMufg6LvNIBS7HFNZUSxo1e22MdgJ1YdcrgQA6qOJZt5WGcmFlal9PzIniMcPU5yUMALEVi9E+ttUpdwGvRIw9dURdl+qt9JlSk+VXlYstE6hlYlyalwPNdpe6lCJygOEVyF6FvD5P2rkGs2gkb2UQLIydMpBRmI7KyYJNJJAp4GCFNw0CRfNUsGPqVqFT4RQbMvpyFaen7h47mKQ70kLU7ydYKuifnMnlI/DWUgkJO2c2JzPAY58lh99DQnm0C6jiRZeLrv8fOn85reA6mqIyVUc+gbB2lRHaCiXxLgIMQ1IktF7XwaBB57YpMcPEvwRw4aErOfmK80jEiy2OPBUPJEJ8adnaZR2lpMScdJ6YCjz4xMNUbxdfY6+j5jVUti1vnZmyTRrkxMKs+NrQmSyzbAxQT0FEZ0bA/Ism4xscdUlpClT0nBSS6bZK/Hkn9bCaj4mhxLiNPjklw4nZMk03WlyInHSQKdzr/XIkuFMzuuwA7gcep1TecuAfs04OL7IDKxvX+Q7puOMUlX8/cPkNnIdGwphTdd1yih5z4fD8KPb/mYoqcTcVsqVaFEeS+fjx5JABCGgP3Yh8mBomACbUzf5b7zMTIC1uRrzAm11mdpbWI+j2tChHHwpY7vA5+l0cK4LK3NTOGRtzGDwgT6EhuZQKNS8fmPZKSxQ/PB4xImSGyjkg/B4LEMNTGP6e/e8f+DxwNZbAKbx3jjWH4b75PB50+6/XPgsfwzBpb/PYDfDCH8PSFECWAWQrj/ae7H5xpYrr72KPzLf//fQmsq/N4PH1MuavmFptYj3K5AuR4wHgqoysEdNPRNES8mAW7GRFB1kHCPB8hXVfQJxoXNyqO4jReWAAwXjt619QjxqoKvAvReQhguBsiGCQxXFsW9omRUhux3DI8GPk5PISOUpUU2NS5O9IELSlfyC0wNDD/RG3oMh8cGsw8JRtJCYjyhFLLYCphVTCW9YLVIktD5IqC64fEkOVqW6FWAWbKexEcvnSujjLKYQjrMysNXPG8IwPxjhe6RR3XLNMP+3RGz3y/RPfZoXkocnlmoE4PiB02WJCYpanUr0L3lUN0q6D0wnlJeO1w4zD9WsHNEEMNF43jhMPtQY7jwaF6xoHxckwlMjJ5ZBZR3aXFO5lgOky/Ql3GhPsZ+wVv6lfL5tkD9RqB7zPdAsSdLpQbuR38R0LwSD7yXwrGug4EUXOwULdmf4TTeP75OSarpC/ZgJrlmuUFmvDdfoX+0vEvA4TMLSnDb3WXA4mOB1EdY7AGIh12JZAW4XVeSUUyvf3cVMP8RH394MjGq9ZuAwxNg9ikys9M+Ze3MsA44+25A+5bMtRLjCdl4FRfqumfwixrJhJZ3IvsAgyTjR0kyq21O/oDpr8D0nlRDyJUgKa1V9chVLAz7mKok9IGvQXMdZb2xLy4l70pLlnj2ggvNLqbN6gMXGIlxT+xT6q5Mr43uYsroIQbg1LF/M3Bx2T4RaF5zn3WPHDrjiwhCNHJQS+qwIwscciVGnroEMtjHC2CzZDWI6pG7DxPrqwaCuf4yVp5E1hKYgEQKmxGxCoPycYL5Yh+4+IydgnYGLH/kMc4ZbtOfxQV3fB59YK9k6nvMQANcpJXbkBNa2SdIZYJK+9axB7DaMpU0yZhT/Ui5I6uauiATm1ltAop9QH8mUezDAy+r18gstO55HLNrH/sSQ5ZgNndkObszmY8pMXH0vfF9y9CUSY7qtaBsNP5tXIrM4if/JZBCcoBqy4oC0zChlceHvOCtdh79mucggSQzlzANg3qGE8lr/zhVoQRF76ONvZlBANUuxNcpoGw9hpWKFSNkMss9zzW9hUlSyWCY1BGaQ2cUpanjgkmxrpjCUsqdg6simyrJWqYanezhLBi0Y2uB5ScW/anK55feb4Fq48AKIwU1+FxXUt07jEsVJcW0UiRw74uHHtrjoJ08oIqACCFEeaeFbdQkzY3BLww1kvlaozuXk05TsE7ydvqC0tVy6/he8/yM6IND96hE82bE/u0Ks5cm+qUlyo2BWegMMvIxNhL6QNmsGjzMkq+TcJTZElArqM5DOg8bOyaDFKjuBvSXDM9Rg4NIvY5LpoYW25Fy0UCW08cuR9ZXeIgQMK6rXEkiRw7KVMt6ELMqUN5xoe5mmn8H2Ie5HeHmRfycBcAF6P0Is67JaNbR8+kD1KbHeDWHGhzkwcCtyuyTTGykHCyClDBnNcqbDsPVDMX9AN9o6M0As655Tg4jXFPweMdUf0LQ40sNvelg1w0B20C5qjBkM92yguoMX/PBTZJU6xGaArIdACHgmyKDO19qhgENJgMq0RtkD2JkUUVPVhfWsV/ysyCtLB6mrsbQGjEahLqcGEZjed/RRHbVPPRMfja8JwTKX5NPM9WPHAPLugK6fvr/FM6Tqk+6no9NDKVzgNYIff8QVCaQqPVDKWraVpS08g0aAaQZ+a8UCH2cWiUw6/2DVNnPgsc/FZjM5zhwG8PwJ9/3j7n9eQCW33yvCP/gZwAsv/QnAEshxAmAfwLgi+FnCP70n3yXP783LT2ez+9wO86weavGSdXj9Z4snhQB4gz4yvoNrqod/qfv/CU8e3aD6/Uc3gtIGWCNgpAB3kn82le+j398/gzGKtSlwZvbFdbLA9qLCnZUKGuLVWQZn63v8f7sHM5JhCtAyoCTZsDtZg5oh6+e3+GH12fQhUOhHHZtDddrPD7f4o1YUalRWHgnYQeNrz5/iT94cQVdWHijIUoLrTy+dn6D3399SfZS8AvTOoHZqsewKCGlh9mXkI2FUh6l8hiaGvVpj/FCYzHvEQDsXi8AHSBLh15V8EsyPKGIY/0iMmyVw6hKYD2iWAwwny4wNg6wkszYVkOcjlgue+yu55ifdQhPAbep0VVkqqrFgO4pk137nx+wWvJCtz+tuAipPMTcAl7gcCqwvGixFyuMXx7hO345Li5btCc1k3ADIPrIwKmAw5dGlMsRbdEAJwZhUHCPPPrHXMSImcX4SELfFtm7KUaJMHMQmgm5xWzEcCihaot2UTHgaObINA4SrpFwjYdrJIveTy3URsPXHjgx6EOF8cyheq0xPBuhbgq4MwM4AbVTCI8GWOVhPpxBvHPAftZEpseTWXQC8ALDY0D0ks/Z8aPYfKIRVgbWCbiKabnFRjGQ52xg4JQXSAFT+3ck/LmBuCvQASg3EuPKc19lZGw8oA4S4p0W3V2N8pbP52cerWCvpXk8whgJMUiMKwk/8zArgWJDZGJOHOCZwHvzDQF7OaJ4VTDV9UmL9tM5ynuJ8ZR+U7d0UDvW05gV32P1JxyGbL8Uga8KKL+wQ9uu0F/6zND52qN+pdFfWZS3CubEo9hI9FdTyEuxYChVCnrqLwDfeJgTsolMNyZYlwaQg0D/bIQcSlZfvG1Q3OnoYQuUqt9IiMBUUncxAoOCaiXGE4H6VqC7pLfNzulRlecidmty8IOg0V95At+NxHDlUGwkzNojiID6tYaLwVXCA+bUYv3tArt3PYTnIMHOCaaqOxE7OYH2qYduAXPqQQ+iYtJpHGal+hNXk2QeT5H9kkGxazYDpAqZkfSai/HuMZlSJgLTQyudRPskYP6pwLAGbC9iumhAuAJc5eEridS9CkRfbExvHM44PJFGQMRhXfNKROZIYVxRxtc+iYv4KqB5TTn1cJZqe2SWfI9nHnYuUV9zH10tclgSBBlA/xJonwKzTyXGNSAtE0d1x4oW1QHdlYrdr2Q+7QyYvQTaJ0B1L/j7LcFTfRMrWXoQ3M+5reqOMndgYoC8nu4vT+glkwY4PJ7YE+kmAG5uFfpzwL+S6M8mCTAZckAOldoAACAASURBVMlKkB0yQ5N8wbsZh115EBEHFa4C+nMdmVw+ZjgTMFtBL2kcUuqDnLo3GybPmuXU1ZnYpnGlKAnXPG/JZ2ljDyeg4QrANdxWlSTvcciljIatKa+ub6fQFFdQ6jmcyMjsT15W+rMFmtfxvR9Dq1IybdHGALT9JOmXI6L03GcfKQc1Oqbi8vFT0i+HCcOKclo1qsyIukqgu+B3TnPj0Z0z1MY0iUZE7CBV6M4khC/hSoH2SZGBqKs5HHBlrMo5TDUow1pz0BH7LSGA4uAxaJ37RosDBx9mJlDtyG5KF3C4IOhubmK/asXtCA+0j2fQfWACblnwuGaK5yf6ecelgjKRSYvsYVkpVqusFYQrMK4UEBlK3Xr0ZwpVrZA6fFMNSihqdBcFpGMCq624zbqUGNcarixQ3WmMJ5rprwcPXwnogwJQxddEAqFBf0YgaxasO2HiLK8h41pDDoF9m8ZjXJeUA5cEMOO6gOo9MCvi54uBQkGAHkzjEVZVZl31foRZlihCgK90rkoBkP2eqo9yXyWg9wq+omzWlwT6stSsKmlHso9awqXtj3wuoSV8pSPjqSAPI/yyJjj2gQA4MpIoVGQji6gMMshdlABBeVNmSW4QAqGKabKOSa2hLAhMm4qSVOcQZjXlsN5Typs6P6uS+2gsICjDFqnUN1WDpFsRfx/BdRZWlGUErQ6QRQSO0ScaAkRTk9VMwUtSZn9lgqniM5hGpO38hBt9m+In3ufzcxNw+Jkcy4UQ4h8f/fx3Qwh/9+jnLwB4A+DXhRC/COC3AfzHIYT2p7kTn2vG8ovfnIdv/Hd/G5/uV/jm+QuYIPGvn30bhXD49U9/Fb98+hH+39t30NkCl80eo9P4aLPG8xPSNjZILIoB27GG8xK///EjfOXZK/zKxQf44HCO3/wnX8ff/CvfQiUt/q+XX8JhKNEeKkjp8Veef4RvffoUX768xvs35/jX3v0ufn93hVeHBUIQqLVFO5ZYVAP2Q4Vnqzv84e0FfuXJD/F7myv8tYsP8A/e/ya08phVI1blgNEraOlx085w93qJd55fo9YGP7w+wxcvb/B7L64gpYdSlKgumgG1tvj4k3P8whc/wXc+eIKLyx3+lbe/j//z1Zdxt59hHApcnO5QKofbdoa/8ewP8b9965uYXx5QKId5NWLXV2hKg03b4OnZPe67Bjc/PMUvvfc+NmODN/s5ZqXBuye3+NbHT1FVFt+8eoFvffIUF6sWL65P8LW3X+F7P3wL67MWPgg8Xu7ww+sziO8v8Nf+1W/jOzePcVp3+L0fPMG/8N4f4lsfPocbFDBIzK5aHO4aLC9afOPyJX7rg3fx7OoO277CX7r6BD+4v8KmqzEMGovZgH4s8N5bn+K3/umX8Fe/8Yf43ptHBNCvFlhctdDSY7dv0MwGvH2ywYvtCidND+MlLmctvvPxW/CDgmgVHn3lGoPRuP9wjbe+8gYvXq+xXrfYbGdYLHpsXy2AIFCe9nBWIbyp8Mt/+ffx2x88x2rVYbtrMF/0OBwquF5Dlg7np3vcf/sCl7/0CtuuxqGtgABUDVfg4wdLrL52i/v7OYKRKN4UTL2tLX75Cx/hd/+Pr2F4YmI/J/DkS2/w8tuPoN/ZwzsJ8f4Ml7/8Cq9uV3wf7/kFUJ4MuDjZ424/Q/inK+AXdhheziCcQPGkRfV/L7H9eQNReqzP9jj0Jcau4HCljV9sKqA67TG0JerFiPXigDd3S+BFDWEF7BUBFzxQnvcYb2umDM88Lp/d4c3LExTzEe7FjAx+J1B+dRvl0xZ9V8Je11g+22L7ZgF9q1F9ZYvDiwXKywOG2wbCCpy+c4f2WxcY3h4phxIBqvTwVkDclvCNj7JSdnjCA6e/q1D+m2/w6qMzQAaouaV0+aYELgaoj2vYlUcoPMrXGq4JDJMSBIfV0z26XQXR0j+2eF+hfdsjXIwoawP//gL+eQd80jDx2QmEsxHqRQV9IJg1J57y3JXB4nsVul/sEF5XqG4lhlOPUARUbxTGU4/T7wjc/OqIs39YstPxr95i/71TSAOMj+yD+h1hBJpPmfZsFlQnSEM/uVoauJ5DGVgOLWYfaYwnAboX3O6CAw19q2EvDPR1AV8GLD6UsHPg8AUDPTfARw1srKU5+a5C+zf2KH5nwdqapy3Ed5dRMosYihVQv1YYTj3W3xfYfDVEL6zIKcgM3QH6x5bSYA0OIc4cpbcR+NoF/d/jqUf1RuU+XABwc4/mhUL3xKH5RGE8jYqHxx5nv0uQsfkycPE7Aa9+JfblPraoXhRR2kwliI8Jx+UO2H3RoflUof+FDvJTakqrW0ppXUWwe/J9AjOzYuhRktH6MqC6ldknzZAvMsf1bcD+ObdT7Ag4gxQ4PA5wDft/2ZkrMJ4QyA5n7Jy1M2Bc+1hPFNC8JpAbzqhOQGD9zPJD9m9uf3HA+rcr9Gdk7aleIUisrwPap3yMawLOvk3/6f4dj+pOorojyz//lEyxWdCf7aMvdlgT3B7e5vkrN+wftTXrXxDI2uuOvau6i0xvT0WAcNyPcYkpsTlW3egDYBfA4kce1Z3D7c8XWZlhUp9qlCaXG9ZuDKccPKghdpcOQPsW1Shy5ACivo01K4qeZ4Jk7tvstcfhSuZu0jL6cVMKqqvpCYcA9s8Ezr/j0D5WqO7pB+3PJBafOmyfRzZRke3XsbqHYUTcDsLE4IqoLEpSZrNkOvHstcXmCwWqjce4EJi/9tg9VTFwi4y5GgPax9xeOn++YEdptfE4XCqsPhrRvlVAWmD+YsDhqoxSVmQf+Pylwf7tkgx2Q49rd6ZYQ9R6mLnE4kcjxhMN1ZPFK3dkX9srjflrC1dKHK7oYy7agHJj0b5VYPbGwswVxqWE7gPqG4PusoDu2CnaXmlU29SBytTd+s6iP9MoWnqgq42DWSjUNwbDmtff+UcHdG812SO9+HTEsC4w/7jF9ssLLD7sMJ6W0AeH/qKIn18y6QwukhmgJR98sbUwS/pBq5sBrtFQnYXsLEIhYdYVJbegZ1cNPntHh7OKQLm1cLWC7sgAq95G/7sEFKtSIAS9wJ1F/3iG5kULXxKoqgNBaUqpBSi1lYOBPWkgnI8hbjIy8bH2ZtMhNBEMpuTgQkHuevhFBXkYEUqNICVk22fPpzgMURrLVNkHPs6mIqsZWdgssU09mcYiVEWuSOGCI7K0VUmvZ6oRkZLsp1QIfU8/pz8K6Tn2cQITeD5md4/TcX/cLYJP3/c/+X4/4fbng7Esw//yM2Asv/rsJ9eNCCH+MoB/BOBXQwi/JYT4bwBsQwj/+U9zPz7XwLJ+8iw8+i/+I6hWonktUewY6hFklP3dUfbVPqVMT3VRshSnk0ku6MooPYsei9kbh36tKMe6o5Sl3HOCmTq90gQ0qKnvjNH5QH/BL+AkL1KGU0uIKEuMXw7lZpJaBQXU95RHCcf9TL6FFM6QUgi9AmY3LOkdlzJLg/pzieaa4RrVhnLFYheOotkRu7F8fNwkr/QaebLXn0lUGz5ntXXozhTqO4/9ExW/4PnFGCTQXHtc/5LE5f/HUAnbUMrWr8WR/IlMRpJxFZ3H7m2N5ScWXgv0pxL1LXvaZtcOu7c1Fi9cPtem4TkYlhJ1LBEvWn5BFZ2HrRgaMS54TOWeHWZe83VL561oKQNLEfPbdxRWH3mUG4vhVMdJMTB/7bF/iwsKryl7bW6Ymtg+Ulh+amErTpdTBP64oEys2kTmQQKzaxc9RSzsru84DTxc8QuVUloGcDS30ZPXe9z8fIHmOqDc+Rj0wfdBUOxnMzOJcsdEwVTNYBuJcmNj2p6ErQTqO4f7LxZQQ8DsxmH3RGP+mmETKUa/2DGZtz/ll7nwQHVr0F0VLBgfA8xC4nDFL8L6nq+lbvmFa+aShfcbj9mLAdsvNlj8aMTmC2VO8mxuHCVLnu97ACjvRoynJdorhcWnFmYhUd1Z2Dlft+Z6RHdZctpdMHGw3DoECXTnGvWdiwmJInt2ds80Vj80cLWEbh0Qkxm7M4XFC4PuXKPaOqje43BVwFUCJx/06M9KLoJi3H5QlIsdHhXwhcD8paVM9ESxH29N1sVWAs0NQ0BcLdGfKtT308RXDiwIDyr2390xfXlYq8gweOjOYf+khDIJ8DguvG5NrlFgHYvIUsHqzsCVrBmAB8rNCDtj56yrYhqkYsBOCv0wS80C88Gj2BiYVZELzIMUKO9HQJAxaF60GM8ajGuN5tWA4bSENJER0nzO6tUe3dMlghQoDhb9WZmvQ7pL7zGHcV0wFCUA5ZbnMfnlir3BcFpRomgCit2I/rJGuTHorio0L3sWtyuBYmcwnpQotyamYyIGlxiYZQEzl5i9HDCuC1Rv+hwY4upY/G54Dso7Bp24SkL1PP7ytkcoFOxcZ7mgsAFqPyJUCnZeZHkgJKKH66h2pJRQvcuhL0HwNfFawlcKwykZnWJnyTQggXL26CVvoFkWqG56wAXYkyrXQfhSZlZHHxzGkwKuFtCtR31NGZtrGI5mZhq6c3khXN4NsMsS6mBzr5/eU2ZolwVU5xC0gDCev58VMKsySy5DIVHccRFnF2X8N+4nuPill9FBdAbjoznZod2IcV1BOqaNqk0Pe95AdhZydBjPGuj9CLvkcxb3fUzblNB3B/hZCUSPnWsKFLcH2HUDvenhS40Qg2RSwIuwPnvY3LyE2vU5mVMeRkDKmDpKP5uvNOAD9KbLj5GdJatTaojBwJzPyGjFVMygJdRh5AK+UBDdiP4LZyhve8jO0LMHkMVqCkorO4PQsH4iCAFI8PFVwfCcmLwq2x72fAH9ZktmqlD5OiIOAxftZZSkRhmkW1RQ9weEuoDoTQYdqVPRzyvIbQdIAXs2h369hV809OjJKZjGNwXktsuBNJBgCE7qRJzXQPT6wVgI6xCaCn7G0B0xWsAyBIifHUfZ5lEVhp/VkIf+wc+iHwhOYlCN3LXwJ3MC8P2BATjHvY8VuxnDrCazdyzfFILhNlLAL+cQ/cDtp2AbgPLVpgK2ewgp4c/XkIc+A61QFpCb/bSdQxdTUAXZwF1LKafWBEFFMYEja3P3Y5g3EG3HkBxjyFIu55SihgAUBUI/QGiFYB07H+PzhmNpazjyJKZtCokcdqMU9zF2RsrVEn674/tpMee2rYWoax7DOAIyvq+iRzG4KIk9rjyJ4E2U5VHQz/T3xD76wwGyqfkcRz7OLIUF8rEFYyFyCNYfAx6TrDb9/0+4fd7rRr7xXhn+59/46QPLrz//E4HlYwD/KITwbvz5XwTwd0II/8ZPcz8+18CyeudpeOvv/CeQ65HScCMBKzH1UALCSOiDgLmcpvQqBlD4meME/8xCbdlNaRcOUAH1iwJmMcnzKK9jNUb9UmNc+ehZmv6eYtFz2AIAV0fwWAZUrxTMysPNPMpblT1SyRcpYugC02bpu+wvKS30JRdk+iBincDU15jub+chetjICqie+9G+ayE7BpGEyqP5RKO/8AxasOIoYCHA1wHVa365DBesHHENvZepomPxocTuSw71S97PNon1QQ7eSGEnqmc1hC8YRpJCIopNLLpvJslcEPRwFjsZQVaqeRCUFd5SPqU7eiuLLc9FdUdgf5zAKzwDVew8Ttu3lDgWe5E9b6mEPrEHCDE191bCLsiCLT4SMCvkUnt9oF+x2E9yuqQREZ5yQN3Sf9Y+BaQR0C0ZBwZpCFT3MQXX8LnK+8nD5yomzQ7nIfr7KFus7tjvVt3Ts2QWIldt1LcE+8dDinKDHAThakSGSzw4V8n3CZDdSN7B4965VDejRrIbTKpErrZQIzB75XF4JNFfBCw/oASv2PPxZhGHGiMlnbNP+dqmCo5iT2ZE90c+RDAtVY5TSqtXPOch1mqk8616YFzz53JDZszM+LgUuOFjdH8qkw+SCb6sQeG2hWO1hm6Rvan1zXSehaPcbzilh67c8vG2iQOjA+V5kDF5thbwsf/RF0DzOuSkY2FjkusIDOcC1S0/P2bO941XlBCmIVS1CblDM9WAJH9Z6lMUlsOx4VRAdZQLpsoSsxRZrio8GZ3k07RzeiK95rmgXJLpxrPXHu0jma8P8KlPkPuR+1olt1+2AcNSwMQKi2LP1yB5YJPkkq/b1MvoyiQVJABlEXtMrRWRPTuRR95DBpSU24A+SlWlCRjWEosXZJTSvqWKkdzxGD+r0sb3tgsYVmSLhpXMQSRqCGRguskDWxy4SB3nHBamQZwyQL+m/zL5SocTprHO3rjcGeljBYYauK/VPQd86VhTMjR99lPHYwpVAYBy7zHOZZRZehzOVU6Eru+jX0whDvj4c/KX1hvui6um5GL2mHKAl6pX6luXvY/NtcF4otGfKOhhGip1l5qv8YHDGFdNnZFyDOjPFNQY8jAvncvks+a+8X3jY7hNuSErNqwVJaKraZvJq8haDfoe5egxnnDIk6plki829Wum3spUw5ErSTwHrGZOryO/NySKnYMao9wS7I50lcqeaF5PY2ejC9knmas/Yj9qGoCwfiLAzBVU7+OwhRJPNfhYTxL/HX0M8YlDHAGo3tFLKcGB0AmHXUUcsokASMt6D3ZE0m/oY/WGnXEIU9xzwKB39Ewm72xKeLWLAtV1l8+PLxVUZ+DrguxcfJwvZGTtDIcKhYTsHaRxsIsSuqW3MSh6Kl2t6fk8WPgoPU2MYJKU2kUJ1fO+aiDIcbMSaj/CJxkyQFaxUrmfMtV9iNHCNwUHSJ2FHC3DbyQI6Kso11SxCzOF0qRwIEQgHUL2XQJ4GOSTBgNKQHQj/LyG7Ecc+xJDoaMXODz0WRYaGEae85pA+oGv0rqpNuSzPZQhTHUjQ5TJ2pi8WiZje7yoGTtVmKRAnuP7p33NPZNkKnMqbLodMYkZ+H4msCfffKB/MgFfKSawGmW5UJT2Pui1PA4DSiBSyIf3+Um3z3kq7J8VsAQAIcRvAvj3Qwg/EEL8lwDmIYT/7Ke5H59rYLn++lX4tV//W9iaGtZLzGL6a295MUrproX0uDs0eLza4WAKCAC7voKSHlp59EZDS4+nJxt856O3UDWGiaBBYD7v4YN4kKiaZKN1aWAc00r3dzPM1x2ECBgGjeW8x66tYfsCzbJHt6v5eXQC9ckApTyqwmCznaMoLYauALzA/KTLj+9juusw8F+3L6AXBnZfYH5xQHvXQFYOZWUxtGX0EApIHeB6hflph74vKJNLUXFOQBQeQnmEwIRTIQPK0kLKgK4tUTUGSnnsb2dIyY1QgdelXlF612ruy7ZEddZhuKtRn/XorxugdhAyYL7q0XUl3C56EOYWi0WP/Q9PEIoAdTrA7gqg9CgaA9OWQEzxlJ2iTzDehBMIBWWGKDxgJdTSILypENYGIUoAhYmL07MBri0gughG3zrAXDeQMdQJhYdoFUIZKOVsPGQv2SXaS0osKw+9GrmPYQKQD1JZo4cxlB5ilBCG0r7hLQ4rAMCtLcHH6wJu7iHWI8JthVA7+kdPR4RBAUZAxjTVIAPCwkG0yV8KwAHCC/iFhborIltCwOhqDwR2jIoA2LWFvtOUNVoBtZdMMZ05DlFiyJWPIJygnIuw4l7moKNiK2CejcBe83kOAubMoXqtYBa8PwTreEJBUK9bAXPqEWSA3iqGQe0Eyp3AuKQcUMbtu5rhSnbtUNwrloIbAIG1NDKmgaY+SWkExjN6F4MCzIlDeauY7qk4OBAxZVR4dpKyn1NkqR2AXNGRuwIDoPfT0EaNfI5Ub6FGAbPgsMc2AamHVB8IflQXZY276BONaZVyJKM6nvL1SYvTohXoL2LA1TsWai9R3TBwSzgB1aUAkTgIq/jmS6msTI/la8/O0fjWDBNwTbcEsuySALW6o08x3d+V3O8knUuA3M74Wo6nfP10h9zPOXsV0F2IPETzGux9HSYJo+qjOqPCFFalkJ8nhT0VBw4DigNBcrkhQObnfkpTdeUE1IXn71KFUBpspeCjFLSTXufUn5n8iUn26UoOZsxM5JoiXzAkqrpjCJXwVKV4Pb1nEqhP3kUfk2RZNB+HKT2HRSmRVhoOkOibQ+zXoyRUdRyyqZ4STjuLao0lB1NB8djS8U41QwH6QJnocVLr7DUVNqm6QjgOfFRPQO6LeE4Kkfc1JbyK6AVlf2sc8HQhJ6WOaxHVQBwO+DTAia+L7mKAWKDKRh8IvtNrkK/pISaJDoGDqxOCtWI/pcimJFuVknkFjzFV4rBmJ/oto4pADxwm2lrkiiKv02tD/14aFqVaGlfGLsWYbCoNw5TS9UEaBnu5guqYVNOSAC1VRSEDwlTpkvap2vncnVl0rCUZF1TcuELkf9npyW15FUH0jnU1tmbYkhxZv5IUPUFwO8KzfiWBaw6iPUIE/qm+SDr6OauNi9dgmZUEHPrFOpoIeOm/ZQgh3yf0eNqa+2YbGQcK/L5mHVQaEnEAn6pcfCWg944s/xCrY0ZuR5oo74y+d2lCVgMI6+lzFFT5qIMFkvwUmJjlEBAK+SDNVg5UE0ibfLjxb1GuGpSg4kDQJ5kY8KDk9DghIEd+efhSQ5qYIqtkDiZ6kKiasJJhRYqvYt3a4Nh7aT1Crfn3BGSFgIgMa07FTSE9D4DYZ+SkQkzMbHh4vwddl/FvfK3D9Bj3Y0AlgNy5ae3EmB7fPgNAM9gzdvJCCkmmNN2OgOYfuf0Y1vTH3UIIn/vwnm+8V4b/8Tcuf+rP+wvPP/3TAMtfAutGSgDvA/jbIYS7n+Z+fK6BZfXu0/D2f/UfwI0SclMgyAB1kGTRVg76XsE1ATgxkNcFfBVQbCT9P5qL6pQ6Oj4xqH5Uwpch9mGKvFCVAxdzbkavkz23KN7o+DwspPex+1J1It6P+1js6ZsJMmA8d1CdRLGRcPXE8tkZg0PsnF8OuuUXolmwJB4+LmyXAeW9wOHZ1N2YvmQzcxEXekx9DDl9Ni9IxunvviSTkErnXc0F5rhmvUOxn5iVxHAFFTCe0gPkSjKBQQLllovIcRUwexUDF0pgPPGoX/NiUW65oEvno74R2H3FoX7BvjobOy27S/qn0pQ4Rfv3Fzx+s4p+pMjYJYbOVWlhmrwsmICKRK4RSAvf/pyBIvThEOzoQ5IzB5TbmNpac7siAIdH9DpxERpyyIZZxQXQEFmzOTtHxxPuT1ogmeW0SDx+HeobMmvslARSVH9aPIuYPunLtKDk+Zp/zB5INfLYjuPZ7Syen+gp2z8LmL0gY8uET7J4QQj0VxGABC6ihzX/1S0XS8Np7M+UZBXNYgIawylfj8SYsVeV21ADF80AstcoSdLHpUB/GXD6PXqdIKYqh3I7+bbGFc9h6rQEyCwyLTV6ywzPQ32NGCCTFsgid6T250yFDVrk40vH7CtK513Jx9jZtLit7tnV2T6WmbFOlQ7lJgbgXAmUO+QFa30T0F9MtQmunhjQrGpwPM5xKXLfI2spKJPnApOgy0c2yZcx2VZMAT0qbmM4IfvoamQ20Gsu7BEl9K7mzwzjSP9yIdfckAG0NZlTOwNmbzzaRwrVxsM29BuKyJzqPkTJK89VSowt2tgLGhfrqUe0uSbrlK5Z1Zbsm50l8BZ7Igf2Nlb3lIcnG0EQlIwPK5GvF/Vt7FttBOo7DzPnv+0VJev9iYpS8QjsosVgOJFobph829x5dKcSyvAc1nc+9mZSbq97Lp7T+0F3k00hJT0ndUgaKDSR9RtWEraO7PyBwCRIoN54HC5pXTBzifrWZca2OIQHzGwK//GxxzQxlBCU6APIzOa4iIv8yJrWd7QopPRW3bF3EwC6M1oLbC0yIEtAjR9YPm9976EP7KtMtoL6zkUGVmTvnCspwQ+Snr7ukr7f5BccF5SDBwUcLjTqDWXfphGYXfP5bM3k2LT4D0LAziR0R0uD7jwBtqYNpL7lAl+4kKXgrpbs44znLrGBQbJWIigBs1ARBPO4dOuzVDxtz8xVZktdRfDltUB5z/7RckdfIJNc46LdBpiliooZLrQTiKJaQOV6ESodaPlQA9nX1HU5npARdpVAdW9iqA2gO0umTQm4SgE+gS8fFTiS94k2ixQoM5xVKFrLz9dhYgeFcRhPKxRbA9fouK+Ox7HSKO8j86oEdO/IOPYW5rSO59Oy31IIlLcd+sdzCOuhD/QsZoDlaDVICa92VUHvKIXW9wPcggylW5VURuwG2JOK2+sMgpTsnxwsA3U6+0d+Fo7spC9k3hYwMY/CxITYyD6GmmwnhICblRAhQO2G/De5jV9cx92QKWHVOvhZBbnvKFOuNEQXGczj+xd6YgwTwIs1IUkqnMN3InuZwWIClXF7oakgumFiIY99kSFwW7H3MrOZNvoWpcgJtJlJBAiOLdlaSIUH8tskmwXituy0/8DkzQQo7VWKPydfZZLHep/TYNMtfIb1/Ge6Bf+5l8L+wntl+B9+4+qn/rzvPf/kz/zYgM85sJx95a3wi//tv4Ntx/G8lh7LeoCSHp9cr9E0I37u8hV+59O30e8ZRmKMglIezqrM6rWv52ThRgl4gcXZAUNfoKz45lXSox8KjLc1WamzAbp08I4XCrsvsLzaY38/gywd3K6AnFv4UWFxesD+bkY20Ur2+5UeQnuI6xJ+ZbG6aNH1BcNhYu+ivamhLzo4q+APmomlY6RWFP9fr0cGtzjBAJzrGcQocfHFW1xfLxGMnJi2xDzGBFh9q2HXjH6HJvuG2uUkTF8FMoQA4AUQuxtlR1YJ6xHqVQX/Vg/9YY3xykLtFMpbie6pJQv5uoAaBJ789R/hg+++BZwYqJesaQkqQF92MLc1xMwh9IrHFYDytcZ4wX0Tc4swKMiDIrN1Ei+IIkBvNFY/d4Ptd84ZSHJbQFjAPhkhrwu4hSe7GVlMCMTYTLKYxT0TO1XsEQwXI3BfMDlxZIhG/UrBLFlNow4S808ENt80THMViImyHnqrMjOSuuPGc8fz7QSlyJLMZnmtYs8aGSEI3lcdyMKt2U8pUAAAIABJREFUvyew+wJgLg3KFwXM2qO8UQiSDJXugfaZQ3knYVbhiN0C3IygPwHR6p6BFPt3gfX3gPuvx2HGnB2KxWZiOhhAwkVzeScRdIBtQFDtuaDdP/eo30hKiGcElGbOIY1d8tjGNetg7DzkFEzgmMkRGC4dyluJYs+0VSCyXIOAraMk+w1ZVkonCayGc4fqmhJsXwTAx+GHA5qXBKppEAREkHctMJ5OA5KUpGpnlHGn0JThjMMENXC4sfyAg4FU1yMsZd3NK5E91eMp2UN9iEzbWmSADCD3UBY7Hp+r+ZE8HkboA/d/9w73hQvkyPjF4UB1h9zdOJ7EAUkM5qD0WyB10UgjUL8hq8HpP8G5XTAMZjglE51qXPSBz5UHUWMaRgTsnwKzVwLjku+v+gYxHTSyU4f4uQKHFK4SefjRX1BiXuzZU5gAVnofuIYMp+4Cq08EWDu05vlJ20gyXt0RmCcwXrSx3qUFZtce+7eSlJWSbldRguxqqgooX42XNM3BVbllVYzw/P/klwcQ2SIyWiYPaUQ+XjVE8D9gsj5UQLUNlBA7DmbqjYeZCQJkIIPkVI/S3Hr0axGPIVZuHMhaqgj2hsgSJlZVBIJ3GzMFdB+mblAR738b0z/3BF7SsdfQLAXkGFBtCeDrO4bTdJcS5TagvnUw89i9F4D+hJUwxT4yjmI61uaGA9XhJMpt73hOxoXIuQUJ2KshDvocZbz9qcT8pUOxs9i+U+Vz42LtUpL/1jcO7Vs6Ph8yw9hcW+zf1rlnNMl7EyMnXMgMZ0iDgkrkepWim9Y+Lga+2IbBOGkwMy4lqi2B1rhSKPYew1rBzATKNqC6d7AzmcG4NAHN9Qiz0LA1Qb6ZRVbNEmC7UmSPdX+mUW55vps3Bu2TEsIDzWuDoOkNHlc6M6i65/Pp3sd0V4nZiw7d4xr64KH3BuNpSbnszlEK6wJUz4qTYu/gC7KAtlGwM/q5XaUyIPWlzOCMAFigvKVv2c6ZIl60Nkq1J9Y0aDl5kROhJsh8jusC+uDiUEk8CMCxjYLqmbyapLxBkpV0M50ZSmk9XM1aEt9oBCXpvd+MMKsSXgtUrzu4ecEqlJTWasjaBpGCdsgAytFmya1wDmKwsOf88GfAOk4ADFJOHZrWQ46WPt7oaUUK07lv6ZPVEuIwwC9nkLsDQl0hVApyPyDUBVInpXARhBmLMKsghgiIa3o4hfUM5Nm19JceV5IIMXlbo384+1wTUM1fwHICewBBp1bT830WCyTwmepFkoTWe8CHSSKr1OT/9DHw5whIBufycwfnCEDTLbGUPwZ8Ht8+i1M+74zlP+/A8nNdNyIAzAqDy6bFq8MCq3LAvBhQK4vqkcVmqPH//OG7+Pqzl7ie8YLRG43z+QHGKfzak+/if3/xc1i+0+Pli1N88flrvP/BI7xzeofvffwYB1Ph4nyHi1mL73/8mAufqw7mUGB12mKza/CNtz/F7378FMZoyMLjYr3HMNf40tk1vvX+c3zt4jV+gCu8c3qH7/zgKZaPd1jWAwrp8Xq2gHMS+12Ny/MdXn10htlli74rUT06wBqF9UmLrZxBaQdn+YH0XsCPErPZADnvMVqFbl9BLSzcoBCCgCw8ROFRVgbjUEAISl6rymD3ZoHFz91BiIDRavR9lHoCQOkhTzyJryCglMfYllCVw6PzDV78wSXO373D+azFD+xbqCqL6hv3cH9wAjzp4dsG6mREVRkcnIDfKbz/8SXUxYCytBifBoSbEvACZltBLCyqxqA3NdZXO+z2DcYnAUJ5qBcVrASKdQ83UxA/qoHKQRYewQv4mcW66XF7YTA77XAQAIxE8bKEf95BAfBWoj7p0bcldOmAD2dcaJ87FqpfdLBuhjC37Cg9G2GKAnJpIALQNRqicpAqwJYFNhce5XLE6GvU5x2G1zOImcX/z96b9Ni2JehB32p2e9ro4/b3vnzZVKUrTWHhAtkyMESCkpAQljwHJIb8ghwwsQDJAxCSjSxgwBzbPwGJCQOMbbLkqsqmXr737rtdRJxmd6tj8K219rkvs6pMkVLmK3Gkqxtx4py9127ixPrW19nCE3wbCXlQ8NcWsnJo/88Gxx8MwCJAaw87KbhWwl+yNX2qFeTIxYbQS+hHHfb9Anbp0W57jPea98JxCdd46IPMCXcApZGbfwl8+B3Wh9w8/4CvPjuDGBSDq75tcJwkhBPYfYvg1twYQASo9wStoSALoHYa8mkHc19jEohpqwL9K4PqiwLdcwfZS/SvJjQ/LWHXDkNQcI2HGiSwNBhbC/lQoHthAB1QflnANQHt56wLMVsHO0qEwsMueBBuRS9vWglt3ggcPvEYf6tHuCs5DoBS2TJgeMxVfdVJ6IOEW1n4UWL3PYfijsC23EnYhrLb3RWrTxA9jpR2CfRPHGQvcHjJFFFfefRPAooPCm7l0N/o3IMaVIBfAa7xOLwQaF5LHL/FBQY5KrgSuP9eIJOKKPGMdRa+iJ2UhqqDUARII2FWVAb0jyhXps9LYDr3UAPBq2tiJ+0ZGf/UP2tWAebSQt/HGHdLUGhWXLRxTZS7hlgDYgBzxs6+BFzLewLi4ZrjsG30aL+PiwUlpcTdDSf0buUBoeBqen69BoYrSlxtGyssamC8pJdWTgTm3aPYnxqA7jL2pcaFgfZL9jy6GtmHnbpjh0uP8p7nafNHwN33wI2EBPjpO3YlYFZcyCj2s9pDODKZ04YLCmoQURIaoDsCpbQAIByTTMPbWTZpVoC0TEv1mscwbvmHp30dQbROSo7I5h8DDo8lXPK3LgRsO6eIlg9kWM0KgBBRwcDrG6QimHZkz/trdiumhQ2mm8ZKk6hmsAtuc1qJLIPOyo/Y1coeUrLGSdrtqtivaTnGcUMgGCRwvFUYt3Nnp3AEwoen7Inl5w7fJw3/p78QON7yHHePA+QkcfYHHuNWZJnycBUXOqWCPgIPrzSqe4XxnMB5WnMhwmvAtjJWc2gU3eynpRc4YFopMsAi5JCzoRWRAQ4IJUFkCts73qqcAOtLAdtGX2tUA+iBxzmtJXuCL7lQcbjV+frymvPc2ErA3mhIx21Ue4/hXCLIMoPX4y3rbXSUoTIoTWL1uUV/yfoRQLGH9rLIcl9pPEyjMa0Kylb3DsKTkTZLAUACDcFqf1Pzvt4QKMopUAlQk3mdlgrYEhAyyCrAbTTGtWL4Xa0wnCuUx3hsqdfVC9ha0iNsS4znRax74XvMSqH6QA+u6sn0lj5A2IBxq1HdW/hKQhkfP4dUXhCTRsE1scu0IqNmFgoiKEp2a/4tMCsFOQaEZQF9tLCtQlB1DP+y8IWEXRRR6SHhFgWCljCtzmmqQSoEzU5SNViyvwEo7zxco+CqGsXBIKzqzBYGJeHqeXocCgl9PyA0BXxkNK2q6ClNi1UNgai9XNGzqSVBohLwm5bPWQ931nKh5zgyLMk7ekUjm+iXFT2YUW5Lea9ieJMQOTwJk0FoWacC74HRZjCKIfZdnkphhYh2IRtZzACME8KyjZ+BfmYjATKcpzJbFetorAVkZCmrkiFBWueKkTBNuaoknPhFU5flR/tI4UDAx32Wsa/yl7KZf06wzzfl4cMvB9F/GR7feMbyb/0P/zE6U+L9sYUxCuNdDUigPe8wdFE3J0AfY6wyCDKQNSw9QqfJYln640I5s3Qi+vaSnw4yINQeEAHyoOmz0vToSRt9XQHwNZkU+NkzAUk5GgJZKzHwl114+uJyz1ftoTsmlwYVJ6GDhFs5CCPoA2w8gmbIjm34BxUAvA45eEQfRf6ZL2JpfEN27tSnBcT9lmCFguVxq5EMBwIgR3qCbMOOQdVJ+CZAdhLlg8B44aFGsgLm0qJ6reFKsjVuQTYvecsoqeW+1SgoVQ5Jtgj4MiCUAcUHiXDCdpm1gzAyeuiQ/T5kZOgdcjUrC+TEiQ59dcknR5+a7gkSUshP+SAxbTxZv0AvnN5L2KVH9UHBK3rcbBOy/FGN7Obz0feGwP2EOGnzJcOJfAEkb5Vt4oQsBhilkCO7CFBjlNPGnjzbsk6iek9W1CwDiqPIgUy+4MRxPOc26nfAcDmH6qR7IElAzYK1E16TsUqMjK9mT1x+TxlQ7qOfsOMkMPUfApHhOkYmTcwyPWkjGxGlxq6az4U+YmbxJL8XHrB1nGTEQCdhyYqqkRLbJA1OY01esyRvTp5AFtTPTEeSy6bx2Ha+VxJblpgX4eI5jWFKSV6rBuQKg9RjmCavXnMsvuTz0tAn50qOX0TwmryrqkeW5akxJbbO3r8kMydLg7m3MJ4bacleJdl0Efv9sgctBYsE5O0CZE9sy2so+LGVJZNAlIfaWd7pqpnhlJYMmKtEvk/URFCUmFcVz4sIBJXShTltW2GeoFrKj9OYgPkc5YL7eGxBxGAcObNbruAYygdKlYPi5FhNyJ69xGTxdy2xIiEzeEEilt2H7PWTdg7RSiFCKVBNjfFeWDAIKV2zxLqlffJGizLY8oRhjR8NIsT7OH3vItsYA3WkO2E7C6DoQw77SZJ5rwE98j3lYU4YV9N8nzNcKGQglcJ0uP/UnYicEJ7Oa2LQhCebZhsJs6D8m6Fbc3jR6ZjUFCJbEnJnY/ob5hUl3LaO0lUghwqpzC6G7MGkn+80IV1k366aeOLUGL2p2cowhyclBjh9NqTPo/T+dMzZP6rT3z0eWwr2cZVAEdOuk0cxeQvTOUzXKt33riKQS7+HCRTJk/2mcB9pTvzsMfzn9D7Jn1nRa5hDWywBUHGw7EedKL0NkgngavBzbUUiDKNs9/Q5XvcYClVQMsvFIMXrPzKoSPVkNblYENk+mTyoEsIGSDf7FeUUWTAVw4CMzyxaULQmwYXsXZTWwxdzQm9mATFfv9SnCR/idaJEN9V6qKNBiFLgXM3hPITx8DUTaeU0B+5kgJRYu5P/vZb0T0bQk+SxHyXKJn+ii0BPJ4mqpy8yMZpxX8LG504DdayjRDUyfpkhPA3WOa3gyPuMwUM+zPLYX1bbESWz/IWJf5hPf34K0k49jM79ojT1pC8yA76vg7xTgHfi08wy1a8FAqVgno8A5Onja/v9sySywUx/6s/+vMdvCmP5v/yTm1/5dv+1Fz//tR8bAMg//yW/uQ8pAv7gs1t8/m6LdTNAKY8nL95jcdGh29W4OD9AqgDxusLF+gjIgOqmw+L2iPasx3Z7hF5PEDrS9CpANA5/7bd/gmI7QhiB7as7LJ/uIK8GVLcdpbBHDVyO7IarHfyZgb0w8CuH6uUexb1EKALCykI97RAah83zB4hRQF/2qLYDoAiIcDEymOPxAHczQk4C5sLy/VWAPJ/gr0cUmxGhcfCtR6i4Aih+6wDxpIddefjnPf091wPcwmN8atC8FTBbB7d2wPUItZlw9f23sBsPv7awT0aYc4fp0sKtHCCA8ukxhg4IiOsB5dMj3KMR0+MJvmWwyOJzCbmdUL8T6J8bFDsJ/emeHs0PGuONhX8yAALY/EjTF3lj4J4PDDY5M/S83Vi4MsA9HVj7svSon++x+ImCeTbBLj3s0sNsHUTryOI8GzkZfzqQubi2CDqge2FhFwSV5szBXFiMZx7TizEyNQF2TZaS4S5A/VZi+NYIt+Gxp8ATc2OgO4nh1jJwRIPnaetRvxPA9/ewiwDzaoAvgOnlQHD4wMmnPgg0bwOm7/RwdUB/4+ErwJx7TBufAZIvE3ME9LcEk/0zg/q9yKEwEEB4NsSJDCet1T3Q3xAMjxceZsVFgONzh+G3ewxXLoI6dspJB5iVx+qnnChPZwHDlYerAvonDv1Ty944yTCawycWwlEyeXxhyVwcEhsSMETpaveUzOHmxx7jWUD3nRHlQ8DxlUH7JVkhBCbcQrDHcDzzGC8C9r81wbUBF//Cofv2RDndecig7/jdEdU9x5pk3HZBX6x0wPG5Q38dmKx65XF46dB8FdDfBvRXAf21x3geMjs1ngV28j3yOD712PzEQ1qgv/WwC05odt+1OD7jJM2VrNJp3gYMlwGHlw7lLqB7RFZSGbIg/aOA7nHA4nPKCeGjXHVNGfG04cJG89Zn/6aKpeXlPuD43KN+H9B+FWKgDSf4/Q09jsdnlH8GwUCW+l3AcC7Q3wZMG/pGd991ODznNg8vPYYrnsPEcFHmSyAvJ2D3qWfgyhR7+GKi7f6lj0E5AfsX9EDuXwWonvvqr0WuIUohPr7iftLxCAt0t5xAT5sZ3FR3HuMG6C8F+msBVwvsPuX9keSzh+ec+B4fc6GovxU4PmJibP2edUXDFSce04bn5PiUrGT7xuP4REQGh8Bk/4pjnFZ8j+4C+iuB4VxkH2j1ELD7hGMIGli+5qRImoDdtwjkvCa7x4UPyp0TIE2Jx3mRJS4g7F8I7F/x+BdvLL2FkhP+8uAxbQWUAbpbAozdS3ocuyuJ3ScC9b3DtBJ5AYehMZR5Sge0bx2atxbdjUB/JTBt43FFL2J/ze0P5+zCSyDR1gL75xLdlUR5JJtY3zuoKaC7UTAtr6OM7Fb14GAWAsdHkmB9CGjeWexeKBwezfVb3ZXMQLK+dzg8IVuWfKrDGQNJ+guB/kqiOHiYVqJ9bbD4csRwRnlnuff0+VZkUYcz2him6O8cthz7sFEojqwF6y4VuiuJh5cqpuoK3H9bwSwkTJSpTksyb8drBdsweVUN6e8+WU6vOEbdMfioODLFtdg5VHcxgK1z2D3T8IXA7plGdWcAAfTnimO5phdSOC6qmKWKYUGSvk7LtFtpAuq3A6aNgi8Fjjca+mDQ3WjYpcoy1PLDgN2LkvVJAKaVwuFpiXFb5DAaNTi4WlHiOjq4RmI8L6AGh/FMY9pqlO87+id7Ju9W73p01yX66xLVVx2GMw1hA4rdRFAkYgWM5sKU6lir1F9o9FcFEGtkvBYZ5HQ3Fb/3AdOmhOoM7EKzdqdUMCsNsyr4s56SXX3XYbiuIDuDaVNA70eo0cGsNORg4GuF8azCeFEC3sOsS+j7AdNFHT9/mGhqVwXGyxq+YU+k8KzsccsSblHAtRr9owV8ITGd1bBLpr/6QkLtR8j9APXhAFdruEVJ5vpyAbco+b1SCErBrmtWE20aIAS4VYUgKYF1qyTnFjPbV2j4RQXRDRk4imGCbytAzRUyCSyGRY2wbCilXdTwqxZBK4S6IgBctQTjBWtQ/GaBUOhY0+IR1gv4s/jhHAKlswDgPBNp5Xy9UnJrWC2A1QJi0fJf/BoAWdTIPoqqhKjSqq3PtSOYImMpBZ+PoFakkJ5YQyKEIKh0EVj7wDGkf8H/4vfBRynt/HWwJ5Us39BHAOAgfuX/flMe32jGsnr1NDz7u/8ZzKGE3EW5Su0grAQcyCRVHrKXcUU8MHSmQmSAQl5lTp6s9nOJ8YzF6dKSXRKWkjCzirUbC/qmUliKjmzSeGPR/kzTd9XHVLjI2ngdMN1Y1D8vyEKtPKr3lEzZBX1xqaw9bTsUZJBU+j6uGidWS3ezxMi2DBFSAyfo1QemVFZ3nAQFQebFtoBXZMASU5CkY+UDJ4hjnMxX73mjJs+Uq4D6AyeOifVMNR7Vncjl19Jwwl4cJIQB+mcWzWcaKlUeWNaFyFFkJiet7qZEwJS6aFsyPsURuP9ti80f6I9CaXQfQ0xOmIKg+P503OWJX2vckiFMnsvkj0oMiRo5AU2eMBWl/GpI0riYBGm5qp+CMcyCY+TACIJUDLcRgfdBdUcGadpE5iJ61FyDjxIrpzW3lRInpZvZO2mQgVBKYHQ1GaXMDmJOmGQ1CtnW8YzHnbxwdsGakaDYvaqPMUBGcuKuRuRqE5cYw+jr09GflOR1qVg8MVauQa7PSQFMeiCAKfaRBYghOc1XAd0t711I5EAdllyLnAoKz5+7KtZ9FDPzQKZKzOxbPReK817heW/eRkB4zeOVkTUQIW4fPEazoNzNLBm6kxJMeU9y3HLkfZA8gvX7kKWRTGgUqD9QpuhLvh4iMc4hp3ume4/pjRxD+RDytm1DEDVcxYTOLuSQKDnNaZXDRZIRRiaqEvl6kmkMSJU5Sb7pY2pmiFUvlGkKtK8Z6pJ+B1PoV/7dPLHuFLFeJQVNJZYrs+eZ6ed51j3BhppmD24K3xnXMnsnq4fI7AmyeQDQfGBFR/59NTGJU7KndlpJlLGyRk0M4UmhMImVVRNTYBOjWnTs3U3MpB5iafuOATCmjSE9NYGiPmXPTlj77CuLgAwCsDUBFwII5FaUWTYfHMe69/l/08p4Hlz253lN5iZ9z20SbNtazCylCfl6Jbk3ABQHShQT6JU2ZHYxbZvnwOc6jtSNy6ClEBdRQk4INa1E89bCl3ONCjtBKaU0rUTzjj8fNgrVPrKWAigODOZxDRm8xLCqkT2xygQmmUrk47ctJan8e0VwHQTgGgk1pC7bAN07eCVysE4QiKmeIdd6kK0Tefv6mEAZg318KeFLMo7peHUXg2cCMsM4bTTqdxOBWQSdAMcXIkBNoM+29BL6Qp4wbCKzdUVn48KZhhpc/IyIfj4XoDsG5NhGodgZMnAAXMFjSoxgDn6P3sWgBcTkIUKAWRbZz5j6XZPf0BcSqjMER5WKbDIZYX2YYDYV74nYq0r/ogY8xwkAqreQg81VJsIy2CXJMIMWubOTf58KqNQHaj18paH2A1yUo6bxeC2hekPQVM2eQwBkJq2fQ3kmi1BGa8Bk4duS8tP069lPcJsG6jgBxsIvaspNJTL7J6xnr2fcZ6r/CFpCDGYO05nMHMwjBFnJ+JwYpvw5gLKA6EcErfi+GLwjjEWoS4hhohdynFhXkraXgoLS194DVUnm0ro5vOe097KugGEkkKsr/j8ZdoUCCP1AMCgleze9J9BL4T1fT5VNwNEHwLvZc1lVfM5G9lQpdnRG72SYpnk7SgHG/Jn+yfT4MwN+vv7ab7jH8rd+UIX/+Z88+pVv96+/+Nmv/diAbziwbD59HD75b/4ThCDQdyWEAKRy8E7BW4HFesDhQwsxKITKQVYOwUnIgrowNyoIFRB6BX2n4Z8OwNtqnigAZAfTJ7YKgKUcNeiA8qajvHaMenVBYIsp1lUU/NAXk6CkNUpm7bmBumd9g12zLoEVCooT09YjlB5qp3LEvWs9qncK46VD+V7BLmdwR4lmiJ2UAm7hCdosw27kwFVfaSgDTayo2qu8wg5Q4mnOHGQnc3emPlKuqjv6qFTa7pI+MP5BDPkPq+4oOXVLBrl4PXdIEkQGlHcSdhXgykDW8Maj2AlMZx6qlyjvOcEWgZPxaRNI3llkQCitgFccly95/BBRAhylpNKKLLlj+EuUMoU58de2DMRJINtsQmaeKGONcl0fAdJA+SrA8ak+yopTLYYC6jcMWPEVIAyyRyrVPiRp4an8xy65X9XP0kPpouQ0MpUZWNbIkipfANUHBsEkSV6SUVbvY/ek4cS8ekAOYVETcr8jgSKBbGJg5soJLrroo5j/bxiu4soIFLo58ESmaoXI4pjFLFFM0s0MvtxJtUR8T5LzTps5aVj3s8RTOD6XQFmSqyZJZ0qsTZJV+rn4s/Ta4hi3k9JdVeyA3PJ9KcU27SONNwXVpLGLMKfApiAW3fMeG84JtFiREmWmCnNSa0/JnI0LyqnD0Cx4vUQ8Z77gAsZpd6RN1Rh9BG4eeUHFNsgdoqdgMWie65TImh7Szu9N8kk1RUAeYgem5XjmNGC+JkjeiwloSlp3Y9VHmOWkS1YdJDkvwVC81+L8YE7xna9lOubyQGAzLWX0Z3G/eogLAEPIUlER5ns3XX8RkBM2pYmS6WGWlppWxH5OgfJAcCsjYE2yVRUBPH1ukXUG8jaBuBDk5ns2LdrJE/ArbeC+G35esIqC/Z96TECLqavTkmFeKUE4gfb0GuEIJhOgBLj/FCqUrouIwUVJ6usjMCk6spvKhBz0Mi1lrOsggEvA3CtuWw9cFMgVFElWGz2FKZzF1jyXrhB58SbJXBEAPcbKjhNpaWZVG5mrIlh9EaJkOMpyRTzOgaA5HY/wIX7WcLEsLV7oztF/V4q8SKeHed6TgnmUYaBOlssKzDUc8T4SdpappkTWHIwXFSbChsxSqtjD6Yv4+995yktjCFQC89LFPsxKRsBL2etcyeFgFzpPRaQNczhROoWC96srZU7JnSX8IYNiVnuE/NriYAlqO8tzXCkEKaCPJvsMU59jlrSnYwCAEHKwjrAeamQQTwIrcrSwy3Iea6DcNwfoLMtYCUI5a4h1G2qw8IXK7/uFQB3BZFy9G+Bbgic5WEqpjYNbVhF4Ely7pqBc1nler1hVAu+ZPFvQQxiUgBxslNQSYKeqEBH9jvAeYjD0NAL0Umo+H8qYEBvBpnCezGSq2ogS0VCVEMYSZEqBXLVxKokFCCQTwFWSfZbFSffk12W06XHqU0ydlqnfEvg45fXr4Thf31aqHAE+SpTN7z/ZXpjMfJxSzq8/Cej5f407viaL/aZLYf+yA8tvtBQWALwXCAFYLAcsFgMuNkdI6SF1wPGhwfriiKA9oAL8sUC9HFFWBgJAUVtI7QFP4LdYDvAbC+GA3/6rP0NoHPR6wuWTB1w9uwNUiB5NIBQBZtKoL3rIy5FS182E85sdRBBQVwNWj/fQ6wlh6SBXBr71rEFpLdyZBZ73EK3DdGWhthPEJ0f41gMLi3I9wl8YhKVlD2LlMZ176O1EZvJRB3s9QZyP8Jfch5oE7NYilD5LW1Fx5dZX3LfbWPjnA/S95urmysEvHIQTCC84o/a1B573CDpguuJ2pnMPd2ZZvt1GRmAQmG4sV61XFqEMKO8EE1T3Cub5iOIgssfUbii5nc49XM0U1ukswC8cxiuHoALspWFNyZnD+GrAcONht44s57WFOeeH6XjlYDYew7WHawLsiwFm5Vn1sQocazH3eZk19ym8mGsvRsCsA6aNx3hJ6WQAMF3SnO6agOGRJfBbe4YZLALMuYM543mdth5m48nK6Dm106wJbpmgt16dAAAgAElEQVS2Gcd8niajITONZknWfLpwufOPibScCNg4hmmTai0C7CLALkP0E8ZJVMPn+icOtg2wbcB4TqA8nAceT8lglenMM73ynmOZNpQwMimW+1Y90N+EODGO/s4+JrNeuugrJEDob3hcZhXZzlWSgc4T/DEej9c8D9MmwKwJVMYLD9vwe9ZWzPdYSpZ1BUHhcBlTKC8900kXQCi47+mMFSW+nFM8E7ttazLOvmTiq1lyom7aODGu5yTRJAeFjEmkay5umBW9rMmTOm54rsZzTvBZd8PJsoue3MSKc/GDstG0b9tGOXQdvWaO9RlyRD4PIUpa2cknYBdkXm0bfZ0VFwvGLVB/oJSViwHx/opMpa3JSgNko4dLgfGck/zj4znkxqwEw1y2ZC5tmxh8wC4+9u8liSnZb94b7BPlOZ/W0edtQz7+dDy+EBjPRD7fZiky45wWlforBqx0VzJPzNN5ClGe6qq4zSVfm0C2rbkfAoyZceyvuR9bcbL48IkkAx2vn/C8J4dziWlD2Sa7TQHTiOzP5KICv6enc/YPFgeC62kdF5viBNwsCB5tIzBuCYhcLTCuef5sFe+dAugvKOs0raDHNILkaSEj0GE6qKsIipOUn+MRaN47uELkYB0EoLuWMeQnZJVHArhmpTCuZWaxbS3gSolxIzEt47mO9SIIBHymlTALmWWr41rOHs+CTC/PkcgMnStFPJcS04L/eC9FNnTB+hHTyNxPSR9fyEEyQQr057FWZAzzfuLxCk/20zY8f7ZVTGYVIt8LrqSn0lVkRHM4T8kpEet9eA6Sv3BaSbhGYdwogtGtRnG0OTQnxHPimtiNGBlxsyDQ85rbc7XiokyjCEwRwZ6NfZWNZJVIfN6sFMGe4nkMWmA809G3Sl+jL5iQ6ioG1ZgVQcB4puHqyERGT6gvmfhqWwXXxOPVAnZZzGAx3rfjeQE5OobcNCozwq5SeR++5PjMKiahGrLArtG5UkOODq6UGM4LejqdJ+sp0vgp5RUuIJSUziJ+7Rruxy1L+ErBV5os6mgQCkmWEyD7WpORs+uastaYDBsKRWBuPINwKgUxmtiNyXvTVxx/UOzBhBDwtaaXU0qG8JTxNYUClIRbVpmxDKdsW1vRh1noXwSVgiBSxAqSoORcD5K8kWVBplFKSmFTtUhFOWvQKv+bAZznPpT6mPHMAUCarG+UwKKuCBbTe1JAj1IQUpI9jIBOlCVEUUAUxQxitcZHXlGA30fJa05/TQA4bRP4mL1Mstg/6x+AJIf9yxTe86v+95vy+EYzltvvXYe/+Q/+NpZ6xPthgd1UYV2O+NC3aAqDySncHxpslz2ECNjHWpKqMCiUh5Ye+6FCAHC4b7E9P6AfS0jp0e1qYFQozwZIGeC9QFlajKOG9xICgFSe1SVOYuoKSO1RVBbWzpUmAOCNhK4snJXwVqJdDxACaEqDd29XEJKJrWFXQp6NCF5gvepx/+UacmEQgoCQAX5SUJWDG+Iq3iQhF4aJpZ1GsTAwgyYLOyqIkgwtAiAKDyECvFEQB4Xipsd0KCErBz8pCB1X0SYJ3VrYY5FDjWRt4TuN6mzA9LqFvJjghvie+xKL5zscXi+hNxPsvoCoWKdSVhbDoQQGxUoTAKJ0wL4gs2slUEZGeJIE7jogOAG50/ANZcx+6SAmCdjIGgMIOgCFhzgyKTQHLAFkYh8PcLuC7289024fNHzlM+MsvIDfGMj7gtvzAqF1SLUsolcQ6wnhoUSQDFHyZwZiVwAqIMgAEQQZaRUiQyCgOnpbVSdR3kmMFz7vT46RUR4or4YXPDc2jr0XsFeG6bK95LEBEEZADWSDgzqpCYm+yPHcQR8l7NoDjgsfeqdgL0mnyAcN3/pce6J7ekKHa5/ZVtuEmDZJhsJXlHSbs7jwoAPUkRKt8l7CbOKijObrUtKnPgpMFzxGOYns3SToPpGAKsBsHNRRAbFKBYihS4JBTCKel1TbARBMJxl1XpE3glL1g5iTFSPrnoOeVGS9MYMfNfJ9qp8Z51QfMp2FzJAnwDOz3MihUOnhmhD7DAVDkHaCwUI9faZypJTVx3qQxLgPVywRL+9Y6xB0gIpMfJDcjllG5jZWwyS5dwo8crEOwqwi26dnlks45GsjYniUWVO+jpD8p/HcFif7ATLDmZgvX3CxoHlLptnFQBsXmcv0HjWchDBV8zi9QmZE1UQQla6N7k6Yy3Ler224CGKWs9w9sUOJTeIvSdx3BPKnoSWqJ6tfHMiiJzbVF7E/U4uZ4V0mWRxygm5i2xPjqYb5Pkr3s61j12sKnQpx4aCc91ccQl7EUMN8H5LN48+T6iCFr+T7ViRGb1ZYSEdm2EQWOzGZ5Y7HkSTLwiN3kOqen1VmKXKYEhDZaw+4Jh0/FxESQ52qXkwMw0q+0nTNkk1ATRyPCCGrNBIb6wtkC4mwBLYpFCfdRyloC0BmJ/UQMC1Elvl6zesmAjIgFz5kVjL5SVmTlAKbRD5nXsXxRcaevsv5XKiYrJrk3wzlij3TUZbLhSkZ2UPkvtO0gCajTYXe+CgXN2lRlvUhaSwqBgip0efPG1/E6xO4eJKAizRcsEyy5ZT0mj4T5BQZUkkvqSsllUN7nxdobCVRdMxqcFHinc5hYj75mTcvTFCx47LU15cCKoUzyaQ68VCDg1kVUJPPDLYafQTS9OGeBhf5MlbbuJPAIRdi4FTqwp0rQ3wZA4QmB18xzCgF3CBEqXEZ5z0u5CAhKAFhTkJmTmS6KaRIHQ18oSCNy4xo8rLKyQEukOkMgcC3opQ3yXNhPXxb5OAgYfgLSCDrICKjmcGWB8RkyCaeModJApu+14rBPVKS4dSzfzGFPKX3i5gES2bW87VI7HsCafHrX1Y1cgIEP/r+9BECvZKJEc09mYLjPH1pqhv5+na/tu1/JSwSQeZfBsbyf/zHj3/l2/03X/70135sAKB++MMf/rrH8Bd+/Nf/3d/94e/+R68wBY2HscHvXf0MvS+wLCd8e/0WWnv87vXP4YXAT99c4j/49J/jGGgSCgD2Q41/49Fn+OKwwSc37/Bv3fwUf3I8w/6rFX73uz/D33z1R3hrl5iswvdvX8MGhUebHZ6d3QEa+Ndvfw4jFKQKKCuLv/L4SwQp0DYTLldHnC07fHhY4Ppqh34s8R/+1j/Fe7ToxxLTWODJ2QNWqwFPzh9w17W4enSPurK4XB9xu9zj8fUd3uzX2Gw6TFOBi4sDNsseRWPgJaAbCyEDLrcHOCUgJFipAYHltsf3Hr1B2Vr0TsMbhdBriMLj4skDDrsGunbQhcNm0+Fs3eFwrCFkwPXlDutNh/1DC+iA0GvUFwPGDw3KywHPr+6w+9kGL7/9FcLCoe9LBAk8unrAFLuegpXQhcfvf+//wr88XEKWHmFSOL/eox8qfOeT15ALi36ghPns6oChr1B+UcJvHLBwKFoD5xSElQgy4MV3vsL9rsWn3/0SD3+ywfUnH3C8a1Ff92hXA1TDAminA8Kg0V4fMVkNYSXK7QirgGI9ob3qYLXAy0/e4P7LDUIVsHqyJ5D6oiIQNQS6jx7f4ebmAR+OCwYWtYZdqBsDdBryfIQXAsX5ALXkokLz4oAfvPo5vnh7hovffYuj1AiGgU5+5fB7v/PH+MIvsLjsMJoC20c7BjNVAd5LFNsR6ssK7sJCLizKz0uIl0eYUuDi+T3q7YB+IeCbAC+A7//1n+D1YYXzT+7RPzQQTqC86WCkhCg95EMB4YGLT+5Qng0YgoZTZHEROKFefPoAoyLrVAJ+y8TAUALF+QDUHmGSCI2HPJvgLw1w0Ag3I+TKwhaCPZxPRtgggZWF3BpYLRAg4B6P8F4R6K2YLGzOHdaP98CfNDDnBK/iWQ/1aIC/K2EvKREKmvovd0aZk68DhJVwrUf56gD5WQ2z8QhXE9AzPMMuIpO7SX/ABcLzAVYKCC+hPjlgggKcgL82cGuH4oOGawOggOGFQf3siNEWUL2AtGTn9UFhunAQj0fYJkBMCqEA/KseOGpKvG8mqJ3G8Jhgv3tuIa5HmEWAuzKQtyMmr+DWDJsSLztYryCtQPU79+gLCTkogjhHQORLoPjBA/pWwCFNiJKXlddw+qtHiHclzDJgejrBXVnYGjwmL6CPrCPRPZlEXxLwuoWHOfPQR/q8h++MEEcF870e5ecFum9NKHaKr7+1ZGZLieHaQyCOrwD8pz3k+4J+3ouAaQvYdYDXAWYdt58Yyo2H7gWmLdnM4ZGD7llJoyaB4zOP8l7EgKsAu+JrigdJT3IBdM8tynuJ8SJgvKb/vXvqsfgiBhd1kU0PAv0ThjL1tyEuaHARaNoG1B+A/QsgKIHDC0ro+0ceehDobkNO/AUE9t+yUD3HMJ0RJI4XZLUhuADQ3/jc/Xp8FjDeOkxnvGeHWwYpVXcCh1dcCOkfEeT3N9xOuQd2n3Dxxyx4nSFZ7XL41EEfJPobnt/ygQFG0lL2Pm0CXEsZ9uE5xzReEAT0t1GGPQDjeQoGEuiveD685uRbmoAhBiwN1wHKcEJvF2SRh6voAY8MsFky4Xs8F5jOBfavAhZfcHvH54B0InqxuW+7ZNAQFFny8Zyv6SJz3rwPmLaSCw81a1O6a9Zf0A/Hfe9fglVAkaWtDgHDBdntJIW3y1QJI7J1wNYCdinQX3JxyrYistBkqKc1LSX9DY8tFILsvACOTyV0H8cfRGTfkwSaftrhUpLB12RgmX7Nif9wLnOoUncr2Zsamf/DcxkXCSS6W4YP9VcSemB40bgVKAbKgseNiunAAofHiim8jcDupcK0VrEGRkZ1jsDxMT9fjrcK5YFyY68FBEBf8xCwf6phG4nxnEmph8cKeiAQ764UAf4UEAqB7ooBRsoC/aWGi9Lnw5MS3W0BKIH+QmPaKMgQfa87+gJdLXF4XKA8ehwflWje06sqPTBu5+0eH5VA9DzbRuF4W/I+37DXs7stoSagvyogQBa2e1zDNYqLYLWMDKRAiKmy01mZ02p9FRk9KTBc0r+oJjKpdlkAksA/KEGWUwpASUzbEtIF2BUlvAz4iRHwUSZt1xUgBcxFA32c4FY13LIEFNlYEYBQU5rrlxUEBHxTUEZdawJEgIsKdUEW+HxBkBuDf0T0bIampLy0KQFJJjXUBZlH6xBWDVDqzJSGNnokteY+kk9S6/lrFX/RUoqtUgS3SjHMR5MBF1XJcfQ9nxeS20my2SjhRXqtjhr9BC5jxQoiwymEIFv69X9A/Flc6Ejy2r/A48f4v7/84Q9/+Pf/whv4FTz+2//+v/zh7/+dNQLEr/TfP/x797/2YwO+4Yzlk+9vw9/7X7+Fe9fif3v4No62hBYeB1uhjJn6nS3xO9svsLc1fnR/A+cl2mLCw1ijLQz2Y4VPtu9hvcSXxzX6qcDFooMSHutywE/uL7A71lg0IzbNgONUoi0MBqvhg4CxClJ6rOsRzkv8/Ksz/ODF5/hst0GpHZyXCEFgUU646xos65G/F0Hgq7cbNIsRWnn4IFBqjvnYVzCjRllbbBY9+qnINHffVVgsBrw4u8Mfvb2EEJTkLhcD1vWI98cWzkl4L3C26jAajbY06I3GoatRlhabZsB+qOCDwNCXECJEVtRDKbKzV5sD3tytALCqxUwam1WfmWAlPe4OLaxRuDrb482HNQBgu+7wsG9QNxMOuwZSBTy9usOfvD4HAlC1Bs7GDxUREOL5CQGoaoN+X+Hyao+HfQNrFNrlyIU1J7Fd9nj7nmPSpYOdFIQElHaYPtRA7cj8RlCIIFAtRzirYA8FUHgUjUHwUX4Ux6G0hx0VpPbs+L0r0Tw6YOhLeCMhDhph4WZWN7HBRrKmxgpgbRBGhfa8wzgW8FYiDAqytfC7AsXZCHNXAZWH6BUB6V2F0FrIwsMfNUTlEQaF6rznmDvNlf0DWVm1MvBGIngBmMjeCgAjj1ftNFN3WwcUARgkIAG5MPDHgv/vC8hJwtcey5sDDl8tIUwcf6e5ymskxPmI8KFCqDz0vYJ/OsDHc4hJAoWH3GvuS5HdlZOAv5rISJfzSqQoPEKvIBoH7DVBXkV5OmSAutdwDaXGXGVmfYtwsRqmDFzZdYLPReYordD70qPYsV/Rl1zxV0cZGVcJ13iE2kOMEupAFsJcG4iRK7n6QUYGgKyp2RDkykHCX00QHwpO8lcE4tBkjdUxeuCMgK/m41WRFRae3mhhkkQzhZ3EYytYV1S9U5g2Hn7pUL7RZAtPQlgS+5gZOszeT+miD7gOJ1H9QLHjcxBkCQFEplySVZME33KkRzDoKG3feuhOQB8Y/qXGJB0PcyWIRAxCE5nBJGNKn3R5L5l0HcD7L9YKiTjWxGKpKfqno9JATrFCZ4ivi55N21JaXd7H3sV1rCuKFUNBIndrmmWUu0dPcmLVAN4v5Q4xnIr7VePMAjN8KmT5frmjzDiFjrnoTaZU/Rd9w5mxG5GrQJKE1RfzsaheoNzP+02dl2TLkSXZupvH7hrkELPhfPaz0sPL/ZZ7+liDQA6QUiOiZDygfpuky8i+4xxKlbyZZQzq6k+Y6hN/YxoHfZ+xXsbPHtbkvSQAiNVKTQwpi5UxAMFcek/at20peU2BO+ma2IYpvim8i4FrZG5TcNFH1xGsbTFNBI51qlPBXHMkGXxEnzDHkvy5AHJYHuTMkvsCqHaBnZNnEvW9x7gWKLr5WhddyNfcLAXqu5DDm1I1Sgr2Ko4cY3mcj1VN9PQGSWbUtBLlwcO0ia1ErvKhX5VA08ZQqsyATpTuqpHPAWQp0+eDtCEHH3kdw8Si1Dz5WYUlgD9l/hHoE/UlJ/imkageXGYW+ToyqXYhUd5bmLWOYw/RMxrl7IKAOyXo6qOL7CVyYmuqpUmhSCIGMaVjSs9z+4mBJZsnLb2fPlZ1SONhlhrFIdpblkVmYBMrmdlaGyCNi+NQEVzKzI6K0WUWMjOYkeEULtDrWUTWMC62U4Ybj8k4hCiHDUpkD2uuL4lez/w8QPZREdClGhPRDQz9MRahrSH6ka9bNHlMubZkmCjL9dFn6hzfe+w/em3CBKKpZ0ZTCmBM8oMIGk+wQ0ghQlLMQT5JsurnqpFfWpNycnx/Gpv59Ycfhj/1Z3/e4zeBsfzeD6rwD//xk1/5dv/Gy5/82o8N+IYDy/V3b8K//z/9Pj6MLUanMViNq+aIoy1hnIIQAYtiwroY8L//wbfw177zU/yzLx5j6go8eXSHz39+jhfP3+HtfoG2Mng41HhxdYc//tFjLJ/uIACcLzr89MfXgBMQrYOuLKra4HDf4Pxyj/2hQQgCl2d7vP7yDPVqRFFYHHYNqobsljsWgAxYnPWwVmJ60wIrQ8mqF5DaQ0oPc18DMkAvDcIXNa6+/xavvzgje1ZSXgovoEoH/6YGLkb4Y0FgszIIvSZ4sBJCBlxcHDAYjcPrJf+YdJSFlu/JhrjaAylJt1OcIC8c6vMBw0MFWElZqWAYDwoP1VgEJwg6Vha6trC7EiJ2R4aCfyTlSJaxvO0wfbngcR0kJ/+NJ3j6yRJ2ww8ctVeQTzuoHy0wPDWsdZkEqvcSw43Lk3WIgOrVHtMfrWG3FiLKbGVPiamYJELpUdwp2A0n9Tnts2SAkls57u/ZEepHS+geOD6jx1MOMWBp6VDcK5hbg+VZh/6PNmSPNgxbMluP5nOFMXo+hRewGwt5VAgXE4KVKN4WMJcG5ZcFJXNpgn8zQb6j1lBaAXNpoN8VOSTJbB3UQaF+JzCeh9jFOMuvVB8LuhecpE6XDnrHIKY08RAeUJ3A8Nih/kLRv7hgaIEaJN935lC9VwgqcEIeCBjKOxkntnNwUQ5DijI9V83Jx65h32r1RsGsmQZsFgRNwgo0bxneJKfYxVgR0PgqwFXs6/QlJ5/TJmC6dFj8REevp8iJrakn1DZMfS0O7BctDpS8MtlYwuuA9rXAeM5xMvRIYNpwbDJOQs3Go/xA8J2CZFKBvC9j0vIkmFRcAimxlinPBFvlTuTE3pRwDHBb05pgtTgKjFumLgfF86UPZFpUT+ZLHxja5KpAAJVCnyI4Yv0G7wF9FLm79lSWOW2YBh00fa7SiVz54vUsNU1BUOOW57S84/tT32eScZoVgYxZ8nkGBxF0wMevY9hS8iEWh5NxxU7S077SJIf1FVOSg4gpuw2BnNcxyfhIb6dZzhPbnDodJ/1mSU8qvXDIfaQpEOo0OThJdYt9TNmN/aHl/QyYAbJHaojSTkNGsjjM6c9JwpskkkmqWz6Q2ZlWHG/zlj5GE32WyX+dgEV17zFuKNdT40k/YgSptpklqLaOzHXL+6e6D6wTGU8CmcooLV0QnKkRmLbs8gwqXTtuM1W8pG7LtF/dI9/LKWhqOJdMFlbIsk7bIIcuZWAdw33YMwo07wmQbBtl0VHCm4KObBNDnGLqcwp/8gVQ34cI0CltTWFFEJTEBoEMYqWN0tKRAMs0SQJKQDUtZZapjmuJ8kjgl+5xZQjEKD/lvZS2l2SuXs/S0HReXMUkXdOSpWw+OEyLGHzkEWW0MXQogp8kh60efA4XKo4eZsGQodwRGrsz8/lNoBTIHsjUwQlEqWny2Z6EKLnUIxrAZN0YWOQLgeLIBF1I5O5JX/B4zYLjEpadngRMBN/pdQgJ2KZ7QqJ5M8KsiizNtI1EsbcoDgbjeYViZ+Banf2davBwlczP575bHwj4YmdmkremPs003vRwlYyf8T56pDXKhymDxCSRlYYBQ3K02UspnM/H5CsFOTiCTMFzLo8j02nbcu6mFIKSWCViGu/H8tJQRE9mTKwV3uf3ByEgnMuhQMK5HBqEEBgCpCRyH2V6CLKl4tgTQI6GlSOOwT7COqbLGhtBqfwYuCWAGZNs0+tyLcrXU2G9R7AOInk/Tx+xtzM4VosE5xnck+S4J0m1OazH2l/Y/ulr/pUeJwE+33Qp7Pd+UId/8I+e/sq3+7de/fGv/diAbziwbB49C8/+8/+Ck7cD/ziofp7ASzsnSKYUQwjkUvhUz+CL2ZNT7ALlOjVw/1c8Lv8PGYMl+Ic3hYGkSoQ0YUp+JxHiRCfWM6QEQJZ/cyLg0yQoTmamNSdBcuLEgBN5+m2KY8jemGkbvSQWWLx2GNcyBmLwD8vxqcDqJyFXLNhFXJFXcyVAdR9gFvTR6OMcUZ4S+9JKcerb0/08qXKViH+kkFmPcs9qgPoDJ0oi9qydpk+6Mv1R4jaWrx12zyjXkXaevNHjweCLckfwgPgcWQnBVfkaqO88umsF3Ydc+O4q7jdF8Cd/m22RvXVqQk6bdJVgdcMUMG4ZIiFjV51pU0gI5gTS6K+q72JJOXjuUlG7XQioOJ7+RmD9U49xFUFgO9c82GYuak/H7DWv+eIrj2EjkTxQagho38UV68CJhStnFqU4egxRNqbHkGsZ+N4EeGKNQkrOjL4jaUMOTPko3TFO6KqdY6hDLXKqqTRzqmdiHIZzifaNhxoD+nOJJtZGpGRPPXACqwdeY9OIfM36S4nFa5fvreQtqx8cjteUbSXGJBWqA3OhfZogqzFgXEssvrIwSxXL2ONEKk4c0wRNBGBcSVbG7FntkK4lV7l5PUwrUfQhru57HG81qgeuuLuCvig1kcFwMTk0PXTnczXLtJSxZiPWvFQCRc/rXz04HK81ipgmq3uPYavQfOAJsvW8Oj+uFYrOR7aCQSNq8pAjJ2TjRqK656RVWiY+pq9FlOrRS8VV/2LvYBcyflYGyDHALFl9ERQ786o7S2ldTMrk77zjpLCW0fPElfVxo1DuPYqjy1K7BKTU4POYpPGwC4Vix2N0NXv7pA2wrUJ5b3B8XKG+iz+vZK7c0J3Paco+sh1myYCV6p7XXvfRExV9WQCyX0za2UNW3htMa3rBXC2zH5G/05yk2lbl3w81epiVigwbq0ykY6JouYteqtgTJ1yAMp4hJ0v2FkoToA8GZlPQExfBDMDt2ZYpoCIEmIUmO+KRqzJcLePfOJ6/oIDqvaH0L4LEVEKfAIGcOIHjOeekXg1kmGzchy/oxcsT9hDgWh3rRoBiZ3LqJ89HQLHnB5BdFoAPuQqFKbJMGvWFnAFACAQKsbYjgYRpwy7IxCr5UkIf4mQ3MnwIQChnkMEFNpFZHTkxhVR1DGORk4MwntLD6DkD8FEFRgqKUYNlgAsA2Rm4JQGAOo6YrhaRuQvzsYQAvR/hFiXUYUSoipxCCg+CDSHgtSRrFUN48v0YAYuLiaMikL0S1sOuKuj9mGWXQcXrvRsBJZg2OsVqCCnhFiVkx+uQ6kF8o6GOUw7R4YHxtb/wfHyEQkF20wx+CgVYT0Yujo3diQryoePXleb3A0EaXCBYUXKuECk15GgAY5mA6j2ZttjBCGMp8xwMQluxIqQp6EUcJ4QFAVT2GlYlEJ+X+x6hqWZAdAqQymIOr3Ge4wJmD2ZMRg1lgdPgHWEsxGSyfzGDL8eqk7QdVmjYXB2S9sNzLeYTm8aTQGJ6faz7QOp5BHK4T7D2l9dypJ9JmWtCIASrPaQCvCOTmPyMKVjH2jkYyDlQkuXmsX3ND8lf1fj7EmXC+ZGAXfRVBmshtP4FNjJYC6EUgnNzAuxpQu3Xt5mYTSHxZwXzBB8ohQUIVP+Cj98EYPndH9Th7/+j57/y7f47r/7w135sAKB/3QP4//JYbHs8+Rs/x3EqsakGKOnx47cXAICm4gfutppQKAcpAn782RXOLg7YNAO+vFvj0dkOh7HC/a7FKgb8fPhiAxQBt4/uUO5bvP23S2zPj/h3n/wxfvRwi8/eb1GVFlo5fHi7xvbigLo0eHe3wrdu3+IPv7hG3UxY1BMOfYX7ty3Wj/aQIqAuDSar0PUVlPIotUM3lHBO4nAssLjo4L3AcKggtEe7GNE7iWks4EaFop1g+gLoFep/7wN2//QK4pMjnJOQ0sNOGvJ3RvQ/XyEsLWAk5YPrCd5K1MsJ+88XePS9N/j8i3OUiwnOSWtcwYAAACAASURBVCjlURQO1kqYSTNMCIAdFf2cPm5/KBAmifNHD7j78TlC6yB6ibBw2JcOftAQlUMYFIrVhEU7YrdvoH9aYzp3aK47PDu7x2d3WwyvFyiuerjPWrJAL3v4dxX01QClPe7fNyi2A4rCoXvXQowS5W2H+2NJBtcKoJr4f+khdgXCwkJWDnU7oT9WCIMig1l46JWBPRQc30iWU0gyxtuLA+6/XDMMaFBoHx3Qfb4EJFBdd/B/sIR5MSLJrIKTEJqeQ3jB93UacJRBypdHmHcNukcC4ZxhTPVywvjFIrIBnivFFVeTxSQZ/lM73DkBWU3wnUbSNn7QnsFETkAsLaQKDGL6qoa4niiPHcm8wQkII1h1owLkUUFeD8DPG7J2twbyQXMSWHG5mR69eHACZMB9oL/yjsAj1dCEkkykOki4tYcwEoDD/qWA7iSmcwc5JWkQYvgPWfLpgmnBvvKQI/186qrD7nWNoCl51bs4kRecOIcCs+z02QD1kxqqFxhuHD2D5xbFnUaxk5i2AXffV6zD2ToUH9ScEroIDBxa8ZjDzQD5ZQ27CVB7nov6dZTTVpSw1l/FJNY6QE3xvWCIUnjRA581AGKSaRvgVxb6XQHhAHMOtD/TkI5MohqYfptY3iBiWMy+iLIsQB/oa1ODwMOnDJQiqKZENRQeZey+VQOvEwM+WKXTvBV4+FQCUW6rppgmCuTKkBDDc8bzALMWqF8rmI1H/YYqBspfydq7KqB+V8KseCvqLjJ1tcz9uklSK2z8WSNQvynz8/ooYgKymtngyBbqTmE6o0RzuCAjrgZABA05ArtXJYoDcHxK1lwfBSdRIYWpIKbOJra2jOeG4WaJAUNk4JLHrogyVN0VGC6B5i1iom8MkKmY1tx+KdBfz/2yviCrKqcAu9AnIVGAvFW5eiaFByWZK4CcjixNvD/WQHXH1wxXQHkPjGesDhJh7rJN8sOZIWTHblrMfHjBCgo1UMaaFgnbtx7DeVzoMyc+Qp+YYy7occEuHsNE0GMX6R5FBHZFlACHvPCphwK6p+eSgV9k0NLiXJCxV1qAvZAxhIaLWnExU1OGuiglhrNYUbILgChyn2uSG6eAoCQRdSVB72kNifAVTAss3rCH1BWUxALAuBY4+8MJ3XWRA3+SXNjrFBzUoDhE1jm0qO8CxjX3A8mFXjKaDaqdw/hpCzVykTEt1lFqG+t2ppDTiPU4V6UATDFuPvg5VCjKPfVZCVcyXTaxrNWONxH9sbOcFABcVXPRIdaUcNGuQblzsfJEZJkrLrntovPozzXqezJn7O1suFAUWWAufHDRaPEnR3RPWt7rVzXvM5lky8jX1ld8vji4nKqrO1bCpMWv9Fx6uIodqGmBJXV8zswsA4MApugWnYVZagi3BALPxbTVKPYOqrPwNUE5z1UEPB5wjYI+2o8qUrgDJuiq0UN1EaxIXifVG5hNDd0Z/j1UMblXS6j9CLeucqhPqjQJSsy+QiADdTEaylidi+qbFKhz0sNpPWAdgvcIC/Z5in5CTooVguxgYHo9tKKMNbHZTQUxThxrXcbPC59DivJxC8EKkwTK++Ej8JcXYhIg9Z5A9bTSxPvM1AohEIYxMq0ElSh03g7GEdDxvDiX2coQ4v5U7Nl0Ln/90SO+PsHRECJg/v8fv7GPbzRjufrubXjxX/2nOHy+xqNvvcVXH9aoa8pPp2OJop1wvu5wHEscXi8hWovgRUxW1cAgobcT7LHAp5+8xo//2ROE8wlSz2mvq8WAh4c2y1qrf95i/H4P7wTEuxK4GuEHjfPbBwDAh8+3AAB1kAg3I1NZj5oyyyhT1W9KqFcHmM8XgAAWLx9weGigKwv/2QJu5dD+TEP/3h127xYQo4KYBPzSQT0ouDMLUXiUtYH5YkEvxLlF+WUBs/GobjqmsU6SklIj6NE7Sti1o6ToQeV00qABX/noKxPZixV0QGgokw1loCwWAGRcbfeAv56gv6hgzi3Ktzp3XPqCMsLmtcTxBaWsPiachrMJoeNr5SA50ZeArz3kJDmGxyNCnCCKXkJHb5xdUkZprwyKrwrYlZ+BR/LEXA8o/kWLaRvgNhbFBw2zdRCjRKg8ZbtBRBaSQU7SANOtRfmVhm0ZcJKSUfUxTsoAIFAOKyeZvWSuSv2ePD3TFbtGXRXgthbiqPPPpSVQSAms0hIUmJWHGiRc7VHeqXmbHpjOPPRe8Nq+Uwg6es4eBMZLHr/e8/wGSYmoNALDpUfzOvpJG3rQupu5vzOlw4ZYo5NkqtOG/rmUvFl9oN+uiL67BBDsgmmi09ZDGoFiJ+P58dAHgmU5kelMclbbUu47XlKGSyY+5O7MNPn0CmhfC0zreE1Hvk4fBap7VoaIlEg7cPKnBuD4zKN+I+duUUHlwLSlf1JY5E5MVmPwvLgqSos7ysNcSaCWAEcCJNOWx3x86tF8NXsp1YAsbXX1LKkNOvrfHpCTThPI0D3HsP6ZR38pKZ0VBBS2Qe4IPT4OqO4FzIL3JdNpkRUTrubXcuJ7p1X0AtpYFRL7MXUPZNmipU9QOKD5KmA8T/64ebL9kT8uSRzfBEwbgWnLfepjPJ4SqN9TolnsKEm1MeGzfeMxbmXs2GSvpu4Au0jSVo7R1TzH4zlQvwuxTgFx0n0ip5xmySIEj9FrAhj6wvhciF4zr9MElu9LrLRpZ0ksEGWxAVmhkZ6vPgRWrzSUocLTP5jBng9UMSwYUqO7EBUqc+KpcJjTZiMYSsoOALNctaEkGhGolLsQK2Mi61pzgSD5b1OqakqYTRUXSTbs6vl+qu5DrmXRfcgMOuLnWlLtsPc3nndPJYAIAdV99FGKuF/H/RYdgZyKoFL3lHemzs9TeX5a6Cl6j3FFCejiS4PdyxK2FqjvfN6HdDPbnthmVxAYpf7QBF71GDCuKEWVFpgWAvWD5zmKx6jHmKAaVTlq8hjX6iOVQpAEnNNSoH3n2XV69PmzHQIYN/Qu2lpS8VDJrLTQY0C5c3OaKuYFHd4rs+qi3Lv/h70367EtO9CEvjXt4Qwxx40735ycaZcxpbagaQEPLZCallC3aBASL7zwivgJvPCIBAIhQEI8wD+giwd+AK1+ANRdk6vKWbbTmc47x42IM+5hTTx8a619btrlVrcs2VnqI4Ui4gx7Puesb30T+zOTqqm+degvTNqeCJmAqp1L1LcO9kgV1YoaA4SLsEtVPI8ySVULIxQi3EJBDhHV3YjxtIIaQvHu+UqmZO1YgF3u6BQ+Qg6eTKlINSeK1S3s2fSF0SfrnVQfSqC6G1mPkhQgwpEtzwm1AKB7z8RVy/3guAIQY0CsqISQI+Ww3lC1IWxAqBT03sLNDPTecj8aXfyYOSlWby0QAnzqt4xKQK8GxFoVoMVOy0gWGECUEn5uoDrL50hBsJdlrzGWHs0si41aQu5H1njkW/YKHtZsjI5gMsldY62RLTrIjHdKfc3gLSZgJ7wn8+qoNEBd8bnJiylyb2R+nZKJPWYdicjeyEMm9JBF/GYybPZappRXoXWRvwJI4DZwnd5DGIPYdUBd01+ZV+E9hNGIh6yo978kfc21JNE6CPMNruvQZ5mOaYwRcRjwL3r7XWEs/+c/ePYbX+6/++Hnv/V9A77ljGUtHf7+B3+KfzT7GC9ujvDk8ha1crhodvjR2/u4Wm4w0yP2TYWfdBU+uf8Wf/n8HozhTFaQCu1swGaTPhTOByAK/GvPvsKfvn6Apra4Wm5gvcJu1UDsNfaPHU4WHfZ9hfknO2y2LYITGKxBCAKQEfVJT5N45XA07/E2MthmsewhRcRKRvjeMAQkJYnGIKB1QN8EVKc9Otvi907u8KObOQNMjj0wSvhFwMNHN3jx5TmOzje4ljPEBmiWA/wrhqYY4zBIA3MyYNaMuHuzJJPlAaSQkSgJUEKFUmkRZfI4SHZLyj23y2wk7ElAmAXE2qM96TGOGr7XWCx7dKaCviUgC7Wnv7KKqN4obL8/4OpqhesfXXLwOwg4KyFaMpthOTIExwqokxHy5y3BohcQnUKcO0CA95kI6ABx6YENPYmLx2vstg280lBrRd/e24ZdwMcOzWmPoZsTOJ0NkIq1LXGQ8AJQbzRVOU9GHJ3s0b09gRzpP1SdhN4LjOe+1GwEk0eC9MPlm3/cI64qBrW0DvGjAeFdA9V6hEFBv5PsvJwRtLdPN9g/X0DtJdzSAxJQdxwIukXyxSjA7MhgiSAQFx6jF2Sq6oDuSYC+1ZRcCgBRlOqGGIC4dAg3FfSOg/jt0wCzSSmK88jj8ectnAFO/tYbXP/5BfyJg7rVGC896tca44VHUGRDVc++TXOjMF7Qp+orILYBGDREAPorTlx4H+GOCOZziAoCWBtiJVQnCW41PZZ2GdPgm8BTJoCQfZgiBXGMZyGBA4GgE6CYR0DSqyhCYosEyBD2IoVJCHSPHBY/0xA9GTs/D6jfch8oi0+9hIsIfzXAHlUQAWjeSAa2HBNg+UsCELvk+qqVwPYjj9nXCv0l+zjrayaUIgLRRPhWorpjCikANG8ImoOJ2DxlHUB/j+9NP0usaEzMTqq08A2Pn1mL99gwBIK7/Scj2i+YCitW9LcFTcDm2ohQk23Kks9gIvRAOXF/SUAeBRNd29fv922qARgXwPYpmUz3eID5qmaFx1qkPk1RQCZ7THNhvcRwThAaVQoHiTzPLvVj5gmHnoIT9Bf0tkbBAT8DiATDay6SxF/nihUOmOTAntFqDfTnAu1b9pqaLc9dM5LxsQuB7pjPb97xOb4lQzOcRbRvUCTucqTU3814DrZPgPlzHpMMFnQnsHtAa0Hu+5y9iggqYv9AvFeV4mY8X8dfRKw+kmjfxALofc3tr2/T8lM9BgT3Rw2sSqnWgNVZZg509wSaa4K84YR+5fEYEJbHJ7N/2UOcl23nKcBGTNJ55TPYTO8lNYFh17J7FKClw1cCUkb0p0wuHY4YgmXnEovnBLEZ5AOczMjbsE/eR2WB1UcVP+NnwJjqcKICWa4EDO1SwGxQZNDS8XrLNhexnwB8d07LBL2/qbvSA/ulQHMXsb+gDF46mVhkUYJ1ohDl+OQeUGUlYOjXzMB180Rh8TygP1YEPWkyRnS5k1OkqpYAPz+oQElVLr4SZQID4H4Npzr1tNK6IGPEcEJpd3fPwNW0COQE25g6NsNhv2jFzs5qE5LFhICgv6rhagmxUDAbXySFAODmBKc51dYkX6a9MqhXfqo9AVKolYebU94dJTs1dRdhtg7dpYGbNTAbj1CzZ9NsPcZjjebaolqNGI8rStCHwLTYO7KQZufgjigtJhNZodTIaAmRrsWomPA6nNWsZwFtAbqjJNq1iqBYqAQGCcihBNw8BfZoTi5zokEitKlTU0v2WUoG+ojeITa6yKX5uclzHhsNte4RmooBPglQihRAJZC8qEIgtpTd+kZDr3tASkRDQBlaQ7tDWx2E+PjCCJLpDJT+WgJUYV3ysgKxqckEGgMxWN5fV8WrGeuKAHQYuY8p7IczRwfA8qDzEiGQscxgVCnAOXomc1Jsfo0+gBGVmdjEbODOIDtJuIvU9xDIAhCHvZv59ivCfIQQOHjGv7z9Dt6+1Yxl/fRJvP9f/hcwtxpuFqD3EnrLEvvseQxp0G22TAwkq0XmQwTK3JjeyPtyOMZwEUqCIT2YEQiCDM1pgN4yYt3XlM4BaSbaZUmVAMTE8lBKxpCRKDijbza5r4+DqijpXdOJNcnBHUEzAMTNchciv3h9zf2Ujvdl72YulRdJPhYFw1dEEGXWuAQYHNxyAqBvMqNDlkd3BCZIMqbxKKZEQlGYNYBsTV6vtGm2fJ22NQU0ZObL1ygdYtKhJH26Oe9DAnEEBskrmaRmObwjb7/Ps/MpTCN3yeWwG+EYRFKtUPyODIDI7AEHPDENYLPMLqoprCOvL0oUFiUHueTtP9zvfCwLKGgZkhJzwXpab5bnlbRPjxIuk1mdKNN5qfm4XRJc5F5BcQAWcjBLvj/KtO8poMWnrr2cXlnCNZJfMrMWJaVyAPQuor/gdYAk06s2vB5CzR7ESfKYfMtJ0WK2sRTJ624KWsmMC5CkaMmzzGsE7w0imZYZk4wrMTiJDbRzggMAKZCG2yEtJV45SfK9pNUE1gh6phAMSusSmzFkgMT3j0lBMs07epQzY6U6DiLMLqI/SwPa9D1brSOG4zTb7lGYM6aDch+rDdnnfK50xwGz6if2LJ8TnVIsKV2LKV1x6j3MSaH5WiGbw22jNHUKc8nddcCUilltyU7VqwA346C6ueFnUr5WESgvlDZXFkyfHVniyvWR0XINwZxrEsMkpx/1jU7IQx+snYvyXg85yX+f+9rS6RKTj9a2ZIuy/JWfcdxHsltJipj85vkzcFzkdNDU5RdRwIx03L5qOyV9muztNQQjmYEyHYEMQ3BSaEyIrIFIbFvuXaXcL71f3bTtUQD12qM/ZRG92YeS+JnDofJnT/YsBy3QvhnRXZqS6CltLJ2KMcn68muKBx4ogTsEJVNnIEvr32dVM/ACOIhn6uYUMpTPn7QEGONRAknpM7ra+Pe8z+yR5DZUm5A873JiNlM/oxrol1W9h2/o76SiQKYuy1COaWZfdUdmrIQTJcBIfy2ZyvFI0/fr6TdWnS+sW/7uDVUOOGIaKc+th2tV+W02DqHKfuIJrGVvqWuTf9jG6fqOiX1LCaL5ORlEhUrSP9374kszW7J0zIiYmER+foryuRWlKIyetImdjDkohuxhrOSUlJoYPuFikU1mRrN4UrWAN2l7chfkQeCL3FuERlMGqgTUdkRoDK+RzhF0pfernxvIMUD2FqHSxWMaDZlEOfrJz+qSvFTL6ZrM22gU1KoHtERoNGRnSz9kNAoIEXJvi080p6mK0fF5B4E7USmIEIr/VPgUwJOBTGZzhaBPNN8OuyaNLseDJz5/IYuJbdRq8nAClKMmr+R7MlMp0zXn32cWAwEfDlk9IQpzCR8m2Wx+bfZ1CjH5Og/ZR+cgjHkfzKVbLExmYicPk18BHIbp5PqPmMKECvBMIDXGSGYy/f3e63/V8n7dLYZvvcfy0x+08X/8gw9+48v9Ox/9xW993wBA/rOf8jt80/TO2WOPOPewxx7jCS9oe+rg5hEP/sYrNJ+uMJ4EuBNH0BYExpTm6eeM1w8Lx6j5Teq7qmNhCVQn6I3yBJihDuyuqyJL0TuRvojIAFJuygHceBQToyDQfTSWwXROwfNtRHjQYzgN7N4zkWmUAzBceQwXHtJyZl9aMYEVTbCs95SeDecBWb41nrD0PjMx9S1fG+rIlEgA7WsO6HSXJHsSJUHTzXKIzVSwnQf9lBIyxdJXHMjpLWfH1UgJW073VAmQsvibi6lvcoF9nimfUhlzObY9DtD7BIoVy9EzYDLb5N3qeN9wxtAj1RGIqQHoz7lunySPAEHqeBIxnBAI5SJ43ad0Sk15ZQZxGcQKjyn103EdMkmb8vp8PYGkfKx0iuR3c3BAskWRYMq0nJz2KZM/zez4vKjpudt8HAoDJyIwexNh1sDsOY9Lcx1hNskzlZQhuktl3fv0excxexFLcA7Pea4DSNI+cIY+A+lqzdeabURzE+DmDFeiBI5yyCzDNNsp7VU4HsscwiMc0F3wfFdrnjO9j6hXEaqLJW2yfRsxnMZyvKVFGdCqngN2NaAE/hCg8rFqwwFljrCvbxl45doUCBUZq1/dpWu65/q53XxetaEfqtry2p1dB3RXfE8370J5vuoYHKV6lCCuqBKYNEworTaxAKXhVKLapJTII3b4VRsGDS2/YghPtUkyu8BjxNqOWEKL2puA+o6yxeEkebEcUz/z88yOgWNMYWXolQhcl+4j6k0orwN4f3sd0F1wIs3sIxavfAJyEdUuwOwig8b0BILMLpaQITuTnJwYD853YKhWljAORwL1OtDjlWRx9Tpg/sol5ofezGobKO/dhwIU63VaV/rcye8T0wU+b5ySVEXgPtR3gaFTd6H40eq1R73iE6WLMPsIswsYFymcrGdC6xTcxGMtPUFe+y6guXGotgG6J6Cu1h7KRlTbUGTewkfUd7546KptQHPjUyhW2lcfYfaBrNAu7YOPaG881BhLvURz61FtQ9m/HLQlbYSyEbrjMfWJSRpOTUpBRQFSvpaUhu4D9BDQXNsD2XaAGtJxHAjqTApFki6DPc8JgQTW6M0kkLWtQPvWQo3cR9Wn7x5JhnB3nwxktaFktVqxXxiR99W3FjqtW0TAbCwBXJK1inS86lubvIuhgErpKcOULqK9thyAR4Irs/EwW0/gkq51OQZUtyP9i52DTvUSamSwkxwDqrUtsl81hMISF6/ezsNsXWHHqpVlQNHaIupJHqp6D721qG56BjaNAWbnCEzSfoVKFvYsA7tqbaEGppPSsxdQ3Y0wWwu9c6juBrg5VVV6ZxPIElApuCd7B1XvUsKpKnJN4QLUekyptgSVejVQMbCzrNDoPZNSpaBXcyQoiVUCWmNA9a7n9g6pWsQT0MuBwDFqCb0ZCCSFgNoOXA7ADsaZRlQSejNC7Ub4WQW1G2AXSe7pAsOQVPYs+hJ8JHoH0VkC2jz0u9kxrbXRkPvc7RMg9yOEC1OoUQ5VkunvGCF2/SRxBSg1FQKys8XnCBcoWVUEZlEIiH6A6EcCuJGhRFCSQG+0fMw6YBghhpGs4rYjQMwVIrMmTUiRVYyV4eRPCgyCD3x9qilhUJLh/Tl1FZiAY9fzsX4ArGW4UdcjWsvXDyNBmHPsmTQaMXscfaCMdRwRrUUcxvd+YEe+Tkjk3ktozX3M8lbvJ8ZSpTTcDC7zfYdDI8/gISEEGUopyv/0W8pf+ZMfgxS/tMxv6y1A/MZ/fldu327G8qPH8dP/7j+DVh6j01g0A0anEIJEiKTLu30NbTyGzkAbz77IysFZhap2cE4ieAm7qrG42mK/rSFVZO+hjFAzB609n7OpoBcWrtMQJkDIiNl8wPZmxkCZAFTnPWyvsTzusLmbQdeu9CWGHcvM5NwhDAqypkwSVgKSXYA4HQniUrCMUBGh04XFg4iQa40w94CKEDpysmlQgA6Ak2n6Nl1k5uBvOc2aFi2BIhOLIIAqUDI7MPAGXkBEkUBELNsYsx8zVXyUKpM2wKwU3DJJAFtfAoSiiFy+itBvKyAC7oJBMmGWZ7eQlpv8eVYU76XwAnIU7AV0ySvXRiYCrxR9j4Okn0UDYZ4qVNK+Rk0ApDoyHm6WQmtULLJKaQX8gh5M1dP7GLLcNQLCCagx9QMGsL6kz2mpfL60E/sVFdlcd1C9wVAASu/omyKAiQeflWZHJj3UsWyHdJMXNLNtqmeNR7WmZzMYILQBei0L28iaEpFkaNz23KNoNpPXMiffZjZVHk4IJhkrDkB3tRKwy1gALSLZ+Jyki8SiqWHyQeZzk8NeyCSklydvKAdg3O7MwKs+e1JFmfBhqAePjRpSd1+dJjzSczNzlxnYnFILMR0bLiv3TGLqZWxSlUieHE5AGpjAb06Izt5Zu+B5yiqHnBacg3Nyl2FQnNBwM06I9BdULGRp4OE6c4VHZpze+8me1IgyaWDnaZJBoshIARQ2eVJgTJMbvpp6BgEy+75BYdsPAVzpskvJ2ZkhLEnQ+mDZyBNWaaIlewTz211M2+1mia3PrKZACSnK6boAynWd+xKjEuWazc/LqcY51MY3B8E1bppwUmMsbF5WN+g9r+/s1yznPAEr3/CCZZALSmdgVh1kRYibJU91Cs8pHrs0UZcTn4MmK8b1ERwGNfkic2iN8Dyn5bM7K1rkdNxlYo2l5eSLm4kyUab7lGQtUjp1Oh75eo8aKdWcx8/ORZnMA6Zro1xvCcSqMaaeyPS+GslGZi+osglQJW9rloKqPl1bCZRn1jcnRucka2U5OZJTsZmSmydEQkkePkyzFoGsaK6aySDzPSVHOu9ZbRIVCrOuxlium5JifTDBSFlrSgV2qZbEp/3UAnpgwm5OWkfkhEDQooQclVTlg/ewHKeaETlO25wZd6p4RHkv5PejSOvOCe+QE1tPxZMovt7MBOeaEZESfX09JUZHmapcxgDfpqRiz2Tc/Hkt/ZTwDPB4uEYxMCeiLI9hPb4Aat+wC1JZhuDonS0JuT4xt5T0Uu7qUwWKHP3EpkYm9UYB5MoPAPQ7JjAbk30DPu1zYsiF9Qi1pr/SBfjE7Moh+yzTRIpPqbapegTABGxT8i9c4DoEJa05kZkLSucv/R+lJNuZk1M1g7UQAoGhVpMk9VASmgFc7qysDNlPo8vvaV3+fTY0s6DZt5lBaU5xTV2WqMz7bGHGBKkiJIYAcShJjanr8jBlNi9XyF9Kti1VI3m9OFzUwXoPE2N/HXv514Sx/B/+4MPf+HL/7kd//lvfN+DbDiw/fBwf/Ff/OXTlEYKEHyWEihDXFT2CnSKTOAuQcwv5ouGgOgChISiRg0ygCRBJ0plrFcLlCKwMcsl3ng0G+AGuctDNwLAUt2BoSVAoKZsy9Tv6GZ+HQDADJBBlKcNV+ynkhANVMoKhSsEqAXBHAWYlkySW23QoF4wJNHJAMAEduwwF8Ph5QPtCYTw6ADYgCMoDVpEYVrsMTJZMQMYtuP6SkLg6AGme2xxlLN/aoQLUnmAgGAIqgOxh1Cw8Z2hKSP2DKCAkD4jHk5BkyyiDPzVmtlQU+Wne/6hTUl3qSczHjl9WByE7gmyyGvKXLpcRNNMuc3l8kbxqlGOdmW3fTmxvZl3lSKmq7lKQSDt5yXIiIzANCmJKJJQWsDNuV7UCunscFOgdAVx9I9gruJ0AYB4kHxbAl4FGlke66X4AJZExM7bABBZycmZJhEQewL8vrdU9CpOVly9tCmuxEzjNg9Y8KC7HKe0z5dwoNR0czKQ3t3h/4JTL2n2NqWsR037nQJwssZaJBcxgI7Ph7wVpRD4nv6eDmQaaGVyXdMp0fwZN0qVycYMS7PEe0PPT//Rv5o42VkbZUwAAIABJREFUFJmw6pnwqTo+5lqy0AUQpG3LMrxcBJ4H0PnY5O5Dvu+5LNXxMy0olIEkN5I/ynJyxKdidXY0igTw00B/N1UXZWCbgaTueL4LWKsn9j77H3PAzqHEtMjTkwIg7yPDTyaAmm9Ffq4Bk8FvmMBgnojIKayZrS7XQZKrl2OVQJkcOTjOjFwOj1JjLFUyQYtJupkG5wX0i6w0iOX9kmW6ua9Q+inIJgOKfMvvnTy5IlOvnSyyu0niGAXPUZ5MiFLAm0kKq2wsXsNYjqWA7gm8skeuAGiZwJagqoXvr6n/MJ9vXlPxPXCTa3UOAQaAIm1lvUc+p9Nr8j6V3skk5c5gK29TPkZF9hu4jkOQn9dXuh+BIgstE6f573yLZGpj8SIKqC6k2pP3P0/yJFJeBzB9fk4XJgpYyxLUzLqKdGxlYkUPz3vZx8jX5moWXxNMiBDLoLpUx2g5AS4j0vs7lO2KigmoIdWTFPAoJgCdAWNmT1mLc3B/zNdfeA+05cAcAn2Zzs1UwQIAqnNFBgsgVd8ISJvAYNoGnv9QzlVmJwEU+arw3N98Hvg9MB0TXpeySGghBIJRieETBZwIn0BV9iwmAIgkpWYy6sG68vOASe5aJJt8vXChAMTyW0uI3hIYHoK3Q1lrDtgJSVKauyetIzDMUtac2JoAZu6pLOfosNsyg9EQ8J5U9vCWg3kOfYtZOpulqzFOlSD59s3l5b8Pq0C+KdE9eCz6gPdCdw7lsN9c1+E6/zlu3/Yey+/8oI3//R98/Btf7r//0Y9+6/sG4NsthdXa48HVHeazAX6rUc0sEIH2gw2qkwHRUFp6+eQWYWsw++wOUaei+AigDghHDoiAPusRL0aoXmD589T/llimzCipjsApNAGxolQppgARe+QR65A8UBG4GIp3zzcB5k4iXIwEcDoiLDzCFemeeDayW1FFuAUlsXYRYC8dqpUsM6vw9ImKq57gq+Lg0B4TfPkZt8meBj720Q7juS8ArL4RaF6qMugKFTCeevg2wi5TouhGwD0aMDzmsUDgfcIDsmdvpvrOFmYrIP7GCnYRYS8cqjsxyXklQaU99ugfOtgn3E/G7HNb3Ylj0X3LY9xfUBbVvBHono2FFTJrsofS0WtWrQSGMw/dCQz3HKKK2D913I4lZYCz52ICJYmtGq48pBMYjwNsSjZ19yykBeYvI8aTgP6BI5A2MTGAEcOHPfbPbGEuh/OA6o7ngVJfsnbdI4/hkscyKkD98I7nVk1yX2mBUAPdZwP6ewHdQ8p0th85ynA1BzSbDwOqVaqRqJmOOlyQwdw9Dlh/6hAMma76NqK7PzG+WfprjyKGy4DhLBbQMZ7wfzfjczPIkiPQX/LYdVeB12zL7TE7YPeBx3AeYBdMjO2uYpJmMyV198kIX1Gqu38YUK2B/VOP7pEr7JjP3aGZLUrgtL/yMOtY5MTbDzyTXa8jdo8okdzfjxiP4tQlO0dKvwS2z7jvwQD7B5wsqdaxsCHBMIxG75gYm1nX7bOA7l6SmKZjUq1jmhQiEN18wGOSJbS7x2k5jyPuvhuxfcxBpRojNh8HMl0G2D2aUh0J2IC73wvoz/ja/cOI8YRdp2YdsfmI2x4lcPt7QHeV+jErejjdXGA8Flh/EtBdUlZLWR29u7rj87dPKe30NTCcCuzvCwxnnAAJmmmx3VXq/DxliJNvge0Tgf29KSl0f58D3Lvvsqx+OOPgeDwS6C4FhhMOnoZTkR5jgM7t9/hbBBRmr7sHDGdcPtlSfpYMp4Iey4Z/d5ei+EurbfL09rx2u0sGodx9CgJzw+t2f18kOXxavgVWH0k0dwGuZcKoXYgyILdLUXyBu4f0SfqW6+nPBIZjge0jCTcDdg9kST8djiXsjPu/e8jJBF/RzzscSayfSdg5H7ez1Eu843G++0Rh80xg9RFTcX0D7B7SUzkeE7gMZ9yG8UgU5m3zVBbQ5Cv2vfZnEvsrCTtjgNHmqSygNwoBOxPYX/F5eojY3VdM262YgNtdSIzLKVV1/ZRerv2VRH/OflVlWbexu899Wj9TqQYkYFxKuJqP6Z6y42Ep0Z2RVXKNwP6ewvYRa366c4HtQwU7E6XnEyDoXT/VcA23aX9PYlxKbB8qbJ4ySMabadJ0nEvYhcS4kASwCQjvrlQBkWoIqNaOQT8zejPlSAbUNUnmP5fJ00457/6eLv9nhs81Av0Zk1TtTGLzWGHzSGF3X2FcSOwvFNnGiszb7kpjXKoibwxawM0VunOF8Vhjf6lhF4qMWQD6M10merYPDUSM6C5ZgdJdUO4btYRvee729w2ZtVpiOGPAjN758r9vFD2ZtYJvJfZXptw3nOhS1bF5UiNowXWFyG1KbO/ugQEiw4P29ypsnzSwS4PuooJdGvTnBuORgV0qqM5BrwfYpYZd8gLt79VMnN2O8EbCLg3cTKG/bEpaq09+UoDA1B5X3OeHLeTgsL/PGbz94xnskqExbk75rHCpU3ZZ8T055zF0yxq+NQz5iSjeSDc38E06zkqUJFh1s0U0iQ0UAr6lDNW3BvasgT1tIDz9nqGeZjFEZv0Ez1uYVRAxwh81ZCobQ9+mpPczaokwq6ZKEevgT2YIJ3Ne/8czQEmG8YTA8B0AqEwBmznZNXtKhfN8fgrfgWbiK6Sc7m9rgk2tWDeSQGysDeKsKf7L2NZMlq2r0ocppITQmr8VA3aEVgzq8Z6/lQKUgjCGvkwp+Dt3ZgoJiCxfTfueE1+zxxLgevKPUkUWK4wmUP1n/fzL2+/87VvNWJ597zL+vf/972Fja3y5OoPzEtYrGOVxMutws5thGJn6KSV7I7e7Bkp7CAEs2gHrXfPeMp1VCFayqqMOVBKYgLDTgI6QladUdlAwjYPdGUpNK05bS8PHvZWIg4KoOL0evYQ0HmFUkFWSwAIo3YMmsJakoZTEzC3s3hSZbHvWoXszg5ilL+g1+y9iHQAZIbdJHusFa1X2mumknvsCfSBzbQK3a6cRdQACv2BEw6RW1B7oFKW2Y5qltIJAfc7tgxeQMwe8rYGLAXhXI7Qe5miEXdUQjQc2GtXVHsNNCzGmZFMTAY8kI5Wl5kRYgdAyMTXMPOROIfcg+oYptWKQkAMBtNopsrlJkipGMsGxiqjeqSJzZBl35Pa6aaa9pPEFpD7AHOIUYO6SnDekmdXGQ20VEAT80sPcKQQ9ySgBkJVteK7lnl2KEEnCKg8YyjR762uGGAVF9lzYxI5awD4aId8ZsskxSUFnpMLkKIoMzrcR1WpKq82MRA4lUsPEVpd1blIYjEWa3Z4krLlSRabXmY1M6awE2pQKionVyIP8xGRJy+2sbwQTWj23S3WcGBAOsMf0IIogEBSBlxxTj2Yky5zZe9/EIskNOqW21gQb3A8GUuUZ5fE4YPZcwrfT+zkqwM4j2fEmQnoBYZMc1wPVRtAHjUldkAG6PSZTklnuLM21S55XJLYus5LBJKA5pPOWgqL0nr9ZmUGQnRk8NXB5rBlhpYj0KaAryROlB4YTsuul1y+rJzJDesCaZrannKPq/cdzGNUvsVMHLK/qmWSq+hSO1aGEDqkBhfnMkt+idsiT/Enum0OyMnuYpayHgVW5pgWS66xvE+jqJ6Yos+6sueExPew2zGFXuYsys5++RpH/Apw8sMtpsjAHOEUx9Rrm6zmqg88Jh8IA52NW0nV1ktUqUY5rZrpcM7HFqp/qLlizw2oS6UDZZmIbs4c4Ky18nQKQWj4/M8tqjOWYlrCyxD6VYDF7oBD4hqSYAUEx1WxkBo4yXd1FZOlpTMFbOYAps/8A3mPslSUDHNNEVg4Iy/Lawlym86X6NOlUCdQrSkujnAKSMruWJaeFWUvHMCgCdE5aTYyhrwSqTZiYwsQuuyb3bJItLYmyKWQKQAn3kj5NgmWprEQJUmpWPl3jAv0JJzKKTBwoyoLJmxyKNDtfByEFQDHIKDHlST4KZGmpTIqcWFjnYAias4+W7/H8+S0OZL+x+EN9o9I5iRNTGTkpDSR5qo3InZaFic3sb/6cyUrNgVUhfF8EhASyRUSRx5LllsW3GtW03mAYdmR2Dq5RJVQpHzvhY5HKMlCNfxcmFiCDm2mRAxkwv+9T2NJhIFUEQckBc5cDqjLLGKWAHByXkcKRZJaypmXDhUkKG+MkfQVKuA9TW8mmlgCiwuZOj78njz24lb5LmySkWYYqBfswZbovM6CHwT5Z9hoIxvN+FSY0+Ul53NK6lfzVrGdmHVNFSJHD5uCfwxCeGIoPNI6WzOSh1zLLYPM2Hi4ffwVz+qtueZ++9YzlLP63//CT3/hy//7Hf/Jb3zfgW85YCkT8fy+f4Iu7M3x48g5SBvxbj3+GfjR4t5vhYrHDs/NbeCcRo8B63aJpR4QgcLbcAQBmzYiq4jejfdPi+09e4t/53o9x/+kNdGPx2bNXWCx6qKWFah3CliOU+TGLvszcQi8t/vb3Poc0HmenOwhBf+Tlozv825/9JYSM+OTZa8Qo8OTxOwgJ1Ef8ZjathTAB5xcbnD9jdKeaObh3DWTlcfboDvOLPebNiOayA2SEbizkxYAPv/cSZjkCTuLR915D1B6Lqy3q1uLo/gbihqkvzXmH9qTHw2fv8ODTtxBVgDQB1eUeamkh5mRtVeVRnfbQbyrorYJaONz7+B3ah1vUT7eICwdV0zf57IO3iDcVzj99B/V1g/kHK4hewfYaYuagKk8w+uMFgfXcsyN0L/H4szcEkk1Ac9EREKoIfTTi7JMbVMcDLj+7hrjXwz/ugcuB+wnAPNtBBIH2kxXUIPDo916TxTix9DE2Hvq7a4Q2INYB8w9WqO7R8BXOLaJJADASSITLEebjDVnoqwEwrFLAkUWcOzTXEuadRrgYEaoIuZewVyMHZrMAd+YQn3Rkve/4ZRtOLMxGQD7ew554RBXhq4jq4zX8sUP7mt9Svo5wJx7VjUwywojx0nHS4EEP1RFIye+vCRCSpLi+FrBXFhDA+HFHmfRxgD0JEJ9uEe4NjK9/OpQkYnvPor7mjL2bBYz3HcYrh+Gegz13rNhoOdhw39nz9fccumcj5l8D9a0kK97Gsr7xgU0Dc8CeO4wf9KjWAt1nA6pbQbZ5ELBHEeNpQPfxCHc5kl3+TscQpr1A/4zHc7hyhYkPn21h1gS4dsmBynDpMV7x2HYfjqyzGIH+2Yjh0qO+lth+4tA9dOge8Pd4TPa3v0/mfjwO6J44svBBYPuhK3Lw/sMBw1mAW0TsnzjUNwLVnUB/5bH/ZIQcgd2HDnIk8JMW6C/JgDOYSBSgbY/IoA+XHnbBrkg1crBabfj5ZTbA9kOHsz+LmL9g6NTia6C+YfjVcBownkZ0V4nNf8fEXbtgEJVrySDvPrLYPfVkRC4DussJkEtHED2chzKY335sEcVhHQiBxu6xx3DGQd7+QUS1ArYfOzRvI7fjMmL2kgPh7XdHuAUAQTDoK4YXuRmXm8OwAKb2VquI7kGEPQL2DznQ234QSjWJWwDbp/Qj3vzQsZP0EZnd3P9Z30X0F3xtrv/IkvHmXUR3n/uzfxhhl2T+qRhIoCmS/cySZ3tE4Ln6DmtCYpJwuzkACewfEQDqXYRbkPHNQN1XKMm79GoKZJkpBCtAtk8YKtS+JQM/HqUKF5HY1pE1IghAf5kSgmfA+mMOUvvEFEdNFjQz4GYXMXvDgLPdY4HuHtlYCMpjoxTorhKbe8pKhfFkqiLaPOPy1BAxHAvUa6ouhlOyrlmG7msyr8OJwPpDCV+ziqO5Jau9eyCKLHk4FeysdLzGxiORApACXANsnpItHU5FCcyyc4HZW4/5a4/+VMLsA/QQsX2YnntCpjgk4OhmQHfOx3xKbN1d8f/MMnvDbdg+VLBzgkfbcttcS5Z5XHLCzOy5//2JLIx8lj7v7ktU24Bq41GvPGavLXwl0N54bB5rjAvJypGXDr4S2F+Sce1PZPLIeqghFrDPsCuylpnFba8thiX9mft7Cmbr0Z2z8sO17Pisby329xS7LwWZ5919DdcymMnVlMWy4gSo7iyyx1H1AbsHFcYjifrWwjUSaiBbXb8bYJcKw4mC2Xn2jkbAbDyqFfshVcdqJ06g8b3cnypsH1UJMLJ2xOwcgiFbyg8dAd9KqJEyTDcjYzucati5xnjENN3+rIJ0ZGzN1sI3CnrnUpq0Sr7RiP6swnisi1dXDR7DuSlhZCJEjCcG9tjQm7lnEFGoFOtXlgZurtHdqxEqBd9q2AVRf5QC+q6DHBz0ZoDPbKeSCLVC0GSDRQTc3MAd12Q5Z/Q2+tYASVIbGl3Y0CyxjUbBHTcQA0OcwqwiGJ9VENYh1IYsZ5ICh1mqLhECqCuE4xliYxBmNcRgEWYNw4JSqm+sNcFm9lpqVVJjo5IIixQW5ChLfi+FVoq0rPQaKQvjSc9nAoNtQ2YyMZZl/G3S+c4BPzpJd3OYTw7yAabXSYnoffoJ5Qchlt+/9icGvCfJ/ZbeIoAA+Rv/+V25fasZy6PPruLf/l//Y7zaLdGNBk9O7tA5g95pdKOBVgEXsx1ero+wWs1werrFYA3GQTPcxwso4xG8wsf33+LLd6cwxuOo7TE6jV1fwWiP0WoY49B3FbTxmDcjVpsWi3mPXVdDaw9rFSeoRoXzsy1W2xZKBYyjRgwcdJjawTsFtzGQcwdTOYydgTIBbl1BH41wg0I1s3CjwmwxYPtuVuC/0AREQkVEJ6EbC7utgCBgliPsbQ0x84ijhKg9l9snc+AoSxiPOBoZCOQFWck6T9NGMpbxgL0UYGDP0vG3Dji5v8HdzRxSB4YL3dYoYTXHI/y6YlCNjmQ/o4DYK3palzYdD4E4Sq5/pxBnDCOSK4OwcICTEG2aLt6kD8qWz8GgyvL1EScK4qqiv7Pih47oFGIVABMgNppMq5WAIcOLQUHMHOTbioEwrQdk5HNNhNonz2fry/KgI6IJkDuF0ATotWKQj4iIMw8x0NMrz0be96pBOHGQa26/8GREIUA2udOFbZN7WdimqOLBbCwgB1JB/tzyPAoATgCth7wzCDWZ3qjYqUffTUS4GKFeU2YTBQiog6AUec5tNu80Qwo/2mJ8OUesAtR+kuFFGaG67N2hH1Y4gVgTZAOAP3KQnYJZs4pHWPZGZr8sZbWJlfWZtUrhSFWEuWP/HbeRkwzmTiImViskP62vUghQYuQEUOpuIpBCe1DCfEogSfoesscBbZKC2+NQ2MgS3tGlap46wi8DZMf9YCqpgFvEwgC5pYfeqOT3nGqLsg9OdyjevqiSXzewWkh4sBt2nljrFKZEmTxSwjLv13t2TJqVhJ/FMiFS+krzTHqkTLu+SeckddNKLwpzLNLnUA5j8k06dpL7XN9xYO1nMYH6lJJ94NV1MwLPaHhMZPbbZSVAPKgGymzXbupxzD5MgH7h7h6PgZuT2S61GIUdIaDLYCdX2WTPXWY6Mzs2Hk3MW3NDiatO7Kveo+yLTWFB2XeZA4j6s4jmRkwBS0kKncNuoiKjOpxM1U3Zk6d3ZHej5HOCEhiPMdUjZTWB4+TCuCRYtkuB+oZAK/uSx2N6rbMP01cTG5x93YfsrBoIOn0zecbzsoCpViiHSOXjqXoyibxmJ/8fr51YQoiy/9LXCXi67D0lu1OtCZwBQLhYroFQibRclLTk7C3Pn4n01icmapyUJjkAys7fP1c6bbOdiZL0S4/3FCKUgRAiwViuWDlkTgFMNTL75KONlAIzMfwgTCgcsE7puJhtYqXTcxCRkn2Z+pvB4SGLnStvgqJ/Nq9D2YnxBDLjTzluvfFwTfIzjmQAgyGjdrisLBFGTOnDLZlIaSODgtL7lDYCBggJH+HmiiCynljUsiwAeh9gc+/oGJJaRpaJjsxEMtiN3xWqD3AzCb1LzGJEYZ0P/bmulTBbn9JoyWz6RrIHMzGhxdZwwMjKkfJg1sUoqN6X1N2oBFlTN52zKAX0dkRodQGkQBr2jAz0iYq+yyxHVr07YFLle4ynHBzDfUZXwFquTYELiEaSITz0dSamTgwWueIk153I0RW2tnguAcCH0jsZaw3RjYh1RUYzxMJAZsksPc6J2f1GtYiwDlAKJdUX4OOH3s18H6btzX/HkZP7IrOiOGAabY7fjxPwSyxo/CZT+k3McejH/DW3Q6wSh+HXPPPX334XGMtPfjCL/80//PQ3vtz/4OM/+q3vG/AtB5aPv38c/73/7R9g5ypIEbF3BqcVE0mGoPHHbx6g1h7daPD09BYv10f4mw++xE/Wl7jrGvwb97/CP71+BCMDOmtwOd9ib5msIUREZw32o8HlYofdWKFSHkoG+CBRawfrFVZdg3k94uFihTf7JWZmxNvdAr3VaIzDSdthbw1Gp7HtakgZcLkkq1lJj8FrfPXyDFf3VjAyYNU1GK3GDx68wE9vz7HZNTg72pd1+iiwGyrsNg3OTneotIORAdfbOQFWFFjOelTK48WbEyyPupRuzvO8Xrc4P9tCyYB3qzmaxiJGgW5f4+p8hf1QwXqFWT3ibtPi7GgPJQNutzP0uwqL4w7dvsbpMRnf/VCh0g4uSMwqi9Ep/vYKg9Xo+sTwtiMGq2FHDakCnFVQKqBuLEIQ6HY1Hty7w7prsNs0mC97LJoBb2+XmM8GbLcNohc4PtnDRwHvyUI7J3G86MuxWe1a9NsaqvIwlYP3EnbQECJSfqwiTMNUYKkpX65qy6LvrsJs3iMEif2mxsXFBu9uF1gsenS9gesNHj+4wS++uIRaWvhBoT3q4ayCGxWkjlDaY9xU0DMHbyXU6xr+/gD5poI/tzAtJwPEoAhSZ47pvzJCyIjgJOrWwlkFf11DXgyYzwbs9zXcuoI56RE8EWgMAmFDf4yYeUQnoFqPYCVU5RECC8xjDlN62wDH3IZxVUP0ErFN7O1OUW7cKeBkBNYGs0db7K5nELVHdJyYQBDc97VJIP3gDTlIyrA7zcfSfTCRUu+thrnsMG4qyK0mgFxJjFcO1RtNtlbGsh7RekQvuAwJTjy0DmFUJTUZfXpMRIjWAxtDwCsjQpO+/GoPsdOcaMjy28YhriqYO5nWi2ndEWi/MnD/yg7hecvliAQQk1TbXGvYEw9hJWJ7INOeB+iVKinEvk3bkCcLIsjWn9r3JgVUShcGAL8InDhQEbKT8AuP+dUO/c+WJQk3tAnAB1FAu1lLjKdkZvN2lOCqOk6vTfJztZOco0ieczmQPbFnDnAE1XrDgSKDiwhEQxVR3UrYZTqWKdAn1xDloCUAZcIgyx55X/Kug+B0eDJi/nnFPtS9SAApy6y4LL0X6O6HkkastwJumbqHgWnwnmTjWZptj1i9pPqpz1cNTIEOhse6ea2S7zOWxNn6lv3D0goM5x7NawV7FFGtpmAvyrjThEaq3JGOFUh6J0oPcA7woswVJWQqKoLpEj6VvKNmy+eEmpMMkFNqb5YQ5+erkQDuUG6dQVnucM59lVnaqXq+himuE0g/fF6+HYY1+SoFfgmUtOUpNAolKVn1KGDY7PLrEtOc0mbHYx67HP5W3YkyeWHWEfZIFCA5Hk+hViWoLQV/1TdxColKgMHN0rnIoWBqCgtCQJH/2sW0Lc11LDLtUg+05zaLQO+w7gj+1RBLR62IcZJgj9ymLOPNEw8MyUMJocrnLOgkRVZg32mLIrlWPdCfiZLwmycYsjzYJylvvYnoT8gAd5eyVEVlGWSeDIlSQHcEm4isw8nHTYRYEppzim35G2kiraH3WY2sRMlJuUWinBJxMwiUltUwQTFEihPPXN6h7FiOqW8YB3+n12dp+BTgJVLNUEyfHaEwsznkx7VkUF2rketvdEeQ6eYKeufL59lhABgiwbJZuxToxPClvEy9pwQkVARmWZ4rBw85eviZgd6OgBCU8CYQGioFOfgC5OTg4OcVZOcgR1e6PLNENBoFkcCqGB2ilJTeHqS7CusRWgO57lgfkvo3fylVNafCZpYSYIgQMlCW5f/3wF6WwyqJklR7eDsEgiEgZmB6mA57sKzofdkOoRQTXb8hg31/+X8FJomBzOhfg1TYT34wi//1//HZb3y5/9Enf/hb3zfgWw4sT757L/6b/8t/gje7Bb579ho/W11gbkbsbAUfBRbViKt2gz958wD7fQ1TOSgVUGmHi9keP319gauzNV5dHyPsNM4erjBYg901ewTU3EEbVyZamspis2uK9eB4ucd6M4MQEW5UUCZAaU9WstcwrYUbNIQOiE5CVh5+ZzjIFhFSxzINrbXHcNNCzi1MzTfN2BM0REtmD6OEWlrIL1u4hwOwNmT6vEB90tPL2LoCUBDIQqJTZPJcYuwEIGQEthqx9dCtg1QB9rqFOBohJICXNcLlCPGuQjyziIMEqgB5Z6C39Mz1DxyrQXSEOB0RRsWBvk4AwElIHWC+aDBcOQKFUZK9rCJgAvQ7A39vRHT8tFczB/lVw4HVLKC6VhjuOcheTgmYVYTaSYQmQm8otYwNj4NeK4hne9g70iLVjYI9CYgN60fo5QPkKFHdSozHlBmqjkmSoQ0EBT2rS/wRPaXCSSAAeidhTzxgAtSNQajIduobzb91RPtSIdQolSH0huWBNBmh6lZS8pkGf+6IX756w9Tf7DuMhoNYdkFKMlECxRNnjwlucvKqWXM/IID2tcD+QYDZSthFQHUn0V8GqJ6sZV5/VMDRT4HNB2lQkLbVzTjQHi88zC19p2ZFqZfu0qB9L9DcCOyvODAzaaAfDNnF8YjshepFGTDbI76f8mDLN+xurd8RJNpFSF5OsngZPNgjAopo0ralbll63zh4VyPZqcz2ZTAjHDB7GbH+BLx+PUpQT2FEGy5T75EGGhyg2wUQdES1EYWxHI9ZR+JrDlLywN/seOx3j+lRrd9x/VmyWa1F8ekBKBUReVDbn5ElPLzpDiXciJ5MpAFnAgvpOFYrDr5z5UdOGy7sVgIFqufzXIvkf0vyxTTYz2wTkBhJrYB2AAAgAElEQVS4BEDMBqVGotpE2EVmOydWrr6L6C5EOucEeMO5KFUoZpuY7yRPzRJa1m8kgKqZTBsVt9FsY/JLHlSLHHgv2ZM5sW5uJlCtyKBFjeJDDMkrmN+Hdpk8dwngENRFDKcM2qnvyD6JkNYhCUr6M7I1amTYkLRk7zLzGQxlq9LhoLaD+6N6TjB4I1Jlw8T2UX4KtNdpMkJOTKUa0t9poqCkkyeGXPgElEauq9py22XyUje3AftLWQbTauTvfG3M3nrsrhSiQuleFYGeQjunT013BCTdOT9v6k0sjJ9dMEVYBL6vXCvQ3AXsLyTaG7JyGYiqkWFTvmKwTrVLgLDOPkleV9WGnZ96iClYCBiWfL5tBXtEJaW1UfDc+CqFEx0sWw38n9eLKOm0ZCiZ3DsuZWFDAYIYVqCEsky9D+hPNcw+kDFrGH5k59z37IvUfYCdK0piU3prUFye7iPMzsO1fG3xH2K6ngmKA3wrUb+zlJKmVOL8nPzakEBQTo+OKQU4g62SuivoS4ya4MQ3srC3epfYwdS1mr2buvOlYqQE7wTALgnQYvK+FrBbpdflepF0vJkSi8JG1neW1SR7Jp6GigAt1KrsA7+jPXyj30uqjUamCSSHKChJ1ZuxVIhkL6UcfZGwytEjpK5NmQBY8VHKDGRTSmrxZEZEJeFnBmpvU4L4xGYKFyC6Ee58zt7N0aXvtEiwaD0lrS5AjBaxSn2dB5UjoTWQvQOGkZUfwMQe5pTZDBC1oucyxqlWRKkJGJYL6GA8LwT7LSuGIcXKcB/6kdLXwy7K/NpvJsjGSJbTuSJ9jcOBvzEmn2eIBJYh8rnZtwkQWOblZ4/lr2Ap/3l8lt92j+Vfd2D5uyPK/Re4daPBj/7iCe7WM/zh60e43XE0tOlrvPryHF/fnOAf/5PPsP3ZMaQK6F/N0XUV9n2Nn72+wP2zNV58dY4wKFTXGjdvj7B7O4M5GgATEG4qBC9xvtxh6Aw2PzlBuK2h/nIGv9e4eXEM12m4USEOCv62xrCrEJ+3kMbDe4nZUY/oBZrFAPlVyxCZyiPuNZd/U8N8PsOwrclAvGow3LQY384I6pwErISuCZz81pSBhTwfICveP9y0lNNZCfmygdhpzH5SQd4agtLUs1kv+ZroBGWeAnDrCv4XMzI6ApC/aDjQ6hXCsSNrJAAMCnJgl2P/yGL+BWcF9VYidBryTqN5o4EkTUWvsPx/2pQuS+mxXFNq2rzUkGtNALEyUCsNuVPwI784wixAbyTscfqCrEOa/Q+Y/0LBnTqoPUFl/U5CjBJ6oyiPfN0ChiE84zmTV/VbA7WXWPxUY/YLDb0RaK6BWEeyYz6HhRDs56CY5muD9iuDKCiPNSuCdX1tEFqCNdEpqEGgupMwKcVXbyl7rd9JshkR8AuPYID5VxK+icXb174WMLcS5k7CHQU012Tclj/j8kKVQnokGZPmmgP35ppA+vjH9D/qrcBwz5M52qeOy1sJu+QxnL+IaF/JlD4c0VwLQIK+04q9lqxRSQE7noPO5ecazbVA80pBb6eKl6DJJJk1ZZTSA2ZNoDh7KVCtgPnzPCvORFJ7RJA2XLA8fv41k5DbVzL1UAKLLyXG01CkcNIi1XzwOqxW6QNARNS3lHFKn6SmzcR2Mfqf5yJUcerynMVS2wLB2ptqhcJouTn3u7mOaN8wHdi3EXKgD1J4YPELLjcqENDvMvihJ89sJGYv6N0TATj+CdC85TU2e800X71nKE/7NmL+nIOvkx8TaGVWJiaGQ++B5VcRy69DCbXJEwjDCQf49d1UDzJ7FWE2ETqxM8ITgJptRH9JwFWvgOVXlARHSS8m2bNYAI6bcdsIFoD2DffTzRJ4sihJvEc/97DzPIGSGKLEts1ehwKc7JIg2C6YyBySlNIuU8CNYrVIf47SbRnU1B2pRm5DfZeOkyCbksNq7Dz5Nudg7Yrga6tNCunR2QvIc9BdccAfBVCvODht3hHs1XcxVYUk2WlKJa02vA7qVURzFwqIrzY8t3bBxNzZm4DjLy1m1wFqoGyzfUdvqdmmmhDLbW9uA6p1xP4qh9OgMG9RcNntjYfpIuavHNobD98QsATNazBvS1AC7U1I9S8Mp6k2MYXqCLgGqHaUGc5f+8Ke6T2vtxw+NH/toDsCkCxTXn7t4BuBYclBuUqBM1EAZhtQr0OaBBA4+gWTWhnKE+AbMla6J4BcvHKobx1cIzB/7VJwD/e7O5fls6Nekz3KQUdmH1GtfWGqRcyS11gSavP2+lqWc54ZMLMPqFc+Sd9lmhzgscr1O0c/79G8s6jWAaoLGI4V6juH/oT+PzuXaK5HAtqavsgsUZ29HsgKKlHYO2UjzMbBLhR0F9DcjBiPFFTn4WsBs3EF6Oidg96S6RpONVQXIC0Zx3GhiscREahWll2TIaK+HmC2BH16z/MatEB9mzIdNhahkpg93/P9KQCztQhGwKxH6M2I6naEWVsCttRDqfcOkALjsSZA7jx07wsoVp2DmytUqxGqJ2BRe8fOys7BrEeE1EnpWo3m+RZurqFvdnCtIvgzEqqzUDsL1yqo7UDGsFHlOSJEmLsebm6gdgOkCym8jPJTANA3O7KGOZRH8HPSzTXEQLmqbzRBnRBQnYVc7SH3I5k8T1YwKvZsApiqTSoyitHQhyhcgOws169UAWUiRojRMbinMhDDCLndA6MFLJlIuekJFLNkdrR4r8NSSv6fl7nvk28x2X1yXYkQBJojvZYxg8YQEBczgtVhhHC8nqK1XFfuotSaP9lDmf6PIUwyVoC/vSeAdA4lsKfrv/F4QLQOMR6wlZgAZrTuPX9ldI4MpPfl91/1w9d+Q7r7LbxFCHjI3/jP78rtW81Yzr7zIP7wf/pP8eL6BBenG1gvsfrxGfBgwNX5Cq/eHuM//P4f4o9vH+HF//UU3/8Hf4E/f3uFzfMjREVws/ybb7HrK3x2+QY/ubkAAMR/dIp7f/drLM2AP/rRM7QvNOLvb1AZh7ay+PT0Df7vH32K03sbrDczSBlgKocQJIbOYL7ssf/iCOHEof2iQvfBiOYXFc7+1iu8/MtL1NcK9iggXIzQlcfl6QYvXp4CAJNmew0MCk8+fIuXf3Qf7sShfmngvrOHFBF2VdNTl+QrYe4ht4p+vpVGPB8RvcD3PniJHz+/QtgY6JVCqCNmLyT2/2oHvK3pf2soq1NHFuGW9I4+77GY91j/+Axmy+f4hmDLPia7ePSnFdq/8wavX5wATnJ7zkbEvYbcE+iM5x4fffoKP//Th4gqon6nIH+wgv38CMc/eIfrl8cQA4FknNEDOf+5xu6Zg9pL+FOH5ssqJU5G+I96qJ81EJ9tIX60xPBxj9mfNdg9c2TUHg3AXQVxNqD+vEV/6dG+UoiSoSYiAmHpMD/tsFs1uH//Dv3/eYXNRwHhwkJem5LymkEJPtxjMe+x/8MzjCcBOLGY/3GD7XdHzH5aoXvsoddkGePcQV8buCMPfTLC/GgG8cMVuucLAMDiS4X9w4DHP3iF5//kAfyCfkVxr4e/qwAV0bwwGE8CzFrCfszz1LyR2H9ooW81+1DPB8RXDXBvgP6ygfjOFu6rOUITsfwJzYfrzxxmX2nsnzjMv9QICug+sBC1h35ew6wF9t8ZUT03UIPAcBEoL1xQnuobytNEBMbf38G95WRD/ZbXbtTA7IXE7lEATnneFz/V2D3hMe8e+uQtlJh9LdHfi6huCT7tHGjfsIpiPAk4+qnE5sOA5o1Efy8gzDyOf2Sw+oHF7AtDqdxawM6Bas2aFb2j5HJ4PGLx5xXcnFU2sxeyACk3R2KRKH/sHjs0LzR0B+yeek4UJCAdFdC+EgXQBQ3sn1mojcLJjznYW30CLH4hsH8QYY8CRBA4+lyiv6QcUm8EzJ4Aun0lsP6+xckfGqw/DpwoWSu4hYcIgp8By4D5LyTW33UwdwqzFwKr3x8h9gqLL1SRj/aXZGrt729hNzXqFwb13YE/LLF7q399wPH/WyNKYP1dD9kLqE6geZcAwEDP4ew1y993jyLslUX9tYHeCTTXlCCOx0B1B6y/63DvHytc/zBi+VMOCrdPgfod/WXdPbK7IUkst9+xOPmnrFDoL8hQ2zkZ0P4ion0tirRyPOGkQncpJsb1jjUo1Zqg8ugL+t1YLwMMp0Bzzc/+HNxz8pfA9jGZ6fZVRH8uMH/B5NT2XcD6QwnVJQmpJECtbyO6K4H2Dbfz7M887j5RqNYRq08jFj+XcHOC87vPOCGQWWMkWW8JBQqU0FYrHmOAEtajnxJIrD+QGI/J5DVv+dkyHnHfdg8F5i/5+/Rzj5vPFOq7iPZdxO2nEouvCfCDEqUGZjgPOPsTge0TTg6c/6nH9gG33bVkYbMccn81HQs1ROwf8Nguv/YYjhh6U60jNh8KzL+OhXmcvwrYPpKchLgQaF9H6NTD2Z/zfXj6OQe324cMHmtuA4Yj1rcEBZz/mUV/qrD+QOL0c3oEfQ0sXhKYMTyIIUaIwOJ5xP/P3pv0XJol6EHPmd7pjt8c8UVEZmRmDVljtxsDbVkYIXfDyiskhNoWSFgWXiAWLAGxQBawAYRYmAUL/gBu75BY2KjBaqqru+2uLtecQ0RGRsQ33/mdzsDiOee9X1RlqxurrKps9d18w733ve98z3OeafmeQPUqoLry6MYSxZLvaw5YN5MvwsAcBwVsHktMnvuB/cwXDrsTTVZwR6knfZjx3D9ggmtf8Ti0cwkTWddiQeawnXHiIF95bB6qmK7Nyp/5T3os3jOYfmK5fncOu2NGaZfXDMBRXUA75T0o24TBmysCkC0ddmcao1c96hONdipx9P0G24cZihgKVN5wErCZUYJuC4GDH7WwI0WQt/XQtUM/0aiPFIqFQzNTyFd83/qRQnnjkS8cPY41J0q2DzTKW4e+kihuLHZnBqOX3RCeU1122D6kysfmAqYm4z153sFWCt1Uwmw9ylc17CSG6fgA1QSyvQAmH++wfVLBFgLV6x71qUG2cgSTlUT1YgdXaPhMYf1WhvmPa6yeFjj4owW2702RLS26mYbsAoqrGut3RihuIyjNFLqZgVlbtEcG1bMtmvMK2W2Hbp7BbCzUpoOd5ejHGvlty5Cc6KkUzkNfLNG9dQjRe6hdj+6ohN72cIWGrThZkN0RzLrSQNU9RGMRcoXBQykl3IiyVzvLoVYdn/cBctcj5AqidXCzArLpASmhrpawpzPKXJ2H6B3kukGocoi6gx/nkJsWocwgts1ethoZxaAVK0sOJlC3K/jJKPolJUTdDs+HzOylrjHAR0Swyd7OyHQCBJhSQNTtm57K+x2eKZE2Abl7XZsIkZnUXLbfbCHyLCbNRhbTOUpXnUPoOoiyHHyaw2f8WR6fwW76pvmzvfczHr8MjOV73xiF/+4fvv9zX+6/94U//IVvG/A5B5b520/Cg//iP4W5i2mcUX7XzzxUTblOP3fIbhSyhcDmCwQgZkV2w6yB+ozv6x9wgNUeO1QvNLp5gNdkw3TNwaLPKU0MhUP2yiBo9i7uHjJwhHI/MkX5rYArgMnHAeun/EJfv2eR3SjonRg69oKMNQmvJZpDzsTLNprys1STgCH2X/QY6gAADi5TXUDQey+PywEb5Y/JB8MvWMrtstXeP3G/jD2Z1VO1gq75JW4LBk5sngSYrYBZccAre0Q/EZe/e8ti/KGGWXMgBBEGVjFbcqAZFAFFfiNjNyW9OWbDfZKCP9KALb/jOm7eIsvWjxmwYUsOgJtT/rQxOEPaxIikGVkGZCQfFX08As2Zx+QDye2I4SrZKkkOyVjIngClvOSgNUgyOd1UQNUc7JbXfC4VpfcTngv5HbD8Ro/p9w0HtAvuE59R6pqi7H3Gz7UlB7PNIdkFs2Wf3fhFwOZR7M+Lnj29FajPLaY/0tj+qzVG3y7Jhr706CaCcfbRB5U8UPUJAVd5FWIKIqWbZkOWxGxi6bqJz62j5FByED36NO6TjimWk485KE77vLrg9ultOkcpS3QZfWdmK1C95CBN1ayU6KcBsx/vPUf9hCE08x9wMCks2VTVEmTkd3x/tgoxZZKD9GGQP+cANIVksD+U29SPeV4A7D4sL0L0tTFVMl8EwFNyqeuA7aM4KK0ps+smAsUNz6V2RsZP1WSb2nkECQ95zlSXMczER6+cSxI2MlDtEVBccd/bKspPiygd82SMU7Lr+m2B6jVBWGJss3WUDxZkqlwmsHvIgXmQ3L7kD8sXUQoXGVoAg9+rn5BFdQUw+8ixl/BEoIrn++S5QzOXyNcB3Zgdltk6DKxT2i7ZMXE1JZbuTiQ7NTOG4HRTAbPeBxx5Q5Bx8xUD1VJqWiz4PlZaCExeWHQjCVsKrN8GJh8D2ZbHwWzpd8tWvJ67sUC+DHsg0RHYbc8kzCauR8v3lNcefSUH2W2+CqiPJIpbj9VTidGrAFuQjSQDxaCRvhJRVhqwO2X9QToPpY1hKyOC7Wzr4/FhImmQBBq7Uwm9C6iuPZq5RHXtUB8qjD8l2NANGVyCJjJOKaHVKwI/rj/vB9W1HySSANBNCCZk9Ce6jNdRNxHIF36QelJmK+I6R2bQ8ftH10lKyqRR3QRkG4cgRPQVJpbaYXumka8pE+0mZFuCBMbPanTzDOsnGsUdwZ8tJYpbS5lpIZFCX5q5QnVl0U4VVAybSZLtIMHORYFhHdgZSbBUXdn9Odh6QIro64syTimYQrp1ZPAMJXr9RA+eTJcL5HcWrpBwOSdsdb2X2Zqth8/I0LucUs7myCC/5XuEowy2H2uYjUVzaJCt3VC9kTosdW3RjzX0zqE5NDBbD9U4dHMNs3LoJwrZiqzl8mmG8o7Sy+KqRXOaQ7YBunYwiwb9QQFbKKgUYmMDZM9+TRHIFvKgCsjewY7MIFkVNkR2kIyaHRmCtygXdbmErh1sSQbS5Qp2pCN4axG0RD8vYFYd+kkG2TlACehFg/ZsBJdJ5LctuhkBXz/VyK8avi7ErslxBr1s0TyoUH6yRn9cQW97BEWPol41cOOc9R8uwBca3ijodUuWVAh4o6C2Ley0gF41vNeOM9aEdHYfhCPpQRR1CzcbMXAn9lCqNZlcN2LSrYhsq68M1OZeQExv4WcVJa8e7LtUCqLt2BuZG4hdi1AYyNUOflpBtBa+yiG3HKyFMiPz2VsCwQQIxxXEth7+ZgrknulDZshGlkyGDVUBsWsQioyy1gT2gD8ZrAlBcGfMz7wm+RUHGWry5yrJ56KvcfBbJhZVazKfAAGjZP8ljEZo2jdAaXAOIssIMn/Kg/lnftxLg/28eyzf+8Yo/De//dWf+3L//S/+/i9824DPObA8++ph+G//4VfwrD3Gx/URvjH+FLd2hNoZfH/1AIf5Du+NrnBqVvj7P/hr+Hff+2cAgG/fvo1Nl6MyHQplUekOf2n2HJfdFH+8OMdvnX8Lf/+jfxO/9dbv44PmBB9ujvGbx9/HP775Eq7rMf7WW9/Cq26Of7p4gkp3GOkOF80Ej6sFPlgd49PlDP/6+TN8vDnExLTQ0uHZ8hAPJyv8+PIEh5MtHo2X2PQ5amvwm2c/wP/5+iswyqF3CuOsxa/OX6D1Gj9enyJTFt95eY6vP3yFZVfim/NP8Wx3iHdGN/jdy3fw5fklvvXybZxN17hYTfDNs5d4vj7A1w5fofMatTP44O4YR9UWy7bAOOuw6TKcVFtIBNw2Fc7H1Bf+8PoURjv8x+/+3/h7v/M38IUvvMbz6wMczza4WoxRFj2kCHg0W0ILj7FpMdIt/vGHX8Tf/Mrv43/71l/F1770Aj96fYJHR0s4L/G33voW/pcf/xsY5x3emtzhn3z3i3j76RWOyw2erw7QW4WvHF/g2foAr69mAICvvfUKH94cwXsBIQK08kNw0ulkAyMdjosNvvX8KYIXeP/8AoumRGM1FusSk1GDR9MVVm2By9UYTw4WuNqO8NXjC3z/5hSPpitk0uKPPnmMo/kG86LGi8Ucs6rG1YKdAEXZYf1qgvyoRggCs3GNQltcLCbIMotMW4yyHi9eHeL8wR0WuxJNncFtNH7jV7+H33/9BEIEfPX4An/48jHq2xJ/6f2PUSiLm2aEkWnxo+tTPJyt8Hi0wHeuHtLjezHC6GyLx/MFfvjsAUxhoY3DwXiH6+UY46rBal1hPGqweDVFdtCgyHvkxsJ5gdtP5vhXvvEhni0P4QOwWI7gdxrT0w3KrMfduoLWDlp5WCfR1Bn+2hd+gm+/fAt9rzCuGuyaHH2n4RqF6dEWubG4/ugQIfd48tY1Xl7P4RqFw9MVTkZb/OT1CSt2DteoO4Nx0WK5K9E2BuNRg822gN0YTE436DrOpnaNwXy+xeJuxATjnYbQYUgLnh9vsLgdoZy0qNc5pPYYTRrMywYvfnQKddTivQdX+OEH5xC5w+nxClc3E/itgSgtpA7wTiDsNJB5fO3dT/HPf/AEonA4OFpjuRrBdRIq83CdhNhphNxhdFhDSo8QBM6nK/zkO49Zg/I2/5/nFptFieOTNa4/nUGNLSbjGovXE8iRRTVqsf10gre+dIHnPzrDV7/+HN979hChUzg4W8F5idVdhaePr/H8jx/i5P1r3CzGcLc5yocbzEc1Xn56CLnU8GPHTtiVwem7N1huS7S1AVYG2ekO7V0B0TDMqTjfor6qAE2ALEcW4S5jd6wI7J0VgG8U8mmL7qLC2ReucXVL06t8VsBOPPRxA/+iAs4bqI8KuHcauKWhT7uTyI9rOKvgOoXQKMg4iZe/s8buakQVggoIucfbb1/h+Y/PEHIHfW3gRkwddjFdWDjw99hz6yuH6iOD+isNxG3GicJ5TKQxAerGwE0c32sp/+4PPIIIEL1kONUnGfqZR3Gl0B4ReLkJfdBuwlRLfVJDfDBCd+BQfaKx+1ILET3naqGHSQk3cyjmDdrLaBWIMngAcCW3xWw4ySN6Cb2Lfakdq2raQ+57nweYFQFcd9ajfJaRiV8KbJ9aVM80+lmsJVrQAqAaMQTmpIRhPK4hPyphS/qC81uB3TnTgO2I/lxb8vPgOdEpLH3dQQCQZOa7GWtrZM8JSLWjv1lvOEFy+/XY87rkxKqwQHsU0I/J/pcXYkjg7Q49Rs8ltxVcV7NmirO0YkimRfSKdjPEfcQJDWkpc+8n9DhXr5m6q6I31uWALbltaV8gyqpVx0mN1EfaHnLCsbzia5rj+JyNk5erJMfmJGzqltVb7ovF+wxumjz3WL4ruQ6Cnu7RS5CJX3Mb8lugPQTyOwwy75TYe79/spsD40/ICLuC/lNdcwJRddEvvQvR80tWnaE/AdtzYPKM+64+pdogTSav3uVkSz8m+54Cicw2RAk0mdfmQL4xsSPc3oNtdgG7YzK57XSfnhsEg5aKGzLhlFfTVyv7gPpYDmFUq3cFJh8FZBtOSLRzTvIAQDsTKO44KVPeOlZ1ZCJOBHGCp7q2qA81dMPJiWztIS3QHEi4jAy77D3auYZ0IeYNONQnGsWdQzdW0E28zmNXaYgSZJftE3OzRY/mOIt+dAtXqBjOs+8LHby3scczCMp+vRbI7lr08xwuk4OPNFu0sCMz+HWDAPLLGt1RMUxc6G0PV2l4JSEjUyijjFmEQCC9buFLw2CeXEN2jp7QXYeQaQLeCPxTlYm628GPcwzJszoyjh5ATLiF9QPjmqS3flJA7hg0JJpuYDd58fo3QaoQBM9KDZ7MkEe/6LYGipzS3rqGMGYPTBPwU3IAnz/dk7nvwfyMgKDPwiXxdSGEz30q7LvfGIW/99tf/7kv929+8fd+4dsGfM6BZf70cXj8n/xncIUHphahUSiOajQ3JdRGIpy1kK8KyA7oTizMHZMcAQCZh6gVZOzNy29YHdHP2QW5fT5FfivRvN0BjYReUUqqt4L+tSP6U2QrOHALuFcQL+F1QD/zrHS4MrATj+qFQv2AN0DR78umi2uB+sxDxoGSHcd0RM/uPlVLuJyDEBZZ83PciHI+Dr48shsVZZRkOcfPBXaPuG6prNlNLbIrzYCPIkT/477+wY4DigvOenZzSmCDwFASD9ATuH0cMHopUJ+SVd09cpS69gw2AQCzobzO5QJ1DHdJgTLlpRwYRg66yES6Igzsrdnw2LicX6T5rUBzHJDfMCGyfC2HAYJL2xIY8gKQ1eun6UuF+yQlBTLcJmD5RW6brmOYi+KgJ/U/lpf0LzVHHFDlC/brmRWPgdkyPbK4JpPXTck+qjZg/Q5QvRJDWmM35XKLmz2bmsJL2gO+n6waWdL8loONbh4oo4teIr3jwEvvyByWl/feP6V3M7+LYSnbyIpPySi6nFK2JOmzFdnF/Cb6Axugne8Z1H5Cv6TwYehSS8l/3YTrOrrw2D6U6KYcQG0fRWmdALoZ95/sYmplZFDbA7LOk08crn5Forzi8TFr+qjWb9OXWJ9QdpnCN7whQ5dkmOVVwOYxB4jVa/oHXayOAGIYTRy0Va/JqAYJzH/i0BxKNIdkamUfZZl2P1hNrODujCqE+Q+B7TkHcWbHQePulOs1/tTTXyji9s0Z1NKPebxVH31fjgXwqRph9VTg+LsOzgjUJxJ5LFvfnLNrz2f0cqo2YHRJKVtzmJiUOHCdcOBcXFO6KPv9fhSe54E3YgjB2Z2S1WU6JFkhWwg0JwLZgtu2O5WYf2hx81WN6Uce9TFZkXzJY9GPyTontYS0DICpjxTlrMswBKrYgtK67ZkcOh/zlcf2XGL0kgEtquM+K689NucSkxcMiYEAqksf0yeB3bGE2ZGpzVcc4Jp1QHVtsXxqUNx67E4lyhuuc3FLr6LZ8Xz0isx4tvVopxLlrcPybY3RhY8+VY/mQFHSOBMYXTrYXA5Jt7phGqjq9myt2XnYPFb0RF9fPyJjXl15smGZRHOooBt6+Oojyhd3xxKjC4f1I43xK3pU26nE/IOOvYCBTGsKgpHdvqIBQmD9SN9LHw3Il8hQOk0AACAASURBVKx56MYC5Y1DO1WUhWqBbMPQmOZAkiG+dWgOyBZ6JdCP6RGkh9TFzsCAdq7QjQTydYDeeZitxeLdHLoJKO7o02/mCmYXoBp6AbfnGcorC9URECSG2xa8xoqbHnasUFy08IVCc2iQL/gFs31oIjjiPS9b8zO8EUNAjOo88rse9Uk2pJL2I4nilq9tZ5L7ugkxIIbex5S8ly0thA9oDwxDcOLzuvZQrUN9kqF61Q7VDbK1aE8KZLcddo8KmA1B0Ohli35i4GLSKROM6QV0uYJqybK6nMBd1QzlUbWHWXdoTgpKW0caxXWD9iiHajy7GBUrMnaPx8jWPeABWym4gqy0WbQMl2ks7MhAWg+9bGEnORnJ1qEfk5nNLraw8wKyc+inGfKrHbqjCj6TKF5v0R6XyJYdGTWAUtBdh/6ghLAequ4RlER3QCCTX+0AKYdt9Eaim2UorgleXGnYC1lGEOI8+mkG1XvABehFg/64Qna5Qf1kiuL1Fm6UQa1aeiBHBnrRIBQabsRl6JsafpxBLWvYg4rsaW4gNw38uCCYbGzsdSSLCOsHwOWqDGrTMWUVIPsoJcSuHZhCNxtBeE8fZU52L0TGE5EpFXWHUBiIbZSztjHl1EQGz+h9CE8IQJ7RH+k95arWMUjHuSGAJyjWk4Qig2jvJbdqRfAXZa/Is33ozv1Qn+ixhNYEcF1PMJgZeiDjeiB6LEUCj0nW+plAjoE8whgyhKmLMgFFJQFLv6RI2+Pf9FXel9mG3v4MuOR2fAawfOPpz1q3f3Gf5V8Ay3/5j881sCzOn4Tz/+HvIlwUUG38ElpQAtgeeYw+pa/DjsLgJzQrDiSTdDMlSDJ0Q8QZ3ehB+td2GP1eNQyKXQ50B55exRe8yJIMMA3g8gXlovkt+9Py2zgIroHVewRD2YrLtwUH6P04YPQC6KccFGcryl6Bfdrk6JXH3fuCMfgxFbK6CLGom4PJfsIQDZdz0Lp7SGAUJGecB2mgJaDV2zgwNCJGw3NGM8k687s4eBKcCWSCJ/eZ2RB0FFcC7REwfhbQzQX6itLQ1E929ysOxSuN4oayv/qMYHPzWKC8ipLSGE8vPDB67bF+Qn8PAw3CUEreHHJQv30kMPvAY/NEoryM0rgod6WMKURfFwfKSXoX1N5DFySw/lqH0//LoDmMVQBx8FneBKwfSxQ3lHpCELR0E4F+Csw+8DF2ngNc1XIg2R4RkKRKgNmHHrszyf9llCR6tZ/1BsAZ01H0t404i7s740x5iv8vrzy2D+QgY3M5B+7NMUHL6h2B8Qs+lxIddzF6vj3gzK3eAYsvM3TGsCkG3VSgiJ6ezbkc3qt3AduHEtNnbliWHfE4qYbAozmSqC4cdicK7QGln8Wdx/qxQnnlsXsgB8/ZALrAfSM7YHRpsXpLY/cQOP0Dh92pQnHr0RxK9GOB2Yd8Pl/se+0AyvWaI4nRaw+vgN0DrqfXAqu3JSafJI8If/hYLm+2PH+K2wBdE7R4IzB6TYCJwBCTvmJBeZAMqOknwPF3KBnbnNMD1cxlBIYBxR0HrrszenRSAml6Xb4mSFNtYPiMZvE9BK+v6prbKRxBXgo6KSLABChZDJLb6jJg9qGL25Z6/Agc1o80Zh/3sJXE9kwReEZQxXRLib4kc9CPOEu/+ILE+BN66MzaoZspni+1x/aBxvTjDosvZKiuGMjSHAj+HoM/UkJrkPSsZauA6sqiPmLVSfL3BSVQ3lAG6Y2AzQUmz1vsHmRDjYDZeuxONMobi80jjflPWthCoR9L9JWE6gPyBeWXxZKAtLroUZ8Y1IcSs2c96iON4pZhKMVNj27GfrpmxiqVbMOQk76SyJcO7Uxh8nGN5pRdvLsThfFLC1tKZEuLzaMM2dYPILIbS1QXlECmbbNllAV7DGxHfheBy9ygPuL1XN5wuS4TKG752eV1j/ZAo3zdYvOkQHFrKZU8yaB3njaEUqK46bE5z3jtb6LEdxsw+6hFP9ID8GYQDc/JbqqQ31n0ExXXk88V1x2CFqhPMpgN10N1gbUQAPpKxuAbnl/lqwaQAv3EoDnk9974kzam9qoY/OXgCol+JGFLidkHNbq5gS0l8jsLaT2awwzFNUNc+qlCtrDYPuTxH3/aoZ8ogqDbDiGTEJ1HyCRsqeM5QjDlcw2XSzTHBuVlD9U6uELBLFt0hwW6qcL44y1caZim6gMZnZRQKoB+YmiTWFuGyNQWamfRnBQcW1zWWH5xjOKW0lRX8HxoDzRGn+zQTzOYVYfmrES26qF2Fj5jeIvPFbwSMBsChmQvEZ7P6U0POzboR/QCulLD3DZozisUr3eAEGjOSk5AW4/spiHrFO9/ou0RcoPmpEB+26KfZsjuWngj4UqmpArn4TMdAaFAc1ohv2spJ1016A9L6FUL2Vj0hxX0skZ/WMXqC9CPrCXy1xu4UTYAWLnpIJyDm5XD+ngjKd+/2cCeTBCMhF623B+pisRI6Ks1AZB16M9nMJcbuEkBfb2GPZ5AbTvYGcGvXNXoz6bQqwai5mywmxNM2oMK+mrNvxc7+GkJ0VgCtDKDG+fQi5qgprcD0BNdD38woY8xBIRxCdFZ+NLQ/2g95LYFrEPIM8hdQ09iBI1ivdunt4ZAaepqC2SGMtboZxSWwT8ACBybdkiFHVjAzW6QuCbWD0YzxTX5E+MjeE8gmGcI2x3EqELYNRBa8TljCBazjJJUHyCKnOtY1xAlj1VoGnoih8qPALTtHjAm0JeAnrgXHpQ6MwGuJ4BQNxBlQcayI6splBpksUMCLIDQx6RY4GdBbAKOnwU69zvhzT8/51LYd74xDv/1P/j5A8v/4Evf+oVvG/A5B5aTLz8I3/if/0M8GK1Q6Q6vdjPkymLVFmisxnG1xcc3hyiyHo9nS/zg1SlO5hsAQKEtdr1B22vkxuLiaobRpEGZUerZ9hqbbYEs7zEqOqy2BSZVi22ToV4UKGYtvBcYlS06qxEC0DYZ8qJD2zAjPs97TMoW14sxZpMdbi+myKctlOJF0uwyKOPQbzKMDmvs1jl05tjPuOGNaHq6QV1nEDLAWUre3CpDdbJF1xpo49A1mt2HVkIIoG80hArsOCwcTGEBEWAMbwy7RQldWgSAia8AfM+by2heY3tXAr1EdsCOxqODDW4XY+RFh92yhNgpyIMO4TKHHztAe0wOdlhfjwArIUo7bId/XTAV9ekWCILBQ+MefmOQegPVrINbG4jCoRh1qO/KmGQrIAoHZTxcLxFqDTnqEW5z6NMa/V0O6ADRykHuJzoJddQiBMGuRRkgcg+sNULhIWoJKCBIVorgpIXfsPsw5AFi1rEj0Qn4TkGuNb0bUwtYCbWRcIcWiHJN0UqEykEu9eAfk72AbIHuxJHp1gF+xJl0uVFDnUcwAa70MEvFqhKFodfQVw5qw/j/MO8hbs0gK7vfh9ad9cg/zdAdO8idhBs5QGKQJ3qDIe03u1YMA6liB2Iv4CtKZ/IrhX7CwbErAnQtYCsPKLDv0AN24iFrShaFY9WJWSmYJSV/vvTIrxTaI4fsTjFwqcDQrZdCdLwBXOGhGobn1I8s5E5G3zMlVt2RQ3YryTK3QIhgHeCkSnfkobaSbPlj1tFkC8oBk7RSWrLxTGsNKC8k6ge89opLst12xGAc1Qm0h57namRV9ZaArj3y8EVA8ZpdhmZNfy19zBzQlxdkNVVDOVlzFFUHIJBmvP2+4y8F77RHHsUVmbluygmpoPl7KrnPFmJgUb1hXYvL9x2IQe/Dh+oH/D9rJ/bsssuj19ZFr3acDEuhNKqhj1w1TEvePqIiYfM4+pqnlF6azX7CI3nEk3Qvv+NEhq1YzcLKgJjO2lABIfs4+dMA3YSMf/IIuowTVs0JJ8S6KfdZtsDAdCbpYT8B9JZMvOrJ6rYH9L22B/TF2jF9wt5w3frRvmdPxyRP2VPOWFyHCPgicx297HrLyQBIIHUgpjoVIF2HBM7eYJB99lTTc5IteltTN6LqyHxXr8Mw+dUcRRYZ9L2WF/QgAxiUItKy/idJE9MkYOp2FJ7MNrD3CadaE4Q4CaA5YaLi5Fs/jkx2TFK1IypTzC7WJMVuyn4soLcBuuF6NAcEqbrh5ybfq7Rkyuvj1KlI4O0KMvhpvbJNGKpDpA1oJxLZlqCvOdz7fimTjUnERazqiZOQ+ZKsYTr/XMHzR/UB7ZT7TjcYajWEj95rQa8uwn4S1hb8f7Hk/aGdRkmmQ+yZDOhGMkpLyQLbghOB3TimzsZKDtUmGSWGYCF6B/eVKGnyJiXE9hXDcdL6JJ+p2VjUxwa65mSBreTgjdVbMoXCBficxy15I9Mksq14nLKl5aSDC+gmir5Rw0oWTj5omLUdsha8FtBbOwBw1Xp4w0kDr4H8zsJnnJzLlpww6mYaxW0f5aUaetPDZwo+Yz2HHSved1yAWffopwb5bYv6rEB+28dOSjKDttT0feZq8I2m5TEdV0FvbfR+9rAVQ8Nk58maKcFakHtA2eVM4E29nVD8fhDWMyFWkqkVAZCtjT7OmNLqw9BFKVz0bXaxkzLVjUQw5QszvB+eabHCe4gmAs/AyhK4AEhAtBYh16wyUYIMqFZDNUz6W9Tt4Kt8o4fyflfl/SAegIDXxqTWe4E+vHnxGvgT60ZUBNVKUdoaAegboC7VjGjN5YRAoPnT1SHevwGW+XGfATDv93D+SY8/Bz2Wf96Bpf7TX/LL+5CRxvh0M8Oj8RISAYXqsQglpAiorcHTo1u8Xk/w0e0hiqJHoS3udiUKbbFtMygRsK4LjKf00VWmR6F7bGSOttc4GNXYthnKvEdrFcHkYQ0hAgpjUXcGSnqMixZ3QWBUdLBWwXYKubHwQXBd2gyycJAyoKkzaOOQFRZCBGDUQ4iAvOrRNRpFxRk6k1k4LyGVh5QBzknkeY+6lGibDGXVom0MlHFQyqNeFMgmHbKyh9Ye251GVvXoawNpPIL26DsNmTt4J+CthJAB0nigB6Rx6FqC0iA8nOPzi3UJIQKaXQZ4IKgA30uEmUU+btFdVejHmmAQHtJ4eC/5mqmFujSwLdPzAEBpx9lMAGoUbxAmEEA6yUqW0kLkgGsUgvEIraJHR3vYecfX6QAY9k4KxeScILj89q6gJ0xE8Jx5COMRnIAoLdAqBBXYEQoQ+AEEr6Ul8FUxrCmLqTyB8mFYARjPXszCQxoHCM0SehvL15MPaOSZjrpV8BMHX/BLSTaUHgMMaXJjBzj6xoYv95yhUHACQu6ZddkJuIlDqCXQ0Y8VBIGdCPFmLiJzKgJkLeELVhz40gOW+wkm7I9nHghqW+7XIAUQJzKHGfeYmOt1gEjPSaA7CNwuxKoPwW0KgssGd12ULGPYbkRPinAEgd6w3sLne/l2UAEhyvNchqFKJQiGa/UTMJFY7WtGZFQvsKAeQJw86WYBqdvVxwlk9oUCVvHYJalcEARCqVNS9HwdEOXSZVy/uI0uF5COHZsuptK6PAyVBwDoIZzEjlLF/SD7CEgsYpdmBAlh79XqpwE9CDC9AXzapzoM64MQQ696rk8/ifUsvCTh9b3P1QEyUOqNQLDlJ1wGAsEaQEAB8DwSlvvBFvHcxP74p33WT1JpeuzSNICJITI+4/anAvgkzU/HVcTBX3rYEsP9gscq7v9AoBoEwVs6jxABo09pzlGlMShTRnsPVACZVJ+lbSPYCoJy3HRu+AwMi3FcHoOsxOD7Syymy9OKRrAdmVwBfq6uGcjDsCD+ZMqtiNdMqsLgOtErFo+rBxDPJ68pqydQSufUXonCCQOuH8BajqAAL6PfrBDDue2NgHdxMssg1mUQQNObFtU0URGT2PMkmx56CfOwr6speOxTR6ZXQMj2+4brGxnDGD5kc4FQcT37UgznclI2hChddhkGtYmwcYJlJAf7wv2ye2fEAIqD4Pre38/CA84AQcZgO7c//2whhve5TCDEr6d0vrZTOQQfpc8JEex6dQ+8qnjfFGK4fyJwe1OHoq3kAG6DBHzGYyAcB2YM1tM8L+I1gMDzOQUgse6DgFsoAgmvoppAYvAKutib6bQYjmNIE0QZJ7ZcoYaAHwDop2boyLSleqPLMr1H9gG2YmKt8EA31QTFAOzYxOMVWc04wRKUgB0TsPZjEyfQuC3ByIEBdYVGSD2dke0lyIzAMcqiffQchggEhd2zW14TeIt7oTQJVLJfU/A5LfcVJd7Dm6RI4/GCwAB6vCI4xL3XINOsKUG8d+s9Y5nO/VAYBCmBWF0CGSgRve9xjBUjIfkmJYZOy5AbSlmNJpPo/JDyChDwDqmvUcL9RiclgKHGJG4zbASFIfwssBwWLLgdKa02AkYRg7p4Q4nv94HMZfA/Cw4j2E3gN8lxB4D5ZwGVf44e/peoHuTn/fhcM5b5u4/Cu//930Gzy+BrDdFIDl56Qf9hLdntqMhi6BVnzIaBa07WismRHEiYVSxVFyHWeXDAqzrOxKcAAg4oOQOcitpdkeRQqYA6lkKbMFQYZCsyNPml4uy9xMAsDQxDZI1UzcGfqjmoSq8NOvqXtmJgdERgwIDsI0sT/VlJkuoNgxSAxCLEgvkktyu4XGEFgt77FdPAUW/5GvoC+eUjLfv/1k89ygu5r+gAl5/6G9P/U2hAkvcmBiXoPXjhzDQTaF2sMWB4AmK4BIZBYwogSNLTNIDXOzIaKaWVX8QYUjHTgCXN/ANxu0w8B7ZxkNTvByxpMJgGPOmeIFwCEfG4p20SccBi4wAt1i6k16b9nnxf0vJzAAZDAEBxEz2QKjIhgedVki27TOw9lwd7z65sAZ9Hpk/vJdou575JfrFhMBYH/mmWPSVukhXZJ8iqGJIBT68ZZ+K5fqrd9+XJPgZRxNcOQRZpkAkM3Xi2IKvAnkBeX9JxcJgG88Jzm1VLKW43F3sZdyzTVi3/ny3DMDhN5xZLwCk5lh3fZwsOmJKXS3ZhGKSzTDwCBsEZ9pRUquuw72rswjDQs4WAjx2W6XxL25UqB5J01BZkN1Ighs/2xzbdJ1KlBRCPRxyIJzY1PZfCONI50k3IZqRBtnDxuN7bl2ZHRietE68Znnxknu6tRwf0FX8O15NL4GMPxNO5nAb0IuyXpyKrlc43Ecg+Skfpr4jnU6pXMFsWzYs4wGAAB2JYSBiudwLJCBoySoldTuldkAK6DYM3WHiCGbMji5eOny3p9/QRIOpmPyBLx9EWZHqSrzJdJykxNtkh0j2GXZsYBmjdWELHfkSey2LYZxz48/PS4Dzt29SnmEru6X/cdzQKz23gNcDlJDbZbGL9RR9i2Iin/DnwOXY7xn1Q0DOqOsqlub+4gqoPg40iBa8A9JUi8PpK68fOwT3gSAnHACDbeP2LCORjgE1i1HRNBs1rAdV4Tj6YCIhzrn+Sw3rFewOv8Xi8AEgXu1PDm4BbtQ4uV28MmEMEX7L1DERJasC4v1TjYEeUhQd5bzs6StSl8whCoJ9o6K0b7hMEgRGMpHRNvz9npAsQMdSlH2uo1sfP9WTf1mSTfCaHTkvZewILLZFSXfkmAI6AS+0sQhYBCUBwpSI4AUGj3vI1CejJLkrqIwvIxFYJ0fs3tplJv+ma4Pp6LYeJGuEDZGsH+adwHkFx+a40rNgIewAoYw/kAACFiEydYz2IJ0AZ7A/R9xmMgujdUAUyHEcPCBfBWlzW/fcNTOD9n0IQWMX9KizPA9nYzwRWQYg905dAWpKJWrcHZDEVFW03rI/o+sFbyc9T+7oP5zEE5qQU1fvLSkmsiPeTCCjf+N8br0/hAvJnQeK9KpE9kxh/hp9a5r1t/5n/pfcFz9mL9P4E3K39zHV6A2vcB4//fwHlnwPG8unXx+G/+ge/+nNf7t/+8j/5hW8b8HlnLCVZtPl8i7rM4JyE7RSk9oCXkIcOrlfATQ4za2H7gn2JXgAqIBt16O4KmHmDbpVDtBLyaQ1jHLavR2TgosSyrxVv5MbDWgF4ATGywNLAzjxZtkaSNaos3MaQrckd0Cgg95BLjfqJhejYbRZGPcQujmRjkiME+DNw1t+NHZmiWY+w1VA7BkmE0sEtNdzIQa8V7MwRRBsP0VDuqdYMDLBzJhYGFSDHPXCVw1cOslbDZ8pewM4shJUwtxL9OMDOHGQtoxwwUEraSRSvFeq3e4x+YlCfMmSnfuCgdxL9jD19csebruoE2ncayKssgjKB5pwBQt2M26dXKgJjjzByMBcG2xgARFaF+yNbCmzfZsejHbFvcfvlFsXHOYIKEF6gH4VB3qm3ErYk41i+1Ng+YNKirvk6s2aiYjjqoD/NoWoBO+LUtc8DrAB0TVmrKyNb6BjcpDdkCrM7rkt2x5vj9gknNMbPBTZPQhzYMJgIMkoNrygdVTWTEPPbKLk85MQAJUz05gZN9iC/I7DoAwNzdg840UEJIpMQhY1yQwdkd4I+3cCB/vZRGIKEXM792s3oOQ4GULt9emN7EMFdR9llfs3C+r7iOlYvBepTTriYNSsf6mOB9iSguBDwOeto4CO7pAD4uN+2AqoR2J5zEFfcsK5HbwS6GUOHnIjdjdt9ZQhn9JmMmC2B+gGPS3EbsH0ECEff6vYRGePEjhoqsNHNWIPiI4uTx6TC7SMur5vwWOhtHKRaekM3jziz4nKC89V77F8MgoO+FPiTrTiorU/pHW4OuT+7Ofsb2fMnoW2g51AT6HQzhi/ZEatTyksCzvpM3GNmRAQEBLWpkieBmcTkZauA9gjwq1jDIYB+Jt6YeNE7YPOEUsvmiCCSA3wxVMVIR/CVL1m/Ub2OsswoKxYuoD2gv9lle5atuGWIE6suuP350g+JifUxf8peRFYjAryWMlFbEuC3B4r7/lzGjk6gK9mvuH2wT3Asb1hPYjb0iNYnEvmdx/otiXwR0BxHr7bZJ0O6TAyAqjkQKBYBi3cVRq8IWNoJJ/GKuxQ2FCdRoi8UcULRq70clVJKDAyf6gPqQ4GgJKpLh+rKwWcC9SGBgdkwfKu8jTUni4D6UKG4I8CtjxTyJX3Asudu6sZi6IvsR3KYCNmeyjg5JlAsfWTjBBZfMJi8YMehbgLWjxWqK4K35bsGZs0Uz24iB9lrO1P7RNPIQiLQO+sMga50GHyunByJvvy5ggj0X8s2oDmkbzNbe3RjhT7W36g4sZMv6MlULf2ru1ON8trCtB6rtwzyVRjk4tnaDz7QbqJZp9EGmDU9moPcVLLmJU0m2lIgW3m08wyyJ7B3uYiTZx6y9einOtaIRNCbg9UpM41sGcNGQMAYJK+NbqbhMhOlyR52pOKEBmXCsvOQnR+AKXxAO+d6662DPeD/i6sGu4clVOPRTxlk1JzlUA2XwdA8h35iEJRAtu7Rj8hgUtIJuLFEftOiPWToj9508CW7BeHpJRU+IL+s0TyokC069FNDAF1quEwiW3boJwbZsoOMNSUuJ/BzlYFsHaTzcKVGN+Ky9aYnyJtk0NsedpIP4FX29Bh24wyqtrCTDKqhD1Z2Hk5nUHVPgNhY+lWXLdyY4TrBSPgsBh8pATsuIGxgGNAog2z4XmljlYv18HlG/+hdDcRKDV9lkA3TXwHA5xpq18EXEeC2Fj7XQ7ek6CzcrISse8CFoZOS/ZMObl5BOM+k1tzQn1lkkE1Hj2SecX16R3ApJcS2Zv/kksEGflRCtB1CkdHLaXQMG9IEoKPyXjhOZB97G+tMGr4OluDSRKbR+X2IT57twW6Uy6LrCSqTz7ONtSPWAkXGn0H+jHxVSEnvZp4D3iOkQKJUT1IUCG23X9c0EzAkwqohoGiQ3Ca5630/5Z8ie/2Lx+fv8blmLL/yzTz8+v/6W5Ai4MfLE3z14DU+WB3j148/wh8vz1HpHmf5Cv/v1VN89eACF80Eq7bAPK9xXY9wWO5QqB7f/u57+Bt/+Z/i//jR1zCf7vDN45e4aCb43sfnePjgDg9HK3z/8gyTssXl9RQPTxfYtRneO7zGj25OoKVHZzW+efYS37k4R5n12NQ5jLHQ0mOzy2GMw3vHNwCA7370CAdHaxxWNRZ1iW2TodlmmM13WLye4OzJHa5uJ/gr736E3/2994GjFt946yX+6IMnqGY1jsY7fPLiCIenK9zdTKBzi0fHC3zyz85x8JUbHFVbPL89QN9pVFWL1e0IQnuIm4ySxcJBbDXCyELsNPRhQ/B8WwASODhf4u56AlN1CF7Ctory2F4CAdCVRXhZwJ92CL2EuTToH3RAL3HwYIXFYoSDgw1uX89w/HCJ64spgXjmEDqFX/nSc3x0d4jVXYXxnLLi9csJJudrNHUGPKvQn9HrqHML22nIqwxu7PD03UvUvcHFiwMgAPMHaxjtcLccwTYaKnesfrgacz0BeCsROglZOJwerXCzGKPfGsiNppzQCeCgg9Qe+R9X6L6xg90aoBc4fLLAts7Rva4QsoDJgzXWV2OI3CFsNEQQkAct5wMuCw5qThogCLilQXFSo90ZVN8r0Jx6uKmDyB0lvcssStcCzGEDe1kijBxUaREuCwQToNcSdhzZgdJB5pRQF1mPKu/w8vkRZblbjVA51jEc9dCXBu68hbjOUF5K7M4dzFqinxIU27GHmHdQLwq4IsDP+WVWTlq0L8ZkxXWAmnZwrYK+yMhMvrVFd1dAVJRxh1UGvZLoz3qgFwP1LHdkAYLxkJ1E0IHy3zIAluAy6IDsjucUJFA/7QiENxrZQkL09CAmqZvPPdS0h/lRieahhawl9FagO7FQKx5L4UHvaB5iH2mcvfb0hGbX9B/1h5zQ0DvWM7gx/aOqifUVFeXS2ZVCYDgnA5Uy/m6P6W1NUt/uvIN5lXEi5YBeTXfQQ18bSEvPqFmqwQ+m2qgSkOx47Q44sVR8eYn2B7MoVeNz7SGl0rKVEH309wURB8/8fNUINA/Z05smpMydQrbkpEY/85h8pNAehMG3WT/wrJPY0hMqPBOq1+/3KF6YQUGxZ6SBdk6gF57WkB+wO9Ws9ui6vgAAIABJREFUxdB7CxB8djN+zugTTnC42MGa+n29AYpr7gOXA82xh66Zip0Si1OHqnAEY9tHVIf4nB7KfsyJK0PbPCWd2R5oFzfsbs0XVAEUVxhAOUBVxegFsH3MbQgyMXAYwrXSciEoSc4WYpBJ57d7UF1ekv3sx9ymyTMmAq++7FC8jJI5zeXkNzyft48Cytd7lrI9EOhnAaMXDGhLAU+JIU+qBhE4GSAs5ce784DRJwRuLnYA7x4GmCX3jWr3rJ5uAhbvA9VLMSQOD2A5TjPbkl5Vs+Y6dXOus97FxOAzOTD1AAY/YJKc+hworrj9tuLkjjfYqwn8XpliohLGxd7d6pJBXymgLPlW2wMGuXVzgdFLVmikOgevBUYXDrsTiXwV2X1NBlt4gvLElGYbBsZlK4JRW0alQJTBzp71WL2lsXkCnP6Bx/aM6b0IZPqbAzmoTqSlx9Vs2Dur+gBdB3QTOShSpN2rmIJM/k6PbiQZJBWiBFgKmJ1n4nDLtF0bg8SoFOF2mW0YAK5ZOeweGIL3iYzsOc/j6pqeStV6qNqjm2v0Je8ZZsvkYLOmH9+WZISbA07wqi76XmOicLawaA/NECbFTmE5+CxdzsnnbO2weM+guvRxEoDbki8sbEVQKVyAzxjyZDYeQQvIjv5N2fvoByerKiJbS5ksoBp2dmYLsoHdjIBbtWTLVMvleSWQLVr00zxed9Ei08Wqj9j9qXc2st6eTGnn4QsF2bDqQzU2MqKRjR9nZFmFGABwUJHlRGRIJRAydm5K6wkaMz2kzHotobZMvvWZZqdmfIgokRVNT6AI7L2YALqzEfJntwSUsetSJHDa7cEp36cYOFSzTzIkdvUeAzkw0nXz5sA6YYIiJ/OaGYK/xHgmVlRrAs+yQFiu+TprI+sqB1DJoKB7701AE8Dg4Qxx+Uku+1mPe7Ukvmn+5Nf9KY9fDsZyEv7LfwmM5d/58v/zC9824HMOLPN3H4X3/6f/CFJ6LNcV3MbQ/wZAVA7YaohOwM8sdGE58Jf0zQlPQOBvcjJxO4VQOOSvDdmqkjc2s5ToJ7yhphCUFMiiOoF+Fis/akH5ZysGqa1qBWRHFuz+gNrOHETL96R6AhbKC3QzTw+ZYqdYe+ih2r1nI0mxIMhKdQecidcbgebcQa8lZMvwDjsmK+aqmIyakZGh/I6sjuw5IOmnPrKlrE9JATOy45dothLD4M8VYQjcKF9J7H61hv6o2A/KtgL9xMNnAaIX7Fgbh5iuG6C3kmzXhp/N52KIQhXgSlae+IyfEaK/sD+2KJ/HWTdBD1t+x/oM1UbfmwpxXbmtSRKcpJH7IBmgH1HiKC3ZIWnB99VcD1VTciXj/qeEkssfjkdkBL3hQNWsoswtHisZZWTdjHUx8AwVkS1fkzxe0g2YDO0Rj7neiv262z2TYMu9zFLXlIc2RwQcNg4svd4HofQHDuMPNdqDOBjWe2mjN+BAL6YKqyZKKufcp3rHZXYzsmzFNc+ffMGBoyu4bqpFZFr3n6vqeA71BAau5GeTxeVy7ShWmxRRYtnuB6zdDPd8VhyECrdfzyR1ReCgtzkRqF6RXRN+/95+TCl3SJJUz/9JFyXesfNN2r28N0lkbcXl6Jrbq3fcxkHuuqUUzBuB5oRBNwj83CQv9WZ/HNO5kpQJqqVsGOC+Fo7spdlEWR+A4oYVGkOYTxwUB81BfZJoE/jFHruU2urflG8GTVlwe8ifAINZ8jve77oZB/T0tIlBZq1iaEtKQi0WlLHaai/NTd4uppLGcyoyrLrZrweiTFHdS1BO14qtgHwZ0MzJeKZtTnLflJYMYO/7U2Q8y+swyI5TGu7AUPZR0ttikPebLYFCHpk+W96TygrKPduJHK7lNOC2pRyqM4AobY9+Tl1z2Qn0AJFt7HisZZTGdyOeo6onYEgTDfmCLIwzAqrn9jgjBum52Xm0c8lzp+d+lZbHwuv9MU/BNqplAq6JATHCBWRbssh9xdoKW1AyqxsG0QAYJJXShjfSqBEwrId0lI1S9s3vvFSjkyTIrErhtjgjYrgP96HqAmXCtR+SjVPFCYGeHN6XEn6TZHa4v/b76yTJ9tN5luTEA3CJibD0gIvI/PkBXAlH8GIr1rm0cx2lxoj7guBExG1AANoDzWoWJSgnlYLpuzYMqa7eUErNxGAMPtOguD9FBEX9WCNbdAhaUgobX6MaP3glEwADEPerhzMEkC6nT5GfHYbUaBEC+pGGWcXwG+fRVxpmQ9mnqzRUTXbQFWQKhyTdJC0V6TpliE0w9CQKT2mviOwhhIBq7OB1DEoOkuhBstwxYyHJaoOS8ViQiRTJrxe/R2UdvxDu14YkyWoCSp6sY1AKwUhAUlrL88IPclcIMopBCIQyMpvZXpYr2/1yRdMjFHwNpGQNiN/LUX2VQzjH98a6EggBX+WQ24avs26oEUEfl32vjuS+FHYI2rknl33D+5jkpZGNDEYzXTYxgwkIpmqRn6n1iH/fC+sJzgPe4Y1k1gQME6D8k1jD+xUkKTVWCtaKpEeS93q/Z0Lvh/rcfyQ280+TxP65kML+BbD8pX0U7z0KX/wf/zZWV2PIjWKJueEAWHZiSE68P5jTO87gqwawUfomWwKIEGfK7ThA7QSyNZMSXQYUNwwQAAjKVBN7DNdiMO8DiB5OQPTgF9YoxIRGJkkCwO7co7iUQ9mzcHtAIOMAhf6VMPgyu2kENIIDENXsB1yD9y9K57xBlLTtZ/EBDsz7cVp2BDfAkBqZPJypUJohBdwOs8YAJn0WEx03HDD1Yw6+WbvBwV9zRJlj8mYGtV9mWr8BNAUO0gdPpdx7H5OvzFZMh+Tgi7POerv3UqZ+yuQ96iYc5HWzPahIiZZJXplen+Rf3YTHPr8Vw4DWrHls03bpbRxot1yO2USmYkS5aErChEzrHGLQAoakw3xBmatZcdlvDMxGnEVHAKYfe7QzgX7CbbVjDLUkqmUYh9fA5BOH7QM1+LCG8I5sXz8jbUB15dGXEv0IQ32M2dD75BUGqZjZ7Jctu70XLR0nXacKF/qkkgc1+TeHczF6zlxGgNLN+TnZmoPN1IuY5I2Juck2/F+24ufSZ8XBtexihUUcdOsasdMzMpSRfQAwBHO4jNsEYAgrSRU6Zh2GzssBIBRJqkkA34/2bJHsCcSkDQP4S8xe8g1LSxBjtgRq/IyUBolh3YMQ6KaCYEKK4Vq7X5Wiuv3vuiHYaWb7/cUJlgjet+x11DUliGndbL4PpEnBKtIFlpSv9gN+P4SexBUQfK/qMcxumx2BEOWlfFlKAlWdRztRvM82HBD1FQEEgMi+cH8nUMF9vH+eB2kP8qUjSEXgfgtSDBJJ3TKpUzoyRfSSi8HzSH9cvCfE8yBfRiYoSh91s2eC2LdJoKUbdlNmGxawCx8GTyM9yXuQlQBnN+a2+igb5b5jofxQoC45EeQz8UY6qK1i8nJMJ9XRbyziYN5lkW1aWzRHBvmSPZPeCLQTAl3dxGMeQbiuCTZkF+L9dw8EIcj0JA+hitLLfswglnzBAa7eObRHhiCmJUjxhqyQCICq/R40CAzeRh9DV1THQWm639pSxvOQ57xZk1kTAQxm8fd8ij4M9zTZcfA9gKXPAGchgkrVOtiC52HyRBKMiuHeoNK+iqd6EGDh/V0HO2bhfX7XDeExZLkUVGPRzTKYdc9aEZ32neDnRyAnW4dulg2g0eUSqvOQbfriYdBMkALynmfOq1jdsSMIZAcnP9eVOnqTuRxhPdzIDFUnHL9Y9NOcbFvyroHnEFKYixCQnYvbTICXZKRuVhAICUGpqSDwS75oHyWygz+z1FA7C7mLVSF9BErR9xhiqA0k3khLFX2UmNY93CQfalF4QyGolk2PkJJIcwW56QafJQ+iGHyRPiP6l53lpIjkNg+Mn7oHzO4/XGCHpXODlJW5ABGM1pGxa1mnkcDi8FOrfe9kquEwGnKz24NeG6WxyUsZH6m7clin+2msbn+e7AGhf9Nj6RzX7af/n9JhvWcwTwKuqb9SCISU0qrUzwK9BPCSVzKtWwKc6by6/3cEliEEoO8x1I0Yw78BgtjPetxfXgKqP70uPwU2Q9/hX/TxywAs3/76JPzn//uv/dyX+3ff/51f+LYBn3OP5ThroaTHb3zze/irsx/jR/UD/OHdE4QgMDIt3hnd4A9u3sLdrsRXTi7w3YuH+Hfe/j4AYKobPK8P8Xx7gIfVEt9+8TaeHC7wa4ef4B99+iXMyxo+CLy8m+GvP/0xXBBY9wVu2wovFnMcj7dYtxnOxhs8Hd/iH330RYzKFmfjDT66PkJZ8PdPlzO8c3CLdZ/j5d0MWjvMlUP55R6/8fCH+J3LL+D1Yor5eIddm+Gdg1tc1SPM8gbf//Ac8+MNqrzDWbVG4wzGpsW3f/gOfuULn+B7r87wpQdX6J3C6/UEXzm5gA8C3339ENPxDi+fHQEqYH6ygRAB7x9d4oe3JyiNRWl65MqiUD2u6zGsl3h3do1Pt3NcrsfYrgo8fnAHHwSeTm9xVY9RW4Pr9Qj1ogC8AL7UYntTwBy0+PWnH+GD5TF6pzDJW7xeTvBv/+b38dv//FcRnMBXnr6Clh6vNxMU2uL17RQnB2tc3DKC8vxoiU9eHuKvfOlD3DQj/Oj5GUazBtZKPDpcwnmJ568OMZ7VuH01wfx8hbo1aNc5IAOEChhPa2Ta4cn0DoWy+N3vvwehA44e3GFZF1iuC4RGQZYWyji4lxXmX7zFtGjx4uoAdqcxP9ngi0dX+ONX53BW4vhoiWfPTvCld1/h4+tD9I1G6BQmJxu0rQHyHoWxWH06Ry0DzKiH/7Rkeuy0R/tpDvekRpZbwFisX0+wm/QQnxaov94w7fc6R8gC1KSHjwmmwUrUDxVmby/QbAsUZYfuuzO0v7aF93Jg56uzLV5ejTA6XWJ5MUJ+VA/fBVJ63N6VkLnD4cEWN98+Rvteg9GkweZqBH2nYf6tGzin4L51gM1fbhDuMoSxg740CE8auJ2GyBywNFDHLdxtTsZJB5SnOyxvSmRXGv2BByY91Cv2AbrKI79VaE8cZCPgyjjADAJbKxBGPeRGk619vIHt9CAPhg4AHD8XADYGQQSgoE9ZtoB6d4N2UQBWQE56hGUGtSG7ZE96FJMW7esYaxqAYAJGH2s036w5Af1pAdkFrL5q6aW2aacBov3/2HuTXdmyBEto7e401t72df7cPdrMyMqoSqQEhGDCiAFDfgAJJFRSiaZAUBJ/AGLIHzAriikgJARCJRiUVFSizMqsCHeP8OY1t7f2dLtjsPY+x55nQCYQKMJTadLTfXav2enNzl57dRLmKfnh9gLHHw9YXR2xe7eECAJ6K0eFgZtF+AsHfWfYk5tkoe56wOxnJUI5dZyGgnLgcsPak6iYGKx3rJup7uRYZ9K+8FQOLC3UN+zW0wdqFruXHrHyKG4M3IwKDARg9lahu6aPOEoJs6PcVR8T0Oq5bXYdEGoPtWf1jb3wWHyucfgha1/MQaD/yKJ8YzBcBpiNxPDSwbw3kFbC7BNLeEbVQ/eMXuNQKPhUm6OPAmZPsGRXSP5oXgsEAhLhZQfzi4oApOexZC9uhGp5LAB6acsNg576q4DFlxLdZYQa6AUPhvuepb3dM4/6rUL7ysNsCFoWXwP77wGyZ51A+UhAPqwTKN9zQnD2TuDp9wHhVQpPEyPzHjUlr/tP00Rjmowjkw+0zyLKJ7KJ7fOIUETU79U4UdddAasvIvavBfY/9jj/I4H99wSKrYJdcOLQ7Nn1a/ZcbkhKiVxZU2yo5BhWGt5QpgqAHvlaotiDA+MIqF7Sy3nHc5IDoHSTQGap6cMO9BM3z+UoE9atHEGiqzEGsFWPVHm012SxdSvhS5E6lJHqVNiDWz6xTsbOBdprgWJH/3b1EKEbmXzCCuUuYvcJu2ldSZ8ye5I5Kbh469G/MJOCIKk96rswVsj4ehqwL7+W2L+m5L3YknG1c9a5dOfslzZHsrNDmpTi5JhAca7GShM3q9g7fCHHShZlDbozgcVbgf1rhfltwPYH1MpnGS4nWTjZkQPW8rHPE6bS0hcMEIS7iiwwkJQwgeDWNAHthYLuCug+pIkUXnfmSL+tbotxUsMcuYxhzRCc7ozdoOWOTCsk0F7qMWzJzllzIiIgLw30wSMUBi6x2e2FRrXxUyBaoAe4vqdvWPgIVSm4j2fo1hKLt5ay3SV9pNnHWr/vsPt+hSgE5jcWcgiU1x7JDFdPZkx8lTbCzhWKLfuDh5WG6gLk3KSAKIYNSRfh5gr66MmClgqIJWTv4Wd6DEtiwrhAKDlx4CtNYK3JpgYtoBtPz2WhPkiRddfz1I3tPwgwipIM9XBeQh8s1HEYk2CjUbBXM+ijpQT2JKhIDA5hTomusB5BCMhjh1gXfF4ayGOHsJ4T3EpJgK7UyIKKNvViGg1xbEfZLIrEroYAaHZr5vAgxIh4eQk0PZ8XZvpbP5CQPk16BSBmM4JCYya/JoB4bCgPrmvEjp2goioJXH34kOkMESgSs/FBTckEMuMpoP5VbOWfY17/avgu/V+nwv52PqpXH8eP/u7f5eCsmeSJoYwoNhLtS4cX/1Di7g+B4lGi/dSiemvgUk+fcICfxdHnpnqRoufJtrmarJqb0ffSX6SZ15hkexZjDLoa+DzH8QMYZ84BnJQk55t1RLkhg9E+J3NaPcSxPN0cyKBxlnxi8VyNlI7IIJVcKWD29NXUd7z5Cp+YRJfYTU2mrHkJLH+BFL7Cbcp+It1SRugrkE2TmaFJ667o+Tl+BBT7HDVNFq7YYWS4clKoL8mwRclgkvlb9hpGIdBdAfUdQ0PcjOvLPX/DGQcUxY61HQz1IGMxJNlgZkDNjgyibjBKHWc3HrvvqdEjVD1yv8oH3lhz6qFdisQMerRXMjEAHBzZZWKYEyOUJY9RZ+lNZgX4+enPsn+F0sTDRwxGKbYRriYLlhk4u5gYPt1E2BW3n7I1Mcr0Vl9aHF6ZsZJhOGPnXX8usPw6oEvM6bAmm6CbHPSS2R6+T3iMEj8RJ0nW4p1n0fqBy4iJccjJm6qfWGS7EOO++sQm5PRW9sdFlDsyZmbP8+aNQLEn4w+Rmc4TZi4tK8vd8gBQDVP3H082Rsmx7hmMUhyyl4ryxZCYyPwwx+nc5TAPVrVgTCd1NQNq+jOJ6ok3KzubUlX7M8lBZ2KVo6JMc1hMLKXu8uc8jh6qYDjI1E3A4SMF3VCqWT0GuDolierpcxkVxv3J6gruE7+DdAtUT35M9bR1lv5Nr/UmfY4OcTxulK1OssysSMi+s9XXFnauUichvV+uJFvVXXKwksNjgk7L6/i68sni+LKALwSKQxgH5pkFFSFCdRHtpRq/B3UXKBO0SUooJmk0fYMhSVe5nGrL56on40u2UsAcySIqy/UMc0lPWi1hZxLlzifmcpptN4cAu5Aotx7tpWZirGcXYHeZuuscz9mwUmPAT7Fh+IevUqhWLUYGNifk+kKg2HvYORmmzBSOaa0gs6YGsleZ8WQ9BUZG3hzJ/vVretvGZM4A+Eqmz3VKSC3ExETaOF4bOUAmP9jVGRN7d1KvcLJM3SRmM9dEpHOUuzHlwEG8r+h987UcQQYioJInTQ70uCHEsT4iS3OLxwHDWQGflp1ZRrOzsEtDL10h4Ss59iJm2afZT32IAEa2FAmEAJRXurn+oBJDRFZhjAx8Omc5/ZbBQTF58MgE8vsp/c0F+JmmMuPoMZxpVHfDdF1JTOcoyUZzF2NMlRmuZsCK6gNZPymgWge172EvZny9DWNSqz7aBHb4ftk6+FUB/dDCXdbIvYs5eTWzOVlWChcALRm+4yPkwICaLDVFAPyqgGocfKVH2akIEbJziFqOqatZ3mrPKqjGjUnPshnIJGo5nqNsC8lsYqg0l5cZQOspPU3smWwGhHnJ/keAIToZQKRzKDsylPz8qPG5sB5hUXEZlWbwjvWs40j7jwzkvs0GnjBwYV5CHvtJWpq8kB88bJJ7asUQnMwgpg7JqE/8gkrxd3VJCWyWhDrP/knryHxW5cRefpvNPA3iOZH5IiRmU+tx+1kDkpjTXCGS9zFQLiqMSRLVDxNnow8TK6m/xS+NoTp+2qbTBNjxy4XS1+ynjKc+SXsSQJRTYb/NWH6bifxV6zh9nADK77oU9tOfLuPf+29+/Zvwd37yP//G9w34KwAsv/dv/4esiEgzvNkTqHqM9QoQnP0sNrzpDisO+rsLoHpM/qTkoSqfCEJmtyxAFp6Dwjwwtqf+p+Q7kC6i2HG5ud7D15x9ZmojJTIygdL+jAPuXBSeB85RTsESo9QtDRbcbJLzuRmSXCmOaYTCp6qBll6pYh/HXrDsO5I2rWOWBjQujnUYYy9a9gWmAbJM+2OOBBmshcA4a1rsA44vFAFE6kMzTdquNHPePGMZeJa+6paSvvZS8jgoATvjNrsZb0RFGiDbmRjrWEY5Yh7EJ5lbLqLO3iXdE4Dy+JycpxwYkQbiJpWk50Fklg1miV8eiBdHyg+BSaKWkxqL/SSDy37KLO3L3pygxPj7oAV0y5CGfK6yVywPsl0tUOx5o3GlQLXxGJZTMTZBWEi+oOm6UpbyuzwgzPs8JFAo3QQGs88sH7tcqSAdJUR2Jkff01g/IDjzW+zD2NWGSNDjk4zRlXm6k+cpaIFhzkqH7LkCMAZNBJNSSdP7pScAER70hCUAO8zpExPj9ZgG78lflQfP2WeVJYo5JdM0TGoMBQfFdi7H7ZOO16A5MKkyf+6LwwQWcjItgLHmxOynZMthNSVq5vOp+gkc5PNabn2S4cpx3T75vfLAisBejMvTbRh9WxnE5gdlgjGdSzECjlzLEEqRAP5U56DblCyaklIzOOF5SddqKl+nRSAf4wCfEhWD5vEK5qSEHIBdKugmYKxFSJJp1U3+NjmE0QuWX+8LCd16+ugaDurzwCOUBIzFPozHzhw99N5iOE9pSiBgsEsFmYCotIHAIpW7QwJma0c2gymdLIGXQxiPd5ZIqsZR7jj6xVLNh2MACb17ArrL0ksmVCobxv688XVJCusLCXNgmEmWiUZJHxuZWz9OULA+I4G5FMQiBw+7MiODIjz/Jl2EPlr4VNcQlBwTQvk5k2PBPL/nk3Q0vTbLK0OpRpCESPDtazI8Yy1EOt/S0pvlZ+YD6eYHQSHp+skMD3c4kjE6kViyg4+fzSyJzMmgsnfwcwPZujFkRQ6OqaSLcvwsZBmtCBGi93zP4Edwog49g1WKEzmlPKm5OLnm6B1kKmqUWRaawVlg4uhhgF9Xo7wTIUxVFkn6qY4D9+ekw0/4+IEMVFqfJJl5m5AG9HGUdIbaTM97j1wlEmsDuWtHxguRr5WtJdt1WjFR6JE54/Z3lJ2m2o0PpKMAmTKTGLy2R5hVPPc5MCYEhNIQ2GXwkpNDAUArHouU3MobhJ8AzmltBzBJOp3n/uQQG+dHhitfX2KwiLNqlGCO5z5Vf4wexXDS7dhbpqvmWgwlx20Qg51SVTOIO5GtAuA+d8N4PPnGBO66fmL2nB8BW+wHCCX5txE8pmOVakliCExgDWGUfo6SVef5fgDRWkCqCWBl0CYkQaBU/Al8+Dpges34XBAoG839Pt3P7IXUepLknv7+tMfyNIQnT6Kl94w9lRnEnizrg4eQQAyIIUJI8atfc7p9IX64L/8PH78NwPKTn67if/IPfv2b8O/+3v/0G9834DsuhZ2tO/zoX/sCn8yecD/MUUiH19UGf7x7hcvyiL0tmdjqFRpHOv5ZvcduqFEoh4dujnXRwkWFXV9h3xf4g+u3uOsX+PHiFv/tF7+P3312CwCotMVNs0RrDXqr8XK1gw0KEhFDUPib52/xj+8/xvdWj/jF7gIhCigR8c9ff4V/8vAapXL4/OYK1+d7BKuxrHo8NjWerXb44uYKf+v1G3y5vcBM80O+70pczBuUysGnEe39YY6Xqx3+2TfPsVq1eH62wdFyv2ptcRhKHIcCZ3WL3mnc3J3h4uyIVTGgsQafrJ7wj3/xCX7n9Q1+cXeJV0liuu9KHJsSP3l1g95pfP7+GuvVEd4raONwWbW4b2aIUaAuLO63CyxmHZ6eFnh2tcPm/Rmun28xWI22KbFc0EyqVMDjhi3m+l/oMC8H9FajDxJHLzGvBtxv5yhLC+cUXjy7x81hAecVyqrH5lijNCl9NApsDzWWixbb7Qwvrre42yywmPXYbmcoa4u6HLA/Vvj+9SPumxme2hJa88v1uKmhSg/fKZTLHiEI2EMBUQSUtUUIAs4q1LMBZ7MW7x9XKEuL9lhCyAilPbxLs6dBoKw5I3cIAmVp0Rwr+L0BCq5P7jTqT/boOoOytLCDRlUPsFaje6yglz1co2HmFvZoYBYDvFMoSofuocb82RHOSQw3M1x+f4OHhwXioJi8aiKgA2AlzHKA+GIG+9EAWXgIAN7SMKwKj+AFwtFAzimpdK96JvwGgWglhAnQxsNuS0BFzC4aeC8x3M4Qaw+hA+KgIHqJWHmIVkFfdbD7AmbVw24qiCpAFh5KBQxPFcqLFv1jzZF7EYBecXujAGQEnIBZDbCtQfHGwH5sERvFwK29hmoV5KdHDJuSAKUIiC09U2bdw7+voV72sK2BaDTMVYvhqQJKD9FoJrp6wX+BKgRxZhGOPD9CRogniWgALAfIe6bzusvIPhcRARUhj4o1KFcBkHweVg6iUTA7Abtm2i0UoHaUI46dtWW6DjoB4QWE4wSHW0fojYLqBYazgFgF6CfFFF6ZwrQAuKWHsBLQHKiajRzTWYfzwACygcuMKYDJbBTsGd+nejWCPUjAzwBhU5jYeYA8CECKMcxLRMAtA2QnoI8Sw0WqT5oFlLcK/ZWHPprRx+4LIBoB2U2VMLl8frgQUCmgq9jltMrI7txhKq8fLj1mXzFUSnjArYDZNwr9hUCxNeiuwqgiKR8F7FKx4ucVcFJ0AAAgAElEQVRR0pMYDXI/Z3VPSa5qszSSINzs0qRgqpEZzjRVIF1KgZUmKU4EomTAVndJ9YovqRbQrUgThPRfNy+nmh7hMfq73WySOtpFCn/bi9HjnUPGEA3cPKlS1rmvOAVJ1ZQ3V/di/FueqBCBjDT9jCZNUvL8k+EvxyAtSnwpSzcNknyd94pRZZO8+VRjYKwnysqYPCnrZtNzTjzxOYOk+F47r8hKN9zWgQ4HmAPGZGHuBMbaGzejouNUSiscJ3hzr7S00/H1FdU7rkaS4caUISBGVp2pqWIMOMuTGcw+mI0haGNA0PzEa54mQCA4CTR/5zEsJklwVujYVVIXnS9Q3we015xUDGnyUHVcp7QRrqpHhYT0SFJOXovFPo6dtnYmqIZYcWK12nJSKiiqUMwxjuFMp2FjnICYj35dldhgMutI0txUcZQYcm84QRr0fDxmLiXGSpvCfmqZJn9ZfZMnCm1N6XP15McJjXGydEXlQJ7AosqE4T5RTx2orqJSJMtw6XX3nGRKstzscw96WpZuOJGj2lRdYsmQqy7A1ZMP2uzJguccgNOJuDzJlIOWAE6YyTTJ48vkze3JOmcZreoyYJ3Y7fz9Sp8kCAhT1UrUkhMOaR3TpAFBfDCKjG7qDYVMn9HULxqMInua/JBRKciThNlQGtacZC/jaW8kMPotY2UI0HNoUAg47cHMYUGnfZji2x2aeR8yK+r8yASLBChjkg4jpEkGvgGIYQLyJ6FBp1LY8SaVwOqvepwSYEIBsf9/Dyz/+vH//+M7LfLV6Y772f4Kd+0CjSuw1i1WpsOfPj7HTA/YDRX+9OYFzsoW+6HEn9y/wF07x5vDGlJE7G2FrzdnaKzBbj/Dn22e4V+9/Bn+0f2n8E7i1WwLFyX+6d1zvHlY42GzQIgC980c267C7WGBu/0C/+ThNY59gc82V9gca3SDQWs17vsF7vZzAARa67KDCxL7vkDTlHizXcMNCl88XaLUDu8f1rjbLrB7RxD7brfCm6c1GmswOIU//cUrrNcNXJAopMPdYY4vvr6GFBFffvEM7WCw7So8HmcIvULTG9zuFji0Jf743Uu8fv6En799BtsabNsKbx/WOLYF7KHAn719jm82a/i9wePXZxishpIBn727hvMK290MD7s5hsbg+eIA9b5EiALm1mB3rLC/XcAdeBz3hxqP//QK+rMaP3p5i6YpsT3WeHqzRgTQvl/gcbPAfNajawsMTxW2fYX9ocbu3RKHrkR7KNF0BQ5Nhd2hRrit0FvOhbSDgbur8TuXd4hBYBg0Ht+cwbYGv7y/wNPjAkNT4GLeoOsM0Eso7YEg0N/XBJWdQnQS3gvYTkOpgOPtHG/eXsBvC7SHEuptCXFTwvUa4WCA+xJlbdG/n2HoNNybGdqmhN8bFPdphC7opQMAvzfo2gLuvsIwaPTHAtVbgxgFRKNgNyXMvYF/P0N8LCBEhHlUON7MIf5kCdkLtIOBeCwgBgnVSpRvDcFaEPA+fYT3Gv5gICSBYPFlieAFis9rVO81glUoNgL6bYmw46C0WAyIjYZtDGbXR4hWormbY+gM4AVEqyB1RHGjUd4qzD4vEE1E/JrexeAVzEah/GUJvy3gBoXiQXEC4hsN86Ch7gtKoXqFYtWjXPYQg4SQEegkJdW9hNkpxFbB7CRkD9heo/7GQAwS2BrIXkJ2EvZQsBKkNRB7bpftNETlUX5dQJ4NEAcN9cT3CitQPEnEDT2YcqOBrcHiKwnVSMSO6+TJSjdQx2qc2VsOLNSeg43qjs/LewXVEOwBgNpomK1E8UQAqfcEVrKVCDMP1QksvhYoNgLVO41iy4Hz/I0EgsD8jcD8m+Tp3AnUNwR1chCsQDmyFmX2jn4/dZSpKoXXA1SEHCTTmpNXtHgS7Bjd5oENE6lNqvOobyVUJ6DScmUCVuZAsGx2EqvPkcAWO2EB1lPIXgAftdAHdsKao4DuBBZf8zCqRtJq4OmPrO/oSVQDJe3Spu17oky42HE5sksD9CKifAT3tRVjCnP5BKiG+6Nb9sHKAahvBfs/82s1Q9pUK1A+ETzzd6xZMbvcaRoxf0sQKnvAHMQYllbfEhjO37A3VlpAePoqq7vE6jaAainZVwMwexdTgjCBrHD0CpabCLMn4KByIQGjhmnY1SOVI/VdZkEYEiZTtUxOmqXPD1R9HCN0k1QggWCvuouo72OSU0dUDzGBBfpHyyfK9N0i9d9u+Pf6IYyKlgwyq3uCkfIpjuAuS/fruzD6Ruv7AH2MqRKDwUTS8j3VY0T1FMZANt1MacHmwPCr5RuHxTufQGmkAiSFO0mbk3TjGJZF+TLfX6SQsRzeJuIkL8/L023aHs/jlZl503DbzG46N6qjH3MMZmsCimNEtfWoHz2kBWb3/DmsxLid5VNKRg0EsKblegnGCNyy1FoN6Vw2EdWDZU1PAs7lxhHotan/eAioHt3IyJsclJRUJuXWAwIotp4yaxtR3w1jkq85elokuojZu54Ko52H7vi6rIYqnyxESH9rA8zOozgEFDuH6onVIcXOp+TjJE0fIspHTq6ao0+TMzHVf/B4m8MJAxsn9UVxCCj2FspGmKNLQJ9BUqZxSVorYA4Ous2MKyXXIkQU2wGq88kXSVAoIgOxVJ9Cp46O18zeEwAGMuc5lTcYCbMbKLV+bKGOA9S+GxUVmaHWhwG69ZQap9uEPgwEl5ZsumzdFMIjBdSxh2oGdl62liCyGZgQrCVEricJgaAS3D7Z23R+BURr6QHVMnmmE6CzHlFKyG4gA6tlArxylM/GLHtND2EdZbiJlc3PRT8ktYQc/ZiQkkxoBqxZ2ioEl28d4BylqFIiOp+SZeMIQKMP/F3kzxEUJgAbk2w2/xsfIX7w+/+r1/yFqbHfkYeH/LX/+215fKelsOUPPoqf/Gd/G94phE3qlAMAQzYH4GAgqsifRYBo+XvZS3Y6hpR2ubYQRw29l7AvBogml3rxyyinyfLuxYEaAtLsloCfsbsOUSDUgZUflh15rAuJ47YAgK8DiicGBfgFmYLcJyZsqskwMSXQSkTFgQYCmYXiUcGuwjijnWeEhWPfWl5nrg2JWREqGQLi63yT54Ay+yJlzzTd7HeExOhBDQWPQ3/pEasAtUsrjWngKabeMV9N3XD9JTsUVSeSZzPddAfBfeh4rHyRmII6VRMEDvpUJyCdgF2QwQgqp1sK9jE6esnyoDrPhoeC22x2lFyGMnn3IiA918ebWmKa0vEvdgwSAThAPGUixpqRNJjL8kg/S5UpyRvoKz5XA0Z/rfRkLaLksqXjwDgk7x8TVDGm++bz6WsGurgaH9TNRDml1ubXZ4kfE/8wVjYgSa3HhMwyeQE3/L1d4oNKE28wynTHdUZun0rhGdkPaFO6cpbGSo8xAEOEk/23SZ7eTb9jnQvG/j1xuu9pvb4AlOXr3AwfJPyefpfmZaqe63Lz6W9yIItSPmH0/0qX2BAxndvsnc0eXldzearl8vK5yRJSkQbuIvK9wWCsGvG1GGtUyIpgTPzN3utJxkmZvU7r0Q3GeqFcu5Ol7PS/iXE7cjqsnefBG5JcU4yVDK4W43X2oVyX0upQpkqY9H/VJWYs5mNBmXpe3+gNLFK9SbrWxmszXZ/5ugkpGfhU0p737bS2J8vPh1VOIU3bms6LGjD6UvPv8/WWqzyCxlj9ka/D8Zina9LOpucfXD+C7xtlu6nOIvspg8JoD8hJp5k1zQAqH5/8+1yNATG9P5+THPCiEhhztZg+M/l7JrFcMtmWQpHYuiTNNQ3Tnvmhmd47yuMz+LK5UzFNNsQ4ft6zbP80CyBoMcqls2RbhGx3CGNS7Sjb1WLsaT2tFMnLG78HHD2hBI85zZmS3qDIpsWT88L06Q99oKdS/sy0+VJMCbuJHYxq8o4HM6U952Ou2oBQTis7Pad5fzO4cTUDbaIUsHOJYs+KDtV61oNkOXteXPpc5kRYXsO8EQuXGcSYKjwo+c7BS5MUWozJvaxiCWO1SVSTfzbvp+opu86D/Cyt9uVJgEy6pk6vfdpxGIyTU275nRMwrA10Q1AXCgIyNzMEOyfDR+ECmUQfR98pLT5JQu0SYEv1Ilk6yfovSZYwBeqoLqW7CkxgK/lKc1rt9D6mwopIOXEo9OQ5HS+iMLKF+TiM6bEpoZZS3ok9zFUisaBPdkyXzdJ/LUdWkQuMk/w4J8eGOHkmM3iL8UMPpWKVSZQiBdgkD60U4+uF86Okl9dp+HNM4wQG4yQvPk2V7foJNJ56FBN4+3Y67CjPzY/UkTn5PE/+5hxGSWuuUDlZfn4eY4RI+zj9+S+JQU4A5Xc9FfaTn67if/QP/sVf+3L/g9/7H3/j+wZ8x6WwdWHxb/2N/w1ftFf4R+8/gVYBndXQMuDFco9vtmsY5XE9P+Krx3M8X+/x5mENrQOcVSiMRwgCMQq8vtzgOBS4e1wCnUKsPS6ud3h8cwa97lFUFgUAozxmhcX9bg7bawgJuF6hXnWwg4a3EuWM0sqhoVRPPG/gjgWunu9w/34FVXuUxqGvSkBEzFYdmm0N9BKLFwccHmaYXR1x3FcQAJyT0KWH3RuU5x3EoNFXGmqjYS8d9NLCP5SoXx3QvlkwvfOhxOX3n3D/fgVheFeXhQfe1HA/aSiXPBjE2gODBEyAmVn0uwJ6aRGshG811F7BX1vIo0K8GOC8xB/++Jf437/8GK8/vcNXP3+O9estdp+fIV4OePl8g3efXUOsB7hPPH70/B6f315hKEuIXgIrB/FoIF90GLYFB1ulQDQBslVw64DnP7jH7Z9dI5xZoFe88Uvg5Q/vcPtHz+GfD8D7Av5FD/NNgeGlhT9oxNJDzBzClyXsmnJB2bFgPl4NwN4AC4voJNBLlFcthpsZbBCIZYCw/BkKBb+ipLB/Rlmk2ioOiq96mJ/X6K48VCvhFwHFg8TwzKE669C9myEuHaQJUF9V6F47iE4ilgHFvaZE7qJHcBJir4EoIC57soiSckb1wwO6p4rpqL1Eeatx/NgjLh2lnkWA3FOWGd8U6J85qKOE6slA9WcRfumhDhLhylIFc1NA/2iP9mZOFqxjEmd/zi9rVwN+4SFbiWIn0X1koR81io1A9yIAL3r4o4beaFhwcKIage6Vw49+/A5f/a+voRuB5nd6zH5eov3dDrFXgBecxCkC5l9qhDKiWwJ6L2CXEc/+uRts/pcXaD/yUEcJPw8Qg0B5L9F94qF3EvbMk83qBaKO8IsA/TON4TxiuHaYf07ZU/M7PWY/K2GXDMcyexbOuwWTTe157rMTUH+wxfGXS8zeSXTXEVFF1O8lfJm6VluB4w97xF5CbzWqO4HjJx6zbxSaj/wIaMt7BTkA7UtuY0iTFcVGJlaMEz32ysE8aASdJnE0O2/nX0vsfuIgvIB5kugvAbcImL1Ro0ec6aURfuWgDgrlQ5JopWCmcpPOX0nwmutkfBlH2SfA6qMogcVXAvsfBJQPElHwGEUBLH/BUK1QUop5+DRg9XOJ40cR1SMnWIY1k1erWyaDhoIA2s7zJBBlq8NqYsqCiQg6Yv5mSsZ0NRm0/adIfbpMCz2+Fpi/idj/IGD1OQ9y+zzCVxH6IFE+cYIgd7bm0LDuOmL5S6C7EFi8YfhWFEDzUUT5QKlpnogZZakd0D2LWP8MaF5yUijLen0dMf8GOL6SSb6KMQVWt1wGB/JIgWQTQCv2BObCA+1zgf6CbKrZp3MW6PdvXwjM3gLdpcDsPXB4zXCk6jHi8IlA+ZgnKnJwECbQrvidOP8m9SkvCATtktu0/oXH9nsK5gD051y3rxlIVu4ITprnDNpy9cTASjtNIITUZWr2ZELtQsDVDLFbf8ZraveJZMrqnt8jdslwrvn7gOaZGLMAyk1MtUAE1k1KvrVLiWCA83/mcXzBpNjVL8OYF5BlqYDEMCfrDfA49GuBxVtPaWkC6f1awRcC9YNHfyYnL36aXFMJxLbXBHHVJgVu6Wm5vgBmdwHNM5VAr0TOQbAzhfOfp/oEJXB8rlBuc/0RWfphyddDcOLGVQLFkefNl5SBNs812e+nxKDuPfYfaSy/dhiWcgTerhJYfjXg+NJA+ojiABQbh2Gtx55SiAlgDmsGGOWJgOoxwtUKzTOF+Y1Dv1JjrVT1SLC4/8hgfsPalyyJVckXrPrU51vrlHRLwDOcceioktffHDwUADdX4ySGXTBoKgNg1QMuhTDZuUT1YNE+KzB716M/Nyh2lLsHLVDfRNiVBiJgdgzNGS4KmINDe1nSY6zoMXYLw+7N1sGtSrgqhWg1fI3sPUQUCfjqsYrFnpWU1ZYMIYpaoH7fJjmsgGoG+GU1BSWFyK7NRQl16OFrAykEYsk0U5HksVGbNClIMCt6i1jXlMceBsRZAXmI9Lm2NlWyBPpKU71JEAKyYQBHrEtEkfymiRmMBohKQXSc8RaBr0NPpjTWJdnJ/H+RfJshIBYGwusJ8DlaaCCyfzqBvrKgBzqvo8y9dUyfjdbSh4kTcCg0hJjYSqH1FLQjBNeTWVGAIJoL+IsH/OIEjNq/+OW/zY8IIGRW4q/g47vNWH7ycXz9n/9thPcVGbF+ksH05xzIHD4JKJK8bjiLKJ94c3UzDmTaa0pa2mcB9S1nTGc3Ec3L5AUaUpfdIsuhGCtf33A2LbNjUZKJqx4ZRFNueSMpduwsLLYRh0/pBRp7NSPG5Fmznzw6cmBEv3AMzckelTwL7ioOINlBeCJPsZxlHdZTAmx1nzoZ08z97DZg/7HE7H1MMfIipdcJtM8iVr/ggFFaLgPA2JkZJQdglHHRx1PfRbRX9Jy4VIZebCJ0xzCh48dksxZf5RsfmYv9p+BAU09F5lEBs5uA40sG2/TnSeI2RPRnEt0lsP6MnhZz4ACo2DJsSR858EE65lHQP1NsObjuz1Mx/CXleSyDBy7+1KO5lik9kV/QxZ7sEdlfbuP8bUjHSLBfciVgmhwQFdFdyHHQmAeZxS5yAHUgw5BDWY6vuF1ZvtVdcZvMka9pXsjEYEayT56Dzzx48yVTUbtLgfm7gOMLOaaB1g8BQQH9irH0w4rvM23E4+/xvBd7Xiv9WU4qlXAVUgfelO5a3weYY8DhpUJ/LjC74fsyOy4t93s4owyw2HPAVt8FHD6S9PjMgcU3AXZBZqtfSRQHyuyGBTs6179wjNRPv4PggMunsCe7IHOWmU67FKjvA7wR6M8FFm88fCGw+57E+oswdSC6PCjiug8fcf+VjWgv2P03u+UA1BuB+omz+8Oc/qL9awVIYPENpXr9mp4gDvw4WKofmUjbnUuYJjNCvKaHhUC1CWPKqWmmQK1cITG7czi84s158c5h94mmZPMYxgFav6JM9viSA9b5+5A8Ysk/lboTuzOJakMmqV+T/VRDKr6fTzex4sCuRlcLdBcCsxvesHOyar+SqJ88js8VVl867F/rURJ3fKZQbRhs5guB4kh2whfcx/qB29ZdqJFFKvYB3ZnE7MEnJhRj6FG/UmO6su4CmmuN9Wcttj+qMX/v0vmT4/d6ufE4PtcojgH9UnJAXEm0lxKLtxw413cW/blGufXo14rhUDN6PZUlO5QH7u2lxMWftDh8XEH3+fok8Cr2Hs01E2R1x2MmLf9v5wo+M4daQKegJlcyoMrsKMXrLwy6M6buVhtep64SWH7T4/iiRH1v0Z9p1LcDjh+V0B0Td3efVKgfmKoZFaAPHt2VSaABaC/4+Vp+06dwMIFQyDHMSXVMu62e3Mh6DUt23ZaPPeyqoMftwLoH3YekWEjpryFC9kyANTsHZQO8kXALhWEhMX9nCbbriR0EADvn+SRYKDCsJGY3Fvpo0T6vUN0PCIVEd2lQbBzsUhMI3lt0FzxnqmUolOr5czhjoFMUQLEdEDSrbYa1xvzrI/zcICgJsx/g5gauVjAHx30pVWKymPCq96xEGM5L5J5N6UIKSCKQdAuF6rZH+7xKoUhkJM3eorsqUN32CKWCHDwOH9eoHizMboCfGeijhV0VU0WFQAqvSWxaraG3Pex5BVcrFE8DQqWgNz2G6xp6zxGznxEg+kqhvGngFwXVHa2D7AhuhnWBYjvA1zqlySbW1E/hV6KnH264rNM2aqijhVsUMJsOCAH2Ygbz2MAvygl4KTKH+pjCiioD2dixJzIsCiBEyN7BXtTQmx7y2MFdLyGSRNTPCgYT5e7MXUufX4zoXyxRvt9jeLZA8XYLfzGH2vfwc4IXtW3h1zXk4NkTKQT8ooTsHWKhGViU/INhUVJq2luEWYWwKKD2fUp0lSPTJfqBgT8JcIVFRf+h0QxHEgJy2xBYlQUTXPNPKSknzcFA1jHMJwXfRKMZKJR+F+uSgDIFDUFKArqUJCuajsvO3Y39wGNzEn4UU7JqBmeirhDbDqIqyR5mhhLgMT7tvwRG9vNX/g3A2Gd5AvxO/ZdjamtmJnNi67frPrRGbFqm4iqJmNNz8755ymWF0ZPP8v/LI8TvPGP58U/X8d//r/+lX/ty/+O/8T/8xvcN+I4zllARv/vqBp/pKwytQWw1zEbBScCfWxyURrywmP14j8evzyCXFk1VwhwE7FmAW0jYlafX6nJAKwpIK9BIyl6v/tYt7v/oGUMNQNYgaiBeDLBNBV/FUWLla0ofu8sIuw6AUBjOAspHAg5fCAzXFvmQ5xlh4QD3aYfwZYWoJ/leTnKNmsCmvgUOn3B9/sUA97aAm1MCaheA8GSAzAHwZUQoBfqPe9iVQXknR5/DdslBzu6HlHlKRzO9W0SYA+WW3TOycSLw781zAsn+gkDn+JMe9Rcl2h/0iLLEcBFgGon+jHLd4UygS+EQ/tmA+v8o0T7j7Gl/RgmKnwUMK4HmexbmkTcbfaR+bv8Dj8UvOXBzlUB/RrARCvajNa8Dzv9YoH1OcNldB5T3koxJS9kswGALgHUYwzJCnvO86paS3/aVw2HLTq/mZUzsj4AvBXY/HbD6kwL7H3jIgTHyugXaVx7VvUR3LRAfCE7NkbP4/YVH+aCgj8DuDztc/MOSfh1JYEsmIKJ9FqAbiWHNc9xdRhQbzu4jAsfXgXLlip6w2U1MExBilAFmdsTWrHLxFUF4ey7ha4H2Ok1WzIH2GpjdSAzf76Cb1BvYcTIhV024OVkmEXKFCX1stlZon3OSZfO7SF4/gvnqnmxN+7GFORgU+4juihLo9lmkV28vMSzFCIKki+jXAvP3DGLY/9CjelA4vhaobwl2fQ1UjwHHlwq6Ze1OsQcGTblWv6b/Lipe+7kqZlhzhj8nNoeUtNlfAItv+Fo3A2Iv0L5IqcytRPM8122QFQkFELRE8xHPy7CQ0H3E4WN6IbsLbqNqxeiPcgue49ktAzhyRQsg0V8INC8Czv5MYFgJDGf8rFF2p9Fe5yRfDrLtAtBfCdjVJH/sLqfexFw+T1mygPQew5xgt9gD/UpgSMwRIFA/IC2XXsPqyaP9SI5yuC6BbN9IdOcEp8Oc+zm/ESlFW6C9IhgVkfUsQQtW3nRkM5sXIvUfMmHVzrhOX/B9fidGBqlfSSzeBvRrMU6I6SbAzgTa5yW6S4FqI+AqiX4tyCBdSeiO58cPPB6+JKjszwVmdwLNM4lyK8dgkPZSotoQzHZnEusvLfqVQnslsXjjE/NLlqQvknTZZglemlAbmFAsHTAsOLjyht9j3Rn30RwIsvNxppc14vBCpc8SEKVCuScbZ+caw0pA9wRqutNoLyTqB6AM/FwRUHOyzhsBWwvYJSeR+nPKYBdv2c/nSwLnfsWwmWoDTsA1Mk2IEETT38nv2+5MjhLsKHNdCcF17mLsLiVWqSbFLRS6tYJdCMzfIdXLqFTD4+ELifaKTGCx07ALJiy7mZqSphOb1K8kdCtxeEmwW9/xut5/ZLD6MsKuFNQdQ1qCFrDzFJwmS5iDQ3+uYWcS6roeE4BDoeDqbM+IGNYGuS4lVAr9mWaycWFglwre8J4UtCKzlVKjma6scHwuUe6SDNkBvipga4nZ4DCcFSi7BF6r5HduUuKwEuguNIqtHKtNpA0QlcKw0qgHKif6NUPAYmKK7ELBbHpEwyRiCU76lQAgAVcpFC29baFUlN+DclBf6fRdp1E+0qfo5hrlfQtvNNorA9V52IWG7D3cXEE1CiJI2IWG3iu0L6qUAiwTc80gGbssuR9lheKhYRpvpREKieKRY5LhukbVWwL5QpJVKyQ9coqMoAYoHQ2cBIk6VfIoCbsiGLSrgpNlxwF2VaDY9Awp8zy/srHoLyuua1FClBpRSybl6gBoCbtIEzANr4NYKojOIhaGoLQbEI2GX1ZQAEJl4Of0XxQNPxuh0FBNR+AlJcK8gtoeecBzUq2SiFF9APCED/DnS8imZ/1JAqNhyaoYeE8ACRBg5p/RsJLk0I5AXBQFcujOyCgaM0lojUY8HCGqCrEj4IyDBYKHWHAgGY89RF2P0ujxvRlM+pTSmz2SYfI0iipF+0Pig1RZkba/HyCK5FtRagreEQJCKS4nB/6cyGNFZivT4zRF9rtMdP31Y3p8t7nYIPDl0zn6+xryvoA68uZKs7ZAdSdhvi6w+fwC9VsN3Jcwe4HyQaC8UQyz2JANEE/F6C80e/rybj67YjBFQw+g2ZMxiI0eQwjKTZIVJo+kdAJ6L1NSITsCETkwlgeGfhRbhmXQ/8SAFXMQ0AcGTphdirvvJ79YTuvTrYC6LVDfsnA6y3yqB8rXVEfAqA+AekigEhi9hcWGh04f+VqfwgOyDxER0AcyZvrIY1k9ki0qH1M1xwPDX8RRk8HSDFaQXsDNkxRwz8GRLt0IoIDshyGwK3ZA9cagvuEx4fsiiieVM3Bo8D/kAAlKqfQ+9d85MqXlA2fvhScYUy1vdsLzn9mx77N8SiEiLUuy5dJCH1lNojqB6oEeIWmB2ResMahuFYTne8cQhYaBJrnihEEa3B5pgeE8Qr8tRx9QKMhOqS550vTx8toAACAASURBVBKAzwy48BglYlHz2OiGgS8mJTMCmPxLiem0yzhWm6iWQCb7+4odGVBfUiqn+oh41PS8pO91BjtMLLhukSYmuK+s7Ejl8UVMwTJkhlWH0c8mj+rPJT8yoEOO1TTBJMBzlj8nnDRRDWsv6psE+B29lGNdio1pUJ6WnSSg0k/HtnpiAEeoeCykRQr+wFiQnR8x+dyiYFiLGmKSwiU5kUqerp5+XLuIY9qpOSRfnuT5yn7B7JcUgSz9eJ2ksBXhgNk7prpKT3AeFI93uQ9JMpeW5TECLZHCQXyVPHDi5BhoJB8YK16U5bUQJdlZym2ZUjl5xTh50q8ZRqTT5591QyLJ/oB+KcdBq0whKjKnn+ZrUU9S3PFcpcROXyTJa55UFtl/KRJASlJezevLzcTIKopIBjYfw7zsJk0e+IIgMic+qiFMNUplrvwR6fMfR3+rnYvUg6uSV41Ah0A5pnRLbkuelMgVP/0Zkyn7pUiSYzKEbsbjW+ymWpt8XwhGcMDextHnbFp2bnJ7eSxGr27yMYoQ4WuFU090FOy4jHr6Doo6r2fy9uV+2hycQk+rGP150uZ1kGkMhhN3rN/J7+U+saaK3bu5miR7OtVAEMR1Y0xLVUMYPebCs/pIWiSJaEzfAxJ2rnn9pA7a/kJQQhl5jFTrUlCMAiJ9v7lX0zQOdqUhPSfbTOPoT1QiSQ+B9lojGgnVcfLDzdSYUBoUQ2HGii8l4CuZAmA4eUfvdBhrsURIctx0nFwGWjUngnI/pVsWCFrCzhV0G0YfpAgRypIZVT2ZxCy9jZqMrJ8ZTiKkzklXyyQLBcKMjKy0ESH1YiLycxwNE5Kl/dCDys8O/x8LOfo2+bmTSbIpUycm60/00fPz7HjOVb639IHey561KFHK8ZwGQzCvGnZg5tqPKAUQwPqaGCF7D9mQ+YuGkxH0NQpAcvtDbUa/eP7sh0LRd1kZQAnESqeJAkPGtCErmL2PoVBQqVczH18OeNQot4xVMTGZmYxzqSYmAxtNhjEqRWDnybzmkJtoNEKVgF+MiGWBqBWiTumtCTyiLBLwPDknQgCJ9YR1yEmryLUcBWtL4jCQtTytcHHJm6nJboq65rKqioCuLBKQ5P6JXIGSwa9LLG4O6okRKMsP/omymGSvSnG78nrz7zJ7KQT/FgIBYupF5f+/5bWUcpTj5n/jezKgDf83/zII/jZj+h18ZCnsr/vfb8vjOy2FffX7Z/Hf+K/+dYQo0XqDp6HG28Ma67LD89kOt+2SNRV9hYu6wWM7gw88+Fp5PJ8d8PawwrrqsO0qOC9RaI9jX+BqcURrDfZtiaqwUDKitxqzckA3cJbGp28vJSJckFjXHR4PMygV4JyClPy5mndQMmBwCrPCQoqIm80SUkYUxqFpSijtMasGxCiwP9QoqwF9b1BV9MiVxiFGgbY3KAoHJSK2mxmq+QDvJbyXqCoLozx2+xpCRgQrEZ3E2dUB1nN7vJdQKkCJiLZnOmnwEqZwmFcDOqvRd0xumdcDQhQIUaBN23i1PuDuaYmq5nqbTY1iMUCICNtrvLze4t39GkXp0LcG9bxH3xsei0FD6YB61qNpSvhGwywG2KZgrYWTMLVFUTq0TQGlWA1he43n16xGub9bIQYBVTn4XkEavi/2EqL2KCpL9joI+vtKz/7eVkGWHsFJIAgIFWFqC9saVIse3aEEZITSAa5XMJVDiAK+0VzO3HE9nu+NnYJKXtQYBISavuykjvA7A1QeqgjwewO1GhCcROwVxCARSw84eltFqyCcYJhUESB04MAyCIZQ6Qikugp4MQVSzRwnOaxANGkwLiOgIhNvTYCwEnHm+X4kEFhERB0AFcfli5YTLNGkkKkZ/Zws5BYIM8+aEyugdhqhTmZ8HRlkFfP/T77cZPygFqN6eUS7LyG3humyKtJ3q/masPAQrYTqZKrboKeSvW6RKa8ujxgwsvChDFCtHIOvoiFbCgCyEwh1BDz3g71600THNFDPoFQw5GmgnyvoOIXk5OOeQY+bQGQoImLBgYrsiQikTRMgkWDSVymUKmLyGs6ZwOpL7mf+O9UQZL1UywkbmY5zDpERafuzukFEjBMjOZCK25aAi50Aaq5zQEyTTgBCiTTg5LpURw9lXmaW42cm7zTohEFI3E7VT/5OkcLPcgjVWJ3heG4ZDEa5ffaAjkFQPO0AADsny0tAye1jgiz3IYej5YAoAGOwzGlglerSeRdJNWII0nKaaE6vzLYDXhMYO32BaZk+TSzk12UFSgazBFuYQozyqtN6M2geA47MdI5i6gvOgVB5G8xx8lpmT2g+TqeWhSgx1l5klYNuMAZT5TChD5aRQG6+NsnoU84cU1gRO39T+JWdzn3e3w+OrU7vr+hjhDyZnEjAP7923IaTkB1XM9yM74uTUiNNyvhqugbHrl1M5ymoKWgsL3vsos32kLzdguDR7NPnPab9E0jdv3yfstN5Hz/buYdX5EkhgnMGrHESY1imgLkUKHQaUpRB36jqOFlflAxQykmwvhRj13CU/H7J/cinn5fceZsnA1jdgQ+Oz2moEYCRXc0duHzt1HWbO24Z6BbTdZzqPCKS7/jkebrOmNZKhYrs03FJ/sh8jESeAEzBOeN5SRMA+ZoQjn2n3PY4hmtlth3A2A8sPKszQupHnT6A6Weczkd+LS8m9nmKFEIUpWBAUKlHmXHUktUgrRtfA4AgF2B4UAayUkzpryfhP+K0JiSH8Jw+z9+Vuev11P/owygr/pX+xBx0M8pZ+V7hf8U6AYyVJXnZ+X358avWkwN5cmBQPNk24APp7QcS2NPuy289/lJ45K+AFPb1T9fx3/v7//Kvfbl/7/f/+9/4vgHfcWBZ/+hV/Jv/5b+Ju0eCNFM4tPsS1892uH9Yoqgsnq0PuN/P0d3MoS86uF6jWvTjAFc9b2G3JeTCQhuPYVtCdJSORh2BBABE6REbmslRBMBKiNoh5vTZo+YA3guo1QB/TJUNaeBsHiXTWjt+CdprC1V5xLsS8WKAeGCqbZx5yMojHAz0agC+qscBp/CAPQswTxLDJcNl8oAv1AHqkGaQLyxw0Azm8QLFrSZ7safk1S3D2Ivny0iQoCL0RkO1Av1Ly/1oJFQjIL2AncfxZuuriPnXEvsfe4ieN1TdMAFXH1Oqq0uD0ipArS3Mz2qmyZYB5Y1GKHgMym8K2GVAWHqoLfv9ZFpmMGl2vQTKJ5GSTCN8HVE8SQznTOLN/XuZBbbnDICRjiwwJNC9tChuNYZnDqLjKKbYig+CTcgKMy1WNxzEtt8foB/MOMARnjdku4qobgnGfJ1SdFsxDprcnDJKX0UM65j67Pj39qVnBUY6bv1VQCgi9F4y/XUWUexT6EcnYHZAfxnHDkG7iigekzRvHVOMvEgeJA5wh3WSNs8YXpLl3P1FRPE07bNuRAJnaXCj2NVHxoLvaV97VG/pNwzmZPCfMaRMA2pHqaluMcqiM7sKAOUjk0rdjAPMqFM/3hHorsi4+4rX5PIroL2apKY5jVcNZFdz2u6wjqjvBIblFKqiWg6O86Aagr5fuyTjrTpKeX1iaYPhILPYcl9yuqocctcekpeZA/uggOZlTGoFbl8GCsWGnurcXafbdAyfR+iDGGfk9ZFy49lNxPEVz0GxBZpXEbP3nO0XCfT5iv+3C4zJvfQRpxqNlCw6rKlcCJr7lgdlquUJsEuej2JHua6bYwQ/OvX/5bAOen0ZvJI78XSTB8gxSfDFyIC5On0PpGoFf5ICm7en2McRWFC2S59wfUef8Ow2qwcIsqXlsfYlWVi7mJaZwd9p2qoaeIzMMQ18IzAsqE6waV+L1AM5LEQamJIlo2d2ApfDmv7l9poBKbqdwFRmrkzD96k+hSQNZOmU5UBeuoj9xwrFdgIruuG2FAeeE+GR0oBjkhwj9QdS8pqTWbMcM3eOZkBijmlwLsg+5n5KmRhDNcTxWPkyfUccwwhKoiBLWz/Qm3s66W2OAc21ouqj4Xqko8928d6P22Dr6VgIj7GvERE4PldYvnXwhRwHshkAQFBiXO6SjPZCoNwlz7AWKHYeoSAY6S5VSh+m93VYkRXMIC3vpy/5GVM9GTwe4zix2MkPPE7ORAbn+FrC7D26C53YeQIWO6dUtdzTH0yWncmzZu/Rn2t4I1Du/AgEVB/QXTHgJPvqVfLgMjTHJuZWwRzpa9ZHP1lflIBO1Rqu1tAHi1CSGdSNh/QBdpYsNRGQA/dVdx5uptL3jh9fn9Nex87JxtMretcjajl6Uoe1GV8jIsNvMtAEEsgd+x6TdDqBKp88qOxv9Ailgq8UzN4CIcKuDIrtALvgT7cwkJ2nv/Rgx+dRCXpSbUDuhkSIDNJJ/ksIAf14hDufJTCeJJYuAD7CLwqoxI6O4E5LqMcjwnoGuJDk+gSHUUnIwY3XifBxTIeNRjE1NiXDCuvJvA2OgTtGIxoFeaB/NMrkqdQKUUrII28AYVlP73MeEILe0EOOm49p+anGI7GKwvkRtIrM2mXvpBBcVk6dLcyU3JpBZ/aJ5gqSfEwySyrE6OX8do2HKMzkj9QKMTOnWVabvataIbbt5Ke0bpTCjp7L9IjWQWQ2NwNLyc9p9P5DmeyvAJ48VBGx73/l3/4yj98WYPl3/v6/8mtf7n/6+//db3zfgO84sFz8zov4/f/i32GXovKoC4ufnN3irl/gZzfXeLY+YPAKt59dQl93sJ2GLj2U9gip/y8kBtO3CqIIOD8/4PnigM/eX8M7iU9ePOJ2t0B7LMk2JYCplhbr1RGbzZwMmglwrYaZWYTIO70pHNbzFrd3K0gT4DcF5Moiev49RgBBQO41wtJB1Q5+U0CfDXBHg2LVY9jzy1SWHqEje4YIqPWAuh5weJpBHBSKFw3clwvgVQe/MxBzB/W2hHtmIWRE9AJyp7H4/ha7xzkwSDIwJkAUAdhrsku1g7wtEcqAOPeAjJAbg7B0TI/VEcWdxvBqQPGmgP9+B/llBXvtyIYlcCxaBXXkzefyD25x88UVsLSQdwX8hYW5KWDPHfRWwy08t2XhgF6h/kaj/d5A1k3n2S1A7xXchYPaaPiFhzoohOsB8t7Arz30A1NH47kFdpqA52xAfCgJiFceoqN3FEhVInVEmAXIJpXdJxa62NKzVz5I2FUYB4bFExNT1VaPUf12GaAP9DblNNrqnUb30pGxGShtHS485CBR3Uq0LzzMViZmQsBVZNmiAspHyfTNjYRdRvg5JxPcgmyQ2dKnhwi4tYdJ0mE3IwuoOgmzS57bPQd77YuA2TsJu2Dg0ylA9BXZNvMkoQaB/pIez2C4/PqNHkvK83qjBoKOKDYS5YaBVvYsoH6j0HzisPiFRlAEZHbJ4xdNgD4ojDUyvUB1L9Bes5g+sxZRAnYVMHsjMZxTgpsraljonSTXNjGBNWVx1b1A+5yVNKoV8DPOqhfb5K09Th7VYpc9lzxGoQTsIrB+J80PzL8iWPN1hC+B2VuB7jqi2KUbvSMgVj2DcuQADGcp0CuxSm4WYbYC9X1Ed0GQMz4i0L6ImH/D5R1fEazqhsBVDkmunsC36smGZFYqM3Z2zhRbEcDKnoGBUUGnbTqfgL9uCHKrWwJLORDwtc/4WSgfk5y8JwDdfR9YfM200bEOpmA4Wn0rRvYNAObvAroLCTfDyPzJIQENR19gZhTLLY+/SlJsEVJSa8/Jj/VnIEB33L7uQqB8SgFhiTVTHcFm+UTJcXcpUGyYLFs+YiySj+rDBFmAYLy7oi+5eSlQPmC8vjIjZFPwFesSJmYt7zMnTehrH9aCgWJpAseX3M5yw1ArXxLMuhkl0lERlLuKctNhTVl/+4zrKjapLmZksMRY3QExTSb052KcHGC/ILfNzgkWu3OG60DSt+wqBjZJz6C0YUEw503y5MrUu5j2UbcRzTMJX/HYikiGrHlGwF1uU0VNkmYXB36H2ZqeU1fyw9Sfcf98yWNcPwSCyj23aUjhXsqCvt3+5BryqZIlJaxKz/OTw5YYyjQx0r7EKEnOAV65oidLJItjSMFY9HxmVi9PqtiZRP3gRjaPKaes4ujO+EUlXUT16Cmv1kjS7NQhefBoniUptI9wCYjpNozBUaoPGBbqJMHVoXlmuG0Dv+/MwaG9Lri/KYHVG8G+zY5VKaP8ODBoaDjTnIBKfkkRIqrbHt11CXMg+Cx2FsPScB17h+FMo9i6sQYlaEFP5tpwPYbLGZZJsnzwUL3HsDJQLUGxXaqxuzK/PktmCZJSKrdnz+SwMqjuWvSXFczBwc01zKZHKDV8rVhrMjeUKvdhDJAqNj18pZNEW0JaD7timJD6P9l7t1Db1gQ96Ptv4zbva+21b+fsc06dqjJtd5too+ZFJEHykhfFBx9EMCgoiAEVoX0QRVCJDz70o+2DGNCYQKKgPooKghHbRtJtqk111amqs+/rPm9jjP/qw/f/Y659uqpb0lV2nTYDNnutueYc9znn//3fzUXIkfLK0BnKkSUnl8s4ImU21twN8PMKejcSPGoJv2khbIQcPMLMQB0cPZohITQEa6p32YNpyWy6QMmsEkBIkEOW/GqJJElSFBlwbDTkbkDq6iwHxYkpzSAxCcGQn+xfFBkQiuNAiW0OxpkSX7PfUwyWr5GCPytJ76N1J5bwIVvpT35Pfh99BQv4LGctgPErQE9oTdD4UJoaIp/7QffkAwZTyp8c4PPA5/n7Limekmb/LpafB2D50S+t07/y1/6xn/p6/+1f/u//yI8N+JoDy/qzj9M/8p/+s3j5boPqB/U0S+9XrE2QY+6oNCz+Hp54dD9iTYHec5DXX2SpR+6MnH1ZZvxOYTksh84sTpWmQSr7FbNEaY/JS5gEAUb3ij4Wu2KKrF3xeeNZ/tLYZlbsaURzKXMMfvY0lX4wx8Gb7jH1Ek7sTnWSxenhgTeu4UD08ElgHULex/oGUxy9GoFxg6mLL1ZkGQtIgMDEbNV3meFoH0iWEiZ/1XARsfhCYlxh8qMVtsd3CatfuUL/P17wtYIJovuPGZld3fK4CjNU35G1KEs55tBkiV9P5onSudNAIikeM5MjI3afykkOxuAhDizHM24nVARJ3WuB0gFYzuXyB5EhMnn2OzSY/Kj1XcoJs6fHleWA8AOZVqkmGE7dhfNXTNC1qxN7Ud1z8F7fCdQ3eWAzsLz7eCEnuVnxT6qcUNy9pTdJHxnjX99xZtzsmHo6nMkP2Cc1MH223M8QvBe6NxzsHZ+TGU2SNRBkozhYtSvea+17DuzdDFP5um/FNKArDGRzzX2K1eleAzIzqDmwLoyXb4H5KyYBz14zPdauBBY/5KCX7zm+T6p7yrn2nwicfYchKP0jgdlr3hMFSOmeg05f54CXVmD2OmL7mURzQxahz+e2uk/TgLrI/0KDDBIEtt8ENt/hYLo/I6Nkc1Jw0qxZYMCQyImjBBn1Dd8zAAfqbpalcjbBrplMLR0wex9w9y01VT2UdGI1JNS7hGAwMYb9RfZdjjm5uMveyYHeMbvi4Nsc+BlS0oKLVPHwXKC+5zEDfGx4xITiJIF6S9lrkgLVIeL+GwqrL0IOzcmD61kJHToteuC+hFagvo2ZQeMg+/BUos5s8exNgJ1LVIdcZZBTWeu7eArbeSSnJNr2hv2MJ7aabNZwJrMfl9dyXDIgrbmJORTIob/Q0MPJ+xhqMYGRmAPRAO5ncxs+SLFt7rifxYcZNSs6ChOrMqApLJnpmRhbfJGl47EwaAyRArr3Hoen9DkvvrQY16xwGNYK1T6SoWpy8vCS2/etQLVnem5JhHUzvh/NgUmz+hAwnOspiE0GAOmUGlyYpSKXLHUVEwuawbT0CeaQwUvFpFsAMNucLLrM4VId03h9R6bNLhWqHaWOUWef9yFi3KgJpLfvRvRPako0VU4U3oYJtKshwq401BhRbT2ikdNAk3UQAqqPqLYObq5zbyRQ3zEwJmU2NVT0JppdgO6ZpKt7DuBLxyoiMJwp1NuI+oYzZqFWUINH/6SBshHN+wGHF12WkIqJgeZ3MoOM6luH/lGFahem2gqRgYLv1OTpjLUgaIsJUTHtlqnlBEd+plBfZ5CS+xKTkVOSLf2fmb3s/cRgublGdWspybRxuubFV5ikgLkdEFsN3+l8LyTI3sMvKqghPOgtzSE7VX6tEtD7nMZaK+ijmwb88ujgz9ssESU7qXoP2TvE1uRryn7J0jsZOg193SPVCrJ38OuWvkojofYj3FkHfSCTiwTIwSOZLCsdHAFhayaQIgePsKghB4/Y6FNH5+Dhz1uovYVw4cQ2AhCHAXHRQcQIYT09nll+Wno2hY8nltIoMowlhKZ0UYZIn2KITIAt/ZRaIXYV1Ps7QCkmwvYjUPGcoDITOBQhMrSnJMkOdgoFSm3N10nxYUpr2Q8lyURqTSCqFZlNJSEmVjEzlEUyKwTQ51nNzGymGOl5fOid/CpgEwLJWkDmv0lx6rH0no8DDA8q1SOFTYyR1STOnXoyczrsB8vDjksh8JOWh1jl685Y/nEHll/rVFjZC7z9zaeoB4HZy4ThgoOkca05oM1hEnYJzL5MEF6jfZ8Zh8SZ8O5tHmCds0Nr/iUTDe2CM4Hnv8UUS3NkRUL/SGL2MkvMBs5QlwQ9NVDeNa4kRJLo3keGYawEqm2EOXJWe/PdiNtvczbTHDjwXfwo1xac8zlJswoCibO0JsvZ+jOJ5ffJAHRXAVELHC+Y0ugbhniU2eLQKqx+N+ZQB1ZOJMFqBN0nNDeUipXS8WofUd0HJMFOxfYywhwTpE2otxLbTyWWPwi4/BWJ9e8Au08FVt+PqO4E1t+32H1sKM3Ki50LDBcC+//1AuuXcWImqm3AuDEw+4Rqz1oG3XPgqYcIuzRY/66DmysMazGlOo4rgcVLj2FDWdT+GasPXA7/KIXnzY2H9Bp2LrB46WCXChBMH0TiYKu6z6FEx4jZW4ftJxVKsXe1jwiVwuxdwOGJZLdcTsHUY8LsbcKwUWh/6GHnigMwkdMSX/OcXf+iwvnfDkyBPaMhrr3y0IPCbSux+JLgq7uM/OLuOfuvbJjKqfcvgIv/M6G+8xg2+uQ32/IY5q8S5l8OuP7lFouXjIGvdg52aZAE99U3QHvpCSTnmlK7Q5w60up7SrHMUXIQVAGrH9gHqYkeV79cY/ODMDEMSCmHljj0FxW2nyisv+8wrhT6c4nN7/S4/RNtrpFAlroJ1LeeJeCJs+TjmcH9NzRWf+eAYOZo7gKS1BA+YfZqAD5qoMeIYaVg+oRqGxAaAZEUZi8HmE0F6ThAbO4S+nOFxY84UPRzRTallhhWEtU+oHsnMHvjoGyE62o0dwnd6wF2w6Amc/CTtyg0NGDNvpRoLx2qrYNvWnSXHoCeJLbdZaDMTRl0lx7SJeyjQXfloaxCc+PhZwr7Fwqb34mUUG6B1Q8dDo812kuLw9MW0iV07wmMlCMTAgDV3YjhosmDVA1zTDDHCH0MsEsNcwgwW4tYK9x9s8HmO0f4hclMFweTxdcUDcO2lj8aMG4MhAfqnZiSZru3liE1Zwb1jUM7k2iuLUJVo9qGHNZhUN8HtG962LOGQUeHgMMzg2qfMHs9AinBrQykS6j2TPSUIaF7O6KaUdpXEh+la1DfWBye11h8cYD0M3Tfu8W4eoT2nUVdSdiVRve6x/FZi+bKor0S8C2TPOsbCzUYhFaie91D+gb1+x5JdTBbh/FRhe6dyzJEiWqbZYhzjeqO9QtmawHRQPgEt1Co7j2CMZi9HjFcVKju+d5Sg8dwUaPaejTXmEJxyncBEkGc2fIeFGPA/S8sUO94LfUQMH+dYJcK5mYAUgO9txCxQX05INYalRaoXt1Dfn4G3fsJTDB9PEGOkcnVjWRi6I2FvjlAjTOyQQsCEX0M7Ah8O5I9yoN7NQbo2x66bzCeVTA7Vn6Yvc+hORG6NVnentA/qaH3Fmo3QMQ5hE84PqvRfv8GcdFk3xkZKEjBFFcjofcOaQKyDnpv0cUEaQkmhyctqnt+Vpl9gN6NSKrjuvZkWOS2R1ySAhY+IswqqN0AdQ+ERY3YMDRG7S2lz4cBYTNjpdh9j9hUaIBcxSEQjYI6WsRKA7KirHT0ENZDDgpy8Ggzo6Mu72E2da4MCxCWEyaxVqje7jC8WMG8vkeSa57vux7VcUBcdoAQUL0mONISblVPxyQqNQEupSXM1RFVoyHvjwibGdTdkTUaxxEiJrinK+irPfyjOYx30LdHAJRoyqGC3g4EI/WJwUNgEmpSEup2B+E6JCOhr3uEJTsYk1HQd0wgDfOa9R6bjuxtoGcuKQnZE1Cq+56g6WYPOA8tgTCrYV7fIFysWDFyf4AYKsSuJjCrFfTlFnHZQfkIMVqIIUH4ACUlOxhXHeR+gOoqyLsDsKK8VV3dIy06grfR8hhtQyDXNRDbA1Q+bnXfE4iVa5fPZ5GSiqHIbRxUkZPGBCEZwgOjAUMljbjfUwIaud20WRIMzlqI3YGgymjgvgeaGhhGprEeeojKQB0N0jBCaE0gdThCiFlxyPB4RAD6AaJrWX2SuyJFUwPOQTgC+uJdFEqybqSu2SmZWT2hNdJ2B1FVSNYyHdZ7wHuG9miNeHsHMZ9BSIYB8csxB+CkhFTOB4AfmwrrPdddpK2lRgRAso7nqjCaAB4G9iTvIbLMFYGsbgoBctZ+wErGDBLLcfzY5Q9iMb+GS/g5Ctv5aS9fb8bykxfp+b/5r0EfBL1zVUDqNUQTgK1GqiPMrYY786jfGIwfWQamAEzw7FlozgcoBxRNgLijBCE21PkLKz8I+5iSNSMY2JE/NUoAi9ophEWAyAmxJZkTkf5EfaDXMZ1Z6Nc13LmHvqGMUwQgdBFylFnOQ6li805ieMKZ1xJc4Vb0FibFigcGW5AJsY/I2pYie7IrAscXHs07DbeIYOx3yomEgqmvBhg3cWJK6VkT3Jblc4ZzgvPhcUBq7jVnIgAAIABJREFUA8x7w3MiycKO5yxRHzeRMfz3rAYp0lMmgp4kcEmSMa3u5BRe4ueUOipLX6HqKTc8PuX1KpMG+ijgZ3G6pnoQEA6ApCyQEieBcRNR32ZWIcvZ7Irrai/JnEWdYA6UkLL+Axge85zrnsnAIntMIZBrFlL2sfE6Sc8JifFRRHUjJ4ZaBDGFdfg55Z12Q7lraHIwS77Hqh2Zt9CQndQHyiGLd5Opp5Q7Jgnsvu3RfqkROqbA1jcnlqf49PItDrvO/ZmBqbx2BcjxdE5EPLHHdk0WuyT5lvvcLunNLD5CXr/MWqqTfzJU7Dn1nZgeZ/UOphoWAFNqrnSYpKfNezFJPvXAY/AznoviB0X2WM5eiklWaddUBZS/FzamXPfiR2uuyRyKwImnImUtjCuTP0/HXEJPyn77ju9/nY9Z7/mYdMhyx+xJXJ2OgwxvYYceHHPe/kOpJQMukNMzuT41njyqiJlhz6EqJaGXfj4+p4T6FH+k7/I9JouCgY+FmtuT40k+6BaUDZrDifmyS8p0RUhobsk2lmAJPPjsKfJNft6VlE3uf+m65fs1Pz+mHPBBZt13ZEwKW4QE1PcRwzlTL9WAXAmT5afZ1+s6esPUgFwPkT+jNaaQGqYXk+kvCadFylmutfRkpekd52dENFQY2CUVBeW9EnP6rswhPcryeHx38iuqkc+THjmZNnsRsyol5endon4oCa2FGZ7OMbj95jbCtVmiGThRFGox+TuTBKodWeAiBy6J0tFQrlokqlM4TZWl0n3Kkkc5yWHNIftoGzGlUBe/ZmEgJ98ksme1zSEz+fOheF5d7hMFGF4zKXy6k3S2MNoilkqgBDcvoSgfMs4i5BCcfK59c6rombpHHyRDR8OE3SJxLZ9f9NEG9BcG5sBeSz/LtRuNhB4jU4fzcUpH+Wp9H+BmlNNKmzBuFOr7MPWJurmCGuMkxS3BMvQ0avq9F5xMKj2iADKDRhmtmyvUN449pfpUi1I8o9EwVRUAk7aHyC7SXO/kOwXhE/QQ8iQDmUu70tD7B97OzAqXlFzp+T0XMospXZqSbss/dWRaqFtqvjfHgGBYL2L2uYdVCkgbMvvJ/loRIitTSqiNEB8chwjZYyn4t0kmmcerhSVNgrUmam8ROqa0ipj/5dCj8t1XpKexy4mylvsuXKBkVWcPpBBMrhV5P/L+ycOIOKun8B7h4+TF5AnKry+LyFUy2c8JgCC5MJzW8R43+kM/odFkR/N5KKnPCNkTqVX2MCcm3GavpLAOKae5itFiqvlQctqfIpstSbPJOoiuwQdLuQeHkaA2RP4/he4U6S4TZtNoIXLK7uSrLPUiDwOHHvZuPlgmWeuP69p8+Lyy3QyK/26XnxfG8l/+q//4T329/+4/8N/+kR8b8DVnLIWJ+Ojvf4ebQwe3r/Htj97juy8f4x/91g/ww+0G1/czPP3sCu/v54g3Gi9eXOP11RoAmPa5sZAiIdxVaC56zNsRVy/XQB6QP/r4DlfvlxBzhxQk1LsK6UWP6CWkjpAyQqmE4b4mYJ17SB3RPtnDOYVxV8OZiHozwF520GcD0nUD22SJURXgnzFRNXQSUABWFiIKNE9GNJXD3XfPkEzC8YUH6kgf5mUDX0fAREQopC7A5dFJqhPVEzpCPR3hthU/sEdKh8y9gv1Wz3CgO4VUR6Q6IFoJv6QfMLURejnCv+kghwwwZYKIAsfnAVg7uFhDX/TwVsMvIsN0zgPchgBvqAMHab+4x+6yg7ASoYnA2kH+qCYYlGSdkQTiLGBoIhbf1egv+IUmwEEH5cQRUIkpnxcW9XcajM85+5zq/GEVgdhICA+YrYS9YLKo3kmkOmE8j9NAAgCwtqi/15ANfcwPtNAJeh8lMJ5FxDZg/viA4xdLIHv21ChgzwOa1wxFijLBnvP18khPhXp6RNrOsPtlx9TXkdJptwkQbYA/FxC9QqgS7IWHsBKyp88ztII+wT95D/e9JdQguC9NhOwl3FmA7BWGR8DslWTNjgLsJqB5r5EUMFwE1sZ4wPT0ZErHtE4kgVQn2HVCc5l9nC3l4W4dUV8r9E95rGbIYNSdJlP8MmapFgfFbh1QXbOWpf/Yo/uhxvgoIswikmJ0IsEF7yXfEWj7jr2wzRWBkEiAn8UcvCNw/NSjulTwC4L4qAhAWAmUPaDzCD9TlPO+CFh8VxGoZhCXJGBn9HAWybkagftvAwAl6rFKsDU7QyGA4zP6YSGA5i3DS9rLhO3nnIToH6cp4VVccYC3/yxPFqxykJMV2D8iEOufcQJI9wJ2xevYfalx/Cxi/R2B/nmkZN0Bxxce6ihRX8kJfAKcYNj+QkTzljPrpWtUWo5rVA8cn9DvmQSl2MU/6ltKPkNNUF7dEkj0j3OK68BJkeqWILBfCXRvebzme8Dus4T5lwR4/RN+ofsZFR7KFg8a97G5JBAdlxlMBeRuSKC9ykDGsZu0e0/WPLSUdibFLtX5q4jtZwLVloPr0ApsP+dE1erv5MqamL2nPUOJhkeUhw9nAlWiemXxo4j9c1YRHT6jJ7S8//snQPtOYFzRi9hf0IoQaqC5Irit7xL6i9PxASl7TTnQCzXXF2sCV7OnCsHPBJorSqT3H4vpvVPdsRfSd8Dyi4jDRxLtu4RxKbD4MmJYC+w+lVj+gLLt2etchVNxgBqaLL+3rEBRI/dx/1yh2vI8HZ8X6bnE/iP2qo5rAvDhEV+TjgTjSQrU9xHHxwSRyuZk3ZArYI4pB7xlkF8B/Zz7P3sdkUzuS23oIbbz/P55QrVOsRPUtwnIFT4pT5gM5/TBDo8EzI7bPj6S7Id9ydepkZ8Jh6f0eNZ3kec+JKRKZt9m5MSAIZhOHS0Zs/cBvqGMmcE2BK2mp0eSQXA5BEsJJBkRGgbx2KcKszdUWdgMznutUW8jjk8U5q/CJN0ezvRkRQEIUMeVyiFyWQovJESdpboZ0PYXFY6PKftOSkD0VFzU2zhNhsWWHa6zN/RN+prKi1hJTjA1lGOPC4nuigB4XEqqGg4Rdq3QXDsyz480qj0lxfWNQ6gUq4RCQv/IoNoxEdZ1rK9RjnJo6RL0MSK0/NLUhwA9BIwrk8GbwnBuUG0D9N5hPK+nTtrDRzWUTehe9xguGjSXA/fdSNhHFZorhviYewu7MZA2Yjw3eZsBvqEqobqzEFJgeFTRw5kAsx1hz3LvZiMngBpyqJHqA9PbJWtoohQwtxZ+1RAwZsAZWgPMqPAItYLZAYjszETKDLuivDjVuQ1gVrFnc9OgertDbGp2bPaegTxHh5TlubFSZKGXFTea18UQoHpi8qaEWEu28oMgHqWQRESaN5D3B/oUp3TZhLieQd4dThUnKU0/P/RlllAhSDmBPPGww1I8kN6mdOqoDPEDmazI1S3Jg/JXIQFn6e0UBIdCSc4LlG7KEjpUgofyNrg+nQGpwu8HF4UC9zWJP5TH8udhSQDiw6jwP2bL15qx3PzCRfpz/9k/DR8l3h6WAICQBD6a3+PNYQklEgav8dnqBr/99hmW3QAtI5b1gKvjDCGHuByHGueLA3yUuLqbo64dxtFgtTjifjvD2XqPwWmEIOGcgjEBTeWw27doWgslEqxXsKOBVBGbxREhStzvGzSNQwgSKQnY0UCIhJQEZjN+Ex0ODZaLI45DBTdqzBelmkTDe4nxUEHVgRUmTsFUHsEr+PsKZj0iJQFtApxTmHUjdncd6pllpYiMGEYDN2gG+EQB7A3Mox4hSEjBJN0QJGIUSFHCDxrVzMINGag6CaETZBUgRYI7GDx6usXV5QJPn97h6nYBbQLGQwWhIqRKDHOTcaLMlEoYdjVU45GCQHQKuvGIUSBaavSFjkijAmRCuxrQX+cUjLztODKVFAkMMtobiI4fLu1sxPG+BUSCkAm4N0gNgTciK0ekTPDbCjCR6xs0hJUMFHpfIcwi1NIh9IqTBJnZEQ3poOQkH9cR4qggH42ItzVSlQ34TeBzEge9ZmnhLxuImOsvRIJIAqmKZNaj4L7uDLBwZA8GxXCmJkDsMmAWgLnWcCsCHdEGCB0RjxpiZP1GzM+TPUFt0gmpCUAUEE5yssAkqKOEX3smFScOkJPM9SISE0AXIweaqSKQB4Awj1OVh/CZ+crTwakJBMaDRHw8Qr+q4c7I2AsvpkmJ6lYyfReYKiP8giFMSWe5ZhMBkaYEX3lQSHWC7MXEiAGYUofLPkpHZrtUipSFs868luBpyqxxhBwkzIFstrTi1EcZMO2ntGLy6tpHAdWVgp8nxHlgL+0g8uD/lCQc2gQ55r7SOd8PYRGht2Sn6UEW8HMCRbsuPjjkCoQEc8/nPozdpxeNxzlVbSAn9IrMhO8ehCAJINZpSvB1czKJKgNc3TPkyG4iu3iPDDxKEtPjzfvTNTvVb5zAUqx4rJBM85VWTKxuqSRJmus0e3Gq6mgIhkvQSqiZYlwST908JxaDwE1aPmZ2p0TPWOegpNzjTZDJ9QInFrewfw+rMR4yw4h83ZRgnE4APFZ8Tspv7Um5gtPrWatxOj/Ff87+TEzXlvcTTmnEmQH3HaZe2MLuukVmMEeex+IxL4qOwhCrvrAxfE35udTJfFVFwAAmWi1Kd22pSaEKg4C5vNdCw9eaPdnmUttS7QiSJra1gEZNpi5J/nxKSs3sV0OQa5enQJ0SVBNyh6Q5ZC/jg37Y0rfK/IMHXl+Z2fCc4sr7s3QpYnovlOtVKnnK48XDPlXMqOylz4FGbs5JGT2kKSRI2RwmZEtab/pgXfx8Exl45YTkzKoWbzEnTE8/K5eDnPaZZc19lK7LnmQF+FYSPMvTcUyfc4XVEmJ6bTQEeCm/Vo30qJe6kdINaucS7VWA7yTXKZh8G4w4VXFEQIaUWcsc4hNP6wAye509s6zPEbnPM00dmx/U0gAITa430TmRusk+8j5MQT/0FucuzVyJUpjyqJiaXNJqSwdtqR8p52ViTfGQFc7fl+J0nHIMgOTnlBrDgxCiwphHSowPFqE1kC4QVNowMZncSAYNmSWFLoylI0AtwT2Z1SO7eqoUSUpNoT4fKAJc7pMsSbH9iFQZyna7BmJ0BKtNzfX6QA+okvzbw3ulsInjh/LTSQprSudNIhAtYO6BvLUcZ3ogr52ksoXpLOxlWddDcFkee7j8hDTYh/v3dfdYPv+lTfoX/6s/81Nf77//J/+bP/JjA77mjGVIEpX0eHfc4NWX55CtR9wbvFVn7EfcVahWI37z7hOkBLzf11DvK7yuycCEeeQMbS9w93nE8dUc+iBhZYtYJ9yMCvpdhdtXDUooECIQVw7DlwvEKiK8aaGPAm4Zmax5p/D+qQF2GnovMeAkx0svBuB1C5GA3ayC7FmRcfeRgHpTA3XC7r4iS+gF/CpA36tTPx2AGAD/xEHvFNSbGU+EAESbcJQtzAgMFwr1e4XDE4/qSrPPFif2A9czmNwvlwAIDcR5hPACszuB/qmGdJSeiigesCYJjRW4UgvIO4O3/gzNKwO7jpi9ZuLo+Cig+1Kjfx5QXysMTzxWL+6A315A2gq+S6wvmWvoUcAtIqpbRUlyoly3f67QvVEIDT2s9W3FWe7HAe0bBbtK6C4F3FLBdwk21uhu86C+y7UOScEui0y1glsk6ERGUtwYVANgLwLa/7vhwMsJhF6i2UqYHUOd9CAQtZqqWlj5QBlwfNeh2oLF3hEYz3LnY8zBPXca3S3TSFWWJOsBcJ2CX2jKDPc8t+OZJFsGSun2n0joXiD1p8fNTrOu5q1GUhmUzRLaNwJuKaeKDX3MEkCoaVCohzxYXwDVraGvtwGG84TFFwKxEth9FlG/4brb9wLHJwnVa4a22AUQDjIHhyR0b5goavZkBY8fJ7SvFesedg2qHTi9mGWFapAPZIIC1V1h3AR6KXH2fwHbzwlyYsVz1Vwm6CMLs+2abGAZLCeVg4QaSQnsyPM+boDmhgFGbiEgRx6nnwH1LcO4Ft8DkIDd5xJ6z7Cq6l7mSpuUz1Opqsm1MldkXfZHzfCmtYTNsnDpgOYmYfeZRHWXAVVFr7ebUUIdNVOnqy0HMb7LnYLXCvUd3w++Bcwuy4Idk0JDLdC9Z6CN75jEKh3QvcEUupIk/cVJA8cnOXmz4mO+43EgZvAQOWhrrnmN7Yr3X5FOM72U12X+MmL/kUT7npUg1Y7rLXLfEiQVdfaVbyh5lw6obyPGtUSRWuojz2lzk6b+Pjs/pZYikSFrbpgq29xEjBuG+iRJdo7hTXxO/0iiOaTcF8j73rcC3Tuyb+016zrmrwPGJe+nEmxU3zFoyK7EBGDMMcHtRJZb89xHxcd9IybQUiTNZk8fve7TJFdWFhPoUpbS3aSA/lxO8sypnmQAZu8Cj+Mmwi4kmruIcSERGqC9ijg8UfS3Z8ll7Aso5D6KkZMo3fs4SXzb6xwilWW5UXM/3ExOklc1ZvVApCS32maPe5a4Sg/YOQOZ2NXJUKoi+fSNgIvA/JXP4IL36SS9zbU8yy899k+pnqi3aUrAnb/JSatJoTpE2Bnvk/o+YlhLyAA0N4GdkgfKLn0rJ+8+J0YizFFO4G7qLIwEM+NSYvbOUcKZARyAqXuRMn0JJB5XqOTUx5hkBoJDQppz4qnahxNIrAWqO4/+wqB973B4blDfR0jLe7VIRUu4UAHPwAnQC58Qa4E0Cph9yAmsEXKpoI8R+pilutnzX19b2HUFZRnUVICsb3M6bd7mVKsCsCokJ6vGWgFgiFGoJOrrEXZTobqzOSDH0CMLnfsiGSQltUB17+AWrE7hd2mA2lsk0U77USZczO0Ae95kL3Bg8NAYmJYaE8zeTXUddlOjuh0xnjeoL4+wmwbV3Qi7rulTvhvgFzWki5CjzyDJMJDHa+jdCL+qoX2RR7LjUiTAz5nmKhKmEB4AkPsBYdVOCa1Jywk0TQzl4AkCfYRwgay9EJA58ZVf0gLCeigAoreQUmCq8YiZjSwS1MIGAgwRiuD2nScgzCyiGCzBXwaCcrAncKokvaWVmepHxOCnbYrCbPowSWhLaiycp/IrJYb3SAlRV2RDvQeMOQHJwi4WyWkBiDnkp9SSFMCZct+lkJmxzFUh6WGPpRAEyp4VJFNNyo/t3owfsKk/aRFC/L7M5t9b/uiXrzVjWX/j4/T03/mL0K1HDAIpCVZ59ApQCaIN/B0ARnUqVwdONRb5PznKSaYVMouCmEvrJVgCH0EQ5wW7H/MMqijl9cDkkyo/h2WAPCrEJqJ+r+Dm2ctpM6ORPVehTWQMcg2DyEmufu2hdorMw16euvxmuVw8D9jdkvtT6hJKYm0SgD0PUNlPKm2uYmjz7KU9MQCQTMY1d1kW1iYIJxC7CLWT076pXsCuYx6Qko3yTZoSYQEOyPWO8j960jj4LTPYus9l854siRwpxwtthD6SMdN7geEx6yOKN7VUZNgN5bduwYqEUiMBAPaM0sMSSoTMwISagKx0CZod5XtJkR2Jmt5IvReT77G+5oW1KwIAswOGiywbXfL/WOV0yCzPLJ7E4Zw3l8pS1FLWbXY50TeXnpeuw1CRYapvCexCmzB7KXF8FjF7JZnGesNjcjNed7tKWHwB9E9OUfrF8wXk2elEAFjfYUpA9R0m72qSp/L08YwgbmJmRLlemX3J3rDixWQvJM8juz0F3BJMmFWndFxzBMY1k3kBrksfuV67zDP9IqfNWmD3DUxVKaEmU1DeEyoDRjIVlGdW95SdRkMGqywlkda3BIClb7H4ztyC50UESgXNlufPzYHZSw6afcfjVQOmZGeVWRnf5tTmzPQU5sctTqCK28sl2gKQNhGwL9m/2V6RHfH5nCSJqfIj1AQyhR0ze6aiApiYi3Lu1JDBpKNEskhQ7VJMjG3xaZo9gYU5Zo+1O6XOmn2amKXhkThNWvSUdxYWRyROBhUmqd4m2JmAmxPEyXx9QsW/P0waLmBS92nyS1P+mMHeARn4pskjq2zCuJFTl2V9T58nQ9ByJck9gVKs8kRNT9Z3YqYKy6i4b9InDJscftYK1FsCPBlOzy++Ppk9a3ZBCSJSBtb7CDuX0/WQnuBVjfzZ9Hw9fYdMtrULOYEx3WdwN2appKAP0s7EBz5QZdP0mgKojhecwEkSqHdp8h6OS4Fqfzp3SRLQx8xQ6TFN8lD6NAkcY+5FLb5ONUTYpYLr8r0ST4BTpHwtQW8jJ88i643OFZRNU0JuCZYrjHW1DdOxKxvhZpz9FCFN+xdMXucY6ZF9AAjNMUL17IssgDCqXPfRR4SG3YolzbUk4gL5PrOs6yhMXtKAayXquwDpItxSw+R02sJwAYCyTK8tY4eSvF0+J2UBuhlEsi+U96MaItQY6XkMCebg4Wb69/wvPQOMSsLrlNSaAUrIKbOFnTM5DIu1H5R0lnMZajmFK/mFgTp6gihgSgpWY0RoFfSOIUciJsRasWeyVkyX3VG2Gio5BVSFhudBjkwNDq2eAqBilX2AOQQoVRLBSKiBQFOOAVFLqMEjtAaqdwiNnhJzY61zrUcZTAmo3YDYVQRugkAvtprs4bwGYoI6MMSndFQWthIgQynLa0vlRk5FFb2DcJSyApgAcPFIIiQC5JSmMUypBBEpMWW1rk7VIZlZFNaxEqT4KfPP0IoATkn+XoDpw75JILOZZEmnBNnCWmbQ9hC8TqCw/P4Veevkr4yRgDFv9/eAywdLSXOdlvRgfWUbBZCmiFTA7cMlJdaMlDCiHwssHxzHj/vbw9W5nxDy8/9i+XlgLJ/90ib9C3/lz/7U1/sf/qn/+o/82ICfIWMphHgB4C8DeAJCsF9PKf2aEOIMwF8F8BmAHwD4Z1JKt4I5w78G4M8DOAL4Cyml3/x9tyETVOvxJ56/wxfXZ5AyYRwMvADqmYUdNGQdcbY6YHdsML7rINYWQiYYE9DWFreXC3TrHsebDu2mR3/VQXYen37zHb74nWdImoE+cZQQViI1EXJHb6IwEavNAXdvlhCdR+oVzNJi1o3YblvEJLBeHXH/cgW1tLBjQ9ngoFC9OGDsDVIQCEmgno8YbxsOAC880n0FBMCsRjhTQVYBzhjARIj3huFAg0TqAoKXEE5ABIEwixCthxsU1FYjLCknjBrA0iHuDPscj4oMUZ0QBeh523jIrYY7i8DcIR01hBETqDRPj0jfm8GuI1KdAyPmEWnh2XVZAfW1xPCMzK59FJHuFCVJMsvmMlMMqRA6ykFSlSjjfDQiHQy8JHvq24RkElwXoO81Qs1ORySF2CTYTUTYeCCZLDel/yiphLBICF5kjxnBitsEzL+vMZ4l+vy8hF1HyFHAdxH6IBGrCLc8DRT6Z2kC6gjA/rMAOQoMT+iL811C6BjCM24Y0hQrMBBHAt0bMQGf4SKiuhdTLYyfpxy+wsAgNYocNMR1MoAIiCsPt60gR2B4lGWBq4TqJfsxq0PEIXsPfe7UZOCLwPE5Jxz0nn6oEnhTBpwc4HNyoEgNQ3sKmFJ9/lKWBI5mKzCuEppLgm/hWT8STYKfJYznPG/DYw7KywQHfYpkFRFP7E5J8g0Nj59sBuW5scL0Je47BveM52kKiKqvMpMRCVTHs1PoUpHM+hkycwAcPmIoUZFBhoYSzGgEhCCocsuT5DCpHJqU5bR+XiSyAuoaGM6y9C5gAlz6eJLuAZRUqp49fmRvCfSqXZx6LQ/PMiu9z6BkJgjEZgxySiKD9X3C8Sk9onaJLNc6ATuzB4Zzjn9cR6Ym1NnnaIDYApACwxkBNsEZj6OwlSVYK9RkXt08S1azbLK/IKCQY7mGBEtuTuABmaWrXsBXHLz6NofRpCwtzUWhvqPPklVGp/sE+fNiXHNyQXqgu6QHsUgk3Vzg+FjkCQ6RmTqye6ERk+yVky/055bXFfYuGvqz1EA2LUlM/6eYJbYJAMTUxxkqbqu9TjkVFlNXZFI8L9O6unz/58mdcn5DJfI5kXAzATc7TUgpl4N1Ur4vAxAWIvdT8v3hcjCQSDlgaeBxl/5HNSaYI3I3JPLkY8KwJjssA8NykC9FFMC4JBB0Cwlfc/2mTxjWepIPjyuB5g4IOtfvnEvUkZ2VUzhVoyapc6zE5MENFSeHCos9bKj0ODyTqO/IMnbXmY1JyHK9/B5uJEwG7wUM+0Zj9iYnQGdQW+Slfac+kEAWaabrKKEsANfNqMIItZiCiUIrEWvu83BuYI4RCSdAl44EironQ+ky4xoVmc3ivQxzso9Fjmv2AW6uGKzVSlT3Ab7VfB+0egq5KRMiQAaGDQNvhE8ZAMocrKTJ5rmE8awmIF8ZmD0H9dFIxFbkJGc5MZqhUYCkhJQSbwHlIiegz6pcbcZQnFgr+E5BDRFuWeVANEHAPzNwcyYo+xmHkaHhJIc+ZFBcrqXAJCWNuRoGIRE0KgHX6Qm8x4pVHyKyN/JUOcLakNBqCJPDkkZWkqQCjpSYKkSSlgS0QAa3Yuq85MkVrD1ZNWQ6lUDo2il5HTiFyMTWIBoFc30gy6kJOGNn8r65k1suRsSmgsxy1om1qyt2PgKngB03ItUackhIlSLAVBlYlsCdDCoB0CspJR9r61OwUK4+gZKZbS1a5wJWy6yHOgFNpcggpnTyK8aE9IALfAgARdkfACngBC5/XD1Ikbvm8/FhgA/Z3YfnawKZPw5U/jFMg/3/w/IzYyyFEM8APEsp/aYQYgHg/wDwTwH4CwBuUkp/SQjxbwHYpJR+VQjx5wH8RRBY/mkAv5ZS+tO/3zbqTz9Oz/+Nfx1Jpcn7leoI4STMrYR96qCvDUJL039SiT6ySKmp3mcfUx54lxTI0CTEvB6o/MayBG71TS5Tn9ETFOoEP49Q/ak3UVkBNzsV3qtBwC8j2pcKw0WkPA0MC3FLDozLl19h2aTjYKKUs9O/lVC6uPwsIckEfZSYkg/zl2t1R4ZM9wKhSoiZqXvorQoNQZpwAnKkZM5s8+sO/DvAwRcy8GSKo8iJiwQdvgSjPInQx1xJMINlAAAgAElEQVR4//jE4DVXZD18R+masgBSPhYJqCMBxORLUkXuRQAR2pTDXABzz3NvdsDxORnLUKfpfHIGGVPKpQgEs0mRNRTh5H9LGmguWUSvjxz8FUZu8jqFzMiNyMck0FwB+xf5HLXcx1gDiEBzneWmd+y1jCVkRvF86V5MDE8JJSqdpX7GQalbJbRvxeT1OUlbMSW8lgGqGinZNftcGp/TXctgJknkWgSCnuqe+8frmrfb8ToWFjJUmf24Iwhw3SmVlaEemQXOx1H8V3Z12odQZ6lqHgAX9s3N8/E6yjqrLe+P3TeA+pYsrhq4nf5xwuwlQcHkkVOAPpAxmVI790D/lOe5uU44PD8lbkadWdGB/aElyATIrFwlJp+e6nnNdH9ikpmImrs6G953vj356aTjwI9y7TRdn1hhYjFEBksysNMuab6OiZsCwwWw+i5ZHbvOiZYRU0eqz8CuymyUOSbsP2IFTkkxjZkRBDIzp3kPlkTQkvBa2MLQ5GCWzHSW4y0D9MljeE/AqA+8vvqY0NyRSQtNBtWeAKgkuoYaU9cjshxTZxmnXfL+l54TTOOa8lj6sU4MZmHQS2+u2RNwkakXUy9oYV0BsG7mTE7slDnwWje37AJtbym7LL5Plf1e1T5i+0JP3Z96JNtYWMdql9mwzJ6pMX8ecX5hqvUpyabFS+e6zP72ZNd8Laf3XPFrNrcB/blmUuwsV0QZ3mvVNk3puWoki1fv4nTfmAN7E8elnDyCypKFLBVU7TW9efWWgTX1LsDXkvcmTmmyyjKgxc3VBMZKiqsIWQKdmT2RyG7253rq8SQzdmILhU84PjaotwHSJgxnBK0AGV4I5LAYAjSzdTg+q7NUN6I/06gOcQq6Ka9lAmrpcqVh2s0UGcKYptTW+tZj3Gje6/leLMcsEuBrwX0bI9xC5xTR02e+CAm+lWivLMFfyqynkajuRuw/6Rho0wiYfZzk78VXq8ZTeioZvuzxc/QChkay6sRF2JWZUlzN1k3dlrrPzF2l2HN5Y2FXZurq1D3rfyAIuqa+y8wSuqUhEM2MZXVPxlGOAW5hUN1buCUBjt6TLZQ2QPqIaFROZWYVlkgJ6uAQOkOAJshYFiZS5H7PWCuY+xHRKDKeY5g8iKUjU+a+SX3dw5+30Pcj3LqBGjyiYRVLAZXq4IBcE5OU4O+SbGJYNJTIPgA2UxdlTnlNRpLtM4osqlETEy9dQJHPFo8jnEfqagLQ3rEfM6RT8mtJdnUM9BGDO8ldgVNgTgnEAQiqtDoxlgU8ZVA3sY7luWUbxRuZEhnKzGQmo9lVWUBlSZQt6ylMZ2EyC+gs6y/ny/sPf//qktIkdZ2Wktgq5IesZWYqIViL8tVwnmnJILJ0Vf5E1vIPWlL8Q4X3/Lwwlv/8X/knfurr/Y/+1F//A49NCPEDADtw9sT/LM7Fz4yxTCm9AfAm/7wTQnwHwEcA/kkAfyY/7T8H8D8B+NX8+F9OvNv+phBiLYR4ltfz4xeVIJ4MiIPG2cUWx6HGNy+u8Op+hf2mwdPNDuZFxMvffQxsRiBIVK2D1gFCAIfLDmY1IkUJ21aASnj+4hoxCby/XiLdV1i/uMPt1QJiFRB6jf5JQNproIqoP+8x7mvo2iMGhXBvkJ45PLm4w5dfnqNZjRAiob/sYNYjxr5FemT5vDrCLwVQRahrg9hGJBPhJSAbD3cwQBUBS31VWAPqTiPMybr5TwZIleB6DXFU2Hx2i9sfbJDaAL+UlAFfGYRzB4yKd1AnkGYBdg1q/fcasY6ICw9cG7gFEB5b4B2/cNLHA+JVDqipItnMJw7mneEXqADcEwfVV4hrh+gq7D4PSFWEPKqJdXHrAH2Q8E8swkEjmQh9p+FXARUU3ILhKWEVACfQvWRYje9YYh+6CL1X9Fk+9XBzmQumCeqLJFj3An4OyE8P8K+6abBQBnIAB7Bxw2AbNUrEGhjmZBwLcA+5msXPE+yKwJMy1QgkiVgn2PoEDuw6wtxL2CUwXEQcPomYf6ExdEwq1Vt62Pp1gN5JtJdkjfSRKaLVllLicB5RXyrYNQGfPgr0K4LYaFL2UPJY7YagNn3riOF1C72nLLi65zrVSJA0nhHcjGf8UispoH6eJm9M1GkKZFGWKao2cTvjeUS6ZW2K7Qg4oibjK62AOZAVcXPkkBaB8SKi2slcL4ApKdXsBcQAHF7EEyBCnvzIUmbf8fECzqJmIuvwiNeA3qvMulrKNFVPxre9JKsqIlDf8FgJCCi3Fv7EXlZbglA3471hF1wHIJBmyGEeHAyWChR9EJM/jUwdj7sAAN+IqfrCd6f7rbnKjOeC8s0CVkslh8uSR7sCqjsC2vGcbGOZYADohxvOCCQKE8l1cVvmgMkH2D8me+Vnp/oTZHA5Zp/kcMZ7xOwJoopfldJbkaXRZIrLxMOwOVW0mH1mLWdkbOr7CLuiXzU0PD/NNf2SHKwDZpfDYRTX2T8WqG8ySyt4zQ/PE85/K6c95kms41P6PXlPiEnGF1qB9jJOgSx6DxyeUZYbKwGXr8PuY6ZgMlCE8tvdC4nZazH5IkXg8QG8PknynExVJQoTS+k6AltOvfPeNEeyryJiqk8heMrv2cUpJZX3h+L6t0BoBSwy8Gnpw4yG59xnUORaOUlR7UJN4FcPKU8IiZMc9Jglt2cSvslJyUFOzKN0rIxxuVLDLqgs8ZnFq3dk5EIt0Z+RSWuvElJiEIzr8uSNAnS5D2tOUErke80yjVRZ3recHBFZIh7gZgYhScSqypUe2Tveko3Vw6kKhmA6wXWUAUdN9tJ1pdKB29QDMJzpfI4otR1XWbosBKI8XcekyBZLn4NbckUNpdknpUY0EuLA7yM1EojGKjNyPmJ8ZMgMdmKSBicl0Z9rVPsIfYjwc/o4VZ5AtivNvtSGbKJv+FkaWqaylr5fJqk2BKBjZH+rZuiNuXdwKwO0ZGg1CijOuQyVhJ+RORXWwzcNTAG8bQ7ny8xiaPK9NQbAZMbYBYS1QX05wM+rzK5y+2qkVHVYV2jeHxHmFWtKvKFsVABuVUEN4eQxDYnsZAKUUVNoDvuhA8LcQN86xM6QGcwsY+nlLROyCpjYuqglpKWctlSAaB/5WqP4WEyIhkxtwTJFdhs69o2KYQCUROgMk2CFQKw0pGd2Z9ISdl2juhtZ/aMlRG8nhlT4DGALI6pkBrcKcnRkLHPvptz1SCVxVQjAgz2kvT29Np1AYTIaqAzEoc9AWQPFyiWzvAOAsJndFIK9q0o+8H7y/k9tDXEcTqmz+gEEeAg0U4KAJxCUkp2aoshzee6FMeydlAIQGuzopAyZhyYofy1LZip/j1S2gNeSHPv3WMr/L5Y/m1K6+lmtXP7BT/nDL0KIzwD8QwD+NwBPHoDFt6BUFiDo/PLBy17mx766rn9JCPEbQojfwGGP6CREr7Dbt/jmxRWetVuczY4IVuH99RJfvjxH96WCeF8jjRJu1DhezjB8sYBZjQhvOwQvoZcW8AKXtwtYr6B0QJIJQiTU85FflAcFcV1BWglhIoZjhXTQ8NctZrMBcuFQNw7v/+Yz1MsRw77CcKyAKsLd15SA3lZQB0k2FIDYsY5BrC1gEpovDWWwOkIahvdAAvVqQNg4qKXD/pse+ocNHq33kHUAJLD7rXMsv6sgBoX6vGcCrMjrrwNE9prKqsgkgCQTzGYAdgzr8c8s0qDY57cICDsDbCzWv62BkJnNe41qK6C/uYfvEqqZpd/zoOEXgTP5iRJNt4lorgSwdPCzCHlvyHSNJ6a4pI8iCcjWMwXWAWYzIs09QheZZnrG5FThBGavJNbfvgEApCpywD/3iJoSUveu5eCuThCPRwao1PQs1jcC5k4SyFZkZJMhUEKWe4aW6Zl2E9BcSoyPApJOUyJn7AKqWwmzfeBbHfnauPJkrxUQPx6gDhLu3KN7TZbcPbME25+OBDISmEJuDhLDU4/uDUGl2ZIRHJ6EqTMz6sJkBQzPApr/fYbmveQ123gcv20BQTBzfE5JsgwAZEL3nscwXgREQ6YTANxZgJ9FAhMF+E8H+C6h/9hn8JwZ6EPut3zmCHabzM7MGcJkz8Lk66UEi/5BASCZhPE8YP+LlgmuCz63e0tGHZnBdQte//higJvT87r/BFNyql1H2FVmU5cR/RPWILh5wv03Qb/sTuD4jIxGrBPGDcHZ9ltcz/EjdiKWcznpcj4/4Pipn9h6uyCrhgSILI8dz8lsisiqBLtKObBJTDLQWOHk124S7JLbcMuE3Wc8X4UNArieUIuJqTw+pmIgVgRvdh3RP2aIDhLXYzcEvG4B9J+6LOMkW1nA5XCRYHaUKA/nCcM5ZbfuH97B5jCdEvKz/WWH4UlAtUtwS4FxTaBsV3FiHodzAd8JHD4S+X3C80OvIoGFCOkDsH14RqarJMUen5W6FmD3eURzlZniIaF/ynvG7FgDsvssws8x1Xq4ucBwTlBrVwL9EwLUccXB+HhWjjvi8FxmWS+Z4NCclAG7T3MCaZar9k850TGcE2j4hmDl7lcs7FJgOBfoL+gdPTznz7Hm/gBZ9mnIyKYs9Rw3wP4Fr4nrRGZBi/yawGX/QsIuxRSKVOcQpHHDyQK75PERFGY2uD4xp6Hic8e1yJ5CMuPjisc7LiX6i5MUl5NIrHQ5fAQcHmeLhOBxHx/LPGGRMKwUDo+zR00TTNtF9mPuI9xCYPdCwi4E7EJiXDFMJxgBO1cYNgL33zAwPb2rJQ3VdcDhucD20wp99gofzxV2nwgEw+sSK3ZyDmuuc1wT/A5rhWCA/XMJ30r052qakIpV9izPBPYfKRweK0hXJkwoIR4Xgt7THVNIk+Z+hYrHVapVkhJZbps7KG1Cf2GQBHD799XYP1cYFxLHx6zOCBUlsXYu0J9LjEuF+nJAvQ3YPyPbNqWr+oTDU0pf3VzDNwLDRjEQbGFw+23Nc6AFfCcxnjfYfqrhW06m9o8U7FwiVBKHj5rJmwpB6W6pSnOz09Du8EQjdBVTXyvF+pWdxfGx5mO1YkWKj3CLCqGWPDetRhICdlPDd5TF2oXMrDf3TY0Rw9OOz5srBEOm0DeKgUZKQPqYvZ1MgLULiTAz8DOFWGvEWiLMK4wbjbCsKbvNnZVubmCXiudfCxw+pnR1PGOfJAQQWoPQKNiVphwXZHpjJeGWFWKtEFoNuzSQjq91SwPRO0AKBuUoidjxuRACft3AnlUIjYZf1UhSoLoeYM8axM5gPKvhHy0mNtSvGoSZQcq+09iaKQnWr1pgtJOUNXUNYldNQTupMTwWAHHWIKxaAr+YkBpDxjMzmKkyBIizBmKwcE+WSF0N/5itCP7JCu7JMvsVJWLXnBjVtoboxxPgzKAyni0Qz5dIqzniao64mSOuFwSoUk6yVtHUDP4py1d7Lb/CbqYQTs954McUSn7wDyGcQGUo6bK/91/K60x/DIBngkBMP/1/Py/Lzzy8RwgxB/A/A/gPUkp/Qwhxl1JaP/j7bUppI4T47wD8pZTS/5If/x8A/GpK6Td+0rrrzz9Kz/69fxUpSGCUZBgGAUQGqjRXEsO3BiSroLZkvBApTdU5gEbaDBYuLPSrmoPEJk3S1OqOqYJumU6M1tpDXxv6z0SCm58qBKQTsJsAfZTQh+zbmlMGaZdklCCA4RG3bXYMotFHkQN0MEkTS3x/SUxNhumkdsNAGyRuE+Dg351Rbms3KdcFBNQ3apLJ+VlC90rg+DxLNDMoQiIj45YR7VvFAf6c+1pCcyav2Hli3YEVCC07D/2MyZluzplzs+dg0835PPeLR9R/q2NAxwNJaNmn+oagSTrOTtsNE2VDw9frHnmWt+w3B0lka3it6hsOfqZ6hfweK6xlrLJ0N+9TSQc0W7J50hcfE2V4UxhQOvnY2H8Xsfi+hF1l6WjDwX+RdoY635wxB5fk8JoiXbXLk/+v1BjEiuf6Yf1ACakpNRPTsWSptj4KjGcJix+WDkB8UJfhZic5ZTTcx0lCmysICkOle0pPyYyenqss5bl2hRzYgCkVNFYnX2Fo+LzC1KkBGB7zupbaFsTCxjDAp8gwXcfEVrfEBLCTYPjM7jN6VIdzgtpJfqjyNcoeyJKWWVJw63syYNJmdkJz/8YzYPaanr/xDKhvcjjOIUs+jynfZ+KBZJcgXVkCoGqbAZzi8VR3/EwYzshEhYb3cHNTKhXwQXKoXfBYkuJ6Zm+47VBRThsNck0AgaW0wJBDdZLiMZs9GddS2aAHrt8uc5psCa5xaZKOJgHYdYny5zXxLab6geouob6nfNQuKBvuHwnMX0WylJMMO8u0m8JkpimgZzjn+dE9PwfYJSrQ3EaMKwmzPxXZRwOmwq4pzdRDSfXk/ROa03uvvxD58zWH2szFJA3WY5Fq8ryW9x/l3AQWJWiqvBeau4TjYzlJfNurOIXt9I8pqS7yZTvnZ5myDPmp7+jRs/MiBT71dKpShRNTlvyTYfNtlpPn4CDfUtqcBGXaw5lE957+vCJFPj7mtoqM0rf5c6io0RKPu9rFU9BQBOysBN9gApQlrCgpnmeVE0yHlUR1SBgXlOHSf8ntFSkvP1cSmtsAO1eTDLi5DYjVCZjV9wHDhsyZsuxRHFdk3fRQUmHpP0z6FP7jOrLZpqd3skh6+ZnJVNxxpeh1LJUQnnLGIgVn9QSm75RQS+ieEsdoZGbP01Rj4WfZg5nHPsEINDcM6vFdDsjL9Si+OYXbVbuYZd8RvpPQx8h928dpglANOZwnpUnimqRgmuoQ4JZmklULzx7JqAXrMqSY/IAxB93YtUb7zrLf0VIiWySVvlNk8kIC5MlPWV8PU58jIiBHj/G8YXWHT9BHhv3oPeWZhYnzHcEbA3SYbCvdqeYjCaC6J6tmV9UpFTYD5+p2zOebIT6h1dBHRxYtpUmmK2JiVcfoMT5iv6WfG+i9g5+TnVS9m54jAqWeSUuIMSB2Bvr2SHAWElKtII92quhIQnzwGDJjKncDUl3kqmmqBklSIrYasvcQIZzYR+u5zixtTTX7IBEoT43LFnLbnwakKSFVBvI4IHYNJawPxtepMafgoRygww9qBTGMBFbOn/yVhUEsKalS8u9F/gpwPT8uZbVIcEP8ELSVpUhmhUD6St3IJHOdPKISojJIw3B6Tkwn1lMKJOtOEtcCKEsKbA7uEUp9yGB+dflxIUQ/Yfm6h/c8/aWz9M/9l3/up77e//gf/Gs/BPCQifz1lNKvP3yOEOILALfgJ+Z/8tW//zSWn2ndiBDCAPjrAP6LlNLfyA+/KxLX7MN8nx9/BeDFg5d/nB/7iYvsJbq/3bAoe88v1jJ4Gc8k6puE9n2NUFPSVN+eQkuYKinRXmU50BfNg/Q/SrvUyEFE+fLiDL5A/bdM7khLp0Gu5helbxJmr2UOAMnekAQEk9BccpArfML8RyURNmH93eJ54/ZFiDn2O6f8CUx+qSQS6nsOisyxSKCA/4e9N4mVLkvQg74z3Ski3viPmVmZWZXdlGi6BbjUXhnLEhIyg4SQkJHYWEjsQGLBBrFkxQpYWGJhvKBlWsACC8QCqzESbWQ33eCmTXdmVWVVVmb+85tjvMOZWHznnPv+6qpy266iKlsO6dd7/4uIO8eN851vMgdG/EcRcfR58pw0/LbLdSUM4Ihor3NUf5xN8xpcUeQMM1MU0/ES9M5MS8nwE8kS5mAkC7YfSixfeUxLWQrHvRFYvIjYvSfw+H+o4askfzQC3kToMaLaBfRnCnrgc8rSdzOcKDS3vLlJxy8V17Aaor7j9t1PRwwqHzsOBLorh2nJZEc1RdiWA6ppmdMUObCaVkxO7C5Q/FbekMkYzmUZcAqPMrBRg8TqpQNeZmkaB/D+OVmeeh0xnDCdUrpYOsO84QDs5Pss7hY+lhANaelbyp1w6w80qxmSzy/72HLfWR5Y+YpeKxF5rgvYbgRWzxLgOZZwnUB34XH7TymcfeIotZtmX1GUAovXvOY5KCY70N54AqBrBlSMRwJHXzJEIvfPTUcSQXNgmUMs1BjR36jig6o2IflmOGiLEqjXHuOxgl1ItNe+gOco2b0GAGavUO08Fm94/vPgFuD5KGmNgdKw8Uhi8drCLhW6i1iWN60k2kuHYa1Qr7lse50qYJJXqr0GqjsH3yq4Gwmz57q6C3rRRGTFjXRMWjS7JI0bYvJKaQzHEt2lT+yu5zlLfXrBCL7WzX4vNXBbpiMFXwl0l66EatDnKKB3Hsc/iOgfVUkKJ7F4McItNLrLDKo5KJVTKBUEoZ6BQT6m4nNKHus7SvDIZs+JmSIwzCcPXNtrpGoHBdV7ytJayWqE1C/na/oaXSuxeEP/KCLSAJWDUdcpNDcWuvfJZ0omTI0e1ValMBR+UOxSo9pY2KUux6e7THK21FlXtxJm65PfjoOR8USjvrEJPDEYRY0sWZc2lGTN7Ds73nkO/FsJs3MQU4BbaCxe876rBoeoJMNLRt4vVl8QNEgXsXgVGEgSCWSQPLcIHLDqHVGmW+g0QOf+ihCREybtgvtYrVGknPW1BWJEdyHL9evr2X+npgC7nEvg6bUL8C2rHeoqySIPFm5hCGZW/FmSbS39V2ajoQ8OnZE87rf0zdmVRnOd5G4hQg703pmNLrJGlQBDSAmkcvCobgC3MohSwGwmqF5DDT6FS0VEI8lcGb5P7yzGsxpRCTQXPYFgY6D2E4NdJJljsxEEGl1VkkJzZ6A6WAKEPKgVgFtWMJvx7QF3ShCVk0d9ReAQjCRwcQFuVUPvLZ9Lg1u3rNC+nhB0Cr9J8lJz06MGvwflVMPcDWndIgFKk7x+AUalaoi0DDXOLE4wCuow8fNgPUJXQW0ZYx0qDREjqjv6/dRQQa4PiF1NwGMUzK2Y/XXpmoqVhpgczIEyTTFaRKXQ+AAxsnpDDhOE9azWcB61JZgyPhIATo4gtdKQw4QqyRtFTlK1Ds0hd5C5ORnVOojKQN/xXOr1vfeFQJCTtlfYGuIwottPwGRRHQxgHap98h56ynfF6GZgBIA1GjXgPOR+hBgSExgCpHX0IEoJ7OYajuJLTB2LIr9upKQ2VoasJUBGD0nE4gOEFCjJscM4J7hqBek9a0Ly/mkNrLfAooO8TfHnGRBqBbHd8/dU3fGW11BKQHoCNH0vVEfIMuEgVPIw9kjAUc9g7P7PGCC0nrseM8C7zyBmgBcSAMxgMv9NCp6vGBB9QDwcGPYDzBMgu4lgsU/1LXlfE+jNKbDl9f5Hg8HMQAopEO0/gOi6v53/5PGjHld/AtD852KML4QQjwD8lhDi2zHG3/5pbsTPMhVWAPhrAD6JMf5n9576nwD8ZQD/afr5P977+78vhPhvwfCe9U/0VwIIbUD35y9RKY+Xr0/x3tMbnDQ97oYWlVc4TAbb2w6IArLycMbDTQpKB8QoIFXAFsC0q6BuDL72z73EF99+UgZ2saXMVOgAqQP81qA6GbFZ15CdQ1U7jPsK2KU0k5WF1BG+V3j8zh3evDmGOGhg4RAPCu2jA4ZXC0QTARmhlhZhUsDaIFYecpCIpxNiBI5OD9g+O2LRPbh4MUrg2EK9qinztAL+2AEmAKOCSl1fvgtMsDUeovPAVhcZaVh6CBOAdQLHCw94yjRlz/qQ0BIk6DsFAST2UyCK5M87clB7CX/qIHYasbHYva/hHljIrcbml4BoPNB6dEcDXnyjS1JaiaiTj/A0IqwCxJ7JtmIgeBEO0NuI3YcpiXGS9BsOAtNHPdTzBm7FRNbhiUPzmmmx9oGDWiuoETg81ejfcYAEzA1vhrnKQY0SLhXPhyrNYh9SCNFGzWX3e2D3fkqYXXpUVzoluEbsPpAMQxoZ0iRCGnQYHv/qRmD7Icrf7SqgfS0pldUSIcmA5TQHSPlWQPXsr3RdxHhGnxVTSkUK8hGwx2kEGhIg3WqMD+gRHR6SKZcjv7DqO2D7DbK/4xkTbF/8hTTAHiSaS6aNum4OcjHbJN9ZRKydghroPYwqQvXA4YnEdAY0aeBrj1iTI52GXRLMisCJDOkTMx05+KzuBFNWI6AmVu+EChguNYZzMr52SWo4V8yIoEqdz8ZLuEWEryOaK538hxHNdZL+nUVMx+w8nVZkQsdTrn73rqFMVdHLFAxSXYmknNUJbtMiVc9Uc32EPnBfgyLz5FpABEXGz3D9wzlZ5+2HigEggb2euax+PE8M1UGUMKOgeY42HwWYjcDuPfatCi9KBY3eM1jm8Dj5oCKw/VrLazFNDOie+5IZaF9TgZCreaIC1KgKSx8UPXftG05YjGdkAzObnYOexrO0nQYwOw3hGXaleoX2ihNtOYAqajJ39ToxeCm0KCpgOgGqOwU1aNij1A+6YhhSTpR1rUF7yd+rjcJ4ygk+OQKQPJ8A2W67AtSgqRbYILG8gDmvYJciBUfxNaHipN94wmOd/anZUyldhJw0U1pjTOcOGM9q6D2BlV1xm6WjHJne0TlcR/jki0wsF3sJ+dWaK1ZCBdS3mjLoFF40nYgyESodJ5+272k0NwmQNylh2gF4mvYleURZS6ILs83JUlGSaZevNfaPZWHMq43C4bEsIUVBIXk4KwbGGSC+pxle5SLsQpfzp4Z0HJZzcFK9rmBT2m9WRmTW8PBEoL3U5bhUu5h8kUAUDdclAD1UPDenAs0DBqW4TqBeNyUEh7JQQISG9xZfFxaaFSsMZYoKWLxxGI8VhhOJxYUmG5rYY1bHxNJ9yQlO1ssEQ+lrc+spu3VAfedxeKihrJnDygJVAYs3GtnGYRcSeFyxvmQM7PZMQDoHDYmQql2auaJFuIjxVEG6tnS7MmiohZq4TXmSjuy0hHzSFsbWdRLeMDzIN7JMZAUtUvBOTAyqp0x0JdHcOE6kbBsyiynROQPioMVbvZsAIEIHhgsKqMFDWU6o+FqmCQwywKr3KfQugaUkZQ2VRHVnObkycltEmgg0W6bS5VoWAPPkR5LR+kZB711Kl1bpu24zNFYAACAASURBVMsDx21J0s29mwip8mSgdGc6qVCt2Z2ZU2JFiIU95cRYOl8J3MimQmjorYyKybhi4sSi7AlUQ63LcrDqUkosICfPoJ8QEDsm/MdKkym9F+wTjSrHVAycSIoAmUjnEYyGCAGiHxG1KnUjUQhASf491Y7EtiYAzOE9qcYkhkCmd7KITVUmXkpVCUD203ugrmZ29H6PZalOuddfmUF0jIBzEJr+zwxCM8sZfZiTX326qUr9x9nVkhobkyz2JwDHGAAoAtH4E5jPr8AjRsD/nKSrMcYX6eeFEOJvAPizAH6qwPJnmQr75wD8bQD/L5BLA/Afgz7L/x7A+wC+AOtGbhIQ/SsA/iJYN/Lv/CQZLADUH74Xn/xH/wElsKdTAXRXHz8AAHoaqwB1o8uXXlh41nCcMjE2mDm5NXurRACijtAPe9hDBX1p4LsAOcgUOZ9mHLsAvVaswAAAQZ9cliy6lYccJSWYK9ZZ5AqGLMt1XSwppEAKjenSAMcLRJ37JoFokiTnjnLYYDhwFAGwpwF6LcvAPqerZmmYmpCS25JXUGPuONPcJuGB6TjQO1inG+3E5NsoUcJGqjU9VllaqneUZUpLSep4nro4LQfi9IWlk5YG2rnXUY6pk3JN0KD3grUJZ6zu4IAplu3Lki+3SDLZIe1Xkv5TzpYSY1MXZR5835fhkd1Og/EhM7YosrKcrCpyEnedQO+B0tAcdJM7InONhV2ya3JaYZbgJQlbDo4ByKy7ThTp7XSSWNMN1zOdoHS3qZG/5xRW6djZV625LVkGmztOg07L2vJ3s+eA2Owoxc2DQHqu5vVmWaSv5/32TfpOsCipr65DkQarniy4XeYApXQMrmLyTM5JoyyUF6mzkMDC7FPgiQdZn4nvp0+Ug3qzjcjBLtxHetHUCKienkCeG/rBctVHTpPVPYHZ8jmPgxpZyD6tOAjL/Y45FTYnpkbFgT+BzyxvrTaxfH7tEfe7vYwpjj9dEx0H+tU6FhCY1Qf5OnUNgXZzxYF3/5BKhKhRPGm+St2HqXdTj5Rk5mOaX5MTLbOsNydpmh23OWjui/QEBlky62sG3biGvkY9RMpsE5t/eCRRrVMy9cBrL6d1Aii+QeESmIxJ0hhRUmxzIuZ4wuMrPKWzoQIWbxIwkDMwcZ1AcxPK+a7ShFkGW/lemwOgpEUJcimBOUMsFSZZ4lnYYKDUVughKR8SKJQ2Fk9nMLOEMq8vdzhC3E8r5bnJVSGZpdZDTMwuj0UGNVGm5UZKV6s9lRGUEHMDq20oAUIicrsy811tfVKjJE+iyYBgTlv1tSiftyxZDOkzb7uUnnpH1YAekiJlRTbF7H3Z/1zXwXAZHiM1UAKqUx9pBlTKxgJo7FKiubL0z9UyKXGokgCA+s5iPDGJuY6wy5n9tyuVElQJoPIxFI51IDIdd2mZZBtTv2A+H2ogQ11SXu/VjvD8yrlTslWljzX/3+wdXKfSfWFmboMmY+7auc6kWlsMDyqoIZRzpUbWpvgkJQXIdOZ15MkHvXdMaM1s9OhhO9aI6N7DtQRVuR8yVgQXriWLLuKsOOLFEIvsk6E2oSgKcupqZo71ZoRfVghKQu8mhFZzfw8TQpJ8Ck8QKZJ8NdQ8Jr6WqG4HhMYUkEbgA6ieTHZUZCpFYkP9oirAjtJgyxTYwZFJHqkQEDbJitNYgRPAGsInoJQYsagk5GDJyvoEhjN4mhwQgLCsSkosYiwdmFlJVrp4XaDc1QfErgZCSpY1ClGR4S3ryevIwC8DOwBvdWPmR+6NzMdJqwLuohT35KaiAEiReyardHyd/9Ey2PsgEGDSaw7jyb8nlrYwnFoh9gMBYQKAf6zmoyiBEnhLry3hPfcTWWOYWc/EgpJp/REA8t7jLdxxfx/+BIxkDHHetn+Exy+CFPbxr5zFf/s3/6Wf+nL/i3/+v/uJ+yaEWACQKVB1AeC3APwnMcb/5ae5HT/LVNj/A4D4MU//iz/i9RHAv/cPsw6hIp58/RpvLo7hR4VqNeHyeoX4cEIcidS64x79fkmQdjYBkyLLl9iU0AWYGwV7xgtVOLJ3oQqw+wrwAn4ZyOTJgDgyeERtFDsmQw0R5voMd+RZTRIEIFlj4rvI1M5Tj/pCYTqh9NMvA1nCKkLtGARjlwkQA4i1h7lMzGLyzIRVQOgl/JKgNjNNIvk17SoF0UQgnAQIL1Bdyzk1VaIwJ4IVkHBVJFgWgHQC4yPuQ3VHIFwNItWb8H3jgwQqU4UIFrEwG9k3GGWEO2JdAtlSrstXEe0bmRIII6ophdos5sqY7IN1SyafSkvv1vCA2+DbiPa1xHhO4JgrWdjhJiAnDiKiAZBZmFUkkF9GVGsOOnIya9C5n5DA3lcEZb4GhnMOhjKAn47TTPUqQl2Kss8++e6k5fuYUspQDrtiv6LZ8TX9Y7KclEKTBYqa68gBLqXeo07sQsOBPZkbkcB5Wl8Ch4E5UFA9WZ0c5iKn2T/qWq47vyYD7uFhYodAwJ0DYHi8ef6qbVpGRyCKwIH94YT7pqa5UuTwdJZXZhatvp39o2bP9w4NPWyuoyeOvW0E5zlgJVdbuBalpkKkSY7hnBJp3wDjKYGLGmbfFetA+Jrd1wTMloPE/qEswJjeXHrrfJ26NNP63EJA73mcpiMeR/YuzpMEIjJNVKbBLwS3HckzmAFc9iL6NtWxLMh87d4TqLaUyvaPRWHyEGegowb6AW3MgyeCOLKR/OlahrBkdikDGt2na3JJFtzsGfDiFryOhjSplas1CICA/lxCp6RTs+PnYzhNYTyZ5UpjAtfyM2d2aXJGIHnouI7xWKYaBh6fqAXqVBGSa27qNYFVc0twJDwABfRnBLl2IaAP6R4j0j1xQqmQ4HEgqAxmThWVnnL43JkqApNRhQcmI9Hc0utJv+R83Ko9a0DyxFTuYlQTgTdTLdM1kNjPKEV5r3QRw7EskzD3+yDbmwjb8FxNS3oPi19xE9CfK5g+TWB4FLA7rQTZ8vTe7F8UgezZeEypbnPjsX+soYcIQEBNAeOZgu4jqrQu1/EzMKXE0nzOfCULWB1Omayaa2CiBKZzjeaOsl67UPAVa0pcLSAS6NY9qzyGUx5fevQSQyaB/mHFfV8R2ApPWb20orB7aozlmPqW1SQyWQHGEwU1ZfaRn2lped6zfBlIoUFjZg/5HUBmlIBXJuldYcyMwHSkU/ibKMBWTvw8uqWA2XjYlSIYT55JvZ+9jkEJ+FaVapWoyOz5WpZakag0hoc1qrXDdGSgB0/2LNBi4tL2TCcVzNbCd5qS6L0r/xc2FqCpew9oBgKpKRS/pRo4rhnPagLmVKExnbdQBwchInxH6W6o+aUZaoIooQWCTl7PYwN9IEjUIcIek21Uo0/VJh6yd/BdVdg8X7NzUlqfAFMoNSRuWUEdLPyygtpN8MsKciTIjEZC9g4wc/KuHB3cqqY1RhGQRsPwnygF9HYsCa1+WZM9BAjYEkiUu6kAb6aegu9RChiBuGwgRktAK3j/FoJ9lFEpJsdWKZRn9DMTmD2Rzs++RpNBXShJrrFOwD5GguS6AsZpZvnugcpSOzLe67bMy8xJr0IAPoHNXElyH7ApyeWn44DsdU1yXCjF5NbSeylmABmTtNf9kBT5/kNJMrSVmcFm6cyU8+sS43lfJvu2DPg+TPgR6wHeAp9CAfEfA1j+ojx+TmE7jwH8jXT8NYDf/GmDSuBnyFj+//E4/6cfxH/hr/4lTEHjyAx4t72DFBF7V+NiXKJRFoM3WI8thIholIOWHjtbQ4oIGxRq5bAZGygZMHmFj46v8LDaYedr/M7LD/HPPn4BFxQ2tsHt0GJVjbgbWqzqsVwYtXKwQeFgDU6bHtd9h4fdHjd9h0fdFq/2R2i0w9VugY/OrvFiewwlA4SIMDLg9tCi0g6V9jiMFZYNl33a9Hi9XaHSHkJETG7+0E1O45sPLvBidwwjA5QMeH55itWy574ah5vtAst2LO/r6gm7oYb3EkoFHLWzGXvTN7BWYdWN2OwbSBnRNSNW9YSbQ4uzrseLqxMsFwNTc1XA0Ff42sNbfPbZYxw92sF5mbzmAf2hRowCVW3hnISUEYt2xO7Q4HjZ4zBW/FLzfM4ojxAFfJAYBoMHJzscJgMtAyanIUTE7nKB0ycbTE6jrSw2+wZPTze43neotMMwGSgVYJTHZttBGw8pA7yXCF5C6YBp0GgXE6xV5TgIEeGshjYOU2+wPO6xvV5AVh7RS6jKIwLQ2mPqDdrliOFQoW65b1XlMQ4G3knESWL1YI/9tkHd2rKOft3g5MEO1ivsb1tUS0qeY5BwOwPR8By3iwmHZyvEVZr8CGB1jJWQtUcMAtFJmNbCWYW6tbCTRrD8m+0NICNir9A9OOBw0wFWQCwdJ1tkhFARqvJwewPVOcQANN2Ew22L5nhECALTbQO5tFAqwDsJcVFzMmTFG7o5HuEmjXhIEp82Jdz1GvVZj+l1x4kCz25Z2TiEUUFUyTurIoITlGSfTcBVjbBMtKsXUCvLVGIRIaxE1BFQEaLywMYgLjwHAE5SCi4AudHAgxFhr4EoIDqHOEnW6iwdq3skABNgLgzsiWdsezrO0BEIHMCLhUPsFeReIdYRsQoQB8UqnYFSXZcngFL0u75TcCfzBFU0SboAQG2T97ELUPv5SzfLsVmzkJiZiKIYgADXuVXsn61jCvPKzB27ecUoEU2E2ik+LyNUL+GWHiIKiJFl9UHxHOqNKjqSqIDQBiAAei9hTzyEE6huFOxx4ORYDUTDDlgIzB24gyh/z+XiruMEUWjY70u/NjeZXag5qCupEpAmMLqA5o3CeM51ui49nyexi0xdzDLUgJLKPJ5FyDzBBdDG4PmPbBFTfKXlxFWoqbaYTmKR7uaeSyb9cjJOeKomokBRt6RDXxQYWdGQw7aYpMxjonezXDe/J9RxTuqekLz36XVVRH0rYFd87n73bVFfJHbcLTiJJ6fEovZcVq4ecu2sPlBJVmwXs+LCp0me8TRPyMzHmunO87bnEDOZJoI48ZEmPNNEFHMAsp8fhXXyFdeTA6PMnq+pb5MioME8aaBmhQcnymgVyAFgUaVjJufzxc9hOl5pcjMzwPnv8d5YN7ObruNyc/9nvhajArqLwKoXwW1mjgInv3IFTXPDpFsG2CAB33T52XkyLAeT5fCmfKyzUiYrAvJko0x4gP7luZs3qvlzlKW9JbQtxDKp4ytR5LXCM9PAthJ6yEmtBO88f3xO+pxBkY5NI5MXf2bhqEaIaTIgT2i+rSLInaZqyuuYmWqA4N3syMirBI4z613t6AXOagFEgv7c3RolX+urpM7yOfRLFDWTPvj5XGoxM5NI13N6zuxdkhsnljSxsdnvnG+xOfQos85zF2ag1zezpRIQU4C0nr2gLvmwAQLi5L+Wo0OoGRaEe0wrXCiy2sJE+1i2HYkBLhUnk0NoUyCQlOX9eVki+2/vJ7Nmz2MCk8IH9mXm5+89RPaTZiYWeJtdTMt/K/wnA76y/YnFzBLa1Mf51uMem/kT8ci9dX/Vw3se/cp5/Lf++l/8qS/3r3zrN3/u+wb8jMN7ftYPAUDLgI+Wr/G/PvsmXrbHWFYjPlzc4Nn2BN968By/88WHePd8jYWZ8MXdKXwU+PD0Fq+2R1hUE9ZDA6M81vsOSgb8nc8+wr/yzT/E77z8ELttg2eLUyzMhO+8fAzvJN6oiOAF+qMeIQoIETEMBjHwA/06HOP8dIcvbk8xWY1/5uwV/vDFOzhe9eg/O8JnIsI5hW88uMbHXz6FEBFKB3gjsd4YrJY9rFe4fH6C3aM9pIi4WTc4XvW4ec14TrOcYA8VvjBnuNt0CEHgaNXDO4ntroWpHPqxwrCrEIJA8BJCRGyuF6iWE6Z1DbVwGAeDEPjtHSYFoQJurYYf6InzXuAwUEv7/OoExnis1x2EiDg66mHvanwZz4AI7HYNQgJI0gQ07YTDqyXGscbTX7nAixdncE5BPGux+yhg/HKJeD5B6ggpA/aHFkfnewyDQZgUrm5XCLcVHn90hclp9H0FuVMYJoP+sgMe72GvWjQPrzH0FXZ9B7FXrC4xAbL2GO4aLM4PcFbD7zRcQ4A2yArBCciLGv7dHuGyQawDsAJ05bF9vQJMQAwC6jV1lf7EwwdwsP2RR9ga9JOC3Grsjy2kDtAva7hVwOHTE8Q6YAgC6nUN2xDM3V0vgQBUrwz8Rw7+roKwEjICsVeAB/ZOQo8CXigIL+hxPAeqS43pVEIOEtARbstZ9elBRP3tln2TQwUsCDTUTuJQNdA3moNuCSy/rzGd0KPozgQB6JsakMAAQPQKg2shrIDuJVwEQh1QvTSQjsAHKsJcGbgE9uoLBTkJTCeJRd8ojKJBfUdvLHtBBXBZQ5iIaCWqK4XpiYPcKbRvJA6ooEaBqBTUQcJsBYanAs2Fgj0KQCB4oRdWkWUeJCAj6iuJ/psjsNOobiWGVkOMkr2ijyPUmsdJjqbIqYNhMnEUCtHE1GFKGbgamJbspcLRtw36RxHRCWDPShd7KqB6nhd14PZJJ+kztYBIftJgItBrhMcj6s+aAm70K/ob1UA2PGigvuIgyZ541K/o38oMOgc59M22F2QG3QKIKklvpUDoZQE0UbNGpnvBjtbpiMtjfUmE3lOmVt3S69le5GRfBdeSwVcjZXHVmqx2fUPwJfYSIiUCI8oEXCL0WiJqYPllxO59KgyEBc/nNAOimLxq7ZZAcFqJJGMlE68GSWn1XqC5pK8bYe7LFImxU5ZApblK0mbL30Xg612HMlDUB/4uRw7G28skp5WA9QLLFxHX5xH6Tha2P4MoXyOx2ECoZtARNI9BdZd+rjn4z7UsBF6iLGf5krLr8ZggpVonFnhPkCJHqg+WL/j36UiguiMoMDuCleEBGfV6HXF4LNHc8vo4SE4YZJm9GgmQhgcR9S2tBtLxPC5fUHLrax5/s41QlUD3hqnkWW3hFkw4znLr6XhevtnR0yk896+7yExrBnMEbYfH/Lw0t6z2oQWE7GO1iZTAL5nIu3gdsX1XEeQ4yufVEAtAMfsIN6Ew2yr9Xm0Ddk8pwaUPWVJCnaXhAewurRK4lijAR/cEk36X2N5OQFsysxBI2+ZKD6caI/ZPFI4/m7B5v2La8U2AdASw41EKixsjzCEUFri7CKyvSdJZ6QERBMwhwGw9du8YNCmQrrnx6M8VpAeaK5vk5ALTsS5SXDEC04LhdboPsEuJ6s5hPGPPZX09kQndhZS2THVUfT0BT2p2aqZEW92zk9RsPaSL0DsP36rSGdncOEzHHCJWa0tf5rliN2cfEBQZ3ebWkY2tBfQ+FNm59DFZAdjPCTAszbUS9c0InNeobyb0j2vIKaC5jSWR1i0UqjsLXyv4lsqJ+mbEdFwxwXZVpfuaQn3VY3jU0oqTEnHVkIDgBAQjCxsvXITe5/A5D2Ek1GFiAJqPwHmLKAT0nkFgYvQIrS5Msho95bQRBHlKvCXLjUlubG4OCLWBuT3An3bsyhwtwqJmaFIKNYoRlO6CywuLGuqQQ4fY9Sksj4mYLGB0kvoSqKlhKtdWrNl1CYAy2pCY0yTVFYcBMGR4hQ9kOVM/5g9LVREjYAwZ0cwuDinYKHdwAgxDqgyic2Q/AwOIyhhdScptAUpkgTkEKD9UYnJTcuyPH/DfA6D2x7/snzx+/o+vNLDcjg1+74++gd8zX0d7NODNtMKtadE7g9fPzvC3dh1sb/D5548401QFnJ5v8fHzpzCVw/UVEyFk5RFua8TWozvu8T9//GvQxiNMCs8uziBlgDtoiIOC12QCNlbyfRNZoJOzPdbPjyFPJlw+O6Wk9mTCb3/xS7B3Na4GDRWB7c0CcqPx8asFByKth3zZYHx3QNgabF828CcOYlDYvUkSXhlxta0gegUcW4jvLyCWEddqyb7KUWHtJMSNgesCnNZQrYe6qmAfAvFAkCIEMPma8t61QQiJVQGBSzCAO3NQdxqhinA7hWBTX6EO8KGC7CXqa4n1kwrNtcLYelQXGtN7ZGLkrYJ94HC4qSBHymm3f/MJxEce3koYDwyvF2RPbiqwID7A3CpssABGieZCY3jiIK3A1R88gjt3MFca+iDQL1rIXmJ/sYDeSXz3k/egNxKiS12LVxLTA0DcGCgA/X6FKCPqWwW3VNB7BoVIybCY0TQwO4F4UMAtw3vEIsBcmcJY2FUoQUbSCUyvWkgJqDVvgtFo1C8VogGEp6cWULCDTHJJAX2QsEccdOteQP1Rl2byuR3DwyR9vKxQ3QqESqV6kojqQkN4ge6Zhm95/Y3nAWYr4camyGilTdKrXsHsBMR1zcHtBLidhNnGJOUVqF6a2UuqIxb/V8sqEUfJcXUnoA+awUl7kXyiAtW6ooT5hp13qheUtRpJsNUzuKR9M3frxVsCD2RZbMtjV60lulf0NnavKemSE1kYtZcpPEXCbJFmsbmfZg/s3uf+6x4wz6viE0U08InpMtcaesdBpD0CmkvKkNXEgBfpKFvLrAtrCRhgJN+w5/LoM6B/IGCPI7pXAn2QqK+T/7EWEFHC1xHLZxHTCftbzSFi/45kbctNw8HnAUW2TlmhQHMtMNnUJ3kAotKob7JskrJb9gqy2kMfInQPDDIVqvcJ5NQETvTcztJiaVmvEhQH69WaDMjuPQmzJ2ukBsrYfcN+xvqGktjdu5S/6gO3L2qCtmoz+08BlIodlZZdXxP46rRt3QVlpmYfcXgiSp+lHAFVA4sX9At3bwjOqnVMjAYlnFEB3ZsU5GF4HdR39CfnblX2ZJI1rTYRvRZoLiPG8ySdBWtKsh86B9gIRzalvZBoLglAqi1lwvpAybOyyROWKjBYH0XgBRAU0888J/4Gxc98MJT3ml1gpYFK2zslP+QmYtAC3RVn8oWPKXU71X9cznLr5TMmlActsHgVUugKUN/legwkrzwZzONPU7jXgaDL7HOVBwGxGiO6y4DhVMIcAvQIDMcEd93rQEZPcMAqooRdpJqbHeWo2/cUqi0QBUFOfy5Rr8mMCc97Wnvt03VOsMckZ14LegxAlInNYmUOXw9ESXmsOcyVLJlJk1bM40vB/cs1I9Ud35P9tfSG32NARKqh2kZUW24b2lSlsyMzpcYI1XvQRwG0V64wTe11QDBMRO8uWQ/TvZkwPDBo1slj6Vkz0limYGcAF8zshTUpFEpNAe2NT35bhuPokZLxzMLpg4dvCR6jyr5N+iaFC6hvA+ToYfacXMoe2aAEqp5AkX5Vj+rO8RptJZqLA8aHHaSNqG5H2FhD9x7VeoJbUBrLZGRWpeSwm/aa26UODgoMBSNzF9O9mhUmIaUTy8nDbDzc0jB1PPLaQwRU7yFHBzUYmM0EvzBQB65T+Ai1Z7BE1KZ4VaWLEINDPKphNgOEZ/BMtbbIwTJqMyVWsSLDnlKNWbEyFZ+nCBHRkXUUhxGxriBHyn2FC4Aj08kU5QBzm8IcU1K9mBxibZgO6yOEs8BhQqw003C9B6SA3E30VYbAACDrIHeBMtnUUZnlrLKXc2iP83x+ZPqqmCxltPdlryFARPo4xWQLCKQvUxBUptqT2HCSXPTjzJIe+pkl/KG6DwHLEB6tEPO2AHPaLPiZzN7PkgILFHbybZDJdNq3KkdSii1fIH9sciyAPxX9lfcf/sc6Bb/6j6+0FLb+xrvxl/7zfxcxCuxvWyAIyF1KHTshQPIdL1p9PCG8blJiW5Lu1GRYgolFzqUO9OwJJ+BXAdWVoiwtS5w0v9yytIUDffr63CKmqhJun+4p98oz2UCadW3Yx4hIORY7D9NrQVlcDqwJmjPxWTInvIA9Yo+l2dDPE3Us6y+BJYcUAhRESSv1FYN/IFGCbbJEyDexeJaylAiYfUF6T4bDLUJil7ie+lrg8A7DcqJJ+7YRJYhnPOXgNMu9slzK1yk0pyL7Iq0okiZfzwPxnDo5nXAW1awpbcoyHIDnM3u+csBM0CBTYWcvlq+zlC1tS/793v6GmozPcMafedY+y7KyZw1A6acDZhZDOJTwpuLpSp4t6d6edQdQ0klFRFmXTQmY42nA4rksgATgccl9lAS+lAPZhSgz+a6d9ydL2fRAT+niJVJy4Px+VlKghCBVa4b8VGsuwx7NrJPw93ooMXtL9f7eNeMpt8vPVxsCGLsQ5ZqSE1Ji5+wBzCFBMg2gQ42STOkTM+RbUbyRpeOvm+V53ZsUipQYCwY9kZ1xXeqqBAqroQYUCRdDKsg25eueryEQyV5PAMVLWdbREmAx5VMUCVuW4+UAFuEA37Kq5b50LEv3KHXjbH8eQKuRxzMY3ndyh+P9MKio0/nT9wJn8kPO13jU9IPlfQsVj0n+PGWmJ/cfSpvAah+LPDQfm/y6++FjeXt8heItzK/Jfkj6v0T5nNDbTZbDN0B7FYonM9c45fvvWxK+XMMjUxhUkpzmbslql+SNcWYaWdFE0Fdtk5dvyvs2B93ogcdoWsgStHP/mJZJmdSHGIUo94hcT5WlgBlQyOTDpO8TKWV6PpaseWKnYw4Iyt8b2Z+r+4hpRTCpE6Cm3xIpeVWkeygH53l/MyjlOYpFwqimOeQo11u5NvVAps9yfn1UTE+Vnh7Kcg/IXkWBEuyUq7NKwFHkPuk+hVMpPjctJbs1h8DJi/z5CrliaU7rZeJt+twIzBJpiTlUJaWxymkGD/naIigg81Q+8z6mChdVgGi+Zl2XQJ7nxIpwMbHfDAdSY8B4qmG2viSL5joiTkbMDEsO8sly8cyiqYmMovRULeXrL9epuFbB7FjRUgBRritR+T7B/9Pzm0KSUqDN/fAgEZKEc/L0Og6e11it3jouckwpqjJ3WlLKGWoFeILUkrLqA6KRlIC6wJqYBMb4nSHTOWFFjMzBOp2BHGwJ5mENikVoDNm0EBmYY31ZHw9kRGg09GaAX9UEeUXmSqAV6yQPzbUXpYsSiDWXWf4eqklswwAAIABJREFUCYIZDhRn5i4AIoSyDezQTL2UGZRpRVAlBOWdUtJ3KESpJRHWUWp6X5IqBISjp5LbzX3Ix3P+EIi3mcT8/5xIm1NUc0BQBql528I9+Snw9rK8fxtQ3g/Nyfuo1NvP/XAwUQ7+ya9JIT5xvFf1U5JmQ1mfuLeMeD+AKC/rH/SIobCf/yiPXxQp7L/51//ln/py/8tv/Tc/930DvuKMpVIBXz+7QYgCn+MMXT1htBq/fH6J27HDN371Gn/3xYf4C1/7Hv63L34Zv/pnP8XvfZfs5lE34OLiGM3jHYzyeOdog0+eP8HDB2vsxwrWK0yTQvvehLtXR/RPHTu888E1Lm9XcFYBmpHK06CxPD1gfL5COJ3wa197ie9cPEIIArY3iKMETISQEauTA/bfO8bqz1xje6hhbxssH+2xu1wAXuCDjy5wve8gf/cE8VsbVCpgd7mAWjj4jQFUhGwd5A8aHN7nTVodJOI3BkgZ6VOcJKwOqFuLsTfAdfKvOYnxqYX+vGENQBdSUFFMAwsCwuaDLfqXS4iTCfFVA7f0mB5GLB/t4foK7z++xvc+e4LF+QHDpODvGgwGqG8lzC9vMHy5QmgCpnc8FscD9nctMErUF5rR9b++xnjTwlwahA96+IOmD67zgBN49xtXePm9hww8ejwBo4K5UfDvD7CPFI7O9ui/fQJ75CEWDkJGVJ+2cF2EO/EQ4xyzH1r6zyApEZV7BfdLI/Cqhvlgj8NFh/aFQv+uoyfKsvIidAGAgntkARGh31TF5xQMpYrNlUT/OBQJYmw8fX6PRoStgbljxUf7WqJ/6inVi0A4coBN3ouDRDhy6L5flaTd4R0HOUh0zyX6J3niAZhOQpoASV6PlDDsvz5Af7+Bt5xosEesNxlPeTzUVmFQEbGK2NaUG/o2wh15tC94CxieeHq1eokoJcazALfgJEbzRsGuItOPIyCCQv+EkwmhjrBLToLk5Fg9CEwngfKzBHbcihUu6kAAJmtWlUxnHkff1ugfxZS4DPhTi+V3KkxHcziTGgQGzYmYYJBkraIEI/mGx2P9ywBERPdSYP/unLgctMB4HtBcyDlEJU16ADyn3WtgPOP/x44+t/5xhEhgKRimHasxe6FESRfOQOrwhBM6qy8IXG/+jMPyewa7bzgsf6AJeOMckFOCoAaBwztA94qDb9cKTEdcdjyZJ2T6R/ysuhSKc3jKdN1gyDQ310ifab7HriKaS1FAYV43JY9kWg+Pma7sUgKw2RH0Z7CPwOPnG8AuI9oLUf5ujzipMJ5xO1ybKkGWnARpbiM2HxIkZTYWCYS1V3N9R/8QWH3BwfL1rynIkWFPvk0MoEh9wanCIS7S8c9dwSFN7iRgOR2LxBKhhLcAgOnntOLpWKC+iTg8oWyTYTRk1PZPJeW1EWjuPHZPWZ8xnoo5jCdNwrl2DoWaTgS6V1zftBKYTsiOD2dpgkimiYqJ+5aTJkWIqHYRzZ3H+kOD7PHKAUTTMc+L6siK+gYAyMaffnfC+uuUejP9OR8TAbvkdojIiRlpAX86y16jkqg2EYdHlKX6ilLc+o5es8NjsrPmwHAeNUUcziXqu1Qlsk0TJ9U8WSM8z/u0Sv6xNPE3rSj/rXYBtiPTrwfKSHVKAB7OJOq7wAmbdL/N4Dj3EOdeZukAu6BCIANsk/qWi69XogQ5lYkMoFwX0gu4hSyJvTkxN4PS/pyAs956bD4wOPqcXbf7xwrLl45px6e6pDPn2pH+TBefYa5MUVZhOBFob7h/qmf/bU4UFg6ICVjapUFzZaFG9pZOR4osqxJlUkv3HtORhtl5TMcaqmfSrV1pSBuTzJUMYEigNQpANAz9k0amXln6DEOu/ehYHyJ9hG8UU3rHCHNwsMcGZifgDb+/fGvQXA7YfKND99oytdfG9D0pUa0tpqWm17h38JoMY6gUO14T+A1GwiQ/ZGgV9GEGDvakSaDUI1YEafZBB/iI2GrIiUBfuAh1mDA8aFDdceZWDg5+YSAi+1EzUPSLuvTpZs9j9k9mUK42A8RgEboa0Uj4sw56OxLMAvRJDrRwyP2A2JDljkYx2FYIxBAQli0nNaxn/UhvEZKcVISAsNDFExmFIFgFCATrFOufQKJwYMjQ7oBwvIBc7/kZ0wqxriDCSJBamdk/mbtDhwmxqQhePftvYTTQD4gelK3eA3pCpwRaaXDfSylyWFGtZoDnHKAJIsVigTgMlMZ6z05N5ziXk4OAEugUMc+o83HfB/1jH+FP8qJf7Afnof70MpZf6TPkrYILEh9/+RSHZytcvjzB4Tsn+PvP38UPXj7A3/o/fxX72xa/9dk34b67wieXjwEvMOwrXHzvHOZ5hf22webTU3zy7AnabsL1330C/7+fwX58BHvXYP9Hp5AHCbzfAwJ4+eIMIQrEvUZ43cDdVRBbjfE7x4gmImwM/uDjDzBct8CnCxz93zUQBRbfrRCthP+dUwgvcP35KaY3HcQosbtrodYa1ZXCF88fYP9yhf6bI4Z9heHTY5gbDfNpC3OngCCgP2+gBoHuCw21V/DLgOaPWuBZi/b/aYFeQb1oMPYGYWvQvpKoX1SoLxROfruBPQnQewG9S9KUgaym61j70W8bRBPRfNyifSNw9KlG/drA/f4JzHc7fO+zJ1h+1+CwrYHPFhCtQ3MhMZ57uG8fQe8F6kumDDgnoS8MqiuOqA8fONR/8whyo2FPPJq/36F6ZTiAuNY4/kTj4vcfY/Elw0WO/qBG96VGeyGAqxrLTypsXq+weMbk3bO/XUO8qQnsTETzUmP5hYTe05e2+q7G6jP2cy6+b8gUv2wgvKAH8wcKeg+YO4X2hYLZCjRXEme/r9DcCIi9AgaF+k4UNqa54g1BDYDeSbSv6emTW432QmLx9+hT7F4J1DcElWYrcfpHAvW1hDBkws2dQvdaAl7g8DXHAdgINK80jj6V9OL1AkefkfnrXioy6McWzaWE2bKLMlzVJQm3fQOc/iErX7rXAmonYXYCR9+TqK/IzksLLJ4LHH1CoG92QPtcobpRqG8lqjVQX9ND9+DvsX/TLwLaVwrH31YYzyOWn/N1CEDsPKo7geNPgVBFdC8jYmLa9Y7L6V5IPPz9gHrNQWZzRdmkHGSRui2eMZVXXxm0F7Gkx5oNU4HVBLRveK22F5SFuhOHo88DutcR03HE8afA8XfI7Jx8h4y6WQs0V3PwjOoZ9KL3BAEE6EB3GWA27EbsXgL7dwmkl8+Bs4+ZhHry3ZBqewjM6lsg114AQHPNfSD4Bc5/lx5PtZfwhoDersh8TMcR539oMT518DVw8m1g/17A9uuUSa6+jLzG9tz3DJRzuitAsLZ4HbB4ScDXXEb6AhvuV3VHmWl9F5Nfj167UAPdS4HDY1YHAcD5J44Sz8hQleE84uR7HtNxhBoi2jcMnJE24uhzV5hqaSO61xGHpxHtVYTZcRtyzUtm0ruLgPouorsIhWHLLFFzJVCvA9QY8fTvTOx93ERUd7F4+6ZjlOVS7gi0NwQB4wnlo66jN669iFi9cMnPR1WA7sma5wqS9jJieCjw+HcPpbKn2sQi4623AYdHAjffNASuFbejWnP/sgQ3+/XojUvKikNAdxmgBmD/lLUy7XVAexFmqSt4zYUKWL3wsAuB8Ujh+DMLaSMWrz19Y5uAo88pT7UrkZJeeX0df2bp5bsMmFLSrbTA2XcGsrKbiPYy4uxjW3yfD/5gj3rNa7vaRAynIlXscFJj+cIX1YO0QHMX0L2xZb3TCmiuPboLD28oUdY9wWdWwEjHc2QXBFJHn/VYvvKotpTSTkcEnPtHlNSbfcB4wr8tXlnokXJVc2CnY5bStpcWZh+QfZDLFxbVlizN8vmY7qF8b7XlddZee+g+wOw8qq1Hc20RpWDCcU9ZcbUNlJtKpuQuP99jPJJF2XF4qLB86bF7R0HvPY5/MMFsHQNuxojqzqG5stApYCYmsJjZ1dXzEfWdQ3MbsPziALNx2D8lKIQQqK8mTCsJ3bsyuB5PDfbvGJidQ3tl4VqJamPRvtoT9D+qYHYe/QOD6s4xnfqBQZYGSxthNhP0gd5N3TtELSAnVuzIKaDaWKoltpaTgEbAtRJuoWCXmqxzH4oUvrkYoDYTQiXhG4XqdsLhnRbthYVZD4XVV1OAtAGuU6ivB1ao3PYEbCNTdc3dyAmnywPVIi7CdayPEYEdk/aogrk5wNwcYI+YwhqM5LK0TOyqgL4boTcDosmJwIllTeymHCzErocYyVzq6x1kYkP9wiAqidAogslUSRKlRFg1EIFMc/X8lp2UlYYYbFFfRCMRFk0BnHI3Ug4rBGJTQ12tyUBXGupmR0A7jASb/QjRT5C7A6WxuwNlrEJAWAex2fM1u6Tpt45S2cpA7oYk005JtPfVh6lmROz7OQhIScpl4/z/eE8K+xZ7CMyM76FHHCcIJWdQCSDu9wDIQMbJkqUNEXEYyvJEVSFOE5eVUmjfDhNKjGpOwU2v+XH//vQ8BEKUP/V/vyiPr7QU9uibj+Of/6/+El7vVohRYHQKh0ON1WKACxIupZf2hwpSsoTWHzTgJFMnR8UEyoWFlAF2W2NxfiDDBkDIiOgFvY0RkOcjjPEY9xXioKCPJrheA1YygbJXnJHuHMJdhWgC5EEhNGlGpkrTsF5AjApRRUBGLl9F+h29gJwkoowp+ZLy3gychBXlZ32lMJ4F1ogsGdjiHlioO01pnObrwsJzuaNEaAKqa0VwuZGl25J9lhGxTUbvXIOy5brlKOAe2rTtkgExW5bX+0WAmATUKGAfOOgbDd+m6WEdycq1ATKlKYaGUuPqlt2VIQWOTOdMmhRWpOoKDjxzx2iO7A9VZNfmvQRHNZApioLpkmbLGXGRWCURgOmxI5vZczbenTpUbzTcKs7sWs19DVUsvaX22MPcqTkVMvnE1DTLjIUHt38UCG1AdcNrxq4iulcSwzlTGn1m3FKKZn6/2TCxUu/J7vk6pYVOAu4ooL5kuIq0lDn7NsItIsxaktEb+cXPVEXKkVkNQi+hbzjIUYMonqz+HY/2hUrsBxKLwWAbe5Sk2CrSO2qzpJZhI1memxMw5cTO1SxppnyV71U9j6c9CWifM7xG7ylRDRVl4Zy1JxORQ17uy8pjYvrUkMJZkHx8Kskw03dOlh3nBEomeqZzpriPb7FbCfRkOXDuA9UpxCXLbEWY5cdZ2nm/m5SAjwAm96NmX+l9GaUak/xbcFA/nsw1GCFdW9Kl5MiJ7JbrRJLQpvetk091QOmpzceIPtT5mKgkdc6MbpbKqzGif8jPWXvJDshQc3ulT9uSZJJRJWm64vHQ+7QvuUNT8u/tVeqARNqO5H/zjSgy2xl4JHn0SiQ2MlWd1JTNq4nXv2tTEmeqXIm5izIkuWVFaW/u7tQHYDhLaawHhuOU9FvNYx5Mvm5SYuW968p1ZPxyumnuds1dpLmzMqZ/99Mus6xZuliuzWwryK/LstR8PQQzV/5k1jt/fu5PaGcprMqSfoEiua52rFOpN5QQl6TPThSZee7LzdeZ9PM20T7AyZ0M+OpNTIE8osh39Zgk2ILnwOxDSSzNn618T86dnjmdNGjed0yfZbjJ+928LQPPzGNOOs3HIae25mCYbEvIPZX88HPQmiW4pd9ToqSlAij+xdz9GaUoSar1hifG17IwiTlwpoTSOLKB1dbDtTIB8lCWGUxKLq0lgaYWiQlF8ZTaBetKyEgq6EMoUmU1eLiFSvcLyh7tkoylT5LWfA8CUIJpMqAP9xjILF2UNhRfdJYFqyRnlj7CV5KS22oenMopyVm1ZC9oku7G+1JGTaDIBQO+JduZnxM2wK7MDPYm+h3dwkBmqXBMaamW4ChXklD+Lsp5zfvL+3ySyyaJbK4zkdbDHtUw24nHxQYmpRZZrCwpt/l4RCkge4fQUUIrbAAUa07YJ8maD+HolRbWl/RVSotndjVvj7C++CxjlQJ3hECoDeQwzb7KUhtyT1aaei3fksLmY56ZvmFC7BqI+4mswLwc4EdLYHMfZl52lvHewwFFsiolYgj8aS1K5Uj2SOZakrxdWZL9wzLVEGapcAaS/zBJsD9CIvtVT4V9+CsP4r/xG//qT325f/XXf+Pnvm/AVxxY1h+8F7/+l/9DDI885CRKimaOdPctZ8LtChieOHRfaIQKZYA+vWvRfr+CXXEwnQvpfUNJYnvJgZ9bcuCsU/deHtBluY6v7vn28uc/DSpj+qKNgl+8rksgIEn09AGlVD5KeuFCGgi2lxww+QqwxxH1FUGSXXEfmqskiYqpZ+949q+VQWSaac8Dl8y6MdkRc1y8yv42IPsC7ZLbWyUvZ5aXlt65Oy5jOuYgISqCQSZLppMUuS9mlzoMFc/L4jnlaFGShRhPGdzRPxRlncC9QZYiG2BXHPiNpyJJOlFm6aOgHHD5DOgfijLQtYt5wC4tz71dMujj8ITbUN+mxEPDnkQkH5+vE7NxLpL/LknSRl4barjn40xAw7VA95rP1+uYuueA8QSo15SkDeez77QMwNt0rldkorrLgMMjCbPjYMs3GVzNaZI5BIRMTIRbMLq/uY7Fb7f5iBJLCP59WiV5muXvvGY4IMrbe9/DVO1i2S9glqDl6yf70YLhQEANsYAFPaauQo/UETl7wXIgShSUyI1nBAlmz/3NAJMgNfXa+dmjC6RKgSR5zJ8j4QkQdB+LPFf4+fxQGpv8qs28Dt1TDuqbFFzT85jkgXyeUCjexykWT5OvKa3MYThB8/wNJ7LI8HzqWtRjQH+milyv2qXwk83sq3SNKP2RamTi5eqZLwmTGehkX58IQHPLQJEMAqLgclxLaSLEPJDnIBGo9gHTgt4qn4Oe2pTuaXke6k2gXDH1DUbJbWtuA2wriwdOeuDwQKLekJXLnYM5sMN2DERCBgrqXihOkujm+4yy7IBs1kzVtK1As6ZUMyhKHqWNGI8VzJ7SSpV8q64mu0WfIUoXYq4niIpAwC4oi/aG58BXInXHcvm2lekeOgOXXAUgU8ovgNIfe9+jF4x4y+9KBkame43DcKZh+lCAgq+47ObWoz/XJQQney+FB/QYoHce/SODakNGyK4U9D7AN/T8FT+gJzCwRwrCAdNKorkhYzUt51oHkWorXMcuzaiA8ViV3krdE1TpgcBJpeNujzhxVryEaf+L1LTm92m1tRhPKPtjQiv9j9InWWaSMvuGXsL8ez6GMn3GzJ4+Q19R0qn3fK3rVGGOfM0ApFxTkQGea9kPmcGWsvOg1tcKavQImstWI4+l8BH6wLCWXBmBCKjBFeBjV5QIms0EtzRA8mgjXSP5+mAIjiw+R9co6MFDr0fY06YAqBxcU4BUHqgn2Sl7Ig0DZUayam5hiidShAg5pB5GlWStkvJStR3hjxv6GGtdgIrwrMQooC1SGpol2tASYrSIlUaodfEnQgrIA6WlCEBoNCAIHHOoTf6sRC0hDxP8oi4eQrUbEbqKoF5LqMTyFTBXG8pDEzCDEKVjkumrTGLNn+ccqBOVgBgsYldDHEZKRDV9j1FLhucACK3h7zF5ObO/MgOvzMwVj2BEbAxEP7NvhXED6JmsK3oqa1PkrCLQO0lgmgCcTP7U0dILOYxAU5PxS7LW3IHJGpMErGIEnCMTmGWq92Slb3kg87ZVhstNz0Xn56TWGGYfJcD/3weLeTn3jwPwNshL3srZr3kfaCYwH2OSxSbQ+8N1I8AfX+9PeMQQgX+MHstfFGD5r//Gv/ZTX+5f+/X/+ue+b8BXXAoLL9B/zUJagWrNQYLZkTXwHZmQ/lGEXQUsPtewR5xJbq4F6jvKU6Xn/+1RACQH9PU1ExR379Mv1FyK5O/hQG54GAtoK2mUSMzZvXS+agu0bziLXm0on2uuCEb0wL+JAByecrvMjgNbNXFw1T+Ykw8Xz0QJfJEWWH3OxMHmOiagw3U2V4kB21M6lr1Aquf6utd8fX3Lkvb6NkLv5hAaleLZXcftX33OAXh7mdiynvtvDkD/aN7v9oIdcmbHWPwcSjMd86dwXJeagNUPkpyvByD4O8N1COb1gdJFyuyA+oaSuOwfGs4Futdphrvn+jOI6N4QKC1exgJGmut5tnM65qBYOvqH2gv6zHwNDOeM4l+8opdBeJ6L4QG9RLqnNLG54Q2wuaLcyyRZGzvLeC53X2N65XicCro1cPQ5B36Hx3NQUQao7FqjTLBac90X30pgys4MjtnxC9/sOIhur0ICAkxWXLwMWLxKoSeBx+j4uwSUruH1Va8DzJ5pod2bgPaKUic1URaX96/eBHRXAXbBc5Q9ONKyv23xmjKy7Qfz34JiKIpdCOyfSuyeqgLGmjvKA3UPLF956J4gfvHGw3U8z2S/CCKCESlcSBRJI0KqArgO0IfIkJd0zMdTSgLrdUR7GVBtYpkMqfY8F9Uuor4LcB0BY33Ha1KNBBfdVUD3hhK6/oGkZ3AbcfQl5armwGvbtQJ2MXfERQmYJKMkQCAYU0n2t39CX+y0FNi8rwuT2txRXhe0oJduKTCcEhgtXvsE0ihN3b2jKAnsA5q7AGUj6m1Ad+lg9oFVBTYSBKjEnvmI9obXyrQSKanVJ7BLVgsAEIHlSwdlI9rrgObOY1oILF5ZArxbhnhMK5lqJnwKoUnpnQoYVwLd5f/H3pv8WpLl932fM0XEHd+cLzNr7uqq6pYoUxQpWrKpBReGBQPyAPtfMLww4L/AS+8M/wGGJ8LwwtDOgOGtAcMwQEiERVHu7qru6soacn7DnWM6gxe/E3EzuylRBmiQRegCDy/z3XsjTgzvvvM93ylQruIIpqWKQnG4Esal2EcmN7KtyU1Pt5A/QZL2GlBBft4uNbOXfgRqRV5cKdchgy55T3WffWcpUWwC0cDi245oFdNXfpTcDp9TLlcltCeGciXjmL3oCaWMw1dy7qNRTF73+fhi9stFVEwCwBTZH8QIOHUG4igoVp7Z05ZoFO2Jpp8JaJHfd8v0VY8vNeVKxjh9IVLTUGmWX9WQZEFBpeP+o1W0506YxYWmPbOU9x7TxRFUdidWjiUl6gcOuwty/2+FGQOYvuwkLMcIKPRTPbL2uk8ZtMr++5kwc+Vtm+soNIdrR/W6o1z1+fpIeqmwTYpYKIqVJxaK+qrA1pFyJVLL8q7H1mEcS3vu8HOTqyQszYXD7j2mjVQ3HbYOmEZSTomJYttjd3K9+oXFtBG79yLrvO+wjXywuk0rYwJsEwT8KvElAnRLRz+zAlBzAI7N6ae2DrhNT7+0dAs3hmIlDd1pgV21+LmjvG0yMNG4TUex7nCb9sjEqQG0O/nczGMr1lIR0VxPMbVH9xF31xAmFlP3xwAXpegXDnsraXFh5rD7HntfQ0yEqUV3Ic8JpAbDL0vi1I1AymxbdOPpHszEWzgvMAepDjHbRsCVUehDPx5LmBbEyhKWuWprXo7AQrcec7eT/c/LUQqqO4+92cmiV+UEjA4sYuOJlcNuGsy6Rh96/OlEZKVWY19vCbMSfehkv7MSvWsEUGuN3tToTT2G7WAUZnUQgGmPMkq8nIN4Ms2g68geqrrD3GwE8HQ9en0YASdKEQsrgLDtxgAe1Yq8U7UCRvW2FimpMSNTqNoMBrV+62cSBhRFutpJUm5yVsaqlCSzDv7HSSXgb2AwfRBQGQL0Ii/FZ5bRGJTLdR/WCpOo1Fvf3+yVTLu97NNa0pAU+9YcOsi2vZd9Dv8eWMeB0RzGk5NuR4CodAan+Z4deioHgKv126AyCih+8wtj5DljZHt/xte/sJLkXz3+Ujy+14zl4rOH6ff/2/+I68mG23bGwrVcFjue1qfsfMm2K7nZzfjg7J59Lx+S19MthfY0wWFV5OALmmB5cnPO3//4p/wv//Q3WZwdcCYwK3qcCXw4v6MOjj9+8ZhZ1bFvCj65vOGL11f8zUdPWXUTfvHykpN5w8V0z6vdnN988Ix/dvOIwnrmrsMnzdO7E4I3fHh9y8x2NMFyV0+ZFR19MNzvJ3x8eUsXDMui4Y+fvsPj8zVdMKwPE6Zlx9T1PL05pax6Tqc1zgQmtufnzx9wujywq0u0jpQur5ipxO5QURSeWdlRd47eG2ZVR0xwPq059A6nI33UdF7CXCau53Y3xZpI0zpO5jUhKu5eLnGzHm0ixkS0Trx3uuLFdsGyavnmi2uuP77hbjPj4wc3/Oybh5AUJ2d7TiYNjbe8/PYMPfOcLA/c3yxYnu+ZFD03q7lIkmuHqzy+NyidmEw7utYSvMa4QPAG6wLzacNqPcO6wLsXK17vZuzWE1JtuX7/js4b1usp2iSWiwN3r5dS6KgTahJIjeH0esvq2RI970lRMZm39L2h35S4ZSsS6qSwNtB3ln5bcPZwQ9M5VEar3htC0ESvSQeLuzPwgz2hN3Bb4h7v6VuLGhdBE37vmF/u2a8noBPTecthV1JOesKXc/wiok46Yq/lM1on0sGiZz1F5Wm2JebWERYB3WjSWYervEi/7ybMr/bi3S0ixga6VYnZGnjUjuPWv5zgP2iIXqPXjnTekVqRZeuNRT1oCOsiS7iBXqEaw/yDNfUXp/gzCY9SvTBezPw4TlXlCc+tGxOa7V7kzmmaw4u8QnkFpz2pNahOy4r0JKBaA/Oe1MjPk5FIfgC17Ig7CTihiOiNJeYx6ia/NqijfHzYDxAneVwHYVxQEBcee+eILhEnIimHPNHuFH4ZMDtDOOvRWyudmnuNP/eQK17sxhByGFYqkvh49joHiGQWq4qoXPGja0OcBYoXlvBxDc8riKK28OciZ0dBmEXKVxICNaRR+4UwRGkSUbVGd1lCV0v4lsn/D5V4Xc1OGAm/iJhDBlDnPdNfFvhponunw9y5McjLbTT9IpKs9F6GKo2MlPaKUCQWTzT1dRrDWnSraC8Dxb3Bz47BTt2pXBdTa+xeqntMI+NEIT7vrKoYtlNs4XCdRln6IHXvlxEPKhOmAAAgAElEQVTdKdxWpNrSUyjycgnHkNdJKrFs3+0U/WxIdZVgLp1Dr+xBApzKOwmBSgYmL5QoNeZyvpOC7ixQ3hncNqfzFhLslAxj+vDAhLudLBh0pyJrV7nUfii4N60stg1qlWjJHlbprDwmFL+hMslhU0PgzpjUXct5063sU7ors9f6lSgPhrTe8j5xeCzjmb6URZY35aTRMfZ46h7qa1molEU7RrnzoNqxewluGoOshsTfeFxQlGoTkXIPC1nt2TFxedjv5EYWOEwr4UfFSsBqzMc+pLcOyazRqZw2LZ9jEkDzhox2UJD4LIOvM8uck521T3lR6I36nKxgkEXHRHWfOFwKO9oth45aWfwDWdTtc+XNcB7dflhIPKp0+pmwupNbkQ0PCcWTu8DhyrytLLJHebmr5XwN7yk3mWHvjym+ScuCQXMmVSihOEqPu5n0u5pW7ut+Kh7msWYjVxYNPucxRTwxSmsHaTdJEogHOeogww6lVM0M25GQJAEYvpIFiX5mKNaeUIlkeEjKNp1IhU0Tx0WdY2BVfq7NbPle2Pkwkc/sIQ3ctHEM5TJ1lK7MJIsH/cxmyStS2VLI/t3O46eyAGcaP7LOuovCBL8RBBQLYbGHxQqz70UWXJqjiiEi9Ew4nhudvZaDZFzXnjiRRQB96AjLCjK7nJwR36cZdNrqbda6FdaciLC3zhwZ2ZxWi1LH8J/coympuJk1HBJih/oRgCiLZHT9sYbkVxNZB2ZxSJ6FI3MK4rssnPgrtTqC35SOoDNF0hBGBL8mg32T2ZT//hl4JCfQft9TYS9/fJn+wf/4D/7ct/sHv/sHf+HHBt9zYLn87Dp98F/+J0zLjuvpDp80tXes6oqUFB+e3vGzV9fU64oP3rvh6+8uefz4DqcjMSlOq5qfPbtmPmtYrWa40nN9umVie2rv+O7lGbNFw+V8TxcMdefYHUp8aymnPdOqpQ8G7w2l8+zrgqvTHc+en2HKwNXZFq0Sr1dzHpzuePr8jHLW4VzgsCtRJlGWPYebKZOLGt8b+oPDTDzOBbrWMpnK6lPpera7Ca7wHF7NmD/c4b1hWrXsDpUsdDWOciYgrKx6wucL/AeSFqt0ZDbpcDaw2kwpq579tkJb0S+FnQWTOL3asXq6RAVF9WiPMZEQNCFoSbg9GOzGwPs16skE/26Lfl1w8ukddy9OUC5iqx5jEl1rMd9UuK2i/RtiPg87R3na4L+dEa860t5mf6qApgeXG15+cYV7eCD47DOxgRA06WVF8e6e/usZ5r0D/cvJmPQaTwXkoGB2VnPYlqS9RS9kpTzdlqSFp3ju6E+iVM3cW+xHO4LX+FcTmSAsPMW8o389IU0D9sZJDcxVS+wMZmVRjxrCfUmqAvQas+zQTybCaLtE0onJC8Phhx32xuHnAdVr1Lmkxc6+sbTnAj78aWDyraW9jJJgGxS6UYRJ9sKeR5j36FflmN5rGkV3EShuDd3jjuJpQX8qQEBNPCkq7OuCMI2SrHsawEZmPy/oThL9hRgJ3b2hv+rBJMpvZPt2r6g/7HCvnbxPJybfCohrzyKmU/hJZqMm0u9ZbBRNHv/0G8vhw575LxzR5rCa+RuTF5XP0SSgt5bpd5rDb9aYpxV+HiUEqVf0n9S4Lya0V4HytSFU4jtNLlG9khRf3WiqV5rmgTBIg5c1FuJX1u1QzC7AYfZUs38/gILpN4Z+Lr5Pu5MJSX8exN970DkwRuTvm08CySWm31iaq0h5pyk2MsmvH8ofxfnXmsMjkfdVd4rDw0j1WtOfJOxO+iHra1FEgMidTQeHh5HpC/EvhUqeD6X0baIkAGnwJc6/FeakuYR+IUFb0Sb6s4iuNadfwObjDK46xklsyNerWMvkZfd+pFhJEur0RaK5lEl8eyGAsLyH/buJ+deK9WeBxZdGlAfpWOnxZq1PmMjkvbqTdNEwyb5ZK9JvSYpN7N9BkpGRSfzhcWT+tR69rs2FBBAd3knMvpVUX9PKuZOu1sT+XSjvRN5rD9A8kH2VdwKcqtcScjR5raivBDQOIVBJiVQaBdPnWU7fSdLuIBUv76N0kG4Th0eKySs5j0P1je5FYWAPR0m3pG1mIJTl7e0ZJJNE8ZH9gc2FSKWLTWL9iaa8k9dNXokkf/pCJsz1Azj7WWT/SO5fAcgC7nUQkFCtIirA5kN99GUqAWlJi1S9XIm1wO1Equ32osxoTyUFePoy0p6I/N1XAjTCREBOeZ/G61ZfCXNfrrL6ZhdZ/0Ck3LoTFr89zYmvGagdHuoctCTMfXdy7B8FmL0IHC619H8GaE4Vs5cCjg4P9AhUVPaQJq1GoJWMnNNiK+B58LL6qSgbpP83v3cr4EJ8h0d7gsm1Jd0sM+bZGjIkzB4eaObPgkhxcz1TN5MOy8MDzexlYH9tOP1FR33lRpA5+EXdQeTZKCg2kX4uybPlOozpttWdp7lwwjQvNNNXnsMDm1UHIvGsbnt27xSUaxlLe2ayjD1R3ntJpO2PvlO3y75Po7AHYeaTgcWTmu6swNRRejdvepoLCeeZvuw5XDsmryWFdvBZai+JtG7n6eeismjOjChlXvVj2qw9yGfq/pFjchMEnA0y5KmAQdsEmnM3VgRNnzW05yWTlzX796ZMnje0lyXlTUsyin7pcJueWBr8VBQd1V2Hn1jcpqM7K3AbkUeb2kvCrBMw6tYNYeKkSzOHFQF0J5bytiNUwpDZ3ZFVHYJ//Ekp/u0+ECo71r7owUea5b2xNJhdJ8mwrfRKRqsxe5H46rofWWMAfRBfZarEx5lKkdWmSSHfKyeAcVJkYJZGsDn4NfWhIU4rCf4pCwGFZSEsqrMS6jMRj4iqczrspEQ1XZYXi1R3BIwDkHS5HGLwXA6PpmUM1ul7GJjSvn9b3tp3kl7rf33bY2flsA2Tk2T/RbUif4Yk9q+CFPavOrD8XteNhKRpOzmEta2oe8fE9XTe0tQFPw9XAqpc5PV2Bgl2TYkPwgK9Ws8BODQSxpMKz/PbE0DAjNKJw77kaSv7SFETOkNqNa2CENQIfrrOEjvD69UcoiIFxeu7JdoE+trxIi4hKtp9QRsVdBpMou41qtfyfq9RB0O0kWbnUL1mv7fgEgdbklpDb4RZ2N1PUTrRNZbYWMzUk3pNsykhKhqvYZ7Aa7yXSdO6yR8MKtHv5d+h03nFTUFQrO9n6FaYlnotLApBgY3g5bUK6FcF1kI6WKKF1WqGajVqZ+hnmj5Xd0QHzYNI3BTCYgVFezeRft9eCxtVKVSniNHxMp5ga0V3W8mHeK8IpVSGaK9obifYqOjuK0ynCFa8teogQUzawz5NoJPzmu4LYZg6RdwZ8ZI2itQb3EZR30iCq2ny6uKtoz8YYWq8rPArpYh3JTozJ92qEPbIW1kFjwWuE6ohOGFnANReJgG61cLSqALb6DExNBmwazOyFPqgs08YdCf3lW4U1CLZtith40yrJIDIK2EaNZh9niDVWsZZK9w2x8q3Fj879s6ZjUwSSGDWdmRURnnu2kq40K0AumE1vdhooknYKKv9IWhsLXJVYc3k5rBrYdsgr0AfZNVbeuSESfSdkp7QBOpVierBrfTYkcrzUiat9zqDJAmHikaClszWjL5Z0yghH6PsK3qI1uD2Ku8fubYduLWwoqYBlRTJSGouQCyE/XM79ZaXurwxhKlIjd1W4/Y5aCVIvytk9mCV+ypb6bBFSe/qIMcdrvkgb49WtqezH3nspvRQbIRlHXpctf+V59e5IsMr1J0kIPczsNuBWcnfewi9GuXIuodiJXURSYs03O0h1ZC0lrTZBMW9XDO3kUmw9gKyVQITIM7k+E0OHjIduRpCwKPu8z3ls389yLUZgJJuoXqppR8zZPZom0HnXvyZ5UrJtWoTMbO5bpu3Vct5cBu5/+Q52bbbSsqp22ZQVcn2ANgLANBZ5u52aeyPVNmX53Yp13MwVjSY3F2rvVgElB98loPcWu6PaEF1It8eakSG3zt7yAssRlHeCsOVjDCVxTrfb5WA4aTz8+rIaA1fRa4TiS7X0Riyb5HRoztIiO1BgJY7ZC9YHBKLj53HcNym6WUcOuQKqiAdsLoXMK2zJ9JtRUKuPdmPKAsNZLbLHlLuuhTmrNhK9UZSjH2exU4AlHhu1cjY2SaNHk+Q6x8KcO0bxxdE8u1LMypBdCcdoHLswjbq7CEdQPnAcgrTKK8nJWI/pAXLOMvMmo5BYl3CKZHMDnaEYivS5cH+MLCXthZFwVA3QpZJD9dvGONwnVQcEnUjbp9l1+2gBhCQKj2oIsMeak2S1SKTbgTAKS/9kUYrUW34iG2HACM1eubdPkhKa67e0SGOoUVybrK/MuT+UKWw+0AsRBIfqiEQL6FSRGefZrmO2Nrnz0Odr13ut7Ti4QUwjQAYYS1ziqtCQn+G+yfLknUbMEa896qPGCWhPvYQRGYLqBAxvdgydCshMboTFlC1RwDjdlnqnKtMdB+FcOx89opGVB9RXr4b5Nh1ZsfGaqM+jBJfYeBA9f2oFNG7TlhVo1BNFICYeyZVSMIAZiZR9eHIMKYkIT8jqyjVX/iAMpkx7kRmm9pOGMa2E3/nEJAzyGAHkNj18vOBvRy8m0a//Rrk3n/LSzkwjwiTOPSnpjw+6XvNvsyY5EtpqRZR6m32cQjvCUGee9OE96sgU2l+7fEG2FRa/cvaMf9SP/4ypbj+eT++10eWEuh/umB/KCl0kA7HqNlvhbHs+6wDWjv+zjtf41473jlZM6s6zmcHPr1+LWmy9xX6YPA3E85O9vzeD77kd9/7WmosguIHD2756OoOYwMpKopXltmiITyfMp21nCwPnCwOpNpwcbJn/rOC+aIhesXvvPctpgw8vljjXjqur9e4aQ9VQJWBk9MDZq+ZTDoWyxqWOYUmCtiaXR24ul7z6bsvKU8a3KQnzT2mDFxcbpnOW957/4brizWYxPz8ACZhS8/sW41aOXQVUC7y7/6NP4atsK1ouH68olh0FLMOikhx0XB9vZLJZK2YndX81mdP+Nf/xi/44P0b6e2ceMo7hV70UrthEuf/VPFbH34rqbYJAZBlQJ93lPeKky8U5XnN7//oc3St+fDjlzJRmXhSGQWIT0XS+Xd++BX9SWDxeMvses+nv/Ed7qTl8uM7UInLd1coD599+pRYJK4+uCe5xOTRDs46wonnBx++wp21YOUDa/loKz66y1YyaSbS6Th9mbh6/575+xuSSfgTj18Efu93fkp/EohLj2kVk1cK+6AmnvbYnUIve5JLPP7sFe6DPdcf3tHPhc0r7oX9KjZQXB9IVuSVScP7P3pJerfOnldhHcOjlupWJh/JJuwHO+bfQX/h6R56VK9YfnpPqNKYzBmKhHl0AJVwj/cUa4U/Cfgzj3rQCqNaJdxv30tQ0TISH3QsvhXvYDj1Iu/sFPpxjX10oLoFlPRZzj5e47YQPmpI1y3daWL2XADdIDHrzyLpYUvSwnzEKnH1oxuKFVSfrLE7OQfJymTbzxL9MtKdBbqzQPXBVhJzX0TKD7foXhF/UI8AbPHJStjOs4ifJcI00V4Ewse1AMXHDd2l1DFMfrTCn3nK20R3FuivesofbGg+aOlOo3ToPeyZvYj077Ysf+tWJi97iB80wkg5SNctfhFpzxLdUu7l0y8DzYcd8f0aP4H2YU90cPrLIEE300T7yI8MpK9EItgvI/U7IXecMibIJgPzZzGHq0B77UcvqMm1GipAcynvbx572vOEn4mf1u2FAW4vA/0i4ReJ/qOG+l2PrRPtZaQ7STlkKrF/V17vpyKt65bQvtPRnooEs9gmuqVI9pp3evwssf0o0v5GTbmJdOfie2zPI80DqdroZ3D4qKefC5PXXKScsiuT18P7nlDB7mMJI/GVBPO0Z4nuNHF4HOmX0P5GjZ8q2jPpwdz9uKW6jzQPAyrC7kPP4bHUaJhWxr/7gc/nQI7l8DhK3+c+sfswYOpEe57YvQ/1jxuaS+mALDYClLY/FD/v4Lvslor9h37se7SNeLhJwhpHp8aKl36RGc4r8aQPATMDoDhcCziJTmpj9u+K17VcRSY3sg9JO05sPpVjbC6FGWyu5DOgPVUcHgvgOTyUQKhQSh+lpM2KR3T2rMPtE82FMK7D+IcOwcNj2U+/PMphfSWgsr4S5jApCVDTXvyx9ZWiPRE2uJ+KNxSkm3X3QZKxOEW58vQLqarxOVDs8EgqX4bApsNDqa2o7j1+Avt3JHSpX8o4TS3BZOW9p1jJa9xevKLNhXiNd+8IyxutdJI2Z4r2XH7WT1UO6QI/k/N0eCSsa7GNbD9QtKeafir9l36aPZILOcYBbB2uNM2ZxleK9UfHjtvtB5ryvkd3EVuLj1eqRzS792ThdfOBpnzdyNguNM2ZjLs90ZIXcNPl8C/5inkZf/fYcLgyuE0ni4KteNvRMub6wuTgLVmokzEa8ZXONIcHhm6ucetOWFGQfU70mNjanBlsLXLbbm4we+mYlPAgYen6maZbaFQXaU4N0WlUiNhtR7KK9qKgz8Feg5ezOZMOz5QTbFVIRCOKi8OlVJTUVwV+ZjCHni77VHUnHvBQKtpTi9l3tCcGU/fU5xZde7qT7BlNifrSESorfZdTTf3AjWya7jx+YkY2cwhE8hMjPtVXK2JpiVbTnhf4mcVPDLvHBRI2WNCdFJkJzIA7RvR6LyynM2AlYKc7K2Sb25ZQGkJlCbOCMHPEiSNMrbzWmWMIkIY4FXlpmjj8spLJap/DmYyW530gTnL3ZSE3R5iX8vy8JE4LwqIkVY5YFaTCkQonTOR8IjUjQ9DPEMLj7NuBPoU7gsrcnTkCx8LJ660ZfaUYLf+3Jr9UtqmsPb4+RUhRvJ4pSZ1IEg9l8h41dHQaPUpW3wwbGmtN8lcKQZjNFMd//9pXTMevPy3853v2SChi+vP/+svy+F5LYcsP302P/ov/FAD7rMwrKDBo9XUQD090UqMg4T7iz9Bt9ra0apScjVH+lUyKD9cSJBOqYwn5WG2QfUGmZawwGDwo3emxMD7kfrshHMFtZRIFwqSY5o1kUy8TvCFhEeQ4hih8nQNl/MAWNLwVT9/PZWU9OllVb0/lOLplXt3f5tfk7Q2BPUSZIPazDAayd2hIiY2lJJm2Z2oMHRkK26tbSR2dP5E/8KHM6ZyzLJuzsPusZ/65w2YGyO4lvXT0H2VvQixEgtWeqjEIJkzkg/9ND9CwHJKUnDvdDQxN9nkcZBKk/DHFNVm55n4Odifb6BZyvVUSVkMCTyT4p7mSSeDQFzhInIY6geExMEPNuRorAdz+mNoqq7q5xmCTBGg5mby5LAPrluIrQst575cydvE4pSy/EXlbsZZwpXItkqxiLeEx/Uy8Pf1UXvsmS/OmR2s4FqmmUJQrYRUOD7IPykraZ3Omx1CipBkDj6KTa6TyNSHlgvjdG8eyEa/RUB8wVIeESn7HyrVsNzj5WbnOQTetnAPdyaR4kM2FQr4PgUX9TAKGhhTRoQKmvpLwp4GNGCZZ3SLv41S8SCSoryT5sVyncfsq5uN5o2KkX6jMzojsbkiklWChlNM6c/LvoJaKwkSYntFzJZ9HMrY+J9bKvZSvh87+ufxZ8mbgjO5ljH6Si94HtZETRsx0+Vzmqg/bJMp1oF0aTJ9Tc21mNBu5j4dJrqRkpvHYh4UD28Qs2ZOU1OE+TLnU2rTHahFbp3Fs3VxTbI+sinTzpWOarsq+rzyh7mdS4yCMUqJdGKqVyPnUG+drOBfuEOkWcq8MqbyhUFluF3NIjoynupPtDPdwdIrZ847m3Mm579NY9TJMuI+sWhoTSd+svxjYJ6mPOJ43FXNgViKzVfJ7lQyEwQeWr4WKMtZoh8qLY+m9n2rsIdItpY5iYHh9ZonsQWSVSUtw0lBzkZQE6PQLc2STMluXjBrP95t/I4ck2aRFLqj9cD4l6Vf3eeKXqyBCqWVfWWYpn3/ibRu6DqPL4LmLdCcW20g9hWkCYSKsmoopqwOEMTmmh+bzlIOFojn66FT2sA3nelB5DMoIucjCBodSU6w6/NSO99zwGNJjQa7jwGzFsYYCkXfuJUHXT2xmpWV8di8yPr9wuFVLe1nhtgOjFY/zD60IUytJr3a4XvEtL14shkqRHDozyCoh+zY1aIVu/dHb5+Wa6D4QJk5CYnwcX6/7QHQG3XjCzGH2PVhNqCw6A6lB3mkO4vELlYQGERKxsnIcWknoTgZauvWyXR9RdS8BQVqN21O9ePwGvx9WS1JtTpFNNjN7Uc5BckY8gbmSI1ZOkmJnWcrZh3E7wiSGMbwnWS3Js8Ycn88ptqr3xGmJCpKayxBYo7WweaUAOlISkDbeF3n7vT96ETNDmMribSYvSjDPWF0yMIFayzZjHLso6XoBawPYy68jRpLN+4OR0Rw9jH9a0msIsp2hHiTLSsdaEGtHv6PKjPFQF4LWpLZFwm+0gLvBB+n9kXmUN8l3m8OEBn/mMNYhPGd4nTHH54DYtsfOSedgAI4DM/lmgNCw7V/9968+/orVjVz8+Cr9O3/w7/25b/d/+jv/3V/4scH3XAqrbSTtLf/gb//fPPnggt89e0Kpe/5o/QFdMJwUDc/2J3y3OuHDsxWfP3nE1eM7nAlYHfls+Yr/6/mH/LXLl/zh//Fjfvvvfc6X95f8m49+yR/fvcPu9Rln5xvu9xNmk5ab+wUfPbzhy58+5oPPXlDowElZs+tLfvr5u5hFjzcB5wJ//foFT9bnfHr2ms/vHnA6qfny2wd0RcCYyPXplgfTLZ/fPKD+eom5rvGt5dP3X/B6P2N3qOAXM65++yV1byEY5lXL/W5KfTvhBx+/pPGWQ1swLTsWhejp1m3Fy19e0p839OuS2iQuH62530wp5jUTnei8YeY8ISra3lFYT4oaOguFp/n8lMWP77AmYnSkNAEfNX1T0jSOvnZU84762xn7T+QDZf9RJ37RFwtOH21o1lPssqb9ySmP37ulf2w4q2q+fHmJ1hH/csrigzVNXRCjZrk4sK9LiklLu5tQR0VaFzz++DU+atresnq5oDpr6L+ZcfnjG+63U37znaf8oz/5mPnDHbu7KcokHj2858z1fPXikhgUDx7d8vUXD9GnHfG2IM2CsKVPJyz+3mtWO+nR6A4FykTU3+o4rCZUy5bdfYW7saiP9/jeUPx8QvjRgX5VUl7UxKiwNtJ1FvPlhO4qYLaGcNpjZj3pZUWcBdyy5ex8w8v1gvbllFRGzh+u2Tcl3dMZh0cQqwTLnuqLivrTjvfeu+Xp61Mm0479qxn6oNn+KIg8uQzQGIrzBvtP5hze96CgPK/xvSUGhbGRcF+CV9jrA/afzcXLedIzWbTU64py0dJ3luWiZvPFGeGkZ53A3SvCOw2zRUN9KCn+ZMr2Uw8ussu9rqmI2JVl8VVi9RkUn2xonyzgYQsvSlQviyv9mYTazD9csXmxQHWKNA/QaspXltXf8jlUSUJwVAC/TOizhrAqjr/vrSZOA+7Osv7bPews868M6fdW7F7NKF849h9GYc4LYcLNSmS/61nC3Sd270nv6vSpALHD7+9IX8xlYebCi1IgKPRZy/QfT/EzWP8okoqYZdsBd+NYfJVYfyKMpSwaRapXhvYijj2zcelRe4M9aFSfvYiNyinKmtVv9gJCNgaSIpx4yucSIuTnefZpE8Wtxm1FIl1fSf1RMkh37V6Lp1SDoCsJ65k+d/gpHN7z0q2Ze02TgnAi59A0ksx8eDdS3hiaxz1mY0kmoXvD9IVi+3Fg8kzTXoj/lqRoH3r03mAPSsKNpsOinXjxunMob+WYkxWPpdtJT2uYBczegBYZXvVaYw+w+yCge83kpeLmtzUnP1Pc/03xGUcnkuJ+kdDBMPsO9p8pio38LDqp09m/I5J2P5f7TfeWIr8PZAy3v1GKZC3KAli5Sqw+hTJLfyWdmbFLtFzJAh0weiKTFW+qz/UpbpuoH0jw0fSF4nCdUFFWzMo7xfxZpF0q2rMje9idas5+Atv31Vg7M3ktlTuhNFQ3ifYjO4b07N+NzL/VlHdaFlI6AeV3PzaEQnqATXdMYG4uEouvGStrmnM1Ssf72SAhl7oOexgW7WQxp1zJ8djDcdGlX4pSorpVzF5Edg8d3Ykswu0fS4p6dyoLddFCdwbVa5g/h+27hsNjw/wJxEIqleZPI/WVlYWxJrH6oebsC/Ef7t5TzJ7K4qDpRIY6qMbS0Ie5T5TryPpjg9tmZnmQ93cJHttxUWisg8mqgd17cPpz+V3oZ+q4sJHl5qIesFR3Ut/TnuTUXAXz55LqHEpFsXHMXnhWP6zoTiVNvM8e0HKTaBcKV1uikWPWQRZhVp9olk8i7iALMbZJ1OeK6U3EVyXRKKY3XpJojaKfVIRSan9CoWiXinIjEtlhoWKo0CHJOU4K+qkm6YlIb730itomjf2doaiIVmU/aIltE3YfMkMvtpFQKIp9xB4sTfZzdnORxA4VP/YQ6JaSWL34uqF5UI4+UBWHxd5IfWGzrD4xeV5TX88o7jt27y+YvuzpzkrxRLaRfmFx+5B7NIffVwGpIm1O+JmVQJ4sbe1nFt1Fypua5tFcemo7Acl+qseqnCEYyG07urNSWOldh942+Mu5yLdrCepJRo/g2c+sVNXkxYFYaEn61UpqXkAA8rYhlgIwh3CfWDnszQ5/MUN3AT8vKF7tCKcz9L6VRNrcmamHfWdwqDsv9Si53kVva/Fa5rTWgRxKKcFsIttR6ui7NMJEM8npvr1IVUcAO4A2749g8g0AjNbZE5o9GwNjOPglux41nci/U0IP4NcYUtsKWwmkmNnMN6tJnDmG+/zzqkh+5ZH+Rf7M79Ej8s8B0X8FHt9rYDlzHaePN/yT23eJSfEP73+LRdXidOT5/ZJ3L1YANHXBXTWFCC/ulpRlz7Ts+d++++tcXOz44v4Kf+H5w3/2MYvrHf/r//47/I1t8ZoAACAASURBVO7f/ZxvXj7ixgZiVLzaLUmd4RdfPsTUmiffXbI4O/DFLx+hK8+HH7/k6e0J/aFgfrnlH/3kB5h5zxfA7c2CWz0ntZpq2XB4PufWBr77+QOYe6lLKT2zacs3d2ekpNA/mdNeBG63M9p9gS0922+XMulrNd++PsPfVrDo2T0/g7/5kuefP8A9PKDPWrSJ4CJ6bbmrZsTGcr9zIg/ttKRYPujElznrCY1FbS3tJMBJYP3lmaSE5sRPXQRSUqROUzx3NNeacqdopxp3bygv9rR/cgpXgfV3J6QyUH9+im0Uu6Zk+82S2/MO/bRi8ddu2dYzNi8W6EZjDorVoiCVkgibogKvwEU2Tcn2dobaG3RQNGGC6xQvn55RvLD8rHyArjX1L06wEZJJxGvFlz95jOoVGHjSX2G3Gm/Fr4pOhPuS4qB49eUFaRIoXjrSRcBsCg5Lh2403cZiO4U9KNpnUyAzzlliHX85J1SJfhbQWwmxCRNNmAUu/tBy91uaNIlUzxz9xvD1rsC9csxWin6u2b26ENlsl+VoZ4lgrfSori33nz/CniYOywJbizy5cwm31nTXCbs26EuZWLt7CWlQzxbEi8jil5p+CWWeJO/0hPMnkbuZwm0Kuplj/oMN7ecnpFmk/mWFUaCSlcnZQRFflmz3jtkT8ZJWzy3dqYTXNNcCoCcvhQ3cODisJkxvNI0pWTzRhCpPzm8MzQPPdjWluDW4rcjW7F4CS0LpcmKj1PF0JwkiLP7PKc0DiEY8fqFKTJ9J3cJ2bsWT2cD66QK305x8mXh9KR5P00C/kHNla+h6zeJrmVS6vZEqmw723804/VYm4ElZ6WwtoOsrTr4KrD4x2I0mTBTLLzWHR5rJC8X+MSyeJHbvivfT7bIqYC8r87uPIsUzBxrm32TW90RTvU65TzNx9keW3Yfw4B9H9g81u/csbgfTF7D+RCYVbqOzh04YFrdTxFJBC5MXhu4UogflBXjGUl5rmuyL/MJmVlk+M8tVoj1zzL9NvP6dyOlLxfwPFcFJN2F1k/vvyP2qQTF9LgzT5IVMSqfPLbsPJERHe9A5cffs88DmQ4NpzKiuOPkq4CeKdimM7PS5HdNTu6Uw7trD9JmAItOA8jB7Fel/aTOIEInxyS8Tu/fEO1fdqNw7q5h/nfIkVlHeRzYfadn+ae6TbQVgJCsKlPI+oj2sfiisvGmkIklFUQyohLBlDVK9ckvupYTJLwSkhUK2GQrxeC6/SlkFkDj5UsCbzwE6bh9IWibe7TnMv8uVSnee5swyfRU5PNQUOxnD4VoYZrfL1wCRYFY3idnLns17jmInPZumViyeSApuucngoU2QNKZJOC3+P9vA4huRdN79SFOsYfHMs3tomNxGio2Ag+g0/QyWTwKmS/iJpr5QhF4x+47Ri6dDolwJeLj4qQTZzJ4y1uP090dPna0T1SsBcGabmO0i5TqgomX+nUhC+ulEgMm3Hf1cQI66Z2SUh/TSbiYBO7aNcnwbLVVBW0ldre5zpcuJ/Hzo30xKQoe6uWbxtWJy61E+0c9NVnAIYFt8KzUpu0eG5Vc9oSw5+arDNIH2rGDybE99eUKxjaIq0uKZNL0ksU7uI/Yg+9S9orzv6edWJKdZBn3ypVgS5l9uqB/PM6NqmD5tOLxTCYCKSJ1L7akfT4itgDPdK6I1lPeB8rahOysp7lu2H82wh4BbNXRnFTokiq2mvrAUa0/1dMf+4yVuGwiVzqBN0VxIoI1p7NgNCkjw0c2e5tF87BedtZK2qktJVy1vAu1FSfViD8xESptg9u2BfiELgu6+oX0wIRqRKOvMWA9fyQqwdpsOP3PY204Ycp9w9zVJa5rHU/GE5rAcs2tpHs0pb2phZQ+e9rzE1gG7aYmVpbxtRgY4TJz4KZ14L92mlS7PGHGrVvowW6kFSQphYDuxoaAUYeIw+xY/s6guYrYtWI296YiLSjyXTWYmBzC4qUmlRbWeuJxgb3ZyXmNCbxtcH97o7RQgpzI4HatICif+zN6jY4SQmVBAr3ekqkAdmvGaUTjYHY4S2BBJ0wq1F4O4CsKSjkxo25HmU1ht5f0pZjY3+7GdE8azOgYAAaPHUlkrnsmqlLoTY6Rnc/SkhjekrxHl7K/7L0NA5fCg1HtUcVxIfqvC5I3kWAXE5vsvh/2r/Ph+S2Hfey89/M//M9xK/jiEqaR9YhP2tSOWiXTWMfuTShiJhaxeVjeK9lxWk9tzCXZRQeR0h3+tJt2KHGP6THN4L2C3EupRrMULM6QuHt73TL+x+Kl4wWZPDN2ZSDjdVibCYZKoXsuHja3h8DgxfSayND/Pk5rXIjMdUgX9XJIkuxNJNxxCO0wrMtgh8r2fJdxeJkC7DyJXfwSrTxWmVsQyF8CX8l4nn2tjfL3OXZn9Mk9K7oXREDmqTOSiY1zlDpVM+LpTSW7s5/L+5iJx/v8k9u8I83C4ThSbY2ri/lEGBM/F62RrkSBPXmXPy5Ixyr09zQmP9xI7H4osY82r8CJNlDFJQiPs3pNV9GECmgwcHso5jo5RRipJgVnKHGWiFQpJZGyu1DiptPUxKl4KvPM5r2GIvfdTNQZURCfnwu5l0hBKNSYohmqQvMrkqrkQ1sDtRLrq9rKtIUhjkH7aOqcXrlJOC1VjuXhSjIEkh0fCIlV3ecVSSXhKP5OEzvpS5ITzF4H1h5Zik8a491BAcyXArp8q/Ex6ObtlDuPxIu3zM5nsT26ivC4nL0rCpYxFe5nIhUqk0fUDWb0fPF3i0cty1u1RNpiM+DPry2NcvhTCyzUvV8dagEGCPkh6u4WcP92LLy1MpAdTglhkgrt/lIFLZoQEBMk1q+4Du0dmrIAQeasca3sm16m6k2NGC7MxfxalYzJLcqM5+qaGbsVhvAKqFSg5r+6Q5X3Zb2kbSeLs52o8h/WFgOBqdRybrUVmO7lLqJBozkSeShJppaR5Zn/nVGFqkcZGK88PLM1wXlydJIHzVWD72FJsE9Uq0JwZurli8dTTnBqZ7B0im/csi2de5LROPHaml3GU6zjKv6VSwRNKTbsQD5okd0ZhLUtNN1dMbwPtwuTzJb8vSZGljzL53z80nP28lwRKhOnxpTAn3Vz8XEMASrTSTan7yOHaUa7l/cLMvNFLmXtaZWIrTExzrll869m+a5nciR+yvtCU6zTe/6ZPmEbGGQqVA3JSlgcf5bntMrM4c5G8DYmxIr9tac8cvtKjJFXlz5KBzUlaJMb9zBzlqggwUkGu37C/Qf46bH+Q5ps6yqIDwla5vdxzKib6iaZcyWRs/8hS7KT300/ES5iMIlRSr2Aa8TqaxuOnlvbcERxUdxL6Il5Aiz2I/zBaRbIiQbUHkWZGJ1JhP9XYXaA7tdgMNCWwyBMqg1t3tBfl+LlkD4H23GIyeyZsVRorGIauzUE2F3KCqWkCfm5wW5EDS3+nSGmHZNP23I2pqeVtB0bRLZx0XGZ57hAa0y0c0+92+EUpQCNEwsxBglCJV9DuA27T0VxPcgKqnEsA1Ue6k2LsrOwXbmTcJBRIUklJ4GdWZM2blubBFLfNvYldQIVILCx+ZilWrSSVRpFHqhyaY3cd/WmFaXz+nRLJalJK0ksbjz50+LMJuhZZrc4hO4OUNFZOWLcImNxX3Hr8ssIcOpncpyTeRSf7VI0nLErZ15Bg6uMIXEJlpaKjNONzyYq/c2DEVOcFYLW9sHV7kcMqH8efhblUa+iDbEtvG1LhRBbrDPhInBfoxr+9PZPltoV9G6T4CBpJYy0L9O4wPheXU+mmHKSswNDlGBdTAZGdJL6q3pOGrsz8emE3g3RWwiilHV6bqhK92krFh1JHyewwDx96I2M6+h4HmeyQ6Fq4LLHN8trMKhLjW9LX4/HmQKUslwXG18qkcPBdvSG7TQm0gRjkO0j6Kxwls0a2nUIcpa+jxPaNMY2S3SFF9lcf/5JJPG8xld/zVNjzH1+lf/t/+A/+3Lf7P//d/+Yv/Njgew4sl59dp7//B/8+L/ZLpq7j0WTD63bOaXHg6f6Uq8mOgy/46dOHlFXP5XyPM4E+GPZdwemkxqhIHw1PXlzw2Tsv6aOhzV2OMSkmrmdiewrt+ZNnj3l0tiEmReMts6JjXVdMih4FbJqSq/mep3cnXCz3hKjpg2biPKvDBKVyuqECpRKV8/ig2R9KXOFZTFoKE1jXFaXzHNqCwsqHwnY3oSh7rIns9xWPL1fcHyZUzmdvtma3r6gmHW3jKKuepi6wLuCcp2kczgVOZzUxKVa7KSlBWXgKG9jsK2LQFGXP4X7C6dWOfV1QVT1dZ7E2sl9NsJUnAc4Fml3B6fme1fMlxVlDDJoYFNN5S30oCZ1GmcSDyw136xnVpCMlJVUrLypOfnRL2zvqQ8HJ8sBuX2FdoL6f4BYtxiT6zmKdp28tsTWUy5YYNMHLtk9yP+XpxY71WljFatoRo6KrHdrlyUwcPjAh9oZi1qFUInjDcnGg85b9ekIKCnRCrxzpoht7FMvrA11jUS8qzPt7uk1JsWzpa4etevpVJZNBk4Rt1eBOWvpVyeLRlr63+N4Qeo26L6RPMcs16TXohCoipgjwzUTkjUUiDR2SOqFqQyqzJLOIUu1Sekn4zem+etaPHY/Ki4RIeUWcRqpnluaxlzHaCL1GFZI8om0i3hfy2rlH76SvMbmIPhhJ0nWJMIljn2RSCVPrsZMunASpfll43EuHP4mYrZYFnyJhFj0pQtw72X9QmI0lPmhhJ34Xs5fk2zCTJOBUBXRtcuedeDCHnsrheqIgTQPm1hGnEdUK8A/TmOW4Im8l/wwkHbZfyPGZvRGJ5kFLsJNO6EZTrDXdUvxLYSbVKn4pNS+6V3SnInuFI7PoZxHdiizSHjT9MuA2kkDcLxM6gz4gBxvJsbi9GheKSNBehCz9jdi1zv5sWaQZ5Lf5Isgx52Tj6BLmIMccJrIwgRZ/8eAJf7MTc/ArKy+BQ8VKH9M4a0V3LhUkUvUinvVkhXGVSb7UzwwS3zDJIKdRI9M8JMT6KSSbxm2HKiccZ+Dfz2WhxC+SSF+Xst1oU5ZqZjlsr8bU1u5Etu02Uj1i6qO8yM9yl2SWMQ49i/m0jUFRfpb9x4Nnb1CGTXOibQZ0gw/WNEfZpEry/36eFy6yL705l3PrNpKI2s+OMtjBx1ve54W1DP7tXhYkhgW1WIp31jay0Dd8d4fj38BQMnrVh1TWaGShwbTCrhZr8ZYrL/dcUvJa08ii2uSVMK8py0DHbr4ozOQw9uEcmS570nP3Y8wkQ7TixY9WFnqGRNqhImQI/5IMANmnpK9KOvGYXqqOYxgSZ/t5TkLVImE37XGBQEVZUDJv2K5MK37WQeYKWd5cqfH5lM9T0oyZDP1UWM9oFa7OPm6TQX/u42xPpHbEV7B4GmhPNL4cQEiulxkWkeIbEts3chNsK4sX3VyP91a1CjQnJr8ne0phZKG1l3OmvdwXg1ezWgW6uXlr0WTwMg8+9GIfCYU+pgU3kW4hloZyHagvjFStdMdFC7cTz7I95M/AShaWUALYh9yIpGSBI2ko1kEWQI34Yge137DANdTzmEa8uW8uBPi5wTRy0ENdSSiPf1+0F2ZP+i1N9hG/seigc+IsjH5d4tGbO0hgQyWMqN1LCJCMx6P6QJgX2RPs8TOHacLIdCYjf2NVH4mFQffZa5lBfnLZM7vvjr7aNgPdzo+dkwP4JSTxnI7SUGQbRl4zgHnV5/7KfSMe0UGqCsRKQoiG9yTzxvtDBvmDZ/QNMKyGZFoYQTC/ggVG/+fgfXyjw/JNOWvqOgGfKR/LAFSVfitVVj6wwvi+4fGnYpA/o47k+95jef7jq/Rv/ff/4Z/7dv/hv/Ff/4UfG3zPgeX0k0fp4//qP+Zk0tBHjVGJ1WHCYVeibWQ5r9ntK3xrWZwe2LxYjJNbZRLTactuNUXZOAIOvGL5YMfm9Zzl1Y7N7Qwz8cRek6JCmSRgI0/IbRHoD24EByhk0pwUSks6a187JsuG+mYqaakuEndurF4YJzT6CEp0LX4yVUbZX+4npDbgEmbWy5gaI2Xr8/yLpkDtDRjQB02cRJj7cRsoUHcF6bSXuo9cKA/Ih2YVMC8KYpGIiyBjSoDX4o2zCbM3xKsO87IgVLl4epm9hRPpD4yzILUVOTkzVlHAUadJLlG8NvhFnvhakT6iIFUB1cgfPLPX+NMgAGnu0bdunOCHecRuNf2Fx91YARwg4z7x6I1FeUU49eAVbm3ozzzuVqR4SWeWZ5akKmAnk+c4jL+KY09iqBLtVRjBRnsepI6kTGOvo61V9tHlQKgk2x7K3UMl/Yq6VZS3Wgreg0yyqluVQ3vSCCDa85jrGgSkFBuNnybcJm97njIYSMy+Ew/cEHKETmMJ/fSZSNv6ZWTyQv5I+6mkrAr7N/wBlonjMPEcqgiSgyqz5gMwcFth05PO1Q61TJBDmZi+VBweJqrXObhkIhUKdi/HVKyFcfJTAVG6FSXBMLkqV8Jg1ddR6k1skiqTN+wIJr9nUA7UDyOmVRQrYUj95Dgp0528JlTil+vnwwRYftaei7SXxFtAprsMnPxE7pXuFEg5mOtE5Kgq11W0p0cwMZy7wZ9HnhBFK72JfpZBVD6/YZLZ5RsZ65seNZ9DmKIVQGFqcpm6JH1Gc5yo+uo4hlDJ66pbYbijfdtTB8L6F2sZLwjoRMk1FCZ+kCWL1LfY5n34zOiX0J6LvFEl+b/bCQBoLtV4fMPvmJwrUWUIWMlAdi7jGMBcvzgGf1V3aQyMcrs8qd+J784e5NiKtfQ0mk5ATL9QORVWjeFLUqlwvHmGMByiMLq6g/paVCNDxcwQ3hTKHGzkBRwN3YeDF3O4tgPjPYLNyBhOVq7TOMHu5nI8poPmQsK8wkSqFPqForqNtGfi26zuBLgA472s/FEaqr1IiA9XohQwDZnBTzl5UzG5EWXC8PfF7eVctPkcFnthXk0OMfJZYWEaAT6+UlSrQH1m8BNFsRM1TrkVhlZqc6Iknhr5HbX18VjdQeoxurmmOddU90dVQrmOOXBMqkW6pR77PtuleAH9RFQRtslhUL1s17QSjOX2gf21HcOhfKVEltqlERC6WjpuB0AzsLy2jpnxF1VHtAKmin0cg5xs9uQNrK+f6NzLeWTSi7UnVHoMiTKdXG/TCICBrLSZ6sx+C6AbvIl+anBbT7+0mFreIwxqlk32IlEfOlT9RAKUik3Ivj8JeQqFvE/3EV8J6JIANEkqHfZh90GY5SbgK0l3NXXMXtsglRKJEeAPTKRpA/3UjuNzO0+0wnAPTKyfGOwgUUzCUIbKoIMA7VAd96GbIGmrtR9DjmIpYx39jE0Y2VMAU8s+RxltDg8ybcDPXQ6w6oUZ1VIlJbUfAtDGsJ3MzOnuCBolgCjgTyfCSubtqwHgvMEoqj4I89rK+IBjIFEGfao/Mp7JKFQr/sM0KaSv0lmRiuY6kRH8GT0CuIGVFa9mehsU/mmPP2UuLz2d4VcY0TcA4MBswltg763tWTsyk28F7QwP72XcQw3Jm6BvYC6B1HW/XkPyq9v6sx7pT9nH/8fHvwKW//8/9J/9kr+8j5QUP756yXcvz3h9v+Dp8zPqQ8F8WeNcYL2ZMpu2VPOW/h+dsXy4Jd4XpKQIrWH/1Qm6CHBTcnq6Z3m+B2D73ZKzP7ICRKtA2MiSbDnrSK3h8fu3oBIpaPrGCvPTKwgKVQRmJ42wS60mPBdzU/+LBWbZ4Z4XxL0sdadpQLWa6YM9+qAxWyNXxEZOf3jH5Ttr0sFIZ9/LErWzqF6jtwb3xRR1V2C2RsDe2mJvHMUzR5pEkkrwuCG5SPlViWo15S8r3Dclbi01JNV3Dt0qYaA0qFZjXxSExy3aK9ytZfKkoPpG9lPeGapXlnDiKb4p8Fc9aRIIZ57ipR2ZGBUkkCSceLrHnXib1obyhXjOpl9bAUa9hH8Ut9LDp1tF9W0hPry1eDtPfmIpbwyTz0uKO035yuAve05+avDTxPInDj+PhEo8VCpC9U0h5fFFwt5bZk8s/mFH8dqOQSfaQ3flKW81s2/zKnGnsBvD5IVm+TNLca9pHkTCD2vK1wZTK/5f9t7s59Ysv+/6rLWecc/vfMY6dWrq6sHloe04trvdTpxABoUgQQhXXBCJK27h3wCJSYBBIC4REQHLRgkmsePEkd22u9t2ubumU2c+77znZ1xrcfFbz7Pf6rSJhRzZFWVLpXrP3vuZn733+q7vVO058pcGF3tGjwUk5acC2Jp9mVCwCdQHlsFLGSR2fYDjT4TpKu5ZbCpfpumVYv1mQ3nisKknPxUAlp9qkrnGZSKldrHHDqRKorxjpV/TQ3ahWb9b92xAeqXIT6Urc/BCU+57ULKO8tBT3Lbi6b3W5K802ZkiPw3djTEkCyVBJkoYk8FzRTOG7V3b9zaWR076A7fCim1/rMAbz+iZYv2akyCV+456L0gxEXB5+DuK5FrYruGLEBzzVs3gZQi0OZVKis3Dltn3AmDfhN7CjTCW0Ubk19mFgLTtXcvRNyE7C4PiAkZPYfwpjB7LYBwE2BXHAn7yU6losClMP5RtNmM599EW8jPF5IOI5TtWpNcljJ5I5cf0I2FoNq9btrc88SZ0UnasTSqMU7SF5HqX3Ly5K0Cq2hM5/PIdSz32nHyzZf2aVH4kc3mtuOVFPruCwancr9UerN50bO7K/ZSs6JnA4XPp3TO1SLvTuWd7R2o8XCwgJd6E78wIRk891b4A3HLfUx0IQB4/ccJAxZCdSyDT5JGnOPLk58I+VXuy3PQDemlyHDoQVw/lmmRX8t50LlUazRi2x+LVTBee7FLO/eSxo7gVgkQy2b5qYfxUKicGp554KaCyOvBs7ioGZw4bQN72loCn9Frk14NXAnJmHznyc8/ehxLvH23k/MpEike1AiKbgWL1QHH82xXlgTAe1SwwxvviHW5GiuJEBlPtUJJ5IVR3RASZ407CLkmiIgUfvrJUM8X8C4rNLd3XlmxvKfIzR3Es6cb1RDE4lW15DeNnlmqqQs8jfVhNO1CsXpO6jvU9zfq2Jr9wTB5b8ktHtafY3JbqjMPvVNQjkZe6RMDs9ljkyJMnrUii9wRUFoeazS0dQJuwUNVEvsdWdyRZdfKk7VN6r982vcy5Hglbly6lg7EZKNpUkV+58N6IqPLMPm56ljFZOdZ3DV4pVvcNywcRuvEU+5r1Xc3opXxoRy9akrWjzXTPTCYrR7J2VGPF8n7E4Ey8oPHWM3na9AnKydJJd6cXUBkFJiyqPMMXNdVUU+wbolK8knHhRMqcK4p9w/BlxeaWYXsU9f/Hw/pOxOC0IVk5ssuGai/CpiIzTha2Z12Lo0jqNRKRUGfXLcpJ7+XwRUVUONZ3Y0zlKI5FolscRgJIE015YCiOIqr9iPS6QVlPM9LEq5bh867iRFQei4dxsGFotseJ1Ip4CeBJrmt07djcTdEd02c925NUfIzLlmpPpMI+UtRTkT67RAeG0+GMYnssX3D5aUl2VlLtxdhUXm8HBq8V6WVJeRDjYo1LNM00FmBZCxjIX25kmdpRnqRE65p6lpBcbMW/2Mq66llCtBGgaWNNtKqJz7dU+6nUj4zivipEmFSR3JpClqn3s5BkLCyjLhuU88RnK3TZYDY1ZlNLKq8Hl0a0o4Ti3hizqYWRTCOZ0FEhRdeIhFeVEqSjWteDSh8b7DQT9pEg+U0ieX6YoFcFPk9w04HIb+NI2MCbqbFBEtt7JpVCr7eopXxxq7qRFNlSlveR6QG3z0K1SeefhB5Mq6KS8J04km3Ark4keCT7R5f22o+vBYD7qhZQ6V3fQ4lWAii1QqXJLlnWO5TRvTRWxRE00qWpIqlCUUr1/3XvUXEk6zL6//M/jOEH9lx+3h7/EqpG/izVjXyuw3v20i1/7eA7fH3vQ/7B+ZdITMvT1Yz3Dl7w3ugZ/+0HXyONW75+92PObo8B2O5d91LX/I2G2hkOH665KEfsp1s+iI84P52S/s0L3ogbPn15QDwrybKGQdIwPpjTWMN7rz/n/Zcn3NlfsixTJlnFJC355PKAe7M51XjNs/M9GDe8feucJ5M97u/NWe6laOV5Z3ZOpByfrvdZVSmzLxVYp/mZk0/4pU++zP3Jgu88useth5dkUcvVZsCb+xdcFCMGcS0hP5uE6d6Go+GGD5+eMNtfsylS3jm8YlmnfGnvlH/86E3y20tipxl/oeLF831mh2tmcUtiLLGxnK1GHAy3KOX59NkhP/HGYy7vDHn04pB4WGFbwzBtGGUVZRPx9mTJ6mHKzx5/xP/64Y/yVx++z9/L3+NH7j3nohixKDKs09yeLsmjhkhZLooRV5sBqXashgPu3Lrm9GrC3nTD+VMB/VUdUV7l/Bs/9nv8o0dvo4HtA7nWcdZwb7rgDz+4y8mdOVejAW8eXfPo8JA7BwtWZco4q9jWMcsP9/DHFaNxyepshHqtIo8t1UNHFLdEkaNpDO8cXvHx8IgsrxmYXQ9qVcYc7q1oNjmvTVcsy5T5G8JAv3v7jO+q+8QnBctZwsmdOacvZjx47YJlmZJElvPLMQ9OrnmcHKKXEe2DUnpVjcd7+NK9V3zw8pjpZMv1YsjrR9c8fnmArwzbr5bsT7ZcHQ4ZjUt8E1EeRNw6WvDik0PuvPeKNGr55OUhUWypnw2g0dI56WF7IKz78HCLexMmSUNRJZRFzO2jBeeLEeqOo5hnxMNGJkasAuNR2tM8bKkXKfG4Joocq3jI7S+eUbUR69sp20VKNGjZjmPMyhDd33Ay2fCiNNTHiruvXXJanfDejzzi8XyP1SbDXae0ueXsSJFMK5rTHB9pmv2Wwaxg9UaEm7bUBwazVxErz+LtnHvvveLx00NObs+Zr3OabUJ9aBjfWrEcjsF4klnF2U/l6MKTPFyxvhhg1non14w8g5MN12dD9u4umF8P8UXE7PaSuZPr6wAAIABJREFU+ekYm0b4WyVNbfA6pp1YMB5dGMb3l3AfVk8m1DNN8s6C68GE7J05rDLyewWrJxOUVUzfvOb6dAKNIt6rqE5lQkmXivawYXy4YXU9IBk0YDWR8tRZwqufjIgerDFvWdYfT9D3tiKr1wNc6jCFxqYOP2qJhyIl35zloL3IoitNci0TGM1RQ3QV4VKPGzXQaMykYXuWygz4QU06aCg+HmHvlJTrCCJPPK5pNjE2i2kmDnNUsj7PyO+tWC2nuAcFV8MUn1pRTpSG6iCi2RMAEM0N7X5LOitZPx32xe66UjQntcjyspbrYU47lmNqJy3FicEbT/16BfOYempoxo7JR5rtWzXtIMamYPdroosY/YU1V9kQH4lc2R1XuCSjPLGoWU07zLCpoxlrqkNHeilBWJKG62kmMjlhCul9ja809Z2Gq8uU4rZjk8g5TV9FtEPxCTYjT7Nvia9lMkk5YV3jDWwmIidtxz5Ie7vkWJH5icTT0x7X1KsIey4JrvWtFptK+u/qvmZ71+ISQ3koQTteGVZvWsojLZLmrKsMEXXIego2cygnYWGmDEmsUy9VWhZckrJ6wzJ8Zqj2hPVvhw5TKKLCUJwotvcsw08N27sOXcvkUhtAfDsSSbfXntFTTZsblm8JW28TYTqXr+8UENWBDNLLI7k2w+eGzR1PeiVANFmY3h/fjAzzr7SMP4jY3pHJuHZgxKsbwfpWhM1U8Ijvcgk29wz5qe/9pts7Hm+i4LVVZHNZptqH4TNRTLSDLj/B9xUznCQ0I5mIageRMOfzXWdpPQavMjZ3RX4t+Q2ewUtDNQXdJFIZVBqWD2H4HKqxAOhmIBMNXsmkULkfFBqZyEOrqWJzImms5SHoNqIeKfARqwcK0xjaVFFPZL9Xr0GbphTHWuqyMgU+Fn/2WDF8Kce4OYmCN11AfXsYUc4EkNtUsb6r8ToWP/u5E196LEFo2xMBouVM+j6jrccdalyiSOeGcl+jWshiBVpAzPZAQEh+7Sinkg6bLgRIr+7GUosUWNdqlhFvPTYbin91ElPsGZTNQyfmmGLfkF9ZVncN6dIDCeW+IS5Ehum1otwzZFdQzQwuHsj1aiUFt0t1rvYEZDejTCS8zuNHEShFFEsXaCeP7kBvtReFyidFvIyxuUwWJAuPSw3OJLJMYEFtatCRpjpMGDwvpNsy1agmwg5idG2l3qW2+FjjoxntQBJlvRlSHmXkrwphNQMAVZXGZTFqkEptWmIwC8DoIKFNsZMMvb5RkeI9vhYfKk2LH2ZQNf3fPgQC+SQWL23nzewqV7QSdVjHaJouejkwiMN8FxgUgKpsWKThaC3gNPgo0WbXXWkdqvNOxjE0zS6Y5waAVezYR5UkP1Aqe/OhguT5Xz/+bD8+11LY0Tu3/Nv/2d8hj1uWZUpsLEZ7vFeUTYRWHqMd2zIhSVpJNfWKttU4p/pZAwUMBhWr+YDBpGSUVWRRy4urCXFsaRpDW0fglHjwFKjIYSKHC16vJGupCjH3e6vFPzZoiZOWcpUSZS3tJiadllTLFJU4/DaSgVqrUZETqWsVJKvrGEYNvjbipcsamlWKSi1Ke7xVDMYVm6tcPHNeQa1RgxZfGVRi8W2Q54KAhw5AxA5fRPKaC8+VIlEldlL9kIjBnUb1fhuMeNw6bZbaRKhZDWcpbmRFxtt5AhstVQipFzlnFmbzKg3TRmTFW4PXsk5VK3zm0GuDTz0+s7K/Ohxb97eiT4xVhcGPWvEXetV7aZRTqEpkuz4XT6IuFHYkM9gSwqNQjbxH1wqX7bx1PpG/+/cYdn2D3bkOBhddi/fQazlOZRV2ZGUA6ulTfDtGsevDc6nHbERm28kGdS1+OV3KwMQNHPE8VHuEcCpd6tAh2XncQLeqT7NUTiSpupFaDbMOMpTIyzbXOkicwvK16l/vzocwuiFIZ+RIrmRw1PW4SmfazutmE7+T1Hp6v5eLkM+KD2mbbvd655PsWM9oEwbQeiejjDZKArhUWI8V5jNeyXnzCqIgM+7U5D4cW7SVGgxTyQDNJUGaWYRjDCFO0ger8LEAUeXEp9id8667U4X0U5f4IBsOvrFwvqMwABUWT0CVS4UtUg1o20lyZRu6kvXagSeZd2X1YX+Dd6m7V13aVX2EU3wjyEjZIGkN+9vVKqhwv3brcrHIO+UDEu5nFTxmCqpDCQzrvFDS1xiknnVYR7TzSvlItiGdobKOju3s+li7dYjvSzatG3lPJ6ntZJ7CLAVQZHaST2dECtzJxvtr0vUJh3u+kw3rdsce+3COTCXb6STRvS/XCMPdBZEpvztnnby1k592UlcBzbsQtJvnqwuZ6u/zzqta78KqenlwCPrqzp+cG9/7Ebv6i44Bc/ENHyhBJmlDd2mwEXTdlS6S8Lautxa6z5N8fzbDHcOqvLyvGUlAWBd21t17aHrVhW7COUe2q6wPx/fZ+7WTaNtkd/9191oXkkb4TJtK9q37fuiuo/q+cWV3X6jg+wR6+a10mErIVbwN51oHr2NEHzjV1W24SLyX3bnqezHZXcM2VaShqqTrA24zkbO6KCxnhQHt/LrOiBfSGT7TWdrJKrUN79Uq3Mey3psezG7fTfBUtpnaeYO7+zZcI1O7sP+EFFq/+35AtqPsrs/UpapncOO1DSmuYZkAFnr5Zzj/Lgn3RRgDdN2n3XF116DzMfcaOIdUhzT+hr9Z1ALtwGBKu/NhQi+x1N0xdfcf3e+ukm5YJdJXm5ndsnTXzn9mnVJ1Eo7x5v0UmLiud1QHaas3OgT2+f68qMpCpPtOUfFsBm+nQsBjF3gTPME+0qGSJHQph+fxHq9Dt2c3pgJhPm+8v2M+UUoAVidfNVoCfLq+S612LOTN3subj676A+R4u/d02/h+qe/Nv7+vu/MHSm27upIuTMf5f95X+Uct33k8/7gY5IZk9vPeY7n37rH/i//jv/snvt6/+zP/zZ/6scHnnLFsmoj9QcGzqxn182EfTqAsuMOa5HEq6YyzFjuPaEeW5FokjaobjOUeH3tWqfTulRcx+sWUxQjsviM+02Rl8BUdOhnoxo7kaYZLPNlSQg9s5okUUk1xIIEXysYStDCBZJmwfLdBf3tMZuhDLJSL+jAFrwLgKCOqPU90kREVnY8nRY9AuZh66hi+1Og6Y5SK/ylZirwv/SgKnpuYzQNLci2Jtt2ALF6Jl8p0nqzkxqDNyHo2dz26NgxO5QuzG9S0mQxAm5klfx5R3G8Y/F7O5p2a/d+MWd+XDrvRI/Gm2RT4yorq1YDRxxHZpcjXkg9Tlm86Rp9q6j2I1sggMjIMXnmuvwLDjxKaAQy6YAkDq4eOvfcVy4cwfmzY3IXJNxNWD8QH1gxlX2cfOsp98RbGazHn11NF8rF4j1wiA9v1Fyv2fyOhHSjqmeyHj8SftrmjiFfit2pGnskjmRlevWU5+XUojoxIDk8Ug1ewvq+pZ+KBbKwBBZOPpcZCBpIyWGgHis1dT3YtKbooxeauY/RYAF96pbn46Zbsaczge7K/g1fSv5jMZb0ugeGHsH5NtrF8Q5EtxGeWrGQbxaEi/USzeghRoRi8gPnPVqRPc0wpUkqbhEG7g+VDLamha0l9XT2QUI9kpSiOFOsHjvRc9+nC3ogscflQAmpGTyPGTy0XP2SYfOK5/rJ8FnAyc1/NlKTOTkWeN3rpWL4mctPbv6bY3FJy792We27/u5ardw2DU0mA7fxyXmuKE0kirkeK8gCO3pcB2MWPeg6+rVBO9V7HeiyyxvEjz+ILIhs1FVx9BdKFYu9Dy/I1AyVMH4l3rB5LqMjlDwuLsf8HMkhdvaaYvC/ded0AePRMQOjyzeCPNAAhFbeTTQ6kZiKZywCwDfdpsoDRdz3XX5BB6vQjCaNxkfT82USJ7G+iqaciWwV5n/K7AX9+Jb6p7ZGk67aZojhW6FL8k3GorHCxgIrxM8vmliFei4RUNzB8qpg+aoT5GCoGp5brLxhOfqvm6t2Ewbl05m1vh/tiKVJK5UWmWU005aF0MeaX8lq88WxPpPYBD+Onth9U21QxfNmwfD3GpiIJza4ti9djRi8t128bDv6gpR1oin2FS4SdmH3asngjYvjSURxrpp+0FPuG7S3F/nel7uTg9xuKg4jhy5rl6wnxNgTQKMgvBRhUU6kaqfYUt/9ZyfKBJIEXh3J8LobJY8vmWOwJXUKxhKzId1KbC5huB3J8fRCMhsmnNS7RbE4iNncUUSnXtBmIhHb8tGXxZszk05btkWH8tGbxRsLohSO9ali8mZBfigzRpuJl3B5rAUWNpGbrBg5/rxbfXfAO1iOR8A7OW1b3YvIrS7EvwSz1UPoPZx9V1NOI9R1DfuYoZxpTeLK5DPSqyc4b6GKRwcaLhu3tlGaoaQZyr6CgmkqK7eBMehfXtyOageLwDwqWr2W0uSRK52c1mzsp2aV09C0fRIxeWLZHcu2Of6ehOBB53/77W+r9hGhjwzmMya9a2kyTXTbYzOAixea2Ye+7Zc9CTT5pqA4yikPD5JMSlxhsLv5pXYduxFWLbj3lYYyLFMPThjbX6FqCa+qJdFTuPyqYv50Hz6hcs3Ql4TqzjwqacUy8rLn+woDRy5Z4JfulW0d5IDMbydphCgFwnQ+xGUehJiShOIgYPa9pRobhs4rlGznTj7e42FCcJH3P3ejxluogQzmP2bZE85L2IGd7nDA4qykOE/JTqcOQxFZLtG2ppwnZ2RaXxaxeyxg/Lqj2U/J5TTOIyE8LaB2b10cMn6ypDnN8It/ZphZJbnZWYQcRzdiQXjbkTwuUtZT3p+LdLGzvz4wvNzRHQ5Gvblpc8HqqELoTXW/xSURypSjuDsmfbyhuD8mfrqhuDUnPt1QnQ1TrSV+tqG6PiTYNZlnitaY5HBDPS5r9jPiqxA5jolWFHSSYokGtC+zhGBcbdNWK7NUhYTatQxUV7eEYM5dKjuZoRDQv8bmwlC7WZE8XImONNHqxhVjYThUbqQNxrmf+/DBDL7f4NBbWcS1gR0WGPhE1idDXG9x0CN6jV1v8IEUvNuKhLGt8nkrf5ChHr7ay/qbFl5XIP+NYPI7DXKStSbxjGUOlB9biRwOpFvFe/q4aaAvIM5HGlqGHMk2EudQaXzf0oTs96AwALolRWuPLauetBFQsrKkvS0hT8E7WA6go6utFsFb23VrxV3aM5R/BRv6Rj39Feiu///FnSbr6J/34XDOWky+c+J/7hb9F7Qwn+YrzcsQkLjktxmybmLdn5zzfzKjaiNoaWqs5GG4ZxyV7ScGTzR4az9PrGcVVzk99+SN++9l9rNUY49ifbGit4f7kmsRY3j8/YbPKMLElzxrGmXxQiyZivc2YjgoSY3l1OWU62RAbh/OKbZWQxg2L1QC8Ih9UPXMaRQ6lPLERT6gxjum4YJjUvLiakKYtTWPwXlFvYyZ7W1aPpxy8ecX1Ykia1UTGYZ2m2AQfxLCmaQz1Nma8t2V1McTkFpQniixNFZHmXdqrJY4tbWsolynZpMJaRbNMMcNWgo40qDCt7s4k/dTl4cshFWZxsFfQNAb3bIC+t5VE18ZgK0P+cUrxRk06qmjqCH+V4BPP8HhD8WRMem8tz3uF1g73PMdOJDjILCLU7ZJ2LdJLOwzb1R6Mx1yL9E8fVLjawDpC78kXvC2NBBlNWkxiaZeJBBoNHMSO+CzG3i9Rr1LwCpc6/NCijId16FbKhYmNxg3tNiI+j/EPCpxTuELeY4YNvMhkP2pF/lKzvefChIHC3qrwQXZoFhE+8iRzTT0TuZkC3P0S1ypYSoemN8Im2JHFrA0u8cRzjUuFLfRG/JXF6zV6FeFS189oK6vwqSN7HlPPXD8Ln51qtvdblBdGN7vQbF8TCnX8QcT6dUkiRQtD1gSJn0uEXbQDR7TWNDNJRq0PLPHCYLaKduR7mWHXu6i8hNjo4M1Mr6E8kHCddmKJloaoVJS3Wulh3Ircyw66GglhHbNzjUtkuY4JbYcStNOxQl1Ikikl2Mim4fVIGEMfCXhafMERFRL004x8kMyGlNJUmIt4GRJLSwEE1X7oCl2qXQLuIMgLB7JMfqooDyTYSHnYvN6SP436apB2KExqslASzNPuaoWacfCSevrk2O43x+ae/FTv0kgb2N6WbUZb9RmGN7sQP2NXV6HbHVsswSqyTheFjs+1LO9i8bBWe8K8JkvxUpoCykPfM1XJXM6nKQVoFccyCG0HArDkQggraAq55+INVFNJOW27EKHAErZDCXmKSpl46IJ+OmbUZvRBNqaSCYauCqiXVQ7kuLoqpi7VVDcC0rv9UmE/O/CXLDrG0PdeJRRMHrfM34okfXUTmMom3M8hYbIZSXAQIIFBpQ9JnYF1sTKBYoruvAuLZTNFfiHBItsTmcCpx4p04WUiaB4YDgWDM0kbtYkwSV36qgvJrd7IsTVDYZWUkyTa/CywiNUNlr6EZOMp9qXmQoX00HjjqWYCsLuKIxfJxE/PHpruOoivNZtLXU33Pm3lXisP5HjirRzr5raWyZFU9ddU2zDRVvge7OsW8kvL9tD0rORNVs5HkF1LZ6e2niaXEJ8OsDZD3Xe0dgx7dh2eD0m6yUr+3QUbdexfx/pGpWN7ILJLr0MAEdAMNfHWha5S31e72BCe04wN8cZSzmTfdXMj8OggkkTbKtxf3tMMNMna9RUyLlYCahv5Po8KR5tLmmh61dAODcmypZrFpPOGehrRBet0ya420X3AjG7ke8EmOiQe74KrTOn69zUj0y/rYkV2Kes2pUPXDpsL5ZksG6pZTFRIeIyPZALDpor0uhVAGepmgD6IKCoszTgW9jFWxMuGei/BJYo20yRLS7SV5eJlTXWQkSyl79PUsp/NMCKZ1+KntF58mt5jBxG6EeZS1xLak8wrbB71bCYIO9cOJB3dbMVr3Uxi4uWOxhcWV5jPaFVJum0WidKituK9HEZE6wZvNNGqCt/JMbqx6FVJezCU87ttgqS16atbfBKhyhZlrVSf3KgG8UbJ641FbSsJ9WlCmI4PrGeoRlGBpVRFJT7LpsXn6Q5cdswmfIZlFOZZuiuV8/hUAGlfcWKtAMwbFSSfqRu5EbzTg0StoJLxlW/Csj172sp90rYCiMPzvgkJt99fQ/IDHn8sPOL8vxKM5c/9D3/rT3y9//vX/us/9WODzzmwzN6863/mF/42rdM8fnlAlLS0dYTSnjhpaVuDnSfcenjJ2eWEOGmprnIZeEdB6hmkoum4olqmEsCTOthEpMdbyqsMXRiilaI+CBURxqOWu7zvaKNo9i16q0VmN7CSotqITNKsxYvi98OsznWMSx26lvfYWYsqJcBGWZHi6UZ8QFK/gEhGFahGsf/OFcvfPZCB/dyIlHCtsIMAAIYip7T7DThFdBmLdLGVxMtkqWlGDpdIXYSkTYrUL9rC5oFFNUqqBYJc0sU+eH0gub2hPh+g9yrsPAENw0cR1b6nnVrS0wibi8SPry7YXgxIziKySwmCqafC/MYLjXpnTX06QJcCaOKlpn67QL/IRJrnxcPTJTHqCuqTluxFTDN2wtoYT3IlPjOXeAYv5ZzVY7+TkKkgo1xLhYSpFM3Mkp5FJEvY3naoVhEVimgD6y/W5I8S2oGnnTqylyJJLe61jB5F2FgGnvVMBnjVvqeZWKK1+MbsrCV7mqBDGIYppQO0S4v1RsCWKaW2Ir2S6wCwfdCSnkYiXdTCdFV7AmZwgXleSxdqvNrJGKOtDCTbkQyEXRwAWBHSKH9sjvvNWQ9Getmkg819F6SNArqqAwkQ6gaFfYptJOE221vSsdoMobzbkL6KSefCqiVLJV4rI5LQZKF6hq7aE2CgWxkUb19r2fuOoTiW/a/2BNDFa6gOdsDLVAHwzEQGnJ+FBNgAalwExW3L4IUJ0i+5X2wnN72WQKHRE5ES9+s5FaAHsn/tUO6VauZ7mfL4U0mOLPcV8Ub2u5NNRoUApc196cV1sYCRwcvQTZsKsK0OHJNPZBDcyyrDte0CbOJVUAgE1txm4neyiXSlogRcD58LY9z1tJowwN8eK0bPBaR0susOeHcy1WYk6bgu2tVgwC4FVt4jIKGahU7Ziep7X5uJVGi4EFDU5gGkhc5SXQu724zUZ+SgAMNXjnoUpHtRSBmNAiPtIV6FJFgr98nglYAUH+R2Lpb3lAeiJrC5nKc6BM1kl57tbcX4iaM4Cl6yqe7TQFGQn8trUunhe0WIi+VzUE8Uycr3jLfXkKw91VTOU7WnyC538mwQgIAXxYDUXnjSpcfGUBzpPtQsnfteKpusPKvXNPmp7+WcHfjqPIPdvzvZbTtQvazQprLM8KX7TCJqm+0mC2wioLUZBvBrd2BRWyj35fqC1H0ky9BJGxjMjhXPrp2k+k4NLsiq8ytHM9glqkZlqA0ZC/DILxz1eDdZEJUSwmOC3LY40AzOLDZRbE+0sNlGUc4Uo5e2l0N28tfufJja99LrNtN9DYcpBcR4o6gmmvwiJJUORN5oGs/2UPehQl0PabKSeowuVdUm8v5kZdkeRX3oD8j5dDEMT1uK/Yj8sqXcN6RzJ764IEsFuR7d/dPVh0jNjEhJde2pZoZkHeSYrZzfZGmlTmMo/j9vBMx2AFQ5BFgZRTMymMr1UugeLLciCbWJ7sFZMwy9piosH/oktfWU+zHpdUs9C92LzhNtHfXEkF00lAcSLqQ84DzJvKIdJ7SZId62tLmwvNlZRT1LgsTZ9ZNjXbBQvG776ox2GGEC25ksauqpBPY0Ywk0irYN9TSRTk/PZ+o8bGoC8DOYQkKRXGrQAVR2abOqlU7Vdpxiiia8FmPWNT41uEhjyhasp52lwghvmn6iSVdt371pB6En82bYjVISxpMnu6fKRv7duh5IemP+OemrqkN4T9PuGMguxCcyUDfSh5kIO9j3YZaVMJ2BIRSQKkmxPk9RZS3bzFNhLJ3Dp7J/alsK0EtiYT5vSmLDuj4jWVVKgGMj2+o6KFWoPPFliUoSAZhtKwyElmPq+yw7oGqteD6V+mxIkPf4Tqp7MzH2X8BSft6B5ezdY/+NX/j3/sTX+398/b/6Uz82+JwDyztfnvm//j//W+SmweDQynMYrxnomj/c3uYkWfKs3GPRZCTa0nrN0NRo5XFecV6NGEUVpY3YtgnrOuXHj55wHK/4/dUdlk3GF8annNcjTrcTKhsRG8u2idnLChLd0nqDxjOIaj5ZHHA8XJOZhstyyEG24a3hOf/0/A1GScVlMeBksGbVpJ+hwa3TDOIa6zVFE3NntOCyHLKXbnm5mRBrR2pa1k1CrB2bOsFoxxf3T/l4cYjzinvjOZ8u9kmMxXrF3dGC710cc3e64GI7xGhhNRNjqdqIPG4ompgkaom143IzIE8aBnHDq/mYKHLkSUNkLFp5sqjlYj1kkNZcLoZMRyXXywFvnlzwwZMT3rh/zvl6iAL2h1uuNgOKQr7QxqOCuo2Y5CWvLqbcP77mepsTGUtsHFUTYb1if1CwKDI225Rb+0s2dZBcBG/s/HzE3XtXXG9yhlnNYp3zxVunPF1OiY1juZV8/r3RlsvlkChyjPOS1hqulwPyvMZaTRxZrNNs5jmT/Q11E+E9TIYl81VOmraURYLSDtsa+X6NxaPb1oZssPtSa1tDljYUZUxTxAwmpTC31hAnLUp5yk2CbzSHt5asi5TyIifZL2mqCBM52k2MGTZoJf7gdhMTj2qadYIZtLhWif/WK+K8oa0NOkip80HFdi0yPm+19HYqj2s1w3HJ+nQEHrLDgvr5EDdpUcYRJRbb6t2ARIPdRqjESkXOMoXYMZyWbC4G4sGNPGbaYFcxg6MNVRVjlwmqVjCTAYAvDeleSX06AKekh3LQynHWpvcMp8OauhL2Wh/UuMsE37Hg2hPlLfYqxedWvLiRh0x+gPR16Bh1SvpG92t8q9GLCI4rGaRvI8y4wa5j9NrgJq0wu6H2JrqOsCPXB+CgQE1qYaGDV1iVRhjavRai0COayf6IT1LRzuQ1at1X2qhKgwGvPGpgYR31XtebtSkopBfzXH5o6yOZSOp8ld4E0GE8ZikSfpdKcEvvS44kcAYbujq762mVhNRMpNeT4OFVLTR7YcJKg6mVpPYOxRutKyXXLfYymXZkyV5Fn5mI8sZLvdBCkhM7plo3qk9dlokcR7TVqAbQMrGja9V7IXuvbfDzukT8s+VJS/4iohn53hvZ+Vx9LPvoQ0WRD2C277hsoZ458eEG1ro7LgFkoVuzgmYqEw7FiUw0dQnCdEqDzPeTa67LzFDBhxu82Tt/JL2XtHuv11JHFK8EiDejEP7TvVYGmetKJoOitYDlLg3ZdX2WEbseSbWrjXGRLGcTYcpvepvrqSe7UrSZsLRd56Q3od6nlUmSzhvbDtl5VG/4asVXFyZRwnZNsevflGCc4F1FJv4AXCosuDBo9B2q3USfKQXwRlsBMtWe2Bm8ksmPqKQHTLoO5yf0fHa2EWUDc13vGO5ozQ7k+Z1vtZukk3MvkwqyLbUDftAzgi6RSYg2uwEWc/Fwtjm9ry5ddvJmFbx3u+vU+XF1EyYC2KkLlAsTMLnqfcFRIeekqzLCi4ezCZL6bj+6SaOoELAOYfKy9v2kROd7bDMB/VHhqMe6DzFKVi5IqEUq33V+dpObMjkhvZXJxvUAv7OlRIUP1o4AyEP3ZectNXXol/Q32O9wf0lqr5XgqcJJ2u0mVK0UcpB97QoygdB5Sr1SRIWVKpdwrUwpkunOU2oqF/b/xu+bD6x7WKfrPZv0MmWvEEa07tg/drUjracdRqG7MqgCSqn/6JbtvZ3+pgqiOwdSQeKSCF23wm7eYCj7fsvYSOIs9FUv4udUslxXbwK7SpOOpexAqfc7T6YOvsyO2QygtV9GKWEw4QcwliJhJo526+w6NJ37LOi82VN5sw7lBhD3Xb3JHxHQ0wPPH/D4fpziq+oHvu+P8/ga+FNwAAAgAElEQVTXwPJf/uNz7bG8XI355i/8CNfvOeKjgqaKODlacPbdI9JLTfbnLil+50AYhQcto08j6q+uZWBuPHcP5/zeR/dQxnP0/ySc/3zFL//2CdmX51R1hP9gxEfvHPIjd59zth5R/u6+SKs8vLxvUXs1fpnIACdxmJVh8SAn+adj1vcdT28X3Hp7yZMPT5jeW2B/dZ9vv3MAxhNdCoO3fqth8n7M4i9cszwbMfoo5vkbh5A4pt9K2P7UhrY2DMYVzfsTmokjvTC07275J4sh1mrcOuZ5sk98FtMOHBh4Odzj1v8V870/Nw1dmYrB/RWVdixPR8RT+XVua4MvIqKFYT22qGHLwT9KKQ8Vl69Z8jtrtudDSBzxaQynir1LT/nvNBz9YsaHP3OX2fuG870hxfdmTD6GT398hKo1h9/UIeAgZ/2e4sXxkOxZzONGc/SrCedfazALkffoRvE0n3Lw9iXxd4Y8/5LGXyeSinmrwlvN3m/HvKiOOPwtzeKvbhj86ojv/pwn/7Uxp+81JKcy0H1xNIDUwbOYV8dDVN6SfZCxPcg4+U0oZ4riAbzxf9c8/g8z7Dpi+vsxth7h3vFsUk98rbG55/6vWMoDw9mfT4ivNfuPYPvXa/y3phRvVCQvElZ3a8a/mzJdecr9lKPHlvy84eP/IOX4H8U0X4LBqaLYj7Efjnjz71ec//CINPhQX/vNihdfG4ik7H7D0a9HbO7E7D9xLB/GFA9rZr+ThBCQmNnHDU//UszBdzyn34h4+39qePxXRA9m3yxwVymjRwbdZBxsPYt3oFmPuP8PW9Z3YuZf9LQRzL6rmH9J5L+Hvx6zuasYPYk4/4Zm8gcxxS1PdZbw4FdbdGu5/GKCthE2Bf/xFPuw5fifGaYfbnn280OKhzV3fsXw8usD3v5ftlSHGcVBxPYkJr2WMvbtHcvoD2Pan64YfDvn3t+/5oP/JGPwwlDta279hpMo/v94i/mljPk7MdmFCkFAEfVEqj+ufiwmXmhu/4bl6V+OUQqOfwtWr+W0Q+kdVc9y8pVi/NizfCPhzj+uePKXE7yBe/+wYXscc/1lzfCp+AHPv6FRhWH4TKpZHvxyhUs0p19NKG5b7v8Dz/Ofizj+TRi+qigOEy5+WDzSr/+fa1799Jjhs5jhK8vzv+yYfSemnkSMnzr2fn/B1XtT8suWZN5IyubDhPkXNA9+eYvXissfypl+0rC5HbN8qPHa0w49h99SrO8qHvy9C+wo5dnPj6mnwgzjYfvAk51F3Pm1ihdfTzEl7H1gBfxYmL8pg7DZx5aocHz6bysmHykGF47hsy3r1wa0meb8JxzDJ5pk5Vm+qbj/KxWP/yPH8S/C2Y9H5Kee2Yc1mzsJmzsxo2cyqK5nmr3vtQw/XnLxE3ss34DJI0lvnH3SYkpP/mTB4795CMigefzE8uIveB7+XUszkZ+hi/cMsw8cV7Hh6FstT/4aTD6IOPx2RTM25KclT39+xPCFSE2HLx3X72rGn3qmnxS8+HrO7CPH1ZcM40eeq/dg9oF0H04fNbQD8aFqKz7D+Zspg/OW5yeak99ytKli77fPOf/aMflly+lPGPY+tKFkXpFfis9vc2KYPpJO4HagGTwvWb+WS09h4WjGhqsvCrq+9RsV+ccX2MMJlz80Il1aJt8649N//zazDy3ztwyHv9/w/OciTn6rZXsUsXwDXv+751z85GEPLuKN+PWirbA6+ceXADz/G7clNKaQ36Wjb20oTjI2tzSzDyuWryeMnzZ4o0jmNZt7OZdf1gxfeo5+a8H5V6cc/+or/Chn/qUJ9UgxemFl8J5qBh9ecvnnT1i9JnUx42cV8eWWZ//mPqaC0XNLet1y+ZWUwZlj9LjADiKe/nzC8Tdrso/PWPzEHVZ35V6YvxGRrDyH37zm+r0ZB//4OSjF+TfucvDtBT42nP7kmPzCUe7JcSUrR/TI4VJFsWdwCQzOHOM/uOD8a8d9sJhNFMMzy+B5yfmPDjGVZ3BpSRYtxVHSV8Qka8/wWYE3muI4Ib1u2dwRz+XgvCVet5T7CcMna8zVuu8/LN44IHu55vRn9jn6zpqL94Yc/JOXuMmAyx+ZhXAexeRJKeFMmRHGsRYGsh4bRo8Llm/kzN5foZ+8ZPlzbzN4UbJ8M2f/N885+/oxgwvL6LtXuFGKOVtw8Rfus/+dBXYQUx2kbG4ZRo9r4nlJvZeRPV1QPNxDN47se69o7h9SHabkLzas3hyjnGf0Tz6m+uHXSZ/OWX/xgPG3X7H46m1AMfndV8x//Bajx1v0uoTW4qYD9HxDc3dGNC/Riw3trRnLhwNcpBh/b45PTQ9QvNFc/tCI6Xc26GVBc2tM/GJBczIhWpa0k4zNvQxVixR8+L1zNu8eMXz/FRffuMfs1x+zfe+e3Ndas31rn8GjOXaa404yqVV6/4zyjUPSx1esv3LE6IM57TQnfvSK4iv3UB6S0w3q/AoOZjQHQ5F+Nw7l4eK9nONvFtjUoBJD+nKJHWdEL6+hafDbAvWVhwIei4b2IKfrE41WFWZdCwvZOuwkJXp2SXP/ELOpUNsKNxui5xvcdEB0tRbWcFPg9saoZ6egNGY0gLrBHU7Riw12b4x+dgazMWpbYm/vC5vpPUprqTbZFFLHcXaJOj6A0ws43IfLazjaRy3Wvb/ST4bgvHgtAbc3QW8K8UDOxnB2KYxhxwhqBXmYFapq8V+CyE3XG4giweZlicpljOHLMiwv4M7XNXo8klqSqvqMhLZnI5NEXlO6f657KK3wYX/+WDSXd//i93wOHv/aY/ln9DF799i/85//HbZ1zFuhiuPOaMHj5R5XyyFvHl+wrlOKJqa1Gq0djTUMkgalPNsqITIW7xUHwy0fPz9iOC750VvP+NbpXbxXfPn4Fe+fn1AWCSZylOuEwUSmbkXarnBOMRmWrAJjBlAVMQf7a5yHxUr6NNfrjDRrKNcp6bCmXKYo48nHsj7vVV8DwacD0ncXRNqx2mQY42gbg2s0cd7gneb2wYKXl1PaRcLszpLFfECUtsSxHFO5TYjTlqaM0LHDNZoHdy759OkROKRuYpFCJGwFTUiVbbSkuo4btJbtJllDU0W4jUzHJ3sl9umA/M0lmycT9FGJO8/QtcIeBkavMgweR5QnDjduwSmwivxwS/lqKGxRYtGRxy5i9KSRCo3LjOyooDobYPYqbKPFe1grovsbqnmGGba4ywR9WGEXQepRa5HFHm+prjPwinS/oN4m+EqjMitpuA7QEC0M7VGDKoQx8sbvPJjhPaqW5Fc7Fi9ptDL4+wXuIg0yZ4Pda9DLCFMr2rEDizBdx42k2TrFzXTe5MrQzFyfdGu2kp7beVfTM0O954g2wrr4vYb4WUJ9YEkuDLpVlHcakvOI+rjtfZs+8pKSWxjS84hm7CR1NQWXObIzI2yFg2Zm+zRgtEisdRm8MhPbp8/aWUv2JOnZHhcLQ4WSfU0upZtT5M2O7CyivCVSXm/Ctsa7lFZJUxWpcHwWkyyUdGS2MsseBd9fs2eFtRp6FPQpq16LZLQ8sZitJlqLlBgNw6ea9RviiTWFsG6qlRqFeib+UK9Fjjh4pSiOpb8yOw89pFMHTuR7zcgzfiQBUO3I0w5EYr29Z8mfm555qfY9phR5cD3dySfFDyfLRVtFspTkXhe8kt1vSrXvGT9S2FzCt/JT1UtxlVN9eq/0hnby5vAlE7xo7dBJwu4mJI9GgcHSO7bEheReXQc260JRz8TzqVphe6o92dfhS8/mtiK7gtXrjuFTTTOW7WXnAurqPU96EeSvYZyQzD3FkepZNRcL49ZJGptJYB2D97IeiywXOq9gFx7mGH8qYUC6EvZK18JyFSeq9xsmwZuYrOiDiJKFsF+mlPOUXtPXWEQb+nTbLuk1vfKsH0j/a5fC2vkC66m8biqRiuoWmUSM5HzFK99XHigvXtRmKF7EZqx6L2e6FIlqPRaZr6mCZLYSGW+y8H1vp02hPBQQ14wD0xaAk1RiyPmMCvm+2NzRsh/BB9gl33YBVM1YEa9l+/FaUoqLQ5GVp4sgd56H9NSUAISkP7PzujajIGVfyjZNHWo0tKxDtxKkBXJdo0pkp8lKmJo2lxoTE+Sy2oo/sjjQZPMwkXRL6jqUg3JPmDUxn4s/tOuxrMeq74ZNF471bROYOpExZ1cy6KzHAkq1DeFvSgLrOglzVArj1vk8bwR9Y2rP9lgzOHM94xUVTuouri2bW53XEUavRBbbhTaZxpMuXEiW1X366032yaYSyhUvLet7CenCUk0Mw5c1m9sJUSVSVGUlUGhzKyabS/BVm4kvU5ZvqacRycpSjw3R1oXj1cHCIoyibj3pVSMget5iM5HVNiODV4gMdhoRFcGHGQb5pnG0eRTSty1tLuBYt570upUQrtwQr2V5rxTRNkh58yDT7ZSQid6lxBpk32exeCuHEfFGJLXxspZKj9xIAFCsaYdib4iXIuuNlzXNJCFe1rjUgBUQ72JNsmx211KLUsMr1TOIpmjFKxqLDNZrJcE/VhjF+niIKcQr6BKDqWz/Xd0lx5ptjUsiTNHgEpHl4n3vmfRGCZsYrrfLY/RWxkRumKKXBW6Q9sxlB8RUUeNT6fPs1ue1RtdBSlHVfZhQnwbbJcUaIzLZNBEWsqykuzJNUOutAMU0DtsJYTzWCYMpg8/dwLoDnW2Ldw6VpTu2kh1bqOIYX9egb0hbuz7LDije9Gp2Hsvu+e5nrOvetO4zIUF/5ONfAY/l7N1j//X//m//ia/3F3/2v/xTPzb4nAPLW1/a9//p//ZVXtYzChtzVcuISwfNyFU1JFKOg3TDZTXEodg0idSQKEdmWlqvaawRyWIbU7YRRR2TJw2zrOByO2SSlWybGOs03iuGSU3rNNs65mC45WqbM8tLqjaiaCIOB1uWdUprDXVrMNoxzUu08mybGB30U0Ut6xxnFUUT0VhDFrcUQQIaaQn/aa3GWk2atHjAOR0CweS5qo5IkpYsblkXKdNhwWKTM8orijru12OdxmhH3UQSkuMEbHdhRZFxNK0hSxrKOkZrT1XGRLGlbQx70w2rbcZstGVTJSigKGOOZmtOryZoHWQmTjMYVDinqWtDktgQQARp2lJsU9Ks7oFvFDmKbUKchF688O/u0ak2srwWgG9kn5X2/d99DYwC10h9S1fLooy8r60NynhsGaGMI85a2trgaoNOLEnW9oFDw2lJWcZo7fBO6mlcbUiGNU0VoZTHOyXVMsqjI4cysj0I0tLCoCJ5zmQWW5oeZCrj8e1OukgIXMEqolEj8l8HrowE+HfVMY3egVRFAK6IHNMqkYs2QfPllFTXgADqSIAT7sYoqvPndOuLHKoyIkHdGPH8pg41kNGXtwoajS51LyvVeSvMfavw4xa1NvihDZMVgn5UpfGx+Fg7v4mPPOQWtRFgrGz3Cy5A16XS1SeMu8g7sSocK7vXoK+00UGq2ckfvQGfeJG3Qu8plXRn8T+7VKpW+mvQXY/utISAEpcIUPUGmRRplIQOVcGDPHCYdZikiIKcMUJqfLzsY1f7ohrVy1A7SahIzFTvgfPhmnQSOJuFihcrz7tOatdVooRr2ckEO0+yJC7LMZuik53u1uv5bKVIMpcKGBfT12lIrcxOdtj3KyqR04rMtUsa3g0OXHftggS08/XelF12z+ta/NQi+RWpqUgpBWR3y3ZSwm7nBcjfCI5qd6CoC4ABmRDpJKZd/UV/jAFwmFrOq492ksvunPaf1f7GCPdFqE/prklXlYKT13xEYD522+zvq+4CKPqAJhXkp7ol9PR99joAu3qhll1Fi915L6PtTlJ6M+BJPHa769kFAekQcNVVqfQ1KOGc3wyB6jzjhHu3/8yG4+0qR2xCX2ciDJ4KFS2+r+uweQDoUQABmr42o6+S8Tf2q9uO4bP3g+++U+gDi7rz1p3fm55jF+3On9RZhPva7s5Tf50cfQCaqW4ARS8eY2UFtPaySed39R2dtK/7n/P9PeRNSK+2vq/Q6eqo+tqasH2CvLf/9433SCUNoIIH94Y/rbtfbspTO8+xsmGCMJLX5Lyofh+1lTqRvuInEuDcnU9nus+k3+2TlqAgkabSBwr1/lP/fecpyFe7WhOXqPCd5gMT+tnKlpvP6Ua6ZjvfaHdu+q5K5/tqGqnxCL8V4bp0cmlvROoKoG/IOFX7ffvZ3njtxrVV1vXn2SsBoBIwJK/Jm25ITJWsq7tH+of30FWoBBkxLmyrA6udD9J5AYU/qG6k65iEnbz1pvS1acN5dzs5qvu+/bi5zzefu/l356H0flc74p2AyxsPf3M7f1QtSrev/4KH/z5w+//n8WcBWE7fPfFf++/+5IHlL33jv/hTPzb4zPDp8/dQynPdDnlZTrifXXE7W5DqllRbnqz2OclWAHy8FAnWvMy5PVhilGNVp2zahKKNyaOGt8YXXG9zvn7rY/7Kgz/kx46eMUlKfuLkCSf5itRY7oyWDJOa1LS0ThJmF2XGLC+5O5xTNBHDpOG6zIm1Yz/f8pfuf49RWlO2Ec+vppwM1sw3OfNNzmIxwGjHqkyZ5SWv711zcTkWgDjP+fLRK9K4ZZA2TIYlg1Q8grenS754fMrfeOv3SWP5EGdxy/nplMmgZBA37I+2AjLzknFWYbR4Jn/o+CWjXD6UeVpjjCNPBcis1xnDrGZ+PURrj1Kew70VdRVxvL/kajEkjlvO3z9if1CwfDHmrZMLXrzc497hnLaKSBJLFFlWV0M2p0OabdKDMK0lKfbe0TXWarJBHTyMniyvxRM5qNhcDHj7zhlp1jAZF+SDitl0w3aesz/b0KwSXju5wm5i4tgKkAygwESW27euMcbhreL4cIlWnnqVMJkU2G1EnDcMJ6UAUq84uT3HbWLKRYrWAjjrKsI1GvtqgK3FZzmYFtSLlOl0K4DSKyg1JnG4TYyrDSa27O9t0E8zxocbkkGNySxunmDylnRaotYR2aiSHlDj0etIPHLGk+8X2Asx5CQf5ahCy+9CpRnMClStUKVGJQ4VO/LDbQCEHj0KDGnw5AGoy0RA5f/L3nv8yrbd+X2ftdaOlU4ON737EvnIVieqA9o2JBtSwzIg2DDgiYM08djwwH+A/wIHyIO2rZntgeGRp4YHQgsyHBots6UOJF+Tj3zpphMr7rSCB7+1dp37mna3YAIkG13AxT2nTtWuvdfeVfX7/b6pdOh1JgilCqjKMbvYQOnJDnrJBe00WE19KZkiYeJQZx1mY8helJjXBWon280e7VC1RfUa80WFWvTos5b8Tc702Zryi4LsOsdsjDRthz16PhDmllA7issdamqpf1CKi2+AoAK6lWYtf7IlW0nOaXZvxiYu5F5MsmYOXzvRGeYeTjuKGwOnHeq4J5SecNHha49uFBwMkjVZBNxM6OSogDtwmEajrSIcDvjaoy46/MFAvkyiLHAzQXx9LShwcW3I76WJtdEt1+x0RL2kwOovB+yhwy0c1bWOxZCifmkwvRg32dOB+o2iuNfiGtxExPTQ4SspyoYjNyK1BHGKdUU0UyoD/ZMeV4kTro9NKnrfELhKvoyzbUTiHg3SPFaynfJOUO3+yI16OVfI6/WnTsyXMkCJ5hCg/0YzaiNtJTE71ZVEYNg6yL9oulXeiZ7P1ZL32p14QQEPPVkTC3cLzYVoo5oPu9HUyueiFfRFYPJCqMGuSvmCe81evhbzsqyF3VMbm5YgcVN1RMqivhOkQegXgWwLzRMnqKiVSKW0zeYsjIZbIds3wSDIc8rzzDeM+ZhJX9rPA+2p7M/0y0CxitfEQRDdZHRbTa7J/YEgoyETI62H2sqUITk2UZaI0op5VXsScLU8rn4tDrKbd+S1+7mcSxsbOG1h89zTHUUEEkZXWG/kmFFyn3JCdfW5oOmpCS3vAu2pILpyXclQxBfyGvkmxGY7yGAjCAqbGs9hJqZCwhyQ3MLUEE7eeIZoAORqiZkhCBIszr7qLd1jv1AS6xOguVBj89We7ItiO5HmqF8IcupKGQTkG0F0R6MrE9FtBcNCEM/JtadcBoptoNjI2mwfSyRRe6yo7uW9ZivYPBUnWuWh2PqxgVQ+7AcoTii7KMh3fmx0+5mYLzVnGldGA6ZMYmbaI2nIs6hLbU7kSUmvCKJDDEoeH4sjzBDopxpbKqYve4apOLLaSpGvHT7qIou1w8aMS9N7ydB0IQ4ofDRMkoZgd2ZoD8XILt84hloMk4KGfiauscPMjEitq3TMYVWj9lMcer240zaOEHM17VRT3g7iGBuNmACGmaY7zKJjrca0Pg7jFHrwmM7THefYqRHqqxcXWW2lMbaV3G+nBlsbhmkmKGhsdPP7jmzTYxrL7lwG2kEr7FROmivNaBA0LPJ4TeVou0fYglG4SSYaSb/P7gxG44uIQrqAr3JUK6hpahiDUYJcukAoDaGS1/WTAjcvZR1Sz2XF/CghlaEuxJCnLsBoQpETJqXsl1b4w+nbjZzRhIRSgpj/FDmhKiQ2pYw/Vyl4WAlK+vCWGs6HJjw+SMzKj2kYlVKo9NjkRuul2Qxv/fxnNZdf/feX6eZRP/F/Pyu3n2vEsvrgSfjN//bfZzfkXN/MKaqBflegCycoVO5xOynaUQFMGJEfNWiJkkhT2cbA3KKvCjGRWCn6S4veGkFmQFCaIhpnOKGp4ZHCtFPYmZfiJcYWqF6+AN3UY7YaNxXqYH/sUIMeC9A0mZcvzji9LILETuRSbPtCvsB0REf81FFcZ29NcV2ZEBWJEugPJD7ATj1mp8epq49FaXKZTfehAqaVx9nJnk43ToaNFKkqBsWbVpGvFbt3hPo4LMRGXfdqDG33ZaB4ssX+YCYGHrWnfilUwuSG6oqAj+YG2Wa/7RTtYGdhDM3Omr1xhqvEHEPF9XrIZ3J1GNc3mXJop3BFpGVOJR6jvNEMB3Ies2gAUtypaFiRqJuCdiSkJjmCJlQixU+kNcq2sm8JgfO57H+xlP2SMG15PT1ElKZLX1Cyryq5okdUJOSyP6aRbeRrOb96UBRLQSdS4Wl6KZrzrRqn77A38UgIhp2FMUKjP5B1SdN3OxFTkYRi2Vr+nvYvFZlpyZNhhWSHSiGLkrU3kc6XYgH2WZgR4YroSjLvUA7Q++D6FHSfRQrpECmUIW4zGV0Mc6ivHhxj3M7D10iZov0Bo/GITghaPIZ+IT9njbjc1ldSdPnigRFH2CMY8n7Zv09gvy7pnIwh6JF2qnvZ96xhRNBSY5Oa0xSNke3kmmmP5XrRwwNkJdJdxaJfrk2JJRHKnekEKRpjPIJQ5FwptMx+Lm64D51TXbV3WzXR4VW56CI7e3CdRpQR9hP8hPyIAU4Y4zhSgHowsk8JjRrRwDgYspPoRDuXwljZROWN12YrdE4C5NEN2BVSCKZj1TbEInuPRg1ToeEVm4AtBbVMhi5ZE8Zgejm4+HXRCVU0aHHnfWgEIk6damz60uuMyE63v8bT30wbG8l4/hKCklxVUzZmHqmfpguju2hqTLJWcmpBruOslf0Q59VI7UzoWUSnElo5XrMRlU2GM64QMxf5rFKxYZHHaStNuTfSlKdrJGWjmt7THpho8CL75UpF1khMR4ojGWueEe0iOsRK0auCoGoPjXQemsEImhzeQrmC3iM+Pl5XrpQmplg57ES0xUn7mNbblXKilQ8jOpqaGHlPSdzHMM/25zA2bYKWyfViWnFOzXd+RK8EzZTvhWROk65dFcKIghFfR66nEFFHtaeiahVRU8nAFBfoGBUTiGYyZnRfTcig8kKFzVqHreLfY2OXngcQMoWJTZ0rxKk2mc7I4zWmdW+dt2Bk3ZX1+MKM75dgFPnGyvvYKEHdlETbBKUwrcVVmVBPc41uLL7MBDFLSF90qU3Zl7joShwpq2qQ+A9lvdBRtx1uXo2IYFAKHemnvszQvVBY1eDByDHpdsBPCnGLHdxIbQ0m0k1TX6MZ0cFkqCP0Uz9CMcr6vQFPQu20JpQG3QwErVHe7yNBUjPngzSFCVXsB5K5z+juGv+XA3uAQI6OqQ8asAfIZSglFxMQp1nv36a72tjE5dl+v7wnJARUq7eQS5WMiRJF9aEuEwSZTDTYoSe5woa2e7ANI83jVx1oYWwURyrsX7QX+UtAhT34xkX4l//hv/sT3+7/8q/+Vz/1Y4Ofc/OeWdFxt6v5N9/9I36/foe/e/FH/MH6GVkU/bxsDvjjzx/x5OwerQKvl3PeOb6j94Y3qxnfevQlH9+d8duPv8f/9Me/xt/7pd/jf/zOr3F5uOF2M0E3OflBi/18inm641eefEmmPL/3o3f5+uPXXO+mXM7WfLlasFxPOJi2uKDYbSt+4elLvn91ijGe09mW18s5AN0s5/Roy6zsOCp3fLE+5Pa7J0w/WLK6m/D40R0vXh5RzzuaVcXloztB3GzGyWTL6/Wc1aomzx1uPnB2tKbKLD/69IzpcUNdDFy/WmAvLTooqmnLyXTHy7sFAH2bU087Lg/WrNoKpQKbpsQ5jbOG2axheT/h3/iFP+F3P/2QqhjYNiVZ7siNY1L2vHh5RDnt8V6x2xZ8+O5rPj045sPzG75cHoyZl9+6/IJ/8idfZxgMv/gvfcL33pxzWHdcTxao1lBdbGnqCflhi+syLs6XLLc1/bpE556wLCjOdkxL6bLWmxpnHEOT8/zJDdu+4OaTI8LUkU97oe7eV+iJ5fxkxc1yim1zlPFiBHTa4e5KhlOPmQ24NmN4KkhpCIr+synVe2uUCjTrisPDLXfXc3QR3Uh1oG+yPdUU0Zr2y1L0iltDftHQvpjAWSeRN5/OcAuLKj3NNOP0/VsGa9g2BTp3eK9RAZrrGvJANh1QP6oJFej3tgxNztNHt3zx8pjQGurTHZNi4P5uSlY4utsKn2n6C4sqHVnhaJocU1n6VUF+2DKsSnRt0S8r3GXHfNGwXtZkpaXzGttmmNIxvFQsSTcAACAASURBVCpxtUdNHKE1mF/e0rY5z89v+eT7l/QmYJaGp7/8ii/++SVu6lG1o/64ZPOBpT7d0d3VdA/otfl1RvOORQ2a5x+94kefnNNZLYOWSnSk/QH42mOnWhxGO9Gqzp6uWF/NUIUjOD2ipWFq6Z8D20yGLicDLHPIAv0RYNhTXwOEw4EQ9bej5rXw5K9yum9KjmkwoM47XGdEo7nM6A9FbypZZ6JlDJk4vc6/XbL6hV4GUla6SBPjhhLi5U8H1K1MuP3CMj/dsnw1RzmFbhT+TAIrs6iDpteo0stAbJWTLfcT4ZAHgpJBkSvD2LAkRrPc7/EzR/E6k9zPw4HsNsMeWnGbRTSzANlVLrrPApbfdDIo017ifh4P7O4yfKTzutpL/NGdoj33FE+3DD+akTWiRZVBCqA9+VLTPrIUt4bJS8XuImCPLGYVM1/f2TBc1eNQq7iNea5xWJWtBW3KGlid711d8xXs3h0wq4xiGYcqLjboU0HG0kBwOJChTnkjzWJ3KgOvfKlYfSAXhXJKhgq9FN3lnaBywYjekjjA0IOiO3OUV2bMpewOA/UbPQ4+TJ/ihjz1C0N7LusolGehCuOl2eyOZUAj+lNZN8kx1WSNIJ35Vo96TVfHY4pZp/lG9Lj5Cihg+1SNVF4ZJqaBSUTiBmnWhplcR1kjf+9O9vrjYQb52pA1okvNV4HmUo2xPflGGs3uODB5KXEszbGiP1Qoq+lOA9PPDK5mHCwEbXAFLD71rJ9pUIKm2qmin8t1m20F+XW5rE2xDnGAo8emXluJBpq8DFEbKL+Xyz3d2fRhRIt9ERHJnR6HQTIQfDBgyWVY4wuN7vc6VEHABHHdPCnEsXcX6A40zTkcfqxozmM8l92/brfQuEriWoaZIKOzLzz9QqG8lsc+oMqmzFJXQnUnuaAPKb8pC9Tniu5Qke3MqGd1ZTo+GQBNrmB3ZiiXgX66b8yzzrA701S3gWGiooPvftggjWK2pybnGVmThp5y/etBx9gSuXZk3/yo9RxmivLeo51kY0qEkBO3WSNDAdN6hkWJ7gLdUSVDpUUuje6DWBOI56hQ0sAnimypMK0Zm3XREksD6o0CLTmKIdOxuROTqu64FGfZVqigwUC+yRgmGcGIFjRFltjakG9M/EzyuMpgYlZmtpXYE9M6tPW4OhuHI8Mso7jrxybaNFY0n0hzm4YG+EDIDWbbE3KDqzI59rsdYVpJc6fUvoH14vGgu0Ea7kFyMEMtzaJe7giTMmoyi7GZVyHgq3Ic8inn3m5kk8srQB4be+f2aOJX6a6Rdqu+giSOt0z0nqFpIC/AS5Ot8phtaUzUYGpxj9Vaji9tN6LgIUanqDyTzMs/x5wn+L9gA/qzfAv8lXnPz+qtfP40PP2P/hMxCXGJdy9fJhCRozJ+kSdUYNjrGGwddTR6j9ANixADsffmF75E8ggzQQWFMrK3p3d11AMF+QJxJaO+B6LOJr62IGlS1IwaFx3DvmOhku1EewJRK5LtqVZZG9GRqK1KiEhC0BLykb5A862E0qfAehHix2NvGXUaQcXX9HtdzjAXhCxZvrtSkLNk+677iBZ5ea7poLkIVG/UqCUKap9HaDrZh2Eqf5t9EYuHaNWvvCAoJg6jHppuJMMS84Cylkw80v3yYR9t7pHfx2y4PobU6/3fXS3ndVgIajOiDpFiJ2jRfl3T9gT1EvQmIVauYtQkDTMxIQFBv+qriCr4/XlKmisJnI/6tFr0dVm7NxBJUQfZVgqgrJHnBgPdMUxfxMJhn/ss2rqIWAnFLSKNSl5LzEDUWGClokxQb/UWepWKs2wbovZLiqJ+Hh+XS9GcEBxt5eeEWqVr006kQMm3jCiBzwVlUF7OT3e0R4bSsYuGLV2DIRY88ThHZEAm+aaX19Ej0iXFTYjHSxA06GF8g7Z7JNXngq65UlEuvSBSMKLlCQFN7z0XKXQoxjB2V8pjTReRzXiOx4zRiFK6Utwp+7miuttnAGY7WdOEBiSb/ocaphTgnsLPk+bMTqKByyBaqESTE8Rpj4AGzZh5mO4fNWdOGrvyLoW7S6GZTFiM9ML7SArNuMYpjmBEzhJTYNgXrEm3pW3A9BIan3Racr2oMa9Pji3meE4V5SrsUdoHhisJ2QMpfLsDoerp+B7NdgEzyBpA3F+txuI9rWnQMEzkGPOdoFPe7B+fzvdoCKPlveozxcMaYYyu4AFS7SQ7MV13yktRZXqPLSVuwT6IlRgmMaNx2B9z0BGBTE1UagAiKmkaiWyQ61FR3gvSJYU+kpkIEUmMaIFjr90LeyRZebkOBd3WI6rmSkG3EsqVtHHyflTj+SaEUWeXjkmOPYwo1V6jGrcRNXkpszEhZIJyS7MxahIHzzDNxsiIRM9TPsR4BsYmytZG0DfkuT7XQt3zCCXSBrLWMcyySMOUnTadi5mJkpGZ4i6EfSHbDEaRtQ5vdPzckjXKtlHbnkuD6yp5vEShCGU0mduMKOLDeIlMUENl5Vh9odGdI8T7Et0y5HJ/am5w4c/oOLVNaHSMsniAQurBSaPjAtp6fBbROy0GN7qx+EkuzVFCLGOmpN4N+DobtYfKB9lWYMyr1L2sodkOEHWCQetRQxhyg24tvjCiVbRenFCjgU2K2gilQXVOmqVE7fTyeRxMiu5Ix2xQzu1jOzLJW036vqBU/Bzfv0/TfXhQnTRsakiC14CyDj+p9iikUiQDHGXdXouZZ5I5WRViqhP1jWqI0SRa77eb9I/J2Obhzw8RxIfRJYMdG7O3kMdEMU3aSuei+2tEJB/eF/8fcyOTNhIEdXz4s7XSmIKgq7DfH2Nkf/gxaOPDSBH9Z51g5W8/pvf4Czq+hq/oOP9Fbj8TiOVHF+G3/uG/9xPf7v/6r/2Dn/qxwc85YpkVjsO/dkOZWd7czbGD6PWUluzE+1vpRuwyx1zuGNYlD41O8nlPtylAB1RrGM68mI3EJsJsteSyzSz0kVNYeNTO0OcevBqpp7rX+DJSOzQxG0++LEMlI2XVCaKRH7a0V/VoPGK2Gl+J/ojKo9YZYW7JrnLskaA9zAe4zwWNCRCMOJL6Wl5TDUrcTAOYjZG/dzLBHg7deEzJQAQQqm2ke/oikJ01gm7tpDDzE4fqNaHwZMsMV3vJt1sZ7EJQjvxOi8NpRCA47diWpWjVejV+2A9zxIDDCTVUD4r180jTbYXeq6zCzfx+TXIpSM1UYc8GTG1Rn9exCQsMByoaSkTaaYCQyWR6mMnxuzKiE9GcJFEpgfiFL2YqKUjbHjjye4MvgiAg93o0ukhTZZ+lRlX2PTmmjrl0W0EBhkUsCo1QbwVZQgxxokunK2Mj0KpIDQ24ep/9FXcTdSIF6TCPhimdYph7to80+Raak/2HdJrky8AFMUKJGXIJpfJGaMT9QqjFxVphJ/J8ZWV/pViV/WrP0nAkjEHtIYWWt6CCYpiGuB5qpEwLJZiR8it5fXEfkplKbMBcJc/PGqHmahvpYKUcW7ZOFDJZ/0Q9dFW8/kvRr7k8fRHLWrs6jPl63dEeyUxDnbdMarzQuF2tR0OcfiHDKWAcDmgrJyY1fYmqGLI9PTQNcLKdNJ7JkMVV8ng7FerjMN1TzvuFGqnS6RjyTaTxdmngs9cK7gtIOQ+bZ4psK4OvYPbU2tHgJDYOrVZjQ9+cPxhSZYwNlx6i1quQ69NnjMWX6WUgI4Yjieonr9OevG20MxbMXg5IBnIy2EjDg6zd68qKNTHig7H5cLUMCkZjm2HfUCdKrfIR5YtUV+Xk+nGlDB6E5inTtaCluRqm8tlgK0FDTCvN/jDVo8SgV/v9l6GWGqnItlZ7qmie6JpqpJ7m8dx/1XBlbJKswWdIM6z215YrFa4lFtGMFPRiDd1CjdefrE/6nNX7UPoB/Im4laZB5zARXZnQS6URMl2iP+6vkWQik3IgXfmgaw7APDVR8f9oVjNShSMyl7SLkBquaCCj1DiQAHm/5rt905uQQ1vtDWeyRo3UWqH7x4FZJu6rqVlOAwdg1HkGo8ZjePg+SEY1Kii6QyMU2izSRl0Ycx5V7I47k437rHxgWGTR6ElhKz3qEl2p8YUeh3PikqpHxDRdB8PMSHZkdBV2ZUTYIGrviM2fxtYa05lIv39gvqOBKukn9p8ZDw2pHiKV3kgWY6KeBpNLA+sD2c5JA9wZXCHXvz8oxm2YXqJ0RqOc0ozrKfrHqOu3ARVzJV1pxgGYq0wcjOyzIdGiV0w04Ycurrp3IxoXco2KDrBpQP7QBEjlQmmVGsfjpvnYBI+3RKGOAyn/4LIet+k8oZIvwqR1RClUN4ir6uAgN9Icx+Y0xAYxxPMR6kIa3bLYD0eS/lApfJFLg5xuiWpqonYy7XNqNsf3XhCk0TrAEDKDepCDKR+G8fHhwb4/NOjxHvJ83J4azYAerFOIyGLan3S32v+c1nOksqf9jc1mSChobG5V/P+tJvOrDrA+SDP7593+EsSNBP4KsfyZvR1/8yx89A/+Q+ZFR+ey0f101UrsR50PbPucKrcMzhCCwnnF4AzOaYY+o6p76mIgN47r5YzZpEUr+Oj4Df/7n77P0fGGu7sZSgXOT1fcrqY4Kw6n9aSna3OU9tTVgA+KYTAY42nW1RgjsltVmNKhgNm0ZbWuR5fSrLTYPsNknrywNLc1Zmpxq5zypBE30uhaaxv5sNCFUB6DjzmUVpNPBoY2o5r1dNtC6HStQZfyOKUDvjOozBM6A16hp4O4juoQ6XxIELwOFJOeblOicze6nyodhLbX5HGyZ2A2SOh94WS7iW4YQ+OBMUoiNcTFcSturE18bYXQAGtH2MVtFNK468LJPg5KsinjY/VswK+F/oiK4fW5uG2GqYNBaFpi9mIEwZp5yNOHtpjghCyMX8jKyaDAl/Fxvd4X0k0cMuQyKVVOjfrUdMyilQ24Y4teZbIdHTCrGL0Rv7x85VGDjohlGBt+FaM4pCnXEVFTDAsxmEkGKkJbjMVjJa+dXBG1lWY1OZXuNXhKhhQ7g+kUQYuJTbYSy3k3k4iRVJSkb11fewmXj4wAVzxcr/26+TJEDZwaIzZcEffXSvSHL4QuOhbKOpBtZF1hX3TrnjEGZJhFJEsxul9mjaI/kqY+OYkSBLV1E7kGkhlHovP5XPS9xf0eRQEZUORLHZH0QNZKow2ylj661fqozR1miZ6ZGogQw+elyFWW8fhScz5GrfT7BiUF2XfHnskrHUPk5ThMJ5rWxIqws4BJ+tbYsICsk89BkPS4ToZYqAJBmnSfMbqmgjAwinvojmTQMbIR4v4nvbNpGVHmUQ8aWQhpGDA22IVsM5naJD1parJtLfueXDhNF/c1HktyHE0xIPlKtpka5oRgjyh2pDgmbayO5/gh+i7nMF0zxKicfcNLHFDYWpr3tH3lGVkBKuzZKol1Ekxs1sL+XKRb2r+Hg6wR5Y0siHy7R6iSm2tyIE0a3nR9JIQ+IcKC8qo9bTE6Wyamg2yYMapEkHZBbiX+Q5Bx5ffo/Yj+uj1rIu3jQwZDcg5NLAE9pCEXIyPi4fGi9tdLuqUYk5Gp00f0N9ah+fZBBIjer2HSP4/OomF/rokDr2GqRu2nLQU5T+6taViTIkfMIJ9XI6qf6uBIb+0X+xiWfCefo66QNehn+8/J0dUzIq/pvKT91G6PaD90nJXImD0qHrQi6wS9Ts6rSSeb9OLjtR+1p/pBk5saW2UZ3X0TS8B00hS6Usf1FPQVGLWiIVN7jWc8xw8bt9R8pvVMOuZg1LhtNaLgex1pthPEMrFLHmp/E4Mhub3qYY/OpjXVQ9pvoa/6QgsltRSkWTuhjbpSYwYf37dqdIxV1uMj6kwII3IsJ1uh+kj1jNrSEJslPQhqqJwfaa2phkkI8BijYf2efhoiLTdSU4m/jxEiuSCvaBjdWoFRSxkdYx9mQY6oZDLReYiaej+eJ4wZ0dCxkX3gHKucl/u9l8el1x8kN/Otm/dvm/M8bIRTM5rQVdgjiBJXELcRP+fSfV91g/0xmsu/qN7y590VdvHRRfiN/+Y/+Ilv9x/9rf/yp35s8HOOWO6WFVd/cMHybj9914N8EWwfK8IbyT1rfaRdniryVWDWyJdZ1gSa0wlsAnfPFCff97RHU9QO/ujglFkO6r7k0Vqmp92kYj7A7lIxfRHweUVJMvlQFG2g6mVif/HC088LinVgFqeP20cKdVdz3EnWl8sVwZRjlpmdKBZLL1NFG2jO5tRX4pqXiqKsgfakYPJaqFPlvdB0XJ5HalZOdxBNYWKmWh7d7LxRlGsfKXCKrE1FiexfH7UmPlNol0cKXE4ejRjynWf9pMTnUN5L1l19raNFvsEMsHpHc/BDh60ldP7u64b6KlCuPNnW0x0a+vkUO1HMv3BsHhvK+0DWBrqFoVx6dhdZzGaDYpWhXaBbaOwko7rxtEea+lY+dIdadEqTNzIVtqUi6xTzH7VsnlW4Yp+P5jOpJodaUa4DzYli/rnDF2rMmSuXgWIV2J3lFFuPywXVq689ysP2wrD43NLPNcXS0Z4Yslb2Q9ArFTUZgelrWL6bc/R9oZD0MxO/2GWam6bxPlOUKzdS4ppTafbyXSCYMKIetpRqTVuZzHcHiukbTz9TY4RActRzhdD6ypW4+rlSsT3Pmb1yMl2uZMpe3UrQ++Yyi68nBWo3V0yuXCzaPNvLjOrejc9ZP8mpbx3DRI+5eLOXA81JNha/0oAqyqU8Lm8CQx3Id7KWthKUc/rKMkx1RICEBpd1AVt5oVXWsUiMdEAz+Ghpr2S7W9HQdYeafBuEohbpfQnJcIWmPdTMv7T4TOiBysm+uCKMVDfdy5d0e2wEyd3IJD/bOdrTnPLe0h2YWNzJNQ3QnGZMriz9Qqb49dVAd5iN7zttA1kjToiEEBGhgO4CKrjRSMVWUkRV1wOukn3sDjO09REdU9RXFtP7kbKX6IHby5zZFz3Dwsi1tHNy/JFql28cdmJG0xJXaLmO156QQXnd0x8VdAea6cuB/iCjvB1oT3LKO4srNcNMi+nPVArgfCuujIBk6TWefDXQnpWRfhyobizdkeTtmc7hM40rNPnGYqcZttZkTSy8tIqGIorqZhA918TQzzV54ynvJPdO9+IEOXnd4UqDKzX52oqhSSOB9MVdj4tojqvjcXcSDTDMjNA8a01xbxkWhnzt2J3nVHeRNjlIHl950zEscuxEEJfifmBYSG6f0G1lGyDUSm0D5U1HUOIs2R/Ie0Led/Ler990bJ5VTL9o8aUhv2+xixJXGvL1QHNeUt4P6NZhpxkmUj99oSjvBvqFfN6XtwPDLCPfWTF0qc0YhyGmQE5yAtd2pFMmUxRf6DETMDUQehCa60O6uh4CppXj648KlA3kqwEiIqWdR/WiP0v01/rLDXZRYaeSTQjgS0O26vBFhptEl89SMgurqxY7zXGFZv7ZEBtWOQ/DvBBUykq2ox6EejgsCrKtlSZgNFBRgkwNbkTqfJEJ5XOaY1b9aOYi1MSoj9sOuDoXOmdpWPxwiLTOgG5S3mDA1RmzH7W4Oheq7CQju2sIxuDrDLOL23FS8PvCYHYx73A34GfFSP10k5z8eifNRgjYg5LJzoL3cRsBtCK7b7CLCj0IvVM1PRiNL3N8lYFWVK18x/giw2w70SfGXEUVAm5eUsR1SpmKhADWMVwekL9Z4+cVyaRGOYc9qsnfbPDTUo5j0+2potNKzGziLeQGc7/BXhyINvFmg1/U4ALFriNUOWrbRkSwkDzH+y32fEH+aomfVaIZnJSyj6sd7miKXjXksakKxkSaaU6xafGTCr1tCFVBPqJxMeex64V+Gn9XzkPXE6b12FSFTLbHYAmHc3k/bxuhj04qyXvseozW0qClhkopcF7McjY70RJOKnTT7RvFLCJ3dYnetfLc1Ow5H/MexelUVSWh7VBZNjZgwTpB5oxBZRmhH+Rxmy1qOiEMw0iTDQ/osm/pD7WK24vfEyljMi8I/iGl+KvTsYiaD1b0kunuGBuiHjScYwP4UEOZIkHeQmXdvlF9SL39yu3nF+b6q9vD2891Y1ktOn7zb36HRd5S6553qxt+o/6Ef7z9Bp80pywyQQy/bA55uVvw3mSN9ZpMezSB+77m/XLHzua82c25/DsSTfG3jr/L//zyW+TG8TdOvs/OF/xwd8LHd+cc1zsOi4bDouG+rymN5a6b8MO7Y+qqY1G23DYTfuP8U140B7w3veFle0DvDS824s8+K7oxM/O43tG5DOc1uXHshpyn0xXXzYxaBS4ma+7aCXdtzWm9Y92XPK63eBRfm73hn968Q2ksR9WO17s5ISgWxnLX1rg+52i2pTSWzklO5q+cfMk/v33Mpis4W6xorIzKtQo0Q85h1fCdLy5ZzBseLVZk2vNmO+N0smU7FDTRBOj85J6rz855+tuv+f7LMx6dLlm3JdtVzexvL1lta/LM0bc5X3/8ktt2yiTvuVseUBcDfsioZ1uuro84OblnN+T4IeNgvubFx0949u41r24XvH9xzaYvyYLi5uqAi6evuXl9ysXFNZ/eHPPe6Q3f/fySo8fXvLk+pCgcTw/v2Q0FJqyYZIJW3+1qqtyy63Kc0/SFZbuusBFVTtEjnQ6EAO2uoJr07K6mlMcNQ2GZVx33f3rGwb/zhtevjrk8W7LZ1WgtRs9NG/NHM0/f5dQnS+bAesjYNiWTquf9oxv+70/e4fnjG5ohZ9OW7NYlRT0w9BnPzu/Y/aPHbN8fuHx2y5vrBYtFw/2bOZdPb3l9dUDoDLPTLV2XYauBzaZC6cDBfAfA/XJK8Ipq0nN9W0PuyUqHXRXc/7onqyzvnN9yc3fAzWDIcses7rhaTtHaM5u2LFcT1oXlZLHlejnDvjAyPZ9a8smAc46itLT3FdmdYvOkJT9ZcnVzwMXJkjefnKKmltAbqsOWoc/IcsvQZ8KyySQbNdwX3B4JxBacIOOmcCjtGXaFUNe9ElQ4QH3Y0m5KQeEzR+g1ZmJxncHcavyJReeeLLc4a/BeEe4K1FFHWBbc/jqQO9RG0GE1dbDRqAHCcZz29prZyYbt53NCQsm1Qu0CHHq4N5TXmv7Y4xcRLVdOEPLKCeOgNcyO12yXNaZw8EWNnQcorRj+AKH06NLBjUCE5dMN7YupUOdzUDuhoWMs5i4DH52otVCxwtQJUj6x+G0G+cAbp2EA04BP9L+Y46mcbEOfdvjbgmyrGSKlPeQBTI7qFGqANzoXM5hzQ36tcZVc26ZTDBc9WelwNyXKapTXmF2in2rsQqJXXC1rZ7ZFjD1RBG3AgN5p3AJ0Y8i2iv7MC+q8Nfi5wyw17sBgVkaMg+ae/NZgZzoa7giiS6jEHbVRtKca0+/p8UFXQjHPxJm7fJ1hJ2HUOYLElDSPhJFgOhPRpEwQ5zpEmr5Y/iZHZmWrMavTG3ENbn9JonFMzE61E/lqzVeKchl15QW0p57yTuNNTTBw80u16PlNgWnElEiFjOpK0R8KSyFfiyFRvpQhWtZko4a3PzC4KpBtMrJGjZVZdxyobmRwk+0UKuRjJqatBW0XA5hi1N87Ifow/TIIndnu9f7dcSEU9jjctBOhSFbXoovXVrT/5V081t84eqAHz8Vte6XwWYXPxcinO1ZMXgnSePe1GVkjA7D2LKO8VSOamm0D/aGK1zQkJ3fxJShH7X5yAE9ux9kuonbRAVi0xPXoD5A10fm4A9NVMuyq45DOFTL88Yn6HEbktT8sSW7A5V1gmNV7tgJCVa3uA91C0EZXRWfkIJr25lQzuRJtaP+NMtLjFdWtZ3dWy3ZXnuQa2x9MxkEryD7mG5FQuCIZA1Xj/g71ZFy7h8jqMJUBqc9n4tsQHYCzLjC8X8nwwwkaKYNSRfaoxJYyoLTv1mPUi+keMEksMdpksdd2fzgh33kZCG19RHsXUWurxLTn6zOqG8vu8UWkPstjfaFwxUJo2mb2FsLrCk2xtLgnc1yt0cNi1LUm5FrcbvWoHYY9e0U0t1piVVoZHOVbK9fTbqB5Psc08rnlin0ephn8qI1Ngxuzs2AO38osDUaR37cSK+LiOWQuAwEfxuGGmxWYXS/NfxxCSBxJ/D0w0mhTo6ZaCweziGKLFjbpUUOm0c2ALzJhYjSDDCwS+vnjTHyiMU+oCt4y9ok3nZDMJAVIqOoDqm6i0gbvRbNpLUmbqQDCgxiRt5rLh9Tb8Gfv+zG3t1DM/x8ay5+FW0D9FRX2Z/U2/+gynP6n/zEAl2dLlruaX754wR+8fEJzW3N0ueJsuuXj7z3m8MmK5WcHXHx4TQgKoz27rqDpcoYuQ7+oCE9bLk+WBOCs3vJHv/8e0w+WZMbR9jnDYHAvJ0KtOe2ZLxq2W3FW/dqjN3z/9SknB1te/+kpoQhMz7d84+w1//Q777E437D7+BD1bIcPCrfLUDuDPukxP6qY/OId212J+v6E4Z1upF2wzmExUE87mi/m6LMW84Ma9dGGy8M1N9sJu03JYtGw/ZMjhsue07M196sJ2fcmmF9Zsr2ZSPC9Dujck+eOdiPfUjrzKBNQX4h2sX/Sk10VUhTOpUj3Vr5BQmtQvWL2I8Pmuad+pbG/usH84Qz/y2u625ryjcF92OAGTf5ZSXWr2DwXbaZa9HBV4qeO7C5DPd/hXtWEowE2GfqoJy8s2e/N6f66OKLq+4yDD++4/+ER1RstGXfXBfrZlvCjKfbQYTYa/aRhWJbonSZ/uqW7qzAbg5t6yDz5VS4UzW2M/MgDp7+vufpNJw6hV3ksVhTtux3FiwI7DWRrhekUzTsDeiM00uF8gEGj2xgzczow+14hRcChFKD5GlZ/bWDyw5zmGy3TP67YfDBQvs6o36gxdqA5D0y/UCx/qyVsMlRQ5Lca5RX1a9g8j3RWJxpDNwkU94rtM0f90rD7esfsOyXNhehrfRkIWaC4NVIIRuOp9txz+F3F+jnYmce0QrXtTxx4OPhORnsqPQgfBQAAIABJREFUtMfNu5bF9zJ2jwN27ihujezzROiiw6HE19i5o/4yo1xKbp6beGY/NKw/sBz9oeh0h4UUyz6HyUtFeyp5i+5koPii4OSPAy//zsD0uyXdibhOugK271mO/plh8xzql4phLnTO/iAw+0yz/mggu8uYfapYfU0Qy8UPFKsPhLo66gqd5Cg2Z4H5p7B+V9Z9/ik0p2qMXEHB7qnDbLU4VMbsxvIusH2i6M4tp79nWH0AkxeCNg9TRfNIsiAPvyfaLDHHCtx/I1BeyxpnbaQjzhWmleLSRSOXzTuew+9IU5bcUE0H26dhpI1mOylQD78vBdryAwg5+6iYQ6EFH34Mq3flWIoV4COz4IloXes3UqhsnkF1I3rgyStptLojxe6RZ/apHnMspy8CN3/dcf5/Gu6/Jvrc+krQ6P6AMYMyGYFNX3t2Z5r2TK5RWwtTRJgHgbtvaoo79nrQ54HjPxbkXTnoD6G6Dqw+hNM/CCw/EEfN+k2gWnq6uWb3SNBxV+zNwqZfQHUfuP9QU90IW+XgB4H7r0N1LcV5fSPsg/ZUXmv6ynP/oWb2RWDzjmL6pTQOk2vP8j1DcS9sl/J27xbaHyhmX3p2FzpmSYbRoTNRhVHS8HWHUjSUt4HJjcMVms0jcenMGy9MjTvZ19kXntX7mumXwlrp53DyJ5bNYzNSiVOOocSrKGYvLT5X3L+fRRMuoUDOXjj6qaY/UEzeSAZiMiDLGjFg2j5SZC0sPnXsTjXT18JM2J1IDFSxDiNDQFtYvWvEwfRKjsW0gduPcrSV82p6yV8sVoFiI0Xy8r2MxaeCWPRTTb9QzL+0bC/kmMqVp59p6lt5zOaxYXIljIHthRmP2WexyYo63fZQ3iPaBqpbx+ZxxrBQFPeSWVqsQmwshZE0ahq1mFslffD09YArNN2BHvMgTR8Ebb633H9QcPBJP2qqTefF3Kd1LN8tmb6xbC8y5p/1NGf5qCVWPlBfWVwVdZF9wDRCNR2mOjqeyudScd+zfVJR3Vl25xkHH2+5/2iGGQKzz1vsNCNbD2yf1VTXAyoE+kU2si0mb3r6eS4uqKcFykJ519MvcnwpzVt3YNAOZp+saR5NyRrH7rJg8YMtu8c1rlDMP9mwfWeGaT3FsicYMe7J71raxxPyVUTXck13mGMrxeyLLhp6RYRcK5qznOmLDt1ZhsMS07lRSxkyYR64iGjPPtvRnlVUr3c0j6ZMvtjQPJpSv9wSckN7WlG92eFmBf0iR/eyb8OioLhq6E8qijtB+YvXG/oLsT3WnSO7WuMPJrhpHs2I5JpsTwvKG3FxTccXSoPe9CPyOZzOUM6T3TcMxxO03Tf4otH0YyNnbja4oylqiPElVYZet4KSAmRatJm5EZRZa0KZCTJbF2Mdm5BatW0J0dUV7wlFBiGgOguZQW128veuF0R1vSPU5YiiKuvGjEoV6bOhyAWh9V4cZL1HdcI2GJvJB0ZE8mT1NqXVGGnkshi/M0QXV6WkaRx6cYW1FpyT5jI1kA+3EZ/31bzKH2sc9GNuIxob/J+l7v4L3H4WqLDzjy7Dr//XP3kq7O/+7f/ip35s8HPeWJ79wkn4t//7v8svTl/wWXfMaQzIK+M4+nevP6IwlqtmxjcPX/Pt6yd86/RLrrsp06znUbnkk90pH81e8z98+7f4t37pn3Hdzfjnbx7xN598wvdW5zRDzvsH11yUa/6vq3f55eMX/B+vnvOrZy942SzItOek3PLx/RnP5ve0Nue2nfDBwTUvdwterhb8+uXndD5jNVT0zvBses9VO+MXFi952R3wv33yAU9O7zHa882D13z75gn/+qPv8t/9wW/x/PENT6ZLfrg65oODa6w3/OGbR3zt5Io/evGIv/HuJ3gUf3T9iEfzFYW2fPtHz3hyfs/drkapwIfH16yHimnWY4Pm3ektn+2OsF7zbHrHTTdl3VeUmUyBbpoJJxEdLY3FBY0mcFA2LLuaq62YIs3KnrtdzXvHt6y6isvpirt2wjTv+HR5xK+evWA5VFw3M2ZFxyzvsF7z5eaA+82Ew9mOdSNj8tPZluvNlKeH99w2E6zTTIqBdVtyULf4oHg8W/Ld63NCUBSZ5Wy65Yv7Q4bB8LWLK7ZDQWszdl3B+XzDsq24uZvx6HTJsqno+0w+j4KirAaq3JIZx/PFHZ+ujri6mzOftkzKntv1lINpw+A026ZkPukw2uO80EqaPmdetyyKjlfrOV2foXXAGE/X5mgjDXzTFBzMdxgdKIxj1Za0TSHIcrx/uakJAapqYFr23NzP8F5zdLDFaM+mLTme7vj8xTHffPcln90doVRAq8BgDUOfkReWPHMyMGkLssyz25Scn66Ylx2v1zPKzNEOGbOqY91UbG8mnD5a0lvD+n5CXg/0u5xq1mMHw2K+Y72tMCagVCAERbsqmR3v2NxNUJmX7Ng3E0LtWJyI3e5mXVFNeoY+Y2gzstIRgNPDDXfrCd5pbJNRzjuMkaiX5rZGVVELogLBK6aLlrYpUFq+bIwJ2MGQF5a+y/eDzkY0uOawl4FN1NEGJ3rOrLaiVe4M1aLDDgaTObrrGkqPqcR5xjUZprZ4q6XJn1pM7gX1dNKwBStuFeYmJ1x0+MGgjKeoB+wgmu3dqsIUDrssRnMv5RTqsBe9cObRmccPBnpNtugJgFvnkq+be8iD6IQrh35TSjTJNiOUTrJ4c4/Ko146gBo0+b2mP7ViElbJ1F1FLbbaZIJKAuiAnljUqxJfB8rzHe1dJXpnGHXFWI3q1fg8NSjZrg4Ur3PRv2oZ0iinYGphk+11zV40wKFymPtMNL9RTysQmRKdauHRG0OIjtv5nZac2cpjGsn/JZfBiWqMaDWjHlm3YpoWStElm23UTYeYh9spXOVH/bQ7tOiNQXcqxiQEGSIURKMvxoxcHSNr7MJh1kYanTwIbfhGCxrYSHNvp4K4Fvcy/EkRDRIpIuhOtlWRdg0hD+QrLUOWiQywJJ9WtNfDPBpuReOdpCtMGcLwQKfYCCrrizBqDtMwRnSjcT1KcZ8u78RczEaHcmA0VMuaOPA6i+jVEJHCgnEwl143NdG+FA1w0nkn/WsacPSLvdY26UF9GV3YZ3Kn7iTypT9kzHFNxlOuiJEnlTTvw5TRcKmIWbvDBKpbcRlHRcfwqD9O8SBZI1rT5PqdkMykaR1RTy+RK66SRrFfqOiMzWhIVNzHTFctTtsSkxFiRIwMFBINXvkwIszJeTtpS0cjnujCW6zDaApFSMccnarvw7h/rhR9ZLkUKUS+jTppszf5SprMpEnOt3sn62T+lbTA4/UVHWWFKixrX0QpUL6Txruf6fE85k0YHaKHWlFsveTEZntHblsp6ls/DkWyZBilRNNqK3msj3rSJBFR0X1ZpCyBodajW7PLRZOqrKxVsZZmY5gbyjtLe5yhnTglp8+05Pqd8kCTDtNONFnrR3dgW5nRqdqVOiK0D5xfo1GVKzXZzo3n2bQuOt96cQOGsbElBDEjguikGyR+xKixUQ1Gjz4MwWhMM4x041A9cN+NzepIu00RJfAVum4QOnCZkRx0VWffairVYPd6zHhLOtsxTzO5zabXS68VHWpD0+ybT22k8Uu61eQk+9CJ9iFFNgT53Yd93Mj/1y14aTD9j3GZ/QveflYay1/7nb/3E9/uP/7t//ynfmzwc95YLj66CN/6nb/PSbXlB7enbLYVk0mHjbTG49mON/czjhc7qsxyu6vpunxsAEKAInPcX8/E/OaulC+lg5560rG+maJMoJz2dE1OWQ+0y1IMcYIiDBpTOVwjJjmpUFQTizYBt8zR84FwW3Lw7j3bXUlZDWyupqjCo69z3NyhaifUmutiRNiymxw39UKFC2DmA26bC/VtOqC/rLCHUhArq9GHwmcKbyrUWYdb5WDCvsgEzHTALYvR1ZUsRPdaCJUjv8rFQdZD/TKjeZKKVLGYyxY9fF7jLnqyasBe11I460CopDj0E0+2NIRnDf6qIuSefGWk8PJicOMOLPmiw72ayHNnjuLLnOHQx4I4yDq6B0Vtp1HHHeG2FNOO2pOtDfbAordGzGIqKfpMo7AzP9LCQhEwGx1jO4RWp3sptELpMfcZpoXh0EvBWopDb35vSEY1AUYX0uHUYpYmFlQau3DoTtDL4l7RXHqKSFtzZSDfRJfVWCCixEjG7DTKiuOhncjO2rmTNS091QuhH/ZHnvJaMywEXesPwt50KEB5q+kXYW/woKPbajI4yaWwKpaCOgr1KuxdAz2j0Y6vA2atxcdprbDzQHGn6I6jPf8kMHmp6Q/3xh0ShyP7n3IW843kvaXCPZmPDHMpKLtjKVzVgzgGV8XCehDkt1jFzMZ4TkHMdspbxTCV/c22iubCU78RR8zUICB/RndSLO8e7417QsxntFMpptUgBWt3JNRHbaG5EPTOTmKhbJEiMjmzRgdc0aTuCzU9xPWIRXtaI6HBSVGcoku0FcpevpXX6BdyzHYC2UYKRbRE4aQoHu2Q4j2PRXrMzBR0OBoLedmn0cgmCE3RNIzxKokml21igT1IA5AKU5Sgtc2pGg11kitqtkUQy22MSLKRDtfFKKRoHjTMhBqZqGwuXo+jUUq7N5zZXcjrlPfSHIxxI3ZPW9VWivzUQKRrO+nqbaXGNUkup+WtZCdmUT+cYn+KpTR4poP1O1KY59tAvg20x5KjmEx/iq0gjCkqw5WSWZhcbX0eaYwXojdPYfXJ8GZ//PJ7vg0jSitIojRGyaBmmCvqN57uSFPeeYapGq/nYhWjfuKa2BqJ/IiRKNlO3lebJ4r6zT62RYxsZP03TzXVdRgNjCTDUTTc+sGapjgVlyfHW8b4F1kHua9Yi+7ddEKJtJV6QD0kNh4xcsnKz/kuiL53I7rJ7iBpfxMdNYwoZR51zOncjcY4VraRsiyHiaLYeKFlzvT42LF56aWJs6U0QCbF6WSKfiafDdW9Z5iIxjf5EWRNGKOVipWjOc2iaVV4YKgktOWsDUITBYmSmejoGJwMkxzD1GA6T3k/sDsvyDeeYabHhkr3e+fUbOtE63wvmmciRbK8HQhGUMDirmc4yNGdH/XkPtdkjWOYie45NYq683sjnkyiN1SMXtGD39NHU/bjSnTQ8l70DHOJeDGNl8iXqO8FcHlEOndWGirrcbnE0thpNjYsPlMUywFbG7KdpT8oKFaDaImjBlv2KUiTZjSu1BQ37ej2aue5uNsqhWktwzwXjXznCEajO4uvM3AhHktqduNjHtBXH8as+DITHX8ziE61ytCtFUMeFeNSUmyKMdJIJrppbOb8JEe3D/K/tEbtxGwmOcaGIq7p4MRcJ9FUU2MYnxcyjV4LmorzI4V1dGN1HtpOHGjLQjSjCam0shbpfKouoqZJW/pwe6kPeEsj6VFFTsqhTL2CyjJBQIdBflZKUEylpeFzbkQlx0iTr8SPvEV7jSZFIWVq/jmUWADftn/uY/7fbj8rjeW3fufv/8S3+09++z/7qR8bkMIgfj5vgzP86LMzvv3pM85nG6q6p8wtmfEY41k2FbbPuPruKS9uDtisamaTFqUCs6oTpKTL+eb7LxjWBWpq+Vd+5WPOj2MI4aA5OV3jrCZ04vZ6fLHCNxk682S1pax6ykVHVjjUOuPdD16DV7jOUJ/vODzckl/usF7jv6zp2pzF+YbgFPnzLYeXa1jl1LOO6r01Zj5gakf5tRUh95SHLfMLefzh+Zr8oCM4jT1wnD69Z3GxQS16XGdwTUb9zhq3zDl6skRvDOqwJ5sO5LOeuu55/2uv8GXg+Ok95UFLebHDHAn1djixHD1eQuFpnliqk4bZ8yX5Qcf8co1tM+zZQP1xifeCkBRPthAUR5crwmmP6jTFhyv8dUmYOCafywfo/NmK4tEWX3vMbCB8NiVkQXRiVklTOXFUhy3F65zipJWYFx3ABLKLHeXHNdnFTjQEs0Ga44gGhQ+3uGOLLzzuaYs67AmFNI4UEsDOwQBq7/CaraTqzt/d0J9F59VDK9EuCobzAW9gOLbY0wF/1kuDHJ1s9XGPPbaQe3QrSELzkXyBKK/Qz7eUN3p06uSyw808plGU12LkY09E35E1e2Rj8qWheJPh6kB37jAXDe2Fw7SM/4M0fv5wkIiSqcOeDvCkwU09rhDKqyukibVPO7qTgKsC/Td39JcDbhKwj3r6RwP5WpFtNZPPDe5Rh2kVzfs97knL9l3L5KUUGvUrze6xw068RLLkMP0iFi2XrTTUMy8Fdi/6sP4w0J57dl/vcFVg90GPn3h8Hqmvjzp0rzBNzO7MIVy2DFOhGuZLaQJtLUX69omne9KLHs2Dcort+wPFCtrHgzT+vTi4dudOmtheXDK7c0t/aimWMmTojrzs32lgeNbTvDNgp4Hpl1rC5oM0x80zG6nLsqanfygGPL4IbJ86ipUU0P1BmmbEbR957DRgGqG3JsShPZMCtHlmGWbSfGVbQYdMK43wMA90J57NO14o0y+l2bFTaM88w0xoxdv3B9pzT3GvaM9c1PIFuuNAex7YXYZRa+Yq2D23o0tjfyANQnMuurzkjLp5z9Iey5AEhGbpKkG80v76UuI0XHSCtTEXdvPcS07nvTSr3ZGgS91JYPuOZ/PcYydw/62B1Xtw/3VBntpTabi6Y0F42rPA7nGITbQgSN2pNFa2liZ2WAjV1laK7bNAtgtsn8g+yxoKDXqYShbm9kmgO5S12F0odo8i6tRJ47O70OMwYP0+DDPF7TcNrmKMQRgWcr+r1BilsL3UpHD69lSxeUeovio28Kn5t7WiOdFsn0hDunlHHEg374jZ2jBVdEfSYNgaNs80w0yK4qChOdNvGTK1p/L6/YEanWWTk2/6e79QbJ5omhPN5qk0v825GqOTxERLYadCk3WFYpgo2hPFUMt+7C4UzZnC1orqztOeyONdAc2Jxk5lkGVLFQcmKmoFHcrB9pE0gP1CsX2iaY80tob2QLO9NGJgt/Fj5I6tZL+HqdBk20Mta3OgWL4nx9KcaPq5DPC2l0L/bU412wvD9lJM2vqZojkW5sLuVLN5rMe4l36u2Z0ZdmfRvTxAPxOTMZAs0cmraLw2F33d7iwbH7+9FKOubqGxtUSabB8Zto8Mw1SosLsTM8aQeAO20qNOsT0u0A6as4xhIue1OdL0C017aGiPDK7SbC8020fFSG3dnWpW75YMM3n95Yc1w0TTnub0BxkhU/QLja0N3cKwfio6PFvJfvcLQbuak4zuQFMsB5pTeS3T+dEFWNlAd5xjJ4Lq+VKe3x4ZXK2x0yw2bJphkrF9JLrb7jCnXwgq52rD7lGJaaWh9tE4yef/D3tv1mtLlucH/dYU057OeO+5N7MqszKzquk2dLcBuWUJhBACAwLEAxJ+YnjxGw/wBXhk8BvTF+CLgAR2W24sU93tpp2VVTnd4dwz7immNfHwWyvi3Orqdksuqyttb+nonrvP3hErVkTsvf7/3yRhVzqhspJjXrHjpDoHVysEJeErjeHMwK40xssadmXYcAg0w5Kjn8zI7ELT0Gk/INQaQUmEUk3usG6pIGzAcF7Crg2iklPzQo40aIomobGlRn+1AELEeF6nwlzAnlSISuL4gzWgJUJB7wG/LOGXJfM2bUBUClEp+CWNj2JlJmOhaJKB2+OB+1dyKlyjUQjLiq8BWCTW5YxKGs1CzLBQ9xdrhPMT+MsNxGjhz5bwF+sUSQIWm86TPluVLCq7YdZcCkHjotM14maFuF7y382KRSVA5DFGiKKAKApE5xCdp6mQDwi7PabMS5s0lgCEkojjODvCpqiT6D1iMi6KPiD0A0LPMYV+QBjtP/Lnnz9+tR/facSyef69+Ov/4X9NKsQustPfcuETNJ8b19Sa5NBogB3GLBbP9teumm3TM01FWoZK+1KgP6U+Kndic15dDvwG+DfTzh1d01JPMa4kO+rJul0mm3xv2CEWgeHu3tDZsnoIGFccv0joRO6cRiUYpl3RKTMYfgmrYaaN5IVHUALVg0f7TE37X1w77L+noVvqaHK+V1D8Ii92MYWMy6n7OuWHCS4YclD5uBCoHwKCYjfeF2LS9ojA4/MlFzeLV6kYS2He2elTujiFmlOsP1vw25SXWBzZje7PBDZf+ml+J1t3YEYCE70od5izbTvnUWBccL85k1K6iP5UotzG2V7d08GzP1UojoE0l9T1FgHQfcC4JF3GlVwQuXQ83pAmwzy7iMOVQnPLjrG0PI5M81EW7Dom+stTG/lgBPpT6pZ0T/dERBoP5OPpTyQ2X1rYpZqC1osDXWFdWgQoG6GPqXPdBzp3pqw028gpPw7I6Ga+Hub5sTWdQNVInZrukotqz1wzgMYKmSLFsHcJ3bJjz31xftQYodLxsIsfYfbsAtulmizrqWEkRck2vBbzHOkhQB883JKaHd2ye+4rOaFKoRDJeZddbV+KFPUQpkXl4u3IBYzJ2XV01XULOoYyLiFdg1sHu9bT2HNkie7Z5bcLLkK7SzM5wAaT7suK5z6kjDwaeRBZMEef9sEOum04h6qfg85josqNSwVlOX/Z8RKg/isqge5Co9gHqM4DksVIDrSP2TVQA3KMCIWYYzfA+6bcku61+77G5qcjfK1gDo6uph1jALK+K9/HwidULEa6jo6B1/maET8i5c4FzQgACJEy7+gKO66pbc45ecFImO0IuynoChrptDpsFHQXUezcdNwhRR3wfEtIG+ieW3HhrHqiPRmxebpfX/K6dbWEOfD+YGajTK8HzN7BrvSE5vi0j7x/CAHdOXjDhSE1iZGL3ifB9nGirNGNVgSg2FkEJaFbi+G0RHXTwS8MXK3pCvu8RPlgqU9Tgu62MUINYYq48CZFLAAT/c6bhNRFLryFD3ALw/um9XRUTQhO1HSJDZWadHBy8FCHAe605pgDiH61FsFwEc3mXEKpai5wZfc+QqQOI3x2m825iT5CtURN3ILFDhSvfTl6hLQoz2hVvidCzi9MuYQiAmJ0cKtycqsNRkH2DpBANNTNxdoAIcA3BRGoTCtMx/E0e1Nan2IlElK4HxClpMlKz+tF7wf4RQF1GOBXFdRhQKgN92VI0Za9g1+VkO1IF1OfkC0tIUbH/EMl4BcGsnNEtlJkRVgWk+lKSE6xQUuYmwPcxRLCesjeTmhZrA1/T/M06eVi5L6yeUuMCFUxjUWOROBEl9x6Nw3krktzoyFComYaRUQtXevC+imaIqwayGMPaIVYUDcI7xEXFY1l2gFhXUN0lsfeDnOxYzRiqSH3HcK6gTj2QGG4bc2CTPTD7PCaC4nCQPSJU501g4mm+R5S54lyTqY3WdOXkD3e+H4urLSaY1as4/NScr8Z8RtGxGVDvaJS/H9dskiTkq/rByA7ty4X3EeO+8jRH3k/jjTSyQV2HCGMQXaEFUpOER65gBNaMTMzucAKIRCHcaa2Ps3AzON+ikSORB2FppNwfsRfVKiFAFGVdLZNMSBTpEjSTwolZ+rqlE2ZzHx+vq7Ixj0/70AL4M+TSxl//n3fcSrs8kdX8bf/t//sl77d//vf/pt/4ccGfMddYX0JqP/kBrdfn6F+RQ2P6ti5tSu69Q0nEbsfRhSPpEKaHc1YYsrSyuHk4wnd+ugWxy5o9zygecUFjV0I9GcABFGj5luVFlQpYLtmAVhsBbrn1PYUjwrFnloMVwu0LyOKB8kA+DUmqs54QkOQvI2gScEbTmkC48tsIiIhB+DxRxKrr0jJ8iWSJTzSAoQmIMWjwP6TgOJRp4D1tBgrNILmcY9rMekpXJNMRmLE/W8oIACL1ywIMnXLVdSPbD+jKcZwFuFfKxw+jLj4MZ0Eg+F7mJ0nsP84QFqgfpdoWC8lmuuI9oWYNDZqVFMmX30b0T4XyQWP1K4xjd1XLKZy3Ev3jK+zK8bIxNTVr28YT9KfCzTvWDzbRQo/P8l5k0B7FXH++xzr9hN28s0xotgDd58YVHcRDy8ZGVG/i3AV0L4E1l/MtCfXACKyU56D26MgkrL5Calgx2csmosD5727JP2VOZURw6lAsU0Njy1w95do7OELomxB02SC4dF0ECzvI0LJ7nF3KWEOIrkCMs4gU+2GM4lix8L59b+qsfwKKA7s4HcXEou3LC4ef02iugWy0cnxhURznZCf50QXygcxhcbT6IRIQfcsYvUzhXIXsPuBwuIVsPs4uYWOQHVHpA0ROFwpmKNEc+vQn2rsP5J4/nsR+w8U6ruA7oIL4+Urh2Ej4I2CXSKdP95nu1ONzU9ZpHUXEs014AuFw4cCy2/jpMNhU0djOGGzY/sDic3PWOS1VxLt8wrrrzz6E6LKi2sPu1IY1kRX+nNe48//LvPTjs8lqns2OKKgMVLzlgVzeykxroqUiyjR3HB+zZEIUqZwBkNjF33ElC939xs0/1h+S9pjVIzPAQQbHCcKQWO6v05+kimtYi6kSzYiTBvQPjcTfVKNNKSC4L0jYkRzw8ZUlPwMMAfSqIudTwYjzF7bfaRx/ocO3ZlCfUdNUXcuYI5zwwaC90x3JmFXAs11gOnYDJAO6M4EigM/P1dfx1TwS4xLBd0yhibr9ap74Hilse49dh9prL9iQdqdqxRHJKF6ieMLjXIXYGuJxbVFf6bRnbPJsnteYP3ViP5co+5TLMWCcSXS0lymuywwrCSqbcC4kIzsaAz0EHF8JrF8k3RYQaM/VampQgQsKo3qgfMEzEhWRiuZ80djlSiAw8sCdpkMg6791IQwe4f2uUHzjs6uui+w/7BEfe+AkBp3az1dx9JF2EZNkTuZOnvyBRkS9oTmYa6RLPo9MHwgaSRTs7gdTjT0EFA8OvhKoX2mUd8xPkd4Nl1kqbD7pOZniedn5+I1aYH2nMYxrhLY/EMLtyoYQbOQqG8EEbITNmrWPwOOV2Wi73qY3Yj+WYnKkRbZXxjUNxbHFwZRCCxfjxhONaSNqN90cMsCZjfA1wYqaMJYAAAgAElEQVTj2kANbPAV25FI1qbAcKrRvE004RABJWDXJfoLg+WXvIZdQ0diSBbtunOIQmDcsGFQ3o8IpYSvNVRPWibAptr++xVMGyBHjVAKhFLBLhVqFzBuDKrRY/dJg/q2gHkcWBCmKBV/WsIcWOgGLaFaByE03LKA6hyCkhif1ygeFHyjUdx1GE9KZEsXtzJQnce4MdCHgtFCCU0DAL8oMZyXqG57jv3IgtTVCuZgIQoNX2mYuyPCskL/rErxOxrFXYvxvIF5kBDeY9wUKEeH4bKZjKpEYOZjedPCNwVdUHsHtR8gugGhMXCbEvowwi0LyMZA3+zhl2VqliapRcUlpnu2gnm3n9Zu9qxB4QLcSQXTDrDnC5j7FvasgXABuudz6mghU2ZjWJQQUsKvS+jbA/xpA7XtGFUyOprgVAZ2XUHvBxbVzs+mNSEgbBYsgrVCXPB9oSpIeXUBctuyOI2RPQfNbMh4toE4djOVNBoWw/3IKBStIPLfVksWtlqxqNWKhj65kFSK2zL0BohVQQpoYYCuh1jUgHWYSj8hILQCyoJ01sqwsE1RJRO1tK6ArmcxWVcsCvueRa4QiG0HKQRps33KgfR+RiZ/Pn5EKqDWLNqlgMjFaFnyNcMAUVcs6Luex6Uko1HwPrU1ItFiJf4E3TUmd9SJNvsLHkLhvaI0/mMUlv/88U/+8Z1GLMtPPohX/+1/BXiBHOguumSyUHLRI0aB6kaie+lhtilwXTFEPawc9XUDaXh2Tf2Xa1KQ9KlHeaNhV2GyqM9mB1GmfQRMuiy+LyEB6R7UvYCrGQ4vAlA8SoybAH2kcYOIczGStUfCMxS9upEpvzKjMEi6KFIDiy3pfllzwjdzIRk0pkUtLfJF0vnEJGRnMDxAzVlUCb2IpORFDUQ163LkQMpYLgBz0HixJ0Lsy6Q36bjgtssA3bJ4dIv5GKIGynuiQONphD5QRyeTyUmUdJ/MGp6s0fEl4wVi0iQBfD43CPJ4stlDnov8uow2S0daatYR2VV6aUINM2qdg8qFz8U/tYa0uE/7SppJt+B1g0hr/uZ1RH8pEsWVlL3sBJjzJhEwWeernvTGrL1j8Pn8nuz6mPV9ocBEqRSBGim75Ie2XSbNXkJ9zT4h8g2w+cJj/6GazTWAifoox/lY8znPdvJI14Wv0mv8bIShesyLnZJzm48jFHMRqntSGCGp9ctIge7YGMjIWdZguYaF97hiwyMH0yNkjWhiDFgW5tn5MmvfxhWfm7VE83aREMGQ0OUcXj7pCAekcZJJMG5yAwaTAyKdTanfkwMmFEk6jtGlEPuMpAvPQlBZLtb1kTRfn4Pc5fumGk81QOYYpyiI7ECadXXZDIRozmwMorvZqCO/N89vPi8iYHKezdpLETmv+b5yNabPl0nfhnSv5M8CjUl/Oc8TJmpmdjQdVmLScAadGkn3ZFIwP5Bjn+65pWCgvaSOb1izWJV+ZmXYRqS/z8wKX2KK0FAjWQTZHEX3fI9p4xTknscfJfWUuSjODJNc+KqBbJOJLZL0lUTCY6JR8v2cpMRcSEU4s4OJ5gc9u7RmAxc1RvQnEuUu8DhMzhnGxGzJFFhE7jsoNs1MGycdM4AJgckxDVGIqRgWERNTIl+fxSOR6Wxgw22wuMzMnvycdPxuzWYmviA6JD0mJN0bXutEukXKRk73jpx1qN6knNvl+xpWxnuIhLwmhN0hIe2J/TLGiWGR9atBi8R84fyYA108faUSIp5iNDoyDZj3KKfPUzmGGWFP9/qEfMVcbMuJuWAODr4mxdMcHOySCK7uPVytUx6xg13oxGIi+inSHNI0JyaTn/xZESf9ou490dKjQzBsGubXCJdMYtK4cnYv73Oiu9FIahbTNjMqzcaYSvMYJraBsD6hlRKMiiGaHKVIesLM6kksABcmnaJvNMQY0nNI80itJQD+3cWUMUpUUfYWflVBDsyWzK/ntczmAL/E0zmwRLnh44ROi5TvGUo9u7ZKHoPwAWLwE6Kc9Y3CegjrEUqDHM/BHST2iE86yLQf4SPRzOz4GiOilBAhTCY27zmspmKYSK+bdZEAi84c4ZHNcfK+czGatyXEvN+M+nUJ4U1F64RKjpbPA8AwAlpTBzlla+rZ0VVKop/4Mwo6n5BWqd5/PudhPnVxFXI6DkaOzPdNLiIn5PPn9/WLUMz8+NPyLv8x4kZ+VRDL3/pf//Nf+nb/1r/zP/6FHxvwHUcsl+WIq6tH3D0u8dvf+xYhCvxo+Q7Xwxq/f/cClXbwUeD18hxqYXH26R5GBtggcfe4RGk89IXHumL35tWrM/xH/9bfw6Nt8Krd4Hq/wr/xOz/B/3v/Ab65OcVHz+7xdstKZN30dNM81DjbHPHZyS1+/O4FSu2x3ddokt7zrG6xHSo8HhqMvYb4eIS0Csp4KAB21AgiYlGPOFu0+NnrCyzXHexjg9WvbbFrKyzLEYOlC+muraBVgI4C/+b3Psf/+e1nOBwqLJY9Drsazy52uN81+N7FI758c44YBT58/oCHtsbhocHv/NpP8YfvrhCCwKIiraS3GsNg4EeF5arH7maJ1eUB46hxsT5i35dYVwNevT6DqS38dY3Fx1vs367w6b/wDf7o73+Ek0/v8XC/hFARZydH3L5bAy8d5D9ocPI719h3FaxVCF5i/ds7vL3dQMiIbm8gFw5SRggZUFUW7U82+NG/8jW+eHeBs80B1/drSBXQv23w7Ie3ePfFOV788AavX5+h2XRoDyVOTo94uKPl+AcvHvD2boMYgQ8uH/H69gRDpyAM3TuHA3MDRaeApcWzyx2urzeQOmCwCqYZ4d80UFcd7L4AZISqPYYPaY60+HiL/fUScuEQegVZeQy9gmgVmg8POP6mxPhqgfMf3uFhu0BI+YyQEc1yQPvtEtXLI7p9SXfQTkOMdLNcXe3h/v4phjMPfZRwi4DyRYvjuwbqdIDbFZC9RDwbp/tAiIjQaZQnPYzxONw1kAcN8/KI7qslVB9hvz8g6Artx5bH0zgEKxFHBVF6RCdh3hrYM4/FsyO6r1cQz3qsFj0e75YovzUQXmA8CYjnI4SMCFZC7AzKB4n+owHNuof9fA35yQHhp0sEE6EPEsMzB3MyYNEMaPsC475AuR4wbCss/9ig+5db4E1F4yoAYpBYffSI/U83CAsPMXLxFEv+3TxoRr4AUA8afmMBJ1HcKrh/fYf2oYYYFB1UrYTZKthzB7lXiCYgLl2KkwkINR0/AaD+dIf9fQOMEnKQNC9aJJ3uysJ8XWJ8aaFvzeRyadcesYjQO4XyXqC/pAMpi84Iv3EQvUL1VmE8DfBnFsWrguyGRwH/l/cQ/9cK4xroX3iYRy7oxucWoidCFz/sIL+sEyVToH/uIHs5ua6qswHuYJhVabkQ0x0dSNUgYDfMqkRgA81dWjRfFDRgUmRzdB84QEUU1xp2FQHJyJrx3GPxtcJwGuHWAaufKBw/DPArD3lQdEUVmBxFg6bZlOoEVM/5Kx9YaIxnXDCGU4vymwLDhcfhkVpjc5DoPh5RfVOg/8Ci+alB/5wxKnIQEIGshuGcDSsW9hKupjlW1AK7TwIW30rsf+RQv9IY1xEmNfDUIKEPQH/JgrnY0oCq2AocP/Kov2XUhq85bjkC7ScW9VcmmQFFiCCnIju7qKrUkMkNHzUo6rI31AQvvpFTniI1oXSnlW42c9It/1bfRBxfAg8rgfJGznKL1OQyLabcwPKRxkr9M+pe5ShR7FIDYwH0ZxGLV9SU1u8UxpOI+i0bTP0FG6D1DTWSugXwQk1GTGrAZIRV3pMZks9jFBzn7lNABCLv2S01lHRTzc0Y4XmO7EpMDq6+4rE2b9iYqt9FtM8Uxg0dZHVLxopKgAodYtl0kCOPDWDDLCRToWw0lKUwABt81Q2ZBHYloA+piabZOCp3lGscX7CoXLxmoekaxcilDwQu/sBNpjxsQHF/x5dkmNgVsP5SoT/lPRe0IYK/j1i+oWawfSZRPurJ3XU4UejPJUyKdBmXyZ14IcgUeU7GQG4iqlGjvZKobk0yJeIYzDG5p6Yi3VWShfzIRXpufnSnRDmbdx79mUKxpztrsfM4vjCQNqJ68BhO+LfcQCDtmwV9UIZFpKccJGjmWqqeEpbiwIJ9WEnUdx7jmvNhjpxjV0uYvYevyJhwpUR1Z9E+N1i8oSmR6g2GE4Xm2mIsqbnMFP5hQ8ZGde8RSoHqZkR/WaDYunROiOjmZluxs/ClSuZ0YmoasBkWMJxoMoi2dood8csSkALDaUkzogDYtUZxP8ItNIrHAfZqieFUo77mc/pIWrDe9XDrivRiF6B3Pfxpk+jd1Lzquw6x0ghGQbUj6dlH0q1DkSngjBiJSpASrWWi+ZJCLbMb7LoBXICwDu5sAbUfEJYF1O0e4ZQ5l/rdDrE0LKL3ieasJNBUNPXJDrcZTc2Pp+6w+3Qz6YQw/jzNNiOf3rOwLAwwWrq7jpbopQ+JypsyLwGIp0Y+mBtZ0+NpoSm+0zYw/8w+vtOIZX31vfjDv/7fzA5yyYyifIhT6HB/xiy1/OGSH66iVbdd0OI76/HsIiFRSAHKq7RgSs6aysbJoGA4oQV4Rs4yWsMPfqIjRODi+/pOPyMTQSWrbU1toR5mBztf8Msh6wnVkJ3pAo7PFZTll4oaI7Y/UFi8TZ1Bk7V6mI0epu4ob2TThkkbahs60uUOsunSF0J2CdR8r/T5y47zqfoIu5QoHxy6Cz0dmy/SsfQR0ke0F6Q5jis56Z0AJFfGmDqfdPhTQ0SxD/CVSDpX/j0HJwct5u54iBgX1K+SDsxrub0k9TM7ngJzB9/WpIoR1eEXoi/EpMF8qg/M3XDp4vSavMgJWiTKJQ0ZdBeo1Vqp5CrH8fKYk1a1ZDc9684ATFbz2T2w2Hn4mrS7chumfek+THMhHfWHOdDbtGFCHnIXPyOS1Ps59GcFqpsB/WUJ1QdAAsOaiwmilmLSy4kn+jBXy0mzihjhFgqqT+ci6X2JNpFOqtuAca1Q7DykDRhOzNSRV8PcNfelhByTrk4RyYySiwlXc1Fj9kQApI8QjvsGAHNw6M8MdMfFzXiiITz1d65RE+pLVEBAH6mVUz33LdzsuugaNWnughFzuLYRKHYW8BF2ZRAKwWDuSkH1Hq5Rkx5TpGtRHyx8pSFtwHhCeqs5+DkLLT2iENP8+kKieKTtvG/4oaD3Fm7FzrO0gYjFwcJXKi3uFKQNDO1WEtSCzpqiqAR052dXRSNhFxq68zTGaAzU4NFfFNBdgN6njLxNMd1D0lKfN54WKB7p2KgPKYdM0XhDDQGqc/AJmcl2+1m7FpSA2Y3JqVXS/fFxnMYoArPxhGMenhqS9nelUb86wK3K9zrfGanKcyki4CsFvR8hbIBfcM6iIfoSjJyOIxg1aajl4BAVzUd05yekR6ZIgWgk4OOExohED/MLA70j5dFXmkiOkpN2T3WWYwYgBzcdt+wcoCXPb7r3M5ISGgN1HLm4jIBbGMYSZKQ7cN/RqPR8TNuISYtHgxLZZ9QD04I2xxvABUDTlEh4ag6l9ZDtCL8sIUcPue/hN9RV5lw+ESNCU3DcAVCHkewFSdMTMRD1gRLUJ0oxO2jGCNlZuNMG6jjC14bIlQsQ3kN0I8KmIYXRR/hVyc+fzqbfQ5oXBr5DiERbNNPzcrAIi3JGxdK2EcDjNYqZfZiRLQiOVbaW1MimmOYzzy0kEEsDuevo4tmNEKOl/tA6xKaatxcj53BIi/9+TOdLMyNx35MqmQxbsmYxFhpye0RsKlIFjZo0h4gRoqe+L2v4Ys3rCqOdUDPRj3QLtW5a1NPq3hAxCwGxKiHbftYkZiTMJ9Qw6QSn/MPRznTPfkRcNRDHDrGg/i9vUwwjC5TCcG5ULhoCsvPnexmKWS/5ZN9PETzRP9EKGmpdsw4ymkTHzMibD1OuYiyT7jK/J8bJ7TTW5XvjmYom6+axSDHNWzao4WvS/rSe9ZBGc0wA4BzRwLqmtvQp+uccdYz58z65ogqtOeauo54y00RDmDMhn0R1QOsntFTxfpwHN8xjyQ/JbUwIZUY58zaUYlE4Wv6eUMc4jvP2nj6yXjfnV+a/p8JQaM33GvOe62vM48+Pp4ViGvtTzWSm2MYQZ7rtL3i8p7P8zmssX8R/6X/55SOWv/vX/oe/8GMDvuOI5fnFDr/xn/4R/urJT7H1NSQiGjVgJXv8re1nODEtfvfmY/zl81eo1YhH2+Bl9YhSpLxGu8DBl/iseYf//Sd/BX/9k7+H33v8Pv6/d8/xH3/6Y7wZNji6AiEKnJdH/PjuJQBgt13gtz98hYMtUSmLpRmwG2sszYAQBf72H32Kv/rrX+DgShTSYWN6XPcrvN6tcbJocVkdcNMvoUTAs3qPv/P1x/gPPvsD/NHuCoPXMNLDR4nXj2tcro64WtCltncGlba4ble4MiNCFLioDjgxHf6Pbz/DZrWHUR7vjktcLXfYjhU+WGxx0y3hosTgNEav8KPTG9wPDX59/RY2Knx9PMPrwxqnVYdV0eNgSyzNgFeHDU7rFnddg03ZQ8uApRnwe199H6frFt1oUBcWddXjygxo9Ijf/fwT/Gu/9jn+4OYFinLEzW4JYxw+u7wGAHx+f4G2L7GsB7xY7fBHr65wujnCeYnSOFy/22Cx7lFoh340GAeDT57fQoiIz18/AwDUzYjvnz6gtQXubk8gVcDl5oBV2eNnt+ewVuH52Q6PxxohSJwsW9zvFlAqoNtWkIXHYtVjf7/A2eUWj48L5i5ahaqyWFUDrncLLOoB/ch4mkI7WK9w3FcwpcOqGSC1w3EoMFiNoTdQKmDRHPH4ag1zNuDZyQHXX53j8sNHPO5rVJVF3xXQxqM/lCgXI8ZeQxcel5sDdm2Nk6bDq6/PIY8KoQbKsxZ20Li63OL17z9H88NHHPcV8xM7BSzIrS1qCztoLFc9uq4ARIRtC6jSI1iJxWaP47crFM9bfHJ5hz9+9RzhCFx++IgYBe5/coaw9IAAqvWA/qGCrB2U8fCWlKlgJcQROP94i9ubFYrGwo0K4m2F8HyA0oEOyiNS1iKgqpHRNyLi5MUOh2MFNyisTg/YPzQw1wX0Z3t0dzUX0wUgpIc0AX5QkMYhHA3kwiJYAdEpxFrCpGxT32tIMyKMCrAaOaMxWAlYCagIBA1ZOeC2xObTBxyOFexDyczItYU4GEQdIRYOpnQY7yvonYJvWPAiANhYxIMGygAEBX2v4U4BRKA66zFcN4nDnOiLG8usSyWhBtLh49JB7kiJgwRCw/lGKCDbNMdLB3moERYe8qiAiwF4pyCiYhajB/z3aAscBkWUsgzAUUIMAqEmYio7jahSIWYSFd4pRFUgNB5i0CjvFWn+QrO5sHIQe8Pxrx3EsUAsA2RbIZ6OUNcNpkzOkHMQGYske4moNIRPEoNtWoxIFtj6KOA2AdEUs1zhYsTiDyscv+9R3hDRFS5pQuMJfBXhm4DqnYYcgP55QDQRxW0atyZq6BcKeqvga8YIiZBo1Oce1WsNt8wRNXGSE2TJA3XecaIhmz116iIyUka3jC5SraCztKhglwHFg2SkzJibT3QP1keiqW4ZEUxEeScnxJGaakwZisUDcPxeQHnfYNxwjNT7M1boKU0dmUqfqNa+ShT6ZfoyTDTKjBpLRyfeqLktaYkoesPXjJtM048pymc9UZl1DwwbTJE0qic6F3RNVPFIqn9M0ggRqCkv78XUWHUVsyfLh4jjhw10m6QHi/n7W9oUixOIJBePMx1cWmA4w5OoGf6r24hxQwp+NsYKKjdeE2rcURJQ7OlIXN5jyrTMiG9u0mV5BuLsDCwdG8O2WU0NXl9TchAU3W/LRxoD5mYzpQtJgtIminMfAbGepQFPIonY8NxMTWnu/3SiZRdHZqH6glTn6oFNjqDpl6BbLrJNl8wDBaZcSelIqRZ+biQXhzxGYNhIrL51aC+JBDY3YTrubFIHkH5+fK5QbsPclBegLnkfYGsB05FaLh33X986uIWazPmA1IhODVjp4iRLyKZs2dgt65OLHU23zMHTtC5Tf5M8gw6wkkZsKjXq3BPZTqL2ZnM4xnxF2KWCOXg2e1yiEisWmDrpXnPDUfg4NRFDweaX6t17+ZQisOEJiYkiTLptmAptaf1kJCQcXWzd8pLU5JEFrkhxJ5zfJxTS3FCzyaAo0ZRFbxFLnejPiVbrkqmXEuxJeRbZsdAQYzJcWlaQh57FcSq0RTYryqf3afGW3VzzeKrE9Gr7qYgXAOIwTAZDkAIi6S2nbSAfTpxQSvHk+HKupSzU+xmXwHtFqciM3Bj+PH4/v/KPrC39p/HxnUYsV792FT/+m38Dp02Hl4stxqDggsLRFdj2FX50eoMvtqSDahlwHApUhYWR81XZOw3nJQ7HCkJGnK5a/NbFK/zu649xOFT47MUNhIi43q/SawJikFguSIWtCosQZAqSZ8yJHTXKykLKgJfrHb59PMGyGnD96hTLiyO8lyxy2hJSecQgoY2HHTWk8qTVdwamttgsO+zbClp7DL2B9xJhVHj58h7daND2BYKXqOsRh0OFsrLwXsI7Bb83gAmo1gO84z5K47A/1NCG9FNnU6dSRvi8nbdL0jYvWhTaQ8qAfjQIQaLfl5BbDf2yRfhyAX81QNwXqD/ao92XwN5AbEbeNBGQtwUpKZcDc0APJepVj/augVo4+J2BaByEjBASqJsBh7dLmJMB9lCgOunhnYTSAfbLJaNBXi1w8uk97r89gTnt4e5qxNpTaysj1udHdF0BezSQFefTJyps7NOnUxGgbwr45wOEiogPBaKJUOsRUkTYLlELewndSriXA6mEbwuoTw4Y7muUZx2Gh2rKGJV7NSHDahRwVyPiQNMdWTkubLyAelvCnTrqglWEvtfwdeAi7nyA/uMGww8GxCCgHjTEix7xVQ1/4lBcaxo2NQFiEJBXPdTnDYZLGkXABI7bSUQTWABtGMvSfGkwbhg5Ehdp/xFAFJAd6aZhydeqewO/8EDtIVqN8p2atMYigGHsSwd9U6C8E2hfBmBjod4WcM8sqq8L6mrBxascBHzDoieqiFgHiFahvpZoPx0hd5qh8Y8S0gn0Hw0wbwtGXAxiyu1ktppIRYiAPgiMz5llWt5K9M+Y/SqCQNQBaqcZ3n0S0Hyj0J9HhDKgulZwiwh76lHcEi0azwJkJ5PmOKJ+w/M5nDMapbxXGE6ZUZpzQu0qLfC2AnZF6mmUEW7FLFTdcl6LLY228kIdYHEwJKqpLxlVYo6JRbAKQOBxq577Uz3nvr+Ic8GLWUOdNdfSkgqbF82ujklbnArCJQPtfc3CKaPb/bMAfeSc2jWplPsfMEPVLXhs5QPQnwG+YRGV96F6ZkMOp6RNqlZMz0OQzTGcUScdFI9zOCGN1exZ6LgFi5PxJKK+FuiuuA85zhTN9nlE+UhKZ3kH9BcsTsqHiMOHAtUtaJ7WM75HH+fCjxRWzqHuqMVmxmlEdcPzWTzShEz3c96nHDFlfWY6puoTXdQA5ZZsBNfM+txxzdfqlgt3WwsM5yzwdEsaa3XHIsnsaeCWKaW+Apq3nMusy86a3qxrVT21pocPkxut5XNqZKHRX3AbrmEREgoB1bEQG9cpn3PHv5NFQRZPMJhcs6kJJJ3ULVLh50m9zWMzh+TyvWKRVW6pUTy+SHTPpDG3S5pE5SzK5ppGXfVdgO5DMjhjkXa8Istjzv1kQZwZGtKTKqoG5pnmc+tq6pqnnNA469KzjjpKHmexj1CWplPmGFPUCCmeiHRnX772pDgbMWlH1cD50D2L58U7j35DGvVcmJMRQw0s761c5BSHgO5UoTjSDbs/VxzvmoZm7YWGshHllm7Rcojoz0k39cm92heJitrRlVt3ZLbI5Bhtlypd83FiI1V3dKwudollEWY3e3PwGE40qgfHosoF+FpNDAEAUF2ASyZYAGmpeW5Uz3M+nGiYvZ+KWdUHMkiSu7WvZ61ueWcxnhhU1x26FzXKu5HsiAei93ataDJVEh0PRqC6pYu37jx8xfEFTffnUKqkr005lcVcAGZnbeaCcptIv2dWQ0aw7Vk9of+kooLshdFPrAIk0zI5OCLnCS2PT8yVJmZBQqOF9RC9RViWkL1DqM3k3Ct7NyPwpZlYAJlaKyw1oqIdZuQ1u81qNSOc2bEWRJ6jVnjPMVfTLVs8RTkzgg3M28mPhHpDP0GDgdmtNqOsGWkGiKoCf6KgFMn59k9kWD55RB8gnhS5v/A1eQzD8Ge+7s96/Koglv/i//xf/NK3+3f+3f/+L/zYgO94YVl+8mH8+G/+DYy9Rtibme5pJeLKwVwb2DMuoGUnEaoAvVPJ8S6HrycK6IpaK2nZ8YEEoko6micZg0FH+GWAfqRboBxF+oClaYjuuCChDihOaIXuBLqXDmar6F7bi4mylwPlXRVT2Di769w+JlMdgFqm4dJDHem4KQcuEFUv4JZchAfD/Y0bap1EENOxCMcFnG6ffICkBbuv4pQZ6Eua6ORFSzbvGM4jgo4odhLDaUB5L+GaiOqWC0K7CqjeqamDfPy+A3TE8nOen2wGkhd9wykXk6FMC6MB6C75N1/xOHJA+7gJqK+pjdIHMZmQMF8vBaYXHAs7pJy7aZFoiQbkuc/j9uUTQxOXguGvBEQy2gk66YMKvr95wwVY1iEVj0D/LM1lyAt9FhPDGUPvsw4o63XoKsvn7IqoAs0jgP5ZMpGqOSflY0R/luiiCcGQI1GE8h4YTxl0zwVzWuQmI5bczS8fge1vjlj+wwKqn8ehBo65v0iL06Tp6i94Xkh3FnBL0KG44Lh9CZgdF8R2zUJAtxHdJRfKwxn3L1J3nkHiycm5TzTqNc//6mdceHKByjGZHR189TGZJUUiEaHkMTXXHJddJMfehgtmc5jnIMcCBcP3dlcRi2953Ifv0dk4G6jkogLAZErUP9F4NEkAACAASURBVON1X91yAd1fzBFGOZvUHPme7lJMZlki0AnXNWlhKfHefRQKpNB4bjcv6DPiEhSLFWoXuWi3CZmKgtt+ek1n8ypX0+gnH0/OUBTZVEWL5Fwdp3GOa+oEfQEsXwWMa7reLr9lgbV4E9BdMvbGF7O7dDbJUgMLpWBmJMUcaZ5EijfnzC4F6lvSnrP5jjlGdJdc+Ok2Qg8R3YVEdR/Qn0m+XvMc92cC5RaobwMOLyWqOzrNllu+ZjgVqG8Y05Rp98WBhkHKZiOgmMymIoYTCdXRfGnxNqA/zWZRAtVDhDdEf8bk6Jqdv3kvcd9sILEQjJJFpC84N8WBKM+wkROyVW45vyLwOI5XCou3dCWu7wPaZxJq4OsOLxSqhzDF3QCYjJIATHTgxbWfIppEIMJFp16iUGpkLFR2c1ZDhB4YnZILqXEhkwYQKTIpfSekBafpwhQdNC6oOawfSIG3NRGlYhdgF3KK9Wne0W3WNgLFkbID20iUW6JQw1qiOPA5VwPL1x7jiu9v3rlJL5ejgaSNCVFLVDrBrMb61lEegSxZoEttLpIYuZMMfTQgh1RErlgE6OQgnV2OXToec6B+kOZ6MRm68e/1jcW4ZoxNf0ZdIM8BCxu7zhmEmKnlY5KXNAkFKyVsI1HsSMVWXcC40Sh2PB5fE3H0hUDzdsBwWkAEFo6qJ/3c1cmQKOsRBRBKCZmyKLO5UBSA3RhKGIyE2VvYlSFNPUT0FxWKxxG+UjTxcYyqcbWC2ZMGz3lg0SY7B3tWTaY8Gb3TuwHjaTUVbW5BWUBeu+g9i4GoJOy6QPHQYzyvUb5rMZ7VMLsBbllAxAh1pOtw3h8kqEtM0S+cAwN1GJkd6cJElY4JeZQpiiZqORd265r0aCEmNC9qSSo3AHUYZqp3MgXKhj5Iz2XTnimyJVGdxZgos85PBVpUioWdVnxfQghFP7LQC4FuqqkQFNZNlOusaYylgRgs/33692n9llBFpWZqbKbBOk9qtBA0/QFm2nR+ZBrwzxnrZEptdKlgzUVjpvlmbWXw1FQKASg1G+s8QTyj9zNFd9rtn1J7/FlmPvm9dvxHvuZPe/wqFJaLH72If+l/+i9/6dv9u//ef/cXfmzAd5wKCw/0+xIQNM+gvoRf/k4yR808aKheJPoSC0fhwQKgBMxesjC5TR8sAxcBOVC82Iq0CE83WQ2Ye5WQibnwU32iVu1EMnoAzDFnxfGLq7hVpGkNs9GFCKRfyRF0qi0j9JHbLB9oegAkylJPzWN5k7LQtsmpM4p03CJ1yUWiEEku8k8xUbR0B3Lx5Wx0gNR5z4sTsxeTe6p+0iF3NRep5ZZ6uuJRoroBuis+T6QDsybVA3r/5Es2sS5ITUlOnjHNRUIGIDhWcwREEBPaEauEjAw0PZGONHuiCHx9MIDzAnKMNOEYMHUQyweeT7PjYisK7jsXH/qIaYEtIgu1vCgvRiRkL0VueEB5TIsxEVKhHgBIopWMrYlJm8eFte54Xn2J1HFPBcaQXUKTo+chZagmmpl0LJiimgvdjAToLjkRB44jX4863Qsz/Sqi+aKA2ccJAbGLtOCSbCJIx3nRbYRO3f9cEIYBia7FAiy7noaS0SmMe+E4zSGSEuNmalowaW46oiAIRHeqW44B4PFXt3EyxtFHjtuka9e0Ed6KNMcRMdHrIOkKGlN2bZRp7jXPo2tY5JR3nN8ouF9zjKnYi4hDQqdSE0P3EfVbvjdnNuojGwb6yCYTF+qcl1zQCpfcWn1ylU3NrnyfIQJo599FKqoyjUulc5ZpbCIA1X2g03OivBV77l93YioWfKARS0x/Fz4hJun8Cw8guWXqnnTWrP9WuXmVrhk1UutdbPM1ld1IBfyIdL7SNZmohXkcURJ1UjYVnYkOZ/acQxljQnZY4JSPicrmYzK0iclghOeKZiT8vDHpuIod0Sb1GKfr3hwBZYHqgcWISmOW6XyUO7qM5nzZ8jEkh1mOpdzy868Ary01AHqguyQpqBHKztEfxQGTJp6O1tSU8v/5viVCJa2YChRzFKlIium8RpiOWmNzYBHM44nTMXBhy887085OuJNLrI+Qkp97IlGxIRJ6GCKipJGJHmIq1gA1BBSR916BgNjO5ypTnaN8klea9OWmDSlnNSRDFOoTpWPervRzkadshL6P0/WnLM+fGgLKPVEwEQA9UHNsWqDcpdfkzGgXk0adBYrMObeDA2BIKQQmh1dpA4pDhGod7MpA9R4iUHML8P2+VDDHJ9sbWSQw6zMgO6UWeyBn4WYNv+oD5Ehttz46mDIhZkZCSAE1eIT+6f5yjq6E9AG6pfY5lDTQkS5C9h7CBmgjoDoHKQVEpL5OOBZFamRWL+mXYcoRlS5AtfNCPOeaysFDeDqMCoD7ze/3HHvW7OqWOnDRRgSnJhdY0xKpMxFJn5tzRCPnNVEzlaUTK88bEUs5OKisZ9ZEBREAEfg63ToI66EPlvdl53hcLaMt4OP0nPAeUSpmkY4OKuV0quTeCoupCMz7Ez6SHhoC4JJ7K+bXTVTOlLsqO8eIERcAESEs5iItO3Qn7aoAkTwhkmbVOhZ6MT7RNfI+EDnDcuR5mCM9yEgRzifNqJ/iRaZtZSpsP3IMPvCaGCyLvJ8vEAtQG5ofeT85P9TaqYh9r5h03N90FaWczJg1njFyf0/mY9p+nDWcMUaIGN5HJH+uePyFxeSfo5Dkm/8p4L/+M/L4TiOW1aeMG9mcHgEARnvc3q7w4vkj7vcLGONw2NbAwaC4bDE8Vjh7sUWhPQ59SXrq9Ql06eBuKpx/8oDdscJ4LGBqC9trwEr86NM36JzBN9+c003ztoQ4G6FUgBsVTOUw7kqIwk+/qwWpsCFIlCW1deFAaqowAfGoUZz1pKzuDOTSIgYBoXg+Xlxs8fYPnyFcjJAmQMpAauhmgP9iCfGDI+x1jeKqpRPoTbbLC0CnoDYW4hs6bcbas4gqPYSIuDzf4+ZuhWAVTG3hrELsFfTSwnUa4qDphFl6auUAiIJ6MHFXQB8F7EmA3km4VYCwAng2ILSaNMyFA3YG4nREfChQ3ir0H1rIylEL5wXkQUFc9fCPBQvIlYW8KSA/6ODf1ohFRKzSB3TOArECMBHFW43xIjtdAqqTcGcO8GKiWorKQzwYSCvg1p5jFCzK7SrArz3KNwbjD3pEJyF3GqoVcKuAWAUU7zTsmh/+qhfwSy5EzIPEeOU4FhWJjhcB+oGaNhEE6YWO7pjSJlfOIBAbB3VvoHox0eggiFYPF2mMkY2BUCS6qY5QR8l4mD1dYtkIoJunXbGoDQZTXAtpOhyHL+nmKZxAldBeXwfIQaK8F+heeMQ6YPNjg+6KqPa4JiXSLdjMUD0Xq+M6LfgMt89mB6b9Dxce+iBTHIlImXtgt7liUSZHAd9ERsyMzFvtPvDQOzk1MEQkCqqPCcnreE55IfL/dkV6lTkSoc8FunCAW0W4JkAf5NQACiaifscs2alBEJDietgMyjosObJRxHOB6T15X7oVU7SDXbNYy1RYadnkaF8ENK/kRB0WYW4oiICklcK0gAa4L0YCPRmXjnSPLYkYQ5Bm6eusjUPS+NBps71i42SKOGkSbTJr1xxpp3Tspbtlf8lx2RXnXLczNXM8YUGeNYI0aMJkRuVLUkOLHQtpu5wzgqOiq+hwlvJmF2LSkzFSiYh7ptPmWKBMpRtO074SQq5bItq6nampjn4znEfNxkV2GB1OMDWXWLyzUZddVRljJCa9IgRQPpCiSZMgTPo4NgrJ5BjXAvUNEdwoZ4olCzYeT3/Jc1PdxglBz1oy6YDjCzEhn+aYonuGhOTn+BCJydwrN91yM0pEFm9jQvqpCU3NoNRwY5YwpiieoJE0aUj5pkTL9cCi29Xz9Z+bGiI5gfpkKJe1feNaTEh5sScCnJsCUQm0lxLVAz8zo+R1okbAprxk3dMELxfP44oxK1EKZqUe5ripchdgm6Tf1HM0ke7ZJPKFmKKhlKUxXUZCy8RCyNpH2/B4ARrVZTM6XyYzsi4xBfwc7ZIpo5kSG4xA+eAxnCo0by2GMw1XChTHwGgWH6fok7yNqHj+i32YzNXUSORYxDhHoBhSNjNKmg3ydBemMdDMjxTU7O6Z41ikJSoJcPt2SSpqsXXcl6cJmrRx2pc5ehrWdWGKQQlGTqZy1bsBvqK7aVACrpEotg5IhbRPmsX+3KDYugktBTBRR4nk6hTlQefWnLk5nJcoHkaiqAcizb5WibaqpnnPTQU5eNh1QTQ1mX6Rlkqqp7QewSiijjFCdi7Raw2qdx1CkQ32LHxNNE/vekaUJPQzN3N8k5oXQ6J/PjEdEi4gVCy+JqOsTH1NGsfJAGdMCKQQgJJT8RuVgDz0NGeybjZDqsxkNgXrAE0jqqgVzZaqAtlMCWCTCdYxE9OHRIuV82tCMjOyDugHFqUhvl8E5jiT/JxSfyKuBABin5DPhFbyd5FMk9J7Q5yLyLy9n/8/nhSaqZj9cxWZMXzn40YWP3wRf+OfAGL5e//+rwZi+Z328i20w4urBxhN7aCSAX/lsy/hg4QxDi9We/zmx69w8r1HhCBQnfY4diW2xxpaBry7XeP0fI8QBdTFgIddA2M8Pnh5j+WCN8/HP3iHn92c4fXtCYQJ8K2GvuwhBLBZdSwkW4PlxRFCRXinUJ928INCWTpcnTH+IAYBvR6haofYaqjNCDcq+EEBlYeQgDQBoVcoSofXn19CftBC6gjfabhBAwLodyXciwHjoUD9wQHDtsLhzRJnL7aMZQBgTgfEALgzB3E6sjj0AvGgEYPA9atT4KYEegl3VyGmOAe3LSBawmJikBBt5l0B0UnEo0bUEeMLi6gj3CpAno2Qo0A4asijgmolYqtZzL4rgSDQfzxAtArxsYB61BCVJ/V2UFAnI2IREFsNvBhgdwVCSZ0cBonJlOJeQ/Y0YxkvUpFrBeoPDtQQegHZSsAJyIUFjtTsuQs7IYlRRvRXDv7EQYw03xB3BdSdQWg87IsR+igBKyZdIAT1dvCAOkpEA4hRQliJ4kZD9gIIRJpVzw/g4TRgOAtTQaMOCuZ+ns8oALdMnVGf9tULGoEIFg2+CdAHAXWU8E2YNGMAizrhiEaFeqYayTFRuhL6O26ICDTfqpkWGQGzk4gqMtt1L6HvNba/NcLVkRRsJ5DzUN06TAt93VGryBgJGqmokQUVdXsyxVuEVHBEhJImJkFhOtYcIaF6FtAmIeCZGh4VoFoxIbdRJ1RIsuiashItj9VXPL9IBakceYwAqeu647H0FyzSzIHzNKaiUHWAcKS8q47Nie7K0+G4JoIugNmAI5KSO+W+7jk2UmszE4LU8OGUBYxLuZs05JjpzG5JtE060sxtk5D9dC2ZHZHIbL6S6a9mTx0g0X+O5fAR58EtMOnKyApgEZuzaoUj6s/zwyJMjpyDnD+qD5iQY5WQcyAxFxrg8H1uE2kfruLvSPMUBRE9V7Oo9GVuEszIrD5iLtAXmFDg44epOEr7DUkLyYX2/LpMFdYtqcOczydU7UMqTDsWHxntlJaO3sNZzpDk6xGA4VROx8B5TsWUYDHlS2oFx3W6HsuZ3iVHHq9bCJT3McWJiKkADyUR8HFJFkPOzZUjx6gTjTn30XyRnJRdoiDHuZAWntuOUsAuSYU1h1TESGogo5qvjawtFWlbvmCREopp+MgZtSHdY2rkeHzFzwOyfARcJSbX9XKb8jmPnMdxSYqtObIZ4wsx7X863oSCQswoadDAsJJwVboGDQtBaZlDGlJRQyr+nHVqlzzOcpeosgNp1mwExemzi7EVPLf9ho7aMpvbpAzJHNUhIseCSBdxEalDZCYlb4TuUqdoF0WzG0F3deEZIxI054m5wCIh8IAv6f6dc28zpT4kV3tXyfQZHqFbIoEyu8abzKZKhZZL9F4Xp4JNuuSQnmjBmXHAOA5JZ+kxTqhrzurMjvO+Ig00inR/jRFuaeaMzITYx+wov6Brt12RGkw2VKJeR0xjIi2WiLKIYByIEvA1HYejkdC9T3R9IpwssDnfygZmWKbvOt05ZnKmPE+3LEhVTfmYIpvZ+IhQa4RCwexJnxUhXReGVGe97VjoJeOeYFSK8wgwDx1UotSGQk0ZlMIRmSOimhBQl1DZp4hodgFWCjAaYVURHVSKTsFCINZloto+MdFJuZ4xu9EKMe07NqSxidFCOE8EMwQgu+d6ai9j+oGULEyzG279JNjYaL43ayKTw20MYS4qk5stnOOPUkQ+tQKkosMtwNcIORWHQgi+P+tCw/toZi4qhRDUVoYIoeQv/IEU8082BvqOPwLEL/3nV+XxnS4srVd4/eUFbu9WKJTH9ljj8/sL3O8a9L3BV3en+OL+HN3/cw6lIuzXC+YligijPZQO2B9qhFGh/HED32v0vcGr12fohgLlNwW+en2OqrIQIiKOvKDVHy/gR4m72xXGQwFTORy/WSHsDOpmwPjVEhglDtdLvHtYJQOZCH9Twe8KVOcd/LZAcBKmZq5dDIAUEaII8F6gvGqh/4DCKll4IpmWXzrqTQkIoL1ZQC0soCIeHxf8oi498GWDGAWanxnoryqIQQJFwOLqyAWCT+6RCwesLXTjoJYOcmWhzgeiWQ8SWDjUpx3UwkGYMNFa1z8uIKxAca8Qb+gUdvnhI2KR3CcbBzEoalo7AXNdINYeF5/ccyEpmB8HK6G+qFHcsGg2n9fQK4vyVnHMZYAYJeRewz8fIa0ABonqTbK/7wXauwblOwW5sHS/9EBMCCgCoG8NYCKNbnoJ86hQvDXQB4n6rUDYOMSrHsU7DXVnYNcecmVR3tEUo36jUGwlYh3g1h7VO25bRMB+f4A/dZBLm8xV+MVf3Uqc/QHdMfUhFTgFgKWFHAXKR4H1T+YPx+pWQFrSZ0MZUL+V0DtJva+OiI2HWwY0rwVps+1c+MGEhBhG2BPPQlMgOWOKSccaNanTcmBBAQDFg4TdBLgTh9U/KKAGgWIn4KuA8p7a3Vyo6paFa3XNcRePkvE6Dnjxtz31QC8GNG+IRJb3wPqnfA9RT2A884iaaGUoaW6z+ipivOL8UZvIhaU99TM195B0ZoLU9Kg5T9GwQAFYxCzexAntdU2ckA3SkoHNT2hQ0196VHcRq68wFRXZ1CYUpEHWbxWatxHFY4RdB9iNh26JxJojUL+NjDWy1DYX+4RARxZMbkFEsXwgMrX6JiZ9IzWSEPyX5yiiuolYfk0tbLFNBksyYjiPE+rWvCE91TURds1iPRo2EIKJWH0JjCeBxVdEihvivKme48pU4ahYMAeVdLNtnJDfoIDuReACWXGOXMPtFTsWZ/rIhbLZx8mBE2CBN25Ir9XdvAhl7iC345acq+4qwDW8N6q7SJTWU+dtjhG+oqGRbnkd6j5yHGOcZARukVCRSKSyfsfxqIFIsxpYPOei6/AR52P5OtA9NOkPiz0pnc07Hnfel4gs0hCovV68oaaxugtE/UbSVoVn0VVuifocPxDoz4H6LsC0EfVtQPkQk6EN9brVY5zGP25m5NPVnDs1psgqwSKLVN8AlSip9W2gljbJLYbTJKnwLKqqR15n0pFOnYu5IhVh5S6hHZ4FU0aNs27YG+pV6cJJRFj3EfUD9ZtEZdJ38YpNoHIfUOxZeBfHgMW1g/Qp5sUnvXYtJq2k6gOKnYfugOUbx6xCw0JnSIU8jXF4LGqkDpZyAF7rwgPdGXWiviQq3J8zOzUooEyU0+oxbXskrTcbyWRqt22ILklLva/wQPPOQqaC0yREb1wJLF6PGFdiyoEkcphdXIng1Xd+0mYixlT8+9TMIi3W7H2KlJpRYgiwQVRLSE8092mElSvF1ChR3Yx6zsZxIbmmOthaTjFKaggwB5dMjQJ8zULebEe4RkJ1AcXWwjwO02uiFFCtgxwD9MHy+JcJEe08Y40cEchxpaAGPyHtxU0H1yj4UlJzWUuMG03Ka+8Yi3SwGNcK6mhhGw1hA9TAOKcc4wMArtapcIyTi2qm9krr034ZFaQfmduIRHMVNkB6RkCp3hF9lQKyTdEwKpnrHHvqSFMxGBqD4fkCvmF0z//P3psEWbLl6V2/c46Pd74xR2RGDi/fWFPPEy1kgBoM6BawYMUSwY4dC/YgtsLYscdMBjuMBTIZwkwmIYmeu6pe1Xv1psx8OUTGfCef/ZzD4u9+I19LamMorKuwvmbXMjLiDu7H/fo93/mm3lNK67BDYQxdaLrFbwWBhj5wpwOZLuqqYaoaWqn12QKvSuqsVFYI6OurTAKzZRtVX58CIpt1DlV2wTU9KI3DO8YzjvBJLNLa/vWaFupGpLx1A1W9rWTBOogjSXwNAogjVBKjoujOc9lLYcPwrlqkZwydxeeFAMqmFsbSmLuQnbq+81pqLf5V7yX0p69SattOjuu2P//5O9YK6G1a/Nv+0r+6/Uzefq6BpXMK1Si8VWy6xFeAJGlosog0lv83E0d5ncoKs9V4r1hlCW1taBsjtQ8zjw4tWsmXZRrXNI9LTOiIA8vefA1WEVyFtInHxBbfaMJBg/cKP24x04aiiIQtiRx61KC0l3TP0AqY8lBdDKS2oNG0jaHesduqBqU8TRZR3iZUO06SXRVSLWA8OrYEpSJIWqJ5KWA0drhWWCjbatp7cuFpB5524GFWQ63JlglR0mDGDWiPDjzpUBJjbWFkdRuZ4FS7ViTCjcFuAnTgsIeVfHn1zIRDwGOuKOpQJKGlEmDXKtAweKWw90ownqyM8LHHLyORRg1bTK2o91swXuSgWmSbPrWozMCkQR+UxMNaAogqSeQbn6yFPXIde1cbAbUehpMS32hUKyBJhQK2+qAmF0IzEzBEq3CV6SSLEnTkslDYnMHdxE2FffE96KCTeOUBZhFs31v8q8I+VHORynrjsfMGmzp8K2XtzbArKW9lIHUjx8omQORILyT5sjxshYWsJJnWdXKvPuHTlAg4LxEfV9MdGM822RRg8FqknsmNE0AXdXfTjUkkq8jRUibQPrqTo6hGSSl9dsfQNeNOjhsLSClnRhg2JYxMz0Q0w7vQop5RhM7vO2+6fZeT7o7dRBhF47fSPdf5Xk0hjKf4WjupUgR24LpKDQnC6vdfwfZ4FweuY01FOv02C2QqmbC2O802lVOAi0yIJTlVAG89ldcRSakSuXInWQs3bL2+vbxTugxFgik1FML0BHk3yR50YUtDRbEvyaLtQOSZuhEJsI07sJp2/tSOdewDeryR98wPlbDRSkrsfdAFysR9+JXsc7VnZbGgZOszbSaKZscKo9T5lpWTsZWKDAFBkjIrbGnPegWFgNEw460UzE562TEpyss54CLx1uLBTluSa79NK5XjLeew78LTer+f+EaF9Qsz7nyorYDVMHe4yG8Zuv4a5SLZFt0xu8FG2EPbgZUwEyDcs0vKCeNVj6ViQgKC5LrRpgJcmlHHFvYJyZ331QcCxqLNXW+yV+Klezu4TJgctn7ffsx05yeUa6swgaq9893eBbix7ZbtPxt9WFpYSOhbNVXYUMYzqKSeIVq7rZy0TdX2Gg4CeLae30KAVd9t3MuCxWcnwL5nI4X5k/2QFGBPtBFw0fZySCfHqP+8b/uJFfhAEV+X1FNFNTXbz7u8p3zGe6+3ct01QcnY6ebuet4fN9spCXq2XYCe5C+0iQQP9bUbppTn9D7ksPAd8Oy8n4V4JyXcrpOvVqJEKXfD7lrWUo+NzC1CJYsomduCVRf0tTGdLNbTsY/CJvYVGOLrb2i78KNw026PiVd3sldn5ByUWheNTfW2G1Z16aW9/1UApwBUk9ciq/ZdsFl3frlA4RKzXbjDeewgFBlvZXGR2gIrmwTU024RuAv1EYZP40yXTly0hKtazo9JRHxTi0e1S2kNM3vX7aqAVlKBfV+34RGWz4EpulCkUK5psj0aXbXo1m3ZTACbGNnfxnVjLSmt3gjT18uLXaBFpttLMLUSwFo2qLLumF3ThfNICJFq3J10tQOPsq0CasXkKxJYH2ho7TZRVueVsI59iE3X99p3s2KUAD4tfyfQIsnV0sPqIklk9YEWgPhWH2jPYG5vPSDVSn7u3zcMtt2nvMVgfuO5cMeY9v2exqD613ibJTSGbVKsNm+9drAFijI8Xh7bv0/HWCpjvslGdgyoPFb/hXdlzF/YdfnzcvMguOGnfP9Zuf1ceyyPvrXj/6e/N+F/vPkNik7T82yzwy/PX7AXrvl7b77D4WDFL0++5kW5Q6xbPl0fsp9seJHNGYUV07Dk45sjfvfej/h0c8SPLo/YGeY8fbnP733nB/zx1SnzpGAUVuxEOdYrZmHBokn5Bz/5kF975zmt03xycciTvWtuigFHwxXTsOSfvXxEsUr49juveLWc8lsnz/jD8wfspDknwyXjoORPrk75N48/5e9++qtMhiX/2snn/OM3T3gwuQXg1WaKdZrz1zPefXzOpo44HS/4+M0xTR2QDiqOx2teryY82bnmi+s9xmnJukj4zuEZP748pG0No7QiMpaLxQitPWFoSaOG1gqY/WDnks9v91luEn7nyWf8+PaI60yYz9mgoGoDlPLcLof87gcf8798/i3+7Xc/4R88+4DvHJ3xJ88fcH//llUZU9Yho7Til/Zf4rzmh9fH1K0hDlsOBxt++OKEo70liyzFGPGh7o83PHu5x3BaMh0UnN9M0MozHFQsrkYo4zk8XHC7HvDh4QXf/8kDvv3+S3787IQnpxcsipTWyoVxtU4ZDCumacnrN3NMZPnu/Vd8cn7Et4/O+Px6Hw/81skz/umrx1RVwHhYohWs8xhjHIFxFEXErz98zk9uDradnZOk5OnrPaKkIQgcSnmKPOZwd0lkLK+up4Sh5btHZ/z+p+8QpC2TcU4Strx+sUs8LfnO8Rk/enPMyXzJ69sp93cWnK9H5HmMd4o4aairkF988IIfvj7BtoY4qWlqQSrvH13y6etDchqWPQAAIABJREFU+V7OA7797is+OzsA5WnLEF9p5scrjO6lJp7LF3MevnPBbZ6yuhqKP7STLKvcoKY1YdwyTCtuXs0Ip9LJ6i8SvvtLT3mxmlJUEXUdSB3LUpjq0eGGk8mKz744RrWa8b0VqzdjvvvR11xkI27XA7xTNKsIVRr8wEo/5ouE5qDhtz/6gn/2+x8S3suo1jHJpCIILM0Pp4x/+ZqrNxPiSUW1iTGxxRaG4U5B+XSMHThOHl/x5scSyWuOC9qbZNvnqCuNG1rCUY19k2KOc5pFgrKK4cmasojwZwnxI/k5/DKlnnV1JVYxONlIxc9tjFlr0g8XZE+nsFeRDqX3tLlM0aVi/N5COjpXEcODjPKrMXYoKdScFswmOVfnE8JBQ5w0pFHD5dmUwVcR0W/c0FhD+dUYf1jJd+irROpaekA2aZnsZDStofp6hK7FO6xrTbjUtCOHHTrCW4ONPeYkp8kiwkGDe5WKDHmvwSSW+Ecp1Xdy3HWM3qlJ0pr8bETy2lAeSBck2uMPKsZ/mLL5zRz9dUqz10gQRqukd3LmtknbduTYe3TD9ee7Ig0OBIy6PVlAUMaR/DgVb6yGZqclfR5SfVhI1U/kiS+MVG28Vqy+V5N+FWFjkd4H1yHtXkP0JqRNRYJtY090K1Uo7U5L8iqknjlGzzXZiSe5llTmXnKMQ2TeDuzIMXxu2DxpmX/fsHq3Y+c7j3Q9cwxea4oD1wEVtQVZQS4LNV4LmHJdKJpNBDQr1/slYfPYwrSB24j4WpK88/uW8FbjA0guFZt3LKOnhs1jS3xlSN94Ng/pAps61rHp/NIjOT4u8WAVwxca3UlHq5nfgt30QlEcdP7ctPcKS0r49DNZHFi957YVPZIurIivFdWex0YC5nwAg1dakrL3RcVQzx0739cd+yiLYumFAO524NFWvLvVXIBvfCWsfbHfBapZkX2Ha0V+7IiWeusPtoln8qUsdPThY7Lw1o19BspLSrYPYPi6B3Cyj9VMEsbDtSwK9eMBogToA+iKg05CeyP7qGth2ZuhLOrEt578+M6fDaIsqacwfu63nuP8UBZWoqXfpgj31TPDM0c1FZl/ciOJyH3tigug3BOvbpsKM7y+r5k8tzRDLanKXhYjRq+krsamivjWEWWOfM9gky6leqyIFxJ4Vewr0qu7upgok9+vHmlGLxzNUDF63XLzUcjwtSMsJIF4cOkodkWmaxr5rLQDxeDSSaqwk/ClaCM1J5sT6bsNM9el9kJ605IdBndhV7XfgmBlIVpbbKIJVy3ZSURya2kGkrK7Po1IFlYWKWth5OuxxlSe5FpAaH4YktxYyrlhcNFQ7obCvMaaeNGCE/9o72ENcmHseml5fFPRjKNO0eNFxts4yp1guy993YkLBVTW84ho1QUMlS0u0LhYkn2bUUC4bsTbCR0LqzsWVMC7MKYWl3bhkJn4Ok3RSKhR2eKSoKscMei8EYAaanR9F5CE99+oJlHWIlUi7TaR1keBgPLusTjQ6ww3Hgp4Lmp6jye2l/LarWz3G52VIOmzvV+zrzXx/g6AVrUwmN7ji2ILLNFKGE0nj/VVvQWUfWAQ3Elh/2X1I38++Gd7cw7X+zz/H9x+FjyWg/eO/Yf/7d/6qb/un/7uf/2Xvm/wc85YKuX5s/IhGxtzU8uS6LenZzTecFFPmCc5h/Gai3rCPzl/h1Wb0nrDF6t9Khvw+fU+X2/mAhxNyapJ+Dfuf8bvHn3Mk9MLrqoRjyc3vF5N+Ox6ny9Xe6ybhNZpLssRv/DwJas64Syb8GTvmqyJ8MD7ows+XRxwMNnw2x9+wUU2QmvH63zKTppzmQ359PaAP7h4iPWKTzZHJHHDLC34h6/fYyfNWVYp8yhnVYgefrSbo/HkVUSgHGUW8bsffIz3iqINORhv+Ho5oypD5knBg/kttTU8mt+itaRGXq8l4CcM5YK73KRkRYxzmh+cn7DOY9o64B+9eMKqjKmqDkxmqYCTlzOOd5d8tdljmNZ8ne3w26dP+eJmD4CbPOVovCYILIt1yv/6yUecl2N+ef8lZR3y5s2M739+SpLWTGO5MHxr/1y2pUjYP1iRvRmyLmNOdpcMBwJukklFELdc3kxI44bSBoTjWsD06QVGOaxTOK8YxjVKQfZyzLqMOT66xXvFpxeHeA+fXBxyOlsAcFZMybOYJo/QCnbSnGoVk18OWV0PcV7xTz97Qho2ZFcDVlnCqkzweUBTB2QXQ5xTuEZTtwHLIiGOWz7Yv6B1GmU8u7MNi8WQsy/2iSYVcdTy8dkxs1HO2WJC2xjerMbUtSzFu0LGHOAHL+/JtfUspshidmcbosjy9HoHYxxh1KIiR2MNbW1wTkMWgPEsV/J5uLkdcvV0B5W2xKYlyxKwimjQEB/k4mP18CuPv6YuQm5vRlum3TUadVDy/U8fsFwPKM+HAioXMYcPbsBDnsXEQUs4rdCFomkNZtzwxeUeN8shrgP7e/eW8qEN5EukmYu8+/vnJ3jjqc+GUGuSqCEKWuqpLGLQaqpFAq3CloZwVFPkkbAMsePsfCasxcjSVgHBTolLJFDKTVrQAoJ96JmOSszaoBrF5mqIrYVpKDaxMLHTnk6C5Chjb5TdJeVp2CwGwjjUhnyVSNepFdayagLU8xQzqamrQIKEUos9rpiMc64uJuhlQFsbsnXC1dUYvPROLs4m5K9H2KnFZSG+Y7q8EVlx+mANtWZ1PaRtxR+GFgADbCXLw4NMti+RoC9VGJoy2II8vQywWUBxZHG3sVQVVYb85Qg9rySUqQHuFQJeioBi38NZIimJVqTXPnRUjyvcyG593TrXXD6fb8FZO5KALJSHZYjLQqkUqqXOSW86dmod4kMv/aEdq71+R57ng44FWwTS++rZ9lLSqSW2iaUbmUi5UUu52yXPAl53rFbits9VTp6fHzvChaHcU9hJF7B1r8RGImNuUwgy6VUVttVvt6OeOWHKGrbVRdGtEmnyzN0FHa01+iIS1jfyFEdOAplWEurlA4hu5JjGV7IoUO52DKiSwKje8+y1qAlMIR7lHvgVh37LJppKWNzsvtuG69QTR37kiG40wUaRH6kusEm8kvFN5+Ouuh7LTBGutfSnroXRa4ayDVIzpCn31Bbs9UnrPXNqE7/1AffMYbXTeYLfmkO6EOJrWRiodrokciuMvqQNy3FshxLa1O8v0EnPBWD2vkybdHLpLqAp6Dya9USOd3ZPfIrt8A74u+iuIsgr8VTbmK0fOFpBeq5IL9S2TswFUi/UV0aFGwHQxU7P0Mr+5wciiTVdUFEvzbeJ7KOoGYRprEdyjlUzAZV97VCQ3e13z9A2qVyzcbLt7bDzshoBxMLmC/h1gYxltPBbP3AzMoxeua03c1sn1gr7rBtRRvjudfrj+jbbCnyj1unteppqLseyTbSELnXeeUnWtsL2+l72LYm5faCSqf02QVmqiaSipU1Nd86I1NmFwj7r2gsL2m2XjfU2GElZj4s0baq33s12YDq2XZhoZT2jFyXRWl7DJvKd4CIJ2IlvarwSZreexXcsaNClO3dpsm1q3mJG7Zalq2dSf+ICLenAQ/F4utCgqq4qqA8ach0gNJKmixP21cXBndzWe1wSCIjsalN6memWGe1lpyB+TKP4Rn9lH+jTM4mdRHV7V289/m3vZ9Ol0b7NYmp1J3XdfrC7b03voG2/ASRVEOCtxVt757nsgW1/72Sv27939/55P89k2N1N5qs/7fvPyu3nm7H89o6P//P/gvnBmqPxmkFQE2nL62zK+XLMBwcXfP/LU+JRxb/68Cv+8fN32JtkPJrc8MVij50052w1QWvHYjkkCC1J3HA6W6CV54df3WO+uyEwjqyMOJqueXE1o1nGTA43RIHldjkkTmrisOVovOYyG3H9bE56vEFrj1aeuglI45pNHrM7lQTb2/WAtjVo7WivU5LDjDCwrM5HhJOa5jZGjxuipMUYxyCuuTybomORzaZpTVUHRFFLXQekcUPVBBjjqGv5t3oxQh2WW+ZvkyXMpxnrPME5xaO9G55fz2nqAFdIoquZ1rhG4ytDOK7ZmWYE2nG9Hgo7t0zkSyh0qOsIv9PAJmB0f8X6egiVJt4rmI0KLq4mqKsIN2sZzgpheC5SDt+94s3ZnNE8J1t1RnKv8KVheJCRXQ0kobYMOL13zU02IH8xlknQozX5KmE0K9icj1CDFt9ocCJrREEwbATwbULSvZy6CrGrECKHSYT1otVEV4b5L19ysxrQXqd444muDP5Jjj1LcbMWSk18ZahOGpG2LAPUQYVdhQTTmnYdohKLOY87T4XHDS3JWUj9boHbSOKv24h0SllFeCtprj4W2a/JNO1+A6VGTxr8dUyQS+F99rhjfLoJvE8c4XWAvVeizxLa/VqSfa9TvPaYSSM2h1cJ7VCSUduBvFf6IqA8sfhAZlG61AK+ai2eVjpf3lzSa13qiA9z2q9GMqkvRUYpYQte/J03obAuj6VrLLo21Pst6YtQ/Iupp521kp5rvAQwAW7colcB0VJT3mswiwC7V6NWoUge5w2jH8dkD6SzFQ3tSJKAkwtDuS+LI0GmaSeO+NIQrmH9rRoqjRpY1CLspK+Kes+SvA4oj1qUU4RLTXSr2LzbEl0ZkcglIh8Ou4TaaCETvHricNOW9GlEcdKSngW0Q098pcgeW1Tdh/7QSaEV9dyRXEgKr6m63tTOdxmuO09dDeWRZfZjTTVTlAeOcCUVQcWx27JUulG4wDN6IRPK4sh3nbOSEuxiCZqKrzXVTleNUkgPK0jaq3KShGsTaIZ3FS7JlbAibSqAKCjEm1vPHKOnmvU7junnms2p+FejlQT11F3/bDPsOv5aiK8V2QMBcLqSMRg97zoSM8ge+K10t++hjVZdcA4yPvGNYvNAnteDCd11oeoKyv27Pt4wh/xYKp7SC2GY7uSnkN0TJs0FkF5JCEw7YtsFmh8pJk8dV7+oGL6U7Ukv5Pe6k9gO3ohcUibvbLtK2wEk1z34kzEQ36FMjstdYd/iW6nQsYl4A70RmXKxLx2t1RwGF+LJTK5kHMo9GL7wFAeqS2+V90yu5X2qmfSLulCxfqC2/bNB3rGzA9newZknO5HzzcXyfBvC+pEwmrqR9xi9FC+npPX2E/u7VNZmpLb7qawE5SyeaKmb0ZK8Wu2IvLsPV6on4qs1tWf9UIvfthJQFW7E/1lNFeOvG6pZcJdo66SzVAKdZDyH59IzaqpOau9EChyvHPmBoe+g7KudZPy1AL6u9qqaK0YvHfVIjm1YiJS4GuutdLqvVDG1Z/3AsPNpQz0y25qUamoIc0exI/tTTxSjM4szXS9mz4yu5QcbCTDqa7yaodom2WoLw1cV64cxpoZqIkxiNTXbqhYXKMK1JTsOSRZWgn24kwInNw3FfsTgvCI7jqU6ZtXSjHrGzdEOBWglNzXlTtQxddIn2qYaGyoG5w3VPBCmcNOKTLdLLO1rVnQtUtxm0ieqOkl6HRuiVUs9CWgTYQ4l1VWYSRcKqAtySzWXgJ820aTnFcVhTLxoKXcC0itJeI2WDTYxNCNDvBCmsJ4KCxotG+n8zBrWj4ekV913Y5cW6yItXtLOR2lTs/Ve4gWghlm3fZEW8Nk4qVqphB1sZzIf0b2P08vrBpuGdhRuPaBegS4b7DhBV1KL4gN912XZz6u9p50khDe5AL9Ao6oGl4jCTvWhP10nphvF0r/Zs44d4ykX8i419u06Eq0FhGmNaq2E9YD8rBVEodSVOIcfJPJz93hau+3G/EYqa7/tqmMe++CeuEv6KisBiWEobGR/64Dk28mu3naMqDFbsPgX9lf+y2Sub6fF/v8gFXbw3ol/77/56TOWP/ibf/svfd/g5xxYTj449L/x3/1H3BQDWqtZLgfowDGf5ORVSFWF/Lvv/4hn2S4/+vqYKGlp6gBbGIJBS7uMMNMa7xRHe0teP98l2SlJooZpWvLiYk46qMluUlRlukAYxXx3zc3VGKU7jQUSsGNXERjP/HDF7ZsJOEW6l1O+GuEnDTSa0X5G9vVE/m9lWfrw3i2XN2NMYGlWMcGogZcpweON9HQ2SmSEkwa9CBk9XtL80ZzyvRIWshquTwpJeE0tOrKiuW40aI9ahfjQgZHtDZamqzUQD5MdWQhEWmXWBjuT6g6UlwTUVuESRziraC8T8eX1wSjDBn2WdOmbijb1nffSC8iYOfyoJTwX32K0VNSPKqk3WQTMvnXN9dUYtQhxQwEtqu58LYFHpVJdYnItPsXIyz7VGl0qTn/hjGfP9wmuw26C4LETS3QZ0MyEuRJvpsId1PjKoGKLzwN03rERQDuVACN3GxFsNM3MEi5Mt4rtiBa6q/SAdmzRlazoOwN2aKW/sBK/Y70v1SG6EjYrWsjqqg8EeKpuhV/ChtSWQTG1hPDgJN3U7JcEPxlQ7VviS2Ezen+djZFxaCSxFH+XJOpCCVepZ7Lin1woqh1hEkwpUf7Vrqc9qkm+iLGpBNSYXGpboougS4gUYAPie2xGnmbHMvs4ID+WCb6uZFtt7LsVc02bdOdAKExRuNDbffMd8HIRXU/eW3Iz1cn/QtnOPsHUDvwWuNVTAUVtKuebKe/YmXAlIFp6PxXFkSNcikwLJcBl+FLRDIV5KPY7dvJKtqevtAD52+CNoppLuiiebdJtfCtslnnrOxXe8nV1QCl/3GCWgXg0vYC4pgM28cLTjOX86SefLob4uku57RgoYcfuKk7agSe56pnKOwbIa3mcrroO1bIbu1RketVcjl+06oDWpWf1RFJn4wWo1tN2vsG+2kJX4gntfbI2km3VDZS7AgJ9cHc+hhuZ8Lddz6JNIFrIpL+aS+hRnz4pbMOdDLFnOYJCEmJ70GJT2Y5t/UbfzenZspUg7FafttkHvgSZMDAuFDCiu7AZ3QjQCHLx65a78hkMctmO5EYAmk0632LuKWfd+di9r42VMFEdI6MbAWRt55+VNFC+MZ427vdPJIw2Ybs9LpJrgOyM/Ny+VR/SjOT9+p5VXcvvwq5T9e3zD2DxoUiKo7WExvTXDdQdwOnPr7t9ujuX+uClZqC2Hk9T9768nhlUxGs5Lm2itiFYfbVL74eMsq6yJBJQ2vtPQc57SZ8VgBeUwt6Fud9W2kQrR7lzByDD/K6SpZjrrgfUUw+1hBBpkaMGhdvKYU0toTNh7qm75/aVItIz2X2PN9LHWewG287PZCFexzaVmo1iP6SaKobnDhvfVQ+hRE4pYUeaaC2T+z58J6jc1tcYVA5T3tVDiZfbUu4EhLm8hmo9NpHvQhd221dLBUjfGassxLc1xWFMkN0xRz0glBqTjo1L9RYQtqnp+jm1dG8aJV2eodqG9vT720zMtq7EddUiqnWg75jlZiyP6eWlpgOiunuPehpIFUkXuGMTAUBephndvslJ4Y2kwdrYYIp26780eY0dRRLa0zracSSgsHaSOms94XVOvTckXFXbsWhHobx2J/dUtgvXsR4fm60MVTUON5AaDl233wgP8p3XEbgDj9224kCXtbCGgZZAni4sR2cFdjZC5xUEhnaSECxySYntfZYg4NE6kZx2zKJ4L7u/9aCrkf5KlRXfBJlKiXS1bkSKG/cL2e4uyTYvBVz28lbXvV8HDre9lv1+dvvY+yv7mhHV1468jR3q5g6A9gmzbz3G17VIYa2V57/93E4K+7ZM9s/f3k6Q9d7jq+pf+Lj/K7e/Apb/399+rqWwHsWr5RSlPHujjNGk4HT/lt2BsIIPD274+19+xMfPTjjYW1FXAeNRwenpNbNJzsMnF8wnOdNJzptPDtAD+UC3TnO5HuKyAKMdv/LBM5LDTJJhc8PNqxmDSSnAUnuUkZ5JlbZEk4rll3MJphk37I0zhg9WHB0tJNAGmD2+xcQWlQXE05KLp7vszDKc0+i0xVmFPaipXwxJJyXxvCS9v5YgoHnDepliv7shHjSMHy5xe1I8pncqwkEjrF3UojYBWEV8kpEe5ESzio8+eEn4ZI16nDF774b03SXxbkE4qiFwpO8uUYUmWBqSnZL0ZEN8uiGcy0XFJ47o1jA+WhMsDN4LeJq9d0O91+IGDn0/J9wvaMaOcK2g0fhHBeOHS6oDYVzNMqDdr7l+Nsc3WkBWrdm7t0S1inC/EDmcU4QHBebxRkBlbAluA+LDHOUUr2+mmEWAPy2wIyt9kwraB6WE1+xWJMcZduTwhZFKlNcxyiriGw33C9SDjGAR4G4kvbbZFblbc9AQrhTRQlOd1jQHDcFGsf/gFq896YcL7FBSZPEd8NmzmLVh/KUherRBN4rquKU5aPD3C9zAkl4q2pndhgv1/Zn1zDH87k0XxKHgZUo79LJNY4cdSImxKRRu4MAp7ElFsJHnl4ct9bsF9UFLO/Db+oD1u5bqsCW9kG/xzZOWZq9BLUKKRzXN/Yr0zEhX31VAc6+mTaHacTSHDeFabUG12WjWj5x4hA5b2pFn+ELO6+Awx3ZywWilCNcSJmNTCZGq7jXU+y3N2NM8KTqGCtS31iIzHPdJkYr6wwIUVHsiOaxnjmpX2Lk29diBp9yXhEWCu9RbF0sdTX5q8dp34TieatcxegaLb7XkDyz1pJNsDjzVXHoji9OGzSMrgJOOKfMimdy812AaeX0XCCMGUO45qrkkt5b7nmpHnpuftgyehVv2Z/jSU81AahDE46UryB+0xNcSuFJPJJnTG/HDFYeezROLrjtQuIbBmaI49GT3PdXMUxw4Nk8ayj1Heq6258nWl+Zhc8r2fPBK+lWLA+kQDbtQoHJfvH71WABPfigLBdkD2+2np5l6wpXvOgO7DsukA7Q9U7enyO67bb2ETcCm4iUrDjybU2EZAVbvOmzSA6hu/GayeGBjYRzrjm0t9gT85cfik2vGcmyKQ0lv9Ur+5pXqWE1YfmglrGjWbUckyanlnnj+JHwJ8nvdNWOoGL1y1GPxwm3uC9janGhZBAil8qLYEwakr/AINzJWzUDSTNGwfqRYPbkDpm8nt0ZrYSjxkB8JYN2cCrisdhTrB2xlks1QSZhTF9IjSb8CjAaXjvxIUU0V5Y6i6RjRZixqhzDzFHvqzgda+rsQp4Ewnc1IwKtufFdDche41QyERWuG4iWsJgL+oo1nc6plLGeSUlrsyfUvXnbnf7dfyUK8e/VEtm1zosn3Nc4ISxdtnAQvBWyDi+qJohkqNvcM9VhRzYSp90ZY3809I2AwlH2rJorswFDNZRttrKROZipSTBcoqs6vV+yobW+sV1CNpS6kGahtCm2batpOVhuvXAeouuMfa8pdzfDCsTkRdjEsxLvYDGQ7mqEmKB31xFDNZBFX6lRMt7Ain0tdO/L9ABtril3ThSppqokwjs1Y+hA3xwF992s1M1Rj2Ufd92+GeivfDLK2Y891N16aYi8kyFoJ5Gk85V5IUFjyg5BiV8ay3AsxlSXIrVR9GEguK2zSp3/7rstYC8jvqkBcJMcmWrRkxxFBYTG1o54EIvGdhthEYypHPQ2opyHFQYwpLfUkIFzV4pUsWsr9Oxav3IswZUszCalnIeV+hEtCbGzQtaU4SQW0dmE1PtDY2NBOU4JNjR2GtCO5y8KBIT9J5Po3jahnMS4JRIYaGgkEqhoZS6PwoaHeG2BHMe1EKkJsGkqibGhop1IR4qJAZPKDiHaa4OIAn4b4KJTwnckAHxsBUq3FrCsBoLHZMq2qqIXNBHnOMMGnkQT5dKDODWJUUW0ZSN+xh246xMcRbiLWFzce4uajLWDtq0nwHj8Zduyku2MGncePh/jRADVI5d+h3O8CdUTuuv19D4Z7EGit9GK+PTf3XY9lH9gTRfKvUpL02staO2mrPNZvf/bWfePeM5beum8A15/n21+F9/yM3pIn9/zv/fd/k9ebKbdZyslsxRefHzM+kuz7tguMeTi75fufn/Lo4SXX2YBB1HC9GNEuI5K9gqoIGYwqvnXwhj/8+IkwVQ8KDndWvHq+i0os42lBlscMBhXeKzbXA4JBK9UlUUv1dIw5zanzkHgoPr8qizDnEe5eifk6ob1XYc5jbOJg2jCd5SwuR+wcrrj9ei5gZT+nbTVRZKlrQ3uV4gNPeGtoRw6zW+HPEsz9HPtyIIzYYU7zcoibtKgswA8sNIrxyZrNMsWcx3gtKaRBqajfLeBKfGc+lsRCFUqXZHRl0B9sGCQVy5/soOuOfRgIWxgsDPH7K9T/McX++orq6xHqqMQ8TWkflJgXCe3YYQqNOymZTTNuXs5EzqggfJCh/3RM8WFJMqgpXw/xoWd+b8nq8znJpSZ70jB4GlLNO+YrFtlfM5Vux3pfgjqaDwrCn6RU71SoW+miDJYBXnvsUMJbknOR4jVPCvTLhHZmJQXViGYuOIsIV4r8YSv+u867AgLuxr9yxdXZFLMS74UPPcm5oXhckzyPtv62ZioXu6Rj+/QvLeH3p9gEygeSyjv4OsBFMPq1K5Yf79LMW6KrAP8kwzYG9SYhWiqqHUd8qyneqTA3IcOvNasPW+JLQzPxhCcZ+odjQFjn+rAluAkwtUjcmiHkH1VEX0dUe5bo1hCuFdkjSd+NLgJMV1niImEe62lXN5A4Jp8E1LNu0ryG/Ndz3Bv5ggpyqSsJVx07O/XYo5rk85h4AcuPLJOfGJbfFn9jcBNIRYiB4SuZzNczSC6h3JWxmfwoYvVhw/BpSLnrcbGEg9x+xxPfdF6azn8VdPLH5FpSL4uHDeOfhNgYimPL+Cv5Iu77Hm0kjGp6ocjuOdILTZDB5oFM9pNrRT0V5nj6ZefZSu8ApSkUw1eS6Lj40DP9TJMfe+pdiy40g9e6Sw8VcDV4rdg8EGbehZCeC9iqPyrQzxNJDk0d6WtD/l7N3v8ecvs3StwiYvqJYfGdlmBlGJx1vrEuIROEmQ1y6TuNVp0PrBSJYz1W5CdSOWITRbEvY9amnuErSWYtO5Ax/cKxfFdS/YXcAAAgAElEQVSjGpEq29QzfKmJllIT0bNoq/cdu3+mWHwA8Y3IDDcPJXBm/MKyfGI6wNRNnHcdwxeaoLhj8poRXZKsZ/KUbf9ofqQYvJFtim9Exjp56ij2NMM3jtv3NcMzAfHVTDE4FzA2eC0TcxdKKM3gzLN+KNs8eiks7O7HAiCShSc70oSZsHbNWN7LBwJURy+FoZx/3rB4Em77E3UtcuPdjz03H4k0eVvBEQkjKYy72vZK6pZtT6RynmgjlSU3H0mHrEhGJcRlc08zuJB06GglIG383LG5rxm8kfqK5TsBybWjmsl43vnRBMhWcwGA889bSTsNodgVyXiQe9Jrx/KxYXDuOwbSs36gCXKYfVFTTwPyA40pRQ6bXkpCrgvkc9UHxaweaaZPXScBFV9sfqjY/34rQH0i19fkRs6dvgYmWouvsNxTjF9ISmrb+QqVg2JHEa88+YEcn2jtyY41uobRayvJw4XIkE3jO/mp33Zb9hLY9FbYNhC2MN8PiDLpaKzHBhsrkltLPepAceZo0g5wRrLdppHzI1o78oMAF8DkWc3ycdT5k+WYRxthO8evpFqjl6I2qWJw1WIKRzsw+ADyfUO0Fka0HmoGV8L41SPN6HWNjTXr+wGzL2uqWUBy05AfRAxfVzSTzkjqoNgLmDwrBXzuh1J/UlnqWUQ70EQrCfsJCvEb5/uB1Ks0kjg7OK9wRrM+jRi/FBAXLVs2JyHTZ8L69HLa9f1YAnciJYnFRlhfYW5ljONbYbfqWUgzlNcvdyM5FuclNg2wkdSk9Iynsl6CbjYt7TAgWlRUuzHRoqHaiUhfZuQPhiSXFdVOLOnIm4ZmHBKUlmBdo8qW6mhIuGmodmLS1xnVwWAr2Y0upWLEJQHNNCIoWlQtXZa9TNXcZLR7I5GuNhY7lu+0ZhR0igNPeFtuw3J02dJOEnQt/ZfhbSEAcxRjloWAPSfVI8GyW3jvg3a6IB1V1Ki6oT2aSWrvphT5aVHjxgk6E6ApfkqDzrvXiYU5VVWN7zoofRLf/d95+TcrhIXc5PjJCJUVUssxHgqQ2+Tyc+eZ9IGA3G0VSVXjm+abE+ueHUxT2ZeyRCXJHaAzRra3rqXD0hipHOmktL5thZW0FsIAX1ZbVlV+9xYI/fPBPX8RHnnrsT//4T0n/t2/85/81F/3h//ef/WXvm/wcw4spx8c+oO//Z/x3uElizKVsJbJis++PsK3isG8oHgj/rCDd645fznn9OEVjdNc3Y557/iCLy/2SOKG1eWIdF5Qvhnyq7/4BT86P6LIYkaTguPxmovNiKIKqa5SmZzPKmxrsFWXvpVYvFMEUYv+yQj3vjCQ3zt9yY/OjiVA5/MRzX7L6YMrXrzYJbwMaQ4bVGGY3l+yyRKZwB9UaO1pVxGz4xVFFXK6u+CLz48hkPqMeNCwP9lwsRzRNgE2D1CRVKCMdnM2i5TgPMKeVMRpQ1MLW6uUp7GGqgzZmWZcLUbYVYRKLMdHt1yvhrgvR/iHBe5NwuidJVke41oN6xAfW+Z/HMK/c0P5B7sU9wWsDHdzmsagfjKkeacUz6ZVDJ8GVL+Q025CwrF4R9EQLA3BOxuq8wFqVuNqA6Vmdm9F/oM5wbdW5OdDglmNbTRh0lLnISZyJD9MGf31Cy4/3cMNHPF5QPOkgIt42/04ee+WxbMZZq+iLQKC6xCbiqcxyBX1XsvRPzS8+Z2WaFRjvx7K7x9W+ELi6dWgZfRn8uWzfr9FtYro2tC+l8PrhPjxmuJ11zVaCbNZHlt2/0hjY1j+tZLgaUJ90BJdBtQ7Ek0+eB5Q7gtIsIknPdds3m0IlgHtyDJ6FlAcOoZfa6pdT3XcEp8FKKu2srp6KlLQeubY/yO4+E2PqhXqqMSfJ9sky6CQx5pSAFI1l8oMlIR2lPsWHzsGz0KasTyufFATXoYiXTVIj6cSUOdCARDBRtHMReY6/RxWT6B+UDP+s5jVd2sGX0RbFqoZC8ttSukujG819sMNPBuy/8eO1/+WwywNLvaMnhqGZ47Vf7iGP5pS7Yh8s56I9LI4tgQbmUijPekbGTuzCroETN/1UYq011TC3hQHjvFTTXbqaYeO4QvZns1DR3KpMQWsvtMQ3AYi684Uw9eS3OgCaEeO0TPN6kNL+tKIZy8WEOmNF4DZSUVNKR2KPWMcrgUYbe6L3DO5FHBU7QjY3/3jjjUZyRiX++Kh7EF8dCuT4uGZ+ATzY4/vg2O6oBzdKNI3ivUTS5BpBq/v/Ib1TBYgTCnnw+aRJX1jRELfdDLc8M4D6kORKadvFMsPLdPPDNm9zst45ckPRGadXqpt4E56IcC62BNGNbkSls0HIgE2tQDDfmyTG8/ttzw7H3cs3kL+Hm7ouhQhuy+dloM3UkeS3HSAuJNwDs4960cSNpNcy/PTcwGp8Q2UB15Y3KGMXZsIQ6ctBFknkfWyyDB5KnLO6bOW5TsBQeYpDsUH2Ut60ZI2WhwKyO493dHKU+50Us5cpKmbUznWk6+kx7JNFOVcE5QCUFaPBMg3I0V8K4B4/Ey2odqBvR9Y1qem6z7tgk2qO3nq+GVDMzIdqyd+U9XC5EVLvmfI7ilmnzvyfU286Oo6vGxHsS/nQXop7OzoTCaMm2NJGh2euY65g/lnFbfvxdJL2fVfJreO1QODtrLvpvKUcxnXeCkewtUjAcnptSU7NrSppKH2vsnxq5bs0DB+KX2G1VQqgKK1ZXUqi2T1RMBlkAswN7WnnEtnY7zwDC4asuOQetR5MkeKwYWA2PxA0kUlkEbqZXofpXKdZLUVRi/MHc3gzleYXkm6abxy2yoQkaELQ5kdGuKV9GymNw5de8q5+LSDystr176TfEp4TFAK8xlu7LZiJCgst+/HTJ63VDNDctWwuRcRFp70ot6+X7EXkF401NNAxmqsSBZO6mA8RIuaajdCN55wJYCsHXQ+xqMYZSG9qCj3I6JlSzUPSa5rqllIm2hGLwrKg5hoIcfC5MIUKg821rhAMTgraIehbIOG5LoRyXEif49vGrJ7MYM3tSxYGkW0qKhnwk66yFDNA6K17H96XlHPQtJXGfnpiPimphmHRIsK1ViK4yHRsumAeseGX+ZUeynRbUUziYSFjQ3RZUZ1OEI5T5A16LymnSbiibTiD1XOUxzEpOelpK82TtJaI0OwqaF1qKqmOp1LZUvWYCeR5AkEivCmwEeByHPLFhcagqs17cEEnTcoK35FWofqA2kQGasPDXqVC6iLwjv/JIg3MitFktpa3CgVWa1S2/oSvS63Ula3O0HfrgVMrjL8MEUVFT6JtvJbQLyUgTCmerHZymNVa0X6Gglw7d/3bU+ovIAEBfm2FfDYtneS2E6GqsJQeiqVAtWJH50VINkxsD1DqYIAX9f/vL/ybV+ltd+sNXn77+6bz/PNn/Oh/N+4/SwAy/TdE//u3/lPf+qv+/G//1/+pe8bQPCXvQH/b26JaTjZWaKV57cOnpLZmJ1QwmY2dcxeuiE4OuPzmz0Ohhuy/Yij4Yq8jfhwfsHLbMZ0VGC0Y3R6TdkEfPi9cz4av2FZpVyGQ47Ga5xXHIw2mInjTTKmqCJO5kuskw/PKKpYlLJ0PUsKvjSe2aBkEDbcVgOSuBHAW4TcO1hIeulOwez+DVUbkFchWjsOd1acOcV0klM1AbP7OdYpxoOKTR0xOtwQaIf1CqM8obGMBxVKlQwPal5dzTg5vuEmT9nZW3NTzdjb2chnM60w2hFox8VtwnAg/59PcupBRVFELPOUg+mGN480eMWD756hlSeNGtnXHSjqkNvvacIsoXmnZjgryG5SRknFTTWkeVgxGNSoYYVSnk0zwRcB44MNs7TkzE+ZjHOWk4F4z3cqjnZWXCxGmLFImr/Ym2C8IpjVzCY5dWvwQH2dsH+04PK7MNMOdVhhlKcetASBxR5UWKu4f3TL6+speq/CBJZ43pApGM4KqjLEK4+2mstfMYx2cvIsxu026NMa6oDhYUa+SgiilvX7LYROwKfV1C4mCiz1vtRNMG1IhxXFmxFlIsE4V7/pwCrCwNI+LtFAHXhM2uKtorivULWiOZULdK4j9KCl7Xyu9dhjR5biNwuaPCQa1VSNEo+sVcIG7zbYVQCzhvO/FkBsYezBKdRBhV9E+J2K5jrGlAp7WLMOQ9xIGGoCR5FKgivKUxwZfOhoQo+KHDb2uHmDDh3l2GAWAc1YGE0CTxNqmDQ0PmT1jqE6aAnjlvw4QoWOZuop96ULlNBRBR5Cjyo05f0a4zRu7Lj5lsEMK1xu8EPL5jFkDxQ+izFzjx1bKqPxgae4Bz52+EJL0E8uAFwPW2zocXlEfdiZ+rXHhh7bKlxgsDstWRvSjl0XXmQoDsSPWxgB4Sp0tCOp8Gimjk0ggLM6bCG2FHkkYzTWuEhAkh06vBIGaVsNsnPH8OtcUi/radep2gqAVFYWFVTbSx9FttsOJQW0SR3WKuzAUSae+NJQ7ggL6qKOadYK8LjES+LoQdfdGnmKQ7Y+2Xbgt4sE0kUpjFs78He+3Eh8tiiNriV4J1rIAku503mLh54s7HzA2ndy4k42OZYe1DZFUn4ndLUNauvHbYZdZ+bY046AwFPsiS+2msmYhRtNtefQrUjwmqknR4Jb1g8l9Cq+FmlwftR5um3XVziSxRYXe+q5jG89VVuWDUTa6gPf+fCEkYcuMMbD8nFA06Vs2vgOjFdzZMIcSCepDZVIo7teQUngZMvUeuPxXpEfSoiM19BMxJNVT+U1dK0ksdRLGJEAX0Qiu6+pO7lvPe37HOnSI2H5OEQ5kbX6zr+pQtgciYxSjpuwif0Y6LrvVJTHV1NNM4FVJFJLYWGF+dRWtvn6o4R2IMeybYTJaobCFvtalAHNQEk9SGd76vfXhZAdmW39hmr7GhoBdC5U5PvSi1hPBKy3SUAzUfjOYys+Ukc91LRpLz/upLcu3NZ5qLZb9JoIeG/TblyNlx72vv4BOY5e6a2f04ZS/SKeQKjHhnaoiDJFsdcV3Pe+2lrqQVzXEeo1bE5EzaItNFrhlYBkG6nt+7VdV6TXRt4zMoS5nBvl3HThRWbL/tfTQNjxLlG22A+7bko5tm2q0FbYUBfGtKnIsG0Sd+eDotyP5fEe2qEwie3AYENFNQ+xkYxdtRvTDDRehYSZpd6JxJuqBVjq1lPtxNhY08Zquz+uS4RVDqrdEK+gGct4iXRYrpPt0Gz7U5uREe9npGkTTbWXdj2+gXyO0gA77ZjiSG+DdpTzNNNEejPjAB9o2mEgCbUHQ1wk8mBvFCYSMIrzXUaCAecJcunidJHuZMPgQ007jTFZswV7PtCSvKpF/mwaRztJ5PwxChdJAqybyJzPpQG6keRX7ZzIWt9iIV0SbIGWSwJ0XuOSEF0L6GSYdH2/VuSvUedh7Dss0y40x2hoHX4o7+tnolrqPZQetp2SHgS0lgI2lXUQhXitUVrGVdmOAQzeAnNvA7/e89j/3fSpxx3jqLWAy7ZFGS0yVUAl8Zbd9NYJo9kFDf1zYk1DlxDrOyb0X0B0vZ0y+1e3n8pNKWWAPwJeee9/76f++j/PjOXuR3v+P/4f/nWeZrv88OyEXzh5xXfGr1nbhH/05gl//ehLAK6qEX/05pT/4PEP+J+ffZedYc7lZoi1mid71/z41RG/ePqSi3zMi9c7/K1f+Sf83c9+FaU8f+PhZ/xvz9+nzCNcJsmiR8e33K4HvLN/zavllLIK8R6Rr1YBv/zgBX/26h7jQcXp5JbvP7+PNp75NGOVJVTLhL3jJctNQlsFTGc5y+WAIGppq4DH96746rMjfu17X/KnX5/SFgEmbXGXCX7UMtmVGoR3d6740x8/BuD08SUvvtrHTDsjtlPszjeM44qvPjuCwDN4FpK/WxMNa5rzFN8FyeidGtv5MVWjYVYzm2csns8kQMdJb5vJJJb+l77zlD/95BHRrGI+zrl4ukuw0jRTS7Ax2MOK0bTA/sGc/L2Kh/euefUnx9ixVBWgQK8N6qjk/t6C5y/2UIHjwfENN3//RLrfFARL+eJrJ5bkPKAZOdx+zXSWs/5sjp20/Mq3nvJ0scPNxQS9kgmSD2SJ2Q8s+ycLrr7cgWmDzwP2ThdcX4/wrYZaE6wNw5eK/F+RKo/6JxNMobYSQTdqwUmokWpl0uoV+HFLeBESLiUkRu1UBF8n1Dsikdx5/4br53M5FqnF3AYS5hPLpCu6n1FepYS3Bv+owFklKa8ji5k2+MsYN22IXkcEG0W573AjS3ATYAeOINcyqfbCLoUrjbJ322cTmfwHa83wlaI4gHYoYx/dCrMa7BaYT4Rx/fbvfMYff/oYGkVyEVBPJdW0OHKkbzTNVFb/7TsF/qILcPIQLjT1QUuwCEiuFdmplfGqFO1Og14F25RcGwt46nsSdSOTnmipqGZeUmfnIj9NbiTYph0Ke2eqzjPSxd5vQ1s6wOJSObfMKpBeuYWi2u3DWoQJW3+7ZvbH8iVdHPR+WC3VDyORjArA8fh3ctSXAykrX/dhOeI/VC00xzXhubyWriQgKsgkddVFwu5VOx47EbmzCyUkSBJVHZMvNIvvNUQXMrEOMkW157Ajy+B5uC0s1w1bKXAz6hJioy6Rdcy2KgAlvs74UpiTcC19fvENHcgTJs2UClPI46tdCamJr6WfL8gRYGyE4ctO5Pgo30s87wKM6h1LdGMwlQQotSnEtwLAoiXdOIis1NTQDAQYmYqt3C5eOrIjTbT2bO53Mu6x7G9yJcfaawk1MqW89vBVl3S6EXmqjUTSGK7ls3DzXcfsE/H0Dc9EIhxmntVjRXoBwzeW7NCwfscRZJrdjy2b+4ZmJPUSzbh7by1BQ6YS72UvSW4HnZT4iSa+FaAeroVRTS9F5qocDF9LeMnifRi9lLAgU7ENuJl9btn8n+y9Sa9tWYIe9K1ud6e93etfNJmRWa1LBdgjZOEpJURn7BEzhG0YlpjSDRBQYH6ABQMLhgyZ8QsQsjxwVlVmVGZERvua259md6vz4Ftr7/siKyttyJQzSrWlp/vuuefs7uyzz/rW1z1VMG3yrDqep913ybpmhjB3AB5fCFSXPM+6m99z3VLKag6Uuw7bdz8n5sB+xnEjoLo4gRIRE2ubpL12QUZRD3FKTq2vPfYveH0W95QlhyKFD93HSUraXUjUV5Qx58UcYmLLuV3dk22NklLbUMz+UwD0aibfZ7Ejo1/dBfjkbexPBeor/l7feAxrNUtk+4jyniyrdEB3xv5FBu7QY8l7CRnN4xP2cubuQoBMcXXr0Z8qSkEHSpIPzzVUD9TXDodnGs0lv5v2zzWWX3v0JzLJ9PlemSQdbS802sdMop3CaSzloVmqOi4JutXAICGz97Arpq7WlyOEDeielNBH3rf7E4XqloFAOTTLNUxitUsF3dIbOawVynuPca0mBtEm4BYlj1kNIVUaCYKMyHVlBYIaI1THapDy3kMN9EQCQHk9YtwWUGOAa5gsG5XA4tUAVxMMiQj0JxrFwaO4GXF8UaG+sgSJPqbQIHZQSsuAnyKxrYiUOzPpV0K4CLMf4RaG8tyjhXABw1mVrCuRx6MFZO/hFhq6TYE8LiCUBEbF5RHDkyX0wc4eRC2grzvEBCRj8myq4whfG+ibI2KpYU8biMh6EUgB2Y5zr2RtIHr2STIki2xoLDTEoQOMRliU0zblcUAoDUKtoY7j1EOJALKdIOMY65LJrUbTG5nYxVgZiHZgMI8UiFUJ2faTZBYiH4d8pwokh/dASohhZICP0WQs8/LNUJ2c5loWiPsD11MkoJvXrzV7LKUCYkBsO4jsuVQMI4qpRiR6D5FZySxtzb/ntNqftzwI+fm2h/fUHz2L3/mHf++Xvt4/+ff/23+hYxNC/CGAvw5g/VfA8hvL4ntP43t/9PexqAimCuXRjga7fYPFomeZeMcOte3THe6/3AALhzhKiMqjrC36a3bP+fsCkBFqZVFVFsf7igXylWfoThD05pkA3Bv6GEkYAABTWxUH8/BiSllF6QnYdAQOLKSXpUc4sKYi9gr6XsGt/JTampNMVSsRLkbETkPUDtFJiFYhVtyP2CtARFZFpC8EbCxrQHREcaMYXrJNN63KI3oJ/daw3sJm+QJngWPFYzKXBAHxxEKoMFWRyFEiLB0lvE9GiL1OVQgET/KogPMBcVcg6gB1UBCex+KbABEEZM/OuOItB9u+oowvl1DHMkxJtIhAqFlWL08HiC9qls4fJIN13hjYCwt1ayaAFcrIIKCBzItfsaJCHSRCmaR+KYlu8o6qCHOnCCRXjgnAgeezvFYIJsKeBMiO/W7jllJQt5zTH1XPege74fGYncRw4WHuONAMBYGdcALVJVksBi7QP2oOZB9cEyefpfCp9mARYPb80s/ddrnKQwTA3AvYNUFUMATWZidZsfGavqhxTQmqcGSM8msRAUSRJJxiAqsiJZVm0MOeOEowzT1BSzCp5uIOZP9KYPG1QH8eoQ+ZCZt9nP2LkRUjO8n3O5LR6h4TlOU0WEp9CTBz/1kONIqCYMU33LbwDI9RY6qwSMmWPgFs3YkphVKOSOmvlEj6iiXuJvUbuia+U0pfvxEp7CRO58HXvIYyCLNLDvBkYkyCmcGg7oFxzWMrdgR4uk3SvLSfwzaiusmJrymN0yaGLDGgmQkqbzkwt6vkrxwwXQfSUraZE2T1kecsFGTCcmUHB5lMtgXmzwGASYobJV9bvyErqDskRofbdHVOCU37kOpGdJfYrDL/Pl9D2W8JYAJLLqW/AlzPsOHvvgbKG1ZYIHI9viLw89WcUmuOBI5qIJDpHjGUpzsXU3qt6ngO8qIGglERkdbN7TSvCcpUP9enZBaNic4MS8lT7nkATrCeAEwC0tJR4grB92xKJX6Q9puBY/YS2oVAeU+mzVes6uB+xokVFp7BObbhfYEySTmdU3Mge8trnB5Jm8rtfSEmoMawI4Hi8LMJrVHNxxQlaznGJbsipSNApBeRoS3VHX2H+ZyoMSWwrsnC1jcsvXdNqmoxvJayZ9W0PE5bc/9cJabJALtMfZNDTCnmIrF+DNbRfUS/JbCMiuAwB27xnMSUniqm3zPjlwEtjysxz4WgP3Ngqqs5BggXEUqCr6AF1BgYwmNTiNc+1XA0vOZyIEuxDw+SbgOGjZpCkoaNRHFIHaw+wpeSgUzHwOuhJ6jKYwtXyyS59qwj8YAaAhCAULL6IyTApjsPlxNXFY+Vk2MevpJTSqvuPLsh03XlaonylvLWDOikDVNarLRhSpaVNkJ1gfcJzcAg9kUqmIObzre0BHu+VNCdo5dxCFCWiaxZkpr9l8GQmcznRLeO3ZCpg9LsRvhKQ44zWOL3gUcoyUSq1kGODqHUPIeB28lyZoZi8VypztITGSLXGSNBok+Tx0pCOnZJisHPfZAP1i9ckr3GOAXtCO/TOshChqqAHFMvpWFoT9RkE6Ek02ABriNLWTPIyuArxIkFFA8qQWJVEBhKSQ9lToBN8taoJJnJPM5/mDybfY+5p/KbbGGu9Mhg7xsdkkIIMpLDAJQlYEdKYh8+L8tbM6h8kDo7Ldm7KeTESsYQIaRA/PMYTAAI/98DfH5dgOWH//MvH1j+6X/wi4GlEOIFgH8M4L8D8Id/BSy/sax/43H82//7H6DzBndjjdu+xtvrNcrK4veffoV/8uVLFIXD2aJFiAL7vsToFLpDieWmQ1NY3Nwv8OSUEY9fX2/w7OweX74+QdlYbBYd3rzeQsjICo8gsF51CFGgbUu4VsMs7JTIJJWH6w10ZVmeHgRg5SQ3bJoBw2Bge+awqyLdKERMzweK1YjxpoI56WFvKqAK0JWDazWWZy2G3qAoHYHvzgAbC106+Fc1zIsj7KARWq7fbHu4qxrqdIB3cpJsYmUhdYA/GIJZKyFqB1062F0JUTFeXaiIMCqo0sPv2cdY1SOkjOjakvUob2vUzw7TepfrDvvLJYHo0uLR+Q5X/+wR3DnZK3ExwA8KzabD8NMVwsUI3BZTpyMCsHi5x+HtgkC40xCjgH7UwVuFeE85IqLgfh40ok79iGcDTOkwvmkASTma3im40xlEiyAQBWWZ779/ic9+/AgoA4RmeBHKAAwS9UWL7rKBWlv4XgGDpJf0osXw8Zp9lSvWo6iDgl95VCc9+vsSZjnCDRripiArPArgYuBkghWIZQCcgIgCsXGAk/T2FemzeD4gBoGTkwNuPz1hn2ETABWh9vQiyk7Cbx3MJTsVAQ6GM7iETl88jUO1HDF+tcDpRze4/dMzRDUD4lxujZCAYB0gRoGwdtBXhvKuZUSsPMx6hH9dJ0kbgZ3beuj1iPCmguoF7Dn9oMNTVtYIJ1Dc0BNpUxIuAJSXCuNpQDwdob9mB2iUQKjIjJq9RP/UTZMuIrDvMyqyGeZAcB0MgZTwAsN7A6qflrArzvALx4FmZlTd2kPvUoXMivtSXip6TkEvadAE3cWdRPfCQVgBfZRkFM/mCYXMapeXEtFgYtPlVUFG+k4SUI8MRpJWvAMEo0xF9Aeu1zcB1SsmDLrkrwwmJgDEbeXrIwdShZKglb2iMwAFCIYzkJSWrKqvmKZb3HJiQ/VkaqUHEAjCfRFR7Ak+cvBP+zQm/yoQVIQaZ5YyV2MEEyfQbQ58PUFoujY9wXhQCaSK1M9Y8xpUPa9Hu2DNS/uMEywAr79cUSPHGVT7Eij2wLAF7Ipe2VCyZoRMIpIEM4HlBxUnCHxtdxHRvCGTHAquW3fcn2BmsM3UUkwVIexUnIH29HufgQ+Py5ecyJEjE3gBTAE3wXDdDPEB2icRzSuCgeGUx5EBeWaDdZ+lkjw/xX1Mg2WCcF9h6vx0S8DsyEpm9ZpwDNbxJUOR6isGVkWVko4jWduYrxsPFHcRuaYkFFy/6gjY3IL3HdXRf2lX3A+zjxjO6B8NiutyCwJmnlcypMMpAWixS8m5iucyT26IgHf8mVUGy54e5Q/SZC4AACAASURBVOZNIJjWBERkKHmMuXQ+aDFVl0jL6902YpoEynLOXC/jaoL0/kySPdVzRYxb0OvL91bANsnf6rnemGS95hinShbd8adKEyJBc3+jBMp7+jtNF9BvJeprJuTaRk77VN2GqbvSVRLFgZ2W+XW2liiOnDTI4Fh4Plf37Dt1pYDp6NHWfcC4IrhVXUB3zsAjX0h4Q9AOQbl3cSC49rVMEzG8V/qKYFsfPcFmBv+5tmWM9EaGmMKPmOwpfWR6a8NgH9eoJFGV03akpWx13OipHsVXKnmY0+N9AISAPjqMG8NQoRjhlmaSPRf3I0LJ1FsRI4RN1RsxphRZgmK7SmAuAmY38jpqDPQhsYk+IAoBmfokc/2JrzX03cB74AMQ6GvDGhTHfYQLU60JQqAMtrcQg0M0D9xoSjBoSAgC/t5i6qpUElFKMpP5NVIQKGZwmlNaQ5j3J78emAN7gJkd7Jk0O4FbIfi6h7Uf30xhzTLfFN4TXQKp73Rhhlkam3yW76zzAe6IGTCnOpJfuIT4l8Jj+SsClp8BuHrw0D+KMf6jh88RQvyfAP57ACsA/8VfActvLNV3n8e/+b/+Xdx0Da6+2JLhM2SsEAGYCHOtWWOwtMDOsDB+QWASU8AHwIGRaiW/HCTZDwjALVlvYHYM0sishW7F1EHFLybKReUophAUiFSG7NIAzrKr0FURAmR+MhNAudHssRGBkjOWfTN8pLzmzGWWwfDLOrFwkgNNaTmArK4EhhP+HhPIEk5MheOZpWCoAwd8romQPg0u7zmI0C2Zlsy4TLPbRUR1yYH77iPKJgEOeKobJm0GRZljZgcelm67BY8XmAdW3aM0oC7mQVWWn2XAZA6YqhRyXx8HaBx45IFhdzEnc2YpXx6wQHI/fBqESjefj+GUbI5dcN0AX5uPwTV8fu6MywOekMIh8rqkxTv9ZnZB9gKgD8tXTPN0DWVaKoEC4Xk+y1uJ7Z+FSSKmRmBcAcuvWK5eXbNgHILr6S4Su5ISHZHe53HD9RZ7vsfmOJeGZ89QUGn/0+y12XPAZw4zq3l8QTChhjTgHGdWJhgem+6AYcOB1LjmtZF7FEWa/HQLMXUZZrlnHlBSDsjkx3GZgG4anGQWJ3ubAKQycyTWigmjzSue09wlGDQHu+aQHk+9gK6i/LN5/S5rA3DQW+wZ9hKVmFgImY4hA/K8z/k9z2EjU8/ekcdR3eU+wFQDUs8sKuV687Uj8uStn7djOt4Hhi0H1Gp4dx9y4mZxCOhP5SQ3DYqJmlGk0Jo0iJaevq2oyNwETbbELvghqG5zeXr6rKcOPTXOg3Q+DvrSHAesxZHVElmqycASShnzsapUQJ+Zpyi5j65K/rU0ALb1PBDPhfI5XIWvI9uYz2UUYhpk6yHCG0wD6dxf6UuB8s6jPyHrMzGBIck0BWAOrGHI3YXcd243D8rJes3BRazgCKmvMLN2ZHuk5znjdUymSXcBdjn3+GVp8MNj0h0BIWJmh8ni1JcjDs8LXhctAU7USMeZWMM+dR2OYUqpDYWYEnwpfUzf+3G+DqVlqml3KrF8zcol1nzw+WRgOPjP0k/hYkqoFFA92bAokCZI6NXMQGE4MQy18Yn5TYy8SBJZEbK0P39niWn9uicTlz+LkPybtAF2pScmTo0ESNIGhJIgJTNQIgWx5EXaMB33cFIwFfRAZg0B0H3qd1S8xoMWE1ihyoe1GNKSKQyGjBmUQFD0kOrep/sYP1uqp58slGTrxrWB2duJZZ2WNEgX1vNnYviCkZCDh4iR61RikmdGISB7B78wDJgp1OwrBaZeRr8wEDZAjvQc8n5DBs/XhvfkECn3LDRy3yMA+EpDtRbCB4RC8zhGD3UYpu5Eed8iVmZi5+ACYqX5mUnrzgBKWM+/xfw+EVQBIEuoZ6+iHB1CpacOSihBz2DyNQrvGcizrCCGB0mnAWQbfQS0hOhGQAqERUkJqhD0IlZmAjxicDPAipHgy/mZQcxsn1bcVghkG5MnUvR8TAyW743R0/+hVAK3au6hTI+9k5IqEnB0bgZ/DxlOIQBr5/7HskBse14vRcHX5c5IIeb1OP8uq+jcu2xlpNd+YjIzaMxLAucTG5n3M70uDsN0HKIoCCrDDDR/ZvmLwnv+vOUvCbD84H/6+7/09f7wP/xv/sJjE0L8OwD+IMb4nwsh/hZ+RcDyWx3esywG/NtPfoCP2yf4pDmiUg43fYNaW9Ta4tPbU2ze6yFFxOAV1OOI22ONQgDOSZSFg1YeIUgsyhE+CtwdGvSHAmbdY1UPuN03aIyHUR4uPS9EgXYoMPQGdTMgBImuLXC6PeLmboHt5ggpgLtdA3cwWF4c4XuDJ6c7XO6WWFcDjl0JqAA3aigd0O9KiN/tIURE3xVYLHv4UcONGh2AMCjIDzq0hxJVM0KIiONVA1F7CBn599IzTfZoMF4Ai/MWx+sG1baHGzWZNxmhSo9gCVKlDkyzNR5ae3T7CtVygEz/74NAHBSG5xGy9Cgqh6YacHe3gPvNEe3lAqfP73BTbSFXFqZwOJxUgAD00kI3A56ud/jRT58CYIDO4apBddJjd5c6lrxA3zjEVsP1EvF0xLA3lC0HAdEqYG2x2bS4/3KDWHuITkFsRoQDfa9wApBxlipXAePzCIySUuGNRewVROMQDxowESePd7j/yQnCmtUYQlIvYzepssUL9oo6CQw8d7J2lPqqNHkh2O0YLka+D71Gte3hnYS7qiC2I+KuABYO/a1BNBHyZESwEq2VgBUQS8fEXRHJYlYe3VKgewnuuwBZThnRfkdAFB7tZQG/JQu8+x0P0ZPNkz1TM/3KT/sHETHsFeTzDru7EnLgF0ZUYWYBL0bgqBGLAH2r4bYW8kAPnd2wqzPelIgFJbrCkmnwKw9RO/RvSzIBpxbqXsOfjBw0dgqtFay2qT3fSy9gdoA9DdCnPcQnDSc17BxwYw7srpQjPYXRRMhBQrUi1bQoMoVbj+Ka1QPjY4vhVBF4JaBGWWAgu3piWe8iAPt4hGgV3ELODOI0mRQYeFRGhMbBXGvojsyi2XHiKNQBwgpKnSMDfsQgp4kcfcygi7454YFcKJ5fK4dU/7Mmw0qPJj3NciDLJxwH2FFFhgh5kRJ203M9oHpWstgNJbCIKSRF018KIPVOJun0Xk4st91wskyOEqojG2uXEvVrieE0YvE1GUv6TBkEJBwDhlxNXyxCeo+UnFJwXQNIqzCcBhQ7sq88vzMwLHZAfxYZ1BMI0u2aCbvDGRlH9m7Sm6s6yUmfVWIw00STL5lUXL+h5FK3YvJ8+ioxRCXoE+8NclCNbikdrl+LSabrFhLFvcD+PZ2uQUyTYgAQJWXroZiZSk5Kzd4g6QE5cJLSLnhMuSLG1TIlvaZ9OJCJrC+T7LjnY+1zTtwFPa/TVcD9d6oUSBIhgkZ5nfeL+2jXmHyKw0bPLCs4CSEtJ3pcTbZRt5QgS8dzmeWiN79ppkmOOYyHMmyAUmUROUETDLfnS04KBgXUV5z4CkVigDsNX1NqHAwn17iPSYbfRfhaTBNbeQJQuNS12Sfp7DEmTx8fr66Tzyz1dA4ptZRMY6o/SeA5Hw8EPb8icBIgV8xECcSnGq6mR3P3vp5AeFScnNp9YGAOnBhTA6XIxS5CWZWklhq2yXJWIMq0Dh/TBJSZ2OrMxLaPyBgOK4nqjveCYc3QHHo/wyThlS5NWmgB21AG7IsyVcVg9my6EsEQECMC45LsZp5EGldySq/tTxX7OsuKEyAZvKNONTqc1ECMKPZkD8cVr28ACMrAHAtKwBcK4lkKl1FkiKdJw57gW/czG+krMpfDqYE5eLiGzGiepBCBoJ1M+gL66OEaBXN0TGgdPOxSQx/9NDESjIS0JdQYpgkHCKQKkwIiVFMFCVDw2ABACJi95cSIEhBjmCdAEiCeliSxVb0DmmIC0aFQkL1FaIppIizLaBkO5SmDfQCsoSXgAkHvYGdADlCyqnKnkSQoVHL2R/rA75Wc8Jr6LaOixFdYNwF+0Y98vCwgrKOqP8l432Ub43Q+IAUwWgK+LI3V6aaUk2JDQIwjIDQgJEQO2cmBPBmsG/MucP4mqSXELLv9Zg3JgyXKn/unv1p+8fJvAvh3hRB/AKACsBZC/B8xxv/4l7mRbzVjWb7/Ir73D/4Q4xOLk4s9XJDo/2QLfNjCWQUEgfKTkob25yOqzwuI39shRoHhVcMqir3B8tER7p9u0b8/oloP6C9rqI2F/LzijO9vHOCsZprpfYPixzX65xayVcAZZYvYGcoxn/Uoflijf8KCdpgAWXmETqN4q2HXAfq8h39dA+cDgpOof1Kie98CVgBlgNxrhJVD9UWB/ombwJDaWPhOoXhjMF44iF6ienbE0BvozyqMj0mTFW817MsBzZ9UcDVYoTFKqKVF9ALBUt4KAEJEuL2BcBJRM2HTfFIxNGXroGomro6dAXaUcjZfSxxfMtRlOKd0Z/HeDscvVwyQWfgpnKf8QcMo+H/tANtrRM+7QvlFgeEZw0tcHRGqgPJKofn9Gxz++BT2JH1rFYEAr3LsyHw+YPHHFbrfbyG+rBFlki0+5wy77CXiKb2h5tOKaYZrj/KtIkv4loPe4SzA7AX8hz2qeoT94zVEEBieWsjGQX1ZwW48qte8ifZPHEQQKN+oWaL5eCTgjED9lU7F1GSjV58CN/+6w/LPDIazyDRSFSFGieqtTEEwEaGOqL+kD9I1EfbUY/1DzZTJgh49f2Kh7jTKaw72hedgSQ0C/VOL5U8M2mcEK+FihLw2UH1iQkdgOKeUdP2xQncRMT63kHca1aVE+x0LOIH1x3pOcvwe60LaDyzEIFHeKOgDpXVypLRPH1g5YfYC608jbn+bIG/9Q43ji4jlF8lrZ1Ny5CbCXtAXS8kUgeTqp8Dd3+yhP0s9mUd6+na/RYBK7xhZ9OyzlCPQX1BeWt4wpEdaYPk5sP8w+StNhN5JqJHeV7eMWHwhcP9bHrEIWP+JQdSpG/Io6AF96iA7ieKOHZ3Fjkxpf8YKk+qNhFtGFLesD+ke8VoaNwGLL9N74yh57B5T1uhqgqPlVxGHlylk5RjRn/F57bMZQIhI5ndcc5u6E+jPKfHUHVBdkQntz3mtmD0H7nbNY1h/Atx9H2hei8mLOJySuVfJJwkA+w8CijuJ6pqD7fYZk1b7C76vxQ7Yfd9j9WOF4Syi+Rrozzh4r64TgzYQCABkxatLMsjjhkqJ5jUHlb7ic8w+pbgued1XbyS6px7llYK0ZN33HwCbPwMO7zPA5vA+oPc8Z9KT2Tq+4HO6C4Iw1wC+YJ/l4X2g+RrYfwAsv6CctvlKoH8EbH9ENrc/J5hafhVS8itwfCaw+inloeUupkAWqgDqt6mTM/B9U2Pq4HzDHspcKcPPKsNaXCNweCHgFgGP/584MexjYo31EPH2rwOn/0ykahSy7dU1Wf/9S4HNpwH9iZxChHSf2M3EQBdHMqK799XkH5YuTsoHX5KN7s4kqlsyuGrk+QqK7HBmR9XA9Y5LAVeTrQ+GAHHxloAnV5SoPmL1lcPNb5oJbOuO50539BaqMeL+A436KqC+djg+MejPKFvtTyl5bK643vrWI2hWsSy/dohCTB2ex6cM2alvmQobJT8j/SlBqe4IHgloxKQSqK8DDk8VdE/1QGbCi0PA8RFBVLFjUI5t5HQ9u0qg3AVOCNQCzaWDcBHjVpNRT0z98bHC9hOL3Xsap3/aY9wY9lYe6TdVNmLxyiIqAddIyMQ2ByNg9p71IdduAiyukVQc7An8MstNtZLH8alBc+mgW4/2MTsj1UgWOPsZQ5Kg6lSP4guG47RPCCpWn/VwC81AnvOCrHk6p9W1g10plHcWYiTgCimJ1ReUi/pGU6paSXZ4XttJEmp2BCy7Dyp2btYKQQmU1z3cqoBdKdRfd+gf1xNgqt7y9/rLA44frlC/7jGclijuKEUdTksU9wR5bkFwbvaWDO3gMW5LblcKSBcQtEQ0EsIG6P0At63IUGbGUQnYRqO66mHXBVnfB8y5Og6UD28qekOVmCS0dmlQXraIRhFMthZ+UZBtVZL+SZD1nbyPiUGFSB7VdiRo1Io1IKWBut0zsXUYEauSAK0pyZ4aPakEZJu6L9ueXZaHlnUj1s2vL8y7dSOjJbNXs/sSPvA1bT/LYKUErGWv5EMG8oE/MsbIFFnnmfYaI+Iw4mFCa+x6iLoCnEP0IXkvGdITx/FdsCglos3Sn9lPCeAv9lQ+XGL4WVD6L7H8OjCW1UfP4wd/9MtnLH/0t//rf+Fj+yvG8ucsdT3i6d94hfOaCRCvj2v89r/1I9z2DW66Bh9ur/HD7SPsbxb4/vuv8eniDC+3O4QocPbkFXpvsBsqlNrhk5M1Ti726EeD9bM9tPK4OTFYP9njpOlwfWxw7EoUlUP/1KE5a7F+2WPfVfBeAo2FtQon6xZXHypI41GUDufrI673C2zPdngtT6Brx/7IIBGsxOqkRbs1ePz8Fle3K0jlUZ626LoCdqnx5P1r7NoKxabF/lBjcdrhGAREESAah7ocMY4a5rd2iINGVY84lDV04dCfB4Rzi3rVw3uJRT0gRoHdoUZR8MPtvUSxJTgOUeB0c8TlU4b1lKsBIdWd3AwaxZMW/W2F8USgfHbE4BbwiwBRO1TG4bi2CEcNsxqwetLjfreYQmgK7dFsR9xdLllnUUVAB4xnyaN3X8B+p0eMHJBBU66MAOiFpQ/1kYUyAd1j/s03AVg62FBA1OzwxAAIHVA3I45PNaAiTDPC9g3C0qHVemIAY8vwo3ZXIV7QL6mXFkp7DGcOsnLwFcN75NIidBpRKZRnHQZRw9QWdlAwJz36sSGLUkZUbyWGE0AuHMYNpdix8mRTrZli/bOULhRMChUeQOlxfK4QmsQmmkjP5lFPHiCAQCloAEWAHIBQBEhIQLKqRHjN1MBFhLCSjGcEogEwSoQqoHsWKelquJ829SGKXsFu4uQdDYYMkj1zUDuVvGoCfu2gBs3BquZ67FIj1AF2oSbQI62A6gSsZ+ei6iSvm3uC8uhT52FitXwJvm+HFGKUPHxyJEvnGtDfuldkzk4txKDQ9QpyjHArph27ZUBsJWTy9PkKZEESW29XSQqZmEHhyAr4miDWHMXU7xhqD+klfYqlwLDl3+yKLLcckyy14zr9IqA/ywM3hnvk95sBHRlwe5Q3GtIxyAchsY1lhEtss24z84okhWdIlXdI9RFkUMaVgNs6DKOC2fE8VlcEt+OTCNUKmBZQHcGEXVAiXV1l2XJMIT+stFFjxHgWYPYKbkk7QPa+jRuyS9m7l32AiNz3kJIipaWEW/W8ZoVjKjFluQLVFScsCN4ixm0KaBGUOrplRHlPabMvuP7hREyfhXFD9nIO1SGgna7JSFvCuBaJFeY1YBs+VuyzN4y+MXnDwaZIsmTdUbYPZOYrTimjDLR6IBkHWTRXk6nWrcCY2DZfpMmDJEctr9nHmGXpQfPYuvNZCkipMd+PPvn+TAd0p9SaymQVyKFRwtN+AWDah+z7UylQKgqe79hxv+xKwLRMMgXE5AEUHjDJL5q9p+gzK8gaGl+SmQwqbW+MyXdID7AvBCXVaYLJ1jxvMrwrg5dpkJiZI15XyZNsyLZJF+GMQJCzJN20Ae2FSnYCWi6k5fOjJpuaZc5BC/RbTuD1p1QZZFm37oH+JMs0OUHiN3KqxkAEih2BWHXr0J0TJEoLjFsz+QpdmdjXIWLcaB5rukZsncN/EnBMILM/NxOrqPoAe6ohegJKX/C4RQAQwLCdOFeNZFCpBiafZq8o+y7TvW4KCFLJfsD3To4BopFwhSDTVxkUQiCWTKV1tUJ5PWBca0RpoDuCWPZW8jKL4L3A10xjl46TKPpgMW7InAXN47TbckrtlWOEXxiCZ0NwXymZvp8kYgKfwge4paF8Oc7HoVqXrh8B32jIuwE+BRbpIQXjuAhXsweUwT3cd1/piXkUMQX7jAxCypJR32jo+wFuyR5L6eZQHxGSXDftXygUmLKa6kqCQKg19B17L4WdPYNRSQLAdL2HdTN7ITUjsKOUwANQGQ2rTaJRBGqlhuiTjH7yWkoC6AwK8/9lJLuZ5apCkOXU6Xk+zOzjw/XkRSmm1Go9S+eFYLVInJ8nqpJeyxiZ+GrdDCZN9lOE+WeWviKFHSlMUlvxi5SwMQBQlNd+y5dvL6X3i5dvNWPZfO9Z/N7/8p/AeoXj2wVDUhR4kxCA7Bke4rbpwx0pURJpQIaLAfLrakoGlYOEPpC9EAHonjomqy4YVJI9LG4doA7pSzBye/TYxSSh4//1kf17UWFKJMshGtlToVqRqiH4f4ADx1xroKbkS6ZkQpKtyJ5GSqIogcuMg1vEVLfAQT0Et8tBKgdldhmg0/ZyDcbwxKF8TbYsqojyJvlPdZKNbeLkCY0qQniB5rXA7rctlh8bjNuYZn8xffnIkftj9qmrLaWejhuGhIxrnjPhKRnLNRHltZiCHHwe2CSJYTCYAFn2SRV3BAqhiGheAd1jMV0HuSj+YeBHDuvI6ZluQQbNLVjlMK7oNwVmVkK3wOH9gOVn7FQDyAIIz237IibWicmoxS0HH6HgNsyO4MZX3J/MQuQQCabLAvvvepQ3CtXbOdwkFExUNAfK+syerNf6p2EeJO/4WPayqiGdI598X30aFBdzOEkOQ8nnN1cUDFsGb+R0TFZTiCm1VA5zpYRdRNSX9HgeXgosv4w4vKAvNCY5W7Gn52/c8PznQZyrUxKpwhTKkpM5x/X8mQtm7hx0dfK/xiRzTCEou48CTn8gpsTV/L4PJ2SD3EJAHwkc+jNec/VbekWz9zDoWdo3nIj0vvN9HVciBaUgfW7I1uTQCtfwMXPg51m3ad2B7E/ucgM4WPEV98euOOBSQ5yCPXTLz1r2RY4bgu9iH6f711QpkcJlgNnDbI70KWa/py9475CWFSM5hAbgNlRin3K1iXQR/alEeRd43GE+p/nz8DAQJ0+WuJrJrDk11tXpPpY8x1HOSaDSkU3qtxLlnkxcfyKw+SmrHfK5JQvE+wArNSg/lJ7XlC8JTOsr7qvueBzVXUB3ImE6joJtI7B469GdKjJ6xzTAb8k0jEv6M20tUN/mqgsCFNPGKUF08nomBtEXIqWAZnRLRklEgg1fzgDHHOMkV/QlZYfZX+gLHqfwEcNawrQp7KRI7G+ZEmSbJI8XQHXPIBfKOgNcJd+59lWubdAp2VRhkkS6iuAyKAE9hOm6GtYckNOHmiSohwC7TP5JpOPzQEjeUGnppRzXavKSDhvWY/hCoLxz6E81wXACR8U+YNjISeaaQdDkQY2Yj7sN9JwCqYoi30Po7wxaQHesr+C9lpJJrnh+z+SYWBKdPImWQTehlJNUNsr0+cwSyZiuc8tj1keHHFp1eFmivPMpTCY9N/tDfZz9kYlZ5fdQgFukjkItIIcA3Xn4SkG6MPk3g2HvpNnThxdKnhM1EOSNWwPVeYI+gQQu6TvNck7VOvhKMyTn6BCNTPcuP4GIUMjpvPhSQfq0Dz4Q6AmyhKFSUEf6K31TTOfA1wr6YKftyoHVG6HUkK0ls1eb5A+lpzGUGnJwcMsCqrUIpYZqR/hlATEGsoBS8jxmcJa8kiHVfGSJcig09K5PntzAao8QJk/p5N9UaUwAQISAUDMwMR9HNBLq+MC7F+MsPZWSktDc6ejDBBJFN/C9NJohO0qRrQRYN6IVmUqQSczM4dQvCcws4kNfZ2bvstcxJ7qmxNfpefln3ueH4PDhY9nDmT2dD7smp+c+9HjKmR18uI285P2TgutKctrQ9XOlSN5OrgrxD4ElfnZ9+W+/gLn8tnssq4+ex/d/BYzlx/8SjOWvcvlWq5W9k2jKEd2xAEREXHjofQJzC4dQ8eKUPZkc4UQCMWm2fW8QdERMf8sz8C7JFEWci6UFkHxMPnnh+EWYJX3VVapGyLPG6Ud5PYMTu/aTn4uDYqY0RgmyAZpeIuHzQIRAiUE5EnbN/YwyVyNgWrcIQHEr5qRIcL/NPvm7EpLtzyKEJTsjnGCnoOAAsHxlWKItAX2UqSqCMfEhxcTnoKC83aABMWSPVAqo6AR0l5P7OGDxKdEyz35LnwYkYwbTnOEXce4NjJKDSTUmsF2m6P/kFcrMQh7Y5uoMXxHEQiaJWBo0u0X2ufD5/fvs+Bq36T1JkrKQZntVR6YsJDA9bpGSNN9NLsx1BqHk+9+fpfcprScYgi9fzQAqlHECt0ACVCkls3qrIIe5csIuMQ3oMsAMhsxWfyonNibLFVm/gEn6aFdJwvV8/uy4moxVLiwfzsheZp+OrznocQ0ZL9XnHZiBnnQZsPO9zOEy4zpdoymhUrc8jv58Zt7MIcItEmuoeNy6nX1C+RqbfoqZ1clhTiJEhgPtI0SMKG9lCnOZ6wGinkvhbcN1Z7aBPjkCkwnA6/x+Jcnt+cwYiEDQO8kfy3QtjpiSOkVkd58vBIYTMhvjmte1r8TElI4bgkckJnVc5+tdTNfnFHCTQCmAqUpj+gxGTHLbccXjRmTJvV1SYuhqyvMQkyeuAHJ3nV0m5rXJ1xXX5QsyhlGQgVMJyNsFz6evMLHuwTA8JjNAUxVHJOALBhPYj5rXiS+RWCTeO2zD7UQ1s1xBi8lPl4OEcuF73qZ0SXqW6iKE5z1j8nEeCMz6M3ob+xOCSk4kpPOYBqj0RAqU+5lhdJWYQCmZR+6HtDxOn0KobCPJSguRXjv/DAaz3LLm43Yxs1hks8k4B5WYtFRn4UomeorIbbk6ya9X6TNWyimkKssno+Ax+TKtv2adxXTfSANPn4CabQT6jYKvxOQBzRUgTP5kRyRBvCB4FZhkzraWk+wzKEp+Y/ITZ1A9rvWU0uqqB8FHgu8xwPtuLqUng4qJiQ4lz5tOvjxXSwwnKlVH5M8uwTLrTdJAPnUiZpBKv51gAmqqEfGVS+z3/AAAIABJREFUmgKWghGwSzUxnLzn8hwCgF1K2LWGXRCsZTAaCp4DX0u4JRki6eIUfMVrNPVFLvRc6TEwfMhX3Gdv6GUcTgomoSoB1yhEw+qLUMh0TxNTgNK4NtM2fKXI3gmBoCUDf9K+hYJspOw9xrR+JAbOlyr9kwhKwi003NJMQUG+ISsZao1QaO5DrnFJn8FgJNyqgF+WBI6jh9uUGB8t4Et2SrIWgyqYKMUUBMRzqKfzFBXZxVyfEY1CmLom0/XbmAkwhuRzDIsSbmEwJ6Ey+CdUms8tFUFuaSZZbij1BLjJEBKsRqMQC4NYaLKgD5JXY10g1vQMRq3YOWmoaCJQTfeluqQ8NbGBseKNMAf9ICbmWcr5WAtDQKYVgVZOc801ITk8B2AYj1ZkIgvDf0bzXwakmaXMS/I6xhgRnYMoDIRW/GcMhNYQWnNSRGtA5gmaxHpKxX/e452qknw9aP2z4DYtQkkIIaZ/7yw/D3D+ZVwipjaJX+a/X5flW81Yrn/jcfzOP/xP8Wy9w21f4/nyHs/qe3zdbfDFfounix2+Pmxwu2+gtUeMAiEIOKuhtMeyoVzzZHOEEBFXl2v87odf4XfXX+P/+ux34JzCRxdXeHtcoh0NjocKRengrEJVM0Cna0uUlYVzEmNnIGSELhiEUxUWp02Hr+/WKLTHsSuwXXW4uVsiBkAZDzdqxMSMVcsR/b6ErhxDbY2HdxJSBRjjIUTE/maBi8f3cF5iWY746nLL19YjukOJzbbF7idbiCc9fM8b9enFDve7BXyrcfrkHoe2ohLCKSjtGS7WGejSQekA98kS7sJCFh5lZTF0BqZ0GHYllmctjrsKi3WP41crVE+OGD9dwZ+PgBe4eHqP69slqzU8k3K3z3a4u1lAqIjYK5w82eH2qw0ggOKkx3hdsfLDBMRBASqiXA4Y0z7ZY4H12RG71yuolUW4LqAfdbD3JS5e3OHy6y1lpkcNfdrTX7s3iDpg+2SP+/sG2BuI9YgwMjwGAActOkDqMPlO/d5Ms5qoAsxrA7cmow0doXYK4cxCXhn4DQN+hGPgjugYMrTcdNhfLyALj2Y5oPtkDd8EmO0AqQLij5Zofu8Wd69XgIoQRw1zEBhPPOTaAm9LhC2jaHNXqPAC5Uc7HG9r6EsDvwgMJGr1NEkQTUz7GaCvDcR7LcRPGk6WXFhglFB7RSnllr8Ly4mY5uKI/rMVQdjaAk4SaDcO9Q/qqb5iPPcwtwr+ZY+wN0xVDpwUCY1n2NDWwnxWwjdJhvjIQZiAzckRd6/WXO/KIvQaYpSIIqJ6qzGcesQiQt8puFMHdZ8qWFQEvGDNjASKK8XBb0W5rF3xcdkLdrZayfUWAbKTlCSeef7/KGC3gZNNAPzSw9yr5Hf1kJ1CqALUeoT8vEYE4LYespVTkJE6KgItzIoBX5LhH7/XQbwpGYSzYBcsDhrLTxXskpNJAKb0ZbcMWHypYBc8t9XXlOvZVIEih1Rrcp16THWc5Lu5fsQtKC8Ohr7MqIDiLvk7daQH80C2SYDhROWlmlhHaYH2PTedK7um39kcma5cXZMttauUwruJiCsH89ZADgwWUoOA2TPZOQcL5fCVPNFF5p7grLxLXaxVnPpJ6RWVsKuA5rXEuKECI2qge8+i/txMjFBOx/Vl9l9SskopIMOXVC8mUG6XVCJkllWk3tHqCth/GJl43AuMpwHFjYSy9DcXd2QphxOy/OOWnlhfEtQ/7B3VxxlAAwS7Zo+JnQwl0D3m+nOa9ZTSLcigHp/xsyR8kiynifmcUj3VY6RJkBymo0YG6viCwNPX9OSOG06yDecR65/wNe1THqvZ5/MY0T1+kPqcmLVQcPLDrgiOc49o/Tbi+FykdGhM/ldfzZMlOalXpfRoVzOsSfg4pS4HQ5XDuGaQUHmTqj3WAvrA+7O0iW1VyctZUXL7kInPigL2XsaUjJtu8YF+3PIuTtdC9p6T/U6ToUmazs5hAdVFLN56jKsk0VRpssnmRHFuq0rn3C4Iik1LefPilcfhmSLr7OaJCTVEHJ8oqD6iTPJa3dObaVItSU5t1wMBMcE8UKbU7ygZwAMBjAs5seO6p6Q5p/E+TCOuri2OTw3DdwqB8tZh3OpJJhyUQLHzE3vHCStOSJT3Hr7KkzwEzFQ+RLiFnNhq9mSyA1QlWbR0ZMSLvZ8YY7dQKG8t7JKeT18r/qwUmdtCzixzOgaqrtJxHh3sikBXd2Sms3IpSsFOzJQMDJCFRYzTdT15Q/eWacapViRKAV9rssbguvTBTiFC44YJwKp3yP2QsmMKsK8Ncr+k7BxiAtJ+YYCUuCt8RKg0ZDsiNAXUfpjAtHhQDfJOb2auC4lxSrCNqbMSAGJlyAhr+U59yfR3o6fkWTHaCcDmnktIOU0QcD8eMJ8ZxAIEjjmBNstnBZnKaB8k8GY8kbefEmujZxItjKGvEw9f8nOY0J+3xPD/Swr7a8FYfvd5fO+P/sEvfb1/9h/9V//Kjw34lgPL5ntP49/63/4OPrs9gbUKUkZIGdHuS0QnIUzAs0d36KzGzevN9Dq5Vxy4jxw8w0TohYW/rCDPB0jlYdsCQvHmLa4KxNwLaCLUZoTfFUDpuY7cGfmm4SB4zWqTWPIGpXYKfu0hjwrRsNcw6sRqjgy7EYPk4Lij/00fJOwjCwwyyXcF/NJDtcmfNsipLkV1HLyrnZpYWuEEQhEIXEbJAWDy2OhuDnbJCYNqEJNnQkTArTzUQU3sK/CANasCRBSAE4hlgNqr2fuXGNdoIvQ+sxuJRRWJsdRx6iG0J2k7APzWTX2O9Dhlpoc+KjkKjFt+66mWPhn72EJdGw4k+FbArTlwdouIYHg+VJ+SKyXPjRo52CzuZ4YoGLLPwpFRVD1l0UFniS8ZYTkw5ZLpl6lQ3RJE59qRUEaY+5TUmtYhknQzh65w1p/rUz0ZVd0SkPiS51GOfJ5uGZYjBw7KpxCf9JxQcnCUZbbSpXWP6XiK5E1KTLivgf4FA62kA/pHDHTJg4qJKUxex9w/6Ku5ekdabtuu+X/dkqXkBYgkLyfIyDUyk4QtMUbZY4aIJJ1OlS5JGpzZKd0lJirJd32ZmFCRrrmQWOrEYuue3r7MVuf6nupKzAz0hte9bjHX0ngkaWUKx8nSUMvjtylJM6sbZBrk5wFnloBSFoppkG0OmCSoUVIOPK6TZzYNXF3NdNBcxTL3+KVeRJdY6JjewxITM8+QF0yhK+aYJZR8jWsSiByRZLpMAzVteixi6kBUPWWQmbXTDyTUuuVgPB+TSLI9yjoxqwmQZLU58bMUSZXAwXIoZmAoAqa6kSgSyLid5bJuwTTRKMQkf5U+vvP6DDhznyNl85HXnEv+SUtA4kqB4ZSfuRxUk2XVvqY8OfdFTunCZr5WdUdWPku2M5tY7iiHjYJyXyAlfyZZctQzINTd/DkL6oEUOZEDWcI+VS4lOe7D6yID7Mxm55qWzNDn+p6oyIYWO97L8/Wf36dsF8hhMpkFRkwscMDksYry3boZ3c2y3SwFztJWbwT0QA9mZiFz+FC+XjI764tUedPIia3NICjLSHOisO7CVGGTt53rXXJ1Vj5ugKxvrnRRNk7VLA/DWx76ZzNbmv26+TmhEPQzaoFxJVHeB35uS+5zrnqRNiQZq4Q5+hkYjbP3mN9JYWIeoxRQvYdb8AJQQ2Ti6UJPj+suTN5CEfg5gEjgKvkJ8/e0TEE7cpilh7nfUfgIZZlKmveFn9c5EXb6u0z77gJczaoPmWpBgiGDxeRVnhuRGDg5Mj1WDh7RyJTUypRWMnT8LgoFmVj4JFctklS3cwhlBl2Raaoq74+AHFinkq/ZLCeXQ3pdBKT1ieEkCBQ2ENj1BIMT45oAKJSYmbYYISzrSyDIYArvKXMN3N/cO8mTFx6wlZif2w+sAUlBQKHQkH2aLXJJ/porRHJCK5BkyPqdQB1h3cRqTp2UWarrA5nJXF+SGdEQZu+ldWQuhaCsN8tTv5nA+kDiKjJLqRRiz9kaoTXBoPeAkIAdMclmgXeltSnAaJLd5moUYPr9HUntnwcqY/jZh/4yAMv/8VcALP/Orwew/FaH92gZ8PGrR1g0A0QR4ZyClAHff/kGP359gdWix1dfnEGUHsvzI477CkVlcf6SgTp1OWKwGtYq+FcNFh/scLhtENqCDNp9gbByePrbb/H2Zg3Xa2CQiK8ryEcDQjJRi8YhBAmcjFA6ILytEFYOCAKLsxZ2reD3BULDD5c5H+CsQtgZxLWH3GssP7zH7rbhbJ2KcCsHtLxRhZWDbhzk2wr+xAG9hDwf4A8a8lkH5yTQarI1o4TajvC9hmgVYp38F6uA2CsydE8H2F0JuRxhjIc7lrDHdCnoBEQ7CX9iCZQBAmgAYpTQBwW39AxhAOAXHvGJRTgaguazETEIWMF0UvF4wDhKSBMQbwrEIsI7Bf94gLqkjNkvAuSRj+FgEBKwghfAxsJpzQRJByBIuHMmpYq9RjQR49azuiMKiFGgf24ZNGMi2bSakmhhsxwporqS6F5aCCth7iQAAsawDDD3amJuhBfwq4CQAPJw4SCcgD2NEwOY+/CiJlipriUO37MovzboX45Qdxqhiqneg4Xuqk+gsIgYHnvIXsK+N0C+KVHeSOgWOL5kVUb3OKQ6CmA44WBNKMA1nmxUkg2Hgt48fRSpVJ5yUV9ELD+X6B7HBOYlqs8LDBcewgssP5PoLlLH4yqiuJVwTZyAWu5NBCgPVSMwNvTpmp3AeBLplx1ygqYAxnmQO24J8tVIJqm/8ChuOSnSvfDQ9zJ5TEVi2Qims291SME7+iAm5ms4JUjPATZ6EJSLB2A84T64JsnWnUB5LXB4n+cdgeE8BJFZ6p0mEHqeO2Bmu3wdUb+Vs7dQZXaM50ym485/Oz4P2PxIwq5n8GfXZLAyAyYcgXiWmosI9OdMcM1MVAb244aMmG6B44uYAGBiBiPPldnP9Q1ZgglgqpuQ2ZspgWGbwI1L24rzRItPNREysZPNKzF1zEpLD2OWgLsKEJFBK5RBZ3A6b9OuGXDTbSgBzfLoYTv7jFVPxgngdZzrMBDThEVKL+1POSnkwffOLjCllbpmDhcq7iMO77PWRkRKr4MChi2Z21zvoQaec8P8N3bCnpNhC4Ys0XAyd6/KGNGfpnOcZLGseEnAKgDaAu1jCV+krtokgQ5KAMm/258Q6I1bsnbtE4HqiseQpeK+IIDOXbj5HpO91iKw7iKDJNeQXQ0KqSYCGE4kdEtvp7LsU3XNDA7tgoBYJBmwdLPcWESCVYYF8ZjNgZ+RYUsWxzYEvP2pQHmfmKtC0Ae753PHFcE1BHB8oqawo6DZmepLrouBQwTHIjB9NTOLvhCTZ9XWin2oAz9741JAeAWI2fs5bOTsq7SJRRvoT2UdBwFmZkXZ65q8r4WYWEFf8f8ZhLqKCa71lUd3ppjO2hMQiwD4NVOVQ8HJOFfJqQN5XCd2MZDtEyGFVnkxTaJElSZGEOEadl32ZwamDXC1nIAefbwEdLEXyVsaUdyOcEsDV6dU14rnpdhZhAXloMOpQXlj4ZaKEyL3ZAl169OEIKWxZjdiOC3pv0zeTV9I+JrAUQ1hSruVLmI4Maguh3RfNImd1InhDHCVAlIAUe4LVUPAuDIo7i3sxkD1lN4OZxXK2wGuMZxE8ApqCIiaLGJ/UaO4G+FrDdVldk4iBjWBy1DqaTI8KgV3UsLsLEJN6asYZ8AiR4/ogVjyukGM8IsCuXtTDZ5spg3EOUZA9I7psBEQoyOTGPnBiUrz92AIJgeLKCXksU+SWQGYJA/O1SHO8yc4gQpglr0G3mMgBAGm0QSfNZNaYRIYrXhTyoxkTNUiABBXTUqFDXNVCSbeYGYbHy4ZEFoLUacamTEBY0UpNUxB8BfFO37K6TkPwXGS4D5cGAYU35HTvrs8kPGG+OcCzW/j8uskXf1lL99qxnL5/SfxD/7xv4ePFpf4wf0zBAj85OoMAPDXnrzCP/nsPfwb738OAOidwY+vz3G+POI4FhicQlNY3B1qfPToCl/db/B4tcfHnz8BAPzuh1/haX2P//v//T0gAtv37tCPBh9dXOGur7HvS+wPNU42R2zrDj/54TOsnu+wu17gr330JS7bBW52C7hXDRYf3GNdDYgA3t6sEbyALjxOVi2EiGiHArurBZZnLV5u7/DDL56gqCz8p0vgZYfVssPd3QIvHt/icreEHTXOT/Z489kpzEmPurI4HCr8jQ8/wz/98gWlpVXA8qTF4baZqkUuTnd4/dkZfuc3v8DHry8AUAIrVERRWRjjcbhtoCuHDx5f4/OrE/gE1rXxCEGgKByawuLN11usz4/Yf7nGi++9xVeX20km7J1EbDWWjw8otMP9boHgBKSOaBY9Dvc16iX7P72TsK2Zal5QBrx8cY0vPr0gCK78JBX+3ou3+PiTp0kyK1Ge9BhbAlPcFRCnA6KXVHjogOgl1OsC4v0W7rIis6OY8CpVRAQQrIQuHWKQ8JcVYpXkkBsLWIliM8C+rclUr5gY6z9fEHQ7Sda6V0BF9lpUHrFXKLYD/JcN/JKxjHo9wt0XgIrQS4v4qoJ574gYwWM4JmnPXsI9GxA7jZcfXuLt/RL2ywXUsxbhiwX8qYVZjIhBwu3SyNaEJP8U0K2EawL0ow7uqkZcOCy3HY5frHD2nVtcfb6dGOXipMe4LyCOmvJXL6CvKTd0Gw9hmQ7qto7fPipC7nUK7SAjOz5OSbGC7Gm4GKG/LmCfjhAHjVgFiE5S4rjxkAOlt+WVwnDugbVF9WcVuucOYkx+sZVD/VmB4fsdw7WWrFIRuQ/TRIhhDpQJJnVANgTEdh0QCnZ6Sk+pqPCCEteDpE/2JMDcsj5E9WSUyxsJV0dEA7gmAAqIMqK4UVCtQPfhCH3FSQ92JRL0+RJwJ6nHchAIdURxLTG+N6L+UYnhLMCveF3FdB7FKICLAeaTGsMTnvviRk3ManGbvIerOQ03GNbyFNfsFx3OWEWSWTBfR0jHgZBryDraEwdzq8ky12TwZEoIhaAyAbVH83EJ6YDjSw99lGn9rBxpnzMttrwR6B5nxjGivJITYywdMDzyKC7ZsRkNEFRiyBIjWNxTDipTmmv+XXgec3lNf3LzmkBWJSZ/3MSJNazfUnaIpGQodgLdkwBfByw/1VPwVw4Ry32eUYDgPrHW/XnE4it2dC6/YMCTtPQaV2/5npZ3cQoBy8CZzBPXlT3EGbgjEii7isBPpYArn8K7ckiVT+qCzIRPtSjnwOIVgVH7WKDYE3wLj4nt1B2BY5YAl7dzqBArix6EYWkeg10QrIwnnNhYfhXQnUrYFfezfRpR3qbk3ZLPdYuZFV98xTFCf5pBL7B4w9Awu2C3ZX1JSWtOss2AWg3JA6d5zupLMot2QRaxfSJQ3BPAkyHF7OtXWVmQ5K6Bxw9glqY6VrSMSwYzDWtKS+k/TcygJRgvjmRLh61I6yDr7EsCX6YJU/K5fO1ZWZIqWaLihEAOYbKNQLmLaM8lyl2YgGhUAu25JJAfyWgzHGmWtYYH42STpMPSMTyqeeMwrhXPnWWw1fKVx7AhIM4McJT0uxZ7vg9qJOiwNSW1IoU+ZeB7fKxR3tMrW9569GcK5X1IE0oS5Z3H8bEmYB95nrozifqa9TGZdTVJ0moXlMkWhzBNmpiDh68k7EKivPXwdapaSWoBORJgSh8nJnbcavpmC4nyzqI/M9DHAN17tI8K1FcWqiNTN24NyusB3eOK9STnJczewTUK5VUPSMEqkcyW2jDLWoWA6h1cY6A6B+ED3KpIEzJMzC3vLGWsht5dfT/AbUroo03saGJEC7Ke41mF8qqDrw3k6JL0lWFE0SjAMfxIthZ+VZIp1RJBS0pjuxExsbI5mEi4QID5MKQnyVFDVZDtzP5NoyH3R1aQ9AN/WgdYh9hUgJIQ+5bgEwSb0WjWjwBkEp2fJa7ZP5oCdkRVEnx6z37M/LocMpRVDD4AIYX3aM3/A/Tv5roRm7ow8+uBmTFN7KPQ+uczkd9gMr/14T3ffR5f/g//2S99vT/+u//lv/Jjwz9n701iLMvyNK/fGe70JpvdI9xjysiZrElUS7WGHQKEEItuNbChlyzYwxIQYgWsgCWwoFcgUIHUNDNdUHRXVVdkRWZkRGQM7uGDzWZvvOM5h8X/nPsssrKrKXUVnVnUlUzmbnbffXd8dr7zTfySA8vFdx+H7/yHf4PVtozmVajKngBs1yXKBCaTlq6ztHclk9MdfWcF0HRa/JDRw1cdNDS7HHz8Y5Q7htpiSod3Sn6uAmwy8fF1BmUCfiv1FWdP77m+nqNtwDVmv53JIL69ABReGLheQemFbSs8eipAZ2gsamMIUwe9FjCSwEO+Xx/AbDX+pBcWEiDzqJ1B9YrZ+8J+KoXs8zqTgCIvbJ6vxHsWikCIoT6qF6b0oVdP7wQEmEbjKg8+sjJ5IGReXjMdYJl0hMIMhVwCkexaZif9kwZ1UewlXAr8RDSXqhcPi+pj/+VOvF9uJr/XW0PIk6xUwpLGgvlOidcwAgzdSeKv8jIYdBMfB4LCRKpBjZLmFFwUsjB6QYNFknmjN8xVMqgfJuJdE+lOgCCvM7u9vHiUkhHlgINIa5P0rLgTD9xQhSib3fulXCmsr6kjo+pFWpvksYktTIOz1CWp+8TqRVmpIc7Ax/MxCONntzLQt9vogeuIxxIZQh3205ZReqq/boMAYvF8rDlJkf+6jx5Hr75WNp6usx4EtIVMwqWS/HSYJAaM0a+W7lGRAUfpsZWfJ7DiokQ5mDDKdZPUWA9yne12f11S0q5IGYUxTSmPKnrz5IZgvDZ6iOchSnfVg7916T1dGZ8nL9sxMSQqhbuke8BFSeN4DYufOT9J7sg+lCjJWlMdQz8P+2Csbr/N9D4Pi98fblcksYzBRcLoMHYaJvClgvxeD9FrNtkDJJBtuDJKDB+EViUpp2nk/+n+SYskrzJ2BCamJYXm7KsQ1MiMp+oPCWeK20ty1AcDcthfw8S+jbK+B88hMEqtk58sLcM0Hk+8T3S/P6bEqO2l1LHzsXuwfofI26z451I6eJrwED+nhCAlJkjkyPIMDmVkJN1+e8MksYVyEAnEpn1JzFYC2lLD8PXzkfoex0qPJBEf7zMV00MZw77knt4D6JQynCYGTJOug7B7yu/P70NG8eH1T/eJjpJcn47f7dlCW0fwZdUoI0+9kyLBJgZNhfhsJGZv/1ylXs6g2YMgohw03/sCffIHxmdDeUZpdZLCuuzrcllvpdYkhRHtQ8XS8YYoFY6S2z4IWC0fyP20wnRJeho9rFFmO543GP2JIvMOX3u2lQsMlf7az9P1FiAlO5Y8pollfXgfJLlo0Eq8jIWO+/GAAYpyY+X2nkRf6DGgJ+1LsHpMgU2eRTX4WPUhwMQbkcfq3jNMhHEU1tfIfR+Td027f/8kR04/S+m9KgSRsuYG00jSrWmdPF/x53JPO7zds9UC1oSB3J+TMG4TED+j1V+TBafXj17Hh+dHger9H9uO7HAQmWw6J70AcdU7fJmPCbcp0VZFWbFyTkDcwwRYpfby0CSTTTLSxFw+DPJ5sCSvZLrm4/IwdTaxhD+7/w/XhT2QfLDOiBsSy9j1pHTYr0lhYWQ9R0nsz25v3OwDcPsn4RIf/kIAy7f+vT97YPnZX/3FAJa/1FJYgCezFaeTLbf1hNw4eq/J9J7iP5rUtIWhKXq09mgdpHeyAO8VWgfyo5rMONRUfued5o3jFVermfQndhalPUOTYU9qtA6gDEXZ0+uAd4pdm6MzGdUV8xY3GJT2uMFALuDHFI7gwWMx5UDI3AhAvVfo3OEnYEqHGxRKe2GjIP5OofL4kM4DDEp+H0DZGA1eeNpORtW6GNDa0zdGwJD1hAJh/LwSUJn+6ETAGkyA0qEzj496jNALS4R1UaUTH34bgXLlJATGhOj3kh5BN/WEzGN0lBrG8JXxr50JBO3BxtCeLBDygNf7DxVfyR8jl4M7GOSY4366aVwvAVodCLnsl4odmMrtE0b9JIJQLccbMj2GnoQ8oKMPU6o3BFT2R8LcBaUIRcBVEvwiwEZFJiSMDFBi1ZyJoCqGz7hCGCcVwBcyCA1Bje+l+lgAjoBXV4aYkBj3PQJgbx8MLPQDUJbssMmH5+U1vgj00avYzyKIjgA02LBPH43bTx7M5IHzuchobR39pEmOF9N6XRnAqzGAREXAmnyUPgtjemzyw/kYTuLKMHrJhliTEVTYe/SylJAsnk7TqAh844AgJjAHEwen8X4eU3rjJEIa5IXYxZc62FwR0FoAvByvijLlEINJ1Oi1TAm76dybTo0yK4jsVfKQxgF3V0lljYoTEkn6nBJTk8/WT+R6JSltCu9I7FjqaUy+ULuRN1YBcIwJ1UkWGjS4CET6aQSvCeyo/b/TedJOWJ0EBNKSgLGL19PWsj0TAYnq9kAsdR+m7rwEsIRFUyMYfsiWPqx3CBpMvA8AdDwXe4/h3rsqD8keMAajxgmNoON19owdjimwJ6Vy4vd+Unkz2S89RDlpvJdTcrCOPtgRbEavstRIqeiPfSCXHfb3sDNyXInxSceTzoE3CowAnGEqzNxQ7gfT8iypCPASA6zGz5/kAUy1Pui9JzRVXCVfbrp3lY9VIuk+jPd28qxCBNSRQXzohfZWjZNb6fR5G73waRIlekgJ+/tw7JTso58weiCH8o8D0gS2Ht6LaYJhHMQH2X8/DrTT87n3ZPoIXqV7ML1eJlaSvNhlcd8t2Dbdyyp+nsRnKfr+0vOuXcBZxrCdNGmRJnZ8TEhWLoyTKOlvRQrTSf9OSxr86wTo4gSEH6tm9PgexImNNAmVwEYC3GliIsTwF+X24DKdp70nMwKcuN/ja7Xag17P1yS4CVSnChvi8ZkBeb9ABFdxbBNTacfezU6Y3XRtpM81hu0oOQfp98kvLdUjXdGXAAAgAElEQVRh8kyETI+VK3Ly1HgOgxIwiRMQ9jVA7OOxdn4Ei8FoQrkHh8mPiZf+ZOL5Tdde+bAHbbG+ZKxEGf2IfH3xSA+l9xLq00YmUu3re4IxAqoSKFNqDzJT5cfDOhLn9vuKnPev/X/0x6aTGFfL7N6fCQIGB//HgV4Iwj4mUPhzwKBS+7HVfp/N14Es8fPrZ4Hiz7CWf6rl/0/psb+kyy81sDzIxMiTa8c//eYnvG4PeLNY8uPVmxyXO55Mlvzw5gm3qym/+dZX7Iacs3LDcb7ltpvSeoNRgS9WJxwWNbfNhM4Z3j+44Y8u3yTPBr5/dsHb1R1fbE+Y2I7PlqcYFVg8aihNz7PlMWfTDbf1hPdPbpjZli9Wx4Sg6AbDyXRHO1iM9izrkt4Z8sMtISiUCmTGY7VnmnW8Wi2ojnqOqx0hKK53E8rDDc5rTidbPnn9iKen9zx7LXLfR2crpnnHqilZlA27PmPb5nzn5IplV/Hs6gilYPF4w6xsmWUdy7ZkXRcsHjcYFdAq0AyWedGy7XJy41jWJavzOcdv3dMNloOqYfCadV2wu5qCDszOtuw2BcZ6lA68c3rHzXbCalPx+HjFQdFwW0+4uDjAbSzzd5fMy5beGda7kjwbKLKB66sFB0dbdk1OCHD2ZMOrL04pT2pCgCIfqJsMPzewzDh8umJ5N6WYdrS1oC5tPUXRMwwG5zTTScvRpOZuJ6meISjKbODmZkZe9Qy9BRVw9zlv/vo5l8sZ7VL6TLX1lFVPczHFvr3FAn1nsW8MMhl5X3L2vWtuVxOOv7nj4tUhp2+suL5YQK/Rpz1+lVFeWtz3Nvhdzvx4S9Nk+M6CV8Iy516YcBWg00web6m3BSpzDMsCVbqxRiSbdgx3JWjxdLqpJMz2dwXqcc+wsajKMZ039L1haC2+tgL6A1KbUzhmH+fsfq3GbzMoHHqZ0b/RkZUDPJswHEk/m8odYWsZjsOYyNoXmlAKk66nPeE+J3tvR3sxwa40w5OOfNLRv5riZ5Loile4mWewHr0z+AG6swF0IJv2DDcl5YWh+16Nq41MeGwtyiv0cQuvS9xBj2qMeFqPxANktlq8xgFUDMQiQHZvcFXAnzjUZICoFNCNws0dxXlG/X4Hg6J6kREK6GaecNijbjPCaUeoDXZpGfKARYKudu8OkrR7neEqYUT7Rz35RUZ3OqAGTfXC0DyWACSfBboTR/naSshRJsxweyKTQAnAqkHK6lPwlIvhSCqB56AIE4dZmtE3m60Uu7ccIQuiOjBhPP781lC/IRMiibXUrWKwsT7JKXQrHtoE0pVX9JUMvLsTh90YJi8V6/c9xa2meTyQ3xlhkb0iv4+DrCCM31DJgMHWagQvwyQGPmUBtRRfsO731S0JNKQk3ZTQ2jwSGWp3IMyyyIDluO1OgEv9OJBtFd6EMcXVbhXllWL7NEiw1aFMBjRnnvJaj6BTOwlC8jYwfSXy1xGsbyWMZPFFYP2ODJZFkhylt0r8mLoV6ahyIg1Ox6a7vZzWFdL7qlyq/YkhV9PY4aoV9SORrA4TSUvdnkFxJ9vwVuSnzalMegQLdsPIuPhYq5KvpS82scDNcWD6KlW5yHu1c8iXEqiTPKzNqUhfTfOgr7aH7Ztq7IdVEWDaWrpxxcfLKA2tzxjZ/PI2UJ8pYacbSdhdvyOe0ZTWCnFiZKGilDawPZW0Vj3svaLShRlZMy/PSXXtaY/0KFVN25qce0lajkDOFbIvykO90HLvNCFOsEgSbXMk5zSxhInl7CfqQaAQtMeK6lK6TF0m20ns6FApqtvA+qlhcuXppjKATz7VfBVVHSiaeUzGnch9mG3EQ2q62OF6JAPxodDkW0mH1QMUK8/ukaG6EYnq7GVPc2JH4GvrMDKr3u6DrhIIChqKlaObCcrJtj5KptUYcpWYd5HTarKdj6m58izY2tNXeuwNTbLZoGV7pk2TNSK9rR+JF1TtpIc02zj6ucFuBZy0R+ItlARk8YdmW0d9llPe9NSnGeXtEP2iClNLLYmL9Tb5cpDtrh3diSW/Fxms3Qlz2c8lZVYPAV/ZkcUVdlbqdIrrjv6wAB++5mk1rZNezUkmk4FGM1RmTKo1dezftGqcUTGbjv6oxDQDymiRj/YOX2ToToBmyMT+YLadsKq9EwVCVew7YbeSSkvn8fNSWM4EvIx4OUNmxKdZWFTTEyaFvFcVWVCtUXWLn1ZyPXYNKB29myJJCFWxT2vNM0mJBZG5wh60pqWXLlEyKzLYuF6oU+SyAGGVZ5BkrMPwdeCXvJVK7VnIFCqUlnSsic1knP/Y71da7+d4NH8ZlzQu/Yu66H/4Kr+4y0074Yd/9B6fXJ1R6AGrPBftgqt6yo9fP6b3hmnWMSk7fnp/yo9fvUHtMp7tjrlpJ3y+POWT+zMWRcOHL56QGccb0zVD0Hz/7ILvn12wG3L+8O4tcu14uT1k3RRcr6dcbmds+gKjPRPbcX0/Y9vnfHx7xvnLI3ZdxjsH9/TO0DnDqim4v5uiVOD2csFmVzDNe9re8vr6gNfrOUeTmvvVhNt6wifP3uD2YsGuzTHa8+Pnb3Iwr7lczcAr/oXvfUBpB263E7ZNjo836fGk5g8+f4eb7YThusI7TQCulzNerRb8lbOv+MbJLU2XMc06lnVJ21u2Xc7l1YL7umR1NUNNBrZ1wbToqHtLaQempVAU2a1lczMh3OcoHegvKwav2TU5+kvxn3702RNul1PUxqJrgwK6wdL2lsPZjtX1FKM9YVBs65w8H+jvRXunIivZrgu63lKWPa41UDmaLkPdZeSZAIuwsfibgt2qpK8zXGt49+iOwWtWN1O2mxLnNDc3M3TmaTcFrhbfqNkazu/mLKYNeMjOc8IqJ7OOkHna+5K+tZgXJd4rjJGAodWuZOgst6sJBMWmLtBri10awjIXFtQGhs6iV5auswQv0uskXdb3VkCbArsy7FYloRcNW35jYGPRGytMtTNgAmYjqb9mY+hXOfmdwWbDGLC0Xcn5842AOrPTmK0RptgEuoOAbxODrvCFF1Cp4sDBKbIrizIBuzEwKLJJh2o1xYVB1Qa7NPh1BgraXYbqFQc/BTaWEBT5rUblnmypydYKs9bYO4tuY+XHzqDXlqG1qJRY6xTKBkKvyZYi53brDLNT6LUlu9OYnXgss3tDtox/fGqDqZPkSEuXrAYyj7GRye8U2UYGJtUVY8WK7kTa6xcD5jyXPtWl0DxuIh7N2VcyQMtuDWYykK8kBTlfKcqv8nh8IvdO8uJU4YCXDtf8Ps6mO2FY1aDIlyqmFIN71FHciCzbtIp8qZm81COLxiD7n99qAXVGmNRUDWIajYrXGiXsphqEfTJRaiz1I5rJK0W2lfOoW9kvV4rMtrhT7JMaibH+kAKTghEpc7YWQCHeVPFNPkziHY/VxxCkVoBzcRse1KPsU6KzdQzwsQKOXRErbdayL7oTIGKbQHEvElLdCjjPtpCtNamXGETi6ItAcSeS6yQVNYkpBvKVHLvdyUA/GPEiljd7Jh4v589V0Q/Zy5fphDFO/cSyvUA/k3/rThjD1M+bbWD62pNtY4iUC9hanrfiLoz7lPa/vI69yl72T5J45Tokls/WgXwdxtel5NvJawFqxb28l2kFVJk2hVJFuWgtdRr5KjJqVlHdeop76datrjx2F7DbKLePUmiZ8BCgB3JeytuwTySOUtZUw1Ld+NG72JzJz7OtnJ/ydiBfBfKNJ9+Kj89uA9WNk3Mepa2jFDlKhvFyHNkmjEmvKkq47U5AUXnnR4YZL2CYKJJJyczFymPrWHVSyH1qa1Gr2Fb2BaBcevQgcth84ynvXQSywhAW927PrqZbQkG+8ZhWjkfuvzBKvX1kSe1WQFC2k+tQ3g7YRs6JHuJrh8S2ynVPagYVwNSyXrZxsW4kYGuPbeV8Jk+nCpCve1EmND5eL7lHdA/ZxmHbKEutHdnGyWdaI9u3W4fdOWG6oxRax+sTrEwGDJXGW0W+HBj9cF4kvb7Qe7Y0BPKVI1/34jte9zHMyAtYbRzZOnruPGPSrN06dOvIVwPKy/+VD+N+KRfI1gN6kDoQ0wyyzfUgadK9VLEEq0dQqXuP8pK+q3qHXtVyz0WQaWtHth32DFwENKbuUYPsl1SMCDhUg5fU3BgmxOBRbY+KCbuqd4TcChCM0l7lI8hKMlcXUE0v68SUWuU9yjlU0+1fu2thcKhdi6rlixBQzf7fqZpkTIRNi/djoA/Oi4y17eSr66Fp5QsE7CX2Mp0DHx7Icz2h6wkJpLrotVQRWjyoHSFVjiRvZZTUBuekjsTv//21r4frPUyR/cvlF3b5pQaWpR1497vnPFpseNEcUbuMw2zH9w4vOTvcMLUtSgWKbCA3jqen97zYHPKoWNO4jCezJWfVllVbUk1aplnHR+eP6Zzl1eaAH12+wVmx4TeOXnDfVZwv5zRNhopM331TUWU91/UMBTSDJTOe48crymygHjKOyy3TvGNRtpTTjhAUj9+8lz7L7YRuMBwsdkyLjt5rirInN47JQc3RozWZdSx3FYeHW1bbUmT3medHyzc5LreUuTzQdZ+x2pUs65L5QY3zGhY9edFT7wqyzLFdlZw3c1ZtyeA1t/UEoz1Ge3xQVLOWEBR22qN0YFq1+KBouox1m7PcSBN7/7jDVI5gA3k+ECbCcvadZZh5vNeUBy1DZ7AbjT/o2e0K2sHQDwLM6DVtb1G5yJMBzLxn0xSE3OMfSIQBbDmgdhbvRWraD4bQGuZP1ujjjmreErxC6cBPr07ZtjnowGJeM/SG2UGN77X4WweNG8wYBHH1+gBMYHizIxSO9f0EBoUqZbQ3zDzGeNomR/eK07n0nioFqtF4LwDFF+I9TT2ENh/2NTWAsW5kHcNxL7LeTuPLgDIBei0gOg72gwn4xgqb12vcQmS5vhQtVVAy62WWlrCzhF4zDGYEmm4qM9Cq19BLaI3aGeg02aRHt5q+sQzxugH0hw5fW5E1Kwl30q1IelWvJOzFRs+fkQHw+l0BK92qYJgJePZZoDv04iU7kFla1UsFTsgCJneMtQg6jAFNw0S2TZTp+sLjqsAwjQyeBjcRljdJz5SXHtF+jviEa8Nwn4MTT+1QSf9oewhmF6t3DHSH4ktO1T9ywwnDGTJJBzWteG3dNpN962JYzzQI+xXrZ1xO9JumgZ+iuNO0J16uZQRf2kUvZZJybq2kn8JYj9PP5VyJdDHW3RSp8oY44FajnxP2MsfEVmSbJFFjlP02J2FMDA1aBro2MouSXqv2vslajR4+keWpuH8xOKYV0JU8o9rFGpbInqnoU+2nAjj6mRJP7QB2HathvCTSqoHY1SrHYZdGvHVR9j1M5PX9VACx7D9fAwvi14tSu1oxxPRZPewlvSlARzpQE7Mn4LM7iCm0KskLiaA6nt94/SRRdS8NTYN30woAG727QY7JZ9JhmCST3kb5Z9yWHvbrm1YYPe2EPYO9LFqYVkZPqsgQ07WR/fGFJLB2c9l+GvhLxZMaJcvynEXJaAumDjRHwhJlW2iO47MVz29KCE4gvZurfQVLqrR7IOVOEtp2oSVAR0FxK4DQx3Ce3SPLUMlx6lgz43PYvmlIcsvUZZh8zPpnvKLit2QPWuIzLCybvBbk/O/li7Kf/USkntkmkNVhZPFMtw/9eVjfgoL6yEQ5t4AJPcAw0Q88vOkcCQPZLjT1iaSyJglsks3arfgO03uBgOJRHpwknPEzTlKeBdCmLk4UscYnVZYgvsUoPXVllM+GgLd6L68fBLAleazPJIjH1tIx6WIPZpLrulJYN1dqSdXt9vu2vw4xMKiIEtsg2w0GqTxhv64v1F76b2Ufk1zWFQaf61iVJKwmyLZ8bhgqExN6I3uf7c/fMI3nOjP4wkQLgh5fT0B8oEZSdJPvEh9iwmoe72GRkbrSoAbxggYj7y/bMgSrBSzGcCBfWnxu8FVGyLRIcR/IlDEq/g2MrJxS4+g7GDMCQBUCocrFo6mUMHTRrzlKWxOLqDVhWhKmFX5WCpAsi/Hf8lxGFjKFAT1kJGMwUChzYTPLQljJqpQvYEx+hRjk44WRTPuiNMoaYWxhDyhTcmsM7BkrRhI7GX+mlEIZgzKGVG/yD/v6CyGFDcQ/1n/GX78gyy81sGyGjK/+8AnPP37MB9dP+J0ffoe/9ez7/C8/+S6vP37Ef/s7v8lXf/tdtv/zIy7vZ1z/7ae8vlvw2z/6VT76/Al/78fv88Gnb/P8/JjuRwd88dvv060KPvjkHQDajw743Zfv8t988qt88nvvUm8LwrMp5ncOuHh9yPrvPOKrD97k+etj3HXB60/OuLw8gN8+4fYnJ3z64Vv84efv8MXLU15eH5L9zoLN3YSL58dcf3ZM98mCelOg/rtjLm8W3CyndB8e8PrHj5j/13NWnx5x9dURu03B/bNDJmXH7tWMouz48v94l2fLI67u5rTPZ9x8eIb/4ACtPdlvH7K6mvHob+W4Dw8YVjnb+4rQGp4tj/nqizP6Hx7S9Jb7+yl3rw64+fSE9ou5ALmvKoqPK24vFxyVNW2bsd6W+GdTVK84+19z/E3O7HPL5npK9WVObh3FRxXVuWF7OaW5rgidYfYcHv9PAsa3m5Lh0zmLScP0mWX390+Y//2S7mKC+4NDeF2wXlZUX2U4p8lfZXTbnPWF0AHluXxITb+U7+XLjPrjQ4oPK/rP56iNIXtR0Oxy7l8tsJc5q1XFcFPi/u8j7KuC4z+w5FeG4qNK/lieTwRoXWboKxmpTw9qyktL2Frmf7fCrjX1usDtLIvP4OJ+Tv5phXsxIVtphs4w+3HO5JWmfJmhG8Xj/0sxnzZMnxvc5zPMFxXDxQTVaGZfKfLnOfbWolvN5JVm+kcls59anixWHHysKG40xx9oFj/KOHq0xqxl25PXmukzg1kbqgtFtyyYPdPSg+rkw8XcWY4+EPno5FyR32hUpzn+yFG9lnPX3xfScbm1KBWYvDQUV5bJV5Z80TL9SqMmA0oHHv9uoLpUTF9ojj8wqE6T32vCoKnONW//jzW+8mTzlpMPAtjA0ceB4kZYtvmnlslrxen7t5iDHrvS+IuS6kLz3n91jVJw8EFOdp1RXmuqSwGts6+EicuXmvJSk20EnBS3Cj3tUZ2iuhAAbpeW6UsBv6Fy5Lcmsi2RybQiNfQnPfrpjupSUk1lG5rqQsWAHKkaya8M8+demK9GRtmLzwRgFbfw5v/pmL4KFFdixpqcSy3H9KWkjpavo3x0EOnd6YcD2UaRrRWLz4V5OPoxqEXH4aeO+bNAtlQc/ziw+DwyWjd67Kk1O8XsZaC6CmQrYcSztYCxw7fvUQ6mLyWwKoseTLtB9vFeztvkXKSO/Rsd8y9hciH/n5wrqnOp5TG1ktL3txqqy4BdGWYvhd0obhWnH3aUN0ESeJfyHrqXWg+7C0xeiZ+4vA0jqCtvA7OXfvTj9O+22AaKdzYc/cTRnMLkdaD4/pL588CwcJS3AvaHSWD+lefok4HJpRe2s2b0Aete1qmuPd0iMDkXAO4z+fnspcdnMDkPTF8G6fNUwsplWyhvhZ2eP/PYHZT3nvImcPhTT3cgLF5KA7V14OjjgWBhcilsTHEfmJ47pucen4s8M18FhjLQf6fm4IuB+YuBxVcDh585qmvP/OUwMpbSaSky48WzAbuDbuGZvxjG47PbQHktxzi99BT3nsn1wPR1LxMtVUwrbWH2ykkS7EJYPZEdwuy1o7oNVNfha0m2PoN8Iywq0UOaGD7l4OgnO5GczmUd28DxTxq6eaA9CZGRlMmGfBWorh2zlx35Shi0s99fjr7stG7qRrVN4ODjtYTruMDiy57DT1vsDop7zzBh9A8XyyD1LbeBfh7Z9lzSXPN1kPUj06l8YPmDgepGrn1WBznG6IHNV4Hpq57qdhCp77HIUL2B6magXDqGqWLyqubwx2uqa0Gy5VLqR+5+w5GvPet3oLjryXYCgJojAcpDqZm+ajn4ssG0gWznsbWwncX9ICmxtSPbDJT3wq4O0uSAy6BYepFvxg7R5XehuOuYvqjxmZIJrz5gGk95K+xitpPOT9N6YRwRJnKI+5OtOvQQyJcyEV09X0ePMBQXO7k+64HyuiO/78mXwtjZ2mN3Dp9rJq+E0evmimw3oFsJNTKtI18OEZwOuFImhqYfXwmb13thPWtPvnZRLj1Ieu75knZuyJatpPOuO/KbWhjVQdJhJQFaUl31EMhudwLoB09x06BcoFvYeE9ospstuhH5qmncCD5DZABdJRUwZtuRrTrs9RrdDOh1PX5GJd+v2XSgIbvZkl9tcYXBrhoB4zOpGrG3W/E3+oCue3Tn0N2A3rT4KsNPMvRyi17tUI2wgz7TmJfX6G2Lajt0N8Dg8LkZPZuqEwms2rUxEEkLa9n1woRuawGkXf81wJaAq2o73KwgSVYxWhJhjRFG0nmRtWrZ95BZCQMiguvYWwlIuqvRso0UsNPLveSXq1EGG4YBjBEWsx8IbSt+0GEYpbYhrue7Xr43Lb5pCb38zLftz/+Kvwtt+6fGCr+IS8pP+rP8+kVZfqlTYc/+iZPwW//pX2fdFfTO8MZ0xW7IeW92ywc3T5hkPfOs4Siv+d8++zb/1Lc+4fcv3mLwmqYWvVdZ9hTW8S++8wH/5We/yTePb8jNwEdXjzmZ7gC421X4oPBeMS073prf82J9iPOKu7sZh4fCYOXWcXF5wKOzFeu6QClo6pyi7NhdTXn63jWrpmDzYsHsrRUn0x1fPj/jV7/1gg+/eEqZGEPraJuMp6f3fPnsDDsZ8E5hrCcExVtnd5zfLzDGs72rsJXIDbTxOKdZzGq2dcGvP33JHzx/mzwfaLY5rDLMSctk0gorpyQV1w2GatKxWxewzJi8JdP026s4CjNBpIBFT7PNefL4npfPT3jvG5dcb6Y0dY6/LMmebKmKntW6wq8z7EHHyeGGXz99yf/w4Q+g1WSHLcZ6Dmc7Li4OmSwattcTJic7dldTkQo+2tG38ociKwbauxK9Nag3GlxrqOYt9aqkWjTU64LD4y33NzPwMD2u2V5OZWBUOXTucPc50zfEE/or777ii9tj6l3BZNqwfjVHTRy27BmaDHOex9AheS6mj+R1+qLAHQ7MTrfsvlzg5wOqEbbLrgz63a10dzaWw2O5H+6/OKJ6a02zy/GNRW8MnLXMZg1V3nO7nNJvculYXVYihdVBwpvWGaoaCK2hfJXRPBo4fLpiW+cMTUZwiulRTf/RguN/8pKLz04JJmB2MYzIBkkhDiIZJcD8nRWbTYl6XYos8aBHX2cop7Dvb2iSFLkVtjtsrEjw5j2uMVIfsujRywxOWrgq8IuByVFN/WqG7hTlN9bUz+eYxzVu0HBT4CuHng6o16UkDisBaL7wzN9Z0f7wkO7ICwN+3NA3dqwgsWvDcNqLl9LKAJxBUV5pmjOPOm4pPqkYJtLPifXY20zOQQx/GYONHjXkH03wFoZv7/A3BcWNoXkk3tLy3DKUQapWBgWLHps7wvOJdDqeOsxOEpLzk4butiS7ixUh7zao8xJfecLEUX6Z0x/IrK07GlDWoy9zeLOVazsII5NfG4ZZrCPZGvxEakmESYRspWieOFSrxAM6yCSI3UhCbyDWeGTQfbtm+oeVMJP5PuRJDZJw2c8CofBUL6zIoqM01TSK4aSnfJFLHcPjgemXlvoNT/Va0y9E/tme+AcBMAJqk0+yX4QxzXfyStOc7fsXU4pxeSkDugRqpl8Flt+NSbQVVFdSN5JtFO2RZ/JamKft2x5fBMxGky8V7XGguJWqknwpwT7DJPorj2VfVRCZ7epbnvJS0x8IcE/Jxd1CfJwpobc5EWlv96Z0z7oSihtFP5P1JKAn4Cae6pWhPfFRiqwiIyhA3xUCBpNEdP1uHKSqeJ4nEjZ18LFi+xZMXsHuCcy+gu1TmYQwNay/5aheSY9jYm3VINfQ7mR/XCnVLCM7F5lXb/dhTCoC8H4WKG+ihzATqWpzIv5O8SmGOPEh7GE/l/0eJsLEltfi0RymxH5OOaZuLlLm4k78mq6U+2P62rN7rOkOxM8pfb2QRQlvexh9s6W8f3EP7bFMVJS38l7FnYDJYCNTXAvDlK/l3NZn8m/dx3TZyDr2M8X0XIBZXynaI2Emxz7TLPapRsbLtFFarIStdTlj12ZzokYptOkE1M5eelbvajnGR1Itkm33qbOJnRRpsPhCs228PnNht4eYwpxUDKYNdHNFHvtWh0pScduF1I3UJ8IiF/ex/iNTtHMt7GOfZMMiSdW9gNl+oimWkkraLiJzZ6UipDnUTG4cpvas386Yvxhojs1YUWJaqT8pl46+0mPQVb5ymM6zfTMjX3th4Cth46fnUhcyFIps5+nmmnztGSp5z3wp45ShMnRzQ75y1GeWxbOG7RuF9GkWwiZWVx3tUSY1Jb2ATFcZ8V3megwbMrWjX1iK2x7de/qZxVUa0wRslKS6TD538usd/XEl0lSrx/TZYBVD7Ne0tUN3Dl8YzLYfgRaJwXTCzJpdh6syTDOM8lrlPMFodOcYZrn4LCO7FrQamUzdOVTvwWpU72Q7u46gtQDMh4v3hCJDtb3IaOsOPy3R20Z8kk3L2BWZZ9BLlUrIrLCUvXhDMeLBDEYL8HyARFTzoH5kTIv1wlomiatSUhkCIosdpbvyvmG5gqLYh/2kmhJjBFQ6J3UiD3yU6fjG5WHqbfr/z1u8xz8AvX/a5RchFbZ4/2l4+u/+63/m2/3ir/9b/9iPDX7JgWXx/tPwvf/oXxM2rC6kky/34mNTSC9ep1CPG9xOfGcjBR3TVtXWoI46/CYjO2rwLyfkt9JvZ7+9ZvhkLjK0XAYEVA61jcEoUS4YSoe9yRgWUjwvEkSRB469ekUApyhuNe2x+DZ8EbAbzTD1mK2EF/RzP9ZiFLcmpoMyDiRdEfvfchcO7ScAACAASURBVJGUdUeSpGZ2Cv/NGvWsihUS0J4N4rEz0d/TR/lFkPc2uxj/Hgcfqe5hOJAYz+zWkG0U9WNPcadpHg3YlcHNpEuvO3FULw3hN1eEP1rQHXnyO+kCRMHwqEOtLdlS40rxtPVzGTBu33YU13Kd2mMvfrXoiernMgiSqHliwALs3vRU53oMUNk98Rx/qKjPVEzFFF+VraWg3u4U+UoxTOIA+E4GijoOFNsY/FFdKdojGbB1Cxkg9gcyg+9KYaxsLfszTGUf+jljOqRtojfsQLZhd7Kvs+daBp0G2hP5f1BScD/7StEeg+qFcQC5LtOXsPxeIFtJGX0/k8Fjd7D3eqUevJQCW78hTFO2kYFaUNAfBOafw/33ZbBfnWvqN3z0rMUBbCPhMSoyS91CBni6l8AO8SFCdwDtqTwv1WvNMIXySu6Z7kAG5vm9DI7qx4rqIrB5W6SJKVUzFdDbRiSm+UqOo34k56JbMFZsuBxmLwPbJwpTy/ZdIb+3jfy8uJMBt8tlkKwc1I9g9jzQHidpoiRt9rO9X1CulwyClRMmpD5T2FiL4SNLYLeB5kyeD7tjn7q6QySgJso/N4wJqN2hsKIkQBU79toD2QfT7s9zqvuYnAc27yjsRradkklTb98wUeTLEMGQACbTyP0yVDJgLZaBdqG+BqJdJoP8bBN9WTambToZRNenmuI+jGExs1cSVNIeKeZfOZpjTXugmFzGe6GVAawrFHYbWDzr2D7JRomnK+Q5A+k09Fa8at1c0S3E+5dqL0wrA+zqxtNP1Vj1Ud471m9ZJpee3al06LlCjfUoQyXsWp+SWyMT1s8UQwXTc09zpJmeuzEkZIiJwLaJzNQ69gAaYYbaA015J4Nfl6kxpGUoFJMbR7sw0ku5i2xbFiVpgRFkp3qUlEKrByTdM56vdiGMQL4JEpQyjb7gmBDbV9Jz2M2UMJWZojk05FsBB2n/kyxTKmjkHqluoly/1JImq+U6lTeO9tBgm9RzGWgPpOOxuhrwuaY9kLoJb8QTaJsITIYwnjeXKyaXQ/xcNsKQZkp8kY2nPZQBeVbLJFY305GpDuPrtRP2rFuYCFp8DI9R1MeabCe+wpTGmq2lDzElzHqjsDsvCamdSAyTJNO0+2qPbCVhMboXD10X9zdf+7FLMXlapdZDfI4ohSsV+f1Ad2glkOiyZvmd6VilYluZEDOtsH4+15jGsX1aYnfC6mnnRcppRO6pBgEq/dxgai+yzAD5fYcvRNYp9VCBbN3THudUr7a4WY7LND6T+ybbiG/RTewIbHyuGSaG/L7HFRobAVc/tdg6aYURcGMU7WFGednSLwSs+VxjNz0Yhcs0djswzDN0L52SdudQzjNMLCbWkXijya+3+DLDF5ZhKpUfACp2RupmkGTewoJS6DaF3iSfpUJ3DldadCugTPmAqyzZXUN/WIrHsRkIRcwjaAZU3TEcTzF1L4E5234EZz43mGUTU5QtvrJj5YluhrHiIxhFMAa9E8arfzSX6pLCSN+lD/sgHe9RTY9fVOhdJ4E8m3ovK42ALeQSIKiSJ1FrQpkJM2m0hNvULWExFU9k1wsgbDv5nroqlSJYI4xiqvDQWuSrMEpZE8gECGUOq83Y/6jKAtqO4DxqUsp2huHr/khrCNsaZeXchi6+X/B/XMZaFNFPGffhIegDAZ2ZHaWyYZAQo9DFzkovLCvRK6mMke8/s53Umyk32Z+AR9I+Bv8P7rv8f7H8wgDLf+fPAVj+y38JLP+Rl6PvPQr/7H/2z2NU4FGx5mV9SKYdy65Eq8DEdlSm5/P1Kb918iV/5/KbPJku+e7sguf1MX3QGBX45P6M5a7i1x6/4nc/+wbvvnlDrveRzN9eXHHZzrjczbnZTlAqcDLdse1ynsxWnG/n3G8qThdbplnHXVMxyXqawfLGdM12yCnMwMVmTjsYFmWL1Z6X14c8Pb1HqcBB3vByfcA07yQIp8uo25x3ju8kHTYbuN9WTIqe27spv/rOK54vD5kVHeumYF62rJuCbjA8OVxxu6vY1uKt3G0LFvOaadFho6fycj2jynt2bU6R9WTGs2kKiqyn7TN264LHj5asdiVaB8pswBrH+RcnkHumxzW71zPscYMbNO+8ccv5/YL+yxnz79xRZAMX54fQaCg9+bTjvdNbXq/nbO4noAPfeHLN518+YnosZse+N0yrlrtXB5hFR/CKLB+oil6kuL1G24DvNbbs6bc585Mtm2XFdNFQ70SuOj/bSCpvZ3GDoSg7hsGgVKBdFaChWjS4n8zJf7CU160zyDy2GnCDJnQaZQPKevw6Y/p4S9cZ/MsJT37lgpvNBGM861dzDp+uuH+1kEFL6bFXmYREvN/grwtm7y5pGvkDNFxX0V8ifkO0MITl0w31smRyWNN9tmBYOBZvrFndTjGFw+0s9tbKIH7mCZWjfJ7jvreFZxP6sx4VE3r9zoINmFvpF02doOXLjPaRk3RXgEFLOmzmyT+paN4c5I+/9Zi7jJAF2UcF2dLQH4osCR2w9xb3uENf5VJQfuyxJw3uvMJXHrMRf40vPLrV2I3CdIrmTJJdWfSwzChuDP13apQKDPc52UomU/yBMKM+l5Alog/XZ9I16RYO1WrsWtMfyPEUV1b8kFMvtSWtjkEVCld6qteG3Xs9emso7jT9PDDMnAQGeUY2Kb8zDBORtLpKfu5jH6grg0yeTAUodWcO1SkmL42kkF5pvIX6nZ7s1gqbFPs1gxGw7fIQ90nSWlOdiLeM9QSpasVNPdVLI6xhDONpzh4wh330v3oorzXNqY8dqDIxMEzjRIoNEYRHr10ux5RktXYnKarKw+y5ZvdEGL76iRO590TWNQ2jly55ZF0lx2B3QIDmLJDfq3GCKHlBfQJgsc6jO/Yil14Ke/bQA2kaSS/VTljb4l5AWnMiTGQ/l8mK7iC+dy3AM9syTlI0p4HpCzVKKlNHq3KynoBExo5IFWD20rN9Uwv4jF2oqefRtMJANcfiRdSdAPM0sZH8e/g42dMo8iWxEzAmom5lorA9VGOaar6UtNvqMu6rh+lLT32m9/UmYZ9wmrYjAVFqrB4aJsIkBrOf7ACZ2KluhV1zeWTKvMiAm2PpRrQ7aE4FMOuBryWBDpWKE4OMNR6J7UshN82ZBDslZnDzlqK6ikBOxUkNH6KkUSZchlLu99mrgd2ZHftzE8PochlslreefqbG9GCZaFJMLxzbR4bU85k6TW0t51fFoJ98G9nAtaSuBvvgmnZynN1cJttAgHk3VWO4DcgkiTfyvTnU5BtZp1x6umlMfN0KIC/vHe2BGTsnIZ7HUpFvBaDaRj5X27mhWDn6qaa4dzRHhqAV04uefmownac5MpS3sg5K0U2FVSzvBIDrXt7XRHZvKLVcm0ZSXW0bsDsvPZidAMeULuszmL4WptHGyQHlAv1M2M5+Kp5Ju3MME0N7oKOM240TdSm8qJsZ8o0E/fRTi905YQ9rT3cY/3blwmbarWyvuOtoTnPy1UC3sGRrR9DQz63Ia4u9l153XkB0I1Ujygf6qaW463ClERnsuheQFmtnglGyH4VmmBrKqxYfAavd9PSLXCZG1h0MnuGgEClrOzDMC5Fpd16kq/UwVrGAgHZXZSKB3fWEyIwGBbqJDGMEyLoZ9lUoIUharJH19abBlzm66eR7N+BLO9aHJLCu6m4PavNsz+gpJaC1H/ZAt+0IRf61oJ4wrWS9xHL2g4DftJ3UnZmWEIFplo2gFCBsYzhF7K1U8fcpoCe0HcraEQiGrhNQmeSwMSn2jy0JiP68nz34HkL4R5LD/iWw/PNf/tyBpVLKAL8HvAwh/HNKqW8AfxM4AX4f+FdDCJ1SqgD+c+A3gRvgr4YQvvyTtv3mD47Cv/Rf/DO8Xd7yRX3God3x4eoJ78+umeiOF80hC9titeMny8cA9N5wUm7ZDTlWea7rKY8ma96Z3vF8e8Qsa7nYLZhmLV/cnXA4qcf30yrQDpZtm3M4qWkGOwLI3Dgq21MPGfO85XI746BoMNqz63MuVzMeH6xZNQVtn/F4seYgr/lqdcTJZMu6KzAq0HvNLO/YdDmFcSgVcF6TGceulw+NTVPw9uE95+s5zmsBiF029nYu65LMOuouo20tee4w2tP1Fq093zy94SevHqN0IMvcmHh6UDW8vj5gMa85nW05X82x2jP4OGse+0HrNqNrMqbzBqUC3mv63mCMpyo66jbHOc03zm642U1pB0PTZASvKauOk+mOu10lAUNAvctZzGuaTo4vy+SDsO8ts6pluSnJMkeRDbS9ZXdfUR00aB2odznGyH5pI0FAZd6za3IJsglKPt9MQGsJFsoyh9aeYTAMvYl+eC9hQ8Ugn9OdQZnAdNJSNxn9JkcXDmUCrjVk5UC/yskOWlxv0CaIPzVAUfXUK4lRLGcd7S5DW3n/oTfYPEp0ekMIiqwYGDojia1OkR3Ih+a06ri/mqHLmNJn4z7mjqGVsB7VaULhwCv0ZMB3ibKSpFVlZADjG0M26+R1jQzGMAG1NTAfJNW18JGFl9frwuG3IpUNhRM1wKAx5YDbZCNjr3OHb42sX8sAws56htbAoFGNJpRxBNIlEwuiGhhEVRDKOArOPGpnpWM1C9Ar1HQgdGbsbVU7I/vqxRNJQFjCQwGraAiZF+mxBj9xqNqgzxrCeZTjVk62k8fajigLVa3Cz+L53GkJkMnDCJRDLoPlkHlRRMRKF195GWTFZF/l1NiNGtI+tJpULmh2muHQYe+lLsUdDRQvMrpjAeW+EJBbXhnaIwF87nCQ67IzsepBAGOS1ZrInAtIlePRwx54BCMhQLqLaoBClBIAePGqmk6NYHeYe+xaj5LibC1VIMEKuE+BTjpKYu0ulasrXBXQrby/q0Sym2SdqUsz9ZASFMPMo1sVw1Fit2AZxvqHFCqUZKBBJ/lf7J61Elg0TMLIBNqNgAgJv5H9S9tUQeTY/Twm1MZBclJ0pJCYfi4AGwQEgagCdAzwkV8I6/8QRKQ0Xknxjfc78Zi8MMAhdTzG5NnUP5u8pXYbOw8jaAo6guoFY2CM6cZbCm8ZAWDymdpG1h0qxh7RlO4KUZEwZww6SgoRSR2Nxxp7aFPwSwKnKUE3KEaJ8Qhm+33gULbdX8PENKd7ylWMvsukwkgAU5Jdw75PMQjgBR4kqwaRHzthUrWL68drlZJjtdtL48fjNAKuTCMsqMsi+C0U2W7fffnwmg5TFf1/6fWM4TkJmAa9nyBKkwJjd2nYn6eUFuuKFDS1By3Kh3gOhWkNRo1hRCowym6lZ1PtWeL4bJk2jBJVFeKEgIkKjFZYf9ukvkqRErtCxWspDFo698XS0c1FBmr6GA4Uz43pQgzAivsWQ3lUkIoVW+97OSXBWLY7drDG8yX3TFSA6RRGJJ9rKfAoeSVToFPq7EQxBgT5LALRyOyilXTFashWAlR12nYSCmm+JmHWTryjqo/d4BHEqmF/HZTzUh8y+BgmxL5HU6Xj8Xir0TEwKF0/qXnR6NR9OfgHIF1kqMEYVJKVxpCgYEVKmwJ5JGk2gsPBMfZeDlFumkDjQxZQCwgdZachyDYSS5rSXkGAZOrFTL8DRrlsksIaI37MFPQTYsjPQ4YxbSctPyuB/Qf97ucsfzGA5Vvhyb/9Zw8sv/xX/s1/7McG/9/0WP4bwEfAIv7/3wf+gxDC31RK/SfA3wD+4/j9LoTwLaXUX4vr/dU/acO3myn//Sc/wLWG4nnBMJEP9w8P3gUDxZWhn3n00xq+mODebuC64HknfWyukpS6Cx7z4Xtb/MuJsBK5zOjrQdHdH8uHd5mSKcEfDGyujsiXimXsnnOlyFr1AM+PPKZRrDcPpJ3XiufvzMjvNXj44mxGttToXnFzdiSy0CAMw/1OWI1giP1qwnBIyl+gfTzw7O8djv1s1ydRXvqmx58f0R3JwLD+Zkt2keO3ChdlY5OXgY++uyBbyaDLIYOiwcK1htkdbN4ouV8sWHxiGWxMgRygtRAy0L+yIv+yYPNUk59nDNPA4hPN7mngvgoUdxoT4MtsRncifrXyQmNaaI8rrjeHtEd7L9X0haY+qGL8P9z/Ws/kWYafBjbtnLyVAdX6XWFCzKnHfLSgOQsUa0X9ZKB6JWzVoMB+DNmZwsTCetMwerfqx56hlzCT4cAzfRnB7aNAsYsS0VZ8P7qH+qCSEItX0C1ydm87Hv1dzfqdgmoL3Txj8Sqw/I58zpbXin5RwtnA4qOcoSqoAAJMLgLrd0UOrJzCxtqE+u2e4twKcwW0x5byWrE9CsxuFOWN9NUN04AJ0C8c02eW+rHn6CPF6n1NcaPINhbbyOx7/YYAjsRmTV/A3a9ryldWWJSwZ2ryteb+O2A6Sf8rb4T1yTYyQGmPlMxg36rI8kh63vRVYP2ewn1/Q/VhxeQ8cP1XPIcfau6/bzC9sGhBQbCGyatAdyD3cXUdqE8tm28OnPyhpjk20sV3KgP/w48Dd99XTF4rdm8a8tUeIPUzOPxUsXukaY8D82dyfu+/JwFKdhfQbi8N7Oea8iawDCVHP1a4XLP8rZ7qdU51JdJTl8PBF472QNEdZNht4O4HwnrOPlVMLj3Xv6FYfKjYvAtJczr7Sgak27clVMjHFM7F54FuoWVwnUNzBtMX4jkjaIIO5NeGg5/C6n2F3WYUNwq7MwwVHP1kP7u/6YQRGboM3SuqC2FH2kORS1c30lFXP1bMvwgEK16x5KerrmRg15xofAGHH3tW72nsTkf/mgx2Hv/ewPptS3Osmb0M3H1P8/R/H7j7Tka+jJUaSqpRiqXIJl0u/rp+pqWH8krOVXsg10vkwYr2CI5+4sfBrs9h/rzj6jdyTAoQugnszjSTS8fd9wzHP4o+xbf1CFzmzz27My3ewLliei7vVZ8qDj/zLL+hOfrUsX2kmV44Vu8a8eoVsWLBi0x181RT3AW6WnHwuWP1nsE0wiBOzuV9q9vA7pGWAXWU76og+9DN1FizIemue4ZPOZhcOYKF5XtWpNg1lDexo1HB4ecDy/csB18M3H/LcvRJz+aplWqWtePuW5bJxb7wvp+rkZkSFlSA29EnA2oIDFMZANfHEshULIWhLJYCIrK1PDv5RpiufqLZPDFMLjymjd2MV3709Q2xaxEl53j6omH7tKSfiofx8NMeXyi2jyUka/ZqoFsY2gNhymcvO+6/nROUsKsHX4qPLl+LTPn+W1YCl+aS4Hv6w4712xnewvGnPf3MYHcyIG8PNFktnY35xkWLgmb3SDO9kFoJEysdXGnop5rypo+fpRl9pchqYRyLpcMbRX0mQ5/qWt4rX8kgvp9qXKEo7kRKnLyO3sp3FWDxZUt7nJHfD6zfzplc9eguWmu8fH6DgBUVk2Oryw4VAs1JLn2Mc0M/0VSXPcPMUFx37J6UTF/s6I5yhkpja083txx+2tCc5bhctmPXLd1RSb8QVm+ohNmUJFOp/Ph/2HvzWNuy/L7rs9ba45nufN/8qqq7q7ur7VY7HmLHtuwQYkcKmYgiEgQEkFAUgSIUM+U/AhJ/AxICKVIiLP5BDJESKSDAENtEOHG70+52z901vHr1hjufcY9r4I/f2vu+amI7kt3G7vhIT3Xr3nP2sPY+56zv+k5SsWEoX+zwWcLm9ZLyosdOY69kSCjPGnTnqB5OmDyraY8K+mlksGthECcve+zEkG49pvNkVzV6XVN9/Ajdyrj3swTdB/KzHc3dKT7TpBuLcgnZssenGt17knUj3sYipZ8lZDct9b2S6btrqscL8suG7lAknOWLHe3phGRnMZuGYAx2LydZtbhFhq4tbpKS7HrsNCW9rFDO4WcFrpBsgOSmJuSRwesknMftTcXHGAJ2v8RsW3yRYmcZaEX+fE3IpG9TbxoG6WuIKa2qd/giQa9r3MEUc7MTZlAj8tc0GRlJZT06BAnJKVLxUG5rwiRHrytCmqCsw08K9LYi5JmwiUNqbNsJyJyWqF0N+3PUtiaUOco6wa9tJ+xl18vvm45YAA6tFxCZJiKz3ewE/MXni9TWEqz7EAgcFwmKYmQgx9cAKs9u60Oi5DVUtbCUcNszObCMfU8IQf4+vOZVMPlPAJK/l5WU/9SP7+JT/I4ylkqph8DPAv8Z8DPAnwQugLshBKuU+kPAXw8h/DGl1P8Wf/4lpVQCvAROwm9wgJM374c//rN/ipe7BT4oHs6XfOnsHlli2VY5h4uKMu2Zph3vXR+O7GOiPau6IDGeLLFcraekqeMTx+d87itvQBpIy54Hx0ueXe1xtLfjzmTLF771iHTS8+jkhg+u9snzniKyaNtNQTntxvfLyXzH1W7C9mrC5ECSVbX29LsMvCJbtMwmDevNhIO9HZcXC5Lckhc9bZNiEqncCF7hrBYmKoCZWMJ5waNPveTJkxPMtB/Hw3eG0Gn272xYXk+5c2fFtsnZnU+l623REZyWQJt1BrkDqzETK8dWp2PATpZbqmcz0Egh/V1ZIdJnOe5QSusBQual2L4x6FlP8m5Bd9eid4Zw2AmrVktCqTppOdjbsfzyESgo3lyxPZuhSktaWLpVLquPOwE4JML4uD1L9iKlO4l+jolFXWb4gx5q8amQeeg0utH40qNnPb4W+aibetReh9/Jl0yyNNiTHnOd4nM/VoLkl0a6BYvYOWYV4XENLwrczKGsAAKSAImH1qBaTcg9uop9egGypaJ6ZMmu5TzC6zV2nUnnoQq4PUd2ntDveWG0EvAzK9diK7UgEBmIiZfAmKl0Q9pZwOfi4c0ujVR61AIgh5XSpFJ0h47yeUK374U12Ig8srkrATTKgZ17YTadsEe+lOMxtazwyuq1oj10JJVGRbaj2/dkNyJZRQEe0p2wRS4XAD+kHCa1YDBTiS+yPZKFFqlBEXmkqRXtqSW9MeQ3avSq9ouA6uUYQOShhFtWKmnk2PJLQ7/wURI5PDdK5rLY19bKOblMtu3TuD3NWO2SX0toycCAFVeKdl+8uS4TX/LAmtkyjFUbyom/tTmWBSSfQrcvizv5tbAy/TSgnSJo8UtmK0V96pk91Wxf86RrFeWjjD2QkoYovk1bMtYF2ImM8bCwlDSvsGdxJX+omni1Y9MVwh6JhFJYP+0E6ExeCuiX+ydOkA9u2SSQoJehggQYmUGfxe2XskilfGSy9C1zNyxiyPYlBEX8s9JNWd1RlJcClssLkZvKwhrYqYS+hESuwxAKlG4iK6Nk8Sup4/kOtRbpIO2UxQOQY9BdoF8o0rWExEzOA/1EtmlaKbkXH3Ggui9AqbgOsbaCsWMRJK1yqPsYeiAHsCle1ijrzAWIFtcBV4iUM93K84UFk21kyxDZt/he2xMvpTcidRyYJh/7LIf+wgHogryuuPHsTkWOaXoZg+qOLGpKYq+8tj6K/s91HMs4RkM3pi1jAml7ew3tBKZnTiSXRs51YOIGienw3KAZ6zykxuHDzJR4YwXo9rPYe/oKozYwVsFEn20RazFKTfqKB9WnxKAY8ZFqG8bAmrQSf2q+Fm+ny4i+0yGd1mMLTdJ4upmOftpAdWzitY6BNpFhM61IMoewHJfKPiCy6rWnOknI15KE3E81xbXDliqGDwm4JgjoNK10LJpG6j4kUMijW0+3l5DufAyP0iQ7H72CjCyYaUSqqe2tRzYYeR8Ii8Yr1SMynj6/ZQx1K6+3EwGzwch9YGqHzzW6FcWEnRp058cuTpdpsrWln5n4fnQCwHcWnxups7EB0zi6/XQcr2wlHt/Bz5luJUl2VApERlP5ECWoTryQk0RqaRJFuhYvpM+k9sM0lsG/aaepMJ5GmD7TuiiN1beBOl7Gxk1TfCIyV93GFFYXRlDkYoiPLxPMupXvxTxFdRZcIOSGkBrMusHnopZRvSPEmg2z2hESI+AuNcJOgshWy0z8n9bd1oG4yGJm6a38leHz1gtAtE62CePPagjpeWW6HIyW30d56fiarmdMin01rAdumUgQADh4GdOUMdV1CPEZGEytbkN+QKSvaXLLVg77g+jDjNKO34SZ/PbHq1Dgu4Kx/E+/A4zlv/bPBmP5XwD/ITCP/38ELEMIg/P2A+BB/PkB8BQggs5VfP7lqxtUSv0l4C8BmIMDPvfe41FCeL6YYb4yY/2Jmum04fx8D3WTyoS50uz2S/QqgeOWsM4EaAVFqBL6RvO5mwkkgfRlSnmRcTaZoiaBswcpL/tDVKOxqefdr98jqICrJmwOLel5Sr5V9EVB+GiFe1ny/G6C/uaEzEBlAuYqBaswqXjA/LtTNq+Du8q5flGQtIpkl9N8T0V4XuDvtbhtgq5iEFGUZrlOk20VVz93nzKF+pG8YSdPEup7DtNqVv0eptJcXh9jGkUaPVVOpSQbI114i0BoNSHzhLMcm8ZS7UpjfYE5N3DiSDYxROE8G7/c1VVKula0x550mUhQx05hZ4b+wJNeiF/G95p02qFeTnF5IJzlXPV6ZAardEHaKlgabJGRrzTtiSXZCbjRFik832b0C0mztNOAazTlmabxqVQxNAo7DwxhO9mVwTaafC1/673G9Tn5WsvEGuisrI4nWx0nA7Kq35yKh840MrmqlxkqDZh1EgumFT5KBpsTJ0CmMiQ7AUTyBRyYvS3Jm8VSUeUFKruV76SXCa4Iwlh3UZ70IhPmKKZLphtYfdJRXJjxuutW2CJXSG2FdqCtjqEoEjwUjAC16XtJDPpRpL0amZTiTAChbhXlS0N7dAuibGHo9yIQqwXwZktwuSZdi2wwu5GV8HQN3YEa++1AgGhxIcy0dNFFOV/cN1qAULoSX5orYgp6K+mo6U7AUnEhni479xQvzPjeTzdqTFMsz2OY0kRTXArr6hOpPBj8UkMvoJ0F0t0AuOL75UyYWOWgPQyjdE53UqvRz0TumG7E12iaIfJ+kCTeBioNoMC0jH7C7EaN6ZbJTq5JSBDpLnJfL97WTC48m4+K9yxbgSb6uwAAIABJREFUi9xL94wTap8LgPKZwmyJtSkyIU9q2a+PAMy0YaxgqO8osJJ+qrxi8iLQHEtq6QBcywuZZPezKD+zAlKH0CPTQLaS1+U3cmxBC0OZrzz1sR67BHUf6JS8xk6JYybjWt2TsKYi+vx8FvtICxkP3QfSrUz2J2eSaNktDIwhOINnSt6T6RaGHtCkCrhSkV/H0KPoqatjkmUaw36G/s9kJ6CyuJC6i7SScdO97L+8cShnpBs1kdTZbCVANVvLf/upsLKDnE95oLoNkipWjk2ZYAskbdQLw5zUAk5Mr9hN1Lj4UVxFQOoY2bHyWpI707WAq8mNsKTllYQskYZbJq329BMzBhzpNo5NBJ4gdRTpWkC4BOVIz2S6le330VOYrcMoEdVWvJmDvFXAniRfeqNivUUYk02TWio9glYCdJMPp5h6I6yvNzHQpxLvabsQH9/kwlEfGFIbyDeBbqpJK8/kRcvuYUGIx14f6hF0Fkvx5NWHZvwMEhAZRrCnXKC8FvDWFIbJubCrLlWkO5EyaiPHndQC1NKdHeWb9ZEwl9oF2rmmWEK2srT7CaaLQX1ewOgQzJSvJQV1dy+lvBTvetKA8l7A1sbSHqVka0c3H1YENMoGkkHumwkIc6X0KRaXPd2eJKDaqXQNu1xeq3sfpcZBgnxSCRcCaA9SAao2YGKwTz3JUBap44gdkknl0S6ImjGCS+K1VyGQrXtcKkBYWVmkMLUVqadWkZm8BbPisZTrkq76GJAjAUEoUL0n2/WgFcnO0x7lEhrUe0Iu56yDj2mr0u0ZIuhWPuC1GpliUUFIyqpprCwGNP5D1X6msajGYo8kGVa1wvYrHWT8rBegp5SA1lRLOFGiMVUvMlUH9A5fplJR0li81gIaE42uhDGUlOZXJKO9FQnr4I9MDKruogzVE3wi56mV9Fgqhd7UI1AMWQpNJ+E+Sskasvf42QTlYwps20ngDkDb3aa9Dl2SzgsAHCSyfS9BP/Pph6SxIziNXszQNHJOkXFUSgnIs/Fc2lZA5CDd1TpKX/2HAWv8OQzPGx6/WWDP8BgY1e+GR4Dwu6h38rf78R0DlkqpPwGchxA+p5T6w79d2w0h/A3gbwDsffJO+KMf/xpX7ZSvnt+h7xLcWzvyzOK8Jskt5mHH/YMVT84POZxX3JiZ+IkST6hipcVey6OP3fDseo/2usQ9atg+gsmspflgjr5KcVNPfrfC9ob83pbdssSl4lGzc497ICCV8xJ92tIvczh14mFqjJRyH/RgFarT8LjGvZgQSo86aunXGf1RQHUG8gBXGWQBP7fQa2H8Ys+ee6Nhu0tIrxOSpaS0Nnc87PeEq4yQeagV6l5Dt8rECwfoyuCzgD10AnJ3WhjMTuESYW98EWDW00wsai00SD+TlNL+UUc30RzeX3FzPeP4eMPVN47IH22x35zjJhLgwnaCO+pRW4OeB/xHKsLLUmS9NqOfBZrHPcllip15gg6YnaGfewlSeXOLfWcm6bKxQkP3ivQHb/BfOMAuPM2x+MWypaZ+rad8mtLP5DzTtYIYxiKBHgo79fQLT//RlmA1rBNYWMzLDG2hX3jsVGHnjmSXsPtoj2o06UrqILKlgNf2xDF5auj2AuULM7JH1UMnvr9Vgi8D3ZEjuzDsHnmSjUK6DhX1HeiPLaqVaxp0oD/tcVcpeMjWivrTNdVKrqOdCqAMBpr7jmQV5YszkWZPnml2Dz3ZUpPfSKhIfXJbS9DvS8pwfqXx37/Bvjsj2Ql4qe4LGwcSuOLTQHYtssPdY0e61KOvpXpsUb1CBblf+pmAzt0jj75fY746pbhS7B47Jh8YugMJd+j3wdSyOGHqGIjRMXqp2gcde1/MaI8EAPVzj5mJrDQ/Ey9heyTScuUiKMtE8t4fxlX/mTA8/d4QLBJBay5AxGXCvvULz+SZyNWvf9CSnSUUV0pk4dGaajphVbOVnJubyoJGthYWMr9W1HfCbfpnLwChXzB6HX0m41qfChsYFtDe7cnPolRICUDsO0U/12RXEExg+0iNvr5spWI3ZaA+jYnQp+KPLC+kNsPFnsMBPFX3RMZczdXYVZjfyM/1qSQMo2HyQkUwIeec1MJgzp4Kw9buKfKlAMRszVjj4FNoD4QJ8KnGFYp+KlUU1T0Bla6M1RMHKqZjyud2dS8AOoZwBFInAHH7ULr/TCtM2vp1xeRMU58GFu8wypnbA2Fby7NAdVeCgpqpsH5BQ3VXMX0u+x0Y2mwb2DySc4EILBthBHf3FEmjsAUU14zhMLsHiZx7CeV5vIciG9ztqXG8qzs61nxEP2Nkr7t9sBNDsRS2qj4WObQkkAojnexg9kIqKyZnws6Wl576SNMtBIyu3jAj06mtSHfjN+sYelOfSLepy2VRRRj6IdREJKv5UhYG2v1EJOJWAGIwSmowtgLITSPMZrsXGaGdMKvdnibdBIqlw2Wadl+PEuyk9rT7WljzyHTVh3KNyyvP7o5m9RFDcSVJxM2hYnrm8UaYUm0F0PZTxeFXLcuPpdH3J/dbvhaJ981bJeWVsInKy6IGQLMvycHBQHktk1XTC/upfLStpAqlBQT7CCT7maHZF3AqqcPiy9NWPkdsYURqeyyLjsUyjGOrLZjGs3mYMX3Zs32QMjl3KB9uWdQoS94+zCgvpcYjrQRs9FOR3e5el86dTHsB2RtHdSelvOhj4qt8ZnZzQ3nRU5+kdHuGbOOwU/kcGTyMQavY0Sgg2pYC1NvDlOKiI905+plB7Rz1aSYSZyDdCgDrZ4biUvbbz4yA5DYQEkmbrU8zkjoC8M5LMuusBA3dfib7tYF03dPvZfg0xXSefpGQri3toQTkZKuebNXhciPy2pWnvleSL3va/ZTyRU2/n+OmCeXLin4vH69j0IqQ3CbKKp8QElk8Uz7gc0OyaQmpodvLSLcWn0j4jU81uhUQ2J1MSW9EudYdT0g2HRqwsxSX5WQ3rXgnXcBsW2EeNbgyRcd+yWAUZiMdlVgv/1yQSpBEi+S17QlaE+Yi3QlGgKfqhFlU25owLcBoQpag1xV+VgjYbWPITQjCMiZGkmUnsadJK9nXpEBvdrdz49kEta3AB8KsFL9nCCLPVQq1qSJoTgTQJgmqMFDVIlUdAGMEempaSqptmhJcZB4RKWxc9xSwmaaEXSUgE1BWPJvBOVSaCMjsJSlWOSfs56uP38hv+f95XmRffwupsL//+M4/vpOM5Y8Bf0op9ceBAvFY/pfAvlIqiazlQ+BZfP4z4BHwQZTC7iEhPr/uIwR4VNzwc9/4JNk3SqaXgILdj+/wz0oOPnnNzdcO8ftr9JOS4z94if9fj9n7M8+5+Pv3Kc8D+s9eUv3iCbuf3NG9nPDG37Vcf6qMUrQS3nIkj3aENqF9OeHo85rmT3bSJbcbIsWhuCro/twN5f+ScfmnPdnzhHQjk45uX3H45cDLn9TsfynB1IH5X7ih/Tv3qO4k3P0zz3j3nceYVpH+wA2b7YLJM0P3fVvciwmz9zXJLjA9czT7hvawpDkOnH5OVm/txEiK49cKTn61p/0r19S/dofsrR3uF8oxkv/4Cy27eylXn06481nP9VvCzCU1NH+4ons65e4vBc7/Rc/R3ytksuXFB9hPYacy7v4jx8t/taD8WsG6KLj7JceLn5hy8B40h4a9/7tEhcDlp1ORZNYz/r0/+Xf57/72n6C6o2kPZLJ8+WNgDy33/3eNLQzrNwQ0n/yq5bmesf91aA81mzctR18URmG1PODur/bs7iZxwmdIqkC3l7B4R+Lq61OpUZAVS5lUTl86dn9xhf57B6xOwTuFWlhYpex/Xe4lO9XsHgYmTxOOvmypXgjjd/M9cPqPFNp6No81k+eG6l6IVSZw+vmYaPhDO7JfXDB77tg8NMKA7gLrNzT9NOALz+FXHNtVyuUPw/Eb12x++YTTz1me/csOewh7X8ik/+8sJ6kUxZXh6CsdNx8T8LsNmnu/ZHn/zzsOfy7HZYrlJwKzJ3qcIB7/agVGcfYDJcV1IL+RyoHFkw77xZLL71WcfNFSHxl0r7j72Zr2IOXZT2rpI9wLHP8/jqATFk88xXXP0z+SkqwNi3due9iG8IvpU816kTE/C0wuPNs3PflS0y9kslueRzZpqrjzD9e8/NEFx19s2N3LyFaK5hEcfbll80Oe4klJSBQnnxd2QXeB5sgQtHjqlIP9b3Vcfibj9JdXXPzAAlfA0Zd6tA2sX0tpjuDOZ1tWH82YPbfUR4lM7Hthd2YvLPlly+YNqeU5/EpHtzB0c83Rr22x05TVGzntgeLkc3D2Y4rTz/ekG8uLHys5+XzL+Q/m3P1jT3n284+YvAzMXvS8/CHxa+690/HyR3JsCfkVI1NynibM3pfPp24uE36fBva/1bF6I2P1Juy/E7j55xuSb5XM35dJ9eJJi2lzvIGbn2owX5+ge1g8sfRTkSIu3hP/2/otz/1/ENjdSdAujJ7U2bOO9jDl4vs0xUvFvb9/xcUfPGT5loDM/EZqG+ZPapSf4HI4+FrDs58smb50NIcJ2SowfdmzeZSy/3Yj79nXJDZ1eiYdc/OnjuZAc/DVmt3Dgj6mie69a3nxowl7b/ckjRtZBl31VHf2ePR3XvL0T99l/rSln+ScfG6DLRZMX/YktePqUwWTc095YUk3PWlVjkBq+lL67myhOPjcJec/ccLhF5bsXp+TX3WUl8LW1CcymZm/I2Xmk4uMds/Ql4q99zqe/lTG6Wf9WEp/9b2KB//XmtUn5tKvl2mUFU8fATaPEsprTzvXTM8t5ZMNN5/ZF3bxpUygCYHuh+YQBJDkS48rNNk6MH1ao1zB/Ftrth9dMH1/R/8Dc7J1YP5eTTebUNx4imuZQA3Hn60c69eSMRBn790Gs+3IDwp29zPSbWD/nYb6RH6ePe+YfyChIipIima6sySbjuUnZmRbT5UYjn5tSzAaN0m4fisn33jym57145y0DpRnDfnSUB9nXP94z91fkvAS0xmmT7bYWYZygWmiqe5mlC8bgi7Yvq45+YKleLGl//590rUlXXeUFyn9PGH2zJKdbfFlyurPlbz2PynSrRVQdBnHcD/DZ4r50xaz69FVj9srSJqMybtr3CLH7ITJcdOMAjDblv6wxOWGbNlS3y0o365RAfpFhk9SksqTbq3II4HmJCdbec5/IGPxrmfxvuXlj6QUy0B50aEbR7KKpfTMKd+5ZvP4joDdy4Y0TzBVR+Hh5tMLps87spuGdm/O5HmNTw1Zosie3pA8PABi+umyJ73c4tM9smWLTw3pLga1uEBysSb/QPPsX7jD4u2dWBSWFenxDFcIwEpWHabqwXv6ownZ2Zb+cEJ6tSP1geRoGtUFgexixwc/fcjiK9eE1FCf7FO8e4k7XtAcTCluRDEw+DlLGLsbfZGi6x7T5iTbDl8muFSTX1SoXYMrDyneucAdzEnWiBS17qkeTMie3RDKPCY1KZJNC0aRPl+hujlmVaN8oNvPUb0ju6zweSLXFkSm2llMatCbGnu6iF5Sh3Ja/I5FRv+wpPxgI0xglqBWPe3DPYovf0CqlIAxpTDTDLNpcHslycaSRsbSbCR8RnU9fjFBbTtUngkjua5wR3M4u8SUJaHIUCEVhtB5/N4UvWvAe2EVtUbtasJsIoAu1pIo52mPJmSXO6kPcQ69roTRdA4mpbCc1kkliFLCaHYdzKfQ9ZL8utnGuXBATQrCzUq2P6S4ag3bmjCfELY7VJGLTFVrQtPCfEI4F1Fg+DYp7ZD6irWg9IfBXAzoCdbSffp10s9+HX3nhHB9g68bSYHtLereKeHp87FiJIQYPvTKJF6fHgPgXpxh7t358AR/eLwaLgT4px/8RtDg98bj9z2Wv8WdCGP578dU2P8R+J9fCe/5Ygjhv1ZK/TvAp0MIfzmG9/zZEMK/9Bttd/+Tp+GH/pt/hV2foVVg16VsdgU/+Ogp//jZQx4dLbmuSuo2Q2tJ7Tye78bnlUVP06Y8Pr7hfDOj7RLuHaylkkN5XqwXOK/xXpEmjlms9NhtCkzqOFxUXFzNyQrL0XzH1WaKsxptPO0mJ5t1pKmjrjLSzNIuC+4+uma5ndCsZCk/mVjcdY7a7zCJo18WmEWHt5q87OmaRPwoXliv4BU6cwSrZTGq7OnrFJ14fGcoFi3NTUF5WFNfTNCznsmslUqN1mAKy3TSYp2ma1Oc1ZLsarUkpyYet0spD2rqywmkHlNaXJWQTnuy3LI7n5LutdjrArXXScVFrwmNwcwsPjJL6joTxjUg1RaJpI7m0472ukQVjtCLpGZMCfUKeo2e9igtclpUIPQanTuRLrexfqLXqNKKv7MyYzInhfgth5L70BjMKsEdd5jM41ojSaaNAa+YHlfsLieoXktXaUxFRYOudPQDITUdCjnGWH+haiPpqr14FJVTMOvl3EsPKqBrg59b8XQWHt1o3J7FrI2kdDYaP4kftg5YWNQyFYlvGcZkQV+KrM7sxHMZ0kHqJcxdupIaDADdRNaqlHRR5YUdVV6N/lF3t0MtU/GNapFBj3UmOpCsDXbuyG4M/UxkdSENJGvpEh2SKXUfk0TbWKsRpaIuEwZ8TK3cE18rXuGmEuqUVJp+4aQqpBAvl+4UzT1H8cLQz+X8fSKsnu5FDmynMtZDQM3g5/KFpJYmG01/4MguRQbkM25luzGBz04lvTWpiXUNUhHhikBSCyvT7YuEcKjqaI+djPMkkK2kqsOVUsXR7Xu0Fba13RdmzJa3VSBDf+LgNQwa+oXUTLgMugNRBkBUCWzVOM66FxbeZ4MHLiazpkPiYmQ794S9HrxUA7MZTGRYrTCVIhMOZGth//q5eE6VVaPHzjRyHFm8li4XT2ayE+ayuBQvootJs+V5oL4bPYeJvKfTrTC02kn6qGmF1cxWRI+Z/Dfdyd8BQhp7R4O8bvCamiZ6TYfQqdWtnPl2CV0Y38kLkf3aIsp+L4XFG7yrwoqJL3L3QPy/bpjzdrKvwVuq4rh/u/cVIvvuB1nvK995sRt47FOdqDG9dPCGDj2NupO/S+eisMZDmqsko96mVppWAoCSSl473Ee6E2mpNyJ/7/Yg2zAm8HZ7wkj3M6niSCpGdnBYKNJ2YG5vu09NK1LroSbEFVFqfSILRv0iyqQj0B9YYVuocTzs0L9pbwOUhnHVTvyiLjLbxY0fKy2G8TdtTM5tb8fYdCLZ7adqZI77qfhaB4+eWDdk3CSJk1FmPrB2Q1+nj4oF5eSYbK4obzw2V6S1eAFtLmFawkjGqhLHmJ5qS9k/ihi8E72VE41Lh47RKNedKKbnlnZhxnF49RoP1SA+SlKHcRoe2oWxdzXdWOqTVNjU1o/BPyhGz2W2kjAe5YnMqoQgoYWBdZm+3Yce7j3xNadrO0pabanj55GE+XSLZOwNtaX+UFdoMIqkdlEyHOJ95Uffpk81aWXp5ilJJZJmkebG3IT4GPo8Te0kgdeGGBjkMa0HLSxzspNFgn4/x1R2BGM+N+hWthuMEolwEJZTDRLi1uJTI78LQXo5ewGabppF5tNI/UcdAdZwPUIQSWwWFSmRIQ2pkQ7MaS7g0UMoU3TVEaLcdkx+HT47jJIQIC2dmyqE277IQUbrParpxFs5+BdDIBQ5qpJo4jCR4B3ybEyBVV0vr/FRluq8yGKb9sNhOQNjWeS3Uty+v+2fHDyS0Q8arAPvbo+jaQW8Dv2Wr3o4v10G+8rjnxqL+EDou9/8eb/O43eFx/KNh+Hef/JXftu3++Rf/2v/v58bDLzy7+zjPwJ+Rin1LcRD+Tfj7/8mcBR//zPAX/vNNhRQnG9n3J+tOCwqjA4c7e3Yz2r2ZzVvLi7Y7AqUCmSJpch6rrYT3jy85ON3L8gSx8G8oupTNk8X7M9qnNe88/yYJ1eHbDcFWnseHKxYn814ebnHdjnBb1KMCVyvpqS5RanAza6kuSmYTlq6OiWdduzNar73zguODrbMJy0kgZvNhCLrmRzUqNRLT+O9LZ95/AHTsmNxd8PevCI0huam4O7Jitms4bV7V8z2K7JpR3CKct5wfLJhPm1IC4tJHemkl3Pda9mb1qADygSqXU5Ryhvx+x8/ZVflWGsoJy13TlZkhYXWwCYli1UY/Ttzjh8umR7UpKnj4HRDXvTszqYULxOpyVhqykmH+qDkow8vUJ3GLzPKaUuSWXzpWHxJEtPuPL7GTCzlt3KclTAfkzlU6lG5fAnq1JNOO6mUMAG/zAgBZns1s6OK/GsleEVykzA/2mE2Ur1h1gl+T45bD3UWmUf1iiR1JLNewm2covxCCa3Gr1PyZxnlYU31bEayTGBqmZzs5Fg6AcL5dZRezC3Kao4+m5AdNAIuQYDjgYxtdmUIhSP9IKd8qZme7kivEpnc1Yb09a30JK6lMiIkoJtY1L3W6EbBwpK/m5NdaybPBMC6qUgys0sjPksrryufJajSomuRSdtpwC+sgPk4kSrONeULCVK68w+V+Dof1Lj7LWwT/MLCfs/0iUFZkRGHNPpZ9y2YQPlSMf1AfJa6GdJZA24iPYSLdyBkAXu/Jb+U8SpfKpHmrjT5TZTC5m4MdFETh+4Vi2+CXvR0h048Qxk09xz6oBVf8FSkvFITECeRXkKN3MyLT3Du6A8de98CX0gYk88CZidAW0fJcXmm6O719Pue6XPxg/qJhP4op/ALS3/oKC5iyMklLL6p6RcBe2BF8rfRJDvF4m0t/tNSUlizDex9Q40VEb4Ise4iMP1A5IJoSdItL6IUbSfnoXsBOEGJeiBbyXPtLNDPBqAO0xeBxbuB9tCPoUyugO7YRaArk1aXBSYvBKTbKaPMdwhU6Y6ceEmXEjo09EZ2hzJ26U5Ad1JBd6/H1ET/sKI4J6Y3q3GyT5DfZZsgctCFdAkmlXggpQQefB5oTm99T+tP9fK8GD4UUhmT9sCTbgPdfmD7mhcJZydj5DOYvS8Aqp8JIHEFLN4bQqoQAG5g+7qTsVbyOx0rIkIiUs2he9CVMsb5MrD3rh/BQnMamD9zpNtAspOAG90HXCnAN1uFMcxn+sKPILK4DLSHsHvkmL5wTM8ck3MvoAOigkSkuvVJoFgG2qPA0Zd7vBHJ/eTMM1RcJHUEk3Ug2wYm54HyyjM593R7sq1+IX5i6UqV/YhXVo6vuBJ/p/K34TxyzwlQzNfi8wSRHWZbuYbF0hEMtPtEaa2nWDoI4p0tzz1pJUCTIKE+ykuKbVoFyms3gsmkCbRHin6upBcygdkHHbMXvagfzqSfcOigtGX0fe48piPW2si2xTcbpayZnLtPYz2Kk05OF/2wyt2GHA2/N52E9qQ7PwYcEaSKI9t6kla8luWVLIzm1z3KB8rLjm4WJbVTRXHVy3FlIsFuDhXpNnoCvah4tJXj9MlQowGz5/1YkWE6CRpKKlEp2FKTbh26D8y/vqI+iiFEO0lVlj5STXnZYwuFy3XcX6B8fyPhRhMJtbGFop0bkm2PcpBfd7gMirOa+jhh9VqKqS3dniFdtuRXDaaR48ovawFxCwFxeKkQqY9vU2iDVuTXrfTSzjTpusd0AvaylSTCJrX0VvYzjc/lszW/qCRQqBWPaVJJYi1KkWw7XKFJrxsBhInCTqSew6eaZBVDGCtLP0uExe4D9d2ckBqy60Z8n4kipHGxtEgi+PbYaYKdyXmjFMlNhV5VmF0bfZQCgLsD6bH0WawciR5IgP6wkITYXGSmvkwlCKhIhAF3QWSz6RCyI32SI6gsU3TVile8tSKTjf5JP8sFpBnZbsgzgtYCIkOU3Bot4UKHC8KkwB/MUb3FH8zwh/KzitUhquslLGhaCoPp3K2XMgTCYgbDv/kU9mbyr5f9YbRIXvMMipxgrbCXr4BKlWXigQRUlhF6K7UgEUgqY2S/r/RUhth9GdwrdSQ+/Mb/nPvu8Vl+Fz9+RxjL79Rj/om74TP/1V+kcwalAp01WGdou4Qy76nblNePr3nnTKj22bShd4auS8gyK+Aq79hWubyPjae+kQJ7M7NkeU/XJQSnUCYQvKIoO0mCblJM4vBOGMquylDGk+aWLLNsV6V4+bxCl/LlZBJPv8qFqQuIaTz142K7axLSiXQN6tTjrSZ0+kOrdzpzhOtc2DOvUKUjVAY1E4DrqwSVeznmRHoHiQyimVrcJvYPemQWasTHqFNHcMIOAvKzB9XGUITEj4ye8mrsGVRdZPl0gNSTXGTYAxvTRoVlCTMBrqpw6NTDyxw3HdLRZIU0qDAuc+ha33ZbdQKuggGfe3Sr8RNHep3Q7wnrpXqFjz2IutP40o3bMithBYfkVwLoVvoJlROgZPechIhUkiirbDzuNES2Us55ZLsc8vogr3FTJwAxMnfpVlbIXRl9PoUEPAiLqHATT3oj1Q9BBwjx+H0ETlbhC5HPmq3GLRx6Z8hWkko7JJQqK9c1qSQp1U8kpGqYxKfrCKwig5RUwsDpGObjylhjo2IPnZFzNtWwSi5/a08s+aURxqUTP9kQbkSQa+TzgC3D6FcU5kJhC2HudCfJtUExrogPTJxPw7jtIV0WYpdf7C3UvRrZlwEImEaYOpcLuJMgp1tWb0gjVWFgkCKb26oRaEm5egSf6pa1GLY/3IfBML4Ph6L2V9+XA7MzgCSfCluZX8fAHB9fo+PbrrllWofzTGqpeRk67ob9JpVMqO1MkmaHjsVXk1blPXp7fEOC7NAzOHQsDs9XTlgskGPJl5LIOpxLSGIyqZfrrawcB4wfEbJPxW2C6Ezkv0N4zzCOQwfh2N9nhak0LSMz9mqabboTwONi96J0dApb5iPzOryXfcrYSzj097nIQgUVz8Xcdi/akpHtk/RWSWL12SsXMzCmSvqU2MUo72Vthb0bGIahq3LYt4QSyd+TOozeVPEVC2hv90SSmNSD35Gxw1Cudxj7PocuP9MJmJZFr7hP9+H9D0mnY19eDKORtNtAfaoxjSwYDNc5FdVAAAAgAElEQVTFp1KXU9x4+pkct+kj0zswwa+MCyoyvSth6cZOysgwvtovmNTxcyeGDIXbOeXIznUL2bePY21axhL6Qb4+nN/QFxiUGplRn8r/uwyynYDVoG67ElUQmXeIHY5Dwqzyct5Je/u9IP2Q3PaVxs83ueklddblEnwy9FTaXI2hOQNjq4JsO6093VSPtS2v9jkOvYyvJqACMdhIApFcLt5J094GKBEYey9lEUHYxgHoDWylMNFDN2MQENcFVAjo1tPPJXhIPi+G8VG3nsbk9mcYrq8wkK7Q43tEBUQmHsHY8Fy5TkAM2HG5vmVkO4+dGEztxwTcYNT4fNPKAoM3cWxjkqo3wlwGo0g2nVSXRD/kt48jRKbT+lfuBUZwqLzIjH0mIT2SrmvH7wC8FwZSK3QbP3BcnKMMKavDc60f5Z1BS4AQSbzZh7+FQMikimToqwyRAVRDEiwIi6hfpWsjABz+PrB/St3+TilhMXsrIT4gIDRWgYySUmPk3JvutqPy27f96sM5gvcCKl+Rr46psENqrDbCWA7HO4b4iHQ1DEB2AJfAb6li5LuFsfzr3wHG8t/43cFY/k70WH7HHl2X8OJqj3LSMs075nnH5XZKu8uwfUKSWl6sFwwl3DdXM3TiURra+H5a3kwhKPRVir3TjvJE12mKeU9zNiVMLFig17QK/GVOmFl8pigmHdW6QC9T/MTRdobWFahYak8vMdfZpKdvEszGkB1XdE9mwjjkfiw6142m7+IKm5YkUjd3EppipbjdNwlJq3D7DtYpwSqRUuqE2d0N2/UCs0ykSgEgCYTSg1O4KoHcSQF97kAFVGMIKuB7JeXuMythRaXIVoMKkASp1TDS6+cLYQOHig0389ApaKRP0eVGCuR7Yaxsp0S62WlcgKxW4A1uLgEx3bETSeJaSwVGiGmcVsJcJOxEiuyVh2SZiKyqktL64kLT7auRGekKheoEyAFy3I180CfVkKwqk/R+HkiXZtyH6tU4YdOtyCFBAnf0zpBd6BGcuTKuONdaUj+NyCV1K2ErulMReBnskYXGgId0qUU2mgugSTYKO9PjpCS/UtSnoPYdodLorSGp4qSvk5oGO5HKivY4jOmgeqVxkwB9lE0bSXG1kzCCjGytcYVMUrOllmL6Ts45aRXdvhyTcpHF2g/kF9KvN0wyki0jc6h6mYi6OG5ZTG5VViZQCUqAWzdIFGOXI5Kw6/JbEKR7kenqVuEmAvyVlTJ5FRjZTt0rAY+D17MkptXG8J1MwFq2jtuLUtpsGY8t3Mpi+3mI95oAImWFNdvdF6mnxPzLeY9grR2OQ9iisRQ8rhCZRiYd+VLAop1AWkFoBYRJeq0Au6G+RPcxbGc5yH7jvbwvAKW4hvZAkW4C7eEwEYhAMUp76W+B1lgfEWS7yW6YiMrkzqcS9OMK2U5SiUTWlVC8EDlmvpTzS6pbkGnaECeDwsIkTaDbF9ZLW5m8SVJuBGaRLc3WIlsdJmMmzguUh2R7W/QetAAD7QIu3CbkDkybslEuudBk20BzJGORbQb2SjEkIJNIn2O7p4WZzNRYpaJbKC+EtexjCJBPZDu2jAB2CJKJ16O4kb/prYAVW9wmu44gP4IMYcoga8I4BkOqqYvBR+nOYUstktKpgMABPCZCymCLQW4JqajcxroTkW8rXCJ1GEXs6yTej0HHhOdOEmSzZWQyIwAegnwIYexo9AaKG0e7Z0b5tHLCqA2ps/kyMoARtPYTNYL9pJFxdpnsR+9EVjoAv+H6pFUMVttCeSn7M+tAN9fYTJFvQgTKgXTtR5mlT4bZPORLy/Z+SraLwMEFSBTllcWWWkKOLKRbT3tgyNYelyv6qWwr615JDVUCeEjlOkhFjQAZl0qKrU8U2VqumQoiF052HlfGZPFKPLSm82RLj880SQzOG8F2fH5SOQGpCnTrsNNYDRME+JjWS3J2TH0VpjN+x1m5ptrJQl1W23g9A8oaqfEo5L8+MfF960WKauV40p1jqH8xnR/BYVKJ3NSnGnyQc6idMIsH4qNVDpKdxU4TlPVkS3kzu8KQX9a4aTbWiRDTXFEiVxXQHMivWgncqZzITzsBbS7VqN5LvUcjgEt5Yf9UaiS8ZyIJqsRrrqxHWy+/b53IVrMkhg1JsFJIhMFV1t9WijCAQwGVuuoimES2qWSMcEHOw7moVPLjNUHLvaO6WFUSAdMQ0oMdVgiDVIcMktY0GQEnvf2wvNQBWhOyFGWHZFctgT9FJsE7A0h0ktKsnAcria3E7kzpqXS32y1NfJ4dAeqHgOOrybAwsojBWtnutwPQoWLEdZAksRtTSWiPMbegcngMgPQV1vLV/bzqoZQ/eL6rkmD/GXr8nmYsD986CX/pv/8JZqblS5v7NC7hL9//eX5p9yZ/+93PcG+xpveG//xj/wN/4Vf+Lf78m/+Yq37K81qW6r/04h5/8ZO/zD+4+ijOa/7ona/y3379R5gWHZ8+esHG5rw1f8lNP+GL1w+YpB2TpKMwlkXa8PnLB8yyju87+ICvb+5wvpvxkb0rvvDyPv/2W7/Iz777I5xOt2y7nMYmnH/zmOnjNYuy4d/9yP/J3/rgx7muJ/zo3Xd52Sx4++aYH77zhNYn/Pzbb/JnPvkFfFB8aXmfb704YTZrsE7z6GDJ17/xgM+89YTn2wXTrCPRnnuTFV+6uIdSAaPDuN2vXtwhMeJP3Csb3v/SPXSv+Imf+DV2LmPb52gVeLFZkBjHT9x9m8t2xs9/801Oj9eEoDidbnk4WfJ/fPOT/MBr7/PO8ojjyY5Z2nKQVfzCex/j9eNr3vsHj5n+gSu2VcGfevPX+IUXH+Ofu/9Nfu6Dj/NgsebLT+8BsLeoCEGxPJ/zw596m7Nqzvl6Rt8l7M1rtnVOs834yKMLWpvw4qunmHsVeW750Qfv8itnj/jE4QW/8vQRRdFzZ77l5XrO9mwGieetjz7HB8U3n5/ie80f+vg7/Mr7jzk52JBqz9OzA44Ot+yajO7tBeZ1McF//M4F37o4pm1S8qKnXhccHG9YbyaYxNEtc04eLqnajKbOONjbsd4VTIqOXZWTf37K9nXL93zqKW9fHNNclRzcX9E7w+6DOQ8/fs5P3/sqf+sf/xg/9amv8HNf/yR/5OPf4Cs3d7hczTje23L1y3do71jxZmae198844OLA0JQ5EWHc5quTjEvcnhck2aWJHE4p2mqjLDMOHrjhsuXC/7Ax5/w+bcfy2LCxPLDH3+XL5/fpdrl+HUKuYdWs7i/4dH+kmVT8uz5Icl5yuMffMa7z47ZP9hRNRn+7Rk+C8w/tmT1dG9kzQFU7pjMW7xXdG3KfFazVzY8eXosbLZXlO9lNHddXHQQ6W/yaEe7zpkc1FRn0reaHDf4DyZwvyFc5OJLrTQhC4Tc8/GPvOAbb9+D1PORRxe8894pOne3HuOrkvJpQv3QMr2zo3oxk1X43INVkHrSaU+/zMcOS7MzUToaJ+1xwef0I1ecf/NYOlUPWul/NYH0KmH+PVfcvHtAmDr0KqG4kPAje7dDX6Vkr21FAeEUr33knCdPj1kc7dhVOW6ZUZzU9O9POfnUBWffOoa5Rd2khMMOlpmk+p70qNbIostMfKV+4jCrBH+nJThFcpaJAmDRE6oE1Unipos+1PxM+k6L1zZUF1PSazOy1bYMJKc16Ren2Gmgnwe5rlHNUDxLaU4tambhRgKX+nng8NcUV58R/2u61rSHnuROhfrWlO7IUZwl9DOPm8e0zplFPynweRiZxnQTWSQN/UmPuUnIbsS/2z3oMFepMPNOUZxp2mNh9bO1oj2Icr0rPXpi+5ksJuy94zn7YSJglkWIbBmlkfNAcSUpztm1FvbtWtGchMiyRZb+bs/kvVS6WYu4KDGNDE1UAwwqiHStaE6FdTYNpGtoTrldrIo+4KQS6XG3J8BWx4WA5tSTX2qyjXyvDSxwtwj0+569rxk2r8ek4fuOZKtHNjhdK+bve1ZvavqZJ9mJqiGLvmC0VDBNnim2j+X35Zl0lvYLaF5rKZ7kUT0g/xbvOa6+18hi0EL8qoPsOqlg+9izeFvTz0R63O0Jy+cjE5juZJFiYF3RsSd1cVuTMywolRdhDLOq7soYH/9qYHc3skKRmc02sjCRrWUBoT2AyQsZf5fJAofyjAB96EW9/j7P9D3zCuspiwDNiac801L1MlGxpgO2DyRdOK081R2DLeK9ur1doOn24gLgtTDdyg6yc1n8yzaBzWO5D22puPxhy51fFH9fcySLGMWNZ3dXuhtlUUYWLdIIxNNKPocGWXBSSYLy3ruStpsv5RrOnjv6UkcfqEhfdS8y5fxapNM+gd19LeOlGDtSTSesmY6As59IUm67J3Utw+LF5pFm8Z6XHs+4wGcLLTVE17KYoYLIy3UXaPc13VyxeM9KN2bl2d5PmFw6upkmjwC/OZAgK9PJwkpahVe8qLJ408005ZUVIFsKuygqE7lmrhBA3M00+cpjGgHpwFg5Mj4iYz0AaJdrfCb1Kf3MkOwcpvc0RxnFhQRH+UzALEZhKoudphH4O/ABN0lir6YkwhICybrBLorI4jp8Kp7RkGp0bQUIDvPuCHp1bWPFyi2j6jMjbKkH5X2U3sbkVe/lddUtc9cfTUkvtqAV9mCC2bYoF3DzXNQLq0YAdmrQq2rszlR9BJpaC8AcvJFFBlqjqka6OyNIDXkmQHmzkyTaridUDSoxhOH1bSsgWhtCVTHUlQRrUdkrqbDf7sP8NtB5+7wPA19fVb8ZPPh1H79rGMv/+DvAWP6bvzsYy9/TwLK4/yg8+Kt/FdPC5LnIN/qpfGll0WuTbcRXoXuRthRXYTTZ9xPp2rKlsArlhWzXpzB94alOhl4m+b2L0fe2FMlbuhYJnhQQy0pseenZ3ZOJXXEVJZzpID2ToAOCfEkU17LKvL0vXxTaQnUqX7KDr2ZYBR/kSUkjXzbFlR+DBwBZOZ4rZs8869c15ZnUF0yfSRm57sJYVq9clOtEqY9IimJ4xDZQnQhrmq98lI/Jl1u3kC/F3X1hYiRmXiYEh1911Md6lAMGLZ6cbB24+ema+S+WY5JhWgXqYy0ddEOxeZRYZetAfSIpp8rJuWbrQLFyVMeGpB4mAjIeJjJPSSvj2k8Vkwt57iD1yjYyeUm3geZQ9gvy5Tv7QFZ9h2tkOsg3jm6qJV7eCfuSNFLG3S0Uk4vYJReZlHTr2D5IRonasNIuX+oKF6WRs5eOdm7kfpsK+5RWckzpEPoQy85NB/lKvogHxq2fxXqA2NNWH8k91O4rips4Ocml0NxlMkHu5vJcbeW4BlmfyAMV2dZjmsD1JxNmz/0YXtEuNNlGaDifSLT/5MLRD9KuOObdTFOfKObvO7SD7V1DceNlnOswdiuGRJgskNcpL8e6e6A5+lJPc2DiPS5fqpOXPdXdVN4Hc5FRDXLdfqZYPOlp9xP6UknVQJC+OZfLBMe0IvvqJ3qsIKmPNXvv9qBgdycRFmfj47go8rVMNvqJGhm1zSPN3rtOEmoPDGnt6Us99lXmm0BSySRxciF+IW8Uk0tLUIp2T74oh/vIp3I/uEyR1tJNt7snkf0+kf47qXsQ5l75QLeQioL6OMGlMLkU/1U/k5X3bGWxU0N9ZCiv3Mh4DJ16SS0T4Dpek7QSNmgIIhnYpnxp6adGKhaue6rTjOLG4jKpuOnLuL3mVbmZIr/uaY5TtA3Uh5rFkx4XGaZm35DWcg/kSyf1GZ2wmcV5TfVgcvt5ftnRHGfjRK+4jNfqXkpQcq8mtRxzUg8eRGGGfKZIto5uPyG/sdiJsCHSf6nwmUK3YSy3ly5NNQaPtPtS5dDNZKxDokh2DhUCdiIAoJ+JsiHbSH2D7iU4JUTJ3hB8kq5tHBsdv5Nil9/O0cWwlmxlo5rB0e1n5NctrkjG8+n2EmGtKkmk7WdGOiS1GmWlKsi+slWHnaUoG7DTRFJ3lUgIvdGxRkJTXIlPcGBumtNcvt+c3JfZSsJPfGawpRk/35KdxWw7uqNC5IepIr9sI3Mk1zJdd7giGf1++XVLcyqmzaGKws5TTCXeLztJRvbMFUbkkoVGd16SUXORDQ4yRhCgoLvoW4sVE4P3T/fiayPR1HdKJu+tCUWCm6bYMiGpLTpKLAngJgmmkgoKN00xrUNXHd2ppKdmVzV2ltEvUnTnoyohoFuHqTqau1OKlzuaezOyZYuyEu6ie5H9hdSMiaVummLWnXjmYgDMAC7sNMU0Dt30koC6bglFgp1l0rvoAqru8ZNUAEFrRzasPyhJdr3ILaNfTnVW2C6lxLdXtYQyw00ydCf3pXIBO8tIlvKB7BY5ydWOkCaE/BVPoPUiM57n8loPupF+RHc0l2CbSYaOaapq14zVFsEoASWdxU8ydCWvC1oJO5cYAQhlil5V+L0JetviJ7mAqLitECsqxrqN3n5YBjrUaQy/955QCrPK0Bup4rGsNoTFbPQq+vlUfI3JbVeyVIYYAVsD26fl9cEMNTZB/paYyNJpCcFxXgDYtoIh+GZIMx2OeZhv2yh/7XvxLradsJDWorQWgPbKQyklnZOJkefFMJ1g7RjCo/JcOieVkoqQgT0Vn5ckyGYpgxdyDNwZmMdvZwyHAJ7IGN7WjcSkLefiuWlC296yrrEfE61GMIlzUZr7T8Abg/R3eM6rj1+n4/K7Qgr7+8Dyd+dj+vF74fg/+KucPFzyycMz3l4ds5c3PLk+wDnN3f0NT947QU8sRwdbLp4ecPhgSd1mvH50TesSnpwf8sadK97+0gPCzPKR186p+pSz8z1QUE5blILdqkCZgFIBdZ6jH1QioTUeaw3BK3ydUB7UNGdTmPUkueVkf8vLy/+XvTfplSxL0IS+M93Jpje6P5/CIyMycq7KKqqobolBSAgh1iwRvWBo6A29AiRaQC6QaKkFYtFs+AEs2NI7hJAQEhJdSKWurKzKIWYPH56/yaY7nYnFd861F1lZRSs7S5kBZZLL3d8zu8O518zOd75phfOTLa7+9Az62R4hCNhtCVF6SBUhP6uAd1vYbUFGpSZjYN4Y4F2uzCgd4J2E9xLRJ0mMpj/Tj9Ra6dKhLB32LxaQJyPEiwpu5dGc7zEOZpIMX/7ZOZ585w2utrPJQxqcBEaJxcMddp8vIUcB9ZT7Xs563NzNmGy7L1B9XMJ+swNeVvAzD6iI2XmLfWJnzGKEdxJhbyA7ieqthPs+GUF7WaN42MJ+MZtCTmLlITcaoQ6YPdij/WIOLFgHEosAuWAarf/pHO7JAPWmRHzaUZJsIoqbQ28iVISsHMKogEECOqI86hE+nMOeOehbPS0yFBuB4RsdglUwl+yRtOcOokwrc61Gca3gywh/zD5R2UqElYNca+DBgDCkVee3Br6OCGWAXiuYrUD3HmtphAPcIgJnA+Jtgeq1Sp5E8Jw/UXBzMJCl8dA3Gm7l6QWVEbHxMFcGwUTIgamj3aMAs5UYzj3qFwrdEw85CISzETGQxcpeOLcIEKsR5uMKiALDQ3ZSqlbCrTwgI+Y/NRhOKQ/un1iYaw3XRMSlRfVpCQSgf+SYsiqTh3DuYe4UFp8C668D4XxE9bMSw0lAfcnFCbuMk4R1XHH7UTP4p7hRqK4ENt8bUX9SYDxmGJAIwP59i/KlIRu1pzQ2+6N0KzCceKhOonktsH3PQ+8pwx6OI+ypYziSitCthLA8jtVPJDYfMPF28THZiOGUSa56L9A9swxZ2iUZ4x0n8N3DCD/3WPxMo31Mdql5w8WK4YQM1uwl+y2FYw1Nf85rBXByXl+mjsU+pa2mhNTtex5HP5JwM8Fu1DeU6/Zn2b9E+bCrmerpKy62jEdMsI0qws05Rs1LgfYRmUi9B7J5u39A32xOPu3P2JNpdkDUOeRFYPdOgNkKFGuey+qnwO13GD40HHN/1TUXqnwK2smBKaqj7647E7CrCLNOnX8D5bTN64jN+0BOgDZbgf48YPkhw1qqm4jdO5Q02yXHoT/jYk/9lsBUePZhFsnHa7ZA94B/646/m38GbL8GVG95DtVbyq3LW3pFg8oLh+xVLO8idu8ILD4hU1NfBXTnksfzNDEyaUFRd1zs6h4I1G+TXzjJVl3FxUXdRtg5e15FBGYv4pS+OhxLgqyWzFh9GafFre1z/p++Q2D1cUD7QE6yfN3Rd2c6LjyZ1Em5eX5YGDA7+iddzUXA5pL3aAZwxYbM0HCSFrV2ebEzTJJWX/IcchJufRXQH0sMJwJ6x0XB5tLh+juGwUsd35fjkmMnIu/3/SOygfMvRty9X8AuxLR/OYKLMHM5LVLYmcDicwa47C7Y+5gTanWHabHM1SBwvWVoUPsgecp18gD2h0XZvFB4v9MyeyiLbYAaI9pzLlb6UkyLkLoPGJYKumPdy7jUB7m+i2jPFJorj/aci2jsm5TT51NeAOECABcvxgUBeXXj0R8rFPuA4s6hP2Viambc7FxyIbP18LWE2XjsnhYo1x5679GfGdiGi2lyzIwp38eIXOSMArBLDdVzgSZKYPaix3jMfsfuvEB9OaI/SxU2d6x3KTYeZmu50Fpy0SovMOjOw5eKcvOSixR50Ua3DNgZTgzqtwyn8aVEsR4xropJ/jocay6OCIHydsRwUqB602H3vMH88w7DaQmztqyEWRjovUt9uRzb4m6cFhPGI4PijscqR4J31qkE6PUAX5uJQYxaQo4ew0mJ8nZkGI8QU82M8BGqI2jKCbBcuNCTJ1OOfgJAsncE5pueoLkjUI2lgRgsK1l6e/BiGgXRWVaNlFyRjFpC7HvEWUUQXRYExaU5LBTk542OXZfbjpUlw8i/E5CdpLWDPXgsEwsZC0MgHQJiWRBIZ7AW4yE59j4Izr/P9SJaI44jROqfnDyWmW3se4imJkDNIDTLW1N/JZAktcn3+SXckeWy92Sv8RcASiHF4efZ0/lLPH4jgOW7T+Oj//I/+pVv99N/5z/9tZ8bgF9LKuyv7OGsgigDbtYz/PDtIxjJipA/ePIZpIyotEWxGoAIXF0tJlAJAD95+RCv7paQMuDNdo7y8R7wAlJElIohM3FQ0CrgfLGDSmCjrC38nP/2nsNX1yOUCoCI6PcFmkc7CBnhncLoNMrKYteXwMUAYzy8VYAXiE7C9wr21MH2mpLBKjDgxgmE5x28k7CdwbAvEKJg/cbOoKgsZs0ApT3iwKqQ4BWG3gASkDLALTx9kAJwg8L2zRztUEA8GPDyeoVxMFAqQKr8QSMwjpp1GE3g8a9L3G4aKBUwdgboFYYzj+DJGhanPfSdRrsrIfYKogiwvUbYE6iZrUD3yMMOGnbQEMcjYqScL2gATrCGI1V17N82KdAnAjJCNA5hZzAOmuAiLW6FUUEEAXPcw5epRiOF0ggVAUd/XrEaMGzKKRDGV4HVCQuP7plF6DSECgg6wp54XpdOQb2kTDJosq+iVYAO9FAWnj5TGaGvDeBYbSEc6D392h5uzv2F5x0rIJ7sWcky8wyf+eYeIaXhjkeR5+CB8qjnZGiUCGWAaiXUHb8swtkICGA447b7C4eoIvrzANkzFCiOCmKnISLglgGqF9BbibgpoLrkLd0qxMbDHRFgwgns3/HQe4H+IRNlfU2wglQHIzxgbhXsioXkfsZjh+REGyIidqwlCVVILD5L4aMiqKyfUusXygjUHuOZx3jE+y4qAIFyRjvjRNDNyErlaxcKHpPeMQwoqphkhYLhVxVBdA63AZB6ZlNC4xmlg3Jgx+ZwEqc6lGAiRC/pvy0jhsd2CkaBpL83p2YGA6y/wSTOqCIEDlUZvoqwM3B1f+S5Dmc+FauzpmM8Ase4TKFEKqdgMrwnB+1kb924iph/TmWAr+iZZUVEqnlI3//t43gIwpEEdK4GhCXIGZPdXKaJ6HCcEkUXBDOsGEggakeQobpDl+14TAlbUJQMj0e4V0OSpJ0loLfZ28w/rAlhrywraXi85TXldLrH5L/MacY55EQNBB3tI4Jq6eiTzF5Gs8/nlDzTc97jUTO5NvtfxyNuL8v27PxQUxEMU02DAdoL+uX67GPFIfQnCoKyYkPG2c0EghGwM5EYUExqilwRFJM/M/s27fKQeipikliWQHGX7p8U0rR5zu8WNdCf7Cpe++xnDErAlWK6j4TDlDYbCsp/bZMkpwLoT8UUZhU0jx9IoUilmCpB1EBlQGYreSHzOBDs9cdqUuLk5NYM5gCCd9URTG+fFocwquz91Ac/LZUIXKzYXxh2n9bcRhS8p0wbMCw5ZnLktkXABNYYhoNpNpO9tNJR7ukqvscyGM+f6QzH4d9qOPS+dicKQQHlrUN/opOXVnxJITQs6JeXlqCQKgSOVVBku6MU02t9SYAJpGug6J+MUiS1kJje90EDw7FmquuM9RAiAG6mUnJ0XmQT8CkAKCgx+ZrJACcwna4plEjvXXpJg04gyfI10sZJbuorBV/I9F5MwFExGCh7Pn0hoVoHX8kpmCcHUGXWuj9nqqqrydzr7udYuCQDNbuAkJhwiJTCqoBcdwJQjRZKyonl4NL7ViIaifG4TJ/LEkFLuEWJWMiJHYxKwNcaxdZOoUB5//crQ2LaN0Jk6iqoiJiClUoFX2uCvRARmoKsrpaIBdPfQ2UOgA8ElRNLWRYIlZ4YbZQFWfayIAgWAkhBRTwWzd/n45NkPGNdTkA2pU5Oz+FBp+cpeWADhSAgLQzZVSUnJjf/fmJWpfhygFCMZFGtRRzuMYXpOaIwB/by/vUVAjCGYFKmZFkhDqAyJ70qdTgHIQEhIZT6c3+mn//cfr6qj3vBvL+yP78pj680Y1k+fxaf/P2/AwAIXrDrcK2B84GhOlcNiksN925PqdkuzWhSkoKomKg6u9ij+2SB0IQUFiKgWjGlfAKcMEYFYGUhbgxj+TcS9pjJneWNwHCSJIezZKpfMyimP2dAypTgIAiQQtp2/ULBV2QAdu9bVK8MhlOPxelvDW8AACAASURBVM8Udl8jw1JeKYwnKQrf8kt2/jmw/iAimoj6pUL7zEG1EuW1pEdnFVBdSfQPwpRkaTZkBGLjodZ8M0srYI88yrc8Dl/SsxRMmqytAvROwh6RobIrD70l6zb7XGL32z3KjyuMRwQCahDwRUSYebLF/2uFm+/RK+XOLcxrdm7lbr7MrDD5lSCruOMHXg4jsXOOmW4FRIrLd/OA5qWETSmUdnUY9/5BgN4L1G8E9o8ZtKB6Ml+qJavilh7mNkm+LFBdCbRPYpqARhQbif6hQ3GtoHpeR4iI6pJytu7Co7hjcI9dRrhZgOp43CZNrs2WoTDtc4v6MzMxb75i2En2JZU3BLF2kXoY9xLxWzuoH86nPjeIOO1LtwTRDI1g6IpIdQo5vdFsgd27ATgfUP64Rvd8RPNhMcl+JwAT+dqchhg0wUyx5j7688BE2QcOix8b9KcMtsmTYLMRKQmRlRXNS0nPGggy1MhqhvYxg3iiJoPVnYkpPAfA1KdY3vC6d4/IOLkm+dp2ZPz6U/rkQgEwfZMTyO5MoFgDwykOnrGR29FbweTWlA46LhmuVGw5GZeWk3w7yxJDepjGY9atyJHeKt0SUJY3rGAo7zjWQQGb71rMPjSHROMUgORJFCefHY/Bl7w+IqYqh2XA7HN6/kKRehzTo1iT2VIjx7i5jAnMYApVEiGBhFpAdWThdIsJZJd3BAXjgjUquefQl7wP7vcx1m/IroaCTGv7UKC6IoM6rggAm0tKiMcVx8ZXOCTpJha0uqM0tj/j2JodjyEHx+iOY2xSDQcnpcDsNdm6DKrsgh2KrjkEa6mekm0GKPG88rXI9gWRrKI+ScDVmJg4JZKHi4Axp9DaGV9frg8ppq5CAgWUKXsj4BrK4W3z5aTR4ZhMZpasM5AIKf0TqG7C1EHpmsOY2xmZtt0zgaOfprAyxWNmwjDHKBQ8tt1jOdkQ1BhR7AOGBWstWEtCGX37QKHY8HvLJRCFCFRrnsdwRMa2PyEwKO9iCrdBklPzs7B56+ErgWFxkOWbVGkyJDBZrpNPb5YSQyOl7uUmwFWUzweD6R6Okqmp3SlZ2Sqxpjl9VFrKcwEyqdUtZfjlnUd3qmG6gP5IJtn7IXXUVWKS+AedElY9pmPKQNSXBOa6J7DK/q37UuthSWbRNgLjXGDxBdnGcu1hdh52odAdK1R3ZJh0y5qPcS5R3h1AlExdib6QX0qDDZoewOFYo7yjjL66dmRWE7hylUSx9fw8S3Jh1bNKw5cSxcZiXBroPWX8vpIwWwfpI8alRrFxcFX6jkuyZdUH7B8b1G8dzM5hOC4YlAOCV5Uk19JHyoBjZKhOBFRPRtTNCBLU4CFchPCBUm4fuLClBKTlcboUxCMHT7AqCX4ZCuTgFsUk0c7+QtU7+FpD2AA1sGYkM4e+Mdy2FFDtCN8UUJ2F7Czcqpo+S9RwYLWiEhADvZJZkuorDTV4DKcVzNYCIULtB4KfIjGA95Jc5egmBhRSwjdm8i3CR4b7SAk/K6C2/QG0xYhQGshtS0ltZSAGxxTX1EUZjZ48j5w4aIhtS7DmA8FkAofwgTLVPHdPEuAvpcBmvyRwOI57/kn2WHpKao2ZwF6W3AKg7DZGSlljZEDPvUdsO4iqInvo/cR4HqpDsofMI8Z46MG8f2zAP10a7M+xqV95Key7T+PFf/GrZyw/+3d/MxjLrzSwXHzzIj7/B38bAsDZfI/9WKBQHvvR4G49w4PTDV5/fgLIiKPzHfZtiWfnt5AiYjuUuNk0qCoL5xS66xrHjzbY7GoUhcPQGZS1RVVYLKsBt20N6xS6TQUhI0xtWU+yqbA42WN7NUOxGKG1R/tmBnU0whiPuhzhg0TXG7irGuJoxGzeY3fXIEagmo/or2tUpx0K47Dd1DClw6wecPtyheK4h1IB3ku4USFGMp3VYph+7r1ACBJ+bygD7TSWD3bYvF5Azi2ik2RBAZTViHZdwzQjTld77PqSYTCDgZR8jt0VTIHVEdVph2FfoF70aC9ngIooXxmEb+wRXtYI5yNiq3H+7Ba36xnC6wr6SYvxtprqPKIC4smIorIYbmpARAgroU972DVllqgYIgMBVmycsLIETgCVh1AR+mVJmeOevYzYGH5RiQi5sAhWQez5JYq5QxwkUITEuqWk2JGTwVAFVK81hvcGRCdSki4QawbS6I2Cn7EWxJeAP7GU+d5ouMcDQ1Iqj9iTyRR7DbMVGM886s81fBUxPrIoXhuMpwTibslaEmHp3fQV5ZJRAn5O6WuYO5QvDYIG6kuB7QdMiYs6orrUGE78xM6arUD/fIS6TenBTqYvQC4KCC9Q3kjYWaQk+jON/kEgOzwwmdYtabgt32jYZQLdxx7FlcJ4yn2Vlwq+IYAMhgsWkGTr9JZy1N3zgFBwAcQuAqq3ZH7sKiKCx59rVIQV8CsHc6NRvxLYfMfC3OppUcLOIvzKofnEYDgNMGvJTsuS8mU7j/BVnJi0oDl5rt9IdA/DxLwBiWndEsA2rwU233IQg0TzipLb4Th9oTqCZHrKUgVLvjZVhJsHVJeK12zMq/0E4H4e0LwgywEQUHYPAhdHZPYip9CPlKJr5xwP10TUl2KqvshF8W5O6elwHFCsRbqWAASw/RoXcMwuMy58rt7zPKVNXacjptTSKDKDQ2Cu+gRUS55HZphz3YpdRBR3lOdOf6/FlFY6HnH7eQyqq5TomtjpYiMOBff9AUCLAOQqiu4BJa++wrQgoFOvpvSJJZQMackVC3bObWZwmutkzJaMrGkxgcz2gmPL8J2Y2F6CXN0yXVf1SL2GyY99F2GXqS6oTL2aR8mzH/k6NzvcW/RcprTY7BksxVTl0ryO00KPLw51CK5JCb/HBHfd2UG66ksCel/z/ab3capsmTzyIS+myInd9VV6XcV95eoVep0TU5lYToALFjkQR7qI/pjvCaaLYpKGuoZMsByQ+h8j2of0qufAn+FEoFjHyX/dnUs0bxj40p3IafEqy3DVwO3X1wydsTOCd91Tepu9/dIeVCqqP7DZiJju31zlw4qN5OE/lVNtS7E9pPQGzfsmn6cvxMR4+yJdw3S9hCdbysoOAvzsI67uDsAWArB18hUi13xgqjLx5uB7z52e+T7I9SWZNSTwTdUlisnB3YkmsJ7Tt8yQnZAWZwnmpY+YpLDJ12u26TWeclfXqHSdFZo3FsMxg2fqtxZ2qaB6VoawKktBDSH1R3LbcgzwtUpy6UMFCmug6Pk2e1adBCNQXY0YjospadbOVKo7idCdh11omK3DcGxQ3Yywcw3d0i/vZgzTISOvpnoQAClFl88NRh7qSUzygLcWQcupw1J40jnDWYHyil5XqnBC+hwPE0gLpT6AFy0nFlymsJ6oUp9moaDXlMLeH4MpIXaSwTKxVXY2VZE4xNR9mdnO7ItFCAS091hLSLC+JNd43OuDFKNlkA5AVtF5xOQXFclbGusSou0Tw1lMstg/9/hSGmv6d5ao5n0mYBlHgroJhOb01pDGKKXIxvvbydvIvtBf9Mjg8S97/H8JWP7nfwXA8t/7a2D5z/y4+O5J/Lf/x38VV8McNkp8uD7Deb3H1pY4r3f4k8sLnM33eNhsIRHx0foUSgb0VkPJCCUDYhRYlAOsV7hpaxjl0Q0FjPYotEc3GrS7ErpwOFm2uNk0OFm2GKzGZlujrCy8l9Da48Fyh88vTzCb9RhGjbEzU/9lUVnM6gEhSKzXDR6cbbAfCjjHDs4QBJzjh0KwEogCqvAIQUDKCO8kytpi7DVmix7b6xkAQJgAkcx0SgeEKFBVFu2mQr3oMQxkaSfQuC8gk6xXyMiuTCehKwchA+y2xPHDDba7Gm6gHklVDr7VKJcDAMA5BT8oNMse7dsZnrx7hS8+PUVxNBD8BgFdOgSvUDcDht7AtgYigdtoJeYnLXZv5pBz6vXDzkAvR7hNATm39EhGEBQq1p3IkwHhugSWFkKmL4IuAbydhpg5IAoCSgCi9qxk0RFQEbAC5qSH6w0X9XRAvCsQq8DfpwkFBglz3MNuSui5hdsbqI2CbwLOnt3h+pNjbjMAIibm0ARAp0mQiIAX7AANQKwCkzo7fmj6YweRqkeiSccWADGyvuXo/Rvc3c0Qo4C4LhAa+ljlThOUzegvDAVBWmi4SiwHOZ1DLCLEIIAHA+K6gBgFzJM9xjcNhKcs0dUHkJRluVFFqI5SaL1RBBkPLVTt4HsN0SnKlzvWpYQkCxe9hNpLuKWH3imERz09tjMLXJXQO05oxxP+Xg6U2/qFh77VCAUZXF8x2VI4sHLE0pMZSlbGhIKT7FwLc/jiB8YnFvrKHCaGjn+7RYBM46U7epLsitJrvUvSzJjkdEmKqfcC/VlALMO0UJAlnFFhSvvUrUieJt6PxZ2cah7ISrK/0824iJClgFluOrH0FVlVnyoScp9priGxi7QgYAXKm/Q5oSKk54Q/FOneDRzXYMh6y5G/i5r3d9RkkaNO419F+loTq+Or1P0oE2u/TkqM+zU8uSPUxFTdkTyfYwI9XkyT/Kz4IJspJoly1PcAbZZdC8DOyEaPS4JN16Tr0RFUqoES5uKWjGpOGLUzHmtmhTOgz0D94JFLMst0HkyMzcwgn8teQv7bF+nYRwLm3FF7P2UUgh5TN+MYAphqTdyMLDgrWJDSQxOATqA+L0iMxzwW3abKE3NPXrxjT6gcDmMiPMco3zM8UR6PT7JtvTs8N59f9nyOK3pxfYVJvit88gIPODDhQ0z34aG30uzT56/Cl4DfeMRJ++SR9JgSV4djgs/Mwup9RPeACxy6JfAqthHSpqqRlDSL5NHO4XW5viUHkflSTOdlawG7ZEiedIeqkHys03s8ya7zokuUBIJZImpnnNgre0j1LTYM/DPtAezunkqU1/Hws6QiCVqg2IeD7DIe9pMTWIEEcD0BuStFCjY7bGPq67yvLgk8l3HBhNXcwelNqvsZw9T1mRc7XEUwev9v04b0nhdTT2z2hE71KOm504JDrulQ96W7fI3qGTzF8KgDCwyk653CtISPGFcaZuenDk5fSqjOTzUpuetSuDh1dOZqmFAcWFs1eLKpAQSYWsAbOZ238JTTCsdaEl8zIEv4ANeQSfUNwaSIgMqprZ7hRaHUBJI6AdisLA1xCmIS9gDURJa5pq5J4djRCSHIaqbfi84e6kmyBFaJKTBJ3O+rzEFBmZkUgr7K/MjjbPQhiEeRbRTWUf4qxSEwKMbkI82M4gFYT9sDfo7pDNM2p2vrD9uL1gIyeSn7/h47mcBn9lr+ZXjjFwHeX/CIMTIs6Jd8/DWw/Kt/fKV7LG83M/yjj76L9qqB2mhIB9zuOOH96JyR9y/1Cp8u6VWD5IRROEwx9r6KuMFhsmStQHHHL+92GVHeCSw6frnfzeYQOuJaz1DeCFQSiLpG2fKL541aoQAwqhp6ALRg9LybAcJX2FzMYTYCpQb2f1zRk6EBMQLFCBh5mPDYRVrpT6usxQYYjipUAeiXFZaXlLz5WiSPDmVlOfF14YHxqISJfG0w/DKqE+PgyxRskMrFfVVA9cDMAu3FCcwgMNsgpQ8WjPYuCx5XFdFcC/QPCixfCbzZPMTJh8BwbKDMYaIGANvvKBz/oeGXQBfRn6fI/UWBozW9JGrkJBBCQ/U0+ZvUu1ddRbiGHqPxuEH9OqJ7UGH+ghK92auI7sxw9brQlJXeplX7yqC444p7fgQznyYK7eOA4x8L+EIxOn+XV70j2kdzLF5z20XM5ySxvjvF6U/SZF2QAaDET3FiuOa2fYkp3j0oOU1qEYH+rIDZYAIxriHjkidgd7tTLF8djll3lK3lLr5gNKrriHElofcRdq4pu0zeI07Q2d23f1QDApi/iHhb1jj5YfJu9UAujUYEhiN+KaiRASDdQ43mNScS3ZsCdl4kOV+c1NxmB7QXBq5mwEp1G7G/0AxEuavTvagxexlSPyFg5wyrqK8od2wfGqw+DFN6bU7BzenEh95Fng9DIsQ0tjk0JGhg2xZYfRQSC5EYgUJgOFKYvQrYPWNnoBqA/pShFvMvAvoTAr76ism/ZKoC5CgRpcTRh/zC648EynVEfyyge7Is9XVIHjYG7JS3vEbVHSV0TMUF7Fxy0uyAYcVrW2wjzD5g95Sz8/kLj/5EIgp2JkYVkcvU23OJYDTcDFh96A/F8WlSmj1jOcikeyChujiB1CwDtTOB+sahO2Zaa3+c/FUpIdc2cpq8tilFd/OuxuyNR1BggvEusrvUcIKpxgBX8h6tr0JiZxI7mvyEiEBzRZkfZcECxSZgOGKKrukYeNKeKcwuLbZPNeZfUILpCzExM+Wa8slyEzDOBJorj2El0Z9IzL/w6I8lFp9bjCuNYkN5YZ50B8O0XfYsUqbZH0ksPx0xrhjQYhuJcntI1u2Pubii7IF90gPfF7bhhDYzXfGGTKs3As0lJ3jdmZ7SvZu3frondRfRnSnUVz7dGx67xxqzVx66ZbotP3Ppo6tuHLpzzQl2+n7SLbD4fISv5CS3dTUn1Wbn0Z6T6cqVDzl5ub4c4SuF7kyhuvUYF3wvFNuQwrEUlI0TCJ+9HlM6sYGr6U9u3lgELeAaxZTYO0dv4aDgC4H5ixF2Sd+ZbgNM69CvC5R3Fr5UGFYK1bWFGg18IbD6eIBrFHwpUb/pp9TYoAXsQjMMxwgUtyPcTCMqATtXaF72iIZhLGrwsHMN1yiUt/bQ05j6EMeVofxyDHAzDV8xCTeHzaiBwChKYPmRxfZ5heomJQsXZOmUlWheHSa10lWoL0em1SrOMeyM18nsmBjMVNmD/9BsRoRSYzgxqK5G2IVBcdNjOK9QXg9AiLBHJYRjnUZ51SMUagohUvsBblmh2Gim7c40zM4ilAp2RhaQoEhBb4e0rxLVVQ9fa+jtCLsqobc87vG0htmMGE64CkMpOTssi5sewShuazcy/dUFuFWFqCRUZ+Fr+grVboBb1Sk9NyUjF7lPU0JveoKsACDOUFzuEeYF5G6EX5Z8/bKivLazEMc11G6EbAdEoxEahuK4ZQV918MvSuh1B1Ubpti2A+Ksgqw0ZGfJ9PnAoJuUBCvnNWQ7AFJA2gpyP0D1yeMYItQdaziilBDDCJXAldIKYt+RcUsgTxrNKo57oE9k2epoCSx9AKxjoq1nx2ZMr5ukr1phSpTtBnoWnWdgjpQHMHcvPRae6cNQ6gD0CsP9hsDnWkf2MIO5gRUq0JpeSSn4fHVvH8AB/GX/Zg7lyT7I+wCyLIDRTn2VwmhKX4WYmFWEkJjNvwBU/nxQz/9feiuj+H9/zlf08ZVmLKuvP44P/97fhao8fvvZC3y+OcZJ3eLF3QrDYLCcd2j7AsOmxOOnN3j5yRnOnt6hGw2acoTzEpttg6K06F/NEGcezaqDlBF9V8D1GqYZEYOkBDUC0QvItwXCmUUcJYrVwETYKOA3BWYP9thfkk1szvfwXmJYV1ic77B9uYBaWUgZ2KHXMChFvi2AiwHBJYZq5iFGSTar9BCSrCeigDQe8aZE82yLcdCUwG4NRO0QB4ViNcC+bhAXDvWHBfoPBsTE+qnKoaos9neUwtp9llEAYk9QllktBAH9sIUbNUzJcKE4KohOYvZCoXtA36g9dTC3GuaDDbpXc7JWp5ZM0iBRv9SoLyNuft9BzSz8poCcWZiPaoxHgSvhRw5irxGLgPnFDsOfrWDPHOROQdok10QKjzm3MJcG9tEI/ZbHT2YgAIFMnHx3j/G6gt4q+DogFhHFW0o7i1t+KPoCaF4JbL/uIIJAcc2fjyce4mhEaDVEr6A6TgrHBw5iTKzcipLWqCO9p8ces481fE1mqbhlmfj+uUdxLSkxDIA9dShfaRR3IgWIAMNxwOJjehJdfWBLgk6A8phsqtpLFOsk0bSUcJbXArv3HarXGnae/L0pvMbccJIjnMB4wsRccyshLUNY5CCgO4H+wkH2Ekc/EmgfMZhk+y6lrG5GSZcagPJWoL2gxNHVMW2H43n004C7bzCxcfVT4O5bEYtPyJ6OR/QcZw+yWZPdCgW9lc0r4Pa3uAjkS3b1RQnsnzvMPuN5lTdM2cxeQLMHtu/7lCoL7J/QZzz/hH4+uwiTHBSBrKKbRyw+YuiOCMDqJ0D3kKyk2UiCzfPAQKgtfYO6pVTv9lsC41HA0Y8kds+B5mXy0Clg/5Sy48VHwP4Jx0/1EfsnZOh0n1ifjkxQfUX2pz9h+ubmfWD5Ia+7nfFn0nNbCGQay1t2EjaveY8MxwIheTSDBsZjem+P/yzg7usEUkwxxeQNlY4LHaEA2gtBf2cAqz+Sr2n/lP7k+jJi/UG6lt8G5p8yiVa3yau5oKSU7BP/rfdkj+xcoD9hCqsI9AEScEZsnwmoxNDplt7X2WdZnsrxMTugu4g4+WHE7hnri+ZfxOlzavuOQHmXWMyWi0vlmq/fP+JC0/Y5a5baCybhBn2Qq2YGs7rmsaqBwT2rj8KUtrl7pGD2HKfyhkwGw6WAYk+Zpdlzku/qxG4meSaAyW8pPK+ZHrgY0x+LyYt493XFxbFHHO/dUybu0v8rsPyEIDlLmc3+EC4TFT2EUQK7x2pajJQjfa2+oKey2DHpVg2YFpCYqsp/z94EDCs5eTW7UwlXE/QWW4Ja0wZ0J6xZqt9GmC6ivHO4/aCAbuPkteyPyDaalozj5h2N5WduqqnpjykftTUnU/OXDsMRK6F0HzDOJGavLVytsHui6BtPMtdim5QuSjDEJ6W91lcO7QM99WVGzfuq2KeqsBEot2FanAW4cGC6iPLGIhQS/YmCGiJclQB5G1BsHLZPS1S3BPk5QCdXlfQnCrPXFvsLg/kXI/pTWhemReB9mEKRghEob5ksy6qtAF9I6NZDDQHjSkOOEXYu0bwe0T0soNsAOQYEI1HeDtg+b+jr3Fp0D8vJl19fjbAzpr+6RqVFppBCbATM3qE7M5AemH28gz2uoHrHdNi1xXBWIEqB+lWP7qJCsXYwW9bGAIDqLMajMkmjA3ylYBcawQjMvugn/6ROoHY41qjfjKxYqTVU5+Aag+zvtAvaHXTnJyBbfbFD984C1dse46qYqlv6hw3K6x6+0nAz1trovUOoFNTe0t+4Zfqr3o1wq3JKetVvtwjLmoA3yVPl6GGXBVRLsA8lpk5JaVk1Ax/gTmdkNEcHPysO4DAklk9KiMHCz0vo2xZ+VRPEuoBQaMhdh7CsIduRVSkpFEh4T89mRSCGwiDXhGC0iFVJ8JurTxIABcCfKwmx6xCbij7LSWqrD17Ntj94MTsufsTSQPQj4BziYka2ct8dwCnAY8k1KuIe2LGW3khjEIeRgFcIxC6xE5oMaRwGpsI6d5CqJk9lHNOxJgnsfQ/nzyfAfin19S96ZND5z4BbflMYy0d/7+/+yrf76d/+T37t5wYA6gc/+MGv+xh+6cff/4f/4AdP/83vUgIKiW+dXOKyW+Cd1S2EBjpr8G998If42XCG9baBqh1GqzF+PkcnFYbBILQa7zy6wYOHa1zfLvD7736GVdXj9y4+x2A0xqAQfjqHdwpRA//8B5/gSlVQxuN7z19iM1YYB4NvP3mDHQzauxrP332L9aahfFFFuCF1wy0HPD5Z4+blCnKQqM9bbtcphCiwPGnRBxZjVq81ive2sD3ltAICDx+usd9XmD/cYXfToFkMGPYF9K1B83gPu65g5haoAppFj34ZEXuF5rSF3ZZQpYcxHuOmRIgCYmug9uyoYwmzxAgFKMCcdbCdAQYF3xqY+QhdecQyYqgFmmc7uHnAk8e32L6ZYxwN5CAgn7WIW9J55k5huHDw3+7gvYS4KSEHgdNna2x8ieJOovrmBuO+4D6PBvS3NcLKwcxGeKfw4JtX2HUV4AWqd3YIUkCdUVIcDHDxjbfY3s2gW640+6XH00e3GP9kxWCl0wEhCpRvNM5/9xJrZVA+bjFKCfX1PcJ1Cf2wwziL8IsAfacRIIEk25UjgaPeaIQmUMI3kKkobhXsUYCASKv3lIYeffsWa5QQg4B4twVuC4QiAnMPN2e33HAcYY89ZbJWobwTcAsg3AuFEs9boA4ITkL1EnYZYS8siiuF+L0dhvMAeZdK5ANTYZmoCzSvJPrHAaoTqK4kxgsHv/LASLBsTzz+jX/l/8bPPnpCgPx7a8QXNbqLABgm5EYJ4MEApwXKawk3p4R09oVE+40B5kZDejJ343FEmAeIUWE8T4mI81Q3ooDhkUPzzhZ9X0B66tBCGbmS3VKKmSV+4zHZSLtKPsOzLDFmbYsIAm6Z/KlGwJ5Q1mp2Au1zBwSBYiMxPBshW67o2qOA9n2H6qWGGjnZ7h9Qbmv2BNFRA9IRIJffv4O9qbH+RoTZEpAjCvRPPISXyUdHxYPuBboHQHUr0J9F2CVB5fidDqNU8N/eI2xLKAfsn2WWmwmhTCkVCKXA/mv02bqGybQiMkW1e8gaEF8L7J8R5LMSAEBEkoQK3P6Bhd4oqgWSZHFc0bfia/q4uoe8JrMvgPU3I6KU0B3QPxRpcUJg/4T+TbMn+BOeYHU4jxhOmCY7ftBDbAx8zUl9DqNxMzFdu/GIxxUNgZZvWIVi5xGhFChvKVPsz5NvUfJzqHvsoTp+3uYE1+6BwLgQ030QDVi1kAATAMSCiwntBce4XPN5GYzrFrArLkzsnwGQBJ7tIyBKiXElcPU3PerXMsmd6SkVgQsBoRLYP+HP+lOmtEIK2JXA7hlg9pRhjkuCREQxMYn9mWQAzolA90Ci2AG+TvJiQ59jPjc7FxiXEr7JAXKC41dy+1EzbbR7ICegaHbszbWNwHAksfsaz0k69vXun6WwKA+0j8Wh31MD41KiP2Vth5tx3ILhvmwjk/+Xk/FhJaAsF3/sgmnMdkY5a/tYYjjmtspNnBJDXS2wfY+LFuUuQjlgXDLhMxiB9lwx1ElxjFwtoZKij4oOejwZxsOFtWIX0J0piq187QAAIABJREFU7N7hIolKHcLFLmD/SLHX1wMCAv0JP6/tgvUm3amEjBKuTjU/C0nwn5jJYGRKuBXs1kzH68s0Zkbg8g8UZq9iqsPgz8YlwTXrLWJiQSN8LTGsFKQHhqVC90BiXKX0SwgIUKpq55qKjQD0p5qujNMCug/YPDcwHe95X3KBxtX8rlZjRH+qIQPIIJcphGhBZld3AaHSaB8auLlhkFJJQC1d8lNaXq/xuJiULO2TGuXGYTgpEEqFkJhx6cEk1MQaCwj0pwbljYOvFdrHJUwbMK648NudG4SSY19ddvAzg+G0YNjUWUXJcq2hXISbG4SKYHk8LaHGCF8RNCN1uApwIcwtiulY7NIk73FEWFRUJUsGCLllAUgBvR3hFgXlriZ1UqZuylBqCCnhliX/X2no7QC17RFLpqyHQpE5dpS0uuMa+rZDmJeAkpCDQ5iV9FMaRdAo2QMKSanq9ptHMH2Sw7qAqBTiok7soOC+ujExlBqQ6Q7xAXFRE8AuG8ieCa9iR4ZVdAP9lP0I0fWIsxqoiukYRGJgURZkQQX4YaMUYjdQquoDGVRrAWshypJPKwsCwmEAnINISa/sx5SU80J8KW1WRF6vaB1kUTAkKKXCCiXTn7SNyEU6acwBdP5Fj5/vA/0lHh/hR69+8IMf/A+/9AZ+BY//6r/7b3+w+Jf/5q98u+v/+X/5tZ8b8BVnLBffvIjf/4d/C1fbGf6ldz7E9TDDabnH//H5e5hVZCQB4PbtAn/jWx/hH3/8HB88voQNCu/Mb/En1xfoRoPd1QyQEe89v8THP3qE4qLFcFuhPO4hBPCvfe3P8KDY4n/66HfR7iv4rcHjd6/w6ifnECcjfuvZS/yTP/oavvc7n+BtO8PrT07x7W+9wJ/+5AkQBRYXW3gvYUfNYJzC4/hkh11bwRiPVdPhbl8jRoHSOPSjwb/+3p/iH/1vv4/ya1uUxuHubgZsDFbP1tj9+BjH373C1c9OUT3ZoSosNtsGeFUSPOgAOAnRSchBwi8dmrMW3794if/zx+9jdtTBOYm6tPja8TU+vj3Fo+UGb3Zz7LsSUkaMn86hn+2xnPW4ulqgng/oXs8hW7Jx46lnsM+rBvJswOPTNXqnsf6jM9gnI6KVOLlYY9+VMP94gd37Dr/7nY/xar/E649PoY9GFKVF+OMV+mcjHj+5wdUfPsTjv/ESn/7pBeLcQxqPsDco3irEr7dwNxWZu1uB8bdauFaj+qzAcBpQPt7Djhp+UFClRzPryeb+0Qr9U4tvf/AF/uxHz+iFDAIwAfrKoPnmHbZ3DeqflBhXEfFZh8Wsx+bjI0RDn6IaBdyjAWVj4T6aY/mda9y8WWJ+2mK/rlE0I8a3DaIgGDj6ISdT+9/tgLclnn3vNT799Jy9pW9KhCqgfKswvDcAa8MJ12/fYfN6AciI4lIjvNdBaQ/7YoZ4OiL2CvULg2IN7N4J8CcO1WcF+gsHFAGiU1g9XWP70yP6EEPythQBcmkhX1Tw84CoWZ0BAEd/KnD7LwwQKuLof69w83tukmcU1wr2yYj5Pymx/a2BlTAamL2Q2H2T6bLdYzKh8w8V2icB4lGP4o8bdE899EaieSmw+cAj6ojmczLi7WN6UWMRoDZkpO05g5FEp6agHRyPKH9WYTymD0g6AV8HlFesu8kBRdFEqJ1CqAP0RkLv6b0rv3+L7kdpLDyrSY5+LHDzLw6IvcLqhwahYJCNvbAoXxiMK060zEZO/ZnSAu0ThkhUb9TEIA0PyEaPRwGqpyfUrQLqF4pg7p0O4U2F8z8Etu+QtXazALOTiTkiIJ1/GnHzW9zX6Z9EvP0dymxddfBsFWsmAXO1X6B7b4DYGKiB4TOhoKR9+WECYRcRdsGeU9WJKQV48nlpej7rNxL9KX2W1aWk17Flsu76Wx71KwW7ZEqzGgTKK94b0mLqOfRFSgbeEjDWl6wGMRsxSb19QUtBZqAQuXhgj5jKXKaEX9fQ8zv7IqI/ExhOI2Riy3NQye5ZOpeQA49SUJAiM17c0T/KoBgeV64c8QXQP2AY0vIjStZ3T8mAhlQLcvRTj827Cu3FQUYck4WiWFOWPJwIStlBQD1/GdCdSfjk+ZQu4va7AfNP1eSTVB39V+U6oj+S2D+NmH+OKSV3XPEeEIFy+vqG23Q1j33xGXsTRYjQfZKAvw3YP5aTb3XzLYfjP0rhKh07DnO4UPPG4fYbZI9yHydTR3lNq1syygUbgSafX3lLxjkUPIfqjmygiLQMZC9t+1CgeUPG0pUC19+POPmhmAKQsn93WBGYzL8IaM8kRIyor9nNSTluRHdOQEa/sEB1k7oi52JaaACYTCwCmWA7JzjPMuPhKHXGDhHz1w77hxrlJmBYykkCnetnlp879McKrkoBP0XyU84JFLOk3XQR2ycEZEcfjrj9RkEmPL2u2EcMC0qlEYHqhvJmnSpcXMl022ElUd16hELAlXLyiEpL6S+fH+BKierWYX9hyNoKyqhziFNOv70vz84hQO2ZwtFHPdoHBHemDVPdiXARuydMYs1hTP2xgmk5zqoPGFdqen6x9QRojUIUAv0Jw3+iFihuRmzeq7H4bMD+SYny1kF4gsHm8y22X1+yUqYnO2sbgeatm+5ZOYbEdA5oH6XXR4Jm3TJ5V/VkYaVNfyeJdHlLGbHqPTs3Gy5WVG97+EbDG4moJfTOwjcadqZQv+4JQiOg9w5RCtozhoDiag8/J7D0lYYvJS7/uQIX/9cA6QLMVYtQG/iaPh9z08KeNECMTK4tFNR+nDySUYgvh/cUOrGOJdNmEzso1y39kUjeVcN6DrhA6XFOXA1hCu0JixrCeoR5Rb9mqaBudnDnS17Xq83UdZm9kGHZQG5aTP2W1lFyu2h4LGPyQaYkWtENk+8xDgPEkp1acZsiyzN7mABidI6sZWYyY4RQEtG6L/s187/z/zNzei8t9n6K7JcSa5O38y8MAPqnePxGMJbP/4oYy//gN4Ox/EoDy/k3LuLv/Pd/C7uhQIwCLkjUhcW2raBUgHOUsEoZURiH3a5CGBR7CJ3E/KgjqARg5iPsmt2Fi6cbbN7MGRpQO4RWM6G0DIBNHwaNQ7wtgKVDdGQzRMkQGdSeiyqd4mt6CbWy8G3qqpSRXYsbBo3EmQcGBrdAAPBgn96xgzABcX+wwgorEOvAn0dAbAwneVVADhSAZFehtGQ+Qn1vFcgEiL3iNsaUmjaKKRiEoSSCMlydkg08E1WhALWXlJc2HrCS6bFFgOy5Cpa7x+LDAfG2gNnQkxMKMlcicmILTylmBKYuQah796KgdHM88VB7xdTTgavqahAYzx3ZxSL5TlKXYVRANJyghiIilOnY7j3y5JY9e5FdkSmcI9YeslUIJcdH7zlpcDMemxoE3Iz1KwwVYYpp1GTXAEyphQR4ACLHNSfSqj4F0/gkbe3TZbNkdYIC/ILpeNUbjeHUE1CdBMxeSHbVmTgFdshBpAAYINe3iEggo7cyBZqIFMzDe2xcZf8eIHyqlukpGZUpsZF1GQLjMsLsyciKwH3o7lDFI+0hWEGOiVV0BIMAQVT9hoX107VSBE6qE9O9kbeV+x7VkIBQAkb3xy+Ye/K+WTovyWMTIYEURylwMOk4fQJiiudm52ml1Iqp6iR3T9LXTPAyLhIjIg8AJNeZsFqDk+YcHJMDcHLiqmvSvZGtK/dCX3xJMBJSD97Uv5lAoE6ppYzpp681g1ufqlOC5u8zyAz6UGui+tRfmfaZjz0zPDk5Nr93WVtyeK2rMQG1UKT01mMeY74OZnd4fvYe531l2WUOUIkSU6F70MlHHgjQROT1kx5ThUm+36ZOxTQOEAyyycE12Tc99RQqsKJD877IYyUcX5N/HyV7E82OAMHsKBcGkNIvU4dgI6YakykcKtBPmYNC7CKF3vAtz3RQQ1CC9NnEf9w7B8vjjnkSlcY613NkWTzvX46LnRE8Zc9svt9Y08Bt2IbnkmXR7Kg8BBfl+0B3vMZqTPuJmGpBckgPeyAPn5spKy5JO2NKTb0XlJMkt3w/H+7lfL6+oow5+4S5DUxVMNP32PR5fQBmWVYpAn2vrhSHQBudP9fFwY+YmU95GPecKCx9ToI9BAIJTzmgK+n75XmKdA9zm0z3PRxbzH1+EUCMye/OahDbMMQnJ8NKGzEsFUwXJg9oBpTSs49SukiJuiJA8UXyfxoxhQvpjt/3wTB4J59frvOYJJghLVDl74UUcuNLqqhyvQtlxIcE3Px5robACpIUrONqAbNjxUvUYhob3TOIR/jIcQIBbCiSZFOJNDcg2yccQ3Xk4OErfTjONKZB3QOSluE+unUIpWI4EHietHuQOWZt2KGeJD/y9WGFSU5gIxAXqe/xvieUSbJh6paUvU3nw9TWHKATJTs14SMVIoWGsJ6MdTse2DVgSn+N97opp+AeAFMViCSwFDb5E2M8hOvcD9DJf5IfE0ry7wzavOeYJiAXpYAYkp9SSob/5P1n+e3PY4FcfZK2N9WQpI7P6NyX/Z5AktQmT2UGkeHe8QP4pepG8rYBbv+vgeUvfPw1sPwVPMrnz+Lz/+bfx7AtkdM8xZhKzpcOeq3hlh5qOcJv0wdKqpLISX92ztV4d2ahrjlbjZLgRJ/1iJ81UL04pDI6ASwt1KsSuhcYl2FKqYz60PuoeoK24u6wGu9WHmovoVp+IMYUfOpWHvVLJk8Kf5gMs9tSTN6z7iGljXmiqsYEeuqUQllFFLcHX45dEizqjhN5X3CyzKoGgSi5HcaDHyZedskPeb3lcbJQ+vCa8YyeODtngie9hpTbySFJZQTTHseTgMVPFXsWPVkE1QkMZx7ljZrAimrFFElvl+m4VNpemjj2ZweAYzYEQXrHiZXZpclpBlv+MOn1ZZqMp8lxTAB2XEU0LymhDalkPIO18YhgqL049Cf6EhhOAuafkUmQyfOUJ7Wu5vHZGRmh5UcS/ckBgGRQMBylBMviMOHKBefFFujPON4Mvki1EMVhkmYXBA45ZXCqgugPwGQ4wpQoGVRE/VZg/W2H5nMNs8UEJAiO6TPLSZi6YypidcNr058eUj7z78d0DG7G61VeM4mxP2M4lms4llExwIogNfncKjIC41KgexDJtC0FVAf4GmBsPr18usXkKYoSk5ctXyc7J7CjHEwczk0ReCCFBvkq+Z/WSAEbfJ7ZHoCabuM0CWcZPfdTX/L90J8JmE1McjSOtdlzMmgXSLUXTFc0Wx5PdZ0YH8PxdI2Ygq3YnRkniWdmXHzF0Kooed/4kqmG44oT8fptnO5lOfIYmYwqUN1we8MpUF6n98A+T2R4H+kEGLPEU/f0S5rkH9R9nIKpmrce7UMFvecYuFpMdQp5Qp8noeORQHEXp3oHX6QJa0fQUW44mfAmVWrcMDwo969mtkv6QygTQJCUAaPueA+pkedQbLgv15DZGo4kqlRhYdoAV6dJkMCU/ptfW9+w2qK8Y3ehGshO6SGmQKE4+SKnHkgwWCpoTKDGl5g6Q/OihdkHSB/RHSu4mZiCuXTHYxKeHrzqLmCcSxTbgN1jhflLTghziFKUBFvlxmNYKbiK+7ezzNqx3zEX3QMERwz5Eii2hz7HYclra1omTw4ryfTW1A8qHb9HeA0ImIIC6hs/AZBhyQl8fU2WKEs8M8OWQXK5YehNPrfccVlscjUEj3VYsuOy2LLaAjFOqbVqOCS+HsAB7wnXyJQiGyYQmQNnhMsrOOmz1WPanxo4HmRzxdQrKUdWbfiKk3A1BgyrJBdNgE/3DLcq1wRR0gb4msynGtJEOUT4OjHLe4KxKJH6IDGloEZFya/uGP6lxsDeyTVzF+xcJ5ALmA0/7FgB4icw5moF3XuC0QRW7Eyj2DK4SLjMYAaMRwZm5+CNhO48xpWB2djJe2g2I4bTaqr1yD2Y1eWAqCXHNUSoLgEwQ3ZQpDTTKAT0boRd0sTMdNUMbCnfVq07JLvWGmpvyfK1Fm5RMggogUw5OLglA4ZyHYevDWTv4JcF9HqAnxWQLdk64QJE7xBrQzA6sG4jgz7hAuAjYm0gOn7R+bTPLHFVg+e+AMrI9z3CrGJ4UKkhBkc2LwMzcwCZHHx3AHs5zVWl595n6e5Vg0wVIcnfKHKq632vY9pO1IrgMAXkIEQyhPmRAnsQAo8BOPg587/LgttLwToxB/P8ReE94j67mJlFxddkdjJGxNH+OYbxz/VY5p7Ne4+/FH/8JX7Lr3zdyPNn8dF/9lcALP/D//jXfm7AVxxY1l9/HJ/+138H75zd4sPPH0CoAGU8lIrwXkCpiOFNg1gEzM5a7G9qBrzMHIITKBuL/q6CrBzEZYlwNkLcFgRKG/qupE2Mmo7QG3YR6rWCO3L8wMo1EpEsX471x8pCvSzhjjyES4xVy8lC7hjMq6x6L+BmBEvjqWeFBQC9lvBNSuE8HaA/qWCPKPkDADUKDCmYRfYC4cxCXRbwFWVwwQA+MZnCC4QyoLhS9O/lugZBIBslWFvhAb1j8EuOZ2e5OMFxqAOqVxp2EaAG1jW0zxzUXiFqShNlLxDqiCgiUJEhVXsJP+ex5/26OYFd95AMoK8zA8brq3oBX/DLNf9O71ISY8Vx1q1ItQacnIbEHPYPPHQruSgwZ0BLZjs47pT9jUd8vrQETP0ZJ+1qIAA3OzFF3vuKPY8hsR/jKkkbgWlFOFc0MHk0TqvEXCUXqQaCskHdCuRIf1/HSXJnF5GLBnkc0vmx3oLgy5eYJk253y0fZ0hVDrkbMIPN8oagNIPsmA49poAeTtyRSt0Jcl2qIhhXMQEnMXXB+ZLbmL2kPNDOeW55jM0OaB+nRZAeX+qQy8AmA6NgMAUFqZHAVaZjVCNgG0rq7ILHPjGDqVJCDTzW+jKie0gQoHpg6v6LBE/9iZjSkNVI8JoBaGZN8kJL85rPzwBKJkDCWPp0DzeHsUMCL6pLP0/7YZpt9v0dqgNc6taz8wNQ5iQTUxhIVAfAmVfnoxITG5pZrdy/Z5cCekc2JwNSO0+LDrlnseJ9l1OGM6CwM4YWiRCnxSGX+gWDAso1FwOE4z1YXROUAIfXuFpMzJAaIkwLtA+46JBBstkdALxuM2N3GJPyLsInFhWCgN/OxVQfksOG2DGZGB57+F7I4+YLMYFkyMP7IINtV7I6YlymBQwNVOuDTDI/gibzJTxBiG0okcwP3ROs2Hka1zb1JqaFKtMF2FqmonmCyWEpJ8at2BPAThUemhJH28gv12JIoLrzGOdctDQdx9+ljk+ZPGbSEYyXmzCxa2qM0/2Vqy4yqDL7cGD8BOsgguZih9kHJuum/efwmem4EqAJhmMtApOdeU8cFgLus7xRAOXaw87Zlfj/sPcmsZaleX7Q7xvOeOc3xouIFxmZWVmZ5ayuqi4b2nK3ACPMFskLIyFv8A4bDEgGGyRgA2KNkNgAArFASEhI7IzaCIGxjWj3VNVdQ+cc03vx5jud6ZtY/L5z7suq6q5sV5boavlIoYh47w7nnHvuvd/v/5uCioygDTGxNQas3a/PkDtW1GsCStW4IUyG31G7ihGeWzlcl/wcZXVG/7nZd2TqyjFZPEo/k42LkvG4UBZi990Rz3F/HGaimCyrxcAsDiA3kQM49AkfQ9UEIjwGg2Y/ZXWGFFAN2S5KK3leZMs6jD6Ju2cU2SnJ61RvDGs6bIBsHbp5ysoO0zOuEtLS2y8CQTIZUBlfN1Z2DOBYIrJxDnacQG8MmVkhENKeEQsDoITAEKijKr4Rg5LRs6oYCFTqWLcBnhfLgYDsHLq9HOltC1dqiM6z3iPTkF1kM/u+ydrCF5qgUUp4Ha/jxsLnmkxo66LnD7CTDDLKSSFE9EfGQQR4rffnVZgYrpMlZAxbQ/9jIiE7MnJBSsjODnUiwjgEpQAlIBpD8Bk7M4e0V+sG8CmcZ3Jw9CZS7urYR6nV53/vd0nCwjp2UDZMxxVNh5CnlLLe67X8sa3fh89VhNwDkcYMwPDHqj7u3SeEsAORw4fiPdzQA87YVxl+UldmCLvk2Psdlz9p+wIBPr/4jOVpOPkPfg7A8t/4p8DyZ96yp4/Dg//w36bUMRCI2Cnlf/2iue9a83lAciMZ+qB2iw9dceFECaAY7qPrXXk2gNgNt2MgezatD8nwKRePyTrKhiyGibNqWTgeBCWErBPZPV9fESGjPK2ffN+Xf/mE7IodkQHqF9U23/2+lza6lIvw3WKhZx2Z1lg9ILMmO4KKXqJ3vwNN1RjSBttFQH4Te9U6Jn2md0ybzG4ptetlcQAXOM1BGKpdikuGc/TnsvexyG7H+slut8DuJXq9ZIkJl7vUyH5RGkRktuLCuT8XuHdJ95K/vpKlXZAR6UvGfZQy9kAaMgKVePy91BHg/7vJjnlSNeVRNr8njQoYzlO/wDDj2NVWRylVvltI9fULZkwmSW8Dlu+G6I/jax707ryla/qRyMaG6HPrWd2dbI+SxoBuHhNO6930X7VhYHb7x+6DV3rWrmfxVMProZuKIWm09231TBuvzTDI6oTH4PMyE14D6TpAtWF4HGl4fj7/nHExuwkD89P3CIpA5qYPKunlij2oUx39Wz1wM2NWgdhMDFLP3i9HMLdjkfqkUBWHoASzPL7eYyUcBrD1o1LDfnMpkFR8HWxB0KI6grd2xs+THkC6NILVvu4n2zFRPTPsEvq2guSxBUkf2cAWOnAx5XgNFDes17Cxb1B1iBUiDHvpmTjdBnSjHjiEYRDA8vnYYycx+LV6+Z204R5Lz+spCLIlZrSrw1HtTtam2jCwgSEGjfQVHcP7NLLnyuzklEHw+YLiYEc30evWhSHZ0yVxfy2frwdU6doPjJvNeR32nxd90f0gixykmNzhZOMGFq4H6z1TaQqJ/M7F88t96SWi0oSBHUUIw3H2IKsHN/q+vLIHZoLH0Y3I3iVbhoT1skjKAH2U1XoCsigHpLRXxO5H+s96KaXPBGSU4XJwshsmUvIaJZOxWsVrPl83Vkg3rAygZFlAb/0Azm1JhlQ4svey4zGohpLFnTSU+8QeTAIlEcEF1RKs3+jrLXqmUFj65ZKthct48lXjGFYDDK8tgQmBqDTxOaQY2MT++u39gT2QHMCw3oU/uYxMorQeLlNRYuoHECRdGKSdsvOQrYUbJTAj1qKoltaFwVsXWVndOA6DJEOBpPMQse6kB3fS7ACdMJ7sWUPZp7BhAFZeywGM+VQN51l2BKRBip3P0u4Y1KB2AMyN0x1Qi+eoB5794/VSUGE8QqYgawNfMDm0/7zrAVlQURJaW0BT4igbgq++WoRyU/4bWu5sE63lficKsrEDeCNQswSuWhIYAj8OnuLt6UEE01HzhJJTpeJziSgr5eveS1IhBHyR7LyPJnZstnZIWkUICGUGUbVkCe+xgaLpeF61AozdgcCmQxgVZB7jdSDcPVbzHggMiYbo2cPh956saP9vYAdE+xTZ+9JX7xG8J1uo9U6WqvWOzewrSXovY1zzD0E5PTDstx7YSRHv5/G5upF+cw4DoxlZyeHnwE66e/93P/oc/fP86M/+qO2fAss/dPuTAix/oXssk9SSCZs6TA432NyVKCYNKjVCcqdgT1qImxRu5HF4eotrs48wp55QZxaJ9mifjck0Zh76VsMedXh0covz6xmSDwq49zYMs7kugNQDgp5GM3dMYNQBOGzhOwXRKNgDh/yzFPUjC6gAOaIXU+23yL5Ton6/hlABbptArdSwwPETpmvkz1MmVEqWwoeRo0dz3qF7nTMl8k0DUSlgbBEMQ3oggWQpUR9YyFqhPQoYPVMMSwHgSwfoAJNbpN8tsX1iIScGvtaQlYKMDF3vMUzvJJo3WpTTBt1dge4RgFZCbRSyG4H1LzcYfTfH6qsO+WuF7ddb6LMUqhaoHzrIlhURx7/BDr71W/xwL14oVO830C8yLlJ6P14XZWVv1hDPC9iFpddxZiAqjSACFt9VuP2mQ36u4d7dQv7BCNsnHrqSaACCnDQMDLGqBewkJqUCqB4FZNcKLn4plmcBN/+MgbpNkF8LtPNA5nBiIe+YBFe+ZK/h9rFnfUQtcPsti/xVgvXbFslKwWsyxDICE58SEK6/YlG+oMTZtQLrN+mzLM8IJOyIA4r8guCnLQI2pwHjZxLbU4/yTKDZE6je7jD+gxTtIqDdstKiPg6QjkEpestBRe8tDKnH6BOF9ZsB5SuB6iGvp9ELMl3VCRfL+ZXA9hGPa/xMoF0A9SE9pMU590F2AtkNnxOBwwQAaPcofc5uWHpenfB+048EKzQ+DgOY2zwOaBsR5byUdtupQ/lco7gKuP62w/hjjfqY8mNbsEZl8bsK9ZEYwF/vCwuSATXcN7KiwgOL7wdc/opHcku9bPWIrG92J9DsB0w+Y4WEGQfMf0hgtHo7Brw4YHVMX6eq+TrLjguo9VtkuEfPJeqTgOKcoBIC2J4Q7I5eslPWTDn4afcETC1gRmTlkg1BtbSsMKmOJbLbgNVbAtNPyLhVRxLlhYfNBaoHZGG2IrLaDtj7IfsrN4/lwDIHSYZbWAFpJdZPOFQrrgi8NicqXmdk4aUBVm8DRbzm0k0/qGBNSLoGhOM1c/DbAddfF5h+wnAWgLUc7UxQ1hgrKbwSA5Bq9phamS4xeBd771xzKAZmX9dAdRwwfsEAmaQKWB5LssQHAqNXAXdfjZURMUAmvwlYvq2QXwdUE3a4bh8JjJ+TvVu9ITH91GH5tqJPdw5kd7xeywsCbDPi0CVbUjab3Xlcv68wfhaiKkCiPpAorj3u3laYf8TXw5R8HBEkg2ZUTACNQ69uvFsw6xa4+Rr7L8cvffRDBmxOFPI7Aqn1qUJ54bF9wL/XpxLjFxwaXP2Sxvwjj+1xD8oAUyoOCcaKQ43Ibl5/LUFx2Q8kAkavyTA2jyUmLyzWT/Qw8CmuPexEoD7kuStuPOq5QnHjUR3owfdJkC93QTcLCfdAIbvzSNdHaq7QAAAgAElEQVQe6dLi5r0MqqH3Mb912DxSyJYExcna4vr9HOWFQ7py2DxMACgkFZlZ1QLllUMzVygvDIQLqI4TFFcWLpWoHitIC6xPFaRhYFCQQDdRfP0coNuA4tJgfZpBBJ6jds7BS37rsHw7/Zw6AFEJ4FImxwbBDsvqOGHYDoDqWKO4cpA2YPNQY/pJFxkuXr/dXoL8xmD5dj4EAE2edbBjhXaeDj7HbOWGwWF9kA4y1SCY0No+UMhvLWRr0RyUSLYOzZ7G6KzF9nEB1XpozWssWRus3mLdCAdiEjYTyJYe6V2Hdj9FurKwpQI8kN22CBDYPipQvG7R7nMCN/pkheZkjOy6weaNEYqLDttjSl/zyxbbRwXKsyb68iKzmMe+0OMR9NrAThPYMQN8iosWAYDLFGTnYOcZuplGdmvgU1aEZBdbuEkOM9ZIb1tUT0oka0pkixdrVE+mSO86dIsU+WVg/cjrCgEC9ekE+XkFn2q4ec5+01db2FkGvWzRPBghf7GGmyRQNfickzGSuxaqs/DjNFaAKKCgvLbdy1C82sLsj+ByhfS2gS9TAk/rIKBg90ZkJXMNn5EpVlpSZjulcVg0FvbBDPp6Cz9mF2YA4MsUcqt3ibBxs9Mc+mJF4J5kBF5ZClE18NOSbGeiIbc1wnQUFxF+ALwACF4Db9d7IoVSTIKtWzKYqy3CfEJ2dLUFkgRhXPDfIQBFzr8bTi5FmvCx5G4g9rmtaSlhzTJWhfSAuIsLnSz2dTpHsO08uzfThIE90Q8aQoDQ+sfrRvqtB6hfsL/yp1aS/KJsf0oO4ydtX4ixFEL8KoDfCSFshRB/FcC3AfwXIYTPft47+Edti/cOw1/7n/4iPlgfIdcG/+LeD3DWzfF3X30Nb8+u8aS4wfdWJ5DCQ4qA62aESdriMNtAS4fvXD/E1/fO8Q9fPEXXJljMtvil/TN8sDzErx19hF9/+R5Op7d4WKzQeo0PVwe4XI/RNgmeHN2gMgm+sf8KL6s5Xi5n+HMPnuO2K/DdVw/xF974BMYrfPfiBEVq8NbsGmfVFIfFBhfVBOs2xa88eIaPVgc4X0+wui3xxqNrtE5hv6iQSosPrg9hjMLXT87wmx88xcHRCu8sLvGd1w/xL73xQ7yo5jjbTjFOOtzUJW7uRvjVtz/C3//OuxgdVuhajaLoUGYdVlUO02l86/QFLqoJLlZjvHVwjVRadF5DioDv/v4T6HmH+bQCwAHSo+kK55sJUuWwbjKsLsb41a9/gP/nH72H9/7sZ9h0GV5dzzAeNShSg9fXMySpRZm3OJms8ai8w9/7B99E+ZQxin/+4Wf4vZsHcF4iVQ4vX+whn7X4pZNX+I3vvYVk2sJZhfG4wep6BJU7KO0wKlrsjypUJsHl7QQhCBws1jh/ucD8cIO3967ww6sjhCBQZh0aw5nJdp1jNGmQaYerVzPsnSxxczGFUAEHhys0RqOqMijlobWD/f4UD3/lFS7XY2yvSvzK+x/hH3/6Bv7M4zOcbyaouwTTosHNegTnBFPBMwPvJbbLHGKrkR5VeO/4At8/P0Z3l+Hg0RLLTY4ss9hcjPDgyQ2qNsWirHFTFWjqFLNJjasXcxye3mK1zdFdlhg9XGNzNoaqJZInW6SJhZIeQgQs1yXCRY7s8YZVLiLgrcNrnK2m2NYp8txgkre4WY+QJBabl1N89Wsv8Go1RV1lyHKD6uUYcr+FtxLHh0u0RmOzzSGVR7vMUSzY6eq9QFOl0KmF7TTeOz3Hx5f78DF51qwzInUJCOWR5BbdJsV4r0L94YxBRDJAGAmMLMppg+rFGJgZlJMW27sCQgZABEgd4FYxdW+p4J/UkCLAthr5uEXXJnCNgtAeoVMoFjXqy5LDhDGrRhCAbNqyj3Vq2OMKQBUOUnpW1RiJtOzQ3hQ4eHyHq/MpkssEZs9C5A6zeYVtlcEsM8iRYY9tpfk8hYNQAUlh0N3mgAfUvEOSOLSvRjh59wKvXuwBQSB/kaB50kHlDsED8/kWUgDXny4QMg+Rsqd2Pt/i7sM9ZKcbNK9HDMTKLbyVSM5TQABm2k/uMSTdCisQUg94QT/1WsLMHcTI4uBgjcvnC5SHW1SXIwZtFQ5yoyCOW8hnOYdkpy2ECPC1hqgVQuE4FCgs1IsctvRQtYRPyKS3xxZqQ2m7rOJiQweEsUNykcClfRCUH0LC1FZG9gIwM0e/dukgNgrJUkJ9bY36uoBaMT3YZyGGTUnYqcPkA431OxayYqCWywE3dkivFLoDB1XJOIizGP0wg5mEgXXfhZoAdmYhRxbiPKNdQHNAY8uAPpTKpwH2SQNcZcN3jR87JFd6YD2l4fknW89uWJ8EFOcK3ZxAR1iB9thCrxQl8nek3ofuSxDsN48M0guNbo91M9mVhJmx87WX3fehR2a6k9D3bH3P3gfNYwgaGL0Q2D7mcK1XZ/TDp3QlYHMOoXTNXto+3CnZkO1u9+jrN5Mob48+ewQxBFf1oVnNicPomRrUCmbEpN4hHCoFXBqQX3OY0U1Za6O3PUsemeMNvc+9X143O4UAQAZfdTt23RZA8ZoDHV2RjW/3MciakzWi/z7EOhMMagnV8bmC2ilWhOV10s7BPtqWLFR9BBSXHG65FMMgafuQAzczRvTPUhETBFUtsuMgK11GOXyvfkoFsjuP6oGkmicHPZ+SPbG9YiRbBmwfcFBUvuZgRAQ+Ty91toWEGVEuLzwTqLO7nQc72XD/XC5QXLC3dHzu0Mzk4HPenHBItHoTGL3CIHvuA3fGZ7x9tiJrHiL77VKgvIqy7jaGX9VULZiSj91OYtLxlhJRW8jBtzpI1SMgd2nPdGOQYwsP6CjRbScKxbWFGashhCnZetT7CuWlY3/qGxqTZxY2qiSEJXPfDxK6uR7UMKphX2hQggz52lKBFNntIDkk01uGASWVhVexciXaCvTWwGsJnykqeW4b2EkWZc8WdpQgWbYw0wyycwwW0hIhlVCVBaJHtZfqysrATVPI1g2+UShBJjd6RYX1A5PrxtnQr0lWeMf+y8ZANAZ+Vg5MMjoDtz+Gut4AUrL7clKSldTRA9mH9BhLwLrepdYCZFoRAsR6C5QFUNU7BrFnS30A2haQnweSQsl7TOnOg8kPQzX8+8eSYO9vfypSYU/Dyd/5OTCWf/3LZSyFEL8G4J0Qwn8nhDgEMA4hfPJT7/cFgeV3AHwTwDcA/PcA/hsAfyWE8M//THv9M27FVx6Gh//p38DJ/hI32xJZYnA83qDUHX7zg6c4PF7i8nyGp08u8enzQ5SzGkfTDa42I6Ta4uZ8BpE6qMTDv87x5OtnOB3f4v/+g6+wO1IGeCuxWGxwdzeCVAEuLlKFCihHLTa3JSZ7WygRcHc2RbZXI3wwhn3SYD7fQsmAq+sJF363CXzhh4Wq0p6L84sM4rhFuMgoE1tYnD66xsvLOXCVIcwNVOpglylGx1vUn03gZ5ZT0cxhb77F1Ys5uxetgLAyLn499vc3uLkbwTcKcqPhUw8RBMSsg6815kdrbKsM6vsj2HFAeNTANXEiFpnM8KCFrzRGBxWqszFC6iFqdiu6ow5YaYSRQ1Ia2Jsc40crbF5MIRcdXKOQvUxgv1LDrVJkrzVZwcc13DKFqiTc2EHfargHHeR1MqSU+olFcpUge3eJ9gczpEuB7VMu/IXyCF6g+EGObhZgDw2ECgi1gtoouCmZW2F2CaSfS4rtWMVgx6z+6BYMRjLHBrACaqPox22Bbs8hiYFPds+g/ChF9YaFXiq4sUd6LSG8QHNskZ9r9gGeboFPR1AVF2fZDRdn7cLDTxzSCz18Odq5BZIAlTmE1xkQvZbZtcD6HQbu1CcOspHwxy3EdYrsRnIxLABzYCBahdGnigFDBx44aJH9sED92CC51jALLlp94ZDMWogPRsivBDZveugNOwW3px75a4luQeZw85aDMIKps0lcGANoj+PPG0rBXemRLCX9tk8Nyk+TGCbFxahPAPuoxeS3cjKDX3VI7iSk4zmTjcTohRyqK8zUI3/NazAoIL8E2j0uZHv5cl81ITuyi8LG/stAKXt+KbmgzSPIGfE1aA7oDfZv1tA/LJHdkIXtU2SDAvSGzNzlv9JAflJwsR7lzbJjaNT0I1ZVqAaonhrkZwn0FqiPAkavmICbXYsh0bN+5JBdqgEMsF8y7lvJ6o8u9nb6JEAaMSTKCieGxXCyDtg+7CXaYvApAkB2E9Du0zPay8p1zWvMjPG5YKN2L6B8yWvSjO8F0CCeZxfl2oY/7xb3go4sMPvE4faraidBB3ZBNlEu3deStIudd7f3nUoDQNI7GxSQX0fPayngM4KI/CbKyNvo+40BVtLwOHoQcj/lua+3UG1AfUAPdXEhhroO+vz4nVcfsceyD77pj605oB9ZxWTOdsEwpeqE5xzA4MFM1wSRQ6jRvWqXnl3rU1j76/Z+IqpP6P3tU477JORenu3TKH+Ot2336FdFAFM1uzBIxfsFv25Ya1LvRankvZCx3m9pone2m1JxEKIv22vKjhHIJJsx2eSddSSek7nA6Nxj80giWTGwanTuhuPim5fnxeYC+a2HMgHVgeS+HVD2q2t6cMsLJqaaUgyBQrrZWQXS6FPuQYjNRfQs+yEEqQ89yu5ilUcu0cT+UiBemw2Prxvz8V2sZOlZS4BghbeXg2ez91+7lIBO+Oh1TinVTjcEKC4RQxKyLQTGLw22JwmKKzd4VUevWlQP0gFY8TWh/1M3Ht1EIdn6KDXf+VpdKpCuXJSeqxi8trufGSlkdxY+YTBQkALJ2hFkNQGqcfCZxNXXExz+Tsf9zSmzFp4gTFcGzUGOdG0gOo/mOIPeOMqNu4B02cGOkyh5xgCwVE0ZdLKxQ+2HTwWSFd8ofbJr0DIqGuwgg/bRSwtPGbct6L3VlYEtk0E+7DNF6X/nYScJ9NrATBPoraUU2Xr4MqGsNVHwKc+BXneQrUX9aIxkaxkipATMOIGu4jqqs2iOS+SvK/o7jadkNgT4kj2esnWUE8cQIbmu4A4mtAN0lj7NCPr62hLROnY6AvRNNoZy3br7PFjTcfDm/U7q6jz9l2W+82r2iappQhaz6QaZbihziKohS9jLcRGBYL8JwT7LECjF3dYIP+qHjMmuoijInMbHEVk/waIns++mDIayX3QGfXfl55Jf74f5/AQv6OC9VIr3/UO24BxElM3+qQCWf/vnACz/xpcHLIUQ/wmAPwfg3RDCV4UQDwH8zyGEX/2p9/2CwPK3QgjfFkL8xwBehhD+2/5nP/Pe/wxb+c7D8O3/6q/CB4GXZwvIxCPcpcjPFPw31zCvRhAWyN9aw1oJ7yTwWQk79oATCCNenHKlUb65wnadI/8gj6b8ADdxSC/VENySvrFBfVECuYe+TBjg8sAgfcWFdPvQAEYOYCm91EjWAu0iQABQb2/gPhrDjjxUxeoMnwLhUQPxMueiKaagtvt+eIy+Mw7RD2KnHmorOVEeUb45einZH7cUqB9ZzL+ncfetDqJSSG9VLFwHspvoI9VcQPZdfd2C027VCNSPLYQRBBKBRenwvI1PAHvYofgogysC8kuB1Tc6zH4nxfqpR3YrobdcrHcLh5AGpJcK0gnkF+zHm39P4vZXOiRnKdIV026zK8r70iU9m7oPe4kLSTPG8HzVQ4KEdhFw8LsByzdlDA7hl395FrB5wn/nl/zSqg/jwsrFiP0RQV55JqOPlFPqfnFVPfTIriWqJxbCCeRnXC3Vjy2mP9SDL0439DKaiUB95JHdSJgpF3v5lYBLdn7S8jUXdKuvWeSv9JDy2s53wTjpkh7Y/JryzfJcwMbFt0u5AG8OgPwKQ9Lo+pQeTjPZBeV0M07ZN48pV5t+BFz+BYviRQJhORnvKzEQuGDtOwfLc4F2TjmlroGrbzFMKFlSllo9CBg/I5vSHAZ0xwajD1ICkDnTSLdP+LmSrOJCGFzwdxMmqBavOd3fPvF48A+Bm69J5Ne7pE/VANuHYrgOvKYk0kwEbMHzIDzTbEdnXCCuvuKx/7uxvH0kMH1usXxTo5sRnK7e8Rh/SnlldcJzld3xeku29Le6LIbZeGDzhO+H8XN65rYnEumKUk14gsPigr7O6pjApLggGMpumeI6Oveo9wU2p2SKEOhZLi4JmNJlwPU3eB3sfRdYvcUp/fh5GNiV3h949y4ZpfJ1L63j9ZwvyRr0nlCv6SG1BQOI+lTSIHjuxy88AcM2oDpi1Y40AfltgCnEAA43jwX2v2dx8zWN/DJAt2RQ0hVllNUhve3pOqBdSF4zF+wy7CaUEnczMQD2yTOHZk8OSbjZKqbAxoCh4tqj3peYf9Dh5r0M5aVj8fxYUNZ5qsnMBHopbRm7CzMmF4+fe9SHEnvf77B8M8HowsMUIiZwYqj+aPYIpsorj/Ujhf3vd6iO9MDauVQMacmbxxLZDZ9TmughNTvgBQCuELGuhN9LPXhJtnz86iGlx/mNH6wPuuG5z295LpJtQLOQ0FXA6NzC5QQStuhZI4vNQz3Iwc2YycPlFcGcGfE8u4Sy5GzpsHpDo7giy5RsPFZPNJJtwOjcoJsq9inesU9SOnD/BMN9+uoOl5OxSlYO7Z6GzQg25x92lOWOCDDSDY+tWbC7s7imVDQooLjyyO4Mmv0EesuORFMSDG6PJKQFRucO9QHlsqOXDdoFF7Eu673d9HPqLUFOH+wzelGj3aMcVjUezZ6OXmQHEYBuqpBsYxKt5vsg2VpURylEAPJrLprZl0iAHKRAsrK4eyflZ1EXE3xvHLYPNGYft0xJdQHLpynypUd+xcexhYLP2E9ZXnSoD1OCpK0bgmv01sInEs2+ZkquEtC1QztPkN2a+P0s4HIOQpKNZVhPTsCmageXSbicXlszVijOGrhCo5trJCs7eP6TFdmydk+juOxgC41k1aF+kCNZWaiG4UDSeDR7CaQL0T8LIAQkK4OQyqETMruqIRoLc1jClgr5eYX2sESyNlDbDt1+QRYv4boJLkS/qGZth6RkvNvLkV1W6BY5io+v0by5D701cIWGsEyFNdMUqnFIbmv4XMPnCRACzDRFfraBK1NIw4AfVRPc+ETB5wp6YwZAIyylz3LbwE+L4ec+1ZAdgWKI9STJdbXzQAoOTmVj4SYZ9MsbhDyFHxf0dcZNWL9jFBumtg5ezh4cZinlrpuKALDpELKEIUF9wI6UDOjJKZcVPsRuSfopB7DoPMFkDw6tQ1ByF/4D0LsZAtB2TIIF8GMBPgDBYZry/71vM26hM7GHknJXkfMDbmAcTQdoTXBZ1dGTKSmHVYrS1zRBiNJbSElw+KNezT+khgTAj7OVAH3DfxpSYf/kA8vfAfDLAH4rhPDL8WffCSF846fe9wsCy/8TwN8F8K8D+OcAXAD43RDCL/0sO/6zbuU7J+Hw7/y7OH50CyU9Tid30MLjw7sDaOlhvURrNJbLEuNpjc1nM8jDBlJ65LlBph3qLoFzEs1tDllYJJnFo70lrjYjNN+dY/yta6zWNNjYTQLIAH2VoHjvDptVgcVig9W6hF2lkGMDIQNcrZFNWlijMZtucXc3wny+xe3tGDpxMJsUybhDUXRYrwqI65Q+za2GyDxk4oGzDL4IkPMOUnokqcWkaHFxMUNoFEQrMXt6h84q1JsMSW5hXhcoHm3QPJsAhy3U85xplPv8spIJJW7BSsjLFP6opQQRgG/0zv90owEJqKcbjIoWNxdTTPa3WJ9NgMRDrjV84ZHcKvgnBMX2sANqBWEkOy6dQL5fw/9wDDPzwMxQbtcplPMazbMJ/MRCtIqMYgDkOE7Y7lKIRYdwnUHstwhOQCUeeF5APt0ifDxC+u4K1YsxDt6+we13D+BOWoRaAyqgWNRotilCrSHySB9sEsAD408UtqdcBEECfmYglwl7K0sLbBKkhxXcJ2PYhYVacTLsJxaiVsjPFbo/UwOvcvYvFg7JpIN7XSC/kGgOPPzYITtL0L3ZQFyn7AQNwOzJEndXY6SvEnQnBuwXE0iudPQOAv6NBtnvFagfOoTCQV8lSN9Zof14yotekE2yBwbpeYLugcH4Bymqhx7iqEVedNheliieJ2i+0kJFGaXdJ9PazQLcxAMTw85VCSD1UJmDfJbDjjzEXgf9WQ7zqEMIwPj3s11lzojJwHqlEB7X0B+UKC6Bu69b6GmH5Hslmq+0SJ+lA/tny+jZeaeCWadQKwWfB6itRPkqAu0zzcfWMTV34Xk9BgHEROWgA3zuyeC+10BcpcgvI/jvJIrXEvWJI+Odeug1vVp6K9Du+wjEBNzEYf5djeYAaE47pK8TeMXan767FG9WGP2D0eCvFR5IbyXafY/8ggvxdhGGWhMRYopxxiFU3wcL0LNZvAaao/gSWg4x2j0CeUo7A0ICJMtYtzELw+JeWg6EGDzD58W9wa+ZOei1QrIkmyo8hnTePqmYoIk/695skH2cQxiCoGafksj6seEgy3F/en9ueSbQzcG02Zae1j7hN1mJoaoovQPsGGiijPJ+r63qeLw+Ye2RaoFu32H2fQ2fcEBhpg77v6Vw917A/PsCN99kmrNqONzqpvRQjz+jF7gPXvEJpYmrtwneu1iXpGr6VzenAmZKj/HmMYd8xWsxhFCtnwLpksMC3UQZoACao4DxMwLNdsHBkC3pm82vQqysQOyc5HnQW97Gjji4G39KH6stRGQdeV7qo4Dx81j3UlH6OTrjgMKO6OPtZhwAuZz3TbZkIhk2wzTXu3dU7Fzleeh7LG3B18PlfAyb7wBxfch90NueJaWHVTUEcLpGrO4JsZKLVTuqBbLrgGwdsH4s0e4FzH9I5reXkaar+BxH9MSOzh02JwrNAVUA1ZGMDDVZw9EFq0wu/qzE4W8zCbc+2NX0JBsONHrpJSW4ZGrTTUA73bH57VwMFSUuj7U8DgPbyMoTDg3KCybm9kMEaSLbXXG4AgFMnhv4VKKZ7xbCqgtYn9IfbcYCiw8MNica7UKguNq9L4prpvf2DGfPEOvG4/arGvMPuYC3OZ+rOpIYv3RDBUzPmkobsDrVKC89sjt6Qk0hkC/9wFb6ZNexqlrWtvQg2ZRkhvMrg26uoaud/LNdMMVUN5SoJls3VLDsUpol8mvD+hPP23VjifKCww/VerKVhUQ7UyiuLEOzCknp6Uwj2bohkMmnDBjKbgyagxT5ZYvqJOMwYT+Dav0QyKS3Dj7l8bHHmHUw6R1ZU9ntAof6VF7hA/KLGnaSxhAlsoHNgn5eGYOTACA/28DOc0pSQ4CsOtgF13r98Q/hbLFnMyiGOUEK+FRCbQ2/21J6TeH9LiTIergioQe4sRCtgR9lEMaheTBC8fENw4HqjrUmLUOShI1hP5HhE62Bz1PIjlJW4fzOW1lEn2Oid3Ui3jNo6F59CHs51Q5st2QX0Rkgz3aAU8kd6NxWEFlGwHcfdN5jC0OIktckZQiQJ0ANbUcZ6/2uS+/p++w9mrG3c5DCfgGfZYhs6o/5Qf8Y258IYPnkNJz87X/nS3/cz/7Nv/VlAsv/N4Twz94jFkcA/tGXCSwfAPjXAPxGCOHvCyGeAPgXQgj/w8+89z/DVr5zEn7tv/5X8WrFRXddZXC3GfReg7zosHk5xezxEnujCh9/dgTYuNJJPESjEHIHdBJiZHF0sMLtuoRpNbBKIGsJ+bhCeFYi6AC3sEjKDs4o7C22uDqbQdQSIYbFqK2E3bOQGwU/NwPISlZcJGcXCupbSzQfTRmyMnPQ0w7uMkf2cAvz6Rg+j4BHAXLRwm0T6GtKR9OlQPs4dm0+qiGeFUg2DCKxC4v0UsM87qAuUnZ3biT8UQcsEyRL+ilYAcEFpFor6Fid4ePxia1CcaZQPTWQlYJqY3CIBXwGAkAvgIcN0u8XaN+roT/JId7dQP32BPUjBzHvIF/Rd2b3LB6c3uD15QzJs4y+mAnZWlf6HZDdUNaZX0m4NMDssRalPTFIbjSrIRoumlUl0B47hgCdWhSvNOpTA32nKXMdOySXGqpj92jxWqKbBnRHFvqGvaYiRJnfooP6lODbZ7F2pJc79v6hJx1gJYrnGt2eh3xUIfvHY7R7DH1pDzzySy6y/EkD+TJH+s4K1SrH+HsZQQC42FC1QLcIsGMHVUvAE0SYfQt9G7/sLgW277fIPs3QPm0h7hKMP5XYPiKoCkmAMALJikxBshKo32uQvMgoC92SIe3mIT4fWePihYb89hLth1NWtNQYFuYQBDJBEdhAkDHXW0pkq5MAV/jIpgsCoZRVLM2hhz/qkHyWobgQWL5vMfkDjc03WmCrodcSei0QErKG3SwCgRdk/tJfvYb7P/ZRPSAYqU4dRCtw+JvAxZ9nANVQJaMC+lqQ8TOBbgo0hx4Hvy3Q7FPKW5zLIRimfC3QzhgQNXohsH1IhhECWP9yg+RZhvxSoN0DzMxj+qGEzRk6o7cMX4IAJh9opMuA5bvA+NP+fLD/dvQCCFJg80Z8nWOacX4VF6yWCclmGkFSJWAnAbagV27v9wKuvylg5xbT30/Q7gFBU6bqCiYZbx8LtHueEnQvMP0Bg2FcjqFGxSeIEjOyun3/qi2Y3JxsyO6aacD0Y2Bzys+CbkalgjQCk2dk82zBRfnqLeDoNz1uv6pQXhAc1Yfc73RJEIlAdrOdUYJdnNM31i76jl1+VvsEmH3kYUtKGF0KTJ473LyvkN3wNukyoHogUFwELN8B5n/Ac1k92HV/Tj8J2DziIr464j53U57/vd8jy1q8ZnpttvJYvaGgalbQJGsCWi6QmRZbnQCHv+2xfItdnfUxn9/lBDebx32qMs+3S8mcc4HM947N+bi9LDBIgdFrB5cIbE+oJGHIFa+tIAmsNqcCs498BBUed19leFF56XDzrkZ+FcORUp6bdiGGTt5+2/u+G/orbS6GEJ/yioAu2VIyzKoWJviOzskEr08ViguP9ROyhumSQMyOxNBx6zLWCTqA3pUAACAASURBVJUXFtWRhhmR9Z59QvlkdUC54fjcwWYC9YEEBDD72GJ7rMjan5EJdYlAtmYQT3VAX9/mlKz3/COH6oDTkulzi2aukN+SmevGrM5SHZOllQmo9yj7n7zYMSyy82gXGi4RKG5s9AOKmDQcBt+crhyqowQuYzAQEOdXDR/Xa2D02uHuHc2Qrji8KC881o8V9n7QwRUSsg1YPdUYnfshfdYnEt1UDnU76ZodqdmdhS0UbMnuyj69efLCoNnTyG8sNicJxmcGtpRopyom/QrMPmlRH6UQLiBdO+iNQbdI0c4omW1nCvmNixJYpiInG4t2kSC/7OAyifowQXbnYEuJ/MZg8yjF+GUH2XmsnuaYftpg+zAbknR1zccdnXXwWqCbaejaI7tpIazH5umIKeUrSlr5/jWoj8ge9/JZqoT4vsjPq6EWpDopUJ7V/PtlhfYwR3bdot3LEKRA8bpG9ahAsnZIli0QApqjEunKoN1LUZxVaI4LZJcN7CSFqizUtoWdFbClgq4c9LpleE/fgbpq4KY5vYYAezA7VqrYXFHR9boClIDPNNSyYUemC/C5hqwN4AJC/Led5lBVRxkryGyGHszp3nsuIasOfpRxCLVuyFTW3a6O5F7XpagahDzF0GkpBMGjsYBWEJuavw/0UvY/h3UIkxJiWwPO0zdpLMSmQphNACUh6pYS1j711kdJq7U/nsgaPEGlEAhtB0gx9FQO3ZVNQ7YTBKFDaqxzlMR2ZgjtGZjKnjX9Sdt9qeyPynN/9KZN80f+/o/a/qQAy4f//pcPLD/9t75UYPm3ALwD4C8B+M8B/DUA/2MI4b/8qff9acBSCKEA/L0Qwl/8Evb1S92y0xjZKwh69FINVSH95HAIjBgHFBcSZhIGz5RLd+EFfSCCrsiwqC56JTyGKpG+KkBXBB7pkjJO1dCH1hfduyL6ojqgD40wk4D8SgwSVBay9xMlTpkZ5U4GQ8UFanMYkN5FRkPwPvpetUffHdiHOPS+Jmkx9Ki1exiCH9JbSqZ62Whfo2Bz0GfYCKRLMZTKs74kno/oCczuuFjOL8iiVA/pdUs2PF4RayK6WcDsA8q2zHi3f+zQ498sQ8eQ/GkmAXqzqxzo5bq970t2nMDXR2Ko4kjWfZw7n7+L5F5fE+Jj6EMQfb3CruDexYVvH/TQ7HNB3gOuZLOb6EuDQWbaJy2qFkNIhYzTcYLIADMV8XohE6Hr6Fmr+Z6zOT1u+XWUL8bEymTDlFVd8Ry1+2QwpKNE1Bac0PayvtknHpuHXByaEfex3xcEDAEgxaVHN2GQgc9isIYGILlYZn/ljmnqJWgi+oVYl8PJra7ISqiaC/h+UZvfBlZrdCH2PsaKkC33tU9TtaWA3pIR6WZiAGTFtYdwwOaxjPUcYagvUe3O62VKAgNpgG7O8I6+Psfmuwl+X8thC4Hiisff+8HaiaSkcEMg0uyLoeoEAMbnDqaUaBZc/OqGjEe63u1H76HMVgHNnKyOdJQ39v5GaZgU2cwVdLvzidJLJ2KYBdCNBIpbT6Yj4WvYh3ToOgweOp/EbtX4XvOax53dBdT7EumGC3AR6FUc6j0EGZl2uqs0AeJ5v3HYHlG+lt9QxlheO1QHimmakZXUTRg8ZEHu/HvSAsnWMV00ykj7a7Cvzej7DPu+xT7dVMbFpxlJJNu+ViMMXY89gNM1f1Zck9lJNx7tVEE3nPDbTKC8tNic6OGzOr/lbXUTBnZIdYjdlwHtjMAoXXvKrZcO3SReAIK3CzLWtzQED91Usb6nrxkKPRsmBwaoWbBXsE867X+fbAmsNg81Ji8sugnftww+8ZBtQLtQSCoPHwEjEP2eEkjWDi6PC1kb0Cx09OCRwe2rP/jepa/tczUY/aH5HQPE/kN6w8yYbBd7GAWSTQR3E55nacJQgYIQOyYF+Djxd6qyqI8z6MojqSxsrgapqU9YKZIsDcwsgXBAdlmhOS6hGi4mu5mGrhxlrBXrR/TWkmmKxyAckN406BZZ/IyPSclNgK4tzJj9lrqKDJLAIPskix4gnYdL5CBR9YlAujLxPLHOhNe5GN4nycagm2fQtWVNR+sQEgkX+x37Gpg+fCUkCkGz0kM4VoXYklUj0jj6/LYWIZWs94g1KkOdivHsdzQE8q7QrAyqd9URwlICKUIY/IVBCsjOwUwzqNZBNib2M3J/e7AVFHsafSKhVi1Crof9Fq2BG2esQ7GsHvGaktjkroErEkAKqA2Bn50VUJsOsmrhy4zpqkLwsUKAG6WxxsRxP4oEctPAzkuobYugFD2GLgy/C1myq6npLEIaexddGGSjwjn4nABHNl2U21LG2vsWQ8oPajJ1UXIZ9w0ARN1RUlrcY+9CQEgTyl5trATpaztkZPbShCxi/H3QBE+i9wre90Vat5OwasXbSLkDh32AjrG8XQ/C+v837fB8kDLe11ByGjsm76/nhRCfZwgBAr2m2QXsADumMXgM9SH3t77qpP998Du28X41iY+dlz07eQ8kDvvV3/4+M9k/5xdMhQXwi++x/AUAlgAghPhLAP5lUF/3v4UQfv2L3O+n1o2EEJwQwgshZiGE5c+4n1/qlpUdZqdL+CCglcONmEFNDLptgnTa4mC2wdmHh5idLjFPLJanBbq7HIcP73BzN4bvJMJDA79JYRL6GcweH7vLHcoPU1SnDFaRW4XH75/h0w+O0Z14oJPo9gBZS3T7DrKWCAsDcZNw8dIC3d6u6sLPLaojT3lmYYFlAggJMw6UjnogvdLoFi6WnNPo74461KUGAqV49QOGj9i5pdxyz6ObCYTMY+/RHW4/WSAkAWqjhu40WzAtUVQK9dcMcJsO7AccoBomL44/0ti8aWEWwOhTjfa0g75MMH//Grff30d40GD8WwVW71qkVwrrt1k1YiceoXRwlwnslOfi9Ovn+OzjI9x+XWL/d4D1VzyyKwU7DrClRzO1UBcpVBOTDtdkw7p9Hn+y5IdNt+fQLfj/bt9BLyVcztshKCQbYPUWwzb6MBsAMAuPcKVY9ZGH6L2UuHvfQ3SCQFkA4bSG+qSANPRsBtlLHAmmmwP6V82Uj9P7LtNrBTNnrUdzQICjag4E6uOA0UveV3ascegeGJQfcxpQzVi5oVrKJutD7nZfG+JPGsqYYwKfcCKG1wDZNWV2wgGqE2j3A14fcaGkKn6ZNocewgqUr1nLYUuP0XOF5dtkE2TH5002At0kDlVmUe5YAX0wiq6Bdh9A4LDFjR29vdcSYsH0RzkWMBMJl/P261Mutq2Pfa+SzydclHjOyfT4hOCyHx64wkMageoR603MCMgNUB0QDMgWCLGqQG8JpKqTyJzlUQKoCA5dvhsk+ZgEaScBXkt0C9725l2CKIa10GsZBNAuyPoJDyyf0nfXzgFIDnVUw9t0U/o8TXwtggS2j4HiXMBnAt2E7Fovz1s/1bHPk5JLMyEQXD8Fph8K1Ee9Z5UVRLtzxNTS9amkFPE2DH7YvjtWWD6ecPzblry+XRwecDAQX894fM0egUj5mlUXPlHopvTzpmuBdk8AkvUOLqaS0rMZGedzevjaOYcvXNRLdFPKMvs0T9UwIEaE3f5QakdP0mbBwcj6VCHZELBwAEEQ24xZAp9so6+xBLZaUeY35h/hFUZnHrYEbr+aIL/2lCw+UTAjfg4mFYFluuUAINkCLsoOq2MGvUgD5DcWzZ4cAH95Qa9TM1PAFEgq1o00e3z9ujnBcrql17u4CnA1hxMcECS7Gg8JtFP6GqUFNif0aquO56hKJYpLDmlUJ9CN5QBc21kP6gXWj1lREgQHJt3kfkomBxs+1lWYQnwO/AcRA3tWAWEiYQp+ZqVbj25EcLI9Uiiv+ooPAm9p2UmJnAOwfr9dpjA6p+xTN9H/OlbRGymxeUhfVnHrsXmoYtcp+xnNSCFdOVSnI6iGlSMq9qaaUkM6oN7XKC4t2oMULuX7WYQ4LMkLBMFwoL4T2CsqCbqxigMygezOoHqQonwNNAsNZQJ05WEyNQygqkPNoY/T8KlgFcqlRTchY5XdWtixIjjNBVQj0OxpSKuhGo+gBYQNaBcJko2DGemdRDXwuvYK0DVBs094/duRGs6ZtAG6cjCFGuSg2XUHM9bIX9dojjkF1ZXjYHFr0B4UyF5XMPMMqrLwZQJbcj/9LGWH50hD3KsFAXYDLQ6JErJysTOUPaABWgmoyqDbKxigYzy6OX2PZp5zyDJLUGw72EnG53Ee0BJ2lEA1KtYhJdCNg0skpJXw0xR6YxCUhNclunmKFKB/tHWwoyT6IvNBitrNU6RX1QAEm8Mcui453GgovxXWwyX55/o1WRcTh0NKIoxTqMhYdns50suarGQE/kEI+EJDbbuhUzO4OI2RgGgdkFFCDOvgJhlko4C6o4eyamCOZ0heLz8fmqMV/Y49WJQSfjZinYiSOxCmJJCnBHKRIRQAWUbvCaTjz0OiIbQCNhWQZ/x/z3JqBTQdH2/CChPhPKW6synQdgSkSTJ0X4YQIKQcwnyEEPd6KA2g43PHYwjG8Fz0ya3OQVhLKWz/XIkmcwkQYA64dScv7z2XwViI++fsD2EtQwifk+P+wm7/5Gren/v2I4TiFwKTn7v/F5TC/q+gifPXAWz7n4cQ/uYf9wm/zK34ysPw6D/76xAy4HC2wbLO0TYJzDrl4qxwCBUvVDkyCDcZ5GEDt0qB6OuDFSiOKnSdhlumg8/Pdwoyc+ynXGuE0iGfN2g2KdCyMwo6QNQKWHQIbT/5khBW0Kc0ZRdjUGTbQhKYsqqAIANCSp8ZfQAERbKWBDXxdnZK0KlqBgLJWjHaP/XDY8s2xsEnAUGzj9OVXKgLQz+eaBRCQkmSWmq4ESWhwogYTR5YAaACZCPhJuzpdLlHyD1EI4d+yOyaKap6S2Bg9uhrE0YweTUep11Y5C8TMkwzdiLaCasGZCVjbHwY2FppxOAX8/F8+MxDb1ScPBKE5FcS9YmF3igk690U3hZM9uz2uT86ykURFyKQGBI3veJzs68rQK8pUzRTz8cT4LlxDNVxZRgWNUAM+Ul2j61qyj1dHuhdqylTJiNMWW56F0MxBGWqrmDwiGoxpIOqhsdjpgwPsiP6GtNbObBfvNB6qRrBq8/I9PYhTcIRkHlF756wGFhY1XAx7DMypcKx9mDweWYBfQM2mRoxpFYKE9l1y7979tmM+djpLRlWVYshqbL3q3RzsvxD7H+sDrBjvibC8lwgxGFD7xPE7ph7htiW3BdpoyQ0ViC4Ij6f4GOq6Jlz2Y617mP4h7TUyJ53s8j+pzHIqSM7zUUsWe1uyoApSt128sh0xdsmGwyKgKB43xAZXlv2UkzeB+B+ZXcYqghUzQWyLSNwTONxR/YzaAw1Gr0iwidgMuUynhe/Y0p75s6nGNQbLkMEcdEXWEdWPspXi4sQQTt9ZHpLdk52gIoBNn3RfFBieF/ILqa4xtdVV7t+RURAIy2GdNShCgS8bTfjbbspZai23IUOSReQbMnISkvGM9kC7UwMPkEzIgPag+ceTLlsF67Th5rI+H7gtUQ225Rid+7uqzrifgrH47fZvfeD423716Af5rnI/PddlwjxuCN50E2ZlNqNY+hOyvum64B6T5KhjmmywkVQKcVwztk1SbDcv291G2KAz64btAfT7VQMaa99yJMIGO6f1DvVxAD+VQ+MsEtpVQLpxqPeY+hTz0734JmKC9Za6KgwMCVZ9t7niEAmuZvuPF8MRQKSjUOzR290rxxQ3W6NQsAQr6+adRu9BLkbSSR1GBJWEXiOhA+w2e52fZ2FNJFl7l/jqNRgai7rKlT08VGVwvdmnxZL3yv3of98kobPoWvPsCAb4FI5fEdJEwZ2V28dXCEHJrkHerJlUI/wvbqBLK9wvG+QDPDxmSTLG2KCraH3T5p4kQcMctRkbWALFWs+JCAI4nwiIWwY3s9DlYWLtRVaQBj2QQ7Hk6shgMgngv9OmcKarLoIbARE5yGth5mkrN6YJExbjQm0LlNQtYXP1cDI9onNQcTPGE/AK2wYmNX+8dU2rtWSXdqzMA4+1UMSK4N14hdQZNWYQOsZKNQ5Hm/rILxnIFBnB6bTZ+yzFm3Mf8gSyIqJusI4dlfWMSgogq6gJRnVWN0RMg3R0sc5MJI949l7F++lpQ7gMIIs0ZldOM8gY42MoHWAMUASJWz9el4IylETzX33kQ0Vgs9/bxuksPcZSSF350srBOsGlrsHogNIvs9eBj+Ays/JWiPLG+6FHg3bH6eXMrKafyoYy3/v58BY/s0vVQr7vwP4y/8khOJP4L1/4va/APiPAPxfAH7z3p//XzcpAnwQSBKHZZ3De4FvP3mOZNoinbfIyw7ZXg1hBMaTBpgZeCsBGSASj2TaQowsmm06PKZvFb7y8BJio6ETh8XBmv14IqC5zQEjgcRDzTuI3NGnuU4gEg/IgFB4hIMObmEAHZA+3iJkHuqkQsg8wnELXzpAAcmdgis9fEHvXMhdBFqBQSkLC6QEg+GIOfTCARgzIlscNQPAUMc1F2meQDLoEKssHIQOCFmU6JQWkAHIPIKI4QYZfaI+8wgjR7ntSsHuG4Q0AFbwbwGEcYwPP2ogOwGzcMheawTNLzg7ddz/uUPxjB927ZOWnsuxQ3KrAIfYARcIblL698y+hbACeiPgJ47HE29n546LFxnQLjxZZAPUb7WwRUA38wQWKSCsQHIjYSce7kELVxBk2Am75rzuE3LjF75DBDMewglkN5IVG7lHfk0ZslcAJEGmWTgIS2BIYEM2E55dg64IAxNnnzZDr19z5NDNfey9C3EAseuO80mUAldc4NQP47luCZBMPEZdxdTiPC4+dfRTzqLXLu/BC32L+UVM+qwEVE1Q2c0DulmUGUruK88vWTIXr4me7VUN/9hJlLhO6DPsgXZQAd3cw4wjQKt5Tl0e0B542ElcyJZ8PbuFo4+1BeB5TD3QdhnQzXm9srIEQ5dd9aCX1GAI3fBpiFJpAu0gOcgxI3YGCkfw2gNrsss9AIsLmXgOfErQXB+GgYV18WeU2obYY8j7t3thCNXpq0t6CbIZBbRzPqauKPvtayqkJYhwRYCuApJVQPWAAM6WiFUpGOS2tsQArHvwzX5AxMRTpgW7jMy27i0ogT83I57DoPh7aeK+BCC786gPeY0EwTRe2ZEl5P24yDMTApFuCmxOCfxcBL5ATNaNKb5mxMcRIcp3VWSqVc9g7xKJee7JNNtCDEDsfn1Gs0dmSgTuv8uZuGxHBON9BYmMwM2MKc22OUHY9mS3Ly7jQr5dUN5uRgSoLhNDArE0PD7h+NrTw4qBzXTZrh+yf00p548hPVlcqLvoC+w4QNs+FPG6YnhNDygo22QwTFARwGc7H6cZ8XFdGqsv4rF0E/qL7YheQq/4GtVHcbCjgWZB+beMATtmItDsyeH1TzdMz21nUe5vwk56WxP8ujQOZWLlh0+ixaCNwC0XQ++gy8Xw/z4gx8VrlWykgBnRYyhjthppGYbD2Ly3XYgI5BgGIzyY8it3VTDdSKAbSbRTOcjS2ylRXL+v1X5kLxUfrxtJ2FwOQwYInlebxWNwrBiRluypqh2ExQAgg/z/2HuzGNuyPL3rt9ba45ljvnGHzLyZWVnz0O6mjWcLJARCxuYBCdkC84AsEEJgN288AY/wApYQD0ayJQubNwQyoy1hWnQ3arurq7qqq7KycrjzvTGcOOOe11o8/NfecbNcTWU32ZLd8pZCEXHinH3WWXufE/tb3wTlgQTz9GxuXz3iTQ/0laTmTkQG2o5Cz2A4blIHwiCZ7jscq4WhmYegnJHG1Fbk/SNNlxtsomlHkgiLlzRbmwr72TN+7Tiiy01YgAhAvLV0k7D47SHeNHRZAIutJMuqLjBVnXhFXZD3trNkuK0+jGXhTjMwfxglMtzO0c4SScY1GjuKqA9TtHW0M2FFVevosjAOF0JllEJ3ThJhrShLXCYgyGYRNtYibU4MNg/pstbjUrlNtxaXGtpJjMtidKj9cLHBpZFIg03omowNNjXYSTKASl22Q1UIgdnEKLpp6IjsHN4Y7FQaA4aEWiXg0mstlSR5LKC26VC2vz29le+C/NyDxkjGQxILwHQCQv0okzFERu6TxLfSWISp7EGnn47wswl+ksvYR5n4K7W69TxqFeS4/ap4YEitFd/mKEeNc9R4hBplqMlYvmuNMlr20wPHfh9Kifw2ANjheYwRVvMnvZLGCIP5k4mww/jUP3r7T9t+mlT3n26/X9sO+C2l1H+rlPqv+q/P8sDPxFgCKKVy4A3v/fv/Pwb6uW4HXzr1X/2r/xb3Jyu+MLngph3xtFgwTyqe7+ecjTb8cHlGZzVvH1zz4fKYP3L3E3ZdQqwcWnlelDMO0z2/9ugt3j69JjGWy2JMFnW01mC94uFsSeMMz3ZztPJc3ky5e7Rm3ySMk4bUdNxUOdYpzqdbfvjsDmdH6/56izTq0Mrz6OKQo8WOWDvWZcbxZE9rDc+vFjy8c8XVbkwcWaxTGO25Xk44Pd4wilvqLiLSDqU8z67nHM33FHXCvfmaXZOy3I8w2nE82fNsOed4tuf5xYJs1HAwKajaiMNRifMK6zSxscTaopVnVeWUbYRWME4aXq2nWKuYTypMeE6tJE1xuRtRvRiT3imodglx3qIUvHF8w7LIubmZcHy0ZV8lTPOaV6/mqH3E3XcvGccNmyalqBM2V2MOTrfs9hlJ2qG1oyxS3jhd8ujikCTpQkWMYTop0dqxvJoynlfsl7k8tkhxTmOLiHxRobWnLBJm05LIOJY3IgGZTCt2uwwTWdqbDIwnmrTYm5TJvQ1GedY3Y3yjGR0VjNKW1WaE0g7bGlwVMT3ZUVUx7TpleiY/T0Y1u31GljdsX07BeHTWwaX0kcZv7qmfj4nOCozxRJFlv87xpRF2OLfo2OKXKX7aobQnm9RUL8fCLmtQiSVKO2xn4DLFjS04BcajSk10UmFf5nBc460mn1ZUZYLbR2BFGqvHLSa2+EdjusOOZFbTbBNUZcju7NHa031vRn0iV8jxoqZbZviRaOdUGRYDph1qJ52lam/QRzXuJiV/ZijebEkWNfbpCDu1mHUkiyQhEVc3StKJawPao0cdbhuTXBnir27YX47ASwgWgDqv6DYJRA5VGNkPoJrw90PpVtWlwU07cEqY+tzBtJP/47VBdUqqhTJZ6Ki/XOKdIvk4w+ae7qhFFUbmdN7inbxeXSrinR5AsBpZzMuEbmGJV0aY2xi6icOnjuxZTHUm3aa6g+a8JbqK6VNdTSUBPFGh0O2tZ9qG6iFgqMMBYd11pXGLjuRZLImxoXS+OrP42Il6QSHnUWEYPdcUd8Un3e9PwNkt062syMRlseJWlmwqRXWvxWwM2aVm/6Z0slZ3OpKlkQWPvRp84T0D4yIB9fFOfOZ25GkXEr6lvEiYu0nwo5+IxBzk+dpDy+hRJL7yUjpG06Ww9PFGgqF0JzU3Oshxy3NLemVwIU23ncs8Jiu5f/5KU506khstv78UX316owK7HBaVrtXgIa8Pxf/eZeJ3ro4FIDUzeV09425qmcfqNPjl41tm2GsBTvE+jPNMFuJGz9Xg/e2ZYq8V+wee8RNJ3U1uRDafLUUm3SykR7ZXAUjaJ6JcCayZ3CYBRv3cqLBA07PffXhSspXHulB91DPGpr5l7HUrTDGEfcSfZp3bmdw/3njiAnb3BBTqWpjWeiGMeVSIZ3Z3TzpCs5VUyNgs9KHOZL7SlSyC6Vb2W55IIJPXkpRrKlnIMBVDpUzPHPY1T8lGwLkkH98yzfFePM69ikGqSgj5B5IoG1WyyOGj27mR2g9ZCOhGISW3Ds8R5hMljO/4paU4M4NX26a3Kpa4YGB6u1QN8l4b30qyo0rAe5fLvm0inZztWAdmWRgh3XqKE012I/LpZqrD8fOY8J42jaTp9ox636HZe5KVh/yyG/osm5kw4iJplhqV3rOsGwmmcpH4U5u5ISrd0DdpU5FPj64ktEeYTRmHJK8KM9dODMnW3vZdNl4YaiQZN9pbmoVUoOzvpORXLfVBRLy1ci4uIum6zPTgUTalpMSa2tHMItJVi02F2fWqB9YOXduhmuX1hNt2GpEtmyCz9kNtC0C079Cdo5vEt4xqZnrhDrpxQ51HX3Giazt4Y/vgJh3YXdXKB7lqxZs6sJowAF3dhBTeqsFliYDR2AysMUFlpcsWn0SofYVPE3RRCbDU6taX2vdIJlLJMrCSoeMS7yWBtmpRbTcwoK/7Pj/FQsJtLUnvsez33deHvF5ZEsfCIvYey7D11SRKKWErQwfm65v/SdbzZ23e/YFgLO/9R58/Y/nxf/C5MpZ/8afd7r3/Gz/zsZ9RCvtngP8CSLz3D5VS3wL+U+/9v/K7HeznuX3pG6n/S//9n+T7u3ss4oJNl/Fzk8d8WJ0SK8v/c/0W56MNzivOszWPikM6Z3i0OuCdwys+Xh3iveKN+Yo/cvgRf/ujn+cvf/HvUriUX1m/w3m24eP9ERfFlKqLeGu+5OdmT/j25gF3sg3fX53zYj3j/mLFHz76hMflIZ9sD4m0o7WGOmjzT0Z7VlVObCzfOnjKi2pO4wyJtrwoZtwbr/lkc8ifvf8dfrg75+l+wUFW8Mn6kMO84O3JNb/y4i3++fs/4lcvHvLvPvz7/Cff/pd5+/Sa62JMGnXM0ooXmxmLUcnL1Yyfv/eExhm+/+oOv3jvMdtWvBWdMzzZzHkwW7NuMlLTUduIo2zPuskp25hJUvPjlyfMpwVfPLwU4FyPaJzhONuxrMe8NV7y5fFzfrC/y7ev7zGKWzSeP3XyAf/Ts6+xLTPO5xu+MLukdYZYW763POfJkyP+hW98n+t6zG98+Ca/8O4nfPf5Xc4PNjx6ccTR4Y6vHb+gthHn2ZpJVPM3f+sXeeNsydloy8v9jElSc12OmCU1N1XON4+fc1lNqGzEYQ1DiAAAIABJREFUKGr47pP72HXMe198TtnFXKwnnB9sOEgLHo6vuWwm/PIPv8Cf/cZ3+PXLN3hnfsVH62Penl/xm6/u8dbBDZtavEGPnhxzfLZhvcs4WeyYpxUfXR7RtRHjccUfu/cxf/fD9/jS+QWjqOFVMeXeeE3RxTxaH3A+3fL9j++iI8edkzWjuGVVyiLEyXhPbSOqLuLV40Oyo5LpqGKzz3jz6IaX2ykHo5JNldI5zVsHNyySgl979BZ3DrYcZgXf+fED/s1f+FX+h4+/weG44NnVgjRr2a9z/tWvf5u/8+FXOZrtibXjT519wP/85KsUtTDJPYC2jWFxuMN7RdXEnMx2OK/46uELnuwPeHxzwDSvuLieYSJLd5nzha8840fv32V6d8soaalbWUG1XpFGlnHScFPkaOU5nuz56uIFv3l9n+v9CK08m8sJ8aThF998xK9++BC3jxmd7Lm/WHOS7/iHzx4MCxcnix2rfc6d+ZblfsQ8r3j8ozOyO3tOZzsePTpBZx3eK/7Qw8f85uMHoDwHs4KmM1in6TpNFDms1SwmBVnU8cmHZwAc3F1jtGe5GqO0LKI4p/nGg6cUXYL1mo9fHTEa1ey3GSdHW9b7nK41OKtwreGLb73gRz+4z3tffkrRJjz58ITR2Z62NXzt7gs+uD6hrmLePF3y5HrBe2eX/OBXH9IdS/etyoW6UTcJ/qDBd5p43NBd5bz3lae82MzYrnMWB3tuLqco4wUERw6cwneK0UFJ+WKCPqwxRl7rfFqwWo3xTpGNG8ZZw9XTBXrc4vaxqC5azTffe8x3f/MhLBree/CKp6uFLFBcpfhxR7SMmX35mvVmjNZOFqjWiYx7H6HmDaNxzf7ZVNjGkcXknczZThZfissxyiqSk4J6nWE2hrtfe8Uobnj//XuS1h07fKdZHO/YfLTAzTp0YhlNavabDHYx0VFJd5UTHVXYV7kwisetpBCvNd3ciYLCKcZne/bXUiGgt4bkwZ728VgA98TKQtBVijqtUcrz9tkVH/z2PVnIcKIqaU/bQNeByizqJoHjGreNidfB33ivgueZKDHysFgQWFd9p6JbJZhCo+5W5KOa8ocL7J2G6EVCe9SRXAjAdlNLtIwwD3fUyxwdrBUuAGKOatxeaq/MpMUtU7JXJigxBCh1M0u0MrdM+tsbyn2KeZEOLKvX0J50xFfi81RvFLTrdOgcbuYOTmr8MsGUeqjE6SYOU97KR7uRqCVMJWBXFgNg9ExTngWrQRQk/pohGK28Z4k2IbjonYrsu7kA/yxUrRwE+beR+2YvjCxAhJA908Du3ZbsWUyyFZDYj6k8lcTueCfAuZ1LKm8fiBVvJHDO1JJu7WMYP1GUp0F+Hph0m8nzxbugDBiJ53/01NAcyOKHVwyJyTb0mHa5yObjffCLTuR35UQq7mJZPIj2iuxaXqPqYPvQM30k+9y+LYssqhN5/fYdx+ipFq8xwnr6SID+7g1FdsUgve/tGT249Sr4rit5/uxa2PM+zK5eSH+qS4TtzkLv8P5cMXnq2N8T//HopRtY3OJMixfdy9ybVhY9ykNJQR4/kyC23T1DdeI5+i0BePl1R3UYic+5EEl4fiWMeVSL1LrLYXwhYWJRGdj7WHz3kxd2YLvjvScuJGFXgtw8+zuG7EZ8ytnKDqy3KaViRXl5X3cjOYfjbYfuPPu7iYSYXXZSxbKQ6pR2LMA1XbW04+iWoQ7EWbJuQydpTH7VCFBshEFVzrN9kMo4t90APJVHUmzLFpcYumkiYUiTBNUKSNSNhc6hvKebp0SragggsqkRGXAkLGcPQAFhEkNvZ7/1wV26qFF1gx/nQX6rbuW0vUy3l7F6f1sTohSqam6BX/Qa6xiAprduYB1VkuCLQryZ1g2gUsWR1JLU9WsP9yLlhdvn+4ntH8EofxB6LP8JAJYASqkEeC/8+r73vv3/uv/wuM8ILP8h8M8B/+drRZnf895/7fc43s9lO/3Kkf+X/vqfZd1k3B+tyE3LL44/4rvlAz7cn/CHZo95Vi94Uh7w7ccP+Lk3njCOGvZdwpujJb+xfMC98YrvvLrHwagkNR0/f/iY82TNX/vgj7Ld5Pzb3/q/+d72Lqsmp3WGZzdzZqOK+9MVWnkOkoIf3NzhW0dP+V9//GX+zBe+x9/58KvcWWw5zne8N7ng/3j2JfK45emLQyaLgmlWczbasm9Tbqqcuo04GJU8fn7E/GDPF48v+GB5zJ+++2Ne1TO+f3mHNxc3fHB1zIODFR88P8XtI/7EN97nh8szEmOJjeWTp8c8uLtEK09tDa8u5zy8e8WrzZQkkhWeuo0oNhlx3mI7w2RSkScty/WYO4cbFlnJBxcnOKeYjSuqNuJ4sudiM8EYR13H4TPH0zYR755f8KOnZ5yfrrhaT+haw8nhlkg73pje8GsfPiR6mnL0cxd01rBcjclHDU1j0NpTb1NO7qxZria8e34hF+UfnzC9s6WuY9o64vx0xeXNlHad8vUvP+bpeo7Rnm2R4pzCO83p4YZ1kVMWCfdOVmyrFOcVo7Th8mbKeFRTlgnOK7R2tJsUjCcetbjnOZxXTMcVi1HJPKn4zo/eIJ1XNEXC6emaoonZXkxQjUYtGvJRw/4mZ3JYkEQdN9dTTGJxFxkuc5hZE9RdClsaYQ8VjI8LmsZgOyPAQHmU8SRJR1PHuE6hbhKSe3uqmwzVat587yWP3r9Dfr6juBqJPNoq6DSkFrWJpe/TKaazkt1OrnBMJB/S3UWOOmgY/VZO+S3R2dpGY5YxduyEad0b3Fx6WE3scK8y4nt7lILqOpfnDFLrxemW3fsHpO9u2F+Mpf8T8J1GlQY1a3C7GGIJuSK3YBXp85h24qWztTEiNy8VvLWnuwrxvIGBA8TbPO7QmwgUuLGVi+mbVJ6jiCASqTYueHJq6VHVWyNyasCszeALdbmHsYRn+VSCnED8vXZqUa2WOpe1plk4YQG/WuEbjdpH4m2upUKlPQx+D+Ml7OrwlpGTcB1Fe9ISXce4uPeheamaAezIDd7r9NJQnbcDC4nuNcbyzRTSnRntFc3CYzMnoVtTO0hR82cR5VsN8asYl8gDk7UwBvWJVBBJL6HHjRxmr8kupCpHOkI98UpARHXqMIWAiYHZTIU1rY9kXspTkffqVnzVppBjUB85knVYcVfyfDr4uHWrhtfUTRy6klCibiTy5cljxfZtqWaxuciaTSUVN+1MZNTZpbCQ0svpifeSEL17IKyf1yLHNrWiC+Dg9QTseuFDuJH4k72+TQefPIHt22CK3lcXWC2FAM0dlHckqbs/ztGewHBy69UzDExJfhlSshcCRuS1M1wQmkr+nl1J16nI4wUUmYpbVrkJDGTw+Mrc3p4jNpPzSzeKdCl+Y5sGD20pNTRwKxGNdyEQ7CYAo1TYmWQljF28E/aqOgrs5V7k281UwJJuxVtsM0JitICLeO8pTm9Z+CGltpA0b1OFwKIp5FciYW9m4vusjtTgLe4l08lW2M12FBJhPbQjAXQiOZcwomahRBbdQR1Yz97jLN5GYXeVDSoKG7ydlciO0TJPceGpDjXZMnRdhnCw3r/sjCJbOeqZYva44+YL8eBfFXYLtJV9xNvbDAHxb8qxkmRd9amE6GQvidrKCShzkbBH7ViTrSzNOAQp2eB13bsgDRZQZmMBeM1EDQqF3hOtW+kDxSOJz5dSPeLM7Viy6/D/IoCuqLAhoCjYIRovgVKegcHsAazuQopzEypWJnpIVM6uGwkzShT11GBa6em0qSK7aqmOYqJCEorjvaQyKwfZsqE8ToYEZ1M72qkhvRGQFxXCekY78ZsCQ7Jwz2B2IzOAOhM8n10mgUzaerrMEO86TNHQzrPXvJniL9WNwyXBh4q8X20srKnUFhmiohveg7rpJC0X0J2TsB/Ax8IQqk5AmxslwmpqDb0EOaTXqtYOSbh4P4QI6W2FT6VvvK888UpJam0PEF8Hi72v8ieSW9FqSLlVdSOA7idxQM96vub9vJXDvsY4OofvLKoP7Ok6SZx9Hfj1vtnXWcafxlr+rO21RNk/EIzlL/3lz32/H/+Hv/R5MpZ/GvgbwCfIf8AHwF/03v9fP/OxnxFY/pr3/p9VSn37NWD53c9SlPn7uZ1/9cD/pb/9J3l/d8ayFiZkEtfc1CPySOSj78yu+N7ynG2VksYdRju2VUqkHZvtiDfPrrkpcpTyVE1MGnfsipSvnL/iqhyzrxPWqxFR2pFnLWWZMJ2UFFXKm0dLnq3nVGXC22dXbJqU5WbMG8c3fPjshNGkRmvHdjkmHjXkWUtVxzTbhNFBSV3HJEmHtRqtPUp5uk6TZy2b5ZjF0Y7V9YQo63ABmESxpS1jfKvJD0qqfYJvNSfnay4vZijtmc5LrNOoYIAr9imu1SJD9KAnLa4xctFvwsp3p/GlkUCiyKEjj90H83ji8DZIBA9ltcluY0bHBW0T0ZYxyji81ZjUYhvNeF5RPJsQnZQAIkFVBIOHR8dyQSxyfEe7Szi5u+Lqw0MJC0qCZ7U2IofcC8jAKQlVKiQpNz8qaZuIrpTfVWVITgvap2P8YYvvu0tDoJI+aEjSlnKdiSRzLf8E3KwjGTe0r3K5EArSS6IgSS0kQMinwoSQOOKLeEjEpdGYrcHOO7BKmJxNNAQfmVKHUBwkqAlQrYQh9cFNeAEQ7qTBV3Jlqis9ACJdKlwWwEu/IJk41DYcJ8/ALPTAAqcYP9EU9wUodHOH2Wpc4vHHDeZ5Chrc3QouUkkULrX4FJ3C5pJs3F/QuUwAiR07zE6jrLApLnMkSyM+qiQAiVhem9kH6WIZgEqhBj+nrhm8f9LNGLynQUbZ+0X7gBMf2A+bCUjRNbQLCYYCbmt+/G1dTr+5RJ5bWyXdrblchPcSNhdBvJe/NYd2CI2S+iJPH1/vDdjA1PQXFF4zyC37+3bB26sbBtmfCuPKriTcySUh+ElDN3YSprO/TS3WjQQZmUoFL7Q8n25v/Xe9t6w5sKRLI3JPJ3NhahlbN/Ghh1TGn6ylMkh1ISE17S/AufWWBgZGhXH3fX7SJSpAOdqr8JpkPvr993VIquM2VEmHCqAw5r5SqAdJ/YV5O/YkGzX4MLWFaCe1SfFOQEfv9zOtfI9KYU5sfusf7S+ue49uP3fK9ZU9kKwEXHnFEARlShlPX9nUy35tFvbdCaCLSgbmx9T9+Stjzi8DWzW9lUj2nkZvgrwzU2F/PoCvW3arP+/7io7eY4xn8JMKKBBA24dR9edoN+5DwcLDTD8nInkVoCD31VZ80y4R0OQSQrWKeFXR/Zz6cA6owYPZy621lcCiPpirDy2SUJ7XwE15G1zVh3/1dUIuEqloX6GTbiQoqe9C7cOC+gTo1wOTejmyVLfIfvqtD4Lp66G6XKS4NhGQ1gctyftTHtdMldwnFUmpcv39ZWw2kdt7cNiHKplaHv+p1+OCJLbxtwsEqbBnfS2Qi9QQdKbDceo/400tz9MHNg1sVHjPgBwTZf3gTY33jm6kB1Bmk5DWnUm1jg7MmM3Cwlrt6UKQUX9c+/3rtp8HN5ynt0mr8liXCkD3g9dTqm5MLaFDzUyAoO483ciEz4IACD1DmJIN3tdo39GNJLXXR5+WSCqHVMX0oT7W0eURppJrCq8UpuqweTTMj1SxSEJutO+GihndOnTd4dIgB1UKl+ihLqaXsvreSxiAma7aW1AYEmh13Q2dljgg1AWp1g639xJY+VnYRZQa9oP3Q+IsRuO1HoDjADZB/Ip9oFB/PLJEuipBui6tkwqVIJtVVSNpsVrfBgD1EtrXt9dBX6gx4fUk1v62HtAGcCn3c/i6EW/ma/JW3/wOAPZ3et6fsnnvhwRa/xrr+bvd/imw/GxbIBT/fG9/VEq9B/wt7/3P/6zHflYn7PeVUn8eMEqpLyil/irwK7/nEX9O27rJ+PWbN9m0GbsmZRQ1dE7TOc3T9Zw06vjfP/gSL67nVE3McjPCecXRuADgcLHDOk3dRmx++4jT2Y6bp3OUglfFhOevFlRNzDv3L8mylrqJ0MaxfLLAe3gVpIoe+NGjO1xcz5hPSj55dcTd0xV1FTPLanRsMcazfTaj2aScnK9FqlZGNE1Es0qJIkt5neOswQOjeUndRujE0lURrja4XSxeu3UMxpOnDfmkJhp1XF1PRRIXUnDLfcL+8QxrNa4KZvnMEs0bkX7FjvSoZHKyF/+kln9kUd7hK4NtJKQomdewjVABzLjLDHeZoTJLcTmmqyNMJh84JrWYjzOwirqKJZDo0ZiTxU4A7ExWsZJnMVyl5KMGnotMLp2LBNRPO/Te4EuDfpWiGk2UWtSiIXmeQK3hKsWMxf9XVzH2OsVkFlUbdK2obzKRcVW9EQxhzxwkP8wp1xnKeOJXCW5s0ZVCbQUgm+NaAlpaMVdEVzG0iuiowsee0ScxZt5AK4wKHlQk4EtbSC4iJh9FqGWMzx2jj2MJPPLCuLk0VNA4CQcyhSZZGmENa42dOEY/yIivI0aPI0wp0imz08RbLWDOKZJrQ/ZCVi9nH+pB8tQupGqEEIAiKb3yffJY9tPNLW7kyN7P6GZWAqRqg+4UPnF4LbUqOIi2Gje2ZFeaZKmJV0aYraUZgEX+UhNtDC6GZKNAe+KNJtppspcRupXQo3gtYCEqBSThIL+U0CY7ciL72irSG0U3sXQT8WjGGzUAt2QlvkcIF7WxLAK42BOvtbAFrbplCYwk3uoW0isdwnA8k8dIynEIIsmuQjBM5tGdQrWa5EY6XU1NSNYVj2FUKEbP9AA6dCcSP1OHNFkrc56sROoXlbIf3SrincxDshZQZypFs3DS2dkKMycXzXJB2s6FHUtXMH6qyC+klkdAu9yvnw/dqKFzNlkJYOxZs37udSvsYDuG/JVI6MRLCH04ULyXi/++wkc5YQB7cBMVMH4q4zUhxCi9ViRbgjfOE+17QOkDWCbU3DCAq/09R7qSdFcVAHt26YMPVRg+l8gCg2n8AAqySx8WAW7/F+QXbqhegQD+M8iWMu5k7Ydj1eUCxNKlMEMQgodKWHzghv5RZ7jtQ3UC+Ewt58v4uTBzvVSxZzaza092Lcm03Vhkl/mFJ1164p1n+sSRXUkNjSTzElhkYd3Slbzmwx+0Q5puvAsBTzsvHsDKk66cVIaE5FibQnMA0d4P4Cze+sGPl107THW7vx609p206dbJ63GeZCMLQ7qT+Yk3PoTvhLqf0gcAosiv3VBnorwnu5FxFWdyDLOV7Fe3nnTdz0tgDh1kN47sRtQQ8U5AngtexPJI4xKYPrNEJSG9OoRVGam8eX3xwCbCZPYAyiZKvIYhOVU3YXEqSPZ091qwkhY/ZR8WlV850rUl3bjQjyySyvSmGzySysH4RTsECfUALi5EMppsHTaW4CITZKlxIcdk9nEpwL4PZFGSMAtyrmfXcvyzq1ZknVetAPBYwo+GFFcvybXxzhJVjmRjSbaWLldDQm1fx2IaR355CyJsqsS/WEtQULR3xBuRhkoQVgDZM01USLpqO5LwqmhvB++ksO7CrCbrlnjX4SJFei0X//GmCWmyWoKJOk/+osQlmvRSVj5MLcwgHqKyoz6KiXfdAJSVlw5Rua8VQNkKeI1Wlfzvm0ToxhHtmk8DSufDgonBNG7oMo12TUi2NZh1RbTuV2HA7BtJus0jXBz8mlUrLKR1EtITfJQulZ5Rl4dAn86hrABTXTTia7QeXbYCSJ0balOwXjo0vUdVASjGBh9HuDQWuWtgH/WmgM4KeAzprj5LII7wqTy3T2K5TalboNaDuygAuyHd1QmojCP50iEwKInla3jsawE8fWAPSN0IDIzlsE/n8G03sJDe2luZa7+v17+Hr+H+ofrkJ7+GnszfTYrsP66b/336+ny3+PVMHe/9j4D4szzwZ/ZYhu3fB/5joAb+FvC/Af/Z73KQn/vmnOa3P7mLSSz3jld8/+U5TRWR5i1da3ihvTBxlYEJOCceMus0TRexKwz7OJHwkrnlk0cnHD5YsVqPefVqgW81tYKPXhzjrWK+KNjucjCepkho64jtPsNbhck6/MuMclzTlRHPHh1hJh0vr+cih7TCmpF7rq6mAg5jjx55XK0pywSswlaG7X5yy0gFwKdiJ0rEVkv/YKpZXszEh1VEqMiTTBqaImZzNSYadTgL1S4NK48KnVi8V7jcobWnKWPqrfxdlQbdKKKDCldm6HWEO69olhl60eCdEt9SBPmTmErFjF4YigegXiak7+yoLnPc3KEiT7eV889UitXfvwPvNsKaKmgPHbpS7Jc5SQXbl1OitaGbWsy8xewVzcjjUocuNF0qQTSqUxB7qMGuY6KdQa0kTr31ibxOp1CZxVVRqHLRuIkleRFLX2LihWkcSXdmu1B0py3Jixh9ndIcOEiFlXNdSG3cGlqXghfmx64SVKtxE/GedYkhfymdmd1ULhYnjzTb9zzt3BNdxtiJQ5VawMMuyMScyC3jnSZaRtjcC/DLGSo++gTIPiDB1ArThPvI+ogwT0ER6XRg9baaZC0MWjMX6aSPQoR9p4j2mm7ar37C/DsJ7QTSZUxx7hj69eaeeCngsJ3KnPnXktl85ImXivoAbO5IVgaz16HLUNiGqBBWs5t40itNcxDO6SBPpFMkSwHMURH8UiEdmCCxU07hUvBa+imLc7lYTJcK3RhcJBf7+/tqSN7tA01MBc0Cxs881cltlU+yElmpqSS4xabCqppKwHpfiVIfyZjSrTBi8UYuEHUrCal25Jk8EpmfbiG7kG7MqARr1ZCo28wFbEV7SSTNLzy7t2D6cajFQcCgiyS4RDfAOMxzkPMBUi+kZK4kJVSovulHmvKOJwq9kkONAnIs491r7EMhYMRUkF+EJEsjfxu/8Gzfkg8gUwpgFG+RMD2SSKvIL+SCvpkJsT+k7jZqCJLJLnt2T2SVuBBisxfGoMsFwKQ3kvzaA6VehokTH5iykF35IWlWgKCnym/nQXk5B3b3FaOXns1DkQXibue9G8m48mtHdailXqMVBlGYGpnj/CL0hWphpnw4X+PCsz/XAwPY++ii0mM9Q6Jt769MN+I5NC1UCwE6yd5TtyFcJSTT9j2hugU3EzniwEYlQRLrCTUXwoxFpYSkZFcCbJKNMILKe7JlmPNI6l/64+eULJLEex/knMJqKSsARD6XBNx0qSKqgcDUxjsBnMnKsT8TX1t1oEXCupDnjwtP4iRFM9m5gY3swV5UyoJStrLUM7lgN60j3bjwnvLsz0LISynnWv/418NuTCPHvFckWIkQIN5DurWUh2Y4XhCqWHaeeq5J14547/AREnrjw1yF+pBo76iODFElAEo5jTMCor0RUJlddxRnsTCCQSoqPk+Z8x4kojzx1tKNdVAgeJLW0xwkZFct7cyEc0UYQRcHqfTYYBNF4oUZdJEiXXU0s2gAlfHWYkOtig9ptsoDVryHpnTUh9IHml3UtHPpoOwmBrN32FzLQsK6wUcpUWmJdg3aJrhYE+1aulFEduWGhFgw8r4E0mVLNzIkNzV2FNPlkiSrnBcJaWAUu0lMvO2GoBwfUkDlvHOBoWzpxobsQkBiHGnwnqi0IfX6tk9VWUl81ZUlbgWkxUWHMzowfjL3ugkS084Ff2lMtGlRuVSIuES6PXuW2gfGMNq3Ij8FTNHisl6eGv5v1xafRwKGshizbwQcdQrVvCYfdSGER2tUKfdRNoyxcwIYIzOks+KCVJYw7jowiqH3cgi+cU5kqn3oTttJGmtR4NNEwGrdCBDLElRRyc+5vEnUZn+7v9fDeuBToM07N0hlfd2gUpEa+KoG78LtNXQd3kcCKq39VPKrD8FBA1sZQKe8aX+CofTuU9cW/W3DpvRP9WD+E7v944+P/4FS6q8BfzP8/heAf/BZHviZU2GHB0hx5th7v/ldPfD3Ycveued/4b/5C7xczujqCN9qVGLRVwn+tMbfJPhMLkBVZvFlhGoUuta4LEgakX/YfXpln0rZV2f0XYntWDxIXoEfWaKbCBeLAV83Uj3Rpxv2rAEIoyP+IWgf1OiLNEi71FCT0F+I9TK4vrohvTK49LYHrZem9AEK2bUKfXmhg1L716LAFc2sX5kWyaUL7E03Em+UKfoIfnBp6BJsbysleone65K1buKHsIFu7sieG6ozS3ZhRNqXeZKlphtJEmTz9YL4B6OhqL2Z3aY5mgA4TK2GSP94B+2sZzc8eajK6HKo7lgmHxnqIwljaCciZWsOPi2pzC7lArKdyEVk7/GRXq8gYVTi/cqWtzULUSX30S3UBwwSQZtKOqSLGHx3LmaQ/fWdjvWhzL+pRP4YBe+U8kFeF06tdiyP7SWSfWJhD4K271rSSzMUmqc3Aoz63/suQG8gXQbfUs3g7+m7DeONeJZc6skuFeuvdkw/iERKVAvQSdbgUpGPeSMX1DaTBM/xMxlvN1ICyEo1sES9/K+Z90BA2JL6UJGsRbaogrQwvZE51a2MJyqCV2suwGz8tPdHifdMdeFC7zVpXd8b6WIZa3pDkJuK7LAdKapTmH4iwL4d33rEulzAaTOT+Y2K4OWqBdDUByrUz4i3rO+jK4+lm3T8rK8yYZAHuoiB1TGV+Ne6TObh9X5G0/hQT8HQedgnWCZbH3o1hdXIljInXgnQcbGcv8pLyma/5Vf+tjPRy377fkoVehvbKYFBDV2HTt7z3UgRb/3gF2snimQlxzzZyO02VWRLAV494EtX8lkiQCgwNI0fKl96L1qyllTQvjOy774DOQYgF9+vMzx9YqhpPMWZZnThKI81+aULckc1dEqmG8/2DU12KSAj2clc1IeK8QtHtdDkSxfSWoVF0a0ACtMK82cTNaSB2lQxe9JJXUXPlu0EHGgryZkQQl2C1zKqblMogcEj18tyvYZ8Kf936rmmmcocZDeeZiyf9aMry/a+IVvKeEzjKY+lO3F0aWkmGtMSKjDfjpTEAAAgAElEQVQEoNYzPby3XXjuyQthp3oJIwRAu3KUx4Z040K/oySH6s4PEs6eXZNE0cBSdVLpISyenDdx6TGVSCvbUJORboLHLJOU0qgSz1o9M3RZGFcmVSGm7kNWDMnG4mJFPTdkN5JG2kzEq9hOpHoj3lm6XBPtLd3YUM8EpEoHrxtqO+q5JlvaAejI4wzNTJPe2FspZ/Ak+kgNTNcA3LZO3oOpnM821cIClo7dvZh8acN5qolKR3VoGL1sBwBYnMaMX7WoLngOPUMSqrKS2Kq6W4moN4p429HOImHb9tLNGO866gMBYNr2ctGg1OjTTzthKHVlsXkk/sGdSEajQhJTnVEBKHfYWBPtO3yiaccR8b6T75s21HQI+9ZNYkzR0Y0jAfpVkLwqYRtdLpUfprLC2HWOdp4OSak2F6bQlC3tPBV2rha/n80MppKxRZt6AF3VcUZ2UdDNUumyjKRaxY6E64hWFe1hjm4cumjBKGweD4ms0b7FZhFm14h/0Xn0vqZbhKCuRsDLIB0NUlOXx+hdAxp8GqOaDh9qSQDMthLmT2thJCORu/rUoLeB0YyjgXVUdXcrWe1BVBwJExgZSW2tG3ndfWdlZFBljU9iSWjVSiSr/e9Gozo7yGFRCunDlL/3vw8eyn4LslScl8d5L/fr79N7IJNYxvfatb//HcDl4J10FvRPVIV03e3z9GDRmFv/Ywj+wVqRsfaA8zXJ608L5vmZ2x8Ej+WDB/7eX/l9kML+lc9VCpsC/x7wx8NNvwz81977n6lD/qwey/8O+HcAC/w6MAP+S+/9f/57HfTnsZ195dD/i3/9z/HB6kTCdPDkpuXDzTEAd8YbIuVIdccH6xP+8Mkn/MrFQ07yPZG2/ParO9w7WPNiPeOP3f+Iy2rC890cAKU8Xzl4xXU95uObQ6ZZTR63bOuU+9MVj9aHpFFH2UZksZzkR3lB2cVc7cZ0TnNvvuaDZ6fM5wWrmzHfeOsZP74+xmhHnrRkUcfVbswfufcJv/b8TR4sVrzaTUgiS1En3JluuSpG7MuUto4wsUVrz9Fsj/OK1W5EU0eYyDLOG6omRinPJK+p2ohZVuOB54+PyA4qmipiNKnZrcS0ko4bmirGRA6l5c3eljFff/sZP748pi5jlAZnFVFsiZOOcpvx8P4lHz054fB4S9NFwrYCUWRpLkckJwVNkaATWV06nO9Z73KaXZ+DD4cnmzBeKDYZ+bSiuB6hao05qul2MfGsHhYMousYe9bgW827b7/kw9++S3qnoH45YvHmis0uB69wNsiBjUfnnShCrlKmb64pq5jFtGS5HmPLiHjU0hYxqjLExyXWaniRYRdhad8qTh7csNrm2M7g9hFm0uEvU9RJjbtJJGim0aA90bSl28UQeWaHe7ZPZuKxTC1+F6FrSXicf+mazQ+OsHdquElI7+6xnRYp7nWMnXWYnREZ7NslXZ++uY5JzvfUmxRVGkmZdPCVP/oR33n/DRmz8hJgMw4re7VG9R7To1rY+W2M3pvgM/GYSouXctHgV5ICadMgd0u8BOU0BrOKJOwn+Pd0o7Bjx+Rsx/7xTPo5D610oJ620AbJVqvxqSV9Hsvqcy7+TG8genOH/9GE5m6L2ht86licbal+41AWXoIUU3UKO3FEG007D/5HQD0oiL43plkIa+dyCcKxwY/Y+y/jraa616J3RgJwDi3R1ghQnImPdvREFi2ivSRB7h6KTFq3EvTiMke0FYbB3mlQyziAUDUAPN3J4kVyowMIFfBlH1RwlYo/VoNPHdEyIioU7cyJr7KUyoz0RgfAKQE1LvWfkryaSqoFohCuE+0U7VQWqdKlSLRtH5SjJHDHJR68LD6NXil2DwJrHMApiAy5G/nhPdqNhWFu5158bcGrmNwIKK8PbkF0N/F0E0tyY0huQhdnL9Ft1VAhIv4oAZ7JVvpC+4qV8TNhenUn8zZ6qagXssAUb9UQRGOzsLA1vpXN2kykqs0cRi9CdUZYeEg2t/5LE8Btz3B1E8/8A9jfC7UgmsEHm14Lc9z3lnaZ/C0qZBGpX3hziYwrKiSQJqoIkmxPeXZ7jJQXgFofeEYv1BDgY8OChPRChgWYw1vvq2kYGNPyTObRZjK/+StFuhYA3IfoKA+TZ479uVzEu1gWktqJ7GPy1IfFOjlOPSDtPZkukWPqjTxf/kqRLaUTtsvVsJjTL4Z6rYaFz56BzpYSJlOeKZKNLDhUhwFk7gOjX9x6/+K9LPZ4LWOvZ4qoup1zF/egUOajPpB9qdDNCZDsZIFp8Ak6eXxUBvlz8PdGlac4DhUW4RJJWwHcxYkEXJnmNoAo3vnbRUIH+dJSHhiSfd/fKUDbK+gyTVR7dvc02bX45WwqCaYuhnqmmT3ppDbECIC3iSLZSZJpL8cdwL3pe0Y1Xa7Il9KpWR0Y4kJAdu/fVJ4hwEcWID1RJSFAzUQPLPHQzxmkrsIGO6qFkUWTXunR+0UzOb4iRxfPZHUYYZrgi0ylR3TyoqWeSzhPf070IT+mduGcUgKiDyWwpzo0TJ7VFGcp+WVDNzK3Ka5RkPM6j6kszUFCvBNwHJVWFnciHeqGGnyi8UrRTuTvfW2ICv2LygqDKKyyFnBtHc7o8NmmSVbBo9h7BBWIDFpLb6fzso9OFlZcbIR1fY19U9ZL5Yjn1l8ZOjmjbS2LakWDnWZSORIbVNlCr5gIwMsbg2o73ChFbwth/YyWgJ+ixmexMKGRuQV2wxic9F9aO4zN5yk0rfyu1CAJV3V7y16+7nPUWhJbjfgyewmtD3UjKo6FyYyMeCi1EQD6enWIDwyl1uKP7AIw7rdPAVrHp8KC+tt+YvsD4bF88MDf/8ufP7D86Jc+V2A5BirvvQ2/GyD13hc/67Gf1WP5lcBQ/jngfwEeAv/G73G8n9vmUfzyh+8CoJGagMf7A+6MNzxfzqi6mB+vjvn69Cmt09Qu4kuLCwAaF5HGHfOk5O2jaxoXcZCU3BlvsU5zNtqxtwmRtux2GRerCasyZ55WfLw6xDpF3UXsioyjvODN6Q2f3BwQa8tmm+O9IjGW2Uy8kuxifvjqlFHasLka01rNcb6jqSPeX50yyWrKLmZXZKTGsrkeo5RneTljlDWMpxXeaWbjigfTFdfrMV88vUBpz52DLWUdczTdk6cN+yrh7YMl96cr/ujpx+AU1TbF2yDlKCJM4hjnNXHakY8EwOkfjVH7COcVXzl7idIQJx1x2nFysKXcp4znJc+Wc6JXCV84vOKLxxfY2hDHliTp0Ac1B9MCXxlcYzg52HJ1NaVrJSxIFYaTszU311OqMuEbZ885Ot6SJa2sko4sk3HF+LigLSSlY3xYyoXLNiJbVHxhdgnzlqPpHh97TsZ7sqxFa4eJHKSSQurKCLuT0J/dLkMpScWdjitMZmnXKfGoJbnWeKfgRSbeQgUqlavduo0EVBZCS5jIoloBsKpVmMwO4KnbxujCYG4i8qTFh7RVpTzplcEfNtixZZbV4tVLOoi8KES8yKntRJ43vdKkS0mNHT0WPWxUKI5me0wunlMfiV9HKwfGE20MZmtg3oL2mJsINbKoRuHHHZNJRZK2kvDay4YPmhBqo/FeZLo2cwJqxxY/6jCxJbqUYmxdSWDP+P42rMor9k+noHwIcNHiUS0MqtPEVxFmp4OHNKQVWmH4o0LRvBjjI9ArSVzFKdY3Y1Qn0f4qJL7qFsxWLiJUK2O0uaNdp9iRx53WJDcapi3t1GFqSW31qSSv2kwkeL1EMV6ZIdgGkLlMhJ1uJ552Aj7umS8EVO5E7mwaSD9JUVYJGFt0uFjAgm4lYMk0Ur3QTcTjt1jsA/hUpFcGszZ0M0s3kovHwQyJAKm+m68biXrAHrZkl0beI0Yu6m0ibJ1LA5udW9JleD1pvw8JctK1JIW6JIS9bBXZlYBZEIDZjSQ0p7nfSLBR6NvUdbiotuIJ7YN4BNDJWKKdAtNfiIo82EfiL7W5H2ouXCIX+TaTC+3pI5Fm6lbRTkU2XJ66ART46Na/KgsNr/0DCKyKiwQw2ozBVytVGAI+RXrrhyAbCenx2JGApvJEFBNeS1CSC/7cdsqgYDC17LedeJpF2M/wmvygDtH2lkHuxgKoo70E4vTBLb3M3ffsY+KHsJ5k/emQmJ6xb2fh+ed2AKh9p6gwyDKmHsDszzU6MPwuCsFDVsBVdaSGapJ2JqCpT77tOzDR8nwukflzkbC7ycaTbOS+7VjRjuW1oUI6bJg7m0C2duSX8vhmqoYOT5FLy9NEpRzTvlvTGwbAI/7ncDHbs6mhrsNUAgptLsxrVAmo1F2Yj8AY2lzGqBwU51I50oyF6e63Hgj1ADbei3qp97S6SNQIvY+znhq6kaIJbHa6ccH7qMN72VMdynnUs+D9Vp2I/NbUMkYJoArhPJohxEcYYFECtCMBPv24ulyCf/q5iUtJr3Um1Io0DhfdSptdLF7oLteDNDnZueGzz6Zyv+pIAmLasSbeO1wiz9Mz3S4wvt6oIf0Y5DVs3xK5rmklOdYmativqSTxFc0Q3iNjldqQZiYTZBMtsvJd8C4GeW8PzHTjBjmsTfQAEqPK0o2jXkFKvOuETe1kEa+dhJqOUUwXGFGXmvB/22HKDrQiCsypDyyc7hy67IY0V5tHAgKdv5XFWocdib8RraWvcgCGagBsLhEpqEtCCKAxUi3Sy0NTAW8+0ngjtR/Ke9worIApJT+33W2KbEiNxQXwHKSqynn8KJNxxBE+T8V3GSSpPolFdjukrP7E9+GNoWWfPdvaA/QkQcXBT5omAioDiJQ6kujToBJ43UP5k5tvu+F+/c/Dl3W3X10nX+3vna38p9vvavt7QP7a7znwdz/LAz8rsIyVUjECLP/Hz9pl8vu9Oa/41htPeHt+BcAb+VI6F6sRf+jBUzqvmacVv7F5g1cfHjMxNZG2fLg8YlXl7IuUysZc7CcAfLA+4V+78w+oO8M7k0teFVMuiin/zMNHfOPecxZ5ybrO+NN3f4xSniTqGOc1mWlZJCVpZKlthNYe5xQaTxp3HIxLfGb50tkFNqSalnXCrk05PdhKBYbybKoU2xmeX8/55rtPOM23KO3xXnE4Kjk93DDPKr5/cYev3X3Bqs4ZjWremN7gnOJqM2ZXZNxdbPjx9TGd0/zyy3c4uLtGJ5bxvKT4eMbZ21fYbYz3iruHawCU8bz9Jx6RnhX88NkdLoopdhsTRRalPLsqxdeGh4dLZuOK7qTluy/u8qPrE2g1WjvuzjbcPVqz2o1ILg1fees5B1nJeFaRZi0Yz+TBhl2Z8q9/89fJRw3ffn6fq4sZnTWk8woUjNOGJOp4981X+LDv/Esr1EGD7TS//PRt3jy/pnMaXWgeXR+gtePO4Yb7Jzdkk4bkoArGL4Z/gM0+YbvOaa0hzRruvnWFfZUTf33N4XwP5xXFGx2Tg0IAavC1Hi72qMxC4njn9EpknZHDZY7ppITIkZ4VjE8KfOSZfeGGcSJym9nDFXHa0Rw58IrR2Z6jbI/++hpjPMlJwcG0YDoOIQazFpU6irdbbAbtJqG8b8nGDTzcU7URB/M9fpPw8FvPsFPLbz29RzJp6E4a7Mjh9xGHx1vG767JpxVubMEpOqsxxpGM5O2rLLgywo0s/kGJUp74vQ3qoKGbW/H31obpuMK/UUptQwf6sCE2FrdoGZ3v+IWf+zHMW7yG2RduRFZ90MCkpZs54o3i5HRDs/C0Jx0+dfjcUj9oMCcV7cwOn0R60uKdoj52xAcVdmqxRy3NsaU7aaX3UXn8xOLHluyopDmy+CJi/sdf4XcRLoLqfiNVIp0k27ZHHbOzHW5i6e7XLL55RX3eyYV76kB76qNwvtyt6HLPN7/0GDdyUpGSOuxpg6kV9f0Wm3mSh9tBHpm+saM495TnHT6zVMfCniYrYYPXW0FE44drqjca7NwSL+qQ4Ouoz8JYjhuaOwKOXerE9/huSf5RCt/cwKzFjh3dSMCIHTtcHIBJakWaDDBpsbkTFjeC5tDRjUXy3s485d2O4o6jut/Snsr8ukQunGcHhbAvx+2t1zfx2FQk+u3UUZx7mq8Usu8DJ8d83Mm4Uk87F9BcvNEN7GJ9KCC3mcvCRjPz7O5LGm47c9QHAkKiQlGfWpq5XEgX547yzNPOnSyClLK/5rST+pAjR3XiaRae6txSnirKM5Grdoct3UjCcpq5p7zjKE97Ob9i87UGr6E8t9jc0x52lO/UVKcWm0L5pYryxFOeeqr77S0bXCt27zXC1E4dysLuDU879uzvu+DZBZyMr506moU8dzuThYv6QC60XCQy7HYKuwcC3KsTN6Ty2iSk+J6EFN+NLAJ0E1k8uPmyHCObQHHeAzIo7knoTh9G1E4ltAkEoNULWWCoD2SubMKt7SAAo/74V0fCVO4eiJ+6mcvt9aEA2S4sNnglMnivYf3QDEywyDtFglwvpMKkOlTy87HI+SsRGrE/M7RTJawzwk66RJ5TB0m6SxSrL0J+JRfINhYJeT1XQfod5t+H1F8TPJA+AOqRVJxs3lZs35APn5svSADZ6j1NvdBDWisamoWA1uooSLdLTzdWtCNYv2VoR7fs7+ahYfI0LEgFcNnLlcfPpa5lf25EVm5FemwTRXUosuBmrCiPNcWppl4I8+diRXWgAsiTearninqq2N010ncY/KddKjJqFNRzg4sU1SKEGWUS/lPP5PX1+/Fakd4Iy6ysMKK7c5EhR6WjOJXX2MuY25GW+hMj4z54X/yh7UhLuBD8v+y9WaxtW37e9Rtj9nO1e+327HPOPbd3leMqx3ZMORCjCCmEiIQHhBR4hxfABEVAyANBClIQIuIFkFAeAEuAACHxEimQPGDhkMTYplzlsm/dW7c77e73Xu3sxxg8/Mec+1S5Uo1VFRyLKW2dvddZc812rTW+8XWyv2ONCxXR9r7KpJkGAygGAYJOgck0JtEUxxE21vJaYwmJK49jv56my2W7NpL9rvbF66o6S72IaOYh7TTExppmEkno0CyWPsdA0Y49kE2FtTSZyJLLgxgXCajscpEF2zzCpKGwn9bJa/rXamcJNgnRrUiDAbpZhksiVu+NcIGmOcgFVHnmU1mHGce4LBJvp1IS5OPBp9MixbajVMBt00kqbBRKaqyS+9GO+shuBVoNYBgtXlSsvQ/g6RnLSBhPEPayO5gIuOwZxF522y99UE4PCKNQ2FHn7n+MQWWZgErlWc3+ZwChEgykAo2Ko29/faVQUSjPgeF3Fejf80MQoML75/5jv7gfw8+Pdkmdc9thd+X3/Hs8f1h+UCnsLwF/Cfg68M8DbwD/nXPuF39fu/sjWuZfOHInf+3fYJQ2HI623JY5l9dTwrgjigyHkx2rMqWoJGhnNKkYpzW7OiYKDEWVoJQAN2sV1mjm0wJjFcvlyF8sPyscCYhY3owJ0g7basazkmKX4hzSa7jMpCLkckJ4G6LeKFDa0exiqeOoA1RiCGNDe5dAZggSIzJDn/5KK+EzOrJSCaIdWMVoVrI9GxPMWswmGp5j6oAw7TCdJowMXRsQJR1KOerbjGAizye2st83wrQEx+UgA3WJyDlVLmDCbUVKSigDu/nhluXZFF1o3KIlOI+xqUgDQVis8EFBsxX5q7OKMDZ0N6lI716EFG+1YKQ+w+YGVQa4zBBNGtpSklfRSEhR6affA0e4DDFHDc4ooouI9sR3H9QButKSPBt4NipwcjzTFr2MRD45MhA5CccZWVxsUa0GC+lFQPlmg96EA/shSaP3lR7hOsBkFhc5wk0gLGSraKdGfK2RnIPwTryLNnFkF5pqX6o2JADGDw58b55yIidspzLwCxoZKCsD0VpTLyR8phtJKmq4lnqQaKsltdQIE4UTiWNYiIQxudN0mcPkMnAPt9rXPSjqhR3+H15LV0yklzG7kgGmMFIO1TJE+ve1BN3IDcmlkvZ5X3zeh/30f/fSuGYu7KEy955dKVoXuWi8ht3jvjNR6j6cErDRJ+IKY3QPcMKthO7oTjzJ9UKkrOmFHiScPdMTVAz1Jb3Htk8x7X2xyrNMkhbqWVUnbM7opWJ3KtexD0Pq+/F6f3K9J8+TuoY+5ZMhsr/34OqG+8Ai5RkxK5JQ1fUMJQMboIy8dlj44JwbQIsE1YYivezPvfXgo52K7LGXb/Y1G+J1FS9lL+nr6z368JheYoqS/UjuRFoa1HJcIMfWB5X07JQNGVJljWfm+kFrvHLDoLrL8ddMttXLE62v3+iy+0CbwB9D63sWxc+rBuamHUkoTT0T6V965agOpX6mr45oZnKM0Q7xjO5pwsp5H6QP5qqdT82U9eKVJJrGazf4Q4d7JxOvaT1X3vPrBkZKAn7U8J6RvkRZLyzlfmwnUk5vAwF2fRhNcievGW/cwK7FGzf4nvtKjr6MvveCB00vgfVMkhZ5qOvrMAr5DNMdQzWJC+Q4op2EzrS5Giox6qkaGKHQV6447ffVp6AGtX/uzAdNRfJYO1LDOtFOznWyEoap99H2nvI+UKdLhGmUGg5hp7rUB1kpf88p78eeyj43YzUcf7y1tCPZZ+vPe7Lq/ZwaEymiUgbAwjqK1LRnBHsPY1ha6plUJSVrJ39PRdLaV7QoJ/vWJ8g6rTyDew+YAA9woJ7L3/HW+ntHD1UioWcY5VzKNRKpL4OvPCwk8TTamWE/e28peGa3snR5IP+OtL9G997YvsNTAtCM+HK1oss18VKSW7txQFjYQWocVoYuE7DkAgEHNtaEhRk8ovSvrWXCwCnpi9RdH3Ll7lNekRRXG2i6USCBOj45NWilMsRpRbgVH2W/2EDYSGEs/RislgCd+6oTeTxc1dg0xIUiV+3l4DbUON9BqWvpl1TW+f5IkaYGVSey1s4f72sSUWCoG+nDe3Tjpa3GoetWkmDBh+7IvzYV9lRZK2E+CEMJ8tggOX0t5KcHcC6OxJPZA7zX/ZG9XLVPWbVWPJdaw3frsvyObbgolOd7KewgV+2638NWOudQfcBPn+jqWVnXiSRYhYHUjLQNRPF9HYmRfXA+zIfeW+lTYb+vr/L1wJ7vsjjrRHL7+1z+wEhh/+0fgxT23/neUlilVAr8n0CChLf+L865//Af8tz/C/gl59z/4//+Y8B/7pz7499vP35QYPn6hh3CLwTOuf/g+678Y1ymP3Hs/uwv/ws82+wRBQZjNc/OFszmBe8srvno5pA/fvo5gXL8rd/4Mn/8y9/iG1cnlEVCGBmaKuQnHl3w4YtjfubN53zj7AF7k4Lzl3v8a//Er/I/fvqzWKtpapGHpmlLU4c8Przj6cU+Wlt+8vScz+4WfPHwgt8+f8A0r3g4XvHVzx8znlS0XUBVxEymJe/tX/FiM+fyakqUdnRNwHRa8s7imk9uDzBO0XUBTR1hqoCfe/9zfuv5I0mdjQxp2lIWCd06htgy39+y3aVDrk9Xi9z08NGSqg1Z5CWvbqeYsxybG3Teoc+kYiK+CWgn8s3jRp2kwu7XmHVMOG1I0pbdKpUakk2EXtTYu4T4sODB3pqnLyUp9/jBkovPF6hRh9uFqKGoXqSUBA69DXGhI9xo2rlBT1q++Oic3/nwEaPDgt1tBp0mP9zRfDxFvVGIlDhpKS5HIt00Cp112E5zeLTm6mwGWryaq/UI02iCWIC20o7oZUxz0AmIBJGfZJbkLKQ+Fdnt/GDL6vkMXSnsYcN4VrL7VDy2fW8j+7X4Us/GhNsA97DC3saoeUPwIqU9bKXnswzAKeKrgPRLS8oqwj0bwaMSe54KyMx8p+V+jblKpZfTKAHw2qE2Icp4EJpLIq5ySDdmqwkK6Y8kksEKjUY3ApJd5MTvaRThKqSbGvoC9nAZDF2DNjdoD9xtZohuQwllOmoIbiPsQQPL+F4i6T/jbSwVIs1CPJY2l3J7gMP3r7l4NSe6jGi9x9KkFhc7omVAdqHYvGWIl5pu5IbeRQKHapQAT8trfYEOXSm6uSHYBJI8uxbvoI0lmbY5bQmW4QBgnQKXyHpBKbUeveSy9yIG726xH409KFPUB4ag0MOAGysAVjfCYLlQJkX6GovqSMC5STzD86Am/jwVIG5lsqAbOV8d4BNnS0WXCbDIzxXbJwaXWPLPI5qZI70RJi3cKXr5q8kc6aX3KXop4uSpYvNEJjz6nst25AgrCdwymaOdyOQCVryDfR1Kfi4hSX2/Yy+7rPcE9Atjdr/9bmSJNnK+kxvxb+rWh3758+MU1AeW9FIPZfY29j497+er9yzxUkuY0773WDoPPmMBmD2IbqbCrKVXjupA3QMqJ+xceqUoHoh0dfLCsHwvoF44Rs8lxEsAgk+c3Qq7F22UJMGOGPyA9Z6TvtFYvJfliSM7U5QPHMm1TPYEpfdD1iLHza6luF7eED6EyEJ1ICBv98gw+VRuXglTg2Tp72XPAvYD8XglQVy9ZzUs5Vwkd15yGgmIaEd8W8hVULqBJZx+Lv5JmXBxw/u0mamh01N1MgGRXt9PLlQHMokReS+ibj2TmApLKhUxbgiTCiu5LvFKroVIY+Xa55dyTvrEWqnxYfCoJnfCZJpEwHgPEnuQXB76NNxA/JrVvkw+2UjW/fZeUzX0Oqa33jM4EUCdLN0g6exl0Lq9nxTo04J162jHfcWLGmpnwkImPKKtgNewFNCcrNzAwEalJOS6QCY1hP3sQ3IsXaqHZFEJ+RLpbH51P5nhlCIqJUgJ5DWbsSK9E9mqDdUQ4tTLYbURABVvLbqRSpBe5ttPPJlYyessBRyaSBHv7AAo+4Taak8CkGwgEx26tQMY7D2N7cR/ADtHWDmqPQlY0q38Lh7LftJOPi/6oCUTSxVLdRBJYm1hacbiA43vGtppJN2WqbCSyngAPw/JLhtM6qWikUwOBqUEN0VbCQzqstB3ZgpgDap78GESTVRIWJELFCbVsl5tJJioNhK+tLuXULpQD1JS3VlMGmLSgGjdiOx1FBFuW0nMHfkAACAASURBVFTdDuE+urX++0kAabOXEN9W4Bwmiwi3jbCC1tLOUqJ1LRUn6xqXvsayeWCptzWEgQBREMDrAWmfSqusHUCfTWP0psClCfQdmD4kiD7Ux18/+X4NUE07gOWh67KQfXZ5itqW9/v1OhbwPkYVRQIMwwDq5v7/XuuUVErh6kYYz9eTXntpLOC6DhWGAir7ZNfv8E/2r/Xdlu/EKX8oPJZ/4ccALP/d7wssFRK+uvUq1L8L/AXn3D/4Ls/9Y8D/BLzyDz0A/rxz7je/3378oJzy9rXfU+DPAB/8gOv+2JZHyR1/+fRvsbQJ/+nzP4NF8V//if+W/2P7RVZdhlaOeVRyEG34l77y68zCkixouarHpEHL882cx6M7Dt7dclbM+PLpKz64OmbvaMPTasEiL3lresOvfO0LTI631HVEFHdkYctPPjqjMQEfXh4RRR0/N3vKq+2MuyLjhZsTxobH8yWd1WzGCcZqVk1G0wV8+c2X7CUFv/LVL3L88JKvv3jIlx+95OV2RhcGLMYF1+sRX395ylvHN4zChlAbPrw+4p2TK95975oPVsdkYcunbcjjvSWrOqXpAlrjo9q15Z3pNV85/Jy/O38b6xQ3yzHtrOMXv/whzzYLrjYjlII8abhdjbBNwMGjJU0X8LMnL/haeEpnNZPjJVfLMW7W8JMn51ineevRFfvpjlWdMfmJM+ouxDjFcb5h1WTM4pKvfvyEJ4+ueXE9Z5zX7HYpqtVkecPntwumx1vaLkAnBhdZ3ju45utnY947uqGxAbsmpkhTTh/ccXU3YX++ZbnNiQLD3tGGug1ZbXL+6BvPOdtNATi/mmE3Ee3cMj2WntKu01KrYhRHXzkH4MXFHnUb4nKDa0KSvKUqY8KHBaYLyHP54NpejCllGgX3sCJJG4ogIooNzcyQTGuai5zjd264WY4JD1s2L6c8eveSq8AxG5VcVCF6HeJaRXa6pdwmpA+3VNuEeFrz/vEVn90uaPKQILDsjQtevVxg55Yw7dAXKaO3VkzSmqYLicOOsokYJw1nNwKEuzqAMiC5DmjfrljMdtzdTEhGDcdvb3h2vuD4cMXF5Qw17nAOHh8ueR4vCK9ilHbohwXBxyOaBy3J45KmDomTjt11zt7JmvU2w1YhTx5ds64Sls/m6EXNapeRzSu6q4h33zvjkxeH6MiSZQ27NIMvFARFQj0J0JGVMeNtLB7G1MmEhGeK9aJhf77l6vkeutCYiSGa1TSLYFAP8KBFv8pxRzV2G8lkhgFGHXbsMGUoXpZHJd0uwp522DIkANpHNWwj/tQ/8zX+1td+CldJBUw9FpBVTwwuNyQvYt78xad8utjHdAHh5ylu3NFVEfG7a+rPJrg6EBlubCF0dOMANWtQGrrLBHVc4YBuFTM63mHeBnc1kgHfz24IHBSPQtwypp3C/tt3lE1EFhjW4RwXeinttCP/szcsXy2g0TQj8e7a3GJqPQD0sFTU+yIrdrFFpx3qImH9noHMoO8i7LQjuo6EWe3Z5tAR/8Id1VcXtBOLOq7pupTwnS2NGQ/hM/FSUe870p9eUWwT1GVC8VZLfBVKz+V+Q/gyEalWAMooqoct9YHG5YZ2Iqx+tNbYUKSE9aGcv2AjzEX5UxVuFeOUI1r5ECajWP10A50mLEJe/mlLeKfpFi2FiYRdPmrJPo+p9y261R7UwO6JkZTqDNIb8YjaAKrTDvdTJd1lTnXomf5HDjvpiK4iorWi2pdO05uf74gvQvGy1sLgtRMrSgGlSG4DqkM33J7tfkdYRJhEwDcOTG5JL0P407fUH+0x+xYsf9KRXmjKE4uJNSaDZmbJLjTFk47sRUi98HLQn2qJX0WYFC6/4ojWMtCKNmrwakqgkngWswsBas1MmHdJVL2XtZbHEmoVL4W5b0cCaPrBqUkddicTMlUoSc89m97lsPPgpx0Lo5ude1Z6JOvGSwGPOFi/a5l9FEiQkmewy2M3qANuvwSLbzgq3/0ZlsLuJneONlWsf75i+hup+AbzQKS1nWN36plOC/HSCaHSCkB0yoPEPeUDnBT1gteS1OVaOSWA08SvJVAHXh7a+0VTmeQJSwkdipduAHbbhwHTp5Y2U5K4vLsHyef/pGL0wicN76DNtByXr2sR76r27KNMDAjQFeAb1FAcKcYv9ZBOnKwsTqmhhiraSVpv0+nBY7ydBkQ7qebZ+0gShpuxwobiaVTOkd0IM2wSAenxxjPLCYDCbYTR7jJNfez3p7lXFZT7wt7W0+g+5CcL7r2VSuS/LtA04xQbKtI7Q9BYikMNDhItIUX2QewnYyzNVP4vbQQo13sh0VaO0cSKSMmEQb0IfSeyhPy045BwZ6hmIeltSzsOUbHG+BTjoJb6k9eBbDvSpDctzsl91eWaoAro5uJVtIFPzM4i0FDtxUTrTjybmiGZ2aYR3aivMNG+CqrFZBEmk/Tdej8l3EoPpo0CSbPNYgGtkUaXHWaUoFsjCbmbWpJjkwibx+iyxWYhymWeOdZo00IWS5hPE/iUWgFtLgnQVYdNowGk6qKGzmD2JhIG1BkJ9OllrUrdhxA5B7knLV5LfEUpSae1XgartYBav55KPHhs7t1yr/dTKqUG9vY7gbD6PdUnrwUivQY4f9gmiz+Ii3L3qp5/lIuTk9fjucj//MP25C3gZxCF6r8IfOV7PPfblh+6bgToY2j/d+fcn/yhV/4RLqP3H7g/98t/jnWb8vntAudgf1xwtR5zON1yu8v5px59ylk547e/+Zhg3GHWEapVTN5YU35zjnlYYSsJhWlejMjfXGOMJgoN200qia6fz2HeEr5K6CZWpKMa9DpEHfoUMQvuLkZ1ivHbK9bXI5JpTduE2CJEZx3OaOK8ob7JiBcVxmhMEaIiC6sItWgYjSu26wzXaUnyjO/fXGHS0W5jYe7KEJUYgrNk6H/kVYp7UJF8kFE+aYlnNe2VeG9Vp7CpJbkMhHUyPk1xZIURbDXpfkl9keO08wllIvUMNoEkpdaavUcrCRV6OWd0tKPYJIQvE7qplcL34xL7MiPaaOp9Q3xSUF9nxLcB7cwSFJrgrS31MiU5i3Bf2KJ/d0y9b3CxI74JWPzsJRefHuAiKymxfh2tHc3TMTbywSKZJd6vaKsQ1pEkaI47aDT585DqSLxPNhFvkotFMusSK3UxsSNeCcNTnXSkh3L8qlHYeUf8MqKdinwV5fsOR7JOvW9IzwPKd2uiixjz0Kd+anCpYXy0o/nGjPZJzezXUspjR/2oRa+EZXOJwym/X5EjexXSTtwgLUzeXtPUEe4sHVJJlQF3XGPLkOg6FG9Xp0hutIRwbEWeVh36TrY3t5iPxyLFmlji4wL7yVjqXsYOm7hhYNocGrnesSW+DIfQl7DQZBeK3SMvTY2FmSvebEnOI/HsHcmgF7xctlaY3HoJsPcRTQ2qlW5N6z/KbATqYUny9VwYwJShmicslVznTlEdd4SrAOsBjgwUlJfLOenlW0u9Dj5UJrmVihTtGbZuIt64/FzTTJ0PqhF5WrSVvs6gkoFdM3c0+xZVC/PZzBz5K035wJJci1S5rxOKlyLzqx43TH4nZvumgQCylwHlQ4Oq/fWZSLVNM/H7uxJGM72RQJGeWe0HvGEhstZwy8AmtRMBHsmtJtowDML7Spt64chfCTsJIlstPXMnTKGXMnuWpk+dRUlwUXamqI4czb5h/HFIOxHmrd5zxEsZLFdHwjibkST0Jrf3A3L8ucQJKycSXdl+dWDJLjWhTz/tJda7U1/lE98zhcriAy7kWlaHcr2irSJ/pQYPYTuF7Fx8U9UBpDcM91Z5LGFKPRPdh/4oJyCkXsjxdCOpNNo9lGMs3pBKo3YE+bmwhPHqvm9S+jmF1WvHEhrkPBsXlF5+C+QXItUuTtSQ6Ko7YQDbqWX2kQcia0e9rxi/EHDSzIRVW/6k9JKGpQzme0lyuBMWs/SsbriDdGnF1+ag3pf7PdrKMabXcgy9eiFaS7BUM5Fe2PxCWLWemQxqqc7pQ3CqhaS69nUkfadkemvpErEvtCM1AEa8DD67sVRzNVTivN776QIoDzXRxrOIu/ue0F4GHa+FNcPB5g3N6JVPTa0c8U6AeHGgiXa+s9HLafvngB/4K+kyTVbiExxdGOppDzbuwXJ6Z9k+CEhvLbuHmtknUuPSJfdJxiaW+zEqha1NlnYIqOm7KJONYXccDEE7Ir1VXsVgacci0e2De0YXRoKTgGouDKELJMV1dN6yPY0YnXfc/kTE6MISb4wPtWGQ51Z7WiS8hcWkimjbs7q+Ysdvt1cH9JJZ3Vi0cazeShi/bO8rWFYGFyqquciDRxeGZqKJN1aCgaJ7uWgfqOMCRbxpqefRUONSz3y9TCKBPM6zvMr0qbSWeh4Nct+gEpYSIFpL/UlQSc+kai31IiG5rWmnMfGyHnoy20lEuOtQ1tF4ZtRpqUpxocZFGhtook0zdFdaX1HSp8W2s1QUBcuaIcF1VQqIqltcHNLME+K7Chf1oC0kuCtwWYwZxQSbyleCGKlGqTrMOCYomnvQ5/s5MQ5d1LgkxAUB2teeqLJPtbpnCF2aSA1JGqHXhYDBtpPakqIapKouiQUEdkbCeno5bA8atwWkiciJewmtUlDcs5YDHrBu8DXKBQlxG8EjKn4tCKiXv/ZAspcRW+clsxYV+NRYgCi6B4zDtr679PU7sUnPkMI//oxl+ujHw1h+8u99/1RYn+76m8C7wH/pnPtL/5Dnfd0592Wl1J8A/iPgrwN/xTn3le+3H79fYLkH/Lpz7t0feuUf4TL7wrH7yn/1r/D25IYXxZzOai62Yx5O14xDCer5jZdv0DYh//TbH/Orn7/N6WJNHjWkQcssrvjm3RFaOc4+OeT47Wt2dYwCZlnFi7MFAPsHG5ouIIk66jZk83xKsF8znxZM04pPnx8K4xM69mY7luscB0SRwVpFW0YcHK65W43Yn2+JA8PLyzlx2jHOau6+uYAHtXgns44o7QgCS3mdE81qujZgb2/L7fmMfFFQ3OYEoxZ7nRCfFJJ2upPRZTauKW5zVGQJz2N4c0dbxASJQQcGa0XfMxpVrO9yMB68OuTxWcluneJ2IaOTHbtlRjatKC9zwnkjXtRGJLcEjmAdoE9LdGCpNwn5vKTcpBwfLzk/n7O3v6X++/vUXyrQWlI8g3EnVR2pgVYT7VW0dykklnRSU91kHghadBEM4D1JG4p1KvtciUQSGHyow6IdhA5VBmBALRrUWYo5aFAb+RZ3mUUVAfqwwqxjlPd4Ou0Ipq3UllSSHDe8vvHbCJz8HjhUpWHaoq9izMwQrAMZEDcCfMOd9n40kaHGV+G3pQSa3JJcBdTHBu3lp/phiXue040lFVW33g/mJZ26k9oInMKMDelFKLLGSio5XGQJlzKj2+5JRKWqxY8a3wY0e1K1Ea0lJMdFbpBGyyDfyyGXAlh7Oaw+rjC3CeFWo2upycBBvBIGqh88ushPaynoZoboTio++rTTXqZlEpF1Nocin+0rO+K1ojySfWnHwtrV+9anawoAa8eybryR8I/e95ddKsoTkYLptk96dIRbLYzDvgz4o7UARoX3CnlvXu+P632xYeWDTBKp8uj7K4Naov0l8VTAWvGGIbrTBKWi2RMg1UwkabWXf+bnMnDvgVM79RMGCvHsBvc+1/48jZ4rqkORbvbdreXxfQVHn4Iar2H3UOSnkpzJ0O2qOkivZdvC/DiSpSK5FW+i+FrvWaR6T+Sn5bFMrGgfBtJMRUoaVAioyO+3n9xKD2k7YkhglX0S8DaAO38/mUSA0bAoH3gSMfjDTCLVFSBhKyhZp/drdhlDCivcyyH75/RVJn11xSDvXDJ4LKt9qdOwofR3Fkd6SCbt/YlDZUQI7VTOm6Styj71vbDRjqE39f5ecT5RVEBjVEgXZ3+svW+zrzJxSkJpxMvpGa/NfW1FdSCv03eWWt+R2vs+cd5P2XsVQ/FbOn8cwpC5wesbViL11J2wZiYROWr/mn2liLJSFeICxJvpE2hlG94vGwoAk1oJPwgM8B7M+7FGX/NhYgFfIN7LZiTMW1DLvaUspEsv1/Xe3f5zJll7ADVSwz70Xam91zVZOsJa6jr6c4HDV29IyI1uHau3AqKt89LUez9m3x0M/phLOb/JytCOPRPk+1JFJqqGkCATK5K1QdeOZhp4b6sd/LJ9JYiN1MADaCMVHiD7GlQWk4lXPmgszTQgqMQrndxJ92fv9e1rQkyixMeZ3EtndefQtcWkwSAXlnvL98n2lSWdlyG/9p7su0N1K0AwaCyBrzEBBrDYzEJ064g2ne8DlaTX3nspabLim9SdB95FS3mSEq86nBI21SmRsw6+Tr9uWJihi9QkevAIhrsOk4fo2gznVRmHTYQtdFqYOJvId4xu78FWD5CDopEAHC3MblCJtFRqn7w/0jiCXS1yV639vinp9ixbCDWqbmkPxoR3pfzdGvFeJ4FIX33nJSAAtekElEWhbK+XuHr2zmktnss4GvyTqqxxYSBS1747E8RD2Utf40h+94/3wT6Df7PvuOxB3WsAdAB8oZ/xcA7XtKgkHmS8gDwWBlI/EkfisVRKjqf3WPY+Tyuprj3z+F17M3vP53db+nAgZ/9QeCzTR4/do3/rL/7IX/eTv/QXnwLXrz30N5xzf+O7PVcpNQf+V8RH+Y3v8v9fdc79jFLqPwZ+2zn3P/SPfb/9+EE9lr/NPQUaAIfAX3XO/Rffd+Uf45I8eeRO/9q/jq1CoquQ9qBDFwE2k5suPYvoMifsR+DoJr7kfX3v7+hGPtVuYkmuA+pDQ7ARZqUbe8aje00ic2TAQXSnQUsISDfCa+ORwddMvpTjlcws1gvH9FO4/ZIjO9cy+xlBO5PBIchsd5fjmUKoFyK1Gj8TSZGN5cM5aBT1viW+lS67oIVmIoM9p2X9LpMBWvlQWLW+zF4G7Y7iVAbCr8/k94OceAU2EYlTeu0HGUuZIc+uHav3pFogLKE8EQbHBTKALE7cIEnLL2S2u/jJijce3HLzd0699EYGd+1Y2BMbyXaqfRmMpreynvQBygBQd9IPp31uTzMVJqUvvO9fS7fiLcvOZZDWjmUd3dz7nOqFADPdSEri9BPpsJN4eYYeORmYCBvVTBzj5zLoqvcci9+5LzOv9xT5uciOXNjvizBu0ZqhF7FnP6oDH/4zlmvW3x/ZuQ+GaXxAh28K6nKYPjXcve89XJ7VTG4Um/c79r4WsH3MwM5k15bOR+z3gRlhIYmM5bGAhaAB3ci+J3cCylbviXyuTxzs/UfKCvukWxi/EHZDGdg9ckw/84mNPrAmqKE8km3UC7k2QY0wSA/Ey9azb/HaUR6Kp23vA98/52D7hoRYTD+3rN/SJDfC2Dl1H0bTpTB9aqnnmnomvzdjRbWviAqR2w1VDUr54BxH8UAxfiHvo+JUkZ07okLSC7tcWCYbSWplWIj/zsQw/1AGvcWxJr+497e5QBggNCy/4Nj/mmLzREDj5LmjOLoPhXl9/yXMQ85Zfi4MiQ0gvZFzEjSSEooWdmrzWA8gqssdo5dybfpjDBoBB8v3NPOPJNCkOBb5YjvxXr21SCSbqQTTgNwb2yeQXimaOcw/srgArv+o4ug3HJtHmtnnhnJfmCGnYf1EC9MzknAf3dx3ARYniuxKmKZyX9i2ZuYljRPF6ExqGWwk+z06M6zfCDGpvO+VEVAa7eS9ll3LxEV5oClOHcmtkvN1quX9NFWMzwzNSNNMBRTWs3sQnF8bdkdSK1MvBAwKIypAymQSoJLeijwvqGH9Lkw/ZgijqucCWuK1vF+chuzSp6t6htbE8rkbbb0/LoDsxgxJn31KaXZjWT+Razn7zLA9CZi86igXAZNnDcVxRJcp8mvD5lFIcucHcD5oyCRenreV7ZtYMX1uJATHB8HUk2AIbul9iiZR/rtDQC1KgnPquSK/lKAaG/v7ZCeAoe+DxEkdRrI0NNOANpP3aXpnxJvt/XX5ZUczFYarSxXzT2qK45gu9R5B75HUtcOkmnKhye4kxGb1lmbvW2Y4T8lKWLmwFFAgwTqKdGmGigRlYPMoZPyqEzYVAV5dFlAchcw+qeirJspFSHbdiffOs2Odl0hKbY8iv2wwsaaeS6r06KylywMv65SKkPyiZf1mxPzjhvIwIrnrKI4jsqsO3VrpOqwtzTy8D8QxvoamsZIeOhXw1WWaLtPkFw3VIiJZdlSLkHgjA/xmJkmkTkF+VrN7lJIsDUFtCHYtJo+o9iPijaGeBSR33X2YTWVQjaUbhcSrBhtpmnksoMo4gtLQjkOSuxrVGopHI/JXJd04GoCgMo56LyK97rslNdGuI7qRL6by0YR41Uri6jgkrAzRTUF9NKKZh2TnNe00GrYZblvCZYmLRLLZLFLi24rqMCN7vqE9zNG1GcBftKxo9jOCUs7t4FvcNNhQE64r2kVOuK4wubCCGIeZpeJVBHTtg3O8n1KvC8zeaAjaAcDI56wZS6prsGtQTSfy06q7B3dthx0ngy9TdVaA4XKLy1N5/rrEZTH6eoU52hvCfXTRCBCNAgnzUUoYR+dQTSuMZN3gwgDVmfswnqaV3+MI2g43ymC5Ro3y+/+Po/tQnh4U9j2S/Xb6Dsq6ETlqmgxhQX2yq7ypFO51+anW8ncfwONDe/pk2eExwJXCnCpfSzIwmX5xxqC8lHbYHt/OkH5PYAm8Hurzna//wyx/yIHlD3VsSqm/AhTOub/+Xf7vbwIvgT8F/CxQAv+3c+6nv+/r/oDA8slrf3bAhXPu//MymfkXjty//N//aWojXZChtpyOVqzblHFU89vnDyhuckYHBQfjHa3VrIqMJGrZFinvHV9xtpmQRR1XqzF7k4K7TU6zi5nvb6V/EjiebVhXCUWVCMO4GnG4WHP+ag+dGEbjirYNOZxuOb+b0JYRJydLru4mmCLk3bcuKNoIYzVKOb6wd8nv3JywXOeSGltE6MgSJx37kx0vXy2YLnasb0YcHK9RynG3GjGdFKw3OQ8Pltzscuo6ZJzXJFHH+Wf7zB+u6aym+miGOW6Y7e1Yvppy/ORWPJa3Y+bzHXFouF2POJxtccByl2GtJo46OqNJog5jNWUZk2YNedxyuxoRhJY0bnk4W/FsOScKDJtdyttHN3z49ITRrGKSVdwsx0RxxzSvqNuQMLAYq9hsM+Kko9zFBJGhXaYEkxZ7F5McF7TPRrgATr5wycXNDGuUVHXsYrJpxeO9JR9965RoVtNWIZO9gs35hGhWEycdxvd08o0J1UkHsSUaNbTrhHDcYm4SXC4sqeoUp+9ecbvNqXbxvSdwncImwqWG0aJkt8xQgZVBUeCwnSKILN0qJpw1KG0xZznRwx1KQXWbMjosUMpRbBPitKPaxhwcbri5ngDgjCKflxijaaqI+XzH3fkUrGLvdEXThexuckHRgSO4jQgeFczGJZsipW0D7F2CSw2qCIiPC+plOoQbYYR9VdoRxIb9+ZbLz/Z57wsv+fjV4dBnGj2PaY46VKdh3Ir8WgGdIprWWKuxdwnJVcD8KxecP1uAU4TThm4dSyrvoiHNG6qXYylGf2tD8XI8MPo3T/dQ0wZnNGHa0pYRKnCwjmDScnS45uLVnGAZYsZW5NhFJNcg92FEoxbTifeGdUR4WKK+NaI5NETzCvWJT3B+b0ezjaHWBDsfWJRbCUmqA1RqcK2G0EoA1PM9gp0WmbdVJGchzdziQoeuNMkbW9omlBm1sxS7L4nI5kRSinVscMsYrCI8Lmh3MaO9kt1NTnQVEm08expbgp3GZg4XWlRmCEKLuU4Id1pYZQDliG5C2j2DroWlsIl0jJrc71ftQx1ahVm0wrpXGhc4oo2kB/dy2m52T7dEy4B20YF2ZJ/HlI/Ew9eOHd2BBFBFzxKaQ1lHFxo7Now/itg9Fva42TeSDB058pcBxalQrUEtDLpNJQk5ugtkwJ46zFSuoWoU6UVAO5UAItXJes3cQuCI7jQuEhY7vRSPYXwVyGTNniFZlNS3mUj596yEOcXiMWzmFju+VwOMnym2j9wAMHuprnL3TLoyEuAk6cTiOcSz3P1rRmuZQGgnzicMK7qxMMIAXXYfBNSNfZ/nTiaprK+fC3cyAaeMIn+pKE4FQPehTdFGvJzptUwE9V7J8oEhexUMbKRJZELMRjLZ4UJhtuOVGiYkcDLxYCNY/A7sToWdbv1Ep+pkwiteCrNcL3xolIXyzZbsWUR2KexVdeBZxI3vn1SKdipezLCUbSkr5yaoZKJRNzIJJEm4UBwLW1/vO6bfEpluH9BTHViyczmPzdwxeiGsVHHqmH1L2MFmJsC9HcvkZh8EVM9E7lo8UMy+JRJZkYAK+O9ZbmWk0sT5ntN47YbJtvJY9jm7spSHmnAn8mbAe1QlTMkkajimfjIo2ggzbFI5D4Mk1nmJ9likwcZLhUGe0wf+9CFH7URCmUR2LBPIex931NNAfJp+Qjsq3JB0qjr5u0/aDUtHPdWMLmWCocvk3JjIM+A+BbmZKNI7mcDrmWMbStBPuZCAIUlI7sOF5Lw6pQYGMyztkAxcz+S7omf0k5VMSrlA+RoS7//0r5fddKJSifXAoPZ9rX1wkDL37G3QypvVxIpk2WEjqYDJz0WyWy4CsltDuDPsTmPGLxqR7y7CAWxnl+3AYIJs0wUKE/dpT+K9NLFnsyNFelnTTaKB9QxqK9+lncN4BrRfTBYQ3whYbmYxYWEGtk85UK2hPkgHAK5bg942dPOUoDYCOAGbhgJU4xDVdJg8RjedANumFYmrT5N1SklwT2uwiXg/Bay5IUCqZ35V3bOXPhyoqEVSmyWoyktTjZEwIGtFftuzjEqhOp/CuyuFvXy9dgSgrCCJcUUloM9Y/zx7nxAL0jvppbMq0LjX/JdyAuy3hQF9z6Xvx/zDACx/6ccALP/97w0slVKHQOucIfPQzgAAIABJREFUWyqlMuBvA/+Jc+5vfpfn5sA/h7CV31JKPQC+5Jz7299vP35fUtg/KMvovQfu3f/sX6WsI94/vkLjiIOOy2LC5XrMw70Vb4zuaJ3m7/3dP8I/+ye/ynU9YlVnlF3Ei/M93nl0xW2RkUYdx/mGXZtwXeSM4pZxXDOPS752fsrhZMflekxTR7x/esHL1Yy39m753bNj9mc7Ho5XfHB5zHsH13xwfozWjif7t5ytp2jl2Hw8Z/TOis2LKW7UMd0ryJOGq9spv/jOxzzb7nG9HVHVEV88uWDXxbQm4GozQmsBKbYNODhas9pknCzWJGHHs+s90qRlu01Js4ZimfETb51Rm5BJXDOPC371a19Aj1psHTA/3JJEHRfnc4K0I0larNWYTmOdwixj0sOS070Vn//2KXbWEdyFcFJjCh+jnRpYRey/fceDyZqPLg5pqoijgzWrf3DE8Z94xYuvn2AWHUFieHx0y+efHYkEaVFRX+TERwXvHl3z8eUBTRnx4HjJqxcLAUVGEe9XOKtQn+R0TyrijzMZQE46Dh+suHq+x+hoR/lsQnBcsj/fcrseDcCCzKACJ2Cp0hw+uePq+R7JoqSpfET4dYzNxKeo5g1cJSJhHcmgsssd2gewmG2EqjVMOtQyIn+yZvdqQrBXY24lGMhNW2g18VU4hMRgYPR4Q/npVGRluSE/KKieTbDzFr2KmL615Hiy4dPLfcyrHN16lmSpKN+vJeH2QYva3YNIVQYyON4pki8t2VyMwSlU3hG8SlBPCoJvjqjerFG7kKDQdFNDdlBQLlP0OhxkqLqQAJvusCW8jOhmIk3VHbQzK7JbBel5KMmsjyvsdSJS1blFzRrsNkKXGjtvCW4ieFBj72KpSonATDv2fz1k/baoBAgcwVbTzby3c9QRnceiHDgusB+OafcEkCkrg/p24lP5PIhop5bouCT9e2OKhw4bCiMVbjU2cp69lzRS3Smq05boLpRexbE8DjIYdxrSKy+5LRTJndSMmLEhPQsxuaPLJS0V5LyoTsn9knoQ0infxyaAQTc+OAVoDjvCpaT16lJYX7Pfkn+UUD40BDvxK5Yn4k0Nd0rk07FXS/hrYENAi7TXKYaAHxf47fpKlHYq/mLdKcKNugcBjSLcwvbtjnAbeCAqyozkRg/SWV1D8XZL8irCaYc2yqdQCuOe3jD0DqpOBlLFmy3pqwhdMwSf9N5IkwrIsqH41bpUEkq71+qX0xvpMwS5buFODYqM3tPa1+QEtTCFkY8h6JNP24mAAm2ETTc+tdQkXuLssXav1EDD6IVj+1gRbRhk6u1ErmG9EIDaAz+T3Msth0RiLT/JUo5PGdmfoBLZqm4YUm6jnfheJ09l/3Qnkk9RSggQMLGAqvTGV7UYhuTdzduW2bc07ViOPz8Xxtik9/5Ep2HyzLA9DUQhUAgAKQ9ke9mlACwbCFM/JOBmAr7yS8vyvYBwC/W+93HeuKFXUqpo3KDo6H2nXS4gVRtfS2IELCVLJ0m043u/aTuWfe2l3MmteE1tAOOX0vWY3Yh3VPlrKRUwcp4Gb6ZXEulW/Js9Yx20AoabqYS9AL4eRKSmzcTbDrxnUneQ3rSc/ULC9HNLujQs34kGyWi0lc+WLhNViPEgtK8eCWsBf20uCa3lgR7Atw1hdGloc009U4zOLWFh2D6MBhlyVDi0EUDYp8MGjQC4dCldnb0HU3fyu43UAN6kGkXul3hrh77LaCOS3XakSdbiPTQ+8AgYvKnR1lAtAuKNpctEQtun0ppIEbQO3TjilTC5zSwkqK1IyRcBXarIrwy6kbTZnhUPK5HG2kQTlJZqPxy2Ge4s9TxgdNbQzEN046tSnCMoRQJsQ1EVRKuGZi++rx+xDF5KtCK+qzF56IONFGg1sMjhth3YPNVZbHKfWekCYZVdoLxkvBsqRUwWojyQdKEeQKULlchufRAPimEd1RrxWI4TAchlOzCgJg0Jl+LRVK2RLktfRzKwqK9JR/HBOC6LBRR2RiSwfRdk24nk1TOPqqyxo0xqTooKF0fyuGczXZ5C3Qx1LT14/LYQndflsOY1gNjLYJ0TdtI6VBwJSNTq/nnfyTwaIyDQ91W65v5a3DOsv9dj+T2BpnW4tvm9j/+Ayx8UYPn43/zRA8uP//L3BZZfBn4ZUZ5q4H92zv3VH/V+6B/1C/6jXKxTbHcpUWSIdUccdMTa8PJ6TtdpNnXCy2LGr37wPtm7K/63X/tpii5m20rq1xsPbrnejuhMwNVvHXNRTHy6asg4rrkuRnz11SOOplsOsq34C1vNN58+QCvH8/WM2biiqGPu6pw0btm0Ce11Rhq3LKuMk4n4M0/+yCWbl1PUrCEdN7RdwOX1lCyv+ZXf+iLLUhK42jrkd1+dcL6e8PSTI5xTjJIGFTiivKHpAtzznEVasKpSpiMxMy3mO8pdQpS3vFzNeHU744Nfe4u//9nbTE42BKHl+HSJ1pZQW6aLHdNxSRJ1wlQ2AWYXkR6WdJ+OeXqxT/Cg4OTBHfk7K9KsQSXCUEQvEtRew90H+3x4fkT3dCwe0NUIkznOlxN4UMsH62cpnz89JJo0HD5aYq3CpQbz6Zhtk9Bc5QSR5W6bo1PD2+9cEBSaMDQ4p+ieVBzub2jeLWVgNmq5/WCf6cmG3VWO22uwL3KqJqJrxfv55nsXRFmLazQ0mni/4ur5HmhH92wkbFiriVcaPW6ZP1niVjHKKLq9jvCwpJ1a7LSD5xnRhzn5foEbd0QvY8IHBdubHCYt1irSk50wAS9ignVAUCjipwlq1hAW8hYzE0PwQAxU9usz4jstKZ2ppf71BR89O6GrQ9yiJbkTZqI8NbgyoHujgkYTlJr2xYjoOsSNO5Hb/pE1zdfn4gGNLUo7ukVHW0SSXHkZoxpFN+uY/U5IdTaCwGEnUggfTFrcQSOD+FtJtgumrXgQ96VyIyg0+TMJO8KCqQPpCdw3hCtN/rUM1SjUcUX6NMEetCTfyEgvAgnZ0ZJiun5XJOcEDjfqcKFj8nFIeFCiNiHtzJC9DLAfjTFvl0R3Uq+iWvFJOiWhMdFdSHPiZz0/HrH+ciOpm9cCttqJpT3sPMsjA+f60DD7RkS719EcGDn/raI+7og2mnCnKN5tJIxo6qTa4kqRPwtpZ5Z20ZG/CuhyCRCa/W5AfKsxqcxox6vXBqorRfmwo14IOAkqxeRDkYWlZyHppZYAnvOY8pEcc7SWMJ/sQgugOTI+zEgAYlArxp9rZh9qlBEPpsyky7aamWX8uWfXAkd+Jvd3cq1oZ9IbGpbS87h7bIlvAqKNIr3QpJcByY2meNwNYTfNnmP0cUR91JHeKNqxFTn0816q7wHFTphJHEx/NyKofDdoJ2AouRVgNX7mqPcd3UhknLqF9fudZ3/ktdZv+XTMqZOKlIUVj+1GkV45kluo59KxaCOR39f7ApLilfNJo7B7KAxNcWIJGgFd0RZfcC+MXnbpJes72LwJ2aWwUbPPZJCT3KrBc9qHHykDo5fOB4N46Xwlj/X+wsinaZaHApKzS8f0qWX00g0y++mnsH1DwFQ7FoDdTgVINBNFO4HZp8KC9X7ToBKp7fwD8cRNP7PMv2Wp9xS7hxL6o1vZfrR1bE8DkpUTKfxOBmfpjSOohK3rcunNRAtIHJ0bH2YjqZ7JrTBYex/K+di8ed8hOvvU0I7VUA2ia5FYqw5GF5ZkaSm9b3f+sbDx20daGM1U0Y0U41fyuvmFZf6JkRqVzwzTp5ZqTw0SaBMDyleQIOCwnXiw4T2eJhYAWR5oqc5ohcVrxwKcwhJhUQvp22ymcuyJl7F3qVR2rN+IGZ050lvD7ihk/Mow+7Rl/MqQLg3RzpJdW7angdRxLDTjVw3KCaDtMt+1GwnIStZyTaWTVGMDkW7XM00zDRi/ksF4dmckYOiuk3AkJ3Jg3TlGZx31RCai0jtDl2rKReil1QZlIb/yskoL2bW5708tLOVBSJdpxi8a+f7cGLSB7Fo+P9tckV02VHsBUeFIblvS20482yvphIzXhuSuRTlHeRyzO4mIV90wqZJdd4xftpSLgLAyxCuRJ4/OG8LSp4UaqPZDzxgq8lcVNlFMP9lRLyKy8wobSwBQuDO0k4Bo3aEbYYabhTCCykmwDwiYUw7CTUuzl0gliVYk57uhYsT5vkoba4oHKWYU0Y5DSWutO69esER3JenLNS7QdJNYGEStsEmAiwRU9ompqnNYDw5F5SDyZRf4MByl0HUn/knnsEmE3tVEdyVoJKgnCSQUSGtU2fh+UCspsHGIi0P5N08EhObCKgrIrLwXU0Ik8fUkzjOJTusBVPbdmD14vJeS+w7MtvM9qT2te38MgDCQYcjQowmoMESFEhikAg11DbqPWbYCHo0RUPl6/2XPVPZ9lj7cxxn/45z823X3gNS/zus/7jUp7f+//HCLc+7rzrmfcc592Tn3Uz8OUAn/mDOWyRuP3S/8N3+epx+cEK310AVnQxlg5WcyWOtGjuRaC0uxUQSlSHaiLdRzwIlcKF7KF9r0qaVaaLaPHONnMoPWZTI7i4Pq2JK/EK8kIAOxGT5xUGby02uGtLlqrtHGsX4LJk9llT5aXII0xNvYR7mHhXiYoPeLyUxrdXCfiJhdOMLaSal1oIb0wGjn2D6SAc36bQkzCWoGeVx2LT4kZXyghZf52FhmAaOdY/22IrmTbYe17wKzDL6e8kT65IoHjslnsPyi4/A31RAXn13I7LWNYfuGSJ6yS0e8c2xPNaNzy91PaCZPJZQBfNn3WGZz129q0iv5e3wmaYnaOLaPNJNnls1jzeS5pTjWTJ8aNo8C4vX9jHp6I7K2cl+TX4lnqFqIn6g4FG+sbmH5Ux0PfkUPAxNJ9pNzVJzoIT3SxDB+IdKozVtw9JuW4kDkR+VCEgCrhZIo+pX3QoUw/8RST8QfpTsZCLQjzfaRHtIZnYLySJIXdefIrywXP6/Jz5QvtPe+2CPtr5kMPtNb7++8tGxPtaQolk66yiJFcaBJl47V2xJaM35puf5pxeiF3PeRLwFPl/JluTv2Eij/f5tHAfmlJb0Vv9f2DUju1NC3F5Yijdo9CChOHZNPYf5xw+XPJcw/Ntx+ISBo5N4anckgObs27B6I5230qmH3IGb1ruL4NzqKw4D0Tmb6u1Sx+KBm80Ys93Xqu+g6YUF2p3LdTaQojjR7H7eYWHP7xYC9Dw3aOGwgs/7NWFMtNKMLw/pJQH5hibeWu3cFRB/9ZsXy3QRlYHzW0Y60lNYvLddfko7P/d81BLVl+zBk/LJj8zgcfGvT5+L72h0FMjBaiVQx2bjB11bPtJeiyWCl2hN5XnrtmH1ecflHM3QL2a14RV0AkxedDJIrRzPRchyH8h6dPjU+pVKOMVp3Q3x+suzoRgHbE+mdS1aWqLC0owATyQx9ftlRHIXCfOyJfzIsHdlVS70XymDQweqdiIPfKli+n5FfGmysqOZyz4SFdOP1lQfVXkAzlfOWXZshkbJcSLiIiRWji25gj5ppQHbVsDtJBJAVjvS6YfMkYfSq5e79mP0PKtpRSLUn7LmNIL/s2J5GpHeGak+8ifUiZHccsPdhzfZRzOyTimYekVzXlCep995JGmd6ZzCpos21Z1s0B7+1Zfskl3qOsSbxyZvpTUt5GPu+SUsz1t6nKIyQDYWpaj1L1HshAfJXFU4rigcJxZFci9GZJICaWJNetxQnEaNXDdVBRP6qYv12xuisJVo3bN4ayQDdQTMJSG9bdiexJIJa2e9o59j7ZiGpl6GmHQd0qSbaWdLris2bOflFQzOVa9pM5Vpk5yXtJGb3ICK7EaYqLJ10Ayqo/DULWmHQ8vOGoGxpFildrqlmAbNPxcPYTCJfFdGiOkdxkmAjxeTTHeVpRpdqsquW6LaiOs2Jly1Yx+5xRnrdsnsQ4QLF9GlFtYjlM/D5lnYvJVzX2CSk3k+Il8KUJdclNgnpxhHVImT6/7L3ZrH2bPl912etVeOez3zO//yHO/a93e1ud9vt2E4swIJYlggoGCyEiJAigQRBct6B5AGB8oDEExIPvCGIhE0ewFKCIhsriWPaeGi323379nDH/3zGPde41uLht6r2ud0eAo5Fd+SS/jr/s8/eVbWratde3/WdvrPGZhG6db3MsDpIGDzdCuuURehachFcZtCVRVct5fEAbxTpdYXLxJeqK0s7iLG5Jr0sWb06lLAd330Ht9TTiOGHa2weY4qGxVsT8it5fy6XrsPOq2gq14fHmELkkHYQk1xuaA4HVLOY7LKiHcWkL9YUD8bkTzf42FDtpxLsEynyJytcFkmXYtWilwVuOqA8zskuS5pJQjwXr6GLtfgSyxY7jIlvtrg8pjwdkD/d0MwyonVNM0lJLjYo7ynPx2RPljT7g97jaEJthVmUuEEsvY7LSgJorKU9mggrWFtsajCbBr3aYg/HwtpVVkJuAOWEJYwul5JWCtSnY5JnS5qjEfHLJe3RmOh6Q3M0kh7M57e0x1N01aI2Mnnu9kbobU07zcSvmUSoosYNUnTdotZb3HiInWaYRdkH2XCX0ZuN0StJDGtPZpj5FjfO8EbjI010sZS00zhCL8Q/qepGfs5XApCyBFXW+FEuPZCREX9kWcv/46hn4ZTzUJT4yUj2oapF2rpcQ5ZCWcnPqpbE1m2BiuT1vglALCSzqiTB17WksnbexqaRfsi2RY2G+PVGtjMaioy2aVB5LqFBm0KAYBTt1l1VwgB6v/NH3gGQGL3zVuo7YBNkX/NM/l+Uwkp2CbBai68yinqQ2PdY/n9d7vgv/4VgLP/TPwPG8j/7f+ex/LNafqCB5fBTZ/7ef/03OJquibQjixpuigGJsSzLlFf2bmmdZlFlXC1GJElLbCyNNSRRS2wcq0LMMGnc0ljD3qDg3mjBO5cnfTiadZqmMTRFTDKosa1BKc94VJBEluvFkDRt2SwzBuOK6aDg5c2EvcmWg8GGbz87ZjCs2CxypnsbFrdDlHHiTdsmItm0CmU8tozIxhVVETOaFGxWGd4psmFNVYgEwtWGbFKRxC2ruWi60mFNuUqJ8wbnFVp5mmVCPKmFCQsprjq1+FZLdckiBeXFe1ZEkFpwCrU1MBaqx7catHSEKeNwTTczhSS6zkrck4F4qVoFsQctDIZZRNjcyWOh1kC1WuSjV+J3HOwVbG9z8TtkVuS2QWLWpbCqQYsvDaoIKa6VgUq+AEena2EPay2pmplFZ8H75oFpgy8MqjSogwq3DL4E7YluI6lb8UgXoRcvmI8CG1QrEQyApHVuNC6TzkA3sOiNJOz51AljF/bXpQ4ij1mJ1FCXYvCyU4sqhXm0mUgevRY5qx1IvUf3mMslOlBVGlPq0BEnXi1dKtmPRkKd4rXUkehGPGDeeHQtQDHaBCnZoSW5MX2Ko029VMlsDGjfS/W6QCVdy2SCyCt135Fnh5bsRUR14EDL32wu++KNyOBc5InXGmcCy5DLT1OKJFV8YB5TqT7FUzXyvGgrx9AmMtEiM7y7iREb0lmrfUnBNWXw6QGmUPiY0NEIduD759hMQKkpVF910YxEamoKOedei5zSxYjf84Uh2goDB6Br1UtoXSLyUZf6/hz6SJhVXYX9iHbHNV4Lc9dJLaOt1GgAPSNWj3f+NZfQ162oUHNh6iCF5U5yajguePpgINXKpNEufZcQICJPbYc7314SJLs220lMu3RN3UgYU3ojk0SdjFGCsUKNiduln2bXnu1JqDHKZN+yS5nE03XYblBMdeEyuiHIh+VvupFJuuwmJL+GyQkXEkGBPjjJlL6XVHZyUUm3FU9dVxHRyUPlGiSAO/k9WckETZfG2h3bqAzHNGynDaE1PoSrSYE9fQKoD+E9Xd+gbnf7nSw9PpL+yHgNuJ1U2GthMV2i+rTPLsVXJKoC7mRySiR7XaKrvA8VJnqEEZUEV8Rrtw1pyVGoCVoKw9cM5W/xdnfuXKhM6So1OqZfJj6D76324R6xu6ZMLUF0co8Mr7M7r2gXIFQeihe0S+btji3IpEK5t5todUl4/yEQL6o8dTjP7SAcTy37UxzIvck0vp9oUTbIbQeKZCO+Qt34vmdSAoVk4qcNAU7S4SnnorumxZ+o+qTWeqxl4i5SNLkmKh1RIYmwLgqfsdb3YX9dcBFKOizvXvdy7CTMKt4GOWshfY3Kyt9UGySLml1yrBIJs7a+n3SKNzJxYmrfJ7zq2oe+Q4KfWFhAXfu+/sPFut+XLuhM2SCBVYAS9tqUDt16mpEJ56Tz7IrUVFtJae1ClHQt9+N2ZDCFC37K8P494D0m1JQoJ3+LStv/7rWS99jukmuj0srnxnSBSOFviQBpbySlVdeBIbsDhFysPxHYI3Jaja5aXBpJAmzrZIIm1JH0KdNVI12QsQmVKO1OMhq+n1AKVbZSJeIc3pg+3VbXu1AlqToz6KLBR53PU1JgvVGoSipEaFoBgnfWo5yTx8Nreh9k0+7Ce+7WixjTs5CqYxutMKKqDV7QDqi1u2TZbvHeS0el9zsgGepPuuOqVEh+9Ts2UxhF9z0gFYAOzH7X8kfJXf+45c+B5R++/Dmw/OewpK/c96/+t/8RxXVOchWh2lBpgIR2jN83VLPdl7zNQsDC9u5NGspjGaTGaxn05i8U9V64IW92/pNmIgyS155oI9KeLsa+OnJkFyLFa8cSCCFG9xBDH2RbyVxYVN2o3pAfhYj6bt+TRQh2WIsnxqaEyG153z6SsINqT/UD16gU9jW9lQFrtFHiqaq6m4v4o4bPhC0VNiVE8Bf0HXXxKtQRDIXx7QayyspAavma9Oi5WHxm+QvN9twy/NhgUyjPLPkTYaWaiex381pB9k5OVISBVCvsZ7KE8kC233eKWZHCRdsQs7+ml9yUB7JPzYh+EJXOQ8dcLQMtr0Tm1g5V3+8nybDikan2AkNaQrUnMrbiRB6LtrKdZCGvbwa79NnsWgZ/2zNJhS335Iu8OJTE1/JAzkU7kHXrhj48xJSeqKRPHO0GPt0A3CYhjTeR97M+VyQrGD21LF4TcFNPAsO+H+SWK9ieeabfoR/MxhsfAAN9p1znZROJqKyjY9JsqnovVD1RRCWYQkB1PZFjaioZkJUHkoyrPD2DmF8Ju9zmIiWMtnIc0rlneyqDaJfswEK0keORBIleO9zJ6bpqiS5AI14JWxyvZPvdwN1m0tM4euJpc4JXxyNpzKJGiLc+JC/K9WtzWc/mXDF47vu+vHTuJe1ztovq7wak46fCuoJcT8LYh/CQ0A9Y7cl6vRbWefKhJMaaWkJB2lzRjLpBXvjsahkwlfuKwcuQhDrenQfdSu9evO1+lwTiLnymHYivjjDo7/oRlfdUM40J3X8CsnbXRedl63xf/b0pMPXKCVveDDTlgSSyFkea0VNRDEiNgYAMU/oeMCgn4KzNRRUQr+Vat4lsd3ui+8F8upDz3Hm3olIG/Zszxf67VgrRpyJT3B5phi+dpGePVA+Gsrmn2NekCycs8FyAV8cId0CgY6zvJqJ29xFT0zPD9UQx+chSjUWBUhwpBi9dn47sFVRTxeDKsTk2JOvgZQsAMJt76qHqQYVsQ2omugCV7aFcE+lSjm+bieeunBrSlTCh+aWkqkaVDIC3B4YkSFidIcjV6I+7N3L+82vXM1vaSl1H58/rwFIz2A36460n2kpfYNUBpTgcowCqqrHuQaxuhc2OtpZ6GmFjAVwdmOm8htltS5trqolc6OMnFZvTRNZphdEs92Pi0GdYHERkc2G2y33N9L2m99SlNw0uCb2L3lMcRmQ30odoCofNNKZ0lPsR+WUjAElLCAwKtscxg4tGvvNzTZtpkkWLzaX3MAqpqFIL5WlGmvS2DZ8vCZExpaMdmj5ops0F+LlYES+tAJrKsr6XMH5SgYNmHAUAJ8mvqnW938w0AhTrSUy8bmkmkaxrZbGpJlk0VPsJybLBK0W1F/cTDvmLsq/kUNYLS5hF1LOI7FJSW021qxcxRQtaCXtZtsJmT2PiRYPNjOxL7dCtC39LeibYxboHbjYVkNWOhJVObmvMtgHnaA4G6NrhEk1X4aG3DS6PsFlEvKr710vvYyNMZutweUw7SYlWNdVhTnpV0ExT4puSdpqia0s0L2j3BuhyB0ZsHmM2jUhTa6nx0FUjzKiXz6VLIgFjnVS1DeE7ZSOy0EEqvsbW4qYD9LbGJxE+NpI2O99K2I33AvScE4axq/yAHtT52EivpNGy3m2Fz1L0eisJrk0rQTdVLayjEc8kSYxabnow5vNU+ijTROSenbeyqlFJLGCztbvtg/we9qNfjJbHYfeaUG3yiVTY/rEAhFsr4DD0YXaLiqJPAscO7HWpsEqDs7KvwSup4vCaptkBXRDGMkn6oJ5+CWE8/fruJL8CeOdRAcj6u2DzB71u5PyBf/hnACy//Z9/fwDL6E9+yvfxoj1xZClzS/PAwipGTWpcJV9uy88GBi61RM9S1GsbquuMClBekVxrqQ+JHG2qaSegRw2ly8IXtxeQtpWePju2qFrjRy0QY4/Eq1QfyEVeHocZeUVIuAvde6kMjpuZRTdR6OCTYI167GnG9JUgLhFg2AV3dLPhugLlurRCxepVcIkwWC4Rxoh7Jf79LMzGe9qJw5UKnDAy8UpRHEvHXrSSigHlA6MQGKd6JiEoKNieChNTvFaTPU56tqE8kcTCdiiSYylEFwmgLgQUo9ixRI8zmqmA6XomoHf7qKW9Mv0MdQf047X4x3TbzTYKyDWl1DA0Y1mvj+R9J6tdFH87lJCPzQMVugtVv25vBFR0+ybAxlMcS9l8edTNDMpAvx0IEC+OBf13klivoJxpqpmcD5DBaTPesTkoqA4lSKWZ+J4xy192g1nZz44da6ZOwEWpUE48c+pxxPKRoZ55koWwMC6VgJF2QAgHUawfQL3nSK81yqvQJ6aoJ7K9euZDYiIUp5Z2oQW0p7K8Lc2jAAAgAElEQVT9rlrDxVDHkHgVZtshChJpm4BLYXNf2DWbEaohdPABSp1EOvfYXGFLOY5tLq/TFXAHzJT7u5AR6XEMISKtpFV67Xsmq/MtSf2M6pmMaiqya+k7VAHwdpUnCrwKKZCy/4zUDkAXAujLfXmvdScND8mQupXBdXXoGDzTNEHOTPeeDGzDZIRJ5PW6he2J7lmf4kDTpQm2uVwfnUwaJe9pcyYSaJcIC4HeMWtdKXsRytzjlaeZCHAuD+RnV6OCQqSnVfjcJaECSUG07lggAYQuCsBqLNdKV5UUr+V8VqHmox4JE9YMVO9zU06YMZxIfdfnGlMI26QD8yzHInQ8pnJcuxqJZhjYQy+dhC5SIZQFAYuhq3GbBa9aJGC+8/Z51TGFATBqRZPL5zUq5LH1fcX+Nxwqpgf2yVJ8j9VUQG6T77yLEgijejYrvRV2DCBd+n4CrhkIMwNyL+nuK3WYHBHmfff/NtXBtqD6sBpldeiapE+ibDMBwO1AKlNY7RIrleuOXQCsJkxCrT1NupugqkOfotdaQok2d18beiqD5aDNQbcC4LyW68brHTvnzK5XUlcChL3x2FzYC2805UwJe7cSiXtUyv53rKbXUvMRF47toVgFTB6qOzACVktHM5RKmu5z53VnY4nudC3qYJOQMBqbiW+uHZpQCaWl59GF+iqjSOfCxrlYAll06/t1GqCeRr1s2WvxZLpU03XLtpkW1s0TqkkCm5xoTO0CuBfgFZWe8iAh2sgYoANaUidiSJbyfBcYO2HcBGQqrWhzE6w2AmKxnnYiMnUfIUBcS1ppM457ea1MRjlsbvr16ka+F5tpIqAvVtwd4ikPaEUziNCpVIC4VF7v0gibhn0ZRpjSiow31pjSBrAmrKDL0x54dsDbRwqXReE1DpcYXGp6htIbjQvppD4cIx/JcfaRRrdO0k675+bBI9ixZh0YCWE9LpNzSBSYyrUwWD41OwASG3wWCcDUWkJ08hjTOkg05UlO9mwHVpQVttHrcO+2nk6y5PMEb0zwR8aoqglAMhFg66DrlXSjgbyXVvXg1+2lO9a0tRBHn6gX8Xkqr4fAEhqUD95IrSEJIK1jIo1c83S+xS4Mpwv9ueuT7KpH4li8kWUlz9H6k+mqzu/AYhecoxW0Yd2R4RNLeB6xVON0oFQphTcC9oljAZz8EYtW/TGWKpM723AeFase0KpeneO+G3/+YC4/uJzen7j8QDOWX/rhzN/77/5DAH7+9LeZ2wEP4mv+6fpTfPX2nJ87+wqvxJf86uqzPN7u8crgmi8MP+KmHfFxdcB5estFM+FXnr/Fv3n+NX7l4m3+/fPf5Meyj/jFxZf4tRef4mfP3uGvTL7Kl4vX+L31Q/7x49f5hU//Gs/rGQ7Fs3JGqlv++uE/4Rfnf4GpKfjHV29gvebfPvtdjqIVv3T5Jc6zOb9x8Sp/8fgDHhd7fGp0AcBv3zzkR/YeM28HDE3FP3r+Bl88eoJRnh8dfcj/9OTHeTC65ccmH/E/fvDj/OTpBzzZzviR2WM+n3/M3734CSLl+JHJx/zDi0+jledvP/pl/t78S3xtfo8f3nvKB5sDFlVOHjXcH8zZ2ITDZM03VyfMEumlcl5zUw2YJCUfLvZZlymfOX7BvXzBcbzi29tjvjU/4sXVlNlUKkseTW55Y3jJ//zln+Tf+/Ev887yjEFUk5uGcVzy1ZtzPnxySDaqefXwmsNszdPNjJ8+/hZ/74Mv8Gh2yyiuuKkGDKKabZvwCw9+lf/qO/86f/nsXa6bIfMm5yRd8fc/+AzWav76p7/M/3nxFp/fe8qvPH6Lzx0/49XBNVub8Hu393ltfMUkKvm/Ll5FK8+n917wvJjycHDLNxYn/Ny9r/DLLz7Ps+WE8p0Zj378CSf5it+/OGOWlzy9nPFXP/1V/unL1xinFfMi5/pqzJsPXvJ8NeZHT59wWw0orXxJNs6wl265rQZ8+PwA7xQ68kzGW5LIopTnwXjOb73zGucPr0mjlg+eHXKwv2a1TTmYbHj2fI9PPXwJwDQtuNiO2TYxl8+nzI7WKOVZbzJ++vVv8a3FMZerEV84fcrTzRSAF/MJs9EWrTyJsRxkG67LIQ9Gt/z6t98gzRupwvnKKfnbczwwTGuu5yOO91ZcLYdUi4yje3Oub0a8ce+Sbz895ocePUPjuSqGPP34AGLH3sGabZlwOluRmpaniymxsbRO93Uve6Mtz1/O8K1GrSN+6AsfsqpTXv6jc9ofWpNnDcfjNd/58AQazec+/THffHHMv/rat/gnT15ju045P57z+IMjhscb2lbTNhEPjm+YJiW//9VXiI4LhnnNap0zHJYiSX9/j9c/+4z3nx1yerTAOk3dGm4vx2STiurZEGY1+ahinFe8fD4D7RlMyvD97ajriGFesdpkDPOazdf32P/CJVnU8tGTQ4azgu0yE1n4JsZMapGdL0RSr0eNSNcHNcXlAGJHPAw1K5Fjb2/N4t0D3EmFLw2H9xas/+9DqkMLszBIcAqTWM4OFjy9nHF6uOAg3/K1dx4S3xrcoxJba2g0ZtiijYRqtVeZgMmDkuY2FRlxoVHHFWlWUzwb4WMPkUNnFmMc5t0h1bElO9lQVzH+MmXy6pzFYgCLmORki/vOiGZmyY4K9O+OKd6qRD69jSBxmFvxouLBzVoIMmyVWfRl0nezuvMSLlNc5qRCZdaVpnYz6B69NajjEjtPJNl5GeMTh6q11H3stWBVSAtWtAcN2Ueyjc2jlvQiojpuSS8N1XnD+fkNL/7guO+ubYdSdeIjjzuq8dsIM6mxcwnvihca8/ZKzl3i0Mso1Lwoxm/OWX4wE9b1sEJ/lH1Cvh5vFDbxfU+nciKpjhYBFL1R4C4yTCGTZy75Lim6Aze0mJXpZc3xUqjqZuTJLzTbB9KzvPeu9IZuz0R2Hy3upCePBIgOXii2p76XpnaBRPVxS/Yklt7fwa4DefNAJkI7VU+bywSY/uKC8r0JyVz1bHQz9f37SG/CpFsAzaYUtYpqRd6uG0UzlO00E5lYjLbSe5wsZJ0uqD0EiEBxLnU4/WSdl5/rT1cM3017RllUDkH1MxRlULKSMB3ChGx1IOdIaiyCmiQkF2/OpXdXt0GZciOA9uaLluPfMGyPZV/ThaMOeQYuFnVGcaxIr2U9XYWI8vQqhq5uRLX0DPKOARW/erWnGD11bI816cKzOQtdqVdhEiN8NFysehWAbmR72dyzfKSlX3g/dDWGPmrd0mcrOCOTEfW4SyEWdr8Zql5S3S1dwFTH0upG1DnpUtQANqWX9Oc3ToKFgnS4v2Y7pj0KaikvHuVqIrUm1UyTXzucoZ+YiEqZ8EmXTqpMvLDrbSZSWBtDHhQJ8Vr81dnc0gwN0TaA/XCcsouKek+sMPW4q1KRiYxkJYC7zTXx2oqfc9Vg80hUM5npfeAuCrJbD9GmpThOiEqR8OraES8b6r2EeBMCcJQiXlbYYRzYWtdXgKjaiZe3cSKnVcIoeyPAWbdOfKnpDlh1tSHtICbaNuiyxSXiB3aJwWzq3nfrY5HYuiwCpaTKRKkQ8hNYQ61RZSXMZwDtd//OdzOJIP7SwFB24UUEKW3PtEZGWFml8JstapCH4B1h7H1ZCVtprYDVEN6zu+gCeA8+zO+W5X7P4hyuLP/45/wxy/cNY/k3/gwYy//i+4Ox/IEGloM37/njv/UL4r9rlfSj5ZY4b6hvM1SliU622MagXqb4kwouU+ldU8K+lGeWaK3Rr63RXxtTvlHirSYe1KjvDLGvlvA8JV5r8aUpaKe299vFCy2DlaMKd5WKX+tBifkwox16XCqsZt8td68i+SilOrQoJwOZ+kDqHdr9hugmxg4cow8M6x8uMc/T3gNjamEWy1MZXLRTS/40QlnYvl4zeC+h3hP/mstkxjVeSDKni0SG2ydV1rvIfZvJwKkdin+smQoroWW8GmaK6Quz20H4ogbsfsPka4msdyn9Z6ZSgQ2QKP3iQcvwgyiEYMDysw16bchfaDZvNOQfxtjc04w9w8ea4mRX8G2HjvTCyMBhIDURLpLtxyuF/8KK8iYjfxz3X3AuFbau2oN6JhJlm4mEuD5sUZUkYXZVCMoKa1uetgw+CrOq3SRa4lFOkd4Ehm0k++UiSG/kdTYRP1/+UuSzXWVFtFEU55bRB+IHvesxs7kwdbqW45ldB9lmYANdSu/76vxcnVw6mcu5cokkkDZTT3odBi2NDLTiJWweerILkRaW+0HWrCU0ptwXZnT6DXm/q9cd2UvdV2XIcZR97eTgpvKsHsHkA1g9EjY7WYo8t3ueMHL0ktyokP32kQwwpUsvPKZ3dRHdwE58Y550vpPBdhLeNpPPQLKU/b87uBQfo9QxDJ9o4pX03HXJne1AWPXZN3cVF20efFXVbjCmW4nCLw/k/Hbevs4L2knHi2NPfqF27zWRwWC5L4+ZQtj1rrbC1CG59FgRbYI8NZGB0OBC6gtWDxXxJgxMg38u2nrWDxXZlQz4Ok9hVPjA2Mjgx6by2c6uVO9vM5V4/tLb0HMIfaJqfulYvK5Jb+klqVGQ0Vb7kgqqrKR4JiuPjbvAMTk+nRzd1MGDOJDt1GN5fj2W/r9k7kmXjtVDgymlz68dyL4kS8/mNDBSY0UyF59geagk8CmW92JTFcCDl8FmvvPmmjLIXAmf/TB4bwfCVLb5zm+qre8DsFb35Z48fOGEXVbCLld7qh/U6xrirUOHUJ96IqxQduNYPjKk8+DHi+W52ULWFRWSWNrmiiZXZAtHHdj9ru9w9Nz2Pj2bqnA+A5MbK8oDCYKSwCfYHhvpQoxlH5SnBwbxRqSLnUzdGZEOd7JdqS+RY6qcAIWuO1G5EAIXwpY6z2RU+b7WomMiTSMS484e0X1eTB22MRKQkS5tkKJryj05Hp0fNd7KIL8eywA5WTlspqgmIUAn+GflPLneYwcdg4QEVOUmSN0DMCk64GBpcx08xa7vP4y3Xra/drRDYfdVK0ysVxJAZTORrTdDkfiOntZsTxKy2xZdO8rDmPSmxeaa9b2I4Qsb6k5U38GYzFuRJE+jcE+ytHlXSeFoRqZndXW4bjt5s24cNjOhPgKiIvgOrTCuIF7JzkKjK5GpRuuGehZSU10nYXa0mch6k0WNzSLaoazDlLbfH68QaWlpcanpGV5dye+iaogwle19jZKKqkMIUEJUWKq9hOyioJmIedlUjnYYkV6X1NNE/MKlRdcWl5j+PdTTmGRe443GbCX0pR3GmK10UNI63CAWGW1QHumika7H4E2UfQphOY3DDiVYqbteXBaJHHld4QYJelsLIwqo1qEXG9xo0IM61Vh8EqFXpYCgJAbrsNNc2ObKiqcxgMJuUVUjzGPd7Ng963bJrkrh8xi92H5CwuqzWKS6VphMtS2D1DbqAaCqG/FS1g1+mIuUNomlS1Lr8Np452M0RmS4Ssn+KCXS2kEmoLEDdnGEX4Uv4S7oCOQ5SSzJryEZ1q/Xu3WDhAmVlXgwq0q2d0cWe9fz6a2VYJ8/JNFVhWPhAxD9I5c7VSY/8B7L8wf+4X/yZwAs/9afA8s/9XLvszP/N3/pJ3ha7THQNalu+eb6hFcG11g08ybnuhpynMkHYj/esGwzUt3y3vqQvaTgMF2zajPeuT3lM3sv+IObM55dTznaW/Ez997l7z/+LAeDDZ+dPqfxhspFtM4Qactvv3zAyWjNfrrlg+U+r05ueG9xwPV8xF969X2+fn3K9e2Iv/T6e7y3OOSnTt7n11++xkG+5XI7ZJJUxMZStDGNNdTW8On9l/zui/ucTxc8ns/QyvNo75Z3n53wE698wLweECnLos55Pp/wcP+Ww2zD71+c8ZP3PuQrl/fxXuE8fP7oOd+4OeG16TUfrfbIopabzYAfOXlCYWP2ky0bm/B8O+HBcM6vf/wap7MleSQBQDfFAO8V5+MFqyalaiNqaxjEDc9uJrx9dsG7z054cHRL1Ua8Obvk9y/PSEJVyL3RglWT4bziJF9xUw14e/qS//3rn+dT91+ilec7Lw9J05bTyYr3nh6xt7cmiSzbKqFpDVFksVYzSBtGacXji32mkw2NNdyfLvjGN+8zO1uSJQ1pCG1qrCFPGqxT3N6OODxY0VpNUSUcTdbcbnMmecleVvDxfMb96YKbYsBym1FXMXvTDa3VWK84G6/44OKA/emGcVpxs80p6xjvFa8dXvN4PqMoY2bjQl7jNJttytHeik2V4JzmfLogjVq+8fSU0bDkfLrgYjMKjGhGbByN1dRtxMFwy4v5mPpywOh8ibWaYp1ydjLn5c2ENG14tH/Ld14cMRqWbMuERwe3PJlP0dpTlTFtbTg+WnK7GqCUJ4ocZSG66sGgwijPcpnjWs3h0Yrb5QC8wpaG4V5B22qcUzRFjI4c/8qb3+YrF+dUTURVxQwHFXUTUa4TZvu7MCpvNbP9NcvVgCRtUMpTlQm21ijjGYwq6tpgW4MrDTqz7M823MyH5IOaskiIk5amjrDbiMOzBbfLAXFsqauIOGmpbnLMuMEuYvS4IRvUwiCuI/zA9pLqZFRTL1IZQOUtSnvsMpGamk3GdLJhuRrQlhFR1mJbjS8MetjiaoPaGLKzDW1jaK8zfOyIpxXtdQ6jBt9qdGpx6xgix/7JktubEb6ISPZK6tsMYkfyPKZ5UKFjRxRZnFPY1pBmDcWNhFbFoxoTOcrLnOyowDlFPU9RjcbnFr2IcAPH/vmc29uRSNsLA4mDVqFakfGpWY1+nkkg1ahBhfAk7xTqJsFHHjWtMU8zmv1Wwqf2a5FZFkZk/kEGD8K+xu/l1K+UUtETSZiUjx261PjYS+iVBlVrDh7dcvXxTI55IXIyv1fjK1m3LhV2JBNeGKmg8dGdwbUDH3viW0Ozb4nnMgBt91r02uCGMtOlSx0mXyRQqz1qoFGyb6kjvo566Wgn6zdl8ECPLKoROXi0VrRjkarXE4epJQTLlKrv23SRx4WJty4MSVmI19Jzqxx96FNz2JI9k5qfbhLFxTIRqWpFeiVhXm0Ilep85M1YpOzliSXaSLp5O/B9Em5nr5AS98C2hXCoZKHFWrFVPQOpQueoi6V/VFdyiOupgM/0Wpi08lDqR+qZky7UYEVwEdT7DpysM1mqMKEYekk3ingpk2DN2Pd9uiDHvBnL5FcHEF0invAuVKmbpNSthEApJ92q7UgmCjppvovoC+5d0rFpMrkTb2RCK1nIddMOILuRiZ0ueKqbHOvWF69koqXrPG1Df6hNZRIUQujUncAwl+wmDifviQdXKnJ8P+HRefjl/YSgpVqY00623nlNXQz4nUy8C8rpXpvedtJ21W8/XgZgHgX/fhv2KRdPcxcohRJrQ3bjewVBH8AUEuNdJOxluRf6PqtuAvCTEzYiS1bkNzLppYIvOt7K711SvLbSwykTD3Ku6rH6RCerNwLctaVfT5uJBNlr1bOZMkkj2wD6iZd440JAkqQ6iyza0+TCQNYTTToX9rEZmTBZ0zG4vr+3mFoet6n4ZbuMgWpq0Nb3kwIu1j2IEa+2+FF9YAC7EDObaeJVCxqc0WjrgvTVYvOQRmwUKsh9lfOoxkp6cEjdVZXtQ39cEmGKRlhJLwAX5GcnI1Z3ex+VEhayG8N7v/vdOflOqBupG+lDhpqdR7K1u27MuzigY1nvdFECfZ1JH/5TNwIqncNX1fd6MrslgM3vCfS5y1r+s+KQ4NH0VfXP9vw/ZPlzYPlnv/xAA8vBm2f+p/6Hf5dtk3C1GqK1p9jKjFk3QB0MK5xTpHHLcjXAVgalPb5VqMjL9WwVybimrQ1+meAzi4od2njcTYI3HmKPzmTQqROLKyNUrWWQWUToYYO3MjhNDwqqmxy0l6RU40FDNGxoN7Hc5MYNdpGA9phRiy2MJLZ6hbpK5GaVOtSghbXMrnnj0YV4XvLzNdX7E1zm0JWSxNGt3JDcqEWvI9zAoioZ4InPUAYdXks3oTBcwvTiFXYs5e0+8fjISZKq2zGVdiil8D63MphcB6Y4Dh5PugGDoh04TCEBR+51kYB1iw6DPB+YVbMyeONxA/m/HVuihcGlni6pFA/tQUN8FdMOHLrSvdRM1apnofuU0TsSn64g3Y4cqlFh4BjSPAuRjulmJ+UxhaIdy3HV9U4upGtFO3SYKsiS1sKO+Ehmw00lf+/Y3I519XrH/JpK9Yyv8uCMsFO66QY0wkbaoUMXMgCuD4RVjzZhsGHEg9oFznTyJ6B/zJvuy0HR1ah0RffiYVSUh503MwRHBdlZJ3HT1Y7Z9kZ+twNh4LoETZvJwDR/ocV3hhzD7txJ0mLwd2WhS7Em+I66lFcJB4rXqpdN9mmnCpHklXK8Oh+UgIUwAEplEC39bTLwk/NFH1ojITmeZKl6NrXbz2QuvtEubKlnQDf0nYt3U0c7lqpboiIM+oJvtGP4YZeyapOQhklI3rTyXrqE2rtJoHcHoKaU96cbqKb0n0fd7j6XfQqrDoNCJQPlbh3aBlAQBuSqBQlokv2LtvTl5MLsB29msrumOpkf0HdUdmFDeGHy03lIpOxSRgnMSqgSMnX3eZTBngQCqT6Z1BTCXMZ3Q2vMzg8pEr3d412xuW5DEFUZXheYTlPugF8XCqVr+azXMxnwt0NCWmnwhiaq962aMhwDt1MMRIWwdE0IlJLjE0rdy13KKOwUHzbbXQcqgApT+p3UL9pde20AC+1Ajsnd60033Web/vh0kke5voQ51rXsYz0JrG2XNBuul7jYAY+uyD7ZCAiQkDuRerpo9zrd7H7HQzZ3ARx1AUmqv1ZQYV8C8Eo6aWisSDbCQtZDCahqBvIT2LHm3b0zXD9tpog3rmfnO7ApT9ht11TC4je5hBJ14EW5cKzsTgHSXT8Sjre7lkztd/e2EPyULl34DAS22HrpWVxbmpFIJ5WT+12XmtrmAn5043eMa7v7jum8txLGE15/h8XqQI98JzjqWRTSgMXPKKBR7tndfbJnOc3u/vzdnxMXOhmlN1F+N4G57D4r2oak1k2Lj7V4L1sJ6tG1+x7wJRejMNEuBOuAMKEq1K9I1yNo69BFix3IY+0w6r2epmixmYTvqE6OeqdD0qUiJb3Lbtos2kk5lbC+LtkBJV3bXTqqkzTYDrAJMFN4Ix7Pu/uO9T1gk3RdLUFCHaunlKyrdZLq2vc+ipcTpXopqzdKGMvOi6nZJcB2ATxtl2br+vX3jJ8KnZUEcGcDIOzSYGH3mrvj+S6M5+556rbVP0eLjJVuNXcY2K7GJIT9+A4Idl7K8HeUlmTZLmQneDhV59Ps3hN8ksn8rsV7v3vNH7f8C8JYPvqP//kDy2/97e8PYKn//96BP82iFFxuhjy/nnI2W7Jdpfxrn3oXE1maOuL4YEkWtzzav2VTpJweLNg7XHF8vODBg2tU5BjvbUknFVqHma1Rw/7xkkdn12hjefuHHjM6W5NMZIbEzCNMbMn3Cnx4TX645Y17l6TDmnivpFpkkDjGx2sevXEBieP8wTVtGZHvFQIky4j8SYQetoxHBef3b8iHNX4dwVElg/9Rw3S2JT9dk51I9xKHFT53lNuEN370Y6KjAn9Skc1KouMCl1v2jldEZ+KdHD9Y4hOH3q/IDgtG95cMTze4w4b4/gb1aIOdtbhcWAhzWggLAeijEn1SYu5vSV5ZQ2bxsUevIkxq8Ynn6O0rdK04eOtaQGKpaM8q9GElX/alYvjlAd5IcbspFfZeBeeFyHUB7kknGtrjT0uUVez90BUucbhxiz8vhZVwEoCEV0zfvha2w4LLHM3MYkcOO/C0U4tLPXbgsCcV9cMamzt0KVUdzVSem11q7Csl8UoRrzRe+zAIFR+WHTgBQlaAZnXUEq81/vUNdmgpH9W4VOS13tCzPeIpUdTnNfWepdmT/alPWspjS7wUcNnmUlyva0XzWkkz9pTnjcyAl0oAT2BlJHVQysjjtaI8bUnnUB1YykNHveeoDiz1nqU6tjSjLmnV00wcLpZ9azNJCC0eNMQrRXViKY8t2aVUZJhCgpVcIn608kgKxrvZc90oilMn/+5ZbObJrjTlsaMZy/ks77VkV5KyLAyGPJ7dKJqJE7n2F1e0A8/wiWL9hsh3instzUiSl5vPbEUyO9glG7vY00wEGDQTx/ZcvuCakcMbGDyXSpbtfUd55Nieeap9kVduX2nIrhXFiaM89GRXHt9VMwwFXG3uO8oDeb6PoB5LKnC159meO2F39pz4qNYhVXno2d5zfYE7elfd4WJZRwcehTkQcOeMPLc8dqQ3nuzSU0/pE3SbsWx3+aajnkiCcbLqUpA91cxTnHjqCaxedRTHfgfypvJ4Mw7b2Be2KtrK4LY8komQaEvfu1keKNYPZd2mhO09GZCvH7pQdQPVTI6bi0OacSbgtB3uenhdLPvqIyhOZaBvc5Hv1uNwbIbCeMzfDgNIL8dle08A4fxtYXqKE0V5SF+bEW+EMbKpJAPXU/l7PVZ9IrENQC3eeFavCFBrByKrNqUEWzWTHXiLCli+DtWBDObTW5HqNkPF8nXoQqfqsQreLCiOpOu0Bz/O9wE9LgQdbU8VxaFMhmTh2rCZCnJMOS4SAibX9vqBfFZMLdLndCFpt93EVDeZYAPQjddeJMdTkc02Y8X6vhZAmMDmXPpry33dV5t0k2fre1rSixuoJroHuOWBpOt2kwKuA6uZBFN1kxam9iwfGVb3NduTEGCzL/67rvJifa6JgyS4nKkeZG4PJSAqWzhh1xYugMadD7GeKOqQBFzuyf60mcLGimqqqSa6B2bVRLE5kXVuTjVtqsjmlvU9kXVWE00zUDRDTbEn0lybqn6Cpgs+6tJt66HIoqup+AvjQs6dKcWTqFvP+lzCSlYPoh6UNQPN9tiwPTTCbAW2a3sYYRONTTTtQLpUXaSIto70pmF7JGxZcSizoMWhoTg0PZDXrWdzLyG9bXGJolp9r48AACAASURBVB1qin2DzZQwtUPpy7SZ7Lf4IDXbkxiXaOqJoZ5FRJtWEm9bR7UXEc8rysOYOqT4NpMIm2oJQ0p0SFg1EoIUSVCQrh2bs4TtSYKpQl9wAM0u0RQniUzMDaRnVDmPHURERZAuDww2NaxeHaKsp9qTkKHiNEM1jvIwk6qP2oUwI7n+m1Ekz6kdzThGVy2bhyMBkBqUFYDajmLaYdwnybrEUO9n2EGMSwzFmfR02lFCM8toJik+CiC1dZjOH5lF+NRQ7+c0syx4ETV2mEpXaBZjh4l4IpMIl8f4LMKOU2EeB4kATY0wjSFIR0KECCBTmD6XJfhI43OZxfPDDD/KRaKaxbhRLt2YmSSqEhlIYkmdVQo3GeCTGDcegta46VD+H+SqbjwUiaox+CQW9tJo+RdqWfxoAIMcBjnqzr/e8xhFeOdQUdT/wxgBgMYIQxmF92ktKkk+CSq7wTp8D6j03vf/ut//yMV5PpEi++fL9+3yA81YDt888z/63/81BnHNbZkTa8cgrrkpBmRRi/WK5y9nDMYVWksylVaSJAvQtAatHd4rbp9OOXp4y+1iSLtMMJOaOLZYq5iOSrZVTLHKpP9xnRCPapxXorKwcgPU2hPFlrqMGI7LXn6oFDRVJF2V2hOlLcZ4osiyWQizmWQN1TplMC1oGkMcW4oXI/SsJopbAauRIx9XFKuUbFRTLlN0KiEczSrBDFtcq/CNRkVeAkZaTZRabG3wrTCz3eSWUp5hXrFYDdDKS99lo1GpxVsF4X2hPThFOq6oXwxgJt2Q+UFBcZuj8xa3jYgnIhX0uUUZh44deIVrVT/FHKUt7WWGTzx62OC2IluLJxXNrUSRmmEjYRqNBiMJuRjR9ehVqJUZW1RmYRlJj2Rmd5K7SuEOGvzWoGuNyxwqb2HRSULCBeTBxy7I+wLDZgI4TC1+E6HHDX6RyHsqDXSMbUitVeEY+SiwwcqTXUSUpy045P9njawXiG5i2omV5wYG2uXCpKpG4QZhZrcU5lg1AobbicVsREpH5EmuREbY5gK8bCqsuI9Cv2UqjLHNHcrvui+FvZRuzexSU57IwCgqJKwDHfyzThCyrhXNvjDZbmgxQZYZrfSONQgz9Xf7KtuhAwPRsjP+y7Gyme9lZj4S4KucTA50LLUpJdW3Yz+6Y9v3Vk4kZMTHQe7XMdpjRzzXwXvo+15Lm3l0qXpGWbWqn+HXIWAkWgtz2+YCXIHeswv0U3Adm9szw+HY2SSkOC534SnJfCe7q/eEXdCtvPdoE86ZEvDsI096bWT73SR0YDGlp5Tep9q9ru9B7BjykBLqQgdol8rsYtleMxK2J15KFVE6l+NW7UlIi1cCProaIhuurY7ZUoFVU1ZYvvJQ9Uxax+Z2LJ8phUlrhvTnVDyb9MfXZr6XUNp0FzbSMXAdI4gWz3A72IGsbpG04MBeBxCWrEKoS7QD9H21Uim+73j9SUUByPPitSQbNyNhvIVVkueZYpfInN4GmV+0Y6JsKvsJd4Jo2K0/KhCWOniXdR2Om6ZnbVW7u0Y6pYFu6atlOua879is6MNgekkk4l+tJyrULcl10OZyrONNNzmg+p5QU/veK9r5WvsexyZMECTCLnZsWteX6CJhZvruzpBCjKdPKjalnPsu/Rh31yd859rt+i/ZnetOMtpJNbtjBbJ+Fwv4NI2cW21l3TaRazoqd/7Vrju131Yt9582VUTV7v124TVdDVKnSiAA63grYTPSlSoA0FS+T2f+BHPZ7Dym3bUbbx3lzBBVPrCFgTEN3tb+2leSMCz+1vCeA+gEObfd81RgXzvPKypcG6nc26Kt6//epQR/Yr/C850JYVTbkAqshTHuvJ+dz9dmmmgjCbySEqvJbmqpMBlLh6WockI/ZSSg2pQueFIFFPeJubo7P0EeHFJufdivzifdJf5GW9szp3erfjp/qHwXWWF4ofeH+igkLVsPdzomJa1XGE9TSseljwTA4/2OzQTQgYXsgm0C49wlz6rqTm2Hczt2s7HydxtS6BuLChUjPbsciXdTNXbHMBotHs6QSOv7pNeoD8mRVNXg++x8lF2ybrcvTStptNYJ82gDWO0GhXCHXQw/29CR+V1/93WDiowwmR3g68N5/I6BtPaTTOr3bOcPZy//yOXPGcs/cvl+YSx/oOtGJknJXz3/PSoX81vzR/y10y/zzfIM6zW/evEWn5++5F8++Q6fyl/w33z9L/Nffu6X+Y3VG1Qu5rcvHzBMa96aXfC7L+/zN/+lf8hptODvfONn+Zm3v8rTYsZZtmDeDHh79JzKxbyzOqP1mp+YfcCH5QGxsvzO9UPemr3keTHlJFuxalO+dX3Ev/PK7/Hb84cs6pzP7T3j1x6/yTQvWZUpbx5c8urwmq8vzpjnJf/Boy/zvzz9Egf3Nowj+VYdRhV7b2y5rkc8KybczIZcrYfsD7ccn7xgHFfkpuEPbs54c3rJ82LCKK549+qYzx8/5+lmys+evsNvzR9xVYxwXnG1GrI/2koy6dNDfvqtb3FdDTmfLBlFFa3XfPv6iJPxih/ee8r/+vUv8trZFS9XI87GK662A9QZ/FtvfJXfuXnIXrZleL/mw/U+j69m/IWHH/Ob7hVmky3bKuaHT5/xZD3j5+5/hb/74Y+RRS1p1PK+PeTkYMmPHX3Ml1++wiBu+ItH7/NL3/gRlHbc21+yGGZo7Xg0veWjxR6312NOTubiOR3f8u71MQ+ncx4vpxwNNxznK749P2K+HlCuE+6d3mKUx3nFs5czfv7zv8v/8dGn+dLpY55sZlysR7ROk0Qtt7cjTo8WeK9Yl6n4FMuIw4dzbuZDDl65ZVMmRAeW9TJnMikw2lHWMed7Cz54ecCXHn3M7z+/R/l8SHnW8G/86O/xKx++xdmnlhzla755dcz8xZgf/6lvcJIu+frijPPBgl//6DX+yht/wONij6+/PCWJLMsPZrhJy+xwzWab0jaGLG9487OXbJqESDluy5yijmnXKa/eu+Tx7YzJoOTlyyneKV55eMmmTthWCWWRYFcxo5M1bx5c8gdP7xEnLeVRgjaetoj4zBces2pSYm359tNjtPGcH855fLHHZFTStAb7zTHNec3h0ZKb+Qi7jYhHNW+cXvLux6eg4N7xnBfXUw5na8ZpxfsfH3N6dotWnhfvHIvceVLjrcJVhlceXfLheyecv3LFi5sJo0HF3qDgo4+OyPcKilXKZG/L8nKEOmpRkeV8tuLp10/QpyU/8+a7/IPf+xzptCQB3KHCPhvAUUVdGdJJRbNKcYlmcG9F9WKMyixfeO1jvvLOq5AGidGxQ12kuMTjZjX7extUSNl9fjWFy5TJa3PmzycMjjakcUtkHJcXE1qvGEwLqg/GVG+VjMYlyxdjeFDTbmJGhxteny5478URnz5/zovNmMvrMZ99+Jx3fvsVjt6+4uJqQjVpSQY1edowfzFGFwaXOdLPrdg8HxNNa+qblOR4S/18iDqocI0mukiwI0d+uqZ4OsJnMlmi9ureX9lOHNP7C1brnOpZhj8t2YwTfOIYHW+oyhjz7pDyyDF4sKL+eEx8b4P71oj6pBX/ZZjcMaOW+nFGe1JBaTBrkbKbs4LmZY5qpHLI5Q41lAmd+LjAvzfEDgTwSxqpZvvpCnUT4w9qoqcp7ciRXRr0FxcUz0eoSuEmLWXk8Y0meRH1QVwA0Vr17KlqhclObw2b16WWaftaS3wd0Q4d0VpT7QtQX3+pwDzJRIp9rSleq1GFkUmXSpM+WNO+M6bec/jEES0iuTYyCRPb3hPJu3LilSzvSyVTfV8k3TaT97l90KJLmdyKVjIx5I0nf24oH0qwWHFuGTw20od84Pr01+TKUB21jD6MWL/aktwYmvsV5nnaS2KTuSIqJKjMJV4mHYDh0xCC1tKHetlM9s0F31s9laA31U2ShUmH8WPH4lRRo0S+vlWktwLg66moJUbvR30vsDfyuupA5PLKEzpSPc3UkdxqksWuTkQ5CdLCQ34h4Vz5S8/iTdnH6Tc11d5OOu4ikSOaMkzKbKX/WBJY78ocA6BtJDzKa+kdNpXGxSFEq4T2ALYPLOmFEf+oCh28A7k+TCnhVc1EUY/pO5O7WrB0DvNPKQbPEDCjRP7tp13qqsbmBMAOi0859r8qg/tmJP7Dck9RzxTxUkCOqVQvXa6nwqjGa5m8GT5zbE8MxYln9i7UIUCu63btFBGmDlU5gbmU3lcZtC8fadKbkGgburfTpQ+qCgncajM5RzYROfr2yBAVnnqmJFzOQLpyRFvH+jyizRSDS0VxoInXnvzGsrqfUk0FCOsmgLsw+RCVPlRZ6d7DXE0iJh81rO/Fu5CrdFf102aKwVWLU4p6In2d3aRgeRDLRIWSUCYQ0OtN1MuWmUbSb6pBVw6XmyDJ3fW8qtbTDoQljgobKmDiHWsc5L82VJu0uSG9FQCtPNQTkfWKlDghuS5p9rMe1KpagF89iUNPKT2AVK1IfKNFJXUtdduDVbIYvW2whznRvMBOh2AUfpztbAl1ix8k8jOATqCX3eqqwaUxRFo6O42Wns6ygSwRcNfJaQOb2Hkr/TCBpkUVIQE2PM9HErSlIrOTvK42Io31XtjLtpX5+yiCbSEBPVrhrQvJr3fAZLe9uzLc7x7sf5cf808DLL9vlh9cTu9PXH6gGcu9t4/83/nfPsPvrB7xrcUxn5294Fkx4aoY8TNn3+AX3/8iP3X+Ad9cHLOpE7KopXWaFzcTkqRlf7SltoZtlfDGwRXfvDjmZLrCecVhvub10RX/4MPPUJYxg0GFAl7fv5JB8maC9YrWGm4XQ37k0cd88+oYox2fOrhkWWd8fLtHbCzjrKJsI3748BnX1YBvXx9RFAlRZDmdrbhcDWlbw739BYsiY7XOmYy3zPKSi9WILG7ZVjH3ZwsuN0Pe2L/ia8/vMcorFqucOJEPfLFJSbIG2xryQcUwralbg3OabZmwN95ycTnh9fuXfHS5J5NhtSHNG+o6IoosbRPhWsXh4YrLJzPiaUUzz0j3C+qLAfffvGA/2/JsPeH+eM6iznn/8RHUGjNu+KHz53z1/fuY1OKuU37+p36TX3v2Jtc3I7yXGgYAazVtbXh4esOHHx+RTSqU8hTzjPP7N2yqhG2ZCNO7jcgOCt46vuDrT8945eSa9792Tnxvw/F0zc1mgLUSOBPHlu0qJfkwg0+vZFutwd6mjM+XLG8HDCYlxSrj7PSW5+8dMb2/wHmFVp7FR1N87DGTBhsYypMHt1xcTtCxYzrecvvRHn5gUauI7HxNscyIspbZZItSnv18y/V2yNXFhHv3bnj2dB+1McQnBVnasLwcMT5as1lnaO1xVkkITCJfmvGgxhhPljTMb4boRYzfr8kGNVFkWS9yhpOSPGm4+nAfPauxy5h4r6SZZ3LD8hDvlzTLVEBB7Dh9eMOLjw5kBjZxDPcLto/H+Mzy4JUrHj89IBtX1GXEYFSxfj6SQdfK0B42qLURdrjSDO6vqb81oTluODmdc3E5wReRBNzUhjhrd8e+NJjMir/ZOHxtMEuDO6oZjCqadya0g8C47tfCxlSGfF8Y8XhU08xTyCz5uKLcJDv2edLAbYJuYfD6gu17037w2kuttZiy0v2C+nKA116O1TqBRqLtSRzxVYzNBDw8ePWSVZmyWuf4i5TkVlOeN+IB3m+hEjadVhEvDbPPXXHzjQP0/S1NEZM+Tqge1FAY0kP57OhS4Y7CF+IqFk/URtMOnRzXWgvbPLREt1JzES+1sN8K1KCVMKaPM2FSBr5nqKK1pjprSF9E1DOHz2V9PpcnmBtRBtixxSwlpdLFHv//sPdmvbJlCXrQt6Y9xHTiTHe+mVlZmZVdVd3VjY3b4PYgLBoJnrBkCQn8ZAy88B8AI3j2O0K8wC9AQi35gZahMeq2e3R11pjDzZv33jPHuKc18fCtteNk0pPAJWWWOqSjM0TEjrWHiLO+9U1lYIjO6YDqxxWf+6hH8aMa3TOL+lOT5LoS/bkft3f+aI2bH5+OHi9pWQVSvtFJXhwRlhai0VBbKgLKG5mYMk4wc7rxcEZPNQCy+FbALQKKGwk5CPSnAWFpgV6hvGCdSHGtYI8DqjcKbhZhTxyqzw3sIjBp+zigvpAMrAnA8MiieG1Gb6ibEfDkGo7ujGxueN7B/LAmMOzI7OrmHru88Ji8YCeim6b7Kk7Qi7sEcmumMYtANjgzjOWKMvIogPlHEtv3PaafKtgZUF0TuLQPmWo8LA8sb679cHWk9PxKws1i6saVGBYEjDL1/IYiQjXsKy5vJbqzgGIj4Ys4ArGoOf76NdnZ4ThAtQLFJqfqErzrnTiw2BNwW3cS9RX9sK4ig1rdUBbtS4LJox8oNE/ISGd2kceAwKl9mFK050D3wGH5fc3e1AVB5n0g0i/Focok+3R7Sp3LW8qcQ0F5s50x0Xn2IjFYijLv8o7ASbfctq8IFs2O0u36MjGfqTbDbLktsycAtnOGMbWPImafUs6t9weWkX7hDKgZoBM0xtcUiRW2NVlul/php6/iyNi2DwSqG87HhiOGLvkKqK8imodMK84+Y19Qlq0GglWzO0jKTYOR9VQDFxb2D+UowZ698qm+hEE57WkCkAmUZs/r9jmrTKKkYsLsyQyaJqA90WNycL+gp9XsAnZPNPqlwPwzDzuh797sYkqJ91BDwHCk0c8l6hvWhsxeDeiX5Dhyr2ux8dg+Myi3EWbnEVLqcHXH7Zp9wLBQqG4dhjmTdmXattl7Xj9tSr1VScrrAuxEj6As+z5FjOiXhv2qDQPgfCWhujAG8CAziUisqA2wC436sy3CpMCwLKF3NqX1OvjaQFqPYVnCbC09olqO21K9JwgMgJ+XUK1FNIoAsdCAC5C9RZSSVSKDg58WUNsOYVKQ6bQesTSHypDMTt4DYaKziBVzPUQ/8DGFIQsa6F0dw3u+BCxHP2ROcs11I/nxKbwnti1ZTaUAqYCQH+8RrWMabLpfKMmAn7x9gPeFCGE0Yga5f9ot3nvO/8fbV4ax/C9+Bozlf/WXjOX/75sUES/6U/xkc45fO/8Iv796hhAFWmvwcXOGRdXDBoVSOVwNU8xLsoHfenwJLQP+6KfP8N13P8dK1Widwd94/jF+vD7Hq3/1EPY7EhNtqSpwEvOqx3eOL3DRzbHQZB7rgsmXv/D0DX7nR9/Au29d4s16jp0t8eLuGKWxuPv0GNP3rnBzO8Nn9RI/ef0AQkSUpcXxtEVjDZ4sN3i1WiBGgaO6g5IR+67A4DT6XiMEgeZmAne0RdMV+N0Xz1HXA25X0xFUxigwnXfoOwM/KPhSQoqIbjBoricwiwEXnx8DOmDdVZz8TgeY0qE0DkfTFjfrKYSIePZohc9enmJ63qBtCoiJQ11a9DriajPDXVOj//AI5q94vLk6wmzZQoiIrjP441ePIHWA3xkcv73Cb3z6bbRtgcWixWbDnod2VeHR0zvs+wKfvDinvEgF7K8mkHuFy9UM7rqGOunZlacDursKf7B7BrEx+ASc0AYvcfE7j1D+4gr7qwmlufsCRW3RP1LAroTcaIQiYPlsjdWrBYQVKE48WhnR9Oy6Wn2+AKoAMxkQ68DJ8psSmAY8fOsWIWk+pQy4vVyw561ywJVBe1fzH9GgcLtigNSuLeGchNhqvHp9DASBOHewbyZwAVi+u8LmoyXiyQC3M5g/2mLnJTswNxpOBcQ3JTZFRPl0D39VoF602L1cQJ70mB212L1YoLUC8lGP7z1/id/76VsIXqG4VvRHnlkmmKbQnQCJy5sFE0t3BUSn0LycUQo8SLz84QOgiBg+n0L2Avu6YD/eVsGdWggVAKmgNhp+7rG/mUAWEbAClx+fIk4cyguNwQvojcTwQBK0aQI2u5BQe5WCZALMRsLGAg0AZQDxqIP8tAaMx/PzO7z+35+hlRFyqyAuJ9Am5WB9uADeps9WOCAGgfJG0p/6gyVgYkrbjJi80GgfUY4lOwFczhDPPPRWwfcT6IFBRqGOiJEpoVEAxa3Gxc0jDKceaiehLAEGosDshcTeGfgnPcRtAbPhpOv2B6dQvYD6/gzujJ4x84b3u1u+rj91kHcFZdcLC2wMJaqLCNEq1BcSzVsO5lYzxVQISp8jUNwqDCl0zM4DzFaiWEkETbYjmAgxSJgdZ9N9EaF2Ek5FVG80dEN5qbUCkwt6FH0dYSf0TVc/qVLqpgBeVAxfkvSbQkaEImL6qUL7kMe7+/455CMGLw3LA8DNFTrSCujXJYYjTnAjElvlKd11kzh+lRdkA8s7+iGDidBbMiztg4hiJYF1mWpoALPTCBqwR/Rd+grQK826m5qpoNU1J7WlI0sTL8yY9llsBIqVSiEuEfVlhJuyUqgJFXQD2AWBT/Ynlit+BlTXmgBuRrY0poCk4u7A1MlBjIFa5Upg/5TnS1qgumA9VVRA9VqN4VsAF0NmL+iT9KVAdU3wVnYMPhKOIE2n+hy9J6iSA//enZC1rVYC9U1A0zHgrLqSKO9YvwMAi08CulMGg4kAuHnE9HOZqo+Qaq14LoflQTasWqC+lKzJKViHolqRgrJ4LYRSoLxTKHYR5YcRm3fI/kWdpMoKye+agnCCgN4zmCafg1xjQvk8E2WZ7koGlownk2nL25iAQpaiCsw/jaPsOWhg+jnB22QbxgRT3RIs6pY6b9OkUJ7ZoaplWCQGryJwY4ck61PKdUCunSKYizB7yo11Q5CmLCWzOaQnp7TWl5SkNucS9a3D/gFBmt4L1DcerpJwFeXF0zc8DvOX6fkh1b4YiWrFY9ofH8Bt9mWqPiYZK38u15GgbEqrwDCTKPZMeFV9RLHzyA30+X06/ywwBdYwvEZ3EWbPwCLdH+S6kwsHN2EYYLUK0ClordzwGImQzxtDj6qrAVEUED6mcKXsofYACBJFZE9msXYEOi0QtIFueHzMxvK4pn0tVgOiZtorwJoXOZCphI8MB9rbMWRHDim5NYEc1RFQqc5TEhs0Q44ExsAg2XuG8UjKvM3aws+Z0qZbdwCHLoyyWuEC9KqFW9ITqe9axNIALiAqBRE8ZOdG6avo7CGMCJTRwgMIAbJ3EG0PoRQlrUZDtAOEFAR9OfwnS01z6E+bZK5a8W/dMAYaIQQyqllG6+8F7dwPBBKC94d4CPuJEbAWwhhEkZPMvihrFVWJmOpORPJ04kuVI0IpQKWxmC9BkvtMZQK+MUYC2a/zLR6sEj+Pt681Y1m/9yR+8E/+IbrBwGiPCOCt5QpaBPzBh2/j2x+8xI9ePcT5yQYXPzrH5PkW3kuczPcYnMb1yyX0IjFog8JbT25wuZkBALpXU8SaoTtX6xmcVWMNQVQRYuKxPNlhdTdlrH/kJFeZALcpAB2wPN8RjFwtILYpqjmFzUDHxCxRwy/nFmFvoNcK5fsbNLsSZW3R7QqgV4CI0GsNd2ZhLg3ssUOx7FmpkGRhcqO5bRMgTEBsNJaPNyz1NhHlpUL39gAM8pD+qtIEcqMggoCvA1kJAZgrM/7z8HUgk7c/pJNGAbhnLHrPUrnJZxrNNweolYY/Yjqt7FlIHgXGNFRfR4SpR/nKoH86cOwLh+KNQbERaJ4E6C19ce0zh+q1poToQRglBFFHzD9SaM8j3IIprnpHBijU9NWF4tA1qjr+Q8jevvpCwi4iJp8nyVTH1NMIoFiTTYmS3j29lUlOw226RUD1WtFXGAHp6LMTnuXiw3FM6YypHPxWjB2NbkowIAf2FrYPA8LZAHldoLhjl6RqBKavItYfsKsy+xezr1F1AuWafYq+zBM/Tsql4+OnLwV2z5iEmhmY7pxVCJmJyAxSsaF8sboSsAuMq+WhYIn5sGRPqbTA7psO9ecads6gF9nn4BFOstghh3HiJSL3e/Ka/qruFGMfZ17ph0g9mNXBZ2V2KW009SOONQFTjAnHAINj7PTgX8oVA0jbNvuDL43l5ny93IuZPVu+wKFDr02JsB5jNUF1kwJxIsaU1Ch4LdcXhwTNKIBhyYk4wG0PR9zmfWlif5oSdhUnz75KE/uW12iW/rGwnmADIDMkQvIzJhkcIsb04lyLESUwueD1kWVz0iGF02BMz1XdoTqBwIjsjZvw+JUrntfqmpN/4Xne7ewQYAOQmRgWSV4WkJJmye7kscqBMjRWY6QQnZosgG5iCj4SqVaBTFR1y2L07J+LkpK3PNHO6bRRcEy6jSg3WQ6ZfIfpMyMzb9KSWSpXcayzEJ4AYZizDqFIUsHciZn9jnZ66JJkF2scPYnDPAXDJJ8kwSUBC4Nv0rFxZK+Cwdj7afZIXsZUMi+S9y8lpUbFY2D22TfKv+cgG5u8ptKT0RsW/N+iu+R/TNvLFRTFNqBfEsiqIabtCxRbnlQRKOuUqQtTWnZe5k5OMljpPafpa6Q0lF6/6s6jOdcj6FE2oltKFLsIxDhWS7iSzHEU9DkiklVU6TrMXZwmdahKxzGUGzJvw1SiWnmOMZMlKYwnaJ5TX/CcZgAZU42ELyS9h5WA2QV0xwQ2Zudh50x8DZr35Z7LqA7XHo8ZazHoNQXMxqE/MXAVuzC7E41i4zEcaUgXUd1QRulLOXZuqiFAdSHJMCP03o+gzE40ivWA7ryE3nu4qSLojhGyD3BTBdUlgJR+z+mjsqe/T+9d8isKdKcakzcDw3pK+iTz9SUHBuHIIaC4adA+m8Gs7dhpKWKEN3JMjs1eSWkp99R7B+ED7MyME+fiao/+wRTKkjFUfYBMDJ7eWwbuJE+iHDzDbKSA2lu4JQ3J5q6Drw1CpaC3A0Kh2Ps50VCbAWFi+FyBFMhj4afFYZsClJgKQDUEmKFmCJPoPWTTIyzq0e8qrB+rO6Jm+qze9ojJryish9y3CEdTRC0hWzsyh1HL8fgLHyHaHmFWcXEhV3UoOYJQOE/Q58OBRczhOrn6I3kio9HpupOUpubnWgeUBVnEzErGSNlqiajZ4AAAIABJREFUTpwVXCAQ3T0ZaQgEfvkWAyAkvyt1+Lv3ECa1E9z3VApJf2f2awKIw3BgPzNbmYJ9vnzLPsz7P/+pmOTnqcfyyfP4zs+Asfzhf/3VYCy/1sDy+BfO47/zP/59bIcKLkrU2qKQDrfdFEZ5rNoahXa4vF1guWgwOIUIYBg0lAootMfgFLyXvO6dxNGc7JsPAne3MxwtG3SDgXcSpnDp/SEhRIRSAX2vIQRQFA7OKXqXnYI2qbPOS0gZYEyqEklhPm1TQCm+EW1jIAsPqSK84/K+TFUoSpOdKUqHYaCsNXoBpRk6FAEEKyFNgN8UlCL2GpARceCHoJkNCJ5jK0qHvjEQKhIoqywtkICMMJWDTfdLk3wLVo4BPpARsaHk0e4Nu/z2BnJmEXoFMx1gWwOREnNjrwAvICYOMckOVe0ZMrTXo/wTVkJUDP2JqwI4YgosREQcFEThoUw49A1OHMLejHJEFIEMmYjpb2nMJgC9ghgEYslZv/AJYKb9E2UA9noE2RCA6NiJJzr5ha49YQXi1HOBIbFJ9GlwEhcLLkWprWJnX+khdlxUiJrblw29c8IKhhi1cgxZiUWA2rFyRe3ShGvmILea9TNOQDjBBYQyQK5ZxB0VECsPBO6falJwT/JPZYkhkJiDIu3nIMZqEtXJ0QPGICMgCgb9QCQAaeIYLJJvuqFML1QBeqPg5wFqJ0ejRNB8TizSeIJIZdcRxR3linovEMrk94rs/tNretLGrsDkK5MDFyoQUrVFcdg3gvtDHxsnYAR/XDVn1YxushfpAEh9ddhODhO5nxKsOo4RgcA+FAcZWw7PCCVBeZbh5ZoZ3aSFCkE2L8oktTw6yBNzDU2UcawlkAmIjvukDwsMY8efScEvPh3DFLKTFzx4TgGV9jmH5oyhKTHVzYBjy4sQukngOoXK5NoPX3M/VJ+AZeA2csjMeEzy2yYrqxJ4ux8yk6/7MUylO4BqXx0e5yYcc17oEhHjey+HvbiaNSvD0eH85aqJLKX0ZVosuBcC4+91HeZwInGvXiTX2+RKhvHaFwdAm6te8rWQ71fdYQwA4Ou06ILDNZ33hYFLSOfh3uvlW3pMHiOPy2E/c2XRuPh0L8Rl3C93CBZSycMoQhyBWAa9/ExhLYqvxLgoIGJMoUyH+h/p4xjKkxcTMujmvieWKBfWp4CcHKTjKvoMc0BOvk7yeQ4qsY/pGOZFLF8c3h/5es+BWzn0Z6xqcYfrJe+nCEzeHQOS7gUHZeCcF4pyQFFQh47TXHGSQ2PuV3aUiR0NRqSAIaQFkPiFVNpDLUi6Fk3qdxSH6yvvt+7j2Ck5Xtt5X+MXPxPyPuaxisCxyxQao4YAVxEg5kAevWcNiQhxTGQVIdfMiC9Wp6SOyFDkCpbkb0zvz/vXEADIIYw/j8FjAmO3JKtQGOzjC5lCp8IYUhSMpGdRCejOw1UqJfKK8dxHCUAKqNaPIFpEMqJffBy3qXpWkZChJFjLv+dwnCwLlYNHSB5L6RLwizEF8gT6IzPTmFlDH1m5koAqAILJDFpz7ckhWwcj25jeK2MnZQKGX2DwQiTQTOE/6AcCSoAAM4f23Je3AgSe91lJ9Sf3WI4gOAPc/Nr5fiEIMjNgvB/6k7sv89+8v7dvXwSYMYcN5QCiP+v28yKFffI8vvOf/wyA5X/z1QCW8s9/yFf31nuNT9cn+Hx9hFVbIUSBZ5MVFmWH3VDg8XyDXVfCbQr0TqHrDSrjcDxvMK0GJsUKsFj+YgJTONyuKJkdnIapGNAhRMRs2qHdlxgGhe6mhtYes6rHfNoheIndqsZy1kDrgKoeUBgHYzyKwiEGifP5HlJG2EGjawuEXsENCtNJz3L3KBCCQBwkitpCG4foWaYuVcB+VUMIoCwtxCUDXcrKoiy52lQUDrKRcFaRQRQR5tpAVh4x8DSHRkPKgLce36KeDICIkDoSBAJAx45P0SnEXsI39FvGTlHOOUjK9zYKdldAbjhupMmW0AH4aErVRemY0tpLmDtuV6V+UL829OOddFBrDVl4IADToxZhZ1C/osEeawN5VZANbTXczhBUbxXTZCMgBgm9TY+XEWqjx6talD4l04K9l51CcaMwdnp2CsJJxMS2Ci8gWv4XL2/or5QDJ0wQAMoA1Un2jRYJYDQSonZMHe04oyquNMGrDhCNph/TM+hDWAmzkYCmDEz0EuWNhD/KM6nD9Z1leBgSIN9LlNdqTDVVN4YA1ZPZFbUHKk/ZJzi2XMQuvED9Wo69o1HH8TjEIiJWlACbDe+XvYTaEhwWa0nAJROgmrsRZAoPVNeJrbOcEMTao1gLAqZIMFSs+NrCijEhF0GgvCNgUp2A3ouDNFBTGgkJFCvuB0AAz2RMbkM3YgR9iIDZckGBSbLclmr5XLOT8CUZ3epajPuPyO0AZLJzj6nwQHknoJJk0Ozz5DBNbjPQTAwkGQKmxIaCY8zHoFgjMaEEjmYnRpDCbWHcr9xRyn3i+TM73q9aTmBDmSfuHEOWQ0ZwHFED0fB1gwGEJegq1hiBpm6Q2FAeVwIkMvj5Pe0mBOQQTFsVHiMo1XuMyabCs/syT8wz25qL3cvbtFiR5ySe2zY7HPoZc+VTOKS8ikDGevJGpAnyYfKcewnt7ABEhiN6EvWe2y3vmMgZEziJJgHGPcFJdR1HcK0GoFhFmF0ceyVzcEsGn5mh0+3hnBVrPkd1Saaaqmby+IsNt2ea9JiWv2cgaHZxPIY+petW13yMSmxjsYnQbZL9rSnLLNcB0gLNY753s1ogJ7xmBk23EWYTx3RXETIo499Un9jH1NdqUrOVtBHFnq+Za1SAe9tP9SgZVKqe2/IV5aSqz77I+IUFgJA6XTPw0y3BqwipM1KI8fjk99uohMgAJgEvSqczOOV5dokJzsDWNLz2GNiS2NXUcQqkc6X4OBH5GKTjqNtABnjIzHhKf97z/0ref/ZksroHAFQbRqBlmnA413v+zGMVx8f4xMQS5EaOzwNm61mDs/JJOkw2NoNplcCeTPJReS/xVQ0ESEELyD6OIFLaOI4vKIHy1t5bjOB+hfQadiJRruwIJKMg6y0HMr9coBEwm4GMcaqbYeqvh6tlCtwR46JIDsQBgOKmJajdMelUhAjTuCSPTamw+tAHGRXDcISPY38sgTaBCcGpg+w9fC2ZcCv4vBz0k1No6SskeJatZU1JkrqybkUiFBJRC/hKQ1o/vu7IbN4DQlEJIIFLMTheS4WC6Bzg4yhzFS4c0miBUfpKuTSBHAExZak5kAcuAUgfACkhup5hPkodFgSMYihQiCMYFIkJjVIkGW8Ci84Dgx27PPMXZPq6B97iYJOHUh4qQqxNzOU9MPgnSF1HYPylhNr7NSN/oVsGlX8e+Py63OLP4OsrcvtaM5ZHv/Aw/if/y6/j92+e4s3tAufH2zHZ82jS4vXlEr/yzmf48c05dncTTJctmm1JoCQBWAHUHugVjp+ssdnVCE4i7jTE1OH4ZEdPXadgzlrYXkPIiEdna7y+XHIQa4M4c1BFQLBk0/TRQOYxCMirAuFhD6wMHn/rCq8+O+XzIljT4SRM5eAua4jTHtELxF5h/mCH3WpCJq3yZOMUP7DNYiBr+roCZISfJdlMqs3QGwU395g+3GN/W5MN9JyAm7UEvr3FcDmBGFhvISpPNlEHiI0hUzdxkBflOIsLdYC5kxieWpw92OD2RyeYvrvG9s0copdcbZ17HD/aYPViSZYyAqfv32C1mSB+NoGfBIKsVh1YsSKg/qRA+5aFWlHu6p71EDcF4ukAeVFyclcA8WkH+aKCfWhR/7RA+9xBeAF90sFuWU8SFb1lxVqifeKgt0x69DP2dOrHDYa7Cmov4U8szOsC7ihwUqsiigsC05BYCj8NiCrC3FH2Go8tyo9KDCcpJOTMo7xSKWAlAiZCGg9lPMRPpgjvtsBnNSeqkd4tiEhQZgk2cdoDV2VKeZQY3umgX5ewxw7wgqmQ7zpARhRHPYa7iuByYWE+KyG/tYP/6QxBAZPXAv1xhJ9E+CkZxJgmdfKDHfrXE5g1AaCdZ8AHtG9biFZBtQSp/QNH2XPDkAl3xP20c8p47cJj+kKjfRgQTwbo1yXKW4Hd+xbV5wbdI8cxejEyw3qjRiYjy2ur99fAby3ZN9mxVzNOHCY/KjGkTsVhSY/acOy5PzqivpSws4jhOGD6QsFXQPuUPs8soZVDCopJNSDdAwaPiACIf2MN9+GC9SEV+zEnr2QKLklF648HiJ2G3knUFwK7dwLq1+zs9NMAs1IEnR5ovzGgeG0wPHBQO8XFgiq9dwzlz9IBCIltjgCiwPwjifYR0zmLO4bOSCtQ3tC7Wd1E7N4hExvmHqKVMGuJ6obhHZl5yoEr5QrolxirRUJi/6QlyxsMMH3JgJOok/8xyb2X35fojwXaZx5HHyqsP/A4/V2J7TsC9QW335+l5NGYFxyQ5GdA98hh+qmG2XIMEATqxZYy6/rNgRWzc2D+IuDyr4HnJALlDbB/RhDZnwDVJT8qm6fsitV3GvNPgN3bvM67M0qQg2Hf5vKHAs1jgcnrCDtlEMrmXYHqGmgfUtKdJdfdWWLLphFHPwa275Ch3b3jMPuYQTLlLdCfcAxjXUbB8JbmcQq1ScCTIUBMEvUGmL/gpHPzDQbtyJ7JqvtnPL/LHwDbtwVmn0XsnwocfRSwe8I00cVHAde/IrD4KT2jiAS2+Xxm1tfXHMt9r057zgn84hOP7XMFs+exiDqDWHocXU2PYXUd0Z2ThVM9gbidJuAik39wB0wuAoa5wHDE+6avCZB2z/h+mrxhL6WvGOhz/COP/UOF4YgLEsWGr1nfBNhaonnEQJ3ujK+9+DigP+L+Ty4CXC0wuSQw2T6T0M1BHlzsDtuYvQwjM1euA4YFexerW586TdnNmWtZMsPcHfNayLJi07DOw5cExdM3Hv1SHpjuJE/eP5U4+WOH7kSh2AU05xLFlkAwLyS0ZxJmT59lkUJ1CGTpe9R9RHvKCfbslUN3rFCuA/YPFCbJY9kdU37dH0sc/6DH7bdLlKuI+trBNA7daTHKk4eZJHj1GH/WbYCdKpQrgoP9I4Niyy7O+ppeS7Pz7Ml8bDC5dOiP2B0pPQF1e6JRbj1kHzEsFEwTUKwsRIjYPa8IuocIN6G3sVhb7J9WcKVAfePQnmoUu5B6ZQPM3o0grz/WmLzusX27wvyTFu3DCuWdxXCkEZVA/aZD+6iC3nuYrUVU7MmsrwbYqYbZO9iZhllb9GcFqsse0gb0p1ViKJGCePg5KHyA7BzcvITsXUpHlfQXCmBYFlzYuGoQCk3J7c5S5tunILpJwRqSQkHthzFMJyoFPzWUyhYasuF9wgeElOwKJRBKDbXrKZ1thlEKG0oD2fSIlYHYd2QdfYAYLBACwtEUoukRpxXDeIzmfUoSHBpNKWwCb2MgjxAQTYdYl/x5sIBj4I/IXkop+dz7zGTGBFme69yY9MoPQ4X7wT4xRqDtyDgqdWAd832Z1UxS2v8X8/mlXss/9/bzIoX9z34GjOU//mowll9rYDl9/3H8tf/hP8JtO8HN7YzSTh2gS0cWckXgBYDSSID9gKmzMOp4kDBWAXBklKQjW+CrJOEz9OtFCcoRM0sX7knu7kmkwoQyR72XY5pg7oiTVsDNCFZkz9TDLFnUrcBw5iAblVYkyWrlDsLsVZQ9HxsVC++TwuOwP0lqEsoIs5WwU8obpRMJKBzYHjuL40qiPXOQW4JuldIOc4eebgWGJX2MwRxWvosV0yLNiuyWXTCYxU0TK+YFIBnGAeRVasFagJQSmdlCNwt83TqivJWjx1G1Am6WxrznRCuY5HFK8jNp07gEDl7J9I9euiTva7iyHgyP4XBCH6duyDC5SYQ7caheGso3DQM63JQs1tgvF8h8yIHnFZIT/9zPJoIY5W6hINNh50nKp7mNLIXMCZpmc/Ap9sdMfNQNmTg3IfOVUwxdndMHD12EWeKXZXmZXcjySmkPUsUsvQvmEIyRn3f/NaLh5NqXqR4APLbCcUKWmSIWoycmxKT7shdRI3lNvyhRk44eR67oH2RtecVftxiB0xj6YpG6JtOEMLESXIUnW1VdJwYtsWwQ7LbTmUFL58VXfF6xiaOsL3vgyBZGuAnPT9RkpYYjAZ32O7/H1IDxMyB3XsrhsN++5Gv74rAPvk7jk4DZcGKv7o1vlOTdk3jl7WfWB7h37btDiia9ejxXWYKoW/rt3CT5PJNcM/dk8hrlc3zB6oHMApmGx0d1aaU+h9msOUnNXric5phlhVnuyvd3khsOZA8pfzwkWqqery3tvWOgD/t4X37HPsokF5SH4wV88ZjZOcNlfMnfs5e33FBOmLcfTJK7ynQddxg/r9Vw+Bn8OIa0qTNSIE1Y+Rjp4sgk5XGM0sQE3vP+ccfSdTbEcTIPkLnSKYQmM1sHOSBQ7CJceUgEzSmhwZBJyp8huuN4+D1ddwXPkfQ8X94ImDaO76/sjR3fU46TzbFnUfJ9Mky5XXmPmBi7BuXhvZ79mWRrA4aZHI9hlt7mW95W3k4eC2IGfgGuph8yFIJyyRDH3+/Lk7PkMwfZ8Nq592KRrKZ0B1aP7y+R/Jb0HfqK0sf7kmT6GmOShvKxuXsRSV4btRhZP9nz/0IeC+XIAaGUI9OYU0t9SXYvXzfBCMg+1VjozNKKMc3UlzJJW5FkqRJyCOP3qEUKoMmS3OQDDVn66hCNhC8VVO/paZzxA1iECGmT53OUX+djmTopVZb0RvoWTQKm1o8AksxZ/iy+dy0pVm1kGXHeLllHeiRFiAilZqhNzJ8jIvmqCVh86oQUPrN+BHPCJ1ZTJBlroSBs7uJMn4+lPkiIbUAsFYN0wNcSvSf4Swxc3v+oKWPNKbH573D0QEIConf4QqdklnmGQMCWwVcez70eyeyxFO5w0Y6/3wvTianb8gsdlhkw5sqS/DpKfgF83vc8jp7J8cUCRu/k/b/ntNcv91DmJFjvASHpscxvR6XYY/kn+Cu/fPsLY5GfA2BZP3ke3/lH//qB5Q/+268GsPxaS2FDFPBRwgd6DqtFj2eP7uAGDecU5XSLHpPjlgzc1CIUYfTbyY4MV6wDymUHFAyu8TMPexQw/eYaYeGgN1y5DDNPhnNuudpfBsSUnhhmnvcDoxTPLjxkKr6XDpDPGkrxegERk7dNgCxeTN6n5JlTHf13whIoqkaQ8ROAfWAxLCKGI65SIvmeggH/iZUEXf7YoXvgDr4sGWGnhwRHXx3CFxABc6WhG4JXl0ro5UCQFFT+MI4IRw5yIPNiZ9zX3E0nkkdNNQTEsQyQJ8Mooxx9I1MPX0a4WYCbMHVS+HuAOZfQJ19ZeZsBONCfeYbizAjOKPs6TMCjRgLAafJseYzcJGJYBsrNdPIEthyTnfOfdfXSUKaXwn7cjCBaWr5Gfxo4cYwEjFEniZylzzAqbqt97iAC4KYhyejEGAQzHAVKGM1h0hnKdD5ymMwgIPsEKjdpH4t4SNlM4FEEYPd2GENbxjCNIn3dmzTuvmVHn1/2wAVD+WZ/yoTODMZ8HaF39NjZWRpbL8aS8GGRwN80onvsEqDn8fAVQW8oCJBDAQzzg/xv9OCBTKlq07WbgOhwFKG6A9jIkjkCeD4GgcfSVwkspfePm2CcyGTJX54UtudxlNraeZLzGYEcdKMT8xc05XzdWcRwHHme0wQzmC+ChQyW++ODfNJXZIV8xQnzsODxjZp1CsMi1UKYw1cOLfIlEniLEI6SxzxZH5YR7YM4Ts6zhFS3/L09S5ULU7I0bsbr3yXGKvsFM/CUPYOQ5JACc3puz9V8z4+eQWCcfNspx9gfSfhSjJ4+X7LWgSwKmR9fCtg5ZYLZR4mQFzHI5ohAoMh6AI7d1axbMG0cF3NCSiKlXDh9ft3zBdo5QU+/TJPdlDiZF1LclJNSV4oxzCiDCYI37mtm5Oh5i6OsNRhgmAk0D+mH9jXDYAjAgX6RVBsVATyTNgPsBGjPeD58kY8dQ2t8mfaj5Pm1df58JHtG8HD4HAsa2D+SZBtnAt3pIYgHOIT0ZE+pN/yyEwFXc79Hia7ndeZK7sew4DkYr2sjMMwl2tP0eZ48kf2C15IaklRR8vzlxY1+IdGcy1FqysUHpCoPAd2FUc4pPfejX3Ky6wuONYcSqfYAPFwl03Um02dXCuRJckfKzMMIGlUXR1DuU7VGDr9iiFre1xxEJ1CsWF3Bz1aB7lgxYEmL1I8IDFPJyoyFhLRkIL3JC8wigScBX8oxgdQXfCzHJhkGU8qUtprAV7jnX4yAnSpup1aQg2fqagKz0oUUriXT/qSQKkdwyo0gAT+eJzehXDKUcty/7CGMksCqP614ngp6De1Mj97HYDhmOXhI68dFq6i5r3aZmEAt4KYGsZDwE41QKIRSEdglsCdChK+5wmLnhoB2So+iL9UIHt28OCzqDA6hpI3F17zgQ2Xoa5QCyN5IRekqAPZM+pCAYIDsBvja0L+YQnkyOPJTg1DymOfwHRESEA1grUfyWHLH40HWCl4/yNJcS4AZs6Q0BfXEyiDWBUavZKrtiGX6m9EQLvk+7aHPcgzgkUmumoJ5DnLX9F3KA0hNslXEOKbBQkqymzqtbuVwnj9JWhoDhBAQKgFMgABSKj5P5W0qAtEEKnku5Ch5zWAx3pfB5vvTV5bE5hCfcUx/2teXkmf/8vbVu32t60ZCEDDS49cef4z/89W7+PXnP8TrboH/8Okf4IfNQ7xd3eJ/+o2/i/d+9RPMHvWYqgEX3Rzvza/wzz7/ZqojkSiUR6kcqocOL9ZL/IN3fwe/u3kLD8sNfqd+G//ev/kh/u/bb+CP/+gt/OL3PsP3P3uMx9+4xsRYzE2HP3z5FHU9oG1KHD1e43vnrzHXHV42SxwVHX5w9wCDU9hsJ/irv/pjXLUzPJ2u8ZPVGW5WM7xzfodPPz/D0fEe3z1/g4flBv/bR9/FLz18g8tmjn1fQMqA9XaCo3mD752/xm998g38vQ/+EL/x6bfx/ukV/vDlUxzNW1xfLrA83eHxYoNNX+HRdIPf/+wZ5tMO69UED843uF1PUdUDrNWoCovearTbEpNFB2sVkLoj4/t7qNKh35WYzju4bYXJrMc/eO938L9+/kswyuO9xTX+xZvn2C4qhE2B995/jc9ulghOwfcKv/zuS1w0M9wZB2s1xOcViu+ugFWNx3/9NVyQmBU9pIj44cuH6HSJX/u3/hj/4vO34L3Edx+/xg+vHqDZlYhO4sHfuUCIAm9uFzAq4G/9zZ+g9Qa/9+YZ+s7g5GiP2z84J6iZefzKdz7Gv/z+uzh5usLt9RxybfBX/u0f4Xc/fQvLWYvqbYvtbz6EeXuPv/32T/BPP/w2YqsBE9CfcmKzXO5xdzMDooBcaey/x9SLzgvU8x7bdYWnT28BAJ9/dIYn717jW8sr/Kb4BRTLHt1dBTEIPHjvBoNT6D46xi//+g/w49sz3F4uMFm2aN/MEGsP+ywCO404dcBVAXdqcfyhwdVfD3jyzSsMXqFQHq9+eg44gfjNBt98cIuffv8J/aACCKek9v7G+x/h//qXH8CdecjKY1IPaLsZhsceDx+v0P3GA6x/0UJtFP7W3/w+/vmLd+CDQLcvYKYD9jc19EmHo386wc3ftnC2gPzGHuGPZ9C/skLz4yP4KuCd9y7wqX+E4gcK9oMGgxcIe4OT79zh6sUxpt/e4GTa4PVvPoOdRbhzC9EpqOOe135xluTpEX/3ex/i5X6JH508Hvs3yzcG/bNUYF9TFl5daaw+cHj4zi02v/UA/XngotHbqcsTwPzRFs2mBu4K5KXp5jFgjzyElRjOHPpGIZQBkMDR9zV2b3Pie/6dK7TrKexVDfvcQtwUOP/gGrd/eA577KDmFuJFDbdkyBKedHCf13j4SxcYnMbm904xexnx9D/+GP/qkycQtwUXVgIB8LBMCa2VxPCtFsWPa8z+2jV2v32GYRmgTgTcJAAKUMc9wpsK808kmicR3RmBsbCUaqtWcmHomxs0f8ROUBG5uHP6777Ciw8fYf6xxO6dwGTgMyC81WL+z2uYHbD6lQEnDzfo/tkZ2ocB1ZXE7nkCqw+A8o7gp/lux0qjf3UE6QT6U0/VRVowKNbA5hctZj806M4i3JlNgVqAnFrMfrfmQsWCYL15IjA8GiC3XNCycxanbz6gjP/2wwUBqYuYfvcO++8fswJCEQACBJvdWUSxIoDbPwsQXmL3VkTTUDGiO/ZQCgfMPuPjogGsE5h+HnH9KyLJxhkiYucC7XOLyccG1Q3DVprHybf5qyvsf3uJ/jRQRu4PbHdUrOdYfByxek+Oi2jCU1I7LEVSIgB3C4X2qcP0Yw3hgeahwOQNJ2FXv0xPcfa/RoWx17J5y2H2kUZ7TsbQJ79YZtYzo217Avy7X4oIE4fiUqd9lyNznQHp0ccen/8HHke/V0ANwP4pqJBIi0h2TvVNMEw7BoD2jJNS6VLn41SOwA0Ado8V+mMCnu5EQHcAArB7pqkKUMBeCxz/yGP9DQU5UIbdPAsYPtaQDuiXCvV1xPInAy7/agmdUnPp9RPj4ll1RRDbPNJjunJQIi3UCPRLqiKq64jmjB8F3Ql7IXPvZBRAfcOFAy5mSUwvQhobMLkMuPh7Axb/R4WgC7QPBYIqML2w8KXE7okelQbSUQbrJgLVjYSdCpiGwJgJw2Qam3PJzsZtRFAaw0Jg/jnQnvI509cBxc5j/7TCMBNj8nCxDaNSYPO2GZUQxT5AtQG7x3r0Ivst60W8EQhaE2gXGvWtR/OI8s/uWKKYKyhLNtwXAvUtpcyqxxgAVN153H53gsWn3OdguFBT3bGP0s6m8EagPxKoVmQVh7nhgoeNUL2GGgLaM43Ziw7Nk4rvnccTXj91PS4K9ifTtHgW4epyZPTNhsE86/d5P/srYwLjclQ/xKVBubLojyYhCv6oAAAgAElEQVSHvspQIkoBP9HwlYTsA8JRgeqq5eKTkQjHVVJzCKi+gNoNGB7MCLSnEpNXHULJRFo5eMh1g+6tZWKjI0G3lqw2MQTceu/gphpm1ZNZlRKxpsxCaAk/LSBbhvqEE7YS5HRZYT3CpIC63TMFVkj45YR+0ABgltK+AgAlIGxBQKsEZbPzelxEkJsGiBHheA6x7yiNLcwBOAIHz2iMo8xW9MOB4YwRqCt+tw7QCrHrDxLYGCAmNcODvOe2hSBzOQwQRXFIjeUknnUjAKL3B3B5z4OabwdGU33960aAg8ri5/D2tZbCnn/nNL73T/4Rns5YcD8EDYmIZ5MVfv/mKb59fIHf/On7+OXnL7GzJWamx10/wXm9Q+cMXu0WY7flm/UcUkY8WmxxsZ3hZNLi05dnePrkFouywyc3Jxh6AyFYaD+ddwhBom0KzGYdSuOwa0v2MSYApmTAvOoxeIW79RRSBZSlRduUqCc9hkHDGI9h0Hjr7A4X2xkEgEk54OLqCHGQOHm4QYwCs3LA51dLTGcdhkGjKBy6zqCqaOwOQULJgBAFpIjQymPflgzXAaBUgB00TOGwmHS4uDjCo0cr+CCxbSp4JyFkRAx8vN0bmKmFKSgrjlFAyYB9U8K3DNyJXkKogNArnD3a4G49hR8kJosOfW84xn2B6CSqRY8QBIZ1iZPHa2x3NUzh0O5LfuiriOgkVOFRlBZ9bxAGBVl4qtuiQLgtIE8G+LXB7PEOu6sp1MwytRbcRrCkUMpZTym0CTC1hbcKoWVJPABARsi1hnrSjEAEyfdZn7Ro1/kDW9CLW5BqkXuFuCRw06WD3RcMHwIQdgai9hArA9UIxHda+OsSceYBL6AmDn6QEI2GWAwIVjGYRwdARYithn7Qwt5VEF6gvFawc/r5ICPkTo0y61iwf3JMrAUYwDLxZLzvDAGTAKXfOqB6UaB/4PmYFAgEGYEiQF8UcAuGDMUqQDQEenHmoG7N2EFHto6BPygC5EajvJFonzqgCAw/CgwOiiqOITe+iggLB/QSZqNgTxzkXqG8luiecMxRUjYmBrL1xQ33P+oIkRJ/ZfLzugXl5Hqd0nedoG/zKPLYTBywNinsh+x6eaPQPaYp0Nwyst/NUhefJCNM2Tt9Y2ZLWbabsBrH3OqRuRWRTLivyH7rRoyMsS8BPwsoLxXchLUq97seizVZrWAi7NJj9pHGcHxIgjQb1tWEXCM0ZFkkwUb7iBvSe/mFhFbVMsgny8cBjBL4kPyU0pIFzxUlOYiHk7mQKmUoVTc7if44YPZCon3AfdRNkjnOmaCbU3uFI+PpakrIVcuxqu4gvx6WXP0H2CXZLyOqawHPelv4IkINrOcpNhxnlDwPI0A7jdA78QXmOOiI+ooAIjNxqge684Dymp8NZpeYbmCsnOmXBM3NE25TRPov7RxjBUmWVmf1hIiJrW/ym46Tet3E1CdIBnhYJIn7VqC+orQ1M4+6oRzabCO6UzF6Oc2Om+yP+TMrRZCCjihbN3sye3nfhyMxVvvcT5Idw4Aq+nSzjNqXfI5qE6Of2HX6TVM3bGLhVeoqdHVKQrUMGooqgTHNceqG+2G2vK7IjNL/JwcCU5Xko0z+jaPUff7Soz+S6I4JCkwT0Z3IkW0UPjIRNqs78qS/i1BJUj2qEwxZb+nY7ajbfM0f5OVZLaFbbj9LikXIEnvKhKMCqlvKb8l+Y5QUDwuBch3RnohRLRFSijMTYSO8OUjCs7pklI5GHiez9eiXamTOq5XHMOXnm+7DqCppHiiUm8AgGkmwXOwCVJ9qbvYB3YmC7iLKlYObKLLIKVhHhAizC7BTAlpXSph9gJ3JsXaGVSNJ6pqqYHQTYGesGdFtCgIyrFcxzb0AnRBHeXK5cmR4vyQDVl2qRWkp0VV9wDBX7NucSVS3bpQCi1RlolvPczRNgXorC2/49/ZBiXJlx3TYnPwqAgOY7ktxyUJyfMXajiFADHRKPY6gBDXUmr/Lg/Q4alafhIIsnbSJVXRhTHkVNgBJGhsVJaQMzQGiIdMLgP2VRhH4uRRUNTj+Ld0nB4exuqSgFJjSXHeQtI7sn+DvShHIpYTX3HMZCwO5bwEhECYVRNeP7CeAkR3lB+M9yS5A8Og9/ZUxku0EEBv2aAljEPsBQquDnDbLZe0B+I0YI4URfeGWvZr4ErD8M24xRsS+/3Mf96fdvhJS2MfP4zf+03/9UtgP/7uvhhT2aw0sp996HP/+//zv43WzgBQRPkicVnv80eVjvH18hx9fnOOts7uxduRmM8V80uNuPcXRYg8pgKZP3TxRQKUE2ElhsWkqvHd+jU/vjuFSHUmMwKS0KLVDBHB5u8DpcodNU0HKCCEi+l6jqiyM8mi6EkJESBlxPt/hdj8Zx971BjECs0mP3b5iQuyig/cS7abC7LjB7maCh09W2PcFdtdTvPuNC3x6cYrptEOf5b7JkFFVFl1nIEWE3RSQE4fomXg6f7BD1xkczToMTmG7rlFNB9hBwzsJbThj8k7BFA79tiRYEoA2Hlp7hMDEWdcrTBYdTmcNXt8cQarAUCMRxzqV4CRU6eF7xVCj6xL6YQNEwbqQIDjuvYY4Ggj4Iti/qSKTX0uPkMZmOw1VMG23azmr8o2GLFnR4jYF1NwywTYInqtGoTpv0e/5+NhqVqK0mr7PCMwfb7G9maKYpYoUHSBkhG81e0C9gNimVFcdCaKTjxdbgzjxBNhpn6TxCJ2GmfcIQcJvCtaN7DUwT7M+GRH3KTV2lgJ/tgaylfBTD1QBcqUhH3VYLhpcvzoi0L2cQEw8q1Z6iXBkIfY6pZ8KRB0gao5FtIrgqvAcZ+UBx/RabMwovwbAflUdD0A1hRixbiSy87STTJ8NPG7Ci4OcroiIdapfqQJyJQ28YL+qT/UuToz9qAiAXmt2o1aB4U+dSGxEknwnmbjoJRN0B0GgbNI2B5FqOwieVCfhE+jOnrrsZxMBCFUEPHgOND3H4zaS1/B+N2WYhDF8KLN/uZIDSCFLxyFJa5O/N41Fpu3m/lP7wKJ4ZZhIOg2j3FivCQz1nkyzm0RUlwwHyn2vuQ+NE9QkF2/IwPmKQUoHTxxGlmkMdImHiW0GdfcrK3wdx8RdBAJt4ZJ03xLU2nmEbg+Ab1im2puI1GEakT2beifG+hc3paQzS2xFYCLuWHPiU7VKktxGw+1l/7AaCFiDIVhl0iQ94tITLGdmb1jwWOQgo3G/krw6+5TtnN9zd2t3ElFfCrJcyf+cE3hzv6qveNyzd1b1SUY84TGXjj7eLLN2M94vPYH1sMBYO5K9yzn1Nne/Zl+zrwh2cwfm6OVMnlxvDuc2L2RkqXQOsckJrDnJNlfGZDmy2R2AWj4+udJC9RjlxsEwSVgO7OEEKJ0224O3VSbQm497HndegNANQUeWNGafafZl+4r7ZnY838PiHsBJ1+kwJ5DzpYBq4yj7t3MudOiWYLDYRbgKY9fl/XoW1qIcjqkvD55HV1NCnnty82sPC4Hqlu9rX+EL1Sjjcb/nXc8JyARrmVFO4M6TDVKWcuL7VTnZU5q7ZqM6eIBzYnROi71/HoMSMG1Av5Ao14HyXnU4xmNVTZIHZ6BtGoJEXwjo/gBY8013yYOb2EjKctN1GGK6znhC83FWXfK+lnJM3dVNwLBQo89VDocU1VBwESP7cnnQkRJ/BXQb4CYE9XrvEYxEKAX0ziOUEsIlb2pHnyvfewFuolLdiDx4McFxByO/8Hv2DTPVmIBKdR7RyAT4fAKAafy9QygPIr9QkJmktNeMoUDSHryQblZA9h5ycPz8TeATjtLcWJrx9/G+8QWyT1Qg5zcAOPhE78tLv1wXkv2a+TVCHAFk1IpsJUAAmKS1X3g+QL+mkgepbfZJZoax6yDKErHrDs/NE2XvgXAv9TXVjYyey3uvk38fOyz/ApUjX/e6kb8Ell/h2/Rbj+Ojf/xfoqwszuc7XG5mmNc9Ll4toSYOR/MGt9dzoFM4frrG3asjmCWZxroeoGXAejWBMgHhTYUwCZBTS7lXbzAkNkrKCNfq1NmoOQGfOdZ0xARmVDj8vFOAAjCzMJXDsC0wPWnRvJxBHA8QEvA7DdkqhLmDvjGUjQFkfCIAz/qF+E4L1+rE6AkmvDoBfcYkVKgIsVfAwiF2CnJqEe8KRBNRvWaJfXjQI3qCPVM49BcTiOWAYMmeAYktioBaDhAvSSG4UwtZelT1gOZqSuDXKpg7Cf9uB/lplRgLAfG8gb+ogQCEOkBMHcRNgfKGnpjmmwPgJNROwh876GszdhGGOkC2ks9bDsBlyb/1BDSQEaIIwEYjlgHFpcbwbGCi6zQHDPGfMyLgFx4Igq814/OLKw07D6wHSQEVZi/ItJkAc8XAHj8NBEQBEE6iuFaQDmjfoWSvuJXonlroOz3KIP0soLhJDFgNFCsBZYH9W0xSDSYmryZDjMoVkyNDSTasfkN5Wigj7JwSu+GE2wxFhH1oUb3IZc/86k85cR6WAdOXEs0jsg72xEMMAiZJoPROJD9hxPwTCTujFHGcVCr+XF/KMdLfzg7H1NeR5zDQ+ygHQA38pzUsmYxbXQPtI/o/M7s1eZ38ZxOQTemB/ozA02zJiOm9xOxlxN13mYhqZ5zkCw9s33OY/1SPTNn9MBTdAO1DeoDLW4HtNz2KW4VizYmvnabJA8jICU/gMXshsH9Ohm/6ShxkmTuCme5BJCBInujqhiv3zSOep9ln3LfyRowSxe4MKRWTHkfd8fx05zyGIYWpmC0DdAg20iS5j1h9J+D8t3n+23OmdAYj0J2nzxbN14uKUj4A6M7pL869jm7G67W+zJJNJpBCAsKRSYuKIAGJcTN7gge9AwNAJLB/RgBtdmTQjn4acfcLTGAdFmk/LwgyfMVzmn2vubqjO+VxNTvep1pOAM0+YvuO4HPAsTSPI2afYUy37E7FmGo7ecNQIwaExTFgp30ooHc5ATeieShQbPnz7qnA5CJi/5h/G44I0oICynUCR2nBodgShEgLtA8EZp+TVZxcejQPFMyOx61YxzHUinLDiPaEqZ8ZiKqe33NwEhldvkcmbyJ0FwAh0J4ImIZSzuahRH0V0J5LVLfcj+qawUBuAiw+9WjPUoJxwCh3NC1DcJi2KbB/KJHrblRPT65L3tb6OiTPYgJ5CYANRwQw5Zr7XG4iVB/QLxQ7Lh330xuBcuPRnCmGIaXalHLrsX2qoQbWrIgIdEsCOzUQLOwfShSbiOrWo3moGdbUYwRv1ZpjK1ecPHcnCsWeLN3+kYLqMI7FpJoVVxEMiZiqW/qAbplXjxKgbcl6tsc8dsU+0itb8r3nDVmaasXJ7DCX4+KLLwXqGw85ROwfa0wuPWWUAISPsHON8s5i+1aJcu3RHylMLix8LWFrOXZb6i6MzFxm0YaFSioIDzsny1beWLQPChRbj2Gh6PE80lB9hG4YHqQbj+ZhgeqOE2k7Uylgy8PsHOxEs9ZjwnmD2TEtlaA1oF/SJ1ldD3BTDeEifC1h1hb2yCAYgeqyR3deorxl3YbwEW6qofcOoVIIKVwoGAk7p1ezuhoQFYGk2VL22Z0UqG4HvkapYDY9fG3IRNqA/thAtYHnb9VjOC5RXTRons9QXbTwUwPVOnpqJxpmMyAUCr5ihUZ53TJwxwe4qWHFSamg9hY+hQ5J61PoDn2Nh75GwC4MzIaMJRUnlGoKFyA61oO4RQXpAiWohUpstBxDfaAlRGIYxeAQSwPZDEBk1Qd8RKyYDJtBViw0pac+MKHVefocU9iP6IcxgTXWBUSXQJ+m51P0AyWpKeFVdMMIHEfGUalRmsrJG18jasXHh0AA6Ty+UP+RbzmZVcrx55i+C2MQrR3ZxBHUCYkxtMcUlKfG8CcCyvy8ETzev/1ZQPJP8VP+XADLf/gzAJb//VcDWH6tPZa1sjg73mLXlbBewTmFXzp9DS0DVk2NwWk8eXyH1z89R2811NxCKUpZC+3QDQblxEKpgOZEAb3E+Sm3JyX7HRfzFts902WVCoiVZ0vGxEJrj3ZfopoOOJ3vcbmiPt7GAnCCQErxjeG9RJx6erm1h9cKYeoByZATVSbWsJdQCwu/NbAlgK0hcyTSKlQZIGYe4VWN4lkD22lAKhSTAb2tICQQFwS9/RmlkUXl4L1EcJIeysTYwQvEykOoyPEGsrbDkQOCIJAe1OjjQQQB6b5CDIBdkmGDFVBBIhSUdMqpO/yzriLkBzvITgOVR2xKCBXhTi3lmnUgW9bIMUXW7AWGY49gUtJHAD14muBxOCUD52asL3FRI0w92a3MtAUBv/AQReACWgFEE+GfsMpEDgL9Cb0XCPSzxf+HvTdpki1LzIS+M93JxxjfmC+HysqsqpZabQgzzDDrFcaCPcaOBnYsMAN2bFhDA2tWLPkdLLRC6kbdNJJaXcrMysyXL98QLyJ8vNOZWHznXI+sLknQaplVycrNnr2IcPfr5w7ufr7zTXWAPCoE5SFbgv5QSvrZOtaW2AUn/KGKgA4IZZJaaiAWgJ959I2A2UjE2qN/HKEOKskgCbZsSrjNCaiuAcazMK3chgKQiYnxFVlD1yQWsaKU0pdxkpMen/HLOpQ4XSchAdU5H99fM4gkp7sy2ZfMkoiY0oF9lY5TCcqYFg52TKuqgkAsDGllPySp6JzsVCwoHfN1wLiiN8kuwySjxcoCew0ryEqKIJKkLkB33LavcgqvnIJxGG4Up3DBDIpzGAoCWTJfCowrvt/MXsIuQyq5J1AcLjCFAAWd2Kck00UaE4Jk8mMvCKBy4ElxAhLBELTk7sWo6dmSPrFDBZk2X1IaGnqm+4YiqYUM75OjgOok7Iw75mYRoxWndFTO82AXnJQPZ3we95/gLiqygkISzPqKclKXQnaKbQrdmZN1y5P7KAm4xlWqfllxWwyc4ukel1ypyR2Gbh4xdjlBmV8e+Zp1FcN7XJ0e2+CBFI/jDSnRmuMh6B8XSRa646p8DorKzKCrKNH0ZWK6DBAXeQFETEDFNkDuMIzmxFbnvkVX85pxc/C90SMBR17z/Rm3dXySw1swVXwMyc+ZJaa+oldOOiQZalqokalXMcki83FwtZySPccl30i5UB4CP5BNhhROdXyskmw2TkyU6iOTSiXQK0mm8UE4VZQMAPJlujYSMxcVtzGlFxuGDFnH8aoRsLWaEnT5e1o8mkue/5ieC8CVMrG5YmICcyCPKwFlT2E2w1pNxz4zjUjhOb6gby2DchHlKXwss4cCKcX3FCyEiNTVKCdWWaQaEUSgX538rb4AQZ+LsDmJNjFjiKfFKogEvGsJlRZZQyFgZ5rBRel962a8PsY5L/zuSk/pwTl4KGgBUaRwKwHKaBOL6usUQmQYzBO0wLDWDLgq5SktV6gUMJSY4rQPuZvT1RJB83M5WDEl49qFToxn+o7Pn9sLQ5bWcnxRy2nbvuI00JfydC0pPianwuZMTzlGhBJwjYI+OviVhogch3QR3kgIzW1BlFOSa4iYAtmiFHDzAlEJuFWZ3pcF+yqDmtKHcydjMHJiBaMSUD6kfZSgxNOkAKMkfU09nsHIqTNS2MAEYCUAJRB9nBhCASCWBIW8NiRkCCnEh9JaESP8jGFCKgQEo6Bc+m4TYvIEZmksg37UScZqNELNv8nUyQmRpt+FwcMwH2jFfsl8v1b0TRpNf2Z+fPJOIkQC1Mi0XUhJx0++PwfwxJj8lPKUIAsktvYBW5pYUJFrQoT4oUQ1+SmFVoj2AfCbtvOAgczb8x5Ca/7/q8Dlw9tfE87zd6bH8u/w7TeesfyP//f/CP/y7hHe3y8QI3BxdkCMAt1o0H2zwPzjLZQM2O6aSa5a1SP272eo1z1m1Yjbuzliq3H+bIPxDy5R7CKO/8EB9vsZWabLHh9c3ePrP3nKL5iVg9ABsVfsgOwUqvMeUga0uwpSB0o0N6lbcWkpOVw6FN+UGB45VBcdhtcNZZZHjeLJEeO7Bpg7xIFfjKL0EHcF02EHJrS6RyPqr0p0zxz9ZY8HRCfpmRNA/VKj+vdusf3iDMUHR9hRA6/LSeY3+06i/g/fMeDGsN9R+CRnUxFilBDLkSueL+kzZLBGnGo63NpDbxTcykMdFNSLI+JXM9gLh+YXBt3jwC7Min7DMHcoXxUYno84v95h/INLVmp80GP+xzX2n3pWqlyxt3KSIyZf3LgMmL2S2P/IoflOY1xyldwtA8q3CsOlp+cvAMWtYvrmykM4gfq14oT40mH+pcG4iinUgYySPpxYHzWc5I5mJzBcBMRrdkxO1SBpn/3KwdzqKXE1qJMcLfvWouJk3X7SQ76qJhYw159kxmk4DxDnA8LRUBZqecwRKRWkPy2geqsQyojhyrNj8kgwPntJFss19AvqjiBj/o3A9if8kJ99o6BbYPcpA1zMQST/E99LxS5N6tNxyZO46j2w/1GgRHArUeyA7vdbNP+kwXAWp7RKbhM4fGpRvtUYLunXrN4oxFRrUt5FHJ+nSXWu5kj+J6bQElyoBFy7RxHlPdM0s48qJ7qq7iQfLW8J6tonEbOXIkk8kXrgyADJ4QQMzA44fBSgW4HqXZoQJDmmaxKb3SawooHqFinIhkxgf0FgzmoWyi85WT+xi/01x6IGTla6S4Jw9mZi6tpcfB2x+Wliw+4FhnPK86r33D85UvrUPk71P6l2ptidJIi6A05l7UwszfJHc+DYXSNg53y82UcM55x4SguMZxHVO3Fi8hMLtf2MnZeu4mdH85YMGwDMv/M4POckWx+5/cwQsisyTkmauQ7HHOIkHR2X9OQBJzCWq02ad+xMdBWrT7orgXJDxvdhgIuvBfSR1+CwFpi9JgNX3bEKJddxuJqLBLpLnrQu1V0IYFgBy28CuovkbWt5XsclezC7RzxOzRteS+UmwjasYcmyx2DI5k11Hfla9RH9maTc07OyBsAkz4yCoGxYUerZnwlU9wwk6dd8HwOY/JJ50u9S2rDwp4TfqBjCwj7HiOXX7D7UHa+LcuNx/2MDc4yob9kZ+bASJm8H4DUwrCWq+zDVnug+Vdp0AYenCqtvHMa5TAmsvEZZvo7JU8uFH56P2WuL/kIniTrPbZRZbsoFvu5KotzEyWtoUgVOdyExe+P5Wgm4+TKx2XsGxyAiyTblVL3DOi5eBwBgDp4ADASbmaEcluyWLHYedq7gUkhOlEC/JhMZFNC89xjnlJ2W9yPswuD4mIxgsc/MJo9Fd05GN8tH67dkDH0pUG4s7IwBMiFJVs2Rzw+aXaDlnYOvJYalQn3r2NF4ZlBsXQKGYvJBBiWgRkpCXS1h9vQAZi+jHAOGc7KFoRDQR49xpVFsHZCkoKZ1cLWGr8iyqiGg2Ixon1aobi1co5I31TG5VSQpaOfhK4Vibyf5qGot3KqEbTSKzQi97dC9WKG87TGcM0BH+gg1eAQloXoHX2sIf6pMYbpqgGs01BCgege7KJIMFAzOGRxTXhMrLHtL4CWAUOoJ1Jr7HqExENZDjqxCESkVNqfWqmNSjNkERHsHaAlfG6iOLKfsLKKU8IsSetMizMofhOwwDTalpYZAEDlYiLZHWM3IBveWfZXWk8kcHZnG5F8UbQ8oRWZzGOnTTCE6Uy3LYBGXMz42hMR62lRj8hDondhHSMnHOQ9YMq1iYE/m1DcJYPJZAhBSkrXMoNBQMhuH9IZy9HyKqkI8ttPLhraFKAqCUaMRjy1TX4sCsPb0OZNeU+ikmnOOP/91mCQEhIfy2/+ft18bxvK/+FtgLP+H3zKWf+ObGxX+6NULtNsa6JnQdzOsKA1dW8gA7Lc1QdLrEi4xPN3QQKmIcTvHCK6wujOH+6/OIZ4GdNcC8bsZQsMSdG9r/OJdzdVUAXrxbgtK3Ur6A8duRtlO6qnEUULlXsm+4KpxYnjMvYLbzaEdEAZ668IXc2gBxGPBCf9ZgNwyHS+OrOFwTYS6NRhXAeYuGdp/UcHO6cnyTQQkcPjTcxS9gI0zBo34DHI4wXv35QV0pE/MJ2YMSJK2QSBsq8k/JTzgcgejTJP2Jw7yPb/MpQPwxQzmIICo0V8HlHcSvhIQXmG89Gi+KhAV0HxR4PjqArIkkCj/vMbxWUD1mqvz2FeQI9A98ShvFZyXkCNYNl+AAS7pNSlxlEkaKSHvTwXw1Z1Aea/pZ1K5+5KrwsIJCMmeTLsMMHsxeRd8QXmp6gheijuJcKgR1WlCHyqJ2XcCdmtSWAkn9uOaLF95LwiaZwGzb1gQXv6relrZ56wTUwUKJMGJvK0ZmDECxw98WoVmJ2ixBYRTk2+sfKdZ2F4TyByfM7GyvCUj5esk8XsUYbZyWuXe/K5D862ermPdnsDwmHonzZ4TSdek+31E873EcJYqbEqg+ucN9/VWYDwDxicjqj8vUN5FDHca5Z1AFIqeOnPyY5EhTIB1w+qN9pnH8ucKvufqPutQBKpbTOA3y0nZ/0l5b7FNUjl/SpwEMNUeREmmQziCSjUQyJUbTJ2dqkvdj4mRKvYE/Znt6q8pM/ZlStsMSIEkXOQBkrxUAH3D68zOeUxn3xIkB0NZZNRAdSMe1HskH1rBvwN8jeY1t6E7srdqiBjXYupXlI7dotLFFJgTp1CSKFJlis4dhwnARx6H8i7JX3tg9KnDtOAiiq+AxUsWvrsZAVux4aS/u5QwB4aqZN/asJapI47HSo08tzklNDOXmXmVjq+bgZduWQfSPpJQA5L879SvOJwJzL4nUNYd/WdyBModQaAaMaWbZq9j9kVm0KWGiPaaYEX1nJDqNoUoJaBrZzyGIgFzOyerY44cX7E5HUfpyJKWG8pQkY63Q5zY9ZBYv3JLFYEaCLqnbksFeAVU9xHHJxLz71l/VKRwFV/yOhRBJIaK505ZAlr2ESZQWwuUO0pjsww2qyCGczMBQlcJhrukYBsRKBcdlgLFnq9r53wd3ROI5xCb/DdzDHCVxLCUE7gjuOYknQ2NfgIAACAASURBVP69mOo0gPrGo19T5aEsCKIMa1ZixNShqTvWuMxfs3LLNiK9j+nbizrJiw2/f9gTmiTh51zoKrch/Z01HEzTpS9P9THV1ETWZVhKPUWFaT+UTQsVZfLlRV4D40KiOMQpkTTXgajeU26KJMkdGaSTvW12LiepbWYNfa0IfiyllfQiCpiDT0FJHv2FQXnnACiMKzJQykaozsMuNcceIor7EeNZCZFAYdQCMdUy6Y4fhNIGxCCghtQpKUDJrFQTIFc2QLiIcW2S9SNAOAU9eggfMVyUKO8cPYiB1w18hNmNsMsCuuXjMHI70nvYZQG7MDAHR5ax0YjFDPpgEQUoRU37r1qHsCwIECsN1TtEaRC0QLEZYVclVM9+zVgqHo+jZcBOiPANnxuNgmwthPXwq+Qn9AGq8wgpKEcdk1w1gzkQfMrWQo5+YkPN+xYRinLWzkIKQf+jIHsqXKBfUiQJ7egYppdkt6K3U5elHCxCaSCtm4J6APD6GywBYwrFEUN6nkgs9Wj5GACxKih3lawdiVUBZHAHpDAecWIo/QP2c7RAVXK8KcQHQkB0A18ryVOn24OE2BjCxDpGHwCXVrpyTQkACEmP5YOeygwqo3OYfKDeE1Q+ALv/mrT2l36ebr9lKH/jbr/RjOXi88fxg3/8X+J81k6VFf/w4gv84f1H+PLuEj86f48//YNPMT6xWFwcMQwGZ4sWx6FAZRwezfd4uVnj88t3+L/+6MdY//gOtXGYFwO+encBuy/x6Sdv4ILEy3fnAABtHMbOwFQO58sjbu6W09+d1WhmPdovVoiPBywXHa7nB3z9/pyy2X0FU1sY43F830DPLaQKEH8+x+zfeY/NdgbclIgXI/2bNyXKDw6QMmIcFYrCYxw0qnrE8VBhPu8RATin0B9KxFGiWA0Y9wV04xBfV1DP2ymJ1g0KP/3oNX7++hpXSUJslMd21yAcDCAjZpct2pcLBpxUHrOzDjECQ18gBiDuKPNdf3yPzbdrhtIIQOmAGAX8UaM6S3UctwRUeqcw/+k9Nm8WEE5CrEaINyX8PKC64PbHtw2aZwd0xwLxroS8HOB3BrKXUI87hCig/6LB+HEP+a7A7NMtdt8vgCpAHBTE2YjQa8AJpno+6uE3BaqrDmOvgZuSDOiNpudxyc5S01jYI2fl8qgQ5o7BPaOCmlmor2qMl57yWie4ULCy0N+XsI9GqDsDP/dQe7KJWDjIm4KR9T86ovyjOQ6fJC/mkwFxUJh9aXD8fCCLrQCz4co1JCA/PMK+q6EPEvNvge3nEWFlIe/NFNrRfC8xnEf4kpLB8r1E/8hDDgLNp1vsb+Yo3miGxaTKiljQmwoA/uMO/mBQvtEYrjxQMSVWbzWqG4HDzwagUwwMKD3Kb8vkEw1TEikCEM8t9OsC9VuBwwumt+qDhL1wmH9B5lofyKrKUWD8tON18m0Dt/LQW4X5S4HN7w8ovi9SoAg9p4efjShfFhgvPfSOUmDVJ2YdmJj22TcKx+ce0USoo0y1CzGNRSGkcKNQ5lRYfnHNk3+THhqG04zXDnpmEd5VTDVNLFFUwPjIYv7zAscPPPReYvklcHjBxR6AzF73hEmuxUZiuAyo3kouktwp1G/jVONA1jWxsp8OmP9ZSXB6GQk+GzLUDFGJqN4quFnE8hepv/A8wq7pF4agF1q/NyjvEuMZCXKjIjvbPaLEtbwn+9h/NKL+qsD8JXs/fcXFkOHao/5OQw1Adx2x/Aq4/z2P9b/Q6K/IZpf3BL5TUE3Dc0sfKRNW3Syifk1m05ec8DZvInY/5uINADRvJI7PAs7/H4H9h0DzVuDwAftq2xcezUuF4TxC9fSOhrQw1l/x9SYGT5Apnr0E9h9T9uyqnBIbKRuveRxEpJSvfSJQv6U0evF1xN3vAPOXqX+yS2D7ELH9LOLi/xY4PCOIVD0XJ4C0QJFCn3QbYZdk1stN8rQKeopXPyeotLMkzyuA+l3A/oWcroP5dxHHpwLVDaW64zLi/E8jDs/l5K1UY5z6P+mfI1DurlPX7VHA7NNY5ilwqs++VTK1xZaLKP0FFzXMnos7i28ChlUCbkmCmkNWqk3EOBPoLyn9LXYR9fuA979L/1n1Pk6A2+xODLSdA/VNRHPjsf9AIwoC5v6c12V9QxC8/Mbi/vMCrgZWvwiUZy8JDqdOy3gKI8pdpdVdnNhWpsVy4c+0BMb00MdpsSWok++12JIVtTN2SebtcgEkJ4oyLVW3DJFhgmySBy8F5t97HJ4ozN54evDPucjpai48mC6iXxGEm5bH3xcC5hgwLiTq955KhEudklq5SDCsJOq7QGA7l6hvHe4/LbD6xkK4iO5Kw1UC1X1AzhTQfUjjk6jfWdiFmhY+ogBsIzF/NRKcjhHjUmL+bY/dxzWkj6jfWXTXBtWtm9RCAKB7D9tohIIhOVEKbluRHfZlUlUkqXB3oTF/NbKjs5KobgYMlwVrQfqAcaVhDmSFi63DcKbRvOqx+6Tm+Ob0i4oQ4So1sai5r7N6N8AuDcq7AYcXDep3IxlMH+HmZgrr0fsRodZMjB14bKSPBO73bpLW5hoSs+nTe1Mh1Jog2gf4WsNseth1BdU6yN4lH6iFXVXQrWW1SGcJLAHIdoSfl5Cd4/dnAopy9ASKkj2m0SjIbYtYFgzSSXLXWFPmKjv6IEJVQLYDYqkhDz3CvILcd2Qf2x7hYgnRDohNCdGNiFWqMRkchHUI8wqitwSkpYHYt2RHM5M5jIiLxKaGU8ovAKDtyFJKgdgPEFUq3k0+zWgthNaIbQfR1BOTGZ3DlPb6gEHNjGQcT6wl78ipRPJXymBjiBBSnCSwMfz1rOZfcft1YSw/+c//7TOWf/Y//nowlr/RwHL+2eN4+d//11itWwgRMToNJQNGq9FvS5w/2uHu1RooAtYXB7R9AdtrLFYdrFMpxdXA7w0lq41nqMzzDupLAgq1tGhmPQ4vlynxMRVkz9KqyygQZx71Lwr0jzjB1RsFv+CHljwfEKxkNyIA2REo+dc1VJ/YTQBYOoiNoe/o3DOBEwCcYPLjsx7yZcWAmZVndUWnIPrkmZQRceaBQUIO8uRPmQWoIxMz1ZFBMzlwRi1H+L3h8/OtDFAbDX0UBB3py0um5M5QRZQ3TMQsb+m/8WWEPaP0tLiXGK75c/WaH7bdMwc5SgYV3TCVFOCEsNiKVHrPCSNX+gQg4uRLs7MIv/A4/2cKhw84HjeLKLYEHLkUPKfyiQAmcu4k3CqQaeqTbyACZivg5pw4b3+MqWrA1XFi1XK6otlxkjFcMAmzuhXorikntdcWzZcF7DKmagWGqlQ33I/jcw/zEBRJMjtktuiFE6kAflyRFR2uPervKTvKniuZ0xM9UOxP7ImrOWbdiuk1QjqWCIB0AvU7sjLjWUTzisxU9lmqTkxjLzb0x+VJKuW4QHfFceZ6AjvnBMxXZEyLe/bvHZ+y6iIH1pgjxzuc8VybA9BfxKkyY7hgX2KxiTi8ICAAEjMYk8xzSMxi8tpJl0JnUil9lDwe3SOyd+WGf8t1EVlKKC23WewYkqJsksZGegynxM7cOpPCTszhxGLZBWXBdnbqFiy2lMfmMQqfmTOCCzPJNgGRisZzMiMlbzyOzes4+QPHJVBmNtZxX6objisqoLpPoMRhqobIyavSkq1GYPAQwOMxrtP57E7MWpa92plAeR9Pjxu5z5y88rzqlsepuiHDFApKe3XL7fiSrxc1pYcxVVOwtJ1sm+rpwRSe25c2hd0cmJ4p3QNG1BOE2BlZouousD4hAZjsNSu3ifHsGUQzLEUqeE9hSSvuW2ZJIRPwmpFtc5VA855BNLlGo7oPaK8ZPGNnPG6hyGDrJEf1BaYKCnPMSZmY0jLzOFWPSRLpchJpQJJrkg2ev/bYP9VobjyOj5miWd9yfGTr49RbqEbKeJVloE17xb7IYsdgLdPS59yfC8zepICcbSAwVZSAulpM1R7jXEJZBgzlAJqgAD0kUNaxyoIJpHEaz7CSia0jqBiWrKDQPa/z7lyiufFJDSEnYDysJVRPYMI0VnrfxqWekk+HFaszbMPjVd15tFca9a3HuJQTw1zdjjg+TpNdgamexRwYhiMtvWy6Iyure548WzP8SHgyrOXGwc4JxmRKG+VnFusucnWK8AwCsnMFOdIvCZBZzWwoQLbUNWpSPkgbU3Ipk1L52Uu2alwXlLGWEsX9CLsyEC6ivO1hVyXkGDCuyADmgB5fS+ijhxoC7FzDHB18waoOOXiEUk3VHawRCVCdxXBRodiOGM5LmL1LAFChvCVgM3uL7A0OhUpMHtlBc9dhvGymKg3dUVbqG42gWKcRCgXdWkQlJ3+jbzSKmw5+XsDNNKQNUJ2DHP2UmBoqBdlz3HLwkC6gv6xQ3vYnL6gSUIcRodAM0pH0M2ZghwD4eQG9SxLJVDfCz02ep1CoCQRGIbgdLZnQOjrAeYRlDXlkwphb1QwDciFth8x39lCKY484rwEXIEaLWFMuIB6kwk6prC55FR1lyigMopQQIfAxRnMbOXwnRqAsTqxmqhD5gS8SSOyoJGvZ9RM7ia7n8/PPAOJixtfoBwhjyCJKOY31YfUHkACicwzv8QGiSA0Kx2P6Ui8AO7KOJI/ZewJHpU7bS1La8MsVIQkoCiVPabAPGNNfeUvPiXb8qx/3V9x+bYDlf/a3ACz/8W+B5d/4Vn74QXz+X/23CGWEagnAdMsJjUvNHuaAaaKai7x9lSftSeKpMXl3snQlGE5ac0CISnI+RE5ufXGSl+ZSauEYfFFsYjKog0ERqSeu2HBF+vCJw9k/V2m1nZ1cdiamWPk8gc9JiCKQzSjvxRRZr/qTNFB4oLyP6C/5ptQtX0+OEW4mTo9L7RbmwAmxHE/HJKrThLzYYuprA9JEb8fHdNcRi2+4apwnTTaFa+iWK+Bmn05Qei3XkA0odjwuvsyT+ZgmBKnzbqD3ixPx03kOhuCheUNJjk7HyxxZej4Vc6fJRbEjGCh2Jy9ZseM4dBtPXrKWCY+QKZSgEFP6Y05ILe8prx3WXPHPPW3SMvxDWk5ifSkmn1Gx52q8awgcq01IPXb8YsrXj3QEM7kLLV9TusNU/nx8pKbJW0x+LtVHSjgXPIf1fcDxkeTxn2cAyzFVtwH9BRdDVJ8kcOskF+s4uVdj5PGpU6dhwNRlFzSB7RQmIzFF3uebyQEj4uTFyrcc1Q9g8szx/cj9KPcR7aVEsef+MFkyoruUk9+N5yOBkCR1zeeQ8jmyEsUhwDYS3nBi7GrxgzEzgCMf4xRWlAJUcqm57vm44sht6e4kvcwywqDILmR/Xe7bY89bApJJHtivKafTKXVTDSmlsqIMt19LlMlrGFS6DszperYNARQEUOxSpL9Jr5MCX7wRk5RzXPAYm2MKUjKYJsx64NjzYpEaY9pvOfXdiZgqFTxBSn5vyRyOksaV6xNi6uYzew9fczt5P/LEXY2clLNKIAGtDDhSV2J1TzBAqXs6HknSrIcIW4vp2ioOnmEmidXRQ2avBMzRY5zzs5V1EDwv1b1Df6YTSOP55+ci/X6mJbOh2wA3k/Su5cCbFOYjB8oiXQIUeXXfF2ICiw+DXnJ/oC9PdoRcz+BqdgoGnQJVjJhkjOOcZfVyjNMiHMDjLYcAX6vEEkW4Rp2e3568dQCgjwng6LTokcNLItgzmJik3PGnelY5PKzrUV1IgUFiqmrQnYdd6ATcMNUxAJkVDvAVpZ/6YDGeFUDA5AM81d7EqVhexEhZ5srwGrABw5mm9zD9TnVB/o5LE+4c4gLA1UxbNZsBdl2m7+Q4AdZQsKYidx3yGpOQLsAbCTdTKDcP2JS0v8gBNErAHCxCCnqJWkLaANkzlTQKka5zSQmq5tj00RKg2TCxQZkd4hhDAjv4QQ0G70wAQtBXGGomuyJGqCPZMTzYn9OXJifpWX4pe4doJIQNCI05+RFVeowA1HFELMhmibR/vJ4k5MC6jGgkhA8cs+R3pxg8gV6ZQmWSxSNXZUQjoY4j3LKCakcCKusJ6nLlhJRTjYZwAX5RQh7GFEgjKGHtHUR48Lo2AaMkBZ1krjnMJqet5uOh5CktNYE6ZEDzEFTln5WEOHaIVQkxjIhNRYlq2j68n87ndL4ebEP4MIHCSaIKcBwxpnGfjsF0H8DHJq/mxPw9AGoM5VGnbcdIRjB3Qma5aVEgjuMJtHl/eo54ENgTw4kx/OXx/vJjHtaOeM/+SaUIRLOsNgHVyUeZpbG/gpX8NwrjyX2Z/wa33wLLv/3bb7THUhgPd2WxvjhAiIhuKFA3PXwQGPYNyspiGBXcqKF0gOs1TG1RVvzycE6hOxaQJqDbG5TnHZxT0NrDWY12UDC1hTYe7ajhW8Z4i4NGXDhWjAhAqgh/0EAQUEuL484AlYcuPcrKot1WkCagvymZBKsj7v8BAJ3TGCTkzCIMCrAScpH6Fp0ATP6ACBjPNVB7diuWAWph4VsNUQTk7IXoJESrEGvPGpOrkR2DZQCCYJdhFExZfXCTvUSYcyVw3GnWUMwdMCigCGitYJ9gq7D/SMKXAaoTGC88zFbBXrFXUQ0C3XMHMUjEIrKIPkaM5x7HVOth1571IlXa/9pDHOhVjXOyxr4mQxjKkL5EBI5PJX2v9xLjuYPsJSWQLRlZSuQE9p8FRBmhdwqhCIhFhNpL+MajuFdMkxUMMtp/5lDcqMQIRkTDyZIcyMD1l5wMRx3QXwoUG4HhKiSmkSxr+ChC70HpCyKGls91M+7D4UNOLO3awWzVVF4fipjCTwTGc3YwUo6VEkQ1fZZT2XxK1BSebJc+CozriEPPZEU50sMbTJyknN0V2V9WS3ARxRecr5bvWWvBACCJ4Syxow0XXOyCLEMuqB/XZBw5+PS4g0jJqvSl0rsamfKJlIArwPTZNPm3C8AuAsxBYNywwkMNTHbtB+q38qIPKwQ45nHJYAsuYBBMlHcC3SNO1suNYtXDMnUx2jSpGul9K2+Bcc1JWnUn0oJBWnwSAuOSHkvVAS2SF2kr0T4lwC7vBNxMMOhophLTnBahtmkCqPMCk5gm0PYgOGEPgE7dihDAfpHZ6pOv1ewTIztLwN6k+x2lga6mtHMCbwn8AynddcmEWt0x4TEvqFGOhVQbw2OiOyQGRkx9ftkjOZwJlPcS7RMy0uOKx2UClSm0KqeMqp4g0dViWnjJtR7tNes5XJP83MlvPC6AIl0n/YVM5ypiXEtUt5FprBIobyMgCXjdjEnCGfxmP7E+chFN2tTPl7yzmY22jSGbnybbXAzhgmF3mcKsLGAKgf5MQjo5+RnVmBaC0iKFnXOBKvciCo8psGcwlAWPC07Wyw2ZPD8T08IFWbkkiZ4J1LdkLqtbhu+4Jv3tTP6gl1CNaTEuJqCv+PycbBqUhEkZGrYBir1keu1I1jhohi3lMZtjhH2sUe7YgegvFNne46mnMayZThoKLhzqVGjfnyVvbFqcoPeSdSgiKLSXlHR2l7w4XSl+wLaWG95XHAm2bCNR7MlM92dcaMohPeU2oF9S6pjTUcO1QX3nMC4YtsP9B4oj/XvduZo8rg/Beb6pgQAuM3u24QJIf1FMi0R5EYCJvJRyhkLCzsjyBiVQ3ju0j5l+Ki1fSw0BdqmmsCPXVBPzqQZ23wpHKaZd6gm8FzsypxBAsXWpsmNEf1Um6bNmn2NKgC03iqm1PQN01BggbYAvFV+r83AzLmZpJeAbDTXQH2oOYpK5lncWdqGhag05eMSUNitixLg00EcuWISSCfFRCxT3rAIBTgtMvpIwh+RfzImrIUKOAfa8gZ1ryAU9kMWWPk2zywyqJaPYWqAWcDMDHVjh4SsFOQZILZnG2ln4SnNBoNLQhxEhJcjKwTGAR0v4FVc0RQJIrjEwu4EgUD5YBDiOkwcyzAt6J1MQT5wzTBCx4uKKNRPYlYcB/qymdLV3XGRLiwTC+gnUT+Ay90I6f0qClfJUE5JrSKzj36U4AWeA4NZoCOvIbGamMiXECiknIC2cT2mwKSE2Rr4mgHhkuM4Pgn4yyBYPGFMjEJ2fGMUJtOYAHsExCqUIwpVCrhvhJiLBe77FmHyVcrofAIT4K4DlX1Y38qv//Jtzi5hIrL+Lt99wxvJ5fPLf/TfJeE7/Vf1GoftJD/V9ifCsh3hbwp87FK8M7AcjxMYgmgjZMYAjR6CH6wH6dQl7aSH3GmHp0HxZoL9MiZiHLKtIrN6GqaHFlv17vmFq57gOCAacYKfuwmIjp8nBcBkw+1ZiXAEQDGkYV/RTmQNXi+2CATjtRxbla5MqAChl7C8jir1I6ZUxTWg4YcueLFZTpLTKEqjeialUmVJB9gW6GlNcvW7JnilLMCBT0bzqMXmBfJVTLSmXFAEYziLqt9yWGhL4SPUOlPcB9VtMsiBfURJJppTl5+aYPFQ6sWgrMtBT2Is6JYW6GaY3ZJ6MB0M20y5ODG6WSTLgBVNNgzkkMJDL1eMpxISl0ydwoHumRgKUJwaVJJopOKTYkKHrL8RUYG52ycN1c5LTTvUD4ITQV5yoVrdIE8nT2KQHuiuyxs07StkoN+QxlmkSm49vZsR1jyTXopfI7OIEWkSgdyymFMtcym1nvEZ86ph72MtHKWg8JVKm7Wama1yK1J2X6jB6ygxzEXdmPIDkTZtxQil8qgCY55CNyJX9JLHLcqMoCA5yGEm+vrMXqj8/XfNqJAs7pWjq0/E5FZ5zsqi7DHS5DTXwWoyZmZVJRZDkmqxRYBCQGuPEkg4rMuY5mKh5H3B8pFDs+Z50NVAcmApa3Qf05xL1+zDVDigL9hoeT8d9Kno/5s6+zGqTyY0iXU9JOZGDVqTFgwJzTCxavubYSYhUiE72TzpeG8uU7pmVBOU2QNkTi+lLoL4NGGdy+vxrbuhPEwEYk9ICEai2Ht2Zgkn7IQIwe2MxLtXE6gl/knVmPxdTUBVMYuz6lURxPHWt5seqIWBYqRRek7xAQkwMJAQBTJTsPnTJ11YcA1QOpTmEqfLBVQQt7ZWCaeMkg3TJO5blm/PvB/QXxQQygsoLPPydvYJh8gVWG89qilLCVQLz1xbDSsE2EuUuwOwd7EJPDK7uyS4jAvV7i/3zYgJsWVoqQjpu6Xd+/sX03eR/ICUlIy4nbxkVMRJFSgsd1knGmnxz0obJu+krCVcKVHcOwkeMKwJDvh9YID+cm4kN9oVA827EcGYmVjQH4UAA40Kh3Lh0npI6wBJUBSOZMmpkqskAio2Drwiu5MhxTd2MSNe4C0wkTWwrmWaG3xRbB+kjK7JSwAqZO+6b6gPBXYwIOiXIHh3c3EwBQHnsZmvhZnqSmNpVwRAafWKsdWsxnJVQQ2AFR+uhBg8300BiZPmZlBeeJPSRC7iqpd/PNUyW1YcRblEQGAGUeAIIlYEcHJNOtZiYT+EC3LyA2fQYL+pJYhrMDxeNRYxQ+wFuWbEDcl5A9S5dU3JiokVMDGPBYB1hPXxjoA4D2UgAbmaYyDr6KRE1SsHOx8S2ynZENApuWcLctohKkelM7/eoJT2IWk7SWmEDmc3DgFCalArLqo5QGUQlmcQ6r+hjnKXgnkIzXEci9VFauPMZ9LabjvfECiYGMCeyAnzO5BksC3ofc0+kTyyh0Q/YWXdiGHM1iBAQ+5Ydk6NFmDdJturZIVmY9P4SBLlJghqT11GEyL7J4dR9OY05M5SZVX3YR5lqSU5j0SdGMktR64pBP3l7WvH3fDzwACj+MhaQ6lcjuB/0X6bXHQa+z6z7AYuaWU0+NjAESIoTgxoiRGJpo3M/DAb6y24h/uZLYR//LTGW/9OvB2P5Gw0sZz9+Ev/h//afAADu+xo+SAxWoylH/M75G/wff/EZfvr8Da6qA/7p6w8wK0dU2uG+rdGUI6SIuKqP+PLuAn1X4Hefv8KfvXmM4Vjgkw9obPrudo0YBD6+vsXr/QJGecQoUBcW3393js8/eY3eGdy1NUKQaMoRg9WYVwNuUq+lMR6lcdAqoFAex6HArBxRagcpIrZ9hc2uQVE6fHrxHn/x/hI/vnyPP3n1BGVpsagHvPvqAtef3GLXVnBWwY0KUkdARHz25B2+urlAUTj0vYG9rzB7dMS8GrA91ui3JUQRcHF+wObPLhCfd0AUkMojBInlnB/Ch2MFNyqsz444azp89c01TEOGN0aBri1QlA7Pzzf44i+e4OqDexy6EjEKDMcC19dbvH29ZiDOoUC56vGTR+/wJ//kY4RLi9mqQwgC7V2Dat1jOBaYr1vsb+Zozlu0tw3gBKqrDnbUMIXD8LYh2yoi1lcHbN4t8OGHN3j5Z49x/fkN7nYzLGc9Lpojbo4z3N/NEY8a0BH1eQf/rxZwL3qEkZMVoZiWJwSwOjtit68RrESz7GGtgntfA0sLXTjYQ4GrJ1vsjhXGjt7Qy4s9br45g1qPQBR4dLHFm5sVTOngnUJ4VyHUHj/97BX+/F+84NhT4IyeWbi9weLRAd3P16h+vEXXlpCKH7z2UABOklXeFHjy+Tu8frtG7DSqiw7+izmqn26gZcB22yAkBl02jpUzMrICp5dYvNhhv6uxWrUIUeDw1Qof/f3v8d3tGuO+gGgVg3bOWV0SqohYe0jjEfaGixWrEeJNheLjPbpdxfuOBnJmEbcFZCfhL0cUjYW9qemxfXbE8KbB7Pkew6BhdyVkqyCHVG+yYveouTGwlw7zyyO6L1acdKjUFTl3qL8u4P7eAe5djVilftGlox/YBGBQZMUbD3kguxivB8jvKx6TgRUyUQLQEXonYc8dhCNzKM5G7kMv4NcOolco3iv4Mk4Eh/50j/7VHHIUMHsB+3kH+U0Fe+Gg9gryeQvx5Qx2GSAvBvhtQsGVh3lTwF46VC8NhisPsR4R7wvEOsAsBtgtA3vmXxgcfzawsuiNxnAeEJcW1TclfJXY517ArtMX/NxCvS7pUbzyMPcKZidgV5H7IDElywAAIABJREFUlQC9fWQhjgryYoD8toZI4Nk1Ec1rieNHDsV7xeqWqx7+pkLzvUR/Fejh3imEC4v1Hxa4/wcO5VtNBlsCkBH1a4XhLE6ePBGB8tMd4j9dwc3IGNtlQKhSnZGMmH+tJ4vCcEkvcffYQw5UHpS3MjExwOEFWe9gGGTUfC/R/qxH9UWFLGkeHjnMfqExriLcswHF1xVCGbH8Eth/RKZ9WiQTXEwarxyq1wauiajfCOw/c7j8Q4X7nyWJd8FxuBkrWLonPAdmR996SMxluQH6cySAntJWHRcK2sccr265H34eoPcSZsdFgP6Kfmp6uFl9M/9aontCBcDsVcThA7KbPtkohEfqD6SveVxzUWP2ivdHKdA+jRNLPn/JYzD7XmA446LV/hMPs5E4+/OI4UyifcKwJDvjMS42EuU9F5raJ2HqeF18LaE7Vt5QRkt/um0ExvWpZieUDB5CZFBUPlaUSnMhK3uMj8+pAGif0qtf7Ak6hjNg/RenmhOf+lHNntd1/Z6fEeOK4158y0WTUADVXUR3kXpoE7uc7Qe652KPHJF6WLlQ17xOTPfIa9kbLtrOXwXsPpInT3fNc+4aYPZ98txJstCm5T4XRyb09udMf15+FSbPcf2ekui8X1zgFZi9DhhnlNYfnissv/Ho1ykFPXA/V7/wGBYEu80NQ3NyV2d9G7D7SGH2fYCrBbprgdmrMMnITUdrweZHCsuvPYa1xOKlQ3utU5JwwLjk+T08VRNDLwI9z8WWEnpfUC5e3tOb2V3wu2f2xqK9ptqouvM4PtaI+oHvWHEBDGClimskVQkLSfn7QqK8dxjXGvoYMJwxvViNAd25RnEIqN8NCEbi+KTA7M2I9lGB8p7sbrFPYUAbB9U79Ncl5BARSgF9YDKw9JRZZ+CcQ35CQd+raxRcRcVF/foItywpe94R6KvWJYaTEmC7KqGPXFCo3vesX9ESej9M8uJgVAKMAno7wJ5VkL2Hak+SYNmlRYoEwkJlKEdO0l/ZjicAKQRCU0z+z0my3A6IVQnZ9j8I6gnzikB7e0A4WxIUdwmMSTmxnlNS7C97LEMgYFTyVIeSmNOcOBvbHqIqEds2yXMTywpM24x98ol5DxhDSeyDBFkAUxKsUOpfu49j+SWMEsOvTo/9/3j7dQGWP/pH//aB5Z/+z78Fln/jW/nJs/h7/+s/QjsatG2JqrJodxVU4RG8QIwCZW1hR40YmFwqZIQbuSoSDgbmrIc9Uhtoagt7X0LvFOqfbHDcVwhHA6iI5rzF0BcoqxHtpiYb4AVQBEgTEKzkZLd2wMHAXHZM9zymCW2nEAtKI6OJlMGKtI0U1COsQPGoxbAr2UuZJnHwgnLPOgBVgLpNUpUAuLWjxDWIaUzRpNcpA8N9FLchLweIlxV8w3RPu07hPAF8TGTqaaw9hIqQNwWla5EhQNMEvwgM4ykC5aglJzRRRRR3agq7cM8HxIOepKxRR6AMKL43sGcB0QToew1fs/fS3Gm4BY9LTgKFjFAda0fCJx3wsp46IO25Z+2KTEyjidB7ykH92kHuNYp7SRZ3zjFSZppWkSvWybj6lKTpZhGhCtAbghW79tB7hZjSRVWXZK41k0R9EVNCpkj+VE4Yc1po/jlKstihiLDPRpS/KDGuAiWgGhN7LUdOiMc1J5m+irBLSkWrd5SuupVnX6d8IEnM7E4CcG7G8bpURaOPZKm6xwF6L6BbTgR9GVPoDDs23TygeqemxEU5At1TD32QlMGGFNqzFakvDAjq1M1p9vw/FJQTR81z5ZqYujlPjLCvY/JxCYyriGJHmetwzuf4KiYlAllPgBP54SxO+zlcBpitPHkpsywxSePy+4RpsSdGOz8+bzPXVQSDxIDx93GNqSLFNfRXIyafdmJE83sEoBd5WJ8AXn78cIapFkTaE9tVbIH9J5xcmz2lnWSDME2sTfImD+eJWU2dnNKdxho0pqoTfUyps2l/mrdk63KFDMOvMB1Xu4iYfUcpbGasXZNY6yMDi1jrw5+rO4bSUC0gHkyCqU7wFVn9KE6sNeWy6XxEjtXsTteum/F3NfJAukZMPY+uJnsexcmrnXsMMzsrPdL7O05srExSTV8xqXNYySnx1RuywMOa3t3c2zr5zecM/hnOki87cvtq5LYzUEJikbMvmf5nSlGlpdIghw1Jy7qUYc000moTYFPHZrHje6a+DROIYMhTSjV9qHp4qMA4csI+LFlVAvB6UDZOFS0i0i+7f0ZG3bSZVT+duyIdk+w9p/f65PHNLCmQVCjvw5SSGlSW9mOqxcle5JiABftE5XR+8nsz+58z8ys8xz5JvOODa6ISk486hx9xG8lXnuSpOXyK/cIC5c7DVRJ6yIBLTPJx0waym8DkVZUuQg0B41xN6gCAIC1/ZjCsLUC6iO6SXtDsZQYAX0pUtxZ2rmBnEuYYJuWJ6h+AHM8QINWRdaNMPBKADXFiWUXEFCKESMASJTspKRFWkDbAzRR0R9ZVHz18xWM+LpjEmisz7FLD7NLvCWj5BLSiEpO0d/J9Rkz+VF+S5YxKTJ53CFabMHwrSYxtoKez4KIuPzcp7w1lvgDAcddqqnVBJHuKAOS0Upm3EyJiISFGzhNCoci4xgjpCPx8bZD9t7JLSbdJCZPZthzAE0o9BRXJgcx6lII/+wi/LOnvtSfJafaIRsO5B4Qg4EuJr5nJhY8Q/UCGMUbExMZlL2k0CqJ/yDiqiT3NvZbwgUxmCtmJSk7ezWg0a0Py8wtDEJgqTPhi4ocMY/Ztpm0jJJD2K3yOIgPILIPNftiHnZcAWc2HfszUiymU5PnyfgKWcRwpmc23h6mxf21/5en+vwuM5Y/+078FYPm//HoAS/nXP+TX9yZkxNuXZ9jfzXC5PsAoj3/3069hCq5mXF7sYa2CeFkh9BrupoKUEdFL6II1C94pNOsO5p2Bu6nw9JP3OPvd91hWA+KmwOMPbzG/PKLdVfB7g+71HOqevka9sBAyIliJ2aonqAQAJ2Df1Sgft3j2+98DKqJ8eoTZKKiLASgCfZV7DVk71N9piMZBXQyw380mIIlANkrOLcLVCNF4ftiKCPGsw+Knd5CNgwgC5rKD2UiYxy1B5tKh+doAIqJ+ckBsPPxBY/GzO2DpYB+PELWHnFuIxkOMEsIKVI+PqL4tIO4NwtUI9fEB6pMDsLIQPZNdF19ohJlH851GPLeov1Nonh0ge1ZRuDNHJuxNicWXmiBoxuOtbg3EZwforYRs6YOJRYTaabgnI+TZiPqVAj5qCXZXFuFJT1D5bY34vEf1XqL86RbFrYK9tvQFLh2/uOqI5Wf3EAODQIZPe4yXHsU9ay8mSaUHmm/ZbYmVhRzJbkQTgZLpvvbco3mpoVsB3wT4OjB453nPRNU1Uw/92gEJVA7nEcN5YC3Di4GptQMBaf9ihF0FLP+4hJ1HmL1kVcIrAXNgwI59MVDCnLyeqhfAeoTqGWCkW4HFzzWlzQ5wH/VkCzTg5gH9Y4fucYC0ZIzK9xL1O4HuqUN5x25ON4toP7IYzgJCETFeelZuHATKW4Xuw5Ey2nVA95Me1VuF+i0nqZAEDP1lQPuBg/DA+uc87vbKQh+B4YMRq59z0qsPAq6O8FVE95Me3VMP10S0HzqEArj6ZwHdxyOq9/R0+oJdjuPvtKjfsZtVdwTKdhFZyXHLxOJxHbH4SqJ/7DCcR5QbMi3dE49hHdE/9vAN2Yv+OqB+x4qW8TygvOeX1HiWJqcK2P3OiP4qYjiP6B6nio5bAt3jjyxmryLaJ5StL78KqG4IzMdlRLEl8BqXqXdxSUl6f8lOx/N/GcAwK6B+F2EOrGrY//sdHv2fEc3riOOzCDnwMYcXAe3jiGHNmpJQkl2ZvWSgkV2yN9XXwPbvWXSPU9LqMmI4p7xbWmD2OuLwAcO/zIELBccXAdV79l+qHlh9wUTY3U94ToYz7vP8u4jd5x71O6aBuhpYfBswrAU2P2HVRfZYigBc/zElfsN5qjFJVSNqiKhvIg4vIsY1cHweYXbA9mc+vWe5z9vPA+xC4O7vB5hDxHARMZwxQCv7It08ycJniVW5oBS3eRfQPuUx2HwOIPJ1XENma1jKBBxSGm0bcXxCUHn/M77XQiFSiBllzrsfkXkJhYBtBHzyjzKYC4lJjGjehQlQAAz66i8FDh8SSC5eOdR3BLiHpyot/BBIDRdM3+0esZZk+5HC/qNcScMJfkjha8oS3EgbMX/l0dwEHJ4LvP89if6CQLBMEvjtxwy/Gs742XB4qrB4RTbg/jOJw3PKcgHKuHOIkp3Tx1vsyXStvxjRn0lsPuf5DBpYfOtw/5nC8TFlkDnALQc+6Y4gXvcRs7cOrhLY/ih9Hq8EDk9lAogCzVsL3Qf0a7Jm1b3H8bHEsKDX0jYC41ymRQ+BwxNFf+cYJ1nvuOT52T9TsI2AnQn0FzLJr5kyGzTQnSt05xLDSqDceJRbj8NjhWEp4A3QXuUaioj7Tw1mr3rMX42YvbFo3tr0/g3YvaB/cvuJmby13YVCd0lvp6skmrcDxqVm2NSOFSOuohS7P+NjzNFhXCqoLpBB7AOOjzXGpWJ6rKTX8viEsmk5Bgxrhf0HBr6Q0K2HXSheI4VICa/jFC7lKzKL/bnG/KtDClyiV3T27RF2oWHnEvpg0Z9rmL2F2VsUmxFqCEyJRbJYOErN28cFjk8MlKWk2C4UdO+hjw7HJ1RshIKpsPARrtHwlQKrSgh2ukdk74a1gblr0V2XKLYjXK2gdwNU72AbnToqJfrrEocXDZB6MfV9B7sqUqekh+os3NzAzQzcgsmwcqTHMdQadlHAVxr9VQW3KDBc1hiumomdK26O0Dd7yH0PN6ccNmoJd1FDduzYBAC3rGDPavq9z2oGCSkJ2VmEpkBoCsQELrPMNKwahFkKWOoHgtGR/ZZTPYgUiAl8hkWF2DDZNRqF2JSIVYkwq/nhUlAWnKWzcTmjVHc1JwhsKv4N4DaqpKLJAC6DtyldVkI0NcS8gZg9+H9WT5JWURQMA8o9mXn+nYOGnCOzqR4E+yTZa8zJs0oB1k6sZLSO/3yY/iED0L/sXwynf7+9/VrffqPDexpjsXx0wI8vblAph95rzPSIz65ucNc3+Gh5iz/xTzD82OKT9RavtitcLQ6QZxE+SJSXDtuhwqrs8fXHCo3xMDLg2XyLV4cVmmcHzIsRSkQIERGCpFzSKpytjig0Za1ZGgsARnn0jYUQEbNqxKIYMDvrsKh7vH1qsGgG2MKhLke0fcnKk8+B9apFPxrgBYOI+qaAiAKrZUvm1Tjc76kjc5XH2bKF8xL1bMRoPOZNj/6nHkoFiOuIurTYfCKhGodCe4iLFjEC83LEoXSo6hHeS4TAkAqnA6SMUCrg8NQCRcBs2UPJACn4d8wGjIPB4ROF5dUB+34JVXi0HzqcaYfuaoC3Cs2qQwgSfVngWBjI6x5GBhjj0XqBRWmxuXAwyxFu0FCFhzcaRW3RVCM2H2k0hYNbWjTzATECdiSbWRiH7onDUkSMlw7NWYfWScjGISh++Q1WQ50NcL1GUTrEwqFHBdE42JkkQ6wDhmigXxwRvIRdptXEhvJkv3aQhUf/iAAflUf0At0jAW08xrVneJLSULWHS91hfu0ghiQTVBG+Dgg1ABOgagcPoH0i4RceoRGIOuD4HAhlJKMdBI7PI/yZg28kRBTQpYNdFogmYtSc4LqVg+wU08SvI/yM7LOcWwQnMUaDqCOGi4DOAGLm0D7WGM8CQk15bqw8m2ZkhJuRIRYBCRxQxigl2V5fJebVJBZRR8AQ7B2eC7iZh24cuicGCAL7j8hg+wIMYAIQrQQMwZ2oPNxM4O5zBcCjvyZwR1RwcyB4gfZJhGtOsi4IbmuwKVG5CegvEmNdUUYVC76Wn7NX01cRwwUQi4DuWiOUDHbqrxiU4puQJvDcb1+R7feKDMFwRqkfvED7VCAWAeOKk7YoMNW1jOsTUxtasr9qFLBNgLQK+xep/xMC/YVIvkoBvzM4PFf0O5dh8rHm4B4ISjn7y5ToKpFeJ06MoLASQRMARRMRIhk/CKB9lM5VTNUxiSHvrkUKj0rXUwUIT3AvBx7vnDI9nLOeRw0M0PIVz4VwBNJREvgenir0F4mBrJGYh5PsUHp2XCKxm/og4eZJFjjLHZSAHGRKUSabPqyTF14LBMWwoWAIMH0V4ZxAd5G6D+ciydsSC1Yl6eMMEIH7FQt6foNJxymmEJzkm/QFIKrcpcjvmshsNoSZSGw1wR+MQHfOa4WdiicvPqKY+iEfglFXY6rM8Yb77stTErWI/JurACW4n1Gd2Gk3o3dUxMRaHnhd5OOSvYyuSQtOFf8fFnJKcxaBXlbXCAwLmVhjjp3jS75EU0zBX0ywjugvFBn+NE4GbzFE1c4oZ/Ylw7aiUhPoHFcpMdjzcaEAuitmCGDaz8TWJnVBTtt22aOY2NGcCk6WM3ImI9M5R1JWlCc2k0wNXycKoD9T0MlfLX1KQo7AOJcwkqC6vy4nmTeTfAUABlHZhoyenfN7IzPS+dafF9N+MylZIOQuU5OY/pLeYztPx79WUyq0SwnLCCeftSjUlBIfFeAaPl9WDCySLk5MoC9EUmIkBnVZJFaYUs3+qk7XlMC4Yi0F60Ae1CGVikFBUk4KCxGyt/s0dQxapjoV/IDNdDOdGD7+PbPefA9SsuwXFfdlRh+ibwqmGguQTUznW41MqQ1aTM8JpSYzm1g5X0iY1sHPClaeFCf/aGaqATKkBOOKHtdVBdnpKVk3SjH1UoZap+8XTTbSk2kkayz5Ogl4RgEILRGj4JuhVEAg0BZGE4hJIJYFk4YrQ9bSBb7Rwwm4xcxQCsHnpdeKQjAAR/2/7L1JrORbfuf1OcN/iDnizjlnvnmocpWr7LYtD9AYFqbVahaMzQLUSC0hudmCxIpd75BZMEjdajVCApagFniBG1u0Gw9ll8uvXMMb6r2XmS8zb94x5v90zmHxO/9/3Fe4bIO6pCrLIYVu3Hsj/nNEnO/5TlqI9CD+TGFEoxS1fdyCwJgge5PtxEYPZpss297jMmUw2wYMKaknibcugbh9bZLufJNtWi5mtx/AzfRb2f4dQJVVBuAv4K+EP5Vd/XG8/VmZRT/utx9rxnJbJyyu+nzjyV0eL2c8Xsw4K4YUznK9zXmymnF1NqKf1Txfjrg7vWZdpWSmITGObZPQS2rON32qeUYvrVlXKV9/fI9NmdI0Gh8Uw7QUwFgk1KX4CRLjOX05YZAJJV/UFq09k15BcZVzb3aND/DBy0P6WcU4LbFZwzAvMcZT1gnDnjyeTtfiwbTi3wxBMRgVhMJQNZZBVnF+NeJ4umQ8KEizhsvrAUoFJv0tg17F5csxxTalKBKqIsEaj84bkrShqBKc0xSblDenL9HGM8pLDkdrHh1ciAc0r3FXGVVl6e1voTToCCqvL4aM+wW3pwvCs5zQd5SVJQwct/bnoAO1M9jUkT5L0DpQrFLSfo0pFMm3+xxOV5RlQjKoWSx6mKGMTEKtO09btUpZbzJUqbHGEyrN+nTAdp2JfDkgx98GysqiBw2bSxn59YclyUC+2ctPRniv0Imj3iY0RUIyLQiNJnmZkJxZ1NLic3ln14WcUzyEjSXNxXPnN5awVxH2akzmIALF2WgD1tMfFCJVJoKosegwVSVpuVlekVwb7LhCZwL6UVAf1uhBjZlFv4SFEBNyDw4X2C2kzxOSuYFGiXcz9+DA9zxNX2azk7kmvMxwJxVoGN9a8u795+AFTKhGekeZ1ITK4JOA7zvGJ0tsvyF9abHDGhWTZ0Mi8tneuJDjkXp8bWgGvgsisksNByWqVqDleDTDQMg9SnvqsQMXB+0DqcjRlcJuNNQaTMCPHKGJg9hhQGcOn4oUWICeRxkBhSH3XUWI7zt0paO0WEBueeiw10aCuDSQ+U66ZtZaJNxG9sVlAXVUyvHQwvCqWkfGFqg05qAku9SYQvxjIlEWUOLyIOcjFyl0ceTF1xoHtM0gEIg+UgN2qUgWWiTGPQnF2txvqGaB8tB3YUObW0F6TYt43IYx/CgRf17bw+kykRA2g4AbeJqxl/3LfOdR1XXLXgc2dxuaYaCeOpEtJ/FaSzzlvpeO1sgwVns+Du6j7HDkJG3XiYcwKCj3XAcos/M4+EslVRhgfTuCgVz8fwIKRcrdSp6bgaeZeOpRoD6oaeto6lEQcJxJMFrr3Wt6wsyaUlJk22Pj08gqx4TkarILIzPb2D+ZhSi/ixMcCWyPPNsj36WtulSk5620tAX11RiKoyYy9xI4Fowwv/VI2N62bqoeyrGoBztZddOXVGifwOZIUUdvna6EifRWQqJcLnLcpieAWRhgmSS4OfDQtbz/tkeKVootNU8C1NsQsDbBtXcmctamL6BfgtUUm2NJNXYp1GMB7NVYGNZqHKXElfgat4eqSywGkS/7RAKSJGROtqEaS3CatwI+i305F3VfdfJauxZ2t+lDuQ+rOwJwqpGwjdVY9qEaiYTZG9k2dGTEw24SoBoLyNsc63gORE5stlIv1fRj1VeQ66KVr6JkX+02ThqNZaBf92NdTynvsbon6ozNocZl0slZ7AnjuN3XsRbJS79tX3eyW+VhfVv2pw2GWt3RsRpo119KgHTpKKdG1jcQGXM50aKgUQJwfaJo+pr1rSj1VrtJgrqnJXTLKMqJ6STh5cwStKLY010VUjFTrE+ymOzaBuUp5g+NbLuWEK5yaqnHhmoirGlbM1MNDXXcnqDk/Dd9TdMX37EAXB2vPY3PNMXMROCtqUamswv4WI3kEi2vyeV73VtFsWck1CoysD6VChj57FPUQ0nldZmhikwtWlHupZ2kuNiLILlvohRbxQ5bSRRXTaCc2hiWFWW/WknP5iSLYU/gM0M5S3C59HS6nqTPthUy9SShGWeEVIPWuH5KPU47wNkCQTeIvd0afJZIemxuY8KsQ1VNrHtRnXy2GeeECFbV9zGNqg3G0bLe6miIH+TUe30whvpoSH0w7KSzMjaJtTFZGkHzDZlsVeMnA/x0iJ+Ndo8ng50k14ed1DaxAiiVIlS1gMRWSusjs2itAE0dZbc360mM6ba9vQfnhdFVEZz+WfdYb/JXtx/t2481sLTa8ze+8E1+4ZWPqJzhlekF77845P337nFrtOSTj4557eEp47xgkFV89OKQEBTfO9vno6eHXG9zzpZDGmcYHa24XvTZVglZXvNodkE5z3lyNuPjs30S4xkPt7x+5yVv3j3l4nqISTyXiwF50uCcZvPBlIt1n/HRisob5ss+dWUpa8v7H96iXma8+M4RzmlCgHvjK9aLHK3g4nrIepXz03c/pakNdydz8V8CyyLDrS3zbc6mTHCNpj8oub4eMN/0qBojgRr9inqVYqznaj7gldvnlNuEpjYUi4x37z/n//j6u6Rpw/PTKZ9+ts/H5/uURUKe1jx68znVdcb2vM/th+csX4xYriUs42rZ56PPDnFDz4O75ygFSb/i6fM90knJ6uWANG2obtWUpSV5npIkjnriSL56xbPH+7jC8ouPPiJcp7iNZTracufeBf5FzmsPT6HSDAcFD956weJiwPhgTe9wQ3CK4DSMaoz10CjKVYYxnlcenXJw91oYYxUwvQafB+4cXouX/CLBpI4kcVBomlsVzcQTBo7Qc1RFwhv3T5neXoANkHicU9i9AjQ8un2OPk+w1kFhGN5acfp4D0ygLBNhIZcJZlSDV5h+I4ygDmxOB2TnimaR4itDvU0wmUPZgK8N3itO7l8yfnSNXhpUozl7MhPm4o0V6pU1IfEYK3GoIfNMby0Y3V+g14byVo1yMPlaBiaweDbivQ/vohcWvVeS3lnDuOburUv0ylAdCuhbfjaWSYQDR1Ma1EUKjzYEG0hfW1CcDgRMJR4qzezhVQcg6oMGvxY2NH+SCqB7dY3aGAnqGctxGLxzhb212dUiTB35cwtOoRJPepoI+3avwK8t6fFGPGxbja4U+pMe/VfnqEqT31lJ1U2t8ZOasFejt1rCe6ywdz4NFLcbKDTJtUEXMgDTG02zX2MvEvyDAv0kJ6wtxYNKKm086K0mmCDb96RHceLE5zrxlMeN+GPPDKN3L2RQNBSpcRg24rstFMWxw00a3NDjpg3JUvy69cwL+3erIWQBO6mkmqeB1ZsV2ZnBPlqx9+Uz7EYG/c3Qi3RbRXCcIecqAlNTKtJzGXAlc03+Wez+KyWdOFlHz9naMP3iOcmlwVRw5yvPqV7bYjYaP2nYfGlL0LD/pZcEJfvYet7ylxZ/f8vgscFulEwQ1IpqFNjeaboEWkBqbrJA/sXrzq+rvDBB1aEjWSjWDx2mgPRSQpJ8Fhh8kLJ+o4ppzyINb/2jBAizmt6Zovez5xT7AdcTKbjLxA9t14rsGgnlmYpHt+mJJ3F7FMjONfUoxM7N6FddarIrzfKhgPHVK47sWgB3PQpcv+s7/2x+alnf9Z0/2KXIOZqLvFbYQGiGsHwowFzXgWok4TX9Z5p6GGXRuTCBQYtcu61qya4Um/sN+UX0Va9FCr65HbraGZ/C9iR03tVmIICuOITemWL6PUeyEo9qPRJwlC5DlzTdAtHlKyLdTxdBKnOG4t+tplG2HMOfqomiOJDjs3zoqYcCVIOBzYmimir2vttgN/K64iAw+CxQHNAF/KRL2NwWIGlK8XX6RKpr8rPIilpYPYDlQ/FWVyNFOYvgOoPsMpCsBHATWjlwILtuO0hBxw7e7Fq8rXYlSdPDJ7L96Tx0PaIoWaaLjPX2UJhfn8SwGScTKPVQEqmVFwl1NVbCmmt53eCFpCTnF9JrWo1l+enSM3guqoV6oGIPrgCxJMp8XaoiiDQUM/HZKic+VgnIkdTmJpd9vn7NMP3Isbol7GSyDvTPvATSBLqE5Lbbd30ktSP5lafuaZKtJ7+Syh+XQDExZNeOxX3L+FMXu08zAAAgAElEQVRH79yxuiWVM+VEsZ2Zjglf3rMxMVr2oRposrmjd+EoJppyFD2ZkVlONj52yxrSlUhus6tG0qhXddebqnzA5YZ04VjdliCecmbJ5o6mr6mmlmTpWJ8k6Cpg1450IT25ybJhfSshP6/xaZtmrUivCtLrBrtxuMywvpVgC5lQM4UAkd5phV0U5Jc16XzXuViPE8q9hLpvJXW8FMtR70WBdlLhYhclbpBIeq3VJPNaPKm1ly7UsiG9KCS0x4VOPmuXpXhIxzkhEZms+EJ912OpQpBkW6XQZU1yFWccXUAvt8KU1rIPQSkBV5GlTV+u0JuS5HKDqmrs1Zbk5RJV1R1wVHWDahwqdnCq2JEZrCHkKXq+Rl8t0RcLeXy5RF+tdgmyTUMY9iWBtm4ITSM1JFkqoNBaupoRpQVoAhjT+SmlS/MGyLxxU0bvKk3i4w6Y3rgrI5Jaldj/1zJ+LG/hh3D/Ebn9WIf35K/eCSf/xa8ynUqK6ZOzGd5r3FKSK4ejgsX5ALW2JCcb/KcD6XXUgd6wJE9rri5GJL0a/a0hxYNK/I2DmvAyF5YogB7VhBiOE7ZWBnsTCc0xgwa3sqhGE3QAHcQ76MAf1DLRVGnyvYL6kyE+86i9Cr9KpDuy70gurQT8FJowcOiFJdhA/zOD+plrVucDutLhSpOdGqo3tpinOfVM2LUwalA6ELzCnsnAv3eqZYb4USHbParRxtGc9rFHW+p5ht7I3ILve7CeZFCjP+iLj+ukAq+YHS65/mQaEzgt/Wea1RsVgw/TyGQEwkmBepl1Mkk3E8/j+JspuoLrnyqFEVrJoLL/ROSiKGjGDjs3uL5neH/B5oMpwQgb4ftx9Dqq4TohpIHhR5bVKw3ZmYQrZBciFVQeTKUoXykItSY5SwhAE0FNm3yoa7quxc3dBjJPcppIMMy9Spg1AK/oP7bYDSzearBzQ++lYvl6Q/7CUpw0HSuWXhjsSgJxBk/ET7V8JOsjwPZ+jWo06YUmu5QZ7paBGX1PZuPrkbBOZqvY3nXoQryZ4bU19r0hppaBk8/ktbqWYJ3D39NcvSOStPLQSZVOrbqwnGoqA9m991oWIvZnbna+0um3hbVQjQxOpcolHtNC/Fvre478hcjg7FY8bOmVDBaLfUl4HH+oWd8N9J+rKNeC1lu4fFU8n1JdIkE/vfPA9Vsiv0TD+EMJDzn92cDgiaEaC5MH3KiniMmac8XgWeDiq570UpOfxW7KvRCDZ1RXIeJTmL7vuXpLwOjwU5H+bW5JXY5qJJ0zvZZzb9fQfykDzfkbwpoMHys2J4H8TNF/KQOxcibbNngWWN8WNsQUgfXdCH7i73Yr0tLsSlg0n8q+LF4L7H9DmKV6qDqmqThow3sCw8cyCE+X8n7Z7gtgsW1H41BYrtl3ApfvCvDpvxAw08pDfSL7ZMpAcaiEQQqybUHLwPbqLekmHHwWWD5QzN73nH9R0W/rhIoYLjOJxzVWNblcalsGp571saacKRl0R6a1HiryS8/ikbwXko30Tq7vQv+ZAFkClPuK9FpSOntnntVdea+m14FkKwBxdUfTP/UU+/Jz8UiTrCC7FnZo8rFnHv9WjSG/EGCRXctxlUoEARIQAcBISapmrhg9qVg8SknW8vx0KaE2bQBOsvJcv5IwOHWxEkZASNDSxZnOBQBWI2GZxp+6GLgCmyNDupQ6l4u3LXvfdSzuGfGHHmnyKzlnPlGMnjZsDuTzzUT2V0CVoxobkpWU2C8e7gZZyUp+aifgJL+WgJ1kI9Uryu8Ce7J5wJZegMbSk13WbI5Tipki2cRQm0RqRzbHCcVMkc0FINqNVOvYMpCuRKpeTDTZUv6HguVd2a/sWkDD5lDvArgcjB6XbE5S7NbTOy1Y3+2RXUn9xvKeFUA5UF1XZrpyND1NNRCgk648+UVDuSc+xrb2JtkE0rlje2CpRorRZ430q/ZFxlj35fX5lQxwq5HBlgIU64Fi/FhqOLYHluzaYTdSeSFeYE16WbG636N/WrE9FB9mNU2pRoZk7buwJruVqpS27qScyAC7d16zPUgwVSA/K9ke5+SXFeVUqlKagTB9upLjml6XbO70sWsnFVEjYdvShZPU0r7FxO5K1QRMIdUpykmYzfYgjesqpPuxdPhcntv0Da6n6b0o2J7k9F4Usr0uUO/lJJcFzTRD+YBZ1zTDFJdLGNHgyYZmJP69ZC7dkJu7fXovCsy6wg0zzLLADTJh+zY1m9s9kkUj/sxFRTPJSJ/NWb+xT//xAjfM0JXUZdSTnPRyK57HWGmSXm67WhOfGEysHbHzgmaSCzAralTpCLnFZ1ZYwRBZ7XFKeingT9cOqcAReai53oD3+ElffIVVE8N5dOysjGExEeT53KKLBjfKMPMtOE9IpSbF9xL0shBAFEFcWz0S+jldZUhVQ5aiFuudFzJNBMy1ATfWoDYFoZ+j5ivCZIi6uIY8E59l46AoIc8EqKoIxCJo7R47J9UjdUMoqy6Yp0tvDcIItgCvuzmHyjJCWaJslPzWNzTfPgioTFIBlCH6JduE2ZvhPFVNlxr7p8lZgxdg+qfd2v9Ff+WPfSrs8b3w2r//Lz6855v/5Y9GeM+PNfQ/6i355Te/y9uD5zgUq0MpxF01Gd9dHvPV2WMu7gz55tUtvjB7ztdG95jmWx4ML/FB0zMV5bHls82Un3jjj/gnn77LOC/51Uf/J//w6S8A8Pr4jFWT8nwz4St7T/jDy3s8Pp/xiw8+Zlln/Et7H/Ab529xf3DJ//3iEf/mg69zXg95Xkx4upry14/f59efvc2/c/8P+K/dL/HOrZc8HFxwXg75dDljsc35qZ94AsDT9ZRNnfDqO+f8sz98m7/9t3+DjzaHfCs/5tH4EoBvvLjNo3cv+dYnt/l7f/N/47evX+XrT+/ySw8/4puXJxgVePOdl2Sm4Tc/fY2TyZLaGQ56a5qg2cvW/P53vsDem0uGRxecb/rkScN800NrzzuHp/yRuUO9Tvn5Nz+iCZoPLg/4qa98yNl2yPOrMathxt/40nv874uf5F/5+ff4rY9f5dHhJe+vboMJDA42fOH4Oe+9uEWySvjif/RNHq9mjJKSP/nsFrf3FnxmDjh5eEHjDF84eM7vfXafr95+wnkx5NsHfR7cueDZxYS/dv8xzzdjKme4/vYJP/k3v8WH9w+YGcfT/oz/+Ku/xX/79V/CJI6mstRbw8+8+glf++QB2Zsbfvn++/zuywecjca8efuU7/zJPXq3VjTLnPpI8ZOvfcrXP7pPvef46S98xJPllMvFgOoyZ3p7wWIzJbu/4iCvuOgPCWc5X333e3xz7xaJV4Sx5u1bL/nON+/hraaZNbg3K8KTPre/eMq2Tjg/GzGYFPSziuaeZv3eHtWtmqRX06xSVg8tLvWY29JuPvinAzavO/wg4AK8dnjF9/b7qOMSf5GiGoW5vaF5PODW62ecrY+pjysGe2ten17z0fk+xeMR+dvXuN+b0X+u4Rev6P3miLOfC2ADhydzQlBUjaGsLJsHge3LPuPbS3oqsPxwir6zIc0a9G9NqaaQvzC4n1hRnPUIiWd0vML93ozFazD44gX3ewWnl3c4/Mop579/TD0O6Eph7q/ZLDKGB2tW2RAzqXjnzgve++gukHL4zktePN5DZZ65TmkmjoevvOST/Ajda6jbWpCBl5CrFxn20YrtRY/yQHPw6JLVSUb4v8YM/rVTNpdj1NOc4nUZyeYf5JSPSl6cyGyynlUMfi/h+c8b7n/lMz79o9voWnHr7Zc8ezHDPk9591/9gE//0etSHXB/i1+KF9LdKtFNzuqRgPzw6lomaJwlXcLiVS81F6NAtec4uH/N+Ysx+7+bdCmq9UACiCTtVHH1roDb4qfWhK8PaHpQ7ksSr7tfcHFsOfhdi0tFdrh66GWCqtaE1JNMS+rCcjq1mIOC9VmOXUtXbjWNiY95wI8bsqcp9otz6t+fiG+yiOm6M0Vxu0YVhuxKURw5qs80zaOCsuyxvStf5OULi2pge1fqSnQtbKVdK9KlYvlA/K7BaLZ3a/qfJnFyQyTMLg9UMRnbp55kKf2L1SxQH1Sc/FPL5c9V2N9J2dxz4CDvm5iACev7juFnMiGga8XmniM7NYyeeooDRbpQbO47Qqz4mX2gOP1pAbtt56q30H8u4HzvO47LrwTqocWuQTfijXOJYvUwsPeedH9evaVJrwxo8cNuT2Qiox6CdpISS4DtsYDj9QORDefnOvaWBqnIGArTXBx6ti81mzuBZKNY3/Mcf63g2S/0Wb9ekawSlg+RvuG+TB4MnkHdk5qHumfIrz2LV4XpRUkacX4Z8EYzf8cx+2MdJzhkMiePbN38zUA614w+VqzuKdRjzeJBLn5CH32UM5E2oizFnmJ7FEROmEHPK4pDkSvvvSfP25xI1cXoCfTOHZtboJwGZVkfGYoj6L0IbE9E6qrrlPUtzfhT8flevGuYvi+BPeU+5OfCfiZr2P+Thsu3EtJF6LywxaGh/6Li5VcknCwYYYKHjyWcZ3sobPbigcVbOqa2OIiTbSMBkbb0bGeGJnoml3ct2dxTjmVyZHMik6e2DCzuGfa+E5i/opm/kpOspc6l2DNsjkT6aNcwe7+k3EtockXdjynLvdjjGxKW9w3Tjxqavo3HOWN1R7P37cD8YUKyCmRLGUBnL9cs71kGL2RAvt3XbA8U0w+BkLC6k5BfSThQ76JBO/EhFkeW3llDMdWYWiZfl/czJh9u2B4k9M5rNkdJZK0TtjNDOreYdU1x0heWbZKxOUpRPpCsLfVAszmUOpBsmNL0DdVIMywd5UFK3VeYaYruW6qpJU801cRit57VvR4uVTS5gOrR1Zb17RTVjKRyZJixuieAXYXA9kj6MpthQjmRWhHXT9ie5PSfbalmKTY31EORla7u5axva46/toWhMHsu04B0f7pMak6aUUo1tigHvc/WVAc5+csNbedicSzWmuyypDjMyc5LfGZwuZXE2b7FLmuaUUJ6sSUYTbM3gBB2faTzEqzB9xJJ4J3mpGdr/CCnGeckF2uq4yHJ5VbAazoBq9HzjQQAxY7O6qCPbjxmLf5GXcZgoYNZNwb2ue0SbvWmIqS2e4wPhDxBVY2kxWoN/VyAZFVLomyaSHBQ6w1vAWkIcLVADQcCmBMry4AOYALCntY1KkvF99k0KBoCoNqUWtj5MSEG+nzeYyk782cIKH8Q4Pyr24/k7YfKWCqlpsA/AL6AELV/B/gu8D8DD4FPgH87hHCllFLArwH/OrAB/sMQwh/+WcvPHt0NJ//5f9L1+OnEiwe50YRKo3JJJnVZgGkFc2HyMIG2ykOtDZhYbzHyIj81AbvSkekQP1fbtRZ0IL2WZM2uJFuJHEw7kXTpUkWZXZTgQFdm34ZymELCM1pmqcmlP6qNjA9GBgz1SMJEfNrWW8gMtsuF2XK5MHtteXewsn2uJ14ZJ00q4jPx4jtK55p6ELptkzJqYfvqYayfiANG3dClPkqBNLuahkp1vqy26qGNkSf6lXQtcq/iQAZerSSp9ZOpIFI25doZdWE6TCXHTmQ24r+TGoTYS9duepwQ8zFUpvUlNX05Pmhw8dgFJexIuy/KiYwru1KdjECCSISp0rW8nujp0rUMwn0S9yPuY3v8vJXX2o1sn7dyvCT2XlgqXclxausN2kqFtvNLBTlnpiQmQwo72Pq/2mW0kkV/4zNe6g0gRHaq7ftzedzvhtjVJj9NGasknLBfLtstu2Wj2n2D+P/2eo+9iKqJ9Q091SXVttUM7XXgMnl+y5q5GOwiB5zOn9SeF3ej/y7YuK64LaohXnORyYnX5+e2s7djNttzqpywc/V453UL0b/VBW/oeM6KnbFe1yJ1k2v2xvlyoWMDpRpEEkiF4RXGOlmIjM9u5XcQps6ndNI1CXlp3wfyWvEQqu76SFbCuiXr0HkSJSVSagfaW7rYsXLi25Hj0u5He6zFE6qwawkpKSciafOpLDNdBcqxpHo2ffGuhXidhbi8lkVrvYlt2nIbuqKr3XutGsX+Qiv72Fa9dB7CGKqiG1m+TyVh1+XxM6TZvTfaipf2+U17bd8IF2m3x9vdMtvPJlsKm2cLkRAmG+keTDZSUZFsPE2uu+NmCwFjQUn6qYvJsTpWYrR1Kt21TPt+3/nuJMF0dw1LjYewvC2jWA1ELtn6zWzhxSN3I+TC1AHdtIE1LTOpY8/g7rMwKGHu2m1tP0db+XKTRZATQ1ZMJceiPbfeynEKWnXVPe37yBa+C9/RTeheg4pVG6H9rJDl6lpYwpYpbiszOhl1W1cBJMtGPHaJwlS+O4Ym9iC2YTOtcsEWPoIHoiSz7SikC6AxZXytBbP1EjITv/eUv7G9PQEesg9yXHZ1NjfeH2WsnonP0ZXHZzpep6HzUIrcM1aFuBg809aFALrywm4ZhU+0SDDr9gTuriNdOvEhgjCT8bkg/wtWx3Oz62cMcRvaig/53NyN83yiJcAmhgqZ0svfKtdtq3IiWfWRCW3XIQ9Cdw5UAF25rstRl072K/Y4dsmitQBDFQKqljRXnxh01eD6KboWeaeKzFkwGl01HWOIv7FOH6QipGzwqRX20QWwwpC1+yA+Rt9Vu4S4j50P8sZNla0PUHUACI8s88YYWTUSfhNiFyQ2fgA0rmMoQ5rspKg3uiFV3cgxbNNVI5unGifVIc535/Fzt5ZZbBNW6yjjNTe27cax5k8b03eBPaGTqoYbbGK3jDaEB+L+uB1T2LKoN9nC6HvEGAGVSkX2My673Wbvf3CdSCuPvcFI/qBbaLfN///3Wf4oMJb9HxJj+d6PCGP5w54G+DXg10MIbwFfAr4N/GfAb4QQXgd+I/4O8CvA6/H+d4H/5s9buNKBr779MXmvIjRKZN4bS6g0ZljDMqE5rAg9R1hbwtBhNhqzsOilwV4kHTioD6QyQjnxLRGkI1LVCrvWInEtpRuyvCvR4yEJ4AUYagf1WEJQmln0Xm0U2bkGr0jmGj+TMBtTxi+tJs6eTjy2UDFgQuRuvicJiu2y07nuZl6bnjBByUpqKuxWYbcCvJLY42g2URYZPwMErEF6JWEipkB6Awt5nQRgeJKV9DS6PJCsZd/yM0WyUJ3PqPON3W5EOrnnyC8kFMDngWQVj0kF7pUt6y9vsSvZXtcP0b8mo+kWlAcr4R395wLmZJsEZOaXcryKQ086l7TIdN6CSbpaDgFlsm/JMgL3CrJrFcGpMDguk8Hr+lHD8EkMQxhJcEiwAoS1iwEgNkjlxVq2odz3JKs4YIxdh8lSglnqiQzwqnGgmsh21EMBSsFIx6HyMdBkJB+QEhQSOkAu/YDiTWpL0HXsP2z7QVtQVU0DdiP/03FQny5ltj/EEIi2izJZQXHsZXC9jWEeE8guZRC/viMBPT4VkFkPpZ4inQtQKw/C5yYLgtkN/pcPZSCXLIP0JzZQHEntRTUhJiPK3+uh/J6fy/5vT6T6wqURkKWyL62PqgXLrQcMJEglu5Jro9wTQGUK8aHpJkip9wZMlE8KUJfaDrsWoFYcyLakS9kvl4sfy67lGLgUygksXpHl905l25JNoB5KiEqxpzBb8XQVB/H9a+gCT7qfY/lf0BKgUuwL8+MTOWbVWNZlSqmHqCYC8EwZ/WRWnrt8pFg9iAB1GyKYFh9aspL6DFPJYNnlO2DW+tOaGCpiYvVZM1AsXhEQ5VORqwIUe5r82lPsS/9jNZX3silj4IuRgJR6qHYTHOlOFpysBVh4K6yTdkHCayr5XwtKs7nITNuJq3b/80tPORMgbQthqaqJrNNuJKAFJLE1XYZYfyNgsR62QAnyK9kfHZNlm54MpFWAciqfp5sjQ+/KSUqshdVdI2mVmQDC7Z6EvPgEqqGwh9LJKPvvUiVhJj0Vw2vk93TtyeYel8H6RLM9EEDQ9BSbQ+k1FKltrN24cJQTWU62cGwPdAcwvBUQWY5jBcdAsb6lWd0yJFvfTZwoL8EzbXJqNRQg4zL5vcmkViO/cvFzKMr0928E0EQgUvc1LmUn7dyIH3m7Z1jela7EFiTVAy3gxEgAzfpYS3F9X7E+kn5CU0cP4UrOSTmRocfmILJ9GlZ3UgHaKwEZyVqqS6qR7o5vspb16iaw3bOYUmovCJBey5ddMTPYtZOeyxsTK66nI6gVaWw1MgKuUtX9vR5qirjczaGlmFmanpIAGgflTPoiXU9A4+qOBKLoSkCBbkIXPCOTHfIYwJQ+Ts46mr5hc5RKMnSuMaWjnNoOqNcxPKc4zDCFkyCbnngAzVbkusVRJhLPkSSaequox1ZksTElVYAUFAcpPtXUY4spHdVU/IJ23VBNbrCD+xlN31CPU8pZFpk/Qz1KCFb6HU3R0AwsPpNU1XJflGJ2WeJzg+sJSPKJlvCbVEJs7LLEbBp02VAc9tC1o9rvYTYVTT9BOU8zSHADCblpxlnHFKpa/gfQjFKR2/YSdO3wmRWJaiVAs57mAtCcl0qQ6KU01xvpwgRh+WJdRkgMzTTHTfI4sFS7jsq2czJ2V7agVHkvVSGxN7INxAl5gnJOQJzRIm31HozGD3P5vf1bmsiESJrswGUTtysEWXZVy+MI3micvF7fAJCt/LX9u1ISstPKXa2R/7UdmWkiXkWt5R6PT1cfAh2jqFr/pNK72g9rQbdSXQtZJpLZ6IHswHQIqFQkvuKfNCildj/bu7VyN7p73AX9fN9dJfYvj8fyL/HthwYslVIT4JeAfwgQQqhCCNfA3wL+cXzaPwb+jfj4bwH/fZDb7wBTpdStP289qzpj1JNEUN9oVKUl6RIIfZmuvvfgHJKAzWO4xl6NHzmavZqQeBjV6F4jADSNoQn9AI1807pMBrnNSJJBiWmbqla4cUM98TGdL9YWGBncNUNJPwxJoNp3UBqaQaAZS5efz6VHMCRBGMtSEdJYx1AKMKpmsmzXCwL4elKjIN4mqAeBaixf1tXtmnocwMeKhAgsvBHWT8CJLKvtBXRZiIBCPqSagVRtNCNHPZTXrB/I9ha3YmjHuIoR8bJNybTo4v2DkmNXHjiqWzW+1vT/uCfJoYa4TxK2opwi6Bi+EoFQPYLqqImslQzAi702MdJTTdrzEz2AQfZV+ViHYWLi4WhXsl2NdoxLe2xcJsC22BcgBeBNoJp4ir1Aueekm3Hm8Ums2+gFfE+WVU92ANVlcSDf8yRrAcZNPCdtkX257zvW0uWyv/UoVnn0hcVq2ajmqCYYSQpt4jnwifzuMzlHTQ/MRhIxpXA+xIQ+kcSVUzmv5b5n+1op2zpq8HFbmzyeq2EEvXPp1GzTQ30ioLBlpFwe2N5u5Joby7VSjSJbbUPHsraMt8skFTNEdjFZy3EQ0CHHoU0VrUcCLuqhimwesU9QjpNLBTS7TF6jaxnUN7H2QpjCHXtS7Mly2roFlxNrC+hqKuphiKEq6nOgtb2GAZqRSEWrcVzeUJgmCR6R60A7ARm6gvLAg96xrhC3Oyde87tJBp/Qhaa4XN6T9SgCgF67DAFUsGPJdQSFkgIqg+Kg5HzmF7EYnt05lC7JyGCG3XKqGPKSLKW3UnlwiawvnQuIaYFpO6nR9HbMc3btYxJjW7MRz9lARWY7At9aZLYtkHapMOYujyAs1nlUox271uRSadKCNp9EOWFkau2mDW9RIi0eybUQdLu/dExNW+mRrEL3bReM7Iup22OpOh+ujX5EYVbbOooQwR1RBaK6dXhLB7DbVFeXxaqOTCS17fmoe+LlNUWgyXXHqjW5ou5J9Ueylv/5mKbaJs82ERyqthrD0zGEbaWCSyX50iUI0Eihq3tIdxUtEI9VEhUn6e49UPciUM7bbZP9DEaOozDCIi0MRlFHz2PQu/qTNnW1ZRclyTRuR646BlcqN+TcKi8dncKyxvM6kBqNjoFO5O+EeA5aJkoJM9nWWeSXLqaH6q56ZVd1oSITTJc2HbTUe7g8dp1a1bGUkvYrEwt1X/4f4oQOyLXRpqEKAJF9lX2L77lUQIBLtYDOGyx0x1AFAaF263YTBXFCLlgBse1nU5vyaQrfsaNBxwmf7tpRuJ4mJDJxJGy+HK+mZ2TbIiBpk1pDPE5yHKKXLbLG3b6lwkwGJfUoPtVdXYbPrLCOkXEMWqGdADtJpLX4RAvL6EL0Onp5XWTU28/ekLRv1iDA0nv5GYj9lImsMzGRoY3Pi/2MIZGqj2C1sJAm7i8CKvHgBtIJ2Va0tOqPtkZElY3sm2f3+hbMNU7WkVipDHFOWNXa4Saxc1IpaByqcfh+umM7W8ayuQlubQcKVeOkQqStDIkpsKHtiozMZEgTwqYQlrQo5f9ltXvcPs+abj2kyW4/tCY0jlBWUJbys6qhLKEsO8D5/TelY8BO3ewkrTekrS1w/Fzn5Q2Glu9nStv3wl9UPfmXpG7kL3N4zw+TsXwEnAH/SCn1daXUP1BKDYDjEMLz+JwXwHF8fAd4cuP1T+PfPndTSv1dpdTXlFJfaxZr3v/WXc6/dUDek1Ce+2+cEgB3kZEPK45PrnnxByeoQuMuM/SwhlqTTQrUxmCGDTZ1JB/1UGvD7dfOUA5+9qe+i2oUh++e4ccN40fX0HOo1EvIjg30HyxQtebuGy9JH65gWuFOZOTnR04Cco5q/KRmdHeBnRvy+0tQItM0a406Khl+z9BMHby9BCAk8iXic6kScLNGQM3Aobxi8MTgbpcU9yrM/TXKKdKfvJI00KOC/ELh7hX0nlpcz+P2a6lx2Gvwr2ylV1CDu1vQ3C6xbywJiUhuh+9ckpwlmI2mOaqoXt9CAPvOguTawMMN/W/0qGee6TcS6kcF/X8+xHxpHiWBwmBmZ4bsWcLoD2UW0KeB7SulMJP3CuxaUY+9sKbrKCMeBoojR+/ThOK1ku39mnLfU099TJc0XZXB9thjt4rtkSeZq8hECkjN/tpl9HNJ9UO959GlgInemer6/9mRg3AAACAASURBVOy1xeWB4ssb7Fa+XO1WUR04xh9IqXbvqSG91FT7jvqwYfShYfvlDd5AcexoBoH1KzXZlWLyXfmCak4qJn9iWL3SUL22FUYy96xer6lHgeFjTTqXNFFvYfiJxLZv7zWsHzaM30shwMnvyKTA+p4kVQrI8aTXiuLESbXCz11RHDmaHqzeqqgmAkDzc9mfwRNN/4OM4tBz8NsJ9dBTjQPb247yuGH1as3yDbm+kpUMjFf3vXgAh4Hlaw3ZJYw+0sy+YcgvZLCzfthExlRx+595yr3A5U8ERh8rrr/YcPy7gYOvQ+8MUDB/3aP/+iWbk0Bx6Ln6uYrNbc/ee5r5Ow35uaRd9p8LW3751Ub8ZQNJpEwWUBx4TBHIz2H5Vk01E4ZxcyJs5OHXPddve8oDef9sjwL1GIZPA6sHntm3A5vbgfXtwMEfyTFavO6E9bVw9W6gOJQJg+JQnjN8HGgGcPllT/+ZJGgOPgv0TxXZFWwPpHc0Pw+MvqdpegLwiiNhNuuhgLc7vyUqB7uB4RNJsBw8DawewP43A0d/ICC8/yIwe9+zviOv3dwObA8kfGb0aaB/Kvu6PZRzVU7h8osShFPOpHezHquOFVQBticSDJVfBabfcywfKsafCJsWDPRPA3YduH5LgMH6tmJzS9F/Frj4ogQObW7J4LD30pMuAotHUsWQnwdW92Wg3XspEz3bA9XVUOQXgdFjz/hTz+qeTAis7wlQXzxSpAt5jW7g8l0BTBc/AbPvNmxOBDRm14FyBoMXns2xgPimJ+zQ6o5s3+hJYHlPM3juuX5DvtbOv2iwW7qJC+UCl+/K98j4U8fmSMJ5rl6X963dCmARGbji+jXTyb19qjrFSAv4XAR44mtUHYusfGD+qmH+SDN87tj7dsXoie8mQdK1MLOjp471LU26ChT7uktevfiiiuBTxaoKovdRmOrhM8foidznrxiKtg6jB/0zT7oObPYNw2eu6/cs94SpVg6u3rCsb2mmH1Vs9zS9c0/vwnfAvHfpGbx0mCoweOkoJ5qzL4mXTdeB6YcV80eaYir1GNnCCyu7r+m/dORzx2bfMP60ZPCiwRvF6pb4ZMuxZnXbMP6kwluYvV8xelKxui3SyeHTisU9KwmmM0051jF8Ss53NdRs9w2mFjZ7dcewOTTMH1mW9xI2++KjXt221L14HY40dU+uie2BoZhJiFJ+4SgmRthkHyhHmiZKi8uZYfLRhsHTgtGTit65I1l7Rp9suHg3w6eK+Sspkw83uEx8lpdvpWwOragCtj4y9UY+2w+ixLcIlHsJwcL4/aXUXRjxP+bnNcv7OfVY0ljrgSa/bFjez4Qh3XrqsWV1L8PlGrsV5jPEeg3lAunSYUpPOUtIFo7rV3OqsWX04ZJqbMmuKuqxZfjxiuIgpThMGX5vwfYoI1k1DD9ekl1UKBfIX2xwuSZ7OhfA4wPVLOXi3QF23dA73Up35EI8B9vjHLupCUqY06CBG9LcapqyPckp9zOylxvKgwyzrin3MvLnK7bHPbKXa+x1STXLsIsS3XiK4z6b+yMAXG5J5gXVJMWsKsxW1lfu5xS3hjSjlORqKwBvkEjXZW5xvYTNazN8z1LcHlEdDbBL2e42STV9ckUzyiJQ9NRHI/E8Jga9LqkOBzSzPmhNczgShjSmv/p+ipv18QMJ8wmpFaC/P8BPBujrNUSAqddbQj+T4J0I9EI/EwlwnuLHffFojvuEoYDU0M/l+VpHT2QEpMf7hCyBg5kA0tkYjvbipIjC74+Fua0b8VPmaQcqUQqVZ6jZBLU3Q03H8nh/hppNJSBHKVSeo9IElSQoawlR1qr6Pdnmouhksm2oTggBlVhJg23rUSLr6Kv6c3dJmW0IXeJss2NHv+8e6uav6kZ+DG4/NI+lUuqngN8Bfj6E8LtKqV8DFsDfCyFMbzzvKoQwU0r9E+DvhxD+Wfz7bwD/aQjhaz9oHeM3j8O/9T/8Cn9wepej4YonV1O0DmxWGZPJhsWqx/HegtoZNqV0PPpao3TApo76vAejmuAUvVHJ9qrH4e1rzj6bMjxcU9eGpra4hQRQ5Idb6tqggGadyExWEtCJE6VAYSRRVMeZ5MwTCtMxmMmowjVamNWlJaQBrIegUBsjQHSRglPC5tkgy9KgVwYOSvwqId0rqEtL2FhUqcEGKYbXAWUC+izFDRz0HPo6kfoLE2jNGaowmI3G9T2qVpJ+awL2SoBWGDWyfVlcZuoJpUh6SbxUalxmhEEj++sV6IBZGNy0QS9EsuP6nt7hhuqToQyQItvBpMbmNeHTgZzIIBLa7EwLQJxJiEi7/3olPY56VMNZRkhFluyzQHphqCcyqxgM0unXCGj3iZTUtzLYoAWsq0ahCw13toQXUrasK0mgtUtN0/eENC576lFVW6wur7Ur3flLXN72DwbcxGGvLOO3L7h6PBPf7sCTXRiqqe88mtWBIz03wuIq2ebkSkI90FLNoSol56i3W34wMsjUtYBju5FKDD9u0CuLLkQS3fTkPLdSbTduSC4s2dtzig8mXVpn0w+kC0kzbr29LRjx0SuHEia9GQR0lBvrKk4KzDX1UFh3u9KYqgXtoUs9RUvtQ3Es4L714aVXAlyrw4b8WYJLhen0qTC/veemK3MPdtcVaUqFj32NLQOeLNpZdZmcAMDLcfJJQDvZLp8FlLTSxMRbRXYpYTooSOct4yTMVD0OXSm9+PRE+uoyduxMlCI3A3mP27XsVzoXNs5uoJzF6ocoUxfWHHqn0reXLKUrsu1fJPrxXBbBTh6Zqr5sT3a98x/LSaOTUiexAqIe7I6R3dCVvLtMZMgiLY3nt2j9ZMJ4eyPvm2BEVl2NRL7qkyh/jp2Qra+1lep6K/tiKmEEW8WEKWQfRJ4s8mW7iczpTB63PtcdywrZdWR0ozxaNbvtwEcp97XsdzWBND4/XUQ5YlRryHsm7psV1rz1LFczCZVpQWI1Esl6sMJeSj9ilKG7nWRX2MEd033z/xC9tJEtq8ay3abcMdbJUtZpt9FnuZJk5XQuQLsayd98ZBVNGbrOwa6TVAuoFcl+ZJ1TAQB2SycLrgfR5xsln3Yrz2/fX/VQSdJzZIJdLqyw9ADG4xmZ7mJfYQuRmbdsp25C571vesJS9M8lZbft9mxvNsrTm56AjVaiPXjhqAc7r2IwUVZqYsjVRmTT6VqkiU0uNSC9Cx/91KFjZm0hADTZhuhzDzGIiF2foiWyfLJfrXwa4jJK8Ssna2GYTJT9uuSGB64laxo676uuZdtMJf5lFQJNFj2mAXzcLxc91NncS2epD5QjQ++ywWWauq86f7At2s/+yJLW4XN+zXpgRA4MElITpcKt/1fsEwq79QKco39X/NyBcmKk8mNP0mRtZEJdrskua+nKnNoohxbA4rK4fgWm8LhUYyrxvLbrMNEDG4z0R9qti97VQNMTIBy0whaOJjfd/10mtSLVJCG7EvDnE03TM2RXJeVeht06mczZSAiSdgG7rKj2crkeSo9d13irO9mojnJau67xqcFlRoCwkWVrF8Qj2nhCYjCrUpJlnYSRoZWoA3xkMaP8Vr5rjTxWiqA1aGFGfT+V7kqjaHMHlHO75bSvjX5nVTY7n+PNn07ktKqoCL1MmEVjxMt5g8FUZSWsaJbu2NX2a6IN8AF5vTVdYmzwHhXlqy0mUErtpK03l9X2YzYifw3Oi++yZS1jt2Vo19fWjLTdmt+POW4mx/5F8IgPhLr685/3A24/Kh7L1/+9f/Eeyz/+tR8Nj+UPE1ieAL8TQngYf/9FxE/5GvAvhxCeR6nrb4YQ3lRK/Xfx8f8Yn//d9nk/aB3912+Ft3/t73A8lOTTSbblq5PHPK8m/PbzV3h1di5JptdjvFfcmi1YFBnjvMRqjw+KopFvk2dP9vmVL7/Hr3/rHY4OF5w+nzLaX3N/es26TtEq8L2PjqU2pDbMxhumvS2Xmx7LVQ8fFMEr9qZrruYDZpM1vaRmWyektuFq1cc5TXWVc/LggqJKWK5zrHW4xnAwW/LyYsx4tCWxDqM9L57PePPhc773cp/RoODqakjWqykuc8bHK4oyka7I2mCto64sTWXI+rUA2KDI85rNKsMmjnqbcO/OBasyZVum1LVBawG2rtGcHM5ZFhmr6z46dQKgCwu1wgwbtPbUyxS8Yni8Yv1khN6v8E6hrccYT/hogH1jyXaRo3QgeZoy+clzlpscYzzriz56adCNov/GNctFD6WCdE5qLx2f87RLdVSVgnEjAP2mVgYEDA9q/Iuc5O6a8qInnYRZwMxKmsKiU4ffWuygxtUarlN0A27k6D1J2D6sMFcWN3aoWqNnJf4iEz/tSYl+mgubbAJqq8nPDNtXys9VkiinCCqGKI0aRt/I2NwKNHs1VBqSALWCnoNaY+a2q1FpAbAfiBdGlZr8paHci7LKqUx8qLXBbkSumiwU9ThgVyqGNKkomQqEvQp1lYr3c6Gpx1FunXl6TxKKA08Y11BKn2C150BDemZwfQGB5YH4LbuQiEokfMFGgDP0ZGeG8tCRLHQX4lTuOzluBgGR8XQ1BzXmWtKAbARmzcSRXJkYgBMIfUd6amNFiUyUmLWMom8GBakA9dRjYriWrmVgV0092aURiWoHQgXgtGFKyVpk1aYS0Kka8akmCwnBcn2RdmdnMSyjFGBSjwU06hp8Bnalun7O4sBLz+OFwvVkX9JrRbnvyS405Z4wo0GLtDe7jgXlRsBkspZ1Z+dKKlSWrbQ0oJvoJ76WZbcATPzJ8lg10AZMpUtFuSfgObtWHYjpQpEyWX8LdLMrAVP1KL6tlIDtZLHztG7uOPKXpjuerTQ6P6cLYfKWeEzleNcj2WbtIlBMBCA3PXB9qWsRX7OATh1lpXYjoFOCxCRYy2yV+GePA72XuwmEFjDXAzmvsNuOdttdJkA22HgdbNvwJNXJq9uJAblmd0FULpNjks2FMU5WUlFSzlQHoFWUB+pGQo6yKwFx4tWTayRZhi4kS/x0dAFgdisAP7sMVFNF72WgnKr4niN6AdXnnteC0VYS23qDm0Ec7EWgNHrq2O6JH1NCdKIcNo37mApbW02ENRZQKEzt+ElDMTNd2JBMJMT30Cp0TLeuBPRIhYkchzTWhNQDqeSphqqbMOrSUdvtyeT4J1tPMREgWMz0Dsx+X/iSBAHtwGDv0rPdk0F8k4s3N9yQ5FUjkci2YN9UO7msN3Kt2BjuU/fEF1uOJLQqv2zYHCUC5lS7bi1djY2sL9l6dCm+TJ9Ej29Pka4kAGq7rwX4xrCnJhc2lBBIVj76PLWcTx/kPI+0sNOFeFrtxlGPDE2mpbsyhi+1HZatHLiVRSerhnKWfA54yr7LsTGll4qVjacZiFQ4v2yoxobeaSWe00THqpOK7XFO0NA7LammkhDrMo3d+hhAFtcRJb/pokHVnnqUdOvWrVS7DTmqxRcr4UqeemRF1quI4Tzy3Py8oDiSHu10XuMykd6m15LUatY15X5OshBNezOw2HUjMvDM0PTET2rWNT6zNH1Ddr4VT2YMFKqnGXZZY5YlIbcxuCjE5SUSkGR2+6kr10llW5+nBBK5CCrFh4oLhMx0sttOG9hiqJvS3LLuAFcwBuU9N8N92r+p5QY/GaI3xeeksy1QU8sNYdTfPc5T2c+tqOjCqA91g1ptuuqRLnwIBLzeTGt1XhJftRZQ2LKkG0mvV0ki8lkbtyUynDQNwXmRy/ogDKQxUNd8fwVJe/v/JIMN/se+bqR/fC+8/u/+EIDlf/WjASx/aC7YEMILpdQTpdSbIYTvAr8MfCve/wPg78ef/0t8yf8K/KpS6n8CfgaY/1mgUtahOH85ZlMm9LOa58sRF8WAF/MR23VG1RgW5wNwitHxik8+PqK3t6WsE7KkZlNkFKuUbFChCs2v/8m75MOS1AjVvvpszMdO472mmGeozFPMM8zcclFrLvUAXxpsv8EtUpRTXCnwFynnW4POHL1BxfnZCJs5eNyD/YaXF2P8KgHrcdpiLi2nlSFUmvn1JLKoGnue8L4+IQS4ro0Uu5cGnGJxNiQZVmyWGaHR1NYTao3OHdWTAX5Wk5ymrA8seEXthGI7vR5RnwlTq0ygLhMBR1vDs9UBelijLhMCiTCHOqD6DldpXG1RtSY9N6zUgOxaUyYim/WHFW6eYrJAuU2g1OAUulLM/+iA6rhGpR57ZWkmDfrKsnw8RpI4A6rUeCVsaTLX1FMJWvJ5IFRiwOg9Tdg+qEjOEupDASuu0minKC976EICMrwKNBuLXllJ7Es9POmhMmE6lQfm0k/ZDtDtlZUvxyqHNA7cr1JMqdDnwlwS4qBmI12mzf/D3ps8y7bl912f1ewuu9Pe/t1333tVr0pVkspCCMtgMwUizMARBBAw84Aggr+iJhBBGIIBBgxDM2PCgBH/ggkjLFBjqVTN6+69p892d6th8Ftr53nlkuUQKlyl0I64cc85mbn7zFzf9e1OpccyVJHywaCcnOdxDsVG4Zaa+p3FzVOCKGAO0mMZ9iLrDTZS3WnGtF+hSszXQQbRfiyFDW6PgU9ZQmt6NZXGD6uUEnyf4vETc1lsJazJBfnCKB80biySj0ehEkC27XFgSpDApnEVcQtP+WAliGguYAe0BCP1Ct2rSZ5JhOpWWOf6VhgJNwd1U0hScp0nBuR660HRXMH624HmJwW+FrAsTKxUNYwpwCpUJEARqd4bxlVIr5cyedNqyjV0l4lF7lN3Y5sG8lWq1ki+peYdU1oummkbdpv8a6OAtqIXb6WvI/WNpr8QGWsuXo9GS2BUYu7KhwQoduJtsm1iuTpQCSSbTgbr9SgS7tlXwqiWayVsmRZmKKfihlJeM3sfJGQme9MS8+wT+2r3TN1/MjhNzFSaECi3ck2kekFAvvIxpU4nhqs7Ap75V5FxJUXw3bkAhPo6+4lTSq6G7KU0KUnU12rqprQHoGZKxrW7o68OldKadQqjWkmYVH8K1X3ENkcwU60FbPenKnn4ks9tLq8v15HDc9l/V0O1lvXZAxCguToybFGLXHlYicx2/1JAm8gtZXxV3csx65EprCtqBASeyHtT93I/2hYgJnY2TkxgDiWyfZRwt/kRSA8rNQFjM0xvC0kuXijp6jzTE2AvNnIvlbswsXLVJrB7YR6lMUfKO/GI7l4aqocwsczBimTVFwo3FwZJhZzAnUDcoIgm0p4Le4NOycM6+1yFhasfAtvXVtQ0kNhKeV8oL12nvpRJo8Vbz+HSTKygL+V6lLvA6DXVxk/nvXrw2C5yeJISZ7Vcq2L/iH1LzLr2wuBpD3ioegG05TZOScTlNk6gJs9HiiJDALAeowQPDfL+DUZRbQPaRbpzS/3g0UOYQn9IgULduVRu9CtDc+umCbhgSInfkuo7v4oTyxi1AGrbhikoqXpwqGin5FkzeElDD2D3XtJi02PFXvbL1woVZV3F1h29nTaxaQqKvXR+6iEmNhSK9ci4LNBDQHuR0cprwLQe3Ygn1XQe4yKq0NOkiR4E6NjW4xP7anov94s+MswStCOJrSqC3Y342iSVS0hsqnizzWHEn9fo3UgoCsq1xzUGu5cQxWgLolEUG4dvDL42EvzjxdMZGwGBtvNoFwhWHycBkhzX+lEmN5O0VcXkNXzk/bPbEd2lGo3OERfJHO8COiXFKh8ltVYn4NiJBFYNDm2Tx9QFYTATKFQxQkrIndhM58UjGSJRW1Q7iKzVeQnb8YGpliMnvCIMp+zsI4bSe9QYv+alzL5NqU6RZN9ozRF8jk48qEpNoUNTDUneZnzEKGYAqDU8lp9mxjImNrXvpwAfeV2653149Lckn/1Z6bB/nlTYv1p+oZefd93IbyB1IyXwQ+DvInM3/wvwIfATpG7kLtWN/H3g30HqRv7uP08GC1B98ip+9Pf+U4bOEoOCTSFJqyqxNzZSXRmGM7lZi42GIAzENIuZaj+KjbBBdn+cFS/XMoOuAiK9OhWJW07DzAXyOlVj+EbemAIAZP25niFa0sAB+otUPN8e60jcTAbj4xKRcKa01u5StulrmSWf4vWjDGzGZZLypJ8hS3uYQg8IMjg2LSJdaWFcMdUzZAlcHiyNqyNLonsZ2Fb3MlCbZpBHAQ3zLyO3v+WZ/cRO8kA9ir9NO5EGNlfHYJIsic01C6ZHAnTao2zN16SCdzVJ2Hwj10NCDVJtRGZJZqnGoj4et5ul1NYk/wuFDCYlVOJ43MMJrH4kyYzSMyfnOQ/cs9xQZo/TuUyBI/Yg1zXPoOfI/+ohTkEZ1YPM8MtAUvyhuTMtFPm+SSxNLwOc9TcF6BQ7WW8+ZypI2qmbyX1khmOJe3+msXthD0JKQRWmR8BEsZV3nk7VAraL5PTQqGXfXCNfiMVeBmZyjCJr7c5VOodyTmbXQbxJLk61J8WeaQCaUzAFXETqtdQ6ZBYid+ahhMVwjcj6XKOo1gKgJARITTIhe5B0yf5EBhH53o6JzPaForkLEkAyFybGF+Kxq+9yYAhpYJuAwyQ3O4bTmEGOyZdqClzKFRc5pTQYOYdZ5mf6SPtEU91LwES/UsyuA/2Jpr4XAGB6GZSPM03RSim7GQTgBKModykVN9dnaPlX7kTCZnoZOLk6g7HjZ7cvFLNrT5sG8drHienJrKJrErAdRVYo+y9MTLmT90DUivnbgf2LckryzINHM6SqiiEyuxrYPy+n/XCNgISxkV7D4hBSlYeZZH15kG87AT++EkapSGXyUR0/s3K4S7CyvXLjGZYmgQmp2cjHkWtDojmel7we0wkzZA+B9sKy/Lxn/6KcmCrTy4DX9HKOm/cD/Xkhg+CUhiqBYJpi71Eu0p/bxIRFxrkgnmLnJY20l/eVfGik74AUCCPvSZ+SPI0klZaKau0liXSIAuQM6X/xe2b5pHhcew7Pq3QeJRjFdJ4hJYrmUJ9y46a+vgwOQqknCXBed07Vtm2AEHFzg6v15NXztZ5YlmgV5WZkWBYTC5f3K1hFuR1F0th5uvNS3qNOJKDKpVqOvASm2o7jZ2GUMJggn3W5bsS2XlJBF4UkspYyaVPddOKhS+sNKfDFDJJIKgmsIol0s0LGBUmWqWJSIQwePQbaZw3KR4qDwxcaMwpYycDOdlKpYXcinZSqiwR4RrkOevDEQqPGgG9sYvZk30NpZH86f6zomFl5bm0lLEeDGiSARg+eUBrMfsCt6ql6w83lHOjBT0E+6nEdxugJZUootVpSU61Gu4BuhbkDeZ12AV8ZYc98xLTCKPnKyHk5jISZJI0qJ4AkV3/o3uFOa8x+lIRVrQm1xWx7VNcTFw2qH4m5osJq/Cz1MbZOwJLW4ALutMZuewHIRUpt9VGAV51maXyUuo6mPN5DSbKqO+lvFHZukOekwJ+oNcpL0E4+hgyiQl0Ko6hBHXqoSgFm1vwzbGHUGr1vJ1YSpY7ALYiHMae7htUMfbsRsJh6HOO8QXW9rL9KSakpuZYhMXmPpaQxTvLXaZ+GEaz4FlVxZITjOEqSqtZJkqon5lDOvT2udxR2NDoPwTOlu8bwNTAr5zwcw4JyGqzSTFUfo5u8lRgt+wdHNjEcgXJM4UZyAzzaxk9XnPyLLH9ZGMv/8OfAWP63vxiM5c8VWP68l9W3n8VP/uv/hO9evuftYYVWkZ9cn7GY9ZRWbv52KHCJdWyqgRgV231N0wzUhePm3Yrl5Z55NbA51Dw/2RKi4rN358wWvchIS0/wmgisFi27Q4UbLPVsoDuU1LOB9qEWb2TjiYkF0pXHGPkGdYN4Is1yxPcG1RrseYcbDHFIb06vZBZYgZ2PuFZYNDQ8e/7A1fUKXQhzpo1nPJTgFHYx4m8r1OmAsQF3XYs/sQ7Qa+zJgDtYYVbvK/TpIK9/qL92Ps9ertnta9xdDctUqXKw2JMBf1/BYmR50rL9bEWcexg0utOTh1MVgbOLLXfvVyL3vBywlYMfz3HPB+JB/KaqCujSw9sav/SSvquFjYtlQFUettI5qpx4TeuLlqGzhINFt4awFH+n3Rh8EyRs6MSjGievbTx6Iz7WqCPF2jBeSnCTGhUY5P+IyFCDorgzjC8Gka/aeDy+KqA7kWjFmaf6qhCJaSMe1XwOYu1RvUF34v/UncKvPPbO4ufy3FiILFX1Wli8RUC3emIhtRePZV5UL49FLfLd8lYYCt3D+Hqg/kGFryNulsJ3tNTegDCSRIhVBC/7Xr4rUvqlYlyEyctbbIUdjMlflyttAGKqdfGLQPFgMAfxXAJTJYzpE2BPbKubxVSJEig2WhIqSWxdSnfNHYUE0F5eI/2HkhbsZikp2QirXWxTP2svzIr0sylcOg638ix+aDk8D5hBZKTFVnygpk+go5e/h+TXBCbZNVH2Y1gF6muRBBdbjavjFKASCnle9SCJmWZICcRJ7hcR9lc5SQ4utgqfGPB8XuxetjucZsZO/JD53EQt7/kMUKRXViYBQCYhHvdfZqCe+0ftXl6fQ6ryYg8y+ZQ9eVl6ln2LOYky946qNPh3TWZcE8PWJzCSqllybyWPtjfOI+UmSW3nsr5c5wRp/ZGphsW2TInO5ZajNy+myZXqCILyevJxZD9v3uecZlvsYPcmMHurJc01MaW5T9O2MlGn0uSHsMEkb6lcs+5cUeyZvHk5WTj7ZHNPra+O10uudZocSAAsJq+g6Zgkij4BfZmMS0AyyU9zn2qekNSjyF2LxMg9lri6WaqnSccoYS7J0zrGyU+Y5ZLZq52vfZb9Ss1Q6n5Mk0LSqcoxBbdIz5vJhFa+H/I1CcVxcu/xfeRLEsBkmoCU9x6TLFd5eZ8NS3WcUHPH90A+t0f2U7yQPvl9fSG/6zGmpFc5Fl8l3+VS5LLZ35kngJq7mNLDVfKTPuqbTBM8uX/V1YpqI5Mwtk8+1DyBi4D9fmWEWa5SH6lR06SOAHEYFjKZ87gTN1e75CUqUScUe5lUKfZhkhwD2taw8wAAIABJREFUk4c3s7D5MywnxkaTeyHTCtNniptpTBdFHqtIrKdIVEMhrGW0evJRKp/S10ud9jVOkmPtZXKl2MqFCqV4Ku1eJLw5Pbc4OMaZnSpXopWKFV/qr3lGpaNSthOsHGuecDC9yEplHx2x0FOViN2PE9CW7s0g66+EMZ3SYvWx5zeW+tjvGVM35hhE4jor0L2b0lQld0DAuACtKJMIEWE3BycJtEqlzlKDOQyQGfMiyWJTT6byAm6jThMD6WdAAGhZCLDLdSGZ7cwdliB1JfuWaI0E+0w3Tt5mAtvDKMAty17z+nUCrePI42XyWJalgNjMaObHE6hT1hIfv3byg8q+xHTOp25L73nc6zmB9/y87Nf8s5a/ApZ/6vJXwPIvYLn4zpP42//jf0RtRmrj+GJ3SmE8J2XL2/2K2jpOypa7bs5hLOhHy9msBaAyjrt2htEBpSKbQ82sGlnVHV/dn/Dm4o732yVaB0LQ4gNUkUNX4UZDWY1UhcMHzaLu8UGzbSusCYzOEIJiOevxQbFvK8rS0R4q6mZgGAzGRIrCEYJmGAxNPeLTz/NmYLNpKKr0YZ2AsTYerSPDocTW8obWOuKcYT7rabuCqpLtlNVIu5VkXDcalA4Eb6jqQaS9uxJdBJSOaBVxo0HbgNZh+tzyXhNGTVE73GiYzXvatsQ/lGRfl16OxKAoasewLyVp97zHD0b8jfcVsQzo2mFsYDwUmDp98AQIo8HUDt9ZlA0CjLcFFBGlI9EpdO1FOlx5mcwbtAQKBRkgTEDQRFRr0Gc9RIU/WAHrlYfOQBHk9yJ9cB6MBBRFJlkXCtnvwUBQEnqUpLhEJeCwCrL9Ln1Ql0FArI3TRABOTetWPgGhCKaV0KRibXCzMAHqMPfgJXTIL4TmNjt5LkUEp6bXqKCm/k+/9AK+tchBQ532wYtk1q28gGIbsXuNWwaiSs/Nkl8tQUVuHqdBn+lEZhuNAEwJGXq07jZV7nhh3l0GpUm+rJOky80DppWwo1CHSRmQw0aKrWK4COhOpcGNhC3pMfWIJhloHvCTZKrjeUAftMhmT8X3ZNpUqdCkbRqR7iovwMt2CldHFEhVy0wApsiOpcJFJ3Bl98fCeD9LnbLbrBxIoUBO1A6+RDpaK5Ht5m7SPJA2fQ6QUlPICaRBdXMEmr4UIG0G8VGKd1a2k315Uo8g103CeeS+jFZkxMOpePp0mjQhCvPuZnlfkjzZpa7StO1iK+oI7RTl/dHrmHtnx7mAYFFopP1I4NandH2TJKoC+NPfMmgNRyloXnJPKTAx2SCArb5NSoVUNWI7uYZZghtKJqDzuFs1VwxNzH7a12IjEtMMlnNwTFYMZHVDruzJ+/UYDOcQnXGhpu1lBtAMR7Ceq06yDFX6WdO9szsG5BRbkfYWu+M6i4Mw2Nnfq+KRwVWOr4XATJMH9tH+Bhnsu1pk3yD7LL7eR0xBTKE2deqpzN7nBMaE6WQK9ZL+0zi9P9xMTWqFHMZjxvi1yYncj5z92VnNorzIg12VGMlO6m3kOss5Mf3xGtlOgMckZ01gt9glhcYjL2auLcmKC0kqj5NPLgPBok3gPgXnZFCaWf4cxJNrMPI6cq9mnighZvl5nPbNJIY6KvGP+lJPvmoJkopHpr/Wk5S22HtcradrNnkzExCM6Rr6InssxZdoOpH0ap8muKwASuWlIsX24gXNPj9XS7hO1FJ1U6395D3V/ZFZ1n3ALQzF1k8MMAgwzX2kvpJJDbG0qNRvKkyofI8Eos2hbipJguU5ObDHzQx6CAkAHkGzGUOSYev0eAK06f0l1+0ogSWC7v0ELGPxCDiCSH+TBJwgfZTygEh7Y6ovUSFK/ycCJh8vKtWaACgX8PMS3Tt0OxILSejNDDAaCe6xmUEUuSxOvvenrkcXxNuZ1pu9j9GKWkBlL+QwCgua+ygLi+qGI5B8DDC1/hqzmh/HaNShO4LTGI9dmXBkS+EY3JPlufk1zomsNQPGyWebgPDjGpKQwoCyrPZnJLr+eWpGfunDe56+jt/6OQDLf/L3/wpY/n9eTr79LP6d//lv88X+lKvtIn/e4IOmMJ71esbJyQGlIqM3xKjoukKe4zT1bMA5jesKimYkeI2/rWDp5H1kItErimYUxtErcJr6tGPoE3s2c4RW/CbFfGDcVqjKE/vHVIGwjM2qo72aUV22jIMl7C1oMDOH743MLDoNOqIbR3Bafk/ME5mtrB2hN/JYWpRPbF+n4WSE+1JSWx8/xykBMSsnYCnPSjtFbAJmPhJuK2LjUTbC1kqyKKDbI3OnnvUC2nREbyw86VHvKvzKY7ZGwmLmHkYl6a6rEbWV8JY485i1wWe2zEgfaDQCDPXeEGYCGmIps61Z3hyqgBp1Aj8JFBXpOVGBBxXE9+ebMM3Q6kHh5xL44pceszOEQl5v96mT60QCeiZwNw/TdlUOpBkU/tRh7y2hkFlm5RMrc+qFhXQCyoanbvJt+iYkRiozIsdgCoKS+pcotSuhlAAZgiLWnuLeSmJqtjsMAojMQVhRu5NBzrjM8s0kiz4J07GHMlLeG9wiCPv5SHJoEis5LsPEDtt9Yld6AWv9kzCBvqgFyBR7AWkA7lRSbu1e0T0LFGstoUAR7EEGVeVGJYmysJKmU8QCxkWg2GlhSF0aSB5SD2CTOjFrCUbKabbCmqSk13R/2oOie+Gp30m8v0veTOksFDY3B+pELVUx5qApH1IVRQIVUUPMqaOnEsxjOmET+/M4+VojTNdaeWEniRLsk18vkjfZF2GHhL2MNknwbUr8LeWeMJ34UHNqbtRMntDcd2n3amJP87XOYEonOTYwsU2ZTcqJqMon0DU/MmoyABQp8ziH3L06zkV+Pi4EOKHkuDK4c408L3sefSnP00O6TqlPtlyn2ozheJ7zOXd1kuumCQOf61ouVAqwSQE9B9leuZZ91yNTAEtOqS230J9IqqtvxCfp6mN/qbx/5Gc3k3UNK9neuFBkr2gGF1mCPbG0Wv7X7hHQSe+lnLqaU49tK/fDuFCTxNoeOAbyHMT/Zvdx6q/MwT31nci07SENmBH2Kg+sM3smxyz7btsUwJP8rSZ5Dotd/JrkHKSD1M2UsI4JcNsujQMSc4Y+Mqs5IMunPlNfKur7OH2O+EquT7CZgVYUB5moASbA6JPfD4QdnBJx93G6n3MoU7YXiOz5yA5mX2WWqReHR+Avpa0GIyB3AqLxCNIzux+snEfbxel9FpWswzUCVnL3pvJy/syQJqK6I5DpTiV0SN4Hkraagd9jZs8MX2fMQFjLHC5k+gQghzCF8UQDw1xTrQVUDQtDcQjiY6zScfapTzf5KfP6Mwto0nXtTw3lVjyS9hAY5+LbJMapyiRa6fM06fgysA2FQvfi4zStTyqGHOiVGOG9n1jN6VgfTwQkqXOWw2dQ6SuRGY8zS7FzjCvxaebE2ahEPgwIYExJsqYTKXK+Dib5JEMGcRqUi2myIb2mF1mwSmAolAIip45HDWY/yjV7JP/Nx6I7AY9onSTHybuZeoLVmLot9REgT5LcIqvSongxxxQKlJ+XA3syS2m0/JyBXWb6HvkvVfJTToDykcxXZMtagoGyzzJvIz8HZBveH4Hjz0h//enHJszgPSjptHzMXMZhnECnMpo4PGY1HzGWP/37n9Jv+dNLjJHY9/9Cz/1Zyy8MsPwPfg7A8r/7xQCW+s9+yi/u0jvL716/4N1myW5XE6Pib7z8MR+cPrBez7g43zGvBqrCsbubcbnYU1Ujy0XLYtXinObiRCIFx+uGp+cbopGwmHI2olRkcdqiFNhCpJ+q13QPtbB0q56idOAVs9MW1xWUq564t5SrnmLZY+cpGbTXVIVDpaCZMBj5tArgNwJs9cZiHwxm7iYW0DxYdCueErO2mJkjPpTgNHY1SDCNFrZIHaRGZLboQUXK5cDzN7eYvUg6iwctrNFsEIDohL2Lpby2+KOZ1HAAqEh9ZajfWpovrDAgRliLMGqKGwu9Jp4PhFHL40Vg/oUm1kGYw718mOrUkakd4BTNlczE6dMBuxbWUPdyjMVOUb+zAvq2mpN/aggLz/KHGhWUDFJXjmIr26nfWcxBCxj2CnNQlA/qCDi9SjUXSoJ49gY1CsCu34mss7qXx8sry/KPLKZTNJ9bqmtDLAOhDhO4UJ10ToaZp1hrqYgYoP5KPKbFVgsD5UUOWWwUce6pr/QUTBMSIDMHqbvQvaZ8scelBFeCYvaV5vwfizdi9UON8opiJ0FBelCYQVFsNMVOAJgemSSi4vmVXs2oob4ymE6Cddws4hthoWZvE1AMsi+hiJT3sq3qXgJ8QsnEJpb3ArL8qUONAu5klllNDGM0yXfcSy1LsVYTw3f+B0GON4XF6D5NGiAD/iJ1moYiUm6FNTStYvZWej+l7zQBK0eSzcLsrYTe6FYCbLSH5kr+RoTqThgQnaSv5QZJnE0/205kneVWBs52JzUWepDjqm8T2NvI+qs7NSXNhjIB270kwxZ7qb2wnfiETQf1tfjZTA863Re2FaBpW7l+JoUnicw57e8o52j1o0B9wwQoZUJDthGNgLzqXga9xe4oWxVvdJzCg+ob8UrXd5FQiF+3uieFzxxlqPYgYCvLSrNMNYOyYivdouU2bcvJfpJAY5Y4ayfnKiooHyLFPmIPkn5p20h9G1l8GaeKjeYmiLzWZCAmj5VbYRyzf7DYxik51vSRciO+4GInLEG5jcy/DJJa2so2TSvrsompKnYChJqrxPCmBNfqIU7y1MyuZqAGArKDEcCWPZFZJlqto/go+0ixk21FI9dJmFIJuCn2kflVkDTQmPYbCSAq1wJI67tIuY0Uu8R6DnGqnrFtpDjEKRlU/jFJRJWPzK795MnVHppbmejJAS/KSa9pNFDfy76YDqptZPHOY1o5Bkn+ZGIri106pwl8qJhAeJD9sN1ROltu0ufcEKnWnmqTgluGNAnTxlR5kb7QE1AtdwE9RgnPGSWkSDthGbXPHug41YlIEi8UWz/JKYtdEKYzhdpMrG+IidUM4t3dBcq97MDysw5fiV+3StvOrGkGgNpBsQ8Uu0D14ASYKmEbkTk3qrUM1F2Vtx0ptl6krVZRPjjKBzdNRghDHCnXLlXqBIqto9h4OeYxUOwctgvYvccmoKW9PFY+OEwXsIcg/ZlpQkCyF/x0zHpMgUULTX07pkklhd3JOoNVk6dYhUj54GSSYOuFZRyCeER9Ov9bn8CXyFO1C5SbUeo8Co2biwy1vD2k4xtwtZHnjgKW7cEnICnANktvtQ8ToEQpzH4UGaoisYtaWMWI+FODMH96kH3Sj2SwkkLrU0WYJLgqH8RTqgSkmnYU0BfT++puLz/34iENjT36NAE1enSXPIVGJQ8s6G4QljL5UVXXSyqrz9fEC2MZgvRPjinUJwE3lUFY/hvCWCofpiqRDCizf/NrQDEvqXf0sZ8xloWwlo8SXicf5mNv5fSCBCR9IIYgHktrpYbk8eOTzDWxl4mVVEqlv4VpG18jsvLfQzjKYlPdyc/858PXA4H+avmFXcz3v//9f9n78Ode/qv/4b/8/r/xH79m70s8iifLPf/4Bx9xcbLn8mTHF3/0jOfPH3g+3/Ll1TnffHHFQzej7Ura+xlF4/BRGKt/69d/nz+4eo6LmuK6wFwMfOvFFdebJcOhYLHsGB5q5q+2fOeDd/TKsL9aQBl58eKe+/sF85OO9rbh9MWWphrZ72rsT2qef+ea7bbh9HxPrzV25ojAb37rJ7zfL/mVT97y/stz6hd7zl+v6fqC2aJnNe/Y7RvK5wfCtuT1d98zovnGh1fcdY1IoZxmcXEgvG2oP9oSV47hiwXlywO//vItP3z3lDj3hKAJRr6An7xcs4sFeu6Zn7TY2cj5sy3+cqTvC5588MCvvXzLj/0Kd+aIUWPf7PHOEE48n75+z931ir/11/+A634OOhJ2Jc3zPeHDHkwkbgqaN1vOn2/YHyqRiS08v/3dH/KTck592jM81OinPfaLiubba8IXM8yoKH7jnt5bwjzQv3aYe0v7xrF4vqM1lvl5i3uoOP/knm1peP7JLYexoDzrUecD41CiBw1Pe5ERz4O8Nlpmr/b0ShOLyLPvXbN5mNM/8TTPDnA+0pYWPwu4k4BbBn79Vz5nHUtGNOFy5OLlhv2uwZyOjMtIOB+Jo+Hkr90ylJFhHqm/ueVvffNP+NHbpyy+d0c/FOg3LZ2y8Lrj+at7XB2ZvdpzOFV849O3XF2dAgpzKsx5sIo3//ZPeO9mRGfRn+4wzzs+eHPL89d3vDc19lWL35QUv7qhi5b4qhN5rlboVwfst/d0Y4H6oMN5y+x794wlhNYyPhsZXo94I97R8LonDgbzzT19sIQ3Pd0qfYF80EHjGWbClhYnvQRidQb/omfxZE8bSqJWPP+1K/ZXcy6+d0Pz/MBuM2N4Ksk3298YGBuFfzpiNobulWf18Zr+riY0UeSf39yhngyodxXLf/OKTdegvrujrTTu+QidYTz12L1muAwsv3NPfzNjXIJ71TPMZPDmazi8kkj7/oWX8vhvrRnWNf0ZvP7Nr7g7zAhW0X7oGF447NriFpH+eZD011cH+hrGxtBcKdzf3OB2JcN3WhYfbWhrhb0tGBeR6nsPHM6gWyr0d3bwrmL3JuJm4L63ZywVwxPP8hsPxIuRw4lCvepQtyXjJx3x2Qg7i/+gI5w5OBS4hbA+618JDB8PnH28ZjvTOC2+2/1HjhgVsVD4maJ97aSHdRnpXnjcmaP71kjfiGby8JFn+HCEztJfRIbTSPdmhNctw1mgvLHsPgx0H44ELPVv3dH8o5r73xop7g3dk4ivof1kpF9K+u9wJuFUfg5nv33FZjfH9Ir+XNjK7tOBEAyHjx12a+jPFP0FHN6IL3r97Uh/IV2fw0rRvgzM3ik234ioqPGNYvvdge4Th38xEtuC/SthsPcfBqp7zfZj6L/Twb4Qv6tTbD8RQLb/QFjD3aceV2raZzIQ3H86UjwYNp9KHczmE+gvI+2/0qE2Bd1TYWp2n3iGVQpYKqB/ErCdpn2qGM4gVIrDC/Ht9WcSSDScCnPkS9nH7qVnPI3oTnN4AbvvDuhtwe5DSa+9/Zsj8x8b7n5d2BM9wvDvPtBvZriFor9QtM+F5eueig9u92HEzcH0OgEWcHNF+xSGc9CDZvchgKI7V+xfaA4vhR1obiLtM83mU2GTb//VKPdqLUnN/anm4btyzP2FsOvaQftEsX8Nw6kkGA8niu1H0J2L53jzDU33hFRhEVl/Kj69YSWIsb0UlUx3odl/ECFo1r8mfkVQdJeK/lKk5v2ZhECFQrF9o+lP5dwKS6roTzTrb6UJnY0EjGEUuw/M1P2JlmNpnyV1DsJkuVqxf6XpLqUzsX2iKTeSBNtdaHYvNaZXHF5o+jNF+wJ2H4oqYv2pQjmpEhlWhsNzWbcvtTB+M832jTBE2sH2jUkgQ2OcJN6Oc0t3btl8QzN/F9i9tBivuP+WpdxJKu/2TcG4NFz/a1BsDYdnlu7UgBJGbpzLfkej2Xwsfrlhabj5DZ1k+XK+zSg/r79h8IWmuzDMrj3336pQQWSwt9+rKPaK/QtD+8QwzhVRKe6/Lbr2cWE4PDO42mCcTCZuPirwjQalaS8MvpLAp82bmt1r+S5oLzUYzXBeEQstyoQEdHavSswI62+UzN6PrL9Zo6Ni/9SCEeZ/+2EFWjymflGwfV1R7AOHFxXaQ39ZYrrI3a/WzG48oTYcXtb4maE/KyjXI7HQ+NriG0N5tcMvK9xJJSFGWoNRtM9quqcVoTbYFCTWvVwkAJUnPj2hsoR5IUFM1nD4cEF11xMry3jeiPXjrAGl8MsSULiLGUob3FlDaAoUCn9SCeA9DERrCUv5PVZWmMx5TawKAZPOE5YNRHBPV5hNSziZS3DQoiYWBWHVoNAin21KAYBGi1TWB6kdyR2XSkl4UE6OVQrKUl5blShjhOG0Fgq5r1QIsFqI9zMEKAqUlteqwoqSok9eTK1QVSXbR02MMiGg8vqVYgoYeuzf1BqFANKf+U+n9aGYAoT+HMsP+f233//+9/+nP/cK/gKW//zv/Tffv/zuv06+w/6i/r37P/73f+nHBvxyS2GffPci/p1/+LdpfUFIBoBn1QaP5qpbMgTDb558zj/8w7/O6aLF6kAEtl1FCJpl01HogFaR/VDSFCOF8Xy0uOOP10/46uaUj5/f8Ha9wnvNrO75xtktP7i7BOCj0zt+cHeJUZG2F63VvOmJUbHezHhyvsXowLarOJ+1XG/nLJue8+bAH/zxKygCL1/c89WPpeajbgbafSVdlbuSb334nt1YcrNeUFcj+0MlN5AOzJsBrQOHrqJvCy4vtjxsZrx+cs8P/+QZ2IjqDOasZzHvGL2hPZRcnO0ojOfd9QlhlOqSIvkwjQ18+PSOH372lPlpS1OOrLcNLy/WfHFziu8si7MD+y+XxLlD3xeYlwfGTUV91tFtKpYXe3abhrOzHfe3S6r5wPDlHC56TOFxXcHy9MDm3RJ0BKfQy5HghCX2zhCvKrjsCYMRefG+xDSO2UzkD7tNg7YBvy3QMwc3FWEuPZQEuPj4nrt7qYKpT3q6h1pqTp4MExM9HJJmcG9Rq0HOxaCpL1q62wZ0xC5G1I8bxguHchp70RI/m+OeDKhNQVwI6PWLJCM1Mqi1lx3+XQOXPa+f3fOTHzxFzR3sCliM6KtKvJGDglORLYunMYCBaEXyWz/f024r6IxIfE8H9Ge1ePheDigdaRY9h6u5+C5twGzstG7lFKEOUAbUwVC/3NN/vpDP5aXj/OmG+x+eC+M98+itpdiI5zFWkpaHiqitxXQadyLsvPLyAR+LgG4Nix9pdh+JXNbuFcMHA82fVAynQcKJFiNcV9iXB+KfzBmfjejU5Vm/s/QXHrMXH6hKvll36ihubfJYJR9l8n1qJ0yhcsKGjqtIqIMEG1lwT0bMbYFfOfTBTH7DLGnLASZRQ5gFins9Fc5L2nEEJanS5Z3BLUSu3VwrDi8Ddqsmeee4EildsVN0l9I9V66FGdZv9lLto6D+StKpqzs9BdxEA91zR3VlKHaK3acj9tZKgNMiUj5IVQzJX2c69bXglewpHFdy/1V3iv0nI9W7AjcXqXmxSf5XDbP3Ejg0LiPNe0X7PCaGJAUaJd+rPYgkV/o4U5fkALmPrbsQxrPcHENxpCNSZKrHWpocGCRA0CWmPPdHuhn0l57mrcE1yTtowS0Dix8ZSXOuoLyH9nmcGHQ3kwCnYicgJ1fKuBlTmm5md4dVkurao2TX9FJpooIwtt2FsLlufrwHzCPmLadI65EkEU2SYS+/2wMcXkTKe5nQyMFGOUjJHqT/UgVJyz75AfSnx4Ad2x2lyrkvVCel13Ai7HlOnJaUWEmejkoqctqncq3KjXgmc/px+SDg2DciYy32TJ5SXwqj7qvkPbQCGLoLWP44TkFVto30JwKamysJENKjSHVnV0c5bE5Rzsxu9k4enmmRkZ8JC276YwBOf6JpbiRdur4LE2PZneuvdTDmfcsdmjl1Pfs/gYmRLLfCpI5zlVhReZ7yTJJxX4v8Nqcu52TxqCSRWju5Ps1tqvgo0kRBAra+yn5CYW7z30MpLHB3qphfedZvLPN3IUmEJWzJJEJqbLLcNf2vkhe6Vonxl2tX7sLkjxVPpppShsutTGjkKh85PsXupWb1mZ/kvkViMocTm7yiSfHQShJyuXZ0F5b6zuFrPSUY557KHBbkK+ndzLJf5SPdmaFaB4q9YzixU5JvkcKLJvmzAntI5zOl+ioXKR8GhvNSpLhaEoDHnDqc/J5HOa4kG5f3g0jUTwpMJ/sxLkRKG7U6+iMrw+TH9MJojquCYu/S9TRTz2X2uQ4npch1E7tvUpKuGr0E+gxHFlV3I6G0cm1SNQm52/YwgpUgI9V7Ym1RncNdNBRXO2JViHw2Jc5m+WxUCuX9JMOfpLI8ksOn1021IZlB1EqSeLU61pcokfXiU3LtrIZ+EN9mTn0F+Tkd1ySZtclb6cOR2YRjymxK9o3DyNdqQnyQ31N9SMyS3okB/TNA4Z+WEPt4nb/s4T1PX8dv//t/8VLY/+u//8WQwv7ceiz//1g6V3DbzwlRcdMuWJQ9D0ND7y2jN5zXe/7Xz/4aF6s93WjZ9yWllRty2XTs+xKrA005cvcwx5jA+cmeP3x4Sjdaqnrg3UY6PNxo2LqG/7t7SbcrmZ90/N7bF9TVyG5fc7o6cPcwpzOBvispSsfdes6rywcOe4lzPNzOiOeK9b6hPusYOsv1wwJsYDbv2W9q6rmAPILiR1cXaBPQOrJ9mGFKjzYB7wwPtwuW53u8VygVWe8aQtB8cXuKWcq3lw/yWEje0qJ03K/n+FFjS0/VjGgd6bqC6DTOKz6/OQWvOOwqWlWiTORqsyCMmnI+0B4qWI0UpSNWnhhkxrbflygb2F7L8bR9SRw0XV9Tv9rjRkPw0tW5uZnLINVGzImbPpO0jrgA6llHGDVqZ3EmoktPWTq2V4sprVWtBjCRsnZ0TSHgqAzgFXcPc0JnxSfX2eRh1SgFw30tYT4+GThsIO4LKAJmNTCOBlV7bD0yHkpMGVGD+FbHhxpjIvQikcUpCdexgYjIpGMV8G8bwiygouLL//MFahnEcztz0Bnxk2qRqcS9xTgIKdwlzJ2Arrmn21XY6xJ36mTd7ysBVF5RvCvxdeTQilRZPIMC1lQCf2HlUHtLeW3pnzncHy9RRSQ0cg7vvjwV365C0nId9K9Eum0e5KMhpO5JqfaQDjXxxILykoDbvpAvgtCk4+wFjMWcvHtVySB/W6KWgeJagI8+aIIVGXdIPlKVZLluJR7SaKBfBAHhcAxSCWryCIaTEb0uxF+oIipJsFVnJsAfdQr3SdLV8kHTX8g1zGFF40kgkEKDGqiu7dH7WEaGJWSPZ/b+9hkjAAAgAElEQVQPZt+ir6SPVHxuIi/2n88ko8HJsRQ7nVJUxSvpG6a04f4sYtYG02fpoYDnmMKFin0COKNIZ3MgTkT2SQVJmS3uJUSqutWSjnpUtrN/mXysRgCZadUUiqMRMGl2agJnMoAG6yVMKGomOXcOEQrJV+iatD8KYgEqeRIlvEVNIToh1alI/Ulk/pkRP++QwOxagUoJzFa24eaK+RdSxTQuJG3WV0w1MMNKukD9ubw3gKn6qdyIj7PcHANlxln2OyYvpJKE1gxEMjDzpfgw9SB1TbmeY1gen5fPf3kvEw3FnglkiAc4gcWUlLr4TI4DBbP3yVeZJZT3x2TaItXQlGumgbl2YPYyyM4hYcGIhFxFUpVGGm/OSSBQwK0uBOAGm6TYPklIk2zZHgQg1dfHOiWVngOk9OPs3xSw25+ITNzNFd4yTTyEFE7kZtLHOSzUlBDsKzkfOdXWVwKM2kuNPYjkfEr8TUnF1V6SX7NX1ZcK60T+PC6YpPG+Fh/pYz+vL5mCjcZFGqhHpjAe8VuSqrfiNPWfZdBjo4+hUEbkuKFUk4xZOwF7kCYcGkW1FjA6fyeyUu0h+qOP09XiaRV/nwCKyYM4SrCRHqQSJRRKwFV6rfJHkCqTAmkflEL7SNEHTn8QppomE+QYlJPnqRiJUVJjXSP1T+NSJKNuZibZ7DiXgJ8hPVau3eTdlM8nqfEp9/L94RpDMIrmZsA1dqqwMZ3clygIKdFWZNNBXlMZolZEK0qTodSYLhxrZ1yWM4MZJeAnWk0otQBNq7CDgMvs1xRPdQog8hISpCNQSK1QTneV6peUBjuIZNh0UhljDimMJ9UgYbX0WiqmsB2R46bk2BDE0xgiKqpjbUoClVkKa/YjoS6FlR2TZNR7KbnWJNZPi/QUOVY1Skqv3nWEWS2gMAfi5GAdkM/NDAazJzKDTqXEi9n2RzksMCW5PpbCTiE9KYlWKaZakfx4jMQQUmLsEfAR4yPQl2TDSsnnZDom9XhdHIHmFAb0uI4kLyHKNtJx/qVYfnk5vT9z+aUGlsNg+cPrZzin8T8SJsa0wm4UO8Vnq0DzlWFvoP1wpP6iQO2gexoZU1CG3St2s8j8WgYrbTdnnMmXX7mVQQQKml0aUBZwege+rjAzee/VAwzjjFkBtmvQTRpEWbjp5lQljEXDYg8qFuzeeGZfGU4eJLhhtYl0F6fMPURTUwVY3UXcvKR9FqluFPGUVF6eZrdLUL9bUjQwX6cZ15Q8t7iNSfYa8XXBOJ9TBfHHtE8js7tjP5/dwdLnL3uItqLZQVTFsd7AwarLX9xSYn54Ebn8f8RHcnguA8fyIdKfS9rhcFKxCLD8LLD+ZEntmaL23UwGJP2JlRj4VBY+rCrmvQw+yo08t7usUnBKzWIjA6XZu8Dug1kqKy9Z3URUkJlWCcywjEvxT7VPimnfxkUlvZKlwTePghnSG9w3pZS030MoKmoPsysJ3tk/rzFDZPHWc/+ppblOBev3ErceSkW5jriZSfUEmsOzGruP2FZzeGGEvejEu3R4VlBs45ToWD9IcfY4L4SxmxWc/mDk8BTapwXVbQJEuyj7+BDoV5rhxHLxewPbDwqqbaRf6XTvRrrzkvou0J1Cc2VZvBXf0P6ZSQNndSy1b0iDwIJqIyyFbSVVcHbt6U8VepTXFTsZTIVCwjOyVygaTbnz7J4bqk0K0rBqqhy4+/WC5Y/Ee9WfSAl7cxtE/oR4z2wXqe9Hbr9bMn8bGFbCvLqZVAWYMTLM9ZQoWm09D59UlGvxXOUuRgmtkdl9ifHPnxpy79cPnsMTTSgVpz8YGRea7kRjxuzZUiw/Gzk8tQLotLAcYyP3erUVH82wlC5KX6TZ5xSoIUmRIvtbfi4epXGmqe6dpC5GGWjtnhtmNyK/6pdKfGVOzo/pYwIrgXLt8JXGzUQimMNEolYMi2NgS/tEU2wjy8973NwwzuRLOIfXlNtAd2qY3YySGJl8aPbg6S4sxEh9J+xDfTuw/qikufOpX1TCNqJKdQn7MLEk2kWadx3bj0S2ZTvxeg0rPYG3YS6yKjNE2Y9zI92QiUkeFpJsGQzUd2PaHyhaj6s05384MqwsxdbRn9nUpVmBgup+ZPFWBsb9Sv43Q2D2bqC7LI/szMbhZhI8ohyUDwN6aJi/G9L9IimetvW4uRF2pBD5YrF1AkZKPdU0SNWKhJIMK5N8bYFQKsaZZvF5j+kcw1mFcnHqNuwuCpqbgfZJSfN+YDgtpvXvXpY0N/KzBD1FhqUkcTZfbmlfL9F9wPSB7ol03AQLs7c9blFgOk/7pKC+dYxLMx1z+SCF9eNCBnZ2L2mfpg+oELH7kfZZg68Us3e9eN5aCUnpnlbYvQwA7cEzLsUHX932hEpkkihFsZVthEJSLk3ncYtiSs/VCURVtz2+sRT3HYRA/3SO3UuaZPusorob6c8Lio0TL+EgHjx8xNcGuxdfXH/ZSGerVrjGUOwcysvncNQK23l05/GNxfRewEypKdejdFFW0v/p5sI8lfcDbm5FeXCzT8ySvHfcsqT67J7u43Ppkuz9VNHh66SuOLgEXD3jqpI+SBcY03UxncM3UmWhB894VmNaRygMdtvjZ4WAGqvRhwF8YHyyENA5ONwydZiue3Q34Jc1ZttRLWpUO6L3Lf5cnh+tnrZlth1hUaP3PX5RoRNw8osSu+nw8xJ7vYWykPvOGPSupT6ZSeKpUmA1xbKCGCmutoR5jZ8XFHcHiFH25X5PAVJnMUhwTJhJX6Rb1diHDhUCat/iL1eYux3m2Qlm8yipdHSEkxnmZkOsS7kGRqHXB5F0tr2AucISjUENI2ZXg1Hoh71IPTPrNowURfJHZhYwV4YoNT1H7WTdejGDGFHdIEDs0BETmMuATO1b+Vv2OqYk1thUwvL5IOvLvZJlASESux69nEM/HPfxcVgPHNm6EKbQnbhv0VVJ7Ae099APROemLss4jsefQxB5awaWVSnPTymukk7riUE8kaoqBQh+zfuYwN1PeTRzWM/EBCh9DNFROjGYCsbxuD1jplTYMIwiZ/3pJQHF4N0/Azqn5TEj+pdkUX+JgeUvtRT21a+exn/wv73mx8MTfnf3AZV2/NP1M76xumFpO/7J/St6b/nWyRXv2xUfzB74ndtXHPqSZd3zjZMbfrS54LLZUWrPw9BgdeAn92f0g+U3X33BH98/YVV3bLqam69O+OST95xVB97tV2y6ihgVdeHoneHlasOPb86Z1QOLauB6swDg5dmatw8rLpd7xqCJUZhEoyJ3uxlniwN32zll4ThpOt4/LLk82bFpa5wz1OVIiIpF3bNpa77z5D1f7k64WS9QKrKad1x/dcrick+MiqoYeXiY8+sffsXvffmCp+cbtl2F9xrvNUXhpWLEa0rrOXQls3rgpOn4/OqMJ+fS5blrKwrrabsC7wx1M/DxxR3vd0uMDjyd7/j9L5/z8bNbfvCD51y+WnPeHPjR9TnjoaRe9vyN1z/GR8U/+vwNQ1ewWLW0h4rV8sDd1UrkmPcLlquW3a4m7Apef3zNV7cnAASniV7x8sU9D/uGw31DfdITI5SlY7+rMdZP+3exOPDFHz2FpUPZVEkCzBY97b4UOW5v0UXgex98ye/83sfoxUjVjAyDZTbr2V4tOH+xZrOdobTQMN7JdTs723H3xSlo8RoCuJuGszf3FCawbSuGvpDju1liyoCxHqWkFgbAWuk37buSMGqaZcfhei6sae2xhSMEhR8NobOoTmMuemzh6dYVqgxwX3Ly0QPbPz4lXI7EXnx0gHxilVIlY4owve7lB3d89cNLSb9VCFvZSrKeXoxH6fF9TX0pkmCz1/jzkWo+4EaLbw2qNxKW1Br06UBROrrrRqSpz1rclzOKD/YEr3G9hZ2waHoxYgvPcFdjDhq/8hTLnvDlTGSAZYDaw6gpbi3+dUfYFKi5wxRBEpsBc9Gjf9QwngTsRYe7Euly83JH99lSGCArUlY9aMyzFv+uIV4MqLskgb7sCb2hfFcwXDooIuXbAjeL8KQn3lZwOlDPB/rPFuhB4U79dD7oDZSB4r0Ur4fXHcErqcIpAvq6FPZlTJUwo4RIhUr2iyKgekNxp8WDqsA+WNxCQqj0oI6Mr474uTDjAHojYVp+IfJg08l1H08C1bWR1FrFVH8TSqma8U0kNJ7yyuKWIicNrzq4rqaqGIUkHFfvLcOZp3lnOHzgKO9FZhwKYQVVzHLkzAQj7L2G8lYznMik3Xjm0a0EQtmDhEWl5p6vJwNvRB7XvXCs/qll+7Gnfm+IhUhf/TxIONNB0T/1VFcZHCmGk4hbBso7g6+E9ewvAvWNpruQROBxKcxKfS1Mbu4T9c1RwuqamJKWJSRKjZL2K2BRUnx9Had9dY0kDwtLF1ONiZrYLjNAfyqTR9EcWU2RESvcHIoNjCsJfOqeiFRYj3B4KQnGRJED60Fk17nOo3/iKe4N9a1MkGUJ7bhg6hXNKba+YeqpFNm2TDR0lyKhdXOpuqnuZd/dPIVIjUgNSwqLcgsBsMHKxF+umwmlPE/Oify9eoDuUoKeopbJpGF5rGkZl3LMvk4TiWs5ToD6WljQkEC1m6upyqbYxamCqH2maN7HqfdVJLeKcQGLz2Nad5KD7o4JtNEIeynVLCmYaGBKBg5GJK3tpZpqZEIhzK+vobk59ncenilm73PNR5IEpwlZ0yfGNKkETHf8PZSybyZVnJQ7OT/lNia5bbIENIr6PjOQ6fodZAIrs7wqHFN3QSZks6y82MvE2pjqYGS/IuNMUxwktGn/3FCmAKkhJQzL94gw+uNcS+KtVRQpHGhYpO+NMU16HCTMx80ly8EmNjEYYVK1SyxswgfdmaHaSD9nfefoT6XjMk925QlBkIm1mJJ8TRdwcyMhQ1pY2HFuhFGNEV8ZqdAZI0XyWIZCQ2IjfS2fG7lqRLmAr03qkhQprh4C40L2Jz9H3tuPGEDAV4biviMm1lVYQak0iSlVVqXOSl8da0x8bSXF1icGOUleozkmyyovIUPChCawpUEdeuKsEtY0SWijSR2Zj9Jos2w2s45Ra1Q/iOfSmgl4Z8Cck3NViF8HmY/WwaMqE/nCGUUW6/0xFdYYAdM5xMcYka6OTl6XU2AfJ8D+rECff87ylyUV9lf+vb94Kezv/INfDCnsLzWwrD76IL78L/4zjAmEL5skAQQ9Kvqnjvq9pXvuKG8MwxNH9a6YmItQSP+cFJTLQEPSFdUkdXNNpLnKlQUykMpfHno89mrpUb60hxMZKPRnMuCw6Ut5nMv6QimDllwiDXytBw3EE5S/tHV/7FTrz2XQkaPzTU9iyNRU4OxmKaUxyBf6cCr/j4skC6qhvpKBjHipRGria4nEn9IpFVP8e30jzy82cnzZd5QL4Zc/iWzfiGQrGjg8jyw+V3QXchz9uaSUFjumHqzsh8rVATm1MnfSubmkTo4L8YTZVs5/+9Jz+nuacaGmL8zsmSu2Ed+oSfo0DbZSHUGOtg9lkkml/c/R9pIYJ9up75InKvlychfa44j6HEVvhpjYi0f1A2kQIQySsLPj8lhuPqyONQA+yahy151tI4fncp3788jsS5E95S8fPZCK1eX8VPe5kkMYmOIQ6c6yDEj2U5gt8Q3VN3HqFuxPVUoIBUK6R62iuQkcnmlZdzonw0pNLOHsnQxsYvIyhUI8X74+XsvuUqF78VY1NzFJ2B6dTy8SRV8r6lthJvN7SWRPkf5UBk5uJo+V6yj3ciB5pOTvLhXVDyeKxVeeYaGPSZOkwVIXE+smLFt3KkxaTrR0lQwibR/pl0li5kU2qR3C4i5T7YE9Vj5kOdw4Pw5UMzPjKoUZ5cs+10DYPrOe6Xp3qeoivS+y/9L0GahIgmV3IqEa2kXqexkU+EJ8WXqUdY3pPNk+Tj7MLCfMA9WooV4HfKGmovicsgnCUKOgWodp4Lt/piXxdIy051o8jbk7juP6c8G99jJw1aO8ZkySu+Ig28kl8tXGM85lUJMHo/3SMLsa6U8txSEkYKCmYvjiEKZ1y+enDIbGmaZ+8NM9MSw01Ub6+VTInraUmhqF9S4OwnCXO2GMM1CSGp6A6QL9mT3WLySFg/gcj94xUUrEaR2mj9LnlxjKzGpn+SWAaYPUPCRJYrGXCggUlA+O/ryYBvOTJ1crqruR9omwE2aI2IOA+SwXFHY+effGiN17hhOL6QK+1tjD0SOWmWY30yndNia2KqXgRqmYkO9UYeaCVYRS9kOeq6bkVekBlPNi955xmVLBh5i+fxTV/Zj6Ew1mCPSnFttKCqqbCUOjQkyDc0ALOLGdP6aJ5hqPeDwv0aqp69BXBnNw+JmdvG9RqQkguHkSaoU4MYzDaSms7eG4nXFl02dzViLI/WX2I+NpRXnf0z5rqO6H6ftDH0b8qhSGT4HuhMVxjTkCFR9wi0Kkqp2XlNIQcYtySlQlSZtDZShvDgwXMwEjiQ2NOsktoySqBqtRPkgFB1K/ESqL7t3EFupR6jZMOxLqArMWUOQXJWYvCam+ElloruDQLkzHNo13ulESTTl+b+ICuh/xqxrdOXCBsCjlZxCwNBzBlLCXB/5f9t4kxtI1PRN6vumfzhhzREbkzcx76w7lKpdx27RlusUCxAaJwY1gxQIJiQ2bBu/Y9hYhEGwwk2DDCqmRegGyBAJkuW23y5bpmm7dMTMjMiIzhjP+4zeweL7/P3ndVWW3uqz2bXw2OZzpn8453/M+kx9nEC23VW0a+CLhNdB0QwqrqDuCI6MAFxCMglyX8JOCXsNA64GIyaQhTwaZ6VeASmcRspRJrT5wH4RASKjUgIuprFoB1hF0GQ1hHcGYEBBNO9R7hDTZJaD21R+JIeP5p4FUvPVyWTiHkJidrNX5ge38ynPeXp8bTU9ln8KapQibLcGbcxBpOgAukXJKE6yFiJ7I0Has/+hf01pAKqBrf7KvMU3xlZCcPoXW6H/08c6RpdQaoaq+ss8AIrAkC/qVbQB2r9WzpD/rFpnLr73H8ugvCFj+1385gOXXWgorVMDB3gZvbmbA2ENkDqFSyA4riMqgfocXof7mFu6LCU5//QrPf3wyhKzACdhD1nzguEFbaXR7EuZBopt5BBPQ7SNO3OmVsmNPtmajETLHgJxKoHy/AzqB5kAiJB5dy4Q90Ymh3qE9tOgm/aRMDAEXdr+DWmqGrZiAdj/QGxWDXkQAPVt5QHvgITrWapSnDEPwpvdvUd9fX7RQSw23Z4FGwiw4XTRLgfIsDCXmchoXniHAa7Ia3gD1eQdhJZI7ieaAP+D1Mafa0gL1I4vkVqM7b1GfKMhWQnZMiZQOqGJ6ZNBAe2SRPzdo9jgdrw/JINRnjsciBpO4lAv4/Jol7904hli0GPrQ9JZJfvWxQ3Gp0BwEmKVAc+hZU6EJmpIlF0ftjD84yUpg+SHfvxt7Fs43Au2BQ/FSsRz+uGd2KO3tgUNz4BGSgOyK8rluygCWbhIYdKNZN1Kd0fDWh7Ns3nXIXyruy7T37Ai0U/YjCsfAF70FqhNuk1kBTeD+pw8MXnEZhxj1AQcEZi3ItlT0DqpGYPWeR/FKsvB+xfdn6TuDbWQjKOuOx5XMERcEzR4BUTeNrMQowBuJ+qgHs5Q9D96aWmDxIeWpZkvmoTl06K4ViuuA1btAfsPzHCT9X9URF5vJgttlM7ImdhT7N1smV+oKaM84vMluJQvbCwIoDmgoL+1GXNB0E4H6KGD6KUEl31MN/qw+DIWMCO+nN4fnO0hgdAmmJ7b0uNX7XNz7BKj3A9KFGPx41bFAdgeUj8iAJQtJD5wVaGf8TKkYxJI+cGHpMqDZj/7BB4FuiljNwmOS3gPbczIy0pK1ko1AfrOTGm8f0bPUxk5IO1JD9QeAIYik3hfI3wRUB5IsVMpj3g+KggAgAWn5Oeo9qvBkrYpXZNdcKuCVxPZCYPSSQxbVAttHXPC6/vwVHOSYTc8CSdZslGKogPBGkrGL28BAEBkZKcEi+xiikt2RAZJOY/VEYnzJ1ydjxPCU/A1TRsmksE/RZoJ+QitR70uMr1xkBgU2Z4pdjyOCH13R8vD2oEdaiXqPIKkH2t1YIVnyuLrjvhuQz0uW/H4bwHuy6wtkn6jgZ7sJWD6jPNYbXl8EosDoGlhfKBQ3PAZeC1RHEqoKcMagPJHI3/QDPg6aXAqsL1Ik674TMiC753edVzEZNjJT2b3H6h2NZK3i4CWGRu3JYShnc1aktHGw0de3eAO4AzF4YXUdYEqBLudnozpkN20vwzYVq0ZcIngucoHxtaBUf0IJe7rysKmEO0k55JoKJFFSX88lslyi3qO0ePrcojrVkaniazZBxWFPGJi7ZibjkIXDISWAbqzYsykJcptZBLeO3kZT8ru3HfN4mFKj75UUVqA6VgMo79NR6QsERNCwqcDoRsKlEs1+inYi4ZMUydKy2/Ew2Q1yALg04QCr43ePzaMcXgnUxxrZnYTLUpi1RX1gkC5V9CbLYRiAUPC4n2bQpYfedLAjDZdLyIZrBdkRbHcjGStnDAcRD4CbpagODbK7DnasYFYKLpcQYw1dOjRzA6MlXMb9AiKYlgLJskM7M5T+2sDKD4DS7shE2oKg2SwFumkCMTIcFhkJMTKQrYdLmVYbhEBIJNqJgQgBzV6K7LpEN0/hc01mzwYoLRESJh7rrY5JrDs20I345df7KfW2Q4AZHicr+xUWTlhKRH1hIFKFYBRBdqwhCUrCpwp6SWAWphlZwzZWh/Q9lalGSPRbvkemwoYIpIYuy2430JBlzWRXIQiipYQsawJTgGmsbRfv7xDyAujsADqD0TtmMQQ+vgd5+/OBTQwhAEWkyyNAFVpRjipFlKZK+iKtY+qrtUDGHJGvALsevEqz66GMjLjQmu/VdoPMF85BKMpkRZYS4DsHoRTBrZIDAO7TX/mF6QH1ljw2/v2nE17qzwaff3X7p377WjOW2Xvn4Vv/5b+HRFu8vp/COwFfa6hRhySxqBYZ4AXgBY4eP+D2s30+UQLBeEAxOVVMW/haQ24VfNYDNwl32kDcJwP7ERTgx+yW9GkYQkwAgoRuTNDUHjgIK5DcE6i5PMAnHrKW8Dk7G2UMI+nLuBHZiW7uoNeKwEGA5fAeQ8qjqgXsyMOs2aHIxMW4gM65oWbJBUDPQHZz7hOi/Axg2IhsuHgItDIx3TRK9kQAugOL9BWDVlQV92tsoS9TBn1UDGUozzx0xW2rnzQw1wmn3vE5QQf2VcpdgEHQTL20RQwFqQRcSmkdjf89OPRRUsdtM0vJ8BsQ6Pf3JwumLLo83tf1i2bAFQHprWSJPRgO41PK2lTsaJQdgalPgGRBeZ2MnXyqiRIpEwY5o2wIALNbsqAAgXc35QK0l9x1U4/sjUR1HM9ZlMm5jEEftiAzrZodgEZkmtp9x67NWAbP47KTXNUHu5RNsqp8us352n3SqbAEcQj0DQMEd90sIL0XQxqobMm2J0uBZj9gdCnQzOOiLAeveQcUl7sAEmAnESMI5vv1oKedE9DLjvUf2Ru5KymP7HGf4DkwQpEZ9QkGls0nZM05CMEQ4iMcwa2uuE+6pi/abLgQN1uqAIQjOz2EoDT0yAaBgcEdpINxyJEsAsozglkRf8dtEYNgsq8mhwbF9+/L5Ps0wv5c6JILb1OGr4SI9AwWFRIxLCYGgqiGMsBkSeDmjYhdkzGpUmFgNXk//262YWA/bS6Gx/TpmNJGhjzj4CK9J6DkdkX2OTL/LiOw6dk2l311X1ysdqDEcpcaanMOXHqmuE++7AOa+qAbl/LY9oE53pDNf5tJ5nGPKoWEj+m9yl1BYOqMiMwrBgZYNWE3ZIjHKllxe3pfZ7LxKGPdhM14rFQbdhLImJA5pG8m/LwM127cTgQCl6AJ1nqGtAclXkfVSGRe++3rJY5ex23udu9B5jRKHOPnYPTaojzU6EZMVqWfmI9JNj3DCzRzieK13wUISUEGVxF89NswBC7Jns1FZO93YVoiMMlT+F3voksIYPtQmyDF4BlSrR9YZrP10TvL1022Pn7meqVFPL6ZGFjdZq6QLh3aMdlss2FQDHsbY0JoR1azmygmqOrorW4JYM2WPlfVENTINnYlSlaCqCYM12TPTvbhNEHuGNhB7qujpDN2cHZjyVTWQg4gDKCUsldzkOWM6amHJiapxmFEyn5Il8no84+qgYAY6rM75/y8CJiNRTuNIM/FcxIAvSWoVV1kcyI767IIxiPLa0earK4j6JOtAxSHSOx39AhGDn/KliE6svWQjYXLNHyqIBumlkIAPlX0iGq584zFhb9PFZlTozhA7nzsnPRMWu0f1z/Xk82Epz+074zsfX6Ue/ZeRD8wmt4oCOcBKSA3Lew8g6q6QU7qMz08v5eZAvG7VwgCxNoOjxUNjwtciINvyk5DqiAaRxAYGdSBGY0M5cCWdpZ1H1UDP8khGktQZTRBXazmQO/T7D2RUhI0xrAd+Jjm2oNJG32MbYcwyiHqdvfcPtEV2L3+W+djYEJt3Na2g9AKwTq87Zvs/y60ZqJrDzh79vLt9+sBaP88pRCqt/yy/bZE3+U/MWMJ4J+JVNijx+Gjv/UXwFj+1l8xlv/Et+AE7u7H7HLcK7F5KJBdGsjWoHyvhbk1TKibOCz+30OkNcGD8GQ4uJgWwDZDthBkjmqJk98F7n6R4Cd9vSuVTx4kbG0gHYFDu8egCYgIMOKPUM9w2lFAcSlRHQPJg2YiZamGFMrm3QbZJym6KaP0m70AvVHQpUB9ZpFdaRSv6BkpXilszwmEkqXC9v0We39gIBx//NJ7oD6kv2r8kuyFS8lwmbUaYtW7SWQGToHsjgDBh4CQAnojkTywK80sJPTGIBhg9EJGSS4nh6oWmH4KLL4ZPUEHrDpoJwH5J0wAzW8DNhdASDwmPzID0Ns88ShekrGQLZC0EXScBUy+5JfR9jygeBVQH+ziBTYAACAASURBVAgcfcL0wTJIZLf0oDRzLra3F8De98l2ybdkq31KomxZ/l0dSdSHTI4UPZCWZFXS5W5B7lIRQS7Q7AOjL8EOv9eMP89eR8B1RcA1/RSojhn2AwFURzze6YNAfRCw//0Q5YYBqiEDN37hsX4isfcjj/JYIivJRCZLPnb8MmD5PsHs9McK9QEw/dJj9UyieBWweUymsLjxPH8jDPJQ1XCRlywpW85fB7QzATvm/1UnAb7mMShuAtRzHmPtKSWuDzkoKF6T2fEG2P+hw/odLlBcR0YMIcBsOT32MU4+WQXoa0pmx1cOi/cVhAVmnxDEeAOMXgFBhYEpqQ4lytPIOM5FDGMiUJ987rB4T0HXfO0ueq72f2ixfqyGdMr1Y4HJC34Ow57A6BWPizM735HXAukiwGwJJnsWXMWy+s05weP4kgFK6YLfL15Tkm22lGpWRwJ7P2bojy0IgLIHgqt2Fj+Ht1ww20ywpL4LsCkZsd5rxCRDvsf42mLxHhnJwz+x2DxSMNvAfR4LJAsWxNf7Mhapc2GqqzAs7E3pmfwYgPTBop0qNDE0p/cbjS8dmjn9T8Ubi+0pqwe6Cbd98sLBbHdyWrPl+Rlf8fzrNd+n2hcobj3yNy3Wj1MUbxyqfV4f7YTgK7/3qGcS2dKj2pOsgOgltzFopZ73YJOMF2WIHttTjfFVNyRUmi2Zr2TFhez4mlJnUxKMjF47NFOJ7khgdENglb10cIagphurwW6w+AbBlohyV7N2qI40jv5oi25s0Oyb4belPJSYf9bh/iOD0TXPARMfJXRkyboRmbse9Ob3fhj69DLVel+h3iMbr9qAyfMW20eGAN8BMqa8SuvRTiQmL1sgAKsnKcavOkppxxLjqwbrizQGL1ksRwZeC4xecQHtcjVUUQgHnPzOEsuPJkiXDragBLY65Dmffxz3d08ju7PYPjJIFwza8amE1zHR0nMwkazDAIJ0zUFgdm9hVh2agxQhFdCx9sHmEcQ1AbricR9dd/TnRXAKT2CW3VkGFd0xlCsoAasFipsOLpFIl26QSZuNG4CLWXboJgYuk8hv2jjwUDDLFosPC0xetNDrFs1RRq/dio8he+VhNhbdWA+DR4DyYyoMJIQNyK82WH40Q3bXoT4wMKUfAoSy1xXSO4aVBZkgKIYRycaim5Ex8olEsurgFQFceh8HMAJIl9ye8lGO0fMtulkKs2pRH2XILzcIWsJOUgLT2g3SVdlYmHWfLKoHRq4+TJC9YaBNOzfIbiru1FuLe5srJHcV3DhhsNBYQ5cdROVgD3Mkyw7dNOE+9uDyLUDXzvm7nr5YwM2LKO81SO5KsnVaQm3jl1oEfQAgNy1Epgl0c4NukiC9XAKS4UR2mjEIaFZAxHAivW4QOklwW0eAWDXscVxW2H5jD8XnK4YKaQkkCuphyzCf5C0GessprmzaQb4pGsvORs19hBDwRlFCnCioZQXRtPDjIrKHCWWxRkAsy50s1nvIGPDTH2dhHbCtyeLFdNZgNOTdCmE2JkhcbRHGBURZk2nsmb884983JX2LWkG0niDNMLAI1iLUDQN3nIdoOoLENAGabne+e7CnFEJdD8E+UNzu4KP3U0mEtt0tqIUgeIzHL9gaQwJrYvhZEWKoHgkuBgUBABzTXXumNEl24K8HlQAgxU9nI/80qPzTgT1vBwf91e0v9e1rzVimjx+H9/7d/xjVmYef2njhA+mkgf9sjG5K9i+oAFfErsHcw0waVkdMW7hlAuiAyQ8Myl+poD7L4DJg8qXA4p9roe8M7MxBrdk1V59amAcFO/UDywgJ5FdMzGwOHfRGwo7j/QBCyn5B2VGSVz52UBsJe9RB3xnorUBzxOd5BUDGH+839Ca5nHLBbkI/Tc9a9tH6/cRfn5cQPxyTIdWUdbZHDmahuJkd0F60EKUGxh1CrSCshKxYT6G3ZEBVzfj/bhK9cWkYpJOj5wSZvXfLp2HwFtoiYO8HAne/7JDcszohvwm4/2XGdEN76DuD7A0XYotvsUMwMAgVuhLs+rsjMO+74KpjgsL8zmP5nhwkh92IFR2qJjOmK4IGrxlukd4qspAx/KKXcuqScsrRVcDmiRiCN7I3BNoujUELGffRbBnCIUIvY6RfsJt55NdkJvvXb2fsqdueUbI6+wS4/06AWbOTUG+j9zYybYPct+jlmwHZnRiAxeo9snwuDRi/IACTkcHUJVAfRZltPCblKcG+yzjskJYgs50F7P/DWHL+DmWc6R2weeqRPEjWBhR83/qAgMYWlG66LGD+Q6A6jOmqAoMkUlVMzq0P5NDt1zMduozezj3WPrQzsn224POTFUFWsx/Z2G1kbgsyjuUp90FXO59lz7QBEUTH4+RSYPKCQ4Se3TXbHYuoa4K19TsRpAQCgHZKYNwzE80BOx6FJVPT10psz+gThiDo6uWn1WHvRcKwqOdnVsBEMGQLMbC4ug7QJWW1fQekanfhItKStXd5lChPCG7bGYG3dGGQDA7l04LP7722QVHmGSSGEJT0IX4ZiT5ghV7aek7JYH7rB2/u+Nphc6ag2jD0F1bH3J90xdel742Av++xbOZiYJ6zO26rzShlHN04lMeS+xjPh1e7lOt0EXbSWIEoX+VnQ7WIfkUCX9WEwVvaTngtDJJOQRZsfOmwviBIR/zuG6Rx8TfPK7J83YhBJkHuJJCmDGgmEunaY3OmkD1EFs5gCHxRXc+0IQal+CHR12Y87tlDfN3IQqcrekTbqcDo2mF9rlC84bHvtzVIMqk2lwNDaHMmBjdTxdCVkve3Y75Wdu9ZhfFWqKJqA+q5QrL1MBuPdqrQFQL5LRknn1AqqtqA7LZDO48pvBuHdqq+4s8OUgyBPsnawSe999EPycOD37iQsW6jQ4hMYl+xUe9x+5OFhR1F2Wkboi+dDJnNOCj0KgL0il5Ms3Go99TABKcLi/XjBOmKrGh+a1lpET3pNnY7mg0Tfs2Gnl4IwKws02sjG6xqj+y2RnWSI1nTB+pSgoN2pqFaD7N2g89QdR7OkBXqqy7MqkN9nCJ70w6ptEGTtZQd6zWogPFk+VJFgBdZTr3p4CK7pssOtjBQlUU7TyLryO8kW+xeBwFQlYXLdfwNIKtkczVUZwQhIF1ktyuLbmx4PeZkErPrckibNQ8VfG7gDdlGV1Cemryp0O1n9K7mmttjPUJCgOZybndys4UfJ2Q2K8vux8ZBOD/0QMqKQTt2nEA1DLORHX2dQQB608LOUqjSxvoiRV9nBOlBCMimQ0g0XG6g1g2Ec0yl3bYQ2wp+NoIrEqgyAicX4CYp9LKCT01kRj19liFA1JZMpNFk9mIyrawtQbL3wxBCdBa+SCE3FUKRAi5Q2polTIRtOwJOrQZGsfesvs309QAYHcHuV9jGeBueBwDLDcQoB+qGMlbvCfgiUxmqGiLP+H5lRUBpbeyRdMD+nCm32y1EnpOpBCiXBXaJsm/dQtMS6Aa/822uN3E7BV8bZDfhenAZGdkofR0ksd1PYRn/McBiGNhX97Mf+DNufxkYy9HR4/DRb/z8Gcvv/jc/m7EUQjwG8D8BOAFXD78VQvgvft7b8bVmLJOiQ/1LJfKswzcObnFTjmGdQmMV3PsrnI5LvLqbwb/JMH20xup2hPOLe2ybBNlsCwB40AU7Eu0EWBlMf+ke1kvMfqnC5nYOMW5xMi1RtgabRUFf5khC7TfwMXFUaQfxyKEtE6QpEzKReCSTFmnaoWkMxo+WuL+cI/3mBrJKYI0BvIB+tkH3fIT8bAPvJboNuyNDrVBJQBw0SFILrR18baC0R71KkU13qVhtzdPYPmQovr1Ec1sg3avhPxlzAf3uBl2rkY0aJAD0vkfnFFxcEHSthm0lvPEYjWtsP5/BhgB5WsNk9Ftaq+C2Butf7pB8maJ9VgMrg5A76FuDw++8xvXzfdz9WoBMHey0Q7dIuCB+rWHfLylP9gLh/RLL5xOEzKE95OIbIsDOBYqjLcqigBp3KGsNOAGROODDCjc3Y4i8pRT3wxL+KofbbyGXBj7zsPsEDHrcISwTNPsemHVQiYO7zOHmFvpOozqNgReJQvNOA5NZ2OsczREBsJk1aJYpIAPMnWZK4qMavtJIXmvU7zcIpYbILTaFhpq1wCV1rG7isNAKyQNgn9a4G6cIOqA5cFAHDerbFPkrhXaPX5D1qUfxXKHZY58jjhqUJsPqQwe9pD+rurCQtcT6mQAEWev62EJVEm5mkX+RoD7mtofcwe4JJLca6w8opW2nAW6vQ32QoJ0HBBPQHDqyg2OH5riB+H6ObhLQ7APtowbNTYJgPNzIY/S5xuYx0Ox5SoejRNtnHuZBQXiJ9bsefmKRf56gfuQw/lShPohS7RBgx0B70qFq1DBUUQ8a8x8C9fsNzJcptk88zFJC1QKbf6GE+UGB9XtMYoXg8RGOQVHVOZNW/WuJ8rFloqmnz7ebMSEPATBLeqDXxx7THypsn1lsRcD0Bwb1GPTnbjhYaY4tRCsHGW9+Q3CwftezX/RTMyRpSkuAVB3zeGav6WuUHUFkc0jw7hIOaoobgjQW2MfFuga2zxz2/4hetHYGmC0XuuU5B2E+5aIVguqKIAWq0wCbc1gRdEB7aKEfNLI7Mup9sFMP8tppQDunhzdIJo5mtwLNTA4BY8t3JeoTh+RBwY4VylOP6acS28cOsuM1ZAuC0KCpMEjvuRC0Y/pH0yWHEu00BmWlYvB41nOJzTtxYJNSgr195jD7nkKzR6C7fhKQ3wDNYUC4EqhO6IXP32AopN9ecPBCMCtQ7wfIKPPfvAMUV3wdlyqUZxz8+ITA2qVUDQBM8qSqQ2L1LjC6VAia8uf6gP2e1XFA9oZSy805j5VqAsrDGFamZZRSkjnenml2RRp6onm9SqRrJms2MwJn1XJIEwQ/I9JKlGcCxTXVGe0sYPJcoRszACvM42BCK4L5CNwggPKsT5qVrN9ZBnQF0E0F0jsOJFwqGVZVU0p8+x0NvWXyaR9OVR+awTupGnqOg2Bw1OqRRjtlqJnsANVKPHxAgGc2lPdXR1QF9Omizb4AhEF+57A9VUPiqc0IZgtNf2Z+T5a5OpRIl5Tobi4UzJrXsK4CzJahQc1E07soWbfkEgObcd+dEWQWNwG6JNtuyhD7OTW8EmhHcpC5y45ezHqPQ0wRJJbPJsjvPLpxinpPYPqcUzTVEsBVhwRk2zOFyUuL9YXG/JMO7UShmUmEMx09sSnSBRlemwmkLmB7kkL4gGTjUR8YqNYgXVjYnJLHZqqQ3UsGllUBdkRgb7TA5lxT/dAE1PsKzgikaw4x2qlifsOMbLQRGAAzk2M1pAPGL2o0hwbaSHRjhfymQXdEH6Y8yFHvaWR3Hbp9/o7ZXNHHmQno0qM9yAApsHmSwxmB8WVLhWOhB9BbnhgENY7SagEt6AdHoVixs2+gawV/lCK9a9EcJsheNyhPE4xe1qgPE6T3Hew4QVfEHmUt0U0UvErZkTlOoCqL6mKEZNEHSGXsw1QCdpzALDV8ZhC0QJfm6D247cSQaR2RvTSbCFYbCyiBkBh0hwWBcAhwmYbIDaAY2ORTbpOsO7jcAP3nv7Fws1GUDzu4vYKSWe/hRykgBOSmpsTX6Nidqcl4GjWwqLAOvkhjCBF/g0KqIMuWya8A/5Ts0BzqRNoOyBLeHz2WIspqw2wMsa0A16fISojZFBACIqaMo1covC1vBYCmpV8yMaxI6QFvBJhCRVmttQSfUrBOJLLDPWklEnqFesja91YON/8WeP4zQKaQYgcuv+63fzq7YQH8Zgjhu0KICYA/FEL8dgjh+z/PN/laM5bzj47D3/m738Zvv/kFfP6wj0nWoOo06tbgaLLF5e0cAcD+bIuqNZjlNR62OeqKF7o2DsY4OCehYyVEVaZwtyny8w2kDNguc0AEJHkHKQOkDDiZrvHla/o1fcdFXz4i0Ks27FXTxsG2ClgkkEc13CrBB+9f4ccvTmDyDl1lABkgtYdvFYIXkImDbxXQSuyfL3B/OwFaCZE7hK2G2avhHWs1ylUGbDUwYq0GXqfwRfRSTixCrTA5XaMsU1Z2NArCeIiFAQ4a+JqmH6EDQidZZeAERK0g91pI5RCej2CnZFd9Fj2lex32DtZYrkYoRvVQzfHw+R70MSU43SKDaCQw63B8vMSb+wl8paEfNMTjEv4yh35ni+aex1ZuFXzBiaBeKfjzGr7UkIWFuszgEi7ek5MS9sUI/qCDeDAI+y3M8xTteUdvivGAF8g+TVEfO4TMQ64VhBNwUwu5VQhJ3I8k4NF7b3Dzxyewxx2EDMBWQ7QCPvWADpClgh85QHuItQYUcPj0Hos/OYQtIps79kwdPu2gcge3NhC5hU4c/BU7/VzhoVcqemUDxH4D3ymgjmzXtIPfGIiGckZ1UsG+zjH5QmLzmME+ds/y/OQWQgWIVxn8SYPk8wzNieV5DwQfqt75fMPYsvLk8wzigw3aGwZB6LUcvumFBbrHDbA29Nh2fD99p8nqHTiYeQP/smBS6h4BWHqnUD9uUcwr1M8nyG8kth/SY9udtkAroTaUTnczD1VK2BnPQ/ZGojn0EGc19A8L2BEBc18Lkd5LNAceshVwGY1gIsRAokOL9JWGT4Bu36L43MAboPuohPo8h94Kvl7FP21BP2/7tIa8TbiPz7ZoHzKMvtCoTrgwyl4TmBL4SDQfVQhWIv0shbRAdeqQv1IEspWEGztkrygRqs87iFYOvuv0nqXkwoOS+SjB91kcIOgAfaejCoILifyVQnPg4dOA/JUaPKLdKFZuzHkNJLcK0u6Ydl3y3LczstU+BZp9/nibtQQ8oi81hgjFEK1kwXCn3rM8eiHRjRlYlb2RKJ9YzP9EY3tB363LqJ4QLoJcFXa1IZrHILnhPnnDBXz5mMMNl/A1ei8rgIHF7sYMSVINg79GlwLrZwSFwpNFZoUMkN4SPLNSJGD0goFY9anD+AuF+jAgv2Yva/pAkNgnQCMy0yJ6UmXDAcD8+wLVSTyGMTir9952Y35mzZLVKEHyfh8rMwafaAyUUU1Mtb4mO9rsAfUxPerFjYhAiHaE+gjIbwKqE4HRi4DNE8r4kzW9vek90Pchm00/mODnxBa8nsYvMDBzfXq5tMDoymP1VCJZ73ys3Zj7lL8maGv2gfSO6eH05kYWeCoGf7NwZJ91DdR79LEDQHEd4FJaSgCy6t7QgmHHAfMfMYhJuPietx7NTAwVHNUJmfBmHoH0F2TX4YHJpUO9J9lFC2Bzzse6VCBbeHTRN7w9E5h9RiZZBKoIqn3aLPI3XKD2fto+5VxFtryeM2So99wmaw44XcKQsD4ZW5f8jHUjpnvXhwKjKz9I2ssTifzWD77TIGO4VBl7dWOYkin5GetyhjrZjBLv4tajHXO/NqcKxRtKfrfHHCK0E4HJJaXdQfY9yEzcrecS+Z1HdShRvKZE3CUEnX3oU7IiwN2eSIyuyewmGz94ZHXpUR5p5PcWzWzHUgtPT2x+x/7cZiqRrtinCwDlqWHqcM3u5GzhhhTlnsnut0G6AFWHIVXXa0EZ9m2H+tBgdNmgOkkGVl12AemCEmRdebLLOftXkwU7dnVFr67ZWLRzg2TVQVYW9XE+eCh1FRk5R/sGJeMEwgixD7Vit6nLGc6X3TRAZKtVZXdoCICsLBng6Om0hWEPK8Bk3YpyVAZ6MV3XJwp6VcNnZvCAukkKvapjIJClL7Pp4LMEsmwQMkOfZttRZRHZzFCkBKGRxRR1O6TzcgNjCq0Pu3qQEIY+TLTdkGbbs6qibneS3B5Uvh3goySBa//6wCC5DU0LkRhKXpuGUlUlKYcNfpDKDixmL8n9R4DlTwaTP0syG7r2J9/357j9pWEs/82/AMbyv/3H81gKIf5XAP9VCOG3f57b8bUGlum75+GD//zfx+p+BPWgAS8QdCAwEIBZcFHbzj38yEHfa/qI+pCd2AsGRNIsLpi84UTdpWC3VvTu2VH88UmZfKjqGKBhuVjpxlzYNQeBgSx1TEZMAZbehyHNkWmEfL++J6zvv9LRdye7fsLPH2c7Yn1IdRK9je1ukdbf+mAMFYNYVL1Lf0yWXKSqjtuqy/gFEcMbzJaPa+YByVrs6iH6ihbFx9kxX9frMKRtFq+YLNkH2tgYTtPsB3QTj9FLFdPyKG+D5J/tlIErsoupp5udfLFPjO0rPPo6h+H++P/diF4syna5WOvGYuhF6wM8VB/ssuVirZuGoV6mD0qQHSWc9YGIibtRihflr+1elJg2GCS2suPjpeNxFT4Gl1RcvPoon+vPlXBAfUBvpjfcZgamxAV6lGPqmiyRbHltDPJjvfNR9t10MsoFAcSFFh8XZAyQ2bC3bvzyrcTCZBf0sj2nt1B2IS6wxVdSeb3hddlX3fTH0+U7GasuWZWSrKO0VzEsqA+C8QmGPrhkxUVlN+YitQ/l6ZkNXWGQOfZhKX2Ijh0B2W0YQpP6c+MTXrPpw64vzaUMc0kiA2LWDGapjrmIzd/EEB9NnynlyFwYNgeUPhbXlF62EzEs8HvPsK7ISJZnlGT33weqiXUysYaD/qrdOe2l2C6NgCCe5/5G5ovnxxYCzZwSbpdy/6TD0InXTz57SarN8ZUFkVe7epMQQUp/3Lox4vVFqXmXC3RjgeINgUD2ENCO4nZnbwFDsbsOkvVOkhrE7nuEnwsJvWU4ULIOsZqD03FTBpRHBI+64ndxMyfz2YcDBcm6mD7MJl0GlCcS2Z3/ymOa+Ve3FcCwzUA8vh3lqvRS8/tddkze7UOC2glZtCFMygPtiMevlzSna49mKodz3B/rIZTKCGQPjsmrGZk51YJe2T1Jb3kMtUlXfpCJVnsxnXjl0E76JPIwpML24UfthJJ04eh7JagU0BVlqZTs70JuuoL7q2t6ylTLupluREDQRcltsmVHYXmsmPQro180ApBuTI8usOsWDFIMAAYSaCcq+ggpp+2rd8zaMT209fCG7GG6pAzZ5gL5nRuCjMzWwSW7gKFmrpCs3CApZshXQL2vkS74A860WLLSzVyhuOmGAJ0+gKZf9MvOw8f0U2FDrH2J4CNwH3TlB5ls/51qttx2vSVYk61HeWowuuoGWXrQYggS4nd9gCmjJ02IKP31cLmCN2Kw7/QApwdDNqNkV7gAXTvYfFedIjoPKAFnGGjkUgW9JQCUjqFGwnrYkYbZdPCafsVeNi9rB1doyMZBtg7dNIGu3FAnozrP4BqADNzI8Duk8xCdhyo7dHsZw336EKD4WDtOmMAaa0W8lgzH6SWwnsyZz1mF0lei9B7Svi6Ff9dMobXcX58oyMYOLGNINFNbY+0KU1vNwLiJlvaoYBSE9wznyc0QAhS0hKgtmUdFuaratqyKUQxAQheB3FuhQdzAeP1U9LYO4To9oPMMsoFWO6mr84P3cagZ6R/n2S8pmg4heyuoBxiAJCni+B4+7PyV/e3t8B4h+HznBrlsqGpKXbUeJLJCfXUB+RPxQA8ErSV4jPUlsHYHSt+SuQ7eyrhvbwftCPGWx/Lt0J7+3/LtH66fjk3+WQCW3/w3/qOf++v+4X/3m18CuH3rv34rhPBbP+mxQoinAP5vAN8OIax+ntvxtZbCGu1wON5i+8lsYMDyS436/RbwAupa49/6jf8H//M//FXkP8jx6//an+Dldo6PPzuDyxTya4npv3iD65f7+Hd+9Q/wdz/+Dppa4+zvGfzN/+T38N37x3j+9y/g0oAPfuU5Huoci02BD4/f4HvPz9AGASwNivMN/u33/gh/8PAEzxdznBcVnn98AtcIzL8vcPc3Ophrg4u/doUvrw4oJZ3F4I3zDX714gW+e3WBi70lXt7PUTYawQkUkwbVp1P4kwb6MkW3b2E/6CA/y9GNAmQCdO9QlgkBCCuQ3irM/vprtFbhWwdv8Ht/8g0AgOgE6guPyQ8Mjv7Vl7j8nQuUZx5hQlRs8g7VNoFcauRP1xDSw/5wzuTYDti8Z5FdazRPG4QAhJsEF79yhUWZw69zrE8lQishS0Wf30Zg85RSVACoGolgAs6/eYPrPzrFs3/+BV48zNF9MYYrBLrDDullApcA9QkHAd96/yV+9PtPByD35G99ho//r2cwv7iE//05yg8aZJ+n6B63sAsDdVIhPC/Q7DHMqHy3w/jHnJJVv1RBPs+AZ1tYAN0qxdNnr/H6/zhH9c0a4j5BkGSKmn1g+lnA4kPAnTUwqYX57hjVCb28QRmo9zawn41hJ2QGhSMLahYS3bsV1PMMNgee/Y3n+Oz1AWyrMfluhvoo4ORXr1H/7hlW70c/7nkDNauw3WRQzzP4NKDZF9gWXFialUD9rQrm0xzt3EMe1ZB5i3qbwnyW4Tv/0sf4o9/5ANkHS/g/mCNZAuunDMVZfhiQ3jGJFRLIfuMGd79/wvPzzQbJZcKFzYYDC4BgIQhKDnUZUB8C9qTF+AcpXAps3rUwS4X8tcDmqcPoYo3lKkPyZYrmtIN/adAcO8hGoDkE0juJ9QcMowoKqI/8kMwLAJtkx8T4NKD+axXkZzmCCoPvN7sV2F6QjWr2uci3RUDyjRXy/22K7XlkJbIAaQnc+G8C+O050Bxb6GWs6kh5XMtTMiZBA0n0ywFAaximZUceqlPQG2B7ETB+zuHMu//K5/jep+coPkkiU0igl6xiCq3n0Gn8MuDho364EeAvaoSHBLIRCFJifBmweJ/bqOqAh2+zQiZ7TR9yeSqxPffIbwS6f3mJ7X2OdSeRX+qhqzW7JcDffIPXe1DA9il/zIsvNYprMi3dmEyZjWmw6/ct5KSD+TSHqqO09ICDsW4sUf9Chf3/M8PiQ/q9g+Y+zn9MMLR+Fj3jZwKiA6pzi8knGtIGlCcCwVB+27NLXouBEbMjgdmn7C91CaBrXmvtjMBy8QEw/5jSURsZW1WxckR4oD5g8NPokj706iwgiMjCR9C7PZPD1W9P+wAAIABJREFU9QwQiL35tYCjvx/rVixlzie/Bzz8AmW05SNKyLbn7DCuTnidmDVZUHqv2aXrMtYFbZ46jF4qqIrnIVkErB5rVqKMBTbvcPDV3ZEVac+ByReSAVKtwPJdib2PPcpTEb3OCg/f8dj/rozsCQca1aFAdeox+xjYPKYUdvqpjN2qwP2HmtfxMmB85bF8xsoUlxKAr58oJCsgvyUbFRSwOaUcd/QqYPUOq1nGVxYP75uhJiVZB+icC756X6I+BGafEnQtPgRmPwbqPb3zYfaA1wW8/hWJ/e/xvG9PJIooa272KBNtZ2QNyyOFh18I2PsewWN1oJA9OHSFRHkshwCk/I6g22uB7aMIuCVQ70lMLi39ngGojgw9pjMJUwWECX20LpHQpUB5pGAL+lybmUR+7+CMRHVISbHOWP/iMmD6hR+6Z1ePNbIHyoqbmYJNBeoDdq5uTjWSCMi7QmB8ZVEeawSpYcqAZO2wPdGYXHZYXxim/F5TKjy64Tbld1GeHb3gPhGYvLRQdcDmUYJs4aC3QLNvUB5JTJ5b2JFEO6XUdntM1hNCIH/donyUMxTrRCO/d6jnCuOrFvWBgezI/HnDkKD6kADSZmRVZReQ3XcxIMggWTnkV1vUpyM0c4XRZYOgBLYXOVTjkd/UqA/5YdOVRztRrFZJJFxiMPlkheZkhCCAzSOD2ecN7j9KcfTHW7RzAwQ+1ycCxZcW9XEKVTNsyaWKLOd9h25EOamqPFQlUT7KkL9uh37QdqKQ37YI42QA0gCGECQkGrImiBVSwKca7Yy9oqkkwOz7PH2qoLcdwXLn4NOEns+yg52n0BsCO68lZK0QjIRaVrBHU0jr4QoNfVdBtB2qZ3tIX1ccqq8D3LyAWtfwRQK5rslUejKMQUrA+J0X0zn4aQFRNpHh3DGdsG7HNsq3WMGeqQyB4NXoQX0pHBnUr6TSAoP/fACuUT4bvIfIsh0YDgFQEdRqDV8v6O90HqLvuXwr5TVYC3V8BL9Ysnu0v7313vjToFbhJ9+8R+h+yn1/dbv984BmIcQYwP8C4G//vEEl8DVnLOcfHYen/+l/gKpJkKctWqvRfW8K/14FuzGYHG/QNAZtaVBMa1SvxhhfrNB1Gl2nMCoarF6PAeORjlo0qxSPLu5xdbmPycEWm2UOfZXCfLDCo/kKV4spyocc6bRBc5/DzGvY2xxqv4GQHkoF1IsMQ6hP4iEfDOWU8Zbt12gvRwgyQOy1CE4ilJRryoMG4TpDSAPy0w3K2wJ6qWEPOgjtESod5UkCGFvkH6co328GT6ZaariJAxIPIQPUdQI7c4DxEJUa/JDiSYmupMcTAKACYAWlmFbEL2MBN/IIYwuxMgiph14q2H0LtYyfeAHIhq/R7TvISiK52KK5Gg2MkZ9ZpqpKwE65LaboEJ4XcGcNt3ul4LMAtZEQT0rY24zy4rMNypsRROBk16wk2gO+D7eTTJBPAvRaottzEHn8EXnNmhgdOzPJSAaoin2fIWcHKQJQnG/QfDwdpJb1kxbmxsTuOPZ7upwSyTBi3UzQQNBhOA5qwxoU2Qp0Zy3S5ym8ib2AGWWgwZANNGvJGpkY6JIsBcF05pFda9SPW6gHjeKVZBdnYBcqAmAnjlU4EwfRSISc/h+9oL9HlZSdpnfxPaL80WumALfTMOynHcV90gHJg0LQ9LS5PACeTK3wYlgwky0kyNs8c9ArObA6faiUS/j6Zs2Fe9+j2c4DZc92F2TT9+QFGSte9igZTNZiqD3pmXVvMNyf3VL+GGSAdFzgekMWv5sG6I1AdeFgHiRUQxbEFgyAKs8CggFEF7c3BmM1Rw56LaErgWbfx/TlyNAJAlG9FQNr1OwH5G94XdpxfEzC6yFZCFRnHvmrWK0S2d5utKsTqU54HFS7C10avwCDk5ZAfchjKht2fTJwhJ9Nr3nNJcsdOyk7gilWIfCy7IOS+veXLeWk7Swy0aMImrZkErsxGebtBWWyffWK3u5UEy4jW7x6j52zrATi6yWrXeBSN+Z2Fa+47azH2b2mbDEwcj4G1DTzKFuMVSBMOo6hPlMmTfcBQbpkomw3iUz6W9LNdg5MvqSH0ie8v0+DBviaZsPO0t6PqhoCqGbWV6pwG7yJTLZmkJXe8mvHK+zqOFzsE04QGTG+l9c8XyomqfbdmekqYP1Yxv5PEetbGHJV3MTk4jjkFzG0qHjj0Uw5+OiZ6l4F4GL9Sl/hIS33TVd95Q6Z4fEVgVp1IjB+4YdaEwAEp7FOxhYC+Ws/AAy+Fpn5nkVspwSE1ZFEccMBgWoYtmMzfiZ1HQbGvp0y/EoEnrdsEVnZ+DvRFXEQc2VR7xGw6YbvZcodQOwKMdTBMFSIzw+Sx0F4MspeATaTSLZ99QkDkbqcUlCAMs12LJlIK7hP2QMZYpdSvuuNYEdlQRazG0sEyaqQZo8qHF37+ByehxCvdxGYjsvALDnUjwRJf/Ps8xo21+jG3AldxmoUG9COZTynHkGIIZSIXms/hO90I4nsrkOzb6BahjqxtoNBPu3c8Hi/rtAcZlCNHxKX+4RpSAzMqaq5z8IF+JRpwsnrLarH01jHwhAiaQPDdYxkX2Xss6SKgwm6NlcM8CokzMrBJ+yN9KZnkMnMCh+QLFt0YwNdWrK9ShCsWQ+v+R56E6WhRsJHpk3VdhdQ1LCKo++xhCRz3NfH2ImBqiKQUruuS5eTLRWONSgDs9t5AkzrCURjFUl/DQvvY7psDMPK9BD2E5SIFgRWp8jFFmGUkS11nnUlWlLN0ocG9axfXxXSgzPnv8J4Cud3clQpCC6NJuMZWc6gFcOIej9mHxhUt0Ni7QDqurcYxreZ2bdDhKxlQE9/68ElsOu0BHbsphQM6+nluf1+9QE/w+uEgTUdqk3+HLfQNH/2g37K7S8FY3n4F8RY/ve/+WfumxDCAPh7AP73EMJ/9nPfCHzNgWX65HE4+zv/IYIV0PecsKpGxHoQBoHoLReZyR1L7ZMlJ5pehxg7L2BzdhqadZ+gGKeoZ7vFHAIXkLbgojtZ7RaZvVyyX7zUB1wUq3on3ex7CvvOPm+4sEsWsWS85AKkOo4l8FGuazZ9iiOGCXIQQLpA9AwIdAWQLoHNBRe7IWKu8pSS3r7HTnj6ZboR/TV9Yf1QlB64H+0sLqx8lLnNxFD8Tl+Nx+ilxPbCY/qZxPpJ4NT6gBP10QsyB7YA6lOyGL08sD7gPrVzSgzbqYiJjVwc6DJg/RSYfNkXWu9+6PuFZjOPRfBHAsV1wPaCHpx2wseNX0ZvleeiqhuJ2E8ZZYxxUVaeBhTXXNh1vdwtj3LHfW5ndUywVdxwkVSeBRz+MRdUvWcrWfO82RxDf2BQXNz2/9fOYrF6zkUyuwR5Lts55bsuYwDGw0dA8Wo3/R9d0e/TS/dcysV9fRhDSA54fsyGSZX1XMLl/Hd9wEVeuqCHK4/7q1oM3X7SIpa08/3SBd/PbChJrQ8obQ6SzBp9H1EuOufiPr9h9cbyPYn5jx0W31CU0kZPEysyovQ3AbJFQDMV2F4A+99joqeMUkhpgckLi4cPNLLbtxJhmzAkueZvPLpCcBF855nc+khi/NLH2gV+R3jNIJH0ntUa6SJ8JYxldO2weofbmj34YXFttkyQlS2lp6YK2J5KjK88NmdyAD6jaw9nWNbuk51EO33wQ11DEAQN6ZIAg14sHvfJpcXymUYQlOV2Yy4WijdkSaSLC/6UEksEIFv4CKZZ/p0uY0LoiF6toMjg9AsknocwMJXFa496LpFs+JnpJeDZwg91I7oJ2JwpzD/psLnQMSyFC+JkHZA9OLRTSih1xc9N7y3LHlidka482pEc2OPi1kcpLGspxpctlk8TsiOWaaPVvkb24LA9UxhfWXgtUM85yPIJkN1Hn9iWICFdOQbjTAXG1w7VniL7lEqYDRmiZOMZ7JFScmkLyXRXy3NRvGFFizM8X33ib/bgUO+rKDslCPQ6Amyz++z0bFbPniGwjgNCYHuqhyTbZBMG2azZeDRziezeoZkrZPcO5bFGfmfJ7p0apCsOxGxO2W073rGT7ThWnNxaqNajG3HY1RUEy+mDRbOn2QE5igs3wc+iqlju3nvr3pavImAATH2qb3bvkCxaVotIRDBjCWAPGGiTPnTwSqDZp/cuWVo0+1ykqyYgWXYDKyQ7j3bObevDaEY3lhJlJZiqOtJMNVUC3VhBbwlIVMNFqjcMhsnu+oqL+EdCEJLc14OEM2gCGpsr6JIgoJtqhCgL7j15vR3CjhSy1w2aQ3opXCyG16WHyyVGX27gxglE61GeZ0gfLFRlhy5PVpn0dWasdujl3y5V0OuOaauZRLLo0I01kocG9UmO/OUWvjBwWbzmjUR6U8JNEwIV56E2DUJq0M4SqNoNXsEgBVzO15edQzdNWQeSaLR7KfS6g88UQd9II7mrIKxH9WiM7HUJN07gNb83VGW5DwFACEx5bT30ogI6i+54Eiu93NDFKzctfGEoVe0oi9XLBlAR1PT9kIIhO3pRwx7k0IsabpxCbVu4UQKEAL2oYGc5VNkOXZG+SCCrDnaeQy3r6HV0CImGLFvAOoQ8gc8Neyn7Co4oERV1Cz/KIeoGUApulkNtW/hMEwwKAX23oWw01ZCbGsHoXf8kQKmq0fQoZgl9jkZz/yJzGFJDUBjBl+gswrhgbUndUDZbNTs/Yv+n0V8JyQltS+nqUBciKWc1Ue4rWRcitCbwy1KEuiFYKzKCvRD4fCkQypog7q2AntB13NbgMVSL9AE6JjKSvZS1//8eYA4pumEHGCN4hBCD7BchRJAZWdEeFP8kSez/T3osR4ePwy/86z9/YPkP/oefDSwFD/7/COA+hPC3f+4bEG9faynspKjw7WeXWNQ5jj9cI5EOP7g9wdl0hZfLGSbvN2itxi/tvcE/ePEYv/7Oc5TW4L4ewSiHL24OcLK/QtkaTLMGme4wNg3+8PvP4A8qaBk4NJIBRjkYAHtFBeclXrzew+PjBzy/3sdHj6/xo8sT5EWL/VGJ+y0TDqT0WF1PkOzVaL8YQb+7wfY+pnalHn/zwx/jdz9/Fyf7K9zcT6G0Q7NJ8Y0nNzDS4bYc4e7jA+hHJdr7DCJ3mO1tUdYJKhHQ1gZCBMznW9zfTKELi/KxQAhAlre4mGzReYlXPz5CSDxEI7F9BwiZh0gcGgFkRQulPKQI2DyfAgAuPnyNRZVh82KKTeEAK6AnHdxdb1rkomr63gLL/RF01uF+nmLvZIXy1RTdX9+iuxxh9t4Dnk3W+FHzDn2vMmB0VGJ1W0CPO1S/aNE2BiEAxwcrXH95ALVlUNDDtwBMLZIvU3QzD70WyO4FHn7ZQo0smqsM2XtLbP54hvDtNR5qA51YdKsU1RNA5ha+0siuDJo9j+Rsi+r5COJRhQDANQpSe6wmCfRWotvvYO75Jbn5TgvxYNDOBM5/9Qpv1mM8XI0Rcod8VuPOT+CeVghvUviphdiy0gaZhygVzEJCfLDBIid15C5qqBcZqhPAJx7F0xXa78/QfauBeEigTios35fwjUJybeDOGnSbDNICqw86yM5g82sVxMsM/ryGSSwerkbwiUN9JHH67RtcfnEI0QkkD2Qq7VELc5OgO2aITjtXcKcNtu94+PsUyR0ZynbPQW8UgvRwcwv1YLB9RDna5qmH3kokHyxRfznhvuQC7ZGFSD3knYHXHIA8/JKjDP3UwRuF+sxClmQA+3TT0Ys+zMQhu1FwRYAdBdx/i6BcV0BzZCEKC68zlOcezZ4YvJ22ALJbsoHbC6arunmH9vMEzaEH4NHOYvhQFgZGJ2h6geqDgO05Bh+18GDP4EUHUUvYF0znJSMmUb7fQN0buDRW7KRheB038dBrCZdKJsNqprgmS3q6t+dkiosrSnnbJzXKBwYH9cYtN3EISmP1iy1EpZCsJHtTbwxBWwaIwMEXACAEuJHHMpC9Z2iOgN7sBjkuk2j2BMpvtFB3RD/pfWRuPX3XtlBopxzCVecOshJI73iNCAc0ewSC9ZFDUAbNPn13+W1AfURGq51otDNuljcchpXfbJB+lqLZJ0hr9hS6McG9CGAwRxyONfOAZpZGdpXez/Seybr1oYbNwdTPUT9IY6BNO1Vk92qFdgKkD5rhMx5wuUZ5GtBdUoZa7Wum1G4YnNWNgepID37FAXQ7hfIoJmRPAGk57KvWPNcQlALbPH799Z7tt/zHZku5vvA8D+2EKo3NUw6QvALSBcNguomAqjkoqvd5bdX7EvUB4BIdz5OAzRS6iYhe+wA74ucnvYt+9pmACBr1XFL2eUC5KCtTEjQzAeEVdBkAySRaXQHZvRoY0vrAkElfcRgR9G4f9JYBQ82tRLLSA5itDwTaseEANHprqz2mKfe+RLNHxm17JpHdhkG+6hIM4UnNVMZrCehGhqqHJiDIBOWhRH7HOhUIoH1XI30gqNZ1QDPnYK8dZ2QIHYdlzYzDjepgxGtuLGJlkI4+bU2/saFcXnYKSax50bVHeUSQ7XWG6kDGACeyhTmAzbmCV2MOJVKB6kCiOpDI73QcApB1L49lHHhxiZUuyRZ3Y4HxS8Hzsa8hHLB6RyMfKyYpm3GsSxIDK+6yUfTKRuZ4bOLnQEDXGs1UwmzZz1rvSeR3aqhF8ck4Mv4SSSoHH2szlcj+P/berFe27EAT+ta0pxjPcO+5Y6bTdro8V5XqgZbqGQk1zTNCTH8BoX7q34FAvDUI9S9A8I5EQzdN43KXy21nOjPvfM98Ytjjmnj41t5xrl2Ni24XOMEhXZ174kTseUesb31TKVOwlUD/oMLuqUZxx4mbYqPgCskQHsf9UkNE1Vj0zxYYVhrCU97bHWtO0JxniFpgmLNSJiqgPzJQHQGJTD2nZuc5sVBp9GuNQkm4SkHOdWI1w6GKpeF6ZO9hVxnkkMPNFDIpYJc6MawS2U2SsFY8D1JLYJ4RyCZALkLJapMhJwgv2GdJ6Wtiz0/mZEkzhVBlcDNWvgAg8F0UZBpdYDrsaoWgJYN7APo8jTr4Q0OA3LZwqd9UbxQ9oUZPDCcA9nHGyFTVzBBoVgViIFspeoswLyCFIJAd/ZRFxt8Hi6gU3xtjktJqgtosAdOqYKJqAsFRCjKY4+N+Iux9iapWBIijHzN5SKNSB8+kExAqKdlG4On9xFyKzLByxPuDB3Za7z1prPotPZdS4IMU2T88/u8+/hzAfwzgXwghfpKe+wcxxv/hd7mSrzVjWTx7Hj/99/9zzvKP6kxLOZedcTbZlfx9WFI6FiWmyHGfJ4lYCuIYJWPtGf1e+W0KgUlyPZZccz2uYHCKT8E8pk7l7qlUvT86SP5GueAYrGGX9IqNsraRjRzW9PVEwUGQbg5diq4iWyRthF2KqeB9jIUfQzymYCCb2MYli+zt/JDUOIag2OU9mZgC+hMgu6X0iMETDKup3o6SMjJUs7dky7IN2SSzI3uo29QzmPNLCOB2tA8OvYxmz4HVffZQ9Ymtu2H4S3FDydPI7Jqasrb8LqbSaDKKRZLGZVtuh27JbkrH4AqV+g+lJZvAL+I4JRMuX1rcfidjGM42TtfQxERrMmsA0DyQE+vQnpC16U5E6tmLEzNnZxx8SQfsH8uJOTM191f1ZPbGYnUGcCTGLg1Y5+8c2mM9XTs+576NzJBuuR7dHo61T8E1IRMpgY8Dotl7j24tp5CRcRmUhpGxYtcbnwe439k+TsyfsvTbmDqwRy51zI0dftmeg5H+SGD5wqE+U8g3ZE+HefKSpWMuksS2X/E45ZuAfsXtsxUZt2lgdhWmxMuJKcq5D2M4RpSYEj+ra3qI1MD9GjsoTZIaisAgG58B1RVTDLffMKlDEVNS4shCVZfs6xvmjJXP6jClI7KigD2B0lEaZZowDSwnGeTAY0c2nAXxquP1OZ5bU6eBl4vwqUR+mMvpmpWW12Bx4+FLOd0bY/AYfYdx6l6UngmZInCd3lBWKAKZk2FOWSGAqfdQOg4kRkmgbiOKG4/2RMO0YWImReSgvDuSyLcxSVVTmItkHUkwXI7PuF7dBEpDVQovcQxaaY8V8h3ZV+kjbEmAJF2EHOLEFuouUNa45f6P5123Af1KId94iLF6oaacMJgU5HQXphCbkIl0LMLUU+pzmdJcYzo3lAryM54suuoOZfEylaofJJj0p7kZ0yzZIepQP86Y4Llz/Dz2ZBXHMRRZyDDdr8NSIb9z07abrUPIOeBVbUhy4sMMv+rJwo7dkwD3QXWUHLpSIttSwik8tzuKwwCWYT8pJMdGMn1aQNrAeg0g+RE97IL+yfF51Ti4OQewuiGT6IskEa0pL+zXBmbnk5xQTgE6wUiMYTVBCZi9pfKm0JMSYlgYmNphWGrIgeE3IckGg07qBRug9gPcIkdUgvdNBIQL0DW7H0d2U0Sy/uMxG9lnOXj4Uk9so680hIvQDQNvmKTMvkYACZSkgJoYJ3mmtPT20QsXJ5ZP9g6+yrhfgkoP4QJCqaH2AxCAUDFMxlcG5raFWxcQNjAQJ1Id5WesvBA2XYcJAKjaMo20GQhkBncANoUh67csKOWse/h5DtlYMn2R0k2ATKNf5qzdCIDsBoQim9hFxMjKi4zMHgAG4yABqYwM7SGVNH2mDA6hTD2R1iNUGWWj6V/MEgARgiE8mSbLGCL8UQW5T4OttB1icJP0dHqktFMoRc9hO0D0A+IYanPveMVM06OYZ8nn2CJmhuArSUpjmRN0pUAe7qPja1I6qwgRMTcQ+5YSVCk+SG8VbT9VeCBEvqZuWN0xhuoYzZ9j2A/wYRjPfY+i5D7GECDuyVPJIOTTcmLdQMxIasS6oXRVKcSOybUiy8hQjiwp8KG8FfgQ1DmX2Ef5gUQ1JtmryAwZUuBDyeu4bQCBZJK7jp2Xh9f82u/A36xKJB5kuP86j98bxvLf+1tgLP/hb5fC/j/x+FozlqLwOP67b3CxneM7p1e4amc4LhvctBUu7ub49tkVfvHmDD/4+BV+8uoZfvD8NTpvsO0LDF6htxoP53tshxx1n+F01uCuKfHN5RZfXp0gZhZ//OA9hqDw1eYYRnmcX6/w6GSDZjC4u52hmA2Ylz3qLoOUEbPM4vL9CkcPdvBBYpEPqHt2DG1fL/Hk25cYvILzEvu6gFQBs7KHkhFDXWDzsYEyAXlhMa9aFNrhfLtAvy1gUx1JuehQZRbrssPFbo5h0BgaAyEjTMHOyxgFtp3BelVj33C2LAaBHz59i5988RFWRzV+eHqB7VDgxc0RMu0Re4NBAF4FWKsw1BnmRw1238gxm3VonUJ7XaL+o4jlcY1Nm+FkvcfdvoJ3EqIcsPtsDfmshu00q1KshGwl6h/3ECIiKxy6bQ6hIiAPEqRiNmBXZxAyorYK1apF+34OOAH5gJrRZmMAEyELh+Wyxc22ZC3JzHECzwvWqnQS+rSDbQ2rXbYZ5g9r7K8rIAqITgJLi+tGA2ZgTcldBqhIX+dtCVU5+L0BkudUzAZELyAEUC07bG7otR3OK8TS06faK4hBsCJj7WBmFuKLCvh2DTcohNoAOkDmPD/RSVaO6AiRe2BjUDypcfN2xgHVVsJVEe4hGa2oA2RDX6jZCYgg0D12rHY56hGdhMr9gUltFe7+1APwUBuN8GBA7BSgOcOYXWoMjy0wSMhGIswd90NGoOUXo94r+IcW2GmolgNje+IgdwphxvoL2UnEVPWy+0SSHR8EYgaoHRCKiOxGcvLiiWXty5qssBwkxEcNbKehbgyalsdv+LTF9iaHiHGSagtPb6g9iklqlOpUbjV8FXDjBGLB/ZYDEE1EyAK3T1HWbtf8MtvfaPQPHWQXEUpWxvgyIuSso5EDcPt9xZqbu+TB3Ei4OQMjEFk1oxKbWr0VqD8C8kv6cYMZvaEiJelyG+wyILtR0ySPnUfoWkENIjEerNaJkv5ld+SQXSVvddApECkc6j4kEmAU0A17LSmRFYhgFYld8vUQnOwCgGgEdE1PbNTcPp9FqIH7PqwB1ek08UX/cMiA2Us9+S133wS94VZA9twnSErl8yuZWEpAd3qq4/B5hIgCquF+5DdqkiD6IkL1rGmxizglUutac/LvI4n+OCV5R8DUvEY3il7WYR1hdipJEDlxhiBTJQsn56QFgiIzp2sAApMUeExn7te0UwBgL2lUk+ydHkZM3lmm4GoMCzJxnLTTGI6QkprVtO8MWuIkmqsA4elJCwrJ65vB7DmpWFyRzeM2ceLFFWQqETlJKTytDNImr20Eyks9+VCj1BiTtTkRQptDdkfLhrTsgVQp2ZrM3D3vcwoCipKTVMA4gZnBF9w/1RNIuZLvFYGy8uaRQLbVk8xU2qR2mI6Tga4jpMs4OaQ5KSYCoFrWQoxp0rrj9T/6NUdPrhzoxY8prTwo3mumyThJ1HGf8jteuzZN3ukmTinDwQC6zVLSLNLEIENfxklNOztI64E0AXbL1GTdkpkeLS/BCBQ3nIjJt6wCiZJpxkhMLSKQbzTaUw1vwEmeCMiHWQqySoyO5+SMnVEq3J7oKWFaOsAVJXQXoTszpfWSheekTVYnZi4DdFel+yJiWJJNHuYMNJK2IBvax4nJH1NwEYHmgcLsvUPIBfolvaYm+UFFODCpPuN7hI8YVgrlpYUr1TSBA6QJoYbL9SXl6lGmiaiSkygisMdT1xl8IQ+s5I6yYWm5PF17nn8BhJw+T2nL6TiMybSuUFOyrnAVQs5l4nTG75cQJzAcx9TqlKqr+iSVloDaDvAzwwmJykDPC/hcJXm3h1tk0Nse8XRBz6f1kK0luF7NeC/2HjFXEI7puIewnINvMuSaPkpwO4RLktqmY0/lCKZjRFhUBNpaAqsZE22FABYzIAFsERdp/Bcmv6Zoe4z+ylgmJdp9sJYkvFMSLTBtn5gT8MauhzxaI/bDQUo7gtFxjJ7niH1PADvWjkyP30yklfr/2mMZUx3Kv0kq7B8ef/vhowLmAAAgAElEQVSPrzVjWX77Sfyz/+o/wq7LcTqv8aDY4/O7U/ggEKPAUdXi28tL/OzmMd7fLPHoeItcO9RDhhAF2sFM3ZWnRzs8X9zh7X6F3mksiw5n5Q4/efcUZT7g49UtNkMJ6xWezDf4xdVDzPKBEtI+Q6Y96j7DUdXiel/haNbCR4G6z6BERIgCSgbsmxy2ziB0gFAR61WNZdHjcjeHEBF9ryEEcLRoEKLAvs2htUffG2SZg5YBm1crVE/2cE5CqYDcOLggsd+UiFbi6OEO3WDQNRmqeY9mxw+O+apFvSuwWjXY7ir4XkHICF1Y2H0GWAm1GuAbDTMfEIKE7zRgBarTBm2dAxuDOPMQKgB7g/nTLYafrhE+bdjbuTeIlSOoLDxiz3AePO65Ph0Q9xpi7nB0tMd2V0Ebj6HXBMbGY3g1Ax72UNrDdQYq83CbDDABqvQIThAgZYFgLnV3QjDEaP6wxv5yBqgI0SWZqozI1x38F3P4xz107mDvCgYbmYDYK4KlMgBZgL4y8LP0bbO07PqUkWFMVQByD7HTiGWALBzERQ4/Y4+osAIx55dVLD105eDuOEsqCo9oJeSeUlRIQNUS/lEPISPE+5ydi+sAv6TnCQIES2nABx0hj3rEiwKhCFALi3CdIc49RKPYX6kj9FYi5CyQd2VEcSXRPnXpi1MQmJkA6AhzrSkPdQJu7WHuFBNWU4hT8V6xgzMSDEES2MlBMEjICkQToe8U3NKjeK8RNaWuCAKhDCjfKrgywq7IwBDA8YvELT1kR8mmPfKcOR8I4MxWJqAQ4asAVcvp9QCmapX8ViKoFJhUMmzH5xFmL9Efe+Q3CsOa50h1AGTyMm/JyIecgUpmJ7mvnuFPISdw40CUagZ6rgkgo6RUEgBC6jQclqw9Kt8p2NVhAgXgQB+Sfu1x8iDbiOk1dhETeEnHJiWiQqRzOUsDUQuIwNof4emHEqP6Ip33KGMClQQ9UTJ4SLX8mxivBWACIT4nwPxw3Zhqb8ZaldEbPawism3yH3aYJKMhZ5CPLw7ALahDCFBUVEjwPCRZak85qvAENsIdam6k57J1k3znSQkiPSZ1yOhDH4NrpnApMXqdWdk0emFHkDyqFnzOgTjkQd2S3aVTo3l+ogZUiwl8jJ72D6qhRj+9TwFEiqmyYy2QXYjp3pbD4eeYYFudB3THcgJwuiUgtXP2UHIgflAYjHVVo2rElQzDkQ6snwgEViIAo9/e7CmvRcSUyBsMFTcAEjMeUxUDl/tBcNG9c+Rm3JZsQyAWFUH6sBTIN6xZYcop94/VT2Sv1XA4d8BBUaS6VImUFBqj6gGC2yDd4f9jCNKoUHDlwQ87TlyMXZ9jLQyQwOVYZeRjql051NzkWyoORjXDMOdn0uibnL2z2H2UTQqdoMWUtDplF+CwDTJVkwUFmDZMDKw3AqYN6FNFi7JpX+pD52QcvWkKqf5jrO9J4N0jsaOc0Mq2fgoGUn1M3a2sV5EpT0BEoLhi+I/wVApEfWDkR7Y+KjF5uoNmdU3QYlouq1SQvKVJlZH6RcfqGwAH5n8I6bMngegYYWcapnYT0By9m2L83PQx+Ww92e+M6a1mO8AXOgF8AkWRWGSy4gRGdq5h9g5Ri+k1IwstEysdcjVtU5SULMNTzaH2A2KuyGanIKNg0ndQYtqE9QSPBX2XEILPtQPCrCBT2pF5nR73XjeCzXHfx/2ewnbGtxg1MenT89ZNUljR2w/CfBAToyolRNORMR1rQkZ29d62IMYDkzr+PkpjnfuQ2fSHdUz/FxJjl+VvhALdf8Q4hfl8UEUyPv46BvP/Ix7LH/y93z1j+b/9N78fjOXXGlg++cE6/of/6N/Gq+YIn90+wNl8hx+v3uByWOAvrp7go+Ut3tVLnJQNrtsKhXZ4fb1GjEBZWGhF5qhuczw7ucMXrx7gyeNbfGt1hX/8xbfgW4U//c4L/PT1U7JXAETuIU2AAGAyh3aXA07iG9+4wMv3x9CZR/ASRTmg3hX46NENXnz1AHACak0/oz0vcfbpFa5uF/C3OWLhkS969JsCCEyOtS9n+ORP3uDzlw+BXkEvB7gtDSqPPrrBxb98gONPb3D1cg0AyE46+FcVwqnFbNVifzXD7KSBlAG7C3r9RJ8+BD3Bj18k4KIihJWIuYfcasRjixgE9JWBWzuonUIwvE7MWQvvJdm7VKzuG43svcHw0EFkAbFVBGy1hjzt8Xc++RL/yz/5LkIRoHcKbuUgBkqiikc12psSiMDR4y32f3WM8LyDbzREK+lFKkJiRQTcPEAcDQgNyfbF2R5Nk8PvTNqHALVRnMGuCLriZY5Q+en8RSch9hpx5mAuDRmyTzoIEYHrfPKDypZelVh4yFpB1wLDmYO51qloXmJY8QvSzw4SIBEEWUwreeyqgPKNQnvG5SIC4miAOM9ZjbE+JN2GPECe9kAUKP+PEr7gwF14wK091I5fAqYW6B5bFG9MAj70DroZByTZRqB95iCsQPlWoT8N0LU4SKV7gf4kIL9hSq74dI/h3Qxx4aCvDAvie0ypqb6MUI2AWwWovYSvyIIJK+BOLeRWE8gVYOpuTk+vHNIASxOQ2aOA7FqSjfBjRYeYBmB2HqaOWPbIRviM2zB1yQJT2mvQACQQdEQ8GSAvMwJRS+AX0+A/v6GfsHyjCCKzOIFK3fC46Ya+yGFFabO0BKb5jZxqTHwepx5HgADF7ATaMwZa9WsyCtmWHq7hiH7SUebuygRCWkyAazxn4yA3v2F/pi/ZD9udpH00lFDrJgVeRQI/4fj7cMSwLrsgqAYINOyMx2Csd9E1wURIxzW/YwqtcJTbd6esMLELDoZZsYEpQTIKMq9mK1MCMDtSdU2vJEICHGMNWzcyZAfbgfAHoNI+OJTYM/CIyxzZqLGH1c54TQ5r9s+OzOXI4ARDhtTsCCBnb2IKFCIDq1ugvAioHzNoyZURixf0GtJrhsTu8PwEk7bZEdQNCfDqBHjGczACbLJBlM9mG/aQ1k8EyosD0ByBUHV+sEvoLk69sM0jMU0ABAMUNwS7475LhyRp5bVv9nEa1Js6ASqDqW+Wn/cjU8Tj3R2LCdzL4cDSqi7CNJRCIxx6QEN+2J+xM1Y6Svmr88DALctz4QskSSztC7ohqM32EbY89OuyqoWhWCOrNyYCV1dMwB07SqMUibE8MMYiHOwNUbAjdJSh7z6SWLwKky/RlVx/dyRR3CaglgKjJsCZfo7BWlFymWNqrAisaBntBMNcIN+NHaEEs7YSyHaBnaTH7KHUXZwmlFTqFB3Phxp4bhETM98H9AuFbB/IlIXxOhCUTifwOia62kqm74KQ2F72hVLezXtRNyFJ0xMwjJw8y3YWrtTT8sd1jQ/hkUKh1ARwx89o2RPU0aLAPlQRgfJymOTuSNckIpBtDkzjJCHXBwZTDvckynoEwmNwVVLOdD51jiqohsFYcWS3IpimayNU5yZwOEqQQ87kWb23k9w5akqLIQS7K42CT2BQ+AjpKB2XA4OuopYTKBYuHIDkcGDzYqYnme6YCiv7xFiKw3sBAnFoCdEmaXJ63xhGJLpEkd9PcB2BXmYA6xggVOaHupFRVnsvsGhKk1WSMuMYJ/nvBPh+LaX18P/09xFUjmDuvhw3BRRFawGpCPr6YXqvSJ2b8T5b+dd1goaAGOMU7PPXPe6H/XzteyxPn8cf/Lt/C8Dyv/39AJZfayns1hb4n8+/idZqxChwvl/gJ/EZNj2ln//i7RNIGXG9nSFGAXtRQh4PyHKL3V0FmXlEL5CXFl989ghybnG9nSFEAd8pQEX85ZsnBJUmQGUBwQv4RiNf9mjvCoKyzOOrrx5C5B72qoRYDrBWIXqB882CYMsAvjbwKgKVx+2ughCRssG9xtApoPRQM4dunwGzgF/9/Akwc1ALC/GyhHjSAzuD92+OIE4GXF/POaOW84b1J5YM7BdLYO7RvJsTxCwtohfAIBErj/lxjd35HLJyrDuJHPijI9iT1wb+yMGXAbJ0EHOLmKStw20BUTlgYxCKBKZUnFgU1JpySgBYD/CtwlfbY4QyQM4tXKrokIOAP7Zor0tKI08H3L1aIx47oKP0TDiB8KRD3BuESGYm5gH6dYFwzA+5elcQZJoI0QogSPi1AyzDHcJdhrhI8shOwJ+kD/Y8AFbCnjj2RQ2SYDiQSYMkA4cA5O8NhiOP4aGH3KsJbNlF4GsS46P3ZOui4vJGFgkeaJ45iMCBibmTGEoNrDy8P3yQSkcpjt9mEE6g/lEHbAyBquGEQMi5/X0moPYK3Sc95J3hsdIRUUWIwAAZAEAQaB97yF6iPyXLJwcBe0KQ66ok0XIKuhGIvSFz6YHhhIE0MTFZIYuAB3yZmNm07fmbDCEjGxGKwG1wApCp7mROMGqPAmQnEkMg4GYBvgpwXk1yxJBHeCcSAxMn4AAJuAXPh7QHNmBcTnYn4fscvoxwc9ao6IaMaJQRdhWRX1GuGTT32+xFCsghGPRFujZTXQQs74ux6sUXB8mUcLg38ANCGZjAi8N2+yrC7CQrVyzTouUoCc0wyWF1I9A+8kAUyG+ZohpV6uNcEMRJSxAiEjsmIthlazmA85qS3XGAPrI+7YNUPdAcJh1EAkTjttfPeL6VY2+j8EwuHo/RCPjG+pP2wT0/skTa3sS28RJnArBOEwGCg+coKBccQaarxNQBOtbSyFRRowaCa5UmCKaBao8JcAaTJK8Lng/pE1PdilTFwm23i8O2No/klOaa7cTEfI4BQ1FzO+ycADIqYEhJuSMwHmWRI3A2O3q+KQVMPZ0lr3OzA4GD5/umYKQTMfl0GTiFezJRAlnhR1bvAMbHJHDdRoQZB/GshImTX3/atnSdjIBvrG1SPZ/3hgC6O07AQnHiBJHMu5MJYDYRPifoCgt698lY08tsZwLVRYCd3Rvoj8A7EES2BQNw1MB1m3t9j8wfiJNMuztKfvPE2gR1j9FM0uWoDjkDMklGR7lstiFDHCUmVs/lYyqzSMBYwJnDvZjt4nQ/R3W4t5UlIFb3kstHL7orCFBdIWBLgWzPdbXHEsXGo1upyf/OShJKRvuVnAD69BmiASvHehQgGDUxUeNrvKGfPsqU4O3oR/YJ8FI9MCbxBrhMTVUbIwPmjUSxs2jOcphdSls1gom3CSyqgWxkd0zprRoO7KPwlJ2OYBUAsq1PsncNs/cY5mrySUMCbeqjDObAPqreU6LaeAb3uAjpI/y9EakrFT3NQJLHapidhc95kftcwjQO3kioIVWczA1U4+ArDWkDwWPExCyOLKRwTLols0kaXXX08kYtEQDIwcFXJo1XPMLMkM2UArAB0UiybFoSRA2sGhGD470GIMxywAVEIyA7BuyIGAEtmWQLAPZQYTIylxNIjBHwgUm0ozdyfB5g+M7oIVUZGcoYk49UQrQ9w3vGlFohDqDSJ6/imB4L8HM2AT6RZQcWUusPXjM9L8TBOxm5TCEEvZ0xHhjLEVSqw3X9r2Qxgd9kLv/w+Fo95G9/ye/vI0LgzbsjPF9u8GS5xePFFuushQCwawr80aMLdLscIQh879E5sLI4WtV4uNzj46dX+OTsGtW8x9lqBzFIPDjZIcscTsqGwMRJzKoe+ZoePykDVqsGcqfhrMb6wR7LowZZaSH3CuImQ/loDwDQOqBc9Hi03kLogGrZQd9qCBVQrHoMnUFR0t+nGwHMmC7qtxmyygJZoFRNAH6Q0N/eUbpYeHridKCfcjmwxzIIZJVFXlkOxg29YvqkAwK9gbHyyGYD6i9WmD1oIBVHHipn8qtwAvpJw0HWXrFnMwoo7SEzT0BpAvSbHFFFlC8MWVAnEY8HIIEsteQHZvQS+srg/C/OICoHk9GThwCYjeR2dQp40CPWGphx+erGQLYKqhfARQ5ROcQ8YPGFhCg9B08SEFYiNBpqr4DExkrLD/TZWQ05SMTEEKqGslB9nkFfGshGYvG5BgS4vq2GeZUjVAFxTu/GCCJ8mRg4K6EGykyjivArD9kLhCLA3CiojqC0fG2Q3ShEGZFf0/umakpfZUewYy419I2GbCSK95pprolRMrdMls2+4gQJAxUEsmsJs5MwW4n8ViK/4jEsLuiBUwMQigi38JxlvlEwu4Pns3pNVtEtPZm2LSWlIYsQr8rEavD1+Y1k92ZOcFlekFE1Owld8zi4hYepBda/DEmCGDF7paBqheqVQvWa61eNhNkL6A23efSU6Vpi8StN6WVLRrp8q5BtOMAd60oWX1IKm91yv81WwM0J7svLNPhfBx7rWsAXYZKWRslyetUKVO/Y2SkisPxMsl4oI5BSLUGmLwCz5zqqdwKLL9TE2I7VPcWVwPJXQPVeQPXc1tXPeGzNXmD+UgKSktooWB1TXgqYWmD2Cpi9EigvUk9mCgabvVLI7iT0PoV0Od4nwyqieidRnguc/Cxi+QVSSiMI+sZJYJvAVEXmML/hcrINz6fqgdkriflLCekE8lvuX3FFf+jsNScOdM0KnyiBxVdcv0yhSflthGq5P9VbieIKKK45oC0vGOrFzkuChPIyYvaKgKC4jodBewoQCxrpOLAGR/Vch24EZm8TYyOA5efA7HVEcUFQOntNQDl7y8mMbAPM3/A+r96IyTfoKqRuRSC/4X6oltubXxPsz995CA+svgjIbyOOfp6ef8Of2Yb9jdkmojqPyG9H1jeyumYgsNFNRLbh72afZL+G3rriNqC8IMsxexOx+oKD7PI6wC4YQjb2dOa3ZB1XXzqYfQoFayOK64h8E1FeRxQ3/Ln+IrEcjuBAOh6//I73TnkVIByDnMpLbp/qx8kTboe0EfM3AdVFQHXJQbhuIsqLgGzDcK0xjEq3EYtXAYvXjtUlDSt6imsGOpma2zZ/x9Cr+TuPxSuH/I6ApLxJAWERqC49dBtR3gTM35Cdmr13qK58Yssi1Q+a4WCmjsgToB0nT9a/skmGyf23czGth2CN4DKrI3QXJ5ZJOi6zuOU2VJdhknDmu4DZOwfdRph9QHVukW8D8q2H7gKqCwfdRZS3ZCbzjYdpUodoYlGLDYOJpKMMVLdhArrSRWS7gPLKYfbeMhBuFyAdUF3wu9s0AdV5j3zjMX/VAmCqbHXB71VXiFTx4ujFrwN0G6C6iOJ6oH8wAqb2lGy6iOptC9VyucNKo7i2gGSK9Ox1i2AE8juH8n0HXXtkG4flr+p0HDyyjU2TFXHq9tSNh+oDsruBx1YAurao3vdQXUC2tdCNR35rGRRVSIJXF6G3PRnW25aBV9uBTPdmQH7dwRUK+W0P3bjpOzC/ahki1Tro/YD8tkcUAvlVS1lrrpDd9tB3Hcxdn5jdCNV7qMbBLjNKcBOTqfesI1Gdg7ltIWtS/LJ30NuOtSmp6zJqCTEEyN5BthbRSKhNSzZSSsh9R9DW0ZcoLAGe3LaQg4PsLETTQ/b8KQZHACgEZM1jIEYvo/MEk5mZQJyIkb2UzlPKeh/kpYdo+4ldFD1DjAh4LUTdImpFOeyQAnyc47qkPLCcAIQkYIa1fI2U/H96TewHxMESOFoL9D2BZ2I0o/cH9nEEjcYgekpYY6omidbxn+M/eP/B//9V/z7owfy6PuJhgvh3+e/35fG1Zix9Akw/f3+G09Ued3WJ50d3eH+9gt9rfC5OUSx62K/m+Gn/FOo8h1/XeH+3wMmyxsufPYZ61OCrmwdYvJS4OFoiOol/+dka+mkLkzn0VkOpACEj3HWB/csKWSPQZxl2IsLfZdDrgT6+KNDuc6j3OeqFgVxYXKkZwt6g2RuUO4EocvSVQVQRu3oBFD7NxEZ6F1sF78m2ZbcKrpOIZUB/O4eMgJ97gpbjgKHOIJoULHEaEL+sMJwNKHYSfk25o93kBH+CoRlDAIQC2q8WDHjREUoFeAFAAMM+g+4FfXEuRywC+iQ71RuFkFGe17cp1ruX0LcC+F6L/rrE4guJ7VLBXBqojrUOdhEhLzPIjweoFK4xskPle4nO50AVoM7JfOU3LCOPAsg2El1FABYMoF/nBOLQCcykwf1RAFqJ7FaiPY6oL2YQAsgvNIZTevb0Lsk+Hd+TbegtHP1qPgP0nYIvx5oMsoQiAG4pIDuB8p3A9rsc0Orrw+1jdiJ5ICWKlArsCznJu4o7gU5KzF5LDAtg9RlQP00hKwLoTwNUSxlbfpt6Ox1YJQEOUqt3QHsmODiOZEoaJDbEkUGsXqsEkAgSVM+B7vZbjOt3FZlVsxEp9l8hKGD2mmwVg0EILnwhACiYvUh9jinJtIxJmqxhdpSBqZZeQb0HTClgdpiShsv3DB3JE6OW3wrKUGuCj/o5j5HZEwg0jyNUTyDYnaYk3etUSVKTTZF9koN6MkyQZMkoqZJQbWKEHFOho+JAfv+RhGrYD2n2BEiTRFOzMoJhJkwwJnsgKKVsAASGgQAMGZFDYmCHiPIqefsyUL4aCD6zDVks1SafYIYp0Vd37CJFBO+X7OBT0x3PK99H+Z0Iaf8HsjUisYRjKnS2SQEoKalYOABbMjnSpnOV0qSHJQcSpmbicPtQch/TF5RPqcAyeYxYZUEpYcjIKGVbslZIMsLF64Ctlim5l9dpeU7ZoTgC8qvEWCaPl+ri5DEMqS9QdUiAKsk9Gw7gu7UChKRUVCQ/Y5uYMc/X02fHpOp+LabjUNzS5xcVATfTYxVsKWES20cQyoF4UClEpsAk5RSevrg2qom1lC4i33pEwYoFCIHWpPux577obly+QLYPsJUkULz16I4pcdQ1/9aeyATCBUzN+zjbxUm+KQJ/HyW1uo6TpNWVAmUT4CSBBxl9phmbnUf7QDOcKXkui1sPW2kCj9c99s8LqAETCDN7doQGLYCS54GfRZTSKkuWSXe8BmTDBN/RV2p2DGZRfUSWrindUP4qbUwsIF8XNHsddZveP3BZPnnzGOTEz4wxFTvKkSVE8ozyesvvHGxl2J8r2Sk61nNISzZTTrJSpguPqbtR8HNRdwcWRbfs4fQ5E5f7NXs17VxBdQGylFCWYF26yBTfUsI0YKpuYvDoo2Xy8JhQm986Pm9ZqSEtv8/VfkAUOaKSKe03BdhsHYIxHJiGSAav0gBESv5leq8vCOBiJvm8ZApwFNx3XVuIoOEzfr/o2jOwp2PfoCsVQqaSL9NP6wpGcn8GgtdRvqp6vl/0HrFigq/wAcICqrVwy3xi4uWvpYPKIQCB+y98SH2rPi2D15jsHYJRUJ1Lnl92ZQrHfRaBab5IbKCwAcKkbXDj55ki6xcipA8Q1kMBBzmrdZAJEMI6CKsRKsO0XB8BI6cgHQLFDmKes5/TB4iWnZbjz3FimkE4iS3sCKDF4A6MXYwQvZskr8I6RCUhRhlsCPRC+sDgvTFYJ0QCQ60OEth7IUCUwfoDM5lA5gRKx47JlPL6G12Wiu+foOtYJzKMMtRRZpvWM/68nwib9m+sHrkvdY0SyVeZnvubJMICEDL8dYGyf3j8Hj2+1h7L5R+dxb/zX/8HuOtKtIPB4+UWv3jxCEJGnJzscfVmhT//0Wf4i/Mn2J/PUT2o0dyWQBBQGw35vIbdZxC1xt/78/8d/+Mvf8Bk0bsMcebxR994h1/+/Bli4TE7amGUh/UKZ8sdXl0ewe4zZMsetjWIQWB+1GD/fg45tyiqAc1VRTbtUQ+/Mfje917j5794BgAQvUT5bIf2zRyffP8dXv6zp3APLWWVQcCsO8yrHpvPjxBKskarjzbY3M4wXzfYXc4BHaCuMvi1g6wV1KOGgTS5h9ga6Ict1C9m6L/ZQdxkCDmDT/yRI1M4SotURH7awg4a6mUBe+pQHrfo3s0muWMoKGeUViD/7gbt5ytkn+zQvZ8BAsjPFbqPB5jZAHw5g5slryCAJycbvP7sIWQnkH+yQ/dygfknG2zfU/tlrjXwSQP9lzO4RYR7xMTQUHmYVQ/x2Qz2KGD+bIv2l2smbu4FhmcDxE5jKu2SkUE7rYbeUJYqnIDeSdjHwyFQqNUEYY/3sD9fYjjllztUhLql7ySmIBtxRr+n3Gqmdc4d8ldZYoYkhmNPaeszftia8wyLH1wDAOp/foryT26webGihPdWwy8CTj6+xdXFkoB2p+k9vSNoN3uB/swBQeDJJ1d49/kD6D3ZTHnWwd/mEMsBYcfet/K1RvedDvI8hz+x0BeGMskTh2zVI7yYJfkoYJ8PiK1Cca7hCsqUzJZenO75AHNuYB9xGX7OZNfiUqL59gC5IwAPcz95TPVOwK4CnnznEhc/OaOHckEvZ/98oDd4Q6+RnwWYOwZfhAzIbgXsKmL2vVv4/+kY+08I/mMZIFpJX+L3W8hXBeyxg77TiJLBPGYrYHb0EvZPLcovM4gANB9bFO8MdA3UzwKqdwS7ZDgE3KcNyn9ewc0B+aMNulcLJsUuOOgb/Zb9UYRbeUBGZJca0gpUbyNufxhQvVXsNnzaAu8KFBdMJG3+rIH6sqR88Shg+ZlC/SRi9kZg+2c9sNf0pj7iOTAb+pZnryX2zwNCGTB7odE88YgmYvaCqZjV+4jtNwkcZz++wd3LNYpzBbM9hNwQgAD1c4/lZwrDapTsJYbGE4jHJAEuzyXsgsDDzRIwBycX+iOg+3jA8i8z7D7xePDPJK5/zPfQe0r2VvZMTs3uDv6s7mFAeS45WfCYy7SrgPKdhF1wX1zJ621Yssaoe8DJgv6YQT+uIhO5/RZQXBCU7L6BFKwksHjB16iOktzqnN7H/jhi/lKge0Ava78G1p8HbL4pU8ptTMA9bfs8YvVL4Pb7wNHPgeYsyVFXvAcZ5gPUT+nnDFliiucR5TkngEaf8LA8eFrHY1FeEtDWTwS6BwHZlmx0MNyW2RuB7jRi9Tmw/UTg+K88br7PgdviRcTNDyMWX8lJxioHBhyNlVhM341Y/gpoH7KqKUr2ShLYkbHNNocgH5/zWslv6ZdszjiBtPk0TYx5QO8JLLtjMUmWzT6yKlrrRGgAACAASURBVKugB1REYPWrAFuSJYwKmL+hd3Vcz/rzgP0TiWEFzF8ynVUNkbVTMzHVQLVngutM1VpRA7M3YaptEpEMnZ3Tr4mYqpBKgf5IoHofpnopU7OHUvVAvmNvJL2Iad9agjnKtxODmKS5oxdymAu4mcDsfUDzQE4S5CiBxWuPzTcVFq8CujWTYYc5/aHZngAIYJ1Pcechh4jmoZ6AvGkIlF1Bj7kvBRavXKrIAvaPFWbnfkqC5bkXWH1pMSwV5by7gGzDGpn2WB1CfhpOBuwfK5TXEab2kzc1KqA+UyivWd+0eNFh+0mJ8tpBtx53386xeGnRPDST3FXZiPqhwvpXQ6o4Ym3R/J2FcBHNmYEayIDbuUS288juLPbPi+R59RgWagLFIgK6dpMktT/WKM8HNI9zrH52i+1318hvHfojqoiKK4vmLEO29cjuBkAKtA9z5LcW/ZFB9aZB86zi72uD/NZCuAC7Mvy+8xGq9YcQHAFkr+8wPF1zH+9Vt/hcTnVB2d3AFGwtoGpLMGT9BNYItiXUngmxqrZMva3MQbbbWvhlzt7LeQ616VgBU5mpRmYM6pGDY59lQ5+n3HcIVUG5bJKrxjJjTcqsOIDXJEPFKDUV4lBhEiMlsyFC7BvE5YygdlsDWjEptk8SWkfA9wGou48JlAT6gYxjS/ZclCUBaT9AZIb+yLo59G8qyZ8JbE4M5AhMx8fIZv5GYM9vR40hVaj86zx+LzyWJ8/jD//u795j+U//uz94LP+NH9YrfGd5gf+1/Qa21zO0bYbj0x3aPsO+zWFWPf7x59/Ew9MtmrmFVoG1DVmAP7II1yXkckDsFf77v/oRAed5Brfy0FcGv1RniCZAbjWalgE4MQ94FwTsLoOw9ByqnQJExN7PYG4VrAlofQHRS2Q3EgNyCBPx8vaIQC0AcWnRXM6gBoEvXjxE5gBzYWCPHcQg4N9VuJMVoCjjlL3A5uUKwgrsZYnyhaGvzQC404gqwp1XMK1gclor4E8l3KmHepdTprJTiAbQbwzTDBU4qyaAwVcpfVPAmgD7+QIm+cgQBULLgaTqgVXZoTFLCBGh9hLubIAaFORWw7UKeSfgFoDfZjDrDq9enkLvyQLaz5bIOoHdixWyncBw7Bmc8qLCcBSQ3UrYU4HiRiJsJeIFB/blG4VdMUPRCHSPPPSFht1p6IYVEOZOMiGzzlFccvAZpUqBFwK2VciuFexKQllKH5t5jswDy58b7D4JBH81ByPDOiDbSPSygPSUNYoI9DGxWTuGgkQpWenQaPoOHbD/6Qnit2pkLdD+5BgZ+DpTC1grcY0jMshBwGwk+ixAdwKiTtJGL5DdKty8fwSjKeV0FRDaEtIAweUobiVckaoX7gzMXiC/yaZ7Q3UG7lZPtRe6ERisRHatIHvAJB+jdIDcAf03A0IWkb0zKC4E9h8TVEoHBjMdkSlHo6H3DNeRPQAp8ebLU8zuKOm7+y4lmsM+9evFJD17o6Bb+siyDQNDRBDY1wVW2wizkQwcekg2ubiOiL8oycQFTVl05OC/P44oL3hd+tzA1Imx2mgyRA0wey0ZGiPENBj3L0uyT7dA/eUCygoUl6MPE5i/iuiPgPJcoB/I/Np5xOyVoBRwL6FrQM0B/6acmDKzj8DbAnovUmIoB6TFNb161c9zgouNQGhy+Iosnd5LBth4AXOrCGbuOPAiu8ztmr0lg13/xTGMYErp2JnIOo60vB2XJ0u+npU0BzYzGDH18wZN5tVVEi6xcvmGA3T5eQazi6jeMn0ju2Oip7Rkbs2GbKrZkSnONmQH81uyv1Ew/AcARJSTP04OgI6UbMuedQy+oK/L7ATKSzLUAO+xfBPhisTCxvE8pjRLx4Aks4sABKQXyHYxgQIyiCIQ4NHLmFj3Db2pdqCaYvU5GVs1JOAiBfLr1JN7G1Be8ZoNmUhJogyd8fkB6FA+Pkp9CZjKm4AogdYq5Dc8pwziAdTASoooySaVFzz+xSUZ03wTsPhSkfUVKUQrp2Q4ZJiChsyO3YzLL+nzG1NqpY2orgiMTDMm/x4Sa3XHrADpRAJySSlxR+a6O+axjIJpr2bPbWpPFOavqcYwTYB0XD4DiyLKq4BhTu+d8JFS3pQuPH9LoEeGl9892TZOSbrFLQGnnfO6kE5Cd2ECBvk2wOUisakEg1EAuh9VFgG69SgMe2flEGEQ4HL2ztIjCMjUuzr6tMsbx4AakdjWIKAsPXumFlPirrIR/VKiOiew80Yj3/gEIgMZzuRTNYK9q1JHXuOZQJb8jN4IlDcOQad+XJU8po1HtpPINqkfMhhke8/Qni5AVhLGk0VWLVm7fCeY2jp2dApg/g5TvUwwQHE5wOcKeqnSNihAkR2XA6XS2Za9qMWtZ22MZxrs/D1ZXJuqR8qa0lfVWuS5RMjJkuZ3qR5p8Mg2fpKgVo2fwnxEYlhV6yBdqirxZNLdqoDuAv+2UInVdSgvyW6OLGJ+J6E6h/wWvE9vLeQQkN+xS1R2lGsGIyEHn7zlCSgqCWQEf7IhGHTzbGI9eW14qG2PMM+APk6hPlMHZ2+hW8vO0N4CSkB2A2JOVlN2SQqqBPSmI3u87wkCtYSqh3s+R0/2sR8glCAjmYCXsARi4j4LCUD0dpLLisEe/jYyhEoSMPrAWpKRMbzXWzkB0fEnB9KUrqagnpFsIruo+Td7r29nAoThsH6ZQK4UTI1NyxfAJF8VYxjQ/ZTZ+6DybwAov85E2P+fHl9rYJlrh3968TF8EPjBt94AAH728+eAAJ5/cgkfBf705A2+2J/gYnOCbF2jerqHUR5VPuDydoG8sGglsFrWyLTH3ayCfzvD9/6tLyER8dMXTxFzj0+fXeCrq2N4p1BkFq0scPTRLWIUrBC5KVAdN9APAvy+ACLw4NvXOM+PkK17hF5jVbWIj4B2n6P8vID7wR6zxwO0CrhyKyzP9rDvFyif7nEyb3C9r9C+nQOPBjgrITOPPLdo6xzxj3fob+jBK09aModzB/OsQ/diAfu8B5yAedDCuQohC8A6Qm0VVj+8wdXlgiE5EZBLizx36FcGsWHdCT5qMewMqy22GqHykK2C+7jD24s1Fi8k9icZwspD3RjU3x7I+kWgexQhWwYB/cmzN/jiH34Hm08ZQpJ/Y4dmW8AUDuJxAG4Lfph91EH9qoRdRsBK9McBYW2Rv8pglwHhIatd+mMySVEDsQgQO3Yo2hUQZ/wgtaeAujUM1ukEuocOwgkMDxhe48sAv4jQ5zl8Aew/Dgz42RP8tI8YQBNVxOLjDbreYGgNK0cEZ2jdA8u6kbnD0EtWXzzo4SITaA1YG2Gf95CXGRCYaKt6JsaacwM3Dwxm6SW6jwaIWiG/ZI2KrjXsj/ewdwXKC43meWKbT9g72T1i9+KwjsDKok/Ms95SvuQXHnqjDj2GTkHNLOxCTaEnMZG9vozQb3K4JU1tzeNUK5Bj6vNTtcJw6qHvFLoHgSmvrZwSaduHAUElRlLRQzv2QprUYTnG/7dnAW7GpFV/naM9ZZ9id8qJkqgjuhPKll1FaS4EQZ7qmZraPCZg8GWgbMsACPTy7Z8zAEanrk8Ak6SxOz0E3ogkuw15ZMjRmZjqMJiiGjB/oRK7wMGsm3FQalceZkc2tn4KyEGgfeZRvFcQDujXPK6zVwL9MRlTu4qIIPuW30g0jwLUQHld1ED1LuLu+0zf7dfcxmEhpoRbV5F164/BJNiUaukLTlbpFqkfkRJKETFNHBXXAuVVRHci+HpB9ilKHg9IoHnICQxIoDtl0q1qJdw8wjZJ9poSQIdlko72wO5jAsn+hJ7ioLmNPo/IdmkCI4X1CM9tDDmwfyqn2gtfCHTHArYigyn7Q3ei2fPcDcsUmJJSZl3JRNdhdfCWDsuIbk35YHdEVmusF+Hrktx24La3ZwROo1eVHZoEWrYS2HyHTGgwQHZHEMvKitRHWRIY6UZMybRMFpVT5cnYIdmvU0qqo/9vWALSslKkPlPoT8iaCy9Zc7IFK0A0UF4GtA8I0ss7grtRWr1/KpHfxWldUQrYSk6hQGPCa3ciqUizZMzyO8pq908Jun0GJnyGNMGQwLKdCfhMQXqgT8tsjxV0F9GcsXe0W8mURpsCk1K3YVQEZe0JJx2CFkmSyuPUnXASyeepg3If0R2pBOIlfM7Jlf0TieqCcnDTBNiKLLI3iY1dSaheol8JrL+waB4k//xwYJFtxq5GgODbzgVqowlaK1ZXBJVAe03WMN9Qajl6H/s12a18E9CvNatNCgGIlJKqyFiKpFqEJugdwevo3XeFZHrwnUN/rNnhaNnfGJOU2WcSw0xC9WqqMAlGwC6zCXDauYI3gO45oVGfqWkiAAD6owwiRpiW4TwMaErhN4UiKB0iXKn43pbqDeQS7ZFElBrzL/dons0QMgllA/qTgoA/AtlmQH+SIwpu17BUtBnsPJoTsprZxsGXEq5U9CoGVp7EHe0icSdS4qtOUugIX2h0p4ZJs7lG1AKuYthOd2JQngf0a4PisocrFbKOXsGQ0cepeg9hPXyVpZ7KiFBl/L6bmcmPxioVyr2FlwiVgXABvjQEowCkUfC5ggKA3iIUadgsBJepKL0NhYZwgb7LVGcCJKCYG0QtIduUqpUescopr805KTyuE5lBTGmpyAwwWKbFtj0ZQqMJFq0DjGbiq/NMfHV+CtaBVgR4ziNWBYRLgFVJ/m2wgNYpwC75ORPAi85Pyf8QgkwlQC9ljICQDPq5z3YmMCtnFWLTEggKwSCge3/nCj6UzAqlfrt/8m8ol/19fwjg98oT+bt+fK2lsPk3n8Y//i//E1zdzZncKoDTxxtcvVpTFplS8IQTBCE9A0hUJ+AWgeAHlD1OwSqOnX8QEfnjBv07MnlTjH7ymAkPRh8FMjT9EwvRKOiaDJqwh5l33Qj0p+nmSb/7MiK/YmLk+GUTMrJLUQGqZYqjCOlvqSZCxDRg20iWqzecvR/W7JKLgvIz1fCLN2qG+ExdUI5fmsOaVQtjtLrqMXnz5DCmBCYvnUXymgF2wQ+dUAYyqYntkZYesZF1dHMOMocVE2OzxGaYmpIuu4wwmySLWwWU7yXaxwHFpYRNlRIiYpLiAkjLoYyN55ED1KDI6kWBKTY+2xA0RJ1kXqlEfBx0mzolUm7JvriSQFA3AmZPYCAdl9OdJN/Xva680eM4+tRYEg4EzTTPYCLlmnP6AykZ4oB+7NyTFhjLtaPg8c82HAAHQ29af0Sf5FjDMPa72TnIQjeURJo9rxP6V/k6Wx18Z8MqsVepvy8opGOTvJDHXJZueK7tjAPbsSS8ORPT76o/9An6nKBLNzwedi6m64nXCyYWy9QpdKbG1Nc3DtjHrryouN1qYJl8f5TO8z2mBjhUKUw9gv6e97BPXW754Zof3z/WQoxpmtkuTr18Y4H6ONs/xeunFNWxi26cQBmPtdnTt2VqMl0yefVGaSI9sXHq/qN3le9jP19Eto/YfCJRXsRpWwEmkw4LMkDcmcOkwJiSGSiYYGfgHQe6uo3Jn8hz6TPWN0hLwGTqlMJoBEwb0TwgEEDk59p4HOyc6wOQ6ji4vb4kc0c2h+cs23Hdyo73whhgcjhuY48jB3RI1QxklRAJYsbSczKWArqP6JfJ4+lZ2TAlpbpDbYMaUvVGStnUXZwGwOO5VH2cugPHcJ+xE3GswlBDTOeaaZ5jCucIckzD8ybtYXljJUW/OPgPxzTOyScYI1zO42PqgH5JoMMaBgKmYSGnz5eQQJnPkrdWk4GXPk7VF7w243Q9jp8lY2pr0GI6NjqBBlZkiEkaampKJEcW0FaUctqK4Acg2yQCgRzPH9clPJcZNIGNzyWvuzpMIHN8z9h/yGv2nnQ4AXXgsBwAk8TVZ5I+zFTNwfuYfxvPpfRxSs21cwVTc8PHKpYxRXq8r4IRMDsyf77gJOjYvShtmJ7j9yW7FfsjDbMnQ2MXCtkdpZ1q4HeiXSjoJg3KBT74WzDcL35WEUDq2sMXCrr1077Tk5rqPBy9mJCAK/UktYyC+xtM8jKGdL0qAV3b1Ok4VoscEmHphySjnF3UcOuCQC9Gfnf4gzyUy+R58AWBhxwCfMG6D3YtSrKDvZ8koyHXqSPSE3Cl+g43M/SQDm56DUJENGraJ9XRRwkByNYBYypwes1YASJ8mMAcr6EAP8/ZF5n+JjuLmBvAjeDOIxqFaOTEbI6dkWJgr+SY2BqVINjzMd1bESE3XH4K3BEjU2dTVHeShE7y0uRpnJjCsSokpboK5xmkEyOQGaa3qsTmAUx71ZTditEjGSOlpVJM6a88QIkxHKWx43piPPwNIIiUTLCdklp/jTX8jX5KpeiDvM9YyjESPK3rfqekkIijB9P7yUd6v6vy1x9TquyvS3I/eNGHbObXvcdyfvI8/vDf+c9+58v9J//o7/+/vm/A1xxYLr7zKP7ov/hPkWuHVdaitjku6xmaLkOZW0gZcFo1eL9bHBjK3MIOGkJGGOMxDApaB9Z07HNkpUWZWxjtUXcZhp4j4Lyw8F7COwmpApzVCF7A5I6fL62BKRxsa6YaE2kCwsBRn87SF10UcL3iTNA4VpQRwSrIzPP1TlCyu3BQhYPvFWuKMg+3MxB5wMOHG5y/ZYclrIRcsHtS6gDfaMBSGooA+g6thK4cQhCIQSCmHkkkFk4U4wgCwNYQkFYO4v9k7016ZNvSLKG1m9NZ6+bN7e9rIjJeZERkZGYVKokpFAgxYsKgJAQSkxqVYMSUCXNGSIgBA0aF6H4AI0CqopCKQQKVWRmREfG6e69fv95Ye7rdMVh77+MviSATiBLxnsok1/XrZnZ6O/atb61vLRkQrETw/FKHAESrEBoHcYqWfDIAS4vQKkAHiFEyviQQSIeYgYmKJkhCe/h9wagWG51bVQCcgFwY+EEBVgIyMKqlV4xU8YLZkEcJfzVCPJTwc0aApMzBUHmUm56xKIMEUgTHyOYCXDTMSZEYTgCbEeKuJMhuXC6uRcsbaHFg/mIQZOncnE0JX3nIXjJKpaPbZhCTwZJZRDfZuG4xsrEhe867QQC+DtA7Gdm3mGfXCdgLS4nXVjNLdEe5c2o8MFogIFQBxQNnCVMQPEBA7hqPYidzFEzKgkS02PczDzFEsOt5rnwZAZCfGgoIkcUrWewyozEgFGw8qI6NElcGVA8Sw4WHPooov4xFuxMYLxxkP2VUJqDrmpCLvuIgIQwwnnvIYSp2M5gLyMwU2QiBceWhRsFmShUyC6sGMjHCicxopTzIZCw1rjk/6Ev+XRoR5zID5m9otPT4PXYeGyKxgZEAcjKkUpFddVWg7PwYAVQbXxulwSzG2cxobsjUAbFYt4BdgMVeZB1lBMf5nhHBRxDT33OzCwnAReZVT6A6rVf1bEZJS0m36qYojAQEqy1lkTSlIshl1t/UhJEp3P4RYwpEsB9iwyk1GWLDIBnl+HJ63taTVJNsWmxKJGOf2IAwKwL3oCkBNguRozzsjPsxrpGbMSk3M2f0pWu5ICvqi9jQ2U/FOaMc+L7E7LmabLbuQ2xgTY2QlC2ZJb8mNjI8otSZq7ZzEWNRuN3lnoBYuAi0o2uoq2LwvJyus2TWQllsvIaAHGuiBh4PgMd92AgU+5DnJHMjS8XmQE/zHFciOq8SwDILMjBqJTYYbMNmSHEMNDjrpkaNGtlUSY0Y3XFbXcmGQ9r+YZ3ALeAKoN56mDlPStF6jPF33ZPdLNopNzOtA5jAobQBygSMc5lBa3pO9zyGlLemvMtkoiRga4JpEcgusiGBaErE68A2zKRMICuI1HwIGJZk5dLyXTllNuph+nvO4BTMwEzGUOMijhgc6JSajKyKo4eJuZn58xxBezL+cTlL08ft5HyjnUnIIeQYoXSvNHMZZaYedq4omZUiMnQhN8cp4WbxzmtQxs/PBGZdreALrr/Y0+THlQTP6fMgB5+bcOm7yJUybxfjS+jM6op47iLDGGQ81jLKWWNUSPoc6M7F9QjGf5SKADBmWorEEibwEhsujAMB5yoj0KNc99H/jYMcHeyyghxsbsR7LSGjYQ8ErylhCPYTaBLGxUiRKGXNgI/s6+OcSl/r6Cr7KE4m7kMGplFSGgoaOQljo8R0YvOE8wSmiY3UamoG5PgRmV+bgW46LolpTBLW9LcEOh8/UkRIYjKTNPdx1Ih/BFLNN0FfSO99tIz8d0xgMyQp7V/1+A7kWH7XgaX8q1/yu/sIADqjsSwG/Nn7Z1iWPayXKAqHU1diu5vjqjnih5c3uLlbEUeNGqYrMO4r9F0JpQK62xn6tkTwAs4qbO8WuJydYK3CxdkRAcA4Kvh/uoB732A17+GNhJAB475CXRvAC5iHCjACflC4vDygqgx0bSBUgB00/NuGdWGvsFx1+MNP3iC0GvNlzwgRGbA8P6FYjgRd2jPTUAWEGKchRolyNkKIgM2TA/MXVUBZWQgRoLUDRgm1HlFcdsDKQDyUlLPexPiKXYHmi2ker1iNCIYzIcWXFeAEls8ONBkpLfS7EtViILAbJMSaRjih8dBPW8zeKIh7MsaiI+isr3VmNH/0+1+jvFXc1nji9F5Bzi0++sF7qFZi+eQIqAB/LFAsRn4x9hJhlIxUOWgayJQebuUQRgVfevyb/8I/RvHyhPCyJ8AFMD7U+fcgAkRjgRUNjhBAZrqT0Ed+4Yn7En5tERaWIDU67cpRQFwMZE3nFtWtykx0KCg79UtKc/3aYvaOz5W3Cu7TDmoQ0FsFKKC418DKwDcObumjfMsiyAD7YozZegLQNA/RD5pgUgaIIYLYUWD1x3cwTw1Z9pKAWUZGWhqCJXhmWsqLIXbduV06RmrAk3EW6xGhIADTr09wC49wOZJlPxIIujpAgHNu1b2A2xi4MsAt+aVfRBfSACDogPGMgNCsPcYLh/ouMlCS8mg391D9FBJO11M2QIIAXBnQfWQweythzhzB1xOTmXE7Jwj1JQu4ce3hZx52SSbErD2Ko0D5IHksgFiUCAxXDsUBGSAiPJJp1mSvZXIcnXlmA8boDH3ibG9iel0dMJ6FHH1jVhH0F3T4lUYgAOifOqgeGDYsNIdLj+GcYKP7bCDLv+L7XRMZDU8gmhoIrgnon3ioDixS5yz8zXxiN4MOsMsks4wOuQJoXzoefw2cPrEYVwHjxsM1lKYjAMfvWc4kx2ZQ+8pBt0D7nMtRMc8xFe7dU0+muo4NgajkOHzqM5BIMl3bANXWE2gM/OwXR4JGFZctbED7yud8SWZ70k0aALondD7trwhk7QxxZpAMrY9FvTQEXc0Nz01iWoUlsCDAD1BdQPuMMuu0Pl8IuIYS3sS083qbmit2Fp10Bf+emwNzRNdjsoJFG1AcaGwybASqA+dlXbzl9udRxhrZ9f6CQFL3AcWR23h6gZz7p4aAw/ci05eyD1Vy7Q2Yv/MxEJ6AaFhH1jauT1pKgIcN7wNqIEDpzymLDkpgXAqMa4Fq61HtA4Y1We/uiq/Rp8Suc78Jiqlm6C+i+cwrsuv8XFP6K22IDYWQ42OkBboLMps+XlNcRsDpOb8jeA3zeFJazPUGQTdbX4gMZkRgfEhi6VPEhoqArTsna2xmlOqPS843moYNPa9EdB7mPCQEXYR1x2uLMt/I/PZk+rsLfnekdbhHoFQZynltLWHmAsMy5UMGDGsVQSvnJ3ldUYqZnGLNTGYjme6CLJorBEFi5yPzOZlmCUfZLCQwruhU60uB4SzmQw4e/YWGmUnYRmawyAPN9wgX0F3SmdcsyYrZmUR/UaC7LOBLGR3YI0hdKAxrlZUUh1caciAw8IWEayS6ywKqsyiONvvr+Rg3kvIgh00BOXqYOVlMs9CcyxTgPloP6TzK7cBlREZRGn4eXK0wrrmM8KgJYBZkbQFQRlsTeAnrM3iVx5HX40imFSFw5jI2mIRx0NsW8jRAtpxVhRR0nbUeXkuIweQ8T+E9fENZas62bDlr6UudgWIoNVnbIc5kSsllJGCY2McEKhXZVEg5zV0CEbgyliSD5AhQg4rrjw6zCYQCmHItlZycXBPgSwAwsqOQEnAO7tkGwXsE76c4kqKILKOb3Gd9ep+YjHsSO+o9wWQC5EJEV9jwTaY0stm/8ec78vgux418qxnLs99/Ev7dv/8v4U1/hu3Q4KuHM7T7GtV8xMvzHT5/d4FnVzs4L2GcxGg1nJMotIPzEn1foKoMxqHAbDbAeYnTtoH+UEB8fMLZssPtX1wAAELt8Mn3bnAaS2wPDeyoaV6jPUIQ8E4QADqB9brFw/WKLqNbjfBkgB8VNlcHPLxdY/7khHZfQyjeHJV20/IKB9sXbGZZGSuLAHQK9VWHsddQ2sM8VBBOIJSez1uJ+qJDf9ewyq8dqvmIYV+RvWwcghUQJ00WrXYIg4QYJB1QGwecCGSWzw84bmd8vlfA2pCNLAIB19wi3JeoX5zQv5tj/uqA4/tFlB8T/IaFhYzHBocCWBpgWyDUPjrYdrD3NULlyBoGgj0EQDwdgLc13NJRvhzZGTzvEa5rhHOD6lcV+o9H1F+W6F8wR9SvLNSW8w/CiQgOCDCCYOEsnIBfW7q8bkaI+5Js59wjaA9hJcQgIpsngTNWp+K+JENYe1TXGsMTh/ID5w7VUcFXHqHxkEd2Lf3SonpbZLmtWZM9BADz8YD6ZzX6J47rjtsjArMau+8PEK0GHBBmDmqr4VYOxa2GmwXgYoB8WyMxjWbtIAcaPBVHSrnNxqHYqVj8B6hWwl4YiBONcPSJrxNABnrjiixk9UHCxqKewMfDL3guZB/lcYFgs7/0cEsHeaJJSZI4d58YiE4CCqg+KNiawfVyBMw6oP5A99Xx3KF5pzGce+Zqzj3cwmP2hUb3ko67QQMiMq36OLlsBgH4ii6fqudy9WmS4vL5CBpPAsMFJeJq5D7pLrKnJTv9iW1MDFT72kHvZYweAdrnHqtfSJxeEnDSfIcA7ow3kQAAIABJREFUYDz3KO9lZtyKE8FkuaXk2px7FA+8vl3s7+iWhiztC89syVsBsyJYrG9ELqR9jBQZznm/qO7kxFxGEOrLCXABPBaqFXCzgOZaZCm7L4D5u4DuMs6oRQOo+pZGOMePGHPhNbd/9Qvg8ClQbgkqhk1AfS+gOhrlBEVwAEEGtLkWWXbIsYHIrmue88QcmgUB4HAuMhAuIgBTI6Xo9S0ZSh+ZsHHF95DRAMYzSsfNnPsxf8OZxOLA45EiT+yM14edc1uLI58vjgRFyy85v5jYueLIdZR7mhJBJMY3MoYRsPmS225WQHU/McN2RtOgIAlY2xcB5Y6xMwjAcC5yXqXqA3wpsoycLr88Lo/jbmSUxCKyUa7iMZ+/IcAjQBFwDXKeZlrPuOYc4/Elr7fZB4KafsN97J6K2HCJTF88n2k9s/eUW9qZyA6z83ee18iKM8JJmj4uY9brnYdtCFjLfcgmP7pl9Ex3KVEeKLGXFlh+6TCsOG9abUNmu9iciNFPgecUoHurLwlwpUOOpbH11LRK11piFQHk13rNc1dvPfq1zMA3gfPi5NE+VVDdVB+VJ0qQq72P7KxHd67JCJoQz5HMQLOI5ktAkn9zvdWeMuNhLbF4Y2HnErr1OD3TWH0xwjYKw1pSFmsCyn0EoY+YSldRxql6Os9WO7J540Ki2rvcfEBsTJyeaszfW5i5RHHyGFcK5c5G0CVRbS3GFSWvKYPTNhLVlut2FRnVcmfgS0aOAJRbJ8a9OFqM6wK+ENCti3Jukc18EhBWvYNZF9AnBztTKA58X7kzGM8KZn+epr/JyPYN5xXKhxHjeYnyYYSd6ezES0MjzlgGSTaWjOeUXyoGB99oxocAkZ108LXKLG5111MWKwRUZBaDACDFZM6TgGWtGTUCEGx2BtAyP48Q4GYl9P0JfllTWusoyZXtSOmtsXkOMpQaoo0fpMcGNyDA9PNmcnONs5fi1NEldjAIdUlTHx8oAwY4e1lMVipBPsrLBDiXaRldIpSM7GI8XnpycQ3eE0w+ks4GOxkOZTmsENPvcTkhZVAWxQRgf4Npz18Lj3xHGMuf/mu/fcbyH/393w3G8lsNLOc/eB7+9f/i38Db4xpvb84QRgnVOLhRQpUeflsSeMkA1Vi4bQk5ynijCHzOxS/rKMXUMQZADQLmjAV7kKmKI1MF7ckwjjIXchA0Eim2CmZDlqD8oMhuVCG/V3Y0JYEKUCd2Ml3D+U4AcAvGeviSToXu0b8ismh25cmeRfv7VMh5RQbALunkOFw6yiTTazSLZ2H5u0hzSnEbfB1QbCmrlIOAwDRflSSHqeDwM0ag1O8Vuu8NqL+o4OoAs3aobjRcjDqwS4di00P+bB7BHcGKWRFIuCpEmQpy95nuj2TffHy9LwmWmq+47PzFmUYKoqTTNizizDLkeUAEvl8NAramhBKIzq8PivO1hkYmdhY455mAVcfrIxUrrua6Vcf50CRtNHPuR2KcVMcCK82s+mLK5fNliF+wgseyooQyMUJmRSao3Ip8zORIQJJmIKWjmU31IKIsFnmGL3X3haNkURqCAjPnNqQZPduwMCdDEzKzWRzpvKpPlEm6Bugv6ZIbRMyFFPF4VKlIj9dgEWWW67TflJCm+S8z5zoBvm9cMb7BzmPx7qb9cE28NmPhPM108j2umuSTwnJOtNxNwBBpG+uJzSr3yOwTBOWVdh6/vN0EDNKMYfeMUlXVR9ml5ecssUnSUII4bESWeQqHDL7zXFfAJEWN8lk5kp0aLlIHGnneV7fxHFoW4uOK+wtwH0VIMsok8WNBnOZB03xdklC6SuSZwsxAyni+RsrsOL8dQ+V3EeQNERB001wq5cVcri/F5NQaUuHIv8Mjz70mthCI56KeZkzTPYWfIzqm9ueSIMRx9tU2EUQYZNfSLO8NnGUtd5Ok2sxFduRM+8nQ+PQZRJ6lTTLlPFMb5bdqJFOU5gnTMtK8Y3JVTrOZ6ZpLs4zCEUjYaPyUmhBBAEVHkFK0nBnVfYjB91zvGCW+6d6eZOW6Y2ZkiLOIxYnMqK1lBgXpoUy8duYiSzTTDKYIyLOqQDz+jq+3VZyxE/Fz4HkeXATSrhSot4zOEH6aMQ1yYmXVEGDmZN5EiMY3K5rQSBdNmEYCPjKGPs+SPnaDBXgMdesniXC87wYZcykTaBx5/s1coto5uGoSZBHcTJ9JWxNMqjjzmYBakCLOgxN8kWGdzqcIATJGbFQ7h/ZKo76PYy6RdcxOqBFQ5TzjVLB7NguAKL/tPKShVDWb16RtF3SMtbMoi4xsrPABw4bgLP3fq0csZgJxMVbDNiozompwsI2GPvHkm5WGjjOp6XX5Mzk62LmO5zHkv7loYJPAuxo8wValJkY0Hs8kVZV9nLMLAXZGNtPXzMRMs5qhjKCunUCdHF2cqY3zmFEKm2fypIjXgge8h5tFt1cXOGMZZatpzjLlVub5Tp0ko49e78HX1xqij/OeaRY1SjpDMUlxE8sXSs3lJ0bwcfxGYiKB6e/J5TXNXKZHkon6MElU/zIYy7OSUQ5cFQSSAMFkdmyNTGbX83et+J4IDBOw/MszjiJKaTNGSIBRR6DqHHLuZXpOCuZiJrAYtzFY+2vnKx8/QgiTLPb/Dpd8F4Dl+T8jYPlf/m4Ay2+1FFaIgFI6jE5BiABReLhRQqiA5aID5habp3tsrg7wtxWefXqHFEQOL1A8aKDiB+CTT27I3r3u+KW7cUDlEWRAda8YITBzkAuD2aYj4CxCNpfxlyNNghQgGofiXsEuWAhJK1DsJTYfP8Cd8QNYPDB+w1UBfhblF5osCEBZIz5uoTtB0BXXFRQoYZSUzuljssEH3NzRsEdGm/rzAWbjM7uheoHmRmRwp0aRi37VMe8xSCCUXHay0vcli63qTkI966Ced6ivNbA0NBg6aBZjATh/tUUKnFcdsxhNV0AaQaZjoKGNfNnmQkv1IoIfwSy7MwuvCPJ0R9MO4QFRsxM7vhy5XZrzfnbOgshVAXbBTnrzXtBNNPD9+iS4zDOH4dLxOJ6PqG/5nK0DZXt3kXWquF1uFtA/cxk4jZcOiy/xDYOaYh9B0hMLaYHix3t0r/m7+sk+B76nWadx47PbaohsF2e9KIWzz8csyQyaMRiuBsZzh3ETYBeUaI1PLYIE2h/32cBmdh1ioYTsWAnwueaP71nkes6XATyvxYH7niSmCZCWO8TGCMjoCuTron3poQbui//sBNswf9AsQwaDbhZgViws+ysPVxDYueqRWdRHfbS75/b0TwKGixDnpKJUMhluJGnfIHLxbheBDI2NplqxyBdhAroJtPRPHGfcbMDpE8tzEIEeQXfIjIhwwP6n4yPGgdtdHLldKR+z3HEZ/VMfAU6AXdCd1sf5tXFFgOoLglZbE3gHjalIjqCku0pAmEWM7ujQGiTQvXLon1DKpTsyW2Qsuf/DRYBuuV3tU0ps7XwyC5pdc99mtx5qiMcvusgOG8Z7CAv0VyHmM1ISmLMTQ5SIav7bX6Q8R96X+nOyeeUhTOuuIvt5FtnVdHw90Nw5DOciGz7pLmS56XgGzN+77LTZX4XskJtmJ4cN710AI0HUyJnQovWRXWR8SQJ4PjqIApHdqwXNlQxZPQTKOc2Cc3g6NhOU4TaYhUB/STBmG4HhnNLy0ws6iPoS6K4EukuJautRHjyGjUD7QqC7EjBzOvGaFbexfZZmyoBq69g8qHntdk8EkllUYifHtcDxFTP2hjVfo0bkWUXdE6iz8cTfXUHQ3Z9J2FpkUBniPUKakLeLjq28JoLiMeguyVZJE+LxlRg2IkZ/eHSXMt4LeV7NXKC7kJhdj3QpfSmzwY4rgOLIc2OaJE8VOL0kYBzOBPqNyE2RFKFhK4H+XGWDL2kIrton0bzGESCq0UezqAB9ctAtQZqteSzJZvK9BJeUeyajHltJ2EpgWEnG8FRkXIMSMA2loO2FQtEyLgSRxU2A0tYCciQgNXOyer7gsn0psrGQ6h36M4VxSWdXX/E6HqIk1VUS3YXGuKLcVJ0MzFzxdS6g2A1Z5ukaSldtTcfVYaNhFyo2fSQVRqOHbWi0Y2cSrpDxODpI42DmKoJFRSnsiu8fznVk/mg2lMCfag1cFecilaATayWhdx3GM432eYUgBU4va5hlAdcoeCWg2hGqHeG1xLjWkMahvyigtx0dXx3lpS7KVsezIn5HUarqZhrSes5WBmA8q7iflQKEgOgMfKVh51G1ZBybvRFMyu2RRkQRDJp1BTgydHZeYDivckXsk2HRoYeIxjNuUbF5U0ZgJSUZPyEQSk3w5gKCUvDLGkFK+FkFOA8/q+DnVX6dGA1dX0NAmNcIhWa+5COgKQYDGEvpqqOrK6K7K6T8pqQVIHsYwWTQKoPYoBVdZKUk4FTxuaqc5i6BXw/8EiOZjH6EgNCa0SRKQShJpvORmY7QGiKypEIIgnohJmmt/KthR5LJ/trHX2cO81vwSAqJ3+bP78rj281YfvY8/OF/8u/g6ewAGxR+sLjBr04XKJXDh26Bq+aI69MKtTY4jBXWVQ8fBErlMFgNG9ttzktcb5f4g+fv8Oe3T1Bqi/NZh0YbdLZAow1OpsQvf/YMi+dHOCcxr9kxqbRFOxbYHxs0zYhV0+PmfoUfvbzGfTdDoRyMUxisxv12jsWih/MSSnpUhYWxClJ6eM9tqUsDJQK2bYNxVKhrg2U94NBXcX0O3VhgPeswKwxuj3No5bE71lCKM5Y2RqIMRqMqLE5tBYgAKQMuVicYp3BoayxnDJkdjIaxCj7OmIYgoAsLrT2qwuD+donzywPavsLY6/i8gw8C5+sTPrw5Q72Jy3o7R/XihH5XQRSeBkZWQhcOZWVhjIKzCu6k8ez1Pe73c86Wznrc3S+QJFC6cBi3FUTjoAvHedZdBb0wsK1GtRpgRo31qsX2foFm2WMYCpofyQBdWti+gFAeQgJSelijgIeSDYLaIuxKYGUo1Z1bhFFCVLH77PilnJjsYm5gRwVxV0K/bDG2BXTlYAcFVTl4KxFaDRQexYcC5omBqi38bYXqeYv+UGF+1qE7lfCdhig9TYxaDXiRWXB9NkL+smEUx4UBBsWGQk2zpFAm9jxAP2jGnrQKQQWgpjlS6OOXgfaQRw3fOM7stnTcw9JCaM/9X9CyNc3wAgBKzyiVMkmIJA2MVsx583XqRgaog0KxlxieOITGQd1rRp1sNdzMZ/MmObCh4ev4t5JmRsVOYryM29fHDmkRAMHZUrLZIro2R7Y/VcaKJjsicHnFrc7S31ASAAsryMTGhpI5cxBWoLpXsE3gzGcbVQmBEmjZCbgzi/qrMs89Zhl1SXZZJuOTOjZgTjQwkgMdpxFjTthQEJkpSYyXGgSGCwcV429SQwkCEGaSy/pyMh0q9gQNw4XPRizSCLjaQ7eSnlMGk2FLyZlVCKDcMd5FWM5WqpaNraDYVJCOjQ194syrWUb2akZ3Y19ShpzmCn1BJQVZSb7PF4hxHWwIZeMZwQaG15P0VjqBYeMxfyPhFRsE3GE+B895WTkKlDuRAb5dTNmISU1hlgHVlsDtsXmOLziv7DUy45SAZWIbVQcMF4w4oTMocryMKye2HSDbOa65jckcyFXRtKiJf4ssdnc1NZPqe84spjxJKiuQ3ZVVNB4qt7w+7DzKdaPxUpJXqwFZNkw1xuQ0HeS07xB8fTJvUt00V5kMk9JyXB2ZVJ2upwmgqiFEdlbkBoTqydj4gkxsfcfXBs1tSIZEdkbHad3G+dI4j5kY6uIQJcBHApf+QqI4sIHGWb7JxIgz0CIzfomtlSMNkaTh9sADkNO+ypF/V32YDJwE6KxrwzeuTbJ7kT2OLs4+RnGYKM/+xjmLLHwVTYiS0ZAraYSUzHHMYnL1Tg1er4HmwcFWMrK0ZG7rHZ2CpQkouhDBKiWzyUjIxUgXGgEhG0ol8A9wX2wts6NxkEDRMdNTR0ZVOpoICUc22cwpr1dxGUkO6wvuR3kgY2wb3qeKIyNaihPnXV1B0FEcHEJs4ujW51gUV0dWMEQn6YHvT6+RIyNI1OAZo7JUPG8Cmf1NzKYap1zStC+IQFqOdNL1hZwMuwDOfmpKdF0dTfn2I+yigGoJilRnYJdVBp6uorlQMuN5bAyUQHYGuiaaCblAs5+UV2kn9l24kOcxQyEhB0tnWueiLNZRSquisVKqzV36Hh4nUBZZ0NDEbmsIEL3h/0OA6KJk9rE5T6HJkIbwDafZUBZ5GY8fmf0MgSxnZi7dxIYCBJVCAiH+LbGewU/mPgBy1MhjcyXgG46xfyUeSfeA7wBj+Yf/6m+fsfyf/6vfDcbyWw0sq09fhT/6T/9t7Nsa3UNDUOAFZqsep12Np093eP/5OTavdjh1FUHTTYXq9RHdtoasHfxJQx0V3MZCtArVjcL4WQf5toYvA/zSQtUOblAorgvOtK04Tzf7VYHupQMcUN8odK8sZl9ojOsA/6pHuKt485s5zjQeNYv/g0aoHYp7zS+BDV0/1QiMVxZqr1A+SPRPPLA2wK5AqDwZjKOCXTgIJ8iWxtOXpJy+DtB7+WiwH1M8xwiMGwe5MpBvatgLAxgJfVBwNQ1HUvFc7BkdIhxdTN3CI5Qe1bsCw3MD2SoWMgNZz5RnSPfIKTuyfFBZKpqKuqBYlIYktXIiF5wAYC4tijuN+oPA8VMHdZKw57z5l+81dCvQPXcot3Q8lQOLz8QkFScywXJkzIscRZYBV/csmlNB5Wowe68E+it2OFUs8tXAG2B1D7QvyIbNvxLY/YgSY1cDs2uB4TzAnHlU71XueLo6fRmxyE3nmKyNwPh7HcS7Orq8ErQUJ+D0MZedTDqa98zpkwPn5qo7gf6KsStqnExQ0hyeKwOkowlN99xh/pXKMtNiD0CSMTPrKL+VyCY3uhUYzjm/6GquQ3gW3d1TRJlyBBEamVGW41T8pogPGV0/U0HV3ATsv8dit7oX6C8jMAEmSXcERfM3Au0zSpd9lJKrQeSolSStdHWUdAqgvsfEuhZ8T3Gk7BuS0t7ZGwGzmKRids7jXt0jO2u6mtdwf+mx/rnIWYXpWkkskp1P8T46OpEycoczd8IAVZz/Uz3ybFwqZAHOGQbF42vnyOYmakA2ywEiKwqaodR3jyJYYm5hknwnsGAWQP2BxSYjhCL4qSe2z1UEk1VcnvA89j5G0KTCOy0jyQh1y6iRcTkZDCUpcrWLM3Mji107E1mqzvUSTKgYct9fCDQfyIQdPpL5OlJDjJJQEzBNTKidcb7TFyLPUI5rgeqejLCPcSi25r/Fiftq5nx9eWTOpQgB1ZbOooeXsdBsKS21NY1sdBugW6A6OOxf68xWS0t2lXEX3Fc1BBxfKKghYHbr0W9klsVPc3zTOU33Zt4PkQ1vvEKWICf5LARifmNAc+vQnycHSL42GyaN0/Ey8wn8JgOcovMwTVSlxM9NmktM7rZFGzAsOR/Ie2AEkXF2MW27MpTrNnd+et4D1Y7zg0k2m+YSlZncdH3B9VCa7KFbh+PLEkl+yflFArryxBlDMyfzmWfq+sQ6yhzt4irJTMc+5KiTJIF1pUD9YDGuVI40kW6SvgKIkTwe/UbRzGdrMZzpHEETBFDuHYYzneWxuvM0BYpglZ/fANU7+ELCLBjjw+uejKqJ7qzSBvTnGvW9hZ1JqM5nZ1RpuQyzLGDmcjL7QbyXH/l9OGwKNDcDxlWB4mg5C9vQPCXtF4SAPhqCqIEMG5sblK0mQ51yO2LclNllV46e2YvGcxaxUuiuCpQ7h3JvmPsZgafuHJfnQn6tsDESJYEBJSAHylrlYGFXFfR+4KyjYZSJtB5i9HAznYGf7Lk8fRzhSwXVMkvSF/y+5dygj8cmNV6RjXp8qeBqjeIwkmEtyI7KziJUKs9TCuPgZ2UGXGQkPSNSSv0Nt1d4IDQF5GlAii3xDSNJgpSQ/TjJdAtFo54Y3wElp/gS5yYZanJ9LSL7mdxXB8M5ytFM2+UcWUjBmckso81ZlHEfHjnEisEQkApBgGntJGv9NTLbMBoIrThfqTUlrsA0i2ktIMlahmGcJL/O8XnnIMoCIbKwv1EO+yiSRCTW9Tc8El4Jw/AbX/NXPX5ngOW/8s8AWP7XvxvA8lsthS0Ki90/eoJuX0M28eL1Au3XC2BQuNsuoDqJ0/9+DtNr+DsasHT7GrASr588QPQMlBdHBTiB/jljHuzaotxKiFahbsb8hTeec34STqB75iL7QjdMiID+KQf7/agAFeBXlknJPjInIkVQSJgrQ2DVS0AGjBcOsLzpd68typ2goU7hcfZ8T7ZIBwgjGYvhye6EgiyNj7OcbhYYfdALVA/cvqACxisLNA64rWjk0kY2TDHH061tBpVyFAiNQzgfYc8cGZvo6lq/LeBrT+bGxk7+hSOwu7AY1x7qFIu1EwGbW3oEHQgMnvXZHdCsPR0sVUB1L+A/7iEGznkev++grzqyVAGQJ0UWwyEyUoKMEaLrpg5wz8Y46+kfAVkAHrBzz/m5keY1zQ1lt+1Pes40PigUWwm39NC9iFLJaA4RJaLDBggyzr2uLNoXdLyUrcyMhCs5AwiwWNedQHGvowssi0X1VZ3dPJsbEcPQJ/YrqID5VwLdVcC45o3W6ygTPQr0TzzaZ5RLpkJxXHuMTyyGKxdzDkV2PDXLgOaWskZfcVmUIgdAgteJBMF6w2tgOA/oLwPMEqjvCGDho5w1AWc75V22ry0lkyDjMn8TMLtmAXj43iQFtg2PJ0AQk0Ds+MIwuqSMklvP15GFC5Q6z6d5N18SlAUdYBZkS8wyZLBlFtHYxPMnzXvZBT8nq19ym8ySYKy/DDF/kZLo4gian5zxuCcGSHc8XmU0GUnxGQlUpmOQoiYIpsMjEOyjjJuf0+bWo9zymBFocT39lY+uowKnV2S+GN0yxXrYOh7Tevp7AmhJ8ufqEGNiIkCOoJI5idy+oIFxyetv9xOL4Sya9ZzHY6ymedbkwFqcQp5nTY6YjuKI7A5aHGncUj942DmZrPFMZHku2RWayqTcQFdGF9LFxDLaxQSeWcwSNA3nEZwaguDFW4fhTOTIjfZZdDWNQKR9yntYc8fZ0dNTxXPWc57Sa7qn6hPlsa4Guo2KEQxky2wjsqxUGrImtqGple4BVwiMKwEbXVRp2OIxnFEyKzybBPmzoAkQ072KbKvI852M5uG1ZBu+rr53lCsvJ0Y1zYUm0Lr6YszmN+NS5JnIIUbIlBFEl0cy4ADlqnrguTRxbvb0XMLWqYkQUO8cn/NAfyazMQ3vQxFExmurPHDsYFxyu808gV2fWUjXsDAvTh5FzIE0Mx57Wwm6lvLrFd1FdHNNBaaMUtkzRclrBHvCI4PdYSWzYU+QMfakp7tq2kfpKLWGAKqd59+jDLTaOeiTzwAW4GfLNARk1UN0PQ3IuaHCA0XL2AoR82KT+ysjYgSKPeXCwkZXVxGluY2EbRS6J1WWSpuFive1qPzQZMPoVkuAlZ1QZZxbPRj4IgJy66dZ3ZLsZNAgIB4px4Uk+C0fBhR7E6OdmPUZCkppyz0ZyXFVQLeGsuMuymgbRbBZqhwLkpxbi4cOtlFwM41xTQlmkAJuVnK+1ZGFlB3Xx/gYAkY309w3Hbe7UBjPKqjjCEQgq49k6IIS0Pt+YhZLgmc1OAznFeSRXT0705ADjW6yKU/OkIz/T/s9KyFPPeyy4tynUvAzAkO3qiE8WcmcfWkcJa9KwtdlBJbfZBCFc5TDZlfWQBlsWeD/EstRl3F75DSzmMBnYhujkQ8KzZ+2Q3aH7Xo+5z1C1yO0HbLra3p9oclKFprL1Iqg0hjKXr2PjKRH6HtgGCDqGjAjMy7jfoVxnMyClCKofBwrImV2gQ3Oxx+XDX5CBKXTc9/8+a45w35XH99qxvLpj8/D3/rP/i38jbOvsLMN1rrDf//29wEAf+vqS9wOCzTKwASJ/dhg9ApnZYevj2dotMFVc8Sf3z/ByyXdRA6mwmA1Xi23+MPlG3w9bPA/fvl9zCqDs6aDEh6LYsBtt8BhKLGsRvggIEXArqtRaHacdscGdWVQFRbPFge8O6zQFAaXzRE2KOyHGl/9H88Qzg1+/MlbfPGwQV1YLKoBX7y9wGLdQQDohwKLWY9SOxTSo7eUoT5dHHDbztGNBUaj8ep8i9vjHN8/v8Vtt8DXHzYoK4NuW2Nx0WLV9Dj2FX765B3+wT/5Af7GDz/H2+MaSnp82C4gJWWym0ULAeDNry7xvR9c4/Y4x6wacTU74ec3VxgHjR+9usYXDxs4J2GNgh00wihx9vSA46nGk/M93t+vMJsNOHxY4Cc/+Bq/+B8+hf2M1baQHi/O97Be4v44w/mixb6vYIxGv62xvDqiUA5tX0Frh3XT4/pujT949Ra33Ry7rsZx2+Ds/IT9vsHZ2Qnb7Ry+0yjXA4QImDcDdocZ/KggC4+r8z1u/+QJVj+5w8PDAlVjMKsH7PZz1A2jWwBgHDVMr1HUFutFh+1+BrOrgMpBVQ5NM+L4MCP4lwHPXj7gfj+HEAHWKhSFQ3+osNi0aE8VlHa4WJ9w/fU5isUIqTykDOjuGqAIULVFWVr0b+dkpo8FJa2a1NUfffYl/uQXr7m+ADAeg7/L8wFladE9RBdgTalr0AFybuCtRDUfMV7PEOYOoleon54wfr6gedDcUQ47Kqj4euwLlE9ajF0BoQLU1zXMFVlt2UuIJz234U0N/7yHP8Us0kEi1A5wAvKk4DcGxfsSdu4xf3XA6csVpAGWP9hi+2FBp+GlYSF8XZGB9wJyM8LtCxpovYzLDwCiTFW2En5lUb0pMTyjhLe4V2h+vMX+egmogObzAv1nPS4ujnjYz+girMDcVRMLk8pDdJLH8mqAuK4gLLND5UFxnvlshD8WqG407NxPJldnFnKnUe4JUGwdyOarAMgAeVKZ/RHPe+Drhmz1ViPlTArPmJac9ccIAAAgAElEQVT2IwuUHs0vo+Q2sd0NAavs6WyMQHmqrwOEERmgA5hmS11sEihAxtlizgrHL3Uv0LwnU2xnAfUtGwjJoAWIDHBk2XwVUN1SEZBMvlKWZpCAeN0ifDXLua31tSazPHKW2TU8LuUHBWnJHNvlpEoQliqHJO+FBMzS50xU1U4ZpsVJ5BlUOw/ZyReI7PTSQyfH5XMHvVO5yRMkoEaBckvQnfJThSera+cC7Qs6+ooIjKWlQdK4BEJBxcK4YhPEzgjKaVA1HS8IGlHpDtEVOLqTCppdpVlT6dh4GJdxlnaMktRogpWAdH3H16Qc2CS3LQ7x/ESZrLTA/vct5p9rynnB9+8/s2jeaqieDQBXT+qW4ZzyZjkmFULcBx9jVAIBMhBZUEeQXZwY/TJ/Q2CsRjY0imMEeDG+JWVY6naS69pooMVmikB959FfSEb6xBxW6dg8OL4UqO9DZmPLPWNPigObQ8ktlQ7Lk2Oua9gIqrZ0dGW0TYxhmSHO8TJTs77nbGlivl1NxUu5jXFGmqyxMowyGVa8vpJkOCkXqn2Kt4hg8kjZc7UL2SgpSKDfMJtTmpBnipdfO253/ElmRtIG6CGC0YZNkcRmQ7CRkVnaUqC5czg91TRAiqBWRuMm24hHYF1mUJ8erhRZSuuioVDREiidnkjMbzzKLRui45nOM7qqD0jmYq7hrGsCg+NCYH5tCYZ9iE0Ezqg2NwbDhm6uNFsSeZ9VNJgSEaAPa4nZe8NlrjXqW96oaLQE9BuF5o7GM0FLqGgOlHIxvU7O4ZIS2EpRGTB6SBdg62hUBDaMiu0Asypjo0TQXKiK7rdjzNlMhKihw6wYPSAFZGvInio5SWJHSylsoQg4o7GQakeCZA9AkxUVgTLZUEio48DnhZjMhjwQKspls2EQAAyPJKERAKYIkswgJqAa2UBhbAThjCNJLGMGm4+Nd4TgcqyL7rWPQG+KLzEG2cQneC5Pa4JOF9nOFDvyeB0pGzS50hY6s5u/9hF8ltw+nun8f/r4XWEs/+hv//YZy3/43/xuMJbfamBZ/96L8Ow//PcAGRCMBKygrPXMolyMGI8lxFFTQveqxbitkGazYATOX2/x8OUGajPA9hrFdQH7YkSwAtVqgPgnS5hFYJREGYDKAaPMcRrl1yXGZ5ZM3sIgWAm51zlPUB9FLnzCzAJWQpSOM3BBQIycPyvvVQ6x93OH6h0BhuoFuk9HAgsVoGYW4aaGXxvom5ImQxcWcALlrSLjmaSxvUR1zziE408GoFMoNgPcuwZ+5nkMQLZUn2ScCwMgyb4FTRkwJCALh/BQAsmFVRDY4G1Nl9rIqMlWwj8ZIO5K+EWUJX+hMVx4+CdjjuzA0gIHjWLHKIlix+50kAHjlSOQkIHOuyvDdS/jjWRXQJ8EzJWF2sUifmCxbc48Qu2hdgopv9FXMULjvcK48dBHAeEF7MJDvuhgHirMnp7Qf7GEtGSE/cZAvy/hlnToLfaCmYV6ymIrdxL965HZmoGsmRwkiqPA8P0ezZ/VaF9bFDs627nnA/dfRrOgdZTTqID6RjNOQwDdRwb6XnPUNHCurv9xB/Wmhp0xssRXBBFBB5QPMucymkVAWBDEFHuJ/rlF8aBg1g7FXqG+YfFk1iFHbMDH2S8PsoZrGiDJQbKYnU8zbckUR47Ix8rVEfS5KFntozQvUA4qTQI4gPv9E5yT0J/XnMkSdL7tn3rU7yW6Fw7VnUK5BY6fcBZTOMAt+DvnNAOqO5mNd3RLM6j6jpJVswjQvchOzDrKolMepO5EZmRTrEJ28C3J3roSqO9ihMkcOR8yORELK1Btgf6CsuBkGGRnIYPH6p7XJAFEwPwtGTRfAuUD2dHZNaMommuBYROltFFSTJkvJcAJIIUiyuAOBDrJhTixuoyGoStyKvq5PwR8KU4DIkB4ylSrhzhPWPBc61ZkR+fqjvtmaxb9w3lA844FvJ1RSp2MvYJCjvQQLs6gRTAo3CQzZjEf5zaLlDnJbesvyPTTTZnbpGJuZZLd2oYmRONKILmzAojzoARkyShI+AgG58gOvKeXXFf1QBZwOIvGQT1ypAUANLce+48lmlsW70lyTgdtgtJhIyidbRip8fCTgNXPyVQmJ9rZuyi7j2yrqwggxrVAfcv3mgXlzum57kpkFUC5jzEklvvY3HocXkuUe35+x5XILr26C3m+djgTaD74bHg0XAjKo2tEdiUwVD7O0bmKMR/Cc5kJtNb38bNTIctL63tPk55Lgs00i/l4hlAawKwEVl84HJ9RIplk3oyUCdmFWVqez2obnYnj3GF3KVEco7KhDeg3Es0dDYNm7ymPldE12TRkx5LJFkBATTddrk8NAcNKQg8R7DRxvveRUVO1i8ZCNTC/ZmSKcFGG/kCJagJc3TllrtWe8llguuZn7y3U6HF8WaK5pQSX86IBx5cKugVmN4amOAoZWALIbKu0yCxstSfDOi45g0knaD5HkyMRZeB+coQGQViad3xsfORjrmdxYuZlEALFwcLVirLWGUFYfTvC1YpusdGYiOc7QHUeriFA4nOUCCdWV7eUx9qZRHMzcgbSethG05m2VtC9y060eabREXAmR17hA/qLAvWtic6vAeOmhBo89GGEXZZRtiuirNXCNRq6NfA6Ar0Q6EorQHnt6KFaMm3JoVY4HxstEinrUp1GgsHDgFBrMqAj5ymHiwrN2xPkoYef1wSJj+pp0VsynIWEbA1S1EjKs1S7U44FmZxdabIjjCOYkyJHiUwzl4/YzLKA6Aca8aTokih1Fcn4J4I4YR0wjAjzhrLYNH+ZWNK80NSBGgkCo6yVTwUymECOIAnD+A3QB6UQ+iFLdh9HlADIM5X/r5jHEMHstx1Ybl6HP/rb//5vfbn/8L/9D/5/3zfgWw4sq1evw+v/+O+i+JMF7JzRC/wCRO6Mu4pfts21wPFjj9lbDtoHCZz9hcfu+xLNTcDu94AmFt7LLz2GtUT7gnNaab7KLAPqW4HjRx6zN1H6dAo4vUoFLFBtWTwVRxYgZ3/hsPuU0SDd04D5G5Hnp2QsuI+fOKx+rmAW3GYVC4U0JyMNv+QOryV0NFpI4douOt3ZOQsMaVgw+OjcWD0gO+7Vt3ydbvnFlORq6QtKtyyi2pcBy1+yG6y7OIMT3StT9lv1EGCW7IKnrndxmAwRggS6Sxbg9QNnjqotCx3dAQ8/AhZfithNjyc0TAYP0lI+lb7MEZALrDHtywxYfm2x/0gzN/CMxUmScw0rCd1zX48vJRZfe4wrytGqbcDuM2D5S3adTUPHR91NLpsIXKarkaMMcoE7i4Vb7FSn+S5hWRyZucDsvcfphUQVu+/rzy2GteS2vOE1VpwCTs8pBZQuYHbjcXzOL+/l1wa77xXQLZeX5Ibjmsc/MVz3f9Nj87/JGB4erejXMrMHAOff0r43tx4pKLxo2cF2pYizXbxebMMZtzqGhh9fSczfRuv6Os7CRWOLFDWx/qXB4bWOhafMMr5kRCItJYfjQqCKRhXjWmD5leP1sfNonygcPw54+r/wS54GEyzejs8VVl9aHJ9rqJHFU/dU4OznLrMMqQMfBOfAkiNkyhR0VZzVi7EazT2vTWkYvO4qgXJnASmw/X6B4oTsMDqsJZZfW7RXGqeXArN3ZBZyZl4gU+MK5LgR3bOA7c8ETT0U5aBmyfzEauvQPtEoTh4QgGli4RudTe1Mot9IzK8dZ/iik3J55GyiV2QYxiUZGj0wBqK7kHlecX5t0J9TOqVbumf2Gw1fUCaou4B6R2bi9LzA8usB7ZMSw1ri7BcDDq8qVHuXi71yZ6PUlIWkjdEI/Yaf1+aWrpFkLySKzqNfK1R7n9mScaVQHB2OzzXqLQv4xZsR/XlBmeFMYvFVj/Z5lUGiNJw7czUbSsNKobm1cI3M2zWcF5h/3cEu6JiYZH+U5/J+IM2UL2gWEsvPWxw+naPcuwieApf9wUyywehIqmM0RH8ec+ICpZjz6xFmoWFr5v2lWUCvKeUE6PzqKhqblFsLX8kMAnTrYOcKKh2fM83XFCLLKW1Dt9H6weL4vIAeAmbvyVh4JTBsOMNd7iz0yaJ/WkHF+IqgBOxcQY4BzXWL4aLOs3XjWnHbagE5sLkibMjSzPqOkkP+X2FcaxQHh+Jo4RoFFYGI7snqUM7PGbzjRzVm7w3K9ye0n6xQHC3k6GBWZZyBI1ukWguzKrL5StAC6mTgGw0fXS+l81AtZafDVQ3bSMzeDflcqpOBPaugjwZmWZJlKmSe0StuW9izGqq36J800K2DHFye5/Mxg9DOFMrdSOlkBDpycLERRzMXr3lfClrCLDXq922USUZms4yzhXH/5Ohzca1vj3BnM84LDg7jpkL5MMDOCxTbHq4pMG5K3vduO0BKyHaEuZxBHUfIztBhNMovx7MK5W6MJmOUmErrIXtL5ssFuEWJ4r6Fr3kfcLWG6m3MfPQQgyNrVijYZQXVW4iRP6FQsOsGet9T5qklpZ4AIEQ2eRG9gb1YMOrDekZ3aJlZN2EcfFVAHjuEeR0NbzTkoYVfziCHGDGiJeS+I+CxjgBJSfhFA9mPXF78fAXFmA25PQGaoM3PSqhdl+tE0Y+cUYxAS0R5prtc8X2FpkOrEhAnUvVhXkOceoS6gjy2fP+xBZoaQSvOOzpP2WcIeQYyaM5vciGBTq/HluvQCqIfv8kAjgZoaoJCKSYw94gNFFpnQBe8h5g1QAKT/TdnDXM9n3Ipk7GOjC6rWpNhzHOdNr8+u60mwOdipEtiI9PjEcgEEOcvJ+ZU5AiTCDLjOoRSBJV/eV2/7vfH///LAPS7wFj+c2D5u/uY/+B5ePYf/T18/9kHvNuv0JQGSnosihHvDktczFt8dXMOvKtQfnJECAKzesDz5QE3pwWU9Hg4cFjJfjXHZ3/zS3y1PUN7rCgNNBL1psePnl7j8+05Ht6toBYW7qiBIuD1yzt89cUl6k2P4WaGoAKayxbdfQNROyxXHarCwnmB+w8rsp1GUGZ3KFBfdTCjhr+toJ+2MG0JWTg08xEfbR7ws//1I7gzC9U4PLvY4e2fP8HZpw84/uk5Lv7oBtfXZygag6Y2OGzj0JUMCCcNuTQI9yXC0gJGZgawOO/x+nKLL27O4Y4FyvWA4AXMroJejfBOALcV5zJnFuJEoyEAgBNQe53ld/ogYM7oaOk/6uGNRBgl5pctTu/nXKcXzO5cW4jCI/QKYpSQvYB63WJ8qMnczh2lnI2Dvi3gqwDfkDF0FwboFdRJws096neaM63JAMMLhGc9XU49IJzA7JM9ul+sKPusOdMqB5HZN3PmsPqZxv4PRoiOHcT6g8KwITtd3SoMFy4zuL6mkVEyNYIEgvYoP2i6bPYEJ+O5w+KXNHzonnlUdxL9Cwu9V5zb/aBpVtSEzKYFBdi1g+xYxDJfkb/3zy2aNxr9E4f6g2K+po9zcYrnobyP2aNxbs7NuK3Ntcx5nr4MaN5LjGcBZuWgjwrNtUD70sPNPdZ/qtG+CKhvBIZNgLQiR2oURwLO/orn2tVJZhVQ7mQGjt0Tj+JAp0HdgmxZRdCV9jdlgSbjn+a9wOlVZCfDJMkLms0aswhTpMwYMwVNjPvQwOwtYzXMkmxbcWTsRpBAcZjiJeBp8HN6FZ0+4za6Evn4JJdPNYCxNzOC4tOrAF8E1De06c/5hTHiw1U0WUqNId0C3XOP5a8khg1nTYcNGdVqm1hGRmgIS8Y0yQBNzJoc12RcAbKnZgFUdwS57Qs2l/RpmuMVlkH27XNmjybnzyz9jNLQNFMaFPdNnxjJkaJkyq34BuszXHDWlzOsZAVV/8hgp5yySRlLwBlZNXLZuqdJT3HkMQBis2zgvHJxSkYsBCSu4XqLI5k71ZO1o6QvOpDGz31iD2lmwqZYitqpbwNOL9j0KbOEMkk1RW6QJTMiFc1qykNA+1ROjqoDYv5pyFmydsb3pTzg1HhM+ZcAm2Cu5mxtMsixDUFruQ8Y4myiWXBWd9iwWeSikY6OUTIpg5VMOWIeZZRCemCI7CKZZZFNccoDP/fjkiwcYrMLiE2ekSzYuJSo9qnRJDNTqfuQpZl9NHcSFrkJMKwkI0biHK1ZsLFZHTifOC4FmvuQ5yi9YpbmsOa9pDyw+VTtafbjtcizkd2l5DUSG4pqDNnldFhJKIOcBYrABmJixvUQciaomYvM7D7OGZWGDRgTzXCS1DXNljLr0WcTG1eKvL0Aj3W5tegvC1RbspFBRhfUmcwsW7dRqHc+u6KOc4nySLMingeZGxl8v4NreCyqBwvbKOjWYVxrqD6xafyc+JINsJSRmVxw1UBH1eQQm1xwi5Nl9AmA4Uyj3NkYE8J1mYXKmZg0y5IodyNOrxrM3vbw1TQ3aRvJBsvovwGyh02B+nbMBkKJ/ZSW5j/DeZXZ8uJgCKw7i3FTotwZ2LmGPlD66mqCezfTsI3mumK2qjoZuHnBGJazCvpgoDoD1xQ8v51lQ6KiFFcdR/hSYzwvUd/0sUlEV9YEsEUfjXwKRZBtHNySN8GU/ekqBRXnLyEE5LGH3cwgjSe4TnEjhYqZn/wRg50Ak7EEjprxOfAgcI1RItm5VasINiOoS8ylkhDdgNBU3yyGQ+DfZ3X+HYUm4G0TWG4Ifrseoq4I2P4yU/mYXZQyMo8TKAWA0HUErlU5mfYoBQwDIGQ26Um5lME57ocxj1b1G3DHX4fF/I4Ayz/+l3/7wPIf/Hf/HFj+f35Un7wK/+J//nfw1c05/EOJIAPmX2h0Tz3NZVoJ8aKHVB7meoZQeBRbFWVblNWRaRMYftgBNxXqDzJangeYK4vmiyIGyCcpCYAXPdQvGsjoZgqwsDy9JCN6/Nhni/z5G6B9TjlS9/0B9a+qOPMRGbBOoH9psPynBcYVGdZyT7meXQZUH3hjKVqgfcrnhgvPTMoUEh9ZKTcLORJA9cDxY4/6g8zOgulLtb+gDM/OKO9yNQtIOQg074HD9zzUIFDdiVxIJ1MOBOD0PYPlzwp0TwJm7+hSOv8K6K9ELODJ0PUXlFWWDwr1HbexfUGTnmFDOZxZsph1DU1CpAVOLwIWXzE+AGBBSwMYj/lXEuOKmYmnl0C5435UD3GGKjJjqTAsd7E4ugwxNxSAiEHaK4+zP5UwcxrVSBOlXT2lis2NwOkFj3kqMPuLgOUXMbA9hshLC7qY9gLVAwvm/pnD5T+WOD2fGM3mhoX38bVHdU+QogZgPOMx0C3Z0t1niDJDusBKEwvuwHPRPQ2Yf839TrNXaQ6Lkjrm6SWXRV8A83cB9z/1WHyh8hxRKmaFB/bfj3EWBbD8gkV5tQ2odgH7j2UuoAl6yVYXR+YGDhceq78QqLcBu08pH9x/iphPyrknABn4QvAa6S4kdj9xePY/CTz8UKK+jSYtHbB46/DwmWJUw0bkOS45RsnaA4uM/oLbCTCLb/4156LGhUB54LEwC77m8JHA6ld87faHlNE2H6Kz6FJg83ML20i0TyTMHBmULr8MKFqPhx8ozN9xn82Cx3t2TQZj+xmbDuWezHB9TyZ69blH+1RiXBNg2hmv6+LE6/XsLzwefkAX4PM/8zi+ZKE4vyZTrDsW/0ECh08pLV58EVAdPIalRNEFFEcPs5A4PZNYvPUYVnQ1ZXwDGeogCSxcKbD82uH0TOaoCgBYfE329PhcI2jKHY+vFM7/dMTtT0vM39E0q7sgoEhOpAyN5z1oPBOo7gJmdw7DSmXjoeLIY7L6Kna6BZno+bXB/pMC1S6gO5dYvHPoLiQWby12nxaYv6e0//RURWdNKhS6c81oiEaguXdorxTMUuDs5xa7TzVWX1r0G4XV5wOOL0vogcsXbgJMxxcKm5+TYV//YsT+0xLV/8nem/xKmt3ZYedO3xDTize/HCsrq7IGVnEyRZGt7iZF2d1oWLIML2xDm9bWhgEvvfTCBvwX2CvvDO8N2QYMwwYMyDKkBjU11WQ1i1WsqszK+U0xfsOdvDj3fpHFZg9Ad0MkwQAeXuZ78SK+KSLu+Z1pEbE5pdzSlQKzhz0W9wqUK6ogguZrub506CeK7GMK21EtGXJfiHQ8e4gALF4vYKd8jyivAnTLVNr6ikmxk6cOmzON2acdLt8tUV9E1C96XD8oUV3SMwfw9d0nUJ29rgCw93GPfq5ZrVEIXhPJU9fuS0wfOYSSYS7tARUS46c9gpFY3zSozz2Wd8kaZ3llP9lVjfQzgfEzj2Lp0M80uj2Ffipw9IMGwUj0c7K09TkTVH1BBnfv0x7dXKM5lJg9dEnGLFG/7BGURHegoZuA9Q2NchlRXlpsbhRQPdNYQyGhN57ezQmTOzNjrbcO3UEJO5GoX1gGGzkys/28oK9v6+HG7CyULg4JqKr1sDMDXxHAmZVPoJRKHwSgPVCoL/wgb5UuScMXTGatXnZoT0rUz1qs79RQNsIsPVRHNqY94aLfrJmAaseaia0+wo13MlA3kqjP+yS5tGhu1KifNgiFotSz8ejnGtOPVuhORvCFRHXeQqZaDDfWUH2Aq9QuJfbQQK89GdhaQyaJ5/b2GOUFZa3FRYvN6xNMfrri++btCUafr9GejREM2VXpIrp9jdGTFqzA0RARMNcthAuwBzWCkdAbBzvR0K2HeblBd2PKlNhVBz8pyHynVFK17lk30ll0N2YozjewByMUTxbob+6heLFGdzaFtAF62aI/HEGve6jrLaAk7OEYetnCHoxQfnqO/s4hAWWlyaY2PcKshpuW0Ot+COHJXZbqYgW/P4VMrGSY1RC9g5+U3L7WQW66wdsor1aIkxFE0yGMKkpOASCxkGE+IcOZpKSZGR18iQkYim2LOEkTM0H5qbBux3IaDeE8Gc3VBkPfZIxJDkuJbRxVDOEpDJlOrRDXG4iiQOx7iOkEcb3h40/GgBSImy1EXXN7Msvp/BckqnHbDCAQwAAERVVh8Ezm5wQw9GY6gmRRFAiLJUQKEhoqRnIqbNt94fH/xO1nU2HzLaXT/ryU2NC2P/+x/gK3XwPLv/6b/re9AX+Zm1ARf+PwIZZtiQWA8bjFUk0wOtrC9hr6xONktkaIAo+uSxzfvsZL7ANlgFcR8twgnPTwY4MHN17iE32A7lTB9xL7h2uMCotn4xmM8RBWcZ0eBEZ1j/VRATm1TIV2Ast9hXK/xbocob65hj1VsNcVolGwcwfhBVTp0T9IVSY3GU7iK4mz25c4vzhheEjlsD3UEJ2EPmrQVBXURiIasnWdZqAHgYYagFJm8tpTevdEAPbvX2LZHpIZ8UCxlOiOPNRWop/Sayd8As1lYIVIlMDNFv3GwJcKesMaADuLEK9t4J+O8PaDJ/hxvAXRC6weAFFEmJUegkKa48R6VJGM6dkW248mkFbA7nkACuqNNdrPx4gm1RLoCF9JFNcCkAQTuRvRPjdQjQAOOzRtBXdkodoC3YlDf8jFAKV3O3+PiNwvO6YksL9h0adkANGw93H/9gKb5QEQI+yBB0yAeFRwsZhK3d3NHvZAoThXA8hevsEJvxul6H4Z4SYR/ZmF8AX6dxsoEbE9GzEpdaXgT3uoriSbc3OLtqyBABSXCvbIwk0U9JJMid6wM9IfWJhViX6PXrvmpoO5VoBMiZU1J4zbexbVE4N+b1cin+XIdkr/oR0zHXj9msckXTfdAatZ+hlgT3tEZRButmg3Nc93FGgP+Dy+BAoI9Hv0wlBeKhBKoH5jie5yjuZEoDvl+fV1gD2x0BcGqmd9SHlFptBOIuxEcrhw1GBzg1J21xKwtwcRqicD3B5k5jR7bjiUyIioOQsQXoKVIgyd0BsCvOaE7FkoKOvuTjzsy1TYLiIZ2EYOrOX2JPmdKiCUBLibNy1UZ6C39EFvz7i4b29biE4iaAXditTfCHp2KqCFACSwuktPrJuQtdjeiHAHDupDg1AQANsZXzeL+zyu0jOJU/YM3HBjgcnn7J/zRU4rlbBTgd6KNKgRWL3hIbwauhTbQzH4z+yUzHB5wVJ6O+bgRzf0821uSLRzOYTT9FbC1cD6loGvgW5Pwo2Zvjz9jJL15lgO/s/uMKJ6SYlv30m0h2J4LbqRQD8H2pUcfJ7BpKCPGeWz3SFgtmRQ+iltAf0mMSwHAC4px98es6Kpn5EZ6icMJPEF0M3JXPUTifZAQNqC6ayOMu88XHMjkRJG+fG3PTX0vyoG8uhGoDsQKJca/ZzVG90+exbbAwERFLq91F2YJM8+pQHbKSth2iPDoJaUNBo0BxxuRDavXPIzrNtTsCOBbt8MfY3bM243wo6JiyMMIDMEbod0gN4aTD9rsb5LP4GdsrBeN7xO2q2irF2TucIIWN0pE4gENjfoR28OKbfOCb85IId/K9DNDX3EFa/z5rQYElfJMuqhYkT1QL9HUGmnAs0RBwPdVAIogAg0BxLlIiXaxojtqUF7REuACHlxqYYuS18nmXvj4UYa/UzCGwE7S3URHWX6diyHYYmrJVylhoGW9ApmLdFPFdp9MrlZ4hzLJN0vUmprqlDxFVBdUdK+OTUo1gH9XoHNqYJZmXQMaHXJfkMR+Nzsqw1oDhUtKznzxIjhXNqJJsAV/L0fGYQiMbhp5m/nFV/7lYCdGMhawxdMaUWqDvG1IqvnKYft90ueQ0VJbtACdmpo1wgVfcP71VD/4fZKblfBD45QpCqVWTEkwwYlICcF60AKSU9jStr1pYIal/ClhG48uuNRYl572Kmh5NYx4VVvNF+HezVCIRELQ+A/ryF9QHdodlUhtQbkGKJLEtzSICoBe3OfctbaoN8zHC6MOG1Z3yow/TxCAZRwK4FQashxDWhJPyR43WVQKUKEmxguiFMHZRxVrBkRAn6vgkp9lBACKAvKZ6uSyinrEesSoTaUIBsFaAnRWoTDGUTvWEfiI+XFqmDa7JZSYaSaEkxGBJmFQSw15KoBXgVkWiHWJYTzCHtjyMRyCikJUMuS25/ZSoByVCxUdkwAACAASURBVCkoRS1MYh/VjrEsDO+XPJIi8n1RaPYgRRH4+Il1zdJcVp8oQGuCSp3AsHUM4knPDWMgrAWMQex7yHLHtr5KbOXU2AFIZpD5Ktj8JSbC/sTtV2hXfvb2S81Yjh7cjLf+u/8cMQic7K+w7Q3eOnyJTxcHuLieYD7bYt2UaC/5RlLMO8zGLTZtAa09vJcQAuh7gsBiv4XWHvNxg6fP5xAq4s0bL7HoKiw2NdplSR/g2CJGAVM4NMsKquJkzK8NRodbNE8mwMyinnSY1h0Wmxrd1iA2GjABsvAIawPoCFk7hK3G+GiLrjXwFyXEfg+lAlyvoAuPEAWiT9OkIIAoYGrL9NMlJbBCAOGqYNpmFJAmIFwU0MctbKuBIAAvMDtZwzqFdl1CmqTjD0CwCtJ4CBWBJxX8hABV7Vn4lYGcWISlYbrkE4Xtgw7mWQF/u4X6vKIU1gnoxyX83Rbxkm/yeiOZqlkHiNIjbvmmpdYS4aTn/yUlSDARQgWUn1To7reIW00J6T5TNYpnBv2ZhboyCMc9sNSsMGkkcKOFvy6gGgJw6AD0EigD4AVEKxGLCLXim1QYBVRPFNozglfRqUHyGlUkGJwEmGvJUJyaVTDluUJ32w5dpLJRCFWAXvJx3dSj/lwjFEB3q4e+NHAzD32d9wMon2nYCTsUIckU27nnts88xh8RJOotZbe+DtBpu0UE1JbSUIDgvbyU6Oesc4ljSokRs1yTzKcvI0ZPJNqjSKmsE1AdQWOoAlM9CwLY9oZDcaEYelNGqI1kZ2N6f+8OWVzvRwHmSqI6ZwiN2/MoLlgJUz9RQ8qlLxgWE0yqwem5v+ZKYfIZcPVVD3OdKgUcF/3tqUNxruArSnFZZRAH2Sc7KAGzpAw4VJQEh4IqhCwpFgHQawE3jaheEuBCUBbsK8p5VZtqCQ75elCtgN6KQfJKT2RA/SyB4XWqh0nDGYCKBZfWK9JTyhqzPK9JEt05f6+3BLJRA91+wOShTLUQGNhtX8ch/VX2Isk9uU/dPCbAwe7aHLpTLCkdFoFAN4fo5IqHPHDp5lQL5DAi2ZMRt+OI8lokr1bqLz2jKsGOeSzMivvhKx6HPMAwKwJ4acn2FwsxpI3KnnLX9pBgG+D92+OI0RMy78KzqsWseOyqc4H2EEkKm9hqR694XqDnUChp6e9ujgXKBbevvAa6PbLKlAPy3znV02xSeX3zSkVMpGTWV5R1tkcpHTUBdZkIEFeRhfcl90e1O6ZSWfqOQ0kwU12wG9OXYuiLVB3ZRQ6nGJqT1QPtAR9n9IygNCgMfZ3SJt/7NiZ5KIFqDjcSkbJU9rlS3munAsUiDom3wYjh9VFe8b5mQ393c0RWt7oMsKMkI95EtPtiYJ5zh+f2VA4SZBGQfPFx8BF3+wLVJQdwQe9CnuyY10y5YN1Idc0eyOyLz0E50mI4zzmkSXXpNZJl3W53PvM5lhZDx2bOKsi9m7mLUwTKaHNwj3T8fZSANwLFJqSkUkBvc7hNBowczFTXAe2c7Hq3p3ZVHpoprLqN9JkLPjZAH6xumZBarNkn2U/Zw+mNQLlIfutthFkznMhsAppDjfrCIRQEd65KYUT9Ti4/hPYl5jpLi3P3ZXnt6I1de7iRRLFwaA/5OVGf92gPC3rL0/umr+QQ8DTIdAuJkNJjixWBXxSU9KqePm+zTl5sKaBa+oaLhUvXgBxUNDkgqHrRoj2qYFYWdmZglhZRyySjdXC1HrIEmOxKia4bm6ErVNqAYOTQAaq29GqGIkmXLYGinWgU1z18rclqr3tKYTcWIoFJt1dCbWz6LC+gGvo7ZUupq6908u4qyNSnKftXJKs54VWJwdssLKW1HAIkltCowa8quiR9dR6xMkOCLITg71v2T4qmIyOamDzRW4TJiJ5RrSDWW8QxmVGx2jIYSCkyrT4MUthBahvjF8N7fhYLdD1/pjUZzlelsAABX5akZgltiGlBmTywOfhHiOTZlLvwnp+9/UXDfH5VpLDf+2tgLP+XXwzGUv75d/nFvdW6x3/79X+E33/vD+CjgAsS3//kNVwuxviH7/8zXHy6j9sH13jv7c9RHza4d3SJq+UIzXWF7baEc1wpe6fwjfd+yvqGZxOc/4tTqOclTg6X+Ojf3MbFvzlGuy5w/7UX+PKDz/HWjRcYjTq0z8YQOmA2aSAe1TDTHs3nU+zfuwIEYD+cof0/TuCdBFYGX333M8iFhjIeZt7h1p0LhF7h+NY1ms+mEJ/WuP3WC8RFgeP9FaKTsNcl/MYgrA1mswZFbXH7xiXiJ2O03z8EXpbQxsP8uMbtBy8QGw35soB4XOH22y+Az0b0WHoBNbEI/2QfzYsRICP8yiA4gbAxuHnzErNZg3BV4rWvPcHkdA2UAfF5CTFyiNepS2ns8O2//wPIa4P/7D/4P2F+WuO7f+cHUJ9W2D9Y4/63HxI071k8eO8x/sG//49ZpaEi5PMSZ69dQK0lvvatj2AeseaheK4hRw7FUwPzqMTb3/sY5mGZGKGI6rGB0BE3v/UE5eMC5t4a1U9KHN6/wvRjzVqHpxXkzELe2qI4VwSKM4vqYQE4geJsC71QkHc2kLdZffLv/Uffh+wE1EIjjhz8gYU+blhLcadBlBE3vvkU09cW7BotA278xhNMf1gAKsJcaYSxR/VUo3qwwOzdCy78323w5nc/Qf1ZAX/Ss+Py3ob7YSV+43f/CGHmMH3rCuG4xzu/+UkCCUDxQmP0nZewZxbv/96PEU866KVCvNPAHVvYI4vj33zK3s8HS4yeSHRvtAhjj1gEjH5SQDhg8s4V3N0W02+co3xnAb0V+N1/8M/gb3bQGybJZn/f6DON7tjDHjuEL60x/lTD32vhRwGznyjc/RuPMfvt5zDfuEJ74tmbKiOqZwr+fov9v/uEyaefaJh3l5h+pPD1v/cj4L0VmvsdZXtil5gaTMThP2da7pd+/wPMfqxh52RL3JsN+jcaHP5LhXe/81MuAr9+he7Uwe5xIm/vdhg9lUxffm+NYiEw+0hi8jfPUZ2zu1U3AsUiJTq+09D/9b1zqI7DjsPfeYLmtqU38p0t2hses48k6udySP69+e8+wvbLDXwVMf+RgPzNK4w/F+jea7D5zQ3a9xrUzwWKa4HR7z7H9nWL9jQgfGuB6iVl8sVKYHu/R/V7L9DesvDvbuC/vUT/5S3su1sc/qHA5Peeofw755AeEN9coPrGJepngtLsVeqTPPE4/buP0H9rBd0IpuAmn+rBH5G13J6RkVQNZffNTY/V+x0ThCUZ6vZrW+x9BDQ3PBnYN3tUf/sc/Txg/wPKspsbHgiA/Y0V7vzfFup7F4Ov9frrPZrbDuMnQL8f0ZwEREF59v2//zH6PSbi2info9fvdli+32PxWy3K67Twb4Dl+z0mD4HrLzu0RxGbOwHFgqD36AcBi/ctqguCweuv91i9HrD+7obVHDXBwvJdi2IR0RxHLL7bolgBq3sB088i1rcjDn7s0c8jfEGwu7nNPtJ+HnH5dQ+zirj+qsXRH1pszyK2NyOuvubhavpqx48j2tTl2h5F9FPWbURF2W9zFtHtAZdfCWhOgev3HbanApu7AdXLiOnDgOUbQPefXOP8W45JtzVw+XVe6+u7EeMnARff8Ax5e8BjdvDHDud/k8cVkhJvOxFYvM3tWr0OPP+Ox9X7EdVlQHkdE9iLuHwP2NykR3N9lxLw7RmVAFfvBbgaOPpBB7OKePkbHiIAL75r8fIbyVcbybJffiVi+Qbw7G/xnO1/6NDtC6zvCjz7TsD0kYdZR2xuCyzeAuqLAF8JXHxZ4OpdgtbFfYnrt8mWlwsOBcpFgN5GXLxPduzx7wS8+LaHsmTNL74qMH4ehkFIFMD2lExoe8jH0VuqXBZvEuCNzj3KRcT8o54Wh5HA+EUYukuzd1u6lK7qIla3Ja7fkonBTn5kw+N0/mWFcuFx9UDi5Vc1nv6GxJPvUlp8/hWB+jKgn0iMzj2ef9NwQNFF1Bce5SpgcV9hdYtS8OaI4VtBC+guYHuk6Ec/1HjyWwrFipLocuHx5Dsa00dczC9eN1jfUnjy2xr1OeXS2yMO32aftpAeWL6mEZTA1Vtc8NuxxLNvG/QTCekjVnfopVRdxMPfKRAFGEi29HjytyroTcDoaYvH36lh1h6LewXOv1zi6kGB5lDj+TfZMbk9Urh8u2TI03mPyaMG2xON9U2DqAW2Jwp2ojB+tEVzpLG+qREKgebEIBiB5qRAKCSKhWVP5sLi6kEJs7A4/8oE5UWLxZs1VBtw8X6N9e0CunG4fqNCMAKjz5YornpszwrorcfV22PojcXmZomgBdZ3KqithVm06OcazY0azUkJ2XpKccEwpfEfPUUsJPTWQq86tKc1RAQW70xx/o05Fu/MoK9bBKPQH1QwVy3sxEBtegI5F+jvHBmoVYvNvQlk7xAKDT/S9FlqCV+bofPSTwoI69HemsEejBAKje7GFFEyKEpYjzAqAevg92qIph9ClMSmgbxc0Z9pHfrbBwSGZcGOzL0x5HpLULlpEOYToLf8996ETOaCct5wMB2kvHFvgqgVYlkQ7OVuy65nauymQWxaPk9ZMOwnBfTEvocYjyivdQ6irimZTZUhKAxQlmRJYySTqRRiT8ZSaA1ZlsOXKAoIpfhVGAij/+SXkvxK//4Cg/lLehNI70t/xV+/KLdfasayeuNWfP+//4e4XIzhFwWZLy+AIkAUAeKygL6xxf50i5c/PkJxewP76QSqw5Bymjvgbr7/HE//8IyskoyQS40w8pBbheJKIhgyIW7fodxv4R6NGUyTJqJ+FCA7AbOU6B80UI+qQcaUS++79xuE8xLVC4aohILMQX9GAGRf7XkLgD3hz/OHox0n6eKbDczHNbvmLgX6aUQ09GeWlxLdQaB/8X4L8bQi+5Kmv8WSiyyzSgxoYhx8xelnTr2VTqA658Q8Sgz70p4E1K+tYH80g7/fAE/YE7j3Y4HNLaA/9hg9ZAWHCID7xgohCJT/YgLZU2rm6wi7z5Cb9Vs9xj8pyFoEeicvvmVRPSrgSy6c9YbPv70ZUJ5LbO9bTD8waM4iZbDTgNEjBVczPGf6U0XG4Zj7rFOgi+oEumMPYQX0SsDfbzH9pzVcTUklgsDoKSfVzQm9le1BBCQw/YR+o807HU7+nwLrW/RE2gn9gosHMVVhKNi3t/CNxt6/LuhzPed0Py9i+hkTQPWGrGF74lE945ul2QLLL1mopeL1tKa0bntKP2qewustpYx7HwHX75KNzJUKbixgR/TcImYGDui/vYL8wRTlFdmlfo91CMIDF990KF5oiCBQXSSf6+ciefPIIpXX3IbJZ8DqPjB+RAZQvL2G+ldTTD6PuPgat2X9OiXXsgOKFa9RgqG0wLuI6A4FNu+1OPm/CmxPyNq1x2Tf9v844PI9gdFToDlJlQqJzUMEJo+5UO32gemn2bvK10N5TdYkqh0zqDcEMSf/Hxd2V+9F6LXE5BGZNF8D+x8wNbg55t+2R/QaT3/K87J4Exg9BdojMfQpTh4StF29FzF5SIl5KCMOfhixvpmlnHxtTT8BmtPd605a7sf2jJLd8pLsmfAM4un2BOoL+i55bAKiBvZ/yLRmJv9GlNdkY67fAQ5/QDbJ1SmcqGLwDCKllG7M1OvmmFJON2LwTtDA7FP6FZuziP0PIpb3JA7+2GN5T1Heuf9FX6+IZJHMkpUhdkKGce8TJlgzcTp1Qs6B2aeB0twRWbP5Rx1efqViQFbPKo3NDUpOt2cC+x8yZXT1WpLodsDeT/nYo+dkKKePPPqJRHMqsPexx/WbCns/DWgP6CW9vq9RXwRsziSKFdnDKATWd9ht6Wvu9/WbCsWCYGr2Md83RucBzaEcgpD6PXq09z7m8SMLmoJrHJlHSliB/Y/6tOg3rCrpd5Uidgwc/sjh+g2N+ccO6xsK+x/2uHivhFkzoffyHYXRszikKIuY2LIUlNTvkak7/JGHHTEJGZGSVukoZ+0nlBk3h7wOVc/HywE/61uKfZIHlDmPnkYm+O6neXOkfHf0IqB+YdEeGmzO6Lfe/9ClgBzed/zMoTlUaA8ZAHT8rzusbxdoDwXGTwJ0S69wfU7f5Oq2RnXNa6rfS17kY0oS5x9bdHON8pKpvO1B9joCxcpDdgG+UticKdQXDMdhzUaAG2tsTzRmn7QIBRNe+wl9p66WqM4tQinRT1SS7VL2Wy4I9ru5Qj8TmDymx9LVTGBmHyp9rvOfNFi+XmPypMfVgwLTx36oy9Abhu24SgzpzjltV3UBzbFBsfTo9xS8EagvmcxqVg7rWwUmT3q4WqGfKYYVTRXmP15j/doI0gPlpYVqHdzIoDvQQ4iW3nIQ4St2Nuqth51qlOctIAXWd2qYNetBqpc9ugOD+nkL2Tos3plh9tEa29v0cZqNh2oDmiOD8eMWbqyHBOHqvIVoLLavz1AsLbyRcGMC3vHH19je26OX9nmH7qiA7CITkkNE+WwDESP8uEBzs8bo8y2Wb0yw98E1mttTVM+36I6pwKqerrG9O0VxbQdvZn9Yw1y26A8rlC953+Kqpady1dF7Oq/hRhp666CWHaWvFb226vk13K0DqEWDWOjBixmNQr9XAFKgfLEFQmCy7MV65/+rC0QlhqRdse3g98fQ5yvEqvgCs4gQEUblADpl2yOMCgw1IiFANASr8H5IoIXREOvmi2xijGQaWwbziOUGcW/CQB4h6JvUGnCOftD1ln8zGTHsqLdAYZhWvFxDGEP/Zm933s22/WJwT05j1TqF7wQmzKZaEVFRmhOTxxIA4mpNEJl7Jn3gfqYk2OgcRJbK/hzPJIA/24eJL8pmY9f9qff7826/CIzldH47fu1v/9Uzlv/kH/1X/9b3DfglB5Y33tuP/+H/9PcgEfHp5gDrvsTVtsb+qMG8bPBsM8VyW+Gdk+c4q1f4ly9vo9IORlFeem9yie8/u4NSe7RWoy4sXj7fw3jeoDQWi+UYvlE4vrHA5WKMqrLwXsJ7gXHdY3E1hjQBpnCQMmBad7hcjGEbA2k8glVQlYPWHmXhsLwYo5x2kDJif7LFi8sZitLC9hrTSYPL8ykOjla4upqwE3OhMXl9AesUpIzYXIwwP1lh2xbo1wVgJfSsR1FaNJsSk1mDtjWoKovV1YggWwCq8ihKi7rscflyhsn+FlJEdL2Gsxq+VdC1Q0wexPGow2ZTYTxusdlUeOfWM/zww9s4vX2F54/26WG1CrcOF/jsgzNUNzfoO4MYgHrco9kU+PLdJ/jJ+RG6tsD4+zXcby/QrCrEXkKNHXwvIdYa5dkWUgY0qwqQEafHCygR8fjhIRAEqsMGIQg4qzAad9isKsRGoZh36BclYAIm8wbr5xOoqYVvFNBL6HkP12iglygPG/SNQewVZOUQgxi6ROujLdrnY8SCsq1y3kLKiL1xQ/nztgAWBnHiKK01kb2iEZAjh7AxUFPL98uWzz35RGPzmkesPOrPCrRvpDfBjQZoQYRsWXgfRw5oFNMVrxXssUW916K5rjA/XmPxcA9iv0dcFBCdoIx05rkdIMMprUB35KFXSQp6aIG1RlQRcmIhVYQ/Z4eralO3Z/ZuJV/s5GOF9esesQrQFxp+Qt+tWijgRodwWeDGg5d48ukRhBWoXih6GnXkgCWl1EZNSWp3kiYkOkBsNCYPJZrjJJdNflWAwVnNDT/0xMprA9WxIzNqPp7c7xGuC+iVhBsFiEAJKCIDc9zrLfCiRKgDRg81uoMIP3P0KW8lcG+D8PkIqqN3VfaU5UpLP6YbEczmGiL2twlsb3mYhUxMqRiYzKi43aHAEGAje4H2psXoU4N+Pw2NFnKYIravdVCXZgD6UacgI0mA6urUWZlkf0yypFxabwS6+x3Kn5aUA45j8lYTbAFANKxUak7jK8/BfRSe/lMRKF8uLhS7L3uGda3vpc7dkj+rzoHVPR4TEYGgkpS5SPcrGETUz8mSVi/lMBTLnapmxaGbtAwd09v0+JZDDlcRgOeuX2AnfTQbejmFI+urG4H9Hwdcv0G/apYlZqmwr1IvqcbQmelGIDCacthQLDh8MGv6kH2d5LuGILm84lBj8og1SarndZBly4gAJMHh5iZZZL1lR2aWynb7BH1Zuge5A+5RcrurixQWNRdDTUZ8ZXinG55T6ZPs95VwJL1lndDqDqXY0hKoSktPsE/XY35tsfM0DhLBXF0SFAFVN2dYGY8ZWUD6V7nNqkvVVUk67EYMgiLYTj2YPqcp76qpdMPH9iUHJHbMMKtuTrksJa3pb9Oxy8FBmTXN+xBlSmm+DljfVEOdE9NisQuW8ymsbZVkx0lWrlpKbF2VPNo+XT+RCcxmi9QPyX2ffk4J6vaEg4hcVSM8ty8H+Zgt/b1BJxmtECiXDPdBxAD2o/xiaFmUIlUlpeMrBYFXxO6+WqC6sAMoFiEDYHzh8TIjW15YbG+Ug1ycB45+0XLpETSTXIuVT3JVJvvmyqb8niM9/dhmy0GYTFLbbk9i/MTCVxJuJKG3KWNgLGFWPtWb0TMt+wjV0++qul14kXQR3Z5Cdel2abgpgdbVkkOP1HspIiuBhq7VVLVTXvXwJX+fE3PtRKNYpLoTHyBcQCg1/y5EBCUZGOTi4P/MwMmNNfSG3Z3SBV5bPiBoeldVY2H3SoYZdQ6yS72UqaLF1/R2ShsgNx29kjGiPxqjeLEBtIRcbuH3x4AQEK1jiu6o2KXICkplszw2agnZWMRCQzQ9YklQzNcC31jktqXX1CjIdTtsTw4BQuC/Ebk/UacXk5S7AKIMIhN4hfdfrDQRAhjVZDHzfQe5L2Wo0XkCzpz+6ljjApt+n3+e5bAhJBYzJY/lSpWfrSP5824hItr+z7/fn3L7NbD867/9UgPL8rU78ey/+S+gigC/1hC1R7QSr905x8NnB5AqovigRvdOg3hVAFOH2CrMzlZYXo4Z4lJ7yMJDf1Zh9tULXP/RIcxKwE2Sd2QSEUcesALFlYKdB5QvFLoTD9ExEAURXPSOU7R5EciadgpqLeGOyMAFFSG9gKsicLeBtxLyvICwya+2klBvr9CcjyAbCb0R6A89ZCshey4w2zOH+Y80Fg8C6ucSzS2PqCKKC8XKiS6FRZQRoQxQazXsT3El0O8xPKR6YmAnAX6U0nNd7mkDupsWcq2htmTUguFC1s8dyicG/YFH/UShPQn0AZ5amHODYCLKc8lQlK2AfHuN/vMxwUxBACIiF+UIQHvqMX6kCAQqFq5LK9DP6WdjyTZ7LqsXAv2cC1MAgAD6vYDJZ3JYTItAFlAEYHPPoXqqh2Ly9ozPFRQX5uykzAycQHPCfbdTPpZZC9hxRH/iYC4I3kTcVVTkUJy8EPIVty3oiOlDBhgJz4Xk8g0uZsyKAKw7jOwjLCgb3NwhuzcsjgMXulliWCwFujk7ULc3WNVRvZSDNyv75KRNnjPPdNz6ZcTiLYKT4jqV0J9kb6L4AvNRXZC5MysMNQf9XmLE5wlYKPrtlm8G7H0o0B7yWOd6i5wuPPkMWN/hgqy8SnUIgRLIXM4NcFtzz2VzwhTebp9S2elnuxCoV/1T1WXE+g5rKAAu3EdPk6/I0HuVvZ26SQX0U6C45uKsPaCXzY14PKRNjJNnNURzkrpMU79qPyOICCaxb0uCiVxfIN2ua9ZOKAHsZwz92PuYbFB1FXD5Jfo29WbnCXMjYPQkYnWP16Ju0vHYcN8y8NDb5PtLnYe5kkM4cCCRqiVkz/8Lz5RbgNs9es4F3PaEgMmsmVhbXhEwLO8LjJ7tFs45sbef89yINDQolrxGilXE/octFq9XlAG2BA8ZiOQ+2mLFBezqjkwVEzwfOvnbchVC9iVOngb0Y54LmxQMGXCZdToXbUzBYOn1vt0xt8U6JcVe0b/nSrELbkmdrjnhlT4wHkezjejHvH6qa0pnV3ck5h8zHdZX3PYMLvoZAWqUYpeOm6oQREi9omOZOit53OyY+523JxiBYs3Ki/weonpg9NKhn0q4it47VxIADH+ffIW+4M9FAKYP2ffZHOTajoj9P97i6p0RlI0pJTsFHXmgPnewEwmX+j+lY5Ky6gJDa0p+hpgNfZfVFSXo3Uxi/NxhdUujvgoIA/hL/tIERIRnPQiA4bVfLuiP6ycS9QUrOrj9MYFCevcgCLiki8nnyN9LS7ZN9gQIPh0XehFZryE83weyv82X3D+zYbquWSdPnqP/MWiBYkVPIF9nfkiLLa8t7EQzPKuWvJYrAjXVhgQ4I5Nxpwq6CTBLC7tnUjcoF/bVJdN0q8se3b4haDy3rOc4YMBTKARM6lA1S4tQJj+9CwysUQRJvqCXMQqGd6k2JPZSD/3R0gX4vI8JdEVFf6NZ9uj3isR+SxTLVEESInTjE+PJGgxpI4rzDbZ3Z9CNh/CRVRshIhSKnsWphlkyldfXVCkVlw0QAvqjMdNdVx1rQABAskZEr3pEJRELCdmxYzQKAbW1CK8AKb1o4GcVPZ6LFm5WETyGiFBq6Kst7OGYdSFNTiwV8KOCclJBhlH2Dn5cQHbs0kQCYbHSfA0bBbVoGbbTO3obhYDoeoRJDSgCK9F5iBAQk78RRvN9pNCQq5ZJr1VBIJY8kuh5fMI0yVx7Sx9kZu2sG8J6hnqSpiPj2HbIKbJD92X+LhlkhMUaoioRmwaiqihb9Z4hPlKSeXTJ45g7N5uW4C4EAsq2xc/rsRTjEfspQyR7qQi4h5/ljsnEmCImoJjYSiCBxVc6LmOMu+TXn2Euv5BM+2fhkl8RYPn17/7VA8v/93/9NbD8S9/m75zE//h//j380yf3MK9b3Jtd4PufvwZjHKZVh8vVGO+ePsPGlvjw0zN88+1P8JOLY2yaAogC3knMZg2un85w743neHw+x960wdUHh1B3N3j77AV+8uIYUgaUxuH6coLJfIuvnDzFH3x6D/WoQ9saw8JNuAAAIABJREFUTMctFqsRisJByoi2Nbh5uMDFeoTu0ymq11fYXNe4efMST5/tU3WwNHjry4/w0dMTvHXzOT744Daq4yYNhiLGVQ8lA55/dgAz7xA+H6F+c4EYBaxVHAxtOPkRKiJaCVk7vqddM8Tn9ukVHr+Yk6HbUuaIiYWQEaHVgBOQUwttPMoysZxWotjrELyEu6aXUG4VcNwhbDTUUqO8v0T3yRTV/RXapkC4KAAFiFmPsNWAihAbjfLmhszfH5ygvUnDzL03nuPTn5yiPtmi3RSInYLcKKgbW4THI4LsCT+448RBLgxlq6MIP/WAjBBFgHlUwr3W0vs5tYhB8Dh0CkjgU84sOzlVRHG6Rf90DH3SwL2oITxw9qUXePajE4Q6cCjhBSXQEw+1VBBO4PDLL8lCpwAkWXqElQESwwmXV6cBQgdgaSAPeuzNNlj+6BDhVovQaAgToJ8VsPsO4+MtNi/GDERqFcykh3tRIxoCOEQAAcDMARsNvZCwxw6yJtsqdYC/LgATUTzT0F9aonk6gTzo4K8LmIWCPbVcrF6RfSwuFHwV4fcd5DVT+cLYQy0YI+8OLcRGIY495DKZ9BNICakXEy696dceCAJ6oeBHgdvtBcyVHIC4mwbEkUfxxJB5fCVkwp32qD8q0R0HhD0L87RgAE0j4CYBcr9H+cMazSmlk1EQePWHDAfydYTaJsbw7hb6h2PKq+cB5jItaEsCrZBYT9VyiCB70hXhuAdWBsWFQnfMienokYab8P0waMCP2dspLGA2ApvXOKzoD7jdYmlQXEtEGZmcu++gXxr4mpL03Au5veXJkmoA856L70t2rlbnEtu7DqIXGD1WaG6wSojMIFlZX3FgZU8s9LlBlBFmRXk+kMJ9Yu4VJdhpzgLDpTYKqhMDKyo9UFxzWODLmPo7BdSWsmtXk10EgO19i4N/rrF8HRg9owxTtxiCpXw6xr7idWLfbmB+XKNYpiReQzm2WRKcZUm7rziIGT0W2NxmWnB7lGuHIupngsE5aWDR3Ejn2zAwyFdJDjoDqnOgPeEworimVLd+HmFnghL4/dQPOsUgR8/bXJ1Tojt+vGPY3Ii+WJf6I/t9DoGEE8PwpDrncCHbCKJOgx23k2vrxIQ1pxzIAEB5LVI6LAc0/Zz70R5zG1Z3KRsvLyOu34mYfCaHUJj8uN1hRP2cSc4isMIod0iKENEdcDsnnwesXpPDdiACm9scmI0fR9gJWUPV8vjp1EVbXRDINSe7iqVimbtGWVEkAu8X9I55La+YQpuZw+nDgO0J5dZmHWE2HHbohsxxSNVd/V7qPN0SSIoAVFcBzZHE+FmgT/FQDkBX+Px3At08yXe3HExUi4D1DYXqKr03C1afqCRlziFKIpChDDqBc8eBQ0j+zKg4bOjmEqqNqX+U27W+JSlR7vicUQBuTLlwFEiJstwf3Uamx24ilE2BS6UYek3thFUum1OFcsnhxhAqVHMI1M0F6pcBuovox5T0FgsHO9W73taCQ4oogeVdhdGLkMKmdl2kzaFElSTz9TmBPSJQLD26uYJpApp9xedPXaau5OOaTUB7QPBeXTr4QqI5pgy3WJOllS5Crym/9SVDirzJg8cUipbSZKUne1leOfRzjfoZZbPCc4AVlEB1adEeGAL2leNQYk/zb/Y0iqWDG5G1XN0pMP9wi1Ao2CmDeXJAENUEPDc5dIesKEF4FCL1ZqYwqmUP4QLctIB0AfCRNTIxfqGaRHiysrInKxsKNTwP+0YlZO8RjIJetgi1YW/nuhsksVGIwU+ZgajYpGoSFyBCYIVJVewYwyRtHdi+MoH2GCG2HeKoHP4NKSG6VypQ0v34/G4AvrEud1JYkPkFsGMrvd/VlAD8f4w7iWyMQ4clYuB3JXfMpiWTKQqzA52v4o4/RRqbbz8Po/wqSGF/DSx/QW/la7fj2X/9XybJZ4TcKMQiQq9Y4o4IhH0LOAm5UilNjh+8bhJRPZcsIgcXkcWlQn9I+Zu720I8q8iwLXaVCzIr/NZMYMyLDSBP0Pnz6lygO6TUKwdfBJMm/2nxxxj6mDxGfA4uwrhA7PfIgkUFCEu5m/D8kAxlYvjS4CZXUkQVB5leSEBF9tgtULJkaEkJWE5WzIsX9o3FgaFjjDqZ0GiY8AkA9YsU0JGkTJQE7diB3J/oRjwWOSEyGAaEREUWMnsrZRo4kqVMpeMln196Lty6wzh0LWYmUvWU1Zk1hqqEQX6WGKX83L7kQjAYPj47TPm8OcWxWPD5gwHMkgtP3aS+zzJ71vgcZp3kZ3G3yNRbJmnKjoxQewRUF7vET7Pm4o+JjDsZYK6Z0Ft6x7KMa1gIl9zX/KGfUwB9nWRyTZJ9NVw05XMZCh5D1TPYpH4uUSzjsCBSLRekvuJiLydL5ph/NxLD8+epuFlzIa43SNcZtzGnV5I1AP2vNRehdiSG/XMjMtZRZxkimSAkqVeUKW3S7xbuMcnIpI+JHaTsitdUKhkX6TES6zEwnZ6Lr1DQD4gkZw2JXVMdr0eVfJyuSvLE9MEvAhc7MsvwAtM5VR8he+5D7ohl3H9iDWfZ75m6NBdkw7JfK2gM8kdfpmtaUbrnzY4N8yVQLsiE2hHZMmVfvW64YM1sp6sxMFdRUjLHxV7yinVMK2znPCe5gzFoLibze1n+GlIZ2zhI/HwphmqKYMRwXbJigfcDEosFpm+KAFQLJo4iMpmTLBoXv6aJQ4CK2aSi+zqdI5sHHbnwPqVjdmkQYFItRbpuc1pm7n0UgccoKqZlBiOG91KymUzz7GZyOE7lkiEt5dLDjjitF56eMVvvQF+WE6o+ARcfUS65WLJjOTB7AM9tUAxyyddfTi3txxLFOgxVF/n8AVmFwOtcRJ4nEcnGcT93So58PJFqOPK/eT64mM4Ma5QibUccfIhkT8kmtnOFYpOljUw0zX777CtUHWt+KIfk78yGH5TNoSboSa+nYulSKBETTmP6G2lj6lBM5y7u1A2squDnpHD0Kro6sXohpgJ7Hk8RAdnTgylCHGouoqb8Um/ISmbJaD4H+T1cJqZT5FRLwXRTZQN8mcHDjjH0pUwsK5NJdePgDYNZpA2QnYev8ram6zQBrOwLjQJASlKVnUdUEiGxeVACog8IlRqkmhDpvpb3jTLJUDu/u1/a96gF9NqSZYwR0ezSXtU21YhodjjaWQlpueiXjpJQESJk5+BHBaT1iRVOiaYqXQsuEDQ1FqHQgKS8MxQKqnXwlebrxiXgFSI9iZ6Mr2wcYqkgtz2iSjUd6e9l+4oXUEuIziOMDEGi2p3bocaj0Ay+6SwQ8AXgJlxgHci6A7RiomtL0BOL5P/z7CUemMMqAarC8HWTQZJL+5+2TTg/gKWY+hzhPT2IKQ2VCasKouWiLdecRCUHYCd6S4ZyqARJoCvEITkWWu28k6v1AOhEVQ1+SVHXuzedvMYPKQG26wfZ6+Cx/DmMJUxqI3wVlP7sLb9OnPuTbOMrstbo/U4W+6c8xl/49iuQCjud345f/85fA7D8334NLP/St8lbZ/G3/sf/FCPd48OLY5TaY7UtoVRAVVj0TmN9OcL0cIMYBbrWwDaGzBKA6azBalGjqC26dQkz6uG6tIpdaYh5j7AxELVjVQgANbUIViK6xF61GqKXiCKy2sJKslkAAW8EYLI5C2TcVETsU/R2LyGsSB+aAmHiIFqFOPIQa4VYpr8tPcRGI5rA+5oA9bxgtYYAZCPg5y5VaygC3j3Pmo2xpz8wAEieODFywLUBFMhEKYbPCE9wKhx9bLKVCKMAvVBwJz3QKabEdmq3DTc6qKcl3NTDHLRwz0epwkNifHuFzeMpFyu5CiRgqLtw4zDsf/bNxZmFflEM5zmYiFhGxMpDXRpEE3c+uZ7MjuoIjPzYozxX7GG09JnlhUN+LL2W9D9NA9SGzI9wBFn2IECvJOyRhVqkPief33ABd8CQmwxQpQdkR6YtVBHwgOwkco1IXrBk/1r2arlRgFmwLyyqiGLB2gwAsGc95JWh7Dexdb4kK6ZaAWEB6SgZLi/l8Piq4VAie8JyXUmoA/2bSZLtK25L1GmbwOCnDLizZ9OsmLwaZaQkvIzQS8lOUbnbrwgyegis38iS6yG8Csnzp3iOpRWDD64/8Bg9VrBjysSBnW/Q1xyM+OQJ1U2a0FeU6HqTjmvyJranAaMncgDxGXz380BmUSMdOzJ6ei1QrDgIAsjm+ILHQnW7Y15cy90AJnC7VCcGea60ZLDsNHDf0naadfobpGslVSi8CjTysCVqXoOZoZUZ9FiCxexTBDCEj0WJBIzTY/ndAEBEAmTVp4FLnybpKcjIjXeDi5AeK0t+81Aj38fVBL8M+cIgaxaRj62axBDb3X0zaxcMBmYzvwZFBqB99t3l4xjRHAnU5wTReptAUi0G4C08WcjyivePgvLxHGoTilT/kTx/lO5m+SlQn5Ph88VuQCNtTN2LTEreVSIkYAuCnCyfzSBIeAwewzyAyeAnD8rcWAzprjIdX7Pha8OOBVk0w4FJlgmrLrF77c5XJzwHNqqjLJbXAQcb0mcJdfIKCoFyGZI8eVcFIpNvNA8Msrw2D1pUl85xOpe54iTLU10lhmtZdRgqT2KqRBGBjB8k/9/NJMwmDvf3BQcEInDwUKxTZUolMDoPQzKraWICzjFd02TOMpjO+25HEqYJr3TcxqGLsbry6KdyeD0BGAAsXxtiGOZl2e3Q4amS/LjesZ15AAABVFeeUuU+ojlQqBZf9IXxfPK77ghE85CLgVcBdrwDxjw3kf7FNCgIhUjVN/Q02rGEbncAPwrA12TZslfxVS+tbgLciB5IX8ph8BJMGmYoQLVMyLVTRUCfn7eLw3YN3kkXd9vfeLixHq4lJE8kkK4Zn1+XSZKcQHSW6hKYK/obSzKYUYoBzLKiJbGJiRXkweIAJBQK0pNNzD8XPgwMYdTJi5iA8KvVH/nxglGIhYTowwCoWJGSWDYlILrMIsgBEA+1ITFSEpslry4MktlYGkpzlUidlYr/zl5JJb5QMcIfRgI5t7uWMojNfknEOAw8CLQVAW3envz/9Dcih/8ouXs8H/i8mTnMjOQrjOXgscxhO8l/OWxXBqQ5vCf/fQLSse12fsncS/lqaM+rXZXAzwebP+/2CgD9VZDC/ju//VcPLP/x//6LASzln3+XX9yblgFbW+BffXYHRhFU2k7DOUVQeT5GvdfCOYVmyxVeMe4RrcRo0mH90z3EXsEYj2rawW4KPLj9Arp0+N43f4gYBSana4iLghUWlcfBfA2hAtRCYz7fACJC7PVAxReKHFvcv/uCQE5Gyk2vDcRGofqswPxgQ7lmEDi9cU0JZsEPhurOCggC6iDFQk881FoBAdDPCy4+ewmoiOKzkiDNC4LKqUf1qIAcOahGQN/dACoCexb6hUlJqArCSlRPNGIvGUjSC8TaE7CaANky0CbqCGiCCXPFTkdVesixhdQBopNQhYc7toit4gdKK2GvK8QioHpiUFwqbJYV1FqS8RSAXkpgzyIe9BAW0EctQaOJiEVEeSEhtvSM+Bsd3Jxv9GolUTwzCHVAmDkukooI8doGJ++8HECl7Fl4r9eC/ZJrQRAlAb/nEMepVkNHAlyfWKG5Q3/Lku0uI+BYyVHfXyLeagnKARR7HZm2WSDrqQA7C0lySdAfTjvgrIPqBYorVkEU12QCiqWA3SOY8hUBRSgSs7RhGI26NAOICibCjvmhXlxKuBsdgWMCnEGzf3GXfkrZY3kt0B9QElY9I0AuZ93AsotAUCctgAjYAw/pmOqrOqC4YsBOd+wR396gvJKsTfEpFXQUobd8PrLEfNPPQCuU9M1GjV1wiwOkJzPPfsGYEpeTx3BN4NkeB+iWnlRh6dPMQLFY8Ht7yIWscFzI2lmEXglsbnEBUz+P7ABN2yAdAaNZc/tmP5GQjkCCCyQCY6Z7CtQv4rCIzSmoeR/ZZ8dBTAacxYLguXq565y0U7LzAEFnMNxuNyV4MEkayqk/uy6l489zT5/wwPJNXlf1eYTd43O+eqzJEgOr18OgimgPeZ6b4wjNtymmR6d3/Polqzfy/uUQFZXUDf2cQCAPTwhs0nHecAEubYRqAEgqJlzF4x4TMMvAXjgm4wYDditOKGPN3Z12lABoQRDoyyTt9KnL0QDzjzzBoI1D52Q3Fwlc7RYcZsW/eRUYDQx4JJhSzU5pkqWVAO+3ej0kH2cajCSQnoNJZM9zZydIQw6mmoaCjC4CYGeUMWb1RGawg2H4Tnv0il9SYQiqyeEzmfXOYEfma8HF4ZjSY05QPX5qeY2WOwWCHQmyypIDAjcSyfubXq81hrRxXxAQmi3llHay80Wv7okhsCpKpCAb/k636TWfwLirBdrj3b4NSoA0+FA2AfEUUCNTt2TUQD8hG59DakSgxDUqbp8rBVwthsftp/Sm9mMucqUn0AzMZCOo3YZhaCLdLh2XbF86f4WAHcnU+RqHAKl2T8KOObzKnZFkRslodntkrPPz5us9JOa2nfP587nKiqB+IgeFhSsFRk/a9Pw7hjGzsBAY9if3pJLlE7ATBdVGmLWDnarBd9ruEyS6Wib/roTsyShHhUEhwMEIWUS99vTgTtXgc41KoD00CIWEnTCllgA4dUama1avLfTWo9vnZ4yvFfqZhq+Sd3PD0J+YACoCoFqXBrMSdkZvphspsoU+Dgm0oZAwVy1iYoAzUA2FHO47AEcXBtbeTlNwTecHySlcgLCeIDWF2qiNhXQBcpt6K0dkdUWfwmSsh+wsfxaRzo8EXCALqsQA6oT3ENsOwkeCzHyTkl7OQiNU/BrAXGIfY13we2Yps9RUK4LCzGgWhiCvLoeAHDgmZ8P5IbgHztPvmTyRwrodqCzM7m+1AhTDemKM/B4CEChzHcCjEEx09Z7P7zxlsPlnGZQKufu/FPRSDrLZBDIB3lcpfuWfAX9mIuzAqMo/4z6/vv3C3H6pGcv6zZvxK//D76OzGtu2QHddYXqyxurpFGLsEJ2EujDwew5ndy7x7Ok+PXRlAMrA8J6CDBpMhFxoyE4MstjuzEKUAfLCQPYC7lYHcZkAnhVpUZsnSEgphxJ236N8rtHvM5QlAwR1c4v4cEw/21qjOpdwdYSbBYheQDoG9IQUCBQMJbpmkaS9gQuH/iwlXi752Dm0JZT0IkWd2QNum+p2nXeujtj7icT6dmJpNiLVApBJcuNIv9KCYUR8bDI0iPhCTUv9TA7BOLIlU5PDZwZ55IYLw1BE6E2qgCgi7CyieiGHVMfiWsDO4sBshVfY08wOEdDwWFKuxbAZOwXPYZ5MpwVQMGlh06RJnCI7OADNEf01xYILKV/HQSrdHSWWK0m7kKWlJia5aJL/JfmkL9NisIyJ7eDxsnv0ROUwkszmQOwe01c7diczRVGyJL055uMoywWW2STp74b3t+PdeVd9OjeJJZOe/3djspn9fkT1Qgzbazb8rpud/JMLWKDfB6qXu9RLO6U8m4t7DImoedGpevq0CJZ3kui8QM3n5VVWLCZAmKXSsscQkiPCbh+F30mOdfJJ7eRyGNiAUCRWJDFbr8qgg07HucGQJprPX2ZkhpL7tMDsE0CB5LnKICO/NoslfWWZIdt5+OLQnZf9bwAXy+WCC1w74fm1UwG9iYl14zkMyeOVGYHMWGWmSreUU3Kxy9+5UQrFSYCEEtsdW8/wkp0UNgf1dPPEKiXwbUfs6etmArp9BVwmdi+/tmICxEF9UXrKJMowBOdkX50veZwyi035J69f6dK2Innc0nWiux1rZMepNgUYJJd8viQTnoq0H2lBnvYn+9l8AeSAHL7essySz50X2tmTluW+qnuFtbQYfmZHBDki8jnLZQrsSUyoTEymtBGbM4ViSZ+dq3hNiSybE2J4ziy7HqTSandMiw09a1Fh+J6P2atJsFkanFmm7FvMr8fMWjPNmAtCltxjSMJtDiVGLxlWI/wO4GX2cEjl9bwOzSbsGLYspfaU3fYTDh2LVUA/kxwEJHCZ94Xvizs5LfAKi6h28mPZM+hGuN15yGyrtLtwm/wY+XHooyNDR3CCxGiHIZBpkMemIULQO3n3q4+pEpuXGWs3klBNSNJiMSyyKcvloEFlMJak3NIR0PlSUWJvE0tZUl6bk1QhgGJpEZSE9Azlybf8PiR9QD8zKJaUfg5UQQCDtMCBRFTp+rIBoVQIRkJ1/gupqcKFBGgJ1DIL6MfsoaSVJrFmiT0KlYJeW6a1+v+fvTfplSxLzMO+M90pphdvypdDZdfYxe4mmwRnE4YFwRIEaGdAC2+8sRfe2Ibhja1/oZ139so7r7wwLA+QRdCAQIgU2RS7u7qqqyrnfJlviPGOZ/DiO+fGq+4WREpNsItgAA+ZGRlxh3NvxDvf+abAQJ4mVnJEmerIhCXWL9oW0meAQUuUzab3eaMY1DOQCUwsZHoEISATAHQhAs8I0AUOUlkXxmtC4CYh654gL9NQNetG4MLhe965w1jGsQhGjYBR3AnmCXlGEJdrspkApbixeiQoFbcXDmAvMo8h1YoASNUj9IeS3QuZIeuYGD8VpbFSEhwmkJWks+Fwrl9JcfVxG0odqkbSNoUgmEyPu7LUGMYjtGbVSGQ+kTyYKbxHST4X4j4GSyCZjvluImysL/nK464E998GHJP09uvOWC4ehV//D/+bn/t2f/9//+//2s8N+JozllIEfHt5iceLFRdBpgN2mxKidCiqHvCALzzyoxbdoBlaUzlKVq2AmPeUc075G9cfDXCVh95H1koC6k0GV3rYiUfoJfzMIlQsiXcTR/kjAAQRi+PJWnYXA9NWQXAoPGBbwy+uvUKYWbSnZBiSlE92QHth4fKA/pjl1Wp/WIUNitI80TPFlV7KQK9kS4ZOOMBV/FNctJBDDP/wiIBRYP8wwMfzGyZhDD7pl56T+8qPoJKyRaa10mcaYO/3CCZg/66FcMDR4xXMhrUMw9LF7ssAOw1ov9Mg/PKWK+dVQHvfkb1UAf08UHbryOwkENFekHVNUleXc2LT3PMHP2cn0M9jCMWE52InAd2ph26Afk4/m4ySxu6Y73UZgayrAoYjhqr0cx6rcGIMbwEQwyo8GUPD8evjsfUzHlMCgcMioD31sFUczxnHnLJQHltiCtozlrrbisCuX3rYiq8ZpkDzbo9+wS6+oGNgyjzATljS3h3T79sd8xrpHf2vAEaWxVUhdnl6DLPkfQxwZZRGDkAfS+xdBnSnBPvDDICkl9aWGINO+hOP9oQAKKWScqWZY+4iU7Z/5KEaSk274wCfHyazKVEVILMEAMMRF3Zs3KaLry9uAppz3hP9jIsHXhNA1fcPrE57Gr8LbMD+IZlOEdI4cOLZnKW0ZoyyuP1DjguBA9kvU/OYuiOyI7YCth85elS7gG7JSVq3ZBfs7hFX4INgEEtzHjBMgGEmoiQR/A7KgO6IjE59LpnEqxmQomsW2W/fi0zhnGyY1zEIJE7ou2OBfpmYxCj/nN1hcVpKPO9WE7jI8riMHrX6nkBzLuCNQH1foL4n0R0zfTcBAp8B9Rmlv7tHBLrDTIyhJu0J0ztVfzgOb2KYyrHAMCcAthMxSmeHiRjrUUZ/qzl4Pb3CCIDshN2L3TGPWw2s/7CliN2bAu0pJ/3ecKGgn/G5IHkMQabFjoBuFkN5SoFhFsMyBCsUbDy25C8dpgL1mYKtxNgHub+n0JxI2JzPDRXfkzpAbcHttws5LuikBRqyquyI7JY8Hx99xUHE1FobRqlqN5ejP7g9SuCGYUVDJdHF54YZWdJueeis5K8ggXYpMVSUabYLgoGhJNhOAFt1ZHqaU55XtxCjhxjgRJ3PRW+y4aJAP5UYSu5DDel3CtCcqnGBqZ9KdHMueO7u65E1pVQzLgpIgf2FgtcC3ZHkcVQSzYmKrKUfF3lGsBoI4oTFuHjZz+X4PRSEgNlTototFMzOxe8TOfo0fSbjc6zfaJdk1lwZfYqSz3cLAjxbSLKwS4V+JmMiMD2MACB7dm/6XIzgCQDluAXHTSQ2Ln43+wgO+5lBd6ThMwE7VVFGLCkHVUmaCbTHGaTzsIWCz+ToJxU+oFtq+jkV2TQ70XC5Gpk7WyqIgWC6OzbwWqJfZHAZk2zhCcC6I9ZmDHODfpnBTjSGuYGdZhiOCtiJhi25fxlZv2GRwc4MU3EXGaWeEUgHzfH0paYHNJ43wZ6kFLbSCEJgmPK4fKbgY5/ksMjZd1kZuIkBYrqrNwrwAcOUgMtHP6Wb0DYjm4Hs7sSMz1H+Kgn2oucvRLAIyURXNzFw0wx2xv1CMClWWAK2EI8PSkD4CJatQ6hy/tvcqQQxiu/JWAciYqVHKAyZRgBhUhBUJg9jkokqdQB7qToksYsqXtcENBPIS1JY78ftj2E7WhGoZQYoi/F1MJoy1zGdNYxsJIIHvAO8g9CaoNJ5vl5I/mQmBggFpsXq5MWMioA7/kehDhAjMZJCyZ/4UWQ3I8splIIQ4mf/xPf87eMX+/G1vkLWSfzhq8d4uj6C9wJFMSAM8Yu7jymexz2GXmP15AgQASJ3MFUPyADfaOhiAESAuja4uCBAOvphXIDXlDsKJyCOe/ohtScwVIFdghMLf9oTyA0C9oh9kCL3oycuTCyEFwidRPmWABSthDztCBYnnr2BGtCLHm7uIOcDwabF2DkHCbiTAeULBZ97MjQTDzd1CDIgW7b8pdvHBEwR4Moo0e0FxEBZ6HBs4XMPV3i4+x2GY4JlX3i4KPezpwOG2WFlaZh6+hAbdkBOvlBA7uAzYN/kcFVAmDhkbymbFV7AzyzwJoe1TCTtTxxmDzfINoDeSbiLfmQxh/PhwIQNrF5QPVmTEP2Xei9j2l1c0Y9AGoHVIy5nuE93HOCmDgJkvYIG/DQC9R6QsYcyf6OQJKWJkQIAnwPZSsJlAWFmEXRAP6ccMfkrhyMPlwV4TbAmLJDfsnMBZJeBAAAgAElEQVSsekXfZmLLhpnHcOTGUnk7dchvyA4DQNCsEEkLANlLg+kTifbco1/wHIeFR3EVPZSlH0OgXBl9WIKgzRvuo1+6KG8UI/Navpbojj36Bas01ECAZCsGVMnuMDkqrsXoC+xOPMwtJ4vCcqxVvC6qFcjf8rx9RqZWdWRIhWU4UmJgbMnaDwIOMjdqKwlcj/zIQtqKgTfdqYtdjxj9Yfkq+h8Lgi+fERR0R4Jy3Z7HmPyJXvMYZewdTJP/bM06n2Eu2I0oyZalcKYgee9UzxXGkJMsjN2MEIgr2oCd0mdodqxw8foAkLNtYKKm4UKALXEIhlpGZvSUK+T0PkYWRnB8+iOCArMhm5KtgO4Eo8d3lMvF1fbE4uqG19VWGDvqUi0NAKQ6FmHZGalaLsQAkb3NY9VPFsc5ehx1rHmZvBoO7Gcmoi+QMlkXvYD5hos5SXKZfIXCE4i2x4cgLpf6KSPrm204VjYy4CbWv9gCqF77KE1DXNwRX+mblJbnOZQsqb8b5tTPItsZFRApbIgsBxlOYQkyGfbD/UvHLsUk69QNxlA0byiFBciySgvWl6RgmCgdRQDyDYHSMOH2XCZgKzF64BhQxc+HafxXxiddu/LKM8ApMpbpfnE5GJwlgeK65zWXQJaqXypKSotrSv9SrY0tBfJtTM4cAmbPOQE3DcfcK4Ixl0UJtA1k/xJhMn5+YjpoDHnKN2RmUkdlSi61uYh+Ti5S5KtDz6TLxRgQlB4qVowknyn7LiNTGqWb3YIAZqgkihsXwYyI+0pME2tQ0iLGyK5G5lnv3Rh6VbyuKQ0WlOl6LUZAHiTIUoaA4saP8lfdWLgYfpRCkdqlIrBV/Hx6w/PM1gOTaneOr9dc4Ejsouo9a03idw9/UWCUZbPPEWPAnlcCsvfoZwQgLicI9bmKzChGf17yQ7pSwU65IukNpaaqcbCVjNJvx9qU5Lc0BHiuYvKqLcl6ShfgjITPFfS6gRwY5mMLRZ+jjxLXXGOY6uidjYxnRsaUIW08Bkp35cjkAqBXMTHRUrBXMnkyNb2MPtaa6N0QFSw6BuT4A3tpPUJBqazsbGSSyfDp/QDRDQhSQsbtBXPHEJ9An1L0PYJAMsT9hijtFL0d2U4MFqLrx9eOIT+pW/Ingn+QQoHEncUKKWMIlSOgjImuIQK8kBsgAdHMEFRGljK0HVKtCFI67F3GMAQIrSCMGYGkMAbCmMNrvONr4g8SYy0FxiAdFWWwifGUMjKsdxhQpeinlPIrElh4fwj3cY4/IfzsH+d/mvH8uj7CX8HPL8jjay2Fzd99FB7/l/8dhoc9VOZgMgutHbaXU8i9wvyDFfbfX/LL+XGD8KqAPxkQLH8ZCRVYWj+xKH6c06uWecwebLF9O4V5q2Ef8EtBXWajFy6/kRjmHm7iIRsJJrHKkZXL1pyg2pMBMncI1zlC5VA8M/SsqQAdvZO+CKheSNQPfZxcxvTKLScI7cMBcq8YoLNR4wTFPugQWnomzUqiP6Ef0y0HlE8yDJOA6jL2Hk7ZhSkCYB7v4X48JUApGF4Df5BR9ucWk88NvU8LjgcME3cTeJ68FNi+yy7D+j69YbsPB2RXOkouPdgFKTF5xuj/7bsESNlKojt1mH2u0JzHcu2SEmJXBtiZQ/VMY5gHmLWI14QS1eKtRPPIYfJEYffhgMnnBu2pp6S4OoTjdKcePvcoX2q09yhHLt4ScJpdnFRkwOxpwOqXOHFKPYL9/FDBAM+aBWmB7TdYO1C9Flh/7FC+UmjPPMo3Et2SYTJmC3THQL4C4IHNR+zZTGDCVgG6FSjeMGafDE1A9YqTBVuQ6Zs+YYdgfkNg0FwwlCbJRVV7CFGp7wccfUJ2STcELwB9ibaIibQVn59/xglrc072W1oBl5HN07uD3M9Oue9hwkCc6RM5etdSsAdluOzyXP5owO3HBs05j2X9IXD85wxg8VpgmHKyX19wnKRj5YLZCCw/s3j9u4phPBlQXAWYGrj5ZWDxKdmqlMIre0TPZsD+AYHc9LnHza8QxM5/DNT3KftOsmxdc7yGKTB9EbB7GIvQn1I+Wd8PmLzkvd+cixEESMvKBm9EZPoClt8Htu8Bsy+ByaVFN1fYfoO/IOdferTLJOtjZ6R0BELlG06uu4WEqQOloZG9uvpthwf/jJLy3UOJySt+TtYfyDHwpHpDsFNdceK7faTgSiBbM2G3nxG457dkJc2eHkpnMDJ+wvP10gH7+wKTV2FMmw2Sn4H1BxLFNf2IzbnA8Q8sLn9L4+TPPbaPmCZc3LKbk548MhQuJphOXlvsHmimHt+EuIgTE1/rgPX7Mk7igckrj803JKbPwwh863OmJTfnAssfOWzeVZA9MLmkbEu3Aev3NPJVwFABsxcOq/c1TB0wezrg5lsZqkuP7WM59rKWb6ksMLswprgmqastBCavLa5+1eDkzy26hURx67A/1yjWHvt7EpNLP4KeJHHtJ3JkCb0WKFYO7VJhTDLV0XdpgNlTh/KqxzDRaE41VB+QrR12jzQmrx02jzVmLyzW72rMnjv0U4l+LrD8pMf+vuFn4pbhLcXKkTmcSZRvB/hMYvW+Gb1nk9cMY7EFmdf5U4vmVCFfM922uCVoqM8kzC5g9rzH7kGGyauei1FzjX7Kc8vXCWQ51PcM2qVEee2h+oDydYubb1dQPTsxvRHoZ5S5Zluyabv7BtWVhVkPqB8U6KcidkESNM6edeiODCbPa7hKoznNkK8shAtYfZCjWHt0MwkdtwkQvHZzFSXlHtl2wPZRPiYk91NB8N96eg0dFw1Uz7Rbsp8SzgCT1+ySbE/NKIP3WqC4tdC7AZv3Sxx9so/eRNZLdMc5issa62/OkG15TabPW/QLg2FC9higrFfvBtipGZmx1LWpa4dhppBtLMxti/rRFPltj/Y0Q/V0j+bRBHrvYLb9yPLtH0+QrSzk4DHM2a2Zrx2y6wZ2nkOvOgzLgr2R6wb92QSpZmOYawgbUH65Qv9gDr0b0J4WKF/u0J1VcIXC5Is16sdzFG9qBtYoATfJoNcthiWlJHrXw85y9AsDCKB83SAoMo7ZdQtfGXTLDOWLPRfASwO9o+Q0KKa8dqcFzN4CHjBXO7QP5yie3KJ5/xjFZQ07zWBuGwQt0Z9UyC938KWBnWUIUiB/vYObZFDrBvZ4AlX38KWB2rTsuxQCqu7H2g03ydiNmfGesbOMCbmaYFZGGayse4imA0KAOz+CGOiX9LOCstlJDtEyuRYekPuW/7eu4WcVZNsTkJb5IbX1Tnqsn5SQ+4bS2dhPGaqCrzGalSKZoVS2zIGup1Q2VomIlr2foukQJiVE3R4mwUaP20HbEVgKwaoQpRCKDGLfMJCnLAhgYyosQJnrGKRzV0YL8DXOQRiDYN3IFIYIlJkw2xE8Zgaw7DkNd32XCV8IwYqQu2Az/MUBYvjJ5FjvfvYL/wKPXxQp7G/83s9fCvvP/49fDCns1xpYlh8+CH/3f/pH+MGzC3z08A2u6wk2+wJaOzgnoZTHg6MNXq7msD+cwz5uMZ832DcZlAroXlXILmoMvcY757d4u53gW+eX+OMvHiM4gW+9+wqvNnNs9wUmVQclPTa7Eo9OV3j6+hiLRY19kyHLHIxyWK8rFFWPIhtwezXD0ckO3aDR1hmwMghTB1gBtdZwM4ds2aKvDWbLGtubCbJJj/66QHleo2sNPn54iR989hCQ9H+q+w1TbWsFzAYUkx7NVcXQndxBXDLQR04GlJMebWsgRYC9Yh9KUARMIYtS4EECOrB/stWAo2806ADIALVRI2sV7nVQzwvYuYdey0Nv3jt79M8m8POYZispSy1eabQPBojSQdxkcbU5IFSOybk5vxjkrQEkEI4GBgo1ikzSxQChPeRlDl95qK2E2Qk077APU28U7Iy9hv2xiwxSgLASkwdbtJ8sYOcOsqNs2BdkHNVOwp4NPP/CwTzN0Z86BtPEVZ+gAbPml2h3zwK5g7w1DBkSAWajMCwtqicGzQOuOJuNRL8kgA+n7EjM3yq0DweojYJqxcgIpeRalwEp5RSSAUbVE41hwQl7cS2w/cAiu1awE4YbwQlAB6g9J+nDmYUsLMJtRkb1hkmu7aknaxgwdhgKDwxLB7NSZK5nnl7R6D9LARM2gj47IVgXFtHTRfDZHzEBV23jfVDx+Is3ZKZTbYmwACRBa3vuMfuc3sLuhOmpvCcxss7ZhqCwO3coX2jYmL6arXhNmrNAT7DgMcoOsDMuzPRHAaMH0PFYyaQwTTV50II6sEfp/IKOjNUgRk9xCjXR0bua2LBUczMsCF6ZuhkTW6MMOSV52gnHsV9wQSNIjgf9iQR01StKpelJo+yX/jeMgTq7x1xY6BfRM9zSa52Cg0YPqwATUA1luWbDa5ut+f/J65hkpMOMLHnxVo6hLKn/D2AAUHEdg1zcYUGBdS8Eg2ZH+W4KOGKqMNnzdFy65sKAsFwUGOZiHMuvpMrGpNH6gos0usZXr1sck5SGayexqsaQAUye3CD5fJAx4OfOOKWKITmwT3GouODQz2OK7PEhmdfsA3aPgeJt7HQsEPsqY92KOnxm5MDxHaYidj9G4BlDU5KvWTjeA8Jye2YXRjYsvW6sGImAyWugvAmozyT6Ob253ZL3avKXZtuAdinGrscQE1YBsnHSHhi65HVNjKutGGgUotRc1+HAjiW1qeQ1JuPM/zd19DTHeWb63MshjGmr+3OFyRuHdiHHOqrkYbYx7Td5X4Pi/QFEFnXtRz9tArbOMGSoXRKgmj2PJaWwBomxixHA2MeoY6qttAydoiSX8mDdhdGv2i1in2Ht0c8kilXymvK5+lSR1Y6eymzjsLuvkW/5OhVDp3z0jqYalFRFw88hmUWAPZL9TI31MynhNqldso0/pOMW4ivprWTagOaYxylTAmvvoaJn1eUE1CnkRkZpLO+vMO5PdR7DXEE1nn7TPsDnArr2UI1Dcy+D3vuxjiX5Le8yy0xH5g1jdkyjBYD8pkc/NzA7i/7IcEwiKxsEYHYDfZ8qdj/mCrJzGOYGunYxCddhmOoxkdlsBrhSQzUWPsp/2VMp4TIJs2Ewj52YkfmUPStMUk9j8jvKIfp7jeIcYT/A5xqyswe2ONbW+ChvHYOBIvuZuil5cTzcJIeMYFTd1vBVzs/94EbZLA8ikOkEKNVNqbBSHkJ7gPF50Q8Ik5KgtRsOnkvnKJ/9CelsqqcZ95Vek5jDrsdXakGSDzIBz7vM6R2sEEL4Khs59JTLRnAJSS9lYiHHc/I/XRUy1pTEXsxx+/+mhw9/IzyWfwssf0Ef5YcPwsf/5D8HANxezgERILcaIWM1hdgryk4DIKYW4jqDSiXsnYS/10G+yQ4TPhNQPVPojhk00y8ZnGMrJgEGFQNeBjHWKPiMbKXZxgqDOkocvYjBOIHeLnD7ZivRnTgCA2AMLEmTX5eH0UeSZGSyOwT6SCuiPFIw9ETz2Nmbl6R6kT074oR3TOy09DYiiJiQeQgc6RdxsrA/SDSZTMlfPGTjuL1hzmMEgMlLMnjTLxT7HxVf0514mC3DiVzlUbxRY/iN3scvqujLSWEoquPf73Zf2kmcgJYc62zFCTy7QeON4ON7BcZOx34RfU7+MEEKEvD5IYTGZxF0xF/k0hIM5NfsIFVtDBJpMQZepDL0lPKYahhSSqTqDpNI1Rwms66gjJHpifH0/Ve3k0JmuuMwMr/F2yhBja/L1nFMGnod9T766+ZivG+CxBiykyohsjVBS3HNDrPk9cpX4cAqOk6oixvWPpg9Jx/dUfQKldxmtsFYP5CkgmbD7do4WW5PxBhgIwdO9LujFKJx6LMcptxft+TkXQ5MDhUBYxVFCpDJb+M+KiC/CaNnK4GSPham+wxjOE0Q9LdVlzym4pr3eX3BiTmZrMOEO6gYuBMLxocJJ+26TsdzmCCy6oEJt+0yHtdtkjOSBUk9jwnwJi8kpZ30rg0z+tlSf2iSZ0LEseoC9vfkeO8lljHJI6U7yGHTNnUXxgCdFHyU/G7FjY9+OzGCDtUhShExJm/aksxee0yGS/V8LqWtpqTY9PlMCawJfAvP+z7JQVM4jI4MkW7I+iTGSA309s2eOzTHauwNHaKPNCgCiW5Bdj6dYwpmKm5iiE/N0J/yxo/BOzad+4rPDRV7RW3BeguEMLJaZKwZGNNFAMB/Y+w6TDJXl4lYlwBedxsDbRr66vuJHENgdHdI5U1M7t1x7ieUlBerQ1WGu6NIAyjVrc8lvy9isE7qCE3XR9yZt5o9r3XqciUgpJR+KNnZOUy4/xRCZcsDQEpAUThWXySmvbjhhF8EpolmGwIJF6W4qYM0gcgEtlR3+Nyqjix+tiPL6Er671Iv5lizYu74P1NHoxbjdzuQFpTid5shIHK5jNUvnpJLTzmoy+V4HfSeUs5+rsfz9IbgbJioUT6agpgAQHUOtlAwO4v6IkN+yyAV1TiydXd8jqmnMn3HpPMYfYcDZd2yi4CqJzufgnBsqWG2Q0xiFWP4Dc85LhzEbfB7nSemGvZH6nqg/7LSUIOHVxJ616Nf5shuOwQl4UpNUKbZn6kadzjegWmrcnBwpYYYPFQzwFXZIY019mCOvZQ9fX88b7K9PqcPUVoP0Vu4SQbZ2VES6XIFve3oc/yJgJ+xazL6Hl1poNcN3LwYw3mE5bjBBfjKcExid2UKEBJND1/lBwCY/Je5GqtFxODiwo8/sG4Ag4HauNKT6j0iyzj2WmpFtlIIiLpl/UfPHs4QE12TxFVYAkE4h1QLkgDiCOSSJ/JOKBSiZ3OU01r3VdbyLpsI8N9J1joM3EYCoo5sOn4WwwgQKPpwYBaTBHX0d8a6ESH49/gIbXfwi94N74nv/1keyb8UDvmbAiz/g//6577df/5P/4e/9nMD8PX2WHovULcZ6jaDmfaACjj55jXUsgOcgDzp2SmoAhaLGsLSoxYKD/GwgVQBPklCa4LA7jjAzh3rBGRAdzHAHQ8MfMm5cmi2TI71RYCfOPRHHm0MGmEhPTsl+7lHd9/CmwB7NkDVgl49QQ9jQEqxJBBLvXk+A5NMg0B/auGqOFnOyTrqOiYuLgO6E/7iqh/ZOyAmoF+QnbRTbtNV7CLsLizrDALQHfsY2BJXsC3Qnjm4nF2EPiMraScezb2A4cQSBO0FhlOL/FagWwKqlmjOQwQl9P0JJzDMPWZPgPxKoTvx6E4c9J4y4ZR4qTqCWoJBVk1IK9AdAxCs8hgmDPlRkYUSjgE49JkF6PbgJRMe6E4C7JRVEz5nKI0rGH6TrcTo5dJ7gf6IE0bdEFS6IlA+XIbY98jjsNMQGQYG4njDRQZbRllr4CQ/HZ+uo/euPzBk7Sm3oVuOdVrQMLsITieRhbkRGBYBk+ecANWPWAWioydK7yLIXIVxnGwRJa9LBgBl63gvRIDZngDVJcFMt+C+VE+w1C15DGNQT6xL6BdAe5xAV/TYNTxHrwVZqQBMXnAVvDkj6GlPBUwdQZbgdelnAsPssFhS3xexXoHALz3kwN7C+t6BKdQNx8uVYqwrqC/oTVNdYDBORdDcLQW6Je9dbwRcnCS3xwKLLxy6pUB/JDB9HqIkl5M11VGC2S9iamRBL1u2IQDefiN2280IcsyWvqN+QdYr2wZkW4z+xu6I2/GKbBArGCgPTems+a0nyNwxLdZWDK7JV5yU21IwCKcQmFx6TF94FLee91yUGduK4Sv9nAsuKYQmSAbfpO65BCp1HdBP46TRcb+y57g3ZwT++dqjW5IF2T2UlF/OGbSSKk5YgcH3es3zzNecOLQn/H5SQxiTWqWNoUgV0M0JTup7lPbbgtdrqLi4sHugkO3Zw9geUQ6Zbz1MzXHNN9H7qXjddccxS1LIbsHzqM/kWGmR/GjDREbJY/Qp7zyaYzGqFbKdx1hDUUqUVxZqiKFsEWz2EzmCLtZieKj+EKKTgnjaBbsHi7VHtvOU3Lee4TxLiXzl0B5J5CuP5pgAS3cB9ZlCfuvG45aOP7qllLK48ci2Ph67jD2WvFcSME6JssMkBqmoAzBqlwq2YB2GLXjdUn+iyyI7t3dxAY+AsD7TsLlAtnYobh2GqYKtJGTnka0duiOCsGznYGrPAJwujNtNlRz9lOOfryihLW4c8tXALsUuwOxd9AlirNCQNiBbDXHhRMJWrNcwtUU/kwzWiRUc9DAyZGeoZKy64P8jsCtyPMetg88kbBl91DEYR0efoRzou1Sth9lZLmyse9hSjWxgvqYPkfuPHsKYsKo6x95GHf2ORo4AXQQgW/VwBdNUXaUhew9XHnoYhQ0oXm7H/UnLdNn2OIMzErJ1Y5BQ0AJwAWbVQrVuBIv9IoPPFcymB1yArge4iYHZ8s9hkcGsW/ojtx3Mpoeqe8jBI3u7Z9iQBODp//S5QndaUnIamMaqdz3E4GCnBmrfUz5qJNS2JSgEIAd2X7pYvaE2HVxpIFd7uEpDtfQ0qs5Rvqol9KomkKwMgWlvEYyCagb43EBd7zimrYUvNFxF1Y7sLIT38KWBzw5eyOFiRlZQMZyH4IxMo9y3kLvm4KlM6b5VxuvhgdHXKPmnaDuEXDP99W5Ca3rEEJ5Q5oD3ZBhTB2TqpoxsZcgp9z14N/m+kMcQolgTkv4fUh4AaAKTXY/Rv9hHEFzkBJTDQO9lkR8kqeNx3tlWYiiFIKi0lnLZEAg0k+Q1AcmxGzOG+6RHYinvJs6GGJj0M7yTfG34i/38JSS0f/v463l8rYElINDXGfrWwL8sod9kWH3vFCdHO8ALuFqjuJQQrcLqehr72OIH6FkJ9UXBwBITMJxaqL2EnbtxJXTyTEE2CvqtYd9eEQvQe7KIeitQvDIoriRc6SlRiyX1xXNDRrCRyFYS1WcZ5XAKKC4puUhsDgKirO5OlPvA0Be1pa5feAIO2bGncPKM1SS6oZRPbxTMVkDX3H+/9Ehl9GYnIXuB/FYge6shB6C4Esg27GrUe/YtZiuB6ZeKclgJmI1AthbQe6ZE6rVmbUoHmCvGoSc2VPUEHvtHHrLnBBFeoLnHPsX8SqJ4o1C+ZVBNCmpxhixpmrCa6PWzFT1gbsKJXuoyDPoQMiI8KOmcRKlelMqpViC7kazgaATyKwGzY4ruMAXac49hEQF1moQFSjazG8lxWnNsVM/jWvzoUMthNmQMyui/NDvQH9tE4HkSoPdkuWxBUJatyUqLmAw7xC5DGQEcpaaRWVwA+TUladkWKF6rMZ5/mDEJ1RWUQ9mKgEB13M/sC4JaevmifG/g/+0fCdiSEjYTZYbZmuAuMeTFNcfWxxRc1gocGOUEyofpga1tzhmcoWtK2Mb03ci+yYELAXrP89UN+yQTe6viuNE/xgRT1ZO51HeqDmQfgaAjawoAkMD0eXx9y0UFYfleG3sKk9Ru+0hB17w2KfE2X9+RmQ30IXLxBGiPJZqzGEK0iwsh0d7iyhi40vDfw1TECguOga55bP0RF5u6hYiSvUBJYMZ7J9tw/yl1tZ/yfpaR3SxuPbolE0n7GZNcVQvIPrDzMIajkNmNwUk9AZgzPK5sS+CclAE+MlcpfAeg1NDsA7INQQ9C7ALc8V7icYYxfIfbEhimkZVNaaOeoNsWBJtJ2dEd8zjSgkoC5/30IIeU9tCN2C75GVMDx6ebk/nTDcbEUFuIUeXgNZnHtKjD8C/AFjKGRzFMCDjso58StAcpmMiqgPZIjWmo8VdMXBAgC+oMP0PNyaFaxGVy/N5mzQSQ7bgPSo/JkHotUJ8Q/MiBAM/UXOzRLUGX2XMRid2EB2msVzxfW6mYThvvvx4orgbWdcRkUyAm18Y08eS51I2H2fuRBe2ncgTH3VKR3RVAc8b+Q5sL9FOeW7b3I+PXHjEF1iugPWWiqG5iHUhUCpTXDEvrjtRY1ZEkoUkmKXxSJhh+L07ivnaOoK6h9BIBGKY6/p7xYxhMtzQwOx99q5aA9XaISckR8Heen21LNi0IgWxtRxmntCmQJ4UCEYz2E7KJdqrGOgyXSdgJj8OWrEJxmRwDeHwuILsYUDRleI2qyWjp2kGEEDsWmRRrZyaG4MS003kEFVKgO8mZxFpQOuoyycAem7YFgtHBjUE5Pid75I2E3g8IRo4JsrLne3zOvkSCwIES00URX89tuGkG+ECPYmsBR3+i2tH7Z3YWPtMQPX83Qwi4KoOwAcOyhJ/kfG5WkMGtDHyukK066G3HsZzlPJ5piZQkKyKbGZSAaoZDDUhiDQ1rUhjUo+HnJRnfgeysagjcXJUBjuBeBIYGBQGoXQ9fGIimh3AOvjD0V7pAcBhBnC8YiCNaguSgKH/18xJjBUlkFkU7UMqaZxjrPrw/BPBkBiHTMYn1wGiOzGACmeBnawy1CeHgpXQ8R2S8X5BA6WARuo69kl2HMK34Z9syBTaxqFWJMJuMAFSUJYGukhBZRhmrtQSjd35EZiDy7CB7jYBSFAVEUQAmA8oCIs/4nshEiixO0JJMF5GRjGmvP/kQd57/6cTYn/75Cij+Gj/G8K2f488vyuNrLYW9+PZx+LX/8T9D5zT+o7PP8LQ5RqkGvG5neLWf4+9efIpX7QK///mH0Mbh4/M3eDy5wXm2xZ+sHyGTDsdZjb3L8Lad4qzY4V++ege/9/AL/P6TD/GrD17gotigcQZn2Q6f7c/whz9+F/fO1vil5RuUasAn63PUg8E863BW7nAv3+CfPvkWhkHhg/MrfHP+BuuhxHbI8cO39xAC8A/f+z7+t09/BcNViW9/5ykyafHR7C3+9PYhPn9zgt985xkmusfeZtDSYdVXqHSPT29OMckG3OwrvH9yje8uXuDz/Sle1XPc7Cto5ZBph++evAQA/D+ffYzvPnqBPhpOXm1n+O7ZK2jhIYWHDxJ7m2HVl5CCKbIn+R5/8PkHWC72MMphanq82U0xyXu8eHaCbN5B/8kU2e/eYPVijm996zmerxf47oKiNe8AACAASURBVPkr3HQVfvhn7+D3fvMT9F7hX/6rD6G3Ehe/8RrNYPDO/BY2KPzZ5w8BJ/CPfv2P8L/+4W+hOtvjaNJgcArbugD+bIbHf+cpvrw6Rr/JMT/b4Z2jFT75F+8i/+YGbZNhPqtxezWDLizsJsM3P3qJN7spVldTPHh4gzc3c5RVh18+e41//fYCIQgMg4KzCrZTODreo/1Xx8B3tiiyAasXc6B0ODreY/VqDllLnP3SFW7/6AzhwxrTCb/ktz84xse/8yVebWe4P9vi+0/vo5p22F9VEL3E+fvXuP7eGXQt8NF//Dlebec4Lms8Xy0wDArGOPSfzhEeN/DX9F3AAb/0K8/wbHUEAOh+sODk9Ntr7G4rSglVYCLxZQ45CPjHDdQXJabfvcbNiyPoeY+P7r9BPWR48vwU2aSHe16N3s5w0aL4fon22w3ycoDWDm1rUBQDlAjYf38JO2HVzsWvv8bzyyVCrYHcIXuZYZhTfh10wPn717h8eozZxRa7F3PklwriuxtIGVA/nyK7qIEfTmFLwM0cpvd2qL+Yw88chPGQmcO3H77Gn/3gMRbf15j+w9d49XYBvzVMYB4Efut3foQ//OOPgPkAcZ2xyqeMXtpeAsZDVRau0ZAbDXHewXxSon04AJmHUAHBEiBlLw36M4f8jYL7sIFtNYqnGWwRIN7dY9jmEK3EvQ+v8PZmjvAmh59bmDeGvtQj9szm1xLNOwP0rYY9schfaXSPBujCovyjCvuHnHybnUT7uIdcax537nHyhxrXv+GQXZEdQQxu8pVH+UJDOKC5cMDcIjgBmTnIlwXku3v0twVEL6BaieqVwP43G/hBMgHbCmTHLfpNjvKpQfN+B1Fr5JcK/RHDpfbvDZANfbV6J9B+o0f2mpP5fukxeaqw+yB2wvUCxaVCe84FonDRAtc5ggmQtURxHWt+juhfVq2AnXAbDKMCmofRFxx9vfk1F6bqCyYam1sJ6QTCt7cIn0whLX20248cRKw3UlFOLwIw/0xi/5Bqg+aCC3hec6GtfmyhNwrFlcD+EaXj3anH5KnE7gOHyZcK7UmgMmBNBYc39JX2C4ZJ9UdxcawVmD0J2D/gwlr9jkV+peiR3XJhLkhaDiC4f5dzYcZWQPKnugxo3hmgNhrzzzH2KLqc42N2B89pvwgo39JLPf+RxuabFsIKzD5XTP2OXruU4JqUBjqC/fWHtFZkKwmfAbPPCeJdTvtCf0TpPxdj6F/1hpaLxadM5+WCScDuHY7B8Q8ddg8UggaOPrW4/aZmQNkqsd7A7p0wBp5RJs5xyFdkd9cfAovPIoM+YR1PcQ10S+67eilgp1xcKG4Cdo+SNy8uXgQuyknH12y/we2xhobnNrn02L4jI1Dj+OiWC1XDFOPiVepNBfg8j1GMiy0ypgCrlmqL8k2ULEcPZ6rzUB0XQvqFQHnFsaxecdGhPRZjv+70Bdnp+pw2huKans+gDzJ03QU4I9AdcQyHSqC89tjfpyqgvPIxWddjf19h8eMB9T3Nap85Jf1JKpwW3phIHMbFgHzjMVQSwwRY/qjH7lGG8sqiOdHINw71Ge0ps6cM3Zq+tDHEiYsrxa1Dt1BQkbm1lSJDbsGFgygfd0agfDtg+06GfOtHm4RuAppThfLKkcHuCRJtIZBvKKU2O7LfxXWP7aMc5ZWF3lvU9/PopVVjCJhqPbojhcmrHv1CR6tOgG4suqVhqNGtg9kSVNtCwRWsjgHIduuaDLPZO+jawWUSunVQmx5QAu1ZycXpzmHzOMfseQ+XcZFBtY4MswdcKVG8ruFKQ4BsJOxEQdcOqrExPZcrOLJ3ZFUrQ/mvEPAFZaZBSah9R5DaW/hJTpAcFwaSR1JYD7FrGBbUkbGVuwbDvfm4SKJva9ijCpAC+mbPmpMqZ0ptrDwR+3ZkTUXbA1rBz+OHJ0mwFWXmcrU9VKI0LVBFD0/yaDr3VfluCPRP9kOUwnpASIS+Z3BQPzDx9Sc9lom1Hey/tUokgdy/CVLY3/zdn78U9v/9P38xpLBfa2B58q3T8A/+5/8EvVd4uVug7g12+wJ/78NP8Lw+wvef38ff+eBTrIcCn1yd43y2g5EOx3mNP339AN5LPD6+xfPVAkp5/MbFc/x/X74H9YMpvvP3foTPb09weznH8t4G07zHqikQgkDbZDCZhVIe+22Bxxc3OMobvNzNAQDLosGnL84xmzfoB42z+Q7PPzmHudeg32U4Pt9gXnTY9xma3sAohwfzDXZ9jsr02HQFpAjoncKbNwvoYoD3Em6d4fSdFa6eHeHjj1/gR8/uIa8GVEWH7a5EWfbYvJni7OEKSkbDugh4+fkp5HxAuM0gW4n/9O//Af6XP/odqNJiMavR9gbNLse98zVePz/GvYe3mGQ9vnh+xkCdLJrdvYCpekyrDtsfHuPj3/4SX94cwzmJYVCQ0mOoM8yP99iuS4ReIV+0+PD8Cn/+2UOo0kFph36TQ00GXBxv8GY1hXtd4eKX3uDV5RGwNXjw4Vu8+PIU5WmN5k0FORsgXxUQ79RwlyWyh3v0zycQ91q4RuP9b7zBy9sFpPSoryvAC0AGiEFCDKx3mTzYon4yhzjrMJs22GxLBt54agVD6SGMZ2KwlRCdRJgPWJ7scHs9hag14AB50kN/VmL525d4+6/P4WYOopPAYkBo1Rj042cOcqvIJp83sG9KQAF6K2Eveqg3GbzmxHv+zVsoGXCzmiDcZCge7NE9nUI4AfnOHuZ7U+S/e43mj09gfu0WIQjUT+bwmec5HncItxl0LaG3lNHiUQPxpMRw0QOdgtpLuKmDWXQY6gz6ykBYwC481E5i8lxg/S0L4QTMmgm0duZQvtRo3u2BQUL0EsF4QAWIViFb028bjntgZZiU+50G2acl7Mc17NZANrHjrnLIX2kIH3tJBf2uPvdQjYRbWKhbA3dkkS9ayD+doXmvh742sDMH1Uj4PKB4TVm1asnWhsqheG7Yr7rwkDVDnrxm6q0tA9zUI3+jRqbcbATaj1uYZzlUTen2MPeYPFMYZpwElm8FNt/pYd6acfLZPRhQ/ThDe+5hHu5hn00gB+4jlA7ZW00GPAe8Dph9wXRfBKD/do3wpmBysae/188tpj/M0Nzn5yu7kWi+MSB7q3lcBeXsPgsYlo6guxMIeWD9CzACHFsc5NU+i6m7W4Kz+WcSrmT4kXTA5JnA5gOPkAfotYR7p4V6XqB8zR5KlzM0yX57D/O9yViBohoxgrHp84DVN+MqadTb9ice2ZViim+Jsd6ETDuBYaor6ecEGpsPPIFkIzB5GbB/yGqY5NUMmuArVRFVLxh2pBuy4OVrymuHacD8C2DzHn3fCHx9e0xglXzXuiYrvX2Px+3zgNkXwP6BiPtgoFN37HH0CVOvhQOKt+zWNNtoI1gcPMl2Qt94fhtiwAqZVpdTZu4NrQFy4HhQ7h79qU1Mkr6hGiFb81xvfs3j6PuUUCJwvFQfpb+xWsXlwOQ5f38LDzT3yKbqGlh+6nDzsWLFThE98kuO2/ypI+s5Ecg2lI/nKwKdxCLaSiBbB+zeIftevqWaQNqA5p7A5BnZ5+aeoCx8IOufwnnMnse3/QYweUGg1C3oc8w3HrcfKZRXlFgHQZn+7h2C3OItmf8RTE/5GUoS7GzP/sggefzJfpCAlO7IHFEGfACWIkS2OjL3zZlEtiLbnm0JEPsp2eDpa4duJinrjsFMyWoye34IdWlOmAZsmhCZRcoI9xcEvOUVQ3nyrYPNJepziZPvd2hPDHYPJeZPHIZKoLhlsnD1hsCPYVqUVM+fDWhONFwmUL21UK3H/oEZ5fWJXZaO/t5s7+N7FeXVtcP+gim9zQmTiV0mUL2xsJWk1P5lj/pehtQ3qnp6bptThXzjx8qebNXDTg36GaXUCBi9tdmGflVbMgCpPlNYfNlhmGgIF72uMUxomDAZd/cgw/RFj26pUV71aI8zqN6Psm2A46C3PeqHFRnpCOCED+jnBqpxyG5bArZcw2cM8NG1G2tTyDLGOVEzIGQawyyD6hzlvoK9n/lVC+EDvFFj+I6P3k5fKOhtD58pqE0HP40Mp1FQu34EfAAQjCRobAbKhI9KAumbGm6Wj0m2ctdHqTGoYmsHiMHCT0r6Mz3Body1oydzZDWNhrhZI8ynEJsdWcp+ILNYsitTxNCfoCRlrINlAFBmDqzpavMVP2l6XizmQN0w0CclyiJ6KAF2XPYDWc2mGa9XaFqI5PGMwBIhQGQGIUl07z7Sfu+e2896RFltCIFy3n/Hxy8EsJz/FQHL/+tvgeW/96P88EE4/8f/LWZnOxyVLY6LGpf1FPsug5Ye212Jf/DRD/D7L96HcxLzirOa220FaxWqqsPZdI9VU6BucwLAyyWyYsBvv/MEf/DJR6jmLfaXE7z74SWcl3g0XeEHV/fQW4UiG5Bph2nW48nbJZxVuH+6Rt0bZNrhZj3BsMswOanhvYBSHs5JaO2wW5e4f2+FXZtjvy8gRIDJLOZVi9tthX6foZh1KLIB+zqH7TQmiwa7VQmx1TD3GthBoZp02K9LzI5qdL2GEEB7XULNexIjXpC5AbBY7rG6mkKVFm5vCKR6CTOLPUtBoKo6bDclvnH/Gk9enpAVkUA+7TD0lPGEdSoklggXLcImgzzqETygnhWwjzpgZYDFAP0y56S4signHU6mNZ49PYWoFcxFTUXHLhvZJ6E95JscbuIgphahURBWQq8l8F4NOygUVY/25QQ4GlBUPZrrEsg8EAT0W4PwqEVe9KhvS4hOQcQEUr8YACtZ35KzasUXAcXFHu0uh3xLZswvBmQvM/SnlkDspoAI9ODKTsJXDrK0ECrANVzR09cGqsUYfKQagWHpIRY9/M5AFA7i1sBXnI1mVwr9mQUUA6eEB9zCQnTsCG3P6PWFAMxRiyExUh90TNWVgQDYceIJD4SZhZAB6nUOV3BCPcwCgg5QjYTZCjTv9pDbeB1PegQryaxpTqhThU4KfQqa4C1/QTYxSayzWwI1aYHyjcD2PYcw4eu6+xb6VkepMtCdMYl2WDqmBd+3vHeyQMA3CSMQzK+ZICusgJ3xfZTTCgzTMIY09SdMBPaGk3vIgPJSojlnh2p+I9DFnshsJdAvU/IrWZTiiixS88sNsh+X8IqsVlCA3hJwJKCVEibtlMdZvpGUeprofTYBxRUZI68YiuVy9nBmt2qUIrengYFdnRjvFTkwjGvyQo4T5KC4T11H8PRGjJ2N/ZzHqWoBbwKko1SXnZYEd8UrjqmwPObiLT//7M0jgFEd0NwjKwkBTJ8QsA1zpskypAZfSahMfYr8siBIARg2la0ZeJXfCPSzgGxDVlG33IZjMPWYMDvMAqbPBNqTmDY65RiZPVm52TOPzXsSes/jhQBkdwiwCjoyU7MoT5aI9Tr0vSZQa3YETqlGpj0LmDwXZNg2UQLegVI3E3tMV4cQJVvFeyL60lP/XlBRahqZSG9izRAO148dyDiksmaH8CeXsXKlPSGjpOs0xkyrFQ5RHhqlxRHopT/TAkIKxPEx2Cn5kBOwo4yWoGP/QCBfAXofRjauOyIAAjCmvS6+tFh9aOhPLaPEO6N/0ytKmkWg7NUbSmKli9VAa0qn6Y2OYULu4H9XPVlY3YUoPSWT2i1ir+0Qg89i1U46tlQdJAJBURBAsfaoT2X06QsUN0ykznYEmClROCXcFiuHoaSkPN2XpglojwSyGE41VARMXkXWNGeAjM0FiughdiYGBDU+JglTLivuhAm5jD2bLouBZdHHnHyzBG6sQUm9mtnGwU7kKDMXMSRKRYmxqaPMtpRj4qy0ESjH69MeKZiG94fZOrQnGuWVxTBVIzhUvUc/j/VhPqB81aA9L6NkNnpCYxiSKyT0nsE+rhAwm9htCabbulxA7x36I41s48ZQK6ZfC6jWEQg2BKe2UshXw+g3ZYhTSv8V0C2tSMNUUwbtA9TgIQZPqS8ie1xTMhs0Pbu6tnClht4PUVacMVCptjG8j8BSDp4S4s5BdI41Lc5D9J7dlZmGcJ6BQ/HvAFnHxDKmLtEgRezbdJANAZPPNdS6QSgMgpZjpYlwDB9K9SZBS8p8AfZsao4HvGcgT8YOTVHfAVBJXht7L0OesSMzhvyItkcoODdLfxc+EGw6R7BZZBCbPZnI1IuZwoDuPpKk1zqCxDvBQKGPktqiQKgbbvsuQ2nJPIqigN/uxu0RiPY/3UP571I78jWvG5nPH4Xf/J3/6ue+3X/2f//jv/ZzA77mwDJ//2H46J/8F2O1SGEsrq5mmC4atC1nnPamQFAB3/zoJX70xQUmxw3uzbd4dnUEBIEQBNwgkX9RQP7KGt3nc/jCs3JDgBP3iYXOLWynIZRHWGUIuQdkgMw5+a++V2L3EWssIAMByS5D+SQbGR+IAFkr4LSDHxQmRw3qTQH5NosBDAE46+B3Bmo2QH9Wsksy9zArBTvxnIxfauS/eovue0foHvALTbSKdSJOwKzYswkBBBOgVwpu4iEGAb8cgE4BxpOFcoIslPHIn+boTxxC5Qg2ssB6lI6TfASgeKNhC/YxesPk1PH8tEfxLEN7n35VdzxAbAzya4nu3EEddxAiQH0ygVcB/aMe1Y9yNA8cggnIrsgYlZcyesHCKBnMbyVDfAxTeeUADEuP6rlCc+Ep1Yt+Ua+B4XyA3GoUbyQDjjQ7NIeph9lJdEvPyfCpgxgk/aq1iAyJRxbrRvoPyMD1S14HvVWsMWklfO4JsMoA3YgxvTe/EWMqrdkB2w8dRCdgtvTHJXlad+xHz29KqOU/6Mf0huFFZifRH3lUzyUB59mA/LmBagSa+w66Tr4MBkEJy0qQ/JqJxv2ZQ34Z/TsqxEk5/WnNhYfeCggfg0I6HneSbrkijCBODmSTulN6ZlNK8uxzTuwo9Qsjm6g6MTJWZs+JXNBMKy6uCPyki4FaINhzORAME3SHCbiocUu2JSgyO90Sh1RSwzH2GUONEkMYFA51DQajL7O5RyYvvcbrg5SsuKYUTjjK5VzG62j2BC3BAMXVIdU3bTs9+qOA6oWAK2MK8JrjCQDD/JB2PEwPnlXZA+05Q3CKKwIe3QBj8nHJbs9uSeZomGJM/Rx9xZGRSQm6wnOMzJYBX9mKzI4teH+ZPfsu0376BUF08ryWcX+ciEbQ15FNa084Kdd1iICRLFmSLpod4meNE7B+EdnUAWOyNsKBRbMx+CgBGJentNboBfVprAhuhOUxI07OvebrmDYcRmBOsELfKIO9eH97xW3JAaN/0TRhrKpQsYIhVXgMk69KD1WPWDaPEXjKHlEOx3Ppp2K8funeSwm/agjoJ5RNljeeQUYRFPQzgekLPwYJecPQKxlVXwmMJXba7MOYmOo1vbmsoaGftD1S8XNAH+7+PrsUq7d+rNpI2zM1ZYVBcp/CxfspAr8UsqQik2Rqyub6qRylnXdTcYMksziU9FKO6cjxKy75XJtTieLG8zsnnostxFiFkXyQzsR9xJCdFEomXbwPYzfpUMkxwTel8WYbsoGTVz26pRkXDYI4nHNQAnlM402JpgC3380p/8y2ByYtySJ99OIKR59ntzTxe4WAMHWbJvAlBzKbwgYMcwXZk1k1MeRItUyzDXdqahhYRoliCo1ymYRuyNp1RwbZxiIIUOa5c18ZOzl42FJBtX7sPG1PDMyWDGN6uEzC7C09w3f2JXsPW/H9wvM40ucpHVvy0arBR0WGhKrt6EnlOAu4QiK/agHJBFvVOdgJuzHHBF4b4ApWjogApFoLXyjo3UCpaGvhItCEEtCrFiHTcLmC6tz4f6q1EINj+E9K001+TuvhC41hniG7aQ81IDFlNhgFO81G76bo7SFlFkCQkqAwVo2IcJCRCufovZSAaHqESUGQ6D2ZQ+cJ6qwjg1jmo5cy3PERin6g9DQxgN4f3jsm1ip6MNPzwOHvsc8SAEKZk8EcLH4yyTWd91ceSo0M411v41fYwrvviYE9qWaE/x0ohVVq9FwG928AhbGm5Gc+D/D/YnjPT8pp/zKPvwWWf/UP/dd9AP8+DyGAR4s1Xm9n2Gwr1C8pId1tDDAfgLVB+Vqh/XaDpzdLoJdov5jhCz1DyMhsBBUgrGBi6adzCADTL1g5wh46CbeVMJscw7sD5JqgMn/FDzoTUGMf20qPvh/1/SlEFqAaoHiSsftvzuRW+aJgcNelgU7GWytg1gJuW7DmQtFDIByjQ4WnnEGtGOoj/2iJ8hoQPqPXYIh1IA0n/6pR6M488isVf7nRD+W3OfJbBsyoNsb4SzIc+QqQvULz2KN6IWErThS7k4DqqWYNRgu09xxUr+A1UN0C7QcBxRcM8xlm7GLsjwLMZYZh4bD4HFhDofhBheYcQCAoPP4XGZpTIL9WKC8ZQjN9ItBcBJSXIvZVAcPsEHpTvpQYZkB+Daheobhid1dxBXQn3PbkRUC7pazH7ICUUaVrBu/w7xK79y3KZxrZlhPyoLl4Vr6WqB86TL9U6K9yuJJdiUHTrzb9jJMH1chY9RDlePNAD9spmajyDScWx38iv7qan3Pcq5cypssC2UvBwwzA7jca4MsC8y+A9oSyItnxuKtXAsMu43kXwOwLNfYSZmuMfy8vJfJVwOYDQLYS+S0B7uzHKnaHcTKQrcRYC5G6AM0uYPdIoLjmfeUuNfaPyNYVO4HJU0qHOMEX2D0maJs99di8LzF9FrB971B7MHvKXwwup99q8lLEyaREfT9g/mN6jHTD1FW1YjIpQhrfyBjFYJgkD1RdGJkoOQDbdymntKVgeFJHv1Z7LEZfW35DANOeUAJ79EnA9rFEto3SOxHGaozuiH9m64Bszfswv2WQRojM2+RFiHUzBAu6DTA1r0O2jayOBqwVmD7l5CnVPpSXsZeyY2KubkLskaWErp/Se8jQGckaFMsew8Qc0n8XK1BGtiSG2ewD8jUBl8uA8pr+ruKWk6HUzWj+f/bepFe2LL0OW7s7XTQ3bvf6zJdZWR2rimSxiqRkCzQhaGLD1swe2Ib/gDSR4IFh2SMP/BMM2IAn/hEekbLNIk2ZlClWshpWZf/6d7voT7sbD9beJ+5LlUQapMBKogJ4eLeJOHHinBNx9/pWtwPyFQdRKZ00CAlbCUxeOeweKh53yefKVwGm8azSMEB5FRNdo8y1uEw9deEN5k43GGtYwhYolp5+MMVaDN0QDOqGTM70hWOdiCH7w2qKyPo43re89hgmTKKdRrllvuZQcPrKwRkRwTdrXqo1gZ3qGaLUTwTytcMwUWOSqnAB1WWArj3MXtBbeKtHMx13l9FX2M8Epi8dgVyUXk5fWgwTslH7+wS4JnYoFqvE1hFcjqyUUqwpscAwZRVItqXPrHpt0ZxrmD3PXaoEKZYuyhEFu2EFgaSwPPbVpcMwkUwAXvkYksbPpX4qka+Zws0hGKtY3JlEcc1gKGlFDOJhrQgEE15lH/sVA1De8GuzdajvGogQUF44vobo+8uXA+o7GbK9h+o92mPNRNWphC0kyhsLETg4mCwH2FLFv3l8vskr+uqyLeWNtpT01F3aGGKUgplip+EQYqASw25Ky8oRs3fIV3wPe0MgZSsGKnktUF302D3IkW1jsm2PMfRJdXyP6L2D7BykDdi8k2PyykK1jkzx1hIUqTCG+kjnEQQrUIQP0Fv2NrJ+yEP2Hrq2qO8XKC4aaC3RL3I2UHQeavBjt2LQAmLw0IFAS7b8W5xAnNlT+ioHh2FqoGuCiDDR0LsedppBOg+zpRdRuIB+kaG4ajHMMvoJbYDaWQQtoDY9mbpKQfaOfkEf4EozSjjl4KAASj7nOfSugxwoHzWbGGQD3s9sBWA93Dyjj1AzaMhnCrIexuCg7KpmeFA9MNAnMYmDQ5gYgtIYLOQLjSAl5KYB5iVTZmNSrXCsLZEdgUgwCupmD2iF4aSCXrUwINMYJgLmqub9tITc1DDdMHoV5bYh8zlIgqQiZ6VJ3zKYph/Ibt85gto6BvyE6JMcHMGf9+ySvMU0AiDYkxFoJtYyMXvWjuFCYh8f1/VkNWuC9OADxLRC2NVA8BCT6tCJmUJ16vYQptP37JgcyPBShpoG2/FDzmhAkokMnT38Pv2saSmRTfvoA8Gnt/xT5BxgTHwePl7cTolNz/WzwOTt2+3fSwH4L3jmaLr95YnaL9ztC81YFu89DPf/h3+MrOCHRpENrB4xDl1rEILA8dEe2zpHt81hJj28U4fgC+1HeffiZIfl6zlm5zsY5bCrCzjLlYZrGK8njEfwArqw8F5ACMBtDZB5FLMO7ToHVKBvb5CUP2qP4ASwMwiFg8wcQ0ombOEOg6QMtFVQhYPrFJnNpQHOOwgZn9/HyWgvIU8Yz6m0w3BVIogAORsQvEBwEjJz/HqQgBOjjxAA5MTC7wz0WsGeWMgdZaEpmEX0TAr0lYNoFAG4EwiZ53Y8KAvNHUStIM86yCclbBmngXnyMUgIy+fN392ifj3h1H6n4I7JJgYTgNkAeZVRgllLhp2YQI9kLxFKB9EqehNnHsF4ej63mvt10gNbM8pUg2I1id4qShXnFmKvOX2fsqMKg4Bs+TqDAHxF6SU8oPdyrDEhyxAlh1YcmIpAD51wAm7qIRuCAdVy0m3nDmpHBtnPHOReQbaC9TS5h6pvfTBGZkLXXBSG+JwuZ1WKuJVk7Eoy1map4MoQ04Al7NRD13IsKEdMcrUVvV+pVzMFWKg+prZOHcxaxX249RojYyICGcvsJi4MLOtMdPQlkh1mnY20Ai760yDB8xGPaZCAL8g083WGA9MXIuN2i/mzE4/sRsEVhx5WykuZKGy2aWIc4HMeOxcZ3/4ojAAnGDAhNqYt2ynZu1QVk63ImmYrPkfqkrWTEFNu+TrJbsVeNkkmNmhuOwEO9tmygiVIykltxeNHv2AM6ZgFVhtpIIX4ZJsI7KMvUjgOG1JXbL84/Dw9b1p0RzbZnwAAIABJREFU+1t9t6mLFYjsoMTouUvSyQTEEXgMZB+lihnBe9qOauNrCxhrdFxM8A2K15ZqxcgchziiTHLj1Keqa+5TH6tmUqesjMMwW2EEdCll2BWH349y08hwpq5XaTECaekO76PRZ2r4s9T9acsooY2MZXcS9z0er3Qe02uExFilonqyLYmZVR1GFlZ4nkdvEP1+scReYJQF8vEEfy4mFWfbBJAxgkFp6W306RxEYkAOBx8kOyfJ6qRew7E/NL6vU9jMyC6pyCJvqABJA5Akr07MfwK42SaMKcWJ1U3Pka4//jHCG52lQwTswpEF7qd8r6WuZgCx6urQscr+TjGyxl4fzmdKrE2pySpeDzr2zaYeUd0e/I+qZ++p6sN4rQ0Tsr6JJU3y1PEYyEM6si0kTEOmVdpwODeOstjUQ9kt5OjL9Dp1Nh48nIfP2oB+xuoVEfc3saHjPt763hsmDwOspkl9n/1Mxlos1uQEIcYqGNVT+ptYT9xep0fG1OUynl/6ItPxTccxneck9U6srfABtjpIWbmffgzFcZmMfycok3WFJAMfFQbpvSBcGBN4AYwMpysUsvUAlx+Od5JuByluvccJzik5jim+JiULhzE9Vjgf2VoxMpCUmVIG67Xk/W/dRhbSh5HNhIyBOTF0RwxkN0XqzHQBqe8yyMM2gxKQsQ5FJAZPKTKYhomwoo+pxNHXGDTZ0BFkxcCeBKiCUgcgmvorBzuC2dQV+gZQlfR4MpDH4/P+SdgIJIXgtt6oBUnAMlaLpAqTyBKGeF8hJYJ1nManTssESkf28nPsZJTYvvmjJG/9S2KRvy2M5W/8O2As//kvGMu/8i14AT8otIOCaBRaSWatfuQQKgux1Vi+KOBmHDUP6xzZlYY7dTA3CqqLnjETsBzm0Ncau24OtZNwZUBxIemZy5kkiMwBVsItc+itBDxgeoF+4ZG9n6F/x6O4kGjuUmaJoFG9DFh/NaB6KVHfF1CdgcgCvDMImUf+WqO7B1SfGPYoPuxhXmWwM4/8g5LBDxmQrUVMWRRwdQm7sJi9X6K5Q+Yqe6bRnnmYWkBaBsP0Zw7zn2i0J5Q/6p2AK/X4h0dfawgAeqfQ37HIX2voWqB+yyF/aeCKALXSDBHZSLiKx6R54DD7cYb6XkD1/1ZozgPya0k/n6eXz+wE9g/5AVJfV8iuebzb+w76Om57L6GuC+QrYPtewPxDieYe+zbLC4l+EWABlM/JBMheQnZRIuLJEObvF6gfeuRLTtNtGWD2AnZCb5n5NBsrRsqnhqmemyjp0GR4By1QXKpRrtfPAJ8z5GX/9Q7TH5Me6o65oNEbfiDbih7BfAns3vbsHgUgrYJqCKKGKdm9/tijekH2uTlPHXhcdPULD7OJgD6+I4trgf2jWIGyBvpjQLUKw8zDTikBZqhJXITs+Uc4X3IR7nIw1VMF9Ccek88U9t9qYZ7kTLfUAC41nAHyNXsepeXxKy/pfROeSZr1l3tUH2WsAlixo7L3AvkySvUsGcGgCNTK5wK7dwJEy9dhC8A3gnUjA+9nduyNbN4ecPQDg/o+wVh/FJBfKVQv+XuzJ+gB+HrmL8nula9D7KQMmH526DT1WZTUxoV/Cj7RNZ832/Bn+4c819ULyl1VF9nOCnB7Mp7dCUFdfs1F5O4RMH1KmWk/peTZbDkR379NPxylztzfbANgzWPdHYfYaZkkmTFp9IZhKM0Dh6MfKTR3ua9k4mNdi41yac3zU71igqXXInYHUq43zA9sZntCINvc8SiuJfSez+MzYP6Bx/6BhNwR+PcLdsRWF7GmxBPk9XNg9im7LKvXBBvdMVm6+acB/TTWrDQEVP0CyJascEmAtj0TQAreeR0BVibgc6C89Lj4TWDxI4HuhB657kigek3voa5ZI7N9HOt0OrKvCQwFHdnajNLV4jo+b4uxJ7c74sLc7KMX0BJ8lBcEZMMEKG8CdvclWfycEtj2TKB65dHGFEwgjF5O1XHxa3ZhBJVyoFQ0yUbZaRnQnEl0xyL6RwMAghpEpjnbBWzfkiivAraPJY4+IiO3fSSRbQ4Aqrjh/po9j5GIi/5sEzB71qE5z2JFiohJmWQfE0OeanrkAJQ3ZNvW72hMXjns73O4VF4z1bifiLF+qD/iccg3iZFlT+z8iQUCUN9hhU+xcmidGtNTTe3hjIpVKh5qS8CXb2Kyc5AwDa9b4QFTewynCrolkyx8uAV2+H5SQzj0dGpWoUxe2RFo0GcrUd54qIZSVQCQQ/Qwbh29kz6gP9JRCkvQoxtPqXXwaE7lKBdujyREwc/GYulgS4niagCEQbZxaM5YGaM6dl0OlYatkirGA5JsfLaxsIWC8GJkjF0hkd8M6Bc6+iENJs9bDFON9lSPQ4tsPcAVGZnExkHvLVxFnzxVQgpm52Fqi/YkQ74cIAeP/sjA7MnquSyD2fP1Z5sBF9+pcPZnLVRrsXurxORFh35hRhCJEOBKheIq+uo0vZR6P0TfdcHqkdrGag9KUIPmsRbWx9Ajh9WXSyw+qOOiDZDWw04MVD0g6AJ62cDdm0B29HJKALJjF6eOFSesNNHQ2w7DcQHVxH7Mjumr2bJGEAJuno9SVb3mZCYohZAryOUOomIVCrfH3k27IOsmeg+16egfLg3kvoOfFhCDh+yY0irbgeBwIFAU1nMV7QJlq1GyKpzj74QAfLxvZFABRGAoGaYzRECoFLsuvY/+yQHoenocraM/sm5ZbdIPCBXDeoQQBHJ5RsBoLZlCTwZ0BKnp63SzHtCK0tYQRiZyDO8xJgLHgf5Ia3E75Cf4AHgHkWWUzIow+i0TWBRKjZ5MSPkG8OUfNc+eTCB6M/+CKhFP9c5fBVj+vNw+P+D423T7wjOWd/+bfwIAkNOBQTZPZ/y+Y9JkcdxieDIZF+xQAaKPbwzDUBPhoidvo+FLD2gPMxkwrHOInqmiak8Gzs5dlK1K9PcHiL1GyDzUTtFnNHP849EyCEV07JDkcwmyS1sJ1VN+q2oJN/HQO4nhbEDxJMNw5KFqgf6eRfmZieEmcZIL0Hf4qEPYa5i1gt4zAKS4ooTTxOh52SP2y0XWSwDdqYPZyJGpCHGxqjpAWIaWyJ5eQVtyKlc9p7dP1+Iw4Y9T7PacqZP1w8hgRaZAdYcpaPIhuSIgGMBlBH12GsaJpCsD9I6Mo97HgvuMv5c9WcPiWqB+EMNFosSuueOh95SByYGAsD+iB5Cx4AGyix2Bxx5ZStMEF6BeY/QDAnE/I1uU2ARvuO+qEZFlCVA9OwylZShLkpQGjdHrFDTPVTBkW1LQSPIvecMgixSL7zMeL7M7BIKkBbKwGNkOs2OSpOwjKzSySNw+ZZhMwaxeUF7qCow9lInp6k7pwwyKxzqxm4lpGmZASkSdf8okSRun/90xf54v6Q/sTsk2VK/SopyMhW5jmIrka9J1rFqIxyBbHX4PxK7QyAzpPYNMVAQKielSPaP+zSYOGKZ8LYufCDRnYgz4SYty3fD/5DcjwOQCfZjF450d2D5vCBKnT3j9DVNeb9ma+8q+Si4QXRZ7C9cBwzSeE02QwWqDyAbWkdmI57NYerTHcvydsAc2z+wD2lMZhykBw5yJo7rhNhJYSp8HiZFJniqA18H4visPi1nhKemdPmdVQ7YOI9M1TMiKpeNv9gH1HYnqgtUHqscYxJLOsfAhMlWU8rpMjP7cIMmSqT4CzxnB7hjOkiMmW0YwE0NO+pnA/KnF7h6HPSYmctKHSPYneWgTS6abEJMqA/Z3OQhI13pi1dLnloq+X/YzBrTHrHpwhvuourhGiv2axcof2EUApvGoTwkoCN54zc6eOfrxIrsFcDvZ1sNrSk8Tu+Yi+2Vz+ha9Fsh2lAYDPI/SMigmMZ4p+MfUYfT6tYs0aKP0O12TtpDj49LAKnmOh4pAqbyyZJg0z4PP2Ldp6gAVgRb9ptynfOPiZ2TAMKVfUw58nFd8TWbPcBhbSug6MluNx/4+6yxsKePnE++jeg/hwPM6UH7cLaIvb4hsVMDI3A0TSYBobjF59ta10XMbtuLXwoex7iX5BoMUhwqKMtZRBMDHHtgk+83WNno4RfQCMt20n2sy2UNAcdGhPc9vMbthZOcYbsSqivQ/P19kTD5lKE2qxsiXHdrzgomnYw8jMMS+S723GKaaPZWNg9n06E4L6IZ+Q9n76M0UkHH7rmBwjFm16M5K6MaNQTY+4zBW7wb0R1n83Ijn2PoxnCYxeMkvCR/GfswEQnyu+H0KpEme0IBDUI+Rb8hpfa4pW+7seD9VD2NfpRwiwC1ih2lrx5Ab0dH36DM1sr7BKEpeXaDkMgQydzplEBzYWG8U9PWOdRx1R9mn93BHJdS2i8eRYJBPLkZmUwyO0ty4D2OnZJ6RpUwMYWLnFD2QochGiW3IDG73PJLJ5BuUx9zRdxnBoOiHA7uYgndiJ2ZSJyR5LAAG9mh1+DoEQGuC2fR9fN43klhvsYnBe8C5N4Af3zTxPlqzA/PWLQzxPglE3n4e5/Az8cZtpvIvGeTzhWcsZ4/Cb/z6P/5r3+4//z//2d/4awO+4MCy/PKD8Jv/83+BWdbhz1/ewdfvX+DPX9zFb737Ef58dQdKBFzvKrx1vMInl6d49/wa1/UEp9UeH746R1n20NKj6QyqoseXT67wxx+8A5072L3BvUc3eH15hMVij3nR4enFMaRkeisAdI1BUfVwTqK/rKCOO3jHQKDFYo/dvoDtNJNlLyasz9jmkNpDaY+8GFDvckxnLTYXU8ALqHkPpTzmkxbtoLF/MQNmA5NdnUB+1MJaBa0d7KDheonHD6/x5Kd3oU9bDLsMIncIVmJ6XEOKgM3VBHACes0p7fxrN1jdTCG0h1J+DDAKvYJoJMLMsmbj1ZxyVBkAHUGgCpie1uh/cIThccc6Eh0grw3kgwa2ix9CrYKcDJjOWuy2BfzeAMajmHewn0xhjy0Wd7ZYvZ5BZB7lrEX9esJwnKNY4SEoN/UzC9Ey3dXnHqJywEZDnnXw1znUKY+7t/JQrTGhhFcMTHPF3AJrgxAlyKqycFsDYQWyG4nurR6i1lAR3AaSi1B3Gwy1gdjpUearNwp2YQErIKxgXcbdHqFn4qxwwPk3L3H5o3O4iYea93CbDGqr4OYWajZAioChNpAbDXm3hZAe9rpk+JMKmHyq0H13D/eqxPwDidWvpA/sgNmdHeoPFvAlJbziTgs8LyEd00LtJMA/aA/pvZ2A7AWrR1pFObUFsiU7/1QjMBxxYBJMgF6rUeoqPNDfsRBdrG7JA4LxkLUaU2QxHaCf58g2As03G5hPCnRnDigd1BWTdlOHIgAOTtoY2nOng/m4HIcpw90BolWYfKaw+5KFWakIKuk/TD7UfEm2cji2KJ8Z2DJgOHEoXmkESXCk4t88VwQOgk48zIZDiOadHnKjoXcchgQTFQpRvgoA9k4PdZXB7Mi27h87FK9UDHLi/mQrCZcHDKcWasOaADtl2BGBnoAtAuyJhVprgo7YFzrc7TH9YY7dNzugUTBrxdffKOQXahwMeR2DcI45gEIAZbdVGNlir8k8FlcMNmGibwTTHZAlaW4ZUFwK1PeZRNsdUyEACUw/46LfTgCzAfZvecw/kBzmbDmYas+YJGu2lAkDkRGyDArSu4OflYCLwyQEYPoE7O1rOXzJNkB7yv/7oxToxOHE9jHThlPqKn2sTMj1BmMQT7YFmnNeH+WlwO5tj6MPyNCZbUB9nyz1UCGC36hIMGT3KeckO55kvgCHS8UF0J4RTKsBZHePAoobMcp3U5BQ8gKLgNHHKC2weysqBzSPadq+2ZEdLq7p9y2uycDLgcFRzR2BbMUUWNVTeps6Mk3N71XHoKX2OIJPdTsoiQMJ1RIIpjCYIMgou4yhRNkmDp4yngfdUKLrSg48hinvk20DujkXscOMjC/AIUWQZFSHVIenBVTD6hX69MkYp+GQy6Ict0n1LBxuDFPuY3Ed3pDkmyZg90COqa+6CxhKXgf5+sBgAwfQnO04DEiy1xR0JS2Bt8vjYGFHqa3LmLrazTloq2KPZD8jUAN4PGzBKpIEwLtZTGgdAnTL4YTL6dd0GcZ6HbMn6HOGoUbOCHRziXzjY8Ist51tPYZJDDwaAppjheqSQLqfSeRrB9V6DDPFMKX4GZfA7DDhZ7vqKI8tLwf4XKKb07/rNQcaQ0kvtbAB3ULR7zpTYxKuabiP0pJ9DoJeZ9V6mO2A7jSj93nLlFjVeei9wzDTo/S1n0pke88BQy5hdnaUzvqYAGtLhWzVo7lbwOwdJbFxaJKGjWZLpmyYmdHnqlqH9iwj0xxZWADwmRyltEkuno6P2vWwi5xsuA0ISY5r6EEWPkA2lpLVONAQsTfRl5rMZe8OPZM5E17tvIDqbkk+rUfIyWamwB97VEJaTxY0Nwz9MYrVJzHwJ9WNwOgo+3UEkAlIpmRWKQkQfTiwm203MpkI4VAt0nQI8wlGXyYwAt0EiP81mWz62mggBIS6hcizw+9v+zQ1AXlou4MX0jnQwxXZyz7uc5LF3mZNP/+8n/dgvnG3g2T2i95j+Qtg+XN8O/76eTj6Z/81posa59M9lnWJedHhs8/OMT3bw1oFZyWGVY7Z/S2anyxgzwaowiEE4Pxki8ubGbRx6Fc51GyAtxJZMWA+aXH1yQlC4SB0QDlrsZg0ePHZKRAE9LxHVXXoB412m0MXFmfHW7y+PBorMjAbILWHHySmRw36XsMOGlJ6OCvhGw0YD7k2CMc9snJAt4xm6CCgVwricY2h1VA535T+KqcXsnIIVkAWjimy836svoDkOdWvCSzs2QBh+IEsRIDfmdELqjdMjA2F4+OCgLrRZGfPB5gJ38DDNme3o2ZRejjroZ/nY5egngxw1zlC4QEnIKcD/M6geKXR3rH0gG4yiE4AdzqE6xwhj95G4AAapxbiKqM3sbQcdLUK6OVh//YSbmFhLg2G84Fy3QgkgwpA7iD2GnACYWaBXo7+Tb2Vo3cIANxb/MsvXhZwE4fsRqE/cwSPZwOyl4aL7SMHWUsChWPWaXgd4BcW6CTMikBrmHn4wqN6qtHcZ/dgSnvtT7jdfCkwTCjbDDogv6Lk2pWRien4OrK1RPPAAoWDeZVxUTZhnUTzbg99ZeAqymjthOXzet7DrjPkl4rgqiOY8BqYPJdoT+jdDCqMVRMA2WrhCFia++yNtAuC8PlPNJo7YfTiyZ6L5f6EibK6ZkVIkAwNas88spU8MNYTPl8CY2bD1GKzpTS0Pw6QHTBESTAQk4AvJfpjhouIgdJn4YH8WqK9Q7Y/2yRfJWWzbQyw6k7IxqbkYlclxQBDiPIbhtfsH5HxDhKwU3Zqmg37H6dPJFxBMCW8QLYUYx1H8ismr6HquVAd5gfvZhU7FoOktLW5I97wGaqWgVvzjyk5bE8J+nxOBsybxDLy3JSXZKyGKc+pasUoAQ4SyFciBmwJ5NeRcYuMOz2AfN7uhEMD2WMM8HEZAXVKNxUWqF4L1Pdjkm3Fc59qLOCjlDsmCEtH9rq+K8ZFPP1wBLbCU4o7egpjJ6PZI6oScCssDCguIys/HCTNTI7kAr8/ogfMZxEggsy12bFjMu2n2REoIwY8DXO+5nzJDkUAIwBIoVauONS75DcB/eKQkEvmRRxqSnyUw+q0gOXxTCBw+oxMNqXFIoZsMagshYaZHcFdfkOQGRTB5W1WPAHVlHqb/IL7e3IEkrcBnW6i1HeK0WdZLAkou2PKeHVDgJrtyLymEKB87WFzMTKQ/ZyfE8ISeJo6jM97uxcyeX1TmqxqEUvuJetArg5Ms3SUVpfXMTTqNIYuBbLQwkU2uuPQQzeUkqf3HZ/7wPAGCSTPp/B8PUzOZSWGVwL5hveXLkSpMgFOqgBxhkE9rIM5MMM6Mpr9XCFbOzRnmoykobRX9gH1uR5TaxPQdEYg27kIMg8hVO2xguoDihsGHKk2oD1WfJ6USBs/l/OlZTWI5+u1BQOhTONHZtZlZECDFMjWFv2Rho7VJMOU0taRzYzJvapz6OdkDLMNA4xkz+fXjR39jcnHO0w0VE8Q55OPGHxfZqsedqIxzPTYQemVgKkpDQ5aIFsN6E4MhxxaHECmYwJsftMhGBnPiYwJzX70UsIHJtjGp7UVAWnyVfqcMmwAY9ARwCGH7D1czgGl3jNEJkTwCwAq1X+ArCcZbvZfUrmgoBoyqYldu50wS0+lJluaQFNkI11pIHvLTkwhACUAFwhKty1CZgjyAIK4MiO4lOLAhib201G6KpqOtSKDpX8ySXA/Dwyjz3JMjE3ANEqBx1sCc+5NqWzwMd1V61seSlaQAIBQ8iCPlYr3Cf4NBnL0WN5ib39mlyWfkID033aLjOYXn7F8GH7ju/8OgOX/9d/9jb824AsOLPN3HoXv/i//JbT0ePLqBEIGvH33Bk8vThiC4zgJUrPh8L0AJa+LgWDFCehFD7s3KI8bdM+mkC3Bw8mDNZafHJM1m1tgkCP7xB1w3EYQBDW5g9xpFtdXDmJloPecXLojMlx6wz8S9shDxoWhHPhBxxLvFPEdZZeTmFLZxiL2jOBI13xsf8SFd5AB7shB3+jx/u0DC1lL+IILZsod5SFgI8qk2AMI1p0AlAPLgOK5gd6TiZCDQPduC3GdwU8cQ34cGZvwjS3k+zO0dxyDVaL0yt3rEbwgK9eLMQSkvBDYP3bIr8jK1I8HlM8MvapLgiSz5SIiBaZkG4HuOyxsH44C9Fagvecw/0CNC+e0yEdgjYbsmXoaFF8fgPjHkq+zu8NeRV0z+ba4FGjO6dEcJmEMkbAVpbuu4II+v+ZEP9UlJKlmex4BlePX1QsyYCJuo3rBcJf6oUP5QsHnGDsIgyTDVL3kYp4STp5zszv0CqaY/LTwzdZciAsXg1VikIbL6UO8+TUHsySY3T8iU2g2keUy3KbLuEB3BX2DTBhmmEuSBjf3WFczeU4ANHkO2AlBDn1AGGXPZkvwIgeBfh6QL8XY5ZhkgypeC81dj8WPBdozMUpWhxlBVLc4SDyDIqBwhUBzh+CNLAf3U/XA5j2P0+8L1Hf5+uQQYlrrAejQp0cfJDsuyQrpJsSpPC+TBLBS72FaPPsYusOwEgKXtNAd5jwHqWbC54gF7GIEO0Fxn7M1H19dMLm3uLglt52xWoTeRS78EYD6HhnFfMlFrc8IbvKNj9JbMsyqI/vhMzJLQcZkZY9xQWirA0smPGXHlFMLFNdcXDMohscQngCoucvHVRce/UyOXYN2IkbPGqsiotTcRCCzPST4qp4MYrGM9RZzPra68tjfUShvPOo7EuWVHxN0ExBRXZRKe7wRLDTMBMpLsmbFioEw+TaG0ET5cZI7JxBi9pTx5usAZ6I8Nfr7honA5MKhPo0+vSjBtgWvEbMneEkVKrbg6yWjmEAgy+JtSQDDBFbcqmxI+xW7KA0TaslsRXZ/Et87PaXlaf8pSQ+orjxU69EtVOxcJCuXrz2aU0UGrGI6az8lWNKth80lAVSO6GUNY9BMeWnRLfQYODR5OcAVEi6XbzBRquW1nUJt6NEW8dzH9N8kX4/XpKnZvThUB8lwAlzJU5hAEQTG0JnyklUhZkdWi+eKLJ0tyXLpvYPPJGwlofcJdFFinJjiVGOSqmiyjYUtFWwlUV4yeVb2AcVli+XXpzC1H0OEEtundw7DXKN81aJ+UBBcrS0rNjqyc4dgrgH7h8X4e+EpM7aVIntaMOjG7CyGuYZZU/LoSoKYoATBkBJk1mLATZAC3UKjetkyUXVg6i3lq+m9GCBjgE17kqG86DBMCbjoK6UnkvUYh55ISlY9VD2gP87HxF3hA1Rt4bUEpEB3nEHX3IbeDWNYjnCeqbGgfBUAaztaPlb2Dq4ykJEBDIrZD3rTwVVcW+lth2AUQV1rITcN/Lxkx6aK9R5RRgwQ4Ol1+0ZFiJtmTIe9FeITlIRas3vRns9ZESLYVSpcgOgtQWI7QNQd/FEF2Vom1N7sCIyMJkOoFEKuCW7r6FNUihLUJFVNDGLyDiZWb7BkGLsDOA4FGUeREmJTGE9iK0MgEI2PCUYDyzW37RywmAPrHX2PR/ODFDVJXVNtSQJ2zjEVNiW6xjqPEAKEEBBVSZYweikT6BRa8+dNC+Q5f5eSZY1GaNoDQI2S2OSfDElaewt3JPAphPjXOy5v3xLw/NsQ3vMLYPnze5t85X747f/1P8OXZ5fwQeDY1FhGPY4NCqu+xA8u7+E37j2Fh8DLeo4vz67wrF5gO+Q4L3e4bKb49vEz/HhzDwBwktd4WK5w0c2ghcfH21PcrzZ4tlug0HxDXu4neHdxgx9f3MXXzi+wH3JMTIeLegYpAqQIUNIjVxbzrMWqK3GS1/jh5T08Pl7ipqnwaLbCs+0CE9NjN2TIlEMzGJxVezxZMf2j6wx++cELtM7gyWqBR0dr7PocvVN4e75E6ww6q6Gkx1U9waPZCuu+xNVugpNJjet9hRAEvnZ2gWXH43Je7vA67ufMdOi9wlU9wWZfoCp6TPMer5YzvHt+g85pWC/xaLbC63qG47zG080x7s820MLhw5sznE/32LQFhAhwXsA6hVnRwQWBbtBY3UyhiwFvna2wagp4L6GVRztoeC8wK9ltWXcZtHKQAijNABcEbrYTPD69weAVWquxa3MclS2udxW+cnaFT5YnuDfb4uV2BqMcQhDo4/HwQcBahaNJg8FJbLYVTGZhBwWpPPIoZ54VHdZNcbim8h6rXYn7xxv0TuFySc9ullsqRwYFYxz6zmA6aVG32UFO7ASMcZAysK9TBKxuJjDlgPPFDk1v4LzEbltgMmvhnERuLHZ1DtsaQAacnuxw9eII2VGH7z56in/xwZdQTDt0jYHJLeyg4Qeyt6FTUJMBrtFMFO4lqjm3y0GjwzCo8TO+yAZsNiXycoDRDpubCbIJpdwpKVkWDkXZo20yCBkgANhaA5Yurv2gAAAgAElEQVRDlZDSkFsFoflHwBQW/TaDriyTinsN3ylUiwb1dQWROyAITBc19tsCIQgIEZmeTqGYd2h3sdhZBYRaIztu4Z2E7RRU7uB7hdBL6OkAuzcQWUyd6xTUxPKYAJCZgxQBzkqEIEapti4GDHV8Du2ZmCwDRDyOYpDAlMnKjJAVh4RnFcYJjC4s7M5A32jYOwMlTCpArg38hPUCCKB02Ar4heXz1ZqMfxknuDHlOTtuYZ9XCHmAPmkhPqowHHumLrcKoXLAIOjhHiKzUgb4gl5w9JL7pwPkNg61goBs6JNG9JnCCYR5HKaZAPQS5iYGXs39OGyBB1n7cwu91hxG7QSGWQCOBsgrAx+Tgrs7DqKntNhnAdkyBnipANXKOLAiW56kir4kQ6U3sQ+24SJcdgKuokTY5VGKHqXwwh3kpN5wf1xF7zQERtn2MGPiss8imxA99D6GdCXW00f/p9kyCXuY0T/uU7KzJEvmDcOzCHDow3Z5wJgWrem1ZphJDPZquL/9EY9DfiMPzxvnkQiUCGebGMgWkmRZjL5w1VAqno6Nzw9Ds1H6GUAmvhZjgnKIKbopYRogsBum9Ki7lL58KxRHDgc/qXQHCWIQlADLnkOQlBJstpEJlQffJsDHsoOXgxuvgeKG0uMkGR79cPKwbQBjKrGd8HFmx+dkAEw8ZlHOnIK5QpTFpwRkV2JM8h2VAeLAoqZE4TFpNKYXp6CplJasBioDVMPrIMjIbE7oGbalGJN08yWHPz47hFgJF8OiNMbuXuF5bESgh9jEHtjUb5r6TtOgLyUOpxqslHSdenfT6xmZ15hArLsAhAAbvbMpPVo3YWRBneHAKFUUSZtqj+KBEWngHcauU1P7UeKrWw4hhpLJvqzKAWwpkW8cq1xicrNu/C1ftBiBd7Zx6I4Usq2L0l+M0ufxehqinD+CMdmHCADpyU3yYno9cVDfuIOHGZ6spbA8l6PkNPZqpvog2fvDda/4WOEDxOAZlORDPE7i4D+VgiFCKcxGHK65z/dvys6R0ZRyTLOVdY+Qxzdk8qoaBdnbA1sZDh2mY9ps8n2m1wO8AZARwiGp9jbjeUtKKgay0iKmy+Lz9wXe2Ifb+5i2kVjM0PUjKOXv3EH2mpjdxFj+DD9nAokJeP7M2+cSY7/4UtiH4Te/89cPLH/3934BLP/Kt/zdR+HBP/mnCCbg7/7aT/HDy3v4zr1n+MMn78BaBaU83j2/xsf/4m3Yhx2yTwuob61Rr0s8fHCDFz89R36/hrMS1R9OsP66xcMvXeHiT+/iP/+Pfg//2x/+Pdx7fI26yyBFwOrlHFAB1ccGzdf5SZ9XA8q8x3ZXwmQWQ69h1xm9cHd38F5ivypxcr7B8uMT5A/2aJcFF64moDqpEf7kCPZbe8ymDW5eHEEUDuplDp+HWDkSEC4KLN67wfJmiupHBdS/t0QfwdnwqsKdr1xh/Ud3oH91BfunCwxfbTD9f0p0J0D7dg90EnI64OioxnZXwr8uEE56mMJCyoBunwF7jdnDDeqfLBh48ZUaeTGgbTLMZzVuni+AANz9fYnlNwSKC4HNtzvM389x/x9+hg//5C2UryT27zjorcRwzFRaYYH1t3vMTvfYfXaE6q0t6qczBOMx/VijfuThS4IPUVnkHxUYvtqwZiUu7mXuEG4yQAKzDxTaf3+H8MkEw9xh+rHG7j2mFJqVwm//g/fxu//yWxADvYWuJBM6TAPmH0usf8lBtgKqJvvgH7bIPirR3rGABBb3N6jfPx4XeHIQPIZe4ORfauAfXmP52TFkQzZ48mgL+68WYzl8c9dj8SOB69/kB6basqh8+u4a3fePYbZcDNUPAnwWcPxDsmzDUYB71GLxewVuvuMw+VSjWwTo93boXleYfaQYDNTzOWYfSeT/yQU2//cdtOce6ryFu8qhWjnKMcsLLhL271qc/ZHC+itgbYsM0DsFO3WQswHV98sYWhPQ37VYfN9g9S0e0/K5Rr4kkygcKzNsCbi5xfQjg7t/3OLT/ziDO7G49zsar//DHue/k2OYRE9dAzR3A+z9HvpVRlbyyEFvFe7+kcfFf9pC/2gyJtL2M8B/c4fqe1PsHwRMngv0c7Kg5QUDZtZ/v4F4UmLyVGD9DQe1lTj5IXD56/w8kzGgS7XA7Alw8yse935f4NV/EBBEwNv/O3DzDY3dOxbTj1lHs/mahV4rmD2ltGd/IpDtPS6+KzE87HHyvQy7x8DskwMrXD8guz19StYpRDZh/XVez0c/YUDP0ScWy6/osRczyRlf/92Ae3/Afd2+zTAdsw+4/hUR+2wDsjXDdoYJwc/uMddR+ZLXb/OIXtTqOT2KkGQy0/WY/GSzJ2TMrn5VYPFTYPcW2TATOyVf/bZD8dIgWwPb9xzufU/g5d/3OP6+wu4xMHkiMHnNgJr2nH6++acBy6+TaZ++cBgqidXXgOKSMuB8GeICM+Dq14DqpcT+oUf5WqL+Zovj389hS8p/d+9anP6Jws23PR78H8DFd7jgPPrwEPy0eVfg+Cce28cHZYRugeqVx/KXBE5+FHD5bYHpM4Hdo4Cz7wfs3pLIr7mQXn/DYfahwuyZQ33GRU5zT2DyNMR00oD2hCxaPyfjS8kz02KTDHTy0qE5kwiCEksG5ggm9B4JtOc8x/f/wLJgfqJQn6sx4Gj3WOD8Ty2uf0lj9sRjf1+ivOT7qrkrsPjAo5uLsXbFNLETtCPjGCTllcuvKgxzqiFcAUxecLG2vy8xfcGE02wbRg+fz+hDBICTnwxYv6ORbwLytUN9rtEtmMpLtQZ7NHf3Na5/3eP4fQlh2dF59SsGsgdmTykXXL2nkC8Dr4GJxP6exNmfdbATBVtKrN6TmD1lNysEcPqDFpt3C1QXFno34PXfqbD40MLsHC6+kzP8KwZlyQGj9JRy3QMr3M1iRVApRmA0ee2x/JpCcc3XXSx5XUpLyW2QwPFPO9hKYfM201ezHRndKrLkzYnE2ft1TJDNxooNXTu8+HsF7vyrAet3De7+wRrX356PQwNhua3ieoB0TJ+VXUB3rBh2djNg9yhDsXQwWxdTWB02jzNMX1js72qUNxxQBQ1Un+1x+RtzzJ5ZmM2A+n6O9kSiuPGoLnrYUo/HJUlcGfAjYDYW17+cY/rMYfbxDt15Bd1Qnlpctdg9ruCMwNEHO+weT5AvLcymgzcK/SKDbrh/xUWD7rSA6jyaOxnWX5J48L0aPpPo5xrFZQcIgc27BY4+rOFKDVsplM92aO9NyPi6QF9oBJXlyz22X55h/mfX2HzrFPMf3aB+d4HyxR5BCDSPJihfNfCZQneSRan/gCAF9LZHd1Yiv27H+pDuJOc1ogSqT1fw0wJ2YsbAHZdL9phu7ejjzC72cPMcet0yfdU69I9PmQ7bDHCVYShR7BENRrIHc9fBTXOoXQc7y8muZvQaCst/PtOQvcVwVkFtesi2h2g6uLM55LqGO55ALfeUvtYd/KyKybP0ZgYhEAoye+pmh1AVEPuGbOktVi/kBqJu6bPsB7KYt8J+xs5M6xCmFSAFRNNRGpuSYlPIj/MH7yaAsNvTW5mYVUMQHNrYg5RkqV3P+wFkQ5WKDKWM/ZUHf6XQGr6uf+Z6PvgA8Rd1Wsb7wf8bAOhf4vZzAyx/7R/9tW/3d7/33/+NvzbgCw4si/cehl/9n/4rhvRsJ/BeoN9lMNWAouzR1DlsrSEyDyEDfJdSsiS9jYWD32vo2UBWxokxpEY07CFUjRw9aTAeQgeEOibxDZIezEFyGhnDT0LmIRtGuKfJe4h+KWZpB4hWQg6c0puVGrv6hpmHamWcgLOrUNUSbsqE2TRlhmTFxDDlxFs1AnZGL4hq5NixF3SAL+LkzgRkVwxmcRWTbCHJCsADduEAFUb/YDDxuaOPzxUB/nSAvDbsPRwEzFaivWehtjT++/st5PMCrvJ8fROP7JLPicCFsnBRfhd7AkNcCA/zEJNdA8xGjlN8lwfYBdkRvZOxT+3QwZeORT8Po38yyeS8QfROMdQmsQ5BAq4i4EwTYgigP7fIrjTshIyIrskqqP5NpiOl1rJTMEqRizjxF4jJtuxrNFsyPrphum3y+pkNf67ag8RPWsqbk/fU7A+hG2Nibg7oHdDc9zBrSa9UlSo1oscrvq2TvFkOZDWKa8rfklfrNqsBkEnRDb2E+TV/6TXPDeXaYmQZgkTs2uR5SH69JO8VnkBV7ylb7U7INiWfnSvC+DpVf9hn1ZGtSCwMgNhXyd+n4JR0rJPvsz8KqF6y9kIOGCXfdsJt3p6Gp04++BjMEg5Mh4sMhssOU/R0nSXGSNdc4CZfWRB8HspKD6xSSkBN7IiJfraUniw89/92J2Zim5KkNvn/kmdS14fjm1gbnmOMKbc+O7A6SQoqhwNLwYANjN2PwvL18RxHX58L8XWJ8fgNs3geEnMWpdnScmFrKzGyAqohK5CYJPCjkOxBZLB8xvOr93HfooSPibgYPXX9nPLgdA6EZ5J16l+8XUuRwn3MLoxMHEDmwmzDGAYkB4yMlGojoxg/s1MybArJYTckDp5SG9+v8fwLy/RdeMS+PoyVQreDaCA4UBgmYjz/Y/q04rV4+/Podj/iMBFjx6Q3ZPLG9FpPtop+zNsMGBfbQfL3QYJeL5HeayF+RjIAKF2bug7xfRk7A8dUXTEG4JiGTNXtAKN0PQbJ86KGdPCj5HcIYx9wSrlN73/ho49Sp4AeJsWmpGOvxJgwrPoQ7QEhskd8vsTu6NixmLyHMibvinCrH/HWGtbFZNts72MlCcbKE685NFAxWZmdlPzalm/KU8dE2sjMqdZTEl2pMQGXEmM5dkqmhFteR2SofCYPn4f9YVuulJBdTJfNokrDhluf42GUwbpcjqAuVbIIF0ZJsxo8/YzRH6y3A+vIkD5f+XsZuyGDEKNnMQE2nzG9VXaOKbOIz+c8XKlHKe7hQKd+0Td7JhFu/Xzc13jurCeT19l4X/BnmYJwfkycFdaPfZPSejJiqScyAb6Cyb4Yv/bRJ2mBuB+3Oyp5zcv42cXH8eCAIDCG9gjPPktIjGmyIoXjKMmf9QOBmxCHZNXbYTW32cJbnZTCecp/Y1hPul/QMYQnPU7FfkuA0tnkmbzt+wRuMYt+BHzh82wkAKHk4XcpkAc4yHmtxeitBJCkqmNYz+1qEecoif2LUmH/TbfPpcX+bZDC/gJY/pzeZl+9F+7/j/8I9xZbWC9hlMOTH9zH/EsrFNkA5yUy5VCaAc+XR1DKY5L3UNLjcjXFW2crvN7MkJsBpbFY1SUWVYOzco/eK/z0xV2EAJQVH+M831i5GbDdF1AqMJ3VKvSdRrASp2dbbOscWnu0rcGk6tC0Bt4puFrj/MEK1zdT6Mzh0ekKL1dzHE0aXC1nyPIBubEIUUYKAEIEpkwPCt5JuF5hctSg3uVQmpLPPB/QbAtMFzX6XiMEgUnZYXk9hco8009Li6NFjd2+oDKuU0y/bTSE9jCFhTEO+1cTiMpROrjLUB03aLYFVOaYHGslhPH8X3no3GLY5PwjrT3gBWWZew14gfykoTRya6DmA4OMFjV2z+Yw5w0ena7w8cd3UZ3WaF5Ooc8aIAg4S4ncGN7jqS8x0x7eS7i9AbTHl966xKevTimFDAKqsHA7w2Tcmgl1cjLAd4pJsJ2iV3Y6wC9zqOMOWT6grTMm13pwuACQVc78OGSAAETpEFquFPVsgPcCwQuElnJK0ccU2z1TZPVKwZ5YwAk+1gpgkBBeABOLMEgm74oA2cbwgsrz67MOuMyZ/uoYWmTPmBoatIeI+yEs01rhARwNwIZpt76IgUbGQ+4Ut1vL6Dm9NewAABNllQAZr1qOQEO1ZM/6hUfIPYpXGv384O0NSfJVOg4l8gCfe8ocJUZ/bVBkS5NcMUhKJl3lx0WerAmUXQHYuYPayViyTtmSPRmglhE5pJsAfBGg1wcZpDc8j7IVgOeAoF/QA5tSWSECujsOaqvgc49sqUZJo5t4VE8V2nPeN6gQk1bj0EPG4xQHFdJRbqi6Q9CLyznMYSovxqGG6pOPlcMFOwlweUD1Qo4VMynIyZuYjJwHFK8lulMOeYKOEtMAnneB0b+qazEOVuq3LPJLFV8/rxGfUwXgszAej2zJc0WpXRyueXEAOJJAn15ZDnHMVoz7KC2HRkkGJpwYZbRjeX1L0D7e4n6nYwXE6py4HymgiHUY8ecZHyejr9VrjFU6SeaY6kRuS3Bvg0jZcwiQxSqYdBxlBHXJCxo0wd4oa1QH8J/++cgGJ9Ape+6bLTECrmxNUGMnDOVJVTRjLU58vcIzXbVbiMOxCocBgrR4A/im7Y8DS1Au6DWHK3p/C9yawzAphfDYMkoM7aE2ZQTncdiRALFuCWjTgIIDGDGmawrLaiARvaghglmz4/uxn6fhUxwapEyPzw0QRsAXj4twQL5JYUHhIIEFkG1j1U28fhJwHd8P8TyOsuAklfQYZbEiSjlT2E+SxSaPJ7eRPlOiF1aLg2fTBlYqTeUIgFMNTnntokf0cOy9TgA2jAMUW8RBaxzoJKmrbmJCbKru8DgAsIQVoi+3XbAD9La/VTdMnE1yUR8lnqyLkdGzH+I1JUbWl0FQQD+hl5bX+uEYyD7AFel80C9qS/GG3FZFVj1EnMprKYzX1+h7Tv7cIQH+VGEjY2VNrF6JAJmydDWGD5mdGwdNQVGaOtaTxF7NlPrK9weDfKQ7VL3Ag4+NHtBRzupD9NbKUf76hl9TMuAHUkDWPXxhIIY3AZCsO/hpTiAegefYZWn9GOYjolQ0jF5MjDJXIIHa9GEWZadJuprA5u1019s/B8bvxecYxBEA/tvAnfeHZNrP4wXv6dNMz+k83vBCfr5+5GdIXf9/YZDEpn7RpbDTh+HvfPuvH1j+zh/8fABL+Rff5ef35oLAbz3+GABwtZngYjOFLz1Wr2ZwXuLyxQJSBKzbYgRcFxdHePHiBMOqwCc/uo+mznBzOYeWHtZKPP/kDN//4WN8+PoMs2mDsMrQ/2SO3a6AlB5CBMyLDkNj0N4U2K1KtOscvtaQmcPNhyfIMov9TQm3ydD8eIGhMcDLHHcfLnH55BjhJsfQanz86R00qwLbpoC7LNA2GX2Jz+dobko0NyXqTcFtPa0IYhqF/YY+Nf+iBF4UqC8nCLXC9tUM9skE/SrH6tMFqnmLcJkTpKwyrC6nkB+VcI2GvswQXhYwrw3EdYZ+m6F+OUV2rRC8gPcS5sKg/2gO9SqDu8ohL3KIWiEvB4hawRQW9rIEZIC+0UBHACg/K/h9AEIQUJpeKvVpgTBIND9ZIFQO/U2BT16cwVxp1DcVZCMhfzqBDwLidQ6/M3Abg+yVQXahMT/bA59O4LYGxTMD9BJP//gh/M5Av84gdgr+soBeaugXOWQnkV0pZB+WDFW6yoEor3WbDPq0gf5phfpyAt9qyEbCbBSySw1ZK2RLvh5WkiioWiJ0EtVnGmqnkP1ZBVzlyD8uCHzjQkbuNELpUD1hWq1e8f75xznMpYGcDpCNANYGaq0IyDZMlc1v5NidGtYZ5XlLNW5b7BXUcQe1VUACOTkDndReYvJ+geqZIrjZSUp+t4rbLfkhX1xI5JcKwgqULzSqpxroJVTDf9UT1mborcDkGUFMf+JgdoI1GiDQK1/FSff9GmYrUH1qEDTBCowfF+E6esDMho/XO4HZR5Is+L0Oix9IwAruU5TaVi9FPB8ydipysV08zRBUQHElkS0JkosLiclnKiZuSlQvJcpXEtUThexGsnLBAmFiuY0rie6uRRBA8UIjW7GXdvKcUltdC5ilRHvHw5cBumZVhvDA7CN1AH6CYKm4EeiPHcrXlCCLAOQ3PDbVs9iTu/BjoE9/5NGeckGXbQ7Mn7RkeIc5g6SKK4Gjnwpka1bi1G9ZuCmLx/MbgXwlUFwKzD5jIJYtgcnz2BWZEXimFGI5kEUXDph/wG3qWmCYU1kgAjD/xI8sf/VSwE48ps8CXBGQrfmzFG6kazEG8WRrEVNdA/KVwOQ5gWC2oiJBRNBt9gH5EsivCSamz9OiFkBgzciYiJoD1UuCP0gy8kGxl1X1DEmyJYEYO2IDJi9iavANlQTzTzzMnpUk3oALtchkJlanPQtYfORGBnOYcz99RllpAn2pl1fXrMNILGYC3qyywFiPMnnpMX3mx8qR/ihWjBwJdCd8rRCU8LoMOPrYR2ArMH3m4UrE7lKM6b0E94jHE+gWlDBn2wCz5YLcTrhQnzwPoweQjGyI/boBk1cOug0xKTiGZNnUKRpGQAXwGGfbgHzlx+PSHVMSnS/9CHaLZYDe87HDVGD6nGmp7Sm3XV14qC6guvSorvwYfDRMBLoTgeImSr0zAkmzDyivPPJNQHNCplbXQL72KK89sh07VilP9ihWHkefDMjXlMhWVw7ZPsA0BEomptkWSx+BV5JRE1Tma/489ezmW49+LjBMCKZczhAgWwoUS4KZ6oI+Na8EipXj9b3yt9QEh/5YU3vkawdpA8qlgzNAcyKhG0+57rVFu2CdiKk9uplAP5XoJwLFjR2VB9nWI1/akUnOVw7NqWaYUn/oyjU7N9aDZGsbgSeZT904hhqtLLIVpaHFTT8qGjhQIautdw5BMRE3KIH8ZoDZDrfAP0Gr2XtUzykpYUiahwgBqg0x3MzDrAfoxsJserhCwmwHeC1QvG5YR7Lp4TPKVrMV5Zaq98jWPcymh50oyJYpu3rTQbVkSgFAdg5m1cIVTKFNNSGi99B7C9k5ZK93VC8tW+h1x/PTWIYHFQrDPIPqHNlGH6A2HZnd1rLOpbEEkgB/FwBZDxCDgy8MZD0ASkSPJFlMd1yxUkRKMqIgKGUHJiB6BjNhsJEB7SHaDqKzkHULWbcQ/QCx2TMoKLGQic3cNxDWQdQthw51y6/j/UQ/RODoKYG9nQYbtxPajv/6nv83DULT8HHWcluDRWhbhK7j984hWMvkWGOY9BpCZGQJKuEDhImThSF2fir15j8pIZTiPyEOX6fvP/9PyZFJ/cXt5/f2hWYsp1+9F07/238KDBJnj1borcIvnb/GD17fR70pcHS8xy/feYHv/enXIbyAPmlhMou2yXA0r7F8dgRz0mJY5/TyATi/v8bl6yM8fHCDl1dHuHe2xqvLIxRVj/pyQl9d5QATcHZng6unC6ijHo/OVnh2eYzZtMH62RGC9pje2WMYFLptDshApip3kJeMO/WFhzzt4NYZ8tMGSnl0H8+BBy3cXkNPB7hljlA6Bphc5RCnHdSzAsOphZl1DCTpJOtU/nwB96BDsBKm6uGfV+yWvCkoQbUCoXCQuSNwywNCGb9/VSDogHDaQ75mpUkKI9FrDXs2QF8a2BOL6mOD/ihOj79cY/p7FTa/1QAvCsghdhFuNQFGDOCwkwC7YJefm1vIWsEfWaibCL62CvaUHYbVE4X9VziRMlcGtkrdeRLdqaP0VAfojYSde+iNxHDiIFsJ1QqId/cIn0zYkxirV1IqrrCsNZGdxOS5QH0vjIoor7gY7mKia3vC12hnadpJX+n+HUfpWc2AEntsMfnIIChWU6hOIL/h/ULhIGqF8qVCc48VGfmKzxgEgYZqmRQbVIDZKOTXZDdSnUWSG2YbMkXla4HN1yyKC43+yP9/7L3Zr21bft/1Gc1sVrv7059z2/KtW64q24otF4FYESEIRYHgBzA8EIGETMIDiD8gBMQLDzwhISCISERCRAacFwSSnUBQrNiOm7Krv9e3O/eeZp/dr3Z2o+HhN+Zc515X2RGpInbhJR2dvfdaa/ZrrvEd304kzleadk9krFGJ/w5IICRy83nYfweu32YI2ehDPtzUM3vPyjpdSrR9rnET6Kbycw84fCGSU5I0t7zQZGtYvSJ+0dlH4qE7+KbMgNfHCDAYyQDLVsLadYee4syw93tw9UUoL2UQp1vEazoK7H9Ts72rKG5ke5tDQAn4W74RBACuxOPoS/HibW8rYd5MmuUOitGLyOYBTD4Rf6JpxFPnxuKFK67ED1jfkp7L4kr8atlaBt6rh+J/3XsH1o8U4+eSlJptItu7clzmH8g2dnPxhW3vJslwFPADUimim11IRjSK6rbUjegusr0j19PoIrJ6pAYw0cse7VaAweo10E6RL0Sq2e7HdCwSK5KqH/p118cS2lJeRrItLN5QzD+MbO9Id+PoUlJY6xPxs/bpvsW1JNbuvQvNofQq9lLQ+ih1Li4i1bFUvdiN7Fdz0BejC2DymVxnq4d6qDwRUKeYPRbA0x+fbAnVbTj8lvgOoxHw5cYysVDdkuPbJ192U/FBlovA8pH4/JoDRb6Qc1BexiGURbtUYdFKL+P6gWb8PHVd3sQhMKWbyGBZ9lk8cz4TBlN3DEyfqeMuSMWLD7I6FGDf7KtBjju6FI9fO1eJ/duxcdWJYv7Ys75vmJwGtidaEp0vBPz07FrvofO5GnoNQ6bY3krVDE3yiG6EmfK5yGrbmWJ0sUtFjQq2t8VvuP9+x/qeZXzuUR7W9wy6g/ImpO5LkWxuT/QAtE0rLM7iVUu2EZCfrwLrewa7jYyuZODf7Gmmzxz1gay4730MVhjoyamjOraMzwU0rR5Y8nXv6TTYVFXSjSTRtu9WHJjBKLLV6sAMrBhBgGK2jVSHmmwbPyVB7mXFpoVsI99tzZ75lFw3GkVx49jesoxPO0kbrRwEcBNLNFAdWYqlsITzjxrW93NMB91IYZtIvvREraRT0kfsJtDumSHFVnfiFy0vWpqDXJKiJ5rZ45rFGyNsFSgvXfIEplTZpUd34vN0pRyDfOlo55Z84WgOMuzWY9qAKw2hEODYHGboLjJ6sqG+O8ZW0js5+XDF9tEMXyimH22o7o6xG0+2bHDTnKgV2aKmujth9HyDH+cCwAot739aS5Js6nz0452vkxgJuUng0aE7jxtnyX4gn+ls0eFLI32bU0t5tqU5GeRwibsAACAASURBVFOebgilJWQGk1jAdp4JeF11uLGluKjoDkrsqsWXdkiZ7RlLXTmU97gDkUeoVkBuu1+QLVpikhDbRUPIDWZVD0yYO5pIzYgLuL0C3cjPfUUIMDDI5mpDmI+GMJ1oNbp24mfM7I51NAq92BCmY1G5rCriuBRJepLcRq3FC5mnmbskoUVrYQq1QjUdsQdVSqGcJ4xLeV9mUYv10FmplhtJaM3sADrjdAzeo+p2l1xr9C6x9jN1JXFTyXqzTABmkUOIxOSRVHm+81saLWyl90OqLCTJ6stgNj3/qUfPlmr1XRnNzz5+KDyW0/vxp3/sr37fl/t3/+Ff+6e+b/DHHFiefOEo/jP/7b9J5TKeLecA5NZhdKS0jtOrOaNRy2ZbUBTdICn1XuMbw+xgy3ZTYqxnOq5ZbUp8Cv3pVjlDIqQXSWQ5kw9RljnqOsOYSPNiTMwC2V6Dd+nG08s3myR9GDmi15hS0itNFsTTCbL8Tu/+z2QmKp+2dFUm6ZUmMj/csHoyh6nD5B79wYguSRPREVUZmHfEymCmTtYfGcJvVFouNxlxFDCTTjox815vD4y87KuJ4DTYgFpmxEKkmVFH4jS9RkdmRxtWpzOpc1lkYCNvvnHKe49vM9mv2D6bMrm/Yn0zgkoYMhTEPIBXsszDjrg1mErjJ2E43sorYh5Q9c5rog5b4k0Osw51JYZ+TBTwtrHycxHILizBiqQ0ZmkZCunK3Eu1MRv5gotZhJQ6qbzCzT3ZjYTtuD1HdmnpDr34RMcRP/ey/EzAlcj0FD6PxCISUwVNtjDiSZ2I1NJUcnPtDgJmJZ7Z7EYPHZOmkZChbKFxr9QC9DORXuaXBjcR9gxAV0o8tynoqL7rsDdGfG21sC6mUqlr0kvapFe4PWFGVaosiNlLPlUENOZLhRtHugORofZJlO2RRzkJMuqDcZSTVMr+YSrxb2YpoVM3CjcNcr3dWPGCJl+a7mtWjDBpKAHRIv1EkkbTQL5nAHpGjwDluRbfp5bJgL5uxm7VAHp7iWPIQDcit+tTO+tjCZCRICHxfZkW2ccUmFLdCkn6pwbw2e9zsAxSUPFJySBWeizF46w7qbHpfaK+EPmoCkgo01Zha2HzdJcSR9P2Zut0jJPcsn7YUjzNUD7JipNUb5DrJUbbjQWc+5KdzzjV9ph0DABUJ8CjZ0LaeWT8QgJ53DSSX6uhZ7KbCOvnRrv6I92Ib9ZNxO+LZqge6c+tHM9dPUgvUbVbSQrN1tDOIWZQXvTbkVJHZ8Lm9gzp9l4Q9rkRb3EvGybK8txEWEz4tHS0OUie1FyeN60M6n2Z/K8VQ8KmT+HQumPwn5p6VynUTXeTMm4siackmakMEFPIUPWybC95mkPfZSlVM6aNbO4pRmeyPf36IMlUx2qYHPisn7b3U4MsR96rBhliMBJuo7zcn7pZYqwrYXLdWO3uXds4gGlJKI2DfLZPRvWloryWShvtpCpGtlOWbZo41AL1+9ofL4Co1MB2qsHLveuobA4U009SANJIJivcSKW00Z00FBhSbW0jPZEmSSh7v6XuRHabr9LkjRJQa+udhDSrIs2sV0KIXNQVaVlq51UNRpgv7YRJ1k6kt+WVbKsK0OxJaFXffdm/VwVZr2njkIhKFGCdryQpFeR68lliTksln8kkA+4VH/laXm+rdL9bicS2mwjANCnhtZcY94muKCQgaGQIefKfajVIUpVL96yJxrRRZKKjBLq2YahXaWcmrUfkoNmqoznKsRuPL80gpzVtoN2zmCagm4AfmUH2qXwUj2mIdGOLH2nKS6mQMZVINoduSC0VKyHXqU9yl/7qc42tvVSepOX2fk/lQppISLLaBNzwUWpNkny1/2yGXNJa5ftCD3LYaPTAxKougToXhq7KPqVWRXZy1l5q2u9v6yTBtU9r7TyxMLtKlk62R/n0fO+/1Fr+3jpU3RKtEbCZwOrwul4Ka80uiOczclbVJiCaqktU0zL0WYYg4LVnFPvHdwN9qauyxwrKpvf0qa5dX18SduAw1ZYMPsuXE2df9pXyGSnsHyTJfcln+cfeY/knwPKP7mP05r345f/qL7PclnStHXx5YZWhZx1hnXF4/4bFcoLNHO02F4+bSwCurxyoNdntiva6lCCbCMXtrYQBXZbYtcGPE4jzSgDXNlUBRCXAZSZ+OTrpxfTn5QDIVKcE5IwdNAaz2YElPxYwpTfC4NlzKb23a013nEJxkl+p/1IOGcRCwnxMLV/27ZGX5QaFn/nBIxdKCc8JhQy2dScBMtlCJI52m6oE2A1c/Dh9wW7VbqCYsyupj0gHZwoH2iVw7rYzZilQZ1+kdjaF0ITkDfMj8aP1vZKmVjtgkwJ9YOcrspVim9Iv3SxQnpphO6ORgXjIIiqk6P21ACQJsBDvj5vs9rPvg7PrtF25fNnk1xI24nPxwrXzOAQNgYCX/EaOWXElgGbweOXClPlSBlb5SlEfy7aIPDEF08xlGfJ6+YLypTC75SVsHkRUJ+sMafDbh8D0Xqy+6zNqAQL98X0ZdPRMpwSmSB+pqWRbooHmIFJeqEG+B7ugmW4iA/s+MMZnu2ARUzPsoy92ITt2K6xOH5GvW5Eo5kvxFfWhMv0+BCsDIbsWIAE9Syvr7gNiepYMdumg3XTnfevrGnpp6kBB96AyyRW7mQzqdfKA9Qxtfy0IA5VA6igdixRs0/tISZ6wdr5bfx/s1PdERiODl26aznvRA+gdmB48cjAMRiQcY8doBiODbz9SKQBEmKji+iW5Yvrf57I/fXVB1Luahr4+wW53nysQ1tG0wjRqlxj0xC4KON2FoaiQegpL8VK1e0rel0KJ+roD04lMtJ2lz/MiDgEzPbgR5oOhO9SNklfsRuSQ/XXQe8X6MC6ZxEmDaJXuSSFdZ1MBP+1UDcd2CGwJO3Db75t485IcdCXgTruYOhllfbaONPPkHUO2se8J7cN3JCxLAFi+kdcrD8VKmL12ogepczACWqS+QTyLvbdMe1m3fenc97JUn6lB5tiHLfWfh75P09Zx8JjqBCj7aghXpmCeBJ76ABkJ8xE2u99nlwBKVqXgpgTw+v5NV6phvcO1lK5jl+ooUIhcFKgODeVCgFhUUCyFKfSlvLln+eTY66E+Q7y3It18OaxLJhI8bmKGbsk+UEj5mFjdVLXADshG20/ASPdm/5nuj4X0Rfphu6JRKQgppo7NFHrjonSqTg3Z2tNNzCD59IUsA63opsLG9ee3/24NhRrAnsg1RSYq17caAmyAAWiZSvo5Xw4rCpkWD2EC1STAFFKvo0kS0agELLlplvyFWnoxE5ALmR7CdtqDHN2EIbgoGiWMXYj40gogDVHCbYz4avv1BatErjrL5Tw0XsJ7Wo92gW6ayXoBFSN+ZDGbDjfNseuWUFhhKAtLH87jxxazdYPfMRRWZKe5wa6k81L58KmwH5Qa2M4+qXW4x4ZAKDPMphWQ+RI47QOEhAkMEAVU9rUdIbdDIE9UCuW9BPL0IOnl/sUe5L3cWZlZAY1GoeoO5bz0VvasYQrmUYn1Qylinsnf0nMxs/I+o1EuSWLrBqwV8Nf/H6MkuPYs4suBQDYF/LzcI9k0nwZ+w34YAXM9o9mDvpiWqc2OOeyc7K/Skgir1A5Yvlw10oPR74U7/jGDfH4ogOWXfwDA8lf/BFj+Ez9mb92Jf/5v/ixaRT5Z7TPNW0JUvLV3xkfrQ843Uy7O5lItcrbPwcEaoyOX11Me3rrmfDXhZLahdpaz94/Yf+WGg3HFB+/dgVzCTMYnG5SCps4oyg7nNF1jMTYwnUjlyHI1ZjypWb2Ycv+VS569f4I+aIheUYw6qlUBXlHMG5pNzmSvZnM9Ynq4RalI9e4+2esrmk/EI5rt1xztbTi7mBO9ls/8xsK8oxy3NFVG8c6I5jjAcUM5EpkuEdTYEbcWPe0ITjPdr9gsRsP9wlzkZGtF/WoDTqOT7y6sJeDH5n7oQQwXSSI8dbC0sNcRXRpNRASYRyhPKurLEXrSEZfCKBIU5bRhOmrY/oMTqi9WhE0K09kawl6Hvs6Ixy3GBngyovzcgvWLKXZhJACmDIyeWOo7cvMqLgz1g1bY10Um21NZYR9vNcSo0Oe5gMSZjJTMaYE7dJiFIYwiqpMgGjcJjO+v2byYkF8YukeNBOnYiM4CvtVQyw31+OENlx8doFoFJw36uaTeAqj9ViYyak08alGXOaZRdLc61NpISExMDEgObuYFnFR6kOTGXCowdKOH3jFT7QYj7qRDrS3FtSTw6lpj14r2Tkf+XKbwu31hO9vbTvytSpbh3qyIL4ohUMWPArEM5C+sTCpMo0iilTBzfhok8CYyDBj9zA/1OPZSZNHlk5zmSKS90YoM1q6SNHklsmM/CahOUVyIL7GbB6nQSJMWbtwnAb7k05sKONedJOeSpIA9eFROlhOzSHZj0u+SqOwe1Yy/PqI+Sp1/SvbLl7L8vluwZyF9GSkuhfnMljIJgmJgxjaPPNlSC8DPEcY+SU3HzxSbhykMaCyTJO2eyKDtOk2oOJWAq4Qc9WxjcxTIVtLXmC8U2weebKGHkJ5gI/lC5Md+xCBxdSWSmLySfdGtBOb06zE11Lckzbe6I1LhfCFy1/o4MYBWwD4RJs+ELepTUX0pYNlUScqbwmh6cC4S2Yj2itGpSE6HcI7kjS0u1cA2qpD6Do1MHoSMIUQmFHLOlBMpb8/+5jcJOKaxTA9Ii0Vk+bpMVtmKgaEuLtXAjKkokuvyUqpCyisBy72st0ugszmQ/ZR+TAFvUe2AeTSQrcSvaGqRDNvtzufYzcXr2RyqYeIrW8vvdg31iXgou6kAwT7xN1/uwmfa+S69tbiR66oPkDGNvK7ZU0PoULYSMC8J15F2X64lu02+ysTE9mxmto5s7ivKi0ixlM9BdaKTGkD2uZvK+rJ1HCa4em+dG8ukgC8V47OQJgqUvDZLbGYC/tHKPmabOPgk+4oQu03X1VrOqysFxPpCDUE+biTnu6/U+VSabZow6gOIyutAfaiHsJjiZtcd2Xv+fMr26gNzsq1c7/WBItsyhMF0I0WxEsmxK9XADrpSk68DzZ7IaX0Gzb6muBHfZbGQepZuYqTCJaX2Dmx4lj5TbSSrAj7rmV4B0TI5EWinhmLhWbxqh5oTFSBby33IjQTsqAD5wuFLQx/YJMdSMbpwtHsSYtNNzY7RTF2SthIg3U41owtHyAX86y4O3zUvfwaUl2CePrHWlxq78YRM0l/z64b2oCBkcg7KK5Hj2q0fALH2aaImgeps0eJmWZoE3q3DVkFCeGaZJMu6iBul9Fz30iSwFzY1ZCmFNgHkPixpSM+tZSzjxlZ8pKVJ5zpKuNRIwL7yAd0FqZHppNpDN55QGuyqHdJt+6RYXxh06zGLijAtxAvp+4AqhU6BPXrTSLXJpKCvBDFr8TWG0qIr8SHGIgHGPmE2gcvh740TANhIuqrqHHGc5BTJKxmLXBhIGABbzDNhNGOU550fAGmfGqu6TwOyuFwNDGQvYX0ZEwzPOYcqix2DCcSqQpUlsa4F1LadyG/rBpXAaN9L2YPNzz5i8sLKfqhPg9fv8fhhkcJ+5Ut/5fu+3F/+tf/4D9w3pdTfBP4icBZj/OL3fQP69fxxBpbzt27H+//5X6Xe5kxnNaO8I0RFjIrFusTagDFyga6vx8wON2xW5XBzVhqUiugPR7T3WuxZjr/TMJnXrK/H0GjMXsvJwYoX757s0sKOGqkuabSUjSuR9Jgriz/qUBsrEtAXU0kkTQmmGEl4jbWBLFDMGrqnE+av33BzligbrzDzFn+T7xJJbRSPZqKf7jy64vJ3bxEe1sSzglAEKANqk9JLe0mrAlUZdK0II0nI9AeO7CwTiWIRJD210ygTYWPRWwE8AuI69NgJIMwi+sYyPtXEryzYPpuSnVS0m5zRBzn1LY9NCZ6hCMSZk4CgNBiPqb4kuzaER7VIZ4HZvRWr05l0d76Q4w+gLsV7EkuPWVqiiUwfa5ZfblFb+YI1a82X/vR7fP3JfdzWYq8y/CjswOMsyLErPfm4o3sxIk48qpJQl6ihe9hQvlvSHgQOPn/FzTePcDPxa0oHphz7aCLZQiSt9T0naaWpLiOMRU6jGgnLiRbCXge1IbsWD5CpFO2xJ+aB/MwKwzxv4bl8YZhKYRpFdd9RnBnpiZx4CVNKA7cu1ZBka0V7KFJT3SjcXEBl1JK6SoDi0uA/vyH72gTtoD6Wrrt2X9jZbi9QpBoY5aE9dpilxR90mBtLttICtBAmujwXlmn7Wsf8mxnrV4WJLs9lYO+m4oPtAalpRA5bXOy8nypIcI2APlmuzyNuuvORhqnU95iNHuR/IRPg4ZLsNr+WyQ03Ewleuy8AvbhStAcCEqt7Drs2gzcVGMrT28NAcamHhNGQx2FwgobyQrH8EUlTLS8U27sxSSUlLAkE1JSXwraZWtjgXj7qxsLS6k4ktzb1peY3UuNi1yrJ63YD4JeZ374ovTkQwNpNhAUsrhMwPWCXpKrBlclbayLFtfSXSv8qNMfys1w/Ed3Ie+xGzlW2geokgVOf2NcEnvNFSk9NktTNvcjsQ/HNDlUwkaGuxec75stU4ok1qU+zl60Gu2NUVRCZb3kO1S0BI+VlZHNP5NT9sXXjSL6ScyjBJPL/y3Uvk+fiyfS5PO+SXFN3O5Aj/jkBJj1YmT31XHzZiEw2sd0949/NYP8dkUpu7qmhzmX0ItVtrKPITJ2AsL4uqJdB+lImk8qLHQCTipWdmsC0CGCZiU91e0tkozHVbmQrGfRXJ4rxC2Gt80XENpKU2k902I2ATF8Ksxq1AL12piivYmK1Zb+aAzWk0yrfgw8BmuMXCdyFnYy6m6gh3bWvUekBYV9LIqx1AuZ2Jx0dFBQkz+dUpJh2Kyzy9LnIOtupsKvbEz1UkeQr+VyOLhzre5mAwalKgFf2t9nTlDcpZCmB4vLGU++ZoftzqDCpdx7PfB2G5FqZHIhD6qsvFN1IMXvqqA/lHlIsAtWRGe5JKsjxHF0LcOyX2c40xUIkkb7Q1Ac7CWvPRndjzeRZSzezEphTCkjMtrtzUixSoFQbqI+zoUZExeSn9RFbedb3cuYf1WzvFtitgEEVoZ3pAaD27Ku8N2AqOV7tnhUQaNM9J7G+Pdu/uZMxPnM0e4bJaUOznw2sbzRqAINSQ2SGn91IS99qlRjgBKTdxCSQqsjWjm6WfJdapUAhPWyvqXy6Bj2hMPhcky87OQY+4maZyC0T05itOtr9nGzlBiZWt36QxPYgMFs2dHsF0Siym4aYGezVBnc4QdciHe3Z0T5519ROpK3jfEiGjSb5KY3aeSy1RvUewZ75DIEwKdBV9ynWs++5BAYGFOchz0QK+5JvsweOqklBOn39ifOE+Ri1bYjjQnycc7nx6cVGGM6qEZCqlNSTbGvxSnovbKZSwpzCp1hLFSJsqx1b2UtuYxS2METpqeyZwz6wJ4FLOjeAShnXvvRzv8y0zv51nwW1n3r0DPAPUSrsPyVg+TPAGvhbfwIsv8dj8rm78eSv/YegI1nhyHPH+maEtgGby8Wa507A5Cojjh1Kp9m5rUW1CnPc4Gqp3IhbK8mZUaFMIHTJM7myAnBmHaE16NzjayuBOp0WCWzyHaKjSFtvMsLMCePXiL/QHtXi3dQRe5nh9iU9DBVRjaSD0uqBLbXznaRWtYo49bt+zbUeQGzUUQBuBEKS0YwcLMQfqZzIcYdezly8e5KSqETiG0C3wj6ZTaqAiIAWUAiQXRncVHo2RUIbCGUkv5SUTVWbXVUHSLjORDx2qhJGBkSeO0TkRzBrqXtQvvfwibyz7/HsaziypawHEODhFW7PoZyW1NQkY46HHdknOW4irKepNGYrDFjMJNBHt+KDU166NokQs0h5anGpVqGXBQ6Sr5c6P/uqjv455RXZRliw7iBJmJ3C7UtIjQoKV0qnqKnUTsKpdhKv4bil9M7mMEl5k2xL/IBetr1Lx7KQEaqpJdDI1GoI/Ql5ZPzUiC/tdhxYux7IhFIAqe4UzS1PcW5wZUw+uAQEDwQImm0CSrfF69aceEmibRLrdCjybRUTELhWu+5SG4fOyn47e7aNuOu17Ks+IMlX0zd773nr9uSaLRKA6wd4cvwFUFS35RhINYUc62wtAMnnSX6tduvoZrtt6atVtBfPoQAGtevkHDGcj74Cw+cCjoKVUKF2LufKbiTkyDQi7e4DgV6Wr/b1GdmKxFCw85O2PbMj3kxTK2LyigJDNUQ/oO8ZQ5vO0yA3LuQ92ieZrGXwG/bgy7Q7UDg8n3orTfsSY5SYKFfKvmUr8YSF5JvsPZnQM4oyIVLcCJPVB6n0nZCmTT2RaYzgc/Fy1odIYFOapOjBUy/L7ztKfbkDP9lKmJnep6iT7UclGb9ImnesZQ+OerlsSBJvN0k1Hf3g+aWuxX5gL3UNwpz2D+36AbqAzR6IwY6l6WXWUmEir5d0zyRht+J/tNskAfYM0tD+WndjSUjtjxdAfSwBVf0+oYTtLG5k2cOEaAKF/TXW14m4kp1SIoHrftKj32eiHNN2T4Cd7Be75Odqd46lzD4O10GwMkmQbRDZohJJrivUsI7e62uSV1Ou8R0jtb2jGZ8KyO+PWc9O5hthXPvj3Psvh/5L2zNpadLEKrJtkufq9PtnOjl9IUmxPYvsM5EH++Rl7bs4bd2fC5W8qanWw+8kx/21oZ2A1/57o68U8YUEMfXXmPgud8fG9tUdJr0+14lxjEOIUw8MXSn3L7uRqg0BQjLmCbms21Z9V2fyImowdcCNzKcAbLNnKK8lEdWNDKYWma/I0KUKpE+ZdSOTPJpGEnSXXhjnvvcyCkjWnawnWpHyutJgKz/I7fvzLgoCI2FAGoIR0CmeSJG9tnu5gM1echqjAL02DNcQSg1+Sd3sqkh23s9ehqzRrduF4yQQY9YNYVKgOgkI6tnJvsqjl8vGTKO3HTEz6Lod2MeYmQEkymfGoJtuB0ITSJQqjrADcN4nL2QCVD6ItNX5HdBsuySv1YMMmBh3ALFf7svrAD5VMaKVLPMzvkcBfAFlzY4R/cxrlFLEvl7kM/7K/vhF7/msb3MAnC8zlf3v/c/f6/HDBCy/+O9935f7y7/+1//QfVNKvQr8bz9IYGn/8Jf8v38opf4j4N9FhghfB/4d4C7wt4Ej4LeAfyvG2CqlCuBvAX8KuAR+Lsb40R+0/JHtODhasT+q+dH951Q+55U3LvmdxQPOtjPe2j/j6XaPx+GAn3jzA752dpejyZYYFcejNVpFPrw5ojiUDks/6vjS3We8PTvl7z1/i8vVhB+795RlW3KxnRCjwnnNaj3i/r0rGmdRKpIZz7ou0CoyLlpOL/Y4/NwV1niORls+udnn4f4N7zy7zZtvnHK1HbGelUxzh1aR1c2Y0cGaMu+4uZlQjlu61qJ0ZP76Fc4bZmXDpsnZ1jnWevK7nuPpRpa1Lbl7sOT59ZxHx9c8Pj8gzz3bRYYeO6azmgiUmeN4vOE7H99hMq+ZFC3LbYnWEec0zhmO9jacn83BK07uLpjkLbWTy2R5UmKCpns8wf7YgvbxnPxkS+sm3H54zcW1sK5Z7qRn+MBICI1X5He2jMuW67MZt+/d8OLZvkhaFdijiq6xKBM52l/z4vEh0ztrNosR072KrjNMRg1XT/aZ3RGG8/jtC148PWBytGXzYoI5aPFbiy49t4+WXI/HxCpjkgKXNmcTsv2abpODV4RRhz3Lyd5YYYKiuS4hi9SvNIznNdWmQCmp/CBCeXcjlTXPS8o3VyKhPaxptxnltKU+HxEzTZg7mRyICvP6GrcuaO6LN3d6smG7KYjPSvzECwi3EftJLiB9FNCzjviklO5Lp8BIX6Y/L8FGVKexG0V3vxU58H4Hiwx36MEG9Ej6W3lWog5amqrEjwL6qKV9XOKLSBgHVCmdmt1ehzYRLgqagyDgeb+luygktbd0dDc5urHUB8IAtweBmAfCqw3+Rcn0saa+Gwn315hvTfF3GuKqRDlFtxcGSay61eAqC05h9lvCVcH4iWHzVoM9y3FHHfZKukT9mxXq8Yhu32PWZpgQiHlEBZEus8zIbrTImCuDepzR7Xs6s2P4XaXxpaQGj55Y6ruSvjt/x1KdRLoTh1kaVKfwdxvarUU3wtqPnlp8DtUDD7OO8p2S6tWO8mk2+F6r2zIwyW809XEcvMjbezIx4luZLIlWgK5IGYX9NS3U9zuy72SELEl6FwLoq3teAqxMHNjb4kqAYnMYBSQnn7Pbd6hW6leaI/FIyeSETILUt4Rdzhby+vquo3xuB4AfrCx3+1pHfi6f9eYwcvAtxdWPecafWNoDYW3L8xR8Mw2YVoPuPdGKfCm1Gu1BGDy/+UJRHyU27m4cZKF2q9i84pg8tkOVSLsfUEHT7QXyhaa6J5M3xaUMiFWAbZog8aMkI74Xh4qXzX1JTN7el65PN5EJjt7vC+KfdlM5lt1EAOz6kaThdjPI0j7YShKDy7OdNLQHtfXxrjsxJpauTXLOfvJsc1++9coLRXktcstmRvKZQnVbUZ7D9q6AwvUr8lpXQnUC8/cj1S2FCmoIrjG1sHTdVICr8rB5KOurbsk25SvxbrYHUc7HvsJuXpIDj4VxNrWww+1c7aS449SvWe96LvNVpD5UdHPIr2X92TZy86bGtDA6j4nNFvl4toroAMvXNKOzKIBzLhUrIkuW63tyGnFjGF3IgHj1QDN9Kum16/uabB1xY5Hu5gupU+kmSt7vBXznm0h9oCWMiCS5XYmstd2TFGFbf3qyyo2EIdJepJrVsWx3M1cpNEt8wu1MUSwlmVY8rrtk29UDIzLgUmpV6gM9TBQqLxLd3ufqCyVe/WmSuW4C9ZEm20iq6+ZOJvUi+5rJqWdzx5Bt4rDeYuFZPcjI1yK1rQ6tBKRtI/ky0I01+SrQTQV4wCVDYQAAIABJREFUZeuAG2uafUu+9tQHBtNGJs8btpOcfOlpZ0YqSI5Fnjo679jcyShv/NDd6EuR6bqxTt2kwji2U/EJjs+cyG1zhQ+GkCmavYxi6dMkgyFfOrqUDqu7SH2QJ79uJL/pqE9yRqc1m/sl4zMJ8imuBSg2BxnFVYcfGdxYE5WivGrp5hn5TUs3yxILarEbRzvPxGLSBLLKpVRa8ynvqj+UwKHQp8KuO6kJqT26dajG090uBQj7QBhZ/DgTOa0VAOcKI12ZkwK7bvGTXDyyIeLnhTCs4z4hTS48Pykwq0aYyrEhdp4wzdHbdgCesczRtSOMssHjGbNEbNROnt82EuQTAmiTAK0Vv2ehRTqb5wIqk4wWa6DtUD4Qy0LYyL7LUiUAWnz3VFjV91amDsshtKcP6zGSCEwbZLu8l78Zdp5LL69TShHbdvgZXpqw/25S2GE7fr8kNv7j+DD///s4Vkr95ku//40Y49/4/3ojfmCMpVLqPvArwBdijJVS6heA/x34C8Avxhj/tlLqvwF+N8b4Xyul/n3gyzHGv6KU+jeAn40x/twftI6jt4/j0X/2H5BlnnvzJQflFk1k2ZW4oHm62CNGxauHV3zzw3v86z/+W/zKi9e52UgMdQgareXC/Uuvf51fOXuDe9MF716esK1zusbyo4+e8/VvPWJye8PPPHyfJ9t9buoRL25mWOvZXo94+41nvPv8FlnmOZptePrRMZNbGwn/+XCGfrCFD8dMfvSazbbANZbYaX76C+/zW48fkRcd26sxeIVdGtxhx70HV3zl5CP+zq/9FLH0ZOOObpthR45bh0uenx6IF3CV8ebnnvPB795H3Ra/5eZsAllg/1jA6ov3joljj17awdsWph476VA64DvproxBoXTkcw/OUCryzvv35ObjFXriiFc5k4cr2taS/8YU99Mr6psSXTrUi4I7XzxjWRfUVU78ZMyDn3jGyHY8/qVX2T506EaT3d/QrAreeu0577xzXwbxZUBPO+J1LoPjWxLwQB7IzjIJpdCR/FrTHgROvnDO6UdH3H/tguYXblP/ywvWl2OySYf3mniVCwsLZNcWArh7Lawt5Z0NXWtxlUUXnniVi+zzliM/taigaB60qLXcRH/yT/0erbd889dfx520vHL/ksu/e4/NIwlLcnNPeWpp9wPjV5dsPp6z9+oNe6Oap1+9S/bGiup6hL20ZBtF9WrLT3/+A/7R73wOe1jTLXMevnrBs4t9fG0onuS0r9VMvlFSH0fcUcf4vZztmy3KRIpJS9cZ4mlJmHrGH2b8cz/7VX7pt78EJlI+zWj3wyDFnd1dsbqckJ1l/IV/8Tf4vz75HMvTGeOPLfkCFm+Jj7BnMGMeyC4tbi4/2yvLv/Lnf51f/K0/hVka6c384opmWWAWFnW3lk7Vi4LJU8367YbRBwXd29tBnhyVsN6jFxLEUb3akZ9a3CyS3dtgvjoTdhPg82u6xjL+2oj6J7boD+Wz6nNhie1G7fxgFrJX15R/f8b2TqR72GKf5QMrqryiPQiEPJAtDeFhjf64FKnigwZ9Vgx+Y7WxlC8M3USYyvn7cPKXH/Per70iAU8Wmlue0RPD9qET5r+MTB4b6qOIO3TYazuk0e5/W7F+VcKhumnk+MfOOD3dl4nktR2CwObftlRf2dCtc/a+nuH+7ILN2YTRJ3L9aQ/bh+nzMO+ItSE/s0OSrnQRyoC5nUfmH6YqkJ+6YfN0RtRRKm6utNTOfCkw/46h3Rdmrr4VRVWQRebfsegWFj/qya403UHg1q8qzr4SmXwi/q3tQ4+upYd0e0+YEFOlQfmXb/C/uS+M776AZDcV2XW0kb1v2dQLCM2xZ+87hs2jHStVXqiBCa5OItMnIrdsDgUAVw8ckw/twJJt73umjyXBuT7u/ZaRvffkGIzPAmc/BdOP9S5QqpMU3j6Qy5dw8O3A6qFIo+vjQLYWViZfKTaPfOp8FfmvH0u1j6TgxgRABchGLeFhoYjMf0+u0cufkH03ayMAODGD4xeRm7ci04811a3I7CNYvAmTZwIat7eFaW/3klz2Urye7UGgvNB0Uzlu8w8YQpfaPTUEfO195Fm8mgamiSWuD0W+PT6VqpdmH4prYfndNDD90AwhTi5VwGwfOubvWCangepQgkwkuElA4fXnNaOzHtAmRnMZRSUwgtVrMHkilSftTLav3VMpHEx6Lqt7joOvGwlE0nDwrmNzy2ArqA/VsP12uwuw66bCMh+8K1JNkXHufJREkZ5ub+kk6474Qry62SawuWMG6azINoXpXN+TYza6CDRzkVC6kTD0h9+OXPy44tZv9LUnsi8hg/lH0g0ZDVTHfYBOktfWkdFlSFUlmtGFJOxWx5qD9zoWr2WMX3g2dw3jM5Gp+lwN/aLTp562B46bkOpQMgnSagQcz554XKlYP9DMHod0z1SMzzp8qdkeG0bXgS4xsPWBYvIikK0cm3s55bWAUFsJyJ0+c6zvWiannmiRHswqMjltIEB1O5ce4EvH6mGeenBrVq8Uko5byQTI6EICjEztMV2gG0tHcn1gGJ13VCcZ+99ecvP2nPLa01fc2I2nnRvyVZBQoGmGGwlADbkiX4i3s7jpqA9zRmcNhEh7kA8hTqb24o/00ndprre0d+dpgAquNOSLlm6eJw+7ZvK0EoZ2Iuxk1ApTdcJ8KpGm+tJKemxiQgf5qAuYdUPMLfXtMcVVQ7Aas2lojydoH7A3NTG34sfMLbhAmObCaiq1+3uMQ8hPGJfoTYW7vYd9sRC5q4+8XGeiugQCP8OAqs5JCBAI46mUgD6AXhqb3jMEIMEOZPpAbFuU1iKhBWE4X0p3jc5D14octl9PjIP8NbZy/H4fc5rW8/uksH9IMuwPhcdycj9+5Ud/AIzlb/zRYCz1H/6Sf6KHBUZKKQuMgefAPw/8L+n5/wH4V9PPfyn9Tnr+z6nv5vZ96dEFw5955QNeObhm0ZT85uNH/OrXPsfFf/cK2y4n/to+uXVsuhydBX7ht3+SF5d7tO/P2Z5NqFeF9Ew2GV9b3Ofp+T6/8Y9+hM3vHhKj4nP3z/j2r77G9H3LZlHye8sTzrcT7kyWtKtcei1Lz7ffu0/0ivq65NmLfQ7uLdhcjmkfT0FFukWBH0WsCbjLkhgU2YXl17/1Bq4xOGdQtcbMOtzco1eWq9WEX/z1n5TAGB3hozGzow1ukYvKY2kJFwVmZXjvvTuYWpHljvbdOapT6JWlzDtOT/dlkL22vP7lp5TnSQrolbBgH07gomA0baAx2OcF7753l8eXh4w/yMSjuTFwVjB9bNgsS/amFZtHnkeH16ha8/D2NaZRnF7NWS9HxE/G6Aae/PY97o8XVHcC+ZUhv9bcPViSnWW8f3oioHIqnsKwzhg9Ez9LeVQNMjhTq6Fsnh9fYmrFxfWMvW9bnr3YZ3tbsb4ZoRqD6wzRacoXBrO0YIXNiAb0eY6uNPWLCfFZSXaWMZ3WjJ4b4utbkQI7kbdl5xn6uCFbK7768UO+9tF9CX3ZWh7NrqSLcCOeRjXyQ31HVQmgdUHz8bMjsrWie39G+TTDJvmrPc/4jQ9fER/l2QgUPHl+iHpSotZWZtkzz+aRF5nv2tLNo/h5Fxn1dYlfyeysWcmg+u//8o+n4yVMVnGpMXnAbDWr8ynTwy3FtWLjClafzCleiH9k/UqkuDLCAB10Ipvu9CB/zs8s5ZXi7/zDnxIvrpUBnns8Ra8s0480bplz52gh+12CWlt8GSXYSolENF8qsqUAm+YooDeGyVPIFpos8+L3GiGy2G/NsI9LbJJUmq2wnroD3QhwcPuebKXIl4rmbCwes60iRhid952KErhi1wq7kkF9OWrF3xkgK52cUy+fBbPRFNep/zPCzdvwncd36W51ZGvYey8QlQyYTaWHJGTdwOiFks/TKGC2wjL3QTLFNbgjx9l3TjCXKVVkKmy0WQmb4C5LMJHiOhK+ugc2MLqIg1dx9EQ8xdpE8j25Lvu0WbuFbCnslEhZZfs3T2ZDzYxpVKreUKhOvGwxeQi7IwdBMXpimTwPAhajHIf81pZ8nSTqSRqbX0oS9eaBhO+YSiVJHxyMK0yTGK8Extt7LeNPDPbGYDeynbYWWXuxFJm16gRUShVGSn4di5+wuBG2T3eQ3RiyTe/vRKTVVZKJPtpIKrFJ4SG5eOvGz/SQQh0NbO+GJE8WsNH9yJbyUmbglYeYC0AtLxXFZRwYeu0EaBYXmtF5JL+Ra067NHkwEy9tcS2AE6T/cvTMMDrZyvZv5Di5BAp1p4RF3A8D4BTJaHreRbLNp+XCg50g+SXzVRDWtJVroZe7+lxY8fGZ9ISOzlJIlxYWbnQu+1Rcy/nObvSQgIyWgKl2L1KcG/JlHKpBlm8KQDt8p6WbJJByImmvIVfUtwLL10XO2O4pJp+oIUE2GihWnuI6DGnP9V0JM+u7XnUDxWUngU1Lz/g8UB/J34MRxtDWkXwZBzCQr8XKkK88tk5S40oATXETGJ0FOU461bpYlTyGvSS591mma0BBvgysXkv3oEbOtWnFo6wCFKuAbSLtHOaP/SDj7I+hCjB/7MjWsr2mDuRLn67R5PkzQIDReSDbhJSG7Xd9q3UUdjlJO20VRApbaklMLsWL6fMk7YykhF9hPG0dhuuouiWhPW6smD3eppCogN04kfmuHNs7is1dkyYJNM2hwrQSbtNLo826RTdOmEv9UkjRJqA76UMNmZy7yXMB2yjwI6n2yFYSLtPsKUwTqA8EhIgfN8gkQRsprhpWD036DujIbho519cty4cW1YlH1i4a2UYrADCm6g83FiZQv5zWamV5dtNh191Qf0KMrO9aYdCSPzNqha67T403dd1hth2m8ejGEQqD2bQigdVKPJ2ZEf/mWpJXQ2FQjcOkLlTx8mrwAb3cojqHWTXoxVbAZNVIbUrjhDH0PqUHh8HbqepOanBWFXpbo7aNdFNqLexkDxb74XOS96rVFnWzEglvld7TpH9VLb/XDVQ1NC2xknDKgWGsavmbSr7VNq0zeGLX+z/V4N0ERCoLEt5jtCyrl+t+l+oROdDfY9ifUmfVyx7NP6YPRQqV+j7/+6Py+IFJYWOMT5VS/wXwMVABv4RIX29ijH001RPgfvr5PvBJeq9TSi0QuezFy8tVSv088PMAxa05+9kWrQLvPr/FeNzQZZ7tv+YY6cD2CzWhzWg6ibAu5w31VYnu/YiNxumMfNzy0dUhRAj7He3IwHXJ82KOm3tqZdCLjPfev0N5ULPcykAQAmEp3XLBZ6Aj+qxgmUlQT1QCVkC+aJabMoE8Q3enFV9mZWi9QjtFuMkxBw2hK2hOx2L3SKCw2/d012N0o7lYTtJgLw1uN0akdOcjdCkDAFUrVlUpPZRjDy7y/rfvoR8E8WNsZXDc9wZWz6ZQBvGZREW9LLAHkvTZe7nWr3qy0nF5NSXOHM9XMnh9fj2XL7WbnP37S9bPCxnYZZFvXN3hz33l6/yfv/ol7AaefPUeGHCVJV8r2olUd+itprrrKS4N9TrHLg2h1tKH6IQFKDJH5RRuk7G5F2GdUZ8E1NqSLTVhVYhfEhnAxZWlPhYZYJ9EGU0kjAAFnTNgwZ+OUHmk3RPmZvKJYTPOIQf90Qjm4iv0o8iv/ObbjMbJi9dCq7JUYxAlcEnD+lRiKkMWcTOP3UrvpXj5IGwt9R0nEsfK4vY9+ULhkh/MnY3EV7ixA7MS0pdiwCRZpKZ5q8I8H9HNoTg36M4OPjrzoYRURW3wj/cJE/h733lLPJWO9GUfKC/MUF1gFla8iguFm0pfpc8EBLSFGTyko3NFu5dYhKXh2XsnlBdGrjsnfsyb53PxBafBbDcLLD4n7MPoqU4hI5H1iyn7JqVu1gzVNyGD+Ez2QSfPZH4j3spuX9icbiIBTm6UVD0bS5cki71fzlTCXgYD1dmE6RZUUGyfjMnWWnxfH+TCRhUysOzDbfTTHPeoFvnpgRbfaEkKxlFEJfthWlCdYvKxsJdmoyXcZSWS2PJpRujZ1mWJL1N9g0u1GyuNutEs35D02Px5Nnj4tBMgNv7YUFcF7ThQ1vL3wc+Y+iO7vYBbSMn9+KlJ/rGUZqpE7mrXinaeKmc02Gsrky9a2KHiWuFLYZ3c12Zsj4V5BDk2bhKxa42OyWfmhfnspnD2a3exBnTy6ZkKik/ywU/mxmqoXVFOBhjZUlhJENlilwB7ttBkS5lwKG4UzZGEMulOvLrRwPhUglFCprDfnGIaqc/pJjtvoKnT95ERtmz8TJ5QXs7l6HfGLF9NFUppwqj3V2sP83fskKTaTRQkj15MHtZ+X/LVzts6+0hja2Gl8iW0vzUnjwJiqmOFXSnsNlCea1QMzN435OvA/jtqqGPqfY2mipSNojoR79zoRTpWW5kgaad6YCmLG0nqNTXUB5rihiS9lvqXvXeSxLWU5FK7lfdNnsn5t5sk4Wxh9r7e1V00MfkvJUANxH9nWph9JLJRV4h8dfo4MYQbT7NNVQ3JptX7GVWU45ZtIgdf05IubAL5Sr4zt3cL8k1MyZ8wfRJTAE6qVckUWSUpoYNX1qUE0k1ge8swOZN0VxXEr2jrSLEI4u0s5RhNn0hqq2l7VnQXRqRCZO9dgIhJ8mVXKGYfCZBa3TfMHzvyG53ST+U92SZQJv9lOzeMLj3dWNPNDHYbUt2LfOcWN+Ammr43dPJMFADZylPaBNi2Wvojk/eyTyG1PpCtNcEq9j/wIi9dB46/IYE6ugn4XMKBYoT544BpAuWVopvnjM89tpJgnGwr6z36RifBO8nXu/eB+OWChfG5gFo3LzCVY3TpJaBoZMiqkPIKJC3XNrLNbixy2r7rF0C3ntwFpqcCKGfPHH5apL5PT74yQ9XJ4bc7dBfwI+mDHF10oBWH324wjSdbOvwow259ug8aiiuRyeY3EsRjli1hnPWDUhl89+xiJcPQbNWx96GMCVVEvJWVQ3Ueu6iIxoBOaa4uYDYtBHm/ah3kFlN14sOcFZhFBQFUjGTXFbHMJOhHI2xlKymwIStRTUs0Fh0iqvHEIk9sY2L7spS2agy66uTYZAq1qYZeSwX0tR6q7eirSwbWcag0SYAvJL9m50TC2rSSCAvio0xeR5XnO7+m1jsJbF/hkiVZrrWoLMlgrYWmITa79FllLdEn8Pmy/xNA611lS/o5xu/htfxMgM+fPP7oPn6QUtgD4H8Ffg64Af5nhIn8T2KMb6bXPAT+jxjjF5VS3wD+pRjjk/Tc+8BPxxgvvusKkLqRL/yX/zYHZcXTxR51k+E6g808McJ03HB9KqDnldfOefzBLbCBbNoSvOGV25d88OFt8fotrfi3WoU+bgjnZfrSihLws5TQHVQCchMPnRqCdnppXO+Li3lA1Zo4lYTWcr+meTGWEKCxI1wVUjkxkgCVbj9I8f1YmKao2dVWbAz2pKZbFFJrYSSExi6NMJy1hO7EkR+YEJ2CUoKJtHecgFiTbp6Nlt7NrUG3GqIA2Ggiauwxp7kENdztoNOosUNd5uLNa7RI3+7XZB+MMI14uHq5YXerw1xZ9P0KdzaiuNIEG2mP5UZplwY/CpJaWuxmsk0tM/mhFIbErmRQ0O2lm9heS7zO0Z0SP9uJJ782tPshfbknqVopCZduLJUO3V6QtMwzi5uIZE1AlSQWNseSQpotk3ds36FXvTcDRi/k+FT3PKbSFJdSD5FfGdojkcm1+8KC6CYF03QyaKtuBWzyxzW3pFtUO/GpVbfiANSKKzXUIrQHIUXrywDetMKG5NfiGes9bhKKIQO++YewfpBkZvOUvrvUhEwY23ZffFAH35Kag+ZQlt+nzYpULEl9MiCxJ31HYXEFzT5DPUh5ITPYfYBLtpZajG4qv4eUzBksA+izG9g8EkYvW8tkgrDRsL0fsSuFS3UVeaqWyFYKP+59gBJMI5+LFAzjhelYvinyxN4D1+7J/UFm5Xe9mqMXIgGUOoldfUeevIfdJIWopHHI+LkEcWzvyjkd2KNOrlcZPMp7TJsK4aOkqTZHkN/I3+xWZH/dNA1ck3QRYHtHMXkmYS3dTBikkO0qNARAiTfONJFsC82+AOy+usLnMugsriObe4p8AeMXQYCclnPeexSHEJ6GoQIDJed8e0fAS7aS14xfBJavCPjug4vy5Uu1Fn0vZwKvo/PA6pF8XgbmaC11GL3sEeS1phF/X3mZ7gFKGNVsneS1jWz3y32WvbyuB0eji8D6gXz288Xu+NbHAhz6mo6+LqWX2bqRbF/Usuz1fS2JqyORQFZHmmIpgKkHO91EgKPp5Fz0fZx9cJLpIvWhxlQx9cyKZHvyIgygpxvvfHbbE02xEOamvBYfY/+7SBgD3VQNaoi++3Ry2rF6lFEsBKBUxxpfCOCWbRWGqJ3LMqSXM4GxFFjT7MnEgq3Sca3TPcfKun0ptR4+V5SXIrvse3S1EzBWHcg9MtvI/bmdSjWHbSQYptmTz+Po3FEfmUE26DO5xvK1LD/bBEzlqY8yso2wr/WeETZwJufT1nHove3Db7JtQLeRZt8MVSTBCIA0neyXzxX5KkhvYqbI1oFuZvAZFMtd/2HU0E00rlRMnzlJhR1rRued9B0mXZcvNeVly/Z2Qbb2uJHGbsOQwqpTYqryYGrp2tQuir/wUEBecS31IADlRUt9kpPfOAGeG08o9PB+Xxps5Wj2M0wtSbNuaohKpKC6C7T7GcVlQzcTL2C27mj38iGh1Sdwnd80dNOdLzG/aejm+ZDQ2s4zRs+30lcZhGnTtVRwqBBRXcCNLW5q0I2ksKIUbmLJVh269TRHJdlKAJZUcgRh7FIgUDfPsJWwu2bZ4vYKsqst1cMZ5YsKN80FdAF+ZMkWjYTtKIUvNPl1LWmqtSOMbBq3aEwtnspoFWaT6jaM+L+V77uutTCMtZPPCEhYT2aGkB6UGvyRqumIKcU19oAn/a+chPJEJQnHqhXAFItM/rcavaoZ+il7n2PnBDiC/K0HaHUrADKEXWAPJIZOyfNFJjUjmRVm0ehPS0u13rGALwf3mN166GWm6XXRuZ1v8jPyVJQihiAMo1Iid+0fPbiLLy1Xm10NSftSsM5L2xjbTpJke8zx3cJ7/nEePwQ9lnuTe/Erb//89325v/Rb/+kflgr7PwF/FjgGXgB/Pcb433+/t+MHGd7zLwAfxhjPAZRSvwj8s8C+Usom1vIB8DS9/inwEHiSpLN7SIjP93yMTMfVcsLp6T5vv/qc09WMDQWH8w3TvGVkO65fzBl9kqFejxzcWzAvG5Z1QZsCaeyk42Bvw3mzT3Zp+fGfeZdFM+IrP/oh/+Mv/xnMg4rXb13yzuYedtJhM09bihdPTwLxrETfqrn7xoLz5ZRmkxMbTXZl8Q9qisLRNhZjAtlJxZfuPeMbz+/Sehn8zN+6Yf3NQ6b3l1gduH66B7GvsNCgI8XdLfcOFnywuYW+1eKWOdPba6p5zmzcUFeiU+muS+xeS368pesM4fcmuFlk/9aKTZUzGbXUbcaDwxtWTcG6LgDY3IwEEAMP7l7x4pM72Epx/OAKk8KJPin2iWcjjt64Yvm7R8z3N6yKkubEM/3I8rm/+D5f/cZr/PRbH/Dr774GUaUqAPFKbT9f0WwzWBi+8OWP+eDiiPB4KlUPGrmpF4FX3jjj49ND7v3IFS5oWffZIV988Izf3T7C3G6Iyyl/+iff4Tf/7tvEqcOfOJplDoVnPK9RCtwnM3wZiRPHaNYQT+f4Q0fILOpIAn3cIqc8qfipB4/5B7/zefSsQ13nlK+s2C5GmNLhliNhp8YedVKxHY84eOWa1eqIB58742l3m8lrCzarEndVgIqU9zaY/3vO6I0l23VBqC2YyPj+8v9h701iZU3TM6Hnm/4phhNnPvfevHlzzqqyXd1GNsaLBtTqFhI7kEAg9YpuVi1YsQPUYlzCjh2tllgjthiBRAskaEy7TZVdLmdlVWXeIe9wpjgx/cM3sXi+749z0y53WzhxleWQUnlunDjxD/FHxPt8z4TNqmYP5oMeeFXCfLiG/8dzDAsCp/kHSyxfzCECOwjtLMIfWQzRwB85qJ7smrsY8PDiFtfrCe7kFKEK6BsPdacRz3pgXQMfb+G/NyW4LgJ2F4a+oMOAMHMQO4VYBajGYYgVmtcC6/c9+0F3GuZWQXy4xdoqVD+omQIJAjDx3RXcmwZuAZg/1Ng98inFl4sL9T8yGOZkmtVOYP2pxcMn11h3JTZfHkCftegHhYMfFzD/yg02/9cJwrsttpMSeKrw7q89x6v/5R0MJw76TsMtHGwnIZzA/CcSmw9dko8a4EGLdmow/bHB+tsWiMD0dIsYBdqfzJiCedSjuqrRvj9AFh7y92u4WRwXNyAA/35L1rkKaD4vcPsrAfPPFIZzh9NHS2z+j1NWm1iB2U/prxrmMQEYepfzAoGvAIBVIaEg6O9OIxAFps8idg+Ao9+PEP/qNWb/5wHu3jepX5LAYPeeZZDSTmH4dg+8rFC/IhvUnkbYeQqxKYH4uIVfFegPaT5ta6A7TQtLOsIeechWYPqlRH/IkJyDHwls3wGqa4Kmu295xJnD5Icldg8ihgcW5a3B7onD4e8qxCkXVNRnCr4GNp8OKF6ZVB1C/7PZ0G82LOIoqRRf8b5+IbB5n5VE9tBh/gOD9ScW/ksD17AKZ/PtAfUXBdonA6qnBVOcBdC8SizmFtg8CahfS9gJMMwlhkVMUkVg/WHAwQ8Fdt+hR3nz6QCxZf9rdYkkcSbzWf/I4/ZTsvDDr23gf28K4YDdAwVfRYSnEsvvOhz9DpUC3XFi9TqRgDz/r3cE1mYFrN8LaF5K9Asu7vgiQlqJYkM2vD0h0zl9JulxPGQIkRoEuiN66oKhDFX1Au05FwmC3qfuSq9TSi3DddbvAa7hOQlapL5IeqeLlcTqfcp6u2Pg4HOy1bd/xaN+pjF5mRaQnIA7Azt+AAAgAElEQVSdsKfSV8DmA4+jfyIxHAgIr7H6kAtgk+dM2NTPI1Yfkf12U4nz3/ZozwXiNeAGlSp3BBnQQ4XuSKYkWrKsrgGO/yBid6pwuPTYPKLHbZgrzJ5abL9DD7FrMMq4dct0Xl8SRC5+FLH8UKNYEzRyUY51OACP02wjdMcOR0SCR8+vPExeebSnBqv3JCXzWx5TtZToZxKX//KAj/5BQD9RKJcW7UmRnqfA6j2JxecRN99ROPudAFuzViR3c9qpwPHvE6yvHmssPh/QHktUtwS2m4dUiZS3lKcOBxq7M4nqVmJ3xr7MoBnSM3ktsHmgUKwp+d2dqsSoG9RvBvRzCWmLsQolGAk7lSkFOmB7oWG2EdUrh+5JA90xWVdvJNpjnZj6gN2JQnmtYA8MzMrBTjSGiwLTZx3c1CBOydpvLhSZ/C8jiusWdqYpHRXA5oFG1UjYRqC69ZB9gJsy8Gf2rEe/UCjuLO4+rDF7KtAfGUA06BYKZmOwOy8w+3KH4aCAa2iL0a3H9kGB619WePQP+TmtdgNWH9SYvLSQLsA3GkFzH4aLBtVVh2AYLOPnmj7J3qM9MaiuBexMIWiB6tpCZyCqCYCGwxJm2cMf1PClhOrZmVl9tUb37hTCUT6ceznNykJbD7eoCcBdgJ8Y+GkBfdvCHjVMKr5jhHSYVRAd+zHFziFMKqCi0kl2Dm5eUVI8MI3Xz0oo5xFLg6gUAW5BAAsf4A9qqO2A0BRQb5bwR3NACajLO8TCsIZkuQEAxElNmWw/AFUJ1CWJ5OzBdJ6ANwFQsesIFusKuFtBzLjaGTeUyohJw59lkqYWhpLaugIGS++kZ+hPlBKiMBBKIfb9Hw8iY3i7iuT+7X5ibPimHXx/cW8xxn/7/4/tfJOM5W8A+PsAfh2Uwv4DAP83gH8RwH9/L7znezHG/0YI8XcB/Mq98J5/Pcb4b/5J25h/eh7/w//hV/E/vvoldE5DAHh1fYAPLy7x104/x3/7j/4a/sZ3f4AvNkfYWQMleKyldli2NUIEJoXFzbZB1xn82pOn+P6rB+i+nKF4vMX5wRpfPjuBqh0mTQ8lA44nO7ggselLXL2e4713L/FqSUO4tQoniw2UDOisxmZXwVmFjx++wWdPL/DJu6/w+atT/HPvPsPvPn+E909voGTAs+UC1iq8d3KD3ms8vzzEX//oD/EPv/gIdtA4mO9w95NDfPQrz3G1a1Abh91gsFxOUNaWgUEvD6GKAN8rwAmUiw7zSQejPL766gimYW+AXZb4je9+jh9cnqPrDLQOKI2DlAF36wZhUJgudqiMw+WrAxRTrj4FL+EvKxQPtjic7fD6xyd48ukr3Gwb9IPG0Bo0sx67VQVdWdhVCTVxeHiyxLOfnmJ2sQYALOoOzz87QywDJic7eC8xvJhg8t4dNi/miI2DqRxCkNDGwb6YsJ7EBJTzHv2qxOxki/73F5j8yg1uX85x+s4Sh1WLu77C5c0M8bZgCM1Bj/h0AnfoICuHGAQDjzpqzepZj+HLKar316gLi01borusoRYDH+MFLt65wbqt0LUFTOFwPNvi5R+cASc9IIC6GbC9bFAedpjUPXpr0HUGj09v8cXTU4itgjga2AWqIxAEGetlAXEwQAhgMumw3VbwG/aFmtoCXzY4+OVr3K1r2NsSDz+4wlc/PcHswRrzqseLL06SHBso5j2GuxKi9MDaQPYCxZMNQ4p2GvWiQ/dqgocfXeLFl8cw8wH2rmQFTRkgd4qJqzoCZQCspB+kpMz48IMb3F7PEHvJ6pqDAWFtUL3UGD5psTjY4ub5AnqlIN7dwV1WOPvoGuu2xG5ZMyVXk80XQUDMB1Q/qLF74lCf7NC9miDqCL1UcKcW5awH/mAG890lts9mDLpREaIIwMpAHvXAixrRRITaw1xrhDIinAxQr0tKk7MKaBogDtP2PhyAICA6ieP3b3H1Zg59aeAOPFAEND8q0J0HIKWqHv3aG7z66TH0mpUt9oMO5R/WaN+10Nca7pDdnyIA1Sd37L4dJGACzKWBTcFO3XsDpPEILqURlh5N02PzxQGZ8o84dBTfb7B7wg6I4oqJtMUdw2Hi3KKcDIhRwD+dcLgsI/3UlkCHHYmUHoZHHcLWwCw6+FcNzJ2EayL8wmH+ewar71iIgcoFWXj4VYHZZxrdKYNc1FZi/kvXCL91guUvOzRP6fUNml49tSXzTwaUJ/v0O5e4+9/PyTKnOpzuCb3biMD0pxrDjN4wiIjiTmL49g5+a6CvNXQr0J94TL9Q2LznUb1Wqb4nwNxIDI8smh8VDAbaMPRl8qVGv4hQH2ygfneG3TsO059wKFeWgTWqF7BzeiCHE4fyNY+leiPRftrh9H8ucfsdspr9uUP9lPJ2aYH2QYBfOFTPisR8MAAHEeyEVVxYYIUIFwu373pMnnLQ7w8j7OMe6nWJ6g1TadtH3Md+QbXC7mHA5LnE5gkB5cGPgNX7BB52RtmuHJAk2WEMbnJNxMFnEt0xWfJggPaCEsnp04jlt6gusFMqF9afOIhe4uH/xmTT7iRi+hS4+zjLeqk+6E654KIGgQigfkOQ1p6K1EkLLD4jQ9sf0ks8+wKwM3ao+iZi/pnk+TFUPJR3ZCClpXd2827A9JnE6lMHuZM4+V2mB9splQKuIUiOAti+I0ZVgNlwISg/x+Hvk9W2U4HZC0/QZshUC0/gnBnwDCqFA3xNJUL1RrBL9SoxfGWuGokJlPM+13C/1u8Bi8/IePYzifZcwKyoJCDwIyCXPZNbXU0frdkFgsjEgtuJwOaxwPHveezOJOrriPU7ErNnHv1csh/Vsgt2/pOA9lSiXDKRV+8Clh9qmB09pKv3FSYvWI3SHwrUl0yQdZUY/brrJxKzpwHdQmD+zGF7pim1Tey/6iO25woikvn2BcF58zoxshOBYhtRpzCgzSMN3UYU64B+rmB2AaqP6BcS/QEDioDkFe253yZ1WEobsXlgMHnt0C8UJi97rN8pUWwCukPKwlXH/alvAspbC1crrB9rLH48YHthMHveo01s77DQaF50iEqgvShh1mSLi6VLVSwRqifTGEqCyvt9pK5R8BU/rybPW6a/puoVCDBF2IYx2CZXlrhGoXrTIhoFO9UobnuEQkH1DA0SIcLXGsXVDvawJsBcdXCLCvq2Tb7YiFAaCO8RKgO13BFsSkBuesB7xEkF0VmEphyrSiAB0TvEyiDUhjLZziJWBJ2id4CSEOsdYsOubGgF9MO+ZiazodVe8ir815jLEAhEtR49qmP4j/d7r2VOgc3AUNBrGZ0bZb1Ca0AKSmLz8wsxso9CKYLRfxpz+ReFsfzWv/tn/rz/0+/8p3/uxwZ8g8ASAIQQ/wkohXUA/glYPfIIrBs5Svf9rRhjL4SoAPx3AH4VwA2AfyvG+JM/6fknnzyIH/9XfxtaBVy+OqAkdaMY6z+3ECuGprg6IjYe+pordL5KXX4HHupOIScbuinZlWJFpgGgl87OOci4OnKFuWMghp3yS5xeyizVift+whStz54yMfZB2oOA8o1KckwxyrNEVghohk/orRj7zbqTVOpuuA9mJaG79EVYMCClP04ynDZ5CgsOQsKllMzAwYeeN67cR819hcToAwyaaYeuiaNHNEsH7cG+fH1YBEyfSqzf475BAN1HParPS7gpPWXtBz2qL8qxly8HVMjh3pd9GlBFimi384jmFb1SqiP7Y6cxDRaUmEmL5OlLIQxZetlENC/FWCKP5DOTLvnnkHxnQ5I+3rsfoHTRbIEhdQIC3OfcLegmlDjmgSUYjF16vtpLDCkbAxCRqg74t3K4N+ykY/MF/VE+lWOv3w9ovmJc//YhC877xdv7YtYcOool5Wl2IsZC8e6YcjPZcxh1dXr9GtYDMBhif8wxpazaaQqq2NKrxX46HkN/hHFAMysOfvmazxJLvUv7sYroj9L+CoyF71Hw9TabmKSjKdBoFxH1vQ7CnhLFYc4BOoe65L7H3FuYgyGylNPO6VOyDdIXJ59vmCNJHbMklMdntpR29gci+SpjGtgFiuRXy4X3uTi9uKNsUfX0o+VOxeGAjFbuuWSYSBxTMrMclVJSjH5Odopy+6rj76KgpM/V3I7qgc1jykYBjJ8J2QuYw0KkS6/LwNczKD6OfY3J51jzNQ0pPCX3Z8oB47Blp8ljmboHXc33i0w1DCq/l9Nrwc7RdEzJ15jlpj51wQqf9jGFjCB9PnqTpMk7erlypYOtc7cgJZR2wu1yeOX++YJ9iEGRaSuXcUzK9AXP3TBL9Q+OPsPmip43Jqkmae7Awb+fc5j0qSuRslfJwXSgnFQEJICJez8nyZ1M0riwl+96k3pQcyelIPsWdPJB3iUpcsQo2c1yW9Vz8PKGf+tqslbdQVqgSGmmuWdTpLL7/Lt8nm0tUK7COGRHxce4iueGIVsidSRSxlquGIgjPc9H9rKKGNmjmCSevsjyZl6brubAarYew1TtGbJtQChFCjnhZ53qub/DVGLy2iIYSh6zzBRA6hGVUG0Y9zt3ENIT6Ue5Z64Vob8NY6+oTHLIYLjfwgVELQlyBob82DnlumazBz/5OOkLTduU3KYc6PEcDjTq1x18pUevp6sZ4CIivY7SR/hSjYO0WVu4iSbDvHXwRjIxdaJh1mlgloA3OV02IBQSsvcELl2SHBqJoHl9Uu4rk98fUK2Da1jFASngK4bnRCMTsxYp89QSdkafYg4VEj7ysZr9iFEK9jR2nu/bwcPXCcBE8DEJlIRCjcxd1AyQkR39jrlvUUTAJ1mqr80IZmTvEIrcM8mgGpmYO0pWuegXag3Zu31HZE5G7RygBB/rI6WuQgBKMEVVsypFtuybHLskheC+SgnR2vH887njKFuNRkG0w15qmjsvs7w0f59WZv+4EFLVR8HKDusoZ3V+3z+ZvY+5X1JKgrHcXZkDb1I4D0+Q2N+f/5/8kgD4c05j1Yr/HyzlqGUBOEdf5f0uyvEA0nMKSemqexsIUl4bgeDfksDm8J6Y60ys3VeShMDt3PdO/mm8kl+rHfmFB5bNw/gvfPoNAMvf/fkAlt9oj2WM8e8B+Htfu/snAP75P+axHYB/40/z/BIRf+uD38b/ev0JNgcl+s4whXlucXa0xmu/gG0EinnPxNDHDq5VQGIOhAkIpwykiUEAXsL2CtIWsEcBzYMNhh/OEUxE+46DnlkoGejdvJwBg4Q/8BC9RKw8hI5QbwqERx38RkNuFcpbifYdC2Elpu+syMrpgO6dADHQL9nLCLlVBH9HA8SrEuHEAm8K+KMI6AjZCQyftIh3BbflGBrUnfs0LCvYIwdzrdE+dFA7CfV4B/+sgZ9zpToaskK+YUhNVIol9UHwMU6yQuPIwvYKei3hUwhR9qOFuUOsHXyvUE4G7IYpLr7zBq+/fw4/9ZjMO/TTAlFHtO9bzA93aCuH/qZC+UahO3cobhS6T3vo5yVCEVMQSsIIHvDnA7aygJ95mNvUBVVHVJ+uYL+3wHDsUdxIDMcBzVMFN+XQYWcRsQwwGw3fRPQnyWtYkmlhDUUauFXEg++8weU/PsdwzNdQ2sy+KNgDfpkHk/ysa8kFi4se4g9rejkHxv+XlxLdhUeceIgt5aVwTNp0MwJxOwsM3DmKsEfsHVQtB1w/8XANF0TMRgAnPXYogSgxHFJKORxkgzsQGo/iUmM4c0A07Bh0ZFDkQDDUntFj2l04eoO/MugecqARnufCTbi4ANAnq1oBvaMXrH3kUL3WHExnEe7DDvF1Sd/qlOevuBXYPvGIU4fieYHqRmD1icP0pxqbD1zylAqEW/bqqY7A398xgbU9jbBPeky+V8HOeZ7chINudSmwfRygNzzvEAmY9wLdA4/pTxVrABYBkxfsWts99EAKN4pp0SFLM6MUGI7osZVWYPeug1orzL4UaM/5BVeDUjs7Td7KhwFh4dD8qICRTEKdPhXYPSJ48EXE5DnDN7bvpK7OCCAycMZXBJu7c3ogEdk36KsIXwfUrxSKFfsXczhRVPSuTl7Qqxo0ayGioowzyojZTxVZyVR0n32P3TGlkyJwsSUDXb1DSgol0CxvgfaMCz9Ztqo6Mh3dsUheWoHN44jDHwCbd8la2Wliv1ZcmGDyKhcbQvLcqpYsj50CvmV3pVnzPJS3YEk7+HfVdUR3SuBULpmC2Z4JyBfA6mNg/mMuIvVHZFtVL1C/oaw2e1Kbl+xq3D0MOPgsSSA3BB3FHRcJhrkYAfZwoEdArjru3+EPgduPNMHnQqC6AnqzX1zwpRglr5Tn8bW0My522DkX83y9r16pL+l/9gWwfZzO7xsyOFHTEzrMBXQH7M4FZs8Ctg8lqqsIbwW2j9JCQsTYW9mdCOw8F0LpBxaYPYujdzEYAZfSRLEEuiMG6vQLgkX2eUb2apYCuwuB+g1fc5kW7ShJFegXClHTR1suKetsT+To250+D7CNQL/gd2l1zZqM7phhWoef0f8pbVqAUvR2FusIUQhsH0hU12RBKcfVo6eWQUkyLTZG7M4V6isBVwmUdwEu+RnX70gcfJG84ZJ+z36hMEwFpi+5gDDOCol9ckJAOol+TnlutRQYJhK6J9M/TAxcA0xee6ze1TDrPWAu7wJ8KdBcAn6hobuA7YWEdGVSC3DxqFtImDZCdwzQiTIvqIgEnimrdZVAtSTALZce68ca8y+4yLZ+RzN0SwLTr1w6H5rAOEa4SqE91aivHdpjjeaNg01JrTqBcDtJgW+lxPZMY/KKjynWAXZCAK/6gPZEY/oVga2dSqg+QgQNX0o0r3sMM4NhJlHdenY/FgrdaQFp94sXeushB4/hkB7CDFSDEsDCQKYE2qglgpLoTgpUl0B/ZFBeD0mCy/tVH1De9OiPS+hWQ68HhELBzioUywH9UYliTVCt1xH2sIBuPaSPsEcVFyK6AL3LYTOUUcoEZMmmRbgFg4jcxKSkYIHqMqZFB7UP7skLGtYjNiUBtwtkHq9bwAChKSA3A2LNQJtYsBIkVBr6rkWo2c8sB8fHrtpx3+KkJuirSoiup8/SKwbx5HRVrYDCEAje92fe8z7GqmAQTowEsgm4xsLQb2odRFXSr2lTQms/JN+j2Ke/JgAopASU4rpXrg8RcvRlxs5DaC7IoO8JIpVMYUKcLzMLGWOEKMweNAP8ovrTTPv3SbD/D8DyL2/f/O0bZSy/6Vv5waN48R//+5S3tWTMoopQrYSfekr8Di2w0iiW7EfUS/pq7JSsnE/Apn88oHhhMJwTnIUiIpgIcyf3IScpfdFPKBUbe/U0WOTeSugN00MZt5+izC2Lzn3JAVOvyVAAZAldE2HWBJkAhxM757BZ3nDAHBJrGlKirRr4hcrQmgSIIoeD/piBNv1hQP2GYEbvMmNCNgFAGo73bKFrIiV1IbEbDbc5HBCABEOQETWP21cEbmbL5wkG6E896q8oR1IDpWChZAWG3gK5bLx912L2QzOGghDUcdjrjzig+iqm4Wb/c3nNYVj2HOJzuEVmPzNTWtyRqcqDPg+YbCgiYFYEotV1SmpVBK9mwyHLNRwileXPxV16TMWB2E7EGPCT2U9Gr1OOpjcC1aXA5gklX67aM0x5H6XlPnnD7WTPVg7ncQ33T7UJIB3w9cv75yYshO9OOOBGtU+GzIEoamDVwO6CFQvSIg3eSImbcexqY8cft+ELjMXsrk6s3cAFhvqKA2GxSq/lGRlWkfxTxTJ5DNOCRLFiOmpOtLzPLtjEokIQMGR5kt6l66FP6a+p7sI13OccyR8lX2M5JGYtBYxExet9DN6o+VqVqdYgM5blbRz9cyKSjfVlGrAXfN3z+4whNfvfM3GTAMJOBSYvA9oTngezSYzjQADB93JEf5ykq0NiXkRivA0ZtJjDYBKbo3qynuUNX8PijoxWDlgSMYUZ1QStsy/INGY2ea8SIFMUDNk+gOcPYC1Gf8B9FQ7YPhKYPudnl+6AYUoG1U7EGFQjBzLjxZp/42qyhwCPfXe2Pw+8Dvj8Od0zaMC0ZBTz+1P1e9ZumAk0l6wrcA0BZt7XnPTJahKkVE4yREFzOzlspz8g409JG59DJmYv9z/yGtsfIzvwMMoEiw0TXm2T2MBuL6vUOz6GbCzvlwNQbJm+bSf8O5k+p/J+NFeUUhZbht0Ua4/+QBE8rXgd6R1Gxg+R51gEMp624bWSqzykTaqDmvvvi3S+O7KuwfDcqWGflsqFBz5WRKTwq5gYZp6jzIbqLl0zNVkt3Qb2lU4kq0ZyCX1igYu1h2skbCPHgJ9cdcJrT6Wk0whXkp22DV8z3YWU4hvgC5mCxPJ+pZ9jRH+oUaz9GAwkXJLWScBsHVytx0oSgjwJvfP0BKbvdJ/CjeiNlFBdHN+DwkfYqUK5dARIIHg0a/ozyzseo+oDZGIVdevhKsVrTInxWvMVgVyUZJeGuWLQUEtwF7XAMNcwGw9fkoUMBdnF4mbAcFQAkZ5Dmeo1fMkuTjXkEJX9bCQtHyNcTHOGHNnmfc8juxiHRYFiOZBVTHVFwsfUJ+kQi1QtIgSTUH1AqFn5QbZPQAyBwG1ewBv+nT0oYO4GslQxQg4ewnq4RUUAvB4wLEoU1x38xED1fG18rWFuOoTGMMwnRnomQR9iNInpk3JMf4YLECEglJrhOW3uapT8XSRDG2ozehyjURB96qgsNNnMzQBIICoF2SXWMTGHoTRj4I/Y9WQCMzuXAnogJYR1CPMGoh0QSw3hAv2L5l5QTv67SEZU9GR1gXtgMYfsFIYMpybYjEaPjK7o9swotOJ2QnjbNykZZIR+eNvDKCWZS+fJCOYeypgSZfW9IKEYeB6APVOb9zGxofdDeLK/Mm+PdSNf80/mHsyEQcYey591u8dwRjv87Mf9U24/L4zlb37yd/7Mn/e3/p//7M/92IAR3vyC3qLAX/+lH6I52iEWTGLVK4V41qM8TB08ih4r10TIiYWfBNgJwVGUDLboTx1U6WEP2eOnN4Jg9WgYB8jh2CMUEe7Uon64QTSJ6StBGd1KJdlrhD/v4RoOZvUlGYDiTkA8Ygx11GRaupMAO43w01SKXALDUSCrdeARSvqRXB1RvxEYFoGPOXNkm7Z8rlAQyI7Mn+fgFk8G+o+S7DGk2oXujM8Tk4wwFBHdeUhVCgSH/SGZCeGAOoVn5Fj00HgILxDPe0AC62/ZlITI1wAiDaQHESfffYN4NIxSue1jyllELzHM+RiABedZFmtnHCJ8RY+Q3hEw2yN+WfgyoroGhoMANaQwmgLwTRzTTH3J/VEdBz47i2l4p3+oP4oov31H2ecioj8JEIEAK6rUldcSNA2LNAzNCIijFKyySOmkZC8iuoeOniibKlQ8WYVhzuNSQz6+QO/VlACuOwsj2IcA2gufVoF5fUkb0Z3ymu1OIlbf8mPSbCj4fBnIiZQOmisLutOI21/isNt/0I9dlDKxefnWnUR0x3FcROzOYmK7uPCxexjQL/icOWREDhHDPMIfePiKIKI9Z7Lj+iOH3UWEm3Hw1TsOja7hgNm85jG37w+JDWE9RygJ/qubgGGO8X3hav5O74D1E/AaCtzP8oayvO3jMEoukQbnKJnQatYR/VEY5YzdeUB7mq6zktfa9EXg4sghEnMYcPdtB91GeqoWBDLDnOfLptdVDmQAlx+TrWlPKUntFwRUriFgHxYESN1RxPYdAtr6OmL9AbB5Qrljv2ACr3BIPYa8htszgfahx/Kv2hEgRZXBYySAS9ePiMDqQ4Ln3TkHRb1LCwgTPn73QMBN2WW6ecTrrL4OgOTCg+4iNo/Zk9gf8noxm4jdAwKpfsHXk6Ev/BxafchBPYN04YHtQzKdwwEBUU739BXBB1lQsrvKclFEdwH9MRJYJGjvTsjGiQCs35UpcZgskp0KLD9JizpnYlxMaF67BNCB3RkDavgZTfYsSqA/Emiu3Phe6E7yIgWBWXvG8BRXcx9dzc9YBD5mmAnYGRf/XJWkxDMCLxEi+gPJ1+6MUl5Xk0ENisBceGB3Tsnl7kKmeplAEB+4iJH3e5gJtCcC2wuJ7TsCuzOBYhWSNJl9n3ZK4FdsWHQflRh7QNtjgfZQobhjPcX2nCeqO5YYpgKuFOjnEpsL+tm6hUS3IIOlU6LsMCfTqds4LozsThUXXFLi7OaRhBwChqlEd0Qpit6RJUMAohBoj/h6bx4qbB8S7Lg6JeemLknh2P9oG5kYPj5vlICbKOzO+HwyLbQQNArszlKYi+S28udB/g6TLsJVEu2JGjs/gxEjuNyeK8ghYP2Ohm0ENg8MNo80QimwveBwrLsA3Tq0RxK+yAM5ry07U+gPmFLK1FmBYsnvLtZ5sEO0PeL2tw/L8XwhMnRnd2bgC4H2WI9S5SwFVtsB3kgmzfqI9tQkm4FEd6zTQkRkl6Pjdbi7MAhGjuB3d1FQltw72KkaE2bbEwM70xgWBt2JQSwkXKXQL1j5wa7KgGFm4BoNXyp0RwV8oyFixDA38EkKHCUwLAq4WjG1tnOIhYZaDegXfMMxBdfDTfnv4aAYQfBwYOAbTVlr52DnBtASdlFC+IjhoIDwAXZWMAyno8TVzguESjPBdUjyWCEgdl1ahAgQveUCg1JwsxJ2XsBN+PwIlBnDBwLOUo+g8n7yqp9XBKVGjxLeWBnEukRM92f5aphUlOgCTJtNEtsRRKZEWHFf6mod4APvs24PXoWgrNZl8CYTS7qvVSF7mICc0dyX/O+y2PslY9wDyRgob00AUkhKYdM/uB2VGEul+DitGc7jXHpMel6ZpMWjFDbuJcT5lhJjRWI27/8shPij/6m0Pz+r5/Ivbz83t19oxnL+6Xn8+L/+OxicwmZTIbQaovRQOiAEAaUC7M5AtJR8ypkFLkvE4wFxy7hqMXHAnQFS15JwYux3NGvK56KOrAZpPAMvwMeFAwd9ZUYWMZaR6ao6QiXpJABEQxbVnVjoNwb+YoC8Mim1kbIH7KIAACAASURBVL8PBR8TVWRtSSD7qteU9tkzi+IrA1/HcfuZoRWODKhvAvRKwi489FqNMlMEIFRkX4OJY0dbBOglSN7GUIbkBQWK29Qhabkd2bNjz9fcnkxFyHor0B/x74Qnm6u3klLRTiAUEcXjLfznUz4mEhjaAw+9UWR2kzQVSKC43DOWuYg+lPy93gj4Mnk/IxJY2TOtvtqzqWp4m5nOPtmoyPgi7I8fCRgTTIlUcJ+Z1H0YSZb+BLM/t9JTPikt9ykYLiS4BrBzVoUAGP0vQRMEmzuR5HcxHUvyrqYaj/kXAcuPJYoVWbsMHLNktj/keeJ52w/z9+sJMsDMrFtm3TPbm/1do9fVJ2YyefEyc9kfkj1lUiOH6AziMnOb6zhGqWGfmMu4Z4NHlj0xPlGl7ZRIcrK93y/vbwYjjOFHArEE+gAXQzJzT9lZ+n/yvgrPY8sDNtlOglTp9n83Hk8aQvO+IzOWEiiWEcOCMszqcn9+hwOguowM3Uj+w2JFttGskw9OEIxzX/geQromIMiI2xnPR+4jBdLxCLKuMi1OCJevBYweR6aG7v/91i1vO12HvuBnRgapZD5Tx2HN4/SlGL2a2TdoJwwEyd5IAKncfM+Mmk0cwzDoy437Y7H7a1Q6AiE1xL1KInXMZk8zPxu4mFHexlF2mz2J+ToRnuxXZirvh3PkDkBf7N8Tuk8sbZcWkgp6O/M1yMUQjB7D/L6Vae4bPbJpoTAz1Hs/axxDQnzKzshKA91iZFVVh1GGCXAhQsR7XuSkZMi1GJmdBfI5vOc1TSysTn5HaRO7LgjWIRJYHeXIZNTyNZHPVb4e8gDtysRmB27D1YlZ7Alm6aHeX3OuEmM3YndAmWn2nFJFkRhkyT7PYSb/CCMe0+/lyLjxGDI7mbclPOhND0Du3cznKPtN2aXJ57p/XYyf50gLtJrbd3WqQekj+gM1MppR8T3EzkskRlqiWHsEReZO2ji+L1y196Le94fqHRneUMjx85fVGfR8Zn9oMKwVya+9r/K++PFzydWcD4QL6fM/wlcMkMm1Gvl142d1HFNc9c4jFDKxqQ7CMtwmpuske9R5/iXUzhEcSCAoCdU6+EZznz2vr2Dk6IENRqbZwafnI8iG5Ode9mRK+zX/XLq+pSXoyhU6/N6Ko084358rSuI9wCHu+/d8JMtpA72Yjox49mgKl5lXSlyzXzJKSZ9lYj3DtIDckSEUjt7IqBh4FPPz5l7G5HuMWpLdTDJR+DC+r6LRENkTeX8OF+ItietbXkrvR0A2/t39ipH7VR5SJFaS3sf7VSNv+Tmde2v7fywmuH8+s99R0V8pjEG0dnxMdG4v1VVq74f8GkOZn1ckJjcOw77+5Gfc8t/Gvv8TH/cn3X5uGMuP//af+fP+1vf+8z/3YwO+YY/lN30bnEbvFDZ3NczzMg2thr2CHYf+ItDf4ssIXCum5N1UyZMWoa7UKIkya4HyDhhmSFUPgGrVyPCojjH39KoA4bZI0h2RegU5uHTHqd8vyWTJOgFuW7DjbiggXCqFH5BWpzGunlLudD9MBRhWBcMrXjM6vrrkh6drJPQuDXKCx6J6jeoS6E6yzwgQt5T+ISaZpAZkCreJgv41O5Wj9FY4oFjJke2QjqEloU3DUgmU1/vQmfnnTNob5or9fXORAnu4yjt5mUC0BOrXgPD7JDaA++Um9B65hkOknaZBqaWcUPUZJOy/wPuFQP2GMjb2donRV8TQFcG+vSJLfCgFZL8fZaKuYfiHCNyf5nUaUId9sAywD6gISYIY1F6WmIF1MAmYBnrCyiXlVW7CY8pyTfrhIq+fltH8UfMYihX31RuB6dMIX/OxHHg4zOmOw1LzmmzaMOUQw7ASDk55W5mZrq89hplEFLxe2zOB6TMyEbsLerpCIVDeBnRHTCHMQxi7OZlQWdyl1MFGjDLIfP7lhEDKTjNTkYrLXwK7Cw7r1Q0TEvP1UGwY1pJ9iNJR6uoq7mcGQcWKQ0V/KFFfBxaMV2K/OACBYsNrVXj+Lgcb1dcB23OFyRsOgcOUf6c6QN7s5YCUv/G1nz0P2DxUKO7Y3TdM5ehpZK8lj7m682iPOE2qqzgCWzXE1KUXoS/pSTNtRD+TqG7CCLr6OQeFYIDyjoNxXiTIUjqAMkQIBt1ksA3sh2SbPofKZUS5dOgXmr2Cmv60fi5Tfx/I9E04YFZ3YZROF4rvLbMN6A/SCnsC60xXJIM1TIFyHeHNPv1St3EMfvGGYGdIni5fJuYoMiiHFQABw1wlgBbTZ7pEdePH91yU7EjULT10IuxltcXaY5ip1DcM6DZAt2TpXCnQvHYEUpVMckiged2jXxjK3iyv4xwsNYKd65ACUQggshQ1pw0LH1lsn/4NcNt+RzCju5AWBrlIhzWHY9UFVkE4slLlbfrsS0BauAA7pwfaNgRbqg9QhYArWVxf3Dn0h3rcf2njmPJoNg79odnLRl1EseY5D4WE3jnuX5I7Zi9a3r7q6IvzFT/35RDG8BxpU8CWEjC7HHKTJI9TDd1lcEVfp7QRw0Jj+pJDpeo8kzYz6FApaTMCxV3yfgcBvfVjiB3lsH6skpA+vgUYhGMoTmbrc/AMEzqHMUgmFJLbSsAiKJkYygC1s2PHYVSC9RWGrB7lnwzPyeE9akvJn50aFMseUdaUiwqwU3HH30cloSoF1RKMhYJsKxJgE17CrAb4htei3lrKX41kMI2S6fojYAmF4j4lRYLsLEJlUAyBdRNFkor2DrIpoHYDmbHBMUVUCYRSU446OPhJAbXpEUsDveb7T25Zs5GBodwN8LOSoDV1N8IF+gRrw0AcANKFMfRGGgWZZKKh0nvQlo4DPjLApi6AECBzhYZRkK1FqHQCnT6luBrIzDwKQeAWI5k7o8eEVAAQUkIuN/CnB5Ct3ctCpUQsNeS6Has6RAZjWZ46WHoKMwBLHY5ZeooYoRIIFC4F/ihJuWyMBNZajX5J0XP/sN1BVCUZx8ze3QOJos8+0HvgOgPI/Pj790kJBMuOSa3HZNbMUsYkSc39k3xjJCBr07YSIxj7gZJZ5/ZA9D6AzP/OgD2nueZ/+8DU2syuplschr1fMwHYEUzm47q/nXu//2eVwv7l7ef79gvNWJYfvBMv/qN/D6JTkIcDwrKAuZGwi4BYe5hLw+j8VsLXAbKTZB8HMa7GZW8hUhdb9mGKSJaw+rIYZYPDQRjZGYKBFDaSnicq+iNdzf6sKMlcdSd8TC6YN3f80rCzwMRWRY+laxKwuGMEuhxAJmLCgT6H1kQFCLcP0Mir5L6MiGbvSQyKz+Wm6U0rMHp9fMk4+5xwmGW8+aZbyjn1ToysjK8oI63eyFFWarZJPqo5bA8H9Hdm3xc9r9wHaQlQgkll5G/2cfqjXDczaiEl167FeA6yPDTvT2Y5GJqx9/UREN5nHAkg7BTIyaZRYiyKz/UFOfBFuiSjzcm4ljK2KOiPLK+T/E/t9zWzlpnhyx5K12D0ImYmxRdcOKCki/uWPaJy4H5mpuM+w1Os997PvL3yRnAhY8N9zKA3J/1m9jCDOLPF2Is3zJM8F/sYf66kJ8ax5XO4av+eo0czgUrP/VHpOgV4Tsw6jnH5oz+1oJ8yH7fZ7sGn7O+xchX3r7jj65qZq8xw5pTWKDGu2o/sQ+B+Z49Ufm6mIzP11adk2Mx2ZyYqpN7qvHhRXzFMBdgvwASNlNwqkFlDZcnyjezdkAbg9JkhXV4s2vs+IfgaT58H9Idy7B7M11KW32dfp6vFeDz5ODLgH8+F4GuXQWnu1PNlui95Le8ntLqai2f1mzgufuXH588Ula5HBi9x/82Or51KiwkMxBLjceeFJ9Xzd4j33itxz/yJ5EmMWqB5Q+DtiwRUK4FyFTFMCUhzsmrenur3DKQvuKil2ojqjgsI1S0XTELaflZYIDGv2YOag3G4UMQkarNFYgATs2yR/GlcQMmJsvR2czEnB+Lc93Hm63WYksGL6Vq1k5TGCoz2AhGQPIYEu8OUTF9eIDG7AFenhFqL8byoIY6LMSolmWYJeN5+9nDvfdc8XlcmyeyBHL8XpON+6DYtZO04COf3Z/acZgA9zBQXUBKj6CoJZeMofeXxpeTeQoyLClRURLRHCsWWADYzmK6WI1OZP1PGMvpM5ERgmNHfyQVFgt9g7rGiEW95De8n4mZ2KxTJM7rj4kdWFNgJfYXFZv/8ZuXgJgp6S1CN9HmpWwLGzDT6SkJv/diBqDoPOzMjM0c7AcN/VEt5vhoCXE3wSGuFHhdL6IOVKFYWvlL7z9p0XMGIPUPuI5QNI+gLJWW9vBh43KM3MoO9BEyEj/skWJPDcQaEkl2V0geIIRA4a8HkWCUhB54P4QLcrOCiautGz6CvFMxdz237kB5XQnVuZCxDoXC/6kL0fkx/Zcc1wZ1sHe9vHRcUXWDdxmag5FVLhEJDdo6Jr0mVlKXQ2T8pMpCLETHLWCUTbEXvWO0x3AuIyeBMMAQHWo0eTdFbhuVYRzB5vw8y+yit2wNAKSlvzWBKq5HxfQtg3mcWs8R0sHtvZ2G4rXxzjr7IGPmzMUxmzbf0u9j3EGYvmx0xwB8H3ILn3zm3B6qZgdR6n1J777Z/vjCC4eg95a73QWa+jWE+El9Pf/1Zt1/8VNgH8Tc/+gYYy+//F3/uxwb8gjOWohMoXhqoQUD/pB5DPPxSwU4Ups8jomAnlKsVQxzALzjdshJBb+iJUR0/8JuXagyRGG4KJi5qDpKTF5QB5doIBp8kdiL5oJpX9M71C2D6nMmRUZC1CKmEl6vAgpUhbeTqZipWzuEovhSor3KIA1m2XafQvGI6YHXFAWTP6u1lZUGlLzkjUF2zA0u4/cDNwJm4j8HvCQSCEalDDAAimlcZGHB44hcggEiJX3XN4+qOmQTp6ojqSkIO9Ce6hoNqdwxMv8wv2n6oozcssSeNGGVqOeSout6zijlNsVzyCzCzvHZCpi0P2L7ikNoeUdKsU4UDIlMpx1qGWrAKYskEzGIZx8G6WOfaBwY5FGsyMKEA4g2Pf/Iyoj0lG6n6VNGwBNyEw3d9xcCP6Vdk41SfQJ5OpfRTDpHFHQDJnreggX4u+PoXqZA9MVp5GM7XqRwYklPeBVQ3/MLK5eHVDYFBrmjIDGeWy3pDYFxdA+WK++dLnls7BcQ2XyM8V1GQ0c3spxoiytXbrGCUHMpFJGgFuL/FHYFClEB7KuELYPaMvh/VcfDMMrkRKKbhuU/VFhmkjAsCBqhuQ2I0+RqbbaBnKQ3bOZRDuvQ8lgOuSGw1h+o4sl057ISJwfwCPfzM4vYjg+lLDxEjuoXaS93Sd6Oyke/TI763dc8h27SJ1S3JbBbrgGEuR8mt2ebHJL+skOyo6wNcKfcslk8+u2Yf9lRswjioMyWSr5OtOdTz/PE16We8T/XsHZQ9X6Mc7KLb3DOXFz14YGZLcFPfOOheQfgI096r1UgALTNJ3pCtk47HDfD5hmkKd0kVDq6WKRQr7mWOel9towageW3RHRsIH9G8oVRSDfvt9QcynQO+N+1UwlreJ3zE9KVPCzEBcmApvTfsJsxgkPsXIZ0ieEBi8KxAeetSOIoclQFqiCOgyox4VIDsI5rXHLaHmYLZ+FGOGAxrN8w2AcIuwM4Vv69aMoVMQFUMw3EMeCFI5zWm+gCzJahSQ0SxchgONMpVko0OYQxokTZCawK3ESQByFbqzGzmsBiA13OxDvu/33mYieK5SAypHFhT4RoF6Xm9FHdkKqsretWKO4bjFM6PNR5xrlB/1cHODIrWwc40VMsaC35nEXwFldKUEWHWFroVaZGIoMU3muDDkOVzE0OWLGhWf/R8TGZFfa1GaWfUEtGSHVWtHestQpk8XTvWdJgVw2tClWpHVpY1HK0fr2W9c+OCgbKssnCNgl5bgrQQIY2E7rhP6nYHcTSBiBHlbc/3jgBCqVFfDdw/KSAiq0RMqkIRMf8/yV+HANV5IETKUUGZqJsV0Btumymckuelp9cQQrCaRAgymj5CANB3HdxBRcY7gbvM5noloDY9/KyCsjyHKjou/g17EJPZSNHzPpUYRbPskFNX1dAzSKeTEL2HDIFASAioJBmVPkJ4z/3OktIsT5UEmCJGMpYAfxfCKGcV7UAvoHWABYQUo5xV9G7PkKkE8DrHug3rxkCcDD5lTwmn8AGyE3vQJgRE25OpKwuymF5BoOD9zqck1ECQuOsw1oQAlLy2ffJCRsSSybG5H1I4vwduSu0BnE3BQpmdDIE/O8fk1r6HKMu32c17clORwNdYK9IP3I6SZC/vs6F/3M8ZaOZgnq8xm7G/x0y6xMgGdkzm+wGMQT4jnPw6gL0fGpR/Hv847AHnnwJ4/tzfIvbn+S/g7RcaWFbzHr/0L32O17sZZkWPzhkoGVBri6np8XuvH+BvPPlDfLY6w49enuH0ZIntUGB5O4HSAaZwcDKibwv8+pMv8dtfPsFvvPcFamXx/esHCFbDRYHtroTWHo+Pl+idxlmzxsvtHDfrCQrjIEXE+0dX+N6Lh0DpcFB32CynWP5VwBiPYVAIxuPiYI0QBZ5dHqIoHCbVgG1X4GS2xVdXC9RNDwlguSsxn+0QtMd21UCpiJ1VmE463LUFZpMOV1czHB5vsLydwFQOReEwDBrOKkymHUKQkDLgzaaC0lxunjQ91tsK0QsIFRFuSsTaQ5aei2VOYPvLPLfZpxqsRNFYBM83fARwMNsB1mAx28AHiTdfHWGtIoSM+ODBFX784hRCRMQgcH52h/X1HHcfAKFlEMH0ZIvKONx8foSzTy/x6uUhNxqAYjbAe4mqsjDKY7eusUkF6+89ucSLqwWOFxvcvjmANAFKBYTCwVoF22tUzYDlbQ250hAXLWIQCD0j+k1tUdUDus7Arkoszte4XdUoa4vltoA0AX5VADoAqYYFVsIc9HBXFWIZMDvbYPNsjlgFiCFCH3WwqwKiDNCVhb0r8ejJNS7vprCXNSaP1tg+nwFBIFYeZs7ji14gBgFVBPheAYMETAAGCdE4mMpByoh+ZxAHBTFI6CPSunZdwMwGzKYt3vzwGOrdLYZlCZjI5xGRX8omQKiAYBVEq3D47i1uLueQK41QBMCw5kZYwM/SAOUFYsnqHIiI2CZ6WID+4SpAXxm4uYdeKbgTi8XxBsuXc/595RE7BTmxCFtW4kQdoKYOeMV6mc3HAXKrEKYO5aKDfT4hu3ngARkhSg95WcAfD5B3BmHmuM+Nh55Z+NsScicRqoBoAsxSMZiiDGTIdwxg8NMA4VlWHqoIcTBAPavgmojYOIhWQm8lQ6GigOwk/dVFYkYuHMJSYvVphFmq0bvsJ1QahNpDLzUgBNzCwdxo2BMHWInqpUZ/zDAhnPYIWwNzI2AfDBA7jVg6mCszMokcOAG9VVQmXKvUmSthD5JOPgKxDKiem8SqJLa/5z67SUjp0gJuFvh6ycCqnBRaFEp29brsCQbTr2MdUD0zcE2EOx9QPC+SrNagP4wobyW2n/aQdwbRRMguqQ90hEl+7lxfozoJO49M3B4AERV8GVHeqFF9EKVA80pg/ZGHGBg8lj24179cwNcR5TVlsv1RhJ94yE6ivJbwTcS2UxgWAeWVobT8JELv1Lh4ExMrv3sU6C0vI/RGwk25j8OcqpJhEVBeGtgDsq320KN8UwAijh74zJj6KilKUkJ2XlC0KaDKbFgFEFRMiz3AMFdwDZUflNVyYaK6VuhOIibPqWipXyl0J2RTymWqg9kI6FaNHcdUzUhUVzL5WSOKO0UW3/H6YZcyPchZGdGe0W/OjmMgd4jaBijv+Pz5GIqlGZUGXEziYk1xR8tDVi8Ua0OZ8kyzX3hNub+r+NzVlUJ/KHDzrQblLRCloZphQ0DXnQiozozhdNPnZNBdbVDdpM7YFRfLXCNGpYDwBT27BuiOBKrUTZ27ggEu7pmNGrta+0OR9r8alTG+wj45WgFmU8AXPDdRiLETVngzJjRLr2GnrOXpD2gNgAT0kUJOOs7+bbMFgMn4/PcXifJCVk7xBrg40x1J7mfBYxCJlJm88didSJgdF0XYaZoXlgqyxX1mhbm4lRehhOeia3coUWy4AFRsqlH1o7cBu3M9VqkwCbqE8EB7JDF96dAdMX1Wd1ywUi0rSqqlT8dBMGI2AdsLMq31bYCtxbhwV6wD9JaLCr4SsDXrS/oDherWwU4U1JBk+7VEfWnRHWmy35u9FzT3mWb2WdqQJMw1F5GmepTy6s4zBTdS1p0lxTJ3c0pKnwHATvToaRWewUdmZUcGF3GKUKr9dgcPX2vodTFKqfUmXYRNgVBxAcPXGrLzEHG6T331TNDNIDBUBnLHxQBxn7FM/aSh0Kw6MQqyt/ClIRsLALlrU4o9KMyy3MyUGk2mdduSPcw9mvKel/NrvkcOgfItkBmHJAVObOfY7dr3ZCPT44WeEIzGgGgdpFKUxxaUBUX/9jbzv4XQ3Of7wDMDzfv//4sCLv8C336hpbDNxw/i+d/9DxCPLMrJgOPZFq+uDyBEhHcSi8UWqx8dws89ZqcbrF/NqN9vOMAeHm5w8/IAcALCSqhOQH+wgRARw6Ahn9bw73QoKwv7+Yyy1vOA8kqiPwkIZVrp7SXC1AGevi25VggTD1EGNPMO29cToAwQa43m8Rrb6wZipxDLALXmMOSbiFAFmFu1/4I6TMP73ENOLXBFH2ksA8qjFv22AFrF8J4oUL2RaD8YIO80YsHuxSgZqAMv2LH2qIP8qoJvwuhNgAdrQ9ZiDJLRO4H2XYvioMdwUwEyQu6Sj6ynnLVYSrSPHBbf11h9HKDXIslROfDqHWXB5VKgP0qMmQP0d1ZwP5gzNKPhAMUEVwGXh/aph7nioC53CqEKOPodhZtfdzCXmmFGLw2GBxb62jCspxVwhw7CSpRXXIkcjuh30rlL8ir1hQZ+cXdnHnonWfEyZfru9okHvEBxx+MpbpnIqbdkfocjj/qlRn9ELy+DlwSE5yrdcOJRveTgm6XEahAYPmqhnleYPBXYPIkjQ1su+XeuArrHFvUXhpLbGw4K0XBw6s5YY1LeCLQX7JHsjxkOJCIraULJ62j+mcb2UcD0qcTuIYf88oYVBv0hQ5hUK96SR+odA4Gi5mPthInFky/I9veH/L3eCuyeOMhWon5FL+bugYCdRNSXlObOf5L8r5dM1rSzOEoX8zblQDl2exYxeSawfUyZulmzsmXyXKI7Jqvm6jyAkVXfXRAomTWBhwgC9auI1cf7QKOoWe2TZdzlrUhJvHyd3SSFsKQqob2sNMLOIqZP6V/ePuRrPHku0J0CesPUYwQmzqouSXC/Jj82mxRyFDmYs2oAY2G7tMD2scD8J6xvyXUzxYrbtPOIYpk1+8DsKZnz3P2YlRVZMl7dcIjsF2KsZ4mKwKK+5CA8zPmaF3dUOzSvU2rqhUB3EjD9UjIUKQKzpxHLT4CDH2P8u/pNQHcs6fO+wtjtKB0w/cpj+aFiIE5SHjQvI0IKeGlPCfjtDKiuqJKormOSIgv0h/Rtt+fA4kcBm3ckzAajjE317L00aw7MuqNX2awjik3E7lzCrHid7gNw9hJaEWNi85hK3J5IzJ96XP0VhdlPU69kS0Cht1SG1JcRZhfRHstR2aGTrDXL40dVQBruAb4GGcBNXvmUbMr7yiXPoU7e1OomYHch0zXCc10u+btyGRk01WFkeKNMPtg2YPmBTsnX7KcMqfrGVQLVbcCQwqRsIzB7QSCwek+ivOE5C5r1Jut3FMplYrYPKUNmPQjTYzl0R+ie3tbVY/o86XWN6FMnZ+5Q7Of0ejeXDuvHmn7xVwRI0hFouEqivnLwlUR7JNFcke20tRytCqrb14+IAAyTPXvsSznKh7OyIwcnZb80K1jkHwkpMlsOs+2xhtlxAag9kZi89Ey1fqhx8v0WvmSSKl9Tpt8yMZhVNrNnjrUqtRirfXRLdjoUAraRqK8dhrka1R7DTKK8CzAbss+qDeykvKQv2uwCVB/SNe+xfVBCtwHFyqE74qKSWXuUNz22jxuYlYOv1ciK+5I1JcJHJrRKYPLTFbbvz8c6E73z3HYfmQib9kN6hgMJS1DElFrKWn1NJjtKkMlOMmPZe9h5AV9ImG2qZpH0x7qKDJxZWwxzA9VTQdB81aI/rlAs+9Gv2p3VqC47Xj+HJYo7BuXYmWHX583Az5rBozurUb9u4TPzHOLIQutlj1BpekEL1o9AYmSmQ6nRnRSYfLFhmqxlDQoAuIMKatMjVIYMsCXDKqyHmxbp3HgC1M7uPaSGoUdy1yNM3/alhkJBbQegHxCbkum1TQmxaZnQOliEgwZyueW/AeyDdfwowx09mdkX6j09nUlCKzYt4pTx8mLTkpk0mpUkMfLvQhi9kZCJVU0e0vGWAV/HgBwh5Vu/jznsJ0tk71WSROsgjCaj6vceVwiBONj0u5yE+zOwxz8DcPyFl8LWD+JvfvDv/Jk/72/94L/8cz824BccWE4+eRD/5t//1/Dl3SGsV1AiYrOtUFYW27sKh8cbzKse06LHHzy7wHTWYb2qIWQkW2k137OvSrz/qy/w4xenQBA4P1/i8genOPjkBiFItL1Bf1dBmEAW7mKJ188PoSaO6oOBjJNaK4SzngOFDghOop702F1OuMOSoE109HCGqYPYahx+cIObFwuCsTsJ93AAthoffusrfP7ZA6gd01xjESE7ifrdNXbPp4hTD3VtAMHKB32r4euQqlAAFAFmOiB+MUn1KkCYeFQvzejnFBFkNyKgV/RO+qmH2qjRq6d39HciAPUrhd0TC3hB0Pv/svdmv5Jk+X3f55wTJ5bcbt6t6lbX0l09Pd0zw+EMOZRpSYYASzJkwNA/YMCG/Wz43a8DwwIkWa82YP8DfpZfKBqyAJs2ZRmkZI1mOEuv1bXX3XOL7Sx++J2IrOYCSvIYnCEYwMXdMmM5EZkZ3/Pd7vRUDwyY8gAAIABJREFUn+WEPPmyOmFDoo7YjaY98pRvhNHwuTAmQ4hONJEw86g2MUVlRNeJgUl9dpAkZ510WK6/7ok2UD2zUnUx95iNHhNnha2Q5FpfBWGieghVhFmPvsgleTYTAGXXeiyKD9lwQyL7VlxouoOInwf0TgswJqkgk1fT1AKas1pqT/JrTbeUJOHiwryV0JrA42TvtZKUU4VP5wIlvwMjkMpqhSslkbU+CxSXEqwxpKfGbC9f1E6NCbbiX9uX0w9+v0GKGTPxDBeXeqws0b2EXOUrPfpXh/TDbEtKuRWA1i5lrPIbAYamke1LOmtMycryXO2EOZEER+jmkuqrO/GsZhu5ZvLbYYxS8fyMMSF279kdvID7hE/U3hObNeIpG7oGo0nyYU8Kh9ozWs2xALfxOm8EIAC0x5HqlfoKG+ImjGm3rpTHD4Fdkua77wgVdkn6VoeU4+JKjt8Xwmh0c5EtN8dyU5rtGGXbQ6LukIIraZUylqbdg+DRu5g8hLpn7/d8i7UYGJIhFEiYQGGw7EY8dK6SyRZhNkRWPlSamI70+pYZ+24hIVduosZryhfJL9wLwHFTAWGjHzKdy5DGp1iJpD1fRzb3xWuq3P55w7keQZzZpwdLsFHyXqZ0Y+1IIV9yvBJQJCC7PVCpNkZk/f1EGLGsiWNX4/C6ApLvVapQysuQpOsiLy9uw+i97BbJawoUq0BzOFSGyPthu9RkW/m/L0iWiCTjT9e36eWa1cMEh4N8G2kTKCQBkpCJ3HzwKUOyMaRjFK+3gNtuIdJMuxGgpb34Mof30/E8veWPHTooVST1jSbfbmK9RMqsUiDV4A3ch0u5UsZeQpCSP7dSlLceVwi4E5Ztf00OXs1o1Jj8rL1I1ctrn1KGhSHLtzLu+cqzuyOMWXNgsLuA3YrfU/soYWmJLXvbtzwwe1G/5Qn2AoaHGpCh41P3kXapx6RgnTya/Uxky0MaLFEAp92GMcXWrh3dMnvrdanG0CEJaZI+0SGddfAAmjbQHgrYy9c9IdPJhqNE5jsRWWzIkwc1xK94Pk03gEogyjYkEXbwOkr6q7d6TEAVGX0gZFKbMkx6Df7QbJtu4JWiX2RpktaP0l+5rkWGmW2dyIcbn7yfCYReNzR3J9ityId154X9cxLGNAA1SWwdpPYSzKR7AWhDQqyfWtmH6xp3XMn6kkxaxUh229IdV9irJvkpUyDPsISYPKRGfJxlNoLH4ViyTbdP1B36Lyc5elUTS7sHcr0nlLk8pu6IpRVmMY1t1Bq92REn5dhjKV2ZDbGwY6LsCL66nqGfEiBW+Qh4B4Cpejf2Wo5gb/Bhvi1jffvvsAeLdpDeijx1BK1/DA6IXiT+KqXQxrf9nDDKalFaftYCfmMvnZUxRpTREiiUgHH0QVJgwx8Fj4Nkd/j5T1xC/OXvsfxzDiz1n/6QX9zFe82P/vcPuHq2pGksq8+XAirfTMmf5bigefVP3+HTf/KYsLaszmdkuSM0BueMSBDfFJx9+w2fvTjBflnw7v0LTidbvvfvfsz2XxxzNN3RXlQQILYac5Vx83un6I3BNwb7WQmd5v57F5Lgmnvmv19ifzaBoDg7WAugtIHDf55RHDbEQti9xb/KiXlA/c/HTO9s0YctdqPg1jL50vDZD+5TntSoew2PvvEa1QngcU4TbeS7X3uKul8LO3KRyQ3WosfeGMyyY/pJTl9b3GmPP3QUjzYsz9Y0jzrc0pF/sKI/7dG1ojg39Gc9+eM11fOMofvLvrfBTSUMKdto+I1bjn4/45vffEZ5qTi5sxIf4nduiEbqNdxRL/7RHRz+SFNcSeciCqrXmun7txTXEn6kakP1wlC+0eidFFf3B4GTX30j/YxFxM0C6psb1h/IB/nsY4v6tVvsRpGfG8pz8aH6IuInAbuSupPpU0P1YE3MYP4zQ9xmLD5W2LWA18UnBjeN7B73ZBvF/AudAnrkWNuTwNk/C0yemvGGPb9WRCtyun4hzJ/dKuxKUb0w+BKyrebRbwHf2GCatL0G2iPpQl3+VCRx1bkAweqVkh7SVtE87MQHF+CD/+kW3QpQ9jlj9crseRzBjs8jy48TY2Yi3bGnOwhMn0sqre6F6ewO0+RBLb/3MwF3u4eO5r2WyUthrI9/oGgfN7iJyNDq+453fqcGBDQd/yDSz4QZHQDr4Y8F/DRnjuXHnvbEs/w4cPxDT7YTYLC7F7n9bidsMDD5Sxf088jDf9yy+6Bj8iLJEzcwfR7hr10zfxLHG/1uuQ+TAbnOmtNAvhqOXZ5X3w3U7/W4UvpA3USAzfZRwK5g825g/aFj/mVg9qVMChTXkXwFu7NIfSYdo/mNYvGlXG/b+5Gb7/TMvwy0x/KBePxjT34r+7e9H1l+0pHtBCzY5D8tLxTNmaM8V9z/nTqVksPZP2tRHmbPIjffDJz+S8fxDx26ixz+1DF9GdjeF7/r5mEcqy3O/u9WmL4ZbB6IF7o7gNWvdjQnMjbbh3GcdJCQHAGuvpR+U7uOrD6S48pvJfl2ch7YnSm29yO+kr7E24+EZbz9dk91HmmOUspwSkqu7/sxNMlNhIU7/oMeN5M+y26Z2NlO9r28jmzvKzYPFKuvQ3kTef1XIpNzz/WHmoPPPOt3Rfa4+kA8kuvHsHmgmFx6mhPF7EXP7kz6LNtDNTKtbiIhM6v3FMVNYPVYgMvldyTFtL6jmL0M5JvI9kzjc8X0VWB3T4Dz5a/tr2US8NUerr+5D0rqJyLTLa8D9bEemcV8LYFB/UKxOzVjguzN1zUXvwbLjzsOf7pjcu4xrTxn9ryT9OgadvdE1rd+X9i94iZw+dfb5DVPaeOpDkW7SHklUsj5lx2LJx3be5KY2x7Jscyet9idnJjpq0B9R0Dm5p5m+tpJP+kDOQ/5rQC3g09rmbDoJHdgkFsGqzj4dEfUsHpXp+RpOP7BmqtfMaze0+xOBGDVR+LJLG495aUTJtFFjv5gw+5EOiclmVixO9Ep1Vhx/HsXwiLnivLSM/+yoTkU0Hf1rYzmUHP7viXfBJoDOXfXH1mqC5/CesTH2y4Nt1+TwB1fKlaPZXalm2naA423is0DTX0sE4TlZU950dNPFe1SVEK7kyylF0eaQ0N17pg+2TB9uqW4aOkWhuLGcf1hhukiN1+zFFct05cd/VRz8V1DfWyo7+QUl9LtHHJFthMgNkzytEuR7pcvN/RzQ8gU9Yl0G7YHInOuT+SNL9s6bj6wIs1cO7bv5KwfZHsAiXxWuIkmWM3kyQp720k3ZReoT3PqU0v5yRtJJt50rN7Lmfz0De1hRruUXsnmKKO8aMjWPeXrHbr1VF/e0s8tGFFila92NMeG7b0cu+qwVzWuNCkBPbC9X1Ke16g+pP3txPu9LCmuWrq5JWrF9kFFtunZneXozrN+PCVbtzRHOdlNjb3c4iqDvW1QPlDfK1k/nqJckBTgqx2rby3JLmvy8630ehYaXxj8NKd4disVIUDIDb4SeezuXkU0GrcocFM7sprm5RXmYoXetrhpJv5UDf1RiWp7+pOJfD+d4RYlqvd0p1NiYUfgGascNy+EmStsktB6/OGcMC3EA5pSZQXsavTtJp3APbDzB1PiVPoxVesIZS5g2HnUNqXaai3rcJ6wnEGMhIMphEBYTMa/0fVsv3VXfnbiw1Rt6sQcui6LnDifytfBnDibjF9jumyWJSmrRWVGGMUYJO02RuJ2yz5NN8r+pcqRUIvnduyptBmhrgldT2hb+ep6QtcTu+4rP8feyffh5+H3/w+g8hdpUSmd+Of59Yuy/FIzlrMPz+Jf+R/+Y1qfURhHlfW82s757slzupDxup5zvp2RZw4FWOMpjOOo2PG6nlMYR2l6nq2XAByWNa3PaL1Bq8jLj0+59/Vzvn30ki5kfLE+4mZX4YLmZLbl2fkhD06v6bzhejOhzHsOJzVfvDrmo/uv+fjlHZaLHcuq5qauuDif8+79S1ZNwaJsUSlX/fXtnKroWG9Lvv3OS356foezgzVX2wkHVUPjMnqvaXtLnjlurmaoLJAXjrPlisI4nlwe0e4s00VDaR3Oa7a7AtcZ8qrHWs+iaji/mVGVPdtdwd2jFbnx1L0l04HOG3pnUCpyezvh4GCHDxofNLOyxQfN5dUMkwVM5ulqSzntqFcls8MdSkV2uwJrPSEoTg82vLmZEZ5OqT645XBSE6LizfWcEDR50VOvC5SJ2MLhOsNyueXqYk4x7QheY3NHCBprHU0jekPXG6bzhq4TSYj3msWspveGvje4PuNoueFmNaHfWrKJYzZtWG8q/NqCidhZR19bJgc1IWia20IkRpOe2bTh+vUCM3GjJ1MB2gS6m4LDeytuVxOODzdc307Ji562tTJR0RrUxKGucszZDndRMXlnk4LaTOoh1mgTcL0ZvZa2dPRby9n9a978+JRYROb3V6yfHIh8+qYafZhZ5fCdgU2GPuyIrwvCYc9k0dC1FrfLUI0hTjym8ASniK34LDnsxP/qNerKwmlLlnvCF1P8LFCdbeRYbnKKk5r2qsIuG9ybijjxqJ0hu1MTv5zi77bE1ogEHJidbdhcJHY+Aiaidka8qiCezUoArsoD0SmyK4t6uKNf5/KcoDA7jT90qCwQayPeUadkPVkAp+V7UOLJ3BkwoGthB9/uRI1ZlIkdBdlNhjvtpIrtPCdUKeggD6heE9PrUfVyA616uaHy03QH52WdQ+eou9OhtnINZitNf+owN5l4Pyee7Fx8ZUP9iC+FyZa+WtBNYq6OJFXJXmZjynS0IfldA+Y2E+9oJ9v21b6aBpDpQc+YLG1qYcGVE59pdisf6n4msnAixDxithq70jRnDt2IR9WuDDE9VtdyEz6w4L4KZIm5z68VzZ1BAiVfCmHwm7uO/NKI3DxIerGKe/Y1Gtn3UIlCwa413UEgGpi8lBvmbhHFB9oqhqTsfiE+0vK1kTTpIOdhYGG7g0D1RgvbOhk6FkW2r1yShM4E9NskkXaT+JVO4OJKknKHTltAOnwzkeqL1FgmhXxK5DY9iaEVhYB2Is8W5lmNrPvQLRuVeELf9mpGE1Ogjfwtv5VJA+Xk+hm8uNkuJUynIK92CeWlyH8HLyfsGfGh11SY4HQ8qQt1WAYlwbD+odf2bWY85LLf5ZUwvoPUWHeMnsxh0kH3A2AWpYN+S7U2yKwHxUZWp4CtA7U/zpROO6R6241cXP1cJMrCxspjhkTlkKVqlyR1HWS0A5gbfKgDG+5z9mmx4zEKi+0q2ceRJU+drUMadjSMwXrFTRoPH8cE8kFpk6/TvvrEOBup4HHFEConzxu6S0d/sAZbJ1m1GiTdMgbeCuge5NBvn0dI7H4vjO+gHOAt2fbQJzn4H00nTKyrNDYxwkO4YFbH8XdIioBUazXU9Nitx1WarJZ6Igkmk8CtIQFYwohIvmA9Jh8Hq0TGW4qMtzsw5CtPSEy23YTx8UM9jAB1YVN1t2cqx/egiICdwYeZznHMJNE1v+noljm6D2Rb2XZIEl4Zv8SYaRn7YHUKfnLj36Pd8zHKxfT+O4xRkHUMCbhDhUwKPlK9J1RWmNYmJdv2fmQv48AuVxaz6fZBRanqRZJuozCnPo4dm2M/Z3q+6v3Iko5s5tu1IKn2ZGBAifvaov37QtiDUqWEnYR9qNEQ2JOYSABC8ny+FcTzh3ss/8TQmj+GxfzDy+DB/PPAWP7V9/7zn/t6/9FP/u6f+bHBLzmwLB49jGf/9X9JVjqqScv6fCb+uyMv4SF10qKbiCk98bwglAFVOWKvoRdZoV70ZE9KurMetTXk1wY3C4TjnuxFjpsFYpIbKqcwWy2+ukbRHwgTN/s0Y/OBw16J7DPbiW+wuNA0d0OK4d9XhLhZIBYBvRHPn13Ji7B/0JK9LAhZZPZEs/5aICqoXmmaU0kSrF5p3G+sKX9nzvZ+TDeriv5RCytL9UICI1DCmuzu7c+xOxBJq/KKbKvHN+T+0GNv5AbUTQOmkYoWe6vp7vXYN1b8pj+pJAhjJ/LRyXPF6iOPriU0prjUdEu5ufczkZDOnmp2ZzLz72cSTDLUBuS3iu5AAkTKc017JB/Qdi2MhJsP0llhqco34uFysxT68ERuBKOW8ArlkHEykfK1obiG7Tty/HYjPrLiSuSqgyeSKDeg+S1sH+xrRuxGGMTFD3OaU/mQthuFr+J4M5ZfqxSysl/X2B2aGJv6LOIeNZQ/riiuI9sHMHkhabmDZmColhmqX4gQv72Gn8wgClM9eZE8nEuRiuo+Up/JNTUEdQxhI+2h+By3D8SDV74RWa/dqpFF0l4CPAAOPgtsHmpMneTRw81VK2OS34ivcvaZSLyKK/FOQkrqDVCfyr7YjfxvqISpLkQqvLszVDeIpNJNpapGQIFIbE3DWO/QLVKFSoq11K1I/96uDEHJl6njmBDbHipJDF3JTWVzLFLB4nYI3SAVosPQRyo36qmrLyMlDUc2D/QoUVUhbSvJJ5WXc+ArhV1FVl+Dw58IKzVIFqsLSTxuj/a9qC4VwQ+SVRAQMH0hN66Dj0ukwnDwqac+0WOxvXb77sVsl3xkSbLZzUUOPIxrsHKDqLzsFyAM5R1h5wdv6fxLz+a+dPYuP3GsHmVjJUZ7KF2wNrF3po/Mn7bcPpYQkIFdy5r4VtdjSgM2sDuVdNU/vEjVkWL62tMsBcz7QnpOu5kezw3A5EI6WIcE2UFW6kqVqm3k5lWkjip52VLStBFpansgY6NTYm515djck+ASkLEqrj3dwoyS1+ZIY7dyXFkdMG1kdycbE2L7KnUQB+lXLS8DppeuUp3qaLzd35wPgSXdXDF/2tMcZ5IanWS1iy+cVMyUkiTbzXVi6mUs7TawO02BOpuY0pUj/VSPr5MhzdkVCluH8aa+n2qCUUxf9+maE4a1myrmz3p8pekrGeMhSdiVInt1VQo7SR2bQwJvNPJaG2Sg0ocp/aRDh6rsizCWxTqMXsCoFbs7GQdfNPSTjFCIrLibS1r6IFHOdpIHEKxCt7JNXwjA0H0gFFqkrG/tb7CKfqqxm0Bx2dId5ZhaAElMtRwhHwKNvCTWNrKdYUKhS4nKrtSpI1W25wtDtnW4iTCPIO9X+VVHf5ALsMmEqVSpB3ToBzXtPvF1GBvtZMInZops3eFLCSSSZGIzAptQmNGnPQCnAbBEq1F9GKWo+L3ncJCsmtpJmEwn7OLktXjogtHpuHSqDIq4aUZxUeMrO8pQYwqI8YX0c7ppRlb7Mbk3GE1+VYsf8aCUzsze0x1PpGolRqLV2KtaejABs2roj6fo3qNaT0wBOSHb+xsH2enQy+nnJXrXS72IThNLdT/2YYYiE1AUQHdO3iuHipGhWiXJW4mR/qDE3jboXSdsW+qvBAiLSratNXpTS9WHHyYk7Qjo1LaWhFmtRcK6bYQhbFowRtjNuh0fQwgC+nyQFNlcPJ3EiGo6YiX9Wsp5aFritBKvpNEpGCcS51O4WaMyQ3QeVRYSsOM9qhTWM3adhO0M1SUwVpCMQTl9x1f6KgfZ9nSy7758O601DMFBbp+464XFBIi92x+j1nuvJfypUth/reUvgOWfuPwFsPw5LPOPzuL3/vv/hFc3C7LM07YZ06pjsy3JrKe5LcgmDn9ZEIuAygM694TrgmhTMuWyJys8bmsxK4N5sKNb50wOa3bXFcoGuJU3wcHjGA874i6DIkha5cwJA+MVapMJaNsouhMvrEdQkEXwsg7lFEPEdZw67OsEXisvwTuZpEHGlEzqp35kX5SXfkwSE6M34nuIRcSsNe7YoTphX5SXbcfSo3qNSt67UA7MjBrDSiTlMkAWMbcp+bLTYBJw3YqP0d3rsM9y+oV8COs2Fd1PnQQSTT30GtVqbArlGTyFMogQSgHI9lokJ34A6SeO/DxDOUV36MEgntOZMD261eKlahXuyJG/yaRbM3WUSuG9BACZrbBCQ8JncSn/r+87slszBrrk15r21GN2WsY1quTdGgJW9r6jCCldUhFTWMvQMfk2W2NvjbBFk4jqZX1DoIwvhHkaWJR+Id5GYRXUyJTYTWKnStmXYAVs+4mMVVTQnvXY62zfnVq/5RUrpHM024nE1pfDjKoa/VntqaN8k1jfUkJ5lGOclBj+rnxiCJIUN9g9gEAh/s+7kWy9H5ehl3MYL4D2RPy/5SsBMMFEFp/D6rEEGLnUQxq1vDbym8RwhD0AEr+TsEO6l8TXfrFnk+JbQH0ItRkCZsYi7YEZSf7IkFIb+3li+8rI5KWiuSP7OFzHdq3GPk27FZ+l6aQSx64TW+H26/MFI1NnGnkcb10zWQP1aeQgSZmbU5V6KuW5WS3bCIUcnxl8ozqxWIn16Wd7RkuAb5LBemGgfC4ANb9OrMFUKny6uQQYFVep4xXZpi/26xn6OoeuTKn4SZ7WVkD68NoOiZHzFckzJtsqrsUH2C/knAab2MsqsUhVYsIO1HgcdivrGDpqTfL3Dem5OrFJpk6/t3KMeznyfpJGu2HiIZ3/JFHsp4wVNnYroMSXso6slnCjgTmz60i/kJqnaCScRzzScl3p1Gc6VEAVN2nyIVXeDN5Z6QkVoPv2xIZJ0mXxXwow0V0cx3YYf528rjHbn/N+JkzbwJQFK5LioZt28CRndWLgcgFpptn3U5oueR7tnjHMUk/pkBY6+GztVsKMska2OXSqDnLi4e++SOOROm/lmo+jXBhku65U4zaLtaddiLxyeIzUy6T3rz6O57CfSGXPsH2f7/21UYvndei11F7qeLIm+TS3Anq7qbwp5FupPdFOnt9PRII9LD5N0AQrlWPSTyvnK1/L59lQYyaTLCFNKIhf0aVtD/5aAcIheadVqgka6pvS5EeG+B57kZqSwKaM1aDKSOc8U2Olj4pxrLExXZB1pUmcwRuZbX3ytQ4TgEkpMTJ9OlV+qPG52c6nHs2UReCi9Id2YfSpx0yn/k0/jmfIZZJE+ZjYNz0el6Twpmuh8SNYHNhI3Yn/MmTiM5VjjuN+mTb5M0Eem+n0PpWOZ2APey++zVQ3ozuPLzNMLQE8Y5flwPwNjOMAdltJZR1+ljdLnXosHbHIRrA6JLgOtSlRa5ET+zj6aZVPjKLWAlbbTnopE6s4pLai1N53mZk9e5hqUb7Sdfl2D+YQzAPyt8FL6TxD7QlGCzgc/p+WAROMoT1DjcjbYDAk/6RzI9Aen991exA7VKH0/biffwRz/EkhPn94eSvU55c+vKe8F//qu//Zz329/+hnf+/P/Njgl9xjGaLiLx1/yeOTS/reQFTcXM5QOjCfNKg84FY59k6NmfXkk07qJABMhNMWnKYoe6rDGs5avDNkF5b2i7nUcFzlqKDAyHOqR2uywsnfUsgLThO3GXglkqs7Df1hQLWa4lzSX1WnUEedgDkTiVYAm76xuIn0JpkrS5h6kdktfEpLFEA1sGvRRKl8uM6onqT4ZgPFa4M78Oi1EYnbjUEtByNeArIIsFC9EmDdpg++engzVgIqD90oK7HXEkpkdsLMxQjh/Vqkh0ctplHM3r2lfCqhOMuTDdmNQXeK7tRRPVqPTE/5RhOLSLZK6W1bAUSmTYXZa4PuFf37NfZWo9L+5TcaU2vC1I/VAeVTSz8P4s1sNeW5Tqymp3phUigB2JWk03aH4te0V2YETQfvX4MaQoviPuG1EeBnOoWfBPxU0l9VhLDsyVeSsGs3cpNQXkoYUPOoQ/Uatwh0p17SWhFA1p6EBIoU7ZF4HAdw6RaSHutLYQb9w0bSeRHZY3mRJHinwjZ3ByFJ1iQhtjsImFbYGbuRsSbIuLWnnvqBEynj+80YtGJaKF9nwgIOEfxFFC/ejaJfBkytqF5pSdQ9crSnbgwcUkNqbgGrb/aYnfRv9vNAeQH13SAAdbgxzsDsxMsbjSSKaq+4+Pd6yis1BtP4IrHXb4TpJQi4FTmmsJDtcaC8EKDVHwgItGuoH/TYjRxb1sh5URGaU58khBFTC3BoTwL9VH73pUgkp89IfZdyg90tA32SaIpEMmLXsp7mOEk1ezmWfhFpj8KYuKtd6k1NN6DN6V5O5kth4l0Ji8/g5huweTeFAKXeznwlN1z5mjEZtltG+oNIvt4HEhElebW4kXNfXkiq7FCR4SZyPeQ3CVRWMHklrG7WyP71c3mtV+eJ2V8LGOyW6fsBIxtZn0oa6+JTYeaHdNuoBQS2R5I4i2Jk+upTuU6qVzJe2Vb2afo8jPJQojC2wUooUHsgjKfUWLBPza1jArBpXbUwlfVZpLgU3+kA/qqLkK53Aa19YnNDAlB2I/s9fZXk2QkcCSOqKK4HeSqp2zBK2ispjCrKDWyw8niUBB5lW2GS85Wwa7u7inaZQmuisFsykSGs9MC0u4mwpHa797OOYNSltNep9O/uzlIP7yayeOIZOmr7uQCP+TM/hh71U2H43ERAbHkj+9YvBOC5iaI+0dg6yTmT9LOfKrq5+Fenb/wI9OoTTbEK2G1ME1+S3GrrOD5PACVJJgrlbQIFQUBRtxAw1S7FA2t3svL6yFDcegFXyfeZNdK1KUnAcT/uedruLmC6SHnlx1qW6as+1XzEEYiZToB0cRvoppp+oinWgXwTRnAzVIHMXjjqI0NfaZoDQzfXNIeG5lBTXEv/ZnXuxomsrJb90El+6nOdgBxjom3Uauz4VCHSLuSzKBqFqQPN0lBeOrKdp10KcxwV2LUbk14BqtcNykW6mQAuYbXTtnORfA7dptlWAEq7FJ9hTMCmPZJZlmwnDD1aEaymnxn6eTaCyaG6I9jU67rppYZDCwM7SD2HXlIVIrqT11OwOk0USnLsGBbUemImHZu+lICgQcLZTzKpCBkqQazG7HoBqrlMOLi5Hc8XIFLaPrFiWuFmlpDCeXQnPawqRFTjJAgoyVpDbpLnssRPMrrDQtbzNrDOtEzcl5kA9l2Sp4Z0zQSIRSZMpTVSaVJKB++QFqt6J1LWBFoFZAZn1GmNAAAgAElEQVTI5H8jOBz6MpUiGunmVE2q+HBe2M3EVkoAUbYHcErJ70nyGgdWMEZiZoRd9YG3+zXHAJ8BhKYOTZW+0FrY1q6X4J4kw1VaC0va99Kvad4CkVrt92no33x70Xpc/347CfwPQUt/0pfS/JGey79YfiGXX2rGcvL1e/Gdv/NfsJzXOK+p8p7bncQtax3YrkuWyy1tL2+iu1VJVvZoHelqy/HxhsuLOVnh8E6PqbEmC1STlt2uwK9y1MSR5Q7vDEfLLVc3YlZROmKMdCnWlxWqkg/fatZijGw/eo3OPVoHXCcywph6GRd3N6xvJsQ2yWnS82OTfGURketamRHV1hOcRq0sLIU1VROX7u4iJgu4OoPE7H3FgxWAMqBqw+Tehu2bKWhhREH+r6ZOALICPesJu/2bgiqCPH5tiRMnfXYKxqRbr0Rm3GlhU51CHbfE65xoIipKn+HQtah6Ray8bN8pyN/yzmnQN8LcxplH1QZdK/GIAboWNjfmEWxAr7N9H2AWiYUwr/pG2GM/9QJMi4jZaPxU+g7tjcEtRJJMALMSCZKfBvHrWYhzh7m0Ui0TBZDbW+kYVMnfFXJJQR2YwmExdbpxS/st7I9KjJkS756CbJ2CBqyAbJ/WEYpIzAMmdb/ZW+k0VF7hZl78cIkBG6aIfJFqXYJMJgxjojs1+rwGBjnYOCYnDsm1kcSGOalnybYCMstXBjeLKdVQ2POQalBMo76STjvIPN/2BOpUUZMlRnBYR9QC/vu5zNDrVgDnIGm26z0LO1zLZic1K3ajZALjYOgJTOOXR6JFmGX91hi0apzhHxY3l17HIYF0SFbtF8LgDp64mO2Z42ynRrZ2YEvcRB4Pe7YyGpH3Dqyj7uTcZrUwfdK9KLJrFeR6GXxdUe/Z1+F8abeX7wIjizRKgtN5HJ5jOgGNOqXWDsztEO7jqzgmIlevFL7iK8mcIPswJPIO6a4DAMt2jEmtA/M1sqle1mU3e09g1Ht2YmCLh/M6dP+Jp1NCc7qlTBh0CwHabpJk0n4/NiSWTLnEzJWJyU2/hxwGlntIAx7Y9HyVklAVox/LF4xBXdkuJoYxpt67tMk+jv18Q5opirGGBAYmUtYt/jq5ObdbuYZclX7OhFUZWMpsK68DEBAYs2H76bz06dxEGbN9QMwAANL5Gc5Fkp5HIwyfBPPsr7EhTdi0jCyc6SSlFp1YxyRjHq5105J8fnKMQz2Wq9K+JTXO0MM4sLh2G8VbNoCVBLxIYNDu4shEDuyrinG8duSaF9A6vu5Ktb/WdjKegxx6YJAHn+GQdOuLxGwWwo6FTCZBhv0aUkmH9Uazf10P4E5kxvLZ1x6IxNXuhJGMiakTcCHHua8yYqykGaTC0suZPJPpXGm3Tw8mputll/x7Kj2ml8cMqbbKM06aDsyuLwW0Dl7EqMWr6CZapP9apMty7Qt4HZ9biOrHrgQIukpLXUmZvNeZwnQBQkzrZ59a2wepH9k5XGkkZbY0I6hWMRLM/j5FJY9fMAlAD4C0Sz2VqdoEHwm5BAP5wowSYN35MU1Vu4Avs3QNRpFOZnpMoJUHJfVNpkdfpu78yFSiFKpzxMLyRzyBcWBezQjS9E4qPaLWAjrzLLGKe+ZUxUgohdkcKkyG9UVjGLopRyns0EkJjAE/A6g0bwHRFOSzB3iy/7GwEtaTtoHNiJlBrVOtSZD1xb7/KmuYmEFVFFIRYrRUi6QU2ZEtVHoviwX5P4jcNQHG6MNXGdFBHjv8DHtJ7hAA9Cctg28zhj8HjOVZ/KuP/n9gLD/++3/mxwaQ/ekP+cVdTosNxwdbjIr89Xc+5pvVC7qY8b9cfIvnmwO+c+cljc+4bKacVhu+LA/5a2ef8rtvHvPw/g0Pq2t+232Db5y8Idee3/34fX7zgy/4YHqOVZ4fb85YdSWrtmRqZeaodpay6vjo9A2/evCCT7envK7nHNx9xbuTK35wc59p1vF8fcDkeM007zjfTPmNs2e82B7QBcO2y7m8mjEpOvITz8X5nOXRlt4bms/nvPvdFzQuI0TFq6dH2ElPUfY8Prriqp6Q3Q88fXPId771hNpZPnl5ymzW4IPm7tEKazxaRT774g7zky0PDm55tZ6TmcCmLvBe89e++xN+fHlG6wzWeKZ5z7opmNztOL+eM5/VbIuCadVStzkxKpSKhLKnbzOOPrii6eXyeWex4sVqwbTouFpNeP/OJY2zPHl+DHmgOGyYVi1NZ3mwvOViN+HubMPz2wNWr2fYwxZU5OxwzdMXR1Abpu/f4r2mqXMWxxuazhJeTTh5/4r1rkTrQNda7p/c8GY1o9kU3Du7HvH0q/MD7n3rindmt3xxe8TV7ZTCetRZxO9yudladuA0J0cbVtsSe7pj+2bKRx8+52dP75IVjiwL3Hlwwa637NqcD44v+OHze9w5XHN5M6Moe5SKrC+nTA9r8sxRWMe6LmmbVCQcFGFtwQbyRUu7KsjnHb7N0FlA3VbEr23JdKQqejbbUoKNNgUmi4TSE7cZhx9dsW1ympdTTt+9Zr0rcZ/O6O912KqnKnseH17xBy/O6HeWozsrrj8/JJaB8tGO+C8OqB93qCxgbOD9u5d8/vqY0Gvu3rnl1dMjslnPZNpwezNBXefc/c1XPHt5RD1NATNVL+EuzpAXjmZdQKc5e/eSV0+OyRYdfZOBU/jkH85OG9pVjp44sB7vDNFp2GQUF4b6Gw3lJyX1ex30Gj3riUERtxn9QyeycwX2oKWvLflLS/FoQ31VySQGoHtLf69D7TKiDZipw2ce93IiDNSBw0573GUpILPWhGUPjUE9buRxpy3BK1hbsqOG9qrEbHQC0SJjUgcd/cYyvbul+Xw+TiSoXuHut3BjyXaSSpxtFPVpZPntS3a/e0J7GLHvbdhdldirDF9EYfWfSf1Pe9ZDENWDdOKmG81sHzBjbzW+AH/Yj124aDA3Gf64l0kbp1CdPH76TLP+moREVM8zXBXp76TH9Zp+HqleadYfeAkxakUBEPLUHzqVlOX+IBBtILvJZMJj2ZO9zAVYloFsq8cQGt2liYZKJkHK15p8Fbn+1UB+aUaZu9lqJi8Um/ekG3j9gSdb6VQyLwoJEHlqH2H7rsNszAhcB5+zSrLgkIGfBCb3N/Q/WpCv96B+8Ef3s4hbevILQ7uE6hzqu1J1s7snx4qKlOeKzSMBR+1duWGy14axQiJ1sso+yPOlegS2jx3FGyMe2cm+8sdPIi6lSWcbAQuDpBWVulr1HtzpTlG9kU7T8hLChLFzVTuRSfsS2ocdsx/nMumxFQ92v9hXE2kvoHz6XJjq7UFiYrcKuxXpcFYzTlAU15HNI2FT7Rbc0b4KxBcpzfhDNQYFhSKx11rWZZr95MP0hfiUfQnVG2FdlVdjOJCbimx58zgw/0yP/uJREo9MMvWz1B1LCkRK8s7Ne1C9TAzpPPmGE1C2m0iohKkWyam8nnwu3Z0+V9Sn6RisrNdV6bxo8VkPgLafSU9syCSFeEhw9YMcfq5oe5UmGKC6DLTL5Cu9lRoaooDf+iR5La8lDbdZ6rG2yE1Fwpw1yT88E+A5e+FoluKJDUb8td2xgNtmacjaSDdVo69X9yLpFfCtx0kAAO00tg40Ryb1tia1zyTJcL2MUzfT5NuAmwpjO9TPCHiGfBVoDrPR+ytVLQJ4tJNz0S4L7E5SYlGgSoUr9Tg5E5LfdfSNJ3ZZJPJqDD4zbRw9vUToDibCQrcBP83Idp6QCxA2TWITtSJM9xOTdt3j5/lYq6L7xIoaAbBuZiEl3LqJSRLktF6txFc6yeS5raefW+yqRzdOAnm0MI3R7CushrAk8XwmgGvFK2t2vYDTBEAjiRm1MjsYSotOjxkTP11IExQKva6Jk1JkuI0wmaMHdACSNttLa20m7OnBfAR7qukk3RX2jGYCnDiHyq1IdJ0XcBnjmBcVfdh3WQ7MZIgSSmkzvtJjOSwp7Ic/JKv9115iIP6bPP4XefklJvX+tOWXmlfOleO/+uC3eW9xxV+ZfcI/uf4Gf/+f/4fcKTd86/A1VnseTG6osp551vJgfsNVN+UbyzdkKvDbX36D79x5yc6JpDSveqam47eefpN/dvUemkjtLGfTFcfllr988jmLouFvvvszupDxj19+xBerI37t8Bn/4slDnuyOuNpVbF2ODwLEvvjhOzw4uGXdF7xaz7k7WfPewRX3Tm/51uFr3j244j/41k/Y1gJa/va//3tsu5z7s1ucN1RHNfdPbgRg2YZdJ2DlaLnlR8/vSSJu2ZMZz6ToWBQNT88POS63fPj4FbtdwaotOZzU5MbzN979mOaiovGWInMcTWruzdf8zbOf0nvD3cmav/XBT7h6ecCv3X/O0aTmYFrz0Z033D+8ZVJ2hI1l11oOJzV9b7jYTfibj34GwAd3L7htS17dzHnn3jXzuxvai4rKOh4sb7HGczSp6YNhuy3RE8d00lIUjqdfnvArj19AGQhBczzbsTzYUreWR0fXnLx/RYyK3DqUgsx6njw7oSoEWDV9Rt1n+KCxhaPuM37/80e0fcbZ0YoQFA8Pb5jMWopJz3KxY76o+drhBd2qIEY4fXjNy9WC2UFN8IZZ1fLyeoHzmruLNT99c4fvPXrKpin44OycadExyXsmy5p6l9P2GZe3U3brgghMJi2hM5w8vAETcc5wdHdFtyooJx1V1eHebehvSrFABI3bWtomJyscNnfMD2qKk5rLyxmFdTz48A2busCYwL1ff8XDd644WuworONffvKQvsnQuZcJARspDxu0jjQfNphKGO4YFZsu5+hgi7GB15+coPKAUpHVqiIGxcH711ysp0wPamzVi/1jm+MuKpSC5qYkKx35ueHyZsbkdItb2zElNlSBOHf0tUVVnnLS4doMrSOx16hlR3OvZ3m4pX6/FT+zDdh8mBGFGNQ4C2+ygLnK6O711BcTMBE76aDT9CeO5e8VFHd2qDwQrnO0joSpFylz5YlfTjBHraT2OgW1QTlFlnnUqQRZxE0mXuinE2Gt32nwB4448eIjfl2gnGK3KYSpaRRx6sQ7rSIY6A8d4aCnf9Ti54GLVwvpXF04musSoiL/aEV5IeCuPQy4mcjbVZKtxzzIvp2mPrZSfu9OHX7hUK1BeYWuDSRWXmXyGN0qwsIRbWT3GztUrzFbTXMq5e/mNiNbS2qwvtuwfewwO43ZGGIpbD4HPSGLZGuNe9RIgq1LvXQ3Gvs8ZyibJzGRbimS68FPaG+lFqk7iFx9V8CZL8UCEI14gLe/uRvBWdQRX6bwrJTe2hzL4+s7gfJ1lnznic1Te2ZSWOXI8kea3fMZplNs7wd8GYVNboTldgtP9SzDbhSmUezOktd5mgLD8ogKKfAssfr2xoiEHpFE64FtV6IQkMRfkt8b8guDq4QRthtFf5DY+KFr1zBK3aORLteQC3ue30g90cB8NidDeq18dUsBY81x8kdmkdlPcpFXV3H0n+pe7etgKvnbICcurhTVGzUygYP/uj2M9HOpizFtStYt92yhpJvKerJaiZQ4E+m0S2y3XQsg052w1c2JgO1sJ88b2Da72Ssbsjqy+FjTT9N1VO3Z7agGNYUcw+D3daUEYhUXIiP2yR/rJgKMfZWkwxNhgbWL5OvEQHvxiA5geagw2t1VYyposBJa5StFv1CjEmDoGo1aCRuuJMxrCKeKSiTK64cmMZHQLvbBSr5QlNcB3cvfBzZZArfU2Hm6vadpD4ZeR9icZeKBNXsGOmuFcXcTYVC120uh+4nG9AIWvU0qmRjJGrkoNvcM3opEupvqEcQByWOqx7qibq5pF3uWNyQffbAy4ZAnkC7yXj16he02oIJsSx4r+1Lc7Fku3ccx5XbwyMr4D9kEgWwb8EViVJ3IfU06jqjlGHylZRtWZL/BymNNG0aW1M1SVkaSGPtcWExXadzE7L2bRmTBMVO0h3nypPaE3Ajo7QWEZlvpbgxVhpvlUm0ykdqYASz5MhOv5MDIRSBEdOtGBhIl110sjMhwCytMqVbi4xzCk4wSYGiMhBgdTAmTVHEyKYhFTswzYpULsANhOm0mXZqDRBYYU2DLPD3PEqtCvheWWOZQlQJUh0TYwaeZZZBlqCJHZRmqLEXWaq08riqTJFdLUE9alBEZLIPMNn0pm8mXUvuf/7ivPEflOTq3/MXyi738UkthZx+exb/zD7/Nb59/i1w71n3Jp89PibuMD7/+gs/Pj/hbX/spbcj4X3/6Ed97/CWvtgtu6xJrPNfncz587xUv13MeLW+YZB2//8Ujpv+84p2//YRvHLzmH/7+r6PywLfee0HrM3a95RvLN/xvn31AVXVjDcemLriz2HC5nfDu4TWfXRwD4H42x3x9Q7Mq+OjxS3762T104YlRYQuHMYHvvfOM/+vzxxRlR555tnXOcl7TO8Pt9VRuGF8V6Ps1eeHYXlWc3rvl4pNjOOzIrKe/LihPa5pLqYfoa8t333/GJ5cnbC8nMtNeetRljr7b4Haii1O5x9jAZNKyupxCr3nnvQusDjz58gS9SX6Lyo+S1fsPrjj/vbs8+MvP+ezLO5zcWXHx/AC76OhvU5qZVzDreXB2zdPPT0cW5Zvfe8LH/+d7TL59Tdtn1JcVmMj8ZMvmy4WwPQ8a1OuCcNphXhYSztMrysdrup8tsF9fEX5wQPyVNfpfzWm+1kr1xlErdSIaVK2JVaB8asUL9+6W/tVEKjMKeaM+PNyw+cExbhoJlUcltke3CnfgydaGe999xcV6KuyYAjvrCM8r9P2a8GyCn3vp3ywi6qCDi4Iw8cxOt/Q/WNI+6ESmnAeyT0uigoPvXbD6/RPaOx7daMzdGu9lRjv7oqQ7c2RXGeF+Q1hbpk8y6l+p4VLWXSwb3NMpqpd6jeLhhvrNBKx4T9EQvrlB/8GM5t0Otc4o32j49RV9lxGfVxJQZJB9a+SG089lXMoXGd1S0nPtRnoSlYmwzSQgaukxG01xpdk9dBw9uOH6syMmLzTbx47Jlxm7r7coHWFlya8MvohMXyi6hXgkq9eSAJw93sAP57TvN9inhdycLx3Tj3O2H/Tkb2RGXCWZanGt2D30FBeGqCPug5rq/5nQT6G965g8yfaBKL3UPoQsYjdSq2GvDHYj/Z3Kq5FB061m/kVKGFYCFLpj8bROn0kS8errnvknhuY00j/oiLVh8lRYwGjlxr56JanI2U58t5NXiu2DSH84JCdDWDjMVYafBA5+krH+d2rCxrL4acb6A49yiskLuZt35V7G2ny9IW4yspUhv1WjpHUIvmlOIrMv5UazviMz27pT5CthnwaQsPhCOh99GemPHXpnmD7V2E1kdyaAxG5h9e2O439qufr1QPXckNVQ3xE2b/oycPUtWfeQQFu/1zP53JKvRL6qHXRzYT77RWT6LAWp9JHtfZi8VrTLfbXG5GVk+0AxfxK5/QBmX4qUrz1iTD4uLwd5osh8y3N5bnMaWHyi2d2LHP5EElpNK8ExpPPZJ9lzloKUpi8i68dw7//wXP5Khl1Dv5BAoOZOZPEpXH1b0qrtljGcJr+N6WZW9sVNRVKskyvBNMKwFLeRzUPN7p5IystLAQ71HUV1LoFG+W1k8y7MnsD2oWL6TADQ7fua2TNJNAaR7danIlsuz+Vcm06x/GlKp50KkEJDtoH5C8fVNzLKc/FuZjvZTrZVHP/I0RwZuplINjcPYZJYP0k7luRiU0N7DNNnkayV/W0P5Fye/EC2uz3TI8spXk4BPtUbAQO7u4pZen6zVBQrYeLaQ/Gwrt6H4lIxOQ+s3pUE3MUTTzfT2CRF9nYvYR4ChbqFAIrBR+sKxfSN4/ZdS3UlCa79VNNXe3YSGMF2eyDPn74KoyzY7iLbuxrTwux5z8V3c4xU+KJ7OZ/dQlKMo0pjd086jqsrP4KjaKBZaqpLSYRWianUToDX7FmHmxrW9zMOvuhTP6Zne5Yxe9bRHWT0U50erzj4vCcaRTc32G3AbhzNsaWfSjpvO9eUN+KzXT3KmL72IxtoN55gFZt7hsVTRzts617G5I1H94HmOKO8dGzu2zH8aADKxUqOtZ8KCJu86ghW0x1kBKvIV55+KtdAdd7RLWxi9SNuqslX8pnSzwzFVU93kJGvHPVpzuRly/pRweGPVmwez8lXjnaZiV9166hPcvK1J7+WSb/6rCK/6dk8KJh/2dAtLHbn6BaW/LpL4TwZ/cxgNx7T+FTLIvugNx39iSTU6s7Tz6V2pF8I+FMuUlw2o99T1CIaU/e4WY69riFG/KxA106CfFwQwJnSeYcAnWgTUA0BfbsjHM4IucGsG6I16HVDWFToXZc6L6P8fbXby2CVQu0aYm5RXU+clJIsW4hfcvj7KIXNrSTGwshcqrolzsQeNoYFabWXyLZvBe1o9dUgnsSAxqb9qldyqGRpGlRRyPE2bfJBKtmH3I51JLHrJam2KIhtO4YBfWU7f9ry1uNjjLKef8vlF0YK++A//bmv9x99+g/+zI8NwHz/+9//s96Hf+vl7/13/+33Z//Rb/Jss6T1VuSaWYA8EpRi1xS8aBa8qWf4qHmznlN3FucMu22J0pFNLzLPq+2Ui90UFNRzhSoDP3z5DspGQmO46Up2vaV1lpfbBW0tz9vWBXWbE7ym7i3NLmfjcto6BwW9ESldrDM6q+j7DFt4fJsJg9Ubvnx1QnSavHKsr6YEr2ldhvMaX1uxIUUNladdF6gs4pXCKQVBE3qZTnU7C1mQmhUFb9ZzvDfi4dRAJ9JEVQRik94ovCY4TbuT/cUrNm3BtrfEm5w4l5tukQ8amDnW25IYDDc+JzpNGwyxyQhBSyiSV5Kea2DnLarwxLRPF12FM4qmzsVz6jWq0bRejErKK4JWY8IlXowp0US6XkBu31q5oXNZqhkRDVfsZJpbdSnsyMvNn+4VzmVj4BKdgc5QNzl6Z/ALMYgpxLMXKmEtUHBbV7htjmo1KqRewRuL80bAQw5ZrQlZlPG1EfJIt84haJTTqMaQnVu5sc9guy6TP1FuBL034pvdZagoYFF5Rfkkx01EfuW1APM4CfitRTdpW4BrLLrTkgacPiNca4WJ6LV0IqJorYKrQoB3ENZlSL11hw6zNZKOa0mJuuAn6Rx4TX6VZti1GrUOUSvqTSkAuZEZ7GCR12Kdke3SDHYRcTNZp/LC+oQc+i6T2ptOgptCLteZCkr8xex9YDGT8zJuP0JwkoobrWiPQi4eTV+kmWAjx6q97FtWi/dDvJKDJyfNJCOpu37wrmXyP/G9yv9VUPgJqI3BNFr8oFEYNruR9Uqvovw9ZBAtmJ1GRTlusxG6LdtoQqHQtxkmXV942Z4Kwk5kKfU2WKQzMwpbJMckr5FBOqiiGtkzDGNS7kD56oHBmsr4Ka9QXiePbDonVgCY7hUxatnfel/GjpIxru/KOI+dhBHp/+zV6O9TUZJapTNy/5ruZ0r8t8gY93NhtEIhqcJuomQ9yaMYjMgtVXjLN+rkb6ZllE1KCJjCl3sQEfMhQEXeB3Rg9NkOHjsJaxJZaj8XdlMoQzUGtw2yW5Eagq/UPnE2eYmzJAH1pfzcT3SS9qkxXMsnmaX0gg7e0/S/XG7MYiaAWpipQXgmY6+9TBKYbqg5SfLSNDba7499XF8OaBlT08l6+ql4M03/1vXhSYEpcjzRDGFWjBLMaAdGVa4ZeaoaE2eHc2a3qc4DNT5fQtxUqvoRH6V2aqyJ0j5V4wTSusWX1s9EHi1S3SHZNO1/J/Jh7REZoiaBuzQ+MSWfsh9LnTzo8hpX9NNh/+WcByvrUkGuS5N6SCXxWaXPIyVBOSbtg1JpvFM6rLg7ML1MDGVdSrBTgNH4QsBYlnotlUr7qWVfXSGv7/H9JQFNUqDNILc0TupQTDek8IJxoFM9zZBCrcMw/vIc45LkNMprwCScob2A4KwRn6N2cmyhUGStsOQh17KtXvZnCMoDuSZC6r7UqTYkGmEYFXt/sHgGZSxEAZD8miR/aoSoxasZrSZmGp8YQx3l+BSMibQKAbOhNGS1T6/duH8NKYUiEnMzBikphYT5dGGU/2qfmDyj0S6ge0+wRiphUkCPTsympM2mIB9rUH1g8GsPADPkmYz74PEMcq+ikG1L6mryeSreYjbj6JXESJjR6KFMaa267dN2Bv9i3IO04fvANPrkbR3SZAegNpyHgT39YxJb1fC4wSs5eD3Tfux9lGk9Cvk9CLAevJeEsE+IfXt76Sv+ofX/sfs0pEW/7e38N1w+4w9efv/73/8f/61X8HNY/u5/8w++/3Dx3Z/7ej+5/t0/82ODX3IpbNNY/unv/AqvXy+53Ey42lV8cHSBtY7zp4ecLDesL6fc/uRYAnt2ljwXGaXOAjEo2k3BYtLQbnOaXc7hfMff+M6P2bUW/7riaLmhOqoJURGCZrcu2DxdoFSkry1+laN1QOlAc1OiTGT3eirBN1FxeLbCNxlm3rP7eEkMiv6iQumIelYRGoO+zdCFZ3tborYGtckI5yX9VYmZ9igdyU5q4qsSWk32UrZ5eLyhmLUM/rMhOVZPHQQlbF9j0FOHyj2qchzev8V3GgLYRYcqPThN/tpKCM7UkT8p6FcFHMi247LHzHvCRMZs+qOSuOw5+N0SZQP2ZxPyo0b27dxCKcm2qjYc/ZbMlsXSE6uAeV7KB+r1oMmHWEltCzqi7++onliyZSfVLXca9EkLGooXljgX6eXxh5eYtUkJsZJIa68zSZY96ojHnRTRzxx++v+y92a9lmWJmdC3pj2d8c4xZGRGZmVWucrubty2BFiYFxBSizck6G7gB/BG8wa/ASGmJwQS/4EHqHekFsZ4qLJryIrMyMiYb9zpjHtcAw/fWvtEll0yRoXKaXGk0L1xzzl7Pvusb32TR3bLOhHZ08MWCof5X2QYLgYgY4l8+UqxQmEvkd8o+MJj9nOD6ZcESPBA9aMSw/yuxgMAACAASURBVLGFuZMYlh75tYJXQPlWYfaEwKx4nuHozzTcaU85XekZTV94+MKjekkQZbYSwmLshmQIjMfJnygmygbKDoMki6h6geqLDNMvDVmlrYSf0pemazF2adop+1OLK7KKk+ca3gRUv8ihGoJnVzFJ1i4c7MyjfGmQ30hUb+mry284WLEzJtYufqZQvhVkZnoxBtFkK4mjH0uYrUD9ycCO1aXD8Y8klj8TyG8I+nzpGd5Tc3DVfY9UwPGfS3QXjqAsDygvJcor9odWb7hP2UrA7AXKdxIuZ4k902OB+S/IEA7zgOXPBOzSoT317AKs+CVU3Aj0S4/Jc97uggw4+2Ng8jyllVIa2DxwYxCM2QnMv5TcnyqgeWQx/wJoLzxmXwHnf8pe0X4eMEwDjv5SYPaMfajVq1SvwOTY4lpg+pzMzOSlwOIJ+2XzO6YVT16SsRpmAbPn3J5+wQF2v6BUc/4VcPqjgMUvxOhhBLE0hkVAtwxjTYmwQHnJ1N7qMgahxAFmtmVib7ZmIM70a2D6goPn/QdMnJ28Jng8/fOA/Yce86/8KOUrrwKyDSA7BuuYPd+bbYCLP3aQA8GkjEEzy58TZFVvGawyTBCv64D2lGm2xfUhUKe4DuiOAiZvAoYpWcrqbYDZAEefewyT6H3TwOILj35BNu/8Tz3shKxnv2AHY/JIAnzP9FWgpHIAZi84sDr63GPzKf+Wr8hSCsf97BfA5E1A9ZosYrYlW0mPHX8vbgPmzzzMjp4+1QZMX3o0pwL9Api99Lj3f3Q4/txxMOzYGes1sHjqMEwEJq/JTC6+8shXZDSPf2aRStrzNYN9yiuPySsyZyc/GXDyE4t+IUYQp3pg8tahvPHYP5BYfB29tVc8brOXHsWtx+4DgqDlUwuXCRw9sZi+dmNgTnnlsXxqMbn0mD8jE5Y6QWcvPI5/1qFf0r+abQNmrxzBdAMc/WLA6Y87dEuJyaXD9JVjX26sbnEFAejRkwFqCDj7sxonfzlAWmD+3GL+9YDmXEbvHydNpm8csk2IzCPlrqYJWDwdKNuMqbf7C4lsy3Ta5AOk1DEF6DAkx2UC+dZh8VUP3QWUt2Gs79FtwOJpD28Ejn/aYPayx/zrDvNnPVQfcPRFC1sI2JwdpounHe/bObdBBLKXkzc9634a9pqmoKJ842BLgWzrcPIXW3QzheLWYSgFlp/vWL0igOqdRb52WH6+Y+jTziPbOlbdzPmdkK8shAUWT1tIG1DcWCz/YoX8lieyuGZ6a9DA8k/eQdqA2Vd7DBOF4l1HJnIqMX22gysEpi8azL7YoXpVI9sMmP1iDdl56MZh/mQLvXcjm1q9blG86yBcQL4aoBqmyxZXLco3LaQLUA07ROXgWVWSRxVGpVB9tYHPJKZfbjBMNYp3LVwmUT7fIrtt4Y1E9WwD3TgME41holG+reG1QPXkFj6TyK5rAEB2uQccuzfNpkd2uYPZ9gSkAiPD1p2WEDEEKBgJ2TEsUW9a5F9do/ziCiH2kuoVmcWQ6ktcgJ2YsUbEZwrqZseEVwCyGcbUV7FrIHoL2VrodYNQaMjVHvJux8mhbU2wmwCp9WQt6w5+UsRxUUDINUKVk500GmLXUOKaKkIAJss6gl5Rt0hJrqLpKJstcv7eRKtHboCazCuGlK4lyXCmn6lrU8Y6EaW+EZYT+p6VIkohdH1kJmUExNFLGpnT4BhUBCEIMIeBjOP7/5yP4DQc/jn31/8Lnsv8tj+iJPrX/u/vyONbLYUtPn0Q/p3/+d/D2/0Ml2+WQC+ZGJoFyKMebm2gdwruvIdQHmGTQW1jGEfOyg8R2Qph4wxn7BQMBmNxOgKZjn7pY4dYgFmRBfSa8iL2/YEzlnF2nQmGsXdSstJAdUwDVXuCAR/TX9n9xAEzB45hTGBkqECIgzWB7sSheMsQC1vGmdGGX7hMpAzINgLdMX1L2VrCliFGfdMbM8wwpicCZITGnrrZoXsQMnpb4ox9H1NJ02x5fiuw/8ihfMUaie7Ex8E4ABHQHzNRFIGDUFdgrFExGzF6jbINgzVSt2N+GyPM20OXHwvhGeqhGs78q57HQNdkw7zhQLVf8LylDrmUlJiWBwD9EWVlQGR5ED1VO4H6nkf1Vh56A3sOlrujWP8R/UEuS/6Y944bJ7WhmngNpDTWlAqo0/nmteJNrJeIyaS7Dxj4MXvBAWdKCE0skMs4AG9PGb7BkBAOsBkLf9jfYQZ4Hdg1eR4w+zoxQvFDFD/+qceQ1Rpcdn7HgZkrKFlUbQoV4bFWLd/HsnqwjuEoJZ5iXEe+CiNbYOMAVLWxAmLK88WBaUxCdJwpH2YM7hCBxzfVN/QzyidZORC/2PuA9kygekvfkYqx/0ELdAugehfQLchMCM9lewWU1zGZU6aeOvq3zJ774jVBiQgMlMk23G6zZciI6kLso4wMVpdAVRjZpCxK6HQToGvK+HzG4yU80B3zHJstT0bQDPBw0S8nQqxt8DzP1dvDvSFdM2Nqpkn3gChtNJFRweF5EwFoSg32WoxSvW8kUVYES/2c5xTAuB/pNayaYIpo8q+lbtAUapKSNLNdGLvtEtOTOgxVZEP6Kbeln4nxevbR3yY8g0mGKqbnCv7fGQa0lNce/YQVHP2MoSnexM+PoGS3uvbop5FJTKmabRhBRzqOqo+DyfLwWUnpr6naw2ViPAamjv2JgqxHSny1pYSNAUNZrF9h+qVAPxXj3+jXFMjXDl5HNjcyhy4TMA0rMnSU93rN455tffxcHaSs/M7i/qRrQHc81vS08XrpJ6wN8ZrryHYeLpeozySKWz8ec916yMiMJUYu2yQJaUpUjtf7RMIZgWLl0M1ZYQIAZmPRHenxWmTCKOWqXgPVFSs1bMFeyBEYOqo8dH1IMvWRKfVGwGwsU0htAm8EeGbvR18k0jHP6LsTMcWUXk/2OdqKJz4tX/gwSipTTYgI/I7XezeCjfbUwGxd7J0UY7cje0J5DKU9pAUHLaEbThrYSkF2BBWqdbCVgq5Zy+EqPSaKytjVmDodVWMRMslUVfCaTL2PKV0VLsDn8bWxgoOewPi51wKydYAUY1orU4AV5ODpZTQSuh6YsCq4HbzXcjuCkYAL4+dbDtxu2TlKOwVG5o/pq2Fk6VxpoFpLNnCInZKthSsN5MD3ey0he1aE+FwTQAFjqA20BGwCWHKsHElS1TF1VUUGUAiyoD3rTUKmmfyqZXxO0PvoAkFiO+CX6zNGFjH93bpx2ekRCsP3AqwTAb6R0BqMprRVSdaISIYDja9PUtFf7p6UkmBQSfxydyS9j+oghTX60HmZJKrp/yEcEl7HtNb3cEDqixQRLPqA9zskx8qPBCjT8nyI0tdUc+e4LyEQDCY29lc9/hZ9lt/6VNj8XviDh//xr325P/zqv/qN7xvwLQeWJ98/C3/4P/77yJTDk9tTZNphkbfQ0mPVlti0OfpeY1Z18AHYbCtUVYd+0NDawSiH3moyjgD2+wKL+R7fObrBn7/4ALZXWCxruCBQ74txvUIELOc1rq9mKKY9nJUoyx7bVQWhPYKVOD3b4OrNgl7I6xmycsDwcoL8wx36zuDB6QrNYHBzM4XOLYKXcIPEYllj32QY9hlk7pAXvFF0jUFeDmg2BY7PNtj89ATZpxu0dQaTk4Vt1zlk4SBlGLdzaDWqeYu2yaCUh+00Qq2AzCOb9ZAyYOg1hAgwmUWzjvsZq0jKRQvvBbyndMQOCkIA1aTlMREBfpAIjWZFSR+TE7VHOe3QvJnig8/e4c3NAlk+oL6cQEwtQsNv/clZjabOELyAVAxAESLAewlXaxzfW+PudgqpA/xdBn3SYthmmJzyfY/O7/DyegkpPYZtTqBkBVB4yMzBdwqqcPBRVimN56RarSEKB2k83M5ATSwW8z3Wm8k3vif8TewKzeIkhAfC1EGuNfzCcsLCSZhygL0uRg2AmPesmrk2BMU6QJRxfVsDUVrozMUEVQm5VxCDgFta6DsNezpAFxbieQk83sO9ruArj9QLKXzsUAX7KLtTzr6GwgMD5Yv54y3q6wrmTmNYOtarTChZSTJa0UtABuizBu51BZx18LWGrBV/T/UzNc+rnzjInQIkGbkkkwYAv7BAK1kdEwSgAsROUUo4CFa2qECm2YQoxQTc1ENtKdMOJsDEiZCQB8AyHEd0PD5+blk/08YBbSvg7vUIrWLS68JCblg/4yYesntPlOEpDx2OeCzo1Yty4MDXq0bClRxkqa2Eq+LgsCejmmKH8xuF7sxBNpQY2olHfqswTD1c5WFWCsNxHIg1cqx78Rn3W+85iSQCJ4JSumx2q8b6EYAAZpjTUyqcGKtbggxwFStvILkfSWIZBJCteXz6Bf19PgfcvY4VRU5Ar8mI6x3Z0bRfuhWwMcxFNxzAizjR1i89sjuJfuEP4TACMGtOYhG0CwwTTmyxF5UTZeyNjBNwEZQmkBYUxkCQ6i19uGmCDOCkUvFOYpjH7doRmKeJMTthKmt3FMZ6mv6I7HiaBJFpQiTKvFn9Q3DWngSkKqAg4/scJ0GKG4bluOxwGaVaHBFltao/TJjpOoJ2RCm1i5Ne+gD+U/2K3iPKQiOAa4B+dpjM7Bc8jtJyQitbi7ESR6QAI80JLLJziMCPk5j5nRgnC22U54o4GSlT0mrD9w8zxMAdTtbY6jChmK4NFyfwEohsj5mUastDEBBL68nquhwo37FqBIj7JeKEbfR4m5oTQMOUkympqiMqkQ8BUYHsJetDCPxS2AwnojgpkapNVBuiPDQC8z0nyAiY+Lo0YZAAbKpPAvi+fBMwlIeEz5Tgm3pLdcNJpeT5HStS4vbKGLxjS742VfI0p5L1JvGYpWMcxv3lc5RkcmIlTRSljlXdpn7Ow0RFkn5yXw6THD6llEb7gIlhONxYvJfMirHGBeJQ+2JLgeLOxW0kwA5CjLUtqR4lCE5c2DIy+luylN6w4iR5Pl1BgO9KCdkF+DxOIMbJnTSxyGTXeK8IBK6pw9Rl793XxSHsKr3GxcoT9prKOJHLPktnYipsAuOWYDF1Z/o81qJYPwIh2Q7wuY4S6SjdlAIqgm2vJeQQ60qifDfVlvicFSNi8IBKVg4Bte2YCgsQICsx1pXwwgwRvHoC524gGE6AOQHFlLyq1QHoJmDpPX9P1SQhENim1wEH2eoIIuPf08RFem70b0a1mbUHVjOBSOfIsFrLoB6A4HUYMPZlvv8IAd/wW37jqV+NTb71Hsv8IvzBg//o177cHz77r3/j+wZ8y+tGWqtx3UyxLBp8dnyNq2aKy+0MubHIlBsTOwttYZSDkgGzvEOpB+z6HMu8wXUzwTxv8fMX9/Dxg2s8f3eMP91WUMrjsw/e4YvXZzg+2qNY7mCdhJKBMlkvAC8wLTvMixZPn15ATweYzMJaCSU9zLTH9fUMR8c7LMsWX7UGQgQs5nu8vl4iL3rMFg36QcPBQyjBvstOI5916K5LDDKMKZkhCGSTHnc3M5z/gytcXi4wO6ohAOy2Bf7RZy/w1d0xNu+mELmDUAGmIOg0mYUxDpOqgzzxKIyFkR71YNBo+lPrTYHl6Q67fYGi7DEvW1ytpljOGuzbDJl22LkCIQhs384gJwP8LoNe9JBFi+AFfFAo5h1CAJp9jqADXnx1BrPoUGQDZo9vcfnqCAgCat5jf1PBTHtAAfamwOThFvt1idBJyEbh9s0CZt5Ba49mIjHsWduxXxeQ2uPrr88AAA5AGgGIqUVeDmjvCohWYnKyx+YdKTlnBeROU157lUPer4HpALfOsHp3TLBYK4QZKy/UaYfwtoA+b4AgYK8L9olOBc4uYoDSfIC9JagMlYW8M/A7A1GxQFuedDhd7nD5ZgnXGPp7bjIMCwvIAFEr+IrAECrAZwHFswzF7+2wOjJQLyv4pYW+NQiKTAhkgN4q2NMB3ZljV2gn6SFVAf60x/BkDjH1GJYOohewM8/E0yxQdlwriPOWns1fTOBmAbjJiY0DIF8WkJKARN4S7Iqa3k7VsFLDFx7la0UfYEmfoLqhbtJnEbB4oLiUqD/ykHsFnxFAogfkQF+um7kR8MDzVPqCAF7embGLU70zsYsxxMEICCpbiWwl4fcG/YmDhBz7P1MKafVGoX5A2bOu2Z3pswCnCKJkz8AdvWP8vuwZmw9BWa2qJbyhAkD24LaCqZr5tUJ34pGtos9QAeZW0b+oCMJTbyRDYMLoG5W9gGwj04TIZBeAagS6hz0mT7KxVsOsY2Kq5Wg/dS7CC2TbCDyH2O2XMeDFTgPyWwk5EPHIgRMkwhGUQQDlO4H2jEmtxXWU4lqQxahiP+CWcsj8Rh56IRWZ+myd6kGicsNTXWB2lAsX14e0WBW9yanXVNcEOUFHsFPz/HMfAbHjADf1nUoHBEuWvFvymHlzAC4IQPVaoLkIUfrNYzpUGI+xdGSMg6RnUEWgmLowfUzqHGaxVsQeAAC9uhyEJ5UE/GFQnm3I+Kf1Jv9jkOznNHugXwjKXi/EqEKgvJGsIysnxAg0zZbHgAN5/q5rAjgAY3KqcDz/cmBgT4g9iapFlIEyaCfI2DFa8FyUl0ym5fVBNQmP0wHMiPoAgL0h25/ADZDYTQKUYc7ndRtGNUxIqZiI6gNBQFld+RH0en0IG7IVAUO58ujnAtk2dueCqbPZzqNbUNnSHpHpdgUDeYYy+p0dqz+cOTDaACdBEsAVkc3NYrBQtvPA7sDk9/MYaLVjCFE/lShvGcwDIPZqsk9yqFilkfyJ/VRG9logeALy8trDNBxM9xPJYxRTVIEIHGsPnwtYeZDXIoBy0o4qp7Te/JZssG49+qlCVtMXqGIli/CBr41ex4N3mWA027rRD6wbT++oEMhX/F23HvlqQHsSL5AAmL2DtBFkeUS/KcGbtPRgukxCNZw5SrJuW5KVlRHEqS7KOB2Pt+wDA3lmhsAwpsZ6I6EGTqy6XEK3Di5XkRkNUDZ1ejqCzAB2oHYOwh1CdphKLCA6P27TMGMIkNr0cJMMsnNkTycmTkZagkMfIKyFcIlBPShx9KaFnRdRlorYqykg1zVETG6F9cAACJU+swSForOsDLEeAmSw3weVYrAIOqNPsh1GFtRXRawhISuIwRJchjCCSjFYJh1HQIkQGPiTGEzvGbSTypETu5seyScZxHuVIrxOg3UQGgScqXYEIKiMoDQkZtUYwDk+F2tL0iO9Rih5eP2veoS/4flv0+NbTOr9TY9vNWM5+e798Af/wz/D7yxf44+uHmNZNLjczVCaAd9ZXAMAtkOOn727QL0u8fDBLV59fQIxSOQXNfpOQ8iA2aSFEAG7Oscn5zd48uocJreYlB3ubqfjLH/QAWeP7nB1uQCcwOxsh92mhNQe3koEKyH2CuffucHlyyPAeKjcwfcKYZCYn+2w2xbIvizRPkz6KgAmAB0DZ8r7O9TrEvrKwC4cWZ9eYvpwg+3thO9pJeRsgN8aDnbzgDC1ECpAag+8LjjIuddCPS1hH7cIK34piF7AFx5ikMjWLGd3FWsKQhbIKG0U3MxBTSzEiwLuXg95YxAU8PD7l3j59ghYZRAnHcTbnExKwXTR7/9rX+Gn/9djhrB0Aovv3aLtDZq3U2Q3HAQMH3WQ2sN8XqF91EPUDDMJpUN2qRE+2yM8nxBEFQGiF8gf7RCCgHsyhZ15MjUC8CXZIbPhYNieDpC5g3xZMAQhMk7ZSqI7daM0GhsNc9EATyZAAIaF55eODsjfafTHBDqyE7BLC3ND5i6/40y8LWPa5TQWhRfxhicBTCywNlCNgPl0C/Enc9QfMYVU7SVcZA3VLt58TUD1SqK5FyA7YDj2TOEVAeZNBrNlZYHL6Z1kAA5gf6uGfFrCTgI760BJ7e4jD9WIyEzS53b7DwhGdCMgO/ow+yOH6oXmsmPv4nDkUb1Q6I4DsjuChXRs+xMek+VPJNbfDcjv6Hn0GUGQK1mXkGaPIYH2zGH2pcL2Ew952kE9K5CtCDZ8LKMv3jGNlVUUiHKzyEDtyaCpPjJescPPx0AWXQPNfQ/Z8RqcPZNozsI3JNN2EqKvNKB4J8Z19HMAgmBvmDIYKFvH2oWFx+S5Yg1EGRiaEidJ0+x/EICpCQr6RcD8KbD5hMEq2QpoTznAzO4EbJT8AodKhPoez1Hq/RumPGbFNbct7Z8c6Hu7+y0COtXGwbyPbNxAsLP7jsXsCx09opTsJgZLWi4rMVHZluCnnwemr+YC3QmQrYDmXsDsK25Td8RjrhuCq/acHlevuaziJsrxPVBdBtQXlAnvHhPcZRt6BhMzmZg+AKP0WHUHqW8CatmK53yYkAVpTyjhVx2ltn2sP0iMi24oRfU5rw1XRJ/knNszzHhRlu9YocH0Ux6n5oKVGElObbYRxO8JNGavLOpTBd0G1PeYniscwaHqDsDSG7J62Yqg730QaisCKzshU2n2YayOSDJg3XhsP+DgzRU8Bsnu4HIxdlGaJmD7gYx+0QNjmK89mlMJXfPclpd8P32JAtU7z0Te+wp6T5Dk1aGWxNR+rMDINx6yZ3BOPyFoSPLjMVgtUN6cOhIT85fYPpvH93WUoUvL684WIq6bjOUwEbCFGBlgn9FX6iIzq97rZAQIns3eo5+pkRVObJwIgDMC1ZVFc6q4/JJgsZsrZHuP+lSiuvYRqBHQDZWkNHnHdRV3TEztF5ry4Vi7kW3p365PFKZvLeXBwMgs5isHO2EicbtUMa01YPWpweQNGSYf5ef51sW6HA9Xxq7E1o+TcUniKjzQnBlUlz36pYbsA1TLrsVhIlHcWUqLtw6yd+iPMmSrAf3SjEyftIF1HZER1TtKMW2l4Ao5AjpbJN052ThvJPTewuUKriTTCCGgd/QUDpVml2QhYTaHv5ntgPpBgfKqH1lOHigCPq/pcfQ5lTDSecCF6IsUUK0d2S1KkSnLDYL3NNlYuHkWJ8jIEMIDcnAY5hmym2aUsLqCnym97dAfl1CNJesaJzpUM4xy2CS/hRBkBl0ANMOD7DSD3g8Ee85R3toMYBBa7OHMNERr2UfZ2vh9wf5KuIBQGibBRqZSxHXBewQV/zZEBlDKg+xVK8p4dzXTYAcLP68gNzVGma9WEG0PBjxFljKxmgDQtEARE2dDOEhPf1lWms5Vep+U3L4ocRXGjM+HxHaGKN2VChh6wEf5q5QQRYGw3x+Wn5Yb15M8k0Kpg2T2b3iEof8bX/OrHn9nGMv7/+Gvfbk//Pq/+Y3vG/AtB5b5xx+EB//iP0MwAcsPV1g/PULQgYP30iMYsjpBBbjSY/pUw8YC5/qBi/I0ATt30CuFxROg/idbtK8J4KZfK+w+cTB3EtlGoLnwjKuvDx1WLuMspCsZZT8mBDYcoLqCFQTNPcrI2gcOk2dq9OsEEQM14mBYtxwYzZ973Px2LCqvBVxGxqN6E31/78l3yncB+w84o9/c98ivYvDLmgOP7ScYB9h26nDyJwrtaWQDkl8o5zY3FwQH1ZuAux8gJvrFSooIBM7+PODmdwQWX4AeQMH3zZ4B9f0D+HJFjL5/6bH+WI6F4pt/2CN7bXD804D2RKJbHqoG+oXH5JVEe5pKxznw75cB1RuBYQ5Ur1m2vviZgiuAyVs/+qy6I6D5cED11Iwz68OUpd7NmUB+G2fCJeVyZst1LJ5w9rw9Jbj0miyOsBwYDVMxys7a84Dp1xj9hN0RMH0RPYEeWH/m8fH/MuDd7+VwBpi9CNg9JNDJbwSKuxDDMLhNyy8c1BCw/UCjn5FJ2D32OP4xZ93vfhBw8mNG9E/eeJidx+axBjzrAJZPPLYfyigX4zlafkGP0zCNg21NX6Yckq+T4SL5HUHM9BXvA/2Mf08z+t5wgI7ATrpsHZDtAuoLiX4RMHkFLJ/0ePePcwzzgLM/97j5bYXFFxwgDROB8sajXUhsHxO4mT1Bj2qB6SuH299SmLwmCKiuPPI7h3f/2GD2nAEeqj14iYMEqncetz9QKK4DJm89Vp8qZOuA6tpj/VixdH3Lz5fZkXnbfyBw/FOH/QWvmfM/a3Hz/QI+J3MlLbD9KBbRR0nc8ecddg8y2JLX+dmPBtz8wGD+teNgdKrI+CigunbYfKhR3HmoPmB/ocgAtCFWKHRojw1Uz261YaJQXrZ4+69PcO9f7rH9uEQ/E5i95Jf8+iMz+qGKlY/gI6BdEOB0MbTF5bwu5MDPQTc79NFlOx8rC3i/KW8oTds9kDj6fMD6YwOzD5hcWsjB4/W/kWPyKmBy6bB5pHHxf27w5g/nmD3ntSQ8MH3VY5hrtEs5SvOSl23+ZYPV9yoC2YED/vLaspOuD1h9ZlDcejQnEtU7lsYvng1wuYTLBHYPJZZfWtz8QOPeH3XYfphBDgHZ3sMrgfJdj5vfKTB9Q4bF7D26hWJgy95h/bHB8U8avPv9CuW1hy0FJm8cmlOFfONhizjZIoHJm2H0x939lsHpjzv0cw3VevRzhWzjUF9o5BuP8k2L/QfFKO/b3Tco1m7swaOE2KM50TxPlmBvmAgsn/SR8VBozjKo3iO/GXD7/QKzlxb1mcb8eYftoxyqDyivBtx9N8PySY/9/QzltUW/UKjesoaiuO7RLwwg6PVbf5xDdzwP2caN4GDzkcHiaY9hpqF6lteXlx18rnD7vRyTdw7ZymKYaZi9G72BzQl9kOU1z0tx1aI9L7D5UGP+3AIeyO863H5/At0F5HcO2WbA7lGBfMWKBzl4tGcZsrWFaiz6RYbdQ4NsyyAbBGD6izu0jxYwmx5BSeweFZi86WCua6x/sISpI/tnAbO1UC0L6ZlhILnszqFfGgKR3qM51cg2Hqr36JYEPNnajiCYnYc8Z8WbHQBg/8kceucQtER7pDB92cEbif0Dg/nTBmrfw5dm9AIKF7D5ZILiZkB3pFG97ce6CluyXkM3FmrXQ3SOAMN6NA8mkDbAbHo0FwX03qF4tUH3YA5VW3QnOYrrFu1pLzKLDQAAIABJREFUgeK6RRCUZGYv71B/9xTFmxpyW6P59BTeCJQv9xDOYTiuoNcdfGUAHwiSjCI7JoHmwYTrenKJ/pMzmOsadllCDI7hNAJQHT2Oes1ANWFjqExvx0G+n5J1648LDBOF6ZM1IIHhpEL2ag0/KTAcFzC3LWTdwVc55L5FKLPRH+lzTX+mUVD7DnZRIntxg+7jU+RPr2DvH0G/XSHkGfysgNx3CErBzXMEI5F9fQN3OodoLdwsh77dj/7B/nwKvesJ5pSAaHokf6EvsjGUJ9WCpBCe5MtMMtHhwTH0ze4gK43Mm2j72PGoIdd7hEkJ9APCpIBc7Q7AbrDwswlE14/SWmSGtR+7GuHiBHK1RZiUEDtWi4i2R5hVrBbJM4iO2x4y9kKKuw3CfAqxbwg4k08yejH9bg85nYyy1LErEjisJwQyhVoBXX9gBhMDmIDme52boR9iT2V+qBMB3kt5/ebrIaIs9v0kWOAQ/pOWO3wTyIrxvQOEUviVDyHH7f3Weyyzi/AH9/75r325P3zx3/7G9w34lgPLk++fhkf/5X+Cs8ke//bFz/CjzSPMTYvbvgIA3Cs2uO0rXNZzKOlRqAFSBGz7AifFHk/uzvC943fovcKL7RLdoPFvPvwS26HA1ub4/Pocv3/vBZ7tjnG7r1DlPY4iKypEwHFZ4/VmjuOqweV6hmnZQUkP5yXW2xLTSYsPFmvcNBXaQWNwCo+P7vDzN+fQ2kPKgGXV4Go9xelih8EpOC9glMfV7QxZbrGYNMiUQ2s1jHJY7UvkxmJedNh2GQanEILAyaTGXV3ifLbDly/PcHq6xbYu0O4yLI/3cJFGmuQ9nJeouwxV3mOwClXeQ4mA19dLHC93uFtP4O5ynD6+BQAclzV2fY5tmyMA2N5VULlD8AJF2aN5O8X971zhek25aZZZWKvQbnI8/vAKz764wORiD6Mc6jbD9+9d4vN353BO0FtqJbRx8F7CO0G/Z/SNChFgrURRDNi+maE4bTD0Glk+oK0z5OXAbsYAaEN/6cVii9c3Czgr6T9XXLbW7A/V2qHvKP8NAcgLelcRAJk5mNyi2+WcAS24n0IElJMe+3cTVGd7tHWGyazF9q5CNW/R7OnvDE5ifrxH/YslxIf70Ts7WzSwTqJrM7itoYzYSvZDeoHQKkB7fPL4HZ4+uQc5G7CY17h7M4esLLyNX3BbzaqChQWcwNH9DdbrivtlHKXCKrCaIn1n5J6pvr1CiDUsUAFm0mPYZZCFg99RYgwB6MLCbjmIyxYdhusSaidhTwZgoMRUPGwglYd9UyG/kuh/0KCatNg9nwPLAepNDjujL8eso7dzPiBYSQ+sAGDFgUHea4ZcqXDwyG40faReADKGbXX0K7oFB4xqo+CLGFJ1o9CfWYjSIdQayDz9mLWEOx6Qv8zQ3Ru479cGXrMzU9SKHtpYnwFHX2f2xtDXJwNC7pFdariKkywpPTYowM4c8iuNYeah+uiJmjgg95Bbnge9j1JQyUkenxPw9vcHTH6RoT+KYUMqMqjHlH0FE6B2VDOkdNdhSmompcP6ykHu+YWcvJyJaU5BWbqOk2glQbTeCbRnTCmefK1hJwHdhWWlUFxv+VqhucdU4KD4niS97Y+oGhCeUlkVZa9B0ouZjmVxI8ZQsX5OSWZ/6lBcavot7eHYtPcsineaP19rSmsF5b+p2qM7CqMPTg5UkQhHlrE956RYd8x97449srWMsr84ORblyLoGumNOrLRnB4kyfao8zq6grFQ1GJlGSIzAGeCEjak58ZFkoUGAntYsIF+RGUUgE+dyThylZbiSkyDDjNeTrSLLvRZjQJMInOgIOv5MpFL0SY6VEjay1xnTd7M1xjTfxHJ7DXQnPD664aSSbuN9QnAfknRTWk6K9HNO6OW3h3V3S04+yR5j0JWuyfqKQIbUbKhAsAWZ2nG/HdlYO6E8tV3GuhdFJj9NlIzS6Z4SV9nz/2RPY1iP5jrpjSMjrvpwkM7G64Y+XrLfDB/i5KEr6C9UPRnocZsrgeImjMcl1VHYSjBYah3QLwXKdyFOoGHstmSNSjxH0SdpU1VNn0KUyBAnKWU/40Sb13xNqovJ9pyIydeBYVKFhCvI6EobA6PidctalDBWlSRfqm4C8pVFc6ZHKXVieNXABOUhsqyJYbYFGebkEwV4jQ0TGVNt2RXqCslgpVLGmhUPG9Nfs51DP4v3JRvGsCxBxTyZ4ZsB3bFBedWjPTHIby1cSV8m5ef0/HrNJN0gEMPcKDlm6JAYzy3ltH5kZoOiJBcxwEsO9D0GCejajaywjymxdqIpp5ViDGMKcZmuoPRWdpyIED7EuiIygJTKenijYtBTIFsaCPgBAlrZDHBVNnoyZTswrTV5KaOHMghBkNzbEQjLXcueywR6E8gE/qqEVQq+rx0O0tpUFeL8N1//PkuZPI8pqCiFAr0fYvT+TwDBewghCPgSSE2g1b8XEgTEoJ/3JK0yyWbdN4HlL3svI3MKAL5t8f/28f8Dy//vH99qYJl/8kG495//p5CTAco4ZJnD4+Nb/OTnj/j8cYNuVSC70vAfNwivC7iTAerGjAEbduYRMo/qmUF/FGBPBsjMITiJ4Dk4yt5QUtKfOMheQtX8QrPHA9RKk+GIX4R6z+f0TqB9zEjH7FWG/pR1H9gY6J2E2fCLtHloMf+5Rn0/wM4dFj/XaE85aEyM5hDDMmyU9okAZN/bYH9bwlwZqE6g/aBHHtcz/VKhO6GUsX7o4XMPs1EQAwd1qia7JWMYjTdMd83vAlY/8Fj8XKF+wOvCFfShqYZVFLtHHrNnEt0RZZfNWUB5KbD5wQBzq8cUvwBg9jXoIRro5ZI2+saOKWcDGKZipwFmLdDcdyjfKGQbYPuYjCW/8DlAyDZkXbOVwP6Rw+SlItO6PwzMpAX2H1uULzRnVGc8ZosvA7aPYk0D4hdxyy+pfkkZKBN4OVjzmgPR6m3AMBcx/ZQMpyvJxELw9d0RB6i6Dth8B7H6A+iOOXA2e4FsFdDcE9A7+ov6JV/TL4DiKsCVHEi6AqMkLI/F98mDZXaIYSFkPF3BFN78Jp1PRPkgxgCJ4oYDnd1HPNfFLdAtuO3DnANM4YD23KN6JVFeB2w/TLJDYP+IxfbwHFz1Cw7w6vtMz1UtcPTE4ub7GtIysfT2t4F7f+TRzyT293kObQE0Dx3yd4psaDwPsxce+3scOKVACeEC9g+Ak58E7B7KsXw9BbYUNwHrT8nQL75yuPpX2IVWXPF4pnMse57j4i5g9wHBxzDlfuWrMLKzxTXlSs1Z7PkLiPJieqyCBOp7ZDw3jxXy24DylgxYfU+OSbfVJVk43fA4NRdktl1OJraLg90xOAPAze95PPrfOHhafcKy9XzNbdENxmTI4paDZXigX/KcZWtKSZNMNEmkXR6BhGP9xPoTgsXTvxzQLRS2jySOP7c8P/ckjj8fsD/XaE/EWAKvWtY/3PxAY/GVx/5CorxOsjyJzace02cS+YpAwGwCihUTVwmyDmmw+YaD19VnCmbD7SyvPJpzierSo1skySzrd+r7ARd/TP+cy4HZc4v2OKZgF2JUe9BvxfVU1x77C0WFwgSYP/PoZwKmxig5lQP3LcmJ+zllruvHGpO3lEb2cxHPAfe5uqY8VFom30rHJNaUZiocZaPtUjKJWAu0x7yX+oz+PhG3O1VFFCtPpqinvLK6cmiOFUzD693sAqavWWafgmaYksnvhGzrxwCTdimx+j5YYXPnoVpeX+tPFOZfezjDao5+KlHcOtZy3FeQQ8DsOdlQ3XqYrUO3ZJUEAlDeWIKGPf/enEpUV/QoLp+2uPusgG7IJjtDhkR4MqftkUS2C5i8Yon9MFNojyjFFZ4gZvKmRz/XyDYWzVkGrykjze56rD+rxrRbb1jtIUJAvuZxlzbAbB2GmRoltAloqtjfmDyPIoa02ImCLRja0k8kll80cLlCc07krfoQZaMECO2Rwux5x8G/EJQySsArifqegW6ZtpvtXARwsa+xI1gsLzs0FznMhmxre5ZDtR66ZX2G8AFmbykbrS3aYzK8/UKTZUViZnt0JzlU46BrCzs1GCYKZmtHsDsmigZKXLuTglJXIzFEoJRd7TGcVASehUL51R36Bwuy0pc1hiX9emrTA1rCG14HwnnIzsLOCwJSJWBLhfy2g+wdutMSZkvg4goNs+3RH+UwG87+2ImJvY7xntwSlMmOvkW9btCdT5DdtAy8GSgz9VVGINgzKTYYCbVnSmuSkvrCQO17iMFhOCqhImAzb9eAEBjOZ1D7Ab4yXF+mKJNddSMTK9uBYK3IgMHCHU14r9h3CJk+hOpoSm0hAdnasR4EWjGspjAM+3GRrcsM4Dz8NIese8C6g3x124zr+4bcFCDz5zzEdo8wrSglTQxmBJIieiND3UJMSq4zpbO+n7yaQKcPMcFVHQJ54jK/kVT4vu8xxPdoDaE1QttS5jq+wJNB9I7M5phQLA+psCmYx5ixZkQodWAs4zL+ihT2Vz3SOsMvgeK/5ePvDLC8+Ge/9uX+8OV/9xvfN+BbDiwX37sIf/g//Qf4i59+CLXoIUXAx+c3uGtLrDYVfBD49N4VXm/m2D9b4Hd/7wv8yRcfAZ2C6Fj3MdzrgVbh3/39H+F//Ze/C3Ovxv2jDTZtjrY3eHi0xtMfPYSvPFmmXuG7j9/iy7dn7IPsmLD68MEt7vYlUzjnPcNcZgOZk/gwiw5SeXR3BUTuIW8M3MRjdm+L3as5qvs71C+nCIbsy7/6b/0E//tPvgv0ZCxC5iFrherxBs3TOT76R6/x7McPIK2Au+ggbjIEHaDPWgyNgcpjYtld/PtKwS4cZMdSdFvF1ExJk39KHRVV/KDfGvjKQ28U7Nwhu1IYPuyY0GoFpPE4O9ri+kfnDGoB4CeOCZ+KNSkIgHvUQlyyQ1F4oLuwULMB8usSw5GDbGjed0cW1ZcZmgcO8riD2xpAB5hLfvkP5wPEXkOetUxW7SQZnflAX6mO6auDwOSlxO4jj/zBHvLPZmjux4TO43jTe5vDnwwonuSwk4Bh6aCWPcSLcmQj7CTKcE8d8ksNO4mJn2tKiMw2+vcGQbanjsEtjxqOey8LzD9ZYfN0yfCNTqB5RK9lKFxMLxX0s+7kGFYCkGUqrpiEOc7SPuA55o7Q15ldK8jv7eCeTOEqei2DoHzZfaeBelpyOyugO7eQDbstu2MPP3EoXhuC439Iv6YrefxcSZbLa67b6+hfPCfQGpYOxTtNduqsQ7jMMf1aoj1jd6Ps4sSIZDAPBKDWXJjw6YuMDF1+IzlRUwbYhUfQHnqtka3IZHkTeI1HhivV/9gJfZ/Vc806HS/Q3RtQfW0g+4PH0Wzor+zPLKZPDMFHShjdi9GrqDou2+ecUBmWDuZWQTcxvbYII+vnSg+94+eI/siA6XOB+gEZj/kXwOY7ZEp4zXBCqnlokd2qUSKfmLB8HbB9jHHCR3YYAdD6d3vkLzLYqWeAUSOQbTBW4SQWqXncY/JFxlCimBKq94IsW85rGcAYwNId89jmtwL7DzwWn0c5+UnsCs3IpqVtbO5FFjQHumPHCbItmSqfR+Bl+Z5+mSTXgR2hF1ymbqKsOTJs3TGPaxaZvbRP3gRMXxLoARgTX/MV/Za64WRFtiEYcJGlcbEGJ/lYm3OBbEtmzmwTQ0h/a6oCUi3DZnTNjs/yjRwTQFOoj604ASV7gekLTiCpmsDV5Tj4Nc94PMgwYaysITMSmU3N/szVZxKTl5TQF7ce/VSMHZn9HMhXZI8S8wSQlS0veV8dpqyOSXVICcgHLcbJheSFJRvI64tVGvSHqo5JnP38UAMEgZGpFC5eLzVZvfaU65Z9DBKKHlJpKc8OiizP9K1DfaLQXJD5U230jW5Zl+LyaBlpOWmUrwPqc07sFDcew4TnGCKC/T4cqr9a7md9IZFtGEyTfNfSHTo3izsC9mEqRk+rqfleLp/MnMsFpm8dvAL6KW0kw1Qgv/OwFUNsgmJvJfsuA5pTTrSkh24C6nOJ8iaMbHRQGNlJNQRka4fuiFL2fhqlmTaMKai2ZGiOdGGs3QHICA9V6t+kLN7lgoytPEyaiMBjkABDkqpLG8Y6lVTtk3olVUevprCpUknGz4THMFMobgbU57E3eU95eXFrYUsF1Tr0S84iSxdQXPXYP8jpH105+CxePzFFNlsPENZjWGQxVZc+2cmLGs39ktUuAvA5JzRczkkE4QNspcbJTb23o+9SNRau0vG+FmLKa4DsY2VJzsAe2TrodYP+fDpO1nkjoXc9ZDvAzQpWrfQuVtMw8EevWnoshYAv30uFjZ81vW7ov5wXfG8A5K6Fn+QQvYWbFaxGAeALDabBtpQiKwXhPYazCcx1TS+q9/Rp1h1BYOyzlNtmZCrt6RR61QDWjYA2SMlQHiW53C6Oc4we2Uaxj8sARu9lSIAQOIDWBDhTyE/yQsYkVmEM//Z+YE/dEEwnAPue3DXEahMkNnIY8Nc9Qghjkuyven78/dueCptdhD84/6e/9uX+8NV//xvfN+BbDizLTx+E8//iX6A8anA8rVH3Bh8uVvjF1RmGXuP8eIPLmwVcpzA9qrG7rSAzB2UcymJAP2gMg2JVxW1B6VrucP90jVcvTiA6iaOP7rDdlRh2cUDvBNROwp9GaUMAhAzAKkOYWEr5GtYxyMnAipBVAVVZ+KsCWDBtlHfx+OWyV/Bzy/8HAIYSuiBBELWjvDEF/ARNMBUCmD7aC4jjHn5noOc9wpviwMhWlPEliWF1vkf79YzrU4HAGOCAf5DAbABWGWVjF9GsrT18E2/eNYNyhmMPc0vgoxrBxNBGQe0l7JKhQ3KrkK0Z8DIcURqobgzc8QBzyQF+MEzsTPuVALCrPMxWMlQn8HX5pUZ/4qA3EsOphb7V9Mdu1KHbUgFuaQErWD8RwbKq5Vj1oLpYybASqB9Z6J061B5kMeZchShhlBxkHTHgqLiSqD8iO2vnHnotYaceuiZwsFMO4OVAhk5veI69CXCTQ9CQnYQxBENvBYIhCOuXHvm1GhNL9Z5prtkt6zhUzUFT8go3F36sYuCXMj/P2UqOsj9vAoYp00wJnOj9VQ1ZwNR16mMFCTsqCeRcwfoPs6OELiWxCk8/bH4jUb0N2D8Q6E48Ji8kmguCCa8xAsZsI9CeUlYJUPJnthL5HbB7RBAbdEzxHLiu4jrKKG1kIZMscOAgX7UMyanvcVBUvhVoT8MhIRSICZkc/JdXQHvMY15ehhFE6S1ZrH4RopyQ11HxDvQpnTPwpXolGF5zI2LMP9CeRNYqelXlECcBqMbnBETsGnUlPbrvh/+koBxXxMF9TTDTnmG8JrM1X5+tec10y0NQSkqsFV4guyNzj0DfdpqQ6GcccKsOsS+RzyeZYJKbNWdhZNfbE/aorj4DyiuBYULJpIkdkUFilNulwW0eWdV+Htl1H0FfwfqH7ugg0VMtmf5sHaWOseLC7KLn9yVDdXgth1E+1y2jD93E3tSTqAKIYDExqAlcZitK2UKSi7oQUze5Xfmdx/6hRH4TYo8kQU3qIM3vQpQTE0ABsYbBhbHKxOwO6awAj6srCZzMNowBN2PtRh/7TTeBlR13BKTFDQGf1/QRdxFUJzWM2ROgDKWAaSiF3D1QnGyJDKiuI1gqCIhsFStXNJlLl4kIKgOybRgDa4KkNJFSzJg4KjB2i9pKMPCnDVADPcSqI0vtjBi7RXVHyeP+QqK8DWMy6lAd0mQR6EkeJvTJShvQnGgG40igPWYAEdlogrbEeCWGUg4B+dqhOSWwEYESUN0ysGiIgUaqPwCu9LnzmmE+KZwoATX2HB+AZ3F3SGJlWA63tzlR4zVbrOj3TVJMht74UcqagKMrRAz78pFxdFCdR7+kr3eYSOR3ZCxVF2B27PXUe4vmXg5dk311pcRQSmQ7D7O1sBN1kGt2Pl7fapS6+rgN2W2PfplBN27srUyBQdlmQHdkYDb0xyIcOjD7RTaCOVsq2AmBWn4zIOgE7ggCXaEIHn2gpDSG/nB4QXAoHD2dqrFjyE57XiG/6+BKzd5NIWBnBtldB1foMXRI73r4UkPth7Hv0ms5ekSDEpCdI6No5EGuqmT8TufzXvM7WXVMbhUD3wPv4RYl01kHB1dlEI6VJQzX4aSD6Mm2ql0HXxLYJV/q+9UgSXoaDEEq+oEeyn4gIIw+V9EOBICD5c8UiKNTFYkDpKAXUyuCP2AEhsLFbesHhvYADACSkn8fLFnNLALCBPpSRUgCj4m9TJjAuYM3M3k7AYQEDCNjyZuU4u/OfTPZ9X25bPR//rWY4/9phyWAvxc9ln/PgeW3um5EyoCLh3cotEWhB0xMj+tmAiECqqqDkR5F2aNXCpm20KWFNg5FNqDKe7hswKYu2NFYOUyXNXbrEjfbCdRkQH48oG5zFGUPqTz6OoOeWgyZgVQeWWFRZAO2+wKucEwjVQGITGGWDxgGBV1ZmMyiO+4QvIAuHGyjIUuLEAQ/UzJAJD+fJpsEGfh9KgNUaUd5Chp6DJttDlFaBKmA6MHzXsBPOAK3M09QmT6zucfQa/iZg8g8QsdENsQewlDSo+hLBxdvvsEKBJviCwOgJIYFwaAruG12HoGrxNiPCCfgpw49KA2F8YATcHOCPlcE+MpD9AKh8PT+AYD2cBMxJs0iACHjzak/cgjG0xfTEjgJK8YON1+k7qvABG6Fcd+DAkLuYa517CELUT7LiglkoLdMRS+foydtWFD+HEoH1KzVgGNvoYj9fEFzvf0yyrd0DNFpxNjFxW3kPg6zWIouQVZPc3uCokeO6agEW3YSAP9e52ER4CIDkXxsLLnnMQiKx8SWcUAVtyX19vk8xv/792TBKgLfyLwgBjbBc3sAslZeAcomhiyBUA6KQ6zsSAFPKWDK6xCj5AnSE/MnLXs4hykHgC4/9BsmObAt6VMzvYBTARICiINsrwAVXyPA7SbrJMbjKzxZ08S62gKjJ8+VBDI853FCtRXjxALDspLPJ3qzyni9GIxVBqmHLoVVyTg5mwKv0jkA4uDW8HyzH47rbE8iII1A0hUYwQJ8/D36vhI7OfYWIvoq3eF6l+6wzz4CQNanxH1VBF2pUgMg+JCDGK9JaQ9JrbaM948ItoTHAdjiIL31Gf/JWFMSJOhjjtJEDtAwvj8N/IMgq6pbrlt1PAZAvGZ1TJUMcVLDBkAf0n29SawWE0HhCaBVXF56+BwQLSKjT3AyTMQI9pNnymvKOnXD56XjNgYRYqVIGCc7vKFMfrzPyLivkemDiDJYiTEhlpUHGPsuXRb3U3GbEMTBr6m4HhXBISXGEWA5MnlBCaRCeltwhxMbl+4PuiPrFeI6hMPYm2jz5A0M4/sReMxdBCjJr+3y6E9r+Bnzmv42RH+mMxgTXL3itSUcJz5YGyGgBozewH4qke19BABcXkpEDQKQcTIpMfBjP6SK1RtIx53LZcm9h7QHkCx8oFfN8dgKQfbSl2JMuU3AM+2HHIChSvJmQORkY70WI0OaqjZ4/ONnXwakpGJewIdrMF1bqmewjivi93nghEHQkaELAT6Th05FGw7f4fG1aXlBCo7iAhC0hFOxC9K+N1APgKt0vBdFT6YW47q9kvF6FnBSxs+nGNNUheX2eCMPE7CGYBqIywKPB0G4G8Hu+x7G9PkAAK9lnNDSkIMn2AuAN2oENi7nBD0nEiJw84ArzXvsvIR30TMYS6R93O7UbykGBxhFy58PkNaP8mGvJYRInx9N1tAFJrAOblwGoseR12bsvDSK4DFVdYQ4BlICSKmvNvB97wXqkIkEWUT33nlKoM46psBGBhMhMFE2yV3Tvik5MoyUx4YD6EzXfGJX3/dQJr9l6p0cr5NvgruQZLS/7HUcX/fe30MEw4KJc2OHZfJFysNn9a8Fl++HAP1tQOa39hH+yvH++/SQf/NL/u4+rJW4fHGE17dzPLs+xtvtDC4ISBmwuZ7g+dtj1Lsc4skEt28WkF+W8F6gtwq32wk2dYHmjqOm7HkG7yWwytC/mkAAqDcF+lajbTJo7SFuDYa7HOWXGXyrYQeF7a4EgkB2rRE2GZyVsFuDvBjQtRmGVQG7N+haA/WigLzO4K5zoJeoph1CL1G8NhAbA+w00EuY3MLMO5h3BnhZAoOEv8sRGgUEgfKVRvjLOZlRAcALYKcppxTA9KkGTIDeSohOMsBkpyBXGsM24zVda4hWkqUtUtIA4GsN0UuGpqwN5E6j/CoDnICoNWQrUFwpFG818jsB1UhAB4gtw1eyOwlklGiK3CG/paxM3xgUyxYi9zB3GsUVL73yrQIGAdlKbv9eo3qp6Hm0AnonIfcK5lZD1RKyVigvJbI7Nd7QdS0YYNILmI1gYIrxgAzcjoGBL9k7DbOJvXWNwOwZYt9bLEZvuD61l6heKIKqOLAStYJqJWs8JIBA5hOCQCVbC3YF9lyeCJQ0FjdkT7I7CdmKyMgx6CSFciQJJjyZRt2QGU2SNLPlQK18S6CZyuTzW67D7OIAKhBk6D1rRUY/7podjdkmDk7joLt8GwfhhgM/3QgWsg8C5aUYQZPZgaEYLSs/+iOH/I7rUY3A7IWnJA+IhfCRvWi4buFTB98BPIgBkB19j0Ew5CW/JcjUzaEzUbVM8tWxjzDVbAAYX2vWYgy34T9uW/JYmh1gNvRVpl5D2ZEt03tuqxwIuqWldLK4ZkCHtIivjxLAuE7h+B7VHoBiSj3W+3geIsNVvQ1kG3VkDSXZvSQbtRNex2Yfu/JqDvzNNjKY0f+l92Gs60iSYDnwp+opV6Rskf9PD+EOlRfZJoxS1GxLRm+UakaPstkhTmJwe82O57W443aqLqC84nbmqzACTID7ldJ4i5vAMBfHwbCuI8hNwCFKOKUN0PsQr8uA6jIgX4dxgC8t3+tNDBRx3AbhowQ0HIC0iTUf2Zbe4jIGsIx51NduAAAgAElEQVRsXsXBbr6mPJPXZGTiejKa+cbHCpcoS5zxZ7bzBO1Zur4Dz1cTfbvrgGJFCSIQgdHAdas+INtw2fSucRuTnxog+Mu29KNymw/nWHg+X6wcTO1h9uxCpOTTR98yt0tFj6jqgeTJTMdFDjw3BK5hDJFJID/bBZg9X5tYN9WTpUzLKlbuvUmBgwRa2v+bvfeItW3b07t+Y4wZV9x57xNuvu++WOVb9VyuJMDlJHCDZLCAFlhCogF0oEufpkWDICO6FkZCAgSyMZSNyraebJdfvC/VDSefs/NecaYRaPzHnOvc57ILi0JV13hJR+fsfdaaaY011/jGlwKmkzRi+XxKaIxp+/2EoRqnD41xeWSzZ8IcJpUfWMp8FQafZH8NkzouNkYPpYC8fmLPsIjRM7j9+DdtkLAcLden79zMVj7KLaG86IYxmG482dJhKh/BhUzIBQTJvrULcTFCdm9qeW9dpjGtH6SoygXStR/OmUAEvwETmUMQ8NSPB7O1JLWLQTtyHzetH8ZG0NGDuRT2SLeRaUx1DLSRsdwDW+k39fEz4zFbO4BV00SmEki2sSLDyvOro4T0tsYWBtN6slXcXwx2STYWZQOmE7lwsrGYTRdVAgqzlYRcU1tM5QX0+kCylhuU2bbCLIZ+QcZHRlO6JFXn5b2sRf4q1R5yrsr6oS9SvQaedKz56MGsigyasLqWYMTjqW/XskgUAliPbjoJ2Uk0uumGz3D/elT/3R8imPPCUPZeQrfbv2peY9Re75WsG2EPNcIc9r2Sfadk26eCBWEaozez9zCjtTwnhM9XifS7Sszud97v2EmlBjA9AMU+aEfrHfDrAbDaAb3Qg9X+ea+DZPg8A9r/6R/9z133OZnr5ySvr7/GOQGp/5g/4f8XwPOL/fhCS2Hvf30v/Ed/5df47vIhHkVpOn559ik/3N6nNB3Pqz1K0/G3n76DMZ6jyYZ1k5MnltQ4jss1R/mGv/HoS8zHFfcnC35yecJvvPkx/9u3PoSp5S/84t/mop3y9y7f5HY1omsTvvzgnEnasGwLbqoRV1dTDg/XvDG7ZZI2fPvVQ5QKJNrzK/ce82h9wLrNKZOOdZfxlb0LfnJ3wqIqGOctB+WWTDuuqjGLquBkuubeaElpOnJt+d7NfR5O7vjo8ozEOGZFw9PLfX7l7Ud8dHmG9RqlAtuP58y/fMM7eze83Mx4+Wqfw6MVq23ObFxTtSm/9uAz/sYnH2ASj3OKouhItMfowF5Z8fx2jjGeaptTjhrKrOPmbkKSxqTUVpPeGsqv3gHwxt4dP3p2RlG2ZImj6RLSxPHewRXf/ulbvPXmFcs6Z1sLON8uC8ppzfZ8jJpY3jy74XI1JgTF/mRL5wzL3z5i/5cuOL+cExqDGVnKUYO1hiRxFKllsSrptinHZwsuL2b8+pc/4VufvTP4u90q5fiNW07Gaz769AF7h2t8UKzXBWGRDfJbpp1MSFqDLi3jSc3qxRQ0jI43hO/M8T+3otlkwgpbxS98/TO+/dO3MKXcDNPM0mxTQm3QI4u6yMErxl+6wzpNYjybT+aM3ltQVxn+RQn3avxVjvJKanEOauxNwfj+iu3jGX5qhaW+zdl7447bF3PSeYO9KUQKfNpJeiriXXR7lvfffcVdVXJ1PkPFlNBQepLrROTJWthPdCDfq2luC/TGEI5a8W4eNfhNSnm0xVpZpGhvC/ILQ3O/QzWGkHhU4dAXOfrhFntToDqFn1hO799x/YNjeFhJqmxkwk1p4aU8T7+zob0thiCrdKFpH7SDJFu1slhRfLBg83xKGFuUDpKaGxSzsxXWaapXE0IqE7n0JsHejzrPVYJuBMy6whMmTiTafaptZPaThezP5wE/lUmWSgKh0ahOYw4a3GURr6EjuU3IbxTbBw5TyzZcHghTi75LhDVEvKdmo3ETJ9daCeM5emKoT8Qj6QdGnKHzUxJCA27iIRF2X1kNTpje8FaFPy+kr7MMoKOf2Ev/q14klK80m3csyirMViqXypeG6oEjZJ7kVmSDbuzRtSJbaNqZhDDV9+Lr1hp7YEmvJIypORZ/bHZpsBNZOKofdqhWDwC/uDADYwOwve9J1mpg5AR0qzgZDkPKbHNsyS8T+V2taPekjzRdx37dXBiA8qVme9+TruR19l6LucgGBiu/Fvay2QtMnilsGYOzvISF+RTat2uKnxb4PGBHIb4PcSFkLa93RawR2ouvOZDqpnZPjll38pzeP56uhPksrqS/M4vhUNKLK4sYpt6xNKaRcCndyn63bziKl0ZktzORWG9+rmb0w2JgtAfQWQvD2c52IWj5nfRV+rgw1I1FPl4fBfJbNUilu4lUNblC2NFegm8q+Xd+J8ffnDpGTw3FpYSLEWD2xHH3vhkWAdJ1oDmQ/3MFUhM0letlWgbJd69c0G08h7hI0OwxMOtJvetWTdbCeFUnivFz2f8guw+RFW926bt9z6huoZupnc80wOaBeHZTaRSJTHEY/LrFjRyzCnLuSeXZnsZOzAi8fcKQ+jqoE4yEeCVbWaBp9mTxa3ThqPf1wFTmCwGfLhNvbLaMfaK5HEdQinzpWL4lHZnpRtQUysk+s+VO0pxWgWYmXl6ILHAP+nMGOXa+CIP0tt4TkJ5Wu/7NXhmQNGGQ6vbdrCpAM5eAsa7sA5CEudMWtsea8kaCoTb3DNkyDFJ45QLNXFPeOGyhaWaK0ZWcf7pyLN5L2ftYQsNEBiwsXTPrtymA1LSe+iAh3fh4b1UkW8/6XkJ5I4w2Cuo9w+xxQ7OfDp2fpvY0+0m81wSypcUbken25wHCEKcbh41AvrhoBskuevf8YISlbOcJ2VI8l6ZxQ+9m0ApbGPJbqe9RNtDOU1kAW3WoENB1DB3KJG3WrBr8KBvAr08N2u4Acl8P44sUN0qHvky5ccROzX6u7uPvNjXdgz05rtSQLCrcJJdFl2UtElulCHlknusO1bSEyUjqVWLPpJ/HfvQecPaLKKtqqFDhde9lElnltoMk2YX19A/nBLS+Vi+i+soRYz7nsXzdV/n/CIvEtNkvvBQ2PQm/dvRv/r5v96+++i//wM8NvuDAcv8rJ+Hf/cu/wffuHvDze88B+GR9DECiHWfFii5oFl3JJ7dHfHj8nMYb9tKKV/WMH16c8ZXjc26bEY1N+Bfv/5Dfunyfx9f7fOPeSw7zDT+4ucdxueEw37BxGcu2wAfF9XbMe/tXPF7uk2rPusn44PCS2qa03nBTjTgabXh6t8eD+YKPXx3z6+98ym+/eijyV68IQXFvb0mZdNzWJfO85tVqyv3Zkq/PX/LXn36ZzhnmZc35zQylAm8c3/Lo5SG//v4nfOvx28wnNWXacbGYiKRXQZo65qOKIrHUNuH8ek45aqiqjKLo+OX7j/no5oxtmzItGowK+KB4cbGHNoGDvTVVm1JXmRBpraGc1vKz1Zye3vHq8SH3376ic4bOGpQKGB24uR0zmdZstjm+NfzGV37Cb/7oy+jEozScHi548XKf45Mlb85u+QefvYlSgbfvXfPpoxOwGjWyUueyv+Hq6R5qZAVgTjrcJiWdNtjrkux4S/dsTPHWCq1lHLdtgnMa32lM6rFL8caevnnDxdWMJLMURYdRgdWmEAmuguCk8kNZLeCpkYnC6MEarT3bTSGy6tZg24T5fMvdxRSVO9lGUOwdrllvCpzVaBNwG2FOZ/tbVncjAS2tJjvdCkgHqDXFccXhdMPlYkK7ySimDc2LMey1JJkj+WiM/caabpOJ3FoHXGtgmcC842tvveSjz+5LWNPLQlJ8Dxv0pyXtWYfOHeEm5/SDS25XI9oqJWwSdB09qCagtgZ91BAucnwf3lQLYPAjD5kX3+rGwHEjtSHLhDByJCOLrRPMTYI/adGXmciSjazOq07BzFL+JJfk5X071IQUpxvql2P0YQPPS9xRSzFpaV6N5PhKL/7YRKTT2bWhPZM0ZjfymHlL/v0RzZHHjT1mZUAH3NySxHAsAugeDO5ZkttEKk5WwoLbfQGW+XlCNxPPpc/A36/xnSG5SqNMK5Dfato9j3m4pTsvY6hWQDUi/TYLqUjxY0d6k5CsxXvq9zuoDaoT6XdfuZJdGUmM9or83FC/2aJqg9nqweMWlAQAhUzGZci9PCey58JiikdVgpoCzZkVgLwWiVm6itUkaZ+q7MVHO/HorVzn4pWAx15y2t4TL7QrYsfuWlGfeopzjWn71GNFN/Oxa1eSm/HgRiHKXtUgD0y2Akh8xsCWtAeyPZFSi182i1Uh+ZXe9fXmAp5M7AdOaoUt5LkSxuQpXwkALS40xY34RO0ohlClIsuWiagaQIpPA+MXAhhM3UtkoTqT7TWHIqvsq1ZcLmCoPwefRTAVg4Rctvt+6hOtXc5Q8eIigMiWEi7Vg2UQr6xpFOkyhg9Fv2ifANzsK7p5DFBKBWCVF1FqrQW0mRj6NH7hWbynhz7abCne1aDFD+xTAWFB7cKZepl0L6fu/bhJJdckaAGN7VQSu/O7MAAtCXwRr64dyTVKNoHNA+mGFXmhGkKR7ETApCvkGpYXAm6TrTCJPlHiXS2JSaQC5nrVoctFglxcCwgMRpGuxDdt6jBUq/T1Kb2/tQ9raqcSQpVswhC0ozupHAEJENrc16SRVU5iEFI7k4oU0wS6kR6ul+nked0ojvFY85JU8RiqQDsWMFtei7+07UObppp0G/2uKwGyfeiPCj07H7ClJqk8SR2o92TQJLUkUaebCF6jLFlHuWyfVNzLl3v/sEsFZGq789I2Mz2E7fTjV/lAspWQHdMKCLelFqa5DZjKY8d6WMQIEVwLEwi+ZxOR8J9+Oz5VpGuHHUldyTA2nCgT+goTkW3L+bczQ7oWhld+xyD5TSoJ62n3Yspv5USOnYrnFcBnO2a4lyX310nqbhTpxoKT8B4QMCq1LnoIH/Ix5Ed3IvH1uZE0Wy8sbzDC9oVEE1JNsmgIqcHlhmTVCENrPW6So7fdcL2DigAy0YP8VTknYT5VK4Cus+KVBAgi2R2AJyI9HeSzSn2uixOtd+xiXzni/Y6B/Nn6kf5nGxnFstixr0DopOcSraXnEuh9liQxNChNCJGFVUZ/3n/ZP35Watvv/x/18P6LXzeSnoRfO/w3ft+3+1fP/6s/8HODLziwHH9wL5z8h/8pe+9J32IICus1RgXWEQisb0aojeFLX3/O7/zoAemx6NPS1PFgvuCnn95jfLhl82oMpaOcNhRZh/Wa+sd7dCcdo3lF1wmg0CZgPi2w79T4ThI4pNMRgtNSVfKqkIlkUPKzV4ynNdvHM7IHG0KAZpWjEk/wivRlhn3QCCujkUln7iXg5q0KbzUnR0vOn+5DGjA3wlCpTUJ2byNsmlPglfQOnpeE0lM8TbGjgH9YE7xiNGlo6hS7Sgc/JyApua2CeUeSOexFKbLKkxrvFNoEbGMopw3VsqD8LKP5oKL4UUlz6IWZeVDh7jJIgzAuVmNGluxHYoKr36/RSSBc5Jh7W8KjsSTJaggmyMRfB0bvLdh8Oo8eU0gnrXQzaqDVkDuyFxnu7Rpe5bixp3iZ0ByIyb4PANLjDvWqwOeeUHjSm4Ru35LeJigbw1zOFdUvbglOYZ4X6FYmunq/xV/lhMKRXSWYraI+iRKttaI9i+DktCFsZDWwuEiG8BzlYPRCcfd1i9kIOHMjTyg9ZmkoLqWLzBtJUJ080bRz6KYenwaKC0N97CWMKJWuxexFKpUzE6mRqR46zEqDhuxW0e7FAI7Y7zj6NJWAIC0sGsD4SUI3DtixMGZJBc2RXOe97yXUJ0CA5sBLQNNcVoSLczmHbh5Q3U5y2xzJ88bPYHtP0bzTMP4opz4OFBcSstLsxVAcB92+pXiZYouAnTuShWF0rli97xg9MVT3JJFTOVi/bxk9TujmkjArwUsyuctvFdWZXJ/iSrG9J3LE/FrSR92oDxkSSawwAZ7JE832fsBlgclTjakDy3dle8FAfSJJp7pVpBtJFbWFYvWegNPJE836TallSSITtT2T+2d5rmj35T0dnSvWbwbKVzL5ze9kUlcfCIvSsye6he19YZN8KmCiZ0g2D/tJlshyXSbVLLZU1IeKdi6gxCe7MTf7BG6/RpQpQ+8v7f2uppbJ4va+1PtoJyFGzYFsp4o9kKYV8Lb/I7j5OZg8UjQHO0mt3GxFXmhLNbBJ41ee1Zsal+3kwqMLz/ZE0js393c+y6Ri6Eb0qbBn7R5kdwI2yqvA6i0VWTIBgfldBCpX8pz8Vp4zeingoDpV7H3sufmaJl3JORSXAiDya5Ei98E+5ZXUmZgmsH5DMftMUk0nL6VmJNkKkCuv5P1wqaSIaicgNFv0E1u5HD6TSbS2MhbXD+XeOnneSzAV1aGcT74K3L2vmT6W4KDiMrC9pyiuRI67uS81R+1UDUmo2sUxvnBsjwzFnUgxb7+UMDoXUGI68YXaPHZCLoRV023sZbwVKejmTJOtRG7cM0zNTMceVQaQ0o2kr7DZ03QjAXqja4epA7dfSiVUhxicFN/jbC2ga/lWQrYMFLeOzT2DywX49fLqfOlpx5riTvx46/sJ0+cWnyhWDw3ZKtDsCdOWL4Rl68bSlejTKLW+dWyPk0HKbQs5R9MJIxY0ZJF9BJEHN3MtLJ1HwnMm4mHsxlIbND536DawPUkYn9voqRXgYUtNunLUhyYCQc3owmJLTTvRA7hUXupQ+o5KFEPAT7aM466VOpbt/QJTx9qZi45mX1jM3leZVI7qOEM5kRU3+4n4SRupiHGFJl12NIeZsJ/LDjtO8KkmXVvqo1Sk6y+3NEelVJ8cpmQLCf55vRqlfFlDlKP6RGOqjvp0RLYQibDPDK7Q2FJTXrVImrYkswajqU4yiusOs+3oZhmmE3lou5dRXFRU90t0lPLm1zXtfk5+XbN9OKJ8UcnPVxUhNbR7OcWrDXaeY0vpgsxvGuwkJblrqO+NKF9s6PYKkk0nAC8zmG0nKa+THJ8ZkfhG5qzZzyhfbvB5IvUly3bwYyaLCpTCTXORoTrxBbrcCLjftBIYZP0Q3qPrDjfO0bVFt3YAjD5Ldj93DjcrMFcrSZsdFajOSnhP3Uni67qW3zctYZSjqpYQwaPq5axpIuE9RYZabQWwpRKqo7rIBLbd5wN6jCYUOWpTCQgtc/GGbitUlu28j6/3Ur7+szGEpkVlqQTvJHKtQgR1Kk0JTStAMs+h2zGXwcVey7bdpcFGuevnMMfrfZexSuT3lLr+01A38s+A5R/ex/TLZ+Gf+0t/nkxbzrdTvnn0lP/1t77J8Zev+JXTR/zo7ox5XnHbjPj0xRFffeMVB/mGp+t9LlcTnNMY49Hac2+64sVyxoP5glHSclOP+fff+i3+s2/9K2Rlx3TUoFTgg/1L3h5d878//wpFYrndlmgVWD+aEw5aCQcqW6w1pImjzDqKxPL4+SF/5us/5NuXD7FO0/2tQ7o/uuLDB8+5rsd8/PiUB/dveHk5Z29vw4fHL7hsJnz/J29w/OCOm7sJf+ztR/zo6pR/572/x1/+9I+Sp5ZXr/b4U1/7Mb/50w+4d7zgajmmrVJOTxbcLMc8PLzj2fUeXZ2wt79h+dN9/uQ//12+e/WARHuulmNGRUsIamDb1E3G/N1b7p7sMX6wQqtAYhz13znC/PIt60VJ8jxHv7/GWoP5rIT3N0xGNeOs42YzYnM9IrtI+E/+9f+Jv/jRn6BtExTgrHhI3z66oUw6PIof/OAtvvGNx/zgu2+Jr/LBFq0DXZuglLBz771xwaffe0D51oq9UcWLT44pz9YY4wlB0dQp41FDYjyNNbTf26N7V26Axwcr7v7+MenPLaiqjA/feIb1hvPthFfPDnj3nXMS5Vl3GRffORUQGFkhksD4/or1Xcm7b1zy9GoPHo2xZy3ltMYYYTOnk4pR3nK1mPDw8I55VvHtn7zNV99/zk+en8JVTnJvy5tHt3x2fsh41DAtGu62JXWViZz2QqJEQ+EoHme89yc+4ycvTpn8rRH1b6ywnWFvJpqoxbpgXLZs64w/8uA5v/3oTVmkeJxjp4GD9284naz45DffwWdStXH88I6bHx3iJh5VWuZ7W+6uJuAVf/znfszf/M5XSecNqIB3BvNZgX27RumAv8rRjUa/sSH5aMIf/5f/AX/9N38Be9KiU4/SAfNJSfr1JdtlIezvyHJ0uOLq40NJQ66lmgcv8l3OGvlOuc4lRCPznL19zd16RH1ZcvTmHVfP9oQ9BsLUMppXNJ/ORFZ4Gn1CTkX5aWQ0jyzlYUWSONZPZwMwTY5rumUGQUnH7U0piyAKVOLJHhXYiceVngfvXvFHj5/wP3/rm+QX0i/ZfmOLelLS7Tmya/HgBhNoThx/5he/z//5f32IelCRFx3uO3Pe+Y1H/Ph7b/LhL3zCt3/4DnqrCXkYApaKsw3towm+DLKI8SqF9zcY42kfTdCteGrLhyu21yMO7i2omgz7U5Fq+1SqblwmTKr6cIH7wZxu5lGnNeazkvt/7AWPnh4z+jgjvwncflMWRWSiGEjPtnSXJWHkGP8koz7xpG9usJ9OsIcdsx9krN5z5NdG6mAOO/CKP/9Lf4+/8nd/SWqbTiqSH0wof/mK9XcPpVf3xHH/S5dcr8Z0jyb4TOpVfMaQNpxs1SAt7cNwdCthWuq0If+oHIBze2LBQ/EipZsIyGruWcrHKeoXFmyvRhQvUua/fMHNd44HuWh1z5EuNT4Vv2+7FyLzGBg/jbUiHpZf7Sgfp/g/ssJ/PKG4jmD7nh8CrIIOhNOGMh6XHcvkXwJKRKKc3Sqab1SU35bFuXYuizh2JExjc+jxpWf244TlNzomv5NiSxi9DKzekWszfqYHtjCkDEC8OZAKnPGjhHYuC0QHP1Ds/1vPuPhf3hh6TIOG8KsLmt+Zka6EQVM9Uxw9uCgB3pOnsPggELJAeifJ1q7cBXmlGyUMp4kS12+uUN+dkt8ySI61Fb92dSqLhPatmvnfKUQOGtnabiqAsriUjtee8bVjkVvvf0/TTWK4UJTPClMktRvNn12g/6+9CAhlzrJ4XxZRRi9lm33Sb1IJW67jtWinapCCmlaY7GwRqI+FXVdB5Mw+UTSH8h6MXkSWrxZgWp0qJk+kZmbyROTS6UrYvWwVYpiS7LM6EhDes3g9A9svFAWzC8aaP7JU+yKH3t4T6a0t5PoIWwvzTzzNntSNTF56eS8yYb+Dgm4q52PavtM2UNx4XKaGlNvqUBQ4ysLo2lHPDcVCOjrrfc343LJ4Ox182srD5Z9uePg/iny+mZmB4dRtYHssixsA6/uG8tqTLRx3X0pZftnx4P+QfW7vKWafycLK6MKSn2/ZvDOhmco+N6cJ06ct1XFKUnuamaG4cxDg4hcTjr7vyBYCkG2umD2pqY4zylcNz//4iLO/29JNDPmtpNFuTyVBV3fSGWrLBFco0qUjWbcCbruAbryk2K46bJnQTbTIXp2E+7TTlHRtMbXFlQm6cbu/RyKfbecpo8dLuqMRtjBki1a6PG8r6rMx+U1DfVxQnG+xsxxT2UE6q+sO1Qg76YsEXXU732Ivj0WY+JAl6FUtNSMXS/x8JEm2iw0hS3F7I8zddtel2VlCmYFS6JsVfn8i49w5VNNJ5UjbQWJQ28j8+SDMpvsZ0JYmQyrt8OjZzaaFNCXUDaGuUUUhoM8YAZXb6vNSV+dQWfa7S2dBmM9/XI/la48vfN1IehJ+7eDP/b5v969e/Nd/4OcGX3BgOfrSvfC1/+Lfo0gsL67n/PzD5/zk8gTnNHlmKbMO5zWbOiNJHKurMbOjDU2b4N0ut8g2CffPbjm/mXF6sOTh9I7vvnhAvcxJRx1J6piUDZcXM7JRR5o6mjpFqUBRttR1SpJ4qruCdNxxMN/gvGa1zSnzjruXM0lvrRLSvRr/fET+9or3jq75/u88pJg3NC9HhKklH7cSFKQCVZXhW0M+bmURqklQJuCWmXQeTizBKvJZg9aB9rMp/lgm+klqaRaF6PEzj75LyR5u8D+e0B468b85hSqdpNCuU1RpSV7kwnLsWVABlXpYpWQnW5qbEl1pijdXbG9G8vqRJfusoD0QH1ff4alahTqtCU7hG0Nyk0olifHko47m5YjkuCbNLNXzCeqgJTjpxnS1fJkVs4ZJ2XD1fI6ymmSpGX/tlsWTOWHswCrefueCp5f7sp9VCqVjNKvl+ACzNOJ3AznnVsKFAGF5TRz/EaDoyqBOavxNjllr3FlL+jTDTgQMuP0OvUwGf5sv47UMkF6kklZ4rxFG56XIXUMq3sZwr8ZvEtmvlveFAGqdSKJqIR62HqyowpG8yqRP8U66D3vvpdsmqE2COmwwT0X+6tOAbjQ+9yivmL1zx/KTPQEfpXSW+kw8dd1EfHqmks9B+u6K+sU4pggr0ltDt++EyQ4qdi4KQE1vEukU3RrShaabxW0XIlu1c0dyF6VaMdnWTh3Fq4Ru7vG5BEv5NODmjuw8ASUyQu0kUKebBvp0yL7H0icBP7cUTzO6iUd3vbQyDKDE7lmyiwQ7iWEwlYQSyWRZukGbA49pZKLXxXoYOxGQlqwV7f6u41OkgrH6ZhZltQPQiGFCkRk0jZyDnTuSlZGkWwfZUuOyGDbTRQnsAtZveDmeQ49PoTzXkoQMg8Q0v9FU9x3prSbdKNpZGPphe+9aiKy/pIQSU1/lvOoT8Sb2KcumEfY22cj7PnqhpJs0Ed+gqWF7z1Nc6SE8pwciIJNdOwp0c6nF6X1tdiTjqq9RGXyFnUxm272dhBN20kM7EtZy86YnXWpGL6VmJF1DdSxewfowDEDP5wyBT71sVfkIXibxPcjleLJlH1YhoDXZSsVJz9z2nZlArEEQAKTjMfssSiermNQb2KWHhhjcZHZ/v14B099Tmn1hrAG6aGXSTkBdfq3i+yHn1Hv8lI8S0WR37Yf3ogqD/FKSjgVQiTQ2etstGQ0AACAASURBVK7b2FNZi/w0qSW5Od0IKGv21HDMffiTnch5mlZAWu+PbGcxLClKOnupZrIVcGXa6AVcB7qZwlSvyVCN/D4YqI4V4xdhAEPpRlh7E+e19bGAKtj5QNM1O3ll+tp1iL7CpNr5FnUH9f7Oi9h3myZVZH5jmnQv8/1conEj27Zl76+UcVrcerqRSCH7ceLynSRaOShvHdW+9Db3wUI9oEsrj43Jrzqm9gajaObyvmcrCfhppxpvFGnl6Uo9+AmLa0c3NZjGU++ZoepFt2EYYz5VknAbGfVdKFOIfkFh29ON1KWI6sBT7xuylQQjtXNDUsm5JnUYzteWkhBbXAmT2gN6kAArgHQp/sRubGK6riKppcolJGqoNUm2Hm9UvJ+rXWdllKeaxkvoUeOlZqV22MLs6lG6nVxSUpkDrjTCLnoGZjloMLUbpKxDCm0qgUrKxdRdo0kX9ZAwG1KN2Vp8ogmZHsCfG2U7kJdpVOslvbex8T4QYlJz+Bwg9HkiwUOALxIJBYKh3sQXKbrupHOyc4OcNcS0XEmnFV9j6IN1NPJc5wlZit5UQzJsSMwAAiWxVmpLlHU79nNTCdNZZOKx7CWwfWBQ74GEHXsZK1NIDGEjchWVZzuprXME74c+S6kl0Z9nJ/3PgNXXH7+bDPZ3ebyOU5RS/3RIYf8ZsPzD+dj/ykn4j/+HXwXgb158iWnW8Hw5Qyu4N12y6TKeXe/xp9/9Cd+7uc8obTlfTZmXNcs652SyprZRk689ZdLx4+dnaONIEs/JbM3L2xlH87WkxLYpzmumRUPVJSxWIw7mG6o2paoy9mdbFuuCLHPcmy95dH5ICIrpRD6QmypD64AxnrP5ipd3M9om5a3Ta17czqlXOe++ecGz6z2UEsZuNq2wXrNZlKRlF3tp5cNYr3PSsqPIO5ZXYx48FMZTmYCrE95984LH54eDNzB4TYDI8kFRdDinaZqU6bim6RLqTUYxbjHG09SpJOWqgLda2KfrKb/y3md8/+IeqXHcXk94cO+WF58cU5xu6NoE2xjSsmMyami6hBCU/L5OOD5dcPXZAclRhfcabyV4KCss9SoHqzh744ZXzw4AxE/ZJpjEk+Ud28sxpB5lAmnZ0VUpSW7p6gTds08vCwmWaQ2hSlAjy2RWsboayxeyU6jcsX+wlo7SRY4eS7+oTj1ukZEfVrRVSlpY2mWOLiy+M9JZqiRMRo8tfitAMTuosa0RcKthfLJhczkSn+JBw/HhivPHB2ACxb7cFLvO4BojQHhRQqtlAcIraDV7ZysWj/bABIIOpPsN3W2O2WtFbl16dC1f/m4k544OEqwy6wiVwUw7tPb4ZyP8SUvoNDQiodVbTchkgYH9dnh+uCjwY4dqxaNn5wJyVeLxqxRVOvSVgGhfesYnG6onU5kwnm3xj8eEB7Jo0D6X2bTZCmvoCwHoyoIvAtnJlu7FmHDQwl0qXZYbIxPuB62A570Wv0rREQT7uRXvXylAU60S8UmdNahX+TABNRGsh4MOFikh33kww0mDrxL02kgqbqdIV9K56vMwgEYfg42yhYTWJDcJdk++RM20g+dlrMcIuH2LuUlxM4tZJkMFR0ikw1S10Y9ZWvRFjptZ8lcpzRstOnNwmYtseuJJbyQwJaQSNKO8SKXNVkvQYwfd3GMqLb7KiVQoJBUiz68R+bZDAKeF9n4LMYW6OfDkt8KMtUcOvdWDP7NPNa7uWSaPEqoTP4Tg9I/JE8X2gYCMdCULAT2DmmwjE+QEUGongKy4UtJ7u1WxK1UAYH4nHZrZUg19o+s3JAlYWZFmlxeabioVLpJkLNfANNAcyaQ9Xckixvi5YnsmwLqv1BG/nfR0SgCMgNVuItesnTGkzIJUAuV3inYqgNlnMWgmAkwd60H6h9RfyPZNJQBY2VjrEv2MvTw5aIY6Gd2J1zJbqGFxQls5HtPyuTobSTeN20xir2UNxY1ncxY/G/E9yu8EQCZbIru922+2FC9kfSDb6H2h2SoCskwJwG4FkGcxQbc5iONwDKNzkUFLIFPcZqyA6Rc3moModU5EttwDVp8I+5ls5LXpRuYg/faK6xD7dXcMbFJJt2S6DXK8SkBMtgoD+BQwpHYsYi59nr2stF8Q6DtFTQv5nScokZr36cI+UZTXnupID2NHd7JP04YdKLeyj57hSxoB2X2FSb/QFBI5xx749N4+W8Q+3Cgr70pFceeHyhfTBeq5JtsI2OtG4jns025tqQbva9/X2Y6lvsUnSqTBN+Ln7MYia/apIt1GoFoFkkZYwqQOuJQhYbVnhnvgmlZhqEoxlaebGLqxprhxwzXuE3CBz4FYH2tH5IOy83DKeBU/ZTeW1FlbSEKsqWKYTQwBkooUSbztpka8lx4IATs2ZAsbq73UAIjTdUySDXE/G5GnDvU8pl+YjOmx1pNsI6vow5Dy2gNPXcWQn0SjW4cvE3S1k8CGWJkSjEK3TsZbH8qTJWjr0dsWN80FgLogUleQOpFYaRL6qpLOfQ5cqihvxXmRucb99qAtZMkQ8tNvqwehaMSnGYLIahtJlh08mD1QhJhaq3bAs25EYtunw6YiTQ7bGlXk8u8m3jiDF6Da14b0Hsv+PEPYgddhELz2f6+xtv/Ixz8VHsvj8Gt7/x8Ay6v/5g/83OALDixHX7oX/tR/9+d4tZmyrnOOp2uqLuX6bkKSOgm72b9j0RScv9pjsr+lrjLsNhEmDmSi3WreeO+Sl9dzbJXw7lsXfPrxGd/8+qd858kbuGWKnnb4xqBSz3RWsVqWJKkDFei2mfglo8+xmDXCdo5bXGfwVSKSyr2KzY3Uk+iNER+hh3y/HibX5lUuE9cksH+04u7pHkHF9MeRg1aT7dd4pzGJwz6e4KZOujNrM3QlEoCJJRu1NNclqtXREySsG1ZqNZRVuJGXfr5SJr+6VYTTBvO8wI68pKey8xemkxZ7WRCmMsHWd6n0B+55ggoStpIFko3G3tuFpKDAThzJ2uBKAUJh5AToRFBUPEtpjp2kZjoJ2ghaJu7S/xZgakmfZ7T7LoaneHRl6Hu5UFBcaqpTTygk0RMFdibJqMpqCVspPPml9HvV9zrxK76Sn7uZePtU2CV9KqewM8focUJzKAyLHckKvR3HlE4rxzt/+47qOwc0D1uSq5SkkvRGKbNn6JBTPkr/grw3+a2iOpFr42dW0j7PNe1cZHDpcnee/aS+PfAkG5lw98xet+8Jqad8looXJg809yzpZWRHM5HSZXcyAajebzBXWQy3UNiJj+wpA7OXRiYx2Qiblq60+CVPW/InOcUVbB6GnRwvDcNELtmqgSVs5wIagpJk0NnvJLRTuR7dRLpbszvZVy831a10eYaUWNnSy8CEwfNpwM49o6dGJnZ9R6fesTLVmfgsfQLtvtz3dMsQMJOuZRJlx4H2SD7b5ZN0AAXNYWStS3mtaZR4Tj00h8I+djNhWstLxfqNQH4jcsxkrckWck6uDORXmuYgUF4o7DiyXkqSYQlSDQMCBOojAUHVqZyrqSJbU/THL+dZH0oqaDfdMWc9uyMTRQFG6VrASQ9gsoUwdeMXwiK5XCb39YEaAEq2ir2iuTDE3VTY374qRwXoRhJyki1j0Mx4B6h8IvvpQz16z119uOuhTdeRxWrlOMsrAcuuEFDrMhhH2WN/XroRkOJTAS+b+4ryXH43euVZP9Tkd0HkiVsJmHGZeEbL8/i6haSR6gbafchud8fTHOxYYPHxwfRJBB1qd7/xmcg8mwMBKeMXUo2xfrj7DPV+TFfC5Jln/UAzOhd2Mb/12JESZu+5bCddhgEoqsiEtXORzXZTuSeXV57VG5ryIt6Hyh04sKVIJF2hYk+k9Bsm9Q5oppvoR0wYQm9e78YNRknC6FaARXWsSDaBfBnZxVTCevqkVRf9neWlSDG7iaSkuky2Y1phEruRfIa7idwT8oUfJKBF9DZnay/bL9TgEXWpolg4upEeQF3SxICXIEDEG6k8cblMmG2h0U62WdyJt9MnuxRjCV0RVrEbyWJLvvI0U3ldDyp9Igzx5KVIOMtrh8vl+aYLkS0Tv6by8ne29rFGI557Fr9TRgpvFPlK2D3lA+1UklN92veYBrpSvJf1oagn8kXP9KmhK9Nlcq1knwKK0nVfiyIn2c4TdCsLCunaDaE3KgS6SYKpHN0sGUJxdBdo9iQsR3deOi4zSVXtZaBBC9Bsp0bqb5YtzWEuHszLliYG6WQLG1lLN3Ra2pEhW3S0eyn5ZU17UJAuW7pZJimsW0u7n6FbT7qWhNFunpGsO9woIb/YUp+OBCz2FSsh4HMTVSUip0XL94xuHWbT0h6PSTbiGZVeTJG+uiKJQWgOvHRG6s4N4M+NM8y2kz7b3KC3LSGVv32RCePYgzwXCHkEiVHG6ke5qJT8a4Ax+hl9kaHrVn5u2p3PMfZMhiJHb2tCngroS8yuvsQ6Qp6JPzMxUkESgjCWSgkz2Yf99MC0D/XRaldzArLfn5Wivgb0+uAdFcOAQg9A+xRY2LGVfQos/MPAcUi3jXPw+LNS6ncP93n9Ef2YX/xU2H8GLP/QPor374ev/MW/gPOaSdGwqnO22xxXJ4zmFXWVsTffsK1z2jrBt8JWEBQ6dfg6QRfCEIUqwUw7XGXQq4Sw3wkTtsgFWI0tKvr58EoAqQ5DAA+VQY1F7krmoZMPpOo0oXBD2inLVFISNTsZpge8kj7I3Am7EgNt/MwKCFxr3CyySBuNeWeN+3SyA4UTJ+meffKkgpB6keRNRMLXH4fc3OIqnRNGJeR++F0/YVKxziKkAeLzdF8zEIGDWesdWxaIEkdAx7S+wqE6LceUBELmMWsz9M71skJXCPviSkFdQ19kvD4hiSE2L1OZKAeRSJqtVEv4bCcRszOHbmSf/QQ8ROAKIkf0SawNqBR27kkWOsrphHXxmbAjfdG9ywEV2TZeW03vUxT7yYeJ0rHIyvhMALErZDtmuwvgsZPXPnuRheknsd1U5Ky6FeBvtpr8Rg3sQj9ZdWV/fLIf5aLfKyZmdpPX2LfosdKdTObsKAysiKnUwNSZOjI9QY6nm8o1CYlcb4hgxkQ5YivjQYCqXKv+uvWSxH5xQHc7UOhT4gKEot0PsV80sjNhJ1Pr99GzIT2b0V+rHjz2HXA+ZZA+9p2fwjB8nn3oKxN64NkzGsRjK64E+PQpoMOCgNuxUP216NmrZCv77msRRucChPqFhIGxcrtj6LeXxpTMYftxf+laJoTtVPbZh8YM/47jcCiRV7vjGtix1z7XupPz6SZy/dOVorwUMGiL2DXabyeCKZEox+31t614TV2xG8Y6jieQ/xvOVUepc7cbv8P74HcMUC811DHNUoUds6BiL9/Qx/bax6dPG+0lh0Cc+MpkHoRFJAJGFyWkzb6iuJFxH/TueFwpwLed71JGe8+dSyX4qH+PtZXJfT8pH65FtxvHPUNpWnkdyHHYQu5zPSupYw9lL7ntgeWwQBBlnL1H8fVx1DN3vdTTlhJe00szm5kwZGn00fkkevVyAajdSACXacPuGiPXtAdx/bjsuy4hJpH29yS/+4yZTl6XVsLG9emoPdMUtADM/nc2l6TSvhezH7P9NZbPeZSlvj5BVQqXQrYRKanpekmtMIPp+vPJpS52KQoTFD8Tdje2pF4iRPmpHz5LydYPEtD+XtuPrT60p/9333UpgW67a9knLg+fkW43iINWQydnnxQMoKz0U74OnpULw7gZKoucfGakx1IYIxf7J/vfh0RjGjeAyd47p5wkn+rYd9n3VvafMZHbq8G3qOxuH/35aBuloH1oUZwneLNbhAmJEnBYJnI8r9WBKB/Ps5eeRkauT1t1uVR02HFKumzxyecXd/pE1v49DFoNEtrXWcoeAPbMoE9N7MSUvsgdU+lxo0x+D+KJ7M/NBfl3HIfDNnv2MspXVS8FjeO0l7p+Liinr/Iweidl7fsovZefjZa/Y7iS7MsI89g/XvdIGj0AU/ownD4dtmceQbbTV4P8zKNPce2B5PCS10HdIIn1n/v/z1WIeA+vAemfffwTYZB4nOG1oKB/0scfCmCZHIdf3fvXft+3+9eu/9If+LkBJH/QB/D/5lEkln/73b/Px9sTfuvJe7x9eMOHbz3jsp3ysppR2ZSnl/v82Q8+4vu39/lw/xnfunybB5MF3395n7OzGzZtxtlkRaYth/mGv/Hpl9i7t+Dy5Zxf/NJTHi/3cV4zL2o+fnxKPmn42tkrWp/w0U8eMj2saNqED969pLIpnzw/5vBgzeFow11dclBuqWzK8+s5755c8/HLE0bjmofzBT/65D7JyPLw+Ja7rcw2XFCsgdOjJZlxLKqCUd5yvRiT6ECWyYf6w9PnnB/OeHY358vHF3z/2QNOD5a8+OkxX/3wMT98co9ffu8Rt/WIdZdxvRzTbjOChX/pl77Ht16+RZ5aRmnH06s9ulUu8skImH/hvSd8+wfvkB7Ucs8z4iHNjiu+evqKR3cHVE3G/J2KdZ2zeTUeWN8kcThrKPOO7V3Jn/zwB/zm73wgTFRmcXcTOG44PlpycTGHTUJxuhGf6E9nHPz8JUoFzs/3KKf1IKOllmoGksDx/Ts6a1g8m5Mdb8kST9skEiLzbISbW+klLDvsbUEya3E3OclRhVIwLVo6Z9hcjkBB+uW1dEzWBlaJdBseO2Gpr1LcxGHmLSZxdM/H+MKjSgebhPROM/q5WxZ3I0zq6VrDO2++4qfPTlEq8ODkjovFhGaVo6cN9qbk7W++5JNnx4ROc3C6pOlS6jqVasCg4CrHjx2+UIyeJDRfrzAf1GxeTZmdrVg9m0mPY+ahsLjzUlbOG0W35zh974rltqC9LVGZh7sUfdjiKkke1pmDqxy77zBrQ/q1JfXTqdRMnHWoJKBuU3SjsCcdJneopwX22DN5e0FnDfWLMclxzYdvPuW3//aXyW4V03/hnFfPDlCZwyWBcJnTvrsR2fN1TijdMCFFwenZHVcfHeNLjxshibw3gp7DyKE2RnyfaRBmOwCJMInbtyzkjuRCnq/e2mCbBH2V4cq4qFJIMA5BSXfmXYZpFO9+8yk/fXw2dFC6MgyS0nDQwipl/9cvuXu1j75KMZWiPXboSmPOKuxVAVNL2Bp0rcnfXNN9OmX7fgc6kJxnKGD1DnSHvYdFvI4hlbETrEbfJVLnArLwoUCXFnUu/tzsTrP5+QZuM9KzLfb5CD/ypLcGO/OYtRYwFxmo4lKxvS9VIjZKZ+3MYVYGHytLiueiCiheGrqZsI/NL1YkH41xZaB66Bk9MWy+3FJ+mslCRx6oD2R8NX1oUhJQlSa7k5RjlwfCyFE+iYnECgl3uksJaaB8YahOxWtpOmFL7UiYflNLgu/2LUvxIqG+7xg9ScSTduDxhUdXmvxaPKnJRgCZqcV36ktP+cKwfb9j8sMMOxEw103Ev9juxUWPMgwBLcqDHUkH3OZtS3prhoUa1C6NuPc+N8eOkAbGjyRdGS2Kgd6PGbTaLXKEXW+lHYX4Xiqq+zKGxs8U1YkiW0iysMiE5aOfbEUx0fdrqqiI0J1IfZUF0wrLni3U4C3VXVwEsAysb3Us17o6ZvCpFtcS8jIsZuSwfEdT3Ciyu8DyXYVpFbaURR/TiFey2VfDcZTn0rnY+1zzW5FNukzOubyUBF4BJorJs4AdK/lTCmNuYvVs0Ir8TvyoyinGL8UTahpRP1Qn0R9aB4LSqBBItrB6Rzy5w+IFEgDU7Gv2Pna4VLE9FnYs3cRFlwgimz0t4LeNi0jXwnpWJxplBTj7FOoDI4sIBZjW4FMYnUe5apAOzWQr8th+QWy3KCDARbeB4taDUnSlQsfuR4Kw18WVSF3tSAmDHCtPTC3BPKMLTxuvXXEtvsxubGinu3qSdBOGcwtT2a8tFeW1ozqKaZ7K4FORc6SVpNr2izlJvQP6EkIU0NYMvZnaClubbg3JxtMcyYpH0NCVitGVG+o/mn0zVJsk9c7vmWw9uvWs3ipJtx5tJWE2v7FDeI8tNOlWvJCu0FHtIiyuLWLAToD6pIiVNA47MiQbhyuEmc3vOrqxsK8hyo515zG1o9nPMLV4GUU1IayzdgFvMtK1le3VTiSvjcONMnymd32YuZbuS6VIFhV2VuBGyQBik1WLG6eo1uPKRLyckwzVenRtsbOUZN0OYNftj4RhdQHddNj9XDycsULEj3JJkFUKPy6GBXe92OIPZ0P67M9WhgwVJIl4JdWmFrazZyz7ypFRXBmMctthUSmm6VJ9PihH9bUjnZXt+UBYrSDNIHhU0PK7ECRRtm4gTQUkZ9kOSEaQqXoP6e/ltwwBjDwvdP/4p34hHr9X+u0X+PGFZiwnH5yFv/Df/wafro94vpxxeztBm8DD41uu1mNGectyU/DG4R2dMxyVa35ydcI4b/FBDf2LISiqJkXrQLXK0YsUddwwGtesrseY0pIksT/QafK8Y70opeD9pCIE8M7gWk1fP5LlHdXFiGRpsHuO4rCibZKhoiQbt7Q3BWSecl7TVCnqVQH3a9yqT7hgkHoCoAM6d/hNShrDUey9+O28Tpg8XLJ5NCfst7BMSY5qbGcIbfzgmoC+S2WSNu0IVgvb2mhhOytDmFqR7N6WmMLBy3xgSouzDdVtST6vaZYy8U2uUqkzuc0IuUdvzcCA9hNkXwRCEumXzJO9THFv17hFKkmjpzU8KbEHdseqRO+bqbR0EVqRAqeXCXYi8lw/kZ/dSLoHu1iwbhpFe2LRa0N+o6nP3MDAqsgk97UcqtYkGwlN0Y3C7ltUrWXfG40/6lA36dD55guPbkX+FEaO7JXsP2jwuSdZGpKtoj6zmK1suz1ypEcV/FT8hu29DnObCpDwMol1YzmnZKlF8rowgz+um8r/ZXdS4bF+x5FfmiGV0ucyGU6XMfQmMh3ZnaJ6w6K3Oha8y8Q6AGns5atOPUklDLHPRKqb3Wp8LlUNroD1l1th8VNJjuy7AF0usk6fBbIbswtxWahYEwJ2GiguBPzYsTBkulNDSI3LRBY7sBy1GlgdW0aJmo2prmthitqphPmATCi7mUyAXSHP6YM9ZPsM++qf00ty6xPpSlSR+XGFjL2kih61uXgC05VcB59K6f3rvYPZUibT4rOMISyv+cOUF2no+g255n1likgPhZmoDyXldOgnjIEwKkTWaSHbqo93bKV01u1AhMt3DG/PdPYl5sDAyCUVURr9eSCS34q8Mmhh0obePyvhMn3/n09g9CrWUYwZntd3BiofGTPLkNLZjSHdxv2VApz62olkK8oGn8ZJViEMYn0gE3Y7VuBhdOmp9zR2AvmNHKuO17xnUfvrPQSzFJCuBPDkC5Gv9qx1thRg6TLZtwQqSbBHM5NeQFvu2Dk7UsN72k3kGLsxBCWAcPbIs3xbk2xl7PT1H8O5Rc/a6NLRTjTNTDO+cGyPpBPUJyJvHL9yVAdSB/L6te0Zy35cBi3HnFSBbB2kyiTKWPOl/NyPoXQjE/NupGIoThi6Ifv3LFvtWMxmT+pWRHK5+z+XClBoZ4psGQNeCmEc26kawI1PZNs9O206qQZZnyWYTsZtFkN92qmcc71n6D2MfcBO7/nLF04k9DMJl2knUtdhmj5kRklATRWGfkbpU5Rrny8lSTXoney6Z5eTWiSz7VgATTA7T6YtVGTQhQnM1n4AMqYW71y9L4nRSR27EVNhKruxJr+1bE/TQdIrdSRhqNwwjac+StFW6lSUfS0IhsiyeZGNZwuLLQ0+Sor7cB3TBvKblm6SDN9R6dpSneZkd1akurFXUjc+AlgzjHlliQE5GlP7GFYm3z3ZqsMnGpfL//UATO6lFjuOgFVH1s4FTOcx6xY7y+VeuhHpqk/0cE6mcajOSx1I4/C5EX9uBFpJ5SRsp5Yak17imiwbfB4lnpEh86lIf4MCjMIsW+w8x2w7fBkDdAJSoZKZgck0jcPlkbHMDaaysZpE6kLMqiGUqYyHdYufZOhtlKkSwVpk5VTToeoOPysHj6RqLWiNXm53EtaeUYzBOr7I0NtmYI3RGtpOpK0906gVal0RZmNU1QiT2QOwWC2iqkZ8lD17GEN1VM+EKrVjPBMj8tifZTf7x+tgx9qBZQzeDyxk/wivh/30EtoQht5K2LGe9F7R12pL/iEf5e8BLPuE2RDCFz8VNjkOvzr7V3/ft/vXbv/bP/Bzgy84sMzfeRje+M//A5zTjMYN87LmxSfHMLYEpxjtVVhrCF5hLwvMUUM5aqirDGc1vhavZWg16bRF6SBBOC+n6GknSoSbjDB2mNyRpJauEUmtXiakDzZ4p7GthLqE24zJm0vWdyNCq9EjK4xXZcR7l0hIiLIyQe6OJbofJ6ufZqvRjaI7tKjSMZlV1D/cEwCBSBz9cUv505zqg9h7GXVpZr1LQfNlvJl6hd5v4GUhctlUgjm6uchndRcllEkgWYpUqJtGuc1ICt576ZUdhQg+ZB/5jcgcuwOPWYmPyBfiy+t9eHYS8Jln+nFCfRR7Fu835J8WtHOPn0rCZ3Pg5Tw0pAs9yEWDkdRK6SmUePftfU8wkMWi+tELTTsT750t4/ntiyfSVEpknTFYQzxFshLvRgFdK9KNGoI9sqX4hbpJ2AGv+5J2m9zKF7edio9v+8BRvBL2z44k4bE5EqmoHYlPMFnJjbjdFz9mX8RdH0uJu4oTfG8C3Z68J+NnmupYwEwfJpFuJEVSd8KOuJj4qWMBu4rgtJexgryPo5eK+kiuSS8HtROZUBWXAohcKa/XDTtfonotkVFHtudWJHNJTA1NNnqQjorEVYCsj1JdZRk8JSamS45fyHu6fJehBkGeHMfUXZTHpv12ZUJd3Oz6EnvJanMQAV8u5e/Nvsyqiithqfoky25C9E/FIA0txyPBMjs5rbI7uR1RtupyyK9FomXHKnZjynXy8U8S9zE6F5Ylv5Hr287l/HqQ5CP4/L/ZclkEdQAAIABJREFUe5Mey7LEPOw7053eFC+GjByqsrqqurpJNwTCEiBSC3ttwIa99VKAN1oa8B9oayV4YwHaGTAM2IAB+x+IS+9ogBZFqskmWUNX1pCRGeOb7nQmL75z7ousZpMC3UKzDF6gUBkR7935vXu+800A96O8Z91BeUtfqtkxNXP/HtmZLLWLitejusssDo6AJ8kcH3cd8gIC/TlBbLHJ6YzHInhfHgGsCIAcMHnfdEvZ57ggYDJ7rjIogjE7p+8SILDUXe6GjNOgPKQ0SjXQz2ebFESTZOM5PZLplWmXs0T50XXPcm/pmaDZnbNrsXqIBEkyn08O2qM4BpqUm8RyJIAjHX1tIvB8qP4oW9VdnAblUQLjUkxBOe0lQaRM8lSVwmeyXDkk8EPJZQpvUcdt5qoLgK9t3oYpGVRa3gu6P96buuNxmzaBh5IAoHnj0D7RrCa5oeQzewuHlZxCcWQKTJGOfZXmkNNKCZgJpuLUV+kLAVcLVA+edRsLCZP6KUXyHIpASd/kv0znnfJasl45wCaDogzEulOF5q3DcKJQbj3GuZpkkxAC4ywH2PB9U5BPJaaqD93zGE0bJ8l5TnzN0lDpUpqrJpDOgIwTRQRFrua1kDamiST6HPVAqajqObGhek4w+FJCdQG+4gHr1mNYaxRbD90RYErLzsvq3hOsIcm4jWCyZ+T2aOfg/piDgy8kfCVRbBzsgt2VwtF/CBwl3Vn+qlqHUCkEIydZaAYSwST5KwBfSegupZ8m6acvmLJKACZgF5TBTimqNiAoMrvl/YhxZaCGMFVrlG9bDE8aJgzvLWLaxygFVJ9ktQOBdQ6tIUDV0L2fwJ5wAW6Wejp9IOgTAnJwCEYhlASa0zMhgUqmwAZEo9LkgIB56BEqAlbpwhEQSZ532dN7GY0iGxjCJEVFOH7e83tk79hpGWLyZ8b0Wj7HQmWg7w6IStE/mfosY6ERpYTsR4bntANiWfA1Azsm2U9ZMYBntEdAVRgG3cQIlAVgHcRojzLY/Pq/ypdYGIb5ZND4WN6al+yBTMvku+zH47nqhyNjCLwD9iYPZeqaFCax1Hlbzh2Df0KkHzRGwNp3mckEKvO/fwlzPLp2fy2LF4/A83vvsdQX8Z8s/qtf+3r/9cP//Bs/NmAi1b+niwCerHd4cfGA/X2D680cUUUUzYhyMaB9O8O4KfFkvYM8GyFkwO52Bu8l4rYAdCA4MwHaeBSFQ/sXJxBWQH5LeYDZSmCU8C3TTYUEg3/OB4TP5rCtQXQS6psKsQ44fLFCtBLNWQv1VYXqqwKx8ilQJPn2igj50R6y9JAHhcXTHWRHUKk+2UMe+PQ8fL6ipKxkEb1feGCv0b7voK4KFLcKwkmgYGpjvBzoTQRgNgrV5QF4XSFUkV7MNCMtHB9wbuGTB1LAPrHsYdsI4GyAbBx8kQY3DesI/Ec9Z95fHjCcB7gPe+ithPnhDsWDQJw7esQcwVX9cgc5Sgy/u4ddU0YWHcvLQ+MhBoXxhJ2RsYgwG3p8uhcOcmS65O4TJsIFE7H/wEMlkOTqiLi2BIIngXUOadAz+0IjlJF9fp7Ax15aiAD0TzwZRhXhTjz6C58AY0R/HlMojcC4ChjOAuWYNoHAlB5qZ2Qz3SxiTJK1ww88e/5mBMH+Rc/kyuRL6p87SM/tm6ct+uce7UeW4PxlqicZBIZ18j0aQP/jewalzHjd7DLAriLsixGujhhXrGNw8zB9HrLfxFcR/VnEeOYxnvDLerj08HVIs/+YAB3ZxAhXR/SXnp2NK6C75GDSvjegfR4omTw91g2YXaqeOOX1Gs4iDh9bCAfs/6MR+48c7ILrCYZga1iTUdYHDqDbT0YmTp4FDCvg8CKgP+cgvXtpEQrg/ie8NsEwZGb/oUd1Q3A0rkOqCSAbmesisoQrSk5G2DkZSoDXY/dhQFARckyTDqnPMPsHowDGZcTmJx7DmgzN7iPWgrSXPA/dcz9J+h5+lNietcDuozQZMyNIscuI9pMB/VnE4UVA+9Jh9yEwrBOD8N6A7scD9u+TUd6/ZJF9FJi8qP0Za0H68zTJZIH2qUBIdQuhYA9eUJTMicBreniPANnVAje/63H3OzyG7jKBwzmw/SSgfcbBeX8u0F5Sgjmcsg+vveT5aZ8KdE8jth+yGsE1AofnnODozwV2HwbYWZpcSOd+977A/gNg8yPeZ/0Z97G/4LlunwmMS4HDC17P4VRg9sZj9wMCHjcT2PyQXXm7l1xvf8L3ZPA+rrhv9PGSDWufHhkSu2DoTCgJNnyRJKIjmTYA2L2UaC8l2qecYBtOxTQJMS7FFEzTn3LbOe2VLBXPb/s09WL6NEkjKPk8vBBTCFC/ltj+gAPWYAgkD89EYnO5b8U+oL2QGFYCwwl9r3e/bejV1QKbHyi0lwK79wmWmree4UYlj6u9UBiWkiyrAIaVQHcmMaw5EWNaJqHe/0jBNgLtU4Ht+xr9mgyYKwUOTyXaS4X2qZgYx34t0uslyq3ntdZAf8pz7WqB/lRinFNmeP+Jhl0ItJcaeojozvSUirp/T8GVAv0ZpbzCE/jvn6sJIOeEVjsjq8uJgXTOtUB/QuVI9iWaPZ8V/ZoBLlEAw1KiO9cElYnJdJXE9qVGv5LQPUF6XnwhMC6ZvtqtJXYvNfbPFPbPFfoznbyiArv3SyAA25dmYiqZTMrqDVtTsutKicOlnkZavhTozg18LdGdKgxrQwAMoL000L1H1FyHaxQOzwuGJj2rcHhapG5Qldajp3USYAgGFoUIVysMp4agSwC790vYRmNYG+jWY/+imADz4WlK0tZA+6yEnUmMK43uaQlfSGx+a0lg3nAyUe8pNW2fGPiSYNeXTEqNRsLONezSEEwEYLhskl+a4Fx1qdZDSbKeQqC/pAKqvywxrtnB6EvJqpGRDKevyDiGgoDRVxqhVLDzVBmiJYJR8LWGPa3IbiaPdqgMRO+SN1UAKcU1aonxpMR4VsNXGnJw8LVhXYiPCA3D74QnMEXab8QIv6rptdQSoeGMaljWECEkDyrBXJzVCLWhp1NJhJMZYplmYKU8Jq4aPdWGxFzpgcy0S8TCkJlUnFSY1qEIRGNZ8P0g8IylAYaR/24qgtwc/qMSwH4MKuWRhQUAMasnMCmMQczMZWEg0naE1nxN7q8sDERVHgN5ctCPc9PxyLKc/hNFAWE0/9MaQslf/Z/WPNbvpsr+/fJ3bvleM5bLH1/Gn/yrf4qL+oCrwwJCRNxuZvBWYbnsIETEvi1RVRaXiz1+8eYMQkSUlYW1CmfLA242c3jP2gtdONj7CtV5B2McdvcNYCXMckBZOgyDhhuPttTYK5jlQBlsp2BmFrbXgJOQtUMYFYRiebwuPIKXiFGw/mPQfG0UEIpf/gC4D5sS0BFyq1G8d8DQGggVKaO1EqIIKGcj+usaqD2EiohWst+w4/6JXiGHAsW5A2RENU/vqTjAVpWDPxgGDZUBzUmH9rZh4FARABWhK4cYBfzOQFQecZAwK8pv7aak1Hd1lLAKm2b5lo779KDhl45BRY8Ta70AqgBdOfibEnHmIVqFOPOolz2Gr+YEn7VHbPVUwyEOGrKT8KcWYq8hzwem9vaszogidTkuHdQDAWbUcZp5lC0fjqGKEKNAOLGAldw3E6Z9FCYgdgpipK+rf99CbUgfhTJJcVMlB8BJA/2gpiqInBKr95Jy0TlfK9v0RS5YvQFPoBUFwUKWbebXq1bCnVqojSZjrAHfBOj9MSSpvKHvTHWUA4vEgIfGw9xreu32cvI0TXLLBCiFZfKqCGDVxb16JxAnB8NEzSqO8oayNVfHKUAoVzsIexxU58GdiGRSh3N/rPWo48R+iACGNiEx1v2xyD4UEaGOkB2DjATDWjlBkliS4dyjuFMpeARAFBjXHmYjIb2YJh3yvRcKghw5srOyvJFT6icDmMjolPdkn8ZVPPYaJgYfElMIlBxTeJTEJOsNhizk4+Ak4TGxtDkBV3omy0ZD5jCfb4ZlpPXsxXQeRaB8dZKM56TRMrGnC0q6iy3X4WZkYynVjlNYVjDcH7MnMCsfkmy4xsRe6xYTSxyK4/1AWSSOYUSJ4VUjWUw1cps5eEb3+f7BVIkS5aPrYI+hRZkVAxLbnM6d2WHab9UfpbSu4TrNITGIqbLDzbju/Huzf9TfKHn9zD5O4Chvt9gRbB5DklLaakPGmhUMiQEvxXT/CsegH3MgY+WSV40sd5KZFmKS/o5LMqGuEdPnQDoyShM4nSS+x05Gs0/vSef+2AtK4JTDwzKrmq9L7obM5zZ7MLPqYApSAtlC6eNRdZA/OvJ4z2XGNjOlWR6ez6OrubJyG1gB4h99Zv3x3lED+x77lZoYNF+lCpg5WUs1JD9sYqOpKIjQHRnizFrma2FaeiBzaJEaKZ/VPYGlLxKLLI7nOWjK3at7vjd3o/oi3c+BgLt68LCzNLCX7GzM1R66j5jCpSK3m6s2cuAOk3vzcbG7UYRc5RHxWMUhHNn1rKIIWrwj45U2wtUSZufg5oqqBJdkwObon8z3VQ78yexploVmFYEc+Xc5BPhaHcNukjzV1fzeR8C7QUHp/uM9GJiyaiibZTqxhu4c+tOCbPoYWNdRqHQPk4UVPk5eRkphPcO7hJjkqwgp+RWYXid9gBgDJa09PYKhVBA2HJnJFLojcrDRo+CnKBnoI5NPcQoUivHok01+ReGoOEAAoBNb5yP9jFoiCnFMiA0BYnCIlXm3FiStM/+cvZDckCTI1Oq4jzkYx/upKiSmOhDhuR38VazjdGz+uO4sWX3MEuZk2O+mtuZ/M2Rjem8MZIgnmSt/OTGXj8N7ACDmbSa28ruS2uNuH//21+KSEL//4T3qPP6T+X/5a1/vv97+L7/xYwO+5+E9g9W4283wcKgxDAZSRNh9geXFHtttzT7HTsPuyskriSjY3Xgo8LozBCspKXbeDLjvDPqbGmMvIQqCD3kSYS1BhRARYUhfsCpOIBBRwD6UMOsedlsygbanvwGlh31TIxZMUT2cSYg9K0ggAFTU98VWw/YKMBHL0wN2/RL9QwUkn6W61/ALD/N1gWGpoQaJ0HggCIi95uTZjUF40SMEAdFJBoUcFGIR0duKSbNFAKyE7wug9oCltLdTFdm5QQCOCbrxLgHVMgJWMzTifga39NBbxUTYVEcisqw3Bb/EmiwpO5QoG4UHinsFNw8IjUe4qiAkgIOC6iW8APzrBaQGQi0g36REhH3BZNIkj8M9Qbl8VUEldkYMAmqkj2qsWaWibWJnZwwymfxMWRZcaIiBwSHSawxnHnonp249s2dgRfFG0xfXCsqoDT2pOjHEcnwE2LxAc8Vi90lutFGpOiMNqqKgnNQTPLl5RBBAeU9gLq7JfrhZRPVVAV9mHyEgPY9NjQAgWN/RJn/cVk6Ap/jGwC4jyms+yPSe1RUQrP+YBusKmH0tYZeAvJaw8wg9iilIxJeANIAcxJQEq1tuO/cVSisQkFJfO0wDUNfwZb6MqK5UGpAjSTBFShWNEHv6QPOAVQ2g57QTELeY/IJRpIHngWAsCmD+Cw07T2x7WsxWks1tgCLJgzOLqHruPwePOTiA+6hGgWIvpsE4Imt2RABkOl8IRyCU62XqN2IqtS+3wHCWfItzMfkgMyjKx2AOrIPozxnikn10OclWHdjdh0iPYlTctsgT1cMRSElLP2GUAmaPSeal26Nk1s4JOMcVX5+lx7rlcaqeA3rhkCTaPEbdAf6RnLi8i1AD0J8ek0Lp50uy7ATKdEuw5CsBnQfnTS5yFwiW3w3SAfr+UdG5B9yMFSdR0Fdo50xp9WUKdYmpOgMJ8CU/YwZmzbcRdkmJKkfaqWvRCKiOEl2XEoF1qtLQPcFK9ubxO41AxOwfScSUAFyE6vMAjNelvubkQrmNaM0RWDExFpN3T3dHwC48g2jsLHkiQ4Rr0jURR2BT7LieYMQvJQIz+RZTwrHuIpRNHkGTttFhAidMVhWs9aj5s7IEcsID9S0nOr0Rx7TUBJhyVyMnCHjeyl3EOOPfsv8PQqLYBYxzifLhCD5sk+SoCdDpIU5S1smfG/iaMgEo0zKxttxyPbaWlF36kGTEx3oONfkXI3JqLtdBIGcbiebGwTZJ3trzda5hX6Q3yUu58+hPNXSXU3IB41NwSxfY95n8lznsBkjn6OCP8tmekmw1xCmltkppsQAm8KeGHHKDKQQKSjBMplIEco+ktmTzRPJ6pnvCR6jOk9GTEbpzQFSUjh7cdM7GhWEiqxSpp9S9E0gTCtZ3lHcDxnWZAB2g+gDpw+SX1JaJrUHRD+nmXK/wATJJUukDdkAAygeLoI4eUjkeU1ZVT8+jTvspfDz6JCP9oQAIHltLH6MnyFMHm96TEmW1hDpYAlcAaqBizDcGKofcJDAWNIGp7LhOekUBBEpv82RLlAKyt5SnJsAtDwOZSi0niaoIAaKnNzEqAagUrDNaxKaEaIdJ9j11TSZJK2I8AsQQjoAyEuSKfuQ59R6Q+pgSm2+mkDyUIb0/pCCdx/2QQhxDd3xgz2aS3b4DUB/5HWMIlLcm9nJKZvUBj+WplLymifacApv3P4FT8Z06k+8CyF8pk33nReGXf/d9XL7HpN7ftHyvgSUAzOsBD9uGvsfS4ccff4tPry4QNwXUecfkaElmSABwg4JrNcNqbumfFJ1CWDrcv14CXuDkxRabL1eIpUfzrEO7K4GHgl7EjUS4cGT5Kg/RJwN77Qk0HyrIjmlmce4gdIC8KRjrf8dUOXlvEFYO+tqQkQHovQQlrOOZx+HTFeKCX+hikJA7hsIAmOSx8qKH+KoBAuDOWMXh64hgFeROQXgBXzvuTxAoHiSGHwyoPi8JZmYRcscvT2kB7AuEEogpnVLvJEGF4yA/mIjiTsI3abY3ALGIKG7VxLJU1wL9RYSvyHyV9wKd1BPboYb0IOkERErzdKcW5trAnjoU1xrlPQvOm1caruGDt3jgzHR/EaAcH4h6Bw560gDYbCX0gR2F5oF9hm4eUF4rRJHkVAuCMLPJQEaiuqEXMegIs6U3c0iMmbSYwkBUKyaWxOwlVI8EWjlLXN6yk3D2dcT24zTIO6Rutmsed5Z9cYY4+foUPY7FQwKHB0o+heP7xiXZMztnkAsj1TFJm8vEkgGYZuHZt0jwVm7IJEESUOqex+ArsJhd0W+YqynMPs2yK0xVEvqQ2COTfJp7MQ2S45jAhE/nJyVxuhoT01c+sJdvWLMCRgRWi5QbMkm+JDjJiwjs8+ue5JRCritLXXkPJVauTpMaaVFjTs3kPmdvYVSA2WYgzHVlUKW7iPHkyKy4GhM7mnv/ig33Xyam7zG7YvY5aIjsVnknmHIZACRGLoP0qI4BNv2pQPHAwWt/ShA6dTRaXm9fY/IEktEUU8KlGtKxgWBM9ceAnKiB2etAv+T8yBLJMe2v4zkt7ymXzEE1ZHgEjKUkVHcEjMLFdF2PhfLCA/UD5drmwPNoGw6UsxxW9dn/xg5EghyGwJS3DMnx1dEz50t6Qqe+y32c6jDUyNcjJG9i4HGUm4DuTELGCJlqZsw2+dP6OAU66TuPcSH5eQBB1LDktpl+yckFMiUEJK5MDF1BEJp9oGZP4FfsCLb0wFoNXxDki8TclZtUK5JAjvQRs6vAIvcugeKBElgG5wDVxmNYqqkeZJwxHMc2SVLYRfYuJpCVJe2m434PiyPrlj+3/C6LE5uo0udI95GJnKWe2DE1xKncPhhOKOkhMqFTpRcBmF1ZuJnixEdiWKWNU2UJfctiYm0zkMuBOBmE6YgJwKpERpiWYCpoSq+jFFNno6sTmEpj1/rGw86P4T4iYgrzyZLyYcWeSDujIqPY+hQaxf3RrYcs5OSlVIkBFB4wO4v+ooDeediFhm0k9EAAbmcS5hBSHVKE7j2BeSUBy30wQ4BKEwmIcQoNCkpAH0Lqe3UYzgzkGFHe2aNKoVTQe4v+opz8osJF6EMGM3HyVIpHA3FfKuiWQTgTQBKs4Mj9jz6QLQz6WIXB9QE5kGc4MShvR0gfyD4eKKl0c3Os89CJYUzVIKFQ0B1vMGE9xnWVkmZjCslJgTybAZiZNImZQ18YNCN7O/kqhaUcNi4L/j4CcAEigbMwK6ZAH+ECf1ekLkkBCB+geno5pfVHBZP1DOVJlSGhKageSl7PqT5ICQb0LKq0/gDRDZCPex5T1UgGb8JlEEiJqRgcZa8JSIosPc2/k3IK1RGDpScyg8oc/iMEoiGohPOUpD5iGd/xWkp5BC85xVXJI6j0/l3Q+d0eyxxOJAS9pd/1cWaAJyQQjqByAqWpz3I6P2ndQh0DiHIYz69cHnlEJ5CZt/P3y9/Z5XsPLAenoLSHVAHLWY/Pri5wsd7hrRdYzXvcbFhMW5926A8F6sWAZydbfHu/glgMTIJtC5Sf1Vj8oxvcfXqKw5+tYT48wL1ucAgNXry8RfnC4fMvLmHPAtRGIZyzVsA8beGsgnxTov5oi/1DjWgFyqcthtYAGwM8ZdCOAzgAPx1RFg6jCRAiwnxdwS35QfMfdUCnoc86hDcNYkWfXwwKdhERTy3qPy8h//EW/Z+vEN/vEbwA9pqMSZ3SXRU3Jnr2TOZ00dgrjD/qEA4aovYIMiL61DF5zYoLUXrETsEqykuDo1QSAvCHNHC6T8lxNwrjRZLCmoB4V8LNPUQQiB906HRNn9Kph16NgAqIn8344HqvQ/MHDfaFhr2wkHsNuw4QnrNuwzom+WWA84qSxsSO+UD/YPOVhpszVTWUEb6WsCsPtbSIb0ump9YRbu0grzVZNwnYUw/cKkbt/9BDtwSUdhEwPrMovzbwBdB+PKL8usBw4QAJFLcK7sLCDfxyU61EKFK/ZSRwswuR5E0cGLhzi/1cwjwoSCswngSogQFFqhWABNyKA4DQBIS3nBQQ4ljJMJ5EVDeSPtALB3OjUTwItB+PqH9RwM6ZzqpSKq5dBJiNhFtGDBf0gTZXAt2TgPGUwL5sBdpnIYW8SKa8VpSt6jb3VwLjGaWmDIxhuJTZcBLDV0D9lsAwGmCsYxps8bhUz+ePL4FwykHe2DDV1S7ZzzichsT8iakCYDglqHQz1lMMa87mVzcC/Wny06qUBNuKqY8zypT0mYBqUJh6BKvbiN0PeI1irgRIrKTLhe0z0AvdpXAVw+eYncVp/3yZGMH0fLNzAqBxGVG/FcnvGDD7WqLYpBqGSLbY7LJHGNPkQPucEtViQ+8jmVYOvHNwj5sdqx3GFRJgwiPmg39zTQLNc75m/4IyX4J5Hqtuge6SAF8OQH9O9nJckKmTjkmu2bPcnfMz01wRvEobUW4i2gsJIekhzNLX7PUrNmShXC2OoLqmHNTNMEl6o0zyUAPYxF5UtwS2dkbg3J9JmJSSGhJoc0kmm0FSBguZVVVjYjnbOIW2DCuB9omCGnIyKtCvxTsTD5RcJqnqbUR3JuEasqZkZwVcQ8+tq/mzHwEIoL2QBJG1mIDP1DdbIAXrEPjtXirMvg30UGbf3olCdUsQPM4ZVJSPTyTprbIEl5RAH3ttIclQsnoCqO8DunWSeA9IvmoxJeJGyQklX9D3WW4p6xwXErZhqI7uj1LOHIIUBSs95Mj52sNTM01C5TTWcaFgZyn5VZJRFElua+skM45kRLsLjSqBfVeS/czyXnorI4QXiGkCDpHnRoQIm+oyomQtiO4C2nOF4kBJ8LBIALMlEK1vGCI0BYCd5EFvmqCqNJSNGBcmMfgML/KlwJA6LUPJn5s3I4YTA1cfPbasAZFwtZk+k64++tZczfsRkf7BmO53X9PT6WYaMgFyO6f3kIAPkFZTrltI5D7IkNioqCXkEBAq+jJzYnAA4E8Mcg0JQ38kQiHRLcqJcfelQiiTP9gFhEIiFALSFbBzheqGqbNklSOGMwOzY9gTQHBcbC2G0wLFg03rlJCW20KtE/Ofql92Dvrgjj21RkLYADs3UDYAPsKuCpTuka8SGqgB+Ag/Lwk2Nc+hW5Rp4iLSJzkSaEYjEYSA6umbhBIMJKopTZUuIJQadlWiuGl5L4QAGEUmVUr4OZNlhQtkHF1ALFKq66KeZK1i8IhKHVm6LHf1moE8dUFgmbyUBIhMjxX9iFglT6UjEA3zipMQw0iQWZpjS5d1TI4VOR1a4HHXJR6B3SklVogUOpRkr496Mt9ZMhAMYZK/RufJimdPp3MEgy4CUlESGxLozGBTSspalUK0lmxlBpQ5gGjyYSZfqPfTv6d9eGffxDvv+74v8W+qV/keL99rj2X13vvx+X/338IvPMQgGbSy1wykGSUgwZoLHVEmWWCoPdlLK6EGls8jAPogYX60hfvTJSCzb4QDTN9E+LWjFHXlILc040eZdepAeaMQZcR4EqDbY31FlGBNw5YPdd0eu8jcnNJBgOsyO4nhzPNBWjAghn9M3pXA91Rv6VGLkv423wQUdwp2GVC9JZCi7ImD5PKWM5bjSUB9JdE+DygeCIjywCR7Y8gOiSlhNZepu4ZBJ7rl34o02EdiudgJF1OnHQHOcBoQVcTsKzWVsUeZgEgB9JdpPxSloOWNZOqsTomfiRV5XCORE2oJ4DgIJ7NGsCEHgWiO79Et5Y8++cvMHuie8LVmywF8+SAmxsWmQa/ZYyoyn4q/CzJIQXPgrnoCGJGYKs6C8z39OVm77NGTo5gSRX0RUd1SwpqTdoMm2FIDUDxw//Yv+f7FFwzlKDaUWAbFgKDMTsk0gJWOLF4wBOX1W8GqCI8pTdSnahLpuP85GVXndeXAuARSih3BrU7rVV2Skya/5uNC+Oz5UinlMjNaGWDX1/y89GfHwXJet2vIJkIyRbS6jdi/BJqrIxuTn6x2kbYvCU7KB0whOroloMiSypzQmfczM4FkRuixy38rtjEBTLKoImbJL5kIOycIyumn41Ic5ahJxhhlksQW/Fzkdbo6gbskATQtK0jWfxZx+zvYZc45AAAgAElEQVQC9Ruu25eU71a3PFfDmt2CWSbKICtxPDZHKWX2ZAI8D8MJ99HOBZorplxm35kayM5Wt/w87t9jd+B3fXO5386X2WeF5FOMmL0J6E7l9F1ZbCPaS8k+w+SdjKkmY0rIvQ9wJZm9YSnpCUyMX7+WqG9TsNRcTN6wDIZFfCQL3RN4RkkGzM5EkjbzeOvbMEkdH3sNRSToMwcyi+WOvjnThhRcg4nxGU4kZleeSaqerKJ0BEYAUBxCGuiLKZm13JB5ku7oQWWqL7/7laVUM3vyZJLHukpMPsIMzvK9Ps4lGboU8OIaMqDZF6rGgJAGXN2ZhE73YbkhSJw6BDsmtJouoth5uIrPBF8cJb8ZYDVvLboLw1TYGY8LAtO1G2eSKbKJTaS3mcycSkyzK0UK+FGJZRMw+0BW8RDga5lSdhNz2dFvSPAV0vdGlkkGuMRWZw+iq8kys8ols/lZakxZJUEdoLoweQoBfn6C4j1W3ntIT6+iHOOUqlredGhfNFN6LNULWWrOY9eth+w97KpI31FH9s41MiUFOwxrg/LewhcEWmoIkDbAzjXM3k0+R19KmJbSVz6TI3whUWwtXE1Jqz44nt+Z5qRM5+CNTM8+DzdPoNaGqdoDPk4JrUFJZF+j2dmJzZRjONZvGDG9NkuM5egniSolngKuUig2I0KZWUV6J/3M0B+qUipu56bqj2jkVKsiB0dWMcmIRYwIWr7DugKA7Bzk6OAX5cRayZEAEYJ/5zgkTOxdBnw5qTYmP6TwkVUgANnQCQBGyPx7LembHC3CrILwBI1ydO9IWqEJJO26hn7oIYbxyB7qvN5AYDmrE2gU78o7Uy1IDt0RgcxiBpoTUHzsjYyRLGcIiIcOoiwQhxFiViN2Pdc5nyF3VSIzn9M2sx8yEPTlhNXcW5n/XVf8f/CAVL+873YEtE7rC4g+/DIDGcI7LOjjypDja/I4+jvr/+6SQGvM+/S3XP6ueCx/r/7Pf+3r/f3D//obPzbgew4sy49exE/+5X+Di/kBX745Q1Fa9PsSsvCIQTDsZlBA6VEvBnTXDbI3UgzsZexfz4AFTSvRShRXBv6jDvGqOtYprBJwLQJgArsg5x7FGzJsCKB/ToCS0SogVgHmVsOXEWHmARmh75L0tSErKK8LiEA/XKgCzIOCfWJRfmtYD1JEuB/0iA8FYs2yeHYRBgbrbDTZSJdqKOaBsllLqaadBxQbie49C+Ekog4QIzsaJyA+SPY1mojQBIiR3j+3CPRnjjxueVAIMw+1V/CzADmzwHUJfRCw6wC95SDTLj2qtxr9MwtIoPncoHsakg+V100OAtW1xLiKcLMweSflKOAuRqjSQ76qoVqB/sMBcsPuTQBQO8V+xhcOZkuvZg58yZMBUTNYxmw5yIfkrLcvE2OUZLvSMWlVdXICG/bCwdxqgnMdUX9Npm5ccefLO4HuaUB5JydZrS8j0xb3abCb/HD9eZiksO7JCPOGXsniXmJcBwapJBlylsF2TwOqa0nQ/rxH8fMa/SWrTYazgPmXEuMqAwwOdudfkoECeAxukbokF3EqOqfsVhwB2SxOYRwApm7H8YRg3804OVHciynoJZejs2/yWOVBiSABe7ERacCaKg2SR7W8FTi8DChvZQKtnHjJYNQ19O3pA711h+cMCjIbif6pQ3HP6+4rTDLiHDrSPWNwkXSUFD/uggTYc5mPTw2YuhtFYJVK801iHZp0T8wJeJpvKCH1DY8rs6HSURps59xOsUnbTOEkubYi17eI9NzOAUIy152sE5NngFBSblpdEzhnSSBTLzH1L6oh+eLcMSgnA8piwwAZ4RPrtxRTXUmUwHBO8Kj3lEMDZO76M064uAqTHNYlaapNvrtQZEn8sWYkM6Nml6TCW26fnwVMaZ3jIoGokcc2VZjk7tKUzhoVzyvAY8pS5ZBAmj4kv2ZiIeubgP5MIncz5gAVXwqMaTtqTHJKRTCfpdmUK3P/uovUy5jumaiP50z3fN+wyr2QiQFNn6OQQrDGBe9lNUaYA4FyPr/Kxgn8+ZTiOy7FJKHNoTrFPmJY8nW652t9CvwZ1gz7qW89di80qnv614cTgeqOMuByk7ovE0AkUOb5dBXXKV3q2EwTIjkJOcv982RF/jmfT2+STL87fm9kBi57kaMiKFRDxP4ZVTPVPcF7Bn6ZTcv3hhri5E8UHhhWEq4SKLcRw4LdlLqnBHdYqWnCVHdJvlunxG7FtNdiT08jg1f4OckVJTmwJ4P0HAzEyT4JWws0N26qCtFdmCpJeG5EAnvJfz5ESnlrCVcxYTb7VzOgBJJXOaRjtQHtE4Ny61mRYgR0y+NQ/REYCc/zwtRVgmB9eLf6JO9TcT9iPCmgO59kqBLByEmCzO+gmPyhfJ9rFNTAehMm1guUNwPcTE/3TA4VsguN5psWw3mFUAiYnYccPOzSTEyoHFkloneW16hUDL6yfmIibaOhOw/hAtTgYRcFdGvhmiSplZh8mVEImN0I32jARyB5KUOpIfv0fxvgKz0F6kQjobcDIAR8bSCtTwysQkw+0PyM5P3GzkoAkL2jbDZ3V/ZM+I2GLKBwCdRICTk6JsoWmiBViKm/ki9K4DUF68RZBdFbgqwiVXZoyd9JcfRSCnEEV7lnUklKWNP+Rq0mABvLgpUjj5fvBu88XjJDFuIR8D1mKB+vI0t0cx2KEJMUVihJYJg9lZmlzPUk1jEF9rF387tS2Ef79FeCzL9uieH7XzeizuLvVf8BgGX7v/3Gjw34nkthjfb4T198jqt+gatqgffXD9jPS5xUHT59e45y7rB9M8eLZ/e4ul3hg4/fYjeQoru7WUCpgObFHnVh0VuND0/v8LP9D1AWDnEjUf+jW9zfzlHORszqAYM1cE7ig5dvsB1LXIVTLC/3GEaNsWPtCBKL+eMPrvAXxSWikzg532N0CmPjEO9KnFzusN3V8PMAlB5FY+GdggsCunEYVxrPf/wG3745QTxoyNUIqSLMcsDYa+BgyLq+PGBRWUQA+2+WKE87hE/nWPyDW9y9XuGjj95g21eogsDDw4whQFFANA6XH2zwsG+wmnW4vlsg9ApCR+gTC/e2RvX0gO6hItt6r+Hf6yEjIBYWwko8vdjg2+EU4zri5PSAh7cLLC/28LsKfRWAXmJ2cYD/ZoWzj++wPVQYdwUW5wfg/1pj99sWZjEg3lVQlx3Djd7rgV4jXlWw5xauU5APBrgYYLSHu6nh5x59LTB7esChrqCvC4xnHig9MEoIK1F/o+CeDxgXlA3BSkAHqI0mI+MwSW9jFeB08pCNgoB/1FBSwC0c3EzCrgKi4XV1C8qGew3EEwu3MQSXS8dZzac9xJ83GD7uETsFJxXCwgGjhByB+rc22C5mWD/Z4f6bFfdPRYxPI7IXWH1doHgQcLZCf87QoXEVERYOux8qFE9a2G9niOsR+nWJ/cvcTUpWWLUS3W/1kNdFkvhROjh/JbD70CNWAfCCQU5LB7nRsGvP+hov0F+mB4Bjl+F4zhnh+V8ajIsI++MO+KYGJCXICIDeKc6k/+SA8HWT0jwjsBMYnziMawE5sHM01Jy0UHs1MYtkaAhC3YxAy584RKkhe7Lgw5qfe3vmUL02sHPKn4VNFRcxwp6n5NMIiJh6WiPQP3XQD2rqAw0Fga0agfZFhLDA+N4IsdOQg4Q5COx+5Dngv+Pgq3sSYHYS3ROP6rVC9wMLuVes9/Bk88eTRxMGIyXkYc6/Dadh+n7IQVZRKAzPLYq3GuPaUyL3QQf1aQ3pBbpLrq94EBjX7BPtLwLMXmJchaQq4PYffkwALBzBUveUQN6m7lK79DBbhe65h+okFp8Du5c8191lRHXNup/hFKhugd1HgNlg6iYNJg3Mkzw5T34BlNVuPwIAfpaYKizQvgjQe6ogKMENEF5O0kokOakaeA8MZ0B1E3F4xvfnBNhhzWNVQ5KflmCCZOCEQK6isHOR5NxIzLGY/MqhyJ21lKW2T1OiqALa56nLVdJ7GLI01pPVLx5EUicQJGfwZg6UJmdw6CsBOyNDTfBG6Wxmvykx5nF0SSLqGgLqXotpcsOXmO4Tn8DncCLQn2uYXUR/SkbMzgR8Qe++iJgmAuSYAqYCGPZSiMmLLB1l5pwgIaOu+ghfM0zKG4Hx7MicZ4/zsKLMXx9SgnQJDGt+NjIw94YTjDkx15WUxVf3rNAZ1o9AWgpSM/s49YEy+ImgMiqCwPZConyQE6jzJZmow1OVpLJpAsaTtRWBAUreCAxLpPTWOO0TwPOUfdF2fpQ6759pqAEotx77Z3pSqoxLgeYqYJyx59OXvHbjzNBPKgDbSDK4CihLAdvIKSCqOORjlClsSWBYKlYltTLJ8OU0kUT5MF9nDpR59meKE6ASgFDoTiXKbcS4rGEOAf15AnpDhJtlABpgZ7kui/aEYaVQ3nt054b9r4mVDJWCr9XEYuueLLKdCXTPa4yzFKAUgf5JOQVBicA+zigF3CLVr+jUZdsrqDHAVSpJ6wXcyiB0nCQYVwWEjxhPzDFZeCSwdnMD19An6gtJkK0EjBZASoQNRgIpbMhVClFWUyqtnRN8qt5TMjszU/Ks6unBDAWfQUoJQBUTmxoMa1RURwATyiSxNYoVJAkMqZGhQKGsksxWo7zaw62bo/d1dIil5vhgsAizkqE9ScY6pcYmaWpoSgjv+UjMIM9oxNHy/yEgViVk2yPMqwm85QRaptS6d8Fi6sTMnZexNJTFWodYl9PLJrY4ezK1PvohVZzAogiBzWaCY0p6ScVxe0q9m/AqBOtCHi8prEjk/ZQSEX8NE/n/J49lxL8fiP6eLuqnP/3pb3of/tbLP/+X/+NPL/+L38G/+eIl7LbE7e0S/RcLXO0XqFcDxj9eo/jggIdNA/N5hfvCoLuaY7hpgFFB/3mNVmvYL2cYa+DNzQliEaD/ssF4EtDvU0rq6xIHX8AFCW81ggZuPzuDCALjQwUXJcybgpHeo4SoPW6uTqDuDRafaWxFgeLnNUZNdnDYVECrcfLBA4bbBqIMKP60gV0FBHAArpYjul2F4togdhrVLwr0QkPsNVQrIUeJ4ssS7rpGZwuG0bwqAQUMdw2EE7j3JYYvF4ifNRCtguwU6tcK6kGju5pDvyqxv2+AViMW9GYWn1dwzy3spkT9ykC3EtWdgPcacqchHgyiU3A/W8A9cdDXBbq2RPVao/UFxF7D3CssP5XYrhTqj7do/+0p1Dcl9E6hVRp6r+AuLdQvauiDhHpdwldA+aqAuVPQvWDi7DyivlIoXhvI6wJuFVG/1kxK/aMawwpY/VyifxIh9xoy1XOYViBaBQSJkz9RKDaK0rd7CbsOkI7rdxcWi58VlHZ2EsWDhLqnzNnsBapvFexPOgSr0LzSDMRZO8w/NQgGKL/VCBXlvxH0qOjXBXwTEYTA+t9qSsDuNIo7hfJBwN3UiC8G4A9XHPDsJPwiwFwbFLcai7+UE+skooAMmGL/q9cabhXhhUD1lUEIEs1rie6Zh9nRbzJ/JVFfA2OloA+UTEsrsPiFxOY/HiBbhdkrjfpKQjqB+lsygcLLyWe2+IL3VzBAfSXgPhog7guGHh0EQqdR3QnMvmFCY6gjqjeK/ktvMP9KoP3YQh0URBRovmLf6snPkzRpkDj9Ewk7l/DzgJM/k4iC9xkkmdbzfwPYWqF+w5RbsxdAFCh2AlFI1G8F+0bXEed/JMmcL4D6WqL5FqhvAEQBNXKds1cS/fOAxRe8DgxfEVh8Sdmy7gVO/kShuqNHdfkl2TDhBOZfpYCbU4GTv0TyKUUIK7H8jPs2nhA8lQ8MTWpec2A++xaAIOAsNpLgJAioXqK6ljj7M4/9c9aiXP4BwY68M1i8ovqhuUqSwMQyD5cei88VyvuIYiNRbIDFVzFJTyWaNxHmQBl1sZGwq4jlF/TNmj3P5enPeAx2xX2EiqjfSJx85hEF+w+rW4LNp3/gsf2Ix606BjPVbyVm3/D+NIejhLd76bH+dxLVHY+52FNaWOwom1/+gtJmJgELrP/SY/+BQLElWJh/RVB68jm9cIsvI0wH2AWlwlEJLL7kYLtM7Ojq8wDdAv0FsPwFAeXqC6YULb/yGE4kwVFgOFpUQPOG3l56biNe/n6HcWHIwp9EVDdANAKrLwIO75NFr2+oeij2EeU9Jo9jTsWVKRCKQUECJ194NG8C2sukbOgJEIotMJwJLF4FjEuB5SuPwzOJ079w2L+UmH8TsPqFRXepUN2RYZUOaK4Tu5kSk4czwe187lHfBjJ8KzkloC6+8RjWErM39BdW9xGH5wKmA85/1kNa9k02NxHdOQe4DG5KFS4lq1P6M4HmOqK+84iSssn+XODkU8tQK00Fw+yth6tl8pcDy1eevZ8XAssvPapbh/FEY/bGs9JlLtHcsD/V1wKLrwmAdB+x+NoBUmDxteXkUEEJLgS3U24C7ILbWv/5CD0AZoho3jAJVKVkXD1SBVHsI6oNB6zVvUf14OFKOV0300aUGw+TgJQvgOrOY/9C8zoLTjDMrjz6c4n5tw4iCpQbj/6UgKl5a2EOAXrk9XeVxOzKQnoB5YDqxtIDWEvUNxZRS/RnEmc/7zGuNOZfD+jODWZvXPL5SkhPZn31+QA3Y5BTfW1Rv+3haw0BgerWon2i0/Uh2C72DF5Cku0WB4/9ewazK4dxoTD7ZsDuByXm31pUbzuMJwXqqwGH5xUneUYCgeFEob6xUCPQnWnMXltUbzomy54Y6C6iuh3hGvr1yusW7TOuwxyYvioDZbdqpLzY1wbldYfuRYX6TYfxrEDzxQZ2XaO6GQDB51h1M6A/L1HcW5iHDrp1sKsCxcOI4axA9foAvyihDxa+0Sjue5iHAaE2cI2GHjyK+x5qDFCdhRwDzNstIBV0ayE7S/Fa6xAqDV9r+FKiuGkhO4doFIrbA/ysgGotZO8guxHCRQgpIA8jkIKDpIuQLkA9dFA20hNZaMie2RNy1yE2JRNiHTtk1bYlSHMeQkiIfmSVSNtTcisERD9C7FsIISC6AXHeQG72QFlADiOfpe0A+AC579mW1Y8Q3UCwJgWwO0Bk8DbyHoRMNSW5QqQf+DfrEPuRLOVoyUxay0RYKckSpqqRifUM/K6NXZcUORGQijbPiInZjM6nvsu/Akw9ChgSQvzKOpLJLxrx/0kK+zn+9PVPf/rT/+lvvYJfw/Iv/vv/4afv6U9+7ev9zP3xb/zYgO+5FPa9n6ziP/s//hPc2hm2rsZpcZj+FqLAm2GBpR4QIPAw1iiVw5tugRAFCuVRKQspIkIUmOkRr/ZrXNY7vN/c44vDGa4OS3yyusbGVui9wcFy6n5dtmi0xRfbU6yrDrddg99av8V1PwcA7McSJ2WHh6HGy8Ud9rZE7w0qZbEqetigsLcl3rRzLIsBRnloEVAoh81QY28LzM0IISJOyg57W2I/ljiv9/hyc4rfPrvCz+8u8WS2R+cMWmtgZMD1do7TxQGrkttwQaKzBufNAdYrGOVhvcJ9X0OKiJOqw+A1OmsgRMS8GLHpK/ggYFTA6BSeLnb4ZrPCohogk5avdxo/ObvC/3P1Hj4+vcFf3DyBUR6lcTgMBQrt0I8GPvV2/u7LX+CzzTnPTV+iLixGp+CDxPn8gK9uTlBXFoX2ECLCeYkn8z12YwklIm52M6znLbrRQMmIEIFZYXHf1vjx+Vv82dtLPFnusekqaBWw2deIEVjMetTG4f5QQwjgcrnDzX6GrjfQOkCpgHHUeHl+j7u2Rm0cdj1n73Q6V7vbGcxshJQxJWYHGOWxP1RYrw5QMuBuO8OsHjA6DaM8pAzY7WucnezRjwaD1XBOYjXvoWTA9e0CT8632BxqxCjgrOKsn4g4XR1w/dUa9XkLISLabYUPXtzi6+s1itIybOpQwJQOxni0+xLRS8jCo65HzMqRDHSncfp0g/u7OXTBeFMhANsZ6MrCGA+tAg5tCQGgaQbsNjVWJy20Cti1JUIQkDJi7OhliXsNtbLH54AXECqiqkdYqzBvBuz2NepmQN8VCEEieIGishACaKoB/WjQdwWUCtPnFFHAd2TMY6qraE46dHtei2o2Yhw1BACpAoKXcL2GkBFCBcQgED1nMZtVh25XIXoBWXrK4R0Z63I2YtiXUKWnxaTTkJVDOBhAB4giIHpBNrf0CJ2GnlumSI8SUBFy5rjOXgElO2pjp6CWFn5nIGcWwSrACfaiApAmAG9L9qw2nonSEux4XXgyxyXl7bJVlH2nAjYxCsSFo6RfREBFHg/wiP2MZOUFAE0trugk+1tF+rsA92dQfE1WVwQy13E9AlvDkK4qQLQpalaQpYMAwsxTEl8FqOUIv6GUf+pBdUmGmVjkqCNi5WFuzNR5mpl/1TEsCjrSy36QCGVi7PvE9GafomGIl2wp44cA1QUhMXAjJs+56hjoFKrACbqerDVltgJuESB7OcmS834Hk7sm6XUXTsDNw7Q+RJEYl2MX6CQ3dSJN4GDyR2aZqUznQbjEqC5CksuLSYbOa8j1uCZO8tSYw6/E8e9RJpAc6cuOmpMGURx90MHESQIt07WJmhLoqJFkqzElcaYws2VOP80sKn2cWdqeK3ByTROAiRnObG3uDIxJ4uzqiGLHypNcFZTPWw7deuwdzp2sj73ZuUsyByypniFQmf2VHpADz0++X+2cDLBKsnhfcVKEUktMvalyxOQRzv2gWQKcE2qlTfLzFJgUDIBHkwmImPzEU4qr53tyr+s73Z1I0nCLdypyRIyJqWYicjCUoucMhFCk5OKYzkvyasskhZ+CuYZ3uzpDSsXN51GnGhYm7KYEbUu5su6zB5me2CjEsQvTPuoCBhCUmGpYgibwj5KBTAAgPZOBbZ2k6inBlucw2YaSNFoPya9sGE6VPxe8L46VN/kekwm8ky2Nkxf32O2bZNBJ+pz7P2mdoFSY30FH7yW3JyaWMRi+ZvKqjiFVGTEdmz73mLo2MYUMRSGgOjcFM+X6Fr0bKZ9VyesZwXRbxd/lnszco4lAf+XUJZp7MFONiXCU54YURJTlu6HSyZqV9iHJdKfF+aNM9nG4T14e4QFh3fE1j9Nlw6P3JnAZH/tHY8A73ZvAL/suHy/5b/8eYTZ5PXEY/sbX/qrl74QUVp7F3yv+s1/7en9/+N9/48cGfM+BZf3D5/En/+qf4m4zg/i6ZhAPAHPRYTwUEJ2CyIXgVQCKAH1j4GcB5Y2CXQQyD6nsXh4U6zTqVHpexslrk316UQB+5SCshHmQ7DVsOHAYLh2aLzWGUw6EqmsGP7TPA8p7if65hb7X9BqtA7dVALkGwlURbklJYjSYUgWnAV7ycg5nHtVbymLcjIMI4Y4DGDejZG84ZVjPuE7eqgMHEeOaPj67iDj2DaYZ+Q3ZBek5SAP4gM4F26GMDMpJ4SHVG4nuaUD9hpI7e+rJrNVx8jCuP7xH+4fnadBFBs3OOZssnJj8RAAHDMNpTIPLNDh5oAeuf+Yw/0JjXKTQozS+Dialq4Lno3nNig7f8Pj0gQmsZsdU1DyYcsuA+ltFqWAEv5CtmPr9crBMFPQnjcujbFMNmAZMcuQ1Nlt6VaNJg7jEMmVvWnUj0D3h9bInHuU1K2T6M+4bt8EHdLERU5pn0BwI5QAiN4+T7LL5WmI4o4fRlwwPyv4+XwC5XoIJhekcpw4/u+C58iUm2STAwUZ/FlHeiel94zqieks2Loc1qTHJACWlkWQzGBpkF+lDGjCFC+ValtnXSUa2ICCYfQ2MJyktteHgsdimDkzQ36p6MdWM+BqYfRUxnJJxq9/yO2xYc2CYA3PygC4npbK2hf/ev4yobij9czXXU96zkHzM4UCa0s35lxK6PXoRxyWPRbeUd+qOQTzVTQruMUDxwHOf00Dz4DkvvqI3Mfef5loXXyJ1EabB6UApoV1w8K939KDKkQO+XA2BCLTPBKpbrienruoMTMSjYKrDcX/o+eM1rm7JBvYXwOLLiO5CYPY6oH0iYQ4pdKbm8bjqWHWSz3ceEJrdcZDORFj+XD7E6fiA5DVcpGRDYApEWr4K2L6UUy+knbO6pdikkKCnXFeUZNl8yUTU8oEdkObA4yl2cUohHVcCZe7KFMd7i/tBmaca48TW5uMDjomfvuIxqhxoFBhoJJJ8c5xTJsteUZ6v3G0aJb2Qh+cSqgNmbzz6tUT1wOCg+oY+yXw+uwsJs48TGLEzDrBVT1lmDpMpdvGd50NOjM3SUOFToFRJ5i5LeKMkwDFtCtpKn5XiEKY0VURMnZO6YyelL9Jn7jbCp/RWdhXmShmer9mVx+EyhdB4MoX9WqHYEUTYhrUh3GfJAKVTiWJL72T2YorAZFYCswjTklVUY0B7rlHfeuRaGzny89ueKzQ3rL7wJeWpwjO0yBcyPVdYrWEOyd84JBAmj95RSnIVTMcO0WIXJkDhKlaMtE8U5t+6KVSLIFROoEaEBHIseyqDEUBgb2YGTEGRWXQNg44QI1yj6OctJcqNn3yWZh+mkKDhVMPs2SWJkNJhLX2TauCxmr1D1AI2eSejBMzOwS40dOsnGWrxQC/deFIQTCWQpQ8OvtHpGUhWVO8thrOKfyspRzWtg2odhrMK0h4B0ePJE3PfE9wrCbukJ9TVCrp1ZBlT6BKrzkb2UCoxMYhRElDJkT/7Sk+MpRjDBKxiIVkXEiKEDUBKj1W7AX5RTqAs14P4KcWXNSUx9XQKFyawQwktOzVzNYmfFVAPLaAkpaXWI9QGctMyMAcgyw+CtGg0JaRSQuQakiRvFW3PehEAufZDDJYhQNnjWBiIYeR6RjvJUidg/Oj3U0JsBqNaQRw6Ar2mpszVPZK6ftdjCZDRfAwaUz1J7rOMyVMppEQ8HI8Z1tFPGSOE1ojO/fWJr+kc/Y2psI+W0Pe/8m9/0/L3wPI//PL99lgqj//6gz/E//nqH+JORMwqi8O2wmreYX1+h04Rr1QAACAASURBVE//+D3MP9zQg7it8eR8i8NpgcOmxmgFZ8Ibj3Ix4CdPX+Pz+zM8nMwRnUB90uPJ4oCvPr8gaCsDLl484Mlsj0I6/LtvniPsG4zvOcwuD+h7A+EkuhcC9bM92rsGbR2gNwr6skXczPD85S2+Deco1j0waIwLQOqIorTo3jZYv7fBoSsxokL9pEUIAuNNTUB8Z+Df7xEGhafP73FVnAHgzL2+6OG/buBPLWAlhBXo5w71eYtuXSCOEggC9klE9aqAft6ibVJnQunJdgR6L7u5gVoP+IcfvML//UefIGaWxAuYBwXzyRbPFwd8+ekT/IOfvMKffPoequWATjSIC4cPXtziS3kBtWMf5/Jij/OmxV88dWRfqgBhJfRZB/9qBvFyD/vVDOFihH5dMEH1RYf+roI+7SFlxPB1A18HnL//gNuwhj7rMLytoc4HxP+3vXcPsjU7y/t+73ff19597z73uWokgSRkGwkndmHkSGCrgD9IFYaKSYzjxBUTTDlJQagC56+QOGUHVzlOKOzIcVzYDiE2oRxjIC6oIkYICdB1ZjSa0cy5n773vn3XtfLHu76ve0ZSSfKcOUdnZj1VXd370nuvb+1v773e9Tzv89zssfHOPe7entD2K86DBEQjPIKlW0j0NZ5ktDOlLCOaOuTC2in3ptvUuyW9Ua4s2zKi6UdUEzVcavfFosOIer2mt7ok/OiYxUXjiryG3u0IdgvM5YZymjBYW7I2WHDzM9uYlRqZRa7vSSg3GrL1JfW9PsXFisLCZHPG8Z0R4SwkKIVqpSGoIordCmpRx99LJXYR0ttasDFYcu9zm0yeOGR+us7gHUecvjQhOdIFWLEKxeMFUVZRTVNkEZIeBFz99pd57tmLxCeh9suhsragUoOqAjA9S7IfUq2qE140F5L3HrE46lOYhHrgTAxiy/jZiPxqwfb2CUe/v0lyJDTbJUWZUD+WK5OYhyoPXymxTYBdhkwfDxjcCFheaEi2FyyLEfVIx1Ot1RBYws8lzJ4pSW7FVBNDBYTzgGgp5JdKwjyhnFh9nSTCxJZytyQ4VkmT9hSe9Rb2bkWYp+dUnxlgA5i884DDF9aAgHxdo1qCWnsMlxdU0smHD5gfDclnGVFfmD9RkV2PyXdropOQ5U5D73bIchvk8Tm5HegGwKQmPYyZXbW6iJw0hKOK5sStxAXiSUF+mBEf64aMSlWFamxohobsVkRQaeF6+kwNsSEeltSA/dxQ5bfjtrjTwqHYrpEmQiwsL9aEM5Up926EmEQ3JuoVw+j5kGJNNwSqNdOxYP27ActNKB7PkSZjebVicCtkuWXhnlCsWd2MAn0dktYUS3sty2sF2XMZYoR8Xce2eLzUjNqNCvucSshbBqx/B47e1UAA/ZcjwlIo1i1TGzC/2pCcBhRrQr5hMJk62Q5fCSjWNfg73zSMXgoox7C4UjP+XMRy92yTRQycPgHxidt02tXNmvQIptfUmXn+ZMnq78Ust9XoqnlmhvmDoWZYOgdpk1h6d3VsUgv929qH2vSU4av7tts1aHvgBre06J5f0A3H6DjEJDrW8mqDmIDZFQieDzh6uyX+mDC7ok7V0QLmlyy9O2oeFS20z0/7RY0ydOjm1NofhM6kRjcFqqEWcq1jdDzXjRKTwjSE5FRluPlaQL4Jclvdl6XRrNxiNWS5oxsYNtKNh9HLkAYB+Wqg0Ti1dDmu84taPExeUElvuaKbJb1D7cesRur2HC+0rzYshToVZpf1fFvs6DHt/I7G2iw3hOHN806zAfm69qRKA9mxbkAtNiNmlyFysU8aZ3HWg9k64lb9oJuHYiXQuA80ZqYaBtoeMRQGd5RJrgZnmcD5mvaulsuQcgX6d4V8Qxhe12xY0LaFPA+7PksbCqdXQ6KFdbEuyh6mU0NkDdNLEf09Qz4JKFaFtedqjdOZNcx2Q8bXLVU/ZLmp7qnzi7DzUWF2IXQ5uSp7n11KnCO4ZbkWkcyUdSzHwuCuypLLYUBfdL5Or+rzFqOAfiDkayHDm8bNRUg0b8g3YjVMWmgf6GIzYHQjoJgErk81IjuosKGw3AhJUmXXqr5QroQaZ7URUoxjxtdrirE6Ctf9gGhhCKpEi7VAWG7F9O7B7GLC5Pma08cSVp/PyTe0DzKoDbMLKb099XSoBxHFJKJ/uyBf6zvDokidi/sRSV1pT2o/ou6FBL2I+LTExmHHGFI31P2YMK8JrKWcpMSzinKS0GQBYi3Z3UI3KuKA6DjHpjEmCjSaJA4cS+dMiSapOs7GIU0aEh8tNe5kGVOvZOecdA3NKNWsz4WOKTycY8MQiULqlR5R3WBGmWZqAlgtVluTnmA6x4x7BCcWM8gIZmhBuiywWaJS2tDtXDonWBujt8cRbQYmvTaYOtT/qxvIX81Mds6tvVSltdZqbEjj2M5IXWbb+BDrDHgEcLIu5LzDq5PcShTpYwTBmWkQQOXyTs/lW35Zwqt1rX0T9CZaUHfbNykeacYyvXrJ7vz1HyHs1ZiDFFxIuo0NMqjhNCY9CCmuFRBYNcIpnOxMIBhU2JMEG6uDa7XWkN4Lu1iLthjIN40GycdQDwzpgbKdYa7sUcty6g69k0oFEE2lkxg1mS5cAOqRIZwF55wetfDp3QtY7OrjItC7rU6arTlHUCrTBzB6WXeO8zV1z0yOA/IrJdn1hMblGTY9NSWxkWMbE40qqYZnMrPWLbTJtJ9HZR1nC6Z4KiyeLOl/PmG525AehOTXCuLbCSbVx5tfqxl8MaIa6464GCg2G+2TzCyrnxVOnmyz9JxzZ4pzibRuF1U659FqbOjfVFfBVoYWlMpABoWONXGup638BYvKC3MhPdCFWVjIqxjQoKKLw1CjC2U7+neEfENZUKmUlW0X+wivYsuqoUatgLJZyXHgMuY00zHb19uqkUaJ9O9pD1O5aonmOp42fqNlFFu2oJV3lavKAM+eUAa8lSCJOZOemTZGwx17Kw8rVs8kUkGtDGIb8bLcsvTvSMcapcfqdhk0uF10XcAmp7oojRa6sGxdVotNZVnjmTqQtkYp5VgX3qBOp727uiBqnX7jKY6tcuYpkZqGmFgo1ujiMvQgXewIauQSz3ROsBp9Ug1xZiFnr2XddyzrhmX0koszkTNGLV+zDK8ra9VKolqGPDmBaqxjCHNlrKKFnlfLLX29WilZ3XMMYKDSuXLFxVw4a/1844wxbue3dTtt2VIT6RyHOZ3srhrTyR6TU2XtlInTz5z0SB8nWtruuMqRdLEe8VxZ1+RU3UODykWHOLOayDl5al4iDO4Y5rsBg1uGsLTMLoRd3EWTCsNbDbOLKoWNZ45lrHX+wqUu+EfXK6aXYqqRmqBUw/a94uIt5tbJNXXzIj7VcTbZ2XEHNd1xqWyUjlmbXdTokibVxfrKixUnj6k5Seto2jJ1dU861826L4xuNCzXg+4+UU7HSEnjnG5rSE9Nx1y1hkC9fY0qaSV5UW4oxsqiJFNDsRJ0DrhtfqPm8enY47maxrSup03q3m+lOqrGC0MTi0ZhtKd8owWRSfT/I5cvWA6cvJkzqWO8MJ1BTVDpYwYu21LsWRxKdqwMY5TrZ32Uux5NEZK5MkpLZwYTFfo5kB4b59AbdNEhJhKyk4agtOSrYSfXTKamez+35j7RwrBcDzuWtUmhd2iUTT5qKMehy7NU06HW9RggmalRVr4a0tuvaTJlmZQpM84xNlSGsR+44kN/rOjmRljqXNR9jfRoEi0WgsJ20sTWkMkk2ruZ7VeIhXw9JiwM8UyZPkRZRX19lB2u+gHR0pKc1B0bWo5DssO6iwUpxzFiLPUgJFq0TqKOOY6k+35sZbMqtzXOhCokPSioR7HKNEOhyULCoulY/VbOWffDMymmsc6ExpkTucW3DdWdVjc0IrL9knIlJjmpNDOzMt1j2kBlnsbJPqU5+241kWisSBJ2RVXTi2l6IfFx0TF8bR4lIsqaLtS9Fejkml2mZABSapFpA10vteY3YixBoUY50hiColYJKWjMSD8+ey7rmMbyrDiySYSJA4Ky6eSa0mgEiRQVGCAUmkFyFkXi3ofBsRZw4h7TJi5zUoSgqJSNSxONIEmirmdS8gKCAKlqmvURwfFcC6yywiaxMo9tH2M/U6ayff87eaqNlT0UY8/cX8HJX/WxbRIjixySWK/L20JUi0nqRpnFLD1jJbMzcx7yMwnpq5xd257FIDz7uzXbqWtlf12OpW3lsEVx5hzrzIW0L7M+G1P7XOfiUiQ8++zT21rznnNFY+s0+xXwqLvCjoN1+/7oQ/f9cX+t+oWHfmzwiBeWa2/ftM/87F9gnOa8Z3KDjx9eYbt/yqxK2V8OuTQ85rnDTWaLjA88/jy/ffMxPnjlWb4w2+CZ0V0+cXSZflQyrTJeeH6X7auHfPP6bf7NzWv86avP8Zs3nmSll/PUyh5HZY9ZlfLivXWaOmRn44Sl65+7MDllEJUcFz0uDE742G8/Q3B1zsbKjMYERIHh0uiYT9/dZXM0I68j8jKmakKe3rjHJ29c5ANPPsenD3fJq4iqCVkfLHj52R0uPLXHldERt+Yr9OOSKDA8d2cLEUscN3zLzg1uL1a4Ox0yn2Xsbpxw53DMkzt7PPfiLvGwZOB677b6UwKx3J6PmeUpu+NTosBwnPfYOxkSBJbN8YzjZcbs5pjRxVNW+0sARCxRYHjpzgZyI2P9m/e4+/IakwunHN8b8V3v+RS/v3+Ruy9s8Njbb3NvOiSLa/ZvTBi8FHHtu15ifzHg3r0V+mOVMYSB0R47YHbcozcqWBsuuHl9nbWdEwZJxfUb62xsn1LUIYtFShw35LOk6zs0tcBxwtZT+yRhw407q4SxIeuVLBcpTREyXF2wcP164c2Maq3Wfro85OK1fU7zlNlpD9sI/XHOzsqUL95eJwgtzUGK7TeM1+fMZhnmNObC4/vsHQ/pZRXGCsOsYO8zm+ryGxuyVxJMZOm/64jFp1bhqTnlIma0umB6WzWi8bGygpI1yFFMuLOkqQM216fce3EdmZQENzLq7ZKNzSmn84zwk0OWVyvtwxs0hKchdqvAzGLS9SV1HbK2MufweIg5SghyNRsK0oYkrWk+P6S+ULKxecre9VWi05D+08dEYUP96xucvlOl2sNnjpg9u4q9vMSUIelLKfl2DbElOoqoNypkFhJsFJj9lOxuSPmOJWuTGUef2qDeqMhuJMoirjbKuK4YbGqQrMEWobJvhxn96yGTb7/D7We3MKk64DYDw2T3lMWnV6mvatxOUAjNqNHNI7EMt+YslwncymjWaqhFx7bSIP0aWwVIHmLFEi4DzGZJ9nzG1p+8xaKKOf34hm4UjTVix4YWWS1VhvVS5gx5tLiotiuycYF5dki1ZoiPA6KZUKwbmnFDOskJf39EsaGbQPGJkL9zSXg9U+npabsppZsdoC6n2b2A5dWKeD/qNo/CUjcc8h2V24ebOdHzfZrMSZFTWDxZko4Kyj3VcwaTkmYaM/lUxPE31V2/YjQPCApXcIwMQSFES2F5pULywDHc0knbq8sFnMT0bodU754RfnZIfq0kuRlTbjRE05DkSLo8zmINECg2GuITNQbCQH6xoncj7vJum0ylwbNruhC0kcbI2CcWpJ8YkG849vBSw+B6SLGmmzD5VoNNLIOXIrJ9LZrnV5UlLld04WtD/f4a3AiYPtkweClkua0bT/nTOf3PZhQTy+iLWhgvdzUCaPwFZ5RUQzHRcVqB0SuG02uaBzm7ooxo3dNNjGihhfbpk5bRF/X6Lq6nVGl3u7Ewu2YwPcPaJ5RRbI2xEpdBOX0chl+Ek6etGp09qZJrk+pGyPhFdfYVo0VbPLVdAYtBN9EKy3xXug2geqjS9nbT0ER0GxNhoVLxNu/Uim7U5GswuKny/MUF3ThITpzM2m2g1D3deIsWQv+2xmAcvU3U6Xeu/YynTxtWnlVprYlgdkXo37JkR4bZxbDrnyxHri/V9ScO7mpG52JHmVQbwnIzIMytGgE59jWZWvI13fTJN3SjsWUxm0w3q6RRmX60tCwuCOmhHmvvnqEa6MZHOVKpc1i5DYBGc3O1kBSyfb2tWNFzo7dvXF6nFlhWVHK+9rmaw7dHrD6vWaety3E1EuJTbX9I5lrctxmfTaYbEto/aQgazSltZdTpictkzfVzx8RCb7/h6G0Rky/USKOFd9u/Gy+sc1wNXP+r0DtQeepyLWBwV1lQBEY36q44nV4MmbiNGiuw+nzJ9HJCf68mKA0mDaj6AdlBzXIzJp7rHCSnNcUkYrEZML6uxXSYmy6vcrYTqbGRsZQrEYMbS5bbGTaA9KhmuRXrhmgN6XFNvhYxennJ8dN9Vl5YMruS0dvXIqYehqQHFeVKjHHxLm3vZ3pccXo1Y/yiGg+FuRYtxm0IJEcl9TDWDQI019REwunVmNXnCzUbsnTRKyqvVebRRtLJgFsXWrEQ5g3RrNR4E6s5ovFpSTWMieY1NlGGOZwV1KOUoG57MtUlOb4z7WStpp+obHlRqlPsosAMVaLb9JOu37LrnZwVmH5KMM+xWUwwyzH9TAvNXoIsS3WWXRTYQaZs4qJQ9nGQIfNcj2dtSHC67CJKbBio0ZDLzHQLPZXQArS5nFGoBfVAe2lkOu+YTX1TV0iWYkt3/8Z0LrFdkRmcKyars6Iavkxh+dWKyjdBjuVY1uz7ow/e98f9tfqfPPRjg0e8sFx/+4Zd+ekfAyt84Kln+cS9y6z1Fmz3T3n+aIuVNGdeJZRNyN71VZ586ja3jscMspIkbLhzOCbLKkQs64MF906HfNPObU6KHl+4s0mzDHn7E7dYVAl70wGboznX766S9UvG/Zy9oxHNIuLpx+7w/HMXePptt3hpbw1zfYCNLL2rU+YHfTZ2TziZ9pDAkiQ1cdgwX6asjeecLjKSSM1gev2CPI+xJiCK1cgmCCxNE1AWEYNhzuy4z2iyYDbN6A1KijwmCA1NEzAeLhlnBa88u026uyA/6BHOAux2wXi85PjmmLc9c5MX725QzRI2LxxT1SHTecbKaEEcGuZFwvpgwSvPbjO4PCWLa7aHU146WAOgLGLqaUywDEkvzSiWMaYOyIZqNrScpmTDkmIZc2XnkJevb0AZsHnliMOTAc1JwvbVQ0Qse5/dpJnUKt/NGqI7CdW2bmNLoLmiQVZjlhHxuKCpQkweIbEh7lXUVUj0xYxySwvFIDZEca1mM1ZlmPFKQXWSMt6ZcnpnRH9zznKWYhcRZI0zX4kgMkT9GuPMY8w8JlnNKY9TNWw5b/SSGMgDgnHV3TccVWpAM49gUmLrAIkNUdxQLWLiQUl1nEFgyVZz8uOMeFRQHWdE45K6CAkPY9gp1BxmGnX5qlFaU+cxtgrAQHSi0s+Wsdl82z57hyNdtFvBLkOkCGBSqQzaYXP3hIOjIaYMoQxI9kLKLY0SSe5ElJsurzXVAiDbWJIfZVrMpQ0UoRqouEiTZrvAGiF0+aw2sgS5Fhj1uFEDl16D5CE0QrS1pDpKO9VANA1p+pr5KosQO6jpTXKW05TgKO4MOYzLW7WDhmg/dhEXej2xJb4bq6nIPKDYrLUXOjHER67Xt7XoBzXQcYYt8YmTSe+WWoguVJ4TLYVorgVYdOiK1V5NcC+FQOe9GWgRHJ8EFBuNM5HRBZBJbGfOEpZCsWq0D68SmtWK6CCm2S6JbiU0mSoV6p4uoPNNZcHLVS0E67E+djgPaHpGnX4zZdfPsx42VjZf2RhnZFMqAy9GOtOVNnu1zQ1t+4ul1oW3idzcjusuT7fYaIgWAU1iyfaDTk568nRDNDszwmnz+lp2LSyFamCVnah18R8Urj91rmoOAn0tkpOAOrOdGU411p7fYk2LPhMr8xYupeupa3qWaKa3JVOhmKjKoC04qpEqHuKZdP3qJlb2UKxjfsfak1msufiZQhnl2v1f26/ZpHQ5qCah61MMc1yB2zJTdMWmSZRxr/t6/IFTJRSTM6OdtsddGmXjW/VCNXLFbvDqAqpJXMblawxxopyuN7jNlT3f04vQKUXSQ53LckU69r5VPkQLLeLqnnTKCnGmNW1fvUm077l3T588XCpTHM/UVCVcag5stNTiPZpDa2jUMu6AKxaUSSXQ86ftGbai/dyteU6TnGfElcU2IQxvG8qBY+qcxDoslCVPD7RAjpbKfLdqgyjXAg6r/bvRUrNHi7Ey1eVYC9jOWyDSy22PYmsmpIY+Kk3t+u4TtwnhFAliXO6sW0ufqU/0mIKKjhms+5r7aUI6Sa/mhEo3B1Hh3p+hEDSaj2piXA80r2K4257O1ninjZ1R4x7H8DZnxj1RrkVqey607G6TKtPfKibqXtAx8tgzoyBw74tQz53k1FANA0wI/T0tePV8aShXImd0pKyzifQYbaBsMtapDCLpej5tJISFso91L+x6OZssJDk51yNaW5eVadxYpGNvbaBmOtJoH2t8WmHjQPMzoYsXqUdxxxRLbQnzGhMFXV8mgZONhgFBUasbcdFAbZQN7cWEs5J6JSXM6zMTnqKBUJyja6XZl6Eged3lYLb9l63pjo1DqI1KUutGi8hlqZLYvDzH8p3JWV9lzNNKWONIGc6q1r7QJNaezJaBdMZCNMo6E4gyoC1ilcC+KtvSGJXNtsVhXSuLWRSddLW7zRgkDF/NNp7ro2wluK9FW6NotImO1Vbll9zva8U3SmH5vuDfu++P++vmn37VYxOR7wR+FgiBn7fW/sz9Hkfw1e/yjYvahPT7BePRgtJEfOjS5xglOfeWI7YGM962cpdeXHFwOGS0M+X2yZi3b93l0uiY2gR869WXubJ6xNXVI165tU4cNQyiks3ejA8/8ylGG3MCsWz0ZnzrxVdYy+b0hwUisJot2ZjM+La3f4EwMPS31ZH28a0DmlHDd/zxTzHMCq5e3WOc5bz3ynXqKuTq6hH9pKKflaykOZdXj5kvUuKkpp9UDPsF/X7BZLhgbbign5Y8sblPmlU8vb7H6voUY4WtjVOe3rjHU7v3uLJxRBgaTk77XBoeY4cN/axAioD46pxve+IlAMYXplzsn7AyWvL047e5tnLIe7Zv8vTuPTYHcw5PBjy1vscrd9a48PQeG8M57926zt3ZiAuTU+o6JEkrXeSvlSz3+wxGOSxD1kZzhr0CjKgz7cqCg7nGnEQrJVlU857LN3j3O16mrEPu3Fxl5533oAgY7UwZTRaET8y4fOGQ5GbMhZ0jwkHF+tqMyfaU916+gckjdi4dYo3w1PYevX5J/5uPwAgXdo5IsxIReM9j11lZndPbWJD1StYuHjObZqRr6jRqq4DhzgyMkPYr/sg7XyQeloRRQ9Yr2Vyfap9faJCeOotevbrHzuYJwTLg2972BWRY8y1Xr5NkNReu7WNqQYoQO6zpjwoktLzr6k3qImJt65TJaEm2vuTClQPyacp4c0Yvqxhuz2iOUoLIwG7Ok7v3SF9MwcLW1gnRzZTJSB1CokGFZA3NdoGZVJhBw9Yze9y9vooElicv7PGOK7cJBjXBeslovIQyILuRIIlh8VubGMfgbl4+orxYsbp7yuaFY/rvOiJYBvQuTbn6+D2CZUCxjBltzYhXCqK9RN1LRw2jS6fUGxVhrJqu7F4AKxWPP3UHMbDxzfdI9kJsYgiPYnUnjSyPb++zceWY6MKC/vYcubIguxdy7do9bGKQyLI86NF/PmX3Hfcww5pwZ0mwDLHDhiBtkCsLdRtdK5HUqFvrY3Oa1VozPCclMimVGb2yhJVKnTMvLAgLQVZKxrtTonlAuVUz+qaDrmAfXj1B1guqrYr8qZz+S+qS2hqAIRa7VWAj6F/X4r7YbpTpBJrM0AwbbGKox4b6Qkm+U0NkGbwS0KxXyDzChpbk5RRpYOXJIxYXG4qtmuWlBtM3VGND7+qUetIQTUo15bKoy+lSMD1DPW5oRg31Ss3o6SPNVF2vqC8VOg+F9urWQ8vgvfvUY0O+02ASS/P2me6691AJWik0PYNcXujifNQ4ibZQbDVqCNazWGdmlm82HL+70jxUcPmbGqkBynyaFKrBWc5p685aXqywGyXV2DK6ekJyFJCcaLHcf+YYE6vhV7YfsLiir2k90PYCMdo7jOh9orlQrhrqkZP+XluCwPxaTbFhKbZrkmPt0SwnajpWbNYsr1bOOROyfZhfaYimyoK1svp4LuRPFix2LNVY5fkmtZSr2meqsv4z6bjUai4WuGig5dWKYqvGRJDtaYGpMRJalCy3jRrxrFjqnpp/tQXlcscwuKWbAK1c/7zxVlBBb8+SnOh4Ftcq5heNRmucWuIZzC8ZZWPXXYGU6rjqHkyvwezqmXGUFm9OIhproVAN3LGdWKohzC8bygkuQkdfj+WWFqj5plAPHANcaR7m/ALMd7UfsUlhfsF28v/jd2uV1fScMVJlWey6YnShzHTT06K/Gug4y7H+b7GqvahtK8DpVe1zXG4L8wvC6ROWxbZQZ9D0tMezXNFolmqgvZ2nV4Pudbah3p6vqcS5mAi9PUsxEbJjQ3ZsCQuVorfGR6dP6CZJvmldG4voGLaExa7mlqanhig3TK+obLkc63sjnhuV6uMMj2I1wlpsK2M5u6A9n1HuHjvV4wKVoC83AhZbQde7WQ20UG6dYU2om0vlUIuXcqQ9n9LAYkNlyjaEZKamXMUoIJkb5rsh5VDNg0yk/ah1Jk5OrdeVo4DZhZDlmo5HJd3intsy3w46N+PWqdUGuHzZkKqvfZ/LzZjkpKYcBGR7hZon5dp/ChBPGzWKSoVqEFCNQhbbkZNQu948gWoUQqCv7WI3ZXo1042EeY2JA8qVmGoYUY0imiwg30goJzGHz6Q6hpbZTEPCvCY+yqnGMcV6SriomV1I3XmqRkE20cdsehHL7ZRq5CS9FgiF5U6PepIqY2gsNg277EupGo0fcS60phfp36FAo/cVa7FxQLEzxGQR9aSHfZVhKQAAG5ZJREFU6SdQG8xQ4+xMXx/f9hKCec7yygpm3CO/vIIZZJQXxuRXJphhT5nGKMQOe9h+inWSWrM+1qLSSXDr7Qn17irN5or+7K7RbE/09Rv2taCMo7NCtZfpTxgivUwjSQJXiIIWnuL6KM2rI0S+nDusPcd+2sZ8yU8bb2JbJvSrMJoeXxkiEgJ/B/gu4B3AnxORd9z353mUGcvh0zv2ff/LD7A/G3DqGMH3XL7B5w82WeYxaVqzXCY0eUQQNzx+YZ+X760hgaUuQyS0DPoF80WKbYSVlQWzRUq1jJFFRLhadFEKq6MFR9M+pgl4fHuflw/WKOZJFzWwNplxfNqnyiONK8gawtBQnaQkqznV3R7vevcX+dTHH4PNgiSryfd7iBHSrQV1FdKUIRIazDxm9cIJx8cDAF34CkhkwAjWiMYsLCOCQUWUNJQz1b8nt2OCt80o7vbp7c7Ilwm2EX2MWhfQ2eaS/KAHoSXs1xqT0EYOzGL90h3WhHcSZZQiZR3CWUAzaojHJXUVIvsJpq/sljRCuFbQHKb6v/cSmp2C9AsZH/ru3+X//uw3w16KjTXzMH8qJ85qmjokuJ45ExYXt9BXQ49sklPc6WNDS3Yv6sLn63GjcrBeQ3xXWR87qbB5CKEluxGTX6yQUiMXkoOQ6mKpY+qrWQmhRbKGYD/BbJYkWUVxlBGeRhBo32y+o6xbNHdxAs5xN5rqIsS6qIT0IKTYaHsINC6hXq276AjJGphFRLOAuqfPbVND4Mx66g3XvB4Z5DCh7Rfd/jdw9/04GajRCIvIwqAmeTmlvFoQ3k0IH5vRvDTUPsCBGm+UOzXRUaRFhnP3TQ+F2WO1MmCzgMEtYXbFEM8C8q2aaOqyKAe6CIynumve9Cz1esX4kwmLXYuNz6IIyolh44lDTj++QbQQ5k+XhAcxNtbnbd1rg4sLeHHgHJTpmoyiK3PMi8OOeTGpdS6zmgtqIp13adQhuGXd+rfUDdfElv5t3RVfXNad0MHLUcdQVEPXl9vXRXo0V+ajvlgQv5J2zGK5akmOhGpF+5LHL8L++7RPOCjPGLL0QIugVlKI6AK3XG+YfDri5G0NyZEWgNmBSvKi+VkR14a555cq0jvRmcuvc2wWo69h7Hq6Q8fwSS3kOzXRLHTMmWMnY+v6oXWuooV0PeI2OGOc2j7roFAmaX5RXX/rYcuAaK9x3VP2bnBDyLdUUtrGKxjnHtrKEPN1J+21OOdV7fcevhR0rqvFmuvrTdpecmUI25iGYlXnMJ4qO5OvK7tYD7T/VRqYX7bUw4b+9UgdjXtnURLiXJmbzLm7rmkhZ2K3wE00asLEygyen5NyrK/p8BWVpvZv6UJde4DpIjCqoY4v33T9ynt6stY9XB+oEE9VuqkSO+f+KefkqnnL1urrkO0rK6eSO3W0Vaa0jSXRMXQ9wa43tVjXfmaTKPPZu4tzqtT5bnrKrmWHytbMd9RptZjoeKSG9ERZsWooXb9z3Ve2NjsylENdrDcp7rNd+4XrnhZRYp2kN6ZjKnGSXdDir3/XUPWEaqw99SsvV0wvRl3/Zd3XIrTtF46WltqxiP17hqqvPZgqCXXnnQuvb2LtC12uB/TvmY5dHd7SXMkmhcFtdaFtxxgtrBrcZFq0VX1X6C0sxVjoHap5z2IjcNmXrsCaqFFRkzhm2Wqvbcua28AZDbVxG6l0ShITtlLms77ZJtY4j2qge/rlWEimLuIiOutrLSb6/o7n2pdbZ663d2ZIjmuWWwlVX91rW3ZQI2UaTBqoQ60rOPV/1VEWUfltvNDjCxrnrWAs0aLBJEHH8IWFvlgmko5FzPYKqlFMPQhJjmuqscpFw8Iqg2j1uBHNyg0LZRuze0uafkyTau9sUBq3uRWSHpVdb2or1w0LZejqLHRRHxrpkUy1R7IeRESzStnBNCTZW9IME0wSEJRnPahiIJqVnatsULlCz2ikiNSmk382vYj4RHtGpWgw/VjZyDgkqE3nPtvmQOprFhAuK+phogynQHiypNocEhaNMpmzQh1j+wnBVOWsUhtMEhHkOrYuTsRYdXctyrMCte29bOWoLSNZ1dgs1f7ONFFn2V6qxzNfam9mICp9DZx5D2iupHNwldcayJyvB8pKi7+W/QwCOpdYQJIYWxRIHGPz4lU9krYs1YwnDM+iQZxhjy3LM/YROifYL3GFhS9hNLu/H/G4kbGs2ffJB+774361YxORbwP+urX2Q+7yTwBYa//b+zmOR7qw7D+1a7/3H36YL5ysU9YhJ9M+Ta76nWxYauFXBSTjgs0VzTksy4i61L6DOKkppinJsOTC2glffGUTiQ0b61P2X1hnePWE6VEfmUZII6SXZ4ShYbW/5PorG8rchRacdDA8jmhWa3rjnLKMsPcybKALcWKj7qpWCI4jzIr2hWGFbN0VetD13JnUqDxtXGNr0aIwVslgvLXEfkEX6e39pBZMvyGchZiNEruMNGtuHmumXc8w3JgzO+iT3oopLlTIMlT5nFFXR5yMrVlpCGZhJ+0KC9HCL7SaYzeuWd2ccvzKRHPdxhXspfplmrqcuNq57gb2TL5XaIRLUAn1qCE6CbFXljQnCfFR2B0PgUVK3VUOKiEonPxN0MIwsSrxdZ9BNrLEx2qgZKOzCBTafLxYi5PGFYVWoOkZ7LBRxguQIugKpeQopNxo9DFdBl641DlqVhrtiStdken62aRR5obQEixDoqkWBtmhSvR0AacOiBoBIm7hq4vC5FjHGc/VLMqkWhDbyFKNDOlhSJNoEVGu2M6zKJ5pcdCaO7VSxsDl5pVjSzNoSPe0MM/2gm4uq7EaRbUh7yo/coVXX4sbNZXQjQXNymvllrpgr8bKKIULt3B150vd18LSpCpPbKWA+Zo+VnKsLJhJ0YJupMemi2r9n6Znu9dejHu+EdRDQ3wSdItUabS/rM0KVMmcLvzFOOOsQiWTbc9hNFfTnKA4k3xJu4ittf+sHLmYlbaQcOxJK4Fseu2ctbI/2+UAtkZKxhXYbY9eKwksVyz9uzovyx29TzyH5FjjNKIlnbyvSVTCGJ/qmNNDLTQ6Aydzdgzt72qot5lEiyIxWghGyzN5pXEmtUHlzJ4qPcbRdcN8R81v2miaLpPP6hiLNWF4QyNJWtMdE50ZSklNFzOj2YoaZ6KxHk6SuLBd/9p586CgUmMklcXiYnc0aqOYSFecimMH4cxsKsyVMWuL9NaYpzVMCaqzxatYVxTObJdRWPf0crTUyI/AxW3Y4Ex2CrwqX6/NzGsLjbBw2X+NdXE3Z1LKdhw2pHMflXNywuRUzYWyQ2WUQBf28dx2r5cu/PVYgxp6hw3zLe1jDEvrZJXSvTfaz/F6oGMDx1a6DQigy8rEqow0O7Bd4RLPrBr8jILuPR4vtDgyIV0xdJZ5iCtotIgFZdUWmwHR8mwOw8qqjDXSYtLEahzTJIGLS3ESWHsmXw0LNdEBuvd/VLg8SNd3Wo6CzhCqhZgzA5/WkClaGpXJuhiZ1lk3nhvKUUi+Kgzu6YPUqXSFcyspDZxplxpKafF39oSQHNcUq5EaQQGtSY5Y28lkm8QVfXPtA9TvBks1CNznSBtxoqY9TS/oxlr3AqL5WY9jmzsZ5g3VKCKe1k66qusdjBZsNpKu/zCojB5PFnSFextZYgPtVyzWU2eSpMcVn7qIj8a6TSXrWD+NTAkLQ1AbgmWNSSOVnhp339oVq0lI0BhMGHRjt5F0USrRvKJcSYjmNQTOxGhZY+MAE2qcCkbff+3cmjQkXFQ0/djJZFsJpmZCNsOEcF45s6CzXkrTSlBdPmNrFqTfB0F3OZyXGjnSaJEojVXToMa9vm0mpohe74yDbKrS1daZ1YqcGfNEIZ18tW4dUwP92xhlCts+RVcA2yhUthHUObZuIAqRvNR+SWP18UX0vm00iXN37YyDWofWVuLaoi0267r7n1fLV+2rWcPX/m/TnBWBbWFqTFeYvqrf0jnK6uHJuf/7MnXJ+cL1EZfCisi/BDbegIfOgPNZLD9nrf25c8/7fcB3Wmv/orv8HwDvs9b+lfs5iEe6sFx5Zts++Tf/IttDNaUZRgWzOiWShv3lkDhsWM/mLOqEZ2/u8EevvUwvrGiscHuxwqKKWUlzlrV+Y3/bxkv8ysvvJA4b4tCw1ltwlPeIA8Ol4TF7+ZCijggDQyBWf7CsZ3M+cfMSq6MFq9mSw2WfLNI34sG8z8Zwzt50iLWQLxJWVhakcc3V8REvn67Sjyv2ZgNCsYyygjSquTQ45nOH20yXKWlck5cxIpbJYMmd/RX6g4JeUtEYYa2/5MbhhEtrx9w6HmNMwKifd+PcOx4ShpamEZo6ZLIyp2pC4rAhiRoaExCIJYtq9mcDhlnBzmDKp2/uEojSEWlaa0xHEzDoF5zeGTHamepz9XIOTwdcWj/mped22X1ij9t3VtndOeLuwQqDQU5Vh2RJRT+puPnyOv2NBauDJXcOVgjChtEg5+hwqEH3rnEsSDSkPh6WVCcpwaBCQku/XzDdG7J98Yi711fJ1nKypKJqQpbzBFMHbGxOmS1T8lkCVhitzZnuD8hWCsoiIowa6oMejCpsEdJfW7A47GvxLxaZRgTrJePRgqKKyBfKCEdJQ3mYMdyZsZinhFFDtUh0rEUIVUCwDFh76pD9WytaNE4KZbJPYhjXXNo95PpLm/Q35yyOegzWlvTTkqOTAfWJRqWE0xC5qKuw+jQhXimoDzPijSVJUjM77CPzUJnBlRJTB2ds9jJk/eoR+zcmBMMKM1cWndgy3JirqdE8IjyJMFuF9phaCEYVZqZ9dUEuNJMaKULijSXlNEGKEAykOwvK6wOVRva0T5W5BjPLpETupZj1ClsEyhr3Gqi1p9MkqPnPMuw2QyQPtM+y1I0a6TVEtxLqCyVy7FbTFmxikUozZyV39x3UhHfTjokOl+5LyzlEm54hyIWg1s2RYOEMa1ZqosMIG1maUYOUAeEi0NiRQhfH5Vatr4N7rHq9IjyKlA1LdIMgOgmpJ8pOt4Vtk2kB1xaVTWa7XmJiVR3IUs2Pwpcy6ms5cjclPg3Id2vto50qU1qNz9yJm74ei7rhSlcwR3P3HD2dn7DUMdgQfSzHyrah7kHl+ianuuFjBg3xQeQ2PuwZc7pe0ftiQr5p1D10HuiGQXmWyRqUuuEiNZSbDcmeW6RZXKau7Xr94qkbc37W69mktmMS46m4HkBY7Dr5a4MzIlJJa3oQdBLUlo1vGeRooc+XHkjX89j0nNuzY22bTP+n7msPYzmxDF4RljvOzRt0rjPNzy1WLU3fkroNmfOZkV3frtsACEq3keFcl8NSN0K6DQ2jstnWCbllGcuJsuUtqxrmUE6cI7KLG2mzJquRGh21jGw8OytQyzGdW2x6pMV/UDlWt9bolKAQRte1j1D7B13f5uKMHY1nluW2dD2o6bH2UVYjd34njk02ep2JnOtzpn2PYeHmw7m/6mM7xi4V5yzbFrs6Jy0rq+eJMypqGSxpN7LcAtS4Inl5du60xXc1UAawSemckKOl7fKg26K3yVrHWUvb5xrPLYstNdvJDjWSpUm08A0q9/zuf9qNhWrQMmzOldixp21fpLJyQu9A3YBb12MxkE/aDQMt4KueOvZWfR2DCZXR7B1oUVesKLNqIo1sUUmrGv8kMy2uq74+ZrvBFDkmNV8J6B2pURLQGQi1DGOUGy3Icy2a2w2QJhHihek2Y7KDCpMGlKNQDaBm+n9iNOu0e70icf2sRl15XZZoNQhelUVa9QOSqT5GPNPCOaiUqdP8UTXOCfOGYj0hWhqaNCCe1jRZ2L0Hk+MS48x2gM7pFatFP8KrHWvzuru/dQWhNJZ4VnWMZutWi0GL99qxlFlIkDeOtVZ5aFDUumwJhSCvqYeJutXWBslrlbIGosVpGqlZUNhu/ljtzYyCrpfSRgE0VlnKLD7L1zRoFmb7t3OdlaI8K9iM65EUZSttGzXiGMvuOvc3zbki0c2ZLnbCM5fZJD4r9s7nXrYS1rYIBV4bC2JLHZv2Yn4Z050vI4/9cjhfdD7qheXDgi8svwaIyBR47mGP4y2GDWD/YQ/iLQY/5w8efs4fPPycP3j4OX/w8HP+4OHn/MHjG3XOr1prNx/2IB4GHpQUNrqfD/YQ8NxbdefhYUFEfs/P+YOFn/MHDz/nDx5+zh88/Jw/ePg5f/Dwc/7g4ef8GxIfA54SkceAm8D3Az9wv5/kUS8sPTw8PDw8PDw8PDw8PL4CrLW1iPwV4FfRuJG/b639zP1+Hl9Yenh4eHh4eHh4eHh4vIlhrf0XwL94I5/jkc6xBH7uq9/F4z7Dz/mDh5/zBw8/5w8efs4fPPycP3j4OX/w8HP+4OHn/C2KR9q8x8PDw8PDw8PDw8PDw+Ph41FnLD08PDw8PDw8PDw8PDweMnxh6eHh4eHh4eHh4eHh4fG68MgWliLynSLynIi8ICI//rDH82aBiFwWkX8tIp8Vkc+IyI+669dE5NdE5PPu96q7XkTkb7vX4ZMi8t6HewSPJkQkFJHfF5FfcZcfE5GPunn9JyKSuOtTd/kFd/u1hznuRxUiMhGRXxSRZ0XkcyLybf4cf2MhIj/mPlM+LSK/ICKZP8/vL0Tk74vIPRH59Lnrvu7zWkR+yN3/8yLyQw/jWB4VfIU5/xvus+WTIvJ/icjk3G0/4eb8ORH50Lnr/Zrma8SXm/Nzt/01EbEisuEu+/P8PuArzbmI/Ig71z8jIv/9uev9ef4WxSNZWIpICPwd4LuAdwB/TkTe8XBH9aZBDfw1a+07gPcD/5mb2x8HfsNa+xTwG+4y6GvwlPv5S8DfffBDflPgR4HPnbv83wF/y1r7JHAE/LC7/oeBI3f933L38/j68bPAv7TWPgO8G517f46/QRCRi8B/DvxRa+03oVbn348/z+83PgJ852uu+7rOaxFZA34aeB/wrcBPt8Wox5fFR/jSOf814Juste8Cngd+AsB9l34/8E73P/+T21T0a5qvDx/hS+ccEbkMfBB45dzV/jy/P/gIr5lzEflTwPcA77bWvhP4H9z1/jx/C+ORLCzRD4EXrLUvWmtL4B+jJ7fH64S19ra19hPu7ym64L6Izu8/cHf7B8D3ur+/B/jfrOJ3gImI7D7gYT/SEJFLwJ8Fft5dFuA7gF90d3ntfLevwy8CH3D39/gaISIrwJ8E/h6Atba01h7jz/E3GhHQE5EI6AO38ef5fYW19reAw9dc/fWe1x8Cfs1ae2itPUKLpC9ZxHsovtycW2v/lbW2dhd/B7jk/v4e4B9bawtr7UvAC+h6xq9pvg58hfMcdBPqvwLOu1L68/w+4CvM+V8GfsZaW7j73HPX+/P8LYxHtbC8CFw/d/mGu87jPsLJz74F+Ciwba297W66A2y7v/1r8frxP6JfhsZdXgeOzy1Mzs9pN9/u9hN3f4+vHY8Be8D/Kio//nkRGeDP8TcM1tqb6G72K2hBeQJ8HH+ePwh8vee1P9/vL/4C8P+4v/2cv0EQke8Bblpr//A1N/k5f+PwNPAnXLvCb4rIH3PX+zl/C+NRLSw93mCIyBD4P4G/aq09PX+b1Ywan1NzHyAiHwbuWWs//rDH8hZCBLwX+LvW2m8B5pzJAwF/jt9vOInZ96BF/QVggGcHHjj8ef1gISI/ibaX/KOHPZY3M0SkD/zXwE897LG8xRABa2jb1H8J/FOvLPF4VAvLm8Dlc5cvues87gNEJEaLyn9krf0ld/XdVv7nfreSB/9avD78O8B3i8gXUVnId6D9fxMnGYRXz2k33+72FeDgQQ74TYAbwA1r7Ufd5V9EC01/jr9x+NPAS9baPWttBfwSeu778/yNx9d7Xvvz/T5ARP5D4MPAD9qzwHA/528MnkA3rf7QfZdeAj4hIjv4OX8jcQP4JScz/l1UdbWBn/O3NB7VwvJjwFOijoIJ2iT8yw95TG8KuN2mvwd8zlr7N8/d9MtA65r2Q8A/P3f9n3fOa+8HTs7Jrjy+Cqy1P2GtvWStvYaex/+vtfYHgX8NfJ+722vnu30dvs/d3zMQXwestXeA6yLyNnfVB4DP4s/xNxKvAO8Xkb77jGnn3J/nbzy+3vP6V4EPisiqY5o/6K7z+BohIt+Jtjd8t7V2ce6mXwa+X9T1+DHUUOZ38Wua1wVr7aestVvW2mvuu/QG8F73We/P8zcO/wz4UwAi8jSQAPv48/ytDWvtI/kD/BnUbe0LwE8+7PG8WX6AfxeVSn0S+AP382fQ/qbfAD4P/Dqw5u4vqMvXF4BPoa6PD/04HsUf4NuBX3F/P45+EL8A/B9A6q7P3OUX3O2PP+xxP4o/wHuA33Pn+T8DVv05/obP+X8DPAt8GviHQOrP8/s+x7+A9rBW6OL6h/9tzmu0L/AF9/MfPezj+kb++Qpz/gLaS9Z+h/7P5+7/k27OnwO+69z1fk3zOub8Nbd/Edhwf/vz/A2ac7SQ/N/dZ/ongO84d39/nr9Ff8S90B4eHh4eHh4eHh4eHh4e/1Z4VKWwHh4eHh4eHh4eHh4eHt8g8IWlh4eHh4eHh4eHh4eHx+uCLyw9PDw8PDw8PDw8PDw8Xhd8Yenh4eHh4eHh4eHh4eHxuuALSw8PDw8PDw8PDw8PD4/XBV9Yenh4eHh8w0JE/j/3+5qI/MDDHo+Hh4eHh4fHl4cvLD08PDw8vmFhrf3j7s9rgC8sPTw8PDw8vkHhC0sPDw8Pj29YiMjM/fkzwJ8QkT8QkR8TkVBE/oaIfExEPiki/4m7/7eLyG+KyD8XkRdF5GdE5AdF5HdF5FMi8oS7378vIp8WkT8Ukd96WMfn4eHh4eHxZkH0sAfg4eHh4eHxNeDHgf/CWvthABH5S8CJtfaPiUgK/LaI/Ct333cDbwcOgReBn7fWfquI/CjwI8BfBX4K+JC19qaITB70wXh4eHh4eLzZ4BlLDw8PD49HER8E/ryI/AHwUWAdeMrd9jFr7W1rbQF8AWgLzk+hklqA3wY+IiL/MRA+sFF7eHh4eHi8SeEZSw8PDw+PRxEC/Ii19ldfdaXItwPFuavMucsG971nrf1PReR9wJ8FPi4if8Rae/CGj9rDw8PDw+NNCs9Yenh4eHg8CpgCo3OXfxX4yyISA4jI0yIy+FofTESesNZ+1Fr7U8AecPm+jtbDw8PDw+MtBs9Yenh4eHg8Cvgk0IjIHwIfAX4WlbV+QkQELQ6/9+t4vL8hIk+hzOdvAH94X0fr4eHh4eHxFoNYax/2GDw8PDw8PDw8PDw8PDweYXgprIeHh4eHh4eHh4eHh8frgi8sPTw8PDw8PDw8PDw8PF4XfGHp4eHh4eHh4eHh4eHh8brgC0sPDw8PDw8PDw8PDw+P1wVfWHp4eHh4eHh4eHh4eHi8LvjC0sPDw8PDw8PDw8PDw+N1wReWHh4eHh4eHh4eHh4eHq8L/z8JPtB5VvjafAAAAABJRU5ErkJggg==" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], - "source": [ - "evaluate_embeddings(ratings)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We can observe that some movies tend to be widely recommended or not recommended, whilst some other have more variance in their predicted score" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Neural Network (non-linear) Matrix Factorization\n", "\n", "We don't have to limit ourselves to the weights of the linear embedding layer for our user or item embeddings. We can have a more complex pipeline combining fully connected layers and non-linear activations." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "plot\n", - "\n", - "\n", - "user\n", - "\n", - "user\n", - "\n", - "\n", - "MLP_MF_emb_user_fwd\n", - "\n", - "MLP_MF_emb_user_fwd\n", - "\n", - "\n", - "MLP_MF_emb_user_fwd->user\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF_relu0\n", - "\n", - "MLP_MF_relu0\n", - "\n", - "\n", - "MLP_MF_relu0->MLP_MF_emb_user_fwd\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF_dense_user_fwd\n", - "\n", - "FullyConnected\n", - "64\n", - "\n", - "\n", - "MLP_MF_dense_user_fwd->MLP_MF_relu0\n", - "\n", - "\n", - "\n", - "\n", - "item\n", - "\n", - "item\n", - "\n", - "\n", - "MLP_MF_emb_item_fwd\n", - "\n", - "MLP_MF_emb_item_fwd\n", - "\n", - "\n", - "MLP_MF_emb_item_fwd->item\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF_relu1\n", - "\n", - "MLP_MF_relu1\n", - "\n", - "\n", - "MLP_MF_relu1->MLP_MF_emb_item_fwd\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF_dense_item_fwd\n", - "\n", - "FullyConnected\n", - "64\n", - "\n", - "\n", - "MLP_MF_dense_item_fwd->MLP_MF_relu1\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF__mul0\n", - "\n", - "MLP_MF__mul0\n", - "\n", - "\n", - "MLP_MF__mul0->MLP_MF_dense_user_fwd\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF__mul0->MLP_MF_dense_item_fwd\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF_sum0\n", - "\n", - "MLP_MF_sum0\n", - "\n", - "\n", - "MLP_MF_sum0->MLP_MF__mul0\n", - "\n", - "\n", - "\n", - "\n", - "MLP_MF_flatten0\n", - "\n", - "MLP_MF_flatten0\n", - "\n", - "\n", - "MLP_MF_flatten0->MLP_MF_sum0\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ "class MLPMatrixFactorization(gluon.HybridBlock):\n", " \n", " def __init__(self, k, hidden, max_user=max_user, max_item=max_item):\n", - " super(MLPMatrixFactorization, self).__init__(prefix='MLP_MF_')\n", + " super(MLPMatrixFactorization, self).__init__()\n", " \n", " # user feature lookup\n", - " with self.name_scope():\n", - " self.user_embedding = gluon.nn.Embedding(input_dim=max_user, output_dim = k, prefix='emb_user_') \n", - " self.user_mlp = gluon.nn.Dense(hidden, prefix='dense_user_')\n", + " self.user_embedding = gluon.nn.Embedding(input_dim=max_user, output_dim = k) \n", + " self.user_mlp = gluon.nn.Dense(hidden)\n", "\n", - " # item feature lookup\n", - " self.item_embedding = gluon.nn.Embedding(input_dim=max_item, output_dim = k, prefix='emb_item_') \n", - " self.item_mlp = gluon.nn.Dense(hidden, prefix='dense_item_')\n", + " # item feature lookup\n", + " self.item_embedding = gluon.nn.Embedding(input_dim=max_item, output_dim = k) \n", + " self.item_mlp = gluon.nn.Dense(hidden)\n", " \n", - " def hybrid_forward(self, F, user, item):\n", + " def forward(self, user, item):\n", " user_embeddings = self.user_embedding(user)\n", - " user_embeddings_relu = user_embeddings.relu()\n", + " user_embeddings_relu = npx.relu(user_embeddings)\n", " user_transformed = self.user_mlp(user_embeddings_relu)\n", " \n", " items_embeddings = self.item_embedding(item)\n", - " items_embeddings_relu = items_embeddings.relu()\n", + " items_embeddings_relu = npx.relu(items_embeddings)\n", " items_transformed = self.item_mlp(items_embeddings_relu)\n", " \n", " # predict by the inner product, which is elementwise product and then sum\n", @@ -783,16 +544,35 @@ "net2 = MLPMatrixFactorization(64, 64)\n", "net2.initialize(mx.init.Xavier(), ctx=ctx)\n", "mx.viz.plot_network(net2(mx.sym.var('user'), mx.sym.var('item')), node_attrs={\"fixedsize\":\"false\"})" - ] + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\n\n\n\n\nplot\n\n\nuser\n\nuser\n\n\nMLP_MF_emb_user_fwd\n\nMLP_MF_emb_user_fwd\n\n\nMLP_MF_emb_user_fwd->user\n\n\n\n\nMLP_MF_relu0\n\nMLP_MF_relu0\n\n\nMLP_MF_relu0->MLP_MF_emb_user_fwd\n\n\n\n\nMLP_MF_dense_user_fwd\n\nFullyConnected\n64\n\n\nMLP_MF_dense_user_fwd->MLP_MF_relu0\n\n\n\n\nitem\n\nitem\n\n\nMLP_MF_emb_item_fwd\n\nMLP_MF_emb_item_fwd\n\n\nMLP_MF_emb_item_fwd->item\n\n\n\n\nMLP_MF_relu1\n\nMLP_MF_relu1\n\n\nMLP_MF_relu1->MLP_MF_emb_item_fwd\n\n\n\n\nMLP_MF_dense_item_fwd\n\nFullyConnected\n64\n\n\nMLP_MF_dense_item_fwd->MLP_MF_relu1\n\n\n\n\nMLP_MF__mul0\n\nMLP_MF__mul0\n\n\nMLP_MF__mul0->MLP_MF_dense_user_fwd\n\n\n\n\nMLP_MF__mul0->MLP_MF_dense_item_fwd\n\n\n\n\nMLP_MF_sum0\n\nMLP_MF_sum0\n\n\nMLP_MF_sum0->MLP_MF__mul0\n\n\n\n\nMLP_MF_flatten0\n\nMLP_MF_flatten0\n\n\nMLP_MF_flatten0->MLP_MF_sum0\n\n\n\n\n\n" + }, + "metadata": {}, + "execution_count": 15 + } + ], + "metadata": { + "collapsed": false, + "scrolled": false + } }, { "cell_type": "code", "execution_count": 16, - "metadata": {}, + "source": [ + "net2.summary(user.as_in_ctx(ctx[0]), item.as_in_ctx(ctx[0]))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "--------------------------------------------------------------------------------\n", " Layer (type) Output Shape Param #\n", @@ -814,21 +594,18 @@ ] } ], - "source": [ - "net2.summary(user.as_in_context(ctx[0]), item.as_in_context(ctx[0]))" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": false, - "scrolled": false - }, + "source": [ + "losses_2 = train(net2, train_data, test_data, epochs=15, ctx=ctx)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [0], Training RMSE 1.3127, Test RMSE 0.6534\n", "Epoch [1], Training RMSE 0.6074, Test RMSE 0.6405\n", @@ -837,15 +614,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[3126]: Change learning rate to 2.00000e-03\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [4], Training RMSE 0.5650, Test RMSE 0.6006\n", "Epoch [5], Training RMSE 0.5560, Test RMSE 0.5965\n", @@ -855,15 +632,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[6251]: Change learning rate to 4.00000e-04\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [9], Training RMSE 0.5448, Test RMSE 0.5856\n", "Epoch [10], Training RMSE 0.5431, Test RMSE 0.5855\n", @@ -874,35 +651,38 @@ ] } ], - "source": [ - "losses_2 = train(net2, train_data, test_data, epochs=15, ctx=ctx)" - ] + "metadata": { + "collapsed": false, + "scrolled": false + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We can try training with the Adam optimizer instead" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 18, - "metadata": {}, - "outputs": [], "source": [ "net2 = MLPMatrixFactorization(64, 64)\n", "net2.initialize(mx.init.Xavier(), ctx=ctx)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 19, - "metadata": {}, + "source": [ + "losses_2_adam = train(net2, train_data, test_data, epochs=15, optimizer='adam', learning_rate=0.01, ctx=ctx)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [0], Training RMSE 0.6292, Test RMSE 0.4896\n", "Epoch [1], Training RMSE 0.4623, Test RMSE 0.4818\n", @@ -911,15 +691,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[3126]: Change learning rate to 2.00000e-03\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [4], Training RMSE 0.4462, Test RMSE 0.4950\n", "Epoch [5], Training RMSE 0.4144, Test RMSE 0.4506\n", @@ -929,15 +709,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[6251]: Change learning rate to 4.00000e-04\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [9], Training RMSE 0.3997, Test RMSE 0.4504\n", "Epoch [10], Training RMSE 0.3912, Test RMSE 0.4476\n", @@ -948,452 +728,63 @@ ] } ], - "source": [ - "losses_2_adam = train(net2, train_data, test_data, epochs=15, optimizer='adam', learning_rate=0.01, ctx=ctx)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Deep Neural Network (Residual Network / ResNet)\n", "Borrowing ideas from [Deep Residual Learning for Image Recognition (He, et al.)](https://arxiv.org/abs/1512.03385) to build a complex deep network that is aggressively regularized, thanks to the dropout layers, to avoid over-fitting, but still achieves good performance. " - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "plot\n", - "\n", - "\n", - "user\n", - "\n", - "user\n", - "\n", - "\n", - "ResNet_MF_emb_user_fwd\n", - "\n", - "ResNet_MF_emb_user_fwd\n", - "\n", - "\n", - "ResNet_MF_emb_user_fwd->user\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block1_d1_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_u_block1_d1_fwd->ResNet_MF_emb_user_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block1_d1_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "ResNet_MF_u_block1_d1_relu_fwd->ResNet_MF_u_block1_d1_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block1_dropout_fwd\n", - "\n", - "ResNet_MF_u_block1_dropout_fwd\n", - "\n", - "\n", - "ResNet_MF_u_block1_dropout_fwd->ResNet_MF_u_block1_d1_relu_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block1_d2_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_u_block1_d2_fwd->ResNet_MF_u_block1_dropout_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus0\n", - "\n", - "ResNet_MF__plus0\n", - "\n", - "\n", - "ResNet_MF__plus0->ResNet_MF_emb_user_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus0->ResNet_MF_u_block1_d2_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_relu0\n", - "\n", - "ResNet_MF_relu0\n", - "\n", - "\n", - "ResNet_MF_relu0->ResNet_MF__plus0\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_dropout0_fwd\n", - "\n", - "ResNet_MF_dropout0_fwd\n", - "\n", - "\n", - "ResNet_MF_dropout0_fwd->ResNet_MF_relu0\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block2_d1_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_u_block2_d1_fwd->ResNet_MF_dropout0_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block2_d1_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "ResNet_MF_u_block2_d1_relu_fwd->ResNet_MF_u_block2_d1_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block2_dropout_fwd\n", - "\n", - "ResNet_MF_u_block2_dropout_fwd\n", - "\n", - "\n", - "ResNet_MF_u_block2_dropout_fwd->ResNet_MF_u_block2_d1_relu_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_u_block2_d2_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_u_block2_d2_fwd->ResNet_MF_u_block2_dropout_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus1\n", - "\n", - "ResNet_MF__plus1\n", - "\n", - "\n", - "ResNet_MF__plus1->ResNet_MF_dropout0_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus1->ResNet_MF_u_block2_d2_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_relu1\n", - "\n", - "ResNet_MF_relu1\n", - "\n", - "\n", - "ResNet_MF_relu1->ResNet_MF__plus1\n", - "\n", - "\n", - "\n", - "\n", - "item\n", - "\n", - "item\n", - "\n", - "\n", - "ResNet_MF_emb_item_fwd\n", - "\n", - "ResNet_MF_emb_item_fwd\n", - "\n", - "\n", - "ResNet_MF_emb_item_fwd->item\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block1_d1_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_i_block1_d1_fwd->ResNet_MF_emb_item_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block1_d1_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "ResNet_MF_i_block1_d1_relu_fwd->ResNet_MF_i_block1_d1_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block1_dropout_fwd\n", - "\n", - "ResNet_MF_i_block1_dropout_fwd\n", - "\n", - "\n", - "ResNet_MF_i_block1_dropout_fwd->ResNet_MF_i_block1_d1_relu_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block1_d2_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_i_block1_d2_fwd->ResNet_MF_i_block1_dropout_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus2\n", - "\n", - "ResNet_MF__plus2\n", - "\n", - "\n", - "ResNet_MF__plus2->ResNet_MF_emb_item_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus2->ResNet_MF_i_block1_d2_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_relu2\n", - "\n", - "ResNet_MF_relu2\n", - "\n", - "\n", - "ResNet_MF_relu2->ResNet_MF__plus2\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_dropout1_fwd\n", - "\n", - "ResNet_MF_dropout1_fwd\n", - "\n", - "\n", - "ResNet_MF_dropout1_fwd->ResNet_MF_relu2\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block2_d1_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_i_block2_d1_fwd->ResNet_MF_dropout1_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block2_d1_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "ResNet_MF_i_block2_d1_relu_fwd->ResNet_MF_i_block2_d1_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block2_dropout_fwd\n", - "\n", - "ResNet_MF_i_block2_dropout_fwd\n", - "\n", - "\n", - "ResNet_MF_i_block2_dropout_fwd->ResNet_MF_i_block2_d1_relu_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_i_block2_d2_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "ResNet_MF_i_block2_d2_fwd->ResNet_MF_i_block2_dropout_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus3\n", - "\n", - "ResNet_MF__plus3\n", - "\n", - "\n", - "ResNet_MF__plus3->ResNet_MF_dropout1_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__plus3->ResNet_MF_i_block2_d2_fwd\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_relu3\n", - "\n", - "ResNet_MF_relu3\n", - "\n", - "\n", - "ResNet_MF_relu3->ResNet_MF__plus3\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__mul0\n", - "\n", - "ResNet_MF__mul0\n", - "\n", - "\n", - "ResNet_MF__mul0->ResNet_MF_relu1\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF__mul0->ResNet_MF_relu3\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_sum0\n", - "\n", - "ResNet_MF_sum0\n", - "\n", - "\n", - "ResNet_MF_sum0->ResNet_MF__mul0\n", - "\n", - "\n", - "\n", - "\n", - "ResNet_MF_flatten0\n", - "\n", - "ResNet_MF_flatten0\n", - "\n", - "\n", - "ResNet_MF_flatten0->ResNet_MF_sum0\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "def get_residual_block(prefix='res_block_', hidden=64):\n", - " block = gluon.nn.HybridSequential(prefix=prefix)\n", - " with block.name_scope():\n", - " block.add(\n", - " gluon.nn.Dense(hidden, activation='relu', prefix='d1_'),\n", - " gluon.nn.Dropout(0.5, prefix='dropout_'),\n", - " gluon.nn.Dense(hidden, prefix='d2_')\n", - " )\n", + "def get_residual_block(hidden=64):\n", + " block = gluon.nn.HybridSequential()\n", + " block.add(\n", + " gluon.nn.Dense(hidden, activation='relu'),\n", + " gluon.nn.Dropout(0.5),\n", + " gluon.nn.Dense(hidden)\n", + " )\n", " return block\n", " \n", "class ResNetMatrixFactorization(gluon.HybridBlock):\n", " \n", " def __init__(self, k, hidden, max_user=max_user, max_item=max_item):\n", - " super(ResNetMatrixFactorization, self).__init__(prefix='ResNet_MF_')\n", + " super(ResNetMatrixFactorization, self).__init__()\n", " \n", " # user feature lookup\n", - " with self.name_scope():\n", - " self.user_embedding = gluon.nn.Embedding(input_dim=max_user, output_dim = k, prefix='emb_user_')\n", - " self.user_block1 = get_residual_block('u_block1_', hidden)\n", - " self.user_dropout = gluon.nn.Dropout(0.5)\n", - " self.user_block2 = get_residual_block('u_block2_', hidden) \n", - " \n", - " # item feature lookup\n", - " self.item_embedding = gluon.nn.Embedding(input_dim=max_item, output_dim = k, prefix='emb_item_')\n", - " self.item_block1 = get_residual_block('i_block1_', hidden)\n", - " self.item_dropout = gluon.nn.Dropout(0.5)\n", - " self.item_block2 = get_residual_block('i_block2_', hidden) \n", + " self.user_embedding = gluon.nn.Embedding(input_dim=max_user, output_dim = k)\n", + " self.user_block1 = get_residual_block(hidden)\n", + " self.user_dropout = gluon.nn.Dropout(0.5)\n", + " self.user_block2 = get_residual_block(hidden) \n", + " \n", + " # item feature lookup\n", + " self.item_embedding = gluon.nn.Embedding(input_dim=max_item, output_dim = k)\n", + " self.item_block1 = get_residual_block(hidden)\n", + " self.item_dropout = gluon.nn.Dropout(0.5)\n", + " self.item_block2 = get_residual_block(hidden) \n", " \n", " \n", - " def hybrid_forward(self, F, user, item):\n", + " def forward(self, user, item):\n", " user_embeddings = self.user_embedding(user)\n", " user_block1 = self.user_block1(user_embeddings)\n", - " user1 = (user_embeddings + user_block1).relu()\n", + " user1 = npx.relu(user_embeddings + user_block1)\n", " \n", " user2 = self.user_dropout(user1)\n", " user_block2 = self.user_block2(user2)\n", - " user_transformed = (user2 + user_block2).relu()\n", + " user_transformed = npx.relu(user2 + user_block2)\n", " \n", " item_embeddings = self.item_embedding(item)\n", " item_block1 = self.item_block1(item_embeddings)\n", - " item1 = (item_embeddings + item_block1).relu()\n", + " item1 = npx.relu(item_embeddings + item_block1)\n", " \n", " item2 = self.item_dropout(item1)\n", " item_block2 = self.item_block2(item2)\n", - " item_transformed = (item2 + item_block2).relu()\n", + " item_transformed = npx.relu(item2 + item_block2)\n", " \n", " # predict by the inner product, which is elementwise product and then sum\n", " pred = (user_transformed * item_transformed).sum(axis=1)\n", @@ -1403,16 +794,32 @@ "net3 = ResNetMatrixFactorization(128, 128)\n", "net3.initialize(mx.init.Xavier(), ctx=ctx)\n", "mx.viz.plot_network(net3(mx.sym.var('user'), mx.sym.var('item')), node_attrs={\"fixedsize\":\"false\"})" - ] + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\n\n\n\n\nplot\n\n\nuser\n\nuser\n\n\nResNet_MF_emb_user_fwd\n\nResNet_MF_emb_user_fwd\n\n\nResNet_MF_emb_user_fwd->user\n\n\n\n\nResNet_MF_u_block1_d1_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_u_block1_d1_fwd->ResNet_MF_emb_user_fwd\n\n\n\n\nResNet_MF_u_block1_d1_relu_fwd\n\nActivation\nrelu\n\n\nResNet_MF_u_block1_d1_relu_fwd->ResNet_MF_u_block1_d1_fwd\n\n\n\n\nResNet_MF_u_block1_dropout_fwd\n\nResNet_MF_u_block1_dropout_fwd\n\n\nResNet_MF_u_block1_dropout_fwd->ResNet_MF_u_block1_d1_relu_fwd\n\n\n\n\nResNet_MF_u_block1_d2_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_u_block1_d2_fwd->ResNet_MF_u_block1_dropout_fwd\n\n\n\n\nResNet_MF__plus0\n\nResNet_MF__plus0\n\n\nResNet_MF__plus0->ResNet_MF_emb_user_fwd\n\n\n\n\nResNet_MF__plus0->ResNet_MF_u_block1_d2_fwd\n\n\n\n\nResNet_MF_relu0\n\nResNet_MF_relu0\n\n\nResNet_MF_relu0->ResNet_MF__plus0\n\n\n\n\nResNet_MF_dropout0_fwd\n\nResNet_MF_dropout0_fwd\n\n\nResNet_MF_dropout0_fwd->ResNet_MF_relu0\n\n\n\n\nResNet_MF_u_block2_d1_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_u_block2_d1_fwd->ResNet_MF_dropout0_fwd\n\n\n\n\nResNet_MF_u_block2_d1_relu_fwd\n\nActivation\nrelu\n\n\nResNet_MF_u_block2_d1_relu_fwd->ResNet_MF_u_block2_d1_fwd\n\n\n\n\nResNet_MF_u_block2_dropout_fwd\n\nResNet_MF_u_block2_dropout_fwd\n\n\nResNet_MF_u_block2_dropout_fwd->ResNet_MF_u_block2_d1_relu_fwd\n\n\n\n\nResNet_MF_u_block2_d2_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_u_block2_d2_fwd->ResNet_MF_u_block2_dropout_fwd\n\n\n\n\nResNet_MF__plus1\n\nResNet_MF__plus1\n\n\nResNet_MF__plus1->ResNet_MF_dropout0_fwd\n\n\n\n\nResNet_MF__plus1->ResNet_MF_u_block2_d2_fwd\n\n\n\n\nResNet_MF_relu1\n\nResNet_MF_relu1\n\n\nResNet_MF_relu1->ResNet_MF__plus1\n\n\n\n\nitem\n\nitem\n\n\nResNet_MF_emb_item_fwd\n\nResNet_MF_emb_item_fwd\n\n\nResNet_MF_emb_item_fwd->item\n\n\n\n\nResNet_MF_i_block1_d1_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_i_block1_d1_fwd->ResNet_MF_emb_item_fwd\n\n\n\n\nResNet_MF_i_block1_d1_relu_fwd\n\nActivation\nrelu\n\n\nResNet_MF_i_block1_d1_relu_fwd->ResNet_MF_i_block1_d1_fwd\n\n\n\n\nResNet_MF_i_block1_dropout_fwd\n\nResNet_MF_i_block1_dropout_fwd\n\n\nResNet_MF_i_block1_dropout_fwd->ResNet_MF_i_block1_d1_relu_fwd\n\n\n\n\nResNet_MF_i_block1_d2_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_i_block1_d2_fwd->ResNet_MF_i_block1_dropout_fwd\n\n\n\n\nResNet_MF__plus2\n\nResNet_MF__plus2\n\n\nResNet_MF__plus2->ResNet_MF_emb_item_fwd\n\n\n\n\nResNet_MF__plus2->ResNet_MF_i_block1_d2_fwd\n\n\n\n\nResNet_MF_relu2\n\nResNet_MF_relu2\n\n\nResNet_MF_relu2->ResNet_MF__plus2\n\n\n\n\nResNet_MF_dropout1_fwd\n\nResNet_MF_dropout1_fwd\n\n\nResNet_MF_dropout1_fwd->ResNet_MF_relu2\n\n\n\n\nResNet_MF_i_block2_d1_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_i_block2_d1_fwd->ResNet_MF_dropout1_fwd\n\n\n\n\nResNet_MF_i_block2_d1_relu_fwd\n\nActivation\nrelu\n\n\nResNet_MF_i_block2_d1_relu_fwd->ResNet_MF_i_block2_d1_fwd\n\n\n\n\nResNet_MF_i_block2_dropout_fwd\n\nResNet_MF_i_block2_dropout_fwd\n\n\nResNet_MF_i_block2_dropout_fwd->ResNet_MF_i_block2_d1_relu_fwd\n\n\n\n\nResNet_MF_i_block2_d2_fwd\n\nFullyConnected\n128\n\n\nResNet_MF_i_block2_d2_fwd->ResNet_MF_i_block2_dropout_fwd\n\n\n\n\nResNet_MF__plus3\n\nResNet_MF__plus3\n\n\nResNet_MF__plus3->ResNet_MF_dropout1_fwd\n\n\n\n\nResNet_MF__plus3->ResNet_MF_i_block2_d2_fwd\n\n\n\n\nResNet_MF_relu3\n\nResNet_MF_relu3\n\n\nResNet_MF_relu3->ResNet_MF__plus3\n\n\n\n\nResNet_MF__mul0\n\nResNet_MF__mul0\n\n\nResNet_MF__mul0->ResNet_MF_relu1\n\n\n\n\nResNet_MF__mul0->ResNet_MF_relu3\n\n\n\n\nResNet_MF_sum0\n\nResNet_MF_sum0\n\n\nResNet_MF_sum0->ResNet_MF__mul0\n\n\n\n\nResNet_MF_flatten0\n\nResNet_MF_flatten0\n\n\nResNet_MF_flatten0->ResNet_MF_sum0\n\n\n\n\n\n" + }, + "metadata": {}, + "execution_count": 20 + } + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 21, - "metadata": {}, + "source": [ + "net3.summary(user.as_in_context(ctx[0]), item.as_in_context(ctx[0]))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "--------------------------------------------------------------------------------\n", " Layer (type) Output Shape Param #\n", @@ -1454,18 +861,18 @@ ] } ], - "source": [ - "net3.summary(user.as_in_context(ctx[0]), item.as_in_context(ctx[0]))" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 22, - "metadata": {}, + "source": [ + "losses_3 = train(net3, train_data, test_data, epochs=15, optimizer='adam', learning_rate=0.001, ctx=ctx, num_epoch_lr=10)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [0], Training RMSE 0.7046, Test RMSE 0.6775\n", "Epoch [1], Training RMSE 0.4861, Test RMSE 0.5299\n", @@ -1479,15 +886,15 @@ ] }, { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ "INFO:root:Update[6251]: Change learning rate to 2.00000e-04\n" ] }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Epoch [9], Training RMSE 0.4328, Test RMSE 0.4504\n", "Epoch [10], Training RMSE 0.4172, Test RMSE 0.4442\n", @@ -1498,38 +905,25 @@ ] } ], - "source": [ - "losses_3 = train(net3, train_data, test_data, epochs=15, optimizer='adam', learning_rate=0.001, ctx=ctx, num_epoch_lr=10)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Visualizing embeddings" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Contrary to the linear model where we can use directly the embedding weights, here we compute each combination of user / items and store predicted rating." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 26.6 s, sys: 5.26 s, total: 31.9 s\n", - "Wall time: 26 s\n" - ] - } - ], "source": [ "%%time\n", "\n", @@ -1539,24 +933,37 @@ " for j in range(max_item):\n", " users.append(i+1)\n", " items.append(j+1)\n", - "dataset = gluon.data.ArrayDataset(np.array(users).astype('float32'), np.array(items).astype('float32'))\n", + "dataset = gluon.data.ArrayDataset(onp.array(users).astype('float32'), onp.array(items).astype('float32'))\n", "dataloader = gluon.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)\n", - "ratings = np.zeros((max_user+1, max_item+1))\n", + "ratings = onp.zeros((max_user+1, max_item+1))\n", "for users, items in dataloader:\n", - " users = users.as_in_context(ctx[0])\n", - " items = items.as_in_context(ctx[0])\n", + " users = users.as_in_ctx(ctx[0])\n", + " items = items.as_in_ctx(ctx[0])\n", " scores = net3(users, items).asnumpy()\n", " ratings[users.asnumpy().astype('int32'), items.asnumpy().astype('int32')] = scores.reshape(-1)" - ] + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 26.6 s, sys: 5.26 s, total: 31.9 s\n", + "Wall time: 26 s\n" + ] + } + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 24, - "metadata": {}, + "source": [ + "evaluate_embeddings(ratings)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Top 5 movies:\n", "Schindler's List (1993), average rating 4.43\n", @@ -1581,47 +988,48 @@ ] }, { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAH0CAYAAABGqLIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0JclZH/j7IiIz773vvdq6utVSa0MIBAYZAwPGHpiRZ8ASMos3DFh4jG0GNDMeDwaMDcZjwWHRMD4YMAZsz9gsMvsYzrAdgQ8IMIsRjM0iEEaIbnWr96qut9x7MzOWb/74IiLj5rv31avugq4S+Tun6uXNjIz4YsnM+HZiZkyYMGHChAkTJkyYMGHChAnPFur5JmDChAkTJkyYMGHChAkTJtzdmBjLCRMmTJgwYcKECRMmTJjwnDAxlhMmTJgwYcKECRMmTJgw4TlhYiwnTJgwYcKECRMmTJgwYcJzwsRYTpgwYcKECRMmTJgwYcKE54SJsZwwYcKECRMmTJgwYcKECc8JE2M5YcKEPzQQ0Y8T0V9/vunYBiJ6GxF9zh9g/R9HRL/zB1X/swER/QUiepiITojow7dcPyGiVzwftN0NIKI3EdFbdlx7DRE98odN092GO/G5mDBhwoQJzw4TYzlhwh0EImIieuXo3M7N652MbXQz8ycy87f/AbT18jh25nbX/Wwxnktm/jlmftXzSdMW/BMAf5uZ95n5P40vxvPvBgAi+jYi+so/dAr/AEFEDxLRxz/fdPxRwl3yXEyYMGHChGeBibGcMOGPIO4kBuxuxPvQ+L0MwDuebyL+sPE+NH93FP6ojev7Sn/fV/oxYcKE5x8TYzlhwl0EIrpKRD9CRDeI6DoR/RwRqXjtRUT0/xDRU0T0+0T0d4r73kREP0BEbyGiIwCfTUQfTUS/QkRHRPQEEX3dGe1+EhH959juLxDRHy+u/X0iei8RHRPR7xDRf09ErwPwpQA+PZpT/losm81NieiziejnieifxnrfTUR/Op5/mIieLM1miejPEdF/ivQ+TERvKkj82fj3RmzvT8V7/iYR/TYRPUNEbyWilxX1fQIRvZOIDonomwDQGf3fNX6/GGl/jIi+iYjqWD7R82uRnk8fm0ZGbdkXEdGvRxq+l4hmxfUvjvU+SkSfU2p6iOj1RPRbcczfS0RftINuRURfRkQPxfH8DiK6SEQNEZ0A0JHG39txPxPRK4nocwG8AcAXx/78cLx+szX3/XHMjonoN4joA4noSyItDxPRny3Kf3ZcA8exrjfsoGnnuiWiTyGid8Q5eRsRffBovP8+Ef06gCURfTeAlwL44dinL47lPiau8RtE9GtE9Jqijvcjop+JNP4kgKvbaBzR+6VE9HRs/w3x3EdF2nVR7i9SfE621PFtRPTNJKbkJyTPzf1E9PVxbb+TClPmm8zLznUbrzMRvZGIfjeW+edEtPXZoLv3uXh/IvopIroW5+bfEtGl4vpLiOjfxfG7RvJ+GL+zrgF4E+14xmL5WRyba3E83k5ELyjqOs9637AU2DJep96/8bwion9ARL8X2/8+IroSryULj79FRO8B8FNn0TphwoQJ5wYzT/+mf9O/O+QfAAbwytG5NwF4Szz+GgDfCqCK/z4OwhApAL8K4H8HUAN4BYB3A3htUYcF8Odj2TmAXwTw1+L1fQAfs4OmDwfwJIA/CWFE/jqABwE0AF4F4GEAL4plXw7g/cd0F3W9DcDnxOPPBuAA/I1Y71cCeA+Afx7r/rMAjgHsx/KvAfDqSP8fB/AEgD9ftMsATNHWpwJ4F4APBmAAfBmAX4jXrsa6/3Icx78bafmcHWOwbfw+EsDHxLpfDuC3AXz+rrmM9D9S/H4QwC8DeBGAK/H+N8ZrrwPwOIAPAbAA8JayPgCPAfi4eHwZwEfsoPtvxjF4RZzjfwfgO89ab7vWI4BvA/CVxbXzrLkWwGvjGH0HgN8H8A/jmP+PAH4/lt0DcATgVfH3CwF8yA6atq5bAB8IYAngE2L9Xxz7Xhfj/Z8BvATAvDj38UXdDwC4BuD1sX+fEH/fW7T9dZD1+d9A1tBbdtD5GsiaSuX/20hf6uNvAfjEovwPAvjCHXV9G4CnIWtuBuCn4lj+DxienZ8+57ycZ93+CIBLEMb7KQCvex97Ll4Z57YBcC9EMPX18ZoG8GsA/ilkXc4AfOzonfW/xv7NccYzBuDzAPxwpFXHsbmAW1vv34bN5y6PF85+//5vAH4JwItjP/8FgO8evS+/I9Iy30Xrzb5Z07/p3/Rv+lf+mzSWEybcXbCQTcjLmNmy+CcxgI+CbH6/gpl7Fr+4fwXgM4p7f5GZf4iZAzOvY12vJKKrzHzCzL+0o83PBfAvmPk/MrNn8ZHsIJtHD9m0/DEiqpj5QWbeqv3agd9n5n/DzB7A90I2/V/BzB0z/wSAHrIJBDO/jZl/I9L/6wC+G7JZ34U3AvgaZv5tZnYAvhrAnyDRWr4ewDuY+QeY2QL4esiG9SxsjB8z/yoz/xIzO2Z+ELJxO4uebfhGZn6Uma9DNnV/Ip7/KwD+DTO/g5lXkA18CQsZ8wvM/Awz/3876n8DgK9j5ncz8wmALwHwGXR7TN/Os+Z+jpnfGsf/+yGb+DfHMf8eAC8vNEUBwIcS0ZyZH2PmXSa6u9btpwP4UWb+yVj/P4FsmP90ce83MvPDcf1vw2cB+DFm/rE4zz8J4FcAvJ6IXhr7/I/i+vxZyJzdDKn8zwD4UcjcAsC3x/YQNUmvBfBdZ9Tzg3HNtRAmtGXm7yienaSxPHNezrlu38zMN5j5PQB+GsO63Ia77rlg5nfFddIx81MQ5j/R+NEQpvbvMfOSmVtm/g/F7Y8y8z+L/Vvj7GfMArgHwvj6ODZHsZ7zrvezcNb7940A/iEzP8LMXRyrvzx69t8U+5i+B7tonTBhwoRzYWIsJ0y4s+Ah2pYSFeSjDwD/J0Q6/hPRjOofxPMvA/CiaMJ0g4huQExRS1Omh0f1/i2Ilued0ezpk3bQ9DIAXziq+yUQKfm7AHw+ZNPyJBF9DxG96Bb6+0RxvAYAZh6f2wcAIvqTRPTT0TztELJxOssU8WUAvqGg+TpEu/sAZOOYxyMy5+PxGWPjOolZ548Q0ePRDPCrb0LPNpTM7Aqxr2P6ttD2lyDM8UMkppl/akf9LwLwUPH7IYim5XaYuJ1nzY3n8unICKXfgGiklxDG8I0AHiOiHyWiD9rR7q51u9FXZg6QcXuguPdmc/wyAJ826tPHQoQ5LwLwTKQ14aFtlRTYVj49H28B8MlEtAdhmH6OmR87o67xWG59TnCTeTnnut21LrfhrnsuiOgF8V313kjjWwoaXwLgoSgM2YZxm2c9Y98J4K0AvofEdPdrIwN4K+t9J27y/n0ZgB8s1sBvQ74vu74JW2m9VZomTJjwRxsTYzlhwp2F90DMlEq8H+LGhZmPmfkLmfkVAD4FwBdEn5qHIdq/S8W/A2Z+fVEPl5Uy8+8y82cCuA/A/wHgB+Imd4yHAXzVqO4FM393rOe7mPljIRsZjnWdau824LsA/L8AXsLMFyEmwcn3a1tbDwP4vBHdc2b+BYjJ3EtSQSKi8vcOjNv4FgDvBPABzHwBsnnf6ad5i3gMYsKWsEEbM7+dmT8VMnc/BOD7dtTzKGReEl4KMeV7YnvxMzHu/3nW3PkrF83mJ0CYuHdCtGzbyu1atxt9Leb0vWf0YVufvnPUpz1mfjNkTi6PnpGX3qRb28o/GvvxXohp7V8E8NcgG/vbgZvNy+1et3fjc/HVELpfHWn8rILGhwG89Ayt/ri/O58xFquSL2fmPwbRnH8SxHz53OsdYj69KH7fv0HM7vfvwxBT63IdzOK6O9WXs2idMGHChPNiYiwnTLiz8L0AvoyIXhyDL3w8gE8G8ANADqLzyrhpPoRIoAPEJ+k4BnKYE5Emog8loo/a1RARfRYR3Rs1Ozfi6bCl6L8C8MaoMSQi2iMJpHNARK8iov+OiBqIP926qOMJiKnj7XrPHAC4zswtEX00gL9aXHsqtlvmXPxWAF9CRB8S+3uRiD4tXvtRAB9CEjDFAPg7GG3YzknPEYCTqG34n0bXnxjRcyv4PgB/g4g+mIgWAP5RukBENRG9gYgusph8HmH7vAFiLvx3SYLO7EM21N97hjbmLIz7c8trbheiBulTIxPWATjBjj6dsW6/D8CfIwkeVQH4wljXL9xCn5IW8bWxPzOSYCkvZuaHIGaxXx7n4GMhz+bNkMp/HGSz/v3Fte+A+IK+GuKbdztws3m52bp9rrgbnosDyBo7JKIHAPy94tovQxjYN8d33YyI/uszaNr5jBHRnyGiV5MEaTqCWJ6EW1nvEL/g1xPRFSK6H6KhTH0+6/37rQC+imLAMiK6l4g+dVcndtF6Rr8nTJgw4RQmxnLChDsLXwHZCP8HAM8A+FoAb2Dm34zXPwDAv4dsRH4RwDcz809H88JPgvgi/T4k0Mf/BeDiGW29DsA7SKKDfgOAz+AtvmfM/CuQQCvfFGl6FySIBSD+PW+O7T0O0RR8SbyWNtDXiGiXD+Ct4H8G8BVEdAwJTJK1EdHf6qsA/Hw0/foYZv5BiPT+e0jM3X4TwCfG8k8D+LRI+zXIuP78LdLzRRDm9hjCfH/v6PqbAHx7pOev4BbAzD8O4Bsh/m3vggThAGQTCoiG68HYrzdC/Ly24V9DNGE/C1kXLSTwyLPB/w3x5bpBRD/0LNfcLigAXwDR/lyH+LvtYni2rltm/h2I5umfRVo+GcAnM3N/RrtfAxHk3CCiL2LmhyFBn74UIqx4GMJ0pG/lX4UEsboO4B9DGMOz8DjkmXkUwL+FBKF5Z3H9BxFNFuMafs44x7zcbN0+V9wNz8WXA/gIiHDuR1Ew9XH8Phni2/0eAI9AzFZ34axn7H6IUPAIYor6M7Hsraz374QEE3oQwE9gczzPev9+A8TC4yfiO/OXIGt3F3bROmHChAnnBolr0YQJEyZMuFNBkjbjNwE0z1LbOOEOBUmql89j5n//fNNyt2F6LiZMmDDhzsKksZwwYcKEOxBE9BdI8k1ehmhef3jaPL9vgYj+EsTP7aeeb1ruFkzPxYQJEybcubijGEsieh1Jgt930RDtcsKECRP+KOLzIPlDfw/iS3u7feEmPI8gordBAt38L9FfdML5MD0XEyZMmHCH4o4xhY0O4/8FkrT4EQBvB/CZzPxbzythEyZMmDBhwoQJEyZMmDDhTNxJGsuPBvAuliTDPSR59s4IZhMmTJgwYcKECRMmTJgw4c7AncRYPoDNZL2PYDOx9YQJEyZMmDBhwoQJEyZMuAOxKwHwHQsi+lwAnwsA9Vx/5NX324chjwCCYw0AqMhDIaANNYgYgQmGAnrWqMmDAfTBQFOAIoZjhZo8LGtoCghM8KzgWEERY6F6tKGCpgAiIDCBwLCswQw02sMFBSKGj3X1rEEADHl4VmAM2ZcDCAoMQwFrX4FIjj0TGPLPB0KtPVTMX+xYQRNDUQDzkGvasQKDEAKh1i6e0zAU0Hrpo1EBvdeoVAARwwW5BwAa5XI/XVColLj6BKZ8LkD6CwBGBfigclblVEYrzuPCsbyKY1+pAMcqX9fE8EzQFOCChlYy5kYF2KBRKY/AlI9t0HmubNBglr56VhvtMQjMkL7FATcUgGLOKI6ZIgYY0ErqXdkKYEJTOZn/IP1PfSzhgshjNDE4Xk9z4uO4pTkkSBvMJOsjqNhfBUUy1gQhl0HwXoEZ0DpeI0CB8/oKQUHrIP2MbYGQfwOA0QEhEAITdJ5PBe8USDF0vF6uSYp9THRSpIdZaJDxBUKkgwEgtqdUQAgD3d4raM2ZJiKWe5iEZsUIgXKbabyAYRx5VLdSDO/l3nRPYAIRAMi4SEekJiLAe6FVqQCktcEEDgSVx1fqAct1pTiPSwiJBmkzhKH91K/yfHBCgzKDu1x5T7qPg6xP0uX5OM7FWmJPUCYgOAXSvDHu7EmIjP1HoM36Iu2kw3BMQztsFWACSDE4KMlWl19QBGh513GgWGb4C+I47kOfZNCEDihIfSr+zouMh/oZgOa8hvI1lvrz31wWQxs+3qPjsUr309CPVIclKafi/aG4Nw1XegA9AYY3j128P5VLbecXIA/3gwb6Eg2JJjXqK0VaUh9L5HuL+aDiWjkOxXkKAKd+pvbyYpY+k5N7ONczkMRU1BP/5r6mbut4PrZF8uKS+9VQliNpZT25fBjVVfaLi3I0/E71UlnGp7EahmSjrRDb8EUdiOefy84nYBDJc1EvS3tpDaZxzP3DafqAYtx9MXZc1E9FOWw+Kir1DcVYj+so703PR/nyL56DjTb47LK57+l5xzAuZd9PrS01qgubdG+0gaFsetWluvK4j/tQ3lq+VrD92saF8u8YGzfvwLhOFP2/TShfjxv9Ks7nNVPck8YG2DIGGw3sOH+7MSbmrDm4jTStrj/yNDPfe3tqm7ANdxJj+V4ALyl+vzie2wAz/0sA/xIALn7QC/jV3/wZAAAbdGQIVN5MWy+MZkgbtVgHAXmjLnUOm/7ERPigEOINlRZmqtz0SZm0YRtWvGyCQ97ojttgpsy0JSYv0ZS/JXEDnvoxpr08V27EVWIiEpMbN9ZEmxvcUGxkNje9sQ0ajhMtiXYVmaTUrjA7tLlpjX9TnUolpmKoP2/GwyajsbFh98IIbdQXIj0qnKJVCtDGHKVy5VeOi7kkJRvoi1bWijBtp5mucgw41pc2+hvf3OKLvnVDHwBSu8cqMx1pXiiOl4/tJQaCsTFWaa6kz3yqHmYCOwXSkZlgGja0aaObOzHu1Ob4pi9YZjJSe6mviQkp5jv1DzxiVIr+5zLFfJXMjDAto91S6v9ok53PKd7cZAORcSrrKf6eesCKNsPoeMwM+bgzMqfX3AbNIf7dRkPZvqeCeeLT11LdhNNjk+Y2M3e8+ZLxRfvjXU+5cU5tJObmZpurciyLzfxG3wJATOCS3vL+on6K67gsSzyco0CnrwFgYjl2aQ3EutMrVRfH5XqJzxZ5AhthxFhvjuupDXu5cyQuaB426PkYOLXhVm40BWrEGIzpzGOzScfGpj3OVd5sJibLFeui3MDxsEbIUx7bzDyQ/EvnKQAhMYZpaaVXQ9F+YjrS9UQTgMyElfeWY5U3y2PGMv0MA13pJPl4uIWxLMc7VHjWIB9pL+cg0a5H8zZ6J23Q56VDA2N5+n1BgQrmdPS+AeL6HK5TfA/uZCz9MCZ57EZMYUbJhMY+lMzwxnyN1+j43lh/HrvyPQHsZIiHDgxDMH5dZSY4nxj9Hp3bWT+N/o7Kbb2vvLegc3zPtk/BzroSveNzZ9G6rc9n4Nx0PMvyN8WtlgdAzzUeTLz9177lCx96bhVNuBnuJMby7QA+gIjeD8JQfgYkyfJOKIhWrFYOtfJYuhpKe8yNhSGPZ7qFaMG8xsxYHPcN9qsefdBgiMZJR23ezDi0zqDWHj4o9ACcNTA64KDpcNjOUGkPTQwbRHvYOQMfCAdNjy4ysZ0l7NUWy74CM2FeW1ivC2aHRRtpPLQKOG4bEACjPUJQ8LFcCITaiIZRK0ZnDbQK0KPNWGtNZu5MYqiZUGmPrjOoKo9Ke6xsDWNs1MTozAw2VQ8XaXdewWjR4IlGUdpNIEraLgXvS02UgtY+M7LprZg0Y5XxcF5lZtsYD+d0/ivaOZV/V5WD9wrOaTTGwfYGSgcoFdB3Mq6VCXBOnWJKS4ZY6OU4nshMtk3HAIwJUIph1xU4EOoDB+8J7HVmSrUJGwyw62W8lJGvnIpaIYIIGyjulIIVxpiqkL+YzApEQTaokVkYNJ4kWi9PoNkQPV9pj+CMfHidAum4O0kMUvkh5KjlAhB6DVXJrpUdgF6BK4AaLxqHvKHEoO2KjFQez4JOMMCeQFqYx6wt0pHxCATUHnAKaALgZb5ZCfMJpoFJ8gSOuwQyPjOmSJrHzAAw4BSoCeBeARUiPQy2BDLpqcLAGKSvoFOAiX0jFi2fo4EJI6mLPW1qwdISdnE3mjZCJcMVIOcJEpfSANQrGaM6XiehHTVvbFTIiYaQS61ZYv4SI4i4aawCqFXgmje0XmQpMyBQ8pubgfa0SWXNkRba0BDqtYLfC3EuIsMRN6hqTfD7UXDjCVxFBqv4W4J8ZKQMC11axiSVz0yJHjbD5IXevBFO8+GFkUuMHRzJJriO608zqI9zVcdxqDA8A3F9kSIgAGZN8LXQBiYoK5t1Pw8D3XFc9Jrg96QPqif4BUO1hDAbGEjdpXUa9+SGwZoyg8Va7s1jzwTlAV/zwDhEDarqpa+pfAJrqTdt1pWlzHxsMEg2TcDwO9RyPUTmgSD3KAv4GcOshGlkQ5nxQkgbfmFSVA+wkbECkzC+WubI13Je9wQf54+83B/qgWER+gmhGsYsVNInZWXc/YyhIqPLKtYVZKyUo8ywhGK9pfKhYuhWysg/hrJCK1gYR+UA3wC6A4KJtCn5bffwrKF66avQg/xsUwBCA1AcL9VHpjjOGwDoXuaKdRIoSB9kPaSydIrhkjFKBzLprACzlj4KAy5zw3qTkUlCgERvMLHtSBv5YcxKBiVpQ7MmNa6j9M4RAVFkVOPnKmmCc98R15YZxiSNHcLQP3KxjUKLXWo2swAjrtnMHPPQx3RPyfQmpHpLDfoGMzsWQoTN+2WcGKwoMzhMp4+zpnbUThr/U8KTMSM9YiwTbSPZ1YYgKQlfNmgfMd/pu7C1b1vKjRn5U4xlqm/LWJfYJtwYn78ZDXLD9ja2yFruCrz2z+zxtev+ttf7q7/evZWZX3fbK75F3DGMJTM7IvrbAN4K2Zr8a2Z+x1n3XDBrvPbe34JljVWoUUWz044NbNBoLjp0wWRzSkWMLpislXSFhjKdd0FnE8W5tghMOHIzVBdCNmFVtGnKuPY1GuVgWaEiKZfgi6cpsEKlPDwTXHzTNNrBM6EPBnNtI50BVTSTTaa6CpzrTUyfZ0IVaTDKY+0rBFZolNsom851wSAw5TYBoPUV6mh6qojRpzcghOExNJjGAmJGamgYi/J3GlMTTVvTPanuWvmN+l3QMMrnv30wqJXLc1Brj9ZVeZwda9TKwaiA1p0WOQeQmEXHuQmFOXPZh5L+1su81/d4GOVxYhsYFcR0OmxqvBNMNJ/tvayppCVPWm1FnJl8F9SgMS+0nql8wKDBBoBKeTH59XpjTGvlN8a8NM8t70/X0/wljbgiRqMdbNCwftP8uNT0J1pLzf+GBrjQ3hoVcv0JY+1/Ok71VtrDxnErx7YUZqTfYpIuptQ2mmm7aIadTKx9XGeaeOOeVA+P2gCQn53AgzZeRUGDK7TZqf++sD4oNfXlcRqvNHdle35kvVCOy1nlKu3RWoPa+Cz8SVYUYwGTtDvMhY5aaR8IOgoKnFdF3QG909kKQdFm3c4PtJRWGKU1Rpq/ZOodinVd/k3jlOZBF8+GHq2DNGdpH6Fp07KDizWb1n05j7mO+LuKgsJyDaQ5Kq1JADG7FuHYcJxMuweT7mHMswVK2Gy7RKpb76CvrKe8Vlo0ZCuKM86neigKtqigKZmfi1AoCTni9fJeRGuWOPiJJI4CNQBRg8ainE9yjFQubPYhzWXqdZrXUMz5lv27rNtyR1sIDBHb4yi3Skla8vxEa5C88Q2nx11pRnDFRN4iBosQ2rASIGKwV1kbvFEOQle2IEkCu6JvY+ubDUsP4PTOPAnI8kRhYCi2bc6HCcApC4Z0XJpdj7Gtzm1l0riUdY/NvbfVm47zPamrUQgZjwFsaoPH94/pLPvMp+nYMA/eRV+qhxMd2LyBeXPcbsYUbaHjFF0F01T+3kkj4eZzdEYdOyl6FnVt1Huzcuep5zxr7y7Ctesev/zWl972evULf/fqba/0WeCOYSwBgJl/DMCPnbe8Y42WDR5uryCwwqVqBcsaN+wcx3aG+2bHWPsKc21xaOe4Ui3xVL8PALi3PsGRm8OxwlxbPNnu43K9xrFrYChgz3SYa4u1r/HY+iLuaZbovEEfdN7kX6lX8Ex4qt3HwvQIIByYDk+0B7i3OQEAPNPPMdMubx6XroZRHitXY+VqPLA4BACsfSXMsHIAFJRyOHZNZEwU9qsOfdBYuXpg9kDYN11kZIQpcqyxbzqsXI0XL27ghp3jyM7wgtkxWm/Q+goX0GYm47CbY24s+qCxX3U46meiEYx+o/tVlzdyAHDUzzDTDrN4Tx9Mbm+mLVw0SQaEaZ1pi2e6BebGImgLxxpLW2Ov6rG0NS7Wa6xdhUornPQN9usOR90Mc2NR6xUO+xnumS1x3M/QB417Zg6GAo5tk/ugKcCzgqYAaGS/VEUBy9ifRrvs53lQd+icaHqP+wbWa3zIPY/DM+Hx5QU0xmGv6nPdJ32TmShFjEuzNRTE3xMAOmfQGAcfFPbrDmtXwQbG5WaFHgbHtkEVmeq9qsdRN8vlEvOXNrwHVYtaezzlZJ36oNB5jfnMwnmDvarH9XYBrQIa7dB5A+s1jAqooiZz2dcwKuBC04rvKICZcbjSrHCjn2NlK2gVUCuf11FgQogMpw8KNm7kK+1hoyadAOxVvcyXCjLeCjjpaywqi0p5HPcNLs/WeKadD4wWUxY41MqjjePVOWHq17aC0cI8NUaeFa0CiAltrHtlK+xXPWyohT6voCrO1gBVZYV2r+GDggdwZb7CytZoo9a9Nh6N9pgZixvtPJu7VzpkWnuvoSOzMosMUGsNtGLMtMeyr6AIqI1D7zUCA7PKoQ+Eq4s1FDHee3hRGBMQZpXDuq8yM6kVY6/pYCjg+nqRGUyjxYKhi1YSALCoLE7aBlcWa1xfzeEiQ07EuDhbo3MiKHJBYV5ZdHaeGb951cvz2jaojT3FfF1dLPHo0QV4JjRahDh9ZLYuz9Z4/PgAzGJZsXQGF5oeJ22DmfFo+4FRC0yoFUMrj3VfYV5btNZgVjmctA2aysHFcfKROW4qh0Z7HK5nqIwXl4K4xhrj0TsNoz16Z1BVDjPjxLIjMoSzWlR1J22DRdNj1dVRKSvCDmbKjON9+yc47GZYdTUUMfaaHkYFXFsuUBu3UfbSvMW1Ezl/Ydbh6ZM9XJq3uLGeZR/i/VkHQJhjTYxlX4mgJs6L9Rp7TS/ww8uEAAAgAElEQVQ+4k76O6tlHivthWlignPSD+s1Lszbjflp+wq909mFYNH08NEFIAllAhP2mj7PgfMK+02P47aBUgGdrfL7wAWFeW1xvJrh3gsnsEGh7SsYHaKFBWdBQ2cN9mY91n2FvaYHEaPRHl18rk7WDWa1xYVZh2dWczSVQ6U9KhVw3NWojTDyrTXZ4mUe6Wz7CloHLGoLIsbhUu4HxG2lqSwUAauuQm1EAFVpj7aXd1gIhKqSPvW9xt68hwti2ZKuzWuLwNLWrLZYrhvszTu0/VDnxcUaTx/un2eLsRWzxmLdik9+VbvMAGoVsF7XqGon1jaNhY+WOj5qq+czeRat1agqjxDErz54hflc1o1zg9DDGLEEAgAX11PpKrK/12LdSSwJZzWamYW1esP1RSm5BgB149B3BqaSejkQTBxT2xsRksT7tA4IXolFDgPBa5jKiX9+UCAl1j5iZeTBLFZezNKOj64B2gR4Jz7+pvawncn9SIIAbTzAMhaJ4Q6eMkOqtJgIJLcQtmqwsskWMQDHPg2uJJF5Lyxlsh9odMXI/upnuR4EEhcHVwhStzHtidEvrVs0i6VMKlMwzVtVbWNGfMxhlu4NpVAhtb2DgQaQzdy3YhtzSoMwSUiJQhLi7JKQab5VBvJmDPD4+vsQY8kAQl4E73u4Y/JYPhvc88FX+ZO+/VOw9hV6X2jCWG9IwEvNjQ0aCoOp31jjVt5nKGTtz/hauUkrfTPH2hG35VquA9iQ2JfPaLpeaqN2tV9qW0qMfTrHKDczpcQ8MLIGQ9GmRH18rfxb0jWWwKtCc1GWKbVbic7ExJTn0viUGozEAKSx2vYqDbwpuR9rFkLBQCXNXTLxTdfGfoCn+zdcK/1Jx76l5XiUwWxK+lLQnqQh4NGaGWuMxrSle5N25ZSkf8vv8fltGsqyrXGgmfJ36W+70U4R9IVHH8VS45J9YMe+sRg0ALu0hmM/WFUcA8P6oGLdYHRt63dsLDIeaVJSf7f5MJ/yAcYWTcRZYMjma/QNypqZsmjYHKt0brxe0/Xkh4vRM57Ng8cagW0f+3JjVG5qtm1+cuO8/d5U5WidpXOpHGmxN9sIKFTWXa4ZHUSLVFwnwun+AcOGr9z8lYFJUhmMypcotTXjjWBJX/nCGr+byw1beX859ozTAWQSreVcoThOpvMMbN3kjWlMdI03utswnueSzvE4l+bk2x68U1UXm+dxn9JxuWnftuHfGE+I+fqzxZkb4hGjUK5FhmzqmU6ZNp4L28pt23xv2a9uecxOa8TG923r503WwjYtWx6Sre8P7FwDG62M77lJ+6ew7f5d/d64b3tfT7VzRj+2ayzPaHMHtr02b4rnWO6mWtLbiHP3KbV91nN4Bn77zV/wq8z8X936nbcPH/lhM/6Pb33xba+3euHvPe99A+4wjeWtIjFlD8xuYB1qXO8XAID762PMVY/3tpdQK4cT2+Ce+RJPrA/w4r0bsEHj6XYPc2OxMD2udwu8eHGIa90eLlQtWm/wTLfAYTdDrT3e/+LTeGx1IWoeQ4y66vHk6gCKGC/aP8SNbh6ji9a4b3GMp9YiEb06X2Lp6o2NrA8Ki6rHwvR45PgSiBiLSqTXNig4r9E5jSuLNaoYGfbE1pgZh0a7gckD4aQXDU5nDa7uLxGYsOxrzCuLx29cwGLW4aDpcW25wP6sQ6M9jtomM5z3HZxgZasscT6IUuokLT5qGzhnsvnaftNjbSuR4BPD6IBlW2PRWPRONF5JszKrLTprcGmxxrKv4aJf5qK2WPUVFk2Po/UM+7MOvdM4qC2Oo4ZmZSscr2a4tL/C4XKOedOjNh6Hyzmc1bh4sM6aDRc1dj6o7MuZmKu9eQdFQOekP0SMVdugqmQcD+YtKhXwyGNXZL7uPUJrDbquQl2LdDb1rY6+osu1OIk0jdTRVE5MNJnQtRVMJe0sj2cgxZjN+yyh7roKs5lF11aYzXt4rzak0qujGdgRqn2R8mvNMMZjva6hVEB7PMfsoIP3BO90bst7ygznPLbXtwbNXLQ7tjdwhzVo7jHb79D3ZohiqhkqajeC12IaqQO8GyTfifm1nYaqJFIpxyizZmZhWwN2CtXCoj+uYfasSJZZNv/aRB/itYGZO7jWQNcBHABTewQvziLeigaSvQYRYBoHu6pQ7fXoT2qoxoOURHr1Vku0VACuM8JomJCjstrDBmg8TCN9805JNFSroPYsSEWTR6fgrQYYUI0Xk0HF8K28HvXCgQMQegPVeIDlmCrxgfa9hqo8/NMNwAR1tcvBlnyroecizecQJedrLZLj/cGPNknSyQRpnwAsDehCj3C9Bu87KDNEeOUblfgNEiS6a6uBfZeZsbAy4sO05xDWRuqupG4A0NcquCtWzq0M4KJPIwP6WMNdsVK3VaCZB44NeOGBVgF1KJgiAL2WzWwdQK0RX8uewAsP6kz2n0xBjag1IEsICw+ySnwRk4+lVUCiswoyVpbAi4Ac2fSwBgjguQetDHg+OCFl31MjfszV0xXcHiPMAigQ9Er8YN1FD+qi4KiSa+ZIwV7xUK2CXhPsRY/qhoY7kP6yZpijqDWK/mF+xtl/jwIQapY2AIRGfK50S3B74kvJBLBhsJFyoWaYZZzT5FNYSz0kShyYtfg+MuReCuKbaZaU/d2CBsyK4BYcff3E5zDVq1vAHjCaawqsEf0jkf3KlBN/yFBFv9RG/DHB0Xcz+t/ZPYZpCWYF2H1pg5z44/noXwiSY+VkfPSK4jnxndQdABZ6dBtpNIDqZBrdPPl5Sn1+ztmfTPUUyzCq4zguBgha6jKtLEs3E19KtweYFeDrwa+wOgG6K3jWMGvALWRuUl8o+qm6vUi7ljFnE+UE0Z+xWspchSr6WypE/1WpV9YHMrOc/FvByAGHkulm0EB9KLQQi++kWUu5HJ0W0a8y+jXqNs5NP7Sr+/gKqgffVCDOu4m+vGmNtch+ranfoYrjAKkbAMxK/HgBgBwjVBTXFsPN43k/9EV3DFZAqGjD3zIxUeSQfRiDJoQ60sUABYZKYQc0xA8ySroTsxIMiY+klr8UaU9zQ0HKaFs8z4xBokXIvrMZibEphDpjv01Ano2QdtqcBAxyvBH4KFUb1zoQ13z0JS0Z4exTqYd60lopowuP68w+rLyDkUuCxsDZbzT7km5hnrPP6Za6tsnLNq6NGPwzBZg0zNeu+nfiNjPAtwcMP5YWvw/hrmYsL+kVPvPqL+FGWCAUmsWWK7ShwkfsP4RjP8sar9kli2VoYFljcVnMTnwUnx66BT7ioEUbvc8r8piRbMqvu328el8C1Pr4FNhgcHBPC8sax36GxcUONhhUyuHEz/Axl9bwIKx8A00h+38ms03LGpY1PurSQ0JzTGeSzDhnyuLYzwCI/6f4cA4+f6lPyZ+yIYdVqKPvmfiULl7QSztBo3mB+Fh20XRV+qBz3R4KGgFdMPkYQPYVTOiCgUbIpptdMFgoaWfs09dFv9FjN8Nc9XH8VJHKRKNRFutQw5DPtHTBoKKQr9X3id9lAKG+z0Ej4MQ32b80YPCrSz6WJvqNrn0d6Rn8YisKsHG99MHAM+Gjrj4ED4VjK2OezGwVBfTBiOlrTPky17Iu1r7K55NvraHBbNjEr115f6M8uqDRRJ/YMfZMBxfnpfQTTf63c22xdHWuP/uRguOcDPQa5dH6CiamatkzHfpgcrum+KL10Qc5rb8+CLNe+nSmtD3pdzpO5xWJz+pMu8F3VXm0fnjNJD/b0ry690Nf05il6703qLVD702eU2Dwt+3jF7tWLpqyDm3NXmbRezHXVnFtpLrbOAapvjrupvrCBzuVT22UFgzjtR6YsHi5vFNWrs7nkolpgiLGTFsEVnmMyjrKZ3theixtg/lLLVpvNrSOlfa5XBICdd5kX+wqjmMy52am7KMLAM0rxRS5DxpNNNUf1m1AV4xj8vFNbgBpzss5TWsmPTfJRzm5DZQ+12ntlOsgWU/oGGwt+xxHwVrydy59YpOvsB9ZapTzOv9ACxdULpMsE5L5ePLJpXitdQZVNCtf2QqzaPIMiECw1v5UOynFUCqT3pnJj10nC4uC1tIftdZ+Y4+V/LLTnIz9VEu/7tJqJtVXXk+pk5Kpa/NBLgsV03gCyPU4n1JHiSVKQhYsORE8acWoy+jihGxWy9HyA5ANRulvThjSLymmDYud/CzE+Uhjogtas19qoBxITu4RgQpSaqfof0heSWCgYrPq4/lnC1YMeOkLJ+uWZC0R22MmhCINU4ItrFgCDXyLlI9jsWHxMNwcxppCJvgYIC/9tkU07k0rgDjPKmxERS/bSWmXcsTZdF+yqEmB6cbjwRj8RZNf5NiigpGFjKWlxFmmjrxLMzrW6G9cw6ZKb6xx3NbelvE6E2dpT3dpeRmnzUjP28b4/BnM19b7Nujdou4c0TJomfPAnEHPzbm2czGA59VAnneOzsL3PPcqnisYQLgzOd7bgruasVyGBj978kEAABvNX7swdEmC0cjvtOFKaUnS9ewrFBlGv2XhpmAfAHLQnXR/uZEfB7Yp6wU2GcLydzoen0u/y0BBiSGT4yGojSGf83iWgX7KenZhl7ltudndhm1mr+dBGp/ybzIZ3mW2W26UxrSON0dj89Jt/R3370G65+Z0b6mrFOKlOretoXT/eG7HtJZBXcr8l+MAKGMz4VvBWfMViqEvN4uluXOJdH48B7fSZnl9bNJaIgkPtvX3vONQbuB3fyu3p3EpUZoyl79v1oftdYzP3/x7vWuN72rzrD6cLrtJw3no2dbWzfo/Tkezq/3Ni+df68kMenzHFsH7qU30We2dOS7jDdI5NkvnWjdndaTcGO/axZ1jnk/hrEAuqf3znk+0lXSMf5fnxtqMbfXubP82bD5vBbs0L2MT6lMamILx28ZsnGct3YyxuNkYlXNQrp20JsePw456TzW7pV1K9W1p7nQFp5mdjXIb6357Wzsxft8GnOJFz6TtZuex+zHcvP9863Rg9M5TJ87JoO1u61bK3/Tazep9lvVNuLNxVzOWN+wcb3v8A7DsarigMKscfCD0zsA5haaWgCqV9uisQVO5HAigrlw2m9Q6oO81TJHCoqq8mFcyYb1qokO+xLJOTt9V5UEEdG2V8yFKXQZ1HQNDWEmnMd54Bq/gvcJs3oOZ4JzK9wPyt2urvDnSMaVFCGrjY6C00GCMmFmCSdJTeI35QkwevdOoGwvbi9ZDaZ/9/2xnsomd1mIWWEoWtQkbUk5ntZhOFvksU3u5j4nxcwrKBPhOQ5kA0pzNAZVhBKugap/TcgSnxMyy1yAdYGoP1xno2gtdnqAbD60D7LrKZoOlBI9UjNyYaOh1zP0Y/bIY0HWQqIAESWERCM2lFsyE/qQGaY7mnrGMVcNGQQGqljH3vcr+WqlvqvbgaGKqawnOwE4iBeaE970WE8SyXgKgGLqWtCq2NYM/oidQLSk5dB3gW50DFnBK8xH7DmJwp8VksIopOgBAM6q5hbcaIV0v/PBO5T0sUnKUUl0yRXTJWJatkpQqisG9gmo8QmuGfI5+qE9o0nItzZ0dIinm3IopNYYlMb3sY8oRq6K4j4Y6mMRsklJbkdZZnAs7jAE0i99dGwVEHPuZ2k3pMRhASnOQxrAM3pCCPBTHtHDybJ9Uw85Gs/SBMOysanlXcFskvUttlpv5xosp6MJL2cInjeZisguOfa4Y6FRBezQ77TS4CkO5SL7aswjLKqb1CEXQCoAaL+axcT6oV+AmSD9M7Gu5KU5rwUU6UhCMVD5FFE0pUKrYXp/mXeaMmIb0KAqS2sSwjHuv8macU996Ba6DmM/G5z8FpkhpTLBv5XlI82qEVlrrbPqbU57MPGgVz9dBjhdezIzjM8DJDDgFwLBqCG6RaK6KdR/bpE5tthcg6Vg8ydhy3Iyn94kb1gGndEWM3FY5DjlYSBOATiOnn4mpiCRljJhL874TupzMNSc/UpJ52kgrU8f645wjQPpRM5Dqi88UFA/PcYjpZIjF1LmJ82WVtJnmL81BnC8x7SYxo05joxiqV0N6hVTeUjZvRkxTwoZzKhzqCVwzVKukXB/zknoCzwLUSWnTeGsITYBqoxl1MkdHXLMdDebKFYsvJ1POX5lozms7IOYFLdIFlfkso8lk6rMcJEKAMA9QXRwfD3AdU/wUvsLpmqwlSaeTxoICiZkmRbPmIrhLTr9hpC3ylE208xZEARTzghILjcSDqXVZTzK3zul10vPKgxm+pJmJc1iGDI5pRJJJJEmMQ6k/vVvjmJTMaz4Mw725/JgBCwOtZU7PnBM1pawZMz5lPcnENZ0fjf+mOStvTSOSjlPnWMVcpyPGd4PZ5CH3bNbQbxHi5L7RtrawkTN2GACcxmhfcDNw2c5A8tmM7JiG8Xzd5XhfDt5zVzOWV+olXv+id+AF1SFarvCe7h5oBLywPsRFvcRvrF6Cfd3hGbfAC+tDPNxewUtm17EKNR5tL+FStUKjHJ7q9/GK+dN4b3cJl6sVTlyDG3aBp7p97JsOH3bhEbxrdR8umDUa5aIZpsdj7UU4VvjA/Sdxwy4QQLjRz/GKvafx7qVE/X1gfgPX+71sJulYYe0rXKlXuGRW+PXDB6CIcU+zxNpXWDlhko+6GV7+gkdzypNn+jn2qw77ph9yXbLCtW4BxxpH3Qzv/8DTCKDsK/pfnrkXD1w8xNXZEg8eXcH9e0eolce1dg+dl6iorzi4hmPXoFYeT7d7uDpbQlHIaUiudwusXZVN2u6dneDIzrC0Enl0biyurRe4PFtjaetsClcpn035XrA4wo1+gaWtUSmPC3WLZ7oF7pkt8cTqABfrFmtX4d75CR5bXcALF0c4sjM8dnwBL3vxdbz35CIuNi0WpsdjywtYdTVedf+TOO6bjfZs0OicgYtRQ7ViXF0sYVQQekmif15fLzCvLHxQuG9xjJl2ePvDLwUz8OpXPoKlrfHMao4Lsw42KFyerbNG1QeFx48PAACX75XzKVKqVgGH6xkWtQUDuHa0h8YEXFys0cdIqEdtg0vzFsdtg4vzFjaawlmv0XuNo+UMtje4eu9xjli6V/d48ngftXE4Ppnj6guPYb1CZys0lUUdI2lK9E3CPXsrtM7gaDXD5ftWACSC5tH1PVSLHvddPcKyq2FjtFStA2ojTFHvDCrtURsRxqRorimC5HLdoGksrDXwTiIG7s07rNoG3insXVzh6HiOS/cdo7MmByRqKoveGbTrGvuXVliuazSN+LAezDt01ogPacz/mgQte/MOJ8sZ9u9pcXS8wOxCKxFtjceyrXOE0OW6AQeJ0piiqh7fWKDa67G/6MT/1RrxLe019u5dQakgZp/WwFoNDgrNTCI5KhXQtWJyPL+8QgiU/WOZgb6rUNUOSjH6zqBuHJZP7oEBHLzwOPvMdl2FvUUnmvEYAbI7bsCe0FxZ52BH3sv6ShElAaA/arD/whOcPLmH+nKbo0gyE9rrM6Bi8SmdM/xaY3Z1nX2Lu2UNMGF+/wnWywakpG4fI076J+Yw97UwlUe3rsCtFsY9EOh6DXVfK+amrUFzuUV7Y4bqcge7qqD3LZQKWchmWwP2Cmbfwp1UoLkDtxr6ooVfa1Atuz1difGPP6mATkEdWIReA0r8YkkBvtVR2KShLjj4ZQXqtDCIgUQwcSyMO13swScVsOdEWMA0MKC1R3AK1WMN3EEAz70wICstm+UrFmi1bLAWktdVX68Q7u2BVkNfr+Cv9tBP1/CXXBayqMMY0dILQ+AXYWAQIlOplrHeWs7rIz34dFJkfmqGWmmEJsBcMxsbXT9jYcYSX3dD/FaZImMQFGAY1TNCCxMQKkb1tIY9kA19mDFUp3IeyOq6gb3sMXu4RjCcc0iGvOkX5sDPGPU1JTkvr4uDoO6S3x7DXmBU1xTMiYG9IEyC6hH9TcXvjVX0i3RyrnpGhBRuLr5wZimMen+Jo48i5byUyg2+l6GW+t2Cs1+aOpFvn58B80eN0GVY/P8OFfRaNqtuAeg1hN7HDPxcfDhDBdSHGu19z36Hap40sAeyHvShyr6C5KU93Srxd1wNfpHJ17J6VIGN+DOatfjesZLr1YkcJ6MrYuS8lADgI/OWGQwDNO9WsPtyLhjx4fQNNn3pYo5RcPQPnYuvZKikveQn6uaReYqpWHQ/+E8mv1CzouxvqTyEua3FdxMk88IE8X+NfU75VUMNmCXBxRyikv9UBCi6BVhR9PGkDd9TxHEQv2ZGMOJjSW4Yd+U4+n7SwAAC2dcyVLThUyxCmsRAi99lqAjKxhyvnjcY2+SLGsodc3xe09pMYy0M80BDeraEnqE+ME4HB0NiOuMPxQMzmxjBoh8pj2XQHH0sOdMA8EZgJslfi7xeNxDr3/DfVMXvMY3R9zJdo20q6jEjWeQATeMGbPK/UvdppjMJlrZabey4d5sifsIfDu7qqLCvfPWCv/aHXoUbfoE2VFioDpYNWq5w4me4qFdouUJFHqtQY6F6nES/xYXqsQo1PKvsF5nOKTA0Bexr8aF8xu7FNCCb/o4H8fqhm2OhJT3FQvc4dHPsR2/2xIQOOfTExzL5O95TLRFAaOObZ6Zsbv/Yz7KpZmoz5dtMZpAL1cNDYaF6POMWuWyq+8Q36ILB5WqFQzeHCxpz3aMiH1OzLHLf5rrHkZtFOsWks1EulwUkZ2elfPY/c6wxV734QqrBF1KB81gtvTB1pd9XFX0M59qii/5zS9fEFC8VGuUw1xZH8ZwLGpYV9k2PWjlc7xfZV7L8m8yTE5aukTGJDKj006KLx8nX7kVzSfvyZCsBmRIdickuTVj3YrSD5KtYmkAPeTilDsdKfN9ITKVr5TLTnnzsShPZPdNLOhUnURCSn+F+1WVfy2PbZP/FPujM9CafyBPXoFYOMy2BqwDxx7ynWWLpGhzZGWbabvQp5QtN9CTz6tL0GoCkmYn+aUlQkvwfxceywr7pMg2AmI8nv8yZtjk1TTIhb73J6VySD1vyle2DxsL0WLkaC9Oj9VUOlJRS4gBArWVN9sHkcxfqFq2v0LnIQMd0Jyk1T/I7rJTP/nalAKExQv/aiS+tViFHlS7zkCahxsV6DQB4plvkcayUz/MPiMnu3Mgznnxl03uBmbLfYVoLN7o5LjQtlrbOEYsB4KDusu9goiGlr0nBwQITWledingMAJebFZ7pFtmiQ/LryrgdVCL4ST6PrTPYj8KTxjhYrzciUBslApvOGcxjELJKe3RRSJFMvtM9jZGUQUkYU15LeU5NzF1aa4869g0Qc+iZcbFvJvtA5hyZxMK8xr7eM19haWtJpRLbVsQ47hrUkbaUu3S/7nHYzlBpj0VlcdjOcHHW4rhrch/mlc3zSCTpacr8tdbrTF8SAFZxDMu8qD5QTs0xM0UQJwA2qBgITSxAGiN5h8e+kWl9MiRdR0rLk3KaasV5PdTGYdXVWZiV/FOTFU3ybXVeoakceqcxi6lACIOLSNtXqIzHzDgs+yqn6iFAUvXEOvsowLBeozHRBzcGd6vj71U/pERJOVIVYSMoW6IrRekux7COKZ6S0EbrIeVSWkNdygMbBWSeJQXQsh2evVuF0QE25oDVOmTrHUUcfVAlOraJAcuSMAgAqsrF9CMStI0j7WUqFe8HH0hV+EyW0cDlN2Uhn6wJwJgQU5wM9xIh0oBslaU153M6Wmt4T9kyCUC2iMlpOcKQeiRF7pb0H0VKkiCqRW18juCtYtqSNEfeDxYGZURtBjb8OEOyyEAqGxnBQJv+nsSFBo2GqOPpcrQCyOlGssYych+JYUllktXImEtJ9yeUW+dUrqAj05CYx7G97Xlwluau/JssD8aavWL8ksWDaCuL8RnTsq1uKq4V9d2Kyf+tmKjflBncpVU9Bx0Pfv4XPe+RUz/8w2r+mR+//7bXe/GBh5/3vgF3ucbyabuPb3nPa9DEzcXKRg2DkZx2R91sY4Oy7Ov8ES8/ir0z2G86nHQNGiMRPnun0TvRolyatzjpahgd8oeaiHN+vL2mR5+0DM5gr+mxiia3s8rBus30J4EJtXHQinGylvxsKdl1SsbtPWE2s2J1RSwfZR1ynraElOTcOYXZLEYAtSZHEtU6oKo82rZC01gQIWpn5CU3ixoaADkflUQZVdmstwzrX9Uu590CccyRZWAq0YaoaLILYmjN8E6hbsSMON2TPm7GBNg+5tRyCqbycFbnHFu2M6hnYsKrdQDFfFzslJh1Rs1SGYwgxMAAHE3HTCPzHYq0L97FHFjxA6h1wNtvvB/AEo01MImZrmFwALSJvp2xLd/rbFKbPopJ8xSsErNbQMxBo/knGJvmvlbMhJPZMTh+MDstH7bGZ5NeZTibv6KPUTqZwI4Gk9b0QWUx1WUvEVApRkRlq8T0rAqDiWgKolCagiZzyGxmi8FULpmmZtO4+KGMpqpgkuMuRg5NGwPNw8fVSdRPWDW0GSN45o87Y6jbsJRN9Zoo6lQYaAEGc1fF2bwymx8mk0FHg7lfU5g0pr4kWtOmx0rkY1QstPvYXqIvmQpH00+1jMG19v0ghU5mqukjHOkiFrO4jY83UvvyfKtWIcw91Fo0W2UydLWO0VQBQCObBmbae5I10QQxoSORZqeP7iPHGn4/iIS7jyZw6ZloSa4VpoyqVQh1ELPEirNPWCoj88iDKaATU0SyFCNicjYvI0tRi5LMHZFNS5OJYDKNpJ6gnEQpJZY+qFbeI0mjJRFL45xHU69kFnb9RLQbIc6B6iUwjJ+JRg1Ajqx4rSX4hdCsrGjdbqwJoeFsPqc7ynMpmoKoPWBkUzplkbUWYt4n2hqK05PoS5qZGNcsQ6KcDlqCsr5yn6v7Ya/GGjjuSPoVhvtlzKQNPwPak6hxMryhjSBPCEY0GutONIirLq61GE2VVYzy2hGWNkaBLbR1oSo0NtF8MlQMF+sJlZTtYjRPP2e4InLtEFkXsG6gLUn5vU8AACAASURBVBQxznw0wwwVg1saIpQqgC0QonYnVECI4277qHGLG+S2A8IenjV8D3CMfsoW8IlXCHKeLQANcIy8SnHOATkHBSgNIEY/JQVoAtDLbxXXo4prKjFQlOR7iV9RAK0BE7WRaZ7JbPIwVEQlVRbQMdpuGjeJuDpoMNO6y1qrQguXNNJJu5Xazc+SGa1NQtawpWdjQ3uX+uKkPBfrPrUjDFHRnsKmRjZqMpkKprFkrAintW+MrHUD4nGMJpujyqbxS3xlHI+Ebaacpaltlm/Hb2guXzBFp86l48LMd1fU2I0oqTT8LrV1+Z50Ln6Hb2qCOur7qfJpzauC/i04Syu5E2PmGFt+78BWzekID968mgnPEXc1YznXFh966VGRTAaDpWugKGCuLTQCbtjFhqbo2M6wZ4RxSFq0FHxnT/dYLkTrliI2Jo3KhXqdtVZllMzWVQgg7JsuR0rsg8kaFgCimfFmI6BPoseogKO5aAhL6Tmz5Necm0GrVGqJysA8SRvTB53Ld96gUh5Hc5G+N9phZWs0xkGTRHxM0QMXVZ+1MCmqI4AcwbZ11YZGLWmJ0v1JKp00TmWUx6R9SFqMdD1pNxrj0DqDWvusOREJt2hFVrbCorJonWi0jApY2SonA7cxl2V6D5VSfR8IipCl+inwC0OYfxOTldcxuub1KD2+OG/hmXKiemaCiVLwpIVKfrpVvCdJ1ylKrI0OCCztKOLcllac05akv2UeUJH0S5LqpnI5IqRWjG5PNC7W6XwtzUuZ55Oj0CJE4UjSDngmtG0FY0JOj5KiCRJBTBsxaA4I2AgulKM9epUZ6SQVN8bDxsTYVeXR9wZVFA6ke9M9IqlPUvM4vlGynwQaQofQlsqmepO/cjYfjVJzF32DVUxFAoi5qtIhawaSwCYEhboetERJo5Ck90nK75OvrEnSeMrXk5Q+lVM6wM7F9Hc2t4OWwat8f2rDOzEFrCqfv9pJOJIZepLUK3XtYecmJ2JP9bqFyT6yKe9krg8D7aYS/2fEdZKEUq4x0HPR3nmvcooVAHC9hp7JDp699NkvpB/BKSjNGzsD9kkzwVmwwl5t+ECnZOiACF9CIKjKx77K9exfmDQlsb6QTGCjcMbHZO9kAryVdtIrMaRULbGOvtHiD2jivDklG6uZmMpmzQSA0Gk57wneKqDxCHM9+O8CCL3a3LkloUwhpEljn/2GQyGMSQw2xXIqMu+pLCDXCyFA9g8tN2fEQiMh+3e66Jso1zEIK5LvZx3gm8gF5zQFwoDnza+OzF4UVgADgwECQh3grIrmjclPT/qY/OSAYePPpmAeo+8hOQBMCE0QU8i4kaaCKVQbjOWwu01mmmzE1BeKB0bHST8JkXF2gzltFlZEk0Y3P8cudQeUFcZbxobyxjoxvNk31NHA+KclkYQEZVqIOEfKFpt/IDNNZR0Uz6f7/Ez6mMcwmc6WzEEUeKT2UzqNzCzGV2Ew2DDNTEKalPYmrSMQR4aHCjPMKDyIgj5V+JUnxjJo8eNMfrJg2mBiNxjAtN4LxjKPxxbGcrB7HDFC4/VYMnKbD5T8zxTLEMaMTWl6Gsk/fVz4tuZx5IIhHS+7EcO0jREbM6MbZqs7GMutdQCDye625c+jY9r8W772TvV7S/mzcFON5JiuczKWt6IVfb4xRYW9Q+Fi2o6Hl5cRmHCxarH2DR5bX8TS1rh3foKVq7FvOjyxPsCleo33nFyGVgEX6hY3+jlcUFiYHo8vr+JC0+Ipuw9DAXtVh0v1Cq2v8O5DuWaD3mCeLtZrKADvOb6cTaTmxuKR40u4Ml8hMOHx5QXMjc00BxA0BZz0e2idwf17xwCAY9ugiuaERntcNj2eWB3kCKFzYzdMugB5zvarHloF3FO3eHJ1AM+ERWVx1M1w/94RTmyDk77BlfkKR90MqyDM2l7VwwWFp1d7wtjF+66vJRdoFZm9eWUx1y6H+08mZIn5s15jr+rFvzKeS8zOsq+xqCyuLRdoKodGe9igcNzV2KstbqxnOGh6nHQNjPbin9j0ODzeR208Ls3XuLZc4OK8xdpWWPUVLs5bzI3FEydSposmZilqrFGiVU4mU4frmZhNGo8+Mit7tTCrihjPrObwXuEVV68BAN5z4xIq7bHf9Nl8bdVtmk0dzLrYvwqKgFVXw8QARoumR2sNFAH3XzhG5wyWfZWZyf1Zh5O2waLpseokLYVl2QxpFXB1f4mZsbi2EpG6D4R1X+Fg3qJ3GpcXaxyuZ9AqYG48rFeZsddK+n3SNtAq4NLeGkfrKLgwDi9+wSEOuxmO2wa1caj0YFaWNO5NZbOvpiKGMQ7Oa3m3E2N/3gnzXAeYuEbWfYX9eQejPZZdjXsvnshczsQcPCTTOx1wMO+w7GocLDp0TkMTo+2rbCJV/f/svUuPLcmWJvTZyx97R5w4JzPvo7qquEgNg2rUVY2E+Ac8BBItJvyQZsSMETMYNWMahBgitdRQA34DkxZILSRA/eC+MvM8ImLv7Q97MFhrmS332HFO5MlblTdL16RzYm93c3u5uW/7bH3rWwyEBXRPS8DtYcZ5Dri7uWBaPRILX4VA/oilAGNPfn9L9BWcfvXmAdMS6kaA9wljn9CHiPvzUMGm95kBfGZfTwLBhxvyzbzMHawtGPsV0xJgbUHfLZUOR3FKPX7+kw9wpuA3729hGaQN44JpCgzeCfTe3ZCf6P15qPQua5vYl2dK3OvbC94/jPjpV/f4cBqRkqnl/vSr+8ZWYFrg43kg2lk2ePWKaLmnS4eRfUzX1dXn4o++/ICv72+QosV4WOqGkTEFt8OMtw9H5GzQjZH8Yl9dME0Bh1cz5jk01cdiEA4rrC2YZ4/jccKyenQhYpoDumNsLAwGXOPdjOASTpe++o1SHsAPuW5epEjiZp1POE8dbTxEh+PtCRIzduB2CTB3Y67g3diMn/z8He4vA5aFfMplntw/kP9tbZcpuP3qAR8eDggh4Wac8f7+gFdfPeDhcawiauMbMi96DvUxLYEFzTKzNxz6Ya3jbUxB30VcLh18SE82N2K0OI5L3RgyAGYWXJO5IX6/cq2IevXDWimiKVkchhmnSw9rC7E8fKobH/2w4nzq8fqPPiAmh4V9mmVDRzaH4uowjAvm2VfGTB8i5tVT+KZLh66LuBln3J8GeE/0U+8yznPgTTWDefZwjtrRDzRmstHT91Tu6dzDSxsTP4cuY7p05Gu8OjifscwiZEabPDAFcfYIh5XGMjmUDFif0TFDZZ4C+mHF5dyhGxcsc6jMmONxwocPB3xu8kPEfKZ3iuVYtpW9cwnkS5wMbE8snlIM0ToBZtoYZI5BTLROi5wM3EDIMkUC/wYg9gv/bslGSKWKRoPuZkacOsAQGyb0ETk62mCx8m7hTQgQgycunjaJErFcHDM60sqxiZkJYXym755M7TlaOI7zKywmY1FF+FAMEjNX/BBrny0zl8pq4YaEdBGUi4pWLIvTSWzkUqBYMahMFGNATB3elKFySmN6iHibAlzUOUZAmuYqYKXIBophH0XT2CCSCraCbXJMqhGKKW8IiYhObV8yleFBINVsgZiuypQmjsYbBrq+jUiP9Cejtl0LPj2hwoo4k65Tvcs3tF/e4CTBsG0bK0NENq/25e3zVzB/Jb++5hkQubfCXvu+78J3Aq9/zakASH8Alr+fKReDU+yr4I1YzS4xYIoe59hV/6hLDBjYn8/kUj8LEJqiR+88gQkGJp2jOICX1aP3HnOkmIeBgeXZEjAQqyEA8i2MvvoECYCpVE225M3JEd2Ww5/M0SM7QyI5xcAbt/FlsqZgzbaCFilvtpkCBJvm7xNsrn5Hc6J202eqM7Av3pIdZqbzpkwWvcgLGPGT2ftASX6ArGBkYbRYeBwXttxZLmu2RClucdIcC9UQCJgZcOVCMdRicrRgBypwXbnd8rmzie+b+O0YBpYG8ATQcmpliPVLLJqdT1h54RajQ0qtfyKcsuZUY7ZpvxlrS12ArwzyY7LVWpgy9UH8rVIxiBwHb00OXU41T5QFtFgBeZxTsYgMjlIhmjPldzUGn7UZLhfE5CqQKoXiz62rAwL7cvH9FKtmyhYxOqZYg+9Ji/MnVG+hQtPcsFUUJrnmk0bjbhCjQ2Z/p5QsEls2s7W132ShbG1KjsGELeTbU5rFkdpEf1Mif7R1dUidqaAyJwtrbQUkzlnY0gRyIPdDAQdj7KZ/AFkUyQJKCzwqj+613DdazBtEZ+tnuW9Sd1ILDjpOY+ccKU8bACUX2rkvtCMuFl1+m5E/lvKvogWpqz5k5L9U6rsvZZp3MTqyUnO9Jdsm8JUcUuI4lqpd0i/xAcu2WaMNn0Np/l9EM6e+lKxCEBUZb24/X1N4bNu1W/9Asd5K+ZmfoZwLj0HiGIAc4zLTgqldq9vD85PXmlKmgW2bcLw4ysXQuovbJGNZY8yx31kuzWpe6xSKnlrRNGu3Qc7YuDwUZRXJqs8l22rlLcpvTocakTqeLD2KQUGLm7itS9rWLNNiKZe+WQO2XGPj36Y3K6UeekfQb6Fltge4XtmgEEaCY+ZAzafSPpyM42uoLPDnxm6o10s+NT56tUjA2G3O6XYJc0HeKQIARdzrc1NtkwASLl/el3Se3hG59sfUNpdikbhdqYD71Hwik4BKBqu1tRUsFWkIvMuYTbt/UqcRACpjaNp5Yg9kmOKYBSCmNbupw1imvAuDgO9vtoava2Mq990YoKCVT8VmGMuWQNUWqQM8B4sBUipNwV2DQMt59Q9XBW5o7iQCFOWcBpYCuGo5dA0pJBdWSC71OW/jDAJZwkzQ94OBUEFpbYUCb6aB3lJa3ytwFeCoASC4PNDvRC2rtPwFpf01gEHrX3V54N8ZQIHR6tqCp0nal0sD/abVVdtb+15QYLYgXafdS0UAagWF10yraug3h3dg8QkWVt+xy/OH9NefftTiPV/92VflP/xHf7+Kg+wDjEtcx71/47U4lvLjq2Mr6msk7eNQXkvPxZi7ds0+LuO1eHz7DaBrd+y5+I7XAiE/F1vuSb3yw3nlGh1Aex/7cH9MjktMxH35+vvnxMW82nb+q99t1959ut6XtEHnvd6HtpB6aRzAl/RXt+ulY6TbotvzXdLH6vne5V8r+8kvytP27Mf/2XiMUuSV42Z3/kVN3/yyXalP3W/5/tFYh5+s73Mb+rI5Vet4Sdl6RbDfCv6Oz+u1+JUvil35ibnR8u8+X3t5PkFS2PZR6pPF7cfq2I/dS+6RvuZ3NbYfm1cfewECV+dB9aHVYFm+f/SFqs5dy/OxB/NT6Zm5UIdt34/n6rf4/PRcf3Zp/6owBVfHuX7Pn7j/V+b/c5abJ+3b/xA+J8iyv27X1CfT61P3eNPYp8efvW9X6tlbpdq568Dk2fQd799H871gzn4ny9lf0XL82bF7Qd3PzingBb8bL2rex+v6WPqM8fo//+t/8IML3Py9v+jK//aXP/mdl/vTP/7lD9434EdusfQ242f9A1lxiqtAEiBVyZMoa4JCfczZVQVRUbr0NiFmV/+KT6ZYj8SvccmN4ikgZkke1uRqKQWAXCw6R8qfFqRQmsv2V0zAq7cJ59htytXAV/tUilrlHnhKflK3ZX86tijNrLbpDKlZekO0nVWpfAab6uJc8ug2yljoMdeKkMDzi3tR9NOqlNp6a9h6pJVRxa8wsdUlsPiS476v7N8pPqmbdqBZBgBUy+n+3aeBt1BnL2tALqg+iXWjgduj+7YmW63G0k+x+OmxEL9JZ8vGl1JA9v549QPkdkkfAFQrqJwTS47s0Ov2ik+n0INlToiFVKjcekwc15PYUiHjWX0sZXzZB1MUCrX/pVb9c26bp449W31F7AiQXfztBo8ADLEMSrniX0kUQLMBcdU/lI9JTFqxBGhLmezcS516zui2GnWf9/XtNxByUn6NIuaUmxVW5yuFlRP3C0X1HJVMiooiiqXP5Y21k+cpKzOC75MBmpgWsFmFpmgrrbCwZVB+1SWmrZQrz6VR80EnPXZZCX1pS0etn8tHQY39qs/Ld/GnFMueWIXq9cCmnnZy0zTklWLi1knNFkmJ3UsF0XXiFwpRnXR5Qw3UdW/ElupJHkOtPClgQlslAEU1A8U61I03peUvO3CrAejeeiLWiIxGDdRAwpUWh1VR3TZtVwCncNurNYavKwXksykxR4EtNY/FiaRuofWJEqURgTWnqHzS/f1YST55TuquBEg1h8e58D1pdfHwOxaSUq6x5Cv3+St4k82G8qh/YHQ9mzAScivEX9HgqY8cDfbGj48uUn3er7zZ2tbGxDRrkDyXQD1WrUYyPzcd24FgObYDoRuQKf2SZ0g9UjXJHJRxUvd3D1jlvkF/V3mNGucKNq8A7n0/Nns3ul11gK78fUnaj+HuuqubC58qT9rwTJl/nem5/a4XpRde8+I6Pvce7er6Q/qrTz9qYLlmh7fLEb+6vELKFnf9BbkYfDsdcVo6/PT4iEsMOIYF76cRX42P+O2Zwkl8MZzxsPYs077g2/MRr4YJp6WDsxm33VzDFfzL96/x+nDBIlRMR+xo8W/89ftbjB3Fm7zpFvyLD6/x5kA+TvfTUCXuAV74swjNvHr80at7pGxxv/ToXUJwCRYUkuDryxEL02zHsBIVdgmV4gOQv6A1BTfdjN883iIXOnZaAn5x9w7v5gPeTiN+dvOIt5cDlujwapirT9X/9+EOQ4hI2eDQrfhm6lHQAOSxX6qkPwDyl/SpSuBLeaKoOythnMsSMHYrvnk4YujWKmO/RI+xW3GeO9yOE05zV33tDgPFRPQ+4c3hgm8ej7g7XPAw9Viiw+vjBXf9hF/ev6p9kNAozhQEnyp1CwA+nEeScvct7MHNMOO8BHib8e5yQE4Wf/vnX8Oagv/3my/hfaI87Dv5cD7URbO1Ba8OEwDgNJPfl6jw5mxw6FdMq4cB8OZwwZwcHqcewSVcVo9Dv9T4i6epU1RY8tG6GyeMYcVvH27qfFkWj1fHCXN0eD1O+PbxAGsLhhAxR4fIisFCW3s4DQgh4TgseDgPKAXouohffPEOby8HfDiNCCHWMAAxWcwr0ZW9y0SNZTAn38UXa+wXzGtA5yNRipPF6dLjMCzwXcbDecDrmzPePx7QcbiClC35DvqEoVtxnnqM/VL9FadLt1EdBsTH0uAyBdwcZjyee9weJ1zmrioMd/2KZXFAIX8z7yJisnQMwBevzjjNHZVvCnxI6ELE2K1493CotEQfUg0bMM+hAt+hJ9/oy4V8mPo+Yp4omFzXpVp36CKWOeCnX9wj2Ix/9fWb+oyGLlI8TAbn1mXc3lwQXMa7h+bnJQJG6+oqQLy7veDt+yO+fPOI9w8jkqKUf/n6EZeFhLVidLjpF9w/jhUEHg7k33p6HDY+f/Jc/OnP3uGX394hRYeuj+hYvdragi+OZ/z67SuUQuEMpnOHw82My7kn/7spbDYAWjzPgMNxxrJ49IcV53OP8bBUYaXENPPxsJBP6GmAH5rKdOGxjNGRaNPq0I/03ng8DTBMcT/cTvR+OXc43k6YLl0F8o791lIiX60//em3eHceeY5ljAPFfX37/ohupPsbee6//vIRb98dEQ4rXh0nfPvuBl9+eY9394cKho93M80lvr+Xuas+lkKtP0jc1NmzP27E6Uz+pOL/mZNBN0Ssq8Pd7bnSiAHysVwXX0MwjOOy9VM15Fd55Huc+d6+Ok748DjC+4R56uADCT7F1WE8zHj8MOKrP/qAmCwuc1c3ayyHAJE4r4fDTH61x4me+RBxWT1icjidBgzjgteHC759OCKEiCFEBJdwfxmqcNh5ovKXOWDkdk6XDs4nHEf6/uHhgK6L/A4loSpnM87nHv1Az3YIiZ9fEmbyLGK1Th6H25ko8skiRwvfRRzHBcYUPJ57jMOKx8cBNzcTLuK3GR2+eHXCb7959cJVxtM0HBZcHmnT2nUJljdhvM84P/ZwHC92PCxYFoqPW/2Lb2ZSPF88un5t1P5oMd7MyNlgXXylp4oImsxTAJUunKPF69cnPJ4GwJCoVX9YsC6+zn8D0HPDglfduGKeAjyPRUkGviMl+GUKvJFCGzHO56rWnrNFjga+j5XKbRzRjdPiEfpIc3siF6DusJB/Kb/b4uqRZodwWLCeOwaYhdXZAd/xZujimk/n6qpl1bjCPpbkS4rZVbVvOQeA1M4lbAjQANpqmo+k0DxlE0aORUMiWwLW9f55RlM/l6TBrIAd2VApqg2uNNVyvXmjr9NJkJbeaNmfz2a7OSUbR3JcXy+gPtOGEFzb5NkWa6p/Z7FK9VvGR9oL1PNIqnx1/iow1lV+DDirza2Wx7Sxle/783rs9GbDHt3/HqQCIP2I2aKfSj9qKuxP/s6X5T/6R3+/xkwUgRnP8fjOHNeNLJG5xuYT1VeJ/bckh4EFaja+aKz+2ruIOXk4sw03srJ/ZGdTpc7GbGt8wVIofuLe6lfY0iSWMgB1oRLZbyqztU4rrwpw0NYpsTwltq4C7V0iwjYSUsWzAmpiq58xpQr36H7pz0msGUD1pRFrmKRcAGdLVWIVGqxY5iRem+SV4wJatOVOjpdi2MKWazwzY0r1M5QFzJ4eqtVRZVylH9SmsrHKObVABICBNwh0zD8d77EA9YdeLFGb8WKrIABlYSs8flDWvG2cMXkMJQaZ923zwNqCGC20yIVYCKUumlfcJ7YWSl6ALGeRfUa9z9UPTdq1p243X692nnzC2ku7WjMZFJJlKVfL4ZM8ZWvxFJVSqyxt4nNWfw95EW1d2oSMEUtbsya2H265TsLKSD0FoDZlEpTQ9xTSVz2eomgqi5ZrFktTWMmURCwAVCELugZVDVWuK+y/KAsosgqY5n8kY5EoNE1aKDSN/vHOPB+oQmpDDV9jCgrPUSMWy90Pc1kthcExqj0imhHlnLI8JqX2asvmB7zWxfOgDqpe+PC9oZtlms9SvdHyAJitL1TatV0vyuS8thrqcwW0oNOLRPGFlRA3QGufLCxZ5ZRC3XD5Zle+Ulx9kvS5oixc+2vYwmii2dzbIu2Vqb6z+EmqAiDSh4Snaq9yTsQ9dFgeGU9ZCPNiW6yRVbFVLU7luOGg7xu1zn2oCF4US6D44sBWRf7OIUnqVMot3yZ0ghpjXb4olOp7o+syCS30jbTNgEOjfP66R4u7iPVVjLpZ15PVmlluhbRfr4u5CLObN5K/Lh32Vm+DpgIr35WCby1PjaEovV5TL92ExEDLczWEhiS+QOZadhQWaDM3pX6jwgsBjRqs26Defxp81NAk8r606vryFDvscdPGYinXfSLty9jci+fyS3+g6tDHPpWugayyazuu4yqZd1fr02P6TN+vWvP0O+J3Ud5zZejvz6Q9ZvxcK+o//Yc/PBX2L/6iK3/5v371Oy/3j//kVz9434AfucUSQA3STsHd2y9QLE29VeiqQlUDgMHFCga9JbqpppkaUxD4V4oEH9oslsWsBBU3pjQ/cj5Xw27oOkqrowZQZ7An1jQBh/u69HFZ5GvAY5SVTsrvfKzPrHep0h0FpOmg7XJcUv2sqJaaAqfzCk1JVEaNAhRefoDrmMl3Hhe+xkJEIVBppLXvLlXAKtZQANUqtGkXjw1ME7jQYhMArb32KUgwcFPo99s2L1u7f4NJP9HehbV8tlzUsbnymdrdwKmAJwBsOZN2t+uaMETrU/vcQGVtoqM6dDkSgJtEIbDxcWvAUs2vHc3WmNLobKYF7raWYn+JwI8xuZ430AIcRoULyarORjktJtd2UD2ANYkAdClb2mO9/5RHJ2MIPIq4hNB5UQyKMU2wAjxf+ZqN/6ZrYyN0zApkeXPCmNKk/DkkhjWluTBJHDugUcb4W+1LBZnbX0tjadVtfd7QMVEMbHj6njCkSsN18NhU5cWybUjYlmlMC/IuYhECdKnPmdub6zGZK3JM2iFtJKCi2q1BkIQs2a8QBGTKcSPgvM1PyWOMLHjVM7CnOJayBZ4CqCyegiuPBiLlr0cT+9B5tQCGtFfO78BmBYr6uGl5i1wvZemxwm4xq+fnHtTuRDk2dE8+VzrhrmK7kJP5YdDEQq6AZulLcdx2XkwXLrMAbXxkKijgg6LeVVZdC3Vc7qX6i2t5du0zheJw1vN+2596qVNt+oxU1EZF3ZiX6WxbmzWIrG1UAEr3BcCWsl4r0xeX7TH+DdjQfOU+68dKjWENRfKcj6Vul5qKewzQ2ifPRnuWisFGZKFObwOiv1/p0ieBSnk6LATkzHNDc62I2uSrJ1RbjZqXH6Ve7o5de5Q/mV6a7xPpGvC6CkA3zz2u9u2T4O0F9+sl7f1O6WP34YXps8DoH9J3Tj9qYNnbiD87/gq/WV8R/cstmHLAJQVcUocvuhMuKSCYhMfU45Wf8H4l+tkrf8Fj6hGzw+hWvF9HvA4XvF9H9DaidxGjXTDngG+WI279jDk7ZAaxAMXRdKbgm/mIwa3IxWJ0Kz6sA+4C0SUfYo/Oxk27nSm4pIAlObzpiDI7Z/LXdKbAm4zeRrxdDsggK9zgVizZV/VVAHw8wtuE3ia8W0YABJqn5PGmu+CSQv38YR2wJIqzKVbY+3WosTsHv+IcO1alJcB+8MsGcE8pwJuEjmmoMTsMfsUUAzoXq98pACzZw5uMSwwILm1ihA4uMk15xjl26FzCJYYaViXYhJsw42EZMPoVSybF22OY4W3Gh3mscS91uBHxQ5WNgIeVKEuyCQBQ6JaZaYVTDIjZ4k9u3wMAfn0iiu0+j+ONAQA4BhoTUf6VNuh6LAqOYcaSSSFYxlNiisqYaT9TYwpuuxneJHzgeykqsMew1Nimj0tP1mabKOQO1y99P68BzpQ6lgCFj/lyOOFx7fGwUMgYbSXXFnHxb3Xqu/R9DGu1hEv9EotU1JVvwoLHtUNQ1uKV+zio2KUr06ujso53HDNUNmIWjoN6WQOO3YLzGqrFvGMlR0s0OQAAIABJREFU2lxaPFLxwQWA237GHH1VbfYuIVgKj3BaOki80+ByHQt5vqRMAHUeBJcqNV1il4pf7sI0ZWsKvj0dKsDqfMK0hLoZYA2NoYTjqe8E7q9Y8GWsH6Yet8OM0xKqhR4AbvqFFG+5/8ElnJmaXQrFQTWm4Dx36EOsDAC5/m6c8OEy8DimTSzWY7fUMD3eZUwrUdfn1dfQE5IKGitgTQ5DIDqydxS6hdgKzXcYAHqmq1+WsPEHlrKE3i5hVJwtlV4ubAVrgGn16DjEkYyNqFPKdwpV5GtM2c6nOi7a/xhApal7R7FeT1OH40BhgcRHd+jWuukiqtTCVhDGgoz3yuMZHNFMJW6rKPyGQDRgKVM2cFZWehbfY6HxA83PV2LdyjsiZYs+rJhXmmtCj5drgk+Y5oCbw1TD/+hwI1otWcL4SOgfmRsFwDwHhJDQhxZ6x1umka/tPRmr6rZF11E560pUa9nEk7i60kbHcWGFDl5VuNem/Kopx13HoWxYcdhxzFqpy/uMZfE1rItQ3Puewr98bhJqJylC57papbZyGBduT93MZkaEYzp0Tg7WEbNBVI+9nMtNzdgo5scTobjM4UNWj2Iaa4HUlLFBgRL6Q8KMGAbA5MdNqC3HbTxb40qlvBZmGRjxTRbwbErzTS7EpAB4k037UifTYtuuakeAaZvat7mimowtSpP+ZPOU7iqIQdgQewQh5ehx2W0ISSiOTaiQej2qpVeLWW0srkaVrcG8UewBfd2+PZIEPAlwrhuQu/MaZEm+SoXd9Zv7avSGwj7pMvXf5zYhytNh/mh6SV6NiD+S9ln2+5m/76mg/I0ON/KjpsJ+9WdflX//v/tPYU2uoAsALTJRcI704xGLRWdJUEcvxvUPqvgHykJaL9hHT6FJBLAIRTbyInb0a6W7SlmXlWi4Eg8SaKIx4mfp2NcSAILNdeElVNXeN0AqdFVntuI9EkJjTRaD8mkzptBixhamwjp49sNb2V/H8EJLgI0WexGrp8Q3lAWr0FazWkwJVXUv4iMLF+8yUm5iMs6WDc3VC81x932Jjv343IbSW3gxL5RW/R7UAi1As4hW6yVQRWw0Jfk80eJxYH+0VPM0yqtYFluYCba28oIFwIYKK/RVff1TKuxWkTZFWxclco1zmWPikWiLiL7UWGKm0VZRDJxvsfwcL7RyNhzbr1R/0MKLeU0v3fNt9pbqSj8GmgS9bYsZawtyosVK4TJknsgCqor3yKLCbMdXKJh6bCWuoSyCDI+XtLUuYsRCB6KmGvHj4Tx6gSRUVpQWZ+4JFRZo1/MiS8oSi54czzM9K7ZP9UdUL7qqX2K01NaguHLKQlevjRQfLs+u0lbpBGhxJuszUyhOWmhWz5K4Dk/01Y1VDyBfoY7GoEi8OOl7NEDgVUPmheVqiT4a7VNro9BLLdqCTyiqepEnViyhWDpVBsCLGLWwkHKENit9FQEaV65QYbGpyyyWArKrxaopBiVoKizPw8jHi6FFps8wq20B3UGLT7kHKCBKpFpwFltaHrlfQskUSqtYhGUhu2q1FlTxm7qAFWO8LFzlhadj6pld/D2hO/J11J8CsxhoKmEd/qzqZeqo7Ifq2HfZ83Gm90pwesNU27ra48VtsXS9kbEqbQyLL0/vgVB2RWRGXSfzQ46Z1VT6JgAYTbO1aPTctF2v2gjkz8eVVJ5YPNVjWftb2rmNlR6AiWjjry2aBpXGu1n4qzLKbpoAgF0Nsi8V+GhxIGmT4XZR23X8w8IUShrTLFZ6edQ4T41jyHPsSfv0XFOUW31filXtU/56dQ5qXz0NXjhfBTHSF7M99jnpKgBRi4kn5z8GyvT1+zr0+O8A0FUgJG34SJmfskw+16+a77m8ejG178fH0ne8By8CfzrPlTZ9bjv+6X/7w1Nh//wvQvlf/gqosP/an/z6B+8b8CO3WK7FYUoevzqJeM+EWCwe5h7nucNXNyec14DbfsYvz6/w5nDBr+7Jaf+LIwl7LNHh0K34V+/vavB2bzOO/YJX/YRLDPh/vv4St4e57k6LyuktB4D/F2/fVKGSQ7/g67evcXckS+S3jwf0IVYfRID8ET+wUMLPXj8gFYMPl6FaDrzNuO1nfPN4rFadsVsxR4eFRR0kjf0CZwteDTO+frhBzoZ32QP+5PUHvJtGPFx6/OT2hHfnEWt0OA4LurAiZYu398capLwPEQ/nngCXyzV4d/CpxlW8Pw3oulh9HJdIgjTnuavWAwEql0uPvot4d08iDYEFItbVYRhWnB5HjOOCx/NAQg+LR9+vOJ0GWJdwdzPhw8OIGxFtWR1uby4YuxVfv79B16W6Cy473t6nuoNeisHjuWfrQKqxBsdhxcKCHZfTgBwtfvHH3wIACa+4hOO4VKGky7ln0ENg6HiYKxgFGoAr2XBwcdrJ/+LVGfPqcZkD7547jAOJmgzjUgVFcqK2iLDLGCK+fThS2clgnUk8ZV0d3tyd8P7+AGML+mEl8QpWDXWuwNqEy6mH8xmHw4zTaQBAAit//OVbvD+PeHgcEboI3y9cB4lJGDTBBgH6zieKR8ggfhhJkKILqYL+6dKhHxZ4l3E697i7O+P+cUTHQjwxWhojlzHczFXUZZ4CjEuIs+ddcRLgAIDQ8+bC5DEeF5wf+41QS04kJJFW8mXuhrUGhheQePf6jMscsFwCYKhvYSAxmPuHkXbsI/kxhj6xAI2vvoLDkcZnOpO4UBgi1plFjligo2RTg45/9bN7OJvxm9/cVQDqhxXrJRCItUR/vfniBGcKHh7H+hxbVmdOq62CFjdfnvDw9ojXP3nE/f1IfpX87L/+ySPm1ZMlkoPan+6H6gc53JLIzOV+QBjJbzgvjnw1Afz05+/x229eIa8Ofow1IL2xBW9uz/j621uyWI4r1lOH/m7Ccu4QXs1YZ9+UQ7OBO5A4WZw9+tsZ6+JJtOgc4PvYYl+uFsYC3e0M7zMup44sKMWQpSMb2DEi8wZCmh3Cqxldl3B+7GFsQV4t+lfM8jh16O+WJjpiCwVaT6aqwf7sT9/i3cOB2mxo/nqXcf/uANfzpsviAFtwd3fG+29v4IYVt8cJ798ecffzB3z4cKjWlP6W3vlidbuc+7rhYW1GXByG40KbfYsHTME4Ljg9DGyRorlL474iRYvj7dSsTACWOSDOJGJSisFwWOpmVlod+fMmg8PNXC1c8m68fxxpI2rycIEZA9FiOCw4vx/x5hf39ZmVZ926jBASlsVjnTyGmxnz1OFwnGD4N+08d0jZ4vzQIxxWvL4549v3NwhdRB9IyOv+PKAPkWJJX7rajp6fo/kSYF3BzZHYPB8+HBB6sqzHlcRsvE84PQz0rK30Xl3OXZtrfM/SxWN4NSOurlraXJ+qUJC8Y08fRhzvLricexKsWR3evH7Eb397d3VN8ZLUHxdMDz1QADekSqv3IeFyP8ANkebpgd7PMvcB4PBqQowOcfbohhVZxHtWi/GWxHvi6uvmmVe/W3HxdTMLoI2z11+c6D1iCvLiMNzMWOaAHNsmmHMZcaalXndYsF7ouUzRoUQLP6xkKb4E2kDijSPXZeTVbp6pMJLgkGymSdm+Z1bE5IECdDcs3lOoD3FxyLODP0TEU+CXXqkWUN/z+29u4j1ltW3jIeQax7KsljbGZMPHlWbxjGYr0CMATfqV1AaeiNzwMRMtbSZFS5sZ+w2vkJsID7ABwHXzRQvnyMalL3SdBozVf/WKddSgAvXqn70H3BrQ640j2VyqYLxtZplsaNNQ+4zrVHZl1w0sPBHvqXVnsx1nXc6+7GsmRqjjCiHXzQyVvcjYqqw/2lRI1PpvavpRWyz/zb87lv/mH/8beEgjElpQ8LV4JFg4ZKyFgM6cQw39sRaH3q71mEPBVDyCSVhLo7vK9zWTcI9OUsaaffWjTMUimISZy7IoWHfOHM5kpGKRYWp+AJu4mULjJHpsuz8bSyU/6Y7fQNa0uhxy7X8CU+VMwpyZxqesklJmgq393bSXy9+Pp26P9hvVx2UcY3E1Nqj2VaUwMKmeX3dOM8FkzNkj2FRDpEhIFR0ypY6bhEpRdOUl+02dur0Aap09lxt3bUjF1PLkrw7N4UwL36Lrz4WEmwBUazdZqlMNdZOvvN0l3EtkOq1QoffzQH/XoWj23yU0jDWlhq4Ruuf+fkk+fc2188/FW6V2O3Q2ImZX768cB7CZB/uYsVKu3C/d932d+/mmab3ad1iH8JE81pQN5XXf1/3xa/FdtWVePgemzq7J1T7tY+LKsSo2tcun+6XDBAkjovpwq7BAclyHAZJ8exaCJG9z3bTSFmm5divOdf0eXEvSDqG0CqVZ1y9zT8IIPVdeQQuDI6JcmZ85+fxce+TeaLqrMFTEn10Lfkm79GcZOz0WWixsXxe1E9jH8t3H8N3Pm/34l7JlCmgfbJ32bdBzcj8m10IVberU5aIxPOS7nNdMlSfUTNWG6npYrvf7uXPXklYg1lZ3+bwXGbt2TStrW8ZnJ70Y1oevCMrVc9ga4TZGGMmvy5bydRl7DPKSvnzkXlzLd72M/b2+fi9qXt1u+aw7va9rb5GSa6+1aQ9Snm3zy46Zj9V17fiT7y9DOC+20n3MOvcd5+2zdX6He/3Z5bzg/Iux4ec+r1eu+7//i//8B7fq/d0/D+Uf/xVYLP/2n/7BYvm9030a8Zfv/gIAAYRLCtVHMReDSwo1rzUFS3aVCrsk1wR2CvlT6cVmLk0VtrOxAhS9EBQVWikTwJPF1H4xDLQXvGVQsl9obhZgapEN0GJT8kl7Iiu3iiVVFtEz+xWJ/5peZGnxIK0AqxfY2r9Onk9ZCOrNMwFYQteV69sCuVxdGOp8+79Sr7RB+hF5MaxFfKDKkvGVRZ2zT2N/inotnad7tUZSmxX/KL0Q1PEnhQYMYLPwk3r3Y6gXE7K40+FR9m2v6rUiTIMt2BPLLH2+vsirAjO786IKKxZv8deqFFalEquTXrhsF488j22pSrli6W6xG82mDTqO5Z4KLPl1nfs4lltaclNpzVnHpwT7MbEVSwm/ZFZItS4/WWjJ9Zs2lOZzpGMmVl8goC6kMs9NoirzqWybUJB+DxRTrerXQKqACesSWaTt9j5v5j4v3PbjuO+PXrjmaGCZIlp9puTazOd4DCSepLGoMe1qrElDx0TcSCjCVU32yrwUldqqWLsDBJvr2VJnFB2yUpRt2dwTPcYyJtoCQ4NPfTVeKdjKuch032LIiuHZQqGosNXiodVn92mvNpuhaMHqnsn3tJtLWixoU56qy6jjtV5s6cX7hb0pW9ryfqFvsLG+VL8wTcd0yvIhFMxrip5KFbZSeeWY0FlFgXffH/EVk/7qbioLiUnKqmGoXRsqKNdf6ZdF+ocm8vMZSaiwhcvi6kHU6G09zc+OL06qjzXeKd/vyO/j3aMtqajs8t1qaimw9fWrQA+NGq6mgpwy/KGOG3+vzSjb4/q70Fw3asDY9n1Dw8zY0kJVG01pZe2xjZF3cW1nqd+/M+iQaXXtuv0zsWvDM/sJT8r+Pmm3l/A8Vfba3+9Qx9X0mf36XY7HiwD49yj/D+mvPv2ogSUAjG7BiUV4bvyCNTvEYjEnj97FuoCfk68COLkY3IQZEwNPAZWdS5giWTE7F3FgC885diw8Y5A5ZMmUAm7CjFwMC9pQXglb0ikLmOzQa7AVGTiNfq3frVJ2lToEaATb4jDqFGx6YhkTAZnXA8XeTMXiGBbMyTN4Wur1IkwDAN7HClLFZ1L7eQJkjRElWwE7I1sn+ivAUPLtLWpBrmERoGAzVvXXWxJUmZPDIazkz1oMjh3FDp1YUEW/U2Uya2AnPqgCugFg8LmKyYgYy+vDBdYUPMw9vEvofdn4vDoBogYYePyE9ttCk5Qaf1HmVSqmiqKUYjCwEEZvc/V1BciCZA3QeY75tvoKZEsxOPYLhZRhIRBjChzHH9UAyRpU/1XLFGYBdnfjhCW5ekyXX4qhRZgAQL53e6uO+L8aU6q/bUwOfeB5nBzGw4olNss2gDqWWpxlv+Gi752eK0KvGzqaBwLsvfiaFoMuNKucjGk3LDRvVHiYai1LIgjSgLS1mUPEtO8GqDRwDb7lswaG/ciUPyVuY22LQwfeQBJRlDU2q/t+M4CePaLSDTcTVhYLoby673SN90QLl+TFz5b7I/69Uk9/jJgXotLaUDZCLt4TLZJEagqFrelow8B1pVLzah8DgXkJb1NFV6KFc6VZlWTsXK4bBnv/YAl5QoDVwHSpblYABNTdwHRIpoBrtW8ROxHqduC4gVnmvBKIsSovQBTdZSb6u3UZcfXwxwUxurrSs6zUWzc05Bk2ze9XNoWyukb8m6kPW2AsftB14yHbFpS+YOOvrBU7NyFzuF55NnIS/2sC/sYRjVjiBepNpRo2h+m+1rGftG8WftkMEYql+FLDoPZLKMwlo24YFFVO9fVVlEb5LD6+xpRG+eZxlXA2BJC4z8kAIhDDmwXFgmIwcl3GkVCM8bQxooViio5H+F2TK9XPtyrogsawUi4FzIkAjdwqAePiG8zzHhltA0NvGGiUoUE4j0fyarOgoNE9NXrUoF3TQfcoSTaY9psOO4BYP9ey0aiS4mssfVN5hNZpdu+PTZ/y7vO+jdwXEqHh52kPwjTY0CBRgK3ZnquCNtq/e49uZMMnm+tZ9Njsvgug3rRJPd9Xx7Q8+bhJ+0t1lfvjVzeQrqVnQNpHgd5LgN0L8nwnMAk83Xn40SWD9HJ77Y8u/aiB5WhX/OvDN1iLq7TWc+orvXQtW0qaUEtzMUiwiJlUXOW4ACA5r1PMDt6mDc10LQ6X1KG3D5UqqemdUi/RXpulCmgUrzm1W+BtqjRKALDm3OpnaqRQKaWda7G13MDgVoNpq+J1aTqn1OPHbXk6WVOeUDIFQIvFtlE885PradxI6XMvXCTfNXVRzmursY4/SudpjG/D/IRqqdsp7d9bfKUO3UeLgonvw0+Pj1fz6HY9F+NSNgE+Rv3KMJVWrS3Pco+lnGGcNu3TY31gEHeNxrn/vgHZ2eIQVphOtUfl2Vutr5WpabIyz6xZFPBfkdSGxP53LBWDg9lSGYGnv3X6d0aP/SgL+F3brrEBlujR+XVjyZN7JEqcck7Av+2e9n3snqfD6s8C8m/GeXPMdts5IED1Zpyvxn6Vz6WYqrIa2J+7tk2xDBwD78OwbNqVBIwziJY+y30c+7XeEwOgOHpKUrbou9jGNdB4izppt4sBWLitIWznvYBfSRo8lwJ0XbwSi/UKhbCgKosCqYJ7P6wc83UbakaXJRb+FtbH1Lolj8DxlCxCFysQDl1ksJw2ZdJ5MBDOlf1QI7poEFpIJMt5pWbCFtSSyb9RYrfqcbJ+Ow8NsAG0dZzrgrsJXwGg6+X9w1ZMG8in8prFWZ5Aw4BR/Fmh5qOAyJINbS7wArkoIJN3PmjGlqoUKpsFFQxaZTUGgMh+pnK8GK5Ur7LbGJao6qptcRWAluRonKVN3OYS3XVL80tTVMpHGiQVHpPIx65NSw1o9xbn9cpCU8p8btE/WfY9Aw1VtChGgfV9fr7/NBD16OYP0q6+fd0aqOh21uIK7Lqd03LaRrPFis+BM3Wcbr+5Pgb8bHwS/KhyzZU+NUBm6t+n/Tab/K1tH6n3uWMaAX5iKj7bvz26/QjY0vsI8v1F7X3muFx/DYN/sryXnn+mzu+cvsej/of0eelHDSzfrgf8z7/8t3EbZizZ4X4moZJjWDD6FV9fjnCG/KmO3YL3lwG3LFjy4TKwqA7J3r85XPD+MmAU8YElYJoDvE/4+d0D3p4OCCyTv0QHZwtOU4dSDL64OeO8kPVzXj1eHy94fyJhjttxxmUJ1WdFFjt9INGDbz8cYQyqdLrIp6doMR6Xak1cWK5e/LgAWnAsq0dKpPh5ONLic1k8Qkg43w9wXULXr7icenTDihASCaAwte14nLCwRPoyB/TDWq0bImaiFywi3Z55IW4sO+93SSmp0ttG6IvDsGJZXA1w73zGupBYw3wJCD3J2/f9inkONf967tDfzFjOHWyX4H3CfOqAaBFuZ6TV0e660OayIVlzWbgYIIy8eNZqrbOrcuj9uJJAz69vAAD+i4ksHLMj0YJs4LtUF3cFQDrTY2NZcMD6zAHrS1PwLAbl7EhYoM9EJfQZZXYwQ6K/faIdUKYElmxgzp5UJI+p7h7bLiGfPJU1OZRjpP6xUqfxhUQLeMfZHkgABZODOURqy2LhPnjkMQM3kXbstXolWxXqTroFLZBEkZN/mUhlk4QSzGoAB5Q+AYslatqQYU8O+ZjaQsly+cnAzBZlyPS34+1jUei0pYojSND40mVaPI0J5uxQukL5XNkIOJjF0sLSl0oldA8OuS8oPfctUpvtYpBu+JgrdDzS2JWu1B14O1kyNvD1ZjF0Xj4Hqses9Nm/d2S0+CLW+Uf9ZVBRAJMM7MXCJCDdKlVYtiKU0JQX3aNFvEvw7x3STd5QB/2941iCFEfTztwnXqzYCy3M002Cndi60pW62O3eOZzeJBRfYCcLK/3JBv5scH5Nljm7GKRDhn90SGOGu1iknsdY5udM8yT3Ge5skTu6Lg8FdiYrRbGoSppuIspiGgvsSrRLia9nVhGhAHIA3MXARsqLTOfchcYnDfQ5d3S9yTRvqC5SLO3fWsRDQeoBkwA3k7Vjuc2wfM+zp2vDo8Fyl2FXGoPlVUH3wWC94dWo4fYUsAUGSH1BCVS2yUAJgDtT+3KgMfKzQTxQX2GordkBfjLIoSCcTMVQKEDuS20TAHSTqUqYmdVliyvwZ95MMUDxgL8AceR2dVwfaNzdBKy3Bf07Kit32FBEbaRxKAFwFyD1VB4A2JXOwQLxQGW5C322kf6ZRNfYSGWmjmiaqaP8ptB5k+k7CrDeAG6lz8VRPSZRH+yKqkybes5jOT+o3HCicSyexsCugJ8Y7/WAm6mN/sz9jVRmeCyY3zy/CP9U8hdgPfJcnvk+FervegTcQuPlLzxu4L8G8CdqQw50bXGoz4Y/FxRjkEMDXTZSjGCArhHKqNzXcF8QDzSncwD8pSAHs6GnmkTHqL0FqTOwa0FxlM8tvBHVGRRP96DW7QxMLDz3DNxcNqqsNgEpGCrDUBk0Ri2+r0nU/xwM3FSQBlPbJdZCu/D85mdJ+ifARZ4vmSs50NwQi+PmGtV3eb9Kv+o5vg6mHcuuPQc27cbatPGQpEFVbSfvwhRr6DPXQ30x9XyzZu6OyU+t3Z7fGJiZTmxTafmszBU8tcqqa3T/r6Vqjd1bVNsSoOaTevU4bdI1h2B1bg92n7Rhh5k/CoavbEj8PqcCtWH3NzD9qIElAKaieqzZ1Tm1ZAdEtk6wdUxi2c3JNfEVtVM8RwJQEkIEQI2rdV4JGEamPZHVQfy7CuboN2VNigq3sO8egM0ufMqWKY146mNlmP5U8MRSItROnYwBjN1S3cgvKZPqaLaVNlXzGMM+i7bS6bTfWta7nWwBKrpu9ZSL+lztCx+X90pKtr5BBFiDwStMG5fI1MB1pV8UwzQ3oTfR54JSaLe/vjT1cPBYyLm62y/jb1pgelFMzJbDDECNt9rRzsU0apfa/axjoe+vTAPD4EdAmRyvNKnSfvS0dcbnpv7BynYlc7kGLfSBwVbdzQL0q9soh1Whjj/ngcGJ9MGqsjbloF0vfeG5XsMrFAFxUhZ4p5zA0aYsVQ+Ffmh/qSDpfBs7rSFVxPrioH7RVJuBRklTfcmhtPALpdVfWUmmjUXNp9rdxprr12MjgcZV/tyrvsg5Xa6hdpZAgdyLmgNG/uM80n4ABJz0vZJjMka2IHc0/gYGxRQUL6uC1rdiCgzPLQKH3E9H5cFSe9OACs5LXRiXBpZ2Yy0AFwbUN8d/rfQTm/mWA2AsAxyZDzzXIfl53EsAPZ/yLNgGJOpnp9oBDsBuqfdxLMgBVVkxUxbqs9waS+XGkReAmUBrcQVplPL5+g5PFveF6zL8Ofelts8ASAImuYzC1yW+h2komwWWjFkdh6E958UBhU2jaZD7Sv2NIJANBrhZhfwAaAzTgDruokhpClA8bwA4KjCHxq7Jod1DAssEhHNPbc28CC8eSFn1Icscpk6XAGpbncNo7xJLC3uT6biALQG7up8o1KY4tHxQ80E2C2heA5HHzQQuw5jvFW4kMgDap03bZbz4GZVQIfHYjsvcgeH5zD9kFZAVICfTwAP7b9YFuQFw0/pC5ZkGrgrnz6aCtOIIuAr4pGdc3WfTrpO6LfuyFkfXS3tNoftdGDTKfaf+tnbb1O5HsUY9Q6a+/2xoz/QGtED60Nql54aMuwZ0Gyugek43YKkApsjzY2AKAficCDxmAYVyveFxuMagVr9FNaSQ4f4BW6pwXT+1r9WXWbWtmUQ5U2nnBXjuAaR8122WtJkzql/P9UWXdRXU7X/nrpS3iff5pD0GzybV13bBc3W0e6i//yH9sOlHDSxv/Yx/72f/DI+pV+qv5Eeo1SkBUljtbcQlBfazEhVJorieYl/Pe5sQTK5UMDkm9FE53rsIi4KH2FeVRm9TjZdpTa7+lwA2tNxYCMQOX3JIhtIohhalig1pMZ5cTO2P0Fm9JX9Hb3KN2yl02cGTT5r0USt1Sh8WRQ8WkSLtGzmw/6a0XUSPtOJmZ1OlakqScwCp5TrT/EfX7KrSa+8i5uQ3CphLpjqCTZiTr/TbXAyCpXAilxiqWuZGHXSn3rvU8Wp0Ri22tCYa45uffAtvMx6XHkAT9ZE8mr4rVuN9fFKpR4717LMq9FIRdtK+pKQqy+JEQI1vKhshNH4GgeuX64H2TteiSQZEczSmbKjX1hR0jsKD6PNyx8Q3UQs2iZ+t7qOIPWmlUf09JrcJO6N9bskvM9e4pzJ+WijJ7ShqKRsER/6o8hfAE8qksyJSpXwsfap+rOKDZg1qPi3C9FRN0sC7vBFrkjir1jSfRP0+6HyCMQXQ12D6AAAgAElEQVTT6uvvoL4H4O9Sn1BUddK/qaLcKuOpaa57dc9PqcIWYOO/KWUKFVX3P7hUfY+tzYjRwfvGSNCbTuKHSZ+b76n4UOpzMrZSn44Ve028qAk/YeOP6VzzH6WYsE9Xe7K+oDBDtm6YVVEsFkQC2iaa9wng8EXOZZTVUYgQ8V0tpvpo6nq0iJQwEIwq19gCk9qK2fBmlxGRGkeruDqfRdxIvnN/sdtULOJPyOeyopZuNtQAwGaU5BD53aXVS2Xcqx8lH8/SXtvousIO0e9TI9dLmUBtx0ZcSfZGZCMm7c7JYjtv73/dKJMVrkFjOMi48LhD3QdU0Skl8iQbluvTZ++lybjcaLjqfVVjwko9ldKrboSIKwnY0Ofku160XwFJdSyApz6Tz5mB5GdRRKRqOdiCg2toZG+q2pe/LwPqu87DfaxxTE2L1VrUs/Hkmtoe9f05f8hiPi3Ks0smFwZ4PLeuZdLXXxnf/bBc+/6kvJek58Z2d73B0y5ehW4fKeO5MXoWhOryXpJekPdZIPv8Fbv78RHA+nuW/uBj+XuarMkY7FpDdwBAMIl9Dx2FzzD0A9LbdQMoqyqqybAmw4VSfRipnKx8Ett1udhN/QBw9EtVorW8YBeAI9bRva+fLwbZWvQ2EtgrW5XQpyEy2C/Spt3x0saChYC8ycgMOEWwxJtchVNEWCjDVDETAT20v8vjY1uIBup782mUsiSvVUC85betHtUfbzOPNf213G5r6JjLubZZ8muADaAKFjnkDYCRdmqQu5fzt6bUnS0tFiObBXKNFtbRyak5pJP2QZV81hZEHmPHgNxwP7WfpgYMADaUZ88g71q/SjGwZesnWdV4bYbd3KNSy/WqPFmE1kW36q/d+c5aUzbng/SpDk6ieSz1gH+vuH7DeaTPGnRq/8hWXwOtjsdM+4ZqYEXXNrBlTEFwW4VmOQ5YOI4duZ0fDWAR+G7POZWf1GcCnuIXKffIq3Y6pa6pBZYAEkLSdcnnOpS2oBQCwwIkt4CrLcyMKZuXeS1P91vumxp748rmvSO/6AJGDZi5of4aZYXdt92aQvRYUwCXVXvb2NZxsAKy6VzrH+pfu3v2JDyWZT6qBovbfG2DwJgCa2VcCIg51TY5R6C1PYskPKR9QLc+jlJeUyrmxTLXofNulGu5b+3zdg4SANqOleSt34vZ1iHH6++NHowGVFu7W/lPFIb1X6CCyoJWX+EyIUBSjfd2fJ6uEJsIlQKV6u/TNmGbYdc+AE3sB2pFrwCpMajHN4rOn5OKubp+3YTbkHr2wGgP6vZ/96+ia2BSn8/qXOFKPta1DdDdIZYn5Zunx+sxPAUh19qPls8Ug6L4f0ZUkQtw3afxmfIYPBaIKuyVcbmWnr4mmlV3fy9wvdyPAcT9uSs/K59MHwWD+vOV8szu70frVo/5Bsh9rM0f6cOLHqdrGx7PlPWdH8/v8Tj/EKngD8Dy9zblYvE2HnGwCxKAb9cjrCm4cTPeuDN+Ob9Gb1c8ph6v/IS3yxGvwxkJFm+XA0a3orcRp9jjNkx4WIcq5vPNOmKKAZ2L+NPxHX413eHol2pFA4B3CzlafNmfcIo9WShjwJvujK+nG1hTcBcmXFLYWCSX5HDwK0a34l+eXsPbjIMnAZQle8RssWaHN/25Ao3zOsCbhM5tgeX9MhDVN3m86Uns5z4OOPgFvz69whhWHP2CX08HvOoneJPxsAzVkveT8RHn2IEUUQcc/bKxtH6Y+401cmQrqKjJepNxWjvcdHM9Jgv53kVMMeB1f6l0ZTl+iQHHsOD9POLAirXHsOBh6XHbzZijxzfzEXf9hHfTiENYEWzC1+cjlujwxeGCOXoEtsKJBSwVs1GkHcP6JPTKaenQuYQC4CaQH+s/f/sGAPDzuwfM0WOOHp0nJeDBx82i/tvpQGPRESAOrF5rTcFlCVUZ9jx3cDZj7NZqcZtXjz5EzKvH0K3NosTtPs8BMTrcHKYKTHof8fY8kqV27qroiyj0OksWuJQJvh/7BUt0mNeAQ9+USh8fB3R9xM044yG6jdpp4PAtssEg1jkZx2rhXj1CaP7AxpAozLx6pGTR9yumS4dxXKrqqZQfs8WyePT9Wv2Axd9YlGIXvkbKDiGS322/YpoDQkgVFK1sSQNQVUydyxU0nE8DfIjoOg4hk2z1D+6HpYKSGF0NQB9CE5xZOSB515PITIy2nhfFU2vJXzh0Ee8eBpRscHx9qdaquDp0fROEydlgmUgNpxubmI6oljpWVQVAweqPC96/7dEdVrbO0bn51ME4onUbS8HRw7hWsBEXsnB2w0r9YCuc1LPed/C3K5xPWBePvLgaCL1MDu6WNuLi6hD6WIOqx4X8k4UaL5bHkgxcyEiLqxYhN0TkhYRSDINYAEizA6KFHSNZfrgPxqCqjpbEYjOc1/Tkc2xcQb5QAHk7JOSLh+nTxscaACwHXseHQD69HX9nX1xz5LoLyEe5gPybb1aUxcFMFriNwKNHGRNbjwpwcYBhq0sB0b7Z5xjZkM/z7MgCw9Ypsxry0xXBG/ERnslH2Fxcs8TVMkv1gTaLaVR4FXbFzAo++gJ7MchjYSpsaX7DrsDOFvmQ4O49UadDo8KimOpbBl9gJ6LUim+uZd9EotOT36ydmt+o+L+JX2UBUDryFc5dgZt4jnfkO2tX8gmMR/LFBaiNZjXsi1ng1qYgmrvWZ/EbzR3514o/LQzIf3qloUwd+VymgX0dlY+l+M9+bnJzoyHbaGg+McjLfaun+lAaVAqln2jMycfSILNrQXGovsPZlYbvo2lUe/EnZ5picUB4MERd5zF0E/lJZqc2tFKj1bvZVB9o7ZsKoFLGq28m123Yb7b2Sfnqmcw+iaoMGM5neJ6yf5/4lSam7opvpPjOFoONb7H25ZS6xF9RaNOmqHIMaCyv+Vi61g7tY7lpo0MNJSN+pgAa9TRy+eYpIKufhW5rUOeF+G9KWbVvpdW9KUNAO7btlVTrlv5I+7QPqbleph63ZwGn2jAwpVSq8JN8APmSlnId6O4vMWU7bnrjYV/3ftNC+ntl7K+ma2X8If21JVN+xJzkn/6dL8t/9j/+B3iIwya8SMwOU/IYXKxUSR20W2iiUwzIIAqoAKmJQ3Z4mzG4FbkYPCxDtfRomqiAvEsMFOIjW/Q+4rR21fKl41TqlJgKewwLWVhVPlnIS3gQbalbWTRHUmdTVRqdk9/QGQWwpWwr5RTApi9T9NViEVzCxBQ4eSYDW1+Ezik+qtqKKOBur54qz/bCAEjKFepmUvdEqIGew3E4mzn8i6/0y5QtOh8RbMZ5DZsYlwJmxSoo7ViiZ2uSWLqIIikqoOI3e8uqm49zVy1dQtWU8B01HIPLXLZ7srvuXa5Kn57bLeE9crbwLm/KA5oqpzUUisKasglZEbnfcr2E8pAy9PXGlHovnLIqO1MqAFyi31hPBYhr+mzOtobb2FssCxqlU+6LlBezrVRKuT6xCqgxaPdMh0ZQu/hi/ZEYjylRKI0YHQKHTxFqqwCtSnNVIUAAojbmTGBSQKS0YeHxbbEvr1MuAWyuF8Arn6XNOZuqNDpNoVp2JFyHjhfqPT1TEh5ErGJCqxQBrK6LmGePvo8MnNv7o+taGBNRRl0VZdOxGFOS0A3AxlLT9xHzFKifPkH8qo0pCCFhnsiJTHy3vU81vEdRY1zQLIZN5ZRVRVP7Lu8bubfOEWjV1s4CbN8hmeJ4yn2RvllHq8is5pHML7l38j10ESnyJogtdQ7E9Wn4D+cT0upgLCh+6OrgAv2t94nHta6FitncFwG/AAjkGlRl1E19nI/CjeStoUAEyGQOsb89eHNC6tGxRlEoX2IRsZJsBfREEyXFVtfz2KWdpd6gip4ZT1RPI+FGhP5cgLw6GJ9JNC22/hmDWmal83JfSMwMLdwIW4Xz4tpYCVXVlLrZUOmkorJaTPPvlTijYoETaqxji7EAsmhIHCxapoHyRsL3DjciNwdthWu4PgvU8CG8AVGtNTpOag03wueFCaAta5ouu1d5LWh9q/nL03ySt+BpPFXt/5fRrIhAjWUqvuAiGiXWx5onqeO5bWZomqsphoTDHLZqubLQkDYIrdeghSXhhYQMoSnYCE9tTHW5AY9ahQZrO7Ci780GeO6HsGALWKVd+6Tr2LfryqlN+3f1PVvutbQHZc+072rfrpXxkuP4BLjblPFcpdfT9yEUfApU/l//5T/430sp/873qOF7p3/rz7vyP/2Tn/3Oy/17v/hXP3jfgB+5xbIzET/v7vFlOGHOHgmW6a2phhORsCF6cSyhQNDhSRiQGuKCrXSxWNyFiX0Tn4bUWIvFlz3NYCnrdXfe5NEhPvZpX54Oi3ET5hpC41peOXaNkil/B7fWxdoxzCoPteWuu2zadxt2YQ2uvIWutQPhaZ6PUVQ1QN8DUkmlUJzPvd9VhsEb1+JrCtVW/5UkoTmetD00+q0erzcHkkK8Rs/ch7QYuYw9/UvXE2yGDbtwFeHpWOhUQFbH/THJ2+1ii+7TiPXqcQLmCX1ooRYAwJhW3rVwD9f6JXm9i7vv9Mt76JdNWdsy0+bvtfpq+I1An3ufkEujj+q2br777XfYjG73livFYNy1T1LYMQL0MfGjlM/S11ou/x2HdXOsC0/zCHD8WCrFYBhW5GzRdXHT1lJMDefhPR3v++29AFDB8T6lZKslVUClFzDKYTf29bh+3Yxx2c0FI5Z9lxmYR74HlF97tZUC+HA9TIjj81a1fR/yA6bAMaXf7dwDahiNAg6vUVqsSOBp7MgKbmwF5PJZC58BSphMCjNP6bF1oaoEO3TMyQqmGAzmPRAw2NKN1S00YtlUx6vlWGIrqntAY4UNuJQ6yjUAIsCO/5ayxTmG/RaTCrlRZEB4zKX8emwTgoSVu6UNArwg7eE2iR+e8k0lNRuFLlRfANC5ZOr8qK+Z2W2ulf59dlpb36mO3ThKvWvrW82ix0JUs83uu0omNnAGNEBX0+S2gCJeuad6oa3BmtStX0MVbDVgZxRwtbvyxZPX7PpiVD6jxyeqOvDMbbj221O2YUWKIev4pi8KVH3s9m5K3+Uzu1fSs+V81+OcvlOUG5nHz/wWa8ud/H2+LHwUcD53/Dv3/zvk+c6P4PcBm39If63pRw0spxzwfzz8LdyGCTE7vFsoxMddN6GzEb+5vIK3CefY4VU34d10wF1/QcwWH5YRvYvobMLD2uPL4YR38wFHvyAWi9Pa4bR0CC7hj28+4NvpWIVjRGzmYemRi8FPDiecVqKTPi4dvhzPeDdxuBGmiIrFlKyTFE+wdxG/ebyBNahCLyJOskSPu3FSVNiAziX0TM8EaAFxXsnqMK0ebw4XEhtaPcYQ8e3DEUO34tAvePd4wHFY4F3Cee4qcHpzuJDV0mZMS6NOCs3yPHeValoAHLoVS3TVcur5uqFbqyVM2jeEiDk6HPsF80oUXwOgDxGXJWDsVpznDn2gWHtjt+I0d5XKebr0uDlMOF16dF1EcAmnS48UHW5vLphXzwIrploEhdKY2UJxGFp/xLIyM6UyZwIYwWX89rd3gCm4vbsgZYtl9iTcUQy6EDfAd7p0BBiYYinCJsYULHOoi9blEmBsQegjcrI1zIoPFF5Fx/ETS9t6CSjJIBx4EW8zW5DIkhonj3BYULKlIOauVHGNUgxKBvpxRYwWcfHoBionrg75MQB9QhhXpOjqAsvYUoOwl8QB0Hk8S+YFsoDgxVWLhghV+D4hLY7okGNEegxwx0gWDV7kCr0xLw5uSEgzlYMCuJDrYjAzPVEWlK7LSJOjck+h0h4lzp5YbdJiq7XF8O55PgUgZLiBweBqyZIRLcwYAYNqeam0yC5XYYgyExQyA/H7yuIqJbMsHFbGFArCHjLwgaUN3yytjMXBDrHG5SvJADOHZpGQMgAt+GxpwdwNYM4OuF2JznlMNO5Cb3v0lQIIVygMzCG1BcRM/cGY2sI6lLqwdO890utYw7bUMB/ZwJ4t0l1sC9U+U6iXIRHNM+RqUZIFvsmmhYYJhcKx9Blm5Th7FnVVZWaqLx8yhwcp1fJjVsvhRgyKzzDctjzmajGxF94sHDPsxSL3uVp2hL5X2DrVvXNIA1E4kQE7UaiX+CrBLhRORixH/mSx8nF3MYivMvy9RTyyucFSCBjI45CJklk8IOFHigcsUz8Lhxuxi2mhVQyq+qrjcCOew5NUY6QHU1Xpu525TwDR9ApQbKOYEkWWyosD0c1yKHCVCgvYmain3XsLWKKbauocjTeFOXGTorAWojmKUm0cC9xs4CYKAWMi0WgrFZZpk1lTYS/UztQX2GRgee9SqLCmNDplDUPDVE0TmXbK89oyWMt9gT+x2qmj8bCLgeP9uNQDdgHSSOFGdNv8BVjunllUvCC5iRSEAaqj3qfIIVgWGi83Nwqk7GX7C6qiqV1RaaXFtlApomxrCioNFcAmDAlAx8MjFBWW6+R7VfF4RFWxdRPRde3KbTOKxtrtKKZM6a3t9DSPYNS8yVS2XVoZxbR+6vqLp/qlvSaj7lrYlcqVUB+F6xAQahPYGsmqrRw+RJ5Dm0SJ2TSLMVApnMWZZp3lcjQVlp4TAxsLsuMQH5sdlTYeVC42FtQK7HZUWABVFZcaIs8vtoAfrSyxjlJm1LAlFTQry6qUQ+FG0Gi86n2i21jv28cAo8F12ukVcKrVh/dpT5+t6rtCrd1vuujx2I2LbtNmrF6afs9AacHfbB/LHzUV9qs/+6r8x//9f4I5+U0Aea1+KtZJEVbRKqFafEYrlUpesYasqmyhpWoRnEsMCC5V8CFATH8GsNnh1zRSAE8C0ztWhNTCI0Iv1cmgiXOI1VWeSVEezcVUBdBrip5a1CQxQGniI3ljKRFAKm2S8vbWPKGdWkPKnqL2mQuq72DKplJDBRhqyqmzpdJGZffds//cqmioe3VDnQTM6iQUUcNjUIpBH1ZYQ6FihIosFNO9RVHTgPdpL/qjw8NIWzXdUT9+WohEaKLimydUSa3KKVaZveWu0ljNlmYq1FABwRsaoho/TSXUSeqXvJqGqBU2pY1CTRTQLHRTnUfK1WOg7yMFuC+VplnHrCjVRWAjjiLnrVhtlJWjtokptbquaxwqovgxmLD0y6bnnP4N3N87ABWg61/Ba5bq+juqtp6tKc8qn24stfJX3WtNu6yCK4oGJTFm60LCtr7LPUOhTQXZwKjXl+27bFOXKHWa7fdNfra6ifon3TOprzQaqLTNlK11TT7ulEHlnmlhG+MzW8X4vLQ1qXGR2+/ISmdsASx/dpk2OXZ9rWNfsKUWllbHpk26T7ofhevVx/eiL5oOuV98yeei8sl4bMw7pdEvATy70JIx1X3S5cji3FzJo/u4V+002Fob99/37dVpP2ZAawf31xSzDcnDc1VTOTXtstIsPyMV0/wX9Y9LPX5tcSx/9T3Sc0bfP52uldEqbPNfvn9XC9e1dtR7igaUgKd9utJOfQuffJbrr1nKdQPV16t1lY/ij4+DiCvnjB7f5/r3zPUvATet/7v5/pH0Wda85wZln+8jdV61fH6qLS8ZN3wGEHxBmZ+T/tl/9cNTYf/sz/vyP/yTP/qdl/vv/uKf/+B9A37kFsvORnzVPaK3EWtxeIi0FXZ0M3ob8fVyg2AyTqnD0S24jz1e+RlrsXhYB/QuwpuMSwp4FSbcV/EehykFnGOHzkb8fHzAN/MRg1vhTKm+ihLe428dP+CSKNblkjxuDjMeVwpbcXOYcY60XViBb3EY3IrOJnwzkQDQ0MUagqQUEuN5PVyqCuuUArzN6GzcgE2pZ4oBrweicc7Ro/cRX5+POIQVo1/xfhqrUM2cPFkkbcbrwyOmJDE+PUa/VkAcXMIlhmaxLAaDX7FmslgCQOgWTNHjyOELtN+j+HUOfq2+nnL8EgNGv+Jx7XDbz9UPVI4v2eG0dPjieMZp6eBtRu8jHuYea3R4fbiQ76byIyxA9RcUP8ebfuKNgwYw5+gxdlSniPv88v0rGAN8cTxjzRRj9MCWShH6kffceSbr9NitdXNA/DHn1Vfa3nkOsLY88Y8c+oglOvTdugEp/z9779IjybasCX3r5e4RmVm1q85jX92+LdHi1ULAoHWFkEBITBBDJJgzZ8hPYMIIGNMIiQFCYtQCJghmSMxA4tHSRbo0Otz32ffsR1VmRLj7ehgDM1u+3MMjM6v27nvOPpwlVWWE+3rYerjHsmWffZaLwTgH5Gwx9LH6QHY+4zR1cJYwR49DPzc+p3k5EAArNQ/HESlzHw6NBfp87hFCxqGfEbNb+Qhay+dn7P+YV76WCgUmADH6qpQkCdnQdwlz9MjZVN+9fohIyYlFt1QldJ4duo79ARco58LOmlbkPVT9C7uO6/UhV5/IlNgHDmA/SFVCq2V67GBdRicQ0ZwtcrIcEqVnaKmGxciifDhfqlKSIsfGDWKZThp+giAWaPH/SxbeF0ynDkTA4WFayHuSQycQUi2XogOKgR9i3WAoM68LbN2GIaTJoztEzOcOvk+wDXlPvITqq2YsW2P9EDmMhC1IswcICAMT7hgLhnZKe/FjVwl6crbIk6uENzR6uPvEZC3RwncZafKwXWaSn1BglCkXAjctQrYzS6zZaDl/tDWubI2lO9tKyFP97sRq2SpzxheU2YGSEUuxhIoYmbzHdAU0ieVYFdjGjw/FgL7tmDgnyHH36NhiccyL756GgHj0TOoTLcxsgWMCHgMwKHkPQBfHG1vdHHuqvnsKqzXjM+Q9AFbkPY6Ak+N3kyq6nhaLMMAwQ21/j7zHEODYUpoPha2PgRjCSFzGzg5lKHAfHVufgliFd8h7zMTl7SS/M0lIcoS8x8wGbjLIA1sslbynBrc3i8VVSWpAYsUsqIQ9tbzIaBKT+uRerLs75D2aXy2qagHme5YtX8SWMxvZcqlWPCPKqLsYxPvP37G6WeLAythU61gRS6lYGe2MauFSq6ObTI3vqpbA1uJM7RwDNYZkXReNgkaWrewcP1es+bMVK25DwpNNJf5xM1vJq2Xf0kKIFGgV8N4ktghrf7RPLYEN1EovrzKNY2nnpc9qWSPP10tD3tNa9ciYlR/jFXmP/C0ap7MZ970ywKLMqCVWLV98EcvhTEPes1g11/Ne/TrrhWWs6rhtFXG5VmMOkxTcKu9tta3e2cqriZbrK4tlg0Boy1cZzWbcbijtV4cZOwpetQRbI/XvVHbrkGQj07bfewoumc3Y7tX/TPpkRf136XulH7ViOZWAP378OX42PGEqDr8a71HI4H1/xkMY8f8+va/Q1Xf9GV+dH/B+OKGQxV9f7nAfZgSX8d14wO/ff8BX5we86UfM2eFx7vE49ggSGkEZVp0wvwaX8c2Z8TDljcE3lyO8LXicOnx5/4Rfne9AZPD+cMYpdpWgBgDm5PDQzziGGX/+4W1VUubEMQZ1A35+CNWiyZDRhEEgs6qknmdW/ObZY3wQhXcOGELCNx/u0PcRxz7iw+MBd8cJwWc8XXqkxDHk0huL8xzgLOE8BdwNonxGj85nPI1LXgA49DPm5BEl3pv3GeOlQz9EURZKVQqCz5ijx9u7C8spSknnEy5Th+Mw4fE04O7AUNm7YcbjucebuxFj9Dg9DYgPDk+nAaFL6EPC49MBJbG1UFlCmaGziOLAygDHLwOmO2ZXjdFVf7Np7OADw1DvjxP3/VfM9GptwTx7xMmz0kIG/RCrBa4Ug/HUAQYIPUMcvchgLWEW5aeQQX4MQCD4IaFkVlrS5Jldc/K4iGJhha2zlskG6YGVMuvYP2w+syJBZ4/44Dn4uDB5GicQ0sLWuXRvkaJHvjjMRz7UyNHCfNNhPBSkNw5J2DYBAI5gBfarpB1W/LE0PpxRC+vFAZ0QRiQ+MZ8OGTQ6lvsuAR8Dyz/zJhye6y/JAqNDOibQxWPuM5AN7JBrvLkyyy+w+DHNh8x9PibQk0fsGepqXKmw3GXDbxAdsaIBAB8Ccl+Qjol/fGcHJAM7WYwPwlYqShAib8JjV6plxwgDaDqyIojZIvUM30W0TMRhAcwWsStwXweYAlyA5VR+shiPbgk9EC3sheGY8WHZoZlkQY6QQql+Uu7JYXpn4b4OiG8sKzFSr//W80ZQYJV2NFIfWIk789jPDxbm4tgdLJRavvuVw1wMsieYi4WbbN34d48Gk1he7GgR7xPsR498dAyTPZRmY0QMbS0GuS9wstF1o0W+s3BnyzA8S8i6uT0zvDXf26o0kRflYDLMKJoMitRno0G6E7htIPhHCxgg3xX4J4t8WJQ7F01VnJANhq8s0j3nMZmVCpMN5i8s/LRsqEFA98Fi+gngL5aZQ98ZdN9axIclmLx/MrLBZYUiH2gJvi6KVDgJ82fH19zI8le4n+P+ugsHqw9PMgaymco9LbBHAP5kKpROFTZyLAu/tPi6Pxmko611VJhpILizQXxjMPyKlYXcYwOFZdlLx/WUniGkgCgDgTeR8Z6hu/4MpDtWSG0EQ1YP/BcGyL2pipY/AyAgD6yE+pG/xwfDUFICiufPNgPpwOyuxXP9eTB14+/mpa7wCIGVmgoD9Rcexzww7DLeL3BRhaiGR8L4k+ctRs8l7buOjRUGUZO5PTdxO+6yKFrF6/oByBkelxGVbbV4IDwRyBqUYCoTqE18DQBKZxZFRZTR7gMhHXWeDfyZkDvDbJ0VosvXAMCPhNwb2JlA3oCMgZvlwKdfIKYA4GbiOYgsA3nAX0gUO4aL2gzkzsBN/PzmjteyP9MVFLZ0Bu5CyAftB9WDCDvLsxGWNaRjxuOwKJDFC/w2LeNe4bMbpVOVD5J+tYyvqqho/iJKtMJxW4WOjMyF21k3otgZAkwmqdPwZzwPhdVxbFNVGMH3bV4OVtr7z0FhqwK8VSz1XbVRvK/60ijhV6RFAPT0dSF2aipSKBW2SvJyfdv2rqV0Z5yXwpvvTZ2vqus3IO1ylcJ9GzoAACAASURBVPyWpB81FPbd3/05/ev/+b+NMYfFaqUWAKyhigp5bFNL2rKFk+6lLXFJC3t8joylTbdISm7l3ZKTALiCgG5hZgxDXZP67EFqt1JevWNutLcn3x4kddvXllSD8yzX9/p9q669dlt5n0u3lvueLM8R2bR92f1bzP6b8zUvE0NXAcxrNbieN71ei+9ca+9RK08r3wuphce2c/hJr5AbJ6BLG/trau85eFU7+lnT3onnM/JwPv1Fvz1/e2PzXFqN294vYdvm9tqqIrqGYj63AG6ldixeKrt7nLz5Rf/UH81b7e+tl5fmq21/i8f7Pj/mr1kvzz10O+UMmRUxSxs0/lk5XrOOX5LzNfe3bdTvt2XcWwqvso48l27lbTbOry7/2jY/Je2MR7vcPhkG+Jp7tzbXO5e3U2leaucFeV6c2225rVDPtH2t7Jhn7r3Q7qvqf135772GPzF9Fhz2h6j3hxjTT6n7hfS9lcRN+X/4n/xmQGH/i//u93/wev/lf+IXv/a+AT9yi+XRzfh7b/8UH/IBqVj0liFvH9MBU/G48xPm4uFNxlQ8Di7iMTJc9kHiS85y/WMc0NuEqXhYU9DbjDs/IRWHr6Z7DI493FNx8DajkMXBRVhT8PV0h6OfMRePBz/hQ+R4kABwSh06myvTLMBxHE+JrZjvugsiWZGzwJrC4TxMwWNimOucHQaXUGAwplADtgPA0WssRSYhakOp/Gx4wmPqMWeH+8Dw3EIWg4+w8rR9Mx1r3Rp2pfUjPfqFnbSQqZBcCw4Qn8jVcp1NSORq3XNxHHsxhQo7TmQrzFahtxquRUPGTBLypcYW9RFT8szQ213gbcHX4x1fz762B6xZPa0hPM48hp3NSGSFHXeu5abMpEK/f/8BAPDV+YFjT4pcAK4gvoPAhS8pVD9TVXy0HQC4CzPm7KqFu/ZboMqXGKovp4Z8OYYZRz/j2+lYDwgycSxNDSHzcRo4NInU2caaNIZwiTxHhxBxjkHWR8GbfsQpdjjHgGDLKjTLLNBm/Y3UOls/XWs4HImuDx2TKTv0jiG5Y/K472Y8zR2CQFI1tqgxhF5CyHQuI8p4zslXBdJLPE0vsl1iwCFEXGLAXTdXsqpCWIWE8W6B7ybpy30/YUy+xsYM4p/bu4zTzHislBmirDFLNQxNLgaDsOde5lAhyVqX+gir32/KFm+GCcYQvjsf6nrwEruUyxRhE06whnCaF7pYa/iQqTRr6dhFfBx7vBkmnKZudWD1MEzMel0sCjFR1tPY1/nspY3zHND7jFxMjRWq7McfLkMND9P5XInD7rqID5cBJM/TFJloa4wc2zVmt/IbDjL3MTt0PjHU2GeM0df4qPocAUAfIoIrOE1dJSfTg0EvvuXO8pj2IcG7UuegSOgdADUm7Jz84lOpB2vix/v2eMFlDnWNdT7BWcLTpa+QdQ0hc+hivT6EhNPY4W6YcZ5CPcAbBP6u7MRz4vitCs/O2SJIvUnqdbYgCmwcYNSDsvBqHFd9v6obQm78OpU8TPtVx6Epp/WMM8PvFcXB7VmEkDCOAffHqYZAUj/nFlqeMzMQp+Rq/bruCRxKJ4SMoYu4TF2NGavrRP3hK6Q9LQzDinLRWLTjpVtYeAlVDkaXLLJpWJpCpvqO5+QQhPxM/aWtywgCjVf0zDyFGnJGoeTDEHE+Dfjc5ENCnOWZdgtmUuHz6hPtQqoIGoWw+5BBhcMoOZ9XpGuKkLkK70RLvFhtB2Df526ISBo6Seoo2XHoFyXLssIYTEyUxmPBPtNUTCVAK9msfI8rJF181WsoGglLU8PZCGwdBCFfMxwTtw2rI2RvJhQO9aJd1LAyEjpGCeF48Zi1Zm7A/7KpZGd8T+sBajzZVhsxWBAk7YFJNePJV/HHNUUOe7ba+IoUaFOfKtpWDoaadjQky1qeptz2MK1VVPcOeFQO/av92/oSA1eHotVKe+OM8mabN9KWUKdp6rru7eHOtv5nD7puHIRvG/u+h4d/Q4nw203e86NWLDuT8Afd1xjSG0RyONoZGQb3bsKHfMBbd+HrbsK38Q734ntZyOCdP+PJ9piKx72f0NmEezfhKfdwKDi4iKOdMZFHJIsvwgVT8Y1iafDGj5UYpxOlVpXb992J/fMsK6waAkXDoRwcK0Vf9h8xFY+pBHib4VDgbUEwGcHeMXFQKCK3xcUt/praHivCqSpYBxdxcQFf9h/R2yMuOeB9d0IvSs/BxeqraQ1x3aJYnkSZ1fAjBxcrqZE1BafUI9jMSmRxiGRx72c8pa7Wr3JMxbPCa3sMLnGsTzJVmT+lDg9+wqPrMbiIp9jj6CPOiRWjd91ZFMwJk/cYs8fbbsRB4ot2NiP5hXyIlV1WeIMpiGThDR8CdC5Vwp2j+HB6U/AxDihk8NP+BAuSeKYZ92HC2bEv5Tl1HGpGXgT3fuLrMhd6KAAARz9zfptZ7uxxdvx9Lh5HP0s/Z/RSv0KbrSG8CSNCEz5hLqz4vulG9t8NU83b2VTvq7LvbcajHeBswdHPcCJX5zK+HB7x6Ht8a47ofaprIJHDLLEv9UChjU3ZEhUNLmEuDp3N9Tk4xV58cwvOjhmYLWjFYKxMykc/4xR79D5hks3+JHDzQqbGf+2EDCu4jDuBrD+ECb3EplWfXD0sOMgBSy4Wc2HF511/xugDzpGVyN4lOIlPq8qbxp7VGLJ6qKEHEIVMVZB7lzC5JRasKvXaly/6C8+zxHpV5f/sQv0J8bbgvpvkEOlQ51kJsGJ2lRzqTT8iE8PpAawOIN4fzpizQ5aDmkH6r8p1G2bnEKL4bbul/HCqBwa9y+hlXvV5U1RD5zJOlvDQT3C2wyFEbldjkBL7IHtbMCZf7w8+wdmuQvcJqPFVB5/QO/ZxDdLXGm9VDiucLZilvuByJRzLwqhdiAnA7roZY8r14EL9nWO2cJbwbrjAGcLo+CBk8AlelB9VDvUw4e0wIouCdt/NKAS8GUbpJyvR9/2M3KyJyS9xd43hWLy9TyCgKrPHEPE4dei8xuNl3+U+JMRs8dDPq2dszk4UUZbz2MVKAqbjngtfB1Dbuu8Z1q+uDK2Ce5C8bw8ju05sDsu8LbXdYz9X1m6ja927SmZ26GINtdT5XOMaBxnjQgZT9PWwQQ9oJses4Xrooc+DKspeyp8dH8RpXOPJ6aGCqTGE1X+8FAkrJrFWta3RefTifz50sT5XqVg+lElt8JtPS31IFXGgSrKRtXuxnZCksaxFXAxUKRxkLjUurx4K5GzRd7xu9KBDnwddFymtY1iXYnAcZkxygKB1xFSqUg7wYUv2rMCGsPi3Z1HI9YAlJSds6lyfcxyDV5V8jbnKZGwQsjlWWvWAoPqlC+s6kdTjDUp2rJRbvyJpI7CCzj7oSx+1TWDxz4YRdvFkK/u3+nADWJReHSdRVkhY4lskkRKWaRskylolKWuVoAKG22sYHGCtwOi0WAlJpIoepE4Nq3MLkdEmbU/bUCV3q4CpQqnKlJJurWKZrs3Eq75tEt2S6VnF0lzVRTvlaVvPS/Vf1bEZg2fN39/XxPk3kQzyTvjB35b0o4bC/t4/957+nf/y30QiV9lcAYbBxrKwwbYxCBMtisges2eqrLHKnLpMvioWFhzfUpWJtFkgt2Co2/tbeCqAK/inxmZclW/kaL+v+2FX1rPn2n0JWriF/O6ltk5gzVDbXtcNaxs79Dn5WtZZlUE3RK1styCr29PfLXvtc5+VzVYtZEs9C4R5D665B03e+74nb6vw7M3V1fiQuZr9vd8vANVatf19ehW0tK2fbkNTPxWWvMdsu61/CzXeg0U/B5e+1YdWhj252u/Awoi7y1NAC3Pvc/1vLWvqt7uF0W7hxXtw4xXsVjcf25NbYHVtb0xusSm3a6yOFZ6H2T37S3JLtmdOmG/Nw9V47J2Ev3AKvgfzv7pe1szDi/ybtlX+TV+q/FrXzjxqf9r82zk1zbp6lXmg7X8r894E7m0i9zax9b7ZXVsVkq2b2luLZSvPa+p97l1yq5/bNdHmayxPn5taCLN+f5V8n5PntVu0ds3sDJte+xzL1Cr/jXxXr9vn6n9pz9Fa9Dblt8vzqs29dEN2s1P/S/Xt/qzcWr830jM/Ta+S4fvmfbb9V47Dq+t7ZR0/RHqNHH/0H/76obB/918c6D/7b//gB6/3X/s7/+jX3jfgR26xPOUO/8c3fwuTnKArc6meCitcrQ1lkeTUXD+rkqPkOu3GQjfiChvahmHQDW17kmgMaogAAAKTWocbaeFaXlgoWwichmXQmIzAOsxEW5eeSlpb6ilshRXKqWQbsqENDQEwpEjDKGw3UUQcR7HdECnr5JJpvTnchmLQcAt14yZlrhTCzUau3Xy3Y99Cztq8K7/NVulRCErzo2Js2x8DFAPfM/NnThKKQ08uNY8mg1V4hdopqV9JbrgdWmTYbnIM6qliuwG9rttUAp3KipnsasNa+619llNMDmauoTKY8IaKWZgzW+VkO5cqY/sdQBu/sI57hUWhxsGsfdbx0fo07EFLrb9zwryi5bdYQiVsT3LbTX3dVMo1zd+GBjC01NfuTrT9NlyAba5p37dKRjunAimrAdS17tX6oSVcwxYe1SoU2PR7Gx5BmSPrvGCdp4WTNQyjq/LtKXo7ls29bLDArtq+bjfq2MnXfgfWsmr+W4qgAUwxKGqNqAyQBkWsFy10TctUH0V9voVJU1lcSeozieeZpG0CKjMpDFDkc/G0CvbOjJiNQlHMWvYCQElLylJGSUqM9lUtDCT5aRkKo8+UJkcLlKxd923okPY5MQrnw5LXcj80tuatcCCGsMABG0tQfXdmITISeF9tw6B+r7LKGFRGTH2fSixOI4Qrq3eiwUI+0tSxDLjWJayxm3HZMpEaXf8NVJCJTl7e/N9Kdc0B6zE2VMdnV4kDVnH/VjEAaRmXK8vO9vlpb7XwTABkzGotabHVWU57Qwvq97222/vmOk9LImPaOdbP7ZponuWrzmz6aNp3easx0ALpbC5dj12b6jvl+lV4pWjfqmNH9vU8m/Wcb2XbyvM3kF5U9rf3XlPHK8p877yfIsOPMBGAUn8If/vSj1qxHFzEP/32rzEVhyKQuK2FTpPGttTrW6tlG9eyTa2FKAvMc6uAtiZtC0KBWTG3tnEP2/ra9Jzl67lye33dk327b2vLvUQ69JxFcFuOyFxZGLfWrT1yFrUA6mFAaxW8VbZNr7EEPkcspNfzZg1sf1drXqzHtDxjDdqT7zlyI1WouRx2rRxLvev7n0Ko1JI/PSf7S+k5Ip/n5H/Osruu47oPe5a9deXNr/mNzcmnpNeOBwFoEK71mrap0K8rGW9W2CgAbdpce2k8mFAK15uK7UZju7kyWMenxMvvg1elZx+mZVyWTXBzrW13I399VnVNKtxt+y7p9tfHyurdcYXU7bQln6mV+9kN2I15lHZXqT0Iec1mt71Hqz+rOmo/9uTSr/X3YrPD37lOYfPOkIOV1dVbz77B4suGZU73yIt217RA45ZDsbU2pXA8ZRuu9yW/MhR/VmoVjDo2Ut9mTPYeb9L/TPO5vbfN/Ir5N/J41mX2XJur9bJ5B7Vjv1mvt5SUNpRG/WywCs2x6qe7rdus6tVCV0uRrhT21ccXptZs+k/N9RdfyZstYj2g3oh/lV6z3P4xKGlt3z63zr3Lr67vpffiK+v87DH9Xfq1pB+1YgkwaU0hg0kgrl7e+AWLMsbKHfsRlObIrhA7kSupjPp1abKGxO/Oi/JVFiUMaOCua4ukBcdqJDIoRqCsZqkPZmGtVd89hdfaxhqoyqkR5c+sNpK8udM+uqZ97aezBVb63/rTtEmVaWvo6oCyjoMtDFu98eR7LM+4jp8za4tkK+vVxtQQHBol1+rcLlBYYK0E58bC3Fo9t9fWLNgkfQWKxmESeUKNpZiv5NtTYtvrxhDsnmLv8iqwfTVgqOK9M54GAnE167m+1a5+X/pdmvulWurVAq+xKZfy7TigsWKuLZp7yuceZFPJRV5SZqXmq/48B01cz+3air+FTC7lGyXD0Kp/1/Wv5V+NL7Z9v4bFVnKWvDZZ1OfW8A7Q6NhtrZ+btPIJ2jw3ijJQ+dSqfwXrBaQ9Qmlu1kMnlXGbV9etjtmqP3KrmpRknKoCet2v7TrRa7vKsFpbRSAeq83WTcbPmh0FlwCj4ltZAO0atFuLOjXXxZqvn7dW6p1N+KvYrknL0lJWxrSFutYDgG1qX8x1t7hzf7vh3iqnLRJAFa6rdvZ22PJZLfqG1gpw22b7mcximdU6zXKrrm0tYGnd/1vK+HY8tj9cbZ9v/f0eybRKkykVGrv1Obta29r2nhx749imW2VIFTce35sHdLuKE20+0qaN5T69Yuzas5pbiuhGV1w9C3t17SmPu5Dya5Gv07ZtLO+zehjxXD83116lYOF6D3Ervba+T13HVP/7jLZ3ru8sj0+vd6/O7/lc/pjS78h7fkNTKhZ/cX6LziXM2VcWTyUSeYwDLAhzcehdwpgCBh+RyeISQ41RGYVwYUp+IX8oFnNisoGHfsLjHCohhyp8s5B3HEPEJIyHSt6gLJudy5UVs1WsnGWSnm+FGdK7Ukkd1A+O5eONXhIyitYaaAwhJpYhF4s+RFjDcTK9yxjnAOe4HY1LqYQK+qLT+JlO2BiVTKEl0GhTcFlibS5wVYX+5goZ5rx6rfNLmfa6cwzfdcLWp9+DkFzE6FZxKo1htr+SLfoh1niZK/gtCQOf/FgpS6DKBqDGnCQy9f7Hj2xmGo5zjYdpBc6sfdINoxIUKOGAwoyXdgqo6W9LoqCKXikW1uXVj6pCcVGYVU/vWVuQIwe5LxJ4niGyssGp5QEQmGCBmOBASRVKMSgjB5O3QSCxDYSwheAahbWSfNfNIGG12a55fWHWPwKsBLW3Xa4w3LpRFxiu8aXGrQSWtgHUjX2F+EqcSdtljlvpqLIRlmQrcQNlw1A+R4uiMzuGEQpjYSV2yAamW6JEk64XkvZUHGElNIHnGdnAeLnfbrCTxLScOHakOeRFacxNeWkDUU9OynoDrocqalmMlmOGTpbztrDSLbNiMSyDptS0obA/tygDZbSgoXDZZBfYKgAzG74H6acjIBqG+iq0sP1N1HXUwJxNZqjiKgi57jCyYWuV39wH1myHWk/GAuG04NiXkGvRVEsZgDXklQCrcTQVEisB7WkoC1Ojjqv02yQDEw1oINjRoHRLf7VtjQVHHhVqbAs4SH0USJzCAyVGpMJh2ZqzBKnXOjVpbNIaSy5p55q9t0ENbK8KWoW6Kky09k9gvR3BjbxuNWB8jWMp+3pyBJtMjemn8pPjNjXGn52B3KHGFtT4gtpH8jyH1NSj14TfDrnjuni+UOML1piDGquv+QnSGItFYlqSRY0xahJgBcJdvPSj43iexRNsZnivnQ3HPv3MZKPh2KcqD5l6ZlCCwmF5HcA2CrSU5XHmcSCDmkfjnF7BgPXd21gGuTLATsv4kOU6dExW595NG3V8ZS3qmNYYkNq2/gS18R4XXjnOQ8s8qQyA9M029UjdNvHcteU5j6kytBDa1iKLsrTXttnGZdRnZKuUruDJy6u/ttPe20KUtd5VfMjtGJimDBa5Vb46Fk2b2zGoSZVG7NTb3m/yVSv6S4cVG/9iQwQyBmb3gGn9d+9g4qa94RMVzmfsFs/K9Enp/0dK6687/agVy/Pc4f/8E44FQ40/Yk1bi0A9YaW1L5VsWBZ/JKBCsgD8sj1xbZPm29bXLvq9B6B9IWzytf5By8tlsXpsoUO1DgLOzYt4r+6Lfi7L9bNZ14FbdQDrp//GKWOb9PZl59rui1zS1MiT5Ec2NrIbAi5uuH7Z7rQ/2uZ+0y/9fdQ9t/pRja5f9r9Nnr3D+yz1lc0cF4A3G5pdFT850VYjVGk32zKOrp2Hpjkr11xzr8q0+U6yFNu8lha3PLQ/nGjquFHfNlXRpP7tcnYEkAlX8rVldn8ct/dbuUyoLmWa323zbOqq/jSbZ60u2+0zuO3nZhPQLveWtn21iSGAnFtf22uHAJgdZsrts2edbBg2efdkNq62t/Td7T8bxQDGNhuX7bO97KD4OW0f2u0mZGeA5Hv19du2TxDlz1xf3za1t0aA9Wbq1vu0XQPN5oidqLdjApC1zedlnpdxuO7L1Tt+u+638mN9XWVchm/9W7IN1L4/NvogtjvNRkC99+Lm6lrQWxtAf97p7/adIvdXz4589uf1vVvWrqs+Y6n36l1S70tjZ+3zMi6GADfd/t16KfHaMMvnleyiZG5fjHURPVPv9ePzctobg9ekW++lnWvbubtZ3yvLP6uM3OpDfXfzhytl6LX9xgvjuveufE7mF8rW6y/81ryUnrUEvyY9K8N1hZ86Rs+lz5J3296nrO0fQSL67WaF/VErlt4XfPHFCYPEMpuEvKb3Gd5lPF4GtvaI1WycA0JIMADGia15zhXE6HDoIy5TqDTZKTkksZAcjxOmieODaX3WEuaJrY3DYcY8O2h8rX6YMY0d1GKWE1sh63NNBs5nOFcwnjrAsKUHZFDkxJWShTsstOxZ6LVtA4EDhOAnm5ofAIrEqcpnDxMKjC8oo4PtM4wF8myrIuyHxG0atoY5seSoNaxEu4Ls2S7XmFSwYoma2RJGLVGCASBxsNoyZMDyJAsbMsrEZUuW7zPLWaIFJgdzSKDJAV7IZ0bHlqlDBsmJ/+qkTk/pdYz6zPupaBfNKoqFiQxMl2EsoXzDYVboTWRttj1kCLQmGpnkhaCWEiU7MWDLDmtWMDPLR6EsBDfJgkKBiXZ1XQ8uzGTZwnEQa5YSZUyWrQmzRRn4nkliFZIx0EMJ6rheMxtQxzKaZOBOFqUjlANbZdBYNJgIw4iVgaq1qLVkAWBLjli+bALIAaXj/pgMUE+wF4MyLKQnrYx2Nig9LfWQ4fFQIpa4bOwBgDqCmQzXO4qlwGLJq0QuUfruUKGU7mJRAlVfMJMMTOa/eZAdrRwomcxfS1iUITvzr3jpWE6b+L5+5lN4sRQ5wJ+4v+l+eUZtRC2vp+5uZlnzQMuGSRVVh3rw4yaDdCT4E8vbnua7i6mWGrJs+ck91R9hO/H7Jg9soQHUmsLlw5NBPALk+b7JC/GJH4F4BNQKVjqCmyDWH7ZMLaYGwETR8TzfV2tM7gAbqVpLqjUjgtd4D5hMqJY4g2rdMIUtGzYudam1wkpo3dLxZwpSnrC2rhDgH3ntlMD3rI79gWDUQiTkOf5skI983Y1s1dKxB7hON5qqDIHYEkmOxGrHljFVWornfEbWgFooyZL0g9eNG+X1ZXQNoj4bMAQ7mao8k0MNi2Cm5bkkx2NROpaLPKqlU+/lgRCeeG0Xv1aaVZEuHjzXgS2C/NxgsVj2gJn5Xhp4bqrFUqyyZKR9sWLqfJHMgUliKB8Wi2W1nBHYF1TXQZb51Wx5GXc3olrCqsVSouyUIM9eL2uksYK6EUj3+Oxksj4DsqbysvbyAECsdS6iWhlJngE/LeOs1kWd17qulfyJsLKS6TqtyQL+Qsj98u7T56+1uuk8AICbCSUYXhtqxUwkY2aW56hp22Twb6iV59kAZA1MIVlrBjaSWGJ5rbqJ2Cqu7TvJJ+1zh8B1mMVaW5p3nI6N9qFaJi2/a/SdXZ/7TRltQ8duxTSrzzCW565ayG3TFhbF0m4slnuHIe1B1mJRJRRnal2gZX52FcVGCdw7zKpWxkI8DyR/My3zUsuLAi51ktX3F63bom0bzbiYRe7dAzxcl699bbu1re9W2pPphmL5WYcxvyFpL5rDb0v6USuWRz/jD7/8U1xyQJIYbErek4qFffiu+hAWsrCmIMmb3huOKwhgBW9NjR+i/o3ZwbxZ+y4UmBojMEpMxJYcyH/B99rwJnqvJQry70qVV5PGKdRre2QZrb9hG6KiTa2P6a3QFW3ID4MlTEibp32mXyIJ0kSbdvfGoA0lwvKbFXkPQ3KXawCT+zB82VaCny3RzzYciI7R3meVs3//BICDrluzJmja9s01LL8KW9YcLRHSlhRJ8z1HxrRHpMQ+dOVqHbTkO/odwAqm3PpO6lhv73Mbazm0LfU7bOvXtA0V8hw50sJiXCpL8F7bt0J/bP3Ytv6723vcFlX5lvo5r90y8t6QG1hc/oxZPi8CLr+WCun1G588swmNA1k/duMn3MouGWCLBb6Uv2h+2634dcmBVbsGq2jNNQL44EDfFfqLLAp9262k/ZJyIKAIlLmYnbWCZW70PsnfvM0IOYMxWJMJtRuVZh7JUEUG6LXSjFXRMd0OgLb1B7RAvqV+Yxr/SVr6mhp/yiifk/pjypikdgHIGK79Ixufyb2d556sezuwV2yqnrX0b/MbAMVgav1Xd+7vpnb39trNZZVjMwZaX/v9VlvbdLWgl3Yqi+0mb0sQtLSBCpn+nLRiHr710LV/t3O5I389RGzz76znjSD7Y9u+73Y38tfjxJ93Gtmb780XVnS0jRs7+/beM5v/K4v0bj24+c571mp4q809COleecmzb23dDPJK29l8x2cqQLVM/cGSa2Z9vR0V2nxfCfUKBe8T7726X9v1/7v0W5V+1IolkcFcPDPCgplY10ywtt4DgEKuKlqpMcPotUXB4Xvtpmhrtub8rioCqtDWINfVIeJaSWjrjfk638aNge/tMNZulRpg/ZzGhpgnNuU12PZzKct47Mmi/bgiz7lRT/uX5W4cl4utwcdVkSQyKNBNm0FqwiikvPiXZim3RaeljXL8UiKwQqljdyu2Z/VrbeasrQNYSIX0862UbmxsCvZZWl8X0FuVJZ2TRRYNwn0ld6NYtdfa+rb1axsAGoXIPrsONOXspL39eJCvTmRA2t8bJ3+5XMu7W9UL17XkHgpytWHYhUkuG716UJFcHfNbBFGaDwByWc89AWtHJb3Y7LZuo8REiWrnq1HaVnW11YtFntr7O23c0mu2m+DXnxUZZAAAIABJREFUTn2p60xlXM/31dy3ChwAavwTVbC612oVTkAw783nVUEp3j5Dm0187XsbxmU1r7cUJrOS70WFYq/8DZmu0jZsTdvOrgKxrR+yuTbVj/XZGI7tGFRFy9wcinrvlZv8Npm0/761dB0G4hU/CzfTHlHb1cHIXh9emMtP2pTXtrbr32KrbK5W4K6i+Yq2bn2XZDdZdhW+TxiTXSveph5zKy/w7ATfrPuqjhfKXeV74fl+xZh/ksK5PbD4nkrapyqZr15Ln9unV6Qfk4WyTQQg/y7cyG9mmorHnzy9w2nukItF5xOTvmTLJDohVdIbJbRRpSC4jCTkO94WzMmh8xmzbPqCy9W6MkVfY0IuDIxM3mIAzNFXNleG1nJ+gBUC28SC1PIaX7LvIyubQkSjG6gg5DtbIhy1NmlSeK61hHn2q7xdl5CzRUoWXZcRo1uVKcUyxNYuLJu5iYVZiAl1lH3TGKpxL2tsyWLgfFnqaUIFKFFNTo7jTwqpjVrgcrZwPqNkjgNaclsX4HxGio7zFCttZVhLiLOvMgCLgtTGAgUYQkxkYJWUhQDrluD0JXEf+jvGIc1jgDF0lafdMFRCHCUcaJgArRDTAAuJTt2UF5ajJHPNOmn4l9J6Zh5OUTFUUk4Id6wvDBMGlvGmpbwxhBJdJdWpeR3BB4lrGhlWXZVCqYMIS3gGZfg06zY0RqVRGDQxDNv4Utu2IbMMriz1KxTYEecXmDQPJJbxteB2VJHQuJiJCXcoiW+cksoUsGxKXEOmKngMz7YryG+FbyuBjo6dtFshzYTFiVM3rG08SZ03Wq6bPvM8Xxo+fUeNkiL98/I+UAIeQiWAaSHXphPod58Zvt2G4ejLYonTsZgbfFWQQWgh4G35IaNcPM+1jItC2E0ooFFwciq/EvdsY2q246QEQhqnNG/mSDcBQsCE1Kx/rav1u9TvsmbqWlEIeiuXbjhVNFXyh8LwdH1GNY7lzNDyVd6wQM7hiPN0XL7CzLVtlbNtG2ALWVuvtGmSrRY1jX3JEFoD8mVtLcxYWdQ0FudKiWtlISz1yNwYmQP16ybtz5DXz4jOv2F5lQBoFfOyIX0y0QAONeYnCYx+1V+S9k0zRzpfpoGmz3aBAMizT04g7g3XQSUhIgjUUaD0Ip9R9xGHutZNZlInM0t/8hLztHQFdvz8TR15WoiTlEgGPKxW4a9CXKSQSoUzloAFZqrQVrlfSYraA6pmWZi8uVaEnCgt30kgoqsdv0GdP4aQLu4MRtYhGXBsT3V9oHW/AJVxEzfWcn2VRLohVzLSNyWSMjJHLQFQbUPaNM1yUD4FzYdGjvZ5p7a7+m8DLbn2Y277JWubrvPU8sSojZWle0+p0fd5807YvaZTs2lLq9w7BNkDP9R8Ol97KJCdcdjL07a928Ym7YVa+b7pUw8+drP9kAL9Ln1W+lErlkc34++9/1P8cnpAIYs3YUQsDh/igKfY48vDIy454OAivp2OeNef8e10BAC86894jD3m4nH0M74dj3joRjzFHp3LOPoZD37CJQf8+ekt3vVnzMUjZlchhV/0FxQy+OvLPe7CjFQs1zUd8ZPhhEIGH+YDepdWsSw7m3FJAZcU8Ht3H5GKxTl16FxGZ9mvsrMZ30xHxMLK78FHpGIxprCyZh18hLcFg4v4eryreS8p4G/dfcDHOOBx7vGT4YTHecCUPe67CZ1NSOTw1+c7DKKQH3zEKXYgAMEWxGJxH+YaqgQATrFD7xN6lxCLQyoWd2Hm63JNrbiXGND7hMeJxzQ4DuUxJo9DiLjEgId+wtPcIdiCSww4hIjTHBBcwfvDGd9cjnjoJ5xjQMwOb4cRvUv46nSPwSfEYmsYDWeoMv1qCJnHqQeRqYcOhUytzxrCeeqQisXfef8NvMn4xXfv0fmMQ4gYk4czhPMcKhzXGMKbYar9A1APJXKxSzlb8Kabqgydy5izwzFEPE4d7jrupzVAEiZZZwkP/YRgM74bmaW2kMEUPd4eRszZ4aGf8M35AGcJg08Yk0fKFt6xQupswePYI7iMuy7icWTf0T4k/N7dIz7MA747HxB8Rucyn5wVKwcqVPuZMh/EBFcQs63wVWYR9nxPwtA8jT2O/QxnCKepw9vDiA+XAX1IwljM9TlbcOgizlOHoYuYoocxhCmGCvUNjpmLg+Pn5TIH3A8TnsYebw4jzlPHLMvZog+pMhwfuggn7McKIX93vOA0B4xzqIdF3hX0PuHjyOuiFAPvCrwwMI8ChS5SJwCcpw7GEDqfMEV+/rwtlelYD6R+cn+GswW//PBQD4n0gEjDpVhLuB8mOEP47nyoz7KXsVSWZCKDh8OIbx+P+MmbE747HeocAMC7+zNidkjZ8nuni/h4Hirz8P1hQiHgdOnRdRz6SA+5AODnb57w1cd7pOTQ9xG99MEawsMw4eunIzQMz2UMuDvMuEwBhz6uDryUWdnZgmn2OA4z5uTR+YTL1KGTNdBazPsuofMZp7GDl0OjLORr3i+M0TGybMFlXGQOUnI4DjMKGYxTwHFguUrhAzsdO2V+/umbE05TV+fg0M+wBvjwNFRG6CRr/83diO8+HhG6hLthxnePB3zxcMHH01CZpg8HPoDyjsuOc6hzpvINfQQBiLK++5BwHrvqv1+KQckWoUtIyeH+OPLhorhhTNEjyeEQAAx9rO/flGyFpw89r0+SPtwNM05jJ4eMbtW/vo84n3u8e3NGLvxOWQ4MeZ3OySFGh2GImGePvkvMXu5KXWfjpUPXJzwcRnw4HeA9v9eDKzhNXf2dm+TgL84eg4zZNHk4R+gC/8Y9nQaELtVxC4EPc8cxCBu4g/cZ0xR4b04GXpnNJ49Dw+BdCq/DXsZkHAP6PuFy6XA8zJgmX9fW/XHEh493n7rdqKnvI6ZLYHlCFhZtfranS4ALmbkW+lQPNvUQcjjEyuHQhYycmQmeskEv97KsR4APJ7OULblxvgQfut3dTxgvXWVn7/qEFHk8dP1YQ8w2DsB3GWl2fOhZLEpZDkpTdAtbtxxy5mT5sLRwH1wocqAMVvot1+184d+S2YEICEPifhEfWJdsUKKDGxLSxYtSSPUg0wpzth56grAcIgJ80CNlKNnlwEwOBSv8PC+HmKuUbMOFQMshkx56GlrKNQfFdbz1kG17qLb9rOcVLTeBsmU3yrDJpkKqn4VqE5aDH1oOgionQTHrwyM5NGjLa53Q8am+HRvZqcnX/m0OJFeJzErZ3Q5X+/1qvNrx3VZtdq7tybaXd6/sb2T69ZH3GGN+AeARDI5MRPSHP3gb9L3waL/e9Lf/+bf07/3X/wqCyRhLwEQemSycKTjaGb+K93WT2NuEp9zjaGdEcrjkDt5mOBRcSocHP+KUehzcjKl4TMVjLh4WhPfdCd/FI3qbqp+mKnwFBndSpv3+MfGG/uAiUnErR91MBsEUeJvxIR5qvin76pM5Z4ejjwiWw5XMxcObUr+rz+gs7bJSyz+qsyh3T7FHZxM6l1lxtazgztlx3wzh6Oe6EU/FYZA6UrHwtmBMYeU7OriIIvJoXM65OHQ2Yy6ubrjVT1TLjDlU30JvCubi6vXOZo4jahPGHDC4iEQOp9jh4Hlcgs0cNiX5qhzr9dZnkcggka3XepdqSBmNpXlJoW6AVOn/+nJEIYM33VTHEODNTO/Sav7OolB2jRKrYz4lX+uOMg5BxsSLsq5KpjPLD7+O75g8cjEYAh9DG/Cm7zR3rKREX++pj2r9zRDFefC8mZ+zQycb4FQsTlOHzicMgZVs3aw6CTGjPqPOluoDW+OSiuLXWvYVctuHhDk5lGIRfMYUfUULALhSWDufqzLNdS+QaoVC63dFG/QhYYy+hsNxdgnBA7ByrrLrpmyKAc4WdD6jEFvQNY6nKrCqiCms3NslDmgS63rnRTGTOWz9llfhh6IHEXAcZuRi+ZBaEBGtT7MiC1Th03UGoCrYAIfW6buEcQroZAOu46JkYlomJVfrM4YqOiGEBWmh4XEAYBo79MPMhGPZImezhOOJvm74c7bwntEO3hcJ/bNYuzVPKabeV1/DFsnAcmr9vHacz1dIA1UQK1og8zhWf/IGVeF8FjREqRtLUn9WITmLo4cNgrAAb8YpW/g+reK5EoA8OfhelL9o4fqMPLlKaAZDjACgxq/SNf7YxPIVGQO1ummInWqVtOtwOdUaq5tHtejqpi3ZxvrBuzYu1+zOLNgiGEpjKV7aQ7IwXWYLOLDcby3lFktoGUfVUl8tXABbpJMVi2CpVntDTXgZlae2bVbXTBILY7eUr2RhhFUYmpUFGFjVb2o4D1osm7rx91StpUZD0sim2s5MLvbZKTHhmI6NmszMVvZkFpIWtaQK+qWG7lCrm0G1PK7CjTRithZOHQM7LeF2mFzHVAtkLdsoWlXxECI9mCUsDTnakP6YhTxGZdQwJVjkW+VpLZeaT9YWGawstQZNP5uQJ9vQJdWSSajkOi3BjqFFESPb9H1Xu1nmaqucrCx+zf1tH68SXZdpFZxb4UZuWue0PjTtviK9ZHG9NRw3+4IXZMQ6725dL8hbs77GSvmKR/Y1Fs9/+B//+//rPw5l6lPSP/UvHOk/+m/+mR+83n/rn/zfX+ybKJZ/SES/+sEFkPSjtlg6ZLzzJ0wlABZwVBDJIZiMTBbv/BkFBpEcMlm89RdksgjICP7CCgc5vHcnTMXjIDR4wfAprPUjovhl3vkJTn7VgsnwhtsBgKmEWhZgoqB7P8PL/bB5M7RKyvvuXP0PDy4uvohhyZ+KwyFcUOTt5A1QiDf/27oBoLesCHU2cexNEA6OFcZYHLqQIEE9UIitXTygqdbhxWJ0H6aVn2KBgQVhaPIOeg2y4fbrp7qtRxXATsq/cSN/l3xHLxYBZLzrmc9elVlrGM55FyYZhwIr/VdFWz9vk29i/HVdrv3QufjZ4bSal0D5po9m3/Rd79+5XBXVbd9bAiPN37tFqQBQN6cHH6ts7Zi/Gy4o4Jipmlr5t/JYQzhI3kIGPYC7br6Zt/1e6xcr78pCLnUeQlwpor1b8E1VxrCqTurne7Zbj21LdrQd90OIsmbWc9I1bXb++hBUFfAtedRWJmuWfG37W1/XWyQ7vZQ9dLGZ57JL5AQwa/XWh3ab1ArLiu21p7PGuK396OKKzKrzzTrcecv3IS0yBFRlnm/GVT/18AAASBgdV/60jXx9WK+j7TwDkPfPy+nWQTR1Tfluvy6VjRXk7T2srun30jVjcpA6tvV3S937JFXgBfGa1K9lveWjfIvc6opEqdiqUK92kob4niFmYN7M7VUfBlQL4e6OVBRrXX/qYlBlazbG9TuwbOA3752VHISViwM2Va3q2pKKqcKvirfO62ac8p5F61NSMy61Fj0HaMaAZByoGY/KsL4ddzl0urLIvJDK0OyijRCtbd8tt7SNVR5gV2nSe9rehgxJLW5XfrZ78u/1izZ/d9uXeVbFrV1n8ncJQ4Il761KaVkve2RHN/twY26eGdVXz+Nr87+ofH1Km8/ku1Ykb/fyWZk+pf8/RN+/rwy/Sz9I+lErlhkWT3nAh3xALA5BuMs/pAOm4nHvJpxLh2AyIjkc7Yyn3KOQxcHNiIUtd51NeIwD7vyES+4QbIYFobdsbfwmHXHvOb9a1ubiq7L2lDr0dlEsPsYBb8KIqXhccqjKXZsiWaTicOfnankEWFkCgGAznlLH5ENk4ImJiJQkSJUKVa56m/EoVlKFgaoldS4Ob8OID3EAAHSW64/F4Sn28DJuas0ElCnXoROLXyUlyh7WlJVF0tuCMfsrBSUVB2+zWCWXDZqOefvXG65DrXneFhz9jHPqan9U8fS24OM8iHW0WcJk6/hZU1DI4pJYu2nZZ1ur6pTZ4vuT4cRrZz7AmVLl0DytcqjKo/rrpqZdJhUSyJ/mKw4WhEgWweZqaW2tompN7V1Cb0uVu5BBzI4VTjK1PM9jFqipreUBYEoewWV0krcQQ0zvwow5O5xjV2Gz2q/cWG/UUqlz3H4P4qesn1Ox1TKqFluFOWsbWSyFRsZeLbla5yzW5CTW3JaZORaL3mXEYiv0F2DrbHC5yu3Vyip9KWRw182I2XH7sgbUgjwJhFatvr6x0ipxVRDFVee5hYTXfhWD4ApyMTiKQvZx7GENIxOcZRjhWjlPdZ62rLDKiAyw4nyaOtz1My7RrzbgqsSqPIPPuAjcMwu8V2GVfEiEFZT2vp/xNLFvuheIsG50O59wmUP1hY7ZVaisWpu1XQLqOLXWaO/Yb9027LV6aBZchrOEKJC/ll25hbVnebcYQ0jZsS6xmRddj5rad5UxhGMfkbKtiAUtq/BrYCFGU3i2c7we1PI+xeUdo3712pbCodXqqtBqaup1tiCKnzk/73zPuSKW3uXdaCDW94YxmOHCpr4r9K/68VdIt4+V5IvXSqkWZRcih9U6zCuf/i37s1qoFY68ZZdWy7VClW0DA1WotdYPoFquAfZ3hyF48ceOs6/WbIVMAmylVv9xYwklL2ut/sYUC9cnhmgS+4RbW2DFKq/+/SU7WMdwayv9cD4jzp+/9XGuVGipaaypCjk1Fit/dR4HSNsLlFTzqbKtIceoOSuuedAopU2yErrLGBkv17Agt9lVCVffdoF8Vjm1/kYz22U5bpmUjbBJy/UKRQVgPK2U6Ao5VTjpVj6td2tFp8VkV3Wbvf61aUeRqJBRnY9WOVboq1okNyG2rqxzK+VzI8TeQUxzCNJefjZtT9W21/byG6zHZXcc8Py47Sr/t086fjBF9yWlEvtD8mNOebt2fpj0U2PM/9J8//tE9Pc3eQjA/2B4M/Cf7tz/3ulHrVhG8vh/Lj/DT7onZFj88vIGAPC+O+FdOONPLu/R2YRfpXu87074v08/w8/7J0Sy+LPHn+M+sD/bV+M9fv/wAX81vsHbMOJjHPjfNKB3Cf/s21/iz85f4OgjrCn4erpDZzP+4vQWBQZ/cPcdvhbfzVPs8eXxI/7448/gTMEX/QXn1FX4nMI578KE+zDhj779Et6WCu2Mmf0Wp+Txs7sneNn8PM49epdw9DNaptvHuUcuFqc54Mt7Dplxjh2OYcYfffgSx37G237EH3/9M3xxvKCzGR/nHnNycJbw87snPE49vCn4OPd42488tqKo//XlDrP4DBYyeDuMOMdQr3Uu43Hs8TBMuMQAL5t9IlP9Dd8fzvg43df7g0/4ar7HQz/hLy8PuOti9R/8q6cj3g4jHscevzi/x0/vT/j2fEAfEo4h4s8+vEWMHj95ODHsVEiYtN0p+urTZS3hzYH7o/IaQ3gae4GDGrwZJgSX8b/9yd8GEfB7P/2AOXmcpyAQSoNjP6829X9+fguAN6Lqh6awz3EO6ENCJoPzuYe1BcPAG77gM8YpYOgj5ugxdLFunhVqeTn3yLPF8c1Y4YvBZfzyuwc4VzBdAo73E5MyRQcfMrxnfyT137o/Toh5YP+iI1t3pylg/tDDHhKO9xPm2dfNn1qCAdQYrc4xrLFkC+sWsqZ58gsJkED5+iFiGgP7CR0jxsce/f3Em1xRTtRXKM0e3RAxjwG+S6Bi0fWxtqswSYVQdn3CdA7oDhHzuYPvE4zIN88LSVacfSU3cmKB/+uPX8AOCaFP4udkkaMFzQ7+LsLYAue4zZyYHMd1uc51mgROOnD5PDu+D/YFsoGfwhwtXCj45k+/gCkG/qcXVgwApMkhHCKgylM2+ObEhwb2Lta2dCxtWMifylOAfzvju794A3sfhYCKN4PffgxCggOGJ44O9iEum/GLBwrg7hPyxTFsLmTeVBrCh6/fgd5H2FD4frSVCMeeLcq7yBvK0cHdJzw+Bo4pe/EcG7bx06HJMdFGX5i4yBPDKQ8ZGJ2QJoFJgQjA6BgmeMgLgY+TDVg0C4yxK8DFcczXQ+afQ08wJyZHomOGOTnQUBZopxJtCZHN9LVHuiNQX9gadmEYZ36basxUhVpOHxzSuwQzWbizRfoiYf7OIz3kutF0Tws8FASUQchokkAhA8GdLO+LO45v6SaDdFc4bqUQ1FAguDPHWfUnhroSeKOWe6lTNqNZYpaSgZCnAOSAfJaNiWWylHLmuKemAKWnGrOzBAJdDNKbgvire5Aj5B5LnEJi0pkSOK85G75/EQvizPdggXJHyCNgzgZ0T6BogAhQBjCAWXgNgF7glj0BKufARDNGYoHijcToFBntxPFk6Y4qxJPXCVU4oZ0FxjgQ3KPh+JSeKizUTdyfNHA8znRHHJ+0W4h1whOA959vxnAXA3Pk9epEZl4T3B7LvsTZBFDjXvoTXyuB5SOn8wq4C+fR+KcghscqAEfPUFV3IQt0H4F0FN3NcQzaElDjQRpiuXLHZf0FyP0yFmQlXilxDM4KB8WSR+NtFukTWiiqxC9VwFbupJ/nRV6O5cv5/AVIB27PFFTIrJ2l72G5ViGvBJgaL5VQvOE4pUnqyYDNEkfTmjVpkmjlxcvaauK7GjFla+xHchILUv5WCylk7TVxSbkCbQML+ZAS9SnUGQY2L2OxzV/jcGuVetBQoeSosVtb8qI25qbm19jKdfxa/VYhxLoubsFrpZ0t2dHWWmwKx9JsodPbZDaQCo2puYqtqePYtL2r4N6S6Yb8z1n+/9GNrv+WpF+9Aub7rxLRnxtjfg7gfzTG/F9E9D/9kEL8qBVLXTQf0gFJrD8FBqfcYyq++iYWMjilHtYQTrkTghn1g2Oo63fxIPm6ahUcfETnMr6Z75DIYcyLlW4uTEZiahm2ShlDGHOAE6ueWgAXKx6fLs7F4ykCvU+LnxaoKj++sY4AqKetY17jC1XxvBMLxuKrZnHoohCs2AplKzAItsAGJuqPwoxbDFsJYlnkjYWtBJ1P9RlNQpbTQu2UpMWL1Urj9AFsnVALm94nseSw1YnnQcN4OLGQGAC9QiA9k4MksVI5OSmtBAeNX5qSauiJf2u9APhkWP3rnGWLWCoWw2FmxaxabfLK2lLI8G9AYylorVD6OQjM0YFJHoxhK4zx3PdOCDFU+XFNHdYQQpfgvPq7LVZIL2y4oWe4npKF6Ck/s/ey0qFroOuWefM+I9/HWo6JMhY2YFctVqVaIZQRuPWn8yFX2ZXtWK+T52t+SLVOzkdiHbJAx/d8l+AcgWyGMVgsH1LGtHX3Ul+Xq5KrfdY8zmdQaZVgwB7SxupS4AJQHOev4+4WH1O1eBgDuI5/vdjyQLAd6n0EVIuXDSLvUdeFWFYMwXVszSIQky06gA6JFW5HIPBzaCzvAq2RwOIA6Ji43kOuvnzVenTMi9+U+BVZSwvzaM+KmDEE24tcjuqOojxktpAYYvZZtxBpFEdyD8AgUch7loH6vNzT1LHjlXGFYZSWQI5JOGjIlXTDWO5r6Q3IG1Y0G1IO3gyJhcSK9WUozOopSqmxBDrIvPjCn4VlF47LwagMhPS2sD+cMKtWw0Eoy8ZLfT/fAPAEQkHyBHhipTJQlS/fS5nWl9AS4Pm5gyWke1GSRX+ijv0RsxelV+s6Fs4veStUtPpYym+GBJ1XX0KeTHAweixyxMCMp0bYQSkY2XQSomd21PmLImVptfmqcSAdED3fL51ZNsuyxqgjkDcoPSvAJgvjpzCGKtEHb2AJxQNFfQA9kAsrMCBWfktHdWOce1GQAsH00teChZ0WfE/rUuVKZTMdkA+SzwP5yG2XsGyoyXD7+Xv4WJZu6VMJMn6yJkoATMeKbh5Q50vXWgkqM8tKhj8TuP/AolQYwmJFa67XZAAKhsdEx3Awi6+kugaXRSHS+8qSC4Mazmu3nAGs+GOSJeRB1+JaCUqNjyQM56vGz0apyT0qM64ql2TwvI8l+D6XMXX8KmssYRkk/Ujtl+01Hd+mjNTLzwH/vVJcnrP2aZ0N62pV3mgzp42CdpU2ypReaw2hVbFq10b7fauwNfXeVASvxuZ5xXIR5lq+2s/dTrYvsJ3bz6VX5F8prr/BiWB+beFGiOjP5e9Xxph/AOBfAvA7xVLTWDz+anzAh/mAVGz1W7ukgDH5CoU7hIinucMxRJxmZlA7hoivkq+EHL+Y3+PQRYzRIzi2xPU+4XH2+MW373DXz0jZVZgZkalK4V9+fFMJQjqf8Zcf3+DY8xHeeXqLrvGpqtYQgWepRW2MHs4u8ERnCL86H5FEMWXWUVOJdjSpr1XvE/7y4xsQ2IdrSg7vjxecY8B3lwEPw4QPl6EqZwzfs/jm6ViZGYPL+PbEv8xKoNH5XFkBAeA7YUBsrWydT8ycahYYWyFTIXHTzIx8FT6YLUJI+FaYBzVcizIDfj0zxOo4zPjqwz36LuE0dhyeRRglv/54V1n+NHRKq3A5Ua6/fTxWy5/CybouVZbJ72a+//4LtvZ+/d09nC8IIWEc2eL4dBpWb9helLvThXcCatVTZsKpIWcBgIsQrSjM7GnqEULG6dJVuJFCj/qeWX7PY1fXS04OXR8xz8w4ebl0jdXO1fKsnAGPTx2sLQhdwunMMjpX8PbhjCkGXM59Ddui5C0a3sRYQkpgCJmSoojCbcA+ayk6WFfq+E9TgPcZzhHmKaAfIsYxVMUyJ4tYfFVA1dKYIsMTL9PiIFmVRs+Ww2kMCF3CNIbKeJgELmYdIc1c0IUMYwtKtkgSCqAfIlJ0mC7CymoB6zK6QJgnniPK7BNsFXIZOdwQEarymWYliymIE/fDOEIW66r1BWn2ODyMMAY4P/ZLf3xBvGiMAVb0wsAK73juFl8wC4AMUmTLZSFTrbT93Yx59PwukPdId+SDEBIoZjhEbkcgbl6stEnIZ6gwOY0yLt795IzzU48yO9guC0uk+FM+jLg89VC2xjx6uCFVIpsS7eLfRwY28K5PCW9Ksqv8VHiNl8jyu54PbdLsahgdFIEHajgbCTFiQ4YdCHl2NUSPOwp51eTgjgl5tjWkj1E4oXwfvjxhngKT7hiCO/CzG88BphMoqVhxwxcT4imIH1y6AAAgAElEQVTA9Bm+T4hPHcK7icdVNlb2PtbnxMjaJiUoshzGxop8JTKJD4+hg/FNe9nAHBMoWbiHaYEUGkKZHRPzCDzQ3IkVnRZZUQzsQ15gksnCdhk0i4V4toAqT9nAvMmgs4f7PWYy13w61hrSh6LlvLODHVhehZKiGLZYv8kwXQJdAocZchxKKs++hnUqstZotijvpN+zZXbPjjWCcgpL6J1suC5LKKNnoqFkax08oGYVRofe8fhVJlBfQHKIUkaP0mfQxaEccm0bxcAfEvLHDp+bci+WeIAPLNR6bwmY3AL37PMim55o9Jk/R8sW+QKBhhr+DixkR3JYUg8xksVK2yGDdEwLIVOROlLTHrAOedSVhVG1DZ1kwGF19IBByykRFJmFsInMomQYySOHCpWASYmZtP5s2PrcFZhJ5tNiOUwRRV1D2BgyzFlJGxkNOBxPMhVFQIKIUCjtlcJFqKRBRsmHmoOcRbldlO7WB1eVttbaWW9IqoqVPrNlUdy17poR2LC+Xk3rosgRFuIjau43Vst6AOOa6215s+Qx8n1P7VKdtG51mu9X8Fq9uVVibyjGTdevhu9Zy+Nz31s5Vp34zVYqNe1xgfzjTsaYOwCWiB7l878B4D/4odv5USuW3pTqc6dQ00IGd2FCIgdvcmUvPQjbaWj8CXuXqoXqECIsqBKPOMOKU2czfnJ3XrWhSX3Q3h0vK8WxP14qdLQlNWlT8YsfF5GBk3AJaqW0hsQKeU1O0T42RRQ5a6gqs85Qtdxp+A0lF2n98Ywh3B+mVX+CX6CAalkEUMt4tZSJ4qbfAVZw2wWlMrhBywCFMsgbOEsNw6fEQPQaamKxCB7Eb811pfrDFUK9rqf2hUrtQ5UXHNpgO3bOEIxYcFX5iYktt/3A9RoAQfLYIa7qqNZJgY8iLL5ObEXMG1+oxbqo1kJjlvIteUcW/6rWUqjKshdorsJW9dqWBCg0JCRVRrBfGRGYIt/Qql31FVICDmsX0hP1Tak+WeoLVXjjrGOoFr/FP2vJ76xakk21jqp1Un2wql8PLWOiyp0eDBhhwYXlX1onCpmW48MFlk+hvrV+7gxyXhRYNOPM/W7GQcfHUf1Ns01dfJ3vWV+q35b1tPq1tKFpX+Tiwwj9xUXNbxXuBvZZM5592YwFWvxSir7uAPRwgJUqAJ4WvzOFn5pGdoMaogBSpsZkJWaMXVhWWVmryl6RMavjKe899cXSerL6xzVrU+a7ZFNDJ1Cz4TK60dPNmRxq5HaTbDgObPvZGN0s8ngQoW4Mx1O3+HqJom1ko1WVtHrP1+tpDIABX2s2MWV2K1nU34vIVN+xMrllswcgZ8d54nojod/TRSZdN0+yQa5WusmtzQGyM8zn9c93SmbJR2CYqtZx4X7EU1gUgyoH7+F5o2gktAqQT+LPbPyyiSQDujjE0QHFoEwORS2pxSA3pguKIse56V/kAwEWCkByVRSaGUKMAlDiNnkTvfS9sv4WAzp5tHE9kRzKbPldJf03xTCLbTO2abasmHxuyl78/7D4CwJ1zgWiIKZfFVzaa+YE0dUxNQTQ3MyfpmY8rzbgBNDULToQATTZ5y1So12vMyyfl/pNFXllsQIALPGVd5UJlV8gzm0lhgCazCoO5qquVT2tJIC+cYzeWykajRZEqyG7lv9KCWnaIoi1a/nbpkXhu147y2vE3BzHVY9eq/t8Dx3ppsKmYtyqe28+NnWu+7RT/w+cdtv6Xfqc9CWAf2B4c+cB/FdE9N//0I38qBXL9/6Ef/fn/zP+Kn2BsQQ8uAvG8v+x9y49tixZmtBnL3/sR8Q55z6yMquyKlutpkqiWt1CDBBDBL+AYUuICRJjxAghkJghhkwYMaNntBDiFyAYAIIhNCWgaJLKm3nvuefEY+/tD3sxWLaWm3vsiBM3b1Zl3iJNCsXe7ub2ctvutmx96/scxtzgFDu8syfM2cIg4TF1eGMuuIsUC3nUIx5Thyk5HMyI9/6IW3vBJbZwOsCpiDfmgpg1/nL6Arf2Ap8skQCZCT5Z7AwZZe/9EZ0m44NlTm7tAKci7mMPp6KQ9zBr7SU18Nngc/eIlDXG5EQmJUKhUwEfwp4gvdA4mpEkVdJCJONURFtIcY5mxK88xZh22uMSG/xh+xH3YYdTbPFl84D3/oiQNHrjRXblF9MteuNhkESSJWWNVnv4bNAbL+RHBgkPoUerPVodhDG31QFTsitSnJQVpuTQao9TbKUOn40QK51iixs74hxbWBWL3IvHUOC+n7cnvJ8OeOMuGBJBmG/sgN54/Gq6EQIiakuB6JbxMEiI0Hj0nTDkMhHS3k44h1aIlkLW+NPDr6CR8X8Pn8GqVIicqB3nQorErLNvCkMvn/dZw6kkUjN8/F1DbMOPoRMCIu4fE0ZplYX8R6uEN25AqwM+zHuJoz2HBm8b0lE92hEf5r0QNoXSDmYABoBH36LREUc34r5AvDvj8ePuAXe+x8d5h854IZxKUNJmJlNKWQkhUcIir8GyOFZHtDpiSgaX0Aib75wsbt0gdfCYsxzL3s549K0QM2mVhaAJgLAFMzHRJTQ4uAkn3+Jte8E5NJijRQL1qf7Msi8s7/NFe8I5Njh5gsE3OqDREa0JuJ87hDJ/WYYHWMipQiY5HADSzs741WeW0OF6f9w/wOqIf3Z6JxtRfA3NH9pMOdgJVkfczbuFUKr0f4xW2nLjRnwzHvDj3T0+THshoAGAz7szxkLMxG19mDvZ8Dk2hIS4n3shfpqihSn1/Hj3gK8uN8SSrUm3d4wOViXcNAO+Ho6IWWNvZ9zPHW6bEefQiEZuvcHGkj5DcLhtBpx9S5q4oZHNu5gW4rG9m9HogPu5F7mgWOYJa+G6ovXbW4/OeNzPPaxKIjUEAKe5xaGZMAQnG2Z8PX//8e4Bd3MvBFy99bAq4sO4FxkhHtfbZsT7YY/eeRzdiK8vR3zen3E39fJc47r5Hg3BCYSfyat2jmKyec731uNh6iSPjwYxE8PzFCxuSlw7jymXyc/RQzPJ+IieZdLSFq5r72ac5hZGJ4zBwmlCiVBM/4z7qcOX+xPmaMpvOEnbnY4YgxPt4rNvsHczQeoLkVnOCvdTh30z4+gm3E19CU0gBMsQnDyTuf6Ld8JGzbrAzCx9P3ZC+sUkXUplDN6hKYRdrG/MKB8O6Zi8xa4hbWcm0Wosxe8rlXEuCKWHscWhnanMwnJ9bCd8e97h101943EaW2QQ87SEK2jSEG5dgA8Gu3bGWEi3+L7tWpIi8kVCidvOoSsA6SIDZZNMM7kVBL3E9YWkcduPuMxOvnelbkYO8fOCCa66ItvExGupII6oXiuoBQCCVGKGeCamqkNudLkvjY2iw5uzQlfuDbc3Jo0QNFxBrHDisAVraQOMSKXoXGRPbhmLmtyJY/L5HFsemSWyeIO51BMLwRbrbwJYoP+xbJrK5ph+suEoxEgrHctqwyOvyxTmaZWlTMmjICijp67IvC6bjbyttcwkRzXxkMZTo3BrSHL+bT3YXFv/ryHA2/K2Fvxr0mpT4IW6X7rmNQby73DKwG8FCptz/r8A/IO/7np+0IblN/6I//T//VdlITgVxkj20p0L+yXDXZktE4C8+AAI4+RWgzCUBcfOeUyV7mAsi+y51NdaImvhF0hjg5yryWw4pQyBvY7lpWALsyTH81FsYfGYKYjuXy0pACz6fbF6QYgG5exWDIeuxPmRqDxd37pAcZ9YdBGB5XdMbccCDzRJhI8BiLdEPErspVIL0yBDbfl8fU19LRHGGGEl5BdRLUDuvUFOJC6+1bwjNsDFOwEs3irOC0CIYfiFplTG/zT8CQCgaYMImDN1vy4eNu6bkN6U88KaB6zYB1OB47GGnlZ5xfbIDIoSNwcgFRIZ8XKVl3csWnY5lnN5LVK9eGUgJC8pKvFS5aiQZoKnEfwQFWvf4iUShtLywOaXLacVo2A5x0yDOZMXL3sN5QgKJayDXF7xrBHMrYxfxUjK8Clum+S1icplUewyFsJoGMtOfIH3AiCPkKZYvFWeqARSx/NGPESmetmzviDDv1J1nl/kgHz+3+Y/ojLaykMZ1XI9747X5crAlkYzOyJKPpfwf/gfU97qJfq/e728aHmBwfVwvVwHQ+j0cv1fTH9EhDYKT1galSfIGnuhBErH0LhqPkieMvZ0Hov2Yb0o4f8JEgco5695LxSVA47fyzTOqkCdhdyFiX+weLdYPPzn448pBo2184qnKjVpgacx8cZcyGYK1C63GV9NX1KMX2k/1y2eEUN1iUdGQeLFpNxUCFn4dqvSvgLn+4Vfb/9TnFo1BkyIU00TKEDzOCgaexWUjNMKDlfGMbmMD9MXNA1Nta5l75umdn0diABFB74WKwKZbyOdY5IZJnHJVR9ZqzBr4L6ARlKpk8lIkluPiZRTCFzE2VU5iU8FzpcMcPYQmCC3U0W6D8lmPEQaj8FT3DDDEx9m9b1iLC88zgAmifNb6p1K/OJYdCypf5R/rnQsx42Opa91LAGZO3Lvq+N83cd5uQ9ZAyEsYxIq44KvvRSCl8T3VAFTFd+Yq2eML3WHKuaRYynB79vy2TOctNgtviKQyQWeaRSQI2DNUgdPe1UeN6p6RtUhxDJHeZ7yTyavx6m2bWovl5Dd1NdhnfeTeRI+aTutPGtVH1f3rozZpzyCV8vkMl4yAF8y3MQgfK79mxjFuo5NO19s47bea21/Jj31kj/9/mx6RZ7/5xXF/D59v/SDNixDIjmJb857hKTxph8Rs8L9fY9pdHhzc8HoLQ7dhPtzj7eHC97fFebYwwUfLz1C1Ogaj68/3GC3mzCMDsYQRPSmMKD+/FdvsT+O8N4iBk1EJVnh0E9QKuOXH24Ecti3M3714QbHPekz3j3s0LReWDXZOHs8O0Rv8Nm7E3JWOA0tnAtwJsIqgua+f9wjBHqKdv2McWwJFleNQdfTrvKxH/Ht/R65ENGczh3+8PM73F16nC8tvnj7iA+PewRvsNtNErN5f7+DcVHYOU8nkiRhg63rZ9m5VAq4nDtYF+AcUeDPs8G+n3EZGzRNgPdGoI7TZNE0Aae7HUwT4cr56A2aLuDy2KLbzxguDbTOGCYD1wWMjy20i7i5GXB/v8P+OGIcGkSvsb8ZsW9nfPPtEbaJmCe7MtSMTfS/GMCXU0uGWhMp9i4D3W7GPDkonTDcd0BQ+MM/+RYA8FdfvYV2Cf1uxjQ6aJMwXxqg2tHsDxOUIjghAKRJi7HW9h7zTN6RN28umIOVmMbgDTGoDg5NFyj2T2fkQPFO2mQcbwbs2hnf3h3A2oJ+tOhvRvjZ4nhzwf39DspkNB0J16dAsEqm258eW+gmot9PGB7pfpom4qc/fY9vzzucHzrYJgqkVlhRQTBZiRszCbYhI5+NuHY/w88Wpg1oWw/vLaYzxQEak3A5tbj57IzHhx6u97QLHYwYh/1hwHAm1lg/kdxAHI3Q5JuW4saco/9+cGgPE6bHFv3tiGlwZMR6BdNHxFlL3JTSCTEYiqcDcPzihHFo4C+0eaNcgm0C2jbgfN8T1DMoqCbBtOQtCZMFDBnFzS0x885nuv92Fwm2qDNMX2INk6I4v8Hi7U/uYU3CN794Q0YYALP3iCcnMULKJezeEVT+8W4nb0ttCWaaJkNENUlh/+6M8/sdjn/wiNPdTgxlALj58SOmmTwM0Rv0+xnnD72woTZvyZs137cwRy9loyyIf/TTD/jlL98AXkPvPVwbEEqs87vbM77++hY5KpiDR3x0cG9Hijk8zhRzGMubPinovaeY04uFu50QZgvXBsynBrYPSJE2IRj66fYergm4PHQSk5mDBhKg24jkDbSLSKOFvpkpJvqxpd/KbODejjQ3Tg3cu5nuTzF8VVOYb71GNgk/+rsf8P7+IPGn7W6GsxEP7/dQJYYwTfT7O/7RBQ9fH6BvA26OA+6+PuL4hyc8fNxJnFzzJXkXXYGTX84d0qyhS6xhmgzaw4ycgXl00Caj62ec7zsiUcqK5o3XNDdmg/2by2rjbRqb5TeRge4wI8YST8ubYkGjvRnB0hreG9wcL7h/2EObCH9pYDoi74peoz9MuHy7w7u/d485GFwuLayjZ5KxkWLDJ4swOOxuRoyXBv1xJJRBO+M8NQhJ43TXozvMeHc84+sPN2g6j77xaGzAx9NuYcQu74np3GB3Q2M2nFsYm3A4UOjIxw8HIeYK3qJpPZyNeHzo0fYefrZwTcB4aiQO0/TUp3B26N8O8LMlpuegYfqA436EUhkPjzvs9yMe73Y4vLngcu7QtBRz/e7tI/7qq7e/9rqjP04Y7spztY/QHHbiIsa7HqYPSLNBfxwxTa7EF9N7fP9mQAga8+jQ7WaEoOWZxUzgfnJC1OWaQM/frJb4bl2MOq/x+ReP+Piwo/s8G7p3I8UUq0KMpU0s0G56d42nFk3vEbxFCgquIy/vfGkoFrVA+U0bkQoTdkq0MdnsZ2EE14UEzQ9OYr794ICk0N1MxPAN4hqYJ4c4GDTHGfNDYSkyWeD7rgsUHz8tcdfZl/hZBagmygZlmg0wLe1UthB5JUXPEd4EAxYSrFkvm2y80ckEVhxz6hURdXm1MG5zSiDW61kvxsvWg1iXyR7F8szPU7GGuW7e1LpmBPJGIaoNutqS4/N1nGwCtZ37Xm0019corwDeDNsk3nhRqdoU1JC416vwaWHBrbRMS59Y0kWO1xEh283E54zl2miuNh2eGMp1ua8wXn/bKUP9dcmN/E4klX8gga7X0t/7+33+j/+rP0PMGj4bzNkgQUMjIUEjZo0ILTBOdj2nrBGhngTPakVQTc4DADFrgY9xikXug7UkGeaaoCQ/axnWnzmP1Ics9XEdvsCnuM3Urqci4wC50p8Tf09ZSRnb6yO0wFKdijIu9RjV5aSsBQZajw2P2XYc6zGpj8WsBDK6jKVaeYLruvhzKGMi7Snlb3Uz67rqxPdp+7mum5lrW0MLI9bg5L7VbeL66nHn+1C3ZVtnXfe1+1YzBzPUbnvuuftd56nHZaUXmSysWmIuQ5l7NJZJxjtt5ms9v5+r79r8fKl9L81bPr9t//aa+vu2foZfAVh50XOZPxxDvap7M28ZAmw3c/a5PjH0i1EPL41DrV35XNoK2Nf5fdF6fWlsuF1Xnx3V3GcNye26AVje0Zz/2ob7tbo4Pvta3XV/tn3b9pnL35ZdX7+CrG3qq5EeACRe0+iMtBl+1j7M1f2pURx0vZZx4XHYjvF2jHJp/7Ob+vW1V+bFNoZaJGp48cnrtoLKqBEmfJ7PsX5lPcbXyqfjkM3QJfY6F9KoBckhGofb+SwuxzKejIbh36Veu4AYtaHrPvLYVd9lbK+4NVgXUha+mmJ6GZEBhScojO+camOgrr6auwytfOJBEpRIZSjw3K/u56uXZVwHl1N/37Rv1XaGYvJnvr7+YW8MBaqP69qUvenLq2GRXP61B0uVVFZrA0Rtrnv2x3VlvPF0qj4xWKpjanvupXtzpd9XbvUL13/P87juIPzOZW3OXW33q8bj+VOv8kCuynr9nHqp7L/4D/+d//kVkhx/renv/P1D/o/+yZ//xsv9N/65/+G33jfgB+6xnLPFL/0txuwwJY53o8UyG3g+G4lPAfDEiOIX15TsKpaQjS/OA6wXxEEkS9ZGplVRpEeAp4txTrURVct8UD1JDJjtYvGagfRcXdsdkWtGEieO87u2QH/JWNp+5nau6133g+OVtuUv/2lctuNcj81r07ZdWuUnBh63AwAefLfKe21h/Jwx81yft/meM2iuGTxb44bzXSt/295r7a8NoOfyXFvsvzZtx+27jNWnjCGt8ou7fNu13tb4uWZ4AYsRdO341vh5aSzEcH3FPXjOuHzOiLhW77T5vjWU6j5sPz9XF39OzxjlL43BcxsBz93LJ/MOEGbp7Xpc1nZX+rNtz7ZfqEIRruevvxlskw9Pj12r79oYsZyPr+D6r0mvHfNtCk+53qpC2RBTT49f6ccqS/kfKy66VI/LlQX8k74m8/z3apEaF0uJ6gSXd+25r64YT9VvmGGeadOf9LrxfC49dx9zwSBfbevqGnX9c/6E7fDiPLgyFs/WX9Ur9+5T5W/KumpsfKINqDxYV9uEp+euGbBS1pX812t9xmB94dqX6npVncv550b11bPwuxhhVd5n633WEP/ux180EH9DxuAn2/Ha9H2v/w2m9FuSG/mbSD9owzJmjffhKB5LJpMBlgV0hH5inABEuAJAjDqtEgaQcZryQjQRsxKSEleRmfA5LoMNRar7qSG0alfW4nGb0xKQvzLgshKvVe292aZrniw+Rh4qIoWpP3P/tMovGsIaWcbhJUPhU160mlH3mjcNeLqQ4vvLbagNQvboPef12y7sr41tfR5YyA0kxnS7OC2pjoG95lWs28Tz49oO4rWdxIzFm1V7SRSASylrFQf7jKHAniLOy8d91NBqOb+9/jkjs17Ic3xvbcQYnSU+mD9vPUJ8zbX7vK2v/lzHoXJ86rW21WzKfIxjh+sxYO+cuTJvtvckcxu4/9X51XqmtENYaM16Dj2ZP2VRq/XTe7f1SLGXqWYJrsvga1LSBYK+eKjq8rafWfqmLq/2fHEfrsUxq83E3XrGrhlE2zHYlnNtE0O8cmIQcQGLBywnLZ4wPlenGLVIgwDlvlXzqr6n4vEDGR66sNoSIy8ZTHn9kwfUUw9TTpvfJZOC1HNeLfmeGDlqY6ReM4IUFk8T15Mh5CFbN4m0ocRqrwKZ2Bjg4zUhCIAV4YcuxxnqVxsS9U4Of65gfSsvU1YLbFA6UI7Xccb8ndM1T1uduM3cTv5fPXRVXGIkf61Ux1dXBpbKBTLI37few2vtA657AznVzdw+fLgv1fiopFYMycBmKpR4xzp2sy5v9VPb/ldYYmirfLk6vvLMrjJU96w6LtPwWt/rMagMtLzNmq8c3N7e6sInr53tHFTrY0sbr/TpGePzyTg+165r6dqL6Era/oRfNvBeV+Y1T+XVsq/95n+NdHW8nkvf0yh8leH6N5RyxgrJ+Lct/aANy0tq8H9evsA34wE+Gty2A0IiJtCLd3jbDcIseJpb3LQj7kbSaXzTDTj7hnQurcfHscexnXDxpMe4dzP2bsIYHX51OuCmmzBHAx8NGhORAeyKRMn7yw6dI/bDnfO4Gzq86SnG8jS1aGwQbccMCFueDwafH84AgNPcwOkkxENOR3wceyH+6Z3HHA3mYFaLlr6w0vXW48OwQ8p0bPAWPzqc8GHa4Tw7vNsNeD+1mIPBrvFwhVTobujQlnjL1gVcpgYZEIbXXePls9EJp7FFY6Mw7Pmopb7GRiE8Aoi5r3WkQdnYCGej6Hd2LmCYnTDnGZUxeYuu8RimBtZG3PQj7i89Dt2EYXYIUePYT+hswFf3N2hsEPZENha0TjB6gcmexpZ0/mwU46NvPKZAsarTbJGixk+/+AgA+MXHW1gb0bmAKRBh0zi7lVbmvqO41vuBvJtMLpQz0DUec6BYmGM3YQ4Wo7fCnsf9a13A5O3KYNI649BNaEzExwvN05SIaW/XzQhJY9/OuD/30JpkWXw0QoCkixTHMDpYm9A1Hg9naqNzEZ8fzjhNLe5OPZyLYhiHoi0KLFC3pUz6zoZF13iMlZZpTBqni0PbehiV8XhpcNxNeLy0EnccKxa/xgVMsy3xuNR/P1uC1aVFSoUNm2lo0HUe49Cg72dMkxP9Ro4HBVAkVoApkJQHABz2IyZvcb60ZGDaCGsTGhtwupBOY8pkRNXkUGwotEUL8lKkOVyJFVIqw9hEsahZSazazfECozM+3B3IICjjTnHAAMr87DtP5GKXVt52HIMdA+mHAkDfzzidOtwcB5wvrRhJAHDcj/DRyPxomoDh0opB0naFifPSwBVCKiqbrn97e8bH+z1SVLBNLCRZFEd9sx9x97ArfQsYLw26EnPctAF+toshlYkgS+kMPxvRGuWxso7JsIyQWbkmwLmEcXRCgBUTEYoZGxHL/PKeYjWtC5jGEuccFZouIGfATxZNFzBPVow0bWjcORbxze0Zl7ElKRiV0ZZ49/NjR3MtLyRbu/2E80MH4xL6/YTzY4f9ccTl3ArxU9N7mZ9KAfNk5b7osrnQdF7upVIZrqe4ao7NTyUWzLYBMVD8Yw2/5bhBvtdN78XAZtbMnIBm7+UZkSLF1g9DIazzBqb8llIkTdTp3ODw7oIYtfzmmKTMmCyx1k2Jo26LzBI/t1PSmC4OdhfQdx7nSwtbflNGJ4yTk/h6P9NvO3oN15Eb1U+kc9kUqajh1MI4+t3FoGEcaevOI40VPzPibMQ4ZlKzNBm440yxqUEhR9LxdM1Sl20i5otDs/OkmWroWdbvZpzv+qtritck2wWKtc6AapLcJ60zwmChm6Ll2sYlvrjMH9vTMyXOdJ7OlfnQB5q7hZhLqSyx5+DjWDYPclRwhxl+LDI5QUN3AdlrIkljYjOdJb5Zd7HEcVMsco4KqtyDNBuACYcUxS7moOh/Bsm2tJGYUcvGgiplq6JbmT31U/eBiOgA0aSFV1BdJC1UYNmoKOOYMyjekQ3lUMUz6pJXZWoHk3YBZNzUsY1XCMM4v8QE1nWXYwiK4jY5TrE2xAqB2EqmZmWQqlV/6hhLIeqq2iMxlBlC/iUHigGuisGcq40tzrOKhyyGea4Iqtho5zbyZoKqSJueJN54KZsPq+9V8+rurjZ6rhnz9ThtjPCXYNNbm/1VxvPv0+9M+kHHWP7kn3+T/9E//tcA0OKYYbCL3AU9wOpYPY6bC1mvYv4o3nGJwWTYqUgubL4DwJxM8QIunkeGLM4lBoqv5cSeVJYemKNZ2le0N7cexRpuy/kArGCRXHZdH9fDTLCq1MneOaYL51RrXHLyyTwLe2UvZxDvbF7BNrkd/L1uTw2H5TZv4XN1nBN7olaxcptx3UJqX/LwsiG69FMXgz4JVMpbShwAACAASURBVJTZf58rYxvbVrc5F48ha3nGZ/q7LTcmJfFgfI9qT+FC/879rq9fH6u9i1oRjb0uxk0dX1V/v5a2XsvtOLD+ar0hwV58o9Ze0Csbwqs8195N7B2uIZJ1W9g4r72bAFZwTmHeLd6y2ltIecs91YuXrWYx3qb6HMei1WU8Fz94zRP+nBe3bgcb2ny8lgVYyoN4AmOkjYDnvMOJPXk8LtVuPHs/6yQeL14QVUzI12GQVzzS5XwdS7fN+wRKWl++GZdPrjayIp1LUzEFpzLnTdV+zl60OpGxyAtsvY8b7UtZBNc7+GndJonpu7JSehKfWD5Le/n85rqr8XTM2Fs2MVaeQvayFVZS8QpyeznVHsYr3lk5Lx7LTfuutXN7v1JVVn0tL4SrRe11GAHlUVGRgVAtYMVIKNdmzYL3WO5RVEJi9WulZzyWANYe0mve7bh4FMW7iPI9bu7ntq46yb3DepzqeXjFUFB5MTJWZZVrVgZEPT/K/Kzb/MTIyEsZihlv67bW8zBX56qynoXzpCVfru6vqsup69nelytjtHpsbObq1UfKS8euGVbYjONz6TVT8RV5XmN8PTn/yp/BJw2631Q5XNYz4/l96ub0v/4nv/0Yy5/9+TH/+//kH/7Gy/23/vS/+633DfiBeywB0rL8+fgOCQpv7AU+G3yY97j3HX7S3+McWhzdiPfTAT9qH/DVeAsA+HF3jzu/wxAdjm7EV8MtvmhPuPedaAB+5s44xRZ/8fAlfrx7wDk0uESHzgTMyeCzlryNf3V5g4ObkLJCbzy+Gm7wo/4RAPDttMfBTrKIClmLLt/HcYefHb9Fyhr3vsOu6ENaHdEbj18Mt5gLqcyNGzFGKzp6AMFWD24i7Tk34heXW4SsceNGnEKLP7v9Fd5PB9zNPf7uzXv8cjhijA6fdWfSI0wWX11usHcz5uLxvZ960mUsemS3zYBGR9Fk+zjtRFsuJI05WXzRnPDgO9H2Y4KYs2+xdxPeDwccmgl7O2NOpujdjbifO7xtL6K1x7p09xPpm/1kf49fnG/x5e4R93MPHw0+70/Y2Rk/P73FznrRvPPJoNMRjYmwKorR92EkxuC9o7oNIJp8RiXcTx3mYPAPv/gFAOCf3n2JzgYc3YRzaOB0xP3UrWK/frQ7AQDui27gGCx5sTNpzp19A6sTPuvOGIPD/dyhNQFjcOI1PzQTHqaODP1iiJlyzc7O+OpC8zQkjcE7fNFfMEWLz7ozfnm+gdFJNAV9NMQmrBOMSvj2skdrA971F3xz2QMg7/ofHz7i22mPby577JyH08XozVSHVosXlDXkxCta+n5oJozBoTVBzj3MLQ7NLGP1RX/GN8MeXZG/8dHIRgvf35syTlplnGeH1pBxyhp3rSUEwOPU4m034MOww492ZzzO7cpTzvp6+2YQ/T7eOPlyf8JpbvE4EXsv69zt3Yz3lz1SVqKNx5p/57kRQ5n19x7GFkZndDbgPDtoRe2bgkVMCrvG4zI7/PHtHbRK+MuPny1eRxfwOLayMWJNwtuO2vrN+SBGCyMIWBYoZ4XPdmf84uEGf3R7j2/OB8zBCAz6D46Pot/ok8bOeXw478SzftsTE+eHS499S7qKU2F9BYC/8+YD/vLuHeZArNmdDaIz+Hl/xs8fbpESedhPY4vbfsTj2OLYTbjMTrz/KSv0jYfRCZepwbGbMAWL3nk8ji127VzkjZSgBNgrfz90JHcUjcgmNcU7Zk0SRu/OBtxdeuiyKcZokIexxU03CWOpUlnQF4xk+JO3H/Fh2OE8NdA64djOMDrh68cDOtZELO368njCV/c36BuPN/2AXz4c8eXxhPcnmispKbzdD8iA6C8+Ti0mb2FNhNEZo7e46SZkAMNM3u1943E/dGgK9HgOpLO5a2dM3uLd/oKYlpj68+wwBytIjGM3yRjyHGAWdPr9KszB4k0/4MOlh9EZw0y6jbyhdOgmfDzt8NO3d5iixXluYA0hTIxOaEzEGCyG2eGmH+Ve0rNjxhgcQtK4KwiSd/0Fvzod0LuA1gb57bdFH/E8NbAmYZgdjqWd54meizel3G/PhPRRitAqfUHHPIwtIUYKCuYyOYFZs47lMDnc7Ef4YAS10bggbX4cWxy6CXfnHjc76g/Prc8PZ/zVx9sX1xUvpX034/HSEjKgIDX4t/1w7tA2pCW572ZMwSAVREjOhAYIUQs6J0QjGo/H3YSUIYgXBZIr4w0yRrjwpkMIGp/dnPEwdAVtYbErKJmFpAnQOol25K6bMUwNGhcQCpKkLV7ecXJIUUOXTSXniHWcGeBD0GgZ/VC8ycZQ2W1LXvppdFAgtEUobLbORszeCiv6OBaWbqAQQAFNYZ4N3ggpVIxaNrK0zgR5V7QplmYjMlJKZ0E+pKQXsiZggfd7LbJYvBkkElvlWPa1FFbGdnNIOzp3dUOtbPKogrxBrtpgEpI3kpcZjleGNlAZxvXmjloYbrlelnViVlhV5asN93rTivPUm0/bVG9W1Js7sSpja0i/sCH9bPnXDO3tua2xWG841flfU1/9/ffpbyT9oD2Wt3/6o/wv/mf/CL0lmOhpJhrrvaPFw8NEC/85mrIobGTheiovGqUy5mCwbzzOs0NTFnWTt+Th0RlvdwNO5UVJ3j+KVZuKGPC+nUXU2EeDvvG4TASf61zAHMxqTqekyRAwCaeB2uwc0YqzRmSKGm3nl3ixCn5Yx4PNnl4YMWg0Lb2kOe9waWBsRNNEjKODc5EWZ0ULEiC5klDgd/wSqVkE59kscUxZCUQp8YtLZ4KuWYYulbgnlaENyT80rUcI5gnsypYXl7URKWoYmwRGF4JGmC2azsNPdoHbTZYgQL1HitTulZczFq9QGXDbREBlpAqiG70meYdM8hpaZ4x3HZABdzMRbK+8ZJAh8Dp+3sWpeIwdnRfhZAWheUcGcpExYJgQv7x0s0gq1J4RuSYqoEghKAUom5BGQw/WWROcKGPRDGTvUSlDtwXmNBN0CQC9LAdDcJ4uIgcl+aGxvLz4pcIvtwrSg4yFmp3jrBSAJhGde6bPajTIbVyo0DUWT0dQpCEZ9AJfqvUMhT69/Hel7CZVFPOlPG6LygtsiiFTANSoKZaKNUGLpIUKCrkrx3SW4wBWOpaqQLky3+egkVl7kr0gannJ67Ohr8cou/wqaLme49H0RG1N3eI2kFip6uWpR420i9Bng9Sn1UtSX/Si72cylFdUXpmoatZ0C7sENdN9ymahhDePGvGYyKPjVYGKUXf0qBAPpb5AmpZ61MhNJq1Ht1mYhBIrZcv5ooGYGipbtAbL/VZeka5im1Z09TIOBbKWbYaeS96m/KZMhhk1Ob6aDDPROVk/Ff3DbMgrY08KqQGSy9S3IjkUu1z0FEt9GTCjQthlaK+gPRD6DDsoxDaLJ8ZMxaNRdPWSXepSGUgGMHNpA4czBiyajWo5pwP9N9PGcWcXDxMAaA/xxGSz/EZ1aQvPGz0ppLaMk6V6AbpGF+1GdyKoY7JrOB1D6ZKlPiaXl74W7UMoGjc9K+gZSC2dU4n+koNobnJ/k8tLOx21Xfvys+mqNpbxQAZSU44X7192dDzrMhag8s1Yxkkv5zRrZlr6HBu6H6wjmhVgR8Af8GsnPVMbeWyAZe7FFgI3NDPkN8rhVGZCGf/SF73MBzNV9xjU51pDNC+2iZRpL1Qn/TaojGSXsQNKv23VdrfMvazWY8ZzGSi/4UrPNJn1XESGaLTy8QISo77zczguZZuZ7gl78vie8PVcP3sl5XedOH9GNorawkRSCdAxl3FUG69kLmOn5B2jCrSnrofml6Jy9FKfJFX9DjZp5Snk95gYXqWe6p5yec8ZUbWTnz3Oq3TFCMuaxqPW4qzr4TJX+rbbtn+ijmt5n/WQXju26avcm2L9q0/ZIp8yPj+RuJ3/43/x7/7WvXp/8ufH/O/9l//Cb7zcf/vP/tvfet+AH7jH8q0741//8f8CgNheT7HEk6kIrRIusa2Idggq22mPMblniWSYNXZKVqCzBzPhIXToDb3VmDxmiA4pa7Tay3V8TWBorI6F1OWpRInVEUOk3buaRCgkI7DbLfkPy2Fw4np81mjLk5YZXtn72uqAx9Cik/YvT8feePisV/XTmCzSEwz55TYxLJjHrYb9Ak8hsTXpDsF7E+ZkVp7QkDQaEzGXGNaUFcbosLO0W25L3+ZkkbIqHtNlrGuGXr6nAFZjSG1L5FUt7eX7cP+uR8oKRzcJlJlhu8JgCyIS8pHuj9MVRWJJNexzihZWpydyI1uZGrmXXHZWaG2Qeo1KmCJ5MKZgxZt3jc00Z4XWBCnLVVDcMVB72hKbuhqnDRERQ5A5bT2XGQuREM2dEutYvIaNiStJC1TX1DG7KSvxctR5uA0M4+a5wf3hPtV5eO7VMb7WkNeVxysmLeRCpngp6Vgh3qkkMliawpm0Gu8tZDkmJR62VDxRuSrDmpo8aCGKqvvCcbY1DDQkjdZGjN7CmbiCZE5+0bpTZSwaG5Y4vaoOHtsacjzNFrsmCNPuEies4L1B33op15lInrKiDas3c4WhucYkidXNWZX8VF8NPQ6hxFOaBbr8nGQGe0d4w483zpQib0kIBq7Ex9ZQY/7uZ/LSuuKFiWWTryleGIZFc0ykc+yRoQ2vGIzoFCpF13O8HwCJrcxZkb1X/274eFQUk7u5huMl57husyqxa7w69HFN+sMLqxCWeqCAHBW0TVIGMpYxi7RRNvBml4KQ/aw8LCrDF4/NzHFh1eaSbKJxPBpvcGW1bDjxJgJft4LfqmXzyKVq86ls8ACLJ6b2wMgPBUueuv8A9aGUJ5sTJi/xeLzp4hVy8x1XpVUSbUFgMR7KplGuNskE2pqrjRNfVvYGAMNFVdUuGadSV03Gs11M8zX8Olcllk8vC36GpYpRWj6L6lRluGS9GCY1lLfeEFFb71Wme1yPO/VTPfHEMSxZ8lTxkNUtpHZXfSxdW4y0eqMzbw26ZZNpPVZZDLCt0bjUXW22cN9QjWMdu8lpayhuvnM78tOp+rJBtjWgtsbUtbmQ1uXWm1XP1vvKn8GzhucnynnZCN0Opnpdm76nYfm7krbSfn+b0g/asPxmPuI//8t/WRgp67i759gta+0vFpfexo/VMVh1PFN97Ussh6vP6ZknSA2jKN+Z6ZB/gbla2MvCaVMMG3FPfmelv5nrWm2DcaFXGAevPdheOl+NwTamahWXpZY+oF7Q1OVs28mf61ieJ2+gpYFbpsnnNsBWLI788iiLqhwXggS5d5UHVPq+HY/6XN7ke+6hfG1u8EKDF1Dbsbh2H7epvm91W3gcr7EpvnTdtu9P+qOexpq99IZ7bT9ekz41R+vv147x9c/lvbJYuJaEERLAJS3ukKwq4Wg+xovMa/ehemlmk3Gq467q35t+Kkh9uTYXt9AoThqY0yZvNZY+9+sX+JZd88kArNt+NdVzuZ7/n5oHKsNn9WQ68aXhhQVa1igMfFU7AczVNZHza8CnVuZDKGMX6/iuzVogZ9os4DbVn3khKkZc1baE8qzKFP8sPxdewFbp6vKjMh63z1BVjSl/VmXRLPqNm0Uzp+1CsE6rxfqnnnPcl/zMdFCAyuaqE+LJbHju/l6b13VbqsX2k7ofrzXqdelFr821Dj1pn7r+W5Hv134P6smr4mndm/jfa2lzwz9p6KwqW3Vi04iX2s51FaKZzXPr6ntn8/mJt+xTbX22DZtmb+8P8OR5/SS9pu7tRH72vfGJ+fSaer5DelW5zz6/f8P1/Jplf++6fp/+2tMP2rDsTMDPbj/gaCcM0eFu7qFVxo0b0ZqAry43aEzEFCz2bsLHaYfbZkSCwt1IcX3ORJzmFu+6Mz5OO+zdjClaDN7hUqCxX+5PuBt7tDaI98jqhMeJ4r0+21EsHQBho/04Ulv2zUyxWHnxkPoCze2txy8fjzA6rWKN2INws7uIJ2nwFs4k8eYB9FscSrxTiBo3O4plGWeH1gV8fNyhaQL6xuPx0qFvZ4l74RiMm91YSF2AscS5MNzXmYTz1AhDaM4KraO4EF9gwswG2Ba4K3splIJ4OvYdxRKFEpfhTJQYk8vYoms8fDRoncc4O+xaYm0dLi0O+xHnoUHTRDgThR1zfxjgvZX6ajbTnJQY210/S/wJE5LMBVqbM9C3HlonfPjmBoDC4e0FIZgFopsUmiaK0ZozMA6Eg3INeYhsgQEDgJ8tjCU8nh8tlM6wDd0zrROiN7BNFCgwC40z66MfHBAUzJ7wScRAGjEPDtpmxMHA7imehYlJ2JPExCRN5xGDQZiMMDLGoJEeHdAm2IMnRlP2lOgsBCdCdqLJM8GbA6os0IlRkGJNBALaBKQC4dW7gHSx0HtPcSUZUDaKpyNPBqoPBNPl/jNUVEGYD9mToduINFpiGbxYghUXjw7H2SiVqf7iNeHYm3yyQJMIGpyJeRFB0V9PkG+wBEOkxZ5q0rKhMBlahPYFesyQXIBguDZTPq+RXYR6cLSQfeuXMmYNMBy57NCr0RDEbxcri4T6D5slpkUNBvkQoB4c8j4sXiAA6mQBk8lINSAIKpenMtREY5/3kSDECoBdPET23iLcRDo2E8siDD1UzEXTOVWgvG2EuhjkLkFNBIldkb8E8hTltsCgXYKe9QLD1cWYZoN60tAeiLtEng2TyYuhsGJvzDZT3lkh9eTFzCbDXAoUtk8wF43UZYF0kncs07VJwd1pxC4XKK2CGWmBHg4VRLh43uxJI9zQcTMohGOCfdSIO4bZZZhz2Xgq0NfYoLAx0kZBchlmpHKTpX4YX6C3xQOYTSZ46kR9NBe1bG5kgiqS54v6YsbFK8VQ2GwAe2ZvFpAtYAaF2FOdyaGC+hK8NewzmjtNUMwmL56sBOigkGxGchD4rxvKXKugsGGfYQYFMwGhJ5gkw2EZwkrlU/2pITgxAKSW2qZnGjuGHZOnD1CeyokdQTYZzptamjdZAWamsmKbYR+pb9lQnXomqCWwQGBDT9DXWME/7QDMN9fXFK9JZqI2QlGd7JlSsYyJxxqWimVDwhb47goKW/7MiDJvFoOnJsFJbqkLIGhq80h18hiaUa0hrRlrKOxE0HBuo8CLM0Gba4/eEyisXaC8vGnFEOgaogwFmAFrL6ld4MuxLcfTYvibOSMrRfc8Lf3j3wTDpAUK69bHeJxoLMuzPC+7GtkqqEjXqphX48h9ToagsPyfr+UNJR4zTrVhKjY9bwqVjTiVueylLL6WDiz9XRm6ZbNJzl8zstNSb9YQ2HTtWd1ucqUKtk8ZsEpSVnpaR72RpBLdr8UzuxSUlboKa31y/OqmytP0nYzvaxs2v4MpQz1xfv1tSj9ow/JoRvwr7/4pfLbw2WBMDkYlxKzhdMDP+m9XDKY+GzgVSfPyxsCgxExm+nzZN2h1ED1CnwkO6VSEP1AeqxOmAscEIEyuxAxLw2lVRLgxy+cNMJ8hghoZf3z4eFWDcguFZXjrVo+TYancxwQl5Q+3DlYlOB0xvHFoOJgCBCllGCinUGCpXC57Q2ttS66nZoINSaPR8ckxhjzWOpZ8npk+Q+WV5TY0hu7B/Nai0aFocNIYhzcME44rFt0aWlrDdJlJdwuTreG6APDFnoiY2HD3cSFK2bK3bjUvV+eSgVFkhM/JCBRW7heUnOfvNdNuKLBMhklyHxgyXOtYXmPFzVnJtVOw8jllBf+FWRH01H1jb7PfwJq392wVz4pir5T7mAGBxRr2lmO9GZ3K3Kw3Wq5t7F5j3uV78hxTbw2D1CpjfmdhdFohEmpI6/Z4PR40FgyPXfItupkEha1ZV/07gmg2RdqG4MQEu62hsVxfYyNqrU9qF+l/1qzC4a0psN1FG9R/ZgTaymNUz8eapbfW+BT4+ucGB7vMjVT3LWrsSjw5w9frehh+u50jKzbXvKA8GOFRw1UZOrtlzl2gsFwOnmh0LtI4T6G5W0hx+MzA2QUqy6iTroLpMsohBo3WpiJno9DahPi5htULvDpVUN9c2rDcQJrbjDQRKZUydrmeYyWfAlahDTwWuppXNbRW8gDwlcdbKfKsKn6cqjXCxidAmYzxc9pkqL2dHN/Nx6dCfhKkr0sdyqRCyoIF+XFlgcSID6UzZmGnZYuo1MfxzDJ+5Y89kar6fyXPzLBMHhAutyYyYVht7XGvCVF+nVTDc+sFd1YrGOtVpEbdn+0DMm2+r4yJtUYm5xsE+lo2Zio5jSeeQa6jXnirql69Obf9X8q/1q2twfSEdZY3Tq6NnWIDOj9vMNTyHPXvIK/LWTe4bnvVmWrKrNtY5owgpNZNeBEK+6S+5TOP0aoZL6VrVlTdjmrMt/9flZ7Ld+X4s2VKh/i6aq6h+v60xJfLfa49PwBj8fdpST9ow5Lnmc+GjEOVxLg8xU4W9BRfSS/3KVlEaBgk+Ew6cFYnXFIDpyjmkReXrgQiTMmKAcoLcjZq2PDRmRbLrQ4YIhmoWiWRPNkKsvvEC/tUyUOwHAc9lUMySHmJtwQgxmstlQKw4VzYRcvCfW9mMTR74xEzxXo6Te1OWa/iLWtDko1Hq0qMoBjStDCxKokh2ei4xF9ye6rFaC0tUn9/+p/aMkcLrRI64zFHuxpjrRKtEbIu7aJYUBTD0ZZtO5aVISNziSfkmEnuz5xMidkMq/jLOv5tK43iKq8xlyvnSkytUqSFWhvUOS9GJS9063EGKIY2VxoiCQohaxljXbWrlnWp+yXxuCUWk8f90Exi8G4NNDaE6vhNVeYSf9YgY5oNs9qYtXpZvHdF43Qrr0Ljk2RT4RpsXZW28u8lZSXXNKXv9bs7Vn0X6HdJvfMUD1nKNzrJA69ezKuqvjqxNu1K3qIkU2LZaoOuE2//QhTlTFrFjFqztDUmDaNqg7XMCUV1NdYTU27jK+NwaRuAlWEWK0ODGUgpxjNKXt402HdRWBttNacACLMqb1Lw/a7/c0pVmamUVRtE1q43QZQiBkdl82rTie+rLURZzIiqAGgbZSMjZwVX9d2asJo/xgQxXpXK6HpyYZHBuY7FXMId6FrbxWLYQhAQpl0M0JyV6CTWaRtOoWwAS+AAGbYyKuv6lImrGM91mQoKuSAWklxT5zN2I0uCTZ4N0UjOgKkIo1bGoRxUJXZSkTe7XhVX/avr2UrrrHbi65XvJm1DF7bjQ+UB+en+HSVX9XdrgEphABo8XaQ+Fw7wmlT6wzGq9ao+l42UZ8d2a4HV7eSyriyoc52vvmzTt+zWRT4x3D+1QH/xXCHuupL9Ofvq6oFn6lDVc+DpNZuLtmEk9fP8OxhOtefydfmfGnmvSt/JkHp+NL/zrP2uBhzX88kb+t3qeP04fbcevrrc38H0+xjL39F053f4r3/1D4R2nyn7fdICN2XvCRN/MG17Uxa/7AEiGvdCcqCykH7EpHGZHRkT1QKRFjX0xpuCkYWp1glzsEKkwZp+nNgIiJmosVvnJZ/C4gUzOgtVOe9gM+V9/cJieKct9TIpRiwyCqFQnduywOWFjHioigQBL7TYG8DeBhYC5/qkPYVgo76u9iAwXTgRbOhSJ5fB1yhYmwSWy1TnMRgonWAtXct5ciJWWqXyIvC9eZFzvySGtiyeJXYVWKCnAFIkIhFegE4T0aVrpg1HZfiUhQGPuXgvsLyvmRUXILH3lOg+r7w+ZYxE7JwXWGXRrTURlHCdOUGYabUu46NQLZKX6wGIOLzWmcTfQZ4M6wJS1IhBk2ejWuTw4o0hr6Lft1mIKE0LPbk+EzmJLuysKWhom6QNPEAcT6ttEuZcrkO0AbPCNSp4oYC3ieC73GcmEgEKlHchIgFA+VOBwKq8kKIoLLTxeSEtgQJpGZZ7wkQo9fVC2sK/ibzEEeumeAALhBbcRiYvAU0UzcL1vlr5194ctmNtIshwk0R4XMptCnw4F7iyKXn4fhVoc2bmXGChjQdIKH00VB9Devn34eIKWixELTXFff1Cr8tn8hKNRWic8/Ji3uSFrKXuNwBhD1ZYPE5cVplLK9IYaY+Se8jjAlUYkL1eaPlZ+HzWS1ww183sxjpTPq+JYMZXCwARZa/6XG885KrPvPjV1dhzXu4b5+e+cXu245uq/lf3eOUd47Hg8rnZpS7lNXKblrbV5ZW2CbkKtw9YvH25sAfbcv9EM7KMaRUPzBqTDGnmY1BYEbykisiFSVmYIVklhaQ3ovTsvA3FyMlL26DzUjZ7KWXuQjyh2WZiZv41U7aFSRlYxOtB46gLlFsnJYL14lUr1yJjGeesBEIp41QZvfU6+xo7aHbV+GSsILDLhcu1TNxTQ15ryOrK+OV5xm2QPlX52Egvz2tuu5Al8TO9Yh6W9qqljhWUtPo5Sb/qcQD3YXOwjPO1fQzxNuYqPyeOha7Ib55cn6sxk/FfG7OrNtbf1XKfn+xR1uNbp7z5rj5xrH4uqOrY9pJrXtdrdavN/+fyvSJdNVK3bfhUXX/LUgZWyMO/bekHbVi+a874N//wv8c34QZTctjpSdhhL6nBrRlwSQ12esZ97HFrBrz3B2iVcWsvmJLDmBx2esa3fo8bO+JSeMR3esbRjBiTwy+mN7ixAwDgksgbGZLGjaV4zY9+JxDag53wzXzEO0fQylNsBUILLIblEB2G2OBH7QNSVuIVZS/pzsx47w/CeNrqgClZTMmuDNVGBxgk9Mbjg9/LMdKXfMQptDjFFl80J3zwe/hksLeTlHfve8l/tCMeAzHrskdyb+YV/PYcGzQ6yPUpa/Rmxjm0wjDLaU7kbbz3PXrjhVF2iA57O2OIDjduxIPv4HTEOTTY2xmPvkVnAt64Ae/nPW7dgHNoEbLGrRvQ6oCvpyNpcRa2VPKcRDjFhjaN48d5J/1hb2p93ckTc/DP9qQn+ouB4nI5DwCMcf0zuW1GaGQ8BgoWmaMV+C5rnALA2+aCkAweQyue2Z2dcSr9u4QGVkeB+tI1A7TKuPd0H1gr9MaNmJPBzS9HegAAIABJREFUscQKk0c3YIxWvOe2eBEfZtLHPNgJD6Wcznh81p4xRIf34wE7O4unj+tgaPScrMCbtUoI2YhxvbMz5mhh9aIVOkaHzngZzzfNgLu5l+tT1hjLeO/sjEtoyBtd5vwQHJyOsjlEzMEEdeb46Eff4bYZcAkNxRRnTQzJibzSrQnCNszH3rYXjNHh7EtMbNE57YzH/dQLU3GjI9rihRmCE2hybylwiPU2jUqCNGhNwBRtYbWlz1/0J2iV8cvzjWxwtCbgUq7nDaKjm6BVwn2JCa8ZlGsI9tFNeD/s8eXuER+n3coL/KYdxNses0ZvPe7GXlhud442Sk5zK55b1nYEgC93j/j6coRPGp0NaE0gVmhkHJsR74cDeYtNxMU7HJoZg3fYuxlDcOJBBCCe5Dka7FyJlzYBZ9+gLRt4teeY63uYOvGIMpTaFVi1Vln0OZ2OIiUVs8KuSEZdvMPOeYzBisedIdj8/YvdGWff4OIdjCIUAQDcFw1Z/o0plXFoZtyPpKG7dzM+jj1uuxGPUytMwDfdtIKbD97J9byBuePxZkmnInXF1/hoEJNC54idmfVS2es3RSMbnXx9LN5xngO1zirXtXMeF08uK9anJEZYg9YGnKcGnx/O8NGQZmkl1aTKOPioi0SWFWZq3pBNWQnvwL6Z8Ti1cCaKBu8YLJxOoqsJkIYmsyTPhc23Lx7n89TAFc96KMy/SmWMsysboQQNZymvVI37HCx27SyapSzhJTqXhWdgmB36xovWaEoa+3bG3aXHr5uYC4Dj6/l9bE3CZXKyidvYIKEesWxwdgV9wFqtGbRZm9JyboVwKOPJZdBxyPddN2Eq9zwl0oyMpTzeeGT2ZIBkzWpugpSUoApCKDJiZd7xBjVD1mNURdNyKZ82QTWcK79jTxv3beulvVwOsS6TxBhQDETepC+szyxJhrLxvoJhl3GOiWTFZONSQTzHOS2bmDyGABatyrJxWG9CCYEhG8h8fW0RpbUsGBVaTYra0OZz/Jk3Ya55rK8ZWWqzkVRDh3ngtoYY53uOrI3zVmPz6vSCsUesxesMRNKUV9+flFO34TXG5P/PDM8fevpBG5Yf/Q7/+Kt/CY++lcVUTBpn32AuL2yWXBi8Q+88zjMt8vpqQdKYiEt5EfELvTFRFkUfLj12mxcCC6NnAKexFQhYY6msXUOLn2F2Ip7NUDWt6EXqo8HtbkBMWl66plDRW03EObyAa4u4My9ieBHCItjWRJynRhY9Phrc9iMGb0UE/VLKc6U9KQPD1MiLg8l22AvJLyperAKAD0ZeprzQaYp8RR2DBZCsgLUR0+RgbRTIF7+IWFiZvaaso8neyL71uIyNEAPFqNG2hXDp0hVyHS3eVV28dMAS+zRNrnhxl5ijpgnwnsiH/GyRksJXb26QMvB46qF0XuUJ5UXI8DrWC2XRafa05kyi0vwS71qaM94baaMtWp2s2anYy6toq7VtaTE3Tq7USV5V1wTESERC80TsDsaQ15d1Q9lL6WcS0nZNoDZmBWMjdh3prU6TgzFJxorLAABVPK4iA8Hfy29ukWBIC2FS0THVOsN7g6YJmCcnsN3MCxGdYW1E8Ba6LPIUQF7V8tJQhha5vLiIQcO4KKRH7LnOqUgrFN1SwyQ+hcQIAJouIHiDWDx52hSPsEnwky1towUDj0XdFsMLrnL/2dvKZbE3WNuENBv8ck8G5XhqF8+gzYizXi1mHM+fccGt8SIpBy27/64LmC8O3+wO8KMVmB0AfNV78sYDyEXOgsmiclIwhTAojpY8qXnxZCMrfH04YDw3yFFDu7jSYm3agOniZIzTbGC6iDiZosGqVwsjVTRmk6fzJHtB/dau8jLz86+huRImQ/ew3E9kJQLjqpAqKZegbRLtWCQF3Zb+zEY0YcXrYIqma+nLh8MewRukmWRCTEPwznixUJYXnZTXdAHx7KBcgmkiwtnhw94jDla8L3cdIVF08YwlX0iwWMIjKPIm871UGdoVHVr2IkcFRMqXg8K3XVwtmFLQK2+ucvRbEK1aBSABHwopFffBNDROSufFU61oUatcQh4NHo8dclQ0FxQWci6TpF7VkJdXlzkkxFuJyLfgEkwbEUcLZdJC/OWXuZu9pgWuV3hoCuqleINlfAaz6NJGBZR5lCez9pDPFaKBvahB4dz2lIc96KYqmz39o8GpjZX+rsJDF5DOFWb0O6azS0SIBSwedYD6Pi31nFlOJSuJYxzaBNHzZc97IfUamuIyq2NH2UgAFm+0eBCBsWtpfMr3wZVxY88UX1KuHV1akARJQSWFqcwTFfTi2QUwFxKtmfVno4J3uZDSFONBk/fYsyc20L24NM0qdlMViZrQJChuL49ZBoItMaFx0+bS98SeYUXHmYiJy5cw3gRU4CQpizUedSWXInZeQRasNHRrZ5Iq3nObYWrveW3obca7NhhZZmV775bygatGYP2xzqOWn4MqU0g8quU4KhtXmpMhZDxXU228Vf9rZuXaLq498Ve9pNtjW6Pw2jXPpGse4VU7cP37725SiN8d2PyDST9ow1KrjEPZ/SevT0JQGQc1FQKfiEZH2fkzKgENwFqK2mXZ2T60ZNA5gaKWGDKVcewm2Ulv7Tp+UKuMXTvLTrlRGapdYrZ27bzEbJrFY2m0hrM0taxOUCV2oY5La0uMF3s7lMqwm4ATgc6qjM4tOnYcb0b6bbSLy3FX7DlRWaF1QaCrRDwCyUMGZiokJXFVZx1zR+QkhQylIpdRtrSvaOLJuDWkfYgm0H8Xyu5lyd8EgZs2DZ1jQ4jH1bli8CpqqzFLuzmpkq+OYyLYaJZdWteQbh0TVTDUlnXylKJjAFZji9ImpTLBtRTHIpLxBSwQWs6nlJaYKWZ7BQCtF528XF7Y6/ivWMopC80Kyqx1BjZ6mtpEKYvHUSnyTPI95bKVKvFkSEu8k070klcFvszfeVwrwhKOmePydDVv6vI0aCe6PifkPRUidEXMo4itlvJkuafMCqtVRtIUi1a3h2PLohh+WcoDSvxaRXIiO9/ACuIrcWPFaFBVO/i4fLap1EfG0fJizgLT5Q6kuBDMiEGtyv2oro2RIMPiRajeQwzxljKTXo0VG6HKpGWRImWUzRJFxzLDtDKNJRvS3D821hieXMOuc7WAEkIYgODSTxZM5ZqkkLjPNbS4zpyVjIPAnctisCabEW9DuZ9CJlMWecEbuR6ZmJT5Zj4J2yrGXE6qbEbkhaW4tJ8NMom7rLwdYmvXxoRSiyHOtyKv87HRu4LJ8hgA5G3ZHEOGsC5z/REAYoG1Z5ABoUvbArUhTgX+zJ6GTN6fHJUYOAwdTmzM66pNSQFB01xPCjmYRVew2pQRGHBSwFw2pnK5JquqrKpP0VCbahKeuIyjQCsB8pTMBR6ei6EDII+8AQHkZMhImMr/wvSZolvDa79jyllXGpVKiHIY+stxkjlrgobWC+u8tE/6yX/MdyCWxPLviQeKx7M2xpIiXZ2MRf8SEMOIxljLOTEMNI8pVgYRG4n8n41L+cwPxQRid+YywHOb6y/5E81lMbLq/vn1/S3N3hguy9xng2pVTq6ybhP3i+fS9hwIqgvu6yoLHWMG4/V119PKEFLqKYxZyuAbgbX1lq/24kn5L/1/Wheu9O3T/XnRUPsuRtx3yPu9jcPve/3v0/dKP2jDUoFgim+bAVOy+DDtoFXGu/aCvZ3x8/MbtDZgChZHN+LjtMPb9oKQjciN9I3HaW7xeX/Cx2mHm2aCjwYn3+Du0sPZiJ8cHvBh3KF3XuRGnMp4nFrkrPDF/oTTTHDH89zgs90ZHwaCYN52IwbvXpQb0Sqja/xKbmSeLd4cBhJGBwSC1Ng1WcWlyI3M3uLN4ULHpgZ94/HNxyPazqNzAR8e9tj3U4HrNBLX+PZwwTA7GJ0xzE4MYV88s8PsKvF0iBQIi5Rbk3AeSG7Ez+SZ9LNbyYrsuxmjtyRrojMaGzBMDfp2xnlo0be+QKY8zmND8iTB4HTuSG7k0sI1AY2NOJ07pKiwP46YZgvnYonvJO9ZKAuolGhh2Pdz8aRZMWiGSwtbBNJ3HUmwvP8l8c8fPz/De4tpbCgmMSm0bVgJt19OBMtzbSAIVvFSKpUxXJpFbuTioGwiuZGkoU3ENLRwbUCYLWyzlhvJSWN8aAGvoQ/k8WYv33RuoGxCuljYg6f8Je6Q+57LgrHZzQjBYD5buJ7KCcFg/tUOuUuwe4/gNS02QYaDSHQELV4I8gQpMeSQAV88OiLdYTJJgpQFq+oi/H0LtQsSF6gslZ+9RR4NyXeMRqQ9TBuRCrSJYVIsfq67AH9qofuA+aED2ijyKH62IjcSRwfxWjBhzKlFbhIUy314gxgUxZrtgxhecbS0sAEozo69QkWmQxVSF5EOyeWzS7TjzjIk37S0ePrMLwbHWdP1sghUyAMt7tK+8lTxQtxlEZTXZ4N865G+7ZAOcYmpy0D6tqGYLAXaZZ+pT9L2kWBkeR+RRW4kL16Pr1rkNyQ3oiaL7BVgMxmEF03nFPUt9xHqrkXuIzA6itOrDGVcNHIEcpOhBgc0GZgVcp+gRrfENXIM2ahJRmKXSDCeY+MU6D7YMgZNhhostFfIu0SLQpuhL4XAbJegLxapzUs8WygL6hLr6X7eIPYZsUsk/TGRoRKOCbpIVyRH19qTgr+l4+ZCn929QziUcVaAvZQFdCz3oYFIg6gSJ2dGakO2lMdMRVojKLEtsskwE0lDOJENofFJDUiqpMwhM1b2CIfvKoiMR9YkX8JyI0hUBssxsBSJPya0/8wiWyA2GTpSjKNK5AFKrsiNXEhuhPuqPUjCQpPciB0UzAiEHZ1Tkf5iC/EksdxJakmeBABSS8fMRO3yB4j0CMtvaJbsmCHxgLGDeFp0kRNJbSa5la3cyETnY1vkRnaAvZD8iPY0Fu4ETG/xayczALGne2DmxSBTqZIb0UWawxb7r+xP2AEix8LSHdnQfbUX+j2J3AgAFSCbJixdwh6kbIDmISP0SsbQjDT2dTyginQMKNIrLUTOJatyDzMdZ/kZlSEyM9wfllBheRSWC0muui9NGaORpD0AQIeM5FRpX0bsFiOUDXQ9ZyqXZUEUbYrk4rHVIcs4ZwMkp0jmJpPUSB1DuoqFzDx2JCFSx5ZyvCEbYiytInGqG68iy69sE3sLkYtnVFH+1fjbJS9KfrouV0ZnXoxm3lgu5dS2pkiApLqcMs5FKkWkQKqiobDIjTxj6KpM16qUxVjPunzf9BlY+v2sIbu66IVzm7KveiKvxYduNi9+KCnj9zGWv7PpD9w9/oOf/je4S52wg/psELPGmB26zzzGQpPms8VeTzinFj4b7PQk5xoVcRd32OkJj7GHUQlORXTKw2eDh9SjU+SV9NlAI8Fni057kTlxKiJCo1Mz7uMeR0MxmWMilllTPaUitDDZ7n4yC0NthIZTUfJy+7hvKesn7nNTfk1OBYzZEeuriohQi7RKNtjpGVNy8Nmg1R4GGWO28MmKRMvOTDhFislj8KMr7LFSf2FabbXHVN5WTkWRePHlCUpstNSWKVP8nikMs76SXzHlnjkVcYkNnI7wycDpKMc4npPj3DSysO0Caw8y99mUJ+clNjL+zAbMDL8ApJzbnw7QyHgI3Upug/M4tTDBtkW2hds0JYtWB+kH5+Ny6rY6FaU8boMw24LiP0PSInWTskLIBr2e5VgdD8nnWVaF43eNWuIUmUG4NzOmZHEOLVoTVveZY2OZUZjbRPIhRu6/01HkbACsmIZjVgjJSMwhIQDofi5jEhGSkf88V7gspxa2WpL80Wh1xJQM2tJfn/WqTk6cbxlrilvkWNm6z7VkELeT+8J1M0NzEAbnhTW5ZkWWmMzCvDzGBWa3ylf6xQzAYVNXLecCENvyJTjsrJd4Sk7MElxfU0uD8NzjeFiuR643EXM0SIVBmROz77IuL7ez0UFieWv5pDo+tP7MY8L5t9I4VkWJsa3ZgbdswdzPWpaI87wkZcReMWZwZmQK549VSAHPP6cjaRQX9thYmKf5PtUyQHXiced7sO0Dx0TWIQUAlhi4zfOmjqWs58M1CZ4VG22pZzsXOP1/7L1dqHVNth70jKqac6619n5/+uuv06dPTkJAQ9QgUSMqeOHfjRFyG2/URMTc6JW5SPBeSBCFQFQM5ELRJIoJRMQbCah4oZAchKAhaPTEpE9y+nR//f7svdaac1bV8GKMUTXm3Gu/3/u93X36fE0XbNZec9Ws/zVXPfWM8QxGV2Xel2XJvtv7cEC2Z7Nx29/n2+DD91j//JzY+wPTk/bLvUKi+VfLY+O2V+L148FMiLaeIM80ey8FMNKXMEIfSmRj4sbIiKDo+tF2yEzdApK65Uwj0rV//r0PbeT7vh+rWV0p7H2xul3yisKrG7Nbyfs0+ve3GDRfxibUELZrpv3vx8SXfbO+XRv3hT5TRjvQ2zT0xnty/1s9+zpu3ePz/yjpORD0oTYAnRl/tg28fb3V9y9tEz9zfd+WLyvnK9T9sWX/iOUCAP78V8z/8/SV09caWH4vv8B/9L1/rgm7mDiMCZqMobN79v5ahrZh8Ru+WcUMTMBiiKVtkh7XUTeefVNgoh2VZeNq5SVjNGORDWxJm42D/RBZvMJjWtvGyTYkgXrsQh/SwEQu9qa4gPxYzyqYYHEFjyqk4WNKFiZMbnNkIg7F5QH6D8UeZC27WIJ2n21E/MbDhEjMb7UztgFDrFhVsMEr8iaNkyZmuUVFF1Q8oFITeLDrPsSCicT5jY+FVPCbEH+fmYfeTQuIGI/zKDFG3Q+2Kfa2zUMz/eyAyFqRYkHWkDSj+sX6zVqkbYxPv0myjS/p2FkdtVITekihbmJQMrDZZAFoSrkx1GbiSySiE8aKe2VgH9/PTDK72e/2vbGjwZmBGmMcQm1+tVnZaWvPrfubMq+bQx/z0Mr2IhIm6OD9gAG0/vi+GJst9aP54AbHjHaVZD92XfTCRCvMZLiZ11rdrP6ALPUBwDIPrf0UuKkHi+mrmGEzi/9o86OzcXZzGVR0YxgKShYBHBupmJx/nbLeTUkYaOx8KWEDTOx+73/rfWnNVNvGJxBvxt6+FzZ21kfSsdvnM5P85iOo+a3cJrrhNrQtVEMFKBiQ6Js/UjXNWrZ+tt602MYmqdhIUz0238i8BSYyphVlDY0Rr6v4iDZTVnKm2bZezOSvIwcxP0bf5IoycPc/tP6S+bmlutkcmc9pN4/mmxvqZpatZVKsTWGZnQiLmTFzDuIDy9Sd0iwRN4sHUV8OrR9NDZlJFI4jtz49UVQOvRwbj+YXaYyDPTts/dMun/qstnEtfe6bP6P6ZDaTY6au5gt0P8IcJJ9TrG2Kv5+avPqu3wFbW3VNNyEYaztc33cga6Pi+1xibNYaVQKn2uqg2hV9nxNQMbXdBk4YjR3bmO0Ct8Vg/P9tzbu221z4NUty3dq3MYW123TMbEj0UbltT+s3miXNE9NOA347ZLIx/7Ws5OrQNn6Q+Xpa7AdQ9I127e/7kmR1MT1978dp044vq+NWO2/Ue7MOX7lv2I0277PebM+HxvpWu79K/q9B+rmP5W/SZGzL59MDlprwbj0ghYJfGIV9+mI5NZXL+zDjnEd8Nj2icsDDOjVlzGse8K3jAx7WCS/HK3INoiaZR0Sq7bNTWDYntY+rmER+8/CIaxkwkZjdfnZ4xHtV43w9XZ6oihYOuBsWJKp4M4s63RQzMgvYXJmwlIhX07VtcpcqIkQnjY1oaS4iQDSvA16OszA0quj39iqqi2MseJgn3I0LBhLlQgOAL6YZc04YhxVLiTiq4mILw1LiRk3yNKwtnIv4ilZc1tSUBJOGaGESAaRcA15My+ae45BVXGnFZR1wGEQk6X4S5cl7zX9dBhyaol/FNBRcF1FhvJsWbWN/0rACSa9YeRhyM+0VX9HaFAKZRYAphYofvBdF3fvj3JQGowLlSQPZ2+m5qfAZe+FD0ZiiIQN4f54Q1JTVQPa8JgwGmNXHMgbJz0x4OE8A93h5RKI2uKgp7/UyYpwymMWk2oCShTUBRPmvlIDrPGDUcnKO+OHDPdJQME4ZOccGuIh62JqcQ/cdrT0Qur1flyDAY+lAZxgzllkYwGEoOD8ekIbcfPW60FDAsgSkJMJNZl5tAFSAEAHcy45O/Gm+js1/1ESVgrZ1VSGlEGrbUJ8fJoRUdZxFZGit4k+WRjH1JAJqCa2vMXYF5LxI+2MSU+W8drC5ZmpgNqvI0/nNCDAw3K390EHHq7E4NeByGdBEaLTftSjAM59KAtbLgHTIuL6bEA/S3qYc+n6C+UgiMPg8IB5KA2jrPAAsZsZZffjICVjldyfQKTfRHS6pbYjXJYCOGdD5CEMVs+6holzl1RIRN789ShXrdQACUEpSk2lqFI8BlXqNMs9j7cHr21z0DTlFRr2Kvx8GBV+RgUddV2NFOSf5TEFY29jrJiS/GcAj941uJtl0H4q0DWib4vJ2AB+LAKaVwIeK+lZNfy2fCo+YH6OE3sB2472qMJSJs2iYD9tQN59EDU1BJtRlG7HEzSxZJtOB0ij1EAG02I5TAcNC0lcmESbS8BEUJTwGTxXhB4OYzqqZbvN/KxAzwsQIs5jL0iobfQtPAQLKQUyFw0qoo4AEMxvkhGY+yKkLnpjJMQ8yr2aiW6ceeoKD1EOspsnNPxQ9rAih50+MsETZ2yruDwWgVesfIObWAxDWKP3RfsQrIZ8+fYca1m7y6c0woWahpECLVnTfX9P6mSWUipj+yoSbaWk00+zI3RTWCclYCI+2rw9AvETUUcctMuJCarbcTaktzIe0XT5v4jeEbtY97O5TIR8y807rE+FJuBI14mkmn0HzWf1VTZbDqmOk35dmLmrrxosV0Rb8NZPQZiJLTZDGi+fIPVtAb+atvt1PQJb11Zt3ujzts13aALB9mdzb7NuzOaneLUV/3uBNalvy9+mrCBP1/u0xXyPPQx/Hm2nfppttJDWZ9eU/U+D+YOAjAOItQHvjrOBp+V+jJPuBn5vC/qZMK0f8+vUe98OMaxnwbjlIyIO44pRWfDGfkELFJYtM/pvrEa8PF+Qa8G4+YEq5SdlXEN5cjzgNC+aScM2pgYQxFry5HlsoBAMJ765Ta8vDKkzX4zKgnghvLgIY76cZl3XYmLsxk9QdC744H0EQoZ5SCVll3XOODdx5CXYf7NyuF5cfAK5rwpQK3r4/YpwypmHFw/mAJUekWDCvA7KpAt4RZgMtCuRMtdbk071JyjIqC2oqtrFinhMWBSueqUhJGKN1FOBrbJAxkesQm+qrxd28LkMDdtfLKKaFlxFpKEipyDX1v1uWtFGGNRbIAqCDGGWSfvZYmoxlHlqMycNhRSQW30agsW6mdFpLQJ7WTR3LVaX0laGyeJtEAkZMMTJfEigy4lgam5PXiDyqj6VKtIdYG6uVLwnIhHKnLFeQMTbFz3pNnbVz/pCsgAlMKAdCLRFljq3csgbgYcA6yvqqS+yMSmBkY1lKQI4VFICaLUZiZwN5CciJm7IlAsuYLwGohHoI4HNCPVLz4URgFGVBeAmoUwDPEUXVLk1JlAKrkAman2GZAvgawUdCPSeUMbR4lHWJ3Td0ESGTkroYD58jSmLUScGA+oVSDliPoYEtXkOLk1hV9VD8/dRUdSpyQr4GVIsfmWXTbH6BdWCE97IuVh93cA1yvzErlUCzjpU/uTcxFecHSdeADCC8TwLEXGy48Bhlsxig4CQIC28b8Fn8W0uFqmrq5lLbld5G0U1R/0wylcoKxHNQuS/ZyNepgi4BPAYFL/0HkUnVJCvAQ5B6k4CcetS+Bmunruk5IKxAOYlPpLWNScAMJ1VmHBjhKiCvHgkW6y+epT+1EMKVUEdq4O6Jj+W7gDJB+lAlPwHITnDEQFA8k4z3QggzITOQHlSoRsFbOpvDm4Eg9Ycs5ucmvpNA95ULq3z/Nn1VIFFT90G0PtREDYSB1GczdgBmm+B4RbvGQfxHy4HV70180ORzEn/DEjC8J3AwUIjmUxd0PfNAiFdZz/Gq61D9zgT8BcQrISxAOQhINHBVFcxxAHiQ+aqjADkBkgKUzK9SfDSpgRPKWs5EoBXNx7JOsuY5CHACiz9gOt/wsVzRPo8LkA/qVzh0/7d0wdOd91dIcRa/T0ABlIIHqlJf87FcOtBqPrpXmQ/zKUWgDizVP7SmHvvSgxlOtAGWNYq/aDlAx5AQZ6mTYxeMoSL3MkkddejAkkPvQx3dfdx9Clve53wsrS+QskFbv2DKACf5LM7i7wr0+5k6EK0JTYuuRjQQEhT8UhXfTQPHkhHqVyhj64GLAR6O1JnVKtcbAGvgTPwTaxSfwg2go/49kHL7EtoAIQdw7ZBFgL2W44HmVwGWltfKcz6WnwIs7dqTtGvTTday5eOngHqX2vjvBJOeBaI32iA33K7jOVb35+mnm77WwPLx4YC/9r/+/SgTi+O/O/2sg/5g26mnOrb/PXVsj1f5cQXJD9LfO3bH96BiBGEmXCPw1++/Kc7p+oMOfVCYuMH/cy+bCRNu+FsnqZsYeDe5U11b/AV4N4rgQnqUB+GiJ6rQh22swMP0Qh3YGWElXHUT2RL3H/ZQgPcHqYNWOTSfzvKgPg/AMAPrIPWEGRiKPLjfHO9BmZqz/nnUh1QGrvpj7R8Jl1HymYVsCcCoP0BRNypRH2xZH2LnsQsEAMCcpIw5AcMCZBV6uAyS76L5DwuQjydMs5SfI3C4SJnr/RHDsq0vMJDMylfrKgcZ0+Qetgc9NU0VWCfRC3n1hbRvfjViyMCU+6bA1gR0Cu/mft3W26jzO6koArj/uNYRbRN3XGTTc1AhCUB/vLX8eJG85Ti0HwxOwOHaNx/5NMiPsm34Ut/cgYFymGSOVqBO8iseViA9MuoYkU+DzKs7JWZjQtyJcMh9rVsKbsNnfaoDnADEgPTIyKeoQeMLAAAgAElEQVTUrpnwB7GsvXIY2gbHTsrt+xFWNPYBkPLitb/WUfLVuN24hdx/aK296cwoI6EOQ2s7VSCsjHyMaCfvZXvibj+mcWFtQ+obLW1zsPVB/f/hvTANy8up/TiGBah6v22kwiKblnJwIQ+0/7axkg0wY72PGB4Y+Tj0IOKQueRom1JCXCWPrfs46+HGMbZ+1NQ3m+N7xnIvzFScDWTIxjVdgeU+AUHGqkwR6cIoEyHOMqb+9JlyBzNxZhHKWGXc4sJg2zwrOIqL1JcPCSFzmwcmQsjcAYWWF7IcMBgAifpdqCPpmiAn8oFWF1XpZ54IdQjyXNXneD6FttYsr4y3XI+z/D88MvJBASER0tW+J6xrl2RcG7gipKsIYHRgKWNHqt7JQTf5K1Cj5PcP2WJlVnnixIVb/Z55iQv3Z0QgpLkiT8Im1CRjKc8XKSMfCeP70oDNxuywcAMkca4CAhYGmNuGlQMhH+TzuMi4mKhKA7OFdR0rmExAXKo8G0bZsNt6XI+ybsGylq2sMqqAi14rI0meAMnDAhTTtbrvgIxzXPtaD5mRDwHpWlEGav1Il4rlxQ0Vlo9McZb59M8IUtCTp6BrmBCXiuoPBIiQLlWemYkQVm5AqEbIurHvia6xBv65f38aCxeAdK6oE7XPw8IqykNtjQr4I30eiZBOWHu+sDKIGWUM/RnD6N/FrOs2yhg3YRhto/UFkDVgY2SA2OrnBISZ5SAI9jzk/r0ndPYf2IDEBvRYnycq8rMtR8b4FsjYAzHpI7d6qPKT1z1jZvN6K/nvkfTDt4/bOvigOWsrDO158MRcV8trbTXARs9ch42FXNsIG7nrT16deM9t8LtdB/t0Czju6/nS5A4CNsrUuPH+a5i8a93PWvpaA8vXLx7x+/75v4LKASsH5BqbcISIqnRxFABYamy+kF5wwUQnLIi798sEIMIVWpaJjgSqTaTjlJb2v/lvLi1/91v0rKXVvZa48Qk0MQlrU/M1a+IqdSNiYNct0LvdC2ATbN0LT3hxCBO38Nd66AzeiE0UFmGP4vrj+2cpEG/8DlvfIM8hu8eCoFuoFtI6vHqu+ZZaf1nbeVJT1tviD7RpixcW8PNgjDAAzKvEfrx3/pwWezQZm2fmjbXXK+a1PUaptaPW0EPLuPE0v9Wspra+XzbGRdlimW9u8xuIkd34WMxQ+y22R7VtmbzwBwO45Nh8Ib2YBoAWcqayhiNh6hEO3DivzvfL7g+BReWexTz0UsTHblVfO+ljv4d03n3IFBPoyG78rF1WzuJ8Q5mp5YVrp40nAFxbWA+4PGg+nl4wYi+WAaD5qtr1rgzcTYjN/48IOGtcSTMrBtDiBFo9ck3yWezSnU1R201wlfioj2oJ4HclG/9FvebDBpkqcjv4dmuMAdQcENKunZrZfBet3NbH0MOY7B1xzB+SnZ9Sew+51v1IdZ5ceJLWUOsiO389Rg+LQtz8CClwC3zeO+LKYzTfxo04iPkR7vyKWxB0hsRzHKqw2al2YRDXv3aatU/7S+Y/6K8TGiO58f9jNNPglnwYD/+orXA7Wlee6/+mrshqCXBj3bmNa/u/AuaHJ58xOFa5XsS/r/nlsbbZ8pKBXu6hOaxtdvjnVI7bvYCMadHX6vKR9VnHoez6W6mZccoGWk2Nc+iAhQAqEfVH2PlQJQea/BiS1mPAKWyYJwAgtSCx9tlnTP2zPveETdgQ/32xHDkJ+GtjHVp5rShGB4x+k07oYwr3HnDzsp0a2q8TxnaTb10o2zYYM9jAnd7fuurbcwuotB8jfTb6qd/5C2/A2v754q/dBEQ7MLcpeNf3G+mDLOC+PR+BrZ6rYw9MbwLU59rg23Gj7Gfvf668D9T7lRnEr5D/k9nJ//kT7/t5+uj0tQaW5zLir7/9Bby5HFEq4X5aUJjwcJ2wrAn3xxlLjjiOKx7nEfeHGe8vYsPy4njFdRmwlohpWPF4mTCNufmyHcYVxyEj14Av3t7hcFyaX5ptHM1s9O3DocdFTAWXy4jjUfS3L9cB41i6KSGjiYfkHPHqxRlV/QlTKk28ZRoy3j4eJSA8A5OampoZKACAuJU9poyH8wHMwDgWLEvEN1894s3lgOt1wIu7K87Xe5QcME65AarHx4MIgVRCGkoT9DDwMWpMyaI/emZ+ar5mOQdMU8Y8pxZ2w8JymJDLch0QU22mpaUEpEF8v8ZDlrARxChrQBoL8ixhJI6nBZfHEdNxxbok1EKYjiumIeOLN3dNKMSerESMoPEuzSR30cDyYegbyXHKWNcoJnFzBArhs2+/AwB8/9dfIgwVwyh5AnHztbON5HgQux9pN1AzNYGNYcrIClIPxwXLmrAusqZKlv6tc0JSc9i2UVbzzumwYkgFj+pryQzUJWI4Lagl4nBc8P79QUxkU0HJEqePIjcRlXyV8RsPK5azMpZDxauXj3i8TFjOB4ShIthBQw0Sw4+BkBhV49pRZIQo723TmkYRkqHITVRmvSakqSDEiutjwnRacXmYEIYKIKLm0MpLY0a+DohjaUIpdY49YLf67xmwKdcJ6ZCRLxOG04rloia8LcC8tnsqbS5Y1+p0P8u6uWrMxsgIY2nhW8DUgseTmv+2APOVEA9CY5ZLAggIY8E6a1mp101DBS8Bx9fiE33+walthi1Ie9tYR8ZwXJEi4/p+ar+OTcTGArkzMNwtWN5MGF/PWB7GDQCZXl2Rs4wF54A0ZawPI8w/MZ4ywIT8kEAH2eXx0su+++yCxx8eNayHBLyvOh/HuxnnN0eZj6mAzwPC/YryMCAcs4yH35yN4tdaLxHhmJvoTTknud/WjwkfHTMosnxu30sdSwxV/o8MXgl0KFLW4wAEBmdCOMm81HNCOGXUa+q+lRaUXgHl3ednXM5jWwPxUOSw4t2oZgaQcSFgeDFjfSMhbez/4fUV6/tJfSoJ4W6VtWD+tXPqc0YM5IBwzIB+bxEY8ZSl/QbWzST7UMBrQHqxynDa4dIcxYxCH/XhLjczdzbfw0KIL9YGvGsOGI4r1vMoIj7XKKFrtE3xxYrybsDwjSu4BuQ5IqQqIkaBm0gRz1HGdI6IR4khPIziL11rQHlICC8yxkPG9WEEDRVpKAiBsVxTE1YqVzVTv0bQC3le1msCIiPp9yq/H0AauoYVyIdUUR4G0IsCXoJ8f86OXj3oGM4B9HJtMTdRCBgLwkF+D/M5IRwL6vsB9NmCeo2y1krAdD9j/uJ4a0vxcemYwY/qRzvWDqaitlXXMJ1ycxGwmJVkczlHmf9K8h2sJH7N9gzQwwITUgLQQyIZkKuE+GqRtaXzTMcsbgEGugnyvbDQUgcJ9YSxtnrNRxmzmGs3qygLfaRm5ZQD+FA0tqh+3yL3cEuVgLX7MDeBoyR5KMt1uvT4qGxgeXB12LPTYkoCLbSSWEiQmORbfOLYy6FC6pfKGyBl/TLfXbZx0XuaqataU7GZ4VqqkHBKLpblhn1UYNwsfwxAkwL+TFuAbbFH94DPl4d+OOLBrmdfrV4q1Ezy2Xx0GR3d6+9Csz7Y1Wn9sbo5bN8/B4zbocOtz7G99hyu9bc+MyTSb3LXb2b6+iQ54/kad+BL0tcaWL5MV/wz3/q/8MP1tLl+qeKbZ2EqLGSCyckbq2kpEOMxjzjGtYWGmEJubM/7V1NTnLX8PhzB9fXQFGSN+RxN4t8tnhZygWoLH+BDCXgF1gDGci8PYGNIpQxlcqgic8Qhru3e88tRyy/ts3wXWpiA+jK00AFW1vVlagyiie14ZjWF2vrmP7N7PGu5ZwEbswlq4T+MkbUwFJFEidfPhammDqFgfpmehDOIoeL16XJT1t+HOyDiFjbBMzaD9tPaWJhwGlYEiLCQiRIZg+fHA+hhRHyYB0tDLE21dUoiSrQPp2As7bpT+BWlYdkYvTjMbYVa3FNTlX1xvG7WYVNcNVZRmd5IjHwvYW9iEF/hw5BR9JqNi42DZ0J9mfv33vcXgLCv+n45RVHDPcZNmAETP4qhYr3rqsCBsFH2NTGmVva9KgXrq+Wttb9nPQjxZTEThlRQjoSs3yNrYyBgGvv3G+iMLd93ZrmNzUnm1yv+mpIyo4doaSJP33rsqrAA6gva9MkOj4Yht/rtB9Uz20MsWEaJXTuOedOmFCqqCjNZG9apl2dMcTmEjTqvMXdjysA3LqI4rAqzrPHlYqg4vb5om4FyXMVf+rDKIZPGRu11afl31A6hQmDUw7pR7m3qqybi0wSqOkPdxkNZUhGSAspgvuUd1JUpS/lTH5s9mw4A02FtdTU15Fe8GRdpFwOvr13M6vVVDgxfzJ2Fsvt1bCis4MnRBewYagWSFBh0tz5RoSUSs8DgGW4G6MCA+vAxlNm2sy01I2zX1cY/ROm7gTbZiMtBE0+iPxgU4BExogpHRT1cIsjhE+sBVTC/YBJxKvNZD6cMChDBqqErD9cCkJvCMCoteShtA2jxZJsC9aG0scJQ9ZCNWj7Sazj0uW/M86HKxjaygIikPtpZd+6q6otRVIMRICCOGMt1EDD1iYkrAVPtbF37wIE0O3gyAOMPjqCfm6KwgiA7qGpl8e7afgce2B3ySN/M13xD57jnKy8OpNp3xESsCOLba8kOsrzolLWf0QEmINfbV0DzGSCxfgLN39vKaAqx6jsrYIV6Hdb13PtgCKMxlRVo9lEGYvbKs+zK0ClqvuyODaUs80SFsUdfpO5NT8r1eYprQ7+6zUvY9G2fCLsyN6z47kNXTjTrgbzru5Vq7arbIlqO59p0o8++D5u2fqBf/f6vBqg+mZn81Pt+QxL93BT2N2vKHPD99R5LTQ2cZDdZj3na5H+v7/fx4uz/Hy5HLSM24OljsgHYXLdyDGhktzk/5/Fmm32MMct3K6aUB0cGxsKNb8oldxNcK7+y1P1uPjSQ581DHzFuNjez7gF87Lr9Pfu4Zfv4aHH3uV0Hbh9mnbGta1/v3vx1H7PM2mR59p/Zex/qpcVWW8bNfQDwxZqaWauZwhoI2cdT2/Rx1zagh5p4nHs9HjDs++rX4Rm3D+Oua9qc5u1P/D7mGWphIJ6LYXYrPe2f/wwbc1BA3l/msbHWzcxwV97FlXXLnNV/dpm34VQszWsvz4MmG+fzddyERbE2b8uXVxOW2vfdt+/Kw7NjAQDX69DMV31dz8aE2/epHUtr/1iYiPk6gELd/CBfdN3ciiVH+l0kd22fLlXnCGKF4Ntg4Sl8m9Zl55Tn+7EZsz7n+7m3cVi86d2TArBZ0Cu2axDYzouAhef7uZyH3pcP9A9MYuYdawutQYGxOvPSZg7r2xhujMX+y+lP/PfXgU0s1o1pp5ZV9utF29wOZCyvmTnuHxLUP6tF2S3/+b5+Nyab/vhsyox4MNDYJ8tr7Wjmqfq5ey8YSIWrdGw5qjKprh8OEhqDXFuIAItWT26sWugNbT8FBjnFY5Ca5iY/SV8x+VAXthatuNDHrTE9/oHu1/5uXJvPux9nt3ZuLgNj6n3bbs2vreFK6CFHnpbn5731ab+O9sDGPxI03xOWy742vLvuyiHGVhXWpQ7+0JEX9/v2/ezluk7u1vVNwNIGn56044PA61af/PvnPt+lL/lJeP7+j90EfGS9X1bf7lH00fd99OcfqPMrpx9hXH6ePi39xIAlEf02AP85gG9DpvZPM/OfJKLPAPxXAH4HgF8B8AeY+YdERAD+JIB/CcAZwB9i5l/+UB2FQwvrMdfUmD9jCy3MhwV7X2rasG9AB0yedZN4j51pOqZV4lE61g1AK2eKWYPIi8/kFHOLQenZMUu2UUou9qQPkM4QkDG4eJHeJxToIMl8GY3ls2uRGJc1YYhVY0lKiA1ro/VhTD3W5y0/s6JxHi0ZC2WbGos/GdVPzgMw81EcorA7BtZ8zMpSaQPe7HplYcKMJTK2KZcIhjA2nmUzf9D2G6NtTjtgbfNLeppvPpjXRYDuNAgz6GNDevaJgWYW3MNk9FiUxtYwSz5jP8w/r5Sw8YWT+9FYFjN9jrEzIyFwU50tOTQ1WQ/smv8co/kBdl9CAV45a4gYDZ/hgc/eV9WPofWRmVCLACeuLii5mo6KX1yPY9hiMrpfIfPhrH7uzJeOxK8QcPsHV14tcetH6MBTZeobR21zLdTiIFqZzWcvbud06/enbTETKWMbKpqp34Y9Uf/CuurcjX1sJcakjadeM7O0DVPl69drJYCSmCgGFd+wz2oOnYhQgNXiGgLSdkDjPJpNpSt7ieCxtI0/+w2qmiXKGIjyMKv5s/cZ7W1H90/c+ANyZzRs0woog0FPY90ZuNiAEm2f97MzBsXiCQYVzLi1gViDABp7BPt72dqpr5mamimKmtpZPETontPHVAS2jJUl72/GCsLUnHBzj4K9ZvKn+Z+Y8bkxNZDFBpBaJm2b9kvM4ciNGTRER9iYAfYvgO4Qgyj1Nt9IYOMXZ4q9TezJXH8ZKhwiZXr1WtKDSw7UxqOV1cCUqZGqKZ8DZSZm0wALQ0VltP+2Hiv1uqK2MWm+YGXI9Zo8OvpqycoFd/VWY6NqJGeeuMUpdi/sUeX8ChkOPDkQ4vH9kxiSBBEHs76Qlb8DjTo3rf5AW4Bo9QSdQ1vb1g870yJbi/15TgzUyAie1YRbs1aOmr368Clt7LCt4xYY8+NspqwebPYm3QaNIhjTXz8GbGyAtR+HG/kawLK5sfuwu/Zlad+u3XPtOUC3WU+36vNj+kzfnwWIt+751PI+lL4k/+a78Cnl/yZKDDwhYn6W0k+SscwA/ggz/zIRvQDwV4nofwDwhwD8ZWb+40T0xwD8MQB/FMDvA/A79e+fBPCf6OuzaakRf/Pd5y1EyKMyUcdhxRQzvricxJwsJxyHFe+vE06T+D4+XCekWBADY80RLw4z3l8nTEPGWgKWnFqsvc/uz3h3nZBCbaDIwAgz4dXdBedlkLAVy4D744zHq7CCp8Pc4h5aqlXM9EYNCWK+kqWItD3X0PwJDRisa0RU/0GgA4B1Fb/PkiOmw+ryMubzIP6CQ8F8GTBM4i+5LEnDOwDTYWmhQywYuwGkltexQWnIzU9S4glW5CUiDlU28rF/+0MsqCU2Hx0zp4qxtnAecq/kS4P4W46T5M/XhOG0IF8HhFFBsfpTpVNGyQEh8kY4hBWY2QY1HsRPqBpIIPWjUzO1NIo53fyDI8DA8noRn8A1aOBy9c/kDgDrRb42NMrOgcysiQCeY5egtVALGq+PEne/IXtlD1zkHloJ66nL0FJSn6kA0BKwHov8WKsvGjQotvny0EH92tYAmElbJsT3EfnAcv9KjSFAwDaIeYAKaFA/ndcfEFoDsgYcp0KoAeJntKrQxFhBl4hyLN0kx8ovBFoJZaygNaBYnD/ziwto99jGhIcqoTQOEvKijLqLsLzaNlLTq+aLAyCcA+rIYDN70zbTSihHtQfSftom1YcbITUbq2r2Rhq7Dyyb1arhPkjDjaR3EahAfl36hmkJKBYHsaKFvAAT6rH2H1MF1jX1OHLhElBeFKR3EeVUO5MDID0KYOIg4xtWQj3V1nYLeVGOFWFWQQ8HbsZ3AeuLKKFBZkJ0vlXxQlhfyDjHlVAnCbNRDhVxDqqmbR2Uui3cRJo1dqHeFxZq7TS13jjL5r4czOfJKUhmCzcCVZHUskcDTBq+goAyihp3Hbj5BFGRTbWBk+FdQDlwUx4WNWRCvqs9JqKKn6QzYb2vCJlkDO4Zw4PGPFQwEK9aj/k2qrq3qXlbmwG0OJZhlTAgFoaixy0EagLShTab6jqIYqdtZOOV2ma6AeKAFg5ErkvbygFtvIL65NUo45RPjPGd1FXHXr6MG1ThmTXcCFpYkLCiKTuXg9RjoTxMQZ2KqF0HVRAtOt51EJVhQMJMUFFlXgD5RC1MhVehriO1MBuhaHgKA6lZ2lRGIJ2hoUao3W8hO3q4EUK6aH/Vdy6dgeUlPjlJuBH9jq4d4FAB8hFNOTvOfc1zlLFOF6hqvYwvbD1EUQQHoSn2wualgXpsQJSEG2FpC/c6a8IGhNq6ZHLhRlYbO+zCjeBLwo10lWdTY62DqNGC0FVhr9z6HrIoHXOipqhr42UKpnGVw6Ga6GbokFC490VVdamwfhexibW5UT5VYGTK6zfjWKrPqqlR95AkvQwOpuLsFsIeBHMHdx74hsIN/D+J13kLOHKfc3+Y0pntrYKt5TfVWlNm9sqwt1Rhbyqz7kD0BjTfyLcB1DfShg2/cf1m8uOyf/2S9HUGmz9LifhjZH9/HBUR/SUAf0r//llm/rtE9B0A/yMz/y4i+k/1/z+n+f+G5XuuzBe/6xf4H/uP/xVcc2qqp6UGrCUgF/H1MnVPY8LmLKIt5iPV/N7KLgajMmSlBqwqQiNsEjVGKkYxkDXBH8DYpdiCzBsgtLRRDa0SUB5wfif6zYixYl1TYznMV2lv7mXA0wSB7Fop1AV/CjVhne6jJPfnNTYzOwrc4h42s7pQ4Z5PErzdmZeKf4/GYdyZmzTfQWMIyQSMHGsVugAPF2piMRQEmBYdSx/AngJru7tKZWOQHGMl7bWnMfpmX5kXAE0UIx1WEKHFi/Tsi+W1zX9QM6pWtnvwNVaHuIHsWqiZ7Vm5TdHSH8NZ2aT+QTbExkYxRFzHiTt4/xm7Jr493MQ5ZD7F76kJ6Rio0vY/Ucg09s+/B5qpYFMGBRqb1Riu5l/ET8wHpd87dmuv7gjXNgPkWV/NX4dpy4jF3pdmDteEYbQeBaQUuPs6MTpw9m3xjJpXtbT6rG5GA80YVT30Gnt/ImvcHdc/M8NbqffX1qc3s0sshwMK3De/zqOCSGOlnEDHZjyKK8/fPxVgjv1eEwSx9pkvVuAu4NHKou2PvB8bi5UZdvltrK3MNtbYfuY3EvtDDgigYz24aeaYFd2csm2+9P1YZVzskRUlDxmTqXkByCHG0hlOyiTX3FrxBxcA2mGBbLK4iW0A6IcjJhri+6qHINIf3m4uK4kqqg2bsY9wc2RtYTRmkqNTYLUNMlxda5BDIO5tbmySth1mJqoMp8wX2hhbnFHfJ2NYTRilf2e4s7U6Hkxoa5NWN1a1C66Y+Eoz27Sx494nYR37prsxbm7sDWxWC+VljHCSA49PTS0EBzuhG6CNgR1qeJBm34E2Z8oCdyaONp+1ufeb+sb+y3eKWA4CSJV+29qrtPlZkfG1tncz2D2IobLbv9szwZh3y2tt9s1xeQzkeoaeqrzfh7vYz6tf3xvA4sfDDnH8s9PKYTdefvw8Smp193GUzK6c/fLwnzGepGeKbu2j7ZbpNru4//+rpFttv9XOW2b5X1bWV23Lvs6Puf9HrOs5JvdW+j//xL/zV5n5H/+0mn486Tu/+xv8B//cv/BjL/dP/J6/8FPvG/Ab5GNJRL8DwD8K4H8D8G0HFv8exFQWAH4rgL/tbvs7eu1ZYDmFjG+f3uMXDu9wKQN+7fISKRR8Y7zg9XDG33j/bZzSgnfLAZ8fHvDdx9f4zukdMgf82vkF7oYFp7TgB9c7/Pb7H+JXH1/hG4czrnnAF9cT3l8nHMcVv+fb38V3H1/jmFYkqrjkAUMs+P75DpUJv+vz7+GH8wkBjLfzAb/0+Rt89+EVAOBbnz3i/TIJcNUVv9aAl+OMu2HG3/zic8RQcT8tWErEkiNyDZjnAZ+/esCo5qvvrgdMKeM4rBsK/d31gFxEVfY733iHyoT31wkvDjP+7g9e4XBc8NmLK77/9h4v766YUsbby0EUTwPjt/+WL/C4jIih4t3lgFfHK1KouOaEMRa8uRwaUGYmvHr1gPM8YlH11yEWPJwn3J1mzKsoxhqQPAwZl2XAZ3dnvL9OTVTmOK54f5nw8nTFm4cTXh0vuK4Jr45XvDkf8dndGY/LgLfvT/jWZ+/xxbsTTndXHIaMN+9OWK8J3/jsAefrhHHIYoqr4HNdRSnT2vDy5aWxyymJiMX5PGE6Ligl4PX9BWMs+Nt/63OAgc9+8S2uy4D5OmI8ZJRCuD/NyCq4U5jw+F7Mrw+nBbWKcu6qSrDzVZhhZmB9N4HGiuG4ouSIYVqxXAZMpxXzZcB0tzTxlFLkoGF9Nwm7+HoBFIAPY8blvSi5lvcDhlezKDQuAXGsjRk29dbjyyvWJSFfEsZ7oQfWOYF/7QA+FQyv5q5mCYAiI6pCpil6CqscwEXCUlAQgFnPojLKS5DAooER7zLKWZjkcL+C344ILxfURQ4yKKnqZCbwJSHcrVLOJMBvuJe5oMCiiMnURB7iXUZ5SIj3GeXdADoWqTNV5GsSBU4oi1wBDAyaVIX5hyNwqIh3Mh91jlLuHECvJMgmRRb1TgVuje2NFXROsrE9ZWWTVcmRIaBM1VB5DqCpIvz6KGzKL8zNFBXXCLrLHbzngPA2CcPzqvQfVNs8T6UpmsY3CfXzBeHXR5RXBTSUVm78wQAeZIPPiREeIuqr3A4/6DHJxvNlBp2jbNoNZAEY/86I5VsFmCroHBFmYWOpENJ7ks+IQdcAvisI7xLqXUF4jMK0OuaMrgFUAuqhIr6PwlReA8p9RXyIwgKHDlTCY0RYCPllQbiG1gcQEK4BdawCOkZGOAfERRhGKCOe3ohKb74vSG+3bC4tAm5YN9yH747ILxj5KCxoOgsDunyjIp41HNUoQGD63oD584L0EJEeCPPnBYfvDlheV5h55/iDoBtbAipQTsoy577RT49ysFBG2eTECyHfs4ubKWMR3wXUARjeGzCV/OXAjd0DSaxjUanszCtHIL23Qw6rl5DvZBzKgRs7W0b5bHnNOP5tiV1aJjSWUmK7CgtYJ0Z6CCgHYHgEwGpuOUg9y0tGegwYHoH1XoBbWAVoFWPrQmczyyQMIVg+pyysHRhYXgmDZsxmWKS89W7LrOVT73Oce1njW8lTY/8sqS5ZPsr/ywtgfC/vrczxHePy+acDy+FRygWEfQ8q2BKyXBcWXfLVQedcGcPxnbBtZVL2UtteEzA8AExyr1FhZikAACAASURBVIGqsPbYiVWZWwOGnIDpC2C9F2uROgLpURjfaqAW6LFASeaiHHq8WWMhqQL5SA2Ek9ZdE2ksWmEj01mYyBqFWRSmmlrc3DJpPY87xnKUdqUzI59I+8FtjUfVx6pDX/fGqMo4dEBZk9a5crMUMKa8xi1gb+zuwMpYc+ufgFNuYLemfhAR8hbYWtzYjQl1A8CdOfRsa9A4lsLY6i07MO9BZ7MeUADezY+3688rwlpfa+yMavAstz0i9JqfX8mwK1vbRuVpXM8n+bSfpHNpaQPu3MHAzeu7sfRl33p9Usf+EOBHBMG/UYlBP9OmsD9xxpKI7gH8TwD+PWb+i0T0hplfu89/yMzfIKL/DsAfZ+b/Ra//ZQB/lJn/yq68PwzgDwPA4dsvfu8/9Wf/zeY3uCoDOSijthSLY0nqZxgxKHs4O5aRmTCm0q5ZrMTiANKSOzC0lNX/cEwSloS0LlPOBNDVJt0i8sqGOXeW0RhJmxJjOk15z5jJjVmmqZuq7x2A5lu3LqmF38irmJ5KWdSeOGkojS318f2sDVVZ2ubvp/6CXDtzWUtEiKX5x/W5EobS++QRsPWbU1+7vX8emFByQExdZdLayIUQh9pMa/3Th+3Bbea4Lh6fNIqbxD6AHqJDAU08CIhorCILi+rH/ImPHKGxlI2FBDbx9prfnvqoNV81Y97sBywHAQcuxiBFZdiUlSI1zW3+aP54lNFj9KnPVWMNlyDlGqvkT3Jv+O/cfG8slBcxsfIqOsuW6rZ9hJ6n+cZpmXa/ZwTtq2aMX6rd9FfnceO/15hp7qffFrLBm/mya6fda9ftfkuenbQ1tLftsXYQmq+csEKuH561A4RVqgJ+NuycH2eCgKuB26tPBqAAdN+l1MtrfmzOfJap++eFOYiJL/X2NAYiC6izMWvsVIQwYfvY8qztj+jmycZe+rAHNgSF1DzPzTu5smwMlDVsJs7GohtTpu0y0OXZBxvuOKtcvwsDgEoNTDa2hNWceJTNashiYhtWMe2VgUEzn91sED0j7HwTWeedimu/3azj3hg5n0K/V9aLGzu/PjyriQ6+Wp9qv8c+C4u1eTvWfjNL1cZeb7flTAJmqKh57+g36WIa3sY/9FcVIe9zUBzbVnrZ7bqFTTDW0rGC3pQwZDMhls18KN7HEo3VDBY+Qtd4WAXwfmpq8wn97vhHkmNHScGO9Q9w14KbP83TxsmeX7zbTLvrgNRhQN4+3/hwuk285Wmgw234/Zje2vxvjGrcmvIs5sbEE7s1a6y4jgknVxb3/9s4ebDg1ueGmQ7ba18GYJ6Ez8D2nvadco/uPZP5Y/Ox3L/313h3/cY1M2v1pqyb9x8ov+Xb13OrL/v7b+Tz779S+ir5nxubj0i32vXLf+aP/NRZvV/43Z/xv/Znf/yM5b//j/w3P/W+AT9hxpKIBgB/AcB/ycx/US//GhF9x5nCfk+vfxfAb3O3/5Je2yRm/tMA/jQAvP4HfgvfDQsuWdQa74cFS41ivloDjsPamMLChLtxbWDzblqaqI6J20yDhIcAMaZhaQzVvNpnPewCM+FO/TXnNWGIIqgyBm6xMysL8CM1q93IzGuYi/vjDGZCLkHj/kkaYsVl6b6Zowtd4f0sxyR+lXToojzTIEJER42RmWvAUftba8Do6sklYBiqMm91Z+5LGIZ103Zh2IAQ1maeGqasoDRv1DkNqOYcEIc+BlZuKQHDsG6Eb4ahoBQBoxZv8jAuzXR41HiF6xo34jdWV1978n92pqD23B2OpamAlixiQKeXEmZgvg4IqSCMThDHNuY6LkFDF5j5L1cVOGFCnJZmThzTqiCcWj4zGw4uNmhrM4CooRxK7rt3ZkIYVnk9ybiR9rEdWhC3a0XXUtD/zWw13Uu/a+lj5+vYvkc3d3WHHbYu/BPbQDLpnMfTKrEuA2Bgum0gmikwJDYgoZvE2rwR+hoqJPHo9JWrtpXRRX+03DZX1tYTN79buSCHORSgYQnQwUpw99tmxq558ZudKSy7dtB9bT68tntpJs9ul2j+vbBg6VYX97UCAHRXwWsE3ZV+4GDTdNIyqqplEqvJrVTVDibWACRuBxFsn79YgVV8QvmwPUyiVCVsgfUzB/CxdHEYLxpjByME2UCeeGcKi74hcGbLbO11wiuwftj6qgQ+8tbMl9GBhpnC2uaeHCDTtVVeVYn9aGPXBIq6iIgBsGqHIoHFf3YNqC+rgGXubW/ttHZ7cGyAWse7HXTsRE82Bw7ejNvK9JvDW6bMjO19vJub/QY3MCgH5G84E2qfyI1bwLZ9rt0tRqB9F+wZYe22aSzUTYOdiWubI0I/IHgm3+bQpfUDbe7l8Mr1P1T3Ofq4mw+6lmlmwZ+c7PCArS+2JqDCRwaAZPw2zJe6R3hBJGJsDk88eNs8aj2o0/Fgx0y2g4X6/Ma/MV0OCLV22Lpw/XmigLtfi1aRXjff49ZPHYd23cBvaxi28+pNYdHHbQ/MnoA8NyY3QY5fS/ul78bjJqiyIgjtkK7dyzfy7K8FfnLfR4Gkfd/be3s+uN9VFtC4T/6R09chPS3zY9rxTNmfev+PMz3p59cg1ZvKbz8b6SepCksA/gyAv87M/6H76L8F8AcB/HF9/Uvu+r9NRH8eItrz9kP+lYCowr6bD6JSyoTLOnSlSmI8zBZeBE1x1DbUlzq0fKUOiKFizkN7zl3X1Ji8FGsDbT5cw7zK8Ik/pIb9qBJ77fGqgemVYdwyltTY0nfLoatLunx7X0gDQm1jr2nRuJuiPqlsbE0gAq6XUTfSjEsZEdRfcqmpsYch1uZDtyhrKAXKN3Rd0pZEMDBj86z9aeDzxpOWiJFdmXKPKBTkdRvGIK/m60lYrsIW5iU2sLHOErcrJG7AROrpY+vfkxOesZRntwHSDeH5rYSaCUMB57T5QaXdmPM19bLtR1XXSp5jm7P1vN14EQG5ig9nbgoN2Gzq89lUFlyDiVFKfLpxtYmx/tkt+rwqhTabz7KOW7Ef2+D6zeF+Dncb0OoXg/3vGcwgYLDVgV0bqxsv26Q49oTbJlLrDRpWwV4du8XuPfsfbm1/2W98bd3a5tnyuvXsUzsQ9mvM/ndlsLX9UX2iHbvIvi5rRkltg9uutba7schJQOFjbL6BLbOtB7tHmeDma3g2pRwGrgY+3f3vEmjgfi+j+1Jnks8sbwBwCZ0FI1eW5WkbN7dDa+DDbVQhefzGWz7brT/3ejNgN9wmNTwtpg3n2ySbXPtc+8oJ2/XJ2LC+9j+9j1vGzHw9rbn++WLPt8YQ9zpto+1vfuJD6Mb7YxhLi8fXliljo8a6YSz1M3obtt9H/10Oeqn2+w30NGZNmcDnfBw3zyDGFkjY+Yo+ezZKueSuOwXgDQtLvU1Srh7stXEO27VhbHsJneEibfvOAuCrJCph4xsqFWp/47Ye9vMGbBnF2v8XUNrH2ZeJXRn+x9cEiZ6wam5hNJBpbQrbuvdso1XU/QCp12eHU5aTzV9zv+Zpm0e/o6GIueYTVnQ3b5v+Am2d+L74/m0e4Lvf+1vXbjJyt74TvogboPRJurGsbIx8vR8Esn7Ob5W5b+ut68+lJ+PwTOYbZfnDio8Ccp/4FftKwPDTv8Y/Tz/B9JNkLP9pAP8qgL9GRP+7Xvt3IYDyvyaifwPA3wLwB/Sz/x4SauT/hoQb+de/rILKhLUGnOcRhamFoChVVEvF30+AXlYBnnURdjOp6at9fp2HJnpjISIMFJ7PE6KWBU4KNDSgNoBlHlpYhRAYyzI2M9ZlCQ1EAmjfxLyKomwasrJIoYFAQMreBKYmloCqDnhamAi7LyvQFbBMGEZRcDUz2FpDY5cMIK5z6mahBJSll2FmoJ6xzGpG2gEvhAGyU2Z3am3mpLXExhYxC/NCsaJmCbLNq/zScBG11rrI+zBUlEXYNy4aPiNVUATKEjYmpRtBGUIDg1UFjfxT0VRciSDiNkyIJ2Ehy1VBbHR5TMjEfryVDeKiOzG3MfTCQDSIOaiFcmivFsLATObc05kSA6FuxWVKELBSARqLsEnGhFTgiTmhmYCm2gNam6+gqcUG3gLUHRN3EzQSnBmrq9+AZNC6TWzGAyq7RxVlNyzCJmyC/lJ48Rmr0+71INKzP1aX/frp+HczWc2XuDNgxbXTM5LWhltjA2xNh3Uc+KiB3a9RwJ3ma6aRBoLHKmX5YOH6I95EZxjgSYRj+CDj6SX8+eCYJ4aou66hb/5042xiIo1N0E1ZfZFBc2ymrh408rHIZwxld6j5LPLAG/M/MIAofaOiqsCVwKF28Rtro03RWOUxmDWfMWU25tXWmfSrBm2DsjF1cn2bIPn0O9Q22fqdqC9LV/0ldCXfOfQDAMt7quLzmfr/5UUBzaGTcmOFsWyAzm0DzwIqa2Ok9XqEtF9/B7qirIxVPdquWtdBtpAVUkc9sNuAUwMD7MF/JV0D7nPHRJlgTbnj7ffRPzsYTpWXmt+rZ5zCQqgn3yddO9rudhinQj6UIf6ZgFMXlXJFMVjvbeaSFUHnuvmAZltr1L7nVAh1qB3YVgLH2tRXwwox211F7KkBKoYq3346W1BTbYq7H2Qs2/OVWjvN/H0vtONN4zcHE/53q+4awujqvzqGG8EgSw6s1b3yKeDAIDZgZQN+oOXbI0vzMZ7mkXHpjzbL08O/uLZRzw/giQmtZ1p9v0PpYK2JcO2+Iz55v8R9/zy49Yzuk+QPW1xbtqc7u+tWj587W++0zbc9rUfr05O2+Pt2+W6Bv1t93Rb26eknxVreAt1fJzbyyxLzLn7xz1j6iQFL9ZV8buSeGBezOHv+W1+ljjFkfOv4iMOLN1hKxDkLS3iIGYEqHtdJlFlrxBAKrnnAIa0oHHBZBw0fImzkMa24ZGEuWQHrkkWQ5Rdfv8N5FTbT4l0C3YfzblxwzQmBuIU2uSiDaXEim88lif9ligWRGGc1d7WYjlXNXRnA6TAjKghcNCTIEOvG6Ter6WquAePp2pjZECou84hxXDDEIuI1cW39NZPVSU1RAfEZHaJsjksNT/ICPY6lXTM/0Ri3ITkAAeelBIxJYnmar2QIcj3FimVNGO5zC29irybEM97NTWjIlG9rCbh7dRUT27j112zxGXWMhjvRn/dxKeU+bm0kYpwfhN0+vb6IkI6KydgBgo9bmFcxn40H+YU0/1gALU4lmES5NlWkqW4Uck1sp8Vk1PzMpII5hHhQ8RSgmbcSAXUNiHeiAmJhVrpJLAAG4knnKAfEadX+E+o1goYqAjuFOstHaH6kzayV0MxOjdUFK5g2wMwAJYigTZZDi3DKqEtEOOVuQqoHH8wkCrKj5KdJyjGf0BbwnrtJKE0MzgHhIOXSQcFbUF9ZM4HNoQHMZsI6aziNg4jksJktFmrlNMCvG2cLASMTrUBtUsEeVX6ViVZAStzB71UPMe66iA5yAE/m+KU7sVXNWjWMSfsMAMfaNx2LmqBeAzDWLSM0hw6IFXjzofRfXwXO7MK+8FgbMKZzFHBqZqbOBLJ9Bsg8n4rEg5wE2PNQt092M3MbKyiHpk7KGmansXoGxrQ+1sMSDtz9NiuAAQ2wWniY5o+qYEH6w02ldGOKR1DlWIiY0AA5TGAgLLJO6lR7HEj9LD4GlKMA4vgYUA+M+BBQJ5ZhJ62bgWCbfxMLcSaALdxIlLEhFb/pcRfR/VaD1OuWQAf6OtfhGtrYsZ4JcQDiue+2OTDCJYh/orJ+Tfk0MMKj9CO9CwoW0dEAdxVRjox4Vobvqt8JxwrXQQSQwqLhQyo1P0vrr4w/GhAZNNyIXQtqWlwn7j6RBC2HmoBL2+RrmA0QxLeY5drwXgGEsWEzSdmAhLzJ4jMb3oeuwEuQth8/fYeazqExnhIyQ+ehoglgcWCEtX9HDfyEBx1/XdvGvnEAwoOBVblHACfhCfhyYCu+kfEydtjCiGxAh7G+QGM4WxgTHXcrb2Nau2c3gx4OuO9+Z49dG8nlo16OhY+p7qy3tbH0OvZMbme54dapv9bNhzd+wi5tQKUDYz3DjTy7JbJnLG8BHc8Ye1/OJ7E79+DWtUMy3rjm3+/BJQEWusV8MDftsms2nh/JVH4yq9rq3a4Xf/3ZtAfruPH+Q/f+PP3U02+IKuxPKp3iin/iG7+CH6x3KAgYqGDliEsZsNSEXzq9wVwTppBxKSOOccH7LIqeL9IVj3lCBWEMGT9cTviluze4qHzXMa54MVxxKQN+MN/hl+7eYK0RmQMSVWQOuIsLAjF+MJ9wOGVUEI5xxdvlgPuXAmiuZUAi8XczQBiIcS0JuUZ84/UZhWmTz+r/4XJs94xRwNlSEwIYFYQARgoFKVSMIePdctS8Gdcy4JvTIy5lwDmPeD2ecc4jrmXA/aBgiwlv5yMmFR86xBXXMrQQLLkGnNKieUMD60MsSPrUXGrEKS24lgFjkHqTE09KQVR0p5jbGMwl4ZjW9nrJAyLV9v68ikrti2HG+3WC+dHmGvBinJGo4O1ybPPgX6OFfdG6LlmY4UHHD0CrOxDjsg4oTPid3/x1AMD3L/eIoWKKGWuNLY/56UZiHJOAtbnI1yfXgKSA28YSAO6GBWuJmEtq4W2GWHBZRVV41YMJKzcQ4zTImnpYptaHa064GxeUGnBMKx7WEZG4lenvJ2I8LiOGWDDGgmuWNg6h4uV0xSUPeFzGpjZsIXXs9Iy0PcwieGV+xrYOp1iwqkKu1X/NCYeUEUPFZR1wNy54XMa2DooerARijLFgKbG9AsBagsTsZjRxrRQqGBDf55RxWRPuxrX1J+uBxargdYg9PFCphEASz9aUlgE5vImhYggVj4uZrod2nfQAx9oyJvGbtkMdC1tkZdmhjv3/4jAjEOOH52ObuzGVFuIIkIOZacibQyW5zqgMZFVOZiacpgXvLge8PF6bVYaVc5pkPYjQmNRzXrop/5Rkp3d1/t/ZhLIAvNS4vbYmh1Ra346jxPy1eZjXhMO4YsmprVtvGh5DbQJqJmSW1G/dfMNZx1rmqiDo59YedmvORNNqlbFNGotY5kv6CqD5vi85tgMQO+Sxw6a7w4I1R51DqdtUos2qxHydD+OK83VEShVjyrjMIw7j2ixbAGBU/2rSZ8xaYj9M0rIshJSVm1LB6sTi7ADM1KCnMbcxsIM6E2sDgEEF1tgd6DGj1WPXUypNDM4O6HybljnheFxQmZDzNryWWOuETWgqK9/yMQPrkhBTxTBkLEtqB34h1NZHZhLLFoKoStt4uDBIgFjHNAE0tWIhgvgVx9rM5c1n3dwqxDdeDqhMXM5cR+DnNNaNtU4TiRsK8vXTtz4xSbmAHMjZLjmQWBlZbOUQ+4GjHeLFJM+1FnLJDiSqxEu2A0NbZP6gdmPur2MWxyJjoYdyIYkbyZNNuR0oWSgoPYhpoay0Td5v1kTfLMQUNO+TcFTFlWHiVhbqiS20lpbtrWh8d/Z+yWbF4Ok3y19p685gn1veGyarzey8scG8+Ux++NAtN/aENrvPNkCQtnU31O/QmBt/39wvTXuQ6d/vwVdrn40T37iHtybQHwlYN+4Mvp9MH9ePfX++LM9HgMhbuNPf/nVIP1eF/U2aPv8HP+ff/5/9fqwcUDkg67GQn7DKhFwj6m657fMA+sPglE292M7GjxBowM6X68v0QHL/mU/7Om4lu9cA362ybl0rypIBnYG0vF7h1ve/chcoauU4tvW5e271R+6VOKL7flaWzbSBAPODtVe714+9le/f++u+Dbfue27MDDTuD+D8s9Vf93U8l/brZX/9uTbJ9e2GYrO52NX7XBkmELXPaxsz2+T7tjy3Bj1b6x8XPqbrvi378f9QW78s+fHwY7HN5H7gn/kR9O24NXf7ufnQd/LZ3z+779nOUO9T2LbraXu2/d58tt88PbNQLUzMvsGbMbANpPXX2oZPmLOPOWXez4ufi/08Kmjw/b81/5t14cv42M0ZYbsh3U+w/b/fSG4a4a77+fBl2f/P1bu/197f2gl+WRuea+ettO+nv7YpX663jfq+vx/a/N6q60NteO7e/VwCrZ+bff0N80e7j/fA4SukW+XdTLfW6Q3csXn/oY31jesbs09i3DQD9UvCj8mtdPPH7nb9T1bWs3ODvubr7n/XRuD2Mvfs4X5Jk303nuvO7qfAX9v078ba/SBL9xXm/Ln2fDQo+9h8XyE9W/cz17+0rR/Txq/Yj68EWr9C+f/Hf/DTj2P5W/6hb/K//F/8iz/2cv/U7/2zP/W+AV9zxvIQV/x9p19HBWHliLXGxlxWlmv2amwmIOybAcNAFZljA4nG3BgYNVZwqamxdAbM5hpROWBSnfCVAwaqDWwak7S3pc7KhAWqG6Yyc2jtsFP/RAIkM8uJqwezz4FVa5+ULcyUtL8oeI4IVFE5IIXyDFAVhtLEgSwZuNyD5n0oFgOcHgxbnwzA26sHyz5/M8etEZGM/RJT4fTML6MfG2uTZ3gBtLG0PAGMS1amOq3IHFrdHnxae419uwUQfb2rhqDxde1f9/NmbKExdnb/qnU+d0CwP9QA8KQPS46Igdv91g9Lt8D4c4cOe8bKmENj9VLsIle+PDtosFc7YOj1YTOmPm8uW39l31YPlK191j8vuGXsWbS1YSbUrp+W7Hsb3Ri3sXUHETZPRZmoacib9Wz3WMnGWJkZtu+vnwNjnXKOjRVq/VBGy4P7PfjaA/+NSJT6nJuisqkqe/bL2mqm6/b5LUVhY4waQ7Or2+qXMrf5zaTez6m9VmU9LMyRsSjMPYxRY078JtPmKcfmU27zAe7iab6+WggxyfeFi/iXV2VjGi40ZdPaTcSfHAI5xmnDCvlh82DehSgCOqhv4+tMyj3oarFS9R4uPYzSE9XiosrVphy8A+9988+dtdorzBJ3f2I1/2amDhD85txMeQP3cuyasTd7ETLz5fbhh5i6/zTcvVZuGwLN40O9mB+jmWPbHFVq4UI+KZkaMaA+d32cLLyP+RzvmS/2IUY8yIKbT9fWDSLy1yH3UXYgmXgrDmTPUl+/+bLuDlHIwPb+YIE6CGX3P3SqNmJs1ka73psl9wen/gs08/E2FtC23Zoaa6Orm2DfeW717AGkH8a25G/4qlqfbocboQ+C9ufKegJc4fpmz4xbhwW7fjypx9+3f30uuTZs2vGhvrj7PoV/+lHB6P7jrww0P7Ken6cff/paA8tzGfHLb38bDjFjqd7HckUKFW/mo5hylYQpZlzygGNaUZmauWVSE8yTmluOoaBCFGYXNUt7NV1bfh+jclaTsBfTjDmnBp68j+Uh5RZf05IBhxQq3s8jAqGZgFXdEOYacBhyAwEGCoa4BYJmBpZrwGmUvtnG/vE6IsWKMRVclgFjyoiBMefY2KzjuIp6JoC1xGZCZ5v5OW/N3oZYNjE+A8mGf+/rCHR/zDHlZjIWY22b8CGKgNKQSgOUS46YBjGnW5aEccxY16RiSmJuVQphmnLb7PZNMVq4FNtoD0Npm3TLYxt1QMzUAjEeHsRE+nhaUKuYctlGOqlJpG1ATVQpJjMV6xtkMYUSP72yRlBAi/EZnA+pve435HkRRdowFtlzkAkzyQa5rgFplPHyQky2YWYGYpL6fGzTUkLzsYyDxSLtYIZUtdL8NkEuTAg5UJC7CZeJM4Uk7WIG4lhR5ogwlr5RIjTzsJoDQqob/0jz7wT65sraFgYRcwpjER/LKP59FMT30kzpTISJArfNDc+iphpG8bGsFrKjEmgs/YfWxoIhwky63r1ZFxRs2OcmxORNwfgqgjfXU+5ma4X6/bapNlOw0ftY6qttqgHJNxXx3TTBH/suzg4gBKkHLozQpg4T93Bl0yVgOZqPJW18uWgh+Qyu3CWo6BFtFWotjwECE20pIpryRBwJUHGabdxNqdiBGgUle39MBDQfyzw4H0tru4a5MBATHwPqyCjqe4gsPoGr+lICCgaYEK7UroeVUA6McBFfQAMA5uMXFBDVoYMYYqAG7sIuKiRkvn7ejwxOkCiaT6ZufmsSESLbSIk4i65pE4YJQFz6nHFQn0INWcHJxccM8n+dGOks81GdeqkwkGjCOiGTBFrP+tnOxzJkFfExH8kqIMHiUoLQfSyj+P0BcD6W0tkyMUKROsxPj9j8UdHmcONjqflr6jFKbUwpo4+9ChDVUXxemyBRAOIM5LtP322GReOdQtts31f1sZTxY8SFmm9j87GcSX1sHSjU9ocFfd0AXfAmuOvsgZr0per42Fh/rI9lGzcX+9OzmRsfS60veCBrZQfv46jPbZfPRJg4EEIGaqLeP33cbuKPuvp8PU0AKfQ+GMt7yy/T6mhlOQDW2GH0a15l2g48OsNIPQboPu3LBTbAfmNa6+vE7tq+PNe2DVPs4lg2X0rCxseyFUXU7pFxIFB1hX0JuPWvNxnbDwDajwaW+zI/lP9jgfQz6ZPB6U8glaec/89M+loDy0NY8Q+//FX8MJ+Qa8R0XNXHckTmgM9fiI+hMY5jyLiUAZUDfuvpLTKHJuzzmEd8fnhoDN14yphCwVwjHtYJn03nDZNYmTAGeRqe84BvTP3aQ57wndM7VBCuWerfs1RLScgc8It3b1FBzR8RQGPRriU1djVR2Zj7Nh8uZUvHWPCwql+U+hyeXknsymsZcHi5YqlJfSlzY2rn3P3/ppQFIIMQSdiRIZbG1AFo7KFnFe0+z45Z3iEUzCUJU6lPgqVGjKFgqbH5MgJbwaAYKqaXGVf1z1yqxuiMArYN6Ft9zcfK/pSlNMDvWVEDx0A/HPjOL74DALxfJtAujzFXNn+jChztfSQZ4stoYzWpf5kxlwxhv8xHsezaDogPIxE3/0M5KIhSFhMm9Zsk4laGZ1BNQIqIN36MMVQ55Ch9zp8zd66OWfQHKQCQdFysPmbCWkLzcVxyxGHIuK5pc7+VZ+ymN4POG/atIhAc6yh+dmuOzQ/QmFTzRaxMSLEgEFqsWQCYhoy1BGQ3ZAe5FAAAIABJREFUBuYraaGCbE666XZns5ObZ9L7W+xbN39Rvx/Hb0ms0YsqTwPio2jrxNjUQds6qz8c67pidIaQ9UDmugw4fC7+jV5Ey0S3TOgrEjc/QmbxAQWAVZnJvX+e+A4OjTn1Ju1Wr7GOprDdhbX6GDPTxpfP5/OHOUBnlf0hkfXVyvN+f61tgZvvoIhpSX3GutphEjnmsq2B76zqO9jrJgKWJTZRLhsXUQ1PCLFqCCnxM1zX2AB9TP0wyA6s/Lz4sE92WBSj+gTaWGh/KVRw7Yc/jfVUH1F7kraQUIDEzLXvSqztPmJhW020aW/NQKECOSJqzGEqWzN5RcXSTxUTg6nYhs4ccwngwGCNx0uAlE1ozKufz2oHDEBnexVk1dJjifoDrapjdYuZhT0bSkBNFd5HkQJv/AVN4CuYOFjofohluYUQPi5RlEMtGxvvS8dunn2cXe/jaOJkfj2AsY3Fa3V51n/vY8ly6GVtaYc7ZZeP3L1eCdiYas8yen8672/I+rlnmX3Ze6ZyH26qurrcgeWmjcDGLLwxmja22i4yH8tb9+9AWB8r6ddzirEbM91926xcHY9nmb19O+yZQLjBkn4AVDjK0rOXW9DK7dXqk0OnXePaQ0Xb5N/7dvvqXfOfDMUeXO4zfAC47cdtA7736Va5nwgmn5T78/QTT19rYLlyxK9cvokxZOQa8b35HgAwhoIpZPzq5SVSEHPTU1rwa5cXTYzm+9e7Zmp6LQn3w4zvXV40kZy1ygY8EOPz4wO+mE9PzA6vaj55P854v4qozuM64vXhgl99fAUAOKQV83LYmLqtChSGUPD/vvsMgbgBkqybxVyEgTThDQMjk4ID21j/IJ/a5v44iECOgdT/7/oaUyoYU8Z3r69wHFe9565t5l8eZsxLRCTGF5cTxqRhNxRAX85pA3zGVJBLbMxqDLKhHXXTb0ImtoEvahqYS2ymjEOseLMeMaSCL9YTxlQagDBRlrIO+LXrC9wfZ3z/4e7/Z+9Nem1ZsjShzzpvdnO627wmmoyMILMUWVUCBAk5YcAAgSikqhohKDEoqX4AEgMGMEGM4AfAAApVhQoY8RMYMQCknNAoUxGRFX289+679557zu68sY7BsmVu7mefe997EcnLG0qXjs7e7ubWu29btr7vW6i0gxARr+wazkms2wE2tTPDA6PIIhN8rqlou9wVsNQxq9iK7MX95589QwRwselo/K3O4Wqq5FFlLqa1FK9QpwUTG+YAKc7qtPgcBwMhA4yZFtvWKlSVxzjSopUX77xYt6NG8AKmnhRnlQq437fkuRwVTO0SdI+8oNP99FxUlYdzMgtwkCCIhD1VkJVHVbusbMtHhgYGCSFTnuWCPS2SSi8xL46U9vBOIQYBbTzeDBo6eZQBzMLbeCuhTIB3Mi3SRfKwpoVokNPiUsQslKGNhxsVpI6TgEeC/gkkYZC0OONzd50mDy0LZiQva7QSikODCII7ZqGJpCYKAQRLC22VVGGjS6Fv0mf2nvLnw2kNRAG5sfkHLDgJxUqzaV7GFOYjK9OmugmBFOaG+uAwkLru6eUaonWzeKrH0zp5DiP94LqkdJt+reOQjNnG59A1Qk+CGt1xg7j2VJ6VZJBwWJJBIq5T3ZyAqAL6XpH3lD2X7D0VcVKVNZGu8+LWhCm0jcC0+LQpfZUMIfYwlh7LACrHSgrhwN5dFSGGFM7FRNhRkuGyhFkmw8TvVwhNnOJTJoMiNh52AdF0vURoSS1W9gJ+HeBPEqGhcYYAPIepSAvMYCIp2oZUto4QKU4ulxls8u45VjGl9ooxeVs7mTwt1KfRxCnGowDiIGZeq7zYZE+njHR9FPBVTF5PILJaqwTiKBDbAH9oyGOmqa8ZnsixK6OOwEjtAKvKOkAk21rU5GkVg4BoYo5pKb1ArGL2VHGMS6EnT1wwdE6O5N11bZwpygqbjOo6zjxrmY0hkrcT7LFE9l5B0P3SUt6+TuFVmgjdUb/IFHpHdQJ2+9VXmGqgfMkbDbCIifCAb2IO8UMe1VRfViHvaW4Ek/pFchsiVC8mxdP0vshhYyKy5zYbGArQJ1LnnXks2aNXeh5TH0qbxqbwWJZ9es5jKdNrJUpAcf7p0RcBk3c75QExtS3no1I6ixx+hu8HkGN4ckghqmxhfCSPJc9nbkPOg5+VAjVOnTTVS5Ye2KVxnAxHrms2IIs04hGP5QOvHufJbQsRUbGVuSjzjLFE+YmcbuZhxHTfbG5IAenjo+FS8j5C8li+06CL8/sepOc5KBftPpNmqsQ8/9JoPlfXssxsnJ8z+N/DI2JOX/pdO95r8Z7tH34Y/+X/5j9C73T2mrB3hENnsAfAeZXVBUtvT6nEx7vsQtBintMwFJMX/2xkTbEqdd7B5pAYzFHihTgfJXcoBDFTECzjUnI+007+3HjgJ1KmHXghYqFUR7vJVe3gHIXO0IaMDYYLzmChadEvChirSHWVys84RKyux09/SF6mciedD4aoPuApFeeXynmZ15TqWBogwVMcSynYA4CJK8IvWy6eNwHY4CgW5QzLBEA78EHAtMkAHTQgYoZ7MuSyPES5A89jkfojK+gBkDqF8ChifFL8ToKBcpzMkp8lNI1nSJL8DJ/knW6hA4KluZIXogXPDCJmHlVWAEwGF8NTQ4LVZnhdMjbyjjJ/LsrgH+6sZJiMTUSR43IKAUQnpl30Mq+0q027/WIyPgTmXCl+Vvg7h/JwyVDxi7qWO+TAfDdcB/rOcUbzoj5OUNFYnC/rkowYREwegNIbwLv5/NkLoE7PCocdWd7D85Khm7Y8n8os5hLYA8UGWnlwjE6keqg4xeYs+yPHFiz6BSAjMRm4kEVfJoMNKSxH5rKp4n/pSeD2l/XgNnB6LjsW6UuO3LlFnsDExyp4eiU/TiSuW46rKTD3aghQqBcn5xBZQTE/Z1wvgGJujhQuBSrS54piieaFFHPzeN3nxRzqFjAZsZxvEVok91NENkhzKBVuN+eJqczM4+PzcaoLxwGNCRoMWYy7mOokx2QkB0z8v7wgj1NMzgR5jgytzp6aFPpFxRzflAwjKocNKhFEjuGZ42HyeAlQ/gAZ1jweeayRy8gCQQxJj5hBOoOZGx1RFX2f4nFKmyC63P+R+kn2X31Rx/ExqW/itDhmmHba1CiNO+Q5Fqf6FotyhhKzMUmNnC+wc//x5UjQW64LbShQn5f557EV01zM4xQLY8wv7JyFx5KNuuWzPIuZWkBaZ+/HYozEtJ+Wn6PslSvL4+ek6AtO88B4WsBXy9co3SOmeVauEWKhbFp6Z5fTI7X9QYzQeVbnv5dwYzFd53zPIiLfdR2YD1Ysvovi3CLtWePsXNli8f83PB41ZN9W9l9SmX/2X3394j3P/uhp/Ps/+Du/9Xz/uz/+wdfeNuA991iuzYi/df0pnlQH9MHg1bCBFBE31RErOeJn3RO0ymJnG1yZDq/GNZ7Xe7io8Hm/QaMchQexDZ7XB9yOK6z1iCEo7MYW92ODVlt8d/Man3QXWGmLWjocfQWJiLuxhQ8S31zf4d4SR28/Nvh4fY9PTxdUl/qEk6PwJxMMVmFjBqz0iF/sbyBExNoQbHXwOodw+NbVXYbb7m2NWjms9AiXoKNSBNynOvRO4+nqCAA4jDU21YBf3l3h8qLDthrw8rjG1VUPIz32Yw3ryaD8cL3H3tYw0uMw1rioKegYw1h3Q4PRq8ztvKgGdM5kiGWjHXZ9jU1NsTwZQipExMpYnKzBddPhMNaZs7oyFoexwqYacde12NQDeqdxUQ24HxpcNR16Z/Dm1OJmfcLdqcWqHlEpj9vjCs5LfHhzQmdN5m9yuaNTiasqskeWQ4boBOvd9zUa4+CDwEUzoFYOf/HZMwDANz+6Re80TkOV4YYc2oE9k7tT4mPWY/J6+hwy4zSYHA7hcGygjUdb21zHfjRo6zH/5w0P5sl2pxreSbQbCgmjVEBjHHbHBkoF9F2F7fUJ3k8eSRZXYW/tdjVgcAp9V6G96GjOWY3+voZqPbY3R1iribeZDMRyI6SEH3ovoNQkHDMOBqYijydtGATUW4thMIheoNlY9IcazcUwxftUIYdCcKNCvXYYBw29Ik9l3di8ocOwQ95oqWqLoTOoLyz6YwXd2uzF5dAHAIVBYIl/5r4O+xqy9qgvbebGeicRrYS5GCAE8uaFdyl0yNrlzRPeZNAbCsrmRjV9tgpKh7yhoysHe9cgRqC66QkmKJKHuXEZ8ua9RDgRj1Zt7ZxbKghqydBKf9AwlwPsfQ25sbS5xd75XZU9lqKOiIOk/BKk0HcKCAL6coTrNCADVBUoFAEAcVshXo+QJsB3mgzXZIjLnUa8srRoHhTUxsIfNMTGIXYKYuUmw0pEhFERl7T1iJ3OnEyx8mRkcz2ToRI7TUYbx9hUmLyvVk5czpb4pWKQFEszpGD3pwSLXXmITpE3k6GTyQMaU4xU/crArwJ9jwKyl+RZuvDZsI+JA6t2Gv7KQYwScqfgLx30nYbb+rzJIo/JE+wnz1g0IRtl0QSKSymQYxqqo4RfB+JnpsV9NBR3MpoIfZespbSoDVWcOKUC0HuVxWJi5tNFmF3qB0EGlbqT8Csq09cpnmYkA0sfJdw2oH6hEVVEqIrFeUTivlHZei/ha0Dfp9+ZUWQuqV9RXuok4NbkoZRWZG+dtGQs+po5joC+T5SChjyRqidD3W4j1Aggymz4Cg+4VYQaZYpFKbN3MApAndKeRQ0094K8bIo4qeogIOm1iVADMnEp61eSvo/URnMEhuuvvnLVqe3UNzIbDcJTeWqQ5FHtkb2pMXl8zZH4q8HMPa7kfRSTBzZVr+QqBj0Zopyn2Qm4VTIqFaB7HitkI0t4kb2EahDwFY0ZcyppDKhPy/iQMnmN2QsaNKB75JiUbOBl7yuAUFE79QnZS8qbAMEAugNcO20IsDdUjcgc3gecz0h55PI0MtcXkfIQPvEN5bztc49l4g4nni5Znyg2XzDzlM9hpgLKxhyDkxo2lcNllt5dWcwL9rpznUqu9AOYbLFRlXmfhcFYKvtmQ1/iIX/2jKE7j/95ZnLz5laYG+flvMt1EMDbPJbL/M/mx/1YlH3WuBR4EKfzbCzOvwSj+K+PL3+83x7Lv/Fh/Ff/23+A3umZAqbzKkMrS0VJhm2WSpHMqWKVR1646cTHIpjpFPMLwIwPBkzeRr62VFhkj2XpmSo9lhP/KebrDPVbco+Ww8V5M8yyzJ/jny25UXwPQyRnapLsBeHdPBlnnkj24uX0EdnrtvzPsErmC4nE3Vkqo5Z8rbIsbjOPFXOuICKCV1PaBXai3JBjb2jpGeSxAZAX2toQrsaNmtqcoJ+lymPp8aS+mM5nJUte4AIzQZycLufLnj9MniKBXHawcnoxxmkXnD2duaH5BzLmc8wv4ryZ7yM1eWpnKpRFGu6n5TjP4pYV/ZI9nqxGKQr1yVRG7vfU1sw7Krd0yx/W/EPJKwIx95qV3rKl1xDcH6m+LMST+ytOkMvSu5f6voQv0WonjWUJr2QvW/6lxuTtYw9P6V0svG25v1n8xi3Oc1/wuLKBxf/LcWbhm7IODCvlugNJPKfoSz5KLyj3C5et4vxaKPp+uTW/HCtOV3qTy7RYpBeLa+WigBdYosgrLaJyX5VzoOhHVuaESf1fzhNBokCRn7mFZzF7ztwk+pI9lgvhotJbynWaeSwFJq9bOUcDyKCOyB6/mceyfM/zMwHM+mbpyczeW+67sm8VsheSPZxnPRx5DNM9AKKY4v+xt4u89Jiem/LZAfJ4iVQvHhNgai/1depHnlbs5eQFd5FvXsADE7wzPe95kb2AX87+s8eyEBT6KgcJ70zvhNlPED9vcWE0JM9Y0AmGGKZ0fC2q6Xs+itW5OPM8ZVEiMfX1jJuIeR9mwyL/dhR9tjBwcruKbMpXUD5fvBLytcWjLYqySo9lLqP0iuZnGPPCi3azB5LzmHXXGYtqsUSYlf2o16/sQ0zn3maQnfvOY3M2/fL5K8r5IsfSO3uunQ/K/Q2O2fi+La/H+hDzMS7z/FLHuX77gsef/dd/NTyWf/cH/95vPd9//Mf/9GtvG/CeeywFIom/eIUgSKxkChpOHiJAZZ5irV3mBjbGpaDbgQxQq1Fpnw1Po/3Et0xcvnLjKIqYFVS7ZNRGIHulTBL+GJNQSimOIUWEExIxqsxp5GDhrAKrVUA3mmwYaRVofRTmxpfWpC2l1RREm71Dq3pEn0RKpkDfEsa4/MxP6qRiZpwS9DapphaGmLUqe7RI+ELm8krhDQDwPhm8o4RK+YQgAIbmMncuGbfeUzqG51a1w9CbnEaC7tPao+9EhvyWb1OCJGOu4ApkuC5ARiQH646RuIFNOya4rUrcPp/z9pFEURApb20SD7UQFIGgBUO+D4CpXFKYVXn8lQrwTkEq4iUKgWmBmzyHSgUMMBmOHDzVOUSRA51nNdggEeMEgxWgkCxCkVfPWSpbqIimsRhHBRcnSHGMJP7CHrPSEBQyZsM6iyMl6HKpRhsEcn7OArpycKOeGeBZwTYJmWRlWMF8yvRMJ3i54F16S7zGYCUpwyZoL4dwYCNb6kCL+CDSojZCVR7BCwQQaYnFPaSMhKjlRR0rzYoi9EMUGfIcxnS/iohCTp8TLJcNaV37xKE202JNBUTI6UdQRqiKNkf8MG1/Z1hxXpgSt9N3CqrxlDYHvwZU4/O4MFQ69PxyihBV8g4OpAQcI8jwTEadWVnYk8lcyAzNlhHKBDhoWkRp8oaKiriYBHMW08ogIkF7I0FOK0+cUx0QR1UESscEZ00exsh8TB4zzov7wAnAROrDNAYzA36USfVWTi9m7sfUV2rlSKglbdQIk8rukI3vPPcbj3jSgA7U3pOGWJGXNre34vmZ7nViUr4Vqe6muCYA6DC1lY063vjwAqIOs82b6OR8M6IK0z3Z2BJARb853LeiSuUITH3In00ABgmxTorFzH1l456hziU31qTngjeKIih/HWmc2RudeM1xVJNRyu/Xc/2R8o2DzHWMbGjJSJzfEnKfNgFmMGjLvFsBVqWNKmaYLasXM5w5qxkHAdQB4VS6nr7cEXUk73P6nJ9tgcybzXVNEGJaeACxov8ZIpzqjlBcYwOcN3yS8SPKDUWA7qkTVFsA8CA4NG+k5HcOXct1Z5RAwAR9Tn2WVVGBvFHBBq/wYvKks2UhirbEZHBzOzldmlvSAcEUqskC2fiISc2YvW1AMkD5uSsgxyIge+foRDEGIameFkYdEKd2lf1SGIox5Zs3A4q9QTaMH3jnCkMwe/9LY6eow8ywLNI/apQvjd3iyJsIi82X2aZBWb+yrRx658zxqJFaGPGzykbx4HSZT/n9bH1w5vxjx1sM93Pt/Ovj6z3ea8PySXXEP/j4/8QLewkPga3sYaPG3jc4+BrX5oghGNTS4t6tcKlPeGPXAIBL3eEUKvTBoJEWb+wK1+aEe9dCIWCjB2xUDxs0ft7f4MqQqIuHhEKAh8SlJpjhy3GLVo7wkNioAS/HDZ5VB4QocOdWaBknAsCD4l4eXY3OG3zU3MNGldUmtQwwwsMIj9d2jRAlbJRolYULCkPCVMj0pmqVhUJALV1O36oRna/wcXOHe9fi6GrcVEfc2RYhSqz1gFpSSI8XwwVq6RAgsNU97mwLYIrd1yoLLTxceosfXAUjAtZ6QOcrhCiw1gP2rkElHULBbu+8yVDjRtnchqOvsNUD7m2DS9Nj72pU0uHkKqz0iIOtUSmPp9URn/VbXFcdjo6Ufi9Nj1o6fD5ssNYjqf4mFVwtAkzCn3D8z3vbIESRQ9IAwNYM6LyBRMTB1XBB4rub15Ai4GfHJ2iURaMsem8gRcTJVVmVFwAuqg5KROxtncSSdI4HyuVoGbBWIwIE9ramUCpeYaUtDramdroaWvgMk5aIuK5PqKTD64HmqQsKvde4qrsMob4bV5CIaLTF6FWOsSqTWu9ubKBlwMYMONgaIQqs9IjnzQE72+B2WOWQPBxrlOtQSZfVg1nJ18UpXM7GDDk+Kt9/clXO72BrXFQ97oY2C2WNQWelXx7flR4pHxlwtBWM9LBB5XBADAE/ugprPeLoKlzXJ+ySENaY0g6enodaudzHHOv0uj6h9wZHW83SNMriTRLjYogyzxsbVG7z2owIUeBoK0gRc8giEtui+vogs2rxs/YAAPjseJGN7lbbHCOVN47WZoQWHrf9OqMsWBGaFXsB4LLq8apb42l7xN3Q5tivAHDTnNB7EtZykeqwG2jcXZDYVIQJPIw16rR5xWJkAPB8tcerboPBK6yMzc+QFBFb0+NVt0FIm3HHscK6Iqj7KoVS4t/uEEVWMu6dxqYaMTiNWjucrMHKWAxOp76l56fRjtSzbQXD6tJpHtbKY/AqK+022lHbxjqfW1c0Lp01aI3NiBUpYo7/WkL978cGnTVZGVmLgDd9m9Wdx5R2Ww+4PbVojcPajLjtVrhqO9z3NOdCBLY1lc0bh1w2KzLb1J8sxCYECbMxFJ9RMqWo2aYeZtz03ukcXgoAWmNz32Wl6iCyWBuHuVpXI45jBSFI9VgntV8Wdtv3NW7WJ6IMpOeRn0sjA3qns2hcZzXatIGWQ0xFkSgCDq2xOAw1tPIwMkCl+1kdu7caUlA4rDYJqA1JBbhJ+e77ehbeSivK5zRUWdBNyZg3R2PR76NTaCqiKvhIqBytAuqUd2816hRmq60sBpc2h4PEphlwd2zxVY/akGoyMG3sAiTi1g0VjCHhskrTxjSjbWIUaCo7qy/HBvZeUnvS/ECRZ4a/sxhaeoZDkFg1Q66L9xJV5eBSiDBG+pToJ5M2aTk8WBmz1jlFEP70/lEqZipEjMhaDYy2ylSClAZA1nkw1STexmlCSH2SxlOISXdBJ+VjpiFwn2X0D+/NiSQiZ6dwVUTnQEJJiQlZAUyGa5jQQnQPsgWUETQl77gwLIFUSd6IKQ2XcoON8+Tz/FnioVLvWwzHB8gZNgQLQ/aBR5DTLTzhU57FptaybWWdzub9SHpgQky862CDvMy/vDbL9My5x+r2nh4x4kF8+9+l472Gwn78N6/iv//P/m1cmxNsVPhsuIASEVf6hI0a8NPuaeZEXpoOr4YNntaHrCC71iNaZXE3tnje7PFq2GCtB4xBY29r7McGtXb47uYVPuku0SiLWnoySkTA3bgCAHzU3uM+GWQHW+Ojdodfny6hZcBVdcLJVTNvZe8NNmbAWo342eEmL+Z4AT4Ghd5pPFsdczgRNraIYzm9GQ62ho8Sh7HCs9WRlGldhVZb/Hp3gW09YlMN+Py4wXXTwSjiUvLi7flqT4aTDJmbWSrLlmkB4KLuM8dSgEJq7PoG62rMyrXcVo7nedV06JwhDqYMqJXDwVbYVgPu+hbbekBnDanrjjUu6x6D17g9rohj2TVYJ4Xcu67BYA2ebQ85Pxtk/s8waF5obpthtuiRIuKQFkc+SFw2PZQI+OnLJ4gR+Phmh8ErHIcq8zDXaTHAYk67LnEs04KJw3pIEXEcKlSaVFsPpxpaB1pMpB/V02Cwqm1e8ISIrJ4bgsSxqxC8wmpNXFeVvOeHrs4cy826z6JSWvtsTPDiZdMOGKxG1xtsVmRgDFbjtGuga4/Nusdg9WyhwiJSHMKB45OGkGKPph/7cdDZgxwSRLxuLIbeIASJuhnRnyo0q3Hm/aYFjYIdNepmxDCYBANHhoMzx5IVbwGgbiz63qBpLLpTBVO5zLEcBp3rPQ4mK8yyqFZ/qCErj6axOTapdwrBStTrMS2MQuKSyqxqy3BuN6ZFUlLhZQ87gOx1ljLCWQ2lPca7GogCzZMOPi0kvFWoEseSlHQlXOJY6o2dkI2ZY+kz5N4fDerLHsObBmpLHEteGNldldVZReJC6o2dxMh68jialc1cUWnCFPLhTQVxNZIHeVTZE4UI4jBeWoJkjwq6cXBHA9k6hF5B1lMMUCFAHkEvIGtP/NEqcSzbwqslI4V9iILOeQE0PntRReJYRivJS5rif8ZOkceq9eTd0ZE8iEDidCqgDtPCqfASIgioW4OwCiTiEwREL0koZesmuG/yyKi9gr9ywCihThL+0kHda/hNcvdIZH5nVsGs4wSXDeQxkidJXK/k3ZGDSBzL5MXT5IkSA/W5Ok5CQogUIzFWIXuoZM8iN0jeI/ICqZPkW4hj2Qn4NhIPLYm6iEheItVJuK1HdatIodNM3igRROaBRUP5hIpUSoHEsUx1ditSO1UnAbeiOJQPOZYRPnE4gyGuoYjE4RMhKaNGwG0iQVIjEJN6rPCpDSkeo3R0H8MoGcLqK+YrRkSd1tUWuc4hcUzdOkIfSWmWeYX6BAxXX33doztqOwSNbeasecCvkmAQq7xmjmVM3MPEozTEAWUeYVTEP6SxRF6IM2cPQOYs8qI6KsDsE2cxcQQ5ruVM3TVMHD81At6QumtgjmUaA18BZzmWieeZY22WHEtfcCxFUqhFastCaCkY4mi6ZvL8sYeS72fuZBSYxePMMVWTZ45jnYqIGVczw6EL+DSASQk3XROcV/Iych9JhzkPkw8BSBsRWN0VU91EjBS/M4KUWQVm6qusnMvlAIXNtziXPaKiqFspdoS5t3LG1SxVb8X5PDl+7czzWh5xqlP2Wp7jgfIc/P+VY3kmj0fq/zYD9E9/8J987XDRp99/Gv/OP/27v/V8f/Cv/w9fe9uA99yw/PCPbuJ/8D/+W+hChcHrvHtro0SIElKE7GVyUebYhiEK8mhBZC8A/ycPjsyxJwFkD03pjXNRZg8de6iYM8jeHgDZCCxDlUzliAy3LeOOcXre7QSQF/YBIreD40Jy3EnPMS6Tx8VInz0anLcLEpX0COlpLtvN/2ecQTHFIlyqvvLBO98P4L5F3mUflEYaG4SiOF++b8pzIX3mPJb1Lsvgo9z95aNsB7e30gQPHpJqcJnnlBaQYtpFXnKRPCfUAAAgAElEQVRCz/ULx4SUYrrfh3n/lmPMMRw5ZAsbGbz7zHzhMgZdqVRc1leIKQalFDFzjv1iTnI/5PuL/i+/87lyw7HkJ5dzn701yzpxv87GgDmbxVHGNyw5zdwfJZeX2orMb+byGOI98WzjLB3nz1zpsi/LPi37c8mzns6LHH6God0c75DL56OM+5j7lRcCRWdzDMll7EjOY+ImI/Oq+TvzqEu+d5m31mGmEj3nNscMFRcCOazNctc/99ciVE2GdBbfy7rP0p/p49wuJCdA8SxiMS6C3xd8nVcduQ/ncTIZLj6LPcmOBcmK1JQu+jncmuqO2cFhZOb9kerHvHkxfc71iJj4ysyH5QUle0VEka70jOS6FH1X5Mf9NPOeyKk9y3zK1dqMK7+EzBXenQfeHyyeycc4sWmxPPtetH32Oe+6nHm/RmTY88wbssyj5OEWi3ksF8pf5ijrdG71nNPN5+JZ79S5a+deuMt0fO4cx7icI5G4xiL1U5QFL/fci/6xl/1ymRgfScN5F1oDlP48z/GtbZ+1Y3FvOJfRvJzy3nN5TnU+35SzQ/VYP7zt4Oe4eBzPGkWc3yMG0VuPL3jfo+Vyxb70Pe+o15dM99ayftM6pOOH/+XXz7H8XTcs32sobKtG/I3VZ7hSR9io8cJS7Mineoe1HPGT8RmM8Dj5Gpf6hFd2ixt9hI0Kr+wGKzVmmOwHZodXboON6hGixK1b4862qKXDd9uX+HS8wlb1MMJj75sMVXVR4fea17h35LHcuRYf1vf4bLiEFAHX5oSTr2Cjgkq/AEMwWOsBW9XjR8fnMCJkj+XgNWyU6L3Bh80OJm1X7VyLVpGHlRdZIQrc2RUCBI6uwofNDlJE3NsWW93jJ4enuDA9bqoTPukucF11qJXD3dhmWOg3V3c4OlKFZfVcqqOGkT6nZUN5qwlG2idDvlEWd+MKF6sevdeopM/pW2VxdBWe1kfsbJOvMzz2uurweljhsurReYOtHvBmbHFddei8we2wwtPmgFf9hjy8KRZp5wy+s74vIJU6ew0ZxunTRsJ1c4JERO91bsP90BLkEgJX1Qm19Ph/Xn+EEAX+4Poleq+xt6QI7ILExgwzA/Z1TzDVbTUk2KbLUNLd0GCVIJR3CW63aQfYoMhTm7zCJ1thUw3ZEGMI1Ju+xWA1btYnAASNbrXFbbeCUR73XYOnmyNcgrMxtG8M5OlzQeKmPeFoKxzHClcNwTNPtsLL3QabdsCT9QGdnZR9lQwZzsh8YqM8BqezYa/SAv04Vqi1w+gVrFPQKuAyQfCcl7hedXhzanG96tBZQ3zVlP/gFU5DhetVh8NQoa1ILXddjdnD3CfY5OiI67quLPZ9jW0z4K5rsEkeaCMDTtagSkq/h6EiqFflM1zuzWGFprLY1CN5eL3CYDWsU9i0Q4ZOcltCFGiTd1mIiNNAsMJN05PystXYtjTmQ+JkM+ywrSxe320QATy9Okyxbq3GOqkHMwTy2NUIXmK76bLBwIZ4neLBAsDxVOPq4oQ392ts1j1MggcCwP1+lbnOWgcMvcF202URs2NXI0Zgu+7RDRWEIJggb3Ttb9fYXJ9glEc3VEnlljai+n2NzfWJ2jZQvodjg6Yd0XcV6sZOQmMAhlEjJJ5y31XQxsNahbq2GAcDmSCOmvPvDYKTaFYjKRPLCM3zz6oM16uMxzgYuFGham023oeOoH9V4zB0BqZ2mfPtnaI4rMkYt7cNxNpBVwRV950GvEB1OWTYHqvtur2BuRzgrUI4VlmRV21tNkjdKbnH2NisPXlik8dbGo9w1OSRNGkjZJQQK4cwKNp51wFSR/hOkQf23swFfKpAHNUUjigc9MSX5PiWKgIH6ocoI33vVPLsihRzVCUOXYDoNcTWQryqEHVErAr+XACFXzGB+JCdBKoI0RGvUlri0EWFpMSroVKcT2EFeSxDih2ZPJaBVWHrkD2roY6AF9lj6bdJKTcihwYRTsCvQvKSJg8Sq8LKCDmkvJoAfZcUbjXIIz4K8iDG5D0957GU5DUcr766Zal6AdeSpUCqsMmwD4Bv2TNKHkv2FLLokzoJQE5ePvYEzjyWBpNXjcWSYvLSAdlIjhIwe/LwstdXdRS2ZBbH0pEHGjGpwtbkdWYvtExj4Js4805xO7jfok5e2KXHsqK+B+hzFIDuZPayC0d1C4bu9016dyRPeRSTJ/qdHstIZZPHUmTPV+lVLQ0svs79MVPLZU9hagt7KufKsWnQxeTNXB6lV2/pBQXwdlXYpZHJZTLPlfNZGtmlh5Lb53DWY0l9neZMGaMT83xz3qLIo2jb7Cg3NpYbEjmv+ckHiq7nNjZQnDtTtymvR4zQr2KYfg1HTA6u39XjvfZY/t7f2sb//H/5l/CL8QlsUHhqDrBR4fNxizu7wrfbWxx8nXiPW3xc3+GT4QoA8HF9h9d2DRsVNmrAr/orfFDvcTuuoaXHE3PEtTni4Bv8+f5DfNzeo/MGnTfY6BE2KDyr9gCAn52eYGsIunihe/yyu8a32jcIUeDluMFGjzPvohYee9dgb2t8b/MKAHA7rtGqESZx1y5Vh5/3N+i8SfmSQbd3deLTkZFzVXXQwuNC9/hFdw0XFG6qE3auxh+uP8fn4xa34xrfbm/xYrjA0Vd4Wh3RqhFD0PjF8QYbM2AMCtfVCS/7DQBkT+p11aGWLnM734zEnWO+ZOcNbqoT7myLVlkMYYLN7m2NrRnwotviouqxVsSJPLgaV9UJd+MKz+oDXg9rrPSI22GFm/qE1/0arbb45uoOPzve4INmj3vboPcGH7U7rPWAnxyeklHpDCrlMHqNSjk0ykKJmDmWL/ptNg7HoBGiwE19zNDil90GPkj8K09+ASki/u8330CrLa7rE+7HBpXyeNOvZlyX5+0eSkS8HtbQwuNo6yQMJXBh+syd/LDdo/MGb4YVKkUc0pv6iFf9BldVh9thBV3wnLQM+KDZo1UjfnWieeqiwtFW+KAlyPKz5pBh1tz+zhnU2mXe4+enLRpt8bQ54kW3BQCs9YjvbV7i5bjBr49XuKw64lAKgj2fXJU4lh6919kQ5o0CGxSUCLiqOxxsnXioxC18M6xwWXWopMfrfo2P1/f41fEKaz1CioDeGwyeNiouqj6nPyTu6W5oMo9rZcbM9QxR4n5s8KQ54lW3wYfrHd70K7goMTiNTTXk8DwXdZ95ur0jg/Yb63vcjS12Q4Iua4taO2w0zUkfJGyQWBmLWhFfbT/W2eN6WdEzfdsTH3NTDdgNDaSIWJkRJ1tlPuPJVvjOxWsYEfBnbz7I3MFNgnsrSRgBozyetQdoEfDp6SK/yyrp4SKFDaoSF+/D9Q4/u7/Bdy5v8dnxguDcaXPkW9u7DLEfvMZl1eHT40VGAlw3tEH06rTGtiY49Mma/Gz+weVL/Pj+GcZk2K/NiM4ZKBHw0WqHf37/FD4KbBLX8Nn6gDd9i4tqwMFW2esdosC6GhNsvsJ10+FkK6zMiPuhwcaMedODNw0u6x61drjtVqi1y+MQokCTNi144+Cy6dFqi9fdCirN1auGDPI3fYub9jQLn9RolzddlAz4g6uX+LzbYj/WEABu2hO08PjV/gorQ6vZPqEUPlrv8PP7a2zrETfNEb/cXeNbF2/w6fEii8I9WR2zEBwA7Mea+JPp+e2dxlXTwUeJzhIf96Lu8eq0RpPeETaFRbpoiALwfH2Y0xs4zzQPrpoONtDGB1MQeAMJIFRG5wyetge86ja0sTBWaDTN6cErXFQDPj9s8L2bV+i9wWGsYZTP7x7mDx/HCjftCfdDg+umo3mfuNouSLw+rXHR9HjWHvDJ4RKttmi1RaNtfm+PXmE/1jAyYD9UuFnRXNwP9Gxd1D2kiHhx2KI1NlMVNtUIJQJuu1Xm9HI4K4D4d02iHxyHCk/WJ9pMTNzQprK4rHvEKHA/NNjWA14fV3iyPmE/1Gi0gw0SH6z2+OmbJ19ghXH+uGx73J5axCiwrsf8TFbK4/VxhVVl8/gyB9f5xPtekVZDZzXWlc30jdGpfK1EzVTKZ37tUHATAcB5hQ+3e9x29PvUjQaXbY/OGjhPauqMsOkSD3PTDDj0NdpURxeIUwsAp9HkeN4Acigv3uxyQaKtbP6sZYCSEYNTaAzRBbrR0IZWO2BMXM/aOAxWY7Aa62bEoatzOxh5URuC8Q8pZniMJHqXxQu1z2gT51QWEQSQqRExEgoksEp52VeFuCAjdUQhQCiAKa52EXebD6ZZeC+ztVYunRnNkUXYAjLyQcqQhf4m1fUpX7H07rJBVyARynMZ6VAqzHs5bUapErmAqa1B5PjSpap72Z6zCv9L8Z7y8xKFsGxHea5UFU9Ijgf35A5dpM3c0aJdX9Eu+8U/+k+/dq/ek+8/i//uP/nteyz/2Z/846+9bcB7blh+9Dev4z/8n//N7LXjwwaVoaouKAQIWignA8klMRwWcJEiYgwqL6JZPERLn8VT2NtVwl2rFNtx9DqL6VBeGk3yLHL5ugDKhygzJDeni9NWmESElh59Mio5X4bPljBNrpdEzF7IEpLI9/BimeCU0/ZTCRUVImbhE375yuKpFyKSuMkCQlkKf5RHFh1IXpTyXAlj5eu8yGHvVXmOvXFswHGac1DYsv4uyAcoEV58KxHzjzYvMk9pMVimLyGxQsQZHLc8X5YfI8GcWZSEPVPcPoK78o/N1G/sbeOFcikMUvZXmRdDbKcFB4XWof5j2Cuyp5G9XqqA2PklVK8Y8yU8dIJII6ssKxkR0o+0ViF73ZZhfaQMcMWYzvo3jdNyfmVF3dTecqMzLMYkRPFgnFmpmMUi+Pkox46vlbuIpUhG2ZZzEOiQxFgA8rZOeUwLkDx/0oKIwwcRHDfmz3kuyZhilZIgR3nw4qu8n2OBlm3icD2heM75fhL0QFJSXkJ75Qxiy3DcHEpo0U/n0k0w3Kn9nH4JEea2zEIfxTmkl06SGnSM4iw0lxc9rABNnFWRYbe84Az+DAyXVa2Lz7O+i3NBFCDNl8ViawbPFQX0lhedvNjjxdsCcjprT0SG385+qovzfK3si1m4IO4nLyBTzM649EAUZc8guouXZ/S8MJ3CJeV+ZIXZiGmxyvUQBXSW61WGPYrz+j5YVPLBH0sRklKldAm7LcVMuG7nxFS+zMF14rzKurIAzPJH55yHZ3ZdPBRpWR7nPBxc9tn0eLh4F5iXzZ8FMqeXobPlfypqDqslHmDMYXUATLBceaZMLuuB96sYo/K98lg/hMeb/U4vFt9UzrvlPcuxeSwvfDHbJg/D2/J9RznvOsop+JXzfOT62/N8dw+89f4vWIevnO7M8aP/4uuHwj75/rP47/yTv/dbz/d/+pP//mtvG/CeQ2FdlPjJ8Sm+0d5hCBqfdJeQIuJ5fcAH5oQ/232IlbbY2QbPavL0fLTawcDjF4drrM2IjR7wstvg25s3+PXpEjc1qS1+errAfddgVVl8//oFfrJ/Ql4Z5bEbG1TS45f7LUIU+P2LW9wOJOSzH2t8a3uHn++uszjOfmzn4j1O47LucVH1+OGr5xAi4rLtMXqFPoUE6QaD55eHDNncDzVaY7E248wAu+1WGJ1CPxp8cEke1MNQY12N+PWrK7SrAVdtj5e7DS7XVP+7roFNO4MfXe6wH8h7d981uFmfSAk1wQzvTm0uL0SBi7ZHbzWGpLJYaY/dscFm1aMfTVbCEyJiXY849DWebo7Y9Q16q2GUR1tZ7LqGdn4PBKPtRoPrVYdXh3VKX2O3X+HJ1QFv7rZYNSOayuKXr67grcLN9RHdaPKuKu++W0u7nBw25GJ7ghRAV4SAOZ5qVDWFArnenFApj5/85AMAwNOP79Fbjb6rUNUW3kus2wHOqxTSRWK3I9hzsxrzjqxNRiJBAZMK530DYQKq1QjvSPhl6Aya1YihN2jaMYvl0A6thN3XgBVQV6SoKmVAXTscdw0Fs98bVFcD7cyOCrIisZrgJYIno2e97XHsNMZjhWZL3qqx18CrGmHtUV/1GHtDu5cAhAqQhrZmOBQI77Jy6AheFPuOxFvCqEj8REXotYXrNGAl1NbC3xuoS5tCZADCUP7BScSThtxYhJOm8A5ewDQuG5C2T6+kFA5BrRz8roK6GOF3FUTrcigV2+spdMeJII6oqCwAiLcVYhug17Qb7gdFsMRRZHEaoUigJo6SxF1al+NyZpGYtQOCoLAbDWG34iAJspiEc0TtMb7cEPzvGz31rYiIHbWXeXPRSsi9JtjclZt2cZnTWIcclkHdaYSnI+zLNfyVo3ASKcSJem0I3qZIDEaeJMKVy/E+xSGFyLi0wFHT4rAJQJL6rz7XGJ87asNRQw4JLhcEzE5gfObJgOgl4tZB3hmEjYc8KoTWTwtHGSGSGE9sPeRBIdYRshPwmwB5kiRWo4CYOKjyqCCtgNt6yJGEa6KhHWwxUHgICidB7VKjgNsEKqMK0PeKhGS2Hnqn4NdhEqEZWRyFxG+qTxXCRYRf0Xd9FCQQ88RDdtTnBBMUqF9LuOd0Xh8E3FMP81LBXwUSLFER6l6S/ZLCKmAVKTahF1k0Rx2oTcHQ0KpOwG4j1IAEKUywwKNAqABzT+PNsDbXUp04VqI5JkiliAgVQeCCIhgk3xdMRLUXGLcR0gu4JqbA9wSNNAeB4TqifSEQNeAbkECOJpibtAQv9E2EPgj4BjBHGmM1JFEWCYwXBC01B8Bu6T5pCSZo15Q2qkmoxzeAJjQ+fAsIR+I5IgLDFYm5MMxTDdQ2zicYytutkEVb1EDp3Qqo7whiGPR0TZ/S2mBF0NJxC1RJ4IbzrO4iuudf3bA0B2C8ACCoDBFAAjKOznM55kj/o0AWGKp2EVEJ+BpQXTqvqA1mT8+ArwqIp03CMABCEjHKwek10LyOsBuai6EC9DEiVGIm0iJchK/TRnQX4RsBNUQETc+KGmKad2ImiiPHiGAE1BjTHBPQp5gFhxgK62sB1afN1obmpDnEDP+UlurmawF9jHBrqq/wMUMuGWI7g8ImESLqB2SoadCUHws/SQ9IRxDLc8JFEJN4D8c0FVHkNNxXQZOQkU91yHkkcR5pqc/ykYzEmXiPiwmSKyB9zPVjHwGPSUjRkx7ATON0HkCGvJaGdAnX5bqzyBKfz/aemMqNcuqHB9BWTs4Gaoh556sUIopFfvTuoTTvNOiL/jrHOZ2VfcZIpjo9zONh/SeobYbcLo4fnW/6Xx+/xeO9Niw7Z/DT3Q0+PV1g9CrBMAR+WV2hToYSe0g+1Rc4DQYvj8SP64aKYgaKiNEpvOlbHPsKn+qLrLhpR42DDOisRjdUeCG3sx3scaDu60eDwRJ8xY4a+75G35E82t2pJQXNUiwiCLwxK2jtcTw0EAKZd8US28FJfOYvsrAGQzlY+pt3u52jBaQfJX5t6W3lncK9auFOGgcn0XcVbGdgR5J7dzYZDDLiF5YUMQUAbyW6rqIFDIsaWTUjyvddRbEB0/2sHHk3KgQn0RWB1E+6QbASQ2/gncy73TsVEVJZvtcYB4NgJY6nGmFUUxmdxsuwRegVbK/pvsSRusUawUmcFrAQpIU374q+cQTtZb4SAMRRkgETBYbeUDsSd+f17YaMglHCGVLvHDuTICfp/p4MjlNSDe1VJGNAAhglvEoxAAeJaAUG2wBewOkAWIkuxdU79TR2I+/WBgExSOIZ7Wj+eBFhdQUMEl5SnuN9TWm9gO8VfCGDLoLAwUqKSWYlek8wUDgB5UgVc7hrIKyclNmkgmdRjwB4SeVSTDCBUEBxhBUIiVfEMbGcryCsAIKAjwayl/DC0DkAUFRHEQRxp6KBHCQpgEbAJgPUS+R7OOi3t5LyQ0VGijMIMiKktD5xl4SlusZR5h9lOZD33SUjQDiqs3ACYWfoh1bSAl6mRXx0ZlrsjFSH6E1aNAiKscefB0kcJUvlsrER76s8/6QViL5K4wvI1AciEncu/3jyD/UoIVkN1FI9pROIB+KTcXpa+AhAJGVPKxCTwRrlpI7phSZemkhxI/OCS0AeFWKvoAbiOk1cMUFKpYLq4KOBHAQARRw2r/KCDykNIhA85RVSzDocJbU/cbQgp3YJD6gTzXUIgTiADGsnKP5lAKKNqTxKiwDEUVHeAlAHRYvLo8xGGatMhlFl/pawgD5N44YIqKNMyq4ic7VEcV4E+ixi6ksBRCEmgzIt8FnJlOMR8mJbBOYR0Tk1pDkjgOjTnLPToixiWuypUeRFNE1KXmwLoloGEFSPn1+eZ2kuikhcOlauZQ+T6pE9ellRs1xkBmSuHC/uBRI/LCEAee5m5VKRDCNeEHLIT+4ji2lx66Y0mTdHQzBx0wqOmMjzi+cs8oKU+YnUPuQ4jaFY0WSDIZXHoCBfi0cX1l/kiMzB4+8CFO6i5DWGef1ioN/soEXuj9xXnJ6NljTFqG9Fzqcsjz6QAZ+fxUj5l0ZFFADUlC9fD5xvOscL8LJfYrovqKnOZLjx95j5hFmxltOZOR+RPwczpSODmd7fwfC5NIbpcxQCAnFS15XTOHK/hPRs8vXc7iLNg/8RExKAeZmiKFuV48d9Oh+LbARBFM51kfskpAVDlJNBOuN1sgFVjm9pqHIZYjKYOL8oRf7P6aOYzpdjwfmWfc7P4PKYjDruQJGMX3E2Ha0L5l7fd3pOyzrlDM/X53zd3lYG1xtIeF/gryAqM2KOjvpdO95rw/JJdcR/+O0/RR81KN4jxbBjwZtToMV59oYkAR0pYuYMlp5Evu4hM4QVAFo5YghmpjIbIDIUkiG2BK1UM06iFCGfX5YnRcgcSiMCbPHWCknVlQ8uyyQ12wnKqSBFgEsQVf7MUFqOj8iCOiz0wn1SxoDk/9w+rm/5AJTqtksYKtebD4YSc4xHvs79eO6/iyrDhik+osswW24Hq+kuH8zyewkhXUJmy885fuAHUzzEUvwHQIYJZpXXBBfmvmIIcdnPDNctYcdcr5KvyX3K361XiACMDLNyGRpbKg4v4b9lfqUQD6dl3plJsGieV1LEHCaGNwPLo3wtL8c8xglmzfH92INcQnb5Xm4//39M0ZbzVwV01geZeWdlX/JnPpaQ4DJ/n9RVOUZgVlvmBXrR+BIyzJDfEh7LarIMtWWo+Tbx70rV2RI+y+k2RVu4X0tIqvUKW2MxpviTJUR4qbobFnMtFue4L8v0zimsUww+X8BeAeIptSm2Hdffe5nhqwxPncrm/Kff8HOKx5w/x8Gr5KT2uzz4flbONQVsm8swgvLSspw/9F+lulgW80n35/HXU9/zzBmTAm+MwJjG17KyLei5YAXrUmVWFu0E0ru6nNNp46s8LwDY9N35aeGeIa6FeyArz4qpj4UAxlKtVsQZ/HXGyeJrKmK0pFj8AB7KdROgTbgSYszwTgCCQ944mUO60KCKuRJoCQct4ZEMW43IYV5yfbk9zKXiPighoqV7g/stt2Fxne8tobVIdVDT+HzpoxzfvABPf6WRUIiocBsz3DRttFEWcXZtBl8tX8jlef7uBKDCvK/LPsE8j0mwaeqnWT2KMRRBPGgq/eSVVgTYusr50b1YpEGCzaa2l3UrynqIcY1TtmV/FGMuyqQPb33Yd4uhX7bvQQgNfvbCfFqW905lLuYfSsN0UdY5A4l3FB60ozjBOz7n/mORtmjj1K1n4L+5nMfPvbXdZdpy7v0Gx29srP4VP8q18u/a8V4blrVw+KPmV3jpLuAhYQQJfhxDjT4a/J56hWOoUQmHY6ixlgPuPEFWt7JHHw0ZcMLh1m1wqU/ZGG2Ew0oO6KPBK7vFpb6FjSobQEMwuE4Ks2/cGis5wkeJlRrwxq1xqUiw4BQqSESo4k0rRcDJ17BR4TJhd4ZgcjopAozwuHerZERKNNLCRoU+mGw4hyhgpIcRPqvbhihQS5fzPvkaQ9DYqAGnUOXPSgTYqHDvSPnWhYl3Sn3pc17lcQoVjKAyPWRO03mTy6U2kvFuhMfR16iky3kOwaCWFkMwaNWIzlfQKT4o18GIgLUecGdbbNSALo1LK0ncZeeabGRLRNgoYUTIRizX7+hqqqNys40AFxV8FBQ7NCh81NxDiohP+wvU0qe20IPP9ckbDcqSaI+rUzsVTBpfNqYBYK0HhChT3NOYub0HVyXF3HpmVAMk0iRFwN6Rp9FH4umu9Zh5w3xfLT2GoLLxrpLxfW8bNMqhVRZ7V2fO7pXp0PkKe0fjoYo39eB5I4TqyYazlh5j4QZg3jKX56NA7w0alYRQkrpvKTLlosyhZ5jHzP9ZPIjms0SVRHQ4pM7oFVba4mBrbMyA3uvMSSaBH5Hv400T7n9Oz/WvpMt1ODl69nkzpVKJH5n40mXIoUnYyOW8tPBwUeV+GoPCTU3P8u2wysY3iyFlzrKIWGmCOXO+JSeY48eGKLAxA+6HFpdJMMkXxiQrFXMbKulwtHU25mrtckzbOrXNJng4AFxUPXZjAxsUWm1nmwUrPeJ+ILi3kgGdM1ibMQswLTfJeAOM82Lo/OA1PXdh4pRzep3y5c0Zl561kq/tgsyiSjw/+VkGgN4Z1ElAquQwlxzsTTWQGrAnREmtksiIIyi/TBswALAyYxa1YQVnFjWiDSWBlbGzDSnrVZ7bUhBnuyl44ADxpjnmLnO+6d0d4KPI6fN7M6kx85jUaRON68DPHSs5+2JTpxT30TIggjYOtAwkeFUPiFFMBjLma27rVRZu4zbqot6j09DKo05tYlEqfo51ahO33XmK30t9JSEFoBMlYbAamkPvBAGjwiwdc8eZr808a6T21UklmXnXHPOXYwLLtCFnlJ/xuo32WczmqxxGeYxJiIrrw5tCY+oTfqYjpg2mGAGtQt70KTnby2t8cBoAOeRQyQ02hYr0kqvNRxkmibnV/J5Y8phLZBVvJE2bafPQRWWYmXy+2LjhDScK40ObaTKVn+sGdi5NHPdsMxZhd2b2QsTE5y3aiHyPeGCVnCVHuvUAACAASURBVBOiyRth5YbD8qEoypwb62J+rWxQmR5A5uQu83vbUeb/wNj+isdyo+LcdbAhPOfZLtPMNnPK7+8q/wvX9e3tfaeR+9fH13q814blJ8Ml/rMf/v0cMsCll5dWAVp5nAYyRiLox5Ff+lLErD4G0A49K5fpFKDce5ljua3bEf1osugEv5hdgp5WFcnjU7B0BVM5Cg4fKeA6i2SULzKZQgWM47SgL39kYhBQOuTdcoamTrHLkM/HIKb0aZdfygg3KEgdMo9MGroevMiwVJWClkNEhMSvE0A+F72YiUlIHREDsvCCkNN9nCfvEPOut9RU5ux8UjELdrpX6JA5fTEIxEFBNo5gbSnIeubC1T7DUx/ET+MfCxEhmG9XQlkZtgoQf1BEhCTdL1aOoLCJq4YICglQvrzGdHMKKA8Vp91zx/eJKVg778zLSDv9nF7lN/m0i+8SpFPH6Y2pInEOBQgqWKUdav5x5T7Pkz3Vm0MIgNLKXqZQA8RXo13iOO0A8/1iUafyN85NQdWRAk5HnfhgMX0eE0+OeYUyZm+FcALRxCmfOMnpz3btGTKkE8zTUL7QMe2sT3XherHHgKFAspeIJk5p0hwUHohVLHbRxdyrwm32DPubyuDP5MWJk6dFReLsAQhtmH6kfXFP+iGWCTYcasb/oZCDn54fOUiEJkD2kniAhTdB9TKHqGAeTijWyizPX3L1Sqgey/5HmWC1foJQSVuEBEj5qoG4erM+QBozB1q8aQo7EPUUyoIhzRBxgii7xEc0U1vzHGPPV5hCHTD/SUTkcwAQdIR0IgUfp/k6cX9oXFVP9Z/BLyOIq8hzLC2K1Ji4h57gl74h+CgHfc+wTH404xSGIwuKSEoTBQrYaeo7rpuY+i0qgr6WR9BxBpXj9uY+TPOcYavcXmmpHER+Rqf2yRRy4pjCXWQoXGo7e2qiojFkfiNf43qHivpQWuoX5muJOEFPARA0MtD/IeUTDF3nvUpfTZ+jBPrEJct8uASLZZgltYP7CAgcriP1p/eAS2EiOFSJr4A40nef2uFHIDT4yod1xbOWyvNIdTVUjygBWGTYJr9j45jqqwA4GkeR5kpkyC/bXZH6MBt6S/iiAEQPyKqYe0XYjRmUOsE9pQVE6huumyhhxDwfijnB8PIo07POvxc859WUB+cpLSYoKcOR07MRDPK7kH/iZmWEaUxzU8N0D0NVy3PECUSGxE5GUlovyem3TDA8ZWkUianNZd2m36apTeUxM3JKL/Xi/pkxlo3OIt2yTstzi/Ie/A9T/z1mGGeb+xFj7Fzej9XjbP2LfN55LNtavI++qNfzHIfyXcfPvvQdfwlH/N0ON/JeG5Yf1Hv8x9/7X9FHgzGSJ8ODdzcT1A+0q8//2dtohIcv3hI2KhjhyStZPJXsOfFRzryO/J1370vPQxmzkvM+p5h6Dg7J/z3kLA/2DnLaZV5vg6QyxJTqLVI4Dp+9duy5mtpK+fDOOMNslwd7e84pspZemBBF9iwuz5X9bKPMEGAfp/Hi9pSfy/w5P/JWzvvJFZDWnHbx1uV2L+u87NPl8bY0b4Op8nUXVa4bjxHXpQxPU35+rB7Lsh7Oh4dz57G0b8u7rP+kDjsp1S7hj3zEYrzPta1s37n2nhsb9hQ9Vu/H1GUf66dzsNxzSrnL/JbntQzv7M/l8bYxWNj2+dwyv8fG9lx9H4MgP3Ys+3NZ9tvmwvL/Fz3YY1X+/6L15TSP1ftcX5X9zJ9DFKgKDxF7f8Qj8+5d7V16esrPfL9+x7icVW/G3KNUwnP5swT14bJM7gNuE7//XV4YixyaQYh0vlh1xsLD9q6xzkVymqL+EfN8sfy+yG9cDsHi+6P1iHigxPtljrNz71x259r/tmK/ykJzaUQsJzHnu5yvcTK0zhoz5f2Pnfsq9T1XP2Da5OTvZ8bsbJ3KNp5NwPnFeTe8w2A6+3h/gTF+pyftSxhNj5X92O1vHY1H+v2xMnKeXyLtFzME351myu+LzK9HYL1/fXytx3ttWJ5Chf+3+yYOvsYYdIaqMcSRYXtsYGgRMnSwVi7HBmO4H0PaGIrHhsrJmczpKxdolfQIEOidyRDMSvkcWxHALBQJMBlIDKNb6ZGMjGygkkeVYqKZBxCx5eIzw5XEFJ6E69coizHoHBqFeXAcvzBEioGnRJi4fFwPUJ+VPE8AOdwI3xMgoETIHEM2FgJEhlMtDQDuQx9k5uSJxXcppnAjzNcLcYofNyTv8zLsyHLBxzC3coFd1skmvtu6IojtYaxmnEMAM1gaQPxHPs958qGKxRJD38r7VTKISt5kaQToAurFeZMX3s/4lgAytGsZksQHkcONOK8QIvEEeQ7YxD0sy2Y+YRlCpAwpwke50OdFG5cnRIR1KsOzyvt5Ma5kzDHWQtHGKf9kaHM/JDXeUpWXuaC88cH9znMo939Kz3xEkfKXRR/yIpzL9ouxLDeAyv6aoGQit6XiuWl1XryTITLlKQQe5YWWEDOGxpX9WRqDWoU8N/j+EmLG8DbvH3JBAcBoD5vixEkZZ2FBlApwKQadlCErFzMSgutZtonbSeFGZP5eps+Gjoz5emnkMJSP4XeUX5y1LUZAKW4bXfd+3r8lvM1UjhSUQ1k2qR+zscRplSZhM+Zkeqcodl0K9RKLeVkKsTF8T/B7SJLL5VwYE84nG1ZRQCo/W0SFKGYIiwzzw1TXEsLI50mYLQk1LfqWkSUqKfOWfFWOacfQQyFBYjPs6QcIcRJJmIlF20j5uLjfpy8RiIWyikjIoBLlAgDBJ2lMgclTDYCUuWI2iLLhWloGiTOaxy8tnJchVoKThDgpeJZCBYThTKT7L3qoSMgTYEIt8MLdT+XMQmjE4t6FYZ6vy6ltZ60EXkZweVEQz5WRMRHkJfeL/AHMlYSKOi7LLQ3Vsl1cfiEUNJvQ7OVjvmbJtxWYoVdEWd+i3pxmqjPOW2lRnPfK5XuK7yl/wfPj3J7F0gA/t5nDdS8hrY8YNGLZPwIofASPGolldz5qUpXtWFqYyz5dHuHR5k31fqzML3P+XXkux/QLGJDltP1dOCIedxT8LhzvtWFJC/WAz/oLuCDxzdUdAODT7hK33Qp/cPUSe1vjuurwotviO5tb/OJwDSUDvrt5jc/dBgdb42lzwK/2V/jm9g4vuw1q5fC83eOjZoc72+JHb57h2xdvcLA1emewMmQMfrTaAQB+ub/CtqKwDit9xIvTBr9/cQsA+Kxf4arpoEXypoF2pI9jhf1Q428/+RQBAi+6LVZ6xEqPUCLixhzxw/0HOFrCYT1pjuitxn6siUuXFjFP2wO0DHhaH/Hj3TNYr3DTHPFmWOFvX32Cn59u8OK0xR9efI4f7Z7jZCt8uN5hqwd03uAvjk+xrYd03wlvegr83GiH3mk8Xx+w0iN6R0brfqyxMSM2ZsAYNI62wrPmhJf9Bmsz4OSqbBx1tsXajHh9vMBFM2BTDeicQWcNblq654PNHocUzHvf17hZn3DfNWgri3/h6hV+ePscT9sDbvs1OktBwJ81B/xfr76BbYrLyAaBkgGttqikR5VEeH61v4IPIgejjlHgpj3hrm9hitAr/9rznwMA/rdffw+resxlmhT0mj0VWgV8tKZxf3HaQoAMiVVlKWj56ojbbgUtA37/4jX2tsZnxwuszYjdWOOmPeHz4waXKWg6K/5W2kPJgG9u7/C0OuLP7z9AiALWK+z7OvVTjW9vb/Hju2cwkgKN74YGfdrQqLWDkR6f7C6gpMMHqwN+ubtEjAIrM+KPn/4cPz0+wU/vbrCuRqwNGdNHW+E4VhAi5nEfU504YD3DyJ+ujrjraVzXZkDvDV4cNniyOmKlR3xyuMR3L1/jL+6e4rLpAVBs0G40qI3Ds9URnx22eLo64k3fQomIXV9nHtS6Jv7h2owIEHh1WOOj7R6/vLvCty7u8eK0wWA1rFdYNQNOQ4UQBS7bHkZ5nKzJEPjvXb/Gy25D4wegrSy29YDr+oSf3j2BD9S/tXF5Y+Gua6BkhA8Cz9ZHxCjw2X4LJQOFxzlSMPKLZsCuJ97jZdvjvmvwLz7/BFoE/O+//k4ObbNtBrw+rMh4ExGV9vjWxRtUyuPHt09zLNFa03w9jSZzx757/Rp//vkH+P6zF/jx7VP0o8nw/e8/e4G7oYWPEidr8KQ94WdvrvOmyUdbCj30q7tLXK8p8PpxqFBp4hj+yUc/x//x6e9hsBpX6w6XaS4Z5fGHl5/jT198C84rXLY9Xu3X+Phqh892WzzdHEnpmjcFgsDFqoeRAXddg2ebI/ZDjeumw2f7LW5SEHubVLsB4OnmiMuqxy93l1hXFqNXGCxtCK5roh3UxuVQRZtqwCe7C2gV0FuNj7Z7BAh8ttvi44sdPj9sMq9zVY9wqSyjPP6Nb/x/7L1JrC1beib0rS6a3Z1zz23yvedMO03ZZUOVpepAqgLKBWIEJWaFGIDEBJiboikxQ2LGACFREgZmCBWIQYkBglnJjJDKEr3KOJ1OZ/O625xzdhfN6hj861+xIs4+99738j2nX8pLuvfsHbFitRGx17++//++P8Dv3X8Lr84rKBnx0WaPRlv8P59/gF1L9+exr6FkwK8//Rz/52cf4XrV4Re3t/i/Pv8Qv/HiE/yj1y9oUy5I/OKTW/ggsa16SBHx6WmH41ChNg5GBpxGg29tjvBB4n5ooGXAi9UBf3T/BNt6hAsSg9PorcbT9RmHocKfefIaLsjssfCqW+PQ1zkW8cPtAYOnDcLTWFHMptX4zu4eADAGheNY47u71/jB/ilq7fD6tMKuGfLz99Fmj++9foa/+gs/wMHV+Oy8RastuhSnujED7scWb85tfs6+s72DFgEvmgNeDRv0XuP7t0/xwfaAP7v7HP/Hm1/A0+aEK9NjrQf88HSDXdWh9wafnnZotcWr8yq389PTFq2x+M7mFkpE/N+vPsRNe4YQEcexxrP2hEZb/OD+BjftGcexxqYa0vNH7O1XbQ8lA14d1/jlmzc4jDVOY4XBajxZdfj2htYAPzw8wUebe/z+m2f41ZtX+Ph4heumw8lW+I0nH+N3fvJnvvS649tX9/jB7RPEKPBk1eXNzrUe8Ye3N3iy6nAaK3y43WM/NHBBorMaMdIzfXYV3nQrvFgf0TmT34/fvX4DFxXu+jaH7GxTnDgA3PUtSs3ezmr8hecf4w/2z2gMhxrf2d3iTb/OcmFSRNTa4a6jaz/YHPDpcZvHd/QKNy1JjL08bbKElxAR23rEaaywSeuD82jwfH3C4DV6p1Epj1Zb3PYtbtozfJR4fVohRoFfuLrHyVaIUWBX97jrW9x3DT7YHvDJYQuANsUrTZvGN+0ZLkrcdQ1aQ3wI56HKm6aNcdCK4vrPo8G5r1BVNO619qhSnHI/mvwu4E3EGAW6oYIxLsusSRkoHjhIWKegVMAwaNS1wzBoGONnJGXeS6ybMSkPIL37Js8M3nQzxuVQKqUozKbSDl36TeJNNedUvo7jjPNmbgq3ipHer5rDdRZxslr7XI5zEnVNIVhahxyPy5t0fI2zGlL5vBnI9dLfKR5WJj1i3mCTuY3I/QgpllmANs+mTa+0Acqb7MsN+DjpLHP+0h4WRRmXvnMZEPFR2/qbkH6eXWFF/BNIxfu+6Tt/fhf/7b/317FVPc6hwhu3hkLAM3OEER4/Hp/ACI+jr7FRA/auwU73sFHh4BpU0qGWDgfX4MacsHcN6kQIsndtJjn5sNnj1bDBWg8wwmNIARZ7R0jpB80+s7sebIOb6ow720KKgJ0ecEpBOiWTa6ssaunwcbfLhB6MLoYocHYVnjUnag8ETq5CJT1aZfMNGSBwsERO03uDZ80RIcpMdPLJmX7cd6bH636NtRlQKY+zq3I9L9oDzqnso6ux0cMMbTzaeoY4cjuZcKVSHidbZdKOEoFc6REnW+NJc8bZVRgc6Vg2yuIwNthWPe7HFmtNRkQlXT4+Bo27vsV102E/NFiZEZX0uBtaDF7haXue6WvKNK7WExLMY72phkz+wa7Mx5E0QV2Q2FYDtPD4wd0NAODF5ggbVG6rDzJriTJxyXFMBE9pQVEiWaexygQfx4GMNf6hNDKgswatseidzvn4+hAFDn0N5yV2qz4jlJXyyfgKOA0Vdm0PH2Q2/jJSF4nddFuP6J1GNxpsmoGMX6dxf2xQ1w6bZsDoFFyBfPKPGzOpMhrs+YcpGUCsRerSj6eUEW1l0VtNTKPNiGNXY9UME7IqIrQK8EFgsBpNZbPx4IJEY1z+cRsTOkSIJ1AbyruqLU59BZMMcCUjBkdkIUJEDNakH2EiholR4NRVMMajqUjH0nqS1nFOom1s7jv3JQQJk9oiBMU/CwFUxiECGEeNuqLPNsVjCxFhrYYxDqdDgxgEtlddvh+sVfka/qEf+goxAHVr87uM0TtGBoWIGPoKq3WP06FB3drEWErldqeKJCcASBXgRoVmNWZSkGEgAb2mHUkWSUSYFO8NAMO+RrUdobUnuR9PCBAiaZVW2zHFkWvUzYi+qyh2fNTQxudFgRDUxxgontwOGjLFTuvawVuVWU6ZcdWNGtEL6NonBIwWOSJpp/KiRWkPbxXCqKBaR/HaKXYcAHTt4QYFVYW86AhWZn3SGATifYXYeIq1jkAcSXNTbS2CpcWbTHHm8aQht5Y0WgdJn/cGYuUzshY7NSE9EYCJEztqSAhSr2iFk44LKxEbT8gSAOjUvl4BJkCcKT8jItEEipNmtt1xiqfNW/eKNEYpAyg2MsXkIlAdSPIxUCSnFFcecq8pns9EwCPHw3LsbDQxxfRSbK+IoBjnFPcZWjouBwHfRorPTTGzvo5ZUiVUdC5UVB6Q4n0DSEIGgFuFLFUTVSrHA6FJcdUpRjfHIosivraKJImT2gVJ7STtTpLhoJjZCNUnfcYUI6fPAnb35fVG5JhikCNy+wWofJ/bTvVn+Ys0VapHltSQFikmHJNEkIg5nhgRFBcuyI2TJV4y0CMBfaK2ZB3GQVCMbil94qcYXzlSrK1M4xsFZmNaMqJS/HIacwkEFaEGkcebJHaoXSwrw7GnqscshjNqbh/F6VKFmKRlONaWdRnFNG4iUhmEiCJrweZjfD7lnyFbxVjNUK841R0FshZkqXW5tFg4fpXTEnQWcRrzHOsYp7LL9jBYxXXnY+9CO/EQdCY0FbO45Fn5RZnL2NtleoAMPoaA8vcSwX5Q1vzgA13JS1DtW9Klfj9IDyzUh1n+9//i3/ndGONfeXttX2968usv4t/4r//WV17u3/9n/u7PvG/AN9yw/ODP3cR/47/957B3LTGQpti8MWh0iZ2SGTtLxtEAgVZZ2gWOEo2y2I8tIXNpd7BRDrVyGLzG0dVolE3GmJy5vUpE7G2T2Q1Z5oMZKHtvZhIe7Kg3BpV3vkNqM7NwsrsmG4AAshvjMn6Jd0u1IIMxRmIHHLzG1pCBZj2xNfZez1ggXZDonMkuvUoQkyMbNOzuW8apsKuwkeSaye6y7CJbxi+5IFFJMjxN2j1ltkQ2QGvtMCSGPTa+Bq9gZECtHTprUGtHRkFCUo30OI71xZjOkqXPB4mhMG5yfGmSEVAionfU36crQqdu025xncab+wFMLryNdtnFFZhkL2K6J8ZkWDeaGDFtMsyZnXFMBjgzC3ISImZjc2JKFXCJXMonl+bB6WTsTcYfu6YyMZVMu8GDTSymKmBdjVnvlY1HrmPpCssGSukay+VwXqOofucljPa5bibCkskAdF5ml2V2wdQqZHdZVzBUMtrNbrSDU6i1z3+dl9kIZwbKmD6zZi2/0Tg/b3Tw/cFGaenKqop7lu/3kvmzdDXm54OfRZbjWDcjGbR9lQ0vdivl71LGbAyX85/j27K7KfL8NRVJjrDBCQC1cdklmGVFrJvce9noHUcNrUPa/Z6ub+sR3VDlHXHugxBY7LBT+40hgjKtA5ybVldcF7dd65B36zl/uXsOkPEsZYS16oGrLO+ss3FJ/UCuk9sLIJfvvcyujiU7JURE21iMVs/qFoI0iGUy1DmvMWRkSxVgjMfQG1S1hR113lXn63kcnZOIhSRJDBLaeBrv5PrJu/5lHnaBpc0MP4939POQBzbImfCBnxVGr6lMMbnyinkcaOR71CpUjSOkoWAGBSbEwXtJjJ5ekYsuMHMv9k5CqpjZPQUAxfOf+hiDzBsGwQtIdr9NBGe8QcJlUfuRNxj4eOSFP0t0JPdXLkuaJH0SRHb3lYloLaaNkmAl5XMyu6ZKE+D7L++sJY1HsIqMBjVZeqzpzJsaQgdqO29EABA6uUn7hStvQNr8mJPlZXdtAJmYTkzfRe1JW5fP8ybHEsbhMpk4rtA+ziRyBcEedRRz99cgCldeTHkKortZPSUhWsDk7lzKqpRGAIrPEXPXWIEcg5nJ1kqitdIou2hwJISLZU3K4WFD7F2ssGxMXzJs2HBbGHLAZPRNFRZtXFqnwFRB+bE4Vh5/29+HY/BI38rzF9Jj2d8bGuR7f9HGXP77lLNsd2mUfkET5nv/4c/esLz+9RfxN/+rf+UrL/d//Gf/859534BvuCusDQr/6PAtPK3PGILCJ90OAHBddbgyHX50eoJKenTO4Kru8P3DUzxtTnBB4ePjFWrt0GqLz89bvFgd8Ml5h201YHAan523OPY1Ku3xS1dv8PHxCq2xRNhjSUrhx4cWPgj8wm6PNz25yO37Gt/aHPGj/RMIEXHV9LizJhshMi0o19WIRlv83qsX0DKgqSycVxgdIW7jqPFke8507qfkblWp6Q0VosDnxw3FSqb8SHlXlcUPPnuKurFY1SP+8HCDzWqAVgGf7bd5Ufd0e8J910CrgPNQEcIlIsahglEBL/sNnJN5MbBpB/RWwyaDpTIOXVehacfsZsJxXZX2GJ3Ctk1ug2nh2lYWr48rrGqLz+62WLcD+tFg0w64Pa6waQechgrnU4PtpsPnt1tUtYNRHp+92SFYie1Vh2HUacGrUmyXgLOqcAEB2tWQUSUpA4QA+t7AGKJDX7c0Jr/3Bx8BEdi9OGK0GmOvoStinq0bm91CQhD4/LSDEJHOR6CqPGxa0NlB58WSOxlAB5jG5QWbGzR07eBGDV05xCAzNXsIEi+PBvACcktolpC04L19vSEk6KyhtpZiu0YFWfncLmbwrdcjnNXwvYJZUTluVHh1R+hNRmt4QSIBWXkgYmIGTotCZunNMYCDgqjSYiYt1uTKIXSaWFRXDvGoITaOGHwjLXaY+Tf2CqJ1hNZUtJBSGbmihRk93LQIla3D4WQg1xaHgwFanxGp0CtajAlQeWlhJRKj7vHeINYBckUoZBypzWIUiBsuJ1CdPBZVmBYYA8WQofFUtpWpzaDPqW6MEqg9hh9sgSAQno95EY1BQrR+WkA6AXlWhG7s/FQX5zdTzFR/VAhPLMY3G/itTygWNXO810m4nlhvZS8Rtj4vuERHYx83DmOnCPEqUDD3Zgt74wEdMHYqo1IiCIxnAfvEE5IwCsSVhztohDbAdpJYbzmJCJuYmmMdYM/ExCtHAb8KsL0kplsBQskAuLOEdHSekSkoWjjKka5HYj/2ZwlhBfwm0BjpiHikefHrgHiS8E2YYrwSuhLTWI2vNnCriNDQ99gTKuauQmZVzWylBwF/HRAHCXGmz/5uhbAJE/J0TG5bIS1w65jQP5HRm0AetogmrXl7AawisYAC9KurIkQvIAyAY4qH5IVTFYGEsEEAskti6AKQCbWCBORZ5Oc3qAh5FpCrpBFYAcIis6zqTiBuI9QbASkJ0ROJ1RmJqTVUgDAR6iwQ6gjVUflqpDGKAhBrOq47wK0BkRhipQdcM6FwzBgbaiApb8HXVI8aqA92C8gRmVFWWWqLT+UwcuSbos9DKqsBzJHylIyjqqe8vqF67Bowp1TmSPNjDhH9zaPL5Xcm3QGOVMsIIU3GhnA0Jtx21dPYA8jMtvqU2lxNqB4jmOY0fZ5QQ2SUjNlUeWEeFVDda7gVGWBR01gzC/IMMdN0jeppTuQ41U1zEOEbYlhmWgVpaWwz06wCVB8RlcjIl/ARwQioke7PYOjdpbuIwAyxiUU3GAHVUz3AdH0UdD0E4I2A9PSeCEpM96dPLMf8jBkB4WJGKzNimfqUUbkwjZ30Rf94XAqjNHJfmeWZEd+IzPbM81kaR6XBVJY5IcYRQU99BrBAUIt7MU71AciI5qy+EBGlmP5G+itdRFA0frF8n6RyIWhMqbx40SDLbSqM7DzXiz5zP0oUfZaWxxbtWdrTD9pQXE9tisiB4/nEF7QqAXzvC1/xp+mLpm+0Yfktc4//4Dv/E/po0AeTtBk1JALOsYa5cbBRz9hfPQRs1GhE0oWMBhJ0XSMtTqFGI8ZZPYfQonlm0/XE1mqjSjqXFWxUuTwpYtZpBJI+ZXqbKITieg0PgeYDO2OyLfOyziaApMsoZuVxUoiQSZeSU4gSq18a0UcN0ur06JOfCmtlhijzuLGGpo0qM96WTLglO26AmLHq8nXE7KryNSVzbkkCxN/5L2tzMpsu94O1KJkdl8eJ3JH1oyy00xgk7bdCl5M/c11cZv2Rg0LAOVDMHmtyKoQ85jNktGhnOW+EBKtZ/qUQLsXZ+hlTLydyxZY5sJvZcVs1Jl3QkPoeMgrL5Zesufx9DDoTUXHZJ1/NyKkAZPZcJrriOef2MtpbEjRx/2yUiWk4ZA8BPsZsv5y4/exdwO1dspjy/cnkWqydCSBrSS7ZZfN4p7Fj8q7cn9RGKcKD4yUzMCctQnYLlwViWRJAzdtM5bDXAx8LRT+lCJk8i1Hpsgy+d9gzYgwaza9ajH7+quYYYpo7lYnLuB9lTDePVUkW0CiL3pM+Y+lRweOWzyWEnZluL7ENl4RTJSPukiG3nOP5uNDf0lOCvy+ZZtmzgonDlv1aziPraLI2Jl87hqlP3C+dPDaUDPReSvGHpYZm6REBzAmYyjzM8db0aQAAIABJREFUSMt5+R5avq9CJA+TWIwFI9GXTJ8lELVk/bVFPVx3SZbGc5VBsOK9uUTjLzHfsh4k3xd8Lbvj87Xsls/yX3TtROAVo4AOc01GxYRTYd7z5VgCU1hJbvdivGTKqwq9SD4f0/EvnUSE5OtFnCHDSJJbMQgEOSHCjJi7Qi4sCmSkPkYBJGS6ZJ0tUeWL7NSJGIrX1xldXnxmrwApy/KmfPn7EkoqvpfkYQ9YiXnjEVTGA8bfOKHKGZFdTBrpTGIyaKK4jEbFOXnY/Pql4bG8trwgfY+L9jxmJC3z/zTpXfbQY+hhfExjMj5yfFFWjA9fLG8bI+Ct/X0n2vi+aOQ7Et2Klxhg32Multf89+/Rpj+G9PMcY/mNNixPocb/dv6VbFSdfQ0AMNJBIeKcnPlZSuTgG2xVjz6YbJiwkVJLlxbuZHTYqPJC7dqccfT1zMAJUWS5jp3uMaTF7hB0drlVYi6qDtDCh+uTIuDgSFCLF8G8iA9RpjxpwZkW/qUxIJOLLy/Aa+Vy+UZ6HGyNSpLY9/3YYKVtXlSPaTtxa4aZ4Dkv3nkRzPGUvCCppM/stLxwZBbc5cKTF9+V9BgzA++0qC4ZdJm5tncGjSa3496bvABmN+Gzo4D+dSIP4sU/Gxncthz0n9h5eWEJzEXoK+mhpcerbgMA2NU9Macmo7dcOHMaPEnbsLFcLt4Gr3M9zFy7HAf+zuWWi2HrFUav0Jop/k4XLKaDV2gSAQuXwT/qeTGdXHV5jAFaAHeWiBmq5IYcMS0sy0VaaaD7tCDjPnKdLIIuRczuv+wePjiNKrkBA8iou48CzitU2mWhdWDOpJsNiNQXdhmutEvxnSEbGxxjCyDHi+b6REQ/moyc8/iweLpWIedj5lxeBPOiiRfCfMwVRAvMbMsC7lqFTOywqi2YSZfrKr8TEYxAXcRzToypE1suEQtRjCnH0uZ7MDHP8rEQBCrt8/xxrGqlE8tymgMuYRgMqspN7umFC661CnXtZuQSY4op5XxTjCUTTYiZ2y+7rLL7Lv1Lc5xYWsuY0ZK5lseA3XO5LB4rdovVyfWTmU55HLiuGIGxN1A6ZPIJdps1FbmEIk5SGt4paOPJFdUL6MrDjal8NmjSuPLCVybWWl5QZ3ZUgNhVI+ZumxHZ5TMklDo6iXL7XqiQrwWQy6NCkcc9ODlt4IuYvQu4jMgswTIiWglZe/IsKGJQs/HASLcK5I3AzKcRmDG2mkDHvZjHlkYkV9PUoKV2b3mMYz+Tnm7uV+maWbat0LnN+VWc2FBT/0mjViT0Lj7UzE1arXJMsahfMs20XENCnCKmepN0hij0kvO82eSKmbWP00JfYNKbLcZxFi9Xjm/qM+nGpvMCcx1LNhxT3CAABI4hZCRUYK5BWbwkGH0rUTaOoWW3UkL64nxeANJjLtGt1OesO8vHi7q4D5OpNLWH82Zbt4jty3qW+V6Yyp257HKeAoksE/V1uu8eGDHFXMwvnLczlv3m62SRt2zjJUN22Zf3ibFM8/TT6li+rY5Zu5b9uHD9W9MXNTgfM/i/aL1/QlJcbGL/vKVvtGHZCItfqz9GgExalmqGHhFaSQilEgFj1A+MQ85nhMvoFSFXda7HCI8brWZIIaFZER4CHNXl01OnEnLHyAOAGbpXfu6NmSF85S48o4jlcU4TojXX1+RjRnjsDbESGuHxop60NRlZdUFmZO4S6seo3KVd9nKsPOa7v9koSEY6I49Lw/MSmhOqaf5cVNDJ8KfyuP1yhorx7nWJ/F1C8ZaIHp9Xgtj3AGT0xpV50rgzcsb1lue5TYwmllqbUwxqmPq5QDF53Eo9zbJe3pwoDdKL18c5SlSiEaPX0NIvxl3M0KhL0jDlXJXjyp95XFyUtEGS5u1iHxf3d4mu8fmyXpbZ0SLANXPU55KO5QyBaabx4OQSmlIiTy6U98M0XiyhU+7Sl8bdctfeNTJvViz7W37n+rhdy7kq26plgK3HzHKY31mFUc1GtlGTYfkuXdGxUVk2h/o6IUAc61y2oUTclm0tfyDfthYo1ySXPAwupbIfy2OMDC77Wb5nXDNmKRyA5syH+QbCVC6hZhxjrFW654r7p5TIudR+UYz9Y+86/s6bNmHRB1lstHCbsfjOxvcc0ZrQp0vyNVJGuLRhwOeXCFQZn8koW5lvYoOcS8ksV6Fc5wxF4rp4TgsmybJvHKeZ2ygnq2PZzhkzZG4LIJNhLgUQQ/oepvawZM2XSbm8wniJi+dCCEzu8MWCvByLLAlTbA7xtTQWi+dHFHWm757rSGV6PxmzOWtpwFwyZkpLaGaUifn1AAI/CmU+3hTgMsprF8kvDywNwEcNFTFvf9mfsr3lM7kwwsu4xQdtyOMS89+L+d5l4Cz6XQ7Ho6+7L2pkPZIWt9rD68Xi+xeo5+JYlJV+gbIulnfx+gvW8zvSN8Ww/HlP32jDcogGvzd8hCt1wjnUeOWIxvpKdVjJAZ/Y6xlS+fm4xVNzgo0Ke9egVZYMMNfgqTnh3rdopEUfDA6uQZeQsl9uX+G1XWdGVjak3oxrhCjwrXqf0dGTq/G8OuDlSG25Nmd0vsrugEoQqtUqi7Ue8KPzEwDA1vQZfRyDwug1ntYn1Alx21tirG2VzYtvG1S6hlhknzdHAMDB1VirET85X2FjBmzNgNfDGjvTJxbcGqPXCBD4sL3HydUZ4WS5k8HrjHSWhsKu6nB21czF8mhr7Ko+IYs+0+Y32uLsKjytTzi5Kp9faYu7scXO9NjbhphmvcZKjzi7ChszwEWJl90Gz9sjMdrqEZVyuB1W6KzBB+t9Jkli5NJFmd3WePF+VfWTS2gy1g62Rp0Q1o0ZUEmP3799DiEivr29w9lV2Q0uQGTWWoAWgfuBUOYlW6xExNFOrLCHgWQMVsZmwqLjWGFTjThbg1Vipi1R4H1fw3mFbZIK0DKgVg77JDNzGipctYSqsh5mqZcZo8BV3WPwGoehypIDvdO4P7VoKotdM6B3GtbzAj3CKNoW4TKVmFw1hYgwifBosDoT77hEgNRUFoMlRuNVZXHs68w8yyigTgy7g9VoK5vlR5yna1jrs0+xu9YrCCDnbSuLc5KQYOIhbosUMUtZlAy3+1ODqnJoTEKtE5GPtQrrlsbFqJDbTt99Xkgz8VHJKssyImNiDRbJqNMy4HhqEILA9dXpAerI7m4uSAyDRggSbTu53HNMMDPuChHRdxU26x77Y4u2HTNSLACcTk2mjVcqYBw1VqshI33jqBE81TGMaWPGTIyz532D1a7P13KccgwCttdotxybrFBVE5HNOBiYyj1ghQ1ewlQukd+Q9qOpHBG6CNIuZITSjhrBC5iaYo9lOk/ELURtHzyR4NhRE8NsY3M88thR8KKpHWyKhWYXO++JFVYm48TtK4jGQ6Z46TAqIAB65SiGOBK5TAwC4aShtxbeUiyw2lr4g4FcOUJ2BOC7BLcwKUsVZiQtQgXExForqnTcSojGIzLCxojhoCYWWWBa+KU44YwoDmpaMSXmXshIMcB8HTO/prhlmDCRsahIzLIrB7E3ZNRUCcFLJCvCJxSOyzH0V0TMWGFj4yFGCdlLuBQjKxwSe2vMSFg0idE1scsCQKyoLpnKdWu6nlEvaQlxdG3IsbLCE9ss91OkuNhYRcgzxe8GBTIwnYBK530VoRJ7K7HCJsZaCZgOsLsvvwKVPTHiAoAcxQxN83ViXJURyoopVi7FGate5HhFaZHRxShTvCboXEbjOA4WFO8ogLxgn7HCxhSnOqS54jjBVA4jlnJMY8GssBITK6yJs/hEjjck3UkqU450D2dNx2LuogDVLTCxxwKZFTaqmFlpAUwkPCKNhcAUG5oerxw77Yq+SMxZYcPimgvGDverjBdcGkdRUvxlUJfzCDeN47zwqYwl06yIyHGh1OepPZeQzrKPuV5GZC/Ul/+mZyX3U0zXc72z8eVH6h3G86xdy3w8ruU4XciT02JeSobYB4yxswK4svLiy3U+2t4/gelnqWMphFAA/iGAn8QY/+ZXXv43mRX2oz93Hf/Nv/ebeDluESCwTS6pJ1fj5Co8q484OTIijq7CTg+4sy1CFLiuOhxdBYpfs3g9rHBV9TjYGloGMvzUiM4bvBw22Jl+5s7pgswo1+thjUaR62IlPfa2wXV1Bkt/VMrN2i1FRO8MxqDwLBmDZ1flOB+Kh/N4PayykVYph9HrzMrKqZLk2lhJh7txhRBFdh+9qU9kJHmDnelxdCQdstJjNmZuhxVq5TJz7MmRgcxI6VqP5D6b3qidMzDSz4yhRpEBycy1OfYuKBr7keaA46f4eOcM1mZE58iA75yhNtgKtXbYmgF3Q5v1L61X2NU9KumyxuQydondUxkN2g9NjmNiJGFlxuyyerYGPkh8e0v6Z5+dt8RIq1we697p7MopRcyapWdbJfdXQn9CFGiNxeCo7JUZyQXVGWLtTC6urDHWp3wcmyQAbKoBWgbc9W3u1+A0dk2PwWlsqgGHsYYAcp84ror1TQ9DhUp7rIzFaayyi+qz9oSDrXEYalTKz2Lj2JhRCcHjWLHyOzPicn85noo1zbQMOFuDbT3gMNTZWGUXWGbKLSVX2G2T0Ql2+WT32N5qtMbhPBpskowKu7OaxPoaI7mVKhmIPTXtnrMBXTLjauVhZMAxsZ76IOlYMkbLtrCrKl/PbLcAMrttSG0encKTVQchYtbNBMgVtbfE4ivSs7+qRzIOB+bdR44DY2MdAFb1iPtzi+tVh0NPskJs0G2TnAsjcJX2OCV5mxgFGkPG37nQrmSXWAC4bnvcdQ18Yhxm7U4hItaVxV3XgBmm+9GgrUcMyZWa6wXot56Nezai2QDn/D4QZstSJ5X22XVYyUAIZooTIxIumdloa+NyXna7ZUOfGYh5AwMoGEeTAf1kc8Z5qNK8knyNFMCxq2dstgCwbkYczjVJ1BiHw7nGuh3QDVVG5uqkncdosfUKzqlMDOa9zPI07BZcaZ81SJmdNwSRDf22Hmexms7LVGZiB65cHp8STWQdPyYrq41L7t+0IcA6et7LzHK7WfeZyVmIyXWYSdfYDZo2FFx+lzLSP/S0sVAbYg7WiQ2an2OePyaHc1bljQg+ZgyN+5DclAFk12ghIuyooXSA94QsWlvEIqdx906hqh28p3dBTNfrVDbL4thRpw0OmTcs6sbifJo8kr5oMpWDHRJ7eiI2AwAhI9yoiNE2Tqy/xPRK1zIhHDMn84ZTDIAyHogiI7HAHOmOpdswgBgEqoZYi4UAuW+neypy/GraEAnJzVaaQARtKrliR5BskQARugVyDQeQ3akFtzMx/MYosquykDETvsVIZG8AaCMnu4RHIm7zAsIEIlHjfrBhVbDlZqOhZIVluR2k4+xGzOWwm3DAZeSSDabSLZVTMgZ5o4Vdpssk4nTuMurL7cQDZDWKyQh/4Ep6CWLkdnLbuS1LlFBg7jLOTL9vQY3LjYoH6ZLBWtZ7Ib23ATcbqwuW3zvQyeWh8vtyqt/Vpu//uz97VtirX/9W/Gu//a9+5eX+z7/5n71X34QQvwXgrwDYfR2G5TcasQyQ2LsGNkoivUCNAIEhxSp2vkKAwNFVcEFh72r0yaDovEGftCfZxa/zhlz6EvpkkyEZIpE9ZEKLEJK2JN3BLkiM0NmNMUSBo6UfrjG5CHIsIICE6pEEwzm1jV3m+uQaeBYxt4/JJ9goAzBzrxuDRiVJezHH6gWFs6twdhVsUNijIY1HELp5xuRCx32Am1wFg6RyOmdm7lZsZPggc10+EMrqo5wRnQxO57g8QEPFkA0hgGIdYyRj14pEPOE1IpCNMxskjmOd3fWOYw0lTZYR4fpYPsSKSZsRAGzqT8Tkcna21UwqxAeB+7EFM/aG5FLIBpst4vc8kKVOSkmQMsZxzG6KVTbakGIQI5C1NtnYIu3IuTsml82Gw9maLKXBMhXTXJDcCIDsIjamvYyxkKC4G1rYtKiMUWAs5pWNMTYwYhTwUuRrSzdD5yVGMZFwkJwIuREONs2bU7nMUBimPogc0+gS+QfPRYxT3GZpaHFfT6NJ107jnd0Lk/Hmw+TifhqrjFJyGdpLjEXMagg0J66YSzEbl2IRnvoqRCJVSot9NiIOQ0Uxl4W8CMcvcqLjVUZEJ+Rvao8XU8ys9xKnoYItjCcAOKa/IRkVLshcb4wCiZg0xSNqiiH0EkJQW46ygi1kOErXRTIM6JoYBZyT6IWBcyqXUxqWpSHIdXrF2qAmG2Wla6X1ZDD4dN+HIFAaXVJKeC8QIxlkbFzEQH1juQoyIkVeZfBYs5zGvmvgnKI8mAwpZ+kYLcgTipv6yK6ezikSXE+I74MNeEGuiOS2ScZATO0v20D1y5w3AsnYSEQ9sZrNbUwbJz6tnjgWNJOj8PXFHMRA480xoCwpwuMdvIR3EqeungxUFOvfZMDEIDCk+46vZzSYyhEIkcbJO5XlTbjvOd6b40fTHNJ4kNHiHHkjeEdt4oZ4SchscNQXRMA7ZGMlRiCo9NkLjFGnuFVqd1TTsxYdzQMZS5riTZPcSAhyYp/+EmkMIjNqz4iGUixrSEZOUCK3j40Ny+31AlHJyY040LyzfEp2PWW5ETaagJmBNcZpfBAErJPZuGJ5Dj4HpOfDCXg2xCImIyrVzddFSWVFOcXaBmbPTjdOxOJ4vven9kY2gCIItV8aWUAhmYIJpSwMy9LQE1HQD3H2+8ZkCGX0bGFUJYtjJjeSnq+SAVU4ard4wD4KCFnMARYGDI8HGzZF/zLpzEXD8hFLKDVSREzoZWlJzQwvMSO3uUxyk9JjcaJFH5Yvuseyz/rxPmmW91KpeWK+GsTxqyjj60pxHkLyx5mEEN8G8C8B+I8B/NbXUcc32rCshcWvtp/hldsmltYRPkqcTYWjr/HMHHHwDYzw6LzBTve4dYTqPTFnHF0ND4mVHPFy3OLanHHyNSQiWjVipUbYoPDj/ho31TnH15lkJK7VgBAFXqoNNnqEjwIbNeDluMFNlaQ/kpspgFlsWeeJQOhb9R4eMucrGTzfjOsc68fkPhzDByCjrQCw0x1ejpt8bAgKz6sjjr7GydW4Nh32roYLCms9ZvfNW9Vm9HGrBxxcPYu7a5TN/aX+VNCCED2bjOa1GnHyFarEOsppDCojuI2yuR52/2S317MzRAKUyHrOjsq6qvrswnt2Bi4q7EwPIz1uh1VGcUsWzSUhztHWuR8uxYuSXqnJ2p82KPzi5hYAIbWV8mjUxMTJLJ8cm7dJSPU5obtlfBu782oZsNHk0ntMKDijxcfkcnyyNe3QJ6IgKSI2ZoAWAXtL7rYukHvvVUWI+cYMuB9aQkISaQ7H2XLfGSFutcUhbXDUyuGmPuPsDG7VKmuZ0n00bVgwUs2xdTnGN70EW036ryaNNWuh1spBy4CTrXBV9bgfm6yB6uOkJdlqm/NznYPT+X5jV1NijZUYnM7XMHLNxiMjtiGSnqsWIevDAkTE1DmDPhnijKqyDipvVhgZss5qZ03uFxMona3JCDEbpPzZR4FaeQxe4WlLz/wruc4GY608ztaQu2facFkZC4mIU0X3TwS5yPMmDG+KbMyI277FTXvG/dBkoxsAtvWQdW25/+x67YPEKrX9NBL6zxsaHJd4057xRq9gvURjXHanBgg1v+vbPMadNlhVhMTX2qUNId5oIAQSoE2M1rh873B+Lpddr7m+01jlvlI/Jm1U3nCpU97O8iabQFtR39hFurc6I3mss8rfn67POAx1rrtNbtGnhJoCE0nTqrI4KCJ7ao3FvWqwbQacEilSBLCux+wqrdLm2ehU1kflNk+bEIRYnocKOrlZ85xV2sF5hU0z5M0SHkebNl1iGq+82ZPuAR9FdvHmzSdGLEv3bIA2QWrtcR4Mrtdddkkv4zS57S7IjErXyXug1NztRkKh2+Tyri+4pvsgMLppg6lO7eR3QKUdpADOg8lzwKECvOGi031Q6rOWGqaErFoywDPBk88EVtYpGO0xjBpV5WaSVKvaYn+i9+uXSVXlMAyk36HNRKolZcTQG+ik+VpVPhu6vPlR1UQaRZqvPm+kxDCdC4WxyghwLgOTPRW8RNOOGHnjI8wRS16d8+YJAGqbndzNIyY91AnpBCAm5mYpOJZW5A0/fgYYEVea0FafjFxlfG63lAHBKwRPCK9nI1JMmxYyIZa8+YAIQjkZlCwQy+hF0uLE1MdkKMcLRit1TmS23hnSGZGOYdLjZJ3PMkVM5/KxC4bBJWiNDetLaWlsPjA88dBwlpgMcEZbw+TWPndlTZtPIjHFhqK8S21ZtqM8fin/JcN4eawwkpfZLh1/tA0XjN4/TV8q/acA/j0A26+rgm+0YXn0NX7n9s8SKhimHcgAkZg/nz9wlWSkjWUwgDmBB78wS3dT6xV+JJ/MUClgIo94UEcU+D4mggZeNALz5yNEgR+IGwCTmyUnkY5dIqcAHpJHXCKN+AP1LLutPUbiUe64SkELxTI/jQVm+ZcEJsu28fGyXUuyjyUZUDk2jBoxIU9+p6b8PF9lG5fEKtyGZZ+X+fhH/OVxTWNeuKSVxBdlOTPSisUYMLlFyYLJ35dtDfmemxYLJTsmnwOAT8UOTMCxRJmWafrRLwkhIv5IPckLmSVpx7K/nEpx9JKU423nPhZXc8KO5Q/tI/cKt3NJKlKSeDDxx7Lbl34Hacyme4CJPnKeOFHgTxcv2grMSTb4muXYR+Clovf0A9KO5Q4wb/qXHEzLBUU6FoPAG7VBDPNxennBPaqk8ec+5UUT5xVTW0u2UVHIEJDrWtp+T+5Vd6Wb1YV7ho/f8nkRJ7c6fr6L+6YkL7l4vwHz+6p4T90xihMEbgvk5dI43r3ZTItNYO4ytxiXW4EJkZAAvMBerWeLycOlBecSSeD3S3l8OQ+8QIzAXq7n9x2fz3UW38vjb10czttxSPN3fp0EGJdzeeG5PJT94XMROAng9kLVs/u9WNh2l1z5gMyeyvmWn/PfYu5zVHIErGynuiJJ33acNQB9WniPi3Hqynn+EskWhoK7sFrmwBfHiFiR5VwMty3X37Foe7Gotvy9/FvkO8tm1hefxn85dVzPmD77ojxflCeKzCH1JxTzX37Ot3HxauBfz5lHZmqySh/UW8ZeF/nfZtBcetTEcpweuXaZpusuPVCP5H1Lee9b7xeq523lvuW35ou04611fsH2f+Hyv4Z6v1R9f0wp4mtDLJ8JIf5h8f23Y4y/zV+EEH8TwOcxxt8VQvyNr6MBwDfcsFypEf/U9R9iCIY0KQudRoDIbUr2V2AyaiYNQpFZS4kEZtJ/Yxe9OjFdAnM9uMkwfcjyuWQAzCyc6Vp2ZX1MkzAzg17QJiy/c95Sy4+lSUqJjUtafOX3ss7y88zdcNa/OctqOQYck8ljeXF88FCDbtmGpcHO53l3eznOM3bK0hAs+sjnlkYox1wyusyMoCWrZ9nWpWG/HCNuJyMyNC4xozHLNpSuxhHIrJycXIFUPCYNwm1g9G+Zl41xk0hgyrT8TeLvy02AUt8ux7UllIzHu9Szm1gSJ/fOMq50mfImQ5w2eDjvcowZQZ5cY5G18ICHunlUflk28rGyzrJ83qVfng+LcSjdcPneBJDbXhqFZTzrst/L55GR0UvPKo8rt4fjFcu5eYz90zmVYwx5k6TcCGEUY9oEmYzASxrVy02Vt21msQuxXMYxFfnL65d1lgbqchNnudHCZED52oT8ydy/ot+e4vDYRTXLnizmSSzGN7cTmJ2bbUSUUhFpgyOyAX6BPfRBf9O5mTbhcqxTPBwVQNfkc0EQYRBLmywXo9y2wkqYNiomayXrEHoxEQxxXFtCmqicdCkwN9YjJrfIOjx0lwQQZUgumSnuToapreWGFY9bYUw+MJS5P2UKAMxPseqMAsTMgnnZEfPVbKT/IqY2Ck/GMhWRjLZ0/kEcXi4DOc+D5DGt4kT6Lmb7AMmdFdkSzGN9aQNEFHOY+pk3AESKMSz7yGWnKeJ5F34+VVFwH4Fopn5lN9Q891T/cnZKt1iIYl8kYpb5seGaDeui8Fj8t9xrmV38kMT4QVmXDd0LY/2WxPtQl8qdteeLGJVvu6/edexS2cVcPFbvhT2Xd9f3oJD3yPNI3V+P3fbVpa/JsHz1jhjLfxrAvyyE+BcBNAB2Qoj/Jsb4r32VjfhGG5a34wr/3Q//ciYY4Xiy0jUHoAlk8pRstCQ9NmBaoPIxJkNgAgh2pVkuJDmmqGRbdI6IEjgeSeuQ4odKw4YWVVLGFHgfZ3Es9I6j4H8A0469mNAyLgdpsR6LxSAvfnwK0heCAvWFogVNKH7AlAo5P1PIA8Vvy+LHLreTUS8BCspXcbbQoXYnoyJRs8+uSWgGa6/lMoqyopOQxuf4GCEo/gaBSACyvlqx+z4TeY4gUoA0nhmBSsyRMQIi0c7HxMwoap8XTszAmPPyoo63ePlHtBR9LpEQZoFkXTYZL7vblC9n1o5TxTkZp7ICtwtTmXlxmMpg5kiuK7VLOGJRfODSAzz8RVwumvhNPVuMYhoH/i4x6byVPz78sSRIKPXpOOUFR1rMSFwmVSjHLP3oi5DO871qBaAwXRORmQijLvItYnkyUpLGKKrJjaj8PG3Pp34zw2VV/GJ6AGU4V2LgRMSkhcf95kUyd9EJYu8cxay9iMismXnKuE+pnFkdF9BjOQoMVbFYLJ9xVzI3pj47QYyCifyh/E3MLINLZsKUnxeV0+Ka8mf2SxTnykWwBISjDtK4p74W8yKTRmF+vBflyVEgSKR7TWTNPq8nJIxj4qSfjksPBD0xY2a7y09DiUhtZbtLprmQ5SsnzXlmT+RbLeWLAij2Ieg6WVyLYgyLfkGksUmfo5jaymXMtAE9EA0gBxooZg3l+02kvkAUc8iul8Wc83MoHRDMRErC881lcn+jLJ4jtmlTf4Oe2pif4YgHbYtqunXnmorTZ74FB6B8AAAgAElEQVR3siZj6n+ew4KFU3gg7UF/qSQdlZvHBsX9oKe2i2Tk8RzkY9zf4l6Ngu6t5VpzpmN5YR06m3Mug++fhWFUns/MoTymfC8XLJ+zMRfTffTAu2IxL3lcxKJ+fj8Uz322q/O9KuY2GN+f4UJZxbFL4zSz8UXRn/I9gSnvu/LMfqvK38FZObHoB3ekfHcXv19luY+l8vm80K9Z/0o32OW9svwtfqTOS2W/s43vc/596/kK6/ip6/s5TDHGvwPg7wBAQiz/9ldtVALfcMPyw/oe//6v/C+QCLBR4xSY0ZTuIhsVxqhho0IjLA6hwUqOGeGspcUQDCGGiOijhgKhhEMw6ANpTG5Uj7OvYdIvGaNwQzDwUaKRNtfH321Uk4ZjgdYpQdqQjIKdQwWFkGPKQhQZZTXC5+OkmxlQS5dQzsS8WmhStsrOdCdProaWHmamBekzWgsg61iyZqUR0ypHiogh6IzgAlOsJ2s5lhqOpb4jy5X4KFCn2EvOR2NFnztvsqQKgBxv6KNIpESTnIhM+andPpMi0ZykRWJCmhkh5bjVEiEt6+D23Ftij31SdZkMipMudQnTHJH+4qT/KEXIWo48Nxz/yQiilgGjV2gS42yprziRRGmMXuU4Tp4HLovHBJh0PrldZXtDFDlmlc+fXIVauaw1Weo3ahkuIrSMlLKcS4ki8wZCrV0mjsqsvspldLNE23js+W+IxFjL/ed5XOq+1sph8KRHmxHCOGm4xihyTC9vbgxeJzkWim3j/jDizfIzPGdlrCwnzrtEoJfIrUqMuD5IbOvhATKb+5XIq2IUaPR03y89CphtuNEOp7FCo90MsRz9RNTDbLgcE0rPEdVRKZ9JqMp10HmosKrH3KayndYpNCmO0QeZY3kZhV4izUTGI2FUgPUyu9SX38vwglKGhhOPJZNA8V8mmtIqIERy1+cNRK08nFfQys/c+MtYsG6oYIzL7yWXXME5LpRd7QHkuLwIQnSN9hithjHFPBVkWMxiOyG1yBuOJSLrPTEYs3s7s5/yZqVzcoZQPtDd9JPYvCw2uTieDQCR4uS4vQk95o0xZoZlIiK5QNGz+7wM8OneCmwQ8sZekoxxieFT6kgu2hybp0Pe5GPXaqkiMZJGOh+DyG7W0vi8IcfsopyvRE2lnp5x3iQRKiAkQieKv0ubezwmvHmmA2AloOOEnDoJ1A8UFd8/OUnlAhl9zZtuXI9E8nVN1/DmFrev3BBlAyqzvhZWRJ6goozCwhBWzjao8uZbYWCUm3h5k44RQlF8lrw7AuRNuGTwT23E3GhJG53CJVIcZpRNG6F500vSOZE2grgf2bBko5rjBlHUyYYjj7OIc5mLKB4YlpeM6uXmRGmolPZYtsuWRuMFxPIBQhmLE4s2LOucVbwoc7Zx98DAXVjA6S8TE126fS4iqbMyL3xftO2txtn7GJ4X+nopzYz7d5X5DU0Rlz0Bf17SN9qwfGW3+O0f/3U8a47ovcHrfg0pIq6qDlemxw+ON1nW4qrq8elpi5v2DCkiPjtu0RqLVlvcDw2+vb3DJ6dd1gC86xqc+xrGOPzKzSt8fLxCpTzR7zsNJSLuOiIA+PbVPd50KygZsO8afLTb45PDFgLAzfqM41DnWEYipSDChpWx+NHra0gZ0dZjpq73XsJZhd22g1Yk63Dsa9TGotKTzl6MAseeWP6GvsLV7gQA6IYKbT3i9s0GpnFYNSP2+xbtekSlHY7nmvTlZMTN1QndSOQiXW+wXfeQAhgcLbJPHeelt+p6NZDun6VtZGM8+nOFqnFwVkFpn7Xr6sZiGDSuNj2OXQ3vacFTVQ59b9A2FqdTg3Y1YBg0NqsBx3ON7brHYA3O+wbrqw6nQwNTO1SVw2nfIFqJ9U2HvjeEDqd6QxDwlhat7PLFenzjYKA06f4NZwNlyG1wtRpglMftD58AEWg+OMGOGm5QUDVRptetzfTw3kuMhwoQgGodEAXRzyfk2fUaMlHex32FqAPkyhFKqgNCp6HWFv6soVYuI81EmU/XwAnEHS3shYpEm3+s6Af8pIArS65igwRMhDSeFmVJt85sRzirEM8acpMMy15BvzHwqwBxPSL0alrkiAhU6dfWSapHB2Lqc4IWS+zK10vKa+W0SGg90CtatKw85F4jbB0t6HixpQO5z50V4tpDdCq7wonGTygyI8cuLZBaD3HSwMYB9wax9bRA0SmvSS5pg5y0+NKiT91r+DZQ+6KgPE5ADgJ+5+k6HYBRQqS2UpvoV012itaLK0/tHCRiQz5fYiStP8ikEVgHmJf0On35wmY3PdFLxLWfFqBOQB8UxVhd+YzMCicIFWL9QQHoewX31MG81rA7nxat9B4xtwohacNFHaHOEq+ufV7UqhMh+37nIM8kgBfqkNGj+nOF++ce0ZAeoBwF9ScImIPA/XMaHzkI+HWA3iv4dYA6SRrTtACNMkL2NPahDVBHiVBHqEHArQLUWU4aiMn9UJ0lpAPcmnTtoiIELcoIOUiEKkJaUDknCWkprwiENJkjLaDcOsIcSceP0S85ikJHEWheSgzrCN8ScqY7Qi33TwLUkDajEvJm7gWOT+m4OQicngZUbyS6XUwoSYQ5yKxPJwPgmwhb0cJYeMBX1D5I0lIUAdCdgN2SrmIUwGiov/os4CvqA930NKa+AbyJebFsTiKjUtzWoCOqNA4QhALVZ8Cu06PWROiB7rlggKYDxquI9ecCQQG+niMc0gKhon/1mc7rM51TI5URJWA3dF6fAbul66QFhAN8O2kz+iYdqwFzTq+WhhAz1dH4jTtADchtVAONoVvT52CoPJd4dqJMeSLgWqDaE3IYNZKGI6C7tIHQCuguwm4F9JHao0bKZ44Rw9Mvv/TRJ+o7AKh+Mnqko/rkQG3S54hg0j2m01weI4ISCBWg+oioaG6jAvSJ7rNg2FilMnnPkMvieQsKqO8i7JrQsaCpz8EAUYlsoEkXESq6VnURvhFQI+l/RiWghpjuO0EIr+d7gspUltrA5dOziowQ+0rQPALwdXp3nTFpZzrAGyBUAvoMuFXqR3pmIGhuoqA5z6izngwM4ZD1KoOm8ZMW2eiULo2dEjM0k42TkHQv2YtCRECEiCjEQ3Q755mMwyhpHIr95rmhxM9R+qkp9TKFp3HM7Yl4qFOJuXE6O79AuUUIiEpA+IAo09wrQLr0PaSdJxR7EOkYj8NkeE95y+80NgsjrzCQsy5maeAv0tIwfGAsl2OHovxLRqiY5mtexxe0Lr/BxuhXnWKM/wDAP/g6yv5GG5Y35oR/69u/g5/YJwhRYqs6jFHj1q1xDhX+0u6PcA4VVnLEK7vFs+cHfG53kIi4eX7CvW/ho8RW9fhkvMJfuPpxZpHdqh5X6oxzqPHD4QZ/6fpHOPgmI4k2KjzR9Iv56bjD5nqAB5X16XCFv/bs+wCA13aNVlkY4WcxcZ036EKF33z++5CIuHWrjFAa4VFLi0+Hq4xebtSAIWgMCx+etR6gELBRAz4ervOxk6vxne++wb1rsXctnn/3gFu3QucNrk0HlX51Pht2maFzpzvsXQtgihtd6yG33UPiYBu0ymZUzEWFa33O/XRB5djLk6vRKos34wrr52NCR4kBd2d67G2Dm+qEO9uiVRb3tsXVBx3ubYtKOjz/pSM+6a/w7DtHHFyDwWvcfPuMWlp8NuyovhQLyQgoo4uMRL4ZV4SkKWIzBYCt6dF5AyUi7scGLir883/192GEx/93fIFGuTyGRnocbJ1RYS0DrkwPKQIOtoEUEb3XGX3c6gGnpEl6U50wBI2DbaClxxg0tnrAvW3yX0YjdWKFfVafoIXHm3Gdxldi9Bq7qsuMvrdjCy1DRnNHr1CpiVH4blyhkqQDejsQWcdKj/iwucedXZHuqraZxZfQTULBK+nRe53RUEarGKVfaYuzM2iUy/fN0da5vLtxhef1ES+HDRpl87gRCy8x6u5tQ8y8zkBLP2PNbZSDTMy8IRKr767qsR8b3NRn7G2TUUdmHA1RZISXx0OKmFlwT8yMqx208FhpizdpXFhTlRFxZvR1QWJX9SRzkth7m7RJxYy8S5T2F3/jFhIRPzje5Oe8Vg6npHcKAFoEXNUdtAh43a9nqCMjuozCX9UdPj9v8cE/scfrfp1RTQB43h4xegUXVUa4eWMtRIGrigRH7oYWKzMiJASX0fNf+Mt3+MnpGtYrrMyYNWgB4KY+45PzDiGKrEN73XQ4jjVWSXeWY2pDJO1WJQLOtspMvK22OI50X7AnBjPqcn2HsUYlPXkRJBkZRr9NGt+1GVFrh/3QgNlOd3VP98ZYY1MNWT5IgNh6YySpIAHg29s77McmyRQFrM0IKSJedys02iXPApK/eNae8Nl5g0Y7bKsBL89rPF+d8KZbIYLQ26uaxlVJ0u482WoWA2uDxLYaCC11tGFXK4ejJZ1fHyR8Qr9bYzF6lfMDtPF4tlVGiEMU2FRjloHiOfJRYFcNk7yUV9hUA/ZDQwzbSVuW7nFiCb7rGnxrc3ygrasTK/Lg6NlZVyPO1uTy2VsgRIHDUGNlbGYONoo0jQmxrzK6f7Yms+Yykt6neWWkft83qNNnl5Bx1hbm+1HLgPM4/eaxZmo3GmyagVixA0kY1cbN2JBbY3Hoa6zqEaPT0Gn8r5oenx82+LJp1Qw49DUh6drluG4lA1zSEB6dQl2PGZ1ntLqqRzivMDoFndh+WY7JVJa8NoqwG9a6BJBlWlgaJkSBqu1hhwoQEd4rVJUlGZgyNlhMklnSWDinIdL4hiCBxMZrnc4hPUJM2qalNmxIrLuMijPyzkg/yxS1tc33LIcZOUdMvsNgMqLP4SXG+Bx+xOE+k5QPIeA5ntzLnA8ARNKQZdkdjl0GJvskh97whp9AtpqYiTbyXyYdK1JG3zlsAJhZStk+4zjjsg1JxzMnkb4/As3NyMoiLiLVD6BJzsfhMVE8MMzoJSYeMt7mTqQyyzL4+zJxeeFh+y+W+9OmbGx+BZbh3//pi/gq0pLw8ucpifhVTNTPKP3Sn9/Gv/0//JOwUeHs65mbqY1qRraydDMtU3ZTg4RCgC8UZBVCdpelvDIbVZx4Ee4KF9dcNsSMKKUkvSmPPZYetDX1qSS+KV0Xl6Qsy3pnBDsFK+6MBGfhDrmsj7+7ot1lGZdIRi6RAj3Wx2X+su08djzWpYvrpTaXBEaXiIHmY/SwreU5Njje1hcAM0OhPAYgu3BeIgQq63qMVOlSeozE57E5uUTmwm2LF+p8rJ+PtYXrWx57Vyo2RN957FKb3tbGx8iSgHm/l6kkHfoidVwqrzzHbp3LFIppZvfOx+pil9G3tf/SdWW/LqV3EVO9tfzis7hwrGzHY6zO7zM3j7X9ImNv2aYL5y4xWr9tHst6+POy/Pe5F8pY+WVZJVHSnH14sbh8S3qfuQYuAwRlXTM23/dq41T/JabutzcalxGMZbsu9H8WX79cfL/HeP1Uadnu8til+XtXOe+7LHtsbC4d+6L9v/jgzr8u2Xwf5H1bXy7cM/Pz83YvUbN83YVr32rrXBqz4rpLQ3jRVfSR9NZR/iLL7XeM36Vb/J1lva0Nb6nnYd7He/ne7fmi6Qtc87a6f+8/+q3ffQfBzdeetr/2QfyLf/df/8rL/V//hf/kZ9434BuOWJ5Dhe93z/Gj7glckHhan+GixMt+g+NY46P1fdZKfNWv8eFqj49PVxAi4kV7wN24wuA0ruoOHx+v8Kw94X6kHd8n9RlPqjNOrsb37p7hxfqIzpmsq+eixNPmBCkifnS4xsrYhBR0+OS0w4frPUKUeNWtsTbjzNDQMuA41jhbg+9evUGIAvdjm+PftAxY6xE/TogC7VoPGLzGaaxmsXm7uocUEddVhx8eniBEgV3dYz80+LXrz/Fy2OBNt8Ivbm/xk9MTjF7hSdPlOLuf7HdYV5Y0OM2I+yGhskm77LrtKB4x7bje9i1WxqLRFjaQ3tp102E/NGiSxiG37zDUWFcj3pxWWNUjmoRGdFZj1wy47xo8XZ9x17XkotvX2DYD9n0Nozw+3B7w8X6H5+sT9mONwWo8X5+wrXp8st9lTT2O/TLKZ61CjsV7eVoTOlDZrJV33fZZQ48F1P/iRz9GgMD/+/JbqLXHddvhMBCStu/rzNqrRMTNmtyp7zrSkxysTvppwK4ZcBoJoXqxPmJwGrd9i0r5Wb839YhDX0MWqIGSEc/XR6z0iJ8cr2jXNkh0o8GzzQm903i2OuHj/Q5aBayMxdkaWKegVSBNORFxdyYk4WZ9xutTQiwri3/s6jU+67Z4dVqhrWxGDgavMtEV77YzWlBpD+slXBrnTT2iswa1dqiT3t1dR3p/lfK4P63wwfaAz4+bHKc3OoUxoRWbesR9yn8eDZSMOA8mx4TxNU3SAjx0Da5XHW5PLZ5vT7jvEmLpJZrKYnS0Q75uRkAGErRPu/MfXu1x3zc4doQ4VtqjqSxWxmbEwjmFyjhUmlCX01Bl43HTEAp66GpyV68sDl0NIYDaUN3c5m6o8N2nbyBFxPc+f5aJtJrK4nhu8u6+1h43qw5GeXy63+ZFPyNt/Wigk7v78+0RH7+5wref3uGz/RbOTbv0H17vCRWSAoPV2DYDXu43GWW4WncQIuLNfo11O8AHidHqhD4Av/rsFb73+hmsVVg1I5rKYrAaSkZ8a3PAD97cTH3rKlxvO+xPDbarAae+yjI2MQrUtSVkqa+wW/forcaqsrg/tVg1A1x6h9kUE7ddDWiNxZvTirQc03zGKFAZl2MFh8Fgs+rRGIfb4wpKBVirsFsTanh/bHG16ZKbPY2NMQ4hEDoiZcSvvniJT49bnPoKUkbs2h5GBnxyu0NTp/vTkhv7i90RH7/ZoW0sbtZnfPzmCh/d3OOz+23WF7zZnRGiyDGv911Duouanr3BalytCVE9D/SO2TYD3hxXM31LaxU2qwH9aPBid6QxSAb9oa8xjhoqxaLtVn1GvlgL0nuJJxvymLHp+X22OeHVcQ2tPM59jcpQG0ensFv1eH23wS+/eI3OGRz6Gkb7/O6otcN5NOiGCtebM459jSerLv/GHMcaNki83q+xW/d4sT7iJ/dX+XmqlcObboXWWFivsO/rfE9cb7r8HGkV8GRF9+andzu09UihCk6jrSwq5XF7arGqSZ+0MQ6HM3kchCDQNEnD9FzjydUJg9WwTsE5iaax2DUDpIi4Pbe4anu82q/xdHfCvmvQGIfRKXy42+MPXz79cosOALt1j/tDS/d+YzN6bbTH3X6FurGwVmG7GpLG6nTvX287OC/RDVV+Nvh+uN528EFgsCajhrX2cAnt6hNyyyzV1ip8dLPHqyN5Poyjxm7doxtNflcw8jgMdO1m1ePU1Whret69l2hq8iw5dRWCV1S+iKgqj3FUqCpCE+2o0a4G+IQYKhWgVMhhLSEK9B3xXGzWfZI6Q9ZXHQeD1brH6Ui+zRyzGwONI9chGSF1iiSZRIpLLhBSPyiKvRWJCDG911gvEwkNzaikJcbk4CSRGIo4kQo6iiGOVkIYCgERKiLHvwJAEJCVRxgnX9hSaovlhIRKTMaMeooIqSP8mOKHOR6YEcyAiWwP1F4hMElBMVkfW2sRc5JDZkb2RGgYXcHWXBrdHLuaQl0uWl4lGWKJWLJmKMryUj5GM0tGaE4PNloWxii34X02PC5tKHyN+0R/mn669I1GLG/+8efxr/+Xfyu767FgfaMcKuWykDy7u51thUZbxChwSm47TNqxMuPMlafPwtcRT5oOR1tBiThjl2Xh9XU1YkyL2dFprKsRp5Ha0hqbiTQAZNITrTyMDDj0/z97b9JryZJuCS3r3H03p4kTEffeyLzZvJ6iCkgQNWVGFWKCGDGrQkj8AWpS4xqUEAgk+hk1Ysi/gJIKxEPwyKrKIsn3sr19RJxzduPu1jH4vs/c3I+fiLg38+nmfUqTjs7e7ubmZua297b1NWvRpleEpQO3I2BILL4hahidi8i2lMHbQiyyqTbysrmwlvNCR4fWBWidMHhXaPq3rS+yDGOwaGyAaCzKsdoq3VgivaGQGbKGe28KM66QSwAom9zGxkKaoRSK6HVNjhGjhjXT8ZQVht6h7TzGkTZuWmcMA4mhd53n+7EkAP8nBl6UEBrXEHiqQ2dEIDpnBecitE443JEm2mbPP5zBlB8rayfCmCwb5KxgbGQCj0lbkq6jRIswGiiTC/OuVpOYdGTBbgDlRyNnheg1ctQwQi6hMrROiN5AaSCOfC5TCI+w/uasitahbWhznbyGcexpjwrpZIEmwbSxsOvKPQo7rsg3aFB75QcSQEb5YS46h8CU4yk/vr2F7sJExsGbAmH6LT/eLIotpB6q+sEtIUuc66mbiDQYKEs/ikL2UfoddPmRLhqOvQFsJgbhDGqbf1xVx/PLzMSFMMJUP6gs5K0aWgeFtCOriXFX5XJcnSz94O3DFMoUFOWBAnRdAuWnJoVcE4gIUYaIXAPAqIEucT5qnIg1ADpm+LmoTIy/vC7qvks+7DQ2HvbRIG0jHQt6Iv3IoDzHbSwbFljOI3WJyULSPBdGwsMMk4kImYfLU66sQtkIqEDzlznnU9h/ATxgDVZeUf5mk8g7wjmtAJCbVPpV8o943QhBiTlQzmZ2PLaR+po2mZ5NNS+610jbBAQFMyhEzhGNXSp915yXWRhlLeWczZhxPYNuS3mSwrIr+WTCvqk9kA1gBmYC5zFkmyd2UQC6IoGpmZS13Ad0X+2Z7ZTbKMzAJkN7hdhm2BO1lWqmVaDknyXDuYgW0CwaqXltZI2S26ZHak9FOo9E+Z86Ut5nZhKb7LidrDg/lPudQXmvAYUJVgUiYUnNRPKiIl+Xac6kfnKA6TmflklnVFAl7076GdtM9Th3L2vqT9h+9X2PGWjsAKADb/YzPa/UTgzKesTEoCycPQM/f8P5fHxO+kXPGFObVTcL514FFkyPwnBb1tQKu2uq8h0LW3PFAqwy56vW+Yn8VVezwuqAsoYLm6xBYSiWvEjJmSztcB5pvUZlzqCmuSjM03wPKSUvME/zVxh509RnGdPMa8xzVb6vFvmXxeunp3mR/Mgy9zxPVTBbdbK6p1wj30ecp5m1eF35t4lZY2fsscv2pN4ibGXVGb/o+2OhP0s23WV5zNG/CLKrLliMuz72hvJGb+Zj5R3u8S5e3P/jH/29r92rt//jD/IP/vu/8xtv93/9t//zr31swDfcY6mQ8aQ549W4wZhsyYnqo8O9b7FzBPh2bsQQLC7bHkdPgO+6O2OIFiHpGagU0HjZDGi35BG7H9uSHyPepZQVLlqyjh7GBk7yYdoBfbDYt+Tt6IOFY4um5EVYnTBEgz5Y3OxOJc+nsxlakQW30REH3xQgum9HeM4tk6JVxrYdC+A9e1c8LT4afOvJbcmbef/qHmdmrbxmSzQAnEYHZyNiouvEMi5Abd8Ns1CqMRh0NsK05CXMfL8QTTlWg+HWxkIEZByF7sWksetGDMHgYttj8BatI+/Xph0xeAetE64vT+i9xdX+TFbppHG172FNxHGg5xWzKmC3sbFYeiXMsPeWLMtNKB5jIUpSICbIGC3ef34LALg7dXAuYttRXpPCJE1DeSUJl3vaAYhnLCUFa+m8XAcAV2yd9mwFFq3BEAkYCyskgXhil2z2lLNzZut0zgSKu4seKWk0F2T9rXNgBFjXQN/aALuNJeelaRO2T47kPfQWuvUzuZ06t6bWGazfA4DdTXk3NdC225Hkc7xBc9GTx2XLoJYBv2YLtfcGdheLcSIGZm3MCrqlHUoxAgQNt4vw3qDbjoVxMycN145IDETNxpdnIaCuuRgQAhkJAEB3ofRhHGwZu2pCyfeJovOXFcyew669KXk+cj9tElKkgGazJSNHd9VDqYzzqS2/aFonJrMCAUAA1nFO0zh9/Qo5lhh0MoDmOpBx5ZLmM6eJHbS56tnLB5o3k4hAigG8vaA1GkYDs/UQCSW5vnt2Qn9ukKKC2YYyHjHGDH1T1kAMGvZiQPQG5oKefx3uqC0FdKeoYOxk6BG5o2JUYyu8sYnYRz0ZXlAZRbRID2kgBQV9Sd+dCJo3hQrmioi3ktfQV4kNGKBNsljOGajb9zyCN4iBGYot7RhT79iwAZZyAvTzgHh2NB6bgMFCPQ3ASIaknAE8XbCJMmFW5s9ejhNjaGaQpW1CHs0ke8NrNDH7aWoqnQlFBpMcJ91QuFTJGdFuKScFiMGDx5BdQvI0TzmwpqXiftiENBjED8LEzFoZByTHLEeNzIYizQaRiWEWSKOBsgnaJfLeMFus0pm8QpwfV/Qy2ZMCgI+RsUipjDSYSg5JFS8RGZ3YeKXzRDLGxgta2Aq+SZPXRIxKzJBaPDcDk42Jpyaxoehcs7B8yeIyGX2AufdHgYw4YhyyeTK6yPNlI9fMSJX4vEho1cBA/suarksGj62gkMelpOTaWuoqT/MGgJ6VGLjARgxhuM1kTCmGDQE/ajIGFcNOBhOB8f3ZW1aMTb7qn5CA1TJOcjpW0iOVzJSKagLGfCzzeIqBZzkFC5As01WDd5GrEnbVB8iSvXQzsFKDSmD+vOQ+Ok8EPFInZZScwfoaOV+Gmx/iJwFOVdXaSLQy/Kn9R0+ujEVu9yYQ+GUA4peouwYM3xpe+7vyW1O+0R7LZ3/tWf5b/+jfLyQnKasZeUxg6Y1a6kHy5NYExH2qdC65jlJ5NbcOQMm9qiUIAMy8mmv5hlJE8L4uddtG04atrrPMtatJNKQfMjbPXk7yyupCMiA5XtTXqb21/JdaUH4uWj4Jx9di8XVby9ypKLIHapJhiEk/yOdagvB67nPV9lqRvkmpBczXxinnRUZAiApqL+1SEF68k2t9qNuWekJGQCCtFpJfXju/ZuojiodZrn8sD22ZryV1qW2ex2UIypu+vRdrYrYGgEImUb/PoHW61se13676DuU490Mt7mCt1jwAACAASURBVPloX+t+igeYNxG1OL1sxFVleS5fgXy8fl93sCZ1KJqsdf8YdBaReqyv1RIGVZMoLDcmwFzbVbx+9bmy+XxIOFHLOOS1tcYb72lOVJk3eoDVvL7NDFxfMyOdwPomWTbSAgIf2+hIOxKaJaUOv1qeW36HiaC7eCxkrMsNsrRbj+Gx3Y30qx7Tss9yTu6hV66R9VkBBhKinzf34PzK8eKJqdh6y/n63FIuou4jMH9msoYqj1XZXCcsJB9Wxri26ZbPX8ZcxxTV8cq7VKQqVuqo5VjyNCcFIFT/S65exFxD9kuW0h4wtcnjKvqdAmLKRXItindawAGq5YZp6PNSAYfq0Nw7Jc95eXHVYHluafH1L/Neg5q178FUvV48Vxk3lmPnz1BWFXjL1Tlg5nFc/Wmv142a33PWx7Xr1uYDb7jPCriS+suvl98E6HonsPSuddZ+XN/w/k2evTfd9zfa5y9Z3trnt5Q/+6++/hzL/R9/kP+1/+7v/sbb/cd/6z/72scGfMM9llYnvOhuMSRisQSIsIW0Fwmg1KyhhsEjAZZYGDGBiUSlJukQgpWa9XOpRyisnULoo1Vm3cVJX7AmlqlBr/S3vj+Acm0NjJegVt7XbKXCkCn6eZKDWJeYdcmZNDrBp6kfQiyzLDVxT5lXvmfKrOcINQOFUqfW8it9EK/MAnzGBXivWQsBlHvWr9eImJZAdfl9K/mS9Xy2W/IinTm/pa4zAzZAyZddI+gQsFzXk3HJmMQgMY1bzZgFZY7qdmv2UC9eOi3EMhMRTB01I+Quch+pL/dbGg3q8hj5SK1/VxsZauOBNZNmX/0c6vmp18nSuKIwkeTk6nnJ/zVSEq1yec4yt0azZ6v28rOxJvO4pO/LsYjhJC/uVxsEliQmEtocKwZAMQpM7/NM37A+/nCuc/EOpzQ3mEiu5Lxv83FiMfbaWCLebhrn3PhiTEII07kYVQn3Lt6r+nktAXZlRFky2cucPDaXs8K7B115igEGy3k6j0fWBIAiQ5R5HhQbVhJHIwAVptIJKYp3OpV8s3oOVbXOlnM+A/gLQ4eA+zUjxgMGSsmPUvN63FQ1D9XcSb0S5rZi+EisPZkxhZ4vP+e5MkZUXqICyIUFkgFmASfcfgnnlfEujTHyWgwxlWFIaZrbnKbnOntANUiQ3LNc9U0MCMAcHNcGjAyqE+Zr+EsVMT5IW/VOV/LRKpA/81guDRo1wKoZRYF1g8ZjfZGyhn6AaT6WgD/Pj9f6ltScevD6UZIeuQ8wNzJIHZmvZVjlcuxyv9pItfiwrmlKyvAf1F/Oc6lI72fgdDk/s8Yf9v0NGP6Nx94KqL4kaHqb7e+d2n1k/G9s87F1udK/L1X+sut/7eV3Opa/tSUkjWNs8flAVPx7NyAkyrU8hgYXrkfIBp3xuBu7IluQs8JF0+MUmgLA7scWG+txDg5WJ7QmYGtHjNEWAh6hxZc8zNFSwvrt0BVq99ZQW0IhL7mcAvwAAsQ+GgxMpCNSACJEPyqSj7hjIh2h4ffRFLFzAIVEQsDW3dAhA2hYa/O5JTmIk3e4avtCy99ZAoNDtLgfiChHhND7YMumXOZGAJyE7DomiRlFIsBEDNE8AAAhGjQ24Dy6Qo5C4cSUdzl4Imw4M4nLGIgynkhEUiG4oRBdixA1tu0IxxT0Qiyj1SSsbnTiUFiao0NPxA812CHSFwOtKFQ2Ro0X13cAgONA5EgUmkv1x2AL0FEqY8u5rEJ4IwA6A4VsgeoRMJHxxKTROpmPgDHYsjkVILBrR87f5VzbrApRTYgG2zaW/uSciri9ACbDBDZaZ7TOF8KHxkZctERaNHhbyH6UyoVcpX7uAkJqoAwArhqv5PsO3sLZyIL19Gx7JgUBCGwKKNEqlzxaCTH23pRNt5UwwkJQYaFcwDhabFpfQn8p/DgWcOZYOzQmVY41Hc3xOFL7QopjdMKZySxSItAkoFBIL1JScKy76DkU1tpUPNvWxpmXOwRdiIf6c1N+Sa1NReNUQJI1TKoixwEoRlgx6LL5dtZj6B26xuM4NiVvGAAaF/i5EPh0LmEcSG82J42mnQg+miYQlb/o0QLYbTzujx1HG8SZF7x1HuOwYWAZkaKBtR4xGn5fcV9nxfqw1I+mCQiB5jQGA+MiIufjpkRAwtpIwDY4KAHIicOKGfBq/lwYrhuCKcecDciZQpStCwhBlw2OzI+A1rYJGEaLwGmS1tFYzyfKoQbo3lCsyesNlEF57bopLDgnBddKuD3dK3iUcWmVkZSaGRjknuNgy3ViJNBqyvOugXUMpoQNAyg523U4c04EmgGUaIS29Rj6hr5TIkr+MSJgmwh/dmjaESmpaT4zybRIKHQMmp5ZMCU/XeY/ZyAMFsYluIY+k1plCm1WmULGGfRLmHMaDUwTZ+ctf1Z9b6E5Z1q881plhNFQqG3Q0DYVwpScUYhX0kg6w0lCkROgbILh74/I+eWhtzBdoLBpS3IRrg0Yjw2+aqE8ctbbFY1fECBPvaEc8kh54TlwuLpEorSx5Jprx6+TAqKic1nNohGUmcKgZ5IVAJAAsw2IAxuPo6IwX8kZZ8ComJgGAFQT56HGSVF+uAKy18gRUwSA5NIzGM5RAS6T8aIG8qJ1nPl1VkAbp5BcTX1DVBTuK2HEChNqqXPXxdAh4F3akJJRdH8BTDncYmCpw3kFCEt+pISgFjCdp8gBziUuob11yaqEEa8CLcGptRefpwKadYplzFX9VRBcAViVMXns5ZrHwJ94oiV0eWGXUHka42pZIlP+X0KDMcPjPE7pwEofF3PzwHO6PP+GssT5yynDI+9/V76e8o0OhX3/X77J/8H/9Lc5FNYUnUIBFUMyxUsJACFr8q5lVWQo1kJlJaRW5DQEYGo15UpSe5O3T7ySYzJodMRYhdUC6yGemsFZvaEHULx/Tk+B+TkrJCiYKsZEjhW22eINpXbEM2h1whBsYa+bAQXWs5LjAsrkdWQvqABjAaECIAHSSXM6FS05AMXTtOZttTrBJ10AqAJKe/X3pYD4Zb/EK7bmbROAJKX2lEqp80AlNFdAohVGusqrV4cQ0/XzTWwtC1H3SXI0xUtZhwAHHn/tLZC1If2SUnv1cjWfy9+kXM2vePYE8ObMm0mdqnDfaZ6W4ZrLXMt6/LWcgni1JFQXQAHKtRepPJ+KaGkCVfnBsyyeyKqubKprT2I9fw9Df6X+5JETcifJqaQ+PfTeyHHJX1xrv/a2KYUCuCx7yR54bGSNMIh6NCyZX6ekodkg8kAaJ03eHiXrolpnYkQRD1upJ9fzpl2unclG5AqU8A6i1oGTvMi6lOslbLJ47qqbl8rzeSllxUuQs5qFu9Yhx3UobFk7i8GWvL6KrRGo3tfPUUKPMyZyJvlfJp7vUe8sa89U2eCquRdG+rq225N8x3oe6nWxFk4MTBt3xZvl2tNXz720YzJt/Nd2XmsbXFkLefJalXy7Oq+uDrktG+w8ebjq8FQZTz1vcu0yzFL+rxCv0I+GmsYOzPLfssI87LNyjqoIJPfV9z20OUfZdNcb50LkJH2txwJMIZ8K8xDj6tyDTbpcsHymAobK2piDAEyHZ/d4QPAia1cvANPyf3XuwXJZfo1V7c/CmZcXYl6/npdp7FPdeizyXryOy3GX83iImR6AmXq9La6d1XlTeeT8bP7ftY0vCbzeVt6pDyvH31p35Tv7bW0+Vt46N79m+1J++F/8NoTCvsh/47/5D3/j7f6Tf+c//drHBnzDPZaNjnjP3cNnQ3+WPC+OQ0mHRMPz2cCpiIHp00TvUYBRzApOJfgs+YoEpiT806qEYCmktgaWPmukrNHqMNOQlLZq/cU1XUCtUhGOl7DdpXZhDRYlPLcOO5XwVwCzcF2AxOI1MqyOCNYUYCzHExSsiqWfazqc9b0f0zOscyCX2ol1+OpajqlcuwyjTZnE4p2ORfdRQnVD0mhNKMC6LsvQ4TWtyvq8hPEK+ZIIdi/DdeuyzAtdtr98XdetPbpmMZeZ25aQ2dl1VX+WGplLjco6VLeuKyzHJcy0Gtua1udyPNQPNQPSWqGE89L9MpahtnUer5yLqb43SjhvDdCBOegUgLkM8ZPXy2dVA3upU4dG1/m+y7mswbw8p7W9t7wGptBWa9IE4CpvdOnDSh7tMiSXrpVQ1Ek6oMxjnOc1C8Avz22W34sHJRgzI2Cqw1LJizvNmdap9EHqLQF4bWCoDQ31M6nbr0H6chxSxJggYZKlTqK+ScgmVK5A8RygR2YJnj0rHpN46+px6Cock0Jw1QSy+Xj9X+n63iigWvovYyp9leMCvgUo198nCrN1MMv5rIDKLM8WE1gv4bW1wSARO3PWFSivd9uyoJUAYBQQNwuTZ0KXbBioJoXMzJdLoJhzBtgYQffkYzKemgF5CcgfA8nSl2UIKD/dnBgIy7pnb1muPgcqqV8rxzKnPOWycqMSHppLiPAix7VcW88PZufrNcTDqYf2EFgCUAYLYMnvKySxBJa09jB5AStgWW67vDf3s86dLPUeHYvCA0RTI9dcGQJm6wYPS7X0q9ty3Tzr4xo4fABG18ao5v8fAssV5Looa9uCXLX51lX3lgrvBL7qNVT3AXjj/C7vMzMy1HXeBibfoazO05sOvOM9vxI4/V35jZdvNLAck8GrsMXLcQefNTbGIySDc3Q4hQZP2hPO0aHRAafQ4MINuB1JQ2nvBvTRYYwWnaVQ2a0dcQoUCtkZj854jMnii36HC9dj5NxN8Wpu7YiUFT477+E4FLbRAfe+w4XrkbLGMTRoOfRtxgobLMZk8KQ9IUCX+xLITGhMxOthU3IeW0OhsEtPqNMUZtvogC/6Xak7RIsn7Qmn0OB27HDV9Lj3HXw06CzphYWk8XLYFg291gScg5uNsbUBRqXSD/F8NjoiZPIedtYXVt0aKIq25GvWcRTPna/CbrfOow8WRpF8S2cDzt7Bmoh9M+J1v8HGeYzREJtsM6LRU5t+AUydgFien/uhRc4KjQ0FtG2dx4nDSXtvESJpmwHAZ8cdnKH5L7Iy3s7Az4Y1S3tuQ4iRMs/XyNdtHGln9jxnIRq0PL7GBhxHV8J4ySNLbTsTcT+0iKBNXeBQWJrr6ToKPTUFrIlX95415DaNx2mgkC9rEm62Z5y8w6FvS2gyQOBxlLBOnTFGXTyrdZ4mQJpkI4e5ipddWH21SjiPDvtuwKFvSVeTrxcPreMQ6KYKGT57W7xtYoSwJiFlCkPuOHx4245FXiclxRI9HAprSDamDuvddwMGbzF4WzydVidYQ/2UkF9j0uR957w6z2HcmedmGRas+XUdknuxIQbl14dtARXWEjMvQGBB64yu8dAKOA2ugBIBWeJVBihk+3husduQ3mEQdlkA225A4siBlDQaO7EFU3hlgALQD66ECUuYb84KTy5OuDuRhqtzkZmh6XlsGo/7UwcJTR5Hg7al0MemCfDeFI+o1FGKwiWbJnBIbMQ4WjgXC/CMDISco7U3sIyQhDYDVSgs53Y6F4sOnwDNhpmDx8Giaak/AjCJlVaV99dXR9I29YZ1Likssz83sBxKmhjY7bYepxNJNDVNwPnUYnfRoz83ZLgA0LKOogB97w2x6VZ5hG4T+FnqEoI9Dg6moeM50TOzbUCKGu2un0UByPyKkc9xKLNcC/5ecNtQXseoaM4HYgYWKSbqk6Zw3N5i++TMobBzQ4HMd4oSXkzPUsYqOp5+tLAuwnF4rzbEZi0h7WLIkFBbCa2leeaQcg799YMtckninVeKQpwpr5ijZpjRV3JEASB5nr+kSzgshcJySDzLOYXRwDaxMBTL+hl+zVBYCT8VLUWAwHwciDUXkVh1k7CkyvqehcKmIumUk4Jhlt9cebBrr3/i9SQlJwXTBUQOc81RQzURCPphPqsw67pUGIMzszsrST/wek6GVXvss5q0EpOackjVog6HfKomFYOCMhmZJYZmjLpiKJF7ZUw5qhlTdAAwGT1oQKsyRnSODQcLhFHCY6sQ4RImK8eELbeeg6pdGFBI7QrALICdDTY1ngaH15am1FR/1ZCwhqDV4rzMfyEAw4z0as3Dq2RO63lfjrF0sBr/GwD1OwO52miyAnzXgP3sPotDa+/rZn7bS8ZDo/1fpfKNBpbn6PDD2xc4jC3nDhJ4OHmHEDU+a3YlnFI0Gs+8+SKxZIvIG9TeW7QsDi9ixxKGeehbvHSbsmmt8+mUykUIG6DNPmlGkjC95LOtefJCMLjrKAdQ5C/EiyKbXwlTs6yFGBd5FtZGKL7vWUAE53/ddR3GYOCDwW3TFUF3uSYDGAZXQiOXpB1St86/8vyjL4QiKWk4F+BZfL32VAjxiB8tDLeTkkKKGsaSHMFdE4pMQmRhdNmUyDnLGpkpUn1jEobezTwWNdGHeFRyVgjekDGWc88A4N7FIitBIsyqfEmdjh2UykT6wRvOFKscHwXcSU5ZkOPTF7HhXCVg2hBGkRXhORatS5GhKOylCjg0rDU6iDgZ6VUeHeX1Whs5Z28KEy3hfGrKUVIm42AjIgtzK0MSJuNoSv5T7aWUfJYiGs0bE+mfbHplc6bY85mzQgwaR8ted29w7h3CSJtGADM9TG1oo6gti1WrPNswCaOqEJMkr3FmGYW+cUVagjwwmT0mKNIItOmhxobekX6nJ9E+pUmvU+uMOJpiVRedTQCT9ygrnFmOQq6XPst8ipanbNJGBj/+6Ir1XxnS4Sy/djqjbygHs+RGAbNwTPEmDW2DeDYI3lLdKkTMj7Y8lxwVbWJ7U35xh4blagYD79IU3snXx6DhTw5ICqNNE/usAvqmQTiTJudoM/KoEVqLPBp452iTKD+KGfCcJ4eg6byElHqNUXKn5P4ARsf3G3XxepVNpLzXtGH1NtMcjqZsYn3DZqNRwzeWJB54R+HFE8dzdRsNiZPzMxhdIi/auZK64HkJo0U+WUSbMDYO+WRx8Jr0UHm854aNBLJeZMMsX8tRwfPcS9jpaBMwGIQirUHrLhoLRIUg60DmNKiZNy44O72vyHkC90XmNjSJ5pQ3yVE2x0khuAQMGqdIoAOh2kQrTGGySSE6A3g9jVVASALgNUZraU0N/Pw0pjw+AUJBI/LzSs7O5iOIruugkaqQ66gtXe81UuVRVUEX71hk7VblFfxAsZtKdDRtRrJ8L6+QWH/VO0P94I13Pxio01eXG4nOQI30PJKtNukKUCPfNypEN2mJiqcvDobeB4XIeYkqEctubPh99TlNFbAs4IQ/4yopBK+gJH8yKqRGkx5ovcNW07WiRQuTWZqDQaEC6YvWwEvPGXVVArIlDd4CWDh/MMtYGFjmRk/91aRvKiHIepzGUb5G+ONdZERkzmpUJONJaqYpKf2QOZkRFckUpAkvFUAi8yjvEzhsBvSFXO/7p+U4QzQPnLCan/cMWKoiN7L0HL81DOYxYLkEYBkzoDlrox5rWoyrLrWHWU3v35xjWbVfzdVqKO8aElwef6TM5nPxfomBf+e1/PrLNxpYWp1w2fTFeyYb5a0bMUSL1oSJ/dRRWGVnAxPOBAzsqXMmojGOdCwtAVEJQ02gDXXL3jEBfwJkS8gqM1CSpmRGw200NhYvTP0ZDEkjNeQ9o7BPqi/tk7doYhAVkFuHPCquB4C1Mql9oxOijdg1I6wxGI3BxgX28Cg42bwrYj8Vb5HRGdHOmTFtFS6nVIY3k0dF+mENeYKMzkzIInmKlAtp+HwJu8sUohkchckaw7Iq/KysTdA6wbEFu7GB5os9MxJaKQC/no/pu5zO+GqsUs/ohGjYGs4ejpYt3YH1HcU7pVRGCHk2B+LpiGZi3ixzyOAamEIiA1v0JcQwaNag5E2VhOABZBTQKiOxZ0XCFMWzI/deA5YlpJABNoU68nzoTJ5p3vMakydtTWDmMalz7qTfy/eTxqWC0pPXQkhQ5J4yPvnGN+yh0CYhaepf1FPepJDL1GGSxkZEZQjss4EgYxF2XXlnZE1YFxG1KiBV2D4l3JEuUAWQQ2Ukk8vvtda0G5HrtU6TTInKgJlCOpPJTGIDxDaWH06tM20OgWI8oHYy0Dz8pcwG07UmIjUK2kTkBjOJE20istLIoH4olYkwg9e4tuKNxsQEaqbrlc5ELhI16QrqjKw5zFWnoj0oAErbjIRIYJ43T2X+dObrM9XTigwQKnM+JhtfDA1M7pcyiu7hWhhk1kzoYujeAJA16ytm3gfaRLhVQmIlBLSEyFIfMljnVbwzLk/gUNaHzrTx5vBZeZ1d5g/IZPiAkr7ryXMD0CZSwoh55yttlfBT2QDaxPVlt5un64rOHRsx6mvpIc9zd2Vzbaqdsnh0UqbXTDSjgGmdyYZdZfLIVO0U9l0Za92WyjNQCcXHpZ+i71jv9LTcE9P7ajx0Pab/HHJaiFQyiidp+pzkaizcluI1qvhaheoZ8e/nkpzlyxT+7JcxLI9r0OdS5QkkqeozU/rDw9IZJSibAd3UJuavVX28AgHA5GVbAoz6OUs9VbWx6EeuriteQdDnUcaZUT3XZR+52SUaKCBSL+ovgMG8rekeZSkp+jGa+pln16t6nqruQGEeslv1NQOTN3jl+lmpr6vqPeqAWltqa3XfdM+1NpbH3rSkv+py/zJetfzI67fVXSlLIFkfX3v9pmO/lSVXa/GvYPlGA8utGfHX9h9jawYMyeE2bJCywhN3glMRH41XcCriHBtc2jO+8DtcuzOGZHHvO2yMh9URx9Di2p1wFzq0OiBkg0NocPAtGhPxgye/wCfDBfZ2hEbGOTpolXEMDcZk8MH1PY6RGFfHZHHTnPD5sINWGRd2wDm6mbdyTMRUuzEevzxdw6qEznqEpEu47RAtvnPxuuRYnkKDzvpCPiTlENpS/4PdXam7tSM+Pl7iqu2x3w/4ot/hZnOCVRGn0BRCo+9dvqIwXBVx9C12bmCPqoHVEQffwidTQPbGUliqaH46HXHyDbZbAvNWpQLyJST3whED7xAtGk2e4HNw2LmxsPH6ZLCxHkdPIcvn4HA3tnh/f8Dt0KGzAa0JuB3I8/rtq1v0gY0B0ZRcQh/NTJLi2f5IEjRxIi+6H1p0DFb3zQCrE3766gkA4NtPbuEjMek2JiIDMwNCygp3fQutgLYbkEGgXkKAJYw3Z1UYZne7M0I0sIY84pebHr236LbUrpAW+WhwHh2G0WK3GQCgGCnu+xa28TgPDS53PYWXRoOm9SXHMbHh4cn+hDFY9N7iycUJAHnO748d2tbjat9jDBRabMwE4oVwqDYSSC6ogNAxGDSO2Wg5ZHHbcYhq0thtRpz6BrvNCB/JK+hcLmHS42ix2YwYvUXXeaSksd/2JezNM5kVgXNq+zw47Hc9Tn2Dtg3FICIhuQDggyHg7nwxVBw5rHHT9QCAEClKIASDjkMaxYAQAoVjUp/YiDJaQGVstgOFAXqDthuprTDlKIZg0LQR50OLnBT21+cSuhiCxpZDI0s44WCRk0K79eXHJUUN6ATbToaJsXfY7AacDy2ajS/hgQAwHBsWmifAHL1Gs/GTAWgkj2O79SUiwDWheOHH2xbuYoRuA4K3Rfg+RYV4bGH3voQhNtsR49nBtgFhtMQCqicXgHj9bRMRBgtlE+KoibVzNMUjLGA3DORBMpuIxF4sYgdlJlAOITQthRzGwUBvAoX+tRHxTJ5Z3RI7p2oSjIQV8vh0QyF78YsWuUvEhpkU8pG8f2oXJqZMS3XzbQN14cnrd2yg9h75tgE2kQCZAjJ7chUbW+ASe1nZa2oz3QP0GkkBwQBtIq8pMAHAnr2mR7b2yNe64/PC3XY2FEmg8hQmqAAcaawKQLYZ+mwRN6nkEKqRvfsmQx800jZCf9rQxt5V7JfsAco2Uzv3DrnJ0LfkqdWBgFzWGWmToQ4KZlCIHXmrVAR0BGLL7JeKPFMqAckB5pZ+a1JDx/RIICtuM5Rn75fhthK1oz31TUWF1OYyZuVVacveEolONgTgtFfQI3+eGkCPQOwAMwDJUh+zAczJwl989V2dGamPAKCFgRWAinQ/HQg86ZEBMCYwZQb6zCRH85C1gGfA9ASWCilSxkQUxM+4hBSCrnEHeg5klMowg0KymGlFqkheVOq7Iq+hJyNWVtRfZJrTbFC8aypoZMPjUXQ/PQKF5CehPGM9gp87L/FxWs8qAckA2dLx1ADikRRPog58vZAfyZypeV2VuS3up+LPYskHNtU11VyV5y/ERdW5yZJIbWYDIE39kDoqTM9z6TEroLf2lsq6SNN1xZu5ErYqbUHOy33TvK5cP5NcUSje3pr8aOkhpfl9RGKlTAYmg4V87iods6wUvVf8WnKsV8q7AMQHZWVeHrxftPNN9FQu+UH+KpVvNCvs/o8/yP/Kf/t3AUykJzXRgLB31p6YmpiDDLBUpyZLqBkx6T24nfn9J8INzEJAl3VqZss1Rkm5x7KNZXuPkVzUifJzrbS1bz7MNNzqdoXMYsbOuZjz8vmWOZX71J/wtaIearktdd0efM6WXzCPfLlM8/DQTFk8IqsXLNoUj0k1n1Nd9fi35KwP1bjkOS5DdqXUz6WYc6vG6lvVoTMaj8/D2jyWNlbGVPelHufy/Np96lL9CM003N50fWX5LW0s214+n8d+Pdbmdda/R+b+beVN81nXqf+/a32pu/bMMyAkJKs5Q3muLweg5AwV4pC3WcDr+V6+f9Nnce3cY/XWrnvsea99vpffYZi/XXusclnZ6NUeEhnrkpF0efyR754vtXl57LO8nJO0MoDlul8pD/pSzXE9bXKubDqX7a/1W+Z22fV6HtY+r3J8+X2Alfrv8N3+po/tm9hD55vilTbmGSVfriz6+djPhKq/b1cW62Nr99F7rS2DtTlYey6Ley6dyXLd6ldsPadroZbVmniw7upm1CPP7B3KAyC0uPbRz+XKeniTZ+3BvOCR695232Uf3rJ3Wa3/SB/re791/bzpuKZ10gAAIABJREFUHm8ob12Lv2b76/f8Chd9hUv+r//h733tzKm7P3qR/6X/+j/6jbf7p//uP/zaxwZ8wz2WTke82N2hj27GTOqTKZ4XOe6ZOMVznqR4KoSoRuQvhAzGqIk9s5bGqEGqYe1AIWuRkNUxWFgm8wnsTZNSh7LGpNC6UMJGlxIYlNMJPjZnzCxhmWaSGAic2yfAmAg51EzioTDScuhhqECmyGAA0/egqb5hhBkTeMiUKRqP9bWJQ1tlbBOwrqUqJi+MhIoK4+WaQLx4iZa5pjXIn45hLrtQ6kyvRZ+tZUIQ0VRcsnPWobSih5gqw4WQVtQGAsldlfFM7KbrQvPApOMo4yt5gNy+4RzFmRFh8Wsu8hQCaHNWhWRDclyJmXLa9CyNGWV/uDAy6Oq9eK0eMB6LIUWeA99DQk6LkUXOV/MguaKyjiSfU1g6xTBDRgMUlsWlWDwAaMP1F3WgJqbKwkqqMOW7ls7M+zdj9pTX1aZB8jyTn9YmSXTMySokd1WIPep71eBfmQwEzWQgar4pNdVuOfN9WFqDHhTdK0f1IDwUoL7mmuSj2lEpnTmXdS4xkqtnUUrGJNGR1QMjyqy+jLXk7s7bKfNQA5KaIKSMjasLYYXkYqlcgA9kDbs05YTy/ENhyjEsc46S1zl7LQQm0sdlCGW9BqSOPP6l96Lqm8wDkpq3mRd16npLVFCHTEo7aXGtFJnD4vVaB6urhoB6B7tkE63ryDxmFGOISpMmYC07AqDkEhYSFWBuFKnXQX2/em1In2Q+VHVMYcrXrcdlUEhmvlLRExlLrsevUOQ/CLxyKH0GxIJaPInLNVOvm3qJ1YBkbRMt6x8TYJ552qTIV33t0Vr77qnLYr2tAcclXn4gmVLfX8Y4RZNPQ5J1g2pqHgMNGQ8kZJbjXLvmsaLSfBBvsks+AJzvUuo1vDz1hjl9p7L8vNb/H6v/WDe/wjVfprx9TCu/B3+p9/v6Cn0l/BrfQb/l5RsNLJ+4E/7OB/8YPxpeIGWNF+4VfLb4yF/j0/ECf7L9GLdhixt7wC/GG3zYvMTPhqcAgO93n+Oj8RpDsnjijvjz83N8r/sCH41XaHXAM3ePb7nXeB23+NO77+H3tp/jPnY4R0fyIlnh2+1rRCj8+PQert0ZIWm819zjx6f38IfbT+GzwcfDFXZ2QKc9IsuJtDrgC7/Da7/BDy5+gQiFT8dL7A3Vcyriypzwz88vMCSLlDWeNgccQouXfoeNoTC+mBWeuiNaHXBjj/jR6QMkKNy4I177Lf7V/c/x0XiNT8ZL/PXdL/GT83PchQ2+1b3GVo/ok8OPDu/jpiH23JvmiM/HPWJW2DAj7o07Ym8H9InCeT8ZLnDtztibAT4bnGOD5809PhsvcGnPOCUiEHIq4uVIbLq/Ol/hyvXY2QFjsrjzHW6aIz4dLvCdzSt81F/h0vX4tN/jve6Aj88X2FqPP9p9in92+ADf277Ep8MFztHhe9uXeObu8X/efhc7O+IcHTbGY0gGG+PR6gCnprzWn5+eIGRdQpIB4EV3i9d+C60yPukvMASLv/3+PwUA/C8v/wBb6/F+e4eXfodGB3xyvkRjQjFWfGtzC4OET4ZLOB1x71t0JiBkjQ+6O7wctzAq4/ubL3CILT4ZLrAxHve+w7P2gI/7S7zXHvDpsIdVCX20zOwb8f3tF7gwPf7F8X0kkOTKne/w/d0XuA8dXrS3+MnpGRodcGkH3IWWwqRNQKspXPhnxyfYuwEfdHf42fEJrZ/2iB9c/Bx/0T/Fnx+f4qrpsTG+hHbfhxZWpRK+LKHXG+Nxrgw3z9ojXo8b7OyIjRkRssHH5ws8bU/YmBG/Ol/hD/af4/+9f44nzRkAcIwN+uDQmID32gN+db7E0/aEW9/BqoTX46Zov142PTQydnZEyBqf9Xt8d/cKf3G4we/vv8DH/QVCMuijxWXTF6PSs+4ApxJufYeen/OfXHyCT4ZLfN5TWPreDdjZEVfujJ8dn2BMFiFpbO2IzgRYHfF63MKqiJANnrcHJCh8cr6gfG7X4+VA6+bS9bjzHULSuG7PeNVv8YObX8CpiH/yxfeLBu1l0+OzMz1npSis+bvbV2i1x4/u3y8h5p2hUPijb4vkze/vP8efvfoW/vr1R/jx/fMSag4Af3L1CY6hhc/EKP1ed8D/d/esGHK+tbsFAPzF/Q2edkekrHDvO7SGvrv+5s1P8b+//B7OweFpd8SV68sa+P72C/zft99GSBqXTY+Pj5f47sUrfHK+wPPugJfDtoTSp6xw1fSwOuJ23OD9zT3ufIfr5oRPTpd40p0wRoMxWZwDPZfnmwMu7IBfnq5IIzhZDMEiQdFnOji0NuB+bGd1rU44B4cX2zukrPDR6RLf3t3is/O+sGXv3IiQNM7BweqEv3nzU/zsfFOYu19s7qBVwr+4fQ9XDYVI33sa9x9cfo5/+uoDXLdnfLh9jR++/gB/fPUp/uL+KcZEIdof7l8jZeonAHwxbHH0LeXp64Cjpz6nrHDnO2iV8bQ94hfH68IU3keLk2/wbHPA0bf47v4VGTCzhlMJnw173A38rKDw/uYefaQUCWEPH6LFh7vXxAqcNQ6+xYfb1/jZ6QkaHfBq2OLCDdAq4ehbvL+9w09un+HffP4zHEOLL4YtOhPKd8+FHXDrO9yOG7zY3uLzfo8XG0qtuGmOuAsdxmTxs8MTPN8c8L3tS/zo7n1cNmfs7YidGfDL83VhT/+s36MzHq+GLd7f3NNc9Tu0NuD97h5aJfz47jmumjOsTjj4FtfNGa0J+NXxClftuaR0fHbe0+8dpy5olfGq3+A7F69x8C3OwWEIFpdtX+71yfkCz7oDfnZ/gw/3r/Fy2BYm+N/ff44//fw7X3nf8cHuDr88XNHab3s0bETe2hG/uL/GZduX53sKDWLSOHr6Xfzw4jX64HA7dnjSnmjtR4uzd/jw4jVC0rgfiUBOvrPk++x+JKI/+W07e4c/uf4Uvzhew+iEw9jive097scOQ7TEFYFczqWs8N72Hp+f97hsewzRlnnTKuPleYuBSQ4BYO9GHH2DnRsxJoM+WDzpzhiiLaSITkccxhaXbY+UFW6HDjkrPNseMfCalZSXw9Di6faIL07EXi/fhzErXDYDQtY4jk1JUxmYXBEgNnIx9vfB4jy6wsRvTSqvx2A5RYLz/Hnv3ntbjP6SEiPGdWF/98HA2Vj+19v+lBU6F9D7acsshuE1Y3LNQ+BMxOBdyccHJrmopRwVQOkvYlgWY7vcA5jzHMh9ifgwzQzxcn3NxxC8gWbj/LIsDd/lfc16zZeJUVsIEUtqRF1qpIw5C6rCQ6P1DBcv0XVWM2P0akSZ3POBtWPej9+Vv/zyjQaWDhFPzQF/1H6CPjlcmxNexy0+bF7imb3HjT1gpwc4FfHd9gvs9IAXzS20Svz6NYbksNUDsAFuzBFORWiVihZmpzx+b/s5rswZV4aAk1MRPhu02sMg4TvdK2z1iAiFrR7xYfcKV+YEny10m+F0gAHpVvpsYJBhVMKl7eFURKsSnrkDjUlFtNqjzw5P7In1MTW2ZuBzAU7HiYpeRRjebD5v7kmTUUVcuxOG5Oi1pdd7OxD4UiQNYVTCi+4WrQ7Y2QEXhjZaAn59Ntga2kB1mkAIWrqn0xFIgLbUr40Z6YfQDOX53DRHaJXxXnso51sdoJGxMR7PGprvm4bA8XsdsNEjnncH7M2ABIVnzREGCRe2x86McCriFGkTstEEblodMCSS/qDnR3NjkHDdnBF5PFbH4oHdGI8EhaftEbFRuI8dEhSe8OZG6mhkPO8OZV60yjBsftzZASlrXLme5GB4s73nTecpNUgM0o3KZTNa/xedUcfP8BwdrS1uT2sCMSFTnuspNaVf9PwTbSCRS4j33g1odEBIBlvL8ggq46Pxip6ppespT5Z+ZDvuo7SztSOsniR0LLv7POfepqyK0aMx9P4YWjQ64j506HhTLNfDooBYqS/6rVs7MgHWtK5DpvzOLRsPtnaEzwTsRQNW+p00ba4HPt+BCLFe+y1tCAytd+n/MbTl2qBMpbOqqa8AGhWKDm6j6TshZI2OjToJCo0O0IqiI1ob8HKc5H4EMApRmOZNkUbGy3Fb6mg2vcuPrmwGAeDT/gKtCbgPXclZlrX92m/Qc+52ygqvx00hHQOAY2hKX1JWCJnIy+T8L85PiFxMR4RkcB9ajNEiqIRf9NflMzxGi9YGnIKDYSMIgAJwoehZIdHzPXjawB48bYL74BBYe7bOF5d+n0Izk08KHKMoRhwxHEh0hVZ8D9Bn8c535bVWGSPn6Mrn9SenZzj4ltqNwCf9BSx/t8tYUlYI0Pj4fEGfweDwq/MlAOCj8xXGCkSLYUFAo8hGJdAGdYgWL4ctRIdXq4xP0gV8NLjNGwBT2obIP/3ydFXatzrh6BuOHCHDx2fYl3mR6I+YNH51vCqbszEZhHyDo2+gVUNAnechJo2PTleIWeHH989p086AUvLTb9WGAAPXPXtH/UfGR+dL+ESRPifv8Em+wOthgz64AsqVojz2z/SevhuCBbBBSBq/SjS+IRpo33AfKdd9YMmmMRocxrYAB5kDqzcYgi155CNLlgze4uf315TrnXSRNBIANUaDu6HDaXT483SDMVi81PRcCOR8dbmRn6drnIYGGRSRJJt0oxNOQ1MA0cm7AowCM4v/JD6FSBgdhhYpo8gGyblYeQ6N3hc94CJ1xPcLSeOH6QOcR1e++4+jQ4jmwUZd0oROo6O1eO7KsdtzN63LpHBSDGRNixg1bnVXwNJxaB4QxsWocXvuSnROzsBpdAUcCQAKgTgEvDez63NWuLPT9RL9k6Iu4OYAQKJ0UtQlkgWYQIp8hiTlBnwNgCLhUhOglYiUqEpkSS/RARUbL1VSOAk7shxanH8QRcTvKUKmirBaePffGCJen5f3NTlTqacwrPV9CbjqKIo1b+/yuHj9f91Se+nXxvSWUlI8/sqAQ/U7uZHf1vIq7vA/fvpvlTDUIdGPfKMJ+MjmSrQqxWtSW36tihiTRWc8TqEpDLP1j+9Vc8bBt2XzIpsiARLCPgvQxqg1ASdPEiROx+KpBFCkRqwmYCc/psIAK6GogTUL5Usw8qZKSFCkeP4RiUkXJloJ3T2ODo2NcDrhODp0rG0X+MdYqYzOBviiSTfpCGagaEvWoauiBynjNToVEpVpQzdZClMGOkchyDEpaDURphidigaksNX6qOFYn3AIpkjAWBOhFTAEg8i6jnWIbz1PdZiBWF/rOmKhBFDa/d9+/j0AwLYbicyFLX/CGiz5uQARxQAoIbE1Oy1ZIvnZsK6bWBBrjT55X1sHRV9OdOfKhsUkjKOl0OCgWQdOPRCyF2ZX6ZfIt0hdP5IkzEzrDwBUnjG4imQLhRKr2QagDocsYdUsoZK5r8EbWBeL7Ipi9lfR79MmlnBdOl+FEUsIMM+n1gkpEiOs6NstQ36hSBJGhOHLxssbaJOhTYSE7IpmnLZp9nteh7hKyZHDry2x+0pIqJwr4bcJUBr4s/HbQCZtOflBzwnM+jm9lzBT3cQpRE2+H0wu4bjJG5g24p/136K6VYfTaEoopITB6iZOVmaWRSmyLhImyPf7Yf8hVEdtZtYBLO17BdWmsiFSlmQsVNHAyzPLcNHDE7062YxICK9sZGRDJ4QnEpYp54EpxFH+B0V16rqeY+BspvMSSlpvgniT9efDCyI9qXXyMoggZxG2p7xGbqjPKipihR01MbpyPZF2KM/NVPPKm74pTJKfT1DEQpuq41wvaybZqa3vTJQj41W+ejY16UcdzqmJCCc3eQp5FdIPTX1ITcJn5+eFiKU27st8Z8PtmInUpcgNqEwEPEFBe1UIeoQ8JdtqjMIGbIhUBwDJcCTqiwLJa0wSGpM0RxZiIQ45zUw8kxXNmcrU1v2oCpGMXF9kHbj/yQGHUIVNKuDWA6nFVy6HAGTeOZ2nryMiqbF0LKuJLKb0HUDvqQ/ZAH3k17z+h8DPxKCsr1l+6CJUNmsgDBMxDzTgPc1bIYcBJskQgLRKDcl/yLzFOD2zmhQm8TNIAsp0RvDqAalONkAUoilWPApMxgMAkdeW1kAKgLbT2Mpa5q83I8Q54D1EdZ8agGQzP7bmlFo6tGbrnedx5uCqxq4yZvd78CweKbMc0qpvy36t9XPphJsdWwJQhXm+a/2+BqiorgHmOeR1v98EMuUZVP1+U59n93tTWQLYt1zzpXIw10Ayl5++eyt/qeUbTG/z1vKNBpZGJWyMx7U7wWeDl+OuvG91wC/7azQ6lBDET3GBm+ZUAKGED74aN3ivO+DluMXGeMSscDdu4BN5jp62R/b+kBenjw5WJbwcSKvyWUchLwBZ4591B3wOCt+5bPpitZ/6TeF3W+sxRFtCuIRtNTHA3LqxAL2jb7CxHo0OSFlDq4SUNe7ZQ9BnVcKEDmOLznocRwejMrZuJGBpydspITUAcNn2FDamKMxs68ib5hN5OKQvkicq4TECehyDw8ZEjBweU4PWMRrs3YhBWwzRwKhMHhDvsHUe90OLrfMYosG+GXE/tLhoBwzBIkSNfTvgddygc4HYV2OHpIBd49EHW1hh5T9Am/TAG+zGkpdyrHJdY9JobETKwEU7wpmI23vyJuzbEX2wSNkVQLlpPEmncA6qgGrHAKl1AT5qaAWck57Cckbqj9EJSrFkTJzE7J2JiEoXo0LUpLtZA0atE1rW9jQmwXtTpEdy1iXnVETmU6KwocBMpzPWVE/1RStULOMk4p4Y3BFYl/xW6sMklxLYixoZoGU9aXemqGGaRMLnOiMnCachEB6j5lAd2qwoQ/d0Lk5MrBmgfEBaQ9YmDJXYOVQuUil+JNCnVMaYGKyJnEgmfUeYzGNTpK2XWZy8CSjC8EEjKcrFFL1TpXL5zGrDDKOg5yKvRb4kJtYlHS0By10qQFWYd8WKnaBp458UVMu/fwrIEVP+r2KLe1DQm4QYLNCiGDoy6BwsUJKREoHe8iPPuX+qzUCge2tmfQVAYGYToS23X4ERNWqAQScygd1Y51eKPElmgwMDEMpL1ATaooJqKm1DNYH2nDCJpYtupxgz4pQERhqghtgpXeQ8wsSAsLre5EoPEzMpB33WSJtUgJryCioppCYAYqATFs5BIbe0e9K9QmxA/221e2KNQBV52lsGVAKKVC4ah3A8fyNrFgZqRxmFDAJwsMQUmtW0801NLqytUMIeCgYkU96i6VUBJtkSq2hUDHA0CuNqsjSO7BTMmUBjqlhhVVQFIKRmYg41PY1JsyYkNF1rRgVzUghbAk/CDJtaMCtsRmzUxBg68PS1VM8MMlcTeM1GQY/U3whmD3UK2gMRvJbr+krB9gSSsgGgFZSnOQCA2FH/8y7DHolZVgUCovYEDL+G3Ig9K4QtXa9HVQCOigC2pNOYLN9fpEYN5f/aEzPZMpNq1vxnAA4Yomt486/jtJlPbg54iBUWiK0q780AJKMKOFVZAC/VMSMQnSrMtVCqzGls1IwVluqoApCzVhMrrHxM+RmbgdZnbGSOMGOdTZbq2R4I3dQvAUOFVdZiYoWtGV4jJhZZw3MRJqOIzFPWeJB3CnC7zPg6sclO10i7OqAw0z5khc3IIjOzBvQy5mypTIqhI90fqMa2YIWdgd48GSSgFgBc6gqDbV3vnVlh5+B6NUczTfdezdvleqsgvAJ0SxBdqrzp47cGCh8BiW8FuL8rX0v5RgPLjR7xr+9/CqMSxmzxomngs8GFphDTK8tSC8lhb3o8cSfsTQ+fLN5vG3SawtpedA4XpseNo9DMBIW+cziGFlZHvOfuce3OJTx2SBZORbzX3Rd5kxN/ow7J4tL2uHaUX7bh3KmIiTgnZVXCWjfGw+kIqyKF8/E30JAMLu1QAKTP5IVs9Fz64sz3PUeHS0f5aefOoTUBl01fZE2u2zN2HI46bCjnSSPjuqGcCQDwWaPl8EcKy4o4R4eR+yQhrEOyJCnCYZN9tCXHUCMXuRGRHtkZCmcMWZfwR5Fc6TtXvMSNDnjSOs43Mzh0LfZ2wEVDoZ2Njrhse4zR4Lo9Y4x1GKPiP41QeYj3LJ8yVl7KU9fQPTIZCzQy0nO6/ml3LDl8DXuHt3Ys7aWscW5pB9CyDEnDEjUAMHAOR8oKp64peShC9iT6qvJfwt8k3O/YUQjYRTuUOTc64ZIlM/qtxd5R/mFkECtzLn1sNK3hc0eSLgAwJoPjZkBjIjbOFxKrEt5bgW7JQUlZFU+5lCEatDwvYnBoTEQfLGLS2DqPY9dg14wU+qZIDsHynPTBFoNDrcEqXnzxngt4b0xEv7Gl3cYGtmaTZ95xuwL4bRUOeuoaOBuLbEzKJNES2ONdj0tkTkQqBgDGYIpxgnJxdNGAFS+9VpPsyZH1Oy+3/RTBEMmIIWs0Z4V+a5GSwrb1hZBLPOqiNQsAfeew60Ycm8D9nb77Tq0rOTyK79M1fnpOGwpna52H3xryBugpquDoWmw2I0UNbMwsN8fvLLrNSI6ExIaQ1lH+0YYMG/VeIXDImrURfmOLZ14MGJJDJMaScUPjb5rIHvxJNkU85GJc8RvDOq5iaMkYN/RZcy7Cbw2srTRyFx72oXEwLsFUXvycFLo2FE+NGCLC1qDrAmLQCDuDtvMYWwfXUNSDUkDYclisXGvzjB1bqYy4JQ+x1mSVTkHDsNwJgOJVjzsNrYGw06X9nMnLrCsvdxynHCdhuVY6I+wm7QOlM/xoSFYlMyiPGikDymSEvYZuI0ZraeNt0xQ2l1QB6Mom+NEALBlDHVCFREm1Cd5r+MsK2GfMSHoodCGX/zEw2xIbLnxUFNrG3mEZQyFCqj3RSU3eamDySJuMtNFFrkPIiZQQNdkMH+geYa8m8K8APyjE3SNsKu9QwsieYYDalI0/j0kFmgs96kkHkoFE2KnJMxwmw4B4nGlRocxj7SUTL/PMY7llQ0Sm65SnZyqSGcAEmpABHQj06jB5NjV7vsl4UF3HRh8hJCp9VJiBnGQIPAH0GgB85bFUEUUixPs5cJbvEcX1BfiJF3fpsZSx1LIhqiasUnnhlWTQzaRJWaF41Ve9g2nedl2UfA6WpQaZJQqIGlwCxSUQWgVEVXvSp3cpy/bexUv64L4rbT0Aj2rl9dcMLL+J5XfkPb+lJWeFTnt8Fi4KoASAl2GPU2pwZU/wDAJfhR22esQrT3lQV0w045NBqwM+Gq9wZc+4Cx2sTtjqEc829zjFFr8YnnCeouUcyYRTbrA3A4xK+Gy8wI7JbC5tj8/GPZ66IwDgLmwov5BjPSg3M+AcG9yFDZ4394ggQNlyzqBWGVs94gu/K4Blw2CL8sOmbxrJHbxpjnjtN4hQuHA9ztHhj/ef4i50OMcG39m8wjG2GKLFpR3Q6sPMyytA9i6QN9OpVIhxJGcQAA6hKWDYJ4OQNW6aI46hxY7ztQDa+A/JYKcD7kOLznjsNAGic3SFeEdIQ4jcpsXWjjgwGc6LzS1ejVs8bw8FmD5vD9Aq49Z32FpfwKr8F9IUKfe+pbBiBr4pKzzrDhT+jFB0QP/k6lPErApRz94NRAhiM/rgCsAHiHxEq1S81GOyJW9r3w2FSOTb21sMyRaCjDEa3LQnHHyLy4a0PQUUNgwQ39/ewahcPNFC9vF8c8AYDb69G/B63GKDjMYEyovLGhvlS97h/UjEH0+7I+5Gyp954gZ8/+JlyQG76PoqrFsX75xViXLGGPDK3ApovemI1InyC3MJK79q+jIn723vcTd2uGynnF3PuUg33Ql9tLjpQsldE6KJlBW2biwh5wDlu910J9z7Ft++uMU5OCQQkNzw8weAvY4FoEtEwvPNEX20xXDS6EhAmMPkBTgbnXDB3n6JIEhZ4WYTSh9Es1XaumiHYgy4aAf4aPCtPRHDfH7eo2WvdduFklMGELh7vjuUyIKaYbruT86qaLj+3tOXuBu6IpEEAO/v7wlM87OxKpX7pKxwsyXD1mFscNmRkWLkiAEA+M71a7w8bxGzwtWmL+RJAHDRDHh53iKDgP3ZO1xtejIK7MgoULNbSwj+EA263alEEPTBouXnGvOUI3azPVM+mnfFMCCM21YnRDZ2+GjwZHuGMxEn78qxZ3sC0Cfv0O3n/RFjheS+fffmFc7BYeRoBkkvOAwtGjYMSd2LdsDrc4fGRnQ24K5vSaN4bEqe2/ZqylmWfECJ0KD+aXRu3i7NoYWRcEQOCZdIh42jdSZ7pJGjNYRcpHVhZqiQ1IHW0WdQUhNaG0o+oq80XmNSaGzEaXS4ft7DJ136JpsbayJCNBiDwabxGLxFy/2Sz1XKqpCgbFzA2duS2mB04nOppBIAlHYh6Qg+koFD2j2PRLCk1JQeIlq2wsIuerVibLBspPHeomsouihGjZTIkCERM2J0k3H4aEraxKbxOJy/eiyscwHjaIsxRVIftKaUBdGblSgNAIXVvGkCUlKFbEWOk6ElcNSJGBry7BlJWyWfMCm0bShM5jGqWZtShIAFAIxNiBwaL1EUmteJ4nks7O4SvaETFBsh15jAkTTA6QYll9DGQuwCbiezhzyGahwCHNmQkmtvW82ELXUBIHE0ihhbFAqCmTF110XarZixC1iRNIA6DH95fcYMdNOxRxDT8rgYb5bt1R5COVb3C285PwNw69JUD3IS3zXHctmHB+NEMaa8S5kBwLXnswYm184/1p/fld+q8o3Wsfz+37jIf/9//jc4FNRhSG4GunwipkGfTSHcAYCYdTkGYPaa2PkMfJ42K3sz4JSawgabsioeSACF0IWu0bA6zsBGypoIJvgTIa+1SjjHhsmCEpOhqFKnkHsAFIKocnkvICdlNSNJEZAgRClCmHOMDRodyn2kUA4o/YDLproGUXX7uvpEj2nyFtbSLrUHUTa5QtoxljHk2TWlHoMv8RRK7usYbQFNKatyvE5+pjZN8ZZKH+yKuU9AFi58AAAgAElEQVTqTAQyRBISGawkqOINJY9knF0jOa5yHzkOTOQaAEqOrsybUhkxaxiVEPkZ1etC5kiARgEjKpUQ6fq+sx93fi8bquUzyFkVD5/kuMqzq3N85Tp5X9+z9nDGau5FekbWUa6O1c+nrrOsK6Ap8/3rtuu1olbmXDbXKasCUGvN2loqpgYgS33bem7lWUrdZaJ9kSnBZHmMieZfJISkTPegvCGpJ8yFdallhUgiiXKMJXRbipCBSP/qz149VgEMy7HV9eVZlvmvQt/l97wAXhlT1WeZGwnJrqV16nmaNsS6MCTW59fmVzbJIiUkecQiPSQh1PW5es5D0CWUu85DlrDiusSgp/xj7l+Ketp48+Z9JpVS3XvqPPeZN+H161JULiHXJby5mtsHWsJ54YqoNrCSW1zn/T6mmZCCnm3o1zwDQnAiYyySNJg8pllkcKo69e5R5qTMVT1PWRUwMbuuzo+VvksfZTz1AlzkyCJjntO73CjX4OLXCIV9sMktG3C1TpwCzMdYXzv7IPH/Kj/ywcKo+8C5s5I/SeGQ1P6M6ITv80DKZfn8l4BjDdxU674eX700ATzMNVSV9205d3Ic6x634i1bzqd81utnIONYPt6Vca1ConpOFm086h17Eyh6h2X2Tl63dwBwMiVvam92/k33fdexP1L/rcdXyjvNw1dsuy7//B/+J1+71uPmD7+V//C//I9/4+3+P//eP/jaxwZ8wz2WEap4In02uA2b4u3bmgGfxwt02uMQKKTyld/i0hIt9n3oGGhFHGOLG0eU6sIwOiSLe99hw6Gkx9AiGQphHRKFmb32G2iVcNOccIgth7Ia3DQnZg1MuLQDjrEpG2mA8hdFGuPWEzvbleuLdytlhT463LSnAvz6SCGjrQ7MFEvtieeF6h+RssYpOHQm4LN+j431NPZ+i4uGPBOn0BSQd92ci0dN6N3B5EWNjjiEdraxF/pzAVfi/dlYX8JApTQ6PpCFAFCIkvZuIO8a04tv7cgskSxLMnRAC9wNHTrr0ZmA25GYFK879nTpKadTvDeSa5nylHcqDIdKZZx8UwDIRTNAA/j4nhgh39sfELPG2bsJJFv//7P3Js2yJFma0KejDe53eENMmVlZI1VF1wZEWgRhzaYXiCACLGDBmgU7WLYIsGLR/QuaFSv+DIIAIjTdVFd1ZWVmZGREvHjvDu5upqYTi6NHTc2v34gXkVmVGUWqyHvX3UxNJ1Mz10/POd+3AYSHxVLspfFkUVCr9W0OGqaAwkdnoeRKkNQVy8tofHUJ5bFl0HWYO6LVL1YmIoBKeHQWRiWcFoOr3iEmWV0zGSgSuAJ2FvBJYl4Mxo5cGpeo8HDs0dmAfe8we73ZGW+tG0oS0GQdVbZKtBYLH1UFIJ0JcJ7mrdUBk7PY9QuWsMaYspXFFUvDEnTtN8ewAmSRYYBMbqgBzlM/jrOF1ZHiKAW5o6pi5XCenkkp0xqXPHUwJqIr9ykkivH0XqHvfXUP5eM5CxhN80KIDO/J+mM0udKGoKrFhGNemaZe64jTsaeF836uYMt7haGjTZAMsjo4Z4As0A9LBTpMmtRSxTtngNHheOjRD0u1hADAdLLVFVaqhOA1un6pIGxxBhnAMCxwTm/iXIUA5scO/ZUja1GQiF4RSVEWCLOG3S30TAUFYwMWZ6BNQPAaSseNbmvwRNykdYQvJFMpCigTEYMi3U6gArSwKOQoobtA7WHCJUEkTLLMCymJFCp5CdWRRUTKEmubBZSNiIuCtHFdC3JcYgFA8dEAHcWS5iyQF4rFVWMgvVGRi7UESCeNtKfjeVaQe490MBBDWK0orgB6dr8zaQVIDJYcW214h0ACrdunJJfT7BTlmeV2Ua/zSnwkAbBLqsire6jMwCKrpQIyQziJ1BWwZxKRJHF9i0QeIuSjJhfIQibEVg5EEGmQJsKipDNk6Yf05EqaJZC6BLEIKCeRenL7FIkATbK5ujFmUwhiTIZ0BXyWOmss5ZjIDbOJb0MSSF2iOos7Z7a5WpPYXTSbDDlJcr+VQJYZ0ouVKMjQ99hlqEJwQy6qFMsY9t8dWEonkPoCtANo/Gj6ItriZqryGhsLVDdh5USNqZSe/magxkeyO2h1FW2AWCrEOK0rrD5RH0UuZTqKj91YsyKQm3jfZLltuYJTkWnMWhdaGahMjpvNqo33JRRD8Zt5M+5tP2v9mvIpR+0FAMluxILGEWUcnouxrK6wEsh6G9va4txLMYHVxbY5x2Pb7tNUV9i8LSOLdTzA9+AclHP7yrPc1sMuwm2M5QYINuWJjC3pU3o+78ZlNuKpxbVuCJS+no/NBQB5EZw+AzQ5VvQiKHwO3J9vbLT5v2bDSyTiH1jb8C2e4V9hH+nvKv2OFfa3NAmQ9AVH/EiRq/SGS6bKQlDsFrmgAmSh1CJWK+VQgCmfMyIiCYlBeWgZKaayuFhGyGo9G5SvboJkoSEX0iVpkrMoE0eLBC0aC1N5aVSrpCyWK5FIpiGT9a7KiohV8oAtNQxSbSHYAciKKQXFvGkZMWhf5RF2xtFCHgK2yC+0lkIqK9SxlbX8AAlV66L+xNoHKUj7sJWU4L5xW9prSF5jPa4KMy8kalu4P32RyuhUaNrI+lTkmsjyEwAgc95Y8bi8c8tiV0iM2AIXoDA28WlKEDjpivsssPZLIlc3R7ZGJqxj2KlYwfVgAlnkShuUTOh1qHGJnE+ITFIfBWSlLNDrNZZWiFwZfbtCRqTK9aL0SxRAxfWlLDbaXxnA0Pmqz8VMvWy547YouY4fuwrWZwuocYgMFKVAw5oLsqyl0kcmLCh9F0ICCCVOMVS3OT7PeQECmKQBlpBzqABWMZgSGVav+dlKKwuIBQBrad6oCoJo7KTMa35Bs5UtrG2MJdgVkI/pta/QZE0VItNnmWA7T7GBMkHWMtb7y7Fv6PzGKshzledULD+e1tL9MzYQm2+5zwBgbKjgSZXxZCucEBnaNM+JiWAts3pNHyrxE407KljM3eriJwTFRmoTSpwjX4fVIlXAsVIJqYBOIUWJfUS5L43l2NBCW2laMTELsRCZDE6CwBPHVQqZK7uxEBnKEEhXBfBzP3ImciQiVaK+xI4IpditNJV8UsUaGynZathRPhgg5kJK1UVI094n+svWPKkTLXrKGLSswmy9ygKQJiJLXrECUmWknCBUQjpzvROKgCLHKWbDZZX5U1Z+vDajB7fEeVoClkJlZJlWsAtAmITUl1WqLmCYCZkaEqScCdhW45QWK/utSciQSCIh21QW+AJIubLCMuttZeMtPxZZFzdKyeAwERlKyZJ0KcdkpAIWRW5iN4HVOqfo95YWy9S2JFdQls0KhAFJbTEoK2BZYyS/S0oCSDaVtgFgMpRSb1R0vyrhkljnAg0okbkwuQ0v+HkScH9FxsZ1syXkobGgecqssFkWUN8yFQNr/GuZi1nn0qYylRRt/CS9vS4rAoeilJfLPamWRGQC/nJtcwVebb4mLhIiVyKb3DAzi0pytAXTtYzIY7wC4nXcxQqWynzgOEpOq5toA84uAJ9nYyxF04dzMNmA2g1Y5b41QPFrLalo8ovLx74WWDJIb50jztp4DiwvAsgLbXoWWIrt96+75rzc9ypjU177ksTTQeI6nwOnv0t/b+l7DSxjlnjj9xgVAcNDpLiJUZK24UMYKgHNtZ7xdtkVkWqyWB5B2nAPhTX2MZCFkrTubLXkqe6IB0/WTI4dBFBj7HSJRyTLoa7i7+xGyuc4sXvloHzVQ2OB9KW4w/qkNu5qZLEMWHg3vzyFrBvnosaL7lStl73yuJsHDFpj0B73S4+dWWBlwCmQYL2SJKXC5Dwu6qqxyDGLx2CruyQADI0UCxP0TMHAa1XdY9kyOWiPk7dAh6r3Rtp0FPc2aNIdi1puZFpGQ/0/LBbX1uHgLfpMun8Hb7EU7TOO5Wq13WIBi+ekM63EyFysZRnEcqtkwsNcYkuLNY4YeskKOBhfXQFjkjguZB3jWCpTSGekyJi9rmQtR2fJzbPESCmZGoudgtVyE1OXssBU9L9icQFk8efD3NXrgdWdUskErVIlUElZYOwWhKjIKlkAsw8Kp9mS1cr6Yo2kOSlE3rg1E/hKGz206gYcJbRSNNaF8CVEiSWQBTOYgNmZeg+YhKXGP3qFaAMWrytYMGoltuK4RRaQDjpi8RTH5hYNrWnxL4AqCQOQBTHnlRVWiIx5stAm1vg9ZqVNUSL3a9855oliplbtNL9oWghZct0MQSHqtX0MaNiSOZ/K+0CvVscQJLJdXTBZ9gV5BWQ1BkpkxOZa7+heL7PZuH7yMVkWc1GmGre0aTvPfV8sx6phqz1pLI21M0VRpU6SU1iEAWvUpSTgnUYyRfJFNwLbIiN6JrSRiF4W2RGJZCOSX6VOqji4l8g8XyOz61JZ7M6ZokBKiayHQSJ3q9RNWsjMkzuBtChijC2LiBxXK2ROApgUSSwYWu2RxbIQ5ZYxSwWs5VkhyMJk6yWCzIBT5Cosiiunk+uCJgNJyzWGKpcF9lIskExgE4itGaEASwnEki8rCeEkWvfFrNNqmRQAGrmRLMuqtVgo2dKZFX3PbTtYRqJY+rIA5EnS4p/lSNjCUdxDsyrWzQTIYkklNtUC1BIgFwnhaSOpWixTkR8peSsLpyHrGDKQjKLul++Rr88FUBTrX4oZIhCwERF078pcq9Y1m6EmIsfJSoCtXtVyFgspTZbFYsnspgLSYWX3/A5JLQXFAtXiWpqHlFDcU4nRtgIKSeOvXLkfgcanAk9BFkygaVsueWS5pw3pDZUJqElAWJ4bxaKozwBEWsuUXhADdXhqsRRme1218MWykSHL+Lbgrcw1UQiAWBqmtdYyG2vWNBeELZskGQ1REPd9C85aSyCDvVzYiVvyng0YE+IJoMhSrIB1fXXRObFe/3UWy2oRPAOW7edvtFi2wLCpe63oDIi2x8RZm88AeP3exlFyai2W7Rx6BoC19W0A7dn5FrheTE1fnxz/pnQG7C9dI/KvYMX8DafvUVO/dfpeA0sjIv5i/BR/NX8EAPjz4TPM2eCNv8LnyzV+v/8Kj7HHJ/YeXyxX+PP9Z/jZ/BIA8I/2v8A7v4NLGh/tHvDT6SV+2N/hy2WPQS34Uf8OL/UR93HAvz58jE/6e0zRFpBKbop/OH6FmCU+nW9xayYkCLw0R/x0eoE/3X8BnxXeuD0+7h+gkGpcZicD7vyIx9Dh37v9OQDgzo/opCeBd+mxVzP+dnpd4yF/b3iHQ+wwRVOtlTEL/MkVlX2tZ/x0eokEgR+bd7j3A/6DFz/BF8sVvlz2+Pdvf4afzy/gksKPd++wVw4uafzt6SVu7AEuarzeH/CFu0LKAteKSFp+MN5Di4iQVRV3H5THTruiG6pxYybc+wE7tcAlXWM0H0OH39u9w2fTDV71R+w0kfccg8WVdni3DPjh7T3ufY9eebx1O/z46i3ezHu86E74i9vP8JPDK/zx9RvcLQNOweIPrr7CtZ7x14fXGLUn9tZCPMLyMWzNZDKeBIFxWCoBxavuhMfQQSLjq3mHKRj8x7//LwEA/+fdj/CqP+LGzDhGItdh8M9A7M9uv4AUCV+5HZGw+I7IfqLGi1simpEi4wcf3mOKBl+5XXULfmEnfOV2uLYT3rpdJcthTdWPh0cMcsGn822N5zz6Dn988wanYPFx/4ifnl5Ai4i9cbRJUDYdmGzn8+kKw3DCB/0Bn51I6P3azviT3Zf4crnCz463uLYzWdKLfM5cNj/6ct851rVXvroxs+v0wZOczaB8JQO67aYqwfPD8R6fnm6wN/SczNHAFWmYWzvhzbzDbUflaJGqyHrIEjtDLL2sN3u/DHjVH/HVvMNHwyPeuhE+KfiosLcOrriO39iJgH009diPP/453rkR94XAaNC+yPws+Ox0U8FvX44DwKPvq8szb9R8Ne+gZcJOL7hfaC4M2mMKFJe7tw5Hb/EnP/oJpEj4V+8+rtbInVlwNw81tljJhI+GR0iR8dnpum52sEv3FExlG/5kfMBPHl7iD37wc3x2usYcdLVA//jqbXFpp3t1bWf88nhdNz9e9idIkfD56Qo3HW2msbYuAPzpH3+Bv7z/EHPQuLYOuzKXtEz4ZHjAXz28rn17Nw/4YDzi7TTitp82REIxC1xbus9Hb/FyOOHobe333roaHzwHepfddMRW/WbaVwImZinudKgbRidvcNPNGPWCN9OeNHOjwquh3JdpxKvhhAfX142dvujssrTRn/3pF/h8vsKDo/v2sj9CioxPDzcYDa3k56AhAPxgf4+f3L/EVefwqj/ipw8v8OPrd/j0sM6VD3cHAKt3x6PvKwlR2+Z2vG/sjC+nXfVC4I2rq85hDhofjY9rbLzIeFy66oofs8CLfqpj6MqmmE+yjgNv9H0wHPDltIeWCYfFom9Ic667GZ8f9vh3/tEbzMFsnjktEjpNJFMnb/Ci3OOXwwkSGXvjcPAdlqTwdhpx1Tl80B/wi+MNRrOgVxSm8NW8q/fzwfUwKuLRdXjRTxAi4971MDLhtp8gkfHL4xUG4ysJEm/yvZuHTbjAw9zTBk6U1bPk6Cxe7k60YVmYngfr69g/Lh32ZsGb04jX44k2Jwu50ce7B/zN3cvvvO64HWa8PY51E48JqDod8PY4YuwWzF7jqiNm7JwFlrLx9bKQWx0Xg6tugU80931QuB0nYo0uz4kQuTJwZwBz2VRkjwwfFD7cH/BuHog8aSGSrZM3leSJvUHmshm66xacFoPOhLoZyAzZh7nbbNZxfDeRRwksQWPXLfCF5Ie9Q2avMRZPm2mhTbCrYa595lAJ5zV2/VKJk4TI1cuCNmkB502N5Q5B1Y00qdYNQ+912eBiLxXaIEPdPBR1E4sxB2kaFx1pQUio6keXTUzeLGSt6Tb2O2VRWa5raowFTDokZfEkaOKSFes8Z6ySSxwLfAF4UVwyl7tqJ1dALFG1k9t8UufNBiGAJzHnuWoaX0A17AnBbW+/M4DlNojyuWXB/bp0Bkyf5P8mS+M5Aj9H2bXcjIuWzN+lv9f0vSbvef3vvs7/5H/5T6qVj/9xqgQ0WM+xVQTAho2Rv7cpoS2LPvOPcXusBR2XSD3aMjjvOflISwhz6TzHaHGJuSmPy2YylPP+sDVPXnqZYH3pfJ3P97YsgVb6IJ0VywQk53l4bFqCkpbk4+vqfK4vbdsvjVM7jhf79Q195R9QABvGPE4bko2zetqXcHvsCdnHWb3Plc95zufXpfG7dIzrbtu25n/6o3FOwPJceU/buC33Un108HxL9D2OAc/+eJwTwTxH531pE/Wbftc27eDPX9OW59JKaLJtxLlr6TcX1Hy+0OB2blw6/uxO8vm59/15+KYf/rNxaufitn3r568di/Mxf+4+vHf7uZyzay71q73m68bwuXzvM9menYQX2vGrpG9qQ0uQ0+QVeWWf3JDE4Cz/c3VeKPO9XNjedz7g6Wvk7yR91/ZeSBfbef4svu+8eOZ5+FZj8uwi//lLnsFK73f9+W/S19V7oW3v16ez38n37duF4+89hr+OPN+23l+xjveq7z3L/Nbt/Tvu3//zz387yHv+4J//17/2cv/1f/o//sb7BnzPLZYc59gV1k4XdY1bBFYWUra2VAZSKaqMR2uNYyBZASoTiJRdQ65TZSY62dJ/A+villk/19ifAhKx6jxK5Er60pWddiEo1o4ZLhlA8bnW1ZTrY1B5zhbKu/Yru2h+ltGTY3bOf8PiZjFYYpzkdtEu8soiWsstf88ZRjlmkMEhu3Oeg2kAxe0yVUIZGgfKp1Wq4DXlXOWlRN5SrUuZyHulAR2pGT8GjUuh6a9MmcyWyrFYWUBrYvtsWTQ39/9sDHl+cHzXFiDjAmhbWTB5x5Wv551bPscL7pVEZc1/HvdG16Hstq67xOfMpXSdqOUCa/uojefg55yRE1AqI0YBpXJl7OQ20dhT+9OGaXL1OeJ+lYixknf9W8GIWMljANRdZyov1/7z7nQtv31mW+DTbOLwvT1nik1nn+uzIkqMUnENYxfVXMquGwF8b4qLYo3Ha+YERIYoQXs50m51CpLKbBaL7djSuJWdar4/xbWs7mrzerOMa4qyxgcio7Bzrp9liW/M5R7nKEkbseTbzF2OAxOoMWG0O8+DUBL3N4mnq9s67mcbC1msMYPct5Yop5EduLj5wHqI3JZWKzHzTSn/gijHBd1gnSupTU08Vbke1ik8X/ReAtZnzKkoz/xlptAm33NWgZaEo7gscizduZsen6suixy/KFaXxuriGASNF5MWc/sF1ti2KGj1UNxgyUWx6TJbPIoOYntsJWcp31uww+U0boucD01bSX8RNY6Rx4M1DbMq9aq8dYEUgAiiksx8l8TuksDaZh6n3NRX9R9rRjRjgeoKW2PyeLybubDB2k/mCKq7Kl9X3UixShNtfpSKpWv7AkN1R675m+s2hDNtG7nvXB63ofSlPoqFJKqdh229nIfqaJ7hJlW31PZ5zU0ZTR83r5bmGXjyXJy9fp7saX6HKfIsUBVn37/h+nYILpZ5/s45/36e2jnwTDu+dmMjX877jZsU73PuPcemrfs7bRh990f+d+lbpu81sHRJ4yu3wy+P1xuXofu5x8lZvN4fMQeNq87h7WnAy3HCV8cRAPBqd8Kj67AEIm65Ow3Y9w6nhVxNr3qH627GFAx+8uYlrnczfCAXPFsAxlVh7nzzuENX4u32vcO7w4gX+xNiknicuko6wlY7rRKmxcB7hY9vSY/u6GzJRyQdg/b44rCv+n99cV1ZvK6C4jkDY+ehZMLOLvjicV+F16fF4Ee3d7ibBzxOHT6+ecTb44glKFwNDlZFLFHhy4cRXUf6Wb31OE5dAVHk9rEbXI3hEyLjNHcwJqDTESGSG8++dzjMpAvn4ypDMjmL3nq8O+5gOw9bXGtCUOg7j2my2I0Oj6cOSiU4Z9D3HvNkIVXEy+sT3t7vcLWfcJwtgle4uZqwsw6/eHsNa2OVE6ixfIUllcf78dgjJ0mxduVHfTcsmBcDKRPmaUAOEn/4oy8BAH/7xUsolbAbXMmTMc+G3q1lIb3fzRAi4zh1mxi7lASG3sMVZsyb3YQlKJxm6t+yaIz9guOpQz8smE4dhCSmTyLgybjZT+h1wJtH0luNUSIsCrurGd5r3OwmvH0YIWWGtaSnFgO5BaniLnQ6dFA60dgeeyAL2M7jR6/u8O404OEwwNoAU8hpYpQ1nlDrhBAkUiJ2Tv6eE83DrvdYFg1jSDMuJIlpsuh7T7Ggxx631yfcPYywHbmthaAQg4JUEX3vMZ06KsdpCJlrvGBOgLYROQPW0ni62WDcOZwOHXZXM+bJIiWJFAVMFxA8xdvZPkDKBL+QmxQA3N4ccZo7uIniBZVOMDagtx4PjyOBzyigTII2tIGwOFNBE7O2zicLIYkwx02GyGRKvCEytdk7jdevHmFUxGe/fEEkK6Bzy4muoX/A/mqGVhH3j2N9l8miAxcW0k7NSeD6esLd2x1evDrg/mFE9qqCqBcvDnC+xOMGiX6/4HA/FCAqMOzp3XR66GEGj5zW+Edk4IefvMNnb26QvITpA2zVw8t4dX3EL9/cICca4+VoMVzPmI8W3eixzLrq1aUsoLsIIROC0+h2C7xXsDZgPlnYwZMbGECxkQDsuMDagONjD2UiyY9EiqFUNiIGCWkiolOwo4e1AadDBymB5CWG6xk5C7ijxXAzYz7ZEpuZoQzF7caF5DB+8IM7vD2MdN9UxjAs0DLh/t0OuisbRSUO9OaDE959tYcZPfa7GXdv97j94BH392OJCQXGF6QPyizK02SpvYqIlaJX6Edi510WigXvh6X2FUBlujWDR/QK19cTxYaXzcN5spt71Y9LjXVN5fcgRYGx3GOO2725mnD3MELpiGU2NKdlRvAK487h8G7E69+7h/MaszMUHx0klMqwJsAtGstssLuaMU0WVzvSoR27BdNC7vCHhwH9uODF/oQ393tYG9CbAKsD7o5DkcUROJ06aBPhJlPnIr/X9yOxEd/d7WC6ACFQ54zREYdDX98z1gbMR0tgKQqojp5TPxl0NxP8ohEDxewqGzGOxAJ+OPYYR4fH+wG7mwmnUwdrA0KQeHVzxOdf3HzndUe3WzA9kHu9Ku8dZl0+PfTQHc3hYeeInTkLYiAGMF7PCEHCOw07eHrXRpoPw9Vc540Abbhpnap+ZVyIFpbdFJOXuH15wMOBXO3DojDsqc7YbEbJ8mwCQL9bMJ8sTBdoHgYB05O2qz9Z5LIRIwQgS4y0MrSxyXM2JVk3u6SKCE7D9AE5CfhZA1mg2zuk4gprbEBYNOKsYHYL/KEEhUpUyRrdU7nRqZXB2cu6qSJMok0KkZG8ojjmsvkFlemaVHQ0eTMJWEEL5w9y3QxSmQAxsy/7srHE19dNgZKniytDM7BFfwzAmKQpNxteOm+ZnXkDDljjnNvEyCljJV46P8/M0LzRF0tsNh/PTfkMxEv8LxSqt0ELGtuNJtogKazR7LbbpCpn02yOPBmLtvxzoN5uDrTXXPrLY30u5XMJWX4TwP4tSRnbjf1/aOl77Qr7w7+4zf/V//ofYVQL5mTw1u+gRcQLc4IREb90N9Ay4hg6XOsJd37ElZkRksKdH9DJQAQ6ocNLe8KjJ2F5FzWO0eIUSPvxB8M93rj9htgGAB59h5AUPugPG/KeF3bCu2UAALywEx4DxRS0rri9CuhUqDFwo15qnA3HzLzoThWkcVuYTZWtKadCrjMHU+OHKG/El9MOo/HY6QVvph2uuxlakpA6W9NeD4caWzUFs+mjFLnmZevIzixwUVfAa2XEwVuMxleWUc7fqYA5mArQXdCVkZVIehY8uL7GyjHZD3+/n3vc9HONF7Iy4t71WILCq90JkzeVvIfrZcIddtfdd0X4vsQmCZFxXGxlBR2NhxIJP7+7RYsz7UQAACAASURBVM7Ah9cH+KgwFRKemCRG46vlNSaJgyO5kd6SjEUr6n4qGwQpC5ychZQJfYlRMWVDYewWnJytMhuqsZIeZ4sYJcZ+KdbhDF3Ie7RMmJzBbnBElFPInVj4my3tu46kPubFYNfT/XRB4XTsYWzA2Dv4qGq8SMuS2upasoSJlCtrKktrhKBqLEpvPebFIEZRNwb6YYEvMUGyEAzFQt7TdbRo1DohZ1qk8++ID6qCdSEIPDtn6kaEsbQQVTJVAiAhMpwzVJZO1do7TxZKR3RdkRsJROQSg0I/LLXvfBxZQJuVfZQXeJav96qeZ81DIXI9Pj12QBYYb6ZqFQ9e1esreU9ZfJnBrxZaZsfVqW6ABKfRjR7zwcIMHkqtlmp3tMTmKIiohgEix8d4RwRBdvDwC8mNSLWKlocHC329FPIeWtgykMmzgroiOZYYJLQNCLN5Iu8BgLwPysJe2lgXhmlRUH0kgMfkPYUVNDoFRAHZB9JVlLnGEbE+Yo4UMxQXItIRfSyWy4Q0l3nVB6RZQ9i40Vdk8h4kATxo5C4RW2oWtMBLgNgF5EXR4oQtZycFXHlkp4jAZhcgjhp5KGYamYFZ1QUfgJX5tFjKUMhvAKzsnp4YZ1u5ETDJj8oQs1oXnBnElsntByAWURefuVkwy1kWAo1MjNssg5GoDBGKdU9nyFkijRHqQRO5jmkWkLGQ5GgAOkPORZJiltSsYhXLEkhDgnQkGRL7QqYTyaKUzGqFSyZXCRI1Uz9YjkR6alccM4Rn8p71c+xykRtZy+AXBJPzxC5Dn1i6o1jDPBHmUBmAXIDYk7xIMiDyHgWok4C/+u7rHuWAWORGmLxHZAAJSN06XnJBZV5lq6KeabGeDDaSH1mSRAdQ2FmLJU7ERrKktbKD+mIOdB/YWkpERVgtp6AymDlWLaJKsTArrQxUZrJ5S95T5FlkKH1Q2z5xn7NeiYeSLvdpwWpVLeQ1WdPxotZWCXlqGwTlay2k1fW65BW5lNW0U0ZsyGlaK+tqicdTxtfWYpax9vWM6ZfziFZupEkXrZwFyHE/W2uwyFjZZc+A0BOLpWjaK7bXV8t5+S6LlXhDfsTFpPUZ5nG8mLieMys/1bsS5YiUSx2CCHNaMMnlfE36VtbGC+P0q5T7f/zP/91v3F20/5Mf5t//Z79+V9i//M/+h99434DvucVSiYQbPcEU6RAm3ehEgJEB13oqMgkJg/KImIm0Rugqt2EEyXh0MgBmhkIqRCjE2ipB7rZXZoYRCZ30cMlUl9uQZSGMIcKaThFYTZaeMi0jrgrZDyefJToZYWTEy+4EgCQ1mKAhQWCJCqMmrUtfCBaYlIYTgxkAmFWoZCmyAL45aox6Qa8CXg5EzELnQmWCHfVS2V0lMgFcrG6rWkQsSdd6euWp32p151UywcpYj/G1DIT7Mo4sD6KLPw0TplgZSSJFxHqdFBmpExiK5Ahfe4MZTmt0KlCZqpVbEVXLktvQqVD7V10HbZFpgajnr4a53gdb6mIXXduMOZrPXHcrkSKwSlKw2y8TMJgiEWKLi7Mt+RjEcRkxCYzWI4NclZVMkENZpIpcZUxiwxrM3wGg16vMxlAIStgd2eqAwRSpDx2RMqpuJdC4ADdtar8zC21UEaFsJLC2ZEoSXbGC9iZUIE/101+vFFmVxerObNQ6fpo3Tgpg5LysJcn9WiVMKGZXCXLx1s0xcs1N6Eo/q/6mibWd7P7MzLE8ngAqgQPfT2a3BYCgZSXkkWX84khAkaw2lE8VVl+en6yRmbOAtau8TyoECUomkl0AIARgTUAcBLoubNxPU5SQRfZDiIwgJawNT+JMWWqE25KLj2zaiSpZImVGkGT1TkkgqlzbJqSEtUVeR6dqRWkTgboIpVa9yqRy0btc/SNVBUW5gPhArKqikRuRRLKRlSBCDqGQdSJpklJXEKhAGYL6xXUkLau1JyeJsBMQJlVQm4o7rzLURi4ToM13bRKSzEhaQXWRNqi6WO9HBGgRXxaRQufVRbjsqle3v3I8a2oD5xEqEbutLHnOd/xVrrIiOYNkShqZDV7FJgajACAzopakX5kEoEkKhNuUBCC6hLgvDLrsRsxEH2zpUBlRUX1RNVYJtnKYjKgEkpbIXSJrRiyWFZOrBaNKj6iMyPIiBRglT4A1dQlCM/oAYBlIlrYrAJHkR9jlMuu1rJjlKj0hAGhUvcZkCMgkmwFJYCsVVs8sQLIr3zFlJUiuJGPD1CoSg+cCeGVjbSrgMDDQVLnIV+QKfKo8SWNxEjGvmwpnrvOQGR7cBmL0zXoFsitLKNUlyiZDVgVElnFPDZBrWUNFyZMMKlDh8lvAl9UKFll7skpzoAE1qsmbV2AKAeQgSrvzFlzx9IgriyyPm0iFITifgVGggpBallrr2oDO9r7KAozZ3fscpNjzmfA0ifXWNW6+Tbu43ksg7BJ4asDkk+ubcjLfxxYUtmWeAexNvRfaX+vbgDrR5BO1XkA870Z7oS9Pzouz78+kto73csF9TzD6u/TrT99rYDkng0/dLd64PRIErrSDSwqnQNbGWztVxs1TsNhrh79cPoQUGddmLqyKCr3yePQ9dnrBVGQ4euUxao8lKfz1w2tiN4wKCaICWJIukfgb9wq99ohZYtAef+Ne4bojoPK4dLAybghXlExwUcMFjdfDEQkCX877qp/I8iOfT1fwkba6ek0yKC6sIA8gpkshMnoV8NPHl0hZVMZKtka+mfa47Sd8cbpCSMS8yaDpL999iF4H+CTR64DPT3sA60KdQQovir8MOxhJLIKhMNrtzII3hQWQXWFJMkXCyITjco2+aCrGTKyIvQ748rjHzi54U5jgnNcYLLnxapVw1Tl8+nCNq27Bo+vgo8RVt8CoiM8PV+R6O6sKZtmNmBf8PkncTX11P2atxcEEHBcLKTK+WPaISeKHN/cAgM8fr6AV9e/kDaTIuPPDJi507BYIAHdTDykoFpTjKDsTMM1dtZb6qPDoLJTMlY3v7jTQX0e/VDGLqom471b5EykIZPqoKhvfvlvwOJMLrtURp8VUwMcWzjeHHZRMGLsFdxO5bBkV8fH1I07e4KFYPwm0UR3OF6kMFSurKsWyrt+FyOh0hA/kJssW16OzsDqgMwFHZ6trdLWCRgXnZbXeTouB1QEuUAzwg7M1VlQpikZmoHucyZ36OFuMnYcLCksg2RBjQpUJ6QqQ9VHVONX94OC8xqG4LDPI0zbhOJexjxJapzp+S1DVzZxlYyZnCYDqWOVedBkHdhtfvMaLqxOEyHj7sKtWU60jTrOtz7+UGbvBQQrUNvDxnFHdqHMW2I8zHo89rnYzTnO3YTu82k9VDiZGid2w1HpyFuiKG/I8G5jigrksql7/4esHvHscEbwiK/YY6sbE/vqEu8NAbmwmws2muCYqWBvhvVpJdYqVl9gaVbFU01/nNGwXVle+Iu/RdR5aJczOrBbgKJCTJLe5QKA5BnKP1DqSO7qg2NBhJBflxZlaH1t8WcKG2R9ff/SAkzPFzRcYRtpIOp46mAKeY7GOjy+POB17aBvRX804njpcvTpiOnX13T1c0eYdxy4vi64xptw+u3PVwg2RYS2NoVRkoc9FUsfuFqQo0ZUyOS6Y3SOFIEu+2S9lTqP2M2UBW6+j8eu6AOfIOh3LMyoksV2aa3JL3X98IKu5VzUemrVKuV7bzfCLrq7szJSZksTiNLQhLwDyCEhV4oe8EMi12Xt6L5PFOxbLfoljL/PFTaZqmaZIrvJSklQOSetIcrVk6ZwMyGJpjIuEunVE1hbJBVLoVN2Ns1eQOiI5DdUHZK9qmabziIcO3zVJGxEc/S4LnShmEbQxkp2q7p0wZKXOpY0AaJMiCwJSOld3/Fw2MFiCh8sDy+YA1RrPKSey+rOLbI4CsAkprNI8VBCqtI40Ecmr6hWALKgPosj48AYDUGOYOb4ZQdIGScbqgikzcqCNE+TivpoB0cXqLi9UovoDtW91C8Xqtlk2flDkapDFauEHmjhqAFEU8L7dWKkuqBeAFeuritLuzJsy5RyVizVe9Nw9NWON221BCyOcBuxvjjM45r6U+9dqarZA9ByUsjWyPcZWye3mAaoEyxNJkaYPl6yZnCqobMqoFtAnmZv+v0d6bwvl1wHC9vg5OH+urEvX/jak8q7/h5q+18DypT7gP3/5v+EujvBZQ4mEJSukLLFkBSsiYnlD+KwgkTBnWsz1YsGcbV1An5LFKBe4ZCDLk9QLD58VTrcdTLGy+awgRYLPCldyhs8ap2TRScprRMQpdhiVgwKVK0WCQkaEgCqzey5Wz1EutVwANa8UCafYVdIfIyJ8VogN061EhiptNSJSXeVYzBJ9aZPPCp0IcFkjZrmx7p6ShRGx6DFGzGXrkeVR2rwAxbUa0VhNSx7uu298RSqJ0Nk1Lml0MlRrn0saCqmW4ZKBlmSFnqLFUGRMuJ9SZEzXFlqu1kpO58y3bJltSZrYusxtAYBbQ5bju/0IIyMkMnwmTUfW7OTUFakBX8oIadXIbMvuZEACaXKu7UtYkt6wC7dpULSYm6KphFI+KQyKaPytDFVyhstgMiGWoXFRl/FLtX9SkNU+FbkXLWMF+nSvZM23JF3GicYqNO2nMV/zsvt2S5jFkiWyzHW2gANkKQ6F2IrndiXVOrMY8jmWk+FrW4t0tXQyc29e6+pVwJJUbb+WsVqv2+P8vJObuqr90pLdg9d856RfKa+eC2z9fzWcalu47ev8yNViv+z1xsLfjgWNVcBpZzHqBfPebPKxFb31Llhie59SdQFvrdEMcEe94Kab60ZXS25mZcRN2RgTIsMnVeR7JJRIGzKyatEu74j2L1/H+VtmbS63JRzj8WlDBrQkT4qwl7UPnSrPVZElYe1Tbm9LFNapgOtebsjPAMAN84ZUDKDNF9eT63ynA6beodMBrndkuckCnVrfY6psZLD0CkCbRIbHm8uVCW5QT1i7+fkzzZwnrwuxIfVizd104TiAek6JjNCtmr4tUZqSCWFQ6PTq7dAmzlc9KPrVRb8d09hTiIFWEZ1eN0ylyLC6eEIkidiJer+qF0Ln6+ZXykBnwmbDlUnCgg3VQ0KKjNj7mqfOl5E+53KcSM1WHvdkaQMhWvKmaL0DtEwQv4orrEoIdg0j2IyhXWP+ebOoJUpTZXOB2cb5HG+qXSJVq6zjZxYz9qKQlaCtEKPppwvWbAFk8gJIhkUjtyhG6XSxbv6bu9UFfrP+NyUPQHF+ZVxyAZtCZALRhTgoN/WsxHdUWNYNmV0LXBpUlXVZlF9EZfkigKghB5fK45MazwOQUt/Tn+xa8JkV8uz7WZwk13nJgMefV6tgIdq6kDdvLmj6eaELBGZwGZA1w8Zju/lb0hOA+J6hdO8bcfetAOjv0m9t+l4Dy1Pq8H9Nv4/H2G+kQXxWdVHDi3oChLkuPJldNUI+ATXtQjNlUYBRWbiWemIWMCLVhT/XZSRZeDpVwEezKG0X5CGpDYMtL7a5Xl7gt6llaAUIDEhRrHTIGxAB0MKF3Ws5djRBVA22lGVd9PIimBfu5wteTrz4vCSX0lo2t+1c8/H3S7IqIasNAGSNRSsDUpYVTFfwc+Et1IIZZt09z7epsyywPldXAIAlqto/7mu7IF/vz1a2BsBmkQSgWoX5e2vtbtmB23HmjYK6gdAsxtv8bT/Ox7eyCzdtZ0DFmoHqDMA9tzBv28B9OpeuOc/bjt2lNp7ff16Yt795fL5dwPBC/JLMjxTkhnnOeNwuyOtCueQ7X0TxOLQLKh7P5wAQl8sszikLhAbg8Xi1qQV656mV6dGKyK6UHBHT9plSMj9pPxNsUZu47Zflj5Qk2aAt66+o50Jc29ber3Mwduk+PPd884wRJV8LyNpz7QKHx50BBPcVeLo4b8+t7Mbb8/ydXY8pb+lHse4x03HLYFzbU8FWGZtmDDnPpTZQudv62DLO4KQCiLydhy0L9HPH2/K4XW19zKarSlxzW9emXe2CvfSjLZctphB5/Qys34sL8rrgXctBc4/ypXNn+WoR51aKs8lSQYhAIbZpxqll3OXLZK4WxO+UBBqm3rw5ziRS7Ti21n1mrH7iy3d+rpbZgKe2/+d/z9Olc1k0hC/5yTjX69p+PkE7F+q7cO/SRdD3tI76kctt8KG41D48Y4271P5Lcy9fOP3c/Dqr8/yWfStw83V9ee8yvkXeZ645f3yevUaUZwrN3Hsm/Z2AwW+R91uN4W9T+r62+z3S9xpYxixxHwfch6ECQwKCBj5LDI3lxGcJIxKmSBY5trywFegYugoOGawNitxPj8FuYiBX6wrt/BH4ibWsU7AY84KQVLW0ACsoZVARksRYYghZdoSBppYRp0BblG0cH1tU6LjcWGE4v5YUFznqBSFJ0vkscZshKwS5gpY5mgqy2boCoOljqmAPWIEYxyi213EbGVhUi2TUNTa0XYz7pCrg5TFhYK5lQqcCpmCQlICLNFU7FaClwBTME7DFlpN2ccfXtQtcvlcAqjA7uy7PoVhsm7hJBgDVCtIIj7fHGVxwfgOajz5u3XXZXdgn+eRFz2W7sD6aIUnYAlpMYfMFtkCLgRVbrtgt2Je2KJEhC8HSEhVEktXCyeCLx4n73IJTTiqLeo7rjyV+lMeEGYfZYpKba4yKWIKGbsaJiZY43rNth48SRiX4KGF1rKCNJWhapmVuK2ukcn4GXEqufVpaoWvgCRBrwRmDLGZHBrAhTNKK3H25zW3ZSor6zPAPuVYEHrmsFrC1YEuIXOYYuZhv4yfjE0DlG0CbS4wnbyIwMFtBc6huw6rEsa51r5JGQhDY4r5noLq2cmJgxGWlJJELmOLvQqwAjfMz+RNbbKrFpbkHWeYKzKgOKpPbhbP21OsKYGIgyXnqfCx1c7vZpZmPr2Aw1mupzKdAkvrVAj7UcssIPQWyDZA4B4CpxGLSAptc+GpZZ8e5DTkVa1SUFeSBLZrlc8qCPPVKfr4WDVDMKN6A+WxTMTf5eRxxZqQBAH5XcH4Kk137jfUismCJi59b4JRr3+m7EI38DYPKCuSwybs53rxs89lGzbdJLQAUm0ehoI/cgHlu2xMw1rSPL70EWp4McElMFsVutwx2W1dMnN0/BlHngEE0ZZ6ndtzaMp+grPdIl4DbRaD6zOf22HlZ7ecNiF0B5Tm2O29+O32+MV1s14XNkWfG6FuBsfOp+tyYibP8z9Tx9YDywrV/36Dy/yfpd66wv6XJZ4Vfuhvc+QGhAElfwNwcTQVWUuT6ncFXrzyWqFdg6Tt0OmApi36OcwxJ4n4ZMGj63Lp7MfHL49KhU6ECppO36LWvDKwcY8kuYQyiYpKYTWHtjLq6iEmRn7C3nrt8te5bWlCM2GHp6jEfFYKVlcHVaV1j5UzjznXyplp2TAE7LcuqlmnDvDp5U8cHWF2/fAEqrfWJr2EgwSkUyZalsMS6cn4JCrbEsWmV0OuA42LQG1oExyQwlFi6R2er29V5/CqPYcoCS4mDYxACoMqeSEEgoHXBvJ96YkEtFh3O0y6yFqOKZeqpxZKvA8jVKyZZgU1KtEBfgoJWK0hqF3GLobqmxWysfV4Hig/SEbPXNQ6xBSMtsGGiGQYkqhDULEHBlZjW9vrzxfK5JevcCitFrtdTf1IFbMHQvWXXtJRXC5GSqeiTMuBDtRKxaxewBQShxDOmFOr9bEEMsMa8MUgAgMDjz/FFciXaofJErbO1gp23ha/nWLP2MwEJXZlcAZKg4PgmVVhX+RdYFpKVyjp7Zn1qAUgsMW2pSIFUvUgAyUqwSx270fllfZ3HErsYvKqucimSRQlZQAwZzmnkRPGMLaDjuMqcRY11jCYUyRgCL+06geUWKF41VmKhUOZhjSss+SswLLGN/AxwWSy/wxZJLkuU+6v0KtuhdESKqi7kq0teGUchco0dhMg1TtUvut6jTd5FQagMpUj6BQDColYLX2pIwATFBjIQohhL0gDltrZzoOqbJhStUJINYfdBXtelVGLyyjyQBQhy+XXO1DatwCUG2VjO1vNSFwmWUk8tv4AMjqfLUZKrYhTIah0XBuvJy9I/ieTlSlQk85ZZmN+NSUCUTY5cGIDB87GMNYplsd4PBo3818u1rbI0OTZ9Z/IhlSkmMa/fsy9xgazNSegX8E+9Bd43ZZakyNiyhAoBBIEs+VxG1U1lvMH/RUHkRAz4CuHSExDa3NuNlZQXpVKs8Xt8rL6LzoAOt6O14p4BS5acoLKxxhvytbLtD5VDshR0TDCwLhqnPC6i3KdWS3WDcFpw2wDZ2vzGCsxltXGUFdM1Y13LzajhjheBWmrKFXgehMqt5utF8FV3ibgeBv1n5eFpMZduycXdm/OLN6D6uXat4wB8A8h+ruzz9BxwbcbvIvA835R4D4B10WL8u/Rbm77XwNLKgB90d7g1J/isqkurzxQ/xXGPbeyUMxqpMLm2bqyTnVcLGAiYMCPrqH2NcWOiFZ9UjbXba1ctoFSWqe6m12a+4IpJrpwpE1Mr0MZx5WoxJQkSeui4bc/FFGqRKusrWwx7FapltFcBc6S+W8WusAI7o6tFsrVM8nlio03V7XZnyAW1dTllltk2bo76JJ+4ybbf279sbVIywVtyhe10oH8qVFBvioXWqLixTp67wjEoi1ZugBvHkkYraxtzFhgLwAcI/LQxkAxeKysqM4OeucLyta1llGPBVitY2lgwuU3cZgb9tgHiDN7ZssWsss+5wvoyngz4Afp9GIyHVwTeldi6M7cMw+dtamO7ePOALaQA0Jk1HstoslhavSWsasFoO56tu+7GXVWslk7ehNAqEjtsFtW6yZ+NWt1L2w2EmCSiYSv5yiYbtKrWTtqI4H5jYz3NWSBqBtXrpkELuM8Zcdt7IUtd7XHWQOR72JbXzlUiRSFWW7Y68pjzRk27CcBAGEAlg/J63RRp30JGRaAvFsCyUVRj/2QCiPOJ7pOOxARciFouxYHxxgmf5/a0bp6ty6kQGamQhrTnyMqz9o1BKPeNQTgAJM2AeK3zfCOE5WhSkWZZY+LCxmJJeYk1V8q8qbdto27iw6RMiHLrNp2UqOy3Gwttqbv2NROQkorHAxuLZVbrClfW2DtAyvV4BWJyHVcaxIwstxtuQiagy2s8nhBPVoAZErm8W5Js3geixHhlAWFpPIRMgFnnNE2qtK5Hq7UU1aqXZWEo5vlt43ou5U0+AqvlHWiZ8hPrAyCJXXcFOgUcMABhwMv6h2ad/YLj/75jErLILjT3oI6hkJv7UwERDyUDX4mtiSznxtrYVtZ8b+ti66jAGr9XwM8TZCTyCmyY8OYc0ZSxpRi8vB4XbR5e2TfAFNhI4GSUPoi8+vQDK9GOLMC87WIuRDwZ5BFQ5hsyu0xzO8p8FuVBOVtX5dLGS92vOS+NbTPPs2iGtsU+PD7tPXgPQFSrOtvHaG97dem+cP6iefESID//y1/P8j6JsbwENJ9DvDgb8nMkfKGsJ+U+KeTC9wuHuJxvHPJvcU9+0+l7rPT4jel7DSyNiPiBfYc5GcyZfuU4jpHDzH2JO2RLYYLYEOAAqPGJFYyUuEv+fq2fgsPz+EIpcgW30dD1nJhAiIHvpZikS2mnls33dOEtw0CXPwOti6TcgkLN7qlbUpJ2fM7H5enYbetY6962dTtWW7KX51JL6sJ1j3rZAFY+HvTlcs7H89LYXsrD95fB+Qr6nra9dUV+0tem7fWYFlvQbbZtuxTLytZwYEvoAqBKsLRxnpdAIVDxQQUxSqQa/wtgs/i81I9Lc+5rU5E3eZ/53bb3PNb0vB9Gpg1oP99Q4L48cS9p5Gjaspkw5dLYX2oXp/Pv7W8qH933q7yQAJAbwNnWp3kRf6Eersvq4ureAMnzGFA+bhFxntiSfOkeKBmeHFvPNXGXmst9Wn4LxKHi+hnYeEZcSlmmy/fsQtIyXbi369+vm2NKpaqVysnaLbDgsq1dZV2YTVcWAqIm99oufV4O/SU33PU4f36urxuvC5Vr39b7vdb9dWPGMZStLNLahvWYqGQizaZcszEh21UPgzagWrxx9tzkLDZrW7Z6icaiJ86aLBpCk5ovN+6ljHnR1lMbuJ5rQQeDOH4oGay1i90kNnV/65RRAOWFBXED7oGyUVLb2LT/CfpBA/LPij5/wdTjDWCsZTafa3sL0C737Xlr29l1Tzp31uZn8zV9+bp+VCBSQCXPw/M6LrX3vH8XmvqNqckj8oW/52XkX09dz557j3Kaqf6r1fcNt/li379Dee83Nu+3xnivsi6W/x2v+136zul7DSyRiV31Ss0wKeJNIAKWG3XCKB0+8y/QS4/7OOCFPuKNv8KNPiFliTd+j1EtMCLiMfZ4bR5xH0bSucwa92GocZd/OHyJX7obDMpX9lUAmKJFgsAH9hGnSOyqx9jhI/uAX7gbGJGw0w5IIO3L8ss6RYO9chiUx6fzLQACkS5puFRYbZPC6+5YGSSPoYOWEXvlyCJbLIyHMECJjGOweN0dAQCHYHGtHf7t8QWu7YwbM+Hz6RovuhOsDLj3Q42B+7A/YCoEOfd+wJV2G2KZY7CYo64xfju9wEWNh8IsylIu12bGwXewKtRFXq8CTsHgVXfCFA0OnmQueuVxChZXxuF+6atldacX3C89buyMKRq8m0d8MBzw1o1Vj/OtGzEFg4/GRxx8h175xhKqELKscZUAcGOnEne4ape+cyMxS2aBazvDyoC/fPchhMj4/et3OAWLo7c1LpQsx7LGrt67cWPlbJk/D0tXpWGOi4WSCXuzYCnxpIelw946nLzF3rrVShup7cfFYgkKNwMxdhoV0amAd/MAU1yAb4cZMUm4qNAVbcyYZLHqClxbV8u66oiS3wWNd8cBvfW47kkGJRS3Z6tDBVouqgriOI9uLFqT15vYRSkTdtZj8gYhSozdgoepx/UwY/YazCDJGxHzYjB2S5WUyVlgPqzXkwAAIABJREFUZxecgiZWy9ImtgwO1uMwd7jqHd6dBgzWV8upCxq2xKTOXiNEhc6EavV8OPWwOmLsluoWHaKCDwr7ochGyAQXdI2LJPdlcoGei7TIYD1yFnBBoSsgi92ZAVR20sfDAAC4vT7V9i9B1+tTJgvhcbJAFtiNrs5dH0kewjQu0tNscLOfcf84YBgWaLUCnMfDUF1CtU5YnMZudHWzZ3Lkyjr2C+bFQMpUdEPp+uNDj901bZj5oOAXkpFIScDPGmORsghBorMB02yqnIUxsVrH2KU3JVFlNZSOJBXSeSzOFL3N1eq4OIMUBWwfqtwFWzFDkFUGQ2tyIWXJCnL5zVhcYYi2Ad5pKEMamikJijEEqianv+8g+ghlCFhGR5IKZrdUF1pm4wxHA3PlEL1CmjT03iMcDdQYKrAKk6bVXXGFFF3aSjeohMRSFKxduUiIIVa5CCEzhMpIRZoiT+V9xSDI5FWyQmTkWaHKH6gCJlQGXIPaVIZwErmP5Appi7tnBqAztWEMwJ0lF1HWu2QsU+QvoBPErJBNglgkkASkBzFxqozc03F5koj7SJ8DIKJA7BPkIkhn0GYg0l85lY3conspHY1V3EWIommZdYZYBGlBDvSZ5R1SV9CTALUJQLYJ6ihruyAA4QW0ow7FLkM6gTgm6JNEtBnSU5lqEvA3391iqSaJOBSvAy+AoqcoEhD7DOFpLJUrepZiterpSVS9ROlB1maJ2q6qJVnqEh7V3TYrgDFqLt/No0AsGsdZAspR2VVyAoCIdEwAkE4gdRlyoeuzKH0ASNuy0TkUgfJITxbFrAE1cxuLjmQCksmQy1oGBKgvqilHUz41C8S+AMlyPQSoPYLyCdZCVavlUITSrlyOc74y7q2OZbU2tthTUX7+C6zjw/mzLHnK2LUyG1kAMqz34glAFmtbsqDv3F6RaPyBbTsZp9d6uIzSltq2dAaquL7GTZnbjqYPbZnVIt30/xLg2rSp3QjI2Owr1LGT67lNugTm2g2C8/PNOZHJI+DS3yep3RR5rt7fwpSBf9AxliJ/j+2xV3/2cf4P/8V/gcelq9qIFEem4QJp/3Hc3rwY9NbjVLQDx26B87osrCNOjjQGOTbMqFhj+x5PPawJNVaMFyK8qD3NXV00GbXWBQDzYmCKxaK6UJXFHOnP0QKO62ULoNERJ2drTBdr9p0TZ/CuulERk7PImY55r3A1OtL9W3RdYKZECzaO2aSFYCrHY43TEpLiXnRZRHL8lfequooBQAgKxsSyIEwbQo4YaffdLxpSbRd/Ssf1Wq8qGQcvSqXMsJ2HcwbWBgSvkJKE7TxpA566TTxWdYUrC1TeHfeLBjMvZgDIJMzO8V3B00Lz6vaEDOD42JcYq1QXqawrxnWYjuJpY6C4rar1VeK/OO7P2oCURNVvo5g16p9SaY2HYuZOQYtlpRJc0TjMGchBQlkCFcYGLLOGkA2BTGEirCLzi4JQJCrPcWJSZwyjg3MawenaR3Yb5Nit6pZT4pu4ffwDI8siWkhAKuprWhSkJctaWBR0FxCchiwuTymKSiyhdEL0kuLLAi1sqz5bJk01ZGovx3QpmxCdguoDxXWlspjTqcZySUPucxwnBgC6D0hRkD4byEIiivtkcGXVUhbpslieUpDVLVEaaksqOnFCr/FeHAOGvB43Ow8hM5aHbrWo6IS8lBjLsuBQXdH1m9cNkEoIEkVdLKg+Ih4LwJl0BRoAoMZAfc0UjydNQpr0Oo5dsXBOanUl9LK2y14tWB4t1VeATC4gT/ce/kDgFzoBTkEMgTT6bKpadVQBAFNWFl6Sfl2Qa785biyVvgmQO6VKSLMmgJSxxpJx/Joqf7lts6K2RwFRgEZ2EqJLyAUAQeRSnih1ZZjrBcFpyiMAYSOBuoOhtgE1Jk3uQj0uu4h0NJA7j3RiVXhA9M2qVIDK5Xsm8grqAKDE5gobqf1sJePnoegcir5oG2bQ3POyth9ZAF1cx4djI1M5Xt5pNC5xHacgt/V1EZgU5JVHToLujSrtlbmOLYIsoLSMs8hr/GUSwEzzSdpY71+rg1hdPRdJYxLEk/knyvc8lTaI0kadVsCs09oHv1qyGKAJL5B7Gj9kArZZ57WuRZJr7qwIbHtZ+yuGABwMvmvKNkHMBeA2LraQBdwbAsQVvJf2AUDuEsUyBopl5WdDREHn2nsssLK4oimDraFRII8RcGVuB4FsU9V55M2ILNe4xmxW4FvjHksfCNgXciiRyWoeUWJBqV3ZpDXGUa5lZ1PKCwSyeRMBQI2rpPZlCMfopAFYpoDNIKr7sIhnAEYU0BMByfn4HAMcjretqBrrWMlyXyroKvVwjHRCBdYMDtebjq2OJdbicymK29eC/9rHuMVVnP+SJbqWx19k8xln152DzDYm9sI1DD43xvJLoPCs70/SBSD9TaDuvJ4sLtT93MmK/n91MPZv/vv/9n/POf/jX7mgXyF1f/TD/KP/6b/5tZf7b//Lf/ob7xvwPbdY3ugJ/+Sjf4mfzK+RssCH9hE+K3y5XOFuGfB74zscQ4eddnjj9vioe8Bn7gYA8El3j7swwkWNnXb4xXSDj/tHvF3ImnVjJrzQJxxih3/18DE+GR7gCikQkfoovO4OAICfHl/i2k5IWeLWTPj56RY/Gu+QIPDFvMeVcRu3Ui0SHkOHg+/wR/s3AIC3y44sojLCyoBRLvjp9LKytF5pR1a/0EGL1YXupsSGXusJP5teICSJGzvjfunx51ef48vlCl+5EX+4+wqfzreYg8Gr7ohBebik8bPjLfbGYUkat/aEt26HlFf9vVs7VUZcALhbBvTKF2IkIkp6YSd85UbsjcMcTY3BPIQOo17w5bTHziwY9YIlKhx9h5tuwjs34lV/xJ0b0KtQrZV3bkCvPX443uOnxxf4oD/gwfdwUeOj4RHXZsZfP7zGoH1lo10KGym7smpB1pkv5z1CktiZhVgwIfCqP+Jh6SFFxoPrsUSFf/zBzwAA//e7T9Brj9tuwsPSQ8uEB9dvYgM/GA6QIuPOkYVqDqZq693YCY8L5f9keMAUDd66EVZFuKBx0034at7hxlL/dbGYmeIW+dHwiJ12+NnxBQCKGTx4i092Dzj4Dh8Oj/j0eAstEnbG4RQsXNSwMtb4zy9PO/Q64FV/xBcnsuLvrcMf7b/Cm2WHXxxusLeushUvSW1Yd5nwia2lLura9xs74xgsBu3RK485GtzNA277CVpEvJ13+Hj3gF8er6tF1yeFyRsYFev9ve5mPC5dIWKivzELjIbuH1uU712PV8MJX552+Gg84M4NCMU6OxiPhVl9rSNyqWDqsd+7usM7N+LREalVrwN67bE3Dr88XiMDdUOq0wESGUdvwVIYV5Y2fe7mAUomjMbj0XUQImM0HnOgcdnZBcfF4o9uvoIUGf/v2w+r1XRnF9xNPWQB/UZFvBrIc+Cz43X9PbaFIGsucyFlgY/GA356f4s/uH2Lz47XRXqE3iM/urrDKVjELOGCxnU34/PDVZ2nt8MEiYwvjztc965Ym021ev7piy/wb+4+gPMa+27BaBbMgUidPhkf8Fd3r2vf3p0GvN4fcTf1uO4djoutFtmcBUbrK6HWy3HCYbHY2wV304B956rWI1uFr3uHQXu8KfOUNwNTBvqyuWd1wMlZ3Awzeu3xdhrJuuw1Xu1OSFng3WnAi3HCw9xX63lfCJucp426P3v5JT6frvAw0zN520/QMuEXD9cYePOvWNY/uXrA3757gX3v8Go44Wd3t/jhzT0+e7yq8b6v90ekLKqr+oPrqxVfiYzJa9wOcx1vITKurcOb04jBUF9DVFiCwlXvMHmNj/YHig0u7ucPS4e5WPRTBm6HuRlDXbwJJF6OEwBylV+iqs+JEhmnxdT+LUHjup/xxeMef/zyK8xR43HpKnuzKQzcR29xWgxejBMeXYcX/QQhMvbG4eA7xCzx5rDDVe/w4fiIz47X6HXAoD2sDHjnRgzFW+PRdURk5yxuSzsf5g5WrxqpXxz25IEAknkajYdREW9PA3aWnq9eByJUK94M3KeTs3i5O2GJCs7reu6mp7LvpgHX/YwvDzu82p1wcETOF5LEh7sDfvLuxbddbtR03TvcnQbkDPTW1/huqyLeHkcM1sMFhevewQWNmERlbH4xTvBJ4uQs9sVzxAfyDHkxTohZYFpMjfu2OlQCv2khMLwyZit8cvOAr44jeQ4EjethxrQYhEKmx4Rys9fIWeBqmHGYO2qjLzwPRU/05Oz/x96bx+yWpPdBv1rO8i7f+y137Xt7enq62z0ej+3xzNhjbGcSEyUREGMECThyiAgCLGQp/JEEmSBQEEnEIiRAQkoUyxIQRZgQGSWAiKIEr5Ez8diDx56tp9377dt3+dZ3O0st/FH11KlT73m/5U63p3uYku793nNO1VNPLadOPfUsv3BADDgf9dYH2tOGo1UCo6KB0l10fOkP0sdFC22cRYq1DDvjygVIswxFplC1EnWdYTKqsVy79ZisGKxlKPPWBStrpQsAZhiU6gKWCWFDkLC2FVCtO5wl3+VgdaB4DxKHDgnDYa52AaQYEMy66Z5uOXjWHXyGxLpDYx1HE7fdYTPB2nB/sELBqCgytVbc+zp7YTg+IOJ96SrQA/pm2yQr8y7YFdVrfdCwEPAqiiJNbYBlXRCrIYmOhLcQXTi6JnkuFW5JiE+fU574HtEhwTVWGW/wgr6wSgK2TZ5/O70v0wdaY/n0d+/aP/d3fginahzgRlzgHo7aZJjIOmA7UjCfhXaLWsEVlBUBj3KpcydsxbAWTKM2EktVeHB5FmBLCM6EAOcLoXq0yD/S+W66hToGpCezzR1ZhyBCcT7JDJYqDz5uFEwm9beT3rwz4xpLghvxeXPuNqgOtN6BxTdaopRtMHclE1FlRRAUAAT/ujzxw4rB5o1loVyjJSTXPTD5xrhIt2RKSzS3Be8hYYYgEkrR9qL1kmkoZx3wO33gyKSUEvVRgBuJVrwYX7Ixji7BjZCwE+NNxlifNDeADqM09pGLoUxGsg0mrpQvDVYUlweAUraBL8B9uJThKPzHPfMCahwIJy7PmIcb8UIMwZYQfIuyXniJ+s6Na+eraWyHH8mjOQugFwGYUuxr2xqOQmjUngfAf388jdg3l4IApXAsFBjIAj1T4VzoEMGW7vcCzvj+iiMma29aS31D9BvfL+QjSAJXHEiI7rWaB8EwDhxEOJD0mza9tAF0fHX4ksQDbUTbKKpwGpUWcBu7tRcQGiV6eJpxECM3bl30YuN5d3WIEGyKytNmjzaWmdAh+A5jLrhQ3UpYP170nsbjFpvxxIGx4nw0z8NeILLYIEEhjURMwX/oHkUWpnExhgV/yRjOJPZtdP3o+jSXzjIjjtAKOEuLNHiP8NFnOTcuym4re5GAyWw2tJvbEBmYxja2aOkF+dkCrULWFLHfbEyT+IqxNONIwmFOhijJLAr0Y3u/tRLIchXyp6kHgxJFaSWLFYruy/wGP45SnF4b4yPQRnPb+o0qT+a6ha83yUcb2xRuBICHVyHYj64exhHu0YabrEkI45IJF8H2SZPDwaSISd06SDAogfcI+iPMT4qaG/iJBQjTyxv6NbxAiZrJdG3rCQTp2JJGC+i0Wj31mf8bRzylOuI6081+ep9+x21HVOYqWicaQ3hNdfS9YZb1o8IOlUufbetDy/rawW2at4FnW7VtcX5fZWxW28830CfRdfwolsPOrTvlYwtfg8+xVZG6XSN5SV4uzfMVaF45L4CX/5O/8E3X6hXP3bV3/9q7r7F89Se/rbH8xpMFBCxO2jFay3GnOIWxDEdqgkfVFM9PH2GtM8xkhcftFHdHNeaVC2eyNz7G47rAWmc4yFc4rCe4Vc5x3Djt2UTWuJnPMdclXptfw9OTEyx1jko52BIDhoN8BWUE7jW72MvXMGCY5ivcX8+wO3GntI/qqY8Ma0JAnYIrLHSBZVvgzugUygg81hNMuAoC7UxWeEVd99oXjv1ihUYJ78fYBSS5US7AYbGXrXBcj51GrlhiUU/wsZ138NZ6HwtV4MPjI6fR9ALxRDRoLcfLZzewm6+DUHTWlAFKpdbOhHYiGqx1Bsk1Hqxm2MmroLFcKIHdrMIjPQ1wLhQBdqU4yqzFqhojF2vkQqHSmaMrV5g3E9waz3FYTcKJ+XW5xEk7QiEV7o5PcVyPcSNb4MiMsdYSN0YL7GVrfOX0Fka8xVo5/zENJzzlXIW/xnLcW+5CG45x1kB7wfxWucJJ7eo4WxWoW4lPX3sDnFn8+sOPIOcaB8UKJ83Iwb6s854gvFd4bVA1BYd1PqqyRWMF9ssVjiunXbk7PsG8LV37pMPk3C9WeLSeYjdf46iauAilXkiWXlu0Iyu8snBa+NYI1FoELevd8SleWxxAMoOd3Pm1VsppA522W+Od5Q7yrMWN0QJvzfdg4QTWT+zfw5urfbwx38c0r0PU4UpnQVNH2KGxxrI1wkHCcIODcol5W2Iknda6UhkeryfYK9coRYt3ljM8PT3BW4s9TL3Gb62yoJUlLeqBH4NMaJz6gwQYjrEP/jPJHG+H6zFujJZ4Z7mD25MzHFaToJGc5A1WrTshjzWWlRcaP7xzjMNqguNqBM4sSqkwzWvMsgpvzPeDxnKctSiEO7WfN0UQnq+NnGbs8cqN005e42g9Ri4Mpr5u0uqdVSVe3HuEnCt8/sGHgvC4U9Q4XI5DMJxcaNyZnkIyg9fn++HjTQcHyyZHLlXQuH798Aae2z3Eq2cHAYYHAF7Ye4yztoQyHJXKcFAu8ebZfjhsuDFx1hTvzHew631yl02G3Aukn7rxFr7w+C6qJsOsrDErKizbHJIZPD05wZePb0FpgVlZ4fFigls7czxaTnAwXuO0KoPG0hiOSdGgkAon6xI3JkssmgKzosLj1QS7pdO2tYYHn9Xr4xUmWY37yxkKb5LfeDihWFO1qHPsj9fYyWq8vZg5c/8mw+2dOYxleLiY4uZ0gaP1GEpzCO4iSWvLULcSglv8wK038Mr8WtA6XxutMJYNXjq80dPkCm7w7O4Rvvb4JnbKGk9PT/DVw5t48dojvHJyDdowGMPx1OwMxjKMZQPJDR6udrBqM+TC+5u3Ga6PnVZz3hQQzOK6fw8neQNrGSolUbcSe+M11m2GZ2bHTgvvHbhOqhGWTYbM+8TenCwCVBTBQzVa4M70DICzOFi1OZ6enuCN+b4fixEmeQPGLNZthpuTBV4/3scnbt3DSuVhza21RCEUxrLBaTPCvC5wezrH4XqMpyZn4MxiP1/huBmj0RL35ru4Nl7iw9MjvHR6E7v+WzCRDe6vZ85qRWU4qsaBj1vTOQDgcD1GITRujufgzOKVk2vYLatgKTArKuRc48FqilleY+n90B8tJ+DMYcxOC3dge7IucWd2hkplWLUZWq8Bvu6tSd5ZznBzPMfrp/v40OwUj9cTzIoKqzbH87PH+MLDu0+87bg5XeD+mbN42ClrlP59LYTCg/kOJkWDdStxY7LEqs3Reg06ANyZnWGtsqARrrVE7bWut3fmwUKFDuVGsg3R4JeNW6NJAK9biRcOHuPthbPCIu33aV2GKNoUHfyscpYW18crHK3HmJUVlk2OVnPMyhqcWRwtx2HdBxB84ce5g1pbe212rZ2vuhQahdA4q4qwxpyuS1gAN6ZLVMrN2XHWYtnkWPr3+Wg5BoDgcmQMx07p/MMXXqttrNO0ExRVLrWLks2AWglU6xxZ7g54pTDRIaAIh0Mxjm3TOE1o2woIHyGaDmLokEm1AtK75gipe8GmjGEoihZNI6ODL/fMwQB5rGTvVkS4soy5yNS19wsPh1kR3ixFUCaJkXPrIJ3osE1EJu+ehonchuhQUHgcXuE1ltZ2Ya9CBHnSxg5IeXTYYUgbSgc7uguoFdrsD5/o0IfFBwmUEo1lDzvWH9Q6mqwvuA/9DVpUonkV6frb6fc7faA1lk99fN/+5N/+owFeJI5aCqB3L9WUxBFRgc2IqzGMAwlK2yKMkranX55HebqIospyZ6bp64sjb6b0t0WLHEq9SJV08u01btS+NOor1T/U/pTuUPTMy/AVp/OclYciYm7r80Bv4F6w0Ij6bojvjeielmAnOniN81JKP+Xz4vK9aOzhOoazGKKXRgO9KKpm/Hxbvm3RWElbufVgmLQE2HLIm/Aa30t5Se/FWqChSKhp+VRjddG9y6SUh/PybKtvuEynsTqPL8pD2rdt9VL589rZ03wA2z/M6fG4vzc0ljEvPc0jzrdS2vbeps9J4xX4uYTGI+6HYJLGbG+TE0zSbFp2E7qITM02mBvqJyTPBnjaxnOaztVU0fVFm7GhjjZbxp3qift5QKuZBgMJmqiNfP3588Rpm4Yl1sJFY8sC1qO7piAzPRrkh/Zu8GSTv7G53pBWLe7/9B20w1AZ0ePNa+8z1+MN2DQjZP3fwTcOfXbouldXr8+TTP439Xvwj+ytNa5s0NylvF2QWJxvoH2D03lIyNlS51b5JNEaXqqeof5PWUmWskvJR9vqTt+Nc+pNebh0PU9K6wnoXVlWfAJ+v/xfvz98LO/+1fdAY/mn/3+isWSMCQCfB3DPWvtjjLGPAPh5ANcA/CaAP2OtbRhjBYD/GcCnARwC+Alr7Wvn0S5Zi2eKIxzIBSqT4UG7C8EMrss5St7i9fo6Mq6w0CX25RL3mz3cys5QmQzHPgKsYAanaoSb+RmO20mIunqsxjhtR5iIBs+NHuGN+gC70mmqFrpAxjQOW+fPcis/w8rk7lTP5LiRz/FOPYNgFgfZEmeq7AmareUhKuxrq2vgzGDmzXaV5WiNwEpluFEukHkbiqXOkXMVsDMpzZXzPay0xI1yAcEsztoy+OlNsxq7WYUH1Q728hUKrnHalmi8ieid8SnO2jKY0u5mziTUmdKqcFItowipjZFovM9ILnSIztoYiZyrgBnqosLmuFYssdQ5Gm+Wl3NXZpavcdY4f0plOMaywVkzCvkPqwlulAscVhNMshqlUHhUTdFqgZvjOVbK9UmMwUkms+R7uZs7zXGls4DJOfftNZZhr1hDMoOvHN4EAHxk7wiVzkJ0V2sZJlkNZUXA6zyrS38S607PCSOUosISHMjReoxcKudH5s1Y122GSdZg2eZOKwcW8DiV5ThZl2i1wMF4HUxDC6FwUo1cX3u/M+21PHkUFVZ7QXy3qFCpLESQBYBKSRzNJxgVDXZHFSolQ/RR0qRxrwmhKLDanwBnQofv1bqhIFfu1Fpwg3HeYlnnrk+KBvN1iZ1RFXzqBHf06dR7XDRY1TlG3q+mkCp8E8l0V3lTs9LT3ilrnK1LlJkKJ/GV920DnM+VhddaSze2FHRr7LUcjRJolISKosJKodEo4fxvDUeRtUHAqJoMjLmosHSCTgG7Gq+BJd+mMlM4PhsDlmF/dwltOhqTsglms9pwrNc5rGUoig6WhEwlKagWA7BaFZiOVzidjzEaNcgEmb8yLH3wKsacqWTbSIzGddePjYTRHNNJheW6cLQzFQJLLU9LjGcVhDBoGtcnzoQTLirsrAJjQNMIlKMG61WBvFBoahkCepHA1LbOFyrLFeraWxAogbxQPthXxycQR4Vtw4k7ne5r7+PlTuRdu4xikIWG9afyzToDGJAVCm0lIXMdgh8Z3dGzhqGdF8BIg+cuQA5FhZXTxgXPAoIPk5lLiJ0WumWwtYCYtlArCT5W/oQd0Gt/IOmjwKLQwbfJUkApH0wFFNm15UCpXVAeHxE2BC+SxgXEiTf+mXFBjGjX2VCYSrhAKoa5oDmVcCaCDP6au4A2FBiIzD2lAasF7FiBz6WL8Jn7QCYUkETDR4VFCEDDKxekibcMRlqAA2bkIsGKNYceG7DWB1lRDKa0YMpNQOPpm9yAV9wHdLGAZhA1Ayygp648jKub++AxujS+TheJ0xT+EIADjKKPFgZyIWCkdZE6uSvPa3rurvXIRVs1uQ9aIwC5+gajwlYMykdi5a0XZi1CVFiKPst9VFgKcgMGiJXDKLUhKizzUWMBuYaLaioR6MURPimya9AAcSBbOF4o8qisGExme9E6mQZM1vGuCwvRMBjhxjSO6GoFgsAe2uED5VjKyxzfFI3VZDENN20p+i0YwJTLY6UNUWkB12/MvZbgrW9jhhC11AoEQYmrrj2W+3wKIfor93SozlTopP4godrV3z1jBjDC0aG/sTkumJ+LfX1EqINobESFBUJU3sAP5R8SLKnOJCpsLDSGciaiE0e0jQ40guzv79H4bhwaxG1JDxXSw6S4HEe/n3q0+jc3IrvGjy8piHe0Linofzt9U9J7rrFkjP15AN8PYOYFy78D4BestT/PGPsbAH7bWvvXGWM/DeB7rbX/PmPsTwH4V621P3Ee7Q9998z+9P/6BwA42BHCosyYA6avTAYBE+6TH6bzleyAw41lyJhGbbLgb0haTcl1zzeSkvHmKQB6wW2CRjLKn2oDSXNK+JmELakiXz7ykezq29QqEfwFXZNPJdVHkCIEt5F738BYE0gbfsojozqBTaxLybRre6JxJZ/NVBtLAqqxPECYxO0h89L0WhnC3Ox8EskfD0AIcLJN+0g8xf6UqbaLhDrOLFZtDsas95XlG3yl/ojWC31AH9sw9tGL/f+CFtn7BpK/W6oNa327Bet8kWKtuLYs+EcOHVgCzi/OWNbzfbRA8F1NtbKxpjZtT6otJP5jf0RqD/klNkoEMz5KcZ1DOIzx2IX5ZjtfRvpLWl7HS3cd+xpSIt9GCnhD2mBtePBBjOsd8vGjuuJyNuk7GsvWCzXk00jjRWMQa//j+ROPXfx9NfFc4f1VRHlBNOaTR/OM/A7JB5F4pbxkMkX3tA9+E/vrkdaMMYTnxvMyNGYxfWNibWs3ZvTM8bv5nK5DhFSLnj/iUPlY80vlQ7u84ErmZtY4Gw0yF3MVu52LofH3eTiVKYNxAAAgAElEQVTr/E47/jp/S1g4E7FE5ZNqrq1B5/sX36diiWaQgn7EzwfflaRc7BcZAnsAQdPEhIFpXYTinn+fdbwz7nat1gczsZpeLhYEW4oQ2zNNs8xvhjuaPT9D8t2jCMBEV9ouAirQbVCF7Qf6SAOJUB4VCdzEZ7wxp7JJ0BASqJ84bVt443qpHho36haKlMptT7tqmQ3PtvrADWzqmRf+Qt2a9fuExof8Sw0LdfeEDpBQ1s3lWIAJ9W+BxujRAAJkCIAwf0LE1QgKJQiApPHsT+mu6TSu1PeRsBML2+f2XVpnIrAMalQpPwlyaf50GqXzv/9zo+wwjXPaET8f+rslxTzEfGzQ3ZaSZ+f2wWXoPUG6sjaTUlLuK//l+0Fj+bS981fefY3la//mf/xNbxvwHmssGWNPA/jjAP4agD/PGGMA/jCAn/RZ/icA/xmAvw7gX/G/AeDvAvgfGGPMXiD5VibDR4qHqGyOr61uo+AKt/JTHMgFfmPxHHakw4e8mZ/hpeVtvDh5B7XJ8OrqOvayFWaywlvVPp6b3sPLq1u4li2x0AUe1Dt4uN7BXrHGZ3Zfw5cWd3CQL1FwhTNVouAKr68OoAzHp/bexNu1w6M8XI/xPbtv40tnT0Fyg+fGj/GgnqH1K65gFpXOcLNYYC9b4XOHzyLjGtfLBZTlWLUuyue8LvDC3mMUXDnfxvUMs3yNmawDLQA4a0ZojMBZXeI79h4BAB6sd3BrNMdLhzewP17jqfEZ3jjbx53pKUqh8KDaQaUkGICPH9zHYT0BYVbeGs2D9nIiG7y13Av+cS5S5RyL1mntMqExki0eLqe4Pl4GbV2sLZzXBW5MF3hUTbFWTmu4X67wYLWDW+M53prv4eZ4jrkqcWs0x73lLp7dOcJhPcFbp7t4du8IDxb7OBitUGY17s93ULcZnrt2iJPKRRdd+6istZZYe783F0HT4OZ0gVxonNUlCuEwDh/4SJmtFrgzPcVENvjVt18AAHzX0/cxbyROViPslHXwtau1xEi2qJXE48UEAEIUv2nWuLZxg6PVCGMfxOXxyRRZprE7WaNuJcZFg5PlCPuTNU7XJfbHa4dzmLkgP40WODqdwDQCu/sOk1QK46IbzifIpcbZfIRr+wu0SgRYm0zqEFnQGIabswXWdYHTRYlru47OfF1i+XACsdPi+v4cyzr3/iIOG7D0+JDkx5dLjVo5fxUpnf+YNhyrVYGibNE0wm3aucVsusZiWUIrjulOhbPjMXb2V6jrDNY6nMXSRyGsVjkmOxVWyxJF2UBrjp1xHaJ6rioXXKttBRiA6aTC2XyE3dkKJycTlOMGQhjkUmG5LpDnCoJZLJalE2wzFSB4Fo8nEJMWs+naRQptJNpawlQSo/110BBWTeZgaQxQjNqgPayXOcAtxtMaxjDUVYai9MGVatmDhinKBuv7U8AA02fOoLy2tlrlmM7WMMZBBWnF0Z4WgAGy/boT2BUH4w5uRrUCjBu0JyXGN5ZYvzOFPKiQ5SoEdmkfjxycgbAOL3Elke9XMJqDC+MgTywwOlhjPS9AMCKGtNT3SjR3HM16UTjIAg9VIE8k2qcqMGGhVxLFrEZ9NIKYNdDzDHyiAnwPZxbtKnOaqImCPsuAUoOtJNisgVl6WA/uYFasBcwiA6s5sNs67Z5vA+MWZi0dbEYjwEcO/oOvOcyuCpAaOHEaS8xa4DSDnWinKTTMQVV4SAurGYq3crS7Bmbi8B3FgoMphuZmC7b2Gr/MuvE4lGhvt2ArAXnG0d5qkb+TobnmcQ+EhTjOwKzTaDADqImFyY2DUzAOc1GeOtxJXTrIBdKQcY8BaHLrcA7nAqY0yE487JDfeOuRhSmtg+pgFtmcO00J85pAr53KT71w4DU42RlDO3PP1chhBsK6MtmCob6uMX5TwmSuDqYA6zU/onaaL1NYZGccamSRzZ1wIWpA507b0ewZZGcc2RJodp0GSrRO49ROELAZdek0PGpikZ26Ha2aOG2eXAGwQH1gIdcMME7TJSpXpt1xvJvM0526Nlnh8BGZBdqJRXHstJomR8CBzNxyh3YCZCug2QXyU0CNunYUxxbr21skmEukbO7abpnTfhLOIG+Bes9pHk0GZAtXH1inscrP3G9dAHIFh+/o/+Vn8POj01LxCMdSF35z7YU4kwGjRxbNjLt5UzjedOnKxDS0C2AOuQDUuOPR9al7psZe++i1g6J216JB0BLKpYWVLGj1mLLQJYOo/OHbiPk+sqHNvAV0wWEKIFtYtFMvcGkEDbdcO22pzhm4cn1rJQuaRtFYDyXi+kyVzGuLLbhyPLsyTqsYsB9t11dcea2vf3eDdtEHNKK2Bm0oaRytoylrC51FwmKkFQ4aS227d1m7yrmyMBkLgiuzFkawnqbREfX0jIUVdADhysfCZozHSdimVjDw1nY4lQw9GBAS6I1k4NoGvjeS54k0wL2Dg5gH33cx5ueg4Br5AWwI01ujVPWvHQ8s9G1M60Ih/P2cPki8XjG9pxpLxtjfBfBfANgB8BcB/FkA/9Ra+4J//iEA/7e19rsZY78L4F+w1r7ln/0egB+01j7eRn/0wh374n/777iIieS07E/faYPlwkSb4JCtlNuwkuMzbY5oM0kn3pybcOqrWhHw+1zD3J8A6u1xGAGAccAo1mH4tQ7TDYB7aW0Xdc9qBpGbQV8gxi2M4sGngUJI2+iE31oE/D3GXV3WIpwqi0LDKB5w7qzyz3n0gkbYdoxbhylIbTRwm774dNvjnoX33rIO0y9eNSzrfFkIl45Oj70pl8OpM93Js2Ydjh1DZ84l3cYPxj1nwsD6DeRgCOv4RFOx7sTWj0HvpJxw0Mbuy2QrjzmY5omTsB2/QH9FJQBz+Hos+thzMXbckA+T34SjZR1dPw5uJ2MCPl7o52RxJcyu0Mfw4+Dx6Xq4e3EdlM/Cn2jb4WsaV18+aACoT4Td0ETQSbkDcO5M8MJJPeWlLqU5SXkJK41wxCw6XoAO347mHeCw0TxGHNEOPLRUETpTNV9f8M8imoS3KTo8uLhu0hRYj6/I6uhdIN5D+5xQEZv1xe0O2iHrMON4wx0mXMP77m9eaIHfaDpTQt69fn79Icw6GgNKpjRgNQ8bjjBvGXpmkL2+V5HpJCXrNzd+HK20QZtF+YPPFY2LdO9ooDekaWLdxskKZ8ZIWgOTOZq9jSK93gQi7+vSIwPW8m6zxRHMJoN2hTbqhXXCn0Bntle6v8H8kCAtSYPX9v3imN/4urmEYOZIAhflYcaZl5IpoZ8aoVzsi0dtinl188P27hvZ1cNizZVxeXnNXH+QCSJpkKLNNVeeLxpL/87QGPHGm1rGbfLvD287QYDqp7kD+PHm3dwMY8BsWB8s70wwg3bNv3MM3WaZzAsDCL3fAId5rzozTiNpLvp+yr3Q/YTJCjiBCOibXnJ3P5gnktkhEM19BFPEoLnz/0iA3DBlTMeehAXrBFfyjiFzzo2NPuvKBoEkEhZCvbpfjvor8Onndixk2Og9ZRZBSApjg64umlO87QSNMMej7wzdC+sCurqonWn7ehrM6H2kNKiJDGtu10fx9qVX3kZ9Fif69kZ89u77dvbKpXyck4Z4OS/fkHY08JDOiy28pLTO1RResh1XzTukYb2Ql0umL/037xON5X/+Hmgs/8y3uMaSMfZjAB5aa3+TMfaj7yLdnwLwUwCQ3ZiF6F7uGQC462Am5mei8L5Y5O/jIl8ZtxFl1j23DDxyhKfIWoIEQ9F/ay3gzLT8aTkJYCRUWgsPHu1+Oz8dv2iGUPEI12FzBXiwcm8+EpnTBEwjdGsYAAdCz5zAB+v6wigeftvecxJGbI9eTwADnD+P74fQvzxqm2+XNcmKFvqI6NhoV9DRCP1JbRfRfaATwOJF2wDWdsJwx2/yJbbUHmI27qxIkKH2NPR19XmD0Ig+D3Rvm11JnE9FPNH92LxsKCmOzVU1qk/FE5TGsV8vCUkb+FMN7+ffqKP7F0y4og8iswzW2PC316nGEWGWwWqXd/ODxRzgNhCEk43AGjZ6zvq/e+DUSZt7wg7da5N7tHEh/5mob1JhKdyzUR6Vtrf/u1dfJLD3PuSWhU3pNlMpCy+IeR85EirpOQAnvCK617KwqQL6vLJ4LvtEgiOADlQ8zm/7ZZlim30S8sMvBlEfaN+GqPHhNYl5U0mgj9hC2W9U0zp5dChAvlkdPSrr8og17811Rv9Z1tvsMQvwqtvMEl983eePNUS+D1PQ26vRxtuvkSD/MN3lD+2wgIjv9+a151mj1/4wbaM5ywCwtivOejn998QCYsX7T5L3AAAE0aUDPvTfAxHDfwRi/TFyfdPNhV5qovK9sqxrQHiX+nWF75vt90t4h5r4nfJj2PTrJ1/OJ07n7PYvNDlsBgoln7BzN+DJePEGvXnDo/4B+usKXV8oKCRray/VybOBvIz4wObahpol+aO9QjLvY3obPG5JW9t2XruSOfRuCFLb+v9KfF0mXbHcpQSzK7bx3aL3DZdJUurj+b5KFhcGePwgp/fSFPZHAPw4Y+xfAlACmAH47wHsMcaktVYBeBrAPZ//HoAPAXiLMSYB7MIF8ekla+3fBPA3AeDOx/fsv/zh38VCFcFn0vndcdRGIuM64EMqIxyUgs4C3iThRxZcBTgNCrLDmQl4lY2RG76EnDkfSc4sVioLvoqSm14AFAqwEvs1ks+csiJAPqT+aFQ25if2bSSfP8eDr4v8NQOOpfNtbIwI+Irkt0hpCA8SQPBRin3yYh9H8g+LfQZ7vni+rm4MbOjDmMf4eYpjKZkJZrXGshAAh8Oi1nLQVy/2SzS2A6aO2xD7WrYe53CncNADBKtBvnPkywh06z+B2Qc/xOgZ+TcCXTRhwn0cik4cLy6MudDwgPO1JB6pv8n3UiVjtIFjqQQEd76PKhqvUqoQKl4kfnLxuMf19vzmrPN5jLEcXVkW6iP/SsJ+pOdEi3AdyWcy9lsD+n6CnDlfQilMz8+S2kzzLp6PHa/MYRhqHvyjCTCcMQulRXcwxGxvPlOie9Tfsa91kMNt5zNKYfobJXvvT9q3MY5jPPbkuxnTo3fBWNbzR+RJewn/sOtHPzYBP7GfVwoDpbnz4xREC8E/kWhxbqEUh5Sm52dJiTASiZfYD1MnfqD0nSdLDxOtGb2YDlEfdHlZVAe1jUGIDmMx9q2kwy7im55TXxjvRwigA2H3WI8Ox9LDD0gdQv8DCBiOgVfDNt4VZ3li+76aNvEFpzbSWNquffHfQJfmXLweReue8fSMp21IqKVx5RZGe+xHDG9qYr/R2C+UDkxT4HdLByoUaCTSCvUA2nsHXbaDMtgWITVRl/RosY4WCziWrFuEUxpknREv0txuCrtXSeTLCPQtYcg6J/YJDe2O6o7vUVmLzreU7rGIZ0R/KcWHsnGbz9uwps8TQbV3PfR8UJDsfEnpQNFydwDp2LLdQSND/1BuqI64fQnbjHhM+YxonStEDwqW8WHEFoFpqO3nCbjJ460jclXZ54qC6Nb2n0dj6zhvyz9winAZXs5L34hMGMp+6wpu7/f0ngmW1tq/BOAvAYDXWP5Fa+2fZoz9bwD+JFxk2H8LwN/zRf6+v/51//z/uci/8vBsB3/7H/5BmNzZ2dMpvRUWVroIaGEtE95nQALgAK8Bm/m1XrlobuTXQdHYRO3MZ9qJhfAng8F8yPt7AN53pPH3vK+K9P4turDexKRbsZjuzInkqosKRyYe8H9N4b+ZZGbkzcJcI90frnxUPu3zR3lF5dptpTvZDD4VdOrInC8O9/3mfCGAYNbGXbl4wTU5gv+BZejMfyKb/xDJzvsPUBni2YrO34G3kf+D96mh/KIBVOn9HoQrJyvXP2rc+Z+EQAEWPb8IwLfHRjwBEK2fB749YMD62JVpZi5vMLOz6EWqA/wpMToTtthEhrcIUf1E5fgzedc3vOnaRyZz8QdTVPDRBRE2KzR3LXd9Qc8oSl1v7ljXZq79eOY0T4BmaWFy5vquQc9UKZgQ+jlO5mZkXhXa3nb1ad+nNH7MuPrM2vk0kTbJCgRzKu3bb8iXxXZmU84Mrqtbw/t21a5NtvJz2L8v8LxYBkB1NGic9dq1l1Y54/NwZYHSbewYA6ABQ+PrTdXAAUvaBe/bZBUAzzNTcBp97v17BMCW1p3W73TaLN4C1o8BjRH3/kKijDZO5LPiTTstA3hlwScMcmGhRt6awtPNltaNPWf+HbRgRWeWKWqXkXtfJKBvnpYtHG0jXd7grwM3B9XErUtcWYicQVYWumAQtYXOo40y8+uBtTDSPTfS+UmZnIE31o8RC+ZyvHX16ZKBKQtnbuk3d9r5FzHt/JKIN5O7+qxw98CcP5aorZsTnPl3wvo54CIQ5nMLVXTruvBjqkadCSH5ZMnK+wkq1wfkp6dK107L/Prjx4Dmbuy3ZaV/V1m3ftC62jPHZX6t875bbh1gYZzIZBKse/fpXaJ5Lhrrv0ksXOucde8URdfkgGgtVMmQL5z/msmY8+XykRqdaan/bvgxJr6Ytq5/mfNtE7V19AoWfE2Ztp1/HGdhrtEYAghjwFt3rUoO4X9b/x7BEp1ubde555U7+swCOnP80ftOawdXvi4/B2nOkm+Z5QyiNmgnkeXHFZNoXNsB9y2BtcHMUJWedz8etHZS/wnPs5EMovW+hH6+ytqE9yR836nvaZ5GOyLLGbKlhi5414ete0di/z/33nh6LXp9Qe849Vlsnsu18wWkMaU2hffLdP6+4V2S6LWT5o/be7i+14W3pLKdUBzz0EWFtd13XXf5LWdhnXTf/Ei4Zt2774gQrf58D8IpEA4egh+fNwvv9TXrj0Wa6Bvu6gDInItZAJHPZKrJTO9RfnDWk9difLJ4jbSCBfpcRfcTNum7YAXr6A2kDeH6IkF26EAg0OrftNGJ3BNpE2NeriBcp+mlJyv27qdvRHh+n6f3HG5kIP0MgJ9njP1VAF8A8HP+/s8B+FuMsZcBHAH4UxcR2pmu8Yc++zsAEKA6lHHRVEmTSJq8nCtUOutp8WJ8ypxrVFr2tGO1dkFrJrLBUuUhgihp52oP2UGRRAEXebMQCo3/osR1pKfQkhvUHkSYtBOAm29O29dpC2MtWJyUPxVvtQhAzaQ5XbcSmTBek+QAk0njRfwQoHisMYyjd1K0T0qkgaF1Lo7OSVolWrNIu0Ual5a0AQNaKxdR1IT7xnrweqGhtEDutYhKCwdrIdXG6X6sXSRtSOH7K9UWS9+vhdcyVU0GaxnKvHWwHaaLYJt5jQEi2rGmZigaptOGdhE2Ldy3pvVaH4r0CYRvEABg3QpYwyF9ABrSsNUexLlW7hlF72TMBt/gMEbCOJB4r2ly84Rh2UgIYSCkQRP7h3oaaRRU0iT1gKK1A3QmbQwDetecG6y1ABcOHiLQ81+sNMqu8znuO7eEqKvMOg2Yp7f2UVeJnvGwHHEUVMZt+Na5gDidqbzxmixrWOebHLUTQN+fmA4pvMm2NclvTn3i6OnaSbkUpMYBZzstketPAJZM1Bl41p1WdBqxbpNkWgGea5hGuLzRx9S0IkBskG80y7q1gcwkAxSG9bxThMZauEA4DF2UT+o4xcByt7OymjufZsWD73bPfD60y/uOKxY2Zj0NDEO3W/Em+sF3mqG/QWFRecXdb/JXZuhMNGN/ZaozOT1nDYcVpotISn5bVDe6ulnLYX0AI6qTNdwFSaJE2ndPJ2x+I97jyJ9u4xv5DDIb2ku+0OQ/2u2yu7JARy/WYMW+h64ST08aBO1Z3D7NYDMN7k2oraB3zv11Pmi286kVpvNt1M71wB18ON9e3nIPKeL6hBnyryX61h9SeT6Z7QJ9aDf+oTzxaLwpfTRP4a/dT/LHtn2fTjqwNazre+H6wwk9JDAxf5As3IHjEyauWRAYmQYC0m/kg2g9Pz0PDV8WgD+M9MIDzYdWhIOHsLGP/S1JUIsEEdFkDgoGnXBOB749TWfk+xr823nXb6687c0bOgzv+Oz84ePD0DgATRBgleheRX8Q4g6aRcgTC3dhHsTaZcTCVr++nvD3hBv0ngZtQGjZ0LBFY+EIDNRt+896PKd1IhHi0vLpvYjvRKkfXuXEFn6jfT2t71BKhLatWty0ji30UuH8UlrLqwiOTzL2v/gEZd6TNHxI8a2Qfl8ES2vtLwH4Jf/7FQCfGchTAfjXr0K3MQJvLPcdBh0Jb/Df0UToANAT7kgwig9uUlM0So8xCeUDbAI236v0XbgMwHqcbygoVhqaPg2eFdNdYPNruYpo90zF/PWS5RumaFfnf5Ov4YxseKU5h/babsKEWAAV8j7pC6o+j76j7a7bpnsltrVnsK0DHyZKiRuYp73ZtwGQHYAmDLpQoOs71QgMpt4Rp7tWUf9aC1jFoeqoSDTHtl1v1pMsG9HXR8MJVxpbeIR3o7ORNdo5g6fD3wF6cbnBj7zbyJu0rGXQTeKretWU1OXa7X8rmTwbLmvazeV3Yy+jJGAYzIa/qBdS4r/pnAFg6q7tPdoWsGvZu44FJFtF5Sx3m5KmyzqUNu63OH+MSEA8Z/zJnA5q4CHRHxq+aFPNLOv5dcIiBO1Ky7CKb+SJ/Vm7vCR0bV/DWMRY8FWN71kAjHUbQkq6ny/drPbopBvZdJ5EeZjhXYCS0B+Jj6thXvMS9Q+zYZPM2u6+s0KJhF4T0SIf27D5Z72NNhD5yqZ80tiQ3y6VpfZb1vlaaqo86gd0m2xCz6J6GYOzHNl4Ka+QbFQ+3fRTfWmbtgggvU0+234PwEbgGGbhsCij52EapuamJipk3d+UJ2axuVjZKPCYZX0ePX8segfDpydeXqMARzZ+32306sSvWNxm6guadkPti78jlxVI0H9lWfpjYHlgA8vAubIB21wWetd24N4QvYFt0+DfWGBP+yFeTthmPSydb8m+c/ATme55tmUZ4P1S6Qk2dZcSXL+d3vP0zdBYvmtpJFp8fO8+GiPRGgEVrWZtjL9oWc83MfZJ6+FNBqGz82tUVoBHMzxGkyN/yzQN4QEOPY/TNiGO/DrTutM2bKtriJ8h3MfUX28IN3MbbZ68zcFf0/a2R+nedZDH81Kq8U3vDfGWpqG2X4beFsuRDf5iOhfRHLof4yJSG7ZhTALn76u3fVviexu+XFcYhw2hODqwGC6HDe3qVZMdmLeXzU98Dt0/n8bl+Lps/52X77IWQr3DjaEDmkj7O9TmlIe0H20yx0I+bL67W+9vOziKVS5b0jbMx+HM5zMyhJ26dZzSRaq3EWabO5fLtMFHAU/HjPzSggy1IXywS/XVIP9X2WBdlHeo7nRTuUVwupBu2r4LDho36r+orktP1qsldpXxuMr9q9C5xPwY0m71aLKIeCxc2IFKBwTRrbTTOnr1blkXsF0A38rDUH3npYHnoc5LjtW5n5yhcbhsWy9K70H+S4/ZN0LvijTei/S+FDjfjzy9S+kDLVjuijU+u/MSSt6gtRKHagrBDMa8Rs40DtUUAFDZDCVrMTcldniF1grMTYmMaWRMozYZxrzGyhTImIYGw0oXWJkcGdM4kEvMdYmSt+DMoPVHQyvtggYdyCVaK6AtR20lpqLCqRpDMIOpqLDQJQAEAbG1AhnTKHmLh80OAGAqa1QmC4JvbTLM5BoZ146ukSi4QsZ0qB9wJsCtFVBGYCJrCJiQ91Gzg4IrTGSNk3aEkWiRMY21zgMW5l62Rm2kL5dh5J2QiMelLnrBZkaihTICreUwPvjOWmeYCIcXSkGGAKDgCrWRmMg6CP+cGRRcYakKTGSNpSpQCIXWCIxEE+7XRmKpCsyyCmetww0thMKJx+3cz9eojUDhgxJRYCA6YCCBbCRaSGZQGxECNq21w9ME3OFExjXeWO4DAG6UC2jLsFI5cq5hwIL5NPdlFq3TDJdiU42yUjlK2cJ4GpxZlKKNAjtJ5EKh0TLko2Qsw6It0BqBncypFTkzkNxgpXJIZrBUOXayCsqKQDMOigQAY9mg0RKVlhhLN56NcdijI9kGrNHWuEMTMssmM2EKLkNm1fF1awQEM9De7Jwzi5FssVYOP7SULVZtjnHWBPNwDhtMqGvf7lrL0L9ZpD6gAyEKbFMIhUplgW4hVeC5NSKMI5mlU9AnA4ZFkyPjBiPZhv6plYS2DKVU4MyGAFEUjKnw5uQA0HjTdDIxbyJz89YH6GKsMyE/qwoYw7E3XgfBpTUcuTe3tr4/162EtSzgnQII5uhx8Kd1K7FTNDirCozyFllkVr+sc0hv4ktBk8bejFswi7XXho4yFdpBAcYYs5ivS0zLGoIbtFoEM3VrGepWYlI2zo1ACYzyFqs6R5Ep1K1EJnXvMKn1QYAyqT0OqjPrL3zwJAAhYJC1zMFDGY5cqnCIQmbhSgtIb/5OdLTmKDIVAoU1XiOcSxVwV4XnndpH/bhaFcjyFlI68/G2FTCGYVS23sy/M2mv1jlG4xpKCahWoChb1FWGLFdBwG28tQCZeQupw2GJtc7sXbUeK5QCBRnuggD5AxXOnem58ubMDq6qW0M4Nw4qy88DrTrnutDvzEJ700mqy7QcPHNqKy50h1nKHE5qVig0q8yZiwsbAvFYDwHFhAETFqYRYNLAkGWEQjA3FoV22n5veh3MqA1z8FBkwkowM8IETTqTvi4PpcRK7cpbdAF1NAt4qgGSiczWGZyptWWu7pojwB5R4BzlzWml6Wg1vDPLZgBrGOwoVeldISkGm/s1Szt+YOFMRol3ZsEU72Ii0Dh5s2ebdSbQAQKpcdfBHNQCBN3jJpuvn+RAbiDWziQZsIDwbRO28xsEOjgo4j2YwsLz6ZgjGKRgCuvzBN/gBDYHQIg30aMBp40OZwXeF98KZ75sCH7GdAJXbEobw6p0fpqRDEz3KZ+NeGToCUWxBjVAp0Tlwth4v/r4bydw+vGkPotSLNdvaJojk+JYm9iTMxMBLqXXo0TwWdkAACAASURBVEt500OduD6GTSiWuM54fK8iVCZpsN2p7HwOjfOF8wEetvH0LSycfZDTe4pj+V6nF75nbP/yL3xvEOo0eE/oApyAVJsMmV+5NBhaI2HAUPA2PKNytBkmTSEJWK11G+o4VSZDydsQAXVIC6rBIWBC1FpKcX4SBI1lrh4kkVijNgkY6MhuxFjmhWEOZQSk36Q74VQiYwacmfA7Tqn2lYTNOPplGpWWIuyGcsxpbWmDT79JS0wReIOvaKSBjXmII3eGvosEWqrbhMi21M5+X6Ta1os0oSRwhCi7iUZwm+Y21SjS75QHGpP4PmnB4z410bwjWiQgDWmn43GjKMVpO9I2qEQTmrZliH7ar0Pa9PO07OdpiKitsUaehOS0/tBeZjfaPMRrWi5O27TU52nttqV0rtA3Me3DlL9Umw9sfpvj+c+Z7e0ldDR2NC5pdOchbW7sO03CGPkuU3nn76wHLRgussaI64j7MI0u7Gj0YlL0nsW0qDxdD2mqU61kEMr8X+nbGkf1TfueIgTbiB5FuE3rJiEx1c5vcykYsmQIbU6iBsf9FbtJxBF200i5cbmYL+KHfL+NxxuOfapDZFVG0V77GiUTzVXyhybcaGPdbj5EkSXf42hXHLCX/b04mmzPxSO+H32q4nzxxr2DwfJtsf6eZZ3/MfkFJ1jMAVv6SZLt90/cf72UQikxG0WTRd8HlgSDlE5MI9V8Met8kMl/OBJmAn1GNGz3exuGMtGkNg6l2Gw7Gouenya665CPwfnIDsFLxWOb9ktcj2XbBTm7pYxvUozZyuIyyVjGaWP5TE3W03ptX/5hcZ60zZcQ3jbqGOBvQwAdqm+Az4t42aR5/rdwq6D4LrX1XN6uSPdrf+V9gGP5kaftU3/5z73rdF//t/+jb3rbgA+4xvLeeg//1Vf+GIzh0JoPfmyD/19yP3y4iVi6wESzNpgxpQseug/iNrO8reZX9EHlW57Ryxi/QUMvd/IBDzxZdGHiTfeh7bV1iGbahIGFejANnS7Z6COW1peuikMLH/0mGvThYQMfxrT+be1J6yB+4jDwMX/fSEpppItsfB02D9Gzi3jfWm0UJMQimG2FYCL+efy3x88Qr9vqT/kfKjf00U/7Ia0DA3mH+KE5tG1MLfpjEG+wenUOvA9+/IaWhfQVCnlYF+Bio/2+bYHWNj+h+F60KdqYJ2nfpHtlhi5whk2mYxxwgyV0WP9ZDJK+saFLeO8FHhnaUKVtPW8+p2sF/eSbHT+0vAAIgWB6z9MxomfUz+fN09TzwQ7kG9h4b9uAMuIp6oOhPeHG8NJYDOTbuPC/DY0jvABPRHlEc2BNImzEeA4Jf49HDG9s3If48PktzbG0scTTwLzovYfGBz5Kvmkbz2MhOf37pIkEJGySOXezT+2j6/PmyVC64HtAAhSN0yCJi8YnfWfT+i/g8bz18cpCBra0I13L0rxDbTi3X6O1Je2fgbovzWdEfuP5FfrgKnycly4UxC4YnycV5N6T/FF6X+NVbkvpvuRbLH2gBcvr5QJ/9oXPYWVypzUE6zSOlkGD907a4xN20gKSNnKb5ohSrFEjDRqADa3TthP9bdqYlG7IH9GM+Yp/Uzu3+nKC9fJdJqXaobTfUm1czGPMe5e/w9/kyeqR+o9exa+T/sok6uu2vENal/SQwYBBMNMT8oc0rNu0enEfXcTTkKZpm59eX9uzvT1xSjWU2/rlvLTtO8PQmW5ehd5gHQNtHbpPdQxpVy+rOUt/X+QXGWvTzvOxTelcNljXZTSk22hd1HZgu1x3Hl/b2nGR1u0i/8XzgkSdty8Y8j00kTb2Iv/JoXqtZQHP8qI2bOUzlWDje4F5t1Pd1ndsS7mhPWh8ryfrJjt4CuSU7ry3BVjbGogs4tVGWqbQjhSHsVf+YiFuyBf7UvvDlFa6SF2WxpV2yReUH3oHt5G/hIBzNV6w/fBmSNAaqD/Gmxy6f67g+yTtDHk6xrcJkOnvQeFvaP6dk84V8tL3Y4jAEwieW+s+L53Xtwybc/+Cei8Wmge+P086vpc4fLh0ujD/Fd6/b6ffl/SBFizXOsfvLO5iqfK+qaH3s5PMBJM52mST7xaZi8UCX2xiByAIGbWWASw9roeEmtbDIMRmZpzZ8JvqS4UCYx3MSAzKHgPdtx7EHRheP4xlG6ajcdtyoaEtC2ZvsfBC9TSqaxuAHpj7VYOjxNAjjj+3MY8hReK/xnBIYaAjbXK8meXcBF8r433gRAQ7QqZ88bikKTY5pKexHxv1SZG1oT8AZzqnLUs2qY6/zc1nDOhuwsaXzOpiQHnSqjOGABcS9zOZu8Wad6LryiMyw+vM5Vg0b6i+GMyeMQe7YQzrAdenY9jdG95QxxtRek5mdvRbCBMsCOI6rEUAtO8JLTHG68BmM46QvE3rvqGRB8K9FPZk0IKBzB392FnLwj2CNQk8JX3FPB3ufSmN7nzi6FmX2W4ePCRt6fra9uBr4jEJczAqbyMtbLCE0KwPYO8T9+NAm5O4b53JJFWEni9e8MmL23+OwN4TjGnecBvobnRqb0PMAG474YboxJroILxtCpCAh1vxEDOMdWXDNbr5x7iDV4l/99prESwbemXTjTuZXVI7UtPDuK30NxbALBDDbQRTx7gcmTTa6JrgV9JdJP02rINZSYU+FvEYbVot+rxZ0iaSTyRL2k7JDNCPf6fjT4n4GHrhon4mCJdOk+qF6tg/kSFAvDDLOggXDjA1FOLzcslpQsn5L7rPvCY89tWLeQc2+NvQhqfjnPZBj5FoDtD1FkE+nQoxXToH5ulcpnpZ8jsVvoiGRdBMxpYLoc54rvYKR+s/QZsgKjPQlm3yFBvik2GrFjzUk5bbVsF55TEsvA0KdJc8REhfmwtTOl6B0EB/ntMfFwuhl3h2Af34+krpqvnfp+mDqGi9bPpAC5aVlnjp5AYYXKAN5xPUaRlIYCHBSkUbRMIRjE/n45NwY1i4Htoouzz9Dfy2jeC2k3HGAE1h6ClfLKxws7G5j31jAPdx7mlAmA2bY2N42MgSf4yEqkh4G9RKhAoijL9oA9Rrm0XPv2bonuMV3SY2xVwa+NvbyDKEDSbhEPY2rFQ2PaXnm29vvKmkr9SyHblL6ey5zhV2UnPZeF7EmyLa5MUbyNjvZYC3AIMQYwVSYAoq7wNjhHanm9IYsy828aU2pRsY4o3KD20s4k3B0Jch3aDy5B4AWDYIvTKo3Ug/TvHfbSk26wM6rLa4bbQJpX6hPk37AUnepFzAJES3qTU6d/NWdh0bNrzRtSGzVtGva6O92uXR2reLRUOmonlHZeIQ/5GvVfybCBjFOj4t+lp6DdjMdu8TCRG09iTroLXe1DTkQzcWxr/v6Zyym+9Vnyh6JsBxXjKO6AXkSPqR4CgchmEM1u7XOjEAt6AZjHSg7w4TkjAdu51s8B2Lxsv6uR6mceoyEQsZVJzyxfnRPUtNHEOV0fzYMKWO5n+6vyTeuI7oR30WXj1vIh1jE/b49sFVGM0fS2PUN00lQaNnck3Ch4nGgMYybHw3TVxttE7GwgrXHb4i4OkmPoYOzxK9uc80YDI8cWIaIRhLMFH3bFiBsMZvBFFBvy96QWpY1N/pu4KB+/6aKXQBZYgGw8ZnKSzFQ1iH8VyOyw18noaExbgtQUjV6C3/NOeCab6n32lFKXPCG/FhN2nFguyFaeB92vqNQfI8afu5aUufPbFweA7dreXSOXPONbMWlrFNc9IhWjGZaB7E11fi7YJ0kcB+YX3fTt+09IEWLK/nC/zM8/8A/2TxIpTh+MTkDaxMgS+v7uCN5QF+6OAVPG6neKY4whcXT+MHZq/iN84+goxrfHr6Gl6qbmOuSny4PMTnjp/FJ3bv4WuLW9jL13hh9BDPFQ/xUM3wC/c/iU/tv4kTNcZRM8b1fInWcnxsch8A8CuH34HbozkA4MPlIX796Dn80MEr0Jbji/O7uF2eheA8xrrIqveqPTxY7+BfvPklaDC8vLqFvWyFA7lExjTuZMf41fmLOPUCz93yBCftGG+vZyiFClrPZ8eHKLjCh4vH+NWTF1EbiWfHh7hX7eEnrv8z/NbqWXx9dRN/ZP/L+Nz8ORw1E3zn9B3czM5wrCb4J0fP41Y5x1LleG7yGF+d34IyArN8jbNmhI/OHmBXrLHwiNIvL2/gerHEneIEx+0YZ2qEFyfv4OXVTdwuznDcjkNb71e7uDs6wReP7+LO5BTX8wVO2jEeVVM8MznCK4vr+NjsHby6vIbdrMJbyz08Mz3Gy2fXsV+s8AcOfg+/dPgiPrn3Jl5dXcNJM8Yn997E88UD/P1H34eb5QJHzRgj0WKtM+zIGjO5RsEVpqJGbSV+++RpNEbgernAymu2v3PnAd6q9jASLV4+u4Flk+M/fOEfAgB+9q3PYq9Y46PTB3hrve/yzK8jFxq1kiikwif33kTGNL48fwqSazyupjgoVmiMwAuTR3hjfYCCK/zg7it43O7gq8tb2MvWeFjv4IXJI3x1fgvPTx/j6/MbKH2k27FskHONz+y9ijvZMf7xyXfBWI61zvBgvYMfvPYaHtQzfHrnNfzS8UcxEi1uFnM8rqc4bkaYZjWmssGIN/jiyV3s5mt8z+xt/ObJMzCW4e74BP/GtX+Gz6+ew68evoC74xNcy5YAEOa1e6eWeNxMsFI5prLGTlZh3paotITkBi9OH+KN9T5u5Atcy5Y41SN85ew2PrrzAFNR40vzp/DD+7+HXzt6AU+PT6CMwJkqcNKMMcsqPDs+DO1/fXWAkWjx1nIPE9mg0hJPjc8AAAfZEhocL53dxPftvYXfPHoGP3z9FXxlcRsrlWOtMtwazXHSjKAMx4enRxiJFo/rKU6aETiz+NFrL+Hl9U383tl1MGZxUKxwvVjgQ+URfv3oOSgrsFYZrpVLHOQrcFi8vZ6F6L3fsfMQxjJ85ew2cq7x9PgkzIVb5RyPqikaI3B3fIp7q138idu/hQmv8bNvfhaFf0efGp3h66c3kAmNjGuMZYMf2HsdY97gl4++I7zHu1mF2kg8Wk+xk1dQRuBHrr2M/+vt78GfuPsF/OPH34nTpkThIxH/8Vu/i/vNLlYmx1EzxndOHuBXHr+AUihUWuJ79t4GAHz+8Bk8t3OI2kg8riYYywbGcvx7d38ZP/f2Z3Fcj/Gh6TGeLk9CFOl/fvcr+F8efAYrleNDk2N87eQWPn3tDXzp9Cm8OHuI15bXUHvNvrIcT43PMJE1Xl8c4OO793G/2sWHxsf40ulTeG76GHNVYq0zHFdjMGbxnbsPcDOb4/Mnz+BascJaZzhrSyjDcb1c4KwZYZavcX+1i4/OHuJGPsdvn95FKRSO6jE+sX8PxjL8zskdfGL/Hr52dgtrlSETGgfFEo2ROK7GKKTCT9/9Rfzi/GP4vcV1lELhu6b3sStX+D/e+V7cHZ8CAB7VU0im8ceufxn/+/1P4pnpMX5g9ip+4f4n8a899QX8g0cfd1GttcA/d/1VaMtxPZtDwOIrq6fwsJpiN6tQCIWH1RTft/sWVjoPa8xHxw/wT08+gtvlGZQVOGlGOGlGeGHnER7WO/jR/a9hZYoQKO7l9U28tdrzY8XwvbN7mOvSjWE9xUi0mKsCn9l9DRougvjDZgc/vPMyfuXso9iTK7y0uInb5dytT/UUn5i9iX/04GP4qQ/9Cg71FF9e3cG+XOFYjbEr17iZneGN+hpeXx3gM7uv4SvLp/DpndeQMY3vKN7BK81NLE2BXz56Ed87u4c/OP0q/t7xp/BseYg72TFuyDN8bvU87mQnWJoCv7u8i/1sha8vbuL7d18HZwa/M38ae9kKPzB9FQDwfx5+As+OD1HyFu/Uu/jw6DF2xRqfO30Oz48f4Z1mhtv5Gb44vwvJDFYqwzOTY2RM42vzW/jsta/jYTPD42aKeVvgw+MjfGr6OgDgNxYfwfdN3sA/Ovou/JGDL+P/XT6DZ4ojPG6n+PHdL+C/u/9Hn3jf8Znd1/BrR8/DWI5np4eYihqCGezLJX7t6AV8ZHKI+9Uuvn/3Ndyr98O4GTB8dv/rOFVjvLq+jo9N7uNUj3DYTHHUjPEj+y+jNhnu1XuQ3CBjGreyM5xqtwd4s9qHYNZHKWc4aUf4k9c/j1+dfxQZ07hf7+IHZ6/g1foGjpoJRqJBxjRmssJr62sAgE/tvIEvLp7GC+OHuN/sYt6WeH78CIIZfHV5G8f1GGPZQHKNp8ozPK6neKo8xUIXeFjt4Lt33saxGmOpC0xEjV25xqur63h+/AgGDF9d3IaxDJ/ZexUPmxk0OJ7Oj/FGfYDXVwf4vtlb+K3TDwFwUdVnWYXWCLwwfoi5LnGv2sNBtkRtMhw1Y1RagjOL/XyNkWhQcIUH9Q4erGbYLdbgzIbvfmsFTtoRFm0R9kgFV2gtx1E9wTSrcdaUvn0GI9GiNQKLtkAuFI7rMfaLFY7rMSayQe7XWs4sKpXh1ugMh/UkuAApK0KQPfo+zrIKjRGodObqYQY7WYUH61mIMC+5waItQjmKLk9Wc7lQWCmH011riZ2schG6jfT91rrvc1b7aPEay7bAfrnCWVNilldotAiR47mfM42ROKlGmGRNsFKLLem04ciERq2lixyvBXKhsWxzZFz38kqvqKn9+GRcd9Zj6IL6AQhuRsQLWZfFAR9jXobceIi3mNfY0m5b8MXB9LNXeNnfy/QtLPx+oKPC3viua/bH/scfx0TWWOscp20JgpjIucJxMw6LQilbLNoCUw/jcNaUyLkGZwaNkZhmtV+QWjRGolbSvVBC48ZogdN6hEx0EVc5s1i27uXfzSusVQbm65oVFc7qEow5KIbWiGCCC7gXrRAKmdA4XLsNfelD75Ppaqs5doomvJwEbxC/XABQ+Q1e5aEJ6F4pFY5XIxSZQikV5lWBcdGAAaiVhPFait1RhUpJCGaD4BRHrayVDJpfxizKTDkIAH9PcIuqle5+BFnAmEUmjIMuKJpAhzGL3MMS0N8iU2g1Ry41qibDuGjQKIlVnWFnVGNRFSiyFoJbrJsMWnNMygaNEr3IlgQZYS0L5pZFpoJZsWAO1qBus2AaXGYKghscnU5gLcNsZwWlBZpWBogCgkUgyIymlbAWyDI3H+LFrG0FpHQmp20jwbhBljlTXiEMmkYgyzSUEv4+Cyaq1jI0jYTVDFmhfJ8DUmrUlYMJ0EogyxWsBYw31SN/MePNBfNCQWuOthXIc0dHtQLtOgPPNYqyhVIOIgK+77iHrnA0TQehYHjQnFsL6FZASKehNz7aopAO2sAaQEgD1QjI3LWZolkybmANh1YcMtNQrQD32mEhddAQE0+kZRPSQCsOkWmoWoJnznOYcQPjTdAd394k2PcHAKhKgkkDmekwJ6zisJpBjLpNgzEcxsMY8MwEDb1pORhDuGc1A5c2/GZeq2wVd/AMS+nas9MGGlbxHk1rGGwtnCZvpMNJrtVOi86E6cx0awExUdALCVZqV59/b+1KBhgGcAAtc/R8P9rW9SMvVYCNYLKjzZYSdqKcRUDLe9ElWc1hpx5KR3GwXMNWooNuyGz/+Fhxp6XJbAftoJmDn2i502QydFr4Jsofm1YyOE1sKO/oMe1hHLxGjjXcaYEz66ArZKdRDGZ2XsssFgKmsEE7yxoGZhgM9ZXXqgEAX3OYsQZTHKxhMCPj7pUUrtT1DdBpqmxmveato0WwEWSqyVsGU9jOgoE7LSdvOKy04FWkrYHTelnZ9Q1vWNDShCBK3ILXpIZ1GlneuHqYAUzmtK2kReMNgx4ZyAV3xg6SVJjefNN09fKawWYWvGFe6wsY6dqmc3dfNIAunIaMNLwms0EjZrw1uJGAR7CCke4ea512UY8smJ9mlrt6mAF07jVeXhNmJLq+pfwSEBU8jIVvinLtBACTO2gLXVqIymmiubdgEBVDO33yfY9oGHTh55NybWEWgAF06eq1wvUTaTbJckJULPAcoDtoPtQ0bxA2nTzSSFrqB2KdA2INmNzPRQHwxvdHFIiKad+H8HXKSNMZaUqt7GsfmYo0vsC5cCNcuTGgsRANIiuBjjZvvbbYduVDO3154runmTTROycivuJnSRmgW6aM6LSljKBEEo0laekDD9EyF7T9QxbUkTZuSKPLjIUVrMtLa842LV6ssSRLhCgFLaOxsNxpGy1nYNr/NXZY48nQPad7SdowwtrCY2qZsFWbGPfx0P1tZS7SvCZ8XCX91s/9hW965NTi2aft7f/0P3jX6b7x7/7MN71twAdcsJx99Jb9wb/xk1i0efApNNZh1TVKYFw0wUcvFmQAoMhUhKemUbUSmcdNc0KRRi4dntqqztxvw4O/m7XOP5Ixi3WdQ/iNueQmCEvGMrRKQAizERRDaxfJdlw2TqBQApzb4LcphcG6yYI/HQkfpiegdsIN1Wutx1JTHJNRjUZJtK1AkTvBzxgGKU2HWVdlENJ4/zeDljDYmNsEy0z3eFfK+ecJj7OmtcNoI7898h8E4AQC6WjyRFgRshOuHJ6bExS40NDK4bvluULTSGSZhvaCUJYrCGFQVZlrQ+wT502BY/9B5YVAzp2/Iwkyxps2q1YAhmE8q8CYxWpRgHGHT6e1M5023peITHOFjHzpgJ4JsBsnt/sj7DoSgIL/oeLgwmHLdeDp7mMgM4eL1zYyjLHVDCJz4y8zDdU4/LquPx1fZKpsGgFw64QywpAT1gmUrYBqBJiwnR+epwGgh2sHbrtr2uhIGwRKMssm/DzGLHTLIXMd6gj0qUxm/j/23jXmliw9D3rWrar25buc0+dMT0+PexLb47ExTkwEgcgIiEUQEiIogIQESIhYgT+QIBKCEBFB/kVEkECAgJAoMkSKFCEifoEUEBAicQmY4NhYjolnpscz3X1On8t32bsu6/Ly413vqlX17e/0Oe0eexq8pE/f3lWr1q1W1X6f9/K8JU8eybqGmXJU5edIQFTKwCxNBqaN7MKZx8dt5PnZ/IxFXeZiuoAU9JxHzxCgidd+FIkPZZ7rsegMSMmzr6Uyic/ntkjc2A2BgoLZBsZGB1d+8ZSl0r+4ResmQmkgDuJPh/kXXfL3AdBtRDpa6G1AGs0c0wZAb0LOAZhdw11EGuy8ji7HjE6aAR4pBm3ZbdPuPMLRcpuW5rVUxLkKD47Xxmaw2EYGiS7NQFKKADuv5hyEhrh+HdMn1zjitRzN0m2bMOcb1MT9OM6tSFP2d5XchACPq0klLyLf9Ko9AHrv+XnIOQPhEu/p3s5AV/IOtgnUG14Pl0CDgdoErit7RfrOzxtNenYPV7lfl7iu3C9Zw4Vbej6eFK+tuLYDfJ9ql/qsgCnzkr0i/cgcmgSMZuG6zONWgE1QowFtA7cR1OyyLKBf8kjaSjFQ73XKa24JquH1gSH+UzQrEWQfq5zLMbdT+rSJn6fBzPkV83MoSpJa8JYcibWbufIK1PC9LsDYEo8dgPIaZBMrIZo055RMANoEdVimJXuTQg0VBQMMza66OiseLAEx15N1ExfslhUkKjB4L+67KStPZD4yZV2xdteussT3ldpU8mGqoJCalNejQgcKswt4zp9J+R6r1ZrWrqol36XkJI0oCokC5DRVbtEKOgP/JHOXdoIqLsgC/uswkeJanAGvynt9BjDzXJDUwtVW8nGWcdXATJYsvxZUdY5qMJgBdu1ev7zpWIBuabM+X4AtVm3UbuV1/eq65WBRAKii1Vhq0FU9vzX790k3enlFpaX7+HJMal6rKpTlvqqnwPkry/r8K66p3Yfr758GSK7LL/3090C6kd/yZfriH/tDn3m77/+BP/obPjfgc+4Ku7MTvnr+FN/XPcdN7PDBcAGtCF/qXuLC9Pjrt+9iZyZchxaPm1t88/gQv3XHbmHvHx5i70Zcuh7f6c/x1bOn+NbxAR61t7gJHZ6NOzzvt9hvevzku38Dv3zzGBfNUJLUa0X4qD9DIoWfeOfr+HA4h1aEp/0eX7t4gl++fgwNwpd3L9l9ojL3j8HiQXfEhevxc8++BKcTztsBPhocfINInAD9vQcv0OgIqyOeDTvs3FTco6R83O8RksZhbPCDjz8GADzvt7jsevzKx2/hfDvg4eUR33p5ibcvbrCxHh8fdyWR+VfffYqraQOnI67GDm9tjtCK0AeHjfV4mus2lkH7w80Rt1NbXOE2zuPFcYMHuwOOk8Om8ZiChVKEs3bEYWrwhd0tnvdbTJlw57wZcTV2uOx6PLnd48GDHkfv8KDr8fSwxztn17geO3x0dYavfOE5ntzscbk/Yus8Pro+wzRafOmtK9yODTaNny2m0WDwFilphMDWpi++dQWrE27GBo2NMIrw4rBBtx2Qksaj/QEb6/HzX38XlBS+8uWPcZga3PYtdpseIWlcbobiFjJFg+fXWygFnJ8dQaSwbSf0k4PRhOtDh+1mAJHC4WoD3URsdwO8t2hcQN83uLg44vbY4uJiQEganQsIUfN9vNqAJo3uwQCAgeq2nfDiagfXBIy3LXaXPVskJ4umDbAZpMfIioe3Ht2gnxz6Y4P9RQ8FoB8chg93oF3A2YMjhr5BFJCkgXbLCo7gDUwTYLNCIAYD24ai2Jh6B9sGhMlm8JjQ7iaMvQMFg3Y/YnzZobkYESaOezY2wW5YOeCPDs1+wnR0sC0Dt27fIwS26I4DewHEie9ft58w3LTozkYMVy3sNhQr8NA3aDbsgTD1DikyCLUZ+PuXHdQmoD3jOn6ySKNBPGjYC/YGMDbBT5aTvie2ZIo1Mt46QBPczjPLdG+LpTMOFqZjpUsYLOw2ID3pWNnzzrEogGJv0ZyPoJTzpXoNumq4jwfTbGEMLJSbXUDKQJaeN7CPRsSnHdSDCWaTiqIJH7csiGZBnV420JdTUTKkWwaG5nJCvHEs3EhCehDUNzfA2x5mE/j8wQANC976owbxsWdBfzTQew962QD7ANxa0CZCuVlyod6y0m8rIgAAIABJREFUgLOJUDeWhd2DBe0D1MGw0KlQQJm6NdDeIp5FBhc6AwJNs0XU6wIA9KgQ96lYOfVLfvekswj90iJtUwakLNiX9pJC88sb+D0h7iNUUDDPLVQC/MMIfTCM15oEFTXcU4vpER+3N/zZvd/CX/I6kyG4JxycJ5a6sMnWsQAgKaQ2wT1zIA3EloVr2wP+bLZIJUcgR7DXBrEhNB9aHkdOjxE7YstjFp7drSkWp+RQBHx3Y4twnxzgrhX8GVsNY8cWM7Ea2qPF9CBh+0stksnnw2zJUx5ILSE2gLtla6K9zURmA1snSQH+gmBvFdwtMF2whUwHtkSFDX+GAkLHn8OW4G4ZNYQN17M9AAKmS4LpM/iw3JaKQNgBZuRxSxsSa2kGBg9hR2iuFJLla1O2YGbvfvgdYI8G/hxw1wZxk9t0QPOS0L+9luZfv7hbYDrneZoexWKmAuDPeRzJAfaQrXNqthg2NxrJ8nrangFVMnlc1xqk2QIpAElPKJbK2C6FebJA+0zBnzF4TS7fu1YtrG46ALHja+yBEDcKeuTryQBmYNQVN4r3VwaHZsr3YAKg85yOhGRmpYSOhNgomJEHFTsGLs0NlThW7RViA8RWwR0Ifsf7UsXZymZ7KnMX62Wys4JB+/mZS47bMpMoFjiWWtZ5EZudAUlyud3K0ikWSLFUJre06C7WWgNmIh6TFPlYgTkd2ZpImj8Def2dgDQeM5nK4riiHF+A+2yJrIGWjrxn5L8iIBkF46kcL5bbVZvJgttbWUFlIgXAJRQ0Xlt5Z+BMQJ7nSYtlNlgtAOKKha++Zg0aT35fx5SfAJmfBfD89Sqfp7G+aflcWywf/cgj+od+5vcikir+53V6jJD4B61OOj8zxy6Txa/TUNSpOtbpJoRFdn1dnZT8FHV9zRhbl5qhdO0jvmaQXIxz1YZRmYW0moeMoWaqrb9LKSk3ajXRqo36WH3NHWtsqscv4zvdVt3efW2uWUtlne72u1Qzyvt+vaZrJSGdmOerUn6siZ7qdTqdqgF3GCtfZy1OlU9K67Du+3Qbp645fbzuc53GQa471f6r2rvT76sYJEvFE8dOjO2T1gbIyt4Ta/QmytdXjrWM7e76fKrX7Smt9koz/YlNfMK+eu14j09SG5N65ZrwWPj/a63Nqf4+aS6l3iuOr18Ar2zn1CavPst9qCwNC0bQU9edunf3zbVW17/u3F9V6rG+ag8V3cGSgApAlUfyFWtzat+uj6/X475r1m2X76v3NM2Hv2uC26nxr4+vz+Vyysr1qvr3j+ET3pmKinXq5Dq8yctudX6Npxb1PmldXgcMnNqXNNc9OacT+6Cud+ea+z5/0rhOlTd4F7/2nvwuiuX3juEVfd67hz7F/vmk8kbP7adYp1/4d743LJbv/OufvcXym//cb1osf83FqIT3Ns/xNw+PAQBf7K7RR4dn4w5X0wbv7V7gJrS4cAM+Gs7w3u4F3j88gFaE7z97ho9HJil52B7x7cMF3t7eFNKHy+aIx80trsMGv/jibXxxd40hOvTBobXs5vqouwUAfOP6LZy3AxIpnDcDvnN7gS/vXyJB4Wm/x8ZNi0DlznhcTRscvcMPXT6FT0zo0BlfLJTndsQ3Dg/RB8cB6m7AMTS4nVo4MwdSP2iPJbj9/dsHmJLBg/aIq2mDH738AB8O53g27PD9Z8/wrcMlhuDwaHOLrZ0wRIdv3Vxi30zw0eC8HfC837LHV7bOPeh6dMZjiDyO5/0WOzdh50YM0WGMFm91B7wYt9hYj7FKX3I7tdg3I54e9jjvRj4fLY7eFavlo+0BL4YNGhNxPbS43Ax4ftiidQHv7q/w/vUDfHF/g5fDBkOw+NL+GudNj19++Rhb5zEEC6cTfHaFbg0Hx1uVkKDw5LBHTBob5+GzK/PDzRHXYwerE676Dj4a/K53v4FECv/nk3exaTwedD1upxZGJ7zsO2iFwjj89p6Jml4MmxKHKnGYl12Pm6mFUYQv7a9wDA2e97ynjt7hoh3wctjgrB1xNXQwOmEKBs4kGJ3wzu4aWzvh/ZuHbCUjhePY4O2zGxx9gy/urvH+9QNYnbBzEw6+wRRNJofhNj6+3aF1AY+2B3x0uweRwr6d8LXLJ/hoOMO3r8+xazw2NqdYSQa9Z/VyZwOGYOGjhjOp7ANRmjzoetz6Bp0NaE2ATwbPDls82PZoTcDTwx7vnl3h2zcX2LfZmhgN+ondyS/yHjvvBtyMvL6HseH0Lkljm+OEOxtApHDVd3i0P+DJzR7vnF/jeb9FiBo+Guy7EcPkkEjhrBthdcIQLEZvkUjhKw9e4Hm/xVXPsdetC9g6j30z4oObM7ZsZ4uxxBbfjg2MZuXIecfjf3HcwOiEbeNxPfC93bYTjiN7F+zaiT0GHn6MxkT8/EfvlGdg2064PnYcZ6rYxf7x7gCrE75zfV5AsXgE9BOT0BApvHN+jW88e4jvf/QM37664Jji7IL+lQcv2LshaUzR4Kwd8eH1WSFVeLBlYounNzucbUbEpEvbiRR+9PGH+MWP38boLfabsXgXGJ3w7v4Kv/zsMULS2LUTrg4bPD6/xfPDFhfbHjdDWyyyKSnsugnWRNz0HR7ujjhMDruGPRnONwOmHF8tqXwutj22zuPJzR6tC4hJwUeDlDQ2jccYDFobcRwdzrcDts7j6e2uuPu/tT8ikcKLwwZv7Y942XeZtRtonUdKuoQW/OgXPsR3bi9w1fOzJvv0m88fYNvy/h88e1h8+eIK33j2ELtuwtv7G3z92UN85eEL/OrVBcfhJoUvnN8yAVt+dl4MmxJGIfHmD7fs6XDMXgyXmx4f3ezROTYFjd4iRI2zzYjj5PCl82vOw5yF4+uhyx4QCQTg4bbHmFnPR2+hdYKPBo/3bJ6LSePoHb64v8EHN+ewJuJ2aLFpPHufTA4Pd0d8+PIcX/vCEwyRSTzk2bY6YeM8bqcGh7HB4/0BL44bPN4doBThvBlwPXXwyeDJzR4XmwFfPnuJb1w9xK6ZsHMTOuPx5HiGrZv496zfoLEB1/n5BYCXxw2cjXi0PUArwvsvL7FrpzLG826EMxFPbvY460b03mLjAl4eNyV8ZNNO0Aq4Obb4wsUthmAxeIsQDDbthEfbIwDg4+MWD7c9Prg6x9vnN3jZd9i4gCkavHf+Ar/45O1PLXe8tT/i6fUeRMC2m9BkD4nGRDy93mPbjRi9w+W2R589aKbASu7HZweM0eB2aHGRPWF8MJiCKfv6ODFfg1ZAa0PhZzhO/I6WFGNTMPi+By/x5HYPpQij5/t8Ozbw0UArgtEJ1iQcx6Y8e9d9h132solJY9+NUIpwfewKRwAAdI3H6C26xhfegbPtAB+YM8KWtl15x9z2LYiAB2fHEprTNR7HscEwOpzvBlzdsvlUayp8BLtuQkwK/dgUbgPvTQlrkBARpQjeG/jRwlg2oxkzh52EYApPgPRRPHGE3V8TK5xNylwFpoRxaJc4tMNSQTgqv+dcE0poTWG2zxUk1ENlt2FKKKEgxiQOuSEwQ74ipKALy72EfUhRGnO6p5TDQzKA47RWHI4i/yUERLuEFDIPQMrKRAHkOaSFPMfAF4Z/oKDuwsIfdYn1X6RgqpTF5bO4bdcs8LUiQRC+KI3KJLEEpWtlV51OScZ4KrXO57Ws1+P/Y+VzbbH8gR/b0b/1F38YN6nDRHZhlTqmFq32SKThySBCwYD4M2k4HeCThVEJWiXcxg6tCvBkCjtfpz08GQzJcb18vVEJkTQ67TEkV+p7Mui0xzE2cGoGfxEaBksWLp+DCpyKiJk9QixxBgkRemF9XV+XSMPqWOo6FTFmq23Jw5nPhWRgdY4/TRZtDoTgtdEwiuCTKQxqdTGKioUWYJYyq+eAgUQaTkf4ZOB0LLk0AZR+p2QLsJ7Zu1I5Xohv8likjVZH9NHB5f7kuFGEMc5z1blt+cGNpOAysJR6UtbW4ilbtTvjYRThEJoy1rpOfV2ZS14T+ZGt/ydSaDLZU03cVFtP5/+63J/GxHL9nO90Ps+MaSa3JcoKU6zqsq7MuhaLJV8rQmfYpXOI7s4c6/ytsu/WLGuSu3U5tnl/ylxFYJXrT81f1gk4bXWUekSqkCYJ4VIUt3LMeWeFha72NnCac8TK/avr+WQWYzrlhSDKiTr37ZoVrx67MLbKnpO8q2trodEJWjGhlJTaY0D6aW1A71mRFTMIliJEYvU163XWiuCTXjwXqrp+imaRC1f6XZ8L1drXz+cpK7Hkf60Z/tKJ+kZR2SNS0onrZK2EmKveazWhVp1mituSec75e2XtY9KIScFoaSffU5MQcuy10QQfTDlW1rViIpQ213mL1/l1pc+1t4nIUVYvn0WZa8lNW52jqt/6+VwbhU55XKSKWTFV96L2DJF49DpWvq4jpGjrOnz9fG0qz/Ys3Ncps+a2UD4LT8GpHLjSVp2Wq+Sureaqs+JFvCCEfKy28ClNSHH5O/cmpU7ZVec1hqICUu6k5anWloBlHtVK+Ee1TtzXypJfWRopMbgQgHPKs2RxnUIBM/dZzNfeBIt8xnXcJt3zuSbPKmm5sLTkS8x1XrM7bUmpH4v76lRzK5/vmFLnuZ60sEuc8RrknLj+VP+r23yv08EbWajXIGxVd71s9/V9b5v1RfeUO338Gi229/d0or3XqfMKK/iryt/8174HyHu+8l2yWP7zr7ZYKqU6AH8ZQAs2LP4XRPTHP+txfK4tls/9Dv/5B7+rUD/3wUGDikXv4JsiwLmcLkIEMmFCFYFMiHtEaJmigY8aRlOxjBnNIqsITqKBF2sVgEwGFMo5EchqoSpEDZstVEPWQkouzNqttrEBRhMSobhe2vzDKYJTiIbdX3N9YAY6ov0TTb/NMYZsHZhZUyW/p4yrZoWNWVMvP55CTiOxXlqzJlm0gXVeTDnnXCjXiFAiZD/1NUw6JFYZZlgVBlWtmdGVtZgaTeuLlUKKuJjWwobJ2tf6x1nYVIkAm0lfhiNrdJsuZMKdWSARYUV+tGMWSnQtsID7TFV+VCH9EWFCNJ8ifMlxccskgOPriNlJpWidMsERLVhGa9IeyR0qMY1EirWXmbiFEpg0x2QCHSGVyKUm8hEiGxBmIaQs3iyg1UnoU+BxK5tAk2ZyDyG3qdsTbWj+L4Q9pR9hRBUyoUyYo2wCeQ0lmuRKSwxwu7yYNAtCmaFUyR6IuhBlFGIS0cjKckuOUKAQbhTylMxKyuuAWesqx6c8hjbNP3xCZAPMQo8kZxdWV1JzfRHIFBXyGiFMWWhscxwm3wCayVZkHeuxCyFR5Z6pRj3HaMZqbgQm42iqsRmaiX8kT2UtwdQCZG6nkH7IOqH6n8BuehXzaX2uzoOpomIiFMmrqVDIXMhWRCTSRZ4/KXbT1L1CaqjcNxV4rSnHk9bj0qNC6niuOnDMoR6Z7VTqFKIUYai0S8FR2E0B3GHFrHMsCukJdG6zTIAKU2i5V5KzVC3wEceVQfpakqiUHJHE942JXQjTqOaxVQJhMSwYyrk/UQhHhNREYth0BJQHyMm9zHOvGT1zPkfSAFWsokjVdzf3QTrna81rippIxVZjjXnIBoDPoEfWJfJ+UYQSO5oyu23NCqu9Ato3lEarooMqMcYcrzezwqpMWlP60ViQpWiv8jrPsYQcJ8vxffK53Pvq+anzP3JjKLGScr6wtq6BUr0Xc5yh9F2zvhbiHMLMolrnxqyfmQrkrvNYyjUyh2TmvhassrSsv8iJKe8FwjJmUi/r1blE62ekzH313JTrVrhYztVrULexHns9h5PgsbqH6znXeO4UPpdyp90FwK36knfv6r4s6gLze+XE9l/ksqz7OwEa1xj/JKBdH3sN8CltfSJIvq+Pz01Ry03w61dGAD9JRLdKKQfgryil/msi+l8+y04+18CyNQE/sH9arHJ9dtcUC1cfXbYyzlY5sa6JVhxgi1SjI1s/shWE4zA5X1FnwsJqVcdwJihYJWlIdPkesmWx/lxfK1aSobUnLTsxWwJrSxAwa7cFPIrVI0HB5DdmzPMYu5FdYVQqLrwyBhlHmXdlKZA6MqZaAypAWdKf1HXXFora0kQ0x7WaPG6x+txntZA5CpBXQEnHIgqCdRGAL2OoU8TIuvtMIiTtKADHnJakyW44dbymzLlYoJNY0rJwUVlsxBIiygAAixQs8l8UBeuYQLFWiDukXB/kPtNsNZSytoTY3F8ktbBWCUAXFzvKCg+9spjUZR0zOo9//ixKBW5rZr+VOuLCJCk/ZmuHrF/d37LfteJC1kwpFOWGrGdJbVIpAGR8AEodUWLU9+RU3B+PHzAZGBZlAM2f6+MxsJLHubhQcki9YvWJbF8+te61hSJFU9iJdZXyReay/t0vig5U+z0zJ9f3EABip4tSRawv8oueIisnVB6z3O/CYKxXv+Z5ngzSVRmQ1mBriggfSuY139taOCruZdXEhAFY0uEAKEoHXRiVq2cwA0tR1sSOSZFkzGKpUjZVgJjnHTtm06WkEKOCsoTYqdl1rBr7gglWZfkmL0skFEDH2iI1s9WWG53vpQKDdrU8t1AiVDHr9dqkNZlF7T5WC5ByzhBSq2blSF2knsox8iKoAguwDg3ExACObMVqWvepUIiISM/soKXfDMZgaTXG6ngFTBbjrcA5KsAt66QyYQqDJ04zIwCeNymgArGy4VMWBo75M6GYxxnQoqR7UJEq4pL8L3BFEqVJpTDQ4S5jpxJFW32c5utUN6c0gZrnugZXM9MqZsXNChTUQG5x/+dm5jalHlXtAUsAuwJFdToPabAA5zVgXcvcNK8FFFVtqyUIPAWm1u2ugNVJgHkKWM6v10X5JGD5pmUNPOsxLsp6ne4BgcuGcHLu88mqrXVfr2r2def6BmvyRm2+Jmj9niq/AeMldlG9zV9d/vvMR/K5BpY3vsVf/uAHixAfRVAWYXrljlO72KzTdoi1TATH2p3GGEIU60sWCJRCSVlRUjKo2fWmCHPV59IfsjuXopKyYm0FAqH44wNYCFCLXZCtUUSV9Uo0flkgEB988dUXS1I5JwJ2JTTWxxZvORFcKlWVjO0+spK1i4+qBMLix0+48x1ZuCvCqqLZErMWjmj9X+rR3ZdO7dIj7YjVQISd2lJXW5GA5RioPn+in3rNauFvRQd/R4hcCJpV+7XV7J4f4KUkUDUTWNC7o7WsBQq653vdPsAuRSshkq0Ws8Ze3I5q4o8ibFbruz5fr4cIptKuzJ0UVYIG7lifeC3z9/V8k4KXfQGcnnc5rhBK2oaq/RpYyJrkfTHKHuKBLn8hK0EoVHu4CBOVVKEi4LNgHMzdc6TmLpCAeEIAD2JFkrWRbZ8ZQWXtamFGZ9BAec4LTb4IV5WgpiQE6JQwW1tcpP3KknZnj9K67ZwSoQKzWoRtTdAr+nxVvZcUzWkJFoI1sLCulb7FskAo+fkWwqSq1rJ6du48cmsht7IGnxIE63tZrlP3nF8dL2OQ7+X5WAnMeW61lWxRqv1f0i4I8Knf9cIQWaehoNN9lvtQgyPMa1jyf9ZjoNVa0XzvqFr/2qJaL/56ry/2YLVu6dcg+dQWqDsApB77Gvgjj1nVpDrqzrosNW11G6o6psp+nPeOuheUVLfwrjWovGvvznNtAautiXfu+/pBqNuXPbf+/Sq/J6fbLeeqeqTm34jF+s/LcPdYXRZtLT+fWpfS7KvaXF+z/h1Zr0u1H19HrJfclfL5TrdKzcdfRy64t597TnzCGF8bBL5me/de84br9pvlblFKGQD/B4AfBPAfEtH/+ln38VqvV6XUTwD4a0R0UEr90wB+B4B/j4i++VkP6E1KZwJ+4MHHsCphSgZTtMViaHXCrW8XlrQx2tmaGRysTjAqYYwWG+vLMQDw0cBnq8DOTRijXcR+AewuCzDRiFgOI6kSY5ZIoc0xc/X7RCxJViccvVtY8QAUV1chdJHxGJ3uML+GHNMRoi4kAuLCO3hbAuwlvYjRXFdA96bx5bO4wgqzq1ZYxBclUrDZkhaq2C1xJZZj4kYrLrXOxAL8FdgCWFtcdZ6TXGvyGvtg4GxEyG6zdf7PpgnF6re2PNWWNckhmiqrjbjhikJBgdNxgBTaziMlVdVRxTVXwHPIRAxiCauVFpw2I1u1xGW2so6lqKGzNU/qSbtiZaOkSq5MUSaEwOuUkoY2LGkWhtiilOA9Yar8mdIOJYUwGWhD+XwlgWK2qhYZQNaz2reU2ymKgix4mGyBBIEJBbyGyZYfEFuuFtawinygWPTyr7pYoyS3p9YoFrTkNeffzEBCFA6s5OG+VAUYk2eXZ22puA6DkIkO8vpqIFUuhUpXMWfZhVRn1+J7gWVWFqScG1N3YTmPhSssuyiD5lyT/GxV/WelS/Iaqomch9Gmsu4AkOq8iOLOaitJVlLJiNszgAXBwqg5/Ye4t9aKlKDmfI0pt5tJHxBUzls4d7XIQSnWIRlPUQphlj6kv9dwhYW4bMtcZb1lPpKvsWzQ6lxSSFN2D61dYYHsMoq5TQBqUsVFlt2BiY+5ue/itipjyHkMF0oOATwCMuq55jp3XGHVLNiSqeaj5jEDmPPLyfWY26ytQfWYBHSSI+iB980dV1gBSxqcS9CgpJ0QCxwpFAtgsQYmLK1V4gqr57lIOwIkBZwkSwtXWJXdXJOkhMjtVQ4/C7fbNUhWhJJKgmwGkJJ+Qdw/s7tobPCpi6R5KOPBDHCKy7PK6yev2bzeZcxivSvPBorL8xJQzWhnDYKgAC37O58XN+aFEqoGULIWcp/y3gDyOtfX1dZEGaPUVdWca/fVe1xhxX1VUn5wZcx7vN4HK2C5XueFYisfWyi8MJ8r15xw/V6UU6BlDSxXiqiTZdXvou11X+trToGl+r1W5qbu1lW4wwK8WD85JoqzU6BsvWZq+f9k3VNjPtHefeWTAPMry+cdWH53xv9IKfW/V9//FBH9qUW3RBHAjyulLgH8RaXU30pEP3+qMaXU3w3gq0T0Z5VSjwHsiejrnzSI19Xb/UcAfrtS6rcD+MMA/jSA/wzA3/ua139Xys6M+LsufwW3scOQHJyKSFAYkkNIGu2OyXi0okJa00eHRBqt9ojQmJJFk487lTAmC60YwDU5WObGd2hNQCQmUtEqIZHGxkwYk0UfHTbGL9pqdYRWCYfQFrIcACVdiSed2/CZlEcXohwhpJGxhlxPCEdqN0irYwF4fczxmnnHbozHmGy5foz8ucljS6RxrMC0VlTAsgDoZuVKKq6rtYvufa6Z4kocyNxxF250wBBd+b8mv9F5/QvBDxjMdsbD6oTrqSsuynX/Mi4hYxnDXYVA3YcQrZw9GGF1xNW0KS7FAtziSpXrMpFOcW2sfiWEMAZAAds+GViVEEgv/gtxUJ1CpDVhMS52vZ1JNxody3UyD3E3lvnXjICirDA64awZcfBNOVa7CcuYa1KetYuy9FmnewFQ3JqVmuOZp2gWMcziziwMvvJf5T0kQFbcjp0oVCplRWsifHYVljWRcdfxz0Jo01l+Zus10GomjqnJgdZpeMQdOZEqyhtTuSTXJDDWJMSksGv4WRZWR65HRTkjTI82x4BLHLacE1dqubaxEaO3aF3AFMzCJZ3ZVGc3daWYbGZ9PlQxzPX1XeMxTA6RVLl3UoS4BmCFw5RZj0M0sCaWuO5SP++FUyRWwvYLzL+jRlFhNl3LgSrvNVmP2vVfFESy12vyHlHQ1AomYYkNFauxtCesscDsUm1Ngq/cxUWx5au1lxyp4kIuLuC1J4ywWq7j0NcpiGrFVV24zWp9Taqum5Vn9VikHYn/XrtqCzOla8JibFLEtVxcv2NWAMnekn5iYMWYUkCMcx/rORbFCqnC0Elp9vDhm8pJ+FSWXsselLkiv49qU3xWUFBUSMLAmZVG2swSc1HOZMsqJUBpXnfSVHL4fppChooyau0WTlEXS3xRUlUKDyX3UjxX8kQX7KBrRLBSus2d5Zh2URzR7K6+KIqWypjaK4QwWxDFk0DK2rOmuFqvxlcfPwU45HPtrbMuatUuqvFJG5i/Lzxb1iDtPtB0DwgqgOw+4LiexxpwVt9PgbDFsVeM485Fr1FOAcCTQLC0+6o+7+njTeq/xvzqx5w/vwbC+ixA2OcdiL5e+fh1iYmI6KVS6r8H8A8CuAMslVJ/HMDfDuBrAP4s2G32zwH4iU9q+3WBZSAiUkr9IwD+AyL6M0qpn3rNa79rZUgOv3D7Ls5tjz41uPYdAmlcuB6tDvj28bII8J3xeDltce44LcjLaYOtnYpl87LpcetbNJnZ8WrcoA9M+f7u7grfPl6gM2HBunkztQCAB+0RHw97AMwIedH0+Pa0AcDWzimaBZPllAxaE9CZgG9cPwQATocRTbFuTsHivBsKqJI0Hq3JggE4plLG4KPBrmHq9iFYdDbg6e0O28ajswHXQ4tt4+FMRO8dfP6xfrjtMQaez9E7bJ0vAEHSN4gFFGDrrBAbacUCdj85bNuJhbXqLSQkRrtmKu0IhbpQyffeorERUzDl+67xmKLBYWyw70YcxgatjSU1RQgGF7ue0y9oKnGNMakSEyqMg5vGF6Fb6wSjCcexYVBCCtvGw+iEbz55CAXg8vyIEDVGb+FyCogmp76QPobJgUjB5fQBtfA8TjbH2CkMg4PWCW0bEIKBtbHQuXtv0DTSLoOplBTG0SEFjXbD6Qx0tjj3g4MxBD9ZNK0vQp51sQjcIhh2nUcIBn6yaDsPIULyhwami2hajxA0KOkiIBdhMQuOIiiKhVLiImNex5Q0U51rgmsC/GQBAoyLCIOD2zC5kgiMOhP0BG9gm4Do2XpKQBHEgTn+UKyRxkZEb2CbCD9YaMfgUOWYRq3ZjzMGU4RLOeYPDZRLsE2OLY4GKShQ0LAbPqZNQgymCIrazTTrMVsgTcumhZoMKQUWBJVmC612Cc+v2QxizqciGCSvYZo4e0VFhdTqCMbQAAAgAElEQVRbjhvc+RnsSbyoTcVam44WZh8QbxzUNhQLLwCkW5cth8T/Jw29DUWwpYnXXneBLZ4AW0hzP1c3FjgLc92g2cKYFNSgQWeBLeleQ7URt0cL1UVQtnQWbz1FoImp9OESMJqZMKhJTDxUj5MUH0vg82LRFKuuWETFyjfpmUyIuJ7K94XaCDUakEuzYCvum9naNVxbpE3iOqSgRs1kIrtYWUO5a3PQiGcRymvoQSHuEqZbjbhLs/Vl1AvLWGqy5S63RTZbBRUyOZGC9mBSIAEA2cqpJw0yBNNn4J3nkJq8Vhlv6mmO6SMjFhhC6nWxOkET4qgQOypJ5FWcrTVpUojbBHWt50TplXuzuP4mR8DIbtJq5DmJ2zRpIHZ83gwKtCFQALvFRjAhjpA8Sf8O0EMWInM0j87tpi0x0REBMGxJVEkBHTE5kFglWxSBVeonBx6DJraAaUB5wGRyotQweU7YEOyR11QFjke0PeDPPr2UqfM6A4D2swVWRV4fHRj0mkHNxDqSeqLne0kO0BPPkRT/NwPPkQwKgKnBTrIrEKMBewBim++zqdrMREnAfG95vLx2YjmtyaaSRbHsAtnSK5ZVndc/kwPV+yZZPg5w2wBgxvkasZImC5iJrcVqNT895XYr131ZG+lHrONUj5Oqc1iOjQ/kf3aeR00EBFSALFvpyxhWdXQgkDkBs/Izpmhec7YgUln/ZJZWOXFdXbiwVu3JPSeloBItrc51WIJ4BujV/NbDzG3W8z9VCjBduY/fqS/f12Emq7YWl6yB71opsJ5/fX0e0xpv3wugPw/lN2Ds2eroM6jcAPg9AP7EPdV/H4C/DcDPAgARfUcpdfZa/bxOuhGl1P8I4L8B8M8C+HsAPAHwfxHRj71OJ9+t8vBHHtNP/pl/DEN0C+KbRGphJRKryakUAUIHL0BKrCg1oY7sc7G6SB/iliqgQixj4rYKYGFNqi0Ga2tJbQmRtuSYfK/ZYBfU/Rn0xUoTKEAoEVauokuK9FAx4Qpdfl3EMlVIP2hOWSCurrX7a+k/j6G2FNaa77ULKzBr1oXtVUhDBNQAuEOEst6+dXjKmmSmJoQR8hgBZC4DtBDMwnpTWz/WdPmnxlDTtK9p9uX83PdybkrNbce4pKOvY1jv5JJal1plWX6NOGeYgEU5Vi5Jpyn+1/T19X2r69aus3LPF0rmPKaTv1XVGq/HdVIdi9NrMbsE52O1yy640+JGK+6b+XhZz+oHVSwc97n9LNYocf4wALPrKeGuBUHJuHCXcbcsVq5qmAW4sOZWa6AqK1ZZ0EU/eY/Wrsv1GgvRzmrtxL23PlfintMrLCL5XpX46Px9sQ/rdVzf03vWWMZaAChhaWE5VV/6A2bSnNW9XhP3CGhduNbK51St86nY7nX/i41fjVH+06rvdaxpXaeuty4nnvFXWjruE+TWdeS/vue4yn+1ACvfy9BWe3P1+U6M9LreqTHdNxdZr7x3l+M98f6oCYU+RVm4PmN1q9YC+Xr89X6tP8t6n9qrqzYW06lBFJaP3HLQJ/pcX0CnYzRP9Xun7fv2/Il6p8Z3Z8q0+r8eyydZF+85duqRWU94AeJO/BTdCwhe556vxvFG5VVr+6prXqP+K8fzacb6um1/Bn296Vr+33/iX/6NTzfy3vfRO//qv/SZt/vNf+GPfFK6kd8G4GcAZHUc/gIR/fQ9df83IvqdSqmfJaLfoZTaAfifiei3fdI4Xtdi+U8A+CcB/BQRfaiUeg/Av/2a137XymN7g9//xb+CCAVPFofUwiDl3JAKx8TWvIksOjVhoAaNCpjIYkwOWqWSfxJAyUeZSOc2+bvkv3RZlRfz22PM6jk5Lu1IfkGfbMmFGUmX/JfiDmtUwjE1pQ2xaiaoklfy1DWlH8x5NcUV2KhU2G9vQ8txpEjFJdgglXyXERpbPZU8mnVJpBa5MaVolfvMOTIBZsdt8zyljhyTHJ71OfnuVESfmuz+m13eyBQXZHEjFjdmdg9uFq7B69yZkuNSwLLE1PrslivjlSKuxM+nLQDgzI753ppFzKcGweqIkExZE6djcbmVMUjuTgAlX+R9rLfSXq2sCKQxRYutnco953XR2Rrt0Fl/0l1V2hCmX1GmSH/HnKNTxsduxjO7rtw3yZm5vu+SU1PcqGVMwnwcki6uuo2OCxdhWafadXrttlyvT82CLO0O0Zb5SN11/dpNe4y2pB+S+jHpBYNynS+zPg6gPI8127K4Otf3Rq47en6WN9Yv5lPnDE1QxTNh4/zJ+Za8rtFgYz1ufYPOhoWSRrwM5vumC5OwKIjEnbd2VRZX36N36Ozsoi8uxwT2lmhzf5HYLXkIFk12RRYXZxm7MDXLvZJ+xJVYxiTj9ZFdS23FfCznxWW1nse67pSVP84k+KjhTFpcJ+0RKQyeU0zVTM2RFFobiyJO6k7BonUeKfGz09iA0buyf8STo1YoSYw2AUWRVisaxXvC5rjmmrlYYsRDtrzXLq214qZWdklsuFJAkDhahRLfLcnta0WipGlyjj0mAHZ3LWzGFcgSN1h2dc3Mw5VSyNjIFv40p0uiSjEm6yJKNVGgzWPnOGtuS+aMwigsCpqFgkcs3apShuRYbuS5izJEFDAlpZFNS+UMwAqDpkJjb1hIrPvArCCS92WtWKnIxor0K6l/RBEknxXY2pvbWChbpNTHRTkTZtfbEpNcA2ygclWtPtdKLQFLdWyvXFcrEBTYOl3tTZUqYjWgkGwtgLuMTYHjj9cxlpB2cS+qU5WyDsDCslkscGugeQrcVcqduStaWAFf6fJ6H5itr1mBy1NTWus7TrZ3ah7r/tb/q7Hep5ta9HePFuHkmN5kjHW/p08tr3sdsPwaAPLeNf3NAgAgop8DWyFfp/wFpdR/AuBSKfUHAPx+AP/p61z4icAyMwj9eSL63dXg3gfHWP6Glu9Ml/h33//78XLYwEeNjQsgAMexwRQMtq1HiBpd43E7tNi1Ew5jA6UI28ajn1xxdTwOLRoXSoxN6zw2jt0+X95sinshCwn8Rmssp6i4PXYl3sWahGF0aFsPBWAYXbGGiZAhDLQxaJzte6TErpcm55DUiuBsxG3fFotb04RyTf3UNA233diAQ67fNCxAXOx79JPDOFrstyOOQ1OscxLXczx0MJbTI1ib4CfLvwPZ3bFpwiJ+Zpo4H+acCHvub5GfkTC7f44WxiYYmxADk+9YFxEmA9cGBM9xkOLaGXK+xW4zYTg2aLqA4A1SVGg3ntfmtqtyZ85CjM5CmViz/GhZuLIzmYz0qXVCGC0oKlw+Ygbmq5dbKMPunSFwDFiUnIH5R9m1fN/9ZNkCGeb4GONY8FKa0OZcm36yvDZRsavoxOsRM7mMuC8qTWjaAOcCjocOADj/ZNCwLRPytJ3HcGwW7qmSz1FYhONgoUyCbQPC4FjQcwn7/YB+cAiDY5dSSReT9OwKajl+SGJ+SgqJ/LY2ju+htqmksgijgWk5bjCMFm7j4XtXcnGmmMdoiOc9GWghpVEE8rpo6yXnpBDupMnAdAFxsLBdQJxMTkEBTg0RNF/XpGI5pCxwu92E6A2T6igWRpVNMDbCH5tZ0MrEOOzWasqvk2n5uUhDvt5xjk4oFIEVJMcNmvMRWhOGF12Jn1IugfL14vJpu7x/jq78OBdLn5DkALCbgHDj4M4nritWOwDubET0DHIoKpgmIR5sERp1dvVNRwvVprntLJx2lwOeXrXFZVU3sZAjNZ3Hx9fn7Bbb8PjVNoB6w+6wk5mtU8RCutIEGjXUJoK85vZ6y9fn+yWuoKqLDAx6W9xvi1uqo9kd1mugjZwntc9zCxoqz416C7UJoNHMQnp2PxUBu3s44HDd8ZgVQbfc9811w+CCUNJ9mL3H4ckOcAlmE3B7vYc9n3C42RYBTG0CxOqsFBAHM1s2NQCvoLpMrpXXW7cR/WHDY0Neh6g432lQ0NvAAEWA2GRynlIq61XAi6QmSWDX53ycgoLZBvQvG147cUnOgEVvA/zzDvZyQkoK/sDvWMpj1y4hTQZ+0mVN9SaAVCYDiwYxKoTrBqqLsG2APzgol8q7JAyuuHIH2fNe83oACCPvbd1FBsbXDbtPC6hyCcoQ4o0D2shrYAm41WXOyEzGatSgXQCC5ndLVCCXeG8p3i+qi6CD5T05GN5bUcHuPMLLXwN7T5eAa1Yqsxt2Pq4JuLU8p6i4ns9AV4DXNvC5Sc+u4CmPP69Tuff5fVEs5l6YcfK/qIEzDzqyj6yaNGgTeQ96zSBP5XEFBUUK1EbuOz9nKvG6yZrWeXeFqEmIrpRXoJbHLICSTOK+xNXc83NMXX6uKd+zoHh8bYIe9Awi83s/dan0UZjZo6rcYmkGp4HdyynnxkwWxTNBRbXMNylrJS6uJV/mTGAleWZlruwyvQLnlF2RA+Z3QQ0SEyD5aQtozetPmttWcisVzUB6BQAX7eV+Fyy6wNINtiJYKgRV+SdsAY5zaEAhUqomdgejCjiT75ViYQ0EX0WadApgr+d56ni5Zg1cTwHZNSC9B2h/L5bvdfBLRH9SKfV7AFyD4yz/DSL6S69z7eu6wv53AP5RIrr6NY30My7nX3ub/o7/+J8qVr3eOxCArfMwKuFq7GCyNr8xEYfJLcCny3F7o7fYNh7HyRXSi9HbwkZ6vhlwHJsSoxcEZAWLlBR23VTILnw02GTQKoBPyC5mDS5r861JuO3ZqmpzvjrR4Kao0bShCP/rHIRSvLeL+lyX8/6NQwNtIpyLGIcGrglFey2uj20GzKLxdpktMyV9py4ABn45Pk+IGII3hWm0zpunTUKKGq4Jhc1VZ/AXA18TvM2CSwaV3sC6yELMZBfxeEonhImBoNt4pEyqUtaD5tQrImjaZp6PPMnJ6wJcTAbJ41UHEGD3zApbtNwZlKLqI055fmIdEJfJ3LaATBoNA0aJ2zMMopRL5T8IM8lDUhzDlhSQhVOlCcokBkcaHHMmgmYWAop7Yv4hUU0mdMjxccjgQx0NyBFfH9T8w68xx7iJYCG/grVWHZiBT8Ks0XaJjxN/VqNhAUYAqaFZS54FyIWmXQQJETAFxAMzI2mTmMlUUmRomscimvuU5yECw6hZKKoF+pQFiDbNP5ZxXrsSB6gIKgtyRWiKCmTzL2kWJKCoWCZ0z/F78SzOMZNZ4BUtOQjQo14IUwDmXIGytgrQg0baJOij5rqVY4E+6pld0RCUV3N7KvcB7kNNuW07WxbMrUbcJ7Y2eFXizxSB4wv3eW8HhdQk6FEvWVLrH/AsNJHN53NsXGq47ZIkXsC257VMbZrz7lWWjpKyxnJyexVz3CHx+pS5NQQzKiRHJdZImDbFomFvFVLDsYOKOCYOxLFwhSHW8DkzKIQtx+ZpD47P6xViKzeJ4x35fqEIm9KXIjALaY43o4yHVMgxj6s4MIlzM3NILp/PbZYYS49y78txzXFpgKwtx/6llvcPOcxsrJrnHVuCO6gcY1nlmUyqCJzJcWygrC0wC+VQOYZwzHGjLa+3ipjjOkOen5VjXJ+fIx57icdrV2OU+MkGM6NqngtI5pGvdRyTKEy2LLwDRs4LK2zD8X4lplTx97DDpy564nZJzeNRWciODQqwMTneUeYn1woYkvtKerkPamBQx5VJWwXQaMAeOcaSnw1uI4mTm2zbDJzK2CXGUq/W3VVgBfM86pQ92mMGS2nut47ThJpjLEmhsOhSfjYkDrOO9dMhr4tZPic1gCn19VxPETJgyiBOqdNxf3kvFYBF82+OxDGSyWzHeo5rlEJqXrNSTgGtNdjM87zDhCtjPAWAahAlCpW6W5rb/9QxlvXxU22v/98zhnreawvputyxJJ4ChK8odUzqydjUTyq5+l/9c692F/31KO1730df+qOfvSvsN/7Fz2Zu2aD439YGxTcpr+sKewvgryul/hKAgxwkoj/4aTr9rIpW7KJ42faYsnsZwMyal02Po28yUYzDvhnRe4ed41/jwTPBjcsshw83R4S0x76Z0HuHEHWxNj7o+hI36XTCpBjQjN7BmISLbsDLflPSaOzbEUO2wm1cQI8lsKFskdw6j+tDB61ntsKQGQhj0NCbNLuwRY7VlJQiUgSwyXmjE2Js0NiIPihok1kFE1shm0wgwwnPUYhpiitVtpr6mNOCBLNkacypLEICQBwjKgx8dZFUH5QUk+CkHHOnONYvRQaxwbMF1Ccmw4lBo3EBEyx8ZOtqmCyUSvx5cEBO6ZEig1dJIE+JmXZByBYyFFKa5FVJMp8mA6V4bE3DyoVp0iDFqTgoGCQCz4lmchl5j8WYLVgZUGozWymRMlMfstbYJqDhtZI+S85QRVzPECDU8zEL+e2szlOitVZZUN/QDL4MZtCWgaK27Kq6yAnqNQMVnXJ9PQNL0OyelL8Wa0YCn5MXv3xPaqnZTcjab2TNNpbAVfaFz3VCBiikAJ0qd61sBRQNv0PR7i76E0ZF+S/9y7kMApIGSAuAY5CiJ8XCmFyf11yAS6krCcubPPeI8saUdBRA7tckmIHHXLzABHTK9bmunnhdU4s5Fk2EAcPHCCyQpy3BTLwfqJIyzTQTqhC4zdTlaxXNmvUOc9qJMjfADgpxx32qoKC9AhHvIzsoxC3fN9Hwa68QHYOuKOBdljDwvSbDQDC1XI+FZ1WsDSXlglcspNlsyUkE2HyPc56/onkPioXhQjajZgE8Axkl+zPx/kJOm6ASYI8KQVHW5jPpDAMOmoVZMDA2PZO9qAiYIwMxc1RFUCeFco9Lmo2OFVsq8ncNwGaClpRTlwjJjPb8DJNhwVhAsekz8M+CV2wzEM7CnBnUDFAsPzNM+pPvq0YhpQlgkBjVDAyT5XOpYbIXskBsxLLDc9chrzEp2CGnxOp5PAJGGIjweXsEJjBQ0J7BQ+hmsBQ6ASwKNrcTOl432/NcJs0ARGWAbiZeR48MBh23F7MwLmCt7OEjzyXZ+ZzpkQEwA0+/nwlutOf67oaQ3Fryfv3iDsUQCTvkfVcpNQTIyvhIzf/dLQOY1ABmyJ8z6HIHyqBfFWCpAyEZFqLLmAW8GJ7LTBwF2J4QnVoQ0OhIiI3Kzz0htgp6IiTLIMyM3GBs8zObQaL2XEf7/J6xCqbn/TvnM53BOykB3AruSPzcqBlMxkbB9oSw4fnUpDsFcDsslEPyu6PDDC6TZQBfH5tTptASPMnPg50Brq5If8R6ye3yOyEZKnWADGh0Xofqd7IGNwWMVha8Mrf8bNUA7VRu1gVIE0WSmgF0sfBlQCnkStIej31WBNTgsiiOqvmfKvOYsgBES6B9x6VXc517rY6Lxpfn1mD0zhhWwJ7vF80N1H2o5eHPRfkeHisRRaVUUkpdfBqD4utaLP+Zezr/mTft8LMsj37kEf0Df/b3AUCOTTMlBkwrwpRj4eoYrRLnkww0cm7EHP8ohD8JqsRjCUX9OuasxGXRnJYAmMl6amKgNSGOxCZpRfASjwOUOL263SLP52vW36XtmDRsjgWSOKopmAooMrOrXCNpDZxJ1dg5d2Ud4yTWWRlXTQgkReJ4xGJZ54yU/2viIKrWa00etE5lUufFDJlsp7FxQRhE1Vjq2J51DFSd0xJAsQhPU46bLBZbVdxpa1dbyTUp85D4JjlWrLakEAJbvNfxRkuX4dW+SjnOqEpBUFP7i6W3HuM6jYHET9XtyLiFUZVJaU6oGOs3+vo8zSkrKJ9nq3VaMMyWfSAuQyf2QPmPO783i77Xayb0/irPqR6rxGqVtQy6uLhKe2LR1mKhVaeJfLhuHoOef8ROEfoIgE/ZwqnFQpnHKGQ98r2OE1tPfJFHM7K1PHkDZdJybOLWCswEO9WeqcdeFD/VL3mxmCPPp465yjkoF8Q9NZGNtFXfK7mRApBFoVALTdK+WLsroHuvK5WMTe6hgHVRIEgcm8xt3Z5Xy9gxqbPuW/oRJY5Yv+v2gaIsEYWAsH3WlogShyZCWLbCrudWLIZipZcl0NV4MSsGFvMC5nyZsraxWtP12kcFWFZMFeWLeCNQFW+WiW2oIriphWWxJhcrmFiNaBaWeQ71euTzme20KI3sDJ6L4JhBcx3rVlhSsRTMtSh+ZK2TWuRk5DHSnNsxybpny9qnLHW+0NrqpmTeVT/lFarma4sSoXIxpGpu9bOwsBytXCJZKYSZKbhqcyGY1y/Zymonfdc5JBeWI5rnIedLrKP8ZldWb66Tj5d6c5+1la00ceK+LkBHHs8CKCrcYTe9A0JWc7hz7J5yCjzV67AGQuufyoW18NT6nyqvEsFl/qfGVTdR76cTv2V33nWnujp1XMa+Pvdp23tVua+vV5Q37gPAz/373xvkPV/6V74LFss/+NlZY5VS/xU4HvONDYqv9Xolop/J1LTvEdEvfdqBftZlZ0b8nRdfR6s9xuTwPOzQaY9We3TK4yN/gU57XIUNtmbCTexwYXp4MngRttjqqeS43JoJx9iUXJcRGje+w8Z4PG5u8MzvMoFMzsuXc2BGUji3QyF06WODS3fEdeAYub0ZcZvNI0ZRyUXZ6oCNmfDReIaQDC6bnvslzv84JYMHTV/IaercmHWRXJfH4PCgYVWwkN18NJxhayfs7ISnwx6Xub0b35Yck2+1RxxCg9YE3PgWZ24sY7A6FsZdAddCDDPlPIuNCTiGBls7YYp2QfzSmYAhWmytxxBtAcOcxsRhaydc+w5bOxV35SE47N2IY3A4hgbnzYCrcYON9bA64ta3GKPFg/aIQKwcEBIZIXPxFTnPzrKFesokOValkkYmkSopZ751cwmtCG9tjkik0AdXlAytCZlshy3SfXCISWNj/R3SEbGSA8Dt1MAoKqlknIkYgy2EKq0NCxKbkDQOU4MQNfYtj1srKilitCK2vrcjYtIlH6QoLxIxK+vW+dLWrsnzjwY3QwtnIs7aCWPO7Sd9CBsxgALiORepLjkiCUzsIrkMRTnROU4rI/HMx7HBtp0QIlt+jaaSc3L0Fl3jMeY0MzFptDaUfiTnpCg0Ghsx5HQ2t0OL1oXCVDwFA5fBlOR5FHd1ACWtTJvTwvioEaIp45R0OXKcgAUBjhC1dC4gEco9JJpJiOS+ORNxe+xABJzthgIOfTTFKwBgRcrk2YW+a/2Mx3KfQhgFAOPosNuMOPQt2tYv0tpI+hmAlSMhGHStL+1ME8cWb7sJY/aeMCYVwpjjbYvNbirXsjt7Ym+EyaDbToUgpmkChsGVWGpr48JDIQRdvBn8ZIuru2s4NlplshrJx+jz2FzDHgoSLwyg5E8sxDJVTLYoeYLnd491nOZG3NmZGGZ20aekOA6wSbCO30vJsyVfXOkBFAVHHGxJk5NGwzGuvYXpYpFg0mQgeRNBgMpxgeW7zjGSCgz0ieMfi3s6kN3bWRHBsakSg5ulR5sWOQ2pjrmTGC6d08SUB5bYBJhj4ErsqoBMiZ28dSz8W5qBaMrzycdJUsSIK7ikENEAtTmGdmD3bBWym30CqCFOO6IENKriag3i80iVm/Ymze7IGWCrBKQmH89uv+SogJPiWeAIGHIcoUG20qviqizWztQRMMyWMHbTVEiblW/fG5Ticow8nsrlMbU5Rk+zx0RRPNQWb5WtYz4D3hzvp0dVwHsB+wIUUSsx8sOnCSZyShMiPi9tLlxaKbvHYrbaiqsxKcykSyYrDmQvpxVY1WDCsgrYSboXFXhs5GSNZgWJpF8hm71IiqcHCsBlaz5bC9nzhBbAUsdqTGaupyi3EecxQmFmBq8VHWm5LkUZJD9uOq+3AO8TwHANLO/gmqqeAOc7rrBS7wSQuqPTFUBbj2GtHMj1qK6vqnOYj9WW7Lq/O3Nbje0kLlbLea4Lred4Cuiu2pN/C0WAfD/h4vumuPLTANH/H5f/Mv+9cXldi+U/DOBPAmiI6LcqpX4cwE8T0e/9NJ1+VuXyh79Af9+f/sdx4zv4aLB1E2IW/Kec13HMDIdH77BvJtyMLZP3OI8h2MJm2HuLzgUM3sJoQmNiAQQvjhtsGg+fYyBFcG1sgAJwyPGXkvx8mBy6hoMvjiO7pdbpQpzhuE4fDS62DAalXxGaWxNxPbTFetnYiBB1YV2U50tcY1sbcDO0RTj20eByM6D3DmMw2LVTSYguLIkAcNu3xdXT6oSpJEanYhmsrZBTMDAmwWTgIf1NwS6siwCDA2sSxsnCZrKXlHSJ5ZRcjl6IdKpcj8YQusajHx3ahkmVYtToWo/GRtwc25I+o7aAsYVwBkLj6Aox0ZoISSmOD01J48EFK2Subtk12bm4iD0FUN52QpjkhTwlWwY5tyWPXynCpmWAJ8RGMepFLsuQiWJKDKsitC27Zx8HJpdggiReLyZKChgHB3EpLulD8tyVQiYLSnBNwDRy3LExCbvNiNFbjCO7cAs75Z0UJDSzrSpNJbekAko8rNICVFS5b1ozoGlbX/oAWGgVQGOd3N9ULKhMSMU3TCyJvJ5ADKbE3gqhEok1tiJkMjneNVUWQSF9ikHABoMwYxOmkfNuikWxXguxVBvLPkUh309taG4ruwpLDG7yGt1uglKE/mYm79FmtmQir6dxEcYQxt7NVv1sCa1je20T4HuHdjdhGlwhaQKAZuMR87OakuJ45cEVS5Ru2NshjGYmUcpABgC63YTh0IAiE+3MKXiApvUYDhxEpizH95ouIk4apuG51ilFtIssFPp8Puf7jLlvuUeUc+dKf3EyZa61FVfmSYHHpgznFFUKTFTUZVKl0UC3TDokltQC5rJVszsbMY2W565QiGb80RWiKMrxvraNCEcLZQmm4c92GxAGW4RQ3fJcxQKcvOZ5CZgNmutQtpgrlDVUOT5X4qMl9lpIouQhS14viJp0M5P3FMtxVNxPfr6knbJOQoAElP2QjhbmzPPzmGPBC/FXTm0jeUvJ69K+PKuUFGg0UE2EcQlhsFA2cfy7opmMTMBwjoNWMs6JY861xL33NsdM83yUJYdSMOIAACAASURBVAZZQjwkwHeq3r8S7x40E/xk8huxNqtm7ks1kQmeushg2WZg20XOA/tpi8R7A3P8OFAAfLEGC4lPVhCAwMA/Yc4bS2q24AuZVHXvF+Q96xQpBI7Fl/WRPjOp2Aw6aFYy1ORYYpmXGPSQXdNluSXWuSLGESKf0r7CXAcV8G/SPG4JN4gc/qCmCkHk974oD0r/eR0K0CoeJnxcS9xvXlqJ11cypwpwAZjjD08R+8TlPMRivwZCc+7M+cQdS3FN3pPfEdI2qksX1kU193GvtbMGoCdAabFoC+hcg71cV0iGTpY1CJT/p6yw0t4aCFdrUn9fXCvX48Tx+8opYLoeUzWuV5X/54/94e8Ji+W7f+Szt1h+/Q99tvGjSqkGwA/lr79ERP51rntdh5B/E8DvBPA/AAAR/TWl1Pe/4Rg/8/KWO+CnvvQ/4VvTWxjI4bG9wZAcnscdPvZneK99hmNqcGF6PPHneMe9xNfHx3Aq4p3mJV6EHa7CBo/cLT6YLvDI3Rar5wN7wGN7g+dhj188voMvty9wG1scU1NSdDxyNzAgfGN4C3szwpPBI3eLbw5v4SvdM3gy+NjvcWH7kppA0mxchw7XYYMf2n0IAPjYn2GrJzgV0WmPC3PE3xi+iDFZGCTs7YghORxCC60SAhlYFXFuBxiVcGF6vD8+REgGbzW3eOG3+Fu238EH/hLPpj2+tv0Q748PcYgtLu0RezNiJIuvH9/CuR3hSePS9XgynkGD0JoAnwwu3bGk/HAq4ul0hp0d0VYpQaS/jfFlvABwHTY4tz0+GC5w5gbszYg+Nbj2HR42Bzyfdni7vcZzv8PGeDyftnjUHPBk3KMzHu9tXuAbx7fwTneFl36LQ2jw7uYltmbC+/1DbIzHbWiwMb5YWMWqLGlkngxnSFDYmQljstAq4WFzxI3v0JqA7xwvMCWD3/34l5BI46++/Aq2dip1tCJcebY+C9j60uYKiRSeTztolTBEh854TMniUXPAdWhhFOHd7iXGZPHBcIGdHXHjOzxsjvh42uHC9bjyGwCzy69VCe9tnqPVAd/o3+L9kgxufYvH3S3GZPBOd41vHh+i0QF7O+HltEECp7SQ9CdiqX7UHvCd4wW0Sti7ET929m18e3yA9w8PcNEM2GSmiz46HHIqEq2ouJU3JmJjPPpstdaKcOGGYuGWlC/Pxi0eND1aE/DxuMOXNlf41eMlztxY2h+Cg9URX+hu8WF/hgdNj5vQwqqE5+MWnQkIpLHNFmaxND8bd3i7u8EH/Tne273Ax+MOU7QYosV5M+AYGiRSuMz9H0KDY2BQ/lt2z/HSb/DxsINWhM54bK3Hpevxq8dLJCiMwWLnRnSG982170r6lMftLRIUPurPYDU/gy+nDbQibO2EY2hYOdT2uJ46/PDFR2h1wM8+/z64bLk/bwY8y/0bldCYiLe7Gzgd8f7hQbEMd3kP98EVS/a725f4lZtH+Or5U7x/eIA+uBJX/tXzp3jpNyWtzJkb8Z3DBVtgk8HbmxsAwAfHczxoj5iSxcE3xfr+Y5ffwS9cvYM+ODxoj7hoBlxNHaxO+L7NC/zi9RcRk8ZF2+PJ8Qxf3F3jab/HW90BVyP3K8/EWTPCqoiraYMH7RFDdDh3A54Oe1w0PaZki6VfK8Jb3QGd8XjS8z6dEivZAmns3MRrYAIOvsFFM+C86fHB8QJOR/TB4e3tDRIpPO33eHt7g2fDrngCbCwrc4bslfDjD34V3x4u8WLYwuiER90tnEr/L3tvGmrbuqYHPV8zmjnnavZe++x7untOXRKryqTKaDS2CHYRAgYUIQopMOIvIRq1QkAJpRDFthQCwQb9I8QEG/JDEFEiQgQRUqVFRau07q2qc2/VPf3Ze6+1ZjOar/HH+77feMdYc6699r7n1j23uB/sveYczdePMb/3e5/3efAbt09KvL3U6/3Nc3zz+iketQe8vbrGr11/Db/n/At8sL0qnuK3NjcAgNoGOJPxRb8p/VozGuRJu0PKBtuxgTUZj+oDPjmcY1MNSNmgjx6HscLVao9DqPD1zQuMidpvkfFiWGE/1gVF8HS1RRcqJBCSQsI2ZIyH5NDFqjwntY24Hlqc1/T87cYaT9odvru9xE9ffYRdaPBiWKG2AUPyqG3A2o+4GVvcDg3eXN/iebfGm2tq64XvcRMaDMnj490Frtod3lrd4ju7x1j7AZdVh8pGfNqdMfrE4Ytug8YH3PQtrlretBtWaFzAG+0WzmR8cHuFTUWooUOocF51qF3EJ/tzPG722I0NGh/woluVsJGzijZvXnQrvLW5xSFU6KPHmCzW1YinLT2zMlc/3F7inbNrPO/XWPkRffB4/+w5fuX5m6+/7ljt8enujOZ+08Mb4kFoXcDHu3OcN/1sfMfoMDKi5M31FkNyuO7bwt3QR48+Ory53iJki91Yl1CZxoWC4tiOdZH6AYAueHzj8hk+2Z8XCaEnqz12Y40hOlQ8f5xN2I9kSF82HW6HBuuK+mJMFhc8T677toTPACib7y0jSvrgcdF26IMvMlyVi9gNNc4ZRbMbaqQMvLGmtqdssKkGbMcah6HCRdvj+kC/p4JIGaPFRUv3H8YJTTQGV9Ab3qYS1tOPHj1zM+hzORv0vAEtm5pie4y8IS7SPsaglCPM8oLGCHytlvxJibkfxmnJnGVj0kybcoLKEMSFIDVkE3qpU110hlXSEkA52cJ0r2V7ZuEhBkjRlk1fyxu+cr9sWudkqVyXZzZaaQ/31zJMRYegzPC4edKI1gSGRxP3lSSRCNLHZyEyOjSD79dhIiehuA8wLH+UHpaMMf8gSPPyA1DPvmeM+RM557/20nsf6LH8P3LOf48x5v/KOf9BPvbLDxHK/H6m93/6Iv+p/+bvRQTp6y01IUXjcR/rmd6fkPwAKLqMkopOXPJwfI9nPUdnSLMvsa6kvFwBzLQUU7ZznT6Til6h5K8/i2HQJ4oRrWwsGo2SYp40BCVpaK0uTz4X3T8FF70vLeum4aVJveBDssWwFe1D0TaU+FYx9LQuYsoCvUzls9YDnPqCFvbH6iXjp+NeZ32p/up2HGunJGtI+9KbVH5sshobqV/xOuO4hqRFnmk4am3F+XwgmKVR36VOArMUyKUu976267HS80DGS+51NpU5m/J8Dh/bUFy+vyWGWMcNa/1CgQXLNc7O45N1jKW0TY4vx0i3Q7zwus8Ffqzv199TRokZ1tfI8aksNYbquOgc6rhi+azbM9Nc5P5Ytld/X87nU0nGRsNu9bl8ZA7IYkD6Rv9Y6yRe5mUbtCSSTsuY4PmiS45Niy0AauGT75zX8dY6LRcfepF2qjwNy13+nBGpVip1z4xacD7enXO8KMuZFpKOIb3WTe9hYbzW/aDnM8DPjFqcZek7Pr6MZxZvbfGgiKeDr9HeTN3WFBfxynHydk+xtTz3k5ngtzp/ebClXgYl9rJInIiXw0wQYwRbPK7g2MjC8gxMUD2JU81miv+U9rIHcVYPHecKTHUqjVZesKL7KOek7pi8dFb9lTELhjxqr5vSYgwlaS8Ke2HveM44nja7KbZW4nFLrO3SW8T3Z5sptleKtsxcreNqBbasF9g6npn7QutGzuIj1YtfyNBmcZsR8/HgcoVwp3gxA2Z5FfiseAwlX5mGug7aeOE+NvIMZMz7SC5TP1Qz55Z+1BbHlhBU/Wguz1Md58Ot753uuTs3jnnw5LI7ZUq5y3KW9TKn/56qJxWOmafxTjpVl2VfzF9hL8/ne0gn++lYesA1v/rvfjViLN/90//Kl57vb/7LX5431hjziwD+uIQ/GmN+AiQ9+Xe87N6Heiz/H2PMHwfgjDE/DuBPAfjfX7fCX1YK2eKT8QIOiWIiQwuLjJWjnegdxzb20WPlRtyEBmd+oB3C5IuHp0+evW2uxDiF5Iphdu577GJdvEI9kwB10SMkh7Oqh4jbk/chYB9oh1A8MceMjNpGbEODkCx5LLKbGXLkReEYsuSLuL0Wqh+SL3GFK08eKFmI3vTklatcxG6sUdtIcX4cHym7iQMv2LUxK0bJIcwhQxTzObXH21S8BdrAkbbGZNF68mzJYre2sRhgh1CVez3H2Mn3/ViVXVOJJewCeTc29VCE35eGlV50106M38mwHvi+DJR8n+3WAIDzlmJMJZZQIMIZKHOjG32BPesxBYDA7MGy42pMLrBjMj5MEXZ3vNjVxmzPsYJalN3ZXPISEfdjZEgaNp0yxUPWHO+ptVIl3jFjMnz0BokBimEovyvSxqjIicourVybScd1GD2qKsxInMr9DAfW+qOVi2VjJpWFO8032WWufMSgdqkFtjrtAKuyOF+BIGtW38S7tkLSJMaJiNfLjrPkL3XQBtfS2JEd8mEg6r+mHUo7tJEmdYg8xp5jP+U6KmsyxkJgUfvBw1eh1BUguLOxtPMspFGiR2sMCkzWV4GMK20UmIzQVfBNKDvZMpYAEAfSTS1kVMx6rHVjl7v5Ev+YIrFNJyYeEkiqkEwBIOgzwzP1eTGyZPdbSINSsIUQyVgUaLFoiWpioyVpUe4ckdZ4ul+0R2Nt58ZLNsgi5RPJcEoN6R/Gyk5xaCLTA9AiRsnbzBb3wGTMJIqpm2Ie8xTDaDNBF/XqU85LF2vtYinLUDkZKMaJCRZJ4LZs5BWCK4Eh9rYYNjP5hTQxLhfyHmmHGFIGlEdgxmRvmQ2V2jWLDRSj0an+EEilxFVK7GSejB3wvaUOScEvDSaj1DGk0mIykITdGZj0CCsmLFKEQCTNc2rl/fJEzNY8Hoq8CJl1EEWmQ2IoZUz53plhqepvZTzVfJqt6Y+Q99gRxBoLFMkV2Ekj0fD1mScwMaOaKc7QasIjM1vAz+QrJH9NGKXmvCZNAsRInlsfwvI8YxIvZYmRreCvZrK+xAiVx6TECmJuoBYDeLlvsDTAjhhKcl8hoTpxzfKYaiLKA6kN3yVhkbr+QYblfcbeAw3LUveHGJYLo/1kHTG/9mhe96Tl3sxLDUd9/r5yT5Tzo/TKqdKcOjnnXzPGPCiG4KGG5b8I4M8C6AH8ZQD/E4B/81Vr+WWnMTt82p+TURg9rkeCcm0cQZueD6sZUcw2NOgiwTP2oUbLUMAheQyeIIetG5EywbZ2I5F/YAVc96uy2BeimduBDFeB1FFeDptqwG4k72njAiIbnGIACXFLZSOu+xYGwMERZCaDjLohOJw3QzE6BNqiSVZSNuWeIXiMNb3VBb7yfL9CUwWqa9dg3QxwJhOUhRevkrcBSjyqwI6kruK5AcCxnq7ET5LsikdThRmDLIBiQI3JEtRNEbIIecuBtUNDtGiqUOJTh+AoJrS1OAxViQvtRl/0PiU/7SErbL288K8cxYiKwQfuK+nXtiKx+t2+KeQvY3QYlXFU+zArQ+AwYrBor5zAaFIyvPhPHB9pCySmYi1QLzqYJpf4z2HwSMGiWY1lse5cQt/7QlxCcZdmFutIfQIgG8SGdEPH0dECGmT8DLua4rCakWJLZUcVKB4cgeYU6A3/qhQDLLrC+Cqsq74iwyMninUMgyPq+jgJrxU5mGgQPMU9WscGIBtEABuW2RTSCvIaWQTvEAaHsaK5aix7k7iuYeTYYDcZPaEnEfhYTX2QI2mUJhYjt1bFqWYUfVOSqGFjsyYvFrG05vJZWF1zNIg+I27JsOwxGYA5WMSatUQzSpwaEpBW03OVGRoVWaIHAHLvkNcGaeeRWjPpo2ZDouii4clGSmpNWRjknpEMDce7AUW8HgDMzmPMoNi6wZLxIgv/waKYvMEi1WSgpTpRORIXB0zxfInkTyDEL9Eg1mmKOWPyF3oALZCAGMyc4VUMB/EycbtMNEjCtKti7nJlgZEMnJnkDibDyW0dUpPpGgBmMDDJIK3iZKRwvezeImXABAvTGzKO9xZpZabFD8fWlYV0lWeEJyS5Yqc6ZDIwUpO5rdQPoseZfYY9KHKeDNL503qmvZlIScQGtZOep5RFxCi0ME8VG1pMHGIHg7hK8LeWpSMmcp3CpmpRdCczS8uQIUhGBwwQGyrHDSRPYRKdN8lwmZyP43p4kqKAQZHRsAO/p1a56FjCGsonksyL5TJNBMlsyKJZ+t0b0rFk6QsYul/qnGppMxHmkNwEGauuMxi/B4elU3JF0naTQXO6RZHYscrwFcPCMUFPqpjcx1J/FfIegNh25RFT8W13CGAsyaskljOicZ76RAwdzYKryXuK55C5qYqOpcQcCuOsMhpFe1VSmV9hMvhKOQz/IBZdo3QsTWmDSGPo+7WHlF4wUx2RMemkKtkQfc+SuEgfKzIp2nA0U75F5ihhZpxmg5m8xywpY+yYoSkambOxWxqEx/KT6xZz9ZieY7ZmpsF51ONpMJ3XdZnlvTAkT9TxlQ3VY8dPpWNlPtCQ/KExIvX8++qmXzDG/BcA/iJ//xkAv/CQGx8EhZ3dQMKZm5zzzSvd+H1Ib/3UVf6Z/+oP4xDr4oGUWJUxuRIbWGIEbWQWVWI3BVBihYbo0LqAgaGlEvMmRugSzgkQpNNbirGzyEgwqG1AFyvUNiBlWyCocl6SMG6u/TC7TqC2wsgqBql45sTrV8hq+J+wnQKTB2nlRwzJUV+oWA1t/PXslQUmKCe1bTLYvHrD6v4BJimXQUF9i6QLG3PiWZR6C9RTDOw+kAc4ZoPKpiLBUrtYYv3EgK5dhOeYkUrBPAEUr6LUHwDGZAtBk7RaPI9ihMZE2qMAsBvqwlwb1UaA9kqKDIyUrT2mIjUjfZSBAhvVEjHeRQzBwZo5NFMIoWSjAiBIpsSQ6Ps0IRS1mf6Kwe1dQhCvm83FQB7YgyXXa/kY7f3U38uct0nNPbo3RAfvIqwhcqfaUx3FkBfPp2MDU4z8kCz9birvq12Mn4aDVi6WPl9CauX6jKktcr0Q8gipk3iwl3BGAIVkSDYZTOlP1nXlzzrmxRjyOAr7rLCw5myKx3WCg+YigSNjI3nomJ3CssobHKJvK+eqKkxe6jRdS30DjhEixlZhg9WwUYkXKpI87J00hjy8Ir9jbS6bIOKZjaresvkhfSCbKiKR41xW8Fd+/lye9R/1u5n1g8QfWSaZEqIr5ElCp8QT8UaTxBJBzd+qDjNyKrlXILL6WsfxVdZkOJ9mMVeymrY2lY0WqcNsrcjzRuYSeE7PdIwXsVJ3YceKHImvK+u8NJdBKnOe8ynkUwkwQsKSaAMhBWHXndAGZU6YPCfFYs+xtDllWrWnQBsc4p0GuJyFt1k80SKZA2AiOZINGSZNokbThoIxuWxYTVBh7juBtAKF/KiQIbH3VSR3Cix4tDBeyeVkIqQqjLqvk1ymjRhgqo98Fi90NtPmgLQPIPhvntorns6yaaK/87iUlX5Sx2Xghd1XvmvvudxnVPmyAaPdb9oa0pNZ8pTPmvhFX6eOF5KapZyP8ooXKRKVCsxXE8UcM/65LdqzODN0pe1LQ+QeY+WOEaWhzuV+M/WdLmvZjhO3HpOSmZV5Xz3vSUv7VP+9W7n7Tp4u815j7aHmw0Pb8+D8zHzevkL65r/+FYDCvvdefvdnvw9Q2J/9UqGwDYA/CeDv50P/G4D/OOfcv+zeB3ksjTF/CcA/DyJ1/usALowxfz7n/B+8XpW/nHQztPirv/WTGKNTMUDkmaAf7AlWJoHTRH+f+IeRFyTMVqqfZ1kcIE+MlnrxQx84pqzA8DD9wDIsKMVJMy8vXnQ5q3OLF4+x9ANbdmplEb3cORKIjUDEDEPeop08FIk07krMjDyQ/MM/W8zpHyTxVqm4B4HSFWgYe7hm90uSH8+l1pyCYM1os8VLsYwTkWvk5S7wMR3To38kzaIOyx9jHcPD+X7e8NYpQ5V0TE75gZN+0TE9Oi0XE061V87rmJ9kcCcJ+53+8dX1P3WfTqcWACXeCbjz4zJbHasy9XdgPl76nO4TfQ3nbfKk7SfaZxNUSK8M+BYxxJKCxC1ijPQDW86pthRPkn62DOU9W9xIW6T+nO/sfqPatew3vv7A7IpmnIyI2aIOoOPieYi4m/TzaQFEg57HTS+ieq2fyM+NCROUbeDnx0RDn7OZ/Wj3DBUEr4VnC1iHSSKCd/EDwxNH5Q2Q8qOdFk+jWuyZpKaxmkNBawDeM79M4rwV1M5koDjCI50vUD2o1wDn0SnPHUDXy72yJyXnRk/tTjYjch+MFXvVOONk87SOMVO9pHxkup8upv5Mi8Wq4bHINsMmkmIoGfC12l7RcWdWTausLpJ8LMfOWbXwNjyOLpJHEpmul9dR5t8ty3M9u+l+asY0fxw/39lSWZNnafpeysRUtoxdlspL36nXkZxjYt/pFaXnhxrfom8p5ckzyuNbtCyVt0rmtD327D0wLSGhSw/ezAMmdS/vJHVMLziyOqffnbOCMXsHGL6nyJ1kzLx15TYzvWOL5uQd1xqK1316B89fC3fapJ7tZVuPtpN/J2bPjJnqfcfzdWTcdT/oPCSdNCzvSfp9NVlmiwGQY3l+3zKdNCyX1z6wbnfWLtB1XORzos3LMXwdw3LZhqNtWuZxagyWdXhoX9ytWanfj9L3JXkAfz7n/B8BEKdi89AbH5J+f875xhjzMwD+RwD/KoBfBPADNSxrF/DeoxfMqGhxzYyNGz+gdgFfdBt4kzCwx+52aHBWDUgw2A51gZYO0eG87rEdiIUuJov9WFFMmk14utnhuieYrbcJfaRYzMNIemyXqw4de5j60eOsGbDtaxiTsaoCBtbDkxQTxcHVLuL5fgVjCLJJun+0gx6CxfrsAMe7uP1IMX+Vm5PLSEzeODpsLnquQ4XaB2x3LXxLOn67Q422HQkKy54KY4B125Nn0UyQVsMeHWdIKzAw5BAgT0eIkxfIOZJuEM+AZioTaY1VQ9BWOS+QUK2PF6NFVQX0fYW2GRGiRd/VaFcD+q6CryJBQrsKKRo05/2sPPkrHgTZ2a8bjjsNtnhWSGuPDMm6ofZun1GMZXvVIUZTYspSNkXqQ8oYe9HRi7w5MEEMw+hohz4bxI4kBiSWTMgzbJWQgoXz5NG0ZvISxoMjOvXNWEg4nEsYO0+wxd7Bno1ABu3sO5LBSBKflAx8E5GiQRpIJgLgTYedR64T7CpMEg0AeQoUrNPYKR5Pdv7LYmlwk1aeiK5X5BlANDAbpvhfR4JIArTYc4nKGyywYop82b2vUll4SwxcqVsdidp/HYHOIVeR6mtz8UYAAAaLnDMZz0J9v/fIPsE07MUIhkhHokFes2wEx/Eh8AqxneqCwDp5AsMMls7LZ8/9MtJns/PkWLgIkwEaLLVBftSjgRmo7/MqqoUlt9dPEE3TW+RNgN16pFUssEUAsHtXYpVynWAGi7SOlK/NBbKZNhFmsMgmlRg4APA3DuGC+3KwHDNH4+F2FuGc+2ckzT9zcPR3MKQNqBdzAj9sJ3inGQ1Sk2AHO9VTpGR6S4Zdm4v+HEEG2ditAEQgNQQrtYNB4n7PDrAdG3lthu1YF48NUiElEc3E6sYiNkCqM+0J9WQghU2ieoMggCYD7mAQNgl2NHB7g7DJ8DuCbAKkNegOhmwXWUB7THDSjAkCaYDkqD42EIS0kLVYkI7hQPBAtzfF2ALovlxNBCuuU5BJtRD3eyFgoX7xO4vYUjuzJ3ihSZSfPwBhBVTXtkBe9SaQjQRxzh7U5praDoBi/9hpG1cZbm9ge4PYkpFgIhgKy5BGi6IbmVQ+qaY22YEfjTXBbcVAMiPXt8EMhplqmrfZMjwXVP9qx5qNDP10I0EtTQZiTZ9jQ1BcgsLydR0wnuG1E8GA6bMdUZ5hk+i4HalObkDRjxTYqevAUOGpr8q5nvpYQ2EL2Q2PKTCVly1Q7Qh+K8+GtHUGB1VQWDcY7psJXm3D9BwkgYHmaQx0Pe2IYkyLEZw9t5nrng3gu6ntNnKdGKrLHIsLHUtMz4xsFDmU3x2aYyjGaaqoflIHgX9ma+aGLKa8ipdTNqnkniWc1NHfpSGlJU7uGHxSTwXJ1f0/u4/bcNIA1nkb3IXCKkjvBI3HbBPl6MaxUecfakSeqGPZ4JB2nzLuThmy9xiDR6G+/Pel6YfIyPwhMIj/FwB/GMCWv68A/M8A/r6X3fhQw7LioM1/AsBfyDmPZrmj8wNIZ77H3/X4A1hk7BPJDoicR4TFj62fzYhkdrHByg7oU4Ux25kYeWUSxkKhbwv1u8Bb05m9w+aoWVyBCbYnhEACzZVEkNZYGGKtSXjnjMh3vEmFHVbIfjSjqyTNlAlgRkqzJM4ZLhnOZhLSo4lRVqC2Q/KwyIXJVb4LZFc+6zKknpq8Z8lUeozEB5igsfpcPJ/YRHW7hH3VmVQ+W2SkS1P6C8AMXiz11fXQbJpSr2WfAcC42Rf20SVrrFwnMGSB9kpawkVlXARKK5qfM/ZXTO9bOZ5xHBZqMLEOCzxZ+mjJujrLL8/ZQEN0R/saQIHwCpxXs77qFJMpMFzNmho5RlTgt84ef2tKbK+um0BqJR1jBi1EMkcYV7OaM3KPjJPh/ijEMQtCIt0PGShjJd91zy6ZajXbrDUZ4THDjhXVfVqMgcAQgQnKuGyPfBa4Y3w0EeZoYqEZI2ieM6cK/HTJzFr66olBZXLp1yXioLLTOUFr6E2jZSpxqUfG9+611DZvT7MDa9huzoBTn4v3zhDxkLeprIaEel9gruGK+s6rccsAvGzmQDnb+f2dQfPU2Yz4xBQkiskGSXs1JKlFYM5AzGpucl5Gw1llDPnvWEiEjnWWWlfqFZ/BLPYdJmOMk07p0iMVuA7dlZ02VFRf6nvGRIvzUWJCBWHBC8kxYw6nXC6WpS16Ubo8r2GtUMcMl6Pzl+ukvlzP4ch7+ujCfbHQLrGlr5tOoTF0u4E5gsKoexfX3UFL6LacSnxdp9hdAd5Y0QiE+ce5V07XQ+qojaVlPZSxpI+TUaPGDpjDSZWLtaBV+PjMgNH1WaZ8t2pGf8mLC0/1nW5DLOzPVAAAIABJREFUmZ+ZP8//3nl9qXYcg18+yFB42TUvOb94rB+eXta/i7LvGJivUMeHpPvrbo7/Pfa8v1b+P0oPTG3OWYxK5Jy3xpj1Q258qGH5nwL4TQC/DOCvGWN+DMD1K1fzy04ZWNsBHw2X6JPHmSN9xRfjGjehwdN6i0OqsbIDng0bPKr2eDZuELPBm80tbkKLIXls3IBP+zM8Zu1CbyMufI8Lf0CfPH5z9wSPa/o8JIeNH1jj8QAA+PBwgbOqR0gOq6rDJ4cLPG23sCZhF5iN1cYiGbJyI25Dgy62eH/9HGO22IWGNBiRceECVnbAR91lMTIv665o9EkcpjUJa2aCfVQd8HF3Xthku+jxjbMv8GxYYzs2eHN1g+fDGkP0OKuonxIMPtxdYlP1GJIvOn2Sx8CMt3UVC0Pui36Fs6rH2rPsSHK4avbYjg3W1TCLedyHGms/4Hm/xqYacNkc0MWqaAfeji0eN3tc9yt4JkM6r3vcDg1qG/G03eKTwzmetDtsxwZ99HjS7rDxA3579wgrPxKrrJ1YZWvW1xRD93m/RsoGjQuQJaRopFUu4qZvMSaLn776GCkbfPP6KRofcF51RQ9xP9aAsM8CeGO1gzUJt6xvKaRHIVmc133RtXvS7tBFj9uxLdpzm2rATd9iXQ1Fq64P1LfOJjxu9qhtxBfdBgBr1AVPmmfJ4bzq8KzbwNmExgXScGMmXTG2r/sWrQ84q3u86FbIIE2y9zfP8Vl/hmeHNRofuE9IK1NiOrWsh3j0x+jKponE7dY2FgN0O9Z43BLR1HXf4p2zG3x+2ExEUNEVL/8ZIwNErxAgsqnaJWYQpjqJluNuqHHZdLjuW1yuSaMtZoMQHVY1MRqnbLCuxtKXQTTjzq6xH2vshrqgAmrWOnzerZjJluJWG0csqKKjFpPFpibXyk3XwlnSoDyMFRFQcfxvTAariuKE33v0At4kfOf6UTGsGx+wY/QC1SHhvOnhTMKzw7oYqrJBQMgEGsfH7QGfbs/w7uU1vthvSuysMRlPL3foo6eYWWZJFvRDzgZnDdX9+tDict2X2FqRS3n34gbfvblAiA7rdYfGxTJGj9oDPro9R84UN7rtGlydddj1NdbNgMNQlY2HDKDxEd5F7Psa522Pw+ixqkK5XgjAAmNY182AxkXcdE2JHQ7RFkZjIQbrg8NGXWtMRogO522PDOC2a3De9tj3ddksEiZnmcPvXl7jebdCN9C4nTEh2he7NRpmGO4DbUBcbfb47PYMTTXiou3x+XaDJ5s9nu9XZaPmcn0oBqi3CbuhRh+mGPIxUp1jshhZM29VBdx0zUT+Fokhe8UkZZerrhi8AHAYKgzBl02UTTMwmgUFXRKSxcWqA4AythdtX/ppYKZuXafr3QpvXt5iiA6HoSpzQRiu+9FjCB5nbY/9UOG8JQRM6wO6QBugN/sW62bEo9UBn283hRzOcV/UHNdM+Sf0o8eaUSNybN2QduWL3arEJY/Roa0CnE3Ydg2aaixtOPDzk5JBXXMcc19hs+rpNyhQKExVRazqqay2CtgeGqzbHv1YlZjry1WHz282960s7k2rZsS+q5ETIV5knJzJ2Hd1IWcTpE7OpoTLSJ2HwaOpCR2VEiGUNqthxiYOEMu2RjHpTZ0YDc43XemfcXRYtSPpP5Z3BYX1UIw20DQBfe9RVYQSStGi4j4dR4ekZLCIlI2QNSlRG2oVs2xsLuFFVR0KcgqZmLEDY94pztwiBgdfh4L4KbG5mRiyCXHkyoZMjqboGQqKBnw8ja7E09I5lNjemTYkG1KZN11KrC3fh2wIyWJBqBWJWZWNFEkJFKsb1EFt6Ij3X0I89MaJxOQW4z1PpGV600GSbIZIGXpjBbgbRqSv07G7uo5iKeowmWXSG0H672IjRferbJ5ko0JRdJb6uN4EMHi5kXtsA+93k8H41W/Lzhjzt+ec/08AMMb8IQCHh9z4UB3Lf0N9lf1Al3P+udeo7JeW3v6px/mP/cU/gsd+jz55fDacAwAeVXucuR7fOVyhcQHbUONRdcDn/Rmu6j0SDD7vN6htLEbe15pbfNqf47I64BArbMcGtyPJdby/eY5PuzO0LqCxAYdIC+IbNiyetlvs2AghI+4WnxxItPiq2eFmIEFxIfQZksPaD1j7Ab+1JZH086pHFz3GRAvlw1jhjfWuGEq3Y4vKRib7meRGbse2SHM8XZMQtRg2H9+e46wZcFb3+Hy/wWVLQtbboSEmWJPxZLUn+RSQSPVZ3RdjQBteQoqzqYYi6Gx5gb0bahJcZuZa8a7JguSy6bAf63K+8QHbocZF3eO6b7GpBzY2B9wMDR63B2yHBrddg0frA266BrWPaD0t0PqxwtVmzwZJLB5TkglxSGnyLl/y4kva60zGrq9RMQvqRdvBm4Tf/OwKAPDWY1p47foabRXIcKjHmcfxlgWe6TjQVgHd6OFsxmEgGHLOBrtDA+cSmioQMZGLhfVW/qZkefFAC85DVyFFh9WaFnXWEIvu9tDA+4juUGO9JnkbIhdJZcFEbLEW67ZHiA5dX2HdkoExBIf9TQvfRJxtOvSjRwiErXM+FYZbghenQjpT5EjYABh6D88LJ1kENO2IofdIyaJpB3T7Gu16KIsM51NZXITRo25GDIMvZdZ1KJ6wkdldY6SY57oZ0Xc1/yVItMCph97D+QRrE/q+Kv3lPC3yu20DW0fUvOiJgSDcabSo1yNEmiSMrnjtfBUnSY7eAwao25EWVqODY5kSgUobvt/5iPG2ARLQPO4Ko24MFlUjRDsguZO9B5KBOxvLD39hwfWR2HRNRtxVqM57jDcN3CbAulh0FMNtRYsgA4qfHhzcZiyLqnjgjYL1yO3IsFUqmon5RQ3zaCDW3N4xnJd36vcOuBwpzrt3cKuAuKsIQn3wME3kRRnVOQ0OyICtI9LBE3RYpDsGVxZpRkhcOoJ7m1UkCLWGYgdTyFaMT8RuGwxDlHlx1zEKpCF4NOo0BQuKFqAnuLZ74ZFWmXQLE2B6S7DN88DBpSikKXbrkC4DMFjYg0U6j3A3DnGTpsXowZVYJYJt5iKPQXBFZnkFChzXDgZxPUFv4UDxuz31ud1LMCTlm+pMUFjxbHcK8iqyJS7D7W3xVmVPMN24ygU+KuVln+E6i3AWUT93yA6FNVbiN20guGKqM/yBoLCuYxbXkRh/swXimo4LVNgGEEwxEPOtCZRnqrh/OB9khrgmlO9hk5lVFcTyORIsM6zyjL00NdQvAsU0maCufk+eR4HC2oFZV0HQY9crOHOTma0V8HtgePT6qzrPbQeoTIlNNJHgvW6geFfXmwKBTPyseobvppqhr1z37DLcgeou0GzJs0Ck2Q1QvFYOqG6B0LJj2U9QWG10SP9KfVPF0FWGtzI5PmKNGQusDRNkV2Cqus42UhmpIthvNvQZWEBhA8NsuX6FUTdNHlQ7cBl+arPArw33g7DAZoc7rLCaVXYWZ6r6SkNIj8FWC1su94H2ptLcU+yuwFHPrzCuFvbVPEGBJS/D+QEgiKfAdYw6L8+7MbBxPleXUNhSPx1PrJ19Ks/CunvMIyv9pY3JYwYe1Bw8Fhur85rdND93xKF9N64X0zXmJXVa1k/nq9Mv/JdfHsHN66bmvffy1/+lL5+85zf+zJdK3vOHAPzXAD7kQ28D+Kdzzr/40nsfaFj+afW1BfBHAfxqzvmfe/XqfnnpnZ96lP/Zv/wPo0+kS5myRYIphg1AsE8N+Tt2nv6ach4gWKX+rvPQkMbZvdnMIKEAGPY6QVCtSTNmWSljyRor3wUKuyxTl60ZWpf1W0Iw9fkllPBY+5fHdbnH4K4aZqr7RkMI9WfRrlzC+vR1p8o8dk6XeSzJOykeyX/5rtLlnSq35JuP989D67eEQd5tHwqLqz72KkmgpEuoqS5zCWEUOOR9Sc+hY7DcY8cl6Q3b+5pz6nfkGGxWf15CLeWe5Xw7du+pdOqVeaoux44dg4qeOqZhofflr+u1JNJafj/27J9q9xKWukzC4Pog/NE97Z+XeXosXmWeFO+FXqksVzKlzEUhi4XQsToeG6+7F6qKLfM0mMMGjzVoSf50ZNxlDE4SqZWLT6zilnWT+p1aHGoCsmMP8X0LwMz1WEJh9fFln5VF/pFxXOaxLF+8NMpQOAo7fmh6wNwAcNSDcy8k8WWPz7F7lnPn2GpaP+NHFu0n++MBxsJJI2CZv66/nisvq5vO49i7Z9mGO/MFx+f1qTKPzdk8v1Y+H033/G4cLe+h6SHXP8Dg0vV4pXJeYsS9NL1qex+YXrkfAfzqv/PVYIX9ITAs/xhIWvJ9AP8kgL8bwM+JB/O+9CAobM75P1wU+PNc4A803Ywt/tePf7xIVHRMplN7lqRg+JPIIQi0BkCBnBVdyWpEzzC4DNIjFOjJuh1I4kHFOQEolPxNMxaoSwhESiPnBHKif+RJHoCYafuOJUJ8LCy1OZOOn69jWbhozUJNFR+DK7ARX7M3hb1OoatgxFvUezjOT/T8jM3wNZVrTC6wF7AxIYy3WcVoifZginRM2GiJkEYWNupcMHAV1bkQw2gSm8HRX6all+MCd7F1RBqIBMfYTN6RaGDbMC2kGC6DZIoeYfkxqFnmJNqykBEvCQBYn2AsEG9pHMw6FIF0eCJyMULeAgCZdQEzyMMDTHUAyGMi8TsDxTMVchqb6XyViX1WC3+D68y6fbmW7WZM2n2GRNBzzfWRRYWQuhTCm0TlRENlA0CwsJ0lLcIqT+ywGSiMvdw+6pjFopF/EU0U7TswuyBm37Mn4XLx1pjMXhH5QWaSmCKULeWXh4OvExZDJoLRQud3GGiByRtkUWJ4bGeLzmDJM4G9K6lcb6IpDK3ZT9AdMzIRTJXoWFTno/Qb6LMD7MEA2SCtVSBSMNP93N92oM+pPrL4U6zCtrdI60Raim2azRPb0RzOhtsQyHsm42UHNvTrSeh+Rt6zJ89Qtix4r+BOpP/HfcZMoranvpQdfR32IsQa2YMJaTJrTwphDY1/YQcNpE8YmcwFJk/n9G48C6pbYTNNSh8QKFqL4g2SZ8IAxRNX7cmTJqQgDACZyHQwzSHXsw5hJA9KbAHbsxfGSL9OYyDajYV9VerMHqC88NgUTwzPG9ESFG1DmQLZkQeyzINxWokWJlQ1xhJTZ0fDrK/8jEUaoOzoXGyYSMfO8xHvjZAKuYF1H7mt4gnJBkyoxIRENfcn3588JuIVrn9W+YgXU+6JDYpnSMhHTEYhZpF5IB68bKbxS37ykmk9RjtOZdmRPIN2xJy8pycio9dNNgAMWiKvXUYhkUk1ComKHYG7OpYohENFE9JO9RKvkvzeFO3EPM2n8ltkH6BjCRQCJwBzHUt+jkVLNC9Jf+I0LjJvS531vPEqD87TDup5j5y3kPeIxDrfP6vDHR1LdV1G0YSckxPlad5ZzIle5I8jz6D2EOqfPD0Hj3n15D13FEaqf8MX3kfpf82MLPnJdaXu8pjn6fpyjypj9o5c5HNq36XsH/F99xqWuu6nDGG+Ttf5VdKDiHhO1On+fNV4vo4B/zuUTP7q1k2ln8s5/7fGmEcA/iEAPw/gPwEZmPemh8ZYLtMawNdf894vLRkzPc8AOK5pIuqQv84mOJtLHAxAuP9C4CI6jhxTFlnMfkYwcoSMRJN0yI6+GJ9yv+SrPRWi42ZMLrpqxoA02ZJhMgBTYiQAFNF6qpO0jaRSDIAEq8hQ6D7DxquxBIMjYy/D5DwRUphMRBcAjJviGCzPfGOnOug+NRalHsQammEc1RMJJX/rUYxMaWcpC4BxqZw36rhokpEhmkqMhXGJ+oZjKmTBZ3hxWjxwbHyXWAs7zQu4XHbFJc4DzORqDBkumQ3Zknd5q+dJSF7nzedyJqbWLIanyVO8hskkNSF/RQZCG8fFWJiMsVKmych5qruUXWgq9ctXjFszfU9NKmXMdoCNui6rui5f5oYJSCx1fFbtL98tL4rlmPw6c16Z251V+2ceCq5IIcNQ+dE9qm5QC+4K8x94YDIqZcGuCEj0AkFfAwvqY/1i4WMGZvZZ2i+fU8UMdkrDzXjwDzDPmTwt/ovsiOr3bDKEGC3VGdkQLFJYU2kYyNAu/W9oMaUJSwr0yqKwvdJ5uidVKEa6PEeyGE2St8q39CUbKrN+ln5hCKQ8h5kCJkpfa3mMYtzIZo9aIImhIPcno6413B7QsZTzjD1S9wlyRmpoUS1tTSwZkC3KxpC0JVXUNtpP4c+VKeVRv5oy7TLyZDRwntkq55jky/XPeo6ZaQrHRvWLLKituh9Tf8t9GUBu8gI2x89KlnchjQ61m/opNXmCxOlnmzdpsgUiVJ8CFLfGz13yXI5jeKwzxaiaGQVWzxWez07IW6S/M6yl2NJs53Bi48wEUXR5cm4xbCPbjAhTnuds6F1eIIYCMa0wQSTddG0xbl4jZYsCLU3KE1qMYKmHmeojfRkxHS/XqDboa5EX9VTHpR7Ur9P5rPqg3JanvIvRWd5L9NlklY/cJ0ZfUnVU80Lqki1g5F5lSM+c46o/7jCkguvDbdKbXNpwMTIJjLpOLsqYPQt3PIdmuhd5Lr00a4eCW965Zun5Nkc+HzlnEjHOUl/I++4etlP1O1bOL+uC+bgeMyyla+Ra+X7SI3wk3WtYSjvvuX++ftDfzd1r7ynzwUbiQ675UXpoEmGgfwzAf55z/h+MMf/WQ258qI7l38A0ZA7AUwB/7lVr+WWnykZ8/fwFulAhMORVi59vKtoq1XBWLVJ/F8I3qs84CYO0hhn9gBmsdnYdxxHcB6lLmeL3jjGiArgD35vfO8/rqNj9Ot+5dwktW0LO7oPOHkt6La+rdKwN5d2b78LwcOR4geC1qt6tOq6ueRk88RjkUV9TPwpH6zC/jtuxKFufO3X/MdZLyeulm3fLLbh75tTJLB5wz/I3UY+rWfx9eWYnfuFO1m/6/KA+OVFhEYeHPqU2iPTxqew5DPkORPTEfbJuL583wMwm5T5Yfof+XjKjcV32kgFIGmVZ51n9cScd7UM1f+KCuyQv/i5PZu7jl60fTv3VN+q1xbE1FfLEsinfT6ZTLyBO6b5rl5P51OR+xeftXonEUw/RQx6wBz6AM5ZS/i4pnB8n2bg3b31crlsSepycnNoywXz1m5cF6jrnE4vJrP6ceukfP/xlpZcu0l9WjwfOp4cspMf7+n5Zlwe+xJfv/6N5vcLx1+qjxbm7ho2ZnZuNxTHDb5nvkXfGSePpnnot0/G2HvkFyfr4y+bDq71/Xslb99J3yevd99Bn8LW8dr9bjMfXWMf9DqfvGmP+MwD/KIB/zxjT4LjP/k56qMfyj6rPAcAnOefwanX88lNIFjdDi5u+RUgWq4q0//ZjhTE4tPWImCyRpowebRWwF33JmljnQrSofCykKyJRIGx3MRs8Z/Y6MVgte24qF2ENsO+r4r30zIQnbHea5RGgZ8IZgt8SE1yPkG1hMRQpCe8SDkNVpAkIAmsL25skz8yGjY/YdTVyNqiqgBAczlY9Mf2NHuu2RzdUSMmirqahO3QVPLO+CWELAAgLn2corSZXcW46Jkxx4+jhXFJsdBmBCU6EqEXOp2jhq4hxIP3LMDoiHIkW3keEkRgRm3ZEdyDilnH0pSzvIw77psCH9ZvUMlOdpGEgYS0hPslgeHKg+2JwyNHg/PKADGC3bUmeYHGNGCzGAr4KMAalr3Qcl/MRkY/XDZHzjCOxQyb2hAfuQ9ECFeIWY4BK2ndgsa9skIKBb4glta4i+q5iRr6EFF2pFwxJiYTBwThqgzDwWZ+wWhGhztBVsEx6A95MyCJubkkTUzQ0xZsqMhLWp0k/0ybkZBFHC1clGJsQBo+qIeY/K54lxdTnfCpanykQvDuNtpRjfSLjjL1jabRwdUToHaqW5goyiOXPT2Q01ieQ1IQhyGQGqjYgBoscWGKEvdACDddjly21HULfn00hm0kDuXdsRVBtgOqXoynX5WBRbwYYk9HfNBNE12dkgUQDBF9rIgyA0Pnyy1o2KISRMBu4lkhz3GZE7PzEVgjArwITBAGIFraORArEiynDZaTOk85oBhsDVFB9NmDY1gUubX0iuLghePy4rygfrr9pI3LvYGom3CkuEJCWqWVd0Sayvihpm5qK8wUKE6KpYyEGgsBzE/U5XJ60LYMB6gTrI11rKA/TkAZtHixMzRqqYuiIt5jLqs4HhN5PJEFVIij+zk9efb7WrgLStgJ8gm0j0raCPRuR9h7iMjOtMJuwHAtD8wvCIBoYhrHnYSozd27ykPIcRUWQdcmzzMXREhRf3vN1mmDuwiaZMOmzJlPCA1LnkW0iYiJBOUTqR3QO9nyk53Fk16q8e1wuOq9oSGfWNIREsT4jBQ4z6B3Nl4aJmhwjShyNp/Gs6Ttw/jyGAKhONk/907lpDBIKGRVE+5S9lRJSoGVCTDDIbSx9Wc5JWYOl/u0t6e5Kf0QDsw7A7eu7LFOdiHgpM0Rbfn8sacISwRK3R+D3Au1vEsPxLTKjZEoYgQ5xAM9ntZFohHjL8OZA4k2nnvsnEuwe0UxhCozuKHB4CSlg8iaCK/M1A/ejlOtQYP7yTOUqlZACQSmYYArZVNGGbdJUX8dw+0AhEqaf2ld0GIU4TN6/wIxARzyeMldIWzNP59iTSNqYyqqS96Ho+0bpl6lvZ57ZJcRU8hCPfJwfBneNYWNV9kqKTWumvHHk+qNeUKjvxyx8fZ+uu5u+z/LQ/XAKzqvLWv49lqfkpzZZgLvf9bHjBxc3nzC2lqf099fybP4oPST9UwD+CICfzzm/MMa8DeDPPOTGh8ZYfvt7qNz3La3ciJ+4+BS3Y4s+eazciJAtDrHCEEkqQ7QZhYl1O5IrUSQ5RNOxixVqGxAysbLWNqB1ASFbXNcrrPx4R9NRGFt3Y1MMwtpG7EKNlR9hkbELNZxJM1IfiesM2WJTEcur1oW0JqO2AbdDWzQsK0sMmgPjVcSL2LjA10fctg3XPZa8+0ASKSs/FnmCliVKYrbYtxUqoUtnuQYxfkXXUeqesikajiKPIIa76Ctqr+uYLCqbChus1FmOj8kWmQPpk9pF9MGj9gGVTdjXI1ofMCaLmGyRlbhlwz+kuZ6fsNfKGHWB4m491xHA7L6e43LfONuV9jqbS5sAYIzzN3HLhvkQPMWmsrZjymC5BCIjknoH1u8co0Xtida/9hFDmGOPjMlYcd5tFYr3OSZLzLKJ4oe7KlBb7aQfWaDVhuQTnMmofETf0CNe+4hVNaILHn0dCjxcPN8iBSFQcPlN8Y7as/wu98dkCoOwMRlj69D4iL6hOhhGB4ieY6VinWXOi4ENYEbdT31PeY8txUGPcaLv9z6W2GbnUtmwkSTXa9p72bzpa1/mqcDXJf5YvH3OEdZhVPfr8uSzEBytmqHMRcskKt4TG64ka/O06VRPr9+CGBAIt8nwPqJ3CW0zYqjiTI+yqWmjIfH4O5cwMKycNpdoBTRUEZ4NZF3fdTvMNo+snbQxmyrgwFB+2QjxVUSo7dQe9SvvJP9AG0Yx2sICLJtWFDduyvXWJozew3I5oqloXSrx5LIBJdfCkG6l85E2dmpXNnJkflpHhk1i72/TjrAu8ebQxBg88MaMbKwY0KbOYGgO+ipiMLQ5NAisM6OUXWLffSpanzIPnI/IGUg1MRsbm5D8BMWXDQHruP+rabWaM5AqWzZ6ZK6J5qZA/GV+ygorJQtfBbJHTUaqzSTnwBqkkTfMsqcyDM9/2ZBKlUWKieQlfILlkA0KmeBn1ZKhaV0EVrQZU8ImuF8yGPZqKLbdcpx38gTFt7JhA3AYhdqcAxsrPI7GZiRhDE682cMbYRL7npnDwLCRCxD01zCE1tYRSW2SGZuR2nv9yvcm4xND200x3gHqiyybG4k3ZXisZe6bitqVXZyg6XJe4uHV2PMgUfsVI2lm+IBxDJU3zFjq81E4v0CT4dMEb5c4eunfRoVkAGxcmmkVz6EdM6itfLcEn8/W8O55VjDNTKEKljcKGlUvznsKq4AKg5gkeJZe2WRVm8zU1pwEYroYs5TZkM13+ragh5RhOes76QK7OJ71eKg+42dVG7d5yb6mDbTjttRpY9Ms/nEdi8EohurSwFrcc7S8Y4alvmdhWBYAgfTRPc24A08p1ne+e7Wug/xZfl/mf+L7rMivktH5VarLkZRz3gP4K+r7RwA+esi9D2KF/aqmd37qUf5n/tI/gjG7wgzrTC46j2NhfKWFrWZftciz88LWSkylEQMHKQk7qhh43qQ70FptNIr0hTZAJ4ZWMmKFKZZgu9NCWNcvZTMrS/JZsqtq9ldgDt/VLLHa8DvGCgrMX5Q6SX2sybP6LZlglwywSwitGGrLcqVsbSBGVfdTjKrHmFdnefJft6iH3gQUI3o8Ut5J+O/i+BJSLXUao4XjhZc2uMV40+2l/iEDNTD5kmaBfQgD7DFGVB3fK3NA1zeqeXqKOXWqw93+0JsQ+tix3yf9m5RU/oIAOFauvuY+Vl59r+6Lu9dwHZa/8+r4Etas89d10p+1UXqK7VSu0+Rby/jlOUx9Xh99rTYyj8HOBemwbGfJmxfYUp/ZVu+xbd+ycuAM9flsTvaVbtvy3H3su8s5c6cuUocjn2cQ9cUicZb58rDu0yUx2KmKLc9J/Zb1scfrKueB02NdGHfzkb+SH4A5e+yinfJ52R/luCne8Dvi9noQNKmXXsAemzOljEU9T/TDg9OpyZFxB+abTS7eu5LEE/qa6Y52n85K93s6cvNyYa7vS3f7ZdllUx1QUMZHx/NYecA0/qrsWRlH+nU2rMdYaGVOqItNujuuUl9NLCRlnTJKSh2OtUXl8SCDYTlvjtwzy+fE3LxT1vI5O1XuqfNH8l4+6kfzOzbvTqVT8+5I2SfvfcX00jF5xXy/J6NQ3fsr//4PnhW2/fp7+b1/4We/9Hy/9a/94NsGvD5+ETrYAAAgAElEQVR5z1ci3Ywt/uqHP1k8Q91A8JamCmh9wPP9qhhYbRWw62o0FQka7w5N0QDshgpnq76cDwxfHAcPazMuzvdFk1B29q3N6JjRdbPu0fO14+CxXvfY72lbrmlHjKOb0fHnRDvx3kfsbluGCEbS0mPYYI4Wvg2w7IUQeKhjqCBAC7QYHEEXg0W1Yk9ksLAuI2wrmCbCVQlh72HbWGCAArmr2kByEoZgXcIcK7vwcbTzXfKaGFxzpGOweYLIRasWYxNs0jcEK5V7jKPjtkpIPTO/BgvXRMTeTWUcHOyatfPqRPcdCBJoNoGgdgJJlIWbsJ3KwnoVaMdQMcFisAWWZlmTL31G2pR4NCAHy7p+BEEzTZxYXwHSzgNoh5l3gQt0TSBXAMyB4G9ZWGEdQ6XqRKywFf+ayg9zMjC9JdZBYRY1AHyC6RyxO3YWacVkS8KSyqLOoqdW4Fa9RW7lWgt3a5HajLSKMAIfBKadZGBifeWFUfkulwrUK5oCq0lNghksMYi2CW5vWbfP0o+jI+IXkw1sZ5BaZo6tMi3yqjxBlRhKJZClVCdqc5vgDpaYVAWCNU7EKnawBa4k/e92dH0W9tVAbJZmJF1BDeXSUDFZPNmenwtmW7WjofLlM5MKCbSsuiHPyfgolb61A7VX5qTW8YuraTUlC0TNrOkOBuEsobq1xODqaY6bTHp4UchImPUzSH4GsB154cYV6+kZECkK511dW4yXiZgaezMxQAJwe4PxgjxJZqT6uwO13Q5MPiSGm6E2GjAZC2v3FdZQzYzpcukTG4h11USU3fZsUFgwbQKSZwZSZjQ1oHOuo2tTQ59TTccJUsh9wo9jdW0QWxA7buK2ZmDckFYi9R8A7tPxnI77A32ubkmzUBbd7jCR1ZhMZQspDZG3sB6hwaQd2NNYG9bYzC4XNtjkAX+YL+pTJWNF4+Y6TOQnosfnKF9J2U0agaQfiRk7rRtIY7G+Zh1FZmiVtbPoWGZP5UXWWQRoDIX0JbZ03PVAWNM50RiMDYrmYaxRmGIlH2FMtQO/KjcoupTZ8VxJzMbLZUq+ssjWrK/+MNVLWFjdQH0YG27ziq4TBttsAX/IGC5ew6Dl5Dogrqg+rkcxbEyi8uww9aOQaAlhjetoriePaf4xoY3riMxFrjUZMGEifpH5VLw2Fqi2GbE1ag5kJG8m4y0DJtExAHADEVLZMSM5mo820Hsj1YZ0K9mZawJ5QW3IXEcD11N9CrtoAmJl4QZ6J8SKN+C7PLWDdRyTp/tjMxHSyPtI+mLGLCwewowJFptR5q9mJC73KO1LbUyU58ZM1850LDlfzQpr1G5u5n6a6ViWk9P7puhYmnkb7zD6lvfnxFKr4aVLncvZPtIRz6p+d2qyJV3H8l5M877R6c6GxTEjVl23hMRKXR5m6OvdDTP/fl/dThncs7zxYGP+R+nLTz/UhuU7zQv8uZ/879HlCjFbdLnCmB0sJjhdl/iY8nhFTJ5KALAmoU8VKhMx8hsgwqA1AWN2iDBwPDsjz9YxeVQMhRWPpxyTvACCmx5L4omM2cIpAL6+/pi+pZzXXrWKfwnG5O714EXYO55Gan8uf5fHlmXpvJbJIc2OHyMAEi+tVW2eeYy5rUsd0ZhNgUfGRbucyeUYeR/n2qFU/lw/VLcpwcD+nvnbR/oeAMZsUUl+qn7Hx8fM2nQs3dExVe0Rj7buM12Xpdbp8tix9um8ZIyPeYIfqrt5n+d82U5vI3v2784XPSYPaZfu62W7Tn3W9TuFJDiVTmmw6r8vJf454ZV72TxatvWYpuvUj6e9ucf6RqdTWp73pYeO/33335f0mmB5/CFl6rakTAiBpef9vvekzkNQBNO1KLB3YP75WB46r+Xn5XXHPNDSBp3uey4rQ95/j/l6KmeDWm0YOhlzPid9bvm4xdSuqOoj7Y3cjpDnWrGjgnIXFAcw8yKLN93ajIX2O1ISGPnxeak9uuOsgVNfl0PcnoOgQzBfK79uWuZzat1a4K9GH+MP+sYTC+As3lAxKI49n8c8iMsVt1qNa83TYx7k2fp+WZbJc5iulK9ZynWZs++42/na+MtH6rNMxzpa5sPL7tH9faeu99Qby+7Msz/l850xnC6YGYV32rAcq5edf/nMfbBn757+vJPnqevufQBOF011XOZ6zxjeV84Dyyzpv3vANb8T6XexwftDbVjuc4Nv9m/h17unSNnga/UtYrb4sL/EF/0Gv/fsc9yGFue+w+f9Gd5ur/Gdw2M4k/Fu+wLPxg22ocZVvcd3do/x1uoWn/cb1DbizeYGT6odruMKf+PFO3hv8xy3Y4shObSO4pvebq8RYfEb2zdwUXUAgKt6hw92T/D++jkSDD4+nOOy7gjWykaCNwnXY4ubocVPXX6EMTs8GzZYuRGNDfA24rHf49d3T9FFGqLLqsMhVtiGBha5LMqfNDtYk3FV7/Dr2zcQksOTZofnwwp/6+V38WF/ic+6M/z4+Wf4rf1jbEODN9tbrNyAPnl8e3uFtR8wJI+rZofPuzOkbEoM6hvtDis3ok8UM/fJ4RwXdYeVGxGzwXZs8LTd4ot+g/OqxyFWxTC4GVtcVB0+2l/gsu6w9gO66LEbG1w2B3zRbfD2+gafdxus/YBn3QZX7Q6fH86w8iPeP3uOD7ZXeHt9jRfDGruxxrubF7jwPb558xTndYft2JSYydpG1C7Am4TGBYzJ4aP9BVImhuAxOiQYPG23uBlb1Dbg0/05hujwD7z9LaRs8Nc//zGsqwFXzR43YwtvEp5160mGxia8u7kGAHzeEbVmFyq0fkTMFk/aHV70K3ib8P7mObahxqeHc6z9gN3Y4HG7x2eHMzxu9vii28DbhJFjFisb8e76Go+aAz7YPSkxrbuxxlubG+xDjXfX1/hgewVnEs6qHtuxQR89GkcxpxYZn+zPsK5GPF1t8fHuAtZknNU9ft/Fx/iou8SH+0tcNB1aNyJlgyF5HAJ53ysb0UdP2q4+oHGhfHc24XGzx+3YYuOHMp6f7s/xxmqL2kV8sj/He2fP8Vvbx9hUA0K06KPHYazQ+IAn7Q6f7s/xqDngeljRs9C3qF3EmCzO6gEWmWKas8GLboWvrW/x0e4C752/wBfdBn3wCMliUw/ogkfKBo/bA6zJ6KPHfqxgALx//hzP+jWeHdYl5nVTDbioOvz29hG1PTqsqxGtJ3bmm76lmM7ocLXaI2WDLw5rOO7D5x2hIM6qAbuxRkgWl02H677F77v6BN4k/NJn78KzXu5ZPeDZfgVrKH61dhFvbW7gTcJ3bh9PsdI+ICaL/Vih5nu/fv4C33z2Bn7y6jN8+/Zxiem1JuMbl8+wD1T+IVR40u7wnZvHpe5vrOm98NHtOR6tOsRksRtq1J7eXX/gyYf45S/eQT96XK46XDQddmMNbyPeP3uOX3n+JiL38bPdGm+e3+KL/QZXqz2u+7ZA1WMyOGsGVC7ipmvxZL3Ddmhw0XT4fL/B4/aAPtJ49YHeZVerPVZ+xGeHDaFNosMQHSITsA0ca70bKjxadTiveny8O4e3CYfR4+lmBwD4bLfB080OL7oVhuDgbMaqovfSYajgXcIffPrb+Pb2Ci86eibfWO1Qu4Bff/4E5w2xhu+GGs4mvH/xHN969gbOmgHvnF3jm8/ewO99/AW+c/MYMVnEZPDW+W15P3ob8UW3oX7lWPQu+DJvtkND7+Z2j49359jUA2Ky6KNDN1R4tD7gMFZ45+waKVuETJseL7oVdkOFiuMF31jvSh8OTC4XksXXNlsAwBAd+ujx5voWH+8uULmI667Fph6Qs0EfHZ6s9vitF4/wt731XexDhef9ujzbtY1Y+RG3Y4PbvsHXNls871Z4utrBmoTH9QHPhxVCdvjo9gJXqz3e2Vzjg9srnNc91n7Ayo34hN9zITk869ZofMCLwwpPuZ7PuxUaF/HGagtrMj64vsJ505PxN1a4aDrUNuLj3TkueT6uqhEvDqsy19bMon59aPH2xQ32Y40ueIzBYdMM+Nr6FilbfH6gufrdmwu8fX6LF90KZ3WP/VjjGxdf4P/+7O3XXnc83ezw8e05MoDzti8cBY0L+HR7hk0z4DB6vLHeYzfWiNmUWP43z28xJoebrsWj1QF98BiTRT96fO1si5gttkMNx8/5yo+FV2HbNxxbTxslQ3D4xqNn+GR/DgOUMrdjjSH4EvZQ2YRtT2Rwj9cHvDi0OG/o3TlGi3OODb8+tOU+azLaekQ/eqxqilWXd8UQHcZoUblU9MLPmoHWA12DDODJZl/4DVbViN1QY9/XeLQ+4MV+VWKEPf+unrc9vcuGCt4xn0TwZROi8rG0Zwgefe/hOV7aOUKepUQkiKLjDaBsUgyDK/HhThAtioBQyAa9j4V0cBlaUNeR0GdLw9tMut8SM56iLWgz5xLGkVypEkcs2uF6k2vS/6b4cilXYqkzv3MNEwEKeZ4gzCz3geHjkmeJoc5EhmfcXEJO0rTpgCLnJoR4RVpNDHlL10mowEOY8MsmiGwizDYYTmyQ8F9NkKjr+qP01Uw/1DGWZz/xVv4Df+FPYD9UiImIUYRMJDLbqxgDIVp4lwoRh5yTHdJxnF4qlpkjJSax76pCSpHz9LISRtZx8OXBcy5hHHwhZAgjEUwA853oFC0xtDYjk5FMO73GgNlUXXlBaFIKnawlNkxpgxxLyaJpRoTAfVFFhNGVuDuprzCICsFDYiY3eXFYl2cvqhTNpDWJ6cUncFr9QkiRWD7T4FiLcnoZCdOgrZgd1GSCxyq2UFclxGGCyiLR9dYmqreOgeJdLcMvLHnpxEFextNLqbCJGjCjpEF1TurU476i9jHTJ2ymv5jKsDy2qRyf2ix5i44oMkp7CpNpsEROERh7KLATztu4jNi7KW8mqsjJUF8wQ2Zpv+zoyYuZ4bjCzEmTAnBtQAoWmdk4hSCDcIUo1xUosRAdpKmNxjN7pOXyMwgGzKysebQEix4WjI+Sn8t0vZPd7zxnwBTHprB7BkOQYYEOM5Nhie2RHyUmBhEWRmRD7JbRUP4AXS91GBQBjcko+phRPV9e9afUSc7ruCL53BCxSz646UfTZmqDfDcgCLUB1UGStF/Hgy1ZLXU8VZPmsG+fCnsmuaz4ORjm7JPF+7GKyAc3sWlK22yme5n1Ei7DjJbYIIXJMprJQ5BR4MgmGjrPY22CnWDUCRNTpejI8jwiuBgvGKyCRUeGOluug+FzUl6gz8JuSVCviTETBsirCIx2gqHyPDH9VLfCFFknmI6h3j7T53ZiAAUwwaplYRQM3S9DydBugu9N7TXj/BokZtiMDAlXyUQzMeNmlZ8ew6TqklH6StqJYJhYBkCkPGxnkdaEPTbBzPoalvoTkdhJzWim/AtUn6HwFcH7Sx/ys1PGO3FeFrN8zEhlSXttr+cH1TfbPIPbg6HqAAq0FmDobp0LvFzghpJ3YT7tmYlUtTe1CW53HEn0kJQqgmgDmOt9WjouUMoC68wo8EuCZJsCDzUZFFKQGZ6cMXtOdTyiCdNx6bPUpln4ALG9AjpmNhtMDK3CCusy9xvpkVKfqvll5s8iMvVzZqbb4oUz6jnNuBtSANAYRoaKe4LtU4U5j4yiq1pgnBlzOKv+CU6YsZtmg1m871EdzMTXaI+xma7PBtN7Z+kF5oykz7TXUC95oE7p/skGsOp3hcqayp8ZWPqzPmbUMX2fvk7at8xD3XOKmGje1hNlHEuvYD482JOq63CsTt9j+n//7R98HGL77nv5/T/55cdYfvPP/uDbBvyQeyxrF/HO2TW6WBXY21ILcgmd0/C1Y8QkiWFBArtM2SCvupNzOmUDrKfvxzQyl9e/DIon9VvV8/NLGBaVN53Lzd12NVWYDFreoZ+V1U7tPgYvexnMLav6HmsHAIA2nO8n61BG9wzO1IwTEYcqoqrDjADl2P5IzmbGQHeqXNksAAB3oeCrRYv07n3HylxC3oQZNC/G8VS+Ok+7kqCRu/3l1unOsVk91Dww9Zz90FYR2aejY7H83Vp+LqlefG9UGTUHzfmA5UbDdM2y/vFOuAXAfSHjtyxzWWH9XSdP9btDLrMg7zgGZy19VB3p71M/cJnlDHSqj/16A2iVkXLqGWMNS7gjLJZi2IPnzpFrsmKtlPoBoA2FJs2bofukmdqcfWSjjP7C5/l9xQCSG/J0PTAZZYvrUavx0HXmembV71kkRrAYw6zGkhcfs83SQAvsXOs+ICNylo8cl3YnNojSXcMPXD9ZzBVGS4CkGZb5AsUYBsAL4jwdXy722NBbdkw2ecpfL5L5HhPNZFj7eZ1MEgOLMzaToV/kIwDaSFBGYblYtymB4seV0SfXGJbgkU2abEFjADEYDGyvvisjxQQDUXIt+SropRhs1F6+RsbcUH/YzkwOEdkkFXkLLstt7XzR+orJjlOddLxaqbso0gzKyuAGu25qu8SeyqMv8Zp36nbPe87t5m0xnfoi7dd1j7S+sWqzyw1mXq4YaHK/MopKX5bL6X+rxxg0DlP9VVl6ky2ruo2qDfJ39lIw5Vh5VSZ1zcuMnyN9d9TQKZnLpNMnVdtPvv+XZX0PE22RXskw0/X5XvJ+1eMPzfdUesXrX6tPvirph7nuL0k/1Ibluevwjz/9JXyrexN98vhG+zm2scUn4wU+7c/xN28+xrOwwZXf4bv9I7zXPsO3D28AAP6m9Sf4aHiE29DizfoGv75/A2+3N/i8P8PKjXhSb/G16gbXYY1fuvk6fmz9DLvY4BArnPsOffJ4r32OmC3+v+2buKr3GLPFk2qHD/ZP8I31FwCA7xyucFXvVMyXxcoNeDZscD22+FsuPkSCwYfdI1z4A1ZuRGUiLv0e39q/iV0kKM3TeoubsMLzYYXWTQvXq3qHxga8UW3xazvqhzeaLZ4Na/ydF9/Gd/orfD6c4feffYhf272FXajx7uoFzlyPbWzwzduv4UmzQ588HlUHfNydI2WDtR+xDxXeWt1iZQccUg2LjE/7M2z8gHPfIWSHQ6z+f/bepNe2JEsT+qzbzenuva/1PprKJCsbSlklVEUNGDCA+gdMYFSiKSZMGDCiExIjQOI/IITgBxTTYlAiEVKBsiozoyLD8YjwiHD319zmNLuxjsGyZdv2vue+99wjMiM9FSZd3XN2Y/3ex5atb30fntV7fDVssdU99q7JMizX4wpX1Qk/PV7hsuoSpFZn+OyX/RYfrW7wVb9Boxxe9ms8aY54kaCwf2PzAj88PMMnq2u8HNc4uQrfXb/CY3PEP7v5GLuqw8lVOXaukp7gxMpBCw8XFT4/XcIFiV3Vo09wz+ftHV4lyPOX3RbWK/zb7/8pJCL+yYvfxtoMeNoccGsJqvmyX6NSHmOSRfnu5jUA4ItuCykiTq5CJT0CBJ43e7waVtAy4OP2Gl2oMrya2/2Lbpdhx5X06L0mKJ3w+GhFY/Pnx6eQImL0Cnvb4JP1NfauxsftNX54eIZKOlyYHre2yVI5lEfAL0471Mrh4/U1fnx4hBgFLuoOf2v3M3wxXOCHd09xUXfY6gE2SrigMsS6Ug69NxicRqtt/s6xiY/qI+7GFhszoFUWnTd40W3wfHWHVln89HiF729e4dPDY1xWBE892BqdIyjs05ra/6Q54PWwRiUdrocVKukxBoWLiiDlGzMgRIEX/QYfrW/wk8MVPtlc49VAUNjB6wzfDFHgcXNEJT3ubJNhvb9z8RW+6jd42W0gRMTajNiYARemw2f7xwggdMPKjKikh5Ye+7HJsOer5gSJiF+cdtAyYGt6XA8rSBGxNQOOCYp6UfW4HRv8q1c/hxQR//eLT2CSkXdR9XjRrckekwTR/mh9g1o5/OD2WWZ+brWFCxKHsabPUeL721f4k+vn+L2rL/Hp/jF6pzPs7ncuv8TekhzRyVW4rDr8ZD9BYT/YEFz7p/tLXDUdQhS4GxrUmp7Nv/f4M/zRq+/iZA0etyfsTI+Dq6GFx/fWr/D/XH8EHyR2dY+vjht8tL3BF8cdnq32uB5WWdbFR4IhaxnwulvhvfUdbscWj5sjvjju8Kg5ovcGNih0lsblSXvEruoyXNomKKdL5Z1shUZb3A4Nnq6O2JkePzteQIqI3mm8v75DiAJfnrZ4f32Hl90Gg1cZruwjQYqViPh7Tz/Dj0+P8KLbQMuA91e3qKXHn1w/x0XdZ8iqUR6/tXuJP371Pi6bDh+vb3Lf//D2KVyQ8FHg4+1Nej+OOTTgZCvUysEoj8NY4731XX5ulQh41u7xk/0jbCqa0wzXftwSVPK729cY/PRTfDO2uB2aPNbPVnuMXpOUljPQImDwGh8kSP4YFE6uys97oxxe9ytsKoKZHm2F56s9Pr15jH/t2U9xcBVeD2s0yuLkKjTKYmMG3I0tXvcrfLC5TWEKlP+l6XB09Nv3k/0Vnq32+N76FX6wf46NGbDVA1o14ot+h7UeYYPCi26DWrs8J6SI+b3+vN0DAH50+wS7msJEjq7CRdWhkh6/OO1wVZ9wtHWGTKv0Lryo6f3wulvh4901Tq7CyVb53NOWYLcvug0eN0f8eH+F72yv8aLfYGt6nFyF729f4Z+9/PAbrzveX9/h8/0lYhTYNT2M9AQdVRaf7y9x0fTorMGT9oijq9L8puflw7QRfjc0uGy6DGPmee0ihT4wA/sMCjvSLhtDYQev8NuXL/Cz4yW9Z8cKz1cH3I4NxiTxpWSAFgEHfk+2J1z3LbbVgN4ZDKnfpIi47tusuy0Fwco7a7Cu6BntrMGj9kShEUFCiYhaOxzGCruK9Ljv+gYhElx48ASFXZkRh7HGYajweH3CywOFkEgZEspMYlsPGa5fayJQHJ3KkPvauCwV1VuNbqhg0sZVpX0Bn1VZE1yKmDcHxwRvLWGuzGbuEhnjOOqkya0yUSOnEARq4zKkmeGvAGZM31qTLBRDVYUgvXO+TwjS2XaOGMQZMVcmKScpK0KEsWxXMuJlzPdxud6TbBRLPTGEeLlh7x1pamf23nKDPLUrJjgtinaWcN0yv3vx4UU7lrZ8SYAoBGYbLkto6z2HQUSG5+ZMf3U2+2/Srzh9q6GwH/3BRfxH/8u/kQlzTp7cGrV0MMLj2q1ghMcQNGrpcONW2GpaTNy5BkqQXmTnDXa6R+erTJ7SeYMhaEgRslEnRYARIR8/OnrRP6qO+fMQNHamx51tIEXIi29gInRxQVFMnHR4Nazzj9IYdPa6uqDQaAstAqQI6D0tKIgMZYLx9F7TgssbrDTFp/Ve0+JiWKFRDpVyuBsbrPRIcUDJwwvQAp4Je8agUUmXCV6W1wKk3RmixBiml/fgdP4xKAmAGuWyfujJVVnzkg2mRrms+cnyKlz3AIF9WmQPXkMLiqM4Wvqh3tU9bFBQIkxEG1HCBZkJL6SIM81OCXpB985QTEacdEC/Om4Qo6D4KAgMKdYkRpGNBCZU4RgYbgtrcIrULv7B4jwq5TP5EGt4jl6hSfFunPge5yWaiuotBcXInKyhH9XRYFWT9inDvFXqc24zxyuOTqExjlCXXuE0VDDKo6lsjhkj+ZOYdVg5D5Z84R8ONrYYUu4Daa8qkXQPR4MI0t/sRoPGOLj048jSKSEixW56DI70UAHk/FhqRRRziK/lfHWKs1EyYnQqxzI6r3LdORanGyooFVBp8tr7pIXKiwQAuZ2MZOB5QXlSHSrt8wJEK/Ly5YUDJhmXrqsAEdE2Nv+Y+nQPgHwfx+lUhTeZ5UMYZg8A46jQNBZ9V6Gq3czLPA5z+L2zClXtZtB+LoMXMQyRFyJi6AyqxuX4H44JihHwTsFULi+AtJ7g/QztLxcBPnmpsl5kKkcnjUnWQuQFlHPEkq20zzFCTBzC9eD/3hObNLFhp+c8ed2UDpkBm+H63D+SdXaPBrJxEIpcHcFNjNsz2H8EsWIzXNxKqMbD9wTF50VMGBNmL0HQhV5AymUk+LnADCrOrNnczgyxF5FgzuUiScXpXuA+VDzS/bAye01zPsxUvYRtW0nIgk7R9QxvZTj5EqqeoMoiCoLlMjI/MVoLKxHrkGG7gj277FFkVluGARfHKF8QjJM9XZIhzRNEGBIZxstJJPg3wVxTvzB7qEeGWQZNnsOYYKv8HZI8ib59M+rjTWkG72WvKZBZgUXy1EqLSfOR0fhjggOrdK+Imf2U65494FHMYZ0cHpBdsoAcRIbQRhkhHZXNl1BnILOSSocZQyrE5GElht2YYekzFlWe3g4z6ClDkBmmm5lgE8sr5x9Vus4is9tmb6+Y98WM1VRM5WTWc4kZLDVDoRf3UKOK/l/AYQu7ZmpHway69Cjdk3bh9IBHtLyv5K5bAlTued2K/PI4LjytJRBIRMz67bwnlvLMbXugrkvIaVnGvevwlnYvjt3L5x3yeLBu5Ri/JS3r8cf/468fLtp8+HH85D/+C4DC/ue//rYB33KP5d41+Kevv4+jrWaLQiaDKBf0/N2mxSVLlLCx01sNo0jEXgoSgleCgFd/PHyQF7/AtFtTpR2zbnw/L8yXC14WeAeQd3ikDHkh3BiHEJFF53nnx6iAweoZ26kvdog48UJbJOMmFHqVlXa5HBak5/MAGS2jU3mRyDtvJQxQqfkPMEutTDtWmO2clTtNvPjmuFXWVOS4TA6WZ/0/3nXjhXBVOYyjTruAEt6T8LtSAV/dbKBUzAvyHPgupt0zIeIsaJ4XaryzB9BCNgJYrQiX9OmXTyBkgFIxx71yIH3uc5ME0P0UIJ/L5LjHdF0IFMjPO4G8WFZqqkOOXwQJsEsZcTzVma2RFu0+y9Tsj00ev7xrKIq41xQHK2XArScDQ8iIurY4dhXu9m0eQyBBsnlepV8S1v9bQn7LsebF+50XWUz9eGigVMDpUNNiHrRTycH3UkYcU/1ynCvD3SKSAUCLfQA4pDjcg20hTchyPIhitqAXSXQ9x5xGAVV5DEHg6BIWW9KCXciI/lhNO4V6HqUAACAASURBVKUpllTIiBMvqsOU58kmfUrF8cBFP6X7o5dQjYOIAnev19OOcDqXk4iQhnayj7cmzdOy36cVg6w89q8qyNrjeNPOfohV7REdtXcMFMt8PLVTP6ZYQnuoUryqmBZWEVCtQ7+vyfjQFHPtBnoXSBMw7GmjTKgIm+Jm3UlD6AjX6TkRA8NtnaRYYK8hVMRw0nNIJ+9Yp/JsX81io2YGkUz/FQnd215PBl2CeYZOAzoi9NPinuPKvNe08F45MgaTBEhu695M0N80/0Tt4e+ov4QJ8HsD0TqEk56eD5MeDI5fsxJxkNOC1otk3GE6riNip/M4xLKtQUyyQ5ycyDHt3F+5/LFYSeoCLu9FisVN7RxlNj6ydFKngIbqlmMwebHMkkhWZvkiVAkqzfUMgvLXEbFxwEixt6iTHEsRMws2KlPMJvdzVDHnKziWMs2PaCIgA7WfjdQKU9xowBQXO4pJVimIbPz6irwxwkmEmoxavyYDluMb3cpD9L9EjGVL8koAGct500FwPDLV3a9iNoZ47ruNz8Z6rNiopzH0a+6nNCaIU3+m/qPG03wQEbBXfoqxDAKumfokO4jEVA/XxCwhlY30ZjKSRUSOuWRDi59h4QHbzA3CLNHRYh4v2k4GDF8jvECsS/g08nsytjHFQk7WR+47sGHGx1HE28a5MTkNB/gOUX4ojcPintytNWaGdFnNswbn0sgRi+N8rFxGsSFbvEKLrpgbYA9aimwQLy3MRaZlsdzW+6fut6X8fy5uk39nztX5obQ8/zWMw69rTP4m/XrTt9qwrKXDZdXhDy8/x8HX+KLfAQCe1Xs8Nkf8i/37aJTNEMQfHx7h4zVBmX5yvMKzqssQzL/9+Gf4yekKl9UJvTd41a9xfWqxqiz+/gef4dP9Y2zMQCxoroIWxIAJAH/nvc/xZYJFXvctfufRV/js7hGkiHhv/Qq3Qzvz8HXW4HK7x870+LNXz6BkxJPNEYPTGL2C8xK3xxbPL/YwykOJgJu+xboaM2SOYzmZofHYV3j/8g4AcNc32DU9fvriCuvVgKtVhy9vt7jcnNBoh9fHFWwy9j6+usF+rGFkwG3X4NH2lOtYp2u5vAjgyfaI42iyh64xDnfHBut2wGBN1gEFgN2qx2mo8N7FHnd9k5gbAzb1iNuuwePNCa8OKzzeHTNj3OvjCu9f3mE/1LjZt3h6ecCruzVWzYi2snhxs0HfVXj2+A53pwarxmJ0GlVil7RWw3tJBrCIuNh25L0ayUspRMT+2KCuyYv16JL6+NNPnwMAnn90jdNo0J1q1I2F9xK79Qk+kGfPeYm7fQshgKYdESMyREapgNOxganIG9ZdtxCVR72ycJa8QENn0KxGDH2Fph0TsZLLdR7uasBK6IsREQStqSqHw10LpQP61w2qywHBS7hRQVceKnmGQjLgNrsOw2AwHiu0O4KODb1B/5Mtwtqjueox9hrB0uMvVIBK8WwhGYmqIu9TsDITJoUosh6qHxS8pcWyXjkyNpyA3lrY6xrqwsL3mn58DOmvBi/g7iqorYU/GMjWIViJamUzk58bqE4hxXDplYPbG+ithburIFbkfVLawfUGsiIBIJf0TWFCMtwi/MsaceWhV47Wb6NC6BR5Oi7ttIEwKsQh6bWuHJEvyYiwN2RDrC0RZx0NxU9GJO3WQGRTnYZsHfCzluK8Puwno/mkobY2k1ZFJ4EXNS0er1JeAOBSzFrts8cLX9WQTweIL2rgykGkxX+MAH7e0MJURjJMrg1wZZNRBuDOkHF8OQIHQ16QOuR4N/WjFv6Zg6gDcNSkL5piCvWtgH/uKJ+jgtg5iNcV4sZDXGvElZ+MVRkhToqMhtZDvjIITYTsBPwmQJ7SQluCjJAIyGsDOQq4C08ELkzoIgBxUok8hjxi8lZDjQJuG/JiXL8go9FtPfS1hl+H5MEQ5E0SoDycQPNZC7uLcCvygumThnAC42MPuae+YIOj+txgeO4h9wpmLzA89ah/3mC8DDmW0rwwOX5PBMCtI3mpXCInqSLMXiPKSFqOEdAngXEXoQZkzcJQRegjeZvMnZgW6RHwTbo3GRjmoGkRLWLWnwwKMHtmsiFPmdmT9qbwAr6NUyyjjtBHjeFRwOpHlJdvAFF4r6Ql7cdQJ+3OFjAH0CbEANIKVcC4izAHAXMAxh0gR7pXuqRrOdJ1rFHqG8AcyI3lWjpmjpTvcAXonj6z3qV0gN2kMg3l7VZ0DWk9pj2MFVDd0H3BTOf0ibrErUi/ctwB1R2VzXnWNxKn5w+trt+eqj3lGwXVn40paYHxgo4FA+gj/QfSf0FjHRVpq+oT6SKSxiNQ7clADxUZVDQukx6kr9iAnPJsXgnYDV0fDGCOpBOZ41EjIB0dA6hM3wjIMWlbStK+RARcK2b6kFnzcoxJO1KkOk9GlvA0Nzhe1DUizdmYiZaUJR1RXwuYI2DXVF/pJ++u7ijPUGwkBD2VI10yTgO1kzVy2ZiVLqZ7xMwrx/9ZxzRozPQvgekZYG3RoAHpMelLRiBKAWWnNi29lFGS3iRrSbIXVHD/l2OX5jJ7X1k3tPROZh1LSXmW5QlP80Z40hQVEQgqUv2UgPSF9mnei4iAmDz39z2QdJ7/ixAnT27p5UyJbddJv/O+Ib7sp6Xtew83+8B3EWPu31xd1gldpncwPH/w9kv+UtJbDfFvcfpWQ2Hf+/1H8d/5n/4BAMAFBbvQyhvTW8AGBSM9bJiYFVyCRvJnjvHiWEiCFiYonJpgnmWa9AYZRihTXg5j0DlOotSnK3XlJCLGoLLXlGGcpAemMkyzJCXSaYHPyQfSfmRYZ4gia2MOCSbLMTnsOXXFbnglPVyhjakXkEiXKLy5XPYKc+yDFBO8cwnr5NhHo3y+nu/JxnHyKHN55XeG43qGZ6a6szYd57XU6luWVXo0uc/4WqZW70ZaATDssfQMq3t9PkFImVCJYyDKckovNB9nKCJ7rkvvcIwie6V5EwJAhoYy5JXHgt/ZD2oUYr7RuKRR57pwGeWxsk4z0pvcjukcezGZsIg9sucIeeaxIfHe+Rgx6/tl3zGNfFkX/sx553iSBKtlCCZ72LmeUz44G+9S6u2V97G3WjLENTJEU+XNgDKPUpePjP8UmyMXv9YLz3oIk2dbijj7JQppY6fsi7Jvls+EKPoSALyTUOzlBWZ07jEge5tR1Ju98bP4mHTN5LkV0262RPZ8z8Y4pD5jGCama6Z6FNlz2fysLD3WomjbYkc+w1JVQPYIRxBjMreFr3UT+zK8mBiQVaHvV3jEqYMXv58CE9tx9oiICXLKn4EJfloSmnCe5UKr1A4sr8serMJtwOUw5I+PJdbVe2XlFWLKm73CyVMh+BwwkQoFTF4vPh9AcFke71T/DHEFCm9mKltx/2DyjJTXIf1XZ65Z9nPqz3LhLjwyU242tAQyI+s3TQzt5O7LnrLCYMgQ0MW4ZdipRGINpvpHgamfyvEsUzmH+L2d2sb3ZSbi6ZL5M7GAg4IhlFzHct5xO2LxtXxey8/l2GFq+8xQKgyVyWgo6iWKvBZNn+CbyWCSycOZPLcPeuKW9c3P5CL/wuA5a/jgzPcz977L9b9sOlfeWz2G58btTL5n7zt3zzfN76G6vSGfc/m+k4f0gfTP/4dfP1y0+fDj+J1/9KuHwv7L/+LX3zbgW+6x9JFiEV+PKwSITBpzsDV6b7Cr+gyBvenbrPsXosDGDDh5It9olMWrfp3j+ZSguLiNHrJO36YaYL2CixJGevgosdbEssq6iwECRnq87DbYVLSFdzc22evokwHHRh9r5QEgIxBx0pBK8YcuwXU5iP9kJ6MpRNKIkuAg+jobf52tM3lA50zW8LIJBqzTm/p2aLIxSeQTVTKaQtaVMykwXnGsn4j5Hs5vcDoTh7BR1Dsipbnra1R6ghbz8eNo0BqHPsUinkaT4/WUjFhXI/ZDhXVl0afYw1Izr9Iu624xE69RHlL5/J5ig1EX0NPGTPcdhwohSLx/Qd7er/YbaOVRaQ+XCBeoPiEbpBz/OFjSFeS4wBgpdm9McWXbZsgaZkqS4cntq1LsIBuLNC8i1vUIIwP2fV0QD5CWmA8Cm2bAaSByB61IRoeNcTYIB2sgZchxiTy2j3YdTtbkWMW6ssQmnIx4vs7HiXyADXs2SGpDmma18blNo9Oojctlb1d98hCHbBQzhLqt7cyzTXBlnY0kgl7HbDxbp7JHuK1HjE5nmDXDqGMUMCmWlGMoAWCz6jE6DWsJ4kmEDBSr2yVdNzb8pIwwhuDZeSxrep+Mo87EDAzTNpVDCCQ/ZAwd321PkAK4PTTZQK0qj3GkeUR1iKiageZ7X2XDhjcZyCgn47JtBnRdhfVqwDBOmm5CANtNl6DtNFbGOPS9yQZQw3UfiJCCiBsmY/hyd8LdsUFIUkRswIo0v49dDdKaIzh5044UZ9k4OCdnUE1liKHZWYWqJe+z1h521FDVRCTB0PGqpfjNcdBZ9y3yxoTxs/hKralu42AgpEfwClVDz5+1ClXjsoySECFruzE8fHtxQj8aOEvjqg2hFoa+gkwkaMFT3GSzs+hOFXTlYSqHvqvQbkcMg8kGt0lIB97AcFbNNmNCkNCJidt7meHtzuo8xqRzJxJUXsJULm8mcD+SdhyNpTY+9w+3KwaR7hP5eeDQASlijj3lOa60hxs06kuLGGmTiTcdpCB4eI5nNYSA4L7i8IQQBNyooXSAqRzGwWTpKpbZ4s0SirWNCFZmNIRnGakUo2t7DanJIosM3xcRblQkR5XQE8FyyAGSBl9M8bCe4mSDoPsNIQgAwFuCZYdeQzIKIG0m6NrBH8/RTL9bEpUnyaaISToIAEREGBRtTjgJmeJqY0TeBJCJoTo6kp5CQpkgACJBhmPqJ7phMiZjNjxTeQFQrZ+kqVIe0ckJTs55pLhkqpuYIOdBTKzXSXorG+t8TYZCg2DSvMEiMG2M8HFmHWZoNZfPZekwyTeVhiDHj5abKLyxgbSpUR5n2PXiXGY4XhqZfKxsHy8SyphSOf2fjXnEBB/mVBo2/LmE9qcyopg2FKZ6zg3ZXMZib4HzKQ2pmQHM7SqMsyxRU9YvnSs3HpbpnHGdyyjymH1+BwOzrEKZHtoLmJ089/836a98+lYblo/1Af/e43+Km7DCGBUq4TFGhQCJY6ixlR36aLLn0QiPY6hgo0YjSUibP9/4FdZywDHUMMKjEg4ybcPd+jVqafOPsI0KCiF7lG59i63s0UeDlRxx61tcKGJi7KOBQoSHyP8B8m7aqHCljwhR4BTqXEcpAhph8doTe5oNVEcbVTZOOTWSFlkrOeC12wAgw5XzslHBRoVaWgzBwEeJRlpIEWCDxilUWMmR2iQC+kBkPezhXakx5yMRcfA1jPQwgoxrGxUaadEHk68ryy3Jk6jd6Qc29WMjLbFRSiJFWskx18lIj1vX5vrZqLBRAxpp8dJuUMvJk8xjY4SHxzTeB5+M7eJ4LR2GtGU9Bg0bFJ5We0gRcXfREAEMAmzaCh6ChmGvNATWCffDZE9j0NkzTeRGybBRA06hyudtlKilQ+crtGrEEPSMiMlIj0o6KAQc/KST4oJCq+zsfr6eN1fImCciny4RPTFRFABo6bFRA7pQofMGEjHfk8XZ01s7QGRjlevNMb5GBNgoYRKRlAuK+kcSI23nTSas4mMuStigMvlV5w1q5TKCwBV9wORQZVtaRRs+zCpM46bQKIs+EWNVCU/EqAMAuR48R6hPIoz0OLoqe9UzGiDVtZxPjCrgMsbcn2FGmMRMygBwt22gBZFsVcphLBg/Zdq0AohQidOUn8wIiEY5HFyNlR7RO4MAkedZo2xGMnB7uS+kiHkeEmPw1Dfc3o0ZcNjUaWPN5XnAc7jfTXnx5hx7y7ndecyK9jBhl2aCKuXgosxIApE2pTjfpfQSQ/zzM1HEqjNBl0ntOYdE4f7h/Dh0wKZ5YaTPzKzM5MzzQ4oIuyGUgZEe/ZbmKTO28qbdcp5wfZkIionMeCNKFG0q0Rr8uS5IvHiTp1x0lX1Urq9YEovP8dgA8/UeP8suyDxWHLtfrtUYqVFu1DFShK/hDTktA9xq2lATIsK3E6qHCLGQkR0lq6VK3mff0jkqG5nga4lYYPbNcq771F4mantoHRracfY8c79V1UIS6GskISLCatK0LlNYTVwDjFQoURgl+qFEW5QIFj7GZS3l0UqEhVIBwUxt4eNn5aTSffk/G348j5oFQqW0dFL/87dyfs7W/A9YLBkpIEHSQWeMhHtSZMV5UZzL/bmoH587d/90rLie708GUlzeVpbJ/5fSQ+9o6JyVLEvz9lxW8Uze+Zg4V1fM+vRstc5lCtzrw6VH8KHbzlZ8kWZe1a9RpbfV8W3pm3oz/1LTt6GO3zB9qw3LW7/CPzn+TfzZ8T3YoPBhe4POG3w1bHHdr/Dd7SscXY1H1RGfny7x0eoGPzk+ghQBn6yv8XLY4GBrPK6P+Px4ieeruywB8bQ54Hl9hxu7wj+/fh/vre9wclWWYQgQeFofIEXEp/vH2Bqi237aHPDZ/hG+u30NGxS+7La4qLrZgqxRDjdji7uhwe8/+gVClHjRb7DSY2aLvTQdfnD3PLO+XlYdDq7G3UAeUF5AXdUnaBHwpD7gz/dPs0zCdb/CHz76HD/rLvGi2+B3L7/AZ4fH2Nsaz9s9tqbH0dX47I5o8AevcVWf8LpfkydUW3TO4Nlqj0Y59Glx9bLbYFf3WOmRmEZdhWftHl91W+yqPklvkHGwtzW2ZsAXxy229UBl2hpHW+FRe8KrboXnq332+F73LR0/rVFrh+9fvMSPbp/gw0R/f7IGH29vcGF6/ODmGVZmJKr/tJCrpEetSWqkSpDdnx0u4IPEuhoxOGrDs9U+SwF8ddjAeoV/8+MfIkSJP/ryO1hXIx41R9yOJDdy3bcz6OyHScqBZSyOY4WVoQXsk/aIm6GFkgHf377CrW0yzf5hrPGoOeFFt8ZV0+FVt4KRgWQklIeRAR9tbrAzPT7dkyyO9Qr7ocKHuzscbYUP1zf49PYJjPLYVgP2Y52p5SkPjy/2W7SVxfPVHp/vLwEA23rAH159jtfjCp/dPsK2HtBq8nZ3zuBoE6Ny8j6zMdEai8ERvbwUEVdNh8NYo9EkUdB7g5enNZ6sjmiUxS+OO3y8vcGP765wUfeIcZJXqJTHk/aIL08bXDUd7pK3/K6vMznWOnmDV2ZEjAKvuxWeb/b4xX6Lj3e3eNmtMXoF6xTW9YhT8sherTqSLbAVuhQ7+jeuXuVYaQBoK4uNGXFRd/js9hGYhn5Vj1gZCykibvtJbuTJ6ggfJF4c19AqYFsPuD612Zt+HCs4L3HR9rjra/zeky9RS4fPrq+yQbStR7w6rjJbbaVJe1fLgM/3l3mhzERjp4JG/5PdNf6/14/wu0+/xM/2F9nDDQC//fgFDraGjxKD07hsOvzs9iJ7sZ9tDhAi4me3F7hadfBR4JCQAwDw/tM7/Oj6CXqrsWt7XDUdbvqWJGE2B/z49hF5yOuR4p4v7vDVfoMnmyOuT202lEIkLzrHaD/ZHHEcK1zUPV4c17hoCTVivcKQxuXJ5oi1GfHiuEZrJmmBGAVW9YguIReOQ4XLtseu7vHytIJRAd1o8GxLkhJf7jd4f7vHqxQHzgzFIQr0VkPLgN967wU+3T/BXRrXJ6sjNmbAD14+w6ahDaLTUEGIiN969BJ/+uI5LtoeT7cH/MndDv/K4xd4efMIzhPM+YPdHWIU2JoBWnp8cdyhsxqVpuf3OBqS6ZEet4nJ+Wl7xE/vLrCu6B0xeoVuNHi8PmFwmuRJEiM4AFz3bR6rEIHnmwM6ZyCjyOzQo1P4cEcoi9ErnGyFD9a3+PxwCZXGYlOTUTVag8frAz57/Qh/5/2f4uQqvOw22Wg2ymOtR+xtjZuuwZPVEa+6VX7PPa6PuB5X6L3B57cXeNT2+GRzjR/cPMNl02Fneqz1gJ8erzLL+FenLWrtcNM1eLqm38mXp3XWngaAH10/wa4hqYuTNbio+yzZ8ag94TDWeZ4IERE8PfNSRFyfWjzbHHCyFTprMDqFbTPgvTX1yS+OOzxtj/jJ7SU+ubjBy26NTZLY+J3LL/F//eI733jd8Xy7x8/vdohRYNf22VivlcPP73bYNQNOo8GzzQGHsYaPAn16T314cYvBa7w+tXiyOmWpkcFqvL+7gw8SB1tBgDabVmbMGxt3fQMhJgbvfjT4nSdf4af7SygRcRwNnm8OuBuaPCepXoQaEiLiyeqEl6cVds2A3mmMTmHXDLlPS7kRfhZXad52o8Gj9SmhhxQq7WDS+/ui7YnzoWsQATzfHtBZAx8FdtWA26HBoa/xZHPEi/06k78xGmrXDLBB4tDXqI3LSBhGUdTG5Q2K3mr0vYEx5PlWMszuKUM+MuonkQBaq6CTV5tJAVlexI4apnKEtEgkepy8l2hqi2GclswlgiR4kujQOiQUySQTorXHMJi82SAEee9LQj9gMvhprhebKUm2JGtcyzhjzwYjJRLXgkqSJyiQRsyanVm0z1he5QYGEwOWYRB00XzDI/hEmijvG89L/fG53Eic7UyUZZ/9X4RD8D3n3J3nNlR+k/7y07c6xnL12+/H7//3/wF2zYDRKxwTtKytLNbViC9vtzDGwSYY3f7QZvbP46nOELChN7jcnXC7b9G2I5yXGAYDf9IQJuDy6ojDsYFM2kbOEVxtSHCazeUJfZIacL3B+qLD8Y6YO5v1iHHUOZ4nRiB6guNUlcfx1QqQkWA9LpF7JPY9ubUQkh4WNyhIE2YsrTEKIh7xAhgl1C5Ja/SKIDc3FZFYNB7YG2DtIHRAOOpM8qF2I0GNBBB7BbkiWFtwBE0KTIqSIDmZZdEm9kwdITpFu5AusQ8ynMUQ7EWtHXyvMmugMAFxkBCtRzxq+j9KInPpdC5DHBSwc8BRUztMAPYawgqES2IlhA5ULgt3O1lAaiLiJmFQ+FqA6lsRVEesHaSKkD+l8bJPLWAlsQ5WlCeaMMXzRAF5UIAAAjMsmpAhQLKXCFWAiAJ6LxFMhG+JSCSaCNlJhFWg/3x/pm4XUAdJBBbbhJVREdEEyKNCVEQE4nZEZCJHIluIhvJnQhG/8RBWQnYSPrVf9hLVtYRfRdgdkaaU9PahoM+PCjSuVkxU8eldrToieZFOZPIP3waoXhJZRxuhDwJuQzT/SIQmUROMSHUCfhWheoGQ2DBDPTEVMuGIdETC4tsAfZJwqwB9IKbHKIGoY6bah4hUfgCCnsguzJ2EryN8S22To4B0gBoE7CZkIhUiH6Ft4FBNQvOqp3nsWqK2l6OAb6bPoaK6qFHAVxH1KwkRgf5pyMQrcqD2IjEZCiegO+pXu435B5LZF4Oe4FbmIDBcBdSvJeyW+pBhW9WtQNRp7DSgOyKIYWiUPtF1dhNyO5j4BQDqlwLDYyKe0ScBaWk8RBDQB2B4HHP93SoRuqzoWt8mYgekKTrQ3PUNEdL4mvrOrSJ0JxIJR8wyA6oTRMqS5giPZxTUl0yGEyoqTziaVyLQOX1I47Kmz76NmZRCWjH1YwCalwJuNRHH6I76YLiM9/qlugP6R3TcHIlcpr4Bxi31aZQToQ0zU7oWOZ5PxETacqJ+YRkI1QN2TSQmUSLPO9VTrJ85YpJKQCLR0dNY6S59j5iT9xzT74Ci7/oE+Jbq52tAjfQ5mERkswXal0Ta4uskHZGcw9LSdaEi0hkml0GkfIKha+1GQJ8A3UXYtYC0RC4iHN3DchS+FhN5z5GeP9cISA+onvK1O5E/ByOghgjhAbemz8FQ/q4V+T0pU5t8Q2Q3QQFRCwRFJDSauMrgGpqXbi2gj5Haa6mvqkNE/+ibs8LqUyTCHFBbRAQQiITFblLddRo3Ju9Jc98caaxCRePPRDh5HshprBHnY8R5Za+UAurbCLtiNlcal2CoP3j+SEfkNRB03teCiHkS0Y0aY5ozc3IXJrJRlshTggZ0n96/iUxFBMAbyo/mbnp3nSaiG+kAb2iMdTeNJz1D9J5R4/TM8ByivhGpH2K+PmhBc8PFnE8m71EL8p449T//lmXymrT25bYETXkyMU62vSKNAZH3nDFs0nkRkd/7JYRUOhoTvpbJaPJ994hxIqLg32YiOQKQCWvKdmQSICUy0RNLplBm6Z/nuUXkPg/GRTIcmJmJC09oWS9R9B2fu5fKQ0tbb3l56cEuva/L/+euLw8vvK3n0v/xj/+zX3scYvPBx/G7/9GvPsbyB//Vb2Isf+m0NQP+wSd/hpfjBoPXuKw6DF7j6CucXIVPPnqNMRCE7nZscPGMBM4B4PF7R9zaBmPQWOkRN0OL71y8JsZXGdAomwXkf3a8xPevXmWheIaF7T7o4YLE9bBCfUG7sI2yuB1bXD35CiEK7G1zj4Snkh6dMxi8xt98+mWGrDGEjWMsX/brDOFqtcXoFXpnZmQyrba5vtcD7dwzzPD59/ZZMP5xc8zstGszZjjXdd+i0Y4gXMqRdAsAkzysrbEZbiZBYttG+RmMbG1GHG2VoYIMt2N9y+NYoVI+e4JGr7LHZ/vhgMNYZc/dylgcxwpaeeyqAdd9i4uPSXB69AoXH/eolcu73yzUzAQ/LAqdYcp9A5KGcdnL0hqK2VQi4jTSmH7/7/8cAPDTuwsYFdAa6m8BoLMaUiAzw66rEULELPhuvczwLvaeAuQldIFEnzn+tNEOx6Tz2Bf5EuwM2DUkGH47kKHrkzdnmzZPtvWAm66BkqRXySzCvMssRMRxoDm8qiyOyRujVcCzNe1m75OHsNbElsplsD6k8zJrM7IHjHcOa0MSNizHw162trJQMuDQ17hadbjtmux580HAJdhjU9l8/ZDizjgmtNQM1Sn2bnAqt2PXEsswx4AyEzDFttqsg8n9f9H26KxGP5q8s11pj0o73HXUvyEIaBUyydLoExHBRAAAIABJREFUdH5WK+0gBcXYcvwuxdUij2eMVFfrFJ79QfKk3W5ze2rjUvk0H5UKWNcjeZVObd5hVZIkGFiaBwA2zYCbQ4uL3z1h3zV59x4ArjYn9El0m+CUHrGrs1ZlW1P8d+yrHGPpkjh2jAJXf/uIV4dVYiX2uS8FgG0z4PVhlWNXQ29QNRYxCYiPVk+70JHi95QKiGnHX3hJ3rbBwFQu6aEix6+ayuU4V6Wm2NIYSZsyukT+5BRUca0QpP2ok06o7Q10Y+FHlj8BZPJCMInQ+u8ecOhruJF0P7Vx0CqgPzQQJslAJdKlat2j27cQlYOuLLpDC73p0J8a2hAMElXamMwwVKeS6HiKuUz1QxTwlo4r7eF6kze2vJfkaagoXrVekTg8r4W81TkeMUZAJn1S7ifqd0ClWFMe26oZ0HU1bX5ahaBDrpOoHcZTjWZ7QggyzzNmY+Y57KwCGktxxTXlL5TPslWkqWphmhH9sYHWpBMrRMQwGmhF7/5x1FlPta4thECOqWUY6ulUQ6d4S+8o1lQIYrDWxmeCKTvqDKdU6Z3iRo26tfBe5PFWOqAqYotN5TD0FepmxDiY7MlpG4vDoXnj2uJNyVQOY2/I6DYhx5VKGTH2hhiwQ4qhTXJW0dP4cZ05hjWmGOngBT1jcYrNBUAxyGGKy4WY4KwxCLTrAUNPm9rBSZjaEZt3ik9lUq2QNlx1xVq0xNIdA8k5CYA2qQvvlNAhx74iAsFJqCpkhmsI5BhYWaW2WKJEVY3LbZY6ZG1YWXuEnpmPkDasKbY6x54ygRnHZQJJ0ghkMXgxaa0i5ZGJocQ8vlQUx0WcYkP5vnyODbVkuJUxnUh5qEhs3oXRIqJAFEnORaT74nSc4yxzjCUKo1NgIlNCka8Q0+eAxA7I58X8vjIfJabjsfjDdK0IgozDc5YXeyPjtJFcEkItL+UNlYcDJef9Vxp9S6fi8ty96pWG/EPfgYcN0TL943eo72/SL5W+1R7LT/5gF/+T//Xv5/g7jonjZIOCh7zH6BqigIeEQshxd3NGUzrGsWT5eJrJDEP1UeRrOUapjGuj43GWfxknxfFrwLRQWebJi/eQ4pS09Lkcvm7JCMp5cxzQuXSuT87FOy3juMrry0TxQirHh5X9WLLmLusoRYBL8Ztl/wLI9efYLi53Wfey3nx9Wf+H6p5ZTQWx8Kqi7vGB8Vr2bRnTVZa3ZMgt6/OmxOWyEV7m8S73L8exjCH0Udz/rVzkuXwnL9/T5+qxZObl+KzluYfihspYo4facu74rN5FPueOsfFmPc+Nc303HWdmc477mto6xYGVzLmZfCdMOrEPJTYi+Jl/CL6zZEouUykBxO1b9tWb3uzM3JvLKsZsyY47y7MYw/IYw7imY9MCmFPJDAxM8WZvKuPcnOGYu3eBPXl/vy1l++JsDk11jEHMoGb5mtRP5XxfppKFl68rnBv3Y9OWqy0xj2t8KL7oXt8VmS/7HhEQEmScoOhPOcW/kdESs9FAC9PF2KaFc8mom+8v4XJlvxTtog7i70W9k4Fxb8EcMS28kY7zvcsYQb4fD+RRMos+ML/fKT20qC3b/dC8XL5Y+TMwbxvbRWygLO/hSwt23pmBI+IUl1i+wM8tukvjo7w+4F49hRdnwxSXzZ554Ti/Ms9F2aV25NklC8NOF0YJe3bv9eUbhnc2Mg89Q7n/z5x7U/7L8XngkXgwveV99m55vCkDnB/7t5XzpjzfUqd3qvM75vWrSH/23/76vXrNBx/H7/6HfwEey//619824FvusTz4Gv/nzffggoSLarbQzCQGhYEA4J6htFz0nlswlPIcnCImr95y4V3ef66snEexOD2XyrqVXsqHFnfn80Cqz7QgLu89t4h702LtTQbUQ2n5OxwWRsC5fngXQ+Hc+fn3+3W5h/tP+SwXvbyAfZvxc7a9/KO0XNzdu+5+u99UzrnF+tsrs1h88bFz24Zn6ras52ye4OHNyod+g8+sjc6sFBbnztR1SUSxPAa8Q18tFyNlxd9hEfHQs/TG8s4tSN9hMfTmfN8+J/OlZ/rmnAEYC6HysyvJdyqM78H9tr1Lm99lIZev/Zr1PZf3uUXX2Qk7Xe9L4+ZrjMMbH543Xbd8mM4df1tesbCF7l1zplJl24o5kz+fK+ehej30rJXnl4bamTrd82w81J9/UQvVNyzIz71yH7z/TfNryjXd8+7z62zZ5+b8m/rtgbo9WIu3PS/n8nqXPnrX+97QP280lN7VuHrL9ffOvaEvvpax9bYyf4n01nr8MvV/1zp/g7Z97f77q5j+OrThgfStNixjJAPuaGti69Qjeq/RO4PBK+yqAWNQqKTPsMw+EbisEimJjwKV8jhZg0ZP0he18qgTo+FdX+cAdvZIEHMqwQ8PQwWddv8r5XEcKqxrErjnYHhVMNgpGeC8wugUBb1HkWU6lCQT2CiPw1AXTHpzSCFABlpbETtkaywOA0mFGE2QvatVl4kB2kR04oNEW9lsIBz6Omto1tqjTwQb7HliiCEbqC5BBXUKukdMcD9LJBCs3cgQPaM8+tFAqUm6wnsJo32Wkhi9hJQElTOGKPOVooD8U1+jqUjiwnuC+FXa4+5EMCyCB05GhZQhe3dCFBm2x5C7EAQq45JECGAtSSc8viQY4+u7FZSKMNrDAfmaiW0PqGuWO0hskVmrEKgql+UzauNobBPkk2GH46hhDBEJ8DzmoP26clAyoB9Nrm/wEnVDMg6VcegHglayRMSk30h52JEgZ8Z4jEMaTxmxbgcM1hAkTUaoNIZcDstLeD9tHdMCMmZPjU7SGkrFDLt0lmBdJAuhUdUuw964fwIzsxqSoWCoG0TM0gQoNmFYhsI7RTIfVqOqLUH80rzj8glC6TOJAkBtqWoL5yS8U7kPpApZvgICpNkoY9aAZOkJRILdxZikE9LcojonAoWkmScVERy0qwFCAKdDPXlsVYRnLcUErzIVyW0MhTwIw88CSw1EkrYYO4N6ZTH2evIkARlSx9IaSnvYXmcPlK4YMkix2TFJMhA8TmC1GXA61AR10wSFDIHGo2ksToea2qYj/Cihao8wKsjKE6wu8CYUCEonMEHiUjneSkidvJIRiOwtNgFSkfwFw+xm2pReQqiAYKk8Kac+jF5A1QliPSiSM7Ey6WXGKb/kaWy3A8ZRU1y4iFS2iLCdIbkHIMs4mNbCHisIE2iedoaO9RrMHilT2ezx9FZO8EGBLDNR1kGaAN9rKo/bmuQxopfQDUHS2QsY7ATlBZBhhpwnj7Gq/axvVeXhUzujk9QXIiJ6qlM4aZjtSNBLjpFPWpqsQcr1577neR8C9THLaSgT4EcFoQJJgACZGCQGIFh6pqOVEKnP4igpTjLl608a0ImYJM1DIZNkh54kSOLIuhIgWQuA8mW5kULKIkt2jCQ3EnsF0XjEUREUOQiCYx44YPEbpNoDLPGh4hySOahJpqNKsfkRk3e19vTZSorNj0jXiEn2o5QVKTVdWcqj2EARjUccJLIH1wTiMiiNLJb7ACY+AB77iAlmmuL0Y24PZlBN4QWiTrH/S91JRe9MkdobTcjPDJfFPANinOY2wzZjkiuhGP/kbfWY2vEmuZGin0ThfedzIiLHGLLMR1l2lv5gCG0pScIpIscvntvwyEOSfsdERO5H1iw9u+lwxrCPAoVu59T/9zYjZpswi/FaGuViaivkfft3Vpfl/zfAXbmeb9vzyJ7lMt8ynSv73Pk3fefGvG2D4zfpLzx9q6GwH/z+Zfx3/+d/CwokVeEhMQad9SzHoLMcA8tCaJH08ZKEAqcSlsqwU4Y7VtJlyYgylTIEDIfkGEpmUWUIZymLASDTzbNEAMsTAJP8AkMtgQmSyWnpgT1XFmtyllBPLUPWzGTdTYYu+ihncFAAWd5kCQctUwk9XSbuD5YcKGn2l55PNmbZcLde5Vg2nWLgrJ/kHs55S7NXN30vjcySqp7fO3y+dxSv1hqSoSnrsYTU+sTuy5DHclxZYoA/M9Q2S9WkeMzlfbkvU3wjM0LKZCyyVmYIMsUxoYDyTt7oGMWD50dHTJklbJPrcc4TzBsh5biWfcfXMlw7LsZw+ePF93C7Zwx0i2u4fF7UZh3RAma69HCXBjqAHJNYwh6Zqp6PZXa7BTyTNxLKYw95zFnz07kUc6nndVx6531a5ClVHkdRVppLXmQNQd44yONQxCKV8gacyrqX7IX5/hRbN8VryXl7FCu50yKK25ivW3jAs5xD8fzlceY5UORfyjEw9JPvm61puO5F29joYmNIFICSpRc2pkU0G+vZgE1GXpmCk5A6ST4EMnIDG2hF2dnDG9mgnK8Y2aDM14VkIBXezZlXuIxh4gVimWcJkSw7pyAUy/Fjy9iyKCbDQkUyOjgfFGXGIv9S868cFGBaeBfGBC/oY2kEyeK+MD/Gi38io5ralo+rmGLBEsSzGHvBGxqy0BQs+46PcV0kZuRzQDKQlrIRXyeVcXElvLbsn6J+Mwc6k6KUC9/CYMrfua6l/VK2M30nAyvmctg4etCbW9QtCiqg7NN7HmPM7Nip/pxKg6aoY76HP4vpcyyHjdvJBt+5fuHXTXE8ty8W54H7hlvRFPFAu+YXLupQHJsZpVyVZR5l3c/1//L8GQPonJP+rR7oMu9fIpWvk3tlvaGO38i7+1D6Gvd8E8/lv/jvfv1w0faDj+N3//1fPRT2z/6bX3/bgG+5x1KKiEf6iD6YvIgp9RKNIj1FpQZ4SLRJ+81FhRrzWEkA0PDp3jn0NUSBWg/3jIBWJc9VisVkg8tHgY3087hJOY+L5MQac2VZs+/vgJe6B0tVdIyp35epSfUurz/Xbk6lxt3b6vBQO2rhZsdqNa93/iynfFpN41WrSaer1fO6vxVO/A51pvGd5k19xuCbtUn5d4cBL65piifu7P1nzkcATdK6W25O3INXF5+Xv2WtIc/IQ/fz93PG0DkoLIB7398Wj7uMuXwIkj2Pr3PpmDs7zufiIWMUaIybxUeeS2+DOZ/Xg1v2Q6L1N+5sX9wbZ3M/9vpsIn4QGO3v/dZWyeGS1y73+ux+m8q2lvGh9N090DYk49Xn/3zsofQ2mPpD4/im/GbJzD+/qS6iPn/+bPmVnxn4IQgos2DdqM6svO7lxX00n9MP1nGxWbGcE2fWnvMV9LnP5aVxMrRFMx27f+GZAhcvkTc9LyK1pZQVeBNbh3ioTwr7dGnoxKKdsbj+wVQu3tP/eLZDv0YSuB/fmcsrnpszdTtb7LvW5Vx/PTDm5+/HfYMHeGfj5E3jNW1k4N6cOXv92eOL+bQ07h64/21G0P0y5heIZX+cva+4/g2X3bv+ob54xzGfGfXvcs8Dxuq7lPuwcfiGd9e71uld0td8Jr+JUfmb9JeTvtWG5e3Y4n//4vfQWQPrJUxipGNmyFr77OlhWOboCKaokweECU4GS/BL3iHP0M0gMaZzpdciRpHJL6ydmByZCc8YWqSUmkol0QdDGKu0mCEPwuQ54nz4x5sXOnNCBiKYYLgSQyv5WmOIIdE7mSGMvMvOXhjnVPY0yAStBKZ3k5Rh5vUIgRjrhKTtO74v+PvxiByjyBBSkTxTMUE3J+a6lLefGOSETFBPhldFgRgIWihkgLeKtJNKggGBidEudREz35UaSAzXYuhaDAJmRSyabtCAKK4BsgeCX7DShJw3fZgWT0KHvLCSeoIgZiiKjBPUz81hvAAmONg4QTJjgs0hUP4hQXN5dzzfzws+9tIogsQBVC7DGGOCoJbaVFznzMjHsEtud7qUPS+lpyamXXIhEwQvMXtCFp6Z1N9UJ5HkYVIZ3I/AHFYWBZ1jSZkEZZtBuPhehnMF5HEiqKGYe2lkpD9bwOvYQ8R14fmU4Fn5fvZGlA8I3+8JlgYAsZ/GblZH/iVkb4kt2p0nrJhfN0qC1Fkx/4GvwtTWkOpqi40h9rJxX5djCkxwvogJZsaLEp3K5Tp7QcdKqBgnbj8w1eMcAyOf57rJol85H84reYSYmAQy5mtFSMdQnE9shxCYWBn5e5JBIg9NKldGiFFmDw2zHkYd6LiKgErX1HQsG1Y63mvTjDBlUT+uUwndo7EAbegFkPesWIgKL8g2TeVkaCD3obh/nwiCJH1ccV0xLkFHyFHCJ4kjUc5zpDoyo6aOgE9txTQmIgoIS+VERXJEkJj1Y163J28qwSeL8eL5BZCkE/cVezwFSGqIvZaSpI1yyrBMZHkcqhuSjMt8bkgr5lITqd9k/47G2JkUNSAc6N3H7500d4XluiNLQYjinZQhn2GqD3uWy3PUiIVBsYjnFREkj2RTX/PcC3PYJY8DRJpLCe6aPcRFn85skgW0kvt46eFmiYrSs8htL59pvj8zpJavEW5aAbvMfVP0BR+feQ/53R6Lei6GVxS/0dPBqR+jKMoun51cQdyXBinWYjlrMT++9LqWe0A5j3NT8YE88veIeVnlu7PMb3HP0rM7q8tD6W3n3zF9LUOwbN+59v51SH+d2rJI32rDslYOv7V7iaOrMmyVWUNdVKikywytLkpoEdD7FCOYiHd8AbMrd5ZZsiJEgc6ZDOcEJm+DEkkSwesMi9Qi5O9SRAxOZwkF9gapwqjlcwxLZOgk31vCXJfexwgiEGJY5phgogxNrBTBXG2QqJM0B3tR2Js6ejUZyjJkqCm3vewHrmfJeplhj8mgPAcFZZkOhkmGCChJx42amDqpDrGIK6XPWgX4MME8AcAm6YSSzbL0krD3ynGfpDoCmN3nUoxaW5EntG80xOJ6v/iVKj3Rs3d72qTg61n8uSSSWsJ+OXHdGfLL9WL4JsMGS7bYabMCk2Eq4gwCyjIFUpJcho8iSw2U870kLeJyidTo/PeyrxkmKcTENsp1YPhuGQPLmyi84RAKQ4U3PHIMW7q27APeYOHv5fX8HcBMrJraVubLq3YykktG1BJaGs8Z3bFg0wQAQTGoOnm3bKUm+CfPtWKcOfbUJ/mNMpXQUakCfEP9ybIFeQ6mja5ypVLGhzJkmPuP+ybfrz18RXkIOcG1BZdbq5xvjnULi3YDabMkfQy4d13+L5A3aoSc8l0umsrNIt6AYrkE9obJZDzw+ZLVNMNxU36qiC8VAmmsgVBPrKZsCEsVEes0b9NnqQNiJSeI7UJcnKG1QFr3RGTobFkmf0a6ppxDQpWr1XmevAGU+7wYwxk8OEzxqfeM+ghARtLXTbFvGYYbyzkspgVqumcqgDyEsRJ5cyZWfO80/jPZB85TTuOVN6sARD0Z2zEbKmleLObBPYxepHxnzwCwKCvCG74u1Sfd59U3NyzvwXvLlPQiZ/0IpEV9MvxKw4znVRT3pSqWxc5+h2Iy4CJE1kiM0yRcGix5Aj9wHbfpjOF1z212xrM4M5i4Xgyx5SxKxt97jZuaVeZ7dvFdGoMPGWvLvEPR5nlmUze9i/GyOPcuxlJufzkmX8eYeweDatkf39T7+OZ733DsHev4jdNfN8My/pL98Vc8fasNy53u8K/vfoSt6hCixAu3g40Kz80t1nLAD4fnaITDKVTYqB5f2R2emTvYqPCL8RJb1WOjery0W7xf3eCl3WKlBtigce1WuHMNaunw2+1X+Hy8woXqYKTDwROe6NquEKLEd9qXuHUrhChw8DXeq+7wxbiDFBFPzAG3riVILshI63yFtR5woTr88PQMEhFb02MMGoPXCBDY2xofXNxmaO+NXWGtB6zkCFsw4N7Y1XR9ewspIm5ti63u8ef7p3hUn3BpOnx+usTj+ohWWbweVzk+9Dur1zj4GkYE3LkaO006bUPQqKXDjW3Re53jSLd6QOcNxkB1aJTDnW2wMz16r3PsoxQRazVi72o8qY+4s03OZ2t6vBrWuKo6XI8ttobyvDAdXg1rPGsOOLgKX3VbvL+6w5fdFhszYK1HfNlt0TmDjx9d425s0SR9T9Z0HIOmDYMoIRHxuDlCioiTMxRfKCKu+xXWZoCLCo/rIyrp8P++/BAhCvytZ7/AyRncji3WZoQLEhsz5DkXosDLbgMhIrYVHdfCZ8mU27HB2ox03WmNSjlsqgE2KNTK4TDW2FQDTrbCphpmUirWK1z3LQar8Xh9AkBQ6Vo7vO5WMMrjtmvwbHuAS3qgjXbQImAMKm9WPGpP6JzBfqhx2XQAgJOt8OJug7Ye8fzqkHVBATKiG+2yEWyUJy++07BBwsiQY107a1Brh9GrbNxv6xH7oYLzCo/WJ1yfWjzdHXLcqlYetfIYvMJpqHC17nAaDZEbBYltPWTyKibXYl3NdWVx2zW4aHvcdA3W9QjWKz1ZgyrBkpm4Squkqwfg1X6NtraZSMt6hcFqjFbjcttR/LTymeAqAlhVNm+InJJ24qYhncFuNHkDYrAalSZt1lPSJX19u0YMAs8e3+UNjcEpKj+KjKY4nGrEILHddNnYc6nMEmVxODZ4dHHE69s1tuseRvu86XK7XxESQgZoHTD0BrvtKW/0HLsaMQKXF8esAVmbpFUpIvav19hcnbJGpLVEkhSCwHissL7sIETEMGhsNgP2hxarTU86hiub43SliOgHgxgE6pVF11UwlYOzGk07wo4awtBmCcee9r1BcBJ1S2RM3AYhCKWha4orNcZjGAzCqFCtRgRPxnt/qgAQgdHQGZjazRAYSgRCUQQB96oF1g66Jii57zTgBcxugE8ID1V7OndXwVz2cKNGOBiYiwH2tobcWDJwAbijmTz6AFB7MiRDQkbogNgp8uRUyWPeKYiVQ2SPskrogY76BgczeVMDgGQAsjEZT3oy8tgjrCJwpGclykge1rsKsU0sJVWYvM46QBw0sHWQLysSrq/DRJTiJ2KVaALEUSHWAfIkyZFv0zkJhJWHPGqoXsCtA4QVkFZABMDX5F2MAggN5R/qAHVSQBQILR2TPW1guG2AGOneoAE5CggP+FWAHCQRvTggNGnFKwExUJ18G6BvNaKKiJr6QI4CKnkifRNTHSP0SVDdrECUgD4KjFfnrJt3S6qjfAFADYK8cSBPnFtFyIG8j6oXiGmFFRQAEaFPkvrRAHIEGdCKhkyfyLgMejJEpJtiTIPB3PMlAXMn4Fo21KluwcSZN1R6AV9FiAioPvXFmDzPMvV7pPGLybuLCEgrydNtiXQpqAjVS/JGsucxADG1JQogVGnKdanNAKSn8Q0GUD3gm8nQ5JhNaek/e5fJ009/IgLCpf+B8i3rKTgfTH3JnkVevAf2Vqdz2dAtjGr2RDNJT2moRkl1nCnaiWI82GNb1J3rxO3nvMrrl8ZSNszlVEb23C7Ky4REkdonXdH2xT4UH+N+eNAIL+skABEiohQQy5gS3muQAoI3KBZpaTjdM3xLo3RZlzNGZJnfgwbwX2Nj7duUvtXkPZ/8wS7+p//b38XeN1nDkmPqbKCFKht0+XwkDUsjfD5G5D8GWnq4oDJJDX8viX5YU84GhVo62ChR6kpKEWYEQg/FLYYoZoQ8S3IePsbeLy7zXDIpTnNI3lhOOTay8JRN+pExE+pwfZYkO5THPKav1JBcxgKV8ZLsYWV9S64P90nZX1mPE3OtSO5LneJXl9It52IEy3PAnFjoXGwhe//Yc8wL7zIxqdGb4tfKxHOQ7ynjPEsNTK5n2afLtnL9S7KiZTvOxURyPcvPpZf+XBzkclzfJQ5wOQb8fCzHhedx8Zs11XdRh/J3phxnJWI+do5IZ+kFZvKlkoSovG7ZztLjfq4/yrLO9TN78rkOTL601MGceYrjdHz52y0Fsrc/y1qk9FAMbOmVj2f6KeedPKklCVV5ryuQC+WY5jlX1qUYL/HA/2Xf8fFzsaH3YveKYxxKULZt6bUvf9JKrzblRf/JMz3vFyljJjWia2TuJ86X8yvvPSd5M40NJhKfRXszeVX2KCN78JekTFP7p+Nv1A0942mKQSa2ZTzouThXv6XEUDl+557jXOa5ehVjQIzM6Vycf36obmVhObyB2yPi/QXpcgUaxX0499dNYvIgi0U297yrizpniP/sJs4XD7Z9dl3+fqZtyzLfVkY5iGcX6m/I8031LMvJD/uZ8oGZh1Ys++tcvcrxPlOvswbHMs8zx97ZUFm+n77OEvqBPnhjuW+4/mvP4q/bN/gGBtxb2vi1+gv4enPvHcr4l//lr5/gpn3/4/i9f/irJ+/5078CGp3At9xjefIV/uj2e5AioPcGY/L2aUEel5Or8uK8kh6dMzCKdqcHr7NBZoNCq21mUfWRYjTZi7KpBnTO3GM0tV5lOGvpeai1w5A8LybBUWeLU5ChqGRAZ01e7AIT4yh7etigZY+GSVDLiWVUpfsEKj3BaqWIGJLMhVEBo1PQKuRFNXtFKu3zQpgXseWCwvm5YaxkRIiYQVDZ61YuyoFpUcr9w+dLKCof88kYLaHJPnnPrCfPmOD+CSSpwuXMF3nzOFSOgy0XrgwFjREZWtsl6YeqSp47J7NEyVJg3aW4RZUkGsrY3El6RGQ5DaXmTKMMFeX8y8WxdxRXq/REGiJlzHmVi8MYJETB7FnGvAIEg9TaZzinT1IFzO7Jc1FwH4qYZUG4rPJ8Nly4vxPEsZQjkGoeO1sytUb8/+y9S68lS5Ym9NnT3fc+J05E3FdmZWWLLlUJ0dUSiAkTBggxoGAAEo9JM2gx6AlCjBAtJkgIoZ4gVCOE1BKIhxDiDzDhNUIMQEigpotWo6Iqu25m3nsj4jz2dnd7MlhrmZvvsyPuoyo78yZlUsTZ293cHsvNfa9l31rfwt6tslecuZ/miioxmexGKO3KMUhbnRtmraq5OgKgWFRTntWRWFVaD91xoLGHyvwkbhYVW2zpxXqqmeJJa6RYPD1s7wNhF23fKyj+tILQKsh9wxY3K/0nTpnAqRN2MXGMIjRlNStK0SCKPLv6NjbSyp9FKZPYTVX3Ma4AxbN6GRu3n/QWLyoxmVLEhU535wVV6xV4eY669BC7WF6WV8+s2VLm4AMvAAAgAElEQVQxyLUK+7jafjy9IsrfVdRbrKCMVa69VBCTojQJRbXYQEHr2g6+pI9ossHehVHiKYFdjGPvGkjxYlsye0h9UZR13eorCBfQXuadHFRF67e6TnZyr/UW61hX1dAuQUZURUNvGtKiAeZz2tau6hCt1he2FA+ScoLH02SQFQ2H3UCbDHmsWsYvsYEtDhDtu0y5Ma2KnJXIEy32js7TOBsKJfNU9L38KbKNtJhCln2/Hnb9ZGxxdyLCdCFneS108r6aLkKO98cUKIbUbLJWgnB2z4PicRG6x3Gr72GF7W51q/teJl6Zex9DKR70aZtbQ+BEJlKnB4171+I+TrDrp8la5NfFYPZ7KH25dlxdylb6UNihmpd1BCFsx68Yzxd7Ofu67+nzGjJ3dbxS+uvUe46/r1yef0/dfm/k6+peHePXlW9T/5vMq42joipGUf+8/NLK99qwzFXjnBxSNc2tDwDm6gg1YxdBSb0BAPNKvyhiAIlRJS54UlRX5+0yteO9QinnQ/A7BCisQ4vRW5ks6LKEqlAq4AwZUal7k0hsWkiS53AzPsLFjj6Ngwy+Ndq2ox+LaTv7K+dVjMnskBsAmMP2C0txnXtDsn8fKgAxd6hDfY6siQEsKJFSFUtwLaYvFQ0IosNGRGLjQurFLvYscA7BUrZ8jVrXloeS3h/q2b2RkthQu0RFJAZwDXTfvSc3QCFAknhBpYCU1E7mffwfGU9bDOUuxrHLnUnzpWvFMJW/vZaimeipdIRBDa2qimL2uvhFMUr69ZCzbpsgksMRoLg6iq/aYjTlF6xUBVU5ZlTQoO7e7wwp6UtctPgXSBmWgellTfNqBE6dUSlFDMb2O1zRGYNkPEodOdYUjI7oQnC0ZmQ2g1Da5bVrN8RBYrsUox21dEgNbz60WEDVKdmiQBTdlHgxFFuMnKpkJPSbM6puBmVndO3i/eSYEHF0bpHtnOSJkyL5IkV+bEQ2BIXn1grnFmwGINDGrGzu4ke7Os142Obf6oghY7u/BRdxevyXyXFae/25ZpDw2rTcWU8IZDeDfHf9hVIJBdSRtfvWvsyp60v+eB6TrmSMZoU6dMYvQHn8OlltmjggT8azVBb8CNYLWTSD1/T1tzGJQQUDXFWqJJZTrpTxo3bKGNexZCDkQ7dhsO+xoUXFEVlQ8Vsl1a376rp26eTFw9sPCs/Iifo57q5F3dabv1jfXLUI8U+VcXb9dI/dTl7yEyfjGnFdnt+m7OazfZclKp+flWsGbf3AuV29ywUO5OFCTr5e73e7yfw4Xch9V0c+1915OlyfPWZX+/qQjN9z/KoBJX+vyPl629dHd9VQkvbas/LhcX0bQ+v5uL6+yrc2zr7tGL5r/1/Txzce95+xvK4X1ju+A8r59738Gd67X7XyvTYsP3GP+Nd+9N/jD8MnyNB4aU4oVeNdPuBNusFv+q/wWCY4lXGfJ3xiH/GzeAcA+Mzd4zFPWKrFQQd8Hl7iM/eAN+kIpzLu7Bm3esZjmfCHy8f41D8gFotz8Rh1RK4ar+0JsRr8LL7ArVkAgNu6w4+GtyhV48t4g4MJu/yPTmU85hFPecBfGN4AAB7ziFFHaFXgVIZTGV/GW6zsnH8wAUtxHA+5pbs4mIBBJRzMip8HijG9MWtr+z5PuE8Tfujv8WW8wbl4vLJnHMyKcx7wRbjFoCNiNXjlzvgq3KBANeKjl+7cUFyJIR10wsEEnLNHqQo3dsVTGjCZ2MarVcUpDTjaFV+uNzjalV2HDebscGNWPKQJr/0J7+KEycQWGyrfP/FP+Hy5w2t/wikPWLPFa3/CwQT8ZH6Fo12xFgunSosJHTTFwInr6JfhhtK/2IDIcaEv3RlPeYBRFe/ChFQ1fvf2cwDA3zl9ikEn3LoFc3YwquIhjs2NFwBe+zMMCt7FAwBgzo5S2UDhaAJO2UOj4rPhAefi8RjHlkdV5vfCrngXJzidmwuzVgWfDY/QquJNOAIA1mKwZIcfjA84pQEv3Rk/W1/A6YzJRMzZYc0WVmc4zln61XrAaBJe+zO+DEeUqnC0AT8a3+Ehjfjp8gJHG2B5TqnqtvEymIQ1W6RKKL+MT9x3JcZ20Km5ij+mAbd25fjeEZ8OT/j5eoOjJabdNVuEQrlIJe721q44ZQ+rCp7i0FyiD1ZiKIlo6CkOuPML3q4HfDSc8JiGRs51sAFLIm3sYAMGkzBnhyU5FCj8cLrHYxz5/lWMJsKz3L5aKT46Vd2OA2Avh20sAPCUBmhUjDbinCiIaDQRS3YtBvecPH50eAejKv6fx49a3OxoIp7i0J4JrzNeDRQ/+9V6bO8FrykGcMmuXfvRcMJPTi/xm8d3+GK5Qcymua1+PD4hFYNUNUK2uHErvlyOzd35hV9oLSxH3LoFpepGXAYAPz6+xR+fXiEWg6MNGG3Ekhy0KvhoOOPvne+Qi8ZkIx7jgDs/4zGOuHULTnHY5dGdbKTY8eRw52eck8fBBjyGEZONzb1eXPmPNsCbhPt1ah4kuVA6o8GkNs81W9y6tdVVisIBbjnm+T6MuPMLkbcx0u40ocWyofij4zs8hAmnRM/kLcvli/mmpTGS5++j8YSfnl7g4AJe+AU/P9/i4+kJXy3HtlH2cpw5bICuPcWhrW2jCpbk8GJYkIpu7R5twLt1wmASClTzhjm6gFAM7vyyc5efk8McXfP0OLjQNkBlXrlo3HCMt3jg3PkZ92GCVQVzci2FUswGo424X0f88PiAVA154PS/STojFoqhfjEsOEePgwu8ZlOLXX8MAw4u4s7P+Go5YjAJVhd4nXCKA5zJSEXjHD2MLliSxY2n5+gcHZwuGHm9vF0mDCbTfc0Gk4utnmdPlcEmnIJv8/QcsjBHixcjxWaLe7+3CQdHKaqWZOFNxtM64MW44BxdI7C7GxZ8cbrBdy1HH/CwDKhVYfSxI/OjWO/BJYRkMLmExB5I4vlzMwTkqhCShbepeebkonbnZHNUPJ7oPu43fUvRuJsWnIJvG8ejjwjJNDdugFzqU6ZxTD5ijbYR4knOZIA2cSW+vA+dsLxBnVjGpejmHi/3znOMfkgWtQKjj82d3vK9TMlgcAlLcG1+vedQxcaiX9jDRjbyxPNINk5zothsaaN3cW+baRey+lBeXaiOpOwiNy6A5lnTE82hbpuVQkzV8uXKJiYfK0nv+mxEVr13gRQxcsWT5YJE65qrtdRrXjXdceqXPzMx1tXSG9j93/eRLfEYv1G5NOAvL/sa4/47uWT/ipfvtJHwPSnf6xjLz/7S6/ov/Rf/NNZiWyzenB2czjgl32IGJa7NqrIphjYSAQrHQ/bssVrVFmNZqsIpDhg4j6DED4pykappSk1LXdIxwfbnLhlBRZGSdoEt3ktcd/t4PTHu+noSlylKl5wrlZU0NqZEcZBYSoBiAddkW31ncnPh7Ul4etdY+ZG7FutoLtxhhTVVfoSkVEjMKBHDxEIxrCGb5vpqdIFjplur6UcnMkmPZYVFfvgu48161lr5ke5ddHvG18g/XgdWEE7B7RhsxR2478PbzbW39D8iwC4ezgmDbda7eLmUdfthB/ZMu+Ku3KPV4iYs5wXRpbGZXYyg1Jd7mJiRVKvayHKWaHdsxOKKfLEpfDX05trvgpw3akvrE7txVaDFqZluXbWYUUaiezfiPo5O1pX8lbQ//Q99z3Ir54mMRnfMuFtqng1t3o7LWKT0yPQlQ24fe9diLPl+py6NjMTtNZSf+yck/Pkv/G4tmYKUiFRH0hPJOMXFuWe8zXlzLzZGxr7JtH/VO5cpnRG7UxsjqHJtbaFyCqJkYGwmpJyVl0uviZ2bNis3VJ9ZSPv6EtPZPbs9Ii7KXwV2btlSr18bWmKPLxB1QcVl3OLCLW7gpXdrLpvympOG0rxGONWRpBWqldIhNWRX1ssFoiKxgoJ+C+LeK50QRbB2LLeCjEibIq+G8u8ZeVXn8nip4DaEV6H1VZKmVEkVzxDw1k5RDSmX6/t+K6+BPl1SQ347N2ZJQYTcocq98g08ZwXuXaV3iq3aoMC+LxmnKK3MNtzchHuX6t7TwNTN/fi7FHbvpc/9jZKxc3+9O3Kr041FXYzrWvxlXy5VNZlzvfL9yku7uWoXimlUvA4FSVdVPXdDLRdtXvtR6Ppo8+2Npd4IUdL/XrG+iiZ+gF+pEdRc+7G6IsP3Ipb9XD5g3Fy1hz6kOveVrxhnl7bh18rife1/E/W9q3vNNvv6vq6vyW80xg+N5+vqfZc+v0H5g3/3lx+HOP3wx/W3/uqffYzl3/obv/y5Ad9zxNKogslEfOofsRTXWFxf2BnDlPCz8AJWZczZYzIBpzTg0/ERqRi8i8T6aXXGnB1euhnv4oQbG7Bmi1P2eIoDvE74nRdf4E04YDJkfKxswJ2Th0XGJ9MT5kzIyZItPjqecB+IOfb1sGLJbhdjmYrB6BdMJuJn8y0A4MatCMU2l17ZjbcdknKwy47EhfpziNlgSQ6vx1NDJo424WfnGxxcxNEFvJkPeDEszS1YDMqPpycs2bXjr6czj5F2Kk/R71KxHFxArrrFdg424RwdDi42g1qMgInRrpd+bX0aXTCYhHP0uBsWZkkNiNngxbDgYR3x8eFE9yB43A4rnoLHYDIOLuIpeJyXAa8OM9ZkMdrUxkqoCI1NjLijD+RWnA08v5Xm6GjntSq8PswwquAn714CAD65fULIBnPHWnozhJ0xdFp5c8JHMmA6A3cJDo53gJ+WAVoXjC41Y3KNtu0aD47G4K2gNgqnxSMlg+O0NsV5MAWn1cPqgsfziMO4ohSNwPIWI0fic49DQEgGIVkMjALEbPDl21s4n3AYV4Rkm3FlTGnIUUtHw3NqqURA7/8QLSwzl0oqC+8SQrRYi8IwRDydRmIEZTdkrUuLR11WB+8T1mBbOpCBd/bFkAKAyLHH3icsq8MwEOOoHxIZDCYjcn5ZpSpCoJ1ya0szMs+nEcbmFjebs0bOCiV7+CFCqdr6FEPKui0+cl04Tpqvj8HCeUaBgoVht8gUDazLON2PQFWYXizN4IvBwg+xGUKlKKzzABQFN8VmTMiOuu7idcM8ENPq4wg7xmb8AcD5fqKcp4pSY5RgYMfYduvXmd5HbkjEzKoAbXIz0M5fDrC3EdoUpGgQZ73lXV0MzC2tm7Q4WJ+wnjzskJFmC+3zTtFKkfJhalcQzo5y0UYDM2Sk2ZEhomtDAdLZU9zdmFA5RYoYSTUZMloy5UONwQKJc4RyvGpkVlg9JsTZEeusGM+Sh5eNsfLGo/rSXCtz0BQPdkwoC/uocmxgPXvgJqEsGiVo1ENCvbfkTstjzydLChobNNVVNnAAcc1VzMZaLcdQR3Kprb0xYjgmV1eUVVzhcdEma5grxdNWhRbPCQ2oRbc4ORhALQp1rJAclyrxGGVMU4b60pOLra27GDrFzJXKUo7H4iv0wpuIzJRZdUUZifVUrwqYqA+Vifkye/pbAcqvWIQJlDeQ+JgONK4s18sY48ZOKgyuqtB1bc5xy99oZrXlrlQgxtnAz5MDdCQGUrPwd47vM2eFePvdNVSzEussyUa1+EIUoAxoMZ07FlEKq4ZdmPnVkRyqrhynywyzYHdfNgIk1pTWkxiq/N0A7kkhD/K9wqyUt7NqdomtwrpbeeyK+pZ7qugzWKY7RtWkUIVtVFF9HWid9jGOUkfkDmz1AOyYXHXY6vT5KDXHZAprKYAWl0nPGxqbaemYXxWf62M0r8VIthymfWzmhaHc5sr5ZVVvoCs0xtjLsjMOe0NX5Fi668S4+7assH1/3Tyknap5fXdzv7afsWPFvVZkTL3h3oxSil+k9ir3sf++a+eZoK7MVap/yJi+ZkS/bwPgQxsIv2rl+zDG71i+14blQxzxP33+202xF5THaCbGCW5HDCMuIBuxDe1gi4vGyopqU0KZMOXvjh8jcJxij5II4uB9bihFThrOkzIHANZlVuC7gTMSoDUpxADaTnpDXLKC9cR5LfF+WhQwYKeQSp62P/F37ZhSFWk10LY0xfOnTPufk247uX/i7porSEmkXCqg7fAXJhqRF7A2lWLYmLBEddfJMVGIBN3Qlnf95bipRExiC0rcFFo5/rkouEHjiyGjBEO76LqiBhr7u/FIbeiOsKSi28HmF56jt6jstANA7ZKVi3JenujX7vw40Dy6xPJKYvLkbdVo/PmHXkhEFLrrVEvq/iiKp6lA0niwhchQBP0QmVW6XhWFt461BQU6H3VTnhY/svamtvMtDhN4kvi2rHCSOK6ioBeN1XksbmRSlG0X+1kwrbyhZceai0oKixCL8I/PYjclNrgRatV49MOOaKMRPCSFwErvyonfZ4m3U9jIIfjHcWUCleBGqKgQu6TtPVGF9J+ETAWAXjWiqQhdgnZUkaEnBUl1c6kKqR8LoxqLxIhlhSzoS1ZIIrdM15mZ47XPpv1oqKwwW9H8+D5E6iv6LahKVeJoSZ1BoVeNdXTQi0byjvrjdu2iWwyeKBXJuQ0sYWUxekdyApBEaVOAmxXy2SBrqms5obyqRAiSz+z9UIBkPexKaQwkeX0DWtSmVFYDWE4Qb5NCcRY2bSQhoixZVsarMxuhjaAm/F6SZO9WDAljWSGrcEkUcAOXVEvloFiJBhtgqig2KnRTFjWnKMgnAy0pClg50wEoZ8/GD5CfPCvCm+HHnvabgmj2imhPwlINp+vI1EZLRaBkrbNBEVSTJV1XN+IaRfdD3j1NIdV8vG7z1ZHuESrfS17TVdN9y2cFe1aAUlsC+05xFyNNR8XpP3jaosAq1Qw2lclgVHlTVE23vqrhe2xZZhUoTrXUEKoCWa6voLQFfD+sVVsqhczXicLI9YtVLUVFVarJU+5pMWzsLoCJ2KWbMCsbhN+x6ATkWTXZNEOMDeneWGpGIf81geZaDa8THrsYolR3G9uO4MeonTJaNRnNOmwylD6rlvc72PBQbf0Wuxkh/fNbrNop7Lq7B82YFFIeqcdrsU/3AWBH3iOGpRBCVbtdu3tfqW59A+1ZacZj19+lgbgzdLo5tON6e1Za/U6vERmplu+yM07k9+B52O+z0tZ/bxDymNtndPK7ZiD14+oM1NZHZzxd/dujzhdt7ozufjyX87jSNrVRL+ZRP9jGbgjf1OC7Jpf3GpLbff9zwp5fnfK9NiydzviNm3sAQCh2h7gAQBy2FCOX7qh9WgIpZdyeRqHUV9hcCqXUrg6AnVtfc0ma+IdH9akFtvYbC+yor9STOt3Y+JjRe/IeccWUNmQMAFCP2/HLFBPi+ti7hV5LsXD5qF59D8qc3+cyoTYXQnEpLB0K+r5rm8F46I4dVEPZegr/y/H0fT9v9/n55DK7KYoM+/FjZ7zWw17e19oF8CzW473pAHbXkHPzLh2I6lwB+dz7ZN2f73+fAKDcqC3dhYyh6+N6g2o7z5seWu3l03/XCqhHQOvt2G6kLMdnf/sJdIVYW9mds6i9XLq265Vnqx5ZmerlJc+LGDKX/XYLvF7eo/77hVygKvKBn+XOPa5czK9WevZQsbG0Pp82ACDfkPtkPmzjlZKO/b3DpjjItb1yduVzOXKbCsgXikveEfrQdelwqWV0pZNF6eQMdd2brXQK4k7u3XVyvFzeF4WNzIo3Dd+rwVSFdIPnMUXSzrOBdWOS8V1zDZSvldMkXLwUnxFHXD6IAHpW2HTNra9XPHsh7h7oi2N9vNalPPlcPmyGfi8n+bpzVSwXbWBTTBsK06Efl4+EjO0SQdkxt/a37n1K97X3g8xJOuQOVHneRrxYUw0x+q7lUr79325NX9O5Vfecqn4u0sb75osrxxX2TKXYGzatP1zI/nKtdWjfrv1LBb9fE61e917oOpQ1JIfe9/nZGr/2s1Y7WV2TT33fhfKMXh7j+ld/8p63c7XvS9lc1P3GCNw1herrrnlPuWoMXjZzefwD8/jaOeBrxvRN5nXR57cqz+779TXwK1nauv31LN9rwzJki//3/lWLW4td7jXDCGVvFEiOMolvktijUlSLOdoQS9Xc04wt5CoH7OKVCsevESpJ5yX9RGaXLM0xRn3cECq5B0JtrJ2C7gFoMTZakBa1sWpePn3iXlXZdUypLZ6nRImHYYTQFHqfZtVikIQ5s7UhdSSmh9HWphxLnBCzlori38Z/aUgVZufsgurbcVN4XHX7zmOoRQGSbkEQRlUJkiog1zZB7PqXY4fcoYIo7YG9gijxN8DWrrjFSbu9kikolhSJjZPjDaXt2q7yuTt/+VdkJWNnhFAVhdynSFC1taVSd07mdKGYZKH9ZxRKzqlAqReEzn+3joTZVBBMuUaUZxmKKAwVTUaF0SFUoJgKFTWKK1sfGltMTwaxXMrfCnbbUpuy3b90uW6x1G6bjygjMv8uJUNTXBg9a4oXIziqYGPkVNtxGut2r5Ww1QpyzSha+9yhbFXXhjz1bJp6dw8otYIk9q62+ymUKp2yLWkRTOAE9f2SidsaFiOgIQEKG2om6SG4belHB2b9VDKerXGdOMm6tGvAbnG8bnTdKWuCjLW0FoI46s1IgRhgItcqcr2ikPbXZ0EsN2VH3C0lkbm4iap+3cjtDGhJ0+m+UT1BlkR+qGiJzFXdZK8jyVCaFUSsv189wtEnRt8MPh5rp3T2RoEgRv253TrIm5h6I7elNVGVUR9Fz0nt5ttkxojz2q/p7SY2xFJvqLS03xsr1W7ur9XKved/nSHeENdLNKvu3SZ3spJ7I2tWb7LrxylyFxdNQf3QuUs2F8Eucbw8GzoB+U+bbkSQuW53oq1TlsGl0Qfw2hX5dMbU+1C7XbL7fiOGr+vdbQXRbc/DBWLWUFTTjU1h935o607+qb3ML9c2rRvV1VGbXLr131BGSTci87tc472h0n+v3bgu5Ve3dpocLpT2q+jbZel/Uyp2CFhVCjp3vyW9zoH+mitjkLq4qI8rxy7H1b9bulfl1T3PS/fVnQDQ1tl7539tXjKM99X/mus+VL7unn2wj2/Z15+Xv7/le21Y3rgV/+SP/g4+X+5QqsKtWxpL5VMc8PFI8YNeZzzFAS/8jIcwoUDhhVsQimkMhm/XA+78zAyVFQcbcOsoNvBn8y1u3YpQDGIxLf+lsEZ+tRzhNbHbbW0t0KrgPkyYbGxjlnjAOVFs5KcHivk8JU8Me6pAq4LRJHy1HBujouTZFGIbQWCEYe9gQ2MvPLiAc/T4wfEBD2HEOXp8PD3h7XpAzAY3foXXGaEY3K8jPMdFTjbiKXom+yFSnRsfGnEQsDH7DSYhcazlwRE7pzCKCkFLyAajTXhYRgw2NVKXVDQmF3EKHkcfMEdHDILR4ugjTsHBmYK7YcH9OuLoA87RIReNow+YbMSb+QBvMkI2O+RzYFIaIcN5WEaUil2+zoOLWDje87wSo+SPX76D1QU/ub+DNYViRpmAZmYWu5QNrMl4MVL84zm6RrTjbUbMGkdPbWtVcTsQa+EpeFiTkZjl8BwcJh9bu4LeGl0xuYjJxpbihlLWGNwyA+LRB9zPI4yu8DYhJIvEGybiAi7xmAcf8biQG6a3GZ/dPOLdMuFxGeBtbnGmkteU5EbkQ7JO5bsg3sJ4aE1p8l+ixcHHFmN6HAIelwGD45ygWbf2Bpda/OoabdsAkg0bIRVyTE4zB4fDEHBaPG6nFXOgeOVSFKwpLeert6ndI4kJvhlXrNE2FkJrCqzJ8DbjiVkdSyGSHyFHCsm2mNXJR5QKvp4YGsXdnu63aTlVYzJ4fUPxyV8+HBvy7WzGyjGO4kp/GAKMLnicx/ZeEEIayrFKn2+mFQ+nES9vZjzOQ0t/AwB3xxmBY1hjNhhcxHkZ2ibUYQy0Rhe/y80q43p9c8abpwNS0hiGtIsTvh1XvH06NAKkdXEYp4CVY11jtC0coFYiAhK3/nGIiMm0eTuXG3mSbLZ5T++CefWNAVLqCFGRMQUxGnifua5rpELDQPd6WRyGIVF8LW/UNNIidpN//eKE0+oR+B54l2BNxuPTBOuYYI3DGI7TisenCcZlHMYVD48HHG9mPJ0HSIokP9E7X9L5rNE2uUoqIee3dmW+y+xhOH5XNi0db0gOYyTdmd/pMRqUtFmifowtHroRNBUFP9LvCslPY/QR88opm4LleGGgZg07RpxPA+5enClsJNgW97yLNY4GbowIwWDk9uW9XYrGslCM9OgjzouHsQVGl/YcS5shUK7gFC0GXospWGhTYDlOeT0PMJZ+N0vWMLZAm4K4OJJN0hwDTGpKLdjimoOBnyJKpjjwkhWMLRTPDCCsDs4nrLPDMEWEQLHhORkcDivOj9uz922L9RlxsUBV0D5vRHqmIMwO2pUWypIzh6rwhpmMOSdN60HIxbKCGxMkl7FsIvc5h4VESpTqWhTGY8DKOZhLUrBDolzIpUsLpoESyWK0PiMF08ZYMxM6qYq8mm2DVNUW3iJ5eGvS0J5TEYnLOm9gCylU4XRdZsg03kob5CUp1Kihh4zCset9/llptyYOp6mqhWtQg9vGFLKiMJN+c1g2BGVs/aatXCNkUi1+kftpm3Hb5lnbDJRS0UJe2iZod+220bTfIJPxtdytCnTtJUFVX8TAlX4v3WhlA0d39Yqi0BzZkLk0HsVA7WJ2dzLoPj7722/KXxrBl4byBwzna8b+tePtmss2fs2MyW+N0H6PyvfasJRytCu7wupG6f/CU/oPrzO0KvBMLe+ZhVXKaCKsKjja0OjMNWojsxHmVq0KrCZXPKvKjh5+srGRx5SqG419qRpO5517qSgkTmdYVZCKQQGxtpaqkKChoXBO9IPvVG5GnVWloZhSpO1QbFOOJX/kOfnG1ioGszBrLjwWpynmFLrwOKiN5iJaSGlqjKqK2Uh5TBTDSp/lWF9XaOBlnMLwKkaEsH46XVCY9MaZ0tIN9EyzYIX7HDf6ecPEMpnH0ufTlPkakVNHmy7sk9YUaDb0NRt3WhFjrTCsGtOcQ0AAACAASURBVI4l1bxdG7LZrSFpSyvs86lG1xhaRWmU9jZ0nX9oVEWpQCwahedHKQ6YQZcJieboeO5kBJGrJSvTRQHQbWUKQZPUf7tMZDhxX3L9bnyFmGJV63/vyi3GTC4KM6eWUdjYdXNVjVk4djk0lapMpW9Q+VwF98VGl1yvumuFRl9rUuJF7krtf2N6V3WAlO0lkPwbrXxVSKwg05ylrkYHGjWPhJXnKnX7PmI27frMa0WMePKSoOtSZwxSu9tGRc8WW6vu+iIj68wkUafV78asFHAOrh0rRWGNDn1O157SXww6qQsAD8vQPgvjrBgZD/PYDL2NTInIkcSo7F2hU5LNHSJ3kmtLoeubESqERtE0wqRShP0YAPdX2dBEpbyyOeuW17UWTWy2lfKxhmDpHOj6XLd7rbLCu6cDzY1lPWcHrWkdpbiFSgDAefE052hwqrTxcJoHlLyNcV06qIs3hVAVCj9ItSisHYMt2GjKbADRHGjxRtBcz+ctLKDd/4K2yOfZNy1sc6Xn4zxvMkh023woeWMMRgXm84CaFR6eJqpfgNgpg0qT4VaLwlw8alE4iYHT7g8ZqWtWCKtDyQqxN15yF9Yg75WiMKehfVbKkFGmgJp0M3hQFVLYZFiC2cIPunmI4YICrMVvhkEFUtTIfB2KQlosUICZOQWyIuj5YTWb18l3KCGaxiqbkyKCWFF8s0KOtCbCajbtmce48jlUbAYWnwvBbN+5tLYvjtN3hTmYzghRiGIcSvUeQqtAXGhMed7azEvXb2cYFEVtV7WdL6vejaMCUFWhdB4vqEDmeqoqZLXFP9fVbCh3ZzjUmd/3/RzL3uCRoir2HkjoPl8aVN01z4ykVp+e056ttu9vd/172n+vgSXHLq65tCXfW3o5XRp1z8qVVi/77ZYDfX/O0PtBI+7aeK60L33s232PUL9BuYbSfqfyq2TM/SqN5c+4fK8NS8M5H388vkWsBl+FG84F+IBRR/zJ+rKxwr72Z9zHCT+e3mIuHk/J485FDDrhlD0+Hp7wmEZMJiIygvgQR4wm4rdvv8CX6w0mMzcWWQB4igNSNfjR4R4zM78u2eKHhwe8XQ/QquDT6bHlABMlPxWNm2HFYBI+P79oiGPPCkt5yRaMlvJynZOHt7F9B9Dy3kl+McmPd+Lcf1/MR4w2NVbYG7/i6AMe40DKuqp4PZ5a7ryZc7Bp1JabbU6uGV1KVbwYloacArSb3bPC9miqoKwfTWecokfkdCKjjXtWWEdMvK/GmdDVwwkxG7yZD3g5zXhcB0yOcg3eryPm4PDxzQkr5yqLjIzmohG7vGDCCguQISBopuRJy1Xh5TRDo+In74j46NMXT4jZ4Nyxwkp+NSliQIyejk+N1ZSQMLnucR5gTMFgc0P5zpznTFhhAWBwuY35/jQhZ71nhXWpoZDv5gHHiVlhGQVsrLBVYY0at9OCkAxOi8dx5FySyeDd/RF+SLiZVizRdu7adWOFFXZSNgQTp2sx/H1ePe388/XCCjuvHjlrDEPEu4cDpsOKJdBzYnijIBeNJ0aZzqtraFZjhdWlGZRidHmfcDoPGKeAp9MIP0RoRmaFoVapinUlw8qYykyxwMPjBGMzxjGS8ZhMU779kKB1aShTyRvZVmFjd10dFAA/0PUx6MYam6JhtAUIq4GxBY/vDqhF4XA3N6MvrK6xwpZChlJaCWHzh7gZ7R0rrNyX9TRiOAY8vZvgpo0Vtlbg8c0RypTm6p5XAzfF9usbmBXWT7EhGtrk5r7/+GaCeRGgdcG6OCLIYrf4OluYF4EM/EXDDgnLkyeW18U8Z4VlxV37jHi2ULY0dCLO+hkrbJxdY4UtaTsPBZRlIwJTtqCcDKEE08YKm55GQAF6TEhPA9SQNxSHEQ9JmZG/HFCHsrm4R01owTEhJzJewa765TwAtwk1aOR1QL1JxCo7cfsKqGLMifugr3tWWCEYAxqLZ2FW2EbQpUHXREWfe3bXqlBd2QjAAKhVN3SnNvd7NNbWqgBilyVW2JoVMeF2Lsd60aiHAvUzg6orqt+QGVUUkEDagKtQs6Lzq25kO9XQ/POhQC2KGExHdlXOVEd5NBfI4kj+1RHLLEAu4iorGCYFSodKDLHgMbKLbR4ru7EzAY/f3HuFsGjPCkuy0z0rrAf0qpCnSgROHo2t1Z4V4ovvrtXpldhmAXItFUNJZYU81uZuqlfVGGvFXVXGXBy5zlddmwuqWRTJzm6Mrj0BUHFivPHaM4B9UigD9V8sscISoVRtxFhEgETrSQeWTeR2NaCENMhxKANfJ32rhObKqsN2nbgeV4ud631VRJAk49YZe1ZYfoTk+ubS27vi8rqW70LaJK7RwvKKirZGxUX2a1lh+dndufgWtbkIm64/bqO5Xu/QPmyGbOdqv7W5HfumrLDAhb2l8NwQ79FKcfmWefUo5qUBrfbjulaE+bUnMbrqjvueWN5df88b3x2na3gz6UNG44cM3Wt1/7z80sv3Oo/lR//Qx/X3/tN/Dg+B3AYlYXso5A4nyrJmxMcZyg1p1aboSn5LQcfE1VQSXteqcIoeg6XE3T3BjbQfsoERBEwXrJ0Rs2bTUMCe7EcMoIOkg5A8f13bS7LN1U/cS/fEPYSwVr5uYaTI6ILEbpNrNkicwJhQFgVrtsCQkAy0IkTLmdKQJ9l5FhZdGbvkdHTshpiybm6g0k4bH6eqiCwfcfGTdCSS81ASKUsuzcAGqiRWljoVaO6ZazJX3e1FfjL+xGiS7gxeq0tDEgVJOIwrtALO7HIn8hZkqS+W8xWKy6XEv5Jhs+U3NIzOigEmeRrF1W9DejZUzVpS2lOXHJrcNUtz24wXDMX99UpVdqcU97bNeBQ3VkE1JIF2nw/xss3+O4DmuijXi4uj5HDMWVM6kpZrE80YEnKknNUudcYupx5f01DGTO5w4ionaUFqVVCdm5hiI5ESZDPCz66Gcj+EVZmYkRmF4uPyqya5FSm/YGmx1CSbsmuroacsQ0pLgpbe4zKpdu/eRgzSm7tj01EklhpkCG45JA2jWLzObW5ykPVNLNbUkDKUZ1FyMdLcto6sz0jRtPjoPqm2NhmZUUFtyI1NmJ37vI4iQDEapV4teJa7sb/PytRdLLi49dF93JJ872K+04Zs9cckLrtfP9KXUuxixy5/UJ0BGzuWaFn7rpCBrTlPYyQjunRIkrKl3YMWg9673sn4ahdTruvm4gdsBiYbv8p2wZ7c5g6R6YmbOvRO2Y38Sfqtsgb6OHLpK2ooXxqit3uBqrq5EQrLtanteRREubFe60qon7gzqrq5GVZsLNmZDXd0x+Sa2F0vSjKwi3Ojc9ucd2hJt2bb9b2MVTcPmS+wGfXftYhrI7AxavPYJMa4GRsFm8sk0DYbmqtk3c63+O3uN765XMqc+1KpvRbLXjuDsq8r8gXwzI2yqp3MdohWDxNVJnjS3Weus81F7Q2rrq1mzPRxmuiaF8Os67KhicDe6pB+1PN2mqF3eXvrJor+kOo/fIMYxd6wv9b+bn1ednat/rXSKTQ7Y66XZy8n7I/v++ku7u/bZZcfGs+HDL5vUL4RyvhtzZA/hdnyB//eLz/X4/SDH9ff/lf+7PNY/p//wS9/bsD3HLFcs8UfPb7G/TwiV4WRY7rm4BCjwWEMLf5oCY7jQigOaRpCy+VnbebYkdxiQ7xPLf/gw9OEYYjkpsXKIkCxMwrA+TxAs2LtHMUk+YEMxpWRGQA7EhxBTpabBbUqhGCbMUCGW2Y3rAslOZvdk+ocITbOZpzPAxlfrNjnG3IHDMHicFixLK7F9oiBsJwpTqaCE7IHIRMiRdS4vDMCUiT59Ep3T3zUkqKDFGdjCtJqod2GrEk8TA4GdkhI0bRYDeMLciClz08RYXZwI9WpScNNEc5lnB+Hpuw244wV5N5QSAshWZLSBNiUaqUrykqIiP2EkKjz/QRlSqujGQ1qipeusAPJXGTVFOCqYDzFBilF8SwSTyPKpfYZeTVtngC2eBUF2CHB+YT5NLRzNSmkKbcYmsi5AVvsiqRSkZiX2QK2wAwZeWZ3VVugbgjZyzOhSpoV0xbbIkpwUU0hU4YQEFHMtM+klBsitSpFoSwGesiEnC0WZUxIs6VULwBdz+0ZX5AXg+wzubWp2lKpoAJwJEdRtutqoIaMuhjkQ6L7VRQpAa42lzTlKU6oJt0U2HoEudSt1H42tc07n/nVV5jsyPDcw8YSowZiiamLIZIiV7a2LPddeRxRQd1WKF0odY0Yxq5u6WlUpZ3/KRHb67l7/QrqlXQjhaoHoDw5qFvOn9gZ4OoFPS+otD7qAJST28Y+8jtnNsiekEikTtvzGeVsgUwImbK1JbXXY6FzVSG7AqwaecrAym0FvVPGqmNDI2o6nxQZMIvZIWeSVL6OtFbqbEjRlvUGVq5FOU8KdaC1UJftGawjSDtaNeqgaDyiFFo2Jhid0GNEXDzVURUYCj2rs6Fx90aQLVCzIXlMBVg04HKbryoKdaL7SIy+FDdG19O9RVaoA2tvgQ0nX2iNC9pYmFhLZCNrvQIKbLwJYVkFMJTNCJC+igKswKZUX7lKRGeG1yajjPTsZUIgD4nGGPUmK0MbA7WCrrMFyBrKE1JrLG9aFDbw5TmOGzqsbUFebEe8pp4bjEw41d4Lq+YxsmWheB3Oht4DSQOmQEV5T/JaU5SXsx4KIcdZbaRR8h6YLeAL1MmijgUIMi8FPSXUVWCzb1+qz4BsNmgev+JnOBrKKVoUqs1A0qhlQwEFHW8GfFHbeQ5zqV2qDpiKyru1ijcJm0HKSH6dDRm1UQGuoiYQ8ZImw1Tyf9LYSyNxg6DRTHCnIt3/ynMioiY6rwroPeMrXSOEPKYCAYTcV3rXqQrK28pGdeX1qKJCGQr0zO97RXOplZ4FVRQghGugOSiee7GbnFVCI2YD0HKsom7pb/o8kCIribGU2McNDSV3UA1CVnsCJCmqEiKsOXUTNdAvCrSxCLLa2tC1I9ri+qUbntq30aOOmwHfne+MccWv9vZd6lfpqrb/FWpD7ds4+nY747n95Y2AZ8ao9HHpWvyhcmm4931flmuG+Yfq/3n5lSrfa8NyshF/+dXn+PnhhtxL3YpUDJ7SgFP0+GR6wjl5jCYyec+Ctwvlrng1nvEUB8RsMNmId+uEF8OCxzDAaoq5vHErzsnhZ/4Wd8OCObmGhALA0QVoVHwxHik2U1UcXcBX8wGvxhmpaDyFYedKWaqCVeRiGrLBp8cnFEZFvc4wHPN4sAFfzDfN5XRyEanoRnQjaMloEwaT4E3GVyPN7eAiztHhs8MjHuOIc3R4Nc54CgPWbHBwEYNJiMXg3TjBsxvpaBPO0TVUUxBVQXK1qs2NVOI512xw4wOegsdgMiK72mlVMUcHb1Nz/xSkcI0Wk484rx7HIWCOFs6URtRyXj2MLnh1mPH2POFmIIKflDVuxxWDTfjKHmBNQcp699foAqNqIyM5rRRn6m1uBDXHITS33aeFSFF+/PIdSlX4E0arJx8R2A10EfIIRvGOQ4BRFWd29RRimsyEL4HRuhfjipAN5uBgDbl59uQ1S7Ske3G7htueXMSX9tgM8ZgNDkNAyho3Q8C7cYThzYSYDMVtMhKmFXAayV31OAQ8juSz5UzGpzdPeAgDnqYB3iYY/oEVRuXe5VVQSPku8XdjI+/JcIbmfF5p08boinlyeDEtuD/TupK4yZQMrM0YbMZ5pPoi3xi315Btcbb0dwkO0xBwXobmwlsKjc+53GIAvUvNM0EQ5rvjjDNvrAjC6m2GsxlPw568x5jSYjuFUGlkQqLz4om8x6XWlmze9IzSr27PsLrg54x2AttGkyA/WlccxhVGVzy6jUBENnpS0jCchuQ4rXjQB7y6O+HBjS3OEABe3s5Yo22I+OASntzQ0CUhXpn90FxxZTMFAD65e8IXIETY+dRIc5QC7g4zvtQ3jZhnXR2mKfCGWUJY7RYPCCHvKYjBYhhju9frQAQqpehGSgIAw0jvlGVwe/KeohmdZdKWZOBchnMJi/e0aZI1Bp7bsjiMY0RY7UZCY/MWLwrg9YszHl0mFJk3DK0ueDS1rTUZ1+3NjHtFG4bTEPGo6dgTK7q1KExTaB4NALCsrj0r4i0w8KZi3+fs6ZmsleI9S1bwTLQyHdaGhCtFJEg9mj2wK3YjduH3wjjG5lGRs8ZhDDg530hzLG+0iov6bAa8uJ3pHby6xl6udWVPCNPIdsJKhE0AmrdLzhqL9fBDwjQEPJkBzuVGinV2AyzLX+aeooFnsqWwOnLt5/t3NkTeQ+7opj2Hq/OwLrVjcRXyHgXLRmkeDIZDaPGrNSsYVzDwWg+2EnmPqZgONB9ZW4fDisf8TbXh58WPCcGwm78vzbtCm4JoHYwrKJk8GArHYlchcpoiaqFn0TnyeBJEXc41ki61J+/J4n0iqHzWGI4BwbJ8koYbEslDXMIB8jJg49z6jBxMG2PNCsazTFfTDEYA0C5vOap581EPeWOV15XaDoTso6LFxpppI+8xlvovUZP7u2E6bNmMqRt5T5ENmEJj21yR6maMJoXS5aKGrttmHHu00MPUWSGCpotx099+PlaSaqzHl+Q9YiDXft10hp4YgpVzM2+GJRv27zEsr6Kjqj+v9p4HwHPUWeG5p0Hl+peI5RWjuXV7afh1m4dXxyiGJa63t6su4+mv78s1o3Z3Xn0Ynr2Y57eJ3/yllV9jI/l77Qr7w999Vf+F//z38Kl/xFIcPl/uoFXFJ/4Rd3bG3z79AEcT8JAGfOKf8MfzK/zGdI9QLH463+JgI166GT9dbvEXj1/hj+dXeO3PmLPD2/WAN8sBBxfwu3ef4+8+fYIXfsagMx7TAK8Tfj7fIleN37r9El+tR2hVcb9O+As3b/FHT69gdMFn0yO+Wo8A9kbl3TDjzi34v95+BqsLxS4mS/GLReO8evzwxQNGQz/Cb9cDji7gYMOOROQ+TMw86vCjFw8AgHcLGcl/+OY1bqcFr8YZf+/+Dh/fnDCYhLfLhDVaWFPwm7fv8BhHOI5fvBuWRlw0mIR3y9SMMAB4yXGQEgvqTca7ecTLacEcXTNItaL4xlPw+PT4hHfLhCVZOJNx4wLu1xEvxxlfnI54OS04R4e7YcGb+YCPDyeco8cXj0f84O4RXzwdcTuuGG3CF09HrKvDZy8fcQoOk0sI7C4bs2kEL6IwvTzMsLrgFDwxhwJ4d54w+YhcFD46njGYhL/1Rz8EAPzmZ2+xJIunecDoI3IhY1aMt1wV3jwcycDkOEhxMQWA88LXVYXT4whjC8YpkMLpEs6Lx3FacV48DmNgcqOMXIjd8/w0oKwG00sinzKGjNx3DwdYl7E8DTjezchZIwYLP8SN0ZHd8m5vZoRkMZ8HHI90P8+LR3gzQh0Sbu5mQi4ZgTembAyZ0cAyoh2jaUp+Y3tcbENzSySlYzwELLNHiRrjTcDyMGC4XZGY8MXYDGvJLTfOjpSh2RGiWxVGZr3UuiCsjkAdRn39mLCePMabFfP9CHeIUKwIr6vjGEsgLBS3qF1pSv76doSaMsZDaEQyeTXAamBfBChdYG0hAphIsnNjakZKmkkBcoeAWjTSapi5USGzMqV1QVocIdVfDUBR8D88kSswgLQajqUEMUBmRShkVlAvw5ZiiNk+e8S7PDq4VyvSlyPUy8AIMT375Y1v6A1shVoM1F1oCl95YsX3RUBmJFOPuSm45mce+bMA7QryyVIqF0tosb03SJ+SAVUXA3Mbke8d1DGhni0w5i1XpyJUFIXjIE+WEL+gUQ+ZEEB2nRQ3THWyUEmhHPOGbNlCitKqN4RvyFBnC7UqlBuKsYQr0I+W4q+OCfrJokx5Q99E4WR0avipQ7wtKAdKf6PPGjoD8VWi2EXFiE0B/FuD8EmCmg3ck0L4KMN/aRBflaYg2nv26OD4sDRVQnQSuecVX2FPlIu2DIT0mEUh3nD8m64Uh+YqzEmj+Ar3wClZWFHMI1CG0pgj7ZNqKU+qxC6aCvfEa8cQ0uKeFOJtbXGKJpBiXhyNKbzKmD43KI7O60gpSFSmlDZ5qCie+stThX0i1zkdgOKon3hbYU8K7gSEF3ROJ4qRS4ctVi6PdDxNFe6RxpkO1KedAVQgvKI4SZIbxS7qDMQjKC6S072kY23oiVloTulQ4e8VigWqJTTJztw2gDQBdqYxukcaj1mpTX9fMX/63ZVO90TtAjROWQsqA/GW+zGAO7PclCBugH+gz3mg8Um8YLHUblUcD8quo306keKxGQygeQ9vKuINp+RxgD1RvZayBXQfMjvA2DPLZqE61dAcUIE8URsSL2kC1TEcV1kcYM8V1agtn2muyIOCWcjwywOtWfdUUYT8NdLx4gF7qi0Hr0obOmiWyn0oKE7CW23XT6pNziQ/BRNoXejMY2Y5t2tEVmqTRx8/KSlXJD6xTy8kyGeTtd7k0UqHNEqffToZ3eRfkR3Pmce0i/ks2BVVKqpWDamk8VLsY39e54piFFSlvybSX51ru7YqOi99FSuo7nW9v9llnZHZy7PZbxJj2bkwPyuXxy4Mx53bdd9397c1pXjMl0nF3zf+D5g1//N/82/+0t1Fp89+XH/7r/wCXGH/w18NV9hfqGGplHoJ4G8C+MugJfWvAvgDAP81gH8AwB8C+JdrrW+VUgrA7wP4ZwCcAfzVWuv/9qH2P/lLH9V//j/7ZxEKGWQAUEBxdRJ/KEaYIHyhECumRm2pPCT1Rs8qCqBdLzGBudtVzlVDg0hEYjHQqChQrV3Lb4tUN9KevhCDrGpssv0YexZZQQbE3bOvK6ynck2fx1PiFzPLQhA8AO2zxHpKvFgfNyblcuwiC6kvcYZSJB50J6uOuKif4+W1QriTCzGs9vGHjSGVFVqps8lTxrs/dik/YEupIciUIJpKEfOoVls8qMwZ2N6JIvN6cS/eJzs53jYAuzldlv4aqdPHiPbpSXqZX34HtpjALb6x7OIpezZWeQ3I+1ra7L9Tm7V97/O1Sl0xEN83xn78PeOqFHUhkj5Osc8hSzLZXLRlXPv5V3bX3uIWt3GqZ31dxsvuGDGx/y3bxZ3xr5k2Eju5j/mr3bMgsZsAGlPpfr7boASZ6lELWUNK1Wdtl6raeHS3djbm2a1tLTHbbIhSBb5Wl8aEKvPvYx/RrZf+nvW/91d//0V2ei/X/pyMs++PmEH35wBsuXar2gRz0Z4SJKOrI7GRLUWBvCMkXlORklyzaiRA7b7r/f3qYynlextfv1Yu6vQxgqpbu61up4C91yWsjzHsj+PiuvbiUYRmyLF+KnKtICT9ePsisYqXiICqO1ftXZ+XcY8K++8ik8vPl+/Ha3O6nG9//rJekxue5fH9NkXyrJLSvZeRuoxdvTa+iudzwZXv6I5f3q/Lc8D+3uHCEBDR6i63LC5EfmHgPEOO3jeu7vOHjIXnMrlYPxfHVC+7vr96XcRS5YNuk1fW/K6f91137fp+jN+kXArlA+VbtQtcX+fvq/dt+/wW8vjWbf8p2vyu5W//+7984+vX3bD8RbvC/j6A/7bW+i8qpTyAA4B/G8B/V2v9G0qpvw7grwP4twD8HoDf4X//GID/iP++tziV8Yl/wq1ZcC4eb+MBTmXc2BVOZfw83MKpjLl4eJ1wSgNe2BlrcXhIAyYTYRRR0N+5GY9xxGASoU1pwDk5HHzAp8Mj3oQjjnYFwMYpKh7TgFIVXvm5McUu2eLOLXgbJniTMZnYGGNbapBsMJqEyUT8bLkFQDk5l+SaYbxmi4/GUzM8l+xgVcZoEgpUa09SiqzZ4gfHh41BVme8WymH5mQj7sOIF8MCrzNOyTfioY8nyvU5mohTHFrOTTGOT8k3V89SFY6O3EjFEHc64xw9JhsRitmMdHbRnZPDrV8bGjuYBMNss0cX8LCOmGxEqpxHMwy48ZQ/9HEdcDfOeIq+5c58CANSNnh9mBvRUm/4J2ZHzUXD6T0rbHNfSxaDJfe2G0c5Bf/ePbHCfnxDjLSErlJqmqEjOypV4cQusBOzwgqSqQDM0cKzy9s5EKvo5CMikxyt0eLQscL2hnMuurG1ToPkywO5ma2UC3ONFochttySpss1KRsPh3FFSAYhWRwGziGXNU7nAY5z0Em+R+nfMconbUpOSPmdErbfwHGzwrKq1EYKlJLG4BOW1WEcIrdPBp5sZpB7Y0JkRldJOyOIsJAticE6+IQ12PbXMHqqQG6rw0AodGB3WmNKi4FeZt9YYQEyeoUZ1g+xGdvi0lorubWKTGIkan4/MCkPu68B9Nnazf3RuoTlTGkappu1GXEpGspTyMaNuAmiAm7Y7r+4uQpJk1IVYXGEBp893JCa2ygAhMU1A0aLy+G4scwKGu2HxGRCFdalFrMdTw7uGKEcbQ5I3CyKQjx7uOMmM+vIHdG6zGy4m4ylTi0cN83tlKi3eFwmONHsUloCkQYJsU5jjFWVXO8MEQCJC19Jilzw2AgTMh3tM8pqoFzZDEjZ6ODce+XBEdOpY9KawGv+kBp6K3IsT247HigesT5ZYCxNM6rzPkUEbGUXNN2MvRoMfRaXtMQorBitmuphNVTnRGk9qhgF0qYo0UkTYgps7n+qQkXTFMlqKvSqUXzZ4tq6GDcVFOpYoN9ZcoVjlLYRzDBDbLUVeqX4U8WIp2bXwKqAMhbooIlxdSS0UycFMFqrE6GyxYEQIVuhA/neFU/IieZ280QMqg3B6VBfJXkKC1/HurhmNK24CjNrZoWl9aWSgo4kj2KpbvGV2FktGU5VEaKYjt9de9WBkOaqABN1M3SwGzsamyqAhiDpFRybiF28W1WMDCpscXrALr6tWuyNNwOYM8lHZKijbvJomytZNdIgHTWK2+5TVYBml9Pi6g5B00mhMFsvFOhzlI0FHgsjiL3cSUbb3AUprAZQEaiSsad08+Q+WtygQnPZFHSxNzAFeZRjPVLYdPa9wAAAIABJREFUl2t7Fa3Pgr2tJ32LDC4MTkE4L8sz4xmdfPiYXEd9q6vjaaXbdLhq8F8zIvU2vn5el2PcCKWez2M313JdZrt6Ms/++7U6bRD7Y4p30xoS+3Ug1zc1ni+7/QUbqt+l9Htgv47lF4ZYKqXuAPzvAH6rdp0opf4AwD9Ra/1cKfVDAP9jrfUfVEr9x/z5v7qs974+fvC7r+tf+S//KczZI1YNpwpi1UjFYC0Wg067406VZgAKg6wYUJJeI3AsoeTDFEPN8udSdbvWmwSrCp7SAM2r3OqMJTt4/gUMxcLrhFJ1y30pqKbEhZaqGpIq56WdSxRTYuGkSKyjVQVLtjvEcLCpIa7iKkqyrQ1hi2wgApS+RZBfOS/suC1XZceK2ep08hMjtK8nRp3UF+NFGF8FEcyV8mjGouHYuOnr5KowWk6uneyuHykyLilrh+I2lJcNQQAN0T16TijPMawyDqmzu17Iibq+5T7JWCVesWJjj21suJ1BTMc39NWaDKMqVo4/lJyRlhVla3Jj8u2R3B6pTYwaGl1bXKlSlV1uNeeFpPMbKqtavR7p6r8D2CG5jbmVUTWtsIt57ZEykY/n1Ct9flLJKwpsvxeyrvv11N/v3iCXsbQNbR6vxA7LfdK6tPhfMWD750HuaUMWhc35AnGUz5dMusKgvMbt3vWortSVcci9EfRVyLBExqbFGSYmDttusnPpWW7LfT+EnlLM5oZUC4LofWo5KWVMjTXZZoRg23gl7rOU5/ORjQNh/xVZ9PF7YlTLr4AxtcUGbmtoL0tB7noUWFBMLQnb+XPpmKxFE5K5eCFd61hnxRC/RHINx81K2heJ8ZM4XsiakLWqCHXe6ZL9uune3ZLDUuoICoyuvhRBkvs1U7n//udajHs5p3Vp8XnCACyflSGj3Upc3yUyr0i2JNParunnBVAcmhKiK3bVbQhtVo0ESFDXWlRrRxBK+f6MKVcx+VjaNjkg6LIUxQg2o8nNa4CN5J6RlwjTFBECCTpamT03XrEQvmkxdcuD2SOWChsbb6/8NssQOwKnLXZO7c9dInn99X2p2FzA5XtH/LKvq7bxdrJoffTj6OfTGTl9eotdne64kBS1tDhdHWGPbay16qId6aP/LOMSpJvl05PGVF6/rd3LtkU22E+7dX3ZzzVLqjt31VC57PObGIffoPT2U2/DXd4a9MO+HMe1fj9goL3XmLx2/df1d9Hudy6XN+07FOn///53fvmo3uEXhFj+H/8/QCz/IoAvAPwnSql/GMD/CuDfAPBZZyz+FMBn/PlHAP64u/4nfOy9huWkA/6R4x/hi3SLWA3uDKGRj3nEUx7wqX/AOQ9wOuEpj7gxC95Gind85U4456EZoG/TAXd2JiNRVRxMwJ2ZcS4ef7K+xGt3wlos1mIxGSLSeeXOWIrDm3jEpAMyNG7MinfxgJfujFIVHtKEQcedYaJVxSkNmLPDD8d7Ml6Lh1MZThEJkFMZb9MBgbcAJx2wFoeVvztNKM9kIgwKJhPxJh4Ri8HRrpizww+GB9ynCac04LU/4TGNWLPFrVsw6IS1WLwJBwxsNE8m4iENKFU3o/zGBliVUdiwPGUPjYqjXZGqwZotjnbFiRHgObumpM/ZYdAJj2nAaCKcKihQfE3AYxpwNIHqmYTHOODWrbgPI0aT8Nqf8fP1BnduwVoMluzwyp8x6ISfLi8wmohQLKzaXHOdzs0wT8XgPo7NLVoUvaMNzYB+SgNS0fjt2y+gVcUfPn0EbxJGExklLjgnYhAUV+ePhhMKFE58PGQLb8iIP9iIhdt+5WekqvEYh7ZpcbBEJHWwoW1I9K7Tr4YzrCp4yyl0ZGPj9XAmNNwv+Go9NvQ6sFysKrA6tzhfZzJe+hlfLse2SfKbh3d4SAN+Pt/iYEMz3mRjAwCsyi3vqje5uXiLQUeEVuQBIK7iMh9vMh7CiJd+xpv1gNEkaFWwZNeM6hu34iGMONiwy58qmxeDoY0D2Yw5JY87P+M+TLjzM87JIxaDVHTLkwpsRFqhGMRimizPyeMUPbeZMVi6t18t9B6I2WCwCRPnh5V0RAUKRxuQqsYpemhVGwIPoJFfiSu9eAwAwE8eX8IZQtgGk9r1silx61ZYnfHlfNPcyr3OSFW3TZhaFV6PJ/zsfIvPDo94ux5aWiOAYp1p7dF8Jxvxbpma8X3jybvifh1bSqM1bZtXPzg+4KenF4hM0EXvE93k9tPTC0LrbcIpcM7Z6HFwEXN0yHVz/5bNniVZ3HjyaBiYCEzyy9ImFrUv/T2GAY7nn3nzwTHBl1EVIRtMTDT2GAYyxotuXgin4HH0Aefo2iaF5RQ/Qjb2Gzf3eLsesPDcb1yAUhVv5gM8eyLIZuLr6YwvTjcYbMKNX/HV+YiPDie8mQ/NsDp6ul48ONZEuYeFNCwxCRqwbWqNLEPxEslFI2XdCMJejEsLe1CKSM8kfRNAxG2lqjYvgAy9yW2/K3Ifz5HWZ0gGrkuLNLmI+3nEp7dPjQRO1opStW2krdE2srTBEiGWeKPEbHBaPQ5DaHMyujTiunN07X7O0VJaKCZqU6piYRIzmc8j5/wF0NJWGU25fh2TrVlTGnlaKRpeZBstjmNo5GWFN0+lvTk4TD7iaRlwGAJW9iQRArg3JyK6+y5lcBHz6mnziknDANrMmXnsuWgMLrYUX7IZI3H7Ml8ZeykK0xCaJ4lsergunGcLO0DbhLqZVszBNc8J2XASrwepL2mnZEOpJ80Sz4sQ7JYiR6FtDsnGVE5bHl/ZRJINIiJtIgb0WhX8ENt4ew4AIToTy6VtJLL3Ss5d2EzRzQW+3+QowmLOhnmfLqkW3tS4sEPEM6KFRXSGaiNFE+IbIfoBNiurgtip+zCH3lDqDXfZHJCNA2ajfebuLW1cWoyqbm7lslkgn/vNg2vkPeWivd4ov2bQXyuXlusHmF/bRoKstbr/3h+7imBeO96P4dqYfl3Kr9NcLsov0rC0AP5RAP96rfV/UUr9PsjttZVaa1WXQUZfU5RSfw3AXwOA8bNb/M0/+sfx0XjCOXncryMUSMm89Qv+h6ffaT+YBxfx9jzhbqL0Hm+ZwMWbjKfV45PjCV+eDzj62Mhz5oVShfzg7hFvzxOsKZRfkllMH+cBpWh8dHsit0dVMa8er/4/9t4kVpctSw/6dhPN35zuNu/e+5qbWS+7yjJYNsIuoWKABUhYCGHLEjAAISNmMEAWYsCIERITJCwzSYQESEgIAUNEJzGwkSirSNJVlZWVldiVzWtve5q/iWY3DNZeO1bEif/cc+97WZm3Krd0dP6I2LH32k1ErPZb6x3OtwvEqHC8bLDrilGsk3MGi6pDaT3+7vnXABVRJTQ35zRi0PC9xvKozdaNtrMoCo/SDpaKEBXajqwOrrNYHRHgS9talKXH9qKGqTwhAm4qVEsCemmaIicmX68bdL2lROktoSxqHbKrYrMvKaVHSthd1R363hA6oQK08XAtAbpwzryQtMXGhIx62KZUJ0oRWh8njm92JcqEJFlVPZp9SSh+nUG/K1EftWg2JWzlYaxHu6mATqM8a+A6k3IbDnkio9NDjFIEufSpCJ9ShwCAayx0+kBWC5qTP/z+B0AE7P09fG8QGgtdO0SvYes+o0xGAD4Bo6iakPBMkVwAdURobHa7UxtLLmW1J815QWkT1ILSZ6h6SPrO1gK1tQTLvk4IAzq5/G0KSguw14hrTy97ThmQgEr446XXPbkLNhpYENBKbAy+f/Eh/CIgrh2lQmBNt0JO85E/rpyygDXrHA/W6iF3WkptECsCa4EH4iJAXxmi36kEux/zB1u1GnHhoRpNEPUBKZ1C+gB2BKiikstVrAONeRGgNwZhkSxGNhLQi6WPpmo1EDD0BcBcWoQ6ULqBiAR5r6E7BX+U3JtTTjvlaO5iAk2JmpLKQ5H7HyLI1TD9Vp2mRPYa5GZYRnzy8hFUALq7Pn8I9V4jLNlPC1BOwewo8bw7CrmecuQeFcuQEQQ/2Wr0px5PXz6AOwpDioCo8NmFJkAXHXMydn8UMhOg96mPYw+z06ntwbrx9PkjdHcCJbDfq+T2RlP70UbRNZ3cK5cBz680/DLA7DRCHYfYMkV9q0DgL8+Ta57uyFWSAGswuEdGAmBRbgBzke6MulPZVS+UEaahpO5uSRaJYCNe7mgMbkm/fYWUvy+5bSrkNCab5+/ALSN8TVaDFwkspjsJ5JIJkIthAC6vFLqzANMqvNwqdKcRu/N76I+TxVADmwRow8ndfY0MgKMC0W53KgGREM3seqk72tPB0prt91R/txtzbaGie9lis9ur7DIZ2KXTROx3zMTRGDZ7AmBBAEKV3BYDEAtg3xDwzpNnZwg2gbQktz9yd6VzoQD6HYG9tAlk5zIBmkRNwDquAXY7+q0doFwCiKkFeE9F7YcC2DW07q4GnAd6BthZA7GjPqIFfIcEiASEBJTiU7vM3/cMsF4C7RbkYmlpbXwHtPQJRKzpt1oD/QZABbie2txtItSdN7eAhB2gV+m92YCEnwgED5gVgA7QFgh7+h8VoDj1yzZCawVbAqqNMFpBJzdR7CKMAlShsgulchGWjaNFeoekRy8YAJdrFAsCaDFWwTYJKEZYLrWPKAp6LmwTYUoCviGgmwEEx1YEhqQ974kBFIaBX0xD36TsLprW2JCuB76kcdr9AoEzsoi9ZRpaTx6H8kjP/Xh/A2lt1VBPgvcwyBBfI8AalVKPSCtkkhmL5C4r3FwlAI0KNJ/aIc+BBLiJSkG7mIGUpiWD5HjRJoP3+MFFmOlh19iRNVOJ6yq1o5BBgPJcMK3smhtprrTDdVdY/sSncwwadEioydbKGaCckZE7zx1fmz5P6rAgKedh5jGcs5jmeZrW5zqvIXT+5HbVfu7lC1lwf8nLz1Ow/AjARzHG307H/wNIsPxcKfVIuMI+Sdc/BvCBuP/9dG5UYozfAfAdALj37XvxmydP8LJbotQev3b8Al0wJGR2C7y3vsiuqJu+wodnz3HV1QhQ+Mbdp9j0FXzUOK33OG8WuL/aovWEXHp/uUVteuxciZfpGlsUThekYb633AIAXjYksALA/dUWF22ND87OEaPCpi9xf73N9LN76b4vyFL28GmOkWQLklGkBb5sa3LZwxD713kDk7SyISqcLfcwKf7woiXr3N3VDo2z+PDuc1x1FRpn8cHZOTZdBR8V7q232VJymTS6PmjcXe+wTxrvZYoLPLnTwCbhXCG5oC6bbDlxSRveOJtdTFnj2CQt8a4tcXq8y+64vTM4XjZoe4uzd3bYdwWMjuicwd2zDZreYr10WJ9d4aqpcOfRFp2zcF7j7vEWhQ642Nco1j67dZIL8OCmyuPbtSVpRJdtdslcnG6SO2bEvqN0AV/51mcAgGebFeyiQ3XX5bQhnBaDBePVKaWIaVmTHhXsirT/9dk2uapGrB4Rgi+Nj65Xd0kxUZ653C4LxkpFLB/0OQ2KTvPZ9xbLky1cSjuySblYeT7ZfVKlce/bEnbVoi4cdm1y/T4JOPkqIffu2iKnZgFwzV2UNd4muXZ6oQEvrc9WNWtIS83xogx+tHq3w7YpYRikJuis+S6tQ9MV2SKhFMUrstKF7+H/XWdR3U9xlvcpr2ym7ySMYiNlvCQALB9RrtquS0qQhCZbGI9dk6zQQcGYIX8s0YLsLso5ZgEM2nYM2vwYKK1A31ms321gdMT55TLncrX3Qo5xBABtAsrSUbqaZsill11hU07SGIH6gx5hV2H1qMF2XyIKS8bq/TZZQ5AtAc2+hEpAP5xHNzYl7F16X3CqCkSF5Yd7+M0CIWjY+y6j9modyaqyrcn1uvDoWoviQY/YDXGW+ZsYFbShlBHRGZjCU15YGxA6C50sETEogPdYQfGiMaWkYOsLACgdoELKhesMYD1M4eFbUtypoKFLl+IlLVTpqB5bKfTgJqsUUHxzD9cWiL0lC0npiNZdCYxAlAC96BC3JaINUJVD2JZQX+8Q9iVZQqKCqcnapjVxRqEnSwznz/VeQxVDGhOlIlRByje2/FDKEQUUlOLFpNhY5uH63mTFH208n2NjY+K4oleIpc/xuSEqlGVKhwNyHTaWx6dgCg/XFLC/3uRY45EXTVICeqfhS0qDEkraN7w3QlBwrYUvPWLl0OxLaEN5jjndjE6WMNprFA9rEp2c7sam3MvdvoC2MY9HG8oDy3mP2d3Vt8IVOc1t6AzMwuVUHTFQvlOJbm1sgGsNbCWUnp6Uic1VhTctlB84hZUUIe1hlfMiK0sgUBxDjKhymgpTUxqO6DQpN5NCEV7BLDxiQELEBthtOLsVOz1mrANglg6+Te+sFIscnB6eByC7BDO9sddD3tqghryinJOV953Ic4oA+l0mJSArHBVIwciKyZ7Gq2o/pAth12Gf6uW8vhikiIKVfwJUixXEwNiCGFSOYwVIaSXdZ5UYey4JfXaUbiRrimksnGYkgxuNJBsM1kxBymDVi4NAKc5HBRzMY6nE/dPCejshhN7kxkrKprGy6JpgFpFzds5KNVwppvlL/2k+1DBmUZX6F/M9J0zGG67NnZ/cNh3yFy7/05fRyK/KTeXnjQr7dwH82zHGHyql/iMAq3TpuQDvuRNj/A+UUv8igH8XhAr7mwD+dozxL9/U/nt/7jT+W//dP4NCeTTJTXTvSxzbPSrt8LQ7gtXk2rcybQbgCVFj60tYFVBoPwLvWZg+tVNkgJp75Rbn/QKVJrcXl570q56Y/5OiybGbLmoc2RYXPeWoY7dLdqNk4B2ryH31absGANTJvdYllVjrLFZFm921GldkV0eJHMpumhyvCSC7Rp63C9S2R53cTFcFubXuXJnd3o6KZtRnZV12z9QqYu+KTC+AQZhJj7hRAY0jV9YpAq5RIbvpMSCRjNkstMc+3cvHDPDTB4NdX2BddNi7AoXxBCbUl9kdTroMsQDEgjgzTLUd8hvSnowEzJMYfx7v0+0KMSqcLvfwQWf3tjnwHha+K+sQgVE8pgQJ4nycVeGyKyi7qDGYD58HAOcNWkeC4qLsMwouu4dRfKXNqVJCIFcxjtNkppX7a51BLVzNdk2JovCoCxLQOM6Uc2AyDRIQiF0MOWaQY16dEBaLRFeMFEPZdJSnkl24ON40RIXemSxUcowYx6XK2Ed+LXH+T87ZyQKgUXE01yxwah2yUNokjwNryD2SBVzvWRClTti1i+MamcFn9zFrQxbg5G/uh3+3TYkYgcWyy3GFLPRJZF0pqEokW6XiCPmWcwo2+xIFC0SpXpvAexRIGAveoEgCFwsn3EfOfyfAf/p9gWLRQ+tIQoTwSvCdRlGTOSB4Q7GHHQmNPq2BZEw4Vx95KOgcz2cs5cpjFFjeY95pup5y4nGcngKyt0NOm5KYZF0M68I5+XQR4DsNXYSsDGCk2Ozmti0obQmD+/SECMLeCNRQutYY6KVD6M0A3rOz5FkAkACUhRwMDDHHrUUQ85qS0WcEVqepHjOlmqw+YICaZKXP3BN7DPAU90KgYKZb9pPuVb0iUB5ug93pVCQAoMpDbS2gCaSHGMYh7x6lhUnt2EheA1GRJSRZj2IVoHpFluUqMcyBGNZQCotNshjDDiBAnCpFJ6tjqAeGO+pxyhbyGiCrTx6Ton7IwplAeTQGkBcPstKmvpQjGnVD88KeCKZVcMs353t0nwBzQFazHHcXkcF7okkWahZ+0noy+A1bx7JlSg8AOFEsq3RDlAAwETRusx9oiQo5XYa0+LDQAYDAcywysBDPG9EoBCNgAIMRVjiifwD5YS8CndYx2JjnSApRBN4Ts0cC0TXEK3K6kGgwEv7yOMJgaYsGGayG2+f5Z8u+FMzy3MXJfRNBLVsz0/FU9roGiqOut5EteQrZEpmFPa7Pz28WSidtRNHPHC1SqOS9ocYW2bn7o8LYmovrY7zmcjo9ntz3RulGpm1MpMU5i+WIlkPtv6qk+r/7n//i4xCXDz6I3/jXvvwYy9/92zePTSn1AYD/BhSCGAF8J8b4n33ZdPy8Bcu/AEo3UgL4RwD+JuiR+u8BPAZZpf+VGOOLlG7k7wD4F0DpRv5mjPF3bmr/7rfvxb/6X/3LOSZsSMWhs/DHAgaDf7CAQfTFLGBNU0ZI4Y0FGJkigwFxJBgNM8cMPgMgp/XgktN0REIRPQRAAyDHHclz3Aafk3RPU2tMwSm4DjPjsi0uEgyG/09TgnDsD3uKsBAif2uFUUqPaeoQCZDCAoHzZrQG1vh8jufDTH7flOqD45Km49MqDu9NMZdG7A9Jt0xXIedX/pbpKab1pqkZ2Po3pNuQ8TADEIqkb7gWr4HJcN9yvWWaDu53mm5kmr7jUAqT6bpJuuYAbab9AhjF7lx75Yw0pfQ/p2CYuXaob0l7RBJkxDOkuJ4a0nRIUuS3Wn7DJO8wume65/RgkSI6kIWkYQ2Rv5hxMkd8j6wbAzIgiiRqlAolpjoSIELM+1xKEwZoGaUbEfdKmm+clOnEjJiSCXeQOeZ4bV7G8Ixi/hSy4HYw7YsQoKbt5RQimdZUR1o1+LYMbILByjOxUowYwggcZG4UBsFuCpgy7W86/1znpjmHOM/XRKqJWevGCDDmwHWeo1nODsM6yb7mypQxnf5mhvrQ3gGgYhJ8ea0OtTV5Nq7RMX2wNciC9aZlCpAj+5XrPOGcyfokpQbk81xtlkHnMnftJiFgsm8mr9FXCwOT9RjdLImX7+2ZsYysW/K5ObSWE/LnaJtDPmVyDglD19pJda4LMDPjlO3fQNetXTJvU+dQf69q9zZjf0WfBwU7vKL9V7T7xuWL3Duh4Q/+kz/TguUjAI9ijN9VSh2BsG/+WozxD75MOn6u6UZijN8DMDfIf3ambgTw77xO+yxwLEwPrwfrXWn6BLpCQDKNLzLoyML2CFDoPKGYWpBgt7IOjbco0ofXJwub0QHHVZNBOwrbw0edATvIItVlARWgFBYMKrIo+hEC5RTwok8pHVhIihgESqMiKhZe0/GcEAWQpalKbfokPHIsKP8urc/Wu4yamMA1OL2ETda5GBVsOucFA1GYkMA4kAVMRgAlBFM6Ry76MVvQeoFOysKnNYGE0CRckgWPXIWldazntUoKAgZxkPkxpSAZk7BP9CbXqTRedkll2tj9eNeUgxtgVHDJMsNWLFl8so4x4IAUKIZ8i0Df2xHi5uD2OgZFYCtZjCoDGzAaJoDs4kkolOTixe6DLIhKd0KiV2V3MFpPoG2LZNGL8F5l9zoA2Z1LChpjoVglV02T3S35G8b5Fvl331kY64c6SZhDVKM8l3le9MAl8D1wpDrXiqxm2pC1jF2GeU15Z8p8nYwQ65Kr5cgFMZBbmk7uX0qMM0YkpEmV2hyEMD7OORhnmOK+SSlPypDnLafPSAwP9Z8sbjZkITjPshCWg1fQNsA3KaWGivkD6zuThW+lKS2HskPMJru+aRtGrnU8z74xUCWp+keucxFkSStDFtoYRVOZJGzpYc8xQmcWbJIFcgCTEAIcM9Xs/sdWOSXmUuaX1GkcAeSWx4wqC3omufOxZRBq6I/Hui/GFsCg6T+7+ak4MJjOUNxsIBAQ2AjVGrI2IbXZsZBAY45sfRQM7TVAC69TugeVySQLI6URUVMXR80CSKrux/fl4jFwgApkKSuGuRtZQryi8eyTQoVd/gRKJ1n/knXT0H8VkYWlqJHjq5VLVs1A11XEgAQaVY555TQiuc+IbHWkGNSBRmmN5PQnCANIS1RiLti9UCG79qmgBusbx81ZEXvGU+MpRu9NC6fPAGiO85IEpLQmaqA1Xczy+CStBtNK6ydoj0ObcxZLbtN0KlsJaQ5TX8Ltc+QeKddcDelGeA6zZQ/IdaRrqPJTd1yVUn/wAKn/bI2F6F+LuUvPy2ic6f5rgjHPs3jGRpay4fNyfa3EXE3PzSlXhrkarNC5zi1i/GaVBFHcN9PnnDUw0zsn/MaZ+29ob3QPXz8gqL1SqDxQDgqNo4/bK2ic0vqKPqnfW1T6ZS2/ANITcOqn6feVUuoHIJDUt0ew/HkXHzUaX+RcjmyZ9FFn9012z2Rkxl1CiCSXyCEf5KYbYtoAEvTYgvXcLfM+lxYyo8g6uQ1lZgiNDhktDyCkxJDOS+tT44bUIADQTwRPrSJab9AC2SWyiypbCbPrHL+8VcS2LbNVK0YS3HpPMXDWBLS9zYIQF47lYxrbJJzzeI1oDwB23kCBBLQuQe0bFUepN/L6JOGha+yoTxYqOjcIGRTLaEbpBrQOaLoCWlOcI8f9cSyf1jHH6bEVcGo15DjI61ZG6nPfE7BSmeKJ9m2R++Y8jc6NHxMWbjgej10mqW3AJUZKukqmq+m6mdw/3GsMvfVDGIQd72xGtNMmwHuV64egRl8CpSi+CCCBg90goSKKwlOcFMc0iq9gEIJ/DANCJe+1/D1UMcf65W8lC5WKrKmc5zJfj4oshIqE7JDaZmE/Ci+CYRwp52G6L3iTLazSGsrPAwmUvL/Ss2RJYB3mINVL8VtAerfzM6SRXTMzo6HiYAlUyLF2PE9yzkyZYtpEPI1ScThO51iojVJgyHM5HGgbhnyPQWUrK1TM4FMqDUIXfrDMJQEZEUOsHisNmP9buCRQputprqAiUBBt2eLqdY714v+DCy+yYIM4pHZQRRDCIy9M+m+iSAGBTDNfGyxo6ZjdKnldkivdSOBk2icpG+LSDW6qKrWXBS3m7BOzX/shpqwgwTOfg+hbDR4PIxfYVCdaQR8w5IyUzFJUiKz0sXFybaCJrofRfbmwEMntlRMzjgQaSfMUl8OYeRRRcjgRWTiN5QznE9L1KeM3oV9FhZCEklAlJU4SUKIOg5Aj39dRtssPdhyEDqaNL1e81jxfYbyfFICgEGreP7QXvRExb29QsmCG68KMZLBHlrpUQj2hT655jWE8c+TNCCB+EUdT9UpLZFZODe9+r4Y9MRbQGLAlivYFX6HNAAAgAElEQVTjzS6KiX6/kH2OxzVH3+yQJ3Mnx32tz+lcHhBi5udGifHdICRx23OE33TPTLmxj2lft2n/hjHP9XvjON9wTLL9G8vrjEu0O0/zmz/Hf0rLPaWU9PT8TsKluVaUUl8F8BcB/Pbc9S9S3mrB0gWNl+0SrbPZtZTP+2TVkvDsHOMGkKAGDDn/ZG5Buk5xZiGmuDlhEeN+ZG5JFpxk7FeEtCrFTAf/D0GhsH5UD6Jt58cCi7RScRucr44FIeleypawgdkf5ycEBiGH7hsEGv6thXUCQD7HRd43dZekcwbBa2gzWM5i0Dn/HP9XworFQomsE0NSAqTxsuVLujSycEMTRm+iIJhxfjNJq28GT0i0MdptFkSFAMGd8PiDEAKyBUe4+HH+uZwzjt0a0//gZ3IxaqI1Cz7JMpKTuKf4Na7P11mIAUAChha55kDXQxJURlDtsg1Z5Ftcck/SrS99GLKVUwHRU1Jthnfn+3N8nB6uDfMiBS+mC9kVNtdN+yC7Ckp3PNFXZrTSeCEsB9na5sWYlbg/TMYa1VibLmQRZmg5sX1IcYAQiobIVjzuB0gIqHFUb85FMyZk3mjp/2h5skAlaHBC+GIrW4pV47qZ9ypUBtrI4Bf8ECWk3DzOkKxHfhjrqLB1jduKQFRq2Ce5oaF+zGONuMad50FiWJvJMzj6nRlNNTkGgAQaItdapTVRok0A0CrH4VGCe40Y4mCNQVpPqb0KyC6bQPrNzxa/V/QQ38eWTtq/9DtbRPk5DoLeCLIIxQmt6f4cIxmRrGAH5inFdMYyXGt/ZMkIGPa5nrQBDIJ3Gnu+V4EsqLzV0/yqgCzgZkseW5t4b0JsAyXiK7n9GbfTHDeY5lLxnsuWOeQ2olb5Pz0DKlsH36ikfYKJIjNbKdMzoEbCznWrrnw2VMSAtDw1rwnBZ1TScz5a80kMHd2I6+8wSZsEZhHbW24hJU6o6UX5W/Ytn7lkcZzG+I1olGPkZ2Suqpy/me/UVLi/1q7sU/SjeHzx+hJwW7Pt8LF6xfGBsUxpfKVwK9uf+3+LMtf+aDrn2rlF268llL8Gvdeep7e9xFus8ZuVZ7dx81VKrQH8jwD+vRjj5ZdNxFstWK5ti9+8+2NsfDWyJLbBwgWTQWC0CnAJiKdNGNhkbRxUuvJ+AsgZ3n6Ut8/nuE2ub3WARkSTQGmGGM90TcUMujPXT4gapXHp95i5oryHA+gPgAz8I+kEAA2il3MRsuW21D7nIJzGckqhWFpbWbCW55hugKzEGvGaQMTnmV62FMvf3A7Pz1zSe7YSazWgnk4FfnbnlYLsFGSGhayMdiqESdkeuxlzrr/GEaqinONprKtK69OLNuQ1+T2lORtbuflYWnm5L3bNlWvlg4ZNeRHl/KhJG8Oa6gz6Q4ivhJjLeSdlzHAWsMVacpwtzVUcuULL2NuB9uE8o/NyfC2XcRymcINV5G6d5y8rOQb31Wk8rpyvQzHIEeQGHcIAUqREH55dbsVaSY8FuX5sYVVirYf41oGuwiS0S2HhljTLcwBG5+didaXLtPfjNqwJo7hqak/OVcznMuKsUEpZ67MiagAN4n4pJ56kQSqawkSwZEWMvC49D2j9r9fnscl44usx2MM4uJ3p2OYUPMytDW7jatR3zl2Hoa7SMSu5yO18UHwBiW9PbtvshixdwnMd8a5TGPY8+P0gOck4eJBIpaNA+R8UeWKt+Xye1qjyGlyPQUVWZJlkmc7rwcx0qsfoptIlXirLWCkkFWNUCTmeV7rQB9EOK+qy4kTEdOZrfI/icAqMFU95vBgUP8wIK4wVRKzUkcIUqI73M23etihgFI8qz7Ngyf1PlXZSWSWs3Fn4x4RWWeYUNYzYyuduin2Vc8bHTLekY05gweScnA6pWJHKFN7PanC3vhafmhsR/Wd6x4JifmwCkK3b4xuEkmFKoxjDdMx8ihUfE3l1VOYEylcVMWfTKT1Y5gTgV9W/hYD5SsFv7t4b7rm1cHRIefhF2wXeXmHzF0S3UqoACZX/bYzx54KR+1YLlltf4XdePAYA9CmBMxcG0eHCCbeZoeZUD8zgM1CMZKyZ8WMUSwAjxoeBZaQ7pxR0IkgAkcx/FPQAGCFnSkZzFC+mIqYWzSgYiRy/mT/gyC6aMomxMYO1bwr4AgyM2ijOa4aJnIK9SEZQtivpmrYjGadD/6VlU4KuMPM2BbbJjJnoRwsap2sgrz/JyJnCysgf4clbjq2ADKoyAiIRX42MeHmA+VKCyWKisjujuKYUuSPmL55knrge3z+xHvJvROQ2smtkHIQYblueuwYkwww708FjVYKZYWZuhEqJYQ7nGL3pB3G0QBhbUeQ98lgyenyOLZVTa2QU57hMmP1cj/uS980xhrJ92faUi+A55L5k/3ItmUnNcYrjdR7FLr5ByTFski6+FibXgOtrIOmcoBqy1Y2tafm/tOTF68wnTcnkvqmrKUR/c/RM1sy7wQKZr/MzJOtGMe6gcq7IENgKS2swcpVOdE1fEX46rUw/dzlh3sKE0Y5pPLmKtJID2bIyBWsa3lnUn3jt0Pg0cr5UNeG+uU2l4ojBzow695EsTorfE6IPudWj3AtxfC4fS9keQ3/5PL+3xJTneZ4+/zzGyV6k+L8xgUrmFXyDkuPwgLH1Tawz95OnmNcuWTqneyamZ+ZaX3LuphKTiuO0GwrXc/1N32Fz71JeY7ZQR3GvGsY4K2zNvQPksSRbibmLw7VrdM69d3F9vvI5cf2QQDmZtnGfc+OJc+sj6JvQNtff7YWuW9aZvDdep9yKrhvanl134OA83Lbdm8obxU++YV9/VkoCSf0vAfwgxvif/rz6easFyzO7w7/08HfRR4M+Guw85aaqNQHs9JHSYkyRX/toRhbCwYI4nOtTdH6IGpXu83Gh/OiaViH/b8OQy5HqhlGaERm/yWA8ZA0buCY3sfxJ7feI1nS9F/dOEVP3Ke0IWzM5Zch07NO+p2WaRoTniq240noqLUlTq+RgDY6j81N025wH0xcotcvzw3PdBYMyWYGnFl05PtnfaDyp79F6J6UEg/1ISymnHeF7yMqpYVQYWzYn1t4gvvCSRrbiWrE/eI4Z6EkJuvk892EE7YfAnACMkItjVLkNGe/L57gviWI8tQhOnxH+1kmrrlFx9hs4PZbrjMl5WaSll0GXps8EgFklA1tm5XgPWTine2+Kssx9TF3aqS4yCjIwuNmz1Xdq3WUF0tRSNUVvZTAttvBKGiSCshHPmVRsyfmbzqlM1QJM1iYMKXAy3xjHaMqY1OfxHEKAlkWCXHEZu8/LuoMrPxfvh/CCOSunLENd5PYBZEup7Mt7ymnKFk6dLJjaDPOaLadhUHZNkY5lvtG8tpothQpSSabm1gfANUXZ5HlRYq6yMi4gp4zJc85tRCSL7Lgvds3PlngR1pCVgYKL5+sUdyusnxOONQM/CaVbRnpmpciU25XSAlv8pnWnCiyeDL7GggYLT4zqK0Fhghria9+kcHtcpq66+aGR0g+GsebfgnY+njsn256U7LqdrkvgKOk+LZU67Jp9TShgoXAiWF5D75Ulrd0o5lTNt59Tl0wVcvH6Vpg0n+dyEFKH/SKFy2tlKgSK8SlZB7g+dj4dDwjtk3oH2xLldgLezCRM2pCPjPx/sByi64DAeq3NVwlsr7h+axpHtMzzNW9abi3o/wmVXxA9vwXg3wDwe0qp76Vz/2GM8X/+Mjt5qwXLbSjxvavH2f1VClxTt1UAyR02wEUDq3zO3ziuo68xvIeYXWDsGjp1Bw2TB2NOmJ1j2OeYwSnjdEiYmyvT2FDg5u/XlF4pLE/L1IVS/j4kwMq2p2ObYw6He8aumJJxD5MBTNuYtntTX3Pnp8LHTelNDn2D5/qd6+sQU35oXm4qIwuwaE+eO0THofk5ZK2e63toa/78TW3fVOdQGTHk048l81m3faHfcr4P0XPTXj7Ylrwfr/6eX2PKb9PHHMOjbpiXA8zH65ab9tqrbz50XnArB/bgnEdEF+fH3E/bmb4oJS2veoHedt7m5uI11xTArAXvEFN9iIaY+r1pK/CPqPR1IWRSL4qDPG2yL1FGrpM3jf3QXM/QMVs/qozu+4XKTXtPCFujqocY/Lm1mas7qUfLpWYY9+n41GGGXdI+I9CM2p77wCk1oV2Nrx8oIypuIRSpV/Vxi/fTtU/LjND2OjS9sv3XuHfS0o33qJn/ry2ovMb6vLLt28z9bdp5zTa/lHv+DJUY49/Dly2xz5S3WrBsvcWPN3cyeA8Xn+LIpGVn0PRzrF7MMWHSDZVBgKQ23yUwmSjaAQYLIcf7AchWpWmMGBfJiIegcsqKqRspu69i0mecjEcKCn7irsta+SHOamDs8lz5sYvtNC5KJpGXcVRzx9PCuQsziqh0GU3npaurFNqUGEd2s4Ww8ght//S7K+dgGs+Ur0kaI3JaDp+g/68JQvJjrsV5YMS05ZyDEIJMGF8PfqzJlyXHI0m3TTGwDMgzJ73yLRMX2KxV5iTx7FYrr09KdollRpPHJGN01ECrpHt2bEyDGvbFtX4l0yItFHMxS1MGcspQRwxupHKOZBwTXnGerRzSSjIXv8QWFgbUkVahOYZxglw6YvrluKZuxXHSBlIb0r1N9guIecPAHUY1zs8o9wKPW16LYg3eRODhcoAHl9fGFh/MWjeuxaLNMBM57oufxzQFzF+zqy7XBTCy5GTAHSPAeyJSyoyJADRlRqf0KWDW6iPHOp2L6QtNXpu7T54n4sZCjxjPiIZR2wOIDFu25DUAYzdQuRXUdRfa0XzIvc1bS7pzi/HooOZlHTnm6W/ueHpdxiXmBgHMoJjfuihpoTskmBwQDKb0zc3ToTIzDLnMwgt3fM/0Azk9N6o//+4SnwI6nvl94zpF3NyvHJfcw4euHxrXtM9DbQPze3X6TN1EnyyH7p37Tn8JZc4COD2+Vm477695323H9oUsdF/y/P1SlD+NY0rlrRYslQIK7aFtRJeAeHpvUFs3AMKkunMucAYQ7nIpJ+FksbUClBpyO1K/ceTyxaAdUxfGAOT0CtnKxf2rCK2RBSiwkCTpyy5YAdIKc8i6J93FYpIEKI9izELiyGUrDoItj0upsRvX8JuvI9elPmO+JteFx69UBPQwf9KtLCpKHaITeq1O7etEJMXwxOF/JjzlPsTAw6k0p6O4ISF4A+ndz3PHdRi5lefAzADwTL5v+ducv+wYMXHTlCdqRCRGoBizhedz7uMYx/dFzCguZHycoI3jO69t8pm+lGAAgUkaF8mwqjiKReU5mc7ByE0uu27FkRA+azHjtsU9maM6VJh2Xhs+N60jyxwjz+fkfE3jJ+X5MKmTn/cpBzBHL9eT/avELc6MQwqlk/01KpJe8e6hDXyApjC5Boj41Bvm/VXlplvVzO853v/aw4nZNcvWsKkCYXpdNi0EHRYc1ERJIK1Q16xqUyYaM7+n9eX1OSZ07pkYxXOLvcbHcWat+B7hUnit8BZMSozR2AXjrAJGqKuSePkqzMWL33K8N5RrbfCzFCY0yfpTSzMTdE3JhZv34qupm/Q7XyU/ZrLLm9bW4/Ylr9X49LVXz03337YfUaSAOXq1XLvv1RN8fY1x8Js3W39Ko1zXG8Y3R//rMPm3ogOJlsn6qNuuz6G2ZVuHjqeb7hZz8bp75YvS/mXW/0IC6y+wvK1036a81YLlnWKLv/HwuynG0sJDoY8GtXI57hKgeMlCeTShQKE82mhzjFwfDIok+DShgEG4Focp4yr5NyHMpoTo6Z42WIphQ4AHxRQWyuffAEbxghQ7Z3L8ZcExkOKVwbF5fdQwKl6L12S0W4oB9LmPEUpsamMu3lPGgXIfAEYxoFzCjHvxNFaNi4whtCqM3JS1iqNYUlmkG7OM0+S+pqiyHB/I53lOebxW+ZHrqhwDrwNA8ZwAUJs+0W/G9QStc/GNUxq0IrCoGFVGsg1R5bjH3hsUCaVVFs7BWiRFhwSYkvMq13O6tiYpImQsqos69ynXS67fnKvvFEH2kOuzRO3tvbkWw8pxjjK+dS6ukemYrrlcb0m/rDPlFzkm04h7YhqT9Ejgtnitpm7afE7e5ye0KBVzKqPSDms3rUftUF+l9Te62UsvCzMB1WLU3RgpXy3X4cJ9WBNmEXpd2od8LF3sQ1KWSRqm45m65Udcjx0fMdSTdYpi/ZUalEbTWE727DBCIeVT7to5D4qp50TfG1g77Hke6zRmNUYF73VWtDmnURQefW9SbtlEX1CYunjL+VGKvR6k0D6gyMp7mHaf9k1uZ7I3o3hHqJn9jzTHeS4wgJtFcU2iC4+AyaLKXhVTILKYBVbk+3KKJmkJB4a2xO+RlT/3NVZIDZ4fauhjMsfDXIg60nMj0TsLIpZTgLBwDfIueNPC7cqxs4ApzYaHPAiAsQJg7viWZRpjOYsoKwSMHGN5QAgfWfHlOA4JbFJ44f2kEl1CYIkzwx4x1nHSFo8nXct15TWxb+b6OVimguhEQJ5VAswdT8orBc6byi2EwBv7AEbP823LrWl+hXB6Y3lDJcZN/b22YP66tPyqfKHyVguWl26B//3Fb8CqABc1Nn0FrSJq00OriMuuTmk7DErjsXcFFraHCxp7V4yY7so4tN5mYah1Fn0gQWtdtmhckQUEZnDZBXdZ9PAJnMZHhdo67PoCWlGKh96bsUEgKhSprW1XQilKrcEuvADl16zLPjOlDLbB4CjMgHFqA+c1qsKluhqFCdi2JawOKKxH01tUliyrvTOZ8VuU/ahPa0JiIClthKwLIIOJSKZdCkkji2tiMIuEuMvvThY+WMBiRtKK8z5o9M6gsB69MzCG5qvrLUJQqKs+Cz1T92LpVsxMJbv4KkWpFNhV2VoPBWC7I+CnxaJDCAou9ckuxTK3Z9+nlDWJ4ZQpJbwfQElcT8jDxvoRE2msH+X2lPGOrjeIQcEWiRlWEcZE9D3Nk3capiC4wewynIBBQlRAVLCFQ/CakIDz+DV8a6BtgLEpVQUzaWpgWEdWaiC/wfmbF5wm5NyAnODe2EDMdAR0EeBbA1OGIR2BYFijV9A2IjiVXXMZcARK5O9MtGkbEXoNXQSEPgGGKKKZXYoBpLyUxEAyMmboDFmgORF96h9eQZVp7hODmueCGUYFyvcJ0P0RBFgif5uhXaUjYmOIyVm6/AGLTkMVYTgOCuhTbFopOM80lyOmutNQtUfcW6DyY6tuawaVe8p3iTIMX9w+CSNFoHyZKo5c7dTeINZ+cHuV+fd6TddUumYj0GkCPHF6DHyiMOTYNHHoi12DveAAWD7yamDup0i60t02CQfKK8RiGJtK6xJtoFyTnBc0qrH7KQC90+jLmPMHKkf7JFYhW+Q496ZuNbpFgHIKqlfo6wDdaLgyZoZbd5rICDSX0Yp5TYKF6mktGU1WOyCUMTPbvBbKKTgdoTlnKG8Fg4xOC0XXM6/I6LIa0N0wt0EDulcIBSWw9wbg3IGB+6oC7I7oj+KZQ1TQyQIZTerPROi0rsojI4aGgq5rB4QC2XqJAERLv6Oi+grpf8oZSfk403EEQinmUSfHlgiE1A5b5IJFfiZzfQPoHmme0zWPPJehIMTUUEaYViHYIZeoaRXc8s05TN1TuwCNRSWhSkXAlxHapfH0g+sx6zNpzWielVOZ/qgjTIr7zPk55dzz2ouNEjVgmrQOaU5Un+4XQkrO+Qmas2CRaeR5435HiK0JaCej2/JaKsHYy7UD7V2A2ud62qc9rVO/rLMVj22ur4c9JPvhdednLFvL0zneL3zfSBiFaFdY2WU/47ynom1Rcv18Yr5Oplv2MzPmuTamArI8Nwwm3cehAvKY410PKReyEgCzRcVIMbshjqXs6TgndM4KedNztxCcua1bC45vq6B4wxr8aShvtWDZeoOPrk6x7y2cN6gKBx8Uem/gHB2zhaRzBqX1aHsaclU49N7kNBykmR6QAq31lCokKjx5eYSidCnvG7KGvChIUHt+vqbcXirCmICuLVBWPWJU6DubmXsASVtOAkIIGlXdAQCcS6lQUjtaRzy/WGVtNQsjUwsHC07GBGy2Nb13k6CzWHTYtwWutjXK0mG/q8iykIRHANhc1Zmx1zoJCEBGC9QmZsEFSDGZWrj7Bg1tPBpfZrff/O7yCtpEbHpNDL7QdmsbsE0CA2uexwJEhC08mk0FU3q0npAITemhTcDVxQLKjLXrHFcorQjttiQhU6S/0MUg9Oy7GggK5XFL8/FySeMrAvrGDgKG+BqYKikkGp2EIZ0FAl0EuFRfF7Sf/K4EkgCjbYBrKigbEHfF+OWd7rGFR9/YLEj0XkEVycpXBPS7khhskwSxYEmgSm20uxrQEbr06DclraeNKGoH7zT6bUGJtRm9NKjrcYRMkzwGoIoA35BQw3PqtgUJTzrC7yx05eH3BjAREantZOFQNsDvLGADYq8HwYTnga1DaU/6VgFFgN9aqDIgtGagxwyCKGz6EPY6p2FQtUd0GrEphjZNhCpCEgLpeYSO9KdANKX9hIIEjriztP4mDr81EHsSJGEDYmugFo5QM7eFeEAD4tYOH3oVgTIMgigXFhikBbtM9y480NK7J1uOap+EaZCgVkSgMcM8FmkS9mYQ4Do1MKfHPbCzA3NiQ1ojAEc9sLd5jtXeIJYhCZdxEIwBqJiYZ52EzyIOwmivRsKjYsa5CEM7bEli4ZQFXQ0ScE0kIbdLsc9OEy0x/S4C4BRU0JlhR8AQK3mnR2x1Tj0Ta9qnqjEkFMahbjh2UDs6H2sPtTcIRw6qNdk9NCySJZfn0akhHlFRW2FJnDgJkgF+EaE6jVAlZUYSrEMSbv2aOXshTDuVnwW/GhQTSrzv/PGQz0J5BXfkqR9NQktk4ScohEWAajX6e71QJCAJW2EkxLslCde+SMoFtvoFBdUpxGWg/dVpWq/0bICfZ4D615HW8CiNu6c+oyXuWjW0N6Mioc8Zeq5UpxCTIJgF9TTmmCyNqldwR0k5EIb0MLFI69ApxCJCNxr9iU/zCSAAXRmgd2OPlNcp7iRAN0mAXWKw3GpAtwpulYSJItCcRmTrZTzlvasQk5JKBQXlgf4s5P04KBJS21FlATDPcQDa+wG6S99snxQYTo2FsyTQAYNiIFiqr5JCICoSOjlOFirmVC3RJCEpqOGZCUPbNBY6z8oIUqSkMRsSSJUnxYdm4CQ1jCUrfrwaYnj98NqMoi4CCatcbyRMpuvD+3Zoi1Fp87PL93D99C6UipRcWHBPyg8uUyGIBfPMLrDgKh5xWjt1swTFz3XEYJGemn0FT8L18rtInOdb8z6UcynGlyclAmM3gevkTYX3WwmCryNoToXjAwLur8ovZ3mrBcvTco9//fFv4/e376OPGh8unqEJBX66v4On7RrfPv4M5/0C98sNfry7i2+snuCHmwfQKuLX15/hZ80Z9r7A/XKDH149wIfrZ/hkf4LaOLy3OMej8hwv3Qp/7+nX8K2TJzjvFti5EsflHi4YfLB8CQD4vfN3ca/ewAWDR/UFvn/xCH/u5FP00eCn2zs4q3ajVB+VcXjSrHHRLfCX7vwEHhof709xXDRY6A6VdrhXbPC9q/excyQY3K22uOprnHeLUaqNB/UVCu3xoLzE968eofMWDxaXeNqs8Vfu/hF+tH8Hn+xP8BdOPsIfbh7isq/x/vIcp3aHXSjx/fNHOKt2aHyBB/UVfrY9RYwKC9tj7wq8u7rAynTYe7LAfrw7wXHZ4KTYowsWV32F95fn+GR/grNyh6u+zi65L9oV7tcb/MOLe7i32GBdtNi5ElddjfuLDT7dHePx+iU+3R1jaTs826/xcHWJjzcnWBcdvn36GX7v5bv4+vFTfLo/wbYv8fXjp3hYXeL/fvZrOKn22PQVSu3RBYOl7bC0HQoVUBmHPhj8eHMHvTc4rprsmvru6gLP2xVK7fDp9hhNb/E3vvIPAAD/y6e/gXXZ4r3lBZ42a9S2x2fb42xlNTrg68fPoFXAz7ZnsDrgsq2xLDr4oPHuiu6zKuAbR0+w9RV+uj3D0na47Gq8t7zAT7dneLC4wuf7IxgV0LgClXEwOuCbx09wZnf4BxfvAQC6YHHeLPCN06d42S7xtfVT/P75u6isw2m5w3m3xLYvsbA9atOj1B5/fHkHx2WLx+uX+NHFfQDAnXqLf/rOP8T/t38HPzh/gLNqh3VBwjSviVIR66LFpq/QeovKOCxth50r0QcDq0Ie37pocWRbtMHgZ5szPFpeYmF6/HR7hm+ffIYfXDzEWbXL7W+6CrXt8Wh5iY+2p3iwuMKzZgWrA57vl6itQ+cNzuo9AOC4aOCixmfbYzw+eokfX97Bt06f4OPdCRpXoE11N10FHxXuL7aobY/zdoFdT8/Mn7/zCT7ZH+PT7TG0ilgXHU6qPe5VW/zw4h34oNF6g+OyxapooVXE80STCxqPlpcIUPjo6hRWB9ypt3iyO4LVAcdVg8u2Rh807i52eLFf4p96549RaYf/45NvwSZ3xjuLHT7bHOU0L7V1+PDoOSrt8P3zh9kddFV06L3BZVdlD4hvnX6O7z75AL/54Cf4/ZePsOuL7KL6F+9+jPN+gcZbbPoK7y0v8AcvH6AyHq03+ODoHFpF/KPzu3hntcltV+n+v/Lgj/B/fv5NbLsS91cb3Kl26d3i8BvHn+H/evohOm9wd7HDx5fH+NrZc/zs6hSPVpd4sjvK3gk+aJzVe1TW4eluhQ+OzvGyXeJuvcVHV6d4Z3mFnSvho8ZVW0GpiEerS5yUDf748i7WZYvW2+whclI12HQVVkWHl80C764vcVbt8MeXd2F0wK4v8JXjlwhR4aeXZ/jqyQt8sjlBl57NddGhCwb7voDVAf/8oz/EDzYP8dn2GIXxeLx6ico4/L/P3sNJ1QAArroKRkX8+Tuf4O8/eYx7yy2+fvQUf//JV/CX3/kJvvf8fWI+mD0AACAASURBVPhICsuvnz5DgMJJsYdRER/tTnHeLLAsOpTG47Kt8f76HC5qPG9WKLTHe8sL/OjiPo6rBiEqbPsS+77Aw9UVztsFfuPsM/TB5PCAz5sjvGwWKA255b6/PkfjLVwwuOorFNqjcQW+dvwMANAGi/NugW8dfY4fXj1AbXo82R3huGpgVcBVX+Hx+iW+//wh/rl3f4hzt8Qnu5P8bNe2x0mxx/N2hWf7Nb52/AwfbU/xteNn0Ii4X17heb/C3pf44fk7eH99jn/s6BP8zvljnJV73Cm3OLF7/NH2HdwvN9iHMr/znuyO8GvHzwEAH21PsbIdvrp+DoOA7774APcXG1gVcN4t8GBxhYXp8aPL+3iwuMJ5t8Bx0eCjzSk4L/VZvYdWEU+2a3zz7AkuuwWu+gqNs7i72OFx+ib/eHsHj1cv8QcvH+Jbp5/j490pTss9dq7AP3H6M/xvn377jfmOrx4/x4/O7yNGhTuLHZaWlMNHRYs/Or+Pu4sdLtsaj49e4LxbovMGu75EiArfOn2CrS/xdL/Go+Uldq7AzpXY9SW+cfI0r6VWEVZ5rIs2h2m8bJfQiNk1f9eX+Ev3foIfXj2AVQEXXY2vHr3A83aFbV+i0KQcL7XDy3aZ99Knu2PcrbfY9BX2rsD9xQZaRXy2PcauL1AaCh85Ts8ifzs3XYWHq0s0vsA+fbP4u/3O8gouaDzZHSEC+MrRS2xchRAVTss9njUrnDcLvH90jp9eno3ehz5o3Fts8rduYXu4qLHri5xbfFn0MDqg0B5XXYWrpkJduOwVxvc0zqJzFkaH7FEVAezaElXhsO8KlMlzi1NxNV0BawL2XYFF2aPpLQrjc2gBe3kd1S22XSHCEYZwDfZiY+MGp4rSCqisw7alb5LWAVoBnTOjtGvA4IWmdcgeXt7rTC/3Z2UoTfL46r1BVfTonEVpHULyoONQA/Yea9sC1vpRqicuOcVSYOBHAqEkDy+qzx4zbFxxjsISbkqdlUMmwjg9kvSSkvmzOUxAyrYDTSrfw6EHc/m2b0Q5/2Upv+z0fYGi4i/97B8uJ7/+IP7Wd/5V7F0xQoHtvYELGrV1aL1BoUN2a+1EvkJ2PbXGo3MGRseci64wIecx5JcRxy2xGyXHPbW9zTFk/FKg+CnkB38uJi1EhbpwObedBJsxmtrl1ck5Lyc50tg9V+uAztl8jl1pnTc5ro9zJGodsvKHXxpsiZXIsiFQzJEEK+Lr/KKRsTv8UuL22BrMfbAlNUbk89JKzHnkvB+sxs5RjJT3GiGQlVjriLa1MEbkWktFi48BxU0pjGKcoiLXzdRH8DQn9aKDUhHNvsyAQjJnHTAozbJ7qUDtzf2bkK2oxlIbUb4M9fDCDt6MtY6pX63J9ZXXiC2/ETRv3tF9OR5PqAsV2EWUXvYypqosHVxvRjFqPK7IL3IVM1IuW38lKi5bibNVGMk91tKe8k7TuBMNNG5k4CBlYnanZatxRqlNdBLIE62XdJ3VNuXhYw2+CXQvMHJ3zZbpkqx6IX38OK5LabKOM22DpVvQktpHGp9SyFbnTOco3kuTJVtF+MaOx+MGSw5bpYGBBlr7NFciHkyXHqE10JVH6MzoQ6TLBLqV9peSFuCIDOAUnYKyae+LmDRd+cH6y94EzDQUyTKcLJboNVSZ2rdkhRn5arGVOVnW8xicFmgiGO7h/txAz7XYMxUzbbktbofj49gi6of9OnX1UgtPdI8s25FciZlu9uwtw+BizO6/FVmLR2NVcaA7WczyOaZZxaFP6SKMNA8Rg7WWXYt53MmtPPfBViuuI+eBzwc1uCrz9WzuSXPea8QqWTnZRZnbY8+EgAGFmOdHeC1k12N2v07PRXab5jbZldWrwcroExJvapct0gDGVl+X0HgTcq9E5ZXu1LFMFss4zHtuj9voyaotLZaxiFDtOLb9tYqN2YrKNFOnyJZaxDR/gdaM3SJjQedUUIOVLs3tYA1Mbad3Fh9koJ78zAAxWSjzMVt6o6irMLhFJ0sle0hklF+VzgsU3ZFraJpjQkVG3l+R15jPh4QszCEFop1rKMtMX66vButh6kNu4TzHEdctjxgqXnNZhXitCGumdOcFxFgP3S/caIcFwkxFNTqmftW1aofKlK5rk8Dzo8Q5+bxPz4tz8hV0kA7ZlmxjltgbrnHXt6jzJ2mR/MP/+G/9PzHGf/Ln39Phsrr/Qfz1v/63vvR2v/tf/OLHBrzlFstH5Tn+/Q/+V5yHJXzUKJRDHy22oUQfLWrdZzCJK19jqVvsQgUPjZVu0QTSBGoVsQslatVjFypoFVAoj1r16KPBVahRK5fBgQwiPBSWukOIGle+RpF8TQwimlBgacga1KY+CMRHZWCdPlgEKFS6z/cYFeCjRq37EfgQjW0AEJKAN4Xy0IgotMPG1zQeEPjQkWnQR0P06A5ttOiDQaUdTHpDXvk6t13rHjtf5jmh8ZCWsGfU3QRcxPeEqFBphzbYDFTE4EWsjdt7Ak2SQDx8fmH6fL0NBaz2Od/owvTYugpVmo8QNSrdw+qAK1dn4BqZm1SCKxkEbHw1Aj0CMMph2npah3slaW1fdGRlkGBGPHZ2Q14kgB8Gb2LgJBcMrPYZIKjSjuJ1vc1CIMfyEtiTGQGeAECpHYyK2PvBnbIPBgvTZ+CeNjCQFMUD92m++NzWl7Aq5HVh+o5ti60vKZZY+yFdThiAqjIIEeaBlkrtMmAU99kFmy3yLmqU2qHxxQhkiNvneGirAjoBPDXMY1KUpP44PtoFjdo4dInWYa7pmSqNyxpgPre0HVzU6LxNe85nYKXGFSN6eW/y8xmizpZ3BsEqtcu/eQ8NgFEaxyVZwDZ9ldduCkTE7WgVsyViNO9xALVZ2g6bvsLSdmh8MXKDX1p697gE9sSx5AApMCrrspKNNfMyJnlVtNj2FQJUBi/jYnVA62y+1nqLQvsMeMYAU7m+WHt+V0zr8/qGqFBqD6NDfg7kNV4H+Z9B1gCyElSGnisZp82FlSWs3V8WHfpg8jFbfFs39M3WhsJ4tM5Sn2kOKuvQukHBVyaFpFQW9ikdFZBkOKYhUliA1QGtN6P4eAkKVUzAerxYK6T2+D4uMc0V98nt9BzrLWhkpSspPN1ofqbATEwXK1zlMUCWFmsCCuOzZYjb4T5JYTuk8bImXFOesuKU75fps1gZC5BybLS+6f8U9IsVpmayplLhnMGuUmjMmxZWpHJYy5DyK44UtdJqwjH4HK8vY9mlspWPmVZWYvMczaG6y7RkEqCJaaI2qY1CKG5Z0Qq2/IQxOBu3yUBQcv6nehyjhvReEYPSERjCAEOKRQ8zgiWn6RqNb4rmmy8MAFDXfDBZaTNp/6DgwvWT8D0S2jC5jxVHb1KmQqE8rybXRf2cNin9JpJjPi9BmK7lfz0kNHJ5FS1DwweHdWuhcXp8W8FV9DNd6luVPwFB9VflenmrBcsn/TH+66e/hU+2J3BRZ5fOy7bGtivwYL3Bri+xLDpctjXuLHZ4sl1DqYi7ix22fUkuBNbh5W6Bk0WDTVvBGp/d43auxCeXxzhdNGichUuuCQBwUjUIUHhytcaiJGFjUfR4vl3i7mqHGBUumwqLss/PKzMA+77Avivw3skFAhQumhq1ddkCeVLu8cnmBH36SCwKchVs+zEztqy6DDD0ZLMmprHqsOsKPD45x4tmiaumwjvrDV7sl+iSS0dlKcb0xXaJMqVnWZY9tm0JTqHSe4Nl1aG2LjMs27ZEZT3K5MLS9hZHdYtNcjVxfkA43HcF6sJhs69QFo7iWh2NYVV32DYl1osWu7YkRq6zWFQ9tvsSZelxZ7XDs6sVjpcNtm0J5wxOVnusyg6fXx6htC4zN8xo2OTCwhbpy12d4mFdZgZWdYfWEaO33VXwXuPDR+RW9pOnZyhLj2XVYd+RO92uKUcM2PGKBIhdcm/pe4OiIICeRdWh7QsoFXG23JMLUVMlRsygLnvsmgrLusV2X2UrMVt0T1d71NbhydWa1jiBBR2tGnTO4mTR4MVmCa1jHj/dHyh2FsBuV8EWHutFi4tNDa0jisLjvZMLnDcLvLxaoqr6zJi6oNEnoCGmhy3RzKgwjYuqQ9MVKKxP662x3VdY1h20DtjuK5wd7aiPkoQb7zWc07A2pPGXqEqHrrfQOqBti8y8FCUxvoX1iACafYnVssVmW2O9arBvi5SblVA7XQJSquo+M3YcJ3x6vMOuLdE0RbY0F4VHXThcbGogeQAY67N7UNsOsa2LukcEsN+RC2dZObQNra1NfYeoUJYOXWdx/+yKXMqenWTLeVE6tHuKpVVpjY9WDYyOOL9a5HcZW9+9M9CGrEpH6z3Oz1e4e2eD88slvNPZCnx2skXryLW77w0WVY+rzSLvU7bAb69qVIueAKn6waXp0d0LfPr8BN5plHWfx2BMwNlqj89fHCNGhbLq0exKLNct9rsS9aJD2xaDFT4oFJWD1hFda7FYduhai7JyaPYlyqqn/ZT2FADUiw7WBOx2VQa2CkEjBpViyWkOfG9Q1g5F4bDbVRm8arEi18P9tkS97NA2ZQZyMtYjBg2frOIP717g5XaR99hi0cEaj/PzFUxBgEiuN1CK5vT5izWKyuF41eDFyxXunG3x8mJFYFVRYXXU5Pej1gGbXU1rpilu1nuNuu4RI9C1BZQOWC06XG0WKEoH72msodcoFz2co2dbKhWatoBLwFOICotlm99drjfk9eANluk9RM+XwfGqweW2zmtRlC6j3S6XLTYXC7xz/xKdM9juqyyUaB1hrUffW/SdxWLZotmXWC5bGB2wLEkQc0Fju6lRLzqcrva43Naoqh6V9aiswya97ztnsG8KGEN0LFctYlRomgLGBKwWLXwAttsaRenoue0NysqhMB7bXYWq6vN7tdmVZB0LCrZ0UAro9wWWxw26ziB4g+AUbOWwWtDeaJuCMAa2JdZHDdqmyDgJJycbXFycvj7Dkcpi1WJ/VSNGoKhdFsyKwqPZlrAlzWtV9wTGFhVCAghbHrUIQaPvbH42vNcITmO5pnWm/UhWfWPIkwcA+s5mzwuAPClWixZX7QJKB/jewC49YlAZC4HeLXQNAKzt4XuLonLwziIGwJYJ1K+3BDaWBFxTEOaCLehdHDqDYkE0x4SMq3WA7yxM5YAA+C69j1cdjR0gzIDO0v3LDv2+TFJphLbk4WOK5L7ZGfK+CISpwN4EqgjZsyR0egATS9KttilvuFM5nj8XBbKu20gW/VEcfxws7ww4FhK3NonFpLhwsRGk2S+Br42QktmabSLRy3U1xgIqS+j5OGaBNwo64iBtEo6AjkOO7ORpwOezwDzRAKheAQZZWJWCZBZWw8RjQMas5qEn4dbP0D8VHPncVKidXp8K8EKKZCyEEYL0a0uZv2TlLSf/pvJWC5ZWBbxTXWHvC7ig8e7iIqX8OAEA3Ks32JgKZyXFbT2or9AmQeTR4hLP9RKNL3Ba7tF7g7v1ljTX2uNevcW9aoOrvsaL/RL3FhtsU+wZx9PdX2wAALu+wFFJH8+zeofOm3wtRIV12Y786K0KuDIVjA65nlEBdYpZsNpjnawU+2RZOSkb7F2BjSnJApesGqf1HlZ5nJV79MGg94bO6RqPVy+ylebxmmJP9q7AvcUGS9ujCwaNs1iVXb6PGdPSeHTe4M5ih9r02VIDAOuyw8L2JOgWFvcXGzzVaxyVLVpns7bzylQ4Kls4r3FUt1gWHVpvse3KHEt3Z7HLcRJXqsLpco8QFRZlj4erS+z7Au+sNnihl9j3Fu+sNjgtd7hqK6zKDo2zWVNfGZ9jFeV8O09CM1t07i23uGhrFAmcqe8tvrp+Aa0Cnm1WqAqHe8stzs0iWzjYxdkaj3tL2ifP9RI6CdAUW6FxZ7HLbb+7vsDOkdBcGo99X+C03uO5Ak4XNP7ChOyGbXTAo9Uljoo2a+n7oLFtS9xbkiLk3fUFumSpWRcdNn2JzllY41EZsgQ9ieRifX+1ye7bR3WLD4+e4yNzis4ZLMseqyIxYd5i16d0K9ahcTYj8nLsY+81dKJ7U5RYFj0Wtkfryf36zmqHyjh8DuDRipjXo4rbN1kYPav3eKYi7iz3ON8vYI3HRscMlLUsSUCsLTHFLwHcW2/ho8KDoyu8sEv0jvb5um6x7wpEAMc1PWO7vsgAXQ/XV3hhljgHKTrqwmFVdjiuGrgEhOWDRlX0WKR4nStdZZft0yWt0XOQRn5ZdbhKbuTrmhQiLmis6xYbU+G99QVK7XG+XWTrw6rqcJH612mcD9YblJrQjvlZIVd7drunsT9Yb7BrKjxcX6HtbUZHjlHh0dFlVow1zuKs3ucYYB807q232XX9eNnAB41dS7FEAMWJXexrdL3F0bLBUdVi2xGK9OOjl6TISWMLgdb3eQTOVntcCqtICBrrRQtrPK5MjTurHbZFgaOqw3MVcbJoCD07qLwuZ6s9VkWHz0Co1L2nVDgh6BzjVFqHfVviZLXHuuzwOZLlr7e4t94iRIXnEbh/tMUL4W6/KHs4TwovYwI+PHmGn+o7eGEWsDrgbtqnTVdgVXeIUWHfFdA64NHRJTb7CkfLBg/XV9i1BR4dXaJ1RJv3NK8xKizTs1OYgF1XoLL07O26AvfXW1JqFRWsCTir93lvh6jyWp6s9ti2Jd47uaDxJy+Bl8UiK9sigPvrLRpnR/FgnTN4eHSFAEods+8LvLu+wEfqlGI9iyo/S01X4N56i763eHz8EjtX4nmxzM96oQOWRZdj1x4cbfDCLvBgTV4cd6ptjhX8OCrcXe3w+OgFQlQ4LlsclQ2WtsPH9hRHRYsuGDwrVqitw/m+xoMj+sY9t0tUhcP95ZbSSnlSclodsO1KHNcNKkOKpZNFg21XYlV2eJ6sgt5rrOoOWkVc6AXuH23QOIumK+h9s2jzu/kze4Q7ix0+jgqPji/x3K6wrlo0zuKrxy9wsa9v5C1uKvfWW3yerHPrRZutwLV1+CwCq7pD01vcX29x1VZp79P79dHJJVpncdVUOFk06ING01u0fYEHx1cIUWHTVjlGcFn0aBPyu4zTA4DOWTw+OcfH6dvBe++qrdD2Nsf4WePzvXdXO7ywSxzVLfa9RZ/WwCjad5Seh9pn5ap8pk5Xe3TOJsu1R2k9NmksPqqsyL13RHs2RoVF0WPbFdg1FU7XO7wUAi+/z9Z1m95RZVZaMwI8QEK7SZ4ETVegawvYhIJvbciW794ZOKdHiO0SRJER4ZUa8oS73kCbANcZmMITcrsJWXDhkJmq7tG1NiuY2YNAYbDGmhQKw6CGHNLTtfSd0ioCKuYwmMihQ2lvKSBb+gEKa+EwkwiAQRZzOE1gAEEO8aHwIw6RkTGRIagMjEh0pE6TMJdpSaE3YKu7RF9PY9YMxJis36OQBy4T66u0QEsFCdM5jY+cphlSM4LloRjLX5VfbHmrYyzX33wY//G/82+iSaiw7LrjEhNgzeACIwORAeTYPpkbjR8+vp5ROVMuM85hxhue3WBIixzzOdKWJw1akA8l3cduJyG5snA9flBkO9I1hd1MZGHrJWvL5YuH007kl1B62chYTo6341izjLIpXFRyfKgacoflmDBxH7uzcMkvA74nafNioFQT0VH6hpyPLGka+WWlbMgaVIr7UzndROT4ralLDJPP88UxceKFIxFiGVlT1yluMsVYcQwdv1hHmj2O5/NZlThc1wMt/z9779JrybKkCX3m7hGx1t658zxuVXW3WiW1kEAqATMYITFC0BISDUj8D5rmZyAhMeoJ0GIAP4EhUwrUoqSGMV1SIaq67j03T+7ca8XD3Y2BmblbxF575+Mc+p4sXZcy91qx/GH+iAj/3Mw+s3aa2Y6dpNrfQ70glS3wnp3UTj9V9p1v2q0HudVrbI6AyDPUHu7C+wZZG5pvZx50bMOFQdi15/2sIu/8+XYnp9ZvR2t/cw593Vaf81nayWqfbSztmuWvThYvp58795JryU6fm/8fdnP17HPUujdfB7pvmeU9yuDrOIw15SDskYX2Zk/JOQJpH7zv0tFfrfluWZGhgjbRCHC0U3S0dUPK/MqBd75RdpK9kzOg+cK1k+5wyG9yAt0Pzq+D41gSGkuj1dXqsHAMVT8XPLv/bU3xwI2FVcZUZW2MtGjjyIMwbHJgIMrpPg98k5XUr8/jMjQWx8awaWPh8kBDEBD38eh+UbTz5WqhQYCdD1ov1/3a2jh59kdty8KegNGYcNumktBCh3DsZUxgm0PKaCyipNoKVmZYX6f5qdka8LI3n75Nn/fadrvefCxN/htxCtWfsP3GaOFSSPt3XIPGmllTD/HyJcnYRQF0rZbKFoyol7F7xjX5/Xp3n+n4m6UbdfQG0RhbGbb2sPfPA/q9ZPPs31cmB6C+n+jPiIO/YVsbfHj02tzpZ6DLZeNiax5u7HYWlt7ns9V7mHfb65gvsI2N75d/1/ghqC6Pa5t8/lumsG6sj2aitxRmR0Xarp1jff8Sku8vvTA2H5PpVcWgf26/UsfN3z6ljJPBr5efoqz8v/6r370f4v0f/jH/yT/4hz97vf/0v/1Hv/O+AV+5xvLb4Yr/6O/+MzyWU/c/VJOijePeL1F9pnKN2Dg0/zTzNzOfray+PKa53GrEUiMGfUqa311hwqQ+XtcyNBZS80ky/yzvj2Y+UYlq82PzbLGWLP+q/nFA903zLGKW15I3p8o1YFTfKh9YvjGP6YnbWtMzX0Xv55X8DgfiRxVu3NXe5+WWLMmArct7DHxv/jBbjY39zq55H6nK4ldo/lv2N2BPkmTyHsfJ/PdMnlJD00Bc87Abn2N4lz4/3XfO+8t4n0Hr2zHIvP21GJ7ev9FOXq2/gPhcDVqX9ylr9WP/rjCfzaDrtOr3Fh/U/K9cGT7Mi+/rS99tTM0fzNjprB0Arb9Wt/f5Km78LPlxtLr9OjB/qspA8C8aN7+mpTUtoBFyGdmWrbXKfe6srmovYqbGCmjlj2vLzz0ztRiwW977/Pm5NKItADtfMj9OlqKbcx8HloHuX+fyFz+O2pb5+fFBViPzskMne6YBPZ6spVqlb95Hs/e/E2Yd13cn8qKWV/qK9rs/oLLfPDuhJwlr86J+artTezfexzi2ZkYKdG2PHahZ28Zs6InGjFys+7D12LV+bHzbXmZ/KLgjGTvsNo/jV/UQrdXrTurZzQF530w2/7X9HPm8VQ9frR6fjFQM3H0/A/p9tWN2DLw7F7J8pj3xmhI5eDTZAX8ouYtD6x5i1fwzbT21gwnqmhE7nNODgXbgS9w0O6YRaoeEdugXGNkf6nxmsoNh+bLXmhTbwTf5aA927JoHRsAzoCl1u98UYFubO9IldyCxOxiEq8fLcARJ1s7Rf/C4m/+U9JLsrv1mYsn7v9Ik7eu6BSB0zl+S9SboOIJHd92fae7y3urTrbZfatOK043fPwUYfQZ4Ok7ri7P2OcDP6v6CMp+T54tA4ueuy9+nf6npqwaWlzriT3/79/BmWJBrxLtVfJbeDItQrl8fMCohwzlt+HE94WFcUJmE1nrYMISCD+uE708XvFvOjezhug14WkYMqYhJ3fUOQyxt00XEeFrFvOT78wWXbUTQa9+fL/jtLLI8qPmNJ2PIJeI8bJjUl85oqrcS2gZyUxM187k0Ztqk5lGWrqsw4uYS8HBe2rVpyPjxwxnjmHEaMt4/nXB3Et+meUstbufbu1mpr9HMXoRAITQKbtPmMgOncWtxQi1u57IM6hOTkNRnCgBSFHbau2nDkjsb6ZjEFM372xmL7XUZcZ7ENPd6mXB3t+A6DxiGIvLMA0qOuH8zY1NzN/MxFHM12ZTZBv3kfO/MBGaZB/HFYsJp2pBiwZ//xR8AAO6/vaKU0MaHGRjHstvsLhoXMQ0FzGKKU3RD1+KWMmG7DqBYkcbSTGPKpuY2+hdMjYGWa0C+JqAQwp2Y+ZD6P63zIBvHOSLeZTFDUY2vyWVsrsNJ/EnLEsUHCOJHhscBPBWku4yyha5xpc5UamYvxt7a4k/qBqb5wJTQNJVhVNbSQgjnjPo0gO6yaJUZEsNUtc68RInBuETRoDIQx9o2mY0p1WKBTgV1TginjHpJLQYkRW6yAACvsimGtgVAYkAODNK4o40dNBNwFjMlihV1i3KNIcygptmz+HCnoppekt9ZPw+6K9kCMFTQ+0FOxr/b+sZzDVLeNiSFhJGyEPg+9xekMWpaHEgAdA3ghwx6P4DvivoEQcb0KTUNKUfW+IKlz5fGyORzjwHZNLgA0o8J+W0BUgUtsfsgMRCfAvI3wnBLW5CYjpcIniQWIo/cdwOErt1MwrZpmr96qhK7UrWOphmhJSBkoJxrjzfp2TyTxmFU9s6wAfXMjfUyXoLszU8V8RpQJxZtFOvcEjd2zPouoJwkLxVCWEQLkt+obNY2E9ITIb+V63GWOIn8GFDuuGlM+KJEPToPnICaWLV9og3DIvVW1UiGDagnZe8kGQuOQFi0r1ddbwpQeEDTxoEYcSbRzAIylgwpP6PNgXwn8EnXiLF/KmAJK1DvGem3ARzR4gyadjJkAg0MTkC8EjAx0lXXoQa15wCUs8gTVqCcRAtq8RDrIJ+ZgDqixVWMs9xbdZI5Cave4neMuFIbR9qknnISeS1uYJ0UrAbRNBIDZWKkJxK5VLawAXGVPpcRiBuQT0BchA01aD/SFVgf8MUpLkBR9+ig7RGL7PkkcnDs7QJoGr00y+c6aNkg3zkAUX8zTXYbewPmqbfFJNeHDzJeNoZxlro9gykVuWay10HHIvRxA8uceU2jtd3yap+snGm4W19o307TYmaVKenYTb0f9jwKm5ZPXevbYkmyXBNmWwZHF4dT6wiFtQx16wtIfgDg6MC81uNjfYrGmxAKo0YCVd4zwFK/D47J4+8dc2/t11o5mz+nbT0Crx2eJ+Bwtu8Aeq+HA1pszx2rLbk2yc0v97Zu4h5T5AAAIABJREFU1X1s4yUZdppQN1Y3waS7TgdLSSZ6du1Z2rXBN9t4dkjwS00vHZr8DUlfNbCcc8L//dtfYUil+QAAAmjGVPDh2v2lUipYloRBCRsMXBBJiITfns5YloSkISJKjihqj35ZRiHtUGBip5/bIv6Ej6dTc7gvOeDxMmFbRJZ3w7kRU/jQDSFKaIn1Mshp+SCb62Y6WQjrLIHVbcNtG2oA7clRs+bPAfNJnOLNjp6vEesw4ilJQHgDOgYCEBjzZexEHDngMkz9lJh0M+4cqa/DtAMVZvq3DqNs6ryppJowXsdJQIZunp+Ufn8eJvAasAwVyAHXQUIazOMo+deA93MC1oAtVXkprAFUCI9L78POxNQ29PogfBo1OL03zcyErCff6zDKBvoxgRh4qucWQNxw12bB4zWRbtRXnYutmX7KRnyzYNGL0OlvKYEqoUQxq9uG/nd3vMhAmIO8rBXU1MAoQTbjHCW4dFlD20RzYGRPMc/Aek2ygdsImwIMyoT4FFBXQl4DKBOCAlEzIRO1pZiOsb0Y7QWiIoYsAaxDRaN85yHKxrQCdQ6IS0DdSIJls238ZH7ipnk2Qk0RocrGvL0c1UTNXo48RMSFtF4Cx9jkC7mb2cXNtyWypquAkzqEJjtVGYu6hLbJD6UHH+cU26m2yVLnoOZ1+jujm5iSXo8R8aqghQa3MSSwlrcXfNDNdN3649fMJpsJIIC4EHIZkC6EssVu5gYBJaZmlSDlQN36RDXZFxJAY8DPtLdXAhDBMUjeilZfnAmg2OahzoSwypjZptlkYdJNn4GdDagxIhQxK7dNqW1CZB5kbdEWu3mkbczcxsA2vVR73zgoeIAccoQVqCt1S9gCgKgBpjhrsPhVwG+wMeIAyrao/ZgI6JUg7gHpQs3kEyTA1OSU0BUKICu1DWRogFXnPMs66KajHSQhEMLSnwFMBqrMDFCAWAMXZvqoYFGEcWNVHFDLJrfKUAlxtfWyD+1g65KT1pPlXpU1rH0hqSNkAQg2lwYwyJ4JuiZs3oLVo2MUGgGK1AUAvOm6MJCmbQpoNXNjamuNMgl4ib3/lOHaku8JQFiAkPrzKqwC8L40hdWt/a1vrG3DHrKsibii9y/0svbMCJu7N3Rds1833GUGANbx6YIAYWPIxkJ+D2sv0wCizgvQ7yfKUp5VFmLVHB4AaTP7bWuM2xqWPuthQeZm+gwCwsq9zwoAOZOUt5tdy4P6ONkhRXsm2Po0l0c13afS+2RrT8aZdwDG/u5Mq92z2OZG7ik9ICq8A19tuAtQG2DdA5hnAMvdV1S7xcIx/4vaTPc8OII6Ym5AjFvwR5GbA7UxlfL2PtV50+fDiyDOA8pPlLF9v5FeUno/B36voCwPdj+Sdu+PXzjA/CXL9lPTVw0szTxn3tLO3GndEtYtCeGXatbWVbq6bZ211MchXGah81/XTh1vWpxZNVTszMNQBRwCwtbGugkAyXe7EcoW22dPM14LCfuhspkZBbf4EBKQsGNeBMnfWxTcFBgYXEw/gvienOQtz4WAppFS3yIzMWtxz7SNHLo/mD0RnPlX03J5vyCLp2Y+ZmauZNoI1Wi0O0lBGGcFhNp3icPHYGWWazHqzJ+sSN3sfCRN7vbd2taN5c68x7rhzdk2eXvxSZjvdrHnLB3i9jU/K/+7yuJ9sOqpvxEMAPHg/h4fmFbm+BBlgAe5zmctb9ot+92z4FX5ndWfytrPb11YiQjUVPemR37uAHj/odaO1slRNtVtbQ/cfIvqud7uY2RU3TTVUfthbVg9On6++3Xi3V/fp5bH9dVSudtf4Kj1j25962bK/MRE66nlT97h5yCrzaNtavnQni0JmyPdJDFE6/NsXF1MQjvdzlpfdvU2Bef5sIEasTPzKhPv5qaVt/v+bW+v2tzZuI3cbtWqITn7HOzElmuhXzDtiUZ4gX9ktvpTL8yHtX7YD6J4e2eILLmT6aKe3eaF+9gBAAKwfbMfa1t3gMtrfdUxKVHHD8D2sF9X9a5v2naC6gfSNvy+68ZtLu3ovJRTfzza48wnG9Pjc6G8xj/DAE7us72Ppr0gx5h9xL1ee1ocN2gFwPbmlba9DC+lGxvFFzfrLhX7AXoPvGAStyt3t/9t/akbzjs02V+bg3yH/SIAgPtX8n+BTNsben3j7Reiv/YsfcI4Wj4+fL9Z/nZ9dr3X+0K+G2vjY3k+FXh8SlsfBSWfMldt7I9j9pnyPc91+GvyvDQXz6/RC/fNs/RTx2DX5hcs8J9ynz5r/+er6/fp9fRVA8sxFfydt++bzx3QfdO8P58l74N09JWyvMfrR18uf93X1X17+udb9ZuPmvd59OnV+5i7L99Lvl4v9e8Zy5btd6l/Ptb3Oe0f23iJqevW759S32t17gsddibH5I7QPtafW+lWky+901/zA3j1GfvJm4EX0g2B2PxuDCc125gbbd1q09d53Im+9P2l48pX0jH+26ssb7fa8Z9f6ttPHd9jdsMeXoZXC3/GS53wurwv9fHG4cSzay8u3GNbnzeHP2v6mHy3xuiVMj4WnP/+ar23rn8s3+fUuctz2NH64/cb6bj0b1XxoizAfuw+Y6P+6ub7Y/186T75hHUmRY4L+4W2PmdufoZ0U/rjOB9/u3lI8Rltfu483/oNr+R5rY2PvWs/R75XfqMb0y0/6PePrFMT71Wzz1fSy/1/vZyV/az78VPSJz7rXpLnS2T4eeT/dID92e1/SvqlActfmjw/Y/qqgeUUMv7emx+wlLQLZu+JcWYXnD4QYy1Jf1MWUA2Inh35D9DJQwBgLXFHPuN/zzU0Ahm7bsQyABqpzDFVfTJEUsrrA8mMDwp+BKQmhw+ybYQkHlxaXgtc7ft2DCTuiXQsMXqw79am/mYjYUQxx2e0gfRbpDb2+Uja4olajuQttwhjLK8nDPHJk7R4cpYYjCilA0ojdjHil9eIWo5g1OczenMvj++Pn09PrOLH1PrVsIOr6+b+4MahwvGgg4gbQctLhwY2D55U5UiGInk74DtSg3fCFiuPpqn39fnxPZK+vNa3o6z+s7VvbRpxjLXvg5mXGyQnL1GXH9s4ktfcGqtdHYeYXC8drhw3Z0Y6cnPzduParXE8frb79EiXf0y7/agHNy/JcmNOntXp1gQAcEUndjmsl1a1y9v6c4va/tD/Vt7G8JDoY5szwt7E/kZfP5ZePPhqAuD2rtPX7x+stw6M3LXdZxzyWn+IX3iIvNKn42GN1edlPMp6rPcLDpn28rl2XwKR6HmMIOal9Mkam1tNkfrzHoGhl4PxnIxHZfuoZvHW3Pj77yOyv6qV+xiQ/cg47+u+gfheBGHPnx2fBVbs+fCxfC9c++hBiP39CNB8Dk4/bR19MjD6XLDxGfm/GBz+FMD5CXX81PR7TeQvL33VwDJRwUOa8ZAE4C11ACIQSAhvnvKE+7Q0xte1Jnw3XrDW1AARAGVznZVBswOttQqg/NUk8fqODJlrjUDEDnTmGvB2nFvMRIsH6ZOB2RQq5iImuPdhaYysVs/9sO4YTI8MrXbdwOA5ba2sgSoQENOGax5wl7YOtvQRfT+su/wnM0XUTVrhvQbY2Gn3/XmdTdTGx7OHHsEwMyEOG0oNGEaRaSsRp5R3TLhblfiD95rnlPJOO318xoyxtN9Mrq12Zt9B671uAyTmVgYDe7lC3QHpokyvSeOXtbHWclGZa0sljSOW+3hWwhD6X5+YJeZmrgFTKk0rHkMHvMYS+hrYiYFRWUiiTEZmwpoTQqitvI0XAY0tEwAqSZ8bSyl1ht7KpPVTY/eM1BlyxUe5h/oBBODZ+7ra+Cijp41fO5A4MI+GIHljECIoY9A0FkoyVmUdnxhrA5RG6uS13pZvUOKlRnzEvTx2sgDRmDQdcDEA7UMV5RzANWAY+5gzS6BxP8cW8DyEZ7uUHbCqJSCmirxFpEGcy/xvAhL6Zs0IqQgdTEVHpuUBf8mx+Zhb6KNgfdOYaCAGK+mUD1kUfLvWT7uvdf52jLDtcKnPASCuBMYy2ubIgCN3hlSu1NwOCNzcBkLkRvpEBO032ndm8cOkWDv7qLkLaDgoQMEnCxlWGEojxgpDQd1iC3EE1vLkwGbYz9kuPJHtZiuUeKmDkV0+c0ew/D4UEKETOx2BjGc2DSw+7s1c2wEQ4k7OZEROwdXH6LtuD0DNL6yE7rtmc6MkS0KEQt33zQ6LrP4ADYFC7ZqFRPE+vxaY3QiaWmgcRiNmspA2Vj/t+guRxREkhSp+6T18Calv9t4k+nNTKKGb4ZceEgOMXTukhDR+zpovt/qPsvu9hTDxc9wOltT/0R8kkfgMN1kIPayNY4u1UCvSxt6Psn3WubKQLExw4V6cjA4/kvX5OWbchS1p5taBOoGOVcL7/Efw176zk9nGzD2G+jrC/qDL5AqMYP3yQBLuM+3/PgeRuJ1eAaQm+4tWQb7eW3V8BOge27o1fk0OvACuX5D7xbG6lT5Dxk9OX3CLfk0g82uS9XPTVw0sCwc85hO+TRcsSHifJwxUcZ8W3IUVP9Q7DCThQB5CweM24buxShDq9Q6ntGEMGZc84FfThqd8wn1acS0DPmwTnjYJGP6vPPwav10kfwALoATwuJ5QQfjD0wfMRfwwn/KIP4wf8LidEMBI4drAo9e2ndOGQAU/XO+QQsUpBWxVAr8XJmwl4hsXMPppGzGGgukApC7bKIGzNUg6EeOyjTinDX/5+IC7acWbccWP1xPeTCumlPFhHbHmiBgY358vDTQ/rSMepqX1MYWKD+uIrIHXAeA8bFhLxJoTYhBw/LSMuJtWrFmCMmdlzbUA3N+cZsw5tQDuUyy4bAPuxxWPy4j7Ueo8Dxsu24AHZd798XrCN+cZj/OEacgYY8HjPGHbEr5/eNJA6gVrju2vseraBvfNSVgmrL+BGE8ahJmZMEwrYqh49/4ODOAPv3vEmiNmZdbNNeB+WnchIz5cxdFs0gDNQ+rB7ud1QEqyQ7hcJsRYMU1bi6u6rAnTmNtf0xRbaJPrdQQXQj5vTYs2DRs+XE7CwHsdcL5fUSsh54CUKpIGfjaAdHcSVt1lHnC+k/4vy4D1w4gwFpzvV2xbbD7GFGoLip2zgKSUKnIOqEVishoAy5uw3pYSUHNAiIxhzNjWhFoI03nD8jRivFslZiwTQiyIkVEKIa8Jw5RbMGoDYqZpzOoDXXXTPYwZ2yJl1nlATBUUKmJkDeYtY72tSQBIqg2wbk/S32HKDWjWLYBzwHAnhzAhSlgJLgos1eeZiJGXKO7Ok8xT3QLiIKzMdQsIgxw4lBwQUkV5HMS3+bseAqNuAWnKYNVAcyHUawIqIdw3FpMGWMLQ47rWDwP47Yr8fkS93zoQI0hbgQWwBAEM4T63TUy9JoCBeJ9RZvHzNtAEAHg3In+7CrvuEoEtoChJFV0j8jfCSsJrVKbfhHoq4DmiTtXt6CDEOJVQRyEJQxIyrjoVQOPCIjDIDq3mCCqEfCodDBlw8QRgqQJLBG2k/q4Q1l8lpCqnApoj6lj7RlrZhK2O9C6h3FXUQXa3tARhyXwojQnYWGHjh4DylkBbQLwSygMhPkaU+9qAYrjEvumshDrVxkALFlAUr8Jay4PIEFZCPVcBOCR94MgIcwAPjPgUdpvqOnL3uWUhAWs+8Uk36lHYcQ241CQsruXEOhfciFCMgba8qRiMFVYZXFv8QGWIrYOwuDY2Vwh4qUnmp5yFQCxdCPmelTBHiInKiYVQi6AMsNJOWKRfZRR5rN58z42RVIifSFlhuZFEUdFyMCAly64OQLoIqKpJxiBsaKy/5cTS5ztGvBDqiM4KewHWg+/t56R4peb3HFdScC2y5nsZH446jsYKG2X9RGUArqOMi7GtwlhhCTfIewyIYwfGOAHDI1BOtvaU9TVKmQ66gJokT1w7Y25V4iMjTaoDGntqbxudpTV28qHXWGGZhHnXfJiNFbYOQpr0jBWWXPkjK6yuz0b4xejrN/c69mUUwMIBqmessA7wko1RJ14ykqiWCKAs5Dg3LQgMjBpJDimzrLZjY70Dx3h+zYCo9+dvwN8D9dDnh1hlzu6ggPbt2LWq5F87wHjsjztM+KmssLcMXPz1m+kWUH8NuOMFwPxLT1+bvJ+RiL/EofYXkv7gT/6A//4/+QctPqRpTQzArcogYbEjLQaj1/L5+InexNTHObSypjH0Grujv6RpuCwOnGl+buW3794M9Xh4FVVeu9eOJqXmN2p9sDoBNEBIxA1YmTxbCe27N5U9xrv05rU7jQ3vzUstBUIzMTVNm2nQfOox20IzH7XkzThNFq9Bs3E5jqnXWLIbI2D/rDqaltr4SZw604D1OW55nbaqx9M7mnViZxZ6rONorvjMp9e0BO5yCLWFatnHycMur5ltmlzHvAZKbrX7zITwRp7do8Ln9eaGquWicIMVhOlZ/4/pllx+fulw3b6zynTLz5hMI2pvn5eOdU1Ou3yYi1vmwP4zV2kzxK4ZBAMUsPt+1DbvO2ydkfYpcgsBsxsnp9F58e+hvl35ElpYltbWsW9urDyrNdGhLrcOez8NJVEDZb0A7TZKUviwQ/Bz4jZKbdPj++brOfb72L4n+TrudmzjaRslC1twq22vCmgPlhuyf0q6NWe38vh+tTYP+V5bA4Sm2WnVkjPrfKl+P8Z+XL3Wsx76foyvCLTfvRZp9xy5sQSOw7nLc2Oze/y9M37uN9MHo5vPSkdlsNXZtM23xsTeIao1O/alfX9pPQM3N9tH8qVb9z1ZG4ybt8yL6873jQ7XDulFjaXvk90/L/TvOOe7x6NbN8+Svw8+IqeX9VkdH7n2avs/Md1cUy+l4/2NG99v1A/cGNdjvZ9y7afU90r6bGD4heP+f/7X/8U/ZeZ/68tK/zzp/g/+mP/1//Af/uz1/u//wz/6nfcN+Mo1lkSMgSqeamrmnLkG5BqROWAMGZnjDlSuJYqmqpkrCiAzv8itStDyAAkov9XYtHeZww7UJaqoRFhyauaFMVQsOTXNogd8zPsg8ZVply85UzMDpx5IVaYGJAnd9xMQk0/7zcw878e1mY6OqZvzmaYRWgfQwVsunTXXA24zfzOgGcmD8j1QimpyZ/6MBi6lHcCDTgm8Tn18VAYLJC9mlWKKV5lagG8fHN1Apw82D3T/UT9+AHbjnNWsdUxZAbjcElHjhXowaoAgxfrsmdZl7QcUg2oBi5PVQLR8fw6uhqGbdhqQFLNbifk4DD1gu42Z9VnmoLcTQtfchsAYR/lN6q678reAnvlmeh9L01x6sF0riSZPwWxqGkgX2F3fQFH7HagfJng/Qm/qauOQNM6n/ZVC1M132fxIFdjYPWrxLCtJnlicz57rd6h4tjMCWpxNCyYfYu2fzXwSZnpMSKPkryU2INjNQ22hMGLoa/hZapvTHt/U4qB6UGdmr34/5f1Lm+mnu+YXdBpFi27XwtB3qHaQAa2nFkIcK7gCIaABaEtBwRXbQYbWyZVkDOv+EEUOHdDAcfuN5Te2XbCBIXIHF0xi0gnc9oHU7zZWlIpS7LsdL0HAejvs0XENLLFhgzzruATQVCX0UVsT+50wu3tRVBOkZrZ9LVHgbvbqN8EGYg34ejDub0Wfz2/Yg6vLvjfzRbfjszVVCDzVDgzdoVvL5x96dpjhgfPRlNFkJ+zDP7GrU+fb0E1jsK6GdqTvbPVU2nXL973FRiyE6uO6MnVzXRzG6fi3med+WarBmeS6apjqzoS3mS/bWgb2gPu4Ho6g6Pj91kb6OOfH+wEiRwO0DsEYkG1j6mXx8nnQcgSL2Ofphwb7unxb5A9nrIBfY4cDiDaW6N+JD8NxANLP0rEfx98OTXxS+Vfy7w5ECDcOQQ4I+sYh7GvppfPRTwKln/nbR8flU9Kn5vuUNl9r4yMA+xeT+Av7+JWkrxpYmmbRwORJfQzt2hhUe0dofnrFHVV64ppcAxD2GkRiQgA33za/mSqqmbD85bBJNO1lYULQPAZmgv5e9FrzZQOeaTNZ/9r9ciTFsTIGmoHnWtKifnkGZok74Y6BPm5yaJ2Qz9HVV/X3AAF4RowzBMZWqZWxgC0yP+rvVuE2coTKBkpL609R2fz9VpkQgN3GNBCwMQHanwDsfGah+VMsDSiaNYkBHBtLAyoGfI9kJ1BgIN/RNTn2++4vdt9DqA3se3DW/3atrYE4ItY9FB3qY1eP1c9NS9n7jXYthL2c1MbRwtI8f7K9RNZzlOMlkp2uEQ3wYO+o6brJ9urejN7nrrf5vL22SbrxHj5qvq1+0XbeVlnsNKo25ri9Wbn1Xmjza/fAzVaey9v2Va4sBbWhcmPdxsw2XyYf7aUkn59ULt9e4BZPYifLcU24MW7+m7vd9K7Z/fpu17jntWvxZZKfXreAflIw2zavDRDpXB1nx68L06br5pQUfHDpaw263kPovr4CBtG13cfxIZfPLhHa5p3s/iXbQWgBD7xsDqOCetXytyVPrk2Crt+9LE0bzgZozTxWyxDkNE+BpZf3OWDgPThRE+FWppoMLL/l0E2YbadPro+EHrMk6nqz34Hels7mLrzRUfPnxhyAgkhb3ABb7L7m26lyGthlV0fgRgb1RcnGtckBJys6QPZgxw6yzM/UgLB+BqPFEt77UXa/1WcPEy1Dfm0F+wG7A4m2imXzIf6UNp/+EKq1CzRAan61jN1ny7fDQfqi9Rpi1nEhbxEA7J9rZpLNGg+TuR/O0D5vO+Bw495eHdyfebcS3RhK0v/4eBhxGOsjeL6pefXvTPfaeZbY1o37uxOU25+bmNP9bVW66zdBi70vXhqbF15WH2Ww/4T0uSDqJxlS/pSyv08/S/qqgeVaI/7i6Vtct6ERsZh/Yi5BfOTUHHQrAUOsWLNqLFNBqdS0O5tq/3IVWJRiaYDrug4CzA6grmn9ctpdW3NEUm1JLqGZV3rtkmmO5qFrLD2wiKFi0QDqZt7oSUYsWd0hqK+Y5i0lYBk38dksAUn94kxbZg/YdY2I6rtl5UxGAyce1JkmyjQ2vtxRm2X+eSVHUOikKna9loAllebrV1W2qj6aUX0Hk+ap3MlZti3uzCNlL9Gf+o28owaYRosBiCZINECk/WFdBwCwzgkU0IhKADhtCQBCG5Mj4PRMpACwOobYZk6o2gszcWyaHZU7RAYFGTNrk4v481n9Jeta0U1lK29i6oYvREbNfYNdxoCSI2pWwpO2KXV9bBsEt+lrL3hGDr0fNvDerNJkrVvYbSCbBinWHku1uvG1TbaVsc1ODqAkWqOsPoCyydUx1E06RW5j3DRvQwGXIOOsdTZgYVoo3ex4DZ/1mTR+qi9vsVk9QCiqNaijmJ3XOfU3aYD48tm4BhZNC7HEbfVjbuNu908K4DWAJ5LYrn6zMoS+8aoqg7XDEJ84QOK0mr9eobax25jEH9J8GZ3mow7qK8loAKIMFciEEnlPGmMb5KD5dI6ahsxvJG2+zS9U/SubNtXqcuuBQ2h1t2tRx63oZ/Vv3Gn+9E9hSNlGGKOIYgvdFNOWaSFgDeL3luRzrZLX8nDybWHXNut64khuLhVouLEHC9Aw8hsLWu7XwI7V9BbZCYsfXyvGEP8vXZ9UOqkLVSWv2Wi3Znab6Lb5p+Yzyk0r18fJiHAQGZQdqc+hj2T3SQE4AcShtdnk2kgBINp9yEHkRHQyWoxnxp6EZuAGds3vtNWnvrq0aT6nTeWhit/qFyZOKiMACt20FSo7qY9fIyGyOWegDipvARCpgaHmBwnstVthn2cHMqpgRMq9HCebR+yATfPjM9KgRtpD3ReyUDcbhpZnNZFvwNJ9Jtkn2Ppq8w6A7ZACPY/ElVb/ReyXvLFDo/bH4V5j6Z6hjJ1/ocjRx+QmMPTrHT1/GzdS8H9LFaiDaMRGrZzPYs+AW0WDWweuD77cs+TqoEMZ0n6Q7w/3OfXP3GeArmo53+Yxz1Gm4+8ufTJg/NR8/z+mX5yG8Jcmz8+YvmpgeZ9W/Nvf/zkudcRaExIVVA5YauqmsEq0s3HAQBVXJdmZYkZhQq4RU8x4ykKOM5eEFCoSVQSqqBxwyQPGWJDNHFNBxxgKKghzHpD0aRmIMZcBY8jtc6LSQJAPb1KZcJdWrTfswqBYWStn5rzHuJemrfSkQlZmDKX5nnp2WgPEAHDNQ/MdNZNg355noiXinamwD5liYVXM5BjoWuLNkf8A+1Ah/q/lW0vEEGq7ZtpWYUuVcV3yPoyM/T1q0qzPftTsAMEYYksN+OY0KxmSjLmZE5P2w4+BMcluDVh2YGjlAGAwNlyn8fH9NN9Wz5ZrDLTWprHLDmpia+bKlr8cZAP0MCNwO1CRueW2hrcSZP9lmh/uoVfMH9b6FEi02t7M2b7LWuu/B5K2jczITFX3Wta9SbBp9W3cTOvszZlTLG0d1BraAY9nkyW37u1acky2VmfUNWIWCL2f3Mbb+npkM96Zc+rBgmeWNXPz5dwPmqKSA3XTYbRxMb/Zo19uG9vAzw6F2ho2U1juoN2HULEDp5xD87n15YchI9/F5ofrD4VCYORz7AcZejhmeU3L78fC+//6cre06p5Nd2cd0Ma1m+9GBSG9zW4u3Q6o3GGCaddY5ywNOnZa3syj7bALQDNvtoOsQNxInfxhWzO/9poW9Ytvez/N4w+UzBz6pobU+UG3OoGd9shYcq3/fhy7HOTmEMKO6zakIaCz/fI+JI6MO7qP8Aty2QFUsMOZai4S+pu7d9pBAe8PbYisP/27P3Qjl2/nr2t9N7BUsWPaZTvM8JtwM0G+4Stbh0PfPifttODo80rYmzxbPjd+BrxZP/tDlXaY9nzYd+NwU5aPJf+gNLntlexBHbsDDQVbPubrToPa6vbj3ss++6zt1lvaYgeSrK+3tW6a/ehbatW8NK2HtdQye5BsWu+mRbxRwWFyPmHke/lPWXI2N5+4PD0OvgVqn9X9sbZfaON2/k/r/ScBus8ZznoYAAAgAElEQVS5Hf8GADL/2PibmL5qYDmXhH9++RX+6vqArUR8f7pgrRHvlxOelhF/9OaDhNkYVvy4nPDd6YpfX+4RSNhQP6wT5pxwP654dznj4bTgaR0QA+N+XPHNOGMuCX/x7lt8e3fFklPbODMT3ioY+fWHe5zHDczi1/ibpzt8d3dFZWqMpgaszCz1ug5YtoS//c0jSg14WoWp1ADVFDP++ukNsm5q7qYV85awbINoHCH31/20IhDjbtjwm6e7xmJ6WUb88bfv8G4+43Ge8LcfHvHryx3WnPD2PGNQcPXDhzsMSfxNz+OGp3mUTbVuZu+mDWPKTSv7NI+Yhty0wWuOeDgteJwnnMetkQQBwHUdGqPpOGaMKYs2OUecxg2XecT9ecG8DoixYp4HnE8brvOAlCq+e3PBb97f4+39jOs6YF0Tvnu44Dxs+Ov3bzAOuYWgMM1pCrWBqsqEx8sJtUp4Cdsg3p2WNo7Xy4RaCA9/Z0Egxm/evUEaCu5PK67rgBgqrvMAC8tAgfH2fgYAPM0jADR21lqFkXVeB4TA+ObuijUnXBbp37YlnKcVl3nEeZL+ywa8b+7f3s04DxveXc4AZEO9rQkPb65YtoS3dzMelW12TAXLltrGP0bRmF0uE1IquDut+PB0AiDsqt99+yN+uN7h8emEcSwY1F8114B1lfk9ssG277rZO00b1i1hGDKGKEy81+uI03nFEAsu84hv3lzxdB0xTVnHJwpzaqw4TxueriPOpw2zjssyDwpcAtKQQSTAp9aAZR5wd7fgcpnw9s0V12UQrWslDGNuzLPTaUUIjHVNbZ6/e3vBsgUsOk8xFQxDwTRsuF6mNr5pKG3s1mUQP78acL5bwEyYr6McKIwZ6zIAxBiGgryJHOMkrLgP3z0ihor378/tBH4YM5br0DTKITAe3lwRA+PdZepAUMOClBybSebbN1c8PZ7w3XcfcLlMqOb/B+D+W3keMMv4nqYN16exacLv3ojs6zxgPG1S9xZFs8uEXz084S9/eIu6RqTThmnKCviBt+cr/uqHt2Ad4+06ID3M2JYB03lD3lIL+QEW1twQGHmNON2tWJcBcdqQt4jptCmwCyiqJT7drUipSL4kTLXm0xmHIqFQYkVeI8J5wzhmXJ5OAkZzwOluBQCsc8R5zNjWsREcxVQbgy8Fxh9994jfPp2xzDKH45gRifHjPCCNsjs1BuKH04p3P7xBOG24Py/47Q9v8PbNFT++v5PNeyWc3q5gFj/rQIyn64iaI4KGNMlbbOFm1kXm/XRe8fTh1Pyka4ngHJDOG3KNeHOvoa70wGWeB+ScGgnUScew6jgFBeXn89qfEVvEw/2Mx6cTYmSsc2rhZEqOON8t+PDujO9/9YRlS5iXobFJx1gxpIJlTdiWhLv7BfN1xBt9zp3GDcsmPAZPjydM5w3f3F/xw/v79lwfU8Hj9YRRw0PN1xExVaxzwvle5JyvI0IsuD+vIGL8+P4Owyj3u62VECouTyeM04ZtTRjGjPkic8fqbwwA25xwfliQs1hhcA6IY8H5bgFBGLnPdws+vD/j/mHGfB31eRHw/dsL/sVfv/3CXQdwul9xfZTnR5xKswCKsWL+MCGOpa3TbU1ycKdaxfObBaUEbEvCeMoohVCLWJGc7lcwy1wSsDsYATpjth001Ez45tsLHp9OotjVNtc1tWeFHWTlTSwQprsNy3XAMOVmvZImmYNtTuAtNPbmMBZhtR7k3Va3gOEkz4laxBUoBLlPjfk6L/I8Hu9Xvafl2Za3iLpEDHcbtqcBpiUntXCIYxGjiiUiKDN33ULXeg56oEMQa5M1yMECsWimVWNazTqhWb7IMwqb5rffCN1suoX9IbHuMGZqj5sqAWMVC5BbgMoOLrwVhLUTWdq3RNxNxW/5LNtnoGuD3TV/cGH1NAuFY31WRg9XWogewu7AwPK3cDP+bwufdEMGfzhxBEqHvjwjszr+7tMBJXuT7H0bh2vH779Pv5P01bPC/vv//X+CKWQsNeGSRRs5xoJEFR+2CYEq1po0rMiIU8yoIFzzgCGIJnErEWeN9WgAcCmpacXeTnML92Fau0QVV23vblixKAOthRJ52kYEYkwKprwPpcUiTKHicZmaFsxiJALAVgLuxx6OYFPtlvcjtOulBpRKOGn4C9OIXZYRYypIsbTwGUJQE5uG4KzmsjIOYi5sxD12zch0AAmtkUtomiRATIHH1M2OPcmNmSSvObY6jaDHQoRYiJIxFSw5YtI2li3hNG4ttEkMFWsW4HAat6ZR9Id8pkUyGYZU2pibmbEHo2OSOf3wdAIz4Xy3oNawA4umHTIQYCCsmyF3v8SupSHkLbbQGEftj9XvtZ0GLAzsAOgapE0IYUqOSEPemRSblgeqJUlDaZtQC8dRS0BeEsJQBcR4DZjOCdA1Pc3s0MkHYGfybAPftDosprwlhxa2wzQWprXhChd/EDp+nUzJ5s9eNr6+sgVQ5KbZsBiIgG4ogF1MxLJK/iZLlcMBLgFxKk020z4YC2s7nDaz8KRkMyX0z65tMwWuszwDwjl3whpXRsaXxASWCTSW9gJt2htnCspLBGmID/IhNQCwhfEA5KVeXH2AtEEs5Dk2NtFpN5YATAKGOJNsrkwDtBFw0h1DUQKeNby86TJTzsg9fEghQM1n26bE5DXTUjUF3f3mTUbNBLaim/OayS/wXB5G98fTsQrXCB64m19aiJGx9g2l3QZLAJ+K9HkL4KkizEHCq0Dy0UZNw0QMcOK9iRw5+Zx5oJhjorXn4zDSut+4iakp2tjQRl1TZ5uroGEtbB4Cutmn5usxH9FiN8aLxGDk2LU+ZOMW9Pom5rBB5SJbvkE0fZQJYYOGNFHNkjehBFpYA4sjSXaNAcqax0KemPxqKslpL5uVY+r5JTyJlGObm9rr5oQW5iJs+l3NJ+NCKOcv3/dQRgsjYiE3pFGAtU9MaOEfbF0wSXgSDqzhIvQ+J+lH2Gy+7CannUlrjaxmsT1fXEjGUUGBxLU87Mu5y2EhV2wsYGPKMkZ+LTdzU123HHR83Vq1cDZ+Xph0bjxwIM2XpR3pUJfRh/7YgRf0OohdXf3V1c1f0fvp++5NVNu4eNB13ERY3w51vKYl3dV7BEy3rh365uXYYaPDNWf0cNvc+ZXxs/Eh3/dDP3b5j+OCw+944bdW3yfcY7fG5oV0C0N+Sfqzf/y7Z05986s/5n/j7//nP3u9f/o//pe/874BX7nGcqsRPyx3uGwjNjX3ZCYsJWLZEs7j1thWl5xE0/V0DwA4Dxk/lhO2HDENGX/5+NCATgyiDTKzzH/+w/dNG+fvAwMlPzzdNUCaYsEPT3eYBtFg/ubDXTORAzrJTK4BpQTcn1ZUBj7kqZu1hoohVvz2cm6bc2MbPZqPDVp3igXvns5N25hzxJvzgmVLeJpHnMYNj9ep/W4sqb/+8U0zlUup4OlqrLBomj4iRlazvesyNO1aLgG1BgxDxmUWLZrFc2QmXGYBUU+XaRcL0QK/X68j0lCaRvBymRBTweUyyRgMBY8fzhgn0W7VIjEPUyp4ukwCNsz3SmXeE8gQLpdJ9qOhM3qmoWBbpdx8HcGV8ObtVfKrZiSmgnURXznTUtnmPw1dI2HzYDKkVLAp8LT4jNsWmw9sjBXrMiDEgqVpQmVRUWCkVDDGimUZ1CpHAFFMAt5Ea5YaWCs5dlNKBc7LdVDtTcE6i9aEIuPu7Yxti8hrbH6kxixassbni4yaBXSS+iRWNSUk4l1Q+0AdQIckGpy8RaQxI6+icbFA8LnKCboBxZBq8+HaVulPZWqB64MCgbJGhLGgrLFpArhQD8WR1Rw1iXMOq88sM5CmglpITtEh40uREYeMsiobspngRQNZ3XEnDMKEWlfZ2YakvqNaV80KEFNF3SKGN6KZ2Z6GtuGlVFE1jiQAIDDinayfYr6Y7EJ9mG9qDQh3GXWOEotyiTtfzfhma7E3uRDCqUg8SjuZnpQFeomd3db5vQ7fLtgugwDGoYLGqlq/inhfkTUOpoFKGqtoM8YqQNT7HSfd+WRlUTUwuul3O4QwX7lTERCzRNECqDYQDMD84QykjlXWxBq7j+tJn6drkM9b99/DYPXpPfVHs4yLzeuJpZ6rtg10gPntClyTXH+TgUsCf79KXgBgAt+XNv9M6idr5oKk8p2595cgfp1rACbdGZlv21nB7ZvcfR8B6XclAZcA+K50v9YGYghFZWl+hmPpBw45gM39oBLKQwXmgPK3ROOKts4EULbDgELAQwW2gPqN7PzFL1wXtK6X5odr/pZBYp7CtCY23oVkTq1fNkeAHG7YoUCTg7t2SQ9YyPyhFcgDAn7LW9npU6Hm0whjN96kXVoCsh0iaH+3sYIuOrhfkHhgOQyAtulAAK3UfCvNh5aYGonRNuphQ+4+ouZ/yKP2TceJibsZL9CZbG0zXwnrOYPW7i/Oox5YeNNfdxjDg8RTRYTIxNRYlmnTcnZgFrlrwhg7v9bGMqsHJH5eAO2LyauawpDlYCKsvR/mD2hj1gBvA4yaN3AHk4V6DFZgR6D0zJfRkj0P2OEXa0evNXIhr/Vrkw7nl+rmwKbeA1sPDu1f3QOjI2jdNWUg0X73Gki4tr0Mls9k59tlzI/0VYB2tKl9RQP4Org7duy1vEcZ8By0vgJif59+Wemr1lh+/yd/yP/ef/efAhBfOvGzrKgQNte5dD88ACgcEDXMgcWi9D6M5qMIyIbefAQNpBzjPHpfOvOJMxIh0zC2dwB3X0DztQPwLN5lZ4kFBtWImQbxmM/XZ6E9APF5M383It75xZlPnNce7pgwHWgVQLl/AVv7pi0EXj7cau812vu+ef/F6to81mHaPdOSmV+W+ZAdtWkGwu0z0P2QXoovafVuW9z5v3nG1+MYGYmSD41xJDcSnzfagVzTLBrANs2mL99iJ4bO3hgU3IF63E/Ju9cuNnljD5NhfmSwQwkHCP07jW5cO85rG5emzUT3i3LfGzmR64vJ4GM+0vHlrfPUGgcaI+iOGRTYA3L93NaDYR4jMmnto/l/+biQnTXWxt2BJrhr/nfbCLt8LayJ01Deekm3cTE2UJ/8XFYF2krGtPO1O/pVMbo81i5jr6X0Oxsz+yLeg0RCB3Z0uOaByLFtdr/74/VbOxgDV9H97n/z+ethrHWTtmtv12/0fLr5ls0dtzEB0E3WfPIbypc2mbbJt3kgN054/ltj/Ay8L6P5mJypmY01ubJtfE1u99lfJ/Sx4EM+y2vg0cb2hTky0LDb/NpHxYs7AOCm7rjBNk2P/Q647+FQ1l932pcdSYttuK2/h3vLylnepnFz8kC1bF+aGkGK64u0j92470CMbexVBkb/bEVvbtKPL9NbslDP84zg5zg37MbXydUL3GjbyeDn8nndHbQcSW5Y70Efx9PL91ENGHf5vQaylT324VYdxzaP/fxIehFEHTc+N8odXwMvpmOeW/UeX8wfaf+WPJ/c/qeUeaXcF+f7lDa/sP5/9t/87uNYvvnVH/O/+R/8/BrL//V/+r3G8ienp8sJ/9v/8a/KaVemxo7GgcWUZw7dWT6q6VCQl0pY9SSOAMqEOlXEOYipTwVQqZnalJOyvdkGQe29zXSlnLjVFzZCmRhxlbdHVbMe/5IhFhnMlEVO/tBNQ/REsI7cH6L6cuTDg99Mcaj0/KTmLnGRWF8cxQSnDqx9R+tDGfvLIqjpUNu8aV3+wWjmS34TELK0EzS2WDsV0xdYVTOk9iIyU5wo5j9VWQjrwCKD5o8rYdGxLZGbGRMqsJ4ZITtfAOpjZ2MM6AkxgFC6jb6ZA4GBbZAxGx5lYPMdtxNR23xkY/fTFFbth9491b2oo5kaMTBuMj41AUHrGzYZw6TfCTrO+uIMm9SlHFMwE6JhtbHWOeK++eLo1g4DddTxLl1GKsBplrJ17PMK6H7bmcg0Eyl/Ootez3FzaWZ1Ntdh7TLYGrEXn81vKN3ErZnNBTTGQNsgmcmbmbSZCZqNhTfnIpXd7pG4SP/tvMhkDBkok9voMnamXNbnoJboZex5qioZ7R6ztjkC8Sq/5Ts3XjpfNrY2x8Ii2+e4MWa6TXVYgHKWeutB3jijmZ2ZDHW8LXsw80AzrwSQLipn6PIYgLJ2mXSeBrnW5sDWJrAb+6pzxbGv06D3QFsDOiZUb6wRm3cdA5v71je9FleRrQ7yuabDmrTnKQPpwqgjtbUWNln0ZaJd28RAXBj5LNftc5oZZaT2HI5rf5BLn6mtf7DJx7p2Sde8yECFwcpuKeuXwYGkTvT55djLAiqz/lYjQUIyEOLG7X7loGMxUMsXCvd7ZZM+pwvrPWvkKFaxvZNI69F14Z8zJPdNXPUesueM3ftm2krOfDX2tViT1BdtbU7opqt679uzLzjmUrvnba2JhkueMxz63IQiY+r7X0YZ35q6NiyuMrdfmuweYJJxaPd2lfZM9rBxYwi2+zSuMv41kshKAJPsS+LWZTczwgbgIX315oUcdH0O/XvcWJ53Hshyf5e152/uz8WgYyr3kbbB+2cytzXb14KvO2SIBt/q3KrWJeNi90nYame/dUAxZL1njAXXjZmNrX8/cdRDBGZto6+jW4ciu8MJ9yy23/whiM/TEkHu3/D6urH5YSIhA0J/lnl5XgOE/uCi9989I23vYKb11r9yqNcnvbaPI3qQ5dAPJtr9vVkf9fXy2cm37+r8KdrKLwKjv08/e/qqgeV3b57wn/07f4qnPDXW10XfQkuNGKhi44BI4hc5hIKlJGVfFdNSYz5da9yxhQJo2s85DxhjbrEoLZnpqjG/Vg5IoTRWWADIHBHcHWHaVGN4PcWtMcK2esHNN9Tk6ayyzx9sxmI7q59n08I6VktjIa0gROpaOev3UWvr6/AMsLfksfI++Xib1r61aeymRmTUfDxraNpeAtpv9pch2mEiidnpNZ9+Tnwy5lbL67XIANQ/NeB+XFGZsDrG1abp1j6bltgTMVlf7XfvYxrd+PvyxjLatJwM2PsqqTm3Z3u1WKNWp2d1LR7w6sejphqQvMYsa4ytgdDilvJh/o7aa0te+2qfj76z5jPr58LmybPhNrZWp7U9zl97R+o68wy7xszqw/RUtx6i5icdS8tnbdpOvjO2ctMCs2mTiIGizJ+qIbP9uI8XygxwrKIks1Ax6NrmXRs2d6XPcfez7XmhoXrgQg1Zqu5+agy6jmW2Mac6zbjfG7CSMjVWXKepNbNtk0uIsTpr7LEu08oftfD+u8j6PP8z9k+/+9O/3adXnyleY+9M3Nv4cte8h1jVNFrnWmNF+nVizYfDejLrgF1YobCPmsnATXZT6HXoutkxnR42VF6jb+34EERNW+/bZdpp3f1mjA/rullFmA+xk+1Z8lrPG5vTXaghrzH035l2IYSeaaOpm8jvtMmWz7TMxw2ml8nLuTshQr9G7PK5zphJ9ZcmQjdJphvXj7K/pkI8/nbj/f5iurURf2kDfgNE3NKgwzO8Htt4qW1fb7uZgP0Dx+b4eV3SbQc2jzLbA3cneyu9XxfP5NyP803gcVxfr4CTZ7PzqUDmE/Mdb4VX6/tEsPWpMrzY5gtr8pNkfOn6cY19YvpZgOP//DPU8VOTv1f+BqavGlgGVNyFFUtIQAXOcUUKRUOKSBiRUCOmkHHFgLMelRYmfDtc8W47IzBjChmZA85xwxUDAhjnuOEcNyw1Yc4DTlEY/NYaWxiP+7QKSFT/zlxZw4dE3CVp68MWcEqdhMcA3FwS1prwZlhQOTSz3VFVNlPI+HE7YSWZImk/CIh1QO4uifrMQp8YWJ3LgL91esRjnnDJI94OMz7kCbkGnOLW6vhxPWNS0HyKG7BNqCAMQUJ8TCk3YBnAjeDIykt9+SYwN1BoxEcGKjIHTDHjmgdMUQC4hDVJKovEDb0fVjyuE+4HmeNcA+6HFae44dfXNxg0fIYHwQaa7dqchwb4ko7ZFDOWIn6QK2QD9v3pCQDwV5cHDKHilDbM2tc5p917+zxsbSwMEJvPqpE1GbMvM7Ux20rElDKWnDCl3EKbtFApAN6MC1KoeDef229ribgfV2wl4n5Y8X6dEIkb4DbAbMROMwnZ0SllPK1CIpVCxbenK562EU8YMcayOyAwQG0A3A4DDAibjGMsrb+2BuacWn1zFkblp3XclTcwPcbS+r8q+FydX+6oDMXGWDtvCech46p/1xJb/FkjkgK6v3PW34kYD9OKOacWDzao7/QQKj4soi4sNbSyt2QBgGVTxlz1IQY6MVXVfGuO+OY8I4aK3zzdtffmmApmLU+6Lk/jhkCMy2IqSzRz6+zW0t204vF6wjd3V3yYp53Z+MNpkblX0DQNGR/mzjJrRF7XdcCYcqvbyn9/d8UPl7MQPMWKacjNP/rNtOLd9YRaA8aUMa9DI9EyZmcPLmOsiDp205CbC8Gak4SIUSBnJuhjEibNZZP7goFG2mTswCEIi/Jp3FpeQIDypLF/zT9+zbEBQguLYt+/ub/isoxtnRiB2WWeGimX+a2fpxVP1wkpVUzDhqfrhPvzgss8tUOEadraPJpcYqovzKA5B0xj3vnDp1ixrKmRfdUaUAphHAtyDjhP/b0UiRvTs83VOOZ2CGGHB7WKLABaH6YhKyO1HAz0eLviKz9fRzy8uaLUoIdL3GS3sDg5hyaX+df7sD3LPGAYhRX8uowy96EixYLrMkrM4RrUr3zPkmsEZKN+F+bY0twGorKMbmtSn3K5ZiypYuYv92TJsfmwCymYsoIr6VneorDSLgnjlMUPXA8ZptOGy9OEL01pKMjqoy1+5HYAIMzI5ocedSwEaIv8acwwt4SoB33mF26/2UEGaO+2wN7HUr+P5019+oFaaBdepx1QUS9rMYZDEgI1VEJUn9e6hd3BiMUcJjucqep3XqihH/M1NyZXzuKLG8ayP1gpAZyNCCy2/jVcmLQNT95l/pIMuWYHB+YL7M3j7fDA+2VasgMGD/x9FrPOKi5WJXXALVVQ8zltyWTz9YbDda1nV+6lAwj/+/GwDYfvh7871tQbQLpVc6v/rx0aEECVb2JLunFI9uy7v3ZrXm5dx8tnLj8LsPyFJKofz/O1pq8aWL7fTvhf/upfw+MyotbQNhzLlrDliPO0NnCzbBL6Yl5lg2IbpVoJKVbMy4BxzO2FOKSCUTeuT5cJ45Qb5btpA4bBvyBllaQkpCyjhlpY14iUnJ+mvgBzjhLOQ0MaWLu2GUih4roMbTOWlLzFtB+NeVVf/ha2wVhB8xbx/9x/I2OxJpzOSkNeAtJQ2kZ2XYbGyhlVQ+LZMmMqO61DMW2XaVFqaO3Zi9ueAo0BdY0IiVs7rPHU8hblRZgDKAA1y4urrhEUK9JYsC0JacyNkj1NGSlVzJexE8C4h6CNn8mQNwkCby8uGzPbqNU1AhX48duzbDjfnxqTqGlUyrqPNxhH29yoJqN0NtEwVKF6J0YahX21KPU7l96/MFSp14gx9CWdxoIQK9ZZ7Zv0ZfubqbTNR57FttJCS3gtAgVGnSMosbRhxDWp4oe7OwnHMSdQqjvNim08GkuqnvTvvhMQhiL9i0LEY+Q2YSygAJQ54odzbm2YlsP89sJQUY1Qxgg+jEiEqVHI23g2wpglgqYiZdRUHalrHkg3R6ybJQB4d85CtmNU75Gl35FRr2bHjE5AQnDkOZ1lldcgayxVqYvQqesrhJxkI3y4Pwlz7/uxa1MGFsITQPoaAJqKzNPVPX4tfw6NTfTxVMCXhOv9iHpJO83M091JNmuMztx67WRAH5S8B3PEkxGalP5mvjxMKI9DH8dUG9nM+3OW35jwpMQz15P8fRrqnjqfsSPvuYy1+2+uQeq1DaLOy8UYbpfY+rpjc7VnSCHMw0nqWGK7djWW1jXgOtY9eY/fYBKwzIOQJ+m9ehlk/vmibaO3PZ8n4ClhSRWXqQJPCev9CL4qsRUT1kkPA2wItn5vmHzL6MYbEEIZI6phGQsqhE2JhpZp2m9GtyCbXJ2rRQlTmqy6MV3HsV+rhOtU2jhRDj1MQQWWsYKuEe/WKPfIM/IemT8qQm6DTFiGKs+UpPdqJdASsI0V1/EWeY+7j5WAhjIhj/Isoy2AA2O1eq8ROXUZt6j3xxKwKfHNFtAIYcBAsVAYa8ByGsQFQO/5nFjGlABaA7ZUQUvAPCXQFqStCmynAfT45VufVdmCAZGnsbgGIMwBZWAgE7apNvccY8bdTnIITpmwDdyIe6gQtim1vLYxL9G5YWTq4IoBqoRljqA1yKbbtSnrB/2Zo3KUsSKsAdWIhdQFReanm/ECEBejRt6jvw36bFTTTCZ1SRnkPo46V3XU9y6jMQOHAmEmXvrz0ExUa5KlQ45JtzEOA42gh0lcb7wvKQe056eNZwM29sg0E1cz67bf9NElwBLPGHOlAfnnTd5VfPnZ1+v8jrkBy+7iwU6eZ2arx8/210yRGmjTDpDriOWr+teDPtfX5hLkZTmC2Fug9Yj99HfPTPvR5PtEJtQreW18Dn34ffrlp68aWH4/XvAf/90/w4/5DhtHDCRau61GfCgT3sQFmxq3b6yayzKgcsB9WtpnALiWAQ/DjGsZRBtDBQMVFAT8sN7hTVol1hj3TdUUJHTJ++2Ec9yQOWDUNiz/qqa53hw2EGOpEblGfDtesdXYTHft9ylkvM9Ta28IBYUJWU1VzTQ1UUWgiikUPOURFYQxZKw14UH7mDngPq54KmPTMAaqqBzwYZuame8Yyk1zWtPQAsCcB6RQnmks55J2GstAjLWkXbgXCfsRm4xzGZp21b6PoWCtosk6xU1DxGzIHJFraBpakbs07Yhv14/1XNKOLKkytXKBWEyjmfCH5w+iwVWA6evcHKmTzYWFqbG5MK2uaXoB4Jw2rDViKQlDKM0c28LVrId6AzHOqt228DVmSmuaH9P0em2jaQPt2nUbWjgbC5lDxPhmnHHNA7tbDQAAACAASURBVJYiGs1Etc2rmSOb6bI3+/VmuaYlNW0kACyqmbJ6zsOG6yaa9dYHpp15s40v42BKrHXa+tpqwBQLlhIxqbYUQGN7NtIsa4vRTZTPg4TSWV3fTNO6qNbNNLMxyB1lWr0jwZaNhc15M8/WfJUJpyRr/PFh3Jk2r840NgbR2tq49etmNk2t7JQyLuuAu3HDklPTxALAachtnmztWAzZoodlQbVfwiiNpglklpi11zdDCxskh2gi55gyrm/0kCpWLFkO5ywkkGlqvew2J/Z7irWFEhLtZic7s1izxsDdSMv0NzOVLk5zvZXYTJ39NbNaqO4eYHST4vO4IZcg5XXuiRjL26GRYFneFCrWB43rGAvmh0G00Q8yLsacDfQtkWlivXmvEYv566aBNG2jEZDVSi2OsJnfMneZrE07YLSxBNBksbYs9rB994RnKVWsa8Q05Z2W1pK1bfJLfbWTbbG0k3NAjMJevd11rahoHbvMRlwmDOA95BGIW/ilcpZwTC/ls41tVdcIb/ZdK2GIndXaDtfanBY5ADWNvJk+M0QrnsfO1P65KQZGvVcCN4ulqGui3GmsWYYevMkmv7lHaN9ZzcvNNFoOcftvNifkNtOdhKt/D6mCT31t7Ey/d2OodbZQT9zyyaGk5vFtkMqvhwXM2H9ucqAdtBQ7TNEDJSmjeVjqKhbKyAMpR5DW0tFcW/tTgT14dGNiLLxe2wigaSGfARWry8tzC9RY/oNMRw3aLa0ak7qcvAQcb+ErB15f0ha+pNF7UbPHQOEbQh/a3AuH5/6VLdsrKO/GGN7C0cDt7n9KfZ+dfmmg9Jcmz8+YvmpgyRDA+BBnzHXARdkw7uKKN3HBj+WMgQqWmhqonIKAqKc8KSDbsNQB3w4XXOsoALFGLDXhsZ6QqOL78YKnPGEIBQPl5rd5LQMqCG+Huce2LGJy+yGPiMQN5BkQLPrwHKhiSgXv1jMAIAWR0/w+BURtCAo2r0VMdJMefVUODbTVGvFhm8T8lqE+nxX/7/UtxpAxxoK/mh9wl1akIPE9DQyd0tbA2SWPGNU01UDlWhIueWz+pmPIyDViVsaARBXv1jNSqJg3A4ahAVUDlZUDVgMBVJuMBhAlnwDbUUGUmek+bVMDMo/rCUtJuBvWBhiyticAZr/pHZwJLiAv66dN+rMpEAzE+PP33yEQ42FcUDhgXoe22TczYwOPl21s5rUydx0kLhpzk5nwfpUQMoMCvKRmtUMQX2ADQ5aWEvG0jthKwHnIsgnSzfIHNWl9P58wpdwAlAEiA2isAGfVumwsCxPeXb7DkIpsmnPajYn3gbXNW64BVYGppad1aODFgMqYCq7z1MxTn5YRQyq4qgmq+YcyU/vtaRkb4ImBjY0fq764m2ljYMzrgBQlLmuKpfmXWh2AmKvanBj78a8/3Iv/cazYdBNlIGRMufU9a1kDNrYJNNA6KDiy+LPMhOvawf28yRg9Xk5gBs7Thqx1zFvaAeytAI+Xk9Sr8UhlUz/s/FYB4PEyYRozfv3+vpklWvpwOblNvYCHYShYs9R3VTPblEoz5SUCWEHu+w9nMeskYN0SPtTuK5rzHcYxaz0DUqp4nOXvvAzNpNPGb9Eg8DFWXOeh+ZXGVFsoIaD7fc5FLB2iAiYDXwAwO1/EEBhzGZs1hYGca5G+xVhxLWMzQ21MyNRVBk8/nkFJQh0x0EK0SKzXvv4ZYgoYhx6cPY4Fl/cnxLG2zdj8NMKbFlpcVQMPLWQN0Ez1uCgAMMBEaPkoVlzX0253RaZB1Omey9TBi8s3W/xQ1Yw0TTGjWTOYHItqtbcfJzSNu/eDNHAQWbSwkbFYPxxwwFCxWdzTpHXYZt5CjZg82nbOqllVzVdWudk06dqHXLEL0yFmeCThWuyZbksvQMLeEJoGhiqhuhinNZO0sQapU80nWcn6vjTxFqReiPmpLCzVriXu7NWZOgmLrQWLSRoAdnFNJcyK+v1aGcZeI+SuW7mwiMaRGBpnUteggQsDpbYkczfpNI2mhejgtC9n5pXGWsyEThCjL53Wbt2344llbP1YeU9k47WFrfwNxNHinWp+TzbXyWhE+B2wOlxjXVPAC6Cwuv4cfn9RO+fRks/zAji89f2ldJzHF9Nnga7b/ZcGb9f1LO8REL/U9hHIf4KMr4Lj1+r/ffrFpK8aWP6LywP+8Z/9u83M0AKaN9v/Le5XqZlNqtnPzvnfzNy8aZa9eO2ldCQ2sPpS7fVV6mZyjOfEAYB7MXA3lwpoL+huesH9IX58YbtDJXIbA/8igNGs2+eIbu+vfeHoaO19nurqAPpDwZgldw/Tw1GZ/bUywcpQm5+dmYWPl2VjXJXFL7kXW1D2X0Zj59y/RPq42LUdG9vx4c/997jIj3+pJj27h7/Jb0PhXqL+xSovzr5GmtyuX9ZPciYp/oFLum7emzmSvfwtdEZFY1xsL9njJkI3cDsmOUZj7KwuoHVr2q8rt3E4vkDILf9b7Rs7nQ8l0EyPcHhxWx9dc7u5hBtbK0O9PvKyeVlt01PEAtGHkCCWv6tjmtzFGPNzofO8KFMssdbHXSabEyZlTGTCk8Xt0zqc5dduI2T17tJhLczKeL3as8CyZTmVt8cXcbe49bKvx42afh42QlZGZCq0e0wNBai2yayELTBiEWbmUAjVkcZYnsBA1XwcgKjjY9aYTPJcAZNc07VirlPWtpVrltFFwzla3/Uak8xr9GZrN9bAoGu+PXpsA5vksd36oOulDlCWbXnGjMb+a6ljzNaH3fOB3PPB2rT1+8IG8/9j7116ZVmyNKHPXu4eEXufc+/Nysx6dKl5CISQgBa0kBBSD5gyYcS/QEgIJP4C/wCJYfcYCYkJI8SAEfSUFkKIrmoqi6x83HvO2Tsi3N3MFoO1ltly3xH7PDKrKk+qTLr37HA3t5ebu9tna63vU9ZNOwdfvNfQy7cPjC3zFpvkpi7f+/9igWyf5QbqdvW7/hw2huS6ex/Wfm9aOw0Y1OeS34vh9rjZ9ylJPlPWpi9u239n5hvn85v3kT6nNZmH5TMTgyPf6rRjtGEfteDKzL/9ewam/dr2VpcBKrcsV8xw7tr48Li5F/cfmzliXUmdeXdvr+N+7CRcbJ+03zf7IgzI+rfX75f83eqgXg5MWfs6gNvfPDnPf9/SZ6Q2dn298Eqddsx27+bPAjovxnFbxmcDy30d+zbv234v7dr1WXXYYqjfX/39Wekzs2/rvtPmryx97e1/LX3VwHJKGf/aH/8VZnF3BNAsV3rP9kycaqWxGpB7dk1Nypq5Z6Dcs+6p6xZ2dWo7bnwP7m/wGIvRnqnT5tG010jkY2i7+5z/dl3qlnWvbNvHvd7ivbQlgrutj2ndq+wOvD2+b2cTEJdy/GYldqtzfO5We20/+NvTmSYVZN8sdfd1cHqtlmvqbWXv2kg6Rraf9mOk98zGYJgsDRDvm6b/3pgbmqqxrNxMNz6Kn50+8b5sLrlRl50HrFPpNtqeL+qxb+n9BsZu0bO57taGzX5xc2ssbi32LXHDrTbaMbDtfO3YvgzbLtu/OwvJjWD25lpsNks2fd6f228Y3bq3tzaWPvKu+Gja34Nb9+XeXNVj+3vy2j11kHgieb7JkHns2wPA6lS+mnQ879X9sf7YY7fu8cee2/192R8D2t+v3b79I/bqYtQeu5UcXmgu3qrn1fI347J75l9LztzTL0ivLmo/Nif31d56j9xJn9ziT6n73prgxmP8yXXs66LbE+FVELKbfDfr/8j8+uiC/d7H81PK+dLv4qeU/bH0Bdd8cj0fu58vS96V/crs/Mx2/0aA67d0f/7aU1sI/n6mrxpYKlj5k9M7XEvE9/MRAcC34xmPacY///AdBl9wyQk/Oj3hr54f8JPTE3L1+NX5hENacYgr3s0T/vjNe/z8/IA3w4ylBry/jvhwHpFSwb/83a/x/z094jTMCL42qQtlTvyTt+/wbp7gHOHpOuIP33zAzz88AGD2xedl2ADXXD1O44JjWvEXv36LENidMFePUvi/vAa8ebwgBnbtO88DUihIsWxi4Z6vQ2Phe/NwAQBc5gGHccEP358Qx4zDtOLpw4TpuGCIBc+XASUzQ993b5+ZtRLAdU44HWY4Ry0O7nwdhGGQt8MPhwXLGoXhryLGivmSMExMfBRjkbIrhqFgWQIejjMu89BIbKZpxfUy4HBY8Pw8CbFQwOmw4Pk84uF0xbxGnN9POL294vw0Io0Zacg4fxhBq8fhmyuWJSLGgpw5LoqqQxEJBSWGOTzOAIB1ifDiwrdeEsLALo2H44whZnz/Z98CAA5/9IR5TsjXiDBlUHEYD+smfmh5Ele8A7tTBu2zI+RrhBdmQno/gGKFP2ZmzksV9RIRjhnlEhAOBVTRWASpOtCHxC5Ub1Ze6CmJ0YcBiAR3DsCbld3cFg8MFT4yYZBa1dPjgrwE1HOCf+CYzXoNCL9OKKcK92ZBnTuhCRwBlnBESG5o9d29Tqfv1TMhTXFwq1iZDwW4BrbCHgr8h4T6mDupSiQmMMke7uJBpwJ3CaCxcjmHzOyDnpgQxFEnF5kq8ByAUwbeJWAq0j7JOwgC0vqViAZA+CGhHCu3r/J4udXBzw7lsTDoEGIYlxkg0FibBd5fAuO2Y2FLyeL5PMnfidgKLcfTzyNAwPqTtXkzuEuQ6wWAFIfwHOELsL4tDci4zOY7SrVdG99F5O8y0q8S1jelux4CSD8E1ACQ6tReHfLb0gBMeGbfs/Imwz8FJtoYamMnHH8RMP+ogAaCP3vW4RVijvTkMP9BARy72pVTRXwXUU4V4TmgHGoDbORZL9gVh3qoCE8BdWR93nysCBd2QyQPvjcAwtnDZyCfVFuYQFHKWhwogvU/R0J49vAr51Wt3vSBraLlSIjPDmWiZj1rWsWJ4Aow/tIjHwnlwNfHi2OL9Te1eSlUIVFJ7xzmH1XEq+cx+K5i+D5gfaTmDZI+eL7/YqnLBwKptm9hbcf0zG6GdeQ2hKvD+sDaxuR4HGoA4oX7E58UFPGYlolJTtQ6FJ9ds5pqW2vkvut1NbI2aTlIGaqlDDl3AZa3hMNfedSIpl+s1kHVHa2DlDPyvyA0XcsagHzi4/EMrI/sBaFao2VC0y0toxwbuW5HQJ7YOqt6r8sb1poFcflh5mvyif9WLc08ofVTdX7zAUgfwB4YCaJxzHUBQD44hCuQH4D4xG1TzdPhPXD9gy8HlvEMrA/8uowXNLdJV7g+1XyNZ3St48jtT0+s6VhHIFzZekeBz6cn0bhMrpXJWqdSxsDvEF141wiMPxDWI2sJ1sQ6pTWhWzEJ8IXPcXsJZVRtT7D25cwFlon1XpVoxov+Z1ilXdEhXkj0TqXfFU1PFuD7rWOkngJh5flWE49Xljlqrd1dm1bnPbXrHaFp36quaR2w0VlVTdAa3NZN1oyVJedxhGZVtXqpqnHNeXQTBluNUE1249ezbqXV/FQLuis8js0qT9joJVtLdbce9zr2etKusD6q6mo64mdTdXFdJeiOfbfm97lmNcVfJNndVybYzQaDbUM1/bQbd3Z4dsde7KPuN/taxu3Y9nHYWkm5nN9fcPY1p68aWCZf8JPDBxzCilFVwAEmpwGTlQwhY4wZU1jxzXRhSY0A0ME1KQ2AYxy/nS6IviIRg7dDYjKO6AreTtcWjzcGBi/+KAslX/F2vKLCYQwFwVV8c7hyW+L6wmqnBCcehG8fz9KX2mQeOI/HSWQJtI7kayNxIXIIaW3xfEsOeBhFeiQycUt+e8EYC8sNADiNC/fHEGtMMfdYwVAwpQwHIAmNfPCELJT0WvYQC/LgmxZijAVjLFgSl9nIMEJF8LFR/KvGYfAsvTCmDJyuLAERCrP6HlyTf3BvgcOwAg8c5+Z9BT1w/N1hXBrIrkNucZRFyC+U5GIaGFjFWBoxzBJLI9hIErMXvmNAPQgLbk6lxXXFUNv1xVhhUypdIkFi4NZYEIVRdg3UwLeSYqyxIKWCHEOTO7Aahqsw3aahx9RFoXL3oSIPTLNP5FBH1vELFpiSQxoy543UqP5LqOzpPRbElFECdWutIyZ9IDRtQOcAGtBi1pTsoY6+W8cFb4ZUUBIDrhgrciAkYVEGgRlkxYJfRyYSKakykzI5IZSpcL6iJm0HW/19IJRYecwCE3/AcXklMMOnA1CieCIIky0g+EzqIQA0uLb5ECYhYXGEauLfvLrCyyIH4DGjCtAkZB0AaPS8UeEAGphuf/0ReCE3lb7gGDRuj89RdSiJUAhwYyeCUZ3DxqwMIHuCP2Ss3wJuKmKx5XMr0P1MAyEfmcVWLbslChvwUFDFjdaFbvGdAdAps9dCrBwrJmCxHjyDYUcok4OLhOx5cyBHzwDXUNvrOCEQM28GQj04zj9IXocWZ5bF3RyRUA/YnCuj666lgZCTuI3L/IIHliSLi0RYBt4Igec1UVXhe7HOXx1AIzWG1HLkzReaCuqkefmfOnjUQwGNHuXAQHkOQFWyEceLY8AsAKOEE+jGgUcrl2QuuexAAyFbl1AHlINjMpORF526gKuJuqUVDJKaJ4PnxRR5vjfaLvJAPjFQ1Xbl3PuXjw51qrg438CtDe1w4sJMkZAPHLeXT64BJgrS5oHPh0cGa650gKEAm5wszqmDUUBAloBYV+V6XWg7ATSVQYPTMI7awRmA7socGMRQ4HwEvn5VVtJE8KtDGaU/A7uUUyCsJ4f88OUL0lXH2XHfFBi4wvUpOMknibF0HRzmoxOQxu3T2EPy/AzDGdABnjttfsbtgpwCz4EygK3rAVgfXAOxDVhV18ZwXRwDdon/JA9uB2RuG7dujseU+Ssu34vMqX1cpc8QYMfHwgPaZojOnxoEZKYt8CPZMNC+N0u2eSZ0jjkBZTYOkgFnb5dlZu1jtd1I4fMdfDkBcw18auiOAT/6jOxTN7C67hq9GX8zFgY43rQK78AWGeC5yaNAS92KPTrQvAPAyPV3631CHnnXGIvxa94JG9B5I93ycnjVEm7K/iRr/leMK38jy+zveHL0FSP+b/6Nn9A/+u/+08b8CQBZyFuUSVOBmhJvKKvj3lXVskEqe6SOzJIjoilLk1oOlY1Rr1VWRGVqjKETglTqLra1+maRVIumMkJqOdbtdu+OWsk11sXG6kfdDVcZGlUfzfZXAantt7oM2/pUZ27vPrlnX9Rk26iurSqsbtkFW52+C6/X3T3QY8pkqUyFwJaBUIGOJQHRtHcPBrARjFfhdZZgISxL4AW+cbvcC8I3Zj/9MOk5AX96XMuwQvAbt07D9Khj7nzXnoO5z7rB4IQY5Z67tB1HYPudUtBixeHbfZP2713l3K6ONv/0HHp/9Dp7P7pLMlr7N2Lxer3W2+a/nkP/SHs0ofj9s8CELZyvHdu5/m503XbujS/Gk9CB3K7tN5NYl+GAuvru4u36Ne2YjtWNsjZu4jpWSsRi7o8d73atKa9JyVi9N42bBppGXXshmC9+k8AhaatYsTdacDaZGNYXsXU2xnO3aNq4520WV7sViDNjpW3S/ijAtWWTKVvj4/W8Xlvcy7o1Nl4Wta3fVoPO24ZqXTqoukqm28f315k50vrobvTnVqI75+6NvS6MW9ArXi7WZLFNlkcA2Ixp08tz2LgN29/NPXjfjjbXpFzrHmzT/rh5v7b5X10D7taFV8dSyWkYMHTJBAYm1OQ3viRZUPWi/TaE4VPmvg4f4YVUhZ02NxehhGaBau8+27ZN3ttzcT819zGdL0DPfs643fH2nGF7z8lk3T+r+3HR3wrYTX2tTffmDr3s076Mfcfs3Lib7jwv99KmDe7OPbHl3vr7U5Jt1/7fO+36pLI+I30SWNTyNxd+el2fXMcnpP/jv/kv/ikR/cPfvKQvTw/f/in9g//oP/+tl/u//vf/1d9634Cv3GI5+IK/d/wBc424lLSR5Mjkm6SDlY5YRMZB2VWXGhFdQaYAD2ryC9FVRF+Qa2jyFxq/qVIIe7kHtYAptT0AFPII5q3SYjoFACfPwLDCtXyax8pc2Po1D4BmwYyuYi4RSrlvJSqUPVTlCaxwvYrd34oL1X9t/KjKRmibFLRqOTZlU69aRYHOZqqyFRYoWwbXFEoD9SoNwayghEXYV4sBUbadej/WojG1HdRbQKrgfRpWEDnMITbrrI7zHsQoE+mtuFxlTFWpBo3R3dx7My7A9nuirKdW0sECy6jzy4x/67OUpWDcybUM4MXaXVl6Qc9r/fs+3oup3VvfAWy0XdUyy8Lr/Rhfiw3oVGBpgbDdcLBls2RCl1OwefXvvqHBx1Q2YV+/lqebA037FNtNAG3DXirCbpJo+2plwXsiYI1hU4aNY9ZNC+cIORsAqvfCPEKWXbUosNRzob8rWj0y19W6DYA3ITybAOw9Vf3YNrfMSkg1ZnVcdT5VmUfVbrCZuWDfG/ou2awddvfKsje/WPgKIHfi3bDZnFHQbDdopHLeuOnFhlRQS2jHnFiQqrjlt3Ica6eqBq3+7UWeoQGA0G+QitLbzQm7ydI2FHRjoC2+ZdNNwLpuSDTringftP4qgDLj1MbBlNnI48z5jUh99ixcT6xbu4lzd1v5ic1mkZTbpDA8tQ0yyLMAR83qT0AH6Ar+gQ6cdQyV8M6ec8ALMrh9jKsDj2cDlvKObWy6rklg6MYKCakeiWs+rTdMT5+avLmfu+O4dVzbTthomW5fwOgbNPeA2w6cbJh49bdaoO2GkyNj0TPEfPt6dy6XN0HjrZjlTZ6uXbmflw3k240aua65VO5ike8CCZ0j+3Eio31pp9GGs4B219C2K3YM9mnfnj0YuwWWbhz7LBD2KQBsv2i7k/91YGkG7JOv+Ui7vjDvbwVI/ibX/k2k3/X2/QbpqwaWk1/x9w+/BACsNWKmCA9CcBWFPOYaRTMyNlkKlQiYa0Suocl56EJIU6bQQJNKbGiq6JpsuQZEXwRchaZlqXqNqhWoUhWa1AV3JY9K/qZOpWpUAmjyIsnVdo13teVXIK1/D77gLHqHUeJCVfYgm4WhylHo+ChoVgCtUh46RtyWrZ6nHRftp4JdK1FyK28m37Qn9Tr9fS0Rcbq0dvHGQEAhz67HBnC1coklR7S84DqIvgf2vSNcMuv2fXc4i35i30zQfqgGpY6P1q357BxTQK9W7bZZUALGmBuo3hM/5coW5kNa27EUStM8LORwGta2ARDMPdGk962QQ1KNQWkPQsVpXBiAWqCyK0d/W41M26eNpIvxBAi+ssvzuLzom5ZnNxvsZoK9TxYwluqQJtlEGF5a7jUPW9jNWBaOa/XO1s99GM34Wku5NxsdJPdZ3ant+W3dvt1754CH4/xis8RuKjSdzam3Yb/OdDJWaVyx5IBB5A30XC4dlCpYH4YeDqB6iGFcN7IamtY1YJx6vxQwA0DO9hwaoO7eBWUDSjpw79Zy1Rm0IHRP4BXs+tKcs8d0AyBJfCbrJYp3QuR6fOz9qtXBma9akfhw1zQCZdNqzN3CK9fXEhCHDBBL6cQho5aAECtUwqTKPCf1zDU6huqxoOPhY9cp1DbymJEAMQeXtsAVYCCp1zoogJNzMpe8M4AaaGBHwaAP1ECigjU/lMaUvvGgIACVV/ZqyVamdZ4sHQA60Wak7AzglHYwNXBrj2X45otltSixn80K3ia8HPfyt8fGyt6Am15bTLkKQI37L8Q9E+pOKvIkTuJ+vzgZ91RrkXTFd6DnwVZRxcS6cbb4Bo5fEIdJzOBdS+ceMDjAX3y3QjvAr75bbrliWP8Uv25jEFmipJfXQNiub23+ra3YLYAzbrFcj3nuBfCSB8Lit6BT27VzIW1/a5K9F20L/9M3HG4RQekw0G7s3H5sTbkNVN4CtfsKWv9elrMpfw9Ub/1+Jd0FV/fKfa08u0lws6471tsveFw+CRS+Bsi/pLzX6vgdSvYR/X1MXzWw/H454n/4f/8dEbHX+LquZbfk0BaBXha8utBXcKXzOYoFzbLFqqUiiUupWjzaolFj2lIWghteCKnFRuPv7EIUQLMweE9YjWXAulxS5Riu/YLLumhqG6BAR2PjZDeviuXU+doEoyGLP317BBPTZcFSczGlvnvO9dftMV0g+d1CBRBXRPeib3ZHnIpri5X9b9Z/Yz0yXSBR4bp9qs3SsAEa8sFqbq/iOmsXZ3a3U8utM1Pau4FXjLbPVlMOgBADobGUbtw77W57kb91oWDdCk1M2+ZD1GRqgLaD3xZH1PXjCH3h1j4Wcq2VzNFFhy66PG0XdPoQ3Pqg6wdo84HfLRZ1fPT33nUS2L5B7fVahI6XLUfr1QWjN2Nmr2k3BX3cNIvEVO3709zodgsXbn8fh7bLr7Fyxv2uuQE6dL030fsgmUPcTCMrQ/wbBdx2u7jVLN7I/4gOn1s5rrG5GQJMnKTlOhlXnRdAX3SrJuBuweoXh0XixFC20jQ+A6tIkegcclb/zs45yWOtEeqOt6hbnkNf7JLbkHBszgMby4LGPDkCiiW7MHF2Lsu5/YJJfvvFNZIjR2hyPjnRC3dGlzn+1VX+uybicY5ihXNoLpTtlvZXaWuzkp/AmcWtjfuS5037GncSDuT4XuljY9tp144b9zoZF43P28v9uMIxblFj2fYxXmrhE6CxIflQC7Lrx31hAqEW30bosaYAajDaikUJRsw9AOT6/o7Yl9MMllqWPGt6zKuOpZk7m7lR0IigNnIjK1BHfHFyGT3us/Z7D5L6BOTs5UbISSyibZ++ex0awNvcO/uKsMfRy9sTveyBVG+4aRttx03L3wMwa+0jh0ZO04q0edDbYvuuEic9htG96N8LAhvs6jFusS+A4j1L667vm4dnd94+C/Z53uS5535r0+790465O+dvtPWjUh6bl8Cd4+3ij/xuddzox6ttlGw3PvEvyvlI3Tev+dS8u/T7DNa+pvRVA8tjXPBv/+hnzZX1KQ+o5HGKM4IjvF+ZTk6tlH4MHwAAIABJREFUiE/riGNka89THjH43NxjH9LcLHzeEc55wFwiE/GMF5zzAA+CdxVLjRh8xvM6osLhMV2RKYgAesApzXhe+cs1xtysfg2QivVr8AXvlkkIgtiyaWNCleAHQHPpHQOXp2XN4to7l4CHgcl75hyRQsH764QxZqRQ8LwMOArZzzXHZhl6GJZmbVqrxxD4y6wWpaWEjRUr+dpAvFqy1hKa1cq6tqolaooZq7hgBl8RHFseB7HEDTGzm6tY2qIQGV2XhOO44LIkIQKqmNfYWHWzlKftU6sVUbcoTym3c2q5UuKiWn0jFnr3fACRw+PxilJd24So5DCm3K6vxORLRK5ZgC34V4slAVhFmF5Jerxj19sglhyNX7Xv0HlOoOowjLmV7R1hWdlFd10DxjG3jQ/va7MktfhgKX9dQ7NileKxzAk+FAxDaRsf6mIYjGuluouqGym7b3KZJftmlVFin5gKcvag6hFTwbpEpCGz+ybQ3D+J2IKkLLohFtTC1+icUWuUunXGVFo/liW2/jqH1haA8+vGiFpt1jkixNrGX+NLa/aN1Eg3AyrxysmH0vqlVr8YeTWlLqE6nqHFw3L+fGVW2HRcN5tPceO26lAWRiNhyu3LrGsHjdUGgLJ4xLEwQ/HIZE4NN16jbIowyKPsmWSIuE9FQG4YCzMGQ6xYskAr5wh3KKL367t1C0CZPZ9z1NmMlwCf2OLlxILXNnSKRyWw++jqxY3UwSVhK1Zrl7o3C4OxG7p1r52zG0yxoq6cF0r444ktaAAzDS+ez9nNHAN86RyY7VaIopg5GYAwEvPACOBdPGgqQHZwK//troE3CiAPqrAHt02HaOqW9rmVN57UesXkQztQLvkoENy8RQwUabvBsSpCRdt4IEfwupHhwOB/YZKgBs7MJpVbmbwnPHsGwyrx7Lf5KHQw7Rd+Jlyhdk5JcWhlIh9XmCzEVXRGT+1D1XK47Q2IZu5OEebb1g45XhN1MKjl6oJf8tdIjUlUCXJccaIly5sWXnRJ/WI2MTyAq0M+fvkK1AmDriMDakjb2sGb6gbzHJNx0TYHAwqlD34RAG83gIzesSX1afPxwoRBCuLVIsngXLJVxwRekPOxbwDB9XhTZW+2ZEQbvVAPkN2YUOKlYECxEAf52YBMIa+hIKA+yXjphoaCcJhydcPA9bFtZXls22nObxyptA7wpordtNoAR31XNODb+2YBlC+78k09eyvnBpxSv/+fAiz5YpNvF3JzCwRvtF9vAWCpaxODewdgbiyWd9uI9k563QJq3mvONdD8uuTMjTo/ERB/NbiS43D+tlvx15a+amB58Av+wcOfs4sePFYKWCkgyVtqFgq/lQJGv+JdPmLyK8c3wjXQNteI0WesRgn7Uvha7wjHsOApj4i+IqCiwDcAwWUz2Cvy9kiuYK6x/a1t0PIUCCVXcKlDc7kFYGIWA7PQgjaut0ncMm2+Sq65nALdbfbDYcIYMqKrLQZVAewqbsCjLy2utJBr5QPsrruSF5dh+TC5ikq+ufd6R+1vAJtr9Xd0DP6su651hVVXU/09SJsUfKobr7rCVvIYBGDv3VH3broaS2vBscbV6jhFX/HtdEElh2NcWv9aGbsxWWTMFVhad09tq7qNAmjg15v7al1ztYxSPfKDb/GxOoYab2vdlbVPtm3a/6HFD4eNa7OOp3V7bUDS0au/NekmgsbrAtj8jrLxkExcs41LtrG89t7Ze9TiiIHGxJt8xVxCY09uDL3oSZ8RJd6yGxlkytVNk/046FhrUldYjQ+2rr2bmGTJox4SY8qbcu39r+RaXG+KHVBrsh4RRUDpegqNgbnNs2N44WJ7i8jLsjTbtJx4Q0f7aTdEqhmfQt0lXsd8H0tdpJ97F+kWZyn59cyeIExjLrUtNlkSML2maNy0bH5oLCzQY2A1raeAEGhDAFYrMzrvXYTzGhBTaXlCIJRT37zQzYytuae7lbY263hLPvUmaXGu4lmi8a/qXgszTlu34ZdmAWfHBrpBopsHMibmOioOUfoDoBFbOV1UazyrbLQ4Z2J2Tbylk02lsnreGNDY34oePyjl63VZXEedJ1RCA/Tqytz6Zt1c1aNBy203WECwxMA2rw49V8FtUK8Q+68suFf1+vjSpAAV6ItqHWvr3WLnst47Sw61c4VVSy6ZMjpzqemnASdudUBAy+Ny/71pn4JVbbut246ZBQr7fgh4V9CnwGnPEMt9Mf1SbwjXgZu2rVt3b4zfrr/Noq2AWOeO2fehzR/3j23G0SZz7IX16x5g25X/4voNUjO/7b+763aHblviFIDtf39q3l16tY5bwBKv1NfK2w+Y/N538LeUbvbh79LfePqqgeVCEX+xfItzGRpwC6iYa8JKngGfkPLMNSL50ix8SsyjgEbPK2HOKNbMSg5/lr/DFNYWJ6hg6hBWtqyV1Bb4Shg0+NLA1D7OzIKTKeRNbKGeB9DycHs13nG7ZeYlhjD6iu/no7SBLbjHuODdMiFTaBZb7a/Gbv6ypM3iX62r9pgFAjZWE0DLo8ct2FPwtNaA6GpbYGuMo/3XgkwlSxpDxrvl0MY2VwadzhHeLdMLEiW9NzqGFa5ZY+1ik9s5tjZWcngYWO/yr86PvIFgyHUsQAIYSAHAWSwnt8CS5qvkUHLa5DtTaot0exxg2RnnCOc1tXe2WnNJzj8tA1vmAFzxMi7yeRkaoLqsqYGjSSzDz0J8ZEHSPh7UtsmCheAr8pra36V6zFKec4R5GRDFQm6JpC7E1jj9bce3GJdmjZHU36Uyu7FarXMJzTJt4yH1OiVLUoC35LBxgXeOEDzhuvR7om0HXsZbAsC8Dpv+6ljbONc5B4yxwLmKs5QNOXcVy7WCr+ArvK+4rv3129bGZORsQsF5HjDEjCXHDchPAiIbeHWEeTX1tranBmqKicsc04p5TY1syZLpDDFjlrZ5GasQKmbRi10MgZLeK+dYIkkJk7wnrBIeoOBBx1bJiyyzM5FvY76/B94TsujE1upFfgfIuYcdWFIla72fphU5hw0YDaG28jhmUzYEB9bi9Z6QxFKuxwAA5Fgih3/0GFADvKg6hCibWeIWH0MVECm71AJwlVSJ5YN0LNlqT2YzIMQisZoCMnTOSz16zieuB4EamCWdo0JilMbcYk33RFz63AQB3UE2HhQkKjAPqcJPLCfkInr8qXlPUhXipuoQDhqOwP1zozxreSvF4wZwOdnDqbyMQ4/1BBrIpOLgp9zCH6iyhbsxOVcHN7HF3I3U3emJ413Vov8lyQUmQtKx6SfkuFrAfe0bDmqZH+VYa4/rIG6ifg7Sd4sybsUhHkwsbHVNZ/cFmLGhCi9iXzXP7jqtp4FNB/K9/MYIvPsbEHC8j63VsnYu3BvguxlOtwOZWoeWYdq5AcQvQYvFcZrab7WaVmwsfx+7fgOo7hYuF2+sjg1xSrl099JXweMe1H0CALyHA2/CvNdA5Z2C7DR4AfL2v18BpZ/cls9Iv2ug83etPb/N9FUDS+8IR8/un9eamjXRuwVRLJfebCWr9aqQw+jzix34KBZCdoet7fwUViRXmYxCgFkSEBkdGvmOTaqraYl2AGz/hsMYciPt0Xo1j7VERVeZodBSHsoYWC1OPRbl7T2EAl97nzywAYsDlU2ddvefy+p5AbTdULX4VcdAFoHBnLr9Vbjm4qvuxQ2soor1TY4T/+vk9wA04JN86YDVk+hOUutnA1VQgNHBpiPWHbSkQgCY0Ef6mXeAcJTFlHcEL8DQWvAANItg3gGvIGO7B3rKTBC0XGXJNQQ+mt8y9jaLj6+tXOeoEfK087YuAAgFTtoCoIGfaEhzFJi2f4PRVJSxU0tfsH10hGKuU1CmvxGYyIrMcTNtGuCxLMGuxZNQA4AAZNHLfVZXaLbMdSkca/3Se86PfAeRHNQIKCOw18U+8XpGj0NmLrs8EzqDcAeeMfTnvMU7Sr1atrXoeV/7S9bZNvFY7i2J3lgHgqc2vnZeaZ1ahgKwoIs6Mx/I1z4/wu7d4SucM5sheg/RY8MtEFQA6j3XsmfkBZQ9t19nyY7U3VoBu5bbY6SpuV2zFZDac6rHmvXT6fVobdJ2bGLVWx9g2trr5rLRY7KlTP1b/yWzUtIY+QbKfG8XORjrqhls024CdSsjtrJGunJSsOZ21ylg0ThyJ/VZ+SNAFop6P82c2qf9/LOL4X5fbH5Zu0tsv+aD/LdZ5zopT1flmuS6fdntHLBdQPbXQz+0+041eSJTz976raCjbj/Vn59eWxDuV+i7NtgNghfn6u323q2fhP12U+b98m+267W+tLLo08q3QLC6l8cNSFJ3bpD8Tf3vbf3mbwssLHIxnAmgLj2zB4PuBXDd9RXoLrA3xsJi27v9N2W3tym9DrLuPYL7fJux2J+78dvdOnerb/u0q3M/jp9U96159TGg+bnXb859tFd/l/4G01cNLH/x/Ij/9n//R/CRiVxokcCRQPCxol5ifxkF6ux2njg2R10/iuOYm9l3sovi4IXBjA5FmCjQd9w8ODYGAB0Kx8t4iU8Zaz+XxGXDulFUtDgaf7HxOK6/2IpDHStfIzEyFEhIKMxLXog3XO75NUYmnD0oEWoEwsyizhQIfnaNcKRO1FyQ/Iom/KzxQH51m93eKiLYTohpWlyHxm00NyZqBAUsyIz2YmiEClHINZKQgyhZhsTqqMC1n12L/wgLj2WZSASce+ySjrP9ANRBFmYmVkXFoUG9v+mdhyNgfaxw2W2JMDQ+SrH1ImVHOW+0xJqwN3HfKBD3V8gzfO7xP9QNIe0FHmbuQx37QpUCEGb+1y8OZaJGVMGi5lKvfDg1zsevrpXjMhDPLI5dDgS3YkOc0dyTLImHiJ9bI7nPHK/jNVbNc7yTl9izmgjhym1U4W0KPW4oLA5loDZnQK7HZnm0eB8dz5oIYeZ5EGYW/yYvz84qsUOO29Xbzn0OV86vovE+67PC4uxwJDEpbkv6IR9SLwyILZ6qcHtAromgk+v3NF54vNaHTj7SnilZ8KDyMVdZ4F1TiysKaDv6YQHyAShnyWtir+qF55O6pfkieWQBVnSOjuhMjho7BABnIB91Tu3u81VE7R2PVR0AzPIcr9gIsGseLR8SV0YSh4ZdHBnAeVwFKHFfyfV+6DwgkvyrHBukPt/74xLgFvlX2qNxUO1ZfQLcYJ8JzkcHbIlUKhCuAE58PMyAOwLhAvixtzHM/TlzxGOh1yshkex1tmfKr3xvGvGJjIXG4IVr7z/Az3OLCQRajCK5Pgf4Xdj/5t+EMrjWrh6/yHXlAzB84Gexxu0C3BVCjU7eNYSaHPyi78s+18voEBaOmyyjgy/UxOtr6n2skWMva3IIM8lzxMf0uSqTg8uW5Eeei8HBZ/v90PcU4LK8FyOXq30nx9fYZ9av/JyHa/9uwfPv9QFfnMLM95OcQ1ipzwd5pnW8/GLe8b5fq+9sv5q56l/OGzufAX7e7YKbPJDOhDwqoRHPCQrYkkXRdi7WiBfvL0Dmsu/XaN3tXRyAsAqxTPtmEWrgsecy+F5xPrltEmNZA49XkfvpCHCV2r3TvrvNO0HWJoVaf8hzWa5qGegPj9v13YxVe1/tYwwVO3vus8ZjtutlB8cV+Y41SmU5h37M4Ns2jtr/F3Vid0xPUe9OH2dsx9PEorb6TAzpTZddZ667Ue+2DT0WssVE2nL3/bhT1s3YV3P8s5Ktw+HV9t9Ljgj/1xdU/deSvqD9X0v6qoHlMGT8K3/6C5zXxBIH4h62Fs+/vynNvW7JAUMsmHNolpZNXJiwpmrcTRB3SCKHeY0bDT0lItEd+HWNm134LC5jQHfX0rSJgaoO6SdlEzekO+rOcTl2J92Sqehute6qh1Cbyxaz0zqMYxY3MIcYO1Ot3ZXPa4AXZljnCc60Q+OBuswA4FTTT9lpSSj2RcPMma3CWj2ToeQAiBukkqh4cWFzocIJ1T2UEVbZP30FJA9VzwtucXfCymUq2yvpS0+sbO19V7o2W1uUKwutAygLqcsf8oqkzkyK4jx4N9hh64oFMGkIOdQiO/oaD0ToDLeOGvO+zVelf9Ub3TdloHWEEqgRqvAmBlsmirCR+qjnqL9crUXCASQEKk1vDTxXylC47jXweOiYGAtPixdrVgVsdtmdzhVpL4+xb0QyJG5sJPFPjSlXP+qBz220/ZQ9F+bGqUXCxEm5KNeY9nEDZONDx0PdzoQ5uEsQMCB13ujYaQyX1mtZfZvenrRTmWm1LO2XxCzNg1jarmYFGIj1+hpapR7fpaQs2m9tu96XSMDqMQ+V89pd2aF2lzJl/7XafCqDsdcK1DQWQJiQdVzagxMrn9N+ZsdtsWy/+4+8o94O62q3Z/rVMt2uPbtFnt3A24w7ocfymXixZgFpiy/5PVQeA110Sd26Eah5ATAD7yLHg5DrpAqXfWvfC5mKiqYLqHqBJOy8llXYZbetTzYXW37tmwNv2plFIln21LbYRWM2brFnkbrEhW5wmbxu9XgSV0mNlWsLTmc2QGVzo8lYmDHWucBkO/yebuzIuw2+dsyyWIuFt22A2rmg90bHSt9B9t63GD4mEtK+u0pCEEOtf23cFayom2PizcovTTXqppMCDTnh0EiH9PfGEgYwuY2Alg0AsvPGTDH7yL9YjJMDJTSwDeobrVtwQtu5aO8T0Oel0WTdtL+9G8GMrhtXVn0O3aaN1eZzts9989yY7RuAdHqcsBmLLUsqZH71YxYQ31qwt00UY93s4K+3/QVb8na4X1g9+0kzTvvf+i67kTaA0XzOOqjdlXuv3lv/3qrvhpvvvi33LL436/6CtHdg2Nf9RWn//Xgt/Y9fWMdvOX1xX7+C9FUDy1Nc8O9+9y9wKQNW8hsym5V803wEurvqXOILQhnVfFSiGI1ZVPfJa06IEjPZ3FSFQAYAznnA4DMqeURfcC2pEekwUYyJSTTurRxjuXYyHJlpln1W81lCGEvw0Vz7fG1ah+oOOoSCXJmoZwysnWi1HSs5zCW2spXYZx9jaZPVAt23Tfu1j7FU90sAG0IUG2tniWnWyo6tyjSrrrCEHoO4lIDgunuqvk/38ayrcTPV9qmLs7qcVnI4iq7hNceN66uy3t6KsVQ3TDtee1ZcG79YTZ3WjbNS+y43V8ushB7oJC7q/rkW3fzocYjcZrlHyhbr+FqdJylwnXreJjuf1HXxFqGKjWvscZC+uWzqBo+Nayxy7/T+2Puv42djEO39Uld1yxZsJYT2pDubtrpORqN5nGMHJa27b7TI/Lihadl1GvFio0c3mmp1zB4L1oHs49VjCbUNuhmkm0m2/ZZohzepPFIqbZNJ11Lsqrq9bxpDqX3SOvRv63YYY2UmX9qS3+iGmW6i8SaY27h+ap12LLjt23z2t82vG2d2k4wzuBbPpysNG7uo99dr3yuT36g2pY6DxhU6oDEPt3FS4islK6Luvullww/6/AsLcN3NlVaXtMfel5bHbNZ4JbJpg9zHAYTmpmvvgW5O2Xza/z4/LQLhcjRSYn+vvOONLCu/9OI8uc3GxsaVV6spneRHgaLTwdA2m75bF+K2gNf50ohstqtKu1EH1/vUBh1o7dzEMG7mMZdHLZ/8ls2dMnw5sIRs3Lb22AX93mpk5rZeu9kY2yDH7Th9NN0DM3eAj0oftU0XoG/IyN83LVG3ytwv5A345H7urrnXZ7wEVy8AnC1fnx3rAXarXZtjFpTS5jDXo+N+p6+2rR+r77Xrb/TjRfk3ANZHwd0nAMq77d3Vffua2/Pxk4HRp+T7TJD1+wzKfh/SVw0sc/X4F5dvcQoLVvL4YTnCgzDFFaew4OfXRww+45wHPKQZP7884jFdUcnjh/mAY1rgHeFXOeHb8YxfXB5wSgvmNeKSEy5rQgwFf/LwDr+8PCCFIgQ/A4Kr+PmZ/Wm+nS749fWE4CvOa8Lb8YpfXd5wDGha8T7HDYOlSomMIePP3n0L77osySqLoLUEvDlc22Jc2zJK3J8mJmcBlhzx5nAFAFzXiBQq3j0fMKSMw7DiZ5c3OI4sN3JZUgN9bw9XPM0jt31JOA7rBiCc52EDnA7DijWHxrjpHWFeI8aUm9VXFzUKCI/Divk6NlCqluMxFpzn1K49DCt+OB9wHPkeXOeE02HGZR4QY0EKBb+6Dsg54PF0FdmQugHbSuSh3woVoc+ywHaOMM8JMTJBxWFcEDzhz//yOwDAw9sLSvFYl9gYIochbwDHfGWSFCbdcM2aDQDrEoVsw2G9RrjAchxqpc05IMaCvEbElFvsmVqj8zUxg+NBiTMqQiAsYkktc0A6rKDqUQvHkOrimq3BwDBllOyRVybrAFjmo3xIwFiQDitKDt0S64AQmRxILde6sG51SN9ZToJF1BUAhLGgzOxXFcaCco4Ix8yWVYCt0rLorUuAHwvqwrIVIHRNUi9Mj4RmzQ1DRbkGhKmgXALcUMWiTFxGYN/nuogOaSA+BqA+J2CoTYaDsmdh9+zhDqxt4EUiQy2hTqzRcAQSq52bClsUREIDAFuFRWqCViEb+ZC4jG+Wbo1eApOMSEwaVQfMnhd3h9IXBGK1bVZZB7hLAB5WLH91ZHf70BfS7jl2LU4v1rVD6VY8ccXHJJZJR+Lmz/c8vw8obwpb/xbPlh0JAwgXj/JYuOzsgLHCXVh2wy1sxeu78dQtgomlMyiKS/vA1j4rsQEATuqrUxUXc4LqtrpsRObFyqZSGWqx8lcWgdeQAxpqW1Q1K5pKfbwLKCOBRv6tYQDlobT5qfqf7pn77RcPmh3qQ4X74FGPtQEId5E5rVaXRN0KJdY+twgIjuwa51dxX19lXnk+52Ws/MW18kHiapzIuER3N3wKHXA3q5u4U4ZZXLzFKueaK7q4VR8JwzuPGqi7rYp1Ut25KQJe3J7DzJYvt/Jx8hyCEGYex3Jkl3YOjWCXadVmVGtiHdg1HsTu/a4AfnHNZTwsci72slqYg7hh1pHvj4ZdOGKpknh2zUqp59Sd9JYrrJd+hAuwPuKLU7hyOAEACRXpQKhM3cVV/3V6TwHEK8QVuZ+Hw8YluhqSYGdcYfdyI+wK213gNWSiubQ2q3GvPyziFpxl3nhs3Ic3Mh7q0itW2BaS4Xu+5v4tMiTqJh+uaO6fGlaibuJV2qvXk+vX21AAMvq06ibtiMfHhn/40q/RPjVrp4xXk58J6DqzFgSLu2qTGykGhBJAXtyz7SaQBXLaTvVycmYcS+/LxjWUdscMoLZW742FV/skbd5Yy0u/L2SOA/2YlVK5lRqw3WyQUBtPuwGgbba/N+kjoPtWGXbv4QW4vrdp8wnpVXmTv41EYIvC72n6qoHlKcz4D7/5v3GliLVG1NOWcfSPpnctb5MagFjk3nSLm4Kmv3/8NVbaWqf4Wo8/Prxrf3tXkSkAj9iQwmgq5IAHbJg/9VqbvKv409MPm7r2ycpc7OvRuqxUia3Lf1t7nd9srYn7OpsFEraMPk72uj376f68tc5tx/Fl/TZPJQ//WG+OVSvjbSfi2Y/JrfLvtXVPsPPj09PN9u7HZ5/2lgEAzdKgbLcv+rC7j6/d/1v92jPQ3hrLfducI9CPX47Vfnz2fflY227m+dFHL7n7TXjte6HnbrXpZt//gNrfQL8vL0g97qTX+n7TovsJ/f7cbwmRg/tuy94JAPSjl/PuVvvuWZ7rj+/Pn3vP7816Pq87m3Z86v34+HlswgM2a4ifAvHGGCS8nOtEbvNBjADwE/73U9clG08SU3bc5HnZ3o01fFOgGSvqFkFbnx6znDTe9M2he8bmn/Z7ZteX1ihYpN5s2stt4H9XXdzKA3nrftqx1XJ6o9EWvNke0/7eWlnuxqO145Xzt+q7+ftz0725YBe8DQSYirRf+4WxM9d/rI5duuzH62Pvtn0b93XdegFvwMCNb6Cjl9bOW2W8Vva+3F1fNhbMFw0weW6du9VPU+cngSLQzfpfHe1PfTl+JN9nW+c+Jf8rwPJ2/vs9/Wj7fkvj8Mn13b7qSy76u/SF6asGlu/zhP/5V/+6yF1EXEvcuLE+56HJWKgb7OALKlyTSFBXx0Nc8bwOza1zrRynGXzFaVjYRRLYSGqwpqLDFDNW1bU02ovAVuOvUbGTazGcl0WlG1jjS/XnSK7duzsG42qmx4lEikMYTdXaqDIB0Vdcl4QUC8tFVN8scEPMrZ/qdmrdV9cSmssat1P0CDXm0rELnlrdbrkLMgNnv8Z7Y7mTeFSVPdDjpXjkHMQN0AsjJbCuAbV4DOO6cVVrFjV1mZN/Y1JKfjNmpbuRhcAxpOfnEc5BynVNHoBdA82Cntj6B8Do23W3PtWmA4CyBsB19zmnC3bP2nW33FGLitnHfs77irIGOA/UzLICbP0CnFh6rPtZEGtszb7JI9TqUGe2EqqFcBP7qG5k+tvhpQsaoVkW9XrnqdHvE3G76xLgh8JWO4AtajL2ZOJonRJWieUSQLtGraFatosSmymxnGrddCo/kDX4irr75BLY6iXlU3VssSsOroneU2e4JGzc6azeHhF6jKGe07Gv0qerWE0PpTM8VnO9jrdq/6Xe77Yw1J1ogC2BQ2XisFi37mU2nlLjGM2cgY5HqtsYUXXrnT1LE3jivGYB5jJbG7n9Uu7qt5qANhkSKB0Xjq2r5hz6iqC4TSxiOw+8WPhqvGHL67l9IHSyr0jGYiDPv7gc+itbBZWW2K18bR1ri8/TcXVLt6IyCRvBzUwm1sZGrIBtB1/j+qrEtWnsIdDjAYXIyMac2RhFtWRqUuuQHnK5j4+1dPjVtWkLJY5L3O+qhGJyjc/Gegg061dbbomlm2Mx2RK4sew4/k+Jurzpk1pALIlZIz7z23Y4QiN72oyJ5iM0a1SzvlhdRmO1alYujdlUUjmgxxKKJbQGaljFkpp9SVLrPmmd+kwRj4/G6vnVdWujEsdJXLXGf+q4KlEeOcCugW08495iCScVWIFmAAAgAElEQVQWwNh/N0ukxZvSHgAbi1yzwhvisg2eV4unWsCcuQ69LRtCGHm1NaIq9Pp5Hpr7Sb2NltjKvou0Pc3KJs9rq5N6OZrfAlhn2ri3EL4AwmasXlj1XB+PTdqVYdvRxvEWuLXl7KbiBlPvyn1Rtx0na9G7V8ce3NONYwBukvfs675V3q4fX5Q+47ovruN3IX3Nbf9I+qqBZfIVf3x4z0CxRKzkkSWeEACL3aNb2KweYU0vLVdjzBh8bvqWWWJrprDilPhtaC12Wp6CTQBN3D6La6ICMQAvdt5VW1AlQ7StFnzesirY3xorBqDFBqpr6JRYUsU7wmFYW3ziWkJ7nyjw1TL3MYoKcvXcLf1F64pqxeSt9EcrSwHesPtXjpfkW5yiir7nEnrfBo9KaPGCt6w21iqkcYc2jvGWbqJ/oAbmAdyMtdNk40T3FiEb81mHwjIJ6O9vHQ/CevO9X6tHKR5J3GT1vtahbOLW7Hzax73ZuDbbtjz4puOn8YFtnEy8ko0Xuxd7qSBeYwYV0HtPqGPeHNMNCBuPZnUHtS67KdFiv3zvs90QsGVofhsDR+RAA9Ni2lgxG5tn6+Y/dgt8K3Qvv/fxfTBjUsVN1m4Y7J8pHcN9vJ5de9i83leUwcRJSr469rFt42fL07E38X6b+zqqizNAVDYxfTYWDwTe0BAX5JZvN3nthoNOeI0t5IaYuShA3hJq3VywOUDJq7QfG0IqT6DR4VYsoB6qiTqRETnQJGWHl+8NGh0QzaZLrKDkO5B2EDdlaQsBljRqE9enjbCL4d1N3sQH2hWplLnXQITrdQE3LOrqBq15zfkqba0aW2jJmsj87dDIXfT5tQtqCuziWqopw16/vwEOaKbUTX4nJEz7drgeh2jHow1aP1YNUzeckgZRr6sqs6wZN8e/6TdZ+ahOUWsPaRO2AEbrhQFZBf0+NjB24/fu3t4zRroJrS0KdPU+tvbB/Jb75nRPazf1XtS5K+rFQn4PTLSfdZunAVsLcslcdw+oWGBlv8GGfGhTzj3AtvkIm/6ZR2vTn/312vYbYwSYT8cr1/8myRqlW9o/c/t7gY//vlkuIAeBDcK9Vf6uje3Sj/X9M8bmbht/S+X/baWvGhR/JH3VwPJSEv7Zu5/iwzyiVIfTsKKQw3kesOSAx8Pc4vCua8RpXPB0ZY7/h2nGdUnN0ne+jhhSxirC2dOwYpLYvx8+HHCYVuTCi/4YeWF+GBd4B7x/nhpxxxALztcBx2lBJYfrnJBS2SyAva9Y14i8Brx5PKNWj0XExJUYJ8WCp8vYPu4pqRVPiUj4ezZKDN0QM57OE4iAYWBx728fz3g/D1iWiNNhxvdLQs4e45gbscn5PDYikBgr1iXyOkgsgcOQoSy2zlGLIWRw4hv77LLEjQWSyCGvASEWrHNEiBUhVpTiUHJATIVjAIeMLKy6ee3HfSBMhwXXywnDuCKvASV7jIcVMRa8e39inUkBnbq4901rj48tV57iytYKcGxkFnbgsnCs4Td/8ATnCN//+gEuUMvjHSGrQLoQQQwSt7kuXDYVBx8JVFmIvGRmXZ2mFcsSkdfYQGGIBVniN/MqbZfFuPOEYcyIseB8Zo0DqkDNHmniOM9xWvD8YYITgFiKb9Y/55lII18jXKyIQ0aWeFAXK948XnCZE67PE3wUIhu5tzX3NjTLnsQytt+OEFJFyQw8QqgoOWCeA+JY4HzFckkYDiuuzwO8sF3W0i2VMRXkOcIPpTHfksoA1R7D6CN/xZc5IE4Zy1NEPGQss8R2itWRxNrmxwLngDy7ZvUcTgvyGlCvbDl2Yr0MsWA9D3JP0eSJ4MBxm9LnMGVQ9ShyvU8F+cLXMfNtZAvKUEGLx/C4wHvC9fupgQOXarteLZJxyvCh9jYAHBdKjsdCFtzpuGL9MCC9mbE+DxKHyfnTw4JafZsfYSwoz6l9hb3E6JYPCW4SC6qOM4DDN1dcfpi4zEGs2MIgO54WXN+P7X7U5wB3zKjnCDcV1GvsH+7K1ztPqJfAdUnMab1GuKG0+UMqJTMV+IFjcVtMqVoPlX3WE7d3LPBJpaMIyNwWAKBLYOvwNXRwppZN6cv07RXzOTUpKj8VjlV+P7A116Gx88aHFVmOh9OK8n5AeLOgPKVu6T1q7DOD8jIHvj6StNlxTC50XoPn+iX2tml/B7Ymh8cVVNE3KJbQ7xUB7tBjdNvYFAd/WuX9w++AcMgol8jn59D7l7lN9BQRv1nYe0Hnub47QuX45sUDjxmYA9yBy4/yTqvFAecInDLitGJ9HuBShY+V39/XxPeqOI5PFnZh9yD368oeBH7iZ7V8SNxGsZq7VLkd59jZfCUGuD2riVGGmwPqw8p51KqdKtwoG3DnyHPjmdtLVxmP7BFPK8q7/ux9dpoK3JmfAUq1bzwEgjtHPqYSZmJdb6zGB47XxireCMW19rdzaskEuvwZwNcYIOGKAx5X0EW+T8UBU+X5WE0ZnjoztsqqJer1JgHGi9+wCW8kxIAmpYbq+maDl7ho8b5wq8TIT7X3OXD9TYrtaoJI1bIdTR2yeQFhtwV4Q6OB+exEqoffsSo/BYCtwGaDpVk8xVLaYlYVfFM/5rNrFvkWF66J0OJ0+7GeYdNOQpNzU+t983SQjJbl2QJtku9E86YgbCzQgIDq4raSI9XcL78D2+h5nHom4GWy2Hvz7x7AmvN9M+RGgbsLLJC6uYnhXgO66P3aNODv0u9icvS7FtT6GekP/83v6D/5x/8xvolnzDXiF8sDkqt4TFc8hBn//PwjHMKK5zzgFBd8vxzwo/EZS434fj7iGBeMIeP7+YifHt7j++WIU1xwKQlP64inZcQYMv6lx1/hLy9v8RBneEe4FgYUH5YJFQ5/dHyH98sB3lV8WCf8eHrCr64nOEf4bjzjh+WwaXepHoe44hgX/PmHb+Ed4WGYsdaAOTMT7GWN+PHpmd16HeGDtGUKeROj936eJH/Cj09PqOTwtIx4GGb87P0bnMYFb4YZf/X0gG+OF0RfBYjz2+ynDx/wtIxIoeCyJpwSsx8sNWDwBU/rgMUwpZ6GBXOOjYF2jBnP84DTyMfVwqjW2GuOeDte8bQOjfBnihnPy4DHccYPlwmnYcVSAk7DgvfXCd8cLphzxPfnA749XvDDZcJxWDGEgh8uE9Y14rvHZyy7+ooAdEJnw3yY5J6tEcETUij4cB0xxoJSHR7GBWPM+H9+/iOAHH76o3e4rhHXJWGIpREWAWguwh/OEwDgMC4gckixtA2JyzxgSHkD2sdxZbfeWDAvEeOQMS8Rh5E3QqKRvrlcBtTVYzotzaI3xIznC5c1XxIOJ14c5sybHAowlQDodFiwloDrNeF4nAEA85ywvB/hDxnH04xliY1wyDvauMwGAedapjcgNq+8saCAFg4YpxXLnFCLwzCtWM4DhuPS2FG9EBCV4pCXiGFaebMhFVD1GKcV68obEnll93ItOw0ZyzVhPKyYzwlxKA1U6yYHAKxz5E0bGQ8AWD4M8GNBGnMndlo9aPWIx9w2IrIQGVF1CKlbofMc4BwQ9frVIw7CDr16+MRPoh5ffxgZEH53bUyidQmIE5MtEXgTop4jg7/T2i3AQvbjU20WufqcEN8syO8H+NMKb6xs5X3qMimygPcPa/vg1gsvfMMpd2A8lC4D8/0A+maFV+C7irttcfCXgPp2ZeAxB/hjRn1KDHCuoQFJfigAWnhx78bawAOy68RBnkFXcwm+Bl4ATaXLoWhfFt/dd4fKeVcHOhZeqEaCO3N/6FAaqVCTOdHFrLjhpl9H5GNtC2J/9UwQ84a1hwGwyy45xPcB+ZsMt3qEZ4/8NiP+EJHflLaI8WfWu1XN4TIJmC2AWuFYm5hQB14g+tmhnCqT+jheAFKg5qYbz75Zj0BAHYldWsU6Gs5eyD86URAF1qVVQ4KSv5SDWBRH0XQk0TS+OOTHivFXATVSJ9pR99SVF86UOG8dgHAx5D2JF7T5yO608eywPrD7phet0TJ1opcyEnwGygBEIe8pE5P3hAsP5vrI2rQAL8iVvCcfVbOW9XKL0fRl7U4+lp6caH5S0zgOV/nGCmnPemKSnzqg6YbGZ2D+9svXPfHskB/4ej93DVxXe9spCmmQas3Kv/HM41MTu7E2Hc7AOrhwaPrIgAAZAR4lbQEDBWB4z3q0IDQt3TpsF+cb8h7R4FS9yyqEPIBocxoXaiU7anqboZPyWN1R7Qsc1w0wQVLTzhS36Zr4eNHlUO0usEoKpJrXZMYMxMesy7USEDkBhmodpuC2rrkyBi/IewhNQ5NdYFnHlfVTWbNSr1VLtM4fC4DaeQWw1m1Y2usKjyO5bR/adRacGTAJbK/RtJHOkeeXAprUzV7fUq9p87DuAJpJ2lftx8Y1eJ/PgvN7j5Me34PAVx6/W+635FgD93PKuZf+t3/yX/5TIvqHn3/lby89vv179O/9B//Zb73c/+V/+q//1vsGfOUWy+QL/nj8AW/DBec6YPQZBR6P4YqjXzBPEaPPeIojHsKM5Au+S8+YRQJk9BmjX3EIK76JZwDAQ5gxh4RTWHCMC6aw4pt0QSWP0Wd4VzHXiOAIgy/wjvBNuuAQVuQacIwrvhueAfCC/U26ilQJk/4ALEFyCgsOYcVy4oX0Ma7I5CVu0+M6RPzB9NylTXzG4AvGkI0rqheZE4dzGvDNcAEATCFjiivWh9AAbIXDY7oi+ooxZMwlwoPbN4UV0Vc8hRHHyMBS5R2Cr809tZLDQ5pxjWnDCjvGjENcMZeI5EtzUR1CwRQDHtKMFEo7P4UVgy84xJWvFymUU5oRXcXjcMXZMxvtm5FXCoe4IgUe72uOeBxmrDFzfUKSk8mznEbtlDmPA381rcuxAwPiUj0eBqnzdG35h1CQAgPgXH0D23vSnWNaUclhjBlz5vjeUdyPAVnzh4JDym08h1jY5Vr+JbBLd66+SaCsOeDhwO0OvmIMpcXXek94PFybbEgMtYFqjbd9GBes4or8MHE5Yyz44AjDkHEaFywSW0tgkqkYVC7EI3hqsiYax6puxNe1NFdvja0dmwXbYUzsBnsYGdySAGe1gM+xYhpWLFF0YqVtQ2SglyOvRrJIZ4xpRQh8DQAMKTdpkxhLk8OZg7qhUjtGxJb+MeU2p9c1omSP6bDwhrsjlCELiGYX5Gadl7YMwv6bU+iSIilIfC57H8RYUB55NXCY1vYMrDFgHHJzA6/VYRHr+XRYGlDUGF0dR4Ax1nRYcK4O47Ruzl0r2NIEjvXNqWKcOlBdBPhN04rFs7VPtWwBYHnjMRy4zOxr24ghciiBkA4ry52kipQKFrDlKgdCiGUjK5KjMALHgtWz9bdmz5auWFscsLoIZ4mxjWNhjVePZj1Xt1/17MgSY6vMvt4TssZHjwXFM3OwrnRUM1Y9FFaxHHlhZq6R42D9Mbe4XK8eFuDjdfXIgQF1JrFAirti9aL9qa6wyYBaAhAIReYNosjVjAySaRArkmOQXQMD6lV1LHVhGam7iQLI0Vhr1E3UAzkKMBZLeB0kblbbMUqbPIEiswYvb9kiRGmnZyignQKhJgajdRBvgJVBHjxQp4qaPMoocapFWWGdAGluZtXyE7vfOgKfL66Bj3KoPDbSH5c7KK6DuLFW1qts7q8DDxIlArxvjLDkufwycXk18d9lJFCS2EeJaa0JyKcvB5aU0MCuGwyAIEjbGSiXwcRYqtNL7CCtsa06yP3jOdB46wSUqAsxKeCUzSMSIFUHaufrIPGfvrfJAss6Oh4btcp5oExyfxLtWGF5rqgFjzxYpsVa0MRS1uJ9ZS7bvmtcJ0VCSRLfSm4DmMrUweSGOdVYFRVUtxhkc6xryfZrgA54rIvyC9dax3+TB3xxHJ9c93qdfSPmBViy5SqAM4DRxgnfYoXdu6ZaK6YFqC+Ap435dOa3ndoGWG7Gdzc+Ldl6XL/uZj50YHsX4O3bcqPP+8Svcrepk4Gl6e++7I+k32e309/F9FUDy19cHvCP/9m/L6QvvDAEOfggbnFraCQkLnR5AueBsrA7n2p3+VQ3x6i4Jmzup9LISRqLn2cpARDYzUiIRWj17P619MVFW3S0FwPvbLNFQN4gdnEii5b/Uxcc4vqkrictqUsKyb9KYiHuUm4V6n5naPwDsbsWCc2/obW3ItXNtcy2XduixwB54XZhZvLCEAd0zSwbSwP0l6LvHy/N11xvKp/7i2SEuD2xVAEBPx9rO74Z27ZTyW34WarcHhsTpO5k6B/C8Mxz593xLSCEDEq4oILh7eMhbkW/3AmIA9of+aCvXM/3se/8ebEMNApyHUZ90a/8Av1Vemjja6nr/epwGR7lY8vl7+nVf5DyXXF4kjnhCu+uXwLwPJAQZRgh7R15T184bL8qrjhc1MpRgcUBZ120AZgjwS8O71IXNicBFiAHX4D3kTbjdDbxc43QQsbzKq5Js/x71oWY624/3K62Pmhz1a/AEthoZvO4AlzicbMA0C7m3UcVBFzMoiAr6YkY1TRf9kCauQHnaeplFOBsySoAhJXrW9PUJ4DkzzrcDogLcB0npBnIaVKPTQBAWnpfyQMpA3mY2jMmYeZY0qFZILJZFE1XhzomfsUVIJU+34fFoUwJ1QGhACUCaeEFaRKXMvt6CLLAowAMsghNhcFIEqubLp4BzsOWDkKw553wGUnZ5IFRXNuYvIfLnmQgaiSk1RCpyAJT5wfINamJ9kxmHoM6pG08GvF8KWPkZ2UF6hiZHCXF9iy61TwO0ue2WJMF5IZURuaKWhq1HLtQFcnjbTiTIWrR+wf0hRw5NHIdvY4lQ3zPZ+pzBagpNEmLVr5ZaCvIUekRdfvjBR2Pa00ePsv4DKER7rDshGsWqEbeE3o5Cox8uwehE8foc1iBmtyWvCf2tlqiGb/ygtOS97SxDE76rG6Trr3D/QoM7+wK9fOSywBF18aq3SdtewXLU6icCNDmPrcZHViaZ7iNU9iW2axPBnDq7zATKLo2hmpx24ABA2ysRY68k3GjNmb76yCWombZM3Gjrc/BwUsZNbhWjwU1NaBJdtQo1ijqdb0AXMDmO3SXvEfa2QCkeZ43yQIx8620dewtdHvXTW+kX+4lG4e5eU/43TFT7l1wZ3/bOm4Q69wj2mm/ta9eLH/79KKO3bh8Zhs/lj4O9G5UaNd5t+7xV5Z+n8HuVw0sj8OCf+uPf4ZKDkvtXVECHAC8Y2yegHtyEpZ45Z4sx61nyc7vPZnNvbSXprB1A3hR9wupgd31pTp4h85bYP7+FGmFe5IEtg23pAduHfvUZ/4W8cy+PR9r+15kfS81sB+3W8caIc2Pb/f/Y2lPitLb1n/v+xNeuV6vC3jZH03t+jttfe3b5xwhmHkFYCNN0PLtrrv1XaE75xu2t18mPSe/2zd3d/5FPcRehs4BZXePSf/nbs+3/ffz3py8e3w/Jh+Zk4Ww/QrfexD0+P6Lbcs241LwMtl5Y499alr3q4bPmfev1fNJD/+nV7UNLnqljfcWHfuX9q1jt9pjV4ef+U6427Z7dX2sbZ+4iLJi9/ob4GfslkzER9vzsQdm367PmEv7bPYW3/x0fmwc9JG7s3DflHtrTvym6bU5tEu3Fut3+61l3+s7aYE2D93Nz4dJum9fpLgxeDd+3Gwjtct5rt083du5L+ROv1+W40w9u/t5L73y7N2dZx9p26uA4HOe9S9IXLdW8LF/tR37efhyXr469+6lT3onfTzP55T3G5X/u5T2C6jfs/RVA8vJr/hXH36Jx3DFSgG/Wh7gXcWbeMXkV/xs/gaDz3jOI97EC369nvA2XVDJ4dfLCYewYvQZP6wHfDc840OecAgr1hrwIY845wGDz/jD6QN+vRxxCCuiL7iUhOAI75YJlTx+PD3hUhK7pOaBYyznIwDg7XDFcx42ciPsMsuusH9xfgsAeEgzlhqxiPvgXCK+GS8YxPSgbZlCRqYuX/J+YavHNSf8weGpteEYF/zl8xs8DAsOccUP1wOOacEQCp7XocVYfjc941oSoq94Xgec0gIPajGWH9Zxw/B6SgvmEpvrZwoF5zXhmFbMOTaWWeeoudw+DjMumd1nnSMc4orzOuCYFryfJ5zSgqWGdvxhmDGXiHfXCd9OF7ybJ0wxYwwZ7+YJ8xrx3emMa44YQmkyKepOqm6h3gGnYUHwleM/xYXyaR4xRHZPfBgWJF/wZ7/+FgDw07cfsJaAyxoxRO6LurwqE/DzPHD/hLlV63aOcJ4HHAZ2hXy+DuzGmTJKZdmVeY0YU27/EjlEGTMih+frgFI8jhO733pxn326joi+4jInnA4zavVYS2D3YHEzLQKST+OCJQfMa8Q0rPAOmHPA+XlCTBnHacZaQo+xFNdXoLP5Wlka72tjA1a3z5xDY2kdh4xljSjFYZpWXM4jpsPCcZjkJMaS27gsoZE9pVRQK8eo6vc4yzWl8HimVDDPEdO04noZEFNpMaDaFkBkaKpDjLUxqF7OA0IsGE2MZcnswjtOa4thZW8H3rqO0iaVtnHgOE8lo0rDuiGmcg4o4vZ5+cCES8e3PcYyr6FJ4wDgONM5gqpDOnQmiFo9WzNjQZV4y3xNTKTzYUQ6Lv8/e+8Xcsu27Af9aozR3XPO71trr73PPuf+OTckuYhgIoIxmgdFJCCKBPRFEgJBRAn4B8Hgi6Loiw+KIEJQiSgakFyMj74o8Q/4IIKCGAkxRBBzL8Hcc87ee63vm3N29xijfKiq0dU9e35rrZ19PHcdzoC1vjm7x58aNUb3rBpV9SvEuCB1TueuWZlDZJQpSH8qceVJYiy7Q26eG0GfYQKQFZjGUtm01C0M8CUhvhLTXM0Bqc+YLx3iUCSVTCf8tzUrOYjXR19QrkmAjeaAMAhAE6kXRFALfxmjxHIesoxLEPAignh+xAoukmKmzgGYgrijMgm4yyWJ9WQQ4B4aShOkDYDIUtngm05iOXv1HJmCuM09ZAHXAZqZlJ4j8CqDpwCaCPyYQe+SxHeSTvYqbUi9RbjnxYsDkLGnIHMxIA8DPfFeJwGgKSyxlk7W476qy6vUt9hM3ycCEK7iqsoBEtt5JdQDhC7zRKkARQKNhHqqSG+jIL52zjrDaOAm3Gk/PSOMYXUPJO6rYSLEkTRm0lxhoXGbQqu5wtZe+iMARV1hg1p981G8EJqlVxPd14GXVB1VXFythEkYVXuJBTW3SJD0ZRbl2kvcn8Va1h4SKxqBdCHMr769VBdG6RdYx/5RlThFS6kRRloAZvQ0sNFs7qNhceWNV+Vd4uaq6a3q1UB0TMcLQHomVMEjRI1LfKdHTW0WfwhNLd40yD4is5R20oe1s5jClsIkalwooVkAzaJsKWQsltBiJgGNbUxoVubaoQnWZpFtcZUuRtBbH5sFUfeKd+mkiiXNjXOfFYL0T1z6bd5FG7dVD+6za7HM2LdY6vPY5gOn+PLSt6fnJcvb6tCFlnk2fdC8r5wXVkvrs3WR9TR6/t5V5nkdz+ho9HT5PegtzzdjrjpfX9ueF773oMXz68WDlvfU+UX5qZdPGrzn8W/9Zf4D//6fwHnuMOeIocsNwCWXgEFj2zpVPjrN7WiAKJajMUaJkzKAEh+/lWvAqMiuBmZiqKcpSezbOHarvIjzLPkXmUU4TclivvTEjRQYRQVcQIRbE/6sn3HsmhXCwE94Yw010JUYK6ZRzglCrKhF4sgMfbYfBCBFXIWXVAvzHJvFijS/ohCpyJgqPBsdLf+iWVVraHwLobY0DKyKEhE3FNFA3JAsQxS4+OjivriIS7K5LMe0IMUacmnqiyBqjkncm7PjB6Gltmg5K+fQBFJmAhgLQApBBNdKGF6NgiJ77kCBV3UsFsusRKEXIbeq+yfXJSejoSICEpNmQC/yg0ZNWLY4NHHVlreo9R2Ikc2VmhVRVVH3YlcbqIwJtJbqQaRANJTVkCrqrO7akZEOM2qJKNco9Jr7q6VXABYUWIZzj6X2gqZuySdJUVMzzIboyKij5LCUNeTGn+b6nETpsFyWouXQIkibMB4V6EXRIm2MFYKo5VUEFh9KRhPgaVCwmpZXkJ0LuvFX6Frlp7SioC7NB9VAaciN7eigoyJSGjorrI2TRgK3HJo8ra+DaXHTZogyNCrS6mg+wLoOhvRq8+3q4vNrtBM0B6b2V137UwYrsiUCL2isxrdzWugyIJ05LPW84GbAOxqn1wSevKxnc9cHxP3eUF9NWrH+TEkzAbC578szREVzbLL2r/SICyw7AU++00l5V926BQZd44J2WbTtUAUMKDHQ6edjWVAsGYJ+aQIvCV3ebV7yc9ZlL+mYLSyBnVJqcYg2HxOGMrWYMTCWHJ600EqVhBY43qZlf1qIQWvTCRonP2Q05FEvhBoqc5a4SPmr/duaVxKFu9P9Mmsfwa2n7mNSl2iag8yPoPk60fqlMQARMh8LgQiQMRThsu0jmBKjfJ6XnKMGpGSxo3afO1GOa18FqEn3JvcV4ez9Rj6ucC/5TQFVGFzcK02Liz/b3mS0vc8aD2m5MC3/aTukqGiKHZPrG1jnR2VVZI8VwaHm2p4il0ey5QiFKPwSM4sWo2iANGHGai83Rau5euu6OEXHFBpz3w1KY+2WeFtTTqmIO70dDrTnCFieDY9qWhf9aKtokXdLVeXQDLV7ilU7RCmuvrXR+m0edxQzD2wErBUj0t/wXUcHx/9232IJ9jwyXONdBwB7/i3UyLpy3z19jUbe8G1b9pQy5fc9J4QV8NBLhTefd/j701YIjR9/+d/8Uz9zgJvXr3+N/+Af+ue/837/+7/wL//M5wZ84hbLIWb82uPXmGrEVFIDugGArH+9eysA4AGLwuOesG1uSl/KaT9fYnNjPV5XbqH3XGl9sRF8XshV3wDKMN2226EBEHfGeYg3tKOfFxoO0v6l3Jp77vdWvIutb+vTfey5tX5oaa7EJznhDsqb9uOC5c8NITkAACAASURBVH3U9/mD+nzf+Eu+RHGY7jr5BdjmhpRri3Lpr98rVt/n6gQAHO7TZutpBwZ7xZBQ79Ehuf1UOOiX+YTAqIH1sIBXNOzN654rLhxSPxHAg/ustMW0DXyxBgx0y97b7pl7rstbHm5/f+xwxLcmoCF+trHbdVdz7xfY/+APC30v8YZU2QgPc9uocnDgpRHH51hX19vE3DW2NDJ2MOJ4RKbvGI/izmKZgnlDKwNH9wwRVr8GdMwLD3r9m/iOpOM7tlyXEEvGzh5t10K5v8eA9Ro4QKbGK1NoIy/TM2XMuqgkdG8YwGblBFY5DXlY9i0POma/eRY9DxKDmZe+2gbBQjvpPtwI0SLgOmLdvFZr6dbPLB8t/tvoCdSUGwBNwZL5Cb081OWQYxP7Z9ZRey6ERiXIUiXwcr8d1jCWlBn2WWkmPShqljMV5snTwACBVICl5QDKKdYtHt4JxE3xZJk/K7pYS+vAYr1kwqKQWVz5GN4vCL9UTCm34pRDBLfssxvElBjHS/I8BMQyjXUTf9DVXlPudRIvninaB2/qt9gEEvRW+2v92lmJtbNDRm/Zs/7npf9GI9Biba2E0dE9L3Wjn6N//fl5bnz/id1y+bHLco029feK4Qp4urf1X7LmId/eW4/1wqba7ZM2f7Ue7fPYxmN9gYZbjfODxv/YrX+Pn9+5K+wH9vk3Vf8X5f+X8kkrloVDS+Uxl4gKkryUimowVfkVLqoseqVxUrdMU+yi3jehzbtTWkoLS7nhlbJSqblMSjtxecxq+TRlbCtE271JUzLEUFusJWvf5rrpYzC9wmqKF6CWQxW+mpKsyJoWixiC5S30ltBFYLU6Njdr5wV/QWzEEpuodczVcU8xMDRLr8RZXRvT92Xf7bO4JmreuEIwq+tenCYzVoKvTxrfaFILn1emShZtKcTS+NmUdK9ouLVoPwtOSWvrrOM0GrR9sy7u+XqwoFqCIXkxjT5arHstZ6bJyv5XwsgNqtDaWHrPUlo0l0cn8DUe8v73VhyYjykQzXLK0Nx4oeVlXBZChdtKzdLpgbC28VlbC2pzj3TruVo/VtrMckSQvIkGHKT8bZY7BbVaXfeLCiyCjwFKGC8I61Ntu26CYueUBUdTq+vzu23mvdprRehky+dnfAcasJjRzDYno8WPsZ0HlDemmFU/aSyWQuNNsyLe37er+dGiAK4UQavCKryaVRqujnPvMj4T00qRahadls/N3eNNnKHlBfX9M1r+vDa2rYtZXI2fDujL85V0P6wUQOXNyuIErFxO23VvdbB94+TM1VnInlWA1gL41nK0cl+ze0kVA5PUXb32fgpooGBN2Hd8MoC11TrBbeHtetqzgqX+ig87Am97JIw8R6tve4sSuSCNCr8t9YRZdfRvodVhwscWW0/jTdtuvF7nG9ROYLEkKv3s7t+4UdoXAGYN256BCWIrWp2XLFZC+yb/oaeTtmNjvX5bmuFeCUa7gdT4s5jte9MD9Lj9s537ah4vKBAvKi977/XNmDf1/b507fcsdzd9+PfdHbq2Z3MfpHxt6brpdEPzhs6bd90dul4c/4XywQrkh9b72LqNjlsAo9+x5b7t4JMvn7Ri+Vm64B/6/l9CAWGsHWaOKBwQ9a1WOKCCMFex5M0OhtMD/HhlrWCxdHrr39bymDkikbgtTlVSdxhIUABj5tDSTniLZOWgKTJEmZ2rpBtJqgznunbRWVlCN28L68PGA24toJbmxCy5/vMWMMiP4+ez5ZPQKQp8BWEqi6V0azHds95ur/mx/fXqjqg93Z7G1VhY978HPLRnSd5aq/esz3YfwA3YkaX78JZbWR/lORbX3MwBieouoJSNuwVF2u7FPf7eA3raFn/A4RXyqvNgvqXr3nh7z4f/TdsDd1rRsvm+95v3nt/oF/sHcDPP1u/OtXvlJQArG8P3+9I9OSRaW/+3ngAvzWNvXi/Nxe69b673Dq78vRfpw8tyz719+SFAXS8BfS11lkMGO4iSNsv3rcX3fl+3NG3BkvbAwvbmeuvBse5n38vDf9lqU04q3UrgO+O/j66tHGzyv5fl27pamx2NZUXy6ssNGZtOb8vuutzdWPbe+/D1edFK/qFlexC0/dzqbT6/74Xm1/jO+t70d7evnfttcT/s3bfb54fc24xrBz4rEKmX6L733Z7hDYtebLvDI/qQPbrDo7vK6IeUD6z3wSvzHStpd8WGj5jz3gHBbduP33sfrLg2t5Bvub9/Ub6T8kkrlj+eHvDnf/MP4JvLAZUJhy6jMjDOHeY54jAIiEoXSwMyOV97EEly+3FOLUZwGpPkadO4t77PAvBSA949H9D3GTkHcA0I6sLWdeJSeLn04kpJQEoF49g1V81pSg1sZBVjmSW+83iawAzMU0KIS3L3FCsu166BfqRUWhv/A5o0R1/XFVwukhk5at2HhyumOWGeEg7HCeO1E0VI8w4yE8ZLh6DugiFUlKyxkWopSl1Z4u5IQEFCkvx9YBL+6XghlhaDySzWtxAl0XxIVeIqK61iKWNfUBTgo84+Pq8iDRn52iENGSUH1BzQHTJiqhife4nXszgmhrgMqoXKXCPLFMXipWlfmCX/ncVm1lFyJ5y+J3lMz98cJcayd3WmuDptjYOse9E4SC7U8uZJ37JAaZD9Y/OpOSD2FWWMCF2R+EfASXSMNBSkrmA8d3KrEpADwiGDS0AaBEiluUeWIDwI3EBS+BqBpHPQ+DBKjMPjiGnsUC4RlFh4wjKGxZG22EelyebVoPp7oZtiRUgSJ8tTAPVV1vAaEY+ljSHW1tAsP6EvqGNscZPN0mc//hZDpXuSp7CAtByLtKkk/fVV2jKAXp4/dm554UFyEmLUoKfIbd7VYgjNMmUWQaOJAeqrCKBjXOIQJzVJWDwbk8Q3zgHxlQAC5W/6RTroqrbR74ERjhkgoD6n1fUWY2lK0bGAnxPC4yz0mnsggPAwo2aNu8wkPLq417m5b17DYkEtS/v0ekJ+2y+xeZ26SQZGPGaUt+rvnCpojAKAM4WlnrnJscYUWizcUMV10njV1SUm1ixgfQUlln1qFlWzmjorIWWNz0sVuLpnUF1U6RrFpdXiHImbi6LFIsY3E8o5LS6gXZW99dStYyEB0EMG3nUSj3gowLsOeDWDn5MIxAzhg9EJyBxtXYiXfQksY/ZV1sEs1AyJseur1D+Wdh2AzCc7S2zveOjjTwczE8lYdMyyBzappqC5POk5Ap/N8jxafKRZZDVmknJoPIXO1eLBUUniTocqwEvPneyPxIDFLZvVXOMtaQrNpdjAiqB5R+k5iWst8eo5pGuUtVFrP1kMIaO5+IYxoJ6KxDDqP+6q9r3sDbpE8EH3pAE6nTLobYdvW3ioCJqDiDt2gEpKeyepsAywqeUJBcDHInzUGFCw7FUUkr3FugZBX8DeKuwt27oX+DGDLrG9R/lQxErvU2ppjK/RbnGylEn60LjhMIYlBo8g7sYtFlSfqd49rwZCNZPEseq8wFjiX1n6QSbELDksw3WZR0tLY7ywfQloaiBqc7BTD8po6apkM7iUW0ans+KCqQHbNKsjYQE42sRYeh7AdVMtZrZtBLuJ1gfbK9afMbgYyxsr8fawgVx/Rr6zjq/W38VIN4+ETa7NpugF443rb3vI4ft0XiNbC72nwceWeuVv7/zrrrn3jgJ/c0azWQ+7tj3nMp59uDL6symfhFX1W5ZPGrznl37fF/zH//N/EAUBuUZcivxYDDEjgPFcRDgSi2VFrrFZBq+lE0sUGJnF+japZTOAcS0JmSMCGKc04VrSjTXLUpwc4oypyGfpK7d73jrlrWApVCQqOKsLpgEFARClDIRIFUnjIa2tJX+3fkoNKxdgUitoFwqepgFdLOhDwSV3GJLwZSypWSQOaV4sugpw5GktNaysF2ad89fmKtbZrfXMgyYVRS3tlP65BnQ6Z2uTQl31lWtofImKTDqViFJDQ3X11jNzR7Zk9IC4MW9TwBQ3ZhcLCLhBep1LQAySyqWLdWXRW9yXVQFwhwalEmJgVAayWnLtfggVucTWj79uVqViyrryKZAklp8UhdcOSmxP+D1pT7Lxz+oCaIiuIVQknY+MCXjQKHNR9pauFRhSCSt3aADN1dkDOdk1bzlixg3Yk7+3AonStbQctUsbbn0aYq19tj6M3nmOCIGbezcARaoFUlrWYO2mrcIYo6GzxrjM1+bu3cbtc86CgpF0D3nXbivMhKL7x9yu5YYqN2FxD61FkGc9Aq3dKzk2t2BSGuywSMZVa7mLp/ZpZYoe6lhdrlhcqPXgB5BDh+aOHuTQwQ5vGumq9FAA2ASsuhxOtT1gGCMqcJpLdpsE0L63w60i7tPBrRcXOwSpDc22PYOmoCroCY9yyGK8MvAn6svibm18NaAoVQSoqwKwZHGFxIuyyFgOQkwQZBW2TYE36chci015JKzrecAoo90OGuDuE6+EXX9QIIyFi53khRemXCZV9FQh8K6OzYU4oLkXN0XGlAinbBjIjykZBp7TXDEdem1zEXcALU2Z8G6+1k9yOZErLe7GnleRFzAgm2ZdBPimIKj7r9CGlgu4Dt9e7pE8lgvPyfYCL+A2TDpPsxCroGt5ej1qK+teWYHzQPoke0RM4dDr1qchtxqvvastHNsajxzqKYJuAZ1DVeRfG5Pc/jC6KGNRoHTeHml0yZe5VixYlUhDzG20Ka9CWeefbXzTj2QHKzrPxj9e+NR4iWVcKzeG4O3y21zd30UhWvPzpbKr8Hjl8c5Y9zvE2q14r/3e9W2xe3b/zpgfagneKn4fZO38QB5+G35/TPmL/97vAPCeV7/Gf/cf/Oe+837/u//hX/mZzw34xC2WiSo+786YOWKuEcc4NQUFAFIQAdzcVsea0KmiN4SCQLW5owaqeHB9DzFhVrfUY5wxaNoP73Z6YFFuhphbXKcJ+z0XBPDatdO9Beye3fcKpBcEt+5o2+/ZlGbnmmsKdCBGChUBkk7CPptiAohSnPXXoAtlmQes/7USaUqMv+aVNq8UA0AfSlMwgUUJ66LUMddlExoHp3BZypPMoSn8ptgOKTfFcwvQxI6+bdypp9cDGR16QRg4JFnnGGJzZbZ2vg05Xnhl2tyTGcAcuCnE9q4saVF0jTZ7h5oyyCwpSIwnMg9W5T+gi+s5kVOq/Zzss9UlyMFA0vbZBHTtX5SONXiRuW02xTIu62MKusXMAmrJDQEplqbcrBRTnXcJoSnYplgb/UJv1XWoiFo3x8W93Obc1pS1L/fMmJLp94gpXzHU1e/X1k0SgCJEr5VufwiwKLgWvywKigFA7bleMi9xylHRmU1ptTjipjwGRkri7eDr2txMYTWU6ZSWPeNTyViKkhAWxRIQ1GJRLOvKE4Ljghxtc7PUMjWsFWWbfxtLlXEwrTwdjGapp89ncEFLW4lM/3IIqz1Coba0C4HEQ8H2l+1zYJG3CkSB9YolMzUvjTY2E2oUJGU2r4rEqMQN3RjAGjRHFckVkjIBiBvlti6o0e06tJ4pyk5SawjPOgbHhc6Vu6dXSE3pctazpsiqEktpQa1saKP6AHCT4CFAOIHBtKbLrP5MSlObE8uBQgAajJK1C/oCwUJTUxQ9QBAgm1sVSVaFnSsvilZrA42dhijD1kUloYMhaLNFldRAQpvOtwagbgGZPqJQVEVV+dvO5plX4yC7/WLbw4Ev+ZhKELd7N4cFtLnuFIpKG8XSUmJ4xdLYTE6x9BZNU3DdPid283AHFBQWZbgpaO691BT9sOgFTbFV3u9Z1IqzSC4vuYWtYF6PFzbX3qfAbPixmoTb3yuU1W2fFft9+2r+9dD+w3rt7tG4d39Tb1dxte97VtB7/b6n7CqYvt9Nf3cV0nvlQ+q9b013yrdRNH9RvvvySSuWQ5jxe4ffxtflhJkjDjSjIGCsHc61xy91E661Q6SKmSOGMONcBlQQTmEShZQjOip4Vw44hQmjWhqHkNGRxBB+NUsOy20M5ilOKBzwVAapy4QhZDyVAceoaUQ2KLM23lgTKge8Pl4wc1SltzTBOKLiqQw6VsAQZswcV3GGwKI8S58dKgiJCioHHKPMZ6wJr9MVb/OhXbfynAekUJBrbHknpY/aYj993OZUExJVBP1V9O2ElkURHWtERxWX0mE4LAiUhQkdVYw1YQhZ5q75QY9xxqV0SFTxkEZ8NZ3wKo2SJxQkuUSp4l0eGo1ewTO6TAF5NlAeJ3iasgoIiFPlgF9/9QwA+GY+iEJOtSm019w1HgWqOOghg4FDeRoOMbfrpzQh19is3ZUJfSyr/oB1vOghzc1ibmufOcgBQI3oYxZrOxgpFEx1sT7LYUVt1vg+SF1AFPzHbsS1JDzNA/pY2pgV68MMsxZvLfTWj/HFyqR5RBNVXEvCIWZci+QNDcQtNysRo4+l5Tu1McaSmmU/Ul2NO7v9dUySK9XotTaVCV0wy+yy/4Yohw9LHHNtXgCXLHwxRTfZfnbxx1sQMO9VYPSZVXguEa+HKyoTnqZhZRG3nK/WbogZRIzz3N8cWvi9dExzyy17yd0KIfmhm1o+W1OUrzm1399eraFTiatYb2t/7GZc5g65BhxSXh1OHNOMp7lXvlZMJUq+WPUymN0hBoBVDlRfz/YFY+1F4L0P/CGI8cEODMwzweraupgVfsqppY0yoDXrz+exHUts4GvW9jqn5nHgQdpGvd6njMvUtZyzNt9OUY/tQCfr2P7wIOnhRVGBPMWKOcfVoUTVw6NcJE2W52ep8vyZ54GAw63jZK19+17DCjTOt2fdu1NOmmP3NubW+G7PiR3aAXAHRwKSF0Jte94O2PyYhakdypglHUDzOLCDmpzjykPAPlvKL/MQaOmoNnXsIEW8JaTudqy19wSat8Jk6Zy+RYmRW8iIhcU0b5gcBViuyj3Lj9s8IqK411taLlNq2kEL5F7rk7ilGLuJdWaS8JMalu92iLY9sLGDDzsMMGWQ0TwJ2iGIHoQ2zwPb2w4MbhX33MDwqCmhrDwA0A5e7ICFffoldwhlYywmTtwqFzaXPYVb57CvsG2UyNU93CqOd5TThnCMnftGy55S6y3zvu0LytqK7r15bOezc/1GEX1J6fTf36PY3m37Utnj/Z3yXgVxj2+fVNmeXPx8lU9asXybj/ivf/L7m/Cd3Q+jCMeL4A5gZeHaCojeldLamODbhdKsl1sAG3/NBCQvHG0BUgwExn60t3RY75WpCYTA8hz5evbM37g96g+Rp2HKEZ3GeppVTCxV9YY+/1mEjYXn5h7qi7fkAIuQvFj41m1iEMRaE1g8Sqy3BHnhaA3qQysrlC9yuEk3Qu/q4M3RFvRH9K/k7wPASlgx68Dizrmg1ZrQ468LL7wla42Sa26Hfr7bYkJSjOt2JmzZPW/lWs3f0VXK0k+thFpEmDHLVUPQpcUScgOCUZf7vr4XfprgwGpRsv3g56g/ds1V0yk5W1Aav14rq/CGZ6vfFidINflD17AJSoDSgBskWm8JXOYuA+zxxt+zz7+pFqSG2rslUr+v0IJfKIauy0Xj1fzcvZXL/norlLeOeZdIa5+DxBpioacVs7C5Oa9cWzd0s+/fYgDZjd0WeiPkendMx5+VUONdTO/NjXhpsxHEfqRxo8um0Dp7brhm8fNjOovrauxt2xVDNve2SJheIPJCJ9x9J9C1+NHNeA211Y1jljTLdWlWPUOgPVs8854wbtdNwLZ96uVXXQeLvSPPDzcv9ttzK1Q718r1i9ld90K+r+d4WHxOQgCV5Z3HJESbG2015GDdG8XceL9l4bJYXYvuORPa2XAE3HvBl+p44a185Oe2KVv9aSVPVyBs3JrDZv/4tWkIxVtnAV0z3/lq/fza3VGEyPoAVm7A7TeDsM75as8rljHu6VG2R9te3NB51zLombh53vzrs421N7/3lA9Sgj6gj+3cG03b9nv9+ed2+071bfy+2KHhpryn7i5972l7U+db8PvFcX9R7hYi+k8A/BEAf4OZ//af1jiftGKZOeCce3w1njCXiMd+RKkBz3OPy5zw5njFmBOGlHGeO7zuR/z28yOIGJ8drjjPXTtlf3cdcBomXKYOMTAe+gmDWp9+65vP8HgYMeXYToYrA68Gcb398eWAQU+yh5TxzeWA18crChOergOGLi8KoZ40P18OmEvEFw8CGvOs41rM36mb8fXlgKwn9UOXkUuQU2L3RNm4x27GN5cDWK9d54QfvHrCu3HAderw+jDieezFQtHldtr9zfOxKVNyqi3WJYtpG7rc5gsAz9ceKdbmqjmXiGM/4zJ1LZbSlMBxTkix4vnSoetKsyacrxHHYcbzZcBxmHEZe4TAmKaIvi+YRgEyenUa8e484HQQoKWcIx6OI05dxlfvTui6oqfeiyttjGLxikrfZexQKyGl2lz2hj5jzsLH69ijVsIPvvcWgRh/4yevEVNZ1ZnGrilTRIzjcQJDgJkAicWz9CfDMGOaEkJgnA4jcomYNLYx54i+z5imhL7PGK8CwmMKHxFwOkzoUsG7syS7rJVQSsThMKOUgMfTiKfzgBBYAJ1KaOOb2+Z47RBTQd8XjFexzMVU8IMv3uLpOuB8HhBTQdfJ6XmtAUVPkUOsqCW0E3SL+auq2BrAVdfnZgkwsKoYK66XHg+nEefzgNSV1rYWAXfq+4xJ689TAoWKMscW39fAq5LQlueEfpgxXjscjhPmKbWYwJhqs2Ykcz+t1K6dHkZMU8I8JlGAIyN1GSlVXK+dxhMGxFQb/0qO7ZerVyv7dBWQHQOpAoDYKZhWIaEjBzx+dgEBeKcAUML3ijympvxQYBweJsRYcX4emsIegii/dQ4t9vDwOOLybsDDZ1dcnvumYALA8dVV40UlZrPrZwF8UsEhHWYQAdO5Qxwk8Er6ln365ssnvH17bIBSqcvyLOn+fnp3EPCuviJfE7rThHzt0B1n5Ck2gZAZCH0R69AUkU6yT2MqyNcO8SjxplyhYFhAPGbEVDBdOwQ7JNE0QgbIRVFAs+JJ9tV8TfKs5IDuJN4g8zWhO83IY2rWEEqlgVFRYDx++Q6X84CioEzdkBEC4/puQNAcr3UWuo5fXHH++ohwLBgOMy5vDzi8umJ87pura/dKvD1IFf15TCvF3wC2qvE7MFJfMF86hK6CKxrgVhgKOAd0x3l1aFPmKABZ+uylQ25WqWoxeoWQDhnQAxcusl9tr/IUQfpMwEC/nnocfnBGKQF5ig2oi4K8N0oJqHNAGgRQLQ0ZROLaPc8CgjZfOsRDxuEw4/LcI6Yq/6I8UykVVO0fUQB94jGDAZRRxky99Ds99whdAQVZA9lHVcboq1zrKooCkFlsLADp9yGjZmrgYNQXpF5+P+drknmcE9Ipo4xR+syEw8OEy9eHFySLl0s4FAHTYggQlR5chMgoz0lAv7Kur8Z0W2xuPGVRdHNA6HSvKv3hmAGGgLrpYV4DqAMWsDNTDgohPc7IV32/KMhbneMKvIciS1tAQL4MPE1Bg0jdgrkBUemPfccSH2speHIABgEfav1HFqCmTjVVBVqiYxbLJENcsDNJvaECo2mfWLSEvi5jOECvFodqQFQk86aZJGUQoDHD2g9jnYLIlN6s9RXEp93Dck0AgVwKI6+cVWqgTLvWQFOMlQ5RsrVChACsNaVYU/bcUQJXhzF2sGKf4Q4GwjIuFaAaeE9cK+MrPui67Ro6N302WuyQgHb6q8tBzvsskk1s1TlvjeprJmz4Yt9/jpTJn5Fi/J8C+NMA/uxPc5BPGrzni7/t+/z3/0f/OL43nHEpHX50fUAgxhfDGcc44689v2mud6/6K350ecSb4QIA+Mn1hCFlDDHj7XjAD07v8KPLIx77EbkGvJsGPF0HHPsZv/zwDr99ecAhZXShYCwJfSj46npEqYRfefUOb0f5obrmhC9Pz/jJ5YRSA94cL02BJZK8mWNOTXH96+9eIRLj0M+ihGRx25umhM8eL80KeR57DF1Gr/GRgcTl6DJJ39Oc8NmDzM1cuL765gHDYcZpmPDN07EpLc/XvrkqffHquSnTl6nDaZgQVcHsYhVlVJU3ADj0M+YSGxBMjLUpFjnHFWjL0GVRak9XnKeujdmn3FB6n84HnA4TphxxGmY8XQZ89nDBeepwPg949XDF83lAP2R0seDp+YBaCI+vBPHWg8WUEpqLklmwDscJBuRiSss4iqJbK+F0mJBixY/++mcAA69+8CTKyCQowVwJgyp1Fq92PQvQT1IhJyVRcE3QjAo0kp87UFcR+9JcwvIU0R0y5jGhG/Iqp2atAeWpAyohPMxNEUmpYHzuBZ3xnBBfzeBKqJOgywY7lVe3q/40Ic8J5RqRjuLmmKcIvO3Ah4r0MAtarlk8gsSWASL8h1RF2CvUhPwG5jNGAT7JoSUKD8cs6LOFEE4Z9V0HeswiqACAxa6VoOiuWf4OItzEQ2mn+3VUacGQOg8FfE6CgvrcNUGOUhV0WU08z2OEIZySCSHvOnBfEY7CZ56DALTMBH4o8gNvQpeCujQBh7CguapihiksiJ+GeEoQxMm+InzVidHuy0n4QwDGIOiujCaQ0SWCKlAfyzKWCRpdbXMP54j62YzwVSd1TcADEL9JqB03IIswBdSH0n6ASROn80MRpEpiERS17+6riPlNEZTUS1yhVKbngPlzjbWdCHwqCE9JkB5HRfl0x8akAqmgZQZwxwgjoZwqwlWRQAMkbg5AuAjqaT1VGTewxMSRopkaqmbHCJeAMBPKQ20ANOGsStapIpwD6qE2qxZNsie5Y6AAw08i8pFRDhLTFq8CEDO/ri2Je+1EmEpPhPmNXE9nwvQZo3tLyA+sQiOQntU6pSwovYxluR25Y8SLrGVNQlMcCfnECAp8UqMIyvEq+RTTWYVnfRxrz6jWJ4RmQ8WsUQXA6Nopb9Oz0lplTkETunOSPuZHxvATQdOsPTf0TGKAZqD2QO0YhSoKKAAAIABJREFU6UwoAyNdRFAPWedCQH6Q+cUrkE9yj4r8LYOCswThCxWgDsoPSP9UgDjKPPMDEKaFxjDL3MoAiRWM1gea1TdoFEc5yHw5SD2Oci+Oui6DfM8nIJ31uwLddM/A+AbfuqSL9MsExAkNuIaK8kTHiVc0kB/LIpbOcq92QitHtDmks/RZu0UxILXK2j5tFjrImvRvGfkoe7Imoa12WFBSda9ykr7TVdbGaOQgc4DyzJBFAalTdV1sP8cRqxhOqjYXib2tndxLF0bV2OCQGbWTe/HKKAd9t5dFiQmT7u9EID3F5rjEO1KR55eq8LL2JOiwzNKPWa/j2pplllm258YBDa2spFXn6vZd8xhgNKAkjZS6CT22z2GTp9Tm2dpZXO3G4cQXj8JqtK3G81bn4OjLwvNQZC32FDN7f6ysvH7sbR7IOwrdynLMt3NobVeN1vfu6aJ7fLmxJm/H+Ail83/+jX/pZw5w8/rVD/nv+Tv/2e+83//2f/xX3zs3Ivo9AP6rX1gs75REFd8bzug07uuLQax/gSrGGvG6v7ZYs0CMN8OlxSS+OVxajNmbw0ViJrtJ6seCV/2IUze3fI6fafxUIMYxyYn554dLc7M9dZNYrBSt9KGXviJVnLq50Vy1jln1vjhdGkBLiQUPvbp7HpdYInHHra2eWT67WJY4msMoOS1JwEq6WBA/V+sdMcKrc4ttiqfFwkcAjv0MwoKgSgAOXQYBeDyMKytkDFVifjQuKBBjSKXFC0XnohqIkdT99tTPzdVYAFnEDff1w1VinxTU5nQQqWNIBfHhii4VPGqdQMDjg6zD4KyunNS1NRG4p8ZnBhoPOxePlNSqCSzALA/fOzeglzjMYoEjH7upoDARSK9Lc6P1fQJoYCsAUPq8AjohYvSDKHoplRsQFADIamWIGosjNDLCK+FLHXJTkOuwRnAFIJZnSyczLCimMVWUviBEcYVtFj778dy8sBdU2IUGZmpzEiuUvP1jZBRFLSViVLUAVl2LJY6KwEMWRbovTaH2oDIc17+iFJb+ONX2a0ME1MASpwQAXWmuuFZqYnXV1RP5Tp94XuKZQAx06xjTRosJQDomDy7eSA0e5K7X7yt6cKoC4Q+Ae2rWSOjY9VB0TZb19+tg7qd1KIiJUb83IcQ1cIsHHwnEGtPFy2nwoEpBZFHUlJcS2kGYe0m7QUHuN/AWAPODoKMCAI66Poaserh1hW3pP4hRe7HSlQcZj48L8nBzER9EmqPAzRPC5CDmsuGBekt4V8aDzA2RUQZSIBe5z0e4hQGugyr/US3Cj9QOIMoRrU8GMJ1EcS0HQnklbaYhLKlFiDHrnlhJlbYuWq08rCXOrJ+L8Vj/1pPUy6/W7FxZcgDk15t7Wlo7vTZ/5iw13p0UQFa30MtBGX1HQOPAyK+lzmxbzLsbB2B+7a4Ba3RTI92tF72m1jeYFuE6rpFRV0K3c+tr7pVOGOYAzI+2LvqvLn34ttOb5TsIuHqk2W9RprpPU0Ow9d+Nz7qe05udOdr8Tdl1a0PWnd9jbi7TZ1gBSm2rbb+Me4qCF879Pa9YOaWm1fXtqjZorrBo7tvSnpuyxYFXfTcGbAdzxYCSVi7bvLR70frDiwK2mu/2sxv+pu4HKi7W7qaPzTtiafD+fu/ObbXINij2tbV74930bfzc9PFtabxXPqb+3p59T/kZWQN/UbR80orlpXT4P7/+AR77EXONeDcK2M2xm3FMM350fhA0yRKbq+jjYURlwvPYo4sFXaw4Tx2+OF3w1fmI0yDWsyknjNcOIVZ8+foZb6+DKB1B4hVjqLiMPZiBz1+dJV0FgOvY4bPHS3NlPB1GjHO3xCqxWKb6LqNPBV+/PYFCRVK3vlpCc4kbTnPLgTmOCSnV5rZqZRwTuAaUOeDwMDXXza7PuLwbmpvbdO6RDjNiZExjElexWHF8mFpahnkSt0MibtbHaexQyyJM9kNGniOKupqZC5zlfbScZ6RACiUHDEdxDzW3q5gK8hSbi1g6zKglInViyesPMkY+J3QPM+ZrQuwld+Z87oBMSK9mlDm0XIohcnO3A1PLB5hO4oZVcxDBG0C5iisQKjWejP/vCWAgfm9EmYO6kolyF4eyikOz/IPmQkSpqoVKc7lp33SJYqWxfHWpAmMUK9w1NksYGdABE+gc1Zpjx8YsrlVnzU93DWJtqyQWw8hLTkWLiToUcCbJP3jUfmZCfJuQD1XaT6FZRNhcmgAs+clY3JJMqNcXO01hsdDo+HNf1WoFsVo9R8wPmk+NIdYjjVczixdNLieaWdIii/UPWGD5+wq6RuRjQXiOYp1SRaHlxVNLl1m0TGiM7yLKUMXCxpIiAYUQJsL8UJpCQmp9JYbMReOAgrpslUMVmWkKKMPymTsWdMdJrGzdNxFgYP6iNMtimAKytjeXrHgNoArkh7oIWGo9qmatI7Ucvi7ovonIj4KGaoJ4ehfa6TwnRhzVqqc/wlEtluWhIlw15kvXjQAMXwdMbyo4SV65kElOsxlqratyCj4R6rEiPgWUo1jZas+rPHFhEpe12jPSlVATi5VxYMRJrUqBxXrDQBrF2lCOvKxzFPesOFNLN1E7lrozUA5oqSii5sErB7GGlQEt9i8o76yP/iuxFtZe5havoljOr1gsMUBD1eyeCdNrRpyAeCbMrxndO7EC2ul8OouAa5agOnBzQaOqNF9ILU+CWinWW+EJ21yDWDJrJ5a3ZjnhxXLYrNNXagJ7TYviZpZAsyali/AJLBbJoDkFOQFhBLKzWJpF0RScoFaV2mk/vVoWWa1bSermo1i94hWYH+SeWS3LQeuGxTpZeqlvFjGxGgvZWduDZQ2axfLgrGVZ+rB52pqVXiyPNWFleTNraBnk8/wg9bzFMj0zxs/XIHgfU9JZaJfnG80CFgqQT4QwOeuhWnrN+pbOAMLCX3k2lK4zgwO154QYoCzXgLUl0/Zt945RjrLONQHpyqiJmoVOLHNyDaQWw4EQJ7UoBiDMrHuGZH/ZfGY5rA0zK40klsmw7BuqQOmkP1kXfT9duaUeoSy0146QLoxsB3Z1QcYNM7d9TIWxtT6KdRKLxdJZ5G3/Mi38bBZf+1nzbqJ7FkuWfpvF0h9SQOqEzAtC80ZZbJZ/o50Wy2twFstmqQvWbqlnxevWHMQCubq/sVja+ME9z8uBhmtD6/n7sW7+uoMdb5VcDhhEoF1Zxrdl6w25AjDglRK+N/+Pslh+aoXX++s7LF8S0f/ivv8ZZv4zP5WRXiiftGLZhYJfe/wab+cDAhi/+vgNpprwPPd4Ox7w5ekZY0nohiuuucOvvH4ruR1Dxa++fotr7sS6+DjhPHf4/HTBNSccuow3xyu6zwS05+31gDfHK+YaUGrAaRB/nEd1G30aBzzotc9PF7wbe3z/9RMqk7jhHq+NZkNwnHJCLgE//PJrVCZcFSmToBbKWPBuHBrozaPG62WNx7O+Hl6LpW2IBe/GHsyE16crxjnhV37XW5znDtepw5evn3GZJT7ts4dLs0g9jz0ejmKVfHW64qoIiH0S1M7PXj838J1AwJgjjsPUEBWnHHF8M7d4SkMlFMAgmdM4J5xOI5KmCik1NPfXhy9GjRudMc+pubgOhxlvXp9xmTo8PlwF+bEEPH7/ij4VvLsMiKcFBMdQAX2KEUDiPGsNiIe5Ad4Mj5cWqzpNCSUH/ODXfwwiltjNPmN4k1udrHF1djjQP8p6znq9VkI4aBqVzy4N7XD4wYxaA8Y5NYTC7nOJsew+k7glQ04kEiV9+J7EtJ7Hrrn0lkLoH0fUKpbay9hJrJq6/y7pLjTua0oIp7pCP0yp4uGHE65zkkOK1xU+vYXN0fo0F11z/zXrpMW1xlib2/M8JXS9WLDnOWL4QcY4pl3goK4rmKek8ZEqMCmfGYsF2drmOaL73kXiUr+4IM+x8SW8UkREJs3zyC0+FACG78/IOS55I4NYPu3AhAGwoVYqL0oJ7ffUDnFaXKWLsTQAJosLLSWg/+VnAVp6GtoPYEwFPEmMJ0j2T1Je1Wl5/dr8W55IAOGXMujSIf3gjHIVF2mz+qVfnts6VZ1/0ZhdrgT6Ulx9MSbQ5yJVsAPUSL97xPQ0yEHC5wzEAhiQ2DADl17GSxWYIvBFabFUFjslDwWJJTmoS3EvcWWIFTxFVMsLyWiAQ7WTQ6I6pSXGUutUi/tT9MhWd17i7GCxkVME+oI6634lCBqlzpUI4F8fUaaEqvFprNbvcu6EbqDFftJhRjn3qKmC+4x87kG/W2JLW0qGYUnHQ6TooDoviwGtfV3iRgkIqbb4QpsDF0LWOLc6lGZJl+dB3bb1HRuMh7Y/SPftQZIF2lillwM7ChKf2sCZisQv1ksC//q0iv+057y5vs8BYRCexl6eixAqaolyKHqNoL5KrPWYQLGCotTJbj1b/1MEKc9sTlEP5MolgtRqLzGydUU7F+1jNq0aS97QKeB6KC3naHOD7+S9Vu1g8Crj82yxe4R4zCjvOnzr0ssBIQDps1mJWa4nPUjs63I4ZweTgzsUdHlAUWlxuTeAJesTkD48WBPLfqFjlsNM3VfoqxzOeck8uLZdlec46mEeY8nTmmkdn6hKQ/MWqLjNx0ruUJBpyVHa12XOQeqYezvNrr25fOqzQVnzlzJJ7CO7PvRwB0UPHq1t4IXWSjeWYECUyps8n6YwqdJFZYmxbHy3oocf5JU8Z2Vt1mmjwymeLb2LFdqCXq21pbZ09i/s3PduvQQ51I1YK4Rwf51yCNrXx5oeaYodNn2sKtNC392ypnutfNKN8riepCdo8/dvtvyX30Efv3PLj37Wbr7AJ65Yjjnhr379JcY5NVRUgzovJeDrdHR52EJLtg5YUvfQkDNLDg24xNz7TPnKc8RbtSp5JE6z4pkwCkCElhzxLipgxg6SZXNnLYTnSy/1WCwJvm8THNtYTGukOUYTVgIpLDujJSp/Og+oNaDmgKcksYnSl7YnbgIXEeOJsMTdEYBKOMe6erBZURabW10lPMXDAlPuUCC9gEhmBasLKieXgIuBdejYY+raGOc4gHPAOdUmjF1T34A9VnnynOukPwpj+/G0Fz6Aa+TFAqlCyW/rvqhXsQze1HHlqgJbi4tzNFwNeICAcxoWwUfrXfUHfdQf261L0SVpvkIDCdCX96w/3JekgoH9qBvCZvuxZBFmAi9jQJpc+77FRs6+vgkNTGtUTHN/UyEGUDrsh9cEjkKYQ9+snHMSgWp+of2se0GYvuxpY/Vs7lKVkIMoVZfYLfNloISuWXVKcIKi3j8nVcaKoGQWm3PglrSdWGmxJXY/zMUJS0yMErp1X7y0p0p4Pqslewytvzlws0DqlsQ1iumBHOx+cxszAYWBMXWgmXC5pCWGT/u5nFNbN2LCqAnjre0clZaZUCzPnWv/dE4tNrJGRmnJ7Rk5dnKPIW0zIXdiSS8GgLEQ3qyNKECOsiY5yPfqnjtb75pYls3f1z3C9o4IarVMLM0yNYGsJvnZoqyfCy3yt+7JoOt4uQjdNnaJsnZBLakAWt3cpXY9xw5hIuRLBE2KYMxATXEtL1VanbyHipZn0wA6amAEJwiDpZ4JgqVLK4GJCq0ErgbGgUVwFAuLO5goQO4WC3BU64XNr6aEOBHyNayE763rXigApyTnDBYfqO8I4sWinFVIB8l8q9Jt+y/qPVlDPYzRgw2zZCWLr7V3qIKKJAVRsWs2J7PM2Hw5yaFSs8CERUGxPgS9Nq7iSWtKSNP6nf4xhaPwyfjmaZMY07hYpZzHvbSNizJj1h5Y+7iui6Vvf315p0Lm1lyWl7FXArhTqDhofaWt0Um6nl4p28YBVkgMpvGbTCFze9RoCe7wyd6VtuezyRhOLjJe7LhYtzrWrDr+WXE82fOmvbHE+WLPQoVaECExitti7VdE2eBWh5br+plv2n343tuby2o+L/y9KXd481Kfy1zcZ5vCnTGWDvfrbGm4q1y+VPZoeomu34nlE8a3eV/5pBXLN/0F/9jv+t/x4/kBM0c8xhFjTbjUHpfS4bPugkvpWs7EY5zwLouL6oPmeMwckKjiOfcth2IgxhAyjnHGWBO+mo44pQmVA6YaW/68hzihgvDNdGh54/qQ8TQPeOxGVA5LPj/d7ZYj8loSpprwuruucg9afsKOKr6ZFRmUJf9hrgFTTa0vQPJYBmIc4oy30xEVhD5k5Brxur/gWjpcS4fX3RVP84DMAac0tbQnltNwKhGnNOHs8j5aXkbLDWnztzyPlpLlEOeW39LyAFr+QssZ2IXSUoTMNbYULpajMFLFWBKGmHHNHYaYcUwzvpkOeOgmjCUh14BjmtGHIjx3ORUtFjIqrTbWeZb5+NjPIeaWPmbMCQzg+0fJY/mjywO6WNCH0uZqeQi3Mbaj5pq09DG5Bhw7ATcCJO621ICxiMWq1NAQig8pt7yDhZfUMg+duDObNd1S4xw7iVG1HIMEtFxy9o61ONDzLAi9fSy4zF0DjXpzuOCSOzxPfcsxafug6NyMnoayS9y+A2h5CiNx4/E1J8mLSYyrAlM9Tz36KJYYS4dj8ctWP+uhy5QjAgGVgU7jR229cokYUsZlTjh2ueXELFXyBVpOvl4tlmIRF1qPneSxnMziqHG9KVRc5rRYPkNt484lIJDkEhw6QTQdZ1k/y0coaXrEii+5FgtyCXil8cFfXw4tPjfpGsGt0aGX/XOdunZ4ZcjGlmIHEKCsp+uAx8OI8yh5Je3g6WGYWtog48V1XvJYGlq0oTXbPrX0Oq8OI95d5eCpi2WVLujYz3h3HVZI0UOXV3kjl5jeJb7YH+5Z3kT7bml6ADRU6XHuVrkdzfprh3GWq9D6AsT6bbkk5xzRKe9bnkB/2EeMx+OIcU5t3Sxn5GXsVzkPSdflfJXr4hnQ49DPuE5d83bo1dps8em5hEavpRPyKYsAsXxPU9K46SXvoiFV931ehTfYwWizTjtEa/vLTOhcnHStAV2XMetezTmsPAaGVDCNHR5Pox6ortM7Ge1FEZ/nOWJw8d6GQDxPCSkJuvM4doLCrd4SHqHbDnBrDW29So4t7ANA4wkAVEUStnpRD3IpcENq5rqkUqqFELsC1meAKwRxNhXlr6Q8KnNE7MSzwd7hQ58xXr69xTKmijyLghgSL4oQgKwhF1XpadZ6PSSMGs9cCgmgmd2v1O5Vp4SQO+BcHfoCYn3tBaXbEInJ+nQKGmhp20JVVHFnxpJaSFFiW5yks2gb+BipRbrFz2rf7bqhO5vngutHrLR6MGrFDictNtUOLf1hJ7Accuq8Vyl8CIu2wlgrHcbHuk7BA8hhXovd1IOxVWwyub704GJ7qNb6N2Vpe1Jj67VRkneVNtftS6iwuxY8q7cxPGzLrmLdBr7Xt9M2NxP+KKXwp1VXiyf9kyg/A72SiP4cgH8A4jL7mwD+dWb+j7/zcT5lVNgf/v43/E/8uT8MAJhZ0FTHmjCErJ87vRfQUcXckp+HplBWpqbsjXWdTLxyWClV/rP81Ze1tjGlyhQsn8TdhDpr55PATyWh12Tuvvj69t0UgW3JHFcKZwWtEtebAmZgRNaH5dMEFsHTj+dzRfrk7Va2ibYBEbpmp4BH0h9MEALUhYxDo2Xb93be27yVJsD6+x7UaEuL0elBbvx9ZsJcxeq8zS+6VdpM2fMvMM8Tf71s9ofRbkrTqp2bi7lLV/1rCdUDMeYS0MX9HJ7Wj086763l5qZsSpwV72lTefled14NvKEXWNxCjZ82R8/zD12HhY7bnKr+2rZecW3J3ZP5uZNxiLAbQ21rVXfohNaz+W1ztG4FclOEDDxp77mwYkL9Xh7Tli/U6FQvCxPAt7R5mvxfU0A8MJLnsc9xakpT41Glln7F3L9LoZu+Wn1VCkOw1DkbgRTLQb71vwVaWm7eHr/frMvm/URYP+crPpUlJ6f1b0rISmhlkljtVJfPirbswYpWOT91A93sbatjkg6bsLw0bcK29rnkRxWXUC/YNa8Vq6Nrwl55AJqFz+qaK655Noj3iF1b6F+5tHnh1Lvr2XzM08DcIk3ZsTl690dPl10zfmy/bwVXX+7d20qRrFYuRgMGMst3c68EgIKGUPxtyjoXI90K9+3F4hvpX5+6YaP83eSbZbqxIt3QYsoQY3GN9OMZXbrON3ksnRJj361NG9vHIjp3+l1XUFOyd54T68vHQK7qvFDI6uytue9rO2/fwZ4yZrc3fCa/T12d3bLtdzP+S1v7xX53+tod9310rAbDwrN747yvj71uX+rvu+jnO+jbyl/6t//Uzx4V9vGH/If+jn/mO+/3L/xP/9rPfG7AJ26xfC49/o9vfhWX3K0sVwAwl7gSKE1INwuPWWIqU/sMoAnxMSzIoVNOiBofuCcMWvyhCeIi3KsCtXGf9QKg5LSsrQ+zXDSad4RHm4tXeLzAXVTQsjn6uqzjbxWdPSHRhJit8LwV3JpA6YQjuy7zWYRc337bp+VR831tBWazaNipv69r37e0bXm+pcNOX1Nn8XSh5ahrqKibOVvOynYmc/OLpPVs7jvCstHVaNU12grI7PvHWomlnftkbXd+/IPbd+aO7OtwRcsnacUrOtvv3j3b3KtbH/dOTjc/8HaSf3PCvPO8eGH85gdwOxZTy9noXZV9vkHpX/e659d2LR0PV0rASjBaFIJrHlofK5qN1Kgxj97ty/jqFeTg4g3NBbj1ofzxwqgfx/NjT1AIjNm7eG9P/zcu8U1pCJtxbGzjk1egthKxXd/su9W9reBnr8AtmAQBxV/bPHvte4slc8oMsBbi3foWyw9BC4rrS4cEgK4b3X6+665lLLJ7tLnNAXvPDK9443ht1zduxQQ0qwzb/lDLkClZzWrjafR83hZvzZmWz0zq2k1YW5qMTkD8nokbnVTCEs/nYDubQtj+btwqjYdeQXH7AkBLO0PV/aVlqHB9eU1fLAQEOxTYPgqb+L62JVfTdO+8e3wCVu90+ereDdafAzwLjMa3m+L4R5r2hjzfXJ9+nv7a4tVO6y3OolQGz5DtM6ButyAF3bHb7hm4UXi2n93+39J6TxlsU/HrsK2y6dMMptv221fMxyg2u2i6rt+79L6vbOf1HovlizTaHOvOXD+wv49Skvd+lz607c9BoU/YqPe+8kkrlq/SiL/3e38VT+WAWd0WzXK5tQjNHNXaF9VCWZA12COAV9ZMAAhUm8KZte+V9U6tnACapbMwNbfbToMwhK66Ul4jcXPF3LOCSkqU0KypRqNZ/LZWPrvv3VD9/LdWx+QsZmaZqxyQQkG2hFtaAq2tClvLqNVp9G9otDE9XVsaFxrU+qQWJbtnbqbWDlhb/oBFAdkWs4wabcL/xQJlPFuvF6/o3lrMtntha4Xc8nlPeTfL3rYY8FBx1uO9Ndsemmy/G69szxHEdbao26v/LdvT+3zxc92zHK7GU17szRnAzWHBXv/bsbf72fNwa0HzSkBs/Df6lnplI3xFtcZ5K625u2731upAwNFhh0S57B8I+Wvbfvbma3y0v74E4tUeiu4ZAd6v23gXZ3Pr9L/3W68Es0rfo33ParpdI2+9NKvqVkn3BxeLVfj2mv9shyV7vPWutv7+vbENSMsfVi3up1gdXlkdX8xS6/uVL05Sc4rsrgS33V9hCY71fN9eX/EaO2cLnnfYKXvS9Obe3jot1lYsh0qe/s2atO9O2fME+xR62zkv/erBC7vDP2J4y++9oLG9dfuo4g9xtt1sXQ23e2BjuW7Xrd89LWOjVK2u+xjme/U+ZIwPKXuK3s64xLRKKWLXdvvZ62tbb/uu4Z02bfwd/m7bbsudce62udfHPYVuq0zeJ+/947xUl/DyHsB7FL979z6Wn6u275/tByvR76HlF+V3TvmpKpZE9C8C+Kch2+EvAvgnAfwKgN8A8D0A/yuAP8HMExENAP4sgL8LwI8B/FFm/r9f6n+qEb81fo7nPDQFwQRpUwazKhbZKW5eMM6q+JliBCzKkV33Cpv1Yd9zDWsFbyP431OqvEC4FRr9D7FXLLeKo6fJj2Wf91wJXxKShR/hRjna9u3Llg6LF/SuoXsujG2urs49y+KeYOIF7nt9Y9Ov9eFdRU2R6Cyty5xW1mZr42nZWqe3tN4KsfuKpVesvDIB3Fcs/X5pa4p9WcZ4a+MZKq9fMy+87fF56/q65zL6Eg+WOrcKhQnxe0qB5d/0Y5kwu+eWapZ+r0RslQprY26r3tVzO991/1iNv57XMgeLNSsbxdLm63OC3hNufVoiU2piZEHQdcJxCDu0rSyWTolRYdLPzYDKGPrseoGTGOxcm7fKPeuea0MZ7biVbVYyjuvfFJ0bZWuHF95S7NfL8+reQ3Bj7XWKx81+d9bllbXY8d6UmZVy5BlhVl1TdoB9K6+fo7nq2p+thZvieq7Kr62Lrnc9vlFkVRlaxcjdEOPm4flpe8PzmbCvRLWXDrVrbSi/1MRLPN+9fvf6c3Pinb2zd+1mmnR/PT6obOfuad2h3StVpnCZFdlbi1futbuE73z/YMXSaKVbvhIve3c71fVr4b4la7PGZOPs1NtLs7Ba3sbLFxS9j1SCtlt6t817FKibub+k5Nz7Ud70+VFl7+DnPYrb+xW/b3nvfX1/yL17e/XbjvmplV9YLD++ENEPAfwLAH4fM1+I6L8A8McA/CMA/l1m/g0i+g8B/FMA/gP9+xUz/y1E9McA/FsA/uhLY1xrh7/8zS9hrnEVf7eyJm0ULC8IbpWlfQvC/Xvvb7sI8HuK2fZ9TFjivfzn9429R8NWGN5TBu4J0ts+txaCbfsPfT62tGz7M2F6r88boX7vF+4D+LSnQK3u43ZN7PPNWNtfG3/tRRpeEIj3CNkl4KX+FxfMey7Au/vqnmDpBZBV/T0pAx+4DjrUjrL2csOP5/fL/eFl/n+MALNX3wQkz6etpLb9vCnzHRI+mNZt3Q29Zbfems9EUX6AAAAgAElEQVRF6St7dH7gPL5V+Zi5bdvh5batih2e7NzjTV/m6np3z34kveTbNHp26pliuzvm4oHwEufb6+rOGEt/eP8c7tTZPpp323pifV9713b7WM90d6x7/f60ys6zhc2lLWkf28du/ffM7a5C2NrYs/sCLXeuvdg3cHvzQ9bt3vju+/25vKfc2a+r+x/z/H4H67PX54s8bX3Tt5MRPqDex/L3g2n+wPG/03au/Fwppr+Dy0/bFTYBOBLRDOAE4K8D+MMA/rje/88A/BsQxfIf1c+AZJr500RE/BK6EIur4zHNyDXgPAty4rGbMcSMH19O6ELFXAOGWPA89XjoJ62b0KeCGCouU4fXhxHvxh6HTlAP5xwFrTIwPj9d8DT2SLE2AJVAaDkfHw+CPAhIPObjYcTTdQAAnIYJ45xWz4QhMXap4O3zAUSCHFh5QdMrOeJwnEQIIMasSHkexAYQZMRaqdUHJJdgShWXc4+YCrpOEAG7PksOvym23IGH49TQ/OY5outKS88SAmOaAqpzD01dWVALIZaPPMd2vbnMYbGK9IPlE5RchkGR/pLmNExdRi2KRqg5EUsJmK8J3SEjTxEhMkKsmMcEzgHdaWrogS1WEwAXtcwYIuMgmZVtvgCkvyQn90nne/3qADDQfTai5Ig6B0HQ4yX+0n5vylXWOvSSRy0mAfkAQdKgaBwTX6PE92g9ipKTLfRF8tp1FWAsVpVK4FHSAWCQY10KDEoVdZS+MAWQz98WebG0MIBKCIcMzkH6OihyZA7AcwT3DDoU1ByWOLqABZXPLC6WqsTisoSa2xxohAXpjwH0FXSNku/PLD2W662SxAP1Wj+xuM1ZPjfCksPNgEdSBaYg/Y5RcyYqjXOQ+8CSL47Q6KVLAHcs9DG11DI0B/ChoFlILA8ejA8qxE8SM2Y52ahozkamlvMMJLFlnCrCs0D5l9el7T/KtOR0YxknTAGoQD3W9mNJVcdy6WrCJaCeKuJzQDnWFTpgPIeWQBxBUo20/ggIo/CjHqvEm2nfFn+VngLyY5VrU1iBgMSRkB8qQJJ7rg4V4RzBA4NG5amPycxB4nI6RhhDS2xfe17SetjcAIRJ+FcGbikrpA4vaSEqwIkRRqlbB+ELJ0a8CK/KwIhXQu3ZJSg3ngh93TtC6YUWqkCYJZ1APjGCpmfhKMm644WQH+R6GIH8wEjPhHIQHjMB6UItDgkMcIeWVoIgn8Ok73nJ+IIwAWXAMlelj7LUT1eXO1DbWfoGBhAnbUOS+N4sVVHjBG0OcRSegiFpITSWjaOu6ZHRvSMgALXjVSyj5cHjJDwtvfwF6VpGob0cZJwwAeUgY1j6h2qpKADUTq91QBzX14KelJQBLfG9pKGQz6WXOpI3EKj98vohbcsdEK/CP/sX5iV+z/ZgGWT8miCJ6iOQLsD8iG9d4iQ0gpb5A0JrGWQcpmUO0H0BCC0cZH3CjPZs1Aikq62lDsRoSe9tTb0gwQFI54U/HGWvcVzaEC9rA8j92jnaaM13b0EOeVkXKF1htr2o/VsKEttrbpwlNQyB00JfW0/dNyAgzAzW/d3AgpwjFxWAqu7t6OqxXG8ARAFgoiV+zf5EAlWWdCKai3IFSsTQfJNY3iXepZuwvCO3xSuPm1jKxn9d0z2D+ksW4Pau2fR5c6ZKjvZNnO9qrm5frMbaHGj4OMumMO4pyXeU5r34wdW63OuD8F6a1uPcDPNpFAZW4F4/Z+Wnplgy828R0b8D4P8BcAHw30BcX79mZgvf/k0AP9TPPwTw17RtJqJvIO6yP7o3xkMa8fd9+X/hqQyYOSKioiAg14iZA37Pw0+aK6nFNFYmzBwwhNI+W8xj97qsYh87RTW9lA7p1dol1GIsK1NDmLW/15LQf1YQwJi0P1MIfZxc5YBff/PjVRykd6mdSlzFfFYOuzGMiSTVw6S/HnY/fVmwQsCFoMH2Gk/okWPN3XIqsY3/Egqn54WvWzZxWKS8NURaG9do7ELBWFLjiU/zkahiqrFdMz4aX7eW4D2XWLNgG0opsHY/tri04xdfozK11CLbGFA/lkeO3b4bt/Uq0w1iqVnR96zYnWuzdZm+x+PWt14zN1ofgxeIG92jglHtWe63LtOehi0ddYfGKceWBsRiGr3LscUtendi7ypsf+2+0WHpA2zOe27HVg9QN+4oBwJZDzrMzZiIkcs2lnjZ03uAWLZ2fr39Z3t+iLilF/H89GvUZJCdtfO8CMTIJSD9ctXUImhuoIZqu3IPd+69Pu3GnltxirWl6TAXXu9CnDVFyx7IlgcV87T7+/5vc/l2SLVG79ZDwcc02nff1rtJB6ab+gvNypdfY0QGSF1prW3cILHKYIxo1mWSOgjcgFoqE9j2oA3GIpmuPC+c9ChnNWvvAP+WYkCswG4t2dra/tuOp9IeE6+u+3EaOJfythLAFZjiQtu2mAdF0TjJokBeqxjXSsjKn63gt/KQaIIr4Qb9tT0AhJWkbfe2cau+L6uva9NcwE0Y3Urue8KqHZp922L9bOdDWFBfeTM3m4Mhw3yokO75fKOAON7a95W2sUf7C/e3ygOwT+dNl8te3QWF2va1J1Bv57mzD4x8gG/dsP0YG0JpdY136kOe4Y3C9kFWu49QbPw2fG+5twf26t1Txrbjv4/Wl8b46P42mu32+sfQ9QG0fGqFwLvK989L+Wm6wn4OsUL+XgBfA/jzAP7h76DfPwngTwLAL/8w4o+8/t/w2+UVCggHmjFzwsQR7+oRb+IznuuACMaVOzyEEW+L5IY8hBnX2qEi4EAzflwe8SpccK5Du38KI661w7t6xIFmFISmwF65wxfxCVfuca59u3+gGd+UEx7jFQBwrj06unU2G2uHAsIpTIiomPWoL1BFREVHBd+UEwCggNCRKIkzbwXiigNJrslv8qnRPnPEKUy4csJcE17FK861b9cDVYy1a/RJHtArnpQ/pvid9Pi9qII7suTRtDEKB3RUMHLCQFnAk1RxnDmio9LGsByT19o1/p+C5BMNxLiUDkPIrd0QMt7mA45xbqBMQ8iIVPGUBwwht7bCC1Y+LUrBU5H1tDlG1FW7S+lRQfh+/w4A8NV8av0YryVHZ2lK/jFOjV4DhDKQI2tXOeAhjaKsqsJfOWAIM57K0HKmGohKy2Opx/vPZWigUrlGPKQRmSP6kPGcB8kLqgBUHiAqgPFceiRa5lmZMMSMV+mKS+nwLh/Qh9zGBNCU+0DVAVzV9h3AKkdqCqXRbjlMZV9HPKYJT7nHYAcYeoAjvJt1nUuLf174I3T6A4ixpNbmIU0Ya1zRZwBXfcjoqOJSlvx0Vv+q1w5x1jWSehUav0oLArTR5MG57FBjdcDhUwopcM6rTtbu3Ty0+ViOWNufgbgd7EzOhd/H0xotpzTh7XTEYzfinLtVHPghLQ6yBnB1zd3qfmXCtXToNf2SX6fHbmx5bfuQVwrwIWY8ZZmDHeJYztg+5HaAtXfQYjlt+5B17NL47Ov3IeOc+5VC73lp9FhdW0PLBQvIAcn/x967/eiyZPlBv7hl5nerql37cs7p27Q9zYxtxvBiYAZLPPnJb1gCISFxByHzgASCRyzwgJEQbwgkS7aQRkKAwG9IHv8Fg4QNjIAZzzA9PX05t7137V31XfISNx5WrMjIrPxq1z7dPX1OMyGdU/vLjIxYEZGX9Yu11m+ZlA+VSbryRkZSYDZ6gIsyg/1ap1RUKXduTBuDUkTUyuFoK1TSwyiPNuXT7b3Omy21GvNYAvReZHll2lSolZuMuUqbZ+WGVrnZxfW5WK/ymoYoUOsxFVW5yWNS7lgmCDNFzlS+vvx37xXWxub6S5spPors5WOKjRjulzciTbqvVbFOnN828GZO2sCp0pxzn7zBY72apFPi467wLmEPIS6cColzt8YoJozqTMLlAzGzD06h0h6+AL1ahexh9EVKmZuW36G8sWW9mrzTOQY+Fvd++ZzzG5i9mMqcwdzuPM6dS5n3lX8vb7TQxkyMItUvNjniNG0Sx73zdeXGwrkwknIjK6S1kkU/+fogJ7HdpZSiuBczbg/lPJQbDPfnYiLXLPSAN2pY1nttlpsQ/HeOf0rgVvY9xwZL4K4E03OQPt+AAN69OfBQeddGwIPA84ENh/c9viTDe4zp/49g8+ep/DRdYf8SgD+MMb4EACHE3wHwFwFcCSF0slp+A8CPUv0fAfgmgB8KITSASxCJz6TEGP8mgL8JAB/8uev43938Km7sBr3XWSk9+gqdM9iaHkPKp9h5jUaRMhMgcGE6dF5nJejkKjTKZmWnURZN+uC/6db5484fcACokt/N7bAi5SAKNMrh6CqskuLXO52JU1xK5qxkgA0K1itc1N1E0alSfkYtAo6uyh+hWjnYoPIHnl+ktaLk2rV22A91VlSGoPC0OWI/NOi9xrbq0TpDiplyWck52CorEEoGdCkROVlxJRrtJlaywSsYGfL1IQoY5bOSV+YwZEUj59NMykdIykvnNBpNSe9VSoJeaZfTu6yMxXGosDYWvaexr42FUR63XZOV9pI9swRLUkQcBwMpRksbAFRJXiVJwfBR4Pn2CAB4c1pByYg6ySUFKSflB36VEtxz0nbnJbQKCJFIgHiNVsbCR4EuEQI5L1Fpn616nLSdFS4pAyrtUSuPfV+l+52UtMY4OC+xqixOfQUhYm6TlTImFuqspvlWAb0bLb0XTY+TNfm8YqtWEPfIpFjxKQmCAFJmXZpztkz21qA2Nve9qmzug9qn50ayQloAAgDJFTtmRYnvP4CUz0o79FajqSwGp0kRDVMlSamQLYesRK3qgdzaU9J4KWOWgZLej8oWW0PZ6heCyIndh3Q95ZRUua1SWXNOYt0MUDJif6pHy6IiF3NmGgWAytDz16Z1LJ9nnguu13YGm9WAtjcT6+SqJvd/lkFrj743+T6tKnovDAO5xccoJrkot+sOh1OTXLkDtPY5v2alPdreIAQBrQPsoFHVNrupW6smSgLnvPROZpd4nhOtQyYzYkWR3c+HQY0WS7ZmJsVTpJyYpnKksA8aTCpk0tjYdd87mRVSZkrl36t1D2s1XFqD7PrembzmIT1/pnLou4rukfTvuhnQ9yZb/qp6Ciydk9n1XyQrLd/DIc2nSnOY+4sC0dO8hzQeetZpPn0Kb8j3kPY59+dowScXfb4uBpp7a+mdla3Bad618bCdRrMZcigDEzEJEYEELKIXUMbnUAW+hylHK+AGTfdL0ZeQ9GzYQVMqpiDG58gJKEPW9ZBSOan0XLleQ6Z8kpxbVADwVkKm8AKpIoKVyAROKoEgqyArTyDDSzqnA6Sm94B3ElJF+F5B1R7BiUy8pCsHe2J/zPcv0niEIVn02c0/0r9Dr3JogzSeZIvI1jcOn4hOQugi7VAAhUaAxsOaNVud6TgDDyCZwiFXLsvCbUQvp0CGLbRR0HknxnCGIABN6w8rR1DG12UyKpIROh1j8CBSOzpZTlMoD0wY6036SmEQKORDqhPSPPGxUFhDC6uw8ILM+MUee+A1KGUrS7JwihJ0clcMgAMmrqQlDhIR01QucxDKvxfIqKIAJrYFgXuuptwHMLOWnjNxxqmsE9KwJVCX6vAYl8qSxTYmWe9XLsZZ/n6gnMPqi2V+cj7PPw/l59hiKR4KYfyxGhbinwLwtwH8EyBX2P8WwP8G4J8B8D8X5D2/HWP8r4UQ/w6APx9j/LcTec9fiTH+8w/18eLPPY1/5Tf+MiTIelSmDCktL7xrfHJmtkOe6kWVQSW7jJY77LxbPy/lLjv/LneOA8QktQWACcurkgG91/fa5MKKPYDJrnhp5eCdUwYCJQCa7KQnkMeunbyjWu6gcptlez5OXSVVIc+caXWeYuJc+okSqM53Z0s2VAZiHNNaMrXyzvT9NRl3M3l3mo9zKa9jBtjO6om75IRBU07X0CcX2HK3upS7rMe7wQAy8OF6cxZVdg9ksDKZl5mbI7sPlvk+AWTABYxukDSe0c1yidGV+1liXC3rl/lC5/lGy/QMpftlmaJhmn80Fn2jaLN0y4x5TM7JXO9d5E9AUuxTTG92t+QxZWvMbNd6tlUag8xgJV83m5fSXbcExyjWO8sIlgFZ8S+/l/xvAYyKdWL8LOvd281PivlkZz4pu0u5N7NiC9z7WOeUGaUwfN3sfuBjiBhjfeeKDg8sX4D7GsySMlTM1TxHLmJBUFWyo7LOyOvKsbqlCyIru3PLQ8SoGHJssU/jKOvx3Gdlt2h7zgArQEptyd6JWb05udPSfKGYs2JupnM1u25+ruzzjOKd5WUlfN4MK9cPKrCYxuDOrTX8ez4nSw/BkoKZ6ggvUrzfqJGLtI45TrdUviNfB8wcf96vzMdeypribUvwUJYy/m1xbPM1TuOii2drL8aY5Nx+XLhkLm+xxvkYMInhLv/mx39BtMUXGDBxd83gSWAKbOIMQE06u9/PwvDzjyVQNJFvLvNSmT+C8zbOyHWuPNrq9th6P0ZZBK3c9wOA7ewY3iXzI8f06DniNhe+Se9b/u//8t/7+zHGv/DFrv7JlMvN1+Kv/tl/6yfe7t/7+//xz3xswE83xvJ/FUL8TwD+AQAH4H8HWRr/FwD/vRDi19Oxv5Uu+VsAfkMI8f8CuAExyD5YrvUB/8LT38Jbv4aNZPFjl80uGhjh0AVyN+wC/bZRJ5fVAV0ki6ARHl002SWV3VEZAOxDgyZFp/v0lmK3RhtVdt3kv30wqBNDAbtTqvQUeAio5Cbqo8wupVzYpVIhJlfdEYhO2ivGqgS5znbBTM5lt8zkSsvn2S2VZeCiRMgxpiSrvOfGy/2XrqKlm6mHnIAnvobnk+ZufNOXrm9cj3OO0lxqGOFzuyzP3CWYNwnmfZS5SgGOjR3dWksXTQDZlZLjazmPKecWLV1O+VpObVOWMnfpPEfpPBUOx/kCyO6nQ9DZJZPzo44uxjLLECDuucKSm2+Y5Esl11naRGAXXo7b5U2Y0hWWxnB/vZZib3kcPCZ2E+V5540aHh+7HubrC1BebqbM3SPLfKbzWN9yc2ce4+pyfK7PY+AYZ74fxg0cNZkXvofmuVAna404aacr3HGXYml1bnd5s4qvqaTPnhbsNptJtGbj5TGV/QJjjtX5OrLVHkCOpZ1b9PP6FDHaSzlqy3Uw0me31PK6sn+Ot+b7gI/P76t5Pltg3MQq44BjFPeu5TZN8gAp444BsoTPN9VKd07ejGO3UG6Tn9N5/O25+QDGnKFlKWXn9SnbKDeqyvjw8v6YHy9dbZc2PnwQMOr+vTDZ+IxjfLMsRJ6zo3OM7jmmcV6TiHEDbr55WebTPYdTyz7nYyrTCc032fh3uclVunb+OHksy1hu3qibyziPAX8XC3YZO3zeFXZ+0ZkUM8W8lu1HIFup83HM5n1h8yKmNuepfqZzMm5m0YH7/84pceYbL6UQYRzD2dQ5wH1gXPY3R/Mozi0dX6p/rixthCyUMu6Ufz9apnmdcw/GUr13ga4HxvreIHLh+INA8b1A5OPX5L3A6Zep/BxbLH+qrLAxxr8G4K/NDn8XwD+5ULcD8M+9bx8bMeDTeIkQJa7UETZqfOouceO2+E79KTpQbOXeN/jQvMV3+w8gRcCH+oS3HjjFGhvZ47P+Et+oXuMz18DA40qf8Fzd4W1Y4/vHp/h28wqnUKEPBlvVoY8SV+oEHwX+sH+BS32CER7X6oDfsx/hA3MLAPjhcI1L1WYlNUQJIxxu3BYHX+Mb1WsESNy4LWpp0QgLIxyu1AnfHV7glGIEL/UJB9/gFCooEbIXCPf7VB3w3f4FbFS4VC1u/Qq/3HyCT90lXtkdvlN/hj8anmHvG1zrI3aqxTHU+F73DJe6xclXuNYtPgsX4FhGH8f2Q5TwEHhjN1irAWs5wEaFLhg8M3u8sjvsVDcBt7duhUvd4gfdNbamp3jKqHFwNZ6YE17ZLZ6qI97ENdZqwMthh+fVHi+HHTayx7fqG/x++wIvqj1u3AatN/iwvsVOdvjd9iNsVZ/jMvtAsXiNtJCIMNIhRIkfdNcIENjoPscbvqj2uHUrGOHxWX+BPmj82sUfwEeJ37r7RWx0j2fmgL1voBDw2m5SvAwpSV+r38IIj0+GSygEHEAxkyEKPDEn3LoVFAK+2dygDwafDJdYywEHX+OpOeLlsMPT6oBP+wsYESCDzjGT32xusJYDvts+B0AAeu8afNTc4uBrfL1+gz9sn0MLjwvd4eBrHF2NlRpghIeWAT9qr7BSFl+rb/H99hoAcGVO+OX1p/jcXuAPTs9xadocP2ujwjHdZxxDx67l/JvB61NzxJ1bYaUGrNWALhi86re4ro4wwuPlsMMvrF7jD0/PsDMdjPA4+hptivV7ao74rL/AdXXEnWtgRMDNsM6xbFdVC4mIWlLM8s2wxkfNHX5weoJvr1/j5bBDHxSGoHFpWrTewAWF6+qEWlrcuVXeHPjFzUu8HrZ4NWwgEbHRA1ZqwBNzwvfba9igMASFjR6wURR3/NauYESAjRLX1QkA8Hm3gxQRF6bD22EFKSI2us/5cy9Ni1u7wq/sPoZExD+4/WYGfpemxctuO4mv/PrqLRQCvt9eZxC7UhYuShxdlWMwv7W6we/uP8Cf2X2G752eovOje/F3Ni9x8DVcVGi9waVp8cPTVQbfHzYUM/zD0xWe1kcECOxtndv+ld3H+O3919E5gyf1CTvd4ehqSBHxp1av8Nv7r8MFiUvT4bNuh6+v3+Jlt8XT+oRb24xuzFHhqjpBiYjbocHz5oC9bXBVtfi82+JJRWsUokhhBgFP6xNWasCn3QXFwXqdgTPHfnKc5/P6gI3u8XF7meNInzcHAMBn3Q4fNHu8GVZ5I2adYipPrkIlHf7xyx/hh90TvBlW0DLgRb2HFBHfPTzDVlNMLMv1rc0b/N7dC1xVLT5qbvEP9x/gO7uX+N7haSY++2h1R/GYkuLab4YNyasttAg42BrPmwNtSKb5vK5O+Ph0ia3p4aJE5ww6r3Fdn3ByFb6xfgsbaaPDSI+bYY2DrTMof14f8ruL74HOG3zQ7PNG0NFX+LC5w8ftJSrpcWcbrDU9350zeFof8cPjFX7l6mO0ocLNsMZKWfReQ0uPlbLY2wZ3tslzyvN8oTscfQ0bFH50usR1fcLXV2/xR6drbNSAje5RS4fP+h0u0nv2db9GpTzuhgbPmgOUiHjdb1BJhxep3e8drnFRdZCIOLkKF1ULIwJe9ltsdY+Tq7DWA276dQL69KxKEfCmX+Oj9R06r9F5g95r7Eyf7/XX/SaP+Rubt3jdb3Kb39rc4HduP3xfVSOXp80Rn5125FJe9TkkplEOn5wusEthJ0/S+nKoS4giy3y0NXZVhyFoDF6h9xofrPfEWJ/CcTgkZ0heTUdX5ThigOLiv727wWftDgDQOoOnzREnV6H39E0BaMPkaMn190l9wpt+nWV0QWJjiDPgrm/Qp1AXAFhpuj8abWGDQu80Luouh/EYRRvUJ1thWxGfwGGo4aPA09Upe2PVyqF1BsehwlXT4qYlLgglA4wM8FFga4b0bGiY9A4bvMpEb1r5vOHTOY3eamjlc5iLTmRmg9NwfiR6482R3tFGEm8oAaMnEpO7cUiLS678JbQJUeQwHS7zDQwOlyi9d3j+rVeTzQ8OO5iT0nHIBG98lB5IpRcPhxuM7YgcdjDfcOFrOHuATDm7y3HQ33GDYPQqQvJCmZo8+XgOQSg2fLjMj8Vi4wMiLm9oLP1l2eTstyiuXyiL8bRflhKxTGL1c1J+aq6wfxzl2Z99Fv/Z3/jL+Ky9QIDAVvcIELgbmvxi5xjKvW1wWbV4kz5SO9Ph5CrYoLDSFm+7FS7qDoehhpIBGzNgrQcMXuOz0xYXVY/ea7jk6hqjwNrQh/tNt0KtPMUnSY/bvsFlTeQ9d0ONRrssM+9Q906jdxrPN6SEnGyVyRiUCGiUw023zjvdVXKvZRdUflgbTTFIK23xplshRkq30lqDF5sD9kON1hpcNS32Qw2f4iZ5J/9t2yRyAzreWkMAKrF3royb7Oy3KU0Ls5e6IHN/rNTyDnxnNVbGYd/VqLRHpcdULk2KFdw2PdrBQMmI3ik0xqEdDIzy2NYDbtsG26ZHZzWcV9g2PRrtcHNcw2ifd835BW0UxxrSfb3vKO6U1yxEkVPACBHRDQbeS3zzKbHCfna3g5Ih11Eyoh3MZBd6Uw8QIuLUV9kdmYkXGkPxgFJE7Joeg1doB5MJH2rt0VmdxyllyC6rIl1jZMBtSyRKPgpYq7Fd9Rgcjf+ubSBEzPGO5YeQY/eUCikek2LzjPa43pxw6GucegOtQo7LdF5NYixDFFkmZvfkD2ed0vFwDKfzEr3VqI2DVgGn3mDTDDh2VZbJB5k/hJV26AaD2rgUu4ocgwgAWo/xvgDQDxp15dAPGuuG1iQECe8Fxdcl1+EqxeJx/BjHEfbWYBioH6UoltAoj2ObCHaCgFKkEAgRKW4sfVTHOMUUJ61DbktrD+dIWdCa3HSvdi29D2432dWWU/1wHJuUEXVFMZbHth7dw5l0JMWhAcC6GXA4NthtWxxONbnlpvrbTZeUFVorYxzaUw0hA2KQqBuywHedgTEeMVLsHst1tWvxdr9C8ArauKyUCBGxaQbcHpoctzf0Gs2KYg2rlBIofzWigDYur2Nd2xz7yCmOOD6PrTxVSnvUdyaTfER2L88xlmEiW9+Z/JxXdYpx7g2q2mIYdHb3ZaWKlaLLiyNOXZ1jLE3lIGXE6VjnWL/gKbfHajXgdKihjEddO5wONdbbHu2pztaYqnFpvSiulFM3SRkAQWmUqtohxhQvK2KaQwOpKA9FCBLBU6xf8JQmqrSg2UEjeAGRWFlN5eh8upYVSY735LVtVgO6toKQAd5SiiaeM20chlOFzWUL7yXNR+FKTCmgJLyTMLWDszrP83ivC/Stga4cmsaiPdEcKjUqeiAAACAASURBVBVoPXuT456dpZhSZxVMktMNCkIix812pyrHRIYgoDTFv9qe4jhzrG6KIaS4xbRBOyiYlaW5dCKf47hQNygo4+E6A93YPB8hCNSNRbuv7ysUjyy69nCdJvdMEyBVzIqv7zTFYDqZYjsp7U9Mcca6oXdKsBLSBMSAHCOqGkdrzCmXgNw2AIo1RaFQewGztuP8+NSnlRkMCAFKlZOulTXFhwodKGYzUNylEBQfmmMcRYTQEdEJ+hsE4EVOncX1hEx1UkqnmNJOidrnMQsVKN2VExB1oDRcoD6yOzSnhHJidFsvU1qJOLpqe0qDxOmL8nmArLW+SN+TrHd8THiRXX5jGZcpQH2X7u8lsoygtEQsUz6e5jkkt+ySAZllkKltHjOQ6xfYqXAZnsZy5rQtU2w3NS6ndEHZ/bu0Hk/mAV8sxnJuNWWraJyO615ganFsblmcXzo9iXvz/5OKsfzuf/jv/8zdRS/XX4u/+sv/5k+83b/3f/wnP/OxAV9xYLn9pQ/jP/Zf/ctok7LJOz/WKyJRkGMaDWagc+llx2xqY/yWyko+K6GsVFur8gezdMdhMJBJC5I7i3cSKinIRCIw3XFixYAVNwDwfoxX47/OSXA8F5Mi5N2fNAes4Iik1ESM7nekeItMKMFsbDIpuSSfyjtBLBfJiBy3VbqrxaTw8PUxk6gsuPVxjFgiThCJxj6yC48XmaRBiIjoJX2EvCSa/3Qt1wErFoIIHSYxXfwdmX1QmDyh3O0SaS5pPER0oNbJ1bnTVJfjkZJcEHH8mGomWeCX//gW5rb5g55dgNIOH39khYrF9cgfTaECEZdYNZ6LyDFh+SMNjDIW19Mgkjz8kUzzIauk6Dia33txZ8W8LbofASPJQh6fGD/I/HHmvJayuJ7jrphIQo7zmeXl/nlsPBYeh46jshGLNri+APXD8powkkYAoyIj4kgyEYu+BCauWJPcnnz93EWn/OCZQP8eimdBTteA0H/qr1Agcyk/4ipSnXLcXJgso/w6lykUyhxyalSgsnuWiYAVdIzXjsei0rmYlDEnEE3MylyOseMpSHNf9kV5Gou+43gN90cxcnE8x8pbjtOkdliG/ExznlInEHWh7PH8xnEsMeVIFWluct92VDB55zialLtURerTSsQqUN2Y4rj0qHBGkfouCU84NhMonkNe60L5DUmWKMa1LO6BMr4xzylmCmlOHYKxnaTAlrFsXFdYgVgV9/RcIQ6CFM80p/m+KOaU1pTqC5fi+3j9XVLoo8g5O6k9vhfT6ya92so8j1leAcrvWSrJPHeFsi68QNCUfxRBZHKV3F5SoKVL9fidE0keOcwfvMeXqNL9iJmSLoo8rEmeCdkL3z+8/iUAiNO5oH/cBw98HHy76fHZoD6pXvk481+g+FTxseKVJiKmcaEcL1oS0pT/TrKIBGqQruc5LuXNx1OuyDwOlovnonj/5XlIQmc5l0ho+PtbPPuTEmd/i/4zkc4sFnd+fY7XnbdZFoHFPuZ1F8HUUpks3qyPpb7e0e7SJ+ydMj3Q5hzsPljm5x8h7+Ta96n/QPl//osvQYzl+mvx137p3/iJt/ub/+df/5mPDfgpu8L+tMt1dcK/9Au/hR8NT+CjxLU+ogsGt36FvWvwvNrj5Cus1YA3do0n5oSXww4SEU+rAw6uRh8MNrrH5/0O18nNz0iPjepxqVvsfYMftVe4ro7ow8giS+53R7Jy9ReUDiIo7EyHz7sdXjR7sgjaFVbKTuJsjAg4+gpHV+GbqzfwkNjbBlp6GBFQS5tciy4mMYBD0BQfVzxdK2VRK4eVHPBZT26sGz2g9QYfNbe4cw32tsGLZo+bYZ1dCNnd72W3zTFcl6bDrW3I7SOxdu5MP4mZux0aNMqRG1XQE1fAlbKTGM2TM1hri7fDKrPsspvaVvc4uBoXpsPB1qiUw8HW2Joet/0KtXZ4Xh/wSXuB6/qUUyNcVS1WyuKT9iKnNuC0G5V0Oc8lWyzfDquUBsHl9BAXVYfOGUgRcDus4IPEL199BiUi/uDuGYzyWOsBnTfQwmNvmxy3qkTAVU3umneWrIrsNhqiyNdJEXFVneCCwp1tck5OHt/G9DhasliVqRKeNUcY6fGyowzeLkj0Xmfr+4Xp8LrbQMmARll03sAGBSXIHUiLgLf9Ckb5bKEHyK3po9Udbm2Dl+0WK22zW6SL1IcEWUHZMl9JnxmMObZrpW1mAOZYwb2tU3sOt8Mqu1txaobSdWqjB9wODTZmQOsMsR/bKlu7V4asJDyfh6HGRd3hrm9w1bQ42grWK7IOa5djATeGrMi915nV9tnqiNYZHJIbWKU8auWyNwCnV6gVWTElItpE8BWSR0KMAgdbQYBYfk/WQIDSVvSOGIXX6fhHG3KT/OH+Km9qrY3Fvq9zfJ8SERd1By0DXrfrrDOwVwAzKEcAT5oWnx12+GC7x5tuBevHWN4XmwN6p3MqjbUZ8LZbZcv6piL3trftCptqIDfKxIQMAF/f3uJHh0s4r7AyFnXyJgCA6+aIT44X2Yvh0Fe4aHochwqbakDndJE2A2gMpa5prcGmGtB7hUa7zOjMTNCcO5T7Y2ZnH0XK0zm6m2nl0VuNdUV1eQ6tl9jVNJ5SLk4nwTGEzOT80W6Pu75Ba01mmpYi4s1phdoki3Sqe71u8eqwQW0cdnWPV4cNnm2PuDmRJ4gPEruG3GeZGby1BtZLKEnvnMEprKspI/jaWNwlrw0mJXNBYl1ZDE7houknsbLs6scxlJt6SDHBYuKhsanJYyaCNlM31YBDX2e2ayYuc15iXQ+4Pa3wwcUe1qt8L3AsJ+cw7q3OXiQ8Dr43fBTYdzXWlcWmGnDXNdCKvFeM8jgOVb532ctjcMQSLUVMninkSSEA3HV18tKh9aoTW/Kxr1AnbxStAtqBXNtjpNhOKcjTZLvq81x6L2G0x6pKaXaSV8ixq7BpBnRWZw+Py1WHV/vNA5rFw2VVDzh1ZMU2ZozPZm8RZliujctM8MyMvKoH+CBhnYJJ90NILLrrhs65tLldssnTRvOYW5at8rtVj24wEIIYiuuK2MMn+XAlbVLHKFAnVmf2UAhBoEqb29aq7C0AAEpFeE8uliGIzNLM18lk6XZ2ZBC2A72Pq9pmzxG2eHuniFV64J2GmGM+lfZ5nmQxvnHDmOoLkHU7WNqc5flg4jLegJ4QbgFpQzxtXmdLYtpo4I3jchNzvk8eMd0MTsfGfxcbnLzRw5tNMo4bmYy+yg3xEjiKVKfckChJlfh3KP6WG1pz6+LcHLoEmudlviNRtjmfEzY4FKjybHzpErBcOl7KsCTTn5QvfflKWyx/8c9v4l//O/8oPCS6YCZkMh4SfYr3IzIYIoVphEMXNcKCP4BPZB78b26PYwMlYia9yfUjxSMyiQoT3oQoJv8GiAynLEb4gkhlzGPHMpuCVISJbeaFZQlRZnISVlDm+Q5LApIS5JbRBGWdMo8iy2Gkz0ADwISwZU7aUxKyhChym3OSFyYEYeIZnk+O/ylJc3qvJzkM56Q5wJQUhfuby8vkIQyuOE8gxyUNacxzQhkAWcnjWI1J3wXpBt9jE5KcqCbkQeV5lt16cs8uiZuY6GTwCpUa17mcZz5W5q8r5eaUNgxiytQ1S/O4RNrD4HpO+sTPAgNozl9YrgOT+MwJgJaIcZaIe9jrIK9jMb65rAAyECtTzbA7dNnOUm7B+fzy7zlLcznnfXJNXVqfclx8/3A9YHkzmpmbhwTKy+/wUIBEZiUuSWBK1+Y50y+A7L7M15ZkIy4p6SWrM4Mnzg9YFgJdIp8fSWnG3zQPVJ+9RuRMNm6rdDsP/Kwpn5Vlju/Mrvez+eU5D1HAOvI2kYIYeNlLxWhPelc5bqdgEtj0XkJrD2t1dpPOyi44pgqT+Ki8FgUwWGIrZsIXdjdn0MGFvVbyWvqR1XfO0FzGPAUvk+cMJrFRfE4lBV8U98Kc/VmkeWMFHkDyuCAlOafZSd4mlOqEFFYxG2PpmcJuk6UXCbmCFvXTeLJHCVvmZCFrUSckZZ2BArtr0o1PAIHdOSeAgb0qvmhhAAKMyjor8YV1+R6jsMDopVAq7KKoD0zZlEvzUvYAmcnCtw8DEgYnpULPzcwBicDUml+WGTtwttCzzHOgw/8WoHQgXBhkydmcFMCHLYHZcjm7NFvMeVhi/H0PQJUXc5mZ6iafu/LlW1oti2nL9ZbAzRwcFoXlm7uz3ivn2i7neXZ+NqT77rFL3ZTno7h3/mwb534/APYekmOxzXeVR9R/zBz87n/6JbFY/iP/+k+83d/87V//mY8N+IpbLI1weK7vCAQqRYyvSfEFgC6QVYqZYW1UkAioCzZYYARxDNKYoZTAXCR22WigEDNAVYjoop6wps7BKquCChG+eEVloIQIrwVsGBltWRZWsidyzZ6sEgQzMCuPryVZLZhdleM3S6siszgugQgaw6h087m5Ysf/Lnfd53+lINDI7LDzOef18JCZXdYpYmNlqyQArBTtnNeJnKckReLCVl5T+K3MGS0ZWDOTqpFksWJwPmdGLfth4LoEpst1YFBeK5eZXcuUOEyuwPKEtA5OE+AlwOLzcSkinB5BfAmwy3XnYwzeuXRSZ6umK9osxzkHo+WGx5zhlBlUSyDNrLflJse0HTkB0jy3S8f5HFujyYIcJvWWmEqzfGpMt5PvgwTstJwyCJ8DgQwa749jyv5JFknaJCrXdSk9R8nUO2HkLO6d8rdRKlviuQwpHpv75jRH+T6ZPZdz2TnJPZeShdTrEfSy/JWaMveWZb4JIMU0Qfx8Xr1O4H7WDl83B9cxtc3HXAGaOaUPyzZnDuV8q5mJNEhwvtnyXgYAKwMBzijgFaUqEgAqXc4T9cFycpxyCc684g2l1OfCXJT1yvQ0zHZaSubVaH2ag24uHMbAhCFz5lIGzWV+1TK1zwRYFnH8FP7BfYzXjSBW5BANTsUDMBika4JM85FAb0gARhXhHVkOpA2HQobcrog5FleKOAnJEGnugi/6VykUQ6aUNEnbCUJCVV8cWHKIB4Ac2kE/UKT3WWA/BRBlIV8YNwxyyAUw1YoZKJbHSxDl5AhmBUb6Xgky8ZZgidsrwxEKmXI4QSzqCiCGmMFkLOY8y1IiHD4nC7lZDmAMmUBxjvsCyJU6TC1eJXiPPE5R/AamoCPLE2eumnEUt7xOzP6WU13WCQtjnb1D5oAm9yNmv8+Vc8By2sxiVZ6bSR9z4Mfn88Bm3f2xAsv73+xz7bwLLOYmy3X7Upf4iJvhq1u+0sByiBrfG55jI3sMUeET+wRGeDzTd2ikxQ/sNYzwOPgGl6rFK7fFC3OHg2+w9w0aaWGEx943eGb2eOM2me30jV3j4GvU0uFPr17ik+EKl4rIOU6hygyYAQJfq9/i5MndrmT+BIDn1R53rsky26hALJADtqrH99qnibGyh4sKNqjMDvmiPuS0JczEWQJZdqENELm+FAF712ClLL5/fIIL0+GqavHx6RJP6yO0JNdOtsh9bXWb3XCPyTUVQLYW7m0zpo4QETvd4+gqDEk5bpTDnW2w1T2GoCbK5UYP2NsaT+tj7lPLgI0acGsbXJoOb4YVtqbHEHQ+zkySr7oNXqz2eNVtsTU9GmXxebtD7zU+Wt/h5Co02mJIlimX5o6tcUJEXNW0Zp0z0JKU8dt+hZW22bXWSI/fufkAIQp8+/IGg9c4umri3gogu4vdDiuEKLAx5JJX5jk92oqsjVHgbUdMlNuqh00A8zDU2FY9TrbCOl1fWhBv2jUGp3C9OeU535gBN+0aRnncdTWu121mzauUz3PuU37Sy7pD7zX2fY0nTZvlenNcoaksrtctWmswJNdEZudTaXz8b+tVTrnAintrTSZhYre8TUXkTYNT2DU97roaF4m4KEayNtXKo/cK3WCwqQecEoGPDxKbasiEQCdrskuhEBEr43DsK+yaHrdtg1VloSRZrzunMwA6DSNJkVFERnV3atBUFqvk0meTq591CttVP3EBtE5l8iW2vrE733rmXhejQO+IiEmImI+/vVsjBIlnT/bZYthZjU1y3WTL3rElN7rNasjPMj8zbJkDgGNbEcnO3RqbdQ+tQs7jejg2mXRFqYCh19huugwQ20TatF13aPuKwKH2GZQd3q6wvWrJ0mo17KChjUcIAsPJYHPZkSvjoNHUFm1n0DQWXWdQ124CcKzV8F6grh26toI2fiTyGShmmcmPAKDvDIIXqBqXyYoYXDknMxkSEwB5J1E1NjMf9i15olSNw9Bp6Mpn4OXTfcOkQPZtA7F2NLYo4DsNBKDaDRSTHpGZHN3BwFz08FYhtBrmooe9raG2DuyG59r0yUxxnaIOmQglBgGpA0KrydJjCEihVxBrR8QmAhRHrSJCp6jOSU81RhOIDIWV7U6NSn+OYY1AJkGh46KViKsUV1x7Ah0BFHvZS/QbB/GmQlQxx55yzBzH0UIHiFYhVgGyTZtrA8UpRgUMKw/RS6iTxLCl+FPh6HrfRIqPlKBYTi+onY4IXVwTIJyASr+HnYccErmNphhQ6QTcmtrleLxYJwAkItUHYOsAdVCIOpKlTQJiENB92jisI/RAbemTRChihOujxHD1xYGlagX8Onk8WAHJ90IA3DpCDtSP7kWOG42KQI05UYxq0IAa0lxJOq9aAmOBb4dA42eLZNBprZIcUQDmIOBWBKCCAnQnEEyKNU1DFB6Ihm4b3Qn4epQxShqDiICvYo5tpbGBfqcY16gA2Ysx7jkIIADBRKgUs+orElC1qZ4ApAOCSfVauk8AsoRyLK4c6G8wgHA8Zxgtk25q/Ys6zU2a99LieS8WEuOx8tzESprOSU/zKEJhDQXJQbG/5YM6biiw1ZbjNKMo+injjIs+GbDmY2I6xtwvW4MxtlHKzP1zXPEkTpbnL4GzvL7xDFArZCr3DPJc5A0K5I0GETHdvCjbKsscJBfAKgox/l4C+2cA7HTjYGE8f1J+JuUr7Qp79WdexL/0t/8KPj5cZopr6xVu+waHrsbz3QGd09hWA25OKzxbn/D5YQspA55vjnjbrYhpsx5wc1zjct3irm0yI+l1c8LRVfjB6ytcbVtSwLxClVheL1cdYhT4/G6b3crWlcXNYY3r7QkRwNvjCuvaZkXMB4FKe5wGg743+Nr1LWIUuOtqaBXQaAcpIrZVjx/dXmZFcFMPaAcDmxQnpk/eNAOxmBqLl4cNvJfYNFT3F568wet2jX3b4KPLO7w6bEj5XxGzqg0Sr263mf2yNjazZbJyt1n1MIpc4aQADm2NyrgECgQGRzE5x77KjKiZFXYwaCqL/WGFqraJCVTDWkXKalthu+lw6ipoHdB1BqvVkNkGry+OeH27wdWuxbGrYAeNq4sTNtWAj28uiaEyEysRQRFZKHx2w9sfid2yZKfcbbrMnHo61ohO4pe+9SliFPiDz55Ba4/dusepN5Ayomtp04AV6YvdCVIA+1Od2TC1JqV8u+7R9hWkDHi6PaG1Boe2hjEOfW+wWfU4nGqsGhq/kOwSFyBlxNW2xa7u8fHbCwCA9xJ20NhuO1in8GR7wsu3WygV0VSWWG0TWRQTTh0PDZT22G063O4pxrKqHL51/QavTxu8vVujqm22xFivMCRmQZNAAc9nZoRMu7WrxqIfNIzxtN5O4XSqsV73MMpjf2xwfXHCze0ms1Y6J+GSS+K6GXA81ZllVAhigeSdfm0IJBCTqUDXVthsOhwODS4vTjic6sQEyeyVJHfdWGKUtBTLAwBPLo84dhUBkWRtqWqHVWXx5m4NjsnRxud++76IsVz3iFHgdKR1rmqLvjUQEtCGmDNjAEztYHuND5/fQomIH376JMf/mIrYOJHAlVQRu20LrQJubjf5W8zWHDdoSE1f9YvdCW9vtnj6bI83txtihUztPL0+oB0MgSersGos9ncrstB4gfU2pdK4a1CtiXXUDTqzTH7rgxv84PNrBCuha5fXQ6mAFxcH/PDVFbFO1g79scLmssPpUKNZD+g7MyGu0rWDVAFDZ7Da9Bh6Q8ybx4rAYyIQY1bLZjOgNg77w4piq1KMGa8/38+u16jWA+rK4XBoEqmVxHrXI0agPdRY73q0p4oIrWTMADIMCkIFfOvDG3x+t0XfEbher3tU2uP16y1M4/KcCxnx9MkBr15eQDcWV7sWr17t8OzZHq/fbDMT5uaSNmpMYgE/nBq49A4SKd5svaH7pu8MhAzYrAbc7Vcw6T3rnUKwEtV6gLMalxdHYjpOls1jW03WarPt4JyiNUxMs95LXOzabC0eBo0nuxNu7tYZfDPgdlZjt23x9maDr330Bp3VOLZ1fta1DqiNRdtX6DuD7bZD21bYbVtIAWxrimN1XuL2do31tsfTzQmfvt1hVVus6wFGBtycVqi1z5snWnt0bYXtljYrT+m9frHpIEXEqzc7VDU9t8OgUNcOlXa43a+xWg3oe42q8miPFSmxnu41IYDhZLC9ajEMmubTCZjGYbvuIAVwe2iw23R4+3aDy0t6b9Q1fS8+vNrj+59ef2G9Y7PrcLxdUYxl4zJRn9Yex7sGpnFwg8J622MYNIIntl0A2F20cF6iayusNz2cU3BWwTuJ7UVb3DcxvwfZVXroDcq4RO8kXjy7w83dmmIsB4XNrkPXGUorkdpQOmDoCNmstz1Oxxp1Y3O/9cpmlt5g6bmBAHTl4K2CrjyNwUrUawvvZCZL5LbrFcVU2l4DQWC162CtAiKxF/edgesV6s2A/kA6hpCRNmWCSNeP7ygA8IPMmyvMvgsREQaF2EsiIAMg9MjMG50cXZ9TH4gCcZAjuRWTTTHjLpPZWTkSz6k4dWMOgphu+yJ/NoMtdvEVkfpIgJuts0KH8bqSlI6toKVrsMCU8I1jJ9nyDIxu3fyX29GBxqLDSOrHCJPJuVxByjUv2TKLkaSp/M11gBGwlpbmJSBZXJNJ2diyyt4GM8tlFAWBW55/TIndZpbgxViSEggX5Y/+6n/wM3cXvVx9FH/tO//aT7zd3/y//rOf+diArziw3P3yh/Ev/Df/Ik7WZFcwHySsl3BepTQa5NLEwfK9pRcsWwb4Y87xW2zp0jLkGKBuMAk4yOzeA4wpEYZErQ5woDwBDQCZbbbMoyMEcgB8Xdsc01PG1ihJMnOMDoOnvKmTHkbuh5XqGEXOb1TXloLmPe3+cwB/6XqVaecjEqPtlCBAqjBJ3MzB/RwzFIPI1oEyATWnF5ApbQDT8ccUz8WMu7Kw0MTkysVU+0p7Utp47sNISe9SupBJbqQkd/nXe9oRZ+p+nqscR+doe7Fap9jK9FEv8ziFrESDdldnrLClK5dUEZF3fBXFdXGMEc1VYsllIgD+KIiY25YiZsCEiGwJiTFZRJh2nllx43i9EBHBpRivxLAbI31EdVJSmFF3EpuU7rP8IQ7JfUxM+2C5+foYRWK5TWy2TiYZ1fT69AEVKub62fWr3F1mbzCWzae5SpT2Ma3nhKwAmMY88U4xx3CVLLosd5rDSfyPKD7o3GYU9+K2clv88eZ4rtrTOrdq/KAxs2s5Pp3eB4Mc6/E9XO78mgAMkij6WcnibdlqpjyoSGy03E66RyeucsX1og6knEWR5yWzHpvi3JyZVs3mKGK0ppVrUsZTsYz8qWGljRW68nypCHDbHBfHSo5ODbECWbLUskLEv5sAWDG6FLJSOcgxpozvocQKG1UkC+BArLDMkMuWtbxegsaY2XYFRpbdsl2JMQVCTIpUoLZEEIi6NDEA91hh9Xifl0QYWZY49puZdlPsHStpkcfTEDVrychbyo6SFZYZcLO5A2RJ1LQmmQWWn9lyjPxuYzZnXi8ZR2beQRb3DkZLmC3uC4EcA5gtOWJkKkZiCEUka0wGFMwYPCRGY043EQQCW1G/YIk6QlpWqJHv2SjpOFuNgp5Zh2KyyEWQdWmJSRXI7Ll874yKOWZWI4FQB+ozzRPdU5i+K/jZBMaUGbxOxf1KDMfI63nPy7VU7jM4GI9nNmCM9zbPi/DM3IsJK2zGAGw5L/AJWw2jKMaMVK+w5LKsi3NUtFVaK3ObsZimMN4jcy9Nkj1OnstFf8sS6PB9IcZ+H7y2bKN4zSx5jN5zD+W5XTg+aXNhbt4l05IlcGLFnMn80yjv4w77rvI7f+NLEGP5cw4sv9KusI2y+Pb2JjOU3toGUkSsFDFUvhnW0CLkRMsHV2OtyS3tLrGbaulxchWuqhZvhxXlrgyUY7J1xGL3netXuBuIwVAiZpfO/UA5Eq/qFl1KBtw5g6u6xe1A7q/MflkWHyRq5VBrh5enDaSIxI4YJGwCWb3VuL485TgdZuIs3S6pP0q8PDiFZ9tjPlYrjzenFbbJOrnvalyuWwgAQ+HGuLsYYBMBRmsN6mQx9VHAyJAZF9kCuK7s5HolR1dAVxB8MEMjsyTyNUpGymWY8mFyTkPrJRrjcOorNJWFS/kfL7dtzmvJDIHOKVxeHOG8glZjnBrHPpUAfFfZzDrI8VDdQHkcI4Bae2jl8eoNuS4/eXKA8wqD1dkKyeyRDB7bntbTrMYE1DlhfLLMxUg7zFIGmNpnC+AwKKzWDsOgYdY+p7vheKahN/BeoEp5CKWMeedfqgA7aDSbYRLnxCCYyTya9ZDT5NSrPsklYVsDaQKa7UC7zmnelA4ZyHGbZUoc3kjgBMvkMinTBkCE2QxwlqyaZmXhOpNzzAGAECHnV/ROwqxo11sasmhyrBVEiguLgsC5AHTj4QYNs7VwvYZqHOm6MsCnuQYorQ9vhPCmgms1hAnQzZDjyIIjIKxWHiXLIBOQyCqMYT+WvtRq4ygWzEnIJv07AV4hqJ6oPcJRA1FAXQw5vipYCbVzGbjHIBB7Ral8Vj5/jDkuK+eXE0DsFOTGIRwMxMol5kO6z+NJp53sSCBykBBrNyp8aYd86oLpx7ivvQa2bgTZDBqDoHMbT9qQillP7gAAIABJREFUo3Zjp8i9cpAEavMGDuj6ADqe0nXAi2naGRlH8D/InMojg89kJZmARRUBKxM4CDS2KkL0isAQA0FO85LBM5LlAFA3GqGJKc0DIDpJ4GLli02C9GevEDYewkmIk0RYB6g7Bb8OOS9eBiRpCoKJgMKY8kQBsk0bZalPaQVCHSF7Oab2kKDfKkLf6qToxnRdASYFoA4yu8ZFNSq5+i7lLxSk2OtBwlcRMgoEndwLQa6X6ijh1wHmtQYkKE1FkElZllnxDiaS66iOkPsUApHSf0QB+IbOywHwFd0i0pEQwcTs2sigKmpA7tOzYAgYS3ZXbQrAoUDujj65alqR3R2DQQEyqY1gALWn+WOXSeEAOUjaH6rJbdY3EeotucJKR/VVp2G3X1xDVb0c3TkdyBUWJJtbJdlVRNWLnEKE40qrNyLNP7masjthVDHPC68xt5n3EtgVlt8ZCtAvFVIUDrmqDtQngQyRgeuY4oXuDQb+MW16iEgyTVwlOWVLkSZGWjECytR2UOMchLQWchCTDYegU1s2rSfG66Mo5oJdeJNsXIQvgGaaP7oXCjCJAugXYD6PcwYu5+lbIj/H7NZagjMG7gv7ESxT3iQoADcAiBDHONYSiPHfmRwUCyoWj4k4brhMwauA9HHZFRbj2KMUEGFE70uALcte9hHHunxdrrv0KJ0D3fFMnUcA01LWd4LMco6+rOWLe+N/6ctXGlhKRAJo0kKKgD4oKBGxUQNqabEXFDvYaJvSdaicEkPLgEo5IjKRlIagkgTcmPyCUypU0qNSHpV0EzKXWhHgqFJahQCRfzPbaKPshOzDBwmpImrt0CiLOsWI1crBijGtg1chp3sIUcBLInSptYMKctJeiAJRidynlyS7SrFyRnkCOOnfTIihJI1BCJXBJANLtuBq5SGETOyayCQafD3nBq0SwCM31ARYZIBWYkISwiDaplg+l9xXAcAkoo1GOwyC4uwq5dELAqFKBvSCrMNVItkwarQy+0CWBZfkY3BLTIfIbJaq6LPSlCqBXRE5XYFPBC9BkMWbx2tT0m4mFAGIbEIDGYwpJhoREUqN8WNKBmidyIwksZVKiZyKRgiy5Po49iElgR8GkGxNZfBEjJU0t0IAIRAlvwMgpciWdqUiLJDj2WIEwAmsixg3Gk9MVnaJIGj+qE8gBpJBxAipQMBLjflfZQIRTOxB7QcoFREEWbZlsr7LRMrB9PxCAGQ2jQggUMdjVirCZ7lSPzFklzECpOl8srCzdZJlCV5CKBoDW9Bp7iS94yOtJbNiZjAh6IPtZRz/nSy6UqTYIxkRJIDUdoDMbYxkJEhpNiPAhCJlEZgci4LbJUtvzjcLmotsfWPFqbDysOVIqgjvU25ctg7FsS/BFqTAimBqk3PvspVZYvzLffPHW47XRCGy1ZKs24WcbIVOc5iBZmkxloUcqZ/IbmVJxpzXMeWbnCQzL2VCApn8m8lIBEZrNDCORWK0mgkCvFlRZdBXPGsRRf1kfuFrCUCCLJO8HrmtNAYnxrUqlPUo49imwOy/iIhiHCx/KU+gY6ycZusMg9N0r/HxDFyK36WCXt6fuZ/CSyIKQM5jrLiujEmZLdrLmuF4LOvIpZWt/A8MgpJ8vCaFzGX3EzkwbedBq81jS3H9RMmdtRvnc5L/TUKUc54BihinKV9Xgoh52+cU6BlYWJbjjIIuFuo+VFi+AnhMbp34CHmxsI6PBQezNZ2MKS60e6bNudxngdBC/6UFT5T15695Bo7z9s7KFGd/pwBrydNDoDhXth8LWXP796/leSj/8rmJrGL2+x1jwUK/LOc9cLvQppj9PVcmcv9J+WMvX2lX2G/+ymX8q//DX5ykGilZRkvWP4+CWTOxWTrexuM6qX7JNgpgkm5jzsA5Zxot81UuFWbMnLNfLrGpLjFdlvVzuo7ZdfP2zl0//X2erZPHO2esXGpzPk9zmca27zPHzlM4zOswuON/cynTKJTynWMLPSc3p/WYz9FDY+KylDbhnGzz9h8jX/nteJdeNNcF+fe5e3Mux5xhs/wLTMfI7uNzttBzczeRc9ZuWZb642vGPgiH8KaBDyL/Hscy/b0kw1KfDxVOWTIf7xJb6rln8KFnc7HP2e+l7/l8vebHlurl9s7MMW+WlK78j5Z5JsdSOTfnj1mX0u1+rDuee19ZyjYnbZT1J9rQ0vXL74H3LQ9OdUa38QE5UhWxPE+P7fShZ/RB5fJRz9E7q0w1zIyAi34fq9AutftFy7l5fwjcvQsg/TjyPEaOM8fZFbr8u3jdI8Dr4+WY9vEoi9cDQOi+Jez8XL6zr6U5epds73v+nBw/Rns/kX7PvaPf4376InXeG/z9OJAlAv/w178crrD/9J/6V3/i7f7d3/kbP/OxAV9xi6WLEp8Ml3hmDrBR4bP+AlIEPK8O2OkOv3f8ACtlcedqXFcnvOq3eNHsAQAft5e4NB1q5fCq3+Brq1u86re4MB1cEHjdb3E7rFArhz+9fY1Pux0uTZfZU430+KzdIUSBX9je4NYSU+jB1vhodYdP2gtIEfG8OeB2aCZ5JIegcFF12Okev3/7HEJEXFYdhqDQOooXba3BB9t9tpLeDsRkutZDdrscIjGUWq9wsgbf2L1FiBK3Q4Nd1eOP3jzBrulx1bT4ZL/D9bpFrdwk2frXtsQKWyuHt+0GV01LqUGS6+3bbkW54hKgu6w7nGyFwROJUKMdbtsGF02PzlE6CwbYK2NxGCo8XZ1wGOrM4rk2A950K1zWHV4et7hoOnRO47LucNOu8WxNie1fH9d4vj3i5rjGph5Qa4dPb3ewTuHFxSH3x+kjXJAYnMpAR4iIqxURRXBdANh3dSYf4jn5vU9eAFHgG8/foHMah67GqrJwnpKil5sGbw5rIgKpLUKkdASDU5ACOPUmu87ujw209ljVFi5IVNqh7Sus6gFtT4m7OQm4D8QKezzVmaAEICtnpT3ujg2MISKLza7Lrq7GEAuq9Son2r7ctuisJuKbNbXTW432ZgW5dthuO/SDzjntpAqJLAc5PlipkONzVRFn2/cUb+ydyrGwdUPEL9ETCUN3qNFsezhLFniV2rdWwQ0K9cqi7wxM5RC8RLMaUixyzCRCxO5JbXenCs16QHuooWuXrcBDr3Ni7qE3iIHceplMo7utIRuPOrkV20GTy+wgYbZDTp/AJBYxCujKZfdf21LicbOymeTF1OQK6wYitYCI8FZBGQ/7poEIAtXzE0KyBrtBoVrZHI8cgoQ/kMus3Nr8LmP3V46DFQLwewNz1cG+aaAuLKTyOd2Cf1uRu6eMlKuvU9kFV8gIfyQaSL21xGQqI1QVxnQMryrEpwOkCfCtHgkrIiCPCvF6IMtJr6A2Fv6ugtxYhJMmJtRkBRaS2E0RBETjyUXXBKCXEGtPLrTJZVek3IHxpCkGbuMp/lEA0Ml6yqQcTkBUAbFTEL1E3LrsXisORJsZ1x7ipBDrMMaRJvdlJtEwLzXcNlCdKCBPktwtn9jRpTbV1bcK7toR6+lRwj1x0Dca7tLnbXx1ULRjnlxf/Spd70GxWSZCniSiiAgVxWTJTsBvA0RizowmJhZQctHUB0mWRlA3vo6JVZXuDX2S4AxRzOYaFaCPSRFMrq36KOHWFGMXGmL+FJGuUScBexlQf05Mqr5GjvMTIbkoVuQKq04CoR7bl0NyX5SA3QaoVkCfBNyW3D6FJXdJ31DdqJKbqyO3Vn1KG68Nucryb3tJ7p8ipH57itFzGzoedWpjldZWgupHwDURZk/ussxYqzoB3SXdYAXoFhh2EdVewDXEwho0YPZA9+yLa6fmKMiVVlCfJTvpKDugOmQXYo6f1Ec6FgygemS3VVpPJHfk0ULEzKwAyQ6MinhQQH0L2A3SHAL6lNaxYDYVHtldVre0TqpHdk9VPdK9PL2O153Za4Om67OrbRjbVvSZga/pJtbHccyCWWErks+tx/li12nVk2U7mOR6LYp+0jxQ7HFE1AK+YhdsakM6Wo+gxCTOmq18QYvxfvd0XGRvApHblTamunEaFynSM1KswWR/R46yZMttMf/Z/ZdjPFlGURzjPRRuD8X5AkCza3NmgY20bsqyW/J4fZYxeQyULsRUoRxjnDLOpr6XWHbZ6prvgyWG1/nmnpwyv57bnyktsmOb4ximjd6//lz50lkvv8JGvXeVr7zF8t/9H38Ve99MLJWU0mOaV43PD0HnfIWU648An40UZ2gDX+tRSwcXFXqvxzx/KTegixKVdHBB3bOK2aAozyJEBiRlH2XOQi19zm9YWkqViOj9iPvnuRJLKxuXMi2ICxKNcnBREqhJsZllXkkAOeUEwOk0dGoj5LyEPK/0d2rNLS2dc4snWw05JrW0ILJ1sBxXCRDLVBBVys9X5h/kOnMLbVlKy2a5616SNHEOz1oRgG8dsYJyXtHSisl9cG7IJWtxmSuwkpSPtJS1lDnnvSsstSqNzybgHotx83neFOBr52vK/fE8xXQ/qURGxTG15b0yL/wdYxdpLmJ2bm5NnVvtz1l7y+N+Nj+8XgC5JLPcpXU0y5nmcJInkXM4prjl0trCcbZLx+eW8OyGHlh25PhhtoSWFh1m2R0SAVZJUsVj4mtJzvNWXOo/wiXG4FCsc0h98fXlfcSFY49dsdZljkijPJxXee14bvlam94LAsveA2WZW0fL68rnrnwWl6yofG6sj+z2nQm+0jEmNWNL3DkPAXYFD7yGyR2XmZhjsea0mSJzn7ypwqyc5fVcKM/j1Bpakp3xNWG21qVltGT55jZZsxJiHNPkUx3FxN2cNxQmVtbS0pfmkOPGl9hJyhyR5ZhY0+O5yvku0/3EY5jcF1kuUL5JjOMbCcIwIVWjdpDjq/nTNreWco7IOfkYxIyQTGAksSnmg0nGvmjJpGkY1zAPm9ehXI8oRgWY7x9mAy2tsPz7IQtRaZ2LYiTL4rGWZFhZ4JjJe0qXcJID2UX6XsxX2Rf3N0dUS8fLD8KS/EuxZfO+gClRzryd+Rzx9VEsApZ8C4Sla5ABXLx/uyyPYf6cLSGkeed4R9vzfh5T5vK8ozwg5cP33VJbj+nzoTl8qM+Fvh41b++UR+D3/6MvicXy2//KT7zdv/u7//nPfGzAV9xiGWPKC4kRXHiM4Io/dH0Yh6kTJdmQjvk4vmR95ETf5Kp6dHUCOD7Xz4AIEa03qBNAzW0hgbIEKl1QUMqhD0Syg5RAnkuIEn0clWUXx364cH/jNeN4ITABFqULcOd1PjckwAyMie1LGbT0GVRSnyqBQg0tfHYbDlHk7bDsipuALjJYLqyIcQRNc4BWgsVyTDEKBCDnp+ydHglZCuWZwSHNvYSPuOf+msFK8eIPIW0mFOvQOpPBG8ki7wEulnmIKitY3D4r4qFQbHuv8/iYlMljBHMyKXsluCvjccMMIAKADTIr7eU71ifAWAI2W8gfoshWZgaLc/fieTnnxlfO+3xuOBdmbiMBnrxOZ9rlZ4fkIhCXgXWS27vx/mT3VloHwGOq4APIDNBAAVRnrMdje1OgGROgnNQpzsV0fQmYT4OZfLiliHDFXGRlu6izqBPk55TOu+L+53nqZmMLaY64DK58lsXkfgWAjmNauU76HSNgk/V4nIvR9X3Ztbyce3FvHuf3Siw2n86dy8+7G4m4WF7v8UCZ9u9c2Rfg3FgzBDUBNd7pBMASaZWIOS8mj8VjCqLmsyFEhPXT94Z3U221XHMBZFdjMGCag5XZ+Pl3BrysqLmZQMXYeB2GGZEcyxwLsBGWlOdcOQIxMU1ngDgDsVyPSwlqSuDEfZRKZsRocVoqCTdBYCSiKt7vsWxjgYCE5wLyXAfvLrGQ+Z67tChiYBc27B6MaYgLx/g4pmPg32KQU1fWQERdsZh/PjbpMyy0V/YxWf/ynJhWzsBKLmLOyTAY2M3X+x1FzOUoGjwLNB5qdw5g31XnAfAm+GZ8sC8x/X1ufd9R3g1GHwFyH9vevbn+Mdp6ZBvvXe+x/X4ZS8TDMTpf8fKVBpYBAnvfoA86WykZELECxBbIMm6RrSrANK6SS+vNpD63N/8LEEBdihUswdJgKW8TJ36n/kaFtFTqQ7Y63rcClkpdKcOSJaEEKMvxXCpbg0IUQLLK+sK6wspIH6e3Cc9Bf+b2YQsvA7el2Muy2AL05vEVMj8Y5zNrs7zuXXFs83ODV/eUvvI74ItxlPXOWXL4mPdqcQxL83IufvNcDNz7lDImsWy3VITfNddjuQ8eYhSwUA9c85Bs0zV08zmY9XpWn4hT69FE4gfG9VCs3zzec6meK+ZUFpajc7Ft74qDfJe88+tLC9i5ci7Wjkifpu2FsDyHS+W+9XFsd7ENBlisfJfawT0Qk0CrHKkOH4yRxOweWdJ0WQGb9TmPrxSC2Ynvy5/X7J7CKc7IJ/K1S4plLOpkXXQGWnI3vE4zEFqu72KcaGlBK4BujPL+xDH4uDeMBAwTkBnlmyvP4r5CntPjpONLynpM/ZbXnlHqp2wwxfVlO4XL4RQofbF36KSPpd8FKcvZeEXufnFMZ86dA9zFPSCEyCBelHXL+53fY2eAXx7GHFgt/Rt8G41tPgTSxCJoHa8obsn71qkz4FLMz5/rX8x+F30uHV/sq5jC84D2/gy8C3Dfb6O8eEGuB+ud+b49SvZHHsMjxvFTwEzvBSJ/fjHbV6J8pYFlFwx+7/ACg9fZ5bMs/IFn11Euc/AEzKyARWHFnwFoeZaBxruISfjvQy5lcyBVyseAoCwMDs6Rk8yVm8eQV7yLTGTezeL379HA5P51949NFaUHFad3yLBEQlP2O1fM30V4MbqEjXXeBT4e0y5VEve/srN+z8m01H92pcPy93UO1sTCvydrXX4ll/79wJgfWrd3lgcUhLOXFHNS/n50fwDuKdzvoVTkcmY9z3ZdKGOlW12ev9JKNJfhMX0sKdvzS84puEtNv9dHf3bPnAOWS/09Rp6Jsnim/fdcj3v9xUcO+dxDVhQGIJO8kgvn71+HyRpNYFY6PlG8y6l4l8I6Pz/TjDnn30NWozz1j3nRLPX9jmd9sd+ltmf3QJb9J1UeWp/HyDc/d+78Uh/F/6dTNgPb+cWBcdNgqY+FF/6DwOihd+IjFAZRrlF5YL7JNn9PPRIELpbF+/t+tS9kDX1H+cIWtsfcCwuv0y/c7hcFlO9q94u09Z7tfjVK/IJK0FejfKWBpfUKnx4v6N8pZopBmyisg+TuF3PuxXncmo/kvsmxaxEgko1Un/IsktuUSqkShIhEfiLKdAsxWyzYTWkex8MsixzH42auVvQX9MFOqSUA3IsR4noxijHeo4gvEXJ04xIpRkuKCI614TcQp3zg41yHX+zk4joqYJyOYeL6U7BGlqApp0dgYFMcz8pyIoAp421y3JSTlNePrSkCiJ7Gq6qQY3H4fIxiqkwAEDqkZ7ioU8SicG7AMCRSjirV5xieONbN8z6Prynma6LwcwJ4bkfEMb6l1ALKL7dLY9BFhzJSWyKOCccjxnFwe9wGE5lwbkJWJDinYJlUXhR9xOIYy8qF/5n9QQtFgN3OYuqvzEXIdUoZ50p9mbqijInia3mcPHdL269xNh5gTNguSGlHFODk87GcX7BsmFg4ODE7p7eYJxPntllJE5aeCyKKSTKUSmxMICFZZKK+z8LI4EIAY7J6K2nN07tJRAHB7pUCowylsZjdRTkvXLmGEZCDQKjS2jHxTDovHegc0nqolJA+JVfnOSjnLicXT7neRMQkoXgs1o2JbyZJ1Od4L9C8CzfmOeR6MrmzlgQW4/2FcU4iMgkMy4SQcvaZeI80QziRjwtP/5ZDuldYPlco6KD7ZX4blgng85hKC5Io6smiPsY2cj5BYOI+GIt3RyYKSW0Kh5zrMKZHpaybcyemuZtYbsI4j5kUhPMZlo+YFjl3I+XCpBN5vdJ9FGXM487PUTrGvynv5ThJ+V5I9w3/DSoW98VYR3K6FjGOoSRHySQnDok4ZLx/QjV97t6nMAkMDWIKenjdoqR+87qlPW8mpuF1j3yvirH+BGMV77TyVcFzK93YNj83VAGT9UUxR/NchxMsV1z3/7H3Zr2yJVma0Gfj3tvdz3jPjYgbQ2ZUZWah7ipRNDSCTiFe+AO8ISHBPwDxG3jop24JiRZPPIPU/QfqhSckECAVArqoLKoyKzMjMjLujRvnnsHd92ATD8uWbdt+/NwhKksZkUqTjo77HmxYZnu7fWv41iFQOVZ/meOalAYHazq/V8tzLef65/ckt1/9hlfvq4WCIrfDx44qL+q2xXIcOPxfP1Px4Fo8PHdY3gi8+XelbvOxcmwcB/fUOS0f+/9o9fX51/TlKEjltXi4ro7U81ag8cg8v3P5Jvd8W8rvgeW3s3zcvsK/+Df+R/xkeh8xSXxoXmGIBl/4Czx3Z/iT7jN85U9xqbb4zD3BD+wL/GR8BoWEHzVf4oU/wT42uNRb/GX/Ef6geYFfuwus5IT3zQ0+0Le4Dhv8r9sf4o/aL3EfW+xDgxM1wCWF79uXcEnhL4cPcaW3CBB4qu/xF/uP8MerXwEA/nZ8igu9g0IsJEKtcHjpT/DSbfDvrH8OAPjSn2ElJ6zliFY4nMgefzV+iPvQAgAu9Rb72ODar2FEKOQyV+YeChEfmlf41/0ncEnhfXOLl/4E/2T91/j59BSfT5f409Uv8VfDM9yHFt9rvsap7LGLDf7f/Ye4MHsM0eCZvcEvxyeISWClpnKsFQ5DoticF9MpNmrEmd5jjAb7aPGxvcbn0yUu9A7b0EKKCIWEl26DK7PF3/Tv4dLsyj2v3Arv2Xv8ajzHp+3X+PV0ho0a8Xw6xfv2Dl+MZzjVA37UPce/3n2EP+y+wovpFNvQ4A+7r3Cptvjz3ae40HtsQ4NGUgzrSk1YyQlGBBgRECDws/4pfFI413uMUSNA4qPmFV66ExgR8OvhDH0w+I+f/jkA4H+6+YfYqBEfNTd46TZopMcX41khWDIi4vvdSxgR8NlwCS0jblyHUz1gjBof2Dt87dZopMen7UuM0eCX4yVWasKt7/BR8wq/6K/wQXOLL8ZzWOlzrC6RB/2oe44T2eMn/YcAKD74xq3wg9VXuA0dvtd8jb/af4BGelzoPV75FXahQScnNNKjkR4/3V/hVI/4pL3Gz/orxCTx1N7j31r/Ap9PT/CXu2e4tDusKIM6xqhx5ztIEbFRI+58hzFqdGpCpxz6YDBGDSMiPmhu8cqtsNEjVpLWyBfjGT5o7tAIj8/HC/zR6kv85e4ZnpgdAGAfLXae5umD5hafDRf4oLnD19MGjXR4Pp6iUw5jVLi0eyhEdDn/66/HM3yvu8bf7p/gj9Yv8OVI89UHg0u7xy5YhCTw1G7RKYcbt8IuUyD+w80X+HI8w/ORlE+nZsCJHnBl7vGT7TMA5PZ+YgZs1AgpEq6nNXSOg75qtgCAXw+nUCLh0uzwfDyFkQEnesC9b+HyddfTCv/u6S8gRcT//OpHheDpqtni8/05tIzQIqKRHn+wovXzk90HJU55rSa4JHHvWho7BH6w+gp/fvMJ/vH5L/HX+/dw75qSq/ZPTz/HtV/DR4ltaPDUbvE3u6ew0mOKGh+1N5Ai4afbK3zQ3SMkgVvXwWZU9uOzn+J/uf0Btq7BB919GY+VHj/qnuN/u/0DTFHjyu7w+f4cn26+xhf9GT7sbvFiOCnx0j5KPGn2MDLg5bjGJ90rXLs1Ls0Ovx7OcNVs0QcLnyR2nublg/YOp3rAz/dPcGoGWl/Z6+REj+iDQaccXk0dPuzucKp7/LK/hBQRe2/x/dU1AiQ+35/j49UNvhxOMQUiCDvRI1yS2LoGVgX8++c/w8+HK7wYTqBlwLP2jmR//z7ODFGI3udY+n+w+RL/580neNpu8XH7Cv/X7Uf407Nf4S+3HxDjdNT40eYFXFJlvTwfT3HvG3TKQYuIW9fik+4VXFK4cR2MiLhqtvjF/hJnpscUNcagsfeWGMNdix+uv1qkw3o5bvBq6tAqIoD7oL1DH0yO+7doFL0zPuleASCegXvX4nvdNX7ZX6JRHi+GTRnfLlh80N7hb+6f4seXP8M2NPhqOkGnJvTBopEenZpw41al/8/HU3zU3UAh4sLs8Mqt4ZIq6+mH3Qv8xfZDnJt9eRf8ajwv78Hn4wkaGfD1uMLHqxv67RhP0CmHZ80tAOD/276HC9tDioidb3Bpd2ikx2f9BS7tHltvsdETvuxPAFDYyXm+/uWwwaeba/TB4N41GILBue3xUXdD743hDO83d/jp9ik+3XxdGN+33uKP1i/wv7/69JvvO1Y3+Pn2EjEJXDZ7NDmP9VpN+Nn2CS6bPbauwfvdHe5dC58k9nntf7qmPr+aOjxp9hijwhAM9t7ie+tX5TllToUTM2CKGiER4zyAEt6y9xb/4PRLfNZfQCJh6xs8627xalphCho65+TWIuLO0T7i/fYeX40bnNs99t4WuUkRcT2u0XsDk+/bmBFb12BjRvgosXMNnrQ7TLnPVnpYFXA3tTi3PSIEXg0rRAg8W91i7y1iEtiYEXdTh9upxfurezzf03xqGWEyR8WpHRCTwP3UotEePsrCkA+A8neLCC0jem9wPzZotV+cAygMZwqUz5wNDCmJwkg/ZLZ7kdtn7gElI/qJGN1HR3mza8+gECVWxmHw+oFnGZ0nxTWRqkmEKEpObKsCemfAabGIkyGHN0Viha+9ztgIwu1qFQpxHJ8PkfJrs7EkBAWrAzwTjsVlH5kAbvKKcl8fWddFt5vfQ/w9cM7pqr7iTXeExIqNA4dEbIdeVI8RrzFZ22H4D4/hdaEpb+Ut99+//vTvy9+9fKdZYb/3J6fpv/pX/x7GaBCSLLGA/FJ2SZXYSyPCA+bYRvpyjI9zYbIarqvO41g/li4T4TCj7GO5IJkUqCbu4bpCEgW4ADMjrJZhwbB5yMjKbTK5zyFz7ZTzbx50QHwxAAAgAElEQVQys9bssNTHtBj/IdvqMUZPHkcdC3qscMxrLRfOIXrIElv3vZZz3T67O+sjhDPH3JkfY4qtX2IAkf+QTGemxcPcnaUOLPMYHvvMbKdMlvMYI+yhSzT/kDITKkAvS2ZOdVHCPEK2U495QQKU//M6UmJmc62/AwsF+VFlYF3nsZc795X7X4/x2A9IXQ5/EOoYYFnV+5hLOeexPHQhfxjb+tC1/NjxmvUVoE1A/QN7WC8z1ho1q+uPxcfW88AyBR6u1dqTgr0ruPjKnZ/rrTcDsZL1YeENgapZRavx8Ln6OHtZ8P/D+ubPj4+b70vpuCzrungjUfeHmWG5jkP36rr9IkOvIFWs5pDMF1ItN0oAEIPMTKtAivQ5Bko9QxeLRf8giIjnQd/ztSLPx+JzLpWRZJEndOEFUdqs7qvHGivZCWTvjzQ3ADxkKS0WwqoDhx3LHgKJvSQq00Uh7Ali6eXAVhmuiz0M+H99nr0SqrQQC4+G2kOEv5dJyvcKkEcG91nkdg7ZT4unQzWObIX/xiUe6SNYBmn5/eA9I0J2dZbVZzGfY++KhSdDsbotjydBFv1iDROYXVz5PlTngDnuNFRyrGVWl8Px4RGLXJk7HGWYLRY9tvpV1rsHVsRHLGDF5brIorJUvs7ydlB9feyBK+zBM3F0rMfKwT2PWi8fK28CQnjL+o49zw8qwcNxv01bb9P265p9l8ft7xmS/OSffgtYYdsP0o8//s9+4/X+2U//2W99bMB33GL59bTGv/rs38Z+tCVPYIwSLlD+PWN8oYz3XsHogHHSkDJB6wDvVdm0uElD6YgQ6Eeec/mlJND3FsYEhEBvNI530po2LNNoyuZDqQTnKBcggJyfb7kpFII2MTEK2Ia0biH/iPPmi/L0mfl3Wkaigz94CUlF/jRK0xj42hglmnaCcwrBKxjr4T0l1ZJy9t/xk4ZUOX6romHnzYjUsTCUQtB5qVLZKKUgstzkvIHJXYxeQOqEMElIHSEkKI9eFOTi6iWkiYjZvSwFCWkColPkBmwDwqhK/r0UyAVWygg/asqlF5abn8ONVcx5EWvqd2lCuS85CUQBc0LWO7c3gEyQeq47MbNkfnFLS6kcFsfzBoZddwFAGnKJ5PGkKKjPXkKohJRdueofVWkDhATCqOa6c/4+7nscFd1Xb9oE/6Xi8ip0Hh8AqATVekQvkUY1u+gCDzdkvPkrrp5VGzrmTQlorEGS6yvnIZwkRBOoDVXXD9p06DjnTMz1lA1i7icSlu68Oo/JxtlVmDec3O+cuxL5GQUANIFciCt3O6j8V8tX5k2uSLPLcRJUZxLz/dxnros31dyPNhBA2Kt598KuwbwmBWguBYCpignn+mrCERMp12IbgElmN8Ms0zbOfeH1MVb1ZVdf4eRD990EyjG5V7N7L7sui0Ry7hXF+6kE4QSSjRBeFnfYhVtadrcWXiCZWNYOX8+bv+LGmPNvgjfFEbRhTpjdbdmtlnN1+sx+GShXJI2NPgs/9yepvPnObqJpnWXHbpOaZC8GWdyhi6tmEyEGCSggGfqc2ggxyrLmUrPcMQsv5828ALkv2yzjPL6kEuWwZJ1iyOs3579M7HacnzHhxbzxB2iMLLuSWmJuJ2XZJp1lKjC7o+d7kkk0nhX9Xgg/yxgS8+dAcyi8ALhfMgGRZCBGSfLXEWJSNL+SrhGjnNdXHjutnWq+ZMrzJyDHeW0y2EsyQU6UaxMZvAonyiPCBO/SAbGla9gFNinMa6OXSDZB7PN/fg6SRGoi1P03IxkDkF2kc/obhRnESzrO7rC1qy+7hkabIKOcXZOjKC7HnOtQVoC5dvmU/L4sHZGI7ZwfVQRyb5ce87MMLN2RTYIYRXFbRppd2+W4XMu1S3Jxd845XwuA4ueUwwVyX6Kt3Jyz27KIQNQJaqjGl3//kso4N87HCnAEwHleAbpGehT32tr1HbmO2n2Y6z3mfoyqzdr9GiIddT1m1+/F8VnU5f4ZTFM9PKcFdB4yFh+WVP0/dKOt7zu8rv79OHIPu88fju1B2+Lg+2Gp5L34/kipZfS6Y4u6DvvwhjZ+X7495TsNLAHSzLNVpDb7cyFNcJUaosqLRub4fE/WYM9adUo2P2vOucJU6iVN86FmHou+iEU/QC9ypBz7OMdO0s0CkZXjac4jl/K5uv36HurrXA+37ZzKtPkEZA/jJgWQrRRzXfVYRH47RtaaF2099WzOu0Zv/ZQBCPWXOp/iPAfF30Ok8oJIi7xSqVgCAJAGPtfB18cgCo17oZvP/RMQy/pKW0utf4rz9QzQQp3XLAmkIBcU/AuR1+kEKtmVPuX7EqdKqGUTKlnx/eUtT8C9sOfVU53vj57nMS0BYcpjrX5RU6jqCILAKoNE/s99T8t2ZstC1ZcEAl4c25rkfG8QZZ6Sk+XYYowx5fvr4wfCrUEm38cpIvzBeOtnpwaEXLLSYG5D0KZ+MfbcRsjnU/Wf1wRvAsIjMuPPk8w/lvSM83iKlSGBgKGr6i2FN88CKWYSF5/l6GTeBGYAJoA0yeUY+BreqHF8F8d/ZtBaiGIGNdfJz0PKcZZjdS7LggGUgJj7zY8zP0cxX8dzE2bAuLg+AxhElHjTci5V44wUz0d+YNyXfCy3IdxyHYg8n2UpDJLaY5etnHpBRAFUgAWg+RMhyyLm+xiUchlrFltR5LQwjYzcFq+bDLQquYnI70SUNVs2qeV9x/UckWH9DkGWYxBl4ygiinVSpPwuDYAYVI41Bf32cX1CzP2KcnH/It4yz5uYVN6Qi7JJp027KLGsHDfJ72Sy0AnA5c22z9/5OglACLrOs1zEHNeXgOIMEAHZz+dEXvOJ5zQAcBkMseylKO8nWc/pOxbh53aTr09we1kkLsdKp+W93F/hMJ9Pc+zwYrNelyPxjSLIss5EzACm6I3nuOkCfHLfyzwl6vdi3fE7X2a51cQ/RbHH/ROljgIGQXM7j0MUQCbcQ5BVOlg/t8Bi3g9BRg3oHoCkw+trmda/N5Ucy/hFNZ7D+8XB/UfLYcPH19nbWzOrKup18Zb9qRwfHpdN3da7HD9W/+vK2475kXbeqo3vSkmY98O/g+U7DSxPzYD/4P2fYaUm7IPFnac4gk45NNLj5bgpOSg75XDnWqz1iJgkbl0LKwOaHON2YoYS3+RyTMTeW2gZS9wCxyuwu+adayGRcNHsS/zQEAxOzYCbqaM4BT1iigpT1At3z1Y5WBnw9bAm33wV4KMkdzoIuKCwMlNxX+29gZIRrXLL1CjeLK6XgtxojQx4NXRotUejPO6nBivjYGTA3tmSR/G87UueyDFoNMoXt0MhEgZvFm6VnXaYoipER0pGDF6j1b7ENgAoLoEuKGzsiDHoco9RAaPX6IxD70y5rjMOe2ewMRPGoHE/Wpy2I3aTRas9lIzYjg18kDhpxxIbEZMoLsOc+D5EImyy2meXYRqvANA7DaPovpVxUDLi1zenECLhyXt7TEFhdBpGk2XSar9wu9yPFglAa2gnoGQsuRadV9A5xmF0ZB232sMHVRLPNzpg9PSf4y44Z+IwGXgvsVmNxf1VK4r/kDJimjS6xtFYszWex84kUY1x8EHBeYXWukJW1e8baOPRNa5Y9QFSxLB1nl0diztttkCXdCLZGk/kVnStMQHOkfXf2oBp1LCNLzkEZSahSomUHXy91tSmMb64OXKfWFHC9TWtwzgYqOwlIGWC97K4bDqXrfEqFuXR0FsoHWAtJYWPUSBkLwX2FJCSrO2cu1DlOWdiLQAwJiAlcqvU1Wd2sQxeQemAcWeBJGDP90W5Q54TYUG05Sfqq25dyZdY3GGrtBp+1LCrCePOQrd+YXV3g4aQKf8B0Unoxs99d0RGpW3I3hDIc5D7tdWQF47G7yWBWCZJGRTkBbG8RC+gTITPngNhIi+D2mUzZmWB0BFxUsUqL5uA6LKiRCQiykL2IgiCLNtZeQRW+GVrfqlvzNduQrb4J7KGA8UyLkwsO48CtlQm/dppJBsBkwoARwLS2hfrdrG2DArx3BFIdxLxzEP0CvEk7/gFMrCcwV60cU5SnwTJMOcWLCQlTiCuw6yoEYmsCtm6KCZR9udIQGxSttiLcn9tRaJNP8iSmucAmuphK2bUqVhpY7akhU2E2pHyI+nlzpwJaVJDFq1oE2QGyHIU2TKXEDuykKlRIDSJwGq2GkaTCmBjEqTQJKhxeUw6GmxoMzlTJCIg6QhYBEuf2XodbTXmDBxTS5avlK2tUVK9asoyNICcgNAAagJiJvGBBPRWwq2/+aZOTTQuAIVcikF5tCjkR3JCsWgy+FETfU4mf5b0B0lyBq8bBvy15bEiDALoPrPN85DovOpJblyHTCjyBeh8NAnKidlSzR5Der5PpLyespWPrac5LH+hbGCCJIh5vKrHvP7ZmqwANQhE2ipBBsyKr0qJUbjO8ppn2bKck6S6GIhXDlgk24pMqDiW5GP8/wHIyvXyc3CMuEqGeUyLUoE8BvkFqPL52urI34+Bw0Olgpjnm8uCgKl22KqtoHUdVR/reTtWjtbF/x8DufX3Us9bPF9v+Qi+E6h8awXAb7skPLSC/O6U7zSwBIAz3eOL8RwuKpybPVxSuJ5W2LoGH3Z32AWLtZpwPa1wafd4MW4AAFfNDltvC1HEr/bnuGx2+HpcwyqPMzPg49UN+mDwi+0lLps9hqCxTxZWegzR4GmzRYTAr/enWGl6457bPZ7vT/H+6g4+Kty5Fq1yaFXeqCWBlZyw9Q1upw4fr28QksDd1OUg+gQjAzrl8GV/QnkyIXDW9JiCxr1roUQsG/8TO0DLiLWa8Ov+FD5KXDR73E0t/tHVr/ByXONuavFH51/h63GN0WtcdVu0ysMnief7E3TawUWFi2aP26kDAGgRSaZND6s8pkBL5d416LTDRbNHTBJD0Hh/dY+bscOZHTAETWBYJOycxXnb42bo0BmHtZngo8TeWZw2A7ZTg8tuj/upwdpM2DqLjZlwNzVoVMAfnF/jxf4EH2zusXMWo9d4dnKHVjl8uTvFWTNgDBpKRoQo0alQiAe0iIgQuBk6hCTQag9mDX52QvVpGXE7tPBB4t989gW0iPibmytYFQhw53ycu8mWNpSM+OiMyCe2U5OBPIHimAQu2h69pzyol+fXGILBdmpg1IDRazxd73A7tjjvemwnCyUoblRpAogfn92iVQ4v9icEVIOicZ/dwQWF84seX/VrKJHQaI/Ra7gooUSClhFKRtz0LTbtiI2Z8GogBceJCvjj977Ezdjhul/hpB3RZMAcE5EbAICRES4rOJSMaFTAGFQBuevTqSgSWMlyPza42uyKPL938Qov92usNiSTkAQmT/O0PptwPzalHikS9qNFYx1CFGg6UmxYRSQIu8ng6ckWt32Lq6sdekeEDj5InHQDJk85Qs/XPZRImILClNmQPz6/xdZZ7EcLKMDogFZ7dNrhul+RATUorNsJSpL8e6cL0F9b6v9utBAiobMO+/zZ6lDabk/2GCaDT6+uoWXEL2/Oi4KlMb7cLwBoFXDajtAy4nrflfeYUbS+Rj/HU55dDfjqfoNPvvcCL7frogwCgE+evsLoNRlKvcbaTrjed0XJcHIxAgBu9x1WpxMpLZwudX/00S0+uzmn5+bElbWkZMTVaodf3Z7Rc2M8tn2DJ+db7EaL9cWE/WTmOOQo0Gw8lEwYnMbmyYhhMmitw260aI1HiKKEKADA6mJCqz1u+zaTXZDiI2VlFDN2j06jPXPojMfd0JCCKChsrmhs26HB5mrEbrRFAWIUkYH4ICFlwkffv8Xt2NIcANi0I4yM+Op+XQg6prz2rzY7vLjboDEeZ92AF3cbXH20w/VuVeJCz9Y9YhKw2XS2Gy1cVnApGTF5jVVD8p48KdJWzYTbfQeb30E+Sniv0DUTXFA464aiGAKAfjJwXhXvmVUzFcWTywqsGCU27UhKhKCKsu1+aCBlxDAZ2ByO4YKiPmw7PPvDO7gosR9tIf+QMsKoiMmTQm3dTugng3VDz0WrPQZPisFt36BrJpy2I272HYwOsCpAy4j70cJmxcx+MlAiYZgMVi3N1zAZKBWxbui38nZH97PcrPbQKmI32MLErvNYeK0ZQ3M2Dgab9QAfJZzTCIGUWqtc926wtAb7BierEfuR5OGjxFk34KvbzbtuNUpZtRN2eyLSMdaXedIyYrdvSthJ2zj47PXESraum+h9OGk01hPRSyAlXdM6Mgoym7tA+d0BSHnGxwFSvq03A7Y9zblzCrZ1mJxGDOydlZVnkwZEgm48xlFDmkAKtSBhrIcQwDRqhPzcAIA2AcGRMi1GUmRaS+FFHLMrJSmxjKW1zeE4TTsh5rFrHeBzSI5tPKYhbztZ2QVS3rHir8RWh1lRJDMrtgB5LUVHCiwApFzLihgOtSkohI2tXhaFF7JcFsookchDhcMdOAyES0IJ31mCrXwvK43q8JL8uYS98LUCcxjIIVjjfrGCrI4HZrBUM6TzsSjmMJU6dpkLX8vnX1fqPh1+rwFlVlrUccIP2qyO1R41BL6zfBam64M2j/3/ffnWl+80sFzLEf949bf4qX4PMUmcqR0iJK6bDW5Dh2fmBvexJSDXtjhTezy3ZzAi4FJvcRtWcElhJSdc2jNcmW1hXT3Te5ypHmMk4HmhCbQSO2ZAADGyxiRxZnps1IiYBM50j3PT4wN7B5cU7nyLRnoYORN6SCTc+RZ9tPh++zVcUti3lkBlZny90Duc6CeFpIMsqQo730BnJjUpErGgykCMspp+wE/1gDvf4tP2a1yaNe58iydmV1gJzzWxOIbMRrnWI3xSONEDrqc1AMDIUMB6TZBy41boFDGQAkAfLE51jzvboVMTxjgvqTFqNNLj2q7RKYe1HjFFXdj+7lyLq2ZbLMXX0wrntsf1tEKnHK4sAWC+Zowal3aHjRrRKlcYSxsZCoFRozx0DmiJSWKjR0SIwrrpo8K57dEHAy0iXtkOPir8cP0VgJk86NLucOM6NDLg1rULsphLu4dEwo0jJtUhGLTKYYq6sFpKEfHUbjFGg+tphUZ5jEFjrSec2hYnesR90xRCIgbD57bHWo3QIhZr+xQULmyPMWqcGwL6WhBz6i7YshHXglj21maNlZ5obg2xV7bK41l7ixM9YqUnrLQrazIkUVgLbZblFDSs8rAykMU9aGKNNTSHVvpCOLW1xBwIAGe2x5NmRxZ5xfMgMAQDLQIxBJoOKz1hygRQ+4ZAvo9kyZciwcqACGJCPDUDOu1w1W5xN3UlZy0rR5h5UGYLOx97v7vHvWuwtbQJtCpgpYnplgFIiBKN9rCZlXfvbZnrjaFn+s62hSXx1nRQMha5hCjRaYeh0Xi2uoNEwniiCwlUpx3ubVNItJSMuGz2kHmuuLDc2duAGScB4P3uHiorehhYvt/dYwi6yPbUDjAqFHKuEzNCigirAk4sjaP3phBjvd/ew50oTFGh066sXykSnjZbjLnutZlwoz3O2x73psGJHbGzdkFC1Wqas94bnNkBvTXotMOtbtFpV4ibxqyc2tiR1o8KaBRtrn0iZUarHcagYWVA702+NsBk8DJ6jfN2BnenzYDOuAV7pM8gVmdZ66wgUTJibSZoQQCjM6TsG7OC47LdwUWJVnucmBFuI3HVbcsaTgDOGmJaZU+SzrgC9rh/K5OBZV7fnXYQuW+85lxmmXRB4bQZFmRcvTGYgir7so0d4aIq9/I74zT3JUSJKSqc2BEqK/UG48vzx14jAHDe9JiigpERTX5+pEhQImIMGoPROLUjrArYWH53OBhpC0HU2k44MWNRBBgZYGXIiiiaT6tIwWd0wElDbe81kdGtzVTWDl/noisAVYqEVvtCVKazZ4APEp2lOetVwKYhkOaMhw8SjfFY5TmVIpX5XVsCyFYFuCixsSP2ncE3LSs7K4k760r4CCuTTFaWtCVNmSgsn+vcZy0jOps9R6KADwqblp7TSalCOmaygi0mAa9nRMAKhUZ7xJa8VidFdWoV4LOyAyCPmElFpNx38oLJXidpJhtj7w32UNEywutQiPJC5rHg/jA7rdf0fNaEW43xCIp8tLQkL5KgY/YCQgHHfL3OColQEW2xJwlA3BX18aAyWWEG2oWcS4niBUKC4uP0jCY9myE5ZKkoyVSCVAmxJsHikjJArI4v+C4y8FmkPcvfhQQiD5hvUbO3wFF/0vJ+nWVVvtdkXJHDhfJ3tcytXbwe8rUl/dghlqstkof/4+N9LOSfx0DfwbHHiELTMbR4DGyyvH5XyneYOPVN5TvPCvtf/st/ggCBMUe+hyQz0yq9hGMSCJg/AyhMsIdMsfRfPmCAZfbSmiHUJVl+SJgNFkBhSyXwt2y3Zm09rJMZUGvGyHDwEMUDP4xDplVmny3XH/S5ZmCtGVcPWWDrvtaMp7XF5Bjz6iE7at3vmjV2Zi2VR2XMm53DfnJha+Rc/8MxHGMNrftX3wvgjQymdT8fsIxW/S9jzN+PMeoe62ddjrHH1p/fRK+96PORearn8Zi86vuO9e8xLxhes4+x5B5bG28qxxhDD8d3OJbH+v26Ng7rPfb9GGvsu9T/WL2PFbZMPXYuVbJmNl4uzMr7JnkcU04/NoZDlte6L4fHDvt57J7HZFD2KmL+Xn+u63pbWdbXH/blMP8ut33IcPu6dg5Zat/4s8p1HWwk55jwx+X9aJX4Bkr9Y2viETk8aKzq21H5vOvW4sjG+nAzeVS+Rzb4Rz9z+U1YPt72/neVybvUW8vmbTbdjz3sh8cf6QvFYD/MvfvY9W88d3jsyFgWP9cPrsfDa96m7cP38SP1vqmet/4Ve5uxv6EcYtB3bu8drjvaxmvW1m+0T+947Vu1fVD+6r/+FrDCNu+nHz/7T3/j9f7ZL/6b3/rYgO+4xfL5/gT/3f/9H5JSJYoFlbqQqcT3FC1PZqMUAjMjpwDF8JhYzpd4Ga7Pxpm4o9bk8HkTZ4bDIMglgV0mCiviwYMpsuaISQSY0QsoRBslibvI547tMWN1PbMzZveEwkrIcRSK3A8KmYVMiyTlnJC9xBDl+hfj5sTaFZFAYYVjzRa/Aet7mAkRmF05akY51qYVGntklsmcnD2zdnJMCzPuFda8Sh4sXgCFRbBmiqsp2Vlmak+xU9HS/C9o0WuWNWCOSeGYNI53yLKo+8+skIfjLQydwDImxBPhA/PisLxEjokRkeKFAMyxL4Xhj/rJ8VN1Im9m0ksqxxuFeWmleow81+LgO489VYc4nqRiLuSk3VE93CNyP8p4ZXU+V7qIS8lykIHqk9V4Es+xmD+XOePXgMvX8zxybE0EEr/5RHU8t1f6kmXEyeQ5Vgh1W9WY6hixMt56DrKMRMhrWM/XPZA7iAAj2AQ15RipSo7SicI6yEIsDJtgYhReGwdjA6hOkwpj5OKxDfR8JX6XZFbHsm6rdpKoyDhk9UzyPIeDec7yIoZILGKS+BzLgO8vaz6hMDuWeclruo5xSpUcZbUGeGwAkMz8/CCPW3qKzRORZVDdz/2ryVqAsv6RqldfTbKCaiyPjLX0o5Jp/V4rYzps+qCdeq0dYjReu9LlY1V4Zjkv5/6kSs41ZkmaZCBDNX889mp9pXq+/PIYG+rL/VUfRcrvjjqOjOsSc3v8XihzzfJgmeT+Rz2/9/h9JT2QU91+o1LkzHNXAZyo5zUvfPUbUs0Ry/+QvVRW5+o6C4Y8+B2CAKRLSEosZMhrrPwupuoYP4/1fiICIlE9i/uOxOyJrE0j8p+U50LMx7PmTYa0WOcUSyroeB1viPmaIqdyYzWONP8/fObK71Ql51L4eC27A9k+kHPVZl0eu77I/rAfR9p5Uzn6m3nQj0cti/X/RxtYnhcpzXP52jaW5w/H9M4A712vxyNz9F0tCb8n7/m2lsZ4fPL0FZ52W2xdU+LJNmbCWdPjl3cXsCpgCgprO+Hldo2LVQ8hEr7erdBmd6H7ocGz0zs8vz/BSTti8Br70WIYDLQO+OTJDV7cb2B1gFYUW6Vkwt2uRYwCH17e4bZvIWXEdt/i/fN7vLjdQAjgbN0vYoCYFKRrJqysw5fXpxAAbOMQAsXepCgQR4XVeV+S2Q6jgTFhkSMPAHa9RYoSYVJYnw6FtMQ2DvvrFWTn0bYO/V0Lu56gdcDQ20KycXrWY3Ka4nJ6i9Vqoti+TK4y9BbRixzDALSrCW7S8BOl0FA6wvUGuvUIjtOHUEoSpQP8pNCtJ4yDyS4mFJcyDRpN5zBsG5jOwTuFtpsw7C1WmxHjYODuLZrzAeN9A9UGKB0w3TWAFzAXA/xgIG2g9nREyrEXxDZJbz1OI+KdglT0SxR2BrL1SEGiyTLZ/+IUSID6YA8/asRBQbSUlsR05M5H71eBcE/WcdFRXIm0gQhJZELca1JEREDeaySbkLpADJScxmEVkHoF0WVCkpyiJHkBudUQTiCcZmpBmSDbgHhrkXSE3CnEMyIeEU5S+gSTZsbUCMgThzgqiF5RugWRgFHBXCuEJtH9Y8V2KUFpIoAZ2OcUHwVIMFgeVE49ISAngaiB1AWIzL4Zuwh9p+BPA8SUiTmaWJQGai8R1hGyl4hNJODShhLfwoQkTFgSVwFyqxA3AepOIawiyUXn9Ak2x9lk9s5kUlHImBuF0CbELszXOAE1CfiTSMBeUioCZu2MbSxKGLmn3X1YUz/FKOh8os/J5vQII43Ffk2su+4ylBx1ak+kKQR6BOAF9I42eO40jz9vdpMEka94+tU0dxLuIkC8VHAnidJA5HVtryWiQSFiUSPVxwoMvSPFlj+NZRx1CgD9QsBdJCRLfZTTDKrMPZ2DBNQA+E2EvpMIqwS1J9KVGiyqge4LbYLeEYGJHEHX97RGIGcgrXsB6QT8KhFwkwz+Eq2pTAITbKJrR7qWwbjZEgGNX0eYrYTvUlGucH28wW9fCnhDfREBUHsimvErklkSBDIRAf0LqbcAACAASURBVHsn4Nd0XO+ozeaVgN+kouixd6JsaEUEfJtJazIrcrQJekcyjgZAAvQAuI7GBkF9S4pkkwygtyibZZFIftHOCj+9nwFjzIA4aTrO4C0qIoPxq7mOQrSSAaVfJ9g7mo/QZuCTQZx0RHQTNWBGGpcaqC41JkRDCoOpofN6n+A2JG/hAekTfCegJgIooaF+hhZQjurxHbWleloH8ZQYfhmQqZGAS1pRvdHMYwIymMzAOFpA7kkOJE86p3PdvhPQfcJ0Qv99KwoIs/cJ/dVb7vSPFD3Q2JMAlEcBZtID04koCgo9JASTQZ+m9aP3iZR7VkAN+bOi943eExiLZgYpsgKnwc5gjuoUsHcJbj3LUPd0P4NzYAbSQtD50GRiIU11qzHX3yRELSACPWvSZWDOzyjXr5DTahAYDk2CGmgNM6kRjTODTJ8QLD3Xuqd1wkogVprokcc+MxtTOyh9ETFlhZRAsDQuqiPN788MYFlODD6CIVAbFf3n9vn5IOWVgPQkAxlmhRwrMpSjc3zsgeIoASIkzCy7qcg/5nWwAOApLUA5l1ppyWC8bu+QvKdW6KasNF4oNFjxI1DGtrT2srJgWTcrEo71cQb4PJdpCeqPYaYD8LtQeB4ZV+XktiCReh2AroFyym4ub0Uk9PvyGy3faWBpZcCz1R2aHAvGcS8rPaFRHu+tt9AilBg4fRLRaUeulptUGFAb7bHSE642OzTKY2MF9sZhaInsotMOF6sejfLkcmbJldWqgASg1Q5iRW6UrSFykKvTHQCgMw5tjvsBUJLct5r6fHG6L6ywIVGsBQCMXuGkHUvy+sb4QqZSu1JyPIcPdH0CYLXPxBREZtFaBymJRELJSIQZGSht2hFTJlBojC+EFt4QiymTaXDy9dZ4eOPhOxqPlhGj9YVsga/jc76RWFlXmEoBwOqA0Xg0OVeoUQG+kWh0gJQkQy0jehWxaqeSd7TEaniJdTfBN764+LHbILN/sltW01B8U2jmhOxTlaO0MR5SRuyvRgLOrUMwAa5Zspamqo0p10MMoTl5uyW1vDchJ1kX8E0ggJ2TriuV4BpiRfV2Zhhlts4QBHzO2Wk6V9RyWkdMWSkR2gDTeCARmYJWpOZPMTs9JwFjPYIJCI2CsTmOsglwykA0AcZ6xFYihexyJxNUtp5GJmWo3TBFKu/x2AYoTXEoIceiaBMRGpK9agK80VBtIPIF0Pg4xiO0kvKStqQMQAIB/jzW1OaNWM4hqnRCMBGqCRRXk/N8QiTERkJl61mYaPxC5VywCXAyASZC2Zz0vhOIXpKipA05RgekkIikHhe5T7RJys9sQwqA2EpiIE2gz5rYUWNDxydB4FGuHSkMAHpXNKHE3aQo4BpibEUbZpZW/iFXqRBWTDZBdB7TEwBtJLKKROkwRqlQcm+qhOAk0IYiR2cyEmkCgiFrPFQqRHSD0IgbD6gEb+SC1CG0EnFDConYSsBGOEWyjI0kpUMxpwE+ywkqYWoESvJ3ExFWBKZod0iXTW3Oo2gTjZvHITIbcCZPgkpwjVzkhoRMxJqa6Fi0BI5551QnoEcCBqEQm4RoSSHgu2xVXkWEheeBQDQSYRMQnIDvJMI6ADIrM/JYx7xB5Fx+0cygFonqCg2t3aSpD94Rc6f0KVuRaRyhY5A3p4VAApJJ2ZpHMvHd7LFRLFwSCJ3gW5AU4DcZQGQALqvxyUkgdNmKxMC70vyL7BWQdO6XAfwaGdzMTKOhAcIKVF+bsvWSlFqxyrfJDLBRU/+BDJYD4E5IVqFLBVgSsygpokLzCCuswGz9NEBo5n6xx4AseRRRxuw7YiKlOqn9vwsrrF/R2AHAZ4UUew3FJnvYKLouEQF0Wfs+Pw/EWisKI2ySgNvwfGEGRVU3Sbkg5mMS8K0kltU0g2uWR23xZi8X5WalC2/oawsybejzhpzZbfP/JDKwl/O6Ye8PmX+uGECrUVT1ixn8TzMrbLEwC5obBpMLyz6DqYDZK6dSHFEfxNLjRCB3Zl7jZKUV83/M7dCNDMpEkcGhRUwEAllHwU0BSxnQVMCSQSt9noHlUWsh97ko7gjULaylB+APmEHhgz5V9Rbl1SIF18EY05G6joG4wzZeU1+5RRwcr8H5Yd2HbT4KJI+3+50ov8OA9zsNLKfMunpzT8yfq0zi8MX2FKPTOGlHjF6j0R5f+Q3WdsJXOyKn2TQT7oYWIQpYHfD87gSddYU5sTG+EAj8zVdX6JoJ16FDzGyZCRQIr2TEZ6/OoXNwfGs8PtueY91OiAl4tesKOx9AYFDJiPu+hfcS5xsiorgbmszqSfFSp+2Iu6Ep6ResDuijwU1mjOPS5JQXnXV4tesKWLrdWVxu9tiNFre7DptuRD8ZSn9QBdt/dbMpAErrgF1PRCdSJmKqy+CNW7zddtAZAALE9Gd0QD9amEyiwPFQu2xl/fpmA6UDtCZygP2+gW0cbvYNmtZhu28gBLDfN9A6oN83kCqgbR3utx3absI4GvRBou0mrNoR99sOSkcCN6T8IxY9RakzGKz1+wYJdDwGsjTaxsE5Yl28u+uQosDFJZF03NyuCexan1n4gN22XQTKNy2Rc3hHv9ZuIotvTALWejouEtYnA0KQdF5FYs8rqTYCMeiJuV4hElabEVZ7bHeUOidFiWGvYRqPFAXWpwP6nhgujfUIXhWyAikSICPGvYHUCbadGfiUjrh4dov9aDDsLaXtsDGDZYGYQX8NcoVKxUob8w+NaYkVUNsApehePynohtgR3aixOu8x9BbaZPKeKIsVu1lPcKOGbh2CV0RsMLHfrIDUlFJD53QgflJk0R4MzHpCcIoAa2DrOO1AVBPIqzXMLvHtxQDnFMJI8yhUhGo9Wb4HQ1biKCB1pBQaAIKTZa7NmlK1hNw/1XnqKzLYzG1xWo3u6R5SJuxedWBGQNkGSpmRwZVQCfp8gFIJ4z6btAAIm7LVWhYAqc8HuJ1Fc9Vj2ltiJMzPln0yEOsigOgl9GaC29uyM1AnZCYKew2ZLevF1R9A97177G5bsnx3AUqTQgMCaJ9O2N+1QCKQHAcNdeoQBkXW8EnNP/JRQHSUCiVOCvLUU6oRE+n6zhc5c+iAPKW14gdNQJ7PJ1AKEWZwdBI4cZA6IvSaZOolxEUmfxkUpSHh/KwiAm2izxmgmh/sMfYGmBRZly8CkZTcN0C2ZCO7DcsnPcJdg9QGyKceYWshPtkj7Q0492k68zOjJIA0KSR2Exagz5cTKR8ceXUkE5F6hZjXNrLlOp4GJCcRn/r8rJOiJowKcHImCrkKc05JXgMREO8FlDy5QUI2HiGnoUmTQsyKj+QF0AXEe4P0wUCkLaMiJUZWDklNoSPJSaSW1rlqaecudKDUO0kg7DRiVm65vYE0+X2rIvyoi2IkZo+WNEmENmRZSbKCtx4CgN8aCJsVY54UNVLTmhU2lGNpyM9PFBR2AgCThH9Gaw0c2mEi9RlA6BU9lzsDsfJIEyl/kpcw6wnupsU3LaIljxMA1J8MgISKSHtNx4KAaOLMBso5RTvylCkeLLxWIym7UgKlxOH3hU5ziI9js9j87MmNQ+yzlsBLqsNlmfA+QaU5J6+NwCRnBtEk6DNA9/scopEVUQgihwcRcJ7DgsSsLPKClE0JEDlHb2rCHCqU2xdOIDWxSpMDsnwmUkIhijlEJBHIq0E090t4QXVxKIGc60EGoDXJDoAC9heu+ZKVUXn+ONUIg+4DYJY4hQ/XWYOjHAZEgDAtXMvJmjgrR2prJh07RLCYwW+qCIMYmVWhRIt8sXWoQqLrZ8BN1yxCBQ5LGQtm12H+zv06BNI8pjdUWb4cjvPY8Qc3Vt9/l7DY7zCw/E6T93z/T07Sf/Evf4xGOozR4D5QKo5GOiikwvDK7KT7aLGSxFw6ZgbE+jwfi0lUDLARaz1i5xticsyEP1Ik9BmodMoV0h6XZM6NafP1MZMJ0VOiRJUvEgl3nmj0OXUDQAQ+PqrMcBpzfyRMTjMCoJB2jFEhJmJVtJJzNioYGXDvCKxa6bF1DdpsoZ2iKlbIlZ7gM9vkFBWsDIv662sBFIY4ZgklhkIFq3y5jol5+Bjn6KyZ5Jh1lNlCuW4+PgWNIWis9ETXyAgtAvae2AnXmZ2U5Ta3KxbkO432C0KgmERJDwCgjPdmpNQPp02msI+qEB9xrkweO6cTYYZNJq4QWfYsK2abrFMocNtcHxfutwuqMFZyncw2yalN2oqZj+tgKzanVglRljY5bQnn77TMiJrvIVbIVJgv6/d5yHPGx3xWrISckuQwB6vVHoPThRGx1J/HzPk8l6yFsayNQq0fJKRAcT23OmB0GlrFQlbDdVDKCJXrSkX+/WSKhR5A7nNmgq2s0Jz3lO/nwukitIqIiQBy/Zkt4PyZ0yKsGkqdwn3U2X2dGQhdoFyarBRiOQvMpDvcfmN8Ud7U5zhHKq8/Vhjx/LmsgLI6FNZSVhClJDCOuiiNfJBlDJwawdpQlA5KRTinKW2AV+SeX22G5nyolFtUyvm+On0B/3dOkfJAz+MReU75es6nWqdE4GOsuFGKvBconyj9TnPIAdfhRk2KA56rkNs2Yc55mccSnKK8n4Gs+SqnW5A1I2XeoHO/2b2eLclCkHIDADFLMugzcU5bJuhcykA+8aafS7bwl42or81PKPKK1X3MISBMLPk+EcXML+AluewPGaDLygTCG2SJBRdBif/n2HmBzCcgK8CBYh1a1MnnalDDx9hiYtIMPniTHEEgpY7Xr0FCrOqv8nvyOOqcjCVGn62fOd2BcOTS/k2LcFRvcW9n+SVQexkccR5RGl91r6DxknUdBaCVHJ2zo8hik38YFwtBbvjcl+IOWax2+foqTvUYeBKZ/4BCHqr7SqztDJo4drvIIqIAGgAl/rq+jvtbx8svxsefMePV2jDL7ZT2spW3xMYnLAFTDUAOgNACEHGpOsqgtHBMVPcvXEzLvcuvD8ZRPVvHrn8Alur+Vsdq74JS/7taLIEHLqaPlQeWwCPjfGCBPFYWk/iwnjfec6TNQ1m8Vamu/Yt//i0g77Hvpx+/95/8xuv9s1/9t7/1sQHfcYvlEA1+NZ7j2q3hoqK0GVGhDwZ7b7ExY0kfsXUNTm2PrWsoDYUZMQRdQNHd1C5AjJW+pDP4q7v3yIW22sz7KEvuytupQ6N8ocC/n4iWHwB2zhaXWwYPWhK1uwsKl+0OPqmSQ46BlxYB1+OKWG6TgJFkYeRUClwaRZvTVnl85TbUh5wK4aLZ42bsMAaNMzvgeX8CFyi9AG/mf707hcmbLqMCemfIwieI4dOqUFIhAMDgNUzO2Vana7geVjAqYPRzrjymix/y2EyWW0gCjQolH+KYXWg5l9mQAdDaTvj8/pxo+XMKgZWhVBGf358XQMNAR2SAxDIEUPIVGhWL3Pg+ISjPWkiU21KIhM9vz6Az+JpKvxTqsrKUb4zz34UooGQq7XBfuN/3o4VRES5IAkhDU4ASF95Yt9lSvh3JchxTzkNnHVyQ6IzHzb4jwKkieqcXAEvJhLue0mN01uFuoHq0jDjrBvTO4LZvoTKNfw1iACzWKQPCmm3U6rAAbC5I3E4trKZchtuhQWcd7oemxANz6gqmz98ODaz2GCdDloswk2ypnJtMy4iQgD7Xfbdv0WaPAnZ5JqBjiyxormRxhV63E3yQuN2RvFS+xuqA3UD+WDHKbOGmdseK8EvnNcPXah0w5s9KRQSni6XfTwYnqwEpCdzt2jkXnA7Y7tuSf06IRO7XJmI/NAWwkKUYGCddrMZdM2HXN1h3lBtyCKZc3zWu5D5kWQyjKUDZWnLb3/UWxgSEDGb5/rPNgPt9gxgktAnQOhRQd7IesOub4ubdZw+DcdTkxu3nNABIgqzfImEaNWzj4b0k9+1pdiePUcDnjbM25Io+jhpK0bhDIP86IRO8JwDpJg1tAoxxmCayOruJcuYB5ClgsocAx0DL7HbuHKXrOD/fYZhMAaNtRzHkfW/LWosZGK82I/p9A6UDbOfR9xTvPfS2uIXb1i+eV+9VlhvtcmOU5ZqQwb3uHKZJQxna/cZEFlplKOVDsxkr5lzqT4yzddqspiLvFGdg26zntB0pCpjNWLwggleQmj0SJHQ3YhoMVpd7xCjhnYKQcfZ2UBExUE5F3TrEoKA3Pq/hWFI/+ElBtR7GeoyjgZQRSqWSR7EA/EDyjl5Cr12Wh4SQgOL8oYMpwDwFQQBeRvhJl5h5odLs0ZBEyV0YvYRaZ6+BbPEWKpW16J2C0hF+VFCngeL/NbmCaxsw7b95uhF5QtZ4Ek4kMJ6o/2FQZAGMmRCQczFm8C3OArkqOwVhwmytjwLiLCugfH4HiTmEoFZAJN5ZRwBXI8XTC5C1vCHOgUW+QjEDeCYpLJbQKGgMAqRQqN1DdVoqEAK5OxdlQgbEtcUS2UIbMs8A+cXmeoJAMJEsr6j6xlZTtuwWJIoZENSALmawW9xFZ0BcgP6h+awmLeJz/D+3Sda+OFtNa+RSjaMcPgSEB0qO2W19Bt6l3RrcHQKuGvxWCoW6iDSDRAaV7P68AF0HwJpj+h/1UQXeHjQCS3m+rqQH2H7Z5sG5B1UeHqy/fxPw+lsvCb+3WH5Ly4d/fJ7+8//hPyrWxTr1hk+qWGQ4DUfZNOcVGbJlrU7bcSx9wbF0EsdSKtQWO+rH4ykPjh2v+19/f9v2lyk+Xt+Hx1JdAHiUPl6IVNK4ADiatuSx8b1t2o/DdB+PlcfSWBwb07H26nMMpIHZcgTM76fX3f+6sR5N1VHJ4PCex+o8lnLksLwpLQbnRaMUFPP54pFz0AaXd03ncFje5v63TQtS1gbXjTf/hhxLi1Eff0yeh9e9LuUJv0IZEB6mqajrYoCZ0vG23zWNxrFxcp+EOLwGC7fxuu+vS5HxNuk2XtfOu/zEHMvBdtiHui+P9etw3/G6zczyxnzXwe7qWAqOo2N7i7Ee6/ujKVuObajetvAO8x3m7cH9j16Mxx/A152r+/W2bR3W+Vj97/C8/L2Uw53xMQDymvLaNB7HNtGv68frjj86b9W8PPY+f5f1/ppzS4vhY/dX7+7H1tlr6nh0NbxhDI9axN7UhyPlraxqb7luv6mF7ptc90Z5f4P23qn/b1nnNyk/+affBovle+nHT/8eLJZf/Ivf+tiA77jF0iWF5+MpAAJfO2+LxU6KhCEn5PY5z6RPClpQfskpuywyIGQrZHFjzFYWKYjkp3afZODDeQrZJZK/c53A7DrKhe9l6+To9cIKyiUkUSyDKYnSN+4DJ8p2+R5OSs33KpHQO7IssSul5mTUOWlzTRrEboj1GOtrARR3OrJUigJWfCaR4WMMVqRAiWHle9jVkD/X9xx+ZzfCmLXqrH13QZUE99xfAOC8fQnzBo1jSWtwWOcH1cVSpUt8KrlsVi58B29ETnatVFy4EAJkeWFiIJ81z0zeIwQWLn50vyjtxEiEPEz0U1uzOCY0BFGsQFznIcip29c6lrq9V8XCUCwgFSji6xYJp6vvbBlhLTqvIakiQrZ4ChmLFTCGnKi6AlNFXkeSWFOHlsBbyogYFKQK9F/Gcn1dR0yi7AY48TWzEPP8pFx/iijxo7xuCsCq3O44tkkobm9OnM1xsfQZFCvq8tw1oYyDz5U6IyjGCijWF+5DaT93IeZYxTgpIgqq3CM5lRIJKbs6ZjKp2k2SLD9VbBbvGycF0TBrR7aa8I4qp18q8b8yIYUc9xgoBrXefbFFpnbvLG6Q2dqymOdsoSmpmOrzfD0fZ9dJTnEiMLto1umJuI7abTOB4snYxQ+Y00blmK5SJ0CulWyRCfmzE3NS8ep+we+ZKvXKos9VvRz/tDguaC2wC2Sqrie24nmuapfKOnasxHvl+oTPcWcJyxREgvqdTIQcyRJap0Aq5CeCZMpxdlw/p1BKAiX9E7dV0o2UMeY1wSlDFBbpRgRbm4BC8MNWmToNT0nbxPXmcdbpOqRbkhqJIOb6mOlTp0LaMxPFEAnRNy0Ld04eP+Z2uZ1jqXakRyGTEVW6lCToHH9GHtYyNVZuK833yama87dyhWW34FmORe4q0Y8235ctdzK77HLaoRInmOq5q/pYj5Pbl3SupH7J8qrdbjkesU49UuoIy/YOXWEX5XVKjVouh8D0QCnwAAg9Zp2r3mGHqYEOrY6lv49hSW7zSF8Ocf83doU9JjMsj9Xt1XP9mHX1sLwdoH5zPY9e/0g5ZIX91jLCJoCIK343y3caWGoR8XH3Cl9PG7gkcdIOkCLh3rUYo8Z77RZj0NAyYOcbrPUWO0+/KJ1y6IPJoI6YY60JBXCe2x6N9IgQeDWusGnHB4nlGVBufYNWuXJs6xus9ISYRIkhrK1qWkYMwcBHiScbYo8dvIHO8X5SJFgZsHVNcUG10sMnVdwzGeBxu63y2PqGYhqzK+zHmxvsvcUUFVbrCXsG3ioUgH3vmuLGyy66wGyNNM1QQC/F5UmoKtYzREkusEHDyFDAKQNoIRIGb7IrbICLqrTlAsWRjkGDE7wbFQqItzLXW8XwrcwEqwJuhg5GheKmySCzdoOVSNg5S/vI3KeYBDrjMGY3VgbmH5zcQ4qEr/sVlCCmYI4RdAeW6FbTTmnK52vQamSEixICFN9J8ajklsfKAhdlcQWuixAJTWbi3U62gP0QJS7X+8Im3Dty42I31UOAza6xrFDga08aIrMacrxmrUTwVRwe1TnHK/J3KYhxeMpKCh7L5BXaHC84OI3O+BLPyTLzGWSyC7DVFDvJygIu7JLKCgjnFYwOcF6hta4oAHjM/JnjFX0geSUA62bC5BXFGObnSitS1vTT7ApX4odVLHGVMYkSG8nrgNcmMLuKA5hd462DEAn3fVsUISorZ3h+ASLaYllx4fpqRYXVFF+5vpjQT2ZhzVo15OabEsXKGhUwTKYAeI4rnXJMJEBKDwajm3bEdmhKLGStWGuMx360RUnhnIY1Hs6rEmfJhd1l2S3UGorvlTLC5+t5fjkWU+us4Mp9IyZnjtOclTUhkGKE3Cx1ifk0mRTKVWRYRcmRrcbs9nuyItKyWsmjZMQwmgO5JDTWox8MlEqwhj63rcM40lpJkRiXUyJlEI+Z22LFkTGhKImESMUtuLZopyihNF1nbVhYCznlFO/qdK4PmBU93Bc6JgvR2jjqzJytIPP4UiR3ZTdpdKuxUjKl0vc6nlWbgOBlId/iOU9JwE0aSgcYE8qYpEwPXZs9udoGr6BMZhrPc6gyY/k0EtGQyM+blEw2pAoZmhQUR4s85qLk8YIIfpIo7qYip7gCgBQUhAqIk4Y0ATErClMSEMYj9t/cFRZZ2QOQckhIUoQygZVQMZOCkettSqIoMZKl2N4UqvNZsVPYq1k5g6WiiRVSdUyvbsjNl8/LTHpUK8HI1Tg/XyaQG252NUbMTNhcP7uiCixJYpIgIKdZkQQCzzLRXDAxVVZosRswNZqKK2xR1nBhBQormWoX3oX7aKVYqkl++BiXQ9BUgGkVO1nAWCb84es5nvUYgEyY83GXY/NFM9inD4vv3OeEpdKA630MrNbnDwHjIchLR/p+BLiJx8Bx3dbh/3jkhmqcLIo3gsl3wXjvAGIfb+jhxY8N/bdSvq2g9zdQvtPAch8s/o/r78NlghkAZaPJVjsXZdm0qcqSOLsF0gaVN9a1JY43mD7IYk2r76Vr5k1zyj+ONTEJA63aBbJ26dPypGwOefPLbfAGGZifqWPuqXyeY/t4s/4reZYVI3P/6vQWvFGrXbti9RJZbtboWG095O+1xa5272NrHLcx1zuTa/B/vl6pVJhe2UJXb8hoQ4cHbLCH7oh1Hw5VfXPcypym41qtSebMulv9CpQcllnOh26ptUW6fqfL6rr6GMVPHagED+azllntuljPWS3Pw+90bf6cACGBl2IDtthBLOV2uNCOuXECWFjN+L5yraBN0U2VMqNYU3kjwhauxY/iwQaiXuKVVeW2/hXL15Z2DpjzUgK2qqP+lb6grINC3FKtjUPXxtkiObdB8nw4bwCw5Y18TcbCm6rq0i33tf7B5o/1D3++dy+7ZUwOgJ1q5zp4U1FtxPZ1GzxnVX93qputdwcMiou6BPVhqK2P9eVlU0h1DYekMIebH66fx8oby8MXHai/o0gPxjZWm7XxyDzUZbxpl2MXc18PN2BjXmdOAEPun1PNPE8JcKI5agmov095I8ipT0aBHNuU1xkrW/LG1h15pkQla8eMlwcydbX1MooH19V7YC9oPLsbe7zfVf9Drt8fijXPUxQZGxxYZpGAQkfF74s04wiR7w35i4iihOEB9Ozxo8V9D1VfF3vrVC2JNGOf+lhA9fjx8s1zeLjk36UkAcj6eaweb5kbEfOppYtrnvPFeVQ/B5gfx6Ob9cNnSszGfPpuls/Tg2IW4Yr179rxwQKHz8k3uWYBQN7GUFO/hx/I4CFIe1RWb6j7eP14PYh5zRgfAMfHyt9h/b1LeWM/gDf25Xgd1fvo71D327X1m23j9+Xvv3yngaUWAZ9urvHz7SUA4P3unghp9qfYDQ0+Ob3Fzluc2R5f7k7x8ckNPrs/hwDw6ek1nvcn6J3BZbfH57dneLre49XQodUel+0eT9stdt7i/3nxDE/Xd9g6i8lrdMYhJoGrbgctA356fVUIXZ50e3x2c44PT+8Qk8CX9yc4bcdidUtJoFEet2OL3Wjxw8uXmILGy36Nzjh02kGLgAvb469vn2IKZOE7awfsncF+tJAyFjfTp+sdhEi4anf46e0T+KBw3vW4HVr8o6ef47PdBV7u1/jh+Uv88v4CvdO4Wu0Lq+ovXl1g3UwIUWLTjLjZU+qWRv//7L1Jry1Llib0WefNbk53+/devHgZLyIjSSqLpIoCMpGYMEEqIZWUIyZMQYyQgBH8AIaMEEhIMGICDEBCoiSkQiABlSmCysqsiKyM5kXE6257mt15Zw2DZcvcmn78rQAAIABJREFU3M8+9937IiojbipMOjp7u5tbs8zd91q21vo+h84qXCwaVHrAEGN/LvcLLMoeC0NgRs1gcH+xx6tmgVXR4zAY4vcMAtuuwLrs8XyzwqrusDADDoNBG6lgbg417q/2uDrUKI3Frilxsmhxs69hjMUHpzf49PoMj0+2uG5qNL3B+6c3OK8O+P6LR1hED5ZWHjaiYlbawihHaLoQeLpZw3uBqiAeTR8E7q/22EQAnavtAnbQ+MNvfgIA+IeffRNGOzxc73Dd1NDK4WZfT8JXH52Qd/PlbpnQQEtDCLgXiwabtoSSAe+vb9BYgxf7JepiwK4tcb5ocHmocVa3uDrUhIQbvQdGOTxeb3FRHvCj6/tpU+PQFnh8tsW+L/D++gafXF1AK4dlMWDfG/SWvLpFRA59tVmiKCwerPZ4erMGAKzrDr9370v8ZHsPzzbrtIYA0DmFfUcUJqWx6AadwpvrKOMhhqGe1S12XYFFMWBpeuyHAlf7GufLhmh9dsu0bquKAKy6QScv5dmiwcvdEqd1i21bQkmPfVMm8Ji6pDEtSvL43+xr3F/v8WKzwuOzDa4PNXqrYK3CourRDRreC5wsW/JE9SaBIn107xIvD0vc7Gj9jLFYlj1Oig6f35wmr1JRWOJOVQ6bQ5XQTM+WDd3zW1rnZdUnYJ667NH2Bt5LLKoO+6bE7zx6jkJZ/KNPP4CKXgCmxkHcoNHa48kpce/+9PIiGe/sfW8jRU8IwHtnG/zs+QW+/fgFfnZ5nsKhAeDbD1/iuqVnte0NLpYHfPbqLHmX7p/uIAA8uzzByZoAWw5tAa3p2fxb732G/+/L99F3ButVg1XZY98bKBnwrbNX+PNnT2CtxHrR4XqzwP3zLS43S5yvD9gcquQBDF6grntoRSBFFyd77LsC66rD5XaJ02WDbtA0zpY8qufrA5ZFj6c36/RcDtHzV5cD2t6Qx7ApcLpucFK1+PL6BEp59L3G/VOiBnp5s8L90x2udouERluX9F5i79nf+eBn+PHNfVzvayjl8SByFf/4+X0sawLNaXsCofnmxRV+9PQBVssW751s8MNnD/CdRy/wyauLBF7z+HxL62oIOOfVYYlDZ1BoB608Dp3Bg/Ue1kts2xJaOVwsGnxxfYJFvLeb3qDvFc7WDQ5dgQ/Pr1IkBwBcNxUObZlC6B+e7NBaTffHoJMX/P3TG3gQyvC+L/DN00t8cn2Bylhc72ssSvKgN73B45Mtfvb8Ar//jc+wG0pcNgtU2uIwGFTaYlV0uGprbJsKT043eLlb4htn1wCAe+UeV90CrdP49OoMD9Z7fHzyEt+/eoSTosO6aLE2HX6+O8fadOi9wov9CrUZcLlfpPfl8+0KdTHg8XILKTx++OoBTuoWSgTse4OzukWtB3x6fYbzRYNtV2BZDHi1W8TNRIlV3UGIgJtdjfcubtAMBofeYBg01osWj1dbSAR8vj3Fk/UGP3l1Dx+eX+HFfoVV2aG1Gr9z/hx//PmHX1vveHiyw5dXJwhBYLVoU7TGwgz47PIM60WbZH7TVrBOpnfSB2f0m3DTVLhYHtA7hSa+s947I51h01YJjG1V9Cnq5CaCso1AYwa/+/ApfnpzASkC9l2B9042uGrrCIDnUpTJpqGNqIfrHV7sljir2/TbcVpTVNKr/QJdp6EjANKyokiJZdljcBJtb3C+bNBZnZC6S21x01Q4XxBtGlOePTrdohkoImxZ9Ni0JfZNiQcne7y4WQGg6AET02RO6hbOywTsxs+li5tyRWEjjzW949umSB57bUb6tG7QsFamVBLeFO87AzVDteZUFmspvN/2hApth1gnQ932keqsbU22eTlunvJmsY5RCJwOIkSAMQ5dSxEnInrlnaOoJnZGTHKtxRjFExxFG/AmOEAAZayLOEdRJi5FGigo7VKqSkKvjpEgrif+6JSekVnDnLbBqSLs9fZRPvnGa0qHsZIQjmeb0LzRTAcweu25v3hNcpTkxnzcNEwbogAYuOvYhvCkvG5D4Net/DX2WL7T4D0f/I3T8O/8d/8GPigu0QaDn7b3UUqLR2aDR+YGf7L7LaxUh+thgcflDX58eICPFy8wBIUf7x/gzDQ4Mwf89HAPv7f+HD9r7+FBscXOlviyPcWzZo216fAHFz/BX+wfY61b1GrA9VCjlBafHc5gg8LfOPkCz7oTSBHwol3hd0++xPc3T6ClwzcXl3jWnaSQVgnK/bxXHnBmDvje5Teghce9ao+DLdA6jcErXDcVPj5/hUoNULHdlelwappEbeIh8KJdoXMaN22F3z5/AQB40axwr9rjBy8f4bRu8XCxxY+v7uHJeouV6fB0f5IMwO+cvcBVt0ChLF40KzxabKGFx8EaVMriy8MJGRXxIX642GLbV9gPFKq5MMQNen9xwG4oUMRwQS09VkWHTVfhw/UVXjQr7IcCtRmwNi1eNis8XGzx+e4UDxZ7bPsSjxZbfLE7xXurG2z6Cp/fnOKb51f4fHOCk6rDuujw2c0p2t7go3uXuGprLGJYK4euNoOB8yKN4eFqByU9Nl1F1CPRIFyWPaHBLjcolMOffPJNAMB333+GXV/iuqmwLHtYp3BvscfgVaI2YWPtbNnAeYll0WPfF9DS4yoqdD4QJ6Y2DifLFp0lZNebfY2zFSnnJwv6Ma20Re8UBidxfbOEHyROzg8UwhsNyBebFfGMbiucn+9gnULbGZTlkDYBXER1vH+yx6E32O5qnJ9SqPWuKdG8XECuBlyc7bFvC0KQBKE0loVFAND3hPxZaItuMClPk8ObGSHUDgo2UjEsli0OhxLeSizXLXZXCyzPGvRdRE01LoVStvsCi3WHZl+gqIhCYll3ab0OEXXVRoTJxbLFflthtW6xvV6gWPTQ2sMoh0NbJPTTw6FMFBEcKnl4tYBaWiyWhNbatYQOGlqF8qyNhp5D1xnYnsIPi3qg3FAZ0O8LCBlQrSh8sG8MippoYIZWQ5cWSgX0rUZRWXRPF0AA6vd3sNHz3R8KLE7aZMQ6q+A2BsILyPMu/UD6yJ9pSptCBu11gfrhAe3TJdRFR4pD5JCzryrifpOgsLODgjnvxtzoXQE4geK8Rb8rABmgS5eoMOQXFdyTDrqwGPYF0MlE/6BvFNwTUuB9o2FOOgzXFXHm7QxEbRPfqJDEOwgnIBcWfmuA0kM0ClgPxOunyKUkyxi6uNeQnYQ/sZQDKQNgIrpmo4HSAUPk5NtryEbCn1rAEjcgbgwpWmsLsTEISzvmc6b2aC7lFwbDiYdfEAKn2ktIKzDcHyAismeIfILFK4X+0QDRKOitxPDAoniu0V+45ErS15o8io48L3YZEApy7wkHhDJAbyO/aBUAD+iDwHDqIVtSPn0REEyA2in40sPcRC0vhrK5OsBXY66j2cqU0+eLiF5pAswmKoQK8BowG4HhhPLnXB0gW/KMeROgdxL9PYf6c4WgAbsIkAMS0bzqBVwV4MoAs5FwiwC9Jc+Q6gBXAEECw2mA3gmYPdCfALIH1EB5i8OCPnsFuIry6exiHKddUI6ePpDsuosAdYj5fQWgWhrLsA5QjYA31K5dkoIZFKAb8jbbVUB5KeAMEAzlB+qG2qa+AN0A/SlQ3AC2AlQPeAMU1wHN47u93F9VzJbmDkHjlA7kNR2A/gxQTVyPA/UXBH2HoLF4Qzme+gAEna3fluq4SEeLEMfMa18ieSNFoHaqVwH9mnJLfQHoHdXjdRUBEDbmlApA7wFXk6y9oTVVHSB8gF2QzIWl62SUl+riGA2g9wFBiTFf1ga4UkC3lIPrKjIEzTbQnME5rQK+BMwuYFhGI8oh5VaqliITXCEgB6I2CVqknEs5hEiLQjJzJdWjnN0xtzQokpdkl7fn54bqeB1zWcPoOeW8WG/Ge0TY8bwIUU59gDOjJ37iMY3jvJUrGgBpA7wRyVsrQoBXo9c1zymlcZGMAdziwAQwIsBG6hh6NqLcVDYGkV0TqVK8FpAu3O01jnORbrTd8rnMc0lfl7M5t/vmgUmT0CrE73chowlBcsls06PezbmBeqTO//0//Me/coCbU/Mw/OHFH/3S2/1fn/+Xv/K5Ae+4Yfnx7y3Df/I//j4kPNpQYAhj7o+Cx8FTPmXrDRaqw85VKOUAHyQOvoARDkY4tN6gkkM6dnCk3DJf5Vq1OLgCRjpIhNTPEGiXuZSUS+dA+W4L1ePG1lDwKKVN9RLwDSRMzLvc2xIeAkvVYQgK1ivahfYKterT9QxAxHybAIVV9l4n3sul7ggBF4Qiu3cFJAh8qHEm8Vy6INDHNpaqj/ydHtarlOfpg4SRDo0zKYzYBYFSuoSUO4Ybq4Rky9fS+KjNWg0YMjRZIzwaZ1J+JeVF+sTxyfVbZ1CpAQdbTACZrFeUw3okgMcHEfNBJbR0CZwnz49lsCYGegKA676mndOipbxIr1Meqo59cxi1jevJObZaumTsMxeoh0j5sNwX8XeqlM/GYEs8bh9E8lwwvU2eyyqirDkn9i4kV/aOz+vuh4I8m3F8eft5DjCAZETzuPk857/mFCR5rqfJaGTmdZiehutzm3muJ5+f5zWabMMCQAoVz9c0YET3lSJMaG54XgPzbaoxn3lEjxbpegCJzkNLT+k/GbgVjwnZcc6DZG8rn2OgKV6nIdJJTHgsmS4nk01vFepiwKErEo8ln+ui8cnrb52acHO6uGtutEuh+gyKJQVw6AyqYkiRDzamDPDcCk0GOwNosex5rvluM4fsc950ylGVPslWZPeYZbqYmIMrstDBtGGdvS9zgCvm3QTI42GzHNL8OeDx9b1KdBgAIjjWmAeZ17VWRmqWkTuTcgrH+bJhnzwBajzHofrzcHofKA81AV5xLmH0CDirJrGCQhDtBn8/Fmovopci6WHRs6AisJcQkbOU0w2i58MODLJFyip7KHgsQoJArwTl5c1Dw4X2lMPnYm5eENNcukCGn1DjxkNwcjzmBTj+lTk3Uzg2f06gTBhBoEIGDsV9Mb8nC8WLMRaW29Ce6uXgSV4QPcbXLdxunOsk1JrnIfh/dp0IY1i8QEZrEU8zF2T2DsrDaEPuweHzVlDuX7xOZO3TwfjHIefH8gh5vHmMbMAkDYHHn/gds3o54E4CqcnisJMRJkajKPXBdTgmej5HNg6CmADIJMOCDe1Zk3PNYGJvvMYgSUabz44fa+SOcqvt3PrMvx+57pixNDn2uv7z48fkd8f3o7KYt3Hs+7z7N23nFyh39vEmJbv2B//ZrwEqrHkQ/vDsn4Fh+fK/+pXPDXjHQ2H3vsSf7T+Ag0yG0pxiJKcWYSOIiw0SEhEZ9gjdyJw+JC+5EcZGX27UcTlGFTIvc9TYuZJ/jMIkGQAzNFkuxygC5mPhz6+jCpn3Nx8Pf8+NCFb6c0AZ9xpZ3kVFcqzPse5ynOutFsdyF+3HXeW6rW/J7a6xzD8DU8U2P3YXLYI/MvgQBK5QHzUaj9X9KrqMKU1DMckvfh1FzKQd3P1jnX9HPLZFeWt8d83jLlqO183leDvTjc7XbH5iz7/zX9HXXeM+Rn/B/xlg6C7KDx5D25ujm7Z5H+zBbbrjYCP52No76hzrHyDwm7tK38WfBhGAUIwn8q362Tje5H7NS4fXK4B0YKZt8fc36IPl7+ztc3ZQRxU1l8nE2dF7fqxQTnb2E5o/ALNbyjN3XxCYwgTz/MT4HQBbC6+jbBHi9vvDumysse30bs3mcVS3tuPJcOTBDgIIOXDTMPvdYUMviGQwBr5eYDQK+fo+uz5HuOV6bJzM+Rsn5Y77gJF0eYzzhNFbCaRvWQZ5VIjCyWgYCtymD+E1Rrp2wm/Ixg0brDNr6ZZRx00mz5qYfKdrsxdLmMpVjHsX1PYxLxbnYefjz8ZEc7j9ef5KFZM54/YzwmPL5jhpI//sZ/b6sc8zY4rbOvZTOTHcgNE7d6wcm9dXlTd8X712bMDrjdp5vWPHj3w/Zswe7StZ5cfH8Np2XtP/25Q3/Fmhbuf9/IKP+y+9BCCE36DC/lqWxhn8+fV7KV9w01EOQqUHrEyHL/cniei+0habtsKqpLyvm6ZCaSyM9CnPkkMrBy/R9AZNRyTaT043uDzUMBE9sY9em23MW7hYHrDvDaQgpMfTuk0k9ssy5oHNjMfKWBTa4tVmCSEAE70NjHDorMJi2SYPTdsbaD3mEnBcPyuxw6CwWHQQIJL1orDYbWrowqIsLQ67EmU9JPQ+F/P6Vss25fh1nUZZ2rQbLmVA33Nd2gkvqwHDoFJsv1QeQ6ehCyZYH6kkeIe8XnToOhNDDD0hCnaGSNfbAkU5YOg1ympA1xpUdQ9rFbp9gXLZo2sMkaprj+5gEAaJYt2n/hhAyHtJNAsBiQ7C1JRnZO0Yzms7Teh5XqAoLZTy2D8nQ7U4bylcsVOpji5senMGL2Gb6DGOdA2c6yAE4DoVd/JBYX0yUEifE5Daw7casrLwnaLQwBw90EmERtFO9oLaFjJAGk/hhipQiOHSkuIW6RGYBoKpGdTSEvVFqyAWpC2GXkJuNEIZgNWA0KspQEsRd+CtoH4Uof0lgmze8e5lIs5m6HoUHuglfa8cxF7R+ONaQIUUqig6SXU6RaGcAXQ9eyhY2eR3bukhWkXXHBSFLcrYZi/JcyAAdBIixPFENAsZQw1Rxn6sJKqEXsAvx/BGWBo7AuKY4uZAT4paKClUUliRzidqBxEgBolgPPQNhUnaCzuSbveSrg8AIyuqRgJewK1cAnVhT0PQIc1d7RXciYW+0bArN/Eo6BuFoGPImAqQnRzbkwGykeQgWVIIZhA0N1ZOzbXEcOoRTIBsJWQvEv2Daih0E4Jk4GsPtZfwFYVX+jKMP9SxjvCAKwJUI+FNgOwFXB3pLSSFaDFthGwlhaXVAchC2CDidSaGrZkA1UoK5atDpI+I4ZAAXBWgWgFXjPQWREEREGIoYHEtYWsKPxVeQHakRA9rD9lTO0TXIGD2Av2Jh+oFyeDEw2wl7CIkhEd9EMi9J74I8NHhKDyF4emWxuA1HZedgFsEiIHkFRTNWfZA0BQqC2S6tQkUjsf3QUvPRsjvD0nrxN6boCi80VVxHEWkBQkUJqo6AbsKKK4ovNAXSOFxIgDC0li8iWGoJaKsxhBCCApnVY2A6gBbU8icsPTflfQZEnBx/BxKKUIM8XQUbghQuKocSI5B0WfhY9hqDKnlNtK9Zse29GGUZZAxJLeLMixJvramkFhfxDkqCgftT/G1i26pXWAcM4dH85yCpvXgIKqgaJ14zCnENN77QcVzgq6li8YQTwDpfuLiFVBsA2zFNC1jiGvySoLGx23KLoaFDtP7EKDjKZQScd0jRQgEfVZ9QJCjAStCoPDKIcR7l87pJqQQXulobN4IqJZCZ3lcFN4ooIYQQ4YpVDMIjP0EjOGbcS5eCwgX6N51mZGsMiMn349i+pssrDNRg8Q+JnQofmyTBjvKY15EGNvN26TrA4QfZcHj4udu4h1Ng8W4B5FRuaT+PK1B+h/ifzceH/epIuVG4DUUKRw39XXHXPI9vIk8xUx2yL5n7czLLePzdUbzEQM2H8udhuyx8g5HZb6r5Z0Ohb345x6Ef/O/+Xu47muC+9c9fJBorEFjDVZFh8ErCum0BrUecBiIcmNVdOgcgZKU2mLblajNkKghajMk/srLZoFl0RPlRSDKCBcEFhHEZ9uVKdyt0ha7rsSq7AhsIQKr5JuPSlBIZG9VSnpvLYEysCFZKotNX1KYWSDqARepHZiKAaDEfAEKGdx1JXxAonI4q1u0VqMdNJbFgNYSKEtpKCQ2ANhFgAnqwyUaBg67K42deAub3kArBxXRV50XCfAl57IEkBL8m94QoE4E2bFeJtqKRF8RQWyYjkIpj2XZY9eWBCBjFbyXqIshgRGwtzb3GOWhkgAZ5MDIOcky45C9PoK/MCDI5XYJpXyqI0RIVAfcRxXpIigcERN02zH0ECjNkHg32Vhn6gyt3YRCgbkiq2KAVh77tkhtWytRlpSPWBqLpisS+ACDijDsvxAhUQ4UhU1UCVo7LKse7aDRdbRJweGFHAYIjKi6zokEgOD9GPrHoYJS+lS374n2gTciypIoGhi8gEMLpfKJesEYl/IQOXQwBEHAA0EkkBk7KJjCpo0IpmLg8ELvYhhmpDBwTiSQg7IaYK1M9BjM4amUR9eaNHcpfaI9yMeiM1oLgRE0gdsK8dlkjs2q7infc18mD6RUjrxg/F0GmJgX2nVmEtqYaDJiSGFRDugag2rRo+vMhIagrIbEecrUFUOvY4gloOLYba+hI78l83qGACyWHQ77MlFRyIx3tCgtmkNBCp0KcIOELi1sDAv1brwfEABpKAaCKSoSsISVkCqn2KBrlPZERTGo5LxjWgapQhwnhT1KQ4AdttcJUVgXMRx/kFCG+uFwPhFpC5i7s1r26HtNABQijHJpzUizED1turQYGgOpPZRxGBoDUw+wrUlowKqijRoR18xZSX0xGIUj7lFgDCkVKqOhCALMGyqNQ3ASqnATZ6cbZOILDQFEQxHlk3giIz0F3cMkW20cbE/3WrAyo5Gguq5RMMshyW5Ex0aSe7BEWeEHmdpn6o/gBW2IFY7uizgnoWLUT8y5Dh5R3oi0IHEcA8kpyadVEHFzhnlShQzwnYp0FXGMyduLkVO0l2nDDuxt04HmLGgjTRhPm2ulp02yuLklSwe//wX21AsPdNFS4I0tXjze7GJqDfb4sSeu4E0uQRt0fM4L4lYFsg0/TBGd841AxGOloz5FbIf7DlldkfWfc7/mocex3xy9OBmnKbxVIHAIcHZ8Eq4836ALSH3RxlyAGMRoPPFrJD63YkI3gtvzYIPWjvVCJqfkec3aprFPDaYkX2SGXR76y/1xyY3AzIKaGzn5cFM1GSae6cBGJxtPuXKI7Dhm55Gdn12f+gvT68W8mSOyyed4tLzGRMjn/ZWG3tuYGrN5UGdv2cYd5Uf/6X/4Kw8XPdUPwh+c/L1fert//+q//pXPDXjHPZb7rsT/9ZcfE4m4Eym0RsQfGH/Q44tChwhQMXo4oOPLwwqgckCr6HzkXJK9pN3vpcNLfnkLfvGAPBpBEHhELwlIoxcIlcerNobvRLCFaU4DEEwAZMDN4Ry5p4JJnoWjHX8IEP/SQHkiE4Ls6GHinXquLwbypmz2EsEEeBOwaSR8GaJ3Y/Q2+SqkHyw5YPRGxB+ffS8mDzmDR9CLPcQdz0iWzR4sVn7i7mfaPY8yCApoBvqRaTsR26Sd1m6g/8IBXUeAEl1H7QcF9C21Q+ATkeyZc1WCuJW07yqSl7Qj71U/iLT76wvaHb38wQoIwHDiYa1AnyfGm+zHJgg43uGNTw+PAaCwOx/tCNcKeBUQTFxzCbiBdoYdA2cg7kjH27JpCQSEx8072kPc/fadgKvpR9Szt0cDwQGOd0MLwHug7wV5KAFYC+z3gnal6wDXj2HjvFYA4FhhkIB34y4vr78bBHz0WAb+sS4C/CCI77cIsI0A6oDAxO8qJIPG9wKiDAidgDBRGYmeMhGfRQHqGwIQhurKMiC0CwgDQAYoSfc8K5qsrChJHhoACAeqrwqSl4z3YLCAquK8ZTzO943OlIW4zrqM99YA6h/jznaQdB96DYg90ZuYdYgKGj1TsojzDLTOsie5mmp8l+XPBt+7sqthFoDc1zAV0q47AKimhmBvSARbEAzuIcgbAtA8ZXa/8vVyV6Nc0b3Dnin2jKgWKBd0DwiLBKyiiwjooTF6sAXVoedgBBuRjrxW7Hni80D08rjoRcp2voOIoBFRgfOa2mPwEd5Nzz0sDCwzejbiMxEfV7OtoCskD6DsqV7ylolRrqoFhiUdVx1gl4Del3D1OEbVksGdPA96lGsac8RkCuzJjONnzw972NhjqRpMvNE+a5PXktcmvZNkXONA11J7Ab6g58BHr2/yxPQE2mK2JgGj5O914QKCFuSV6ghsRPX0HLEXMkjAVgKqC1A9fZZ2BFBhryDkOH5vqD4AOEPeFNUjAb0wMAl7i+AxAq3wfVSMY5WW2iLvl0qyDJK8XnKIMmTgn4o8jPybEiSgW41+dUyzfrOiuhEMR8aQavZY24qOBUX1+DeCPc46jtnr6DWU4z2hOvrhyL1bPOZ87bkECZiDJA9g4OdPwisxAVXh+xIA1BA9jJYAZJJMA8k0xOc675s8iCJ6lUV8VskTRm2LcV00yVX1Ysy3jJ58Bpjxhq1JJO8at+uzd1z+uyP8GCXAv4m555GeFTHxos1lNc+fpL5FBlIT6DlIbYe0Dvm7iRueG5R8D0w9logeS5HayusfNcgyY3LiLWRZsIcyenupYaTv7I0MWR6GCHEN2bN6l0MpN+hm/2/ln/IaYXps0lZejhi+xwqPNR/j/Pud5Q3a/9FXt/Kb8guWd9qwfFBv8e/+7f8DAAH0HHwBBZ9Adg6ecmQ6r6Hg0XmDUg5wkGicgRGeAGaCwlJ1aFyRvg9eUR3psFQ9GmegpZsQozfOQImAWg3oHIlyCBK1GtA40kD58xzQplQWEgFbS7loDCLTR/AWHwQqZeM1AX1EJeXCgDGcG2q9RKVsAmXR0mPTk1evUgN2Q4lKDdDSo3VjLlalRpCY3msUMpJuRw9l76dhvIW0sGHkDdXSo4te2RwUh+fUOo2F7lM7DATTO4VKWTTWoNQ2XdtZjVoP6L1C53QC+CkVeU7Zy7wwfQI8SYAlQd7KN9XSQ4JyaKUIkKA2OP/TRICfq5bAe5iCIweRKbVNYD02SHRWUwRnBG9h0BIhwgS8hL2pDB7DQDFGegxewmSk9AAZeoNTcF4kCHvBMo65UzYCq+RAN4kXNd43DCrDHmH+3FmFKtKShHi9D0ge8ByUhz87L6DkyOk6WJW8sslLHD3V3hNFSW8VltrBeREBaeL8sjoMKAMAWo1w68wVyzm53N4qesV53ZQkEBcGZeHcMilGGPPBKRRYzt67AAAgAElEQVTSJ488g8x4L7HQI9ANy42AuMb7l4FllBjzjE0cc36OgW36iLLLCLuIfZk4xgBE7zCNlb2yeeGQbgCwlqhQhujBz3NB+16PgDbS07qYMWZqGOh+1JrDtGkdGLBmH8PlVaTRyfliOydTW86T93iIIDlDDJHPnzsbPadKBXTML+sFZFxniJA88rRW7On1UyJ3AJZ0vQSEY10EkJKksYk4Xp53F++TBH8f5cnjOwySPGoygtlEbyuD3FDluKbRAxqCgLcCyngcBgnJQC8iTHMlAfJG5IAjAiOPacYlOoHKF4jE8jFMmHMTU90w1uf24vkcrGfClyow9RyxNzLEcbgIltOrcWy5EubHTZpE/MheFvbkALQZa8VYn+eUe7BYpkGkvtOmLHu7MI41FVags02LWx6bTM7ME8oemLSBG0AbnQxsw2OLhrqwAr6YxRe+RSHPXUgGz2TseX+WrY1szDG3M0jeEEWqM57LjI25cZR/FxzSGsb2HUZAID6cbRrxeQ7TnALv3L4ueTt5jE5kXjmRDD2Ww9iPmBp40Xhmj2Ty2vHzynVwe7lFJt/kmRPjdwDjfZidm8jviFEzyYENIspFpk5uGXy5cyAvdxgzkzV8032Mu4yxu85n9fLwVWD6aN3pWXwDW23extHyy2qH2/oK4/AXGsP/8pbt/rMq73C06FeVd9qwbLzBn24+AEBAPL3T8BDQghFEyYDKUSVZMU1opNHoMNIlSgnmBmOlv9YDGmsiL1RIiJV8XsX8w6R8xrxONgoYsXL2niUjL4I/5KiZACmgOvaXI4DOgW0sh1l6ARPREXOUSg5bZR7BHDGSjYJcqWcjgNEjXaasAVPFFyAFjhEl5+AvyZBSjjiUAnmj+DjLho31/D9zOJLRItPcnSdKDc5JzUsKucuOM2LkBMTIj0AjfL6NoZG7GHLqM6N1bIOuHxVbVvZCqs+5qSEAPirVrLATF+YYNjtejzRuH5XubTQOWSHntpgfi0MgE8JkAP04Bgon9Z5CQiWP3VNYqdR+DOME0i8N31dzxXz+m5iHaob4Q8vzAZBCGEVUGlkJRuwrcWRFxUPkCqcIKTeW89qFIrTLvfYTPq28Ls0PI4BMbNdz6F1EqEQgOQQv0OQhbPE4jz/dT3GdUwgjK/Rh1IA4/BEypIiJvjCp3aRcI+uLUTI5rCzeWxNZgIygXlNOMYcMJjnGudGNSMr7wBQggq5FAHo9ynoSn9VLNAW77cWYSxs/uxi+CA/0KhBYSfRUT+bDhgiAITci2KDJkTF5/ByqpzLjhs/72fWxrmNDSI79udi+y5X3PIwtAKKX8DqMmCCeFEqbyT5NZRCwJhoMlj6LQcDpsX1W/nNDwssRLTPly7JsYp/JEx0VX8/1ZNYmlxgJkhRgNvRim6yEy1l4HeelCh8jOXI0z2gMqT4aBjPjjY0P8uDTeNkTnRtAnLsqbMzJjRE27DFLtyjfS1kYIEeViJje7HUuN4zt6NHoEj62Fd8PgkGBVDQc2ZDgtc28XSLKPQ+DhATEAPjibuCqryqJ5gEYvUnx8eR822Tkiem9IJLXWowgNuw1Y1s3Nwjy2zS7J7ie7CmCRAReu5hjnHke2WgC6J4Jcoyo4D4AkmlueHCd3BuYxoyx/Twvc4IKm60Le7xziowku3wM+Rxncphs3ojZ9a8xpvj4LQ9hmNYlr9j4/5ahePuVkV17u0/ug9dm3uex8lXzSG3MDa/8+/xHOz/G9e4Yxy0Z5de/Zpx3Got3jfF15dj87ihv5MX8TfkrL++0YXlP7/DvPfkH+IvuPQDA++YSAPBpfw/PhlN8u3qGratwpg74dLjAd8pn+En3EA4C3ype4Kk9xcEXuFB7/GX7GL9VvsCXwxlWqsWF2uN9c4U2GPyfm9/GN6pLHFyJIShUcsAQFD4sXgIA/uzwDdw3OwxB4aHZ4IfNI3ynfgYfBH7e3cO52UPFp2QICgvZ46Vd4WpY4F9afYIhaLy0axjhsFItKtHjnt7hTw/fxMFTTuh9s8PBF7ix9UjTAI+HxQZGONxTO/x58wGGoPDIbPByWOFfXv0En/b38GV/it+pv8An3UPsXIn3yyssZI8hKPzj3Qd4UOzQeY37Zocv+9NEXdI4g8fFhuhWovf38+4M5+aAlWoxeI2dK/Gw2ODlsMapPuDGLlDJAS5IbGyFc3PAJ4f7uCj2WKkOB19gb0vcK3Z42p3gG9UVnnanqFWPy36Ji2KPl/0KtRrw24un+LPtB/h48QLPhzUaZ/Ct+iXu6y3+ePtbONEtGlegjOtRSouV6qCEj3QuHj86PETvNU5Nk6hZ3itv8GpYopQWX7anOFiDP3r0PQDA/3b1u1jrFg+LLV4OKxjh8KxbjzQWCPiwvoQSHk+7U2jpcDPUWKoeQ5B4XG7wql9BS4ePqxfYugpfdGeoVY+NrfBeeYPP2nM8KLZ41p1AS4e9LVGrAVJ4fHvxHKeqwfcPdE9br3DZL/Cd1XNcDQt8VL3CD/ZPUEqLM3PAxlbY2gpL1UNLh1Ja/OxwgbXu8EF1hR8f7sMHifvlDv/q6sf4QfsePjncw5lpcKJbAOR530Q0ilr12NsSnSfal6Xu4ncFIzzul7s43h6nusHWVXjerXG/2GGhenzWnOPjxQv88PAQp6aBgsfOldjbkjhmyw0+a8/wpNrgZUdyuuoXyRt8v9zDBYFVjOX8vD3DN+orfNqc41uLl3jRr7G3BXqvcK/cYztUsEHiYbmDlg7boULjDGyQ+Jsnn+Npd4qn7Zpog3SHtWlx3+zwF7vHsNHDvdA9VrqHFg4vu1Xykt8vd5Ai4IvmFFp4XBQHPO9WkCLg1DSp71PT4mao8LdPf45SDvjfX34XRaR5OS8avGiJELxQFoV0+LC+xEL1+P72SXqWazXABombvkqRB99evsA/vnkf/+LZp/jh7iF2toSOGty/cPo5ruwCvdfY2QKPyi1+vLufNms+WBC5/U929/Go2sJDJL5aAPjD8x/j/7n+FnZDiQfVDqemwd6W6R78k+uPYL3EvfKAzw+n+Gh1ic8OZ3hS3+BFu4KNmrUPAmdFg1JavOqW+GBxjct+gfvlDp8dzvCg2tF6eIVdjM54VG1xZg74ZH8Pp6ZF5zUOlqI6VqZLHLrXfY0n9QZn5oCfHS6gpcduKPHR8hJDkPj8cIYPl1d42qzRe9ooPDEteq+wG0oU0uFfu/cjfNI8wPN2BS09HlcblNLin9w8wVnRAAA2Q4VCWny8eok/vXof96s9Plq8wveuvoG/df4pvr95nCIuvrV6leihAOBZt8amr7HQ9Pxd9wt8tHyFzut0X98vd/j5/gIrQ9ccrEHrDB7VW1x1C/zuyZfp/eqDwGW/xHVfp+iR9+oNGmcwBImDLWLEh8ZHq1fpHXE91Pho8Qo/2d9HrQa86FZY6Q5aOuyGEu/VG/zTzUP8K/d+isYZvIjv2MYZlNJhqTtc9os0/qftCb5RX0FLj7VqcWNrDEHhR9sHeFJv8O3Fc/zZ9n1cFHvUasBatfi0PceJpvV83q1pHO0KHy6vAABPmzUqZfGkuoGDxE9293FWHKBEwN4WODUtatXj5/sLerZtibXu8GVzkjZ0T8sGUgS8apf4cHmFxhnsbInOapyWDR5XG+qrPcHjaoO/3DzEt9cv8bRd49S02LsC3109wz989dHbqhupvL+4wU93F/BB4F61T9FGtRrw8/05zssDNn2F9xc3uBkq9F6jixvIH65ozJfdAo/qLRpn0EZMiA+W1xiCxKavE+I8R/tIBFz39NvPm9+d1fju6TN8djiDFAHbvsJ7yxtcdQu0TqNQFLmlpcO2r+Ah8Kje4mW7xFnZYDeUt2TaDOMG+tp02NsCS93DBon9UOC8PKD3Om3WF9Lipq9xXh7gA71jnJd4vNygdYbwLEyH667Gri/xcLHFs8M6bTAzNsVp0cIGiV1fEkUWBHFSR8ulihzUUgR0VmPbliiNTRFB3A7xQY8OBH6/toOGidEvKkZcGOUmuBWdVYkTmmQwrrnzAnUxJEopRr7nPlJ0UhYdw7RMRvkE4Mjjsl7S5koYkdnZROKNd86517w5HM+r2F+OMeGcRKFHai6+njeKOQLJWpnwGLgkHJ+0+S0jJsX4fY74ncAS4yb9HNU8R0PnY4wlwZufeZvHKCwnaNgchZF9f3P0nln5L77eZb/UEgLlK/01Le80eM9v/14d/vP/6WNcuwX6oFAIhz4oeEjsfYm1bNAGCo9tg8FSdtg6+oFcqRZDUGQoigGXdpUMKCk8KmFRygGdN7i0S5zqAzpv4IKEEj61AQBXdolS0MtwIXvcuDqdO7gSZg7rBaALGoNXODd7+CDRegMlKGyTDaMbV8PFrS4jiHuw9QYqwwXnsN9KDriJxgF7X091g4Mv0HqTuDjZYDDCYQgKG1slrsyFJE5LBwkFDweJUk6x+jmsmENemcfz4IvE58kvy85rGOHQ+AI6coY6yETV0nuNWvbovIEUHp3XKKVFEzlD17rFZb/EUnfJKFypDlIEbGx11NPJ3JPMq9m4InLquRSOTPOV8TwptE+qG/gg8KJfoZQuyZDmrBJVjZEOtYrgPdFDPngyaj0ECmknHKEeAo0zkf9UTpS5xpkUGs1cnivdQyJgE5VwHyRskMlwLaXDPiqXPA/i3PSJC3RvC2jhUasB+8jJWkiLk7hZsLVlUoaYJodDqm/xV2Kkp2HeT6bpYZm2TqOQDlq6CfdoHobM3v1K2VSf++ydTuNghYrvrz6GUh9sgSpye/ogYINKa81y5x94XmdSylSKXOA6hXTJyOEfaFbiWYk7FvnAspnLiX/gV6aDFh6X3SJFGnC4N/+IkgyG1G5OG8Th03ztynS46WucFqQEuih3IUICKuMxFBGgjAuHSDfWJC5Tvh4A1kWLbV+laA2eg4xt30ReVyMdccvqYRKazoXnL0Hh+qWy6R3J9V0cYx4ir6RHY82EU5Xlw/ceh6GbbG4hiKR4dlajjCBbPlOgQibHHKSNFVkAaAYz4bgFgKXpsRsKGOlRKovdUGBhBhwGk+ZaxutzPtM8EmPwEmVUcn30+BeR25UB0zgChXk+qxiuzkobc61y1EARFUUAt47zuFwcG4fM53RPzKXaDhrryLE6zOifUjRIBFbLeVr5/eqDQG8VjPLjnOJ9JgD0rNR6SSHTgsKeTQq9F0nRBpAA34CxHgAMGQo5c6kC0UEcnyMGgONImBDvGQ575+ea0wHyyJgyA6n7OsUoAsfjaJYU/SJCAp7zXkwA4ziig8PfWWlnpdr7MQrH+1Erz+uwocD9eS9QFDaF1nOfuUHBha/XmkDTOKqGjQm+PvhRYedIlDwiJin3mWLPkTE8DwCJtxWgKA+OxJFyRFCnk9GLLUbe1XkUCpeJIeKmIfR5xMKcWmoy3nkERRBjJEGGo3DLaMldnvmpufqce9pE9p/Dfo+5JF9Xjnkf8+Ov+5+PjyMTQgbOxKfmY7mrrSPtvXH46RvO941txVwub2nC/PQ/+I9+5QA3p+p++IPlv/VLb/fvb//bX/ncgHfcY3lpl/jvX/4dbG2ZFBwAONgi5hwOSem2QaKQFofITVYpiz7DjmYFjI2JUtmk7G26KuXZ5YpkGXf/D5F4ns9xniArPzmfY04074LAyvQp9DZXPo10OAw0Vs7L45DavHD+lophtT6MOXwLM2BwKn3Oz3NprR49oDFXMP/xYkRbVohs3A3kHTAO/eVdwvyHgJWb3ipoNeYCctguH+e8upw2REqfEGJpJ24kldfS49CbpGDlhUN5efzdoJNMk2IbcwQBUlBCEPhxfY92fdsSAiOybr57yHIxyqV8SgATeaVdxNgGk8+zDPPdxvH6cQev0DbR1nDbeeivUS6h0fIacD4az5sVBxVz74SgHcq6GNANenJsJH4fdyV5LbgOo8Lm32nXk9aKdzi5b2MoL5DzHxPaqUBEw1Up94/nz/XyvEEeFytDWrtEcM85fT4qEjoiYFIYc6SaiQilzo4hyfzXc65Z/LHn45bRLLM27aBSnRTyKzBRnJi6BgC6drw3GUk26RiCaHiECBN+RFbYmKoHALRx6HtNCLqDmjz7xrioyImECssKJjCGeDNVEK8p/3Izcm+IymiuUCkViOOSFUEroYyDi3mWvG5ccsVUqTGfOIWTx3rMYygV0RQ5O8ZOcj4ggzxxOLSMyMTpXokotgGAtxJS+5Q3yW0Hj5SfWFSEJMyosNye7RWFa/O4BMnbdhpC+YSGq4yHG2RSjBjRNI3biSkqbMyRTHPitbVZ6HK8ZwWjlJox1F4IwFsxhoQH0ByjQjs5znQ9sS9pPHxPMmVEVQ4Zl5rO3VQuURvla04h7JIUduNTOLsQEXgrKvmBc1aNh+tjaHrMzQtZGHRq3xI6KwBCZhUY0Wp7NSKSBkQZgsK8VZjmKqabLda3khBWPckz5XzGtmFloiTaMyBfDMXdRbTYr120T9yaEGEMUZU03xEw0I9h36wIc/g3562y0ROANkeJzeebe2ny4oGOkWfj9xTOnive0bARQVBYO8s1IIVNAxhzVOO5FDIrAxkfMSw559nk0G/LOadxrZwe63E7cBH4zYrxXca/OSzDDJU2AfaA+4offQ6kg8n1KWR2bsfkiK/cLxtbk5DfO64PuE0NMrNrQ/ZhYo/F/N7cDhJz421ecsNQYNrgXQbkvL38ByPN9Y7+jrXB//Nrbhmq8fARW/x2+29oTGN8Nc2/f10n5W/KX215pw1LGySetWssdA/rFa66BQCg1gMWuserdpl2vms94Kqt0+7wZbPAwhDHYTMYrMsO276k3WEvsWkrdJY8VfdXe9y0FYxyiSpEgLgwQxA4rVvse6KA6AaNVdnjxZ54EetiQBNpQKSg3EXvaXe2UA6f35wmg8LGnXeimFBY1l0ylLaWAELynEgfgI3NeCwrojvYRjCdV9craONgtMOrmyXKkoyym0EnQ2JZd2isITlFYBb2/EgRsGvKSd4g7ZAWIyCI8hgipUGiGXAyGR7WKlJiU59kXOwbAhvZHUoUBRkbZTngcKii0lvgZkOclttdDaUdlPLY7mp4J1AvOwyDmhg6rGTnoRVFOYDpM9h42+8rSOWAIGAKCykDnn5xDgSgOu3grMR2UEmB1XEnneW+7wjOk88z7QUbC1LTbq1vSXFiugCmHZCFS/+BbPPPC+zaBQFt1JxjScpwuy0p169XkBUZmUwpkIA6osKqSgdvJYKVUCUZIMFK7PdrhMITj6aVGagGIDjcJiqkDB6SK6gpt4+VE86TLDwd94AoPdq2JioABvnQI7gKBgEUHh3n7Pl4PVNMsMJmx7b7toKoHPq2ItTmqMwOvQI05ZgOvRyVudjE0ESuTJMpmxHROFRTHsu0o8y5dyJgYKCWRBEgbyuuUXmG8XDPCBXWn9hx9zueSwqkB2wca6gcbu2ks2wB2FYhLC3CroKv3STHKhwqUggFKW5ukJP2fMz3DKVPgDMhyyvsNzXc2lE+30D8ngz5H1pJ5xCNnMIjtCVC6RE6SVyi2Y9+iIi8wQSgJSTqMAj40idkbQgkwBP0EsGBEKkZ4CQiQDItRPCxficpL6sM6V4Kkb8RZQBagVCMyn1gcJEox7ApgRJAEeXaxYEvPCEJA5Q36AG0AljScdEJYBkg9gKiCmm+kq+PSprXcZw+Ig7rMPJjxlwyaQFXhjGXUpKCTpybIO7FXImKbXL+oewxooey7SZG9Fm6BwAVUbR5XMIh5f2pTsAuAsy2INRWE0bE0UC5eV6HyL9ISN2qjYZxQkCO3KGdIJTZivpI6LOxzyCQeDK9obxOBEyReUHcpJLvHQ2IIY4345wUFoRUzhtAcc1cEaAPOnFAQtD1knkuDct9RGdlY0S1wLDC1y6qj6iwQOLhBGhurhzRXieIyPFVojok1Fyux2ubowkD0fbJ1ijosS9uUx9IXny/8Vyn6KcYUWF7JMRcH+XG6+eL2XVxDaQdxyV7jOA7AWBeyYQMzXyZ/Thn5rHk632B0SjhPP2I0JxQYcXUcExclQFpzTkQjO7zEGXCDwgLaZQNGcl83cj3yIijEy7IECZGZBBj7nFqV9z+nHJFWT7xPTG5DjhuHCKrI2b1ciM2M7LSf85flZgYj/k4kkwzg/CuMRzr46jResyIxXEDMIhwHDjoNYbwtM0MBRfjmr9V+TUyTMNf41DYd9qwdF5i01XY9SWGyBcYgsBBkaHUx7wG5yle3zqZPEGDUxjiDj+hcdL1OQKktQpOerzcLZNHMfeSsffEBZFCQFxsh8/1Vt8ClAkxpOggCL0RAPHzxXocutF09IvBO/a9GGPZqZ2xvvcSh7ZIQC+DJN7HoSeOQu8Uug7oBVJYCkTAvimTF8bHGHxqPCqoaV502CePEZ3PeQWDF+SFAFFQ8W55fl4I8gCFQHW9E2i9pGsd/ec+vBVomwLeRWNbkKKLQMcRYj+xvwSqEscfAHTe0As1A+wJTsJHcJMUlhOv61udDCoX12GY8fYxqEvytEqZdkKDIyM2ydADro+/xDYQMEpQBDrS5WzOXD+2w8aAAHy8LngygDx729iQTj8+YpQ9g7CAeURE3LGN1/OuNv/gONaA6Ic2RDnz91TYAAvj/zDItGseegKmCf0oEwyxDb5miOeGuE4MyCEwDUcKs/YC6FoRxro5CBEbf/HeS/Nm/gmM64wcUZOP59dDjMAibGD67HwKbaI1xiBHKqAhjjW2EXINKVcSnIhhSGJch+hZSHMYaH2FlZMQpvQ6CUjjFDb2y7IGiKbIZ5/5sgR+ItL5dO+pzAjyAmKQJM4hehDmYDPsWeCoecfjEWl8ISr+SQagdkS8J1JuTjQOU3t8nPkAIy1Bal9g9LTEdREsoBAVahGSkQUWkRtlzueCHMf8OkUtlaiYp/lHWcw35lmpnXgKQvaq0pieAxJIDdjQyF9t3BX/esdbyJswUR7B3l8gGqpZHUHj5/l5E5KB4w09X66gnoQW4zOX+hFpY8OpCHoiAxDpJhLCqBjHycd8IZIsvck0V0PvbK8ChIh9ynjvgPr3mcbiI80MjYv69myExVccGdHxO78GKkwRbN+yeDOuF9NWASRr2kAhuTqM/fA94Qsk8CR+hbCcHBuIuUHF9xhw676CIOOejZYggFCN5yYevXitKzFStHC72fUTz2CsM2lfZu2F7LmZGdB5Pc/gPWLaXjJW8jFkm2e5wSEywB8eRzqmM+HMZcTty2ydkpGXV47vEsWUK9kzna/rvH28gfGVH/uqks/9TqNvpOOY/7+zP54D17vDwHqtZ/ANjLK38ix+hSF5u76YyeVNhfqb8ldd3mnDEmIM3+TEaE6ctoETrAnp1HkxQTTlsFkXcy+G6IXkXBYpAkykfLBZiOYxxNEcJVVHRE4KDxtRGvmp4TwDNgiNcSnUkK8BMKJyhvwcYhtx+gJj2Jy2yUBkJFBT2GR8quR1G8/T2MfQqpQXIcY3uMxRRwF64Uo/vreCGMOZ1DhHEQ10Kem/ACY5ERwiJxX9Z6RRkeV1yEiyLPW4DZhC0fglk8mEvapTedPHSd+pPfrzXkBFDyGTs4tEiDluJNCYidic55kMBQ5FzfM+VJ5bG1/mKvvvZ29gEYDSJ2V1Unjexo95KGqc42TOMexHJDRUQZ49Bitlz16SY7jjF9OPnjRunrnUsv6AOH9+6etsjtn00zW5HOa/Jiy/pAVkxzJ0WWDW/hyyLwChdNmxkCkIsx/WO37Ek6HI5+TYFHLvQfwcIvdoTs/ASJh5XyFb4xQomq1BOqbpWPJEZoXayNrWMznmO+Tz3XIAbsljpfNBjPJxZVZXBPJKlHQ+6HCrLUQ0yXQ+E2/IxsUGs4/3nggCnsPe0tyz5gP160UYDbMA4oVF9vk1SpArxsFQm+N9GvSsehnnKgBU9Nmxp5OL4fWK3/2R5ycL5cv3COYKlzfh6KM3V8qOKmrpecq+VzguCx6vBzyv7fx+zz8X0zFDjDLkcVgRMoM7RxPNFz+3DLKJ5m6dNPixnsjDIW95JcbF9GWYXDoRUj6/u/7/AiUf+VyMt0r+3L3u/LFxzY5NxBiIj/VOJf6r5vi6fu/o73g72Q16h7Kfn/4qb9mt8R3r+y3n/IsaTG89jje9/nXlzrri7v9vdH+LN1vX147haxiPb1K+xnP5VjL9tSkB+Doe13ekvNOGpUBIBqJkz1oQSY+iXB96elRUCl00xtjbpKPyL4FbXsXUT8xlyzkD85y9IMJU91Yjx1v+n2uwcclFSkCI0dgcHUQjelduTN51P8q5EyYIjEn6uOXtzJG8Eip6rqxnRhWDCGDmtYXIKA4CsrpjPuld+0qC25u94YIcDetbhhfiu3P+NuEmJsrWLME/Oz65JjNCpbpdXyBk8s8U5VsaIF7/Umd5I94Td+2aB2RG1O0253O6NWc1Km4Tjr0j1wdk9B3Hxn0MIEHgiCItbteZdJrPbfZ/Xo4pvHl7udE5qRNmyuP8/uExiOm88k2K+bh5nMfmcuf85gI/cp/MFeGj9TKj5di5udVyrIg7PrOMjng1bn0+tl6vk8EbGOpzEIljgBKc2yWOrc/cUMhLfszPrptfm5c8lygBehyZJ28o3VVma3HXEvL3iafjyHyOko8jGz9fM88Ry9eKvdazvZaJkp+3K+bnpxMQbFCzt/zIvKZGRP7jI6bznKyXmLTx2jKTy51Kv599P3bPvE3J5JrWMG/3yDq/sRL/BvOevNLyNX9N/ddtcEzyDifjub0Wd44/tXFkLLm85vdy/gzMy/yePFLextC7a+xvapj/UgypN2njSHkr4+kNIyzZf/Da8lX36xv08dbla8roa/f3qygBgH9XBvv25Z02LJUIWJsW+6GEj8iEAKF12ghYw5DQNiLj9THkb2EIZCWhxzkFJV0iZlfSp7DYzmqUpo9AKWNIJdcjvkgyDHVEjDMRxGKIADUjEWO3wY0AACAASURBVDsSP6SLYDT58TS3CHpzC955prQwpLUUQB/DUBWDC0XwGOcldOSSZKOY58AhvsnLGOVFnyPqHcbfTBe9t3yM0fh8dv3o3cUErprzIJmLkYFZ+Dx99wkSO8/XZFAWrUeQGD6fj39u7DGgSY6CR15lDvGlcNKqpsSfrovAOFnbfuY9ZFCXHHwmJ3VPEN+KAWjE5LyPeYsM7pF7RKUiDzEDziCQvDgnVGkPO0Sgp3g+vychAjyHbWceeikINMbHkGOB0TBmvkog0/XY6I/rjPw+TB5on3JaWfb5+qfrecNE0vecCxNA4qzMB5BzZTJ4iIxgPYjryEYzf058oOy515wnSoYJA5FAEDcmdU59srHNIdMEvBPvGQ7tZP5NHmcYxxqcTN5018tkrENk18djBIoCyn3MNdOA0RsNQCifAGr8LHRXmhF1EV6kuohrlQBSItgKz437kybmXjLYTKZ9igj0kuZmBYQe+UmTDFh+vBkT2wpxfVP9NM54TQyhzAFVklItMXoNvUCQntpgzkIGaQFG7s18PLyREj2conAUus51eK45DyiPTwcKtZWx3iBG7k5+QDIy+nTt3ICbgQIFSW1MHHS8ucFzzkuKkcz6TEaSGNcqyR3jd5edzy0KGSiE2eTyyeqxbAPGNZHZXLkPBneZb2bkwCg8R+AWOEwQIc03fRcYvZRyPM6bD4mPk3+EBAAHCu/lMbEcs42BFNKdc4gGTEO9v06RGO8nlh2yOeXyi2udjO24lgyKk84FPiduiTa1nW+SZO2J7PkKnKOY35Nx/UTAlE81PfZxDWbuVNrYyQ9M+56MJSkE2f2W3+ecg6wyntdJXxg3WLL+8kcm73KyCTSTyTHDJN3q8+uyunfxVE6un4zvDe8hka3zvLDs5t/f1ubIrzsmtGwob9TG6+rg7npf2f6k8lf09ZvyzpZ32rCUwhPEfwaV74NIiKwAkiHGBlUho8LEhh4EJAJKfRt+nWkHjHKzfsMEzj1xHMb/Jno2AcAql7yqORUHQ9ErERJYDlNmcFHFqHHnzyDD1QsREoS9wOh9BYAiUGgwobDKiCAa0rhYBlpNt7fmKKsijo/79GHkd+INFwYlokG7aDj7Uc5KTIyYdDzm47B8naI1kNGoZ5lyiDOHO7MRo+K5fN3yNQLGcOXJnAAiNRcBWo9Q9VIEhMIlbzJfO5cJhzLn3uSce4mPsZGZe5KFAEI0Hn1mWPKc+Hrug86PkPZCBGiDW/Kcjs/G/wEhjB5lmpeEyDSIOZx9WpswXbNkbMlRkREiIIhxnYFoPIow9YrmP96CDMWEqioCgsgQaee/4DJ+lmw8TmVGY55uKARJz5aUHhACXorR4cX19PS+SL/Fko3pEI1vjJ42llfqaFQuhcxoBwq+b6bX5xD7AmTA3b5v8ueTDMAxLHwmRw51jka1zOfEfRk/roXPZTYa3uNahfRPaOqPgJtE+s8G+q0ikMKhhQiTeikKQo7ygohDTFp1bqRka8Fj4zAUmXGmxeclHNP6UthyPM7Xp/XPhRk1WBHoF5GHosM4r7lcUz9hGtKeg4fk+Wjpcxwrh+Rm90QaL4XPTPtJbYZZfYxj5/GEI99ZJkkxPNJO6odf8Gx8ZsdyueYlN/6ykkKs+TOQjIIw75vPzYuY/Y/jSOHRdxoKo8E1OX7EsHmrwvINt+c8EUvmfU23Z2Z8i9wQF5gY0Hcq6GH6WeSbHhiNyjS8MGsvA/RJbczbxazOZHKzZzVMRZH6yWWcfU6yn9/eDMSDma0VxuOYHbvT28kNTO7p2zJIfc9eBa8L532jdbl95d1jO3btfDxvWo5sPNwqX9Xe157jmxcxW7+3Kr+kMfxalHDsZffXo7zThiUAtM5gqXsMXiUC4ZXuUCqLZ806GZ2VGhInnA2KKESURalsIv696etEOdJZTVxnyuHRYofLdoFSW+Kw9MTXtesLhCBwUR9wGAg4pxkMzqoG1y1xSq7LDs1gJu+43ilUmvp+vltBSo8qei4bS6A7vVVY1x0ZUgCaSPBbRPoPfjqbgVBhu0FjXXdgZNrSWLzaLFEWFqWxuNnXqMseUgUcepOoAE7qFu2giSB40KgLQtgYnIRRPtVlQ6cyFtbJRNNhlMOhNyjicebuYlqObjBYlD2hwsZ2mEesNAOarkBVEC1KZSya3qAuBvRWoWkNlnWPQ1vAGDLQd4cS3kssF13iDLOZVzPRUcQf6bIaEuIt02u0nYaOEP5VMUBKj6tXa4QArM8PsFYlpFvvBYwZEVq9FzgcCBKQKR/YyyoEgTGpyOllWwOhPJRxievLDgqmsLCDhjY2Q7QlD+/QGMAJqEU0DgV5GrvGQKgA12iYxUCbFFYSdUPcQGAQHFNaeCfRHzR0RevprILfGaDwMPUAZ2UCIYIMZJRkHkKeKxse7GH1Q+ZBix4jVRD1ALyALB38QUMubEIjFYqQbb0TCL2kOr0iGgIvCCU3gij56EkIVgICdK5TdM1OQxQujgewHSHwQgC+02DvGRsy7lAAxkNGZFxv5YgMW9s0tmBlAisSxo8GYURWFTFXMwwZdcIgEyJtOr7VpDie96NXb5Dpeh8VS9Eq8i4sXLZbFJVkpigQoHpLi7DVVDfz8oqdovzFaPiIQSLUbszv7CR5fBYW4RBf85FGAgDkRsGdOMqPHCTEIBISqWwE/JpQc4MVlPfbKITSQ3SSkHbZSBEgEB4vEEw8rwO1V4QEsBNkGPOQe0Kh9XVEZpWYerXYq6E90Mex1T55v0QTIwVqD9HIMWc1gPqL7QkvYK4lbB0IOdYDspOE3rnKUWHJ+NF7Cbum46oVsCsPvaPreezqIJFC+kIEutEgj5AHggZkG+cc0WIZFVZa8loGFQAJyE7AmwDdRG8m6+0a8Hr0Fskuzgkgj1QgeSruR2BEhS3pOm+oP4DOyR6wi4DiRiJIwBcRFTaiawpH6++PoMLKgUGQAFsTKqxqqT1pBYSluTOaa0Kd9TQ/bseVtK6qo3naZY4KS2i6whPyrBxEGpvjXEqBhArriwB14LUmechBJMRZX9C4XQWohgB3GIxJN8Bwgq9dZEftsmySMefpuByQEFATmm/8r1r67DUhtIaI3xYUnYPIAIECCImU8cLiY5zvQZg9YGs65hWg2whWFJ9PMmaR8olVRyBBPMYgaRwAHc9RYWWGzAvBcxJpPsJT297EuYgR2Eg3SIi4jArrdew/IuoKn/XFqLARWTiXGUBjSHNRSAjELHfhQrxGTGlBWFbRk5vOBdxGhVUCwoZY9ytQYfOSWcJp7GIcwy1U2IDp+/Muwxjx/9wQzubBnt67wMbmbR6TzaTtfBMkH8t8I4B/iuZG+7zkiu+x40fKLTAi4Nb3o+3/dTI63/HyThuW5/qAf//JP8D3mo8wBIXvVl+i9Qb/tH2CL7pT/NHj7+GlXeOJucJfNO/hn198jn9yeB8A8DcXn+LT4QI3doEnxTX+0fZD/Ov3foiftvdxqhs8Mdf4VvEcl26F//nl7+MP3vsJbmyNnStxolv4IPBR9RI+CPy/24/wqNxgCAoflq/wvc038Xcf/TkcBH50eIQHxRYqPs0uSCxUh6fdKZ51J/i33/9jtN7gs/4CF3qPlWr///beNNiS5Lrv+53Mqrp1t/der9Mz0wPMggEwAAVQgEhApmlToAhAEkPQB9qmxAjRFkNb2DQlS3aQZpiyP5k2FZbpCFkKiZIgiQqSEkRLsII2BEC0GCGKg4XEPhxiNszWe7/lvrvUkpn+kFl1696+3dM9vaFn8hfx4t3aMrNOZVVl1jn5TzKpOZEc8LnpYxzWPQyK+7N99us+54ot+rpCiaV2mtO9XXJVcTq7xOcPH2VuMh7KL/NKscMPPv4lvlE8yHPzE3xo+yk+d/goe/WAR/oXOJFM2DMDPrf3CCfzCaVNON3b5dnZCSqn2EoKpibjLf3LbOs5s6Bp/q35MY5mU46nE2amx0Gd82j/As/NT3Aym3C5HpKrCoXjXLnFiWzC1w/u51Q+YSedMTcpF8oRp/M9Xpgd4x2jc7w4P8owKTi72OKh/i7PT48xSgs+sP08/37vMd41OsPLxREOqpzfN36F+9NdPrP7Lo5mM6Z1j74umZuMYVKwncxJxTBQJZXTfHXyILVTHM183gAP9y9xrtwiUzUvHB5jUvX4H77n1wD4xbMf5Eg255H+RV4tdujrkuenx8iUobSaTBneMTpHKobn58dRYtktBxzJZpQ24eH+JV5eHKGnat4zeol90+eZ2Um2kgWXyyFv6V/m2dlx3tLf5YXZMXqqZlL3yHVFTxm+c/wix/Qhv3X4mA/Dtgnn5lu8d+dlLpUjvmP4Mk8ePEpfV9yXHXCu3OKgyhkmBX1dMVAl3zi4n61szjuH5/jSwWkATuUHfGTnq3xt/hC/c/AQp/IDtpM5AId1j8vVEIUPLZ9UOVOTMdRlu1zYhFQZHsz3uFCOOJZO2U7mTEzOM9MTvHVwmbFe8HvTk3zX1rd4cv8R7s/3ATioc/arPn1d8XD/Et+cnuThwSXOLLZJlOHMfJtBUlIazYn8EIBj6ZTKaZ6fHuPdW2f46v4DvG/nJZ6dnWBuUmZ1xn35hP0qp7aKB/oH9HXJ5XLIfpWjxPHBned5YXGMF6bHSMSwnS04mk55sLfHF/bfSu0UC5Oyk83YSecocZxd+HpR2oSH+rsAPHt4nEwbTvYmvDg9SqZrjvemXCyGlCbhgcE+Z+djPnri6+RS8stnvptB4ltrJ/NDnpsc81MFiWWQlLxrfIZtPeff7z3aetvH6YLSJlwqhoySAovw/u1v8dnz7+TDJ5/ic/sPc1DmZEFU6vuOP82ZcofaKg7qPqfzXX5n7yEyXbMwKe8Yn0OJ48u7D/LW0eU27UFSYp3wQye/wK9eeD97RZ+HhnucyCZcqob0VM0Hxs/xf198L6XRPNA/4OmDk7xn5xW+eXiSR0cXeXF6hNL6+W9Lo7l/cEBfV7w82+Hx0XkulCPu60149vA4bxnutvWn+fD36Ogix9NDvjZ5gO103l7P2mqO9GZMqh7jtODcfMyjo0v+GTK5n0wZDqqcJ7bOYp3w1MEp3r19hmcPjzOrMzJlONabMjcpB1VOpmp++NTn+OL0EZ6fHiPXFY8NLjLWC/6/S2/nvnwCwKViQKIsH9x5ns9ceCcPDvZ5z+hlPn3xCT50/Hf5zd3HKE1CaTXfufMyBsXx1B/7/PwEF4sh43D/XSyHvGN0joVNOV+MScTySP8iXzo4zfHeFOOESZVzUOU8PLzM+WLEB3eeZ2FTKqfRYnlpcYRz8y0/jZZTPDE+y37dp7aag7pHKpapyXjP+BUswsKmXK6GfOfoRb44eSsjXfDS/Agne/5e2qv6PD48z5OXH+Y/vf8LXK5HvLA4xlay4KDO6euK4+mEs8U2ryx2+I7xqzw7O8HvG72CEssD6S7nqh1mNuOL+2/hbcMLfPfoOf7N/hOcyg64L91nrOc8NX+Qo4m/b5+Zn2QYyvHE6CwAL8yPMU4WvGNwFo3lN3bfzoP9PVIxXCjHnM53GeiCbxw+sPKceWZ6gkQsszrjgcE+CscL06O8/8iL7FYDLpdDZnXKqf6EJwZnAHhqdj9vH5zlt/Ye5f3b3+KZ2UlO9Q7YrQb8x1tP8yvnv+t1tzueGJ/ld/YewjrhwcEeI1349kg64wu7b+X0YI+L5ZAnRme5UI4pbMJ+lWOd8L7tlzg0PV6cH+Wx4QUO6x571YBJ3eM9W69QOc3ZYotULIkyHElmHIae2LlijBZHEtoS+1XOHz72FF86fAuJGC4WI941PsOrxQ4Hlb+uqTJkqub8YgzA46PzPDs9wf35PnvVgGmd8dBgF43ludlxDsqcQVKixHGyd8jFcsjxbEphE3bLPm8dXObQ9JiblL6uGOmCM4ttHuzvUTnNy7Mdaqt519YZDuo+lVOc6h3w6mKHc4sxj4/O8/TkPgAyVTNIKmqneDDfo7Ap54sR46SgcoqDst/ONb6VLchUTU8Zdss+F+cjRlmBEscgKenrCuOEw6rnnwXaoHAk4Xm5WwzoJxXTKqOfVCF6rcY6xbTOSJXhoMjZ6i04LHv0k2pl/vHKao7lU3YXg3Zd7ZbDTJohRcO0pLaKwiT0dO0dHWnBbjHw85yLnwO8meLNhCFasIyq02IpzHL2gn7q21O180OZerpu0y9MQqIs8ypllBUs6pQ8qaisbqPMgHau8WmZ0UvqNkKrm287v7ZV7bzpibIUYbaEbmRY47ApjW6jyhra4VZh2YV1phNV2BzTLWNDM6RmfV7tRC+Hqplmnu3OOTTXYl0DZX0ffvHa9/edwAHuDTzGUtxGxY57g1PvPur+5C/+AAZFaZP2ZmoeJmX4xNeEmBYmWalk3XDZTBlqp1Zu4IZuZW1uttoqbPtgse1vi5CIoXYahWs7gE1YbZMOgMJRtmW2K2G7LoR9duke2/xuxpA2Ib0iDtM5jyakd/33pnNbDyftlgVYCYtt8tVB2KibDtDayXbOozmmm3e94dgm3+a6dT/gmavYZlN518vc0D2fphxVGHt7xUNog402hYw2/42VlVBhX1a3MrZ203HLsNdlHek+WNsHqlsNl95kt2a5u28Teg2r4UbrHxSbsbJXo+u9Xh9b2Y4htbIy1nQlTHXtfDexHjq7Lg7VXd9Nd7nNrZRvfd2mMq0f23hsX0vwqhtC3JRHNyGqnfPt/m5CoOXqJvD7N2MVQ0jiSllWwugczipErX5i92NPNw8c6taT9WvhNtSBbn3Z+PF503Xtxsg1y23ZVq/t+vZlWTZk2qm0q6G8nW3NoumMpexsF3VlHWzGhOJCumE8aTtelo7dO5/1rxBUW48LbLzIV7NN18PQnGv35uymvckOTVm6Cs7r93BTBiOraax/6W88JMLqmMmGJvR30zVZf6A065pq2XhpXsuL0UmnEXFqtrfqwdJRCu4e383Ldv53ytN4Z183Tbrdc2lYuW5XXm/ZdK275V/nWjceSy9Vu9yGGS+zXTm2vSayWkeaOrSh/N2qulKt1q9X44mDK0OaO8e77vW9WlrruM3F3XiPXIUrvXFXGnRln/U0rzOPK1i3/2uxfs3XjrniPLhyeWOabE7vWmzK63rTu2Z5umlcLzdxy3bL8vW//t980Tn3B15/ajfPlhx1H0w+fMvT/XT9K3f93OAe91hOqh6//srjjHre23G46CHi6GcVw6zk/MGIJIRK5lnFZJoz7JeIOCaHfdKsJkkMi0XKznjO/mGfYb+grBPKIqGap0hiOXb0kP3DHK29oExd+5DP+dR/SRxvzZkvUpRylIuU0dac6cTHyvSHJcUibcVQwDdgksyQZTWHlwegnJ/I3sgyxLBW6HHVirDURYJKbRtm2YxRqyvtwwZLhd4qfWRaodGZxe5muNygcoOdpMigRiUOM0takYd0qwxCMWAXGj2o/XsnNLLMIvGiD6FhpAe1D3tsxC+0g4X24XKVeHGIsL+kFlcpf0yhfRiiOCSzuEKj8ho79eVyhc/bzHW7vxwmsF3hDhPILJJZmKQ+NG6nwhXKj4MKk6rjpA3La15sblQvwxqbcLuF9uF8VlDDyivBvuhDl+uTlZ+vrwwTwVuB3CwbZA5k6m+bdhqI1LZz+/lQQZ9PcqCxqfMhf7XgUodaKGweQgZ7YdxcM/WIhWSiEQP1uIkRApda1FTjtEPPFPWW8SGLIZTOpT7ksBlvY4cGqRRqLpiRT0ctFNmeos4d9Y5BzVU7rsUp2jI3oYiNwIXUq40wvVA+jK7Gh/YpMH2LWvj0zMCSThTV2PrQNuPD6lwSwuDmQj206JnC9sLcernzOvwhPNBJCHkTn7aeKszQhyWang9VInGoELLXnJ8Yfx5NKFl6INS5TwPnw7hU7e1WjWwIqXJIKb6sNOF6hInUmzI4sKBLacPydCnt3H+qEGzP0bvs4xUXJ2xrW10I1cC14VeqFpKZv9bVeBnuKKEq2GwZMplOhPKIJdtV1COHSZfpZPuqzd9pSBZCNbatKEgy9S28amzbUMQmHBCgf1kojjofqjj3599Mf5FOhOKYn0JCFz5kMZ34kNB0LpjcLdtkYR9xPpQunXlbqEIwfR8G6evTMjQumfvwyXrkwx+dcu1cjU05VB3Sm/vwxnrYzMPoy+eUD8VMpqE8ITROVX6bTf11zC8K9cBfQzFCMvf2K7d9SKe3SwibnUBxxJc5mfnfvV2hGvuyebvKauhjb2nXpnzJzNdlG6ah0YWfFqI7CbxLfOijTSA9ZNmZZDVNJ5DOaCeztwltaF0y69y/YbkeLMulKp+/S3w4aLUF+UUf8md6y06JuBDumgabT6HOl+nr0t9TTnlbpFPQc0c1ElQFqvbXq84FVbsQaittOZKZv2dMLoiBZOGXy61lWKxLQJUOZaAaSMhTUJXD9P1zrQ3bdD7kNJ34fVxCCCV1bTip6Xm7VyMhPXStPZyG9NCxOLYppvH6SKb+3H1oq6+X4rw9q5GgC1+uZO7a8FWb+Hdseujrusl8+Zpr57S3q+vUGwBd+WsvLoSZstzmNPT2HdVAWhsmc4dJZSnigy9XE6KqFyHvEmzqnzO6BHGOuifLEFOWIdC68vXQJv7aObVMX4zDZP56AZgwR2k6d8tQ2Nqvb46v8/CubEJhBXQR6k0iKONCeLC0nRpVL5993n7SrluGwko7R2fbEQ226oZCt9fLujaMvLmnVL0Mx5WuR0l8frZbbbpflMJvFe7ZlXyMrw+wLFN3ns/u7DtX3d7pnIoJYbvGXwtxDqube0/aEF+fZmPrznUzbA4rZZlP11bNMZv264YWL+2yXG7CWtfXN9va5F4j9NVJ57yu0uHuluua+7zJEZGPAj+PVx74Befcz97qPO7pjuUwKfn+07/Ht2ZHqa3i1IkJc5NyqRiyt+jz3lOvMqszRmnBxcWQdx8/y5nZNgrHe0++ym7hQ0G2j805PxvzwKlz7Jc5ibIc6c04EkItf2/3BG8/dYHCJF4hNqmxTjh2nw/xeWmyw8nxIdYJ29mcc7Mxbzt6EesUF+dDRjt7K94uPz6zx6xKefc7n8M6YbcY0NM1mapJlGWcFLw4PUJRey/rKCuY1ymzKl3xWG31FiTKMkoKXp1uU1vVhnM8/tgFLhQjLs8HPPzoZc7MtljUCUcenJPritImnJls0U8rKqvYygp2w9jQJnTiyH3z9reIY2/Rp59W9EO4RVEn7ZjSQVqyqFNSbbBOmFUpg7Ti8nTA4GhJntQUtbfhqFewP8859sCM/UVOpg2TRY/t4wv25jn5ds3JRw559WCLk6cP2S9yiirh5OlDRmnBt/aP0k8rFnXSli/VhiyIJekwfcuF6RBjFf3MKwRbBzv9BbPKh6IczHOqSvO+7/1dLMI3LtxHLzHs9OdMih6JskwWvRVv4fFHpgDszfsrY1pro9juL5iWGVpZ7hscMq9Tdhd9Mm1WznvUKzks/Ljc2mivQqwcJ4aHDJKSVw63AaiNZl6mHH94yqJOOD6Y8urBFom2DNKKWZVSG0WiLak2aHFcng5ItWFnMOfS1IfuDLKKt+1c5MJ8xJnJmGGvpBdCcAqjKaokjIu1VEYt7Zl4leOmjKNeybxK6SU1vaSmMpq9ec5WXpBqw96sz8nRIecPRwx6Phy0rBOKWpMoy3Z/weXpgHFeMCtTtHLMirQdm9tLK5RAFu6xw0WPI4M5l6cDjo+mHCx6Xs251vR7JUWV+rGxnfHFZe0fa/dvHzApehzMckQcWWLIs4pRVnL2wIeGGaNIE3+eiTZMi8x/WHHCVn/hr/O0j1L+g9V0kSEC/axiUSVYKwx6FbMi5aH37pEoyzPnj7fCT3lWMZ33WvEkrS1HB/6eOnswbr18WVJjraKoEpLE4JxwcnzIK5e3Of2ePc7sb7VqyQAPHtlnVqWYMB57kFVcmgxbNeOdke8VXD4YMhossFaxKNO2XI8du8gzl45TVZpBXjLole1Y61OjCc9dOoa1Qr9XMpnmbG/N2J/2GfULZkXaUUQW8p4PG5sXGeOBH7M97JXsT/sM85Ky9lEZVeVbZaNBQT+tuHQ48PeNVRijsFaRpbVX0k4MRZEyGCzopzW74RpUlWY8mmOdcDDN2RrNOZjlrXp0Gsaql6Uff/3IiQucnY6ZzHso5djuL0i14czuFr2eH6tchrp/bHvCK5e2SfOK46Mpr1ze5tiRA87tj1tV6vH21F8vbVDi2J/n7TVLlGVRpgwHfqjEvPTPmHFecPlw0M6LXBlNVWn64SPmkdHUj1kPz/TDRY86lB8nDIbzViG8rBOUstS1Zjya4fDRDEWVcHw05fxkRKIN1aJHllXtPTEazrmwO+bEyUvM65TDImvvba0c/bRiWqZURcZgNONgnjMezNt3z2Hp77tLkyGDwYKTQ/9s7mcVg7Sip2suzQfkSY2xiv15jtaGxaLHYDj3H3PnOak2jAc+BP/c/pi0V6IEFlVC3ivJtPH1Ivf1MU0Ms1mvFTvr9SoEWMwz8q0ZdZVQ1Zq6VuR5xai5Z+c5g7xgcjBkuDVlsuiRpzVFlXDf9j7Pnj/+utsd26M584OBr/v9shXn66U1+wcD8ryiLBO2hguqKsEY1aqTHxnPqIxivugx6heY8KytKs2R8ax9Boj4UEKV1u29tijTFYG3qtKMjxwwmQ4QcW2eizKlrnU7B7VWlqL0z8Rhv2C26JEHHQNjFP2eryezRUZdJV6BHMgyQ1VpssxrAVRlQr/v1fGbj+uJtiyKlEFeYpywmHvdifFoTlknOOftUlQJRZEyHBRMp/6ju4hDh3m/87zy2hKlbiM+6lq3EQI6MUEjAepKY0rdqnArZVcUz50Rr/4d8nCADerYrlbtdFwSPkbbOsyfXWo/pr/SiLarAnRW0KnFVB33cDfyookqWYt4AC+SZkvdKqMjLMfgd/ZrozfELfUPLEiy3A60KuSird9PnNcNUDhS2AAAGOVJREFUSK0/vyDK1qptwzLSoPkIv8H73UY1tBEW+P0a9e5wzivpNR74TR7Zdl3Tu5dVF+jKMWs9wE5HemV53cu8KSrGyZXru/za5tV3mrsRCisiGvibwA8ALwOfF5FPOue+cUvzuZdDYY+886T7nr/7n7GVLiitZrfwjehxumCQVJyZbdHTNfM6ZZiW7C76jDM/HmK/yMkT34k7LDNODKZcmg8YpBW1VcyrlGmRkWrDyZHv2KTKx8c3YZOz0n9CPDacMav871mRsTOYc7Do4ZywlRcs6mQlDNRYoZ9VZNpwYTJqBW3q8JJpHqqjwQKtfCinn9LEN4C74XzTImsbUqOBf6kWlRfG2Z8MyLKaPKs4nObtS9C/eHxDbGu4oKj8S6esEvq9su3sJNowL7K20Qa+oVxbRVn6l1+SWMoiIc1qqkqTps30IZCmNWWZMMiDeE9IJ0kMZZnQy2rmi5Rer6auNXlWMVtkDPKSymjms4zBsGA+D+I9iWE+62FrYTAuKEtNEl4oTcPDGEUjQgPQ6/uXZlXp9sVUlYl/oRnV2mTv3BgE8p0Fxgim0v5l5YQs8y933/kRyrm/1knmr0WTFuKoy6QVwjGzxIvb9IwXxdEOU2iSnsFUCp026rJL8R07S1pPajONhk6M954rh1to1LD202iEl6RKvDAOQWwnHZSYSmODFxgnfgqMSYLLLXpYt2I7zUtEgghOk2YratOEBzbe9kIvp2AILxzpGb/eCpIb3EwjA+MFbiyQuuVLsFR+n4WGzPoXZ+MZVq4VzGm92z2LW2ikX+PmiRd0Ufj0GgEggkfaSrsdQKYal1mfhsN72a0EMRjj0wnTadBM1ZHa5Yu0KUvjWa7VUk22VsupK2rlRYL2E++lOVovp30oFeTh+JCGWni72GFnUsEmvK4zZYSaauxWjTpIsAPr824aWhMdBFW8N1gVCjsw7UtVFv4Z5QYGKby3xHWOT/c01Y4XBJJGICf1jYVkJlTbXrxHKsHl3mNug2faZqviPVL6RozLLGruPfaqFGzuvcFO4a9t09AqFKoSzCB48pWjmSqiERHCeDEgtQj7NuI9iUMF8R7b9/nZzAWvPyviPVgh21OY3GF7wetceE9a41EHWvGdZCZUWxZVKC9OM3YkE8EMgodWgZ6veSwzWm+8OLDJUlSn9ViW3sPWRghoXz5VeA9RMmvEe0JDN3OtZxKWnq1GQIUg2pEET7T37vh8Te4bhDb13pfWY7kQ6qEj2/NeC+/RlXaKi8ZT04gJmcz/h+DFCUIvZuDz0YX3aqq68RgFUZhQBRsPke15jzjgxX2sPx8I3tUgfuMSWhGgrnfRp0HrxVFlaEf3vEfVKX9ss60rRKNLL2yTzDuCNQkkUyi3ed3oBRj//XUp3oMva2MTL6ZEK5qz9NYT7O+3W+3rlW080MF2jcetEYMBWu9n12OZTpZCQk6HNJOOJ4krPZZ2TbynK3jU1C9x/no0XjwX6p4OgkRt38D6/FQV0mjymXuvms/fK8Db1Ht4TU9ar1gzxYcug/cwkWW0UfDS45YexMaDZlNZWdd6/TZ5LAWsltZrJ9a1ZXeyzKP1WGpfj9c7SdIV7+l2fDresW4ocitMZJbXrlvOTV616/JYron3tPdGI7bU8YB2022uofdYspnmmW6XAjobhXMaj2Wz7SrpbRjdsLL+WmW4mhf0Wrxm+C3w5C/91bseLrolR90H1A/c8nQ/Y//pNc9NRP4g8D865z4Sln8KwDn3P9/KctzTHsuHe3v88mOf5JwpqRBycVQOFk4zsRlH9YJFeBLMbMq2KrhscwyKY2rOwmmmLmMoJWfNFif0hInN0ThyqRioiplNOW/G7OgZ1ikWLiWVmsol7KgZBuFsvcOOnlK5hLGac7be4URyAMCeGZCJQeG9aJVLSKVmYvssbMqpZB+DULkEg5BLhcaRSs2eHfj1TpGrksolLGyK6siVNWlvqQWXzKhNY+FSTuoJBzZnZnvs6BkHNmdhU3b0jEwMC5dyqR6RKz/wfahKJjbHONWe41AVK/lNTJ9UanJVhbIJW3rBgcnJxFAGe2txVE6jsExs36cT3hjN8sKmjPWCicnJVcXE9Bmogn0zYKAKdvSMS2bEUBVMrQ873tHBE1OPGKiChUvRLO2ahtabFotxin3jPzb0VEUVyjZQJUWIK5rZDOMUb3vCe5+/VR5vxX9mNiMVw6HJV2ywrYPoTXijL2zKQBdUTpNL3eZzNDmkdAn7pk8qhsppxmrB5XrEWC/YN316qqKwKakYjFMcTQ69J8T00bhW1GM7mVHYlG0942I9JhXTHluFMbypqtG4VkBppBfs1/78c1VxPJkwsz0u1iMGqlwZG7wI9shV1Qo1peIFEKr2bUq47j6/RpBqYnIGqiRVNfv1gKPJtC0DeMGqIoi9NHYdqJLCJSgcM5uFa6gZ6LJN2zjFzGbeVnW/FbIweFXinqoxBEED5a99YZO2vEeSGTObcWh6aCw9Vbdl2K29mIJB+euty5VyNmn667w8vggthGacdeU0PeWv+fHUi6WcLbbb+tLXFdPa110lfmqckS7QYtmv+61dUzFBrCklUf73SBdcqoat6EgzVhtgJ51ROe29faggApW3Y7n7obV4aHr0ddUKQaWhXCeySSss0tdle25KHEeSGefKLYyTVihmO50zrXsMk4K5SZdjyp3Q1/46N2kVNqGnauYmo69Laqfb8e+NTXqq4qDukyqDcYJdE6ZIlKG0CUPt6+nc+DpZO8U4WVA7zWGdMUpK5ibFhLSb8/PnYjmRHTK3GXOTonBtWfeCmFRjFyWWnXTO+WJMX1eMkwUXixFHsxl7VR/rhNopttNFey21OA7rDOtUuzw3KUNdYpH2vPq6YlL3WrGQJq0mamScFK0tm7KXVrf1sFE9b86/GSc/TMpwfypqqxkmJdPa26kRGmuOyZThsOpxIj+kdqq1R4MSn2ZpNLmuKa3/D5Aq014/L4xSM0xKJlWPTJkgBGJZmLTVKmjmiy5t0gpZLUKeeeKvwUGZk4frUTtNFu63hUlJxLa6AYugjdAVOilMwjCIG/mpuhSpMuS6onaa0mgybfxH5aRkEUROaqsYJCX75fLeu1EaERiATJl2PHKiLNMqa23g67ZqpxlzTsiTChPKnCmDRXz5raIf7FJ24i2btIAQcbOqYzBMSwqThPH9qo3e6dJoGTggC9ubCBzrpJ0erbKq3dZoEzRTlTW6Ck00UvfjdnfqtdporIM8rdvyNjoMtVGtl7yhidho53zuaBDYjhdfwnkY57UCmo/U3XH+/pi1eZ0DjRhMd9x89xiRzvzSjeeww4pnsl3X+R3K2I7lZ9nvFNmgX3E1b9panv74zrLDz+u83oHqdsau0glzjQdzPesr0lr1+F3T9/Ra5+Gu8ptOOTal/1pex6vlcz0d0F+6viRvO3dnupEHgZc6yy8DH7jVmdzTHcvLpsc/OHiMymkqp7GuecHUFDbFdEa1dxvHTYOyK8jSfVir0CnSoSNkggtEY9vfDbVtRF9WBXyAVsRnHbN2s3RFgDat75a7y7ooje08MZoGx3p6TTmbxsIm1kWCmhf8pnyudny3fM3/TeJDmwSDuuk0Zd50Duv2aravLK/ZpLu+W57fdI9eUd7uuQCtGNG1ytwt+9XOb13AZt2+62VvOgvddNfz6nItu65fm037X4/AznpZbsQmVyvHa9Hd92rvjquJGW26168l6NSsu147XC+vldbm9P1/JVeu66Z7heDOdZZ/U/nWj9tU77rbVtJgc9vlWu2I6ynT+rpuGa92nmtDoF5XPq+V/rrAU0MTRXE1oahuuq+V/sayX6vxdY1G2SaxKrhKm7TJo/m9Mb31FVfmt8kGG+fidXQEq66d7np52nJ07dK1w/rv18smO2y8PjdwfPeY6/TOXPeN9DqeOVfNY8W7Ju1cpLKex6ayrZ/XtTod7fpQV65l3w3bXtMjtiGP7nGr98Dauk35rf1et3jbKrnua7Z5dfdWvKEq/Fr16jXyuyLTDXXquspzo2W+AW7mlr7TTNj91GfcJ15/PP7VyUXkC53lv+Oc+zu3IZ9rck93LAub8vTslJe9twmFSaicoqcMqTLtl+w6fP1tvuLWnS+GzdfARGz7lbi2itotv7D7qRCSVm0WfIeyObb9Eh2+PmbKtF9Im/QausqyShxFnWCR1kMDtJ2XRq7aK6SqVvW1ScdY1SrYrn/xTJRtx2em2jCv/NjH5qttE5qbBgnnJsR3XW3VWEUVOttAK0PdPKeaKQcSZTEbGp/GKvIkjKNyS5XS2ir/9dSqVvlVh6+maUirrBOypKasE5IwpqkymtooemG80vqXU6+qusw/DeMpuo3frnKrDhPbTwv/Bdp/aZUV9VMd5r9sjqvD+AfVsVXTeGrGIjrn64KIQ3c6NMZJO4YvUesfEoQ6zMOptV0qmgY7ijiMUe0YvPWvtV1pceOEOoxVa8pXln4sWKPc2nzF7Y7bWW8oNw3jpnHb2KVRgW3GDjbLXtzK59uVDG+UY5e/l8qxzfFK2TaMulFObcYMNv+bsqx/fbadL8kqfHU2tUZp2y4D2Ma+wYat7TYor9omv+Z4t1Qg9V+37cr4GlNrcKDTjtLBhpdxV0F3nZUPDtbXAxPmK11RCW5CdyU0xI2g9FJB2QblTqU7duo0rG2l/Bgl8Y14Py4p2MIIKvXnZkO6ttnezGsqq52eVsG2Ebmy4sOV1zox4PdtxyB1epwinQ5FZ7yPcyz3hXb8URNe7cct+XO74it/I/DV2DqMbZLEtfO+tq3ASnx4dhPmnVkfytyIVwmtSFc7Xkh17NoaP1zrJk8rbagusDymsVVXqdXhj+sub+pkiWNFtVVYhrbSObbZxeLneA1jxJp5Pp0K6qoOH5LcpKNcKwYmNoTqhnBmMbJUVrUsjw9htdL+9ucqzXyaYV2TbhN67W0S8rO086m2/cLOfSJhf6dcG/ZMY267mlcrPFJLu9yEW9ve62+FdgXNVoRL3Go+q9cn7G+a8rMMc5VQ/mZa247i7EpfoKu4Go6TEHYrwQYSRNBa29HpYzfHdpVym3PA26pbZZp9uiGjzZyWbcFcJ71OGaUT5d/Us6YutHXULR+NK9e1qW9duzX3qlvmQXtsx0iy1unqrG9CRq97HsfXUUWu6Pg1j6a1Ml/P8evrVo5f7yQ2z51m/frzotm3e62ukne7/8aO6GpH/5od3Ney3+3sOL5WR/ou45z76F3K+hXgoc7y6bDulnJPj7EUkQnw9N0ux5uM48DFu12INxnR5neeaPM7T7T5nSfa/M4S7X3niTa/83w72/ytzrkTd7sQdwMRSYDfA74f36H8PPCnnHNfv5X53NMeS+Dpuz0I982GiHwh2vzOEm1+54k2v/NEm995os3vLNHed55o8ztPtPm3J865WkT+K+BT+OlG/v6t7lTCvd+xjEQikUgkEolEIpHINXDO/Rq3edIV9dq7RCKRSCQSiUQikUgkcnXu9Y7lHVc7ikSb3wWize880eZ3nmjzO0+0+Z0l2vvOE21+54k2fxNzT4v3RCKRSCQSiUQikUjk7nOveywjkUgkEolEIpFIJHKXuWc7liLyURF5WkSeEZGfvNvleSMgIg+JyK+LyDdE5Osi8hNh/VER+bSIfDP8PxLWi4j8H+EafEVE3nd3z+DeRUS0iPyOiPyrsPyIiDwZbPsrIpKF9b2w/EzY/vDdLPe9iojsiMgnROR3ReQpEfmDsZ7fXkTkL4fnytdE5JdEJI/1/NYiIn9fRM6LyNc66264XovIj4b9vykiP3o3zuVe4So2/7nwbPmKiPxfIrLT2fZTweZPi8hHOutjm+Y62WTzzra/IiJORI6H5VjPbwFXs7mI/Hio618Xkf+1sz7W8zcp92THUkQ08DeBPwK8C/iTIvKuu1uqNwQ18Fecc+8CPgj8l8GuPwl81jn3OPDZsAze/o+Hvz8H/K07X+Q3DD8BPNVZ/l+Av+GcexuwC/xYWP9jwG5Y/zfCfpEb5+eB/9c5907gvXjbx3p+mxCRB4H/GvgDzrnvwEud/zCxnt9qPg6sT759Q/VaRI4Cfw34APDdwF9rOqORjXycK23+aeA7nHPvwc8b91MA4X36w8C7wzH/Z/ioGNs0N8bHudLmiMhDwIeBFzurYz2/NXycNZuLyB8CPga81zn3buCvh/Wxnr+JuSc7lviHwDPOueeccyXwy/jKHbkJnHNnnHO/HX5P8I3tB/G2/Ydht38I/Inw+2PAP3Ke3wJ2ROT+O1zsex4ROQ38MeAXwrIAHwI+EXZZt3lzLT4BfH/YP3KdiMg28B8Bfw/AOVc65/aI9fx2kwB98ZM0D4AzxHp+S3HO/QZweW31jdbrjwCfds5dds7t4jtJVzTiI55NNnfO/WvnXB0Wfws4HX5/DPhl51zhnHseeAbfnoltmhvgKvUc/Eeo/w7oiofEen4LuIrN/yLws865IuxzPqyP9fxNzL3asXwQeKmz/HJYF7lFhNCz3w88CdznnDsTNp0F7gu/43W4Nfzv+JehDcvHgL1Ow6Rr19bmYft+2D9y/TwCXAD+gfjw418QkSGxnt82nHOv4L9mv4jvUO4DXyTW8zvBjdbrWN9vLX8G+H/C72jz24SIfAx4xTn35bVN0ea3j7cD3xuGK/xbEfmusD7a/E3MvdqxjNxGRGQE/HPgLznnDrrbnJcRjlLCtwgR+UHgvHPui3e7LG8iEuB9wN9yzv1+YMoyPBCI9fxWE0LMPobv1D8ADInegTtOrNd3FhH5afwQk39yt8vyRkZEBsB/D/zM3S7Lm4wEOIofOvXfAv80RpZE7tWO5SvAQ53l02Fd5CYRkRTfqfwnzrlfDavPNaF/4X8T7hCvw83zPcAfF5EX8GEhH8KP/9sJIYOwatfW5mH7NnDpThb4DcDLwMvOuSfD8ifwHc1Yz28ffxh43jl3wTlXAb+Kr/uxnt9+brRex/p+CxCR/xz4QeBH3HJet2jz28Nj+I9WXw7v0tPAb4vIKaLNbycvA78awow/h4+6Ok60+Zuae7Vj+XngcfGKghl+kPAn73KZ7nnCl6a/BzzlnPvfOps+CTSKaT8K/MvO+j8dVNc+COx3Qq4i14Fz7qecc6edcw/j6/G/cc79CPDrwA+F3dZt3lyLHwr7Rw/EDeCcOwu8JCLvCKu+H/gGsZ7fTl4EPigig/CcaWwe6/nt50br9aeAD4vIkeBp/nBYF7lOROSj+OENf9w5N+ts+iTww+JVjx/BC8p8jtimuSmcc191zp10zj0c3qUvA+8Lz/pYz28f/wL4QwAi8nYgAy4S6/mbG+fcPfkH/FG82tqzwE/f7fK8Ef6A/xAfJvUV4Evh74/ixzZ9Fvgm8BngaNhf8ApfzwJfxSs+3vXzuFf/gO8D/lX4/Sj+QfwM8M+AXlifh+VnwvZH73a578U/4DuBL4S6/i+AI7Ge33ab/0/A7wJfA/4x0Iv1/Jbb+JfwY1grfOP6x15PvcaPC3wm/P0Xd/u8vp3/rmLzZ/BjyZr36N/u7P/TweZPA3+ksz62aW7C5mvbXwCOh9+xnt8mm+M7kr8Ynum/DXyos3+s52/SPwkXOhKJRCKRSCQSiUQikdfFvRoKG4lEIpFIJBKJRCKRbxNixzISiUQikUgkEolEIjdF7FhGIpFIJBKJRCKRSOSmiB3LSCQSiUQikUgkEoncFLFjGYlEIpFIJBKJRCKRmyJ2LCORSCTybYuI/Gb4/7CI/Km7XZ5IJBKJRCKbiR3LSCQSiXzb4pz7D8LPh4HYsYxEIpFI5NuU2LGMRCKRyLctInIYfv4s8L0i8iUR+csiokXk50Tk8yLyFRH582H/7xORfysi/1JEnhORnxWRHxGRz4nIV0XksbDffyIiXxORL4vIb9yt84tEIpFI5I1CcrcLEIlEIpHIdfCTwF91zv0ggIj8OWDfOfddItID/p2I/Ouw73uBJ4DLwHPALzjnvltEfgL4ceAvAT8DfMQ594qI7Nzpk4lEIpFI5I1G9FhGIpFI5F7kw8CfFpEvAU8Cx4DHw7bPO+fOOOcK4Fmg6XB+FR9SC/DvgI+LyJ8F9B0rdSQSiUQib1CixzISiUQi9yIC/Lhz7lMrK0W+Dyg6q2xn2RLee865vyAiHwD+GPBFEXm/c+7SbS91JBKJRCJvUKLHMhKJRCL3AhNg3Fn+FPAXRSQFEJG3i8jwehMTkcecc086534GuAA8dEtLG4lEIpHIm4zosYxEIpHIvcBXACMiXwY+Dvw8Pqz1t0VE8J3DP3ED6f2ciDyO93x+FvjyLS1tJBKJRCJvMsQ5d7fLEIlEIpFIJBKJRCKRe5gYChuJRCKRSCQSiUQikZsidiwjkUgkEolEIpFIJHJTxI5lJBKJRCKRSCQSiURuitixjEQikUgkEolEIpHITRE7lpFIJBKJRCKRSCQSuSlixzISiUQikUgkEolEIjdF7FhGIpFIJBKJRCKRSOSmiB3LSCQSiUQikUgkEoncFP8/rlYJ16dR+iIAAAAASUVORK5CYII=\n", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAH0CAYAAABGqLIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0JclZH/j7IiIz773vvdq6utVSa0MIBAYZAwPGHpiRZ8ASMos3DFh4jG0GNDMeDwaMDcZjwWHRMD4YMAZsz9gsMvsYzrAdgQ8IMIsRjM0iEEaIbnWr96qut9x7MzOWb/74IiLj5rv31avugq4S+Tun6uXNjIz4YsnM+HZiZkyYMGHChAkTJkyYMGHChAnPFur5JmDChAkTJkyYMGHChAkTJtzdmBjLCRMmTJgwYcKECRMmTJjwnDAxlhMmTJgwYcKECRMmTJgw4TlhYiwnTJgwYcKECRMmTJgwYcJzwsRYTpgwYcKECRMmTJgwYcKE54SJsZwwYcKECRMmTJgwYcKECc8JE2M5YcKEPzQQ0Y8T0V9/vunYBiJ6GxF9zh9g/R9HRL/zB1X/swER/QUiepiITojow7dcPyGiVzwftN0NIKI3EdFbdlx7DRE98odN092GO/G5mDBhwoQJzw4TYzlhwh0EImIieuXo3M7N652MbXQz8ycy87f/AbT18jh25nbX/Wwxnktm/jlmftXzSdMW/BMAf5uZ95n5P40vxvPvBgAi+jYi+so/dAr/AEFEDxLRxz/fdPxRwl3yXEyYMGHChGeBibGcMOGPIO4kBuxuxPvQ+L0MwDuebyL+sPE+NH93FP6ojev7Sn/fV/oxYcKE5x8TYzlhwl0EIrpKRD9CRDeI6DoR/RwRqXjtRUT0/xDRU0T0+0T0d4r73kREP0BEbyGiIwCfTUQfTUS/QkRHRPQEEX3dGe1+EhH959juLxDRHy+u/X0iei8RHRPR7xDRf09ErwPwpQA+PZpT/losm81NieiziejnieifxnrfTUR/Op5/mIieLM1miejPEdF/ivQ+TERvKkj82fj3RmzvT8V7/iYR/TYRPUNEbyWilxX1fQIRvZOIDonomwDQGf3fNX6/GGl/jIi+iYjqWD7R82uRnk8fm0ZGbdkXEdGvRxq+l4hmxfUvjvU+SkSfU2p6iOj1RPRbcczfS0RftINuRURfRkQPxfH8DiK6SEQNEZ0A0JHG39txPxPRK4nocwG8AcAXx/78cLx+szX3/XHMjonoN4joA4noSyItDxPRny3Kf3ZcA8exrjfsoGnnuiWiTyGid8Q5eRsRffBovP8+Ef06gCURfTeAlwL44dinL47lPiau8RtE9GtE9Jqijvcjop+JNP4kgKvbaBzR+6VE9HRs/w3x3EdF2nVR7i9SfE621PFtRPTNJKbkJyTPzf1E9PVxbb+TClPmm8zLznUbrzMRvZGIfjeW+edEtPXZoLv3uXh/IvopIroW5+bfEtGl4vpLiOjfxfG7RvJ+GL+zrgF4E+14xmL5WRyba3E83k5ELyjqOs9637AU2DJep96/8bwion9ARL8X2/8+IroSryULj79FRO8B8FNn0TphwoQJ5wYzT/+mf9O/O+QfAAbwytG5NwF4Szz+GgDfCqCK/z4OwhApAL8K4H8HUAN4BYB3A3htUYcF8Odj2TmAXwTw1+L1fQAfs4OmDwfwJIA/CWFE/jqABwE0AF4F4GEAL4plXw7g/cd0F3W9DcDnxOPPBuAA/I1Y71cCeA+Afx7r/rMAjgHsx/KvAfDqSP8fB/AEgD9ftMsATNHWpwJ4F4APBmAAfBmAX4jXrsa6/3Icx78bafmcHWOwbfw+EsDHxLpfDuC3AXz+rrmM9D9S/H4QwC8DeBGAK/H+N8ZrrwPwOIAPAbAA8JayPgCPAfi4eHwZwEfsoPtvxjF4RZzjfwfgO89ab7vWI4BvA/CVxbXzrLkWwGvjGH0HgN8H8A/jmP+PAH4/lt0DcATgVfH3CwF8yA6atq5bAB8IYAngE2L9Xxz7Xhfj/Z8BvATAvDj38UXdDwC4BuD1sX+fEH/fW7T9dZD1+d9A1tBbdtD5GsiaSuX/20hf6uNvAfjEovwPAvjCHXV9G4CnIWtuBuCn4lj+DxienZ8+57ycZ93+CIBLEMb7KQCvex97Ll4Z57YBcC9EMPX18ZoG8GsA/ilkXc4AfOzonfW/xv7NccYzBuDzAPxwpFXHsbmAW1vv34bN5y6PF85+//5vAH4JwItjP/8FgO8evS+/I9Iy30Xrzb5Z07/p3/Rv+lf+mzSWEybcXbCQTcjLmNmy+CcxgI+CbH6/gpl7Fr+4fwXgM4p7f5GZf4iZAzOvY12vJKKrzHzCzL+0o83PBfAvmPk/MrNn8ZHsIJtHD9m0/DEiqpj5QWbeqv3agd9n5n/DzB7A90I2/V/BzB0z/wSAHrIJBDO/jZl/I9L/6wC+G7JZ34U3AvgaZv5tZnYAvhrAnyDRWr4ewDuY+QeY2QL4esiG9SxsjB8z/yoz/xIzO2Z+ELJxO4uebfhGZn6Uma9DNnV/Ip7/KwD+DTO/g5lXkA18CQsZ8wvM/Awz/3876n8DgK9j5ncz8wmALwHwGXR7TN/Os+Z+jpnfGsf/+yGb+DfHMf8eAC8vNEUBwIcS0ZyZH2PmXSa6u9btpwP4UWb+yVj/P4FsmP90ce83MvPDcf1vw2cB+DFm/rE4zz8J4FcAvJ6IXhr7/I/i+vxZyJzdDKn8zwD4UcjcAsC3x/YQNUmvBfBdZ9Tzg3HNtRAmtGXm7yienaSxPHNezrlu38zMN5j5PQB+GsO63Ia77rlg5nfFddIx81MQ5j/R+NEQpvbvMfOSmVtm/g/F7Y8y8z+L/Vvj7GfMArgHwvj6ODZHsZ7zrvezcNb7940A/iEzP8LMXRyrvzx69t8U+5i+B7tonTBhwoRzYWIsJ0y4s+Ah2pYSFeSjDwD/J0Q6/hPRjOofxPMvA/CiaMJ0g4huQExRS1Omh0f1/i2Ilued0ezpk3bQ9DIAXziq+yUQKfm7AHw+ZNPyJBF9DxG96Bb6+0RxvAYAZh6f2wcAIvqTRPTT0TztELJxOssU8WUAvqGg+TpEu/sAZOOYxyMy5+PxGWPjOolZ548Q0ePRDPCrb0LPNpTM7Aqxr2P6ttD2lyDM8UMkppl/akf9LwLwUPH7IYim5XaYuJ1nzY3n8unICKXfgGiklxDG8I0AHiOiHyWiD9rR7q51u9FXZg6QcXuguPdmc/wyAJ826tPHQoQ5LwLwTKQ14aFtlRTYVj49H28B8MlEtAdhmH6OmR87o67xWG59TnCTeTnnut21LrfhrnsuiOgF8V313kjjWwoaXwLgoSgM2YZxm2c9Y98J4K0AvofEdPdrIwN4K+t9J27y/n0ZgB8s1sBvQ74vu74JW2m9VZomTJjwRxsTYzlhwp2F90DMlEq8H+LGhZmPmfkLmfkVAD4FwBdEn5qHIdq/S8W/A2Z+fVEPl5Uy8+8y82cCuA/A/wHgB+Imd4yHAXzVqO4FM393rOe7mPljIRsZjnWdau824LsA/L8AXsLMFyEmwcn3a1tbDwP4vBHdc2b+BYjJ3EtSQSKi8vcOjNv4FgDvBPABzHwBsnnf6ad5i3gMYsKWsEEbM7+dmT8VMnc/BOD7dtTzKGReEl4KMeV7YnvxMzHu/3nW3PkrF83mJ0CYuHdCtGzbyu1atxt9Leb0vWf0YVufvnPUpz1mfjNkTi6PnpGX3qRb28o/GvvxXohp7V8E8NcgG/vbgZvNy+1et3fjc/HVELpfHWn8rILGhwG89Ayt/ri/O58xFquSL2fmPwbRnH8SxHz53OsdYj69KH7fv0HM7vfvwxBT63IdzOK6O9WXs2idMGHChPNiYiwnTLiz8L0AvoyIXhyDL3w8gE8G8ANADqLzyrhpPoRIoAPEJ+k4BnKYE5Emog8loo/a1RARfRYR3Rs1Ozfi6bCl6L8C8MaoMSQi2iMJpHNARK8iov+OiBqIP926qOMJiKnj7XrPHAC4zswtEX00gL9aXHsqtlvmXPxWAF9CRB8S+3uRiD4tXvtRAB9CEjDFAPg7GG3YzknPEYCTqG34n0bXnxjRcyv4PgB/g4g+mIgWAP5RukBENRG9gYgusph8HmH7vAFiLvx3SYLO7EM21N97hjbmLIz7c8trbheiBulTIxPWATjBjj6dsW6/D8CfIwkeVQH4wljXL9xCn5IW8bWxPzOSYCkvZuaHIGaxXx7n4GMhz+bNkMp/HGSz/v3Fte+A+IK+GuKbdztws3m52bp9rrgbnosDyBo7JKIHAPy94tovQxjYN8d33YyI/uszaNr5jBHRnyGiV5MEaTqCWJ6EW1nvEL/g1xPRFSK6H6KhTH0+6/37rQC+imLAMiK6l4g+dVcndtF6Rr8nTJgw4RQmxnLChDsLXwHZCP8HAM8A+FoAb2Dm34zXPwDAv4dsRH4RwDcz809H88JPgvgi/T4k0Mf/BeDiGW29DsA7SKKDfgOAz+AtvmfM/CuQQCvfFGl6FySIBSD+PW+O7T0O0RR8SbyWNtDXiGiXD+Ct4H8G8BVEdAwJTJK1EdHf6qsA/Hw0/foYZv5BiPT+e0jM3X4TwCfG8k8D+LRI+zXIuP78LdLzRRDm9hjCfH/v6PqbAHx7pOev4BbAzD8O4Bsh/m3vggThAGQTCoiG68HYrzdC/Ly24V9DNGE/C1kXLSTwyLPB/w3x5bpBRD/0LNfcLigAXwDR/lyH+LvtYni2rltm/h2I5umfRVo+GcAnM3N/RrtfAxHk3CCiL2LmhyFBn74UIqx4GMJ0pG/lX4UEsboO4B9DGMOz8DjkmXkUwL+FBKF5Z3H9BxFNFuMafs44x7zcbN0+V9wNz8WXA/gIiHDuR1Ew9XH8Phni2/0eAI9AzFZ34axn7H6IUPAIYor6M7Hsraz374QEE3oQwE9gczzPev9+A8TC4yfiO/OXIGt3F3bROmHChAnnBolr0YQJEyZMuFNBkjbjNwE0z1LbOOEOBUmql89j5n//fNNyt2F6LiZMmDDhzsKksZwwYcKEOxBE9BdI8k1ehmhef3jaPL9vgYj+EsTP7aeeb1ruFkzPxYQJEybcubijGEsieh1Jgt930RDtcsKECRP+KOLzIPlDfw/iS3u7feEmPI8gordBAt38L9FfdML5MD0XEyZMmHCH4o4xhY0O4/8FkrT4EQBvB/CZzPxbzythEyZMmDBhwoQJEyZMmDDhTNxJGsuPBvAuliTDPSR59s4IZhMmTJgwYcKECRMmTJgw4c7AncRYPoDNZL2PYDOx9YQJEyZMmDBhwoQJEyZMuAOxKwHwHQsi+lwAnwsA9Vx/5NX324chjwCCYw0AqMhDIaANNYgYgQmGAnrWqMmDAfTBQFOAIoZjhZo8LGtoCghM8KzgWEERY6F6tKGCpgAiIDCBwLCswQw02sMFBSKGj3X1rEEADHl4VmAM2ZcDCAoMQwFrX4FIjj0TGPLPB0KtPVTMX+xYQRNDUQDzkGvasQKDEAKh1i6e0zAU0Hrpo1EBvdeoVAARwwW5BwAa5XI/XVColLj6BKZ8LkD6CwBGBfigclblVEYrzuPCsbyKY1+pAMcqX9fE8EzQFOCChlYy5kYF2KBRKY/AlI9t0HmubNBglr56VhvtMQjMkL7FATcUgGLOKI6ZIgYY0ErqXdkKYEJTOZn/IP1PfSzhgshjNDE4Xk9z4uO4pTkkSBvMJOsjqNhfBUUy1gQhl0HwXoEZ0DpeI0CB8/oKQUHrIP2MbYGQfwOA0QEhEAITdJ5PBe8USDF0vF6uSYp9THRSpIdZaJDxBUKkgwEgtqdUQAgD3d4raM2ZJiKWe5iEZsUIgXKbabyAYRx5VLdSDO/l3nRPYAIRAMi4SEekJiLAe6FVqQCktcEEDgSVx1fqAct1pTiPSwiJBmkzhKH91K/yfHBCgzKDu1x5T7qPg6xP0uX5OM7FWmJPUCYgOAXSvDHu7EmIjP1HoM36Iu2kw3BMQztsFWACSDE4KMlWl19QBGh513GgWGb4C+I47kOfZNCEDihIfSr+zouMh/oZgOa8hvI1lvrz31wWQxs+3qPjsUr309CPVIclKafi/aG4Nw1XegA9AYY3j128P5VLbecXIA/3gwb6Eg2JJjXqK0VaUh9L5HuL+aDiWjkOxXkKAKd+pvbyYpY+k5N7ONczkMRU1BP/5r6mbut4PrZF8uKS+9VQliNpZT25fBjVVfaLi3I0/E71UlnGp7EahmSjrRDb8EUdiOefy84nYBDJc1EvS3tpDaZxzP3DafqAYtx9MXZc1E9FOWw+Kir1DcVYj+so703PR/nyL56DjTb47LK57+l5xzAuZd9PrS01qgubdG+0gaFsetWluvK4j/tQ3lq+VrD92saF8u8YGzfvwLhOFP2/TShfjxv9Ks7nNVPck8YG2DIGGw3sOH+7MSbmrDm4jTStrj/yNDPfe3tqm7ANdxJj+V4ALyl+vzie2wAz/0sA/xIALn7QC/jV3/wZAAAbdGQIVN5MWy+MZkgbtVgHAXmjLnUOm/7ERPigEOINlRZmqtz0SZm0YRtWvGyCQ97ojttgpsy0JSYv0ZS/JXEDnvoxpr08V27EVWIiEpMbN9ZEmxvcUGxkNje9sQ0ajhMtiXYVmaTUrjA7tLlpjX9TnUolpmKoP2/GwyajsbFh98IIbdQXIj0qnKJVCtDGHKVy5VeOi7kkJRvoi1bWijBtp5mucgw41pc2+hvf3OKLvnVDHwBSu8cqMx1pXiiOl4/tJQaCsTFWaa6kz3yqHmYCOwXSkZlgGja0aaObOzHu1Ob4pi9YZjJSe6mviQkp5jv1DzxiVIr+5zLFfJXMjDAto91S6v9ok53PKd7cZAORcSrrKf6eesCKNsPoeMwM+bgzMqfX3AbNIf7dRkPZvqeCeeLT11LdhNNjk+Y2M3e8+ZLxRfvjXU+5cU5tJObmZpurciyLzfxG3wJATOCS3vL+on6K67gsSzyco0CnrwFgYjl2aQ3EutMrVRfH5XqJzxZ5AhthxFhvjuupDXu5cyQuaB426PkYOLXhVm40BWrEGIzpzGOzScfGpj3OVd5sJibLFeui3MDxsEbIUx7bzDyQ/EvnKQAhMYZpaaVXQ9F+YjrS9UQTgMyElfeWY5U3y2PGMv0MA13pJPl4uIWxLMc7VHjWIB9pL+cg0a5H8zZ6J23Q56VDA2N5+n1BgQrmdPS+AeL6HK5TfA/uZCz9MCZ57EZMYUbJhMY+lMzwxnyN1+j43lh/HrvyPQHsZIiHDgxDMH5dZSY4nxj9Hp3bWT+N/o7Kbb2vvLegc3zPtk/BzroSveNzZ9G6rc9n4Nx0PMvyN8WtlgdAzzUeTLz9177lCx96bhVNuBnuJMby7QA+gIjeD8JQfgYkyfJOKIhWrFYOtfJYuhpKe8yNhSGPZ7qFaMG8xsxYHPcN9qsefdBgiMZJR23ezDi0zqDWHj4o9ACcNTA64KDpcNjOUGkPTQwbRHvYOQMfCAdNjy4ysZ0l7NUWy74CM2FeW1ivC2aHRRtpPLQKOG4bEACjPUJQ8LFcCITaiIZRK0ZnDbQK0KPNWGtNZu5MYqiZUGmPrjOoKo9Ke6xsDWNs1MTozAw2VQ8XaXdewWjR4IlGUdpNIEraLgXvS02UgtY+M7LprZg0Y5XxcF5lZtsYD+d0/ivaOZV/V5WD9wrOaTTGwfYGSgcoFdB3Mq6VCXBOnWJKS4ZY6OU4nshMtk3HAIwJUIph1xU4EOoDB+8J7HVmSrUJGwyw62W8lJGvnIpaIYIIGyjulIIVxpiqkL+YzApEQTaokVkYNJ4kWi9PoNkQPV9pj+CMfHidAum4O0kMUvkh5KjlAhB6DVXJrpUdgF6BK4AaLxqHvKHEoO2KjFQez4JOMMCeQFqYx6wt0pHxCATUHnAKaALgZb5ZCfMJpoFJ8gSOuwQyPjOmSJrHzAAw4BSoCeBeARUiPQy2BDLpqcLAGKSvoFOAiX0jFi2fo4EJI6mLPW1qwdISdnE3mjZCJcMVIOcJEpfSANQrGaM6XiehHTVvbFTIiYaQS61ZYv4SI4i4aawCqFXgmje0XmQpMyBQ8pubgfa0SWXNkRba0BDqtYLfC3EuIsMRN6hqTfD7UXDjCVxFBqv4W4J8ZKQMC11axiSVz0yJHjbD5IXevBFO8+GFkUuMHRzJJriO608zqI9zVcdxqDA8A3F9kSIgAGZN8LXQBiYoK5t1Pw8D3XFc9Jrg96QPqif4BUO1hDAbGEjdpXUa9+SGwZoyg8Va7s1jzwTlAV/zwDhEDarqpa+pfAJrqTdt1pWlzHxsMEg2TcDwO9RyPUTmgSD3KAv4GcOshGlkQ5nxQkgbfmFSVA+wkbECkzC+WubI13Je9wQf54+83B/qgWER+gmhGsYsVNInZWXc/YyhIqPLKtYVZKyUo8ywhGK9pfKhYuhWysg/hrJCK1gYR+UA3wC6A4KJtCn5bffwrKF66avQg/xsUwBCA1AcL9VHpjjOGwDoXuaKdRIoSB9kPaSydIrhkjFKBzLprACzlj4KAy5zw3qTkUlCgERvMLHtSBv5YcxKBiVpQ7MmNa6j9M4RAVFkVOPnKmmCc98R15YZxiSNHcLQP3KxjUKLXWo2swAjrtnMHPPQx3RPyfQmpHpLDfoGMzsWQoTN+2WcGKwoMzhMp4+zpnbUThr/U8KTMSM9YiwTbSPZ1YYgKQlfNmgfMd/pu7C1b1vKjRn5U4xlqm/LWJfYJtwYn78ZDXLD9ja2yFruCrz2z+zxtev+ttf7q7/evZWZX3fbK75F3DGMJTM7IvrbAN4K2Zr8a2Z+x1n3XDBrvPbe34JljVWoUUWz044NbNBoLjp0wWRzSkWMLpislXSFhjKdd0FnE8W5tghMOHIzVBdCNmFVtGnKuPY1GuVgWaEiKZfgi6cpsEKlPDwTXHzTNNrBM6EPBnNtI50BVTSTTaa6CpzrTUyfZ0IVaTDKY+0rBFZolNsom851wSAw5TYBoPUV6mh6qojRpzcghOExNJjGAmJGamgYi/J3GlMTTVvTPanuWvmN+l3QMMrnv30wqJXLc1Brj9ZVeZwda9TKwaiA1p0WOQeQmEXHuQmFOXPZh5L+1su81/d4GOVxYhsYFcR0OmxqvBNMNJ/tvayppCVPWm1FnJl8F9SgMS+0nql8wKDBBoBKeTH59XpjTGvlN8a8NM8t70/X0/wljbgiRqMdbNCwftP8uNT0J1pLzf+GBrjQ3hoVcv0JY+1/Ok71VtrDxnErx7YUZqTfYpIuptQ2mmm7aIadTKx9XGeaeOOeVA+P2gCQn53AgzZeRUGDK7TZqf++sD4oNfXlcRqvNHdle35kvVCOy1nlKu3RWoPa+Cz8SVYUYwGTtDvMhY5aaR8IOgoKnFdF3QG909kKQdFm3c4PtJRWGKU1Rpq/ZOodinVd/k3jlOZBF8+GHq2DNGdpH6Fp07KDizWb1n05j7mO+LuKgsJyDaQ5Kq1JADG7FuHYcJxMuweT7mHMswVK2Gy7RKpb76CvrKe8Vlo0ZCuKM86neigKtqigKZmfi1AoCTni9fJeRGuWOPiJJI4CNQBRg8ainE9yjFQubPYhzWXqdZrXUMz5lv27rNtyR1sIDBHb4yi3Skla8vxEa5C88Q2nx11pRnDFRN4iBosQ2rASIGKwV1kbvFEOQle2IEkCu6JvY+ubDUsP4PTOPAnI8kRhYCi2bc6HCcApC4Z0XJpdj7Gtzm1l0riUdY/NvbfVm47zPamrUQgZjwFsaoPH94/pLPvMp+nYMA/eRV+qhxMd2LyBeXPcbsYUbaHjFF0F01T+3kkj4eZzdEYdOyl6FnVt1Huzcuep5zxr7y7Ctesev/zWl972evULf/fqba/0WeCOYSwBgJl/DMCPnbe8Y42WDR5uryCwwqVqBcsaN+wcx3aG+2bHWPsKc21xaOe4Ui3xVL8PALi3PsGRm8OxwlxbPNnu43K9xrFrYChgz3SYa4u1r/HY+iLuaZbovEEfdN7kX6lX8Ex4qt3HwvQIIByYDk+0B7i3OQEAPNPPMdMubx6XroZRHitXY+VqPLA4BACsfSXMsHIAFJRyOHZNZEwU9qsOfdBYuXpg9kDYN11kZIQpcqyxbzqsXI0XL27ghp3jyM7wgtkxWm/Q+goX0GYm47CbY24s+qCxX3U46meiEYx+o/tVlzdyAHDUzzDTDrN4Tx9Mbm+mLVw0SQaEaZ1pi2e6BebGImgLxxpLW2Ov6rG0NS7Wa6xdhUornPQN9usOR90Mc2NR6xUO+xnumS1x3M/QB417Zg6GAo5tk/ugKcCzgqYAaGS/VEUBy9ifRrvs53lQd+icaHqP+wbWa3zIPY/DM+Hx5QU0xmGv6nPdJ32TmShFjEuzNRTE3xMAOmfQGAcfFPbrDmtXwQbG5WaFHgbHtkEVmeq9qsdRN8vlEvOXNrwHVYtaezzlZJ36oNB5jfnMwnmDvarH9XYBrQIa7dB5A+s1jAqooiZz2dcwKuBC04rvKICZcbjSrHCjn2NlK2gVUCuf11FgQogMpw8KNm7kK+1hoyadAOxVvcyXCjLeCjjpaywqi0p5HPcNLs/WeKadD4wWUxY41MqjjePVOWHq17aC0cI8NUaeFa0CiAltrHtlK+xXPWyohT6voCrO1gBVZYV2r+GDggdwZb7CytZoo9a9Nh6N9pgZixvtPJu7VzpkWnuvoSOzMosMUGsNtGLMtMeyr6AIqI1D7zUCA7PKoQ+Eq4s1FDHee3hRGBMQZpXDuq8yM6kVY6/pYCjg+nqRGUyjxYKhi1YSALCoLE7aBlcWa1xfzeEiQ07EuDhbo3MiKHJBYV5ZdHaeGb951cvz2jaojT3FfF1dLPHo0QV4JjRahDh9ZLYuz9Z4/PgAzGJZsXQGF5oeJ22DmfFo+4FRC0yoFUMrj3VfYV5btNZgVjmctA2aysHFcfKROW4qh0Z7HK5nqIwXl4K4xhrj0TsNoz16Z1BVDjPjxLIjMoSzWlR1J22DRdNj1dVRKSvCDmbKjON9+yc47GZYdTUUMfaaHkYFXFsuUBu3UfbSvMW1Ezl/Ydbh6ZM9XJq3uLGeZR/i/VkHQJhjTYxlX4mgJs6L9Rp7TS/ww8uEAAAgAElEQVQ+4k76O6tlHivthWlignPSD+s1Lszbjflp+wq909mFYNH08NEFIAllAhP2mj7PgfMK+02P47aBUgGdrfL7wAWFeW1xvJrh3gsnsEGh7SsYHaKFBWdBQ2cN9mY91n2FvaYHEaPRHl18rk7WDWa1xYVZh2dWczSVQ6U9KhVw3NWojTDyrTXZ4mUe6Wz7CloHLGoLIsbhUu4HxG2lqSwUAauuQm1EAFVpj7aXd1gIhKqSPvW9xt68hwti2ZKuzWuLwNLWrLZYrhvszTu0/VDnxcUaTx/un2eLsRWzxmLdik9+VbvMAGoVsF7XqGon1jaNhY+WOj5qq+czeRat1agqjxDErz54hflc1o1zg9DDGLEEAgAX11PpKrK/12LdSSwJZzWamYW1esP1RSm5BgB149B3BqaSejkQTBxT2xsRksT7tA4IXolFDgPBa5jKiX9+UCAl1j5iZeTBLFZezNKOj64B2gR4Jz7+pvawncn9SIIAbTzAMhaJ4Q6eMkOqtJgIJLcQtmqwsskWMQDHPg2uJJF5Lyxlsh9odMXI/upnuR4EEhcHVwhStzHtidEvrVs0i6VMKlMwzVtVbWNGfMxhlu4NpVAhtb2DgQaQzdy3YhtzSoMwSUiJQhLi7JKQab5VBvJmDPD4+vsQY8kAQl4E73u4Y/JYPhvc88FX+ZO+/VOw9hV6X2jCWG9IwEvNjQ0aCoOp31jjVt5nKGTtz/hauUkrfTPH2hG35VquA9iQ2JfPaLpeaqN2tV9qW0qMfTrHKDczpcQ8MLIGQ9GmRH18rfxb0jWWwKtCc1GWKbVbic7ExJTn0viUGozEAKSx2vYqDbwpuR9rFkLBQCXNXTLxTdfGfoCn+zdcK/1Jx76l5XiUwWxK+lLQnqQh4NGaGWuMxrSle5N25ZSkf8vv8fltGsqyrXGgmfJ36W+70U4R9IVHH8VS45J9YMe+sRg0ALu0hmM/WFUcA8P6oGLdYHRt63dsLDIeaVJSf7f5MJ/yAcYWTcRZYMjma/QNypqZsmjYHKt0brxe0/Xkh4vRM57Ng8cagW0f+3JjVG5qtm1+cuO8/d5U5WidpXOpHGmxN9sIKFTWXa4ZHUSLVFwnwun+AcOGr9z8lYFJUhmMypcotTXjjWBJX/nCGr+byw1beX859ozTAWQSreVcoThOpvMMbN3kjWlMdI03utswnueSzvE4l+bk2x68U1UXm+dxn9JxuWnftuHfGE+I+fqzxZkb4hGjUK5FhmzqmU6ZNp4L28pt23xv2a9uecxOa8TG923r503WwjYtWx6Sre8P7FwDG62M77lJ+6ew7f5d/d64b3tfT7VzRj+2ayzPaHMHtr02b4rnWO6mWtLbiHP3KbV91nN4Bn77zV/wq8z8X936nbcPH/lhM/6Pb33xba+3euHvPe99A+4wjeWtIjFlD8xuYB1qXO8XAID762PMVY/3tpdQK4cT2+Ce+RJPrA/w4r0bsEHj6XYPc2OxMD2udwu8eHGIa90eLlQtWm/wTLfAYTdDrT3e/+LTeGx1IWoeQ4y66vHk6gCKGC/aP8SNbh6ji9a4b3GMp9YiEb06X2Lp6o2NrA8Ki6rHwvR45PgSiBiLSqTXNig4r9E5jSuLNaoYGfbE1pgZh0a7gckD4aQXDU5nDa7uLxGYsOxrzCuLx29cwGLW4aDpcW25wP6sQ6M9jtomM5z3HZxgZasscT6IUuokLT5qGzhnsvnaftNjbSuR4BPD6IBlW2PRWPRONF5JszKrLTprcGmxxrKv4aJf5qK2WPUVFk2Po/UM+7MOvdM4qC2Oo4ZmZSscr2a4tL/C4XKOedOjNh6Hyzmc1bh4sM6aDRc1dj6o7MuZmKu9eQdFQOekP0SMVdugqmQcD+YtKhXwyGNXZL7uPUJrDbquQl2LdDb1rY6+osu1OIk0jdTRVE5MNJnQtRVMJe0sj2cgxZjN+yyh7roKs5lF11aYzXt4rzak0qujGdgRqn2R8mvNMMZjva6hVEB7PMfsoIP3BO90bst7ygznPLbXtwbNXLQ7tjdwhzVo7jHb79D3ZohiqhkqajeC12IaqQO8GyTfifm1nYaqJFIpxyizZmZhWwN2CtXCoj+uYfasSJZZNv/aRB/itYGZO7jWQNcBHABTewQvziLeigaSvQYRYBoHu6pQ7fXoT2qoxoOURHr1Vku0VACuM8JomJCjstrDBmg8TCN9805JNFSroPYsSEWTR6fgrQYYUI0Xk0HF8K28HvXCgQMQegPVeIDlmCrxgfa9hqo8/NMNwAR1tcvBlnyroecizecQJedrLZLj/cGPNknSyQRpnwAsDehCj3C9Bu87KDNEeOUblfgNEiS6a6uBfZeZsbAy4sO05xDWRuqupG4A0NcquCtWzq0M4KJPIwP6WMNdsVK3VaCZB44NeOGBVgF1KJgiAL2WzWwdQK0RX8uewAsP6kz2n0xBjag1IEsICw+ySnwRk4+lVUCiswoyVpbAi4Ac2fSwBgjguQetDHg+OCFl31MjfszV0xXcHiPMAigQ9Er8YN1FD+qi4KiSa+ZIwV7xUK2CXhPsRY/qhoY7kP6yZpijqDWK/mF+xtl/jwIQapY2AIRGfK50S3B74kvJBLBhsJFyoWaYZZzT5FNYSz0kShyYtfg+MuReCuKbaZaU/d2CBsyK4BYcff3E5zDVq1vAHjCaawqsEf0jkf3KlBN/yFBFv9RG/DHB0Xcz+t/ZPYZpCWYF2H1pg5z44/noXwiSY+VkfPSK4jnxndQdABZ6dBtpNIDqZBrdPPl5Sn1+ztmfTPUUyzCq4zguBgha6jKtLEs3E19KtweYFeDrwa+wOgG6K3jWMGvALWRuUl8o+qm6vUi7ljFnE+UE0Z+xWspchSr6WypE/1WpV9YHMrOc/FvByAGHkulm0EB9KLQQi++kWUu5HJ0W0a8y+jXqNs5NP7Sr+/gKqgffVCDOu4m+vGmNtch+ranfoYrjAKkbAMxK/HgBgBwjVBTXFsPN43k/9EV3DFZAqGjD3zIxUeSQfRiDJoQ60sUABYZKYQc0xA8ySroTsxIMiY+klr8UaU9zQ0HKaFs8z4xBokXIvrMZibEphDpjv01Ano2QdtqcBAxyvBH4KFUb1zoQ13z0JS0Z4exTqYd60lopowuP68w+rLyDkUuCxsDZbzT7km5hnrPP6Za6tsnLNq6NGPwzBZg0zNeu+nfiNjPAtwcMP5YWvw/hrmYsL+kVPvPqL+FGWCAUmsWWK7ShwkfsP4RjP8sar9kli2VoYFljcVnMTnwUnx66BT7ioEUbvc8r8piRbMqvu328el8C1Pr4FNhgcHBPC8sax36GxcUONhhUyuHEz/Axl9bwIKx8A00h+38ms03LGpY1PurSQ0JzTGeSzDhnyuLYzwCI/6f4cA4+f6lPyZ+yIYdVqKPvmfiULl7QSztBo3mB+Fh20XRV+qBz3R4KGgFdMPkYQPYVTOiCgUbIpptdMFgoaWfs09dFv9FjN8Nc9XH8VJHKRKNRFutQw5DPtHTBoKKQr9X3id9lAKG+z0Ej4MQ32b80YPCrSz6WJvqNrn0d6Rn8YisKsHG99MHAM+Gjrj4ED4VjK2OezGwVBfTBiOlrTPky17Iu1r7K55NvraHBbNjEr115f6M8uqDRRJ/YMfZMBxfnpfQTTf63c22xdHWuP/uRguOcDPQa5dH6CiamatkzHfpgcrum+KL10Qc5rb8+CLNe+nSmtD3pdzpO5xWJz+pMu8F3VXm0fnjNJD/b0ry690Nf05il6703qLVD702eU2Dwt+3jF7tWLpqyDm3NXmbRezHXVnFtpLrbOAapvjrupvrCBzuVT22UFgzjtR6YsHi5vFNWrs7nkolpgiLGTFsEVnmMyjrKZ3theixtg/lLLVpvNrSOlfa5XBICdd5kX+wqjmMy52am7KMLAM0rxRS5DxpNNNUf1m1AV4xj8vFNbgBpzss5TWsmPTfJRzm5DZQ+12ntlOsgWU/oGGwt+xxHwVrydy59YpOvsB9ZapTzOv9ACxdULpMsE5L5ePLJpXitdQZVNCtf2QqzaPIMiECw1v5UOynFUCqT3pnJj10nC4uC1tIftdZ+Y4+V/LLTnIz9VEu/7tJqJtVXXk+pk5Kpa/NBLgsV03gCyPU4n1JHiSVKQhYsORE8acWoy+jihGxWy9HyA5ANRulvThjSLymmDYud/CzE+Uhjogtas19qoBxITu4RgQpSaqfof0heSWCgYrPq4/lnC1YMeOkLJ+uWZC0R22MmhCINU4ItrFgCDXyLlI9jsWHxMNwcxppCJvgYIC/9tkU07k0rgDjPKmxERS/bSWmXcsTZdF+yqEmB6cbjwRj8RZNf5NiigpGFjKWlxFmmjrxLMzrW6G9cw6ZKb6xx3NbelvE6E2dpT3dpeRmnzUjP28b4/BnM19b7Nujdou4c0TJomfPAnEHPzbm2czGA59VAnneOzsL3PPcqnisYQLgzOd7bgruasVyGBj978kEAABvNX7swdEmC0cjvtOFKaUnS9ewrFBlGv2XhpmAfAHLQnXR/uZEfB7Yp6wU2GcLydzoen0u/y0BBiSGT4yGojSGf83iWgX7KenZhl7ltudndhm1mr+dBGp/ybzIZ3mW2W26UxrSON0dj89Jt/R3370G65+Z0b6mrFOKlOretoXT/eG7HtJZBXcr8l+MAKGMz4VvBWfMViqEvN4uluXOJdH48B7fSZnl9bNJaIgkPtvX3vONQbuB3fyu3p3EpUZoyl79v1oftdYzP3/x7vWuN72rzrD6cLrtJw3no2dbWzfo/Tkezq/3Ni+df68kMenzHFsH7qU30We2dOS7jDdI5NkvnWjdndaTcGO/axZ1jnk/hrEAuqf3znk+0lXSMf5fnxtqMbfXubP82bD5vBbs0L2MT6lMamILx28ZsnGct3YyxuNkYlXNQrp20JsePw456TzW7pV1K9W1p7nQFp5mdjXIb6357Wzsxft8GnOJFz6TtZuex+zHcvP9863Rg9M5TJ87JoO1u61bK3/Tazep9lvVNuLNxVzOWN+wcb3v8A7DsarigMKscfCD0zsA5haaWgCqV9uisQVO5HAigrlw2m9Q6oO81TJHCoqq8mFcyYb1qokO+xLJOTt9V5UEEdG2V8yFKXQZ1HQNDWEmnMd54Bq/gvcJs3oOZ4JzK9wPyt2urvDnSMaVFCGrjY6C00GCMmFmCSdJTeI35QkwevdOoGwvbi9ZDaZ/9/2xnsomd1mIWWEoWtQkbUk5ntZhOFvksU3u5j4nxcwrKBPhOQ5kA0pzNAZVhBKugap/TcgSnxMyy1yAdYGoP1xno2gtdnqAbD60D7LrKZoOlBI9UjNyYaOh1zP0Y/bIY0HWQqIAESWERCM2lFsyE/qQGaY7mnrGMVcNGQQGqljH3vcr+WqlvqvbgaGKqawnOwE4iBeaE970WE8SyXgKgGLqWtCq2NYM/oidQLSk5dB3gW50DFnBK8xH7DmJwp8VksIopOgBAM6q5hbcaIV0v/PBO5T0sUnKUUl0yRXTJWJatkpQqisG9gmo8QmuGfI5+qE9o0nItzZ0dIinm3IopNYYlMb3sY8oRq6K4j4Y6mMRsklJbkdZZnAs7jAE0i99dGwVEHPuZ2k3pMRhASnOQxrAM3pCCPBTHtHDybJ9Uw85Gs/SBMOysanlXcFskvUttlpv5xosp6MJL2cInjeZisguOfa4Y6FRBezQ77TS4CkO5SL7aswjLKqb1CEXQCoAaL+axcT6oV+AmSD9M7Gu5KU5rwUU6UhCMVD5FFE0pUKrYXp/mXeaMmIb0KAqS2sSwjHuv8macU996Ba6DmM/G5z8FpkhpTLBv5XlI82qEVlrrbPqbU57MPGgVz9dBjhdezIzjM8DJDDgFwLBqCG6RaK6KdR/bpE5tthcg6Vg8ydhy3Iyn94kb1gGndEWM3FY5DjlYSBOATiOnn4mpiCRljJhL874TupzMNSc/UpJ52kgrU8f645wjQPpRM5Dqi88UFA/PcYjpZIjF1LmJ82WVtJnmL81BnC8x7SYxo05joxiqV0N6hVTeUjZvRkxTwoZzKhzqCVwzVKukXB/zknoCzwLUSWnTeGsITYBqoxl1MkdHXLMdDebKFYsvJ1POX5lozms7IOYFLdIFlfkso8lk6rMcJEKAMA9QXRwfD3AdU/wUvsLpmqwlSaeTxoICiZkmRbPmIrhLTr9hpC3ylE208xZEARTzghILjcSDqXVZTzK3zul10vPKgxm+pJmJc1iGDI5pRJJJJEmMQ6k/vVvjmJTMaz4Mw725/JgBCwOtZU7PnBM1pawZMz5lPcnENZ0fjf+mOStvTSOSjlPnWMVcpyPGd4PZ5CH3bNbQbxHi5L7RtrawkTN2GACcxmhfcDNw2c5A8tmM7JiG8Xzd5XhfDt5zVzOWV+olXv+id+AF1SFarvCe7h5oBLywPsRFvcRvrF6Cfd3hGbfAC+tDPNxewUtm17EKNR5tL+FStUKjHJ7q9/GK+dN4b3cJl6sVTlyDG3aBp7p97JsOH3bhEbxrdR8umDUa5aIZpsdj7UU4VvjA/Sdxwy4QQLjRz/GKvafx7qVE/X1gfgPX+71sJulYYe0rXKlXuGRW+PXDB6CIcU+zxNpXWDlhko+6GV7+gkdzypNn+jn2qw77ph9yXbLCtW4BxxpH3Qzv/8DTCKDsK/pfnrkXD1w8xNXZEg8eXcH9e0eolce1dg+dl6iorzi4hmPXoFYeT7d7uDpbQlHIaUiudwusXZVN2u6dneDIzrC0Enl0biyurRe4PFtjaetsClcpn035XrA4wo1+gaWtUSmPC3WLZ7oF7pkt8cTqABfrFmtX4d75CR5bXcALF0c4sjM8dnwBL3vxdbz35CIuNi0WpsdjywtYdTVedf+TOO6bjfZs0OicgYtRQ7ViXF0sYVQQekmif15fLzCvLHxQuG9xjJl2ePvDLwUz8OpXPoKlrfHMao4Lsw42KFyerbNG1QeFx48PAACX75XzKVKqVgGH6xkWtQUDuHa0h8YEXFys0cdIqEdtg0vzFsdtg4vzFjaawlmv0XuNo+UMtje4eu9xjli6V/d48ngftXE4Ppnj6guPYb1CZys0lUUdI2lK9E3CPXsrtM7gaDXD5ftWACSC5tH1PVSLHvddPcKyq2FjtFStA2ojTFHvDCrtURsRxqRorimC5HLdoGksrDXwTiIG7s07rNoG3insXVzh6HiOS/cdo7MmByRqKoveGbTrGvuXVliuazSN+LAezDt01ogPacz/mgQte/MOJ8sZ9u9pcXS8wOxCKxFtjceyrXOE0OW6AQeJ0piiqh7fWKDa67G/6MT/1RrxLe019u5dQakgZp/WwFoNDgrNTCI5KhXQtWJyPL+8QgiU/WOZgb6rUNUOSjH6zqBuHJZP7oEBHLzwOPvMdl2FvUUnmvEYAbI7bsCe0FxZ52BH3sv6ShElAaA/arD/whOcPLmH+nKbo0gyE9rrM6Bi8SmdM/xaY3Z1nX2Lu2UNMGF+/wnWywakpG4fI076J+Yw97UwlUe3rsCtFsY9EOh6DXVfK+amrUFzuUV7Y4bqcge7qqD3LZQKWchmWwP2Cmbfwp1UoLkDtxr6ooVfa1Atuz1difGPP6mATkEdWIReA0r8YkkBvtVR2KShLjj4ZQXqtDCIgUQwcSyMO13swScVsOdEWMA0MKC1R3AK1WMN3EEAz70wICstm+UrFmi1bLAWktdVX68Q7u2BVkNfr+Cv9tBP1/CXXBayqMMY0dILQ+AXYWAQIlOplrHeWs7rIz34dFJkfmqGWmmEJsBcMxsbXT9jYcYSX3dD/FaZImMQFGAY1TNCCxMQKkb1tIY9kA19mDFUp3IeyOq6gb3sMXu4RjCcc0iGvOkX5sDPGPU1JTkvr4uDoO6S3x7DXmBU1xTMiYG9IEyC6hH9TcXvjVX0i3RyrnpGhBRuLr5wZimMen+Jo48i5byUyg2+l6GW+t2Cs1+aOpFvn58B80eN0GVY/P8OFfRaNqtuAeg1hN7HDPxcfDhDBdSHGu19z36Hap40sAeyHvShyr6C5KU93Srxd1wNfpHJ17J6VIGN+DOatfjesZLr1YkcJ6MrYuS8lADgI/OWGQwDNO9WsPtyLhjx4fQNNn3pYo5RcPQPnYuvZKikveQn6uaReYqpWHQ/+E8mv1CzouxvqTyEua3FdxMk88IE8X+NfU75VUMNmCXBxRyikv9UBCi6BVhR9PGkDd9TxHEQv2ZGMOJjSW4Yd+U4+n7SwAAC2dcyVLThUyxCmsRAi99lqAjKxhyvnjcY2+SLGsodc3xe09pMYy0M80BDeraEnqE+ME4HB0NiOuMPxQMzmxjBoh8pj2XQHH0sOdMA8EZgJslfi7xeNxDr3/DfVMXvMY3R9zJdo20q6jEjWeQATeMGbPK/UvdppjMJlrZabey4d5sifsIfDu7qqLCvfPWCv/aHXoUbfoE2VFioDpYNWq5w4me4qFdouUJFHqtQY6F6nES/xYXqsQo1PKvsF5nOKTA0Bexr8aF8xu7FNCCb/o4H8fqhm2OhJT3FQvc4dHPsR2/2xIQOOfTExzL5O95TLRFAaOObZ6Zsbv/Yz7KpZmoz5dtMZpAL1cNDYaF6POMWuWyq+8Q36ILB5WqFQzeHCxpz3aMiH1OzLHLf5rrHkZtFOsWks1EulwUkZ2elfPY/c6wxV734QqrBF1KB81gtvTB1pd9XFX0M59qii/5zS9fEFC8VGuUw1xZH8ZwLGpYV9k2PWjlc7xfZV7L8m8yTE5aukTGJDKj006KLx8nX7kVzSfvyZCsBmRIdickuTVj3YrSD5KtYmkAPeTilDsdKfN9ITKVr5TLTnnzsShPZPdNLOhUnURCSn+F+1WVfy2PbZP/FPujM9CafyBPXoFYOMy2BqwDxx7ynWWLpGhzZGWbabvQp5QtN9CTz6tL0GoCkmYn+aUlQkvwfxceywr7pMg2AmI8nv8yZtjk1TTIhb73J6VySD1vyle2DxsL0WLkaC9Oj9VUOlJRS4gBArWVN9sHkcxfqFq2v0LnIQMd0Jyk1T/I7rJTP/nalAKExQv/aiS+tViFHlS7zkCahxsV6DQB4plvkcayUz/MPiMnu3Mgznnxl03uBmbLfYVoLN7o5LjQtlrbOEYsB4KDusu9goiGlr0nBwQITWledingMAJebFZ7pFtmiQ/LryrgdVCL4ST6PrTPYj8KTxjhYrzciUBslApvOGcxjELJKe3RRSJFMvtM9jZGUQUkYU15LeU5NzF1aa4869g0Qc+iZcbFvJvtA5hyZxMK8xr7eM19haWtJpRLbVsQ47hrUkbaUu3S/7nHYzlBpj0VlcdjOcHHW4rhrch/mlc3zSCTpacr8tdbrTF8SAFZxDMu8qD5QTs0xM0UQJwA2qBgITSxAGiN5h8e+kWl9MiRdR0rLk3KaasV5PdTGYdXVWZiV/FOTFU3ybXVeoakceqcxi6lACIOLSNtXqIzHzDgs+yqn6iFAUvXEOvsowLBeozHRBzcGd6vj71U/pERJOVIVYSMoW6IrRekux7COKZ6S0EbrIeVSWkNdygMbBWSeJQXQsh2evVuF0QE25oDVOmTrHUUcfVAlOraJAcuSMAgAqsrF9CMStI0j7WUqFe8HH0hV+EyW0cDlN2Uhn6wJwJgQU5wM9xIh0oBslaU153M6Wmt4T9kyCUC2iMlpOcKQeiRF7pb0H0VKkiCqRW18juCtYtqSNEfeDxYGZURtBjb8OEOyyEAqGxnBQJv+nsSFBo2GqOPpcrQCyOlGssYych+JYUllktXImEtJ9yeUW+dUrqAj05CYx7G97Xlwluau/JssD8aavWL8ksWDaCuL8RnTsq1uKq4V9d2Kyf+tmKjflBncpVU9Bx0Pfv4XPe+RUz/8w2r+mR+//7bXe/GBh5/3vgF3ucbyabuPb3nPa9DEzcXKRg2DkZx2R91sY4Oy7Ov8ES8/ir0z2G86nHQNGiMRPnun0TvRolyatzjpahgd8oeaiHN+vL2mR5+0DM5gr+mxiia3s8rBus30J4EJtXHQinGylvxsKdl1SsbtPWE2s2J1RSwfZR1ynraElOTcOYXZLEYAtSZHEtU6oKo82rZC01gQIWpn5CU3ixoaADkflUQZVdmstwzrX9Uu590CccyRZWAq0YaoaLILYmjN8E6hbsSMON2TPm7GBNg+5tRyCqbycFbnHFu2M6hnYsKrdQDFfFzslJh1Rs1SGYwgxMAAHE3HTCPzHYq0L97FHFjxA6h1wNtvvB/AEo01MImZrmFwALSJvp2xLd/rbFKbPopJ8xSsErNbQMxBo/knGJvmvlbMhJPZMTh+MDstH7bGZ5NeZTibv6KPUTqZwI4Gk9b0QWUx1WUvEVApRkRlq8T0rAqDiWgKolCagiZzyGxmi8FULpmmZtO4+KGMpqpgkuMuRg5NGwPNw8fVSdRPWDW0GSN45o87Y6jbsJRN9Zoo6lQYaAEGc1fF2bwymx8mk0FHg7lfU5g0pr4kWtOmx0rkY1QstPvYXqIvmQpH00+1jMG19v0ghU5mqukjHOkiFrO4jY83UvvyfKtWIcw91Fo0W2UydLWO0VQBQCObBmbae5I10QQxoSORZqeP7iPHGn4/iIS7jyZw6ZloSa4VpoyqVQh1ELPEirNPWCoj88iDKaATU0SyFCNicjYvI0tRi5LMHZFNS5OJYDKNpJ6gnEQpJZY+qFbeI0mjJRFL45xHU69kFnb9RLQbIc6B6iUwjJ+JRg1Ajqx4rSX4hdCsrGjdbqwJoeFsPqc7ynMpmoKoPWBkUzplkbUWYt4n2hqK05PoS5qZGNcsQ6KcDlqCsr5yn6v7Ya/GGjjuSPoVhvtlzKQNPwPak6hxMryhjSBPCEY0GutONIirLq61GE2VVYzy2hGWNkaBLbR1oSo0NtF8MlQMF+sJlZTtYjRPP2e4InLtEFkXsG6gLUn5vU8AACAASURBVBQxznw0wwwVg1saIpQqgC0QonYnVECI4277qHGLG+S2A8IenjV8D3CMfsoW8IlXCHKeLQANcIy8SnHOATkHBSgNIEY/JQVoAtDLbxXXo4prKjFQlOR7iV9RAK0BE7WRaZ7JbPIwVEQlVRbQMdpuGjeJuDpoMNO6y1qrQguXNNJJu5Xazc+SGa1NQtawpWdjQ3uX+uKkPBfrPrUjDFHRnsKmRjZqMpkKprFkrAintW+MrHUD4nGMJpujyqbxS3xlHI+Ebaacpaltlm/Hb2guXzBFp86l48LMd1fU2I0oqTT8LrV1+Z50Ln6Hb2qCOur7qfJpzauC/i04Syu5E2PmGFt+78BWzekID968mgnPEXc1YznXFh966VGRTAaDpWugKGCuLTQCbtjFhqbo2M6wZ4RxSFq0FHxnT/dYLkTrliI2Jo3KhXqdtVZllMzWVQgg7JsuR0rsg8kaFgCimfFmI6BPoseogKO5aAhL6Tmz5Necm0GrVGqJysA8SRvTB53Ld96gUh5Hc5G+N9phZWs0xkGTRHxM0QMXVZ+1MCmqI4AcwbZ11YZGLWmJ0v1JKp00TmWUx6R9SFqMdD1pNxrj0DqDWvusOREJt2hFVrbCorJonWi0jApY2SonA7cxl2V6D5VSfR8IipCl+inwC0OYfxOTldcxuub1KD2+OG/hmXKiemaCiVLwpIVKfrpVvCdJ1ylKrI0OCCztKOLcllac05akv2UeUJH0S5LqpnI5IqRWjG5PNC7W6XwtzUuZ55Oj0CJE4UjSDngmtG0FY0JOj5KiCRJBTBsxaA4I2AgulKM9epUZ6SQVN8bDxsTYVeXR9wZVFA6ke9M9IqlPUvM4vlGynwQaQofQlsqmepO/cjYfjVJzF32DVUxFAoi5qtIhawaSwCYEhboetERJo5Ck90nK75OvrEnSeMrXk5Q+lVM6wM7F9Hc2t4OWwat8f2rDOzEFrCqfv9pJOJIZepLUK3XtYecmJ2JP9bqFyT6yKe9krg8D7aYS/2fEdZKEUq4x0HPR3nmvcooVAHC9hp7JDp699NkvpB/BKSjNGzsD9kkzwVmwwl5t+ECnZOiACF9CIKjKx77K9exfmDQlsb6QTGCjcMbHZO9kAryVdtIrMaRULbGOvtHiD2jivDklG6uZmMpmzQSA0Gk57wneKqDxCHM9+O8CCL3a3LkloUwhpEljn/2GQyGMSQw2xXIqMu+pLCDXCyFA9g8tN2fEQiMh+3e66Jso1zEIK5LvZx3gm8gF5zQFwoDnza+OzF4UVgADgwECQh3grIrmjclPT/qY/OSAYePPpmAeo+8hOQBMCE0QU8i4kaaCKVQbjOWwu01mmmzE1BeKB0bHST8JkXF2gzltFlZEk0Y3P8cudQeUFcZbxobyxjoxvNk31NHA+KclkYQEZVqIOEfKFpt/IDNNZR0Uz6f7/Ez6mMcwmc6WzEEUeKT2UzqNzCzGV2Ew2DDNTEKalPYmrSMQR4aHCjPMKDyIgj5V+JUnxjJo8eNMfrJg2mBiNxjAtN4LxjKPxxbGcrB7HDFC4/VYMnKbD5T8zxTLEMaMTWl6Gsk/fVz4tuZx5IIhHS+7EcO0jREbM6MbZqs7GMutdQCDye625c+jY9r8W772TvV7S/mzcFON5JiuczKWt6IVfb4xRYW9Q+Fi2o6Hl5cRmHCxarH2DR5bX8TS1rh3foKVq7FvOjyxPsCleo33nFyGVgEX6hY3+jlcUFiYHo8vr+JC0+Ipuw9DAXtVh0v1Cq2v8O5DuWaD3mCeLtZrKADvOb6cTaTmxuKR40u4Ml8hMOHx5QXMjc00BxA0BZz0e2idwf17xwCAY9ugiuaERntcNj2eWB3kCKFzYzdMugB5zvarHloF3FO3eHJ1AM+ERWVx1M1w/94RTmyDk77BlfkKR90MqyDM2l7VwwWFp1d7wtjF+66vJRdoFZm9eWUx1y6H+08mZIn5s15jr+rFvzKeS8zOsq+xqCyuLRdoKodGe9igcNzV2KstbqxnOGh6nHQNjPbin9j0ODzeR208Ls3XuLZc4OK8xdpWWPUVLs5bzI3FEydSposmZilqrFGiVU4mU4frmZhNGo8+Mit7tTCrihjPrObwXuEVV68BAN5z4xIq7bHf9Nl8bdVtmk0dzLrYvwqKgFVXw8QARoumR2sNFAH3XzhG5wyWfZWZyf1Zh5O2waLpseokLYVl2QxpFXB1f4mZsbi2EpG6D4R1X+Fg3qJ3GpcXaxyuZ9AqYG48rFeZsddK+n3SNtAq4NLeGkfrKLgwDi9+wSEOuxmO2wa1caj0YFaWNO5NZbOvpiKGMQ7Oa3m3E2N/3gnzXAeYuEbWfYX9eQejPZZdjXsvnshczsQcPCTTOx1wMO+w7GocLDp0TkMTo+2rbCJV/f/svUuPLcmWJvTZyx97R5w4JzPvo7qquEgNg2rUVY2E+Ac8BBItJvyQZsSMETMYNWMahBgitdRQA34DkxZILSRA/eC+MvM8ImLv7Q97MFhrmS332HFO5MlblTdL16RzYm93c3u5uW/7bH3rWwyEBXRPS8DtYcZ5Dri7uWBaPRILX4VA/oilAGNPfn9L9BWcfvXmAdMS6kaA9wljn9CHiPvzUMGm95kBfGZfTwLBhxvyzbzMHawtGPsV0xJgbUHfLZUOR3FKPX7+kw9wpuA3729hGaQN44JpCgzeCfTe3ZCf6P15qPQua5vYl2dK3OvbC94/jPjpV/f4cBqRkqnl/vSr+8ZWYFrg43kg2lk2ePWKaLmnS4eRfUzX1dXn4o++/ICv72+QosV4WOqGkTEFt8OMtw9H5GzQjZH8Yl9dME0Bh1cz5jk01cdiEA4rrC2YZ4/jccKyenQhYpoDumNsLAwGXOPdjOASTpe++o1SHsAPuW5epEjiZp1POE8dbTxEh+PtCRIzduB2CTB3Y67g3diMn/z8He4vA5aFfMplntw/kP9tbZcpuP3qAR8eDggh4Wac8f7+gFdfPeDhcawiauMbMi96DvUxLYEFzTKzNxz6Ya3jbUxB30VcLh18SE82N2K0OI5L3RgyAGYWXJO5IX6/cq2IevXDWimiKVkchhmnSw9rC7E8fKobH/2w4nzq8fqPPiAmh4V9mmVDRzaH4uowjAvm2VfGTB8i5tVT+KZLh66LuBln3J8GeE/0U+8yznPgTTWDefZwjtrRDzRmstHT91Tu6dzDSxsTP4cuY7p05Gu8OjifscwiZEabPDAFcfYIh5XGMjmUDFif0TFDZZ4C+mHF5dyhGxcsc6jMmONxwocPB3xu8kPEfKZ3iuVYtpW9cwnkS5wMbE8snlIM0ToBZtoYZI5BTLROi5wM3EDIMkUC/wYg9gv/bslGSKWKRoPuZkacOsAQGyb0ETk62mCx8m7hTQgQgycunjaJErFcHDM60sqxiZkJYXym755M7TlaOI7zKywmY1FF+FAMEjNX/BBrny0zl8pq4YaEdBGUi4pWLIvTSWzkUqBYMahMFGNATB3elKFySmN6iHibAlzUOUZAmuYqYKXIBophH0XT2CCSCraCbXJMqhGKKW8IiYhObV8yleFBINVsgZiuypQmjsYbBrq+jUiP9Cejtl0LPj2hwoo4k65Tvcs3tF/e4CTBsG0bK0NENq/25e3zVzB/Jb++5hkQubfCXvu+78J3Aq9/zakASH8Alr+fKReDU+yr4I1YzS4xYIoe59hV/6hLDBjYn8/kUj8LEJqiR+88gQkGJp2jOICX1aP3HnOkmIeBgeXZEjAQqyEA8i2MvvoECYCpVE225M3JEd2Ww5/M0SM7QyI5xcAbt/FlsqZgzbaCFilvtpkCBJvm7xNsrn5Hc6J202eqM7Av3pIdZqbzpkwWvcgLGPGT2ftASX6ArGBkYbRYeBwXttxZLmu2RClucdIcC9UQCJgZcOVCMdRicrRgBypwXbnd8rmzie+b+O0YBpYG8ATQcmpliPVLLJqdT1h54RajQ0qtfyKcsuZUY7ZpvxlrS12ArwzyY7LVWpgy9UH8rVIxiBwHb00OXU41T5QFtFgBeZxTsYgMjlIhmjPldzUGn7UZLhfE5CqQKoXiz62rAwL7cvH9FKtmyhYxOqZYg+9Ji/MnVG+hQtPcsFUUJrnmk0bjbhCjQ2Z/p5QsEls2s7W132ShbG1KjsGELeTbU5rFkdpEf1Mif7R1dUidqaAyJwtrbQUkzlnY0gRyIPdDAQdj7KZ/AFkUyQJKCzwqj+613DdazBtEZ+tnuW9Sd1ILDjpOY+ccKU8bACUX2rkvtCMuFl1+m5E/lvKvogWpqz5k5L9U6rsvZZp3MTqyUnO9Jdsm8JUcUuI4lqpd0i/xAcu2WaMNn0Np/l9EM6e+lKxCEBUZb24/X1N4bNu1W/9Asd5K+ZmfoZwLj0HiGIAc4zLTgqldq9vD85PXmlKmgW2bcLw4ysXQuovbJGNZY8yx31kuzWpe6xSKnlrRNGu3Qc7YuDwUZRXJqs8l22rlLcpvTocakTqeLD2KQUGLm7itS9rWLNNiKZe+WQO2XGPj36Y3K6UeekfQb6Fltge4XtmgEEaCY+ZAzafSPpyM42uoLPDnxm6o10s+NT56tUjA2G3O6XYJc0HeKQIARdzrc1NtkwASLl/el3Se3hG59sfUNpdikbhdqYD71Hwik4BKBqu1tRUsFWkIvMuYTbt/UqcRACpjaNp5Yg9kmOKYBSCmNbupw1imvAuDgO9vtoava2Mq990YoKCVT8VmGMuWQNUWqQM8B4sBUipNwV2DQMt59Q9XBW5o7iQCFOWcBpYCuGo5dA0pJBdWSC71OW/jDAJZwkzQ94OBUEFpbYUCb6aB3lJa3ytwFeCoASC4PNDvRC2rtPwFpf01gEHrX3V54N8ZQIHR6tqCp0nal0sD/abVVdtb+15QYLYgXafdS0UAagWF10yraug3h3dg8QkWVt+xy/OH9NefftTiPV/92VflP/xHf7+Kg+wDjEtcx71/47U4lvLjq2Mr6msk7eNQXkvPxZi7ds0+LuO1eHz7DaBrd+y5+I7XAiE/F1vuSb3yw3nlGh1Aex/7cH9MjktMxH35+vvnxMW82nb+q99t1959ut6XtEHnvd6HtpB6aRzAl/RXt+ulY6TbotvzXdLH6vne5V8r+8kvytP27Mf/2XiMUuSV42Z3/kVN3/yyXalP3W/5/tFYh5+s73Mb+rI5Vet4Sdl6RbDfCv6Oz+u1+JUvil35ibnR8u8+X3t5PkFS2PZR6pPF7cfq2I/dS+6RvuZ3NbYfm1cfewECV+dB9aHVYFm+f/SFqs5dy/OxB/NT6Zm5UIdt34/n6rf4/PRcf3Zp/6owBVfHuX7Pn7j/V+b/c5abJ+3b/xA+J8iyv27X1CfT61P3eNPYp8efvW9X6tlbpdq568Dk2fQd799H871gzn4ny9lf0XL82bF7Qd3PzingBb8bL2rex+v6WPqM8fo//+t/8IML3Py9v+jK//aXP/mdl/vTP/7lD9434EdusfQ242f9A1lxiqtAEiBVyZMoa4JCfczZVQVRUbr0NiFmV/+KT6ZYj8SvccmN4ikgZkke1uRqKQWAXCw6R8qfFqRQmsv2V0zAq7cJ59htytXAV/tUilrlHnhKflK3ZX86tijNrLbpDKlZekO0nVWpfAab6uJc8ug2yljoMdeKkMDzi3tR9NOqlNp6a9h6pJVRxa8wsdUlsPiS476v7N8pPqmbdqBZBgBUy+n+3aeBt1BnL2tALqg+iXWjgduj+7YmW63G0k+x+OmxEL9JZ8vGl1JA9v549QPkdkkfAFQrqJwTS47s0Ov2ik+n0INlToiFVKjcekwc15PYUiHjWX0sZXzZB1MUCrX/pVb9c26bp449W31F7AiQXfztBo8ADLEMSrniX0kUQLMBcdU/lI9JTFqxBGhLmezcS516zui2GnWf9/XtNxByUn6NIuaUmxVW5yuFlRP3C0X1HJVMiooiiqXP5Y21k+cpKzOC75MBmpgWsFmFpmgrrbCwZVB+1SWmrZQrz6VR80EnPXZZCX1pS0etn8tHQY39qs/Ld/GnFMueWIXq9cCmnnZy0zTklWLi1knNFkmJ3UsF0XXiFwpRnXR5Qw3UdW/ElupJHkOtPClgQlslAEU1A8U61I03peUvO3CrAejeeiLWiIxGDdRAwpUWh1VR3TZtVwCncNurNYavKwXksykxR4EtNY/FiaRuofWJEqURgTWnqHzS/f1YST55TuquBEg1h8e58D1pdfHwOxaSUq6x5Cv3+St4k82G8qh/YHQ9mzAScivEX9HgqY8cDfbGj48uUn3er7zZ2tbGxDRrkDyXQD1WrUYyPzcd24FgObYDoRuQKf2SZ0g9UjXJHJRxUvd3D1jlvkF/V3mNGucKNq8A7n0/Nns3ul11gK78fUnaj+HuuqubC58qT9rwTJl/nem5/a4XpRde8+I6Pvce7er6Q/qrTz9qYLlmh7fLEb+6vELKFnf9BbkYfDsdcVo6/PT4iEsMOIYF76cRX42P+O2Zwkl8MZzxsPYs077g2/MRr4YJp6WDsxm33VzDFfzL96/x+nDBIlRMR+xo8W/89ftbjB3Fm7zpFvyLD6/x5kA+TvfTUCXuAV74swjNvHr80at7pGxxv/ToXUJwCRYUkuDryxEL02zHsBIVdgmV4gOQv6A1BTfdjN883iIXOnZaAn5x9w7v5gPeTiN+dvOIt5cDlujwapirT9X/9+EOQ4hI2eDQrfhm6lHQAOSxX6qkPwDyl/SpSuBLeaKoOythnMsSMHYrvnk4YujWKmO/RI+xW3GeO9yOE05zV33tDgPFRPQ+4c3hgm8ej7g7XPAw9Viiw+vjBXf9hF/ev6p9kNAozhQEnyp1CwA+nEeScvct7MHNMOO8BHib8e5yQE4Wf/vnX8Oagv/3my/hfaI87Dv5cD7URbO1Ba8OEwDgNJPfl6jw5mxw6FdMq4cB8OZwwZwcHqcewSVcVo9Dv9T4i6epU1RY8tG6GyeMYcVvH27qfFkWj1fHCXN0eD1O+PbxAGsLhhAxR4fIisFCW3s4DQgh4TgseDgPKAXouohffPEOby8HfDiNCCHWMAAxWcwr0ZW9y0SNZTAn38UXa+wXzGtA5yNRipPF6dLjMCzwXcbDecDrmzPePx7QcbiClC35DvqEoVtxnnqM/VL9FadLt1EdBsTH0uAyBdwcZjyee9weJ1zmrioMd/2KZXFAIX8z7yJisnQMwBevzjjNHZVvCnxI6ELE2K1493CotEQfUg0bMM+hAt+hJ9/oy4V8mPo+Yp4omFzXpVp36CKWOeCnX9wj2Ix/9fWb+oyGLlI8TAbn1mXc3lwQXMa7h+bnJQJG6+oqQLy7veDt+yO+fPOI9w8jkqKUf/n6EZeFhLVidLjpF9w/jhUEHg7k33p6HDY+f/Jc/OnP3uGX394hRYeuj+hYvdragi+OZ/z67SuUQuEMpnOHw82My7kn/7spbDYAWjzPgMNxxrJ49IcV53OP8bBUYaXENPPxsJBP6GmAH5rKdOGxjNGRaNPq0I/03ng8DTBMcT/cTvR+OXc43k6YLl0F8o791lIiX60//em3eHceeY5ljAPFfX37/ohupPsbee6//vIRb98dEQ4rXh0nfPvuBl9+eY9394cKho93M80lvr+Xuas+lkKtP0jc1NmzP27E6Uz+pOL/mZNBN0Ssq8Pd7bnSiAHysVwXX0MwjOOy9VM15Fd55Huc+d6+Ok748DjC+4R56uADCT7F1WE8zHj8MOKrP/qAmCwuc1c3ayyHAJE4r4fDTH61x4me+RBxWT1icjidBgzjgteHC759OCKEiCFEBJdwfxmqcNh5ovKXOWDkdk6XDs4nHEf6/uHhgK6L/A4loSpnM87nHv1Az3YIiZ9fEmbyLGK1Th6H25ko8skiRwvfRRzHBcYUPJ57jMOKx8cBNzcTLuK3GR2+eHXCb7959cJVxtM0HBZcHmnT2nUJljdhvM84P/ZwHC92PCxYFoqPW/2Lb2ZSPF88un5t1P5oMd7MyNlgXXylp4oImsxTAJUunKPF69cnPJ4GwJCoVX9YsC6+zn8D0HPDglfduGKeAjyPRUkGviMl+GUKvJFCGzHO56rWnrNFjga+j5XKbRzRjdPiEfpIc3siF6DusJB/Kb/b4uqRZodwWLCeOwaYhdXZAd/xZujimk/n6qpl1bjCPpbkS4rZVbVvOQeA1M4lbAjQANpqmo+k0DxlE0aORUMiWwLW9f55RlM/l6TBrIAd2VApqg2uNNVyvXmjr9NJkJbeaNmfz2a7OSUbR3JcXy+gPtOGEFzb5NkWa6p/Z7FK9VvGR9oL1PNIqnx1/iow1lV+DDirza2Wx7Sxle/783rs9GbDHt3/HqQCIP2I2aKfSj9qKuxP/s6X5T/6R3+/xkwUgRnP8fjOHNeNLJG5xuYT1VeJ/bckh4EFaja+aKz+2ruIOXk4sw03srJ/ZGdTpc7GbGt8wVIofuLe6lfY0iSWMgB1oRLZbyqztU4rrwpw0NYpsTwltq4C7V0iwjYSUsWzAmpiq58xpQr36H7pz0msGUD1pRFrmKRcAGdLVWIVGqxY5iRem+SV4wJatOVOjpdi2MKWazwzY0r1M5QFzJ4eqtVRZVylH9SmsrHKObVABICBNwh0zD8d77EA9YdeLFGb8WKrIABlYSs8flDWvG2cMXkMJQaZ923zwNqCGC20yIVYCKUumlfcJ7YWSl6ALGeRfUa9z9UPTdq1p243X692nnzC2ku7WjMZFJJlKVfL4ZM8ZWvxFJVSqyxt4nNWfw95EW1d2oSMEUtbsya2H265TsLKSD0FoDZlEpTQ9xTSVz2eomgqi5ZrFktTWMmURCwAVCELugZVDVWuK+y/KAsosgqY5n8kY5EoNE1aKDSN/vHOPB+oQmpDDV9jCgrPUSMWy90Pc1kthcExqj0imhHlnLI8JqX2asvmB7zWxfOgDqpe+PC9oZtlms9SvdHyAJitL1TatV0vyuS8thrqcwW0oNOLRPGFlRA3QGufLCxZ5ZRC3XD5Zle+Ulx9kvS5oixc+2vYwmii2dzbIu2Vqb6z+EmqAiDSh4Snaq9yTsQ9dFgeGU9ZCPNiW6yRVbFVLU7luOGg7xu1zn2oCF4US6D44sBWRf7OIUnqVMot3yZ0ghpjXb4olOp7o+syCS30jbTNgEOjfP66R4u7iPVVjLpZ15PVmlluhbRfr4u5CLObN5K/Lh32Vm+DpgIr35WCby1PjaEovV5TL92ExEDLczWEhiS+QOZadhQWaDM3pX6jwgsBjRqs26Defxp81NAk8r606vryFDvscdPGYinXfSLty9jci+fyS3+g6tDHPpWugayyazuu4yqZd1fr02P6TN+vWvP0O+J3Ud5zZejvz6Q9ZvxcK+o//Yc/PBX2L/6iK3/5v371Oy/3j//kVz9434AfucUSQA3STsHd2y9QLE29VeiqQlUDgMHFCga9JbqpppkaUxD4V4oEH9oslsWsBBU3pjQ/cj5Xw27oOkqrowZQZ7An1jQBh/u69HFZ5GvAY5SVTsrvfKzPrHep0h0FpOmg7XJcUv2sqJaaAqfzCk1JVEaNAhRefoDrmMl3Hhe+xkJEIVBppLXvLlXAKtZQANUqtGkXjw1ME7jQYhMArb32KUgwcFPo99s2L1u7f4NJP9HehbV8tlzUsbnymdrdwKmAJwBsOZN2t+uaMETrU/vcQGVtoqM6dDkSgJtEIbDxcWvAUs2vHc3WmNLobKYF7raWYn+JwI8xuZ430AIcRoULyarORjktJtd2UD2ANYkAdClb2mO9/5RHJ2MIPIq4hNB5UQyKMU2wAjxf+ZqN/6ZrYyN0zApkeXPCmNKk/DkkhjWluTBJHDugUcb4W+1LBZnbX0tjadVtfd7QMVEMbHj6njCkSsN18NhU5cWybUjYlmlMC/IuYhECdKnPmdub6zGZK3JM2iFtJKCi2q1BkIQs2a8QBGTKcSPgvM1PyWOMLHjVM7CnOJayBZ4CqCyegiuPBiLlr0cT+9B5tQCGtFfO78BmBYr6uGl5i1wvZemxwm4xq+fnHtTuRDk2dE8+VzrhrmK7kJP5YdDEQq6AZulLcdx2XkwXLrMAbXxkKijgg6LeVVZdC3Vc7qX6i2t5du0zheJw1vN+2596qVNt+oxU1EZF3ZiX6WxbmzWIrG1UAEr3BcCWsl4r0xeX7TH+DdjQfOU+68dKjWENRfKcj6Vul5qKewzQ2ifPRnuWisFGZKFObwOiv1/p0ieBSnk6LATkzHNDc62I2uSrJ1RbjZqXH6Ve7o5de5Q/mV6a7xPpGvC6CkA3zz2u9u2T4O0F9+sl7f1O6WP34YXps8DoH9J3Tj9qYNnbiD87/gq/WV8R/cstmHLAJQVcUocvuhMuKSCYhMfU45Wf8H4l+tkrf8Fj6hGzw+hWvF9HvA4XvF9H9DaidxGjXTDngG+WI279jDk7ZAaxAMXRdKbgm/mIwa3IxWJ0Kz6sA+4C0SUfYo/Oxk27nSm4pIAlObzpiDI7Z/LXdKbAm4zeRrxdDsggK9zgVizZV/VVAHw8wtuE3ia8W0YABJqn5PGmu+CSQv38YR2wJIqzKVbY+3WosTsHv+IcO1alJcB+8MsGcE8pwJuEjmmoMTsMfsUUAzoXq98pACzZw5uMSwwILm1ihA4uMk15xjl26FzCJYYaViXYhJsw42EZMPoVSybF22OY4W3Gh3mscS91uBHxQ5WNgIeVKEuyCQBQ6JaZaYVTDIjZ4k9u3wMAfn0iiu0+j+ONAQA4BhoTUf6VNuh6LAqOYcaSSSFYxlNiisqYaT9TYwpuuxneJHzgeykqsMew1Nimj0tP1mabKOQO1y99P68BzpQ6lgCFj/lyOOFx7fGwUMgYbSXXFnHxb3Xqu/R9DGu1hEv9EotU1JVvwoLHtUNQ1uKV+zio2KUr06ujso53HDNUNmIWjoN6WQOO3YLzGqrFvGMlR0s0OQAAIABJREFU2lxaPFLxwQWA237GHH1VbfYuIVgKj3BaOki80+ByHQt5vqRMAHUeBJcqNV1il4pf7sI0ZWsKvj0dKsDqfMK0hLoZYA2NoYTjqe8E7q9Y8GWsH6Yet8OM0xKqhR4AbvqFFG+5/8ElnJmaXQrFQTWm4Dx36EOsDAC5/m6c8OEy8DimTSzWY7fUMD3eZUwrUdfn1dfQE5IKGitgTQ5DIDqydxS6hdgKzXcYAHqmq1+WsPEHlrKE3i5hVJwtlV4ubAVrgGn16DjEkYyNqFPKdwpV5GtM2c6nOi7a/xhApal7R7FeT1OH40BhgcRHd+jWuukiqtTCVhDGgoz3yuMZHNFMJW6rKPyGQDRgKVM2cFZWehbfY6HxA83PV2LdyjsiZYs+rJhXmmtCj5drgk+Y5oCbw1TD/+hwI1otWcL4SOgfmRsFwDwHhJDQhxZ6x1umka/tPRmr6rZF11E560pUa9nEk7i60kbHcWGFDl5VuNem/Kopx13HoWxYcdhxzFqpy/uMZfE1rItQ3Puewr98bhJqJylC57papbZyGBduT93MZkaEYzp0Tg7WEbNBVI+9nMtNzdgo5scTobjM4UNWj2Iaa4HUlLFBgRL6Q8KMGAbA5MdNqC3HbTxb40qlvBZmGRjxTRbwbErzTS7EpAB4k037UifTYtuuakeAaZvat7mimowtSpP+ZPOU7iqIQdgQewQh5ehx2W0ISSiOTaiQej2qpVeLWW0srkaVrcG8UewBfd2+PZIEPAlwrhuQu/MaZEm+SoXd9Zv7avSGwj7pMvXf5zYhytNh/mh6SV6NiD+S9ln2+5m/76mg/I0ON/KjpsJ+9WdflX//v/tPYU2uoAsALTJRcI704xGLRWdJUEcvxvUPqvgHykJaL9hHT6FJBLAIRTbyInb0a6W7SlmXlWi4Eg8SaKIx4mfp2NcSAILNdeElVNXeN0AqdFVntuI9EkJjTRaD8mkzptBixhamwjp49sNb2V/H8EJLgI0WexGrp8Q3lAWr0FazWkwJVXUv4iMLF+8yUm5iMs6WDc3VC81x932Jjv343IbSW3gxL5RW/R7UAi1As4hW6yVQRWw0Jfk80eJxYH+0VPM0yqtYFluYCba28oIFwIYKK/RVff1TKuxWkTZFWxclco1zmWPikWiLiL7UWGKm0VZRDJxvsfwcL7RyNhzbr1R/0MKLeU0v3fNt9pbqSj8GmgS9bYsZawtyosVK4TJknsgCqor3yKLCbMdXKJh6bCWuoSyCDI+XtLUuYsRCB6KmGvHj4Tx6gSRUVpQWZ+4JFRZo1/MiS8oSi54czzM9K7ZP9UdUL7qqX2K01NaguHLKQlevjRQfLs+u0lbpBGhxJuszUyhOWmhWz5K4Dk/01Y1VDyBfoY7GoEi8OOl7NEDgVUPmheVqiT4a7VNro9BLLdqCTyiqepEnViyhWDpVBsCLGLWwkHKENit9FQEaV65QYbGpyyyWArKrxaopBiVoKizPw8jHi6FFps8wq20B3UGLT7kHKCBKpFpwFltaHrlfQskUSqtYhGUhu2q1FlTxm7qAFWO8LFzlhadj6pld/D2hO/J11J8CsxhoKmEd/qzqZeqo7Ifq2HfZ83Gm90pwesNU27ra48VtsXS9kbEqbQyLL0/vgVB2RWRGXSfzQ46Z1VT6JgAYTbO1aPTctF2v2gjkz8eVVJ5YPNVjWftb2rmNlR6AiWjjry2aBpXGu1n4qzLKbpoAgF0Nsi8V+GhxIGmT4XZR23X8w8IUShrTLFZ6edQ4T41jyHPsSfv0XFOUW31filXtU/56dQ5qXz0NXjhfBTHSF7M99jnpKgBRi4kn5z8GyvT1+zr0+O8A0FUgJG34SJmfskw+16+a77m8ejG178fH0ne8By8CfzrPlTZ9bjv+6X/7w1Nh//wvQvlf/gqosP/an/z6B+8b8CO3WK7FYUoevzqJeM+EWCwe5h7nucNXNyec14DbfsYvz6/w5nDBr+7Jaf+LIwl7LNHh0K34V+/vavB2bzOO/YJX/YRLDPh/vv4St4e57k6LyuktB4D/F2/fVKGSQ7/g67evcXckS+S3jwf0IVYfRID8ET+wUMLPXj8gFYMPl6FaDrzNuO1nfPN4rFadsVsxR4eFRR0kjf0CZwteDTO+frhBzoZ32QP+5PUHvJtGPFx6/OT2hHfnEWt0OA4LurAiZYu398capLwPEQ/nngCXyzV4d/CpxlW8Pw3oulh9HJdIgjTnuavWAwEql0uPvot4d08iDYEFItbVYRhWnB5HjOOCx/NAQg+LR9+vOJ0GWJdwdzPhw8OIGxFtWR1uby4YuxVfv79B16W6Cy473t6nuoNeisHjuWfrQKqxBsdhxcKCHZfTgBwtfvHH3wIACa+4hOO4VKGky7ln0ENg6HiYKxgFGoAr2XBwcdrJ/+LVGfPqcZkD7547jAOJmgzjUgVFcqK2iLDLGCK+fThS2clgnUk8ZV0d3tyd8P7+AGML+mEl8QpWDXWuwNqEy6mH8xmHw4zTaQBAAit//OVbvD+PeHgcEboI3y9cB4lJGDTBBgH6zieKR8ggfhhJkKILqYL+6dKhHxZ4l3E697i7O+P+cUTHQjwxWhojlzHczFXUZZ4CjEuIs+ddcRLgAIDQ8+bC5DEeF5wf+41QS04kJJFW8mXuhrUGhheQePf6jMscsFwCYKhvYSAxmPuHkXbsI/kxhj6xAI2vvoLDkcZnOpO4UBgi1plFjligo2RTg45/9bN7OJvxm9/cVQDqhxXrJRCItUR/vfniBGcKHh7H+hxbVmdOq62CFjdfnvDw9ojXP3nE/f1IfpX87L/+ySPm1ZMlkoPan+6H6gc53JLIzOV+QBjJbzgvjnw1Afz05+/x229eIa8Ofow1IL2xBW9uz/j621uyWI4r1lOH/m7Ccu4QXs1YZ9+UQ7OBO5A4WZw9+tsZ6+JJtOgc4PvYYl+uFsYC3e0M7zMup44sKMWQpSMb2DEi8wZCmh3Cqxldl3B+7GFsQV4t+lfM8jh16O+WJjpiCwVaT6aqwf7sT9/i3cOB2mxo/nqXcf/uANfzpsviAFtwd3fG+29v4IYVt8cJ798ecffzB3z4cKjWlP6W3vlidbuc+7rhYW1GXByG40KbfYsHTME4Ljg9DGyRorlL474iRYvj7dSsTACWOSDOJGJSisFwWOpmVlod+fMmg8PNXC1c8m68fxxpI2rycIEZA9FiOCw4vx/x5hf39ZmVZ926jBASlsVjnTyGmxnz1OFwnGD4N+08d0jZ4vzQIxxWvL4549v3NwhdRB9IyOv+PKAPkWJJX7rajp6fo/kSYF3BzZHYPB8+HBB6sqzHlcRsvE84PQz0rK30Xl3OXZtrfM/SxWN4NSOurlraXJ+qUJC8Y08fRhzvLricexKsWR3evH7Eb397d3VN8ZLUHxdMDz1QADekSqv3IeFyP8ANkebpgd7PMvcB4PBqQowOcfbohhVZxHtWi/GWxHvi6uvmmVe/W3HxdTMLoI2z11+c6D1iCvLiMNzMWOaAHNsmmHMZcaalXndYsF7ouUzRoUQLP6xkKb4E2kDijSPXZeTVbp6pMJLgkGymSdm+Z1bE5IECdDcs3lOoD3FxyLODP0TEU+CXXqkWUN/z+29u4j1ltW3jIeQax7KsljbGZMPHlWbxjGYr0CMATfqV1AaeiNzwMRMtbSZFS5sZ+w2vkJsID7ABwHXzRQvnyMalL3SdBozVf/WKddSgAvXqn70H3BrQ640j2VyqYLxtZplsaNNQ+4zrVHZl1w0sPBHvqXVnsx1nXc6+7GsmRqjjCiHXzQyVvcjYqqw/2lRI1PpvavpRWyz/zb87lv/mH/8beEgjElpQ8LV4JFg4ZKyFgM6cQw39sRaH3q71mEPBVDyCSVhLo7vK9zWTcI9OUsaaffWjTMUimISZy7IoWHfOHM5kpGKRYWp+AJu4mULjJHpsuz8bSyU/6Y7fQNa0uhxy7X8CU+VMwpyZxqesklJmgq393bSXy9+Pp26P9hvVx2UcY3E1Nqj2VaUwMKmeX3dOM8FkzNkj2FRDpEhIFR0ypY6bhEpRdOUl+02dur0Aap09lxt3bUjF1PLkrw7N4UwL36Lrz4WEmwBUazdZqlMNdZOvvN0l3EtkOq1QoffzQH/XoWj23yU0jDWlhq4Ruuf+fkk+fc2188/FW6V2O3Q2ImZX768cB7CZB/uYsVKu3C/d932d+/mmab3ad1iH8JE81pQN5XXf1/3xa/FdtWVePgemzq7J1T7tY+LKsSo2tcun+6XDBAkjovpwq7BAclyHAZJ8exaCJG9z3bTSFmm5divOdf0eXEvSDqG0CqVZ1y9zT8IIPVdeQQuDI6JcmZ85+fxce+TeaLqrMFTEn10Lfkm79GcZOz0WWixsXxe1E9jH8t3H8N3Pm/34l7JlCmgfbJ32bdBzcj8m10IVberU5aIxPOS7nNdMlSfUTNWG6npYrvf7uXPXklYg1lZ3+bwXGbt2TStrW8ZnJ70Y1oevCMrVc9ga4TZGGMmvy5bydRl7DPKSvnzkXlzLd72M/b2+fi9qXt1u+aw7va9rb5GSa6+1aQ9Snm3zy46Zj9V17fiT7y9DOC+20n3MOvcd5+2zdX6He/3Z5bzg/Iux4ec+r1eu+7//i//8B7fq/d0/D+Uf/xVYLP/2n/7BYvm9030a8Zfv/gIAAYRLCtVHMReDSwo1rzUFS3aVCrsk1wR2CvlT6cVmLk0VtrOxAhS9EBQVWikTwJPF1H4xDLQXvGVQsl9obhZgapEN0GJT8kl7Iiu3iiVVFtEz+xWJ/5peZGnxIK0AqxfY2r9Onk9ZCOrNMwFYQteV69sCuVxdGOp8+79Sr7RB+hF5MaxFfKDKkvGVRZ2zT2N/inotnad7tUZSmxX/KL0Q1PEnhQYMYLPwk3r3Y6gXE7K40+FR9m2v6rUiTIMt2BPLLH2+vsirAjO786IKKxZv8deqFFalEquTXrhsF488j22pSrli6W6xG82mDTqO5Z4KLPl1nfs4lltaclNpzVnHpwT7MbEVSwm/ZFZItS4/WWjJ9Zs2lOZzpGMmVl8goC6kMs9NoirzqWybUJB+DxRTrerXQKqACesSWaTt9j5v5j4v3PbjuO+PXrjmaGCZIlp9puTazOd4DCSepLGoMe1qrElDx0TcSCjCVU32yrwUldqqWLsDBJvr2VJnFB2yUpRt2dwTPcYyJtoCQ4NPfTVeKdjKuch032LIiuHZQqGosNXiodVn92mvNpuhaMHqnsn3tJtLWixoU56qy6jjtV5s6cX7hb0pW9ryfqFvsLG+VL8wTcd0yvIhFMxrip5KFbZSeeWY0FlFgXffH/EVk/7qbioLiUnKqmGoXRsqKNdf6ZdF+ocm8vMZSaiwhcvi6kHU6G09zc+OL06qjzXeKd/vyO/j3aMtqajs8t1qaimw9fWrQA+NGq6mgpwy/KGOG3+vzSjb4/q70Fw3asDY9n1Dw8zY0kJVG01pZe2xjZF3cW1nqd+/M+iQaXXtuv0zsWvDM/sJT8r+Pmm3l/A8Vfba3+9Qx9X0mf36XY7HiwD49yj/D+mvPv2ogSUAjG7BiUV4bvyCNTvEYjEnj97FuoCfk68COLkY3IQZEwNPAZWdS5giWTE7F3FgC885diw8Y5A5ZMmUAm7CjFwMC9pQXglb0ikLmOzQa7AVGTiNfq3frVJ2lToEaATb4jDqFGx6YhkTAZnXA8XeTMXiGBbMyTN4Wur1IkwDAN7HClLFZ1L7eQJkjRElWwE7I1sn+ivAUPLtLWpBrmERoGAzVvXXWxJUmZPDIazkz1oMjh3FDp1YUEW/U2Uya2AnPqgCugFg8LmKyYgYy+vDBdYUPMw9vEvofdn4vDoBogYYePyE9ttCk5Qaf1HmVSqmiqKUYjCwEEZvc/V1BciCZA3QeY75tvoKZEsxOPYLhZRhIRBjChzHH9UAyRpU/1XLFGYBdnfjhCW5ekyXX4qhRZgAQL53e6uO+L8aU6q/bUwOfeB5nBzGw4olNss2gDqWWpxlv+Gi752eK0KvGzqaBwLsvfiaFoMuNKucjGk3LDRvVHiYai1LIgjSgLS1mUPEtO8GqDRwDb7lswaG/ciUPyVuY22LQwfeQBJRlDU2q/t+M4CePaLSDTcTVhYLoby673SN90QLl+TFz5b7I/69Uk9/jJgXotLaUDZCLt4TLZJEagqFrelow8B1pVLzah8DgXkJb1NFV6KFc6VZlWTsXK4bBnv/YAl5QoDVwHSpblYABNTdwHRIpoBrtW8ROxHqduC4gVnmvBKIsSovQBTdZSb6u3UZcfXwxwUxurrSs6zUWzc05Bk2ze9XNoWyukb8m6kPW2AsftB14yHbFpS+YOOvrBU7NyFzuF55NnIS/2sC/sYRjVjiBepNpRo2h+m+1rGftG8WftkMEYql+FLDoPZLKMwlo24YFFVO9fVVlEb5LD6+xpRG+eZxlXA2BJC4z8kAIhDDmwXFgmIwcl3GkVCM8bQxooViio5H+F2TK9XPtyrogsawUi4FzIkAjdwqAePiG8zzHhltA0NvGGiUoUE4j0fyarOgoNE9NXrUoF3TQfcoSTaY9psOO4BYP9ey0aiS4mssfVN5hNZpdu+PTZ/y7vO+jdwXEqHh52kPwjTY0CBRgK3ZnquCNtq/e49uZMMnm+tZ9Njsvgug3rRJPd9Xx7Q8+bhJ+0t1lfvjVzeQrqVnQNpHgd5LgN0L8nwnMAk83Xn40SWD9HJ77Y8u/aiB5WhX/OvDN1iLq7TWc+orvXQtW0qaUEtzMUiwiJlUXOW4ACA5r1PMDt6mDc10LQ6X1KG3D5UqqemdUi/RXpulCmgUrzm1W+BtqjRKALDm3OpnaqRQKaWda7G13MDgVoNpq+J1aTqn1OPHbXk6WVOeUDIFQIvFtlE885PradxI6XMvXCTfNXVRzmursY4/SudpjG/D/IRqqdsp7d9bfKUO3UeLgonvw0+Pj1fz6HY9F+NSNgE+Rv3KMJVWrS3Pco+lnGGcNu3TY31gEHeNxrn/vgHZ2eIQVphOtUfl2Vutr5WpabIyz6xZFPBfkdSGxP53LBWDg9lSGYGnv3X6d0aP/SgL+F3brrEBlujR+XVjyZN7JEqcck7Av+2e9n3snqfD6s8C8m/GeXPMdts5IED1Zpyvxn6Vz6WYqrIa2J+7tk2xDBwD78OwbNqVBIwziJY+y30c+7XeEwOgOHpKUrbou9jGNdB4izppt4sBWLitIWznvYBfSRo8lwJ0XbwSi/UKhbCgKosCqYJ7P6wc83UbakaXJRb+FtbH1Lolj8DxlCxCFysQDl1ksJw2ZdJ5MBDOlf1QI7poEFpIJMt5pWbCFtSSyb9RYrfqcbJ+Ow8NsAG0dZzrgrsJXwGg6+X9w1ZMG8in8prFWZ5Aw4BR/Fmh5qOAyJINbS7wArkoIJN3PmjGlqoUKpsFFQxaZTUGgMh+pnK8GK5Ur7LbGJao6qptcRWAluRonKVN3OYS3XVL80tTVMpHGiQVHpPIx65NSw1o9xbn9cpCU8p8btE/WfY9Aw1VtChGgfV9fr7/NBD16OYP0q6+fd0aqOh21uIK7Lqd03LaRrPFis+BM3Wcbr+5Pgb8bHwS/KhyzZU+NUBm6t+n/Tab/K1tH6n3uWMaAX5iKj7bvz26/QjY0vsI8v1F7X3muFx/DYN/sryXnn+mzu+cvsej/of0eelHDSzfrgf8z7/8t3EbZizZ4X4moZJjWDD6FV9fjnCG/KmO3YL3lwG3LFjy4TKwqA7J3r85XPD+MmAU8YElYJoDvE/4+d0D3p4OCCyTv0QHZwtOU4dSDL64OeO8kPVzXj1eHy94fyJhjttxxmUJ1WdFFjt9INGDbz8cYQyqdLrIp6doMR6Xak1cWK5e/LgAWnAsq0dKpPh5ONLic1k8Qkg43w9wXULXr7icenTDihASCaAwte14nLCwRPoyB/TDWq0bImaiFywi3Z55IW4sO+93SSmp0ttG6IvDsGJZXA1w73zGupBYw3wJCD3J2/f9inkONf967tDfzFjOHWyX4H3CfOqAaBFuZ6TV0e660OayIVlzWbgYIIy8eNZqrbOrcuj9uJJAz69vAAD+i4ksHLMj0YJs4LtUF3cFQDrTY2NZcMD6zAHrS1PwLAbl7EhYoM9EJfQZZXYwQ6K/faIdUKYElmxgzp5UJI+p7h7bLiGfPJU1OZRjpP6xUqfxhUQLeMfZHkgABZODOURqy2LhPnjkMQM3kXbstXolWxXqTroFLZBEkZN/mUhlk4QSzGoAB5Q+AYslatqQYU8O+ZjaQsly+cnAzBZlyPS34+1jUei0pYojSND40mVaPI0J5uxQukL5XNkIOJjF0sLSl0oldA8OuS8oPfctUpvtYpBu+JgrdDzS2JWu1B14O1kyNvD1ZjF0Xj4Hqses9Nm/d2S0+CLW+Uf9ZVBRAJMM7MXCJCDdKlVYtiKU0JQX3aNFvEvw7x3STd5QB/2941iCFEfTztwnXqzYCy3M002Cndi60pW62O3eOZzeJBRfYCcLK/3JBv5scH5Nljm7GKRDhn90SGOGu1iknsdY5udM8yT3Ge5skTu6Lg8FdiYrRbGoSppuIspiGgvsSrRLia9nVhGhAHIA3MXARsqLTOfchcYnDfQ5d3S9yTRvqC5SLO3fWsRDQeoBkwA3k7Vjuc2wfM+zp2vDo8Fyl2FXGoPlVUH3wWC94dWo4fYUsAUGSH1BCVS2yUAJgDtT+3KgMfKzQTxQX2GordkBfjLIoSCcTMVQKEDuS20TAHSTqUqYmdVliyvwZ95MMUDxgL8AceR2dVwfaNzdBKy3Bf07Kit32FBEbaRxKAFwFyD1VB4A2JXOwQLxQGW5C322kf6ZRNfYSGWmjmiaqaP8ptB5k+k7CrDeAG6lz8VRPSZRH+yKqkybes5jOT+o3HCicSyexsCugJ8Y7/WAm6mN/sz9jVRmeCyY3zy/CP9U8hdgPfJcnvk+FervegTcQuPlLzxu4L8G8CdqQw50bXGoz4Y/FxRjkEMDXTZSjGCArhHKqNzXcF8QDzSncwD8pSAHs6GnmkTHqL0FqTOwa0FxlM8tvBHVGRRP96DW7QxMLDz3DNxcNqqsNgEpGCrDUBk0Ri2+r0nU/xwM3FSQBlPbJdZCu/D85mdJ+ifARZ4vmSs50NwQi+PmGtV3eb9Kv+o5vg6mHcuuPQc27cbatPGQpEFVbSfvwhRr6DPXQ30x9XyzZu6OyU+t3Z7fGJiZTmxTafmszBU8tcqqa3T/r6Vqjd1bVNsSoOaTevU4bdI1h2B1bg92n7Rhh5k/CoavbEj8PqcCtWH3NzD9qIElAKaieqzZ1Tm1ZAdEtk6wdUxi2c3JNfEVtVM8RwJQEkIEQI2rdV4JGEamPZHVQfy7CuboN2VNigq3sO8egM0ufMqWKY146mNlmP5U8MRSItROnYwBjN1S3cgvKZPqaLaVNlXzGMM+i7bS6bTfWta7nWwBKrpu9ZSL+lztCx+X90pKtr5BBFiDwStMG5fI1MB1pV8UwzQ3oTfR54JSaLe/vjT1cPBYyLm62y/jb1pgelFMzJbDDECNt9rRzsU0apfa/axjoe+vTAPD4EdAmRyvNKnSfvS0dcbnpv7BynYlc7kGLfSBwVbdzQL0q9soh1Whjj/ngcGJ9MGqsjbloF0vfeG5XsMrFAFxUhZ4p5zA0aYsVQ+Ffmh/qSDpfBs7rSFVxPrioH7RVJuBRklTfcmhtPALpdVfWUmmjUXNp9rdxprr12MjgcZV/tyrvsg5Xa6hdpZAgdyLmgNG/uM80n4ABJz0vZJjMka2IHc0/gYGxRQUL6uC1rdiCgzPLQKH3E9H5cFSe9OACs5LXRiXBpZ2Yy0AFwbUN8d/rfQTm/mWA2AsAxyZDzzXIfl53EsAPZ/yLNgGJOpnp9oBDsBuqfdxLMgBVVkxUxbqs9waS+XGkReAmUBrcQVplPL5+g5PFveF6zL8Ofelts8ASAImuYzC1yW+h2komwWWjFkdh6E958UBhU2jaZD7Sv2NIJANBrhZhfwAaAzTgDruokhpClA8bwA4KjCHxq7Jod1DAssEhHNPbc28CC8eSFn1Icscpk6XAGpbncNo7xJLC3uT6biALQG7up8o1KY4tHxQ80E2C2heA5HHzQQuw5jvFW4kMgDap03bZbz4GZVQIfHYjsvcgeH5zD9kFZAVICfTwAP7b9YFuQFw0/pC5ZkGrgrnz6aCtOIIuAr4pGdc3WfTrpO6LfuyFkfXS3tNoftdGDTKfaf+tnbb1O5HsUY9Q6a+/2xoz/QGtED60Nql54aMuwZ0Gyugek43YKkApsjzY2AKAficCDxmAYVyveFxuMagVr9FNaSQ4f4BW6pwXT+1r9WXWbWtmUQ5U2nnBXjuAaR8122WtJkzql/P9UWXdRXU7X/nrpS3iff5pD0GzybV13bBc3W0e6i//yH9sOlHDSxv/Yx/72f/DI+pV+qv5Eeo1SkBUljtbcQlBfazEhVJorieYl/Pe5sQTK5UMDkm9FE53rsIi4KH2FeVRm9TjZdpTa7+lwA2tNxYCMQOX3JIhtIohhalig1pMZ5cTO2P0Fm9JX9Hb3KN2yl02cGTT5r0USt1Sh8WRQ8WkSLtGzmw/6a0XUSPtOJmZ1OlakqScwCp5TrT/EfX7KrSa+8i5uQ3CphLpjqCTZiTr/TbXAyCpXAilxiqWuZGHXSn3rvU8Wp0Ri22tCYa45uffAtvMx6XHkAT9ZE8mr4rVuN9fFKpR4717LMq9FIRdtK+pKQqy+JEQI1vKhshNH4GgeuX64H2TteiSQZEczSmbKjX1hR0jsKD6PNyx8Q3UQs2iZ+t7qOIPWmlUf09JrcJO6N9bskvM9e4pzJ+WijJ7ShqKRsER/6o8hfAE8qksyJSpXwsfap+rOKDZg1qPi3C9FRN0sC7vBFrkjir1jSfRP0+6HyCMQXQ12D6AAAgAElEQVTT6uvvoL4H4O9Sn1BUddK/qaLcKuOpaa57dc9PqcIWYOO/KWUKFVX3P7hUfY+tzYjRwfvGSNCbTuKHSZ+b76n4UOpzMrZSn44Ve028qAk/YeOP6VzzH6WYsE9Xe7K+oDBDtm6YVVEsFkQC2iaa9wng8EXOZZTVUYgQ8V0tpvpo6nq0iJQwEIwq19gCk9qK2fBmlxGRGkeruDqfRdxIvnN/sdtULOJPyOeyopZuNtQAwGaU5BD53aXVS2Xcqx8lH8/SXtvousIO0e9TI9dLmUBtx0ZcSfZGZCMm7c7JYjtv73/dKJMVrkFjOMi48LhD3QdU0Skl8iQbluvTZ++lybjcaLjqfVVjwko9ldKrboSIKwnY0Ofku160XwFJdSyApz6Tz5mB5GdRRKRqOdiCg2toZG+q2pe/LwPqu87DfaxxTE2L1VrUs/Hkmtoe9f05f8hiPi3Ks0smFwZ4PLeuZdLXXxnf/bBc+/6kvJek58Z2d73B0y5ehW4fKeO5MXoWhOryXpJekPdZIPv8Fbv78RHA+nuW/uBj+XuarMkY7FpDdwBAMIl9Dx2FzzD0A9LbdQMoqyqqybAmw4VSfRipnKx8Ett1udhN/QBw9EtVorW8YBeAI9bRva+fLwbZWvQ2EtgrW5XQpyEy2C/Spt3x0saChYC8ycgMOEWwxJtchVNEWCjDVDETAT20v8vjY1uIBup782mUsiSvVUC85betHtUfbzOPNf213G5r6JjLubZZ8muADaAKFjnkDYCRdmqQu5fzt6bUnS0tFiObBXKNFtbRyak5pJP2QZV81hZEHmPHgNxwP7WfpgYMADaUZ88g71q/SjGwZesnWdV4bYbd3KNSy/WqPFmE1kW36q/d+c5aUzbng/SpDk6ieSz1gH+vuH7DeaTPGnRq/8hWXwOtjsdM+4ZqYEXXNrBlTEFwW4VmOQ5YOI4duZ0fDWAR+G7POZWf1GcCnuIXKffIq3Y6pa6pBZYAEkLSdcnnOpS2oBQCwwIkt4CrLcyMKZuXeS1P91vumxp748rmvSO/6AJGDZi5of4aZYXdt92aQvRYUwCXVXvb2NZxsAKy6VzrH+pfu3v2JDyWZT6qBovbfG2DwJgCa2VcCIg51TY5R6C1PYskPKR9QLc+jlJeUyrmxTLXofNulGu5b+3zdg4SANqOleSt34vZ1iHH6++NHowGVFu7W/lPFIb1X6CCyoJWX+EyIUBSjfd2fJ6uEJsIlQKV6u/TNmGbYdc+AE3sB2pFrwCpMajHN4rOn5OKubp+3YTbkHr2wGgP6vZ/96+ia2BSn8/qXOFKPta1DdDdIZYn5Zunx+sxPAUh19qPls8Ug6L4f0ZUkQtw3afxmfIYPBaIKuyVcbmWnr4mmlV3fy9wvdyPAcT9uSs/K59MHwWD+vOV8szu70frVo/5Bsh9rM0f6cOLHqdrGx7PlPWdH8/v8Tj/EKngD8Dy9zblYvE2HnGwCxKAb9cjrCm4cTPeuDN+Ob9Gb1c8ph6v/IS3yxGvwxkJFm+XA0a3orcRp9jjNkx4WIcq5vPNOmKKAZ2L+NPxHX413eHol2pFA4B3CzlafNmfcIo9WShjwJvujK+nG1hTcBcmXFLYWCSX5HDwK0a34l+eXsPbjIMnAZQle8RssWaHN/25Ao3zOsCbhM5tgeX9MhDVN3m86Uns5z4OOPgFvz69whhWHP2CX08HvOoneJPxsAzVkveT8RHn2IEUUQcc/bKxtH6Y+401cmQrqKjJepNxWjvcdHM9Jgv53kVMMeB1f6l0ZTl+iQHHsOD9POLAirXHsOBh6XHbzZijxzfzEXf9hHfTiENYEWzC1+cjlujwxeGCOXoEtsKJBSwVs1GkHcP6JPTKaenQuYQC4CaQH+s/f/sGAPDzuwfM0WOOHp0nJeDBx82i/tvpQGPRESAOrF5rTcFlCVUZ9jx3cDZj7NZqcZtXjz5EzKvH0K3NosTtPs8BMTrcHKYKTHof8fY8kqV27qroiyj0OksWuJQJvh/7BUt0mNeAQ9+USh8fB3R9xM044yG6jdpp4PAtssEg1jkZx2rhXj1CaP7AxpAozLx6pGTR9yumS4dxXKrqqZQfs8WyePT9Wv2Axd9YlGIXvkbKDiGS322/YpoDQkgVFK1sSQNQVUydyxU0nE8DfIjoOg4hk2z1D+6HpYKSGF0NQB9CE5xZOSB515PITIy2nhfFU2vJXzh0Ee8eBpRscHx9qdaquDp0fROEydlgmUgNpxubmI6oljpWVQVAweqPC96/7dEdVrbO0bn51ME4onUbS8HRw7hWsBEXsnB2w0r9YCuc1LPed/C3K5xPWBePvLgaCL1MDu6WNuLi6hD6WIOqx4X8k4UaL5bHkgxcyEiLqxYhN0TkhYRSDINYAEizA6KFHSNZfrgPxqCqjpbEYjOc1/Tkc2xcQb5QAHk7JOSLh+nTxscaACwHXseHQD69HX9nX1xz5LoLyEe5gPybb1aUxcFMFriNwKNHGRNbjwpwcYBhq0sB0b7Z5xjZkM/z7MgCw9Ypsxry0xXBG/ERnslH2Fxcs8TVMkv1gTaLaVR4FXbFzAo++gJ7MchjYSpsaX7DrsDOFvmQ4O49UadDo8KimOpbBl9gJ6LUim+uZd9EotOT36ydmt+o+L+JX2UBUDryFc5dgZt4jnfkO2tX8gmMR/LFBaiNZjXsi1ng1qYgmrvWZ/EbzR3514o/LQzIf3qloUwd+VymgX0dlY+l+M9+bnJzoyHbaGg+McjLfaun+lAaVAqln2jMycfSILNrQXGovsPZlYbvo2lUe/EnZ5picUB4MERd5zF0E/lJZqc2tFKj1bvZVB9o7ZsKoFLGq28m123Yb7b2Sfnqmcw+iaoMGM5neJ6yf5/4lSam7opvpPjOFoONb7H25ZS6xF9RaNOmqHIMaCyv+Vi61g7tY7lpo0MNJSN+pgAa9TRy+eYpIKufhW5rUOeF+G9KWbVvpdW9KUNAO7btlVTrlv5I+7QPqbleph63ZwGn2jAwpVSq8JN8APmSlnId6O4vMWU7bnrjYV/3ftNC+ntl7K+ma2X8If21JVN+xJzkn/6dL8t/9j/+B3iIwya8SMwOU/IYXKxUSR20W2iiUwzIIAqoAKmJQ3Z4mzG4FbkYPCxDtfRomqiAvEsMFOIjW/Q+4rR21fKl41TqlJgKewwLWVhVPlnIS3gQbalbWTRHUmdTVRqdk9/QGQWwpWwr5RTApi9T9NViEVzCxBQ4eSYDW1+Ezik+qtqKKOBur54qz/bCAEjKFepmUvdEqIGew3E4mzn8i6/0y5QtOh8RbMZ5DZsYlwJmxSoo7ViiZ2uSWLqIIikqoOI3e8uqm49zVy1dQtWU8B01HIPLXLZ7srvuXa5Kn57bLeE9crbwLm/KA5oqpzUUisKasglZEbnfcr2E8pAy9PXGlHovnLIqO1MqAFyi31hPBYhr+mzOtobb2FssCxqlU+6LlBezrVRKuT6xCqgxaPdMh0ZQu/hi/ZEYjylRKI0YHQKHTxFqqwCtSnNVIUAAojbmTGBSQKS0YeHxbbEvr1MuAWyuF8Arn6XNOZuqNDpNoVp2JFyHjhfqPT1TEh5ErGJCqxQBrK6LmGePvo8MnNv7o+taGBNRRl0VZdOxGFOS0A3AxlLT9xHzFKifPkH8qo0pCCFhnsiJTHy3vU81vEdRY1zQLIZN5ZRVRVP7Lu8bubfOEWjV1s4CbN8hmeJ4yn2RvllHq8is5pHML7l38j10ESnyJogtdQ7E9Wn4D+cT0upgLCh+6OrgAv2t94nHta6FitncFwG/AAjkGlRl1E19nI/CjeStoUAEyGQOsb89eHNC6tGxRlEoX2IRsZJsBfREEyXFVtfz2KWdpd6gip4ZT1RPI+FGhP5cgLw6GJ9JNC22/hmDWmal83JfSMwMLdwIW4Xz4tpYCVXVlLrZUOmkorJaTPPvlTijYoETaqxji7EAsmhIHCxapoHyRsL3DjciNwdthWu4PgvU8CG8AVGtNTpOag03wueFCaAta5ouu1d5LWh9q/nL03ySt+BpPFXt/5fRrIhAjWUqvuAiGiXWx5onqeO5bWZomqsphoTDHLZqubLQkDYIrdeghSXhhYQMoSnYCE9tTHW5AY9ahQZrO7Ci780GeO6HsGALWKVd+6Tr2LfryqlN+3f1PVvutbQHZc+072rfrpXxkuP4BLjblPFcpdfT9yEUfApU/l//5T/430sp/873qOF7p3/rz7vyP/2Tn/3Oy/17v/hXP3jfgB+5xbIzET/v7vFlOGHOHgmW6a2phhORsCF6cSyhQNDhSRiQGuKCrXSxWNyFiX0Tn4bUWIvFlz3NYCnrdXfe5NEhPvZpX54Oi3ET5hpC41peOXaNkil/B7fWxdoxzCoPteWuu2zadxt2YQ2uvIWutQPhaZ6PUVQ1QN8DUkmlUJzPvd9VhsEb1+JrCtVW/5UkoTmetD00+q0erzcHkkK8Rs/ch7QYuYw9/UvXE2yGDbtwFeHpWOhUQFbH/THJ2+1ii+7TiPXqcQLmCX1ooRYAwJhW3rVwD9f6JXm9i7vv9Mt76JdNWdsy0+bvtfpq+I1An3ufkEujj+q2br777XfYjG73livFYNy1T1LYMQL0MfGjlM/S11ou/x2HdXOsC0/zCHD8WCrFYBhW5GzRdXHT1lJMDefhPR3v++29AFDB8T6lZKslVUClFzDKYTf29bh+3Yxx2c0FI5Z9lxmYR74HlF97tZUC+HA9TIjj81a1fR/yA6bAMaXf7dwDahiNAg6vUVqsSOBp7MgKbmwF5PJZC58BSphMCjNP6bF1oaoEO3TMyQqmGAzmPRAw2NKN1S00YtlUx6vlWGIrqntAY4UNuJQ6yjUAIsCO/5ayxTmG/RaTCrlRZEB4zKX8emwTgoSVu6UNArwg7eE2iR+e8k0lNRuFLlRfANC5ZOr8qK+Z2W2ulf59dlpb36mO3ThKvWvrW82ix0JUs83uu0omNnAGNEBX0+S2gCJeuad6oa3BmtStX0MVbDVgZxRwtbvyxZPX7PpiVD6jxyeqOvDMbbj221O2YUWKIev4pi8KVH3s9m5K3+Uzu1fSs+V81+OcvlOUG5nHz/wWa8ud/H2+LHwUcD53/Dv3/zvk+c6P4PcBm39If63pRw0spxzwfzz8LdyGCTE7vFsoxMddN6GzEb+5vIK3CefY4VU34d10wF1/QcwWH5YRvYvobMLD2uPL4YR38wFHvyAWi9Pa4bR0CC7hj28+4NvpWIVjRGzmYemRi8FPDiecVqKTPi4dvhzPeDdxuBGmiIrFlKyTFE+wdxG/ebyBNahCLyJOskSPu3FSVNiAziX0TM8EaAFxXsnqMK0ebw4XEhtaPcYQ8e3DEUO34tAvePd4wHFY4F3Cee4qcHpzuJDV0mZMS6NOCs3yPHeValoAHLoVS3TVcur5uqFbqyVM2jeEiDk6HPsF80oUXwOgDxGXJWDsVpznDn2gWHtjt+I0d5XKebr0uDlMOF16dF1EcAmnS48UHW5vLphXzwIrploEhdKY2UJxGFp/xLIyM6UyZwIYwWX89rd3gCm4vbsgZYtl9iTcUQy6EDfAd7p0BBiYYinCJsYULHOoi9blEmBsQegjcrI1zIoPFF5Fx/ETS9t6CSjJIBx4EW8zW5DIkhonj3BYULKlIOauVHGNUgxKBvpxRYwWcfHoBionrg75MQB9QhhXpOjqAsvYUoOwl8QB0Hk8S+YFsoDgxVWLhghV+D4hLY7okGNEegxwx0gWDV7kCr0xLw5uSEgzlYMCuJDrYjAzPVEWlK7LSJOjck+h0h4lzp5YbdJiq7XF8O55PgUgZLiBweBqyZIRLcwYAYNqeam0yC5XYYgyExQyA/H7yuIqJbMsHFbGFArCHjLwgaUN3yytjMXBDrHG5SvJADOHZpGQMgAt+GxpwdwNYM4OuF2JznlMNO5Cb3v0lQIIVygMzCG1BcRM/cGY2sI6lLqwdO890utYw7bUMB/ZwJ4t0l1sC9U+U6iXIRHNM+RqUZIFvsmmhYYJhcKx9Blm5Th7FnVVZWaqLx8yhwcp1fJjVsvhRgyKzzDctjzmajGxF94sHDPsxSL3uVp2hL5X2DrVvXNIA1E4kQE7UaiX+CrBLhRORixH/mSx8nF3MYivMvy9RTyyucFSCBjI45CJklk8IOFHigcsUz8Lhxuxi2mhVQyq+qrjcCOew5NUY6QHU1Xpu525TwDR9ApQbKOYEkWWyosD0c1yKHCVCgvYmain3XsLWKKbauocjTeFOXGTorAWojmKUm0cC9xs4CYKAWMi0WgrFZZpk1lTYS/UztQX2GRgee9SqLCmNDplDUPDVE0TmXbK89oyWMt9gT+x2qmj8bCLgeP9uNQDdgHSSOFGdNv8BVjunllUvCC5iRSEAaqj3qfIIVgWGi83Nwqk7GX7C6qiqV1RaaXFtlApomxrCioNFcAmDAlAx8MjFBWW6+R7VfF4RFWxdRPRde3KbTOKxtrtKKZM6a3t9DSPYNS8yVS2XVoZxbR+6vqLp/qlvSaj7lrYlcqVUB+F6xAQahPYGsmqrRw+RJ5Dm0SJ2TSLMVApnMWZZp3lcjQVlp4TAxsLsuMQH5sdlTYeVC42FtQK7HZUWABVFZcaIs8vtoAfrSyxjlJm1LAlFTQry6qUQ+FG0Gi86n2i21jv28cAo8F12ukVcKrVh/dpT5+t6rtCrd1vuujx2I2LbtNmrF6afs9AacHfbB/LHzUV9qs/+6r8x//9f4I5+U0Aea1+KtZJEVbRKqFafEYrlUpesYasqmyhpWoRnEsMCC5V8CFATH8GsNnh1zRSAE8C0ztWhNTCI0Iv1cmgiXOI1VWeSVEezcVUBdBrip5a1CQxQGniI3ljKRFAKm2S8vbWPKGdWkPKnqL2mQuq72DKplJDBRhqyqmzpdJGZffds//cqmioe3VDnQTM6iQUUcNjUIpBH1ZYQ6FihIosFNO9RVHTgPdpL/qjw8NIWzXdUT9+WohEaKLimydUSa3KKVaZveWu0ljNlmYq1FABwRsaoho/TSXUSeqXvJqGqBU2pY1CTRTQLHRTnUfK1WOg7yMFuC+VplnHrCjVRWAjjiLnrVhtlJWjtokptbquaxwqovgxmLD0y6bnnP4N3N87ABWg61/Ba5bq+juqtp6tKc8qn24stfJX3WtNu6yCK4oGJTFm60LCtr7LPUOhTQXZwKjXl+27bFOXKHWa7fdNfra6ifon3TOprzQaqLTNlK11TT7ulEHlnmlhG+MzW8X4vLQ1qXGR2+/ISmdsASx/dpk2OXZ9rWNfsKUWllbHpk26T7ofhevVx/eiL5oOuV98yeei8sl4bMw7pdEvATy70JIx1X3S5cji3FzJo/u4V+002Fob99/37dVpP2ZAawf31xSzDcnDc1VTOTXtstIsPyMV0/wX9Y9LPX5tcSx/9T3Sc0bfP52uldEqbPNfvn9XC9e1dtR7igaUgKd9utJOfQuffJbrr1nKdQPV16t1lY/ij4+DiCvnjB7f5/r3zPUvATet/7v5/pH0Wda85wZln+8jdV61fH6qLS8ZN3wGEHxBmZ+T/tl/9cNTYf/sz/vyP/yTP/qdl/vv/uKf/+B9A37kFsvORnzVPaK3EWtxeIi0FXZ0M3ob8fVyg2AyTqnD0S24jz1e+RlrsXhYB/QuwpuMSwp4FSbcV/EehykFnGOHzkb8fHzAN/MRg1vhTKm+ihLe428dP+CSKNblkjxuDjMeVwpbcXOYcY60XViBb3EY3IrOJnwzkQDQ0MUagqQUEuN5PVyqCuuUArzN6GzcgE2pZ4oBrweicc7Ro/cRX5+POIQVo1/xfhqrUM2cPFkkbcbrwyOmJDE+PUa/VkAcXMIlhmaxLAaDX7FmslgCQOgWTNHjyOELtN+j+HUOfq2+nnL8EgNGv+Jx7XDbz9UPVI4v2eG0dPjieMZp6eBtRu8jHuYea3R4fbiQ76byIyxA9RcUP8ebfuKNgwYw5+gxdlSniPv88v0rGAN8cTxjzRRj9MCWShH6kffceSbr9NitdXNA/DHn1Vfa3nkOsLY88Y8c+oglOvTdugEp/z9779IjybasCX3r5e4RmVm1q85jX92+LdHi1ULAoHWFkEBITBBDJJgzZ8hPYMIIGNMIiQFCYtQCJghmSMxA4tHSRbo0Otz32ffsR1VmRLj7ehgDM1u+3MMjM6v27nvOPpwlVWWE+3rYerjHsmWffZaLwTgH5Gwx9LH6QHY+4zR1cJYwR49DPzc+p3k5EAArNQ/HESlzHw6NBfp87hFCxqGfEbNb+Qhay+dn7P+YV76WCgUmADH6qpQkCdnQdwlz9MjZVN+9fohIyYlFt1QldJ4duo79ARco58LOmlbkPVT9C7uO6/UhV5/IlNgHDmA/SFVCq2V67GBdRicQ0ZwtcrIcEqVnaKmGxciifDhfqlKSIsfGDWKZThp+giAWaPH/SxbeF0ynDkTA4WFayHuSQycQUi2XogOKgR9i3WAoM68LbN2GIaTJoztEzOcOvk+wDXlPvITqq2YsW2P9EDmMhC1IswcICAMT7hgLhnZKe/FjVwl6crbIk6uENzR6uPvEZC3RwncZafKwXWaSn1BglCkXAjctQrYzS6zZaDl/tDWubI2lO9tKyFP97sRq2SpzxheU2YGSEUuxhIoYmbzHdAU0ieVYFdjGjw/FgL7tmDgnyHH36NhiccyL756GgHj0TOoTLcxsgWMCHgMwKHkPQBfHG1vdHHuqvnsKqzXjM+Q9AFbkPY6Ak+N3kyq6nhaLMMAwQ21/j7zHEODYUpoPha2PgRjCSFzGzg5lKHAfHVufgliFd8h7zMTl7SS/M0lIcoS8x8wGbjLIA1sslbynBrc3i8VVSWpAYsUsqIQ9tbzIaBKT+uRerLs75D2aXy2qagHme5YtX8SWMxvZcqlWPCPKqLsYxPvP37G6WeLAythU61gRS6lYGe2MauFSq6ObTI3vqpbA1uJM7RwDNYZkXReNgkaWrewcP1es+bMVK25DwpNNJf5xM1vJq2Xf0kKIFGgV8N4ktghrf7RPLYEN1EovrzKNY2nnpc9qWSPP10tD3tNa9ciYlR/jFXmP/C0ap7MZ970ywKLMqCVWLV98EcvhTEPes1g11/Ne/TrrhWWs6rhtFXG5VmMOkxTcKu9tta3e2cqriZbrK4tlg0Boy1cZzWbcbijtV4cZOwpetQRbI/XvVHbrkGQj07bfewoumc3Y7tX/TPpkRf136XulH7ViOZWAP378OX42PGEqDr8a71HI4H1/xkMY8f8+va/Q1Xf9GV+dH/B+OKGQxV9f7nAfZgSX8d14wO/ff8BX5we86UfM2eFx7vE49ggSGkEZVp0wvwaX8c2Z8TDljcE3lyO8LXicOnx5/4Rfne9AZPD+cMYpdpWgBgDm5PDQzziGGX/+4W1VUubEMQZ1A35+CNWiyZDRhEEgs6qknmdW/ObZY3wQhXcOGELCNx/u0PcRxz7iw+MBd8cJwWc8XXqkxDHk0huL8xzgLOE8BdwNonxGj85nPI1LXgA49DPm5BEl3pv3GeOlQz9EURZKVQqCz5ijx9u7C8spSknnEy5Th+Mw4fE04O7AUNm7YcbjucebuxFj9Dg9DYgPDk+nAaFL6EPC49MBJbG1UFlCmaGziOLAygDHLwOmO2ZXjdFVf7Np7OADw1DvjxP3/VfM9GptwTx7xMmz0kIG/RCrBa4Ug/HUAQYIPUMcvchgLWEW5aeQQX4MQCD4IaFkVlrS5Jldc/K4iGJhha2zlskG6YGVMuvYP2w+syJBZ4/44Dn4uDB5GicQ0sLWuXRvkaJHvjjMRz7UyNHCfNNhPBSkNw5J2DYBAI5gBfarpB1W/LE0PpxRC+vFAZ0QRiQ+MZ8OGTQ6lvsuAR8Dyz/zJhye6y/JAqNDOibQxWPuM5AN7JBrvLkyyy+w+DHNh8x9PibQk0fsGepqXKmw3GXDbxAdsaIBAB8Ccl+Qjol/fGcHJAM7WYwPwlYqShAib8JjV6plxwgDaDqyIojZIvUM30W0TMRhAcwWsStwXweYAlyA5VR+shiPbgk9EC3sheGY8WHZoZlkQY6QQql+Uu7JYXpn4b4OiG8sKzFSr//W80ZQYJV2NFIfWIk789jPDxbm4tgdLJRavvuVw1wMsieYi4WbbN34d48Gk1he7GgR7xPsR498dAyTPZRmY0QMbS0GuS9wstF1o0W+s3BnyzA8S8i6uT0zvDXf26o0kRflYDLMKJoMitRno0G6E7htIPhHCxgg3xX4J4t8WJQ7F01VnJANhq8s0j3nMZmVCpMN5i8s/LRsqEFA98Fi+gngL5aZQ98ZdN9axIclmLx/MrLBZYUiH2gJvi6KVDgJ82fH19zI8le4n+P+ugsHqw9PMgaymco9LbBHAP5kKpROFTZyLAu/tPi6Pxmko611VJhpILizQXxjMPyKlYXcYwOFZdlLx/WUniGkgCgDgTeR8Z6hu/4MpDtWSG0EQ1YP/BcGyL2pipY/AyAgD6yE+pG/xwfDUFICiufPNgPpwOyuxXP9eTB14+/mpa7wCIGVmgoD9Rcexzww7DLeL3BRhaiGR8L4k+ctRs8l7buOjRUGUZO5PTdxO+6yKFrF6/oByBkelxGVbbV4IDwRyBqUYCoTqE18DQBKZxZFRZTR7gMhHXWeDfyZkDvDbJ0VosvXAMCPhNwb2JlA3oCMgZvlwKdfIKYA4GbiOYgsA3nAX0gUO4aL2gzkzsBN/PzmjteyP9MVFLZ0Bu5CyAftB9WDCDvLsxGWNaRjxuOwKJDFC/w2LeNe4bMbpVOVD5J+tYyvqqho/iJKtMJxW4WOjMyF21k3otgZAkwmqdPwZzwPhdVxbFNVGMH3bV4OVtr7z0FhqwK8VSz1XbVRvK/60ijhV6RFAPT0dSF2aipSKBW2SvJyfdv2rqV0Z5yXwpvvTZ2vqus3IO1ylcJ9GzoAACAASURBVPyWpB81FPbd3/05/ev/+b+NMYfFaqUWAKyhigp5bFNL2rKFk+6lLXFJC3t8joylTbdISm7l3ZKTALiCgG5hZgxDXZP67EFqt1JevWNutLcn3x4kddvXllSD8yzX9/p9q669dlt5n0u3lvueLM8R2bR92f1bzP6b8zUvE0NXAcxrNbieN71ei+9ca+9RK08r3wuphce2c/hJr5AbJ6BLG/trau85eFU7+lnT3onnM/JwPv1Fvz1/e2PzXFqN294vYdvm9tqqIrqGYj63AG6ldixeKrt7nLz5Rf/UH81b7e+tl5fmq21/i8f7Pj/mr1kvzz10O+UMmRUxSxs0/lk5XrOOX5LzNfe3bdTvt2XcWwqvso48l27lbTbOry7/2jY/Je2MR7vcPhkG+Jp7tzbXO5e3U2leaucFeV6c2225rVDPtH2t7Jhn7r3Q7qvqf135772GPzF9Fhz2h6j3hxjTT6n7hfS9lcRN+X/4n/xmQGH/i//u93/wev/lf+IXv/a+AT9yi+XRzfh7b/8UH/IBqVj0liFvH9MBU/G48xPm4uFNxlQ8Di7iMTJc9kHiS85y/WMc0NuEqXhYU9DbjDs/IRWHr6Z7DI493FNx8DajkMXBRVhT8PV0h6OfMRePBz/hQ+R4kABwSh06myvTLMBxHE+JrZjvugsiWZGzwJrC4TxMwWNimOucHQaXUGAwplADtgPA0WssRSYhakOp/Gx4wmPqMWeH+8Dw3EIWg4+w8rR9Mx1r3Rp2pfUjPfqFnbSQqZBcCw4Qn8jVcp1NSORq3XNxHHsxhQo7TmQrzFahtxquRUPGTBLypcYW9RFT8szQ213gbcHX4x1fz762B6xZPa0hPM48hp3NSGSFHXeu5abMpEK/f/8BAPDV+YFjT4pcAK4gvoPAhS8pVD9TVXy0HQC4CzPm7KqFu/ZboMqXGKovp4Z8OYYZRz/j2+lYDwgycSxNDSHzcRo4NInU2caaNIZwiTxHhxBxjkHWR8GbfsQpdjjHgGDLKjTLLNBm/Y3UOls/XWs4HImuDx2TKTv0jiG5Y/K472Y8zR2CQFI1tqgxhF5CyHQuI8p4zslXBdJLPE0vsl1iwCFEXGLAXTdXsqpCWIWE8W6B7ybpy30/YUy+xsYM4p/bu4zTzHislBmirDFLNQxNLgaDsOde5lAhyVqX+gir32/KFm+GCcYQvjsf6nrwEruUyxRhE06whnCaF7pYa/iQqTRr6dhFfBx7vBkmnKZudWD1MEzMel0sCjFR1tPY1/nspY3zHND7jFxMjRWq7McfLkMND9P5XInD7rqID5cBJM/TFJloa4wc2zVmt/IbDjL3MTt0PjHU2GeM0df4qPocAUAfIoIrOE1dJSfTg0EvvuXO8pj2IcG7UuegSOgdADUm7Jz84lOpB2vix/v2eMFlDnWNdT7BWcLTpa+QdQ0hc+hivT6EhNPY4W6YcZ5CPcAbBP6u7MRz4vitCs/O2SJIvUnqdbYgCmwcYNSDsvBqHFd9v6obQm78OpU8TPtVx6Epp/WMM8PvFcXB7VmEkDCOAffHqYZAUj/nFlqeMzMQp+Rq/bruCRxKJ4SMoYu4TF2NGavrRP3hK6Q9LQzDinLRWLTjpVtYeAlVDkaXLLJpWJpCpvqO5+QQhPxM/aWtywgCjVf0zDyFGnJGoeTDEHE+Dfjc5ENCnOWZdgtmUuHz6hPtQqoIGoWw+5BBhcMoOZ9XpGuKkLkK70RLvFhtB2Df526ISBo6Seoo2XHoFyXLssIYTEyUxmPBPtNUTCVAK9msfI8rJF181WsoGglLU8PZCGwdBCFfMxwTtw2rI2RvJhQO9aJd1LAyEjpGCeF48Zi1Zm7A/7KpZGd8T+sBajzZVhsxWBAk7YFJNePJV/HHNUUOe7ba+IoUaFOfKtpWDoaadjQky1qeptz2MK1VVPcOeFQO/av92/oSA1eHotVKe+OM8mabN9KWUKdp6rru7eHOtv5nD7puHIRvG/u+h4d/Q4nw203e86NWLDuT8Afd1xjSG0RyONoZGQb3bsKHfMBbd+HrbsK38Q734ntZyOCdP+PJ9piKx72f0NmEezfhKfdwKDi4iKOdMZFHJIsvwgVT8Y1iafDGj5UYpxOlVpXb992J/fMsK6waAkXDoRwcK0Vf9h8xFY+pBHib4VDgbUEwGcHeMXFQKCK3xcUt/praHivCqSpYBxdxcQFf9h/R2yMuOeB9d0IvSs/BxeqraQ1x3aJYnkSZ1fAjBxcrqZE1BafUI9jMSmRxiGRx72c8pa7Wr3JMxbPCa3sMLnGsTzJVmT+lDg9+wqPrMbiIp9jj6CPOiRWjd91ZFMwJk/cYs8fbbsRB4ot2NiP5hXyIlV1WeIMpiGThDR8CdC5Vwp2j+HB6U/AxDihk8NP+BAuSeKYZ92HC2bEv5Tl1HGpGXgT3fuLrMhd6KAAARz9zfptZ7uxxdvx9Lh5HP0s/Z/RSv0KbrSG8CSNCEz5hLqz4vulG9t8NU83b2VTvq7LvbcajHeBswdHPcCJX5zK+HB7x6Ht8a47ofaprIJHDLLEv9UChjU3ZEhUNLmEuDp3N9Tk4xV58cwvOjhmYLWjFYKxMykc/4xR79D5hks3+JHDzQqbGf+2EDCu4jDuBrD+ECb3EplWfXD0sOMgBSy4Wc2HF511/xugDzpGVyN4lOIlPq8qbxp7VGLJ6qKEHEIVMVZB7lzC5JRasKvXaly/6C8+zxHpV5f/sQv0J8bbgvpvkEOlQ51kJsGJ2lRzqTT8iE8PpAawOIN4fzpizQ5aDmkH6r8p1G2bnEKL4bbul/HCqBwa9y+hlXvV5U1RD5zJOlvDQT3C2wyFEbldjkBL7IHtbMCZf7w8+wdmuQvcJqPFVB5/QO/ZxDdLXGm9VDiucLZilvuByJRzLwqhdiAnA7roZY8r14EL9nWO2cJbwbrjAGcLo+CBk8AlelB9VDvUw4e0wIouCdt/NKAS8GUbpJyvR9/2M3KyJyS9xd43hWLy9TyCgKrPHEPE4dei8xuNl3+U+JMRs8dDPq2dszk4UUZbz2MVKAqbjngtfB1Dbuu8Z1q+uDK2Ce5C8bw8ju05sDsu8LbXdYz9X1m6ja927SmZ26GINtdT5XOMaBxnjQgZT9PWwQQ9oJses4Xrooc+DKspeyp8dH8RpXOPJ6aGCqTGE1X+8FAkrJrFWta3RefTifz50sT5XqVg+lElt8JtPS31IFXGgSrKRtXuxnZCksaxFXAxUKRxkLjUurx4K5GzRd7xu9KBDnwddFymtY1iXYnAcZkxygKB1xFSqUg7wYUv2rMCGsPi3Z1HI9YAlJSds6lyfcxyDV5V8jbnKZGwQsjlWWvWAoPqlC+s6kdTjDUp2rJRbvyJpI7CCzj7oSx+1TWDxz4YRdvFkK/u3+nADWJReHSdRVkhY4lskkRKWaRskylolKWuVoAKG22sYHGCtwOi0WAlJpIoepE4Nq3MLkdEmbU/bUCV3q4CpQqnKlJJurWKZrs3Eq75tEt2S6VnF0lzVRTvlaVvPS/Vf1bEZg2fN39/XxPk3kQzyTvjB35b0o4bC/t4/957+nf/y30QiV9lcAYbBxrKwwbYxCBMtisges2eqrLHKnLpMvioWFhzfUpWJtFkgt2Co2/tbeCqAK/inxmZclW/kaL+v+2FX1rPn2n0JWriF/O6ltk5gzVDbXtcNaxs79Dn5WtZZlUE3RK1styCr29PfLXvtc5+VzVYtZEs9C4R5D665B03e+74nb6vw7M3V1fiQuZr9vd8vANVatf19ehW0tK2fbkNTPxWWvMdsu61/CzXeg0U/B5e+1YdWhj252u/Awoi7y1NAC3Pvc/1vLWvqt7uF0W7hxXtw4xXsVjcf25NbYHVtb0xusSm3a6yOFZ6H2T37S3JLtmdOmG/Nw9V47J2Ev3AKvgfzv7pe1szDi/ybtlX+TV+q/FrXzjxqf9r82zk1zbp6lXmg7X8r894E7m0i9zax9b7ZXVsVkq2b2luLZSvPa+p97l1yq5/bNdHmayxPn5taCLN+f5V8n5PntVu0ds3sDJte+xzL1Cr/jXxXr9vn6n9pz9Fa9Dblt8vzqs29dEN2s1P/S/Xt/qzcWr830jM/Ta+S4fvmfbb9V47Dq+t7ZR0/RHqNHH/0H/76obB/918c6D/7b//gB6/3X/s7/+jX3jfgR26xPOUO/8c3fwuTnKArc6meCitcrQ1lkeTUXD+rkqPkOu3GQjfiChvahmHQDW17kmgMaogAAAKTWocbaeFaXlgoWwichmXQmIzAOsxEW5eeSlpb6ilshRXKqWQbsqENDQEwpEjDKGw3UUQcR7HdECnr5JJpvTnchmLQcAt14yZlrhTCzUau3Xy3Y99Cztq8K7/NVulRCErzo2Js2x8DFAPfM/NnThKKQ08uNY8mg1V4hdopqV9JbrgdWmTYbnIM6qliuwG9rttUAp3KipnsasNa+619llNMDmauoTKY8IaKWZgzW+VkO5cqY/sdQBu/sI57hUWhxsGsfdbx0fo07EFLrb9zwryi5bdYQiVsT3LbTX3dVMo1zd+GBjC01NfuTrT9NlyAba5p37dKRjunAimrAdS17tX6oSVcwxYe1SoU2PR7Gx5BmSPrvGCdp4WTNQyjq/LtKXo7ls29bLDArtq+bjfq2MnXfgfWsmr+W4qgAUwxKGqNqAyQBkWsFy10TctUH0V9voVJU1lcSeozieeZpG0CKjMpDFDkc/G0CvbOjJiNQlHMWvYCQElLylJGSUqM9lUtDCT5aRkKo8+UJkcLlKxd923okPY5MQrnw5LXcj80tuatcCCGsMABG0tQfXdmITISeF9tw6B+r7LKGFRGTH2fSixOI4Qrq3eiwUI+0tSxDLjWJayxm3HZMpEaXf8NVJCJTl7e/N9Kdc0B6zE2VMdnV4kDVnH/VjEAaRmXK8vO9vlpb7XwTABkzGotabHVWU57Qwvq97222/vmOk9LImPaOdbP7ZponuWrzmz6aNp3easx0ALpbC5dj12b6jvl+lV4pWjfqmNH9vU8m/Wcb2XbyvM3kF5U9rf3XlPHK8p877yfIsOPMBGAUn8If/vSj1qxHFzEP/32rzEVhyKQuK2FTpPGttTrW6tlG9eyTa2FKAvMc6uAtiZtC0KBWTG3tnEP2/ra9Jzl67lye33dk327b2vLvUQ69JxFcFuOyFxZGLfWrT1yFrUA6mFAaxW8VbZNr7EEPkcspNfzZg1sf1drXqzHtDxjDdqT7zlyI1WouRx2rRxLvev7n0Ko1JI/PSf7S+k5Ip/n5H/Osruu47oPe5a9deXNr/mNzcmnpNeOBwFoEK71mrap0K8rGW9W2CgAbdpce2k8mFAK15uK7UZju7kyWMenxMvvg1elZx+mZVyWTXBzrW13I399VnVNKtxt+y7p9tfHyurdcYXU7bQln6mV+9kN2I15lHZXqT0Iec1mt71Hqz+rOmo/9uTSr/X3YrPD37lOYfPOkIOV1dVbz77B4suGZU73yIt217RA45ZDsbU2pXA8ZRuu9yW/MhR/VmoVjDo2Ut9mTPYeb9L/TPO5vbfN/Ir5N/J41mX2XJur9bJ5B7Vjv1mvt5SUNpRG/WywCs2x6qe7rdus6tVCV0uRrhT21ccXptZs+k/N9RdfyZstYj2g3oh/lV6z3P4xKGlt3z63zr3Lr67vpffiK+v87DH9Xfq1pB+1YgkwaU0hg0kgrl7e+AWLMsbKHfsRlObIrhA7kSupjPp1abKGxO/Oi/JVFiUMaOCua4ukBcdqJDIoRqCsZqkPZmGtVd89hdfaxhqoyqkR5c+sNpK8udM+uqZ97aezBVb63/rTtEmVaWvo6oCyjoMtDFu98eR7LM+4jp8za4tkK+vVxtQQHBol1+rcLlBYYK0E58bC3Fo9t9fWLNgkfQWKxmESeUKNpZiv5NtTYtvrxhDsnmLv8iqwfTVgqOK9M54GAnE167m+1a5+X/pdmvulWurVAq+xKZfy7TigsWKuLZp7yuceZFPJRV5SZqXmq/48B01cz+3air+FTC7lGyXD0Kp/1/Wv5V+NL7Z9v4bFVnKWvDZZ1OfW8A7Q6NhtrZ+btPIJ2jw3ijJQ+dSqfwXrBaQ9Qmlu1kMnlXGbV9etjtmqP3KrmpRknKoCet2v7TrRa7vKsFpbRSAeq83WTcbPmh0FlwCj4ltZAO0atFuLOjXXxZqvn7dW6p1N+KvYrknL0lJWxrSFutYDgG1qX8x1t7hzf7vh3iqnLRJAFa6rdvZ22PJZLfqG1gpw22b7mcximdU6zXKrrm0tYGnd/1vK+HY8tj9cbZ9v/f0eybRKkykVGrv1Obta29r2nhx749imW2VIFTce35sHdLuKE20+0qaN5T69Yuzas5pbiuhGV1w9C3t17SmPu5Dya5Gv07ZtLO+zehjxXD83116lYOF6D3Ervba+T13HVP/7jLZ3ru8sj0+vd6/O7/lc/pjS78h7fkNTKhZ/cX6LziXM2VcWTyUSeYwDLAhzcehdwpgCBh+RyeISQ41RGYVwYUp+IX8oFnNisoGHfsLjHCohhyp8s5B3HEPEJIyHSt6gLJudy5UVs1WsnGWSnm+FGdK7Ukkd1A+O5eONXhIyitYaaAwhJpYhF4s+RFjDcTK9yxjnAOe4HY1LqYQK+qLT+JlO2BiVTKEl0GhTcFlibS5wVYX+5goZ5rx6rfNLmfa6cwzfdcLWp9+DkFzE6FZxKo1htr+SLfoh1niZK/gtCQOf/FgpS6DKBqDGnCQy9f7Hj2xmGo5zjYdpBc6sfdINoxIUKOGAwoyXdgqo6W9LoqCKXikW1uXVj6pCcVGYVU/vWVuQIwe5LxJ4niGyssGp5QEQmGCBmOBASRVKMSgjB5O3QSCxDYSwheAahbWSfNfNIGG12a55fWHWPwKsBLW3Xa4w3LpRFxiu8aXGrQSWtgHUjX2F+EqcSdtljlvpqLIRlmQrcQNlw1A+R4uiMzuGEQpjYSV2yAamW6JEk64XkvZUHGElNIHnGdnAeLnfbrCTxLScOHakOeRFacxNeWkDUU9OynoDrocqalmMlmOGTpbztrDSLbNiMSyDptS0obA/tygDZbSgoXDZZBfYKgAzG74H6acjIBqG+iq0sP1N1HXUwJxNZqjiKgi57jCyYWuV39wH1myHWk/GAuG04NiXkGvRVEsZgDXklQCrcTQVEisB7WkoC1Ojjqv02yQDEw1oINjRoHRLf7VtjQVHHhVqbAs4SH0USJzCAyVGpMJh2ZqzBKnXOjVpbNIaSy5p55q9t0ENbK8KWoW6Kky09k9gvR3BjbxuNWB8jWMp+3pyBJtMjemn8pPjNjXGn52B3KHGFtT4gtpH8jyH1NSj14TfDrnjuni+UOML1piDGquv+QnSGItFYlqSRY0xahJgBcJdvPSj43iexRNsZnivnQ3HPv3MZKPh2KcqD5l6ZlCCwmF5HcA2CrSU5XHmcSCDmkfjnF7BgPXd21gGuTLATsv4kOU6dExW595NG3V8ZS3qmNYYkNq2/gS18R4XXjnOQ8s8qQyA9M029UjdNvHcteU5j6kytBDa1iKLsrTXttnGZdRnZKuUruDJy6u/ttPe20KUtd5VfMjtGJimDBa5Vb46Fk2b2zGoSZVG7NTb3m/yVSv6S4cVG/9iQwQyBmb3gGn9d+9g4qa94RMVzmfsFs/K9Enp/0dK6687/agVy/Pc4f/8E44FQ40/Yk1bi0A9YaW1L5VsWBZ/JKBCsgD8sj1xbZPm29bXLvq9B6B9IWzytf5By8tlsXpsoUO1DgLOzYt4r+6Lfi7L9bNZ14FbdQDrp//GKWOb9PZl59rui1zS1MiT5Ec2NrIbAi5uuH7Z7rQ/2uZ+0y/9fdQ9t/pRja5f9r9Nnr3D+yz1lc0cF4A3G5pdFT850VYjVGk32zKOrp2Hpjkr11xzr8q0+U6yFNu8lha3PLQ/nGjquFHfNlXRpP7tcnYEkAlX8rVldn8ct/dbuUyoLmWa323zbOqq/jSbZ60u2+0zuO3nZhPQLveWtn21iSGAnFtf22uHAJgdZsrts2edbBg2efdkNq62t/Td7T8bxQDGNhuX7bO97KD4OW0f2u0mZGeA5Hv19du2TxDlz1xf3za1t0aA9Wbq1vu0XQPN5oidqLdjApC1zedlnpdxuO7L1Tt+u+638mN9XWVchm/9W7IN1L4/NvogtjvNRkC99+Lm6lrQWxtAf97p7/adIvdXz4589uf1vVvWrqs+Y6n36l1S70tjZ+3zMi6GADfd/t16KfHaMMvnleyiZG5fjHURPVPv9ePzctobg9ekW++lnWvbubtZ3yvLP6uM3OpDfXfzhytl6LX9xgvjuveufE7mF8rW6y/81ryUnrUEvyY9K8N1hZ86Rs+lz5J3296nrO0fQSL67WaF/VErlt4XfPHFCYPEMpuEvKb3Gd5lPF4GtvaI1WycA0JIMADGia15zhXE6HDoIy5TqDTZKTkksZAcjxOmieODaX3WEuaJrY3DYcY8O2h8rX6YMY0d1GKWE1sh63NNBs5nOFcwnjrAsKUHZFDkxJWShTsstOxZ6LVtA4EDhOAnm5ofAIrEqcpnDxMKjC8oo4PtM4wF8myrIuyHxG0atoY5seSoNaxEu4Ls2S7XmFSwYoma2RJGLVGCASBxsNoyZMDyJAsbMsrEZUuW7zPLWaIFJgdzSKDJAV7IZ0bHlqlDBsmJ/+qkTk/pdYz6zPupaBfNKoqFiQxMl2EsoXzDYVboTWRttj1kCLQmGpnkhaCWEiU7MWDLDmtWMDPLR6EsBDfJgkKBiXZ1XQ8uzGTZwnEQa5YSZUyWrQmzRRn4nkliFZIx0EMJ6rheMxtQxzKaZOBOFqUjlANbZdBYNJgIw4iVgaq1qLVkAWBLjli+bALIAaXj/pgMUE+wF4MyLKQnrYx2Nig9LfWQ4fFQIpa4bOwBgDqCmQzXO4qlwGLJq0QuUfruUKGU7mJRAlVfMJMMTOa/eZAdrRwomcxfS1iUITvzr3jpWE6b+L5+5lN4sRQ5wJ+4v+l+eUZtRC2vp+5uZlnzQMuGSRVVh3rw4yaDdCT4E8vbnua7i6mWGrJs+ck91R9hO/H7Jg9soQHUmsLlw5NBPALk+b7JC/GJH4F4BNQKVjqCmyDWH7ZMLaYGwETR8TzfV2tM7gAbqVpLqjUjgtd4D5hMqJY4g2rdMIUtGzYudam1wkpo3dLxZwpSnrC2rhDgH3ntlMD3rI79gWDUQiTkOf5skI983Y1s1dKxB7hON5qqDIHYEkmOxGrHljFVWornfEbWgFooyZL0g9eNG+X1ZXQNoj4bMAQ7mao8k0MNi2Cm5bkkx2NROpaLPKqlU+/lgRCeeG0Xv1aaVZEuHjzXgS2C/NxgsVj2gJn5Xhp4bqrFUqyyZKR9sWLqfJHMgUliKB8Wi2W1nBHYF1TXQZb51Wx5GXc3olrCqsVSouyUIM9eL2uksYK6EUj3+Oxksj4DsqbysvbyAECsdS6iWhlJngE/LeOs1kWd17qulfyJsLKS6TqtyQL+Qsj98u7T56+1uuk8AICbCSUYXhtqxUwkY2aW56hp22Twb6iV59kAZA1MIVlrBjaSWGJ5rbqJ2Cqu7TvJJ+1zh8B1mMVaW5p3nI6N9qFaJi2/a/SdXZ/7TRltQ8duxTSrzzCW565ayG3TFhbF0m4slnuHIe1B1mJRJRRnal2gZX52FcVGCdw7zKpWxkI8DyR/My3zUsuLAi51ktX3F63bom0bzbiYRe7dAzxcl699bbu1re9W2pPphmL5WYcxvyFpL5rDb0v6USuWRz/jD7/8U1xyQJIYbErek4qFffiu+hAWsrCmIMmb3huOKwhgBW9NjR+i/o3ZwbxZ+y4UmBojMEpMxJYcyH/B99rwJnqvJQry70qVV5PGKdRre2QZrb9hG6KiTa2P6a3QFW3ID4MlTEibp32mXyIJ0kSbdvfGoA0lwvKbFXkPQ3KXawCT+zB82VaCny3RzzYciI7R3meVs3//BICDrluzJmja9s01LL8KW9YcLRHSlhRJ8z1HxrRHpMQ+dOVqHbTkO/odwAqm3PpO6lhv73Mbazm0LfU7bOvXtA0V8hw50sJiXCpL8F7bt0J/bP3Ytv6723vcFlX5lvo5r90y8t6QG1hc/oxZPi8CLr+WCun1G588swmNA1k/duMn3MouGWCLBb6Uv2h+2634dcmBVbsGq2jNNQL44EDfFfqLLAp9262k/ZJyIKAIlLmYnbWCZW70PsnfvM0IOYMxWJMJtRuVZh7JUEUG6LXSjFXRMd0OgLb1B7RAvqV+Yxr/SVr6mhp/yiifk/pjypikdgHIGK79Ixufyb2d556sezuwV2yqnrX0b/MbAMVgav1Xd+7vpnb39trNZZVjMwZaX/v9VlvbdLWgl3Yqi+0mb0sQtLSBCpn+nLRiHr710LV/t3O5I389RGzz76znjSD7Y9u+73Y38tfjxJ93Gtmb780XVnS0jRs7+/beM5v/K4v0bj24+c571mp4q809COleecmzb23dDPJK29l8x2cqQLVM/cGSa2Z9vR0V2nxfCfUKBe8T7726X9v1/7v0W5V+1IolkcFcPDPCgplY10ywtt4DgEKuKlqpMcPotUXB4Xvtpmhrtub8rioCqtDWINfVIeJaSWjrjfk638aNge/tMNZulRpg/ZzGhpgnNuU12PZzKct47Mmi/bgiz7lRT/uX5W4cl4utwcdVkSQyKNBNm0FqwiikvPiXZim3RaeljXL8UiKwQqljdyu2Z/VrbeasrQNYSIX0862UbmxsCvZZWl8X0FuVJZ2TRRYNwn0ld6NYtdfa+rb1axsAGoXIPrsONOXspL39eJCvTmRA2t8bJ3+5XMu7W9UL17XkHgpytWHYhUkuG716UJFcHfNbBFGaDwByWc89AWtHJb3Y7LZuo8REiWrnq1HaVnW11YtFntr7O23c0mu2m+DXnxUZZAAAIABJREFUTn2p60xlXM/31dy3ChwAavwTVbC612oVTkAw783nVUEp3j5Dm0187XsbxmU1r7cUJrOS70WFYq/8DZmu0jZsTdvOrgKxrR+yuTbVj/XZGI7tGFRFy9wcinrvlZv8Npm0/761dB0G4hU/CzfTHlHb1cHIXh9emMtP2pTXtrbr32KrbK5W4K6i+Yq2bn2XZDdZdhW+TxiTXSveph5zKy/w7ATfrPuqjhfKXeV74fl+xZh/ksK5PbD4nkrapyqZr15Ln9unV6Qfk4WyTQQg/y7cyG9mmorHnzy9w2nukItF5xOTvmTLJDohVdIbJbRRpSC4jCTkO94WzMmh8xmzbPqCy9W6MkVfY0IuDIxM3mIAzNFXNleG1nJ+gBUC28SC1PIaX7LvIyubQkSjG6gg5DtbIhy1NmlSeK61hHn2q7xdl5CzRUoWXZcRo1uVKcUyxNYuLJu5iYVZiAl1lH3TGKpxL2tsyWLgfFnqaUIFKFFNTo7jTwqpjVrgcrZwPqNkjgNaclsX4HxGio7zFCttZVhLiLOvMgCLgtTGAgUYQkxkYJWUhQDrluD0JXEf+jvGIc1jgDF0lafdMFRCHCUcaJgArRDTAAuJTt2UF5ajJHPNOmn4l9J6Zh5OUTFUUk4Id6wvDBMGlvGmpbwxhBJdJdWpeR3BB4lrGhlWXZVCqYMIS3gGZfg06zY0RqVRGDQxDNv4Utu2IbMMriz1KxTYEecXmDQPJJbxteB2VJHQuJiJCXcoiW+cksoUsGxKXEOmKngMz7YryG+FbyuBjo6dtFshzYTFiVM3rG08SZ03Wq6bPvM8Xxo+fUeNkiL98/I+UAIeQiWAaSHXphPod58Zvt2G4ejLYonTsZgbfFWQQWgh4G35IaNcPM+1jItC2E0ooFFwciq/EvdsY2q246QEQhqnNG/mSDcBQsCE1Kx/rav1u9TvsmbqWlEIeiuXbjhVNFXyh8LwdH1GNY7lzNDyVd6wQM7hiPN0XL7CzLVtlbNtG2ALWVuvtGmSrRY1jX3JEFoD8mVtLcxYWdQ0FudKiWtlISz1yNwYmQP16ybtz5DXz4jOv2F5lQBoFfOyIX0y0QAONeYnCYx+1V+S9k0zRzpfpoGmz3aBAMizT04g7g3XQSUhIgjUUaD0Ip9R9xGHutZNZlInM0t/8hLztHQFdvz8TR15WoiTlEgGPKxW4a9CXKSQSoUzloAFZqrQVrlfSYraA6pmWZi8uVaEnCgt30kgoqsdv0GdP4aQLu4MRtYhGXBsT3V9oHW/AJVxEzfWcn2VRLohVzLSNyWSMjJHLQFQbUPaNM1yUD4FzYdGjvZ5p7a7+m8DLbn2Y277JWubrvPU8sSojZWle0+p0fd5807YvaZTs2lLq9w7BNkDP9R8Ol97KJCdcdjL07a928Ym7YVa+b7pUw8+drP9kAL9Ln1W+lErlkc34++9/1P8cnpAIYs3YUQsDh/igKfY48vDIy454OAivp2OeNef8e10BAC86894jD3m4nH0M74dj3joRjzFHp3LOPoZD37CJQf8+ekt3vVnzMUjZlchhV/0FxQy+OvLPe7CjFQs1zUd8ZPhhEIGH+YDepdWsSw7m3FJAZcU8Ht3H5GKxTl16FxGZ9mvsrMZ30xHxMLK78FHpGIxprCyZh18hLcFg4v4eryreS8p4G/dfcDHOOBx7vGT4YTHecCUPe67CZ1NSOTw1+c7DKKQH3zEKXYgAMEWxGJxH+YaqgQATrFD7xN6lxCLQyoWd2Hm63JNrbiXGND7hMeJxzQ4DuUxJo9DiLjEgId+wtPcIdiCSww4hIjTHBBcwfvDGd9cjnjoJ5xjQMwOb4cRvUv46nSPwSfEYmsYDWeoMv1qCJnHqQeRqYcOhUytzxrCeeqQisXfef8NvMn4xXfv0fmMQ4gYk4czhPMcKhzXGMKbYar9A1APJXKxSzlb8Kabqgydy5izwzFEPE4d7jrupzVAEiZZZwkP/YRgM74bmaW2kMEUPd4eRszZ4aGf8M35AGcJg08Yk0fKFt6xQupswePYI7iMuy7icWTf0T4k/N7dIz7MA747HxB8Rucyn5wVKwcqVPuZMh/EBFcQs63wVWYR9nxPwtA8jT2O/QxnCKepw9vDiA+XAX1IwljM9TlbcOgizlOHoYuYoocxhCmGCvUNjpmLg+Pn5TIH3A8TnsYebw4jzlPHLMvZog+pMhwfuggn7McKIX93vOA0B4xzqIdF3hX0PuHjyOuiFAPvCrwwMI8ChS5SJwCcpw7GEDqfMEV+/rwtlelYD6R+cn+GswW//PBQD4n0gEjDpVhLuB8mOEP47nyoz7KXsVSWZCKDh8OIbx+P+MmbE747HeocAMC7+zNidkjZ8nuni/h4Hirz8P1hQiHgdOnRdRz6SA+5AODnb57w1cd7pOTQ9xG99MEawsMw4eunIzQMz2UMuDvMuEwBhz6uDryUWdnZgmn2OA4z5uTR+YTL1KGTNdBazPsuofMZp7GDl0OjLORr3i+M0TGybMFlXGQOUnI4DjMKGYxTwHFguUrhAzsdO2V+/umbE05TV+fg0M+wBvjwNFRG6CRr/83diO8+HhG6hLthxnePB3zxcMHH01CZpg8HPoDyjsuOc6hzpvINfQQBiLK++5BwHrvqv1+KQckWoUtIyeH+OPLhorhhTNEjyeEQAAx9rO/flGyFpw89r0+SPtwNM05jJ4eMbtW/vo84n3u8e3NGLvxOWQ4MeZ3OySFGh2GImGePvkvMXu5KXWfjpUPXJzwcRnw4HeA9v9eDKzhNXf2dm+TgL84eg4zZNHk4R+gC/8Y9nQaELtVxC4EPc8cxCBu4g/cZ0xR4b04GXpnNJ49Dw+BdCq/DXsZkHAP6PuFy6XA8zJgmX9fW/XHEh493n7rdqKnvI6ZLYHlCFhZtfranS4ALmbkW+lQPNvUQcjjEyuHQhYycmQmeskEv97KsR4APJ7OULblxvgQfut3dTxgvXWVn7/qEFHk8dP1YQ8w2DsB3GWl2fOhZLEpZDkpTdAtbtxxy5mT5sLRwH1wocqAMVvot1+184d+S2YEICEPifhEfWJdsUKKDGxLSxYtSSPUg0wpzth56grAcIgJ80CNlKNnlwEwOBSv8PC+HmKuUbMOFQMshkx56GlrKNQfFdbz1kG17qLb9rOcVLTeBsmU3yrDJpkKqn4VqE5aDH1oOgionQTHrwyM5NGjLa53Q8am+HRvZqcnX/m0OJFeJzErZ3Q5X+/1qvNrx3VZtdq7tybaXd6/sb2T69ZH3GGN+AeARDI5MRPSHP3gb9L3waL/e9Lf/+bf07/3X/wqCyRhLwEQemSycKTjaGb+K93WT2NuEp9zjaGdEcrjkDt5mOBRcSocHP+KUehzcjKl4TMVjLh4WhPfdCd/FI3qbqp+mKnwFBndSpv3+MfGG/uAiUnErR91MBsEUeJvxIR5qvin76pM5Z4ejjwiWw5XMxcObUr+rz+gs7bJSyz+qsyh3T7FHZxM6l1lxtazgztlx3wzh6Oe6EU/FYZA6UrHwtmBMYeU7OriIIvJoXM65OHQ2Yy6ubrjVT1TLjDlU30JvCubi6vXOZo4jahPGHDC4iEQOp9jh4Hlcgs0cNiX5qhzr9dZnkcggka3XepdqSBmNpXlJoW6AVOn/+nJEIYM33VTHEODNTO/Sav7OolB2jRKrYz4lX+uOMg5BxsSLsq5KpjPLD7+O75g8cjEYAh9DG/Cm7zR3rKREX++pj2r9zRDFefC8mZ+zQycb4FQsTlOHzicMgZVs3aw6CTGjPqPOluoDW+OSiuLXWvYVctuHhDk5lGIRfMYUfUULALhSWDufqzLNdS+QaoVC63dFG/QhYYy+hsNxdgnBA7ByrrLrpmyKAc4WdD6jEFvQNY6nKrCqiCms3NslDmgS63rnRTGTOWz9llfhh6IHEXAcZuRi+ZBaEBGtT7MiC1Th03UGoCrYAIfW6buEcQroZAOu46JkYlomJVfrM4YqOiGEBWmh4XEAYBo79MPMhGPZImezhOOJvm74c7bwntEO3hcJ/bNYuzVPKabeV1/DFsnAcmr9vHacz1dIA1UQK1og8zhWf/IGVeF8FjREqRtLUn9WITmLo4cNgrAAb8YpW/g+reK5EoA8OfhelL9o4fqMPLlKaAZDjACgxq/SNf7YxPIVGQO1ummInWqVtOtwOdUaq5tHtejqpi3ZxvrBuzYu1+zOLNgiGEpjKV7aQ7IwXWYLOLDcby3lFktoGUfVUl8tXABbpJMVi2CpVntDTXgZlae2bVbXTBILY7eUr2RhhFUYmpUFGFjVb2o4D1osm7rx91StpUZD0sim2s5MLvbZKTHhmI6NmszMVvZkFpIWtaQK+qWG7lCrm0G1PK7CjTRithZOHQM7LeF2mFzHVAtkLdsoWlXxECI9mCUsDTnakP6YhTxGZdQwJVjkW+VpLZeaT9YWGawstQZNP5uQJ9vQJdWSSajkOi3BjqFFESPb9H1Xu1nmaqucrCx+zf1tH68SXZdpFZxb4UZuWue0PjTtviK9ZHG9NRw3+4IXZMQ6725dL8hbs77GSvmKR/Y1Fs9/+B//+//rPw5l6lPSP/UvHOk/+m/+mR+83n/rn/zfX+ybKJZ/SES/+sEFkPSjtlg6ZLzzJ0wlABZwVBDJIZiMTBbv/BkFBpEcMlm89RdksgjICP7CCgc5vHcnTMXjIDR4wfAprPUjovhl3vkJTn7VgsnwhtsBgKmEWhZgoqB7P8PL/bB5M7RKyvvuXP0PDy4uvohhyZ+KwyFcUOTt5A1QiDf/27oBoLesCHU2cexNEA6OFcZYHLqQIEE9UIitXTygqdbhxWJ0H6aVn2KBgQVhaPIOeg2y4fbrp7qtRxXATsq/cSN/l3xHLxYBZLzrmc9elVlrGM55FyYZhwIr/VdFWz9vk29i/HVdrv3QufjZ4bSal0D5po9m3/Rd79+5XBXVbd9bAiPN37tFqQBQN6cHH6ts7Zi/Gy4o4Jipmlr5t/JYQzhI3kIGPYC7br6Zt/1e6xcr78pCLnUeQlwpor1b8E1VxrCqTurne7Zbj21LdrQd90OIsmbWc9I1bXb++hBUFfAtedRWJmuWfG37W1/XWyQ7vZQ9dLGZ57JL5AQwa/XWh3ab1ArLiu21p7PGuK396OKKzKrzzTrcecv3IS0yBFRlnm/GVT/18AAASBgdV/60jXx9WK+j7TwDkPfPy+nWQTR1Tfluvy6VjRXk7T2srun30jVjcpA6tvV3S937JFXgBfGa1K9lveWjfIvc6opEqdiqUK92kob4niFmYN7M7VUfBlQL4e6OVBRrXX/qYlBlazbG9TuwbOA3752VHISViwM2Va3q2pKKqcKvirfO62ac8p5F61NSMy61Fj0HaMaAZByoGY/KsL4ddzl0urLIvJDK0OyijRCtbd8tt7SNVR5gV2nSe9rehgxJLW5XfrZ78u/1izZ/d9uXeVbFrV1n8ncJQ4Il761KaVkve2RHN/twY26eGdVXz+Nr87+ofH1Km8/ku1Ykb/fyWZk+pf8/RN+/rwy/Sz9I+lErlhkWT3nAh3xALA5BuMs/pAOm4nHvJpxLh2AyIjkc7Yyn3KOQxcHNiIUtd51NeIwD7vyES+4QbIYFobdsbfwmHXHvOb9a1ubiq7L2lDr0dlEsPsYBb8KIqXhccqjKXZsiWaTicOfnankEWFkCgGAznlLH5ENk4ImJiJQkSJUKVa56m/EoVlKFgaoldS4Ob8OID3EAAHSW64/F4Sn28DJuas0ElCnXoROLXyUlyh7WlJVF0tuCMfsrBSUVB2+zWCWXDZqOefvXG65DrXneFhz9jHPqan9U8fS24OM8iHW0WcJk6/hZU1DI4pJYu2nZZ1ur6pTZ4vuT4cRrZz7AmVLl0DytcqjKo/rrpqZdJhUSyJ/mKw4WhEgWweZqaW2tompN7V1Cb0uVu5BBzI4VTjK1PM9jFqipreUBYEoewWV0krcQQ0zvwow5O5xjV2Gz2q/cWG/UUqlz3H4P4qesn1Ox1TKqFluFOWsbWSyFRsZeLbla5yzW5CTW3JaZORaL3mXEYiv0F2DrbHC5yu3Vyip9KWRw182I2XH7sgbUgjwJhFatvr6x0ipxVRDFVee5hYTXfhWD4ApyMTiKQvZx7GENIxOcZRjhWjlPdZ62rLDKiAyw4nyaOtz1My7RrzbgqsSqPIPPuAjcMwu8V2GVfEiEFZT2vp/xNLFvuheIsG50O59wmUP1hY7ZVaisWpu1XQLqOLXWaO/Yb9027LV6aBZchrOEKJC/ll25hbVnebcYQ0jZsS6xmRddj5rad5UxhGMfkbKtiAUtq/BrYCFGU3i2c7we1PI+xeUdo3712pbCodXqqtBqaup1tiCKnzk/73zPuSKW3uXdaCDW94YxmOHCpr4r9K/68VdIt4+V5IvXSqkWZRcih9U6zCuf/i37s1qoFY68ZZdWy7VClW0DA1WotdYPoFquAfZ3hyF48ceOs6/WbIVMAmylVv9xYwklL2ut/sYUC9cnhmgS+4RbW2DFKq/+/SU7WMdwayv9cD4jzp+/9XGuVGipaaypCjk1Fit/dR4HSNsLlFTzqbKtIceoOSuuedAopU2yErrLGBkv17Agt9lVCVffdoF8Vjm1/kYz22U5bpmUjbBJy/UKRQVgPK2U6Ao5VTjpVj6td2tFp8VkV3Wbvf61aUeRqJBRnY9WOVboq1okNyG2rqxzK+VzI8TeQUxzCNJefjZtT9W21/byG6zHZXcc8Py47Sr/t086fjBF9yWlEvtD8mNOebt2fpj0U2PM/9J8//tE9Pc3eQjA/2B4M/Cf7tz/3ulHrVhG8vh/Lj/DT7onZFj88vIGAPC+O+FdOONPLu/R2YRfpXu87074v08/w8/7J0Sy+LPHn+M+sD/bV+M9fv/wAX81vsHbMOJjHPjfNKB3Cf/s21/iz85f4OgjrCn4erpDZzP+4vQWBQZ/cPcdvhbfzVPs8eXxI/7448/gTMEX/QXn1FX4nMI578KE+zDhj779Et6WCu2Mmf0Wp+Txs7sneNn8PM49epdw9DNaptvHuUcuFqc54Mt7Dplxjh2OYcYfffgSx37G237EH3/9M3xxvKCzGR/nHnNycJbw87snPE49vCn4OPd42488tqKo//XlDrP4DBYyeDuMOMdQr3Uu43Hs8TBMuMQAL5t9IlP9Dd8fzvg43df7g0/4ar7HQz/hLy8PuOti9R/8q6cj3g4jHscevzi/x0/vT/j2fEAfEo4h4s8+vEWMHj95ODHsVEiYtN0p+urTZS3hzYH7o/IaQ3gae4GDGrwZJgSX8b/9yd8GEfB7P/2AOXmcpyAQSoNjP6829X9+fguAN6Lqh6awz3EO6ENCJoPzuYe1BcPAG77gM8YpYOgj5ugxdLFunhVqeTn3yLPF8c1Y4YvBZfzyuwc4VzBdAo73E5MyRQcfMrxnfyT137o/Toh5YP+iI1t3pylg/tDDHhKO9xPm2dfNn1qCAdQYrc4xrLFkC+sWsqZ58gsJkED5+iFiGgP7CR0jxsce/f3Em1xRTtRXKM0e3RAxjwG+S6Bi0fWxtqswSYVQdn3CdA7oDhHzuYPvE4zIN88LSVacfSU3cmKB/+uPX8AOCaFP4udkkaMFzQ7+LsLYAue4zZyYHMd1uc51mgROOnD5PDu+D/YFsoGfwhwtXCj45k+/gCkG/qcXVgwApMkhHCKgylM2+ObEhwb2Lta2dCxtWMifylOAfzvju794A3sfhYCKN4PffgxCggOGJ44O9iEum/GLBwrg7hPyxTFsLmTeVBrCh6/fgd5H2FD4frSVCMeeLcq7yBvK0cHdJzw+Bo4pe/EcG7bx06HJMdFGX5i4yBPDKQ8ZGJ2QJoFJgQjA6BgmeMgLgY+TDVg0C4yxK8DFcczXQ+afQ08wJyZHomOGOTnQUBZopxJtCZHN9LVHuiNQX9gadmEYZ36basxUhVpOHxzSuwQzWbizRfoiYf7OIz3kutF0Tws8FASUQchokkAhA8GdLO+LO45v6SaDdFc4bqUQ1FAguDPHWfUnhroSeKOWe6lTNqNZYpaSgZCnAOSAfJaNiWWylHLmuKemAKWnGrOzBAJdDNKbgvire5Aj5B5LnEJi0pkSOK85G75/EQvizPdggXJHyCNgzgZ0T6BogAhQBjCAWXgNgF7glj0BKufARDNGYoHijcToFBntxPFk6Y4qxJPXCVU4oZ0FxjgQ3KPh+JSeKizUTdyfNHA8znRHHJ+0W4h1whOA959vxnAXA3Pk9epEZl4T3B7LvsTZBFDjXvoTXyuB5SOn8wq4C+fR+KcghscqAEfPUFV3IQt0H4F0FN3NcQzaElDjQRpiuXLHZf0FyP0yFmQlXilxDM4KB8WSR+NtFukTWiiqxC9VwFbupJ/nRV6O5cv5/AVIB27PFFTIrJ2l72G5ViGvBJgaL5VQvOE4pUnqyYDNEkfTmjVpkmjlxcvaauK7GjFla+xHchILUv5WCylk7TVxSbkCbQML+ZAS9SnUGQY2L2OxzV/jcGuVetBQoeSosVtb8qI25qbm19jKdfxa/VYhxLoubsFrpZ0t2dHWWmwKx9JsodPbZDaQCo2puYqtqePYtL2r4N6S6Yb8z1n+/9GNrv+WpF+9Aub7rxLRnxtjfg7gfzTG/F9E9D/9kEL8qBVLXTQf0gFJrD8FBqfcYyq++iYWMjilHtYQTrkTghn1g2Oo63fxIPm6ahUcfETnMr6Z75DIYcyLlW4uTEZiahm2ShlDGHOAE6ueWgAXKx6fLs7F4ykCvU+LnxaoKj++sY4AqKetY17jC1XxvBMLxuKrZnHoohCs2AplKzAItsAGJuqPwoxbDFsJYlnkjYWtBJ1P9RlNQpbTQu2UpMWL1Urj9AFsnVALm94nseSw1YnnQcN4OLGQGAC9QiA9k4MksVI5OSmtBAeNX5qSauiJf2u9APhkWP3rnGWLWCoWw2FmxaxabfLK2lLI8G9AYylorVD6OQjM0YFJHoxhK4zx3PdOCDFU+XFNHdYQQpfgvPq7LVZIL2y4oWe4npKF6Ck/s/ey0qFroOuWefM+I9/HWo6JMhY2YFctVqVaIZQRuPWn8yFX2ZXtWK+T52t+SLVOzkdiHbJAx/d8l+AcgWyGMVgsH1LGtHX3Ul+Xq5KrfdY8zmdQaZVgwB7SxupS4AJQHOev4+4WH1O1eBgDuI5/vdjyQLAd6n0EVIuXDSLvUdeFWFYMwXVszSIQky06gA6JFW5HIPBzaCzvAq2RwOIA6Ji43kOuvnzVenTMi9+U+BVZSwvzaM+KmDEE24tcjuqOojxktpAYYvZZtxBpFEdyD8AgUch7loH6vNzT1LHjlXGFYZSWQI5JOGjIlXTDWO5r6Q3IG1Y0G1IO3gyJhcSK9WUozOopSqmxBDrIvPjCn4VlF47LwagMhPS2sD+cMKtWw0Eoy8ZLfT/fAPAEQkHyBHhipTJQlS/fS5nWl9AS4Pm5gyWke1GSRX+ijv0RsxelV+s6Fs4veStUtPpYym+GBJ1XX0KeTHAweixyxMCMp0bYQSkY2XQSomd21PmLImVptfmqcSAdED3fL51ZNsuyxqgjkDcoPSvAJgvjpzCGKtEHb2AJxQNFfQA9kAsrMCBWfktHdWOce1GQAsH00teChZ0WfE/rUuVKZTMdkA+SzwP5yG2XsGyoyXD7+Xv4WJZu6VMJMn6yJkoATMeKbh5Q50vXWgkqM8tKhj8TuP/AolQYwmJFa67XZAAKhsdEx3Awi6+kugaXRSHS+8qSC4Mazmu3nAGs+GOSJeRB1+JaCUqNjyQM56vGz0apyT0qM64ql2TwvI8l+D6XMXX8KmssYRkk/Ujtl+01Hd+mjNTLzwH/vVJcnrP2aZ0N62pV3mgzp42CdpU2ypReaw2hVbFq10b7fauwNfXeVASvxuZ5xXIR5lq+2s/dTrYvsJ3bz6VX5F8prr/BiWB+beFGiOjP5e9Xxph/AOBfAvA7xVLTWDz+anzAh/mAVGz1W7ukgDH5CoU7hIinucMxRJxmZlA7hoivkq+EHL+Y3+PQRYzRIzi2xPU+4XH2+MW373DXz0jZVZgZkalK4V9+fFMJQjqf8Zcf3+DY8xHeeXqLrvGpqtYQgWepRW2MHs4u8ERnCL86H5FEMWXWUVOJdjSpr1XvE/7y4xsQ2IdrSg7vjxecY8B3lwEPw4QPl6EqZwzfs/jm6ViZGYPL+PbEv8xKoNH5XFkBAeA7YUBsrWydT8ycahYYWyFTIXHTzIx8FT6YLUJI+FaYBzVcizIDfj0zxOo4zPjqwz36LuE0dhyeRRglv/54V1n+NHRKq3A5Ua6/fTxWy5/CybouVZbJ72a+//4LtvZ+/d09nC8IIWEc2eL4dBpWb9helLvThXcCatVTZsKpIWcBgIsQrSjM7GnqEULG6dJVuJFCj/qeWX7PY1fXS04OXR8xz8w4ebl0jdXO1fKsnAGPTx2sLQhdwunMMjpX8PbhjCkGXM59Ddui5C0a3sRYQkpgCJmSoojCbcA+ayk6WFfq+E9TgPcZzhHmKaAfIsYxVMUyJ4tYfFVA1dKYIsMTL9PiIFmVRs+Ww2kMCF3CNIbKeJgELmYdIc1c0IUMYwtKtkgSCqAfIlJ0mC7CymoB6zK6QJgnniPK7BNsFXIZOdwQEarymWYliymIE/fDOEIW66r1BWn2ODyMMAY4P/ZLf3xBvGiMAVb0wsAK73juFl8wC4AMUmTLZSFTrbT93Yx59PwukPdId+SDEBIoZjhEbkcgbl6stEnIZ6gwOY0yLt795IzzU48yO9guC0uk+FM+jLg89VC2xjx6uCFVIpsS7eLfRwY28K5PCW9Ksqv8VHiNl8jyu54PbdLsahgdFIEHajgbCTFiQ4YdCHl2NUSPOwp51eTgjgl5tjWkj1E4oXwfvjxhngKT7hiCO/CzG88BphMoqVhxwxcT4imIH1y6AAAgAElEQVTA9Bm+T4hPHcK7icdVNlb2PtbnxMjaJiUoshzGxop8JTKJD4+hg/FNe9nAHBMoWbiHaYEUGkKZHRPzCDzQ3IkVnRZZUQzsQ15gksnCdhk0i4V4toAqT9nAvMmgs4f7PWYy13w61hrSh6LlvLODHVhehZKiGLZYv8kwXQJdAocZchxKKs++hnUqstZotijvpN+zZXbPjjWCcgpL6J1suC5LKKNnoqFkax08oGYVRofe8fhVJlBfQHKIUkaP0mfQxaEccm0bxcAfEvLHDp+bci+WeIAPLNR6bwmY3AL37PMim55o9Jk/R8sW+QKBhhr+DixkR3JYUg8xksVK2yGDdEwLIVOROlLTHrAOedSVhVG1DZ1kwGF19IBByykRFJmFsInMomQYySOHCpWASYmZtP5s2PrcFZhJ5tNiOUwRRV1D2BgyzFlJGxkNOBxPMhVFQIKIUCjtlcJFqKRBRsmHmoOcRbldlO7WB1eVttbaWW9IqoqVPrNlUdy17poR2LC+Xk3rosgRFuIjau43Vst6AOOa6215s+Qx8n1P7VKdtG51mu9X8Fq9uVVibyjGTdevhu9Zy+Nz31s5Vp34zVYqNe1xgfzjTsaYOwCWiB7l878B4D/4odv5USuW3pTqc6dQ00IGd2FCIgdvcmUvPQjbaWj8CXuXqoXqECIsqBKPOMOKU2czfnJ3XrWhSX3Q3h0vK8WxP14qdLQlNWlT8YsfF5GBk3AJaqW0hsQKeU1O0T42RRQ5a6gqs85Qtdxp+A0lF2n98Ywh3B+mVX+CX6CAalkEUMt4tZSJ4qbfAVZw2wWlMrhBywCFMsgbOEsNw6fEQPQaamKxCB7Eb811pfrDFUK9rqf2hUrtQ5UXHNpgO3bOEIxYcFX5iYktt/3A9RoAQfLYIa7qqNZJgY8iLL5ObEXMG1+oxbqo1kJjlvIteUcW/6rWUqjKshdorsJW9dqWBCg0JCRVRrBfGRGYIt/Qql31FVICDmsX0hP1Tak+WeoLVXjjrGOoFr/FP2vJ76xakk21jqp1Un2wql8PLWOiyp0eDBhhwYXlX1onCpmW48MFlk+hvrV+7gxyXhRYNOPM/W7GQcfHUf1Ns01dfJ3vWV+q35b1tPq1tKFpX+Tiwwj9xUXNbxXuBvZZM5592YwFWvxSir7uAPRwgJUqAJ4WvzOFn5pGdoMaogBSpsZkJWaMXVhWWVmryl6RMavjKe899cXSerL6xzVrU+a7ZFNDJ1Cz4TK60dPNmRxq5HaTbDgObPvZGN0s8ngQoW4Mx1O3+HqJom1ko1WVtHrP1+tpDIABX2s2MWV2K1nU34vIVN+xMrllswcgZ8d54nojod/TRSZdN0+yQa5WusmtzQGyM8zn9c93SmbJR2CYqtZx4X7EU1gUgyoH7+F5o2gktAqQT+LPbPyyiSQDujjE0QHFoEwORS2pxSA3pguKIse56V/kAwEWCkByVRSaGUKMAlDiNnkTvfS9sv4WAzp5tHE9kRzKbPldJf03xTCLbTO2abasmHxuyl78/7D4CwJ1zgWiIKZfFVzaa+YE0dUxNQTQ3MyfpmY8rzbgBNDULToQATTZ5y1So12vMyyfl/pNFXllsQIALPGVd5UJlV8gzm0lhgCazCoO5qquVT2tJIC+cYzeWykajRZEqyG7lv9KCWnaIoi1a/nbpkXhu147y2vE3BzHVY9eq/t8Dx3ppsKmYtyqe28+NnWu+7RT/w+cdtv6Xfqc9CWAf2B4c+cB/FdE9N//0I38qBXL9/6Ef/fn/zP+Kn2BsQQ8uAvG8v+x9y49tixZmtBnL3/sR8Q55z6yMquyKlutpkqiWt1CDBBDBL+AYUuICRJjxAghkJghhkwYMaNntBDiFyAYAIIhNCWgaJLKm3nvuefEY+/tD3sxWLaWm3vsiBM3b1Zl3iJNCsXe7ub2ctvutmx96/scxtzgFDu8syfM2cIg4TF1eGMuuIsUC3nUIx5Thyk5HMyI9/6IW3vBJbZwOsCpiDfmgpg1/nL6Arf2Ap8skQCZCT5Z7AwZZe/9EZ0m44NlTm7tAKci7mMPp6KQ9zBr7SU18Nngc/eIlDXG5EQmJUKhUwEfwp4gvdA4mpEkVdJCJONURFtIcY5mxK88xZh22uMSG/xh+xH3YYdTbPFl84D3/oiQNHrjRXblF9MteuNhkESSJWWNVnv4bNAbL+RHBgkPoUerPVodhDG31QFTsitSnJQVpuTQao9TbKUOn40QK51iixs74hxbWBWL3IvHUOC+n7cnvJ8OeOMuGBJBmG/sgN54/Gq6EQIiakuB6JbxMEiI0Hj0nTDkMhHS3k44h1aIlkLW+NPDr6CR8X8Pn8GqVIicqB3nQorErLNvCkMvn/dZw6kkUjN8/F1DbMOPoRMCIu4fE0ZplYX8R6uEN25AqwM+zHuJoz2HBm8b0lE92hEf5r0QNoXSDmYABoBH36LREUc34r5AvDvj8ePuAXe+x8d5h854IZxKUNJmJlNKWQkhUcIir8GyOFZHtDpiSgaX0Aib75wsbt0gdfCYsxzL3s549K0QM2mVhaAJgLAFMzHRJTQ4uAkn3+Jte8E5NJijRQL1qf7Msi8s7/NFe8I5Njh5gsE3OqDREa0JuJ87hDJ/WYYHWMipQiY5HADSzs741WeW0OF6f9w/wOqIf3Z6JxtRfA3NH9pMOdgJVkfczbuFUKr0f4xW2nLjRnwzHvDj3T0+THshoAGAz7szxkLMxG19mDvZ8Dk2hIS4n3shfpqihSn1/Hj3gK8uN8SSrUm3d4wOViXcNAO+Ho6IWWNvZ9zPHW6bEefQiEZuvcHGkj5DcLhtBpx9S5q4oZHNu5gW4rG9m9HogPu5F7mgWOYJa+G6ovXbW4/OeNzPPaxKIjUEAKe5xaGZMAQnG2Z8PX//8e4Bd3MvBFy99bAq4sO4FxkhHtfbZsT7YY/eeRzdiK8vR3zen3E39fJc47r5Hg3BCYSfyat2jmKyec731uNh6iSPjwYxE8PzFCxuSlw7jymXyc/RQzPJ+IieZdLSFq5r72ac5hZGJ4zBwmlCiVBM/4z7qcOX+xPmaMpvOEnbnY4YgxPt4rNvsHczQeoLkVnOCvdTh30z4+gm3E19CU0gBMsQnDyTuf6Ld8JGzbrAzCx9P3ZC+sUkXUplDN6hKYRdrG/MKB8O6Zi8xa4hbWcm0Wosxe8rlXEuCKWHscWhnanMwnJ9bCd8e97h101943EaW2QQ87SEK2jSEG5dgA8Gu3bGWEi3+L7tWpIi8kVCidvOoSsA6SIDZZNMM7kVBL3E9YWkcduPuMxOvnelbkYO8fOCCa66ItvExGupII6oXiuoBQCCVGKGeCamqkNudLkvjY2iw5uzQlfuDbc3Jo0QNFxBrHDisAVraQOMSKXoXGRPbhmLmtyJY/L5HFsemSWyeIO51BMLwRbrbwJYoP+xbJrK5ph+suEoxEgrHctqwyOvyxTmaZWlTMmjICijp67IvC6bjbyttcwkRzXxkMZTo3BrSHL+bT3YXFv/ryHA2/K2Fvxr0mpT4IW6X7rmNQby73DKwG8FCptz/r8A/IO/7np+0IblN/6I//T//VdlITgVxkj20p0L+yXDXZktE4C8+AAI4+RWgzCUBcfOeUyV7mAsi+y51NdaImvhF0hjg5yryWw4pQyBvY7lpWALsyTH81FsYfGYKYjuXy0pACz6fbF6QYgG5exWDIeuxPmRqDxd37pAcZ9YdBGB5XdMbccCDzRJhI8BiLdEPErspVIL0yBDbfl8fU19LRHGGGEl5BdRLUDuvUFOJC6+1bwjNsDFOwEs3irOC0CIYfiFplTG/zT8CQCgaYMImDN1vy4eNu6bkN6U88KaB6zYB1OB47GGnlZ5xfbIDIoSNwcgFRIZ8XKVl3csWnY5lnN5LVK9eGUgJC8pKvFS5aiQZoKnEfwQFWvf4iUShtLywOaXLacVo2A5x0yDOZMXL3sN5QgKJayDXF7xrBHMrYxfxUjK8Clum+S1icplUewyFsJoGMtOfIH3AiCPkKZYvFWeqARSx/NGPESmetmzviDDv1J1nl/kgHz+3+Y/ojLaykMZ1XI9747X5crAlkYzOyJKPpfwf/gfU97qJfq/e728aHmBwfVwvVwHQ+j0cv1fTH9EhDYKT1galSfIGnuhBErH0LhqPkieMvZ0Hov2Yb0o4f8JEgco5695LxSVA47fyzTOqkCdhdyFiX+weLdYPPzn448pBo2184qnKjVpgacx8cZcyGYK1C63GV9NX1KMX2k/1y2eEUN1iUdGQeLFpNxUCFn4dqvSvgLn+4Vfb/9TnFo1BkyIU00TKEDzOCgaexWUjNMKDlfGMbmMD9MXNA1Nta5l75umdn0diABFB74WKwKZbyOdY5IZJnHJVR9ZqzBr4L6ARlKpk8lIkluPiZRTCFzE2VU5iU8FzpcMcPYQmCC3U0W6D8lmPEQaj8FT3DDDEx9m9b1iLC88zgAmifNb6p1K/OJYdCypf5R/rnQsx42Opa91LAGZO3Lvq+N83cd5uQ9ZAyEsYxIq44KvvRSCl8T3VAFTFd+Yq2eML3WHKuaRYynB79vy2TOctNgtviKQyQWeaRSQI2DNUgdPe1UeN6p6RtUhxDJHeZ7yTyavx6m2bWovl5Dd1NdhnfeTeRI+aTutPGtVH1f3rozZpzyCV8vkMl4yAF8y3MQgfK79mxjFuo5NO19s47bea21/Jj31kj/9/mx6RZ7/5xXF/D59v/SDNixDIjmJb857hKTxph8Rs8L9fY9pdHhzc8HoLQ7dhPtzj7eHC97fFebYwwUfLz1C1Ogaj68/3GC3mzCMDsYQRPSmMKD+/FdvsT+O8N4iBk1EJVnh0E9QKuOXH24Ecti3M3714QbHPekz3j3s0LReWDXZOHs8O0Rv8Nm7E3JWOA0tnAtwJsIqgua+f9wjBHqKdv2McWwJFleNQdfTrvKxH/Ht/R65ENGczh3+8PM73F16nC8tvnj7iA+PewRvsNtNErN5f7+DcVHYOU8nkiRhg63rZ9m5VAq4nDtYF+AcUeDPs8G+n3EZGzRNgPdGoI7TZNE0Aae7HUwT4cr56A2aLuDy2KLbzxguDbTOGCYD1wWMjy20i7i5GXB/v8P+OGIcGkSvsb8ZsW9nfPPtEbaJmCe7MtSMTfS/GMCXU0uGWhMp9i4D3W7GPDkonTDcd0BQ+MM/+RYA8FdfvYV2Cf1uxjQ6aJMwXxqg2tHsDxOUIjghAKRJi7HW9h7zTN6RN28umIOVmMbgDTGoDg5NFyj2T2fkQPFO2mQcbwbs2hnf3h3A2oJ+tOhvRvjZ4nhzwf39DspkNB0J16dAsEqm258eW+gmot9PGB7pfpom4qc/fY9vzzucHzrYJgqkVlhRQTBZiRszCbYhI5+NuHY/w88Wpg1oWw/vLaYzxQEak3A5tbj57IzHhx6u97QLHYwYh/1hwHAm1lg/kdxAHI3Q5JuW4saco/9+cGgPE6bHFv3tiGlwZMR6BdNHxFlL3JTSCTEYiqcDcPzihHFo4C+0eaNcgm0C2jbgfN8T1DMoqCbBtOQtCZMFDBnFzS0x885nuv92Fwm2qDNMX2INk6I4v8Hi7U/uYU3CN794Q0YYALP3iCcnMULKJezeEVT+8W4nb0ttCWaaJkNENUlh/+6M8/sdjn/wiNPdTgxlALj58SOmmTwM0Rv0+xnnD72woTZvyZs137cwRy9loyyIf/TTD/jlL98AXkPvPVwbEEqs87vbM77++hY5KpiDR3x0cG9Hijk8zhRzGMubPinovaeY04uFu50QZgvXBsynBrYPSJE2IRj66fYergm4PHQSk5mDBhKg24jkDbSLSKOFvpkpJvqxpd/KbODejjQ3Tg3cu5nuTzF8VVOYb71GNgk/+rsf8P7+IPGn7W6GsxEP7/dQJYYwTfT7O/7RBQ9fH6BvA26OA+6+PuL4hyc8fNxJnFzzJXkXXYGTX84d0qyhS6xhmgzaw4ycgXl00Caj62ec7zsiUcqK5o3XNDdmg/2by2rjbRqb5TeRge4wI8YST8ubYkGjvRnB0hreG9wcL7h/2EObCH9pYDoi74peoz9MuHy7w7u/d485GFwuLayjZ5KxkWLDJ4swOOxuRoyXBv1xJJRBO+M8NQhJ43TXozvMeHc84+sPN2g6j77xaGzAx9NuYcQu74np3GB3Q2M2nFsYm3A4UOjIxw8HIeYK3qJpPZyNeHzo0fYefrZwTcB4aiQO0/TUp3B26N8O8LMlpuegYfqA436EUhkPjzvs9yMe73Y4vLngcu7QtBRz/e7tI/7qq7e/9rqjP04Y7spztY/QHHbiIsa7HqYPSLNBfxwxTa7EF9N7fP9mQAga8+jQ7WaEoOWZxUzgfnJC1OWaQM/frJb4bl2MOq/x+ReP+Piwo/s8G7p3I8UUq0KMpU0s0G56d42nFk3vEbxFCgquIy/vfGkoFrVA+U0bkQoTdkq0MdnsZ2EE14UEzQ9OYr794ICk0N1MxPAN4hqYJ4c4GDTHGfNDYSkyWeD7rgsUHz8tcdfZl/hZBagmygZlmg0wLe1UthB5JUXPEd4EAxYSrFkvm2y80ckEVhxz6hURdXm1MG5zSiDW61kvxsvWg1iXyR7F8szPU7GGuW7e1LpmBPJGIaoNutqS4/N1nGwCtZ37Xm0019corwDeDNsk3nhRqdoU1JC416vwaWHBrbRMS59Y0kWO1xEh283E54zl2miuNh2eGMp1ua8wXn/bKUP9dcmN/E4klX8gga7X0t/7+33+j/+rP0PMGj4bzNkgQUMjIUEjZo0ILTBOdj2nrBGhngTPakVQTc4DADFrgY9xikXug7UkGeaaoCQ/axnWnzmP1Ics9XEdvsCnuM3Urqci4wC50p8Tf09ZSRnb6yO0wFKdijIu9RjV5aSsBQZajw2P2XYc6zGpj8WsBDK6jKVaeYLruvhzKGMi7Snlb3Uz67rqxPdp+7mum5lrW0MLI9bg5L7VbeL66nHn+1C3ZVtnXfe1+1YzBzPUbnvuuftd56nHZaUXmSysWmIuQ5l7NJZJxjtt5ms9v5+r79r8fKl9L81bPr9t//aa+vu2foZfAVh50XOZPxxDvap7M28ZAmw3c/a5PjH0i1EPL41DrV35XNoK2Nf5fdF6fWlsuF1Xnx3V3GcNye26AVje0Zz/2ob7tbo4Pvta3XV/tn3b9pnL35ZdX7+CrG3qq5EeACRe0+iMtBl+1j7M1f2pURx0vZZx4XHYjvF2jHJp/7Ob+vW1V+bFNoZaJGp48cnrtoLKqBEmfJ7PsX5lPcbXyqfjkM3QJfY6F9KoBckhGofb+SwuxzKejIbh36Veu4AYtaHrPvLYVd9lbK+4NVgXUha+mmJ6GZEBhScojO+camOgrr6auwytfOJBEpRIZSjw3K/u56uXZVwHl1N/37Rv1XaGYvJnvr7+YW8MBaqP69qUvenLq2GRXP61B0uVVFZrA0Rtrnv2x3VlvPF0qj4xWKpjanvupXtzpd9XbvUL13/P87juIPzOZW3OXW33q8bj+VOv8kCuynr9nHqp7L/4D/+d//kVkhx/renv/P1D/o/+yZ//xsv9N/65/+G33jfgB+6xnLPFL/0txuwwJY53o8UyG3g+G4lPAfDEiOIX15TsKpaQjS/OA6wXxEEkS9ZGplVRpEeAp4txTrURVct8UD1JDJjtYvGagfRcXdsdkWtGEieO87u2QH/JWNp+5nau6133g+OVtuUv/2lctuNcj81r07ZdWuUnBh63AwAefLfKe21h/Jwx81yft/meM2iuGTxb44bzXSt/295r7a8NoOfyXFvsvzZtx+27jNWnjCGt8ou7fNu13tb4uWZ4AYsRdO341vh5aSzEcH3FPXjOuHzOiLhW77T5vjWU6j5sPz9XF39OzxjlL43BcxsBz93LJ/MOEGbp7Xpc1nZX+rNtz7ZfqEIRruevvxlskw9Pj12r79oYsZyPr+D6r0mvHfNtCk+53qpC2RBTT49f6ccqS/kfKy66VI/LlQX8k74m8/z3apEaF0uJ6gSXd+25r64YT9VvmGGeadOf9LrxfC49dx9zwSBfbevqGnX9c/6E7fDiPLgyFs/WX9Ur9+5T5W/KumpsfKINqDxYV9uEp+euGbBS1pX812t9xmB94dqX6npVncv550b11bPwuxhhVd5n633WEP/ux180EH9DxuAn2/Ha9H2v/w2m9FuSG/mbSD9owzJmjffhKB5LJpMBlgV0hH5inABEuAJAjDqtEgaQcZryQjQRsxKSEleRmfA5LoMNRar7qSG0alfW4nGb0xKQvzLgshKvVe292aZrniw+Rh4qIoWpP3P/tMovGsIaWcbhJUPhU160mlH3mjcNeLqQ4vvLbagNQvboPef12y7sr41tfR5YyA0kxnS7OC2pjoG95lWs28Tz49oO4rWdxIzFm1V7SRSASylrFQf7jKHAniLOy8d91NBqOb+9/jkjs17Ic3xvbcQYnSU+mD9vPUJ8zbX7vK2v/lzHoXJ86rW21WzKfIxjh+sxYO+cuTJvtvckcxu4/9X51XqmtENYaM16Dj2ZP2VRq/XTe7f1SLGXqWYJrsvga1LSBYK+eKjq8rafWfqmLq/2fHEfrsUxq83E3XrGrhlE2zHYlnNtE0O8cmIQcQGLBywnLZ4wPlenGLVIgwDlvlXzqr6n4vEDGR66sNoSIy8ZTHn9kwfUUw9TTpvfJZOC1HNeLfmeGDlqY6ReM4IUFk8T15Mh5CFbN4m0ocRqrwKZ2Bjg4zUhCIAV4YcuxxnqVxsS9U4Of65gfSsvU1YLbFA6UI7Xccb8ndM1T1uduM3cTv5fPXRVXGIkf61Ux1dXBpbKBTLI37few2vtA657AznVzdw+fLgv1fiopFYMycBmKpR4xzp2sy5v9VPb/ldYYmirfLk6vvLMrjJU96w6LtPwWt/rMagMtLzNmq8c3N7e6sInr53tHFTrY0sbr/TpGePzyTg+165r6dqL6Era/oRfNvBeV+Y1T+XVsq/95n+NdHW8nkvf0yh8leH6N5RyxgrJ+Lct/aANy0tq8H9evsA34wE+Gty2A0IiJtCLd3jbDcIseJpb3LQj7kbSaXzTDTj7hnQurcfHscexnXDxpMe4dzP2bsIYHX51OuCmmzBHAx8NGhORAeyKRMn7yw6dI/bDnfO4Gzq86SnG8jS1aGwQbccMCFueDwafH84AgNPcwOkkxENOR3wceyH+6Z3HHA3mYFaLlr6w0vXW48OwQ8p0bPAWPzqc8GHa4Tw7vNsNeD+1mIPBrvFwhVTobujQlnjL1gVcpgYZEIbXXePls9EJp7FFY6Mw7Pmopb7GRiE8Aoi5r3WkQdnYCGej6Hd2LmCYnTDnGZUxeYuu8RimBtZG3PQj7i89Dt2EYXYIUePYT+hswFf3N2hsEPZENha0TjB6gcmexpZ0/mwU46NvPKZAsarTbJGixk+/+AgA+MXHW1gb0bmAKRBh0zi7lVbmvqO41vuBvJtMLpQz0DUec6BYmGM3YQ4Wo7fCnsf9a13A5O3KYNI649BNaEzExwvN05SIaW/XzQhJY9/OuD/30JpkWXw0QoCkixTHMDpYm9A1Hg9naqNzEZ8fzjhNLe5OPZyLYhiHoi0KLFC3pUz6zoZF13iMlZZpTBqni0PbehiV8XhpcNxNeLy0EnccKxa/xgVMsy3xuNR/P1uC1aVFSoUNm2lo0HUe49Cg72dMkxP9Ro4HBVAkVoApkJQHABz2IyZvcb60ZGDaCGsTGhtwupBOY8pkRNXkUGwotEUL8lKkOVyJFVIqw9hEsahZSazazfECozM+3B3IICjjTnHAAMr87DtP5GKXVt52HIMdA+mHAkDfzzidOtwcB5wvrRhJAHDcj/DRyPxomoDh0opB0naFifPSwBVCKiqbrn97e8bH+z1SVLBNLCRZFEd9sx9x97ArfQsYLw26EnPctAF+toshlYkgS+kMPxvRGuWxso7JsIyQWbkmwLmEcXRCgBUTEYoZGxHL/PKeYjWtC5jGEuccFZouIGfATxZNFzBPVow0bWjcORbxze0Zl7ElKRiV0ZZ49/NjR3MtLyRbu/2E80MH4xL6/YTzY4f9ccTl3ArxU9N7mZ9KAfNk5b7osrnQdF7upVIZrqe4ao7NTyUWzLYBMVD8Yw2/5bhBvtdN78XAZtbMnIBm7+UZkSLF1g9DIazzBqb8llIkTdTp3ODw7oIYtfzmmKTMmCyx1k2Jo26LzBI/t1PSmC4OdhfQdx7nSwtbflNGJ4yTk/h6P9NvO3oN15Eb1U+kc9kUqajh1MI4+t3FoGEcaevOI40VPzPibMQ4ZlKzNBm440yxqUEhR9LxdM1Sl20i5otDs/OkmWroWdbvZpzv+qtritck2wWKtc6AapLcJ60zwmChm6Ll2sYlvrjMH9vTMyXOdJ7OlfnQB5q7hZhLqSyx5+DjWDYPclRwhxl+LDI5QUN3AdlrIkljYjOdJb5Zd7HEcVMsco4KqtyDNBuACYcUxS7moOh/Bsm2tJGYUcvGgiplq6JbmT31U/eBiOgA0aSFV1BdJC1UYNmoKOOYMyjekQ3lUMUz6pJXZWoHk3YBZNzUsY1XCMM4v8QE1nWXYwiK4jY5TrE2xAqB2EqmZmWQqlV/6hhLIeqq2iMxlBlC/iUHigGuisGcq40tzrOKhyyGea4Iqtho5zbyZoKqSJueJN54KZsPq+9V8+rurjZ6rhnz9ThtjPCXYNNbm/1VxvPv0+9M+kHHWP7kn3+T/9E//tcA0OKYYbCL3AU9wOpYPY6bC1mvYv4o3nGJwWTYqUgubL4DwJxM8QIunkeGLM4lBoqv5cSeVJYemKNZ2le0N7cexRpuy/kArGCRXHZdH9fDTLCq1MneOaYL51RrXHLyyTwLe2UvZxDvbF7BNrkd/L1uTw2H5TZv4XN1nBN7olaxcptx3UJqX/LwsiG69FMXgz4JVMpbShwAACAASURBVJTZf58rYxvbVrc5F48ha3nGZ/q7LTcmJfFgfI9qT+FC/879rq9fH6u9i1oRjb0uxk0dX1V/v5a2XsvtOLD+ar0hwV58o9Ze0Csbwqs8195N7B2uIZJ1W9g4r72bAFZwTmHeLd6y2ltIecs91YuXrWYx3qb6HMei1WU8Fz94zRP+nBe3bgcb2ny8lgVYyoN4AmOkjYDnvMOJPXk8LtVuPHs/6yQeL14QVUzI12GQVzzS5XwdS7fN+wRKWl++GZdPrjayIp1LUzEFpzLnTdV+zl60OpGxyAtsvY8b7UtZBNc7+GndJonpu7JSehKfWD5Le/n85rqr8XTM2Fs2MVaeQvayFVZS8QpyeznVHsYr3lk5Lx7LTfuutXN7v1JVVn0tL4SrRe11GAHlUVGRgVAtYMVIKNdmzYL3WO5RVEJi9WulZzyWANYe0mve7bh4FMW7iPI9bu7ntq46yb3DepzqeXjFUFB5MTJWZZVrVgZEPT/K/Kzb/MTIyEsZihlv67bW8zBX56qynoXzpCVfru6vqsup69nelytjtHpsbObq1UfKS8euGVbYjONz6TVT8RV5XmN8PTn/yp/BJw2631Q5XNYz4/l96ub0v/4nv/0Yy5/9+TH/+//kH/7Gy/23/vS/+633DfiBeywB0rL8+fgOCQpv7AU+G3yY97j3HX7S3+McWhzdiPfTAT9qH/DVeAsA+HF3jzu/wxAdjm7EV8MtvmhPuPedaAB+5s44xRZ/8fAlfrx7wDk0uESHzgTMyeCzlryNf3V5g4ObkLJCbzy+Gm7wo/4RAPDttMfBTrKIClmLLt/HcYefHb9Fyhr3vsOu6ENaHdEbj18Mt5gLqcyNGzFGKzp6AMFWD24i7Tk34heXW4SsceNGnEKLP7v9Fd5PB9zNPf7uzXv8cjhijA6fdWfSI0wWX11usHcz5uLxvZ960mUsemS3zYBGR9Fk+zjtRFsuJI05WXzRnPDgO9H2Y4KYs2+xdxPeDwccmgl7O2NOpujdjbifO7xtL6K1x7p09xPpm/1kf49fnG/x5e4R93MPHw0+70/Y2Rk/P73FznrRvPPJoNMRjYmwKorR92EkxuC9o7oNIJp8RiXcTx3mYPAPv/gFAOCf3n2JzgYc3YRzaOB0xP3UrWK/frQ7AQDui27gGCx5sTNpzp19A6sTPuvOGIPD/dyhNQFjcOI1PzQTHqaODP1iiJlyzc7O+OpC8zQkjcE7fNFfMEWLz7ozfnm+gdFJNAV9NMQmrBOMSvj2skdrA971F3xz2QMg7/ofHz7i22mPby577JyH08XozVSHVosXlDXkxCta+n5oJozBoTVBzj3MLQ7NLGP1RX/GN8MeXZG/8dHIRgvf35syTlplnGeH1pBxyhp3rSUEwOPU4m034MOww492ZzzO7cpTzvp6+2YQ/T7eOPlyf8JpbvE4EXsv69zt3Yz3lz1SVqKNx5p/57kRQ5n19x7GFkZndDbgPDtoRe2bgkVMCrvG4zI7/PHtHbRK+MuPny1eRxfwOLayMWJNwtuO2vrN+SBGCyMIWBYoZ4XPdmf84uEGf3R7j2/OB8zBCAz6D46Pot/ok8bOeXw478SzftsTE+eHS499S7qKU2F9BYC/8+YD/vLuHeZArNmdDaIz+Hl/xs8fbpESedhPY4vbfsTj2OLYTbjMTrz/KSv0jYfRCZepwbGbMAWL3nk8ji127VzkjZSgBNgrfz90JHcUjcgmNcU7Zk0SRu/OBtxdeuiyKcZokIexxU03CWOpUlnQF4xk+JO3H/Fh2OE8NdA64djOMDrh68cDOtZELO368njCV/c36BuPN/2AXz4c8eXxhPcnmispKbzdD8iA6C8+Ti0mb2FNhNEZo7e46SZkAMNM3u1943E/dGgK9HgOpLO5a2dM3uLd/oKYlpj68+wwBytIjGM3yRjyHGAWdPr9KszB4k0/4MOlh9EZw0y6jbyhdOgmfDzt8NO3d5iixXluYA0hTIxOaEzEGCyG2eGmH+Ve0rNjxhgcQtK4KwiSd/0Fvzod0LuA1gb57bdFH/E8NbAmYZgdjqWd54meizel3G/PhPRRitAqfUHHPIwtIUYKCuYyOYFZs47lMDnc7Ef4YAS10bggbX4cWxy6CXfnHjc76g/Prc8PZ/zVx9sX1xUvpX034/HSEjKgIDX4t/1w7tA2pCW572ZMwSAVREjOhAYIUQs6J0QjGo/H3YSUIYgXBZIr4w0yRrjwpkMIGp/dnPEwdAVtYbErKJmFpAnQOol25K6bMUwNGhcQCpKkLV7ecXJIUUOXTSXniHWcGeBD0GgZ/VC8ycZQ2W1LXvppdFAgtEUobLbORszeCiv6OBaWbqAQQAFNYZ4N3ggpVIxaNrK0zgR5V7QplmYjMlJKZ0E+pKQXsiZggfd7LbJYvBkkElvlWPa1FFbGdnNIOzp3dUOtbPKogrxBrtpgEpI3kpcZjleGNlAZxvXmjloYbrlelnViVlhV5asN93rTivPUm0/bVG9W1Js7sSpja0i/sCH9bPnXDO3tua2xWG841flfU1/9/ffpbyT9oD2Wt3/6o/wv/mf/CL0lmOhpJhrrvaPFw8NEC/85mrIobGTheiovGqUy5mCwbzzOs0NTFnWTt+Th0RlvdwNO5UVJ3j+KVZuKGPC+nUXU2EeDvvG4TASf61zAHMxqTqekyRAwCaeB2uwc0YqzRmSKGm3nl3ixCn5Yx4PNnl4YMWg0Lb2kOe9waWBsRNNEjKODc5EWZ0ULEiC5klDgd/wSqVkE59kscUxZCUQp8YtLZ4KuWYYulbgnlaENyT80rUcI5gnsypYXl7URKWoYmwRGF4JGmC2azsNPdoHbTZYgQL1HitTulZczFq9QGXDbREBlpAqiG70meYdM8hpaZ4x3HZABdzMRbK+8ZJAh8Dp+3sWpeIwdnRfhZAWheUcGcpExYJgQv7x0s0gq1J4RuSYqoEghKAUom5BGQw/WWROcKGPRDGTvUSlDtwXmNBN0CQC9LAdDcJ4uIgcl+aGxvLz4pcIvtwrSg4yFmp3jrBSAJhGde6bPajTIbVyo0DUWT0dQpCEZ9AJfqvUMhT69/Hel7CZVFPOlPG6LygtsiiFTANSoKZaKNUGLpIUKCrkrx3SW4wBWOpaqQLky3+egkVl7kr0gannJ67Ohr8cou/wqaLme49H0RG1N3eI2kFip6uWpR420i9Bng9Sn1UtSX/Si72cylFdUXpmoatZ0C7sENdN9ymahhDePGvGYyKPjVYGKUXf0qBAPpb5AmpZ61MhNJq1Ht1mYhBIrZcv5ooGYGipbtAbL/VZeka5im1Z09TIOBbKWbYaeS96m/KZMhhk1Ob6aDDPROVk/Ff3DbMgrY08KqQGSy9S3IjkUu1z0FEt9GTCjQthlaK+gPRD6DDsoxDaLJ8ZMxaNRdPWSXepSGUgGMHNpA4czBiyajWo5pwP9N9PGcWcXDxMAaA/xxGSz/EZ1aQvPGz0ppLaMk6V6AbpGF+1GdyKoY7JrOB1D6ZKlPiaXl74W7UMoGjc9K+gZSC2dU4n+koNobnJ/k8tLOx21Xfvys+mqNpbxQAZSU44X7192dDzrMhag8s1Yxkkv5zRrZlr6HBu6H6wjmhVgR8Af8GsnPVMbeWyAZe7FFgI3NDPkN8rhVGZCGf/SF73MBzNV9xjU51pDNC+2iZRpL1Qn/TaojGSXsQNKv23VdrfMvazWY8ZzGSi/4UrPNJn1XESGaLTy8QISo77zczguZZuZ7gl78vie8PVcP3sl5XedOH9GNorawkRSCdAxl3FUG69kLmOn5B2jCrSnrofml6Jy9FKfJFX9DjZp5Snk95gYXqWe6p5yec8ZUbWTnz3Oq3TFCMuaxqPW4qzr4TJX+rbbtn+ijmt5n/WQXju26avcm2L9q0/ZIp8yPj+RuJ3/43/x7/7WvXp/8ufH/O/9l//Cb7zcf/vP/tvfet+AH7jH8q0741//8f8CgNheT7HEk6kIrRIusa2Idggq22mPMblniWSYNXZKVqCzBzPhIXToDb3VmDxmiA4pa7Tay3V8TWBorI6F1OWpRInVEUOk3buaRCgkI7DbLfkPy2Fw4np81mjLk5YZXtn72uqAx9Cik/YvT8feePisV/XTmCzSEwz55TYxLJjHrYb9Ak8hsTXpDsF7E+ZkVp7QkDQaEzGXGNaUFcbosLO0W25L3+ZkkbIqHtNlrGuGXr6nAFZjSG1L5FUt7eX7cP+uR8oKRzcJlJlhu8JgCyIS8pHuj9MVRWJJNexzihZWpydyI1uZGrmXXHZWaG2Qeo1KmCJ5MKZgxZt3jc00Z4XWBCnLVVDcMVB72hKbuhqnDRERQ5A5bT2XGQuREM2dEutYvIaNiStJC1TX1DG7KSvxctR5uA0M4+a5wf3hPtV5eO7VMb7WkNeVxysmLeRCpngp6Vgh3qkkMliawpm0Gu8tZDkmJR62VDxRuSrDmpo8aCGKqvvCcbY1DDQkjdZGjN7CmbiCZE5+0bpTZSwaG5Y4vaoOHtsacjzNFrsmCNPuEies4L1B33op15lInrKiDas3c4WhucYkidXNWZX8VF8NPQ6hxFOaBbr8nGQGe0d4w483zpQib0kIBq7Ex9ZQY/7uZ/LSuuKFiWWTryleGIZFc0ykc+yRoQ2vGIzoFCpF13O8HwCJrcxZkb1X/274eFQUk7u5huMl57husyqxa7w69HFN+sMLqxCWeqCAHBW0TVIGMpYxi7RRNvBml4KQ/aw8LCrDF4/NzHFh1eaSbKJxPBpvcGW1bDjxJgJft4LfqmXzyKVq86ls8ACLJ6b2wMgPBUueuv8A9aGUJ5sTJi/xeLzp4hVy8x1XpVUSbUFgMR7KplGuNskE2pqrjRNfVvYGAMNFVdUuGadSV03Gs11M8zX8Olcllk8vC36GpYpRWj6L6lRluGS9GCY1lLfeEFFb71Wme1yPO/VTPfHEMSxZ8lTxkNUtpHZXfSxdW4y0eqMzbw26ZZNpPVZZDLCt0bjUXW22cN9QjWMdu8lpayhuvnM78tOp+rJBtjWgtsbUtbmQ1uXWm1XP1vvKn8GzhucnynnZCN0Opnpdm76nYfm7krbSfn+b0g/asPxmPuI//8t/WRgp67i759gta+0vFpfexo/VMVh1PFN97Ussh6vP6ZknSA2jKN+Z6ZB/gbla2MvCaVMMG3FPfmelv5nrWm2DcaFXGAevPdheOl+NwTamahWXpZY+oF7Q1OVs28mf61ieJ2+gpYFbpsnnNsBWLI788iiLqhwXggS5d5UHVPq+HY/6XN7ke+6hfG1u8EKDF1Dbsbh2H7epvm91W3gcr7EpvnTdtu9P+qOexpq99IZ7bT9ekz41R+vv147x9c/lvbJYuJaEERLAJS3ukKwq4Wg+xovMa/ehemlmk3Gq467q35t+Kkh9uTYXt9AoThqY0yZvNZY+9+sX+JZd88kArNt+NdVzuZ7/n5oHKsNn9WQ68aXhhQVa1igMfFU7AczVNZHza8CnVuZDKGMX6/iuzVogZ9os4DbVn3khKkZc1baE8qzKFP8sPxdewFbp6vKjMh63z1BVjSl/VmXRLPqNm0Uzp+1CsE6rxfqnnnPcl/zMdFCAyuaqE+LJbHju/l6b13VbqsX2k7ofrzXqdelFr821Dj1pn7r+W5Hv134P6smr4mndm/jfa2lzwz9p6KwqW3Vi04iX2s51FaKZzXPr6ntn8/mJt+xTbX22DZtmb+8P8OR5/SS9pu7tRH72vfGJ+fSaer5DelW5zz6/f8P1/Jplf++6fp/+2tMP2rDsTMDPbj/gaCcM0eFu7qFVxo0b0ZqAry43aEzEFCz2bsLHaYfbZkSCwt1IcX3ORJzmFu+6Mz5OO+zdjClaDN7hUqCxX+5PuBt7tDaI98jqhMeJ4r0+21EsHQBho/04Ulv2zUyxWHnxkPoCze2txy8fjzA6rWKN2INws7uIJ2nwFs4k8eYB9FscSrxTiBo3O4plGWeH1gV8fNyhaQL6xuPx0qFvZ4l74RiMm91YSF2AscS5MNzXmYTz1AhDaM4KraO4EF9gwswG2Ba4K3splIJ4OvYdxRKFEpfhTJQYk8vYoms8fDRoncc4O+xaYm0dLi0O+xHnoUHTRDgThR1zfxjgvZX6ajbTnJQY210/S/wJE5LMBVqbM9C3HlonfPjmBoDC4e0FIZgFopsUmiaK0ZozMA6Eg3INeYhsgQEDgJ8tjCU8nh8tlM6wDd0zrROiN7BNFCgwC40z66MfHBAUzJ7wScRAGjEPDtpmxMHA7imehYlJ2JPExCRN5xGDQZiMMDLGoJEeHdAm2IMnRlP2lOgsBCdCdqLJM8GbA6os0IlRkGJNBALaBKQC4dW7gHSx0HtPcSUZUDaKpyNPBqoPBNPl/jNUVEGYD9mToduINFpiGbxYghUXjw7H2SiVqf7iNeHYm3yyQJMIGpyJeRFB0V9PkG+wBEOkxZ5q0rKhMBlahPYFesyQXIBguDZTPq+RXYR6cLSQfeuXMmYNMBy57NCr0RDEbxcri4T6D5slpkUNBvkQoB4c8j4sXiAA6mQBk8lINSAIKpenMtREY5/3kSDECoBdPET23iLcRDo2E8siDD1UzEXTOVWgvG2EuhjkLkFNBIldkb8E8hTltsCgXYKe9QLD1cWYZoN60tAeiLtEng2TyYuhsGJvzDZT3lkh9eTFzCbDXAoUtk8wF43UZYF0kncs07VJwd1pxC4XKK2CGWmBHg4VRLh43uxJI9zQcTMohGOCfdSIO4bZZZhz2Xgq0NfYoLAx0kZBchlmpHKTpX4YX6C3xQOYTSZ46kR9NBe1bG5kgiqS54v6YsbFK8VQ2GwAe2ZvFpAtYAaF2FOdyaGC+hK8NewzmjtNUMwmL56sBOigkGxGchD4rxvKXKugsGGfYQYFMwGhJ5gkw2EZwkrlU/2pITgxAKSW2qZnGjuGHZOnD1CeyokdQTYZzptamjdZAWamsmKbYR+pb9lQnXomqCWwQGBDT9DXWME/7QDMN9fXFK9JZqI2QlGd7JlSsYyJxxqWimVDwhb47goKW/7MiDJvFoOnJsFJbqkLIGhq80h18hiaUa0hrRlrKOxE0HBuo8CLM0Gba4/eEyisXaC8vGnFEOgaogwFmAFrL6ld4MuxLcfTYvibOSMrRfc8Lf3j3wTDpAUK69bHeJxoLMuzPC+7GtkqqEjXqphX48h9ToagsPyfr+UNJR4zTrVhKjY9bwqVjTiVueylLL6WDiz9XRm6ZbNJzl8zstNSb9YQ2HTtWd1ucqUKtk8ZsEpSVnpaR72RpBLdr8UzuxSUlboKa31y/OqmytP0nYzvaxs2v4MpQz1xfv1tSj9ow/JoRvwr7/4pfLbw2WBMDkYlxKzhdMDP+m9XDKY+GzgVSfPyxsCgxExm+nzZN2h1ED1CnwkO6VSEP1AeqxOmAscEIEyuxAxLw2lVRLgxy+cNMJ8hghoZf3z4eFWDcguFZXjrVo+TYancxwQl5Q+3DlYlOB0xvHFoOJgCBCllGCinUGCpXC57Q2ttS66nZoINSaPR8ckxhjzWOpZ8npk+Q+WV5TY0hu7B/Nai0aFocNIYhzcME44rFt0aWlrDdJlJdwuTreG6APDFnoiY2HD3cSFK2bK3bjUvV+eSgVFkhM/JCBRW7heUnOfvNdNuKLBMhklyHxgyXOtYXmPFzVnJtVOw8jllBf+FWRH01H1jb7PfwJq392wVz4pir5T7mAGBxRr2lmO9GZ3K3Kw3Wq5t7F5j3uV78hxTbw2D1CpjfmdhdFohEmpI6/Z4PR40FgyPXfItupkEha1ZV/07gmg2RdqG4MQEu62hsVxfYyNqrU9qF+l/1qzC4a0psN1FG9R/ZgTaymNUz8eapbfW+BT4+ucGB7vMjVT3LWrsSjw5w9frehh+u50jKzbXvKA8GOFRw1UZOrtlzl2gsFwOnmh0LtI4T6G5W0hx+MzA2QUqy6iTroLpMsohBo3WpiJno9DahPi5htULvDpVUN9c2rDcQJrbjDQRKZUydrmeYyWfAlahDTwWuppXNbRW8gDwlcdbKfKsKn6cqjXCxidAmYzxc9pkqL2dHN/Nx6dCfhKkr0sdyqRCyoIF+XFlgcSID6UzZmGnZYuo1MfxzDJ+5Y89kar6fyXPzLBMHhAutyYyYVht7XGvCVF+nVTDc+sFd1YrGOtVpEbdn+0DMm2+r4yJtUYm5xsE+lo2Zio5jSeeQa6jXnirql69Obf9X8q/1q2twfSEdZY3Tq6NnWIDOj9vMNTyHPXvIK/LWTe4bnvVmWrKrNtY5owgpNZNeBEK+6S+5TOP0aoZL6VrVlTdjmrMt/9flZ7Ld+X4s2VKh/i6aq6h+v60xJfLfa49PwBj8fdpST9ow5Lnmc+GjEOVxLg8xU4W9BRfSS/3KVlEaBgk+Ew6cFYnXFIDpyjmkReXrgQiTMmKAcoLcjZq2PDRmRbLrQ4YIhmoWiWRPNkKsvvEC/tUyUOwHAc9lUMySHmJtwQgxmstlQKw4VzYRcvCfW9mMTR74xEzxXo6Te1OWa/iLWtDko1Hq0qMoBjStDCxKokh2ei4xF9ye6rFaC0tUn9/+p/aMkcLrRI64zFHuxpjrRKtEbIu7aJYUBTD0ZZtO5aVISNziSfkmEnuz5xMidkMq/jLOv5tK43iKq8xlyvnSkytUqSFWhvUOS9GJS9063EGKIY2VxoiCQohaxljXbWrlnWp+yXxuCUWk8f90Exi8G4NNDaE6vhNVeYSf9YgY5oNs9qYtXpZvHdF43Qrr0Ljk2RT4RpsXZW28u8lZSXXNKXv9bs7Vn0X6HdJvfMUD1nKNzrJA69ezKuqvjqxNu1K3qIkU2LZaoOuE2//QhTlTFrFjFqztDUmDaNqg7XMCUV1NdYTU27jK+NwaRuAlWEWK0ODGUgpxjNKXt402HdRWBttNacACLMqb1Lw/a7/c0pVmamUVRtE1q43QZQiBkdl82rTie+rLURZzIiqAGgbZSMjZwVX9d2asJo/xgQxXpXK6HpyYZHBuY7FXMId6FrbxWLYQhAQpl0M0JyV6CTWaRtOoWwAS+AAGbYyKuv6lImrGM91mQoKuSAWklxT5zN2I0uCTZ4N0UjOgKkIo1bGoRxUJXZSkTe7XhVX/avr2UrrrHbi65XvJm1DF7bjQ+UB+en+HSVX9XdrgEphABo8XaQ+Fw7wmlT6wzGq9ao+l42UZ8d2a4HV7eSyriyoc52vvmzTt+zWRT4x3D+1QH/xXCHuupL9Ofvq6oFn6lDVc+DpNZuLtmEk9fP8OxhOtefydfmfGnmvSt/JkHp+NL/zrP2uBhzX88kb+t3qeP04fbcevrrc38H0+xjL39F053f4r3/1D4R2nyn7fdICN2XvCRN/MG17Uxa/7AEiGvdCcqCykH7EpHGZHRkT1QKRFjX0xpuCkYWp1glzsEKkwZp+nNgIiJmosVvnJZ/C4gUzOgtVOe9gM+V9/cJieKct9TIpRiwyCqFQnduywOWFjHioigQBL7TYG8DeBhYC5/qkPYVgo76u9iAwXTgRbOhSJ5fB1yhYmwSWy1TnMRgonWAtXct5ciJWWqXyIvC9eZFzvySGtiyeJXYVWKCnAFIkIhFegE4T0aVrpg1HZfiUhQGPuXgvsLyvmRUXILH3lOg+r7w+ZYxE7JwXWGXRrTURlHCdOUGYabUu46NQLZKX6wGIOLzWmcTfQZ4M6wJS1IhBk2ejWuTw4o0hr6Lft1mIKE0LPbk+EzmJLuysKWhom6QNPEAcT6ttEuZcrkO0AbPCNSp4oYC3ieC73GcmEgEKlHchIgFA+VOBwKq8kKIoLLTxeSEtgQJpGZZ7wkQo9fVC2sK/ibzEEeumeAALhBbcRiYvAU0UzcL1vlr5194ctmNtIshwk0R4XMptCnw4F7iyKXn4fhVoc2bmXGChjQdIKH00VB9Devn34eIKWixELTXFff1Cr8tn8hKNRWic8/Ji3uSFrKXuNwBhD1ZYPE5cVplLK9IYaY+Se8jjAlUYkL1eaPlZ+HzWS1ww183sxjpTPq+JYMZXCwARZa/6XG885KrPvPjV1dhzXu4b5+e+cXu245uq/lf3eOUd47Hg8rnZpS7lNXKblrbV5ZW2CbkKtw9YvH25sAfbcv9EM7KMaRUPzBqTDGnmY1BYEbykisiFSVmYIVklhaQ3ovTsvA3FyMlL26DzUjZ7KWXuQjyh2WZiZv41U7aFSRlYxOtB46gLlFsnJYL14lUr1yJjGeesBEIp41QZvfU6+xo7aHbV+GSsILDLhcu1TNxTQ15ryOrK+OV5xm2QPlX52Egvz2tuu5Al8TO9Yh6W9qqljhWUtPo5Sb/qcQD3YXOwjPO1fQzxNuYqPyeOha7Ib55cn6sxk/FfG7OrNtbf1XKfn+xR1uNbp7z5rj5xrH4uqOrY9pJrXtdrdavN/+fyvSJdNVK3bfhUXX/LUgZWyMO/bekHbVi+a874N//wv8c34QZTctjpSdhhL6nBrRlwSQ12esZ97HFrBrz3B2iVcWsvmJLDmBx2esa3fo8bO+JSeMR3esbRjBiTwy+mN7ixAwDgksgbGZLGjaV4zY9+JxDag53wzXzEO0fQylNsBUILLIblEB2G2OBH7QNSVuIVZS/pzsx47w/CeNrqgClZTMmuDNVGBxgk9Mbjg9/LMdKXfMQptDjFFl80J3zwe/hksLeTlHfve8l/tCMeAzHrskdyb+YV/PYcGzQ6yPUpa/Rmxjm0wjDLaU7kbbz3PXrjhVF2iA57O2OIDjduxIPv4HTEOTTY2xmPvkVnAt64Ae/nPW7dgHNoEbLGrRvQ6oCvpyNpcRa2VPKcRDjFhjaN48d5J/1hb2p93ckTc/DP9qQn+ouB4nI5DwCMcf0zuW1GaGQ8BgoWmaMV+C5rnALA2+aCkAweQyue2Z2dcSr9u4QGVkeB+tI1A7TKuPd0H1gr9MaNmJPBzS9HegAAIABJREFUscQKk0c3YIxWvOe2eBEfZtLHPNgJD6Wcznh81p4xRIf34wE7O4unj+tgaPScrMCbtUoI2YhxvbMz5mhh9aIVOkaHzngZzzfNgLu5l+tT1hjLeO/sjEtoyBtd5vwQHJyOsjlEzMEEdeb46Eff4bYZcAkNxRRnTQzJibzSrQnCNszH3rYXjNHh7EtMbNE57YzH/dQLU3GjI9rihRmCE2hybylwiPU2jUqCNGhNwBRtYbWlz1/0J2iV8cvzjWxwtCbgUq7nDaKjm6BVwn2JCa8ZlGsI9tFNeD/s8eXuER+n3coL/KYdxNses0ZvPe7GXlhud442Sk5zK55b1nYEgC93j/j6coRPGp0NaE0gVmhkHJsR74cDeYtNxMU7HJoZg3fYuxlDcOJBBCCe5Dka7FyJlzYBZ9+gLRt4teeY63uYOvGIMpTaFVi1Vln0OZ2OIiUVs8KuSEZdvMPOeYzBisedIdj8/YvdGWff4OIdjCIUAQDcFw1Z/o0plXFoZtyPpKG7dzM+jj1uuxGPUytMwDfdtIKbD97J9byBuePxZkmnInXF1/hoEJNC54idmfVS2es3RSMbnXx9LN5xngO1zirXtXMeF08uK9anJEZYg9YGnKcGnx/O8NGQZmkl1aTKOPioi0SWFWZq3pBNWQnvwL6Z8Ti1cCaKBu8YLJxOoqsJkIYmsyTPhc23Lx7n89TAFc96KMy/SmWMsysboQQNZymvVI37HCx27SyapSzhJTqXhWdgmB36xovWaEoa+3bG3aXHr5uYC4Dj6/l9bE3CZXKyidvYIKEesWxwdgV9wFqtGbRZm9JyboVwKOPJZdBxyPddN2Eq9zwl0oyMpTzeeGT2ZIBkzWpugpSUoApCKDJiZd7xBjVD1mNURdNyKZ82QTWcK79jTxv3beulvVwOsS6TxBhQDETepC+szyxJhrLxvoJhl3GOiWTFZONSQTzHOS2bmDyGABatyrJxWG9CCYEhG8h8fW0RpbUsGBVaTYra0OZz/Jk3Ya55rK8ZWWqzkVRDh3ngtoYY53uOrI3zVmPz6vSCsUesxesMRNKUV9+flFO34TXG5P/PDM8fevpBG5Yf/Q7/+Kt/CY++lcVUTBpn32AuL2yWXBi8Q+88zjMt8vpqQdKYiEt5EfELvTFRFkUfLj12mxcCC6NnAKexFQhYY6msXUOLn2F2Ip7NUDWt6EXqo8HtbkBMWl66plDRW03EObyAa4u4My9ieBHCItjWRJynRhY9Phrc9iMGb0UE/VLKc6U9KQPD1MiLg8l22AvJLyperAKAD0ZeprzQaYp8RR2DBZCsgLUR0+RgbRTIF7+IWFiZvaaso8neyL71uIyNEAPFqNG2hXDp0hVyHS3eVV28dMAS+zRNrnhxl5ijpgnwnsiH/GyRksJXb26QMvB46qF0XuUJ5UXI8DrWC2XRafa05kyi0vwS71qaM94baaMtWp2s2anYy6toq7VtaTE3Tq7USV5V1wTESERC80TsDsaQ15d1Q9lL6WcS0nZNoDZmBWMjdh3prU6TgzFJxorLAABVPK4iA8Hfy29ukWBIC2FS0THVOsN7g6YJmCcnsN3MCxGdYW1E8Ba6LPIUQF7V8tJQhha5vLiIQcO4KKRH7LnOqUgrFN1SwyQ+hcQIAJouIHiDWDx52hSPsEnwky1towUDj0XdFsMLrnL/2dvKZbE3WNuENBv8ck8G5XhqF8+gzYizXi1mHM+fccGt8SIpBy27/64LmC8O3+wO8KMVmB0AfNV78sYDyEXOgsmiclIwhTAojpY8qXnxZCMrfH04YDw3yFFDu7jSYm3agOniZIzTbGC6iDiZosGqVwsjVTRmk6fzJHtB/dau8jLz86+huRImQ/ew3E9kJQLjqpAqKZegbRLtWCQF3Zb+zEY0YcXrYIqma+nLh8MewRukmWRCTEPwznixUJYXnZTXdAHx7KBcgmkiwtnhw94jDla8L3cdIVF08YwlX0iwWMIjKPIm871UGdoVHVr2IkcFRMqXg8K3XVwtmFLQK2+ucvRbEK1aBSABHwopFffBNDROSufFU61oUatcQh4NHo8dclQ0FxQWci6TpF7VkJdXlzkkxFuJyLfgEkwbEUcLZdJC/OWXuZu9pgWuV3hoCuqleINlfAaz6NJGBZR5lCez9pDPFaKBvahB4dz2lIc96KYqmz39o8GpjZX+rsJDF5DOFWb0O6azS0SIBSwedYD6Pi31nFlOJSuJYxzaBNHzZc97IfUamuIyq2NH2UgAFm+0eBCBsWtpfMr3wZVxY88UX1KuHV1akARJQSWFqcwTFfTi2QUwFxKtmfVno4J3uZDSFONBk/fYsyc20L24NM0qdlMViZrQJChuL49ZBoItMaFx0+bS98SeYUXHmYiJy5cw3gRU4CQpizUedSWXInZeQRasNHRrZ5Iq3nObYWrveW3obca7NhhZZmV775bygatGYP2xzqOWn4MqU0g8quU4KhtXmpMhZDxXU228Vf9rZuXaLq498Ve9pNtjW6Pw2jXPpGse4VU7cP37725SiN8d2PyDST9ow1KrjEPZ/SevT0JQGQc1FQKfiEZH2fkzKgENwFqK2mXZ2T60ZNA5gaKWGDKVcewm2Ulv7Tp+UKuMXTvLTrlRGapdYrZ27bzEbJrFY2m0hrM0taxOUCV2oY5La0uMF3s7lMqwm4ATgc6qjM4tOnYcb0b6bbSLy3FX7DlRWaF1QaCrRDwCyUMGZiokJXFVZx1zR+QkhQylIpdRtrSvaOLJuDWkfYgm0H8Xyu5lyd8EgZs2DZ1jQ4jH1bli8CpqqzFLuzmpkq+OYyLYaJZdWteQbh0TVTDUlnXylKJjAFZji9ImpTLBtRTHIpLxBSwQWs6nlJaYKWZ7BQCtF528XF7Y6/ivWMopC80Kyqx1BjZ6mtpEKYvHUSnyTPI95bKVKvFkSEu8k070klcFvszfeVwrwhKOmePydDVv6vI0aCe6PifkPRUidEXMo4itlvJkuafMCqtVRtIUi1a3h2PLohh+WcoDSvxaRXIiO9/ACuIrcWPFaFBVO/i4fLap1EfG0fJizgLT5Q6kuBDMiEGtyv2oro2RIMPiRajeQwzxljKTXo0VG6HKpGWRImWUzRJFxzLDtDKNJRvS3D821hieXMOuc7WAEkIYgODSTxZM5ZqkkLjPNbS4zpyVjIPAnctisCabEW9DuZ9CJlMWecEbuR6ZmJT5Zj4J2yrGXE6qbEbkhaW4tJ8NMom7rLwdYmvXxoRSiyHOtyKv87HRu4LJ8hgA5G3ZHEOGsC5z/REAYoG1Z5ABoUvbArUhTgX+zJ6GTN6fHJUYOAwdTmzM66pNSQFB01xPCjmYRVew2pQRGHBSwFw2pnK5JquqrKpP0VCbahKeuIyjQCsB8pTMBR6ei6EDII+8AQHkZMhImMr/wvSZolvDa79jyllXGpVKiHIY+stxkjlrgobWC+u8tE/6yX/MdyCWxPLviQeKx7M2xpIiXZ2MRf8SEMOIxljLOTEMNI8pVgYRG4n8n41L+cwPxQRid+YywHOb6y/5E81lMbLq/vn1/S3N3hguy9xng2pVTq6ybhP3i+fS9hwIqgvu6yoLHWMG4/V119PKEFLqKYxZyuAbgbX1lq/24kn5L/1/Wheu9O3T/XnRUPsuRtx3yPu9jcPve/3v0/dKP2jDUoFgim+bAVOy+DDtoFXGu/aCvZ3x8/MbtDZgChZHN+LjtMPb9oKQjciN9I3HaW7xeX/Cx2mHm2aCjwYn3+Du0sPZiJ8cHvBh3KF3XuRGnMp4nFrkrPDF/oTTTHDH89zgs90ZHwaCYN52IwbvXpQb0Sqja/xKbmSeLd4cBhJGBwSC1Ng1WcWlyI3M3uLN4ULHpgZ94/HNxyPazqNzAR8e9tj3U4HrNBLX+PZwwTA7GJ0xzE4MYV88s8PsKvF0iBQIi5Rbk3AeSG7Ez+SZ9LNbyYrsuxmjtyRrojMaGzBMDfp2xnlo0be+QKY8zmND8iTB4HTuSG7k0sI1AY2NOJ07pKiwP46YZgvnYonvJO9ZKAuolGhh2Pdz8aRZMWiGSwtbBNJ3HUmwvP8l8c8fPz/De4tpbCgmMSm0bVgJt19OBMtzbSAIVvFSKpUxXJpFbuTioGwiuZGkoU3ENLRwbUCYLWyzlhvJSWN8aAGvoQ/k8WYv33RuoGxCuljYg6f8Je6Q+57LgrHZzQjBYD5buJ7KCcFg/tUOuUuwe4/gNS02QYaDSHQELV4I8gQpMeSQAV88OiLdYTJJgpQFq+oi/H0LtQsSF6gslZ+9RR4NyXeMRqQ9TBuRCrSJYVIsfq67AH9qofuA+aED2ijyKH62IjcSRwfxWjBhzKlFbhIUy314gxgUxZrtgxhecbS0sAEozo69QkWmQxVSF5EOyeWzS7TjzjIk37S0ePrMLwbHWdP1sghUyAMt7tK+8lTxQtxlEZTXZ4N865G+7ZAOcYmpy0D6tqGYLAXaZZ+pT9L2kWBkeR+RRW4kL16Pr1rkNyQ3oiaL7BVgMxmEF03nFPUt9xHqrkXuIzA6itOrDGVcNHIEcpOhBgc0GZgVcp+gRrfENXIM2ahJRmKXSDCeY+MU6D7YMgZNhhostFfIu0SLQpuhL4XAbJegLxapzUs8WygL6hLr6X7eIPYZsUsk/TGRoRKOCbpIVyRH19qTgr+l4+ZCn929QziUcVaAvZQFdCz3oYFIg6gSJ2dGakO2lMdMRVojKLEtsskwE0lDOJENofFJDUiqpMwhM1b2CIfvKoiMR9YkX8JyI0hUBssxsBSJPya0/8wiWyA2GTpSjKNK5AFKrsiNXEhuhPuqPUjCQpPciB0UzAiEHZ1Tkf5iC/EksdxJakmeBABSS8fMRO3yB4j0CMtvaJbsmCHxgLGDeFp0kRNJbSa5la3cyETnY1vkRnaAvZD8iPY0Fu4ETG/xayczALGne2DmxSBTqZIb0UWawxb7r+xP2AEix8LSHdnQfbUX+j2J3AgAFSCbJixdwh6kbIDmISP0SsbQjDT2dTyginQMKNIrLUTOJatyDzMdZ/kZlSEyM9wfllBheRSWC0muui9NGaORpD0AQIeM5FRpX0bsFiOUDXQ9ZyqXZUEUbYrk4rHVIcs4ZwMkp0jmJpPUSB1DuoqFzDx2JCFSx5ZyvCEbYiytInGqG68iy69sE3sLkYtnVFH+1fjbJS9KfrouV0ZnXoxm3lgu5dS2pkiApLqcMs5FKkWkQKqiobDIjTxj6KpM16qUxVjPunzf9BlY+v2sIbu66IVzm7KveiKvxYduNi9+KCnj9zGWv7PpD9w9/oOf/je4S52wg/psELPGmB26zzzGQpPms8VeTzinFj4b7PQk5xoVcRd32OkJj7GHUQlORXTKw2eDh9SjU+SV9NlAI8Fni057kTlxKiJCo1Mz7uMeR0MxmWMilllTPaUitDDZ7n4yC0NthIZTUfJy+7hvKesn7nNTfk1OBYzZEeuriohQi7RKNtjpGVNy8Nmg1R4GGWO28MmKRMvOTDhFislj8KMr7LFSf2FabbXHVN5WTkWRePHlCUpstNSWKVP8nikMs76SXzHlnjkVcYkNnI7wycDpKMc4npPj3DSysO0Caw8y99mUJ+clNjL+zAbMDL8ApJzbnw7QyHgI3Upug/M4tTDBtkW2hds0JYtWB+kH5+Ny6rY6FaU8boMw24LiP0PSInWTskLIBr2e5VgdD8nnWVaF43eNWuIUmUG4NzOmZHEOLVoTVveZY2OZUZjbRPIhRu6/01HkbACsmIZjVgjJSMwhIQDofi5jEhGSkf88V7gspxa2WpL80Wh1xJQM2tJfn/WqTk6cbxlrilvkWNm6z7VkELeT+8J1M0NzEAbnhTW5ZkWWmMzCvDzGBWa3ylf6xQzAYVNXLecCENvyJTjsrJd4Sk7MElxfU0uD8NzjeFiuR643EXM0SIVBmROz77IuL7ez0UFieWv5pDo+tP7MY8L5t9I4VkWJsa3ZgbdswdzPWpaI87wkZcReMWZwZmQK549VSAHPP6cjaRQX9thYmKf5PtUyQHXiced7sO0Dx0TWIQUAlhi4zfOmjqWs58M1CZ4VG22pZzsXOP1/7L1dqHVNth70jKqac6619n5/+uuv06dPTkJAQ9QgUSMqeOHfjRFyG2/URMTc6JW5SPBeSBCFQFQM5ELRJIoJRMQbCah4oZAchKAhaPTEpE9y+nR//f7svdaac1bV8GKMUTXm3Gu/3/u93X36fE0XbNZec9Ws/zVXPfWM8QxGV2Xel2XJvtv7cEC2Z7Nx29/n2+DD91j//JzY+wPTk/bLvUKi+VfLY+O2V+L148FMiLaeIM80ey8FMNKXMEIfSmRj4sbIiKDo+tF2yEzdApK65Uwj0rV//r0PbeT7vh+rWV0p7H2xul3yisKrG7Nbyfs0+ve3GDRfxibUELZrpv3vx8SXfbO+XRv3hT5TRjvQ2zT0xnty/1s9+zpu3ePz/yjpORD0oTYAnRl/tg28fb3V9y9tEz9zfd+WLyvnK9T9sWX/iOUCAP78V8z/8/SV09caWH4vv8B/9L1/rgm7mDiMCZqMobN79v5ahrZh8Ru+WcUMTMBiiKVtkh7XUTeefVNgoh2VZeNq5SVjNGORDWxJm42D/RBZvMJjWtvGyTYkgXrsQh/SwEQu9qa4gPxYzyqYYHEFjyqk4WNKFiZMbnNkIg7F5QH6D8UeZC27WIJ2n21E/MbDhEjMb7UztgFDrFhVsMEr8iaNkyZmuUVFF1Q8oFITeLDrPsSCicT5jY+FVPCbEH+fmYfeTQuIGI/zKDFG3Q+2Kfa2zUMz/eyAyFqRYkHWkDSj+sX6zVqkbYxPv0myjS/p2FkdtVITekihbmJQMrDZZAFoSrkx1GbiSySiE8aKe2VgH9/PTDK72e/2vbGjwZmBGmMcQm1+tVnZaWvPrfubMq+bQx/z0Mr2IhIm6OD9gAG0/vi+GJst9aP54AbHjHaVZD92XfTCRCvMZLiZ11rdrP6ALPUBwDIPrf0UuKkHi+mrmGEzi/9o86OzcXZzGVR0YxgKShYBHBupmJx/nbLeTUkYaOx8KWEDTOx+73/rfWnNVNvGJxBvxt6+FzZ21kfSsdvnM5P85iOo+a3cJrrhNrQtVEMFKBiQ6Js/UjXNWrZ+tt602MYmqdhIUz0238i8BSYyphVlDY0Rr6v4iDZTVnKm2bZezOSvIwcxP0bf5IoycPc/tP6S+bmlutkcmc9pN4/mmxvqZpatZVKsTWGZnQiLmTFzDuIDy9Sd0iwRN4sHUV8OrR9NDZlJFI4jtz49UVQOvRwbj+YXaYyDPTts/dMun/qstnEtfe6bP6P6ZDaTY6au5gt0P8IcJJ9TrG2Kv5+avPqu3wFbW3VNNyEYaztc33cga6Pi+1xibNYaVQKn2uqg2hV9nxNQMbXdBk4YjR3bmO0Ct8Vg/P9tzbu221z4NUty3dq3MYW123TMbEj0UbltT+s3miXNE9NOA347ZLIx/7Ws5OrQNn6Q+Xpa7AdQ9I127e/7kmR1MT1978dp044vq+NWO2/Ue7MOX7lv2I0277PebM+HxvpWu79K/q9B+rmP5W/SZGzL59MDlprwbj0ghYJfGIV9+mI5NZXL+zDjnEd8Nj2icsDDOjVlzGse8K3jAx7WCS/HK3INoiaZR0Sq7bNTWDYntY+rmER+8/CIaxkwkZjdfnZ4xHtV43w9XZ6oihYOuBsWJKp4M4s63RQzMgvYXJmwlIhX07VtcpcqIkQnjY1oaS4iQDSvA16OszA0quj39iqqi2MseJgn3I0LBhLlQgOAL6YZc04YhxVLiTiq4mILw1LiRk3yNKwtnIv4ilZc1tSUBJOGaGESAaRcA15My+ae45BVXGnFZR1wGEQk6X4S5cl7zX9dBhyaol/FNBRcF1FhvJsWbWN/0rACSa9YeRhyM+0VX9HaFAKZRYAphYofvBdF3fvj3JQGowLlSQPZ2+m5qfAZe+FD0ZiiIQN4f54Q1JTVQPa8JgwGmNXHMgbJz0x4OE8A93h5RKI2uKgp7/UyYpwymMWk2oCShTUBRPmvlIDrPGDUcnKO+OHDPdJQME4ZOccGuIh62JqcQ/cdrT0Qur1flyDAY+lAZxgzllkYwGEoOD8ekIbcfPW60FDAsgSkJMJNZl5tAFSAEAHcy45O/Gm+js1/1ESVgrZ1VSGlEGrbUJ8fJoRUdZxFZGit4k+WRjH1JAJqCa2vMXYF5LxI+2MSU+W8drC5ZmpgNqvI0/nNCDAw3K390EHHq7E4NeByGdBEaLTftSjAM59KAtbLgHTIuL6bEA/S3qYc+n6C+UgiMPg8IB5KA2jrPAAsZsZZffjICVjldyfQKTfRHS6pbYjXJYCOGdD5CEMVs+6holzl1RIRN789ShXrdQACUEpSk2lqFI8BlXqNMs9j7cHr21z0DTlFRr2Kvx8GBV+RgUddV2NFOSf5TEFY29jrJiS/GcAj941uJtl0H4q0DWib4vJ2AB+LAKaVwIeK+lZNfy2fCo+YH6OE3sB2472qMJSJs2iYD9tQN59EDU1BJtRlG7HEzSxZJtOB0ij1EAG02I5TAcNC0lcmESbS8BEUJTwGTxXhB4OYzqqZbvN/KxAzwsQIs5jL0iobfQtPAQLKQUyFw0qoo4AEMxvkhGY+yKkLnpjJMQ8yr2aiW6ceeoKD1EOspsnNPxQ9rAih50+MsETZ2yruDwWgVesfIObWAxDWKP3RfsQrIZ8+fYca1m7y6c0woWahpECLVnTfX9P6mSWUipj+yoSbaWk00+zI3RTWCclYCI+2rw9AvETUUcctMuJCarbcTaktzIe0XT5v4jeEbtY97O5TIR8y807rE+FJuBI14mkmn0HzWf1VTZbDqmOk35dmLmrrxosV0Rb8NZPQZiJLTZDGi+fIPVtAb+atvt1PQJb11Zt3ujzts13aALB9mdzb7NuzOaneLUV/3uBNalvy9+mrCBP1/u0xXyPPQx/Hm2nfppttJDWZ9eU/U+D+YOAjAOItQHvjrOBp+V+jJPuBn5vC/qZMK0f8+vUe98OMaxnwbjlIyIO44pRWfDGfkELFJYtM/pvrEa8PF+Qa8G4+YEq5SdlXEN5cjzgNC+aScM2pgYQxFry5HlsoBAMJ765Ta8vDKkzX4zKgnghvLgIY76cZl3XYmLsxk9QdC744H0EQoZ5SCVll3XOODdx5CXYf7NyuF5cfAK5rwpQK3r4/YpwypmHFw/mAJUekWDCvA7KpAt4RZgMtCuRMtdbk071JyjIqC2oqtrFinhMWBSueqUhJGKN1FOBrbJAxkesQm+qrxd28LkMDdtfLKKaFlxFpKEipyDX1v1uWtFGGNRbIAqCDGGWSfvZYmoxlHlqMycNhRSQW30agsW6mdFpLQJ7WTR3LVaX0laGyeJtEAkZMMTJfEigy4lgam5PXiDyqj6VKtIdYG6uVLwnIhHKnLFeQMTbFz3pNnbVz/pCsgAlMKAdCLRFljq3csgbgYcA6yvqqS+yMSmBkY1lKQI4VFICaLUZiZwN5CciJm7IlAsuYLwGohHoI4HNCPVLz4URgFGVBeAmoUwDPEUXVLk1JlAKrkAman2GZAvgawUdCPSeUMbR4lHWJ3Td0ESGTkroYD58jSmLUScGA+oVSDliPoYEtXkOLk1hV9VD8/dRUdSpyQr4GVIsfmWXTbH6BdWCE97IuVh93cA1yvzErlUCzjpU/uTcxFecHSdeADCC8TwLEXGy48Bhlsxig4CQIC28b8Fn8W0uFqmrq5lLbld5G0U1R/0wylcoKxHNQuS/ZyNepgi4BPAYFL/0HkUnVJCvAQ5B6k4CcetS+Bmunruk5IKxAOYlPpLWNScAMJ1VmHBjhKiCvHgkW6y+epT+1EMKVUEdq4O6Jj+W7gDJB+lAlPwHITnDEQFA8k4z3QggzITOQHlSoRsFbOpvDm4Eg9Ycs5ucmvpNA95ULq3z/Nn1VIFFT90G0PtREDYSB1GczdgBmm+B4RbvGQfxHy4HV70180ORzEn/DEjC8J3AwUIjmUxd0PfNAiFdZz/Gq61D9zgT8BcQrISxAOQhINHBVFcxxAHiQ+aqjADkBkgKUzK9SfDSpgRPKWs5EoBXNx7JOsuY5CHACiz9gOt/wsVzRPo8LkA/qVzh0/7d0wdOd91dIcRa/T0ABlIIHqlJf87FcOtBqPrpXmQ/zKUWgDizVP7SmHvvSgxlOtAGWNYq/aDlAx5AQZ6mTYxeMoSL3MkkddejAkkPvQx3dfdx9Clve53wsrS+QskFbv2DKACf5LM7i7wr0+5k6EK0JTYuuRjQQEhT8UhXfTQPHkhHqVyhj64GLAR6O1JnVKtcbAGvgTPwTaxSfwg2go/49kHL7EtoAIQdw7ZBFgL2W44HmVwGWltfKcz6WnwIs7dqTtGvTTday5eOngHqX2vjvBJOeBaI32iA33K7jOVb35+mnm77WwPLx4YC/9r/+/SgTi+O/O/2sg/5g26mnOrb/PXVsj1f5cQXJD9LfO3bH96BiBGEmXCPw1++/Kc7p+oMOfVCYuMH/cy+bCRNu+FsnqZsYeDe5U11b/AV4N4rgQnqUB+GiJ6rQh22swMP0Qh3YGWElXHUT2RL3H/ZQgPcHqYNWOTSfzvKgPg/AMAPrIPWEGRiKPLjfHO9BmZqz/nnUh1QGrvpj7R8Jl1HymYVsCcCoP0BRNypRH2xZH2LnsQsEAMCcpIw5AcMCZBV6uAyS76L5DwuQjydMs5SfI3C4SJnr/RHDsq0vMJDMylfrKgcZ0+Qetgc9NU0VWCfRC3n1hbRvfjViyMCU+6bA1gR0Cu/mft3W26jzO6koArj/uNYRbRN3XGTTc1AhCUB/vLX8eJG85Ti0HwxOwOHaNx/5NMiPsm34Ut/cgYFymGSOVqBO8iseViA9MuoYkU+DzKs7JWZjQtyJcMh9rVsKbsNnfaoDnADEgPTIyKeoQeMLAAAgAElEQVTUrpnwB7GsvXIY2gbHTsrt+xFWNPYBkPLitb/WUfLVuN24hdx/aK296cwoI6EOQ2s7VSCsjHyMaCfvZXvibj+mcWFtQ+obLW1zsPVB/f/hvTANy8up/TiGBah6v22kwiKblnJwIQ+0/7axkg0wY72PGB4Y+Tj0IOKQueRom1JCXCWPrfs46+HGMbZ+1NQ3m+N7xnIvzFScDWTIxjVdgeU+AUHGqkwR6cIoEyHOMqb+9JlyBzNxZhHKWGXc4sJg2zwrOIqL1JcPCSFzmwcmQsjcAYWWF7IcMBgAifpdqCPpmiAn8oFWF1XpZ54IdQjyXNXneD6FttYsr4y3XI+z/D88MvJBASER0tW+J6xrl2RcG7gipKsIYHRgKWNHqt7JQTf5K1Cj5PcP2WJlVnnixIVb/Z55iQv3Z0QgpLkiT8Im1CRjKc8XKSMfCeP70oDNxuywcAMkca4CAhYGmNuGlQMhH+TzuMi4mKhKA7OFdR0rmExAXKo8G0bZsNt6XI+ybsGylq2sMqqAi14rI0meAMnDAhTTtbrvgIxzXPtaD5mRDwHpWlEGav1Il4rlxQ0Vlo9McZb59M8IUtCTp6BrmBCXiuoPBIiQLlWemYkQVm5AqEbIurHvia6xBv65f38aCxeAdK6oE7XPw8IqykNtjQr4I30eiZBOWHu+sDKIGWUM/RnD6N/FrOs2yhg3YRhto/UFkDVgY2SA2OrnBISZ5SAI9jzk/r0ndPYf2IDEBvRYnycq8rMtR8b4FsjYAzHpI7d6qPKT1z1jZvN6K/nvkfTDt4/bOvigOWsrDO158MRcV8trbTXARs9ch42FXNsIG7nrT16deM9t8LtdB/t0Czju6/nS5A4CNsrUuPH+a5i8a93PWvpaA8vXLx7x+/75v4LKASsH5BqbcISIqnRxFABYamy+kF5wwUQnLIi798sEIMIVWpaJjgSqTaTjlJb2v/lvLi1/91v0rKXVvZa48Qk0MQlrU/M1a+IqdSNiYNct0LvdC2ATbN0LT3hxCBO38Nd66AzeiE0UFmGP4vrj+2cpEG/8DlvfIM8hu8eCoFuoFtI6vHqu+ZZaf1nbeVJT1tviD7RpixcW8PNgjDAAzKvEfrx3/pwWezQZm2fmjbXXK+a1PUaptaPW0EPLuPE0v9Wspra+XzbGRdlimW9u8xuIkd34WMxQ+y22R7VtmbzwBwO45Nh8Ib2YBoAWcqayhiNh6hEO3DivzvfL7g+BReWexTz0UsTHblVfO+ljv4d03n3IFBPoyG78rF1WzuJ8Q5mp5YVrp40nAFxbWA+4PGg+nl4wYi+WAaD5qtr1rgzcTYjN/48IOGtcSTMrBtDiBFo9ck3yWezSnU1R201wlfioj2oJ4HclG/9FvebDBpkqcjv4dmuMAdQcENKunZrZfBet3NbH0MOY7B1xzB+SnZ9Sew+51v1IdZ5ceJLWUOsiO389Rg+LQtz8CClwC3zeO+LKYzTfxo04iPkR7vyKWxB0hsRzHKqw2al2YRDXv3aatU/7S+Y/6K8TGiO58f9jNNPglnwYD/+orXA7Wlee6/+mrshqCXBj3bmNa/u/AuaHJ58xOFa5XsS/r/nlsbbZ8pKBXu6hOaxtdvjnVI7bvYCMadHX6vKR9VnHoez6W6mZccoGWk2Nc+iAhQAqEfVH2PlQJQea/BiS1mPAKWyYJwAgtSCx9tlnTP2zPveETdgQ/32xHDkJ+GtjHVp5rShGB4x+k07oYwr3HnDzsp0a2q8TxnaTb10o2zYYM9jAnd7fuurbcwuotB8jfTb6qd/5C2/A2v754q/dBEQ7MLcpeNf3G+mDLOC+PR+BrZ6rYw9MbwLU59rg23Gj7Gfvf668D9T7lRnEr5D/k9nJ//kT7/t5+uj0tQaW5zLir7/9Bby5HFEq4X5aUJjwcJ2wrAn3xxlLjjiOKx7nEfeHGe8vYsPy4njFdRmwlohpWPF4mTCNufmyHcYVxyEj14Av3t7hcFyaX5ptHM1s9O3DocdFTAWXy4jjUfS3L9cB41i6KSGjiYfkHPHqxRlV/QlTKk28ZRoy3j4eJSA8A5OampoZKACAuJU9poyH8wHMwDgWLEvEN1894s3lgOt1wIu7K87Xe5QcME65AarHx4MIgVRCGkoT9DDwMWpMyaI/emZ+ar5mOQdMU8Y8pxZ2w8JymJDLch0QU22mpaUEpEF8v8ZDlrARxChrQBoL8ixhJI6nBZfHEdNxxbok1EKYjiumIeOLN3dNKMSerESMoPEuzSR30cDyYegbyXHKWNcoJnFzBArhs2+/AwB8/9dfIgwVwyh5AnHztbON5HgQux9pN1AzNYGNYcrIClIPxwXLmrAusqZKlv6tc0JSc9i2UVbzzumwYkgFj+pryQzUJWI4Lagl4nBc8P79QUxkU0HJEqePIjcRlXyV8RsPK5azMpZDxauXj3i8TFjOB4ShIthBQw0Sw4+BkBhV49pRZIQo723TmkYRkqHITVRmvSakqSDEiutjwnRacXmYEIYKIKLm0MpLY0a+DohjaUIpdY49YLf67xmwKdcJ6ZCRLxOG04rloia8LcC8tnsqbS5Y1+p0P8u6uWrMxsgIY2nhW8DUgseTmv+2APOVEA9CY5ZLAggIY8E6a1mp101DBS8Bx9fiE33+walthi1Ie9tYR8ZwXJEi4/p+ar+OTcTGArkzMNwtWN5MGF/PWB7GDQCZXl2Rs4wF54A0ZawPI8w/MZ4ywIT8kEAH2eXx0su+++yCxx8eNayHBLyvOh/HuxnnN0eZj6mAzwPC/YryMCAcs4yH35yN4tdaLxHhmJvoTTknud/WjwkfHTMosnxu30sdSwxV/o8MXgl0KFLW4wAEBmdCOMm81HNCOGXUa+q+lRaUXgHl3ednXM5jWwPxUOSw4t2oZgaQcSFgeDFjfSMhbez/4fUV6/tJfSoJ4W6VtWD+tXPqc0YM5IBwzIB+bxEY8ZSl/QbWzST7UMBrQHqxynDa4dIcxYxCH/XhLjczdzbfw0KIL9YGvGsOGI4r1vMoIj7XKKFrtE3xxYrybsDwjSu4BuQ5IqQqIkaBm0gRz1HGdI6IR4khPIziL11rQHlICC8yxkPG9WEEDRVpKAiBsVxTE1YqVzVTv0bQC3le1msCIiPp9yq/H0AauoYVyIdUUR4G0IsCXoJ8f86OXj3oGM4B9HJtMTdRCBgLwkF+D/M5IRwL6vsB9NmCeo2y1krAdD9j/uJ4a0vxcemYwY/qRzvWDqaitlXXMJ1ycxGwmJVkczlHmf9K8h2sJH7N9gzQwwITUgLQQyIZkKuE+GqRtaXzTMcsbgEGugnyvbDQUgcJ9YSxtnrNRxmzmGs3qygLfaRm5ZQD+FA0tqh+3yL3cEuVgLX7MDeBoyR5KMt1uvT4qGxgeXB12LPTYkoCLbSSWEiQmORbfOLYy6FC6pfKGyBl/TLfXbZx0XuaqataU7GZ4VqqkHBKLpblhn1UYNwsfwxAkwL+TFuAbbFH94DPl4d+OOLBrmdfrV4q1Ezy2Xx0GR3d6+9Csz7Y1Wn9sbo5bN8/B4zbocOtz7G99hyu9bc+MyTSb3LXb2b6+iQ54/kad+BL0tcaWL5MV/wz3/q/8MP1tLl+qeKbZ2EqLGSCyckbq2kpEOMxjzjGtYWGmEJubM/7V1NTnLX8PhzB9fXQFGSN+RxN4t8tnhZygWoLH+BDCXgF1gDGci8PYGNIpQxlcqgic8Qhru3e88tRyy/ts3wXWpiA+jK00AFW1vVlagyiie14ZjWF2vrmP7N7PGu5ZwEbswlq4T+MkbUwFJFEidfPhammDqFgfpmehDOIoeL16XJT1t+HOyDiFjbBMzaD9tPaWJhwGlYEiLCQiRIZg+fHA+hhRHyYB0tDLE21dUoiSrQPp2As7bpT+BWlYdkYvTjMbYVa3FNTlX1xvG7WYVNcNVZRmd5IjHwvYW9iEF/hw5BR9JqNi42DZ0J9mfv33vcXgLCv+n45RVHDPcZNmAETP4qhYr3rqsCBsFH2NTGmVva9KgXrq+Wttb9nPQjxZTEThlRQjoSs3yNrYyBgGvv3G+iMLd93ZrmNzUnm1yv+mpIyo4doaSJP33rsqrAA6gva9MkOj4Yht/rtB9Uz20MsWEaJXTuOedOmFCqqCjNZG9apl2dMcTmEjTqvMXdjysA3LqI4rAqzrPHlYqg4vb5om4FyXMVf+rDKIZPGRu11afl31A6hQmDUw7pR7m3qqybi0wSqOkPdxkNZUhGSAspgvuUd1JUpS/lTH5s9mw4A02FtdTU15Fe8GRdpFwOvr13M6vVVDgxfzJ2Fsvt1bCis4MnRBewYagWSFBh0tz5RoSUSs8DgGW4G6MCA+vAxlNm2sy01I2zX1cY/ROm7gTbZiMtBE0+iPxgU4BExogpHRT1cIsjhE+sBVTC/YBJxKvNZD6cMChDBqqErD9cCkJvCMCoteShtA2jxZJsC9aG0scJQ9ZCNWj7Sazj0uW/M86HKxjaygIikPtpZd+6q6otRVIMRICCOGMt1EDD1iYkrAVPtbF37wIE0O3gyAOMPjqCfm6KwgiA7qGpl8e7afgce2B3ySN/M13xD57jnKy8OpNp3xESsCOLba8kOsrzolLWf0QEmINfbV0DzGSCxfgLN39vKaAqx6jsrYIV6Hdb13PtgCKMxlRVo9lEGYvbKs+zK0ClqvuyODaUs80SFsUdfpO5NT8r1eYprQ7+6zUvY9G2fCLsyN6z47kNXTjTrgbzru5Vq7arbIlqO59p0o8++D5u2fqBf/f6vBqg+mZn81Pt+QxL93BT2N2vKHPD99R5LTQ2cZDdZj3na5H+v7/fx4uz/Hy5HLSM24OljsgHYXLdyDGhktzk/5/Fmm32MMct3K6aUB0cGxsKNb8oldxNcK7+y1P1uPjSQ581DHzFuNjez7gF87Lr9Pfu4Zfv4aHH3uV0Hbh9mnbGta1/v3vx1H7PM2mR59p/Zex/qpcVWW8bNfQDwxZqaWauZwhoI2cdT2/Rx1zagh5p4nHs9HjDs++rX4Rm3D+Oua9qc5u1P/D7mGWphIJ6LYXYrPe2f/wwbc1BA3l/msbHWzcxwV97FlXXLnNV/dpm34VQszWsvz4MmG+fzddyERbE2b8uXVxOW2vfdt+/Kw7NjAQDX69DMV31dz8aE2/epHUtr/1iYiPk6gELd/CBfdN3ciiVH+l0kd22fLlXnCGKF4Ntg4Sl8m9Zl55Tn+7EZsz7n+7m3cVi86d2TArBZ0Cu2axDYzouAhef7uZyH3pcP9A9MYuYdawutQYGxOvPSZg7r2xhujMX+y+lP/PfXgU0s1o1pp5ZV9utF29wOZCyvmTnuHxLUP6tF2S3/+b5+Nyab/vhsyox4MNDYJ8tr7Wjmqfq5ey8YSIWrdGw5qjKprh8OEhqDXFuIAItWT26sWugNbT8FBjnFY5Ca5iY/SV8x+VAXthatuNDHrTE9/oHu1/5uXJvPux9nt3ZuLgNj6n3bbs2vreFK6CFHnpbn5731ab+O9sDGPxI03xOWy742vLvuyiHGVhXWpQ7+0JEX9/v2/ezluk7u1vVNwNIGn56044PA61af/PvnPt+lL/lJeP7+j90EfGS9X1bf7lH00fd99OcfqPMrpx9hXH6ePi39xIAlEf02AP85gG9DpvZPM/OfJKLPAPxXAH4HgF8B8AeY+YdERAD+JIB/CcAZwB9i5l/+UB2FQwvrMdfUmD9jCy3MhwV7X2rasG9AB0yedZN4j51pOqZV4lE61g1AK2eKWYPIi8/kFHOLQenZMUu2UUou9qQPkM4QkDG4eJHeJxToIMl8GY3ls2uRGJc1YYhVY0lKiA1ro/VhTD3W5y0/s6JxHi0ZC2WbGos/GdVPzgMw81EcorA7BtZ8zMpSaQPe7HplYcKMJTK2KZcIhjA2nmUzf9D2G6NtTjtgbfNLeppvPpjXRYDuNAgz6GNDevaJgWYW3MNk9FiUxtYwSz5jP8w/r5Sw8YWT+9FYFjN9jrEzIyFwU50tOTQ1WQ/smv8co/kBdl9CAV45a4gYDZ/hgc/eV9WPofWRmVCLACeuLii5mo6KX1yPY9hiMrpfIfPhrH7uzJeOxK8QcPsHV14tcetH6MBTZeobR21zLdTiIFqZzWcvbud06/enbTETKWMbKpqp34Y9Uf/CuurcjX1sJcakjadeM7O0DVPl69drJYCSmCgGFd+wz2oOnYhQgNXiGgLSdkDjPJpNpSt7ieCxtI0/+w2qmiXKGIjyMKv5s/cZ7W1H90/c+ANyZzRs0woog0FPY90ZuNiAEm2f97MzBsXiCQYVzLi1gViDABp7BPt72dqpr5mamimKmtpZPETontPHVAS2jJUl72/GCsLUnHBzj4K9ZvKn+Z+Y8bkxNZDFBpBaJm2b9kvM4ciNGTRER9iYAfYvgO4Qgyj1Nt9IYOMXZ4q9TezJXH8ZKhwiZXr1WtKDSw7UxqOV1cCUqZGqKZ8DZSZm0wALQ0VltP+2Hiv1uqK2MWm+YGXI9Zo8OvpqycoFd/VWY6NqJGeeuMUpdi/sUeX8ChkOPDkQ4vH9kxiSBBEHs76Qlb8DjTo3rf5AW4Bo9QSdQ1vb1g870yJbi/15TgzUyAie1YRbs1aOmr368Clt7LCt4xYY8+NspqwebPYm3QaNIhjTXz8GbGyAtR+HG/kawLK5sfuwu/Zlad+u3XPtOUC3WU+36vNj+kzfnwWIt+751PI+lL4k/+a78Cnl/yZKDDwhYn6W0k+SscwA/ggz/zIRvQDwV4nofwDwhwD8ZWb+40T0xwD8MQB/FMDvA/A79e+fBPCf6OuzaakRf/Pd5y1EyKMyUcdhxRQzvricxJwsJxyHFe+vE06T+D4+XCekWBADY80RLw4z3l8nTEPGWgKWnFqsvc/uz3h3nZBCbaDIwAgz4dXdBedlkLAVy4D744zHq7CCp8Pc4h5aqlXM9EYNCWK+kqWItD3X0PwJDRisa0RU/0GgA4B1Fb/PkiOmw+ryMubzIP6CQ8F8GTBM4i+5LEnDOwDTYWmhQywYuwGkltexQWnIzU9S4glW5CUiDlU28rF/+0MsqCU2Hx0zp4qxtnAecq/kS4P4W46T5M/XhOG0IF8HhFFBsfpTpVNGyQEh8kY4hBWY2QY1HsRPqBpIIPWjUzO1NIo53fyDI8DA8noRn8A1aOBy9c/kDgDrRb42NMrOgcysiQCeY5egtVALGq+PEne/IXtlD1zkHloJ66nL0FJSn6kA0BKwHov8WKsvGjQotvny0EH92tYAmElbJsT3EfnAcv9KjSFAwDaIeYAKaFA/ndcfEFoDsgYcp0KoAeJntKrQxFhBl4hyLN0kx8ovBFoJZaygNaBYnD/ziwto99jGhIcqoTQOEvKijLqLsLzaNlLTq+aLAyCcA+rIYDN70zbTSihHtQfSftom1YcbITUbq2r2Rhq7Dyyb1arhPkjDjaR3EahAfl36hmkJKBYHsaKFvAAT6rH2H1MF1jX1OHLhElBeFKR3EeVUO5MDID0KYOIg4xtWQj3V1nYLeVGOFWFWQQ8HbsZ3AeuLKKFBZkJ0vlXxQlhfyDjHlVAnCbNRDhVxDqqmbR2Uui3cRJo1dqHeFxZq7TS13jjL5r4czOfJKUhmCzcCVZHUskcDTBq+goAyihp3Hbj5BFGRTbWBk+FdQDlwUx4WNWRCvqs9JqKKn6QzYb2vCJlkDO4Zw4PGPFQwEK9aj/k2qrq3qXlbmwG0OJZhlTAgFoaixy0EagLShTab6jqIYqdtZOOV2ma6AeKAFg5ErkvbygFtvIL65NUo45RPjPGd1FXHXr6MG1ThmTXcCFpYkLCiKTuXg9RjoTxMQZ2KqF0HVRAtOt51EJVhQMJMUFFlXgD5RC1MhVehriO1MBuhaHgKA6lZ2lRGIJ2hoUao3W8hO3q4EUK6aH/Vdy6dgeUlPjlJuBH9jq4d4FAB8hFNOTvOfc1zlLFOF6hqvYwvbD1EUQQHoSn2wualgXpsQJSEG2FpC/c6a8IGhNq6ZHLhRlYbO+zCjeBLwo10lWdTY62DqNGC0FVhr9z6HrIoHXOipqhr42UKpnGVw6Ga6GbokFC490VVdamwfhexibW5UT5VYGTK6zfjWKrPqqlR95AkvQwOpuLsFsIeBHMHdx74hsIN/D+J13kLOHKfc3+Y0pntrYKt5TfVWlNm9sqwt1Rhbyqz7kD0BjTfyLcB1DfShg2/cf1m8uOyf/2S9HUGmz9LifhjZH9/HBUR/SUAf0r//llm/rtE9B0A/yMz/y4i+k/1/z+n+f+G5XuuzBe/6xf4H/uP/xVcc2qqp6UGrCUgF/H1MnVPY8LmLKIt5iPV/N7KLgajMmSlBqwqQiNsEjVGKkYxkDXBH8DYpdiCzBsgtLRRDa0SUB5wfif6zYixYl1TYznMV2lv7mXA0wSB7Fop1AV/CjVhne6jJPfnNTYzOwrc4h42s7pQ4Z5PErzdmZeKf4/GYdyZmzTfQWMIyQSMHGsVugAPF2piMRQEmBYdSx/AngJru7tKZWOQHGMl7bWnMfpmX5kXAE0UIx1WEKHFi/Tsi+W1zX9QM6pWtnvwNVaHuIHsWqiZ7Vm5TdHSH8NZ2aT+QTbExkYxRFzHiTt4/xm7Jr493MQ5ZD7F76kJ6Rio0vY/Ucg09s+/B5qpYFMGBRqb1Riu5l/ET8wHpd87dmuv7gjXNgPkWV/NX4dpy4jF3pdmDteEYbQeBaQUuPs6MTpw9m3xjJpXtbT6rG5GA80YVT30Gnt/ImvcHdc/M8NbqffX1qc3s0sshwMK3De/zqOCSGOlnEDHZjyKK8/fPxVgjv1eEwSx9pkvVuAu4NHKou2PvB8bi5UZdvltrK3MNtbYfuY3EvtDDgigYz24aeaYFd2csm2+9P1YZVzskRUlDxmTqXkByCHG0hlOyiTX3FrxBxcA2mGBbLK4iW0A6IcjJhri+6qHINIf3m4uK4kqqg2bsY9wc2RtYTRmkqNTYLUNMlxda5BDIO5tbmySth1mJqoMp8wX2hhbnFHfJ2NYTRilf2e4s7U6Hkxoa5NWN1a1C66Y+Eoz27Sx494nYR37prsxbm7sDWxWC+VljHCSA49PTS0EBzuhG6CNgR1qeJBm34E2Z8oCdyaONp+1ufeb+sb+y3eKWA4CSJV+29qrtPlZkfG1tncz2D2IobLbv9szwZh3y2tt9s1xeQzkeoaeqrzfh7vYz6tf3xvA4sfDDnH8s9PKYTdefvw8Smp193GUzK6c/fLwnzGepGeKbu2j7ZbpNru4//+rpFttv9XOW2b5X1bWV23Lvs6Puf9HrOs5JvdW+j//xL/zV5n5H/+0mn486Tu/+xv8B//cv/BjL/dP/J6/8FPvG/Ab5GNJRL8DwD8K4H8D8G0HFv8exFQWAH4rgL/tbvs7eu1ZYDmFjG+f3uMXDu9wKQN+7fISKRR8Y7zg9XDG33j/bZzSgnfLAZ8fHvDdx9f4zukdMgf82vkF7oYFp7TgB9c7/Pb7H+JXH1/hG4czrnnAF9cT3l8nHMcVv+fb38V3H1/jmFYkqrjkAUMs+P75DpUJv+vz7+GH8wkBjLfzAb/0+Rt89+EVAOBbnz3i/TIJcNUVv9aAl+OMu2HG3/zic8RQcT8tWErEkiNyDZjnAZ+/esCo5qvvrgdMKeM4rBsK/d31gFxEVfY733iHyoT31wkvDjP+7g9e4XBc8NmLK77/9h4v766YUsbby0EUTwPjt/+WL/C4jIih4t3lgFfHK1KouOaEMRa8uRwaUGYmvHr1gPM8YlH11yEWPJwn3J1mzKsoxhqQPAwZl2XAZ3dnvL9OTVTmOK54f5nw8nTFm4cTXh0vuK4Jr45XvDkf8dndGY/LgLfvT/jWZ+/xxbsTTndXHIaMN+9OWK8J3/jsAefrhHHIYoqr4HNdRSnT2vDy5aWxyymJiMX5PGE6Ligl4PX9BWMs+Nt/63OAgc9+8S2uy4D5OmI8ZJRCuD/NyCq4U5jw+F7Mrw+nBbWKcu6qSrDzVZhhZmB9N4HGiuG4ouSIYVqxXAZMpxXzZcB0tzTxlFLkoGF9Nwm7+HoBFIAPY8blvSi5lvcDhlezKDQuAXGsjRk29dbjyyvWJSFfEsZ7oQfWOYF/7QA+FQyv5q5mCYAiI6pCpil6CqscwEXCUlAQgFnPojLKS5DAooER7zLKWZjkcL+C344ILxfURQ4yKKnqZCbwJSHcrVLOJMBvuJe5oMCiiMnURB7iXUZ5SIj3GeXdADoWqTNV5GsSBU4oi1wBDAyaVIX5hyNwqIh3Mh91jlLuHECvJMgmRRb1TgVuje2NFXROsrE9ZWWTVcmRIaBM1VB5DqCpIvz6KGzKL8zNFBXXCLrLHbzngPA2CcPzqvQfVNs8T6UpmsY3CfXzBeHXR5RXBTSUVm78wQAeZIPPiREeIuqr3A4/6DHJxvNlBp2jbNoNZAEY/86I5VsFmCroHBFmYWOpENJ7ks+IQdcAvisI7xLqXUF4jMK0OuaMrgFUAuqhIr6PwlReA8p9RXyIwgKHDlTCY0RYCPllQbiG1gcQEK4BdawCOkZGOAfERRhGKCOe3ohKb74vSG+3bC4tAm5YN9yH747ILxj5KCxoOgsDunyjIp41HNUoQGD63oD584L0EJEeCPPnBYfvDlheV5h55/iDoBtbAipQTsoy577RT49ysFBG2eTECyHfs4ubKWMR3wXUARjeGzCV/OXAjd0DSaxjUanszCtHIL23Qw6rl5DvZBzKgRs7W0b5bHnNOP5tiV1aJjSWUmK7CgtYJ0Z6CCgHYHgEwGpuOUg9y0tGegwYHoH1XoBbWAVoFWPrQmczyyQMIVg+pyysHRhYXgmDZsxmWKS89W7LrOVT73Oce1njW8lTY/8sqS5ZPsr/ywtgfC/vrczxHePy+acDy+FRygWEfQ8q2BKyXBcWXfLVQedcGcPxnbBtZVL2UtteEzA8AExyr1FhZikAACAASURBVIGqsPbYiVWZWwOGnIDpC2C9F2uROgLpURjfaqAW6LFASeaiHHq8WWMhqQL5SA2Ek9ZdE2ksWmEj01mYyBqFWRSmmlrc3DJpPY87xnKUdqUzI59I+8FtjUfVx6pDX/fGqMo4dEBZk9a5crMUMKa8xi1gb+zuwMpYc+ufgFNuYLemfhAR8hbYWtzYjQl1A8CdOfRsa9A4lsLY6i07MO9BZ7MeUADezY+3688rwlpfa+yMavAstz0i9JqfX8mwK1vbRuVpXM8n+bSfpHNpaQPu3MHAzeu7sfRl33p9Usf+EOBHBMG/UYlBP9OmsD9xxpKI7gH8TwD+PWb+i0T0hplfu89/yMzfIKL/DsAfZ+b/Ra//ZQB/lJn/yq68PwzgDwPA4dsvfu8/9Wf/zeY3uCoDOSijthSLY0nqZxgxKHs4O5aRmTCm0q5ZrMTiANKSOzC0lNX/cEwSloS0LlPOBNDVJt0i8sqGOXeW0RhJmxJjOk15z5jJjVmmqZuq7x2A5lu3LqmF38irmJ5KWdSeOGkojS318f2sDVVZ2ubvp/6CXDtzWUtEiKX5x/W5EobS++QRsPWbU1+7vX8emFByQExdZdLayIUQh9pMa/3Th+3Bbea4Lh6fNIqbxD6AHqJDAU08CIhorCILi+rH/ImPHKGxlI2FBDbx9prfnvqoNV81Y97sBywHAQcuxiBFZdiUlSI1zW3+aP54lNFj9KnPVWMNlyDlGqvkT3Jv+O/cfG8slBcxsfIqOsuW6rZ9hJ6n+cZpmXa/ZwTtq2aMX6rd9FfnceO/15hp7qffFrLBm/mya6fda9ftfkuenbQ1tLftsXYQmq+csEKuH561A4RVqgJ+NuycH2eCgKuB26tPBqAAdN+l1MtrfmzOfJap++eFOYiJL/X2NAYiC6izMWvsVIQwYfvY8qztj+jmycZe+rAHNgSF1DzPzTu5smwMlDVsJs7GohtTpu0y0OXZBxvuOKtcvwsDgEoNTDa2hNWceJTNashiYhtWMe2VgUEzn91sED0j7HwTWeedimu/3azj3hg5n0K/V9aLGzu/PjyriQ6+Wp9qv8c+C4u1eTvWfjNL1cZeb7flTAJmqKh57+g36WIa3sY/9FcVIe9zUBzbVnrZ7bqFTTDW0rGC3pQwZDMhls18KN7HEo3VDBY+Qtd4WAXwfmpq8wn97vhHkmNHScGO9Q9w14KbP83TxsmeX7zbTLvrgNRhQN4+3/hwuk285Wmgw234/Zje2vxvjGrcmvIs5sbEE7s1a6y4jgknVxb3/9s4ebDg1ueGmQ7ba18GYJ6Ez8D2nvadco/uPZP5Y/Ox3L/313h3/cY1M2v1pqyb9x8ov+Xb13OrL/v7b+Tz779S+ir5nxubj0i32vXLf+aP/NRZvV/43Z/xv/Znf/yM5b//j/w3P/W+AT9hxpKIBgB/AcB/ycx/US//GhF9x5nCfk+vfxfAb3O3/5Je2yRm/tMA/jQAvP4HfgvfDQsuWdQa74cFS41ivloDjsPamMLChLtxbWDzblqaqI6J20yDhIcAMaZhaQzVvNpnPewCM+FO/TXnNWGIIqgyBm6xMysL8CM1q93IzGuYi/vjDGZCLkHj/kkaYsVl6b6Zowtd4f0sxyR+lXToojzTIEJER42RmWvAUftba8Do6sklYBiqMm91Z+5LGIZ103Zh2IAQ1maeGqasoDRv1DkNqOYcEIc+BlZuKQHDsG6Eb4ahoBQBoxZv8jAuzXR41HiF6xo34jdWV1978n92pqD23B2OpamAlixiQKeXEmZgvg4IqSCMThDHNuY6LkFDF5j5L1cVOGFCnJZmThzTqiCcWj4zGw4uNmhrM4CooRxK7rt3ZkIYVnk9ybiR9rEdWhC3a0XXUtD/zWw13Uu/a+lj5+vYvkc3d3WHHbYu/BPbQDLpnMfTKrEuA2Bgum0gmikwJDYgoZvE2rwR+hoqJPHo9JWrtpXRRX+03DZX1tYTN79buSCHORSgYQnQwUpw99tmxq558ZudKSy7dtB9bT68tntpJs9ul2j+vbBg6VYX97UCAHRXwWsE3ZV+4GDTdNIyqqplEqvJrVTVDibWACRuBxFsn79YgVV8QvmwPUyiVCVsgfUzB/CxdHEYLxpjByME2UCeeGcKi74hcGbLbO11wiuwftj6qgQ+8tbMl9GBhpnC2uaeHCDTtVVeVYn9aGPXBIq6iIgBsGqHIoHFf3YNqC+rgGXubW/ttHZ7cGyAWse7HXTsRE82Bw7ejNvK9JvDW6bMjO19vJub/QY3MCgH5G84E2qfyI1bwLZ9rt0tRqB9F+wZYe22aSzUTYOdiWubI0I/IHgm3+bQpfUDbe7l8Mr1P1T3Ofq4mw+6lmlmwZ+c7PCArS+2JqDCRwaAZPw2zJe6R3hBJGJsDk88eNs8aj2o0/Fgx0y2g4X6/Ma/MV0OCLV22Lpw/XmigLtfi1aRXjff49ZPHYd23cBvaxi28+pNYdHHbQ/MnoA8NyY3QY5fS/ul78bjJqiyIgjtkK7dyzfy7K8FfnLfR4Gkfd/be3s+uN9VFtC4T/6R09chPS3zY9rxTNmfev+PMz3p59cg1ZvKbz8b6SepCksA/gyAv87M/6H76L8F8AcB/HF9/Uvu+r9NRH8eItrz9kP+lYCowr6bD6JSyoTLOnSlSmI8zBZeBE1x1DbUlzq0fKUOiKFizkN7zl3X1Ji8FGsDbT5cw7zK8Ik/pIb9qBJ77fGqgemVYdwyltTY0nfLoatLunx7X0gDQm1jr2nRuJuiPqlsbE0gAq6XUTfSjEsZEdRfcqmpsYch1uZDtyhrKAXKN3Rd0pZEMDBj86z9aeDzxpOWiJFdmXKPKBTkdRvGIK/m60lYrsIW5iU2sLHOErcrJG7AROrpY+vfkxOesZRntwHSDeH5rYSaCUMB57T5QaXdmPM19bLtR1XXSp5jm7P1vN14EQG5ig9nbgoN2Gzq89lUFlyDiVFKfLpxtYmx/tkt+rwqhTabz7KOW7Ef2+D6zeF+Dncb0OoXg/3vGcwgYLDVgV0bqxsv26Q49oTbJlLrDRpWwV4du8XuPfsfbm1/2W98bd3a5tnyuvXsUzsQ9mvM/ndlsLX9UX2iHbvIvi5rRkltg9uutba7schJQOFjbL6BLbOtB7tHmeDma3g2pRwGrgY+3f3vEmjgfi+j+1Jnks8sbwBwCZ0FI1eW5WkbN7dDa+DDbVQhefzGWz7brT/3ejNgN9wmNTwtpg3n2ySbXPtc+8oJ2/XJ2LC+9j+9j1vGzHw9rbn++WLPt8YQ9zpto+1vfuJD6Mb7YxhLi8fXliljo8a6YSz1M3obtt9H/10Oeqn2+w30NGZNmcDnfBw3zyDGFkjY+Yo+ezZKueSuOwXgDQtLvU1Srh7stXEO27VhbHsJneEibfvOAuCrJCph4xsqFWp/47Ye9vMGbBnF2v8XUNrH2ZeJXRn+x9cEiZ6wam5hNJBpbQrbuvdso1XU/QCp12eHU5aTzV9zv+Zpm0e/o6GIueYTVnQ3b5v+Am2d+L74/m0e4Lvf+1vXbjJyt74TvogboPRJurGsbIx8vR8Esn7Ob5W5b+ut68+lJ+PwTOYbZfnDio8Ccp/4FftKwPDTv8Y/Tz/B9JNkLP9pAP8qgL9GRP+7Xvt3IYDyvyaifwPA3wLwB/Sz/x4SauT/hoQb+de/rILKhLUGnOcRhamFoChVVEvF30+AXlYBnnURdjOp6at9fp2HJnpjISIMFJ7PE6KWBU4KNDSgNoBlHlpYhRAYyzI2M9ZlCQ1EAmjfxLyKomwasrJIoYFAQMreBKYmloCqDnhamAi7LyvQFbBMGEZRcDUz2FpDY5cMIK5z6mahBJSll2FmoJ6xzGpG2gEvhAGyU2Z3am3mpLXExhYxC/NCsaJmCbLNq/zScBG11rrI+zBUlEXYNy4aPiNVUATKEjYmpRtBGUIDg1UFjfxT0VRciSDiNkyIJ2Ehy1VBbHR5TMjEfryVDeKiOzG3MfTCQDSIOaiFcmivFsLATObc05kSA6FuxWVKELBSARqLsEnGhFTgiTmhmYCm2gNam6+gqcUG3gLUHRN3EzQSnBmrq9+AZNC6TWzGAyq7RxVlNyzCJmyC/lJ48Rmr0+71INKzP1aX/frp+HczWc2XuDNgxbXTM5LWhltjA2xNh3Uc+KiB3a9RwJ3ma6aRBoLHKmX5YOH6I95EZxjgSYRj+CDj6SX8+eCYJ4aou66hb/5042xiIo1N0E1ZfZFBc2ymrh408rHIZwxld6j5LPLAG/M/MIAofaOiqsCVwKF28Rtro03RWOUxmDWfMWU25tXWmfSrBm2DsjF1cn2bIPn0O9Q22fqdqC9LV/0ldCXfOfQDAMt7quLzmfr/5UUBzaGTcmOFsWyAzm0DzwIqa2Ok9XqEtF9/B7qirIxVPdquWtdBtpAVUkc9sNuAUwMD7MF/JV0D7nPHRJlgTbnj7ffRPzsYTpWXmt+rZ5zCQqgn3yddO9rudhinQj6UIf6ZgFMXlXJFMVjvbeaSFUHnuvmAZltr1L7nVAh1qB3YVgLH2tRXwwox211F7KkBKoYq3346W1BTbYq7H2Qs2/OVWjvN/H0vtONN4zcHE/53q+4awujqvzqGG8EgSw6s1b3yKeDAIDZgZQN+oOXbI0vzMZ7mkXHpjzbL08O/uLZRzw/giQmtZ1p9v0PpYK2JcO2+Iz55v8R9/zy49Yzuk+QPW1xbtqc7u+tWj587W++0zbc9rUfr05O2+Pt2+W6Bv1t93Rb26eknxVreAt1fJzbyyxLzLn7xz1j6iQFL9ZV8buSeGBezOHv+W1+ljjFkfOv4iMOLN1hKxDkLS3iIGYEqHtdJlFlrxBAKrnnAIa0oHHBZBw0fImzkMa24ZGEuWQHrkkWQ5Rdfv8N5FTbT4l0C3YfzblxwzQmBuIU2uSiDaXEim88lif9ligWRGGc1d7WYjlXNXRnA6TAjKghcNCTIEOvG6Ter6WquAePp2pjZECou84hxXDDEIuI1cW39NZPVSU1RAfEZHaJsjksNT/ICPY6lXTM/0Ri3ITkAAeelBIxJYnmar2QIcj3FimVNGO5zC29irybEM97NTWjIlG9rCbh7dRUT27j112zxGXWMhjvRn/dxKeU+bm0kYpwfhN0+vb6IkI6KydgBgo9bmFcxn40H+YU0/1gALU4lmES5NlWkqW4Uck1sp8Vk1PzMpII5hHhQ8RSgmbcSAXUNiHeiAmJhVrpJLAAG4knnKAfEadX+E+o1goYqAjuFOstHaH6kzayV0MxOjdUFK5g2wMwAJYigTZZDi3DKqEtEOOVuQqoHH8wkCrKj5KdJyjGf0BbwnrtJKE0MzgHhIOXSQcFbUF9ZM4HNoQHMZsI6aziNg4jksJktFmrlNMCvG2cLASMTrUBtUsEeVX6ViVZAStzB71UPMe66iA5yAE/m+KU7sVXNWjWMSfsMAMfaNx2LmqBeAzDWLSM0hw6IFXjzofRfXwXO7MK+8FgbMKZzFHBqZqbOBLJ9Bsg8n4rEg5wE2PNQt092M3MbKyiHpk7KGmansXoGxrQ+1sMSDtz9NiuAAQ2wWniY5o+qYEH6w02ldGOKR1DlWIiY0AA5TGAgLLJO6lR7HEj9LD4GlKMA4vgYUA+M+BBQJ5ZhJ62bgWCbfxMLcSaALdxIlLEhFb/pcRfR/VaD1OuWQAf6OtfhGtrYsZ4JcQDiue+2OTDCJYh/orJ+Tfk0MMKj9CO9CwoW0dEAdxVRjox4Vobvqt8JxwrXQQSQwqLhQyo1P0vrr4w/GhAZNNyIXQtqWlwn7j6RBC2HmoBL2+RrmA0QxLeY5drwXgGEsWEzSdmAhLzJ4jMb3oeuwEuQth8/fYeazqExnhIyQ+ehoglgcWCEtX9HDfyEBx1/XdvGvnEAwoOBVblHACfhCfhyYCu+kfEydtjCiGxAh7G+QGM4WxgTHXcrb2Nau2c3gx4OuO9+Z49dG8nlo16OhY+p7qy3tbH0OvZMbme54dapv9bNhzd+wi5tQKUDYz3DjTy7JbJnLG8BHc8Ye1/OJ7E79+DWtUMy3rjm3+/BJQEWusV8MDftsms2nh/JVH4yq9rq3a4Xf/3ZtAfruPH+Q/f+PP3U02+IKuxPKp3iin/iG7+CH6x3KAgYqGDliEsZsNSEXzq9wVwTppBxKSOOccH7LIqeL9IVj3lCBWEMGT9cTviluze4qHzXMa54MVxxKQN+MN/hl+7eYK0RmQMSVWQOuIsLAjF+MJ9wOGVUEI5xxdvlgPuXAmiuZUAi8XczQBiIcS0JuUZ84/UZhWmTz+r/4XJs94xRwNlSEwIYFYQARgoFKVSMIePdctS8Gdcy4JvTIy5lwDmPeD2ecc4jrmXA/aBgiwlv5yMmFR86xBXXMrQQLLkGnNKieUMD60MsSPrUXGrEKS24lgFjkHqTE09KQVR0p5jbGMwl4ZjW9nrJAyLV9v68ikrti2HG+3WC+dHmGvBinJGo4O1ybPPgX6OFfdG6LlmY4UHHD0CrOxDjsg4oTPid3/x1AMD3L/eIoWKKGWuNLY/56UZiHJOAtbnI1yfXgKSA28YSAO6GBWuJmEtq4W2GWHBZRVV41YMJKzcQ4zTImnpYptaHa064GxeUGnBMKx7WEZG4lenvJ2I8LiOGWDDGgmuWNg6h4uV0xSUPeFzGpjZsIXXs9Iy0PcwieGV+xrYOp1iwqkKu1X/NCYeUEUPFZR1wNy54XMa2DooerARijLFgKbG9AsBagsTsZjRxrRQqGBDf55RxWRPuxrX1J+uBxargdYg9PFCphEASz9aUlgE5vImhYggVj4uZrod2nfQAx9oyJvGbtkMdC1tkZdmhjv3/4jAjEOOH52ObuzGVFuIIkIOZacibQyW5zqgMZFVOZiacpgXvLge8PF6bVYaVc5pkPYjQmNRzXrop/5Rkp3d1/t/ZhLIAvNS4vbYmh1Ra346jxPy1eZjXhMO4YsmprVtvGh5DbQJqJmSW1G/dfMNZx1rmqiDo59YedmvORNNqlbFNGotY5kv6CqD5vi85tgMQO+Sxw6a7w4I1R51DqdtUos2qxHydD+OK83VEShVjyrjMIw7j2ixbAGBU/2rSZ8xaYj9M0rIshJSVm1LB6sTi7ADM1KCnMbcxsIM6E2sDgEEF1tgd6DGj1WPXUypNDM4O6HybljnheFxQmZDzNryWWOuETWgqK9/yMQPrkhBTxTBkLEtqB34h1NZHZhLLFoKoStt4uDBIgFjHNAE0tWIhgvgVx9rM5c1n3dwqxDdeDqhMXM5cR+DnNNaNtU4TiRsK8vXTtz4xSbmAHMjZLjmQWBlZbOUQ+4GjHeLFJM+1FnLJDiSqxEu2A0NbZP6gdmPur2MWxyJjoYdyIYkbyZNNuR0oWSgoPYhpoay0Td5v1kTfLMQUNO+TcFTFlWHiVhbqiS20lpbtrWh8d/Z+yWbF4Ok3y19p685gn1veGyarzey8scG8+Ux++NAtN/aENrvPNkCQtnU31O/QmBt/39wvTXuQ6d/vwVdrn40T37iHtybQHwlYN+4Mvp9MH9ePfX++LM9HgMhbuNPf/nVIP1eF/U2aPv8HP+ff/5/9fqwcUDkg67GQn7DKhFwj6m657fMA+sPglE292M7GjxBowM6X68v0QHL/mU/7Om4lu9cA362ybl0rypIBnYG0vF7h1ve/chcoauU4tvW5e271R+6VOKL7flaWzbSBAPODtVe714+9le/f++u+Dbfue27MDDTuD+D8s9Vf93U8l/brZX/9uTbJ9e2GYrO52NX7XBkmELXPaxsz2+T7tjy3Bj1b6x8XPqbrvi378f9QW78s+fHwY7HN5H7gn/kR9O24NXf7ufnQd/LZ3z+779nOUO9T2LbraXu2/d58tt88PbNQLUzMvsGbMbANpPXX2oZPmLOPOWXez4ufi/08Kmjw/b81/5t14cv42M0ZYbsh3U+w/b/fSG4a4a77+fBl2f/P1bu/197f2gl+WRuea+ettO+nv7YpX663jfq+vx/a/N6q60NteO7e/VwCrZ+bff0N80e7j/fA4SukW+XdTLfW6Q3csXn/oY31jesbs09i3DQD9UvCj8mtdPPH7nb9T1bWs3ODvubr7n/XRuD2Mvfs4X5Jk303nuvO7qfAX9v078ba/SBL9xXm/Ln2fDQo+9h8XyE9W/cz17+0rR/Txq/Yj68EWr9C+f/Hf/DTj2P5W/6hb/K//F/8iz/2cv/U7/2zP/W+AV9zxvIQV/x9p19HBWHliLXGxlxWlmv2amwmIOybAcNAFZljA4nG3BgYNVZwqamxdAbM5hpROWBSnfCVAwaqDWwak7S3pc7KhAWqG6Yyc2jtsFP/RAIkM8uJqwezz4FVa5+ULcyUtL8oeI4IVFE5IIXyDFAVhtLEgSwZuNyD5n0oFgOcHgxbnwzA26sHyz5/M8etEZGM/RJT4fTML6MfG2uTZ3gBtLG0PAGMS1amOq3IHFrdHnxae419uwUQfb2rhqDxde1f9/NmbKExdnb/qnU+d0CwP9QA8KQPS46Igdv91g9Lt8D4c4cOe8bKmENj9VLsIle+PDtosFc7YOj1YTOmPm8uW39l31YPlK191j8vuGXsWbS1YSbUrp+W7Hsb3Ri3sXUHETZPRZmoacib9Wz3WMnGWJkZtu+vnwNjnXKOjRVq/VBGy4P7PfjaA/+NSJT6nJuisqkqe/bL2mqm6/b5LUVhY4waQ7Or2+qXMrf5zaTez6m9VmU9LMyRsSjMPYxRY078JtPmKcfmU27zAe7iab6+WggxyfeFi/iXV2VjGi40ZdPaTcSfHAI5xmnDCvlh82DehSgCOqhv4+tMyj3oarFS9R4uPYzSE9XiosrVphy8A+9988+dtdorzBJ3f2I1/2amDhD85txMeQP3cuyasTd7ETLz5fbhh5i6/zTcvVZuGwLN40O9mB+jmWPbHFVq4UI+KZkaMaA+d32cLLyP+RzvmS/2IUY8yIKbT9fWDSLy1yH3UXYgmXgrDmTPUl+/+bLuDlHIwPb+YIE6CGX3P3SqNmJs1ka73psl9wen/gs08/E2FtC23Zoaa6Orm2DfeW717AGkH8a25G/4qlqfbocboQ+C9ufKegJc4fpmz4xbhwW7fjypx9+3f30uuTZs2vGhvrj7PoV/+lHB6P7jrww0P7Ken6cff/paA8tzGfHLb38bDjFjqd7HckUKFW/mo5hylYQpZlzygGNaUZmauWVSE8yTmluOoaBCFGYXNUt7NV1bfh+jclaTsBfTjDmnBp68j+Uh5RZf05IBhxQq3s8jAqGZgFXdEOYacBhyAwEGCoa4BYJmBpZrwGmUvtnG/vE6IsWKMRVclgFjyoiBMefY2KzjuIp6JoC1xGZCZ5v5OW/N3oZYNjE+A8mGf+/rCHR/zDHlZjIWY22b8CGKgNKQSgOUS46YBjGnW5aEccxY16RiSmJuVQphmnLb7PZNMVq4FNtoD0Npm3TLYxt1QMzUAjEeHsRE+nhaUKuYctlGOqlJpG1ATVQpJjMV6xtkMYUSP72yRlBAi/EZnA+pve435HkRRdowFtlzkAkzyQa5rgFplPHyQky2YWYGYpL6fGzTUkLzsYyDxSLtYIZUtdL8NkEuTAg5UJC7CZeJM4Uk7WIG4lhR5ogwlr5RIjTzsJoDQqob/0jz7wT65sraFgYRcwpjER/LKP59FMT30kzpTISJArfNDc+iphpG8bGsFrKjEmgs/YfWxoIhwky63r1ZFxRs2OcmxORNwfgqgjfXU+5ma4X6/bapNlOw0ftY6qttqgHJNxXx3TTBH/suzg4gBKkHLozQpg4T93Bl0yVgOZqPJW18uWgh+Qyu3CWo6BFtFWotjwECE20pIpryRBwJUHGabdxNqdiBGgUle39MBDQfyzw4H0tru4a5MBATHwPqyCjqe4gsPoGr+lICCgaYEK7UroeVUA6McBFfQAMA5uMXFBDVoYMYYqAG7sIuKiRkvn7ejwxOkCiaT6ZufmsSESLbSIk4i65pE4YJQFz6nHFQn0INWcHJxccM8n+dGOks81GdeqkwkGjCOiGTBFrP+tnOxzJkFfExH8kqIMHiUoLQfSyj+P0BcD6W0tkyMUKROsxPj9j8UdHmcONjqflr6jFKbUwpo4+9ChDVUXxemyBRAOIM5LtP322GReOdQtts31f1sZTxY8SFmm9j87GcSX1sHSjU9ocFfd0AXfAmuOvsgZr0per42Fh/rI9lGzcX+9OzmRsfS60veCBrZQfv46jPbZfPRJg4EEIGaqLeP33cbuKPuvp8PU0AKfQ+GMt7yy/T6mhlOQDW2GH0a15l2g48OsNIPQboPu3LBTbAfmNa6+vE7tq+PNe2DVPs4lg2X0rCxseyFUXU7pFxIFB1hX0JuPWvNxnbDwDajwaW+zI/lP9jgfQz6ZPB6U8glaec/89M+loDy0NY8Q+//FX8MJ+Qa8R0XNXHckTmgM9fiI+hMY5jyLiUAZUDfuvpLTKHJuzzmEd8fnhoDN14yphCwVwjHtYJn03nDZNYmTAGeRqe84BvTP3aQ57wndM7VBCuWerfs1RLScgc8It3b1FBzR8RQGPRriU1djVR2Zj7Nh8uZUvHWPCwql+U+hyeXknsymsZcHi5YqlJfSlzY2rn3P3/ppQFIIMQSdiRIZbG1AFo7KFnFe0+z45Z3iEUzCUJU6lPgqVGjKFgqbH5MgJbwaAYKqaXGVf1z1yqxuiMArYN6Ft9zcfK/pSlNMDvWVEDx0A/HPjOL74DALxfJtAujzFXNn+jChztfSQZ4stoYzWpf5kxlwxhv8xHsezaDogPIxE3/0M5KIhSFhMm9Zsk4laGZ1BNQIqIN36MMVQ55Ch9zp8zd66OWfQHKQCQdFysPmbCWkLzcVxyxGHIuK5pc7+VZ+ymN4POG/atIhAc6yh+dmuOzQ/QmFTzRaxMSLEgEFqsWQCYhoy1BGQ3ZAe5FAAAIABJREFUBuYraaGCbE666XZns5ObZ9L7W+xbN39Rvx/Hb0ms0YsqTwPio2jrxNjUQds6qz8c67pidIaQ9UDmugw4fC7+jV5Ey0S3TOgrEjc/QmbxAQWAVZnJvX+e+A4OjTn1Ju1Wr7GOprDdhbX6GDPTxpfP5/OHOUBnlf0hkfXVyvN+f61tgZvvoIhpSX3GutphEjnmsq2B76zqO9jrJgKWJTZRLhsXUQ1PCLFqCCnxM1zX2AB9TP0wyA6s/Lz4sE92WBSj+gTaWGh/KVRw7Yc/jfVUH1F7kraQUIDEzLXvSqztPmJhW020aW/NQKECOSJqzGEqWzN5RcXSTxUTg6nYhs4ccwngwGCNx0uAlE1ozKufz2oHDEBnexVk1dJjifoDrapjdYuZhT0bSkBNFd5HkQJv/AVN4CuYOFjofohluYUQPi5RlEMtGxvvS8dunn2cXe/jaOJkfj2AsY3Fa3V51n/vY8ly6GVtaYc7ZZeP3L1eCdiYas8yen8672/I+rlnmX3Ze6ZyH26qurrcgeWmjcDGLLwxmja22i4yH8tb9+9AWB8r6ddzirEbM91926xcHY9nmb19O+yZQLjBkn4AVDjK0rOXW9DK7dXqk0OnXePaQ0Xb5N/7dvvqXfOfDMUeXO4zfAC47cdtA7736Va5nwgmn5T78/QTT19rYLlyxK9cvokxZOQa8b35HgAwhoIpZPzq5SVSEHPTU1rwa5cXTYzm+9e7Zmp6LQn3w4zvXV40kZy1ygY8EOPz4wO+mE9PzA6vaj55P854v4qozuM64vXhgl99fAUAOKQV83LYmLqtChSGUPD/vvsMgbgBkqybxVyEgTThDQMjk4ID21j/IJ/a5v44iECOgdT/7/oaUyoYU8Z3r69wHFe9565t5l8eZsxLRCTGF5cTxqRhNxRAX85pA3zGVJBLbMxqDLKhHXXTb0ImtoEvahqYS2ymjEOseLMeMaSCL9YTxlQagDBRlrIO+LXrC9wfZ3z/4e7/Z+9Nem1ZsjShzzpvdnO627wmmoyMILMUWVUCBAk5YcAAgSikqhohKDEoqX4AEgMGMEGM4AfAAApVhQoY8RMYMQCknNAoUxGRFX289+679557zu68sY7BsmVu7mefe997EcnLG0qXjs7e7ubWu29btr7vW6i0gxARr+wazkms2wE2tTPDA6PIIhN8rqlou9wVsNQxq9iK7MX95589QwRwselo/K3O4Wqq5FFlLqa1FK9QpwUTG+YAKc7qtPgcBwMhA4yZFtvWKlSVxzjSopUX77xYt6NG8AKmnhRnlQq437fkuRwVTO0SdI+8oNP99FxUlYdzMgtwkCCIhD1VkJVHVbusbMtHhgYGCSFTnuWCPS2SSi8xL46U9vBOIQYBbTzeDBo6eZQBzMLbeCuhTIB3Mi3SRfKwpoVokNPiUsQslKGNhxsVpI6TgEeC/gkkYZC0OONzd50mDy0LZiQva7QSikODCII7ZqGJpCYKAQRLC22VVGGjS6Fv0mf2nvLnw2kNRAG5sfkHLDgJxUqzaV7GFOYjK9OmugmBFOaG+uAwkLru6eUaonWzeKrH0zp5DiP94LqkdJt+reOQjNnG59A1Qk+CGt1xg7j2VJ6VZJBwWJJBIq5T3ZyAqAL6XpH3lD2X7D0VcVKVNZGu8+LWhCm0jcC0+LQpfZUMIfYwlh7LACrHSgrhwN5dFSGGFM7FRNhRkuGyhFkmw8TvVwhNnOJTJoMiNh52AdF0vURoSS1W9gJ+HeBPEqGhcYYAPIepSAvMYCIp2oZUto4QKU4ulxls8u45VjGl9ooxeVs7mTwt1KfRxCnGowDiIGZeq7zYZE+njHR9FPBVTF5PILJaqwTiKBDbAH9oyGOmqa8ZnsixK6OOwEjtAKvKOkAk21rU5GkVg4BoYo5pKb1ArGL2VHGMS6EnT1wwdE6O5N11bZwpygqbjOo6zjxrmY0hkrcT7LFE9l5B0P3SUt6+TuFVmgjdUb/IFHpHdQJ2+9VXmGqgfMkbDbCIifCAb2IO8UMe1VRfViHvaW4Ek/pFchsiVC8mxdP0vshhYyKy5zYbGArQJ1LnnXks2aNXeh5TH0qbxqbwWJZ9es5jKdNrJUpAcf7p0RcBk3c75QExtS3no1I6ixx+hu8HkGN4ckghqmxhfCSPJc9nbkPOg5+VAjVOnTTVS5Ye2KVxnAxHrms2IIs04hGP5QOvHufJbQsRUbGVuSjzjLFE+YmcbuZhxHTfbG5IAenjo+FS8j5C8li+06CL8/sepOc5KBftPpNmqsQ8/9JoPlfXssxsnJ8z+N/DI2JOX/pdO95r8Z7tH34Y/+X/5j9C73T2mrB3hENnsAfAeZXVBUtvT6nEx7vsQtBintMwFJMX/2xkTbEqdd7B5pAYzFHihTgfJXcoBDFTECzjUnI+007+3HjgJ1KmHXghYqFUR7vJVe3gHIXO0IaMDYYLzmChadEvChirSHWVys84RKyux09/SF6mciedD4aoPuApFeeXynmZ15TqWBogwVMcSynYA4CJK8IvWy6eNwHY4CgW5QzLBEA78EHAtMkAHTQgYoZ7MuSyPES5A89jkfojK+gBkDqF8ChifFL8ToKBcpzMkp8lNI1nSJL8DJ/knW6hA4KluZIXogXPDCJmHlVWAEwGF8NTQ4LVZnhdMjbyjjJ/LsrgH+6sZJiMTUSR43IKAUQnpl30Mq+0q027/WIyPgTmXCl+Vvg7h/JwyVDxi7qWO+TAfDdcB/rOcUbzoj5OUNFYnC/rkowYREwegNIbwLv5/NkLoE7PCocdWd7D85Khm7Y8n8os5hLYA8UGWnlwjE6keqg4xeYs+yPHFiz6BSAjMRm4kEVfJoMNKSxH5rKp4n/pSeD2l/XgNnB6LjsW6UuO3LlFnsDExyp4eiU/TiSuW46rKTD3aghQqBcn5xBZQTE/Z1wvgGJujhQuBSrS54piieaFFHPzeN3nxRzqFjAZsZxvEVok91NENkhzKBVuN+eJqczM4+PzcaoLxwGNCRoMWYy7mOokx2QkB0z8v7wgj1NMzgR5jgytzp6aFPpFxRzflAwjKocNKhFEjuGZ42HyeAlQ/gAZ1jweeayRy8gCQQxJj5hBOoOZGx1RFX2f4nFKmyC63P+R+kn2X31Rx/ExqW/itDhmmHba1CiNO+Q5Fqf6FotyhhKzMUmNnC+wc//x5UjQW64LbShQn5f557EV01zM4xQLY8wv7JyFx5KNuuWzPIuZWkBaZ+/HYozEtJ+Wn6PslSvL4+ek6AtO88B4WsBXy9co3SOmeVauEWKhbFp6Z5fTI7X9QYzQeVbnv5dwYzFd53zPIiLfdR2YD1Ysvovi3CLtWePsXNli8f83PB41ZN9W9l9SmX/2X3394j3P/uhp/Ps/+Du/9Xz/uz/+wdfeNuA991iuzYi/df0pnlQH9MHg1bCBFBE31RErOeJn3RO0ymJnG1yZDq/GNZ7Xe7io8Hm/QaMchQexDZ7XB9yOK6z1iCEo7MYW92ODVlt8d/Man3QXWGmLWjocfQWJiLuxhQ8S31zf4d4SR28/Nvh4fY9PTxdUl/qEk6PwJxMMVmFjBqz0iF/sbyBExNoQbHXwOodw+NbVXYbb7m2NWjms9AiXoKNSBNynOvRO4+nqCAA4jDU21YBf3l3h8qLDthrw8rjG1VUPIz32Yw3ryaD8cL3H3tYw0uMw1rioKegYw1h3Q4PRq8ztvKgGdM5kiGWjHXZ9jU1NsTwZQipExMpYnKzBddPhMNaZs7oyFoexwqYacde12NQDeqdxUQ24HxpcNR16Z/Dm1OJmfcLdqcWqHlEpj9vjCs5LfHhzQmdN5m9yuaNTiasqskeWQ4boBOvd9zUa4+CDwEUzoFYOf/HZMwDANz+6Re80TkOV4YYc2oE9k7tT4mPWY/J6+hwy4zSYHA7hcGygjUdb21zHfjRo6zH/5w0P5sl2pxreSbQbCgmjVEBjHHbHBkoF9F2F7fUJ3k8eSRZXYW/tdjVgcAp9V6G96GjOWY3+voZqPbY3R1iribeZDMRyI6SEH3ovoNQkHDMOBqYijydtGATUW4thMIheoNlY9IcazcUwxftUIYdCcKNCvXYYBw29Ik9l3di8ocOwQ95oqWqLoTOoLyz6YwXd2uzF5dAHAIVBYIl/5r4O+xqy9qgvbebGeicRrYS5GCAE8uaFdyl0yNrlzRPeZNAbCsrmRjV9tgpKh7yhoysHe9cgRqC66QkmKJKHuXEZ8ua9RDgRj1Zt7ZxbKghqydBKf9AwlwPsfQ25sbS5xd75XZU9lqKOiIOk/BKk0HcKCAL6coTrNCADVBUoFAEAcVshXo+QJsB3mgzXZIjLnUa8srRoHhTUxsIfNMTGIXYKYuUmw0pEhFERl7T1iJ3OnEyx8mRkcz2ToRI7TUYbx9hUmLyvVk5czpb4pWKQFEszpGD3pwSLXXmITpE3k6GTyQMaU4xU/crArwJ9jwKyl+RZuvDZsI+JA6t2Gv7KQYwScqfgLx30nYbb+rzJIo/JE+wnz1g0IRtl0QSKSymQYxqqo4RfB+JnpsV9NBR3MpoIfZespbSoDVWcOKUC0HuVxWJi5tNFmF3qB0EGlbqT8Csq09cpnmYkA0sfJdw2oH6hEVVEqIrFeUTivlHZei/ha0Dfp9+ZUWQuqV9RXuok4NbkoZRWZG+dtGQs+po5joC+T5SChjyRqidD3W4j1Aggymz4Cg+4VYQaZYpFKbN3MApAndKeRQ0094K8bIo4qeogIOm1iVADMnEp61eSvo/URnMEhuuvvnLVqe3UNzIbDcJTeWqQ5FHtkb2pMXl8zZH4q8HMPa7kfRSTBzZVr+QqBj0Zopyn2Qm4VTIqFaB7HitkI0t4kb2EahDwFY0ZcyppDKhPy/iQMnmN2QsaNKB75JiUbOBl7yuAUFE79QnZS8qbAMEAugNcO20IsDdUjcgc3gecz0h55PI0MtcXkfIQPvEN5bztc49l4g4nni5Znyg2XzDzlM9hpgLKxhyDkxo2lcNllt5dWcwL9rpznUqu9AOYbLFRlXmfhcFYKvtmQ1/iIX/2jKE7j/95ZnLz5laYG+flvMt1EMDbPJbL/M/mx/1YlH3WuBR4EKfzbCzOvwSj+K+PL3+83x7Lv/Fh/Ff/23+A3umZAqbzKkMrS0VJhm2WSpHMqWKVR1646cTHIpjpFPMLwIwPBkzeRr62VFhkj2XpmSo9lhP/KebrDPVbco+Ww8V5M8yyzJ/jny25UXwPQyRnapLsBeHdPBlnnkj24uX0EdnrtvzPsErmC4nE3Vkqo5Z8rbIsbjOPFXOuICKCV1PaBXai3JBjb2jpGeSxAZAX2toQrsaNmtqcoJ+lymPp8aS+mM5nJUte4AIzQZycLufLnj9MniKBXHawcnoxxmkXnD2duaH5BzLmc8wv4ryZ7yM1eWpnKpRFGu6n5TjP4pYV/ZI9nqxGKQr1yVRG7vfU1sw7Krd0yx/W/EPJKwIx95qV3rKl1xDcH6m+LMST+ytOkMvSu5f6voQv0WonjWUJr2QvW/6lxuTtYw9P6V0svG25v1n8xi3Oc1/wuLKBxf/LcWbhm7IODCvlugNJPKfoSz5KLyj3C5et4vxaKPp+uTW/HCtOV3qTy7RYpBeLa+WigBdYosgrLaJyX5VzoOhHVuaESf1fzhNBokCRn7mFZzF7ztwk+pI9lgvhotJbynWaeSwFJq9bOUcDyKCOyB6/mceyfM/zMwHM+mbpyczeW+67sm8VsheSPZxnPRx5DNM9AKKY4v+xt4u89Jiem/LZAfJ4iVQvHhNgai/1depHnlbs5eQFd5FvXsADE7wzPe95kb2AX87+s8eyEBT6KgcJ70zvhNlPED9vcWE0JM9Y0AmGGKZ0fC2q6Xs+itW5OPM8ZVEiMfX1jJuIeR9mwyL/dhR9tjBwcruKbMpXUD5fvBLytcWjLYqySo9lLqP0iuZnGPPCi3azB5LzmHXXGYtqsUSYlf2o16/sQ0zn3maQnfvOY3M2/fL5K8r5IsfSO3uunQ/K/Q2O2fi+La/H+hDzMS7z/FLHuX77gsef/dd/NTyWf/cH/95vPd9//Mf/9GtvG/CeeywFIom/eIUgSKxkChpOHiJAZZ5irV3mBjbGpaDbgQxQq1Fpnw1Po/3Et0xcvnLjKIqYFVS7ZNRGIHulTBL+GJNQSimOIUWEExIxqsxp5GDhrAKrVUA3mmwYaRVofRTmxpfWpC2l1RREm71Dq3pEn0RKpkDfEsa4/MxP6qRiZpwS9DapphaGmLUqe7RI+ELm8krhDQDwPhm8o4RK+YQgAIbmMncuGbfeUzqG51a1w9CbnEaC7tPao+9EhvyWb1OCJGOu4ApkuC5ARiQH646RuIFNOya4rUrcPp/z9pFEURApb20SD7UQFIGgBUO+D4CpXFKYVXn8lQrwTkEq4iUKgWmBmzyHSgUMMBmOHDzVOUSRA51nNdggEeMEgxWgkCxCkVfPWSpbqIimsRhHBRcnSHGMJP7CHrPSEBQyZsM6iyMl6HKpRhsEcn7OArpycKOeGeBZwTYJmWRlWMF8yvRMJ3i54F16S7zGYCUpwyZoL4dwYCNb6kCL+CDSojZCVR7BCwQQaYnFPaSMhKjlRR0rzYoi9EMUGfIcxnS/iohCTp8TLJcNaV37xKE202JNBUTI6UdQRqiKNkf8MG1/Z1hxXpgSt9N3CqrxlDYHvwZU4/O4MFQ69PxyihBV8g4OpAQcI8jwTEadWVnYk8lcyAzNlhHKBDhoWkRp8oaKiriYBHMW08ogIkF7I0FOK0+cUx0QR1UESscEZ00exsh8TB4zzov7wAnAROrDNAYzA36USfVWTi9m7sfUV2rlSKglbdQIk8rukI3vPPcbj3jSgA7U3pOGWJGXNre34vmZ7nViUr4Vqe6muCYA6DC1lY063vjwAqIOs82b6OR8M6IK0z3Z2BJARb853LeiSuUITH3In00ABgmxTorFzH1l456hziU31qTngjeKIih/HWmc2RudeM1xVJNRyu/Xc/2R8o2DzHWMbGjJSJzfEnKfNgFmMGjLvFsBVqWNKmaYLasXM5w5qxkHAdQB4VS6nr7cEXUk73P6nJ9tgcybzXVNEGJaeACxov8ZIpzqjlBcYwOcN3yS8SPKDUWA7qkTVFsA8CA4NG+k5HcOXct1Z5RAwAR9Tn2WVVGBvFHBBq/wYvKks2UhirbEZHBzOzldmlvSAcEUqskC2fiISc2YvW1AMkD5uSsgxyIge+foRDEGIameFkYdEKd2lf1SGIox5Zs3A4q9QTaMH3jnCkMwe/9LY6eow8ywLNI/apQvjd3iyJsIi82X2aZBWb+yrRx658zxqJFaGPGzykbx4HSZT/n9bH1w5vxjx1sM93Pt/Ovj6z3ea8PySXXEP/j4/8QLewkPga3sYaPG3jc4+BrX5oghGNTS4t6tcKlPeGPXAIBL3eEUKvTBoJEWb+wK1+aEe9dCIWCjB2xUDxs0ft7f4MqQqIuHhEKAh8SlJpjhy3GLVo7wkNioAS/HDZ5VB4QocOdWaBknAsCD4l4eXY3OG3zU3MNGldUmtQwwwsMIj9d2jRAlbJRolYULCkPCVMj0pmqVhUJALV1O36oRna/wcXOHe9fi6GrcVEfc2RYhSqz1gFpSSI8XwwVq6RAgsNU97mwLYIrd1yoLLTxceosfXAUjAtZ6QOcrhCiw1gP2rkElHULBbu+8yVDjRtnchqOvsNUD7m2DS9Nj72pU0uHkKqz0iIOtUSmPp9URn/VbXFcdjo6Ufi9Nj1o6fD5ssNYjqf4mFVwtAkzCn3D8z3vbIESRQ9IAwNYM6LyBRMTB1XBB4rub15Ai4GfHJ2iURaMsem8gRcTJVVmVFwAuqg5KROxtncSSdI4HyuVoGbBWIwIE9ramUCpeYaUtDramdroaWvgMk5aIuK5PqKTD64HmqQsKvde4qrsMob4bV5CIaLTF6FWOsSqTWu9ubKBlwMYMONgaIQqs9IjnzQE72+B2WOWQPBxrlOtQSZfVg1nJ18UpXM7GDDk+Kt9/clXO72BrXFQ97oY2C2WNQWelXx7flR4pHxlwtBWM9LBB5XBADAE/ugprPeLoKlzXJ+ySENaY0g6enodaudzHHOv0uj6h9wZHW83SNMriTRLjYogyzxsbVG7z2owIUeBoK0gRc8giEtui+vogs2rxs/YAAPjseJGN7lbbHCOVN47WZoQWHrf9OqMsWBGaFXsB4LLq8apb42l7xN3Q5tivAHDTnNB7EtZykeqwG2jcXZDYVIQJPIw16rR5xWJkAPB8tcerboPBK6yMzc+QFBFb0+NVt0FIm3HHscK6Iqj7KoVS4t/uEEVWMu6dxqYaMTiNWjucrMHKWAxOp76l56fRjtSzbQXD6tJpHtbKY/AqK+022lHbxjqfW1c0Lp01aI3NiBUpYo7/WkL978cGnTVZGVmLgDd9m9Wdx5R2Ww+4PbVojcPajLjtVrhqO9z3NOdCBLY1lc0bh1w2KzLb1J8sxCYECbMxFJ9RMqWo2aYeZtz03ukcXgoAWmNz32Wl6iCyWBuHuVpXI45jBSFI9VgntV8Wdtv3NW7WJ6IMpOeRn0sjA3qns2hcZzXatIGWQ0xFkSgCDq2xOAw1tPIwMkCl+1kdu7caUlA4rDYJqA1JBbhJ+e77ehbeSivK5zRUWdBNyZg3R2PR76NTaCqiKvhIqBytAuqUd2816hRmq60sBpc2h4PEphlwd2zxVY/akGoyMG3sAiTi1g0VjCHhskrTxjSjbWIUaCo7qy/HBvZeUnvS/ECRZ4a/sxhaeoZDkFg1Q66L9xJV5eBSiDBG+pToJ5M2aTk8WBmz1jlFEP70/lEqZipEjMhaDYy2ylSClAZA1nkw1STexmlCSH2SxlOISXdBJ+VjpiFwn2X0D+/NiSQiZ6dwVUTnQEJJiQlZAUyGa5jQQnQPsgWUETQl77gwLIFUSd6IKQ2XcoON8+Tz/FnioVLvWwzHB8gZNgQLQ/aBR5DTLTzhU57FptaybWWdzub9SHpgQky862CDvMy/vDbL9My5x+r2nh4x4kF8+9+l472Gwn78N6/iv//P/m1cmxNsVPhsuIASEVf6hI0a8NPuaeZEXpoOr4YNntaHrCC71iNaZXE3tnje7PFq2GCtB4xBY29r7McGtXb47uYVPuku0SiLWnoySkTA3bgCAHzU3uM+GWQHW+Ojdodfny6hZcBVdcLJVTNvZe8NNmbAWo342eEmL+Z4AT4Ghd5pPFsdczgRNraIYzm9GQ62ho8Sh7HCs9WRlGldhVZb/Hp3gW09YlMN+Py4wXXTwSjiUvLi7flqT4aTDJmbWSrLlmkB4KLuM8dSgEJq7PoG62rMyrXcVo7nedV06JwhDqYMqJXDwVbYVgPu+hbbekBnDanrjjUu6x6D17g9rohj2TVYJ4Xcu67BYA2ebQ85Pxtk/s8waF5obpthtuiRIuKQFkc+SFw2PZQI+OnLJ4gR+Phmh8ErHIcq8zDXaTHAYk67LnEs04KJw3pIEXEcKlSaVFsPpxpaB1pMpB/V02Cwqm1e8ISIrJ4bgsSxqxC8wmpNXFeVvOeHrs4cy826z6JSWvtsTPDiZdMOGKxG1xtsVmRgDFbjtGuga4/Nusdg9WyhwiJSHMKB45OGkGKPph/7cdDZgxwSRLxuLIbeIASJuhnRnyo0q3Hm/aYFjYIdNepmxDCYBANHhoMzx5IVbwGgbiz63qBpLLpTBVO5zLEcBp3rPQ4mK8yyqFZ/qCErj6axOTapdwrBStTrMS2MQuKSyqxqy3BuN6ZFUlLhZQ87gOx1ljLCWQ2lPca7GogCzZMOPi0kvFWoEseSlHQlXOJY6o2dkI2ZY+kz5N4fDerLHsObBmpLHEteGNldldVZReJC6o2dxMh68jialc1cUWnCFPLhTQVxNZIHeVTZE4UI4jBeWoJkjwq6cXBHA9k6hF5B1lMMUCFAHkEvIGtP/NEqcSzbwqslI4V9iILOeQE0PntRReJYRivJS5rif8ZOkceq9eTd0ZE8iEDidCqgDtPCqfASIgioW4OwCiTiEwREL0koZesmuG/yyKi9gr9ywCihThL+0kHda/hNcvdIZH5nVsGs4wSXDeQxkidJXK/k3ZGDSBzL5MXT5IkSA/W5Ok5CQogUIzFWIXuoZM8iN0jeI/ICqZPkW4hj2Qn4NhIPLYm6iEheItVJuK1HdatIodNM3igRROaBRUP5hIpUSoHEsUx1ditSO1UnAbeiOJQPOZYRPnE4gyGuoYjE4RMhKaNGwG0iQVIjEJN6rPCpDSkeo3R0H8MoGcLqK+YrRkSd1tUWuc4hcUzdOkIfSWmWeYX6BAxXX33doztqOwSNbeasecCvkmAQq7xmjmVM3MPEozTEAWUeYVTEP6SxRF6IM2cPQOYs8qI6KsDsE2cxcQQ5ruVM3TVMHD81At6QumtgjmUaA18BZzmWieeZY22WHEtfcCxFUqhFastCaCkY4mi6ZvL8sYeS72fuZBSYxePMMVWTZ45jnYqIGVczw6EL+DSASQk3XROcV/Iych9JhzkPkw8BSBsRWN0VU91EjBS/M4KUWQVm6qusnMvlAIXNtziXPaKiqFspdoS5t3LG1SxVb8X5PDl+7czzWh5xqlP2Wp7jgfIc/P+VY3kmj0fq/zYD9E9/8J987XDRp99/Gv/OP/27v/V8f/Cv/w9fe9uA99yw/PCPbuJ/8D/+W+hChcHrvHtro0SIElKE7GVyUebYhiEK8mhBZC8A/ycPjsyxJwFkD03pjXNRZg8de6iYM8jeHgDZCCxDlUzliAy3LeOOcXre7QSQF/YBIreD40Jy3EnPMS6Tx8VInz0anLcLEpX0COlpLtvN/2ecQTHFIlyqvvLBO98P4L5F3mUflEYaG4SiOF++b8pzIX3mPJb1Lsvgo9z95aNsB7e30gQPHpJqcJnnlBaQYtpFXnKRPCfUAAAgAElEQVRCz/ULx4SUYrrfh3n/lmPMMRw5ZAsbGbz7zHzhMgZdqVRc1leIKQalFDFzjv1iTnI/5PuL/i+/87lyw7HkJ5dzn701yzpxv87GgDmbxVHGNyw5zdwfJZeX2orMb+byGOI98WzjLB3nz1zpsi/LPi37c8mzns6LHH6God0c75DL56OM+5j7lRcCRWdzDMll7EjOY+ImI/Oq+TvzqEu+d5m31mGmEj3nNscMFRcCOazNctc/99ciVE2GdBbfy7rP0p/p49wuJCdA8SxiMS6C3xd8nVcduQ/ncTIZLj6LPcmOBcmK1JQu+jncmuqO2cFhZOb9kerHvHkxfc71iJj4ysyH5QUle0VEka70jOS6FH1X5Mf9NPOeyKk9y3zK1dqMK7+EzBXenQfeHyyeycc4sWmxPPtetH32Oe+6nHm/RmTY88wbssyj5OEWi3ksF8pf5ijrdG71nNPN5+JZ79S5a+deuMt0fO4cx7icI5G4xiL1U5QFL/fci/6xl/1ymRgfScN5F1oDlP48z/GtbZ+1Y3FvOJfRvJzy3nN5TnU+35SzQ/VYP7zt4Oe4eBzPGkWc3yMG0VuPL3jfo+Vyxb70Pe+o15dM99ayftM6pOOH/+XXz7H8XTcs32sobKtG/I3VZ7hSR9io8cJS7Mineoe1HPGT8RmM8Dj5Gpf6hFd2ixt9hI0Kr+wGKzVmmOwHZodXboON6hGixK1b4862qKXDd9uX+HS8wlb1MMJj75sMVXVR4fea17h35LHcuRYf1vf4bLiEFAHX5oSTr2Cjgkq/AEMwWOsBW9XjR8fnMCJkj+XgNWyU6L3Bh80OJm1X7VyLVpGHlRdZIQrc2RUCBI6uwofNDlJE3NsWW93jJ4enuDA9bqoTPukucF11qJXD3dhmWOg3V3c4OlKFZfVcqqOGkT6nZUN5qwlG2idDvlEWd+MKF6sevdeopM/pW2VxdBWe1kfsbJOvMzz2uurweljhsurReYOtHvBmbHFddei8we2wwtPmgFf9hjy8KRZp5wy+s74vIJU6ew0ZxunTRsJ1c4JERO91bsP90BLkEgJX1Qm19Ph/Xn+EEAX+4Poleq+xt6QI7ILExgwzA/Z1TzDVbTUk2KbLUNLd0GCVIJR3CW63aQfYoMhTm7zCJ1thUw3ZEGMI1Ju+xWA1btYnAASNbrXFbbeCUR73XYOnmyNcgrMxtG8M5OlzQeKmPeFoKxzHClcNwTNPtsLL3QabdsCT9QGdnZR9lQwZzsh8YqM8BqezYa/SAv04Vqi1w+gVrFPQKuAyQfCcl7hedXhzanG96tBZQ3zVlP/gFU5DhetVh8NQoa1ILXddjdnD3CfY5OiI67quLPZ9jW0z4K5rsEkeaCMDTtagSkq/h6EiqFflM1zuzWGFprLY1CN5eL3CYDWsU9i0Q4ZOcltCFGiTd1mIiNNAsMJN05PystXYtjTmQ+JkM+ywrSxe320QATy9Okyxbq3GOqkHMwTy2NUIXmK76bLBwIZ4neLBAsDxVOPq4oQ392ts1j1MggcCwP1+lbnOWgcMvcF202URs2NXI0Zgu+7RDRWEIJggb3Ttb9fYXJ9glEc3VEnlljai+n2NzfWJ2jZQvodjg6Yd0XcV6sZOQmMAhlEjJJ5y31XQxsNahbq2GAcDmSCOmvPvDYKTaFYjKRPLCM3zz6oM16uMxzgYuFGham023oeOoH9V4zB0BqZ2mfPtnaI4rMkYt7cNxNpBVwRV950GvEB1OWTYHqvtur2BuRzgrUI4VlmRV21tNkjdKbnH2NisPXlik8dbGo9w1OSRNGkjZJQQK4cwKNp51wFSR/hOkQf23swFfKpAHNUUjigc9MSX5PiWKgIH6ocoI33vVPLsihRzVCUOXYDoNcTWQryqEHVErAr+XACFXzGB+JCdBKoI0RGvUlri0EWFpMSroVKcT2EFeSxDih2ZPJaBVWHrkD2roY6AF9lj6bdJKTcihwYRTsCvQvKSJg8Sq8LKCDmkvJoAfZcUbjXIIz4K8iDG5D0957GU5DUcr766Zal6AdeSpUCqsMmwD4Bv2TNKHkv2FLLokzoJQE5ePvYEzjyWBpNXjcWSYvLSAdlIjhIwe/LwstdXdRS2ZBbH0pEHGjGpwtbkdWYvtExj4Js4805xO7jfok5e2KXHsqK+B+hzFIDuZPayC0d1C4bu9016dyRPeRSTJ/qdHstIZZPHUmTPV+lVLQ0svs79MVPLZU9hagt7KufKsWnQxeTNXB6lV2/pBQXwdlXYpZHJZTLPlfNZGtmlh5Lb53DWY0l9neZMGaMT83xz3qLIo2jb7Cg3NpYbEjmv+ckHiq7nNjZQnDtTtymvR4zQr2KYfg1HTA6u39XjvfZY/t7f2sb//H/5l/CL8QlsUHhqDrBR4fNxizu7wrfbWxx8nXiPW3xc3+GT4QoA8HF9h9d2DRsVNmrAr/orfFDvcTuuoaXHE3PEtTni4Bv8+f5DfNzeo/MGnTfY6BE2KDyr9gCAn52eYGsIunihe/yyu8a32jcIUeDluMFGjzPvohYee9dgb2t8b/MKAHA7rtGqESZx1y5Vh5/3N+i8SfmSQbd3deLTkZFzVXXQwuNC9/hFdw0XFG6qE3auxh+uP8fn4xa34xrfbm/xYrjA0Vd4Wh3RqhFD0PjF8QYbM2AMCtfVCS/7DQBkT+p11aGWLnM734zEnWO+ZOcNbqoT7myLVlkMYYLN7m2NrRnwotviouqxVsSJPLgaV9UJd+MKz+oDXg9rrPSI22GFm/qE1/0arbb45uoOPzve4INmj3vboPcGH7U7rPWAnxyeklHpDCrlMHqNSjk0ykKJmDmWL/ptNg7HoBGiwE19zNDil90GPkj8K09+ASki/u8330CrLa7rE+7HBpXyeNOvZlyX5+0eSkS8HtbQwuNo6yQMJXBh+syd/LDdo/MGb4YVKkUc0pv6iFf9BldVh9thBV3wnLQM+KDZo1UjfnWieeqiwtFW+KAlyPKz5pBh1tz+zhnU2mXe4+enLRpt8bQ54kW3BQCs9YjvbV7i5bjBr49XuKw64lAKgj2fXJU4lh6919kQ5o0CGxSUCLiqOxxsnXioxC18M6xwWXWopMfrfo2P1/f41fEKaz1CioDeGwyeNiouqj6nPyTu6W5oMo9rZcbM9QxR4n5s8KQ54lW3wYfrHd70K7goMTiNTTXk8DwXdZ95ur0jg/Yb63vcjS12Q4Iua4taO2w0zUkfJGyQWBmLWhFfbT/W2eN6WdEzfdsTH3NTDdgNDaSIWJkRJ1tlPuPJVvjOxWsYEfBnbz7I3MFNgnsrSRgBozyetQdoEfDp6SK/yyrp4SKFDaoSF+/D9Q4/u7/Bdy5v8dnxguDcaXPkW9u7DLEfvMZl1eHT40VGAlw3tEH06rTGtiY49Mma/Gz+weVL/Pj+GcZk2K/NiM4ZKBHw0WqHf37/FD4KbBLX8Nn6gDd9i4tqwMFW2esdosC6GhNsvsJ10+FkK6zMiPuhwcaMedODNw0u6x61drjtVqi1y+MQokCTNi144+Cy6dFqi9fdCirN1auGDPI3fYub9jQLn9RolzddlAz4g6uX+LzbYj/WEABu2hO08PjV/gorQ6vZPqEUPlrv8PP7a2zrETfNEb/cXeNbF2/w6fEii8I9WR2zEBwA7Mea+JPp+e2dxlXTwUeJzhIf96Lu8eq0RpPeETaFRbpoiALwfH2Y0xs4zzQPrpoONtDGB1MQeAMJIFRG5wyetge86ja0sTBWaDTN6cErXFQDPj9s8L2bV+i9wWGsYZTP7x7mDx/HCjftCfdDg+umo3mfuNouSLw+rXHR9HjWHvDJ4RKttmi1RaNtfm+PXmE/1jAyYD9UuFnRXNwP9Gxd1D2kiHhx2KI1NlMVNtUIJQJuu1Xm9HI4K4D4d02iHxyHCk/WJ9pMTNzQprK4rHvEKHA/NNjWA14fV3iyPmE/1Gi0gw0SH6z2+OmbJ19ghXH+uGx73J5axCiwrsf8TFbK4/VxhVVl8/gyB9f5xPtekVZDZzXWlc30jdGpfK1EzVTKZ37tUHATAcB5hQ+3e9x29PvUjQaXbY/OGjhPauqMsOkSD3PTDDj0NdpURxeIUwsAp9HkeN4Acigv3uxyQaKtbP6sZYCSEYNTaAzRBbrR0IZWO2BMXM/aOAxWY7Aa62bEoatzOxh5URuC8Q8pZniMJHqXxQu1z2gT51QWEQSQqRExEgoksEp52VeFuCAjdUQhQCiAKa52EXebD6ZZeC+ztVYunRnNkUXYAjLyQcqQhf4m1fUpX7H07rJBVyARynMZ6VAqzHs5bUapErmAqa1B5PjSpap72Z6zCv9L8Z7y8xKFsGxHea5UFU9Ijgf35A5dpM3c0aJdX9Eu+8U/+k+/dq/ek+8/i//uP/nteyz/2Z/846+9bcB7blh+9Dev4z/8n//N7LXjwwaVoaouKAQIWignA8klMRwWcJEiYgwqL6JZPERLn8VT2NtVwl2rFNtx9DqL6VBeGk3yLHL5ugDKhygzJDeni9NWmESElh59Mio5X4bPljBNrpdEzF7IEpLI9/BimeCU0/ZTCRUVImbhE375yuKpFyKSuMkCQlkKf5RHFh1IXpTyXAlj5eu8yGHvVXmOvXFswHGac1DYsv4uyAcoEV58KxHzjzYvMk9pMVimLyGxQsQZHLc8X5YfI8GcWZSEPVPcPoK78o/N1G/sbeOFcikMUvZXmRdDbKcFB4XWof5j2Cuyp5G9XqqA2PklVK8Y8yU8dIJII6ssKxkR0o+0ViF73ZZhfaQMcMWYzvo3jdNyfmVF3dTecqMzLMYkRPFgnFmpmMUi+Pkox46vlbuIpUhG2ZZzEOiQxFgA8rZOeUwLkDx/0oKIwwcRHDfmz3kuyZhilZIgR3nw4qu8n2OBlm3icD2heM75fhL0QFJSXkJ75Qxiy3DcHEpo0U/n0k0w3Kn9nH4JEea2zEIfxTmkl06SGnSM4iw0lxc9rABNnFWRYbe84Az+DAyXVa2Lz7O+i3NBFCDNl8ViawbPFQX0lhedvNjjxdsCcjprT0SG385+qovzfK3si1m4IO4nLyBTzM649EAUZc8guouXZ/S8MJ3CJeV+ZIXZiGmxyvUQBXSW61WGPYrz+j5YVPLBH0sRklKldAm7LcVMuG7nxFS+zMF14rzKurIAzPJH55yHZ3ZdPBRpWR7nPBxc9tn0eLh4F5iXzZ8FMqeXobPlfypqDqslHmDMYXUATLBceaZMLuuB96sYo/K98lg/hMeb/U4vFt9UzrvlPcuxeSwvfDHbJg/D2/J9RznvOsop+JXzfOT62/N8dw+89f4vWIevnO7M8aP/4uuHwj75/rP47/yTv/dbz/d/+pP//mtvG/CeQ2FdlPjJ8Sm+0d5hCBqfdJeQIuJ5fcAH5oQ/232IlbbY2QbPavL0fLTawcDjF4drrM2IjR7wstvg25s3+PXpEjc1qS1+errAfddgVVl8//oFfrJ/Ql4Z5bEbG1TS45f7LUIU+P2LW9wOJOSzH2t8a3uHn++uszjOfmzn4j1O47LucVH1+OGr5xAi4rLtMXqFPoUE6QaD55eHDNncDzVaY7E248wAu+1WGJ1CPxp8cEke1MNQY12N+PWrK7SrAVdtj5e7DS7XVP+7roFNO4MfXe6wH8h7d981uFmfSAk1wQzvTm0uL0SBi7ZHbzWGpLJYaY/dscFm1aMfTVbCEyJiXY849DWebo7Y9Q16q2GUR1tZ7LqGdn4PBKPtRoPrVYdXh3VKX2O3X+HJ1QFv7rZYNSOayuKXr67grcLN9RHdaPKuKu++W0u7nBw25GJ7ghRAV4SAOZ5qVDWFArnenFApj5/85AMAwNOP79Fbjb6rUNUW3kus2wHOqxTSRWK3I9hzsxrzjqxNRiJBAZMK530DYQKq1QjvSPhl6Aya1YihN2jaMYvl0A6thN3XgBVQV6SoKmVAXTscdw0Fs98bVFcD7cyOCrIisZrgJYIno2e97XHsNMZjhWZL3qqx18CrGmHtUV/1GHtDu5cAhAqQhrZmOBQI77Jy6AheFPuOxFvCqEj8REXotYXrNGAl1NbC3xuoS5tCZADCUP7BScSThtxYhJOm8A5ewDQuG5C2T6+kFA5BrRz8roK6GOF3FUTrcigV2+spdMeJII6oqCwAiLcVYhug17Qb7gdFsMRRZHEaoUigJo6SxF1al+NyZpGYtQOCoLAbDWG34iAJspiEc0TtMb7cEPzvGz31rYiIHbWXeXPRSsi9JtjclZt2cZnTWIcclkHdaYSnI+zLNfyVo3ASKcSJem0I3qZIDEaeJMKVy/E+xSGFyLi0wFHT4rAJQJL6rz7XGJ87asNRQw4JLhcEzE5gfObJgOgl4tZB3hmEjYc8KoTWTwtHGSGSGE9sPeRBIdYRshPwmwB5kiRWo4CYOKjyqCCtgNt6yJGEa6KhHWwxUHgICidB7VKjgNsEKqMK0PeKhGS2Hnqn4NdhEqEZWRyFxG+qTxXCRYRf0Xd9FCQQ88RDdtTnBBMUqF9LuOd0Xh8E3FMP81LBXwUSLFER6l6S/ZLCKmAVKTahF1k0Rx2oTcHQ0KpOwG4j1IAEKUywwKNAqABzT+PNsDbXUp04VqI5JkiliAgVQeCCIhgk3xdMRLUXGLcR0gu4JqbA9wSNNAeB4TqifSEQNeAbkECOJpibtAQv9E2EPgj4BjBHGmM1JFEWCYwXBC01B8Bu6T5pCSZo15Q2qkmoxzeAJjQ+fAsIR+I5IgLDFYm5MMxTDdQ2zicYytutkEVb1EDp3Qqo7whiGPR0TZ/S2mBF0NJxC1RJ4IbzrO4iuudf3bA0B2C8ACCoDBFAAjKOznM55kj/o0AWGKp2EVEJ+BpQXTqvqA1mT8+ArwqIp03CMABCEjHKwek10LyOsBuai6EC9DEiVGIm0iJchK/TRnQX4RsBNUQETc+KGmKad2ImiiPHiGAE1BjTHBPQp5gFhxgK62sB1afN1obmpDnEDP+UlurmawF9jHBrqq/wMUMuGWI7g8ImESLqB2SoadCUHws/SQ9IRxDLc8JFEJN4D8c0FVHkNNxXQZOQkU91yHkkcR5pqc/ykYzEmXiPiwmSKyB9zPVjHwGPSUjRkx7ATON0HkCGvJaGdAnX5bqzyBKfz/aemMqNcuqHB9BWTs4Gaoh556sUIopFfvTuoTTvNOiL/jrHOZ2VfcZIpjo9zONh/SeobYbcLo4fnW/6Xx+/xeO9Niw7Z/DT3Q0+PV1g9CrBMAR+WV2hToYSe0g+1Rc4DQYvj8SP64aKYgaKiNEpvOlbHPsKn+qLrLhpR42DDOisRjdUeCG3sx3scaDu60eDwRJ8xY4a+75G35E82t2pJQXNUiwiCLwxK2jtcTw0EAKZd8US28FJfOYvsrAGQzlY+pt3u52jBaQfJX5t6W3lncK9auFOGgcn0XcVbGdgR5J7dzYZDDLiF5YUMQUAbyW6rqIFDIsaWTUjyvddRbEB0/2sHHk3KgQn0RWB1E+6QbASQ2/gncy73TsVEVJZvtcYB4NgJY6nGmFUUxmdxsuwRegVbK/pvsSRusUawUmcFrAQpIU374q+cQTtZb4SAMRRkgETBYbeUDsSd+f17YaMglHCGVLvHDuTICfp/p4MjlNSDe1VJGNAAhglvEoxAAeJaAUG2wBewOkAWIkuxdU79TR2I+/WBgExSOIZ7Wj+eBFhdQUMEl5SnuN9TWm9gO8VfCGDLoLAwUqKSWYlek8wUDgB5UgVc7hrIKyclNmkgmdRjwB4SeVSTDCBUEBxhBUIiVfEMbGcryCsAIKAjwayl/DC0DkAUFRHEQRxp6KBHCQpgEbAJgPUS+R7OOi3t5LyQ0VGijMIMiKktD5xl4SlusZR5h9lOZD33SUjQDiqs3ACYWfoh1bSAl6mRXx0ZlrsjFSH6E1aNAiKscefB0kcJUvlsrER76s8/6QViL5K4wvI1AciEncu/3jyD/UoIVkN1FI9pROIB+KTcXpa+AhAJGVPKxCTwRrlpI7phSZemkhxI/OCS0AeFWKvoAbiOk1cMUFKpYLq4KOBHAQARRw2r/KCDykNIhA85RVSzDocJbU/cbQgp3YJD6gTzXUIgTiADGsnKP5lAKKNqTxKiwDEUVHeAlAHRYvLo8xGGatMhlFl/pawgD5N44YIqKNMyq4ic7VEcV4E+ixi6ksBRCEmgzIt8FnJlOMR8mJbBOYR0Tk1pDkjgOjTnLPToixiWuypUeRFNE1KXmwLoloGEFSPn1+eZ2kuikhcOlauZQ+T6pE9ellRs1xkBmSuHC/uBRI/LCEAee5m5VKRDCNeEHLIT+4ji2lx66Y0mTdHQzBx0wqOmMjzi+cs8oKU+YnUPuQ4jaFY0WSDIZXHoCBfi0cX1l/kiMzB4+8CFO6i5DWGef1ioN/soEXuj9xXnJ6NljTFqG9Fzqcsjz6QAZ+fxUj5l0ZFFADUlC9fD5xvOscL8LJfYrovqKnOZLjx95j5hFmxltOZOR+RPwczpSODmd7fwfC5NIbpcxQCAnFS15XTOHK/hPRs8vXc7iLNg/8RExKAeZmiKFuV48d9Oh+LbARBFM51kfskpAVDlJNBOuN1sgFVjm9pqHIZYjKYOL8oRf7P6aOYzpdjwfmWfc7P4PKYjDruQJGMX3E2Ha0L5l7fd3pOyzrlDM/X53zd3lYG1xtIeF/gryAqM2KOjvpdO95rw/JJdcR/+O0/RR81KN4jxbBjwZtToMV59oYkAR0pYuYMlp5Evu4hM4QVAFo5YghmpjIbIDIUkiG2BK1UM06iFCGfX5YnRcgcSiMCbPHWCknVlQ8uyyQ12wnKqSBFgEsQVf7MUFqOj8iCOiz0wn1SxoDk/9w+rm/5AJTqtksYKtebD4YSc4xHvs79eO6/iyrDhik+osswW24Hq+kuH8zyewkhXUJmy885fuAHUzzEUvwHQIYJZpXXBBfmvmIIcdnPDNctYcdcr5KvyX3K361XiACMDLNyGRpbKg4v4b9lfqUQD6dl3plJsGieV1LEHCaGNwPLo3wtL8c8xglmzfH92INcQnb5Xm4//39M0ZbzVwV01geZeWdlX/JnPpaQ4DJ/n9RVOUZgVlvmBXrR+BIyzJDfEh7LarIMtWWo+Tbx70rV2RI+y+k2RVu4X0tIqvUKW2MxpviTJUR4qbobFnMtFue4L8v0zimsUww+X8BeAeIptSm2Hdffe5nhqwxPncrm/Kff8HOKx5w/x8Gr5KT2uzz4flbONQVsm8swgvLSspw/9F+lulgW80n35/HXU9/zzBmTAm+MwJjG17KyLei5YAXrUmVWFu0E0ru6nNNp46s8LwDY9N35aeGeIa6FeyArz4qpj4UAxlKtVsQZ/HXGyeJrKmK0pFj8AB7KdROgTbgSYszwTgCCQ944mUO60KCKuRJoCQct4ZEMW43IYV5yfbk9zKXiPighoqV7g/stt2Fxne8tobVIdVDT+HzpoxzfvABPf6WRUIiocBsz3DRttFEWcXZtBl8tX8jlef7uBKDCvK/LPsE8j0mwaeqnWT2KMRRBPGgq/eSVVgTYusr50b1YpEGCzaa2l3UrynqIcY1TtmV/FGMuyqQPb33Yd4uhX7bvQQgNfvbCfFqW905lLuYfSsN0UdY5A4l3FB60ozjBOz7n/mORtmjj1K1n4L+5nMfPvbXdZdpy7v0Gx29srP4VP8q18u/a8V4blrVw+KPmV3jpLuAhYQQJfhxDjT4a/J56hWOoUQmHY6ixlgPuPEFWt7JHHw0ZcMLh1m1wqU/ZGG2Ew0oO6KPBK7vFpb6FjSobQEMwuE4Ks2/cGis5wkeJlRrwxq1xqUiw4BQqSESo4k0rRcDJ17BR4TJhd4ZgcjopAozwuHerZERKNNLCRoU+mGw4hyhgpIcRPqvbhihQS5fzPvkaQ9DYqAGnUOXPSgTYqHDvSPnWhYl3Sn3pc17lcQoVjKAyPWRO03mTy6U2kvFuhMfR16iky3kOwaCWFkMwaNWIzlfQKT4o18GIgLUecGdbbNSALo1LK0ncZeeabGRLRNgoYUTIRizX7+hqqqNys40AFxV8FBQ7NCh81NxDiohP+wvU0qe20IPP9ckbDcqSaI+rUzsVTBpfNqYBYK0HhChT3NOYub0HVyXF3HpmVAMk0iRFwN6Rp9FH4umu9Zh5w3xfLT2GoLLxrpLxfW8bNMqhVRZ7V2fO7pXp0PkKe0fjoYo39eB5I4TqyYazlh5j4QZg3jKX56NA7w0alYRQkrpvKTLlosyhZ5jHzP9ZPIjms0SVRHQ4pM7oFVba4mBrbMyA3uvMSSaBH5Hv400T7n9Oz/WvpMt1ODl69nkzpVKJH5n40mXIoUnYyOW8tPBwUeV+GoPCTU3P8u2wysY3iyFlzrKIWGmCOXO+JSeY48eGKLAxA+6HFpdJMMkXxiQrFXMbKulwtHU25mrtckzbOrXNJng4AFxUPXZjAxsUWm1nmwUrPeJ+ILi3kgGdM1ibMQswLTfJeAOM82Lo/OA1PXdh4pRzep3y5c0Zl561kq/tgsyiSjw/+VkGgN4Z1ElAquQwlxzsTTWQGrAnREmtksiIIyi/TBswALAyYxa1YQVnFjWiDSWBlbGzDSnrVZ7bUhBnuyl44ADxpjnmLnO+6d0d4KPI6fN7M6kx85jUaRON68DPHSs5+2JTpxT30TIggjYOtAwkeFUPiFFMBjLma27rVRZu4zbqot6j09DKo05tYlEqfo51ahO33XmK30t9JSEFoBMlYbAamkPvBAGjwiwdc8eZr808a6T21UklmXnXHPOXYwLLtCFnlJ/xuo32WczmqxxGeYxJiIrrw5tCY+oTfqYjpg2mGAGtQt70KTnby2t8cBoAOeRQyQ02hYr0kqvNRxkmibnV/J5Y8phLZBVvJE2bafPQRWWYmXy+2LjhDScK40ObaTKVn+sGdi5NHPdsMxZhd2b2QsTE5y3aiHyPeGCVnCVHuvUAACAASURBVBOiyRth5YbD8qEoypwb62J+rWxQmR5A5uQu83vbUeb/wNj+isdyo+LcdbAhPOfZLtPMNnPK7+8q/wvX9e3tfaeR+9fH13q814blJ8Ml/rMf/v0cMsCll5dWAVp5nAYyRiLox5Ff+lLErD4G0A49K5fpFKDce5ljua3bEf1osugEv5hdgp5WFcnjU7B0BVM5Cg4fKeA6i2SULzKZQgWM47SgL39kYhBQOuTdcoamTrHLkM/HIKb0aZdfygg3KEgdMo9MGroevMiwVJWClkNEhMSvE0A+F72YiUlIHREDsvCCkNN9nCfvEPOut9RU5ux8UjELdrpX6JA5fTEIxEFBNo5gbSnIeubC1T7DUx/ET+MfCxEhmG9XQlkZtgoQf1BEhCTdL1aOoLCJq4YICglQvrzGdHMKKA8Vp91zx/eJKVg778zLSDv9nF7lN/m0i+8SpFPH6Y2pInEOBQgqWKUdav5x5T7Pkz3Vm0MIgNLKXqZQA8RXo13iOO0A8/1iUafyN85NQdWRAk5HnfhgMX0eE0+OeYUyZm+FcALRxCmfOMnpz3btGTKkE8zTUL7QMe2sT3XherHHgKFAspeIJk5p0hwUHohVLHbRxdyrwm32DPubyuDP5MWJk6dFReLsAQhtmH6kfXFP+iGWCTYcasb/oZCDn54fOUiEJkD2kniAhTdB9TKHqGAeTijWyizPX3L1Sqgey/5HmWC1foJQSVuEBEj5qoG4erM+QBozB1q8aQo7EPUUyoIhzRBxgii7xEc0U1vzHGPPV5hCHTD/SUTkcwAQdIR0IgUfp/k6cX9oXFVP9Z/BLyOIq8hzLC2K1Ji4h57gl74h+CgHfc+wTH404xSGIwuKSEoTBQrYaeo7rpuY+i0qgr6WR9BxBpXj9uY+TPOcYavcXmmpHER+Rqf2yRRy4pjCXWQoXGo7e2qiojFkfiNf43qHivpQWuoX5muJOEFPARA0MtD/IeUTDF3nvUpfTZ+jBPrEJct8uASLZZgltYP7CAgcriP1p/eAS2EiOFSJr4A40nef2uFHIDT4yod1xbOWyvNIdTVUjygBWGTYJr9j45jqqwA4GkeR5kpkyC/bXZH6MBt6S/iiAEQPyKqYe0XYjRmUOsE9pQVE6huumyhhxDwfijnB8PIo07POvxc859WUB+cpLSYoKcOR07MRDPK7kH/iZmWEaUxzU8N0D0NVy3PECUSGxE5GUlovyem3TDA8ZWkUianNZd2m36apTeUxM3JKL/Xi/pkxlo3OIt2yTstzi/Ie/A9T/z1mGGeb+xFj7Fzej9XjbP2LfN55LNtavI++qNfzHIfyXcfPvvQdfwlH/N0ON/JeG5Yf1Hv8x9/7X9FHgzGSJ8ODdzcT1A+0q8//2dtohIcv3hI2KhjhyStZPJXsOfFRzryO/J1370vPQxmzkvM+p5h6Dg7J/z3kLA/2DnLaZV5vg6QyxJTqLVI4Dp+9duy5mtpK+fDOOMNslwd7e84pspZemBBF9iwuz5X9bKPMEGAfp/Hi9pSfy/w5P/JWzvvJFZDWnHbx1uV2L+u87NPl8bY0b4Op8nUXVa4bjxHXpQxPU35+rB7Lsh7Oh4dz57G0b8u7rP+kDjsp1S7hj3zEYrzPta1s37n2nhsb9hQ9Vu/H1GUf66dzsNxzSrnL/JbntQzv7M/l8bYxWNj2+dwyv8fG9lx9H4MgP3Ys+3NZ9tvmwvL/Fz3YY1X+/6L15TSP1ftcX5X9zJ9DFKgKDxF7f8Qj8+5d7V16esrPfL9+x7icVW/G3KNUwnP5swT14bJM7gNuE7//XV4YixyaQYh0vlh1xsLD9q6xzkVymqL+EfN8sfy+yG9cDsHi+6P1iHigxPtljrNz71x259r/tmK/ykJzaUQsJzHnu5yvcTK0zhoz5f2Pnfsq9T1XP2Da5OTvZ8bsbJ3KNp5NwPnFeTe8w2A6+3h/gTF+pyftSxhNj5X92O1vHY1H+v2xMnKeXyLtFzME351myu+LzK9HYL1/fXytx3ttWJ5Chf+3+yYOvsYYdIaqMcSRYXtsYGgRMnSwVi7HBmO4H0PaGIrHhsrJmczpKxdolfQIEOidyRDMSvkcWxHALBQJMBlIDKNb6ZGMjGygkkeVYqKZBxCx5eIzw5XEFJ6E69coizHoHBqFeXAcvzBEioGnRJi4fFwPUJ+VPE8AOdwI3xMgoETIHEM2FgJEhlMtDQDuQx9k5uSJxXcppnAjzNcLcYofNyTv8zLsyHLBxzC3coFd1skmvtu6IojtYaxmnEMAM1gaQPxHPs958qGKxRJD38r7VTKISt5kaQToAurFeZMX3s/4lgAytGsZksQHkcONOK8QIvEEeQ7YxD0sy2Y+YRlCpAwpwke50OdFG5cnRIR1KsOzyvt5Ma5kzDHWQtHGKf9kaHM/JDXeUpWXuaC88cH9znMo939Kz3xEkfKXRR/yIpzL9ouxLDeAyv6aoGQit6XiuWl1XryTITLlKQQe5YWWEDOGxpX9WRqDWoU8N/j+EmLG8DbvH3JBAcBoD5vixEkZZ2FBlApwKQadlCErFzMSgutZtonbSeFGZP5eps+Gjoz5emnkMJSP4XeUX5y1LUZAKW4bXfd+3r8lvM1UjhSUQ1k2qR+zscRplSZhM+Zkeqcodl0K9RKLeVkKsTF8T/B7SJLL5VwYE84nG1ZRQCo/W0SFKGYIiwzzw1TXEsLI50mYLQk1LfqWkSUqKfOWfFWOacfQQyFBYjPs6QcIcRJJmIlF20j5uLjfpy8RiIWyikjIoBLlAgDBJ2lMgclTDYCUuWI2iLLhWloGiTOaxy8tnJchVoKThDgpeJZCBYThTKT7L3qoSMgTYEIt8MLdT+XMQmjE4t6FYZ6vy6ltZ60EXkZweVEQz5WRMRHkJfeL/AHMlYSKOi7LLQ3Vsl1cfiEUNJvQ7OVjvmbJtxWYoVdEWd+i3pxmqjPOW2lRnPfK5XuK7yl/wfPj3J7F0gA/t5nDdS8hrY8YNGLZPwIofASPGolldz5qUpXtWFqYyz5dHuHR5k31fqzML3P+XXkux/QLGJDltP1dOCIedxT8LhzvtWFJC/WAz/oLuCDxzdUdAODT7hK33Qp/cPUSe1vjuurwotviO5tb/OJwDSUDvrt5jc/dBgdb42lzwK/2V/jm9g4vuw1q5fC83eOjZoc72+JHb57h2xdvcLA1emewMmQMfrTaAQB+ub/CtqKwDit9xIvTBr9/cQsA+Kxf4arpoEXypoF2pI9jhf1Q428/+RQBAi+6LVZ6xEqPUCLixhzxw/0HOFrCYT1pjuitxn6siUuXFjFP2wO0DHhaH/Hj3TNYr3DTHPFmWOFvX32Cn59u8OK0xR9efI4f7Z7jZCt8uN5hqwd03uAvjk+xrYd03wlvegr83GiH3mk8Xx+w0iN6R0brfqyxMSM2ZsAYNI62wrPmhJf9Bmsz4OSqbBx1tsXajHh9vMBFM2BTDeicQWcNblq654PNHocUzHvf17hZn3DfNWgri3/h6hV+ePscT9sDbvs1OktBwJ81B/xfr76BbYrLyAaBkgGttqikR5VEeH61v4IPIgejjlHgpj3hrm9hitAr/9rznwMA/rdffw+resxlmhT0mj0VWgV8tKZxf3HaQoAMiVVlKWj56ojbbgUtA37/4jX2tsZnxwuszYjdWOOmPeHz4waXKWg6K/5W2kPJgG9u7/C0OuLP7z9AiALWK+z7OvVTjW9vb/Hju2cwkgKN74YGfdrQqLWDkR6f7C6gpMMHqwN+ubtEjAIrM+KPn/4cPz0+wU/vbrCuRqwNGdNHW+E4VhAi5nEfU504YD3DyJ+ujrjraVzXZkDvDV4cNniyOmKlR3xyuMR3L1/jL+6e4rLpAVBs0G40qI3Ds9URnx22eLo64k3fQomIXV9nHtS6Jv7h2owIEHh1WOOj7R6/vLvCty7u8eK0wWA1rFdYNQNOQ4UQBS7bHkZ5nKzJEPjvXb/Gy25D4wegrSy29YDr+oSf3j2BD9S/tXF5Y+Gua6BkhA8Cz9ZHxCjw2X4LJQOFxzlSMPKLZsCuJ97jZdvjvmvwLz7/BFoE/O+//k4ObbNtBrw+rMh4ExGV9vjWxRtUyuPHt09zLNFa03w9jSZzx757/Rp//vkH+P6zF/jx7VP0o8nw/e8/e4G7oYWPEidr8KQ94WdvrvOmyUdbCj30q7tLXK8p8PpxqFBp4hj+yUc/x//x6e9hsBpX6w6XaS4Z5fGHl5/jT198C84rXLY9Xu3X+Phqh892WzzdHEnpmjcFgsDFqoeRAXddg2ebI/ZDjeumw2f7LW5SEHubVLsB4OnmiMuqxy93l1hXFqNXGCxtCK5roh3UxuVQRZtqwCe7C2gV0FuNj7Z7BAh8ttvi44sdPj9sMq9zVY9wqSyjPP6Nb/x/7L1JrC1beib0rS6a3Z1zz23yvedMO03ZZUOVpepAqgLKBWIEJWaFGIDEBJiboikxQ2LGACFREgZmCBWIQYkBglnJjJDKEr3KOJ1OZ/O625xzdhfN6hj861+xIs4+99738j2nX8pLuvfsHbFitRGx17++//++P8Dv3X8Lr84rKBnx0WaPRlv8P59/gF1L9+exr6FkwK8//Rz/52cf4XrV4Re3t/i/Pv8Qv/HiE/yj1y9oUy5I/OKTW/ggsa16SBHx6WmH41ChNg5GBpxGg29tjvBB4n5ooGXAi9UBf3T/BNt6hAsSg9PorcbT9RmHocKfefIaLsjssfCqW+PQ1zkW8cPtAYOnDcLTWFHMptX4zu4eADAGheNY47u71/jB/ilq7fD6tMKuGfLz99Fmj++9foa/+gs/wMHV+Oy8RastuhSnujED7scWb85tfs6+s72DFgEvmgNeDRv0XuP7t0/xwfaAP7v7HP/Hm1/A0+aEK9NjrQf88HSDXdWh9wafnnZotcWr8yq389PTFq2x+M7mFkpE/N+vPsRNe4YQEcexxrP2hEZb/OD+BjftGcexxqYa0vNH7O1XbQ8lA14d1/jlmzc4jDVOY4XBajxZdfj2htYAPzw8wUebe/z+m2f41ZtX+Ph4heumw8lW+I0nH+N3fvJnvvS649tX9/jB7RPEKPBk1eXNzrUe8Ye3N3iy6nAaK3y43WM/NHBBorMaMdIzfXYV3nQrvFgf0TmT34/fvX4DFxXu+jaH7GxTnDgA3PUtSs3ezmr8hecf4w/2z2gMhxrf2d3iTb/OcmFSRNTa4a6jaz/YHPDpcZvHd/QKNy1JjL08bbKElxAR23rEaaywSeuD82jwfH3C4DV6p1Epj1Zb3PYtbtozfJR4fVohRoFfuLrHyVaIUWBX97jrW9x3DT7YHvDJYQuANsUrTZvGN+0ZLkrcdQ1aQ3wI56HKm6aNcdCK4vrPo8G5r1BVNO619qhSnHI/mvwu4E3EGAW6oYIxLsusSRkoHjhIWKegVMAwaNS1wzBoGONnJGXeS6ybMSkPIL37Js8M3nQzxuVQKqUozKbSDl36TeJNNedUvo7jjPNmbgq3ipHer5rDdRZxslr7XI5zEnVNIVhahxyPy5t0fI2zGlL5vBnI9dLfKR5WJj1i3mCTuY3I/QgpllmANs+mTa+0Acqb7MsN+DjpLHP+0h4WRRmXvnMZEPFR2/qbkH6eXWFF/BNIxfu+6Tt/fhf/7b/317FVPc6hwhu3hkLAM3OEER4/Hp/ACI+jr7FRA/auwU73sFHh4BpU0qGWDgfX4MacsHcN6kQIsndtJjn5sNnj1bDBWg8wwmNIARZ7R0jpB80+s7sebIOb6ow720KKgJ0ecEpBOiWTa6ssaunwcbfLhB6MLoYocHYVnjUnag8ETq5CJT1aZfMNGSBwsERO03uDZ80RIcpMdPLJmX7cd6bH636NtRlQKY+zq3I9L9oDzqnso6ux0cMMbTzaeoY4cjuZcKVSHidbZdKOEoFc6REnW+NJc8bZVRgc6Vg2yuIwNthWPe7HFmtNRkQlXT4+Bo27vsV102E/NFiZEZX0uBtaDF7haXue6WvKNK7WExLMY72phkz+wa7Mx5E0QV2Q2FYDtPD4wd0NAODF5ggbVG6rDzJriTJxyXFMBE9pQVEiWaexygQfx4GMNf6hNDKgswatseidzvn4+hAFDn0N5yV2qz4jlJXyyfgKOA0Vdm0PH2Q2/jJSF4nddFuP6J1GNxpsmoGMX6dxf2xQ1w6bZsDoFFyBfPKPGzOpMhrs+YcpGUCsRerSj6eUEW1l0VtNTKPNiGNXY9UME7IqIrQK8EFgsBpNZbPx4IJEY1z+cRsTOkSIJ1AbyruqLU59BZMMcCUjBkdkIUJEDNakH2EiholR4NRVMMajqUjH0nqS1nFOom1s7jv3JQQJk9oiBMU/CwFUxiECGEeNuqLPNsVjCxFhrYYxDqdDgxgEtlddvh+sVfka/qEf+goxAHVr87uM0TtGBoWIGPoKq3WP06FB3drEWErldqeKJCcASBXgRoVmNWZSkGEgAb2mHUkWSUSYFO8NAMO+RrUdobUnuR9PCBAiaZVW2zHFkWvUzYi+qyh2fNTQxudFgRDUxxgontwOGjLFTuvawVuVWU6ZcdWNGtEL6NonBIwWOSJpp/KiRWkPbxXCqKBaR/HaKXYcAHTt4QYFVYW86AhWZn3SGATifYXYeIq1jkAcSXNTbS2CpcWbTHHm8aQht5Y0WgdJn/cGYuUzshY7NSE9EYCJEztqSAhSr2iFk44LKxEbT8gSAOjUvl4BJkCcKT8jItEEipNmtt1xiqfNW/eKNEYpAyg2MsXkIlAdSPIxUCSnFFcecq8pns9EwCPHw3LsbDQxxfRSbK+IoBjnFPcZWjouBwHfRorPTTGzvo5ZUiVUdC5UVB6Q4n0DSEIGgFuFLFUTVSrHA6FJcdUpRjfHIosivraKJImT2gVJ7STtTpLhoJjZCNUnfcYUI6fPAnb35fVG5JhikCNy+wWofJ/bTvVn+Ys0VapHltSQFikmHJNEkIg5nhgRFBcuyI2TJV4y0CMBfaK2ZB3GQVCMbil94qcYXzlSrK1M4xsFZmNaMqJS/HIacwkEFaEGkcebJHaoXSwrw7GnqscshjNqbh/F6VKFmKRlONaWdRnFNG4iUhmEiCJrweZjfD7lnyFbxVjNUK841R0FshZkqXW5tFg4fpXTEnQWcRrzHOsYp7LL9jBYxXXnY+9CO/EQdCY0FbO45Fn5RZnL2NtleoAMPoaA8vcSwX5Q1vzgA13JS1DtW9Klfj9IDyzUh1n+9//i3/ndGONfeXttX2968usv4t/4r//WV17u3/9n/u7PvG/AN9yw/ODP3cR/47/957B3LTGQpti8MWh0iZ2SGTtLxtEAgVZZ2gWOEo2y2I8tIXNpd7BRDrVyGLzG0dVolE3GmJy5vUpE7G2T2Q1Z5oMZKHtvZhIe7Kg3BpV3vkNqM7NwsrsmG4AAshvjMn6Jd0u1IIMxRmIHHLzG1pCBZj2xNfZez1ggXZDonMkuvUoQkyMbNOzuW8apsKuwkeSaye6y7CJbxi+5IFFJMjxN2j1ltkQ2QGvtMCSGPTa+Bq9gZECtHTprUGtHRkFCUo30OI71xZjOkqXPB4mhMG5yfGmSEVAionfU36crQqdu025xncab+wFMLryNdtnFFZhkL2K6J8ZkWDeaGDFtMsyZnXFMBjgzC3ISImZjc2JKFXCJXMonl+bB6WTsTcYfu6YyMZVMu8GDTSymKmBdjVnvlY1HrmPpCssGSukay+VwXqOofucljPa5bibCkskAdF5ml2V2wdQqZHdZVzBUMtrNbrSDU6i1z3+dl9kIZwbKmD6zZi2/0Tg/b3Tw/cFGaenKqop7lu/3kvmzdDXm54OfRZbjWDcjGbR9lQ0vdivl71LGbAyX85/j27K7KfL8NRVJjrDBCQC1cdklmGVFrJvce9noHUcNrUPa/Z6ub+sR3VDlHXHugxBY7LBT+40hgjKtA5ybVldcF7dd65B36zl/uXsOkPEsZYS16oGrLO+ss3FJ/UCuk9sLIJfvvcyujiU7JURE21iMVs/qFoI0iGUy1DmvMWRkSxVgjMfQG1S1hR113lXn63kcnZOIhSRJDBLaeBrv5PrJu/5lHnaBpc0MP4939POQBzbImfCBnxVGr6lMMbnyinkcaOR71CpUjSOkoWAGBSbEwXtJjJ5ekYsuMHMv9k5CqpjZPQUAxfOf+hiDzBsGwQtIdr9NBGe8QcJlUfuRNxj4eOSFP0t0JPdXLkuaJH0SRHb3lYloLaaNkmAl5XMyu6ZKE+D7L++sJY1HsIqMBjVZeqzpzJsaQgdqO29EABA6uUn7hStvQNr8mJPlZXdtAJmYTkzfRe1JW5fP8ybHEsbhMpk4rtA+ziRyBcEedRRz99cgCldeTHkKortZPSUhWsDk7lzKqpRGAIrPEXPXWIEcg5nJ1kqitdIou2hwJISLZU3K4WFD7F2ssGxMXzJs2HBbGHLAZPRNFRZtXFqnwFRB+bE4Vh5/29+HY/BI38rzF9Jj2d8bGuR7f9HGXP77lLNsd2mUfkET5nv/4c/esLz+9RfxN/+rf+UrL/d//Gf/859534BvuCusDQr/6PAtPK3PGILCJ90OAHBddbgyHX50eoJKenTO4Kru8P3DUzxtTnBB4ePjFWrt0GqLz89bvFgd8Ml5h201YHAan523OPY1Ku3xS1dv8PHxCq2xRNhjSUrhx4cWPgj8wm6PNz25yO37Gt/aHPGj/RMIEXHV9LizJhshMi0o19WIRlv83qsX0DKgqSycVxgdIW7jqPFke8507qfkblWp6Q0VosDnxw3FSqb8SHlXlcUPPnuKurFY1SP+8HCDzWqAVgGf7bd5Ufd0e8J910CrgPNQEcIlIsahglEBL/sNnJN5MbBpB/RWwyaDpTIOXVehacfsZsJxXZX2GJ3Ctk1ug2nh2lYWr48rrGqLz+62WLcD+tFg0w64Pa6waQechgrnU4PtpsPnt1tUtYNRHp+92SFYie1Vh2HUacGrUmyXgLOqcAEB2tWQUSUpA4QA+t7AGKJDX7c0Jr/3Bx8BEdi9OGK0GmOvoStinq0bm91CQhD4/LSDEJHOR6CqPGxa0NlB58WSOxlAB5jG5QWbGzR07eBGDV05xCAzNXsIEi+PBvACcktolpC04L19vSEk6KyhtpZiu0YFWfncLmbwrdcjnNXwvYJZUTluVHh1R+hNRmt4QSIBWXkgYmIGTotCZunNMYCDgqjSYiYt1uTKIXSaWFRXDvGoITaOGHwjLXaY+Tf2CqJ1hNZUtJBSGbmihRk93LQIla3D4WQg1xaHgwFanxGp0CtajAlQeWlhJRKj7vHeINYBckUoZBypzWIUiBsuJ1CdPBZVmBYYA8WQofFUtpWpzaDPqW6MEqg9hh9sgSAQno95EY1BQrR+WkA6AXlWhG7s/FQX5zdTzFR/VAhPLMY3G/itTygWNXO810m4nlhvZS8Rtj4vuERHYx83DmOnCPEqUDD3Zgt74wEdMHYqo1IiCIxnAfvEE5IwCsSVhztohDbAdpJYbzmJCJuYmmMdYM/ExCtHAb8KsL0kplsBQskAuLOEdHSekSkoWjjKka5HYj/2ZwlhBfwm0BjpiHikefHrgHiS8E2YYrwSuhLTWI2vNnCriNDQ99gTKuauQmZVzWylBwF/HRAHCXGmz/5uhbAJE/J0TG5bIS1w65jQP5HRm0AetogmrXl7AawisYAC9KurIkQvIAyAY4qH5IVTFYGEsEEAskti6AKQCbWCBORZ5Oc3qAh5FpCrpBFYAcIis6zqTiBuI9QbASkJ0ROJ1RmJqTVUgDAR6iwQ6gjVUflqpDGKAhBrOq47wK0BkRhipQdcM6FwzBgbaiApb8HXVI8aqA92C8gRmVFWWWqLT+UwcuSbos9DKqsBzJHylIyjqqe8vqF67Bowp1TmSPNjDhH9zaPL5Xcm3QGOVMsIIU3GhnA0Jtx21dPYA8jMtvqU2lxNqB4jmOY0fZ5QQ2SUjNlUeWEeFVDda7gVGWBR01gzC/IMMdN0jeppTuQ41U1zEOEbYlhmWgVpaWwz06wCVB8RlcjIl/ARwQioke7PYOjdpbuIwAyxiUU3GAHVUz3AdH0UdD0E4I2A9PSeCEpM96dPLMf8jBkB4WJGKzNimfqUUbkwjZ30Rf94XAqjNHJfmeWZEd+IzPbM81kaR6XBVJY5IcYRQU99BrBAUIt7MU71AciI5qy+EBGlmP5G+itdRFA0frF8n6RyIWhMqbx40SDLbSqM7DzXiz5zP0oUfZaWxxbtWdrTD9pQXE9tisiB4/nEF7QqAXzvC1/xp+mLpm+0Yfktc4//4Dv/E/po0AeTtBk1JALOsYa5cbBRz9hfPQRs1GhE0oWMBhJ0XSMtTqFGI8ZZPYfQonlm0/XE1mqjSjqXFWxUuTwpYtZpBJI+ZXqbKITieg0PgeYDO2OyLfOyziaApMsoZuVxUoiQSZeSU4gSq18a0UcN0ur06JOfCmtlhijzuLGGpo0qM96WTLglO26AmLHq8nXE7KryNSVzbkkCxN/5L2tzMpsu94O1KJkdl8eJ3JH1oyy00xgk7bdCl5M/c11cZv2Rg0LAOVDMHmtyKoQ85jNktGhnOW+EBKtZ/qUQLsXZ+hlTLydyxZY5sJvZcVs1Jl3QkPoeMgrL5Zesufx9DDoTUXHZJ1/NyKkAZPZcJrriOef2MtpbEjRx/2yUiWk4ZA8BPsZsv5y4/exdwO1dspjy/cnkWqydCSBrSS7ZZfN4p7Fj8q7cn9RGKcKD4yUzMCctQnYLlwViWRJAzdtM5bDXAx8LRT+lCJk8i1Hpsgy+d9gzYgwaza9ajH7+quYYYpo7lYnLuB9lTDePVUkW0CiL3pM+Y+lRweOWzyWEnZluL7ENl4RTJSPukiG3nOP5uNDf0lOCvy+ZZtmzgonDlv1aziPraLI2Jl87hqlP3C+dPDaUDPReSvGHpYZm6REBzAmYyjzM8db0aQAAIABJREFUSMt5+R5avq9CJA+TWIwFI9GXTJ8lELVk/bVFPVx3SZbGc5VBsOK9uUTjLzHfsh4k3xd8Lbvj87Xsls/yX3TtROAVo4AOc01GxYRTYd7z5VgCU1hJbvdivGTKqwq9SD4f0/EvnUSE5OtFnCHDSJJbMQgEOSHCjJi7Qi4sCmSkPkYBJGS6ZJ0tUeWL7NSJGIrX1xldXnxmrwApy/KmfPn7EkoqvpfkYQ9YiXnjEVTGA8bfOKHKGZFdTBrpTGIyaKK4jEbFOXnY/Pql4bG8trwgfY+L9jxmJC3z/zTpXfbQY+hhfExjMj5yfFFWjA9fLG8bI+Ct/X0n2vi+aOQ7Et2Klxhg32Multf89+/Rpj+G9PMcY/mNNixPocb/dv6VbFSdfQ0AMNJBIeKcnPlZSuTgG2xVjz6YbJiwkVJLlxbuZHTYqPJC7dqccfT1zMAJUWS5jp3uMaTF7hB0drlVYi6qDtDCh+uTIuDgSFCLF8G8iA9RpjxpwZkW/qUxIJOLLy/Aa+Vy+UZ6HGyNSpLY9/3YYKVtXlSPaTtxa4aZ4Dkv3nkRzPGUvCCppM/stLxwZBbc5cKTF9+V9BgzA++0qC4ZdJm5tncGjSa3496bvABmN+Gzo4D+dSIP4sU/Gxncthz0n9h5eWEJzEXoK+mhpcerbgMA2NU9Macmo7dcOHMaPEnbsLFcLt4Gr3M9zFy7HAf+zuWWi2HrFUav0Jop/k4XLKaDV2gSAQuXwT/qeTGdXHV5jAFaAHeWiBmq5IYcMS0sy0VaaaD7tCDjPnKdLIIuRczuv+wePjiNKrkBA8iou48CzitU2mWhdWDOpJsNiNQXdhmutEvxnSEbGxxjCyDHi+b6REQ/moyc8/iweLpWIedj5lxeBPOiiRfCfMwVRAvMbMsC7lqFTOywqi2YSZfrKr8TEYxAXcRzToypE1suEQtRjCnH0uZ7MDHP8rEQBCrt8/xxrGqlE8tymgMuYRgMqspN7umFC661CnXtZuQSY4op5XxTjCUTTYiZ2y+7rLL7Lv1Lc5xYWsuY0ZK5lseA3XO5LB4rdovVyfWTmU55HLiuGIGxN1A6ZPIJdps1FbmEIk5SGt4paOPJFdUL6MrDjal8NmjSuPLCVybWWl5QZ3ZUgNhVI+ZumxHZ5TMklDo6iXL7XqiQrwWQy6NCkcc9ODlt4IuYvQu4jMgswTIiWglZe/IsKGJQs/HASLcK5I3AzKcRmDG2mkDHvZjHlkYkV9PUoKV2b3mMYz+Tnm7uV+maWbat0LnN+VWc2FBT/0mjViT0Lj7UzE1arXJMsahfMs20XENCnCKmepN0hij0kvO82eSKmbWP00JfYNKbLcZxFi9Xjm/qM+nGpvMCcx1LNhxT3CAABI4hZCRUYK5BWbwkGH0rUTaOoWW3UkL64nxeANJjLtGt1OesO8vHi7q4D5OpNLWH82Zbt4jty3qW+V6Yyp257HKeAoksE/V1uu8eGDHFXMwvnLczlv3m62SRt2zjJUN22Zf3ibFM8/TT6li+rY5Zu5b9uHD9W9MXNTgfM/i/aL1/QlJcbGL/vKVvtGHZCItfqz9GgExalmqGHhFaSQilEgFj1A+MQ85nhMvoFSFXda7HCI8brWZIIaFZER4CHNXl01OnEnLHyAOAGbpXfu6NmSF85S48o4jlcU4TojXX1+RjRnjsDbESGuHxop60NRlZdUFmZO4S6seo3KVd9nKsPOa7v9koSEY6I49Lw/MSmhOqaf5cVNDJ8KfyuP1yhorx7nWJ/F1C8ZaIHp9Xgtj3AGT0xpV50rgzcsb1lue5TYwmllqbUwxqmPq5QDF53Eo9zbJe3pwoDdKL18c5SlSiEaPX0NIvxl3M0KhL0jDlXJXjyp95XFyUtEGS5u1iHxf3d4mu8fmyXpbZ0SLANXPU55KO5QyBaabx4OQSmlIiTy6U98M0XiyhU+7Sl8bdctfeNTJvViz7W37n+rhdy7kq26plgK3HzHKY31mFUc1GtlGTYfkuXdGxUVk2h/o6IUAc61y2oUTclm0tfyDfthYo1ySXPAwupbIfy2OMDC77Wb5nXDNmKRyA5syH+QbCVC6hZhxjrFW654r7p5TIudR+UYz9Y+86/s6bNmHRB1lstHCbsfjOxvcc0ZrQp0vyNVJGuLRhwOeXCFQZn8koW5lvYoOcS8ksV6Fc5wxF4rp4TgsmybJvHKeZ2ygnq2PZzhkzZG4LIJNhLgUQQ/oepvawZM2XSbm8wniJi+dCCEzu8MWCvByLLAlTbA7xtTQWi+dHFHWm757rSGV6PxmzOWtpwFwyZkpLaGaUifn1AAI/CmU+3hTgMsprF8kvDywNwEcNFTFvf9mfsr3lM7kwwsu4xQdtyOMS89+L+d5l4Cz6XQ7Ho6+7L2pkPZIWt9rD68Xi+xeo5+JYlJV+gbIulnfx+gvW8zvSN8Ww/HlP32jDcogGvzd8hCt1wjnUeOWIxvpKdVjJAZ/Y6xlS+fm4xVNzgo0Ke9egVZYMMNfgqTnh3rdopEUfDA6uQZeQsl9uX+G1XWdGVjak3oxrhCjwrXqf0dGTq/G8OuDlSG25Nmd0vsrugEoQqtUqi7Ue8KPzEwDA1vQZfRyDwug1ntYn1Alx21tirG2VzYtvG1S6hlhknzdHAMDB1VirET85X2FjBmzNgNfDGjvTJxbcGqPXCBD4sL3HydUZ4WS5k8HrjHSWhsKu6nB21czF8mhr7Ko+IYs+0+Y32uLsKjytTzi5Kp9faYu7scXO9NjbhphmvcZKjzi7ChszwEWJl90Gz9sjMdrqEZVyuB1W6KzBB+t9Jkli5NJFmd3WePF+VfWTS2gy1g62Rp0Q1o0ZUEmP3799DiEivr29w9lV2Q0uQGTWWoAWgfuBUOYlW6xExNFOrLCHgWQMVsZmwqLjWGFTjThbg1Vipi1R4H1fw3mFbZIK0DKgVg77JDNzGipctYSqsh5mqZcZo8BV3WPwGoehypIDvdO4P7VoKotdM6B3GtbzAj3CKNoW4TKVmFw1hYgwifBosDoT77hEgNRUFoMlRuNVZXHs68w8yyigTgy7g9VoK5vlR5yna1jrs0+xu9YrCCDnbSuLc5KQYOIhbosUMUtZlAy3+1ODqnJoTEKtE5GPtQrrlsbFqJDbTt99Xkgz8VHJKssyImNiDRbJqNMy4HhqEILA9dXpAerI7m4uSAyDRggSbTu53HNMMDPuChHRdxU26x77Y4u2HTNSLACcTk2mjVcqYBw1VqshI33jqBE81TGMaWPGTIyz532D1a7P13KccgwCttdotxybrFBVE5HNOBiYyj1ghQ1ewlQukd+Q9qOpHBG6CNIuZITSjhrBC5iaYo9lOk/ELURtHzyR4NhRE8NsY3M88thR8KKpHWyKhWYXO++JFVYm48TtK4jGQ6Z46TAqIAB65SiGOBK5TAwC4aShtxbeUiyw2lr4g4FcOUJ2BOC7BLcwKUsVZiQtQgXExForqnTcSojGIzLCxojhoCYWWWBa+KU44YwoDmpaMSXmXshIMcB8HTO/prhlmDCRsahIzLIrB7E3ZNRUCcFLJCvCJxSOyzH0V0TMWGFj4yFGCdlLuBQjKxwSe2vMSFg0idE1scsCQKyoLpnKdWu6nlEvaQlxdG3IsbLCE9ss91OkuNhYRcgzxe8GBTIwnYBK530VoRJ7K7HCJsZaCZgOsLsvvwKVPTHiAoAcxQxN83ViXJURyoopVi7FGate5HhFaZHRxShTvCboXEbjOA4WFO8ogLxgn7HCxhSnOqS54jjBVA4jlnJMY8GssBITK6yJs/hEjjck3UkqU450D2dNx2LuogDVLTCxxwKZFTaqmFlpAUwkPCKNhcAUG5oerxw77Yq+SMxZYcPimgvGDverjBdcGkdRUvxlUJfzCDeN47zwqYwl06yIyHGh1OepPZeQzrKPuV5GZC/Ul/+mZyX3U0zXc72z8eVH6h3G86xdy3w8ruU4XciT02JeSobYB4yxswK4svLiy3U+2t4/gelnqWMphFAA/iGAn8QY/+ZXXv43mRX2oz93Hf/Nv/ebeDluESCwTS6pJ1fj5Co8q484OTIijq7CTg+4sy1CFLiuOhxdBYpfs3g9rHBV9TjYGloGMvzUiM4bvBw22Jl+5s7pgswo1+thjUaR62IlPfa2wXV1Bkt/VMrN2i1FRO8MxqDwLBmDZ1flOB+Kh/N4PayykVYph9HrzMrKqZLk2lhJh7txhRBFdh+9qU9kJHmDnelxdCQdstJjNmZuhxVq5TJz7MmRgcxI6VqP5D6b3qidMzDSz4yhRpEBycy1OfYuKBr7keaA46f4eOcM1mZE58iA75yhNtgKtXbYmgF3Q5v1L61X2NU9KumyxuQydondUxkN2g9NjmNiJGFlxuyyerYGPkh8e0v6Z5+dt8RIq1we697p7MopRcyapWdbJfdXQn9CFGiNxeCo7JUZyQXVGWLtTC6urDHWp3wcmyQAbKoBWgbc9W3u1+A0dk2PwWlsqgGHsYYAcp84ror1TQ9DhUp7rIzFaayyi+qz9oSDrXEYalTKz2Lj2JhRCcHjWLHyOzPicn85noo1zbQMOFuDbT3gMNTZWGUXWGbKLSVX2G2T0Ql2+WT32N5qtMbhPBpskowKu7OaxPoaI7mVKhmIPTXtnrMBXTLjauVhZMAxsZ76IOlYMkbLtrCrKl/PbLcAMrttSG0encKTVQchYtbNBMgVtbfE4ivSs7+qRzIOB+bdR44DY2MdAFb1iPtzi+tVh0NPskJs0G2TnAsjcJX2OCV5mxgFGkPG37nQrmSXWAC4bnvcdQ18Yhxm7U4hItaVxV3XgBmm+9GgrUcMyZWa6wXot56Nezai2QDn/D4QZstSJ5X22XVYyUAIZooTIxIumdloa+NyXna7ZUOfGYh5AwMoGEeTAf1kc8Z5qNK8knyNFMCxq2dstgCwbkYczjVJ1BiHw7nGuh3QDVVG5uqkncdosfUKzqlMDOa9zPI07BZcaZ81SJmdNwSRDf22Hmexms7LVGZiB65cHp8STWQdPyYrq41L7t+0IcA6et7LzHK7WfeZyVmIyXWYSdfYDZo2FFx+lzLSP/S0sVAbYg7WiQ2an2OePyaHc1bljQg+ZgyN+5DclAFk12ghIuyooXSA94QsWlvEIqdx906hqh28p3dBTNfrVDbL4thRpw0OmTcs6sbifJo8kr5oMpWDHRJ7eiI2AwAhI9yoiNE2Tqy/xPRK1zIhHDMn84ZTDIAyHogiI7HAHOmOpdswgBgEqoZYi4UAuW+neypy/GraEAnJzVaaQARtKrliR5BskQARugVyDQeQ3akFtzMx/MYosquykDETvsVIZG8AaCMnu4RHIm7zAsIEIlHjfrBhVbDlZqOhZIVluR2k4+xGzOWwm3DAZeSSDabSLZVTMgZ5o4Vdpssk4nTuMurL7cQDZDWKyQh/4Ep6CWLkdnLbuS1LlFBg7jLOTL9vQY3LjYoH6ZLBWtZ7Ib23ATcbqwuW3zvQyeWh8vtyqt/Vpu//uz97VtirX/9W/Gu//a9+5eX+z7/5n71X34QQvwXgrwDYfR2G5TcasQyQ2LsGNkoivUCNAIEhxSp2vkKAwNFVcEFh72r0yaDovEGftCfZxa/zhlz6EvpkkyEZIpE9ZEKLEJK2JN3BLkiM0NmNMUSBo6UfrjG5CHIsIICE6pEEwzm1jV3m+uQaeBYxt4/JJ9goAzBzrxuDRiVJezHH6gWFs6twdhVsUNijIY1HELp5xuRCx32Am1wFg6RyOmdm7lZsZPggc10+EMrqo5wRnQxO57g8QEPFkA0hgGIdYyRj14pEPOE1IpCNMxskjmOd3fWOYw0lTZYR4fpYPsSKSZsRAGzqT8Tkcna21UwqxAeB+7EFM/aG5FLIBpst4vc8kKVOSkmQMsZxzG6KVTbakGIQI5C1NtnYIu3IuTsml82Gw9maLKXBMhXTXJDcCIDsIjamvYyxkKC4G1rYtKiMUWAs5pWNMTYwYhTwUuRrSzdD5yVGMZFwkJwIuREONs2bU7nMUBimPogc0+gS+QfPRYxT3GZpaHFfT6NJ107jnd0Lk/Hmw+TifhqrjFJyGdpLjEXMagg0J66YSzEbl2IRnvoqRCJVSot9NiIOQ0Uxl4W8CMcvcqLjVUZEJ+Rvao8XU8ys9xKnoYItjCcAOKa/IRkVLshcb4wCiZg0xSNqiiH0EkJQW46ygi1kOErXRTIM6JoYBZyT6IWBcyqXUxqWpSHIdXrF2qAmG2Wla6X1ZDD4dN+HIFAaXVJKeC8QIxlkbFzEQH1juQoyIkVeZfBYs5zGvmvgnKI8mAwpZ+kYLcgTipv6yK6ezikSXE+I74MNeEGuiOS2ScZATO0v20D1y5w3AsnYSEQ9sZrNbUwbJz6tnjgWNJOj8PXFHMRA480xoCwpwuMdvIR3EqeungxUFOvfZMDEIDCk+46vZzSYyhEIkcbJO5XlTbjvOd6b40fTHNJ4kNHiHHkjeEdt4oZ4SchscNQXRMA7ZGMlRiCo9NkLjFGnuFVqd1TTsxYdzQMZS5riTZPcSAhyYp/+EmkMIjNqz4iGUixrSEZOUCK3j40Ny+31AlHJyY040LyzfEp2PWW5ETaagJmBNcZpfBAErJPZuGJ5Dj4HpOfDCXg2xCImIyrVzddFSWVFOcXaBmbPTjdOxOJ4vven9kY2gCIItV8aWUAhmYIJpSwMy9LQE1HQD3H2+8ZkCGX0bGFUJYtjJjeSnq+SAVU4ard4wD4KCFnMARYGDI8HGzZF/zLpzEXD8hFLKDVSREzoZWlJzQwvMSO3uUxyk9JjcaJFH5Yvuseyz/rxPmmW91KpeWK+GsTxqyjj60pxHkLyx5mEEN8G8C8B+I8B/NbXUcc32rCshcWvtp/hldsmltYRPkqcTYWjr/HMHHHwDYzw6LzBTve4dYTqPTFnHF0ND4mVHPFy3OLanHHyNSQiWjVipUbYoPDj/ho31TnH15lkJK7VgBAFXqoNNnqEjwIbNeDluMFNlaQ/kpspgFlsWeeJQOhb9R4eMucrGTzfjOsc68fkPhzDByCjrQCw0x1ejpt8bAgKz6sjjr7GydW4Nh32roYLCms9ZvfNW9Vm9HGrBxxcPYu7a5TN/aX+VNCCED2bjOa1GnHyFarEOsppDCojuI2yuR52/2S317MzRAKUyHrOjsq6qvrswnt2Bi4q7EwPIz1uh1VGcUsWzSUhztHWuR8uxYuSXqnJ2p82KPzi5hYAIbWV8mjUxMTJLJ8cm7dJSPU5obtlfBu782oZsNHk0ntMKDijxcfkcnyyNe3QJ6IgKSI2ZoAWAXtL7rYukHvvVUWI+cYMuB9aQkISaQ7H2XLfGSFutcUhbXDUyuGmPuPsDG7VKmuZ0n00bVgwUs2xdTnGN70EW036ryaNNWuh1spBy4CTrXBV9bgfm6yB6uOkJdlqm/NznYPT+X5jV1NijZUYnM7XMHLNxiMjtiGSnqsWIevDAkTE1DmDPhnijKqyDipvVhgZss5qZ03uFxMona3JCDEbpPzZR4FaeQxe4WlLz/wruc4GY608ztaQu2facFkZC4mIU0X3TwS5yPMmDG+KbMyI277FTXvG/dBkoxsAtvWQdW25/+x67YPEKrX9NBL6zxsaHJd4057xRq9gvURjXHanBgg1v+vbPMadNlhVhMTX2qUNId5oIAQSoE2M1rh873B+Lpddr7m+01jlvlI/Jm1U3nCpU97O8iabQFtR39hFurc6I3mss8rfn67POAx1rrtNbtGnhJoCE0nTqrI4KCJ7ao3FvWqwbQacEilSBLCux+wqrdLm2ehU1kflNk+bEIRYnocKOrlZ85xV2sF5hU0z5M0SHkebNl1iGq+82ZPuAR9FdvHmzSdGLEv3bIA2QWrtcR4Mrtdddkkv4zS57S7IjErXyXug1NztRkKh2+Tyri+4pvsgMLppg6lO7eR3QKUdpADOg8lzwKECvOGi031Q6rOWGqaErFoywDPBk88EVtYpGO0xjBpV5WaSVKvaYn+i9+uXSVXlMAyk36HNRKolZcTQG+ik+VpVPhu6vPlR1UQaRZqvPm+kxDCdC4WxyghwLgOTPRW8RNOOGHnjI8wRS16d8+YJAGqbndzNIyY91AnpBCAm5mYpOJZW5A0/fgYYEVea0FafjFxlfG63lAHBKwRPCK9nI1JMmxYyIZa8+YAIQjkZlCwQy+hF0uLE1MdkKMcLRit1TmS23hnSGZGOYdLjZJ3PMkVM5/KxC4bBJWiNDetLaWlsPjA88dBwlpgMcEZbw+TWPndlTZtPIjHFhqK8S21ZtqM8fin/JcN4eawwkpfZLh1/tA0XjN4/TV8q/acA/j0A26+rgm+0YXn0NX7n9s8SKhimHcgAkZg/nz9wlWSkjWUwgDmBB78wS3dT6xV+JJ/MUClgIo94UEcU+D4mggZeNALz5yNEgR+IGwCTmyUnkY5dIqcAHpJHXCKN+AP1LLutPUbiUe64SkELxTI/jQVm+ZcEJsu28fGyXUuyjyUZUDk2jBoxIU9+p6b8PF9lG5fEKtyGZZ+X+fhH/OVxTWNeuKSVxBdlOTPSisUYMLlFyYLJ35dtDfmemxYLJTsmnwOAT8UOTMCxRJmWafrRLwkhIv5IPckLmSVpx7K/nEpx9JKU423nPhZXc8KO5Q/tI/cKt3NJKlKSeDDxx7Lbl34Hacyme4CJPnKeOFHgTxcv2grMSTb4muXYR+Clovf0A9KO5Q4wb/qXHEzLBUU6FoPAG7VBDPNxennBPaqk8ec+5UUT5xVTW0u2UVHIEJDrWtp+T+5Vd6Wb1YV7ho/f8nkRJ7c6fr6L+6YkL7l4vwHz+6p4T90xihMEbgvk5dI43r3ZTItNYO4ytxiXW4EJkZAAvMBerWeLycOlBecSSeD3S3l8OQ+8QIzAXq7n9x2fz3UW38vjb10czttxSPN3fp0EGJdzeeG5PJT94XMROAng9kLVs/u9WNh2l1z5gMyeyvmWn/PfYu5zVHIErGynuiJJ33acNQB9WniPi3Hqynn+EskWhoK7sFrmwBfHiFiR5VwMty3X37Foe7Gotvy9/FvkO8tm1hefxn85dVzPmD77ojxflCeKzCH1JxTzX37Ot3HxauBfz5lHZmqySh/UW8ZeF/nfZtBcetTEcpweuXaZpusuPVCP5H1Lee9b7xeq523lvuW35ou04611fsH2f+Hyv4Z6v1R9f0wp4mtDLJ8JIf5h8f23Y4y/zV+EEH8TwOcxxt8VQvyNr6MBwDfcsFypEf/U9R9iCIY0KQudRoDIbUr2V2AyaiYNQpFZS4kEZtJ/Yxe9OjFdAnM9uMkwfcjyuWQAzCyc6Vp2ZX1MkzAzg17QJiy/c95Sy4+lSUqJjUtafOX3ss7y88zdcNa/OctqOQYck8ljeXF88FCDbtmGpcHO53l3eznOM3bK0hAs+sjnlkYox1wyusyMoCWrZ9nWpWG/HCNuJyMyNC4xozHLNpSuxhHIrJycXIFUPCYNwm1g9G+Zl41xk0hgyrT8TeLvy02AUt8ux7UllIzHu9Szm1gSJ/fOMq50mfImQ5w2eDjvcowZQZ5cY5G18ICHunlUflk28rGyzrJ83qVfng+LcSjdcPneBJDbXhqFZTzrst/L55GR0UvPKo8rt4fjFcu5eYz90zmVYwx5k6TcCGEUY9oEmYzASxrVy02Vt21msQuxXMYxFfnL65d1lgbqchNnudHCZED52oT8ydy/ot+e4vDYRTXLnizmSSzGN7cTmJ2bbUSUUhFpgyOyAX6BPfRBf9O5mTbhcqxTPBwVQNfkc0EQYRBLmywXo9y2wkqYNiomayXrEHoxEQxxXFtCmqicdCkwN9YjJrfIOjx0lwQQZUgumSnuToapreWGFY9bYUw+MJS5P2UKAMxPseqMAsTMgnnZEfPVbKT/IqY2Ck/GMhWRjLZ0/kEcXi4DOc+D5DGt4kT6Lmb7AMmdFdkSzGN9aQNEFHOY+pk3AESKMSz7yGWnKeJ5F34+VVFwH4Fopn5lN9Q891T/cnZKt1iIYl8kYpb5seGaDeui8Fj8t9xrmV38kMT4QVmXDd0LY/2WxPtQl8qdteeLGJVvu6/edexS2cVcPFbvhT2Xd9f3oJD3yPNI3V+P3fbVpa/JsHz1jhjLfxrAvyyE+BcBNAB2Qoj/Jsb4r32VjfhGG5a34wr/3Q//ciYY4Xiy0jUHoAlk8pRstCQ9NmBaoPIxJkNgAgh2pVkuJDmmqGRbdI6IEjgeSeuQ4odKw4YWVVLGFHgfZ3Es9I6j4H8A0469mNAyLgdpsR6LxSAvfnwK0heCAvWFogVNKH7AlAo5P1PIA8Vvy+LHLreTUS8BCspXcbbQoXYnoyJRs8+uSWgGa6/lMoqyopOQxuf4GCEo/gaBSACyvlqx+z4TeY4gUoA0nhmBSsyRMQIi0c7HxMwoap8XTszAmPPyoo63ePlHtBR9LpEQZoFkXTYZL7vblC9n1o5TxTkZp7ICtwtTmXlxmMpg5kiuK7VLOGJRfODSAzz8RVwumvhNPVuMYhoH/i4x6byVPz78sSRIKPXpOOUFR1rMSFwmVSjHLP3oi5DO871qBaAwXRORmQijLvItYnkyUpLGKKrJjaj8PG3Pp34zw2VV/GJ6AGU4V2LgRMSkhcf95kUyd9EJYu8cxay9iMismXnKuE+pnFkdF9BjOQoMVbFYLJ9xVzI3pj47QYyCifyh/E3MLINLZsKUnxeV0+Ka8mf2SxTnykWwBISjDtK4p74W8yKTRmF+vBflyVEgSKR7TWTNPq8nJIxj4qSfjksPBD0xY2a7y09DiUhtZbtLprmQ5SsnzXlmT+RbLeWLAij2Ieg6WVyLYgyLfkGksUmfo5jaymXMtAE9EA0gBxooZg3l+02kvkAUc8iul8Wc83MoHRDMRErC881lcn+jLJ4jtmlTf4Oe2pif4YgHbYtqunXnmorTZ74FB6B8AAAgAElEQVR3siZj6n+ew4KFU3gg7UF/qSQdlZvHBsX9oKe2i2Tk8RzkY9zf4l6Ngu6t5VpzpmN5YR06m3Mug++fhWFUns/MoTymfC8XLJ+zMRfTffTAu2IxL3lcxKJ+fj8Uz322q/O9KuY2GN+f4UJZxbFL4zSz8UXRn/I9gSnvu/LMfqvK38FZObHoB3ekfHcXv19luY+l8vm80K9Z/0o32OW9svwtfqTOS2W/s43vc/596/kK6/ip6/s5TDHGvwPg7wBAQiz/9ldtVALfcMPyw/oe//6v/C+QCLBR4xSY0ZTuIhsVxqhho0IjLA6hwUqOGeGspcUQDCGGiOijhgKhhEMw6ANpTG5Uj7OvYdIvGaNwQzDwUaKRNtfH321Uk4ZjgdYpQdqQjIKdQwWFkGPKQhQZZTXC5+OkmxlQS5dQzsS8WmhStsrOdCdProaWHmamBekzWgsg61iyZqUR0ypHiogh6IzgAlOsJ2s5lhqOpb4jy5X4KFCn2EvOR2NFnztvsqQKgBxv6KNIpESTnIhM+andPpMi0ZykRWJCmhkh5bjVEiEt6+D23Ftij31SdZkMipMudQnTHJH+4qT/KEXIWo48Nxz/yQiilgGjV2gS42yprziRRGmMXuU4Tp4HLovHBJh0PrldZXtDFDlmlc+fXIVauaw1Weo3ahkuIrSMlLKcS4ki8wZCrV0mjsqsvspldLNE23js+W+IxFjL/ed5XOq+1sph8KRHmxHCOGm4xihyTC9vbgxeJzkWim3j/jDizfIzPGdlrCwnzrtEoJfIrUqMuD5IbOvhATKb+5XIq2IUaPR03y89CphtuNEOp7FCo90MsRz9RNTDbLgcE0rPEdVRKZ9JqMp10HmosKrH3KayndYpNCmO0QeZY3kZhV4izUTGI2FUgPUyu9SX38vwglKGhhOPJZNA8V8mmtIqIERy1+cNRK08nFfQys/c+MtYsG6oYIzL7yWXXME5LpRd7QHkuLwIQnSN9hithjHFPBVkWMxiOyG1yBuOJSLrPTEYs3s7s5/yZqVzcoZQPtDd9JPYvCw2uTieDQCR4uS4vQk95o0xZoZlIiK5QNGz+7wM8OneCmwQ8sZekoxxieFT6kgu2hybp0Pe5GPXaqkiMZJGOh+DyG7W0vi8IcfsopyvRE2lnp5x3iQRKiAkQieKv0ubezwmvHmmA2AloOOEnDoJ1A8UFd8/OUnlAhl9zZtuXI9E8nVN1/DmFrev3BBlAyqzvhZWRJ6goozCwhBWzjao8uZbYWCUm3h5k44RQlF8lrw7AuRNuGTwT23E3GhJG53CJVIcZpRNG6F500vSOZE2grgf2bBko5rjBlHUyYYjj7OIc5mLKB4YlpeM6uXmRGmolPZYtsuWRuMFxPIBQhmLE4s2LOucVbwoc7Zx98DAXVjA6S8TE126fS4iqbMyL3xftO2txtn7GJ4X+nopzYz7d5X5DU0Rlz0Bf17SN9qwfGW3+O0f/3U8a47ovcHrfg0pIq6qDlemxw+ON1nW4qrq8elpi5v2DCkiPjtu0RqLVlvcDw2+vb3DJ6dd1gC86xqc+xrGOPzKzSt8fLxCpTzR7zsNJSLuOiIA+PbVPd50KygZsO8afLTb45PDFgLAzfqM41DnWEYipSDChpWx+NHra0gZ0dZjpq73XsJZhd22g1Yk63Dsa9TGotKTzl6MAseeWP6GvsLV7gQA6IYKbT3i9s0GpnFYNSP2+xbtekSlHY7nmvTlZMTN1QndSOQiXW+wXfeQAhgcLbJPHeelt+p6NZDun6VtZGM8+nOFqnFwVkFpn7Xr6sZiGDSuNj2OXQ3vacFTVQ59b9A2FqdTg3Y1YBg0NqsBx3ON7brHYA3O+wbrqw6nQwNTO1SVw2nfIFqJ9U2HvjeEDqd6QxDwlhat7PLFenzjYKA06f4NZwNlyG1wtRpglMftD58AEWg+OMGOGm5QUDVRptetzfTw3kuMhwoQgGodEAXRzyfk2fUaMlHex32FqAPkyhFKqgNCp6HWFv6soVYuI81EmU/XwAnEHS3shYpEm3+s6Af8pIArS65igwRMhDSeFmVJt85sRzirEM8acpMMy15BvzHwqwBxPSL0alrkiAhU6dfWSapHB2Lqc4IWS+zK10vKa+W0SGg90CtatKw85F4jbB0t6HixpQO5z50V4tpDdCq7wonGTygyI8cuLZBaD3HSwMYB9wax9bRA0SmvSS5pg5y0+NKiT91r+DZQ+6KgPE5ADgJ+5+k6HYBRQqS2UpvoV012itaLK0/tHCRiQz5fYiStP8ikEVgHmJf0On35wmY3PdFLxLWfFqBOQB8UxVhd+YzMCicIFWL9QQHoewX31MG81rA7nxat9B4xtwohacNFHaHOEq+ufV7UqhMh+37nIM8kgBfqkNGj+nOF++ce0ZAeoBwF9ScImIPA/XMaHzkI+HWA3iv4dYA6SRrTtACNMkL2NPahDVBHiVBHqEHArQLUWU4aiMn9UJ0lpAPcmnTtoiIELcoIOUiEKkJaUDknCWkprwiENJkjLaDcOsIcSceP0S85ikJHEWheSgzrCN8ScqY7Qi33TwLUkDajEvJm7gWOT+m4OQicngZUbyS6XUwoSYQ5yKxPJwPgmwhb0cJYeMBX1D5I0lIUAdCdgN2SrmIUwGiov/os4CvqA930NKa+AbyJebFsTiKjUtzWoCOqNA4QhALVZ8Cu06PWROiB7rlggKYDxquI9ecCQQG+niMc0gKhon/1mc7rM51TI5URJWA3dF6fAbul66QFhAN8O2kz+iYdqwFzTq+WhhAz1dH4jTtADchtVAONoVvT52CoPJd4dqJMeSLgWqDaE3IYNZKGI6C7tIHQCuguwm4F9JHao0bKZ44Rw9Mvv/TRJ+o7AKh+Mnqko/rkQG3S54hg0j2m01weI4ISCBWg+oioaG6jAvSJ7rNg2FilMnnPkMvieQsKqO8i7JrQsaCpz8EAUYlsoEkXESq6VnURvhFQI+l/RiWghpjuO0EIr+d7gspUltrA5dOziowQ+0rQPALwdXp3nTFpZzrAGyBUAvoMuFXqR3pmIGhuoqA5z6izngwM4ZD1KoOm8ZMW2eiULo2dEjM0k42TkHQv2YtCRECEiCjEQ3Q755mMwyhpHIr95rmhxM9R+qkp9TKFp3HM7Yl4qFOJuXE6O79AuUUIiEpA+IAo09wrQLr0PaSdJxR7EOkYj8NkeE95y+80NgsjrzCQsy5maeAv0tIwfGAsl2OHovxLRqiY5mtexxe0Lr/BxuhXnWKM/wDAP/g6yv5GG5Y35oR/69u/g5/YJwhRYqs6jFHj1q1xDhX+0u6PcA4VVnLEK7vFs+cHfG53kIi4eX7CvW/ho8RW9fhkvMJfuPpxZpHdqh5X6oxzqPHD4QZ/6fpHOPgmI4k2KjzR9Iv56bjD5nqAB5X16XCFv/bs+wCA13aNVlkY4WcxcZ036EKF33z++5CIuHWrjFAa4VFLi0+Hq4xebtSAIWgMCx+etR6gELBRAz4ervOxk6vxne++wb1rsXctnn/3gFu3QucNrk0HlX51Pht2maFzpzvsXQtgihtd6yG33UPiYBu0ymZUzEWFa33O/XRB5djLk6vRKos34wrr52NCR4kBd2d67G2Dm+qEO9uiVRb3tsXVBx3ubYtKOjz/pSM+6a/w7DtHHFyDwWvcfPuMWlp8NuyovhQLyQgoo4uMRL4ZV4SkKWIzBYCt6dF5AyUi7scGLir883/192GEx/93fIFGuTyGRnocbJ1RYS0DrkwPKQIOtoEUEb3XGX3c6gGnpEl6U50wBI2DbaClxxg0tnrAvW3yX0YjdWKFfVafoIXHm3Gdxldi9Bq7qsuMvrdjCy1DRnNHr1CpiVH4blyhkqQDejsQWcdKj/iwucedXZHuqraZxZfQTULBK+nRe53RUEarGKVfaYuzM2iUy/fN0da5vLtxhef1ES+HDRpl87gRCy8x6u5tQ8y8zkBLP2PNbZSDTMy8IRKr767qsR8b3NRn7G2TUUdmHA1RZISXx0OKmFlwT8yMqx208FhpizdpXFhTlRFxZvR1QWJX9SRzkth7m7RJxYy8S5T2F3/jFhIRPzje5Oe8Vg6npHcKAFoEXNUdtAh43a9nqCMjuozCX9UdPj9v8cE/scfrfp1RTQB43h4xegUXVUa4eWMtRIGrigRH7oYWKzMiJASX0fNf+Mt3+MnpGtYrrMyYNWgB4KY+45PzDiGKrEN73XQ4jjVWSXeWY2pDJO1WJQLOtspMvK22OI50X7AnBjPqcn2HsUYlPXkRJBkZRr9NGt+1GVFrh/3QgNlOd3VP98ZYY1MNWT5IgNh6YySpIAHg29s77McmyRQFrM0IKSJedys02iXPApK/eNae8Nl5g0Y7bKsBL89rPF+d8KZbIYLQ26uaxlVJ0u482WoWA2uDxLYaCC11tGFXK4ejJZ1fHyR8Qr9bYzF6lfMDtPF4tlVGiEMU2FRjloHiOfJRYFcNk7yUV9hUA/ZDQwzbSVuW7nFiCb7rGnxrc3ygrasTK/Lg6NlZVyPO1uTy2VsgRIHDUGNlbGYONoo0jQmxrzK6f7Yms+Yykt6neWWkft83qNNnl5Bx1hbm+1HLgPM4/eaxZmo3GmyagVixA0kY1cbN2JBbY3Hoa6zqEaPT0Gn8r5oenx82+LJp1Qw49DUh6drluG4lA1zSEB6dQl2PGZ1ntLqqRzivMDoFndh+WY7JVJa8NoqwG9a6BJBlWlgaJkSBqu1hhwoQEd4rVJUlGZgyNlhMklnSWDinIdL4hiCBxMZrnc4hPUJM2qalNmxIrLuMijPyzkg/yxS1tc33LIcZOUdMvsNgMqLP4SXG+Bx+xOE+k5QPIeA5ntzLnA8ARNKQZdkdjl0GJvskh97whp9AtpqYiTbyXyYdK1JG3zlsAJhZStk+4zjjsg1JxzMnkb4/As3NyMoiLiLVD6BJzsfhMVE8MMzoJSYeMt7mTqQyyzL4+zJxeeFh+y+W+9OmbGx+BZbh3//pi/gq0pLw8ucpifhVTNTPKP3Sn9/Gv/0//JOwUeHs65mbqY1qRraydDMtU3ZTg4RCgC8UZBVCdpelvDIbVZx4Ee4KF9dcNsSMKKUkvSmPPZYetDX1qSS+KV0Xl6Qsy3pnBDsFK+6MBGfhDrmsj7+7ot1lGZdIRi6RAj3Wx2X+su08djzWpYvrpTaXBEaXiIHmY/SwreU5Njje1hcAM0OhPAYgu3BeIgQq63qMVOlSeozE57E5uUTmwm2LF+p8rJ+PtYXrWx57Vyo2RN957FKb3tbGx8iSgHm/l6kkHfoidVwqrzzHbp3LFIppZvfOx+pil9G3tf/SdWW/LqV3EVO9tfzis7hwrGzHY6zO7zM3j7X9ImNv2aYL5y4xWr9tHst6+POy/Pe5F8pY+WVZJVHSnH14sbh8S3qfuQYuAwRlXTM23/dq41T/JabutzcalxGMZbsu9H8WX79cfL/HeP1Uadnu8til+XtXOe+7LHtsbC4d+6L9v/jgzr8u2Xwf5H1bXy7cM/Pz83YvUbN83YVr32rrXBqz4rpLQ3jRVfSR9NZR/iLL7XeM36Vb/J1lva0Nb6nnYd7He/ne7fmi6Qtc87a6f+8/+q3ffQfBzdeetr/2QfyLf/df/8rL/V//hf/kZ9434BuOWJ5Dhe93z/Gj7glckHhan+GixMt+g+NY46P1fdZKfNWv8eFqj49PVxAi4kV7wN24wuA0ruoOHx+v8Kw94X6kHd8n9RlPqjNOrsb37p7hxfqIzpmsq+eixNPmBCkifnS4xsrYhBR0+OS0w4frPUKUeNWtsTbjzNDQMuA41jhbg+9evUGIAvdjm+PftAxY6xE/TogC7VoPGLzGaaxmsXm7uocUEddVhx8eniBEgV3dYz80+LXrz/Fy2OBNt8Ivbm/xk9MTjF7hSdPlOLuf7HdYV5Y0OM2I+yGhskm77LrtKB4x7bje9i1WxqLRFjaQ3tp102E/NGiSxiG37zDUWFcj3pxWWNUjmoRGdFZj1wy47xo8XZ9x17XkotvX2DYD9n0Nozw+3B7w8X6H5+sT9mONwWo8X5+wrXp8st9lTT2O/TLKZ61CjsV7eVoTOlDZrJV33fZZQ48F1P/iRz9GgMD/+/JbqLXHddvhMBCStu/rzNqrRMTNmtyp7zrSkxysTvppwK4ZcBoJoXqxPmJwGrd9i0r5Wb839YhDX0MWqIGSEc/XR6z0iJ8cr2jXNkh0o8GzzQm903i2OuHj/Q5aBayMxdkaWKegVSBNORFxdyYk4WZ9xutTQiwri3/s6jU+67Z4dVqhrWxGDgavMtEV77YzWlBpD+slXBrnTT2iswa1dqiT3t1dR3p/lfK4P63wwfaAz4+bHKc3OoUxoRWbesR9yn8eDZSMOA8mx4TxNU3SAjx0Da5XHW5PLZ5vT7jvEmLpJZrKYnS0Q75uRkAGErRPu/MfXu1x3zc4doQ4VtqjqSxWxmbEwjmFyjhUmlCX01Bl43HTEAp66GpyV68sDl0NIYDaUN3c5m6o8N2nbyBFxPc+f5aJtJrK4nhu8u6+1h43qw5GeXy63+ZFPyNt/Wigk7v78+0RH7+5wref3uGz/RbOTbv0H17vCRWSAoPV2DYDXu43GWW4WncQIuLNfo11O8AHidHqhD4Av/rsFb73+hmsVVg1I5rKYrAaSkZ8a3PAD97cTH3rKlxvO+xPDbarAae+yjI2MQrUtSVkqa+wW/forcaqsrg/tVg1A1x6h9kUE7ddDWiNxZvTirQc03zGKFAZl2MFh8Fgs+rRGIfb4wpKBVirsFsTanh/bHG16ZKbPY2NMQ4hEDoiZcSvvniJT49bnPoKUkbs2h5GBnxyu0NTp/vTkhv7i90RH7/ZoW0sbtZnfPzmCh/d3OOz+23WF7zZnRGiyDGv911Duouanr3BalytCVE9D/SO2TYD3hxXM31LaxU2qwH9aPBid6QxSAb9oa8xjhoqxaLtVn1GvlgL0nuJJxvymLHp+X22OeHVcQ2tPM59jcpQG0ensFv1eH23wS+/eI3OGRz6Gkb7/O6otcN5NOiGCtebM459jSerLv/GHMcaNki83q+xW/d4sT7iJ/dX+XmqlcObboXWWFivsO/rfE9cb7r8HGkV8GRF9+andzu09UihCk6jrSwq5XF7arGqSZ+0MQ6HM3kchCDQNEnD9FzjydUJg9WwTsE5iaax2DUDpIi4Pbe4anu82q/xdHfCvmvQGIfRKXy42+MPXz79cosOALt1j/tDS/d+YzN6bbTH3X6FurGwVmG7GpLG6nTvX287OC/RDVV+Nvh+uN528EFgsCajhrX2cAnt6hNyyyzV1ip8dLPHqyN5Poyjxm7doxtNflcw8jgMdO1m1ePU1Whret69l2hq8iw5dRWCV1S+iKgqj3FUqCpCE+2o0a4G+IQYKhWgVMhhLSEK9B3xXGzWfZI6Q9ZXHQeD1brH6Ui+zRyzGwONI9chGSF1iiSZRIpLLhBSPyiKvRWJCDG911gvEwkNzaikJcbk4CSRGIo4kQo6iiGOVkIYCgERKiLHvwJAEJCVRxgnX9hSaovlhIRKTMaMeooIqSP8mOKHOR6YEcyAiWwP1F4hMElBMVkfW2sRc5JDZkb2RGgYXcHWXBrdHLuaQl0uWl4lGWKJWLJmKMryUj5GM0tGaE4PNloWxii34X02PC5tKHyN+0R/mn669I1GLG/+8efxr/+Xfyu767FgfaMcKuWykDy7u51thUZbxChwSm47TNqxMuPMlafPwtcRT5oOR1tBiThjl2Xh9XU1YkyL2dFprKsRp5Ha0hqbiTQAZNITrTyMDDj0/z97b9JryZJuCS3r3H03p4kTEffeyLzZvJ6iCkgQNWVGFWKCGDGrQkj8AWpS4xqUEAgk+hk1Ysi/gJIKxEPwyKrKIsn3sr19RJxzduPu1jH4vs/c3I+fiLg38+nmfUqTjs7e7ubmZua297b1NWvRpleEpQO3I2BILL4hahidi8i2lMHbQiyyqTbysrmwlvNCR4fWBWidMHhXaPq3rS+yDGOwaGyAaCzKsdoq3VgivaGQGbKGe28KM66QSwAom9zGxkKaoRSK6HVNjhGjhjXT8ZQVht6h7TzGkTZuWmcMA4mhd53n+7EkAP8nBl6UEBrXEHiqQ2dEIDpnBecitE443JEm2mbPP5zBlB8rayfCmCwb5KxgbGQCj0lbkq6jRIswGiiTC/OuVpOYdGTBbgDlRyNnheg1ctQwQi6hMrROiN5AaSCOfC5TCI+w/uasitahbWhznbyGcexpjwrpZIEmwbSxsOvKPQo7rsg3aFB75QcSQEb5YS46h8CU4yk/vr2F7sJExsGbAmH6LT/eLIotpB6q+sEtIUuc66mbiDQYKEs/ikL2UfoddPmRLhqOvQFsJgbhDGqbf1xVx/PLzMSFMMJUP6gs5K0aWgeFtCOriXFX5XJcnSz94O3DFMoUFOWBAnRdAuWnJoVcE4gIUYaIXAPAqIEucT5qnIg1ADpm+LmoTIy/vC7qvks+7DQ2HvbRIG0jHQt6Iv3IoDzHbSwbFljOI3WJyULSPBdGwsMMk4kImYfLU66sQtkIqEDzlznnU9h/ATxgDVZeUf5mk8g7wjmtAJCbVPpV8o943QhBiTlQzmZ2PLaR+po2mZ5NNS+610jbBAQFMyhEzhGNXSp915yXWRhlLeWczZhxPYNuS3mSwrIr+WTCvqk9kA1gBmYC5zFkmyd2UQC6IoGpmZS13Ad0X+2Z7ZTbKMzAJkN7hdhm2BO1lWqmVaDknyXDuYgW0CwaqXltZI2S26ZHak9FOo9E+Z86Ut5nZhKb7LidrDg/lPudQXmvAYUJVgUiYUnNRPKiIl+Xac6kfnKA6TmflklnVFAl7076GdtM9Th3L2vqT9h+9X2PGWjsAKADb/YzPa/UTgzKesTEoCycPQM/f8P5fHxO+kXPGFObVTcL514FFkyPwnBb1tQKu2uq8h0LW3PFAqwy56vW+Yn8VVezwuqAsoYLm6xBYSiWvEjJmSztcB5pvUZlzqCmuSjM03wPKSUvME/zVxh509RnGdPMa8xzVb6vFvmXxeunp3mR/Mgy9zxPVTBbdbK6p1wj30ecp5m1eF35t4lZY2fsscv2pN4ibGXVGb/o+2OhP0s23WV5zNG/CLKrLliMuz72hvJGb+Zj5R3u8S5e3P/jH/29r92rt//jD/IP/vu/8xtv93/9t//zr31swDfcY6mQ8aQ549W4wZhsyYnqo8O9b7FzBPh2bsQQLC7bHkdPgO+6O2OIFiHpGagU0HjZDGi35BG7H9uSHyPepZQVLlqyjh7GBk7yYdoBfbDYt+Tt6IOFY4um5EVYnTBEgz5Y3OxOJc+nsxlakQW30REH3xQgum9HeM4tk6JVxrYdC+A9e1c8LT4afOvJbcmbef/qHmdmrbxmSzQAnEYHZyNiouvEMi5Abd8Ns1CqMRh0NsK05CXMfL8QTTlWg+HWxkIEZByF7sWksetGDMHgYttj8BatI+/Xph0xeAetE64vT+i9xdX+TFbppHG172FNxHGg5xWzKmC3sbFYeiXMsPeWLMtNKB5jIUpSICbIGC3ef34LALg7dXAuYttRXpPCJE1DeSUJl3vaAYhnLCUFa+m8XAcAV2yd9mwFFq3BEAkYCyskgXhil2z2lLNzZut0zgSKu4seKWk0F2T9rXNgBFjXQN/aALuNJeelaRO2T47kPfQWuvUzuZ06t6bWGazfA4DdTXk3NdC225Hkc7xBc9GTx2XLoJYBv2YLtfcGdheLcSIGZm3MCrqlHUoxAgQNt4vw3qDbjoVxMycN145IDETNxpdnIaCuuRgQAhkJAEB3ofRhHGwZu2pCyfeJovOXFcyew669KXk+cj9tElKkgGazJSNHd9VDqYzzqS2/aFonJrMCAUAA1nFO0zh9/Qo5lhh0MoDmOpBx5ZLmM6eJHbS56tnLB5o3k4hAigG8vaA1GkYDs/UQCSW5vnt2Qn9ukKKC2YYyHjHGDH1T1kAMGvZiQPQG5oKefx3uqC0FdKeoYOxk6BG5o2JUYyu8sYnYRz0ZXlAZRbRID2kgBQV9Sd+dCJo3hQrmioi3ktfQV4kNGKBNsljOGajb9zyCN4iBGYot7RhT79iwAZZyAvTzgHh2NB6bgMFCPQ3ASIaknAE8XbCJMmFW5s9ejhNjaGaQpW1CHs0ke8NrNDH7aWoqnQlFBpMcJ91QuFTJGdFuKScFiMGDx5BdQvI0TzmwpqXiftiENBjED8LEzFoZByTHLEeNzIYizQaRiWEWSKOBsgnaJfLeMFus0pm8QpwfV/Qy2ZMCgI+RsUipjDSYSg5JFS8RGZ3YeKXzRDLGxgta2Aq+SZPXRIxKzJBaPDcDk42Jpyaxoehcs7B8yeIyGX2AufdHgYw4YhyyeTK6yPNlI9fMSJX4vEho1cBA/suarksGj62gkMelpOTaWuoqT/MGgJ6VGLjARgxhuM1kTCmGDQE/ajIGFcNOBhOB8f3ZW1aMTb7qn5CA1TJOcjpW0iOVzJSKagLGfCzzeIqBZzkFC5As01WDd5GrEnbVB8iSvXQzsFKDSmD+vOQ+Ok8EPFInZZScwfoaOV+Gmx/iJwFOVdXaSLQy/Kn9R0+ujEVu9yYQ+GUA4peouwYM3xpe+7vyW1O+0R7LZ3/tWf5b/+jfLyQnKasZeUxg6Y1a6kHy5NYExH2qdC65jlJ5NbcOQMm9qiUIAMy8mmv5hlJE8L4uddtG04atrrPMtatJNKQfMjbPXk7yyupCMiA5XtTXqb21/JdaUH4uWj4Jx9di8XVby9ypKLIHapJhiEk/yOdagvB67nPV9lqRvkmpBczXxinnRUZAiApqL+1SEF68k2t9qNuWekJGQCCtFpJfXju/ZuojiodZrn8sD22ZryV1qW2ex2UIypu+vRdrYrYGgEImUb/PoHW61se13676DuU490Mt7mCt1jwAACAASURBVPloX+t+igeYNxG1OL1sxFVleS5fgXy8fl93sCZ1KJqsdf8YdBaReqyv1RIGVZMoLDcmwFzbVbx+9bmy+XxIOFHLOOS1tcYb72lOVJk3eoDVvL7NDFxfMyOdwPomWTbSAgIf2+hIOxKaJaUOv1qeW36HiaC7eCxkrMsNsrRbj+Gx3Y30qx7Tss9yTu6hV66R9VkBBhKinzf34PzK8eKJqdh6y/n63FIuou4jMH9msoYqj1XZXCcsJB9Wxri26ZbPX8ZcxxTV8cq7VKQqVuqo5VjyNCcFIFT/S65exFxD9kuW0h4wtcnjKvqdAmLKRXItindawAGq5YZp6PNSAYfq0Nw7Jc95eXHVYHluafH1L/Neg5q178FUvV48Vxk3lmPnz1BWFXjL1Tlg5nFc/Wmv142a33PWx7Xr1uYDb7jPCriS+suvl98E6HonsPSuddZ+XN/w/k2evTfd9zfa5y9Z3trnt5Q/+6++/hzL/R9/kP+1/+7v/sbb/cd/6z/72scGfMM9llYnvOhuMSRisQSIsIW0Fwmg1KyhhsEjAZZYGDGBiUSlJukQgpWa9XOpRyisnULoo1Vm3cVJX7AmlqlBr/S3vj+Acm0NjJegVt7XbKXCkCn6eZKDWJeYdcmZNDrBp6kfQiyzLDVxT5lXvmfKrOcINQOFUqfW8it9EK/MAnzGBXivWQsBlHvWr9eImJZAdfl9K/mS9Xy2W/IinTm/pa4zAzZAyZddI+gQsFzXk3HJmMQgMY1bzZgFZY7qdmv2UC9eOi3EMhMRTB01I+Quch+pL/dbGg3q8hj5SK1/VxsZauOBNZNmX/0c6vmp18nSuKIwkeTk6nnJ/zVSEq1yec4yt0azZ6v28rOxJvO4pO/LsYjhJC/uVxsEliQmEtocKwZAMQpM7/NM37A+/nCuc/EOpzQ3mEiu5Lxv83FiMfbaWCLebhrn3PhiTEII07kYVQn3Lt6r+nktAXZlRFky2cucPDaXs8K7B115igEGy3k6j0fWBIAiQ5R5HhQbVhJHIwAVptIJKYp3OpV8s3oOVbXOlnM+A/gLQ4eA+zUjxgMGSsmPUvN63FQ1D9XcSb0S5rZi+EisPZkxhZ4vP+e5MkZUXqICyIUFkgFmASfcfgnnlfEujTHyWgwxlWFIaZrbnKbnOntANUiQ3LNc9U0MCMAcHNcGjAyqE+Zr+EsVMT5IW/VOV/LRKpA/81guDRo1wKoZRYF1g8ZjfZGyhn6AaT6WgD/Pj9f6ltScevD6UZIeuQ8wNzJIHZmvZVjlcuxyv9pItfiwrmlKyvAf1F/Oc6lI72fgdDk/s8Yf9v0NGP6Nx94KqL4kaHqb7e+d2n1k/G9s87F1udK/L1X+sut/7eV3Opa/tSUkjWNs8flAVPx7NyAkyrU8hgYXrkfIBp3xuBu7IluQs8JF0+MUmgLA7scWG+txDg5WJ7QmYGtHjNEWAh6hxZc8zNFSwvrt0BVq99ZQW0IhL7mcAvwAAsQ+GgxMpCNSACJEPyqSj7hjIh2h4ffRFLFzAIVEQsDW3dAhA2hYa/O5JTmIk3e4avtCy99ZAoNDtLgfiChHhND7YMumXOZGAJyE7DomiRlFIsBEDNE8AAAhGjQ24Dy6Qo5C4cSUdzl4Imw4M4nLGIgynkhEUiG4oRBdixA1tu0IxxT0Qiyj1SSsbnTiUFiao0NPxA812CHSFwOtKFQ2Ro0X13cAgONA5EgUmkv1x2AL0FEqY8u5rEJ4IwA6A4VsgeoRMJHxxKTROpmPgDHYsjkVILBrR87f5VzbrApRTYgG2zaW/uSciri9ACbDBDZaZ7TOF8KHxkZctERaNHhbyH6UyoVcpX7uAkJqoAwArhqv5PsO3sLZyIL19Gx7JgUBCGwKKNEqlzxaCTH23pRNt5UwwkJQYaFcwDhabFpfQn8p/DgWcOZYOzQmVY41Hc3xOFL7QopjdMKZySxSItAkoFBIL1JScKy76DkU1tpUPNvWxpmXOwRdiIf6c1N+Sa1NReNUQJI1TKoixwEoRlgx6LL5dtZj6B26xuM4NiVvGAAaF/i5EPh0LmEcSG82J42mnQg+miYQlb/o0QLYbTzujx1HG8SZF7x1HuOwYWAZkaKBtR4xGn5fcV9nxfqw1I+mCQiB5jQGA+MiIufjpkRAwtpIwDY4KAHIicOKGfBq/lwYrhuCKcecDciZQpStCwhBlw2OzI+A1rYJGEaLwGmS1tFYzyfKoQbo3lCsyesNlEF57bopLDgnBddKuD3dK3iUcWmVkZSaGRjknuNgy3ViJNBqyvOugXUMpoQNAyg523U4c04EmgGUaIS29Rj6hr5TIkr+MSJgmwh/dmjaESmpaT4zybRIKHQMmp5ZMCU/XeY/ZyAMFsYluIY+k1plCm1WmULGGfRLmHMaDUwTZ+ctf1Z9b6E5Z1q881plhNFQqG3Q0DYVwpScUYhX0kg6w0lCkROgbILh74/I+eWhtzBdoLBpS3IRrg0Yjw2+aqE8ctbbFY1fECBPvaEc8kh54TlwuLpEorSx5Jprx6+TAqKic1nNohGUmcKgZ5IVAJAAsw2IAxuPo6IwX8kZZ8ComJgGAFQT56HGSVF+uAKy18gRUwSA5NIzGM5RAS6T8aIG8qJ1nPl1VkAbp5BcTX1DVBTuK2HEChNqqXPXxdAh4F3akJJRdH8BTDncYmCpw3kFCEt+pISgFjCdp8gBziUuob11yaqEEa8CLcGptRefpwKadYplzFX9VRBcAViVMXns5ZrHwJ94oiV0eWGXUHka42pZIlP+X0KDMcPjPE7pwEofF3PzwHO6PP+GssT5yynDI+9/V76e8o0OhX3/X77J/8H/9Lc5FNYUnUIBFUMyxUsJACFr8q5lVWQo1kJlJaRW5DQEYGo15UpSe5O3T7ySYzJodMRYhdUC6yGemsFZvaEHULx/Tk+B+TkrJCiYKsZEjhW22eINpXbEM2h1whBsYa+bAQXWs5LjAsrkdWQvqABjAaECIAHSSXM6FS05AMXTtOZttTrBJ10AqAJKe/X3pYD4Zb/EK7bmbROAJKX2lEqp80AlNFdAohVGusqrV4cQ0/XzTWwtC1H3SXI0xUtZhwAHHn/tLZC1If2SUnv1cjWfy9+kXM2vePYE8ObMm0mdqnDfaZ6W4ZrLXMt6/LWcgni1JFQXQAHKtRepPJ+KaGkCVfnBsyyeyKqubKprT2I9fw9Df6X+5JETcifJqaQ+PfTeyHHJX1xrv/a2KYUCuCx7yR54bGSNMIh6NCyZX6ekodkg8kAaJ03eHiXrolpnYkQRD1upJ9fzpl2unclG5AqU8A6i1oGTvMi6lOslbLJ47qqbl8rzeSllxUuQs5qFu9Yhx3UobFk7i8GWvL6KrRGo3tfPUUKPMyZyJvlfJp7vUe8sa89U2eCquRdG+rq225N8x3oe6nWxFk4MTBt3xZvl2tNXz720YzJt/Nd2XmsbXFkLefJalXy7Oq+uDrktG+w8ebjq8FQZTz1vcu0yzFL+rxCv0I+GmsYOzPLfssI87LNyjqoIJPfV9z20OUfZdNcb50LkJH2txwJMIZ8K8xDj6tyDTbpcsHymAobK2piDAEyHZ/d4QPAia1cvANPyf3XuwXJZfo1V7c/CmZcXYl6/npdp7FPdeizyXryOy3GX83iImR6AmXq9La6d1XlTeeT8bP7ftY0vCbzeVt6pDyvH31p35Tv7bW0+Vt46N79m+1J++F/8NoTCvsh/47/5D3/j7f6Tf+c//drHBnzDPZaNjnjP3cNnQ3+WPC+OQ0mHRMPz2cCpiIHp00TvUYBRzApOJfgs+YoEpiT806qEYCmktgaWPmukrNHqMNOQlLZq/cU1XUCtUhGOl7DdpXZhDRYlPLcOO5XwVwCzcF2AxOI1MqyOCNYUYCzHExSsiqWfazqc9b0f0zOscyCX2ol1+OpajqlcuwyjTZnE4p2ORfdRQnVD0mhNKMC6LsvQ4TWtyvq8hPEK+ZIIdi/DdeuyzAtdtr98XdetPbpmMZeZ25aQ2dl1VX+WGplLjco6VLeuKyzHJcy0Gtua1udyPNQPNQPSWqGE89L9MpahtnUer5yLqb43SjhvDdCBOegUgLkM8ZPXy2dVA3upU4dG1/m+y7mswbw8p7W9t7wGptBWa9IE4CpvdOnDSh7tMiSXrpVQ1Ek6oMxjnOc1C8Avz22W34sHJRgzI2Cqw1LJizvNmdap9EHqLQF4bWCoDQ31M6nbr0H6chxSxJggYZKlTqK+ScgmVK5A8RygR2YJnj0rHpN46+px6Cock0Jw1QSy+Xj9X+n63iigWvovYyp9leMCvgUo198nCrN1MMv5rIDKLM8WE1gv4bW1wSARO3PWFSivd9uyoJUAYBQQNwuTZ0KXbBioJoXMzJdLoJhzBtgYQffkYzKemgF5CcgfA8nSl2UIKD/dnBgIy7pnb1muPgcqqV8rxzKnPOWycqMSHppLiPAix7VcW88PZufrNcTDqYf2EFgCUAYLYMnvKySxBJa09jB5AStgWW67vDf3s86dLPUeHYvCA0RTI9dcGQJm6wYPS7X0q9ty3Tzr4xo4fABG18ao5v8fAssV5Looa9uCXLX51lX3lgrvBL7qNVT3AXjj/C7vMzMy1HXeBibfoazO05sOvOM9vxI4/V35jZdvNLAck8GrsMXLcQefNTbGIySDc3Q4hQZP2hPO0aHRAafQ4MINuB1JQ2nvBvTRYYwWnaVQ2a0dcQoUCtkZj854jMnii36HC9dj5NxN8Wpu7YiUFT477+E4FLbRAfe+w4XrkbLGMTRoOfRtxgobLMZk8KQ9IUCX+xLITGhMxOthU3IeW0OhsEtPqNMUZtvogC/6Xak7RIsn7Qmn0OB27HDV9Lj3HXw06CzphYWk8XLYFg291gScg5uNsbUBRqXSD/F8NjoiZPIedtYXVt0aKIq25GvWcRTPna/CbrfOow8WRpF8S2cDzt7Bmoh9M+J1v8HGeYzREJtsM6LRU5t+AUydgFien/uhRc4KjQ0FtG2dx4nDSXtvESJpmwHAZ8cdnKH5L7Iy3s7Az4Y1S3tuQ4iRMs/XyNdtHGln9jxnIRq0PL7GBhxHV8J4ySNLbTsTcT+0iKBNXeBQWJrr6ToKPTUFrIlX95415DaNx2mgkC9rEm62Z5y8w6FvS2gyQOBxlLBOnTFGXTyrdZ4mQJpkI4e5ipddWH21SjiPDvtuwKFvSVeTrxcPreMQ6KYKGT57W7xtYoSwJiFlCkPuOHx4245FXiclxRI9HAprSDamDuvddwMGbzF4WzydVidYQ/2UkF9j0uR957w6z2HcmedmGRas+XUdknuxIQbl14dtARXWEjMvQGBB64yu8dAKOA2ugBIBWeJVBihk+3husduQ3mEQdlkA225A4siBlDQaO7EFU3hlgALQD66ECUuYb84KTy5OuDuRhqtzkZmh6XlsGo/7UwcJTR5Hg7al0MemCfDeFI+o1FGKwiWbJnBIbMQ4WjgXC/CMDISco7U3sIyQhDYDVSgs53Y6F4sOnwDNhpmDx8Giaak/AjCJlVaV99dXR9I29YZ1Likssz83sBxKmhjY7bYepxNJNDVNwPnUYnfRoz83ZLgA0LKOogB97w2x6VZ5hG4T+FnqEoI9Dg6moeM50TOzbUCKGu2un0UByPyKkc9xKLNcC/5ecNtQXseoaM4HYgYWKSbqk6Zw3N5i++TMobBzQ4HMd4oSXkzPUsYqOp5+tLAuwnF4rzbEZi0h7WLIkFBbCa2leeaQcg799YMtckninVeKQpwpr5ijZpjRV3JEASB5nr+kSzgshcJySDzLOYXRwDaxMBTL+hl+zVBYCT8VLUWAwHwciDUXkVh1k7CkyvqehcKmIumUk4Jhlt9cebBrr3/i9SQlJwXTBUQOc81RQzURCPphPqsw67pUGIMzszsrST/wek6GVXvss5q0EpOackjVog6HfKomFYOCMhmZJYZmjLpiKJF7ZUw5qhlTdAAwGT1oQKsyRnSODQcLhFHCY6sQ4RImK8eELbeeg6pdGFBI7QrALICdDTY1ngaH15am1FR/1ZCwhqDV4rzMfyEAw4z0as3Dq2RO63lfjrF0sBr/GwD1OwO52miyAnzXgP3sPotDa+/rZn7bS8ZDo/1fpfKNBpbn6PDD2xc4jC3nDhJ4OHmHEDU+a3YlnFI0Gs+8+SKxZIvIG9TeW7QsDi9ixxKGeehbvHSbsmmt8+mUykUIG6DNPmlGkjC95LOtefJCMLjrKAdQ5C/EiyKbXwlTs6yFGBd5FtZGKL7vWUAE53/ddR3GYOCDwW3TFUF3uSYDGAZXQiOXpB1St86/8vyjL4QiKWk4F+BZfL32VAjxiB8tDLeTkkKKGsaSHMFdE4pMQmRhdNmUyDnLGpkpUn1jEobezTwWNdGHeFRyVgjekDGWc88A4N7FIitBIsyqfEmdjh2UykT6wRvOFKscHwXcSU5ZkOPTF7HhXCVg2hBGkRXhORatS5GhKOylCjg0rDU6iDgZ6VUeHeX1Whs5Z28KEy3hfGrKUVIm42AjIgtzK0MSJuNoSv5T7aWUfJYiGs0bE+mfbHplc6bY85mzQgwaR8ted29w7h3CSJtGADM9TG1oo6gti1WrPNswCaOqEJMkr3FmGYW+cUVagjwwmT0mKNIItOmhxobekX6nJ9E+pUmvU+uMOJpiVRedTQCT9ygrnFmOQq6XPst8ipanbNJGBj/+6Ir1XxnS4Sy/djqjbygHs+RGAbNwTPEmDW2DeDYI3lLdKkTMj7Y8lxwVbWJ7U35xh4blagYD79IU3snXx6DhTw5ICqNNE/usAvqmQTiTJudoM/KoEVqLPBp452iTKD+KGfCcJ4eg6byElHqNUXKn5P4ARsf3G3XxepVNpLzXtGH1NtMcjqZsYn3DZqNRwzeWJB54R+HFE8dzdRsNiZPzMxhdIi/auZK64HkJo0U+WUSbMDYO+WRx8Jr0UHm854aNBLJeZMMsX8tRwfPcS9jpaBMwGIQirUHrLhoLRIUg60DmNKiZNy44O72vyHkC90XmNjSJ5pQ3yVE2x0khuAQMGqdIoAOh2kQrTGGySSE6A3g9jVVASALgNUZraU0N/Pw0pjw+AUJBI/LzSs7O5iOIruugkaqQ66gtXe81UuVRVUEX71hk7VblFfxAsZtKdDRtRrJ8L6+QWH/VO0P94I13Pxio01eXG4nOQI30PJKtNukKUCPfNypEN2mJiqcvDobeB4XIeYkqEctubPh99TlNFbAs4IQ/4yopBK+gJH8yKqRGkx5ovcNW07WiRQuTWZqDQaEC6YvWwEvPGXVVArIlDd4CWDh/MMtYGFjmRk/91aRvKiHIepzGUb5G+ONdZERkzmpUJONJaqYpKf2QOZkRFckUpAkvFUAi8yjvEzhsBvSFXO/7p+U4QzQPnLCan/cMWKoiN7L0HL81DOYxYLkEYBkzoDlrox5rWoyrLrWHWU3v35xjWbVfzdVqKO8aElwef6TM5nPxfomBf+e1/PrLNxpYWp1w2fTFeyYb5a0bMUSL1oSJ/dRRWGVnAxPOBAzsqXMmojGOdCwtAVEJQ02gDXXL3jEBfwJkS8gqM1CSpmRGw200NhYvTP0ZDEkjNeQ9o7BPqi/tk7doYhAVkFuHPCquB4C1Mql9oxOijdg1I6wxGI3BxgX28Cg42bwrYj8Vb5HRGdHOmTFtFS6nVIY3k0dF+mENeYKMzkzIInmKlAtp+HwJu8sUohkchckaw7Iq/KysTdA6wbEFu7GB5os9MxJaKQC/no/pu5zO+GqsUs/ohGjYGs4ejpYt3YH1HcU7pVRGCHk2B+LpiGZi3ixzyOAamEIiA1v0JcQwaNag5E2VhOABZBTQKiOxZ0XCFMWzI/deA5YlpJABNoU68nzoTJ5p3vMakydtTWDmMalz7qTfy/eTxqWC0pPXQkhQ5J4yPvnGN+yh0CYhaepf1FPepJDL1GGSxkZEZQjss4EgYxF2XXlnZE1YFxG1KiBV2D4l3JEuUAWQQ2Ukk8vvtda0G5HrtU6TTInKgJlCOpPJTGIDxDaWH06tM20OgWI8oHYy0Dz8pcwG07UmIjUK2kTkBjOJE20istLIoH4olYkwg9e4tuKNxsQEaqbrlc5ELhI16QrqjKw5zFWnoj0oAErbjIRIYJ43T2X+dObrM9XTigwQKnM+JhtfDA1M7pcyiu7hWhhk1kzoYujeAJA16ytm3gfaRLhVQmIlBLSEyFIfMljnVbwzLk/gUNaHzrTx5vBZeZ1d5g/IZPiAkr7ryXMD0CZSwoh55yttlfBT2QDaxPVlt5un64rOHRsx6mvpIc9zd2Vzbaqdsnh0UqbXTDSjgGmdyYZdZfLIVO0U9l0Za92WyjNQCcXHpZ+i71jv9LTcE9P7ajx0Pab/HHJaiFQyiidp+pzkaizcluI1qvhaheoZ8e/nkpzlyxT+7JcxLI9r0OdS5QkkqeozU/rDw9IZJSibAd3UJuavVX28AgHA5GVbAoz6OUs9VbWx6EeuriteQdDnUcaZUT3XZR+52SUaKCBSL+ovgMG8rekeZSkp+jGa+pln16t6nqruQGEeslv1NQOTN3jl+lmpr6vqPeqAWltqa3XfdM+1NpbH3rSkv+py/zJetfzI67fVXSlLIFkfX3v9pmO/lSVXa/GvYPlGA8utGfHX9h9jawYMyeE2bJCywhN3glMRH41XcCriHBtc2jO+8DtcuzOGZHHvO2yMh9URx9Di2p1wFzq0OiBkg0NocPAtGhPxgye/wCfDBfZ2hEbGOTpolXEMDcZk8MH1PY6RGFfHZHHTnPD5sINWGRd2wDm6mbdyTMRUuzEevzxdw6qEznqEpEu47RAtvnPxuuRYnkKDzvpCPiTlENpS/4PdXam7tSM+Pl7iqu2x3w/4ot/hZnOCVRGn0BRCo+9dvqIwXBVx9C12bmCPqoHVEQffwidTQPbGUliqaH46HXHyDbZbAvNWpQLyJST3whED7xAtGk2e4HNw2LmxsPH6ZLCxHkdPIcvn4HA3tnh/f8Dt0KGzAa0JuB3I8/rtq1v0gY0B0ZRcQh/NTJLi2f5IEjRxIi+6H1p0DFb3zQCrE3766gkA4NtPbuEjMek2JiIDMwNCygp3fQutgLYbkEGgXkKAJYw3Z1UYZne7M0I0sIY84pebHr236LbUrpAW+WhwHh2G0WK3GQCgGCnu+xa28TgPDS53PYWXRoOm9SXHMbHh4cn+hDFY9N7iycUJAHnO748d2tbjat9jDBRabMwE4oVwqDYSSC6ogNAxGDSO2Wg5ZHHbcYhq0thtRpz6BrvNCB/JK+hcLmHS42ix2YwYvUXXeaSksd/2JezNM5kVgXNq+zw47Hc9Tn2Dtg3FICIhuQDggyHg7nwxVBw5rHHT9QCAEClKIASDjkMaxYAQAoVjUp/YiDJaQGVstgOFAXqDthuprTDlKIZg0LQR50OLnBT21+cSuhiCxpZDI0s44WCRk0K79eXHJUUN6ATbToaJsXfY7AacDy2ajS/hgQAwHBsWmifAHL1Gs/GTAWgkj2O79SUiwDWheOHH2xbuYoRuA4K3Rfg+RYV4bGH3voQhNtsR49nBtgFhtMQCqicXgHj9bRMRBgtlE+KoibVzNMUjLGA3DORBMpuIxF4sYgdlJlAOITQthRzGwUBvAoX+tRHxTJ5Z3RI7p2oSjIQV8vh0QyF78YsWuUvEhpkU8pG8f2oXJqZMS3XzbQN14cnrd2yg9h75tgE2kQCZAjJ7chUbW+ASe1nZa2oz3QP0GkkBwQBtIq8pMAHAnr2mR7b2yNe64/PC3XY2FEmg8hQmqAAcaawKQLYZ+mwRN6nkEKqRvfsmQx800jZCf9rQxt5V7JfsAco2Uzv3DrnJ0LfkqdWBgFzWGWmToQ4KZlCIHXmrVAR0BGLL7JeKPFMqAckB5pZ+a1JDx/RIICtuM5Rn75fhthK1oz31TUWF1OYyZuVVacveEolONgTgtFfQI3+eGkCPQOwAMwDJUh+zAczJwl989V2dGamPAKCFgRWAinQ/HQg86ZEBMCYwZQb6zCRH85C1gGfA9ASWCilSxkQUxM+4hBSCrnEHeg5klMowg0KymGlFqkheVOq7Iq+hJyNWVtRfZJrTbFC8aypoZMPjUXQ/PQKF5CehPGM9gp87L/FxWs8qAckA2dLx1ADikRRPog58vZAfyZypeV2VuS3up+LPYskHNtU11VyV5y/ERdW5yZJIbWYDIE39kDoqTM9z6TEroLf2lsq6SNN1xZu5ErYqbUHOy33TvK5cP5NcUSje3pr8aOkhpfl9RGKlTAYmg4V87iods6wUvVf8WnKsV8q7AMQHZWVeHrxftPNN9FQu+UH+KpVvNCvs/o8/yP/Kf/t3AUykJzXRgLB31p6YmpiDDLBUpyZLqBkx6T24nfn9J8INzEJAl3VqZss1Rkm5x7KNZXuPkVzUifJzrbS1bz7MNNzqdoXMYsbOuZjz8vmWOZX71J/wtaIearktdd0efM6WXzCPfLlM8/DQTFk8IqsXLNoUj0k1n1Nd9fi35KwP1bjkOS5DdqXUz6WYc6vG6lvVoTMaj8/D2jyWNlbGVPelHufy/Np96lL9CM003N50fWX5LW0s214+n8d+Pdbmdda/R+b+beVN81nXqf+/a32pu/bMMyAkJKs5Q3muLweg5AwV4pC3WcDr+V6+f9Nnce3cY/XWrnvsea99vpffYZi/XXusclnZ6NUeEhnrkpF0efyR754vtXl57LO8nJO0MoDlul8pD/pSzXE9bXKubDqX7a/1W+Z22fV6HtY+r3J8+X2Alfrv8N3+po/tm9hD55vilTbmGSVfriz6+djPhKq/b1cW62Nr99F7rS2DtTlYey6Ley6dyXLd6ldsPadroZbVmniw7upm1CPP7B3KAyC0uPbRz+XKeniTZ+3BvOCR695232Uf3rJ3Wa3/SB/re791/bzpuKZ10gAAIABJREFUHm8ob12Lv2b76/f8Chd9hUv+r//h733tzKm7P3qR/6X/+j/6jbf7p//uP/zaxwZ8wz2WTke82N2hj27GTOqTKZ4XOe6ZOMVznqR4KoSoRuQvhAzGqIk9s5bGqEGqYe1AIWuRkNUxWFgm8wnsTZNSh7LGpNC6UMJGlxIYlNMJPjZnzCxhmWaSGAic2yfAmAg51EzioTDScuhhqECmyGAA0/egqb5hhBkTeMiUKRqP9bWJQ1tlbBOwrqUqJi+MhIoK4+WaQLx4iZa5pjXIn45hLrtQ6kyvRZ+tZUIQ0VRcsnPWobSih5gqw4WQVtQGAsldlfFM7KbrQvPApOMo4yt5gNy+4RzFmRFh8Wsu8hQCaHNWhWRDclyJmXLa9CyNGWV/uDAy6Oq9eK0eMB6LIUWeA99DQk6LkUXOV/MguaKyjiSfU1g6xTBDRgMUlsWlWDwAaMP1F3WgJqbKwkqqMOW7ls7M+zdj9pTX1aZB8jyTn9YmSXTMySokd1WIPep71eBfmQwEzWQgar4pNdVuOfN9WFqDHhTdK0f1IDwUoL7mmuSj2lEpnTmXdS4xkqtnUUrGJNGR1QMjyqy+jLXk7s7bKfNQA5KaIKSMjasLYYXkYqlcgA9kDbs05YTy/ENhyjEsc46S1zl7LQQm0sdlCGW9BqSOPP6l96Lqm8wDkpq3mRd16npLVFCHTEo7aXGtFJnD4vVaB6urhoB6B7tkE63ryDxmFGOISpMmYC07AqDkEhYSFWBuFKnXQX2/em1In2Q+VHVMYcrXrcdlUEhmvlLRExlLrsevUOQ/CLxyKH0GxIJaPInLNVOvm3qJ1YBkbRMt6x8TYJ552qTIV33t0Vr77qnLYr2tAcclXn4gmVLfX8Y4RZNPQ5J1g2pqHgMNGQ8kZJbjXLvmsaLSfBBvsks+AJzvUuo1vDz1hjl9p7L8vNb/H6v/WDe/wjVfprx9TCu/B3+p9/v6Cn0l/BrfQb/l5RsNLJ+4E/7OB/8YPxpeIGWNF+4VfLb4yF/j0/ECf7L9GLdhixt7wC/GG3zYvMTPhqcAgO93n+Oj8RpDsnjijvjz83N8r/sCH41XaHXAM3ePb7nXeB23+NO77+H3tp/jPnY4R0fyIlnh2+1rRCj8+PQert0ZIWm819zjx6f38IfbT+GzwcfDFXZ2QKc9IsuJtDrgC7/Da7/BDy5+gQiFT8dL7A3Vcyriypzwz88vMCSLlDWeNgccQouXfoeNoTC+mBWeuiNaHXBjj/jR6QMkKNy4I177Lf7V/c/x0XiNT8ZL/PXdL/GT83PchQ2+1b3GVo/ok8OPDu/jpiH23JvmiM/HPWJW2DAj7o07Ym8H9InCeT8ZLnDtztibAT4bnGOD5809PhsvcGnPOCUiEHIq4uVIbLq/Ol/hyvXY2QFjsrjzHW6aIz4dLvCdzSt81F/h0vX4tN/jve6Aj88X2FqPP9p9in92+ADf277Ep8MFztHhe9uXeObu8X/efhc7O+IcHTbGY0gGG+PR6gCnprzWn5+eIGRdQpIB4EV3i9d+C60yPukvMASLv/3+PwUA/C8v/wBb6/F+e4eXfodGB3xyvkRjQjFWfGtzC4OET4ZLOB1x71t0JiBkjQ+6O7wctzAq4/ubL3CILT4ZLrAxHve+w7P2gI/7S7zXHvDpsIdVCX20zOwb8f3tF7gwPf7F8X0kkOTKne/w/d0XuA8dXrS3+MnpGRodcGkH3IWWwqRNQKspXPhnxyfYuwEfdHf42fEJrZ/2iB9c/Bx/0T/Fnx+f4qrpsTG+hHbfhxZWpRK+LKHXG+Nxrgw3z9ojXo8b7OyIjRkRssHH5ws8bU/YmBG/Ol/hD/af4/+9f44nzRkAcIwN+uDQmID32gN+db7E0/aEW9/BqoTX46Zov142PTQydnZEyBqf9Xt8d/cKf3G4we/vv8DH/QVCMuijxWXTF6PSs+4ApxJufYeen/OfXHyCT4ZLfN5TWPreDdjZEVfujJ8dn2BMFiFpbO2IzgRYHfF63MKqiJANnrcHJCh8cr6gfG7X4+VA6+bS9bjzHULSuG7PeNVv8YObX8CpiH/yxfeLBu1l0+OzMz1npSis+bvbV2i1x4/u3y8h5p2hUPijb4vkze/vP8efvfoW/vr1R/jx/fMSag4Af3L1CY6hhc/EKP1ed8D/d/esGHK+tbsFAPzF/Q2edkekrHDvO7SGvrv+5s1P8b+//B7OweFpd8SV68sa+P72C/zft99GSBqXTY+Pj5f47sUrfHK+wPPugJfDtoTSp6xw1fSwOuJ23OD9zT3ufIfr5oRPTpd40p0wRoMxWZwDPZfnmwMu7IBfnq5IIzhZDMEiQdFnOji0NuB+bGd1rU44B4cX2zukrPDR6RLf3t3is/O+sGXv3IiQNM7BweqEv3nzU/zsfFOYu19s7qBVwr+4fQ9XDYVI33sa9x9cfo5/+uoDXLdnfLh9jR++/gB/fPUp/uL+KcZEIdof7l8jZeonAHwxbHH0LeXp64Cjpz6nrHDnO2iV8bQ94hfH68IU3keLk2/wbHPA0bf47v4VGTCzhlMJnw173A38rKDw/uYefaQUCWEPH6LFh7vXxAqcNQ6+xYfb1/jZ6QkaHfBq2OLCDdAq4ehbvL+9w09un+HffP4zHEOLL4YtOhPKd8+FHXDrO9yOG7zY3uLzfo8XG0qtuGmOuAsdxmTxs8MTPN8c8L3tS/zo7n1cNmfs7YidGfDL83VhT/+s36MzHq+GLd7f3NNc9Tu0NuD97h5aJfz47jmumjOsTjj4FtfNGa0J+NXxClftuaR0fHbe0+8dpy5olfGq3+A7F69x8C3OwWEIFpdtX+71yfkCz7oDfnZ/gw/3r/Fy2BYm+N/ff44//fw7X3nf8cHuDr88XNHab3s0bETe2hG/uL/GZduX53sKDWLSOHr6Xfzw4jX64HA7dnjSnmjtR4uzd/jw4jVC0rgfiUBOvrPk++x+JKI/+W07e4c/uf4Uvzhew+iEw9jive097scOQ7TEFYFczqWs8N72Hp+f97hsewzRlnnTKuPleYuBSQ4BYO9GHH2DnRsxJoM+WDzpzhiiLaSITkccxhaXbY+UFW6HDjkrPNseMfCalZSXw9Di6faIL07EXi/fhzErXDYDQtY4jk1JUxmYXBEgNnIx9vfB4jy6wsRvTSqvx2A5RYLz/Hnv3ntbjP6SEiPGdWF/98HA2Vj+19v+lBU6F9D7acsshuE1Y3LNQ+BMxOBdyccHJrmopRwVQOkvYlgWY7vcA5jzHMh9ifgwzQzxcn3NxxC8gWbj/LIsDd/lfc16zZeJUVsIEUtqRF1qpIw5C6rCQ6P1DBcv0XVWM2P0akSZ3POBtWPej9+Vv/zyjQaWDhFPzQF/1H6CPjlcmxNexy0+bF7imb3HjT1gpwc4FfHd9gvs9IAXzS20Svz6NYbksNUDsAFuzBFORWiVihZmpzx+b/s5rswZV4aAk1MRPhu02sMg4TvdK2z1iAiFrR7xYfcKV+YEny10m+F0gAHpVvpsYJBhVMKl7eFURKsSnrkDjUlFtNqjzw5P7In1MTW2ZuBzAU7HiYpeRRjebD5v7kmTUUVcuxOG5Oi1pdd7OxD4UiQNYVTCi+4WrQ7Y2QEXhjZaAn59Ntga2kB1mkAIWrqn0xFIgLbUr40Z6YfQDOX53DRHaJXxXnso51sdoJGxMR7PGprvm4bA8XsdsNEjnncH7M2ABIVnzREGCRe2x86McCriFGkTstEEblodMCSS/qDnR3NjkHDdnBF5PFbH4oHdGI8EhaftEbFRuI8dEhSe8OZG6mhkPO8OZV60yjBsftzZASlrXLme5GB4s73nTecpNUgM0o3KZTNa/xedUcfP8BwdrS1uT2sCMSFTnuspNaVf9PwTbSCRS4j33g1odEBIBlvL8ggq46Pxip6ppespT5Z+ZDvuo7SztSOsniR0LLv7POfepqyK0aMx9P4YWjQ64j506HhTLNfDooBYqS/6rVs7MgHWtK5DpvzOLRsPtnaEzwTsRQNW+p00ba4HPt+BCLFe+y1tCAytd+n/MbTl2qBMpbOqqa8AGhWKDm6j6TshZI2OjToJCo0O0IqiI1ob8HKc5H4EMApRmOZNkUbGy3Fb6mg2vcuPrmwGAeDT/gKtCbgPXclZlrX92m/Qc+52ygqvx00hHQOAY2hKX1JWCJnIy+T8L85PiFxMR4RkcB9ajNEiqIRf9NflMzxGi9YGnIKDYSMIgAJwoehZIdHzPXjawB48bYL74BBYe7bOF5d+n0Izk08KHKMoRhwxHEh0hVZ8D9Bn8c535bVWGSPn6Mrn9SenZzj4ltqNwCf9BSx/t8tYUlYI0Pj4fEGfweDwq/MlAOCj8xXGCkSLYUFAo8hGJdAGdYgWL4ctRIdXq4xP0gV8NLjNGwBT2obIP/3ydFXatzrh6BuOHCHDx2fYl3mR6I+YNH51vCqbszEZhHyDo2+gVUNAnechJo2PTleIWeHH989p086AUvLTb9WGAAPXPXtH/UfGR+dL+ESRPifv8Em+wOthgz64AsqVojz2z/SevhuCBbBBSBq/SjS+IRpo33AfKdd9YMmmMRocxrYAB5kDqzcYgi155CNLlgze4uf315TrnXSRNBIANUaDu6HDaXT483SDMVi81PRcCOR8dbmRn6drnIYGGRSRJJt0oxNOQ1MA0cm7AowCM4v/JD6FSBgdhhYpo8gGyblYeQ6N3hc94CJ1xPcLSeOH6QOcR1e++4+jQ4jmwUZd0oROo6O1eO7KsdtzN63LpHBSDGRNixg1bnVXwNJxaB4QxsWocXvuSnROzsBpdAUcCQAKgTgEvDez63NWuLPT9RL9k6Iu4OYAQKJ0UtQlkgWYQIp8hiTlBnwNgCLhUhOglYiUqEpkSS/RARUbL1VSOAk7shxanH8QRcTvKUKmirBaePffGCJen5f3NTlTqacwrPV9CbjqKIo1b+/yuHj9f91Se+nXxvSWUlI8/sqAQ/U7uZHf1vIq7vA/fvpvlTDUIdGPfKMJ+MjmSrQqxWtSW36tihiTRWc8TqEpDLP1j+9Vc8bBt2XzIpsiARLCPgvQxqg1ASdPEiROx+KpBFCkRqwmYCc/psIAK6GogTUL5Usw8qZKSFCkeP4RiUkXJloJ3T2ODo2NcDrhODp0rG0X+MdYqYzOBviiSTfpCGagaEvWoauiBynjNToVEpVpQzdZClMGOkchyDEpaDURphidigaksNX6qOFYn3AIpkjAWBOhFTAEg8i6jnWIbz1PdZiBWF/rOmKhBFDa/d9+/j0AwLYbicyFLX/CGiz5uQARxQAoIbE1Oy1ZIvnZsK6bWBBrjT55X1sHRV9OdOfKhsUkjKOl0OCgWQdOPRCyF2ZX6ZfIt0hdP5IkzEzrDwBUnjG4imQLhRKr2QagDocsYdUsoZK5r8EbWBeL7Ipi9lfR79MmlnBdOl+FEUsIMM+n1gkpEiOs6NstQ36hSBJGhOHLxssbaJOhTYSE7IpmnLZp9nteh7hKyZHDry2x+0pIqJwr4bcJUBr4s/HbQCZtOflBzwnM+jm9lzBT3cQpRE2+H0wu4bjJG5g24p/136K6VYfTaEoopITB6iZOVmaWRSmyLhImyPf7Yf8hVEdtZtYBLO17BdWmsiFSlmQsVNHAyzPLcNHDE7062YxICK9sZGRDJ4QnEpYp54EpxFH+B0V16rqeY+BspvMSSlpvgniT9efDCyI9qXXyMoggZxG2p7xGbqjPKipihR01MbpyPZF2KM/NVPPKm74pTJKfT1DEQpuq41wvaybZqa3vTJQj41W+ejY16UcdzqmJCCc3eQp5FdIPTX1ITcJn5+eFiKU27st8Z8PtmInUpcgNqEwEPEFBe1UIeoQ8JdtqjMIGbIhUBwDJcCTqiwLJa0wSGpM0RxZiIQ45zUw8kxXNmcrU1v2oCpGMXF9kHbj/yQGHUIVNKuDWA6nFVy6HAGTeOZ2nryMiqbF0LKuJLKb0HUDvqQ/ZAH3k17z+h8DPxKCsr1l+6CJUNmsgDBMxDzTgPc1bIYcBJskQgLRKDcl/yLzFOD2zmhQm8TNIAsp0RvDqAalONkAUoilWPApMxgMAkdeW1kAKgLbT2Mpa5q83I8Q54D1EdZ8agGQzP7bmlFo6tGbrnedx5uCqxq4yZvd78CweKbMc0qpvy36t9XPphJsdWwJQhXm+a/2+BqiorgHmOeR1v98EMuUZVP1+U59n93tTWQLYt1zzpXIw10Ayl5++eyt/qeUbTG/z1vKNBpZGJWyMx7U7wWeDl+OuvG91wC/7azQ6lBDET3GBm+ZUAKGED74aN3ivO+DluMXGeMSscDdu4BN5jp62R/b+kBenjw5WJbwcSKvyWUchLwBZ4591B3wOCt+5bPpitZ/6TeF3W+sxRFtCuIRtNTHA3LqxAL2jb7CxHo0OSFlDq4SUNe7ZQ9BnVcKEDmOLznocRwejMrZuJGBpydspITUAcNn2FDamKMxs68ib5hN5OKQvkicq4TECehyDw8ZEjBweU4PWMRrs3YhBWwzRwKhMHhDvsHUe90OLrfMYosG+GXE/tLhoBwzBIkSNfTvgddygc4HYV2OHpIBd49EHW1hh5T9Am/TAG+zGkpdyrHJdY9JobETKwEU7wpmI23vyJuzbEX2wSNkVQLlpPEmncA6qgGrHAKl1AT5qaAWck57Cckbqj9EJSrFkTJzE7J2JiEoXo0LUpLtZA0atE1rW9jQmwXtTpEdy1iXnVETmU6KwocBMpzPWVE/1RStULOMk4p4Y3BFYl/xW6sMklxLYixoZoGU9aXemqGGaRMLnOiMnCachEB6j5lAd2qwoQ/d0Lk5MrBmgfEBaQ9YmDJXYOVQuUil+JNCnVMaYGKyJnEgmfUeYzGNTpK2XWZy8CSjC8EEjKcrFFL1TpXL5zGrDDKOg5yKvRb4kJtYlHS0By10qQFWYd8WKnaBp458UVMu/fwrIEVP+r2KLe1DQm4QYLNCiGDoy6BwsUJKREoHe8iPPuX+qzUCge2tmfQVAYGYToS23X4ERNWqAQScygd1Y51eKPElmgwMDEMpL1ATaooJqKm1DNYH2nDCJpYtupxgz4pQERhqghtgpXeQ8wsSAsLre5EoPEzMpB33WSJtUgJryCioppCYAYqATFs5BIbe0e9K9QmxA/221e2KNQBV52lsGVAKKVC4ah3A8fyNrFgZqRxmFDAJwsMQUmtW0801NLqytUMIeCgYkU96i6VUBJtkSq2hUDHA0CuNqsjSO7BTMmUBjqlhhVVQFIKRmYg41PY1JsyYkNF1rRgVzUghbAk/CDJtaMCtsRmzUxBg68PS1VM8MMlcTeM1GQY/U3whmD3UK2gMRvJbr+krB9gSSsgGgFZSnOQCA2FH/8y7DHolZVgUCovYEDL+G3Ig9K4QtXa9HVQCOigC2pNOYLN9fpEYN5f/aEzPZMpNq1vxnAA4Yomt486/jtJlPbg54iBUWiK0q780AJKMKOFVZAC/VMSMQnSrMtVCqzGls1IwVluqoApCzVhMrrHxM+RmbgdZnbGSOMGOdTZbq2R4I3dQvAUOFVdZiYoWtGV4jJhZZw3MRJqOIzFPWeJB3CnC7zPg6sclO10i7OqAw0z5khc3IIjOzBvQy5mypTIqhI90fqMa2YIWdgd48GSSgFgBc6gqDbV3vnVlh5+B6NUczTfdezdvleqsgvAJ0SxBdqrzp47cGCh8BiW8FuL8rX0v5RgPLjR7xr+9/CqMSxmzxomngs8GFphDTK8tSC8lhb3o8cSfsTQ+fLN5vG3SawtpedA4XpseNo9DMBIW+cziGFlZHvOfuce3OJTx2SBZORbzX3Rd5kxN/ow7J4tL2uHaUX7bh3KmIiTgnZVXCWjfGw+kIqyKF8/E30JAMLu1QAKTP5IVs9Fz64sz3PUeHS0f5aefOoTUBl01fZE2u2zN2HI46bCjnSSPjuqGcCQDwWaPl8EcKy4o4R4eR+yQhrEOyJCnCYZN9tCXHUCMXuRGRHtkZCmcMWZfwR5Fc6TtXvMSNDnjSOs43Mzh0LfZ2wEVDoZ2Njrhse4zR4Lo9Y4x1GKPiP41QeYj3LJ8yVl7KU9fQPTIZCzQy0nO6/ml3LDl8DXuHt3Ys7aWscW5pB9CyDEnDEjUAMHAOR8oKp64peShC9iT6qvJfwt8k3O/YUQjYRTuUOTc64ZIlM/qtxd5R/mFkECtzLn1sNK3hc0eSLgAwJoPjZkBjIjbOFxKrEt5bgW7JQUlZFU+5lCEatDwvYnBoTEQfLGLS2DqPY9dg14wU+qZIDsHynPTBFoNDrcEqXnzxngt4b0xEv7Gl3cYGtmaTZ95xuwL4bRUOeuoaOBuLbEzKJNES2ONdj0tkTkQqBgDGYIpxgnJxdNGAFS+9VpPsyZH1Oy+3/RTBEMmIIWs0Z4V+a5GSwrb1hZBLPOqiNQsAfeew60Ycm8D9nb77Tq0rOTyK79M1fnpOGwpna52H3xryBugpquDoWmw2I0UNbMwsN8fvLLrNSI6ExIaQ1lH+0YYMG/VeIXDImrURfmOLZ14MGJJDJMaScUPjb5rIHvxJNkU85GJc8RvDOq5iaMkYN/RZcy7Cbw2srTRyFx72oXEwLsFUXvycFLo2FE+NGCLC1qDrAmLQCDuDtvMYWwfXUNSDUkDYclisXGvzjB1bqYy4JQ+x1mSVTkHDsNwJgOJVjzsNrYGw06X9nMnLrCsvdxynHCdhuVY6I+wm7QOlM/xoSFYlMyiPGikDymSEvYZuI0ZraeNt0xQ2l1QB6Mom+NEALBlDHVCFREm1Cd5r+MsK2GfMSHoodCGX/zEw2xIbLnxUFNrG3mEZQyFCqj3RSU3eamDySJuMtNFFrkPIiZQQNdkMH+geYa8m8K8APyjE3SNsKu9QwsieYYDalI0/j0kFmgs96kkHkoFE2KnJMxwmw4B4nGlRocxj7SUTL/PMY7llQ0Sm65SnZyqSGcAEmpABHQj06jB5NjV7vsl4UF3HRh8hJCp9VJiBnGQIPAH0GgB85bFUEUUixPs5cJbvEcX1BfiJF3fpsZSx1LIhqiasUnnhlWTQzaRJWaF41Ve9g2nedl2UfA6WpQaZJQqIGlwCxSUQWgVEVXvSp3cpy/bexUv64L4rbT0Aj2rl9dcMLL+J5XfkPb+lJWeFTnt8Fi4KoASAl2GPU2pwZU/wDAJfhR22esQrT3lQV0w045NBqwM+Gq9wZc+4Cx2sTtjqEc829zjFFr8YnnCeouUcyYRTbrA3A4xK+Gy8wI7JbC5tj8/GPZ66IwDgLmwov5BjPSg3M+AcG9yFDZ4394ggQNlyzqBWGVs94gu/K4Blw2CL8sOmbxrJHbxpjnjtN4hQuHA9ztHhj/ef4i50OMcG39m8wjG2GKLFpR3Q6sPMyytA9i6QN9OpVIhxJGcQAA6hKWDYJ4OQNW6aI46hxY7ztQDa+A/JYKcD7kOLznjsNAGic3SFeEdIQ4jcpsXWjjgwGc6LzS1ejVs8bw8FmD5vD9Aq49Z32FpfwKr8F9IUKfe+pbBiBr4pKzzrDhT+jFB0QP/k6lPErApRz94NRAhiM/rgCsAHiHxEq1S81GOyJW9r3w2FSOTb21sMyRaCjDEa3LQnHHyLy4a0PQUUNgwQ39/ewahcPNFC9vF8c8AYDb69G/B63GKDjMYEyovLGhvlS97h/UjEH0+7I+5Gyp954gZ8/+JlyQG76PoqrFsX75xViXLGGPDK3ApovemI1InyC3MJK79q+jIn723vcTd2uGynnF3PuUg33Ql9tLjpQsldE6KJlBW2biwh5wDlu910J9z7Ft++uMU5OCQQkNzw8weAvY4FoEtEwvPNEX20xXDS6EhAmMPkBTgbnXDB3n6JIEhZ4WYTSh9Es1XaumiHYgy4aAf4aPCtPRHDfH7eo2WvdduFklMGELh7vjuUyIKaYbruT86qaLj+3tOXuBu6IpEEAO/v7wlM87OxKpX7pKxwsyXD1mFscNmRkWLkiAEA+M71a7w8bxGzwtWmL+RJAHDRDHh53iKDgP3ZO1xtejIK7MgoULNbSwj+EA263alEEPTBouXnGvOUI3azPVM+mnfFMCCM21YnRDZ2+GjwZHuGMxEn78qxZ3sC0Cfv0O3n/RFjheS+fffmFc7BYeRoBkkvOAwtGjYMSd2LdsDrc4fGRnQ24K5vSaN4bEqe2/ZqylmWfECJ0KD+aXRu3i7NoYWRcEQOCZdIh42jdSZ7pJGjNYRcpHVhZqiQ1IHW0WdQUhNaG0o+oq80XmNSaGzEaXS4ft7DJ136JpsbayJCNBiDwabxGLxFy/2Sz1XKqpCgbFzA2duS2mB04nOppBIAlHYh6Qg+koFD2j2PRLCk1JQeIlq2wsIuerVibLBspPHeomsouihGjZTIkCERM2J0k3H4aEraxKbxOJy/eiyscwHjaIsxRVIftKaUBdGblSgNAIXVvGkCUlKFbEWOk6ElcNSJGBry7BlJWyWfMCm0bShM5jGqWZtShIAFAIxNiBwaL1EUmteJ4nks7O4SvaETFBsh15jAkTTA6QYll9DGQuwCbiezhzyGahwCHNmQkmtvW82ELXUBIHE0ihhbFAqCmTF110XarZixC1iRNIA6DH95fcYMdNOxRxDT8rgYb5bt1R5COVb3C285PwNw69JUD3IS3zXHctmHB+NEMaa8S5kBwLXnswYm184/1p/fld+q8o3Wsfz+37jIf/9//jc4FNRhSG4GunwipkGfTSHcAYCYdTkGYPaa2PkMfJ42K3sz4JSawgabsioeSACF0IWu0bA6zsBGypoIJvgTIa+1SjjHhsmCEpOhqFKnkHsAFIKocnkvICdlNSNJEZAgRClCmHOMDRodyn2kUA4o/YDLproGUXX7uvpEj2nyFtbSLrUHUTa5QtoxljHk2TWlHoMv8RRK7usYbQFNKatyvE5+pjZN8ZZKH+yKuU9AFi58AAAgAElEQVTqTAQyRBISGawkqOINJY9knF0jOa5yHzkOTOQaAEqOrsybUhkxaxiVEPkZ1etC5kiARgEjKpUQ6fq+sx93fi8bquUzyFkVD5/kuMqzq3N85Tp5X9+z9nDGau5FekbWUa6O1c+nrrOsK6Ap8/3rtuu1olbmXDbXKasCUGvN2loqpgYgS33bem7lWUrdZaJ9kSnBZHmMieZfJISkTPegvCGpJ8yFdallhUgiiXKMJXRbipCBSP/qz149VgEMy7HV9eVZlvmvQt/l97wAXhlT1WeZGwnJrqV16nmaNsS6MCTW59fmVzbJIiUkecQiPSQh1PW5es5D0CWUu85DlrDiusSgp/xj7l+Ketp48+Z9JpVS3XvqPPeZN+H161JULiHXJby5mtsHWsJ54YqoNrCSW1zn/T6mmZCCnm3o1zwDQnAiYyySNJg8pllkcKo69e5R5qTMVT1PWRUwMbuuzo+VvksfZTz1AlzkyCJjntO73CjX4OLXCIV9sMktG3C1TpwCzMdYXzv7IPH/Kj/ywcKo+8C5s5I/SeGQ1P6M6ITv80DKZfn8l4BjDdxU674eX700ATzMNVSV9205d3Ic6x634i1bzqd81utnIONYPt6Vca1ConpOFm086h17Eyh6h2X2Tl63dwBwMiVvam92/k33fdexP1L/rcdXyjvNw1dsuy7//B/+J1+71uPmD7+V//C//I9/4+3+P//eP/jaxwZ8wz2WEap4In02uA2b4u3bmgGfxwt02uMQKKTyld/i0hIt9n3oGGhFHGOLG0eU6sIwOiSLe99hw6Gkx9AiGQphHRKFmb32G2iVcNOccIgth7Ia3DQnZg1MuLQDjrEpG2mA8hdFGuPWEzvbleuLdytlhT463LSnAvz6SCGjrQ7MFEvtieeF6h+RssYpOHQm4LN+j431NPZ+i4uGPBOn0BSQd92ci0dN6N3B5EWNjjiEdraxF/pzAVfi/dlYX8JApTQ6PpCFAFCIkvZuIO8a04tv7cgskSxLMnRAC9wNHTrr0ZmA25GYFK879nTpKadTvDeSa5nylHcqDIdKZZx8UwDIRTNAA/j4nhgh39sfELPG2bsJJFv//7P3Js2yJFma0KejDe53eENMmVlZI1VF1wZEWgRhzaYXiCACLGDBmgU7WLYIsGLR/QuaFSv+DIIAIjTdVFd1ZWVmZGREvHjvDu5upqYTi6NHTc2v34gXkVmVGUWqyHvX3UxNJ1Mz10/POd+3AYSHxVLspfFkUVCr9W0OGqaAwkdnoeRKkNQVy8tofHUJ5bFl0HWYO6LVL1YmIoBKeHQWRiWcFoOr3iEmWV0zGSgSuAJ2FvBJYl4Mxo5cGpeo8HDs0dmAfe8we73ZGW+tG0oS0GQdVbZKtBYLH1UFIJ0JcJ7mrdUBk7PY9QuWsMaYspXFFUvDEnTtN8ewAmSRYYBMbqgBzlM/jrOF1ZHiKAW5o6pi5XCenkkp0xqXPHUwJqIr9ykkivH0XqHvfXUP5eM5CxhN80KIDO/J+mM0udKGoKrFhGNemaZe64jTsaeF836uYMt7haGjTZAMsjo4Z4As0A9LBTpMmtRSxTtngNHheOjRD0u1hADAdLLVFVaqhOA1un6pIGxxBhnAMCxwTm/iXIUA5scO/ZUja1GQiF4RSVEWCLOG3S30TAUFYwMWZ6BNQPAaSseNbmvwRNykdYQvJFMpCigTEYMi3U6gArSwKOQoobtA7WHCJUEkTLLMCymJFCp5CdWRRUTKEmubBZSNiIuCtHFdC3JcYgFA8dEAHcWS5iyQF4rFVWMgvVGRi7UESCeNtKfjeVaQe490MBBDWK0orgB6dr8zaQVIDJYcW214h0ACrdunJJfT7BTlmeV2Ua/zSnwkAbBLqsire6jMwCKrpQIyQziJ1BWwZxKRJHF9i0QeIuSjJhfIQibEVg5EEGmQJsKipDNk6Yf05EqaJZC6BLEIKCeRenL7FIkATbK5ujFmUwhiTIZ0BXyWOmss5ZjIDbOJb0MSSF2iOos7Z7a5WpPYXTSbDDlJcr+VQJYZ0ouVKMjQ99hlqEJwQy6qFMsY9t8dWEonkPoCtANo/Gj6ItriZqryGhsLVDdh5USNqZSe/magxkeyO2h1FW2AWCrEOK0rrD5RH0UuZTqKj91YsyKQm3jfZLltuYJTkWnMWhdaGahMjpvNqo33JRRD8Zt5M+5tP2v9mvIpR+0FAMluxILGEWUcnouxrK6wEsh6G9va4txLMYHVxbY5x2Pb7tNUV9i8LSOLdTzA9+AclHP7yrPc1sMuwm2M5QYINuWJjC3pU3o+78ZlNuKpxbVuCJS+no/NBQB5EZw+AzQ5VvQiKHwO3J9vbLT5v2bDSyTiH1jb8C2e4V9hH+nvKv2OFfa3NAmQ9AVH/EiRq/SGS6bKQlDsFrmgAmSh1CJWK+VQgCmfMyIiCYlBeWgZKaayuFhGyGo9G5SvboJkoSEX0iVpkrMoE0eLBC0aC1N5aVSrpCyWK5FIpiGT9a7KiohV8oAtNQxSbSHYAciKKQXFvGkZMWhf5RF2xtFCHgK2yC+0lkIqK9SxlbX8AAlV66L+xNoHKUj7sJWU4L5xW9prSF5jPa4KMy8kalu4P32RyuhUaNrI+lTkmsjyEwAgc95Y8bi8c8tiV0iM2AIXoDA28WlKEDjpivsssPZLIlc3R7ZGJqxj2KlYwfVgAlnkShuUTOh1qHGJnE+ITFIfBWSlLNDrNZZWiFwZfbtCRqTK9aL0SxRAxfWlLDbaXxnA0Pmqz8VMvWy547YouY4fuwrWZwuocYgMFKVAw5oLsqyl0kcmLCh9F0ICCCVOMVS3OT7PeQECmKQBlpBzqABWMZgSGVav+dlKKwuIBQBrad6oCoJo7KTMa35Bs5UtrG2MJdgVkI/pta/QZE0VItNnmWA7T7GBMkHWMtb7y7Fv6PzGKshzledULD+e1tL9MzYQm2+5zwBgbKjgSZXxZCucEBnaNM+JiWAts3pNHyrxE407KljM3eriJwTFRmoTSpwjX4fVIlXAsVIJqYBOIUWJfUS5L43l2NBCW2laMTELsRCZDE6CwBPHVQqZK7uxEBnKEEhXBfBzP3ImciQiVaK+xI4IpditNJV8UsUaGynZathRPhgg5kJK1UVI094n+svWPKkTLXrKGLSswmy9ygKQJiJLXrECUmWknCBUQjpzvROKgCLHKWbDZZX5U1Z+vDajB7fEeVoClkJlZJlWsAtAmITUl1WqLmCYCZkaEqScCdhW45QWK/utSciQSCIh21QW+AJIubLCMuttZeMtPxZZFzdKyeAwERlKyZJ0KcdkpAIWRW5iN4HVOqfo95YWy9S2JFdQls0KhAFJbTEoK2BZYyS/S0oCSDaVtgFgMpRSb1R0vyrhkljnAg0okbkwuQ0v+HkScH9FxsZ1syXkobGgecqssFkWUN8yFQNr/GuZi1nn0qYylRRt/CS9vS4rAoeilJfLPamWRGQC/nJtcwVebb4mLhIiVyKb3DAzi0pytAXTtYzIY7wC4nXcxQqWynzgOEpOq5toA84uAJ9nYyxF04dzMNmA2g1Y5b41QPFrLalo8ovLx74WWDJIb50jztp4DiwvAsgLbXoWWIrt96+75rzc9ypjU177ksTTQeI6nwOnv0t/b+l7DSxjlnjj9xgVAcNDpLiJUZK24UMYKgHNtZ7xdtkVkWqyWB5B2nAPhTX2MZCFkrTubLXkqe6IB0/WTI4dBFBj7HSJRyTLoa7i7+xGyuc4sXvloHzVQ2OB9KW4w/qkNu5qZLEMWHg3vzyFrBvnosaL7lStl73yuJsHDFpj0B73S4+dWWBlwCmQYL2SJKXC5Dwu6qqxyDGLx2CruyQADI0UCxP0TMHAa1XdY9kyOWiPk7dAh6r3Rtp0FPc2aNIdi1puZFpGQ/0/LBbX1uHgLfpMun8Hb7EU7TOO5Wq13WIBi+ekM63EyFysZRnEcqtkwsNcYkuLNY4YeskKOBhfXQFjkjguZB3jWCpTSGekyJi9rmQtR2fJzbPESCmZGoudgtVyE1OXssBU9L9icQFk8efD3NXrgdWdUskErVIlUElZYOwWhKjIKlkAsw8Kp9mS1cr6Yo2kOSlE3rg1E/hKGz206gYcJbRSNNaF8CVEiSWQBTOYgNmZeg+YhKXGP3qFaAMWrytYMGoltuK4RRaQDjpi8RTH5hYNrWnxL4AqCQOQBTHnlRVWiIx5stAm1vg9ZqVNUSL3a9855oliplbtNL9oWghZct0MQSHqtX0MaNiSOZ/K+0CvVscQJLJdXTBZ9gV5BWQ1BkpkxOZa7+heL7PZuH7yMVkWc1GmGre0aTvPfV8sx6phqz1pLI21M0VRpU6SU1iEAWvUpSTgnUYyRfJFNwLbIiN6JrSRiF4W2RGJZCOSX6VOqji4l8g8XyOz61JZ7M6ZokBKiayHQSJ3q9RNWsjMkzuBtChijC2LiBxXK2ROApgUSSwYWu2RxbIQ5ZYxSwWs5VkhyMJk6yWCzIBT5Cosiiunk+uCJgNJyzWGKpcF9lIskExgE4itGaEASwnEki8rCeEkWvfFrNNqmRQAGrmRLMuqtVgo2dKZFX3PbTtYRqJY+rIA5EnS4p/lSNjCUdxDsyrWzQTIYkklNtUC1BIgFwnhaSOpWixTkR8peSsLpyHrGDKQjKLul++Rr88FUBTrX4oZIhCwERF078pcq9Y1m6EmIsfJSoCtXtVyFgspTZbFYsnspgLSYWX3/A5JLQXFAtXiWpqHlFDcU4nRtgIKSeOvXLkfgcanAk9BFkygaVsueWS5pw3pDZUJqElAWJ4bxaKozwBEWsuUXhADdXhqsRRme1218MWykSHL+Lbgrcw1UQiAWBqmtdYyG2vWNBeELZskGQ1REPd9C85aSyCDvVzYiVvyng0YE+IJoMhSrIB1fXXRObFe/3UWy2oRPAOW7edvtFi2wLCpe63oDIi2x8RZm88AeP3exlFyai2W7Rx6BoC19W0A7dn5FrheTE1fnxz/pnQG7C9dI/KvYMX8DafvUVO/dfpeA0sjIv5i/BR/NX8EAPjz4TPM2eCNv8LnyzV+v/8Kj7HHJ/YeXyxX+PP9Z/jZ/BIA8I/2v8A7v4NLGh/tHvDT6SV+2N/hy2WPQS34Uf8OL/UR93HAvz58jE/6e0zRFpBKbop/OH6FmCU+nW9xayYkCLw0R/x0eoE/3X8BnxXeuD0+7h+gkGpcZicD7vyIx9Dh37v9OQDgzo/opCeBd+mxVzP+dnpd4yF/b3iHQ+wwRVOtlTEL/MkVlX2tZ/x0eokEgR+bd7j3A/6DFz/BF8sVvlz2+Pdvf4afzy/gksKPd++wVw4uafzt6SVu7AEuarzeH/CFu0LKAteKSFp+MN5Di4iQVRV3H5THTruiG6pxYybc+wE7tcAlXWM0H0OH39u9w2fTDV71R+w0kfccg8WVdni3DPjh7T3ufY9eebx1O/z46i3ezHu86E74i9vP8JPDK/zx9RvcLQNOweIPrr7CtZ7x14fXGLUn9tZCPMLyMWzNZDKeBIFxWCoBxavuhMfQQSLjq3mHKRj8x7//LwEA/+fdj/CqP+LGzDhGItdh8M9A7M9uv4AUCV+5HZGw+I7IfqLGi1simpEi4wcf3mOKBl+5XXULfmEnfOV2uLYT3rpdJcthTdWPh0cMcsGn822N5zz6Dn988wanYPFx/4ifnl5Ai4i9cbRJUDYdmGzn8+kKw3DCB/0Bn51I6P3azviT3Zf4crnCz463uLYzWdKLfM5cNj/6ct851rVXvroxs+v0wZOczaB8JQO67aYqwfPD8R6fnm6wN/SczNHAFWmYWzvhzbzDbUflaJGqyHrIEjtDLL2sN3u/DHjVH/HVvMNHwyPeuhE+KfiosLcOrriO39iJgH009diPP/453rkR94XAaNC+yPws+Ox0U8FvX44DwKPvq8szb9R8Ne+gZcJOL7hfaC4M2mMKFJe7tw5Hb/EnP/oJpEj4V+8+rtbInVlwNw81tljJhI+GR0iR8dnpum52sEv3FExlG/5kfMBPHl7iD37wc3x2usYcdLVA//jqbXFpp3t1bWf88nhdNz9e9idIkfD56Qo3HW2msbYuAPzpH3+Bv7z/EHPQuLYOuzKXtEz4ZHjAXz28rn17Nw/4YDzi7TTitp82REIxC1xbus9Hb/FyOOHobe333roaHzwHepfddMRW/WbaVwImZinudKgbRidvcNPNGPWCN9OeNHOjwquh3JdpxKvhhAfX142dvujssrTRn/3pF/h8vsKDo/v2sj9CioxPDzcYDa3k56AhAPxgf4+f3L/EVefwqj/ipw8v8OPrd/j0sM6VD3cHAKt3x6PvKwlR2+Z2vG/sjC+nXfVC4I2rq85hDhofjY9rbLzIeFy66oofs8CLfqpj6MqmmE+yjgNv9H0wHPDltIeWCYfFom9Ic667GZ8f9vh3/tEbzMFsnjktEjpNJFMnb/Ci3OOXwwkSGXvjcPAdlqTwdhpx1Tl80B/wi+MNRrOgVxSm8NW8q/fzwfUwKuLRdXjRTxAi4971MDLhtp8gkfHL4xUG4ysJEm/yvZuHTbjAw9zTBk6U1bPk6Cxe7k60YVmYngfr69g/Lh32ZsGb04jX44k2Jwu50ce7B/zN3cvvvO64HWa8PY51E48JqDod8PY4YuwWzF7jqiNm7JwFlrLx9bKQWx0Xg6tugU80931QuB0nYo0uz4kQuTJwZwBz2VRkjwwfFD7cH/BuHog8aSGSrZM3leSJvUHmshm66xacFoPOhLoZyAzZh7nbbNZxfDeRRwksQWPXLfCF5Ie9Q2avMRZPm2mhTbCrYa595lAJ5zV2/VKJk4TI1cuCNmkB502N5Q5B1Y00qdYNQ+912eBiLxXaIEPdPBR1E4sxB2kaFx1pQUio6keXTUzeLGSt6Tb2O2VRWa5raowFTDokZfEkaOKSFes8Z6ySSxwLfAF4UVwyl7tqJ1dALFG1k9t8UufNBiGAJzHnuWoaX0A17AnBbW+/M4DlNojyuWXB/bp0Bkyf5P8mS+M5Aj9H2bXcjIuWzN+lv9f0vSbvef3vvs7/5H/5T6qVj/9xqgQ0WM+xVQTAho2Rv7cpoS2LPvOPcXusBR2XSD3aMjjvOflISwhz6TzHaHGJuSmPy2YylPP+sDVPXnqZYH3pfJ3P97YsgVb6IJ0VywQk53l4bFqCkpbk4+vqfK4vbdsvjVM7jhf79Q195R9QABvGPE4bko2zetqXcHvsCdnHWb3Plc95zufXpfG7dIzrbtu25n/6o3FOwPJceU/buC33Un108HxL9D2OAc/+eJwTwTxH531pE/Wbftc27eDPX9OW59JKaLJtxLlr6TcX1Hy+0OB2blw6/uxO8vm59/15+KYf/rNxaufitn3r568di/Mxf+4+vHf7uZyzay71q73m68bwuXzvM9menYQX2vGrpG9qQ0uQ0+QVeWWf3JDE4Cz/c3VeKPO9XNjedz7g6Wvk7yR91/ZeSBfbef4svu+8eOZ5+FZj8uwi//lLnsFK73f9+W/S19V7oW3v16ez38n37duF4+89hr+OPN+23l+xjveq7z3L/Nbt/Tvu3//zz387yHv+4J//17/2cv/1f/o//sb7BnzPLZYc59gV1k4XdY1bBFYWUra2VAZSKaqMR2uNYyBZASoTiJRdQ65TZSY62dJ/A+villk/19ifAhKx6jxK5Er60pWddiEo1o4ZLhlA8bnW1ZTrY1B5zhbKu/Yru2h+ltGTY3bOf8PiZjFYYpzkdtEu8soiWsstf88ZRjlmkMEhu3Oeg2kAxe0yVUIZGgfKp1Wq4DXlXOWlRN5SrUuZyHulAR2pGT8GjUuh6a9MmcyWyrFYWUBrYvtsWTQ39/9sDHl+cHzXFiDjAmhbWTB5x5Wv551bPscL7pVEZc1/HvdG16Hstq67xOfMpXSdqOUCa/uojefg55yRE1AqI0YBpXJl7OQ20dhT+9OGaXL1OeJ+lYixknf9W8GIWMljANRdZyov1/7z7nQtv31mW+DTbOLwvT1nik1nn+uzIkqMUnENYxfVXMquGwF8b4qLYo3Ha+YERIYoQXs50m51CpLKbBaL7djSuJWdar4/xbWs7mrzerOMa4qyxgcio7Bzrp9liW/M5R7nKEkbseTbzF2OAxOoMWG0O8+DUBL3N4mnq9s67mcbC1msMYPct5Yop5EduLj5wHqI3JZWKzHzTSn/gijHBd1gnSupTU08Vbke1ik8X/ReAtZnzKkoz/xlptAm33NWgZaEo7gscizduZsen6suixy/KFaXxuriGASNF5MWc/sF1ti2KGj1UNxgyUWx6TJbPIoOYntsJWcp31uww+U0boucD01bSX8RNY6Rx4M1DbMq9aq8dYEUgAiiksx8l8TuksDaZh6n3NRX9R9rRjRjgeoKW2PyeLybubDB2k/mCKq7Kl9X3UixShNtfpSKpWv7AkN1R675m+s2hDNtG7nvXB63ofSlPoqFJKqdh229nIfqaJ7hJlW31PZ5zU0ZTR83r5bmGXjyXJy9fp7saX6HKfIsUBVn37/h+nYILpZ5/s45/36e2jnwTDu+dmMjX877jZsU73PuPcemrfs7bRh990f+d+lbpu81sHRJ4yu3wy+P1xuXofu5x8lZvN4fMQeNq87h7WnAy3HCV8cRAPBqd8Kj67AEIm65Ow3Y9w6nhVxNr3qH627GFAx+8uYlrnczfCAXPFsAxlVh7nzzuENX4u32vcO7w4gX+xNiknicuko6wlY7rRKmxcB7hY9vSY/u6GzJRyQdg/b44rCv+n99cV1ZvK6C4jkDY+ehZMLOLvjicV+F16fF4Ee3d7ibBzxOHT6+ecTb44glKFwNDlZFLFHhy4cRXUf6Wb31OE5dAVHk9rEbXI3hEyLjNHcwJqDTESGSG8++dzjMpAvn4ypDMjmL3nq8O+5gOw9bXGtCUOg7j2my2I0Oj6cOSiU4Z9D3HvNkIVXEy+sT3t7vcLWfcJwtgle4uZqwsw6/eHsNa2OVE6ixfIUllcf78dgjJ0mxduVHfTcsmBcDKRPmaUAOEn/4oy8BAH/7xUsolbAbXMmTMc+G3q1lIb3fzRAi4zh1mxi7lASG3sMVZsyb3YQlKJxm6t+yaIz9guOpQz8smE4dhCSmTyLgybjZT+h1wJtH0luNUSIsCrurGd5r3OwmvH0YIWWGtaSnFgO5BaniLnQ6dFA60dgeeyAL2M7jR6/u8O404OEwwNoAU8hpYpQ1nlDrhBAkUiJ2Tv6eE83DrvdYFg1jSDMuJIlpsuh7T7Ggxx631yfcPYywHbmthaAQg4JUEX3vMZ06KsdpCJlrvGBOgLYROQPW0ni62WDcOZwOHXZXM+bJIiWJFAVMFxA8xdvZPkDKBL+QmxQA3N4ccZo7uIniBZVOMDagtx4PjyOBzyigTII2tIGwOFNBE7O2zicLIYkwx02GyGRKvCEytdk7jdevHmFUxGe/fEEkK6Bzy4muoX/A/mqGVhH3j2N9l8miAxcW0k7NSeD6esLd2x1evDrg/mFE9qqCqBcvDnC+xOMGiX6/4HA/FCAqMOzp3XR66GEGj5zW+Edk4IefvMNnb26QvITpA2zVw8t4dX3EL9/cICca4+VoMVzPmI8W3eixzLrq1aUsoLsIIROC0+h2C7xXsDZgPlnYwZMbGECxkQDsuMDagONjD2UiyY9EiqFUNiIGCWkiolOwo4e1AadDBymB5CWG6xk5C7ijxXAzYz7ZEpuZoQzF7caF5DB+8IM7vD2MdN9UxjAs0DLh/t0OuisbRSUO9OaDE959tYcZPfa7GXdv97j94BH392OJCQXGF6QPyizK02SpvYqIlaJX6Edi510WigXvh6X2FUBlujWDR/QK19cTxYaXzcN5spt71Y9LjXVN5fcgRYGx3GOO2725mnD3MELpiGU2NKdlRvAK487h8G7E69+7h/MaszMUHx0klMqwJsAtGstssLuaMU0WVzvSoR27BdNC7vCHhwH9uODF/oQ393tYG9CbAKsD7o5DkcUROJ06aBPhJlPnIr/X9yOxEd/d7WC6ACFQ54zREYdDX98z1gbMR0tgKQqojp5TPxl0NxP8ohEDxewqGzGOxAJ+OPYYR4fH+wG7mwmnUwdrA0KQeHVzxOdf3HzndUe3WzA9kHu9Ku8dZl0+PfTQHc3hYeeInTkLYiAGMF7PCEHCOw07eHrXRpoPw9Vc540Abbhpnap+ZVyIFpbdFJOXuH15wMOBXO3DojDsqc7YbEbJ8mwCQL9bMJ8sTBdoHgYB05O2qz9Z5LIRIwQgS4y0MrSxyXM2JVk3u6SKCE7D9AE5CfhZA1mg2zuk4gprbEBYNOKsYHYL/KEEhUpUyRrdU7nRqZXB2cu6qSJMok0KkZG8ojjmsvkFlemaVHQ0eTMJWEEL5w9y3QxSmQAxsy/7srHE19dNgZKniytDM7BFfwzAmKQpNxteOm+ZnXkDDljjnNvEyCljJV46P8/M0LzRF0tsNh/PTfkMxEv8LxSqt0ELGtuNJtogKazR7LbbpCpn02yOPBmLtvxzoN5uDrTXXPrLY30u5XMJWX4TwP4tSRnbjf1/aOl77Qr7w7+4zf/V//ofYVQL5mTw1u+gRcQLc4IREb90N9Ay4hg6XOsJd37ElZkRksKdH9DJQAQ6ocNLe8KjJ2F5FzWO0eIUSPvxB8M93rj9htgGAB59h5AUPugPG/KeF3bCu2UAALywEx4DxRS0rri9CuhUqDFwo15qnA3HzLzoThWkcVuYTZWtKadCrjMHU+OHKG/El9MOo/HY6QVvph2uuxlakpA6W9NeD4caWzUFs+mjFLnmZevIzixwUVfAa2XEwVuMxleWUc7fqYA5mArQXdCVkZVIehY8uL7GyjHZD3+/n3vc9HONF7Iy4t71WILCq90JkzeVvIfrZcIddtfdd0X4vsQmCZFxXGxlBR2NhxIJP7+7RYsz7UQAACAASURBVM7Ah9cH+KgwFRKemCRG46vlNSaJgyO5kd6SjEUr6n4qGwQpC5ychZQJfYlRMWVDYewWnJytMhuqsZIeZ4sYJcZ+KdbhDF3Ie7RMmJzBbnBElFPInVj4my3tu46kPubFYNfT/XRB4XTsYWzA2Dv4qGq8SMuS2upasoSJlCtrKktrhKBqLEpvPebFIEZRNwb6YYEvMUGyEAzFQt7TdbRo1DohZ1qk8++ID6qCdSEIPDtn6kaEsbQQVTJVAiAhMpwzVJZO1do7TxZKR3RdkRsJROQSg0I/LLXvfBxZQJuVfZQXeJav96qeZ81DIXI9Pj12QBYYb6ZqFQ9e1esreU9ZfJnBrxZaZsfVqW6ABKfRjR7zwcIMHkqtlmp3tMTmKIiohgEix8d4RwRBdvDwC8mNSLWKlocHC329FPIeWtgykMmzgroiOZYYJLQNCLN5Iu8BgLwPysJe2lgXhmlRUH0kgMfkPYUVNDoFRAHZB9JVlLnGEbE+Yo4UMxQXItIRfSyWy4Q0l3nVB6RZQ9i40Vdk8h4kATxo5C4RW2oWtMBLgNgF5EXR4oQtZycFXHlkp4jAZhcgjhp5KGYamYFZ1QUfgJX5tFjKUMhvAKzsnp4YZ1u5ETDJj8oQs1oXnBnElsntByAWURefuVkwy1kWAo1MjNssg5GoDBGKdU9nyFkijRHqQRO5jmkWkLGQ5GgAOkPORZJiltSsYhXLEkhDgnQkGRL7QqYTyaKUzGqFSyZXCRI1Uz9YjkR6alccM4Rn8p71c+xykRtZy+AXBJPzxC5Dn1i6o1jDPBHmUBmAXIDYk7xIMiDyHgWok4C/+u7rHuWAWORGmLxHZAAJSN06XnJBZV5lq6KeabGeDDaSH1mSRAdQ2FmLJU7ERrKktbKD+mIOdB/YWkpERVgtp6AymDlWLaJKsTArrQxUZrJ5S95T5FlkKH1Q2z5xn7NeiYeSLvdpwWpVLeQ1WdPxotZWCXlqGwTlay2k1fW65BW5lNW0U0ZsyGlaK+tqicdTxtfWYpax9vWM6ZfziFZupEkXrZwFyHE/W2uwyFjZZc+A0BOLpWjaK7bXV8t5+S6LlXhDfsTFpPUZ5nG8mLieMys/1bsS5YiUSx2CCHNaMMnlfE36VtbGC+P0q5T7f/zP/91v3F20/5Mf5t//Z79+V9i//M/+h99434DvucVSiYQbPcEU6RAm3ehEgJEB13oqMgkJg/KImIm0Rugqt2EEyXh0MgBmhkIqRCjE2ipB7rZXZoYRCZ30cMlUl9uQZSGMIcKaThFYTZaeMi0jrgrZDyefJToZYWTEy+4EgCQ1mKAhQWCJCqMmrUtfCBaYlIYTgxkAmFWoZCmyAL45aox6Qa8CXg5EzELnQmWCHfVS2V0lMgFcrG6rWkQsSdd6euWp32p151UywcpYj/G1DIT7Mo4sD6KLPw0TplgZSSJFxHqdFBmpExiK5Ahfe4MZTmt0KlCZqpVbEVXLktvQqVD7V10HbZFpgajnr4a53gdb6mIXXduMOZrPXHcrkSKwSlKw2y8TMJgiEWKLi7Mt+RjEcRkxCYzWI4NclZVMkENZpIpcZUxiwxrM3wGg16vMxlAIStgd2eqAwRSpDx2RMqpuJdC4ADdtar8zC21UEaFsJLC2ZEoSXbGC9iZUIE/101+vFFmVxerObNQ6fpo3Tgpg5LysJcn9WiVMKGZXCXLx1s0xcs1N6Eo/q/6mibWd7P7MzLE8ngAqgQPfT2a3BYCgZSXkkWX84khAkaw2lE8VVl+en6yRmbOAtau8TyoECUomkl0AIARgTUAcBLoubNxPU5SQRfZDiIwgJawNT+JMWWqE25KLj2zaiSpZImVGkGT1TkkgqlzbJqSEtUVeR6dqRWkTgboIpVa9yqRy0btc/SNVBUW5gPhArKqikRuRRLKRlSBCDqGQdSJpklJXEKhAGYL6xXUkLau1JyeJsBMQJlVQm4o7rzLURi4ToM13bRKSzEhaQXWRNqi6WO9HBGgRXxaRQufVRbjsqle3v3I8a2oD5xEqEbutLHnOd/xVrrIiOYNkShqZDV7FJgajACAzopakX5kEoEkKhNuUBCC6hLgvDLrsRsxEH2zpUBlRUX1RNVYJtnKYjKgEkpbIXSJrRiyWFZOrBaNKj6iMyPIiBRglT4A1dQlCM/oAYBlIlrYrAJHkR9jlMuu1rJjlKj0hAGhUvcZkCMgkmwFJYCsVVs8sQLIr3zFlJUiuJGPD1CoSg+cCeGVjbSrgMDDQVLnIV+QKfKo8SWNxEjGvmwpnrvOQGR7cBmL0zXoFsitLKNUlyiZDVgVElnFPDZBrWUNFyZMMKlDh8lvAl9UKFll7skpzoAE1qsmbV2AKAeQgSrvzFlzx9IgriyyPm0iFITifgVGggpBallrr2oDO9r7KAozZ3fscpNjzmfA0ifXWNW6+Tbu43ksg7BJ4asDkk+ubcjLfxxYUtmWeAexNvRfaX+vbgDrR5BO1XkA870Z7oS9Pzouz78+kto73csF9TzD6u/TrT99rYDkng0/dLd64PRIErrSDSwqnQNbGWztVxs1TsNhrh79cPoQUGddmLqyKCr3yePQ9dnrBVGQ4euUxao8lKfz1w2tiN4wKCaICWJIukfgb9wq99ohZYtAef+Ne4bojoPK4dLAybghXlExwUcMFjdfDEQkCX877qp/I8iOfT1fwkba6ek0yKC6sIA8gpkshMnoV8NPHl0hZVMZKtka+mfa47Sd8cbpCSMS8yaDpL999iF4H+CTR64DPT3sA60KdQQovir8MOxhJLIKhMNrtzII3hQWQXWFJMkXCyITjco2+aCrGTKyIvQ748rjHzi54U5jgnNcYLLnxapVw1Tl8+nCNq27Bo+vgo8RVt8CoiM8PV+R6O6sKZtmNmBf8PkncTX11P2atxcEEHBcLKTK+WPaISeKHN/cAgM8fr6AV9e/kDaTIuPPDJi507BYIAHdTDykoFpTjKDsTMM1dtZb6qPDoLJTMlY3v7jTQX0e/VDGLqom471b5EykIZPqoKhvfvlvwOJMLrtURp8VUwMcWzjeHHZRMGLsFdxO5bBkV8fH1I07e4KFYPwm0UR3OF6kMFSurKsWyrt+FyOh0hA/kJssW16OzsDqgMwFHZ6trdLWCRgXnZbXeTouB1QEuUAzwg7M1VlQpikZmoHucyZ36OFuMnYcLCksg2RBjQpUJ6QqQ9VHVONX94OC8xqG4LDPI0zbhOJexjxJapzp+S1DVzZxlYyZnCYDqWOVedBkHdhtfvMaLqxOEyHj7sKtWU60jTrOtz7+UGbvBQQrUNvDxnFHdqHMW2I8zHo89rnYzTnO3YTu82k9VDiZGid2w1HpyFuiKG/I8G5jigrksql7/4esHvHscEbwiK/YY6sbE/vqEu8NAbmwmws2muCYqWBvhvVpJdYqVl9gaVbFU01/nNGwXVle+Iu/RdR5aJczOrBbgKJCTJLe5QKA5BnKP1DqSO7qg2NBhJBflxZlaH1t8WcKG2R9ff/SAkzPFzRcYRtpIOp46mAKeY7GOjy+POB17aBvRX804njpcvTpiOnX13T1c0eYdxy4vi64xptw+u3PVwg2RYS2NoVRkoc9FUsfuFqQo0ZUyOS6Y3SOFIEu+2S9lTqP2M2UBW6+j8eu6AOfIOh3LMyoksV2aa3JL3X98IKu5VzUemrVKuV7bzfCLrq7szJSZksTiNLQhLwDyCEhV4oe8EMi12Xt6L5PFOxbLfoljL/PFTaZqmaZIrvJSklQOSetIcrVk6ZwMyGJpjIuEunVE1hbJBVLoVN2Ns1eQOiI5DdUHZK9qmabziIcO3zVJGxEc/S4LnShmEbQxkp2q7p0wZKXOpY0AaJMiCwJSOld3/Fw2MFiCh8sDy+YA1RrPKSey+rOLbI4CsAkprNI8VBCqtI40Ecmr6hWALKgPosj48AYDUGOYOb4ZQdIGScbqgikzcqCNE+TivpoB0cXqLi9UovoDtW91C8Xqtlk2flDkapDFauEHmjhqAFEU8L7dWKkuqBeAFeuritLuzJsy5RyVizVe9Nw9NWON221BCyOcBuxvjjM45r6U+9dqarZA9ByUsjWyPcZWye3mAaoEyxNJkaYPl6yZnCqobMqoFtAnmZv+v0d6bwvl1wHC9vg5OH+urEvX/jak8q7/h5q+18DypT7gP3/5v+EujvBZQ4mEJSukLLFkBSsiYnlD+KwgkTBnWsz1YsGcbV1An5LFKBe4ZCDLk9QLD58VTrcdTLGy+awgRYLPCldyhs8ap2TRScprRMQpdhiVgwKVK0WCQkaEgCqzey5Wz1EutVwANa8UCafYVdIfIyJ8VogN061EhiptNSJSXeVYzBJ9aZPPCp0IcFkjZrmx7p6ShRGx6DFGzGXrkeVR2rwAxbUa0VhNSx7uu298RSqJ0Nk1Lml0MlRrn0saCqmW4ZKBlmSFnqLFUGRMuJ9SZEzXFlqu1kpO58y3bJltSZrYusxtAYBbQ5bju/0IIyMkMnwmTUfW7OTUFakBX8oIadXIbMvuZEACaXKu7UtYkt6wC7dpULSYm6KphFI+KQyKaPytDFVyhstgMiGWoXFRl/FLtX9SkNU+FbkXLWMF+nSvZM23JF3GicYqNO2nMV/zsvt2S5jFkiWyzHW2gANkKQ6F2IrndiXVOrMY8jmWk+FrW4t0tXQyc29e6+pVwJJUbb+WsVqv2+P8vJObuqr90pLdg9d856RfKa+eC2z9fzWcalu47ev8yNViv+z1xsLfjgWNVcBpZzHqBfPebPKxFb31Llhie59SdQFvrdEMcEe94Kab60ZXS25mZcRN2RgTIsMnVeR7JJRIGzKyatEu74j2L1/H+VtmbS63JRzj8WlDBrQkT4qwl7UPnSrPVZElYe1Tbm9LFNapgOtebsjPAMAN84ZUDKDNF9eT63ynA6beodMBrndkuckCnVrfY6psZLD0CkCbRIbHm8uVCW5QT1i7+fkzzZwnrwuxIfVizd104TiAek6JjNCtmr4tUZqSCWFQ6PTq7dAmzlc9KPrVRb8d09hTiIFWEZ1eN0ylyLC6eEIkidiJer+qF0Ln6+ZXykBnwmbDlUnCgg3VQ0KKjNj7mqfOl5E+53KcSM1WHvdkaQMhWvKmaL0DtEwQv4orrEoIdg0j2IyhXWP+ebOoJUpTZXOB2cb5HG+qXSJVq6zjZxYz9qKQlaCtEKPppwvWbAFk8gJIhkUjtyhG6XSxbv6bu9UFfrP+NyUPQHF+ZVxyAZtCZALRhTgoN/WsxHdUWNYNmV0LXBpUlXVZlF9EZfkigKghB5fK45MazwOQUt/Tn+xa8JkV8uz7WZwk13nJgMefV6tgIdq6kDdvLmj6eaELBGZwGZA1w8Zju/lb0hOA+J6hdO8bcfetAOjv0m9t+l4Dy1Pq8H9Nv4/H2G+kQXxWdVHDi3oChLkuPJldNUI+ATXtQjNlUYBRWbiWemIWMCLVhT/XZSRZeDpVwEezKG0X5CGpDYMtL7a5Xl7gt6llaAUIDEhRrHTIGxAB0MKF3Ws5djRBVA22lGVd9PIimBfu5wteTrz4vCSX0lo2t+1c8/H3S7IqIasNAGSNRSsDUpYVTFfwc+Et1IIZZt09z7epsyywPldXAIAlqto/7mu7IF/vz1a2BsBmkQSgWoX5e2vtbtmB23HmjYK6gdAsxtv8bT/Ox7eyCzdtZ0DFmoHqDMA9tzBv28B9OpeuOc/bjt2lNp7ff16Yt795fL5dwPBC/JLMjxTkhnnOeNwuyOtCueQ7X0TxOLQLKh7P5wAQl8sszikLhAbg8Xi1qQV656mV6dGKyK6UHBHT9plSMj9pPxNsUZu47Zflj5Qk2aAt66+o50Jc29ber3Mwduk+PPd884wRJV8LyNpz7QKHx50BBPcVeLo4b8+t7Mbb8/ydXY8pb+lHse4x03HLYFzbU8FWGZtmDDnPpTZQudv62DLO4KQCiLydhy0L9HPH2/K4XW19zKarSlxzW9emXe2CvfSjLZctphB5/Qys34sL8rrgXctBc4/ypXNn+WoR51aKs8lSQYhAIbZpxqll3OXLZK4WxO+UBBqm3rw5ziRS7Ti21n1mrH7iy3d+rpbZgKe2/+d/z9Olc1k0hC/5yTjX69p+PkE7F+q7cO/SRdD3tI76kctt8KG41D48Y4271P5Lcy9fOP3c/Dqr8/yWfStw83V9ee8yvkXeZ645f3yevUaUZwrN3Hsm/Z2AwW+R91uN4W9T+r62+z3S9xpYxixxHwfch6ECQwKCBj5LDI3lxGcJIxKmSBY5trywFegYugoOGawNitxPj8FuYiBX6wrt/BH4ibWsU7AY84KQVLW0ACsoZVARksRYYghZdoSBppYRp0BblG0cH1tU6LjcWGE4v5YUFznqBSFJ0vkscZshKwS5gpY5mgqy2boCoOljqmAPWIEYxyi213EbGVhUi2TUNTa0XYz7pCrg5TFhYK5lQqcCpmCQlICLNFU7FaClwBTME7DFlpN2ccfXtQtcvlcAqjA7uy7PoVhsm7hJBgDVCtIIj7fHGVxwfgOajz5u3XXZXdgn+eRFz2W7sD6aIUnYAlpMYfMFtkCLgRVbrtgt2Je2KJEhC8HSEhVEktXCyeCLx4n73IJTTiqLeo7rjyV+lMeEGYfZYpKba4yKWIKGbsaJiZY43rNth48SRiX4KGF1rKCNJWhapmVuK2ukcn4GXEqufVpaoWvgCRBrwRmDLGZHBrAhTNKK3H25zW3ZSor6zPAPuVYEHrmsFrC1YEuIXOYYuZhv4yfjE0DlG0CbS4wnbyIwMFtBc6huw6rEsa51r5JGQhDY4r5noLq2cmJgxGWlJJELmOLvQqwAjfMz+RNbbKrFpbkHWeYKzKgOKpPbhbP21OsKYGIgyXnqfCx1c7vZpZmPr2Aw1mupzKdAkvrVAj7UcssIPQWyDZA4B4CpxGLSAptc+GpZZ8e5DTkVa1SUFeSBLZrlc8qCPPVKfr4WDVDMKN6A+WxTMTf5eRxxZqQBAH5XcH4Kk137jfUismCJi59b4JRr3+m7EI38DYPKCuSwybs53rxs89lGzbdJLQAUm0ehoI/cgHlu2xMw1rSPL70EWp4McElMFsVutwx2W1dMnN0/BlHngEE0ZZ6ndtzaMp+grPdIl4DbRaD6zOf22HlZ7ecNiF0B5Tm2O29+O32+MV1s14XNkWfG6FuBsfOp+tyYibP8z9Tx9YDywrV/36Dy/yfpd66wv6XJZ4Vfuhvc+QGhAElfwNwcTQVWUuT6ncFXrzyWqFdg6Tt0OmApi36OcwxJ4n4ZMGj63Lp7MfHL49KhU6ECppO36LWvDKwcY8kuYQyiYpKYTWHtjLq6iEmRn7C3nrt8te5bWlCM2GHp6jEfFYKVlcHVaV1j5UzjznXyplp2TAE7LcuqlmnDvDp5U8cHWF2/fAEqrfWJr2EgwSkUyZalsMS6cn4JCrbEsWmV0OuA42LQG1oExyQwlFi6R2er29V5/CqPYcoCS4mDYxACoMqeSEEgoHXBvJ96YkEtFh3O0y6yFqOKZeqpxZKvA8jVKyZZgU1KtEBfgoJWK0hqF3GLobqmxWysfV4Hig/SEbPXNQ6xBSMtsGGiGQYkqhDULEHBlZjW9vrzxfK5JevcCitFrtdTf1IFbMHQvWXXtJRXC5GSqeiTMuBDtRKxaxewBQShxDOmFOr9bEEMsMa8MUgAgMDjz/FFciXaofJErbO1gp23ha/nWLP2MwEJXZlcAZKg4PgmVVhX+RdYFpKVyjp7Zn1qAUgsMW2pSIFUvUgAyUqwSx270fllfZ3HErsYvKqucimSRQlZQAwZzmnkRPGMLaDjuMqcRY11jCYUyRgCL+06geUWKF41VmKhUOZhjSss+SswLLGN/AxwWSy/wxZJLkuU+6v0KtuhdESKqi7kq0teGUchco0dhMg1TtUvut6jTd5FQagMpUj6BQDColYLX2pIwATFBjIQohhL0gDltrZzoOqbJhStUJINYfdBXtelVGLyyjyQBQhy+XXO1DatwCUG2VjO1vNSFwmWUk8tv4AMjqfLUZKrYhTIah0XBuvJy9I/ieTlSlQk85ZZmN+NSUCUTY5cGIDB87GMNYplsd4PBo3818u1rbI0OTZ9Z/IhlSkmMa/fsy9xgazNSegX8E+9Bd43ZZakyNiyhAoBBIEs+VxG1U1lvMH/RUHkRAz4CuHSExDa3NuNlZQXpVKs8Xt8rL6LzoAOt6O14p4BS5acoLKxxhvytbLtD5VDshR0TDCwLhqnPC6i3KdWS3WDcFpw2wDZ2vzGCsxltXGUFdM1Y13LzajhjheBWmrKFXgehMqt5utF8FV3ibgeBv1n5eFpMZduycXdm/OLN6D6uXat4wB8A8h+ruzz9BxwbcbvIvA835R4D4B10WL8u/Rbm77XwNLKgB90d7g1J/isqkurzxQ/xXGPbeyUMxqpMLm2bqyTnVcLGAiYMCPrqH2NcWOiFZ9UjbXba1ctoFSWqe6m12a+4IpJrpwpE1Mr0MZx5WoxJQkSeui4bc/FFGqRKusrWwx7FapltFcBc6S+W8WusAI7o6tFsrVM8nlio03V7XZnyAW1dTllltk2bo76JJ+4ybbf279sbVIywVtyhe10oH8qVFBvioXWqLixTp67wjEoi1ZugBvHkkYraxtzFhgLwAcI/LQxkAxeKysqM4OeucLyta1llGPBVitY2lgwuU3cZgb9tgHiDN7ZssWsss+5wvoyngz4Afp9GIyHVwTeldi6M7cMw+dtamO7ePOALaQA0Jk1HstoslhavSWsasFoO56tu+7GXVWslk7ehNAqEjtsFtW6yZ+NWt1L2w2EmCSiYSv5yiYbtKrWTtqI4H5jYz3NWSBqBtXrpkELuM8Zcdt7IUtd7XHWQOR72JbXzlUiRSFWW7Y68pjzRk27CcBAGEAlg/J63RRp30JGRaAvFsCyUVRj/2QCiPOJ7pOOxARciFouxYHxxgmf5/a0bp6ty6kQGamQhrTnyMqz9o1BKPeNQTgAJM2AeK3zfCOE5WhSkWZZY+LCxmJJeYk1V8q8qbdto27iw6RMiHLrNp2UqOy3Gwttqbv2NROQkorHAxuLZVbrClfW2DtAyvV4BWJyHVcaxIwstxtuQiagy2s8nhBPVoAZErm8W5Js3geixHhlAWFpPIRMgFnnNE2qtK5Hq7UU1aqXZWEo5vlt43ou5U0+AqvlHWiZ8hPrAyCJXXcFOgUcMABhwMv6h2ad/YLj/75jErLILjT3oI6hkJv7UwERDyUDX4mtiSznxtrYVtZ8b+ti66jAGr9XwM8TZCTyCmyY8OYc0ZSxpRi8vB4XbR5e2TfAFNhI4GSUPoi8+vQDK9GOLMC87WIuRDwZ5BFQ5hsyu0xzO8p8FuVBOVtX5dLGS92vOS+NbTPPs2iGtsU+PD7tPXgPQFSrOtvHaG97dem+cP6iefESID//y1/P8j6JsbwENJ9DvDgb8nMkfKGsJ+U+KeTC9wuHuJxvHPJvcU9+0+l7rPT4jel7DSyNiPiBfYc5GcyZfuU4jpHDzH2JO2RLYYLYEOAAqPGJFYyUuEv+fq2fgsPz+EIpcgW30dD1nJhAiIHvpZikS2mnls33dOEtw0CXPwOti6TcgkLN7qlbUpJ2fM7H5enYbetY6962dTtWW7KX51JL6sJ1j3rZAFY+HvTlcs7H89LYXsrD95fB+Qr6nra9dUV+0tem7fWYFlvQbbZtuxTLytZwYEvoAqBKsLRxnpdAIVDxQQUxSqQa/wtgs/i81I9Lc+5rU5E3eZ/53bb3PNb0vB9Gpg1oP99Q4L48cS9p5Gjaspkw5dLYX2oXp/Pv7W8qH933q7yQAJAbwNnWp3kRf6Eersvq4ureAMnzGFA+bhFxntiSfOkeKBmeHFvPNXGXmst9Wn4LxKHi+hnYeEZcSlmmy/fsQtIyXbi369+vm2NKpaqVysnaLbDgsq1dZV2YTVcWAqIm99oufV4O/SU33PU4f36urxuvC5Vr39b7vdb9dWPGMZStLNLahvWYqGQizaZcszEh21UPgzagWrxx9tzkLDZrW7Z6icaiJ86aLBpCk5ovN+6ljHnR1lMbuJ5rQQeDOH4oGay1i90kNnV/65RRAOWFBXED7oGyUVLb2LT/CfpBA/LPij5/wdTjDWCsZTafa3sL0C737Xlr29l1Tzp31uZn8zV9+bp+VCBSQCXPw/M6LrX3vH8XmvqNqckj8oW/52XkX09dz557j3Kaqf6r1fcNt/li379Dee83Nu+3xnivsi6W/x2v+136zul7DSyRiV31Ss0wKeJNIAKWG3XCKB0+8y/QS4/7OOCFPuKNv8KNPiFliTd+j1EtMCLiMfZ4bR5xH0bSucwa92GocZd/OHyJX7obDMpX9lUAmKJFgsAH9hGnSOyqx9jhI/uAX7gbGJGw0w5IIO3L8ss6RYO9chiUx6fzLQACkS5puFRYbZPC6+5YGSSPoYOWEXvlyCJbLIyHMECJjGOweN0dAQCHYHGtHf7t8QWu7YwbM+Hz6RovuhOsDLj3Q42B+7A/YCoEOfd+wJV2G2KZY7CYo64xfju9wEWNh8IsylIu12bGwXewKtRFXq8CTsHgVXfCFA0OnmQueuVxChZXxuF+6atldacX3C89buyMKRq8m0d8MBzw1o1Vj/OtGzEFg4/GRxx8h175xhKqELKscZUAcGOnEne4ape+cyMxS2aBazvDyoC/fPchhMj4/et3OAWLo7c1LpQsx7LGrt67cWPlbJk/D0tXpWGOi4WSCXuzYCnxpIelw946nLzF3rrVShup7cfFYgkKNwMxdhoV0amAd/MAU1yAb4cZMUm4qNAVbcyYZLHqClxbV8u66oiS3wWNd8cBvfW47kkGJRS3Z6tDBVouqgriOI9uLFqT15vYRSkTdtZj8gYhSozdgoepx/UwY/YazCDJGxHzYjB2S5WUyVlgPqzXkwAAIABJREFUZxecgiZWy9ImtgwO1uMwd7jqHd6dBgzWV8upCxq2xKTOXiNEhc6EavV8OPWwOmLsluoWHaKCDwr7ochGyAQXdI2LJPdlcoGei7TIYD1yFnBBoSsgi92ZAVR20sfDAAC4vT7V9i9B1+tTJgvhcbJAFtiNrs5dH0kewjQu0tNscLOfcf84YBgWaLUCnMfDUF1CtU5YnMZudHWzZ3Lkyjr2C+bFQMpUdEPp+uNDj901bZj5oOAXkpFIScDPGmORsghBorMB02yqnIUxsVrH2KU3JVFlNZSOJBXSeSzOFL3N1eq4OIMUBWwfqtwFWzFDkFUGQ2tyIWXJCnL5zVhcYYi2Ad5pKEMamikJijEEqianv+8g+ghlCFhGR5IKZrdUF1pm4wxHA3PlEL1CmjT03iMcDdQYKrAKk6bVXXGFFF3aSjeohMRSFKxduUiIIVa5CCEzhMpIRZoiT+V9xSDI5FWyQmTkWaHKH6gCJlQGXIPaVIZwErmP5Appi7tnBqAztWEMwJ0lF1HWu2QsU+QvoBPErJBNglgkkASkBzFxqozc03F5koj7SJ8DIKJA7BPkIkhn0GYg0l85lY3conspHY1V3EWIommZdYZYBGlBDvSZ5R1SV9CTALUJQLYJ6ihruyAA4QW0ow7FLkM6gTgm6JNEtBnSU5lqEvA3391iqSaJOBSvAy+AoqcoEhD7DOFpLJUrepZiterpSVS9ROlB1maJ2q6qJVnqEh7V3TYrgDFqLt/No0AsGsdZAspR2VVyAoCIdEwAkE4gdRlyoeuzKH0ASNuy0TkUgfJITxbFrAE1cxuLjmQCksmQy1oGBKgvqilHUz41C8S+AMlyPQSoPYLyCdZCVavlUITSrlyOc74y7q2OZbU2tthTUX7+C6zjw/mzLHnK2LUyG1kAMqz34glAFmtbsqDv3F6RaPyBbTsZp9d6uIzSltq2dAaquL7GTZnbjqYPbZnVIt30/xLg2rSp3QjI2Owr1LGT67lNugTm2g2C8/PNOZHJI+DS3yep3RR5rt7fwpSBf9AxliJ/j+2xV3/2cf4P/8V/gcelq9qIFEem4QJp/3Hc3rwY9NbjVLQDx26B87osrCNOjjQGOTbMqFhj+x5PPawJNVaMFyK8qD3NXV00GbXWBQDzYmCKxaK6UJXFHOnP0QKO62ULoNERJ2drTBdr9p0TZ/CuulERk7PImY55r3A1OtL9W3RdYKZECzaO2aSFYCrHY43TEpLiXnRZRHL8lfequooBQAgKxsSyIEwbQo4YaffdLxpSbRd/Ssf1Wq8qGQcvSqXMsJ2HcwbWBgSvkJKE7TxpA566TTxWdYUrC1TeHfeLBjMvZgDIJMzO8V3B00Lz6vaEDOD42JcYq1QXqawrxnWYjuJpY6C4rar1VeK/OO7P2oCURNVvo5g16p9SaY2HYuZOQYtlpRJc0TjMGchBQlkCFcYGLLOGkA2BTGEirCLzi4JQJCrPcWJSZwyjg3MawenaR3Yb5Nit6pZT4pu4ffwDI8siWkhAKuprWhSkJctaWBR0FxCchiwuTymKSiyhdEL0kuLLAi1sqz5bJk01ZGovx3QpmxCdguoDxXWlspjTqcZySUPucxwnBgC6D0hRkD4byEIiivtkcGXVUhbpslieUpDVLVEaaksqOnFCr/FeHAOGvB43Ow8hM5aHbrWo6IS8lBjLsuBQXdH1m9cNkEoIEkVdLKg+Ih4LwJl0BRoAoMZAfc0UjydNQpr0Oo5dsXBOanUl9LK2y14tWB4t1VeATC4gT/ce/kDgFzoBTkEMgTT6bKpadVQBAFNWFl6Sfl2Qa785biyVvgmQO6VKSLMmgJSxxpJx/Joqf7lts6K2RwFRgEZ2EqJLyAUAQeRSnih1ZZjrBcFpyiMAYSOBuoOhtgE1Jk3uQj0uu4h0NJA7j3RiVXhA9M2qVIDK5Xsm8grqAKDE5gobqf1sJePnoegcir5oG2bQ3POyth9ZAF1cx4djI1M5Xt5pNC5xHacgt/V1EZgU5JVHToLujSrtlbmOLYIsoLSMs8hr/GUSwEzzSdpY71+rg1hdPRdJYxLEk/knyvc8lTaI0kadVsCs09oHv1qyGKAJL5B7Gj9kArZZ57WuRZJr7qwIbHtZ+yuGABwMvmvKNkHMBeA2LraQBdwbAsQVvJf2AUDuEsUyBopl5WdDREHn2nsssLK4oimDraFRII8RcGVuB4FsU9V55M2ILNe4xmxW4FvjHksfCNgXciiRyWoeUWJBqV3ZpDXGUa5lZ1PKCwSyeRMBQI2rpPZlCMfopAFYpoDNIKr7sIhnAEYU0BMByfn4HAMcjretqBrrWMlyXyroKvVwjHRCBdYMDtebjq2OJdbicymK29eC/9rHuMVVnP+SJbqWx19k8xln152DzDYm9sI1DD43xvJLoPCs70/SBSD9TaDuvJ4sLtT93MmK/n91MPZv/vv/9n/POf/jX7mgXyF1f/TD/KP/6b/5tZf7b//Lf/ob7xvwPbdY3ugJ/+Sjf4mfzK+RssCH9hE+K3y5XOFuGfB74zscQ4eddnjj9vioe8Bn7gYA8El3j7swwkWNnXb4xXSDj/tHvF3ImnVjJrzQJxxih3/18DE+GR7gCikQkfoovO4OAICfHl/i2k5IWeLWTPj56RY/Gu+QIPDFvMeVcRu3Ui0SHkOHg+/wR/s3AIC3y44sojLCyoBRLvjp9LKytF5pR1a/0EGL1YXupsSGXusJP5teICSJGzvjfunx51ef48vlCl+5EX+4+wqfzreYg8Gr7ohBebik8bPjLfbGYUkat/aEt26HlFf9vVs7VUZcALhbBvTKF2IkIkp6YSd85UbsjcMcTY3BPIQOo17w5bTHziwY9YIlKhx9h5tuwjs34lV/xJ0b0KtQrZV3bkCvPX443uOnxxf4oD/gwfdwUeOj4RHXZsZfP7zGoH1lo10KGym7smpB1pkv5z1CktiZhVgwIfCqP+Jh6SFFxoPrsUSFf/zBzwAA//e7T9Brj9tuwsPSQ8uEB9dvYgM/GA6QIuPOkYVqDqZq693YCY8L5f9keMAUDd66EVZFuKBx0034at7hxlL/dbGYmeIW+dHwiJ12+NnxBQCKGTx4i092Dzj4Dh8Oj/j0eAstEnbG4RQsXNSwMtb4zy9PO/Q64FV/xBcnsuLvrcMf7b/Cm2WHXxxusLeushUvSW1Yd5nwia2lLura9xs74xgsBu3RK485GtzNA277CVpEvJ13+Hj3gF8er6tF1yeFyRsYFev9ve5mPC5dIWKivzELjIbuH1uU712PV8MJX552+Gg84M4NCMU6OxiPhVl9rSNyqWDqsd+7usM7N+LREalVrwN67bE3Dr88XiMDdUOq0wESGUdvwVIYV5Y2fe7mAUomjMbj0XUQImM0HnOgcdnZBcfF4o9uvoIUGf/v2w+r1XRnF9xNPWQB/UZFvBrIc+Cz43X9PbaFIGsucyFlgY/GA356f4s/uH2Lz47XRXqE3iM/urrDKVjELOGCxnU34/PDVZ2nt8MEiYwvjztc965Ym021ev7piy/wb+4+gPMa+27BaBbMgUidPhkf8Fd3r2vf3p0GvN4fcTf1uO4djoutFtmcBUbrK6HWy3HCYbHY2wV304B956rWI1uFr3uHQXu8KfOUNwNTBvqyuWd1wMlZ3Awzeu3xdhrJuuw1Xu1OSFng3WnAi3HCw9xX63lfCJucp426P3v5JT6frvAw0zN520/QMuEXD9cYePOvWNY/uXrA3757gX3v8Go44Wd3t/jhzT0+e7yq8b6v90ekLKqr+oPrqxVfiYzJa9wOcx1vITKurcOb04jBUF9DVFiCwlXvMHmNj/YHig0u7ucPS4e5WPRTBm6HuRlDXbwJJF6OEwBylV+iqs+JEhmnxdT+LUHjup/xxeMef/zyK8xR43HpKnuzKQzcR29xWgxejBMeXYcX/QQhMvbG4eA7xCzx5rDDVe/w4fiIz47X6HXAoD2sDHjnRgzFW+PRdURk5yxuSzsf5g5WrxqpXxz25IEAknkajYdREW9PA3aWnq9eByJUK94M3KeTs3i5O2GJCs7reu6mp7LvpgHX/YwvDzu82p1wcETOF5LEh7sDfvLuxbddbtR03TvcnQbkDPTW1/huqyLeHkcM1sMFhevewQWNmERlbH4xTvBJ4uQs9sVzxAfyDHkxTohZYFpMjfu2OlQCv2khMLwyZit8cvOAr44jeQ4EjethxrQYhEKmx4Rys9fIWeBqmHGYO2qjLzwPRU/05Oz/x96bx+yWpPdBv1rO8i7f+y137Xt7enq62z0ej+3xzNhjbGcSEyUREGMECThyiAgCLGQp/JEEmSBQEEnEIiRAQkoUyxIQRZgQGSWAiKIEr5Ez8diDx56tp9377dt3+dZ3O0st/FH11KlT73m/5U63p3uYku793nNO1VNPLadOPfUsv3BADDgf9dYH2tOGo1UCo6KB0l10fOkP0sdFC22cRYq1DDvjygVIswxFplC1EnWdYTKqsVy79ZisGKxlKPPWBStrpQsAZhiU6gKWCWFDkLC2FVCtO5wl3+VgdaB4DxKHDgnDYa52AaQYEMy66Z5uOXjWHXyGxLpDYx1HE7fdYTPB2nB/sELBqCgytVbc+zp7YTg+IOJ96SrQA/pm2yQr8y7YFdVrfdCwEPAqiiJNbYBlXRCrIYmOhLcQXTi6JnkuFW5JiE+fU574HtEhwTVWGW/wgr6wSgK2TZ5/O70v0wdaY/n0d+/aP/d3fginahzgRlzgHo7aZJjIOmA7UjCfhXaLWsEVlBUBj3KpcydsxbAWTKM2EktVeHB5FmBLCM6EAOcLoXq0yD/S+W66hToGpCezzR1ZhyBCcT7JDJYqDz5uFEwm9beT3rwz4xpLghvxeXPuNqgOtN6BxTdaopRtMHclE1FlRRAUAAT/ujzxw4rB5o1loVyjJSTXPTD5xrhIt2RKSzS3Be8hYYYgEkrR9qL1kmkoZx3wO33gyKSUEvVRgBuJVrwYX7Ixji7BjZCwE+NNxlifNDeADqM09pGLoUxGsg0mrpQvDVYUlweAUraBL8B9uJThKPzHPfMCahwIJy7PmIcb8UIMwZYQfIuyXniJ+s6Na+eraWyHH8mjOQugFwGYUuxr2xqOQmjUngfAf388jdg3l4IApXAsFBjIAj1T4VzoEMGW7vcCzvj+iiMma29aS31D9BvfL+QjSAJXHEiI7rWaB8EwDhxEOJD0mza9tAF0fHX4ksQDbUTbKKpwGpUWcBu7tRcQGiV6eJpxECM3bl30YuN5d3WIEGyKytNmjzaWmdAh+A5jLrhQ3UpYP170nsbjFpvxxIGx4nw0z8NeILLYIEEhjURMwX/oHkUWpnExhgV/yRjOJPZtdP3o+jSXzjIjjtAKOEuLNHiP8NFnOTcuym4re5GAyWw2tJvbEBmYxja2aOkF+dkCrULWFLHfbEyT+IqxNONIwmFOhijJLAr0Y3u/tRLIchXyp6kHgxJFaSWLFYruy/wGP45SnF4b4yPQRnPb+o0qT+a6ha83yUcb2xRuBICHVyHYj64exhHu0YabrEkI45IJF8H2SZPDwaSISd06SDAogfcI+iPMT4qaG/iJBQjTyxv6NbxAiZrJdG3rCQTp2JJGC+i0Wj31mf8bRzylOuI6081+ep9+x21HVOYqWicaQ3hNdfS9YZb1o8IOlUufbetDy/rawW2at4FnW7VtcX5fZWxW28830CfRdfwolsPOrTvlYwtfg8+xVZG6XSN5SV4uzfMVaF45L4CX/5O/8E3X6hXP3bV3/9q7r7F89Se/rbH8xpMFBCxO2jFay3GnOIWxDEdqgkfVFM9PH2GtM8xkhcftFHdHNeaVC2eyNz7G47rAWmc4yFc4rCe4Vc5x3Djt2UTWuJnPMdclXptfw9OTEyx1jko52BIDhoN8BWUE7jW72MvXMGCY5ivcX8+wO3GntI/qqY8Ma0JAnYIrLHSBZVvgzugUygg81hNMuAoC7UxWeEVd99oXjv1ihUYJ78fYBSS5US7AYbGXrXBcj51GrlhiUU/wsZ138NZ6HwtV4MPjI6fR9ALxRDRoLcfLZzewm6+DUHTWlAFKpdbOhHYiGqx1Bsk1Hqxm2MmroLFcKIHdrMIjPQ1wLhQBdqU4yqzFqhojF2vkQqHSmaMrV5g3E9waz3FYTcKJ+XW5xEk7QiEV7o5PcVyPcSNb4MiMsdYSN0YL7GVrfOX0Fka8xVo5/zENJzzlXIW/xnLcW+5CG45x1kB7wfxWucJJ7eo4WxWoW4lPX3sDnFn8+sOPIOcaB8UKJ83Iwb6s854gvFd4bVA1BYd1PqqyRWMF9ssVjiunXbk7PsG8LV37pMPk3C9WeLSeYjdf46iauAilXkiWXlu0Iyu8snBa+NYI1FoELevd8SleWxxAMoOd3Pm1VsppA522W+Od5Q7yrMWN0QJvzfdg4QTWT+zfw5urfbwx38c0r0PU4UpnQVNH2KGxxrI1wkHCcIODcol5W2Iknda6UhkeryfYK9coRYt3ljM8PT3BW4s9TL3Gb62yoJUlLeqBH4NMaJz6gwQYjrEP/jPJHG+H6zFujJZ4Z7mD25MzHFaToJGc5A1WrTshjzWWlRcaP7xzjMNqguNqBM4sSqkwzWvMsgpvzPeDxnKctSiEO7WfN0UQnq+NnGbs8cqN005e42g9Ri4Mpr5u0uqdVSVe3HuEnCt8/sGHgvC4U9Q4XI5DMJxcaNyZnkIyg9fn++HjTQcHyyZHLlXQuH798Aae2z3Eq2cHAYYHAF7Ye4yztoQyHJXKcFAu8ebZfjhsuDFx1hTvzHew631yl02G3Aukn7rxFr7w+C6qJsOsrDErKizbHJIZPD05wZePb0FpgVlZ4fFigls7czxaTnAwXuO0KoPG0hiOSdGgkAon6xI3JkssmgKzosLj1QS7pdO2tYYHn9Xr4xUmWY37yxkKb5LfeDihWFO1qHPsj9fYyWq8vZg5c/8mw+2dOYxleLiY4uZ0gaP1GEpzCO4iSWvLULcSglv8wK038Mr8WtA6XxutMJYNXjq80dPkCm7w7O4Rvvb4JnbKGk9PT/DVw5t48dojvHJyDdowGMPx1OwMxjKMZQPJDR6udrBqM+TC+5u3Ga6PnVZz3hQQzOK6fw8neQNrGSolUbcSe+M11m2GZ2bHTgvvHbhOqhGWTYbM+8TenCwCVBTBQzVa4M70DICzOFi1OZ6enuCN+b4fixEmeQPGLNZthpuTBV4/3scnbt3DSuVhza21RCEUxrLBaTPCvC5wezrH4XqMpyZn4MxiP1/huBmj0RL35ru4Nl7iw9MjvHR6E7v+WzCRDe6vZ85qRWU4qsaBj1vTOQDgcD1GITRujufgzOKVk2vYLatgKTArKuRc48FqilleY+n90B8tJ+DMYcxOC3dge7IucWd2hkplWLUZWq8Bvu6tSd5ZznBzPMfrp/v40OwUj9cTzIoKqzbH87PH+MLDu0+87bg5XeD+mbN42ClrlP59LYTCg/kOJkWDdStxY7LEqs3Reg06ANyZnWGtsqARrrVE7bWut3fmwUKFDuVGsg3R4JeNW6NJAK9biRcOHuPthbPCIu33aV2GKNoUHfyscpYW18crHK3HmJUVlk2OVnPMyhqcWRwtx2HdBxB84ce5g1pbe212rZ2vuhQahdA4q4qwxpyuS1gAN6ZLVMrN2XHWYtnkWPr3+Wg5BoDgcmQMx07p/MMXXqttrNO0ExRVLrWLks2AWglU6xxZ7g54pTDRIaAIh0Mxjm3TOE1o2woIHyGaDmLokEm1AtK75gipe8GmjGEoihZNI6ODL/fMwQB5rGTvVkS4soy5yNS19wsPh1kR3ixFUCaJkXPrIJ3osE1EJu+ehonchuhQUHgcXuE1ltZ2Ya9CBHnSxg5IeXTYYUgbSgc7uguoFdrsD5/o0IfFBwmUEo1lDzvWH9Q6mqwvuA/9DVpUonkV6frb6fc7faA1lk99fN/+5N/+owFeJI5aCqB3L9WUxBFRgc2IqzGMAwlK2yKMkranX55HebqIospyZ6bp64sjb6b0t0WLHEq9SJV08u01btS+NOor1T/U/pTuUPTMy/AVp/OclYciYm7r80Bv4F6w0Ij6bojvjeielmAnOniN81JKP+Xz4vK9aOzhOoazGKKXRgO9KKpm/Hxbvm3RWElbufVgmLQE2HLIm/Aa30t5Se/FWqChSKhp+VRjddG9y6SUh/PybKtvuEynsTqPL8pD2rdt9VL589rZ03wA2z/M6fG4vzc0ljEvPc0jzrdS2vbeps9J4xX4uYTGI+6HYJLGbG+TE0zSbFp2E7qITM02mBvqJyTPBnjaxnOaztVU0fVFm7GhjjZbxp3qift5QKuZBgMJmqiNfP3588Rpm4Yl1sJFY8sC1qO7piAzPRrkh/Zu8GSTv7G53pBWLe7/9B20w1AZ0ePNa+8z1+MN2DQjZP3fwTcOfXbouldXr8+TTP439Xvwj+ytNa5s0NylvF2QWJxvoH2D03lIyNlS51b5JNEaXqqeof5PWUmWskvJR9vqTt+Nc+pNebh0PU9K6wnoXVlWfAJ+v/xfvz98LO/+1fdAY/mn/3+isWSMCQCfB3DPWvtjjLGPAPh5ANcA/CaAP2OtbRhjBYD/GcCnARwC+Alr7Wvn0S5Zi2eKIxzIBSqT4UG7C8EMrss5St7i9fo6Mq6w0CX25RL3mz3cys5QmQzHPgKsYAanaoSb+RmO20mIunqsxjhtR5iIBs+NHuGN+gC70mmqFrpAxjQOW+fPcis/w8rk7lTP5LiRz/FOPYNgFgfZEmeq7AmareUhKuxrq2vgzGDmzXaV5WiNwEpluFEukHkbiqXOkXMVsDMpzZXzPay0xI1yAcEsztoy+OlNsxq7WYUH1Q728hUKrnHalmi8ieid8SnO2jKY0u5mziTUmdKqcFItowipjZFovM9ILnSIztoYiZyrgBnqosLmuFYssdQ5Gm+Wl3NXZpavcdY4f0plOMaywVkzCvkPqwlulAscVhNMshqlUHhUTdFqgZvjOVbK9UmMwUkms+R7uZs7zXGls4DJOfftNZZhr1hDMoOvHN4EAHxk7wiVzkJ0V2sZJlkNZUXA6zyrS38S607PCSOUosISHMjReoxcKudH5s1Y122GSdZg2eZOKwcW8DiV5ThZl2i1wMF4HUxDC6FwUo1cX3u/M+21PHkUFVZ7QXy3qFCpLESQBYBKSRzNJxgVDXZHFSolQ/RR0qRxrwmhKLDanwBnQofv1bqhIFfu1Fpwg3HeYlnnrk+KBvN1iZ1RFXzqBHf06dR7XDRY1TlG3q+mkCp8E8l0V3lTs9LT3ilrnK1LlJkKJ/GV920DnM+VhddaSze2FHRr7LUcjRJolISKosJKodEo4fxvDUeRtUHAqJoMjLmosHSCTgG7Gq+BJd+mMlM4PhsDlmF/dwltOhqTsglms9pwrNc5rGUoig6WhEwlKagWA7BaFZiOVzidjzEaNcgEmb8yLH3wKsacqWTbSIzGddePjYTRHNNJheW6cLQzFQJLLU9LjGcVhDBoGtcnzoQTLirsrAJjQNMIlKMG61WBvFBoahkCepHA1LbOFyrLFeraWxAogbxQPthXxycQR4Vtw4k7ne5r7+PlTuRdu4xikIWG9afyzToDGJAVCm0lIXMdgh8Z3dGzhqGdF8BIg+cuQA5FhZXTxgXPAoIPk5lLiJ0WumWwtYCYtlArCT5W/oQd0Gt/IOmjwKLQwbfJUkApH0wFFNm15UCpXVAeHxE2BC+SxgXEiTf+mXFBjGjX2VCYSrhAKoa5oDmVcCaCDP6au4A2FBiIzD2lAasF7FiBz6WL8Jn7QCYUkETDR4VFCEDDKxekibcMRlqAA2bkIsGKNYceG7DWB1lRDKa0YMpNQOPpm9yAV9wHdLGAZhA1Ayygp648jKub++AxujS+TheJ0xT+EIADjKKPFgZyIWCkdZE6uSvPa3rurvXIRVs1uQ9aIwC5+gajwlYMykdi5a0XZi1CVFiKPst9VFgKcgMGiJXDKLUhKizzUWMBuYaLaioR6MURPimya9AAcSBbOF4o8qisGExme9E6mQZM1vGuCwvRMBjhxjSO6GoFgsAe2uED5VjKyxzfFI3VZDENN20p+i0YwJTLY6UNUWkB12/MvZbgrW9jhhC11AoEQYmrrj2W+3wKIfor93SozlTopP4godrV3z1jBjDC0aG/sTkumJ+LfX1EqINobESFBUJU3sAP5R8SLKnOJCpsLDSGciaiE0e0jQ40guzv79H4bhwaxG1JDxXSw6S4HEe/n3q0+jc3IrvGjy8piHe0Linofzt9U9J7rrFkjP15AN8PYOYFy78D4BestT/PGPsbAH7bWvvXGWM/DeB7rbX/PmPsTwH4V621P3Ee7Q9998z+9P/6BwA42BHCosyYA6avTAYBE+6TH6bzleyAw41lyJhGbbLgb0haTcl1zzeSkvHmKQB6wW2CRjLKn2oDSXNK+JmELakiXz7ykezq29QqEfwFXZNPJdVHkCIEt5F738BYE0gbfsojozqBTaxLybRre6JxJZ/NVBtLAqqxPECYxO0h89L0WhnC3Ox8EskfD0AIcLJN+0g8xf6UqbaLhDrOLFZtDsas95XlG3yl/ojWC31AH9sw9tGL/f+CFtn7BpK/W6oNa327Bet8kWKtuLYs+EcOHVgCzi/OWNbzfbRA8F1NtbKxpjZtT6otJP5jf0RqD/klNkoEMz5KcZ1DOIzx2IX5ZjtfRvpLWl7HS3cd+xpSIt9GCnhD2mBtePBBjOsd8vGjuuJyNuk7GsvWCzXk00jjRWMQa//j+ROPXfx9NfFc4f1VRHlBNOaTR/OM/A7JB5F4pbxkMkX3tA9+E/vrkdaMMYTnxvMyNGYxfWNibWs3ZvTM8bv5nK5DhFSLnj/iUPlY80vlQ7u84ErmZtY4Gw0yF3MVu52LofH3eTiVKYNxAAAgAElEQVTr/E47/jp/S1g4E7FE5ZNqrq1B5/sX36diiWaQgn7EzwfflaRc7BcZAnsAQdPEhIFpXYTinn+fdbwz7nat1gczsZpeLhYEW4oQ2zNNs8xvhjuaPT9D8t2jCMBEV9ouAirQbVCF7Qf6SAOJUB4VCdzEZ7wxp7JJ0BASqJ84bVt443qpHho36haKlMptT7tqmQ3PtvrADWzqmRf+Qt2a9fuExof8Sw0LdfeEDpBQ1s3lWIAJ9W+BxujRAAJkCIAwf0LE1QgKJQiApPHsT+mu6TSu1PeRsBML2+f2XVpnIrAMalQpPwlyaf50GqXzv/9zo+wwjXPaET8f+rslxTzEfGzQ3ZaSZ+f2wWXoPUG6sjaTUlLuK//l+0Fj+bS981fefY3la//mf/xNbxvwHmssGWNPA/jjAP4agD/PGGMA/jCAn/RZ/icA/xmAvw7gX/G/AeDvAvgfGGPMXiD5VibDR4qHqGyOr61uo+AKt/JTHMgFfmPxHHakw4e8mZ/hpeVtvDh5B7XJ8OrqOvayFWaywlvVPp6b3sPLq1u4li2x0AUe1Dt4uN7BXrHGZ3Zfw5cWd3CQL1FwhTNVouAKr68OoAzHp/bexNu1w6M8XI/xPbtv40tnT0Fyg+fGj/GgnqH1K65gFpXOcLNYYC9b4XOHzyLjGtfLBZTlWLUuyue8LvDC3mMUXDnfxvUMs3yNmawDLQA4a0ZojMBZXeI79h4BAB6sd3BrNMdLhzewP17jqfEZ3jjbx53pKUqh8KDaQaUkGICPH9zHYT0BYVbeGs2D9nIiG7y13Av+cS5S5RyL1mntMqExki0eLqe4Pl4GbV2sLZzXBW5MF3hUTbFWTmu4X67wYLWDW+M53prv4eZ4jrkqcWs0x73lLp7dOcJhPcFbp7t4du8IDxb7OBitUGY17s93ULcZnrt2iJPKRRdd+6istZZYe783F0HT4OZ0gVxonNUlCuEwDh/4SJmtFrgzPcVENvjVt18AAHzX0/cxbyROViPslHXwtau1xEi2qJXE48UEAEIUv2nWuLZxg6PVCGMfxOXxyRRZprE7WaNuJcZFg5PlCPuTNU7XJfbHa4dzmLkgP40WODqdwDQCu/sOk1QK46IbzifIpcbZfIRr+wu0SgRYm0zqEFnQGIabswXWdYHTRYlru47OfF1i+XACsdPi+v4cyzr3/iIOG7D0+JDkx5dLjVo5fxUpnf+YNhyrVYGibNE0wm3aucVsusZiWUIrjulOhbPjMXb2V6jrDNY6nMXSRyGsVjkmOxVWyxJF2UBrjp1xHaJ6rioXXKttBRiA6aTC2XyE3dkKJycTlOMGQhjkUmG5LpDnCoJZLJalE2wzFSB4Fo8nEJMWs+naRQptJNpawlQSo/110BBWTeZgaQxQjNqgPayXOcAtxtMaxjDUVYai9MGVatmDhinKBuv7U8AA02fOoLy2tlrlmM7WMMZBBWnF0Z4WgAGy/boT2BUH4w5uRrUCjBu0JyXGN5ZYvzOFPKiQ5SoEdmkfjxycgbAOL3Elke9XMJqDC+MgTywwOlhjPS9AMCKGtNT3SjR3HM16UTjIAg9VIE8k2qcqMGGhVxLFrEZ9NIKYNdDzDHyiAnwPZxbtKnOaqImCPsuAUoOtJNisgVl6WA/uYFasBcwiA6s5sNs67Z5vA+MWZi0dbEYjwEcO/oOvOcyuCpAaOHEaS8xa4DSDnWinKTTMQVV4SAurGYq3crS7Bmbi8B3FgoMphuZmC7b2Gr/MuvE4lGhvt2ArAXnG0d5qkb+TobnmcQ+EhTjOwKzTaDADqImFyY2DUzAOc1GeOtxJXTrIBdKQcY8BaHLrcA7nAqY0yE487JDfeOuRhSmtg+pgFtmcO00J85pAr53KT71w4DU42RlDO3PP1chhBsK6MtmCob6uMX5TwmSuDqYA6zU/onaaL1NYZGccamSRzZ1wIWpA507b0ewZZGcc2RJodp0GSrRO49ROELAZdek0PGpikZ26Ha2aOG2eXAGwQH1gIdcMME7TJSpXpt1xvJvM0526Nlnh8BGZBdqJRXHstJomR8CBzNxyh3YCZCug2QXyU0CNunYUxxbr21skmEukbO7abpnTfhLOIG+Bes9pHk0GZAtXH1inscrP3G9dAHIFh+/o/+Vn8POj01LxCMdSF35z7YU4kwGjRxbNjLt5UzjedOnKxDS0C2AOuQDUuOPR9al7psZe++i1g6J216JB0BLKpYWVLGj1mLLQJYOo/OHbiPk+sqHNvAV0wWEKIFtYtFMvcGkEDbdcO22pzhm4cn1rJQuaRtFYDyXi+kyVzGuLLbhyPLsyTqsYsB9t11dcea2vf3eDdtEHNKK2Bm0oaRytoylrC51FwmKkFQ4aS227d1m7yrmyMBkLgiuzFkawnqbREfX0jIUVdADhysfCZozHSdimVjDw1nY4lQw9GBAS6I1k4NoGvjeS54k0wL2Dg5gH33cx5ueg4Br5AWwI01ujVPWvHQ8s9G1M60Ih/P2cPki8XjG9pxpLxtjfBfBfANgB8BcB/FkA/9Ra+4J//iEA/7e19rsZY78L4F+w1r7ln/0egB+01j7eRn/0wh374n/777iIieS07E/faYPlwkSb4JCtlNuwkuMzbY5oM0kn3pybcOqrWhHw+1zD3J8A6u1xGAGAccAo1mH4tQ7TDYB7aW0Xdc9qBpGbQV8gxi2M4sGngUJI2+iE31oE/D3GXV3WIpwqi0LDKB5w7qzyz3n0gkbYdoxbhylIbTRwm774dNvjnoX33rIO0y9eNSzrfFkIl45Oj70pl8OpM93Js2Ydjh1DZ84l3cYPxj1nwsD6DeRgCOv4RFOx7sTWj0HvpJxw0Mbuy2QrjzmY5omTsB2/QH9FJQBz+Hos+thzMXbckA+T34SjZR1dPw5uJ2MCPl7o52RxJcyu0Mfw4+Dx6Xq4e3EdlM/Cn2jb4WsaV18+aACoT4Td0ETQSbkDcO5M8MJJPeWlLqU5SXkJK41wxCw6XoAO347mHeCw0TxGHNEOPLRUETpTNV9f8M8imoS3KTo8uLhu0hRYj6/I6uhdIN5D+5xQEZv1xe0O2iHrMON4wx0mXMP77m9eaIHfaDpTQt69fn79Icw6GgNKpjRgNQ8bjjBvGXpmkL2+V5HpJCXrNzd+HK20QZtF+YPPFY2LdO9ooDekaWLdxskKZ8ZIWgOTOZq9jSK93gQi7+vSIwPW8m6zxRHMJoN2hTbqhXXCn0Bntle6v8H8kCAtSYPX9v3imN/4urmEYOZIAhflYcaZl5IpoZ8aoVzsi0dtinl188P27hvZ1cNizZVxeXnNXH+QCSJpkKLNNVeeLxpL/87QGPHGm1rGbfLvD287QYDqp7kD+PHm3dwMY8BsWB8s70wwg3bNv3MM3WaZzAsDCL3fAId5rzozTiNpLvp+yr3Q/YTJCjiBCOibXnJ3P5gnktkhEM19BFPEoLnz/0iA3DBlTMeehAXrBFfyjiFzzo2NPuvKBoEkEhZCvbpfjvor8Onndixk2Og9ZRZBSApjg64umlO87QSNMMej7wzdC+sCurqonWn7ehrM6H2kNKiJDGtu10fx9qVX3kZ9Fif69kZ89u77dvbKpXyck4Z4OS/fkHY08JDOiy28pLTO1RResh1XzTukYb2Ql0umL/037xON5X/+Hmgs/8y3uMaSMfZjAB5aa3+TMfaj7yLdnwLwUwCQ3ZiF6F7uGQC462Am5mei8L5Y5O/jIl8ZtxFl1j23DDxyhKfIWoIEQ9F/ay3gzLT8aTkJYCRUWgsPHu1+Oz8dv2iGUPEI12FzBXiwcm8+EpnTBEwjdGsYAAdCz5zAB+v6wigeftvecxJGbI9eTwADnD+P74fQvzxqm2+XNcmKFvqI6NhoV9DRCP1JbRfRfaATwOJF2wDWdsJwx2/yJbbUHmI27qxIkKH2NPR19XmD0Ig+D3Rvm11JnE9FPNH92LxsKCmOzVU1qk/FE5TGsV8vCUkb+FMN7+ffqKP7F0y4og8iswzW2PC316nGEWGWwWqXd/ODxRzgNhCEk43AGjZ6zvq/e+DUSZt7wg7da5N7tHEh/5mob1JhKdyzUR6Vtrf/u1dfJLD3PuSWhU3pNlMpCy+IeR85EirpOQAnvCK617KwqQL6vLJ4LvtEgiOADlQ8zm/7ZZlim30S8sMvBlEfaN+GqPHhNYl5U0mgj9hC2W9U0zp5dChAvlkdPSrr8og17811Rv9Z1tvsMQvwqtvMEl983eePNUS+D1PQ26vRxtuvkSD/MN3lD+2wgIjv9+a151mj1/4wbaM5ywCwtivOejn998QCYsX7T5L3AAAE0aUDPvTfAxHDfwRi/TFyfdPNhV5qovK9sqxrQHiX+nWF75vt90t4h5r4nfJj2PTrJ1/OJ07n7PYvNDlsBgoln7BzN+DJePEGvXnDo/4B+usKXV8oKCRray/VybOBvIz4wObahpol+aO9QjLvY3obPG5JW9t2XruSOfRuCFLb+v9KfF0mXbHcpQSzK7bx3aL3DZdJUurj+b5KFhcGePwgp/fSFPZHAPw4Y+xfAlACmAH47wHsMcaktVYBeBrAPZ//HoAPAXiLMSYB7MIF8ekla+3fBPA3AeDOx/fsv/zh38VCFcFn0vndcdRGIuM64EMqIxyUgs4C3iThRxZcBTgNCrLDmQl4lY2RG76EnDkfSc4sVioLvoqSm14AFAqwEvs1ks+csiJAPqT+aFQ25if2bSSfP8eDr4v8NQOOpfNtbIwI+Irkt0hpCA8SQPBRin3yYh9H8g+LfQZ7vni+rm4MbOjDmMf4eYpjKZkJZrXGshAAh8Oi1nLQVy/2SzS2A6aO2xD7WrYe53CncNADBKtBvnPkywh06z+B2Qc/xOgZ+TcCXTRhwn0cik4cLy6MudDwgPO1JB6pv8n3UiVjtIFjqQQEd76PKhqvUqoQKl4kfnLxuMf19vzmrPN5jLEcXVkW6iP/SsJ+pOdEi3AdyWcy9lsD+n6CnDlfQilMz8+S2kzzLp6PHa/MYRhqHvyjCTCcMQulRXcwxGxvPlOie9Tfsa91kMNt5zNKYfobJXvvT9q3MY5jPPbkuxnTo3fBWNbzR+RJewn/sOtHPzYBP7GfVwoDpbnz4xREC8E/kWhxbqEUh5Sm52dJiTASiZfYD1MnfqD0nSdLDxOtGb2YDlEfdHlZVAe1jUGIDmMx9q2kwy7im55TXxjvRwigA2H3WI8Ox9LDD0gdQv8DCBiOgVfDNt4VZ3li+76aNvEFpzbSWNquffHfQJfmXLweReue8fSMp21IqKVx5RZGe+xHDG9qYr/R2C+UDkxT4HdLByoUaCTSCvUA2nsHXbaDMtgWITVRl/RosY4WCziWrFuEUxpknREv0txuCrtXSeTLCPQtYcg6J/YJDe2O6o7vUVmLzreU7rGIZ0R/KcWHsnGbz9uwps8TQbV3PfR8UJDsfEnpQNFydwDp2LLdQSND/1BuqI64fQnbjHhM+YxonStEDwqW8WHEFoFpqO3nCbjJ460jclXZ54qC6Nb2n0dj6zhvyz9winAZXs5L34hMGMp+6wpu7/f0ngmW1tq/BOAvAYDXWP5Fa+2fZoz9bwD+JFxk2H8LwN/zRf6+v/51//z/uci/8vBsB3/7H/5BmNzZ2dMpvRUWVroIaGEtE95nQALgAK8Bm/m1XrlobuTXQdHYRO3MZ9qJhfAng8F8yPt7AN53pPH3vK+K9P4turDexKRbsZjuzInkqosKRyYe8H9N4b+ZZGbkzcJcI90frnxUPu3zR3lF5dptpTvZDD4VdOrInC8O9/3mfCGAYNbGXbl4wTU5gv+BZejMfyKb/xDJzvsPUBni2YrO34G3kf+D96mh/KIBVOn9HoQrJyvXP2rc+Z+EQAEWPb8IwLfHRjwBEK2fB749YMD62JVpZi5vMLOz6EWqA/wpMToTtthEhrcIUf1E5fgzedc3vOnaRyZz8QdTVPDRBRE2KzR3LXd9Qc8oSl1v7ljXZq79eOY0T4BmaWFy5vquQc9UKZgQ+jlO5mZkXhXa3nb1ad+nNH7MuPrM2vk0kTbJCgRzKu3bb8iXxXZmU84Mrqtbw/t21a5NtvJz2L8v8LxYBkB1NGic9dq1l1Y54/NwZYHSbewYA6ABQ+PrTdXAAUvaBe/bZBUAzzNTcBp97v17BMCW1p3W73TaLN4C1o8BjRH3/kKijDZO5LPiTTstA3hlwScMcmGhRt6awtPNltaNPWf+HbRgRWeWKWqXkXtfJKBvnpYtHG0jXd7grwM3B9XErUtcWYicQVYWumAQtYXOo40y8+uBtTDSPTfS+UmZnIE31o8RC+ZyvHX16ZKBKQtnbuk3d9r5FzHt/JKIN5O7+qxw98CcP5aorZsTnPl3wvo54CIQ5nMLVXTruvBjqkadCSH5ZMnK+wkq1wfkp6dK107L/Prjx4Dmbuy3ZaV/V1m3ftC62jPHZX6t875bbh1gYZzIZBKse/fpXaJ5Lhrrv0ksXOucde8URdfkgGgtVMmQL5z/msmY8+XykRqdaan/bvgxJr6Ytq5/mfNtE7V19AoWfE2Ztp1/HGdhrtEYAghjwFt3rUoO4X9b/x7BEp1ubde555U7+swCOnP80ftOawdXvi4/B2nOkm+Z5QyiNmgnkeXHFZNoXNsB9y2BtcHMUJWedz8etHZS/wnPs5EMovW+hH6+ytqE9yR836nvaZ5GOyLLGbKlhi5414ete0di/z/33nh6LXp9Qe849Vlsnsu18wWkMaU2hffLdP6+4V2S6LWT5o/be7i+14W3pLKdUBzz0EWFtd13XXf5LWdhnXTf/Ei4Zt2774gQrf58D8IpEA4egh+fNwvv9TXrj0Wa6Bvu6gDInItZAJHPZKrJTO9RfnDWk9difLJ4jbSCBfpcRfcTNum7YAXr6A2kDeH6IkF26EAg0OrftNGJ3BNpE2NeriBcp+mlJyv27qdvRHh+n6f3HG5kIP0MgJ9njP1VAF8A8HP+/s8B+FuMsZcBHAH4UxcR2pmu8Yc++zsAEKA6lHHRVEmTSJq8nCtUOutp8WJ8ypxrVFr2tGO1dkFrJrLBUuUhgihp52oP2UGRRAEXebMQCo3/osR1pKfQkhvUHkSYtBOAm29O29dpC2MtWJyUPxVvtQhAzaQ5XbcSmTBek+QAk0njRfwQoHisMYyjd1K0T0qkgaF1Lo7OSVolWrNIu0Ual5a0AQNaKxdR1IT7xnrweqGhtEDutYhKCwdrIdXG6X6sXSRtSOH7K9UWS9+vhdcyVU0GaxnKvHWwHaaLYJt5jQEi2rGmZigaptOGdhE2Ldy3pvVaH4r0CYRvEABg3QpYwyF9ABrSsNUexLlW7hlF72TMBt/gMEbCOJB4r2ly84Rh2UgIYSCkQRP7h3oaaRRU0iT1gKK1A3QmbQwDetecG6y1ABcOHiLQ81+sNMqu8znuO7eEqKvMOg2Yp7f2UVeJnvGwHHEUVMZt+Na5gDidqbzxmixrWOebHLUTQN+fmA4pvMm2NclvTn3i6OnaSbkUpMYBZzstketPAJZM1Bl41p1WdBqxbpNkWgGea5hGuLzRx9S0IkBskG80y7q1gcwkAxSG9bxThMZauEA4DF2UT+o4xcByt7OymjufZsWD73bPfD60y/uOKxY2Zj0NDEO3W/Em+sF3mqG/QWFRecXdb/JXZuhMNGN/ZaozOT1nDYcVpotISn5bVDe6ulnLYX0AI6qTNdwFSaJE2ndPJ2x+I97jyJ9u4xv5DDIb2ku+0OQ/2u2yu7JARy/WYMW+h64ST08aBO1Z3D7NYDMN7k2oraB3zv11Pmi286kVpvNt1M71wB18ON9e3nIPKeL6hBnyryX61h9SeT6Z7QJ9aDf+oTzxaLwpfTRP4a/dT/LHtn2fTjqwNazre+H6wwk9JDAxf5As3IHjEyauWRAYmQYC0m/kg2g9Pz0PDV8WgD+M9MIDzYdWhIOHsLGP/S1JUIsEEdFkDgoGnXBOB749TWfk+xr823nXb6687c0bOgzv+Oz84ePD0DgATRBgleheRX8Q4g6aRcgTC3dhHsTaZcTCVr++nvD3hBv0ngZtQGjZ0LBFY+EIDNRt+896PKd1IhHi0vLpvYjvRKkfXuXEFn6jfT2t71BKhLatWty0ji30UuH8UlrLqwiOTzL2v/gEZd6TNHxI8a2Qfl8ES2vtLwH4Jf/7FQCfGchTAfjXr0K3MQJvLPcdBh0Jb/Df0UToANAT7kgwig9uUlM0So8xCeUDbAI236v0XbgMwHqcbygoVhqaPg2eFdNdYPNruYpo90zF/PWS5RumaFfnf5Ov4YxseKU5h/babsKEWAAV8j7pC6o+j76j7a7bpnsltrVnsK0DHyZKiRuYp73ZtwGQHYAmDLpQoOs71QgMpt4Rp7tWUf9aC1jFoeqoSDTHtl1v1pMsG9HXR8MJVxpbeIR3o7ORNdo5g6fD3wF6cbnBj7zbyJu0rGXQTeKretWU1OXa7X8rmTwbLmvazeV3Yy+jJGAYzIa/qBdS4r/pnAFg6q7tPdoWsGvZu44FJFtF5Sx3m5KmyzqUNu63OH+MSEA8Z/zJnA5q4CHRHxq+aFPNLOv5dcIiBO1Ky7CKb+SJ/Vm7vCR0bV/DWMRY8FWN71kAjHUbQkq6ny/drPbopBvZdJ5EeZjhXYCS0B+Jj6thXvMS9Q+zYZPM2u6+s0KJhF4T0SIf27D5Z72NNhD5yqZ80tiQ3y6VpfZb1vlaaqo86gd0m2xCz6J6GYOzHNl4Ka+QbFQ+3fRTfWmbtgggvU0+234PwEbgGGbhsCij52EapuamJipk3d+UJ2axuVjZKPCYZX0ePX8segfDpydeXqMARzZ+32306sSvWNxm6guadkPti78jlxVI0H9lWfpjYHlgA8vAubIB21wWetd24N4QvYFt0+DfWGBP+yFeTthmPSydb8m+c/ATme55tmUZ4P1S6Qk2dZcSXL+d3vP0zdBYvmtpJFp8fO8+GiPRGgEVrWZtjL9oWc83MfZJ6+FNBqGz82tUVoBHMzxGkyN/yzQN4QEOPY/TNiGO/DrTutM2bKtriJ8h3MfUX28IN3MbbZ68zcFf0/a2R+nedZDH81Kq8U3vDfGWpqG2X4beFsuRDf5iOhfRHLof4yJSG7ZhTALn76u3fVviexu+XFcYhw2hODqwGC6HDe3qVZMdmLeXzU98Dt0/n8bl+Lps/52X77IWQr3DjaEDmkj7O9TmlIe0H20yx0I+bL67W+9vOziKVS5b0jbMx+HM5zMyhJ26dZzSRaq3EWabO5fLtMFHAU/HjPzSggy1IXywS/XVIP9X2WBdlHeo7nRTuUVwupBu2r4LDho36r+orktP1qsldpXxuMr9q9C5xPwY0m71aLKIeCxc2IFKBwTRrbTTOnr1blkXsF0A38rDUH3npYHnoc5LjtW5n5yhcbhsWy9K70H+S4/ZN0LvijTei/S+FDjfjzy9S+kDLVjuijU+u/MSSt6gtRKHagrBDMa8Rs40DtUUAFDZDCVrMTcldniF1grMTYmMaWRMozYZxrzGyhTImIYGw0oXWJkcGdM4kEvMdYmSt+DMoPVHQyvtggYdyCVaK6AtR20lpqLCqRpDMIOpqLDQJQAEAbG1AhnTKHmLh80OAGAqa1QmC4JvbTLM5BoZ146ukSi4QsZ0qB9wJsCtFVBGYCJrCJiQ91Gzg4IrTGSNk3aEkWiRMY21zgMW5l62Rm2kL5dh5J2QiMelLnrBZkaihTICreUwPvjOWmeYCIcXSkGGAKDgCrWRmMg6CP+cGRRcYakKTGSNpSpQCIXWCIxEE+7XRmKpCsyyCmetww0thMKJx+3cz9eojUDhgxJRYCA6YCCBbCRaSGZQGxECNq21w9ME3OFExjXeWO4DAG6UC2jLsFI5cq5hwIL5NPdlFq3TDJdiU42yUjlK2cJ4GpxZlKKNAjtJ5EKh0TLko2Qsw6It0BqBncypFTkzkNxgpXJIZrBUOXayCsqKQDMOigQAY9mg0RKVlhhLN56NcdijI9kGrNHWuEMTMssmM2EKLkNm1fF1awQEM9De7Jwzi5FssVYOP7SULVZtjnHWBPNwDhtMqGvf7lrL0L9ZpD6gAyEKbFMIhUplgW4hVeC5NSKMI5mlU9AnA4ZFkyPjBiPZhv6plYS2DKVU4MyGAFEUjKnw5uQA0HjTdDIxbyJz89YH6GKsMyE/qwoYw7E3XgfBpTUcuTe3tr4/162EtSzgnQII5uhx8Kd1K7FTNDirCozyFllkVr+sc0hv4ktBk8bejFswi7XXho4yFdpBAcYYs5ivS0zLGoIbtFoEM3VrGepWYlI2zo1ACYzyFqs6R5Ep1K1EJnXvMKn1QYAyqT0OqjPrL3zwJAAhYJC1zMFDGY5cqnCIQmbhSgtIb/5OdLTmKDIVAoU1XiOcSxVwV4XnndpH/bhaFcjyFlI68/G2FTCGYVS23sy/M2mv1jlG4xpKCahWoChb1FWGLFdBwG28tQCZeQupw2GJtc7sXbUeK5QCBRnuggD5AxXOnem58ubMDq6qW0M4Nw4qy88DrTrnutDvzEJ700mqy7QcPHNqKy50h1nKHE5qVig0q8yZiwsbAvFYDwHFhAETFqYRYNLAkGWEQjA3FoV22n5veh3MqA1z8FBkwkowM8IETTqTvi4PpcRK7cpbdAF1NAt4qgGSiczWGZyptWWu7pojwB5R4BzlzWml6Wg1vDPLZgBrGOwoVeldISkGm/s1Szt+YOFMRol3ZsEU72Ii0Dh5s2ebdSbQAQKpcdfBHNQCBN3jJpuvn+RAbiDWziQZsIDwbRO28xsEOjgo4j2YwsLz6ZgjGKRgCuvzBN/gBDYHQIg30aMBp40OZwXeF98KZ75sCH7GdAJXbEobw6p0fpqRDEz3KZ+NeGToCUWxBjVAp0Tlwth4v/r4bydw+vGkPotSLNdvaJojk+JYm9iTMxMBLqXXo0TwWdkAACAASURBVEt500OduD6GTSiWuM54fK8iVCZpsN2p7HwOjfOF8wEetvH0LSycfZDTe4pj+V6nF75nbP/yL3xvEOo0eE/oApyAVJsMmV+5NBhaI2HAUPA2PKNytBkmTSEJWK11G+o4VSZDydsQAXVIC6rBIWBC1FpKcX4SBI1lrh4kkVijNgkY6MhuxFjmhWEOZQSk36Q74VQiYwacmfA7Tqn2lYTNOPplGpWWIuyGcsxpbWmDT79JS0wReIOvaKSBjXmII3eGvosEWqrbhMi21M5+X6Ta1os0oSRwhCi7iUZwm+Y21SjS75QHGpP4PmnB4z410bwjWiQgDWmn43GjKMVpO9I2qEQTmrZliH7ar0Pa9PO07OdpiKitsUaehOS0/tBeZjfaPMRrWi5O27TU52nttqV0rtA3Me3DlL9Umw9sfpvj+c+Z7e0ldDR2NC5pdOchbW7sO03CGPkuU3nn76wHLRgussaI64j7MI0u7Gj0YlL0nsW0qDxdD2mqU61kEMr8X+nbGkf1TfueIgTbiB5FuE3rJiEx1c5vcykYsmQIbU6iBsf9FbtJxBF200i5cbmYL+KHfL+NxxuOfapDZFVG0V77GiUTzVXyhybcaGPdbj5EkSXf42hXHLCX/b04mmzPxSO+H32q4nzxxr2DwfJtsf6eZZ3/MfkFJ1jMAVv6SZLt90/cf72UQikxG0WTRd8HlgSDlE5MI9V8Met8kMl/OBJmAn1GNGz3exuGMtGkNg6l2Gw7Gouenya665CPwfnIDsFLxWOb9ktcj2XbBTm7pYxvUozZyuIyyVjGaWP5TE3W03ptX/5hcZ60zZcQ3jbqGOBvQwAdqm+Az4t42aR5/rdwq6D4LrX1XN6uSPdrf+V9gGP5kaftU3/5z73rdF//t/+jb3rbgA+4xvLeeg//1Vf+GIzh0JoPfmyD/19yP3y4iVi6wESzNpgxpQseug/iNrO8reZX9EHlW57Ryxi/QUMvd/IBDzxZdGHiTfeh7bV1iGbahIGFejANnS7Z6COW1peuikMLH/0mGvThYQMfxrT+be1J6yB+4jDwMX/fSEpppItsfB02D9Gzi3jfWm0UJMQimG2FYCL+efy3x88Qr9vqT/kfKjf00U/7Ia0DA3mH+KE5tG1MLfpjEG+wenUOvA9+/IaWhfQVCnlYF+Bio/2+bYHWNj+h+F60KdqYJ2nfpHtlhi5whk2mYxxwgyV0WP9ZDJK+saFLeO8FHhnaUKVtPW8+p2sF/eSbHT+0vAAIgWB6z9MxomfUz+fN09TzwQ7kG9h4b9uAMuIp6oOhPeHG8NJYDOTbuPC/DY0jvABPRHlEc2BNImzEeA4Jf49HDG9s3If48PktzbG0scTTwLzovYfGBz5Kvmkbz2MhOf37pIkEJGySOXezT+2j6/PmyVC64HtAAhSN0yCJi8YnfWfT+i/g8bz18cpCBra0I13L0rxDbTi3X6O1Je2fgbovzWdEfuP5FfrgKnycly4UxC4YnycV5N6T/FF6X+NVbkvpvuRbLH2gBcvr5QJ/9oXPYWVypzUE6zSOlkGD907a4xN20gKSNnKb5ohSrFEjDRqADa3TthP9bdqYlG7IH9GM+Yp/Uzu3+nKC9fJdJqXaobTfUm1czGPMe5e/w9/kyeqR+o9exa+T/sok6uu2vENal/SQwYBBMNMT8oc0rNu0enEfXcTTkKZpm59eX9uzvT1xSjWU2/rlvLTtO8PQmW5ehd5gHQNtHbpPdQxpVy+rOUt/X+QXGWvTzvOxTelcNljXZTSk22hd1HZgu1x3Hl/b2nGR1u0i/8XzgkSdty8Y8j00kTb2Iv/JoXqtZQHP8qI2bOUzlWDje4F5t1Pd1ndsS7mhPWh8ryfrJjt4CuSU7ry3BVjbGogs4tVGWqbQjhSHsVf+YiFuyBf7UvvDlFa6SF2WxpV2yReUH3oHt5G/hIBzNV6w/fBmSNAaqD/Gmxy6f67g+yTtDHk6xrcJkOnvQeFvaP6dk84V8tL3Y4jAEwieW+s+L53Xtwybc/+Cei8Wmge+P086vpc4fLh0ujD/Fd6/b6ffl/SBFizXOsfvLO5iqfK+qaH3s5PMBJM52mST7xaZi8UCX2xiByAIGbWWASw9roeEmtbDIMRmZpzZ8JvqS4UCYx3MSAzKHgPdtx7EHRheP4xlG6ajcdtyoaEtC2ZvsfBC9TSqaxuAHpj7VYOjxNAjjj+3MY8hReK/xnBIYaAjbXK8meXcBF8r433gRAQ7QqZ88bikKTY5pKexHxv1SZG1oT8AZzqnLUs2qY6/zc1nDOhuwsaXzOpiQHnSqjOGABcS9zOZu8Wad6LryiMyw+vM5Vg0b6i+GMyeMQe7YQzrAdenY9jdG95QxxtRek5mdvRbCBMsCOI6rEUAtO8JLTHG68BmM46QvE3rvqGRB8K9FPZk0IKBzB392FnLwj2CNQk8JX3FPB3ufSmN7nzi6FmX2W4ePCRt6fra9uBr4jEJczAqbyMtbLCE0KwPYO8T9+NAm5O4b53JJFWEni9e8MmL23+OwN4TjGnecBvobnRqb0PMAG474YboxJroILxtCpCAh1vxEDOMdWXDNbr5x7iDV4l/99prESwbemXTjTuZXVI7UtPDuK30NxbALBDDbQRTx7gcmTTa6JrgV9JdJP02rINZSYU+FvEYbVot+rxZ0iaSTyRL2k7JDNCPf6fjT4n4GHrhon4mCJdOk+qF6tg/kSFAvDDLOggXDjA1FOLzcslpQsn5L7rPvCY89tWLeQc2+NvQhqfjnPZBj5FoDtD1FkE+nQoxXToH5ulcpnpZ8jsVvoiGRdBMxpYLoc54rvYKR+s/QZsgKjPQlm3yFBvik2GrFjzUk5bbVsF55TEsvA0KdJc8REhfmwtTOl6B0EB/ntMfFwuhl3h2Af34+krpqvnfp+mDqGi9bPpAC5aVlnjp5AYYXKAN5xPUaRlIYCHBSkUbRMIRjE/n45NwY1i4Htoouzz9Dfy2jeC2k3HGAE1h6ClfLKxws7G5j31jAPdx7mlAmA2bY2N42MgSf4yEqkh4G9RKhAoijL9oA9Rrm0XPv2bonuMV3SY2xVwa+NvbyDKEDSbhEPY2rFQ2PaXnm29vvKmkr9SyHblL6ey5zhV2UnPZeF7EmyLa5MUbyNjvZYC3AIMQYwVSYAoq7wNjhHanm9IYsy828aU2pRsY4o3KD20s4k3B0Jch3aDy5B4AWDYIvTKo3Ug/TvHfbSk26wM6rLa4bbQJpX6hPk37AUnepFzAJES3qTU6d/NWdh0bNrzRtSGzVtGva6O92uXR2reLRUOmonlHZeIQ/5GvVfybCBjFOj4t+lp6DdjMdu8TCRG09iTroLXe1DTkQzcWxr/v6Zyym+9Vnyh6JsBxXjKO6AXkSPqR4CgchmEM1u7XOjEAt6AZjHSg7w4TkjAdu51s8B2Lxsv6uR6mceoyEQsZVJzyxfnRPUtNHEOV0fzYMKWO5n+6vyTeuI7oR30WXj1vIh1jE/b49sFVGM0fS2PUN00lQaNnck3Ch4nGgMYybHw3TVxttE7GwgrXHb4i4OkmPoYOzxK9uc80YDI8cWIaIRhLMFH3bFiBsMZvBFFBvy96QWpY1N/pu4KB+/6aKXQBZYgGw8ZnKSzFQ1iH8VyOyw18noaExbgtQUjV6C3/NOeCab6n32lFKXPCG/FhN2nFguyFaeB92vqNQfI8afu5aUufPbFweA7dreXSOXPONbMWlrFNc9IhWjGZaB7E11fi7YJ0kcB+YX3fTt+09IEWLK/nC/zM8/8A/2TxIpTh+MTkDaxMgS+v7uCN5QF+6OAVPG6neKY4whcXT+MHZq/iN84+goxrfHr6Gl6qbmOuSny4PMTnjp/FJ3bv4WuLW9jL13hh9BDPFQ/xUM3wC/c/iU/tv4kTNcZRM8b1fInWcnxsch8A8CuH34HbozkA4MPlIX796Dn80MEr0Jbji/O7uF2eheA8xrrIqveqPTxY7+BfvPklaDC8vLqFvWyFA7lExjTuZMf41fmLOPUCz93yBCftGG+vZyiFClrPZ8eHKLjCh4vH+NWTF1EbiWfHh7hX7eEnrv8z/NbqWXx9dRN/ZP/L+Nz8ORw1E3zn9B3czM5wrCb4J0fP41Y5x1LleG7yGF+d34IyArN8jbNmhI/OHmBXrLHwiNIvL2/gerHEneIEx+0YZ2qEFyfv4OXVTdwuznDcjkNb71e7uDs6wReP7+LO5BTX8wVO2jEeVVM8MznCK4vr+NjsHby6vIbdrMJbyz08Mz3Gy2fXsV+s8AcOfg+/dPgiPrn3Jl5dXcNJM8Yn997E88UD/P1H34eb5QJHzRgj0WKtM+zIGjO5RsEVpqJGbSV+++RpNEbgernAymu2v3PnAd6q9jASLV4+u4Flk+M/fOEfAgB+9q3PYq9Y46PTB3hrve/yzK8jFxq1kiikwif33kTGNL48fwqSazyupjgoVmiMwAuTR3hjfYCCK/zg7it43O7gq8tb2MvWeFjv4IXJI3x1fgvPTx/j6/MbKH2k27FskHONz+y9ijvZMf7xyXfBWI61zvBgvYMfvPYaHtQzfHrnNfzS8UcxEi1uFnM8rqc4bkaYZjWmssGIN/jiyV3s5mt8z+xt/ObJMzCW4e74BP/GtX+Gz6+ew68evoC74xNcy5YAEOa1e6eWeNxMsFI5prLGTlZh3paotITkBi9OH+KN9T5u5Atcy5Y41SN85ew2PrrzAFNR40vzp/DD+7+HXzt6AU+PT6CMwJkqcNKMMcsqPDs+DO1/fXWAkWjx1nIPE9mg0hJPjc8AAAfZEhocL53dxPftvYXfPHoGP3z9FXxlcRsrlWOtMtwazXHSjKAMx4enRxiJFo/rKU6aETiz+NFrL+Hl9U383tl1MGZxUKxwvVjgQ+URfv3oOSgrsFYZrpVLHOQrcFi8vZ6F6L3fsfMQxjJ85ew2cq7x9PgkzIVb5RyPqikaI3B3fIp7q138idu/hQmv8bNvfhaFf0efGp3h66c3kAmNjGuMZYMf2HsdY97gl4++I7zHu1mF2kg8Wk+xk1dQRuBHrr2M/+vt78GfuPsF/OPH34nTpkThIxH/8Vu/i/vNLlYmx1EzxndOHuBXHr+AUihUWuJ79t4GAHz+8Bk8t3OI2kg8riYYywbGcvx7d38ZP/f2Z3Fcj/Gh6TGeLk9CFOl/fvcr+F8efAYrleNDk2N87eQWPn3tDXzp9Cm8OHuI15bXUHvNvrIcT43PMJE1Xl8c4OO793G/2sWHxsf40ulTeG76GHNVYq0zHFdjMGbxnbsPcDOb4/Mnz+BascJaZzhrSyjDcb1c4KwZYZavcX+1i4/OHuJGPsdvn95FKRSO6jE+sX8PxjL8zskdfGL/Hr52dgtrlSETGgfFEo2ROK7GKKTCT9/9Rfzi/GP4vcV1lELhu6b3sStX+D/e+V7cHZ8CAB7VU0im8ceufxn/+/1P4pnpMX5g9ip+4f4n8a899QX8g0cfd1GttcA/d/1VaMtxPZtDwOIrq6fwsJpiN6tQCIWH1RTft/sWVjoPa8xHxw/wT08+gtvlGZQVOGlGOGlGeGHnER7WO/jR/a9hZYoQKO7l9U28tdrzY8XwvbN7mOvSjWE9xUi0mKsCn9l9DRougvjDZgc/vPMyfuXso9iTK7y0uInb5dytT/UUn5i9iX/04GP4qQ/9Cg71FF9e3cG+XOFYjbEr17iZneGN+hpeXx3gM7uv4SvLp/DpndeQMY3vKN7BK81NLE2BXz56Ed87u4c/OP0q/t7xp/BseYg72TFuyDN8bvU87mQnWJoCv7u8i/1sha8vbuL7d18HZwa/M38ae9kKPzB9FQDwfx5+As+OD1HyFu/Uu/jw6DF2xRqfO30Oz48f4Z1mhtv5Gb44vwvJDFYqwzOTY2RM42vzW/jsta/jYTPD42aKeVvgw+MjfGr6OgDgNxYfwfdN3sA/Ovou/JGDL+P/XT6DZ4ojPG6n+PHdL+C/u/9Hn3jf8Znd1/BrR8/DWI5np4eYihqCGezLJX7t6AV8ZHKI+9Uuvn/3Ndyr98O4GTB8dv/rOFVjvLq+jo9N7uNUj3DYTHHUjPEj+y+jNhnu1XuQ3CBjGreyM5xqtwd4s9qHYNZHKWc4aUf4k9c/j1+dfxQZ07hf7+IHZ6/g1foGjpoJRqJBxjRmssJr62sAgE/tvIEvLp7GC+OHuN/sYt6WeH78CIIZfHV5G8f1GGPZQHKNp8ozPK6neKo8xUIXeFjt4Lt33saxGmOpC0xEjV25xqur63h+/AgGDF9d3IaxDJ/ZexUPmxk0OJ7Oj/FGfYDXVwf4vtlb+K3TDwFwUdVnWYXWCLwwfoi5LnGv2sNBtkRtMhw1Y1RagjOL/XyNkWhQcIUH9Q4erGbYLdbgzIbvfmsFTtoRFm0R9kgFV2gtx1E9wTSrcdaUvn0GI9GiNQKLtkAuFI7rMfaLFY7rMSayQe7XWs4sKpXh1ugMh/UkuAApK0KQPfo+zrIKjRGodObqYQY7WYUH61mIMC+5waItQjmKLk9Wc7lQWCmH011riZ2schG6jfT91rrvc1b7aPEay7bAfrnCWVNilldotAiR47mfM42ROKlGmGRNsFKLLem04ciERq2lixyvBXKhsWxzZFz38kqvqKn9+GRcd9Zj6IL6AQhuRsQLWZfFAR9jXobceIi3mNfY0m5b8MXB9LNXeNnfy/QtLPx+oKPC3viua/bH/scfx0TWWOscp20JgpjIucJxMw6LQilbLNoCUw/jcNaUyLkGZwaNkZhmtV+QWjRGolbSvVBC48ZogdN6hEx0EVc5s1i27uXfzSusVQbm65oVFc7qEow5KIbWiGCCC7gXrRAKmdA4XLsNfelD75Ppaqs5doomvJwEbxC/XABQ+Q1e5aEJ6F4pFY5XIxSZQikV5lWBcdGAAaiVhPFait1RhUpJCGaD4BRHrayVDJpfxizKTDkIAH9PcIuqle5+BFnAmEUmjIMuKJpAhzGL3MMS0N8iU2g1Ry41qibDuGjQKIlVnWFnVGNRFSiyFoJbrJsMWnNMygaNEr3IlgQZYS0L5pZFpoJZsWAO1qBus2AaXGYKghscnU5gLcNsZwWlBZpWBogCgkUgyIymlbAWyDI3H+LFrG0FpHQmp20jwbhBljlTXiEMmkYgyzSUEv4+Cyaq1jI0jYTVDFmhfJ8DUmrUlYMJ0EogyxWsBYw31SN/MePNBfNCQWuOthXIc0dHtQLtOgPPNYqyhVIOIgK+77iHrnA0TQehYHjQnFsL6FZASKehNz7aopAO2sAaQEgD1QjI3LWZolkybmANh1YcMtNQrQD32mEhddAQE0+kZRPSQCsOkWmoWoJnznOYcQPjTdAd394k2PcHAKhKgkkDmekwJ6zisJpBjLpNgzEcxsMY8MwEDb1pORhDuGc1A5c2/GZeq2wVd/AMS+nas9MGGlbxHk1rGGwtnCZvpMNJrtVOi86E6cx0awExUdALCVZqV59/b+1KBhgGcAAtc/R8P9rW9SMvVYCNYLKjzZYSdqKcRUDLe9ElWc1hpx5KR3GwXMNWooNuyGz/+Fhxp6XJbAftoJmDn2i502QydFr4Jsofm1YyOE1sKO/oMe1hHLxGjjXcaYEz66ArZKdRDGZ2XsssFgKmsEE7yxoGZhgM9ZXXqgEAX3OYsQZTHKxhMCPj7pUUrtT1DdBpqmxmveato0WwEWSqyVsGU9jOgoE7LSdvOKy04FWkrYHTelnZ9Q1vWNDShCBK3ILXpIZ1GlneuHqYAUzmtK2kReMNgx4ZyAV3xg6SVJjefNN09fKawWYWvGFe6wsY6dqmc3dfNIAunIaMNLwms0EjZrw1uJGAR7CCke4ea512UY8smJ9mlrt6mAF07jVeXhNmJLq+pfwSEBU8jIVvinLtBACTO2gLXVqIymmiubdgEBVDO33yfY9oGHTh55NybWEWgAF06eq1wvUTaTbJckJULPAcoDtoPtQ0bxA2nTzSSFrqB2KdA2INmNzPRQHwxvdHFIiKad+H8HXKSNMZaUqt7GsfmYo0vsC5cCNcuTGgsRANIiuBjjZvvbbYduVDO3154runmTTROycivuJnSRmgW6aM6LSljKBEEo0laekDD9EyF7T9QxbUkTZuSKPLjIUVrMtLa842LV6ssSRLhCgFLaOxsNxpGy1nYNr/NXZY48nQPad7SdowwtrCY2qZsFWbGPfx0P1tZS7SvCZ8XCX91s/9hW965NTi2aft7f/0P3jX6b7x7/7MN71twAdcsJx99Jb9wb/xk1i0efApNNZh1TVKYFw0wUcvFmQAoMhUhKemUbUSmcdNc0KRRi4dntqqztxvw4O/m7XOP5Ixi3WdQ/iNueQmCEvGMrRKQAizERRDaxfJdlw2TqBQApzb4LcphcG6yYI/HQkfpiegdsIN1Wutx1JTHJNRjUZJtK1AkTvBzxgGKU2HWVdlENJ4/zeDljDYmNsEy0z3eFfK+ecJj7OmtcNoI7898h8E4AQC6WjyRFgRshOuHJ6bExS40NDK4bvluULTSGSZhvaCUJYrCGFQVZlrQ+wT502BY/9B5YVAzp2/Iwkyxps2q1YAhmE8q8CYxWpRgHGHT6e1M5023peITHOFjHzpgJ4JsBsnt/sj7DoSgIL/oeLgwmHLdeDp7mMgM4eL1zYyjLHVDCJz4y8zDdU4/LquPx1fZKpsGgFw64QywpAT1gmUrYBqBJiwnR+epwGgh2sHbrtr2uhIGwRKMssm/DzGLHTLIXMd6gj0qUxm/j/23jXmliw9D3rWrar25buc0+dMT0+PexLb47ExTkwEgcgIiEUQEiIogIQESIhYgT+QIBKCEBFB/kVEkECAgJAoMkSKFCEifoEUEBAicQmY4NhYjolnpscz3X1On8t32bsu6/Ly413vqlX17e/0Oe0eexq8pE/f3lWr1q1W1X6f9/K8JU8eybqGmXJU5edIQFTKwCxNBqaN7MKZx8dt5PnZ/IxFXeZiuoAU9JxHzxCgidd+FIkPZZ7rsegMSMmzr6Uyic/ntkjc2A2BgoLZBsZGB1d+8ZSl0r+4ResmQmkgDuJPh/kXXfL3AdBtRDpa6G1AGs0c0wZAb0LOAZhdw11EGuy8ji7HjE6aAR4pBm3ZbdPuPMLRcpuW5rVUxLkKD47Xxmaw2EYGiS7NQFKKADuv5hyEhrh+HdMn1zjitRzN0m2bMOcb1MT9OM6tSFP2d5XchACPq0klLyLf9Ko9AHrv+XnIOQPhEu/p3s5AV/IOtgnUG14Pl0CDgdoErit7RfrOzxtNenYPV7lfl7iu3C9Zw4Vbej6eFK+tuLYDfJ9ql/qsgCnzkr0i/cgcmgSMZuG6zONWgE1QowFtA7cR1OyyLKBf8kjaSjFQ73XKa24JquH1gSH+UzQrEWQfq5zLMbdT+rSJn6fBzPkV83MoSpJa8JYcibWbufIK1PC9LsDYEo8dgPIaZBMrIZo055RMANoEdVimJXuTQg0VBQMMza66OiseLAEx15N1ExfslhUkKjB4L+67KStPZD4yZV2xdteussT3ldpU8mGqoJCalNejQgcKswt4zp9J+R6r1ZrWrqol36XkJI0oCokC5DRVbtEKOgP/JHOXdoIqLsgC/uswkeJanAGvynt9BjDzXJDUwtVW8nGWcdXATJYsvxZUdY5qMJgBdu1ev7zpWIBuabM+X4AtVm3UbuV1/eq65WBRAKii1Vhq0FU9vzX790k3enlFpaX7+HJMal6rKpTlvqqnwPkry/r8K66p3Yfr758GSK7LL/3090C6kd/yZfriH/tDn3m77/+BP/obPjfgc+4Ku7MTvnr+FN/XPcdN7PDBcAGtCF/qXuLC9Pjrt+9iZyZchxaPm1t88/gQv3XHbmHvHx5i70Zcuh7f6c/x1bOn+NbxAR61t7gJHZ6NOzzvt9hvevzku38Dv3zzGBfNUJLUa0X4qD9DIoWfeOfr+HA4h1aEp/0eX7t4gl++fgwNwpd3L9l9ojL3j8HiQXfEhevxc8++BKcTztsBPhocfINInAD9vQcv0OgIqyOeDTvs3FTco6R83O8RksZhbPCDjz8GADzvt7jsevzKx2/hfDvg4eUR33p5ibcvbrCxHh8fdyWR+VfffYqraQOnI67GDm9tjtCK0AeHjfV4mus2lkH7w80Rt1NbXOE2zuPFcYMHuwOOk8Om8ZiChVKEs3bEYWrwhd0tnvdbTJlw57wZcTV2uOx6PLnd48GDHkfv8KDr8fSwxztn17geO3x0dYavfOE5ntzscbk/Yus8Pro+wzRafOmtK9yODTaNny2m0WDwFilphMDWpi++dQWrE27GBo2NMIrw4rBBtx2Qksaj/QEb6/HzX38XlBS+8uWPcZga3PYtdpseIWlcbobiFjJFg+fXWygFnJ8dQaSwbSf0k4PRhOtDh+1mAJHC4WoD3URsdwO8t2hcQN83uLg44vbY4uJiQEganQsIUfN9vNqAJo3uwQCAgeq2nfDiagfXBIy3LXaXPVskJ4umDbAZpMfIioe3Ht2gnxz6Y4P9RQ8FoB8chg93oF3A2YMjhr5BFJCkgXbLCo7gDUwTYLNCIAYD24ai2Jh6B9sGhMlm8JjQ7iaMvQMFg3Y/YnzZobkYESaOezY2wW5YOeCPDs1+wnR0sC0Dt27fIwS26I4DewHEie9ft58w3LTozkYMVy3sNhQr8NA3aDbsgTD1DikyCLUZ+PuXHdQmoD3jOn6ySKNBPGjYC/YGMDbBT5aTvie2ZIo1Mt46QBPczjPLdG+LpTMOFqZjpUsYLOw2ID3pWNnzzrEogGJv0ZyPoJTzpXoNumq4jwfTbGEMLJSbXUDKQJaeN7CPRsSnHdSDCWaTiqIJH7csiGZBnV420JdTUTKkWwaG5nJCvHEs3EhCehDUNzfA2x5mE/j8wQANC976owbxsWdBfzTQew962QD7ANxa0CZCuVlyod6y0m8rIgAAIABJREFUgLOJUDeWhd2DBe0D1MGw0KlQQJm6NdDeIp5FBhc6AwJNs0XU6wIA9KgQ96lYOfVLfvekswj90iJtUwakLNiX9pJC88sb+D0h7iNUUDDPLVQC/MMIfTCM15oEFTXcU4vpER+3N/zZvd/CX/I6kyG4JxycJ5a6sMnWsQAgKaQ2wT1zIA3EloVr2wP+bLZIJUcgR7DXBrEhNB9aHkdOjxE7YstjFp7drSkWp+RQBHx3Y4twnxzgrhX8GVsNY8cWM7Ea2qPF9CBh+0stksnnw2zJUx5ILSE2gLtla6K9zURmA1snSQH+gmBvFdwtMF2whUwHtkSFDX+GAkLHn8OW4G4ZNYQN17M9AAKmS4LpM/iw3JaKQNgBZuRxSxsSa2kGBg9hR2iuFJLla1O2YGbvfvgdYI8G/hxw1wZxk9t0QPOS0L+9luZfv7hbYDrneZoexWKmAuDPeRzJAfaQrXNqthg2NxrJ8nrangFVMnlc1xqk2QIpAElPKJbK2C6FebJA+0zBnzF4TS7fu1YtrG46ALHja+yBEDcKeuTryQBmYNQVN4r3VwaHZsr3YAKg85yOhGRmpYSOhNgomJEHFTsGLs0NlThW7RViA8RWwR0Ifsf7UsXZymZ7KnMX62Wys4JB+/mZS47bMpMoFjiWWtZ5EZudAUlyud3K0ikWSLFUJre06C7WWgNmIh6TFPlYgTkd2ZpImj8Def2dgDQeM5nK4riiHF+A+2yJrIGWjrxn5L8iIBkF46kcL5bbVZvJgttbWUFlIgXAJRQ0Xlt5Z+BMQJ7nSYtlNlgtAOKKha++Zg0aT35fx5SfAJmfBfD89Sqfp7G+aflcWywf/cgj+od+5vcikir+53V6jJD4B61OOj8zxy6Txa/TUNSpOtbpJoRFdn1dnZT8FHV9zRhbl5qhdO0jvmaQXIxz1YZRmYW0moeMoWaqrb9LKSk3ajXRqo36WH3NHWtsqscv4zvdVt3efW2uWUtlne72u1Qzyvt+vaZrJSGdmOerUn6siZ7qdTqdqgF3GCtfZy1OlU9K67Du+3Qbp645fbzuc53GQa471f6r2rvT76sYJEvFE8dOjO2T1gbIyt4Ta/QmytdXjrWM7e76fKrX7Smt9koz/YlNfMK+eu14j09SG5N65ZrwWPj/a63Nqf4+aS6l3iuOr18Ar2zn1CavPst9qCwNC0bQU9edunf3zbVW17/u3F9V6rG+ag8V3cGSgApAlUfyFWtzat+uj6/X475r1m2X76v3NM2Hv2uC26nxr4+vz+Vyysr1qvr3j+ET3pmKinXq5Dq8yctudX6Npxb1PmldXgcMnNqXNNc9OacT+6Cud+ea+z5/0rhOlTd4F7/2nvwuiuX3juEVfd67hz7F/vmk8kbP7adYp1/4d743LJbv/OufvcXym//cb1osf83FqIT3Ns/xNw+PAQBf7K7RR4dn4w5X0wbv7V7gJrS4cAM+Gs7w3u4F3j88gFaE7z97ho9HJil52B7x7cMF3t7eFNKHy+aIx80trsMGv/jibXxxd40hOvTBobXs5vqouwUAfOP6LZy3AxIpnDcDvnN7gS/vXyJB4Wm/x8ZNi0DlznhcTRscvcMPXT6FT0zo0BlfLJTndsQ3Dg/RB8cB6m7AMTS4nVo4MwdSP2iPJbj9/dsHmJLBg/aIq2mDH738AB8O53g27PD9Z8/wrcMlhuDwaHOLrZ0wRIdv3Vxi30zw0eC8HfC837LHV7bOPeh6dMZjiDyO5/0WOzdh50YM0WGMFm91B7wYt9hYj7FKX3I7tdg3I54e9jjvRj4fLY7eFavlo+0BL4YNGhNxPbS43Ax4ftiidQHv7q/w/vUDfHF/g5fDBkOw+NL+GudNj19++Rhb5zEEC6cTfHaFbg0Hx1uVkKDw5LBHTBob5+GzK/PDzRHXYwerE676Dj4a/K53v4FECv/nk3exaTwedD1upxZGJ7zsO2iFwjj89p6Jml4MmxKHKnGYl12Pm6mFUYQv7a9wDA2e97ynjt7hoh3wctjgrB1xNXQwOmEKBs4kGJ3wzu4aWzvh/ZuHbCUjhePY4O2zGxx9gy/urvH+9QNYnbBzEw6+wRRNJofhNj6+3aF1AY+2B3x0uweRwr6d8LXLJ/hoOMO3r8+xazw2NqdYSQa9Z/VyZwOGYOGjhjOp7ANRmjzoetz6Bp0NaE2ATwbPDls82PZoTcDTwx7vnl3h2zcX2LfZmhgN+ondyS/yHjvvBtyMvL6HseH0Lkljm+OEOxtApHDVd3i0P+DJzR7vnF/jeb9FiBo+Guy7EcPkkEjhrBthdcIQLEZvkUjhKw9e4Hm/xVXPsdetC9g6j30z4oObM7ZsZ4uxxBbfjg2MZuXIecfjf3HcwOiEbeNxPfC93bYTjiN7F+zaiT0GHn6MxkT8/EfvlGdg2064PnYcZ6rYxf7x7gCrE75zfV5AsXgE9BOT0BApvHN+jW88e4jvf/QM37664Jji7IL+lQcv2LshaUzR4Kwd8eH1WSFVeLBlYounNzucbUbEpEvbiRR+9PGH+MWP38boLfabsXgXGJ3w7v4Kv/zsMULS2LUTrg4bPD6/xfPDFhfbHjdDWyyyKSnsugnWRNz0HR7ujjhMDruGPRnONwOmHF8tqXwutj22zuPJzR6tC4hJwUeDlDQ2jccYDFobcRwdzrcDts7j6e2uuPu/tT8ikcKLwwZv7Y942XeZtRtonUdKuoQW/OgXPsR3bi9w1fOzJvv0m88fYNvy/h88e1h8+eIK33j2ELtuwtv7G3z92UN85eEL/OrVBcfhJoUvnN8yAVt+dl4MmxJGIfHmD7fs6XDMXgyXmx4f3ezROTYFjd4iRI2zzYjj5PCl82vOw5yF4+uhyx4QCQTg4bbHmFnPR2+hdYKPBo/3bJ6LSePoHb64v8EHN+ewJuJ2aLFpPHufTA4Pd0d8+PIcX/vCEwyRSTzk2bY6YeM8bqcGh7HB4/0BL44bPN4doBThvBlwPXXwyeDJzR4XmwFfPnuJb1w9xK6ZsHMTOuPx5HiGrZv496zfoLEB1/n5BYCXxw2cjXi0PUArwvsvL7FrpzLG826EMxFPbvY460b03mLjAl4eNyV8ZNNO0Aq4Obb4wsUthmAxeIsQDDbthEfbIwDg4+MWD7c9Prg6x9vnN3jZd9i4gCkavHf+Ar/45O1PLXe8tT/i6fUeRMC2m9BkD4nGRDy93mPbjRi9w+W2R589aKbASu7HZweM0eB2aHGRPWF8MJiCKfv6ODFfg1ZAa0PhZzhO/I6WFGNTMPi+By/x5HYPpQij5/t8Ozbw0UArgtEJ1iQcx6Y8e9d9h132solJY9+NUIpwfewKRwAAdI3H6C26xhfegbPtAB+YM8KWtl15x9z2LYiAB2fHEprTNR7HscEwOpzvBlzdsvlUayp8BLtuQkwK/dgUbgPvTQlrkBARpQjeG/jRwlg2oxkzh52EYApPgPRRPHGE3V8TK5xNylwFpoRxaJc4tMNSQTgqv+dcE0poTWG2zxUk1ENlt2FKKKEgxiQOuSEwQ74ipKALy72EfUhRGnO6p5TDQzKA47RWHI4i/yUERLuEFDIPQMrKRAHkOaSFPMfAF4Z/oKDuwsIfdYn1X6RgqpTF5bO4bdcs8LUiQRC+KI3KJLEEpWtlV51OScZ4KrXO57Ws1+P/Y+VzbbH8gR/b0b/1F38YN6nDRHZhlTqmFq32SKThySBCwYD4M2k4HeCThVEJWiXcxg6tCvBkCjtfpz08GQzJcb18vVEJkTQ67TEkV+p7Mui0xzE2cGoGfxEaBksWLp+DCpyKiJk9QixxBgkRemF9XV+XSMPqWOo6FTFmq23Jw5nPhWRgdY4/TRZtDoTgtdEwiuCTKQxqdTGKioUWYJYyq+eAgUQaTkf4ZOB0LLk0AZR+p2QLsJ7Zu1I5Xohv8likjVZH9NHB5f7kuFGEMc5z1blt+cGNpOAysJR6UtbW4ilbtTvjYRThEJoy1rpOfV2ZS14T+ZGt/ydSaDLZU03cVFtP5/+63J/GxHL9nO90Ps+MaSa3JcoKU6zqsq7MuhaLJV8rQmfYpXOI7s4c6/ytsu/WLGuSu3U5tnl/ylxFYJXrT81f1gk4bXWUekSqkCYJ4VIUt3LMeWeFha72NnCac8TK/avr+WQWYzrlhSDKiTr37ZoVrx67MLbKnpO8q2trodEJWjGhlJTaY0D6aW1A71mRFTMIliJEYvU163XWiuCTXjwXqrp+imaRC1f6XZ8L1drXz+cpK7Hkf60Z/tKJ+kZR2SNS0onrZK2EmKveazWhVp1mituSec75e2XtY9KIScFoaSffU5MQcuy10QQfTDlW1rViIpQ213mL1/l1pc+1t4nIUVYvn0WZa8lNW52jqt/6+VwbhU55XKSKWTFV96L2DJF49DpWvq4jpGjrOnz9fG0qz/Ys3Ncps+a2UD4LT8GpHLjSVp2Wq+Sureaqs+JFvCCEfKy28ClNSHH5O/cmpU7ZVec1hqICUu6k5anWloBlHtVK+Ee1TtzXypJfWRopMbgQgHPKs2RxnUIBM/dZzNfeBIt8xnXcJt3zuSbPKmm5sLTkS8x1XrM7bUmpH4v76lRzK5/vmFLnuZ60sEuc8RrknLj+VP+r23yv08EbWajXIGxVd71s9/V9b5v1RfeUO338Gi229/d0or3XqfMKK/iryt/8174HyHu+8l2yWP7zr7ZYKqU6AH8ZQAs2LP4XRPTHP+txfK4tls/9Dv/5B7+rUD/3wUGDikXv4JsiwLmcLkIEMmFCFYFMiHtEaJmigY8aRlOxjBnNIqsITqKBF2sVgEwGFMo5EchqoSpEDZstVEPWQkouzNqttrEBRhMSobhe2vzDKYJTiIbdX3N9YAY6ov0TTb/NMYZsHZhZUyW/p4yrZoWNWVMvP55CTiOxXlqzJlm0gXVeTDnnXCjXiFAiZD/1NUw6JFYZZlgVBlWtmdGVtZgaTeuLlUKKuJjWwobJ2tf6x1nYVIkAm0lfhiNrdJsuZMKdWSARYUV+tGMWSnQtsID7TFV+VCH9EWFCNJ8ifMlxccskgOPriNlJpWidMsERLVhGa9IeyR0qMY1EirWXmbiFEpg0x2QCHSGVyKUm8hEiGxBmIaQs3iyg1UnoU+BxK5tAk2ZyDyG3qdsTbWj+L4Q9pR9hRBUyoUyYo2wCeQ0lmuRKSwxwu7yYNAtCmaFUyR6IuhBlFGIS0cjKckuOUKAQbhTylMxKyuuAWesqx6c8hjbNP3xCZAPMQo8kZxdWV1JzfRHIFBXyGiFMWWhscxwm3wCayVZkHeuxCyFR5Z6pRj3HaMZqbgQm42iqsRmaiX8kT2UtwdQCZG6nkH7IOqH6n8BuehXzaX2uzoOpomIiFMmrqVDIXMhWRCTSRZ4/KXbT1L1CaqjcNxV4rSnHk9bj0qNC6niuOnDMoR6Z7VTqFKIUYai0S8FR2E0B3GHFrHMsCukJdG6zTIAKU2i5V5KzVC3wEceVQfpakqiUHJHE942JXQjTqOaxVQJhMSwYyrk/UQhHhNREYth0BJQHyMm9zHOvGT1zPkfSAFWsokjVdzf3QTrna81rippIxVZjjXnIBoDPoEfWJfJ+UYQSO5oyu23NCqu9Ato3lEarooMqMcYcrzezwqpMWlP60ViQpWiv8jrPsYQcJ8vxffK53Pvq+anzP3JjKLGScr6wtq6BUr0Xc5yh9F2zvhbiHMLMolrnxqyfmQrkrvNYyjUyh2TmvhassrSsv8iJKe8FwjJmUi/r1blE62ekzH313JTrVrhYztVrULexHns9h5PgsbqH6znXeO4UPpdyp90FwK36knfv6r4s6gLze+XE9l/ksqz7OwEa1xj/JKBdH3sN8CltfSJIvq+Pz01Ry03w61dGAD9JRLdKKQfgryil/msi+l8+y04+18CyNQE/sH9arHJ9dtcUC1cfXbYyzlY5sa6JVhxgi1SjI1s/shWE4zA5X1FnwsJqVcdwJihYJWlIdPkesmWx/lxfK1aSobUnLTsxWwJrSxAwa7cFPIrVI0HB5DdmzPMYu5FdYVQqLrwyBhlHmXdlKZA6MqZaAypAWdKf1HXXFora0kQ0x7WaPG6x+txntZA5CpBXQEnHIgqCdRGAL2OoU8TIuvtMIiTtKADHnJakyW44dbymzLlYoJNY0rJwUVlsxBIiygAAixQs8l8UBeuYQLFWiDukXB/kPtNsNZSytoTY3F8ktbBWCUAXFzvKCg+9spjUZR0zOo9//ixKBW5rZr+VOuLCJCk/ZmuHrF/d37LfteJC1kwpFOWGrGdJbVIpAGR8AEodUWLU9+RU3B+PHzAZGBZlAM2f6+MxsJLHubhQcki9YvWJbF8+te61hSJFU9iJdZXyReay/t0vig5U+z0zJ9f3EABip4tSRawv8oueIisnVB6z3O/CYKxXv+Z5ngzSVRmQ1mBriggfSuY139taOCruZdXEhAFY0uEAKEoHXRiVq2cwA0tR1sSOSZFkzGKpUjZVgJjnHTtm06WkEKOCsoTYqdl1rBr7gglWZfkmL0skFEDH2iI1s9WWG53vpQKDdrU8t1AiVDHr9dqkNZlF7T5WC5ByzhBSq2blSF2knsox8iKoAguwDg3ExACObMVqWvepUIiISM/soKXfDMZgaTXG6ngFTBbjrcA5KsAt66QyYQqDJ04zIwCeNymgArGy4VMWBo75M6GYxxnQoqR7UJEq4pL8L3BFEqVJpTDQ4S5jpxJFW32c5utUN6c0gZrnugZXM9MqZsXNChTUQG5x/+dm5jalHlXtAUsAuwJFdToPabAA5zVgXcvcNK8FFFVtqyUIPAWm1u2ugNVJgHkKWM6v10X5JGD5pmUNPOsxLsp6ne4BgcuGcHLu88mqrXVfr2r2def6BmvyRm2+Jmj9niq/AeMldlG9zV9d/vvMR/K5BpY3vsVf/uAHixAfRVAWYXrljlO72KzTdoi1TATH2p3GGEIU60sWCJRCSVlRUjKo2fWmCHPV59IfsjuXopKyYm0FAqH44wNYCFCLXZCtUUSV9Uo0flkgEB988dUXS1I5JwJ2JTTWxxZvORFcKlWVjO0+spK1i4+qBMLix0+48x1ZuCvCqqLZErMWjmj9X+rR3ZdO7dIj7YjVQISd2lJXW5GA5RioPn+in3rNauFvRQd/R4hcCJpV+7XV7J4f4KUkUDUTWNC7o7WsBQq653vdPsAuRSshkq0Ws8Ze3I5q4o8ibFbruz5fr4cIptKuzJ0UVYIG7lifeC3z9/V8k4KXfQGcnnc5rhBK2oaq/RpYyJrkfTHKHuKBLn8hK0EoVHu4CBOVVKEi4LNgHMzdc6TmLpCAeEIAD2JFkrWRbZ8ZQWXtamFGZ9BAec4LTb4IV5WgpiQE6JQwW1tcpP3KknZnj9K67ZwSoQKzWoRtTdAr+nxVvZcUzWkJFoI1sLCulb7FskAo+fkWwqSq1rJ6du48cmsht7IGnxIE63tZrlP3nF8dL2OQ7+X5WAnMeW61lWxRqv1f0i4I8Knf9cIQWaehoNN9lvtQgyPMa1jyf9ZjoNVa0XzvqFr/2qJaL/56ry/2YLVu6dcg+dQWqDsApB77Gvgjj1nVpDrqzrosNW11G6o6psp+nPeOuheUVLfwrjWovGvvznNtAautiXfu+/pBqNuXPbf+/Sq/J6fbLeeqeqTm34jF+s/LcPdYXRZtLT+fWpfS7KvaXF+z/h1Zr0u1H19HrJfclfL5TrdKzcdfRy64t597TnzCGF8bBL5me/de84br9pvlblFKGQD/B4AfBPAfEtH/+ln38VqvV6XUTwD4a0R0UEr90wB+B4B/j4i++VkP6E1KZwJ+4MHHsCphSgZTtMViaHXCrW8XlrQx2tmaGRysTjAqYYwWG+vLMQDw0cBnq8DOTRijXcR+AewuCzDRiFgOI6kSY5ZIoc0xc/X7RCxJViccvVtY8QAUV1chdJHxGJ3uML+GHNMRoi4kAuLCO3hbAuwlvYjRXFdA96bx5bO4wgqzq1ZYxBclUrDZkhaq2C1xJZZj4kYrLrXOxAL8FdgCWFtcdZ6TXGvyGvtg4GxEyG6zdf7PpgnF6re2PNWWNckhmiqrjbjhikJBgdNxgBTaziMlVdVRxTVXwHPIRAxiCauVFpw2I1u1xGW2so6lqKGzNU/qSbtiZaOkSq5MUSaEwOuUkoY2LGkWhtiilOA9Yar8mdIOJYUwGWhD+XwlgWK2qhYZQNaz2reU2ymKgix4mGyBBIEJBbyGyZYfEFuuFtawinygWPTyr7pYoyS3p9YoFrTkNeffzEBCFA6s5OG+VAUYk2eXZ22puA6DkIkO8vpqIFUuhUpXMWfZhVRn1+J7gWVWFqScG1N3YTmPhSssuyiD5lyT/GxV/WelS/Iaqomch9Gmsu4AkOq8iOLOaitJVlLJiNszgAXBwqg5/Ye4t9aKlKDmfI0pt5tJHxBUzls4d7XIQSnWIRlPUQphlj6kv9dwhYW4bMtcZb1lPpKvsWzQ6lxSSFN2D61dYYHsMoq5TQBqUsVFlt2BiY+5ue/itipjyHkMF0oOATwCMuq55jp3XGHVLNiSqeaj5jEDmPPLyfWY26ytQfWYBHSSI+iB980dV1gBSxqcS9CgpJ0QCxwpFAtgsQYmLK1V4gqr57lIOwIkBZwkSwtXWJXdXJOkhMjtVQ4/C7fbNUhWhJJKgmwGkJJ+Qdw/s7tobPCpi6R5KOPBDHCKy7PK6yev2bzeZcxivSvPBorL8xJQzWhnDYKgAC37O58XN+aFEqoGULIWcp/y3gDyOtfX1dZEGaPUVdWca/fVe1xhxX1VUn5wZcx7vN4HK2C5XueFYisfWyi8MJ8r15xw/V6UU6BlDSxXiqiTZdXvou11X+trToGl+r1W5qbu1lW4wwK8WD85JoqzU6BsvWZq+f9k3VNjPtHefeWTAPMry+cdWH53xv9IKfW/V9//FBH9qUW3RBHAjyulLgH8RaXU30pEP3+qMaXU3w3gq0T0Z5VSjwHsiejrnzSI19Xb/UcAfrtS6rcD+MMA/jSA/wzA3/ua139Xys6M+LsufwW3scOQHJyKSFAYkkNIGu2OyXi0okJa00eHRBqt9ojQmJJFk487lTAmC60YwDU5WObGd2hNQCQmUtEqIZHGxkwYk0UfHTbGL9pqdYRWCYfQFrIcACVdiSed2/CZlEcXohwhpJGxhlxPCEdqN0irYwF4fczxmnnHbozHmGy5foz8ucljS6RxrMC0VlTAsgDoZuVKKq6rtYvufa6Z4kocyNxxF250wBBd+b8mv9F5/QvBDxjMdsbD6oTrqSsuynX/Mi4hYxnDXYVA3YcQrZw9GGF1xNW0KS7FAtziSpXrMpFOcW2sfiWEMAZAAds+GViVEEgv/gtxUJ1CpDVhMS52vZ1JNxody3UyD3E3lvnXjICirDA64awZcfBNOVa7CcuYa1KetYuy9FmnewFQ3JqVmuOZp2gWMcziziwMvvJf5T0kQFbcjp0oVCplRWsifHYVljWRcdfxz0Jo01l+Zus10GomjqnJgdZpeMQdOZEqyhtTuSTXJDDWJMSksGv4WRZWR65HRTkjTI82x4BLHLacE1dqubaxEaO3aF3AFMzCJZ3ZVGc3daWYbGZ9PlQxzPX1XeMxTA6RVLl3UoS4BmCFw5RZj0M0sCaWuO5SP++FUyRWwvYLzL+jRlFhNl3LgSrvNVmP2vVfFESy12vyHlHQ1AomYYkNFauxtCesscDsUm1Ngq/cxUWx5au1lxyp4kIuLuC1J4ywWq7j0NcpiGrFVV24zWp9Taqum5Vn9VikHYn/XrtqCzOla8JibFLEtVxcv2NWAMnekn5iYMWYUkCMcx/rORbFCqnC0Elp9vDhm8pJ+FSWXsselLkiv49qU3xWUFBUSMLAmZVG2swSc1HOZMsqJUBpXnfSVHL4fppChooyau0WTlEXS3xRUlUKDyX3UjxX8kQX7KBrRLBSus2d5Zh2URzR7K6+KIqWypjaK4QwWxDFk0DK2rOmuFqvxlcfPwU45HPtrbMuatUuqvFJG5i/Lzxb1iDtPtB0DwgqgOw+4LiexxpwVt9PgbDFsVeM485Fr1FOAcCTQLC0+6o+7+njTeq/xvzqx5w/vwbC+ixA2OcdiL5e+fh1iYmI6KVS6r8H8A8CuAMslVJ/HMDfDuBrAP4s2G32zwH4iU9q+3WBZSAiUkr9IwD+AyL6M0qpn3rNa79rZUgOv3D7Ls5tjz41uPYdAmlcuB6tDvj28bII8J3xeDltce44LcjLaYOtnYpl87LpcetbNJnZ8WrcoA9M+f7u7grfPl6gM2HBunkztQCAB+0RHw97AMwIedH0+Pa0AcDWzimaBZPllAxaE9CZgG9cPwQATocRTbFuTsHivBsKqJI0Hq3JggE4plLG4KPBrmHq9iFYdDbg6e0O28ajswHXQ4tt4+FMRO8dfP6xfrjtMQaez9E7bJ0vAEHSN4gFFGDrrBAbacUCdj85bNuJhbXqLSQkRrtmKu0IhbpQyffeorERUzDl+67xmKLBYWyw70YcxgatjSU1RQgGF7ue0y9oKnGNMakSEyqMg5vGF6Fb6wSjCcexYVBCCtvGw+iEbz55CAXg8vyIEDVGb+FyCogmp76QPobJgUjB5fQBtfA8TjbH2CkMg4PWCW0bEIKBtbHQuXtv0DTSLoOplBTG0SEFjXbD6Qx0tjj3g4MxBD9ZNK0vQp51sQjcIhh2nUcIBn6yaDsPIULyhwami2hajxA0KOkiIBdhMQuOIiiKhVLiImNex5Q0U51rgmsC/GQBAoyLCIOD2zC5kgiMOhP0BG9gm4Do2XpKQBHEgTn+UKyRxkZEb2CbCD9YaMfgUOWYRq3ZjzMGU4RLOeYPDZRLsE2OLY4GKShQ0LAbPqZNQgymCIrazTTrMVsgTcumhZoMKQUWBJVmC612Cc+v2QxizqciGCSvYZo4e0VFhdTqCMbQAAAgAElEQVRbjhvc+RnsSbyoTcVam44WZh8QbxzUNhQLLwCkW5cth8T/Jw29DUWwpYnXXneBLZ4AW0hzP1c3FjgLc92g2cKYFNSgQWeBLeleQ7URt0cL1UVQtnQWbz1FoImp9OESMJqZMKhJTDxUj5MUH0vg82LRFKuuWETFyjfpmUyIuJ7K94XaCDUakEuzYCvum9naNVxbpE3iOqSgRs1kIrtYWUO5a3PQiGcRymvoQSHuEqZbjbhLs/Vl1AvLWGqy5S63RTZbBRUyOZGC9mBSIAEA2cqpJw0yBNNn4J3nkJq8Vhlv6mmO6SMjFhhC6nWxOkET4qgQOypJ5FWcrTVpUojbBHWt50TplXuzuP4mR8DIbtJq5DmJ2zRpIHZ83gwKtCFQALvFRjAhjpA8Sf8O0EMWInM0j87tpi0x0REBMGxJVEkBHTE5kFglWxSBVeonBx6DJraAaUB5wGRyotQweU7YEOyR11QFjke0PeDPPr2UqfM6A4D2swVWRV4fHRj0mkHNxDqSeqLne0kO0BPPkRT/NwPPkQwKgKnBTrIrEKMBewBim++zqdrMREnAfG95vLx2YjmtyaaSRbHsAtnSK5ZVndc/kwPV+yZZPg5w2wBgxvkasZImC5iJrcVqNT895XYr131ZG+lHrONUj5Oqc1iOjQ/kf3aeR00EBFSALFvpyxhWdXQgkDkBs/Izpmhec7YgUln/ZJZWOXFdXbiwVu3JPSeloBItrc51WIJ4BujV/NbDzG3W8z9VCjBduY/fqS/f12Emq7YWl6yB71opsJ5/fX0e0xpv3wugPw/lN2Ds2eroM6jcAPg9AP7EPdV/H4C/DcDPAgARfUcpdfZa/bxOuhGl1P8I4L8B8M8C+HsAPAHwfxHRj71OJ9+t8vBHHtNP/pl/DEN0C+KbRGphJRKryakUAUIHL0BKrCg1oY7sc7G6SB/iliqgQixj4rYKYGFNqi0Ga2tJbQmRtuSYfK/ZYBfU/Rn0xUoTKEAoEVauokuK9FAx4Qpdfl3EMlVIP2hOWSCurrX7a+k/j6G2FNaa77ULKzBr1oXtVUhDBNQAuEOEst6+dXjKmmSmJoQR8hgBZC4DtBDMwnpTWz/WdPmnxlDTtK9p9uX83PdybkrNbce4pKOvY1jv5JJal1plWX6NOGeYgEU5Vi5Jpyn+1/T19X2r69aus3LPF0rmPKaTv1XVGq/HdVIdi9NrMbsE52O1yy640+JGK+6b+XhZz+oHVSwc97n9LNYocf4wALPrKeGuBUHJuHCXcbcsVq5qmAW4sOZWa6AqK1ZZ0EU/eY/Wrsv1GgvRzmrtxL23PlfintMrLCL5XpX46Px9sQ/rdVzf03vWWMZaAChhaWE5VV/6A2bSnNW9XhP3CGhduNbK51St86nY7nX/i41fjVH+06rvdaxpXaeuty4nnvFXWjruE+TWdeS/vue4yn+1ACvfy9BWe3P1+U6M9LreqTHdNxdZr7x3l+M98f6oCYU+RVm4PmN1q9YC+Xr89X6tP8t6n9qrqzYW06lBFJaP3HLQJ/pcX0CnYzRP9Xun7fv2/Il6p8Z3Z8q0+r8eyydZF+85duqRWU94AeJO/BTdCwhe556vxvFG5VVr+6prXqP+K8fzacb6um1/Bn296Vr+33/iX/6NTzfy3vfRO//qv/SZt/vNf+GPfFK6kd8G4GcAZHUc/gIR/fQ9df83IvqdSqmfJaLfoZTaAfifiei3fdI4Xtdi+U8A+CcB/BQRfaiUeg/Av/2a137XymN7g9//xb+CCAVPFofUwiDl3JAKx8TWvIksOjVhoAaNCpjIYkwOWqWSfxJAyUeZSOc2+bvkv3RZlRfz22PM6jk5Lu1IfkGfbMmFGUmX/JfiDmtUwjE1pQ2xaiaoklfy1DWlH8x5NcUV2KhU2G9vQ8txpEjFJdgglXyXERpbPZU8mnVJpBa5MaVolfvMOTIBZsdt8zyljhyTHJ71OfnuVESfmuz+m13eyBQXZHEjFjdmdg9uFq7B69yZkuNSwLLE1PrslivjlSKuxM+nLQDgzI753ppFzKcGweqIkExZE6djcbmVMUjuTgAlX+R9rLfSXq2sCKQxRYutnco953XR2Rrt0Fl/0l1V2hCmX1GmSH/HnKNTxsduxjO7rtw3yZm5vu+SU1PcqGVMwnwcki6uuo2OCxdhWafadXrttlyvT82CLO0O0Zb5SN11/dpNe4y2pB+S+jHpBYNynS+zPg6gPI8127K4Otf3Rq47en6WN9Yv5lPnDE1QxTNh4/zJ+Za8rtFgYz1ufYPOhoWSRrwM5vumC5OwKIjEnbd2VRZX36N36Ozsoi8uxwT2lmhzf5HYLXkIFk12RRYXZxm7MDXLvZJ+xJVYxiTj9ZFdS23FfCznxWW1nse67pSVP84k+KjhTFpcJ+0RKQyeU0zVTM2RFFobiyJO6k7BonUeKfGz09iA0buyf8STo1YoSYw2AUWRVisaxXvC5rjmmrlYYsRDtrzXLq214qZWdklsuFJAkDhahRLfLcnta0WipGlyjj0mAHZ3LWzGFcgSN1h2dc3Mw5VSyNjIFv40p0uiSjEm6yJKNVGgzWPnOGtuS+aMwigsCpqFgkcs3apShuRYbuS5izJEFDAlpZFNS+UMwAqDpkJjb1hIrPvArCCS92WtWKnIxor0K6l/RBEknxXY2pvbWChbpNTHRTkTZtfbEpNcA2ygclWtPtdKLQFLdWyvXFcrEBTYOl3tTZUqYjWgkGwtgLuMTYHjj9cxlpB2cS+qU5WyDsDCslkscGugeQrcVcqduStaWAFf6fJ6H5itr1mBy1NTWus7TrZ3ah7r/tb/q7Hep5ta9HePFuHkmN5kjHW/p08tr3sdsPwaAPLeNf3NAgAgop8DWyFfp/wFpdR/AuBSKfUHAPx+AP/p61z4icAyMwj9eSL63dXg3gfHWP6Glu9Ml/h33//78XLYwEeNjQsgAMexwRQMtq1HiBpd43E7tNi1Ew5jA6UI28ajn1xxdTwOLRoXSoxN6zw2jt0+X95sinshCwn8Rmssp6i4PXYl3sWahGF0aFsPBWAYXbGGiZAhDLQxaJzte6TErpcm55DUiuBsxG3fFotb04RyTf3UNA233diAQ67fNCxAXOx79JPDOFrstyOOQ1OscxLXczx0MJbTI1ib4CfLvwPZ3bFpwiJ+Zpo4H+acCHvub5GfkTC7f44WxiYYmxADk+9YFxEmA9cGBM9xkOLaGXK+xW4zYTg2aLqA4A1SVGg3ntfmtqtyZ85CjM5CmViz/GhZuLIzmYz0qXVCGC0oKlw+Ygbmq5dbKMPunSFwDFiUnIH5R9m1fN/9ZNkCGeb4GONY8FKa0OZcm36yvDZRsavoxOsRM7mMuC8qTWjaAOcCjocOADj/ZNCwLRPytJ3HcGwW7qmSz1FYhONgoUyCbQPC4FjQcwn7/YB+cAiDY5dSSReT9OwKajl+SGJ+SgqJ/LY2ju+htqmksgijgWk5bjCMFm7j4XtXcnGmmMdoiOc9GWghpVEE8rpo6yXnpBDupMnAdAFxsLBdQJxMTkEBTg0RNF/XpGI5pCxwu92E6A2T6igWRpVNMDbCH5tZ0MrEOOzWasqvk2n5uUhDvt5xjk4oFIEVJMcNmvMRWhOGF12Jn1IugfL14vJpu7x/jq78OBdLn5DkALCbgHDj4M4nritWOwDubET0DHIoKpgmIR5sERp1dvVNRwvVprntLJx2lwOeXrXFZVU3sZAjNZ3Hx9fn7Bbb8PjVNoB6w+6wk5mtU8RCutIEGjXUJoK85vZ6y9fn+yWuoKqLDAx6W9xvi1uqo9kd1mugjZwntc9zCxoqz416C7UJoNHMQnp2PxUBu3s44HDd8ZgVQbfc9811w+CCUNJ9mL3H4ckOcAlmE3B7vYc9n3C42RYBTG0CxOqsFBAHM1s2NQCvoLpMrpXXW7cR/WHDY0Neh6g432lQ0NvAAEWA2GRynlIq61XAi6QmSWDX53ycgoLZBvQvG147cUnOgEVvA/zzDvZyQkoK/sDvWMpj1y4hTQZ+0mVN9SaAVCYDiwYxKoTrBqqLsG2APzgol8q7JAyuuHIH2fNe83oACCPvbd1FBsbXDbtPC6hyCcoQ4o0D2shrYAm41WXOyEzGatSgXQCC5ndLVCCXeG8p3i+qi6CD5T05GN5bUcHuPMLLXwN7T5eAa1Yqsxt2Pq4JuLU8p6i4ns9AV4DXNvC5Sc+u4CmPP69Tuff5fVEs5l6YcfK/qIEzDzqyj6yaNGgTeQ96zSBP5XEFBUUK1EbuOz9nKvG6yZrWeXeFqEmIrpRXoJbHLICSTOK+xNXc83NMXX6uKd+zoHh8bYIe9Awi83s/dan0UZjZo6rcYmkGp4HdyynnxkwWxTNBRbXMNylrJS6uJV/mTGAleWZlruwyvQLnlF2RA+Z3QQ0SEyD5aQtozetPmttWcisVzUB6BQAX7eV+Fyy6wNINtiJYKgRV+SdsAY5zaEAhUqomdgejCjiT75ViYQ0EX0WadApgr+d56ni5Zg1cTwHZNSC9B2h/L5bvdfBLRH9SKfV7AFyD4yz/DSL6S69z7eu6wv53AP5RIrr6NY30My7nX3ub/o7/+J8qVr3eOxCArfMwKuFq7GCyNr8xEYfJLcCny3F7o7fYNh7HyRXSi9HbwkZ6vhlwHJsSoxcEZAWLlBR23VTILnw02GTQKoBPyC5mDS5r861JuO3ZqmpzvjrR4Kao0bShCP/rHIRSvLeL+lyX8/6NQwNtIpyLGIcGrglFey2uj20GzKLxdpktMyV9py4ABn45Pk+IGII3hWm0zpunTUKKGq4Jhc1VZ/AXA18TvM2CSwaV3sC6yELMZBfxeEonhImBoNt4pEyqUtaD5tQrImjaZp6PPMnJ6wJcTAbJ41UHEGD3zApbtNwZlKLqI055fmIdEJfJ3LaATBoNA0aJ2zMMopRL5T8IM8lDUhzDlhSQhVOlCcokBkcaHHMmgmYWAop7Yv4hUU0mdMjxccjgQx0NyBFfH9T8w68xx7iJYCG/grVWHZiBT8Ks0XaJjxN/VqNhAUYAqaFZS54FyIWmXQQJETAFxAMzI2mTmMlUUmRomscimvuU5yECw6hZKKoF+pQFiDbNP5ZxXrsSB6gIKgtyRWiKCmTzL2kWJKCoWCZ0z/F78SzOMZNZ4BUtOQjQo14IUwDmXIGytgrQg0baJOij5rqVY4E+6pld0RCUV3N7KvcB7kNNuW07WxbMrUbcJ7Y2eFXizxSB4wv3eW8HhdQk6FEvWVLrH/AsNJHN53NsXGq47ZIkXsC257VMbZrz7lWWjpKyxnJyexVz3CHx+pS5NQQzKiRHJdZImDbFomFvFVLDsYOKOCYOxLFwhSHW8DkzKIQtx+ZpD47P6xViKzeJ4x35fqEIm9KXIjALaY43o4yHVMgxj6s4MIlzM3NILp/PbZYYS49y78txzXFpgKwtx/6llvcPOcxsrJrnHVuCO6gcY1nlmUyqCJzJcWygrC0wC+VQOYZwzHGjLa+3ipjjOkOen5VjXJ+fIx57icdrV2OU+MkGM6NqngtI5pGvdRyTKEy2LLwDRs4LK2zD8X4lplTx97DDpy564nZJzeNRWciODQqwMTneUeYn1woYkvtKerkPamBQx5VJWwXQaMAeOcaSnw1uI4mTm2zbDJzK2CXGUq/W3VVgBfM86pQ92mMGS2nut47ThJpjLEmhsOhSfjYkDrOO9dMhr4tZPic1gCn19VxPETJgyiBOqdNxf3kvFYBF82+OxDGSyWzHeo5rlEJqXrNSTgGtNdjM87zDhCtjPAWAahAlCpW6W5rb/9QxlvXxU22v/98zhnreawvputyxJJ4ChK8odUzqydjUTyq5+l/9c692F/31KO1730df+qOfvSvsN/7Fz2Zu2aD439YGxTcpr+sKewvgryul/hKAgxwkoj/4aTr9rIpW7KJ42faYsnsZwMyal02Po28yUYzDvhnRe4ed41/jwTPBjcsshw83R4S0x76Z0HuHEHWxNj7o+hI36XTCpBjQjN7BmISLbsDLflPSaOzbEUO2wm1cQI8lsKFskdw6j+tDB61ntsKQGQhj0NCbNLuwRY7VlJQiUgSwyXmjE2Js0NiIPihok1kFE1shm0wgwwnPUYhpiitVtpr6mNOCBLNkacypLEICQBwjKgx8dZFUH5QUk+CkHHOnONYvRQaxwbMF1Ccmw4lBo3EBEyx8ZOtqmCyUSvx5cEBO6ZEig1dJIE+JmXZByBYyFFKa5FVJMp8mA6V4bE3DyoVp0iDFqTgoGCQCz4lmchl5j8WYLVgZUGozWymRMlMfstbYJqDhtZI+S85QRVzPECDU8zEL+e2szlOitVZZUN/QDL4MZtCWgaK27Kq6yAnqNQMVnXJ9PQNL0OyelL8Wa0YCn5MXv3xPaqnZTcjab2TNNpbAVfaFz3VCBiikAJ0qd61sBRQNv0PR7i76E0ZF+S/9y7kMApIGSAuAY5CiJ8XCmFyf11yAS6krCcubPPeI8saUdBRA7tckmIHHXLzABHTK9bmunnhdU4s5Fk2EAcPHCCyQpy3BTLwfqJIyzTQTqhC4zdTlaxXNmvUOc9qJMjfADgpxx32qoKC9AhHvIzsoxC3fN9Hwa68QHYOuKOBdljDwvSbDQDC1XI+FZ1WsDSXlglcspNlsyUkE2HyPc56/onkPioXhQjajZgE8Axkl+zPx/kJOm6ASYI8KQVHW5jPpDAMOmoVZMDA2PZO9qAiYIwMxc1RFUCeFco9Lmo2OFVsq8ncNwGaClpRTlwjJjPb8DJNhwVhAsekz8M+CV2wzEM7CnBnUDFAsPzNM+pPvq0YhpQlgkBjVDAyT5XOpYbIXskBsxLLDc9chrzEp2CGnxOp5PAJGGIjweXsEJjBQ0J7BQ+hmsBQ6ASwKNrcTOl432/NcJs0ARGWAbiZeR48MBh23F7MwLmCt7OEjzyXZ+ZzpkQEwA0+/nwlutOf67oaQ3Fryfv3iDsUQCTvkfVcpNQTIyvhIzf/dLQOY1ABmyJ8z6HIHyqBfFWCpAyEZFqLLmAW8GJ7LTBwF2J4QnVoQ0OhIiI3Kzz0htgp6IiTLIMyM3GBs8zObQaL2XEf7/J6xCqbn/TvnM53BOykB3AruSPzcqBlMxkbB9oSw4fnUpDsFcDsslEPyu6PDDC6TZQBfH5tTptASPMnPg50Brq5If8R6ye3yOyEZKnWADGh0Xofqd7IGNwWMVha8Mrf8bNUA7VRu1gVIE0WSmgF0sfBlQCnkStIej31WBNTgsiiOqvmfKvOYsgBES6B9x6VXc517rY6Lxpfn1mD0zhhWwJ7vF80N1H2o5eHPRfkeHisRRaVUUkpdfBqD4utaLP+Zezr/mTft8LMsj37kEf0Df/b3AUCOTTMlBkwrwpRj4eoYrRLnkww0cm7EHP8ohD8JqsRjCUX9OuasxGXRnJYAmMl6amKgNSGOxCZpRfASjwOUOL263SLP52vW36XtmDRsjgWSOKopmAooMrOrXCNpDZxJ1dg5d2Ud4yTWWRlXTQgkReJ4xGJZ54yU/2viIKrWa00etE5lUufFDJlsp7FxQRhE1Vjq2J51DFSd0xJAsQhPU46bLBZbVdxpa1dbyTUp85D4JjlWrLakEAJbvNfxRkuX4dW+SjnOqEpBUFP7i6W3HuM6jYHET9XtyLiFUZVJaU6oGOs3+vo8zSkrKJ9nq3VaMMyWfSAuQyf2QPmPO783i77Xayb0/irPqR6rxGqVtQy6uLhKe2LR1mKhVaeJfLhuHoOef8ROEfoIgE/ZwqnFQpnHKGQ98r2OE1tPfJFHM7K1PHkDZdJybOLWCswEO9WeqcdeFD/VL3mxmCPPp465yjkoF8Q9NZGNtFXfK7mRApBFoVALTdK+WLsroHuvK5WMTe6hgHVRIEgcm8xt3Z5Xy9gxqbPuW/oRJY5Yv+v2gaIsEYWAsH3WlogShyZCWLbCrudWLIZipZcl0NV4MSsGFvMC5nyZsraxWtP12kcFWFZMFeWLeCNQFW+WiW2oIriphWWxJhcrmFiNaBaWeQ71euTzme20KI3sDJ6L4JhBcx3rVlhSsRTMtSh+ZK2TWuRk5DHSnNsxybpny9qnLHW+0NrqpmTeVT/lFarma4sSoXIxpGpu9bOwsBytXCJZKYSZKbhqcyGY1y/Zymonfdc5JBeWI5rnIedLrKP8ZldWb66Tj5d6c5+1la00ceK+LkBHHs8CKCrcYTe9A0JWc7hz7J5yCjzV67AGQuufyoW18NT6nyqvEsFl/qfGVTdR76cTv2V33nWnujp1XMa+Pvdp23tVua+vV5Q37gPAz/373xvkPV/6V74LFss/+NlZY5VS/xU4HvONDYqv9Xolop/J1LTvEdEvfdqBftZlZ0b8nRdfR6s9xuTwPOzQaY9We3TK4yN/gU57XIUNtmbCTexwYXp4MngRttjqqeS43JoJx9iUXJcRGje+w8Z4PG5u8MzvMoFMzsuXc2BGUji3QyF06WODS3fEdeAYub0ZcZvNI0ZRyUXZ6oCNmfDReIaQDC6bnvslzv84JYMHTV/IaercmHWRXJfH4PCgYVWwkN18NJxhayfs7ISnwx6Xub0b35Yck2+1RxxCg9YE3PgWZ24sY7A6FsZdAddCDDPlPIuNCTiGBls7YYp2QfzSmYAhWmytxxBtAcOcxsRhaydc+w5bOxV35SE47N2IY3A4hgbnzYCrcYON9bA64ta3GKPFg/aIQKwcEBIZIXPxFTnPzrKFesokOValkkYmkSopZ751cwmtCG9tjkik0AdXlAytCZlshy3SfXCISWNj/R3SEbGSA8Dt1MAoKqlknIkYgy2EKq0NCxKbkDQOU4MQNfYtj1srKilitCK2vrcjYtIlH6QoLxIxK+vW+dLWrsnzjwY3QwtnIs7aCWPO7Sd9CBsxgALiORepLjkiCUzsIrkMRTnROU4rI/HMx7HBtp0QIlt+jaaSc3L0Fl3jMeY0MzFptDaUfiTnpCg0Ghsx5HQ2t0OL1oXCVDwFA5fBlOR5FHd1ACWtTJvTwvioEaIp45R0OXKcgAUBjhC1dC4gEco9JJpJiOS+ORNxe+xABJzthgIOfTTFKwBgRcrk2YW+a/2Mx3KfQhgFAOPosNuMOPQt2tYv0tpI+hmAlSMhGHStL+1ME8cWb7sJY/aeMCYVwpjjbYvNbirXsjt7Ym+EyaDbToUgpmkChsGVWGpr48JDIQRdvBn8ZIuru2s4NlplshrJx+jz2FzDHgoSLwyg5E8sxDJVTLYoeYLnd491nOZG3NmZGGZ20aekOA6wSbCO30vJsyVfXOkBFAVHHGxJk5NGwzGuvYXpYpFg0mQgeRNBgMpxgeW7zjGSCgz0ieMfi3s6kN3bWRHBsakSg5ulR5sWOQ2pjrmTGC6d08SUB5bYBJhj4ErsqoBMiZ28dSz8W5qBaMrzycdJUsSIK7ikENEAtTmGdmD3bBWym30CqCFOO6IENKriag3i80iVm/Ymze7IGWCrBKQmH89uv+SogJPiWeAIGHIcoUG20qviqizWztQRMMyWMHbTVEiblW/fG5Ticow8nsrlMbU5Rk+zx0RRPNQWb5WtYz4D3hzvp0dVwHsB+wIUUSsx8sOnCSZyShMiPi9tLlxaKbvHYrbaiqsxKcykSyYrDmQvpxVY1WDCsgrYSboXFXhs5GSNZgWJpF8hm71IiqcHCsBlaz5bC9nzhBbAUsdqTGaupyi3EecxQmFmBq8VHWm5LkUZJD9uOq+3AO8TwHANLO/gmqqeAOc7rrBS7wSQuqPTFUBbj2GtHMj1qK6vqnOYj9WW7Lq/O3Nbje0kLlbLea4Lred4Cuiu2pN/C0WAfD/h4vumuPLTANH/H5f/Mv+9cXldi+U/DOBPAmiI6LcqpX4cwE8T0e/9NJ1+VuXyh79Af9+f/sdx4zv4aLB1E2IW/Kec13HMDIdH77BvJtyMLZP3OI8h2MJm2HuLzgUM3sJoQmNiAQQvjhtsGg+fYyBFcG1sgAJwyPGXkvx8mBy6hoMvjiO7pdbpQpzhuE4fDS62DAalXxGaWxNxPbTFetnYiBB1YV2U50tcY1sbcDO0RTj20eByM6D3DmMw2LVTSYguLIkAcNu3xdXT6oSpJEanYhmsrZBTMDAmwWTgIf1NwS6siwCDA2sSxsnCZrKXlHSJ5ZRcjl6IdKpcj8YQusajHx3ahkmVYtToWo/GRtwc25I+o7aAsYVwBkLj6Aox0ZoISSmOD01J48EFK2Subtk12bm4iD0FUN52QpjkhTwlWwY5tyWPXynCpmWAJ8RGMepFLsuQiWJKDKsitC27Zx8HJpdggiReLyZKChgHB3EpLulD8tyVQiYLSnBNwDRy3LExCbvNiNFbjCO7cAs75Z0UJDSzrSpNJbekAko8rNICVFS5b1ozoGlbX/oAWGgVQGOd3N9ULKhMSMU3TCyJvJ5ADKbE3gqhEok1tiJkMjneNVUWQSF9ikHABoMwYxOmkfNuikWxXguxVBvLPkUh309taG4ruwpLDG7yGt1uglKE/mYm79FmtmQir6dxEcYQxt7NVv1sCa1je20T4HuHdjdhGlwhaQKAZuMR87OakuJ45cEVS5Ru2NshjGYmUcpABgC63YTh0IAiE+3MKXiApvUYDhxEpizH95ouIk4apuG51ilFtIssFPp8Puf7jLlvuUeUc+dKf3EyZa61FVfmSYHHpgznFFUKTFTUZVKl0UC3TDokltQC5rJVszsbMY2W565QiGb80RWiKMrxvraNCEcLZQmm4c92GxAGW4RQ3fJcxQKcvOZ5CZgNmutQtpgrlDVUOT5X4qMl9lpIouQhS14viJp0M5P3FMtxVNxPfr6knbJOQoAElP2QjhbmzPPzmGPBC/FXTm0jeUvJ69K+PKuUFGg0UE2EcQlhsFA2cfy7opmMTMBwjoNWMs6JY861xL33NsdM83yUJYdSMOIAACAASURBVAZZQjwkwHeq3r8S7x40E/xk8huxNqtm7ks1kQmeushg2WZg20XOA/tpi8R7A3P8OFAAfLEGC4lPVhCAwMA/Yc4bS2q24AuZVHXvF+Q96xQpBI7Fl/WRPjOp2Aw6aFYy1ORYYpmXGPSQXdNluSXWuSLGESKf0r7CXAcV8G/SPG4JN4gc/qCmCkHk974oD0r/eR0K0CoeJnxcS9xvXlqJ11cypwpwAZjjD08R+8TlPMRivwZCc+7M+cQdS3FN3pPfEdI2qksX1kU193GvtbMGoCdAabFoC+hcg71cV0iGTpY1CJT/p6yw0t4aCFdrUn9fXCvX48Tx+8opYLoeUzWuV5X/54/94e8Ji+W7f+Szt1h+/Q99tvGjSqkGwA/lr79ERP51rntdh5B/E8DvBPA/AAAR/TWl1Pe/4Rg/8/KWO+CnvvQ/4VvTWxjI4bG9wZAcnscdPvZneK99hmNqcGF6PPHneMe9xNfHx3Aq4p3mJV6EHa7CBo/cLT6YLvDI3Rar5wN7wGN7g+dhj188voMvty9wG1scU1NSdDxyNzAgfGN4C3szwpPBI3eLbw5v4SvdM3gy+NjvcWH7kppA0mxchw7XYYMf2n0IAPjYn2GrJzgV0WmPC3PE3xi+iDFZGCTs7YghORxCC60SAhlYFXFuBxiVcGF6vD8+REgGbzW3eOG3+Fu238EH/hLPpj2+tv0Q748PcYgtLu0RezNiJIuvH9/CuR3hSePS9XgynkGD0JoAnwwu3bGk/HAq4ul0hp0d0VYpQaS/jfFlvABwHTY4tz0+GC5w5gbszYg+Nbj2HR42Bzyfdni7vcZzv8PGeDyftnjUHPBk3KMzHu9tXuAbx7fwTneFl36LQ2jw7uYltmbC+/1DbIzHbWiwMb5YWMWqLGlkngxnSFDYmQljstAq4WFzxI3v0JqA7xwvMCWD3/34l5BI46++/Aq2dip1tCJcebY+C9j60uYKiRSeTztolTBEh854TMniUXPAdWhhFOHd7iXGZPHBcIGdHXHjOzxsjvh42uHC9bjyGwCzy69VCe9tnqPVAd/o3+L9kgxufYvH3S3GZPBOd41vHh+i0QF7O+HltEECp7SQ9CdiqX7UHvCd4wW0Sti7ET929m18e3yA9w8PcNEM2GSmiz46HHIqEq2ouJU3JmJjPPpstdaKcOGGYuGWlC/Pxi0eND1aE/DxuMOXNlf41eMlztxY2h+Cg9URX+hu8WF/hgdNj5vQwqqE5+MWnQkIpLHNFmaxND8bd3i7u8EH/Tne273Ax+MOU7QYosV5M+AYGiRSuMz9H0KDY2BQ/lt2z/HSb/DxsINWhM54bK3Hpevxq8dLJCiMwWLnRnSG982170r6lMftLRIUPurPYDU/gy+nDbQibO2EY2hYOdT2uJ46/PDFR2h1wM8+/z64bLk/bwY8y/0bldCYiLe7Gzgd8f7hQbEMd3kP98EVS/a725f4lZtH+Or5U7x/eIA+uBJX/tXzp3jpNyWtzJkb8Z3DBVtgk8HbmxsAwAfHczxoj5iSxcE3xfr+Y5ffwS9cvYM+ODxoj7hoBlxNHaxO+L7NC/zi9RcRk8ZF2+PJ8Qxf3F3jab/HW90BVyP3K8/EWTPCqoiraYMH7RFDdDh3A54Oe1w0PaZki6VfK8Jb3QGd8XjS8z6dEivZAmns3MRrYAIOvsFFM+C86fHB8QJOR/TB4e3tDRIpPO33eHt7g2fDrngCbCwrc4bslfDjD34V3x4u8WLYwuiER90tnEr/L3tvGmrbuqYHPV8zmjnnavZe++x7untOXRKryqTKaDS2CHYRAgYUIQopMOIvIRq1QkAJpRDFthQCwQb9I8QEG/JDEFEiQgQRUqVFRau07q2qc2/VPf3Ze6+1ZjOar/HH+77feMdYc6699r7n1j23uB/sveYczdePMb/3e5/3efAbt09KvL3U6/3Nc3zz+iketQe8vbrGr11/Db/n/At8sL0qnuK3NjcAgNoGOJPxRb8p/VozGuRJu0PKBtuxgTUZj+oDPjmcY1MNSNmgjx6HscLVao9DqPD1zQuMidpvkfFiWGE/1gVF8HS1RRcqJBCSQsI2ZIyH5NDFqjwntY24Hlqc1/T87cYaT9odvru9xE9ffYRdaPBiWKG2AUPyqG3A2o+4GVvcDg3eXN/iebfGm2tq64XvcRMaDMnj490Frtod3lrd4ju7x1j7AZdVh8pGfNqdMfrE4Ytug8YH3PQtrlretBtWaFzAG+0WzmR8cHuFTUWooUOocF51qF3EJ/tzPG722I0NGh/woluVsJGzijZvXnQrvLW5xSFU6KPHmCzW1YinLT2zMlc/3F7inbNrPO/XWPkRffB4/+w5fuX5m6+/7ljt8enujOZ+08Mb4kFoXcDHu3OcN/1sfMfoMDKi5M31FkNyuO7bwt3QR48+Ory53iJki91Yl1CZxoWC4tiOdZH6AYAueHzj8hk+2Z8XCaEnqz12Y40hOlQ8f5xN2I9kSF82HW6HBuuK+mJMFhc8T677toTPACib7y0jSvrgcdF26IMvMlyVi9gNNc4ZRbMbaqQMvLGmtqdssKkGbMcah6HCRdvj+kC/p4JIGaPFRUv3H8YJTTQGV9Ab3qYS1tOPHj1zM+hzORv0vAEtm5pie4y8IS7SPsaglCPM8oLGCHytlvxJibkfxmnJnGVj0kybcoLKEMSFIDVkE3qpU110hlXSEkA52cJ0r2V7ZuEhBkjRlk1fyxu+cr9sWudkqVyXZzZaaQ/31zJMRYegzPC4edKI1gSGRxP3lSSRCNLHZyEyOjSD79dhIiehuA8wLH+UHpaMMf8gSPPyA1DPvmeM+RM557/20nsf6LH8P3LOf48x5v/KOf9BPvbLDxHK/H6m93/6Iv+p/+bvRQTp6y01IUXjcR/rmd6fkPwAKLqMkopOXPJwfI9nPUdnSLMvsa6kvFwBzLQUU7ZznT6Til6h5K8/i2HQJ4oRrWwsGo2SYp40BCVpaK0uTz4X3T8FF70vLeum4aVJveBDssWwFe1D0TaU+FYx9LQuYsoCvUzls9YDnPqCFvbH6iXjp+NeZ32p/up2HGunJGtI+9KbVH5sshobqV/xOuO4hqRFnmk4am3F+XwgmKVR36VOArMUyKUu976267HS80DGS+51NpU5m/J8Dh/bUFy+vyWGWMcNa/1CgQXLNc7O45N1jKW0TY4vx0i3Q7zwus8Ffqzv199TRokZ1tfI8aksNYbquOgc6rhi+azbM9Nc5P5Ytld/X87nU0nGRsNu9bl8ZA7IYkD6Rv9Y6yRe5mUbtCSSTsuY4PmiS45Niy0AauGT75zX8dY6LRcfepF2qjwNy13+nBGpVip1z4xacD7enXO8KMuZFpKOIb3WTe9hYbzW/aDnM8DPjFqcZek7Pr6MZxZvbfGgiKeDr9HeTN3WFBfxynHydk+xtTz3k5ngtzp/ebClXgYl9rJInIiXw0wQYwRbPK7g2MjC8gxMUD2JU81miv+U9rIHcVYPHecKTHUqjVZesKL7KOek7pi8dFb9lTELhjxqr5vSYgwlaS8Ke2HveM44nja7KbZW4nFLrO3SW8T3Z5sptleKtsxcreNqBbasF9g6npn7QutGzuIj1YtfyNBmcZsR8/HgcoVwp3gxA2Z5FfiseAwlX5mGug7aeOE+NvIMZMz7SC5TP1Qz55Z+1BbHlhBU/Wguz1Md58Ot753uuTs3jnnw5LI7ZUq5y3KW9TKn/56qJxWOmafxTjpVl2VfzF9hL8/ne0gn++lYesA1v/rvfjViLN/90//Kl57vb/7LX5431hjziwD+uIQ/GmN+AiQ9+Xe87N6Heiz/H2PMHwfgjDE/DuBPAfjfX7fCX1YK2eKT8QIOiWIiQwuLjJWjnegdxzb20WPlRtyEBmd+oB3C5IuHp0+evW2uxDiF5Iphdu577GJdvEI9kwB10SMkh7Oqh4jbk/chYB9oh1A8MceMjNpGbEODkCx5LLKbGXLkReEYsuSLuL0Wqh+SL3GFK08eKFmI3vTklatcxG6sUdtIcX4cHym7iQMv2LUxK0bJIcwhQxTzObXH21S8BdrAkbbGZNF68mzJYre2sRhgh1CVez3H2Mn3/ViVXVOJJewCeTc29VCE35eGlV50106M38mwHvi+DJR8n+3WAIDzlmJMJZZQIMIZKHOjG32BPesxBYDA7MGy42pMLrBjMj5MEXZ3vNjVxmzPsYJalN3ZXPISEfdjZEgaNp0yxUPWHO+ptVIl3jFjMnz0BokBimEovyvSxqjIicourVybScd1GD2qKsxInMr9DAfW+qOVi2VjJpWFO8032WWufMSgdqkFtjrtAKuyOF+BIGtW38S7tkLSJMaJiNfLjrPkL3XQBtfS2JEd8mEg6r+mHUo7tJEmdYg8xp5jP+U6KmsyxkJgUfvBw1eh1BUguLOxtPMspFGiR2sMCkzWV4GMK20UmIzQVfBNKDvZMpYAEAfSTS1kVMx6rHVjl7v5Ev+YIrFNJyYeEkiqkEwBIOgzwzP1eTGyZPdbSINSsIUQyVgUaLFoiWpioyVpUe4ckdZ4ul+0R2Nt58ZLNsgi5RPJcEoN6R/Gyk5xaCLTA9AiRsnbzBb3wGTMJIqpm2Ie8xTDaDNBF/XqU85LF2vtYinLUDkZKMaJCRZJ4LZs5BWCK4Eh9rYYNjP5hTQxLhfyHmmHGFIGlEdgxmRvmQ2V2jWLDRSj0an+EEilxFVK7GSejB3wvaUOScEvDSaj1DGk0mIykITdGZj0CCsmLFKEQCTNc2rl/fJEzNY8Hoq8CJl1EEWmQ2IoZUz53plhqepvZTzVfJqt6Y+Q99gRxBoLFMkV2Ekj0fD1mScwMaOaKc7QasIjM1vAz+QrJH9NGKXmvCZNAsRInlsfwvI8YxIvZYmRreCvZrK+xAiVx6TECmJuoBYDeLlvsDTAjhhKcl8hoTpxzfKYaiLKA6kN3yVhkbr+QYblfcbeAw3LUveHGJYLo/1kHTG/9mhe96Tl3sxLDUd9/r5yT5Tzo/TKqdKcOjnnXzPGPCiG4KGG5b8I4M8C6AH8ZQD/E4B/81Vr+WWnMTt82p+TURg9rkeCcm0cQZueD6sZUcw2NOgiwTP2oUbLUMAheQyeIIetG5EywbZ2I5F/YAVc96uy2BeimduBDFeB1FFeDptqwG4k72njAiIbnGIACXFLZSOu+xYGwMERZCaDjLohOJw3QzE6BNqiSVZSNuWeIXiMNb3VBb7yfL9CUwWqa9dg3QxwJhOUhRevkrcBSjyqwI6kruK5AcCxnq7ET5LsikdThRmDLIBiQI3JEtRNEbIIecuBtUNDtGiqUOJTh+AoJrS1OAxViQvtRl/0PiU/7SErbL288K8cxYiKwQfuK+nXtiKx+t2+KeQvY3QYlXFU+zArQ+AwYrBor5zAaFIyvPhPHB9pCySmYi1QLzqYJpf4z2HwSMGiWY1lse5cQt/7QlxCcZdmFutIfQIgG8SGdEPH0dECGmT8DLua4rCakWJLZUcVKB4cgeYU6A3/qhQDLLrC+Cqsq74iwyMninUMgyPq+jgJrxU5mGgQPMU9WscGIBtEABuW2RTSCvIaWQTvEAaHsaK5aix7k7iuYeTYYDcZPaEnEfhYTX2QI2mUJhYjt1bFqWYUfVOSqGFjsyYvFrG05vJZWF1zNIg+I27JsOwxGYA5WMSatUQzSpwaEpBW03OVGRoVWaIHAHLvkNcGaeeRWjPpo2ZDouii4clGSmpNWRjknpEMDce7AUW8HgDMzmPMoNi6wZLxIgv/waKYvMEi1WSgpTpRORIXB0zxfInkTyDEL9Eg1mmKOWPyF3oALZCAGMyc4VUMB/EycbtMNEjCtKti7nJlgZEMnJnkDibDyW0dUpPpGgBmMDDJIK3iZKRwvezeImXABAvTGzKO9xZpZabFD8fWlYV0lWeEJyS5Yqc6ZDIwUpO5rdQPoseZfYY9KHKeDNL503qmvZlIScQGtZOep5RFxCi0ME8VG1pMHGIHg7hK8LeWpSMmcp3CpmpRdCczS8uQIUhGBwwQGyrHDSRPYRKdN8lwmZyP43p4kqKAQZHRsAO/p1a56FjCGsonksyL5TJNBMlsyKJZ+t0b0rFk6QsYul/qnGppMxHmkNwEGauuMxi/B4elU3JF0naTQXO6RZHYscrwFcPCMUFPqpjcx1J/FfIegNh25RFT8W13CGAsyaskljOicZ76RAwdzYKryXuK55C5qYqOpcQcCuOsMhpFe1VSmV9hMvhKOQz/IBZdo3QsTWmDSGPo+7WHlF4wUx2RMemkKtkQfc+SuEgfKzIp2nA0U75F5ihhZpxmg5m8xywpY+yYoSkambOxWxqEx/KT6xZz9ZieY7ZmpsF51ONpMJ3XdZnlvTAkT9TxlQ3VY8dPpWNlPtCQ/KExIvX8++qmXzDG/BcA/iJ//xkAv/CQGx8EhZ3dQMKZm5zzzSvd+H1Ib/3UVf6Z/+oP4xDr4oGUWJUxuRIbWGIEbWQWVWI3BVBihYbo0LqAgaGlEvMmRugSzgkQpNNbirGzyEgwqG1AFyvUNiBlWyCocl6SMG6u/TC7TqC2wsgqBql45sTrV8hq+J+wnQKTB2nlRwzJUV+oWA1t/PXslQUmKCe1bTLYvHrD6v4BJimXQUF9i6QLG3PiWZR6C9RTDOw+kAc4ZoPKpiLBUrtYYv3EgK5dhOeYkUrBPAEUr6LUHwDGZAtBk7RaPI9ihMZE2qMAsBvqwlwb1UaA9kqKDIyUrT2mIjUjfZSBAhvVEjHeRQzBwZo5NFMIoWSjAiBIpsSQ6Ps0IRS1mf6Kwe1dQhCvm83FQB7YgyXXa/kY7f3U38uct0nNPbo3RAfvIqwhcqfaUx3FkBfPp2MDU4z8kCz9birvq12Mn4aDVi6WPl9CauX6jKktcr0Q8gipk3iwl3BGAIVkSDYZTOlP1nXlzzrmxRjyOAr7rLCw5myKx3WCg+YigSNjI3nomJ3CssobHKJvK+eqKkxe6jRdS30DjhEixlZhg9WwUYkXKpI87J00hjy8Ir9jbS6bIOKZjaresvkhfSCbKiKR41xW8Fd+/lye9R/1u5n1g8QfWSaZEqIr5ElCp8QT8UaTxBJBzd+qDjNyKrlXILL6WsfxVdZkOJ9mMVeymrY2lY0WqcNsrcjzRuYSeE7PdIwXsVJ3YceKHImvK+u8NJdBKnOe8ynkUwkwQsKSaAMhBWHXndAGZU6YPCfFYs+xtDllWrWnQBsc4p0GuJyFt1k80SKZA2AiOZINGSZNokbThoIxuWxYTVBh7juBtAKF/KiQIbH3VSR3Cix4tDBeyeVkIqQqjLqvk1ymjRhgqo98Fi90NtPmgLQPIPhvntorns6yaaK/87iUlX5Sx2Xghd1XvmvvudxnVPmyAaPdb9oa0pNZ8pTPmvhFX6eOF5KapZyP8ooXKRKVCsxXE8UcM/65LdqzODN0pe1LQ+QeY+WOEaWhzuV+M/WdLmvZjhO3HpOSmZV5Xz3vSUv7VP+9W7n7Tp4u815j7aHmw0Pb8+D8zHzevkL65r/+FYDCvvdefvdnvw9Q2J/9UqGwDYA/CeDv50P/G4D/OOfcv+zeB3ksjTF/CcA/DyJ1/usALowxfz7n/B+8XpW/nHQztPirv/WTGKNTMUDkmaAf7AlWJoHTRH+f+IeRFyTMVqqfZ1kcIE+MlnrxQx84pqzA8DD9wDIsKMVJMy8vXnQ5q3OLF4+x9ANbdmplEb3cORKIjUDEDEPeop08FIk07krMjDyQ/MM/W8zpHyTxVqm4B4HSFWgYe7hm90uSH8+l1pyCYM1os8VLsYwTkWvk5S7wMR3To38kzaIOyx9jHcPD+X7e8NYpQ5V0TE75gZN+0TE9Oi0XE061V87rmJ9kcCcJ+53+8dX1P3WfTqcWACXeCbjz4zJbHasy9XdgPl76nO4TfQ3nbfKk7SfaZxNUSK8M+BYxxJKCxC1ijPQDW86pthRPkn62DOU9W9xIW6T+nO/sfqPatew3vv7A7IpmnIyI2aIOoOPieYi4m/TzaQFEg57HTS+ieq2fyM+NCROUbeDnx0RDn7OZ/Wj3DBUEr4VnC1iHSSKCd/EDwxNH5Q2Q8qOdFk+jWuyZpKaxmkNBawDeM79M4rwV1M5koDjCI50vUD2o1wDn0SnPHUDXy72yJyXnRk/tTjYjch+MFXvVOONk87SOMVO9pHxkup8upv5Mi8Wq4bHINsMmkmIoGfC12l7RcWdWTausLpJ8LMfOWbXwNjyOLpJHEpmul9dR5t8ty3M9u+l+asY0fxw/39lSWZNnafpeysRUtoxdlspL36nXkZxjYt/pFaXnhxrfom8p5ckzyuNbtCyVt0rmtD327D0wLSGhSw/ezAMmdS/vJHVMLziyOqffnbOCMXsHGL6nyJ1kzLx15TYzvWOL5uQd1xqK1316B89fC3fapJ7tZVuPtpN/J2bPjJnqfcfzdWTcdT/oPCSdNCzvSfp9NVlmiwGQY3l+3zKdNCyX1z6wbnfWLtB1XORzos3LMXwdw3LZhqNtWuZxagyWdXhoX9ytWanfj9L3JXkAfz7n/B8BEKdi89AbH5J+f875xhjzMwD+RwD/KoBfBPADNSxrF/DeoxfMqGhxzYyNGz+gdgFfdBt4kzCwx+52aHBWDUgw2A51gZYO0eG87rEdiIUuJov9WFFMmk14utnhuieYrbcJfaRYzMNIemyXqw4de5j60eOsGbDtaxiTsaoCBtbDkxQTxcHVLuL5fgVjCLJJun+0gx6CxfrsAMe7uP1IMX+Vm5PLSEzeODpsLnquQ4XaB2x3LXxLOn67Q422HQkKy54KY4B125Nn0UyQVsMeHWdIKzAw5BAgT0eIkxfIOZJuEM+AZioTaY1VQ9BWOS+QUK2PF6NFVQX0fYW2GRGiRd/VaFcD+q6CryJBQrsKKRo05/2sPPkrHgTZ2a8bjjsNtnhWSGuPDMm6ofZun1GMZXvVIUZTYspSNkXqQ8oYe9HRi7w5MEEMw+hohz4bxI4kBiSWTMgzbJWQgoXz5NG0ZvISxoMjOvXNWEg4nEsYO0+wxd7Bno1ABu3sO5LBSBKflAx8E5GiQRpIJgLgTYedR64T7CpMEg0AeQoUrNPYKR5Pdv7LYmlwk1aeiK5X5BlANDAbpvhfR4JIArTYc4nKGyywYop82b2vUll4SwxcqVsdidp/HYHOIVeR6mtz8UYAAAaLnDMZz0J9v/fIPsE07MUIhkhHokFes2wEx/Eh8AqxneqCwDp5AsMMls7LZ8/9MtJns/PkWLgIkwEaLLVBftSjgRmo7/MqqoUlt9dPEE3TW+RNgN16pFUssEUAsHtXYpVynWAGi7SOlK/NBbKZNhFmsMgmlRg4APA3DuGC+3KwHDNH4+F2FuGc+2ckzT9zcPR3MKQNqBdzAj9sJ3inGQ1Sk2AHO9VTpGR6S4Zdm4v+HEEG2ditAEQgNQQrtYNB4n7PDrAdG3lthu1YF48NUiElEc3E6sYiNkCqM+0J9WQghU2ieoMggCYD7mAQNgl2NHB7g7DJ8DuCbAKkNegOhmwXWUB7THDSjAkCaYDkqD42EIS0kLVYkI7hQPBAtzfF2ALovlxNBCuuU5BJtRD3eyFgoX7xO4vYUjuzJ3ihSZSfPwBhBVTXtkBe9SaQjQRxzh7U5praDoBi/9hpG1cZbm9ge4PYkpFgIhgKy5BGi6IbmVQ+qaY22YEfjTXBbcVAMiPXt8EMhplqmrfZMjwXVP9qx5qNDP10I0EtTQZiTZ9jQ1BcgsLydR0wnuG1E8GA6bMdUZ5hk+i4HalObkDRjxTYqevAUOGpr8q5nvpYQ2EL2Q2PKTCVly1Q7Qh+K8+GtHUGB1VQWDcY7psJXm3D9BwkgYHmaQx0Pe2IYkyLEZw9t5nrng3gu6ntNnKdGKrLHIsLHUtMz4xsFDmU3x2aYyjGaaqoflIHgX9ma+aGLKa8ipdTNqnkniWc1NHfpSGlJU7uGHxSTwXJ1f0/u4/bcNIA1nkb3IXCKkjvBI3HbBPl6MaxUecfakSeqGPZ4JB2nzLuThmy9xiDR6G+/Pel6YfIyPwhMIj/FwB/GMCWv68A/M8A/r6X3fhQw7LioM1/AsBfyDmPZrmj8wNIZ77H3/X4A1hk7BPJDoicR4TFj62fzYhkdrHByg7oU4Ux25kYeWUSxkKhbwv1u8Bb05m9w+aoWVyBCbYnhEACzZVEkNZYGGKtSXjnjMh3vEmFHVbIfjSjqyTNlAlgRkqzJM4ZLhnOZhLSo4lRVqC2Q/KwyIXJVb4LZFc+6zKknpq8Z8lUeozEB5igsfpcPJ/YRHW7hH3VmVQ+W2SkS1P6C8AMXiz11fXQbJpSr2WfAcC42Rf20SVrrFwnMGSB9kpawkVlXARKK5qfM/ZXTO9bOZ5xHBZqMLEOCzxZ+mjJujrLL8/ZQEN0R/saQIHwCpxXs77qFJMpMFzNmho5RlTgt84ef2tKbK+um0BqJR1jBi1EMkcYV7OaM3KPjJPh/ijEMQtCIt0PGShjJd91zy6ZajXbrDUZ4THDjhXVfVqMgcAQgQnKuGyPfBa4Y3w0EeZoYqEZI2ieM6cK/HTJzFr66olBZXLp1yXioLLTOUFr6E2jZSpxqUfG9+611DZvT7MDa9huzoBTn4v3zhDxkLeprIaEel9gruGK+s6rccsAvGzmQDnb+f2dQfPU2Yz4xBQkiskGSXs1JKlFYM5AzGpucl5Gw1llDPnvWEiEjnWWWlfqFZ/BLPYdJmOMk07p0iMVuA7dlZ02VFRf6nvGRIvzUWJCBWHBC8kxYw6nXC6WpS16Ubo8r2GtUMcMl6Pzl+ukvlzP4ch7+ujCfbHQLrGlr5tOoTF0u4E5gsKoexfX3UFL6LacSnxdp9hdAd5Y0QiE+ce5V07XQ+qojaVlPZSxpI+TUaPGDpjDSZWLtaBV+PjMgNH1WaZ8t2pGf8mLC0/1nW5DLOzPVAAAIABJREFUmZ+ZP8//3nl9qXYcg18+yFB42TUvOb94rB+eXta/i7LvGJivUMeHpPvrbo7/Pfa8v1b+P0oPTG3OWYxK5Jy3xpj1Q258qGH5nwL4TQC/DOCvGWN+DMD1K1fzy04ZWNsBHw2X6JPHmSN9xRfjGjehwdN6i0OqsbIDng0bPKr2eDZuELPBm80tbkKLIXls3IBP+zM8Zu1CbyMufI8Lf0CfPH5z9wSPa/o8JIeNH1jj8QAA+PBwgbOqR0gOq6rDJ4cLPG23sCZhF5iN1cYiGbJyI25Dgy62eH/9HGO22IWGNBiRceECVnbAR91lMTIv665o9EkcpjUJa2aCfVQd8HF3Xthku+jxjbMv8GxYYzs2eHN1g+fDGkP0OKuonxIMPtxdYlP1GJIvOn2Sx8CMt3UVC0Pui36Fs6rH2rPsSHK4avbYjg3W1TCLedyHGms/4Hm/xqYacNkc0MWqaAfeji0eN3tc9yt4JkM6r3vcDg1qG/G03eKTwzmetDtsxwZ99HjS7rDxA3579wgrPxKrrJ1YZWvW1xRD93m/RsoGjQuQJaRopFUu4qZvMSaLn776GCkbfPP6KRofcF51RQ9xP9aAsM8CeGO1gzUJt6xvKaRHIVmc133RtXvS7tBFj9uxLdpzm2rATd9iXQ1Fq64P1LfOJjxu9qhtxBfdBgBr1AVPmmfJ4bzq8KzbwNmExgXScGMmXTG2r/sWrQ84q3u86FbIIE2y9zfP8Vl/hmeHNRofuE9IK1NiOrWsh3j0x+jKponE7dY2FgN0O9Z43BLR1HXf4p2zG3x+2ExEUNEVL/8ZIwNErxAgsqnaJWYQpjqJluNuqHHZdLjuW1yuSaMtZoMQHVY1MRqnbLCuxtKXQTTjzq6xH2vshrqgAmrWOnzerZjJluJWG0csqKKjFpPFpibXyk3XwlnSoDyMFRFQcfxvTAariuKE33v0At4kfOf6UTGsGx+wY/QC1SHhvOnhTMKzw7oYqrJBQMgEGsfH7QGfbs/w7uU1vthvSuysMRlPL3foo6eYWWZJFvRDzgZnDdX9+tDict2X2FqRS3n34gbfvblAiA7rdYfGxTJGj9oDPro9R84UN7rtGlydddj1NdbNgMNQlY2HDKDxEd5F7Psa522Pw+ixqkK5XgjAAmNY182AxkXcdE2JHQ7RFkZjIQbrg8NGXWtMRogO522PDOC2a3De9tj3ddksEiZnmcPvXl7jebdCN9C4nTEh2he7NRpmGO4DbUBcbfb47PYMTTXiou3x+XaDJ5s9nu9XZaPmcn0oBqi3CbuhRh+mGPIxUp1jshhZM29VBdx0zUT+Fokhe8UkZZerrhi8AHAYKgzBl02UTTMwmgUFXRKSxcWqA4AythdtX/ppYKZuXafr3QpvXt5iiA6HoSpzQRiu+9FjCB5nbY/9UOG8JQRM6wO6QBugN/sW62bEo9UBn283hRzOcV/UHNdM+Sf0o8eaUSNybN2QduWL3arEJY/Roa0CnE3Ydg2aaixtOPDzk5JBXXMcc19hs+rpNyhQKExVRazqqay2CtgeGqzbHv1YlZjry1WHz282960s7k2rZsS+q5ETIV5knJzJ2Hd1IWcTpE7OpoTLSJ2HwaOpCR2VEiGUNqthxiYOEMu2RjHpTZ0YDc43XemfcXRYtSPpP5Z3BYX1UIw20DQBfe9RVYQSStGi4j4dR4ekZLCIlI2QNSlRG2oVs2xsLuFFVR0KcgqZmLEDY94pztwiBgdfh4L4KbG5mRiyCXHkyoZMjqboGQqKBnw8ja7E09I5lNjemTYkG1KZN11KrC3fh2wIyWJBqBWJWZWNFEkJFKsb1EFt6Ij3X0I89MaJxOQW4z1PpGV600GSbIZIGXpjBbgbRqSv07G7uo5iKeowmWXSG0H672IjRferbJ5ko0JRdJb6uN4EMHi5kXtsA+93k8H41W/Lzhjzt+ec/08AMMb8IQCHh9z4UB3Lf0N9lf1Al3P+udeo7JeW3v6px/mP/cU/gsd+jz55fDacAwAeVXucuR7fOVyhcQHbUONRdcDn/Rmu6j0SDD7vN6htLEbe15pbfNqf47I64BArbMcGtyPJdby/eY5PuzO0LqCxAYdIC+IbNiyetlvs2AghI+4WnxxItPiq2eFmIEFxIfQZksPaD1j7Ab+1JZH086pHFz3GRAvlw1jhjfWuGEq3Y4vKRib7meRGbse2SHM8XZMQtRg2H9+e46wZcFb3+Hy/wWVLQtbboSEmWJPxZLUn+RSQSPVZ3RdjQBteQoqzqYYi6Gx5gb0bahJcZuZa8a7JguSy6bAf63K+8QHbocZF3eO6b7GpBzY2B9wMDR63B2yHBrddg0frA266BrWPaD0t0PqxwtVmzwZJLB5TkglxSGnyLl/y4kva60zGrq9RMQvqRdvBm4Tf/OwKAPDWY1p47foabRXIcKjHmcfxlgWe6TjQVgHd6OFsxmEgGHLOBrtDA+cSmioQMZGLhfVW/qZkefFAC85DVyFFh9WaFnXWEIvu9tDA+4juUGO9JnkbIhdJZcFEbLEW67ZHiA5dX2HdkoExBIf9TQvfRJxtOvSjRwiErXM+FYZbghenQjpT5EjYABh6D88LJ1kENO2IofdIyaJpB3T7Gu16KIsM51NZXITRo25GDIMvZdZ1KJ6wkdldY6SY57oZ0Xc1/yVItMCph97D+QRrE/q+Kv3lPC3yu20DW0fUvOiJgSDcabSo1yNEmiSMrnjtfBUnSY7eAwao25EWVqODY5kSgUobvt/5iPG2ARLQPO4Ko24MFlUjRDsguZO9B5KBOxvLD39hwfWR2HRNRtxVqM57jDcN3CbAulh0FMNtRYsgA4qfHhzcZiyLqnjgjYL1yO3IsFUqmon5RQ3zaCDW3N4xnJd36vcOuBwpzrt3cKuAuKsIQn3wME3kRRnVOQ0OyICtI9LBE3RYpDsGVxZpRkhcOoJ7m1UkCLWGYgdTyFaMT8RuGwxDlHlx1zEKpCF4NOo0BQuKFqAnuLZ74ZFWmXQLE2B6S7DN88DBpSikKXbrkC4DMFjYg0U6j3A3DnGTpsXowZVYJYJt5iKPQXBFZnkFChzXDgZxPUFv4UDxuz31ud1LMCTlm+pMUFjxbHcK8iqyJS7D7W3xVmVPMN24ygU+KuVln+E6i3AWUT93yA6FNVbiN20guGKqM/yBoLCuYxbXkRh/swXimo4LVNgGEEwxEPOtCZRnqrh/OB9khrgmlO9hk5lVFcTyORIsM6zyjL00NdQvAsU0maCufk+eR4HC2oFZV0HQY9crOHOTma0V8HtgePT6qzrPbQeoTIlNNJHgvW6geFfXmwKBTPyseobvppqhr1z37DLcgeou0GzJs0Ck2Q1QvFYOqG6B0LJj2U9QWG10SP9KfVPF0FWGtzI5PmKNGQusDRNkV2Cqus42UhmpIthvNvQZWEBhA8NsuX6FUTdNHlQ7cBl+arPArw33g7DAZoc7rLCaVXYWZ6r6SkNIj8FWC1su94H2ptLcU+yuwFHPrzCuFvbVPEGBJS/D+QEgiKfAdYw6L8+7MbBxPleXUNhSPx1PrJ19Ks/CunvMIyv9pY3JYwYe1Bw8Fhur85rdND93xKF9N64X0zXmJXVa1k/nq9Mv/JdfHsHN66bmvffy1/+lL5+85zf+zJdK3vOHAPzXAD7kQ28D+Kdzzr/40nsfaFj+afW1BfBHAfxqzvmfe/XqfnnpnZ96lP/Zv/wPo0+kS5myRYIphg1AsE8N+Tt2nv6ach4gWKX+rvPQkMbZvdnMIKEAGPY6QVCtSTNmWSljyRor3wUKuyxTl60ZWpf1W0Iw9fkllPBY+5fHdbnH4K4aZqr7RkMI9WfRrlzC+vR1p8o8dk6XeSzJOykeyX/5rtLlnSq35JuP989D67eEQd5tHwqLqz72KkmgpEuoqS5zCWEUOOR9Sc+hY7DcY8cl6Q3b+5pz6nfkGGxWf15CLeWe5Xw7du+pdOqVeaoux44dg4qeOqZhofflr+u1JNJafj/27J9q9xKWukzC4Pog/NE97Z+XeXosXmWeFO+FXqksVzKlzEUhi4XQsToeG6+7F6qKLfM0mMMGjzVoSf50ZNxlDE4SqZWLT6zilnWT+p1aHGoCsmMP8X0LwMz1WEJh9fFln5VF/pFxXOaxLF+8NMpQOAo7fmh6wNwAcNSDcy8k8WWPz7F7lnPn2GpaP+NHFu0n++MBxsJJI2CZv66/nisvq5vO49i7Z9mGO/MFx+f1qTKPzdk8v1Y+H033/G4cLe+h6SHXP8Dg0vV4pXJeYsS9NL1qex+YXrkfAfzqv/PVYIX9ITAs/xhIWvJ9AP8kgL8bwM+JB/O+9CAobM75P1wU+PNc4A803Ywt/tePf7xIVHRMplN7lqRg+JPIIQi0BkCBnBVdyWpEzzC4DNIjFOjJuh1I4kHFOQEolPxNMxaoSwhESiPnBHKif+RJHoCYafuOJUJ8LCy1OZOOn69jWbhozUJNFR+DK7ARX7M3hb1OoatgxFvUezjOT/T8jM3wNZVrTC6wF7AxIYy3WcVoifZginRM2GiJkEYWNupcMHAV1bkQw2gSm8HRX6all+MCd7F1RBqIBMfYTN6RaGDbMC2kGC6DZIoeYfkxqFnmJNqykBEvCQBYn2AsEG9pHMw6FIF0eCJyMULeAgCZdQEzyMMDTHUAyGMi8TsDxTMVchqb6XyViX1WC3+D68y6fbmW7WZM2n2GRNBzzfWRRYWQuhTCm0TlRENlA0CwsJ0lLcIqT+ywGSiMvdw+6pjFopF/EU0U7TswuyBm37Mn4XLx1pjMXhH5QWaSmCKULeWXh4OvExZDJoLRQud3GGiByRtkUWJ4bGeLzmDJM4G9K6lcb6IpDK3ZT9AdMzIRTJXoWFTno/Qb6LMD7MEA2SCtVSBSMNP93N92oM+pPrL4U6zCtrdI60Raim2azRPb0RzOhtsQyHsm42UHNvTrSeh+Rt6zJ89Qtix4r+BOpP/HfcZMoranvpQdfR32IsQa2YMJaTJrTwphDY1/YQcNpE8YmcwFJk/n9G48C6pbYTNNSh8QKFqL4g2SZ8IAxRNX7cmTJqQgDACZyHQwzSHXsw5hJA9KbAHbsxfGSL9OYyDajYV9VerMHqC88NgUTwzPG9ESFG1DmQLZkQeyzINxWokWJlQ1xhJTZ0fDrK/8jEUaoOzoXGyYSMfO8xHvjZAKuYF1H7mt4gnJBkyoxIRENfcn3588JuIVrn9W+YgXU+6JDYpnSMhHTEYhZpF5IB68bKbxS37ykmk9RjtOZdmRPIN2xJy8pycio9dNNgAMWiKvXUYhkUk1ComKHYG7OpYohENFE9JO9RKvkvzeFO3EPM2n8ltkH6BjCRQCJwBzHUt+jkVLNC9Jf+I0LjJvS531vPEqD87TDup5j5y3kPeIxDrfP6vDHR1LdV1G0YSckxPlad5ZzIle5I8jz6D2EOqfPD0Hj3n15D13FEaqf8MX3kfpf82MLPnJdaXu8pjn6fpyjypj9o5c5HNq36XsH/F99xqWuu6nDGG+Ttf5VdKDiHhO1On+fNV4vo4B/zuUTP7q1k2ln8s5/7fGmEcA/iEAPw/gPwEZmPemh8ZYLtMawNdf894vLRkzPc8AOK5pIuqQv84mOJtLHAxAuP9C4CI6jhxTFlnMfkYwcoSMRJN0yI6+GJ9yv+SrPRWi42ZMLrpqxoA02ZJhMgBTYiQAFNF6qpO0jaRSDIAEq8hQ6D7DxquxBIMjYy/D5DwRUphMRBcAjJviGCzPfGOnOug+NRalHsQammEc1RMJJX/rUYxMaWcpC4BxqZw36rhokpEhmkqMhXGJ+oZjKmTBZ3hxWjxwbHyXWAs7zQu4XHbFJc4DzORqDBkumQ3Zknd5q+dJSF7nzedyJqbWLIanyVO8hskkNSF/RQZCG8fFWJiMsVKmych5qruUXWgq9ctXjFszfU9NKmXMdoCNui6rui5f5oYJSCx1fFbtL98tL4rlmPw6c16Z251V+2ceCq5IIcNQ+dE9qm5QC+4K8x94YDIqZcGuCEj0AkFfAwvqY/1i4WMGZvZZ2i+fU8UMdkrDzXjwDzDPmTwt/ovsiOr3bDKEGC3VGdkQLFJYU2kYyNAu/W9oMaUJSwr0yqKwvdJ5uidVKEa6PEeyGE2St8q39CUbKrN+ln5hCKQ8h5kCJkpfa3mMYtzIZo9aIImhIPcno6413B7QsZTzjD1S9wlyRmpoUS1tTSwZkC3KxpC0JVXUNtpP4c+VKeVRv5oy7TLyZDRwntkq55jky/XPeo6ZaQrHRvWLLKituh9Tf8t9GUBu8gI2x89KlnchjQ61m/opNXmCxOlnmzdpsgUiVJ8CFLfGz13yXI5jeKwzxaiaGQVWzxWez07IW6S/M6yl2NJs53Bi48wEUXR5cm4xbCPbjAhTnuds6F1eIIYCMa0wQSTddG0xbl4jZYsCLU3KE1qMYKmHmeojfRkxHS/XqDboa5EX9VTHpR7Ur9P5rPqg3JanvIvRWd5L9NlklY/cJ0ZfUnVU80Lqki1g5F5lSM+c46o/7jCkguvDbdKbXNpwMTIJjLpOLsqYPQt3PIdmuhd5Lr00a4eCW965Zun5Nkc+HzlnEjHOUl/I++4etlP1O1bOL+uC+bgeMyyla+Ra+X7SI3wk3WtYSjvvuX++ftDfzd1r7ynzwUbiQ675UXpoEmGgfwzAf55z/h+MMf/WQ258qI7l38A0ZA7AUwB/7lVr+WWnykZ8/fwFulAhMORVi59vKtoq1XBWLVJ/F8I3qs84CYO0hhn9gBmsdnYdxxHcB6lLmeL3jjGiArgD35vfO8/rqNj9Ot+5dwktW0LO7oPOHkt6La+rdKwN5d2b78LwcOR4geC1qt6tOq6ueRk88RjkUV9TPwpH6zC/jtuxKFufO3X/MdZLyeulm3fLLbh75tTJLB5wz/I3UY+rWfx9eWYnfuFO1m/6/KA+OVFhEYeHPqU2iPTxqew5DPkORPTEfbJuL583wMwm5T5Yfof+XjKjcV32kgFIGmVZ51n9cScd7UM1f+KCuyQv/i5PZu7jl60fTv3VN+q1xbE1FfLEsinfT6ZTLyBO6b5rl5P51OR+xeftXonEUw/RQx6wBz6AM5ZS/i4pnB8n2bg3b31crlsSepycnNoywXz1m5cF6jrnE4vJrP6ceukfP/xlpZcu0l9WjwfOp4cspMf7+n5Zlwe+xJfv/6N5vcLx1+qjxbm7ho2ZnZuNxTHDb5nvkXfGSePpnnot0/G2HvkFyfr4y+bDq71/Xslb99J3yevd99Bn8LW8dr9bjMfXWMf9DqfvGmP+MwD/KIB/zxjT4LjP/k56qMfyj6rPAcAnOefwanX88lNIFjdDi5u+RUgWq4q0//ZjhTE4tPWImCyRpowebRWwF33JmljnQrSofCykKyJRIGx3MRs8Z/Y6MVgte24qF2ENsO+r4r30zIQnbHea5RGgZ8IZgt8SE1yPkG1hMRQpCe8SDkNVpAkIAmsL25skz8yGjY/YdTVyNqiqgBAczlY9Mf2NHuu2RzdUSMmirqahO3QVPLO+CWELAAgLn2corSZXcW46Jkxx4+jhXFJsdBmBCU6EqEXOp2jhq4hxIP3LMDoiHIkW3keEkRgRm3ZEdyDilnH0pSzvIw77psCH9ZvUMlOdpGEgYS0hPslgeHKg+2JwyNHg/PKADGC3bUmeYHGNGCzGAr4KMAalr3Qcl/MRkY/XDZHzjCOxQyb2hAfuQ9ECFeIWY4BK2ndgsa9skIKBb4glta4i+q5iRr6EFF2pFwxJiYTBwThqgzDwWZ+wWhGhztBVsEx6A95MyCJubkkTUzQ0xZsqMhLWp0k/0ybkZBFHC1clGJsQBo+qIeY/K54lxdTnfCpanykQvDuNtpRjfSLjjL1jabRwdUToHaqW5goyiOXPT2Q01ieQ1IQhyGQGqjYgBoscWGKEvdACDddjly21HULfn00hm0kDuXdsRVBtgOqXoynX5WBRbwYYk9HfNBNE12dkgUQDBF9rIgyA0Pnyy1o2KISRMBu4lkhz3GZE7PzEVgjArwITBAGIFraORArEiynDZaTOk85oBhsDVFB9NmDY1gUubX0iuLghePy4rygfrr9pI3LvYGom3CkuEJCWqWVd0Sayvihpm5qK8wUKE6KpYyEGgsBzE/U5XJ60LYMB6gTrI11rKA/TkAZtHixMzRqqYuiIt5jLqs4HhN5PJEFVIij+zk9efb7WrgLStgJ8gm0j0raCPRuR9h7iMjOtMJuwHAtD8wvCIBoYhrHnYSozd27ykPIcRUWQdcmzzMXREhRf3vN1mmDuwiaZMOmzJlPCA1LnkW0iYiJBOUTqR3QO9nyk53Fk16q8e1wuOq9oSGfWNIREsT4jBQ4z6B3Nl4aJmhwjShyNp/Gs6Ttw/jyGAKhONk/907lpDBIKGRVE+5S9lRJSoGVCTDDIbSx9Wc5JWYOl/u0t6e5Kf0QDsw7A7eu7LFOdiHgpM0Rbfn8sacISwRK3R+D3Au1vEsPxLTKjZEoYgQ5xAM9ntZFohHjL8OZA4k2nnvsnEuwe0UxhCozuKHB4CSlg8iaCK/M1A/ejlOtQYP7yTOUqlZACQSmYYArZVNGGbdJUX8dw+0AhEqaf2ld0GIU4TN6/wIxARzyeMldIWzNP59iTSNqYyqqS96Ho+0bpl6lvZ57ZJcRU8hCPfJwfBneNYWNV9kqKTWumvHHk+qNeUKjvxyx8fZ+uu5u+z/LQ/XAKzqvLWv49lqfkpzZZgLvf9bHjBxc3nzC2lqf099fybP4oPST9UwD+CICfzzm/MMa8DeDPPOTGh8ZYfvt7qNz3La3ciJ+4+BS3Y4s+eazciJAtDrHCEEkqQ7QZhYl1O5IrUSQ5RNOxixVqGxAysbLWNqB1ASFbXNcrrPx4R9NRGFt3Y1MMwtpG7EKNlR9hkbELNZxJM1IfiesM2WJTEcur1oW0JqO2AbdDWzQsK0sMmgPjVcSL2LjA10fctg3XPZa8+0ASKSs/FnmCliVKYrbYtxUqoUtnuQYxfkXXUeqesikajiKPIIa76Ctqr+uYLCqbChus1FmOj8kWmQPpk9pF9MGj9gGVTdjXI1ofMCaLmGyRlbhlwz+kuZ6fsNfKGHWB4m491xHA7L6e43LfONuV9jqbS5sAYIzzN3HLhvkQPMWmsrZjymC5BCIjknoH1u8co0Xtida/9hFDmGOPjMlYcd5tFYr3OSZLzLKJ4oe7KlBb7aQfWaDVhuQTnMmofETf0CNe+4hVNaILHn0dCjxcPN8iBSFQcPlN8Y7as/wu98dkCoOwMRlj69D4iL6hOhhGB4ieY6VinWXOi4ENYEbdT31PeY8txUGPcaLv9z6W2GbnUtmwkSTXa9p72bzpa1/mqcDXJf5YvH3OEdZhVPfr8uSzEBytmqHMRcskKt4TG64ka/O06VRPr9+CGBAIt8nwPqJ3CW0zYqjiTI+yqWmjIfH4O5cwMKycNpdoBTRUEZ4NZF3fdTvMNo+snbQxmyrgwFB+2QjxVUSo7dQe9SvvJP9AG0Yx2sICLJtWFDduyvXWJozew3I5oqloXSrx5LIBJdfCkG6l85E2dmpXNnJkflpHhk1i72/TjrAu8ebQxBg88MaMbKwY0KbOYGgO+ipiMLQ5NAisM6OUXWLffSpanzIPnI/IGUg1MRsbm5D8BMWXDQHruP+rabWaM5AqWzZ6ZK6J5qZA/GV+ygorJQtfBbJHTUaqzSTnwBqkkTfMsqcyDM9/2ZBKlUWKieQlfILlkA0KmeBn1ZKhaV0EVrQZU8ImuF8yGPZqKLbdcpx38gTFt7JhA3AYhdqcAxsrPI7GZiRhDE682cMbYRL7npnDwLCRCxD01zCE1tYRSW2SGZuR2nv9yvcm4xND200x3gHqiyybG4k3ZXisZe6bitqVXZyg6XJe4uHV2PMgUfsVI2lm+IBxDJU3zFjq81E4v0CT4dMEb5c4eunfRoVkAGxcmmkVz6EdM6itfLcEn8/W8O55VjDNTKEKljcKGlUvznsKq4AKg5gkeJZe2WRVm8zU1pwEYroYs5TZkM13+ragh5RhOes76QK7OJ71eKg+42dVG7d5yb6mDbTjttRpY9Ms/nEdi8EohurSwFrcc7S8Y4alvmdhWBYAgfTRPc24A08p1ne+e7Wug/xZfl/mf+L7rMivktH5VarLkZRz3gP4K+r7RwA+esi9D2KF/aqmd37qUf5n/tI/gjG7wgzrTC46j2NhfKWFrWZftciz88LWSkylEQMHKQk7qhh43qQ70FptNIr0hTZAJ4ZWMmKFKZZgu9NCWNcvZTMrS/JZsqtq9ldgDt/VLLHa8DvGCgrMX5Q6SX2sybP6LZlglwywSwitGGrLcqVsbSBGVfdTjKrHmFdnefJft6iH3gQUI3o8Ut5J+O/i+BJSLXUao4XjhZc2uMV40+2l/iEDNTD5kmaBfQgD7DFGVB3fK3NA1zeqeXqKOXWqw93+0JsQ+tix3yf9m5RU/oIAOFauvuY+Vl59r+6Lu9dwHZa/8+r4Etas89d10p+1UXqK7VSu0+Rby/jlOUx9Xh99rTYyj8HOBemwbGfJmxfYUp/ZVu+xbd+ycuAM9flsTvaVbtvy3H3su8s5c6cuUocjn2cQ9cUicZb58rDu0yUx2KmKLc9J/Zb1scfrKueB02NdGHfzkb+SH4A5e+yinfJ52R/luCne8Dvi9noQNKmXXsAemzOljEU9T/TDg9OpyZFxB+abTS7eu5LEE/qa6Y52n85K93s6cvNyYa7vS3f7ZdllUx1QUMZHx/NYecA0/qrsWRlH+nU2rMdYaGVOqItNujuuUl9NLCRlnTJKSh2OtUXl8SCDYTlvjtwzy+fE3LxT1vI5O1XuqfNH8l4+6kfzOzbvTqVT8+5I2SfvfcX00jF5xXy/J6NQ3fsr//4PnhW2/fp7+b1/4We/9Hy/9a/94NsGvD5+ETrYAAAgAElEQVR5z1ci3Ywt/uqHP1k8Q91A8JamCmh9wPP9qhhYbRWw62o0FQka7w5N0QDshgpnq76cDwxfHAcPazMuzvdFk1B29q3N6JjRdbPu0fO14+CxXvfY72lbrmlHjKOb0fHnRDvx3kfsbluGCEbS0mPYYI4Wvg2w7IUQeKhjqCBAC7QYHEEXg0W1Yk9ksLAuI2wrmCbCVQlh72HbWGCAArmr2kByEoZgXcIcK7vwcbTzXfKaGFxzpGOweYLIRasWYxNs0jcEK5V7jKPjtkpIPTO/BgvXRMTeTWUcHOyatfPqRPcdCBJoNoGgdgJJlIWbsJ3KwnoVaMdQMcFisAWWZlmTL31G2pR4NCAHy7p+BEEzTZxYXwHSzgNoh5l3gQt0TSBXAMyB4G9ZWGEdQ6XqRKywFf+ayg9zMjC9JdZBYRY1AHyC6RyxO3YWacVkS8KSyqLOoqdW4Fa9RW7lWgt3a5HajLSKMAIfBKadZGBifeWFUfkulwrUK5oCq0lNghksMYi2CW5vWbfP0o+jI+IXkw1sZ5BaZo6tMi3yqjxBlRhKJZClVCdqc5vgDpaYVAWCNU7EKnawBa4k/e92dH0W9tVAbJZmJF1BDeXSUDFZPNmenwtmW7WjofLlM5MKCbSsuiHPyfgolb61A7VX5qTW8YuraTUlC0TNrOkOBuEsobq1xODqaY6bTHp4UchImPUzSH4GsB154cYV6+kZECkK511dW4yXiZgaezMxQAJwe4PxgjxJZqT6uwO13Q5MPiSGm6E2GjAZC2v3FdZQzYzpcukTG4h11USU3fZsUFgwbQKSZwZSZjQ1oHOuo2tTQ59TTccJUsh9wo9jdW0QWxA7buK2ZmDckFYi9R8A7tPxnI77A32ubkmzUBbd7jCR1ZhMZQspDZG3sB6hwaQd2NNYG9bYzC4XNtjkAX+YL+pTJWNF4+Y6TOQnosfnKF9J2U0agaQfiRk7rRtIY7G+Zh1FZmiVtbPoWGZP5UXWWQRoDIX0JbZ03PVAWNM50RiMDYrmYaxRmGIlH2FMtQO/KjcoupTZ8VxJzMbLZUq+ssjWrK/+MNVLWFjdQH0YG27ziq4TBttsAX/IGC5ew6Dl5Dogrqg+rkcxbEyi8uww9aOQaAlhjetoriePaf4xoY3riMxFrjUZMGEifpH5VLw2Fqi2GbE1ag5kJG8m4y0DJtExAHADEVLZMSM5mo820Hsj1YZ0K9mZawJ5QW3IXEcD11N9CrtoAmJl4QZ6J8SKN+C7PLWDdRyTp/tjMxHSyPtI+mLGLCwewowJFptR5q9mJC73KO1LbUyU58ZM1850LDlfzQpr1G5u5n6a6ViWk9P7puhYmnkb7zD6lvfnxFKr4aVLncvZPtIRz6p+d2qyJV3H8l5M877R6c6GxTEjVl23hMRKXR5m6OvdDTP/fl/dThncs7zxYGP+R+nLTz/UhuU7zQv8uZ/879HlCjFbdLnCmB0sJjhdl/iY8nhFTJ5KALAmoU8VKhMx8hsgwqA1AWN2iDBwPDsjz9YxeVQMhRWPpxyTvACCmx5L4omM2cIpAL6+/pi+pZzXXrWKfwnG5O714EXYO55Gan8uf5fHlmXpvJbJIc2OHyMAEi+tVW2eeYy5rUsd0ZhNgUfGRbucyeUYeR/n2qFU/lw/VLcpwcD+nvnbR/oeAMZsUUl+qn7Hx8fM2nQs3dExVe0Rj7buM12Xpdbp8tix9um8ZIyPeYIfqrt5n+d82U5vI3v2784XPSYPaZfu62W7Tn3W9TuFJDiVTmmw6r8vJf454ZV72TxatvWYpuvUj6e9ucf6RqdTWp73pYeO/33335f0mmB5/CFl6rakTAiBpef9vvekzkNQBNO1KLB3YP75WB46r+Xn5XXHPNDSBp3uey4rQ95/j/l6KmeDWm0YOhlzPid9bvm4xdSuqOoj7Y3cjpDnWrGjgnIXFAcw8yKLN93ajIX2O1ISGPnxeak9uuOsgVNfl0PcnoOgQzBfK79uWuZzat1a4K9GH+MP+sYTC+As3lAxKI49n8c8iMsVt1qNa83TYx7k2fp+WZbJc5iulK9ZynWZs++42/na+MtH6rNMxzpa5sPL7tH9faeu99Qby+7Msz/l850xnC6YGYV32rAcq5edf/nMfbBn757+vJPnqevufQBOF011XOZ6zxjeV84Dyyzpv3vANb8T6XexwftDbVjuc4Nv9m/h17unSNnga/UtYrb4sL/EF/0Gv/fsc9yGFue+w+f9Gd5ur/Gdw2M4k/Fu+wLPxg22ocZVvcd3do/x1uoWn/cb1DbizeYGT6odruMKf+PFO3hv8xy3Y4shObSO4pvebq8RYfEb2zdwUXUAgKt6hw92T/D++jkSDD4+nOOy7gjWykaCNwnXY4ubocVPXX6EMTs8GzZYuRGNDfA24rHf49d3T9FFGqLLqsMhVtiGBha5LMqfNDtYk3FV7/Dr2zcQksOTZofnwwp/6+V38WF/ic+6M/z4+Wf4rf1jbEODN9tbrNyAPnl8e3uFtR8wJI+rZofPuzOkbEoM6hvtDis3ok8UM/fJ4RwXdYeVGxGzwXZs8LTd4ot+g/OqxyFWxTC4GVtcVB0+2l/gsu6w9gO66LEbG1w2B3zRbfD2+gafdxus/YBn3QZX7Q6fH86w8iPeP3uOD7ZXeHt9jRfDGruxxrubF7jwPb558xTndYft2JSYydpG1C7Am4TGBYzJ4aP9BVImhuAxOiQYPG23uBlb1Dbg0/05hujwD7z9LaRs8Nc//zGsqwFXzR43YwtvEp5160mGxia8u7kGAHzeEbVmFyq0fkTMFk/aHV70K3ib8P7mObahxqeHc6z9gN3Y4HG7x2eHMzxu9vii28DbhJFjFisb8e76Go+aAz7YPSkxrbuxxlubG+xDjXfX1/hgewVnEs6qHtuxQR89GkcxpxYZn+zPsK5GPF1t8fHuAtZknNU9ft/Fx/iou8SH+0tcNB1aNyJlgyF5HAJ53ysb0UdP2q4+oHGhfHc24XGzx+3YYuOHMp6f7s/xxmqL2kV8sj/He2fP8Vvbx9hUA0K06KPHYazQ+IAn7Q6f7s/xqDngeljRs9C3qF3EmCzO6gEWmWKas8GLboWvrW/x0e4C752/wBfdBn3wCMliUw/ogkfKBo/bA6zJ6KPHfqxgALx//hzP+jWeHdYl5nVTDbioOvz29hG1PTqsqxGtJ3bmm76lmM7ocLXaI2WDLw5rOO7D5x2hIM6qAbuxRkgWl02H677F77v6BN4k/NJn78KzXu5ZPeDZfgVrKH61dhFvbW7gTcJ3bh9PsdI+ICaL/Vih5nu/fv4C33z2Bn7y6jN8+/Zxiem1JuMbl8+wD1T+IVR40u7wnZvHpe5vrOm98NHtOR6tOsRksRtq1J7eXX/gyYf45S/eQT96XK46XDQddmMNbyPeP3uOX3n+JiL38bPdGm+e3+KL/QZXqz2u+7ZA1WMyOGsGVC7ipmvxZL3Ddmhw0XT4fL/B4/aAPtJ49YHeZVerPVZ+xGeHDaFNosMQHSITsA0ca70bKjxadTiveny8O4e3CYfR4+lmBwD4bLfB080OL7oVhuDgbMaqovfSYajgXcIffPrb+Pb2Ci86eibfWO1Qu4Bff/4E5w2xhu+GGs4mvH/xHN969gbOmgHvnF3jm8/ewO99/AW+c/MYMVnEZPDW+W15P3ob8UW3oX7lWPQu+DJvtkND7+Z2j49359jUA2Ky6KNDN1R4tD7gMFZ45+waKVuETJseL7oVdkOFiuMF31jvSh8OTC4XksXXNlsAwBAd+ujx5voWH+8uULmI667Fph6Qs0EfHZ6s9vitF4/wt731XexDhef9ujzbtY1Y+RG3Y4PbvsHXNls871Z4utrBmoTH9QHPhxVCdvjo9gJXqz3e2Vzjg9srnNc91n7Ayo34hN9zITk869ZofMCLwwpPuZ7PuxUaF/HGagtrMj64vsJ505PxN1a4aDrUNuLj3TkueT6uqhEvDqsy19bMon59aPH2xQ32Y40ueIzBYdMM+Nr6FilbfH6gufrdmwu8fX6LF90KZ3WP/VjjGxdf4P/+7O3XXnc83ezw8e05MoDzti8cBY0L+HR7hk0z4DB6vLHeYzfWiNmUWP43z28xJoebrsWj1QF98BiTRT96fO1si5gttkMNx8/5yo+FV2HbNxxbTxslQ3D4xqNn+GR/DgOUMrdjjSH4EvZQ2YRtT2Rwj9cHvDi0OG/o3TlGi3OODb8+tOU+azLaekQ/eqxqilWXd8UQHcZoUblU9MLPmoHWA12DDODJZl/4DVbViN1QY9/XeLQ+4MV+VWKEPf+unrc9vcuGCt4xn0TwZROi8rG0Zwgefe/hOV7aOUKepUQkiKLjDaBsUgyDK/HhThAtioBQyAa9j4V0cBlaUNeR0GdLw9tMut8SM56iLWgz5xLGkVypEkcs2uF6k2vS/6b4cilXYqkzv3MNEwEKeZ4gzCz3geHjkmeJoc5EhmfcXEJO0rTpgCLnJoR4RVpNDHlL10mowEOY8MsmiGwizDYYTmyQ8F9NkKjr+qP01Uw/1DGWZz/xVv4Df+FPYD9UiImIUYRMJDLbqxgDIVp4lwoRh5yTHdJxnF4qlpkjJSax76pCSpHz9LISRtZx8OXBcy5hHHwhZAgjEUwA853oFC0xtDYjk5FMO73GgNlUXXlBaFIKnawlNkxpgxxLyaJpRoTAfVFFhNGVuDuprzCICsFDYiY3eXFYl2cvqhTNpDWJ6cUncFr9QkiRWD7T4FiLcnoZCdOgrZgd1GSCxyq2UFclxGGCyiLR9dYmqreOgeJdLcMvLHnpxEFextNLqbCJGjCjpEF1TurU476i9jHTJ2ymv5jKsDy2qRyf2ix5i44oMkp7CpNpsEROERh7KLATztu4jNi7KW8mqsjJUF8wQ2Zpv+zoyYuZ4bjCzEmTAnBtQAoWmdk4hSCDcIUo1xUosRAdpKmNxjN7pOXyMwgGzKysebQEix4WjI+Sn8t0vZPd7zxnwBTHprB7BkOQYYEOM5Nhie2RHyUmBhEWRmRD7JbRUP4AXS91GBQBjcko+phRPV9e9afUSc7ruCL53BCxSz646UfTZmqDfDcgCLUB1UGStF/Hgy1ZLXU8VZPmsG+fCnsmuaz4ORjm7JPF+7GKyAc3sWlK22yme5n1Ei7DjJbYIIXJMprJQ5BR4MgmGjrPY22CnWDUCRNTpejI8jwiuBgvGKyCRUeGOluug+FzUl6gz8JuSVCviTETBsirCIx2gqHyPDH9VLfCFFknmI6h3j7T53ZiAAUwwaplYRQM3S9DydBugu9N7TXj/BokZtiMDAlXyUQzMeNmlZ8ew6TqklH6StqJYJhYBkCkPGxnkdaEPTbBzPoalvoTkdhJzWim/AtUn6HwFcH7Sx/ys1PGO3FeFrN8zEhlSXttr+cH1TfbPIPbg6HqAAq0FmDobp0LvFzghpJ3YT7tmYlUtTe1CW53HEn0kJQqgmgDmOt9WjouUMoC68wo8EuCZJsCDzUZFFKQGZ6cMXtOdTyiCdNx6bPUpln4ALG9AjpmNhtMDK3CCusy9xvpkVKfqvll5s8iMvVzZqbb4oUz6jnNuBtSANAYRoaKe4LtU4U5j4yiq1pgnBlzOKv+CU6YsZtmg1m871EdzMTXaI+xma7PBtN7Z+kF5oykz7TXUC95oE7p/skGsOp3hcqayp8ZWPqzPmbUMX2fvk7at8xD3XOKmGje1hNlHEuvYD482JOq63CsTt9j+n//7R98HGL77nv5/T/55cdYfvPP/uDbBvyQeyxrF/HO2TW6WBXY21ILcgmd0/C1Y8QkiWFBArtM2SCvupNzOmUDrKfvxzQyl9e/DIon9VvV8/NLGBaVN53Lzd12NVWYDFreoZ+V1U7tPgYvexnMLav6HmsHAIA2nO8n61BG9wzO1IwTEYcqoqrDjADl2P5IzmbGQHeqXNksAAB3oeCrRYv07n3HylxC3oQZNC/G8VS+Ok+7kqCRu/3l1unOsVk91Dww9Zz90FYR2aejY7H83Vp+LqlefG9UGTUHzfmA5UbDdM2y/vFOuAXAfSHjtyxzWWH9XSdP9btDLrMg7zgGZy19VB3p71M/cJnlDHSqj/16A2iVkXLqGWMNS7gjLJZi2IPnzpFrsmKtlPoBoA2FJs2bofukmdqcfWSjjP7C5/l9xQCSG/J0PTAZZYvrUavx0HXmembV71kkRrAYw6zGkhcfs83SQAvsXOs+ICNylo8cl3YnNojSXcMPXD9ZzBVGS4CkGZb5AsUYBsAL4jwdXy722NBbdkw2ecpfL5L5HhPNZFj7eZ1MEgOLMzaToV/kIwDaSFBGYblYtymB4seV0SfXGJbgkU2abEFjADEYDGyvvisjxQQDUXIt+SropRhs1F6+RsbcUH/YzkwOEdkkFXkLLstt7XzR+orJjlOddLxaqbso0gzKyuAGu25qu8SeyqMv8Zp36nbPe87t5m0xnfoi7dd1j7S+sWqzyw1mXq4YaHK/MopKX5bL6X+rxxg0DlP9VVl6ky2ruo2qDfJ39lIw5Vh5VSZ1zcuMnyN9d9TQKZnLpNMnVdtPvv+XZX0PE22RXskw0/X5XvJ+1eMPzfdUesXrX6tPvirph7nuL0k/1Ibluevwjz/9JXyrexN98vhG+zm2scUn4wU+7c/xN28+xrOwwZXf4bv9I7zXPsO3D28AAP6m9Sf4aHiE29DizfoGv75/A2+3N/i8P8PKjXhSb/G16gbXYY1fuvk6fmz9DLvY4BArnPsOffJ4r32OmC3+v+2buKr3GLPFk2qHD/ZP8I31FwCA7xyucFXvVMyXxcoNeDZscD22+FsuPkSCwYfdI1z4A1ZuRGUiLv0e39q/iV0kKM3TeoubsMLzYYXWTQvXq3qHxga8UW3xazvqhzeaLZ4Na/ydF9/Gd/orfD6c4feffYhf272FXajx7uoFzlyPbWzwzduv4UmzQ588HlUHfNydI2WDtR+xDxXeWt1iZQccUg2LjE/7M2z8gHPfIWSHQ6z+f/bepNe2JEsT+qzbzenuva/1PprKJCsbSlklVEUNGDCA+gdMYFSiKSZMGDCiExIjQOI/IITgBxTTYlAiEVKBsiozoyLD8YjwiHD319zmNLuxjsGyZdv2vue+99wjMiM9FSZd3XN2Y/3ex5atb30fntV7fDVssdU99q7JMizX4wpX1Qk/PV7hsuoSpFZn+OyX/RYfrW7wVb9Boxxe9ms8aY54kaCwf2PzAj88PMMnq2u8HNc4uQrfXb/CY3PEP7v5GLuqw8lVOXaukp7gxMpBCw8XFT4/XcIFiV3Vo09wz+ftHV4lyPOX3RbWK/zb7/8pJCL+yYvfxtoMeNoccGsJqvmyX6NSHmOSRfnu5jUA4ItuCykiTq5CJT0CBJ43e7waVtAy4OP2Gl2oMrya2/2Lbpdhx5X06L0mKJ3w+GhFY/Pnx6eQImL0Cnvb4JP1NfauxsftNX54eIZKOlyYHre2yVI5lEfAL0471Mrh4/U1fnx4hBgFLuoOf2v3M3wxXOCHd09xUXfY6gE2SrigMsS6Ug69NxicRqtt/s6xiY/qI+7GFhszoFUWnTd40W3wfHWHVln89HiF729e4dPDY1xWBE892BqdIyjs05ra/6Q54PWwRiUdrocVKukxBoWLiiDlGzMgRIEX/QYfrW/wk8MVPtlc49VAUNjB6wzfDFHgcXNEJT3ubJNhvb9z8RW+6jd42W0gRMTajNiYARemw2f7xwggdMPKjKikh5Ye+7HJsOer5gSJiF+cdtAyYGt6XA8rSBGxNQOOCYp6UfW4HRv8q1c/hxQR//eLT2CSkXdR9XjRrckekwTR/mh9g1o5/OD2WWZ+brWFCxKHsabPUeL721f4k+vn+L2rL/Hp/jF6pzPs7ncuv8TekhzRyVW4rDr8ZD9BYT/YEFz7p/tLXDUdQhS4GxrUmp7Nv/f4M/zRq+/iZA0etyfsTI+Dq6GFx/fWr/D/XH8EHyR2dY+vjht8tL3BF8cdnq32uB5WWdbFR4IhaxnwulvhvfUdbscWj5sjvjju8Kg5ovcGNih0lsblSXvEruoyXNomKKdL5Z1shUZb3A4Nnq6O2JkePzteQIqI3mm8v75DiAJfnrZ4f32Hl90Gg1cZruwjQYqViPh7Tz/Dj0+P8KLbQMuA91e3qKXHn1w/x0XdZ8iqUR6/tXuJP371Pi6bDh+vb3Lf//D2KVyQ8FHg4+1Nej+OOTTgZCvUysEoj8NY4731XX5ulQh41u7xk/0jbCqa0wzXftwSVPK729cY/PRTfDO2uB2aPNbPVnuMXpOUljPQImDwGh8kSP4YFE6uys97oxxe9ytsKoKZHm2F56s9Pr15jH/t2U9xcBVeD2s0yuLkKjTKYmMG3I0tXvcrfLC5TWEKlP+l6XB09Nv3k/0Vnq32+N76FX6wf46NGbDVA1o14ot+h7UeYYPCi26DWrs8J6SI+b3+vN0DAH50+wS7msJEjq7CRdWhkh6/OO1wVZ9wtHWGTKv0Lryo6f3wulvh4901Tq7CyVb53NOWYLcvug0eN0f8eH+F72yv8aLfYGt6nFyF729f4Z+9/PAbrzveX9/h8/0lYhTYNT2M9AQdVRaf7y9x0fTorMGT9oijq9L8puflw7QRfjc0uGy6DGPmee0ihT4wA/sMCjvSLhtDYQev8NuXL/Cz4yW9Z8cKz1cH3I4NxiTxpWSAFgEHfk+2J1z3LbbVgN4ZDKnfpIi47tusuy0Fwco7a7Cu6BntrMGj9kShEUFCiYhaOxzGCruK9Ljv+gYhElx48ASFXZkRh7HGYajweH3CywOFkEgZEspMYlsPGa5fayJQHJ3KkPvauCwV1VuNbqhg0sZVpX0Bn1VZE1yKmDcHxwRvLWGuzGbuEhnjOOqkya0yUSOnEARq4zKkmeGvAGZM31qTLBRDVYUgvXO+TwjS2XaOGMQZMVcmKScpK0KEsWxXMuJlzPdxud6TbBRLPTGEeLlh7x1pamf23nKDPLUrJjgtinaWcN0yv3vx4UU7lrZ8SYAoBGYbLkto6z2HQUSG5+ZMf3U2+2/Srzh9q6GwH/3BRfxH/8u/kQlzTp7cGrV0MMLj2q1ghMcQNGrpcONW2GpaTNy5BkqQXmTnDXa6R+erTJ7SeYMhaEgRslEnRYARIR8/OnrRP6qO+fMQNHamx51tIEXIi29gInRxQVFMnHR4Nazzj9IYdPa6uqDQaAstAqQI6D0tKIgMZYLx9F7TgssbrDTFp/Ve0+JiWKFRDpVyuBsbrPRIcUDJwwvQAp4Je8agUUmXCV6W1wKk3RmixBiml/fgdP4xKAmAGuWyfujJVVnzkg2mRrms+cnyKlz3AIF9WmQPXkMLiqM4Wvqh3tU9bFBQIkxEG1HCBZkJL6SIM81OCXpB985QTEacdEC/Om4Qo6D4KAgMKdYkRpGNBCZU4RgYbgtrcIrULv7B4jwq5TP5EGt4jl6hSfFunPge5yWaiuotBcXInKyhH9XRYFWT9inDvFXqc24zxyuOTqExjlCXXuE0VDDKo6lsjhkj+ZOYdVg5D5Z84R8ONrYYUu4Daa8qkXQPR4MI0t/sRoPGOLj048jSKSEixW56DI70UAHk/FhqRRRziK/lfHWKs1EyYnQqxzI6r3LdORanGyooFVBp8tr7pIXKiwQAuZ2MZOB5QXlSHSrt8wJEK/Ly5YUDJhmXrqsAEdE2Nv+Y+nQPgHwfx+lUhTeZ5UMYZg8A46jQNBZ9V6Gq3czLPA5z+L2zClXtZtB+LoMXMQyRFyJi6AyqxuX4H44JihHwTsFULi+AtJ7g/QztLxcBPnmpsl5kKkcnjUnWQuQFlHPEkq20zzFCTBzC9eD/3hObNLFhp+c8ed2UDpkBm+H63D+SdXaPBrJxEIpcHcFNjNsz2H8EsWIzXNxKqMbD9wTF50VMGBNmL0HQhV5AymUk+LnADCrOrNnczgyxF5FgzuUiScXpXuA+VDzS/bAye01zPsxUvYRtW0nIgk7R9QxvZTj5EqqeoMoiCoLlMjI/MVoLKxHrkGG7gj277FFkVluGARfHKF8QjJM9XZIhzRNEGBIZxstJJPg3wVxTvzB7qEeGWQZNnsOYYKv8HZI8ib59M+rjTWkG72WvKZBZgUXy1EqLSfOR0fhjggOrdK+Imf2U65494FHMYZ0cHpBdsoAcRIbQRhkhHZXNl1BnILOSSocZQyrE5GElht2YYekzFlWe3g4z6ClDkBmmm5lgE8sr5x9Vus4is9tmb6+Y98WM1VRM5WTWc4kZLDVDoRf3UKOK/l/AYQu7ZmpHway69Cjdk3bh9IBHtLyv5K5bAlTued2K/PI4LjytJRBIRMz67bwnlvLMbXugrkvIaVnGvevwlnYvjt3L5x3yeLBu5Ri/JS3r8cf/468fLtp8+HH85D/+C4DC/ue//rYB33KP5d41+Kevv4+jrWaLQiaDKBf0/N2mxSVLlLCx01sNo0jEXgoSgleCgFd/PHyQF7/AtFtTpR2zbnw/L8yXC14WeAeQd3ikDHkh3BiHEJFF53nnx6iAweoZ26kvdog48UJbJOMmFHqVlXa5HBak5/MAGS2jU3mRyDtvJQxQqfkPMEutTDtWmO2clTtNvPjmuFXWVOS4TA6WZ/0/3nXjhXBVOYyjTruAEt6T8LtSAV/dbKBUzAvyHPgupt0zIeIsaJ4XaryzB9BCNgJYrQiX9OmXTyBkgFIxx71yIH3uc5ME0P0UIJ/L5LjHdF0IFMjPO4G8WFZqqkOOXwQJsEsZcTzVma2RFu0+y9Tsj00ev7xrKIq41xQHK2XArScDQ8iIurY4dhXu9m0eQyBBsnlepV8S1v9bQn7LsebF+50XWUz9eGigVMDpUNNiHrRTycH3UkYcU/1ynCvD3SKSAUCLfQA4pDjcg20hTchyPIhitqAXSXQ9x5xGAVV5DEHg6BIWW9KCXciI/lhNO4V6HqUAACAASURBVKUpllTIiBMvqsOU58kmfUrF8cBFP6X7o5dQjYOIAnev19OOcDqXk4iQhnayj7cmzdOy36cVg6w89q8qyNrjeNPOfohV7REdtXcMFMt8PLVTP6ZYQnuoUryqmBZWEVCtQ7+vyfjQFHPtBnoXSBMw7GmjTKgIm+Jm3UlD6AjX6TkRA8NtnaRYYK8hVMRw0nNIJ+9Yp/JsX81io2YGkUz/FQnd215PBl2CeYZOAzoi9NPinuPKvNe08F45MgaTBEhu695M0N80/0Tt4e+ov4QJ8HsD0TqEk56eD5MeDI5fsxJxkNOC1otk3GE6riNip/M4xLKtQUyyQ5ycyDHt3F+5/LFYSeoCLu9FisVN7RxlNj6ydFKngIbqlmMwebHMkkhWZvkiVAkqzfUMgvLXEbFxwEixt6iTHEsRMws2KlPMJvdzVDHnKziWMs2PaCIgA7WfjdQKU9xowBQXO4pJVimIbPz6irwxwkmEmoxavyYDluMb3cpD9L9EjGVL8koAGct500FwPDLV3a9iNoZ47ruNz8Z6rNiopzH0a+6nNCaIU3+m/qPG03wQEbBXfoqxDAKumfokO4jEVA/XxCwhlY30ZjKSRUSOuWRDi59h4QHbzA3CLNHRYh4v2k4GDF8jvECsS/g08nsytjHFQk7WR+47sGHGx1HE28a5MTkNB/gOUX4ojcPintytNWaGdFnNswbn0sgRi+N8rFxGsSFbvEKLrpgbYA9aimwQLy3MRaZlsdzW+6fut6X8fy5uk39nztX5obQ8/zWMw69rTP4m/XrTt9qwrKXDZdXhDy8/x8HX+KLfAQCe1Xs8Nkf8i/37aJTNEMQfHx7h4zVBmX5yvMKzqssQzL/9+Gf4yekKl9UJvTd41a9xfWqxqiz+/gef4dP9Y2zMQCxoroIWxIAJAH/nvc/xZYJFXvctfufRV/js7hGkiHhv/Qq3Qzvz8HXW4HK7x870+LNXz6BkxJPNEYPTGL2C8xK3xxbPL/YwykOJgJu+xboaM2SOYzmZofHYV3j/8g4AcNc32DU9fvriCuvVgKtVhy9vt7jcnNBoh9fHFWwy9j6+usF+rGFkwG3X4NH2lOtYp2u5vAjgyfaI42iyh64xDnfHBut2wGBN1gEFgN2qx2mo8N7FHnd9k5gbAzb1iNuuwePNCa8OKzzeHTNj3OvjCu9f3mE/1LjZt3h6ecCruzVWzYi2snhxs0HfVXj2+A53pwarxmJ0GlVil7RWw3tJBrCIuNh25L0ayUspRMT+2KCuyYv16JL6+NNPnwMAnn90jdNo0J1q1I2F9xK79Qk+kGfPeYm7fQshgKYdESMyREapgNOxganIG9ZdtxCVR72ycJa8QENn0KxGDH2Fph0TsZLLdR7uasBK6IsREQStqSqHw10LpQP61w2qywHBS7hRQVceKnmGQjLgNrsOw2AwHiu0O4KODb1B/5Mtwtqjueox9hrB0uMvVIBK8WwhGYmqIu9TsDITJoUosh6qHxS8pcWyXjkyNpyA3lrY6xrqwsL3mn58DOmvBi/g7iqorYU/GMjWIViJamUzk58bqE4hxXDplYPbG+ithburIFbkfVLawfUGsiIBIJf0TWFCMtwi/MsaceWhV47Wb6NC6BR5Oi7ttIEwKsQh6bWuHJEvyYiwN2RDrC0RZx0NxU9GJO3WQGRTnYZsHfCzluK8Puwno/mkobY2k1ZFJ4EXNS0er1JeAOBSzFrts8cLX9WQTweIL2rgykGkxX+MAH7e0MJURjJMrg1wZZNRBuDOkHF8OQIHQ16QOuR4N/WjFv6Zg6gDcNSkL5piCvWtgH/uKJ+jgtg5iNcV4sZDXGvElZ+MVRkhToqMhtZDvjIITYTsBPwmQJ7SQluCjJAIyGsDOQq4C08ELkzoIgBxUok8hjxi8lZDjQJuG/JiXL8go9FtPfS1hl+H5MEQ5E0SoDycQPNZC7uLcCvygumThnAC42MPuae+YIOj+txgeO4h9wpmLzA89ah/3mC8DDmW0rwwOX5PBMCtI3mpXCInqSLMXiPKSFqOEdAngXEXoQZkzcJQRegjeZvMnZgW6RHwTbo3GRjmoGkRLWLWnwwKMHtmsiFPmdmT9qbwAr6NUyyjjtBHjeFRwOpHlJdvAFF4r6Ql7cdQJ+3OFjAH0CbEANIKVcC4izAHAXMAxh0gR7pXuqRrOdJ1rFHqG8AcyI3lWjpmjpTvcAXonj6z3qV0gN2kMg3l7VZ0DWk9pj2MFVDd0H3BTOf0ibrErUi/ctwB1R2VzXnWNxKn5w+trt+eqj3lGwXVn40paYHxgo4FA+gj/QfSf0FjHRVpq+oT6SKSxiNQ7clADxUZVDQukx6kr9iAnPJsXgnYDV0fDGCOpBOZ41EjIB0dA6hM3wjIMWlbStK+RARcK2b6kFnzcoxJO1KkOk9GlvA0Nzhe1DUizdmYiZaUJR1RXwuYI2DXVF/pJ++u7ijPUGwkBD2VI10yTgO1kzVy2ZiVLqZ7xMwrx/9ZxzRozPQvgekZYG3RoAHpMelLRiBKAWWnNi29lFGS3iRrSbIXVHD/l2OX5jJ7X1k3tPROZh1LSXmW5QlP80Z40hQVEQgqUv2UgPSF9mnei4iAmDz39z2QdJ7/ixAnT27p5UyJbddJv/O+Ib7sp6Xtew83+8B3EWPu31xd1gldpncwPH/w9kv+UtJbDfFvcfpWQ2Hf+/1H8d/5n/4BAMAFBbvQyhvTW8AGBSM9bJiYFVyCRvJnjvHiWEiCFiYonJpgnmWa9AYZRihTXg5j0DlOotSnK3XlJCLGoLLXlGGcpAemMkyzJCXSaYHPyQfSfmRYZ4gia2MOCSbLMTnsOXXFbnglPVyhjakXkEiXKLy5XPYKc+yDFBO8cwnr5NhHo3y+nu/JxnHyKHN55XeG43qGZ6a6szYd57XU6luWVXo0uc/4WqZW70ZaATDssfQMq3t9PkFImVCJYyDKckovNB9nKCJ7rkvvcIwie6V5EwJAhoYy5JXHgt/ZD2oUYr7RuKRR57pwGeWxsk4z0pvcjukcezGZsIg9sucIeeaxIfHe+Rgx6/tl3zGNfFkX/sx553iSBKtlCCZ72LmeUz44G+9S6u2V97G3WjLENTJEU+XNgDKPUpePjP8UmyMXv9YLz3oIk2dbijj7JQppY6fsi7Jvls+EKPoSALyTUOzlBWZ07jEge5tR1Ju98bP4mHTN5LkV0262RPZ8z8Y4pD5jGCama6Z6FNlz2fysLD3WomjbYkc+w1JVQPYIRxBjMreFr3UT+zK8mBiQVaHvV3jEqYMXv58CE9tx9oiICXLKn4EJfloSmnCe5UKr1A4sr8serMJtwOUw5I+PJdbVe2XlFWLKm73CyVMh+BwwkQoFTF4vPh9AcFke71T/DHEFCm9mKltx/2DyjJTXIf1XZ65Z9nPqz3LhLjwyU242tAQyI+s3TQzt5O7LnrLCYMgQ0MW4ZdipRGINpvpHgamfyvEsUzmH+L2d2sb3ZSbi6ZL5M7GAg4IhlFzHct5xO2LxtXxey8/l2GFq+8xQKgyVyWgo6iWKvBZNn+CbyWCSycOZPLcPeuKW9c3P5CL/wuA5a/jgzPcz977L9b9sOlfeWz2G58btTL5n7zt3zzfN76G6vSGfc/m+k4f0gfTP/4dfP1y0+fDj+J1/9KuHwv7L/+LX3zbgW+6x9JFiEV+PKwSITBpzsDV6b7Cr+gyBvenbrPsXosDGDDh5It9olMWrfp3j+ZSguLiNHrJO36YaYL2CixJGevgosdbEssq6iwECRnq87DbYVLSFdzc22evokwHHRh9r5QEgIxBx0pBK8YcuwXU5iP9kJ6MpRNKIkuAg+jobf52tM3lA50zW8LIJBqzTm/p2aLIxSeQTVTKaQtaVMykwXnGsn4j5Hs5vcDoTh7BR1Dsipbnra1R6ghbz8eNo0BqHPsUinkaT4/WUjFhXI/ZDhXVl0afYw1Izr9Iu624xE69RHlL5/J5ig1EX0NPGTPcdhwohSLx/Qd7er/YbaOVRaQ+XCBeoPiEbpBz/OFjSFeS4wBgpdm9McWXbZsgaZkqS4cntq1LsIBuLNC8i1vUIIwP2fV0QD5CWmA8Cm2bAaSByB61IRoeNcTYIB2sgZchxiTy2j3YdTtbkWMW6ssQmnIx4vs7HiXyADXs2SGpDmma18blNo9Oojctlb1d98hCHbBQzhLqt7cyzTXBlnY0kgl7HbDxbp7JHuK1HjE5nmDXDqGMUMCmWlGMoAWCz6jE6DWsJ4kmEDBSr2yVdNzb8pIwwhuDZeSxrep+Mo87EDAzTNpVDCCQ/ZAwd321PkAK4PTTZQK0qj3GkeUR1iKiageZ7X2XDhjcZyCgn47JtBnRdhfVqwDBOmm5CANtNl6DtNFbGOPS9yQZQw3UfiJCCiBsmY/hyd8LdsUFIUkRswIo0v49dDdKaIzh5044UZ9k4OCdnUE1liKHZWYWqJe+z1h521FDVRCTB0PGqpfjNcdBZ9y3yxoTxs/hKralu42AgpEfwClVDz5+1ClXjsoySECFruzE8fHtxQj8aOEvjqg2hFoa+gkwkaMFT3GSzs+hOFXTlYSqHvqvQbkcMg8kGt0lIB97AcFbNNmNCkNCJidt7meHtzuo8xqRzJxJUXsJULm8mcD+SdhyNpTY+9w+3KwaR7hP5eeDQASlijj3lOa60hxs06kuLGGmTiTcdpCB4eI5nNYSA4L7i8IQQBNyooXSAqRzGwWTpKpbZ4s0SirWNCFZmNIRnGakUo2t7DanJIosM3xcRblQkR5XQE8FyyAGSBl9M8bCe4mSDoPsNIQgAwFuCZYdeQzIKIG0m6NrBH8/RTL9bEpUnyaaISToIAEREGBRtTjgJmeJqY0TeBJCJoTo6kp5CQpkgACJBhmPqJ7phMiZjNjxTeQFQrZ+kqVIe0ckJTs55pLhkqpuYIOdBTKzXSXorG+t8TYZCg2DSvMEiMG2M8HFmHWZoNZfPZekwyTeVhiDHj5abKLyxgbSpUR5n2PXiXGY4XhqZfKxsHy8SyphSOf2fjXnEBB/mVBo2/LmE9qcyopg2FKZ6zg3ZXMZib4HzKQ2pmQHM7SqMsyxRU9YvnSs3HpbpnHGdyyjymH1+BwOzrEKZHtoLmJ089/836a98+lYblo/1Af/e43+Km7DCGBUq4TFGhQCJY6ixlR36aLLn0QiPY6hgo0YjSUibP9/4FdZywDHUMMKjEg4ybcPd+jVqafOPsI0KCiF7lG59i63s0UeDlRxx61tcKGJi7KOBQoSHyP8B8m7aqHCljwhR4BTqXEcpAhph8doTe5oNVEcbVTZOOTWSFlkrOeC12wAgw5XzslHBRoVaWgzBwEeJRlpIEWCDxilUWMmR2iQC+kBkPezhXakx5yMRcfA1jPQwgoxrGxUaadEHk68ryy3Jk6jd6Qc29WMjLbFRSiJFWskx18lIj1vX5vrZqLBRAxpp8dJuUMvJk8xjY4SHxzTeB5+M7eJ4LR2GtGU9Bg0bFJ5We0gRcXfREAEMAmzaCh6ChmGvNATWCffDZE9j0NkzTeRGybBRA06hyudtlKilQ+crtGrEEPSMiMlIj0o6KAQc/KST4oJCq+zsfr6eN1fImCciny4RPTFRFABo6bFRA7pQofMGEjHfk8XZ01s7QGRjlevNMb5GBNgoYRKRlAuK+kcSI23nTSas4mMuStigMvlV5w1q5TKCwBV9wORQZVtaRRs+zCpM46bQKIs+EWNVCU/EqAMAuR48R6hPIoz0OLoqe9UzGiDVtZxPjCrgMsbcn2FGmMRMygBwt22gBZFsVcphLBg/Zdq0AohQidOUn8wIiEY5HFyNlR7RO4MAkedZo2xGMnB7uS+kiHkeEmPw1Dfc3o0ZcNjUaWPN5XnAc7jfTXnx5hx7y7ndecyK9jBhl2aCKuXgosxIApE2pTjfpfQSQ/zzM1HEqjNBl0ntOYdE4f7h/Dh0wKZ5YaTPzKzM5MzzQ4oIuyGUgZEe/ZbmKTO28qbdcp5wfZkIionMeCNKFG0q0Rr8uS5IvHiTp1x0lX1Urq9YEovP8dgA8/UeP8suyDxWHLtfrtUYqVFu1DFShK/hDTktA9xq2lATIsK3E6qHCLGQkR0lq6VK3mff0jkqG5nga4lYYPbNcq771F4mantoHRracfY8c79V1UIS6GskISLCatK0LlNYTVwDjFQoURgl+qFEW5QIFj7GZS3l0UqEhVIBwUxt4eNn5aTSffk/G348j5oFQqW0dFL/87dyfs7W/A9YLBkpIEHSQWeMhHtSZMV5UZzL/bmoH587d/90rLie708GUlzeVpbJ/5fSQ+9o6JyVLEvz9lxW8Uze+Zg4V1fM+vRstc5lCtzrw6VH8KHbzlZ8kWZe1a9RpbfV8W3pm3oz/1LTt6GO3zB9qw3LW7/CPzn+TfzZ8T3YoPBhe4POG3w1bHHdr/Dd7SscXY1H1RGfny7x0eoGPzk+ghQBn6yv8XLY4GBrPK6P+Px4ieeruywB8bQ54Hl9hxu7wj+/fh/vre9wclWWYQgQeFofIEXEp/vH2Bqi237aHPDZ/hG+u30NGxS+7La4qLrZgqxRDjdji7uhwe8/+gVClHjRb7DSY2aLvTQdfnD3PLO+XlYdDq7G3UAeUF5AXdUnaBHwpD7gz/dPs0zCdb/CHz76HD/rLvGi2+B3L7/AZ4fH2Nsaz9s9tqbH0dX47I5o8AevcVWf8LpfkydUW3TO4Nlqj0Y59Glx9bLbYFf3WOmRmEZdhWftHl91W+yqPklvkHGwtzW2ZsAXxy229UBl2hpHW+FRe8KrboXnq332+F73LR0/rVFrh+9fvMSPbp/gw0R/f7IGH29vcGF6/ODmGVZmJKr/tJCrpEetSWqkSpDdnx0u4IPEuhoxOGrDs9U+SwF8ddjAeoV/8+MfIkSJP/ryO1hXIx41R9yOJDdy3bcz6OyHScqBZSyOY4WVoQXsk/aIm6GFkgHf377CrW0yzf5hrPGoOeFFt8ZV0+FVt4KRgWQklIeRAR9tbrAzPT7dkyyO9Qr7ocKHuzscbYUP1zf49PYJjPLYVgP2Y52p5SkPjy/2W7SVxfPVHp/vLwEA23rAH159jtfjCp/dPsK2HtBq8nZ3zuBoE6Ny8j6zMdEai8ERvbwUEVdNh8NYo9EkUdB7g5enNZ6sjmiUxS+OO3y8vcGP765wUfeIcZJXqJTHk/aIL08bXDUd7pK3/K6vMznWOnmDV2ZEjAKvuxWeb/b4xX6Lj3e3eNmtMXoF6xTW9YhT8sherTqSLbAVuhQ7+jeuXuVYaQBoK4uNGXFRd/js9hGYhn5Vj1gZCykibvtJbuTJ6ggfJF4c19AqYFsPuD612Zt+HCs4L3HR9rjra/zeky9RS4fPrq+yQbStR7w6rjJbbaVJe1fLgM/3l3mhzERjp4JG/5PdNf6/14/wu0+/xM/2F9nDDQC//fgFDraGjxKD07hsOvzs9iJ7sZ9tDhAi4me3F7hadfBR4JCQAwDw/tM7/Oj6CXqrsWt7XDUdbvqWJGE2B/z49hF5yOuR4p4v7vDVfoMnmyOuT202lEIkLzrHaD/ZHHEcK1zUPV4c17hoCTVivcKQxuXJ5oi1GfHiuEZrJmmBGAVW9YguIReOQ4XLtseu7vHytIJRAd1o8GxLkhJf7jd4f7vHqxQHzgzFIQr0VkPLgN967wU+3T/BXRrXJ6sjNmbAD14+w6ahDaLTUEGIiN969BJ/+uI5LtoeT7cH/MndDv/K4xd4efMIzhPM+YPdHWIU2JoBWnp8cdyhsxqVpuf3OBqS6ZEet4nJ+Wl7xE/vLrCu6B0xeoVuNHi8PmFwmuRJEiM4AFz3bR6rEIHnmwM6ZyCjyOzQo1P4cEcoi9ErnGyFD9a3+PxwCZXGYlOTUTVag8frAz57/Qh/5/2f4uQqvOw22Wg2ymOtR+xtjZuuwZPVEa+6VX7PPa6PuB5X6L3B57cXeNT2+GRzjR/cPMNl02Fneqz1gJ8erzLL+FenLWrtcNM1eLqm38mXp3XWngaAH10/wa4hqYuTNbio+yzZ8ag94TDWeZ4IERE8PfNSRFyfWjzbHHCyFTprMDqFbTPgvTX1yS+OOzxtj/jJ7SU+ubjBy26NTZLY+J3LL/F//eI733jd8Xy7x8/vdohRYNf22VivlcPP73bYNQNOo8GzzQGHsYaPAn16T314cYvBa7w+tXiyOmWpkcFqvL+7gw8SB1tBgDabVmbMGxt3fQMhJgbvfjT4nSdf4af7SygRcRwNnm8OuBuaPCepXoQaEiLiyeqEl6cVds2A3mmMTmHXDLlPS7kRfhZXad52o8Gj9SmhhxQq7WDS+/ui7YnzoWsQATzfHtBZAx8FdtWA26HBoa/xZHPEi/06k78xGmrXDLBB4tDXqI3LSBhGUdTG5Q2K3mr0vYEx5PlWMszuKUM+MuonkQBaq6CTV5tJAVlexI4apnKEtEgkepy8l2hqi2GclswlgiR4kujQOiQUySQTorXHMJi82SAEee9LQj9gMvhprhebKUm2JGtcyzhjzwYjJRLXgkqSJyiQRsyanVm0z1he5QYGEwOWYRB00XzDI/hEmijvG89L/fG53Eic7UyUZZ/9X4RD8D3n3J3nNlR+k/7y07c6xnL12+/H7//3/wF2zYDRKxwTtKytLNbViC9vtzDGwSYY3f7QZvbP46nOELChN7jcnXC7b9G2I5yXGAYDf9IQJuDy6ojDsYFM2kbOEVxtSHCazeUJfZIacL3B+qLD8Y6YO5v1iHHUOZ4nRiB6guNUlcfx1QqQkWA9LpF7JPY9ubUQkh4WNyhIE2YsrTEKIh7xAhgl1C5Ja/SKIDc3FZFYNB7YG2DtIHRAOOpM8qF2I0GNBBB7BbkiWFtwBE0KTIqSIDmZZdEm9kwdITpFu5AusQ8ynMUQ7EWtHXyvMmugMAFxkBCtRzxq+j9KInPpdC5DHBSwc8BRUztMAPYawgqES2IlhA5ULgt3O1lAaiLiJmFQ+FqA6lsRVEesHaSKkD+l8bJPLWAlsQ5WlCeaMMXzRAF5UIAAAjMsmpAhQLKXCFWAiAJ6LxFMhG+JSCSaCNlJhFWg/3x/pm4XUAdJBBbbhJVREdEEyKNCVEQE4nZEZCJHIluIhvJnQhG/8RBWQnYSPrVf9hLVtYRfRdgdkaaU9PahoM+PCjSuVkxU8eldrToieZFOZPIP3waoXhJZRxuhDwJuQzT/SIQmUROMSHUCfhWheoGQ2DBDPTEVMuGIdETC4tsAfZJwqwB9IKbHKIGoY6bah4hUfgCCnsguzJ2EryN8S22To4B0gBoE7CZkIhUiH6Ft4FBNQvOqp3nsWqK2l6OAb6bPoaK6qFHAVxH1KwkRgf5pyMQrcqD2IjEZCiegO+pXu435B5LZF4Oe4FbmIDBcBdSvJeyW+pBhW9WtQNRp7DSgOyKIYWiUPtF1dhNyO5j4BQDqlwLDYyKe0ScBaWk8RBDQB2B4HHP93SoRuqzoWt8mYgekKTrQ3PUNEdL4mvrOrSJ0JxIJR8wyA6oTRMqS5giPZxTUl0yGEyoqTziaVyLQOX1I47Kmz76NmZRCWjH1YwCalwJuNRHH6I76YLiM9/qlugP6R3TcHIlcpr4Bxi31aZQToQ0zU7oWOZ5PxETacqJ+YRkI1QN2TSQmUSLPO9VTrJ85YpJKQCLR0dNY6S59j5iT9xzT74Ci7/oE+Jbq52tAjfQ5mERkswXal0Ta4uskHZGcw9LSdaEi0hkml0GkfIKha+1GQJ8A3UXYtYC0RC4iHN3DchS+FhN5z5GeP9cISA+onvK1O5E/ByOghgjhAbemz8FQ/q4V+T0pU5t8Q2Q3QQFRCwRFJDSauMrgGpqXbi2gj5Haa6mvqkNE/+ibs8LqUyTCHFBbRAQQiITFblLddRo3Ju9Jc98caaxCRePPRDh5HshprBHnY8R5Za+UAurbCLtiNlcal2CoP3j+SEfkNRB03teCiHkS0Y0aY5ozc3IXJrJRlshTggZ0n96/iUxFBMAbyo/mbnp3nSaiG+kAb2iMdTeNJz1D9J5R4/TM8ByivhGpH2K+PmhBc8PFnE8m71EL8p449T//lmXymrT25bYETXkyMU62vSKNAZH3nDFs0nkRkd/7JYRUOhoTvpbJaPJ994hxIqLg32YiOQKQCWvKdmQSICUy0RNLplBm6Z/nuUXkPg/GRTIcmJmJC09oWS9R9B2fu5fKQ0tbb3l56cEuva/L/+euLw8vvK3n0v/xj/+zX3scYvPBx/G7/9GvPsbyB//Vb2Isf+m0NQP+wSd/hpfjBoPXuKw6DF7j6CucXIVPPnqNMRCE7nZscPGMBM4B4PF7R9zaBmPQWOkRN0OL71y8JsZXGdAomwXkf3a8xPevXmWheIaF7T7o4YLE9bBCfUG7sI2yuB1bXD35CiEK7G1zj4Snkh6dMxi8xt98+mWGrDGEjWMsX/brDOFqtcXoFXpnZmQyrba5vtcD7dwzzPD59/ZZMP5xc8zstGszZjjXdd+i0Y4gXMqRdAsAkzysrbEZbiZBYttG+RmMbG1GHG2VoYIMt2N9y+NYoVI+e4JGr7LHZ/vhgMNYZc/dylgcxwpaeeyqAdd9i4uPSXB69AoXH/eolcu73yzUzAQ/LAqdYcp9A5KGcdnL0hqK2VQi4jTSmH7/7/8cAPDTuwsYFdAa6m8BoLMaUiAzw66rEULELPhuvczwLvaeAuQldIFEnzn+tNEOx6Tz2Bf5EuwM2DUkGH47kKHrkzdnmzZPtvWAm66BkqRXySzCvMssRMRxoDm8qiyOyRujVcCzNe1m75OHsNbElsplsD6k8zJrM7IHjHcOa0MSNizHw162trJQMuDQ17hadbjtmux580HAJdhjU9l8/ZDizjgmtNQM1Sn2bnAqt2PXEsswx4AyEzDFttqsg8n9f9H26KxGP5q8s11pj0o73HXUvyEIaBUyydLoExHBRAAAIABJREFUdH5WK+0gBcXYcvwuxdUij2eMVFfrFJ79QfKk3W5ze2rjUvk0H5UKWNcjeZVObd5hVZIkGFiaBwA2zYCbQ4uL3z1h3zV59x4ArjYn9El0m+CUHrGrs1ZlW1P8d+yrHGPpkjh2jAJXf/uIV4dVYiX2uS8FgG0z4PVhlWNXQ29QNRYxCYiPVk+70JHi95QKiGnHX3hJ3rbBwFQu6aEix6+ayuU4V6Wm2NIYSZsyukT+5BRUca0QpP2ok06o7Q10Y+FHlj8BZPJCMInQ+u8ecOhruJF0P7Vx0CqgPzQQJslAJdKlat2j27cQlYOuLLpDC73p0J8a2hAMElXamMwwVKeS6HiKuUz1QxTwlo4r7eF6kze2vJfkaagoXrVekTg8r4W81TkeMUZAJn1S7ifqd0ClWFMe26oZ0HU1bX5ahaBDrpOoHcZTjWZ7QggyzzNmY+Y57KwCGktxxTXlL5TPslWkqWphmhH9sYHWpBMrRMQwGmhF7/5x1FlPta4thECOqWUY6ulUQ6d4S+8o1lQIYrDWxmeCKTvqDKdU6Z3iRo26tfBe5PFWOqAqYotN5TD0FepmxDiY7MlpG4vDoXnj2uJNyVQOY2/I6DYhx5VKGTH2hhiwQ4qhTXJW0dP4cZ05hjWmGOngBT1jcYrNBUAxyGGKy4WY4KwxCLTrAUNPm9rBSZjaEZt3ik9lUq2QNlx1xVq0xNIdA8k5CYA2qQvvlNAhx74iAsFJqCpkhmsI5BhYWaW2WKJEVY3LbZY6ZG1YWXuEnpmPkDasKbY6x54ygRnHZQJJ0ghkMXgxaa0i5ZGJocQ8vlQUx0WcYkP5vnyODbVkuJUxnUh5qEhs3oXRIqJAFEnORaT74nSc4yxzjCUKo1NgIlNCka8Q0+eAxA7I58X8vjIfJabjsfjDdK0IgozDc5YXeyPjtJFcEkItL+UNlYcDJef9Vxp9S6fi8ty96pWG/EPfgYcN0TL943eo72/SL5W+1R7LT/5gF/+T//Xv5/g7jonjZIOCh7zH6BqigIeEQshxd3NGUzrGsWT5eJrJDEP1UeRrOUapjGuj43GWfxknxfFrwLRQWebJi/eQ4pS09Lkcvm7JCMp5cxzQuXSuT87FOy3juMrry0TxQirHh5X9WLLmLusoRYBL8Ztl/wLI9efYLi53Wfey3nx9Wf+H6p5ZTQWx8Kqi7vGB8Vr2bRnTVZa3ZMgt6/OmxOWyEV7m8S73L8exjCH0Udz/rVzkuXwnL9/T5+qxZObl+KzluYfihspYo4facu74rN5FPueOsfFmPc+Nc303HWdmc477mto6xYGVzLmZfCdMOrEPJTYi+Jl/CL6zZEouUykBxO1b9tWb3uzM3JvLKsZsyY47y7MYw/IYw7imY9MCmFPJDAxM8WZvKuPcnOGYu3eBPXl/vy1l++JsDk11jEHMoGb5mtRP5XxfppKFl68rnBv3Y9OWqy0xj2t8KL7oXt8VmS/7HhEQEmScoOhPOcW/kdESs9FAC9PF2KaFc8mom+8v4XJlvxTtog7i70W9k4Fxb8EcMS28kY7zvcsYQb4fD+RRMos+ML/fKT20qC3b/dC8XL5Y+TMwbxvbRWygLO/hSwt23pmBI+IUl1i+wM8tukvjo7w+4F49hRdnwxSXzZ554Ti/Ms9F2aV25NklC8NOF0YJe3bv9eUbhnc2Mg89Q7n/z5x7U/7L8XngkXgwveV99m55vCkDnB/7t5XzpjzfUqd3qvM75vWrSH/23/76vXrNBx/H7/6HfwEey//619824FvusTz4Gv/nzffggoSLarbQzCQGhYEA4J6htFz0nlswlPIcnCImr95y4V3ef66snEexOD2XyrqVXsqHFnfn80Cqz7QgLu89t4h702LtTQbUQ2n5OxwWRsC5fngXQ+Hc+fn3+3W5h/tP+SwXvbyAfZvxc7a9/KO0XNzdu+5+u99UzrnF+tsrs1h88bFz24Zn6ras52ye4OHNyod+g8+sjc6sFBbnztR1SUSxPAa8Q18tFyNlxd9hEfHQs/TG8s4tSN9hMfTmfN8+J/OlZ/rmnAEYC6HysyvJdyqM78H9tr1Lm99lIZev/Zr1PZf3uUXX2Qk7Xe9L4+ZrjMMbH543Xbd8mM4df1tesbCF7l1zplJl24o5kz+fK+ehej30rJXnl4bamTrd82w81J9/UQvVNyzIz71yH7z/TfNryjXd8+7z62zZ5+b8m/rtgbo9WIu3PS/n8nqXPnrX+97QP280lN7VuHrL9ffOvaEvvpax9bYyf4n01nr8MvV/1zp/g7Z97f77q5j+OrThgfStNixjJAPuaGti69Qjeq/RO4PBK+yqAWNQqKTPsMw+EbisEimJjwKV8jhZg0ZP0he18qgTo+FdX+cAdvZIEHMqwQ8PQwWddv8r5XEcKqxrErjnYHhVMNgpGeC8wugUBb1HkWU6lCQT2CiPw1AXTHpzSCFABlpbETtkaywOA0mFGE2QvatVl4kB2kR04oNEW9lsIBz6Omto1tqjTwQb7HliiCEbqC5BBXUKukdMcD9LJBCs3cgQPaM8+tFAqUm6wnsJo32Wkhi9hJQElTOGKPOVooD8U1+jqUjiwnuC+FXa4+5EMCyCB05GhZQhe3dCFBm2x5C7EAQq45JECGAtSSc8viQY4+u7FZSKMNrDAfmaiW0PqGuWO0hskVmrEKgql+UzauNobBPkk2GH46hhDBEJ8DzmoP26clAyoB9Nrm/wEnVDMg6VcegHglayRMSk30h52JEgZ8Z4jEMaTxmxbgcM1hAkTUaoNIZcDstLeD9tHdMCMmZPjU7SGkrFDLt0lmBdJAuhUdUuw964fwIzsxqSoWCoG0TM0gQoNmFYhsI7RTIfVqOqLUH80rzj8glC6TOJAkBtqWoL5yS8U7kPpApZvgICpNkoY9aAZOkJRILdxZikE9LcojonAoWkmScVERy0qwFCAKdDPXlsVYRnLcUErzIVyW0MhTwIw88CSw1EkrYYO4N6ZTH2evIkARlSx9IaSnvYXmcPlK4YMkix2TFJMhA8TmC1GXA61AR10wSFDIHGo2ksToea2qYj/Cihao8wKsjKE6wu8CYUCEonMEHiUjneSkidvJIRiOwtNgFSkfwFw+xm2pReQqiAYKk8Kac+jF5A1QliPSiSM7Ey6WXGKb/kaWy3A8ZRU1y4iFS2iLCdIbkHIMs4mNbCHisIE2iedoaO9RrMHilT2ezx9FZO8EGBLDNR1kGaAN9rKo/bmuQxopfQDUHS2QsY7ATlBZBhhpwnj7Gq/axvVeXhUzujk9QXIiJ6qlM4aZjtSNBLjpFPWpqsQcr1577neR8C9THLaSgT4EcFoQJJgACZGCQGIFh6pqOVEKnP4igpTjLl608a0ImYJM1DIZNkh54kSOLIuhIgWQuA8mW5kULKIkt2jCQ3EnsF0XjEUREUOQiCYx44YPEbpNoDLPGh4hySOahJpqNKsfkRk3e19vTZSorNj0jXiEn2o5QVKTVdWcqj2EARjUccJLIH1wTiMiiNLJb7ACY+AB77iAlmmuL0Y24PZlBN4QWiTrH/S91JRe9MkdobTcjPDJfFPANinOY2wzZjkiuhGP/kbfWY2vEmuZGin0ThfedzIiLHGLLMR1l2lv5gCG0pScIpIscvntvwyEOSfsdERO5H1iw9u+lwxrCPAoVu59T/9zYjZpswi/FaGuViaivkfft3Vpfl/zfAXbmeb9vzyJ7lMt8ynSv73Pk3fefGvG2D4zfpLzx9q6GwH/z+Zfx3/+d/CwokVeEhMQad9SzHoLMcA8tCaJH08ZKEAqcSlsqwU4Y7VtJlyYgylTIEDIfkGEpmUWUIZymLASDTzbNEAMsTAJP8AkMtgQmSyWnpgT1XFmtyllBPLUPWzGTdTYYu+ihncFAAWd5kCQctUwk9XSbuD5YcKGn2l55PNmbZcLde5Vg2nWLgrJ/kHs55S7NXN30vjcySqp7fO3y+dxSv1hqSoSnrsYTU+sTuy5DHclxZYoA/M9Q2S9WkeMzlfbkvU3wjM0LKZCyyVmYIMsUxoYDyTt7oGMWD50dHTJklbJPrcc4TzBsh5biWfcfXMlw7LsZw+ePF93C7Zwx0i2u4fF7UZh3RAma69HCXBjqAHJNYwh6Zqp6PZXa7BTyTNxLKYw95zFnz07kUc6nndVx6531a5ClVHkdRVppLXmQNQd44yONQxCKV8gacyrqX7IX5/hRbN8VryXl7FCu50yKK25ivW3jAs5xD8fzlceY5UORfyjEw9JPvm61puO5F29joYmNIFICSpRc2pkU0G+vZgE1GXpmCk5A6ST4EMnIDG2hF2dnDG9mgnK8Y2aDM14VkIBXezZlXuIxh4gVimWcJkSw7pyAUy/Fjy9iyKCbDQkUyOjgfFGXGIv9S868cFGBaeBfGBC/oY2kEyeK+MD/Gi38io5ralo+rmGLBEsSzGHvBGxqy0BQs+46PcV0kZuRzQDKQlrIRXyeVcXElvLbsn6J+Mwc6k6KUC9/CYMrfua6l/VK2M30nAyvmctg4etCbW9QtCiqg7NN7HmPM7Nip/pxKg6aoY76HP4vpcyyHjdvJBt+5fuHXTXE8ty8W54H7hlvRFPFAu+YXLupQHJsZpVyVZR5l3c/1//L8GQPonJP+rR7oMu9fIpWvk3tlvaGO38i7+1D6Gvd8E8/lv/jvfv1w0faDj+N3//1fPRT2z/6bX3/bgG+5x1KKiEf6iD6YvIgp9RKNIj1FpQZ4SLRJ+81FhRrzWEkA0PDp3jn0NUSBWg/3jIBWJc9VisVkg8tHgY3087hJOY+L5MQac2VZs+/vgJe6B0tVdIyp35epSfUurz/Xbk6lxt3b6vBQO2rhZsdqNa93/iynfFpN41WrSaer1fO6vxVO/A51pvGd5k19xuCbtUn5d4cBL65piifu7P1nzkcATdK6W25O3INXF5+Xv2WtIc/IQ/fz93PG0DkoLIB7398Wj7uMuXwIkj2Pr3PpmDs7zufiIWMUaIybxUeeS2+DOZ/Xg1v2Q6L1N+5sX9wbZ3M/9vpsIn4QGO3v/dZWyeGS1y73+ux+m8q2lvGh9N090DYk49Xn/3zsofQ2mPpD4/im/GbJzD+/qS6iPn/+bPmVnxn4IQgos2DdqM6svO7lxX00n9MP1nGxWbGcE2fWnvMV9LnP5aVxMrRFMx27f+GZAhcvkTc9LyK1pZQVeBNbh3ioTwr7dGnoxKKdsbj+wVQu3tP/eLZDv0YSuB/fmcsrnpszdTtb7LvW5Vx/PTDm5+/HfYMHeGfj5E3jNW1k4N6cOXv92eOL+bQ07h64/21G0P0y5heIZX+cva+4/g2X3bv+ob54xzGfGfXvcs8Dxuq7lPuwcfiGd9e71uld0td8Jr+JUfmb9JeTvtWG5e3Y4n//4vfQWQPrJUxipGNmyFr77OlhWOboCKaokweECU4GS/BL3iHP0M0gMaZzpdciRpHJL6ydmByZCc8YWqSUmkol0QdDGKu0mCEPwuQ54nz4x5sXOnNCBiKYYLgSQyv5WmOIIdE7mSGMvMvOXhjnVPY0yAStBKZ3k5Rh5vUIgRjrhKTtO74v+PvxiByjyBBSkTxTMUE3J+a6lLefGOSETFBPhldFgRgIWihkgLeKtJNKggGBidEudREz35UaSAzXYuhaDAJmRSyabtCAKK4BsgeCX7DShJw3fZgWT0KHvLCSeoIgZiiKjBPUz81hvAAmONg4QTJjgs0hUP4hQXN5dzzfzws+9tIogsQBVC7DGGOCoJbaVFznzMjHsEtud7qUPS+lpyamXXIhEwQvMXtCFp6Z1N9UJ5HkYVIZ3I/AHFYWBZ1jSZkEZZtBuPhehnMF5HEiqKGYe2lkpD9bwOvYQ8R14fmU4Fn5fvZGlA8I3+8JlgYAsZ/GblZH/iVkb4kt2p0nrJhfN0qC1Fkx/4GvwtTWkOpqi40h9rJxX5djCkxwvogJZsaLEp3K5Tp7QcdKqBgnbj8w1eMcAyOf57rJol85H84reYSYmAQy5mtFSMdQnE9shxCYWBn5e5JBIg9NKldGiFFmDw2zHkYd6LiKgErX1HQsG1Y63mvTjDBlUT+uUwndo7EAbegFkPesWIgKL8g2TeVkaCD3obh/nwiCJH1ccV0xLkFHyFHCJ4kjUc5zpDoyo6aOgE9txTQmIgoIS+VERXJEkJj1Y163J28qwSeL8eL5BZCkE/cVezwFSGqIvZaSpI1yyrBMZHkcqhuSjMt8bkgr5lITqd9k/47G2JkUNSAc6N3H7500d4XluiNLQYjinZQhn2GqD3uWy3PUiIVBsYjnFREkj2RTX/PcC3PYJY8DRJpLCe6aPcRFn85skgW0kvt46eFmiYrSs8htL59pvj8zpJavEW5aAbvMfVP0BR+feQ/53R6Lei6GVxS/0dPBqR+jKMoun51cQdyXBinWYjlrMT++9LqWe0A5j3NT8YE88veIeVnlu7PMb3HP0rM7q8tD6W3n3zF9LUOwbN+59v51SH+d2rJI32rDslYOv7V7iaOrMmyVWUNdVKikywytLkpoEdD7FCOYiHd8AbMrd5ZZsiJEgc6ZDOcEJm+DEkkSwesMi9Qi5O9SRAxOZwkF9gapwqjlcwxLZOgk31vCXJfexwgiEGJY5phgogxNrBTBXG2QqJM0B3tR2Js6ejUZyjJkqCm3vewHrmfJeplhj8mgPAcFZZkOhkmGCChJx42amDqpDrGIK6XPWgX4MME8AcAm6YSSzbL0krD3ynGfpDoCmN3nUoxaW5EntG80xOJ6v/iVKj3Rs3d72qTg61n8uSSSWsJ+OXHdGfLL9WL4JsMGS7bYabMCk2Eq4gwCyjIFUpJcho8iSw2U870kLeJyidTo/PeyrxkmKcTENsp1YPhuGQPLmyi84RAKQ4U3PHIMW7q27APeYOHv5fX8HcBMrJraVubLq3YykktG1BJaGs8Z3bFg0wQAQTGoOnm3bKUm+CfPtWKcOfbUJ/mNMpXQUakCfEP9ybIFeQ6mja5ypVLGhzJkmPuP+ybfrz18RXkIOcG1BZdbq5xvjnULi3YDabMkfQy4d13+L5A3aoSc8l0umsrNIt6AYrkE9obJZDzw+ZLVNMNxU36qiC8VAmmsgVBPrKZsCEsVEes0b9NnqQNiJSeI7UJcnKG1QFr3RGTobFkmf0a6ppxDQpWr1XmevAGU+7wYwxk8OEzxqfeM+ghARtLXTbFvGYYbyzkspgVqumcqgDyEsRJ5cyZWfO80/jPZB85TTuOVN6sARD0Z2zEbKmleLObBPYxepHxnzwCwKCvCG74u1Sfd59U3NyzvwXvLlPQiZ/0IpEV9MvxKw4znVRT3pSqWxc5+h2Iy4CJE1kiM0yRcGix5Aj9wHbfpjOF1z212xrM4M5i4Xgyx5SxKxt97jZuaVeZ7dvFdGoMPGWvLvEPR5nlmUze9i/GyOPcuxlJufzkmX8eYeweDatkf39T7+OZ733DsHev4jdNfN8My/pL98Vc8fasNy53u8K/vfoSt6hCixAu3g40Kz80t1nLAD4fnaITDKVTYqB5f2R2emTvYqPCL8RJb1WOjery0W7xf3eCl3WKlBtigce1WuHMNaunw2+1X+Hy8woXqYKTDwROe6NquEKLEd9qXuHUrhChw8DXeq+7wxbiDFBFPzAG3riVILshI63yFtR5woTr88PQMEhFb02MMGoPXCBDY2xofXNxmaO+NXWGtB6zkCFsw4N7Y1XR9ewspIm5ti63u8ef7p3hUn3BpOnx+usTj+ohWWbweVzk+9Dur1zj4GkYE3LkaO006bUPQqKXDjW3Re53jSLd6QOcNxkB1aJTDnW2wMz16r3PsoxQRazVi72o8qY+4s03OZ2t6vBrWuKo6XI8ttobyvDAdXg1rPGsOOLgKX3VbvL+6w5fdFhszYK1HfNlt0TmDjx9d425s0SR9T9Z0HIOmDYMoIRHxuDlCioiTMxRfKCKu+xXWZoCLCo/rIyrp8P++/BAhCvytZ7/AyRncji3WZoQLEhsz5DkXosDLbgMhIrYVHdfCZ8mU27HB2ox03WmNSjlsqgE2KNTK4TDW2FQDTrbCphpmUirWK1z3LQar8Xh9AkBQ6Vo7vO5WMMrjtmvwbHuAS3qgjXbQImAMKm9WPGpP6JzBfqhx2XQAgJOt8OJug7Ye8fzqkHVBATKiG+2yEWyUJy++07BBwsiQY107a1Brh9GrbNxv6xH7oYLzCo/WJ1yfWjzdHXLcqlYetfIYvMJpqHC17nAaDZEbBYltPWTyKibXYl3NdWVx2zW4aHvcdA3W9QjWKz1ZgyrBkpm4Squkqwfg1X6NtraZSMt6hcFqjFbjcttR/LTymeAqAlhVNm+InJJ24qYhncFuNHkDYrAalSZt1lPSJX19u0YMAs8e3+UNjcEpKj+KjKY4nGrEILHddNnYc6nMEmVxODZ4dHHE69s1tuseRvu86XK7XxESQgZoHTD0BrvtKW/0HLsaMQKXF8esAVmbpFUpIvav19hcnbJGpLVEkhSCwHissL7sIETEMGhsNgP2hxarTU86hiub43SliOgHgxgE6pVF11UwlYOzGk07wo4awtBmCcee9r1BcBJ1S2RM3AYhCKWha4orNcZjGAzCqFCtRgRPxnt/qgAQgdHQGZjazRAYSgRCUQQB96oF1g66Jii57zTgBcxugE8ID1V7OndXwVz2cKNGOBiYiwH2tobcWDJwAbijmTz6AFB7MiRDQkbogNgp8uRUyWPeKYiVQ2SPskrogY76BgczeVMDgGQAsjEZT3oy8tgjrCJwpGclykge1rsKsU0sJVWYvM46QBw0sHWQLysSrq/DRJTiJ2KVaALEUSHWAfIkyZFv0zkJhJWHPGqoXsCtA4QVkFZABMDX5F2MAggN5R/qAHVSQBQILR2TPW1guG2AGOneoAE5CggP+FWAHCQRvTggNGnFKwExUJ18G6BvNaKKiJr6QI4CKnkifRNTHSP0SVDdrECUgD4KjFfnrJt3S6qjfAFADYK8cSBPnFtFyIG8j6oXiGmFFRQAEaFPkvrRAHIEGdCKhkyfyLgMejJEpJtiTIPB3PMlAXMn4Fo21KluwcSZN1R6AV9FiAioPvXFmDzPMvV7pPGLybuLCEgrydNtiXQpqAjVS/JGsucxADG1JQogVGnKdanNAKSn8Q0GUD3gm8nQ5JhNaek/e5fJ009/IgLCpf+B8i3rKTgfTH3JnkVevAf2Vqdz2dAtjGr2RDNJT2moRkl1nCnaiWI82GNb1J3rxO3nvMrrl8ZSNszlVEb23C7Ky4REkdonXdH2xT4UH+N+eNAIL+skABEiohQQy5gS3muQAoI3KBZpaTjdM3xLo3RZlzNGZJnfgwbwX2Nj7duUvtXkPZ/8wS7+p//b38XeN1nDkmPqbKCFKht0+XwkDUsjfD5G5D8GWnq4oDJJDX8viX5YU84GhVo62ChR6kpKEWYEQg/FLYYoZoQ8S3IePsbeLy7zXDIpTnNI3lhOOTay8JRN+pExE+pwfZYkO5THPKav1JBcxgKV8ZLsYWV9S64P90nZX1mPE3OtSO5LneJXl9It52IEy3PAnFjoXGwhe//Yc8wL7zIxqdGb4tfKxHOQ7ynjPEsNTK5n2afLtnL9S7KiZTvOxURyPcvPpZf+XBzkclzfJQ5wOQb8fCzHhedx8Zs11XdRh/J3phxnJWI+do5IZ+kFZvKlkoSovG7ZztLjfq4/yrLO9TN78rkOTL601MGceYrjdHz52y0Fsrc/y1qk9FAMbOmVj2f6KeedPKklCVV5ryuQC+WY5jlX1qUYL/HA/2Xf8fFzsaH3YveKYxxKULZt6bUvf9JKrzblRf/JMz3vFyljJjWia2TuJ86X8yvvPSd5M40NJhKfRXszeVX2KCN78JekTFP7p+Nv1A0942mKQSa2ZTzouThXv6XEUDl+557jXOa5ehVjQIzM6Vycf36obmVhObyB2yPi/QXpcgUaxX0499dNYvIgi0U297yrizpniP/sJs4XD7Z9dl3+fqZtyzLfVkY5iGcX6m/I8031LMvJD/uZ8oGZh1Ys++tcvcrxPlOvswbHMs8zx97ZUFm+n77OEvqBPnhjuW+4/mvP4q/bN/gGBtxb2vi1+gv4enPvHcr4l//lr5/gpn3/4/i9f/irJ+/5078CGp3At9xjefIV/uj2e5AioPcGY/L2aUEel5Or8uK8kh6dMzCKdqcHr7NBZoNCq21mUfWRYjTZi7KpBnTO3GM0tV5lOGvpeai1w5A8LybBUWeLU5ChqGRAZ01e7AIT4yh7etigZY+GSVDLiWVUpfsEKj3BaqWIGJLMhVEBo1PQKuRFNXtFKu3zQpgXseWCwvm5YaxkRIiYQVDZ61YuyoFpUcr9w+dLKCof88kYLaHJPnnPrCfPmOD+CSSpwuXMF3nzOFSOgy0XrgwFjREZWtsl6YeqSp47J7NEyVJg3aW4RZUkGsrY3El6RGQ5DaXmTKMMFeX8y8WxdxRXq/REGiJlzHmVi8MYJETB7FnGvAIEg9TaZzinT1IFzO7Jc1FwH4qYZUG4rPJ8Nly4vxPEsZQjkGoeO1sytUb8/+y9S68lS5Ym9NnT3fc+J05E3FdmZWWLLlUJ0dUSiAkTBggxoGAAEo9JM2gx6AlCjBAtJkgIoZ4gVCOE1BKIhxDiDzDhNUIMQEigpotWo6Iqu25m3nsj4jz2dnd7MlhrmZvvsyPuoyo78yZlUsTZ293cHsvNfa9l31rfwt6tslecuZ/miioxmexGKO3KMUhbnRtmraq5OgKgWFRTntWRWFVaD91xoLGHyvwkbhYVW2zpxXqqmeJJa6RYPD1s7wNhF23fKyj+tILQKsh9wxY3K/0nTpnAqRN2MXGMIjRlNStK0SCKPLv6NjbSyp9FKZPYTVX3Ma4AxbN6GRu3n/QWLyoxmVLEhU535wVV6xV4eY669BC7WF6WV8+s2VLm4AMvAAAgAElEQVQxyLUK+7jafjy9IsrfVdRbrKCMVa69VBCTojQJRbXYQEHr2g6+pI9ossHehVHiKYFdjGPvGkjxYlsye0h9UZR13eorCBfQXuadHFRF67e6TnZyr/UW61hX1dAuQUZURUNvGtKiAeZz2tau6hCt1he2FA+ScoLH02SQFQ2H3UCbDHmsWsYvsYEtDhDtu0y5Ma2KnJXIEy32js7TOBsKJfNU9L38KbKNtJhCln2/Hnb9ZGxxdyLCdCFneS108r6aLkKO98cUKIbUbLJWgnB2z4PicRG6x3Gr72GF7W51q/teJl6Zex9DKR70aZtbQ+BEJlKnB4171+I+TrDrp8la5NfFYPZ7KH25dlxdylb6UNihmpd1BCFsx68Yzxd7Ofu67+nzGjJ3dbxS+uvUe46/r1yef0/dfm/k6+peHePXlW9T/5vMq42joipGUf+8/NLK99qwzFXjnBxSNc2tDwDm6gg1YxdBSb0BAPNKvyhiAIlRJS54UlRX5+0yteO9QinnQ/A7BCisQ4vRW5ks6LKEqlAq4AwZUal7k0hsWkiS53AzPsLFjj6Ngwy+Ndq2ox+LaTv7K+dVjMnskBsAmMP2C0txnXtDsn8fKgAxd6hDfY6siQEsKJFSFUtwLaYvFQ0IosNGRGLjQurFLvYscA7BUrZ8jVrXloeS3h/q2b2RkthQu0RFJAZwDXTfvSc3QCFAknhBpYCU1E7mffwfGU9bDOUuxrHLnUnzpWvFMJW/vZaimeipdIRBDa2qimL2uvhFMUr69ZCzbpsgksMRoLg6iq/aYjTlF6xUBVU5ZlTQoO7e7wwp6UtctPgXSBmWgellTfNqBE6dUSlFDMb2O1zRGYNkPEodOdYUjI7oQnC0ZmQ2g1Da5bVrN8RBYrsUox21dEgNbz60WEDVKdmiQBTdlHgxFFuMnKpkJPSbM6puBmVndO3i/eSYEHF0bpHtnOSJkyL5IkV+bEQ2BIXn1grnFmwGINDGrGzu4ke7Os142Obf6oghY7u/BRdxevyXyXFae/25ZpDw2rTcWU8IZDeDfHf9hVIJBdSRtfvWvsyp60v+eB6TrmSMZoU6dMYvQHn8OlltmjggT8azVBb8CNYLWTSD1/T1tzGJQQUDXFWqJJZTrpTxo3bKGNexZCDkQ7dhsO+xoUXFEVlQ8Vsl1a376rp26eTFw9sPCs/Iifo57q5F3dabv1jfXLUI8U+VcXb9dI/dTl7yEyfjGnFdnt+m7OazfZclKp+flWsGbf3AuV29ywUO5OFCTr5e73e7yfw4Xch9V0c+1915OlyfPWZX+/qQjN9z/KoBJX+vyPl629dHd9VQkvbas/LhcX0bQ+v5uL6+yrc2zr7tGL5r/1/Txzce95+xvK4X1ju+A8r59738Gd67X7XyvTYsP3GP+Nd+9N/jD8MnyNB4aU4oVeNdPuBNusFv+q/wWCY4lXGfJ3xiH/GzeAcA+Mzd4zFPWKrFQQd8Hl7iM/eAN+kIpzLu7Bm3esZjmfCHy8f41D8gFotz8Rh1RK4ar+0JsRr8LL7ArVkAgNu6w4+GtyhV48t4g4MJu/yPTmU85hFPecBfGN4AAB7ziFFHaFXgVIZTGV/GW6zsnH8wAUtxHA+5pbs4mIBBJRzMip8HijG9MWtr+z5PuE8Tfujv8WW8wbl4vLJnHMyKcx7wRbjFoCNiNXjlzvgq3KBANeKjl+7cUFyJIR10wsEEnLNHqQo3dsVTGjCZ2MarVcUpDTjaFV+uNzjalV2HDebscGNWPKQJr/0J7+KEycQWGyrfP/FP+Hy5w2t/wikPWLPFa3/CwQT8ZH6Fo12xFgunSosJHTTFwInr6JfhhtK/2IDIcaEv3RlPeYBRFe/ChFQ1fvf2cwDA3zl9ikEn3LoFc3YwquIhjs2NFwBe+zMMCt7FAwBgzo5S2UDhaAJO2UOj4rPhAefi8RjHlkdV5vfCrngXJzidmwuzVgWfDY/QquJNOAIA1mKwZIcfjA84pQEv3Rk/W1/A6YzJRMzZYc0WVmc4zln61XrAaBJe+zO+DEeUqnC0AT8a3+Ehjfjp8gJHG2B5TqnqtvEymIQ1W6RKKL+MT9x3JcZ20Km5ij+mAbd25fjeEZ8OT/j5eoOjJabdNVuEQrlIJe721q44ZQ+rCp7i0FyiD1ZiKIlo6CkOuPML3q4HfDSc8JiGRs51sAFLIm3sYAMGkzBnhyU5FCj8cLrHYxz5/lWMJsKz3L5aKT46Vd2OA2Avh20sAPCUBmhUjDbinCiIaDQRS3YtBvecPH50eAejKv6fx49a3OxoIp7i0J4JrzNeDRQ/+9V6bO8FrykGcMmuXfvRcMJPTi/xm8d3+GK5Qcymua1+PD4hFYNUNUK2uHErvlyOzd35hV9oLSxH3LoFpepGXAYAPz6+xR+fXiEWg6MNGG3Ekhy0KvhoOOPvne+Qi8ZkIx7jgDs/4zGOuHULTnHY5dGdbKTY8eRw52eck8fBBjyGEZONzb1eXPmPNsCbhPt1ah4kuVA6o8GkNs81W9y6tdVVisIBbjnm+T6MuPMLkbcx0u40ocWyofij4zs8hAmnRM/kLcvli/mmpTGS5++j8YSfnl7g4AJe+AU/P9/i4+kJXy3HtlH2cpw5bICuPcWhrW2jCpbk8GJYkIpu7R5twLt1wmASClTzhjm6gFAM7vyyc5efk8McXfP0OLjQNkBlXrlo3HCMt3jg3PkZ92GCVQVzci2FUswGo424X0f88PiAVA154PS/STojFoqhfjEsOEePgwu8ZlOLXX8MAw4u4s7P+Go5YjAJVhd4nXCKA5zJSEXjHD2MLliSxY2n5+gcHZwuGHm9vF0mDCbTfc0Gk4utnmdPlcEmnIJv8/QcsjBHixcjxWaLe7+3CQdHKaqWZOFNxtM64MW44BxdI7C7GxZ8cbrBdy1HH/CwDKhVYfSxI/OjWO/BJYRkMLmExB5I4vlzMwTkqhCShbepeebkonbnZHNUPJ7oPu43fUvRuJsWnIJvG8ejjwjJNDdugFzqU6ZxTD5ijbYR4knOZIA2cSW+vA+dsLxBnVjGpejmHi/3znOMfkgWtQKjj82d3vK9TMlgcAlLcG1+vedQxcaiX9jDRjbyxPNINk5zothsaaN3cW+baRey+lBeXaiOpOwiNy6A5lnTE82hbpuVQkzV8uXKJiYfK0nv+mxEVr13gRQxcsWT5YJE65qrtdRrXjXdceqXPzMx1tXSG9j93/eRLfEYv1G5NOAvL/sa4/47uWT/ipfvtJHwPSnf6xjLz/7S6/ov/Rf/NNZiWyzenB2czjgl32IGJa7NqrIphjYSAQrHQ/bssVrVFmNZqsIpDhg4j6DED4pykappSk1LXdIxwfbnLhlBRZGSdoEt3ktcd/t4PTHu+noSlylKl5wrlZU0NqZEcZBYSoBiAddkW31ncnPh7Ul4etdY+ZG7FutoLtxhhTVVfoSkVEjMKBHDxEIxrCGb5vpqdIFjplur6UcnMkmPZYVFfvgu48161lr5ke5ddHvG18g/XgdWEE7B7RhsxR2478PbzbW39D8iwC4ezgmDbda7eLmUdfthB/ZMu+Ku3KPV4iYs5wXRpbGZXYyg1Jd7mJiRVKvayHKWaHdsxOKKfLEpfDX05trvgpw3akvrE7txVaDFqZluXbWYUUaiezfiPo5O1pX8lbQ//Q99z3Ir54mMRnfMuFtqng1t3o7LWKT0yPQlQ24fe9diLPl+py6NjMTtNZSf+yck/Pkv/G4tmYKUiFRH0hPJOMXFuWe8zXlzLzZGxr7JtH/VO5cpnRG7UxsjqHJtbaFyCqJkYGwmpJyVl0uviZ2bNis3VJ9ZSPv6EtPZPbs9Ii7KXwV2btlSr18bWmKPLxB1QcVl3OLCLW7gpXdrLpvympOG0rxGONWRpBWqldIhNWRX1ssFoiKxgoJ+C+LeK50QRbB2LLeCjEibIq+G8u8ZeVXn8nip4DaEV6H1VZKmVEkVzxDw1k5RDSmX6/t+K6+BPl1SQ347N2ZJQYTcocq98g08ZwXuXaV3iq3aoMC+LxmnKK3MNtzchHuX6t7TwNTN/fi7FHbvpc/9jZKxc3+9O3Kr041FXYzrWvxlXy5VNZlzvfL9yku7uWoXimlUvA4FSVdVPXdDLRdtXvtR6Ppo8+2Npd4IUdL/XrG+iiZ+gF+pEdRc+7G6IsP3Ipb9XD5g3Fy1hz6kOveVrxhnl7bh18rife1/E/W9q3vNNvv6vq6vyW80xg+N5+vqfZc+v0H5g3/3lx+HOP3wx/W3/uqffYzl3/obv/y5Ad9zxNKogslEfOofsRTXWFxf2BnDlPCz8AJWZczZYzIBpzTg0/ERqRi8i8T6aXXGnB1euhnv4oQbG7Bmi1P2eIoDvE74nRdf4E04YDJkfKxswJ2Th0XGJ9MT5kzIyZItPjqecB+IOfb1sGLJbhdjmYrB6BdMJuJn8y0A4MatCMU2l17ZjbcdknKwy47EhfpziNlgSQ6vx1NDJo424WfnGxxcxNEFvJkPeDEszS1YDMqPpycs2bXjr6czj5F2Kk/R71KxHFxArrrFdg424RwdDi42g1qMgInRrpd+bX0aXTCYhHP0uBsWZkkNiNngxbDgYR3x8eFE9yB43A4rnoLHYDIOLuIpeJyXAa8OM9ZkMdrUxkqoCI1NjLijD+RWnA08v5Xm6GjntSq8PswwquAn714CAD65fULIBnPHWnozhJ0xdFp5c8JHMmA6A3cJDo53gJ+WAVoXjC41Y3KNtu0aD47G4K2gNgqnxSMlg+O0NsV5MAWn1cPqgsfziMO4ohSNwPIWI0fic49DQEgGIVkMjALEbPDl21s4n3AYV4Rkm3FlTGnIUUtHw3NqqURA7/8QLSwzl0oqC+8SQrRYi8IwRDydRmIEZTdkrUuLR11WB+8T1mBbOpCBd/bFkAKAyLHH3icsq8MwEOOoHxIZDCYjcn5ZpSpCoJ1ya0szMs+nEcbmFjebs0bOCiV7+CFCqdr6FEPKui0+cl04Tpqvj8HCeUaBgoVht8gUDazLON2PQFWYXizN4IvBwg+xGUKlKKzzABQFN8VmTMiOuu7idcM8ENPq4wg7xmb8AcD5fqKcp4pSY5RgYMfYduvXmd5HbkjEzKoAbXIz0M5fDrC3EdoUpGgQZ73lXV0MzC2tm7Q4WJ+wnjzskJFmC+3zTtFKkfJhalcQzo5y0UYDM2Sk2ZEhomtDAdLZU9zdmFA5RYoYSTUZMloy5UONwQKJc4RyvGpkVlg9JsTZEeusGM+Sh5eNsfLGo/rSXCtz0BQPdkwoC/uocmxgPXvgJqEsGiVo1ENCvbfkTstjzydLChobNNVVNnAAcc1VzMZaLcdQR3Kprb0xYjgmV1eUVVzhcdEma5grxdNWhRbPCQ2oRbc4ORhALQp1rJAclyrxGGVMU4b60pOLra27GDrFzJXKUo7H4iv0wpuIzJRZdUUZifVUrwqYqA+Vifkye/pbAcqvWIQJlDeQ+JgONK4s18sY48ZOKgyuqtB1bc5xy99oZrXlrlQgxtnAz5MDdCQGUrPwd47vM2eFePvdNVSzEussyUa1+EIUoAxoMZ07FlEKq4ZdmPnVkRyqrhynywyzYHdfNgIk1pTWkxiq/N0A7kkhD/K9wqyUt7NqdomtwrpbeeyK+pZ7qugzWKY7RtWkUIVtVFF9HWid9jGOUkfkDmz1AOyYXHXY6vT5KDXHZAprKYAWl0nPGxqbaemYXxWf62M0r8VIthymfWzmhaHc5sr5ZVVvoCs0xtjLsjMOe0NX5Fi668S4+7assH1/3Tyknap5fXdzv7afsWPFvVZkTL3h3oxSil+k9ir3sf++a+eZoK7MVap/yJi+ZkS/bwPgQxsIv2rl+zDG71i+14blQxzxP33+202xF5THaCbGCW5HDCMuIBuxDe1gi4vGyopqU0KZMOXvjh8jcJxij5II4uB9bihFThrOkzIHANZlVuC7gTMSoDUpxADaTnpDXLKC9cR5LfF+WhQwYKeQSp62P/F37ZhSFWk10LY0xfOnTPufk247uX/i7porSEmkXCqg7fAXJhqRF7A2lWLYmLBEddfJMVGIBN3Qlnf95bipRExiC0rcFFo5/rkouEHjiyGjBEO76LqiBhr7u/FIbeiOsKSi28HmF56jt6jstANA7ZKVi3JenujX7vw40Dy6xPJKYvLkbdVo/PmHXkhEFLrrVEvq/iiKp6lA0niwhchQBP0QmVW6XhWFt461BQU6H3VTnhY/svamtvMtDhN4kvi2rHCSOK6ioBeN1XksbmRSlG0X+1kwrbyhZceai0oKixCL8I/PYjclNrgRatV49MOOaKMRPCSFwErvyonfZ4m3U9jIIfjHcWUCleBGqKgQu6TtPVGF9J+ETAWAXjWiqQhdgnZUkaEnBUl1c6kKqR8LoxqLxIhlhSzoS1ZIIrdM15mZ47XPpv1oqKwwW9H8+D5E6iv6LahKVeJoSZ1BoVeNdXTQi0byjvrjdu2iWwyeKBXJuQ0sYWUxekdyApBEaVOAmxXy2SBrqms5obyqRAiSz+z9UIBkPexKaQwkeX0DWtSmVFYDWE4Qb5NCcRY2bSQhoixZVsarMxuhjaAm/F6SZO9WDAljWSGrcEkUcAOXVEvloFiJBhtgqig2KnRTFjWnKMgnAy0pClg50wEoZ8/GD5CfPCvCm+HHnvabgmj2imhPwlINp+vI1EZLRaBkrbNBEVSTJV1XN+IaRfdD3j1NIdV8vG7z1ZHuESrfS17TVdN9y2cFe1aAUlsC+05xFyNNR8XpP3jaosAq1Qw2lclgVHlTVE23vqrhe2xZZhUoTrXUEKoCWa6voLQFfD+sVVsqhczXicLI9YtVLUVFVarJU+5pMWzsLoCJ2KWbMCsbhN+x6ATkWTXZNEOMDeneWGpGIf81geZaDa8THrsYolR3G9uO4MeonTJaNRnNOmwylD6rlvc72PBQbf0Wuxkh/fNbrNop7Lq7B82YFFIeqcdrsU/3AWBH3iOGpRBCVbtdu3tfqW59A+1ZacZj19+lgbgzdLo5tON6e1Za/U6vERmplu+yM07k9+B52O+z0tZ/bxDymNtndPK7ZiD14+oM1NZHZzxd/dujzhdt7ozufjyX87jSNrVRL+ZRP9jGbgjf1OC7Jpf3GpLbff9zwp5fnfK9NiydzviNm3sAQCh2h7gAQBy2FCOX7qh9WgIpZdyeRqHUV9hcCqXUrg6AnVtfc0ma+IdH9akFtvYbC+yor9STOt3Y+JjRe/IeccWUNmQMAFCP2/HLFBPi+ti7hV5LsXD5qF59D8qc3+cyoTYXQnEpLB0K+r5rm8F46I4dVEPZegr/y/H0fT9v9/n55DK7KYoM+/FjZ7zWw17e19oF8CzW473pAHbXkHPzLh2I6lwB+dz7ZN2f73+fAKDcqC3dhYyh6+N6g2o7z5seWu3l03/XCqhHQOvt2G6kLMdnf/sJdIVYW9mds6i9XLq265Vnqx5ZmerlJc+LGDKX/XYLvF7eo/77hVygKvKBn+XOPa5czK9WevZQsbG0Pp82ACDfkPtkPmzjlZKO/b3DpjjItb1yduVzOXKbCsgXikveEfrQdelwqWV0pZNF6eQMdd2brXQK4k7u3XVyvFzeF4WNzIo3Dd+rwVSFdIPnMUXSzrOBdWOS8V1zDZSvldMkXLwUnxFHXD6IAHpW2HTNra9XPHsh7h7oi2N9vNalPPlcPmyGfi8n+bpzVSwXbWBTTBsK06Efl4+EjO0SQdkxt/a37n1K97X3g8xJOuQOVHneRrxYUw0x+q7lUr79325NX9O5Vfecqn4u0sb75osrxxX2TKXYGzatP1zI/nKtdWjfrv1LBb9fE61e917oOpQ1JIfe9/nZGr/2s1Y7WV2TT33fhfKMXh7j+ld/8p63c7XvS9lc1P3GCNw1herrrnlPuWoMXjZzefwD8/jaOeBrxvRN5nXR57cqz+779TXwK1nauv31LN9rwzJki//3/lWLW4td7jXDCGVvFEiOMolvktijUlSLOdoQS9Xc04wt5CoH7OKVCsevESpJ5yX9RGaXLM0xRn3cECq5B0JtrJ2C7gFoMTZakBa1sWpePn3iXlXZdUypLZ6nRImHYYTQFHqfZtVikIQ5s7UhdSSmh9HWphxLnBCzlori38Z/aUgVZufsgurbcVN4XHX7zmOoRQGSbkEQRlUJkiog1zZB7PqXY4fcoYIo7YG9gijxN8DWrrjFSbu9kikolhSJjZPjDaXt2q7yuTt/+VdkJWNnhFAVhdynSFC1taVSd07mdKGYZKH9ZxRKzqlAqReEzn+3joTZVBBMuUaUZxmKKAwVTUaF0SFUoJgKFTWKK1sfGltMTwaxXMrfCnbbUpuy3b90uW6x1G6bjygjMv8uJUNTXBg9a4oXIziqYGPkVNtxGut2r5Ww1QpyzSha+9yhbFXXhjz1bJp6dw8otYIk9q62+ymUKp2yLWkRTOAE9f2SidsaFiOgIQEKG2om6SG4belHB2b9VDKerXGdOMm6tGvAbnG8bnTdKWuCjLW0FoI46s1IgRhgItcqcr2ikPbXZ0EsN2VH3C0lkbm4iap+3cjtDGhJ0+m+UT1BlkR+qGiJzFXdZK8jyVCaFUSsv189wtEnRt8MPh5rp3T2RoEgRv253TrIm5h6I7elNVGVUR9Fz0nt5ttkxojz2q/p7SY2xFJvqLS03xsr1W7ur9XKved/nSHeENdLNKvu3SZ3spJ7I2tWb7LrxylyFxdNQf3QuUs2F8Eucbw8GzoB+U+bbkSQuW53oq1TlsGl0Qfw2hX5dMbU+1C7XbL7fiOGr+vdbQXRbc/DBWLWUFTTjU1h935o607+qb3ML9c2rRvV1VGbXLr131BGSTci87tc472h0n+v3bgu5Ve3dpocLpT2q+jbZel/Uyp2CFhVCjp3vyW9zoH+mitjkLq4qI8rxy7H1b9bulfl1T3PS/fVnQDQ1tl7539tXjKM99X/mus+VL7unn2wj2/Z15+Xv7/le21Y3rgV/+SP/g4+X+5QqsKtWxpL5VMc8PFI8YNeZzzFAS/8jIcwoUDhhVsQimkMhm/XA+78zAyVFQcbcOsoNvBn8y1u3YpQDGIxLf+lsEZ+tRzhNbHbbW0t0KrgPkyYbGxjlnjAOVFs5KcHivk8JU8Me6pAq4LRJHy1HBujouTZFGIbQWCEYe9gQ2MvPLiAc/T4wfEBD2HEOXp8PD3h7XpAzAY3foXXGaEY3K8jPMdFTjbiKXom+yFSnRsfGnEQsDH7DSYhcazlwRE7pzCKCkFLyAajTXhYRgw2NVKXVDQmF3EKHkcfMEdHDILR4ugjTsHBmYK7YcH9OuLoA87RIReNow+YbMSb+QBvMkI2O+RzYFIaIcN5WEaUil2+zoOLWDje87wSo+SPX76D1QU/ub+DNYViRpmAZmYWu5QNrMl4MVL84zm6RrTjbUbMGkdPbWtVcTsQa+EpeFiTkZjl8BwcJh9bu4LeGl0xuYjJxpbihlLWGNwyA+LRB9zPI4yu8DYhJIvEGybiAi7xmAcf8biQG6a3GZ/dPOLdMuFxGeBtbnGmkteU5EbkQ7JO5bsg3sJ4aE1p8l+ixcHHFmN6HAIelwGD45ygWbf2Bpda/OoabdsAkg0bIRVyTE4zB4fDEHBaPG6nFXOgeOVSFKwpLeert6ndI4kJvhlXrNE2FkJrCqzJ8DbjiVkdSyGSHyFHCsm2mNXJR5QKvp4YGsXdnu63aTlVYzJ4fUPxyV8+HBvy7WzGyjGO4kp/GAKMLnicx/ZeEEIayrFKn2+mFQ+nES9vZjzOQ0t/AwB3xxmBY1hjNhhcxHkZ2ibUYQy0Rhe/y80q43p9c8abpwNS0hiGtIsTvh1XvH06NAKkdXEYp4CVY11jtC0coFYiAhK3/nGIiMm0eTuXG3mSbLZ5T++CefWNAVLqCFGRMQUxGnifua5rpELDQPd6WRyGIVF8LW/UNNIidpN//eKE0+oR+B54l2BNxuPTBOuYYI3DGI7TisenCcZlHMYVD48HHG9mPJ0HSIokP9E7X9L5rNE2uUoqIee3dmW+y+xhOH5XNi0db0gOYyTdmd/pMRqUtFmifowtHroRNBUFP9LvCslPY/QR88opm4LleGGgZg07RpxPA+5enClsJNgW97yLNY4GbowIwWDk9uW9XYrGslCM9OgjzouHsQVGl/YcS5shUK7gFC0GXospWGhTYDlOeT0PMJZ+N0vWMLZAm4K4OJJN0hwDTGpKLdjimoOBnyJKpjjwkhWMLRTPDCCsDs4nrLPDMEWEQLHhORkcDivOj9uz922L9RlxsUBV0D5vRHqmIMwO2pUWypIzh6rwhpmMOSdN60HIxbKCGxMkl7FsIvc5h4VESpTqWhTGY8DKOZhLUrBDolzIpUsLpoESyWK0PiMF08ZYMxM6qYq8mm2DVNUW3iJ5eGvS0J5TEYnLOm9gCylU4XRdZsg03kob5CUp1Kihh4zCset9/llptyYOp6mqhWtQg9vGFLKiMJN+c1g2BGVs/aatXCNkUi1+kftpm3Hb5lnbDJRS0UJe2iZod+220bTfIJPxtdytCnTtJUFVX8TAlX4v3WhlA0d39Yqi0BzZkLk0HsVA7WJ2dzLoPj7722/KXxrBl4byBwzna8b+tePtmss2fs2MyW+N0H6PyvfasJRytCu7wupG6f/CU/oPrzO0KvBMLe+ZhVXKaCKsKjja0OjMNWojsxHmVq0KrCZXPKvKjh5+srGRx5SqG419qRpO5517qSgkTmdYVZCKQQGxtpaqkKChoXBO9IPvVG5GnVWloZhSpO1QbFOOJX/kOfnG1ioGszBrLjwWpynmFLrwOKiN5iJaSGlqjKqK2Uh5TBTDSp/lWF9XaOBlnMLwKkaEsH46XVCY9MaZ0tIN9EyzYIX7HDf6ecPEMpnH0ufTlPkakVNHmy7sk9YUaDb0NRt3WhFjrTCsGtOcQ0AAACAASURBVI4l1bxdG7LZrSFpSyvs86lG1xhaRWmU9jZ0nX9oVEWpQCwahedHKQ6YQZcJieboeO5kBJGrJSvTRQHQbWUKQZPUf7tMZDhxX3L9bnyFmGJV63/vyi3GTC4KM6eWUdjYdXNVjVk4djk0lapMpW9Q+VwF98VGl1yvumuFRl9rUuJF7krtf2N6V3WAlO0lkPwbrXxVSKwg05ylrkYHGjWPhJXnKnX7PmI27frMa0WMePKSoOtSZwxSu9tGRc8WW6vu+iIj68wkUafV78asFHAOrh0rRWGNDn1O157SXww6qQsAD8vQPgvjrBgZD/PYDL2NTInIkcSo7F2hU5LNHSJ3kmtLoeubESqERtE0wqRShP0YAPdX2dBEpbyyOeuW17UWTWy2lfKxhmDpHOj6XLd7rbLCu6cDzY1lPWcHrWkdpbiFSgDAefE052hwqrTxcJoHlLyNcV06qIs3hVAVCj9ItSisHYMt2GjKbADRHGjxRtBcz+ctLKDd/4K2yOfZNy1sc6Xn4zxvMkh023woeWMMRgXm84CaFR6eJqpfgNgpg0qT4VaLwlw8alE4iYHT7g8ZqWtWCKtDyQqxN15yF9Yg75WiMKehfVbKkFGmgJp0M3hQFVLYZFiC2cIPunmI4YICrMVvhkEFUtTIfB2KQlosUICZOQWyIuj5YTWb18l3KCGaxiqbkyKCWFF8s0KOtCbCajbtmce48jlUbAYWnwvBbN+5tLYvjtN3hTmYzghRiGIcSvUeQqtAXGhMed7azEvXb2cYFEVtV7WdL6vejaMCUFWhdB4vqEDmeqoqZLXFP9fVbCh3ZzjUmd/3/RzL3uCRoir2HkjoPl8aVN01z4ykVp+e056ttu9vd/172n+vgSXHLq65tCXfW3o5XRp1z8qVVi/77ZYDfX/O0PtBI+7aeK60L33s232PUL9BuYbSfqfyq2TM/SqN5c+4fK8NS8M5H388vkWsBl+FG84F+IBRR/zJ+rKxwr72Z9zHCT+e3mIuHk/J485FDDrhlD0+Hp7wmEZMJiIygvgQR4wm4rdvv8CX6w0mMzcWWQB4igNSNfjR4R4zM78u2eKHhwe8XQ/QquDT6bHlABMlPxWNm2HFYBI+P79oiGPPCkt5yRaMlvJynZOHt7F9B9Dy3kl+McmPd+Lcf1/MR4w2NVbYG7/i6AMe40DKuqp4PZ5a7ryZc7Bp1JabbU6uGV1KVbwYloacArSb3bPC9miqoKwfTWecokfkdCKjjXtWWEdMvK/GmdDVwwkxG7yZD3g5zXhcB0yOcg3eryPm4PDxzQkr5yqLjIzmohG7vGDCCguQISBopuRJy1Xh5TRDo+In74j46NMXT4jZ4Nyxwkp+NSliQIyejk+N1ZSQMLnucR5gTMFgc0P5zpznTFhhAWBwuY35/jQhZ71nhXWpoZDv5gHHiVlhGQVsrLBVYY0at9OCkAxOi8dx5FySyeDd/RF+SLiZVizRdu7adWOFFXZSNgQTp2sx/H1ePe388/XCCjuvHjlrDEPEu4cDpsOKJdBzYnijIBeNJ0aZzqtraFZjhdWlGZRidHmfcDoPGKeAp9MIP0RoRmaFoVapinUlw8qYykyxwMPjBGMzxjGS8ZhMU779kKB1aShTyRvZVmFjd10dFAA/0PUx6MYam6JhtAUIq4GxBY/vDqhF4XA3N6MvrK6xwpZChlJaCWHzh7gZ7R0rrNyX9TRiOAY8vZvgpo0Vtlbg8c0RypTm6p5XAzfF9usbmBXWT7EhGtrk5r7/+GaCeRGgdcG6OCLIYrf4OluYF4EM/EXDDgnLkyeW18U8Z4VlxV37jHi2ULY0dCLO+hkrbJxdY4UtaTsPBZRlIwJTtqCcDKEE08YKm55GQAF6TEhPA9SQNxSHEQ9JmZG/HFCHsrm4R01owTEhJzJewa765TwAtwk1aOR1QL1JxCo7cfsKqGLMifugr3tWWCEYAxqLZ2FW2EbQpUHXREWfe3bXqlBd2QjAAKhVN3SnNvd7NNbWqgBilyVW2JoVMeF2Lsd60aiHAvUzg6orqt+QGVUUkEDagKtQs6Lzq25kO9XQ/POhQC2KGExHdlXOVEd5NBfI4kj+1RHLLEAu4iorGCYFSodKDLHgMbKLbR4ru7EzAY/f3HuFsGjPCkuy0z0rrAf0qpCnSgROHo2t1Z4V4ovvrtXpldhmAXItFUNJZYU81uZuqlfVGGvFXVXGXBy5zlddmwuqWRTJzm6Mrj0BUHFivPHaM4B9UigD9V8sscISoVRtxFhEgETrSQeWTeR2NaCENMhxKANfJ32rhObKqsN2nbgeV4ud631VRJAk49YZe1ZYfoTk+ubS27vi8rqW70LaJK7RwvKKirZGxUX2a1lh+dndufgWtbkIm64/bqO5Xu/QPmyGbOdqv7W5HfumrLDAhb2l8NwQ79FKcfmWefUo5qUBrfbjulaE+bUnMbrqjvueWN5df88b3x2na3gz6UNG44cM3Wt1/7z80sv3Oo/lR//Qx/X3/tN/Dg+B3AYlYXso5A4nyrJmxMcZyg1p1aboSn5LQcfE1VQSXteqcIoeg6XE3T3BjbQfsoERBEwXrJ0Rs2bTUMCe7EcMoIOkg5A8f13bS7LN1U/cS/fEPYSwVr5uYaTI6ILEbpNrNkicwJhQFgVrtsCQkAy0IkTLmdKQJ9l5FhZdGbvkdHTshpiybm6g0k4bH6eqiCwfcfGTdCSS81ASKUsuzcAGqiRWljoVaO6ZazJX3e1FfjL+xGiS7gxeq0tDEgVJOIwrtALO7HIn8hZkqS+W8xWKy6XEv5Jhs+U3NIzOigEmeRrF1W9DejZUzVpS2lOXHJrcNUtz24wXDMX99UpVdqcU97bNeBQ3VkE1JIF2nw/xss3+O4DmuijXi4uj5HDMWVM6kpZrE80YEnKknNUudcYupx5f01DGTO5w4ionaUFqVVCdm5hiI5ESZDPCz66Gcj+EVZmYkRmF4uPyqya5FSm/YGmx1CSbsmuroacsQ0pLgpbe4zKpdu/eRgzSm7tj01EklhpkCG45JA2jWLzObW5ykPVNLNbUkDKUZ1FyMdLcto6sz0jRtPjoPqm2NhmZUUFtyI1NmJ37vI4iQDEapV4teJa7sb/PytRdLLi49dF93JJ872K+04Zs9cckLrtfP9KXUuxixy5/UJ0BGzuWaFn7rpCBrTlPYyQjunRIkrKl3YMWg9673sn4ahdTruvm4gdsBiYbv8p2wZ7c5g6R6YmbOvRO2Y38Sfqtsgb6OHLpK2ooXxqit3uBqrq5EQrLtanteRREubFe60qon7gzqrq5GVZsLNmZDXd0x+Sa2F0vSjKwi3Ojc9ucd2hJt2bb9b2MVTcPmS+wGfXftYhrI7AxavPYJMa4GRsFm8sk0DYbmqtk3c63+O3uN765XMqc+1KpvRbLXjuDsq8r8gXwzI2yqp3MdohWDxNVJnjS3Weus81F7Q2rrq1mzPRxmuiaF8Os67KhicDe6pB+1PN2mqF3eXvrJor+kOo/fIMYxd6wv9b+bn1ednat/rXSKTQ7Y66XZy8n7I/v++ku7u/bZZcfGs+HDL5vUL4RyvhtzZA/hdnyB//eLz/X4/SDH9ff/lf+7PNY/p//wS9/bsD3HLFcs8UfPb7G/TwiV4WRY7rm4BCjwWEMLf5oCY7jQigOaRpCy+VnbebYkdxiQ7xPLf/gw9OEYYjkpsXKIkCxMwrA+TxAs2LtHMUk+YEMxpWRGQA7EhxBTpabBbUqhGCbMUCGW2Y3rAslOZvdk+ocITbOZpzPAxlfrNjnG3IHDMHicFixLK7F9oiBsJwpTqaCE7IHIRMiRdS4vDMCUiT59Ep3T3zUkqKDFGdjCtJqod2GrEk8TA4GdkhI0bRYDeMLciClz08RYXZwI9WpScNNEc5lnB+Hpuw244wV5N5QSAshWZLSBNiUaqUrykqIiP2EkKjz/QRlSqujGQ1qipeusAPJXGTVFOCqYDzFBilF8SwSTyPKpfYZeTVtngC2eBUF2CHB+YT5NLRzNSmkKbcYmsi5AVvsiqRSkZiX2QK2wAwZeWZ3VVugbgjZyzOhSpoV0xbbIkpwUU0hU4YQEFHMtM+klBsitSpFoSwGesiEnC0WZUxIs6VULwBdz+0ZX5AXg+wzubWp2lKpoAJwJEdRtutqoIaMuhjkQ6L7VRQpAa42lzTlKU6oJt0U2HoEudSt1H42tc07n/nVV5jsyPDcw8YSowZiiamLIZIiV7a2LPddeRxRQd1WKF0odY0Yxq5u6WlUpZ3/KRHb67l7/QrqlXQjhaoHoDw5qFvOn9gZ4OoFPS+otD7qAJST28Y+8jtnNsiekEikTtvzGeVsgUwImbK1JbXXY6FzVSG7AqwaecrAym0FvVPGqmNDI2o6nxQZMIvZIWeSVL6OtFbqbEjRlvUGVq5FOU8KdaC1UJftGawjSDtaNeqgaDyiFFo2Jhid0GNEXDzVURUYCj2rs6Fx90aQLVCzIXlMBVg04HKbryoKdaL7SIy+FDdG19O9RVaoA2tvgQ0nX2iNC9pYmFhLZCNrvQIKbLwJYVkFMJTNCJC+igKswKZUX7lKRGeG1yajjPTsZUIgD4nGGPUmK0MbA7WCrrMFyBrKE1JrLG9aFDbw5TmOGzqsbUFebEe8pp4bjEw41d4Lq+YxsmWheB3Oht4DSQOmQEV5T/JaU5SXsx4KIcdZbaRR8h6YLeAL1MmijgUIMi8FPSXUVWCzb1+qz4BsNmgev+JnOBrKKVoUqs1A0qhlQwEFHW8GfFHbeQ5zqV2qDpiKyru1ijcJm0HKSH6dDRm1UQGuoiYQ8ZImw1Tyf9LYSyNxg6DRTHCnIt3/ynMioiY6rwroPeMrXSOEPKYCAYTcV3rXqQrK28pGdeX1qKJCGQr0zO97RXOplZ4FVRQghGugOSiee7GbnFVCI2YD0HKsom7pb/o8kCIribGU2McNDSV3UA1CVnsCJCmqEiKsOXUTNdAvCrSxCLLa2tC1I9ri+qUbntq30aOOmwHfne+MccWv9vZd6lfpqrb/FWpD7ds4+nY747n95Y2AZ8ao9HHpWvyhcmm4931flmuG+Yfq/3n5lSrfa8NyshF/+dXn+PnhhtxL3YpUDJ7SgFP0+GR6wjl5jCYyec+Ctwvlrng1nvEUB8RsMNmId+uEF8OCxzDAaoq5vHErzsnhZ/4Wd8OCObmGhALA0QVoVHwxHik2U1UcXcBX8wGvxhmpaDyFYedKWaqCVeRiGrLBp8cnFEZFvc4wHPN4sAFfzDfN5XRyEanoRnQjaMloEwaT4E3GVyPN7eAiztHhs8MjHuOIc3R4Nc54CgPWbHBwEYNJiMXg3TjBsxvpaBPO0TVUUxBVQXK1qs2NVOI512xw4wOegsdgMiK72mlVMUcHb1Nz/xSkcI0Wk484rx7HIWCOFs6URtRyXj2MLnh1mPH2POFmIIKflDVuxxWDTfjKHmBNQcp699foAqNqIyM5rRRn6m1uBDXHITS33aeFSFF+/PIdSlX4E0arJx8R2A10EfIIRvGOQ4BRFWd29RRimsyEL4HRuhfjipAN5uBgDbl59uQ1S7Ske3G7htueXMSX9tgM8ZgNDkNAyho3Q8C7cYThzYSYDMVtMhKmFXAayV31OAQ8juSz5UzGpzdPeAgDnqYB3iYY/oEVRuXe5VVQSPku8XdjI+/JcIbmfF5p08boinlyeDEtuD/TupK4yZQMrM0YbMZ5pPoi3xi315Btcbb0dwkO0xBwXobmwlsKjc+53GIAvUvNM0EQ5rvjjDNvrAjC6m2GsxlPw568x5jSYjuFUGlkQqLz4om8x6XWlmze9IzSr27PsLrg54x2AttGkyA/WlccxhVGVzy6jUBENnpS0jCchuQ4rXjQB7y6O+HBjS3OEABe3s5Yo22I+OASntzQ0CUhXpn90FxxZTMFAD65e8IXIETY+dRIc5QC7g4zvtQ3jZhnXR2mKfCGWUJY7RYPCCHvKYjBYhhju9frQAQqpehGSgIAw0jvlGVwe/KeohmdZdKWZOBchnMJi/e0aZI1Bp7bsjiMY0RY7UZCY/MWLwrg9YszHl0mFJk3DK0ueDS1rTUZ1+3NjHtFG4bTEPGo6dgTK7q1KExTaB4NALCsrj0r4i0w8KZi3+fs6ZmsleI9S1bwTLQyHdaGhCtFJEg9mj2wK3YjduH3wjjG5lGRs8ZhDDg530hzLG+0iov6bAa8uJ3pHby6xl6udWVPCNPIdsJKhE0AmrdLzhqL9fBDwjQEPJkBzuVGinV2AyzLX+aeooFnsqWwOnLt5/t3NkTeQ+7opj2Hq/OwLrVjcRXyHgXLRmkeDIZDaPGrNSsYVzDwWg+2EnmPqZgONB9ZW4fDisf8TbXh58WPCcGwm78vzbtCm4JoHYwrKJk8GArHYlchcpoiaqFn0TnyeBJEXc41ki61J+/J4n0iqHzWGI4BwbJ8koYbEslDXMIB8jJg49z6jBxMG2PNCsazTFfTDEYA0C5vOap581EPeWOV15XaDoTso6LFxpppI+8xlvovUZP7u2E6bNmMqRt5T5ENmEJj21yR6maMJoXS5aKGrttmHHu00MPUWSGCpotx099+PlaSaqzHl+Q9YiDXft10hp4YgpVzM2+GJRv27zEsr6Kjqj+v9p4HwHPUWeG5p0Hl+peI5RWjuXV7afh1m4dXxyiGJa63t6su4+mv78s1o3Z3Xn0Ynr2Y57eJ3/yllV9jI/l77Qr7w999Vf+F//z38Kl/xFIcPl/uoFXFJ/4Rd3bG3z79AEcT8JAGfOKf8MfzK/zGdI9QLH463+JgI166GT9dbvEXj1/hj+dXeO3PmLPD2/WAN8sBBxfwu3ef4+8+fYIXfsagMx7TAK8Tfj7fIleN37r9El+tR2hVcb9O+As3b/FHT69gdMFn0yO+Wo8A9kbl3TDjzi34v95+BqsLxS4mS/GLReO8evzwxQNGQz/Cb9cDji7gYMOOROQ+TMw86vCjFw8AgHcLGcl/+OY1bqcFr8YZf+/+Dh/fnDCYhLfLhDVaWFPwm7fv8BhHOI5fvBuWRlw0mIR3y9SMMAB4yXGQEgvqTca7ecTLacEcXTNItaL4xlPw+PT4hHfLhCVZOJNx4wLu1xEvxxlfnI54OS04R4e7YcGb+YCPDyeco8cXj0f84O4RXzwdcTuuGG3CF09HrKvDZy8fcQoOk0sI7C4bs2kEL6IwvTzMsLrgFDwxhwJ4d54w+YhcFD46njGYhL/1Rz8EAPzmZ2+xJIunecDoI3IhY1aMt1wV3jwcycDkOEhxMQWA88LXVYXT4whjC8YpkMLpEs6Lx3FacV48DmNgcqOMXIjd8/w0oKwG00sinzKGjNx3DwdYl7E8DTjezchZIwYLP8SN0ZHd8m5vZoRkMZ8HHI90P8+LR3gzQh0Sbu5mQi4ZgTembAyZ0cAyoh2jaUp+Y3tcbENzSySlYzwELLNHiRrjTcDyMGC4XZGY8MXYDGvJLTfOjpSh2RGiWxVGZr3UuiCsjkAdRn39mLCePMabFfP9CHeIUKwIr6vjGEsgLBS3qF1pSv76doSaMsZDaEQyeTXAamBfBChdYG0hAphIsnNjakZKmkkBcoeAWjTSapi5USGzMqV1QVocIdVfDUBR8D88kSswgLQajqUEMUBmRShkVlAvw5ZiiNk+e8S7PDq4VyvSlyPUy8AIMT375Y1v6A1shVoM1F1oCl95YsX3RUBmJFOPuSm45mce+bMA7QryyVIqF0tosb03SJ+SAVUXA3Mbke8d1DGhni0w5i1XpyJUFIXjIE+WEL+gUQ+ZEEB2nRQ3THWyUEmhHPOGbNlCitKqN4RvyFBnC7UqlBuKsYQr0I+W4q+OCfrJokx5Q99E4WR0avipQ7wtKAdKf6PPGjoD8VWi2EXFiE0B/FuD8EmCmg3ck0L4KMN/aRBflaYg2nv26OD4sDRVQnQSuecVX2FPlIu2DIT0mEUh3nD8m64Uh+YqzEmj+Ar3wClZWFHMI1CG0pgj7ZNqKU+qxC6aCvfEa8cQ0uKeFOJtbXGKJpBiXhyNKbzKmD43KI7O60gpSFSmlDZ5qCie+stThX0i1zkdgOKon3hbYU8K7gSEF3ROJ4qRS4ctVi6PdDxNFe6RxpkO1KedAVQgvKI4SZIbxS7qDMQjKC6S072kY23oiVloTulQ4e8VigWqJTTJztw2gDQBdqYxukcaj1mpTX9fMX/63ZVO90TtAjROWQsqA/GW+zGAO7PclCBugH+gz3mg8Um8YLHUblUcD8quo306keKxGQygeQ9vKuINp+RxgD1RvZayBXQfMjvA2DPLZqE61dAcUIE8URsSL2kC1TEcV1kcYM8V1agtn2muyIOCWcjwywOtWfdUUYT8NdLx4gF7qi0Hr0obOmiWyn0oKE7CW23XT6pNziQ/BRNoXejMY2Y5t2tEVmqTRx8/KSlXJD6xTy8kyGeTtd7k0UqHNEqffToZ3eRfkR3Pmce0i/ks2BVVKqpWDamk8VLsY39e54piFFSlvybSX51ru7YqOi99FSuo7nW9v9llnZHZy7PZbxJj2bkwPyuXxy4Mx53bdd9397c1pXjMl0nF3zf+D5g1//N/82/+0t1Fp89+XH/7r/wCXGH/w18NV9hfqGGplHoJ4G8C+MugJfWvAvgDAP81gH8AwB8C+JdrrW+VUgrA7wP4ZwCcAfzVWuv/9qH2P/lLH9V//j/7ZxEKGWQAUEBxdRJ/KEaYIHyhECumRm2pPCT1Rs8qCqBdLzGBudtVzlVDg0hEYjHQqChQrV3Lb4tUN9KevhCDrGpssv0YexZZQQbE3bOvK6ynck2fx1PiFzPLQhA8AO2zxHpKvFgfNyblcuwiC6kvcYZSJB50J6uOuKif4+W1QriTCzGs9vGHjSGVFVqps8lTxrs/dik/YEupIciUIJpKEfOoVls8qMwZ2N6JIvN6cS/eJzs53jYAuzldlv4aqdPHiPbpSXqZX34HtpjALb6x7OIpezZWeQ3I+1ra7L9Tm7V97/O1Sl0xEN83xn78PeOqFHUhkj5Osc8hSzLZXLRlXPv5V3bX3uIWt3GqZ31dxsvuGDGx/y3bxZ3xr5k2Eju5j/mr3bMgsZsAGlPpfr7boASZ6lELWUNK1Wdtl6raeHS3djbm2a1tLTHbbIhSBb5Wl8aEKvPvYx/RrZf+nvW/91d//0V2ei/X/pyMs++PmEH35wBsuXar2gRz0Z4SJKOrI7GRLUWBvCMkXlORklyzaiRA7b7r/f3qYynlextfv1Yu6vQxgqpbu61up4C91yWsjzHsj+PiuvbiUYRmyLF+KnKtICT9ePsisYqXiICqO1ftXZ+XcY8K++8ik8vPl+/Ha3O6nG9//rJekxue5fH9NkXyrJLSvZeRuoxdvTa+iudzwZXv6I5f3q/Lc8D+3uHCEBDR6i63LC5EfmHgPEOO3jeu7vOHjIXnMrlYPxfHVC+7vr96XcRS5YNuk1fW/K6f91137fp+jN+kXArlA+VbtQtcX+fvq/dt+/wW8vjWbf8p2vyu5W//+7984+vX3bD8RbvC/j6A/7bW+i8qpTyAA4B/G8B/V2v9G0qpvw7grwP4twD8HoDf4X//GID/iP++tziV8Yl/wq1ZcC4eb+MBTmXc2BVOZfw83MKpjLl4eJ1wSgNe2BlrcXhIAyYTYRRR0N+5GY9xxGASoU1pwDk5HHzAp8Mj3oQjjnYFwMYpKh7TgFIVXvm5McUu2eLOLXgbJniTMZnYGGNbapBsMJqEyUT8bLkFQDk5l+SaYbxmi4/GUzM8l+xgVcZoEgpUa09SiqzZ4gfHh41BVme8WymH5mQj7sOIF8MCrzNOyTfioY8nyvU5mohTHFrOTTGOT8k3V89SFY6O3EjFEHc64xw9JhsRitmMdHbRnZPDrV8bGjuYBMNss0cX8LCOmGxEqpxHMwy48ZQ/9HEdcDfOeIq+5c58CANSNnh9mBvRUm/4J2ZHzUXD6T0rbHNfSxaDJfe2G0c5Bf/ePbHCfnxDjLSErlJqmqEjOypV4cQusBOzwgqSqQDM0cKzy9s5EKvo5CMikxyt0eLQscL2hnMuurG1ToPkywO5ma2UC3ONFochttySpss1KRsPh3FFSAYhWRwGziGXNU7nAY5z0Em+R+nfMconbUpOSPmdErbfwHGzwrKq1EYKlJLG4BOW1WEcIrdPBp5sZpB7Y0JkRldJOyOIsJAticE6+IQ12PbXMHqqQG6rw0AodGB3WmNKi4FeZt9YYQEyeoUZ1g+xGdvi0lorubWKTGIkan4/MCkPu68B9Nnazf3RuoTlTGkappu1GXEpGspTyMaNuAmiAm7Y7r+4uQpJk1IVYXGEBp893JCa2ygAhMU1A0aLy+G4scwKGu2HxGRCFdalFrMdTw7uGKEcbQ5I3CyKQjx7uOMmM+vIHdG6zGy4m4ylTi0cN83tlKi3eFwmONHsUloCkQYJsU5jjFWVXO8MEQCJC19Jilzw2AgTMh3tM8pqoFzZDEjZ6ODce+XBEdOpY9KawGv+kBp6K3IsT247HigesT5ZYCxNM6rzPkUEbGUXNN2MvRoMfRaXtMQorBitmuphNVTnRGk9qhgF0qYo0UkTYgps7n+qQkXTFMlqKvSqUXzZ4tq6GDcVFOpYoN9ZcoVjlLYRzDBDbLUVeqX4U8WIp2bXwKqAMhbooIlxdSS0UycFMFqrE6GyxYEQIVuhA/neFU/IieZ280QMqg3B6VBfJXkKC1/HurhmNK24CjNrZoWl9aWSgo4kj2KpbvGV2FktGU5VEaKYjt9de9WBkOaqABN1M3SwGzsamyqAhiDpFRybiF28W1WMDCpscXrALr6tWuyNNwOYM8lHZKijbvJomytZNdIgHTWK2+5TVYBml9Pi6g5B00mhMFsvFOhzlI0FHgsjiL3cSUbb3AUprAZQEaiSsad08+Q+WtygQnPZFHSxNzAFeZRjPVLYdPa9wAAAIABJREFUl2t7Fa3Pgr2tJ32LDC4MTkE4L8sz4xmdfPiYXEd9q6vjaaXbdLhq8F8zIvU2vn5el2PcCKWez2M313JdZrt6Ms/++7U6bRD7Y4p30xoS+3Ug1zc1ni+7/QUbqt+l9Htgv47lF4ZYKqXuAPzvAH6rdp0opf4AwD9Ra/1cKfVDAP9jrfUfVEr9x/z5v7qs974+fvC7r+tf+S//KczZI1YNpwpi1UjFYC0Wg067406VZgAKg6wYUJJeI3AsoeTDFEPN8udSdbvWmwSrCp7SAM2r3OqMJTt4/gUMxcLrhFJ1y30pqKbEhZaqGpIq56WdSxRTYuGkSKyjVQVLtjvEcLCpIa7iKkqyrQ1hi2wgApS+RZBfOS/suC1XZceK2ep08hMjtK8nRp3UF+NFGF8FEcyV8mjGouHYuOnr5KowWk6uneyuHykyLilrh+I2lJcNQQAN0T16TijPMawyDqmzu17Iibq+5T7JWCVesWJjj21suJ1BTMc39NWaDKMqVo4/lJyRlhVla3Jj8u2R3B6pTYwaGl1bXKlSlV1uNeeFpPMbKqtavR7p6r8D2CG5jbmVUTWtsIt57ZEykY/n1Ct9flLJKwpsvxeyrvv11N/v3iCXsbQNbR6vxA7LfdK6tPhfMWD750HuaUMWhc35AnGUz5dMusKgvMbt3vWortSVcci9EfRVyLBExqbFGSYmDttusnPpWW7LfT+EnlLM5oZUC4LofWo5KWVMjTXZZoRg23gl7rOU5/ORjQNh/xVZ9PF7YlTLr4AxtcUGbmtoL0tB7noUWFBMLQnb+XPpmKxFE5K5eCFd61hnxRC/RHINx81K2heJ8ZM4XsiakLWqCHXe6ZL9uune3ZLDUuoICoyuvhRBkvs1U7n//udajHs5p3Vp8XnCACyflSGj3Upc3yUyr0i2JNParunnBVAcmhKiK3bVbQhtVo0ESFDXWlRrRxBK+f6MKVcx+VjaNjkg6LIUxQg2o8nNa4CN5J6RlwjTFBECCTpamT03XrEQvmkxdcuD2SOWChsbb6/8NssQOwKnLXZO7c9dInn99X2p2FzA5XtH/LKvq7bxdrJoffTj6OfTGTl9eotdne64kBS1tDhdHWGPbay16qId6aP/LOMSpJvl05PGVF6/rd3LtkU22E+7dX3ZzzVLqjt31VC57PObGIffoPT2U2/DXd4a9MO+HMe1fj9goL3XmLx2/df1d9Hudy6XN+07FOn///53fvmo3uEXhFj+H/8/QCz/IoAvAPwnSql/GMD/CuDfAPBZZyz+FMBn/PlHAP64u/4nfOy9huWkA/6R4x/hi3SLWA3uDKGRj3nEUx7wqX/AOQ9wOuEpj7gxC95Gind85U4456EZoG/TAXd2JiNRVRxMwJ2ZcS4ef7K+xGt3wlos1mIxGSLSeeXOWIrDm3jEpAMyNG7MinfxgJfujFIVHtKEQcedYaJVxSkNmLPDD8d7Ml6Lh1MZThEJkFMZb9MBgbcAJx2wFoeVvztNKM9kIgwKJhPxJh4Ri8HRrpizww+GB9ynCac04LU/4TGNWLPFrVsw6IS1WLwJBwxsNE8m4iENKFU3o/zGBliVUdiwPGUPjYqjXZGqwZotjnbFiRHgObumpM/ZYdAJj2nAaCKcKihQfE3AYxpwNIHqmYTHOODWrbgPI0aT8Nqf8fP1BnduwVoMluzwyp8x6ISfLi8wmohQLKzaXHOdzs0wT8XgPo7NLVoUvaMNzYB+SgNS0fjt2y+gVcUfPn0EbxJGExklLjgnYhAUV+ePhhMKFE58PGQLb8iIP9iIhdt+5WekqvEYh7ZpcbBEJHWwoW1I9K7Tr4YzrCp4yyl0ZGPj9XAmNNwv+Go9NvQ6sFysKrA6tzhfZzJe+hlfLse2SfKbh3d4SAN+Pt/iYEMz3mRjAwCsyi3vqje5uXiLQUeEVuQBIK7iMh9vMh7CiJd+xpv1gNEkaFWwZNeM6hu34iGMONiwy58qmxeDoY0D2Yw5JY87P+M+TLjzM87JIxaDVHTLkwpsRFqhGMRimizPyeMUPbeZMVi6t18t9B6I2WCwCRPnh5V0RAUKRxuQqsYpemhVGwIPoJFfiSu9eAwAwE8eX8IZQtgGk9r1silx61ZYnfHlfNPcyr3OSFW3TZhaFV6PJ/zsfIvPDo94ux5aWiOAYp1p7dF8Jxvxbpma8X3jybvifh1bSqM1bZtXPzg+4KenF4hM0EXvE93k9tPTC0LrbcIpcM7Z6HFwEXN0yHVz/5bNniVZ3HjyaBiYCEzyy9ImFrUv/T2GAY7nn3nzwTHBl1EVIRtMTDT2GAYyxotuXgin4HH0Aefo2iaF5RQ/Qjb2Gzf3eLsesPDcb1yAUhVv5gM8eyLIZuLr6YwvTjcYbMKNX/HV+YiPDie8mQ/NsDp6ul48ONZEuYeFNCwxCRqwbWqNLEPxEslFI2XdCMJejEsLe1CKSM8kfRNAxG2lqjYvgAy9yW2/K3Ifz5HWZ0gGrkuLNLmI+3nEp7dPjQRO1opStW2krdE2srTBEiGWeKPEbHBaPQ5DaHMyujTiunN07X7O0VJaKCZqU6piYRIzmc8j5/wF0NJWGU25fh2TrVlTGnlaKRpeZBstjmNo5GWFN0+lvTk4TD7iaRlwGAJW9iQRArg3JyK6+y5lcBHz6mnziknDANrMmXnsuWgMLrYUX7IZI3H7Ml8ZeykK0xCaJ4lsergunGcLO0DbhLqZVszBNc8J2XASrwepL2mnZEOpJ80Sz4sQ7JYiR6FtDsnGVE5bHl/ZRJINIiJtIgb0WhX8ENt4ew4AIToTy6VtJLL3Ss5d2EzRzQW+3+QowmLOhnmfLqkW3tS4sEPEM6KFRXSGaiNFE+IbIfoBNiurgtip+zCH3lDqDXfZHJCNA2ajfebuLW1cWoyqbm7lslkgn/vNg2vkPeWivd4ov2bQXyuXlusHmF/bRoKstbr/3h+7imBeO96P4dqYfl3Kr9NcLsov0rC0AP5RAP96rfV/UUr9PsjttZVaa1WXQUZfU5RSfw3AXwOA8bNb/M0/+sfx0XjCOXncryMUSMm89Qv+h6ffaT+YBxfx9jzhbqL0Hm+ZwMWbjKfV45PjCV+eDzj62Mhz5oVShfzg7hFvzxOsKZRfkllMH+cBpWh8dHsit0dVMa8er/4/9t4kVpctSw/6dhPN35zuNu/e+5qbWS+7yjJYNsIuoWKABUhYCGHLEjAAISNmMEAWYsCIERITJCwzSYQESEgIAUNEJzGwkSirSNJVlZWVldiVzWtve5q/iWY3DNZeO1bEif/cc+97WZm3Krd0dP6I2LH32k1ErPZb6x3OtwvEqHC8bLDrilGsk3MGi6pDaT3+7vnXABVRJTQ35zRi0PC9xvKozdaNtrMoCo/SDpaKEBXajqwOrrNYHRHgS9talKXH9qKGqTwhAm4qVEsCemmaIicmX68bdL2lROktoSxqHbKrYrMvKaVHSthd1R363hA6oQK08XAtAbpwzryQtMXGhIx62KZUJ0oRWh8njm92JcqEJFlVPZp9SSh+nUG/K1EftWg2JWzlYaxHu6mATqM8a+A6k3IbDnkio9NDjFIEufSpCJ9ShwCAayx0+kBWC5qTP/z+B0AE7P09fG8QGgtdO0SvYes+o0xGAD4Bo6iakPBMkVwAdURobHa7UxtLLmW1J815QWkT1ILSZ6h6SPrO1gK1tQTLvk4IAzq5/G0KSguw14hrTy97ThmQgEr446XXPbkLNhpYENBKbAy+f/Eh/CIgrh2lQmBNt0JO85E/rpyygDXrHA/W6iF3WkptECsCa4EH4iJAXxmi36kEux/zB1u1GnHhoRpNEPUBKZ1C+gB2BKiikstVrAONeRGgNwZhkSxGNhLQi6WPpmo1EDD0BcBcWoQ6ULqBiAR5r6E7BX+U3JtTTjvlaO5iAk2JmpLKQ5H7HyLI1TD9Vp2mRPYa5GZYRnzy8hFUALq7Pn8I9V4jLNlPC1BOwewo8bw7CrmecuQeFcuQEQQ/2Wr0px5PXz6AOwpDioCo8NmFJkAXHXMydn8UMhOg96mPYw+z06ntwbrx9PkjdHcCJbDfq+T2RlP70UbRNZ3cK5cBz680/DLA7DRCHYfYMkV9q0DgL8+Ta57uyFWSAGswuEdGAmBRbgBzke6MulPZVS+UEaahpO5uSRaJYCNe7mgMbkm/fYWUvy+5bSrkNCab5+/ALSN8TVaDFwkspjsJ5JIJkIthAC6vFLqzANMqvNwqdKcRu/N76I+TxVADmwRow8ndfY0MgKMC0W53KgGREM3seqk72tPB0prt91R/txtzbaGie9lis9ur7DIZ2KXTROx3zMTRGDZ7AmBBAEKV3BYDEAtg3xDwzpNnZwg2gbQktz9yd6VzoQD6HYG9tAlk5zIBmkRNwDquAXY7+q0doFwCiKkFeE9F7YcC2DW07q4GnAd6BthZA7GjPqIFfIcEiASEBJTiU7vM3/cMsF4C7RbkYmlpbXwHtPQJRKzpt1oD/QZABbie2txtItSdN7eAhB2gV+m92YCEnwgED5gVgA7QFgh7+h8VoDj1yzZCawVbAqqNMFpBJzdR7CKMAlShsgulchGWjaNFeoekRy8YAJdrFAsCaDFWwTYJKEZYLrWPKAp6LmwTYUoCviGgmwEEx1YEhqQ974kBFIaBX0xD36TsLprW2JCuB76kcdr9AoEzsoi9ZRpaTx6H8kjP/Xh/A2lt1VBPgvcwyBBfI8AalVKPSCtkkhmL5C4r3FwlAI0KNJ/aIc+BBLiJSkG7mIGUpiWD5HjRJoP3+MFFmOlh19iRNVOJ6yq1o5BBgPJcMK3smhtprrTDdVdY/sSncwwadEioydbKGaCckZE7zx1fmz5P6rAgKedh5jGcs5jmeZrW5zqvIXT+5HbVfu7lC1lwf8nLz1Ow/AjARzHG307H/wNIsPxcKfVIuMI+Sdc/BvCBuP/9dG5UYozfAfAdALj37XvxmydP8LJbotQev3b8Al0wJGR2C7y3vsiuqJu+wodnz3HV1QhQ+Mbdp9j0FXzUOK33OG8WuL/aovWEXHp/uUVteuxciZfpGlsUThekYb633AIAXjYksALA/dUWF22ND87OEaPCpi9xf73N9LN76b4vyFL28GmOkWQLklGkBb5sa3LZwxD713kDk7SyISqcLfcwKf7woiXr3N3VDo2z+PDuc1x1FRpn8cHZOTZdBR8V7q232VJymTS6PmjcXe+wTxrvZYoLPLnTwCbhXCG5oC6bbDlxSRveOJtdTFnj2CQt8a4tcXq8y+64vTM4XjZoe4uzd3bYdwWMjuicwd2zDZreYr10WJ9d4aqpcOfRFp2zcF7j7vEWhQ642Nco1j67dZIL8OCmyuPbtSVpRJdtdslcnG6SO2bEvqN0AV/51mcAgGebFeyiQ3XX5bQhnBaDBePVKaWIaVmTHhXsirT/9dk2uapGrB4Rgi+Nj65Xd0kxUZ653C4LxkpFLB/0OQ2KTvPZ9xbLky1cSjuySblYeT7ZfVKlce/bEnbVoi4cdm1y/T4JOPkqIffu2iKnZgFwzV2UNd4muXZ6oQEvrc9WNWtIS83xogx+tHq3w7YpYRikJuis+S6tQ9MV2SKhFMUrstKF7+H/XWdR3U9xlvcpr2ym7ySMYiNlvCQALB9RrtquS0qQhCZbGI9dk6zQQcGYIX8s0YLsLso5ZgEM2nYM2vwYKK1A31ms321gdMT55TLncrX3Qo5xBABtAsrSUbqaZsill11hU07SGIH6gx5hV2H1qMF2XyIKS8bq/TZZQ5AtAc2+hEpAP5xHNzYl7F16X3CqCkSF5Yd7+M0CIWjY+y6j9modyaqyrcn1uvDoWoviQY/YDXGW+ZsYFbShlBHRGZjCU15YGxA6C50sETEogPdYQfGiMaWkYOsLACgdoELKhesMYD1M4eFbUtypoKFLl+IlLVTpqB5bKfTgJqsUUHxzD9cWiL0lC0npiNZdCYxAlAC96BC3JaINUJVD2JZQX+8Q9iVZQqKCqcnapjVxRqEnSwznz/VeQxVDGhOlIlRByje2/FDKEQUUlOLFpNhY5uH63mTFH208n2NjY+K4oleIpc/xuSEqlGVKhwNyHTaWx6dgCg/XFLC/3uRY45EXTVICeqfhS0qDEkraN7w3QlBwrYUvPWLl0OxLaEN5jjndjE6WMNprFA9rEp2c7sam3MvdvoC2MY9HG8oDy3mP2d3Vt8IVOc1t6AzMwuVUHTFQvlOJbm1sgGsNbCWUnp6Uic1VhTctlB84hZUUIe1hlfMiK0sgUBxDjKhymgpTUxqO6DQpN5NCEV7BLDxiQELEBthtOLsVOz1mrANglg6+Te+sFIscnB6eByC7BDO9sddD3tqghryinJOV953Ic4oA+l0mJSArHBVIwciKyZ7Gq2o/pAth12Gf6uW8vhikiIKVfwJUixXEwNiCGFSOYwVIaSXdZ5UYey4JfXaUbiRrimksnGYkgxuNJBsM1kxBymDVi4NAKc5HBRzMY6nE/dPCejshhN7kxkrKprGy6JpgFpFzds5KNVwppvlL/2k+1DBmUZX6F/M9J0zGG67NnZ/cNh3yFy7/05fRyK/KTeXnjQr7dwH82zHGHyql/iMAq3TpuQDvuRNj/A+UUv8igH8XhAr7mwD+dozxL9/U/nt/7jT+W//dP4NCeTTJTXTvSxzbPSrt8LQ7gtXk2rcybQbgCVFj60tYFVBoPwLvWZg+tVNkgJp75Rbn/QKVJrcXl570q56Y/5OiybGbLmoc2RYXPeWoY7dLdqNk4B2ryH31absGANTJvdYllVjrLFZFm921GldkV0eJHMpumhyvCSC7Rp63C9S2R53cTFcFubXuXJnd3o6KZtRnZV12z9QqYu+KTC+AQZhJj7hRAY0jV9YpAq5RIbvpMSCRjNkstMc+3cvHDPDTB4NdX2BddNi7AoXxBCbUl9kdTroMsQDEgjgzTLUd8hvSnowEzJMYfx7v0+0KMSqcLvfwQWf3tjnwHha+K+sQgVE8pgQJ4nycVeGyKyi7qDGYD58HAOcNWkeC4qLsMwouu4dRfKXNqVJCIFcxjtNkppX7a51BLVzNdk2JovCoCxLQOM6Uc2AyDRIQiF0MOWaQY16dEBaLRFeMFEPZdJSnkl24ON40RIXemSxUcowYx6XK2Ed+LXH+T87ZyQKgUXE01yxwah2yUNokjwNryD2SBVzvWRClTti1i+MamcFn9zFrQxbg5G/uh3+3TYkYgcWyy3GFLPRJZF0pqEokW6XiCPmWcwo2+xIFC0SpXpvAexRIGAveoEgCFwsn3EfOfyfAf/p9gWLRQ+tIQoTwSvCdRlGTOSB4Q7GHHQmNPq2BZEw4Vx95KOgcz2cs5cpjFFjeY95pup5y4nGcngKyt0NOm5KYZF0M68I5+XQR4DsNXYSsDGCk2Ozmti0obQmD+/SECMLeCNRQutYY6KVD6M0A3rOz5FkAkACUhRwMDDHHrUUQ85qS0WcEVqepHjOlmqw+YICaZKXP3BN7DPAU90KgYKZb9pPuVb0iUB5ug93pVCQAoMpDbS2gCaSHGMYh7x6lhUnt2EheA1GRJSRZj2IVoHpFluUqMcyBGNZQCotNshjDDiBAnCpFJ6tjqAeGO+pxyhbyGiCrTx6Ton7IwplAeTQGkBcPstKmvpQjGnVD88KeCKZVcMs353t0nwBzQFazHHcXkcF7okkWahZ+0noy+A1bx7JlSg8AOFEsq3RDlAAwETRusx9oiQo5XYa0+LDQAYDAcywysBDPG9EoBCNgAIMRVjiifwD5YS8CndYx2JjnSApRBN4Ts0cC0TXEK3K6kGgwEv7yOMJgaYsGGayG2+f5Z8u+FMzy3MXJfRNBLVsz0/FU9roGiqOut5EteQrZEpmFPa7Pz28WSidtRNHPHC1SqOS9ocYW2bn7o8LYmovrY7zmcjo9ntz3RulGpm1MpMU5i+WIlkPtv6qk+r/7n//i4xCXDz6I3/jXvvwYy9/92zePTSn1AYD/BhSCGAF8J8b4n33ZdPy8Bcu/AEo3UgL4RwD+JuiR+u8BPAZZpf+VGOOLlG7k7wD4F0DpRv5mjPF3bmr/7rfvxb/6X/3LOSZsSMWhs/DHAgaDf7CAQfTFLGBNU0ZI4Y0FGJkigwFxJBgNM8cMPgMgp/XgktN0REIRPQRAAyDHHclz3Aafk3RPU2tMwSm4DjPjsi0uEgyG/09TgnDsD3uKsBAif2uFUUqPaeoQCZDCAoHzZrQG1vh8jufDTH7flOqD45Km49MqDu9NMZdG7A9Jt0xXIedX/pbpKab1pqkZ2Po3pNuQ8TADEIqkb7gWr4HJcN9yvWWaDu53mm5kmr7jUAqT6bpJuuYAbab9AhjF7lx75Yw0pfQ/p2CYuXaob0l7RBJkxDOkuJ4a0nRIUuS3Wn7DJO8wume65/RgkSI6kIWkYQ2Rv5hxMkd8j6wbAzIgiiRqlAolpjoSIELM+1xKEwZoGaUbEfdKmm+clOnEjJiSCXeQOeZ4bV7G8Ixi/hSy4HYw7YsQoKbt5RQimdZUR1o1+LYMbILByjOxUowYwggcZG4UBsFuCpgy7W86/1znpjmHOM/XRKqJWevGCDDmwHWeo1nODsM6yb7mypQxnf5mhvrQ3gGgYhJ8ea0OtTV5Nq7RMX2wNciC9aZlCpAj+5XrPOGcyfokpQbk81xtlkHnMnftJiFgsm8mr9FXCwOT9RjdLImX7+2ZsYysW/K5ObSWE/LnaJtDPmVyDglD19pJda4LMDPjlO3fQNetXTJvU+dQf69q9zZjf0WfBwU7vKL9V7T7xuWL3Duh4Q/+kz/TguUjAI9ijN9VSh2BsG/+WozxD75MOn6u6UZijN8DMDfIf3ambgTw77xO+yxwLEwPrwfrXWn6BLpCQDKNLzLoyML2CFDoPKGYWpBgt7IOjbco0ofXJwub0QHHVZNBOwrbw0edATvIItVlARWgFBYMKrIo+hEC5RTwok8pHVhIihgESqMiKhZe0/GcEAWQpalKbfokPHIsKP8urc/Wu4yamMA1OL2ETda5GBVsOucFA1GYkMA4kAVMRgAlBFM6Ry76MVvQeoFOysKnNYGE0CRckgWPXIWldazntUoKAgZxkPkxpSAZk7BP9CbXqTRedkll2tj9eNeUgxtgVHDJMsNWLFl8so4x4IAUKIZ8i0Df2xHi5uD2OgZFYCtZjCoDGzAaJoDs4kkolOTixe6DLIhKd0KiV2V3MFpPoG2LZNGL8F5l9zoA2Z1LChpjoVglV02T3S35G8b5Fvl331kY64c6SZhDVKM8l3le9MAl8D1wpDrXiqxm2pC1jF2GeU15Z8p8nYwQ65Kr5cgFMZBbmk7uX0qMM0YkpEmV2hyEMD7OORhnmOK+SSlPypDnLafPSAwP9Z8sbjZkITjPshCWg1fQNsA3KaWGivkD6zuThW+lKS2HskPMJru+aRtGrnU8z74xUCWp+keucxFkSStDFtoYRVOZJGzpYc8xQmcWbJIFcgCTEAIcM9Xs/sdWOSXmUuaX1GkcAeSWx4wqC3omufOxZRBq6I/Hui/GFsCg6T+7+ak4MJjOUNxsIBAQ2AjVGrI2IbXZsZBAY45sfRQM7TVAC69TugeVySQLI6URUVMXR80CSKrux/fl4jFwgApkKSuGuRtZQryi8eyTQoVd/gRKJ1n/knXT0H8VkYWlqJHjq5VLVs1A11XEgAQaVY555TQiuc+IbHWkGNSBRmmN5PQnCANIS1RiLti9UCG79qmgBusbx81ZEXvGU+MpRu9NC6fPAGiO85IEpLQmaqA1Xczy+CStBtNK6ydoj0ObcxZLbtN0KlsJaQ5TX8Ltc+QeKddcDelGeA6zZQ/IdaRrqPJTd1yVUn/wAKn/bI2F6F+LuUvPy2ic6f5rgjHPs3jGRpay4fNyfa3EXE3PzSlXhrkarNC5zi1i/GaVBFHcN9PnnDUw0zsn/MaZ+29ob3QPXz8gqL1SqDxQDgqNo4/bK2ic0vqKPqnfW1T6ZS2/ANITcOqn6feVUuoHIJDUt0ew/HkXHzUaX+RcjmyZ9FFn9012z2Rkxl1CiCSXyCEf5KYbYtoAEvTYgvXcLfM+lxYyo8g6uQ1lZgiNDhktDyCkxJDOS+tT44bUIADQTwRPrSJab9AC2SWyiypbCbPrHL+8VcS2LbNVK0YS3HpPMXDWBLS9zYIQF47lYxrbJJzzeI1oDwB23kCBBLQuQe0bFUepN/L6JOGha+yoTxYqOjcIGRTLaEbpBrQOaLoCWlOcI8f9cSyf1jHH6bEVcGo15DjI61ZG6nPfE7BSmeKJ9m2R++Y8jc6NHxMWbjgej10mqW3AJUZKukqmq+m6mdw/3GsMvfVDGIQd72xGtNMmwHuV64egRl8CpSi+CCCBg90goSKKwlOcFMc0iq9gEIJ/DANCJe+1/D1UMcf65W8lC5WKrKmc5zJfj4oshIqE7JDaZmE/Ci+CYRwp52G6L3iTLazSGsrPAwmUvL/Ss2RJYB3mINVL8VtAerfzM6SRXTMzo6HiYAlUyLF2PE9yzkyZYtpEPI1ScThO51iojVJgyHM5HGgbhnyPQWUrK1TM4FMqDUIXfrDMJQEZEUOsHisNmP9buCRQputprqAiUBBt2eLqdY714v+DCy+yYIM4pHZQRRDCIy9M+m+iSAGBTDNfGyxo6ZjdKnldkivdSOBk2icpG+LSDW6qKrWXBS3m7BOzX/shpqwgwTOfg+hbDR4PIxfYVCdaQR8w5IyUzFJUiKz0sXFybaCJrofRfbmwEMntlRMzjgQaSfMUl8OYeRRRcjgRWTiN5QznE9L1KeM3oV9FhZCEklAlJU4SUKIOg5Aj39dRtssPdhyEDqaNL1e81jxfYbyfFICgEGreP7QXvRExb29QsmCG68KMZLBHlrpUQj2hT655jWE8c+TNCCB+EUdT9UpLZFZODe9+r4Y9MRbQGLAlivYFX6HNAAAgAElEQVTjzS6KiX6/kH2OxzVH3+yQJ3Mnx32tz+lcHhBi5udGifHdICRx23OE33TPTLmxj2lft2n/hjHP9XvjON9wTLL9G8vrjEu0O0/zmz/Hf0rLPaWU9PT8TsKluVaUUl8F8BcB/Pbc9S9S3mrB0gWNl+0SrbPZtZTP+2TVkvDsHOMGkKAGDDn/ZG5Buk5xZiGmuDlhEeN+ZG5JFpxk7FeEtCrFTAf/D0GhsH5UD6Jt58cCi7RScRucr44FIeleypawgdkf5ycEBiGH7hsEGv6thXUCQD7HRd43dZekcwbBa2gzWM5i0Dn/HP9XworFQomsE0NSAqTxsuVLujSycEMTRm+iIJhxfjNJq28GT0i0MdptFkSFAMGd8PiDEAKyBUe4+HH+uZwzjt0a0//gZ3IxaqI1Cz7JMpKTuKf4Na7P11mIAUAChha55kDXQxJURlDtsg1Z5Ftcck/SrS99GLKVUwHRU1Jthnfn+3N8nB6uDfMiBS+mC9kVNtdN+yC7Ckp3PNFXZrTSeCEsB9na5sWYlbg/TMYa1VibLmQRZmg5sX1IcYAQiobIVjzuB0gIqHFUb85FMyZk3mjp/2h5skAlaHBC+GIrW4pV47qZ9ypUBtrI4Bf8ECWk3DzOkKxHfhjrqLB1jduKQFRq2Ce5oaF+zGONuMad50FiWJvJMzj6nRlNNTkGgAQaItdapTVRok0A0CrH4VGCe40Y4mCNQVpPqb0KyC6bQPrNzxa/V/QQ38eWTtq/9DtbRPk5DoLeCLIIxQmt6f4cIxmRrGAH5inFdMYyXGt/ZMkIGPa5nrQBDIJ3Gnu+V4EsqLzV0/yqgCzgZkseW5t4b0JsAyXiK7n9GbfTHDeY5lLxnsuWOeQ2olb5Pz0DKlsH36ikfYKJIjNbKdMzoEbCznWrrnw2VMSAtDw1rwnBZ1TScz5a80kMHd2I6+8wSZsEZhHbW24hJU6o6UX5W/Ytn7lkcZzG+I1olGPkZ2Suqpy/me/UVLi/1q7sU/SjeHzx+hJwW7Pt8LF6xfGBsUxpfKVwK9uf+3+LMtf+aDrn2rlF268llL8Gvdeep7e9xFus8ZuVZ7dx81VKrQH8jwD+vRjj5ZdNxFstWK5ti9+8+2NsfDWyJLbBwgWTQWC0CnAJiKdNGNhkbRxUuvJ+AsgZ3n6Ut8/nuE2ub3WARkSTQGmGGM90TcUMujPXT4gapXHp95i5oryHA+gPgAz8I+kEAA2il3MRsuW21D7nIJzGckqhWFpbWbCW55hugKzEGvGaQMTnmV62FMvf3A7Pz1zSe7YSazWgnk4FfnbnlYLsFGSGhayMdiqESdkeuxlzrr/GEaqinONprKtK69OLNuQ1+T2lORtbuflYWnm5L3bNlWvlg4ZNeRHl/KhJG8Oa6gz6Q4ivhJjLeSdlzHAWsMVacpwtzVUcuULL2NuB9uE8o/NyfC2XcRymcINV5G6d5y8rOQb31Wk8rpyvQzHIEeQGHcIAUqREH55dbsVaSY8FuX5sYVVirYf41oGuwiS0S2HhljTLcwBG5+didaXLtPfjNqwJo7hqak/OVcznMuKsUEpZ67MiagAN4n4pJ56kQSqawkSwZEWMvC49D2j9r9fnscl44usx2MM4uJ3p2OYUPMytDW7jatR3zl2Hoa7SMSu5yO18UHwBiW9PbtvshixdwnMd8a5TGPY8+P0gOck4eJBIpaNA+R8UeWKt+Xye1qjyGlyPQUVWZJlkmc7rwcx0qsfoptIlXirLWCkkFWNUCTmeV7rQB9EOK+qy4kTEdOZrfI/icAqMFU95vBgUP8wIK4wVRKzUkcIUqI73M23etihgFI8qz7Ngyf1PlXZSWSWs3Fn4x4RWWeYUNYzYyuduin2Vc8bHTLekY05gweScnA6pWJHKFN7PanC3vhafmhsR/Wd6x4JifmwCkK3b4xuEkmFKoxjDdMx8ihUfE3l1VOYEylcVMWfTKT1Y5gTgV9W/hYD5SsFv7t4b7rm1cHRIefhF2wXeXmHzF0S3UqoACZX/bYzx54KR+1YLlltf4XdePAYA9CmBMxcG0eHCCbeZoeZUD8zgM1CMZKyZ8WMUSwAjxoeBZaQ7pxR0IkgAkcx/FPQAGCFnSkZzFC+mIqYWzSgYiRy/mT/gyC6aMomxMYO1bwr4AgyM2ijOa4aJnIK9SEZQtivpmrYjGadD/6VlU4KuMPM2BbbJjJnoRwsap2sgrz/JyJnCysgf4clbjq2ADKoyAiIRX42MeHmA+VKCyWKisjujuKYUuSPmL55knrge3z+xHvJvROQ2smtkHIQYblueuwYkwww708FjVYKZYWZuhEqJYQ7nGL3pB3G0QBhbUeQ98lgyenyOLZVTa2QU57hMmP1cj/uS980xhrJ92faUi+A55L5k/3ItmUnNcYrjdR7FLr5ByTFski6+FibXgOtrIOmcoBqy1Y2tafm/tOTF68wnTcnkvqmrKUR/c/RM1sy7wQKZr/MzJOtGMe6gcq7IENgKS2swcpVOdE1fEX46rUw/dzlh3sKE0Y5pPLmKtJID2bIyBWsa3lnUn3jt0Pg0cr5UNeG+uU2l4ojBzow695EsTorfE6IPudWj3AtxfC4fS9keQ3/5PL+3xJTneZ4+/zzGyV6k+L8xgUrmFXyDkuPwgLH1Tawz95OnmNcuWTqneyamZ+ZaX3LuphKTiuO0GwrXc/1N32Fz71JeY7ZQR3GvGsY4K2zNvQPksSRbibmLw7VrdM69d3F9vvI5cf2QQDmZtnGfc+OJc+sj6JvQNtff7YWuW9aZvDdep9yKrhvanl134OA83Lbdm8obxU++YV9/VkoCSf0vAfwgxvif/rz6easFyzO7w7/08HfRR4M+Guw85aaqNQHs9JHSYkyRX/toRhbCwYI4nOtTdH6IGpXu83Gh/OiaViH/b8OQy5HqhlGaERm/yWA8ZA0buCY3sfxJ7feI1nS9F/dOEVP3Ke0IWzM5Zch07NO+p2WaRoTniq240noqLUlTq+RgDY6j81N025wH0xcotcvzw3PdBYMyWYGnFl05PtnfaDyp79F6J6UEg/1ISymnHeF7yMqpYVQYWzYn1t4gvvCSRrbiWrE/eI4Z6EkJuvk892EE7YfAnACMkItjVLkNGe/L57gviWI8tQhOnxH+1kmrrlFx9hs4PZbrjMl5WaSll0GXps8EgFklA1tm5XgPWTine2+Kssx9TF3aqS4yCjIwuNmz1Xdq3WUF0tRSNUVvZTAttvBKGiSCshHPmVRsyfmbzqlM1QJM1iYMKXAy3xjHaMqY1OfxHEKAlkWCXHEZu8/LuoMrPxfvh/CCOSunLENd5PYBZEup7Mt7ymnKFk6dLJjaDPOaLadhUHZNkY5lvtG8tpothQpSSabm1gfANUXZ5HlRYq6yMi4gp4zJc85tRCSL7Lgvds3PlngR1pCVgYKL5+sUdyusnxOONQM/CaVbRnpmpciU25XSAlv8pnWnCiyeDL7GggYLT4zqK0Fhghria9+kcHtcpq66+aGR0g+GsebfgnY+njsn256U7LqdrkvgKOk+LZU67Jp9TShgoXAiWF5D75Ulrd0o5lTNt59Tl0wVcvH6Vpg0n+dyEFKH/SKFy2tlKgSK8SlZB7g+dj4dDwjtk3oH2xLldgLezCRM2pCPjPx/sByi64DAeq3NVwlsr7h+axpHtMzzNW9abi3o/wmVXxA9vwXg3wDwe0qp76Vz/2GM8X/+Mjt5qwXLbSjxvavH2f1VClxTt1UAyR02wEUDq3zO3ziuo68xvIeYXWDsGjp1Bw2TB2NOmJ1j2OeYwSnjdEiYmyvT2FDg5u/XlF4pLE/L1IVS/j4kwMq2p2ObYw6He8aumJJxD5MBTNuYtntTX3Pnp8LHTelNDn2D5/qd6+sQU35oXm4qIwuwaE+eO0THofk5ZK2e63toa/78TW3fVOdQGTHk048l81m3faHfcr4P0XPTXj7Ylrwfr/6eX2PKb9PHHMOjbpiXA8zH65ab9tqrbz50XnArB/bgnEdEF+fH3E/bmb4oJS2veoHedt7m5uI11xTArAXvEFN9iIaY+r1pK/CPqPR1IWRSL4qDPG2yL1FGrpM3jf3QXM/QMVs/qozu+4XKTXtPCFujqocY/Lm1mas7qUfLpWYY9+n41GGGXdI+I9CM2p77wCk1oV2Nrx8oIypuIRSpV/Vxi/fTtU/LjND2OjS9sv3XuHfS0o33qJn/ry2ovMb6vLLt28z9bdp5zTa/lHv+DJUY49/Dly2xz5S3WrBsvcWPN3cyeA8Xn+LIpGVn0PRzrF7MMWHSDZVBgKQ23yUwmSjaAQYLIcf7AchWpWmMGBfJiIegcsqKqRspu69i0mecjEcKCn7irsta+SHOamDs8lz5sYvtNC5KJpGXcVRzx9PCuQsziqh0GU3npaurFNqUGEd2s4Ww8ght//S7K+dgGs+Ur0kaI3JaDp+g/68JQvJjrsV5YMS05ZyDEIJMGF8PfqzJlyXHI0m3TTGwDMgzJ73yLRMX2KxV5iTx7FYrr09KdollRpPHJGN01ECrpHt2bEyDGvbFtX4l0yItFHMxS1MGcspQRwxupHKOZBwTXnGerRzSSjIXv8QWFgbUkVahOYZxglw6YvrluKZuxXHSBlIb0r1N9guIecPAHUY1zs8o9wKPW16LYg3eRODhcoAHl9fGFh/MWjeuxaLNMBM57oufxzQFzF+zqy7XBTCy5GTAHSPAeyJSyoyJADRlRqf0KWDW6iPHOp2L6QtNXpu7T54n4sZCjxjPiIZR2wOIDFu25DUAYzdQuRXUdRfa0XzIvc1bS7pzi/HooOZlHTnm6W/ueHpdxiXmBgHMoJjfuihpoTskmBwQDKb0zc3ToTIzDLnMwgt3fM/0Azk9N6o//+4SnwI6nvl94zpF3NyvHJfcw4euHxrXtM9DbQPze3X6TN1EnyyH7p37Tn8JZc4COD2+Vm477695323H9oUsdF/y/P1SlD+NY0rlrRYslQIK7aFtRJeAeHpvUFs3AMKkunMucAYQ7nIpJ+FksbUClBpyO1K/ceTyxaAdUxfGAOT0CtnKxf2rCK2RBSiwkCTpyy5YAdIKc8i6J93FYpIEKI9izELiyGUrDoItj0upsRvX8JuvI9elPmO+JteFx69UBPQwf9KtLCpKHaITeq1O7etEJMXwxOF/JjzlPsTAw6k0p6O4ISF4A+ndz3PHdRi5lefAzADwTL5v+ducv+wYMXHTlCdqRCRGoBizhedz7uMYx/dFzCguZHycoI3jO69t8pm+lGAAgUkaF8mwqjiKReU5mc7ByE0uu27FkRA+azHjtsU9maM6VJh2Xhs+N60jyxwjz+fkfE3jJ+X5MKmTn/cpBzBHL9eT/avELc6MQwqlk/01KpJe8e6hDXyApjC5Boj41Bvm/VXlplvVzO853v/aw4nZNcvWsKkCYXpdNi0EHRYc1ERJIK1Q16xqUyYaM7+n9eX1OSZ07pkYxXOLvcbHcWat+B7hUnit8BZMSozR2AXjrAJGqKuSePkqzMWL33K8N5RrbfCzFCY0yfpTSzMTdE3JhZv34qupm/Q7XyU/ZrLLm9bW4/Ylr9X49LVXz03337YfUaSAOXq1XLvv1RN8fY1x8Js3W39Ko1zXG8Y3R//rMPm3ogOJlsn6qNuuz6G2ZVuHjqeb7hZz8bp75YvS/mXW/0IC6y+wvK1036a81YLlnWKLv/HwuynG0sJDoY8GtXI57hKgeMlCeTShQKE82mhzjFwfDIok+DShgEG4Focp4yr5NyHMpoTo6Z42WIphQ4AHxRQWyuffAEbxghQ7Z3L8ZcExkOKVwbF5fdQwKl6L12S0W4oB9LmPEUpsamMu3lPGgXIfAEYxoFzCjHvxNFaNi4whtCqM3JS1iqNYUlmkG7OM0+S+pqiyHB/I53lOebxW+ZHrqhwDrwNA8ZwAUJs+0W/G9QStc/GNUxq0IrCoGFVGsg1R5bjH3hsUCaVVFs7BWiRFhwSYkvMq13O6tiYpImQsqos69ynXS67fnKvvFEH2kOuzRO3tvbkWw8pxjjK+dS6ukemYrrlcb0m/rDPlFzkm04h7YhqT9Ejgtnitpm7afE7e5ye0KBVzKqPSDms3rUftUF+l9Te62UsvCzMB1WLU3RgpXy3X4cJ9WBNmEXpd2od8LF3sQ1KWSRqm45m65Udcjx0fMdSTdYpi/ZUalEbTWE727DBCIeVT7to5D4qp50TfG1g77Hke6zRmNUYF73VWtDmnURQefW9SbtlEX1CYunjL+VGKvR6k0D6gyMp7mHaf9k1uZ7I3o3hHqJn9jzTHeS4wgJtFcU2iC4+AyaLKXhVTILKYBVbk+3KKJmkJB4a2xO+RlT/3NVZIDZ4fauhjMsfDXIg60nMj0TsLIpZTgLBwDfIueNPC7cqxs4ApzYaHPAiAsQJg7viWZRpjOYsoKwSMHGN5QAgfWfHlOA4JbFJ44f2kEl1CYIkzwx4x1nHSFo8nXct15TWxb+b6OVimguhEQJ5VAswdT8orBc6byi2EwBv7AEbP823LrWl+hXB6Y3lDJcZN/b22YP66tPyqfKHyVguWl26B//3Fb8CqABc1Nn0FrSJq00OriMuuTmk7DErjsXcFFraHCxp7V4yY7so4tN5mYah1Fn0gQWtdtmhckQUEZnDZBXdZ9PAJnMZHhdo67PoCWlGKh96bsUEgKhSprW1XQilKrcEuvADl16zLPjOlDLbB4CjMgHFqA+c1qsKluhqFCdi2JawOKKxH01tUliyrvTOZ8VuU/ahPa0JiIClthKwLIIOJSKZdCkkji2tiMIuEuMvvThY+WMBiRtKK8z5o9M6gsB69MzCG5qvrLUJQqKs+Cz1T92LpVsxMJbv4KkWpFNhV2VoPBWC7I+CnxaJDCAou9ckuxTK3Z9+nlDWJ4ZQpJbwfQElcT8jDxvoRE2msH+X2lPGOrjeIQcEWiRlWEcZE9D3Nk3capiC4wewynIBBQlRAVLCFQ/CakIDz+DV8a6BtgLEpVQUzaWpgWEdWaiC/wfmbF5wm5NyAnODe2EDMdAR0EeBbA1OGIR2BYFijV9A2IjiVXXMZcARK5O9MtGkbEXoNXQSEPgGGKKKZXYoBpLyUxEAyMmboDFmgORF96h9eQZVp7hODmueCGUYFyvcJ0P0RBFgif5uhXaUjYmOIyVm6/AGLTkMVYTgOCuhTbFopOM80lyOmutNQtUfcW6DyY6tuawaVe8p3iTIMX9w+CSNFoHyZKo5c7dTeINZ+cHuV+fd6TddUumYj0GkCPHF6DHyiMOTYNHHoi12DveAAWD7yamDup0i60t02CQfKK8RiGJtK6xJtoFyTnBc0qrH7KQC90+jLmPMHKkf7JFYhW+Q496ZuNbpFgHIKqlfo6wDdaLgyZoZbd5rICDSX0Yp5TYKF6mktGU1WOyCUMTPbvBbKKTgdoTlnKG8Fg4xOC0XXM6/I6LIa0N0wt0EDulcIBSWw9wbg3IGB+6oC7I7oj+KZQ1TQyQIZTerPROi0rsojI4aGgq5rB4QC2XqJAERLv6Oi+grpf8oZSfk403EEQinmUSfHlgiE1A5b5IJFfiZzfQPoHmme0zWPPJehIMTUUEaYViHYIZeoaRXc8s05TN1TuwCNRSWhSkXAlxHapfH0g+sx6zNpzWielVOZ/qgjTIr7zPk55dzz2ouNEjVgmrQOaU5Un+4XQkrO+Qmas2CRaeR5435HiK0JaCej2/JaKsHYy7UD7V2A2ud62qc9rVO/rLMVj22ur4c9JPvhdednLFvL0zneL3zfSBiFaFdY2WU/47ynom1Rcv18Yr5Oplv2MzPmuTamArI8Nwwm3cehAvKY410PKReyEgCzRcVIMbshjqXs6TgndM4KedNztxCcua1bC45vq6B4wxr8aShvtWDZeoOPrk6x7y2cN6gKBx8Uem/gHB2zhaRzBqX1aHsaclU49N7kNBykmR6QAq31lCokKjx5eYSidCnvG7KGvChIUHt+vqbcXirCmICuLVBWPWJU6DubmXsASVtOAkIIGlXdAQCcS6lQUjtaRzy/WGVtNQsjUwsHC07GBGy2Nb13k6CzWHTYtwWutjXK0mG/q8iykIRHANhc1Zmx1zoJCEBGC9QmZsEFSDGZWrj7Bg1tPBpfZrff/O7yCtpEbHpNDL7QdmsbsE0CA2uexwJEhC08mk0FU3q0npAITemhTcDVxQLKjLXrHFcorQjttiQhU6S/0MUg9Oy7GggK5XFL8/FySeMrAvrGDgKG+BqYKikkGp2EIZ0FAl0EuFRfF7Sf/K4EkgCjbYBrKigbEHfF+OWd7rGFR9/YLEj0XkEVycpXBPS7khhskwSxYEmgSm20uxrQEbr06DclraeNKGoH7zT6bUGJtRm9NKjrcYRMkzwGoIoA35BQw3PqtgUJTzrC7yx05eH3BjAREantZOFQNsDvLGADYq8HwYTnga1DaU/6VgFFgN9aqDIgtGagxwyCKGz6EPY6p2FQtUd0GrEphjZNhCpCEgLpeYSO9KdANKX9hIIEjriztP4mDr81EHsSJGEDYmugFo5QM7eFeEAD4tYOH3oVgTIMgigXFhikBbtM9y480NK7J1uOap+EaZCgVkSgMcM8FmkS9mYQ4Do1MKfHPbCzA3NiQ1ojAEc9sLd5jtXeIJYhCZdxEIwBqJiYZ52EzyIOwmivRsKjYsa5CEM7bEli4ZQFXQ0ScE0kIbdLsc9OEy0x/S4C4BRU0JlhR8AQK3mnR2x1Tj0Ta9qnqjEkFMahbjh2UDs6H2sPtTcIRw6qNdk9NCySJZfn0akhHlFRW2FJnDgJkgF+EaE6jVAlZUYSrEMSbv2aOXshTDuVnwW/GhQTSrzv/PGQz0J5BXfkqR9NQktk4ScohEWAajX6e71QJCAJW2EkxLslCde+SMoFtvoFBdUpxGWg/dVpWq/0bICfZ4D615HW8CiNu6c+oyXuWjW0N6Mioc8Zeq5UpxCTIJgF9TTmmCyNqldwR0k5EIb0MLFI69ApxCJCNxr9iU/zCSAAXRmgd2OPlNcp7iRAN0mAXWKw3GpAtwpulYSJItCcRmTrZTzlvasQk5JKBQXlgf4s5P04KBJS21FlATDPcQDa+wG6S99snxQYTo2FsyTQAYNiIFiqr5JCICoSOjlOFirmVC3RJCEpqOGZCUPbNBY6z8oIUqSkMRsSSJUnxYdm4CQ1jCUrfrwaYnj98NqMoi4CCatcbyRMpuvD+3Zoi1Fp87PL93D99C6UipRcWHBPyg8uUyGIBfPMLrDgKh5xWjt1swTFz3XEYJGemn0FT8L18rtInOdb8z6UcynGlyclAmM3gevkTYX3WwmCryNoToXjAwLur8ovZ3mrBcvTco9//fFv4/e376OPGh8unqEJBX66v4On7RrfPv4M5/0C98sNfry7i2+snuCHmwfQKuLX15/hZ80Z9r7A/XKDH149wIfrZ/hkf4LaOLy3OMej8hwv3Qp/7+nX8K2TJzjvFti5EsflHi4YfLB8CQD4vfN3ca/ewAWDR/UFvn/xCH/u5FP00eCn2zs4q3ajVB+VcXjSrHHRLfCX7vwEHhof709xXDRY6A6VdrhXbPC9q/excyQY3K22uOprnHeLUaqNB/UVCu3xoLzE968eofMWDxaXeNqs8Vfu/hF+tH8Hn+xP8BdOPsIfbh7isq/x/vIcp3aHXSjx/fNHOKt2aHyBB/UVfrY9RYwKC9tj7wq8u7rAynTYe7LAfrw7wXHZ4KTYowsWV32F95fn+GR/grNyh6u+zi65L9oV7tcb/MOLe7i32GBdtNi5ElddjfuLDT7dHePx+iU+3R1jaTs826/xcHWJjzcnWBcdvn36GX7v5bv4+vFTfLo/wbYv8fXjp3hYXeL/fvZrOKn22PQVSu3RBYOl7bC0HQoVUBmHPhj8eHMHvTc4rprsmvru6gLP2xVK7fDp9hhNb/E3vvIPAAD/y6e/gXXZ4r3lBZ42a9S2x2fb42xlNTrg68fPoFXAz7ZnsDrgsq2xLDr4oPHuiu6zKuAbR0+w9RV+uj3D0na47Gq8t7zAT7dneLC4wuf7IxgV0LgClXEwOuCbx09wZnf4BxfvAQC6YHHeLPCN06d42S7xtfVT/P75u6isw2m5w3m3xLYvsbA9atOj1B5/fHkHx2WLx+uX+NHFfQDAnXqLf/rOP8T/t38HPzh/gLNqh3VBwjSviVIR66LFpq/QeovKOCxth50r0QcDq0Ie37pocWRbtMHgZ5szPFpeYmF6/HR7hm+ffIYfXDzEWbXL7W+6CrXt8Wh5iY+2p3iwuMKzZgWrA57vl6itQ+cNzuo9AOC4aOCixmfbYzw+eokfX97Bt06f4OPdCRpXoE11N10FHxXuL7aobY/zdoFdT8/Mn7/zCT7ZH+PT7TG0ilgXHU6qPe5VW/zw4h34oNF6g+OyxapooVXE80STCxqPlpcIUPjo6hRWB9ypt3iyO4LVAcdVg8u2Rh807i52eLFf4p96549RaYf/45NvwSZ3xjuLHT7bHOU0L7V1+PDoOSrt8P3zh9kddFV06L3BZVdlD4hvnX6O7z75AL/54Cf4/ZePsOuL7KL6F+9+jPN+gcZbbPoK7y0v8AcvH6AyHq03+ODoHFpF/KPzu3hntcltV+n+v/Lgj/B/fv5NbLsS91cb3Kl26d3i8BvHn+H/evohOm9wd7HDx5fH+NrZc/zs6hSPVpd4sjvK3gk+aJzVe1TW4eluhQ+OzvGyXeJuvcVHV6d4Z3mFnSvho8ZVW0GpiEerS5yUDf748i7WZYvW2+whclI12HQVVkWHl80C764vcVbt8MeXd2F0wK4v8JXjlwhR4aeXZ/jqyQt8sjlBl57NddGhCwb7voDVAf/8oz/EDzYP8dn2GIXxeLx6ico4/L/P3sNJ1QAArroKRkX8+Tuf4O8/eYx7yy2+fvQUf//JV/CX3/kJvvf8fWI+mD0AACAASURBVPhICsuvnz5DgMJJsYdRER/tTnHeLLAsOpTG47Kt8f76HC5qPG9WKLTHe8sL/OjiPo6rBiEqbPsS+77Aw9UVztsFfuPsM/TB5PCAz5sjvGwWKA255b6/PkfjLVwwuOorFNqjcQW+dvwMANAGi/NugW8dfY4fXj1AbXo82R3huGpgVcBVX+Hx+iW+//wh/rl3f4hzt8Qnu5P8bNe2x0mxx/N2hWf7Nb52/AwfbU/xteNn0Ii4X17heb/C3pf44fk7eH99jn/s6BP8zvljnJV73Cm3OLF7/NH2HdwvN9iHMr/znuyO8GvHzwEAH21PsbIdvrp+DoOA7774APcXG1gVcN4t8GBxhYXp8aPL+3iwuMJ5t8Bx0eCjzSk4L/VZvYdWEU+2a3zz7AkuuwWu+gqNs7i72OFx+ib/eHsHj1cv8QcvH+Jbp5/j490pTss9dq7AP3H6M/xvn377jfmOrx4/x4/O7yNGhTuLHZaWlMNHRYs/Or+Pu4sdLtsaj49e4LxbovMGu75EiArfOn2CrS/xdL/Go+Uldq7AzpXY9SW+cfI0r6VWEVZ5rIs2h2m8bJfQiNk1f9eX+Ev3foIfXj2AVQEXXY2vHr3A83aFbV+i0KQcL7XDy3aZ99Knu2PcrbfY9BX2rsD9xQZaRXy2PcauL1AaCh85Ts8ifzs3XYWHq0s0vsA+fbP4u/3O8gouaDzZHSEC+MrRS2xchRAVTss9njUrnDcLvH90jp9eno3ehz5o3Fts8rduYXu4qLHri5xbfFn0MDqg0B5XXYWrpkJduOwVxvc0zqJzFkaH7FEVAezaElXhsO8KlMlzi1NxNV0BawL2XYFF2aPpLQrjc2gBe3kd1S22XSHCEYZwDfZiY+MGp4rSCqisw7alb5LWAVoBnTOjtGvA4IWmdcgeXt7rTC/3Z2UoTfL46r1BVfTonEVpHULyoONQA/Yea9sC1vpRqicuOcVSYOBHAqEkDy+qzx4zbFxxjsISbkqdlUMmwjg9kvSSkvmzOUxAyrYDTSrfw6EHc/m2b0Q5/2Upv+z0fYGi4i/97B8uJ7/+IP7Wd/5V7F0xQoHtvYELGrV1aL1BoUN2a+1EvkJ2PbXGo3MGRseci64wIecx5JcRxy2xGyXHPbW9zTFk/FKg+CnkB38uJi1EhbpwObedBJsxmtrl1ck5Lyc50tg9V+uAztl8jl1pnTc5ro9zJGodsvKHXxpsiZXIsiFQzJEEK+Lr/KKRsTv8UuL22BrMfbAlNUbk89JKzHnkvB+sxs5RjJT3GiGQlVjriLa1MEbkWktFi48BxU0pjGKcoiLXzdRH8DQn9aKDUhHNvsyAQjJnHTAozbJ7qUDtzf2bkK2oxlIbUb4M9fDCDt6MtY6pX63J9ZXXiC2/ETRv3tF9OR5PqAsV2EWUXvYypqosHVxvRjFqPK7IL3IVM1IuW38lKi5bibNVGMk91tKe8k7TuBMNNG5k4CBlYnanZatxRqlNdBLIE62XdJ3VNuXhYw2+CXQvMHJ3zZbpkqx6IX38OK5LabKOM22DpVvQktpHGp9SyFbnTOco3kuTJVtF+MaOx+MGSw5bpYGBBlr7NFciHkyXHqE10JVH6MzoQ6TLBLqV9peSFuCIDOAUnYKyae+LmDRd+cH6y94EzDQUyTKcLJboNVSZ2rdkhRn5arGVOVnW8xicFmgiGO7h/txAz7XYMxUzbbktbofj49gi6of9OnX1UgtPdI8s25FciZlu9uwtw+BizO6/FVmLR2NVcaA7WczyOaZZxaFP6SKMNA8Rg7WWXYt53MmtPPfBViuuI+eBzwc1uCrz9WzuSXPea8QqWTnZRZnbY8+EgAGFmOdHeC1k12N2v07PRXab5jbZldWrwcroExJvapct0gDGVl+X0HgTcq9E5ZXu1LFMFss4zHtuj9voyaotLZaxiFDtOLb9tYqN2YrKNFOnyJZaxDR/gdaM3SJjQedUUIOVLs3tYA1Mbad3Fh9koJ78zAAxWSjzMVt6o6irMLhFJ0sle0hklF+VzgsU3ZFraJpjQkVG3l+R15jPh4QszCEFop1rKMtMX66vButh6kNu4TzHEdctjxgqXnNZhXitCGumdOcFxFgP3S/caIcFwkxFNTqmftW1aofKlK5rk8Dzo8Q5+bxPz4tz8hV0kA7ZlmxjltgbrnHXt6jzJ2mR/MP/+G/9PzHGf/Ln39Phsrr/Qfz1v/63vvR2v/tf/OLHBrzlFstH5Tn+/Q/+V5yHJXzUKJRDHy22oUQfLWrdZzCJK19jqVvsQgUPjZVu0QTSBGoVsQslatVjFypoFVAoj1r16KPBVahRK5fBgQwiPBSWukOIGle+RpF8TQwimlBgacga1KY+CMRHZWCdPlgEKFS6z/cYFeCjRq37EfgQjW0AEJKAN4Xy0IgotMPG1zQeEPjQkWnQR0P06A5ttOiDQaUdTHpDXvk6t13rHjtf5jmh8ZCWsGfU3QRcxPeEqFBphzbYDFTE4EWsjdt7Ak2SQDx8fmH6fL0NBaz2Od/owvTYugpVmo8QNSrdw+qAK1dn4BqZm1SCKxkEbHw1Aj0CMMph2npah3slaW1fdGRlkGBGPHZ2Q14kgB8Gb2LgJBcMrPYZIKjSjuJ1vc1CIMfyEtiTGQGeAECpHYyK2PvBnbIPBgvTZ+CeNjCQFMUD92m++NzWl7Aq5HVh+o5ti60vKZZY+yFdThiAqjIIEeaBlkrtMmAU99kFmy3yLmqU2qHxxQhkiNvneGirAjoBPDXMY1KUpP44PtoFjdo4dInWYa7pmSqNyxpgPre0HVzU6LxNe85nYKXGFSN6eW/y8xmizpZ3BsEqtcu/eQ8NgFEaxyVZwDZ9ldduCkTE7WgVsyViNO9xALVZ2g6bvsLSdmh8MXKDX1p697gE9sSx5AApMCrrspKNNfMyJnlVtNj2FQJUBi/jYnVA62y+1nqLQvsMeMYAU7m+WHt+V0zr8/qGqFBqD6NDfg7kNV4H+Z9B1gCyElSGnisZp82FlSWs3V8WHfpg8jFbfFs39M3WhsJ4tM5Sn2kOKuvQukHBVyaFpFQW9ikdFZBkOKYhUliA1QGtN6P4eAkKVUzAerxYK6T2+D4uMc0V98nt9BzrLWhkpSspPN1ofqbATEwXK1zlMUCWFmsCCuOzZYjb4T5JYTuk8bImXFOesuKU75fps1gZC5BybLS+6f8U9IsVpmayplLhnMGuUmjMmxZWpHJYy5DyK44UtdJqwjH4HK8vY9mlspWPmVZWYvMczaG6y7RkEqCJaaI2qY1CKG5Z0Qq2/IQxOBu3yUBQcv6nehyjhvReEYPSERjCAEOKRQ8zgiWn6RqNb4rmmy8MAFDXfDBZaTNp/6DgwvWT8D0S2jC5jxVHb1KmQqE8rybXRf2cNin9JpJjPi9BmK7lfz0kNHJ5FS1DwweHdWuhcXp8W8FV9DNd6luVPwFB9VflenmrBcsn/TH+66e/hU+2J3BRZ5fOy7bGtivwYL3Bri+xLDpctjXuLHZ4sl1DqYi7ix22fUkuBNbh5W6Bk0WDTVvBGp/d43auxCeXxzhdNGichUuuCQBwUjUIUHhytcaiJGFjUfR4vl3i7mqHGBUumwqLss/PKzMA+77Avivw3skFAhQumhq1ddkCeVLu8cnmBH36SCwKchVs+zEztqy6DDD0ZLMmprHqsOsKPD45x4tmiaumwjvrDV7sl+iSS0dlKcb0xXaJMqVnWZY9tm0JTqHSe4Nl1aG2LjMs27ZEZT3K5MLS9hZHdYtNcjVxfkA43HcF6sJhs69QFo7iWh2NYVV32DYl1osWu7YkRq6zWFQ9tvsSZelxZ7XDs6sVjpcNtm0J5wxOVnusyg6fXx6htC4zN8xo2OTCwhbpy12d4mFdZgZWdYfWEaO33VXwXuPDR+RW9pOnZyhLj2XVYd+RO92uKUcM2PGKBIhdcm/pe4OiIICeRdWh7QsoFXG23JMLUVMlRsygLnvsmgrLusV2X2UrMVt0T1d71NbhydWa1jiBBR2tGnTO4mTR4MVmCa1jHj/dHyh2FsBuV8EWHutFi4tNDa0jisLjvZMLnDcLvLxaoqr6zJi6oNEnoCGmhy3RzKgwjYuqQ9MVKKxP662x3VdY1h20DtjuK5wd7aiPkoQb7zWc07A2pPGXqEqHrrfQOqBti8y8FCUxvoX1iACafYnVssVmW2O9arBvi5SblVA7XQJSquo+M3YcJ3x6vMOuLdE0RbY0F4VHXThcbGogeQAY67N7UNsOsa2LukcEsN+RC2dZObQNra1NfYeoUJYOXWdx/+yKXMqenWTLeVE6tHuKpVVpjY9WDYyOOL9a5HcZW9+9M9CGrEpH6z3Oz1e4e2eD88slvNPZCnx2skXryLW77w0WVY+rzSLvU7bAb69qVIueAKn6waXp0d0LfPr8BN5plHWfx2BMwNlqj89fHCNGhbLq0exKLNct9rsS9aJD2xaDFT4oFJWD1hFda7FYduhai7JyaPYlyqqn/ZT2FADUiw7WBOx2VQa2CkEjBpViyWkOfG9Q1g5F4bDbVRm8arEi18P9tkS97NA2ZQZyMtYjBg2frOIP717g5XaR99hi0cEaj/PzFUxBgEiuN1CK5vT5izWKyuF41eDFyxXunG3x8mJFYFVRYXXU5Pej1gGbXU1rpilu1nuNuu4RI9C1BZQOWC06XG0WKEoH72msodcoFz2co2dbKhWatoBLwFOICotlm99drjfk9eANluk9RM+XwfGqweW2zmtRlC6j3S6XLTYXC7xz/xKdM9juqyyUaB1hrUffW/SdxWLZotmXWC5bGB2wLEkQc0Fju6lRLzqcrva43Naoqh6V9aiswya97ztnsG8KGEN0LFctYlRomgLGBKwWLXwAttsaRenoue0NysqhMB7bXYWq6vN7tdmVZB0LCrZ0UAro9wWWxw26ziB4g+AUbOWwWtDeaJuCMAa2JdZHDdqmyDgJJycbXFycvj7Dkcpi1WJ/VSNGoKhdFsyKwqPZlrAlzWtV9wTGFhVCAghbHrUIQaPvbH42vNcITmO5pnWm/UhWfWPIkwcA+s5mzwuAPClWixZX7QJKB/jewC49YlAZC4HeLXQNAKzt4XuLonLwziIGwJYJ1K+3BDaWBFxTEOaCLehdHDqDYkE0x4SMq3WA7yxM5YAA+C69j1cdjR0gzIDO0v3LDv2+TFJphLbk4WOK5L7ZGfK+CISpwN4EqgjZsyR0egATS9KttilvuFM5nj8XBbKu20gW/VEcfxws7ww4FhK3NonFpLhwsRGk2S+Br42QktmabSLRy3U1xgIqS+j5OGaBNwo64iBtEo6AjkOO7ORpwOezwDzRAKheAQZZWJWCZBZWw8RjQMas5qEn4dbP0D8VHPncVKidXp8K8EKKZCyEEYL0a0uZv2TlLSf/pvJWC5ZWBbxTXWHvC7ig8e7iIqX8OAEA3Ks32JgKZyXFbT2or9AmQeTR4hLP9RKNL3Ba7tF7g7v1ljTX2uNevcW9aoOrvsaL/RL3FhtsU+wZx9PdX2wAALu+wFFJH8+zeofOm3wtRIV12Y786K0KuDIVjA65nlEBdYpZsNpjnawU+2RZOSkb7F2BjSnJApesGqf1HlZ5nJV79MGg94bO6RqPVy+ylebxmmJP9q7AvcUGS9ujCwaNs1iVXb6PGdPSeHTe4M5ih9r02VIDAOuyw8L2JOgWFvcXGzzVaxyVLVpns7bzylQ4Kls4r3FUt1gWHVpvse3KHEt3Z7HLcRJXqsLpco8QFRZlj4erS+z7Au+sNnihl9j3Fu+sNjgtd7hqK6zKDo2zWVNfGZ9jFeV8O09CM1t07i23uGhrFAmcqe8tvrp+Aa0Cnm1WqAqHe8stzs0iWzjYxdkaj3tL2ifP9RI6CdAUW6FxZ7HLbb+7vsDOkdBcGo99X+C03uO5Ak4XNP7ChOyGbXTAo9Uljoo2a+n7oLFtS9xbkiLk3fUFumSpWRcdNn2JzllY41EZsgQ9ieRifX+1ye7bR3WLD4+e4yNzis4ZLMseqyIxYd5i16d0K9ahcTYj8nLsY+81dKJ7U5RYFj0Wtkfryf36zmqHyjh8DuDRipjXo4rbN1kYPav3eKYi7iz3ON8vYI3HRscMlLUsSUCsLTHFLwHcW2/ho8KDoyu8sEv0jvb5um6x7wpEAMc1PWO7vsgAXQ/XV3hhljgHKTrqwmFVdjiuGrgEhOWDRlX0WKR4nStdZZft0yWt0XOQRn5ZdbhKbuTrmhQiLmis6xYbU+G99QVK7XG+XWTrw6rqcJH612mcD9YblJrQjvlZIVd7drunsT9Yb7BrKjxcX6HtbUZHjlHh0dFlVow1zuKs3ucYYB807q232XX9eNnAB41dS7FEAMWJXexrdL3F0bLBUdVi2xGK9OOjl6TISWMLgdb3eQTOVntcCqtICBrrRQtrPK5MjTurHbZFgaOqw3MVcbJoCD07qLwuZ6s9VkWHz0Co1L2nVDgh6BzjVFqHfVviZLXHuuzwOZLlr7e4t94iRIXnEbh/tMUL4W6/KHs4TwovYwI+PHmGn+o7eGEWsDrgbtqnTVdgVXeIUWHfFdA64NHRJTb7CkfLBg/XV9i1BR4dXaJ1RJv3NK8xKizTs1OYgF1XoLL07O26AvfXW1JqFRWsCTir93lvh6jyWp6s9ti2Jd47uaDxJy+Bl8UiK9sigPvrLRpnR/FgnTN4eHSFAEods+8LvLu+wEfqlGI9iyo/S01X4N56i763eHz8EjtX4nmxzM96oQOWRZdj1x4cbfDCLvBgTV4cd6ptjhX8OCrcXe3w+OgFQlQ4LlsclQ2WtsPH9hRHRYsuGDwrVqitw/m+xoMj+sY9t0tUhcP95ZbSSnlSclodsO1KHNcNKkOKpZNFg21XYlV2eJ6sgt5rrOoOWkVc6AXuH23QOIumK+h9s2jzu/kze4Q7ix0+jgqPji/x3K6wrlo0zuKrxy9wsa9v5C1uKvfWW3yerHPrRZutwLV1+CwCq7pD01vcX29x1VZp79P79dHJJVpncdVUOFk06ING01u0fYEHx1cIUWHTVjlGcFn0aBPyu4zTA4DOWTw+OcfH6dvBe++qrdD2Nsf4WePzvXdXO7ywSxzVLfa9RZ/WwCjad5Seh9pn5ap8pk5Xe3TOJsu1R2k9NmksPqqsyL13RHs2RoVF0WPbFdg1FU7XO7wUAi+/z9Z1m95RZVZaMwI8QEK7SZ4ETVegawvYhIJvbciW794ZOKdHiO0SRJER4ZUa8oS73kCbANcZmMITcrsJWXDhkJmq7tG1NiuY2YNAYbDGmhQKw6CGHNLTtfSd0ioCKuYwmMihQ2lvKSBb+gEKa+EwkwiAQRZzOE1gAEEO8aHwIw6RkTGRIagMjEh0pE6TMJdpSaE3YKu7RF9PY9YMxJis36OQBy4T66u0QEsFCdM5jY+cphlSM4LloRjLX5VfbHmrYyzX33wY//G/82+iSaiw7LrjEhNgzeACIwORAeTYPpkbjR8+vp5ROVMuM85hxhue3WBIixzzOdKWJw1akA8l3cduJyG5snA9flBkO9I1hd1MZGHrJWvL5YuH007kl1B62chYTo6341izjLIpXFRyfKgacoflmDBxH7uzcMkvA74nafNioFQT0VH6hpyPLGka+WWlbMgaVIr7UzndROT4ralLDJPP88UxceKFIxFiGVlT1yluMsVYcQwdv1hHmj2O5/NZlThc1wMt/z9779JrybKkCX3m7hGx1t658zxuVXW3WiW1kEAqATMYITFC0BISDUj8D5rmZyAhMeoJ0GIAP4EhUwrUoqSGMV1SIaq67j03T+7ca8XD3Y2BmblbxF575+Mc+p4sXZcy91qx/GH+iAj/3Mw+s3aa2Y6dpNrfQ70glS3wnp3UTj9V9p1v2q0HudVrbI6AyDPUHu7C+wZZG5pvZx50bMOFQdi15/2sIu/8+XYnp9ZvR2t/cw593Vaf81nayWqfbSztmuWvThYvp58795JryU6fm/8fdnP17HPUujdfB7pvmeU9yuDrOIw15SDskYX2Zk/JOQJpH7zv0tFfrfluWZGhgjbRCHC0U3S0dUPK/MqBd75RdpK9kzOg+cK1k+5wyG9yAt0Pzq+D41gSGkuj1dXqsHAMVT8XPLv/bU3xwI2FVcZUZW2MtGjjyIMwbHJgIMrpPg98k5XUr8/jMjQWx8awaWPh8kBDEBD38eh+UbTz5WqhQYCdD1ov1/3a2jh59kdty8KegNGYcNumktBCh3DsZUxgm0PKaCyipNoKVmZYX6f5qdka8LI3n75Nn/fadrvefCxN/htxCtWfsP3GaOFSSPt3XIPGmllTD/HyJcnYRQF0rZbKFoyol7F7xjX5/Xp3n+n4m6UbdfQG0RhbGbb2sPfPA/q9ZPPs31cmB6C+n+jPiIO/YVsbfHj02tzpZ6DLZeNiax5u7HYWlt7ns9V7mHfb65gvsI2N75d/1/ghqC6Pa5t8/lumsG6sj2aitxRmR0Xarp1jff8Sku8vvTA2H5PpVcWgf26/UsfN3z6ljJPBr5efoqz8v/6r370f4v0f/jH/yT/4hz97vf/0v/1Hv/O+AV+5xvLb4Yr/6O/+MzyWU/c/VJOijePeL1F9pnKN2Dg0/zTzNzOfray+PKa53GrEUiMGfUqa311hwqQ+XtcyNBZS80ky/yzvj2Y+UYlq82PzbLGWLP+q/nFA903zLGKW15I3p8o1YFTfKh9YvjGP6YnbWtMzX0Xv55X8DgfiRxVu3NXe5+WWLMmArct7DHxv/jBbjY39zq55H6nK4ldo/lv2N2BPkmTyHsfJ/PdMnlJD00Bc87Abn2N4lz4/3XfO+8t4n0Hr2zHIvP21GJ7ev9FOXq2/gPhcDVqX9ylr9WP/rjCfzaDrtOr3Fh/U/K9cGT7Mi+/rS99tTM0fzNjprB0Arb9Wt/f5Km78LPlxtLr9OjB/qspA8C8aN7+mpTUtoBFyGdmWrbXKfe6srmovYqbGCmjlj2vLzz0ztRiwW977/Pm5NKItADtfMj9OlqKbcx8HloHuX+fyFz+O2pb5+fFBViPzskMne6YBPZ6spVqlb95Hs/e/E2Yd13cn8qKWV/qK9rs/oLLfPDuhJwlr86J+artTezfexzi2ZkYKdG2PHahZ28Zs6InGjFys+7D12LV+bHzbXmZ/KLgjGTvsNo/jV/UQrdXrTurZzQF530w2/7X9HPm8VQ9frR6fjFQM3H0/A/p9tWN2DLw7F7J8pj3xmhI5eDTZAX8ouYtD6x5i1fwzbT21gwnqmhE7nNODgXbgS9w0O6YRaoeEdugXGNkf6nxmsoNh+bLXmhTbwTf5aA927JoHRsAzoCl1u98UYFubO9IldyCxOxiEq8fLcARJ1s7Rf/C4m/+U9JLsrv1mYsn7v9Ik7eu6BSB0zl+S9SboOIJHd92fae7y3urTrbZfatOK043fPwUYfQZ4Ok7ri7P2OcDP6v6CMp+T54tA4ueuy9+nf6npqwaWlzriT3/79/BmWJBrxLtVfJbeDItQrl8fMCohwzlt+HE94WFcUJmE1nrYMISCD+uE708XvFvOjezhug14WkYMqYhJ3fUOQyxt00XEeFrFvOT78wWXbUTQa9+fL/jtLLI8qPmNJ2PIJeI8bJjUl85oqrcS2gZyUxM187k0Ztqk5lGWrqsw4uYS8HBe2rVpyPjxwxnjmHEaMt4/nXB3Et+meUstbufbu1mpr9HMXoRAITQKbtPmMgOncWtxQi1u57IM6hOTkNRnCgBSFHbau2nDkjsb6ZjEFM372xmL7XUZcZ7ENPd6mXB3t+A6DxiGIvLMA0qOuH8zY1NzN/MxFHM12ZTZBv3kfO/MBGaZB/HFYsJp2pBiwZ//xR8AAO6/vaKU0MaHGRjHstvsLhoXMQ0FzGKKU3RD1+KWMmG7DqBYkcbSTGPKpuY2+hdMjYGWa0C+JqAQwp2Y+ZD6P63zIBvHOSLeZTFDUY2vyWVsrsNJ/EnLEsUHCOJHhscBPBWku4yyha5xpc5UamYvxt7a4k/qBqb5wJTQNJVhVNbSQgjnjPo0gO6yaJUZEsNUtc68RInBuETRoDIQx9o2mY0p1WKBTgV1TginjHpJLQYkRW6yAACvsimGtgVAYkAODNK4o40dNBNwFjMlihV1i3KNIcygptmz+HCnoppekt9ZPw+6K9kCMFTQ+0FOxr/b+sZzDVLeNiSFhJGyEPg+9xekMWpaHEgAdA3ghwx6P4DvivoEQcb0KTUNKUfW+IKlz5fGyORzjwHZNLgA0o8J+W0BUgUtsfsgMRCfAvI3wnBLW5CYjpcIniQWIo/cdwOErt1MwrZpmr96qhK7UrWOphmhJSBkoJxrjzfp2TyTxmFU9s6wAfXMjfUyXoLszU8V8RpQJxZtFOvcEjd2zPouoJwkLxVCWEQLkt+obNY2E9ITIb+V63GWOIn8GFDuuGlM+KJEPToPnICaWLV9og3DIvVW1UiGDagnZe8kGQuOQFi0r1ddbwpQeEDTxoEYcSbRzAIylgwpP6PNgXwn8EnXiLF/KmAJK1DvGem3ARzR4gyadjJkAg0MTkC8EjAx0lXXoQa15wCUs8gTVqCcRAtq8RDrIJ+ZgDqixVWMs9xbdZI5Cave4neMuFIbR9qknnISeS1uYJ0UrAbRNBIDZWKkJxK5VLawAXGVPpcRiBuQT0BchA01aD/SFVgf8MUpLkBR9+ig7RGL7PkkcnDs7QJoGr00y+c6aNkg3zkAUX8zTXYbewPmqbfFJNeHDzJeNoZxlro9gykVuWay10HHIvRxA8uceU2jtd3yap+snGm4W19o307TYmaVKenYTb0f9jwKm5ZPXevbYkmyXBNmWwZHF4dT6wiFtQx16wtIfgDg6MC81uNjfYrGmxAKo0YCVd4zwFK/D47J4+8dc2/t11o5mz+nbT0Crx2eJ+Bwtu8Aeq+HA1pszx2rLbk2yc0v97Zu4h5T5AAAIABJREFU1X1s4yUZdppQN1Y3waS7TgdLSSZ6du1Z2rXBN9t4dkjwS00vHZr8DUlfNbCcc8L//dtfYUil+QAAAmjGVPDh2v2lUipYloRBCRsMXBBJiITfns5YloSkISJKjihqj35ZRiHtUGBip5/bIv6Ej6dTc7gvOeDxMmFbRJZ3w7kRU/jQDSFKaIn1Mshp+SCb62Y6WQjrLIHVbcNtG2oA7clRs+bPAfNJnOLNjp6vEesw4ilJQHgDOgYCEBjzZexEHDngMkz9lJh0M+4cqa/DtAMVZvq3DqNs6ryppJowXsdJQIZunp+Ufn8eJvAasAwVyAHXQUIazOMo+deA93MC1oAtVXkprAFUCI9L78POxNQ29PogfBo1OL03zcyErCff6zDKBvoxgRh4qucWQNxw12bB4zWRbtRXnYutmX7KRnyzYNGL0OlvKYEqoUQxq9uG/nd3vMhAmIO8rBXU1MAoQTbjHCW4dFlD20RzYGRPMc/Aek2ygdsImwIMyoT4FFBXQl4DKBOCAlEzIRO1pZiOsb0Y7QWiIoYsAaxDRaN85yHKxrQCdQ6IS0DdSIJls238ZH7ipnk2Qk0RocrGvL0c1UTNXo48RMSFtF4Cx9jkC7mb2cXNtyWypquAkzqEJjtVGYu6hLbJD6UHH+cU26m2yVLnoOZ1+jujm5iSXo8R8aqghQa3MSSwlrcXfNDNdN3649fMJpsJIIC4EHIZkC6EssVu5gYBJaZmlSDlQN36RDXZFxJAY8DPtLdXAhDBMUjeilZfnAmg2OahzoSwypjZptlkYdJNn4GdDagxIhQxK7dNqW1CZB5kbdEWu3mkbczcxsA2vVR73zgoeIAccoQVqCt1S9gCgKgBpjhrsPhVwG+wMeIAyrao/ZgI6JUg7gHpQs3kEyTA1OSU0BUKICu1DWRogFXnPMs66KajHSQhEMLSnwFMBqrMDFCAWAMXZvqoYFGEcWNVHFDLJrfKUAlxtfWyD+1g65KT1pPlXpU1rH0hqSNkAQg2lwYwyJ4JuiZs3oLVo2MUGgGK1AUAvOm6MJCmbQpoNXNjamuNMgl4ib3/lOHaku8JQFiAkPrzKqwC8L40hdWt/a1vrG3DHrKsibii9y/0svbMCJu7N3Rds1833GUGANbx6YIAYWPIxkJ+D2sv0wCizgvQ7yfKUp5VFmLVHB4AaTP7bWuM2xqWPuthQeZm+gwCwsq9zwoAOZOUt5tdy4P6ONkhRXsm2Po0l0c13afS+2RrT8aZdwDG/u5Mq92z2OZG7ik9ICq8A19tuAtQG2DdA5hnAMvdV1S7xcIx/4vaTPc8OII6Ym5AjFvwR5GbA7UxlfL2PtV50+fDiyDOA8pPlLF9v5FeUno/B36voCwPdj+Sdu+PXzjA/CXL9lPTVw0szTxn3tLO3GndEtYtCeGXatbWVbq6bZ211MchXGah81/XTh1vWpxZNVTszMNQBRwCwtbGugkAyXe7EcoW22dPM14LCfuhspkZBbf4EBKQsGNeBMnfWxTcFBgYXEw/gvienOQtz4WAppFS3yIzMWtxz7SNHLo/mD0RnPlX03J5vyCLp2Y+ZmauZNoI1Wi0O0lBGGcFhNp3icPHYGWWazHqzJ+sSN3sfCRN7vbd2taN5c68x7rhzdk2eXvxSZjvdrHnLB3i9jU/K/+7yuJ9sOqpvxEMAPHg/h4fmFbm+BBlgAe5zmctb9ot+92z4FX5ndWfytrPb11YiQjUVPemR37uAHj/odaO1slRNtVtbQ/cfIvqud7uY2RU3TTVUfthbVg9On6++3Xi3V/fp5bH9dVSudtf4Kj1j25962bK/MRE66nlT97h5yCrzaNtavnQni0JmyPdJDFE6/NsXF1MQjvdzlpfdvU2Bef5sIEasTPzKhPv5qaVt/v+bW+v2tzZuI3cbtWqITn7HOzElmuhXzDtiUZ4gX9ktvpTL8yHtX7YD6J4e2eILLmT6aKe3eaF+9gBAAKwfbMfa1t3gMtrfdUxKVHHD8D2sF9X9a5v2naC6gfSNvy+68ZtLu3ovJRTfzza48wnG9Pjc6G8xj/DAE7us72Ppr0gx5h9xL1ee1ocN2gFwPbmlba9DC+lGxvFFzfrLhX7AXoPvGAStyt3t/9t/akbzjs02V+bg3yH/SIAgPtX8n+BTNsben3j7Reiv/YsfcI4Wj4+fL9Z/nZ9dr3X+0K+G2vjY3k+FXh8SlsfBSWfMldt7I9j9pnyPc91+GvyvDQXz6/RC/fNs/RTx2DX5hcs8J9ynz5r/+er6/fp9fRVA8sxFfydt++bzx3QfdO8P58l74N09JWyvMfrR18uf93X1X17+udb9ZuPmvd59OnV+5i7L99Lvl4v9e8Zy5btd6l/Ptb3Oe0f23iJqevW759S32t17gsddibH5I7QPtafW+lWky+901/zA3j1GfvJm4EX0g2B2PxuDCc125gbbd1q09d53Im+9P2l48pX0jH+26ssb7fa8Z9f6ttPHd9jdsMeXoZXC3/GS53wurwv9fHG4cSzay8u3GNbnzeHP2v6mHy3xuiVMj4WnP/+ar23rn8s3+fUuctz2NH64/cb6bj0b1XxoizAfuw+Y6P+6ub7Y/186T75hHUmRY4L+4W2PmdufoZ0U/rjOB9/u3lI8Rltfu483/oNr+R5rY2PvWs/R75XfqMb0y0/6PePrFMT71Wzz1fSy/1/vZyV/az78VPSJz7rXpLnS2T4eeT/dID92e1/SvqlActfmjw/Y/qqgeUUMv7emx+wlLQLZu+JcWYXnD4QYy1Jf1MWUA2Inh35D9DJQwBgLXFHPuN/zzU0Ahm7bsQyABqpzDFVfTJEUsrrA8mMDwp+BKQmhw+ybYQkHlxaXgtc7ft2DCTuiXQsMXqw79am/mYjYUQxx2e0gfRbpDb2+Uja4olajuQttwhjLK8nDPHJk7R4cpYYjCilA0ojdjHil9eIWo5g1OczenMvj++Pn09PrOLH1PrVsIOr6+b+4MahwvGgg4gbQctLhwY2D55U5UiGInk74DtSg3fCFiuPpqn39fnxPZK+vNa3o6z+s7VvbRpxjLXvg5mXGyQnL1GXH9s4ktfcGqtdHYeYXC8drhw3Z0Y6cnPzduParXE8frb79EiXf0y7/agHNy/JcmNOntXp1gQAcEUndjmsl1a1y9v6c4va/tD/Vt7G8JDoY5szwt7E/kZfP5ZePPhqAuD2rtPX7x+stw6M3LXdZxzyWn+IX3iIvNKn42GN1edlPMp6rPcLDpn28rl2XwKR6HmMIOal9Mkam1tNkfrzHoGhl4PxnIxHZfuoZvHW3Pj77yOyv6qV+xiQ/cg47+u+gfheBGHPnx2fBVbs+fCxfC9c++hBiP39CNB8Dk4/bR19MjD6XLDxGfm/GBz+FMD5CXX81PR7TeQvL33VwDJRwUOa8ZAE4C11ACIQSAhvnvKE+7Q0xte1Jnw3XrDW1AARAGVznZVBswOttQqg/NUk8fqODJlrjUDEDnTmGvB2nFvMRIsH6ZOB2RQq5iImuPdhaYysVs/9sO4YTI8MrXbdwOA5ba2sgSoQENOGax5wl7YOtvQRfT+su/wnM0XUTVrhvQbY2Gn3/XmdTdTGx7OHHsEwMyEOG0oNGEaRaSsRp5R3TLhblfiD95rnlPJOO318xoyxtN9Mrq12Zt9B671uAyTmVgYDe7lC3QHpokyvSeOXtbHWclGZa0sljSOW+3hWwhD6X5+YJeZmrgFTKk0rHkMHvMYS+hrYiYFRWUiiTEZmwpoTQqitvI0XAY0tEwAqSZ8bSyl1ht7KpPVTY/eM1BlyxUe5h/oBBODZ+7ra+Cijp41fO5A4MI+GIHljECIoY9A0FkoyVmUdnxhrA5RG6uS13pZvUOKlRnzEvTx2sgDRmDQdcDEA7UMV5RzANWAY+5gzS6BxP8cW8DyEZ7uUHbCqJSCmirxFpEGcy/xvAhL6Zs0IqQgdTEVHpuUBf8mx+Zhb6KNgfdOYaCAGK+mUD1kUfLvWT7uvdf52jLDtcKnPASCuBMYy2ubIgCN3hlSu1NwOCNzcBkLkRvpEBO032ndm8cOkWDv7qLkLaDgoQMEnCxlWGEojxgpDQd1iC3EE1vLkwGbYz9kuPJHtZiuUeKmDkV0+c0ew/D4UEKETOx2BjGc2DSw+7s1c2wEQ4k7OZEROwdXH6LtuD0DNL6yE7rtmc6MkS0KEQt33zQ6LrP4ADYFC7ZqFRPE+vxaY3QiaWmgcRiNmspA2Vj/t+guRxREkhSp+6T18Calv9t4k+nNTKKGb4ZceEgOMXTukhDR+zpovt/qPsvu9hTDxc9wOltT/0R8kkfgMN1kIPayNY4u1UCvSxt6Psn3WubKQLExw4V6cjA4/kvX5OWbchS1p5taBOoGOVcL7/Efw176zk9nGzD2G+jrC/qDL5AqMYP3yQBLuM+3/PgeRuJ1eAaQm+4tWQb7eW3V8BOge27o1fk0OvACuX5D7xbG6lT5Dxk9OX3CLfk0g82uS9XPTVw0sCwc85hO+TRcsSHifJwxUcZ8W3IUVP9Q7DCThQB5CweM24buxShDq9Q6ntGEMGZc84FfThqd8wn1acS0DPmwTnjYJGP6vPPwav10kfwALoATwuJ5QQfjD0wfMRfwwn/KIP4wf8LidEMBI4drAo9e2ndOGQAU/XO+QQsUpBWxVAr8XJmwl4hsXMPppGzGGgukApC7bKIGzNUg6EeOyjTinDX/5+IC7acWbccWP1xPeTCumlPFhHbHmiBgY358vDTQ/rSMepqX1MYWKD+uIrIHXAeA8bFhLxJoTYhBw/LSMuJtWrFmCMmdlzbUA3N+cZsw5tQDuUyy4bAPuxxWPy4j7Ueo8Dxsu24AHZd798XrCN+cZj/OEacgYY8HjPGHbEr5/eNJA6gVrju2vseraBvfNSVgmrL+BGE8ahJmZMEwrYqh49/4ODOAPv3vEmiNmZdbNNeB+WnchIz5cxdFs0gDNQ+rB7ud1QEqyQ7hcJsRYMU1bi6u6rAnTmNtf0xRbaJPrdQQXQj5vTYs2DRs+XE7CwHsdcL5fUSsh54CUKpIGfjaAdHcSVt1lHnC+k/4vy4D1w4gwFpzvV2xbbD7GFGoLip2zgKSUKnIOqEVishoAy5uw3pYSUHNAiIxhzNjWhFoI03nD8jRivFslZiwTQiyIkVEKIa8Jw5RbMGoDYqZpzOoDXXXTPYwZ2yJl1nlATBUUKmJkDeYtY72tSQBIqg2wbk/S32HKDWjWLYBzwHAnhzAhSlgJLgos1eeZiJGXKO7Ok8xT3QLiIKzMdQsIgxw4lBwQUkV5HMS3+bseAqNuAWnKYNVAcyHUawIqIdw3FpMGWMLQ47rWDwP47Yr8fkS93zoQI0hbgQWwBAEM4T63TUy9JoCBeJ9RZvHzNtAEAHg3In+7CrvuEoEtoChJFV0j8jfCSsJrVKbfhHoq4DmiTtXt6CDEOJVQRyEJQxIyrjoVQOPCIjDIDq3mCCqEfCodDBlw8QRgqQJLBG2k/q4Q1l8lpCqnApoj6lj7RlrZhK2O9C6h3FXUQXa3tARhyXwojQnYWGHjh4DylkBbQLwSygMhPkaU+9qAYrjEvumshDrVxkALFlAUr8Jay4PIEFZCPVcBOCR94MgIcwAPjPgUdpvqOnL3uWUhAWs+8Uk36lHYcQ241CQsruXEOhfciFCMgba8qRiMFVYZXFv8QGWIrYOwuDY2Vwh4qUnmp5yFQCxdCPmelTBHiInKiYVQi6AMsNJOWKRfZRR5rN58z42RVIifSFlhuZFEUdFyMCAly64OQLoIqKpJxiBsaKy/5cTS5ztGvBDqiM4KewHWg+/t56R4peb3HFdScC2y5nsZH446jsYKG2X9RGUArqOMi7GtwlhhCTfIewyIYwfGOAHDI1BOtvaU9TVKmQ66gJokT1w7Y25V4iMjTaoDGntqbxudpTV28qHXWGGZhHnXfJiNFbYOQpr0jBWWXPkjK6yuz0b4xejrN/c69mUUwMIBqmessA7wko1RJ14ykqiWCKAs5Dg3LQgMjBpJDimzrLZjY70Dx3h+zYCo9+dvwN8D9dDnh1hlzu6ggPbt2LWq5F87wHjsjztM+KmssLcMXPz1m+kWUH8NuOMFwPxLT1+bvJ+RiL/EofYXkv7gT/6A//4/+QctPqRpTQzArcogYbEjLQaj1/L5+InexNTHObSypjH0Grujv6RpuCwOnGl+buW3794M9Xh4FVVeu9eOJqXmN2p9sDoBNEBIxA1YmTxbCe27N5U9xrv05rU7jQ3vzUstBUIzMTVNm2nQfOox20IzH7XkzThNFq9Bs3E5jqnXWLIbI2D/rDqaltr4SZw604D1OW55nbaqx9M7mnViZxZ6rONorvjMp9e0BO5yCLWFatnHycMur5ltmlzHvAZKbrX7zITwRp7do8Ln9eaGquWicIMVhOlZ/4/pllx+fulw3b6zynTLz5hMI2pvn5eOdU1Ou3yYi1vmwP4zV2kzxK4ZBAMUsPt+1DbvO2ydkfYpcgsBsxsnp9F58e+hvl35ElpYltbWsW9urDyrNdGhLrcOez8NJVEDZb0A7TZKUviwQ/Bz4jZKbdPj++brOfb72L4n+TrudmzjaRslC1twq22vCmgPlhuyf0q6NWe38vh+tTYP+V5bA4Sm2WnVkjPrfKl+P8Z+XL3Wsx76foyvCLTfvRZp9xy5sQSOw7nLc2Oze/y9M37uN9MHo5vPSkdlsNXZtM23xsTeIao1O/alfX9pPQM3N9tH8qVb9z1ZG4ybt8yL6873jQ7XDulFjaXvk90/L/TvOOe7x6NbN8+Svw8+IqeX9VkdH7n2avs/Md1cUy+l4/2NG99v1A/cGNdjvZ9y7afU90r6bGD4heP+f/7X/8U/ZeZ/68tK/zzp/g/+mP/1//Af/uz1/u//wz/6nfcN+Mo1lkSMgSqeamrmnLkG5BqROWAMGZnjDlSuJYqmqpkrCiAzv8itStDyAAkov9XYtHeZww7UJaqoRFhyauaFMVQsOTXNogd8zPsg8ZVply85UzMDpx5IVaYGJAnd9xMQk0/7zcw878e1mY6OqZvzmaYRWgfQwVsunTXXA24zfzOgGcmD8j1QimpyZ/6MBi6lHcCDTgm8Tn18VAYLJC9mlWKKV5lagG8fHN1Apw82D3T/UT9+AHbjnNWsdUxZAbjcElHjhXowaoAgxfrsmdZl7QcUg2oBi5PVQLR8fw6uhqGbdhqQFLNbifk4DD1gu42Z9VnmoLcTQtfchsAYR/lN6q678reAnvlmeh9L01x6sF0riSZPwWxqGkgX2F3fQFH7HagfJng/Qm/qauOQNM6n/ZVC1M132fxIFdjYPWrxLCtJnlicz57rd6h4tjMCWpxNCyYfYu2fzXwSZnpMSKPkryU2INjNQ22hMGLoa/hZapvTHt/U4qB6UGdmr34/5f1Lm+mnu+YXdBpFi27XwtB3qHaQAa2nFkIcK7gCIaABaEtBwRXbQYbWyZVkDOv+EEUOHdDAcfuN5Te2XbCBIXIHF0xi0gnc9oHU7zZWlIpS7LsdL0HAejvs0XENLLFhgzzruATQVCX0UVsT+50wu3tRVBOkZrZ9LVHgbvbqN8EGYg34ejDub0Wfz2/Yg6vLvjfzRbfjszVVCDzVDgzdoVvL5x96dpjhgfPRlNFkJ+zDP7GrU+fb0E1jsK6GdqTvbPVU2nXL973FRiyE6uO6MnVzXRzG6fi3med+WarBmeS6apjqzoS3mS/bWgb2gPu4Ho6g6Pj91kb6OOfH+wEiRwO0DsEYkG1j6mXx8nnQcgSL2Ofphwb7unxb5A9nrIBfY4cDiDaW6N+JD8NxANLP0rEfx98OTXxS+Vfy7w5ECDcOQQ4I+sYh7GvppfPRTwKln/nbR8flU9Kn5vuUNl9r4yMA+xeT+Av7+JWkrxpYmmbRwORJfQzt2hhUe0dofnrFHVV64ppcAxD2GkRiQgA33za/mSqqmbD85bBJNO1lYULQPAZmgv5e9FrzZQOeaTNZ/9r9ciTFsTIGmoHnWtKifnkGZok74Y6BPm5yaJ2Qz9HVV/X3AAF4RowzBMZWqZWxgC0yP+rvVuE2coTKBkpL609R2fz9VpkQgN3GNBCwMQHanwDsfGah+VMsDSiaNYkBHBtLAyoGfI9kJ1BgIN/RNTn2++4vdt9DqA3se3DW/3atrYE4ItY9FB3qY1eP1c9NS9n7jXYthL2c1MbRwtI8f7K9RNZzlOMlkp2uEQ3wYO+o6brJ9urejN7nrrf5vL22SbrxHj5qvq1+0XbeVlnsNKo25ri9Wbn1Xmjza/fAzVaey9v2Va4sBbWhcmPdxsw2XyYf7aUkn59ULt9e4BZPYifLcU24MW7+m7vd9K7Z/fpu17jntWvxZZKfXreAflIw2zavDRDpXB1nx68L06br5pQUfHDpaw263kPovr4CBtG13cfxIZfPLhHa5p3s/iXbQWgBD7xsDqOCetXytyVPrk2Crt+9LE0bzgZozTxWyxDkNE+BpZf3OWDgPThRE+FWppoMLL/l0E2YbadPro+EHrMk6nqz34Hels7mLrzRUfPnxhyAgkhb3ABb7L7m26lyGthlV0fgRgb1RcnGtckBJys6QPZgxw6yzM/UgLB+BqPFEt77UXa/1WcPEy1Dfm0F+wG7A4m2imXzIf6UNp/+EKq1CzRAan61jN1ny7fDQfqi9Rpi1nEhbxEA7J9rZpLNGg+TuR/O0D5vO+Bw495eHdyfebcS3RhK0v/4eBhxGOsjeL6pefXvTPfaeZbY1o37uxOU25+bmNP9bVW66zdBi70vXhqbF15WH2Ww/4T0uSDqJxlS/pSyv08/S/qqgeVaI/7i6Vtct6ERsZh/Yi5BfOTUHHQrAUOsWLNqLFNBqdS0O5tq/3IVWJRiaYDrug4CzA6grmn9ctpdW3NEUm1JLqGZV3rtkmmO5qFrLD2wiKFi0QDqZt7oSUYsWd0hqK+Y5i0lYBk38dksAUn94kxbZg/YdY2I6rtl5UxGAyce1JkmyjQ2vtxRm2X+eSVHUOikKna9loAllebrV1W2qj6aUX0Hk+ap3MlZti3uzCNlL9Gf+o28owaYRosBiCZINECk/WFdBwCwzgkU0IhKADhtCQBCG5Mj4PRMpACwOobYZk6o2gszcWyaHZU7RAYFGTNrk4v481n9Jeta0U1lK29i6oYvREbNfYNdxoCSI2pWwpO2KXV9bBsEt+lrL3hGDr0fNvDerNJkrVvYbSCbBinWHku1uvG1TbaVsc1ODqAkWqOsPoCyydUx1E06RW5j3DRvQwGXIOOsdTZgYVoo3ex4DZ/1mTR+qi9vsVk9QCiqNaijmJ3XOfU3aYD48tm4BhZNC7HEbfVjbuNu908K4DWAJ5LYrn6zMoS+8aoqg7XDEJ84QOK0mr9eobax25jEH9J8GZ3mow7qK8loAKIMFciEEnlPGmMb5KD5dI6ahsxvJG2+zS9U/SubNtXqcuuBQ2h1t2tRx63oZ/Vv3Gn+9E9hSNlGGKOIYgvdFNOWaSFgDeL3luRzrZLX8nDybWHXNut64khuLhVouLEHC9Aw8hsLWu7XwI7V9BbZCYsfXyvGEP8vXZ9UOqkLVSWv2Wi3Znab6Lb5p+Yzyk0r18fJiHAQGZQdqc+hj2T3SQE4AcShtdnk2kgBINp9yEHkRHQyWoxnxp6EZuAGds3vtNWnvrq0aT6nTeWhit/qFyZOKiMACt20FSo7qY9fIyGyOWegDipvARCpgaHmBwnstVthn2cHMqpgRMq9HCebR+yATfPjM9KgRtpD3ReyUDcbhpZnNZFvwNJ9Jtkn2Ppq8w6A7ZACPY/ElVb/ReyXvLFDo/bH4V5j6Z6hjJ1/ocjRx+QmMPTrHT1/GzdS8H9LFaiDaMRGrZzPYs+AW0WDWweuD77cs+TqoEMZ0n6Q7w/3OfXP3GeArmo53+Yxz1Gm4+8ufTJg/NR8/z+mX5yG8Jcmz8+YvmpgeZ9W/Nvf/zkudcRaExIVVA5YauqmsEq0s3HAQBVXJdmZYkZhQq4RU8x4ykKOM5eEFCoSVQSqqBxwyQPGWJDNHFNBxxgKKghzHpD0aRmIMZcBY8jtc6LSQJAPb1KZcJdWrTfswqBYWStn5rzHuJemrfSkQlZmDKX5nnp2WgPEAHDNQ/MdNZNg355noiXinamwD5liYVXM5BjoWuLNkf8A+1Ah/q/lW0vEEGq7ZtpWYUuVcV3yPoyM/T1q0qzPftTsAMEYYksN+OY0KxmSjLmZE5P2w4+BMcluDVh2YGjlAGAwNlyn8fH9NN9Wz5ZrDLTWprHLDmpia+bKlr8cZAP0MCNwO1CRueW2hrcSZP9lmh/uoVfMH9b6FEi02t7M2b7LWuu/B5K2jczITFX3Wta9SbBp9W3cTOvszZlTLG0d1BraAY9nkyW37u1acky2VmfUNWIWCL2f3Mbb+npkM96Zc+rBgmeWNXPz5dwPmqKSA3XTYbRxMb/Zo19uG9vAzw6F2ho2U1juoN2HULEDp5xD87n15YchI9/F5ofrD4VCYORz7AcZejhmeU3L78fC+//6cre06p5Nd2cd0Ma1m+9GBSG9zW4u3Q6o3GGCaddY5ywNOnZa3syj7bALQDNvtoOsQNxInfxhWzO/9poW9Ytvez/N4w+UzBz6pobU+UG3OoGd9shYcq3/fhy7HOTmEMKO6zakIaCz/fI+JI6MO7qP8Aty2QFUsMOZai4S+pu7d9pBAe8PbYisP/27P3Qjl2/nr2t9N7BUsWPaZTvM8JtwM0G+4Stbh0PfPifttODo80rYmzxbPjd+BrxZP/tDlXaY9nzYd+NwU5aPJf+gNLntlexBHbsDDQVbPubrToPa6vbj3ss++6zt1lvaYgeSrK+3tW6a/ehbatW8NK2HtdQye5BsWu+mRbxRwWFyPmHke/lPWXI2N5+4PD0OvgVqn9X9sbZfaON2/k/r/ScBus8ZznoYAAAgAElEQVS5Hf8GADL/2PibmL5qYDmXhH9++RX+6vqArUR8f7pgrRHvlxOelhF/9OaDhNkYVvy4nPDd6YpfX+4RSNhQP6wT5pxwP654dznj4bTgaR0QA+N+XPHNOGMuCX/x7lt8e3fFklPbODMT3ioY+fWHe5zHDczi1/ibpzt8d3dFZWqMpgaszCz1ug5YtoS//c0jSg14WoWp1ADVFDP++ukNsm5q7qYV85awbINoHCH31/20IhDjbtjwm6e7xmJ6WUb88bfv8G4+43Ge8LcfHvHryx3WnPD2PGNQcPXDhzsMSfxNz+OGp3mUTbVuZu+mDWPKTSv7NI+Yhty0wWuOeDgteJwnnMetkQQBwHUdGqPpOGaMKYs2OUecxg2XecT9ecG8DoixYp4HnE8brvOAlCq+e3PBb97f4+39jOs6YF0Tvnu44Dxs+Ov3bzAOuYWgMM1pCrWBqsqEx8sJtUp4Cdsg3p2WNo7Xy4RaCA9/Z0Egxm/evUEaCu5PK67rgBgqrvMAC8tAgfH2fgYAPM0jADR21lqFkXVeB4TA+ObuijUnXBbp37YlnKcVl3nEeZL+ywa8b+7f3s04DxveXc4AZEO9rQkPb65YtoS3dzMelW12TAXLltrGP0bRmF0uE1IquDut+PB0AiDsqt99+yN+uN7h8emEcSwY1F8114B1lfk9ssG277rZO00b1i1hGDKGKEy81+uI03nFEAsu84hv3lzxdB0xTVnHJwpzaqw4TxueriPOpw2zjssyDwpcAtKQQSTAp9aAZR5wd7fgcpnw9s0V12UQrWslDGNuzLPTaUUIjHVNbZ6/e3vBsgUsOk8xFQxDwTRsuF6mNr5pKG3s1mUQP78acL5bwEyYr6McKIwZ6zIAxBiGgryJHOMkrLgP3z0ihor378/tBH4YM5br0DTKITAe3lwRA+PdZepAUMOClBybSebbN1c8PZ7w3XcfcLlMqOb/B+D+W3keMMv4nqYN16exacLv3ojs6zxgPG1S9xZFs8uEXz084S9/eIu6RqTThmnKCviBt+cr/uqHt2Ad4+06ID3M2JYB03lD3lIL+QEW1twQGHmNON2tWJcBcdqQt4jptCmwCyiqJT7drUipSL4kTLXm0xmHIqFQYkVeI8J5wzhmXJ5OAkZzwOluBQCsc8R5zNjWsREcxVQbgy8Fxh9994jfPp2xzDKH45gRifHjPCCNsjs1BuKH04p3P7xBOG24Py/47Q9v8PbNFT++v5PNeyWc3q5gFj/rQIyn64iaI4KGNMlbbOFm1kXm/XRe8fTh1Pyka4ngHJDOG3KNeHOvoa70wGWeB+ScGgnUScew6jgFBeXn89qfEVvEw/2Mx6cTYmSsc2rhZEqOON8t+PDujO9/9YRlS5iXobFJx1gxpIJlTdiWhLv7BfN1xBt9zp3GDcsmPAZPjydM5w3f3F/xw/v79lwfU8Hj9YRRw0PN1xExVaxzwvle5JyvI0IsuD+vIGL8+P4Owyj3u62VECouTyeM04ZtTRjGjPkic8fqbwwA25xwfliQs1hhcA6IY8H5bgFBGLnPdws+vD/j/mHGfB31eRHw/dsL/sVfv/3CXQdwul9xfZTnR5xKswCKsWL+MCGOpa3TbU1ycKdaxfObBaUEbEvCeMoohVCLWJGc7lcwy1wSsDsYATpjth001Ez45tsLHp9OotjVNtc1tWeFHWTlTSwQprsNy3XAMOVmvZImmYNtTuAtNPbmMBZhtR7k3Va3gOEkz4laxBUoBLlPjfk6L/I8Hu9Xvafl2Za3iLpEDHcbtqcBpiUntXCIYxGjiiUiKDN33ULXeg56oEMQa5M1yMECsWimVWNazTqhWb7IMwqb5rffCN1suoX9IbHuMGZqj5sqAWMVC5BbgMoOLrwVhLUTWdq3RNxNxW/5LNtnoGuD3TV/cGH1NAuFY31WRg9XWogewu7AwPK3cDP+bwufdEMGfzhxBEqHvjwjszr+7tMBJXuT7H0bh2vH779Pv5P01bPC/vv//X+CKWQsNeGSRRs5xoJEFR+2CYEq1po0rMiIU8yoIFzzgCGIJnErEWeN9WgAcCmpacXeTnML92Fau0QVV23vblixKAOthRJ52kYEYkwKprwPpcUiTKHicZmaFsxiJALAVgLuxx6OYFPtlvcjtOulBpRKOGn4C9OIXZYRYypIsbTwGUJQE5uG4KzmsjIOYi5sxD12zch0AAmtkUtomiRATIHH1M2OPcmNmSSvObY6jaDHQoRYiJIxFSw5YtI2li3hNG4ttEkMFWsW4HAat6ZR9Id8pkUyGYZU2pibmbEHo2OSOf3wdAIz4Xy3oNawA4umHTIQYCCsmyF3v8SupSHkLbbQGEftj9XvtZ0GLAzsAOgapE0IYUqOSEPemRSblgeqJUlDaZtQC8dRS0BeEsJQBcR4DZjOCdA1Pc3s0MkHYGfybAPftDosprwlhxa2wzQWprXhChd/EDp+nUzJ5s9eNr6+sgVQ5KbZsBiIgG4ogF1MxLJK/iZLlcMBLgFxKk020z4YC2s7nDaz8KRkMyX0z65tMwWuszwDwjl3whpXRsaXxASWCTSW9gJt2htnCspLBGmID/IhNQCwhfEA5KVeXH2AtEEs5Dk2NtFpN5YATAKGOJNsrkwDtBFw0h1DUQKeNby86TJTzsg9fEghQM1n26bE5DXTUjUF3f3mTUbNBLaim/OayS/wXB5G98fTsQrXCB64m19aiJGx9g2l3QZLAJ+K9HkL4KkizEHCq0Dy0UZNw0QMcOK9iRw5+Zx5oJhjorXn4zDSut+4iakp2tjQRl1TZ5uroGEtbB4Cutmn5usxH9FiN8aLxGDk2LU+ZOMW9Pom5rBB5SJbvkE0fZQJYYOGNFHNkjehBFpYA4sjSXaNAcqax0KemPxqKslpL5uVY+r5JTyJlGObm9rr5oQW5iJs+l3NJ+NCKOcv3/dQRgsjYiE3pFGAtU9MaOEfbF0wSXgSDqzhIvQ+J+lH2Gy+7CannUlrjaxmsT1fXEjGUUGBxLU87Mu5y2EhV2wsYGPKMkZ+LTdzU123HHR83Vq1cDZ+Xph0bjxwIM2XpR3pUJfRh/7YgRf0OohdXf3V1c1f0fvp++5NVNu4eNB13ERY3w51vKYl3dV7BEy3rh365uXYYaPDNWf0cNvc+ZXxs/Eh3/dDP3b5j+OCw+944bdW3yfcY7fG5oV0C0N+Sfqzf/y7Z05986s/5n/j7//nP3u9f/o//pe/874BX7nGcqsRPyx3uGwjNjX3ZCYsJWLZEs7j1thWl5xE0/V0DwA4Dxk/lhO2HDENGX/5+NCATgyiDTKzzH/+w/dNG+fvAwMlPzzdNUCaYsEPT3eYBtFg/ubDXTORAzrJTK4BpQTcn1ZUBj7kqZu1hoohVvz2cm6bc2MbPZqPDVp3igXvns5N25hzxJvzgmVLeJpHnMYNj9ep/W4sqb/+8U0zlUup4OlqrLBomj4iRlazvesyNO1aLgG1BgxDxmUWLZrFc2QmXGYBUU+XaRcL0QK/X68j0lCaRvBymRBTweUyyRgMBY8fzhgn0W7VIjEPUyp4ukwCNsz3SmXeE8gQLpdJ9qOhM3qmoWBbpdx8HcGV8ObtVfKrZiSmgnURXznTUtnmPw1dI2HzYDKkVLAp8LT4jNsWmw9sjBXrMiDEgqVpQmVRUWCkVDDGimUZ1CpHAFFMAt5Ea5YaWCs5dlNKBc7LdVDtTcE6i9aEIuPu7Yxti8hrbH6kxixassbni4yaBXSS+iRWNSUk4l1Q+0AdQIckGpy8RaQxI6+icbFA8LnKCboBxZBq8+HaVulPZWqB64MCgbJGhLGgrLFpArhQD8WR1Rw1iXMOq88sM5CmglpITtEh40uREYeMsiobspngRQNZ3XEnDMKEWlfZ2YakvqNaV80KEFNF3SKGN6KZ2Z6GtuGlVFE1jiQAIDDinayfYr6Y7EJ9mG9qDQh3GXWOEotyiTtfzfhma7E3uRDCqUg8SjuZnpQFeomd3db5vQ7fLtgugwDGoYLGqlq/inhfkTUOpoFKGqtoM8YqQNT7HSfd+WRlUTUwuul3O4QwX7lTERCzRNECqDYQDMD84QykjlXWxBq7j+tJn6drkM9b99/DYPXpPfVHs4yLzeuJpZ6rtg10gPntClyTXH+TgUsCf79KXgBgAt+XNv9M6idr5oKk8p2595cgfp1rACbdGZlv21nB7ZvcfR8B6XclAZcA+K50v9YGYghFZWl+hmPpBw45gM39oBLKQwXmgPK3ROOKts4EULbDgELAQwW2gPqN7PzFL1wXtK6X5odr/pZBYp7CtCY23oVkTq1fNkeAHG7YoUCTg7t2SQ9YyPyhFcgDAn7LW9npU6Hm0whjN96kXVoCsh0iaH+3sYIuOrhfkHhgOQyAtulAAK3UfCvNh5aYGonRNuphQ+4+ouZ/yKP2TceJibsZL9CZbG0zXwnrOYPW7i/Oox5YeNNfdxjDg8RTRYTIxNRYlmnTcnZgFrlrwhg7v9bGMqsHJH5eAO2LyauawpDlYCKsvR/mD2hj1gBvA4yaN3AHk4V6DFZgR6D0zJfRkj0P2OEXa0evNXIhr/Vrkw7nl+rmwKbeA1sPDu1f3QOjI2jdNWUg0X73Gki4tr0Mls9k59tlzI/0VYB2tKl9RQP4Org7duy1vEcZ8By0vgJif59+Wemr1lh+/yd/yP/ef/efAhBfOvGzrKgQNte5dD88ACgcEDXMgcWi9D6M5qMIyIbefAQNpBzjPHpfOvOJMxIh0zC2dwB3X0DztQPwLN5lZ4kFBtWImQbxmM/XZ6E9APF5M383It75xZlPnNce7pgwHWgVQLl/AVv7pi0EXj7cau812vu+ef/F6to81mHaPdOSmV+W+ZAdtWkGwu0z0P2QXoovafVuW9z5v3nG1+MYGYmSD41xJDcSnzfagVzTLBrANs2mL99iJ4bO3hgU3IF63E/Ju9cuNnljD5NhfmSwQwkHCP07jW5cO85rG5emzUT3i3LfGzmR64vJ4GM+0vHlrfPUGgcaI+iOGRTYA3L93NaDYR4jMmnto/l/+biQnTXWxt2BJrhr/nfbCLt8LayJ01Deekm3cTE2UJ/8XFYF2krGtPO1O/pVMbo81i5jr6X0Oxsz+yLeg0RCB3Z0uOaByLFtdr/74/VbOxgDV9H97n/z+ethrHWTtmtv12/0fLr5ls0dtzEB0E3WfPIbypc2mbbJt3kgN054/ltj/Ay8L6P5mJypmY01ubJtfE1u99lfJ/Sx4EM+y2vg0cb2hTky0LDb/NpHxYs7AOCm7rjBNk2P/Q647+FQ1l932pcdSYttuK2/h3vLylnepnFz8kC1bF+aGkGK64u0j92470CMbexVBkb/bEVvbtKPL9NbslDP84zg5zg37MbXydUL3GjbyeDn8nndHbQcSW5Y70Efx9PL91ENGHf5vQaylT324VYdxzaP/fxIehFEHTc+N8odXwMvpmOeW/UeX8wfaf+WPJ/c/qeUeaXcF+f7lDa/sP5/9t/87uNYvvnVH/O/+R/8/BrL//V/+r3G8ienp8sJ/9v/8a/KaVemxo7GgcWUZw7dWT6q6VCQl0pY9SSOAMqEOlXEOYipTwVQqZnalJOyvdkGQe29zXSlnLjVFzZCmRhxlbdHVbMe/5IhFhnMlEVO/tBNQ/REsI7cH6L6cuTDg99Mcaj0/KTmLnGRWF8cxQSnDqx9R+tDGfvLIqjpUNu8aV3+wWjmS34TELK0EzS2WDsV0xdYVTOk9iIyU5wo5j9VWQjrwCKD5o8rYdGxLZGbGRMqsJ4ZITtfAOpjZ2MM6AkxgFC6jb6ZA4GBbZAxGx5lYPMdtxNR23xkY/fTFFbth9491b2oo5kaMTBuMj41AUHrGzYZw6TfCTrO+uIMm9SlHFMwE6JhtbHWOeK++eLo1g4DddTxLl1GKsBplrJ17PMK6H7bmcg0Eyl/Ootez3FzaWZ1Ntdh7TLYGrEXn81vKN3ErZnNBTTGQNsgmcmbmbSZCZqNhTfnIpXd7pG4SP/tvMhkDBkok9voMnamXNbnoJboZex5qioZ7R6ztjkC8Sq/5Ts3XjpfNrY2x8Ii2+e4MWa6TXVYgHKWeutB3jijmZ2ZDHW8LXsw80AzrwSQLipn6PIYgLJ2mXSeBrnW5sDWJrAb+6pzxbGv06D3QFsDOiZUb6wRm3cdA5v71je9FleRrQ7yuabDmrTnKQPpwqgjtbUWNln0ZaJd28RAXBj5LNftc5oZZaT2HI5rf5BLn6mtf7DJx7p2Sde8yECFwcpuKeuXwYGkTvT55djLAiqz/lYjQUIyEOLG7X7loGMxUMsXCvd7ZZM+pwvrPWvkKFaxvZNI69F14Z8zJPdNXPUesueM3ftm2krOfDX2tViT1BdtbU7opqt679uzLzjmUrvnba2JhkueMxz63IQiY+r7X0YZ35q6NiyuMrdfmuweYJJxaPd2lfZM9rBxYwi2+zSuMv41kshKAJPsS+LWZTczwgbgIX315oUcdH0O/XvcWJ53Hshyf5e152/uz8WgYyr3kbbB+2cytzXb14KvO2SIBt/q3KrWJeNi90nYame/dUAxZL1njAXXjZmNrX8/cdRDBGZto6+jW4ciu8MJ9yy23/whiM/TEkHu3/D6urH5YSIhA0J/lnl5XgOE/uCi9989I23vYKb11r9yqNcnvbaPI3qQ5dAPJtr9vVkf9fXy2cm37+r8KdrKLwKjv08/e/qqgeV3b57wn/07f4qnPDXW10XfQkuNGKhi44BI4hc5hIKlJGVfFdNSYz5da9yxhQJo2s85DxhjbrEoLZnpqjG/Vg5IoTRWWADIHBHcHWHaVGN4PcWtMcK2esHNN9Tk6ayyzx9sxmI7q59n08I6VktjIa0gROpaOev3UWvr6/AMsLfksfI++Xib1r61aeymRmTUfDxraNpeAtpv9pch2mEiidnpNZ9+Tnwy5lbL67XIANQ/NeB+XFGZsDrG1abp1j6bltgTMVlf7XfvYxrd+PvyxjLatJwM2PsqqTm3Z3u1WKNWp2d1LR7w6sejphqQvMYsa4ytgdDilvJh/o7aa0te+2qfj76z5jPr58LmybPhNrZWp7U9zl97R+o68wy7xszqw/RUtx6i5icdS8tnbdpOvjO2ctMCs2mTiIGizJ+qIbP9uI8XygxwrKIks1Ax6NrmXRs2d6XPcfez7XmhoXrgQg1Zqu5+agy6jmW2Mac6zbjfG7CSMjVWXKepNbNtk0uIsTpr7LEu08oftfD+u8j6PP8z9k+/+9O/3adXnyleY+9M3Nv4cte8h1jVNFrnWmNF+nVizYfDejLrgF1YobCPmsnATXZT6HXoutkxnR42VF6jb+34EERNW+/bZdpp3f1mjA/rullFmA+xk+1Z8lrPG5vTXaghrzH035l2IYSeaaOpm8jvtMmWz7TMxw2ml8nLuTshQr9G7PK5zphJ9ZcmQjdJphvXj7K/pkI8/nbj/f5iurURf2kDfgNE3NKgwzO8Htt4qW1fb7uZgP0Dx+b4eV3SbQc2jzLbA3cneyu9XxfP5NyP803gcVxfr4CTZ7PzqUDmE/Mdb4VX6/tEsPWpMrzY5gtr8pNkfOn6cY19YvpZgOP//DPU8VOTv1f+BqavGlgGVNyFFUtIQAXOcUUKRUOKSBiRUCOmkHHFgLMelRYmfDtc8W47IzBjChmZA85xwxUDAhjnuOEcNyw1Yc4DTlEY/NYaWxiP+7QKSFT/zlxZw4dE3CVp68MWcEqdhMcA3FwS1prwZlhQOTSz3VFVNlPI+HE7YSWZImk/CIh1QO4uifrMQp8YWJ3LgL91esRjnnDJI94OMz7kCbkGnOLW6vhxPWNS0HyKG7BNqCAMQUJ8TCk3YBnAjeDIykt9+SYwN1BoxEcGKjIHTDHjmgdMUQC4hDVJKovEDb0fVjyuE+4HmeNcA+6HFae44dfXNxg0fIYHwQaa7dqchwb4ko7ZFDOWIn6QK2QD9v3pCQDwV5cHDKHilDbM2tc5p917+zxsbSwMEJvPqpE1GbMvM7Ux20rElDKWnDCl3EKbtFApAN6MC1KoeDef229ribgfV2wl4n5Y8X6dEIkb4DbAbMROMwnZ0SllPK1CIpVCxbenK562EU8YMcayOyAwQG0A3A4DDAibjGMsrb+2BuacWn1zFkblp3XclTcwPcbS+r8q+FydX+6oDMXGWDtvCech46p/1xJb/FkjkgK6v3PW34kYD9OKOacWDzao7/QQKj4soi4sNbSyt2QBgGVTxlz1IQY6MVXVfGuO+OY8I4aK3zzdtffmmApmLU+6Lk/jhkCMy2IqSzRz6+zW0t204vF6wjd3V3yYp53Z+MNpkblX0DQNGR/mzjJrRF7XdcCYcqvbyn9/d8UPl7MQPMWKacjNP/rNtOLd9YRaA8aUMa9DI9EyZmcPLmOsiDp205CbC8Gak4SIUSBnJuhjEibNZZP7goFG2mTswCEIi/Jp3FpeQIDypLF/zT9+zbEBQguLYt+/ub/isoxtnRiB2WWeGimX+a2fpxVP1wkpVUzDhqfrhPvzgss8tUOEadraPJpcYqovzKA5B0xj3vnDp1ixrKmRfdUaUAphHAtyDjhP/b0UiRvTs83VOOZ2CGGHB7WKLABaH6YhKyO1HAz0eLviKz9fRzy8uaLUoIdL3GS3sDg5hyaX+df7sD3LPGAYhRX8uowy96EixYLrMkrM4RrUr3zPkmsEZKN+F+bY0twGorKMbmtSn3K5ZiypYuYv92TJsfmwCymYsoIr6VneorDSLgnjlMUPXA8ZptOGy9OEL01pKMjqoy1+5HYAIMzI5ocedSwEaIv8acwwt4SoB33mF26/2UEGaO+2wN7HUr+P5019+oFaaBdepx1QUS9rMYZDEgI1VEJUn9e6hd3BiMUcJjucqep3XqihH/M1NyZXzuKLG8ayP1gpAZyNCCy2/jVcmLQNT95l/pIMuWYHB+YL7M3j7fDA+2VasgMGD/x9FrPOKi5WJXXALVVQ8zltyWTz9YbDda1nV+6lAwj/+/GwDYfvh7871tQbQLpVc6v/rx0aEECVb2JLunFI9uy7v3ZrXm5dx8tnLj8LsPyFJKofz/O1pq8aWL7fTvhf/upfw+MyotbQNhzLlrDliPO0NnCzbBL6Yl5lg2IbpVoJKVbMy4BxzO2FOKSCUTeuT5cJ45Qb5btpA4bBvyBllaQkpCyjhlpY14iUnJ+mvgBzjhLOQ0MaWLu2GUih4roMbTOWlLzFtB+NeVVf/ha2wVhB8xbx/9x/I2OxJpzOSkNeAtJQ2kZ2XYbGyhlVQ+LZMmMqO61DMW2XaVFqaO3Zi9ueAo0BdY0IiVs7rPHU8hblRZgDKAA1y4urrhEUK9JYsC0JacyNkj1NGSlVzJexE8C4h6CNn8mQNwkCby8uGzPbqNU1AhX48duzbDjfnxqTqGlUyrqPNxhH29yoJqN0NtEwVKF6J0YahX21KPU7l96/MFSp14gx9CWdxoIQK9ZZ7Zv0ZfubqbTNR57FttJCS3gtAgVGnSMosbRhxDWp4oe7OwnHMSdQqjvNim08GkuqnvTvvhMQhiL9i0LEY+Q2YSygAJQ54odzbm2YlsP89sJQUY1Qxgg+jEiEqVHI23g2wpglgqYiZdRUHalrHkg3R6ybJQB4d85CtmNU75Gl35FRr2bHjE5AQnDkOZ1lldcgayxVqYvQqesrhJxkI3y4Pwlz7/uxa1MGFsITQPoaAJqKzNPVPX4tfw6NTfTxVMCXhOv9iHpJO83M091JNmuMztx67WRAH5S8B3PEkxGalP5mvjxMKI9DH8dUG9nM+3OW35jwpMQz15P8fRrqnjqfsSPvuYy1+2+uQeq1DaLOy8UYbpfY+rpjc7VnSCHMw0nqWGK7djWW1jXgOtY9eY/fYBKwzIOQJ+m9ehlk/vmibaO3PZ8n4ClhSRWXqQJPCev9CL4qsRUT1kkPA2wItn5vmHzL6MYbEEIZI6phGQsqhE2JhpZp2m9GtyCbXJ2rRQlTmqy6MV3HsV+rhOtU2jhRDj1MQQWWsYKuEe/WKPfIM/IemT8qQm6DTFiGKs+UpPdqJdASsI0V1/EWeY+7j5WAhjIhj/Isoy2AA2O1eq8ROXUZt6j3xxKwKfHNFtAIYcBAsVAYa8ByGsQFQO/5nFjGlABaA7ZUQUvAPCXQFqStCmynAfT45VufVdmCAZGnsbgGIMwBZWAgE7apNvccY8bdTnIITpmwDdyIe6gQtim1vLYxL9G5YWTq4IoBqoRljqA1yKbbtSnrB/2Zo3KUsSKsAdWIhdQFReanm/ECEBejRt6jvw36bFTTTCZ1SRnkPo46V3XU9y6jMQOHAmEmXvrz0ExUa5KlQ45JtzEOA42gh0lcb7wvKQe056eNZwM29sg0E1cz67bf9NElwBLPGHOlAfnnTd5VfPnZ1+v8jrkBy+7iwU6eZ2arx8/210yRGmjTDpDriOWr+teDPtfX5hLkZTmC2Fug9Yj99HfPTPvR5PtEJtQreW18Dn34ffrlp68aWH4/XvAf/90/w4/5DhtHDCRau61GfCgT3sQFmxq3b6yayzKgcsB9WtpnALiWAQ/DjGsZRBtDBQMVFAT8sN7hTVol1hj3TdUUJHTJ++2Ec9yQOWDUNiz/qqa53hw2EGOpEblGfDtesdXYTHft9ylkvM9Ta28IBYUJWU1VzTQ1UUWgiikUPOURFYQxZKw14UH7mDngPq54KmPTMAaqqBzwYZuame8Yyk1zWtPQAsCcB6RQnmks55J2GstAjLWkXbgXCfsRm4xzGZp21b6PoWCtosk6xU1DxGzIHJFraBpakbs07Yhv14/1XNKOLKkytXKBWEyjmfCH5w+iwVWA6evcHKmTzYWFqbG5MK2uaXoB4Jw2rDViKQlDKM0c28LVrId6AzHOqt228DVmSmuaH9P0em2jaQPt2nUbWjgbC5lDxPhmnHHNA7tbDQAAACAASURBVJYiGs1Etc2rmSOb6bI3+/VmuaYlNW0kACyqmbJ6zsOG6yaa9dYHpp15s40v42BKrHXa+tpqwBQLlhIxqbYUQGN7NtIsa4vRTZTPg4TSWV3fTNO6qNbNNLMxyB1lWr0jwZaNhc15M8/WfJUJpyRr/PFh3Jk2r840NgbR2tq49etmNk2t7JQyLuuAu3HDklPTxALAachtnmztWAzZoodlQbVfwiiNpglklpi11zdDCxskh2gi55gyrm/0kCpWLFkO5ywkkGlqvew2J/Z7irWFEhLtZic7s1izxsDdSMv0NzOVLk5zvZXYTJ39NbNaqO4eYHST4vO4IZcg5XXuiRjL26GRYFneFCrWB43rGAvmh0G00Q8yLsacDfQtkWlivXmvEYv566aBNG2jEZDVSi2OsJnfMneZrE07YLSxBNBksbYs9rB994RnKVWsa8Q05Z2W1pK1bfJLfbWTbbG0k3NAjMJevd11rahoHbvMRlwmDOA95BGIW/ilcpZwTC/ls41tVdcIb/ZdK2GIndXaDtfanBY5ADWNvJk+M0QrnsfO1P65KQZGvVcCN4ulqGui3GmsWYYevMkmv7lHaN9ZzcvNNFoOcftvNifkNtOdhKt/D6mCT31t7Ey/d2OodbZQT9zyyaGk5vFtkMqvhwXM2H9ucqAdtBQ7TNEDJSmjeVjqKhbKyAMpR5DW0tFcW/tTgT14dGNiLLxe2wigaSGfARWry8tzC9RY/oNMRw3aLa0ak7qcvAQcb+ErB15f0ha+pNF7UbPHQOEbQh/a3AuH5/6VLdsrKO/GGN7C0cDt7n9KfZ+dfmmg9Jcmz8+YvmpgyRDA+BBnzHXARdkw7uKKN3HBj+WMgQqWmhqonIKAqKc8KSDbsNQB3w4XXOsoALFGLDXhsZ6QqOL78YKnPGEIBQPl5rd5LQMqCG+Huce2LGJy+yGPiMQN5BkQLPrwHKhiSgXv1jMAIAWR0/w+BURtCAo2r0VMdJMefVUODbTVGvFhm8T8lqE+nxX/7/UtxpAxxoK/mh9wl1akIPE9DQyd0tbA2SWPGNU01UDlWhIueWz+pmPIyDViVsaARBXv1jNSqJg3A4ahAVUDlZUDVgMBVJuMBhAlnwDbUUGUmek+bVMDMo/rCUtJuBvWBhiyticAZr/pHZwJLiAv66dN+rMpEAzE+PP33yEQ42FcUDhgXoe22TczYwOPl21s5rUydx0kLhpzk5nwfpUQMoMCvKRmtUMQX2ADQ5aWEvG0jthKwHnIsgnSzfIHNWl9P58wpdwAlAEiA2isAGfVumwsCxPeXb7DkIpsmnPajYn3gbXNW64BVYGppad1aODFgMqYCq7z1MxTn5YRQyq4qgmq+YcyU/vtaRkb4ImBjY0fq764m2ljYMzrgBQlLmuKpfmXWh2AmKvanBj78a8/3Iv/cazYdBNlIGRMufU9a1kDNrYJNNA6KDiy+LPMhOvawf28yRg9Xk5gBs7Thqx1zFvaAeytAI+Xk9Sr8UhlUz/s/FYB4PEyYRozfv3+vpklWvpwOblNvYCHYShYs9R3VTPblEoz5SUCWEHu+w9nMeskYN0SPtTuK5rzHcYxaz0DUqp4nOXvvAzNpNPGb9Eg8DFWXOeh+ZXGVFsoIaD7fc5FLB2iAiYDXwAwO1/EEBhzGZs1hYGca5G+xVhxLWMzQ21MyNRVBk8/nkFJQh0x0EK0SKzXvv4ZYgoYhx6cPY4Fl/cnxLG2zdj8NMKbFlpcVQMPLWQN0Ez1uCgAMMBEaPkoVlzX0253RaZB1Omey9TBi8s3W/xQ1Yw0TTGjWTOYHItqtbcfJzSNu/eDNHAQWbSwkbFYPxxwwFCxWdzTpHXYZt5CjZg82nbOqllVzVdWudk06dqHXLEL0yFmeCThWuyZbksvQMLeEJoGhiqhuhinNZO0sQapU80nWcn6vjTxFqReiPmpLCzVriXu7NWZOgmLrQWLSRoAdnFNJcyK+v1aGcZeI+SuW7mwiMaRGBpnUteggQsDpbYkczfpNI2mhejgtC9n5pXGWsyEThCjL53Wbt2344llbP1YeU9k47WFrfwNxNHinWp+TzbXyWhE+B2wOlxjXVPAC6Cwuv4cfn9RO+fRks/zAji89f2ldJzHF9Nnga7b/ZcGb9f1LO8REL/U9hHIf4KMr4Lj1+r/ffrFpK8aWP6LywP+8Z/9u83M0AKaN9v/Le5XqZlNqtnPzvnfzNy8aZa9eO2ldCQ2sPpS7fVV6mZyjOfEAYB7MXA3lwpoL+huesH9IX58YbtDJXIbA/8igNGs2+eIbu+vfeHoaO19nurqAPpDwZgldw/Tw1GZ/bUywcpQm5+dmYWPl2VjXJXFL7kXW1D2X0Zj59y/RPq42LUdG9vx4c/997jIj3+pJj27h7/Jb0PhXqL+xSovzr5GmtyuX9ZPciYp/oFLum7emzmSvfwtdEZFY1xsL9njJkI3cDsmOUZj7KwuoHVr2q8rt3E4vkDILf9b7Rs7nQ8l0EyPcHhxWx9dc7u5hBtbK0O9PvKyeVlt01PEAtGHkCCWv6tjmtzFGPNzofO8KFMssdbHXSabEyZlTGTCk8Xt0zqc5dduI2T17tJhLczKeL3as8CyZTmVt8cXcbe49bKvx42afh42QlZGZCq0e0wNBai2yayELTBiEWbmUAjVkcZYnsBA1XwcgKjjY9aYTPJcAZNc07VirlPWtpVrltFFwzla3/Uak8xr9GZrN9bAoGu+PXpsA5vksd36oOulDlCWbXnGjMb+a6ljzNaH3fOB3PPB2rT1+8IG8/9j7116ZVmyNKHPXu4eEXufc+/Nysx6dKl5CISQgBa0kBBSD5gyYcS/QEgIJP4C/wCJYfcYCYkJI8SAEfSUFkKIrmoqi6x83HvO2Tsi3N3MFoO1ltly3xH7PDKrKk+qTLr37HA3t5ebu9tna63vU9ZNOwdfvNfQy7cPjC3zFpvkpi7f+/9igWyf5QbqdvW7/hw2huS6ex/Wfm9aOw0Y1OeS34vh9rjZ9ylJPlPWpi9u239n5hvn85v3kT6nNZmH5TMTgyPf6rRjtGEfteDKzL/9ewam/dr2VpcBKrcsV8xw7tr48Li5F/cfmzliXUmdeXdvr+N+7CRcbJ+03zf7IgzI+rfX75f83eqgXg5MWfs6gNvfPDnPf9/SZ6Q2dn298Eqddsx27+bPAjovxnFbxmcDy30d+zbv234v7dr1WXXYYqjfX/39Wekzs2/rvtPmryx97e1/LX3VwHJKGf/aH/8VZnF3BNAsV3rP9kycaqWxGpB7dk1Nypq5Z6Dcs+6p6xZ2dWo7bnwP7m/wGIvRnqnT5tG010jkY2i7+5z/dl3qlnWvbNvHvd7ivbQlgrutj2ndq+wOvD2+b2cTEJdy/GYldqtzfO5We20/+NvTmSYVZN8sdfd1cHqtlmvqbWXv2kg6Rraf9mOk98zGYJgsDRDvm6b/3pgbmqqxrNxMNz6Kn50+8b5sLrlRl50HrFPpNtqeL+qxb+n9BsZu0bO57taGzX5xc2ssbi32LXHDrTbaMbDtfO3YvgzbLtu/OwvJjWD25lpsNks2fd6f228Y3bq3tzaWPvKu+Gja34Nb9+XeXNVj+3vy2j11kHgieb7JkHns2wPA6lS+mnQ879X9sf7YY7fu8cee2/192R8D2t+v3b79I/bqYtQeu5UcXmgu3qrn1fI347J75l9LztzTL0ivLmo/Nif31d56j9xJn9ziT6n73prgxmP8yXXs66LbE+FVELKbfDfr/8j8+uiC/d7H81PK+dLv4qeU/bH0Bdd8cj0fu58vS96V/crs/Mx2/0aA67d0f/7aU1sI/n6mrxpYKlj5k9M7XEvE9/MRAcC34xmPacY///AdBl9wyQk/Oj3hr54f8JPTE3L1+NX5hENacYgr3s0T/vjNe/z8/IA3w4ylBry/jvhwHpFSwb/83a/x/z094jTMCL42qQtlTvyTt+/wbp7gHOHpOuIP33zAzz88AGD2xedl2ADXXD1O44JjWvEXv36LENidMFePUvi/vAa8ebwgBnbtO88DUihIsWxi4Z6vQ2Phe/NwAQBc5gGHccEP358Qx4zDtOLpw4TpuGCIBc+XASUzQ993b5+ZtRLAdU44HWY4Ry0O7nwdhGGQt8MPhwXLGoXhryLGivmSMExMfBRjkbIrhqFgWQIejjMu89BIbKZpxfUy4HBY8Pw8CbFQwOmw4Pk84uF0xbxGnN9POL294vw0Io0Zacg4fxhBq8fhmyuWJSLGgpw5LoqqQxEJBSWGOTzOAIB1ifDiwrdeEsLALo2H44whZnz/Z98CAA5/9IR5TsjXiDBlUHEYD+smfmh5Ele8A7tTBu2zI+RrhBdmQno/gGKFP2ZmzksV9RIRjhnlEhAOBVTRWASpOtCHxC5Ub1Ze6CmJ0YcBiAR3DsCbld3cFg8MFT4yYZBa1dPjgrwE1HOCf+CYzXoNCL9OKKcK92ZBnTuhCRwBlnBESG5o9d29Tqfv1TMhTXFwq1iZDwW4BrbCHgr8h4T6mDupSiQmMMke7uJBpwJ3CaCxcjmHzOyDnpgQxFEnF5kq8ByAUwbeJWAq0j7JOwgC0vqViAZA+CGhHCu3r/J4udXBzw7lsTDoEGIYlxkg0FibBd5fAuO2Y2FLyeL5PMnfidgKLcfTzyNAwPqTtXkzuEuQ6wWAFIfwHOELsL4tDci4zOY7SrVdG99F5O8y0q8S1jelux4CSD8E1ACQ6tReHfLb0gBMeGbfs/Imwz8FJtoYamMnHH8RMP+ogAaCP3vW4RVijvTkMP9BARy72pVTRXwXUU4V4TmgHGoDbORZL9gVh3qoCE8BdWR93nysCBd2QyQPvjcAwtnDZyCfVFuYQFHKWhwogvU/R0J49vAr51Wt3vSBraLlSIjPDmWiZj1rWsWJ4Aow/tIjHwnlwNfHi2OL9Te1eSlUIVFJ7xzmH1XEq+cx+K5i+D5gfaTmDZI+eL7/YqnLBwKptm9hbcf0zG6GdeQ2hKvD+sDaxuR4HGoA4oX7E58UFPGYlolJTtQ6FJ9ds5pqW2vkvut1NbI2aTlIGaqlDDl3AZa3hMNfedSIpl+s1kHVHa2DlDPyvyA0XcsagHzi4/EMrI/sBaFao2VC0y0toxwbuW5HQJ7YOqt6r8sb1poFcflh5mvyif9WLc08ofVTdX7zAUgfwB4YCaJxzHUBQD44hCuQH4D4xG1TzdPhPXD9gy8HlvEMrA/8uowXNLdJV7g+1XyNZ3St48jtT0+s6VhHIFzZekeBz6cn0bhMrpXJWqdSxsDvEF141wiMPxDWI2sJ1sQ6pTWhWzEJ8IXPcXsJZVRtT7D25cwFlon1XpVoxov+Z1ilXdEhXkj0TqXfFU1PFuD7rWOkngJh5flWE49Xljlqrd1dm1bnPbXrHaFp36quaR2w0VlVTdAa3NZN1oyVJedxhGZVtXqpqnHNeXQTBluNUE1249ezbqXV/FQLuis8js0qT9joJVtLdbce9zr2etKusD6q6mo64mdTdXFdJeiOfbfm97lmNcVfJNndVybYzQaDbUM1/bQbd3Z4dsde7KPuN/taxu3Y9nHYWkm5nN9fcPY1p68aWCZf8JPDBxzCilFVwAEmpwGTlQwhY4wZU1jxzXRhSY0A0ME1KQ2AYxy/nS6IviIRg7dDYjKO6AreTtcWjzcGBi/+KAslX/F2vKLCYQwFwVV8c7hyW+L6wmqnBCcehG8fz9KX2mQeOI/HSWQJtI7kayNxIXIIaW3xfEsOeBhFeiQycUt+e8EYC8sNADiNC/fHEGtMMfdYwVAwpQwHIAmNfPCELJT0WvYQC/LgmxZijAVjLFgSl9nIMEJF8LFR/KvGYfAsvTCmDJyuLAERCrP6HlyTf3BvgcOwAg8c5+Z9BT1w/N1hXBrIrkNucZRFyC+U5GIaGFjFWBoxzBJLI9hIErMXvmNAPQgLbk6lxXXFUNv1xVhhUypdIkFi4NZYEIVRdg3UwLeSYqyxIKWCHEOTO7Aahqsw3aahx9RFoXL3oSIPTLNP5FBH1vELFpiSQxoy543UqP5LqOzpPRbElFECdWutIyZ9IDRtQOcAGtBi1pTsoY6+W8cFb4ZUUBIDrhgrciAkYVEGgRlkxYJfRyYSKakykzI5IZSpcL6iJm0HW/19IJRYecwCE3/AcXklMMOnA1CieCIIky0g+EzqIQA0uLb5ECYhYXGEauLfvLrCyyIH4DGjCtAkZB0AaPS8UeEAGphuf/0ReCE3lb7gGDRuj89RdSiJUAhwYyeCUZ3DxqwMIHuCP2Ss3wJuKmKx5XMr0P1MAyEfmcVWLbslChvwUFDFjdaFbvGdAdAps9dCrBwrJmCxHjyDYUcok4OLhOx5cyBHzwDXUNvrOCEQM28GQj04zj9IXocWZ5bF3RyRUA/YnCuj666lgZCTuI3L/IIHliSLi0RYBt4Igec1UVXhe7HOXx1AIzWG1HLkzReaCuqkefmfOnjUQwGNHuXAQHkOQFWyEceLY8AsAKOEE+jGgUcrl2QuuexAAyFbl1AHlINjMpORF526gKuJuqUVDJKaJ4PnxRR5vjfaLvJAPjFQ1Xbl3PuXjw51qrg438CtDe1w4sJMkZAPHLeXT64BJgrS5oHPh0cGa650gKEAm5wszqmDUUBAloBYV+V6XWg7ATSVQYPTMI7awRmA7socGMRQ4HwEvn5VVtJE8KtDGaU/A7uUUyCsJ4f88OUL0lXH2XHfFBi4wvUpOMknibF0HRzmoxOQxu3T2EPy/AzDGdABnjttfsbtgpwCz4EygK3rAVgfXAOxDVhV18ZwXRwDdon/JA9uB2RuG7dujseU+Ssu34vMqX1cpc8QYMfHwgPaZojOnxoEZKYt8CPZMNC+N0u2eSZ0jjkBZTYOkgFnb5dlZu1jtd1I4fMdfDkBcw18auiOAT/6jOxTN7C67hq9GX8zFgY43rQK78AWGeC5yaNAS92KPTrQvAPAyPV3631CHnnXGIvxa94JG9B5I93ycnjVEm7K/iRr/leMK38jy+zveHL0FSP+b/6Nn9A/+u/+08b8CQBZyFuUSVOBmhJvKKvj3lXVskEqe6SOzJIjoilLk1oOlY1Rr1VWRGVqjKETglTqLra1+maRVIumMkJqOdbtdu+OWsk11sXG6kfdDVcZGlUfzfZXAantt7oM2/pUZ27vPrlnX9Rk26iurSqsbtkFW52+C6/X3T3QY8pkqUyFwJaBUIGOJQHRtHcPBrARjFfhdZZgISxL4AW+cbvcC8I3Zj/9MOk5AX96XMuwQvAbt07D9Khj7nzXnoO5z7rB4IQY5Z67tB1HYPudUtBixeHbfZP2713l3K6ONv/0HHp/9Dp7P7pLMlr7N2Lxer3W2+a/nkP/SHs0ofj9s8CELZyvHdu5/m503XbujS/Gk9CB3K7tN5NYl+GAuvru4u36Ne2YjtWNsjZu4jpWSsRi7o8d73atKa9JyVi9N42bBppGXXshmC9+k8AhaatYsTdacDaZGNYXsXU2xnO3aNq4520WV7sViDNjpW3S/ijAtWWTKVvj4/W8Xlvcy7o1Nl4Wta3fVoPO24ZqXTqoukqm28f315k50vrobvTnVqI75+6NvS6MW9ArXi7WZLFNlkcA2Ixp08tz2LgN29/NPXjfjjbXpFzrHmzT/rh5v7b5X10D7taFV8dSyWkYMHTJBAYm1OQ3viRZUPWi/TaE4VPmvg4f4YVUhZ02NxehhGaBau8+27ZN3ttzcT819zGdL0DPfs643fH2nGF7z8lk3T+r+3HR3wrYTX2tTffmDr3s076Mfcfs3Lib7jwv99KmDe7OPbHl3vr7U5Jt1/7fO+36pLI+I30SWNTyNxd+el2fXMcnpP/jv/kv/ikR/cPfvKQvTw/f/in9g//oP/+tl/u//vf/1d9634Cv3GI5+IK/d/wBc424lLSR5Mjkm6SDlY5YRMZB2VWXGhFdQaYAD2ryC9FVRF+Qa2jyFxq/qVIIe7kHtYAptT0AFPII5q3SYjoFACfPwLDCtXyax8pc2Po1D4BmwYyuYi4RSrlvJSqUPVTlCaxwvYrd34oL1X9t/KjKRmibFLRqOTZlU69aRYHOZqqyFRYoWwbXFEoD9SoNwayghEXYV4sBUbadej/WojG1HdRbQKrgfRpWEDnMITbrrI7zHsQoE+mtuFxlTFWpBo3R3dx7My7A9nuirKdW0sECy6jzy4x/67OUpWDcybUM4MXaXVl6Qc9r/fs+3oup3VvfAWy0XdUyy8Lr/Rhfiw3oVGBpgbDdcLBls2RCl1OwefXvvqHBx1Q2YV+/lqebA037FNtNAG3DXirCbpJo+2plwXsiYI1hU4aNY9ZNC+cIORsAqvfCPEKWXbUosNRzob8rWj0y19W6DYA3ITybAOw9Vf3YNrfMSkg1ZnVcdT5VmUfVbrCZuWDfG/ou2awddvfKsje/WPgKIHfi3bDZnFHQbDdopHLeuOnFhlRQS2jHnFiQqrjlt3Ica6eqBq3+7UWeoQGA0G+QitLbzQm7ydI2FHRjoC2+ZdNNwLpuSDTringftP4qgDLj1MbBlNnI48z5jUh99ixcT6xbu4lzd1v5ic1mkZTbpDA8tQ0yyLMAR83qT0AH6Ar+gQ6cdQyV8M6ec8ALMrh9jKsDj2cDlvKObWy6rklg6MYKCakeiWs+rTdMT5+avLmfu+O4dVzbTthomW5fwOgbNPeA2w6cbJh49bdaoO2GkyNj0TPEfPt6dy6XN0HjrZjlTZ6uXbmflw3k240aua65VO5ike8CCZ0j+3Eio31pp9GGs4B219C2K3YM9mnfnj0YuwWWbhz7LBD2KQBsv2i7k/91YGkG7JOv+Ui7vjDvbwVI/ibX/k2k3/X2/QbpqwaWk1/x9w+/BACsNWKmCA9CcBWFPOYaRTMyNlkKlQiYa0Suocl56EJIU6bQQJNKbGiq6JpsuQZEXwRchaZlqXqNqhWoUhWa1AV3JY9K/qZOpWpUAmjyIsnVdo13teVXIK1/D77gLHqHUeJCVfYgm4WhylHo+ChoVgCtUh46RtyWrZ6nHRftp4JdK1FyK28m37Qn9Tr9fS0Rcbq0dvHGQEAhz67HBnC1coklR7S84DqIvgf2vSNcMuv2fXc4i35i30zQfqgGpY6P1q357BxTQK9W7bZZUALGmBuo3hM/5coW5kNa27EUStM8LORwGta2ARDMPdGk962QQ1KNQWkPQsVpXBiAWqCyK0d/W41M26eNpIvxBAi+ssvzuLzom5ZnNxvsZoK9TxYwluqQJtlEGF5a7jUPW9jNWBaOa/XO1s99GM34Wku5NxsdJPdZ3ant+W3dvt1754CH4/xis8RuKjSdzam3Yb/OdDJWaVyx5IBB5A30XC4dlCpYH4YeDqB6iGFcN7IamtY1YJx6vxQwA0DO9hwaoO7eBWUDSjpw79Zy1Rm0IHRP4BXs+tKcs8d0AyBJfCbrJYp3QuR6fOz9qtXBma9akfhw1zQCZdNqzN3CK9fXEhCHDBBL6cQho5aAECtUwqTKPCf1zDU6huqxoOPhY9cp1DbymJEAMQeXtsAVYCCp1zoogJNzMpe8M4AaaGBHwaAP1ECigjU/lMaUvvGgIACVV/ZqyVamdZ4sHQA60Wak7AzglHYwNXBrj2X45otltSixn80K3ia8HPfyt8fGyt6Am15bTLkKQI37L8Q9E+pOKvIkTuJ+vzgZ91RrkXTFd6DnwVZRxcS6cbb4Bo5fEIdJzOBdS+ceMDjAX3y3QjvAr75bbrliWP8Uv25jEFmipJfXQNiub23+ra3YLYAzbrFcj3nuBfCSB8Lit6BT27VzIW1/a5K9F20L/9M3HG4RQekw0G7s3H5sTbkNVN4CtfsKWv9elrMpfw9Ub/1+Jd0FV/fKfa08u0lws6471tsveFw+CRS+Bsi/pLzX6vgdSvYR/X1MXzWw/H454n/4f/8dEbHX+LquZbfk0BaBXha8utBXcKXzOYoFzbLFqqUiiUupWjzaolFj2lIWghteCKnFRuPv7EIUQLMweE9YjWXAulxS5Riu/YLLumhqG6BAR2PjZDeviuXU+doEoyGLP317BBPTZcFSczGlvnvO9dftMV0g+d1CBRBXRPeib3ZHnIpri5X9b9Z/Yz0yXSBR4bp9qs3SsAEa8sFqbq/iOmsXZ3a3U8utM1Pau4FXjLbPVlMOgBADobGUbtw77W57kb91oWDdCk1M2+ZD1GRqgLaD3xZH1PXjCH3h1j4Wcq2VzNFFhy66PG0XdPoQ3Pqg6wdo84HfLRZ1fPT33nUS2L5B7fVahI6XLUfr1QWjN2Nmr2k3BX3cNIvEVO3709zodgsXbn8fh7bLr7Fyxv2uuQE6dL030fsgmUPcTCMrQ/wbBdx2u7jVLN7I/4gOn1s5rrG5GQJMnKTlOhlXnRdAX3SrJuBuweoXh0XixFC20jQ+A6tIkegcclb/zs45yWOtEeqOt6hbnkNf7JLbkHBszgMby4LGPDkCiiW7MHF2Lsu5/YJJfvvFNZIjR2hyPjnRC3dGlzn+1VX+uybicY5ihXNoLpTtlvZXaWuzkp/AmcWtjfuS5037GncSDuT4XuljY9tp144b9zoZF43P28v9uMIxblFj2fYxXmrhE6CxIflQC7Lrx31hAqEW30bosaYAajDaikUJRsw9AOT6/o7Yl9MMllqWPGt6zKuOpZk7m7lR0IigNnIjK1BHfHFyGT3us/Z7D5L6BOTs5UbISSyibZ++ex0awNvcO/uKsMfRy9sTveyBVG+4aRttx03L3wMwa+0jh0ZO04q0edDbYvuuEic9htG96N8LAhvs6jFusS+A4j1L667vm4dnd94+C/Z53uS5535r0+790465O+dvtPWjUh6bl8Cd4+3ij/xuddzox6ttlGw3PvEvyvlI3Tev+dS8u/T7DNa+pvRVA8tjXPBv/+hnzZX1KQ+o5HGKM4IjvF+ZTk6tlH4MHwAAIABJREFUiE/riGNka89THjH43NxjH9LcLHzeEc55wFwiE/GMF5zzAA+CdxVLjRh8xvM6osLhMV2RKYgAesApzXhe+cs1xtysfg2QivVr8AXvlkkIgtiyaWNCleAHQHPpHQOXp2XN4to7l4CHgcl75hyRQsH764QxZqRQ8LwMOArZzzXHZhl6GJZmbVqrxxD4y6wWpaWEjRUr+dpAvFqy1hKa1cq6tqolaooZq7hgBl8RHFseB7HEDTGzm6tY2qIQGV2XhOO44LIkIQKqmNfYWHWzlKftU6sVUbcoTym3c2q5UuKiWn0jFnr3fACRw+PxilJd24So5DCm3K6vxORLRK5ZgC34V4slAVhFmF5Jerxj19sglhyNX7Xv0HlOoOowjLmV7R1hWdlFd10DxjG3jQ/va7MktfhgKX9dQ7NileKxzAk+FAxDaRsf6mIYjGuluouqGym7b3KZJftmlVFin5gKcvag6hFTwbpEpCGz+ybQ3D+J2IKkLLohFtTC1+icUWuUunXGVFo/liW2/jqH1haA8+vGiFpt1jkixNrGX+NLa/aN1Eg3AyrxysmH0vqlVr8YeTWlLqE6nqHFw3L+fGVW2HRcN5tPceO26lAWRiNhyu3LrGsHjdUGgLJ4xLEwQ/HIZE4NN16jbIowyKPsmWSIuE9FQG4YCzMGQ6xYskAr5wh3KKL367t1C0CZPZ9z1NmMlwCf2OLlxILXNnSKRyWw++jqxY3UwSVhK1Zrl7o3C4OxG7p1r52zG0yxoq6cF0r444ktaAAzDS+ez9nNHAN86RyY7VaIopg5GYAwEvPACOBdPGgqQHZwK//troE3CiAPqrAHt02HaOqW9rmVN57UesXkQztQLvkoENy8RQwUabvBsSpCRdt4IEfwupHhwOB/YZKgBs7MJpVbmbwnPHsGwyrx7Lf5KHQw7Rd+Jlyhdk5JcWhlIh9XmCzEVXRGT+1D1XK47Q2IZu5OEebb1g45XhN1MKjl6oJf8tdIjUlUCXJccaIly5sWXnRJ/WI2MTyAq0M+fvkK1AmDriMDakjb2sGb6gbzHJNx0TYHAwqlD34RAG83gIzesSX1afPxwoRBCuLVIsngXLJVxwRekPOxbwDB9XhTZW+2ZEQbvVAPkN2YUOKlYECxEAf52YBMIa+hIKA+yXjphoaCcJhydcPA9bFtZXls22nObxyptA7wpordtNoAR31XNODb+2YBlC+78k09eyvnBpxSv/+fAiz5YpNvF3JzCwRvtF9vAWCpaxODewdgbiyWd9uI9k563QJq3mvONdD8uuTMjTo/ERB/NbiS43D+tlvx15a+amB58Av+wcOfs4sePFYKWCkgyVtqFgq/lQJGv+JdPmLyK8c3wjXQNteI0WesRgn7Uvha7wjHsOApj4i+IqCiwDcAwWUz2Cvy9kiuYK6x/a1t0PIUCCVXcKlDc7kFYGIWA7PQgjaut0ncMm2+Sq65nALdbfbDYcIYMqKrLQZVAewqbsCjLy2utJBr5QPsrruSF5dh+TC5ikq+ufd6R+1vAJtr9Xd0DP6su651hVVXU/09SJsUfKobr7rCVvIYBGDv3VH3broaS2vBscbV6jhFX/HtdEElh2NcWv9aGbsxWWTMFVhad09tq7qNAmjg15v7al1ztYxSPfKDb/GxOoYab2vdlbVPtm3a/6HFD4eNa7OOp3V7bUDS0au/NekmgsbrAtj8jrLxkExcs41LtrG89t7Ze9TiiIHGxJt8xVxCY09uDL3oSZ8RJd6yGxlkytVNk/046FhrUldYjQ+2rr2bmGTJox4SY8qbcu39r+RaXG+KHVBrsh4RRUDpegqNgbnNs2N44WJ7i8jLsjTbtJx4Q0f7aTdEqhmfQt0lXsd8H0tdpJ97F+kWZyn59cyeIExjLrUtNlkSML2maNy0bH5oLCzQY2A1raeAEGhDAFYrMzrvXYTzGhBTaXlCIJRT37zQzYytuae7lbY263hLPvUmaXGu4lmi8a/qXgszTlu34ZdmAWfHBrpBopsHMibmOioOUfoDoBFbOV1UazyrbLQ4Z2J2Tbylk02lsnreGNDY34oePyjl63VZXEedJ1RCA/Tqytz6Zt1c1aNBy203WECwxMA2rw49V8FtUK8Q+68suFf1+vjSpAAV6ItqHWvr3WLnst47Sw61c4VVSy6ZMjpzqemnASdudUBAy+Ny/71pn4JVbbut246ZBQr7fgh4V9CnwGnPEMt9Mf1SbwjXgZu2rVt3b4zfrr/Noq2AWOeO2fehzR/3j23G0SZz7IX16x5g25X/4voNUjO/7b+763aHblviFIDtf39q3l16tY5bwBKv1NfK2w+Y/N538LeUbvbh79LfePqqgeVCEX+xfItzGRpwC6iYa8JKngGfkPLMNSL50ix8SsyjgEbPK2HOKNbMSg5/lr/DFNYWJ6hg6hBWtqyV1Bb4Shg0+NLA1D7OzIKTKeRNbKGeB9DycHs13nG7ZeYlhjD6iu/no7SBLbjHuODdMiFTaBZb7a/Gbv6ypM3iX62r9pgFAjZWE0DLo8ct2FPwtNaA6GpbYGuMo/3XgkwlSxpDxrvl0MY2VwadzhHeLdMLEiW9NzqGFa5ZY+1ik9s5tjZWcngYWO/yr86PvIFgyHUsQAIYSAHAWSwnt8CS5qvkUHLa5DtTaot0exxg2RnnCOc1tXe2WnNJzj8tA1vmAFzxMi7yeRkaoLqsqYGjSSzDz0J8ZEHSPh7UtsmCheAr8pra36V6zFKec4R5GRDFQm6JpC7E1jj9bce3GJdmjZHU36Uyu7FarXMJzTJt4yH1OiVLUoC35LBxgXeOEDzhuvR7om0HXsZbAsC8Dpv+6ljbONc5B4yxwLmKs5QNOXcVy7WCr+ArvK+4rv3129bGZORsQsF5HjDEjCXHDchPAiIbeHWEeTX1tranBmqKicsc04p5TY1syZLpDDFjlrZ5GasQKmbRi10MgZLeK+dYIkkJk7wnrBIeoOBBx1bJiyyzM5FvY76/B94TsujE1upFfgfIuYcdWFIla72fphU5hw0YDaG28jhmUzYEB9bi9Z6QxFKuxwAA5Fgih3/0GFADvKg6hCibWeIWH0MVECm71AJwlVSJ5YN0LNlqT2YzIMQisZoCMnTOSz16zieuB4EamCWdo0JilMbcYk33RFz63AQB3UE2HhQkKjAPqcJPLCfkInr8qXlPUhXipuoQDhqOwP1zozxreSvF4wZwOdnDqbyMQ4/1BBrIpOLgp9zCH6iyhbsxOVcHN7HF3I3U3emJ413Vov8lyQUmQtKx6SfkuFrAfe0bDmqZH+VYa4/rIG6ifg7Sd4sybsUhHkwsbHVNZ/cFmLGhCi9iXzXP7jqtp4FNB/K9/MYIvPsbEHC8j63VsnYu3BvguxlOtwOZWoeWYdq5AcQvQYvFcZrab7WaVmwsfx+7fgOo7hYuF2+sjg1xSrl099JXweMe1H0CALyHA2/CvNdA5Z2C7DR4AfL2v18BpZ/cls9Iv2ug83etPb/N9FUDS+8IR8/un9eamjXRuwVRLJfebCWr9aqQw+jzix34KBZCdoet7fwUViRXmYxCgFkSEBkdGvmOTaqraYl2AGz/hsMYciPt0Xo1j7VERVeZodBSHsoYWC1OPRbl7T2EAl97nzywAYsDlU2ddvefy+p5AbTdULX4VcdAFoHBnLr9Vbjm4qvuxQ2soor1TY4T/+vk9wA04JN86YDVk+hOUutnA1VQgNHBpiPWHbSkQgCY0Ef6mXeAcJTFlHcEL8DQWvAANItg3gGvIGO7B3rKTBC0XGXJNQQ+mt8y9jaLj6+tXOeoEfK087YuAAgFTtoCoIGfaEhzFJi2f4PRVJSxU0tfsH10hGKuU1CmvxGYyIrMcTNtGuCxLMGuxZNQA4AAZNHLfVZXaLbMdSkca/3Se86PfAeRHNQIKCOw18U+8XpGj0NmLrs8EzqDcAeeMfTnvMU7Sr1atrXoeV/7S9bZNvFY7i2J3lgHgqc2vnZeaZ1ahgKwoIs6Mx/I1z4/wu7d4SucM5sheg/RY8MtEFQA6j3XsmfkBZQ9t19nyY7U3VoBu5bbY6SpuV2zFZDac6rHmvXT6fVobdJ2bGLVWx9g2trr5rLRY7KlTP1b/yWzUtIY+QbKfG8XORjrqhls024CdSsjtrJGunJSsOZ21ylg0ThyJ/VZ+SNAFop6P82c2qf9/LOL4X5fbH5Zu0tsv+aD/LdZ5zopT1flmuS6fdntHLBdQPbXQz+0+041eSJTz976raCjbj/Vn59eWxDuV+i7NtgNghfn6u323q2fhP12U+b98m+267W+tLLo08q3QLC6l8cNSFJ3bpD8Tf3vbf3mbwssLHIxnAmgLj2zB4PuBXDd9RXoLrA3xsJi27v9N2W3tym9DrLuPYL7fJux2J+78dvdOnerb/u0q3M/jp9U96159TGg+bnXb859tFd/l/4G01cNLH/x/Ij/9n//R/CRiVxokcCRQPCxol5ifxkF6ux2njg2R10/iuOYm9l3sovi4IXBjA5FmCjQd9w8ODYGAB0Kx8t4iU8Zaz+XxGXDulFUtDgaf7HxOK6/2IpDHStfIzEyFEhIKMxLXog3XO75NUYmnD0oEWoEwsyizhQIfnaNcKRO1FyQ/Iom/KzxQH51m93eKiLYTohpWlyHxm00NyZqBAUsyIz2YmiEClHINZKQgyhZhsTqqMC1n12L/wgLj2WZSASce+ySjrP9ANRBFmYmVkXFoUG9v+mdhyNgfaxw2W2JMDQ+SrH1ImVHOW+0xJqwN3HfKBD3V8gzfO7xP9QNIe0FHmbuQx37QpUCEGb+1y8OZaJGVMGi5lKvfDg1zsevrpXjMhDPLI5dDgS3YkOc0dyTLImHiJ9bI7nPHK/jNVbNc7yTl9izmgjhym1U4W0KPW4oLA5loDZnQK7HZnm0eB8dz5oIYeZ5EGYW/yYvz84qsUOO29Xbzn0OV86vovE+67PC4uxwJDEpbkv6IR9SLwyILZ6qcHtAromgk+v3NF54vNaHTj7SnilZ8KDyMVdZ4F1TiysKaDv6YQHyAShnyWtir+qF55O6pfkieWQBVnSOjuhMjho7BABnIB91Tu3u81VE7R2PVR0AzPIcr9gIsGseLR8SV0YSh4ZdHBnAeVwFKHFfyfV+6DwgkvyrHBukPt/74xLgFvlX2qNxUO1ZfQLcYJ8JzkcHbIlUKhCuAE58PMyAOwLhAvixtzHM/TlzxGOh1yshkex1tmfKr3xvGvGJjIXG4IVr7z/Az3OLCQRajCK5Pgf4Xdj/5t+EMrjWrh6/yHXlAzB84Gexxu0C3BVCjU7eNYSaHPyi78s+18voEBaOmyyjgy/UxOtr6n2skWMva3IIM8lzxMf0uSqTg8uW5Eeei8HBZ/v90PcU4LK8FyOXq30nx9fYZ9av/JyHa/9uwfPv9QFfnMLM95OcQ1ipzwd5pnW8/GLe8b5fq+9sv5q56l/OGzufAX7e7YKbPJDOhDwqoRHPCQrYkkXRdi7WiBfvL0Dmsu/XaN3tXRyAsAqxTPtmEWrgsecy+F5xPrltEmNZA49XkfvpCHCV2r3TvrvNO0HWJoVaf8hzWa5qGegPj9v13YxVe1/tYwwVO3vus8ZjtutlB8cV+Y41SmU5h37M4Ns2jtr/F3Vid0xPUe9OH2dsx9PEorb6TAzpTZddZ667Ue+2DT0WssVE2nL3/bhT1s3YV3P8s5Ktw+HV9t9Ljgj/1xdU/deSvqD9X0v6qoHlMGT8K3/6C5zXxBIH4h62Fs+/vynNvW7JAUMsmHNolpZNXJiwpmrcTRB3SCKHeY0bDT0lItEd+HWNm134LC5jQHfX0rSJgaoO6SdlEzekO+rOcTl2J92Sqehute6qh1Cbyxaz0zqMYxY3MIcYO1Ot3ZXPa4AXZljnCc60Q+OBuswA4FTTT9lpSSj2RcPMma3CWj2ToeQAiBukkqh4cWFzocIJ1T2UEVbZP30FJA9VzwtucXfCymUq2yvpS0+sbO19V7o2W1uUKwutAygLqcsf8oqkzkyK4jx4N9hh64oFMGkIOdQiO/oaD0ToDLeOGvO+zVelf9Ub3TdloHWEEqgRqvAmBlsmirCR+qjnqL9crUXCASQEKk1vDTxXylC47jXweOiYGAtPixdrVgVsdtmdzhVpL4+xb0QyJG5sJPFPjSlXP+qBz220/ZQ9F+bGqUXCxEm5KNeY9nEDZONDx0PdzoQ5uEsQMCB13ujYaQyX1mtZfZvenrRTmWm1LO2XxCzNg1jarmYFGIj1+hpapR7fpaQs2m9tu96XSMDqMQ+V89pd2aF2lzJl/7XafCqDsdcK1DQWQJiQdVzagxMrn9N+ZsdtsWy/+4+8o94O62q3Z/rVMt2uPbtFnt3A24w7ocfymXixZgFpiy/5PVQeA110Sd26Eah5ATAD7yLHg5DrpAqXfWvfC5mKiqYLqHqBJOy8llXYZbetTzYXW37tmwNv2plFIln21LbYRWM2brFnkbrEhW5wmbxu9XgSV0mNlWsLTmc2QGVzo8lYmDHWucBkO/yebuzIuw2+dsyyWIuFt22A2rmg90bHSt9B9t63GD4mEtK+u0pCEEOtf23cFayom2PizcovTTXqppMCDTnh0EiH9PfGEgYwuY2Alg0AsvPGTDH7yL9YjJMDJTSwDeobrVtwQtu5aO8T0Oel0WTdtL+9G8GMrhtXVn0O3aaN1eZzts9989yY7RuAdHqcsBmLLUsqZH71YxYQ31qwt00UY93s4K+3/QVb8na4X1g9+0kzTvvf+i67kTaA0XzOOqjdlXuv3lv/3qrvhpvvvi33LL436/6CtHdg2Nf9RWn//Xgt/Y9fWMdvOX1xX7+C9FUDy1Nc8O9+9y9wKQNW8hsym5V803wEurvqXOILQhnVfFSiGI1ZVPfJa06IEjPZ3FSFQAYAznnA4DMqeURfcC2pEekwUYyJSTTurRxjuXYyHJlpln1W81lCGEvw0Vz7fG1ah+oOOoSCXJmoZwysnWi1HSs5zCW2spXYZx9jaZPVAt23Tfu1j7FU90sAG0IUG2tniWnWyo6tyjSrrrCEHoO4lIDgunuqvk/38ayrcTPV9qmLs7qcVnI4iq7hNceN66uy3t6KsVQ3TDtee1ZcG79YTZ3WjbNS+y43V8ushB7oJC7q/rkW3fzocYjcZrlHyhbr+FqdJylwnXreJjuf1HXxFqGKjWvscZC+uWzqBo+Nayxy7/T+2Puv42djEO39Uld1yxZsJYT2pDubtrpORqN5nGMHJa27b7TI/Lihadl1GvFio0c3mmp1zB4L1oHs49VjCbUNuhmkm0m2/ZZohzepPFIqbZNJ11Lsqrq9bxpDqX3SOvRv63YYY2UmX9qS3+iGmW6i8SaY27h+ap12LLjt23z2t82vG2d2k4wzuBbPpysNG7uo99dr3yuT36g2pY6DxhU6oDEPt3FS4islK6Luvullww/6/AsLcN3NlVaXtMfel5bHbNZ4JbJpg9zHAYTmpmvvgW5O2Xza/z4/LQLhcjRSYn+vvOONLCu/9OI8uc3GxsaVV6spneRHgaLTwdA2m75bF+K2gNf50ohstqtKu1EH1/vUBh1o7dzEMG7mMZdHLZ/8ls2dMnw5sIRs3Lb22AX93mpk5rZeu9kY2yDH7Th9NN0DM3eAj0oftU0XoG/IyN83LVG3ytwv5A345H7urrnXZ7wEVy8AnC1fnx3rAXarXZtjFpTS5jDXo+N+p6+2rR+r77Xrb/TjRfk3ANZHwd0nAMq77d3Vffua2/Pxk4HRp+T7TJD1+wzKfh/SVw0sc/X4F5dvcQoLVvL4YTnCgzDFFaew4OfXRww+45wHPKQZP7884jFdUcnjh/mAY1rgHeFXOeHb8YxfXB5wSgvmNeKSEy5rQgwFf/LwDr+8PCCFIgQ/A4Kr+PmZ/Wm+nS749fWE4CvOa8Lb8YpfXd5wDGha8T7HDYOlSomMIePP3n0L77osySqLoLUEvDlc22Jc2zJK3J8mJmcBlhzx5nAFAFzXiBQq3j0fMKSMw7DiZ5c3OI4sN3JZUgN9bw9XPM0jt31JOA7rBiCc52EDnA7DijWHxrjpHWFeI8aUm9VXFzUKCI/Divk6NlCqluMxFpzn1K49DCt+OB9wHPkeXOeE02HGZR4QY0EKBb+6Dsg54PF0FdmQugHbSuSh3woVoc+ywHaOMM8JMTJBxWFcEDzhz//yOwDAw9sLSvFYl9gYIochbwDHfGWSFCbdcM2aDQDrEoVsw2G9RrjAchxqpc05IMaCvEbElFvsmVqj8zUxg+NBiTMqQiAsYkktc0A6rKDqUQvHkOrimq3BwDBllOyRVybrAFjmo3xIwFiQDitKDt0S64AQmRxILde6sG51SN9ZToJF1BUAhLGgzOxXFcaCco4Ix8yWVYCt0rLorUuAHwvqwrIVIHRNUi9Mj4RmzQ1DRbkGhKmgXALcUMWiTFxGYN/nuogOaSA+BqA+J2CoTYaDsmdh9+zhDqxt4EUiQy2hTqzRcAQSq52bClsUREIDAFuFRWqCViEb+ZC4jG+Wbo1eApOMSEwaVQfMnhd3h9IXBGK1bVZZB7hLAB5WLH91ZHf70BfS7jl2LU4v1rVD6VY8ccXHJJZJR+Lmz/c8vw8obwpb/xbPlh0JAwgXj/JYuOzsgLHCXVh2wy1sxeu78dQtgomlMyiKS/vA1j4rsQEATuqrUxUXc4LqtrpsRObFyqZSGWqx8lcWgdeQAxpqW1Q1K5pKfbwLKCOBRv6tYQDlobT5qfqf7pn77RcPmh3qQ4X74FGPtQEId5E5rVaXRN0KJdY+twgIjuwa51dxX19lXnk+52Ws/MW18kHiapzIuER3N3wKHXA3q5u4U4ZZXLzFKueaK7q4VR8JwzuPGqi7rYp1Ut25KQJe3J7DzJYvt/Jx8hyCEGYex3Jkl3YOjWCXadVmVGtiHdg1HsTu/a4AfnHNZTwsci72slqYg7hh1pHvj4ZdOGKpknh2zUqp59Sd9JYrrJd+hAuwPuKLU7hyOAEACRXpQKhM3cVV/3V6TwHEK8QVuZ+Hw8YluhqSYGdcYfdyI+wK213gNWSiubQ2q3GvPyziFpxl3nhs3Ic3Mh7q0itW2BaS4Xu+5v4tMiTqJh+uaO6fGlaibuJV2qvXk+vX21AAMvq06ibtiMfHhn/40q/RPjVrp4xXk58J6DqzFgSLu2qTGykGhBJAXtyz7SaQBXLaTvVycmYcS+/LxjWUdscMoLZW742FV/skbd5Yy0u/L2SOA/2YlVK5lRqw3WyQUBtPuwGgbba/N+kjoPtWGXbv4QW4vrdp8wnpVXmTv41EYIvC72n6qoHlKcz4D7/5v3GliLVG1NOWcfSPpnctb5MagFjk3nSLm4Kmv3/8NVbaWqf4Wo8/Prxrf3tXkSkAj9iQwmgq5IAHbJg/9VqbvKv409MPm7r2ycpc7OvRuqxUia3Lf1t7nd9srYn7OpsFEraMPk72uj376f68tc5tx/Fl/TZPJQ//WG+OVSvjbSfi2Y/JrfLvtXVPsPPj09PN9u7HZ5/2lgEAzdKgbLcv+rC7j6/d/1v92jPQ3hrLfducI9CPX47Vfnz2fflY227m+dFHL7n7TXjte6HnbrXpZt//gNrfQL8vL0g97qTX+n7TovsJ/f7cbwmRg/tuy94JAPSjl/PuVvvuWZ7rj+/Pn3vP7816Pq87m3Z86v34+HlswgM2a4ifAvHGGCS8nOtEbvNBjADwE/73U9clG08SU3bc5HnZ3o01fFOgGSvqFkFbnx6znDTe9M2he8bmn/Z7ZteX1ihYpN5s2stt4H9XXdzKA3nrftqx1XJ6o9EWvNke0/7eWlnuxqO145Xzt+q7+ftz0725YBe8DQSYirRf+4WxM9d/rI5duuzH62Pvtn0b93XdegFvwMCNb6Cjl9bOW2W8Vva+3F1fNhbMFw0weW6du9VPU+cngSLQzfpfHe1PfTl+JN9nW+c+Jf8rwPJ2/vs9/Wj7fkvj8Mn13b7qSy76u/SF6asGlu/zhP/5V/+6yF1EXEvcuLE+56HJWKgb7OALKlyTSFBXx0Nc8bwOza1zrRynGXzFaVjYRRLYSGqwpqLDFDNW1bU02ovAVuOvUbGTazGcl0WlG1jjS/XnSK7duzsG42qmx4lEikMYTdXaqDIB0Vdcl4QUC8tFVN8scEPMrZ/qdmrdV9cSmssat1P0CDXm0rELnlrdbrkLMgNnv8Z7Y7mTeFSVPdDjpXjkHMQN0AsjJbCuAbV4DOO6cVVrFjV1mZN/Y1JKfjNmpbuRhcAxpOfnEc5BynVNHoBdA82Cntj6B8Do23W3PtWmA4CyBsB19zmnC3bP2nW33FGLitnHfs77irIGOA/UzLICbP0CnFh6rPtZEGtszb7JI9TqUGe2EqqFcBP7qG5k+tvhpQsaoVkW9XrnqdHvE3G76xLgh8JWO4AtajL2ZOJonRJWieUSQLtGraFatosSmymxnGrddCo/kDX4irr75BLY6iXlU3VssSsOroneU2e4JGzc6azeHhF6jKGe07Gv0qerWE0PpTM8VnO9jrdq/6Xe77Yw1J1ogC2BQ2XisFi37mU2nlLjGM2cgY5HqtsYUXXrnT1LE3jivGYB5jJbG7n9Uu7qt5qANhkSKB0Xjq2r5hz6iqC4TSxiOw+8WPhqvGHL67l9IHSyr0jGYiDPv7gc+itbBZWW2K18bR1ri8/TcXVLt6IyCRvBzUwm1sZGrIBtB1/j+qrEtWnsIdDjAYXIyMac2RhFtWRqUuuQHnK5j4+1dPjVtWkLJY5L3O+qhGJyjc/Gegg061dbbomlm2Mx2RK4sew4/k+Jurzpk1pALIlZIz7z23Y4QiN72oyJ5iM0a1SzvlhdRmO1alYujdlUUjmgxxKKJbQGaljFkpp9SVLrPmmd+kwRj4/G6vnVdWujEsdJXLXGf+q4KlEeOcCugW08495iCScVWIFmAAAgAElEQVQWwNh/N0ukxZvSHgAbi1yzwhvisg2eV4unWsCcuQ69LRtCGHm1NaIq9Pp5Hpr7Sb2NltjKvou0Pc3KJs9rq5N6OZrfAlhn2ri3EL4AwmasXlj1XB+PTdqVYdvRxvEWuLXl7KbiBlPvyn1Rtx0na9G7V8ce3NONYwBukvfs675V3q4fX5Q+47ovruN3IX3Nbf9I+qqBZfIVf3x4z0CxRKzkkSWeEACL3aNb2KweYU0vLVdjzBh8bvqWWWJrprDilPhtaC12Wp6CTQBN3D6La6ICMQAvdt5VW1AlQ7StFnzesirY3xorBqDFBqpr6JRYUsU7wmFYW3ziWkJ7nyjw1TL3MYoKcvXcLf1F64pqxeSt9EcrSwHesPtXjpfkW5yiir7nEnrfBo9KaPGCt6w21iqkcYc2jvGWbqJ/oAbmAdyMtdNk40T3FiEb81mHwjIJ6O9vHQ/CevO9X6tHKR5J3GT1vtahbOLW7Hzax73ZuDbbtjz4puOn8YFtnEy8ko0Xuxd7qSBeYwYV0HtPqGPeHNMNCBuPZnUHtS67KdFiv3zvs90QsGVofhsDR+RAA9Ni2lgxG5tn6+Y/dgt8K3Qvv/fxfTBjUsVN1m4Y7J8pHcN9vJ5de9i83leUwcRJSr469rFt42fL07E38X6b+zqqizNAVDYxfTYWDwTe0BAX5JZvN3nthoNOeI0t5IaYuShA3hJq3VywOUDJq7QfG0IqT6DR4VYsoB6qiTqRETnQJGWHl+8NGh0QzaZLrKDkO5B2EDdlaQsBljRqE9enjbCL4d1N3sQH2hWplLnXQITrdQE3LOrqBq15zfkqba0aW2jJmsj87dDIXfT5tQtqCuziWqopw16/vwEOaKbUTX4nJEz7drgeh2jHow1aP1YNUzeckgZRr6sqs6wZN8e/6TdZ+ahOUWsPaRO2AEbrhQFZBf0+NjB24/fu3t4zRroJrS0KdPU+tvbB/Jb75nRPazf1XtS5K+rFQn4PTLSfdZunAVsLcslcdw+oWGBlv8GGfGhTzj3AtvkIm/6ZR2vTn/312vYbYwSYT8cr1/8myRqlW9o/c/t7gY//vlkuIAeBDcK9Vf6uje3Sj/X9M8bmbht/S+X/baWvGhR/JH3VwPJSEv7Zu5/iwzyiVIfTsKKQw3kesOSAx8Pc4vCua8RpXPB0ZY7/h2nGdUnN0ne+jhhSxirC2dOwYpLYvx8+HHCYVuTCi/4YeWF+GBd4B7x/nhpxxxALztcBx2lBJYfrnJBS2SyAva9Y14i8Brx5PKNWj0XExJUYJ8WCp8vYPu4pqRVPiUj4ezZKDN0QM57OE4iAYWBx728fz3g/D1iWiNNhxvdLQs4e45gbscn5PDYikBgr1iXyOkgsgcOQoSy2zlGLIWRw4hv77LLEjQWSyCGvASEWrHNEiBUhVpTiUHJATIVjAIeMLKy6ee3HfSBMhwXXywnDuCKvASV7jIcVMRa8e39inUkBnbq4901rj48tV57iytYKcGxkFnbgsnCs4Td/8ATnCN//+gEuUMvjHSGrQLoQQQwSt7kuXDYVBx8JVFmIvGRmXZ2mFcsSkdfYQGGIBVniN/MqbZfFuPOEYcyIseB8Zo0DqkDNHmniOM9xWvD8YYITgFiKb9Y/55lII18jXKyIQ0aWeFAXK948XnCZE67PE3wUIhu5tzX3NjTLnsQytt+OEFJFyQw8QqgoOWCeA+JY4HzFckkYDiuuzwO8sF3W0i2VMRXkOcIPpTHfksoA1R7D6CN/xZc5IE4Zy1NEPGQss8R2itWRxNrmxwLngDy7ZvUcTgvyGlCvbDl2Yr0MsWA9D3JP0eSJ4MBxm9LnMGVQ9ShyvU8F+cLXMfNtZAvKUEGLx/C4wHvC9fupgQOXarteLZJxyvCh9jYAHBdKjsdCFtzpuGL9MCC9mbE+DxKHyfnTw4JafZsfYSwoz6l9hb3E6JYPCW4SC6qOM4DDN1dcfpi4zEGs2MIgO54WXN+P7X7U5wB3zKjnCDcV1GvsH+7K1ztPqJfAdUnMab1GuKG0+UMqJTMV+IFjcVtMqVoPlX3WE7d3LPBJpaMIyNwWAKBLYOvwNXRwppZN6cv07RXzOTUpKj8VjlV+P7A116Gx88aHFVmOh9OK8n5AeLOgPKVu6T1q7DOD8jIHvj6StNlxTC50XoPn+iX2tml/B7Ymh8cVVNE3KJbQ7xUB7tBjdNvYFAd/WuX9w++AcMgol8jn59D7l7lN9BQRv1nYe0Hnub47QuX45sUDjxmYA9yBy4/yTqvFAecInDLitGJ9HuBShY+V39/XxPeqOI5PFnZh9yD368oeBH7iZ7V8SNxGsZq7VLkd59jZfCUGuD2riVGGmwPqw8p51KqdKtwoG3DnyHPjmdtLVxmP7BFPK8q7/ux9dpoK3JmfAUq1bzwEgjtHPqYSZmJdb6zGB47XxireCMW19rdzaskEuvwZwNcYIOGKAx5X0EW+T8UBU+X5WE0ZnjoztsqqJer1JgHGi9+wCW8kxIAmpYbq+maDl7ho8b5wq8TIT7X3OXD9TYrtaoJI1bIdTR2yeQFhtwV4Q6OB+exEqoffsSo/BYCtwGaDpVk8xVLaYlYVfFM/5rNrFvkWF66J0OJ0+7GeYdNOQpNzU+t983SQjJbl2QJtku9E86YgbCzQgIDq4raSI9XcL78D2+h5nHom4GWy2Hvz7x7AmvN9M+RGgbsLLJC6uYnhXgO66P3aNODv0u9icvS7FtT6GekP/83v6D/5x/8xvolnzDXiF8sDkqt4TFc8hBn//PwjHMKK5zzgFBd8vxzwo/EZS434fj7iGBeMIeP7+YifHt7j++WIU1xwKQlP64inZcQYMv6lx1/hLy9v8RBneEe4FgYUH5YJFQ5/dHyH98sB3lV8WCf8eHrCr64nOEf4bjzjh+WwaXepHoe44hgX/PmHb+Ed4WGYsdaAOTMT7GWN+PHpmd16HeGDtGUKeROj936eJH/Cj09PqOTwtIx4GGb87P0bnMYFb4YZf/X0gG+OF0RfBYjz2+ynDx/wtIxIoeCyJpwSsx8sNWDwBU/rgMUwpZ6GBXOOjYF2jBnP84DTyMfVwqjW2GuOeDte8bQOjfBnihnPy4DHccYPlwmnYcVSAk7DgvfXCd8cLphzxPfnA749XvDDZcJxWDGEgh8uE9Y14rvHZyy7+ooAdEJnw3yY5J6tEcETUij4cB0xxoJSHR7GBWPM+H9+/iOAHH76o3e4rhHXJWGIpREWAWguwh/OEwDgMC4gckixtA2JyzxgSHkD2sdxZbfeWDAvEeOQMS8Rh5E3QqKRvrlcBtTVYzotzaI3xIznC5c1XxIOJ14c5sybHAowlQDodFiwloDrNeF4nAEA85ywvB/hDxnH04xliY1wyDvauMwGAedapjcgNq+8saCAFg4YpxXLnFCLwzCtWM4DhuPS2FG9EBCV4pCXiGFaebMhFVD1GKcV68obEnll93ItOw0ZyzVhPKyYzwlxKA1U6yYHAKxz5E0bGQ8AWD4M8GNBGnMndlo9aPWIx9w2IrIQGVF1CKlbofMc4BwQ9frVIw7CDr16+MRPoh5ffxgZEH53bUyidQmIE5MtEXgTop4jg7/T2i3AQvbjU20WufqcEN8syO8H+NMKb6xs5X3qMimygPcPa/vg1gsvfMMpd2A8lC4D8/0A+maFV+C7irttcfCXgPp2ZeAxB/hjRn1KDHCuoQFJfigAWnhx78bawAOy68RBnkFXcwm+Bl4ATaXLoWhfFt/dd4fKeVcHOhZeqEaCO3N/6FAaqVCTOdHFrLjhpl9H5GNtC2J/9UwQ84a1hwGwyy45xPcB+ZsMt3qEZ4/8NiP+EJHflLaI8WfWu1XN4TIJmC2AWuFYm5hQB14g+tmhnCqT+jheAFKg5qYbz75Zj0BAHYldWsU6Gs5eyD86URAF1qVVQ4KSv5SDWBRH0XQk0TS+OOTHivFXATVSJ9pR99SVF86UOG8dgHAx5D2JF7T5yO608eywPrD7phet0TJ1opcyEnwGygBEIe8pE5P3hAsP5vrI2rQAL8iVvCcfVbOW9XKL0fRl7U4+lp6caH5S0zgOV/nGCmnPemKSnzqg6YbGZ2D+9svXPfHskB/4ej93DVxXe9spCmmQas3Kv/HM41MTu7E2Hc7AOrhwaPrIgAAZAR4lbQEDBWB4z3q0IDQt3TpsF+cb8h7R4FS9yyqEPIBocxoXaiU7anqboZPyWN1R7Qsc1w0wQVLTzhS36Zr4eNHlUO0usEoKpJrXZMYMxMesy7USEDkBhmodpuC2rrkyBi/IewhNQ5NdYFnHlfVTWbNSr1VLtM4fC4DaeQWw1m1Y2usKjyO5bR/adRacGTAJbK/RtJHOkeeXAprUzV7fUq9p87DuAJpJ2lftx8Y1eJ/PgvN7j5Me34PAVx6/W+635FgD93PKuZf+t3/yX/5TIvqHn3/lby89vv179O/9B//Zb73c/+V/+q//1vsGfOUWy+QL/nj8AW/DBec6YPQZBR6P4YqjXzBPEaPPeIojHsKM5Au+S8+YRQJk9BmjX3EIK76JZwDAQ5gxh4RTWHCMC6aw4pt0QSWP0Wd4VzHXiOAIgy/wjvBNuuAQVuQacIwrvhueAfCC/U26ilQJk/4ALEFyCgsOYcVy4oX0Ma7I5CVu0+M6RPzB9NylTXzG4AvGkI0rqheZE4dzGvDNcAEATCFjiivWh9AAbIXDY7oi+ooxZMwlwoPbN4UV0Vc8hRHHyMBS5R2Cr809tZLDQ5pxjWnDCjvGjENcMZeI5EtzUR1CwRQDHtKMFEo7P4UVgy84xJWvFymUU5oRXcXjcMXZMxvtm5FXCoe4IgUe72uOeBxmrDFzfUKSk8mznEbtlDmPA381rcuxAwPiUj0eBqnzdG35h1CQAgPgXH0D23vSnWNaUclhjBlz5vjeUdyPAVnzh4JDym08h1jY5Vr+JbBLd66+SaCsOeDhwO0OvmIMpcXXek94PFybbEgMtYFqjbd9GBes4or8MHE5Yyz44AjDkHEaFywSW0tgkqkYVC7EI3hqsiYax6puxNe1NFdvja0dmwXbYUzsBnsYGdySAGe1gM+xYhpWLFF0YqVtQ2SglyOvRrJIZ4xpRQh8DQAMKTdpkxhLk8OZg7qhUjtGxJb+MeU2p9c1omSP6bDwhrsjlCELiGYX5Gadl7YMwv6bU+iSIilIfC57H8RYUB55NXCY1vYMrDFgHHJzA6/VYRHr+XRYGlDUGF0dR4Ax1nRYcK4O47Ruzl0r2NIEjvXNqWKcOlBdBPhN04rFs7VPtWwBYHnjMRy4zOxr24ghciiBkA4ry52kipQKFrDlKgdCiGUjK5KjMALHgtWz9bdmz5auWFscsLoIZ4mxjWNhjVePZj1Xt1/17MgSY6vMvt4TssZHjwXFM3OwrnRUM1Y9FFaxHHlhZq6R42D9Mbe4XK8eFuDjdfXIgQF1JrFAirti9aL9qa6wyYBaAhAIReYNosjVjAySaRArkmOQXQMD6lV1LHVhGam7iQLI0Vhr1E3UAzkKMBZLeB0kblbbMUqbPIEiswYvb9kiRGmnZyignQKhJgajdRBvgJVBHjxQp4qaPMoocapFWWGdAGluZtXyE7vfOgKfL66Bj3KoPDbSH5c7KK6DuLFW1qts7q8DDxIlArxvjLDkufwycXk18d9lJFCS2EeJaa0JyKcvB5aU0MCuGwyAIEjbGSiXwcRYqtNL7CCtsa06yP3jOdB46wSUqAsxKeCUzSMSIFUHaufrIPGfvrfJAss6Oh4btcp5oExyfxLtWGF5rqgFjzxYpsVa0MRS1uJ9ZS7bvmtcJ0VCSRLfSm4DmMrUweSGOdVYFRVUtxhkc6xryfZrgA54rIvyC9dax3+TB3xxHJ9c93qdfSPmBViy5SqAM4DRxgnfYoXdu6ZaK6YFqC+Ap435dOa3ndoGWG7Gdzc+Ldl6XL/uZj50YHsX4O3bcqPP+8Svcrepk4Gl6e++7I+k32e309/F9FUDy19cHvCP/9m/L6QvvDAEOfggbnFraCQkLnR5AueBsrA7n2p3+VQ3x6i4Jmzup9LISRqLn2cpARDYzUiIRWj17P619MVFW3S0FwPvbLNFQN4gdnEii5b/Uxcc4vqkrictqUsKyb9KYiHuUm4V6n5naPwDsbsWCc2/obW3ItXNtcy2XduixwB54XZhZvLCEAd0zSwbSwP0l6LvHy/N11xvKp/7i2SEuD2xVAEBPx9rO74Z27ZTyW34WarcHhsTpO5k6B/C8Mxz593xLSCEDEq4oILh7eMhbkW/3AmIA9of+aCvXM/3se/8ebEMNApyHUZ90a/8Av1Vemjja6nr/epwGR7lY8vl7+nVf5DyXXF4kjnhCu+uXwLwPJAQZRgh7R15T184bL8qrjhc1MpRgcUBZ120AZgjwS8O71IXNicBFiAHX4D3kTbjdDbxc43QQsbzKq5Js/x71oWY624/3K62Pmhz1a/AEthoZvO4AlzicbMA0C7m3UcVBFzMoiAr6YkY1TRf9kCauQHnaeplFOBsySoAhJXrW9PUJ4DkzzrcDogLcB0npBnIaVKPTQBAWnpfyQMpA3mY2jMmYeZY0qFZILJZFE1XhzomfsUVIJU+34fFoUwJ1QGhACUCaeEFaRKXMvt6CLLAowAMsghNhcFIEqubLp4BzsOWDkKw553wGUnZ5IFRXNuYvIfLnmQgaiSk1RCpyAJT5wfINamJ9kxmHoM6pG08GvF8KWPkZ2UF6hiZHCXF9iy61TwO0ue2WJMF5IZURuaKWhq1HLtQFcnjbTiTIWrR+wf0hRw5NHIdvY4lQ3zPZ+pzBagpNEmLVr5ZaCvIUekRdfvjBR2Pa00ePsv4DKER7rDshGsWqEbeE3o5Cox8uwehE8foc1iBmtyWvCf2tlqiGb/ygtOS97SxDE76rG6Trr3D/QoM7+wK9fOSywBF18aq3SdtewXLU6icCNDmPrcZHViaZ7iNU9iW2axPBnDq7zATKLo2hmpx24ABA2ysRY68k3GjNmb76yCWombZM3Gjrc/BwUsZNbhWjwU1NaBJdtQo1ijqdb0AXMDmO3SXvEfa2QCkeZ43yQIx8620dewtdHvXTW+kX+4lG4e5eU/43TFT7l1wZ3/bOm4Q69wj2mm/ta9eLH/79KKO3bh8Zhs/lj4O9G5UaNd5t+7xV5Z+n8HuVw0sj8OCf+uPf4ZKDkvtXVECHAC8Y2yegHtyEpZ45Z4sx61nyc7vPZnNvbSXprB1A3hR9wupgd31pTp4h85bYP7+FGmFe5IEtg23pAduHfvUZ/4W8cy+PR9r+15kfS81sB+3W8caIc2Pb/f/Y2lPitLb1n/v+xNeuV6vC3jZH03t+jttfe3b5xwhmHkFYCNN0PLtrrv1XaE75xu2t18mPSe/2zd3d/5FPcRehs4BZXePSf/nbs+3/ffz3py8e3w/Jh+Zk4Ww/QrfexD0+P6Lbcs241LwMtl5Y499alr3q4bPmfev1fNJD/+nV7UNLnqljfcWHfuX9q1jt9pjV4ef+U6427Z7dX2sbZ+4iLJi9/ob4GfslkzER9vzsQdm367PmEv7bPYW3/x0fmwc9JG7s3DflHtrTvym6bU5tEu3Fut3+61l3+s7aYE2D93Nz4dJum9fpLgxeDd+3Gwjtct5rt083du5L+ROv1+W40w9u/t5L73y7N2dZx9p26uA4HOe9S9IXLdW8LF/tR37efhyXr469+6lT3onfTzP55T3G5X/u5T2C6jfs/RVA8vJr/hXH36Jx3DFSgG/Wh7gXcWbeMXkV/xs/gaDz3jOI97EC369nvA2XVDJ4dfLCYewYvQZP6wHfDc840OecAgr1hrwIY845wGDz/jD6QN+vRxxCCuiL7iUhOAI75YJlTx+PD3hUhK7pOaBYyznIwDg7XDFcx42ciPsMsuusH9xfgsAeEgzlhqxiPvgXCK+GS8YxPSgbZlCRqYuX/J+YavHNSf8weGpteEYF/zl8xs8DAsOccUP1wOOacEQCp7XocVYfjc941oSoq94Xgec0gIPajGWH9Zxw/B6SgvmEpvrZwoF5zXhmFbMOTaWWeeoudw+DjMumd1nnSMc4orzOuCYFryfJ5zSgqWGdvxhmDGXiHfXCd9OF7ybJ0wxYwwZ7+YJ8xrx3emMa44YQmkyKepOqm6h3gGnYUHwleM/xYXyaR4xRHZPfBgWJF/wZ7/+FgDw07cfsJaAyxoxRO6LurwqE/DzPHD/hLlV63aOcJ4HHAZ2hXy+DuzGmTJKZdmVeY0YU27/EjlEGTMih+frgFI8jhO733pxn326joi+4jInnA4zavVYS2D3YHEzLQKST+OCJQfMa8Q0rPAOmHPA+XlCTBnHacZaQo+xFNdXoLP5Wlka72tjA1a3z5xDY2kdh4xljSjFYZpWXM4jpsPCcZjkJMaS27gsoZE9pVRQK8eo6vc4yzWl8HimVDDPEdO04noZEFNpMaDaFkBkaKpDjLUxqF7OA0IsGE2MZcnswjtOa4thZW8H3rqO0iaVtnHgOE8lo0rDuiGmcg4o4vZ5+cCES8e3PcYyr6FJ4wDgONM5gqpDOnQmiFo9WzNjQZV4y3xNTKTzYUQ6Lv8/e+8Xcsu27Af9aozR3XPO71trr73PPuf+OTckuYhgIoIxmgdFJCCKBPRFEgJBRAn4B8Hgi6Loiw+KIEJQiSgakFyMj74o8Q/4IIKCGAkxRBBzL8Hcc87ee63vm3N29xijfKiq0dU9e35rrZ19PHcdzoC1vjm7x58aNUb3rBpV9SvEuCB1TueuWZlDZJQpSH8qceVJYiy7Q26eG0GfYQKQFZjGUtm01C0M8CUhvhLTXM0Bqc+YLx3iUCSVTCf8tzUrOYjXR19QrkmAjeaAMAhAE6kXRFALfxmjxHIesoxLEPAignh+xAoukmKmzgGYgrijMgm4yyWJ9WQQ4B4aShOkDYDIUtngm05iOXv1HJmCuM09ZAHXAZqZlJ4j8CqDpwCaCPyYQe+SxHeSTvYqbUi9RbjnxYsDkLGnIHMxIA8DPfFeJwGgKSyxlk7W476qy6vUt9hM3ycCEK7iqsoBEtt5JdQDhC7zRKkARQKNhHqqSG+jIL52zjrDaOAm3Gk/PSOMYXUPJO6rYSLEkTRm0lxhoXGbQqu5wtZe+iMARV1hg1p981G8EJqlVxPd14GXVB1VXFythEkYVXuJBTW3SJD0ZRbl2kvcn8Va1h4SKxqBdCHMr769VBdG6RdYx/5RlThFS6kRRloAZvQ0sNFs7qNhceWNV+Vd4uaq6a3q1UB0TMcLQHomVMEjRI1LfKdHTW0WfwhNLd40yD4is5R20oe1s5jClsIkalwooVkAzaJsKWQsltBiJgGNbUxoVubaoQnWZpFtcZUuRtBbH5sFUfeKd+mkiiXNjXOfFYL0T1z6bd5FG7dVD+6za7HM2LdY6vPY5gOn+PLSt6fnJcvb6tCFlnk2fdC8r5wXVkvrs3WR9TR6/t5V5nkdz+ho9HT5PegtzzdjrjpfX9ueF773oMXz68WDlvfU+UX5qZdPGrzn8W/9Zf4D//6fwHnuMOeIocsNwCWXgEFj2zpVPjrN7WiAKJajMUaJkzKAEh+/lWvAqMiuBmZiqKcpSezbOHarvIjzLPkXmUU4TclivvTEjRQYRQVcQIRbE/6sn3HsmhXCwE94Yw010JUYK6ZRzglCrKhF4sgMfbYfBCBFXIWXVAvzHJvFijS/ohCpyJgqPBsdLf+iWVVraHwLobY0DKyKEhE3FNFA3JAsQxS4+OjivriIS7K5LMe0IMUacmnqiyBqjkncm7PjB6Gltmg5K+fQBFJmAhgLQApBBNdKGF6NgiJ77kCBV3UsFsusRKEXIbeq+yfXJSejoSICEpNmQC/yg0ZNWLY4NHHVlreo9R2Ikc2VmhVRVVH3YlcbqIwJtJbqQaRANJTVkCrqrO7akZEOM2qJKNco9Jr7q6VXABYUWIZzj6X2gqZuySdJUVMzzIboyKij5LCUNeTGn+b6nETpsFyWouXQIkibMB4V6EXRIm2MFYKo5VUEFh9KRhPgaVCwmpZXkJ0LuvFX6Frlp7SioC7NB9VAaciN7eigoyJSGjorrI2TRgK3HJo8ra+DaXHTZogyNCrS6mg+wLoOhvRq8+3q4vNrtBM0B6b2V137UwYrsiUCL2isxrdzWugyIJ05LPW84GbAOxqn1wSevKxnc9cHxP3eUF9NWrH+TEkzAbC578szREVzbLL2r/SICyw7AU++00l5V926BQZd44J2WbTtUAUMKDHQ6edjWVAsGYJ+aQIvCV3ebV7yc9ZlL+mYLSyBnVJqcYg2HxOGMrWYMTCWHJ600EqVhBY43qZlf1qIQWvTCRonP2Q05FEvhBoqc5a4SPmr/duaVxKFu9P9Mmsfwa2n7mNSl2iag8yPoPk60fqlMQARMh8LgQiQMRThsu0jmBKjfJ6XnKMGpGSxo3afO1GOa18FqEn3JvcV4ez9Rj6ucC/5TQFVGFzcK02Liz/b3mS0vc8aD2m5MC3/aTukqGiKHZPrG1jnR2VVZI8VwaHm2p4il0ey5QiFKPwSM4sWo2iANGHGai83Rau5euu6OEXHFBpz3w1KY+2WeFtTTqmIO70dDrTnCFieDY9qWhf9aKtokXdLVeXQDLV7ilU7RCmuvrXR+m0edxQzD2wErBUj0t/wXUcHx/9232IJ9jwyXONdBwB7/i3UyLpy3z19jUbe8G1b9pQy5fc9J4QV8NBLhTefd/j701YIjR9/+d/8Uz9zgJvXr3+N/+Af+ue/837/+7/wL//M5wZ84hbLIWb82uPXmGrEVFIDugGArH+9eysA4AGLwuOesG1uSl/KaT9fYnNjPV5XbqH3XGl9sRF8XshV3wDKMN2226EBEHfGeYg3tKOfFxoO0v6l3Jp77vdWvIutb+vTfey5tX5oaa7EJznhDsqb9uOC5c8NITkAACAASURBVH3U9/mD+nzf+Eu+RHGY7jr5BdjmhpRri3Lpr98rVt/n6gQAHO7TZutpBwZ7xZBQ79Ehuf1UOOiX+YTAqIH1sIBXNOzN654rLhxSPxHAg/ustMW0DXyxBgx0y97b7pl7rstbHm5/f+xwxLcmoCF+trHbdVdz7xfY/+APC30v8YZU2QgPc9uocnDgpRHH51hX19vE3DW2NDJ2MOJ4RKbvGI/izmKZgnlDKwNH9wwRVr8GdMwLD3r9m/iOpOM7tlyXEEvGzh5t10K5v8eA9Ro4QKbGK1NoIy/TM2XMuqgkdG8YwGblBFY5DXlY9i0POma/eRY9DxKDmZe+2gbBQjvpPtwI0SLgOmLdvFZr6dbPLB8t/tvoCdSUGwBNwZL5Cb081OWQYxP7Z9ZRey6ERiXIUiXwcr8d1jCWlBn2WWkmPShqljMV5snTwACBVICl5QDKKdYtHt4JxE3xZJk/K7pYS+vAYr1kwqKQWVz5GN4vCL9UTCm34pRDBLfssxvElBjHS/I8BMQyjXUTf9DVXlPudRIvninaB2/qt9gEEvRW+2v92lmJtbNDRm/Zs/7npf9GI9Biba2E0dE9L3Wjn6N//fl5bnz/id1y+bHLco029feK4Qp4urf1X7LmId/eW4/1wqba7ZM2f7Ue7fPYxmN9gYZbjfODxv/YrX+Pn9+5K+wH9vk3Vf8X5f+X8kkrloVDS+Uxl4gKkryUimowVfkVLqoseqVxUrdMU+yi3jehzbtTWkoLS7nhlbJSqblMSjtxecxq+TRlbCtE271JUzLEUFusJWvf5rrpYzC9wmqKF6CWQxW+mpKsyJoWixiC5S30ltBFYLU6Njdr5wV/QWzEEpuodczVcU8xMDRLr8RZXRvT92Xf7bO4JmreuEIwq+tenCYzVoKvTxrfaFILn1emShZtKcTS+NmUdK9ouLVoPwtOSWvrrOM0GrR9sy7u+XqwoFqCIXkxjT5arHstZ6bJyv5XwsgNqtDaWHrPUlo0l0cn8DUe8v73VhyYjykQzXLK0Nx4oeVlXBZChdtKzdLpgbC28VlbC2pzj3TruVo/VtrMckSQvIkGHKT8bZY7BbVaXfeLCiyCjwFKGC8I61Ntu26CYueUBUdTq+vzu23mvdprRehky+dnfAcasJjRzDYno8WPsZ0HlDemmFU/aSyWQuNNsyLe37er+dGiAK4UQavCKryaVRqujnPvMj4T00qRahadls/N3eNNnKHlBfX9M1r+vDa2rYtZXI2fDujL85V0P6wUQOXNyuIErFxO23VvdbB94+TM1VnInlWA1gL41nK0cl+ze0kVA5PUXb32fgpooGBN2Hd8MoC11TrBbeHtetqzgqX+ig87Am97JIw8R6tve4sSuSCNCr8t9YRZdfRvodVhwscWW0/jTdtuvF7nG9ROYLEkKv3s7t+4UdoXAGYN256BCWIrWp2XLFZC+yb/oaeTtmNjvX5bmuFeCUa7gdT4s5jte9MD9Lj9s537ah4vKBAvKi977/XNmDf1/b507fcsdzd9+PfdHbq2Z3MfpHxt6brpdEPzhs6bd90dul4c/4XywQrkh9b72LqNjlsAo9+x5b7t4JMvn7Ri+Vm64B/6/l9CAWGsHWaOKBwQ9a1WOKCCMFex5M0OhtMD/HhlrWCxdHrr39bymDkikbgtTlVSdxhIUABj5tDSTniLZOWgKTJEmZ2rpBtJqgznunbRWVlCN28L68PGA24toJbmxCy5/vMWMMiP4+ez5ZPQKQp8BWEqi6V0azHds95ur/mx/fXqjqg93Z7G1VhY978HPLRnSd5aq/esz3YfwA3YkaX78JZbWR/lORbX3MwBieouoJSNuwVF2u7FPf7eA3raFn/A4RXyqvNgvqXr3nh7z4f/TdsDd1rRsvm+95v3nt/oF/sHcDPP1u/OtXvlJQArG8P3+9I9OSRaW/+3ngAvzWNvXi/Nxe69b673Dq78vRfpw8tyz719+SFAXS8BfS11lkMGO4iSNsv3rcX3fl+3NG3BkvbAwvbmeuvBse5n38vDf9lqU04q3UrgO+O/j66tHGzyv5fl27pamx2NZUXy6ssNGZtOb8vuutzdWPbe+/D1edFK/qFlexC0/dzqbT6/74Xm1/jO+t70d7evnfttcT/s3bfb54fc24xrBz4rEKmX6L733Z7hDYtebLvDI/qQPbrDo7vK6IeUD6z3wSvzHStpd8WGj5jz3gHBbduP33sfrLg2t5Bvub9/Ub6T8kkrlj+eHvDnf/MP4JvLAZUJhy6jMjDOHeY54jAIiEoXSwMyOV97EEly+3FOLUZwGpPkadO4t77PAvBSA949H9D3GTkHcA0I6sLWdeJSeLn04kpJQEoF49g1V81pSg1sZBVjmSW+83iawAzMU0KIS3L3FCsu166BfqRUWhv/A5o0R1/XFVwukhk5at2HhyumOWGeEg7HCeO1E0VI8w4yE8ZLh6DugiFUlKyxkWopSl1Z4u5IQEFCkvx9YBL+6XghlhaDySzWtxAl0XxIVeIqK61iKWNfUBTgo84+Pq8iDRn52iENGSUH1BzQHTJiqhife4nXszgmhrgMqoXKXCPLFMXipWlfmCX/ncVm1lFyJ5y+J3lMz98cJcayd3WmuDptjYOse9E4SC7U8uZJ37JAaZD9Y/OpOSD2FWWMCF2R+EfASXSMNBSkrmA8d3KrEpADwiGDS0AaBEiluUeWIDwI3EBS+BqBpHPQ+DBKjMPjiGnsUC4RlFh4wjKGxZG22EelyebVoPp7oZtiRUgSJ8tTAPVV1vAaEY+ljSHW1tAsP6EvqGNscZPN0mc//hZDpXuSp7CAtByLtKkk/fVV2jKAXp4/dm554UFyEmLUoKfIbd7VYgjNMmUWQaOJAeqrCKBjXOIQJzVJWDwbk8Q3zgHxlQAC5W/6RTroqrbR74ERjhkgoD6n1fUWY2lK0bGAnxPC4yz0mnsggPAwo2aNu8wkPLq417m5b17DYkEtS/v0ekJ+2y+xeZ26SQZGPGaUt+rvnCpojAKAM4WlnrnJscYUWizcUMV10njV1SUm1ixgfQUlln1qFlWzmjorIWWNz0sVuLpnUF1U6RrFpdXiHImbi6LFIsY3E8o5LS6gXZW99dStYyEB0EMG3nUSj3gowLsOeDWDn5MIxAzhg9EJyBxtXYiXfQksY/ZV1sEs1AyJseur1D+Wdh2AzCc7S2zveOjjTwczE8lYdMyyBzappqC5POk5Ap/N8jxafKRZZDVmknJoPIXO1eLBUUniTocqwEvPneyPxIDFLZvVXOMtaQrNpdjAiqB5R+k5iWst8eo5pGuUtVFrP1kMIaO5+IYxoJ6KxDDqP+6q9r3sDbpE8EH3pAE6nTLobYdvW3ioCJqDiDt2gEpKeyepsAywqeUJBcDHInzUGFCw7FUUkr3FugZBX8DeKuwt27oX+DGDLrG9R/lQxErvU2ppjK/RbnGylEn60LjhMIYlBo8g7sYtFlSfqd49rwZCNZPEseq8wFjiX1n6QSbELDksw3WZR0tLY7ywfQloaiBqc7BTD8po6apkM7iUW0ans+KCqQHbNKsjYQE42sRYeh7AdVMtZrZtBLuJ1gfbK9afMbgYyxsr8fawgVx/Rr6zjq/W38VIN4+ETa7NpugF443rb3vI4ft0XiNbC72nwceWeuVv7/zrrrn3jgJ/c0azWQ+7tj3nMp59uDL6symfhFX1W5ZPGrznl37fF/zH//N/EAUBuUZcivxYDDEjgPFcRDgSi2VFrrFZBq+lE0sUGJnF+japZTOAcS0JmSMCGKc04VrSjTXLUpwc4oypyGfpK7d73jrlrWApVCQqOKsLpgEFARClDIRIFUnjIa2tJX+3fkoNKxdgUitoFwqepgFdLOhDwSV3GJLwZSypWSQOaV4sugpw5GktNaysF2ad89fmKtbZrfXMgyYVRS3tlP65BnQ6Z2uTQl31lWtofImKTDqViFJDQ3X11jNzR7Zk9IC4MW9TwBQ3ZhcLCLhBep1LQAySyqWLdWXRW9yXVQFwhwalEmJgVAayWnLtfggVucTWj79uVqViyrryKZAklp8UhdcOSmxP+D1pT7Lxz+oCaIiuIVQknY+MCXjQKHNR9pauFRhSCSt3aADN1dkDOdk1bzlixg3Yk7+3AonStbQctUsbbn0aYq19tj6M3nmOCIGbezcARaoFUlrWYO2mrcIYo6GzxrjM1+bu3cbtc86CgpF0D3nXbivMhKL7x9yu5YYqN2FxD61FkGc9Aq3dKzk2t2BSGuywSMZVa7mLp/ZpZYoe6lhdrlhcqPXgB5BDh+aOHuTQwQ5vGumq9FAA2ASsuhxOtT1gGCMqcJpLdpsE0L63w60i7tPBrRcXOwSpDc22PYOmoCroCY9yyGK8MvAn6svibm18NaAoVQSoqwKwZHGFxIuyyFgOQkwQZBW2TYE36chci015JKzrecAoo90OGuDuE6+EXX9QIIyFi53khRemXCZV9FQh8K6OzYU4oLkXN0XGlAinbBjIjykZBp7TXDEdem1zEXcALU2Z8G6+1k9yOZErLe7GnleRFzAgm2ZdBPimIKj7r9CGlgu4Dt9e7pE8lgvPyfYCL+A2TDpPsxCroGt5ej1qK+teWYHzQPoke0RM4dDr1qchtxqvvastHNsajxzqKYJuAZ1DVeRfG5Pc/jC6KGNRoHTeHml0yZe5VixYlUhDzG20Ka9CWeefbXzTj2QHKzrPxj9e+NR4iWVcKzeG4O3y21zd30UhWvPzpbKr8Hjl8c5Y9zvE2q14r/3e9W2xe3b/zpgfagneKn4fZO38QB5+G35/TPmL/97vAPCeV7/Gf/cf/Oe+837/u//hX/mZzw34xC2WiSo+786YOWKuEcc4NQUFAFIQAdzcVsea0KmiN4SCQLW5owaqeHB9DzFhVrfUY5wxaNoP73Z6YFFuhphbXKcJ+z0XBPDatdO9Beye3fcKpBcEt+5o2+/ZlGbnmmsKdCBGChUBkk7CPptiAohSnPXXoAtlmQes/7USaUqMv+aVNq8UA0AfSlMwgUUJ66LUMddlExoHp3BZypPMoSn8ptgOKTfFcwvQxI6+bdypp9cDGR16QRg4JFnnGGJzZbZ2vg05Xnhl2tyTGcAcuCnE9q4saVF0jTZ7h5oyyCwpSIwnMg9W5T+gi+s5kVOq/Zzss9UlyMFA0vbZBHTtX5SONXiRuW02xTIu62MKusXMAmrJDQEplqbcrBRTnXcJoSnYplgb/UJv1XWoiFo3x8W93Obc1pS1L/fMmJLp94gpXzHU1e/X1k0SgCJEr5VufwiwKLgWvywKigFA7bleMi9xylHRmU1ptTjipjwGRkri7eDr2txMYTWU6ZSWPeNTyViKkhAWxRIQ1GJRLOvKE4Ljghxtc7PUMjWsFWWbfxtLlXEwrTwdjGapp89ncEFLW4lM/3IIqz1Coba0C4HEQ8H2l+1zYJG3CkSB9YolMzUvjTY2E2oUJGU2r4rEqMQN3RjAGjRHFckVkjIBiBvlti6o0e06tJ4pyk5SawjPOgbHhc6Vu6dXSE3pctazpsiqEktpQa1saKP6AHCT4CFAOIHBtKbLrP5MSlObE8uBQgAajJK1C/oCwUJTUxQ9QBAgm1sVSVaFnSsvilZrA42dhijD1kUloYMhaLNFldRAQpvOtwagbgGZPqJQVEVV+dvO5plX4yC7/WLbw4Ev+ZhKELd7N4cFtLnuFIpKG8XSUmJ4xdLYTE6x9BZNU3DdPid283AHFBQWZbgpaO691BT9sOgFTbFV3u9Z1IqzSC4vuYWtYF6PFzbX3qfAbPixmoTb3yuU1W2fFft9+2r+9dD+w3rt7tG4d39Tb1dxte97VtB7/b6n7CqYvt9Nf3cV0nvlQ+q9b013yrdRNH9RvvvySSuWQ5jxe4ffxtflhJkjDjSjIGCsHc61xy91E661Q6SKmSOGMONcBlQQTmEShZQjOip4Vw44hQmjWhqHkNGRxBB+NUsOy20M5ilOKBzwVAapy4QhZDyVAceoaUQ2KLM23lgTKge8Pl4wc1SltzTBOKLiqQw6VsAQZswcV3GGwKI8S58dKgiJCioHHKPMZ6wJr9MVb/OhXbfynAekUJBrbHknpY/aYj993OZUExJVBP1V9O2ElkURHWtERxWX0mE4LAiUhQkdVYw1YQhZ5q75QY9xxqV0SFTxkEZ8NZ3wKo2SJxQkuUSp4l0eGo1ewTO6TAF5NlAeJ3iasgoIiFPlgF9/9QwA+GY+iEJOtSm019w1HgWqOOghg4FDeRoOMbfrpzQh19is3ZUJfSyr/oB1vOghzc1ibmufOcgBQI3oYxZrOxgpFEx1sT7LYUVt1vg+SF1AFPzHbsS1JDzNA/pY2pgV68MMsxZvLfTWj/HFyqR5RBNVXEvCIWZci+QNDcQtNysRo4+l5Tu1McaSmmU/Ul2NO7v9dUySK9XotTaVCV0wy+yy/4Yohw9LHHNtXgCXLHwxRTfZfnbxx1sQMO9VYPSZVXguEa+HKyoTnqZhZRG3nK/WbogZRIzz3N8cWvi9dExzyy17yd0KIfmhm1o+W1OUrzm1399eraFTiatYb2t/7GZc5g65BhxSXh1OHNOMp7lXvlZMJUq+WPUymN0hBoBVDlRfz/YFY+1F4L0P/CGI8cEODMwzweraupgVfsqppY0yoDXrz+exHUts4GvW9jqn5nHgQdpGvd6njMvUtZyzNt9OUY/tQCfr2P7wIOnhRVGBPMWKOcfVoUTVw6NcJE2W52ep8vyZ54GAw63jZK19+17DCjTOt2fdu1NOmmP3NubW+G7PiR3aAXAHRwKSF0Jte94O2PyYhakdypglHUDzOLCDmpzjykPAPlvKL/MQaOmoNnXsIEW8JaTudqy19wSat8Jk6Zy+RYmRW8iIhcU0b5gcBViuyj3Lj9s8IqK411taLlNq2kEL5F7rk7ilGLuJdWaS8JMalu92iLY9sLGDDzsMMGWQ0TwJ2iGIHoQ2zwPb2w4MbhX33MDwqCmhrDwA0A5e7ICFffoldwhlYywmTtwqFzaXPYVb57CvsG2UyNU93CqOd5TThnCMnftGy55S6y3zvu0LytqK7r15bOezc/1GEX1J6fTf36PY3m37Utnj/Z3yXgVxj2+fVNmeXPx8lU9asXybj/ivf/L7m/Cd3Q+jCMeL4A5gZeHaCojeldLamODbhdKsl1sAG3/NBCQvHG0BUgwExn60t3RY75WpCYTA8hz5evbM37g96g+Rp2HKEZ3GeppVTCxV9YY+/1mEjYXn5h7qi7fkAIuQvFj41m1iEMRaE1g8Sqy3BHnhaA3qQysrlC9yuEk3Qu/q4M3RFvRH9K/k7wPASlgx68Dizrmg1ZrQ468LL7wla42Sa26Hfr7bYkJSjOt2JmzZPW/lWs3f0VXK0k+thFpEmDHLVUPQpcUScgOCUZf7vr4XfprgwGpRsv3g56g/ds1V0yk5W1Aav14rq/CGZ6vfFidINflD17AJSoDSgBskWm8JXOYuA+zxxt+zz7+pFqSG2rslUr+v0IJfKIauy0Xj1fzcvZXL/norlLeOeZdIa5+DxBpioacVs7C5Oa9cWzd0s+/fYgDZjd0WeiPkendMx5+VUONdTO/NjXhpsxHEfqRxo8um0Dp7brhm8fNjOovrauxt2xVDNve2SJheIPJCJ9x9J9C1+NHNeA211Y1jljTLdWlWPUOgPVs8854wbtdNwLZ96uVXXQeLvSPPDzcv9ttzK1Q718r1i9ld90K+r+d4WHxOQgCV5Z3HJESbG2015GDdG8XceL9l4bJYXYvuORPa2XAE3HvBl+p44a185Oe2KVv9aSVPVyBs3JrDZv/4tWkIxVtnAV0z3/lq/fza3VGEyPoAVm7A7TeDsM75as8rljHu6VG2R9te3NB51zLombh53vzrs421N7/3lA9Sgj6gj+3cG03b9nv9+ed2+071bfy+2KHhpryn7i5972l7U+db8PvFcX9R7hYi+k8A/BEAf4OZ//af1jiftGKZOeCce3w1njCXiMd+RKkBz3OPy5zw5njFmBOGlHGeO7zuR/z28yOIGJ8drjjPXTtlf3cdcBomXKYOMTAe+gmDWp9+65vP8HgYMeXYToYrA68Gcb398eWAQU+yh5TxzeWA18crChOergOGLi8KoZ40P18OmEvEFw8CGvOs41rM36mb8fXlgKwn9UOXkUuQU2L3RNm4x27GN5cDWK9d54QfvHrCu3HAderw+jDieezFQtHldtr9zfOxKVNyqi3WJYtpG7rc5gsAz9ceKdbmqjmXiGM/4zJ1LZbSlMBxTkix4vnSoetKsyacrxHHYcbzZcBxmHEZe4TAmKaIvi+YRgEyenUa8e484HQQoKWcIx6OI05dxlfvTui6oqfeiyttjGLxikrfZexQKyGl2lz2hj5jzsLH69ijVsIPvvcWgRh/4yevEVNZ1ZnGrilTRIzjcQJDgJkAicWz9CfDMGOaEkJgnA4jcomYNLYx54i+z5imhL7PGK8CwmMKHxFwOkzoUsG7syS7rJVQSsThMKOUgMfTiKfzgBBYAJ1KaOOb2+Z47RBTQd8XjFexzMVU8IMv3uLpOuB8HhBTQdfJ6XmtAUVPkUOsqCW0E3SL+auq2BrAVdfnZgkwsKoYK66XHg+nEefzgNSV1rYWAXfq+4xJ689TAoWKMscW39fAq5LQlueEfpgxXjscjhPmKbWYwJhqs2Ykcz+t1K6dHkZMU8I8JlGAIyN1GSlVXK+dxhMGxFQb/0qO7ZerVyv7dBWQHQOpAoDYKZhWIaEjBzx+dgEBeKcAUML3ijympvxQYBweJsRYcX4emsIegii/dQ4t9vDwOOLybsDDZ1dcnvumYALA8dVV40UlZrPrZwF8UsEhHWYQAdO5Qxwk8Er6ln365ssnvH17bIBSqcvyLOn+fnp3EPCuviJfE7rThHzt0B1n5Ck2gZAZCH0R69AUkU6yT2MqyNcO8SjxplyhYFhAPGbEVDBdOwQ7JNE0QgbIRVFAs+JJ9tV8TfKs5IDuJN4g8zWhO83IY2rWEEqlgVFRYDx++Q6X84CioEzdkBEC4/puQNAcr3UWuo5fXHH++ohwLBgOMy5vDzi8umJ87pura/dKvD1IFf15TCvF3wC2qvE7MFJfMF86hK6CKxrgVhgKOAd0x3l1aFPmKABZ+uylQ25WqWoxeoWQDhnQAxcusl9tr/IUQfpMwEC/nnocfnBGKQF5ig2oi4K8N0oJqHNAGgRQLQ0ZROLaPc8CgjZfOsRDxuEw4/LcI6Yq/6I8UykVVO0fUQB94jGDAZRRxky99Ds99whdAQVZA9lHVcboq1zrKooCkFlsLADp9yGjZmrgYNQXpF5+P+drknmcE9Ipo4xR+syEw8OEy9eHFySLl0s4FAHTYggQlR5chMgoz0lAv7Kur8Z0W2xuPGVRdHNA6HSvKv3hmAGGgLrpYV4DqAMWsDNTDgohPc7IV32/KMhbneMKvIciS1tAQL4MPE1Bg0jdgrkBUemPfccSH2speHIABgEfav1HFqCmTjVVBVqiYxbLJENcsDNJvaECo2mfWLSEvi5jOECvFodqQFQk86aZJGUQoDHD2g9jnYLIlN6s9RXEp93Dck0AgVwKI6+cVWqgTLvWQFOMlQ5RsrVChACsNaVYU/bcUQJXhzF2sGKf4Q4GwjIuFaAaeE9cK+MrPui67Ro6N302WuyQgHb6q8tBzvsskk1s1TlvjeprJmz4Yt9/jpTJn5Fi/J8C+NMA/uxPc5BPGrzni7/t+/z3/0f/OL43nHEpHX50fUAgxhfDGcc44689v2mud6/6K350ecSb4QIA+Mn1hCFlDDHj7XjAD07v8KPLIx77EbkGvJsGPF0HHPsZv/zwDr99ecAhZXShYCwJfSj46npEqYRfefUOb0f5obrmhC9Pz/jJ5YRSA94cL02BJZK8mWNOTXH96+9eIRLj0M+ihGRx25umhM8eL80KeR57DF1Gr/GRgcTl6DJJ39Oc8NmDzM1cuL765gHDYcZpmPDN07EpLc/XvrkqffHquSnTl6nDaZgQVcHsYhVlVJU3ADj0M+YSGxBMjLUpFjnHFWjL0GVRak9XnKeujdmn3FB6n84HnA4TphxxGmY8XQZ89nDBeepwPg949XDF83lAP2R0seDp+YBaCI+vBPHWg8WUEpqLklmwDscJBuRiSss4iqJbK+F0mJBixY/++mcAA69+8CTKyCQowVwJgyp1Fq92PQvQT1IhJyVRcE3QjAo0kp87UFcR+9JcwvIU0R0y5jGhG/Iqp2atAeWpAyohPMxNEUmpYHzuBZ3xnBBfzeBKqJOgywY7lVe3q/40Ic8J5RqRjuLmmKcIvO3Ah4r0MAtarlk8gsSWASL8h1RF2CvUhPwG5jNGAT7JoSUKD8cs6LOFEE4Z9V0HeswiqACAxa6VoOiuWf4OItzEQ2mn+3VUacGQOg8FfE6CgvrcNUGOUhV0WU08z2OEIZySCSHvOnBfEY7CZ56DALTMBH4o8gNvQpeCujQBh7CguapihiksiJ+GeEoQxMm+InzVidHuy0n4QwDGIOiujCaQ0SWCKlAfyzKWCRpdbXMP54j62YzwVSd1TcADEL9JqB03IIswBdSH0n6ASROn80MRpEpiERS17+6riPlNEZTUS1yhVKbngPlzjbWdCHwqCE9JkB5HRfl0x8akAqmgZQZwxwgjoZwqwlWRQAMkbg5AuAjqaT1VGTewxMSRopkaqmbHCJeAMBPKQ20ANOGsStapIpwD6qE2qxZNsie5Y6AAw08i8pFRDhLTFq8CEDO/ri2Je+1EmEpPhPmNXE9nwvQZo3tLyA+sQiOQntU6pSwovYxluR25Y8SLrGVNQlMcCfnECAp8UqMIyvEq+RTTWYVnfRxrz6jWJ4RmQ8WsUQXA6Nopb9Oz0lplTkETunOSPuZHxvATQdOsPTf0TGKAZqD2QO0YhSoKKAAAIABJREFU6UwoAyNdRFAPWedCQH6Q+cUrkE9yj4r8LYOCswThCxWgDsoPSP9UgDjKPPMDEKaFxjDL3MoAiRWM1gea1TdoFEc5yHw5SD2Oci+Oui6DfM8nIJ31uwLddM/A+AbfuqSL9MsExAkNuIaK8kTHiVc0kB/LIpbOcq92QitHtDmks/RZu0UxILXK2j5tFjrImvRvGfkoe7Imoa12WFBSda9ykr7TVdbGaOQgc4DyzJBFAalTdV1sP8cRqxhOqjYXib2tndxLF0bV2OCQGbWTe/HKKAd9t5dFiQmT7u9EID3F5rjEO1KR55eq8LL2JOiwzNKPWa/j2pplllm258YBDa2spFXn6vZd8xhgNKAkjZS6CT22z2GTp9Tm2dpZXO3G4cQXj8JqtK3G81bn4OjLwvNQZC32FDN7f6ysvH7sbR7IOwrdynLMt3NobVeN1vfu6aJ7fLmxJm/H+Ail83/+jX/pZw5w8/rVD/nv+Tv/2e+83//2f/xX3zs3Ivo9AP6rX1gs75REFd8bzug07uuLQax/gSrGGvG6v7ZYs0CMN8OlxSS+OVxajNmbw0ViJrtJ6seCV/2IUze3fI6fafxUIMYxyYn554dLc7M9dZNYrBSt9KGXviJVnLq50Vy1jln1vjhdGkBLiQUPvbp7HpdYInHHra2eWT67WJY4msMoOS1JwEq6WBA/V+sdMcKrc4ttiqfFwkcAjv0MwoKgSgAOXQYBeDyMKytkDFVifjQuKBBjSKXFC0XnohqIkdT99tTPzdVYAFnEDff1w1VinxTU5nQQqWNIBfHhii4VPGqdQMDjg6zD4KyunNS1NRG4p8ZnBhoPOxePlNSqCSzALA/fOzeglzjMYoEjH7upoDARSK9Lc6P1fQJoYCsAUPq8AjohYvSDKHoplRsQFADIamWIGosjNDLCK+FLHXJTkOuwRnAFIJZnSyczLCimMVWUviBEcYVtFj778dy8sBdU2IUGZmpzEiuUvP1jZBRFLSViVLUAVl2LJY6KwEMWRbovTaH2oDIc17+iFJb+ONX2a0ME1MASpwQAXWmuuFZqYnXV1RP5Tp94XuKZQAx06xjTRosJQDomDy7eSA0e5K7X7yt6cKoC4Q+Ae2rWSOjY9VB0TZb19+tg7qd1KIiJUb83IcQ1cIsHHwnEGtPFy2nwoEpBZFHUlJcS2kGYe0m7QUHuN/AWAPODoKMCAI66Poaserh1hW3pP4hRe7HSlQcZj48L8nBzER9EmqPAzRPC5CDmsuGBekt4V8aDzA2RUQZSIBe5z0e4hQGugyr/US3Cj9QOIMoRrU8GMJ1EcS0HQnklbaYhLKlFiDHrnlhJlbYuWq08rCXOrJ+L8Vj/1pPUy6/W7FxZcgDk15t7Wlo7vTZ/5iw13p0UQFa30MtBGX1HQOPAyK+lzmxbzLsbB2B+7a4Ba3RTI92tF72m1jeYFuE6rpFRV0K3c+tr7pVOGOYAzI+2LvqvLn34ttOb5TsIuHqk2W9RprpPU0Ow9d+Nz7qe05udOdr8Tdl1a0PWnd9jbi7TZ1gBSm2rbb+Me4qCF879Pa9YOaWm1fXtqjZorrBo7tvSnpuyxYFXfTcGbAdzxYCSVi7bvLR70frDiwK2mu/2sxv+pu4HKi7W7qaPzTtiafD+fu/ObbXINij2tbV74930bfzc9PFtabxXPqb+3p59T/kZWQN/UbR80orlpXT4P7/+AR77EXONeDcK2M2xm3FMM350fhA0yRKbq+jjYURlwvPYo4sFXaw4Tx2+OF3w1fmI0yDWsyknjNcOIVZ8+foZb6+DKB1B4hVjqLiMPZiBz1+dJV0FgOvY4bPHS3NlPB1GjHO3xCqxWKb6LqNPBV+/PYFCRVK3vlpCc4kbTnPLgTmOCSnV5rZqZRwTuAaUOeDwMDXXza7PuLwbmpvbdO6RDjNiZExjElexWHF8mFpahnkSt0MibtbHaexQyyJM9kNGniOKupqZC5zlfbScZ6RACiUHDEdxDzW3q5gK8hSbi1g6zKglInViyesPMkY+J3QPM+ZrQuwld+Z87oBMSK9mlDm0XIohcnO3A1PLB5hO4oZVcxDBG0C5iisQKjWejP/vCWAgfm9EmYO6kolyF4eyikOz/IPmQkSpqoVKc7lp33SJYqWxfHWpAmMUK9w1NksYGdABE+gc1Zpjx8YsrlVnzU93DWJtqyQWw8hLTkWLiToUcCbJP3jUfmZCfJuQD1XaT6FZRNhcmgAs+clY3JJMqNcXO01hsdDo+HNf1WoFsVo9R8wPmk+NIdYjjVczixdNLieaWdIii/UPWGD5+wq6RuRjQXiOYp1SRaHlxVNLl1m0TGiM7yLKUMXCxpIiAYUQJsL8UJpCQmp9JYbMReOAgrpslUMVmWkKKMPymTsWdMdJrGzdNxFgYP6iNMtimAKytjeXrHgNoArkh7oIWGo9qmatI7Ucvi7ovonIj4KGaoJ4ehfa6TwnRhzVqqc/wlEtluWhIlw15kvXjQAMXwdMbyo4SV65kElOsxlqratyCj4R6rEiPgWUo1jZas+rPHFhEpe12jPSlVATi5VxYMRJrUqBxXrDQBrF2lCOvKxzFPesOFNLN1E7lrozUA5oqSii5sErB7GGlQEt9i8o76yP/iuxFtZe5havoljOr1gsMUBD1eyeCdNrRpyAeCbMrxndO7EC2ul8OouAa5agOnBzQaOqNF9ILU+CWinWW+EJ21yDWDJrJ5a3ZjnhxXLYrNNXagJ7TYviZpZAsyali/AJLBbJoDkFOQFhBLKzWJpF0RScoFaV2mk/vVoWWa1bSermo1i94hWYH+SeWS3LQeuGxTpZeqlvFjGxGgvZWduDZQ2axfLgrGVZ+rB52pqVXiyPNWFleTNraBnk8/wg9bzFMj0zxs/XIHgfU9JZaJfnG80CFgqQT4QwOeuhWnrN+pbOAMLCX3k2lK4zgwO154QYoCzXgLUl0/Zt945RjrLONQHpyqiJmoVOLHNyDaQWw4EQJ7UoBiDMrHuGZH/ZfGY5rA0zK40klsmw7BuqQOmkP1kXfT9duaUeoSy0146QLoxsB3Z1QcYNM7d9TIWxtT6KdRKLxdJZ5G3/Mi38bBZf+1nzbqJ7FkuWfpvF0h9SQOqEzAtC80ZZbJZ/o50Wy2twFstmqQvWbqlnxevWHMQCubq/sVja+ME9z8uBhmtD6/n7sW7+uoMdb5VcDhhEoF1Zxrdl6w25AjDglRK+N/+Pslh+aoXX++s7LF8S0f/ivv8ZZv4zP5WRXiiftGLZhYJfe/wab+cDAhi/+vgNpprwPPd4Ox7w5ekZY0nohiuuucOvvH4ruR1Dxa++fotr7sS6+DjhPHf4/HTBNSccuow3xyu6zwS05+31gDfHK+YaUGrAaRB/nEd1G30aBzzotc9PF7wbe3z/9RMqk7jhHq+NZkNwnHJCLgE//PJrVCZcFSmToBbKWPBuHBrozaPG62WNx7O+Hl6LpW2IBe/GHsyE16crxjnhV37XW5znDtepw5evn3GZJT7ts4dLs0g9jz0ejmKVfHW64qoIiH0S1M7PXj838J1AwJgjjsPUEBWnHHF8M7d4SkMlFMAgmdM4J5xOI5KmCik1NPfXhy9GjRudMc+pubgOhxlvXp9xmTo8PlwF+bEEPH7/ij4VvLsMiKcFBMdQAX2KEUDiPGsNiIe5Ad4Mj5cWqzpNCSUH/ODXfwwiltjNPmN4k1udrHF1djjQP8p6znq9VkI4aBqVzy4N7XD4wYxaA8Y5NYTC7nOJsew+k7glQ04kEiV9+J7EtJ7Hrrn0lkLoH0fUKpbay9hJrJq6/y7pLjTua0oIp7pCP0yp4uGHE65zkkOK1xU+vYXN0fo0F11z/zXrpMW1xlib2/M8JXS9WLDnOWL4QcY4pl3goK4rmKek8ZEqMCmfGYsF2drmOaL73kXiUr+4IM+x8SW8UkREJs3zyC0+FACG78/IOS55I4NYPu3AhAGwoVYqL0oJ7ffUDnFaXKWLsTQAJosLLSWg/+VnAVp6GtoPYEwFPEmMJ0j2T1Je1Wl5/dr8W55IAOGXMujSIf3gjHIVF2mz+qVfnts6VZ1/0ZhdrgT6Ulx9MSbQ5yJVsAPUSL97xPQ0yEHC5wzEAhiQ2DADl17GSxWYIvBFabFUFjslDwWJJTmoS3EvcWWIFTxFVMsLyWiAQ7WTQ6I6pSXGUutUi/tT9MhWd17i7GCxkVME+oI6634lCBqlzpUI4F8fUaaEqvFprNbvcu6EbqDFftJhRjn3qKmC+4x87kG/W2JLW0qGYUnHQ6TooDoviwGtfV3iRgkIqbb4QpsDF0LWOLc6lGZJl+dB3bb1HRuMh7Y/SPftQZIF2lillwM7ChKf2sCZisQv1ksC//q0iv+057y5vs8BYRCexl6eixAqaolyKHqNoL5KrPWYQLGCotTJbj1b/1MEKc9sTlEP5MolgtRqLzGydUU7F+1jNq0aS97QKeB6KC3naHOD7+S9Vu1g8Crj82yxe4R4zCjvOnzr0ssBIQDps1mJWa4nPUjs63I4ZweTgzsUdHlAUWlxuTeAJesTkD48WBPLfqFjlsNM3VfoqxzOeck8uLZdlec46mEeY8nTmmkdn6hKQ/MWqLjNx0ruUJBpyVHa12XOQeqYezvNrr25fOqzQVnzlzJJ7CO7PvRwB0UPHq1t4IXWSjeWYECUyps8n6YwqdJFZYmxbHy3oocf5JU8Z2Vt1mmjwymeLb2LFdqCXq21pbZ09i/s3PduvQQ51I1YK4Rwf51yCNrXx5oeaYodNn2sKtNC392ypnutfNKN8riepCdo8/dvtvyX30Efv3PLj37Wbr7AJ65Yjjnhr379JcY5NVRUgzovJeDrdHR52EJLtg5YUvfQkDNLDg24xNz7TPnKc8RbtSp5JE6z4pkwCkCElhzxLipgxg6SZXNnLYTnSy/1WCwJvm8THNtYTGukOUYTVgIpLDujJSp/Og+oNaDmgKcksYnSl7YnbgIXEeOJsMTdEYBKOMe6erBZURabW10lPMXDAlPuUCC9gEhmBasLKieXgIuBdejYY+raGOc4gHPAOdUmjF1T34A9VnnynOukPwpj+/G0Fz6Aa+TFAqlCyW/rvqhXsQze1HHlqgJbi4tzNFwNeICAcxoWwUfrXfUHfdQf261L0SVpvkIDCdCX96w/3JekgoH9qBvCZvuxZBFmAi9jQJpc+77FRs6+vgkNTGtUTHN/UyEGUDrsh9cEjkKYQ9+snHMSgWp+of2se0GYvuxpY/Vs7lKVkIMoVZfYLfNloISuWXVKcIKi3j8nVcaKoGQWm3PglrSdWGmxJXY/zMUJS0yMErp1X7y0p0p4Pqslewytvzlws0DqlsQ1iumBHOx+cxszAYWBMXWgmXC5pCWGT/u5nFNbN2LCqAnjre0clZaZUCzPnWv/dE4tNrJGRmnJ7Rk5dnKPIW0zIXdiSS8GgLEQ3qyNKECOsiY5yPfqnjtb75pYls3f1z3C9o4IarVMLM0yNYGsJvnZoqyfCy3yt+7JoOt4uQjdNnaJsnZBLakAWt3cpXY9xw5hIuRLBE2KYMxATXEtL1VanbyHipZn0wA6amAEJwiDpZ4JgqVLK4GJCq0ErgbGgUVwFAuLO5goQO4WC3BU64XNr6aEOBHyNayE763rXigApyTnDBYfqO8I4sWinFVIB8l8q9Jt+y/qPVlDPYzRgw2zZCWLr7V3qIKKJAVRsWs2J7PM2Hw5yaFSs8CERUGxPgS9Nq7iSWtKSNP6nf4xhaPwyfjmaZMY07hYpZzHvbSNizJj1h5Y+7iui6Vvf315p0Lm1lyWl7FXArhTqDhofaWt0Um6nl4p28YBVkgMpvGbTCFze9RoCe7wyd6VtuezyRhOLjJe7LhYtzrWrDr+WXE82fOmvbHE+WLPQoVaECExitti7VdE2eBWh5br+plv2n343tuby2o+L/y9KXd481Kfy1zcZ5vCnTGWDvfrbGm4q1y+VPZoeomu34nlE8a3eV/5pBXLN/0F/9jv+t/x4/kBM0c8xhFjTbjUHpfS4bPugkvpWs7EY5zwLouL6oPmeMwckKjiOfcth2IgxhAyjnHGWBO+mo44pQmVA6YaW/68hzihgvDNdGh54/qQ8TQPeOxGVA5LPj/d7ZYj8loSpprwuruucg9afsKOKr6ZFRmUJf9hrgFTTa0vQPJYBmIc4oy30xEVhD5k5Brxur/gWjpcS4fX3RVP84DMAac0tbQnltNwKhGnNOHs8j5aXkbLDWnztzyPlpLlEOeW39LyAFr+QssZ2IXSUoTMNbYULpajMFLFWBKGmHHNHYaYcUwzvpkOeOgmjCUh14BjmtGHIjx3ORUtFjIqrTbWeZb5+NjPIeaWPmbMCQzg+0fJY/mjywO6WNCH0uZqeQi3Mbaj5pq09DG5Bhw7ATcCJO621ICxiMWq1NAQig8pt7yDhZfUMg+duDObNd1S4xw7iVG1HIMEtFxy9o61ONDzLAi9fSy4zF0DjXpzuOCSOzxPfcsxafug6NyMnoayS9y+A2h5CiNx4/E1J8mLSYyrAlM9Tz36KJYYS4dj8ctWP+uhy5QjAgGVgU7jR229cokYUsZlTjh2ueXELFXyBVpOvl4tlmIRF1qPneSxnMziqHG9KVRc5rRYPkNt484lIJDkEhw6QTQdZ1k/y0coaXrEii+5FgtyCXil8cFfXw4tPjfpGsGt0aGX/XOdunZ4ZcjGlmIHEKCsp+uAx8OI8yh5Je3g6WGYWtog48V1XvJYGlq0oTXbPrX0Oq8OI95d5eCpi2WVLujYz3h3HVZI0UOXV3kjl5jeJb7YH+5Z3kT7bml6ADRU6XHuVrkdzfprh3GWq9D6AsT6bbkk5xzRKe9bnkB/2EeMx+OIcU5t3Sxn5GXsVzkPSdflfJXr4hnQ49DPuE5d83bo1dps8em5hEavpRPyKYsAsXxPU9K46SXvoiFV931ehTfYwWizTjtEa/vLTOhcnHStAV2XMetezTmsPAaGVDCNHR5Pox6ortM7Ge1FEZ/nOWJw8d6GQDxPCSkJuvM4doLCrd4SHqHbDnBrDW29So4t7ANA4wkAVEUStnpRD3IpcENq5rqkUqqFELsC1meAKwRxNhXlr6Q8KnNE7MSzwd7hQ58xXr69xTKmijyLghgSL4oQgKwhF1XpadZ6PSSMGs9cCgmgmd2v1O5Vp4SQO+BcHfoCYn3tBaXbEInJ+nQKGmhp20JVVHFnxpJaSFFiW5yks2gb+BipRbrFz2rf7bqhO5vngutHrLR6MGrFDictNtUOLf1hJ7Accuq8Vyl8CIu2wlgrHcbHuk7BA8hhXovd1IOxVWwyub704GJ7qNb6N2Vpe1Jj67VRkneVNtftS6iwuxY8q7cxPGzLrmLdBr7Xt9M2NxP+KKXwp1VXiyf9kyg/A72SiP4cgH8A4jL7mwD+dWb+j7/zcT5lVNgf/v43/E/8uT8MAJhZ0FTHmjCErJ87vRfQUcXckp+HplBWpqbsjXWdTLxyWClV/rP81Ze1tjGlyhQsn8TdhDpr55PATyWh12Tuvvj69t0UgW3JHFcKZwWtEtebAmZgRNaH5dMEFsHTj+dzRfrk7Va2ibYBEbpmp4BH0h9MEALUhYxDo2Xb93be27yVJsD6+x7UaEuL0elBbvx9ZsJcxeq8zS+6VdpM2fMvMM8Tf71s9ofRbkrTqp2bi7lLV/1rCdUDMeYS0MX9HJ7Wj086763l5qZsSpwV72lTefled14NvKEXWNxCjZ82R8/zD12HhY7bnKr+2rZecW3J3ZP5uZNxiLAbQ21rVXfohNaz+W1ztG4FclOEDDxp77mwYkL9Xh7Tli/U6FQvCxPAt7R5mvxfU0A8MJLnsc9xakpT41Glln7F3L9LoZu+Wn1VCkOw1DkbgRTLQb71vwVaWm7eHr/frMvm/URYP+crPpUlJ6f1b0rISmhlkljtVJfPirbswYpWOT91A93sbatjkg6bsLw0bcK29rnkRxWXUC/YNa8Vq6Nrwl55AJqFz+qaK655Noj3iF1b6F+5tHnh1Lvr2XzM08DcIk3ZsTl690dPl10zfmy/bwVXX+7d20qRrFYuRgMGMst3c68EgIKGUPxtyjoXI90K9+3F4hvpX5+6YaP83eSbZbqxIt3QYsoQY3GN9OMZXbrON3ksnRJj361NG9vHIjp3+l1XUFOyd54T68vHQK7qvFDI6uytue9rO2/fwZ4yZrc3fCa/T12d3bLtdzP+S1v7xX53+tod9310rAbDwrN747yvj71uX+rvu+jnO+jbyl/6t//Uzx4V9vGH/If+jn/mO+/3L/xP/9rPfG7AJ26xfC49/o9vfhWX3K0sVwAwl7gSKE1INwuPWWIqU/sMoAnxMSzIoVNOiBofuCcMWvyhCeIi3KsCtXGf9QKg5LSsrQ+zXDSad4RHm4tXeLzAXVTQsjn6uqzjbxWdPSHRhJit8LwV3JpA6YQjuy7zWYRc337bp+VR831tBWazaNipv69r37e0bXm+pcNOX1Nn8XSh5ahrqKibOVvOynYmc/OLpPVs7jvCstHVaNU12grI7PvHWomlnftkbXd+/IPbd+aO7OtwRcsnacUrOtvv3j3b3KtbH/dOTjc/8HaSf3PCvPO8eGH85gdwOxZTy9noXZV9vkHpX/e659d2LR0PV0rASjBaFIJrHlofK5qN1Kgxj97ty/jqFeTg4g3NBbj1ofzxwqgfx/NjT1AIjNm7eG9P/zcu8U1pCJtxbGzjk1egthKxXd/su9W9reBnr8AtmAQBxV/bPHvte4slc8oMsBbi3foWyw9BC4rrS4cEgK4b3X6+665lLLJ7tLnNAXvPDK9443ht1zduxQQ0qwzb/lDLkClZzWrjafR83hZvzZmWz0zq2k1YW5qMTkD8nokbnVTCEs/nYDubQtj+btwqjYdeQXH7AkBLO0PV/aVlqHB9eU1fLAQEOxTYPgqb+L62JVfTdO+8e3wCVu90+ereDdafAzwLjMa3m+L4R5r2hjzfXJ9+nv7a4tVO6y3OolQGz5DtM6ButyAF3bHb7hm4UXi2n93+39J6TxlsU/HrsK2y6dMMptv221fMxyg2u2i6rt+79L6vbOf1HovlizTaHOvOXD+wv49Skvd+lz607c9BoU/YqPe+8kkrlq/SiL/3e38VT+WAWd0WzXK5tQjNHNXaF9VCWZA12COAV9ZMAAhUm8KZte+V9U6tnACapbMwNbfbToMwhK66Ul4jcXPF3LOCSkqU0KypRqNZ/LZWPrvv3VD9/LdWx+QsZmaZqxyQQkG2hFtaAq2tClvLqNVp9G9otDE9XVsaFxrU+qQWJbtnbqbWDlhb/oBFAdkWs4wabcL/xQJlPFuvF6/o3lrMtntha4Xc8nlPeTfL3rYY8FBx1uO9Ndsemmy/G69szxHEdbao26v/LdvT+3zxc92zHK7GU17szRnAzWHBXv/bsbf72fNwa0HzSkBs/Df6lnplI3xFtcZ5K625u2731upAwNFhh0S57B8I+Wvbfvbma3y0v74E4tUeiu4ZAd6v23gXZ3Pr9L/3W68Es0rfo33ParpdI2+9NKvqVkn3BxeLVfj2mv9shyV7vPWutv7+vbENSMsfVi3up1gdXlkdX8xS6/uVL05Sc4rsrgS33V9hCY71fN9eX/EaO2cLnnfYKXvS9Obe3jot1lYsh0qe/s2atO9O2fME+xR62zkv/erBC7vDP2J4y++9oLG9dfuo4g9xtt1sXQ23e2BjuW7Xrd89LWOjVK2u+xjme/U+ZIwPKXuK3s64xLRKKWLXdvvZ62tbb/uu4Z02bfwd/m7bbsudce62udfHPYVuq0zeJ+/947xUl/DyHsB7FL979z6Wn6u275/tByvR76HlF+V3TvmpKpZE9C8C+Kch2+EvAvgnAfwKgN8A8D0A/yuAP8HMExENAP4sgL8LwI8B/FFm/r9f6n+qEb81fo7nPDQFwQRpUwazKhbZKW5eMM6q+JliBCzKkV33Cpv1Yd9zDWsFbyP431OqvEC4FRr9D7FXLLeKo6fJj2Wf91wJXxKShR/hRjna9u3Llg6LF/SuoXsujG2urs49y+KeYOIF7nt9Y9Ov9eFdRU2R6Cyty5xW1mZr42nZWqe3tN4KsfuKpVesvDIB3Fcs/X5pa4p9WcZ4a+MZKq9fMy+87fF56/q65zL6Eg+WOrcKhQnxe0qB5d/0Y5kwu+eWapZ+r0RslQprY26r3tVzO991/1iNv57XMgeLNSsbxdLm63OC3hNufVoiU2piZEHQdcJxCDu0rSyWTolRYdLPzYDKGPrseoGTGOxcm7fKPeuea0MZ7biVbVYyjuvfFJ0bZWuHF95S7NfL8+reQ3Bj7XWKx81+d9bllbXY8d6UmZVy5BlhVl1TdoB9K6+fo7nq2p+thZvieq7Kr62Lrnc9vlFkVRlaxcjdEOPm4flpe8PzmbCvRLWXDrVrbSi/1MRLPN+9fvf6c3Pinb2zd+1mmnR/PT6obOfuad2h3StVpnCZFdlbi1futbuE73z/YMXSaKVbvhIve3c71fVr4b4la7PGZOPs1NtLs7Ba3sbLFxS9j1SCtlt6t817FKibub+k5Nz7Ud70+VFl7+DnPYrb+xW/b3nvfX1/yL17e/XbjvmplV9YLD++ENEPAfwLAH4fM1+I6L8A8McA/CMA/l1m/g0i+g8B/FMA/gP9+xUz/y1E9McA/FsA/uhLY1xrh7/8zS9hrnEVf7eyJm0ULC8IbpWlfQvC/Xvvb7sI8HuK2fZ9TFjivfzn9429R8NWGN5TBu4J0ts+txaCbfsPfT62tGz7M2F6r88boX7vF+4D+LSnQK3u43ZN7PPNWNtfG3/tRRpeEIj3CNkl4KX+FxfMey7Au/vqnmDpBZBV/T0pAx+4DjrUjrL2csOP5/fL/eFl/n+MALNX3wQkz6etpLb9vCnzHRI+mNZt3Q29Zbfems9EUX6AAAAgAElEQVRF6St7dH7gPL5V+Zi5bdvh5batih2e7NzjTV/m6np3z34kveTbNHp26pliuzvm4oHwEufb6+rOGEt/eP8c7tTZPpp323pifV9713b7WM90d6x7/f60ys6zhc2lLWkf28du/ffM7a5C2NrYs/sCLXeuvdg3cHvzQ9bt3vju+/25vKfc2a+r+x/z/H4H67PX54s8bX3Tt5MRPqDex/L3g2n+wPG/03au/Fwppr+Dy0/bFTYBOBLRDOAE4K8D+MMA/rje/88A/BsQxfIf1c+AZJr500RE/BK6EIur4zHNyDXgPAty4rGbMcSMH19O6ELFXAOGWPA89XjoJ62b0KeCGCouU4fXhxHvxh6HTlAP5xwFrTIwPj9d8DT2SLE2AJVAaDkfHw+CPAhIPObjYcTTdQAAnIYJ45xWz4QhMXap4O3zAUSCHFh5QdMrOeJwnEQIIMasSHkexAYQZMRaqdUHJJdgShWXc4+YCrpOEAG7PksOvym23IGH49TQ/OY5outKS88SAmOaAqpzD01dWVALIZaPPMd2vbnMYbGK9IPlE5RchkGR/pLmNExdRi2KRqg5EUsJmK8J3SEjTxEhMkKsmMcEzgHdaWrogS1WEwAXtcwYIuMgmZVtvgCkvyQn90nne/3qADDQfTai5Ig6B0HQ4yX+0n5vylXWOvSSRy0mAfkAQdKgaBwTX6PE92g9ipKTLfRF8tp1FWAsVpVK4FHSAWCQY10KDEoVdZS+MAWQz98WebG0MIBKCIcMzkH6OihyZA7AcwT3DDoU1ByWOLqABZXPLC6WqsTisoSa2xxohAXpjwH0FXSNku/PLD2W662SxAP1Wj+xuM1ZPjfCksPNgEdSBaYg/Y5RcyYqjXOQ+8CSL47Q6KVLAHcs9DG11DI0B/ChoFlILA8ejA8qxE8SM2Y52ahozkamlvMMJLFlnCrCs0D5l9el7T/KtOR0YxknTAGoQD3W9mNJVcdy6WrCJaCeKuJzQDnWFTpgPIeWQBxBUo20/ggIo/CjHqvEm2nfFn+VngLyY5VrU1iBgMSRkB8qQJJ7rg4V4RzBA4NG5amPycxB4nI6RhhDS2xfe17SetjcAIRJ+FcGbikrpA4vaSEqwIkRRqlbB+ELJ0a8CK/KwIhXQu3ZJSg3ngh93TtC6YUWqkCYJZ1APjGCpmfhKMm644WQH+R6GIH8wEjPhHIQHjMB6UItDgkMcIeWVoIgn8Ok73nJ+IIwAWXAMlelj7LUT1eXO1DbWfoGBhAnbUOS+N4sVVHjBG0OcRSegiFpITSWjaOu6ZHRvSMgALXjVSyj5cHjJDwtvfwF6VpGob0cZJwwAeUgY1j6h2qpKADUTq91QBzX14KelJQBLfG9pKGQz6WXOpI3EKj98vohbcsdEK/CP/sX5iV+z/ZgGWT8miCJ6iOQLsD8iG9d4iQ0gpb5A0JrGWQcpmUO0H0BCC0cZH3CjPZs1Aikq62lDsRoSe9tTb0gwQFI54U/HGWvcVzaEC9rA8j92jnaaM13b0EOeVkXKF1htr2o/VsKEttrbpwlNQyB00JfW0/dNyAgzAzW/d3AgpwjFxWAqu7t6OqxXG8ARAFgoiV+zf5EAlWWdCKai3IFSsTQfJNY3iXepZuwvCO3xSuPm1jKxn9d0z2D+ksW4Pau2fR5c6ZKjvZNnO9qrm5frMbaHGj4OMumMO4pyXeU5r34wdW63OuD8F6a1uPcDPNpFAZW4F4/Z+Wnplgy828R0b8D4P8BcAHw30BcX79mZgvf/k0AP9TPPwTw17RtJqJvIO6yP7o3xkMa8fd9+X/hqQyYOSKioiAg14iZA37Pw0+aK6nFNFYmzBwwhNI+W8xj97qsYh87RTW9lA7p1dol1GIsK1NDmLW/15LQf1YQwJi0P1MIfZxc5YBff/PjVRykd6mdSlzFfFYOuzGMiSTVw6S/HnY/fVmwQsCFoMH2Gk/okWPN3XIqsY3/Egqn54WvWzZxWKS8NURaG9do7ELBWFLjiU/zkahiqrFdMz4aX7eW4D2XWLNgG0opsHY/tri04xdfozK11CLbGFA/lkeO3b4bt/Uq0w1iqVnR96zYnWuzdZm+x+PWt14zN1ofgxeIG92jglHtWe63LtOehi0ddYfGKceWBsRiGr3LscUtendi7ypsf+2+0WHpA2zOe27HVg9QN+4oBwJZDzrMzZiIkcs2lnjZ03uAWLZ2fr39Z3t+iLilF/H89GvUZJCdtfO8CMTIJSD9ctXUImhuoIZqu3IPd+69Pu3GnltxirWl6TAXXu9CnDVFyx7IlgcV87T7+/5vc/l2SLVG79ZDwcc02nff1rtJB6ab+gvNypdfY0QGSF1prW3cILHKYIxo1mWSOgjcgFoqE9j2oA3GIpmuPC+c9ChnNWvvAP+WYkCswG4t2dra/tuOp9IeE6+u+3EaOJfythLAFZjiQtu2mAdF0TjJokBeqxjXSsjKn63gt/KQaIIr4Qb9tT0AhJWkbfe2cau+L6uva9NcwE0Y3Urue8KqHZp922L9bOdDWFBfeTM3m4Mhw3yokO75fKOAON7a95W2sUf7C/e3ygOwT+dNl8te3QWF2va1J1Bv57mzD4x8gG/dsP0YG0JpdY136kOe4Y3C9kFWu49QbPw2fG+5twf26t1Txrbjv4/Wl8b46P42mu32+sfQ9QG0fGqFwLvK989L+Wm6wn4OsUL+XgBfA/jzAP7h76DfPwngTwLAL/8w4o+8/t/w2+UVCggHmjFzwsQR7+oRb+IznuuACMaVOzyEEW+L5IY8hBnX2qEi4EAzflwe8SpccK5Du38KI661w7t6xIFmFISmwF65wxfxCVfuca59u3+gGd+UEx7jFQBwrj06unU2G2uHAsIpTIiomPWoL1BFREVHBd+UEwCggNCRKIkzbwXiigNJrslv8qnRPnPEKUy4csJcE17FK861b9cDVYy1a/RJHtArnpQ/pvid9Pi9qII7suTRtDEKB3RUMHLCQFnAk1RxnDmio9LGsByT19o1/p+C5BMNxLiUDkPIrd0QMt7mA45xbqBMQ8iIVPGUBwwht7bCC1Y+LUrBU5H1tDlG1FW7S+lRQfh+/w4A8NV8av0YryVHZ2lK/jFOjV4DhDKQI2tXOeAhjaKsqsJfOWAIM57K0HKmGohKy2Opx/vPZWigUrlGPKQRmSP6kPGcB8kLqgBUHiAqgPFceiRa5lmZMMSMV+mKS+nwLh/Qh9zGBNCU+0DVAVzV9h3AKkdqCqXRbjlMZV9HPKYJT7nHYAcYeoAjvJt1nUuLf174I3T6A4ixpNbmIU0Ya1zRZwBXfcjoqOJSlvx0Vv+q1w5x1jWSehUav0oLArTR5MG57FBjdcDhUwopcM6rTtbu3Ty0+ViOWNufgbgd7EzOhd/H0xotpzTh7XTEYzfinLtVHPghLQ6yBnB1zd3qfmXCtXToNf2SX6fHbmx5bfuQVwrwIWY8ZZmDHeJYztg+5HaAtXfQYjlt+5B17NL47Ov3IeOc+5VC73lp9FhdW0PLBQvIAcn/x967/eiyZPlBv7hl5nerql37cs7p27Q9zYxtxvBiYAZLPPnJb1gCISFxByHzgASCRyzwgJEQbwgkS7aQRkKAwG9IHv8Fg4QNjIAZzzA9PX05t7137V31XfISNx5WrMjIrPxq1z7dPX1OMyGdU/vLjIxYEZGX9Yu11m+ZlA+VSbryRkZSYDZ6gIsyg/1ap1RUKXduTBuDUkTUyuFoK1TSwyiPNuXT7b3Omy21GvNYAvReZHll2lSolZuMuUqbZ+WGVrnZxfW5WK/ymoYoUOsxFVW5yWNS7lgmCDNFzlS+vvx37xXWxub6S5spPors5WOKjRjulzciTbqvVbFOnN828GZO2sCp0pxzn7zBY72apFPi467wLmEPIS6cColzt8YoJozqTMLlAzGzD06h0h6+AL1ahexh9EVKmZuW36G8sWW9mrzTOQY+Fvd++ZzzG5i9mMqcwdzuPM6dS5n3lX8vb7TQxkyMItUvNjniNG0Sx73zdeXGwrkwknIjK6S1kkU/+fogJ7HdpZSiuBczbg/lPJQbDPfnYiLXLPSAN2pY1nttlpsQ/HeOf0rgVvY9xwZL4K4E03OQPt+AAN69OfBQeddGwIPA84ENh/c9viTDe4zp/49g8+ep/DRdYf8SgD+MMb4EACHE3wHwFwFcCSF0slp+A8CPUv0fAfgmgB8KITSASxCJz6TEGP8mgL8JAB/8uev43938Km7sBr3XWSk9+gqdM9iaHkPKp9h5jUaRMhMgcGE6dF5nJejkKjTKZmWnURZN+uC/6db5484fcACokt/N7bAi5SAKNMrh6CqskuLXO52JU1xK5qxkgA0K1itc1N1E0alSfkYtAo6uyh+hWjnYoPIHnl+ktaLk2rV22A91VlSGoPC0OWI/NOi9xrbq0TpDiplyWck52CorEEoGdCkROVlxJRrtJlaywSsYGfL1IQoY5bOSV+YwZEUj59NMykdIykvnNBpNSe9VSoJeaZfTu6yMxXGosDYWvaexr42FUR63XZOV9pI9swRLUkQcBwMpRksbAFRJXiVJwfBR4Pn2CAB4c1pByYg6ySUFKSflB36VEtxz0nbnJbQKCJFIgHiNVsbCR4EuEQI5L1Fpn616nLSdFS4pAyrtUSuPfV+l+52UtMY4OC+xqixOfQUhYm6TlTImFuqspvlWAb0bLb0XTY+TNfm8YqtWEPfIpFjxKQmCAFJmXZpztkz21qA2Nve9qmzug9qn50ayQloAAgDJFTtmRYnvP4CUz0o79FajqSwGp0kRDVMlSamQLYesRK3qgdzaU9J4KWOWgZLej8oWW0PZ6heCyIndh3Q95ZRUua1SWXNOYt0MUDJif6pHy6IiF3NmGgWAytDz16Z1LJ9nnguu13YGm9WAtjcT6+SqJvd/lkFrj743+T6tKnovDAO5xccoJrkot+sOh1OTXLkDtPY5v2alPdreIAQBrQPsoFHVNrupW6smSgLnvPROZpd4nhOtQyYzYkWR3c+HQY0WS7ZmJsVTpJyYpnKksA8aTCpk0tjYdd87mRVSZkrl36t1D2s1XFqD7PrembzmIT1/pnLou4rukfTvuhnQ9yZb/qp6Ciydk9n1XyQrLd/DIc2nSnOY+4sC0dO8hzQeetZpPn0Kb8j3kPY59+dowScXfb4uBpp7a+mdla3Bad618bCdRrMZcigDEzEJEYEELKIXUMbnUAW+hylHK+AGTfdL0ZeQ9GzYQVMqpiDG58gJKEPW9ZBSOan0XLleQ6Z8kpxbVADwVkKm8AKpIoKVyAROKoEgqyArTyDDSzqnA6Sm94B3ElJF+F5B1R7BiUy8pCsHe2J/zPcv0niEIVn02c0/0r9Dr3JogzSeZIvI1jcOn4hOQugi7VAAhUaAxsOaNVud6TgDDyCZwiFXLsvCbUQvp0CGLbRR0HknxnCGIABN6w8rR1DG12UyKpIROh1j8CBSOzpZTlMoD0wY6036SmEQKORDqhPSPPGxUFhDC6uw8ILM+MUee+A1KGUrS7JwihJ0clcMgAMmrqQlDhIR01QucxDKvxfIqKIAJrYFgXuuptwHMLOWnjNxxqmsE9KwJVCX6vAYl8qSxTYmWe9XLsZZ/n6gnMPqi2V+cj7PPw/l59hiKR4KYfyxGhbinwLwtwH8EyBX2P8WwP8G4J8B8D8X5D2/HWP8r4UQ/w6APx9j/LcTec9fiTH+8w/18eLPPY1/5Tf+MiTIelSmDCktL7xrfHJmtkOe6kWVQSW7jJY77LxbPy/lLjv/LneOA8QktQWACcurkgG91/fa5MKKPYDJrnhp5eCdUwYCJQCa7KQnkMeunbyjWu6gcptlez5OXSVVIc+caXWeYuJc+okSqM53Z0s2VAZiHNNaMrXyzvT9NRl3M3l3mo9zKa9jBtjO6om75IRBU07X0CcX2HK3upS7rMe7wQAy8OF6cxZVdg9ksDKZl5mbI7sPlvk+AWTABYxukDSe0c1yidGV+1liXC3rl/lC5/lGy/QMpftlmaJhmn80Fn2jaLN0y4x5TM7JXO9d5E9AUuxTTG92t+QxZWvMbNd6tlUag8xgJV83m5fSXbcExyjWO8sIlgFZ8S+/l/xvAYyKdWL8LOvd281PivlkZz4pu0u5N7NiC9z7WOeUGaUwfN3sfuBjiBhjfeeKDg8sX4D7GsySMlTM1TxHLmJBUFWyo7LOyOvKsbqlCyIru3PLQ8SoGHJssU/jKOvx3Gdlt2h7zgArQEptyd6JWb05udPSfKGYs2JupnM1u25+ruzzjOKd5WUlfN4MK9cPKrCYxuDOrTX8ez4nSw/BkoKZ6ggvUrzfqJGLtI45TrdUviNfB8wcf96vzMdeypribUvwUJYy/m1xbPM1TuOii2drL8aY5Nx+XLhkLm+xxvkYMInhLv/mx39BtMUXGDBxd83gSWAKbOIMQE06u9/PwvDzjyVQNJFvLvNSmT+C8zbOyHWuPNrq9th6P0ZZBK3c9wOA7ewY3iXzI8f06DniNhe+Se9b/u//8t/7+zHGv/DFrv7JlMvN1+Kv/tl/6yfe7t/7+//xz3xswE83xvJ/FUL8TwD+AQAH4H8HWRr/FwD/vRDi19Oxv5Uu+VsAfkMI8f8CuAExyD5YrvUB/8LT38Jbv4aNZPFjl80uGhjh0AVyN+wC/bZRJ5fVAV0ki6ARHl002SWV3VEZAOxDgyZFp/v0lmK3RhtVdt3kv30wqBNDAbtTqvQUeAio5Cbqo8wupVzYpVIhJlfdEYhO2ivGqgS5znbBTM5lt8zkSsvn2S2VZeCiRMgxpiSrvOfGy/2XrqKlm6mHnIAnvobnk+ZufNOXrm9cj3OO0lxqGOFzuyzP3CWYNwnmfZS5SgGOjR3dWksXTQDZlZLjazmPKecWLV1O+VpObVOWMnfpPEfpPBUOx/kCyO6nQ9DZJZPzo44uxjLLECDuucKSm2+Y5Esl11naRGAXXo7b5U2Y0hWWxnB/vZZib3kcPCZ2E+V5540aHh+7HubrC1BebqbM3SPLfKbzWN9yc2ce4+pyfK7PY+AYZ74fxg0cNZkXvofmuVAna404aacr3HGXYml1bnd5s4qvqaTPnhbsNptJtGbj5TGV/QJjjtX5OrLVHkCOpZ1b9PP6FDHaSzlqy3Uw0me31PK6sn+Ot+b7gI/P76t5Pltg3MQq44BjFPeu5TZN8gAp444BsoTPN9VKd07ejGO3UG6Tn9N5/O25+QDGnKFlKWXn9SnbKDeqyvjw8v6YHy9dbZc2PnwQMOr+vTDZ+IxjfLMsRJ6zo3OM7jmmcV6TiHEDbr55WebTPYdTyz7nYyrTCc032fh3uclVunb+OHksy1hu3qibyziPAX8XC3YZO3zeFXZ+0ZkUM8W8lu1HIFup83HM5n1h8yKmNuepfqZzMm5m0YH7/84pceYbL6UQYRzD2dQ5wH1gXPY3R/Mozi0dX6p/rixthCyUMu6Ufz9apnmdcw/GUr13ga4HxvreIHLh+INA8b1A5OPX5L3A6Zep/BxbLH+qrLAxxr8G4K/NDn8XwD+5ULcD8M+9bx8bMeDTeIkQJa7UETZqfOouceO2+E79KTpQbOXeN/jQvMV3+w8gRcCH+oS3HjjFGhvZ47P+Et+oXuMz18DA40qf8Fzd4W1Y4/vHp/h28wqnUKEPBlvVoY8SV+oEHwX+sH+BS32CER7X6oDfsx/hA3MLAPjhcI1L1WYlNUQJIxxu3BYHX+Mb1WsESNy4LWpp0QgLIxyu1AnfHV7glGIEL/UJB9/gFCooEbIXCPf7VB3w3f4FbFS4VC1u/Qq/3HyCT90lXtkdvlN/hj8anmHvG1zrI3aqxTHU+F73DJe6xclXuNYtPgsX4FhGH8f2Q5TwEHhjN1irAWs5wEaFLhg8M3u8sjvsVDcBt7duhUvd4gfdNbamp3jKqHFwNZ6YE17ZLZ6qI97ENdZqwMthh+fVHi+HHTayx7fqG/x++wIvqj1u3AatN/iwvsVOdvjd9iNsVZ/jMvtAsXiNtJCIMNIhRIkfdNcIENjoPscbvqj2uHUrGOHxWX+BPmj82sUfwEeJ37r7RWx0j2fmgL1voBDw2m5SvAwpSV+r38IIj0+GSygEHEAxkyEKPDEn3LoVFAK+2dygDwafDJdYywEHX+OpOeLlsMPT6oBP+wsYESCDzjGT32xusJYDvts+B0AAeu8afNTc4uBrfL1+gz9sn0MLjwvd4eBrHF2NlRpghIeWAT9qr7BSFl+rb/H99hoAcGVO+OX1p/jcXuAPTs9xadocP2ujwjHdZxxDx67l/JvB61NzxJ1bYaUGrNWALhi86re4ro4wwuPlsMMvrF7jD0/PsDMdjPA4+hptivV7ao74rL/AdXXEnWtgRMDNsM6xbFdVC4mIWlLM8s2wxkfNHX5weoJvr1/j5bBDHxSGoHFpWrTewAWF6+qEWlrcuVXeHPjFzUu8HrZ4NWwgEbHRA1ZqwBNzwvfba9igMASFjR6wURR3/NauYESAjRLX1QkA8Hm3gxQRF6bD22EFKSI2us/5cy9Ni1u7wq/sPoZExD+4/WYGfpemxctuO4mv/PrqLRQCvt9eZxC7UhYuShxdlWMwv7W6we/uP8Cf2X2G752eovOje/F3Ni9x8DVcVGi9waVp8cPTVQbfHzYUM/zD0xWe1kcECOxtndv+ld3H+O3919E5gyf1CTvd4ehqSBHxp1av8Nv7r8MFiUvT4bNuh6+v3+Jlt8XT+oRb24xuzFHhqjpBiYjbocHz5oC9bXBVtfi82+JJRWsUokhhBgFP6xNWasCn3QXFwXqdgTPHfnKc5/P6gI3u8XF7meNInzcHAMBn3Q4fNHu8GVZ5I2adYipPrkIlHf7xyx/hh90TvBlW0DLgRb2HFBHfPTzDVlNMLMv1rc0b/N7dC1xVLT5qbvEP9x/gO7uX+N7haSY++2h1R/GYkuLab4YNyasttAg42BrPmwNtSKb5vK5O+Ph0ia3p4aJE5ww6r3Fdn3ByFb6xfgsbaaPDSI+bYY2DrTMof14f8ruL74HOG3zQ7PNG0NFX+LC5w8ftJSrpcWcbrDU9350zeFof8cPjFX7l6mO0ocLNsMZKWfReQ0uPlbLY2wZ3tslzyvN8oTscfQ0bFH50usR1fcLXV2/xR6drbNSAje5RS4fP+h0u0nv2db9GpTzuhgbPmgOUiHjdb1BJhxep3e8drnFRdZCIOLkKF1ULIwJe9ltsdY+Tq7DWA276dQL69KxKEfCmX+Oj9R06r9F5g95r7Eyf7/XX/SaP+Rubt3jdb3Kb39rc4HduP3xfVSOXp80Rn5125FJe9TkkplEOn5wusEthJ0/S+nKoS4giy3y0NXZVhyFoDF6h9xofrPfEWJ/CcTgkZ0heTUdX5ThigOLiv727wWftDgDQOoOnzREnV6H39E0BaMPkaMn190l9wpt+nWV0QWJjiDPgrm/Qp1AXAFhpuj8abWGDQu80Luouh/EYRRvUJ1thWxGfwGGo4aPA09Upe2PVyqF1BsehwlXT4qYlLgglA4wM8FFga4b0bGiY9A4bvMpEb1r5vOHTOY3eamjlc5iLTmRmg9NwfiR6482R3tFGEm8oAaMnEpO7cUiLS678JbQJUeQwHS7zDQwOlyi9d3j+rVeTzQ8OO5iT0nHIBG98lB5IpRcPhxuM7YgcdjDfcOFrOHuATDm7y3HQ33GDYPQqQvJCmZo8+XgOQSg2fLjMj8Vi4wMiLm9oLP1l2eTstyiuXyiL8bRflhKxTGL1c1J+aq6wfxzl2Z99Fv/Z3/jL+Ky9QIDAVvcIELgbmvxi5xjKvW1wWbV4kz5SO9Ph5CrYoLDSFm+7FS7qDoehhpIBGzNgrQcMXuOz0xYXVY/ea7jk6hqjwNrQh/tNt0KtPMUnSY/bvsFlTeQ9d0ONRrssM+9Q906jdxrPN6SEnGyVyRiUCGiUw023zjvdVXKvZRdUflgbTTFIK23xplshRkq30lqDF5sD9kON1hpcNS32Qw2f4iZ5J/9t2yRyAzreWkMAKrF3royb7Oy3KU0Ls5e6IHN/rNTyDnxnNVbGYd/VqLRHpcdULk2KFdw2PdrBQMmI3ik0xqEdDIzy2NYDbtsG26ZHZzWcV9g2PRrtcHNcw2ifd835BW0UxxrSfb3vKO6U1yxEkVPACBHRDQbeS3zzKbHCfna3g5Ih11Eyoh3MZBd6Uw8QIuLUV9kdmYkXGkPxgFJE7Joeg1doB5MJH2rt0VmdxyllyC6rIl1jZMBtSyRKPgpYq7Fd9Rgcjf+ubSBEzPGO5YeQY/eUCikek2LzjPa43pxw6GucegOtQo7LdF5NYixDFFkmZvfkD2ed0vFwDKfzEr3VqI2DVgGn3mDTDDh2VZbJB5k/hJV26AaD2rgUu4ocgwgAWo/xvgDQDxp15dAPGuuG1iQECe8Fxdcl1+EqxeJx/BjHEfbWYBioH6UoltAoj2ObCHaCgFKkEAgRKW4sfVTHOMUUJ61DbktrD+dIWdCa3HSvdi29D2432dWWU/1wHJuUEXVFMZbHth7dw5l0JMWhAcC6GXA4NthtWxxONbnlpvrbTZeUFVorYxzaUw0hA2KQqBuywHedgTEeMVLsHst1tWvxdr9C8ArauKyUCBGxaQbcHpoctzf0Gs2KYg2rlBIofzWigDYur2Nd2xz7yCmOOD6PrTxVSnvUdyaTfER2L88xlmEiW9+Z/JxXdYpx7g2q2mIYdHb3ZaWKlaLLiyNOXZ1jLE3lIGXE6VjnWL/gKbfHajXgdKihjEddO5wONdbbHu2pztaYqnFpvSiulFM3SRkAQWmUqtohxhQvK2KaQwOpKA9FCBLBU6xf8JQmqrSg2UEjeAGRWFlN5eh8upYVSY735LVtVgO6toKQAd5SiiaeM20chlOFzWUL7yXNR+FKTCmgJLyTMLWDszrP83ivC/Stga4cmsaiPdEcKjUqeiAAACAASURBVBVoPXuT456dpZhSZxVMktMNCkIix812pyrHRIYgoDTFv9qe4jhzrG6KIaS4xbRBOyiYlaW5dCKf47hQNygo4+E6A93YPB8hCNSNRbuv7ysUjyy69nCdJvdMEyBVzIqv7zTFYDqZYjsp7U9Mcca6oXdKsBLSBMSAHCOqGkdrzCmXgNw2AIo1RaFQewGztuP8+NSnlRkMCAFKlZOulTXFhwodKGYzUNylEBQfmmMcRYTQEdEJ+hsE4EVOncX1hEx1UkqnmNJOidrnMQsVKN2VExB1oDRcoD6yOzSnhHJidFsvU1qJOLpqe0qDxOmL8nmArLW+SN+TrHd8THiRXX5jGZcpQH2X7u8lsoygtEQsUz6e5jkkt+ySAZllkKltHjOQ6xfYqXAZnsZy5rQtU2w3NS6ndEHZ/bu0Hk/mAV8sxnJuNWWraJyO615ganFsblmcXzo9iXvz/5OKsfzuf/jv/8zdRS/XX4u/+sv/5k+83b/3f/wnP/OxAV9xYLn9pQ/jP/Zf/ctok7LJOz/WKyJRkGMaDWagc+llx2xqY/yWyko+K6GsVFur8gezdMdhMJBJC5I7i3cSKinIRCIw3XFixYAVNwDwfoxX47/OSXA8F5Mi5N2fNAes4Iik1ESM7nekeItMKMFsbDIpuSSfyjtBLBfJiBy3VbqrxaTw8PUxk6gsuPVxjFgiThCJxj6yC48XmaRBiIjoJX2EvCSa/3Qt1wErFoIIHSYxXfwdmX1QmDyh3O0SaS5pPER0oNbJ1bnTVJfjkZJcEHH8mGomWeCX//gW5rb5g55dgNIOH39khYrF9cgfTaECEZdYNZ6LyDFh+SMNjDIW19Mgkjz8kUzzIauk6Dia33txZ8W8LbofASPJQh6fGD/I/HHmvJayuJ7jrphIQo7zmeXl/nlsPBYeh46jshGLNri+APXD8powkkYAoyIj4kgyEYu+BCauWJPcnnz93EWn/OCZQP8eimdBTteA0H/qr1Agcyk/4ipSnXLcXJgso/w6lykUyhxyalSgsnuWiYAVdIzXjsei0rmYlDEnEE3MylyOseMpSHNf9kV5Gou+43gN90cxcnE8x8pbjtOkdliG/ExznlInEHWh7PH8xnEsMeVIFWluct92VDB55zialLtURerTSsQqUN2Y4rj0qHBGkfouCU84NhMonkNe60L5DUmWKMa1LO6BMr4xzylmCmlOHYKxnaTAlrFsXFdYgVgV9/RcIQ6CFM80p/m+KOaU1pTqC5fi+3j9XVLoo8g5O6k9vhfT6ya92so8j1leAcrvWSrJPHeFsi68QNCUfxRBZHKV3F5SoKVL9fidE0keOcwfvMeXqNL9iJmSLoo8rEmeCdkL3z+8/iUAiNO5oH/cBw98HHy76fHZoD6pXvk481+g+FTxseKVJiKmcaEcL1oS0pT/TrKIBGqQruc5LuXNx1OuyDwOlovnonj/5XlIQmc5l0ho+PtbPPuTEmd/i/4zkc4sFnd+fY7XnbdZFoHFPuZ1F8HUUpks3qyPpb7e0e7SJ+ydMj3Q5hzsPljm5x8h7+Ta96n/QPl//osvQYzl+mvx137p3/iJt/ub/+df/5mPDfgpu8L+tMt1dcK/9Au/hR8NT+CjxLU+ogsGt36FvWvwvNrj5Cus1YA3do0n5oSXww4SEU+rAw6uRh8MNrrH5/0O18nNz0iPjepxqVvsfYMftVe4ro7ow8giS+53R7Jy9ReUDiIo7EyHz7sdXjR7sgjaFVbKTuJsjAg4+gpHV+GbqzfwkNjbBlp6GBFQS5tciy4mMYBD0BQfVzxdK2VRK4eVHPBZT26sGz2g9QYfNbe4cw32tsGLZo+bYZ1dCNnd72W3zTFcl6bDrW3I7SOxdu5MP4mZux0aNMqRG1XQE1fAlbKTGM2TM1hri7fDKrPsspvaVvc4uBoXpsPB1qiUw8HW2Joet/0KtXZ4Xh/wSXuB6/qUUyNcVS1WyuKT9iKnNuC0G5V0Oc8lWyzfDquUBsHl9BAXVYfOGUgRcDus4IPEL199BiUi/uDuGYzyWOsBnTfQwmNvmxy3qkTAVU3umneWrIrsNhqiyNdJEXFVneCCwp1tck5OHt/G9DhasliVqRKeNUcY6fGyowzeLkj0Xmfr+4Xp8LrbQMmARll03sAGBSXIHUiLgLf9Ckb5bKEHyK3po9Udbm2Dl+0WK22zW6SL1IcEWUHZMl9JnxmMObZrpW1mAOZYwb2tU3sOt8Mqu1txaobSdWqjB9wODTZmQOsMsR/bKlu7V4asJDyfh6HGRd3hrm9w1bQ42grWK7IOa5djATeGrMi915nV9tnqiNYZHJIbWKU8auWyNwCnV6gVWTElItpE8BWSR0KMAgdbQYBYfk/WQIDSVvSOGIXX6fhHG3KT/OH+Km9qrY3Fvq9zfJ8SERd1By0DXrfrrDOwVwAzKEcAT5oWnx12+GC7x5tuBevHWN4XmwN6p3MqjbUZ8LZbZcv6piL3trftCptqIDfKxIQMAF/f3uJHh0s4r7AyFnXyJgCA6+aIT44X2Yvh0Fe4aHochwqbakDndJE2A2gMpa5prcGmGtB7hUa7zOjMTNCcO5T7Y2ZnH0XK0zm6m2nl0VuNdUV1eQ6tl9jVNJ5SLk4nwTGEzOT80W6Pu75Ba01mmpYi4s1phdoki3Sqe71u8eqwQW0cdnWPV4cNnm2PuDmRJ4gPEruG3GeZGby1BtZLKEnvnMEprKspI/jaWNwlrw0mJXNBYl1ZDE7houknsbLs6scxlJt6SDHBYuKhsanJYyaCNlM31YBDX2e2ayYuc15iXQ+4Pa3wwcUe1qt8L3AsJ+cw7q3OXiQ8Dr43fBTYdzXWlcWmGnDXNdCKvFeM8jgOVb532ctjcMQSLUVMninkSSEA3HV18tKh9aoTW/Kxr1AnbxStAtqBXNtjpNhOKcjTZLvq81x6L2G0x6pKaXaSV8ixq7BpBnRWZw+Py1WHV/vNA5rFw2VVDzh1ZMU2ZozPZm8RZliujctM8MyMvKoH+CBhnYJJ90NILLrrhs65tLldssnTRvOYW5at8rtVj24wEIIYiuuK2MMn+XAlbVLHKFAnVmf2UAhBoEqb29aq7C0AAEpFeE8uliGIzNLM18lk6XZ2ZBC2A72Pq9pmzxG2eHuniFV64J2GmGM+lfZ5nmQxvnHDmOoLkHU7WNqc5flg4jLegJ4QbgFpQzxtXmdLYtpo4I3jchNzvk8eMd0MTsfGfxcbnLzRw5tNMo4bmYy+yg3xEjiKVKfckChJlfh3KP6WG1pz6+LcHLoEmudlviNRtjmfEzY4FKjybHzpErBcOl7KsCTTn5QvfflKWyx/8c9v4l//O/8oPCS6YCZkMh4SfYr3IzIYIoVphEMXNcKCP4BPZB78b26PYwMlYia9yfUjxSMyiQoT3oQoJv8GiAynLEb4gkhlzGPHMpuCVISJbeaFZQlRZnISVlDm+Q5LApIS5JbRBGWdMo8iy2Gkz0ADwISwZU7aUxKyhChym3OSFyYEYeIZnk+O/ylJc3qvJzkM56Q5wJQUhfuby8vkIQyuOE8gxyUNacxzQhkAWcnjWI1J3wXpBt9jE5KcqCbkQeV5lt16cs8uiZuY6GTwCpUa17mcZz5W5q8r5eaUNgxiytQ1S/O4RNrD4HpO+sTPAgNozl9YrgOT+MwJgJaIcZaIe9jrIK9jMb65rAAyECtTzbA7dNnOUm7B+fzy7zlLcznnfXJNXVqfclx8/3A9YHkzmpmbhwTKy+/wUIBEZiUuSWBK1+Y50y+A7L7M15ZkIy4p6SWrM4Mnzg9YFgJdIp8fSWnG3zQPVJ+9RuRMNm6rdDsP/Kwpn5Vlju/Mrvez+eU5D1HAOvI2kYIYeNlLxWhPelc5bqdgEtj0XkJrD2t1dpPOyi44pgqT+Ki8FgUwWGIrZsIXdjdn0MGFvVbyWvqR1XfO0FzGPAUvk+cMJrFRfE4lBV8U98Kc/VmkeWMFHkDyuCAlOafZSd4mlOqEFFYxG2PpmcJuk6UXCbmCFvXTeLJHCVvmZCFrUSckZZ2BArtr0o1PAIHdOSeAgb0qvmhhAAKMyjor8YV1+R6jsMDopVAq7KKoD0zZlEvzUvYAmcnCtw8DEgYnpULPzcwBicDUml+WGTtwttCzzHOgw/8WoHQgXBhkydmcFMCHLYHZcjm7NFvMeVhi/H0PQJUXc5mZ6iafu/LlW1oti2nL9ZbAzRwcFoXlm7uz3ivn2i7neXZ+NqT77rFL3ZTno7h3/mwb534/APYekmOxzXeVR9R/zBz87n/6JbFY/iP/+k+83d/87V//mY8N+IpbLI1weK7vCAQqRYyvSfEFgC6QVYqZYW1UkAioCzZYYARxDNKYoZTAXCR22WigEDNAVYjoop6wps7BKquCChG+eEVloIQIrwVsGBltWRZWsidyzZ6sEgQzMCuPryVZLZhdleM3S6siszgugQgaw6h087m5Ysf/Lnfd53+lINDI7LDzOef18JCZXdYpYmNlqyQArBTtnNeJnKckReLCVl5T+K3MGS0ZWDOTqpFksWJwPmdGLfth4LoEpst1YFBeK5eZXcuUOEyuwPKEtA5OE+AlwOLzcSkinB5BfAmwy3XnYwzeuXRSZ6umK9osxzkHo+WGx5zhlBlUSyDNrLflJse0HTkB0jy3S8f5HFujyYIcJvWWmEqzfGpMt5PvgwTstJwyCJ8DgQwa749jyv5JFknaJCrXdSk9R8nUO2HkLO6d8rdRKlviuQwpHpv75jRH+T6ZPZdz2TnJPZeShdTrEfSy/JWaMveWZb4JIMU0Qfx8Xr1O4H7WDl83B9cxtc3HXAGaOaUPyzZnDuV8q5mJNEhwvtnyXgYAKwMBzijgFaUqEgAqXc4T9cFycpxyCc684g2l1OfCXJT1yvQ0zHZaSubVaH2ag24uHMbAhCFz5lIGzWV+1TK1zwRYFnH8FP7BfYzXjSBW5BANTsUDMBika4JM85FAb0gARhXhHVkOpA2HQobcrog5FleKOAnJEGnugi/6VykUQ6aUNEnbCUJCVV8cWHKIB4Ac2kE/UKT3WWA/BRBlIV8YNwxyyAUw1YoZKJbHSxDl5AhmBUb6Xgky8ZZgidsrwxEKmXI4QSzqCiCGmMFkLOY8y1IiHD4nC7lZDmAMmUBxjvsCyJU6TC1eJXiPPE5R/AamoCPLE2eumnEUt7xOzP6WU13WCQtjnb1D5oAm9yNmv8+Vc8By2sxiVZ6bSR9z4Mfn88Bm3f2xAsv73+xz7bwLLOYmy3X7Upf4iJvhq1u+0sByiBrfG55jI3sMUeET+wRGeDzTd2ikxQ/sNYzwOPgGl6rFK7fFC3OHg2+w9w0aaWGEx943eGb2eOM2me30jV3j4GvU0uFPr17ik+EKl4rIOU6hygyYAQJfq9/i5MndrmT+BIDn1R53rsky26hALJADtqrH99qnibGyh4sKNqjMDvmiPuS0JczEWQJZdqENELm+FAF712ClLL5/fIIL0+GqavHx6RJP6yO0JNdOtsh9bXWb3XCPyTUVQLYW7m0zpo4QETvd4+gqDEk5bpTDnW2w1T2GoCbK5UYP2NsaT+tj7lPLgI0acGsbXJoOb4YVtqbHEHQ+zkySr7oNXqz2eNVtsTU9GmXxebtD7zU+Wt/h5Co02mJIlimX5o6tcUJEXNW0Zp0z0JKU8dt+hZW22bXWSI/fufkAIQp8+/IGg9c4umri3gogu4vdDiuEKLAx5JJX5jk92oqsjVHgbUdMlNuqh00A8zDU2FY9TrbCOl1fWhBv2jUGp3C9OeU535gBN+0aRnncdTWu121mzauUz3PuU37Sy7pD7zX2fY0nTZvlenNcoaksrtctWmswJNdEZudTaXz8b+tVTrnAintrTSZhYre8TUXkTYNT2DU97roaF4m4KEayNtXKo/cK3WCwqQecEoGPDxKbasiEQCdrskuhEBEr43DsK+yaHrdtg1VloSRZrzunMwA6DSNJkVFERnV3atBUFqvk0meTq591CttVP3EBtE5l8iW2vrE733rmXhejQO+IiEmImI+/vVsjBIlnT/bZYthZjU1y3WTL3rElN7rNasjPMj8zbJkDgGNbEcnO3RqbdQ+tQs7jejg2mXRFqYCh19huugwQ20TatF13aPuKwKH2GZQd3q6wvWrJ0mo17KChjUcIAsPJYHPZkSvjoNHUFm1n0DQWXWdQ124CcKzV8F6grh26toI2fiTyGShmmcmPAKDvDIIXqBqXyYoYXDknMxkSEwB5J1E1NjMf9i15olSNw9Bp6Mpn4OXTfcOkQPZtA7F2NLYo4DsNBKDaDRSTHpGZHN3BwFz08FYhtBrmooe9raG2DuyG59r0yUxxnaIOmQglBgGpA0KrydJjCEihVxBrR8QmAhRHrSJCp6jOSU81RhOIDIWV7U6NSn+OYY1AJkGh46KViKsUV1x7Ah0BFHvZS/QbB/GmQlQxx55yzBzH0UIHiFYhVgGyTZtrA8UpRgUMKw/RS6iTxLCl+FPh6HrfRIqPlKBYTi+onY4IXVwTIJyASr+HnYccErmNphhQ6QTcmtrleLxYJwAkItUHYOsAdVCIOpKlTQJiENB92jisI/RAbemTRChihOujxHD1xYGlagX8Onk8WAHJ90IA3DpCDtSP7kWOG42KQI05UYxq0IAa0lxJOq9aAmOBb4dA42eLZNBprZIcUQDmIOBWBKCCAnQnEEyKNU1DFB6Ihm4b3Qn4epQxShqDiICvYo5tpbGBfqcY16gA2Ysx7jkIIADBRKgUs+orElC1qZ4ApAOCSfVauk8AsoRyLK4c6G8wgHA8Zxgtk25q/Ys6zU2a99LieS8WEuOx8tzESprOSU/zKEJhDQXJQbG/5YM6biiw1ZbjNKMo+injjIs+GbDmY2I6xtwvW4MxtlHKzP1zXPEkTpbnL4GzvL7xDFArZCr3DPJc5A0K5I0GETHdvCjbKsscJBfAKgox/l4C+2cA7HTjYGE8f1J+JuUr7Qp79WdexL/0t/8KPj5cZopr6xVu+waHrsbz3QGd09hWA25OKzxbn/D5YQspA55vjnjbrYhpsx5wc1zjct3irm0yI+l1c8LRVfjB6ytcbVtSwLxClVheL1cdYhT4/G6b3crWlcXNYY3r7QkRwNvjCuvaZkXMB4FKe5wGg743+Nr1LWIUuOtqaBXQaAcpIrZVjx/dXmZFcFMPaAcDmxQnpk/eNAOxmBqLl4cNvJfYNFT3F568wet2jX3b4KPLO7w6bEj5XxGzqg0Sr263mf2yNjazZbJyt1n1MIpc4aQADm2NyrgECgQGRzE5x77KjKiZFXYwaCqL/WGFqraJCVTDWkXKalthu+lw6ipoHdB1BqvVkNkGry+OeH27wdWuxbGrYAeNq4sTNtWAj28uiaEyEysRQRFZKHx2w9sfid2yZKfcbbrMnHo61ohO4pe+9SliFPiDz55Ba4/dusepN5Ayomtp04AV6YvdCVIA+1Od2TC1JqV8u+7R9hWkDHi6PaG1Boe2hjEOfW+wWfU4nGqsGhq/kOwSFyBlxNW2xa7u8fHbCwCA9xJ20NhuO1in8GR7wsu3WygV0VSWWG0TWRQTTh0PDZT22G063O4pxrKqHL51/QavTxu8vVujqm22xFivMCRmQZNAAc9nZoRMu7WrxqIfNIzxtN5O4XSqsV73MMpjf2xwfXHCze0ms1Y6J+GSS+K6GXA81ZllVAhigeSdfm0IJBCTqUDXVthsOhwODS4vTjic6sQEyeyVJHfdWGKUtBTLAwBPLo84dhUBkWRtqWqHVWXx5m4NjsnRxud++76IsVz3iFHgdKR1rmqLvjUQEtCGmDNjAEztYHuND5/fQomIH376JMf/mIrYOJHAlVQRu20LrQJubjf5W8zWHDdoSE1f9YvdCW9vtnj6bI83txtihUztPL0+oB0MgSersGos9ncrstB4gfU2pdK4a1CtiXXUDTqzTH7rgxv84PNrBCuha5fXQ6mAFxcH/PDVFbFO1g79scLmssPpUKNZD+g7MyGu0rWDVAFDZ7Da9Bh6Q8ybx4rAYyIQY1bLZjOgNg77w4piq1KMGa8/38+u16jWA+rK4XBoEqmVxHrXI0agPdRY73q0p4oIrWTMADIMCkIFfOvDG3x+t0XfEbher3tU2uP16y1M4/KcCxnx9MkBr15eQDcWV7sWr17t8OzZHq/fbDMT5uaSNmpMYgE/nBq49A4SKd5svaH7pu8MhAzYrAbc7Vcw6T3rnUKwEtV6gLMalxdHYjpOls1jW03WarPt4JyiNUxMs95LXOzabC0eBo0nuxNu7tYZfDPgdlZjt23x9maDr330Bp3VOLZ1fta1DqiNRdtX6DuD7bZD21bYbVtIAWxrimN1XuL2do31tsfTzQmfvt1hVVus6wFGBtycVqi1z5snWnt0bYXtljYrT+m9frHpIEXEqzc7VDU9t8OgUNcOlXa43a+xWg3oe42q8miPFSmxnu41IYDhZLC9ajEMmubTCZjGYbvuIAVwe2iw23R4+3aDy0t6b9Q1fS8+vNrj+59ef2G9Y7PrcLxdUYxl4zJRn9Yex7sGpnFwg8J622MYNIIntl0A2F20cF6iayusNz2cU3BWwTuJ7UVb3DcxvwfZVXroDcq4RO8kXjy7w83dmmIsB4XNrkPXGUorkdpQOmDoCNmstz1Oxxp1Y3O/9cpmlt5g6bmBAHTl4K2CrjyNwUrUawvvZCZL5LbrFcVU2l4DQWC162CtAiKxF/edgesV6s2A/kA6hpCRNmWCSNeP7ygA8IPMmyvMvgsREQaF2EsiIAMg9MjMG50cXZ9TH4gCcZAjuRWTTTHjLpPZWTkSz6k4dWMOgphu+yJ/NoMtdvEVkfpIgJuts0KH8bqSlI6toKVrsMCU8I1jJ9nyDIxu3fyX29GBxqLDSOrHCJPJuVxByjUv2TKLkaSp/M11gBGwlpbmJSBZXJNJ2diyyt4GM8tlFAWBW55/TIndZpbgxViSEggX5Y/+6n/wM3cXvVx9FH/tO//aT7zd3/y//rOf+diArziw3P3yh/Ev/Df/Ik7WZFcwHySsl3BepTQa5NLEwfK9pRcsWwb4Y87xW2zp0jLkGKBuMAk4yOzeA4wpEYZErQ5woDwBDQCZbbbMoyMEcgB8Xdsc01PG1ihJMnOMDoOnvKmTHkbuh5XqGEXOb1TXloLmPe3+cwB/6XqVaecjEqPtlCBAqjBJ3MzB/RwzFIPI1oEyATWnF5ApbQDT8ccUz8WMu7Kw0MTkysVU+0p7Utp47sNISe9SupBJbqQkd/nXe9oRZ+p+nqscR+doe7Fap9jK9FEv8ziFrESDdldnrLClK5dUEZF3fBXFdXGMEc1VYsllIgD+KIiY25YiZsCEiGwJiTFZRJh2nllx43i9EBHBpRivxLAbI31EdVJSmFF3EpuU7rP8IQ7JfUxM+2C5+foYRWK5TWy2TiYZ1fT69AEVKub62fWr3F1mbzCWzae5SpT2Ma3nhKwAmMY88U4xx3CVLLosd5rDSfyPKD7o3GYU9+K2clv88eZ4rtrTOrdq/KAxs2s5Pp3eB4Mc6/E9XO78mgAMkij6WcnibdlqpjyoSGy03E66RyeucsX1og6knEWR5yWzHpvi3JyZVs3mKGK0ppVrUsZTsYz8qWGljRW68nypCHDbHBfHSo5ODbECWbLUskLEv5sAWDG6FLJSOcgxpozvocQKG1UkC+BArLDMkMuWtbxegsaY2XYFRpbdsl2JMQVCTIpUoLZEEIi6NDEA91hh9Xifl0QYWZY49puZdlPsHStpkcfTEDVrychbyo6SFZYZcLO5A2RJ1LQmmQWWn9lyjPxuYzZnXi8ZR2beQRb3DkZLmC3uC4EcA5gtOWJkKkZiCEUka0wGFMwYPCRGY043EQQCW1G/YIk6QlpWqJHv2SjpOFuNgp5Zh2KyyEWQdWmJSRXI7Ll874yKOWZWI4FQB+ozzRPdU5i+K/jZBMaUGbxOxf1KDMfI63nPy7VU7jM4GI9nNmCM9zbPi/DM3IsJK2zGAGw5L/AJWw2jKMaMVK+w5LKsi3NUtFVaK3ObsZimMN4jcy9Nkj1OnstFf8sS6PB9IcZ+H7y2bKN4zSx5jN5zD+W5XTg+aXNhbt4l05IlcGLFnMn80yjv4w77rvI7f+NLEGP5cw4sv9KusI2y+Pb2JjOU3toGUkSsFDFUvhnW0CLkRMsHV2OtyS3tLrGbaulxchWuqhZvhxXlrgyUY7J1xGL3netXuBuIwVAiZpfO/UA5Eq/qFl1KBtw5g6u6xe1A7q/MflkWHyRq5VBrh5enDaSIxI4YJGwCWb3VuL485TgdZuIs3S6pP0q8PDiFZ9tjPlYrjzenFbbJOrnvalyuWwgAQ+HGuLsYYBMBRmsN6mQx9VHAyJAZF9kCuK7s5HolR1dAVxB8MEMjsyTyNUpGymWY8mFyTkPrJRrjcOorNJWFS/kfL7dtzmvJDIHOKVxeHOG8glZjnBrHPpUAfFfZzDrI8VDdQHkcI4Bae2jl8eoNuS4/eXKA8wqD1dkKyeyRDB7bntbTrMYE1DlhfLLMxUg7zFIGmNpnC+AwKKzWDsOgYdY+p7vheKahN/BeoEp5CKWMeedfqgA7aDSbYRLnxCCYyTya9ZDT5NSrPsklYVsDaQKa7UC7zmnelA4ZyHGbZUoc3kjgBMvkMinTBkCE2QxwlqyaZmXhOpNzzAGAECHnV/ROwqxo11sasmhyrBVEiguLgsC5AHTj4QYNs7VwvYZqHOm6MsCnuQYorQ9vhPCmgms1hAnQzZDjyIIjIKxWHiXLIBOQyCqMYT+WvtRq4ygWzEnIJv07AV4hqJ6oPcJRA1FAXQw5vipYCbVzGbjHIBB7Ral8Vj5/jDkuK+eXE0DsFOTGIRwMxMol5kO6z+NJp53sSCBykBBrNyp8aYd86oLpx7ivvQa2bgTZDBqDoHMbT9qQillP7gAAIABJREFUo3Zjp8i9cpAEavMGDuj6ADqe0nXAi2naGRlH8D/InMojg89kJZmARRUBKxM4CDS2KkL0isAQA0FO85LBM5LlAFA3GqGJKc0DIDpJ4GLli02C9GevEDYewkmIk0RYB6g7Bb8OOS9eBiRpCoKJgMKY8kQBsk0bZalPaQVCHSF7Oab2kKDfKkLf6qToxnRdASYFoA4yu8ZFNSq5+i7lLxSk2OtBwlcRMgoEndwLQa6X6ijh1wHmtQYkKE1FkElZllnxDiaS66iOkPsUApHSf0QB+IbOywHwFd0i0pEQwcTs2sigKmpA7tOzYAgYS3ZXbQrAoUDujj65alqR3R2DQQEyqY1gALWn+WOXSeEAOUjaH6rJbdY3EeotucJKR/VVp2G3X1xDVb0c3TkdyBUWJJtbJdlVRNWLnEKE40qrNyLNP7masjthVDHPC68xt5n3EtgVlt8ZCtAvFVIUDrmqDtQngQyRgeuY4oXuDQb+MW16iEgyTVwlOWVLkSZGWjECytR2UOMchLQWchCTDYegU1s2rSfG66Mo5oJdeJNsXIQvgGaaP7oXCjCJAugXYD6PcwYu5+lbIj/H7NZagjMG7gv7ESxT3iQoADcAiBDHONYSiPHfmRwUCyoWj4k4brhMwauA9HHZFRbj2KMUEGFE70uALcte9hHHunxdrrv0KJ0D3fFMnUcA01LWd4LMco6+rOWLe+N/6ctXGlhKRAJo0kKKgD4oKBGxUQNqabEXFDvYaJvSdaicEkPLgEo5IjKRlIagkgTcmPyCUypU0qNSHpV0EzKXWhHgqFJahQCRfzPbaKPshOzDBwmpImrt0CiLOsWI1crBijGtg1chp3sIUcBLInSptYMKctJeiAJRidynlyS7SrFyRnkCOOnfTIihJI1BCJXBJANLtuBq5SGETOyayCQafD3nBq0SwCM31ARYZIBWYkISwiDaplg+l9xXAcAkoo1GOwyC4uwq5dELAqFKBvSCrMNVItkwarQy+0CWBZfkY3BLTIfIbJaq6LPSlCqBXRE5XYFPBC9BkMWbx2tT0m4mFAGIbEIDGYwpJhoREUqN8WNKBmidyIwksZVKiZyKRgiy5Po49iElgR8GkGxNZfBEjJU0t0IAIRAlvwMgpciWdqUiLJDj2WIEwAmsixg3Gk9MVnaJIGj+qE8gBpJBxAipQMBLjflfZQIRTOxB7QcoFREEWbZlsr7LRMrB9PxCAGQ2jQggUMdjVirCZ7lSPzFklzECpOl8srCzdZJlCV5CKBoDW9Bp7iS94yOtJbNiZjAh6IPtZRz/nSy6UqTYIxkRJIDUdoDMbYxkJEhpNiPAhCJlEZgci4LbJUtvzjcLmotsfWPFqbDysOVIqgjvU25ctg7FsS/BFqTAimBqk3PvspVZYvzLffPHW47XRCGy1ZKs24WcbIVOc5iBZmkxloUcqZ/IbmVJxpzXMeWbnCQzL2VCApn8m8lIBEZrNDCORWK0mgkCvFlRZdBXPGsRRf1kfuFrCUCCLJO8HrmtNAYnxrUqlPUo49imwOy/iIhiHCx/KU+gY6ycZusMg9N0r/HxDFyK36WCXt6fuZ/CSyIKQM5jrLiujEmZLdrLmuF4LOvIpZWt/A8MgpJ8vCaFzGX3EzkwbedBq81jS3H9RMmdtRvnc5L/TUKUc54BihinKV9Xgoh52+cU6BlYWJbjjIIuFuo+VFi+AnhMbp34CHmxsI6PBQezNZ2MKS60e6bNudxngdBC/6UFT5T15695Bo7z9s7KFGd/pwBrydNDoDhXth8LWXP796/leSj/8rmJrGL2+x1jwUK/LOc9cLvQppj9PVcmcv9J+WMvX2lX2G/+ymX8q//DX5ykGilZRkvWP4+CWTOxWTrexuM6qX7JNgpgkm5jzsA5Zxot81UuFWbMnLNfLrGpLjFdlvVzuo7ZdfP2zl0//X2erZPHO2esXGpzPk9zmca27zPHzlM4zOswuON/cynTKJTynWMLPSc3p/WYz9FDY+KylDbhnGzz9h8jX/nteJdeNNcF+fe5e3Mux5xhs/wLTMfI7uNzttBzczeRc9ZuWZb642vGPgiH8KaBDyL/Hscy/b0kw1KfDxVOWTIf7xJb6rln8KFnc7HP2e+l7/l8vebHlurl9s7MMW+WlK78j5Z5JsdSOTfnj1mX0u1+rDuee19ZyjYnbZT1J9rQ0vXL74H3LQ9OdUa38QE5UhWxPE+P7fShZ/RB5fJRz9E7q0w1zIyAi34fq9AutftFy7l5fwjcvQsg/TjyPEaOM8fZFbr8u3jdI8Dr4+WY9vEoi9cDQOi+Jez8XL6zr6U5epds73v+nBw/Rns/kX7PvaPf4376InXeG/z9OJAlAv/w178crrD/9J/6V3/i7f7d3/kbP/OxAV9xi6WLEp8Ml3hmDrBR4bP+AlIEPK8O2OkOv3f8ACtlcedqXFcnvOq3eNHsAQAft5e4NB1q5fCq3+Brq1u86re4MB1cEHjdb3E7rFArhz+9fY1Pux0uTZfZU430+KzdIUSBX9je4NYSU+jB1vhodYdP2gtIEfG8OeB2aCZ5JIegcFF12Okev3/7HEJEXFYdhqDQOooXba3BB9t9tpLeDsRkutZDdrscIjGUWq9wsgbf2L1FiBK3Q4Nd1eOP3jzBrulx1bT4ZL/D9bpFrdwk2frXtsQKWyuHt+0GV01LqUGS6+3bbkW54hKgu6w7nGyFwROJUKMdbtsGF02PzlE6CwbYK2NxGCo8XZ1wGOrM4rk2A950K1zWHV4et7hoOnRO47LucNOu8WxNie1fH9d4vj3i5rjGph5Qa4dPb3ewTuHFxSH3x+kjXJAYnMpAR4iIqxURRXBdANh3dSYf4jn5vU9eAFHgG8/foHMah67GqrJwnpKil5sGbw5rIgKpLUKkdASDU5ACOPUmu87ujw209ljVFi5IVNqh7Sus6gFtT4m7OQm4D8QKezzVmaAEICtnpT3ujg2MISKLza7Lrq7GEAuq9Son2r7ctuisJuKbNbXTW432ZgW5dthuO/SDzjntpAqJLAc5PlipkONzVRFn2/cUb+ydyrGwdUPEL9ETCUN3qNFsezhLFniV2rdWwQ0K9cqi7wxM5RC8RLMaUixyzCRCxO5JbXenCs16QHuooWuXrcBDr3Ni7qE3iIHceplMo7utIRuPOrkV20GTy+wgYbZDTp/AJBYxCujKZfdf21LicbOymeTF1OQK6wYitYCI8FZBGQ/7poEIAtXzE0KyBrtBoVrZHI8cgoQ/kMus3Nr8LmP3V46DFQLwewNz1cG+aaAuLKTyOd2Cf1uRu6eMlKuvU9kFV8gIfyQaSL21xGQqI1QVxnQMryrEpwOkCfCtHgkrIiCPCvF6IMtJr6A2Fv6ugtxYhJMmJtRkBRaS2E0RBETjyUXXBKCXEGtPLrTJZVek3IHxpCkGbuMp/lEA0Ml6yqQcTkBUAbFTEL1E3LrsXisORJsZ1x7ipBDrMMaRJvdlJtEwLzXcNlCdKCBPktwtn9jRpTbV1bcK7toR6+lRwj1x0Dca7tLnbXx1ULRjnlxf/Spd70GxWSZCniSiiAgVxWTJTsBvA0RizowmJhZQctHUB0mWRlA3vo6JVZXuDX2S4AxRzOYaFaCPSRFMrq36KOHWFGMXGmL+FJGuUScBexlQf05Mqr5GjvMTIbkoVuQKq04CoR7bl0NyX5SA3QaoVkCfBNyW3D6FJXdJ31DdqJKbqyO3Vn1KG68Nucryb3tJ7p8ipH57itFzGzoedWpjldZWgupHwDURZk/ussxYqzoB3SXdYAXoFhh2EdVewDXEwho0YPZA9+yLa6fmKMiVVlCfJTvpKDugOmQXYo6f1Ec6FgygemS3VVpPJHfk0ULEzKwAyQ6MinhQQH0L2A3SHAL6lNaxYDYVHtldVre0TqpHdk9VPdK9PL2O153Za4Om67OrbRjbVvSZga/pJtbHccyCWWErks+tx/li12nVk2U7mOR6LYp+0jxQ7HFE1AK+YhdsakM6Wo+gxCTOmq18QYvxfvd0XGRvApHblTamunEaFynSM1KswWR/R46yZMttMf/Z/ZdjPFlGURzjPRRuD8X5AkCza3NmgY20bsqyW/J4fZYxeQyULsRUoRxjnDLOpr6XWHbZ6prvgyWG1/nmnpwyv57bnyktsmOb4ximjd6//lz50lkvv8JGvXeVr7zF8t/9H38Ve99MLJWU0mOaV43PD0HnfIWU648An40UZ2gDX+tRSwcXFXqvxzx/KTegixKVdHBB3bOK2aAozyJEBiRlH2XOQi19zm9YWkqViOj9iPvnuRJLKxuXMi2ICxKNcnBREqhJsZllXkkAOeUEwOk0dGoj5LyEPK/0d2rNLS2dc4snWw05JrW0ILJ1sBxXCRDLVBBVys9X5h/kOnMLbVlKy2a5616SNHEOz1oRgG8dsYJyXtHSisl9cG7IJWtxmSuwkpSPtJS1lDnnvSsstSqNzybgHotx83neFOBr52vK/fE8xXQ/qURGxTG15b0yL/wdYxdpLmJ2bm5NnVvtz1l7y+N+Nj+8XgC5JLPcpXU0y5nmcJInkXM4prjl0trCcbZLx+eW8OyGHlh25PhhtoSWFh1m2R0SAVZJUsVj4mtJzvNWXOo/wiXG4FCsc0h98fXlfcSFY49dsdZljkijPJxXee14bvlam94LAsveA2WZW0fL68rnrnwWl6yofG6sj+z2nQm+0jEmNWNL3DkPAXYFD7yGyR2XmZhjsea0mSJzn7ypwqyc5fVcKM/j1Bpakp3xNWG21qVltGT55jZZsxJiHNPkUx3FxN2cNxQmVtbS0pfmkOPGl9hJyhyR5ZhY0+O5yvku0/3EY5jcF1kuUL5JjOMbCcIwIVWjdpDjq/nTNreWco7IOfkYxIyQTGAksSnmg0nGvmjJpGkY1zAPm9ehXI8oRgWY7x9mAy2tsPz7IQtRaZ2LYiTL4rGWZFhZ4JjJe0qXcJID2UX6XsxX2Rf3N0dUS8fLD8KS/EuxZfO+gClRzryd+Rzx9VEsApZ8C4Sla5ABXLx/uyyPYf6cLSGkeed4R9vzfh5T5vK8ozwg5cP33VJbj+nzoTl8qM+Fvh41b++UR+D3/6MvicXy2//KT7zdv/u7//nPfGzAV9xiGWPKC4kRXHiM4Io/dH0Yh6kTJdmQjvk4vmR95ETf5Kp6dHUCOD7Xz4AIEa03qBNAzW0hgbIEKl1QUMqhD0Syg5RAnkuIEn0clWUXx364cH/jNeN4ITABFqULcOd1PjckwAyMie1LGbT0GVRSnyqBQg0tfHYbDlHk7bDsipuALjJYLqyIcQRNc4BWgsVyTDEKBCDnp+ydHglZCuWZwSHNvYSPuOf+msFK8eIPIW0mFOvQOpPBG8ki7wEulnmIKitY3D4r4qFQbHuv8/iYlMljBHMyKXsluCvjccMMIAKADTIr7eU71ifAWAI2W8gfoshWZgaLc/fieTnnxlfO+3xuOBdmbiMBnrxOZ9rlZ4fkIhCXgXWS27vx/mT3VloHwGOq4APIDNBAAVRnrMdje1OgGROgnNQpzsV0fQmYT4OZfLiliHDFXGRlu6izqBPk55TOu+L+53nqZmMLaY64DK58lsXkfgWAjmNauU76HSNgk/V4nIvR9X3Ztbyce3FvHuf3Siw2n86dy8+7G4m4WF7v8UCZ9u9c2Rfg3FgzBDUBNd7pBMASaZWIOS8mj8VjCqLmsyFEhPXT94Z3U221XHMBZFdjMGCag5XZ+Pl3BrysqLmZQMXYeB2GGZEcyxwLsBGWlOdcOQIxMU1ngDgDsVyPSwlqSuDEfZRKZsRocVoqCTdBYCSiKt7vsWxjgYCE5wLyXAfvLrGQ+Z67tChiYBc27B6MaYgLx/g4pmPg32KQU1fWQERdsZh/PjbpMyy0V/YxWf/ynJhWzsBKLmLOyTAY2M3X+x1FzOUoGjwLNB5qdw5g31XnAfAm+GZ8sC8x/X1ufd9R3g1GHwFyH9vevbn+Mdp6ZBvvXe+x/X4ZS8TDMTpf8fKVBpYBAnvfoA86WykZELECxBbIMm6RrSrANK6SS+vNpD63N/8LEEBdihUswdJgKW8TJ36n/kaFtFTqQ7Y63rcClkpdKcOSJaEEKMvxXCpbg0IUQLLK+sK6wspIH6e3Cc9Bf+b2YQsvA7el2Muy2AL05vEVMj8Y5zNrs7zuXXFs83ODV/eUvvI74ItxlPXOWXL4mPdqcQxL83IufvNcDNz7lDImsWy3VITfNddjuQ8eYhSwUA9c85Bs0zV08zmY9XpWn4hT69FE4gfG9VCs3zzec6meK+ZUFpajc7Ft74qDfJe88+tLC9i5ci7Wjkifpu2FsDyHS+W+9XFsd7ENBlisfJfawT0Qk0CrHKkOH4yRxOweWdJ0WQGb9TmPrxSC2Ynvy5/X7J7CKc7IJ/K1S4plLOpkXXQGWnI3vE4zEFqu72KcaGlBK4BujPL+xDH4uDeMBAwTkBnlmyvP4r5CntPjpONLynpM/ZbXnlHqp2wwxfVlO4XL4RQofbF36KSPpd8FKcvZeEXufnFMZ86dA9zFPSCEyCBelHXL+53fY2eAXx7GHFgt/Rt8G41tPgTSxCJoHa8obsn71qkz4FLMz5/rX8x+F30uHV/sq5jC84D2/gy8C3Dfb6O8eEGuB+ud+b49SvZHHsMjxvFTwEzvBSJ/fjHbV6J8pYFlFwx+7/ACg9fZ5bMs/IFn11Euc/AEzKyARWHFnwFoeZaBxruISfjvQy5lcyBVyseAoCwMDs6Rk8yVm8eQV7yLTGTezeL379HA5P51949NFaUHFad3yLBEQlP2O1fM30V4MbqEjXXeBT4e0y5VEve/srN+z8m01H92pcPy93UO1sTCvydrXX4ll/79wJgfWrd3lgcUhLOXFHNS/n50fwDuKdzvoVTkcmY9z3ZdKGOlW12ev9JKNJfhMX0sKdvzS84puEtNv9dHf3bPnAOWS/09Rp6Jsnim/fdcj3v9xUcO+dxDVhQGIJO8kgvn71+HyRpNYFY6PlG8y6l4l8I6Pz/TjDnn30NWozz1j3nRLPX9jmd9sd+ltmf3QJb9J1UeWp/HyDc/d+78Uh/F/6dTNgPb+cWBcdNgqY+FF/6DwOihd+IjFAZRrlF5YL7JNn9PPRIELpbF+/t+tS9kDX1H+cIWtsfcCwuv0y/c7hcFlO9q94u09Z7tfjVK/IJK0FejfKWBpfUKnx4v6N8pZopBmyisg+TuF3PuxXncmo/kvsmxaxEgko1Un/IsktuUSqkShIhEfiLKdAsxWyzYTWkex8MsixzH42auVvQX9MFOqSUA3IsR4noxijHeo4gvEXJ04xIpRkuKCI614TcQp3zg41yHX+zk4joqYJyOYeL6U7BGlqApp0dgYFMcz8pyIoAp421y3JSTlNePrSkCiJ7Gq6qQY3H4fIxiqkwAEDqkZ7ioU8SicG7AMCRSjirV5xieONbN8z6Prynma6LwcwJ4bkfEMb6l1ALKL7dLY9BFhzJSWyKOCccjxnFwe9wGE5lwbkJWJDinYJlUXhR9xOIYy8qF/5n9QQtFgN3OYuqvzEXIdUoZ50p9mbqijInia3mcPHdL269xNh5gTNguSGlHFODk87GcX7BsmFg4ODE7p7eYJxPntllJE5aeCyKKSTKUSmxMICFZZKK+z8LI4EIAY7J6K2nN07tJRAHB7pUCowylsZjdRTkvXLmGEZCDQKjS2jHxTDovHegc0nqolJA+JVfnOSjnLicXT7neRMQkoXgs1o2JbyZJ1Od4L9C8CzfmOeR6MrmzlgQW4/2FcU4iMgkMy4SQcvaZeI80QziRjwtP/5ZDuldYPlco6KD7ZX4blgng85hKC5Io6smiPsY2cj5BYOI+GIt3RyYKSW0Kh5zrMKZHpaybcyemuZtYbsI4j5kUhPMZlo+YFjl3I+XCpBN5vdJ9FGXM487PUTrGvynv5ThJ+V5I9w3/DSoW98VYR3K6FjGOoSRHySQnDok4ZLx/QjV97t6nMAkMDWIKenjdoqR+87qlPW8mpuF1j3yvirH+BGMV77TyVcFzK93YNj83VAGT9UUxR/NchxMsV1z3/7H3Zr2yJVma0Gfj3tvdz3jPjYgbQ2ZUZWah7ipRNDSCTiFe+AO8ISHBPwDxG3jop24JiRZPPIPU/QfqhSckECAVArqoLKoyKzMjMjLujRvnnsHd92ATD8uWbdt+/NwhKksZkUqTjo77HmxYZnu7fWv41iFQOVZ/meOalAYHazq/V8tzLef65/ckt1/9hlfvq4WCIrfDx44qL+q2xXIcOPxfP1Px4Fo8PHdY3gi8+XelbvOxcmwcB/fUOS0f+/9o9fX51/TlKEjltXi4ro7U81ag8cg8v3P5Jvd8W8rvgeW3s3zcvsK/+Df+R/xkeh8xSXxoXmGIBl/4Czx3Z/iT7jN85U9xqbb4zD3BD+wL/GR8BoWEHzVf4oU/wT42uNRb/GX/Ef6geYFfuwus5IT3zQ0+0Le4Dhv8r9sf4o/aL3EfW+xDgxM1wCWF79uXcEnhL4cPcaW3CBB4qu/xF/uP8MerXwEA/nZ8igu9g0IsJEKtcHjpT/DSbfDvrH8OAPjSn2ElJ6zliFY4nMgefzV+iPvQAgAu9Rb72ODar2FEKOQyV+YeChEfmlf41/0ncEnhfXOLl/4E/2T91/j59BSfT5f409Uv8VfDM9yHFt9rvsap7LGLDf7f/Ye4MHsM0eCZvcEvxyeISWClpnKsFQ5DoticF9MpNmrEmd5jjAb7aPGxvcbn0yUu9A7b0EKKCIWEl26DK7PF3/Tv4dLsyj2v3Arv2Xv8ajzHp+3X+PV0ho0a8Xw6xfv2Dl+MZzjVA37UPce/3n2EP+y+wovpFNvQ4A+7r3Cptvjz3ae40HtsQ4NGUgzrSk1YyQlGBBgRECDws/4pfFI413uMUSNA4qPmFV66ExgR8OvhDH0w+I+f/jkA4H+6+YfYqBEfNTd46TZopMcX41khWDIi4vvdSxgR8NlwCS0jblyHUz1gjBof2Dt87dZopMen7UuM0eCX4yVWasKt7/BR8wq/6K/wQXOLL8ZzWOlzrC6RB/2oe44T2eMn/YcAKD74xq3wg9VXuA0dvtd8jb/af4BGelzoPV75FXahQScnNNKjkR4/3V/hVI/4pL3Gz/orxCTx1N7j31r/Ap9PT/CXu2e4tDusKIM6xqhx5ztIEbFRI+58hzFqdGpCpxz6YDBGDSMiPmhu8cqtsNEjVpLWyBfjGT5o7tAIj8/HC/zR6kv85e4ZnpgdAGAfLXae5umD5hafDRf4oLnD19MGjXR4Pp6iUw5jVLi0eyhEdDn/66/HM3yvu8bf7p/gj9Yv8OVI89UHg0u7xy5YhCTw1G7RKYcbt8IuUyD+w80X+HI8w/ORlE+nZsCJHnBl7vGT7TMA5PZ+YgZs1AgpEq6nNXSOg75qtgCAXw+nUCLh0uzwfDyFkQEnesC9b+HyddfTCv/u6S8gRcT//OpHheDpqtni8/05tIzQIqKRHn+wovXzk90HJU55rSa4JHHvWho7BH6w+gp/fvMJ/vH5L/HX+/dw75qSq/ZPTz/HtV/DR4ltaPDUbvE3u6ew0mOKGh+1N5Ai4afbK3zQ3SMkgVvXwWZU9uOzn+J/uf0Btq7BB919GY+VHj/qnuN/u/0DTFHjyu7w+f4cn26+xhf9GT7sbvFiOCnx0j5KPGn2MDLg5bjGJ90rXLs1Ls0Ovx7OcNVs0QcLnyR2nublg/YOp3rAz/dPcGoGWl/Z6+REj+iDQaccXk0dPuzucKp7/LK/hBQRe2/x/dU1AiQ+35/j49UNvhxOMQUiCDvRI1yS2LoGVgX8++c/w8+HK7wYTqBlwLP2jmR//z7ODFGI3udY+n+w+RL/580neNpu8XH7Cv/X7Uf407Nf4S+3HxDjdNT40eYFXFJlvTwfT3HvG3TKQYuIW9fik+4VXFK4cR2MiLhqtvjF/hJnpscUNcagsfeWGMNdix+uv1qkw3o5bvBq6tAqIoD7oL1DH0yO+7doFL0zPuleASCegXvX4nvdNX7ZX6JRHi+GTRnfLlh80N7hb+6f4seXP8M2NPhqOkGnJvTBopEenZpw41al/8/HU3zU3UAh4sLs8Mqt4ZIq6+mH3Qv8xfZDnJt9eRf8ajwv78Hn4wkaGfD1uMLHqxv67RhP0CmHZ80tAOD/276HC9tDioidb3Bpd2ikx2f9BS7tHltvsdETvuxPAFDYyXm+/uWwwaeba/TB4N41GILBue3xUXdD743hDO83d/jp9ik+3XxdGN+33uKP1i/wv7/69JvvO1Y3+Pn2EjEJXDZ7NDmP9VpN+Nn2CS6bPbauwfvdHe5dC58k9nntf7qmPr+aOjxp9hijwhAM9t7ie+tX5TllToUTM2CKGiER4zyAEt6y9xb/4PRLfNZfQCJh6xs8627xalphCho65+TWIuLO0T7i/fYeX40bnNs99t4WuUkRcT2u0XsDk+/bmBFb12BjRvgosXMNnrQ7TLnPVnpYFXA3tTi3PSIEXg0rRAg8W91i7y1iEtiYEXdTh9upxfurezzf03xqGWEyR8WpHRCTwP3UotEePsrCkA+A8neLCC0jem9wPzZotV+cAygMZwqUz5wNDCmJwkg/ZLZ7kdtn7gElI/qJGN1HR3mza8+gECVWxmHw+oFnGZ0nxTWRqkmEKEpObKsCemfAabGIkyGHN0Viha+9ztgIwu1qFQpxHJ8PkfJrs7EkBAWrAzwTjsVlH5kAbvKKcl8fWddFt5vfQ/w9cM7pqr7iTXeExIqNA4dEbIdeVI8RrzFZ22H4D4/hdaEpb+Ut99+//vTvy9+9fKdZYb/3J6fpv/pX/x7GaBCSLLGA/FJ2SZXYSyPCA+bYRvpyjI9zYbIarqvO41g/li4T4TCj7GO5IJkUqCbu4bpCEgW4ADMjrJZhwbB5yMjKbTK5zyFz7ZTzbx50QHwxAAAgAElEQVQys9bssNTHtBj/IdvqMUZPHkcdC3qscMxrLRfOIXrIElv3vZZz3T67O+sjhDPH3JkfY4qtX2IAkf+QTGemxcPcnaUOLPMYHvvMbKdMlvMYI+yhSzT/kDITKkAvS2ZOdVHCPEK2U495QQKU//M6UmJmc62/AwsF+VFlYF3nsZc795X7X4/x2A9IXQ5/EOoYYFnV+5hLOeexPHQhfxjb+tC1/NjxmvUVoE1A/QN7WC8z1ho1q+uPxcfW88AyBR6u1dqTgr0ruPjKnZ/rrTcDsZL1YeENgapZRavx8Ln6OHtZ8P/D+ubPj4+b70vpuCzrungjUfeHmWG5jkP36rr9IkOvIFWs5pDMF1ItN0oAEIPMTKtAivQ5Bko9QxeLRf8giIjnQd/ztSLPx+JzLpWRZJEndOEFUdqs7qvHGivZCWTvjzQ3ADxkKS0WwqoDhx3LHgKJvSQq00Uh7Ali6eXAVhmuiz0M+H99nr0SqrQQC4+G2kOEv5dJyvcKkEcG91nkdg7ZT4unQzWObIX/xiUe6SNYBmn5/eA9I0J2dZbVZzGfY++KhSdDsbotjydBFv1iDROYXVz5PlTngDnuNFRyrGVWl8Px4RGLXJk7HGWYLRY9tvpV1rsHVsRHLGDF5brIorJUvs7ydlB9feyBK+zBM3F0rMfKwT2PWi8fK28CQnjL+o49zw8qwcNxv01bb9P265p9l8ft7xmS/OSffgtYYdsP0o8//s9+4/X+2U//2W99bMB33GL59bTGv/rs38Z+tCVPYIwSLlD+PWN8oYz3XsHogHHSkDJB6wDvVdm0uElD6YgQ6Eeec/mlJND3FsYEhEBvNI530po2LNNoyuZDqQTnKBcggJyfb7kpFII2MTEK2Ia0biH/iPPmi/L0mfl3Wkaigz94CUlF/jRK0xj42hglmnaCcwrBKxjr4T0l1ZJy9t/xk4ZUOX6romHnzYjUsTCUQtB5qVLZKKUgstzkvIHJXYxeQOqEMElIHSEkKI9eFOTi6iWkiYjZvSwFCWkColPkBmwDwqhK/r0UyAVWygg/asqlF5abn8ONVcx5EWvqd2lCuS85CUQBc0LWO7c3gEyQeq47MbNkfnFLS6kcFsfzBoZddwFAGnKJ5PGkKKjPXkKohJRdueofVWkDhATCqOa6c/4+7nscFd1Xb9oE/6Xi8ip0Hh8AqATVekQvkUY1u+gCDzdkvPkrrp5VGzrmTQlorEGS6yvnIZwkRBOoDVXXD9p06DjnTMz1lA1i7icSlu68Oo/JxtlVmDec3O+cuxL5GQUANIFciCt3O6j8V8tX5k2uSLPLcRJUZxLz/dxnros31dyPNhBA2Kt598KuwbwmBWguBYCpignn+mrCERMp12IbgElmN8Ms0zbOfeH1MVb1ZVdf4eRD990EyjG5V7N7L7sui0Ry7hXF+6kE4QSSjRBeFnfYhVtadrcWXiCZWNYOX8+bv+LGmPNvgjfFEbRhTpjdbdmtlnN1+sx+GShXJI2NPgs/9yepvPnObqJpnWXHbpOaZC8GWdyhi6tmEyEGCSggGfqc2ggxyrLmUrPcMQsv5828ALkv2yzjPL6kEuWwZJ1iyOs3579M7HacnzHhxbzxB2iMLLuSWmJuJ2XZJp1lKjC7o+d7kkk0nhX9Xgg/yxgS8+dAcyi8ALhfMgGRZCBGSfLXEWJSNL+SrhGjnNdXHjutnWq+ZMrzJyDHeW0y2EsyQU6UaxMZvAonyiPCBO/SAbGla9gFNinMa6OXSDZB7PN/fg6SRGoi1P03IxkDkF2kc/obhRnESzrO7rC1qy+7hkabIKOcXZOjKC7HnOtQVoC5dvmU/L4sHZGI7ZwfVQRyb5ce87MMLN2RTYIYRXFbRppd2+W4XMu1S3Jxd845XwuA4ueUwwVyX6Kt3Jyz27KIQNQJaqjGl3//kso4N87HCnAEwHleAbpGehT32tr1HbmO2n2Y6z3mfoyqzdr9GiIddT1m1+/F8VnU5f4ZTFM9PKcFdB4yFh+WVP0/dKOt7zu8rv79OHIPu88fju1B2+Lg+2Gp5L34/kipZfS6Y4u6DvvwhjZ+X7495TsNLAHSzLNVpDb7cyFNcJUaosqLRub4fE/WYM9adUo2P2vOucJU6iVN86FmHou+iEU/QC9ypBz7OMdO0s0CkZXjac4jl/K5uv36HurrXA+37ZzKtPkEZA/jJgWQrRRzXfVYRH47RtaaF2099WzOu0Zv/ZQBCPWXOp/iPAfF30Ok8oJIi7xSqVgCAJAGPtfB18cgCo17oZvP/RMQy/pKW0utf4rz9QzQQp3XLAmkIBcU/AuR1+kEKtmVPuX7EqdKqGUTKlnx/eUtT8C9sOfVU53vj57nMS0BYcpjrX5RU6jqCILAKoNE/s99T8t2ZstC1ZcEAl4c25rkfG8QZZ6Sk+XYYowx5fvr4wfCrUEm38cpIvzBeOtnpwaEXLLSYG5D0KZ+MfbcRsjnU/Wf1wRvAsIjMuPPk8w/lvSM83iKlSGBgKGr6i2FN88CKWYSF5/l6GTeBGYAJoA0yeUY+BreqHF8F8d/ZtBaiGIGNdfJz0PKcZZjdS7LggGUgJj7zY8zP0cxX8dzE2bAuLg+AxhElHjTci5V44wUz0d+YNyXfCy3IdxyHYg8n2UpDJLaY5etnHpBRAFUgAWg+RMhyyLm+xiUchlrFltR5LQwjYzcFq+bDLQquYnI70SUNVs2qeV9x/UckWH9DkGWYxBl4ygiinVSpPwuDYAYVI41Bf32cX1CzP2KcnH/It4yz5uYVN6Qi7JJp027KLGsHDfJ72Sy0AnA5c22z9/5OglACLrOs1zEHNeXgOIMEAHZz+dEXvOJ5zQAcBkMseylKO8nWc/pOxbh53aTr09we1kkLsdKp+W93F/hMJ9Pc+zwYrNelyPxjSLIss5EzACm6I3nuOkCfHLfyzwl6vdi3fE7X2a51cQ/RbHH/ROljgIGQXM7j0MUQCbcQ5BVOlg/t8Bi3g9BRg3oHoCkw+trmda/N5Ucy/hFNZ7D+8XB/UfLYcPH19nbWzOrKup18Zb9qRwfHpdN3da7HD9W/+vK2475kXbeqo3vSkmY98O/g+U7DSxPzYD/4P2fYaUm7IPFnac4gk45NNLj5bgpOSg75XDnWqz1iJgkbl0LKwOaHON2YoYS3+RyTMTeW2gZS9wCxyuwu+adayGRcNHsS/zQEAxOzYCbqaM4BT1iigpT1At3z1Y5WBnw9bAm33wV4KMkdzoIuKCwMlNxX+29gZIRrXLL1CjeLK6XgtxojQx4NXRotUejPO6nBivjYGTA3tmSR/G87UueyDFoNMoXt0MhEgZvFm6VnXaYoipER0pGDF6j1b7ENgAoLoEuKGzsiDHoco9RAaPX6IxD70y5rjMOe2ewMRPGoHE/Wpy2I3aTRas9lIzYjg18kDhpxxIbEZMoLsOc+D5EImyy2meXYRqvANA7DaPovpVxUDLi1zenECLhyXt7TEFhdBpGk2XSar9wu9yPFglAa2gnoGQsuRadV9A5xmF0ZB232sMHVRLPNzpg9PSf4y44Z+IwGXgvsVmNxf1VK4r/kDJimjS6xtFYszWex84kUY1x8EHBeYXWukJW1e8baOPRNa5Y9QFSxLB1nl0diztttkCXdCLZGk/kVnStMQHOkfXf2oBp1LCNLzkEZSahSomUHXy91tSmMb64OXKfWFHC9TWtwzgYqOwlIGWC97K4bDqXrfEqFuXR0FsoHWAtJYWPUSBkLwX2FJCSrO2cu1DlOWdiLQAwJiAlcqvU1Wd2sQxeQemAcWeBJGDP90W5Q54TYUG05Sfqq25dyZdY3GGrtBp+1LCrCePOQrd+YXV3g4aQKf8B0Unoxs99d0RGpW3I3hDIc5D7tdWQF47G7yWBWCZJGRTkBbG8RC+gTITPngNhIi+D2mUzZmWB0BFxUsUqL5uA6LKiRCQiykL2IgiCLNtZeQRW+GVrfqlvzNduQrb4J7KGA8UyLkwsO48CtlQm/dppJBsBkwoARwLS2hfrdrG2DArx3BFIdxLxzEP0CvEk7/gFMrCcwV60cU5SnwTJMOcWLCQlTiCuw6yoEYmsCtm6KCZR9udIQGxSttiLcn9tRaJNP8iSmucAmuphK2bUqVhpY7akhU2E2pHyI+nlzpwJaVJDFq1oE2QGyHIU2TKXEDuykKlRIDSJwGq2GkaTCmBjEqTQJKhxeUw6GmxoMzlTJCIg6QhYBEuf2XodbTXmDBxTS5avlK2tUVK9asoyNICcgNAAagJiJvGBBPRWwq2/+aZOTTQuAIVcikF5tCjkR3JCsWgy+FETfU4mf5b0B0lyBq8bBvy15bEiDALoPrPN85DovOpJblyHTCjyBeh8NAnKidlSzR5Der5PpLyespWPrac5LH+hbGCCJIh5vKrHvP7ZmqwANQhE2ipBBsyKr0qJUbjO8ppn2bKck6S6GIhXDlgk24pMqDiW5GP8/wHIyvXyc3CMuEqGeUyLUoE8BvkFqPL52urI34+Bw0Olgpjnm8uCgKl22KqtoHUdVR/reTtWjtbF/x8DufX3Us9bPF9v+Qi+E6h8awXAb7skPLSC/O6U7zSwBIAz3eOL8RwuKpybPVxSuJ5W2LoGH3Z32AWLtZpwPa1wafd4MW4AAFfNDltvC1HEr/bnuGx2+HpcwyqPMzPg49UN+mDwi+0lLps9hqCxTxZWegzR4GmzRYTAr/enWGl6457bPZ7vT/H+6g4+Kty5Fq1yaFXeqCWBlZyw9Q1upw4fr28QksDd1OUg+gQjAzrl8GV/QnkyIXDW9JiCxr1roUQsG/8TO0DLiLWa8Ov+FD5KXDR73E0t/tHVr/ByXONuavFH51/h63GN0WtcdVu0ysMnief7E3TawUWFi2aP26kDAGgRSaZND6s8pkBL5d416LTDRbNHTBJD0Hh/dY+bscOZHTAETWBYJOycxXnb42bo0BmHtZngo8TeWZw2A7ZTg8tuj/upwdpM2DqLjZlwNzVoVMAfnF/jxf4EH2zusXMWo9d4dnKHVjl8uTvFWTNgDBpKRoQo0alQiAe0iIgQuBk6hCTQag9mDX52QvVpGXE7tPBB4t989gW0iPibmytYFQhw53ycu8mWNpSM+OiMyCe2U5OBPIHimAQu2h69pzyol+fXGILBdmpg1IDRazxd73A7tjjvemwnCyUoblRpAogfn92iVQ4v9icEVIOicZ/dwQWF84seX/VrKJHQaI/Ra7gooUSClhFKRtz0LTbtiI2Z8GogBceJCvjj977Ezdjhul/hpB3RZMAcE5EbAICRES4rOJSMaFTAGFQBuevTqSgSWMlyPza42uyKPL938Qov92usNiSTkAQmT/O0PptwPzalHikS9qNFYx1CFGg6UmxYRSQIu8ng6ckWt32Lq6sdekeEDj5InHQDJk85Qs/XPZRImILClNmQPz6/xdZZ7EcLKMDogFZ7dNrhul+RATUorNsJSpL8e6cL0F9b6v9utBAiobMO+/zZ6lDabk/2GCaDT6+uoWXEL2/Oi4KlMb7cLwBoFXDajtAy4nrflfeYUbS+Rj/HU55dDfjqfoNPvvcCL7frogwCgE+evsLoNRlKvcbaTrjed0XJcHIxAgBu9x1WpxMpLZwudX/00S0+uzmn5+bElbWkZMTVaodf3Z7Rc2M8tn2DJ+db7EaL9cWE/WTmOOQo0Gw8lEwYnMbmyYhhMmitw260aI1HiKKEKADA6mJCqz1u+zaTXZDiI2VlFDN2j06jPXPojMfd0JCCKChsrmhs26HB5mrEbrRFAWIUkYH4ICFlwkffv8Xt2NIcANi0I4yM+Op+XQg6prz2rzY7vLjboDEeZ92AF3cbXH20w/VuVeJCz9Y9YhKw2XS2Gy1cVnApGTF5jVVD8p48KdJWzYTbfQeb30E+Sniv0DUTXFA464aiGAKAfjJwXhXvmVUzFcWTywqsGCU27UhKhKCKsu1+aCBlxDAZ2ByO4YKiPmw7PPvDO7gosR9tIf+QMsKoiMmTQm3dTugng3VDz0WrPQZPisFt36BrJpy2I272HYwOsCpAy4j70cJmxcx+MlAiYZgMVi3N1zAZKBWxbui38nZH97PcrPbQKmI32MLErvNYeK0ZQ3M2Dgab9QAfJZzTCIGUWqtc926wtAb7BierEfuR5OGjxFk34KvbzbtuNUpZtRN2eyLSMdaXedIyYrdvSthJ2zj47PXESraum+h9OGk01hPRSyAlXdM6Mgoym7tA+d0BSHnGxwFSvq03A7Y9zblzCrZ1mJxGDOydlZVnkwZEgm48xlFDmkAKtSBhrIcQwDRqhPzcAIA2AcGRMi1GUmRaS+FFHLMrJSmxjKW1zeE4TTsh5rFrHeBzSI5tPKYhbztZ2QVS3rHir8RWh1lRJDMrtgB5LUVHCiwApFzLihgOtSkohI2tXhaFF7JcFsookchDhcMdOAyES0IJ31mCrXwvK43q8JL8uYS98LUCcxjIIVjjfrGCrI4HZrBUM6TzsSjmMJU6dpkLX8vnX1fqPh1+rwFlVlrUccIP2qyO1R41BL6zfBam64M2j/3/ffnWl+80sFzLEf949bf4qX4PMUmcqR0iJK6bDW5Dh2fmBvexJSDXtjhTezy3ZzAi4FJvcRtWcElhJSdc2jNcmW1hXT3Te5ypHmMk4HmhCbQSO2ZAADGyxiRxZnps1IiYBM50j3PT4wN7B5cU7nyLRnoYORN6SCTc+RZ9tPh++zVcUti3lkBlZny90Duc6CeFpIMsqQo730BnJjUpErGgykCMspp+wE/1gDvf4tP2a1yaNe58iydmV1gJzzWxOIbMRrnWI3xSONEDrqc1AMDIUMB6TZBy41boFDGQAkAfLE51jzvboVMTxjgvqTFqNNLj2q7RKYe1HjFFXdj+7lyLq2ZbLMXX0wrntsf1tEKnHK4sAWC+Zowal3aHjRrRKlcYSxsZCoFRozx0DmiJSWKjR0SIwrrpo8K57dEHAy0iXtkOPir8cP0VgJk86NLucOM6NDLg1rULsphLu4dEwo0jJtUhGLTKYYq6sFpKEfHUbjFGg+tphUZ5jEFjrSec2hYnesR90xRCIgbD57bHWo3QIhZr+xQULmyPMWqcGwL6WhBz6i7YshHXglj21maNlZ5obg2xV7bK41l7ixM9YqUnrLQrazIkUVgLbZblFDSs8rAykMU9aGKNNTSHVvpCOLW1xBwIAGe2x5NmRxZ5xfMgMAQDLQIxBJoOKz1hygRQ+4ZAvo9kyZciwcqACGJCPDUDOu1w1W5xN3UlZy0rR5h5UGYLOx97v7vHvWuwtbQJtCpgpYnplgFIiBKN9rCZlXfvbZnrjaFn+s62hSXx1nRQMha5hCjRaYeh0Xi2uoNEwniiCwlUpx3ubVNItJSMuGz2kHmuuLDc2duAGScB4P3uHiorehhYvt/dYwi6yPbUDjAqFHKuEzNCigirAk4sjaP3phBjvd/ew50oTFGh066sXykSnjZbjLnutZlwoz3O2x73psGJHbGzdkFC1Wqas94bnNkBvTXotMOtbtFpV4ibxqyc2tiR1o8KaBRtrn0iZUarHcagYWVA702+NsBk8DJ6jfN2BnenzYDOuAV7pM8gVmdZ66wgUTJibSZoQQCjM6TsG7OC47LdwUWJVnucmBFuI3HVbcsaTgDOGmJaZU+SzrgC9rh/K5OBZV7fnXYQuW+85lxmmXRB4bQZFmRcvTGYgir7so0d4aIq9/I74zT3JUSJKSqc2BEqK/UG48vzx14jAHDe9JiigpERTX5+pEhQImIMGoPROLUjrArYWH53OBhpC0HU2k44MWNRBBgZYGXIiiiaT6tIwWd0wElDbe81kdGtzVTWDl/noisAVYqEVvtCVKazZ4APEp2lOetVwKYhkOaMhw8SjfFY5TmVIpX5XVsCyFYFuCixsSP2ncE3LSs7K4k760r4CCuTTFaWtCVNmSgsn+vcZy0jOps9R6KADwqblp7TSalCOmaygi0mAa9nRMAKhUZ7xJa8VidFdWoV4LOyAyCPmElFpNx38oLJXidpJhtj7w32UNEywutQiPJC5rHg/jA7rdf0fNaEW43xCIp8tLQkL5KgY/YCQgHHfL3OColQEW2xJwlA3BX18aAyWWEG2oWcS4niBUKC4uP0jCY9myE5ZKkoyVSCVAmxJsHikjJArI4v+C4y8FmkPcvfhQQiD5hvUbO3wFF/0vJ+nWVVvtdkXJHDhfJ3tcytXbwe8rUl/dghlqstkof/4+N9LOSfx0DfwbHHiELTMbR4DGyyvH5XyneYOPVN5TvPCvtf/st/ggCBMUe+hyQz0yq9hGMSCJg/AyhMsIdMsfRfPmCAZfbSmiHUJVl+SJgNFkBhSyXwt2y3Zm09rJMZUGvGyHDwEMUDP4xDplVmny3XH/S5ZmCtGVcPWWDrvtaMp7XF5Bjz6iE7at3vmjV2Zi2VR2XMm53DfnJha+Rc/8MxHGMNrftX3wvgjQymdT8fsIxW/S9jzN+PMeoe62ddjrHH1p/fRK+96PORearn8Zi86vuO9e8xLxhes4+x5B5bG28qxxhDD8d3OJbH+v26Ng7rPfb9GGvsu9T/WL2PFbZMPXYuVbJmNl4uzMr7JnkcU04/NoZDlte6L4fHDvt57J7HZFD2KmL+Xn+u63pbWdbXH/blMP8ut33IcPu6dg5Zat/4s8p1HWwk55jwx+X9aJX4Bkr9Y2viETk8aKzq21H5vOvW4sjG+nAzeVS+Rzb4Rz9z+U1YPt72/neVybvUW8vmbTbdjz3sh8cf6QvFYD/MvfvY9W88d3jsyFgWP9cPrsfDa96m7cP38SP1vqmet/4Ve5uxv6EcYtB3bu8drjvaxmvW1m+0T+947Vu1fVD+6r/+FrDCNu+nHz/7T3/j9f7ZL/6b3/rYgO+4xfL5/gT/3f/9H5JSJYoFlbqQqcT3FC1PZqMUAjMjpwDF8JhYzpd4Ga7Pxpm4o9bk8HkTZ4bDIMglgV0mCiviwYMpsuaISQSY0QsoRBslibvI547tMWN1PbMzZveEwkrIcRSK3A8KmYVMiyTlnJC9xBDl+hfj5sTaFZFAYYVjzRa/Aet7mAkRmF05akY51qYVGntklsmcnD2zdnJMCzPuFda8Sh4sXgCFRbBmiqsp2Vlmak+xU9HS/C9o0WuWNWCOSeGYNI53yLKo+8+skIfjLQydwDImxBPhA/PisLxEjokRkeKFAMyxL4Xhj/rJ8VN1Im9m0ksqxxuFeWmleow81+LgO489VYc4nqRiLuSk3VE93CNyP8p4ZXU+V7qIS8lykIHqk9V4Es+xmD+XOePXgMvX8zxybE0EEr/5RHU8t1f6kmXEyeQ5Vgh1W9WY6hixMt56DrKMRMhrWM/XPZA7iAAj2AQ15RipSo7SicI6yEIsDJtgYhReGwdjA6hOkwpj5OKxDfR8JX6XZFbHsm6rdpKoyDhk9UzyPIeDec7yIoZILGKS+BzLgO8vaz6hMDuWeclruo5xSpUcZbUGeGwAkMz8/CCPW3qKzRORZVDdz/2ryVqAsv6RqldfTbKCaiyPjLX0o5Jp/V4rYzps+qCdeq0dYjReu9LlY1V4Zjkv5/6kSs41ZkmaZCBDNX889mp9pXq+/PIYG+rL/VUfRcrvjjqOjOsSc3v8XihzzfJgmeT+Rz2/9/h9JT2QU91+o1LkzHNXAZyo5zUvfPUbUs0Ry/+QvVRW5+o6C4Y8+B2CAKRLSEosZMhrrPwupuoYP4/1fiICIlE9i/uOxOyJrE0j8p+U50LMx7PmTYa0WOcUSyroeB1viPmaIqdyYzWONP8/fObK71Ql51L4eC27A9k+kHPVZl0eu77I/rAfR9p5Uzn6m3nQj0cti/X/RxtYnhcpzXP52jaW5w/H9M4A712vxyNz9F0tCb8n7/m2lsZ4fPL0FZ52W2xdU+LJNmbCWdPjl3cXsCpgCgprO+Hldo2LVQ8hEr7erdBmd6H7ocGz0zs8vz/BSTti8Br70WIYDLQO+OTJDV7cb2B1gFYUW6Vkwt2uRYwCH17e4bZvIWXEdt/i/fN7vLjdQAjgbN0vYoCYFKRrJqysw5fXpxAAbOMQAsXepCgQR4XVeV+S2Q6jgTFhkSMPAHa9RYoSYVJYnw6FtMQ2DvvrFWTn0bYO/V0Lu56gdcDQ20KycXrWY3Ka4nJ6i9Vqoti+TK4y9BbRixzDALSrCW7S8BOl0FA6wvUGuvUIjtOHUEoSpQP8pNCtJ4yDyS4mFJcyDRpN5zBsG5jOwTuFtpsw7C1WmxHjYODuLZrzAeN9A9UGKB0w3TWAFzAXA/xgIG2g9nREyrEXxDZJbz1OI+KdglT0SxR2BrL1SEGiyTLZ/+IUSID6YA8/asRBQbSUlsR05M5H71eBcE/WcdFRXIm0gQhJZELca1JEREDeaySbkLpADJScxmEVkHoF0WVCkpyiJHkBudUQTiCcZmpBmSDbgHhrkXSE3CnEMyIeEU5S+gSTZsbUCMgThzgqiF5RugWRgFHBXCuEJtH9Y8V2KUFpIoAZ2OcUHwVIMFgeVE49ISAngaiB1AWIzL4Zuwh9p+BPA8SUiTmaWJQGai8R1hGyl4hNJODShhLfwoQkTFgSVwFyqxA3AepOIawiyUXn9Ak2x9lk9s5kUlHImBuF0CbELszXOAE1CfiTSMBeUioCZu2MbSxKGLmn3X1YUz/FKOh8os/J5vQII43Ffk2su+4ylBx1ak+kKQR6BOAF9I42eO40jz9vdpMEka94+tU0dxLuIkC8VHAnidJA5HVtryWiQSFiUSPVxwoMvSPFlj+NZRx1CgD9QsBdJCRLfZTTDKrMPZ2DBNQA+E2EvpMIqwS1J9KVGiyqge4LbYLeEYGJHEHX97RGIGcgrXsB6QT8KhFwkwz+Eq2pTAITbKJrR7qWwbjZEgGNX0eYrYTvUlGucH28wW9fCnhDfREBUHsimvErklkSBDIRAf0LqbcAACAASURBVHsn4Nd0XO+ozeaVgN+kouixd6JsaEUEfJtJazIrcrQJekcyjgZAAvQAuI7GBkF9S4pkkwygtyibZZFIftHOCj+9nwFjzIA4aTrO4C0qIoPxq7mOQrSSAaVfJ9g7mo/QZuCTQZx0RHQTNWBGGpcaqC41JkRDCoOpofN6n+A2JG/hAekTfCegJgIooaF+hhZQjurxHbWleloH8ZQYfhmQqZGAS1pRvdHMYwIymMzAOFpA7kkOJE86p3PdvhPQfcJ0Qv99KwoIs/cJ/dVb7vSPFD3Q2JMAlEcBZtID04koCgo9JASTQZ+m9aP3iZR7VkAN+bOi943eExiLZgYpsgKnwc5gjuoUsHcJbj3LUPd0P4NzYAbSQtD50GRiIU11qzHX3yRELSACPWvSZWDOzyjXr5DTahAYDk2CGmgNM6kRjTODTJ8QLD3Xuqd1wkogVprokcc+MxtTOyh9ETFlhZRAsDQuqiPN788MYFlODD6CIVAbFf3n9vn5IOWVgPQkAxlmhRwrMpSjc3zsgeIoASIkzCy7qcg/5nWwAOApLUA5l1ppyWC8bu+QvKdW6KasNF4oNFjxI1DGtrT2srJgWTcrEo71cQb4PJdpCeqPYaYD8LtQeB4ZV+XktiCReh2AroFyym4ub0Uk9PvyGy3faWBpZcCz1R2aHAvGcS8rPaFRHu+tt9AilBg4fRLRaUeulptUGFAb7bHSE642OzTKY2MF9sZhaInsotMOF6sejfLkcmbJldWqgASg1Q5iRW6UrSFykKvTHQCgMw5tjvsBUJLct5r6fHG6L6ywIVGsBQCMXuGkHUvy+sb4QqZSu1JyPIcPdH0CYLXPxBREZtFaBymJRELJSIQZGSht2hFTJlBojC+EFt4QiymTaXDy9dZ4eOPhOxqPlhGj9YVsga/jc76RWFlXmEoBwOqA0Xg0OVeoUQG+kWh0gJQkQy0jehWxaqeSd7TEaniJdTfBN764+LHbILN/sltW01B8U2jmhOxTlaO0MR5SRuyvRgLOrUMwAa5Zspamqo0p10MMoTl5uyW1vDchJ1kX8E0ggJ2TriuV4BpiRfV2Zhhlts4QBHzO2Wk6V9RyWkdMWSkR2gDTeCARmYJWpOZPMTs9JwFjPYIJCI2CsTmOsglwykA0AcZ6xFYihexyJxNUtp5GJmWo3TBFKu/x2AYoTXEoIceiaBMRGpK9agK80VBtIPIF0Pg4xiO0kvKStqQMQAIB/jzW1OaNWM4hqnRCMBGqCRRXk/N8QiTERkJl61mYaPxC5VywCXAyASZC2Zz0vhOIXpKipA05RgekkIikHhe5T7RJys9sQwqA2EpiIE2gz5rYUWNDxydB4FGuHSkMAHpXNKHE3aQo4BpibEUbZpZW/iFXqRBWTDZBdB7TEwBtJLKKROkwRqlQcm+qhOAk0IYiR2cyEmkCgiFrPFQqRHSD0IgbD6gEb+SC1CG0EnFDConYSsBGOEWyjI0kpUMxpwE+ywkqYWoESvJ3ExFWBKZod0iXTW3Oo2gTjZvHITIbcCZPgkpwjVzkhoRMxJqa6Fi0BI5551QnoEcCBqEQm4RoSSHgu2xVXkWEheeBQDQSYRMQnIDvJMI6ADIrM/JYx7xB5Fx+0cygFonqCg2t3aSpD94Rc6f0KVuRaRyhY5A3p4VAApJJ2ZpHMvHd7LFRLFwSCJ3gW5AU4DcZQGQALqvxyUkgdNmKxMC70vyL7BWQdO6XAfwaGdzMTKOhAcIKVF+bsvWSlFqxyrfJDLBRU/+BDJYD4E5IVqFLBVgSsygpokLzCCuswGz9NEBo5n6xx4AseRRRxuw7YiKlOqn9vwsrrF/R2AHAZ4UUew3FJnvYKLouEQF0Wfs+Pw/EWisKI2ySgNvwfGEGRVU3Sbkg5mMS8K0kltU0g2uWR23xZi8X5WalC2/oawsybejzhpzZbfP/JDKwl/O6Ye8PmX+uGECrUVT1ixn8TzMrbLEwC5obBpMLyz6DqYDZK6dSHFEfxNLjRCB3Zl7jZKUV83/M7dCNDMpEkcGhRUwEAllHwU0BSxnQVMCSQSt9noHlUWsh97ko7gjULaylB+APmEHhgz5V9Rbl1SIF18EY05G6joG4wzZeU1+5RRwcr8H5Yd2HbT4KJI+3+50ov8OA9zsNLKfMunpzT8yfq0zi8MX2FKPTOGlHjF6j0R5f+Q3WdsJXOyKn2TQT7oYWIQpYHfD87gSddYU5sTG+EAj8zVdX6JoJ16FDzGyZCRQIr2TEZ6/OoXNwfGs8PtueY91OiAl4tesKOx9AYFDJiPu+hfcS5xsiorgbmszqSfFSp+2Iu6Ep6ResDuijwU1mjOPS5JQXnXV4tesKWLrdWVxu9tiNFre7DptuRD8ZSn9QBdt/dbMpAErrgF1PRCdSJmKqy+CNW7zddtAZAALE9Gd0QD9amEyiwPFQu2xl/fpmA6UDtCZygP2+gW0cbvYNmtZhu28gBLDfN9A6oN83kCqgbR3utx3absI4GvRBou0mrNoR99sOSkcCN6T8IxY9RakzGKz1+wYJdDwGsjTaxsE5Yl28u+uQosDFJZF03NyuCexan1n4gN22XQTKNy2Rc3hHv9ZuIotvTALWejouEtYnA0KQdF5FYs8rqTYCMeiJuV4hElabEVZ7bHeUOidFiWGvYRqPFAXWpwP6nhgujfUIXhWyAikSICPGvYHUCbadGfiUjrh4dov9aDDsLaXtsDGDZYGYQX8NcoVKxUob8w+NaYkVUNsApehePynohtgR3aixOu8x9BbaZPKeKIsVu1lPcKOGbh2CV0RsMLHfrIDUlFJD53QgflJk0R4MzHpCcIoAa2DrOO1AVBPIqzXMLvHtxQDnFMJI8yhUhGo9Wb4HQ1biKCB1pBQaAIKTZa7NmlK1hNw/1XnqKzLYzG1xWo3u6R5SJuxedWBGQNkGSpmRwZVQCfp8gFIJ4z6btAAIm7LVWhYAqc8HuJ1Fc9Vj2ltiJMzPln0yEOsigOgl9GaC29uyM1AnZCYKew2ZLevF1R9A97177G5bsnx3AUqTQgMCaJ9O2N+1QCKQHAcNdeoQBkXW8EnNP/JRQHSUCiVOCvLUU6oRE+n6zhc5c+iAPKW14gdNQJ7PJ1AKEWZwdBI4cZA6IvSaZOolxEUmfxkUpSHh/KwiAm2izxmgmh/sMfYGmBRZly8CkZTcN0C2ZCO7DcsnPcJdg9QGyKceYWshPtkj7Q0492k68zOjJIA0KSR2Exagz5cTKR8ceXUkE5F6hZjXNrLlOp4GJCcRn/r8rJOiJowKcHImCrkKc05JXgMREO8FlDy5QUI2HiGnoUmTQsyKj+QF0AXEe4P0wUCkLaMiJUZWDklNoSPJSaSW1rlqaecudKDUO0kg7DRiVm65vYE0+X2rIvyoi2IkZo+WNEmENmRZSbKCtx4CgN8aCJsVY54UNVLTmhU2lGNpyM9PFBR2AgCThH9Gaw0c2mEi9RlA6BU9lzsDsfJIEyl/kpcw6wnupsU3LaIljxMA1J8MgISKSHtNx4KAaOLMBso5RTvylCkeLLxWIym7UgKlxOH3hU5ziI9js9j87MmNQ+yzlsBLqsNlmfA+QaU5J6+NwCRnBtEk6DNA9/scopEVUQgihwcRcJ7DgsSsLPKClE0JEDlHb2rCHCqU2xdOIDWxSpMDsnwmUkIhijlEJBHIq0E090t4QXVxKIGc60EGoDXJDoAC9heu+ZKVUXn+ONUIg+4DYJY4hQ/XWYOjHAZEgDAtXMvJmjgrR2prJh07RLCYwW+qCIMYmVWhRIt8sXWoQqLrZ8BN1yxCBQ5LGQtm12H+zv06BNI8pjdUWb4cjvPY8Qc3Vt9/l7DY7zCw/E6T93z/T07Sf/Evf4xGOozR4D5QKo5GOiikwvDK7KT7aLGSxFw6ZgbE+jwfi0lUDLARaz1i5xticsyEP1Ik9BmodMoV0h6XZM6NafP1MZMJ0VOiRJUvEgl3nmj0OXUDQAQ+PqrMcBpzfyRMTjMCoJB2jFEhJmJVtJJzNioYGXDvCKxa6bF1DdpsoZ2iKlbIlZ7gM9vkFBWsDIv662sBFIY4ZgklhkIFq3y5jol5+Bjn6KyZ5Jh1lNlCuW4+PgWNIWis9ETXyAgtAvae2AnXmZ2U5Ta3KxbkO432C0KgmERJDwCgjPdmpNQPp02msI+qEB9xrkweO6cTYYZNJq4QWfYsK2abrFMocNtcHxfutwuqMFZyncw2yalN2oqZj+tgKzanVglRljY5bQnn77TMiJrvIVbIVJgv6/d5yHPGx3xWrISckuQwB6vVHoPThRGx1J/HzPk8l6yFsayNQq0fJKRAcT23OmB0GlrFQlbDdVDKCJXrSkX+/WSKhR5A7nNmgq2s0Jz3lO/nwukitIqIiQBy/Zkt4PyZ0yKsGkqdwn3U2X2dGQhdoFyarBRiOQvMpDvcfmN8Ud7U5zhHKq8/Vhjx/LmsgLI6FNZSVhClJDCOuiiNfJBlDJwawdpQlA5KRTinKW2AV+SeX22G5nyolFtUyvm+On0B/3dOkfJAz+MReU75es6nWqdE4GOsuFGKvBconyj9TnPIAdfhRk2KA56rkNs2Yc55mccSnKK8n4Gs+SqnW5A1I2XeoHO/2b2eLclCkHIDADFLMugzcU5bJuhcykA+8aafS7bwl42or81PKPKK1X3MISBMLPk+EcXML+AluewPGaDLygTCG2SJBRdBif/n2HmBzCcgK8CBYh1a1MnnalDDx9hiYtIMPniTHEEgpY7Xr0FCrOqv8nvyOOqcjCVGn62fOd2BcOTS/k2LcFRvcW9n+SVQexkccR5RGl91r6DxknUdBaCVHJ2zo8hik38YFwtBbvjcl+IOWax2+foqTvUYeBKZ/4BCHqr7SqztDJo4drvIIqIAGgAl/rq+jvtbx8svxsefMePV2jDL7ZT2spW3xMYnLAFTDUAOgNACEHGpOsqgtHBMVPcvXEzLvcuvD8ZRPVvHrn8Alur+Vsdq74JS/7taLIEHLqaPlQeWwCPjfGCBPFYWk/iwnjfec6TNQ1m8Vamu/Yt//i0g77Hvpx+/95/8xuv9s1/9t7/1sQHfcYvlEA1+NZ7j2q3hoqK0GVGhDwZ7b7ExY0kfsXUNTm2PrWsoDYUZMQRdQNHd1C5AjJW+pDP4q7v3yIW22sz7KEvuytupQ6N8ocC/n4iWHwB2zhaXWwYPWhK1uwsKl+0OPqmSQ46BlxYB1+OKWG6TgJFkYeRUClwaRZvTVnl85TbUh5wK4aLZ42bsMAaNMzvgeX8CFyi9AG/mf707hcmbLqMCemfIwieI4dOqUFIhAMDgNUzO2Vana7geVjAqYPRzrjymix/y2EyWW0gCjQolH+KYXWg5l9mQAdDaTvj8/pxo+XMKgZWhVBGf358XQMNAR2SAxDIEUPIVGhWL3Pg+ISjPWkiU21KIhM9vz6Az+JpKvxTqsrKUb4zz34UooGQq7XBfuN/3o4VRES5IAkhDU4ASF95Yt9lSvh3JchxTzkNnHVyQ6IzHzb4jwKkieqcXAEvJhLue0mN01uFuoHq0jDjrBvTO4LZvoTKNfw1iACzWKQPCmm3U6rAAbC5I3E4trKZchtuhQWcd7oemxANz6gqmz98ODaz2GCdDloswk2ypnJtMy4iQgD7Xfbdv0WaPAnZ5JqBjiyxormRxhV63E3yQuN2RvFS+xuqA3UD+WDHKbOGmdseK8EvnNcPXah0w5s9KRQSni6XfTwYnqwEpCdzt2jkXnA7Y7tuSf06IRO7XJmI/NAWwkKUYGCddrMZdM2HXN1h3lBtyCKZc3zWu5D5kWQyjKUDZWnLb3/UWxgSEDGb5/rPNgPt9gxgktAnQOhRQd7IesOub4ubdZw+DcdTkxu3nNABIgqzfImEaNWzj4b0k9+1pdiePUcDnjbM25Io+jhpK0bhDIP86IRO8JwDpJg1tAoxxmCayOruJcuYB5ClgsocAx0DL7HbuHKXrOD/fYZhMAaNtRzHkfW/LWosZGK82I/p9A6UDbOfR9xTvPfS2uIXb1i+eV+9VlhvtcmOU5ZqQwb3uHKZJQxna/cZEFlplKOVDsxkr5lzqT4yzddqspiLvFGdg26zntB0pCpjNWLwggleQmj0SJHQ3YhoMVpd7xCjhnYKQcfZ2UBExUE5F3TrEoKA3Pq/hWFI/+ElBtR7GeoyjgZQRSqWSR7EA/EDyjl5Cr12Wh4SQgOL8oYMpwDwFQQBeRvhJl5h5odLs0ZBEyV0YvYRaZ6+BbPEWKpW16J2C0hF+VFCngeL/NbmCaxsw7b95uhF5QtZ4Ek4kMJ6o/2FQZAGMmRCQczFm8C3OArkqOwVhwmytjwLiLCugfH4HiTmEoFZAJN5ZRwBXI8XTC5C1vCHOgUW+QjEDeCYpLJbQKGgMAqRQqN1DdVoqEAK5OxdlQgbEtcUS2UIbMs8A+cXmeoJAMJEsr6j6xlZTtuwWJIoZENSALmawW9xFZ0BcgP6h+awmLeJz/D+3Sda+OFtNa+RSjaMcPgSEB0qO2W19Bt6l3RrcHQKuGvxWCoW6iDSDRAaV7P68AF0HwJpj+h/1UQXeHjQCS3m+rqQH2H7Z5sG5B1UeHqy/fxPw+lsvCb+3WH5Ly4d/fJ7+8//hPyrWxTr1hk+qWGQ4DUfZNOcVGbJlrU7bcSx9wbF0EsdSKtQWO+rH4ykPjh2v+19/f9v2lyk+Xt+Hx1JdAHiUPl6IVNK4ADiatuSx8b1t2o/DdB+PlcfSWBwb07H26nMMpIHZcgTM76fX3f+6sR5N1VHJ4PCex+o8lnLksLwpLQbnRaMUFPP54pFz0AaXd03ncFje5v63TQtS1gbXjTf/hhxLi1Eff0yeh9e9LuUJv0IZEB6mqajrYoCZ0vG23zWNxrFxcp+EOLwGC7fxuu+vS5HxNuk2XtfOu/zEHMvBdtiHui+P9etw3/G6zczyxnzXwe7qWAqOo2N7i7Ee6/ujKVuObajetvAO8x3m7cH9j16Mxx/A152r+/W2bR3W+Vj97/C8/L2Uw53xMQDymvLaNB7HNtGv68frjj86b9W8PPY+f5f1/ppzS4vhY/dX7+7H1tlr6nh0NbxhDI9axN7UhyPlraxqb7luv6mF7ptc90Z5f4P23qn/b1nnNyk/+affBovle+nHT/8eLJZf/Ivf+tiA77jF0iWF5+MpAAJfO2+LxU6KhCEn5PY5z6RPClpQfskpuywyIGQrZHFjzFYWKYjkp3afZODDeQrZJZK/c53A7DrKhe9l6+To9cIKyiUkUSyDKYnSN+4DJ8p2+R5OSs33KpHQO7IssSul5mTUOWlzTRrEboj1GOtrARR3OrJUigJWfCaR4WMMVqRAiWHle9jVkD/X9xx+ZzfCmLXqrH13QZUE99xfAOC8fQnzBo1jSWtwWOcH1cVSpUt8KrlsVi58B29ETnatVFy4EAJkeWFiIJ81z0zeIwQWLn50vyjtxEiEPEz0U1uzOCY0BFGsQFznIcip29c6lrq9V8XCUCwgFSji6xYJp6vvbBlhLTqvIakiQrZ4ChmLFTCGnKi6AlNFXkeSWFOHlsBbyogYFKQK9F/Gcn1dR0yi7AY48TWzEPP8pFx/iijxo7xuCsCq3O44tkkobm9OnM1xsfQZFCvq8tw1oYyDz5U6IyjGCijWF+5DaT93IeZYxTgpIgqq3CM5lRIJKbs6ZjKp2k2SLD9VbBbvGycF0TBrR7aa8I4qp18q8b8yIYUc9xgoBrXefbFFpnbvLG6Q2dqymOdsoSmpmOrzfD0fZ9dJTnEiMLto1umJuI7abTOB4snYxQ+Y00blmK5SJ0CulWyRCfmzE3NS8ep+we+ZKvXKos9VvRz/tDguaC2wC2Sqrie24nmuapfKOnasxHvl+oTPcWcJyxREgvqdTIQcyRJap0Aq5CeCZMpxdlw/p1BKAiX9E7dV0o2UMeY1wSlDFBbpRgRbm4BC8MNWmToNT0nbxPXmcdbpOqRbkhqJIOb6mOlTp0LaMxPFEAnRNy0Ld04eP+Z2uZ1jqXakRyGTEVW6lCToHH9GHtYyNVZuK833yama87dyhWW34FmORe4q0Y8235ctdzK77HLaoRInmOq5q/pYj5Pbl3SupH7J8qrdbjkesU49UuoIy/YOXWEX5XVKjVouh8D0QCnwAAg9Zp2r3mGHqYEOrY6lv49hSW7zSF8Ocf83doU9JjMsj9Xt1XP9mHX1sLwdoH5zPY9e/0g5ZIX91jLCJoCIK343y3caWGoR8XH3Cl9PG7gkcdIOkCLh3rUYo8Z77RZj0NAyYOcbrPUWO0+/KJ1y6IPJoI6YY60JBXCe2x6N9IgQeDWusGnHB4nlGVBufYNWuXJs6xus9ISYRIkhrK1qWkYMwcBHiScbYo8dvIHO8X5SJFgZsHVNcUG10sMnVdwzGeBxu63y2PqGYhqzK+zHmxvsvcUUFVbrCXsG3ioUgH3vmuLGyy66wGyNNM1QQC/F5UmoKtYzREkusEHDyFDAKQNoIRIGb7IrbICLqrTlAsWRjkGDE7wbFQqItzLXW8XwrcwEqwJuhg5GheKmySCzdoOVSNg5S/vI3KeYBDrjMGY3VgbmH5zcQ4qEr/sVlCCmYI4RdAeW6FbTTmnK52vQamSEixICFN9J8ajklsfKAhdlcQWuixAJTWbi3U62gP0QJS7X+8Im3Dty42I31UOAza6xrFDga08aIrMacrxmrUTwVRwe1TnHK/J3KYhxeMpKCh7L5BXaHC84OI3O+BLPyTLzGWSyC7DVFDvJygIu7JLKCgjnFYwOcF6hta4oAHjM/JnjFX0geSUA62bC5BXFGObnSitS1vTT7ApX4odVLHGVMYkSG8nrgNcmMLuKA5hd462DEAn3fVsUISorZ3h+ASLaYllx4fpqRYXVFF+5vpjQT2ZhzVo15OabEsXKGhUwTKYAeI4rnXJMJEBKDwajm3bEdmhKLGStWGuMx360RUnhnIY1Hs6rEmfJhd1l2S3UGorvlTLC5+t5fjkWU+us4Mp9IyZnjtOclTUhkGKE3Cx1ifk0mRTKVWRYRcmRrcbs9nuyItKyWsmjZMQwmgO5JDTWox8MlEqwhj63rcM40lpJkRiXUyJlEI+Z22LFkTGhKImESMUtuLZopyihNF1nbVhYCznlFO/qdK4PmBU93Bc6JgvR2jjqzJytIPP4UiR3ZTdpdKuxUjKl0vc6nlWbgOBlId/iOU9JwE0aSgcYE8qYpEwPXZs9udoGr6BMZhrPc6gyY/k0EtGQyM+blEw2pAoZmhQUR4s85qLk8YIIfpIo7qYip7gCgBQUhAqIk4Y0ATErClMSEMYj9t/cFRZZ2QOQckhIUoQygZVQMZOCkettSqIoMZKl2N4UqvNZsVPYq1k5g6WiiRVSdUyvbsjNl8/LTHpUK8HI1Tg/XyaQG252NUbMTNhcP7uiCixJYpIgIKdZkQQCzzLRXDAxVVZosRswNZqKK2xR1nBhBQormWoX3oX7aKVYqkl++BiXQ9BUgGkVO1nAWCb84es5nvUYgEyY83GXY/NFM9inD4vv3OeEpdKA630MrNbnDwHjIchLR/p+BLiJx8Bx3dbh/3jkhmqcLIo3gsl3wXjvAGIfb+jhxY8N/bdSvq2g9zdQvtPAch8s/o/r78NlghkAZaPJVjsXZdm0qcqSOLsF0gaVN9a1JY43mD7IYk2r76Vr5k1zyj+ONTEJA63aBbJ26dPypGwOefPLbfAGGZifqWPuqXyeY/t4s/4reZYVI3P/6vQWvFGrXbti9RJZbtboWG095O+1xa5272NrHLcx1zuTa/B/vl6pVJhe2UJXb8hoQ4cHbLCH7oh1Hw5VfXPcypym41qtSebMulv9CpQcllnOh26ptUW6fqfL6rr6GMVPHagED+azllntuljPWS3Pw+90bf6cACGBl2IDtthBLOV2uNCOuXECWFjN+L5yraBN0U2VMqNYU3kjwhauxY/iwQaiXuKVVeW2/hXL15Z2DpjzUgK2qqP+lb6grINC3FKtjUPXxtkiObdB8nw4bwCw5Y18TcbCm6rq0i33tf7B5o/1D3++dy+7ZUwOgJ1q5zp4U1FtxPZ1GzxnVX93qputdwcMiou6BPVhqK2P9eVlU0h1DYekMIebH66fx8oby8MXHai/o0gPxjZWm7XxyDzUZbxpl2MXc18PN2BjXmdOAEPun1PNPE8JcKI5agmov095I8ipT0aBHNuU1xkrW/LG1h15pkQla8eMlwcydbX1MooH19V7YC9oPLsbe7zfVf9Drt8fijXPUxQZGxxYZpGAQkfF74s04wiR7w35i4iihOEB9Ozxo8V9D1VfF3vrVC2JNGOf+lhA9fjx8s1zeLjk36UkAcj6eaweb5kbEfOppYtrnvPFeVQ/B5gfx6Ob9cNnSszGfPpuls/Tg2IW4Yr179rxwQKHz8k3uWYBQN7GUFO/hx/I4CFIe1RWb6j7eP14PYh5zRgfAMfHyt9h/b1LeWM/gDf25Xgd1fvo71D327X1m23j9+Xvv3yngaUWAZ9urvHz7SUA4P3unghp9qfYDQ0+Ob3Fzluc2R5f7k7x8ckNPrs/hwDw6ek1nvcn6J3BZbfH57dneLre49XQodUel+0eT9stdt7i/3nxDE/Xd9g6i8lrdMYhJoGrbgctA356fVUIXZ50e3x2c44PT+8Qk8CX9yc4bcdidUtJoFEet2OL3Wjxw8uXmILGy36Nzjh02kGLgAvb469vn2IKZOE7awfsncF+tJAyFjfTp+sdhEi4anf46e0T+KBw3vW4HVr8o6ef47PdBV7u1/jh+Uv88v4CvdO4Wu0Lq+ovXl1g3UwIUWLTjLjZU+qWRv//7L1Jry1Llib0WefNbk53+/devHgZLyIjSSqLpIoCMpGYMEEqIZWUIyZMQYyQgBH8AIaMEEhIMGICDEBCoiSkQiABlSmCysqsiKyM5kXE6257mt15Zw2DZcvcmn78rQAAIABJREFU3M8+9937IiojbipMOjp7u5tbs8zd91q21vo+h84qXCwaVHrAEGN/LvcLLMoeC0NgRs1gcH+xx6tmgVXR4zAY4vcMAtuuwLrs8XyzwqrusDADDoNBG6lgbg417q/2uDrUKI3Frilxsmhxs69hjMUHpzf49PoMj0+2uG5qNL3B+6c3OK8O+P6LR1hED5ZWHjaiYlbawihHaLoQeLpZw3uBqiAeTR8E7q/22EQAnavtAnbQ+MNvfgIA+IeffRNGOzxc73Dd1NDK4WZfT8JXH52Qd/PlbpnQQEtDCLgXiwabtoSSAe+vb9BYgxf7JepiwK4tcb5ocHmocVa3uDrUhIQbvQdGOTxeb3FRHvCj6/tpU+PQFnh8tsW+L/D++gafXF1AK4dlMWDfG/SWvLpFRA59tVmiKCwerPZ4erMGAKzrDr9370v8ZHsPzzbrtIYA0DmFfUcUJqWx6AadwpvrKOMhhqGe1S12XYFFMWBpeuyHAlf7GufLhmh9dsu0bquKAKy6QScv5dmiwcvdEqd1i21bQkmPfVMm8Ji6pDEtSvL43+xr3F/v8WKzwuOzDa4PNXqrYK3CourRDRreC5wsW/JE9SaBIn107xIvD0vc7Gj9jLFYlj1Oig6f35wmr1JRWOJOVQ6bQ5XQTM+WDd3zW1rnZdUnYJ667NH2Bt5LLKoO+6bE7zx6jkJZ/KNPP4CKXgCmxkHcoNHa48kpce/+9PIiGe/sfW8jRU8IwHtnG/zs+QW+/fgFfnZ5nsKhAeDbD1/iuqVnte0NLpYHfPbqLHmX7p/uIAA8uzzByZoAWw5tAa3p2fxb732G/+/L99F3ButVg1XZY98bKBnwrbNX+PNnT2CtxHrR4XqzwP3zLS43S5yvD9gcquQBDF6grntoRSBFFyd77LsC66rD5XaJ02WDbtA0zpY8qufrA5ZFj6c36/RcDtHzV5cD2t6Qx7ApcLpucFK1+PL6BEp59L3G/VOiBnp5s8L90x2udouERluX9F5i79nf+eBn+PHNfVzvayjl8SByFf/4+X0sawLNaXsCofnmxRV+9PQBVssW751s8MNnD/CdRy/wyauLBF7z+HxL62oIOOfVYYlDZ1BoB608Dp3Bg/Ue1kts2xJaOVwsGnxxfYJFvLeb3qDvFc7WDQ5dgQ/Pr1IkBwBcNxUObZlC6B+e7NBaTffHoJMX/P3TG3gQyvC+L/DN00t8cn2Bylhc72ssSvKgN73B45Mtfvb8Ar//jc+wG0pcNgtU2uIwGFTaYlV0uGprbJsKT043eLlb4htn1wCAe+UeV90CrdP49OoMD9Z7fHzyEt+/eoSTosO6aLE2HX6+O8fadOi9wov9CrUZcLlfpPfl8+0KdTHg8XILKTx++OoBTuoWSgTse4OzukWtB3x6fYbzRYNtV2BZDHi1W8TNRIlV3UGIgJtdjfcubtAMBofeYBg01osWj1dbSAR8vj3Fk/UGP3l1Dx+eX+HFfoVV2aG1Gr9z/hx//PmHX1vveHiyw5dXJwhBYLVoU7TGwgz47PIM60WbZH7TVrBOpnfSB2f0m3DTVLhYHtA7hSa+s947I51h01YJjG1V9Cnq5CaCso1AYwa/+/ApfnpzASkC9l2B9042uGrrCIDnUpTJpqGNqIfrHV7sljir2/TbcVpTVNKr/QJdp6EjANKyokiJZdljcBJtb3C+bNBZnZC6S21x01Q4XxBtGlOePTrdohkoImxZ9Ni0JfZNiQcne7y4WQGg6AET02RO6hbOywTsxs+li5tyRWEjjzW949umSB57bUb6tG7QsFamVBLeFO87AzVDteZUFmspvN/2hApth1gnQ932keqsbU22eTlunvJmsY5RCJwOIkSAMQ5dSxEnInrlnaOoJnZGTHKtxRjFExxFG/AmOEAAZayLOEdRJi5FGigo7VKqSkKvjpEgrif+6JSekVnDnLbBqSLs9fZRPvnGa0qHsZIQjmeb0LzRTAcweu25v3hNcpTkxnzcNEwbogAYuOvYhvCkvG5D4Net/DX2WL7T4D0f/I3T8O/8d/8GPigu0QaDn7b3UUqLR2aDR+YGf7L7LaxUh+thgcflDX58eICPFy8wBIUf7x/gzDQ4Mwf89HAPv7f+HD9r7+FBscXOlviyPcWzZo216fAHFz/BX+wfY61b1GrA9VCjlBafHc5gg8LfOPkCz7oTSBHwol3hd0++xPc3T6ClwzcXl3jWnaSQVgnK/bxXHnBmDvje5Teghce9ao+DLdA6jcErXDcVPj5/hUoNULHdlelwappEbeIh8KJdoXMaN22F3z5/AQB40axwr9rjBy8f4bRu8XCxxY+v7uHJeouV6fB0f5IMwO+cvcBVt0ChLF40KzxabKGFx8EaVMriy8MJGRXxIX642GLbV9gPFKq5MMQNen9xwG4oUMRwQS09VkWHTVfhw/UVXjQr7IcCtRmwNi1eNis8XGzx+e4UDxZ7bPsSjxZbfLE7xXurG2z6Cp/fnOKb51f4fHOCk6rDuujw2c0p2t7go3uXuGprLGJYK4euNoOB8yKN4eFqByU9Nl1F1CPRIFyWPaHBLjcolMOffPJNAMB333+GXV/iuqmwLHtYp3BvscfgVaI2YWPtbNnAeYll0WPfF9DS4yoqdD4QJ6Y2DifLFp0lZNebfY2zFSnnJwv6Ma20Re8UBidxfbOEHyROzg8UwhsNyBebFfGMbiucn+9gnULbGZTlkDYBXER1vH+yx6E32O5qnJ9SqPWuKdG8XECuBlyc7bFvC0KQBKE0loVFAND3hPxZaItuMClPk8ObGSHUDgo2UjEsli0OhxLeSizXLXZXCyzPGvRdRE01LoVStvsCi3WHZl+gqIhCYll3ab0OEXXVRoTJxbLFflthtW6xvV6gWPTQ2sMoh0NbJPTTw6FMFBEcKnl4tYBaWiyWhNbatYQOGlqF8qyNhp5D1xnYnsIPi3qg3FAZ0O8LCBlQrSh8sG8MippoYIZWQ5cWSgX0rUZRWXRPF0AA6vd3sNHz3R8KLE7aZMQ6q+A2BsILyPMu/UD6yJ9pSptCBu11gfrhAe3TJdRFR4pD5JCzryrifpOgsLODgjnvxtzoXQE4geK8Rb8rABmgS5eoMOQXFdyTDrqwGPYF0MlE/6BvFNwTUuB9o2FOOgzXFXHm7QxEbRPfqJDEOwgnIBcWfmuA0kM0ClgPxOunyKUkyxi6uNeQnYQ/sZQDKQNgIrpmo4HSAUPk5NtryEbCn1rAEjcgbgwpWmsLsTEISzvmc6b2aC7lFwbDiYdfEAKn2ktIKzDcHyAismeIfILFK4X+0QDRKOitxPDAoniu0V+45ErS15o8io48L3YZEApy7wkHhDJAbyO/aBUAD+iDwHDqIVtSPn0REEyA2in40sPcRC0vhrK5OsBXY66j2cqU0+eLiF5pAswmKoQK8BowG4HhhPLnXB0gW/KMeROgdxL9PYf6c4WgAbsIkAMS0bzqBVwV4MoAs5FwiwC9Jc+Q6gBXAEECw2mA3gmYPdCfALIH1EB5i8OCPnsFuIry6exiHKddUI6ePpDsuosAdYj5fQWgWhrLsA5QjYA31K5dkoIZFKAb8jbbVUB5KeAMEAzlB+qG2qa+AN0A/SlQ3AC2AlQPeAMU1wHN47u93F9VzJbmDkHjlA7kNR2A/gxQTVyPA/UXBH2HoLF4Qzme+gAEna3fluq4SEeLEMfMa18ieSNFoHaqVwH9mnJLfQHoHdXjdRUBEDbmlApA7wFXk6y9oTVVHSB8gF2QzIWl62SUl+riGA2g9wFBiTFf1ga4UkC3lIPrKjIEzTbQnME5rQK+BMwuYFhGI8oh5VaqliITXCEgB6I2CVqknEs5hEiLQjJzJdWjnN0xtzQokpdkl7fn54bqeB1zWcPoOeW8WG/Ge0TY8bwIUU59gDOjJ37iMY3jvJUrGgBpA7wRyVsrQoBXo9c1zymlcZGMAdziwAQwIsBG6hh6NqLcVDYGkV0TqVK8FpAu3O01jnORbrTd8rnMc0lfl7M5t/vmgUmT0CrE73chowlBcsls06PezbmBeqTO//0//Me/coCbU/Mw/OHFH/3S2/1fn/+Xv/K5Ae+4Yfnx7y3Df/I//j4kPNpQYAhj7o+Cx8FTPmXrDRaqw85VKOUAHyQOvoARDkY4tN6gkkM6dnCk3DJf5Vq1OLgCRjpIhNTPEGiXuZSUS+dA+W4L1ePG1lDwKKVN9RLwDSRMzLvc2xIeAkvVYQgK1ivahfYKterT9QxAxHybAIVV9l4n3sul7ggBF4Qiu3cFJAh8qHEm8Vy6INDHNpaqj/ydHtarlOfpg4SRDo0zKYzYBYFSuoSUO4Ybq4Rky9fS+KjNWg0YMjRZIzwaZ1J+JeVF+sTxyfVbZ1CpAQdbTACZrFeUw3okgMcHEfNBJbR0CZwnz49lsCYGegKA676mndOipbxIr1Meqo59cxi1jevJObZaumTsMxeoh0j5sNwX8XeqlM/GYEs8bh9E8lwwvU2eyyqirDkn9i4kV/aOz+vuh4I8m3F8eft5DjCAZETzuPk857/mFCR5rqfJaGTmdZiehutzm3muJ5+f5zWabMMCQAoVz9c0YET3lSJMaG54XgPzbaoxn3lEjxbpegCJzkNLT+k/GbgVjwnZcc6DZG8rn2OgKV6nIdJJTHgsmS4nk01vFepiwKErEo8ln+ui8cnrb52acHO6uGtutEuh+gyKJQVw6AyqYkiRDzamDPDcCk0GOwNosex5rvluM4fsc950ylGVPslWZPeYZbqYmIMrstDBtGGdvS9zgCvm3QTI42GzHNL8OeDx9b1KdBgAIjjWmAeZ17VWRmqWkTuTcgrH+bJhnzwBajzHofrzcHofKA81AV5xLmH0CDirJrGCQhDtBn8/Fmovopci6WHRs6AisJcQkbOU0w2i58MODLJFyip7KHgsQoJArwTl5c1Dw4X2lMPnYm5eENNcukCGn1DjxkNwcjzmBTj+lTk3Uzg2f06gTBhBoEIGDsV9Mb8nC8WLMRaW29Ce6uXgSV4QPcbXLdxunOsk1JrnIfh/dp0IY1i8QEZrEU8zF2T2DsrDaEPuweHzVlDuX7xOZO3TwfjHIefH8gh5vHmMbMAkDYHHn/gds3o54E4CqcnisJMRJkajKPXBdTgmej5HNg6CmADIJMOCDe1Zk3PNYGJvvMYgSUabz44fa+SOcqvt3PrMvx+57pixNDn2uv7z48fkd8f3o7KYt3Hs+7z7N23nFyh39vEmJbv2B//ZrwEqrHkQ/vDsn4Fh+fK/+pXPDXjHQ2H3vsSf7T+Ag0yG0pxiJKcWYSOIiw0SEhEZ9gjdyJw+JC+5EcZGX27UcTlGFTIvc9TYuZJ/jMIkGQAzNFkuxygC5mPhz6+jCpn3Nx8Pf8+NCFb6c0AZ9xpZ3kVFcqzPse5ynOutFsdyF+3HXeW6rW/J7a6xzD8DU8U2P3YXLYI/MvgQBK5QHzUaj9X9KrqMKU1DMckvfh1FzKQd3P1jnX9HPLZFeWt8d83jLlqO183leDvTjc7XbH5iz7/zX9HXXeM+Rn/B/xlg6C7KDx5D25ujm7Z5H+zBbbrjYCP52No76hzrHyDwm7tK38WfBhGAUIwn8q362Tje5H7NS4fXK4B0YKZt8fc36IPl7+ztc3ZQRxU1l8nE2dF7fqxQTnb2E5o/ALNbyjN3XxCYwgTz/MT4HQBbC6+jbBHi9vvDumysse30bs3mcVS3tuPJcOTBDgIIOXDTMPvdYUMviGQwBr5eYDQK+fo+uz5HuOV6bJzM+Rsn5Y77gJF0eYzzhNFbCaRvWQZ5VIjCyWgYCtymD+E1Rrp2wm/Ixg0brDNr6ZZRx00mz5qYfKdrsxdLmMpVjHsX1PYxLxbnYefjz8ZEc7j9ef5KFZM54/YzwmPL5jhpI//sZ/b6sc8zY4rbOvZTOTHcgNE7d6wcm9dXlTd8X712bMDrjdp5vWPHj3w/Zswe7StZ5cfH8Np2XtP/25Q3/Fmhbuf9/IKP+y+9BCCE36DC/lqWxhn8+fV7KV9w01EOQqUHrEyHL/cniei+0habtsKqpLyvm6ZCaSyM9CnPkkMrBy/R9AZNRyTaT043uDzUMBE9sY9em23MW7hYHrDvDaQgpMfTuk0k9ssy5oHNjMfKWBTa4tVmCSEAE70NjHDorMJi2SYPTdsbaD3mEnBcPyuxw6CwWHQQIJL1orDYbWrowqIsLQ67EmU9JPQ+F/P6Vss25fh1nUZZ2rQbLmVA33Nd2gkvqwHDoFJsv1QeQ6ehCyZYH6kkeIe8XnToOhNDDD0hCnaGSNfbAkU5YOg1ympA1xpUdQ9rFbp9gXLZo2sMkaprj+5gEAaJYt2n/hhAyHtJNAsBiQ7C1JRnZO0Yzms7Teh5XqAoLZTy2D8nQ7U4bylcsVOpji5senMGL2Gb6DGOdA2c6yAE4DoVd/JBYX0yUEifE5Daw7casrLwnaLQwBw90EmERtFO9oLaFjJAGk/hhipQiOHSkuIW6RGYBoKpGdTSEvVFqyAWpC2GXkJuNEIZgNWA0KspQEsRd+CtoH4Uof0lgmze8e5lIs5m6HoUHuglfa8cxF7R+ONaQIUUqig6SXU6RaGcAXQ9eyhY2eR3bukhWkXXHBSFLcrYZi/JcyAAdBIixPFENAsZQw1Rxn6sJKqEXsAvx/BGWBo7AuKY4uZAT4paKClUUliRzidqBxEgBolgPPQNhUnaCzuSbveSrg8AIyuqRgJewK1cAnVhT0PQIc1d7RXciYW+0bArN/Eo6BuFoGPImAqQnRzbkwGykeQgWVIIZhA0N1ZOzbXEcOoRTIBsJWQvEv2Daih0E4Jk4GsPtZfwFYVX+jKMP9SxjvCAKwJUI+FNgOwFXB3pLSSFaDFthGwlhaXVAchC2CDidSaGrZkA1UoK5atDpI+I4ZAAXBWgWgFXjPQWREEREGIoYHEtYWsKPxVeQHakRA9rD9lTO0TXIGD2Av2Jh+oFyeDEw2wl7CIkhEd9EMi9J74I8NHhKDyF4emWxuA1HZedgFsEiIHkFRTNWfZA0BQqC2S6tQkUjsf3QUvPRsjvD0nrxN6boCi80VVxHEWkBQkUJqo6AbsKKK4ovNAXSOFxIgDC0li8iWGoJaKsxhBCCApnVY2A6gBbU8icsPTflfQZEnBx/BxKKUIM8XQUbghQuKocSI5B0WfhY9hqDKnlNtK9Zse29GGUZZAxJLeLMixJvramkFhfxDkqCgftT/G1i26pXWAcM4dH85yCpvXgIKqgaJ14zCnENN77QcVzgq6li8YQTwDpfuLiFVBsA2zFNC1jiGvySoLGx23KLoaFDtP7EKDjKZQScd0jRQgEfVZ9QJCjAStCoPDKIcR7l87pJqQQXulobN4IqJZCZ3lcFN4ooIYQQ4YpVDMIjP0EjOGbcS5eCwgX6N51mZGsMiMn349i+pssrDNRg8Q+JnQofmyTBjvKY15EGNvN26TrA4QfZcHj4udu4h1Ng8W4B5FRuaT+PK1B+h/ifzceH/epIuVG4DUUKRw39XXHXPI9vIk8xUx2yL5n7czLLePzdUbzEQM2H8udhuyx8g5HZb6r5Z0Ohb345x6Ef/O/+Xu47muC+9c9fJBorEFjDVZFh8ErCum0BrUecBiIcmNVdOgcgZKU2mLblajNkKghajMk/srLZoFl0RPlRSDKCBcEFhHEZ9uVKdyt0ha7rsSq7AhsIQKr5JuPSlBIZG9VSnpvLYEysCFZKotNX1KYWSDqARepHZiKAaDEfAEKGdx1JXxAonI4q1u0VqMdNJbFgNYSKEtpKCQ2ANhFgAnqwyUaBg67K42deAub3kArBxXRV50XCfAl57IEkBL8m94QoE4E2bFeJtqKRF8RQWyYjkIpj2XZY9eWBCBjFbyXqIshgRGwtzb3GOWhkgAZ5MDIOcky45C9PoK/MCDI5XYJpXyqI0RIVAfcRxXpIigcERN02zH0ECjNkHg32Vhn6gyt3YRCgbkiq2KAVh77tkhtWytRlpSPWBqLpisS+ACDijDsvxAhUQ4UhU1UCVo7LKse7aDRdbRJweGFHAYIjKi6zokEgOD9GPrHoYJS+lS374n2gTciypIoGhi8gEMLpfKJesEYl/IQOXQwBEHAA0EkkBk7KJjCpo0IpmLg8ELvYhhmpDBwTiSQg7IaYK1M9BjM4amUR9eaNHcpfaI9yMeiM1oLgRE0gdsK8dlkjs2q7infc18mD6RUjrxg/F0GmJgX2nVmEtqYaDJiSGFRDugag2rRo+vMhIagrIbEecrUFUOvY4gloOLYba+hI78l83qGACyWHQ77MlFRyIx3tCgtmkNBCp0KcIOELi1sDAv1brwfEABpKAaCKSoSsISVkCqn2KBrlPZERTGo5LxjWgapQhwnhT1KQ4AdttcJUVgXMRx/kFCG+uFwPhFpC5i7s1r26HtNABQijHJpzUizED1turQYGgOpPZRxGBoDUw+wrUlowKqijRoR18xZSX0xGIUj7lFgDCkVKqOhCALMGyqNQ3ASqnATZ6cbZOILDQFEQxHlk3giIz0F3cMkW20cbE/3WrAyo5Gguq5RMMshyW5Ex0aSe7BEWeEHmdpn6o/gBW2IFY7uizgnoWLUT8y5Dh5R3oi0IHEcA8kpyadVEHFzhnlShQzwnYp0FXGMyduLkVO0l2nDDuxt04HmLGgjTRhPm2ulp02yuLklSwe//wX21AsPdNFS4I0tXjze7GJqDfb4sSeu4E0uQRt0fM4L4lYFsg0/TBGd841AxGOloz5FbIf7DlldkfWfc7/mocex3xy9OBmnKbxVIHAIcHZ8Eq4836ALSH3RxlyAGMRoPPFrJD63YkI3gtvzYIPWjvVCJqfkec3aprFPDaYkX2SGXR76y/1xyY3AzIKaGzn5cFM1GSae6cBGJxtPuXKI7Dhm55Gdn12f+gvT68W8mSOyyed4tLzGRMjn/ZWG3tuYGrN5UGdv2cYd5Uf/6X/4Kw8XPdUPwh+c/L1fert//+q//pXPDXjHPZb7rsT/9ZcfE4m4Eym0RsQfGH/Q44tChwhQMXo4oOPLwwqgckCr6HzkXJK9pN3vpcNLfnkLfvGAPBpBEHhELwlIoxcIlcerNobvRLCFaU4DEEwAZMDN4Ry5p4JJnoWjHX8IEP/SQHkiE4Ls6GHinXquLwbypmz2EsEEeBOwaSR8GaJ3Y/Q2+SqkHyw5YPRGxB+ffS8mDzmDR9CLPcQdz0iWzR4sVn7i7mfaPY8yCApoBvqRaTsR26Sd1m6g/8IBXUeAEl1H7QcF9C21Q+ATkeyZc1WCuJW07yqSl7Qj71U/iLT76wvaHb38wQoIwHDiYa1AnyfGm+zHJgg43uGNTw+PAaCwOx/tCNcKeBUQTFxzCbiBdoYdA2cg7kjH27JpCQSEx8072kPc/fadgKvpR9Szt0cDwQGOd0MLwHug7wV5KAFYC+z3gnal6wDXj2HjvFYA4FhhkIB34y4vr78bBHz0WAb+sS4C/CCI77cIsI0A6oDAxO8qJIPG9wKiDAidgDBRGYmeMhGfRQHqGwIQhurKMiC0CwgDQAYoSfc8K5qsrChJHhoACAeqrwqSl4z3YLCAquK8ZTzO943OlIW4zrqM99YA6h/jznaQdB96DYg90ZuYdYgKGj1TsojzDLTOsie5mmp8l+XPBt+7sqthFoDc1zAV0q47AKimhmBvSARbEAzuIcgbAtA8ZXa/8vVyV6Nc0b3Dnin2jKgWKBd0DwiLBKyiiwjooTF6sAXVoedgBBuRjrxW7Hni80D08rjoRcp2voOIoBFRgfOa2mPwEd5Nzz0sDCwzejbiMxEfV7OtoCskD6DsqV7ylolRrqoFhiUdVx1gl4Del3D1OEbVksGdPA96lGsac8RkCuzJjONnzw972NhjqRpMvNE+a5PXktcmvZNkXONA11J7Ab6g58BHr2/yxPQE2mK2JgGj5O914QKCFuSV6ghsRPX0HLEXMkjAVgKqC1A9fZZ2BFBhryDkOH5vqD4AOEPeFNUjAb0wMAl7i+AxAq3wfVSMY5WW2iLvl0qyDJK8XnKIMmTgn4o8jPybEiSgW41+dUyzfrOiuhEMR8aQavZY24qOBUX1+DeCPc46jtnr6DWU4z2hOvrhyL1bPOZ87bkECZiDJA9g4OdPwisxAVXh+xIA1BA9jJYAZJJMA8k0xOc675s8iCJ6lUV8VskTRm2LcV00yVX1Ysy3jJ58Bpjxhq1JJO8at+uzd1z+uyP8GCXAv4m555GeFTHxos1lNc+fpL5FBlIT6DlIbYe0Dvm7iRueG5R8D0w9logeS5HayusfNcgyY3LiLWRZsIcyenupYaTv7I0MWR6GCHEN2bN6l0MpN+hm/2/ln/IaYXps0lZejhi+xwqPNR/j/Pud5Q3a/9FXt/Kb8guWd9qwfFBv8e/+7f8DAAH0HHwBBZ9Adg6ecmQ6r6Hg0XmDUg5wkGicgRGeAGaCwlJ1aFyRvg9eUR3psFQ9GmegpZsQozfOQImAWg3oHIlyCBK1GtA40kD58xzQplQWEgFbS7loDCLTR/AWHwQqZeM1AX1EJeXCgDGcG2q9RKVsAmXR0mPTk1evUgN2Q4lKDdDSo3VjLlalRpCY3msUMpJuRw9l76dhvIW0sGHkDdXSo4te2RwUh+fUOo2F7lM7DATTO4VKWTTWoNQ2XdtZjVoP6L1C53QC+CkVeU7Zy7wwfQI8SYAlQd7KN9XSQ4JyaKUIkKA2OP/TRICfq5bAe5iCIweRKbVNYD02SHRWUwRnBG9h0BIhwgS8hL2pDB7DQDFGegxewmSk9AAZeoNTcF4kCHvBMo65UzYCq+RAN4kXNd43DCrDHmH+3FmFKtKShHi9D0ge8ByUhz87L6DkyOk6WJW8sslLHD3V3hNFSW8VltrBeREBaeL8sjoMKAMAWo1w68wVyzm53N4qesV53ZQkEBcGZeHcMilGGPPBKRRYzt67AAAgAElEQVTSJ488g8x4L7HQI9ANy42AuMb7l4FllBjzjE0cc36OgW36iLLLCLuIfZk4xgBE7zCNlb2yeeGQbgCwlqhQhujBz3NB+16PgDbS07qYMWZqGOh+1JrDtGkdGLBmH8PlVaTRyfliOydTW86T93iIIDlDDJHPnzsbPadKBXTML+sFZFxniJA88rRW7On1UyJ3AJZ0vQSEY10EkJKksYk4Xp53F++TBH8f5cnjOwySPGoygtlEbyuD3FDluKbRAxqCgLcCyngcBgnJQC8iTHMlAfJG5IAjAiOPacYlOoHKF4jE8jFMmHMTU90w1uf24vkcrGfClyow9RyxNzLEcbgIltOrcWy5EubHTZpE/MheFvbkALQZa8VYn+eUe7BYpkGkvtOmLHu7MI41FVags02LWx6bTM7ME8oemLSBG0AbnQxsw2OLhrqwAr6YxRe+RSHPXUgGz2TseX+WrY1szDG3M0jeEEWqM57LjI25cZR/FxzSGsb2HUZAID6cbRrxeQ7TnALv3L4ueTt5jE5kXjmRDD2Ww9iPmBp40Xhmj2Ty2vHzynVwe7lFJt/kmRPjdwDjfZidm8jviFEzyYENIspFpk5uGXy5cyAvdxgzkzV8032Mu4yxu85n9fLwVWD6aN3pWXwDW23extHyy2qH2/oK4/AXGsP/8pbt/rMq73C06FeVd9qwbLzBn24+AEBAPL3T8BDQghFEyYDKUSVZMU1opNHoMNIlSgnmBmOlv9YDGmsiL1RIiJV8XsX8w6R8xrxONgoYsXL2niUjL4I/5KiZACmgOvaXI4DOgW0sh1l6ARPREXOUSg5bZR7BHDGSjYJcqWcjgNEjXaasAVPFFyAFjhEl5+AvyZBSjjiUAnmj+DjLho31/D9zOJLRItPcnSdKDc5JzUsKucuOM2LkBMTIj0AjfL6NoZG7GHLqM6N1bIOuHxVbVvZCqs+5qSEAPirVrLATF+YYNjtejzRuH5XubTQOWSHntpgfi0MgE8JkAP04Bgon9Z5CQiWP3VNYqdR+DOME0i8N31dzxXz+m5iHaob4Q8vzAZBCGEVUGlkJRuwrcWRFxUPkCqcIKTeW89qFIrTLvfYTPq28Ls0PI4BMbNdz6F1EqEQgOQQv0OQhbPE4jz/dT3GdUwgjK/Rh1IA4/BEypIiJvjCp3aRcI+uLUTI5rCzeWxNZgIygXlNOMYcMJjnGudGNSMr7wBQggq5FAHo9ynoSn9VLNAW77cWYSxs/uxi+CA/0KhBYSfRUT+bDhgiAITci2KDJkTF5/ByqpzLjhs/72fWxrmNDSI79udi+y5X3PIwtAKKX8DqMmCCeFEqbyT5NZRCwJhoMlj6LQcDpsX1W/nNDwssRLTPly7JsYp/JEx0VX8/1ZNYmlxgJkhRgNvRim6yEy1l4HeelCh8jOXI0z2gMqT4aBjPjjY0P8uDTeNkTnRtAnLsqbMzJjRE27DFLtyjfS1kYIEeViJje7HUuN4zt6NHoEj62Fd8PgkGBVDQc2ZDgtc28XSLKPQ+DhATEAPjibuCqryqJ5gEYvUnx8eR822Tkiem9IJLXWowgNuw1Y1s3Nwjy2zS7J7ie7CmCRAReu5hjnHke2WgC6J4Jcoyo4D4AkmlueHCd3BuYxoyx/Twvc4IKm60Le7xziowku3wM+Rxncphs3ojZ9a8xpvj4LQ9hmNYlr9j4/5ahePuVkV17u0/ug9dm3uex8lXzSG3MDa/8+/xHOz/G9e4Yxy0Z5de/Zpx3Got3jfF15dj87ihv5MX8TfkrL++0YXlP7/DvPfkH+IvuPQDA++YSAPBpfw/PhlN8u3qGratwpg74dLjAd8pn+En3EA4C3ype4Kk9xcEXuFB7/GX7GL9VvsCXwxlWqsWF2uN9c4U2GPyfm9/GN6pLHFyJIShUcsAQFD4sXgIA/uzwDdw3OwxB4aHZ4IfNI3ynfgYfBH7e3cO52UPFp2QICgvZ46Vd4WpY4F9afYIhaLy0axjhsFItKtHjnt7hTw/fxMFTTuh9s8PBF7ix9UjTAI+HxQZGONxTO/x58wGGoPDIbPByWOFfXv0En/b38GV/it+pv8An3UPsXIn3yyssZI8hKPzj3Qd4UOzQeY37Zocv+9NEXdI4g8fFhuhWovf38+4M5+aAlWoxeI2dK/Gw2ODlsMapPuDGLlDJAS5IbGyFc3PAJ4f7uCj2WKkOB19gb0vcK3Z42p3gG9UVnnanqFWPy36Ji2KPl/0KtRrw24un+LPtB/h48QLPhzUaZ/Ct+iXu6y3+ePtbONEtGlegjOtRSouV6qCEj3QuHj86PETvNU5Nk6hZ3itv8GpYopQWX7anOFiDP3r0PQDA/3b1u1jrFg+LLV4OKxjh8KxbjzQWCPiwvoQSHk+7U2jpcDPUWKoeQ5B4XG7wql9BS4ePqxfYugpfdGeoVY+NrfBeeYPP2nM8KLZ41p1AS4e9LVGrAVJ4fHvxHKeqwfcPdE9br3DZL/Cd1XNcDQt8VL3CD/ZPUEqLM3PAxlbY2gpL1UNLh1Ja/OxwgbXu8EF1hR8f7sMHifvlDv/q6sf4QfsePjncw5lpcKJbAOR530Q0ilr12NsSnSfal6Xu4ncFIzzul7s43h6nusHWVXjerXG/2GGhenzWnOPjxQv88PAQp6aBgsfOldjbkjhmyw0+a8/wpNrgZUdyuuoXyRt8v9zDBYFVjOX8vD3DN+orfNqc41uLl3jRr7G3BXqvcK/cYztUsEHiYbmDlg7boULjDGyQ+Jsnn+Npd4qn7Zpog3SHtWlx3+zwF7vHsNHDvdA9VrqHFg4vu1Xykt8vd5Ai4IvmFFp4XBQHPO9WkCLg1DSp71PT4mao8LdPf45SDvjfX34XRaR5OS8avGiJELxQFoV0+LC+xEL1+P72SXqWazXABombvkqRB99evsA/vnkf/+LZp/jh7iF2toSOGty/cPo5ruwCvdfY2QKPyi1+vLufNms+WBC5/U929/Go2sJDJL5aAPjD8x/j/7n+FnZDiQfVDqemwd6W6R78k+uPYL3EvfKAzw+n+Gh1ic8OZ3hS3+BFu4KNmrUPAmdFg1JavOqW+GBxjct+gfvlDp8dzvCg2tF6eIVdjM54VG1xZg74ZH8Pp6ZF5zUOlqI6VqZLHLrXfY0n9QZn5oCfHS6gpcduKPHR8hJDkPj8cIYPl1d42qzRe9ooPDEteq+wG0oU0uFfu/cjfNI8wPN2BS09HlcblNLin9w8wVnRAAA2Q4VCWny8eok/vXof96s9Plq8wveuvoG/df4pvr95nCIuvrV6leihAOBZt8amr7HQ9Pxd9wt8tHyFzut0X98vd/j5/gIrQ9ccrEHrDB7VW1x1C/zuyZfp/eqDwGW/xHVfp+iR9+oNGmcwBImDLWLEh8ZHq1fpHXE91Pho8Qo/2d9HrQa86FZY6Q5aOuyGEu/VG/zTzUP8K/d+isYZvIjv2MYZlNJhqTtc9os0/qftCb5RX0FLj7VqcWNrDEHhR9sHeFJv8O3Fc/zZ9n1cFHvUasBatfi0PceJpvV83q1pHO0KHy6vAABPmzUqZfGkuoGDxE9293FWHKBEwN4WODUtatXj5/sLerZtibXu8GVzkjZ0T8sGUgS8apf4cHmFxhnsbInOapyWDR5XG+qrPcHjaoO/3DzEt9cv8bRd49S02LsC3109wz989dHbqhupvL+4wU93F/BB4F61T9FGtRrw8/05zssDNn2F9xc3uBkq9F6jixvIH65ozJfdAo/qLRpn0EZMiA+W1xiCxKavE+I8R/tIBFz39NvPm9+d1fju6TN8djiDFAHbvsJ7yxtcdQu0TqNQFLmlpcO2r+Ah8Kje4mW7xFnZYDeUt2TaDOMG+tp02NsCS93DBon9UOC8PKD3Om3WF9Lipq9xXh7gA71jnJd4vNygdYbwLEyH667Gri/xcLHFs8M6bTAzNsVp0cIGiV1fEkUWBHFSR8ulihzUUgR0VmPbliiNTRFB3A7xQY8OBH6/toOGidEvKkZcGOUmuBWdVYkTmmQwrrnzAnUxJEopRr7nPlJ0UhYdw7RMRvkE4Mjjsl7S5koYkdnZROKNd86517w5HM+r2F+OMeGcRKFHai6+njeKOQLJWpnwGLgkHJ+0+S0jJsX4fY74ncAS4yb9HNU8R0PnY4wlwZufeZvHKCwnaNgchZF9f3P0nln5L77eZb/UEgLlK/01Le80eM9v/14d/vP/6WNcuwX6oFAIhz4oeEjsfYm1bNAGCo9tg8FSdtg6+oFcqRZDUGQoigGXdpUMKCk8KmFRygGdN7i0S5zqAzpv4IKEEj61AQBXdolS0MtwIXvcuDqdO7gSZg7rBaALGoNXODd7+CDRegMlKGyTDaMbV8PFrS4jiHuw9QYqwwXnsN9KDriJxgF7X091g4Mv0HqTuDjZYDDCYQgKG1slrsyFJE5LBwkFDweJUk6x+jmsmENemcfz4IvE58kvy85rGOHQ+AI6coY6yETV0nuNWvbovIEUHp3XKKVFEzlD17rFZb/EUnfJKFypDlIEbGx11NPJ3JPMq9m4InLquRSOTPOV8TwptE+qG/gg8KJfoZQuyZDmrBJVjZEOtYrgPdFDPngyaj0ECmknHKEeAo0zkf9UTpS5xpkUGs1cnivdQyJgE5VwHyRskMlwLaXDPiqXPA/i3PSJC3RvC2jhUasB+8jJWkiLk7hZsLVlUoaYJodDqm/xV2Kkp2HeT6bpYZm2TqOQDlq6CfdoHobM3v1K2VSf++ydTuNghYrvrz6GUh9sgSpye/ogYINKa81y5x94XmdSylSKXOA6hXTJyOEfaFbiWYk7FvnAspnLiX/gV6aDFh6X3SJFGnC4N/+IkgyG1G5OG8Th03ztynS46WucFqQEuih3IUICKuMxFBGgjAuHSDfWJC5Tvh4A1kWLbV+laA2eg4xt30ReVyMdccvqYRKazoXnL0Hh+qWy6R3J9V0cYx4ir6RHY82EU5Xlw/ceh6GbbG4hiKR4dlajjCBbPlOgQibHHKSNFVkAaAYz4bgFgKXpsRsKGOlRKovdUGBhBhwGk+ZaxutzPtM8EmPwEmVUcn30+BeR25UB0zgChXk+qxiuzkobc61y1EARFUUAt47zuFwcG4fM53RPzKXaDhrryLE6zOifUjRIBFbLeVr5/eqDQG8VjPLjnOJ9JgD0rNR6SSHTgsKeTQq9F0nRBpAA34CxHgAMGQo5c6kC0UEcnyMGgONImBDvGQ575+ea0wHyyJgyA6n7OsUoAsfjaJYU/SJCAp7zXkwA4ziig8PfWWlnpdr7MQrH+1Erz+uwocD9eS9QFDaF1nOfuUHBha/XmkDTOKqGjQm+PvhRYedIlDwiJin3mWLPkTE8DwCJtxWgKA+OxJFyRFCnk9GLLUbe1XkUCpeJIeKmIfR5xMKcWmoy3nkERRBjJEGGo3DLaMldnvmpufqce9pE9p/Dfo+5JF9Xjnkf8+Ov+5+PjyMTQgbOxKfmY7mrrSPtvXH46RvO941txVwub2nC/PQ/+I9+5QA3p+p++IPlv/VLb/fvb//bX/ncgHfcY3lpl/jvX/4dbG2ZFBwAONgi5hwOSem2QaKQFofITVYpiz7DjmYFjI2JUtmk7G26KuXZ5YpkGXf/D5F4ns9xniArPzmfY04074LAyvQp9DZXPo10OAw0Vs7L45DavHD+lophtT6MOXwLM2BwKn3Oz3NprR49oDFXMP/xYkRbVohs3A3kHTAO/eVdwvyHgJWb3ipoNeYCctguH+e8upw2REqfEGJpJ24kldfS49CbpGDlhUN5efzdoJNMk2IbcwQBUlBCEPhxfY92fdsSAiOybr57yHIxyqV8SgATeaVdxNgGk8+zDPPdxvH6cQev0DbR1nDbeeivUS6h0fIacD4az5sVBxVz74SgHcq6GNANenJsJH4fdyV5LbgOo8Lm32nXk9aKdzi5b2MoL5DzHxPaqUBEw1Up94/nz/XyvEEeFytDWrtEcM85fT4qEjoiYFIYc6SaiQilzo4hyfzXc65Z/LHn45bRLLM27aBSnRTyKzBRnJi6BgC6drw3GUk26RiCaHiECBN+RFbYmKoHALRx6HtNCLqDmjz7xrioyImECssKJjCGeDNVEK8p/3Izcm+IymiuUCkViOOSFUEroYyDi3mWvG5ccsVUqTGfOIWTx3rMYygV0RQ5O8ZOcj4ggzxxOLSMyMTpXokotgGAtxJS+5Q3yW0Hj5SfWFSEJMyosNye7RWFa/O4BMnbdhpC+YSGq4yHG2RSjBjRNI3biSkqbMyRTHPitbVZ6HK8ZwWjlJox1F4IwFsxhoQH0ByjQjs5znQ9sS9pPHxPMmVEVQ4Zl5rO3VQuURvla04h7JIUduNTOLsQEXgrKvmBc1aNh+tjaHrMzQtZGHRq3xI6KwBCZhUY0Wp7NSKSBkQZgsK8VZjmKqabLda3khBWPckz5XzGtmFloiTaMyBfDMXdRbTYr120T9yaEGEMUZU03xEw0I9h36wIc/g3562y0ROANkeJzeebe2ny4oGOkWfj9xTOnive0bARQVBYO8s1IIVNAxhzVOO5FDIrAxkfMSw559nk0G/LOadxrZwe63E7cBH4zYrxXca/OSzDDJU2AfaA+4offQ6kg8n1KWR2bsfkiK/cLxtbk5DfO64PuE0NMrNrQ/ZhYo/F/N7cDhJz421ecsNQYNrgXQbkvL38ByPN9Y7+jrXB//Nrbhmq8fARW/x2+29oTGN8Nc2/f10n5W/KX215pw1LGySetWssdA/rFa66BQCg1gMWuserdpl2vms94Kqt0+7wZbPAwhDHYTMYrMsO276k3WEvsWkrdJY8VfdXe9y0FYxyiSpEgLgwQxA4rVvse6KA6AaNVdnjxZ54EetiQBNpQKSg3EXvaXe2UA6f35wmg8LGnXeimFBY1l0ylLaWAELynEgfgI3NeCwrojvYRjCdV9craONgtMOrmyXKkoyym0EnQ2JZd2isITlFYBb2/EgRsGvKSd4g7ZAWIyCI8hgipUGiGXAyGR7WKlJiU59kXOwbAhvZHUoUBRkbZTngcKii0lvgZkOclttdDaUdlPLY7mp4J1AvOwyDmhg6rGTnoRVFOYDpM9h42+8rSOWAIGAKCykDnn5xDgSgOu3grMR2UEmB1XEnneW+7wjOk88z7QUbC1LTbq1vSXFiugCmHZCFS/+BbPPPC+zaBQFt1JxjScpwuy0p169XkBUZmUwpkIA6osKqSgdvJYKVUCUZIMFK7PdrhMITj6aVGagGIDjcJiqkDB6SK6gpt4+VE86TLDwd94AoPdq2JioABvnQI7gKBgEUHh3n7Pl4PVNMsMJmx7b7toKoHPq2ItTmqMwOvQI05ZgOvRyVudjE0ESuTJMpmxHROFRTHsu0o8y5dyJgYKCWRBEgbyuuUXmG8XDPCBXWn9hx9zueSwqkB2wca6gcbu2ks2wB2FYhLC3CroKv3STHKhwqUggFKW5ukJP2fMz3DKVPgDMhyyvsNzXc2lE+30D8ngz5H1pJ5xCNnMIjtCVC6RE6SVyi2Y9+iIi8wQSgJSTqMAj40idkbQgkwBP0EsGBEKkZ4CQiQDItRPCxficpL6sM6V4Kkb8RZQBagVCMyn1gcJEox7ApgRJAEeXaxYEvPCEJA5Q36AG0AljScdEJYBkg9gKiCmm+kq+PSprXcZw+Ig7rMPJjxlwyaQFXhjGXUpKCTpybIO7FXImKbXL+oewxooey7SZG9Fm6BwAVUbR5XMIh5f2pTsAuAsy2INRWE0bE0UC5eV6HyL9ISN2qjYZxQkCO3KGdIJTZivpI6LOxzyCQeDK9obxOBEyReUHcpJLvHQ2IIY4345wUFoRUzhtAcc1cEaAPOnFAQtD1knkuDct9RGdlY0S1wLDC1y6qj6iwQOLhBGhurhzRXieIyPFVojok1Fyux2ubowkD0fbJ1ijosS9uUx9IXny/8Vyn6KcYUWF7JMRcH+XG6+eL2XVxDaQdxyV7jOA7AWBeyYQMzXyZ/Thn5rHk632B0SjhPP2I0JxQYcXUcExclQFpzTkQjO7zEGXCDwgLaZQNGcl83cj3yIijEy7IECZGZBBj7nFqV9z+nHJFWT7xPTG5DjhuHCKrI2b1ciM2M7LSf85flZgYj/k4kkwzg/CuMRzr46jResyIxXEDMIhwHDjoNYbwtM0MBRfjmr9V+TUyTMNf41DYd9qwdF5i01XY9SWGyBcYgsBBkaHUx7wG5yle3zqZPEGDUxjiDj+hcdL1OQKktQpOerzcLZNHMfeSsffEBZFCQFxsh8/1Vt8ClAkxpOggCL0RAPHzxXocutF09IvBO/a9GGPZqZ2xvvcSh7ZIQC+DJN7HoSeOQu8Uug7oBVJYCkTAvimTF8bHGHxqPCqoaV502CePEZ3PeQWDF+SFAFFQ8W55fl4I8gCFQHW9E2i9pGsd/ec+vBVomwLeRWNbkKKLQMcRYj+xvwSqEscfAHTe0As1A+wJTsJHcJMUlhOv61udDCoX12GY8fYxqEvytEqZdkKDIyM2ydADro+/xDYQMEpQBDrS5WzOXD+2w8aAAHy8LngygDx729iQTj8+YpQ9g7CAeURE3LGN1/OuNv/gONaA6Ic2RDnz91TYAAvj/zDItGseegKmCf0oEwyxDb5miOeGuE4MyCEwDUcKs/YC6FoRxro5CBEbf/HeS/Nm/gmM64wcUZOP59dDjMAibGD67HwKbaI1xiBHKqAhjjW2EXINKVcSnIhhSGJch+hZSHMYaH2FlZMQpvQ6CUjjFDb2y7IGiKbIZ5/5sgR+ItL5dO+pzAjyAmKQJM4hehDmYDPsWeCoecfjEWl8ISr+SQagdkS8J1JuTjQOU3t8nPkAIy1Bal9g9LTEdREsoBAVahGSkQUWkRtlzueCHMf8OkUtlaiYp/lHWcw35lmpnXgKQvaq0pieAxJIDdjQyF9t3BX/esdbyJswUR7B3l8gGqpZHUHj5/l5E5KB4w09X66gnoQW4zOX+hFpY8OpCHoiAxDpJhLCqBjHycd8IZIsvck0V0PvbK8ChIh9ynjvgPr3mcbiI80MjYv69myExVccGdHxO78GKkwRbN+yeDOuF9NWASRr2kAhuTqM/fA94Qsk8CR+hbCcHBuIuUHF9xhw676CIOOejZYggFCN5yYevXitKzFStHC72fUTz2CsM2lfZu2F7LmZGdB5Pc/gPWLaXjJW8jFkm2e5wSEywB8eRzqmM+HMZcTty2ydkpGXV47vEsWUK9kzna/rvH28gfGVH/uqks/9TqNvpOOY/7+zP54D17vDwHqtZ/ANjLK38ix+hSF5u76YyeVNhfqb8ldd3mnDEmIM3+TEaE6ctoETrAnp1HkxQTTlsFkXcy+G6IXkXBYpAkykfLBZiOYxxNEcJVVHRE4KDxtRGvmp4TwDNgiNcSnUkK8BMKJyhvwcYhtx+gJj2Jy2yUBkJFBT2GR8quR1G8/T2MfQqpQXIcY3uMxRRwF64Uo/vreCGMOZ1DhHEQ10Kem/ACY5ERwiJxX9Z6RRkeV1yEiyLPW4DZhC0fglk8mEvapTedPHSd+pPfrzXkBFDyGTs4tEiDluJNCYidic55kMBQ5FzfM+VJ5bG1/mKvvvZ29gEYDSJ2V1Unjexo95KGqc42TOMexHJDRUQZ49Bitlz16SY7jjF9OPnjRunrnUsv6AOH9+6etsjtn00zW5HOa/Jiy/pAVkxzJ0WWDW/hyyLwChdNmxkCkIsx/WO37Ek6HI5+TYFHLvQfwcIvdoTs/ASJh5XyFb4xQomq1BOqbpWPJEZoXayNrWMznmO+Tz3XIAbsljpfNBjPJxZVZXBPJKlHQ+6HCrLUQ0yXQ+E2/IxsUGs4/3nggCnsPe0tyz5gP160UYDbMA4oVF9vk1SpArxsFQm+N9GvSsehnnKgBU9Nmxp5OL4fWK3/2R5ycL5cv3COYKlzfh6KM3V8qOKmrpecq+VzguCx6vBzyv7fx+zz8X0zFDjDLkcVgRMoM7RxPNFz+3DLKJ5m6dNPixnsjDIW95JcbF9GWYXDoRUj6/u/7/AiUf+VyMt0r+3L3u/LFxzY5NxBiIj/VOJf6r5vi6fu/o73g72Q16h7Kfn/4qb9mt8R3r+y3n/IsaTG89jje9/nXlzrri7v9vdH+LN1vX147haxiPb1K+xnP5VjL9tSkB+Doe13ekvNOGpUBIBqJkz1oQSY+iXB96elRUCl00xtjbpKPyL4FbXsXUT8xlyzkD85y9IMJU91Yjx1v+n2uwcclFSkCI0dgcHUQjelduTN51P8q5EyYIjEn6uOXtzJG8Eip6rqxnRhWDCGDmtYXIKA4CsrpjPuld+0qC25u94YIcDetbhhfiu3P+NuEmJsrWLME/Oz65JjNCpbpdXyBk8s8U5VsaIF7/Umd5I94Td+2aB2RG1O0253O6NWc1Km4Tjr0j1wdk9B3Hxn0MIEHgiCItbteZdJrPbfZ/Xo4pvHl7udE5qRNmyuP8/uExiOm88k2K+bh5nMfmcuf85gI/cp/MFeGj9TKj5di5udVyrIg7PrOMjng1bn0+tl6vk8EbGOpzEIljgBKc2yWOrc/cUMhLfszPrptfm5c8lygBehyZJ28o3VVma3HXEvL3iafjyHyOko8jGz9fM88Ry9eKvdazvZaJkp+3K+bnpxMQbFCzt/zIvKZGRP7jI6bznKyXmLTx2jKTy51Kv599P3bPvE3J5JrWMG/3yDq/sRL/BvOevNLyNX9N/ddtcEzyDifjub0Wd44/tXFkLLm85vdy/gzMy/yePFLextC7a+xvapj/UgypN2njSHkr4+kNIyzZf/Da8lX36xv08dbla8roa/f3qygBgH9XBvv25Z02LJUIWJsW+6GEj8iEAKF12ghYw5DQNiLj9THkb2EIZCWhxzkFJV0iZlfSp7DYzmqUpo9AKWNIJdcjvkgyDHVEjDMRxGKIADUjEWO3wY0AACAASURBVDsSP6SLYDT58TS3CHpzC955prQwpLUUQB/DUBWDC0XwGOcldOSSZKOY58AhvsnLGOVFnyPqHcbfTBe9t3yM0fh8dv3o3cUErprzIJmLkYFZ+Dx99wkSO8/XZFAWrUeQGD6fj39u7DGgSY6CR15lDvGlcNKqpsSfrovAOFnbfuY9ZFCXHHwmJ3VPEN+KAWjE5LyPeYsM7pF7RKUiDzEDziCQvDgnVGkPO0Sgp3g+vychAjyHbWceeikINMbHkGOB0TBmvkog0/XY6I/rjPw+TB5on3JaWfb5+qfrecNE0vecCxNA4qzMB5BzZTJ4iIxgPYjryEYzf058oOy515wnSoYJA5FAEDcmdU59srHNIdMEvBPvGQ7tZP5NHmcYxxqcTN5018tkrENk18djBIoCyn3MNdOA0RsNQCifAGr8LHRXmhF1EV6kuohrlQBSItgKz437kybmXjLYTKZ9igj0kuZmBYQe+UmTDFh+vBkT2wpxfVP9NM54TQyhzAFVklItMXoNvUCQntpgzkIGaQFG7s18PLyREj2conAUus51eK45DyiPTwcKtZWx3iBG7k5+QDIy+nTt3ICbgQIFSW1MHHS8ucFzzkuKkcz6TEaSGNcqyR3jd5edzy0KGSiE2eTyyeqxbAPGNZHZXLkPBneZb2bkwCg8R+AWOEwQIc03fRcYvZRyPM6bD4mPk3+EBAAHCu/lMbEcs42BFNKdc4gGTEO9v06RGO8nlh2yOeXyi2udjO24lgyKk84FPiduiTa1nW+SZO2J7PkKnKOY35Nx/UTAlE81PfZxDWbuVNrYyQ9M+56MJSkE2f2W3+ecg6wyntdJXxg3WLL+8kcm73KyCTSTyTHDJN3q8+uyunfxVE6un4zvDe8hka3zvLDs5t/f1ubIrzsmtGwob9TG6+rg7npf2f6k8lf09ZvyzpZ32rCUwhPEfwaV74NIiKwAkiHGBlUho8LEhh4EJAJKfRt+nWkHjHKzfsMEzj1xHMb/Jno2AcAql7yqORUHQ9ErERJYDlNmcFHFqHHnzyDD1QsREoS9wOh9BYAiUGgwobDKiCAa0rhYBlpNt7fmKKsijo/79GHkd+INFwYlokG7aDj7Uc5KTIyYdDzm47B8naI1kNGoZ5lyiDOHO7MRo+K5fN3yNQLGcOXJnAAiNRcBWo9Q9VIEhMIlbzJfO5cJhzLn3uSce4mPsZGZe5KFAEI0Hn1mWPKc+Hrug86PkPZCBGiDW/Kcjs/G/wEhjB5lmpeEyDSIOZx9WpswXbNkbMlRkREiIIhxnYFoPIow9YrmP96CDMWEqioCgsgQaee/4DJ+lmw8TmVGY55uKARJz5aUHhACXorR4cX19PS+SL/Fko3pEI1vjJ42llfqaFQuhcxoBwq+b6bX5xD7AmTA3b5v8ueTDMAxLHwmRw51jka1zOfEfRk/roXPZTYa3uNahfRPaOqPgJtE+s8G+q0ikMKhhQiTeikKQo7ygohDTFp1bqRka8Fj4zAUmXGmxeclHNP6UthyPM7Xp/XPhRk1WBHoF5GHosM4r7lcUz9hGtKeg4fk+Wjpcxwrh+Rm90QaL4XPTPtJbYZZfYxj5/GEI99ZJkkxPNJO6odf8Gx8ZsdyueYlN/6ykkKs+TOQjIIw75vPzYuY/Y/jSOHRdxoKo8E1OX7EsHmrwvINt+c8EUvmfU23Z2Z8i9wQF5gY0Hcq6GH6WeSbHhiNyjS8MGsvA/RJbczbxazOZHKzZzVMRZH6yWWcfU6yn9/eDMSDma0VxuOYHbvT28kNTO7p2zJIfc9eBa8L532jdbl95d1jO3btfDxvWo5sPNwqX9Xe157jmxcxW7+3Kr+kMfxalHDsZffXo7zThiUAtM5gqXsMXiUC4ZXuUCqLZ806GZ2VGhInnA2KKESURalsIv696etEOdJZTVxnyuHRYofLdoFSW+Kw9MTXtesLhCBwUR9wGAg4pxkMzqoG1y1xSq7LDs1gJu+43ilUmvp+vltBSo8qei4bS6A7vVVY1x0ZUgCaSPBbRPoPfjqbgVBhu0FjXXdgZNrSWLzaLFEWFqWxuNnXqMseUgUcepOoAE7qFu2giSB40KgLQtgYnIRRPtVlQ6cyFtbJRNNhlMOhNyjicebuYlqObjBYlD2hwsZ2mEesNAOarkBVEC1KZSya3qAuBvRWoWkNlnWPQ1vAGDLQd4cS3kssF13iDLOZVzPRUcQf6bIaEuIt02u0nYaOEP5VMUBKj6tXa4QArM8PsFYlpFvvBYwZEVq9FzgcCBKQKR/YyyoEgTGpyOllWwOhPJRxievLDgqmsLCDhjY2Q7QlD+/QGMAJqEU0DgV5GrvGQKgA12iYxUCbFFYSdUPcQGAQHFNaeCfRHzR0RevprILfGaDwMPUAZ2UCIYIMZJRkHkKeKxse7GH1Q+ZBix4jVRD1ALyALB38QUMubEIjFYqQbb0TCL2kOr0iGgIvCCU3gij56EkIVgICdK5TdM1OQxQujgewHSHwQgC+02DvGRsy7lAAxkNGZFxv5YgMW9s0tmBlAisSxo8GYURWFTFXMwwZdcIgEyJtOr7VpDie96NXb5Dpeh8VS9Eq8i4sXLZbFJVkpigQoHpLi7DVVDfz8oqdovzFaPiIQSLUbszv7CR5fBYW4RBf85FGAgDkRsGdOMqPHCTEIBISqWwE/JpQc4MVlPfbKITSQ3SSkHbZSBEgEB4vEEw8rwO1V4QEsBNkGPOQe0Kh9XVEZpWYerXYq6E90Mex1T55v0QTIwVqD9HIMWc1gPqL7QkvYK4lbB0IOdYDspOE3rnKUWHJ+NF7Cbum46oVsCsPvaPreezqIJFC+kIEutEgj5AHggZkG+cc0WIZFVZa8loGFQAJyE7AmwDdRG8m6+0a8Hr0Fskuzgkgj1QgeSruR2BEhS3pOm+oP4DOyR6wi4DiRiJIwBcRFTaiawpH6++PoMLKgUGQAFsTKqxqqT1pBYSluTOaa0Kd9TQ/bseVtK6qo3naZY4KS2i6whPyrBxEGpvjXEqBhArriwB14LUmechBJMRZX9C4XQWohgB3GIxJN8Bwgq9dZEftsmySMefpuByQEFATmm/8r1r67DUhtIaI3xYUnYPIAIECCImU8cLiY5zvQZg9YGs65hWg2whWFJ9PMmaR8olVRyBBPMYgaRwAHc9RYWWGzAvBcxJpPsJT297EuYgR2Eg3SIi4jArrdew/IuoKn/XFqLARWTiXGUBjSHNRSAjELHfhQrxGTGlBWFbRk5vOBdxGhVUCwoZY9ytQYfOSWcJp7GIcwy1U2IDp+/Muwxjx/9wQzubBnt67wMbmbR6TzaTtfBMkH8t8I4B/iuZG+7zkiu+x40fKLTAi4Nb3o+3/dTI63/HyThuW5/qAf//JP8D3mo8wBIXvVl+i9Qb/tH2CL7pT/NHj7+GlXeOJucJfNO/hn198jn9yeB8A8DcXn+LT4QI3doEnxTX+0fZD/Ov3foiftvdxqhs8Mdf4VvEcl26F//nl7+MP3vsJbmyNnStxolv4IPBR9RI+CPy/24/wqNxgCAoflq/wvc038Xcf/TkcBH50eIQHxRYqPs0uSCxUh6fdKZ51J/i33/9jtN7gs/4CF3qPlWr///beNNiS5Lrv+53Mqrp1t/der9Mz0wPMggEwAAVQgEhApmlToAhAEkPQB9qmxAjRFkNb2DQlS3aQZpiyP5k2FZbpCFkKiZIgiQqSEkRLsII2BEC0GCGKg4XEPhxiNszWe7/lvrvUkpn+kFl1696+3dM9vaFn8hfx4t3aMrNOZVVl1jn5TzKpOZEc8LnpYxzWPQyK+7N99us+54ot+rpCiaV2mtO9XXJVcTq7xOcPH2VuMh7KL/NKscMPPv4lvlE8yHPzE3xo+yk+d/goe/WAR/oXOJFM2DMDPrf3CCfzCaVNON3b5dnZCSqn2EoKpibjLf3LbOs5s6Bp/q35MY5mU46nE2amx0Gd82j/As/NT3Aym3C5HpKrCoXjXLnFiWzC1w/u51Q+YSedMTcpF8oRp/M9Xpgd4x2jc7w4P8owKTi72OKh/i7PT48xSgs+sP08/37vMd41OsPLxREOqpzfN36F+9NdPrP7Lo5mM6Z1j74umZuMYVKwncxJxTBQJZXTfHXyILVTHM183gAP9y9xrtwiUzUvHB5jUvX4H77n1wD4xbMf5Eg255H+RV4tdujrkuenx8iUobSaTBneMTpHKobn58dRYtktBxzJZpQ24eH+JV5eHKGnat4zeol90+eZ2Um2kgWXyyFv6V/m2dlx3tLf5YXZMXqqZlL3yHVFTxm+c/wix/Qhv3X4mA/Dtgnn5lu8d+dlLpUjvmP4Mk8ePEpfV9yXHXCu3OKgyhkmBX1dMVAl3zi4n61szjuH5/jSwWkATuUHfGTnq3xt/hC/c/AQp/IDtpM5AId1j8vVEIUPLZ9UOVOTMdRlu1zYhFQZHsz3uFCOOJZO2U7mTEzOM9MTvHVwmbFe8HvTk3zX1rd4cv8R7s/3ATioc/arPn1d8XD/Et+cnuThwSXOLLZJlOHMfJtBUlIazYn8EIBj6ZTKaZ6fHuPdW2f46v4DvG/nJZ6dnWBuUmZ1xn35hP0qp7aKB/oH9HXJ5XLIfpWjxPHBned5YXGMF6bHSMSwnS04mk55sLfHF/bfSu0UC5Oyk83YSecocZxd+HpR2oSH+rsAPHt4nEwbTvYmvDg9SqZrjvemXCyGlCbhgcE+Z+djPnri6+RS8stnvptB4ltrJ/NDnpsc81MFiWWQlLxrfIZtPeff7z3aetvH6YLSJlwqhoySAovw/u1v8dnz7+TDJ5/ic/sPc1DmZEFU6vuOP82ZcofaKg7qPqfzXX5n7yEyXbMwKe8Yn0OJ48u7D/LW0eU27UFSYp3wQye/wK9eeD97RZ+HhnucyCZcqob0VM0Hxs/xf198L6XRPNA/4OmDk7xn5xW+eXiSR0cXeXF6hNL6+W9Lo7l/cEBfV7w82+Hx0XkulCPu60149vA4bxnutvWn+fD36Ogix9NDvjZ5gO103l7P2mqO9GZMqh7jtODcfMyjo0v+GTK5n0wZDqqcJ7bOYp3w1MEp3r19hmcPjzOrMzJlONabMjcpB1VOpmp++NTn+OL0EZ6fHiPXFY8NLjLWC/6/S2/nvnwCwKViQKIsH9x5ns9ceCcPDvZ5z+hlPn3xCT50/Hf5zd3HKE1CaTXfufMyBsXx1B/7/PwEF4sh43D/XSyHvGN0joVNOV+MScTySP8iXzo4zfHeFOOESZVzUOU8PLzM+WLEB3eeZ2FTKqfRYnlpcYRz8y0/jZZTPDE+y37dp7aag7pHKpapyXjP+BUswsKmXK6GfOfoRb44eSsjXfDS/Agne/5e2qv6PD48z5OXH+Y/vf8LXK5HvLA4xlay4KDO6euK4+mEs8U2ryx2+I7xqzw7O8HvG72CEssD6S7nqh1mNuOL+2/hbcMLfPfoOf7N/hOcyg64L91nrOc8NX+Qo4m/b5+Zn2QYyvHE6CwAL8yPMU4WvGNwFo3lN3bfzoP9PVIxXCjHnM53GeiCbxw+sPKceWZ6gkQsszrjgcE+CscL06O8/8iL7FYDLpdDZnXKqf6EJwZnAHhqdj9vH5zlt/Ye5f3b3+KZ2UlO9Q7YrQb8x1tP8yvnv+t1tzueGJ/ld/YewjrhwcEeI1349kg64wu7b+X0YI+L5ZAnRme5UI4pbMJ+lWOd8L7tlzg0PV6cH+Wx4QUO6x571YBJ3eM9W69QOc3ZYotULIkyHElmHIae2LlijBZHEtoS+1XOHz72FF86fAuJGC4WI941PsOrxQ4Hlb+uqTJkqub8YgzA46PzPDs9wf35PnvVgGmd8dBgF43ludlxDsqcQVKixHGyd8jFcsjxbEphE3bLPm8dXObQ9JiblL6uGOmCM4ttHuzvUTnNy7Mdaqt519YZDuo+lVOc6h3w6mKHc4sxj4/O8/TkPgAyVTNIKmqneDDfo7Ap54sR46SgcoqDst/ONb6VLchUTU8Zdss+F+cjRlmBEscgKenrCuOEw6rnnwXaoHAk4Xm5WwzoJxXTKqOfVCF6rcY6xbTOSJXhoMjZ6i04LHv0k2pl/vHKao7lU3YXg3Zd7ZbDTJohRcO0pLaKwiT0dO0dHWnBbjHw85yLnwO8meLNhCFasIyq02IpzHL2gn7q21O180OZerpu0y9MQqIs8ypllBUs6pQ8qaisbqPMgHau8WmZ0UvqNkKrm287v7ZV7bzpibIUYbaEbmRY47ApjW6jyhra4VZh2YV1phNV2BzTLWNDM6RmfV7tRC+Hqplmnu3OOTTXYl0DZX0ffvHa9/edwAHuDTzGUtxGxY57g1PvPur+5C/+AAZFaZP2ZmoeJmX4xNeEmBYmWalk3XDZTBlqp1Zu4IZuZW1uttoqbPtgse1vi5CIoXYahWs7gE1YbZMOgMJRtmW2K2G7LoR9duke2/xuxpA2Ib0iDtM5jyakd/33pnNbDyftlgVYCYtt8tVB2KibDtDayXbOozmmm3e94dgm3+a6dT/gmavYZlN518vc0D2fphxVGHt7xUNog402hYw2/42VlVBhX1a3MrZ203HLsNdlHek+WNsHqlsNl95kt2a5u28Teg2r4UbrHxSbsbJXo+u9Xh9b2Y4htbIy1nQlTHXtfDexHjq7Lg7VXd9Nd7nNrZRvfd2mMq0f23hsX0vwqhtC3JRHNyGqnfPt/m5CoOXqJvD7N2MVQ0jiSllWwugczipErX5i92NPNw8c6taT9WvhNtSBbn3Z+PF503Xtxsg1y23ZVq/t+vZlWTZk2qm0q6G8nW3NoumMpexsF3VlHWzGhOJCumE8aTtelo7dO5/1rxBUW48LbLzIV7NN18PQnGv35uymvckOTVm6Cs7r93BTBiOraax/6W88JMLqmMmGJvR30zVZf6A065pq2XhpXsuL0UmnEXFqtrfqwdJRCu4e383Ldv53ytN4Z183Tbrdc2lYuW5XXm/ZdK275V/nWjceSy9Vu9yGGS+zXTm2vSayWkeaOrSh/N2qulKt1q9X44mDK0OaO8e77vW9WlrruM3F3XiPXIUrvXFXGnRln/U0rzOPK1i3/2uxfs3XjrniPLhyeWOabE7vWmzK63rTu2Z5umlcLzdxy3bL8vW//t980Tn3B15/ajfPlhx1H0w+fMvT/XT9K3f93OAe91hOqh6//srjjHre23G46CHi6GcVw6zk/MGIJIRK5lnFZJoz7JeIOCaHfdKsJkkMi0XKznjO/mGfYb+grBPKIqGap0hiOXb0kP3DHK29oExd+5DP+dR/SRxvzZkvUpRylIuU0dac6cTHyvSHJcUibcVQwDdgksyQZTWHlwegnJ/I3sgyxLBW6HHVirDURYJKbRtm2YxRqyvtwwZLhd4qfWRaodGZxe5muNygcoOdpMigRiUOM0takYd0qwxCMWAXGj2o/XsnNLLMIvGiD6FhpAe1D3tsxC+0g4X24XKVeHGIsL+kFlcpf0yhfRiiOCSzuEKj8ho79eVyhc/bzHW7vxwmsF3hDhPILJJZmKQ+NG6nwhXKj4MKk6rjpA3La15sblQvwxqbcLuF9uF8VlDDyivBvuhDl+uTlZ+vrwwTwVuB3CwbZA5k6m+bdhqI1LZz+/lQQZ9PcqCxqfMhf7XgUodaKGweQgZ7YdxcM/WIhWSiEQP1uIkRApda1FTjtEPPFPWW8SGLIZTOpT7ksBlvY4cGqRRqLpiRT0ctFNmeos4d9Y5BzVU7rsUp2jI3oYiNwIXUq40wvVA+jK7Gh/YpMH2LWvj0zMCSThTV2PrQNuPD6lwSwuDmQj206JnC9sLcernzOvwhPNBJCHkTn7aeKszQhyWang9VInGoELLXnJ8Yfx5NKFl6INS5TwPnw7hU7e1WjWwIqXJIKb6sNOF6hInUmzI4sKBLacPydCnt3H+qEGzP0bvs4xUXJ2xrW10I1cC14VeqFpKZv9bVeBnuKKEq2GwZMplOhPKIJdtV1COHSZfpZPuqzd9pSBZCNbatKEgy9S28amzbUMQmHBCgf1kojjofqjj3599Mf5FOhOKYn0JCFz5kMZ34kNB0LpjcLdtkYR9xPpQunXlbqEIwfR8G6evTMjQumfvwyXrkwx+dcu1cjU05VB3Sm/vwxnrYzMPoy+eUD8VMpqE8ITROVX6bTf11zC8K9cBfQzFCMvf2K7d9SKe3SwibnUBxxJc5mfnfvV2hGvuyebvKauhjb2nXpnzJzNdlG6ah0YWfFqI7CbxLfOijTSA9ZNmZZDVNJ5DOaCeztwltaF0y69y/YbkeLMulKp+/S3w4aLUF+UUf8md6y06JuBDumgabT6HOl+nr0t9TTnlbpFPQc0c1ElQFqvbXq84FVbsQaittOZKZv2dMLoiBZOGXy61lWKxLQJUOZaAaSMhTUJXD9P1zrQ3bdD7kNJ34fVxCCCV1bTip6Xm7VyMhPXStPZyG9NCxOLYppvH6SKb+3H1oq6+X4rw9q5GgC1+uZO7a8FWb+Hdseujrusl8+Zpr57S3q+vUGwBd+WsvLoSZstzmNPT2HdVAWhsmc4dJZSnigy9XE6KqFyHvEmzqnzO6BHGOuifLEFOWIdC68vXQJv7aObVMX4zDZP56AZgwR2k6d8tQ2Nqvb46v8/CubEJhBXQR6k0iKONCeLC0nRpVL5993n7SrluGwko7R2fbEQ226oZCt9fLujaMvLmnVL0Mx5WuR0l8frZbbbpflMJvFe7ZlXyMrw+wLFN3ns/u7DtX3d7pnIoJYbvGXwtxDqube0/aEF+fZmPrznUzbA4rZZlP11bNMZv264YWL+2yXG7CWtfXN9va5F4j9NVJ57yu0uHuluua+7zJEZGPAj+PVx74Befcz97qPO7pjuUwKfn+07/Ht2ZHqa3i1IkJc5NyqRiyt+jz3lOvMqszRmnBxcWQdx8/y5nZNgrHe0++ym7hQ0G2j805PxvzwKlz7Jc5ibIc6c04EkItf2/3BG8/dYHCJF4hNqmxTjh2nw/xeWmyw8nxIdYJ29mcc7Mxbzt6EesUF+dDRjt7K94uPz6zx6xKefc7n8M6YbcY0NM1mapJlGWcFLw4PUJRey/rKCuY1ymzKl3xWG31FiTKMkoKXp1uU1vVhnM8/tgFLhQjLs8HPPzoZc7MtljUCUcenJPritImnJls0U8rKqvYygp2w9jQJnTiyH3z9reIY2/Rp59W9EO4RVEn7ZjSQVqyqFNSbbBOmFUpg7Ti8nTA4GhJntQUtbfhqFewP8859sCM/UVOpg2TRY/t4wv25jn5ds3JRw559WCLk6cP2S9yiirh5OlDRmnBt/aP0k8rFnXSli/VhiyIJekwfcuF6RBjFf3MKwRbBzv9BbPKh6IczHOqSvO+7/1dLMI3LtxHLzHs9OdMih6JskwWvRVv4fFHpgDszfsrY1pro9juL5iWGVpZ7hscMq9Tdhd9Mm1WznvUKzks/Ljc2mivQqwcJ4aHDJKSVw63AaiNZl6mHH94yqJOOD6Y8urBFom2DNKKWZVSG0WiLak2aHFcng5ItWFnMOfS1IfuDLKKt+1c5MJ8xJnJmGGvpBdCcAqjKaokjIu1VEYt7Zl4leOmjKNeybxK6SU1vaSmMpq9ec5WXpBqw96sz8nRIecPRwx6Phy0rBOKWpMoy3Z/weXpgHFeMCtTtHLMirQdm9tLK5RAFu6xw0WPI4M5l6cDjo+mHCx6Xs251vR7JUWV+rGxnfHFZe0fa/dvHzApehzMckQcWWLIs4pRVnL2wIeGGaNIE3+eiTZMi8x/WHHCVn/hr/O0j1L+g9V0kSEC/axiUSVYKwx6FbMi5aH37pEoyzPnj7fCT3lWMZ33WvEkrS1HB/6eOnswbr18WVJjraKoEpLE4JxwcnzIK5e3Of2ePc7sb7VqyQAPHtlnVqWYMB57kFVcmgxbNeOdke8VXD4YMhossFaxKNO2XI8du8gzl45TVZpBXjLole1Y61OjCc9dOoa1Qr9XMpnmbG/N2J/2GfULZkXaUUQW8p4PG5sXGeOBH7M97JXsT/sM85Ky9lEZVeVbZaNBQT+tuHQ48PeNVRijsFaRpbVX0k4MRZEyGCzopzW74RpUlWY8mmOdcDDN2RrNOZjlrXp0Gsaql6Uff/3IiQucnY6ZzHso5djuL0i14czuFr2eH6tchrp/bHvCK5e2SfOK46Mpr1ze5tiRA87tj1tV6vH21F8vbVDi2J/n7TVLlGVRpgwHfqjEvPTPmHFecPlw0M6LXBlNVWn64SPmkdHUj1kPz/TDRY86lB8nDIbzViG8rBOUstS1Zjya4fDRDEWVcHw05fxkRKIN1aJHllXtPTEazrmwO+bEyUvM65TDImvvba0c/bRiWqZURcZgNONgnjMezNt3z2Hp77tLkyGDwYKTQ/9s7mcVg7Sip2suzQfkSY2xiv15jtaGxaLHYDj3H3PnOak2jAc+BP/c/pi0V6IEFlVC3ivJtPH1Ivf1MU0Ms1mvFTvr9SoEWMwz8q0ZdZVQ1Zq6VuR5xai5Z+c5g7xgcjBkuDVlsuiRpzVFlXDf9j7Pnj/+utsd26M584OBr/v9shXn66U1+wcD8ryiLBO2hguqKsEY1aqTHxnPqIxivugx6heY8KytKs2R8ax9Boj4UEKV1u29tijTFYG3qtKMjxwwmQ4QcW2eizKlrnU7B7VWlqL0z8Rhv2C26JEHHQNjFP2eryezRUZdJV6BHMgyQ1VpssxrAVRlQr/v1fGbj+uJtiyKlEFeYpywmHvdifFoTlknOOftUlQJRZEyHBRMp/6ju4hDh3m/87zy2hKlbiM+6lq3EQI6MUEjAepKY0rdqnArZVcUz50Rr/4d8nCADerYrlbtdFwSPkbbOsyfXWo/pr/SiLarAnRW0KnFVB33cDfyookqWYt4AC+SZkvdKqMjLMfgd/ZrozfELfUPLEiy3A60KuSird9PnNcNUDhS2AAAGOVJREFUSK0/vyDK1qptwzLSoPkIv8H73UY1tBEW+P0a9e5wzivpNR74TR7Zdl3Tu5dVF+jKMWs9wE5HemV53cu8KSrGyZXru/za5tV3mrsRCisiGvibwA8ALwOfF5FPOue+cUvzuZdDYY+886T7nr/7n7GVLiitZrfwjehxumCQVJyZbdHTNfM6ZZiW7C76jDM/HmK/yMkT34k7LDNODKZcmg8YpBW1VcyrlGmRkWrDyZHv2KTKx8c3YZOz0n9CPDacMav871mRsTOYc7Do4ZywlRcs6mQlDNRYoZ9VZNpwYTJqBW3q8JJpHqqjwQKtfCinn9LEN4C74XzTImsbUqOBf6kWlRfG2Z8MyLKaPKs4nObtS9C/eHxDbGu4oKj8S6esEvq9su3sJNowL7K20Qa+oVxbRVn6l1+SWMoiIc1qqkqTps30IZCmNWWZMMiDeE9IJ0kMZZnQy2rmi5Rer6auNXlWMVtkDPKSymjms4zBsGA+D+I9iWE+62FrYTAuKEtNEl4oTcPDGEUjQgPQ6/uXZlXp9sVUlYl/oRnV2mTv3BgE8p0Fxgim0v5l5YQs8y933/kRyrm/1knmr0WTFuKoy6QVwjGzxIvb9IwXxdEOU2iSnsFUCp026rJL8R07S1pPajONhk6M954rh1to1LD202iEl6RKvDAOQWwnHZSYSmODFxgnfgqMSYLLLXpYt2I7zUtEgghOk2YratOEBzbe9kIvp2AILxzpGb/eCpIb3EwjA+MFbiyQuuVLsFR+n4WGzPoXZ+MZVq4VzGm92z2LW2ikX+PmiRd0Ufj0GgEggkfaSrsdQKYal1mfhsN72a0EMRjj0wnTadBM1ZHa5Yu0KUvjWa7VUk22VsupK2rlRYL2E++lOVovp30oFeTh+JCGWni72GFnUsEmvK4zZYSaauxWjTpIsAPr824aWhMdBFW8N1gVCjsw7UtVFv4Z5QYGKby3xHWOT/c01Y4XBJJGICf1jYVkJlTbXrxHKsHl3mNug2faZqviPVL6RozLLGruPfaqFGzuvcFO4a9t09AqFKoSzCB48pWjmSqiERHCeDEgtQj7NuI9iUMF8R7b9/nZzAWvPyviPVgh21OY3GF7wetceE9a41EHWvGdZCZUWxZVKC9OM3YkE8EMgodWgZ6veSwzWm+8OLDJUlSn9ViW3sPWRghoXz5VeA9RMmvEe0JDN3OtZxKWnq1GQIUg2pEET7T37vh8Te4bhDb13pfWY7kQ6qEj2/NeC+/RlXaKi8ZT04gJmcz/h+DFCUIvZuDz0YX3aqq68RgFUZhQBRsPke15jzjgxX2sPx8I3tUgfuMSWhGgrnfRp0HrxVFlaEf3vEfVKX9ss60rRKNLL2yTzDuCNQkkUyi3ed3oBRj//XUp3oMva2MTL6ZEK5qz9NYT7O+3W+3rlW080MF2jcetEYMBWu9n12OZTpZCQk6HNJOOJ4krPZZ2TbynK3jU1C9x/no0XjwX6p4OgkRt38D6/FQV0mjymXuvms/fK8Db1Ht4TU9ar1gzxYcug/cwkWW0UfDS45YexMaDZlNZWdd6/TZ5LAWsltZrJ9a1ZXeyzKP1WGpfj9c7SdIV7+l2fDresW4ocitMZJbXrlvOTV616/JYron3tPdGI7bU8YB2022uofdYspnmmW6XAjobhXMaj2Wz7SrpbRjdsLL+WmW4mhf0Wrxm+C3w5C/91bseLrolR90H1A/c8nQ/Y//pNc9NRP4g8D865z4Sln8KwDn3P9/KctzTHsuHe3v88mOf5JwpqRBycVQOFk4zsRlH9YJFeBLMbMq2KrhscwyKY2rOwmmmLmMoJWfNFif0hInN0ThyqRioiplNOW/G7OgZ1ikWLiWVmsol7KgZBuFsvcOOnlK5hLGac7be4URyAMCeGZCJQeG9aJVLSKVmYvssbMqpZB+DULkEg5BLhcaRSs2eHfj1TpGrksolLGyK6siVNWlvqQWXzKhNY+FSTuoJBzZnZnvs6BkHNmdhU3b0jEwMC5dyqR6RKz/wfahKJjbHONWe41AVK/lNTJ9UanJVhbIJW3rBgcnJxFAGe2txVE6jsExs36cT3hjN8sKmjPWCicnJVcXE9Bmogn0zYKAKdvSMS2bEUBVMrQ873tHBE1OPGKiChUvRLO2ahtabFotxin3jPzb0VEUVyjZQJUWIK5rZDOMUb3vCe5+/VR5vxX9mNiMVw6HJV2ywrYPoTXijL2zKQBdUTpNL3eZzNDmkdAn7pk8qhsppxmrB5XrEWC/YN316qqKwKakYjFMcTQ69J8T00bhW1GM7mVHYlG0942I9JhXTHluFMbypqtG4VkBppBfs1/78c1VxPJkwsz0u1iMGqlwZG7wI9shV1Qo1peIFEKr2bUq47j6/RpBqYnIGqiRVNfv1gKPJtC0DeMGqIoi9NHYdqJLCJSgcM5uFa6gZ6LJN2zjFzGbeVnW/FbIweFXinqoxBEED5a99YZO2vEeSGTObcWh6aCw9Vbdl2K29mIJB+euty5VyNmn667w8vggthGacdeU0PeWv+fHUi6WcLbbb+tLXFdPa110lfmqckS7QYtmv+61dUzFBrCklUf73SBdcqoat6EgzVhtgJ51ROe29faggApW3Y7n7obV4aHr0ddUKQaWhXCeySSss0tdle25KHEeSGefKLYyTVihmO50zrXsMk4K5SZdjyp3Q1/46N2kVNqGnauYmo69Laqfb8e+NTXqq4qDukyqDcYJdE6ZIlKG0CUPt6+nc+DpZO8U4WVA7zWGdMUpK5ibFhLSb8/PnYjmRHTK3GXOTonBtWfeCmFRjFyWWnXTO+WJMX1eMkwUXixFHsxl7VR/rhNopttNFey21OA7rDOtUuzw3KUNdYpH2vPq6YlL3WrGQJq0mamScFK0tm7KXVrf1sFE9b86/GSc/TMpwfypqqxkmJdPa26kRGmuOyZThsOpxIj+kdqq1R4MSn2ZpNLmuKa3/D5Aq014/L4xSM0xKJlWPTJkgBGJZmLTVKmjmiy5t0gpZLUKeeeKvwUGZk4frUTtNFu63hUlJxLa6AYugjdAVOilMwjCIG/mpuhSpMuS6onaa0mgybfxH5aRkEUROaqsYJCX75fLeu1EaERiATJl2PHKiLNMqa23g67ZqpxlzTsiTChPKnCmDRXz5raIf7FJ24i2btIAQcbOqYzBMSwqThPH9qo3e6dJoGTggC9ubCBzrpJ0erbKq3dZoEzRTlTW6Ck00UvfjdnfqtdporIM8rdvyNjoMtVGtl7yhidho53zuaBDYjhdfwnkY57UCmo/U3XH+/pi1eZ0DjRhMd9x89xiRzvzSjeeww4pnsl3X+R3K2I7lZ9nvFNmgX3E1b9panv74zrLDz+u83oHqdsau0glzjQdzPesr0lr1+F3T9/Ra5+Gu8ptOOTal/1pex6vlcz0d0F+6viRvO3dnupEHgZc6yy8DH7jVmdzTHcvLpsc/OHiMymkqp7GuecHUFDbFdEa1dxvHTYOyK8jSfVir0CnSoSNkggtEY9vfDbVtRF9WBXyAVsRnHbN2s3RFgDat75a7y7ooje08MZoGx3p6TTmbxsIm1kWCmhf8pnyudny3fM3/TeJDmwSDuuk0Zd50Duv2aravLK/ZpLu+W57fdI9eUd7uuQCtGNG1ytwt+9XOb13AZt2+62VvOgvddNfz6nItu65fm037X4/AznpZbsQmVyvHa9Hd92rvjquJGW26168l6NSsu147XC+vldbm9P1/JVeu66Z7heDOdZZ/U/nWj9tU77rbVtJgc9vlWu2I6ynT+rpuGa92nmtDoF5XPq+V/rrAU0MTRXE1oahuuq+V/sayX6vxdY1G2SaxKrhKm7TJo/m9Mb31FVfmt8kGG+fidXQEq66d7np52nJ07dK1w/rv18smO2y8PjdwfPeY6/TOXPeN9DqeOVfNY8W7Ju1cpLKex6ayrZ/XtTod7fpQV65l3w3bXtMjtiGP7nGr98Dauk35rf1et3jbKrnua7Z5dfdWvKEq/Fr16jXyuyLTDXXquspzo2W+AW7mlr7TTNj91GfcJ15/PP7VyUXkC53lv+Oc+zu3IZ9rck93LAub8vTslJe9twmFSaicoqcMqTLtl+w6fP1tvuLWnS+GzdfARGz7lbi2itotv7D7qRCSVm0WfIeyObb9Eh2+PmbKtF9Im/QausqyShxFnWCR1kMDtJ2XRq7aK6SqVvW1ScdY1SrYrn/xTJRtx2em2jCv/NjH5qttE5qbBgnnJsR3XW3VWEUVOttAK0PdPKeaKQcSZTEbGp/GKvIkjKNyS5XS2ir/9dSqVvlVh6+maUirrBOypKasE5IwpqkymtooemG80vqXU6+qusw/DeMpuo3frnKrDhPbTwv/Bdp/aZUV9VMd5r9sjqvD+AfVsVXTeGrGIjrn64KIQ3c6NMZJO4YvUesfEoQ6zMOptV0qmgY7ijiMUe0YvPWvtV1pceOEOoxVa8pXln4sWKPc2nzF7Y7bWW8oNw3jpnHb2KVRgW3GDjbLXtzK59uVDG+UY5e/l8qxzfFK2TaMulFObcYMNv+bsqx/fbadL8kqfHU2tUZp2y4D2Ma+wYat7TYor9omv+Z4t1Qg9V+37cr4GlNrcKDTjtLBhpdxV0F3nZUPDtbXAxPmK11RCW5CdyU0xI2g9FJB2QblTqU7duo0rG2l/Bgl8Y14Py4p2MIIKvXnZkO6ttnezGsqq52eVsG2Ebmy4sOV1zox4PdtxyB1epwinQ5FZ7yPcyz3hXb8URNe7cct+XO74it/I/DV2DqMbZLEtfO+tq3ASnx4dhPmnVkfytyIVwmtSFc7Xkh17NoaP1zrJk8rbagusDymsVVXqdXhj+sub+pkiWNFtVVYhrbSObbZxeLneA1jxJp5Pp0K6qoOH5LcpKNcKwYmNoTqhnBmMbJUVrUsjw9htdL+9ucqzXyaYV2TbhN67W0S8rO086m2/cLOfSJhf6dcG/ZMY267mlcrPFJLu9yEW9ve62+FdgXNVoRL3Go+q9cn7G+a8rMMc5VQ/mZa247i7EpfoKu4Go6TEHYrwQYSRNBa29HpYzfHdpVym3PA26pbZZp9uiGjzZyWbcFcJ71OGaUT5d/Us6YutHXULR+NK9e1qW9duzX3qlvmQXtsx0iy1unqrG9CRq97HsfXUUWu6Pg1j6a1Ml/P8evrVo5f7yQ2z51m/frzotm3e62ukne7/8aO6GpH/5od3Ney3+3sOL5WR/ou45z76F3K+hXgoc7y6bDulnJPj7EUkQnw9N0ux5uM48DFu12INxnR5neeaPM7T7T5nSfa/M4S7X3niTa/83w72/ytzrkTd7sQdwMRSYDfA74f36H8PPCnnHNfv5X53NMeS+Dpuz0I982GiHwh2vzOEm1+54k2v/NEm995os3vLNHed55o8ztPtPm3J865WkT+K+BT+OlG/v6t7lTCvd+xjEQikUgkEolEIpHINXDO/Rq3edIV9dq7RCKRSCQSiUQikUgkcnXu9Y7lHVc7ikSb3wWize880eZ3nmjzO0+0+Z0l2vvOE21+54k2fxNzT4v3RCKRSCQSiUQikUjk7nOveywjkUgkEolEIpFIJHKXuWc7liLyURF5WkSeEZGfvNvleSMgIg+JyK+LyDdE5Osi8hNh/VER+bSIfDP8PxLWi4j8H+EafEVE3nd3z+DeRUS0iPyOiPyrsPyIiDwZbPsrIpKF9b2w/EzY/vDdLPe9iojsiMgnROR3ReQpEfmDsZ7fXkTkL4fnytdE5JdEJI/1/NYiIn9fRM6LyNc66264XovIj4b9vykiP3o3zuVe4So2/7nwbPmKiPxfIrLT2fZTweZPi8hHOutjm+Y62WTzzra/IiJORI6H5VjPbwFXs7mI/Hio618Xkf+1sz7W8zcp92THUkQ08DeBPwK8C/iTIvKuu1uqNwQ18Fecc+8CPgj8l8GuPwl81jn3OPDZsAze/o+Hvz8H/K07X+Q3DD8BPNVZ/l+Av+GcexuwC/xYWP9jwG5Y/zfCfpEb5+eB/9c5907gvXjbx3p+mxCRB4H/GvgDzrnvwEud/zCxnt9qPg6sT759Q/VaRI4Cfw34APDdwF9rOqORjXycK23+aeA7nHPvwc8b91MA4X36w8C7wzH/Z/ioGNs0N8bHudLmiMhDwIeBFzurYz2/NXycNZuLyB8CPga81zn3buCvh/Wxnr+JuSc7lviHwDPOueeccyXwy/jKHbkJnHNnnHO/HX5P8I3tB/G2/Ydht38I/Inw+2PAP3Ke3wJ2ROT+O1zsex4ROQ38MeAXwrIAHwI+EXZZt3lzLT4BfH/YP3KdiMg28B8Bfw/AOVc65/aI9fx2kwB98ZM0D4AzxHp+S3HO/QZweW31jdbrjwCfds5dds7t4jtJVzTiI55NNnfO/WvnXB0Wfws4HX5/DPhl51zhnHseeAbfnoltmhvgKvUc/Eeo/w7oiofEen4LuIrN/yLws865IuxzPqyP9fxNzL3asXwQeKmz/HJYF7lFhNCz3w88CdznnDsTNp0F7gu/43W4Nfzv+JehDcvHgL1Ow6Rr19bmYft+2D9y/TwCXAD+gfjw418QkSGxnt82nHOv4L9mv4jvUO4DXyTW8zvBjdbrWN9vLX8G+H/C72jz24SIfAx4xTn35bVN0ea3j7cD3xuGK/xbEfmusD7a/E3MvdqxjNxGRGQE/HPgLznnDrrbnJcRjlLCtwgR+UHgvHPui3e7LG8iEuB9wN9yzv1+YMoyPBCI9fxWE0LMPobv1D8ADInegTtOrNd3FhH5afwQk39yt8vyRkZEBsB/D/zM3S7Lm4wEOIofOvXfAv80RpZE7tWO5SvAQ53l02Fd5CYRkRTfqfwnzrlfDavPNaF/4X8T7hCvw83zPcAfF5EX8GEhH8KP/9sJIYOwatfW5mH7NnDpThb4DcDLwMvOuSfD8ifwHc1Yz28ffxh43jl3wTlXAb+Kr/uxnt9+brRex/p+CxCR/xz4QeBH3HJet2jz28Nj+I9WXw7v0tPAb4vIKaLNbycvA78awow/h4+6Ok60+Zuae7Vj+XngcfGKghl+kPAn73KZ7nnCl6a/BzzlnPvfOps+CTSKaT8K/MvO+j8dVNc+COx3Qq4i14Fz7qecc6edcw/j6/G/cc79CPDrwA+F3dZt3lyLHwr7Rw/EDeCcOwu8JCLvCKu+H/gGsZ7fTl4EPigig/CcaWwe6/nt50br9aeAD4vIkeBp/nBYF7lOROSj+OENf9w5N+ts+iTww+JVjx/BC8p8jtimuSmcc191zp10zj0c3qUvA+8Lz/pYz28f/wL4QwAi8nYgAy4S6/mbG+fcPfkH/FG82tqzwE/f7fK8Ef6A/xAfJvUV4Evh74/ixzZ9Fvgm8BngaNhf8ApfzwJfxSs+3vXzuFf/gO8D/lX4/Sj+QfwM8M+AXlifh+VnwvZH73a578U/4DuBL4S6/i+AI7Ge33ab/0/A7wJfA/4x0Iv1/Jbb+JfwY1grfOP6x15PvcaPC3wm/P0Xd/u8vp3/rmLzZ/BjyZr36N/u7P/TweZPA3+ksz62aW7C5mvbXwCOh9+xnt8mm+M7kr8Ynum/DXyos3+s52/SPwkXOhKJRCKRSCQSiUQikdfFvRoKG4lEIpFIJBKJRCKRbxNixzISiUQikUgkEolEIjdF7FhGIpFIJBKJRCKRSOSmiB3LSCQSiUQikUgkEoncFLFjGYlEIpFIJBKJRCKRmyJ2LCORSCTybYuI/Gb4/7CI/Km7XZ5IJBKJRCKbiR3LSCQSiXzb4pz7D8LPh4HYsYxEIpFI5NuU2LGMRCKRyLctInIYfv4s8L0i8iUR+csiokXk50Tk8yLyFRH582H/7xORfysi/1JEnhORnxWRHxGRz4nIV0XksbDffyIiXxORL4vIb9yt84tEIpFI5I1CcrcLEIlEIpHIdfCTwF91zv0ggIj8OWDfOfddItID/p2I/Ouw73uBJ4DLwHPALzjnvltEfgL4ceAvAT8DfMQ594qI7Nzpk4lEIpFI5I1G9FhGIpFI5F7kw8CfFpEvAU8Cx4DHw7bPO+fOOOcK4Fmg6XB+FR9SC/DvgI+LyJ8F9B0rdSQSiUQib1CixzISiUQi9yIC/Lhz7lMrK0W+Dyg6q2xn2RLee865vyAiHwD+GPBFEXm/c+7SbS91JBKJRCJvUKLHMhKJRCL3AhNg3Fn+FPAXRSQFEJG3i8jwehMTkcecc086534GuAA8dEtLG4lEIpHIm4zosYxEIpHIvcBXACMiXwY+Dvw8Pqz1t0VE8J3DP3ED6f2ciDyO93x+FvjyLS1tJBKJRCJvMsQ5d7fLEIlEIpFIJBKJRCKRe5gYChuJRCKRSCQSiUQikZsidiwjkUgkEolEIpFIJHJTxI5lJBKJRCKRSCQSiURuitixjEQikUgkEolEIpHITRE7lpFIJBKJRCKRSCQSuSlixzISiUQikUgkEolEIjdF7FhGIpFIJBKJRCKRSOSmiB3LSCQSiUQikUgkEoncFP8/rlYJ16dR+iIAAAAASUVORK5CYII=" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], - "source": [ - "evaluate_embeddings(ratings)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Visualizing training\n", "Now let's draw a single chart that compares the learning curves of the two different models." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 25, - "metadata": {}, - "outputs": [], "source": [ "train_1, test_1 = list(zip(*losses_1))\n", "train_1a, test_1a = list(zip(*losses_1_adam))\n", "train_2, test_2 = list(zip(*losses_2))\n", "train_2a, test_2a = list(zip(*losses_2_adam))\n", "train_3a, test_3a = list(zip(*losses_3))" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 26, - "metadata": {}, + "source": [ + "losses_1_adam" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "[(1.2344593836784363, 0.713362567743678),\n", @@ -1641,31 +1049,15 @@ " (0.227169718003273, 0.48986973580281445)]" ] }, - "execution_count": 26, "metadata": {}, - "output_type": "execute_result" + "execution_count": 26 } ], - "source": [ - "losses_1_adam" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAR8CAYAAAAZ7cTyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XtYlVX+///nQhA8BYTON095+pSB7C0mKEYmZOOJooONYx9JrV8Hf2VO2RDamFnfnHR0yuiTOR1My/nszJpsTH95SBBrMgXCs4UHGtQycWInopPA+v2xt3swAdGEbfp6XBfXxX2ve631vm/vrive13ut21hrERERERERERGRi1uAvwMQERERERERERH/U5JIRERERERERESUJBIRERERERERESWJREREREREREQEJYlERERERERERAQliUREREREREREBCWJREREftGMMdYY819n2bevMebLcx1THebtaozJN8YcNsaMq6c5HjfGvHaur/UnY8w8Y8wzfpj3cmNMqTGmUT2M7Zd7EhERkeopSSQiItIAjDGFxpij3j+2T/z8TwPHcFJCyVq71lrbtSFj8HoMyLTWtrDWZvy00RiTZYy55+dMYK39o7W2TmOcybXnK2PMaGPMJ+dorEJjzA0njq21/7TWNrfWVpyL8UVEROT8FejvAERERC4iN1lrV/k7iPNAB+Dts+1sjAm01pafw3hEREREBFUSiYiI+JUxJtgYU2KMia5yrpW36uhX3uN7jTE7jTH/Msb83RjTpoaxTqrAqVpdYozJ9p7e6K1i+q0xJtEYs7fK9ZHeMUqMMVuNMSlV2uYZY14yxiz1LhP73BjTpZb7SvGOUeIdM9J7fjWQBPyPN44rf9JvKtC3Svv/eM9bY8yDxpgCoMB77gVjTJEx5gdjTK4xpm+VcaYYYxZ4f+/o7T/KGPNPY0yxMeYPZ3ltE2PMfGPM98aY7caYx6o+w2qew+lifMcY86b3mW41xsRWae9hjMnzti0EQmqYIxKYA/TxPrMS7/lgY8xM730cMMbMMcY08ba1NMZ86P33+ZcxZq0xJsAY8xZwObDEO9ZjVZ5JoLdvljHm/xpjPvXGtsIY07JKPCONMV8bYw4ZY574aWVSbWp6143H88aY77zPcrPx/jdjjBlijNnmjWWfMeb3Vca70XiWNpYYY/5hjHFWaUv3Xn/YGPOlMaZ/XWIUERG5kClJJCIi4kfW2n8DfwPuqHJ6GLDGWvudMeZ64FnvudbA15xFFY619jrvr929S4cWVm03xgQBS4AVwK+Ah4C/GmOqLkcbDjwFhAM7ganVzeVN/LiAh4FWwDI8SYfG1trrgbXAWG8cX/0kzj/8pH1sleZbgN5AlPd4AxADXAr8L7DIGFNtIsXrWqAr0B+YfCJxdYbXPgl0BDoDvwZSaxmjLjGm4Pn3DAP+DpxIijUGFgNvefsuAoZWN4G1djswBvjM+8zCvE3TgCu98/8X0BaY7G17FNiL59/n/wCPe4aydwL/xFP11txa+6ca7uu/gbvwvCuNgd97444CZgMj8Lyvod55T+s07/oA4Drv/YR6rznkbXsduN9a2wKIBlZ7x+sBzAXuByKAvwB/9ybPugJjgThvv4FAYV3iFBERuZApSSQiItJwFnsrGk783Os9/794EjAn/Lf3HHj+2J5rrc3zJpQm4qkY6XiOY4sHmgPTrLU/WmtXAx9ycvLqfWvteu9Sr7/iST5U57fAUmvtSmvtcWAm0AS45mfG+Ky19l/W2qMA1toF1tpD1tpya+2fgWA8iZ2aPGWtPWqt3QhsBLqfxbXDgD9aa7+31u4FTtlTqao6xPiJtXaZd7+ft6rMEw8EAbOstcette/iSTjViTHGAPcBj3if2WHgj/znPTuOJxHTwTv+Wmutrev4wBvW2q+8/xbv8J934XZgibX2E2vtj3iSUnUdt7Z3/TjQArgKMNba7dbab6rcS5Qx5hLvv0ue9/x9wF+stZ9bayustfOBf+N5thV4/i2ijDFB1tpCa+2uM7h/ERGRC5KSRCIiIg3nFmttWJWfV73nM4Gmxpje3j+IY4D3vW1t8FRUAGCtLcVTQVGn6owz0AYostZWVjn39U/m+bbK72V4kko1jVU15kqgiJ8fc1HVA2PM771LvtzeJVahQMvquwJ1j7+2a9v8JI6TYvqpOsT403lCvMu62gD7fpK4+Zq6awU0BXJPJCWBj7znAWbgqQZbYYzZbYyZcAZjVxd3tc/HWlvGfyp+TqfGd92btPwf4CXgO2PMK8aYS7yXDgWGAF8bY9YYY/p4z3cAHq2amAXaA22stTvxVLpN8Y73tqlhGaeIiMjFREkiERERP/NWkbyDp2rnDuBDb+UHwH48f+wCYIxphmfpzL5qhjqCJzFwwmVnEMZ+oL0xpur/G1xewzx1GatqzAbPH+d1HaumyhPfeePZ2+cxPJU94d4lVm7AnEW8Z+IboF2V4/Y1XfgzY/wGaOt9didcXsv1P31mxcBRoFuVpGSotbY5gLX2sLX2UWttZzxL3sZX2ZPnTCqKqovb93y8eyBF1LFvre+6tTbDWtsTz3LDK4E07/kN1tqb8Sx9W4znvyXwJKum/iQx29Ra6/L2+19r7bXeOS0w/SzvWURE5IKhJJGIiMj54X/xLNMawX+WmoFnb5+7jDExxphgPEuGPrfWFlYzRj5wmzGmqfF86v7/+Un7ATx76VTnczwVIY8ZY4KMMYnATZzdV8jeAZKNMf29ex09imeZzz/q2L+2OE9oAZQDB4FAY8xk4JLau5wT7wATjTHhxpi2ePa1qY8YP/P2Hef997gN6FXL9QeAdt69jE5Ub70KPG/+swF6W2PMQO/vNxpj/subhHLjWX5VWWWs0z3/mrwL3GSMucYbyxTqnrir8V03xsR5K+2C8CRDjwGVxpjGxpgRxphQ79LGH6rcx6vAGG8/Y4xpZoxJNsa0MMZ0NcZc753nGJ6EWuUpEYmIiFxklCQSERFpOCe+GHXi58SSMqy1n+P547cN8P9VOb8KeAJ4D0+VRhdO3r+oqueBH/H8kT8fz75BVU0B5nuX3gyr2uDdP+YmYDCeKpTZwEhr7Y4zvUlr7Zd4NnR+0TvWTXg2Qv6xjkO8ANxuPF8Qq2nPn+V4lk99hWeJ0jFOs/TrHHkaz4bPe4BVeJIi/z7XMXqf1W3AaOBfeBKIf6uly2pgK/CtMabYey4dz5KydcaYH7zxntgP6QrvcSmehNRsa22mt+1ZYJL3PfF9KayOcW/Fs+n523je11LgO2p+RlX71vauX4In6fM9nmd5CM+SOYA7gULvPY7Bk2jFWpsD3Itnmdr33mcx2tsnGM/G3sV4ls79Cs8eSCIiIhc1c2Z7FIqIiIjICcaY/xcYbq3t5+9YzkfGmOZACXCFtXaPv+MRERGR2qmSSERERKSOjDGtjTEJxpgA72fUH+U/m4wLYIy5ybvksRmeL9ttRp+XFxER+UVQkkhERESk7hoDfwEO41ni9QGepXnyHzfj2YR6P55lbcOtStdFRER+EbTcTEREREREREREVEkkIiIiIiIiIiJKEomIiIiIiIiICBDo7wCqatmype3YsaO/wxARERERERERuWDk5uYWW2tbne668ypJ1LFjR3JycvwdhoiIiIiIiIjIBcMY83VdrtNyMxERERERERERUZJIRERERERERESUJBIREREREREREc6zPYlERERERERELmTHjx9n7969HDt2zN+hyAUoJCSEdu3aERQUdFb9lSQSERERERERaSB79+6lRYsWdOzYEWOMv8ORC4i1lkOHDrF37146dep0VmNouZmIiIiIiIhIAzl27BgRERFKEMk5Z4whIiLiZ1WpKUkkIiIiIiIi0oCUIJL68nPfLSWJRERERERERC4SJSUlzJ49+6z7z5o1i7KysmrbEhMTycnJOeuxa5KVlcWNN954yvl77rmHbdu2nfP5LmZKEomIiIiIiIhcJOozSdTQXnvtNaKioupt/PLy8nob+3ylJJGIiIiIiIjIRWLChAns2rWLmJgY0tLSAJgxYwZxcXE4nU6efPJJAI4cOUJycjLdu3cnOjqahQsXkpGRwf79+0lKSiIpKanWeVwuFw6Hg+joaNLT0wGoqKhg9OjRREdH43A4eP755wHIyMggKioKp9PJ8OHD63wvVSuXmjdvzh/+8Ae6d+9OfHw8Bw4cAODgwYMMHTqUuLg44uLi+PTTTwFYv349ffr0oUePHlxzzTV8+eWXAMybN4+UlBSuv/56+vfvX+dYLhT6upmIiIiIiIiIHzxcUEB+aek5HTOmeXNmXXFFje3Tpk1jy5Yt5OfnA7BixQoKCgpYv3491lpSUlLIzs7m4MGDtGnThqVLlwLgdrsJDQ3lueeeIzMzk5YtW9Y4x/79+0lPTyc3N5fw8HAGDBjA4sWLad++Pfv27WPLli2Ap6rpREx79uwhODjYd+5MHTlyhPj4eKZOncpjjz3Gq6++yqRJk/jd737HI488wrXXXss///lPBg4cyPbt27nqqqtYu3YtgYGBrFq1iscff5z33nsPgLy8PDZt2sSll156VrH8kilJJCIiIiIiInKRWrFiBStWrKBHjx4AlJaWUlBQQN++fXn00UdJT0/nxhtvpG/fvnUec8OGDSQmJtKqVSsARowYQXZ2Nk888QS7d+/moYceIjk5mQEDBgDgdDoZMWIEt9xyC7fccstZ3Ufjxo19+xb17NmTlStXArBq1aqT9i364YcfKC0txe12M2rUKAoKCjDGcPz4cd81v/71ry/KBBEoSSQiIiIiIiLiF7VV/DQUay0TJ07k/vvvP6UtLy+PZcuWMWnSJPr378/kyZN/1lzh4eFs3LiR5cuXM2fOHN555x3mzp3L0qVLyc7OZsmSJUydOpXNmzcTGHhm6YqgoCDfl70aNWrk20+osrKSdevWERISctL1Y8eOJSkpiffff5/CwkISExN9bc2aNftZ9/lLpj2JRERERERERC4SLVq04PDhw77jgQMHMnfuXEq9y9727dvHd999x/79+2natCmpqamkpaWRl5dXbf/q9OrVizVr1lBcXExFRQUul4t+/fpRXFxMZWUlQ4cO5ZlnniEvL4/KykqKiopISkpi+vTpuN1uXyznwoABA3jxxRd9xyeW2bndbtq2bQt49iESD1USiYiIiIiIiFwkIiIiSEhIIDo6msGDBzNjxgy2b99Onz59AM8G0AsWLGDnzp2kpaUREBBAUFAQL7/8MgD33XcfgwYNok2bNmRmZlY7R+vWrZk2bRpJSUlYa0lOTubmm29m48aN3HXXXVRWVgLw7LPPUlFRQWpqKm63G2st48aNIyws7JQxP/74Y9q1a+c7XrRoUZ3uNyMjgwcffBCn00l5eTnXXXcdc+bM4bHHHmPUqFE888wzJCcnn9EzvJAZa62/Y/CJjY21J3YmFxEREREREbnQbN++ncjISH+HIRew6t4xY0yutTb2dH213ExERERERERERJQkEhERERERERERJYlERERERERERAQliUREREREREREBCWJREREREREREQEJYlERERERERERAQliUREREREREQuGiUlJcyePfus+g4ZMoSSkpI6Xz9lyhRmzpx5VnOdTvPmzU85N2fOHN588816me9ioSSRiIiIiIiIyEWitiRReXl5rX2XLVtGWFhYfYR1TowZM4aRI0fW2/jWWiorK+tt/POBkkQiIiIiIiIiF4kJEyawa9cuYmJiSEtLIysri759+5KSkkJUVBQAt9xyCz179qRbt2688sorvr4dO3akuLiYwsJCIiMjuffee+nWrRsDBgzg6NGjtc6bn59PfHw8TqeTW2+9le+//x6AjIwMoqKicDqdDB8+HIA1a9YQExNDTEwMPXr04PDhw3W6t6qVS4mJiaSnp9OrVy+uvPJK1q5dC0BFRQVpaWnExcXhdDr5y1/+AkBpaSn9+/fn6quvxuFw8MEHHwBQWFhI165dGTlyJNHR0RQVFdX1Uf8iBfo7ABEREREREZGLVeIXX5xybtivfsUDbdtSVlHBkE2bTmkffdlljG7dmuIff+T2rVtPasvq0aPW+aZNm8aWLVvIz8/3XJ+VRV5eHlu2bKFTp04AzJ07l0svvZSjR48SFxfH0KFDiYiIOGmcgoICXC4Xr776KsOGDeO9994jNTW1xnlHjhzJiy++SL9+/Zg8eTJPPfUUs2bNYtq0aezZs4fg4GDfUraZM2fy0ksvkZCQQGlpKSEhIbXeU03Ky8tZv349y5Yt46mnnmLVqlW8/vrrhIaGsmHDBv7973+TkJDAgAEDaN++Pe+//z6XXHIJxcXFxMfHk5KS4rvX+fPnEx8ff1Zx/JKokkhERERERETkItarVy9fggg81T3du3cnPj6eoqIiCgoKTunTqVMnYmJiAOjZsyeFhYU1ju92uykpKaFfv34AjBo1iuzsbACcTicjRoxgwYIFBAZ66lgSEhIYP348GRkZlJSU+M6fqdtuu+2U+FasWMGbb75JTEwMvXv35tChQxQUFGCt5fHHH8fpdHLDDTewb98+Dhw4AECHDh0uigQRqJJIRERERERExG9qq/xp2qhRre0tGzc+beVQXTRr1uw/8WRlsWrVKj777DOaNm1KYmIix44dO6VPcHCw7/dGjRqddrlZTZYuXUp2djZLlixh6tSpbN68mQkTJpCcnMyyZctISEhg+fLlXHXVVWc89okYGzVq5NtvyVrLiy++yMCBA0+6dt68eRw8eJDc3FyCgoLo2LGj776rPp8LnSqJRERERERERC4SLVq0qHWPH7fbTXh4OE2bNmXHjh2sW7fuZ88ZGhpKeHi4b1+gt956i379+lFZWUlRURFJSUlMnz4dt9tNaWkpu3btwuFwkJ6eTlxcHDt27PjZMZwwcOBAXn75ZY4fPw7AV199xZEjR3C73fzqV78iKCiIzMxMvv7663M25y+JKolERERERERELhIREREkJCQQHR3N4MGDSU5OPql90KBBzJkzh8jISLp27XrOllnNnz+fMWPGUFZWRufOnXnjjTeoqKggNTUVt9uNtZZx48YRFhbGE088QWZmJgEBAXTr1o3BgwefMl5ZWRnt2rXzHY8fP75Ocdxzzz0UFhZy9dVXY62lVatWLF68mBEjRnDTTTfhcDiIjY09q8qlC4Gx1vo7Bp/Y2Fibk5Pj7zBERERERERE6sX27duJjIz0dxhyAavuHTPG5FprY0/XV8vNRERERERERERESSIREREREREREVGSSEREREREREREUJJIRERERERERERQkkhERERERERERFCSSEREREREREREUJJIRERERERE5KJRUlLC7Nmzz7r/rFmzKCsrq7YtMTGRnJycsx67JllZWdx4442nnL/nnnvYtm3bOZ/vdBYvXowxhh07dtR4zejRo3n33XcbMKpzQ0kiERERERERkYtEfSaJGtprr71GVFRUvY1fXl5e7XmXy8W1116Ly+Wqt7n9RUkiERERERERkYvEhAkT2LVrFzExMaSlpQEwY8YM4uLicDqdPPnkkwAcOXKE5ORkunfvTnR0NAsXLiQjI4P9+/eTlJREUlJSrfO4XC4cDgfR0dGkp6cDUFFRwejRo4mOjsbhcPD8888DkJGRQVRUFE6nk+HDh9f5XqpWLjVv3pw//OEPdO/enfj4eA4cOADAwYMHGTp0KHFxccTFxfHpp58CsH79evr06UOPHj245ppr+PLLLwGYN28eKSkpXH/99fTv3/+UOUtLS/nkk094/fXXefvtt33nrbWMHTuWrl27csMNN/Ddd9/52p5++mni4uKIjo7mvvvuw1rri/+RRx4hNjaWyMhINmzYwG233cYVV1zBpEmT6vwczqVAv8wqIiIiIiIicpF7+GHIzz+3Y8bEwKxZNbdPmzaNLVu2kO+deMWKFRQUFLB+/XqstaSkpJCdnc3Bgwdp06YNS5cuBcDtdhMaGspzzz1HZmYmLVu2rHGO/fv3k56eTm5uLuHh4QwYMIDFixfTvn179u3bx5YtWwBPVdOJmPbs2UNwcLDv3Jk6cuQI8fHxTJ06lccee4xXX32VSZMm8bvf/Y5HHnmEa6+9ln/+858MHDiQ7du3c9VVV7F27VoCAwNZtWoVjz/+OO+99x4AeXl5bNq0iUsvvfSUeT744AMGDRrElVdeSUREBLm5ufTs2ZP333+fL7/8km3btnHgwAGioqK4++67ARg7diyTJ08G4M477+TDDz/kpptuAqBx48bk5OTwwgsvcPPNN5Obm8ull15Kly5deOSRR4iIiDir53G2VEkkIiIiIiIicpFasWIFK1asoEePHlx99dXs2LGDgoICHA4HK1euJD09nbVr1xIaGlrnMTds2EBiYiKtWrUiMDCQESNGkJ2dTefOndm9ezcPPfQQH330EZdccgkATqeTESNGsGDBAgIDz66WpXHjxr59i3r27ElhYSEAq1atYuzYscTExJCSksIPP/xAaWkpbreb3/zmN0RHR/PII4+wdetW31i//vWvq00QgadC6kS10/Dhw31LzrKzs7njjjto1KgRbdq04frrr/f1yczMpHfv3jgcDlavXn3SXCkpKQA4HA66detG69atCQ4OpnPnzhQVFZ3Vs/g5VEkkIiIiIiIi4ge1Vfw0FGstEydO5P777z+lLS8vj2XLljFp0iT69+/vq4Y5W+Hh4WzcuJHly5czZ84c3nnnHebOncvSpUvJzs5myZIlTJ06lc2bN59xsigoKAhjDACNGjXy7SdUWVnJunXrCAkJOen6sWPHkpSUxPvvv09hYSGJiYm+tmbNmlU7x7/+9S9Wr17N5s2bMcZQUVGBMYYZM2bUGNexY8d44IEHyMnJoX379kyZMoVjx4752oODgwEICAjw/X7iuKY9keqTKolERERERERELhItWrTg8OHDvuOBAwcyd+5cSktLAdi3bx/fffcd+/fvp2nTpqSmppKWlkZeXl61/avTq1cv1qxZQ3FxMRUVFbhcLvr160dxcTGVlZUMHTqUZ555hry8PCorKykqKiIpKYnp06fjdrt9sZwLAwYM4MUXX/Qdn1hm53a7adu2LeDZh6gu3n33Xe68806+/vprCgsLKSoqolOnTqxdu5brrruOhQsXUlFRwTfffENmZiaALyHUsmVLSktLz/svnqmSSEREREREROQiERERQUJCAtHR0QwePJgZM2awfft2+vTpA3g2gF6wYAE7d+4kLS2NgIAAgoKCePnllwG47777GDRoEG3atPElQn6qdevWTJs2jaSkJKy1JCcnc/PNN7Nx40buuusuKisrAXj22WepqKggNTUVt9uNtZZx48YRFhZ2ypgff/wx7dq18x0vWrSoTvebkZHBgw8+iNPppLy8nOuuu445c+bw2GOPMWrUKJ555hmSk5PrNJbL5fJtwn3C0KFDcblczJ49m9WrVxMVFcXll1/ue55hYWHce++9REdHc9lllxEXF1enufzFnNhV+3wQGxtrT+xMLiIiIiIiInKh2b59O5GRkf4OQy5g1b1jxphca23s6fpquVk9+LGyksrzKPkmIiIiIiIiInI6ShKdY389cIAm2dkU/fvf/g5FRERERERERKTOlCQ6x1o3bkwlsPvoUX+HIiIiIiIiIiJSZ0oSnWOdvZ/V213lk3YiIiIiIiIiIuc7JYnOsXbBwQQao0oiEREREREREflFUZLoHAsMCKBDcLAqiURERERERETkF0VJonrwULt23BgR4e8wRERERERERE5SUlLC7Nmzz6rvkCFDKCkpqfP1U6ZMYebMmWc11+k0b978lHNz5szhzTffrJf5alNcXExQUBBz5syp8Zp58+YxduzYBozq7ChJVA9+164dI/7P//F3GCIiIiIiIiInqS1JVF5eXmvfZcuWERYWVh9hnRNjxoxh5MiR9Ta+tZbKyspTzi9atIj4+HhcLle9zd1QlCSqB+WVlRQePcqP1bw8IiIiIiIiIv4yYcIEdu3aRUxMDGlpaWRlZdG3b19SUlKIiooC4JZbbqFnz55069aNV155xde3Y8eOFBcXU1hYSGRkJPfeey/dunVjwIABHD3Nvrz5+fnEx8fjdDq59dZb+f777wHIyMggKioKp9PJ8OHDAVizZg0xMTHExMTQo0cPDh8+XKd7q1q5lJiYSHp6Or169eLKK69k7dq1AFRUVJCWlkZcXBxOp5O//OUvAJSWltK/f3+uvvpqHA4HH3zwAQCFhYV07dqVkSNHEh0dTVFR0Snzulwu/vznP7Nv3z727t3rO//GG29w5ZVX0qtXLz799FPf+SVLltC7d2969OjBDTfcwIEDB3zxjxo1ir59+9KhQwf+9re/8dhjj+FwOBg0aBDHjx+v03P4OZQkqgcfHDpEp88/Z3tZmb9DERERERERkfNYYuKpPycKfcrKqm+fN8/TXlx8atvpTJs2jS5dupCfn8+MGTMAyMvL44UXXuCrr74CYO7cueTm5pKTk0NGRgaHDh06ZZyCggIefPBBtm7dSlhYGO+9916t844cOZLp06ezadMmHA4HTz31lC+eL774gk2bNvmWa82cOZOXXnqJ/Px81q5dS5MmTU5/Y9UoLy9n/fr1zJo1yzff66+/TmhoKBs2bGDDhg28+uqr7Nmzh5CQEN5//33y8vLIzMzk0UcfxVrru9cHHniArVu30qFDh5PmKCoq4ptvvqFXr14MGzaMhQsXAvDNN9/w5JNP8umnn/LJJ5+wbds2X59rr72WdevW8cUXXzB8+HD+9Kc/+dp27drF6tWr+fvf/05qaipJSUls3ryZJk2asHTp0rN6DmdCSaJ60DkkBIBd+sKZiIiIiIiInOd69epFp06dfMcZGRl0796d+Ph4ioqKKCgoOKVPp06diImJAaBnz54UFhbWOL7b7aakpIR+/foBMGrUKLKzswFwOp2MGDGCBQsWEBgYCEBCQgLjx48nIyODkpIS3/kzddttt50S34oVK3jzzTeJiYmhd+/eHDp0iIKCAqy1PP744zidTm644Qb27dvnq/Dp0KED8fHx1c6xcOFChg0bBsDw4cN9S84+//xzEhMTadWqFY0bN+a3v/2sU5IlAAAgAElEQVStr8/evXsZOHAgDoeDGTNmsHXrVl/b4MGDCQoKwuFwUFFRwaBBgwBwOBy1PuNz5eyetNSqszfLuVtJIhEREREREalFVlbNbU2b1t7esmXt7XXVrFmzKvFksWrVKj777DOaNm1KYmIix6r5endwcLDv90aNGp12uVlNli5dSnZ2NkuWLGHq1Kls3ryZCRMmkJyczLJly0hISGD58uVcddVVZzz2iRgbNWrk22/JWsuLL77IwIEDT7p23rx5HDx4kNzcXIKCgujYsaPvvqs+n59yuVx8++23/PWvfwVg//791SbVqnrooYcYP348KSkpZGVlMWXKlFNiDggIICgoCGOM7/h0e0adC6okqgehgYFcGhjI7mr+QxIRERERERHxlxYtWtS6x4/b7SY8PJymTZuyY8cO1q1b97PnDA0NJTw83Lcv0FtvvUW/fv2orKykqKiIpKQkpk+fjtvtprS0lF27duFwOEhPTycuLo4dO3b87BhOGDhwIC+//LJvf5+vvvqKI0eO4Ha7+dWvfkVQUBCZmZl8/fXXpx3rq6++orS0lH379lFYWEhhYSETJ07E5XLRu3dv1qxZw6FDhzh+/DiLFi3y9XO73bRt2xaA+fPnn7N7OxdUSVRPOjdpokoiEREREREROa9ERESQkJBAdHQ0gwcPJjk5+aT2QYMGMWfOHCIjI+natWuNy6zO1Pz58xkzZgxlZWV07tyZN954g4qKClJTU3G73VhrGTduHGFhYTzxxBNkZmYSEBBAt27dGDx48CnjlZWV0a5dO9/x+PHj6xTHPffcQ2FhIVdffTXWWlq1asXixYsZMWIEN910Ew6Hg9jY2DpVLrlcLm699daTzg0dOpTf/va3TJ48mSlTptCnTx/CwsJ8S/PAs0H1b37zG8LDw7n++uvZs2dPnWJvCObERkzng9jYWJuTk+PvMM6Jvx08SEhAAEMiIvwdioiIiIiIiJwntm/fTmRkpL/DkAtYde+YMSbXWht7ur6qJKont7Vq5e8QRERERERERETqTHsS1ZPD5eWsLSnhhwbYWEpERERERERE5OdSkqierD98mOvy88mrZUMwEREREREREZHzhZJE9aRzSAiAvnAmIiIiIiIiIr8IShLVk/bBwTQCfeFMRERERERERH4RlCSqJ4EBAXQICVElkYiIiIiIiIj8IihJVI86N2miSiIRERERERE5b5SUlDB79uyz7j9r1izKysqqbUtMTCQnJ+esx65JVlYWxhhee+0137n8/HyMMcycOROA0aNH8+67757Ur7CwkCZNmhATE0NUVBRjxoyhsrLynMd3IVGSqB79344defGKK/wdhoiIiIiIiAhQv0mi+hQdHc0777zjO3a5XHTv3v20/bp06UJ+fj6bNm1i27ZtLF68uD7D/MVTkqgexYeGEnfJJf4OQ0RERERERASACRMmsGvXLmJiYkhLSwNgxowZxMXF4XQ6efLJJwE4cuQIycnJdO/enejoaBYuXEhGRgb79+8nKSmJpKSkWudxuVw4HA6io6NJT08HoKKigtGjRxMdHY3D4eD5558HICMjg6ioKJxOJ8OHD692vA4dOnDs2DEOHDiAtZaPPvqIwYMH1/m+AwMDueaaa9i5c2ed+1yMAv0dwIXs0PHjrPjXv0gMC6N1cLC/wxEREREREZHzycMPQ37+uR0zJgZmzaqxedq0aWzZsoV877wrVqygoKCA9evXY60lJSWF7OxsDh48SJs2bVi6dCkAbreb0NBQnnvuOTIzM2nZsmWNc+zfv5/09HRyc3MJDw9nwIABLF68mPbt27Nv3z62bNkCeKqaTsS0Z88egoODfeeqc/vtt7No0SJ69OjB1VdfTfAZ/J1dVlbGxx9/zNNPP13nPhcjVRLVo6+PHeO/t29n3Q8/+DsUERERERERkVOsWLGCFStW+BIvO3bsoKCgAIfDwcqVK0lPT2ft2rWEhobWecwNGzaQmJhIq1atCAwMZMSIEWRnZ9O5c2d2797NQw89xEcffcQl3pU3TqeTESNGsGDBAgIDa65lGTZsGIsWLcLlcnHHHXfUKZYTVVMJCQkkJyefUfXRxUiVRPWoc0gIgL5wJiIiIiIiIqeqpeKnoVhrmThxIvfff/8pbXl5eSxbtoxJkybRv39/Jk+e/LPmCg8PZ+PGjSxfvpw5c+bwzjvvMHfuXJYuXUp2djZLlixh6tSpbN68udpk0WWXXUZQUBArV67khRde4B//+Mdp5zyxJ5HUjSqJ6lFYUBDhgYH6wpmIiIiIiIicF1q0aMHhw4d9xwMHDmTu3LmUlpYCsG/fPr777jv2799P06ZNSU1NJS0tjby8vGr7V6dXr16sWbOG4uJiKioqcLlc9OvXj+LiYiorKxk6dCjPPPMMeXl5VFZWUlRURFJSEtOnT8ftdvtiqc7TTz/N9OnTadSo0Tl4GvJT9VpJZIwJA14DogEL3G2t/aw+5zzfdA4JUSWRiIiIiIiInBciIiJISEggOjqawYMHM2PGDLZv306fPn0AaN68OQsWLGDnzp2kpaUREBBAUFAQL7/8MgD33XcfgwYNok2bNmRmZlY7R+vWrZk2bRpJSUlYa0lOTubmm29m48aN3HXXXb7P0D/77LNUVFSQmpqK2+3GWsu4ceMICwurMf5rrrmmxrb777+fhx9+GID27dvjcrnO6hldzIy1tv4GN2Y+sNZa+5oxpjHQ1Fpb4y5UsbGxNicnp97i8YdhW7eysbSUL3v39ncoIiIiIiIi4mfbt28nMjLS32HIBay6d8wYk2utjT1d33qrJDLGhALXAaMBrLU/Aj/W13znq2mdOxNojL/DEBERERERERGpVX3uSdQJOAi8YYz5whjzmjGmWT3Od17q3KQJl3s3sBYREREREREROV/VZ5IoELgaeNla2wM4Akz46UXGmPuMMTnGmJyDBw/WYzj+8d2PP/Knf/6TL8vK/B2KiIiIiIiIiEiN6jNJtBfYa6393Hv8Lp6k0Umsta9Ya2OttbGtWrWqx3D8o7SigvTdu/nU7fZ3KCIiIiIiIiIiNaq3JJG19lugyBjT1XuqP7CtvuY7X7UPDqYRsPvoUX+HIiIiIiIiIiJSo3rbuNrrIeCv3i+b7Qbuquf5zjtBAQFcHhLC7mPH/B2KiIiIiIiIiEiN6nO5GdbafO9SMqe19hZr7ff1Od/5qnNIiCqJRERERERExO9KSkqYPXv2WfUdMmQIJSUldb5+ypQpzJw586zmOh1jDKmpqb7j8vJyWrVqxY033gjAvHnzGDt27Cn9OnbsiMPhwOl0MmDAAL799tt6ie+Xql6TROLRpUkTClVJJCIiIiIiIn5WW5KovLy81r7Lli0jLCysPsI6Y82aNWPLli0c9RZkrFy5krZt29apb2ZmJps2bSI2NpY//vGP9RnmL46SRA3gT126UNSnj7/DEBERERERkYvchAkT2LVrFzExMaSlpZGVlUXfvn1JSUkhKioKgFtuuYWePXvSrVs3XnnlFV/fjh07UlxcTGFhIZGRkdx7771069aNAQMG+JI1NcnPzyc+Ph6n08mtt97K9997FhplZGQQFRWF0+lk+PDhAKxZs4aYmBhiYmLo0aMHhw8frnbMIUOGsHTpUgBcLhd33HHHGT2L6667jp07d55Rnwtdfe9JJEBooB6ziIiIiIiIVCMx8dRzw4bBAw9AWRkMGXJq++jRnp/iYrj99pPbsrJqnW7atGls2bKF/Px87+VZ5OXlsWXLFjp16gTA3LlzufTSSzl69ChxcXEMHTqUiIiIk8YpKCjA5XLx6quvMmzYMN57772Tln/91MiRI3nxxRfp168fkydP5qmnnmLWrFlMmzaNPXv2EBwc7FvKNnPmTF566SUSEhIoLS0lJCSk2jGHDx/O008/zY033simTZu4++67Wbt2ba33X9WHH36Iw+Go8/UXA1USNYCDP/7IQwUF/MPt9ncoIiIiIiIiIifp1auXL0EEnuqe7t27Ex8fT1FREQUFBaf06dSpEzExMQD07NmTwsLCGsd3u92UlJTQr18/AEaNGkV2djYATqeTESNGsGDBAgK9BRYJCQmMHz+ejIwMSkpKfOd/yul0UlhYiMvlYkh1ybQaJCUlERMTww8//MDEiRPr3O9ioBKXBhBoDP+zbx8dQ0K4JjTU3+GIiIiIiIjI+aK2yp+mTWtvb9nytJVDddGsWbMq4WSxatUqPvvsM5o2bUpiYiLHqtljNzg42Pd7o0aNTrvcrCZLly4lOzubJUuWMHXqVDZv3syECRNITk5m2bJlJCQksHz5cq666qpq+6ekpPD73/+erKwsDh06VKc5MzMzadmy5VnFe6FTkqgBhAcFERYYqC+ciYiIiIiIiF+1aNGixj1+wFP1Ex4eTtOmTdmxYwfr1q372XOGhoYSHh7O2rVr6du3L2+99Rb9+vWjsrKSoqIikpKSuPbaa3n77bcpLS3l0KFDOBwOHA4HGzZsYMeOHTUmie6++27CwsJwOBxknYOE2cVOSaIG0jkkhN36wpmIiIiIiIj4UUREBAkJCURHRzN48GCSk5NPah80aBBz5swhMjKSrl27Eh8ff07mnT9/PmPGjKGsrIzOnTvzxhtvUFFRQWpqKm63G2st48aNIywsjCeeeILMzEwCAgLo1q0bgwcPrnHcdu3aMW7cuGrb5s2bx+LFi33H5yLhdaEz1lp/x+ATGxtrc3Jy/B1GvfjN1q1sKi3ly969/R2KiIiIiIiI+Mn27duJjIz0dxhyAavuHTPG5FprY0/XVxtXN5D/atKEcms5n5JyIiIiIiIiIiInKEnUQP7YqRO74uMxxvg7FBERERERERGRUyhJ1ECUHBIRERERERGR85mSRA3k++PHuWXzZj4oLvZ3KCIiIiIiIiIip1CSqIE0b9SIDw8dIqeWTw2KiIiIiIiIiPiLkkQNJCgggMtDQth99Ki/QxEREREREREROYWSRA2oc0gIu48d83cYIiIiIiIicpEqKSlh9uzZZ91/1qxZlJWVVduWmJhITk7OWY9dk6ysLIwxvPbaa75z+fn5GGOYOXMmAKNHj+bdd989qV9hYSFNmjQhJiaGqKgoxowZQ2VlZbVzLF68GGMMO3bsqDGO6ua40ChJ1IA6N2miSiIRERERERHxm/pMEtWn6Oho3nnnHd+xy+Wie/fup+3XpUsX8vPz2bRpE9u2bWPx4sXVXudyubj22mtxuVznLOZfIiWJGlD35s3p3KQJP9aQuRQRERERERGpTxMmTGDXrl3ExMSQlpYGwIwZM4iLi8PpdPLkk08CcOTIEZKTk+nevTvR0dEsXLiQjIwM9u/fT1JSEklJSbXO43K5cDgcREdHk56eDkBFRQWjR48mOjoah8PB888/D0BGRgZRUVE4nU6GDx9e7XgdOnTg2LFjHDhwAGstH330EYMHD67zfQcGBnLNNdewc+fOU9pKS0v55JNPeP3113n77bd95621jB07lq5du3LDDTfw3Xff+dqefvpp4uLiiI6O5r777sNaC3iqqR555BFiY2OJjIxkw4YN3HbbbVxxxRVMmjSpzvH6S6C/A7iYPNi2LQ+2bevvMEREREREROQ8UPBwAaX5ped0zOYxzbli1hU1tk+bNo0tW7aQn58PwIoVKygoKGD9+vVYa0lJSSE7O5uDBw/Spk0bli5dCoDb7SY0NJTnnnuOzMxMWrZsWeMc+/fvJz09ndzcXMLDwxkwYACLFy+mffv27Nu3jy1btgCeqqYTMe3Zs4fg4GDfuercfvvtLFq0iB49enD11VcTHBxc5+dSVlbGxx9/zNNPP31K2wcffMCgQYO48soriYiIIDc3l549e/L+++/z5Zdfsm3bNg4cOEBUVBR33303AGPHjmXy5MkA3HnnnXz44YfcdNNNADRu3JicnBxeeOEFbr75ZnJzc7n00kvp0qULjzzyCBEREXWOu6GpkkhERERERETkIrVixQpWrFjhS7zs2LGDgoICHA4HK1euJD09nbVr1xIaGlrnMTds2EBiYiKtWrUiMDCQESNGkJ2dTefOndm9ezcPPfQQH330EZdccgkATqeTESNGsGDBAgIDa65lGTZsGIsWLcLlcnHHHXfUKZYTVVMJCQkkJydXW33kcrl8FUzDhw/3LTnLzs7mjjvuoFGjRrRp04brr7/e1yczM5PevXvjcDhYvXo1W7du9bWlpKQA4HA46NatG61btyY4OJjOnTtTVFRUp7j9RZVEDaisooK+X3zBva1bM0YVRSIiIiIiIhe12ip+Goq1lokTJ3L//fef0paXl8eyZcuYNGkS/fv391XOnK3w8HA2btzI8uXLmTNnDu+88w5z585l6dKlZGdns2TJEqZOncrmzZurTRZddtllBAUFsXLlSl544QX+8Y9/nHbOE3sS1eRf//oXq1evZvPmzRhjqKiowBjDjBkzauxz7NgxHnjgAXJycmjfvj1TpkzhWJWPVJ2ocAoICDip2ikgIIDy8vLTxuxPqiRqQE0CAth19ChbjhzxdygiIiIiIiJyEWrRogWHDx/2HQ8cOJC5c+dSWupZ9rZv3z6+++479u/fT9OmTUlNTSUtLY28vLxq+1enV69erFmzhuLiYioqKnC5XPTr14/i4mIqKysZOnQozzzzDHl5eVRWVlJUVERSUhLTp0/H7Xb7YqnO008/zfTp02nUqNE5eBrw7rvvcuedd/L1119TWFhIUVERnTp1Yu3atVx33XUsXLiQiooKvvnmGzIzMwF8CaGWLVtSWlp6QX3xTJVEDcgY4/nCWZUMo4iIiIiIiEhDiYiIICEhgejoaAYPHsyMGTPYvn07ffr0AaB58+YsWLCAnTt3kpaWRkBAAEFBQbz88ssA3HfffQwaNIg2bdr4kiY/1bp1a6ZNm0ZSUhLWWpKTk7n55pvZuHEjd911l+8z9M8++ywVFRWkpqbidrux1jJu3DjCwsJqjP+aa66pse3+++/n4YcfBqB9+/Z1+lKZy+Xybax9wtChQ3G5XMyePZvVq1cTFRXF5Zdf7ntGYWFh3HvvvURHR3PZZZcRFxd32nl+KcyJHbjPB7GxsTYnJ8ffYdSr27dsYcuRI+zo3dvfoYiIiIiIiEgD2759O5GRkf4OQy5g1b1jxphca23s6fpquVkD69KkCXuOHaPyPErOiYiIiIiIiIgoSdTA4i+5hJtbtuRIRYW/QxERERERERER8dGeRA3s1latuLVVK3+HISIiIiIiIiJyElUS+YmWm4mIiIiIiIjI+URJogZWYS2t//EPniws9HcoIiIiIiIiIiI+ShI1sEbGEBIQwO6jR/0dioiIiIiIiIiIj5JEftA5JITdx475OwwRERERERG5yJSUlDB79uyz6jtkyBBKSkrqfP2UKVOYOXPmWc11OsYYUlNTfcfl5eW0atWKG2+8EYB58+YxduzYU/p17NgRh8OB0+lkwIABfPvtt9WOX1xcTFBQEHPmzKkxhprm+CVTksgPOjdpokoiERERERERaXC1JYnKy8tr7bts2TLCwsLqI6wz1qxZM7Zs2cJR79/WK1eupG3btnXqm5mZyaZNm4iNjeWPf/xjtdcsWrSI+Ph4XC7XOYv5l0BJIj/oHBLCd8ePU3qa/wBFREREREREzqUJEyawa9cuYmJiSEtLIysri759+5KSkkJUVBQAt9xyCz179qRbt2688sorvr4dO3akuLiYwsJCIiMjuffee+nWrRsDBgzwJWtqkp+fT3x8PE6nk1tvvZXvv/8egIyMDKKionA6nQwfPhyANWvWEBMTQ0xMDD169ODw4cPVjjlkyBCWLl0KgMvl4o477jijZ3Hdddexc+fOattcLhd//vOf2bdvH3v37vWdf+ONN7jyyivp1asXn376qe/8kiVL6N27Nz169OCGG27gwIEDgKeaatSoUfTt25cOHTrwt7/9jcceewyHw8GgQYM4fvz4GcVc35Qk8oO+oaE80q4dP+oLZyIiIiIiIhe1LxK/OOVn3+x9AFSUVVTb/s28bwD4sfjHU9pOZ9q0aXTp0oX8/HxmzJgBQF5eHi+88AJfffUVAHPnziU3N5ecnBwyMjI4dOjQKeMUFBTw4IMPsnXrVsLCwnjvvfdqnXfkyJFMnz6dTZs24XA4eOqpp3zxfPHFF2zatMm3tGvmzJm89NJL5Ofns3btWpo0aVLtmMOHD+ftt9/m2LFjbNq0id69e5/2/qv68MMPcTgcp5wvKirim2++oVevXgwbNoyFCxcC8M033/Dkk0/y6aef8sknn7Bt2zZfn2uvvZZ169bxxRdfMHz4cP70pz/52nbt2sXq1av5+9//TmpqKklJSWzevJkmTZr4klznCyWJ/ODasDCe+6//4tKgIH+HIiIiIiIiIhe5Xr160alTJ99xRkYG3bt3Jz4+nqKiIgoKCk7p06lTJ2JiYgDo2bMnhbV8wdvtdlNSUkK/fv0AGDVqFNnZ2QA4nU5GjBjBggULCAwMBCAhIYHx48eTkZFBSUmJ7/xPOZ1OCgsLcblcDBkypM73m5SURExMDD/88AMTJ048pX3hwoUMGzYM8CSiTiw5+/zzz0lMTKRVq1Y0btyY3/72t74+e/fuZeDAgTgcDmbMmMHWrVt9bYMHDyYoKAiHw0FFRQWDBg0CwOFw1Prc/KH6Jy317mhFBccqKwlXokhEREREROSi1SOrR41tjZo2qrW9ccvGtbbXVbNmzXy/Z2VlsWrVKj777DOaNm1KYmIix6r58FJwcPB/4mzU6LTLzWqydOlSsrOzWbJkCVOnTmXz5s1MmDCB5ORkli1bRkJCAsuXL+eqq66qtn9KSgq///3vycrKqrbiqTqZmZm0bNmyxnaXy8W3337LX//6VwD2799fbaKsqoceeojx48eTkpJCVlYWU6ZM8bWdeFYBAQEEBQVhjPEdn24fqIamSiI/afPZZ0w+zzKGIiIiIiIicmFr0aJFjXv8gKfqJzw8nKZNm7Jjxw7WrVv3s+cMDQ0lPDyctWvXAvDWW2/Rr18/KisrKSoqIikpienTp+N2uyktLWXXrl04HA7S09OJi4tjx44dNY5999138+STT1a7bOxsfPXVV5SWlrJv3z4KCwspLCxk4sSJuFwuevfuzZo1azh06BDHjx9n0aJFvn5ut9u3cfb8+fPPSSz+oCSRn3QMCdEXzkRERERERKRBRUREkJCQQHR0NGlpaae0Dxo0iPLyciIjI5kwYQLx8fHnZN758+eTlpaG0+kkPz+fyZMnU1FRQWpqKg6Hgx49ejBu3DjCwsKYNWsW0dHROJ1OgoKCGDx4cI3jtmvXjnHjxlXbNm/ePNq1a+f7qboBdU1cLhe33nrrSeeGDh2Ky+WidevWTJkyhT59+pCQkEBkZKTvmilTpvCb3/yGnj171lqldL4z9jzaPDk2Ntbm5OT4O4wGMXTLFraVlbG9Vy9/hyIiIiIiIiINZPv27SclF0TOtereMWNMrrU29nR9VUnkJ12aNGHP0aNUnkdJOhERERERERG5eClJ5CedQ0L4t7Xs//e//R2KiIiIiIiIiIiSRP7SLyyM57t0oUmjRv4ORURERERERESEQH8HcLGKbNaMyCqfGRQRERERERER8SdVEvnRrqNH2aUvnImIiIiIiIjIeUBJIj/qn5/Pk3v2+DsMERERERERERElifypc5Mm7D52zN9hiIiIiIiIyEWipKSE2bNnn3X/WbNmUVZWVm1bYmIiOTk5Zz12TbKysggNDSUmJoarrrqK3//+92c9ljGGRx991Hc8c+b/z97dh9lZ1+eiv9e8ZNYzJASC4R0hw4waSMLwEoRGFMSC1S3V0stDC6W4u7e1rUXdLUU9aO3Z0mJrq8XDFrtP2btWDdVTta1QS90HCsX6AogQhTpkEsAgkGASksxM5u05fzDJBtGA5JmsNWt9Pv+YzMy61y8rubwu7uv7/L4fzgc+8IHnfP+vfvWre/yZN77xjTnttNP2+DPz589/3udsFCVRAx1bFBn2uBkAAAD7yGyWRLPpjDPOyN13351vfetb+dKXvpTbb7/9BeX09PTk85//fDZt2vS8X/NcJdGWLVty5513ZuvWrRkeHn5B52oWSqIG6qvX89jERHZMTTX6KAAAALSBd7/73Vm7dm0GBwdz2WWXJUn+5E/+JCtXrsyKFSvy+7//+0mSHTt25PWvf31OOOGELFu2LH/zN3+Tq6++Oo888kjOOuusnHXWWXt8n9WrV2f58uVZtmxZLr/88iTJ1NRULrnkkixbtizLly/PRz7ykSTJ1VdfneOOOy4rVqzIBRdcsMfcoigyODiYDRs27D7nf/yP/zGnnnpqTjzxxPzd3/1dkuQ73/lOTj311AwODmbFihUZGhpKknR1deWtb33r7vd+uo0bN+b888/PypUrs3Llytx+++1Zv359rr322nzkIx/J4OBgbrvttme97vOf/3ze8IY35IILLsj111+/++vr1q3L6aefnuXLl+eKK67Y/fXt27fn7LPPzkknnZTly5fvPvP69evzspe9LJdcckle8pKX5MILL8xXvvKVrFq1KgMDA/nGN76xx8+mCrabNVBfUSRJ1o2OZtkcGDsDAACgOu/88jtz96N3V5o5eOhgPvraj/7E71911VVZs2ZN7r77qfe96aabMjQ0lG984xspyzLnnXdebr311mzcuDGHH354brjhhiTJ1q1bs3DhwvzZn/1Zbr755rzoRS/6ie/xyCOP5PLLL8+dd96ZAw88MOecc06++MUv5qijjsqGDRuyZs2aJE9N4Ow607p169LT07P7az/J5s2bMzQ0lFe+8pVJkiuvvDKvfvWrc91112XLli059dRT85rXvCbXXntt3vGOd+TCCy/M+Ph4pp42nPFbv/VbWbFiRX7v937vGdnveMc78q53vSuveMUr8tBDD+Xcc8/Nfffdl7e97W2ZP7/KcnEAACAASURBVH/+T3zMbfXq1Xn/+9+fQw45JOeff37e+9737s77jd/4jVx88cW55pprdv98vV7PF77whey///7ZtGlTTjvttJx33nlJkgceeCCf+9znct1112XlypX5zGc+k3/913/N3//93+cP//AP88UvfnGPn8/eMknUQGcsXJjPHXdcjuzpafRRAAAAaEM33XRTbrrpppx44ok56aSTcv/992doaCjLly/PP//zP+fyyy/PbbfdloULFz7vzG9+85s588wzs3jx4nR1deXCCy/Mrbfemr6+vgwPD+e3f/u38+Uvfzn7779/kmTFihW58MIL86lPfSpdXT9+luW2227LCSeckCOOOCLnnntuDj300N3nv+qqqzI4OJgzzzwzY2Njeeihh3L66afnD//wD/OhD30oDz74YIqZIY0k2X///XPxxRfn6quvfsZ7fOUrX8nb3/72DA4O5rzzzsuTTz6Z7du37/HP+thjj2VoaCiveMUr8pKXvCTd3d27S7Dbb789v/RLv5Qk+ZVf+ZXdrynLMu9973uzYsWKvOY1r8mGDRvy2GOPJUmWLFmS5cuXp6OjI8cff3zOPvvs1Gq1LF++POvXr3/efwcvlEmiBjq8pye/ePDBjT4GAAAADbCniZ99pSzLvOc978mv//qvP+t7d911V2688cZcccUVOfvss/P+979/r97rwAMPzLe//e380z/9U6699tp89rOfzXXXXZcbbrght956a/7hH/4hV155Ze69995nlUVnnHFGvvSlL2XdunU57bTT8uY3vzmDg4MpyzJ/+7d/m5e+9KXP+PmlS5fm5S9/eW644Ya87nWvyyc+8Ym8+tWv3v39d77znTnppJPylre8ZffXpqen87WvfS31ev15/5k++9nPZvPmzVmyZEmS5Mknn8zq1atz5ZVXJnnqouwf9elPfzobN27MnXfeme7u7hxzzDEZm1lq1fO0IZKOjo7dv+/o6Mjk5OTzPtcLZZKowf51y5b829atjT4GAAAAbWDBggXZtm3b7t+fe+65ue6663ZPzGzYsCGPP/54HnnkkfT29uaiiy7KZZddlrvuuuvHvv7HOfXUU/Mv//Iv2bRpU6amprJ69eq86lWvyqZNmzI9PZ3zzz8/H/zgB3PXXXdleno6Dz/8cM4666x86EMfytatW/c4vbNkyZK8+93vzoc+9KHd5//Yxz6WsiyTJN/61reSJMPDw+nr68ull16an//5n88999zzjJxFixblzW9+c/7yL/9y99fOOeecfOxjH9v9+12P5O3pz7x69ep8+ctfzvr167N+/frceeedu+8lWrVq1e5ff/rTn979mq1bt+bggw9Od3d3br755jz44IN7/Dz3JSVRg/32Aw/kyib6BwEAAEDrOuigg7Jq1aosW7Ysl112Wc4555z88i//8u4Lln/xF38x27Zty7333rv74uc/+IM/2H3x8lvf+ta89rWv3ePF1YcddliuuuqqnHXWWTnhhBNy8skn5+d//uezYcOGnHnmmRkcHMxFF12UP/qjP8rU1FQuuuiiLF++PCeeeGIuvfTSHHDAAXv8M7ztbW/LrbfemvXr1+d973tfJiYmsmLFihx//PF53/vel+SpCZ9ly5ZlcHAwa9asycUXX/ysnN/5nd95xpazq6++OnfccUdWrFiR4447Ltdee22S5A1veEO+8IUvPOvi6vXr1+fBBx/MaaedtvtrS5YsycKFC/P1r389f/7nf55rrrkmy5cv333RdpJceOGFueOOO7J8+fJ88pOfzMte9rI9/nn3pdqutq0ZnHLKKeUdd9zR6GPsU+evWZP7Rkby3VNPbfRRAAAAmGX33Xdfli5d2uhj0MJ+3L+xWq12Z1mWpzzXa00SNVhfUWR4dDTTTVTWAQAAAO1HSdRgffV6dpZlfjA+3uijAAAAAG1MSdRgfTNr+IZHRxt8EgAAAKCddT33jzCbTtt//3ztpJOybL/9Gn0UAAAAoI0piRpsYVdXXr7//o0+BgAAANDmPG7WBL6wcWM+v3Fjo48BAAAAtDElURO4esOG/OnDDzf6GAAAALS4LVu25L/9t//2gl77ute9Llu2bHneP/+BD3wgH/7wh1/Qez2Xzs7ODA4OZtmyZXnDG97wU53r6c4888yccsr/3gx/xx135Mwzz9zja9avX5/PfOYze/yZj370o6nX69m6dese3/uOO+74qc4725RETaCvXs/w2FijjwEAAECL21NJNDk5ucfX3njjjTnggANm41g/taIocvfdd2fNmjVZtGhRrrnmmhec9fjjj+cf//Efn/fPP5+SaPXq1Vm5cmU+//nPv+BzNYKSqAkcWxR5dHw8I1NTjT4KAAAALezd73531q5dm8HBwVx22WW55ZZbcsYZZ+S8887LcccdlyR54xvfmJNPPjnHH398/uIv/mL3a4855phs2rQp69evz9KlS/Of//N/zvHHH59zzjkno8+xsfvuu+/OaaedlhUrVuRNb3pTNm/enCS5+uqrc9xxx2XFihW54IILkiT/8i//ksHBwQwODubEE0/Mtm3b9ph9+umnZ8OGDbt//yd/8idZuXJlVqxYkd///d9PkuzYsSOvf/3rc8IJJ2TZsmX5m7/5m90/f9lll+XKK698Vu7U1FQuu+yy3Vmf+MQndn+Gt912WwYHB/ORj3zkWa9bu3Zttm/fng9+8INZvXr17q+Pjo7mggsuyNKlS/OmN73pGZ/Zb/zGb+SUU07J8ccfv/vMyVOf+Xve854MDg7mlFNOyV133ZVzzz03xx57bK699to9fi4vhIurm0BfvZ4kWTc2luNtOQMAAGgbZ/7PM5/1tTcf/+b85srfzMjESF736dc96/uXDF6SSwYvyaaRTfnFz/7iM753yyW37PH9rrrqqqxZsyZ33333Uz9/yy256667smbNmixZsiRJct1112XRokUZHR3NypUrc/755+eggw56Rs7Q0FBWr16d//7f/3ve/OY352//9m9z0UUX/cT3vfjii/Oxj30sr3rVq/L+978/f/AHf5CPfvSjueqqq7Ju3br09PTsfmTswx/+cK655pqsWrUq27dvT33mv5l/nKmpqfyv//W/8mu/9mtJkptuuilDQ0P5xje+kbIsc9555+XWW2/Nxo0bc/jhh+eGG25Ikmc8Bnb66afnC1/4Qm6++eYsWLBg99f/8i//MgsXLsw3v/nN7Ny5M6tWrco555yTq666Kh/+8IfzpS996cee6frrr88FF1yQM844I//+7/+exx57LIccckg+/vGPp7e3N/fdd1/uueeenHTSSbtfc+WVV2bRokWZmprK2WefnXvuuScrVqxIkrz4xS/O3XffnXe961255JJLcvvtt2dsbCzLli3L2972tp/42bwQJomaQF9RJEnWPkfzCgAAAFU79dRTdxdEyVPTPSeccEJOO+20PPzwwxkaGnrWa5YsWZLBwcEkycknn5z169f/xPytW7dmy5YtedWrXpUk+dVf/dXceuutSZIVK1bkwgsvzKc+9al0dT01x7Jq1ar8l//yX3L11Vdny5Ytu7/+dKOjoxkcHMyhhx6axx57LD/7sz+b5KmS6KabbsqJJ56Yk046Kffff3+GhoayfPny/PM//3Muv/zy3HbbbVm4cOEz8q644op88IMffMbXbrrppnzyk5/M4OBgXv7yl+eJJ574sZ/Fj1q9enUuuOCCdHR05Pzzz8/nPve5JMmtt966u0hbsWLF7hIoST772c/mpJNOyoknnpjvfOc7+e53v7v7e+edd16SZPny5Xn5y1+eBQsWZPHixc8o1qpikqgJDM6fn0dOPz2HzpvX6KMAAACwD+1p8qe3u3eP339R74uec3Lo+djvaU+03HLLLfnKV76Sf/u3f0tvb2/OPPPMjP2YO3R7enp2/7qzs/M5Hzf7SW644Ybceuut+Yd/+IdceeWVuffee/Pud787r3/963PjjTdm1apV+ad/+qe87GUve8brdt1JNDIyknPPPTfXXHNNLr300pRlmfe85z359V//9We911133ZUbb7wxV1xxRc4+++y8//3v3/29V7/61bniiivyta99bffXyrLMxz72sZx77rnPyLnlllt+4p/n3nvvzdDQ0O7Sanx8PEuWLMnb3/72n/iadevW5cMf/nC++c1v5sADD8wll1zyjM9812fd0dHxjM+9o6PjOe+R+mmZJGoC8zo6clhPT2q1WqOPAgAAQAtbsGDBHu/42bp1aw488MD09vbm/vvvf0Zp8kItXLgwBx54YG677bYkyV//9V/nVa96Vaanp/Pwww/nrLPOyoc+9KFs3bo127dvz9q1a7N8+fJcfvnlWblyZe6///6fmN3b25urr746f/qnf5rJycmce+65ue6667J9+/YkyYYNG/L444/nkUceSW9vby666KJcdtllueuuu56VdcUVV+SP//iPd//+3HPPzcc//vFMTEwkSb73ve9lx44de/wMV69enQ984ANZv3591q9fn0ceeSSPPPJIHnzwwbzyla/cfeH1mjVrcs899yRJnnzyyey3335ZuHBhHnvssZ/qEu2qmSRqEtf94AfZNjWVdxx5ZKOPAgAAQIs66KCDsmrVqixbtiw/93M/l9e//vXP+P5rX/vaXHvttVm6dGle+tKX5rTTTqvkff/qr/4qb3vb2zIyMpK+vr78j//xPzI1NZWLLrooW7duTVmWufTSS3PAAQfkfe97X26++eZ0dHTk+OOPz8/93M/tMfvEE0/MihUrsnr16vzKr/xK7rvvvpx++ulJkvnz5+dTn/pUHnjggVx22WXp6OhId3d3Pv7xjz8r53Wve10WL168+/f/6T/9p6xfvz4nnXRSyrLM4sWL88UvfjErVqxIZ2dnTjjhhFxyySV517vetfs1119/fW688cZn5L7pTW/K9ddfn0svvTRvectbsnTp0ixdujQnn3xykuSEE07IiSeemJe97GU56qijsmrVqhf8Oe+tWlmWDXvzH3XKKaeUd9xxR6OP0RC/sGZN7h8ZyXdPPbXRRwEAAGCW3HfffVm6dGmjj0EL+3H/xmq12p1lWZ7yXK/1uFmT6KvXs25sLNNNVNoBAAAA7UNJ1CT6iiJj09N5dHy80UcBAAAA2pCSqEn01etJkuEXeCM8AAAAwN5QEjWJvqJIV62Wx2ZuTQcAAKA1NdPdwLSWvf23ZbtZk+gvioy98pXprNUafRQAAABmSb1ezxNPPJGDDjooNf/9R4XKsswTTzyR+syTSi+EkqhJdPg/BwAAgJZ35JFH5vvf/342btzY6KPQgur1eo488sgX/HolURP56MMP56GdO/Nn/f2NPgoAAACzoLu7O0uWLGn0MeDHcidRE7lnx45c//jjjT4GAAAA0IaURE3k2KLID8bHMzI11eijAAAAAG1GSdRE+mYul1o3NtbgkwAAAADtRknURPqKIkkyPDra4JMAAAAA7UZJ1ET66vUc3dOTndPTjT4KAAAA0GZsN2sii+fNy/rTT2/0MQAAAIA2ZJIIAAAAACVRs7nywQfzhnvvbfQxAAAAgDajJGoymycm8pXNm1OWZaOPAgAAALQRJVGT6SuKjE1P59Hx8UYfBQAAAGgjSqIm01evJ0mGx8YafBIAAACgnSiJmkxfUSRJhkdHG3wSAAAAoJ0oiZrM0fV6XrFwYeZ3djb6KAAAAEAb6Wr0AXimno6O3HbiiY0+BgAAANBmTBIBAAAAoCRqRu9fty4v/frXG30MAAAAoI0oiZpQT0dHvjc6mtGpqUYfBQAAAGgTSqIm1FevJ0nWjY01+CQAAABAu1ASNaG+okiSDI+ONvgkAAAAQLtQEjWhJTOTRMMmiQAAAIB9REnUhBZ3d+fiQw7JsTMTRQAAAACzravRB+DZarVa/mrp0kYfAwAAAGgjJoma2LbJyUYfAQAAAGgTSqIm9d7h4Rzy1a+mLMtGHwUAAABoA0qiJnVET09Gp6fz2Ph4o48CAAAAtAElUZPqs+EMAAAA2IeURE2qb2az2fDoaINPAgAAALQDJVGTOrqnJ7WYJAIAAAD2ja5GH4Afr97Zmf/rmGOyauHCRh8FAAAAaANKoiZ2xTHHNPoIAAAAQJvwuFkT2zE1le/s2NHoYwAAAABtQEnUxD7y8MNZ9s1vZnRqqtFHAQAAAFqckqiJ7dpwtt7l1QAAAMAsUxI1sb56PYkNZwAAAMDsUxI1sV2TRMOjow0+CQAAANDqlERNbHF3d/br6DBJBAAAAMy6rkYfgJ+sVqvlEy99aV46M1EEAAAAMFuURE3uwkMOafQRAAAAgDbgcbMm9+jOnbnxiSdSlmWjjwIAAAC0MCVRk/t/N27M6++9N4+Njzf6KAAAAEALUxI1ud0bzlxeDQAAAMwiJVGT66vXkyTDo6MNPgkAAADQypRETe6YXSWRSSIAAABgFimJmly9szNHzJtnkggAAACYVV2NPgDPbfVxx+WwefMafQwAAACghSmJ5oAzDjig0UcAAAAAWpzHzeaAtaOj+cQjj2RsaqrRRwEAAABalJJoDvjak0/mbd/7Xta5vBoAAACYJUqiOaDPhjMAAABglimJKvZvW7fmiuHhlGVZWWZfUSSJDWcAAADArFESVeyObdty5UMP5fGJicoyD+7uzn4dHR43AwAAAGaNkqhiAzNTP0MjI5Vl1mq19BWFSSIAAABg1nQ1+gCtpn+mJHpgdDSvqHB1/ReXLcuiLn9dAAAAwOzQOlTs6Ho9nXmqJKrSrnuJAAAAAGaDx80q1t3RkSVFkaGKS6Lv7tiRK4aH88MK7zoCAAAA2EVJNAv6i6LySaL1Y2O58qGH8u8V3nUEAAAAsIuSaBbsKonKsqwss69eT5IM23AGAAAAzAIl0SwYKIo8OTWVjRU+GnbMrpLIhjMAAABgFiiJZsHTN5xVpd7ZmSPmzTNJBAAAAMwKJdEsmI2SKHlqw9mGnTsrzQQAAABIkq5GH6AVHVOvpzOpfMPZjcuXZ7/OzkozAQAAABIl0ayY19GRo+v1yieJ5nf56wIAAABmh8fNZsmuDWdVumf79vzqffdlvcurAQAAgIopiWbJQFFkaGQkZVlWlrl9aiqffOyxfHdkpLJMAAAAgERJNGv6iyJbp6byxMREZZl99XqSZNgkEQAAAFAxJdEsmY0NZ4fMm5fejo4Mj41VlgkAAACQKIlmzUBvb5JqN5zVarX0FYVJIgAAAKBySqJZcky9no5UO0mUJMfNlE8AAAAAVbJTfZb0dHTkxfV65SXR3xx/fKV5AAAAAIlJolk1UBSVPm4GAAAAMFuURLOovygqnyS6Z/v2vPruu3PXtm2V5gIAAADtTUk0i/qLIpsnJ/PDiYnKMrtrtdy8ZUvuGxmpLBMAAABASTSLBooiSbUbzo6p15PEhjMAAACgUkqiWdQ/UxJV+chZ0dmZw+fNy/DYWGWZAAAAAEqiWbSkXk8t1ZZESdJXFCaJAAAAgEp1NfoAraze2ZkX9/RkqOL7g35m//3zyPh4pZkAAABAe1MSzbLZ2HD2oWOPrTQPAAAAwONms2w2SiIAAACAqimJZtlAb2+emJzM5omJyjK/s2NHBr7+9dz0wx9WlgkAAAC0NyXRLJuNDWeLurrywOhohkwoAQAAABVREs2y2SiJDp03L0VHhw1nAAAAQGWURLPs2Ho9taTSqZ9arZa+ej3DY2OVZQIAAADtbVa3m9VqtfVJtiWZSjJZluUps/l+zaje2Zkje3oqv7y6ryiy1iQRAAAAUJFZLYlmnFWW5aZ98D5NazY2nL120aLcPzJSaSYAAADQvvZFSdT2Booin99UbU/2m0ccUWkeAAAA0N5m+06iMslNtVrtzlqt9tZZfq+m1V8U2TQxkS0TE5XmTpdlJqenK80EAAAA2tNsl0SvKMvypCQ/l+S3arXaK3/0B2q12ltrtdodtVrtjo0bN87ycRpjYBY2nD0wMpL9brstn23RzwwAAADYt2a1JCrLcsPM/z6e5AtJTv0xP/MXZVmeUpblKYsXL57N4zRM/yyURIf39GRsejrDLq8GAAAAKjBrJVGtVtuvVqst2PXrJOckWTNb79fM+mahJOrt7Mxh8+ZleGysskwAAACgfc3mxdWHJPlCrVbb9T6fKcvyy7P4fk2rt7MzR/b0ZKjiqZ9ji8IkEQAAAFCJWSuJyrIcTnLCbOXPNf1FUekkUZL01eu5ecuWSjMBAACA9jSbk0Q8TX9R5O83bao0800velGOLYqUZZmZiS0AAACAF0RJtI8MFEUen5jIk5OT2b+rmo/9jYsX540tetk3AAAAsG/N6nYz/rfZ2HBWlmU2jo9n6+RkZZkAAABAe1IS7SOzURI9Oj6eg7/61Xz6sccqywQAAADak5JoHzl2piSqcsPZofPmpd7RYcMZAAAAsNeURPvIfp2dOXzevEoniWq1Wvrq9QyPjVWWCQAAALQnJdE+1F8UlZZESdJXFFlrkggAAADYS0qifWigKDI0MlJp5q5JorIsK80FAAAA2ks1u9h5XvqLIo9NTGTb5GQWdFXz0f8fBx+cFfPnZ6os01WrVZIJAAAAtB+TRPvQrg1nVT4e9jMLF+bXDjssXR3+KgEAAIAXTrOwDw309iapdsPZ5PR07tq2LQ+7vBoAAADYC0qifejYej1JKr28erwsc/Kdd+aTjz1WWSYAAADQfpRE+9D8rq4cOm9epSVRb2dnDp03L8M2nAEAAAB7QUm0jw0URaWPmyVPTSgNe9wMAAAA2AtKon2svygqnSRKkr6iMEkEAAAA7BUl0T7WXxT5wfh4dkxNVZbZV6/n4Z07Mz49XVkmAAAA0F66Gn2AdjNQFEmeurz6hPnzK8n85UMOyaqFC1OrJA0AAABoRyaJ9rH+p5VEVXlJb29+dtGidHf46wQAAABeGK3CPjYbJdFUWebvNm3Kt7dvrywTAAAAaC9Kon1sQVdXDunuztDISGWZtSQXfPe7+etHH60sEwAAAGgvSqIGqHrDWUetliX1eobHxirLBAAAANqLkqgBqi6Jkqc2nA1XnAkAAAC0DyVRAwz09mbD+HhGpqYqy+wrigyPjaUsy8oyAQAAgPahJGqAXZdXr61w8qevXs+2qak8MTFRWSYAAADQPpREDTAbG85+6ZBD8t2VK3NAV1dlmQAAAED70Cg0wK6SaKjCkuiQefNyyLx5leUBAAAA7cUkUQMs7OrK4u7uSieJyrLMNRs25Cs//GFlmQAAAED7UBI1SNUbzmq1Wv7r+vW5/vHHK8sEAAAA2oeSqEEGiqLSx82S5NiiyNqxsUozAQAAgPagJGqQ/qLI93fuzOjUVGWZfUWR4YqLJwAAAKA9KIkaZNfl1cMVTv701et5eOfOjE9PV5YJAAAAtAclUYMM7NpwNjJSWWZfUaRM8pBHzgAAAICfUlejD9Cujp0piaq8vPoXFy/OL7zoRVnQ5a8VAAAA+OloExrkwO7uHNTVVWlJtF9nZ2VZAAAAQHvxuFkDDfT2Vr7h7PfXrctfP/popZkAAABA61MSNVB/UVQ6SZQkn9u4MV/ctKnSTAAAAKD1KYkaqL8o8vDOnRmbmqoss69er3RjGgAAANAelEQNNDCzjazKUqevKDI8OpqyLCvLBAAAAFqfkqiB+mdhw1lfvZ4np6byw8nJyjIBAACA1qckaqBZKYmKIgs7O/ODnTsrywQAAABaX1ejD9DOFnV3Z1FXV6Ubzt5w0EHZcsYZleUBAAAA7cEkUYNVveGsVqtVlgUAAAC0DyVRg1VdEiXJbw8N5aoHH6w0EwAAAGhtSqIGGyiKPDQ2lp3T05Vl3rVtW27avLmyPAAAAKD1KYkarL8oMp1kXYXTREvq9QxXPJ0EAAAAtDYlUYMN9PYmSaWXV/cVRR7euTPjFU4nAQAAAK1NSdRg/UWRJJXeS9RXr2c6yUNjY5VlAgAAAK1NSdRgi7q6ckBXV6Ul0Ut7e7N8v/2ybWqqskwAAACgtXU1+gDtrlarZaAoKn3c7PSFC3PPypWV5QEAAACtzyRRE+gvikoniQAAAAB+WkqiJtBfFHlwbKzSi6Yvvu++vO3f/72yPAAAAKC1KYmawEBRZDrJugovmn5iYiLf2LatsjwAAACgtSmJmsCsbDgriqwdHU1ZlpVlAgAAAK1LSdQEZqUkqtfz5NRUNk9OVpYJAAAAtC4lURN4UXd3FnZ2ZmhkpLLMvpniadiF2AAAAMDzoCRqArVarfINZ0t7e/O6RYvSUatVlgkAAAC0rq5GH4Cn9BdF7qjwoumX9PbmhhUrKssDAAAAWptJoiYx0Nub9WNjmZierjTXxdUAAADA86EkahL9RZGpJOvHxirL/IU1a3LuPfdUlgcAAAC0LiVRk5iNDWe9HR0ZcnE1AAAA8DwoiZrEwExJVGWp01cUeWgWHmEDAAAAWo+SqEks7u7Ogs7OSieJ+ur1TCd5aOfOyjIBAACA1qQkahK1Wi39RVFtSTQznTTskTMAAADgOSiJmshAUVT6uNlLe3vz64cdlsXd3ZVlAgAAAK1JSdRE+osi6yu8Q+iQefNy7UtfmsEFCyrJAwAAAFqXkqiJ9BdFJsuy0juEpsoyT0xMVJYHAAAAtCYlURPZveFsZKSyzDeuWZOf/fa3K8sDAAAAWpOSqIn0z5REVV5efUy9nrWjoynLsrJMAAAAoPUoiZrIIfPmZX5nZ7Ubzur1PDk1lc2Tk5VlAgAAAK1HSdREarVa+ivecNY3M500XGEmAAAA0HqURE2mvygqnyRKkuGxscoyAQAAgNajJGoy/UWRdWNjmZyeriSvryjywSVLcvx++1WSBwAAALSmrkYfgGcaKIpMlGUe2rlz96Nie2O/zs78n0cfXcHJAAAAgFZmkqjJzMaGs8fHx7Nm+/bK8gAAAIDWoyRqMrNREr3rgQfyhjVrKssDAAAAWo+SqMkcNm9eejs6Kt9wBTMQGgAAIABJREFU9tDYWCYquucIAAAAaD1KoiZTq9VmZcPZdJKHd+6sLBMAAABoLUqiJlR5STTzCNtwhZkAAABAa1ESNaGBosjw6GimyrKSvL56PUkyPDZWSR4AAADQepRETai/KDJelnm4olLniJ6e/M+XvSyvOfDASvIAAACA1tPV6APwbE/fcHbMzK/3Rketll899NC9zgEAAABal0miJjTQ25sklW44u3/Hjnz5iScqywMAAABai5KoCR02b16Kjo5KL6/+vzdsyC/dd19leQAAAEBrURI1oY5aLcfOwoazLZOT2TwxUVkmAAAA0DqURE1qoCgqfdzMhjMAAABgT5RETaq/KLJ2dDRTZVlJXt/MBdjDFRZPAAAAQOtQEjWp/qLIeFlmw86dleQtMUkEAAAA7EFXow/AjzcwM/kzNDqaF88UPHtjQVdXbhkczNKZzWkAAAAAT2eSqEn1z5REVV5e/aoDDsjB8+ZVlgcAAAC0DiVRkzqipyf1jo5KS6JvPPlkrt2wobI8AAAAoHUoiZpUR62WY+v1DI2MVJb595s25e1DQ5mYnq4sEwAAAGgNSqIm1l8UlU4S9RVFppI8XNFl2AAAAEDrUBI1sf6iyNqxsUyXZSV5fbs2nFVYPAEAAACtQUnUxAZ6ezM2PZ0NFU3+9M1chj08NlZJHgAAANA6lERNrOoNZ0f09GRerZa1JokAAACAH9HV6APwkw3MlERDo6M568AD9zqvs1bLv596ag7v6dnrLAAAAKC1KIma2JE9Pemp1Sq9vPqYmeIJAAAA4Ok8btbEOmq19FW84ezmzZvzuw88UFkeAAAA0BqURE1uoCgyVGFJdNf27fnT738/mycmKssEAAAA5j4lUZPrL4qsHR3NdFlWktdXryex4QwAAAB4JiVRk+svioxOT+cH4+OV5PXN3Ek0bMMZAAAA8DRKoia3e8PZyEgleUtMEgEAAAA/hpKoyfXPlERVXV69f1dXFnd3Z2NFk0kAAABAa+hq9AHYs6Pq9cyr1SrdcPb900/PvA79IAAAAPC/aQqaXGetlr6KN5wpiAAAAIAfpS2YA/qLotJJon984on8wpo1mZyeriwTAAAAmNuURHPArpKoLMtK8n4wPp4vbNqUh3furCQPAAAAmPuURHPAQFFkZHo6P6josuk+G84AAACAH6EkmgOq3nDWN5M3XOEjbAAAAMDcpiSaA6ouiY7o6Ul3rZa1SiIAAABghpJoDnjxTKlT1YazzlotJy9YkI5arZI8AAAAYO7ravQBeG5dHR1ZUq9XuuHs3046qbIsAAAAYO4zSTRH7NpwBgAAADAblERzxEBRZGhkJGVZVpL395s25ZQ77siWiYlK8gAAAIC5TUk0R/QXRXZMT+ex8fFK8ibLMndu357hsbFK8gAAAIC5TUk0R1S94ayvXk+SDHuEDQAAAIiSaM4Y6O1Nkso2nPXNlE4miQAAAIBESTRnHN3Tk65arbJJov27uvKi7m6TRAAAAEASJdGc0dXRkWPq9Uo3nL1u0aIc0dNTWR4AAAAwd3U1+gA8fwNFUdnjZknyV0uXVpYFAAAAzG0mieaQ/qLIA6OjKcuy0UcBAAAAWoySaA7pL4psm5rKxomJSvL+ftOmHHL77VnvXiIAAABoe0qiOWRgZiNZVY+cLejszOMTEzacAQAAAEqiuaR/piSq6vLqvpk8G84AAAAAJdEccky9ns5UVxId2dOTrlota00SAQAAQNtTEs0h3R0dOaZez9DISCV5nbVajqnXTRIBAAAA6Wr0Afjp7NpwVpULDz44C7v8MwAAAIB2px2YY/qLIl978smUZZlarbbXeR9YsqSCUwEAAABzncfN5piB3t5snZrKpomJyjLHpqYyVZaV5QEAAABzj5Jojql6w9mXNm1K72235Z7t2yvJAwAAAOYmJdEcU3VJdERPT8okwzacAQAAQFtTEs0xS+r1dCQZqqgk6pspnWw4AwAAgPamJJpj5nV05Oh6vbJJooVdXTmoq8skEQAAALQ5JdEc1F8UlZVEyVPTRCaJAAAAoL11NfoA/PQGiiKfefzxlGWZWq2213m/cfjh2fsUAAAAYC5TEs1B/UWRLZOT+eHkZA7q7t7rvLccdlgFpwIAAADmMo+bzUFVbzibnJ7O2tHRjExNVZIHAAAAzD1KojloYKYkGhoZqSTv1q1b0//1r+drTz5ZSR4AAAAw9yiJ5qAlRZFaqpsk6qvXk8Tl1QAAANDGlERzUE9HR17c01NZSXRkT0+6arUMj41VkgcAAADMPUqiOWqgtzdDFZVEXR0dObqnxyQRAAAAtDEl0RzVXxSVTRIlSV9RmCQCAACANtbV6APwwgwURX44OZkfTkxkUXf3Xuf9zlFHZXx6uoKTAQAAAHORkmiO6p/ZcPbA6GhOraAkOnfRor3OAAAAAOYuj5vNUU8viaqwfXIyt2zenE3j45XkAQAAAHOLkmiO6qvXU0squ7x6aHQ0Z33727l169ZK8gAAAIC5RUk0R9U7O3NUT09lk0R9M5NJNpwBAABAe1ISzWFVbjhb2NWVRV1dWWvDGQAAALQlJdEcNlAUGRoZqSyvryhMEgEAAECbUhLNYf1FkScmJ7N5YqKSvL56PcMmiQAAAKAtdTX6ALxwuzacrR0dzSnd3Xud954XvzjjZbnXOQAAAMDcoySawwZ6e5M8tZnslP333+u8wQUL9joDAAAAmJs8bjaH9dXrSVLZ5dVbJiby148+6l4iAAAAaENKojms6OzMkT09lZVEmycnc/H99+fmLVsqyQMAAADmDiXRHDdQFBmqqCQ6qqcnXbWaSSIAAABoQ0qiOa6/KCqbJOrq6MjRPT02nAEAAEAbUhLNcf1FkY0TE9k6OVlJXl9RmCQCAACANjTrJVGtVuus1WrfqtVqX5rt92pHA0WRpLrLq/vqdZNEAAAA0Ib2xSTRO5Lctw/epy31V1wSve+YY/Ktk0+uJAsAAACYO2a1JKrVakcmeX2S/2c236edHVtxSXRET0+OrNcryQIAAADmjtmeJPpokt9LMj3L79O2ejs7c8S8eRkaGakkb8vERP7owQdz17ZtleQBAAAAc8OslUS1Wu0/JHm8LMs7n+Pn3lqr1e6o1Wp3bNy4cbaO09Kq3HCWJO9dty43b9lSWR4AAADQ/GZzkmhVkvNqtdr6JNcneXWtVvvUj/5QWZZ/UZblKWVZnrJ48eJZPE7rqrIkOqC7Owd2dWWtDWcAAADQVmatJCrL8j1lWR5ZluUxSS5I8v+VZXnRbL1fOxvo7c1jExN5cnKykry+ej3DSiIAAABoK/tiuxmzbNeGs6qmf/qKIsNjY5VkAQAAAHPDPimJyrK8pSzL/7Av3qsd9Ve84ayvXs+GnTszXZaV5AEAAADNzyRRC9hVEg1VVBK975hjsvUVr0hHrVZJHgAAAND8uhp9APbefp2dOWzevMomifbr7KwkBwAAAJg7TBK1iCo3nG2bnMxvfu97+acf/rCSPAAAAKD5KYlaxEBRVPa4WdHRkb945JHctmVLJXkAAABA81MStYj+osij4+PZPjm511ldHR05ul634QwAAADaiJKoRey6vHptRcVOX1FkuKLJJAAAAKD5KYlaxMCuDWcjI5Xk9ZkkAgAAgLaiJGoRx86URFVdXj1QFCk6OjI2NVVJHgAAANDclEQtYkFXVw7p7q6sJPrdF784D55+euqdnZXkAQAAAM1NSdRCBnp7K9twBgAAALQXJVEL6S+KyiaJdk5P5w333pu/evTRSvIAAACA5qYkaiH9RZFHxsezo4J7hHo6OnL71q35xpNPVnAyAAAAoNkpiVrIrg1nayuaJrLhDAAAANqHkqiF9Fe84ayvKDLsjiMAAABoC0qiFlJ5SVSvZ/3YWKbKspI8AAAAoHkpiVrI/l1dObi7u7INZyvmz8/KBQvy5ORkJXkAAABA8+pq9AGoVpUbzn75kEPyy4ccUkkWAAAA0NxMErWYKksiAAAAoH0oiVrMQFHk+zt3ZmRqaq+zyrLMKXfckT988MEKTgYAAAA0MyVRi9l1eXUVW8lqtVo2T05mzY4de50FAAAANDclUYupfMNZUVRSOAEAAADNTUnUYnaVRFVtOOur1zM8NlZJFgAAANC8lEQt5oDu7ryou7vSSaKNExPZNjlZSR4AAADQnJRELajKDWenLFiQCw4+OCPT05XkAQAAAM2pq9EHoHoDRZFbtmypJOvsAw/M2QceWEkWAAAA0LxMErWg/qLIwzt3ZnRqqrLMSZNEAAAA0NKURC1oYOby6nUVXTjd/7Wv5Z0PPFBJFgAAANCclEQtqOoNZwu7umw4AwAAgBanJGpBu0qiKjecDVeUBQAAADQnJVELOrC7Owd1dWVoZKSSvL56PevGxjJdlpXkAQAAAM1HSdSi+oui0kmi8bLMIzt3VpIHAAAANB8lUYuqsiQ6bf/987tHHZXOWq2SPAAAAKD5dDX6AMyOgd7efObxxzM2NZV6Z+deZZ0wf35OmD+/opMBAAAAzcgkUYvqL4qUSdZVtJVsx9RUNo6PV5IFAAAANB8lUYuqesPZ8m9+M+984IFKsgAAAIDmoyRqUQMzJdFQVZdX1+sZrmgqCQAAAGg+SqIWtai7Owd2dVW64Wy4oiwAAACg+SiJWliVG8766vU8PjGR7ZOTleQBAAAAzUVJ1MIGiqK6x81mHl+r6iJsAAAAoLkoiVpYf1HkobGx7Jye3uusl++/f/68vz+Lu7srOBkAAADQbJRELay/KDKdZH0F0z9H1+u59Mgjc2hPz94fDAAAAGg6SqIWtnvD2chIJXkPjIzkuzt2VJIFAAAANBclUQvrnymJqrq8+s3f/W5+d+3aSrIAAACA5qIkamEHdXdnYWdnpRvOhivKAgAAAJqLkqiF1Wq1DPT2VrrhbN3YWKbLspI8AAAAoHkoiVpcf1FUOkk0XpZ5ZOfOSvIAAACA5qEkanH9RZH1Y2MZn57e66xjZ+44Gq5gWxoAAADQXJRELW6gKDKdZH0Fxc7JCxbkC8cfn+P322/vDwYAAAA0FSVRi6tyw9mi7u68cfHiHNTdvddZAAAAQHNRErW4KkuiJPnq1q35/zZvriQLAAAAaB5djT4As2txd3f27+ysbMPZ+9aty8j0dP7twAMryQMAAACag0miFler1ardcFYUGa4oCwAAAGgeSqI2UGlJVK/n8YmJbJ+crCQPAAAAaA5KojYwUBRZNzqaienpvc7qm7njaF0F29IAAACA5qEkagP9RZGpJA9WUOz01etJkmElEQAAALQUJVEbqHLD2bL99ssdJ5+c17i4GgAAAFqKkqgNDPT2JkklG86Kzs6cvGBB9uvs3OssAAAAoHkoidrAwd3dmd/ZWdnl1f+waVM++eijlWQBAAAAzUFJ1AZqtVqlG87+6tFH80cPPVRJFgAAANAclERtYqAoKnncLHlqw9m60dFMl2UleQAAAEDjKYnaRH9RZN3YWCanp/c6q69ez86yzA/Gxys4GQAAANAMlERtor8oMlmWeWjnzr3O6pvZlra2oskkAAAAoPGURG1iYKbYqeKRs756PUmybmxsr7MAAACA5tDV6AOwb/TPlEQPjI7m3L3MWlIUefRnfiYHd3fv/cEAAACApqAkahOHzpuX/To6Ktlw1lmr5ZB58yo4FQAAANAsPG7WJmq1WvqLIkMjI5Xk/fWjj+a/rl9fSRYAAADQeEqiNtJfFJVMEiXJv2zZkms2bKgkCwAAAGg8JVEb6S+KDI+NZaos9zqrryjy2MREdkxNVXAyAAAAoNGURG1koLc3E2WZhyrYSrZ7w1lFk0kAAABAYymJ2sjTN5ztrWNnsoYrKJwAAACAxlMStZEqS6K+osi8Wi1PTEzsdRYAAADQeF2NPgD7zuHz5qXo6MhQBSXRoq6ujL7ylemo1So4GQAAANBoSqI2UqvVKttwVqvVoh4CAACA1uFxszZTVUmUJNdu2JC33H9/JVkAAABAYymJ2sxAUWTt6GimynKvs9aOjeX6xx/PdAVZAAAAQGMpidpMf1FkvCzz/Z079zqrr17P2PR0Hh0fr+BkAAAAQCMpidrMQMUbzpJkuKLH1wAAAIDGURK1mf6ZYmdoZGSvs/rq9SRPPXYGAAAAzG1KojZzeE9P6h0dlUwSHV2v59h6PaU7iQAAAGDO62r0Adi3Omq19BdFhiooieZ1dOSB006r4FQAAABAo5kkakP9RVHJJBEAAADQOpREbai/KLJ2dLSS1fUfefjhrLrrrgpOBQAAADSSkqgNDRRFdpZlvr9z515njUxP56tPPpmRqakKTgYAAAA0ipKoDe3acFbFI2e7Npyts+EMAAAA5jQlURuqsiQ6diZr2B1HAAAAMKcpidrQkT096anVKtlwtmuSaNgkEQAAAMxpSqI21FGr5diKNpwd1N2d1y5alMXd3RWcDAAAAGiUrkYfgMbor6gkqtVq+ccVKyo4EQAAANBIJona1MBMSTRdlpXklRXlAAAAAI2hJGpT/UWRsenpPLJz515n/fFDD+VFt99eWeEEAAAA7HtKojZV5Yaz+Z2d+eHkZB4dH9/rLAAAAKAxlERtaqC3N0mq3XBWQRYAAADQGEqiNnVkT0/m1WqVTBL1zUwlDY+N7XUWAAAA0BhKojbVWaulr6INZ0fX66nFJBEAAADMZUqiNjZQFJU8btbT0ZG3H3FEVsyfX8GpAAAAgEboavQBaJz+oshXNm9OWZap1Wp7lXX1wEBFpwIAAAAawSRRG+svioxOT+cHFWwlK8syP5yYqOBUAAAAQCMoidrYwMyF01U8cvbHDz+cg26/PSNTU3udBQAAAOx7SqI21j9TElVxefWLe3qSJOttOAMAAIA5SUnUxo7q6Ul3rVZJSdQ3UzitteEMAAAA5iQlURvr6uhIX72eoZGRvc7qq9eTJMMmiQAAAGBOUhK1uf6iqGSS6EXd3Znf2Zlhk0QAAAAwJ3U1+gA0Vn9R5JYtW1KWZWq12gvOqdVq+a/HHJPj9tuvwtMBAAAA+4qSqM0N9PZmx/R0Hh0fz2Ezl0+/UO886qiKTgUAAADsax43a3NVbjjbMTWVu7dty3RZ7nUWAAAAsG8pidpclSXR/3z00Zx45515bHx8r7MAAACAfUtJ1OaO/v/Zu/Pwuus67/+vz9m/2fPtvmUPZWmB0hZUXBmwGcdbx/13Ozi3My4343qhoMCoCC6ggDqO4jbe48yIzvhD5xYdbd1wAFnaUuhCW5omTbqkTZuc7MnJ2b73HwkIUmiS811OkufjunIBOd/zfr//KFwXr+vz/bzjcUWMUasLIVEjG84AAAAAAJi1CInmuUgopPpEwpWTRA2Tp5LYcAYAAAAAwOxDSAQ1WZYrIVFtIiEjThIBAAAAADAbERJBzZal1rExOQVeOB0PhbQyHuckEQAAAAAAs1Ak6AEQvCbL0nAup5OZjJbEYgXV+mpTk5bF4y5NBgAAAAAA/EJIhGdtOCs0JPrLRYvcGAkAAAAAAPiM182g5smQqHV0tOBa3em0ftbTo/F8vuBaAAAAAADAP4REUG0iobDkyuXVv+3r0+v27OFeIgAAAAAAZhlCIigaCqkukXAlJGpIJCRJbYREAAAAAADMKoREkCQ1l5So1Y2QaPLVtfZUquBaAAAAAADAP4REkDRxefXBsTE5jlNQnUXRqEpDIV43AwAAAABgliEkgqSJkGgwl1NPJlNQHWOMGiyLk0QAAAAAAMwykaAHQHF4esPZ2JgWxWIF1fru6tWqjvBHCwAAAACA2WRKJ4mMMR82xlSYCd81xuwwxrza6+Hgn6bJkMiNy6s3VlSoqaSk4DoAAAAAAMA/U33d7G8dxxmU9GpJ1ZLeIelWz6aC7+oSCYXkTkjUmUrpzmPH1Ffgq2sAAAAAAMA/Uw2JzORfXyPp3xzHeeIZv8McEAuFVJdIuLLhbO/IiN7f2qp9o6MuTAYAAAAAAPww1ZDoUWPMrzQREm0xxpRLyns3FoLw1IazQjVMvrrGhjMAAAAAAGaPqYZE75J0naSNjuOMSopK+hvPpkIgmixLraOjchynoDq18biMxIYzAAAAAABmkamGRC+W9KTjOP3GmCslfULSgHdjIQjNlqWBXE69Bd4llAiHtSIe5yQRAAAAAACzyFRDom9IGjXGXCDpo5LaJP2rZ1MhEG5uOGtIJDhJBAAAAADALDLVkCjrTLyD9HpJX3Mc5+uSyr0bC0Fonlxb70ZI9P1zztHP164tuA4AAAAAAPBHZIrPDRljrpf0DkkvM8aENHEvEeaQukRCIcmVDWerEonCBwIAAAAAAL6Z6kmit0kal/S3juOckLRS0m2eTYVAxEMh1SQSrpwkOjg6quvb23WYV84AAAAAAJgVphQSTQZDd0mqNMa8VlLKcRzuJJqDmi3LlZNEPZmMbj18WLtHRlyYCgAAAAAAeG1KIZEx5q2Stkp6i6S3SnrEGPNmLwdDMJosy52LqycvwWbDGQAAAAAAs8NU7yT6e0kbHcc5KUnGmEWSfiPpbq8GQzCaLEt92aySmYzs6MyvnVoUjao0FGLDGQAAAAAAs8RU7yQKPRUQTeqdxncxizRPngAq9JUzY4waLIuTRAAAAAAAzBJTPUm02RizRdIPJ//5bZJ+4c1ICFLTZEh0cGxMl1RUFFSrIZHQiXTajbEAAAAAAIDHphQSOY5zrTHmTZIunfzVtx3H+U/vxkJQ6hMJGcmVe4n+/dxzFQ9x4AwAAAAAgNlgqieJ5DjOjyX92MNZUAQS4bBq4nG1jo66UgsAAAAAAMwOL3jMwxgzZIwZPM3PkDFm0K8h4S+3Npy1jo7qyr17tXt42IWpAAAAAACAl14wJHIcp9xxnIrT/JQ7jlPYhTUoWm6FRHlJd508qZ2ERAAAAAAAFD0ujMFzNJeUqDebVV8mU1Cd2nhcRlJ7KuXOYAAAAAAAwDOERHiOZ244K0QiHNaKeFztLpxKAgAAAAAA3iIkwnO4FRJJUkMiwUkiAAAAAABmAUIiPEdjIiEjqdWFkGhNaalixhQ+FAAAAAAA8FQk6AFQfBLhsFbG466cJPr6WWe5MBEAAAAAAPAaJ4lwWm5tOAMAAAAAALMDIRFOq9myXHndrG1sTK947DHd29fnwlQAAAAAAMArhEQ4rSbLUk8mo/5MpqA6ZeGw7hsY0BMjIy5NBgAAAAAAvEBIhNN6asNZW4GbyRZHoyoJhdhwBgAAAABAkSMkwmk1T4ZEraOjBdUxxqjBstTO/UYAAAAAABQ1QiKcVsNkSOTG5dUNiQQniQAAAAAAKHKRoAdAcSoJh7UiFnMlJLq0slJRY1yYCgAAAAAAeIWQCM+ruaTElQ1nH6upcWEaAAAAAADgJV43w/NqsixXThIBAAAAAIDiR0iE59VkWTqZyWgwmy2ozpFUSg0PP6x/7+52aTIAAAAAAOA2QiI8r2aXLq9eFI3qUCrlyqtrAAAAAADAG4REeF5NLoVEiclLsNlwBgAAAABA8SIkwvNqdCkkkqQGy1I7J4kAAAAAAChahER4XqXhsJbHYq68JtaQSHCSCAAAAACAIhbxqrAxJiHpPknxyT53O45zo1f94A23NpxdXl2tRCgkx3FkjHFhMgAAAAAA4CYvTxKNS7rMcZwLJF0oqcUY8yIP+8EDboVEVy5dqm+uXk1ABAAAAABAkfIsJHImDE/+Y3Tyx/GqH7zRbFk6kU5rKJstuFbecTSez7swFQAAAAAAcJundxIZY8LGmMclnZT0a8dxHjnNM+81xmw3xmw/deqUl+NgBp7acNZW4GminnRa1n336TtdXW6MBQAAAAAAXOZpSOQ4Ts5xnAslrZR0sTFmzWme+bbjOBscx9mwaNEiL8fBDDS5tOFsQTSqsDFcXg0AAAAAQJHyZbuZ4zj9ku6V1OJHP7jnqZCo0A1nxpiJDWcu3G8EAAAAAADc51lIZIxZZIypmvx7S9IVkvZ71Q/eKItEtDQWc+Xy6gbL4iQRAAAAAABFysuTRMsk3WuM2SVpmybuJPq5h/3gEbc2nD11kshxuL8cAAAAAIBiE/GqsOM4uySt86o+/NNsWdqcTBZc57ULFmhhNKqs4yhqjAuTAQAAAAAAt3gWEmHuaLIsHU+nNZLLqTQcnnGdy21bl9u2i5MBAAAAAAC3+HJxNWa3py6vbivwlTPHcXRifFw96bQbYwEAAAAAABcREuGMml3acJbK57XsoYf0ja4uN8YCAAAAAAAuIiTCGTVOhkSFXl5thcNaHoux4QwAAAAAgCJESIQzqohEtDgadWfDmWWp3YU6AAAAAADAXYREmJJmy1Lr6GjBdRoSCU4SAQAAAABQhAiJMCVNluXaSaJj4+NK5XIuTAUAAAAAANwSCXoAzA5NlqV/6e7WaC6nknB4xnVev2CBauNxOS7OBgAAAAAACkdIhClpLimRJLWNjWltWdmM61xYXq4Ly8vdGgsAAAAAALiE180wJU0ubTjLO462DQ7qoAv3GwEAAAAAAPcQEmFK3AqJjKQrdu7UF44ccWEqAAAAAADgFkIiTEllJKJF0ahaCw2JjNGfVVdrSzIpx+FmIgAAAAAAigUhEabMrQ1nm2xbR8bHtY9XzgAAAAAAKBqERJiyZssq+CSRNBESSdLmZLLgWgAAAAAAwB2ERJiyJsvS0fFxjeVyBdWpTSR0TkmJft3X59JkAAAAAACgUJGgB8Ds8dTl1e2plM4rLS2o1t3nnaeaeNyNsQAAAAAAgAs4SYQpa54MiVpduEvo3NJSlUXIKAEAAAAAKBaERJiyxsmQyI3LqyXp9sOH9bWjR12pBQAAAAAACkNIhCmrjka1IBJxLST6bX+/vnbsmCu1AAAAAABAYQiJMC3NJSWubDiTpBbb1pNjY+pwqR4AAAAAAJg5QiJMS5NluXaSqMW2JUlb2HIGAAAAAEDgCIkwLU2WpSPj40rlcgWC7EnBAAAgAElEQVTXOsuyVJdIaHMy6cJkAAAAAACgEIREmJZmy5IjqT2VKriWMUZ/uXChIsYUPhgAAAAAACgIO8gxLU3P2HB2bmlpwfW+3NRUcA0AAAAAAFA4ThJhWp4ZErkpnc+7Wg8AAAAAAEwPIRGmxY5GZUcirm04k6SrnnxSL9mxw7V6AAAAAABg+giJMG1ubjiTpNpEQo8OD+vE+LhrNQEAAAAAwPQQEmHa3A6JWmxbkvSrvj7XagIAAAAAgOkhJMK0NVuWDqdSGnfpHqELysq0JBrV5mTSlXoAAAAAAGD6CIkwbU2WpbykQy6dJgoZo1fbtn6VTCrnOK7UBAAAAAAA0xMJegDMPs/ccHZ2aakrNd+1bJleVFGhrOMobIwrNQEAAAAAwNQREmHamktKJMnVDWevqKrSK6qqXKsHAAAAAACmh9fNMG12JKKqSMTVy6sl6cT4uH7e0+NqTQAAAAAAMDWERJg2Y4zrG84k6c6uLr1+zx71ZTKu1gUAAAAAAGdGSIQZabYsV183k6RNtq28pN/29blaFwAAAAAAnBkhEWakybLUmUopnc+7VvOS8nJVhsPanEy6VhMAAAAAAEwNIRFmpMmylJfUkUq5VjMSCukK29bmZFKO47hWFwAAAAAAnBkhEWak2bIkubvhTJI2VVfrWDqtAy7XBQAAAAAALywS9ACYnZomQyK3L69+y+LF2mTbWpVIuFoXAAAAAAC8MEIizMjCaFQV4bDrIVFlJKLKCH8sAQAAAADwG6+bYUaMMRMbzkZHXa/90MCA3rxnj0ZyOddrAwAAAACA0yMkwow1WZbrJ4kkaTiX0497evT7/n7XawMAAAAAgNMjJMKMNVmWOlIpZfJ5V+u+rLJSViikLcmkq3UBAAAAAMDzIyTCjDWXlCgnqSOVcrVuIhzWq6qqtJmQCAAAAAAA3xASYca82nAmSZtsW61jY2r3oDYAAAAAAHguQiLMmJchUYtta11ZmU6m067XBgAAAAAAz8WucczY4mhU5eGwWj0Iic4qKdGODRtcrwsAAAAAAE6Pk0SYMWOMZxvOnjKezyvr8sXYAAAAAADguQiJUBAvQ6KHBwZkP/CA7h8Y8KQ+AAAAAAD4I0IiFKTZsnQolfLktM95paVKO462sOUMAAAAAADPERKhIE2WpazjqHN83PXa5ZGIXlpZqc2ERAAAAAAAeI6QCAXxcsOZNLHlbOfIiI57EEIBAAAAAIA/IiRCQZonQ6LW0VFP6rfYtiTpV319ntQHAAAAAAATCIlQkCWxmEpDIc9OEp1fWqrP19frkvJyT+oDAAAAAIAJkaAHwOxmjPF0w5kxRtfX1npSGwAAAAAA/BEniVCw5pIStXoUEknSeD6vX/T2qs3DHgAAAAAAzHeERChYk2XpUCqlbD7vSf2hbFav3b1b3+/u9qQ+AAAAAAAgJIILmixLGcfREY82kC2MxbSxvFxbkklP6gMAAAAAAEIiuODpDWcevg7WYtt6ZHBQyUzGsx4AAAAAAMxnhEQoWNNkSOTV5dXSREiUl/Sbvj7PegAAAAAAMJ8REqFgy2IxlYRCnoZEG8vLVR2J6L7+fs96AAAAAAAwn0WCHgCznzFGTZbl6etmkVBIO9avV00i4VkPAAAAAADmM04SwRVNluXpSSJJqrMshYzxtAcAAAAAAPMVIRFc0WxZah8bU85xPOuRzef1dwcO6P8cP+5ZDwAAAAAA5itCIriiybKUdhwdSaU86xEJhfSHgQH9oLvbsx4AAAAAAMxXhERwhR8bziRpk23r/oEBDWeznvYBAAAAAGC+ISSCK5pLSiTJ08urJanFtpV2HP2eLWcAAAAAALiKkAiuWBaLyQqFPD9J9NLKSpWEQtqcTHraBwAAAACA+YaQCK4IGaNGHzacxUMhvX3JElVHo572AQAAAABgvokEPQDmjmbL0v7RUc/7fGf1as97AAAAAAAw33CSCK5psiy1jY0p5zie93IcRwNcXg0AAAAAgGsIieCaJstS2nF0bHzc814vf/xxXblvn+d9AAAAAACYLwiJ4Jpmy5Lk/YYzSbqgtFS/6+vTeD7veS8AAAAAAOYDQiK4pmkyJPL68mpJ2mTbGs3n9YeBAc97AQAAAAAwHxASwTUr4nElQiFfQqJXVVUpaow2J5Oe9wIAAAAAYD4gJIJrQsaoMZFQqw8bzsoiEb2sspKQCAAAAAAAl0SCHgBzS5Nl+XKSSJKuq6nRWD4vx3FkjPGlJwAAAAAAcxUhEVzVZFna0tenvOMo5HFwc4Vte1ofAAAAAID5hNfN4KrmkhKl8nkdGx/3pd+u4WH9+NQpX3oBAAAAADCXERLBVX5uOJOkrxw9qvc8+aSy+bwv/QAAAAAAmKsIieAqv0OiFttWXzarbUNDvvQDAAAAAGCuIiSCq1bF44obo1afQqLLq6sVkrSFLWcAAAAAABSEkAiuChmjBh83nNnRqC6uqNBmQiIAAAAAAApCSATXNfkYEkkTr5ztHhnRcDbrW08AAAAAAOYaQiK4rnkyJMo7ji/9PrxihU5deqnKIhFf+gEAAAAAMBcREsF1TZalsXxex9NpX/pVRaMqCYd96QUAAAAAwFxFSATX+b3hTJLuPnlSr9m1S45Pp5cAAAAAAJhrCInguubJkKh1dNS3nsO5nH6ZTGrXyIhvPQEAAAAAmEsIieC6VYmEosb4epJok21LElvOAAAAAACYIUIiuC5sjBoSCV9DomXxuC4oLSUkAgAAAABghgiJ4InmkhK1+hgSSROnif4wMKChbNbXvgAAAAAAzAWERPBEk2Xp4NiYrxdJv3bBAm2ybfVmMr71BAAAAABgrogEPQDmpibL0mg+rxPptJbF4770fFlVlV5WVeVLLwAAAAAA5hpOEsETT2848/mVM0nqTqd9PcEEAAAAAMBcQEgETzRNhkR+Xl4tST/s7tbSBx8MJJwCAAAAAGA2IySCJ2ricUWM8T0kuqSiQpK0hS1nAAAAAABMCyERPBEJhdSQSPh+oqfBstRsWdpMSAQAAAAAwLQQEsEzT20489sm29a9/f1K5XK+9wYAAAAAYLYiJIJnngqJ/L5EusW2NZbP64GBAV/7AgAAAAAwmxESwTPNlqXhXE7d6bSvfV9ZVaVvn3WWzi8r87UvAAAAAACzGSERPBPUhrPScFjvWb5ci2MxX/sCAAAAADCbERLBM0GFRJKUzGT0na4uHR8f9703AAAAAACzESERPFOXSChijO8bziSpa3xc7z1wQP/V2+t7bwAAAAAAZiNCIngmEgqpLpEI5CTReaWlWhGLaUtfn++9AQAAAACYjQiJ4KmnNpz5zRijTbatXyeTyubzvvcHAAAAAGC2ISSCp5otS61jY3Icx/feLbatgVxOjwwN+d4bAAAAAIDZhpAInmqyLA3lcjqVyfje+/LqaoUl7SAkAgAAAADgjCJBD4C5rfkZG878XklfHY3q5KWXyo5Gfe0LAAAAAMBsxEkieKppMiQKYsOZJAIiAAAAAACmiJAInqpLJBSWArm8WpJ60mm9bvdu/eTUqUD6AwAAAAAwWxASwVPRUEh1iURgIVF1NKoHBwb0056eQPoDAAAAADBbEBLBc02WpdbR0UB6h43Rq21bW5JJ5QPYsAYAAAAAwGxBSATPNVmWDo6NyQkopGmxbXVnMto5PBxIfwAAAAAAZgNCIniuuaREA7mcejKZQPq/urpakrQlmQykPwAAAAAAswEhETz31IazoO4lWhqP66+XLNHSWCyQ/gAAAAAAzAaRoAfA3PfMkOjFlZWBzPAv55wTSF8AAAAAAGYLThLBc/WJhEKSWgM6SfSUsVxOJ9PpQGcAAAAAAKBYERLBc7FQSLWJRGCvm0lS3nFU+/DDurGjI7AZAAAAAAAoZoRE8MVTG86CEjJGl1ZWanMyGdiWNQAAAAAAihkhEXzRbFlqHRsLNKDZVF2tjlRKBwJ+7Q0AAAAAgGJESARfNFmW+rNZJbPZwGbYZNuSpM3JZGAzAAAAAABQrAiJ4ItnbjgLSr1labVlERIBAAAAAHAakaAHwPzQPBkStY6O6pKKisDm+GpzsxZGo4H1BwAAAACgWBESwRf1liWjYE8SSdKrJ185AwAAAAAAz8brZvBFPBRSTTweeEgkSb/s7dXdJ08GPQYAAAAAAEWFk0TwTXNJiVqLICT6ytGjOjI+rjcvXhz0KAAAAAAAFA1OEsE3TZZVFCeJNtm29o2O6nAqFfQoAAAAAAAUDUIi+KbJspTMZpXMZAKdo2XyXqItbDkDAAAAAOBphETwzVMbzoI+TXROSYlWxePaTEgEAAAAAMDTCIngm6YiCYmMMdpk29o7OirHcQKdBQAAAACAYsHF1fBNQyIho+BDIkn6cmOjSsNhGWOCHgUAAAAAgKJASATfJMJhrYrHi2LDWVmEP/oAAAAAADwTr5vBV8Wy4UySbjt8WK/bvTvoMQAAAAAAKAqERPBVMYVE4/m8ftbbq5PpdNCjAAAAAAAQOEIi+KrZstSTyag/kwl6FLXYtiTp1319AU8CAAAAAEDwCIngq2LZcCZJF5WXa2E0qs3JZNCjAAAAAAAQOEIi+KqYQqKQMXp1dbW2JJPKO07Q4wAAAAAAEChCIviq0bJkJD02PBz0KJKkty5erDcuXKiRXC7oUQAAAAAACBQhEXxlhcN6/cKF+kZXV1FcGP36hQv1zdWrVR6JBD0KAAAAAACBIiSC725taNBoLqebOjqCHkWSlHccPTk6GvQYAAAAAAAEipAIvltdUqKrli/Xt7q6tH9kJOhx9NnOTp23dasGstmgRwEAAAAAIDCERAjEjXV1KgmH9fH29qBH0SurqpST9Lu+vqBHAQAAAAAgMIRECMSiWEw31NTont5e/T7gcObFFRUqD4e1OZkMdA4AAAAAAIJESITAfHjlSq2Kx3VNW1ugK+ijoZAur67W5mRSToBzAAAAAAAQJEIiBMYKh/W5+no9Ojysfz95MtBZWmxbh8fHucAaAAAAADBvERIhUH+1ZInWlZXp+vZ2pXK5wOZ4/cKF+q+1a1WbSAQ2AwAAAAAAQSIkQqBCxuj2xkYdHh/XV48dC2yOJbGYXrNggaxwOLAZAAAAAAAIEiERAndZdbVeu2CBPtfZqZ50OrA52sfG9OlDhzQa4IkmAAAAAACCQkiEovDFhgaN5HK6ubMzsBlax8Z0U2en7uvvD2wGAAAAAACCQkiEonBOaanevWyZvtHVpdaALo9+eWWlEqGQtvT1BdIfAAAAAIAgERKhaHy6rk6JUEjXtbcH0t8Kh/WKykptTiYD6Q8AAAAAQJAIiVA0lsbj+viqVfpJT48eCOiVrxbb1v7RUXWMjQXSHwAAAACAoBASoah8ZNUqLY/F9NG2NjmO43v/FtuWFQrpiYBeeQMAAAAAICiERCgqJeGwPldfr61DQ/rRqVO+919dUqLkpZfqLxYs8L03AAAAAABBIiRC0XnH0qU6v7RU17e3azyf97W3MUaJcNjXngAAAAAAFANCIhSdsDG6vbFRh1Ipff3YMd/77xsZ0frt23VfQPciAQAAAAAQBEIiFKUrbFsttq3PdHYqmcn42nt5PK5dIyNsOQMAAAAAzCuehUTGmFXGmHuNMXuNMU8YYz7sVS/MTbc1NGgwm9VnOzt97VsZiejFFRWERAAAAACAecXLk0RZSR91HOdcSS+S9H5jzLke9sMcs6asTH+7bJm+duyY2nxeSd9i23pseFjd6bSvfQEAAAAACIpnIZHjOMcdx9kx+fdDkvZJWuFVP8xNN9fVKWqMbmhv97Vvi21Lkn7FaSIAAAAAwDzhy51Expg6SeskPXKaz95rjNlujNl+KoCV5yhuy+JxXbtqlX506pQeGhjwre+FZWV6x5IlWhGP+9YTAAAAAIAgGcdxvG1gTJmk/5b0OcdxfvJCz27YsMHZvn27p/Ng9hnOZtW8dasaEgk9sG6djDFBjwQAAAAAwKxhjHnUcZwNZ3rO05NExpiopB9LuutMARHwfMoiEX2mrk4PDg7qJz09vvY+mkpxLxEAAAAAYF7wcruZkfRdSfscx/mSV30wP/zNsmVaU1qqj7e1KZ3P+9Izmcmo5uGH9Z2uLl/6AQAAAAAQJC9PEl0q6R2SLjPGPD758xoP+2EOCxujLzY0qC2V0jd9Cm3saFTry8u1mcurAQAAAADzgJfbzR5wHMc4jnO+4zgXTv78wqt+mPtabFuXV1frpo4O9WcyvvTcVF2thwcHfesHAAAAAEBQfNluBrjBGKPbGhrUl83q84cP+9KzxbaVk/Tb/n5f+gEAAAAAEBRCIswqF5aX638tXap/OHpUHWNjnve7pKJCFeEwr5wBAAAAAOY8QiLMOp+pq1PYGN1w6JDnvaKhkH6yZo1uqqvzvBcAAAAAAEEiJMKsszKR0EdWrtQPT57UtsFBz/v9WXW1lsfjnvcBAAAAACBIhESYlT5eU6PF0aiuaWuT4zie9nIcR3ceO6Z7eno87QMAAAAAQJAIiTArlUciuqmuTvcNDOie3l5Pexlj9PVjx/S1Y8c87QMAAAAAQJAIiTBrvXvZMp1dUqKPtbUpk8972qvFtnVff79GczlP+wAAAAAAEBRCIsxakVBItzU06MDYmL59/LinvVpsW+OOo//u7/e0DwAAAAAAQSEkwqz2FwsW6JVVVfp0R4cGslnP+rysslJWKKTNyaRnPQAAAAAACBIhEWY1Y4xub2xUTyajLxw+7FmfRDisy6qqdDyd9qwHAAAAAABBigQ9AFCo9eXlunLJEn356FFdtXy5ahIJT/r83zVrFAmRqwIAAAAA5ib+jxdzwufq6+U4jj5x6JBnPZ4KiBzH8awHAAAAAABBISTCnFCTSOjqVav0b93d2jE05Fmf9z75pN6+b59n9QEAAAAACAohEeaM62pqtDAa1TVtbZ6d9gkbo5/39iqdz3tSHwAAAACAoBASYc6ojER0Y22t7u3v1y882kLWYtsazuX04MCAJ/UBAAAAAAgKIRHmlP+9fLmaLUvXtrUp68Fpn8uqqhQxRps9CqEAAAAAAAgKIRHmlGgopC82NGjf6Ki+e+KE6/XLIxFdWlFBSAQAAAAAmHMIiTDnvH7hQr2sslKfOnRIQ9ms6/Xfu3y53rxokfJsOQMAAAAAzCGERJhzjDG6vbFRJzMZffHIEdfrv33JEn2irk4hY1yvDQAAAABAUAiJMCddXFGh/2/xYt1x5IiOjY+7Xn84m9WOoSHX6wIAAAAAEBRCIsxZn6+vV85x9MlDh1yv/cGDB3XFzp3K8coZAAAAAGCOICTCnFVvWfrQypX63okT2jk87GrtV1dXK5nN6lFOEwEAAAAA5ghCIsxpN9TUqDoS0TVtbXJcPPVzRXW1jMSWMwAAAADAnEFIhDmtOhrVJ2tr9Zu+Pm1xMdBZGItpQ3k5IREAAAAAYM4gJMKc974VK9SYSOja9nZX7xBqsW09MjiovkzGtZoAAAAAAASFkAhzXiwU0q0NDdozMqLvnTjhWt13L1umHRs2qCoSca0mAAAAAABBISTCvPCmRYv04ooKffLQIQ1ns67UrEkkdEFZmYwxrtQDAAAAACBIhESYF4wxuqOxUcfTad1x9KhrdR8eGNBHDh509VJsAAAAAACCQEiEeePFlZV6y6JF+uLhwzo+Pu5KzSdGR/Xlo0f1xMiIK/UAAAAAAAgKIRHmlVsaGpRxHN3Y0eFKvU3V1ZLEljMAAAAAwKxHSIR5pdGy9P4VK/Td48e1Z3i44HorEwmtKS0lJAIAAAAAzHqERJh3PlFbq4pIRB9rb3el3qbqat0/MKCRXM6VegAAAAAABIGQCPPOgmhUn6it1S+TSf3ahRNALbatpbGY2sfGXJgOAAAAAIBgEBJhXvrAihWqSyR0bVubcgVuJrusulodL3qR1paVuTQdAAAAAAD+IyTCvBQPhXRLfb12jozo+93dBdUKGSNjjJwCwyYAAAAAAIJESIR5622LF+vi8nL9fXu7Rgu8T+jXyaSWPfig2njlDAAAAAAwSxESYd4yxuj2xkYdS6f15aNHC6pVl0ioO5PRFracAQAAAABmKUIizGsvq6rSGxYu1K2HD6s7nZ5xnSbLUkMioc2ERAAAAACAWYqQCPPerQ0NSuXz+nRHx4xrGGPUYtv6XV+f0vm8e8MBAAAAAOATQiLMe2eVlOiq5cv1na4u7RsZmXGdFtvWSD6vPwwMuDgdAAAAAAD+ICQCJH2qtlal4bA+3t4+4xqvqqrSB1as0JJYzMXJAAAAAADwByERIGlRLKYbamv1s95e3dvXN6MaZZGI/rG5WeeWlro8HQAAAAAA3iMkAiZ9aMUK1cTjuqatTXnHmVGNnONo6+CgkpmMy9MBAAAAAOAtQiJgkhUO6/MNDdoxPKwfdHfPqMYTIyO6ZMcO3dPT4/J0AAAAAAB4i5AIeIb/uXixLior098fOqSxXG7a319bWqplsZg2J5MeTAcAAAAAgHcIiYBnCBmj2xsbdXh8XF89dmza3zfGaJNt61d9fcrN8JU1AAAAAACCQEgE/IlXVVfrfyxYoM93dupUOj3t77fYtvqyWW0bHPRgOgAAAAAAvEFIBJzGFxoaNJLL6ebOzml/9/LqahmJV84AAAAAALMKIRFwGueUluq9y5frm11dOjA6Oq3vLohG9Yd16/TxmhqPpgMAAAAAwH2ERMDzuLGuTolQSNe1t0/7uy+urJQVDnswFQAAAAAA3iAkAp7HklhM19XU6D97enR/f/+0vjuczeoT7e36Na+cAQAAAABmCUIi4AVcvXKlVsRi+mhbm/LT2FZmhcO6s6tLPzh50sPpAAAAAABwDyER8AJKwmF9rqFB24aG9KNpBD5hY3RFdbW2JJNyphEuAQAAAAAQFEIi4AyuXLJEF5aV6fpDhzSez0/5ey22rePptHaPjHg4HQAAAAAA7iAkAs4gbIxua2hQRyqlrx07NuXvbbJtSdJm7iUCAAAAAMwChETAFFxu2/pz29ZnOzvVm8lM6TvL43FdWlGh4VzO4+kAAAAAACgcIREwRV9saNBgNqvPdnZO+Tv3r1unm+vrPZwKAAAAAAB3EBIBU7SmrEzvWrZMXz92TAdHR6f0HWOMJCk7jbuMAAAAAAAIAiERMA031dUpZoyuP3RoSs87jqOX7NihDx886PFkAAAAAAAUhpAImIZl8biuranR3adO6aGBgTM+b4zRwmiUy6sBAAAAAEWPkAiYpmtWrdKyWEwfbWuT4zhnfL7FttWeSk35FTUAAAAAAIJASARMU2k4rM/U1+uhwUH9+NSpMz6/ybYlidNEAAAAAICiRkgEzMA7ly7VmtJSfby9XekzXErdaFlqsixCIgAAAABAUSMkAmYgbIxub2xUeyqlO48dO+PzN9TU6H8uWeLDZAAAAAAAzAwhETBDm2xbV1RX6+bOTvVlMi/47N8sW6a/IiQCAAAAABQxQiKgALc1Nqo/m9XnDx8+47MdY2NT2ogGAAAAAEAQCImAAlxQVqZ3Ll2qrx49qkNjYy/47LuefFLvPXDAp8kAAAAAAJgeQiKgQJ+pr1fYGN1w6NALPtdi29ozMqKjqZRPkwEAAAAAMHWERECBVsTjumbVKv37yZN6ZHDweZ9rsW1J0pa+Pr9GAwAAAABgygiJABdcu2qVFkejuqatTY7jnPaZNaWlWh6LaUsy6fN0AAAAAACcGSER4ILySEQ319frgYEB/bSn57TPGGPUYtv6TV+fcs8TJAEAAAAAEBRCIsAl71q6VOeUlOhj7e3K5POnfeZTdXXaf/HFChvj83QAAAAAALwwQiLAJZFQSLc1Nqp1bEzf6uo67TO1iYQWx2I+TwYAAAAAwJkREgEueo1t67KqKn26o0MD2expn/nxqVO6+uBBnycDAAAAAOCFERIBLjLG6PbGRiWzWd3S2XnaZ54YGdE/HD2qnnTa5+kAAAAAAHh+hESAy9aVl+vKJUv0laNHdTiVes7nLbYtR9Jv+vr8Hw4AAAAAgOdBSAR44LP19TLG6O8PHXrOZ+vLy7UgEtHmZDKAyQAAAAAAOD1CIsADNYmErl65Ut/v7tajQ0PP+ixsjK6wbW1OJpV3nIAmBAAAAADg2QiJAI9cV1OjRdGormlrk/MnYdBf2LbqLUu9mUxA0wEAAAAA8GyERIBHKiIRfbquTr/v79fPe3uf9dmVS5fqoYsu0qJYLKDpAAAAAAB4NkIiwEPvWbZMZ1mWPtbermw+/5zPx0/zOwAAAAAAgkBIBHgoGgrpi42N2j86qn86fvxZn32nq0sLHnhAg9lsQNMBAAAAAPBHhESAx163YIFeXlmpGzs6nhUINVuWRvJ53dvfH+B0AAAAAABMICQCPGaM0e2NjTqZyeiLhw8//fuXVFaqLBzW5mQywOkAAAAAAJhASAT4YGNFhd6+eLHuOHpUR1MpSVIsFNJlVVXanEw+Z/sZAAAAAAB+IyQCfPK5+nrlHUef7Oh4+ncttq2OVEqtY2PBDQYAAAAAgAiJAN/UWZY+vHKl/uXECT0+NCRJeu2CBbqlvl4V4XDA0wEAAAAA5jtCIsBHN9TUqDoS0TVtbXIcR6sSCV1XW6ul8XjQowEAAAAA5jlCIsBHVdGobqyr02/7+5++sHoom9V/njqlVC4X8HQAAAAAgPmMkAjw2VXLl6vJsnRtW5uy+bzuHxjQG594QvcPDAQ9GgAAAABgHiMkAnwWC4V0a0ODnhgd1fdOnNArqqoUN+bpk0UAAAAAAASBkAgIwBsXLtRLKir0yY4OOY6jl1dVERIBAAAAAAJFSAQEwBijOxobdSKd1u1HjqjFtrV3dFRHUqmgRwMAAAAAzFOEREBAXlRZqbcuWqTbjhzRurIySdK9/f0BTwUAAAAAmK8IiYAA3dLQoIzj6PsnTuiJjRv1jiVLgh4JAAAAADBPERIBAWqwLH1gxQp9r0+J3L4AACAASURBVLtbOceRMSbokQAAAAAA8xQhERCwT9TWqiIS0YcOHtQ79+3TtsHBoEcCAAAAAMxDkaAHAOY7OxrVJ2tr9dG2NoUkrUoktLGiIuixAAAAAADzDCeJgCLw/hUrVJ9IKBEKaXMyGfQ4AAAAAIB5iJAIKALxUEi3NjRoNJ/X9qEhnUyngx4JAAAAADDPEBIBReItixbpvJISSdLPe3sDngYAAAAAMN8QEgFFwhijO5ubJUn/RUgEAAAAAPAZIRFQRF5eXa03Llyon/X26qaODo3n80GPBAAAAACYJwiJgCLz7dWr9caFC/Xpjg6du3Wr7uvvD3okAAAAAMA8QEgEFJkF0ag+W1+vsnBYnamUXvH443r3/v1KZjJBjwYAAAAAmMMIiYAi1FRSoj+sWyc7GlVJKKR/PnFCZ2/dqru6u+U4TtDjAQAAAADmIEIioEidX1amByaDotJwWIuiUV25b59adu1S29hY0OMBAAAAAOYYQiIv5HJBT4A54qySEt1/4YWqSyT09eZm/WNTkx4aHNSabdt0a2enMlxsDQAAAABwCSGR244elTZulO65J+hJMEfUWZYe27BBr6yu1gdWrtRvLrhAf27buv7QIa1/9FE9PDAQ9IgAAAAAgDmAkMhtS5ZI6bT0gQ9Iw8NBT4M5ImyMJOn/P3lSL3vsMb1jyRL93zVr1JfN6iWPPab3HTiggWw24CkBAAAAALMZIZHbolHpW9+SjhyRbrop6Gkwx1xRXa315eV6yxNPaCib1d6NG/WhFSv0ra4unbN1q+4+eZKLrQEAAAAAM0JI5IVLL5Xe/W7py1+Wdu0KehrMIVXRqH51/vl6eVWV/nr/fv3w5El9pblZj1x0kZbGYnrL3r163Z49OpxKBT0qAAAAAGCWISTyyq23StXV0h13BD0J5piySET/tXat/ty29b8PHNDO4WFtqKjQ1osu0h2NjfpdX5/O3bpVXzpyRFkutgYAAAAATJEppldTNmzY4Gzfvj3oMdyza5d09tlSLBb0JJiD0vm8ftHbq79ctOhZv+8YG9P7W1v1i2RSF5WV6durV2t9eXlAUwIAAAAAgmaMedRxnA1neo6TRF46//yJgGhwUEomg54Gc0wsFHo6IHpwYECfaG+X4ziqsyz9fO1a/ejcc9WVTuviRx/V1QcPapiLrQEAAAAAL4CQyGvj49KFF0of/nDQk2AO+2lPjz53+LA+0NqqvOPIGKO3LF6sfRs36r3Ll+srR4/q3G3b9LOenqBHBQAAAAAUKUIir8Xj0pVXSt//vvTb3wY9DeaoWxsa9LFVq3RnV5f+dv/+p+8iqopG9Y2zztIf1q1TRTis1+3Zozfv2aOu8fGAJwYAAAAAFBvuJPLD2Ji0dq0UCk3cU5RIBD0R5iDHcfTZzk59qqNDb1m0SN8/5xzFQn/MgdP5vO44ckQ3d3YqaoxuaWjQVcuXK2xMgFMDAAAAALzGnUTFxLKkb3xDam2VvvCFoKfBHGWM0Sfr6nRHY6Ok5/7LHQuFdH1trXZv2KBLKir0gdZWXbpjh3YND/s/LAAAAACg6HCSyE9vf7s0NCTdc4/E6Q14yJm8l+j4+LjKw2GVRSLP+fyu7m5d3dam/mxWH125Up+qq1NJOBzQxAAAAAAAr0z1JBEhkQfGxyeWmj0nBxobm3jVjIAIPsjm87ro0UdVFg7rF2vXqioafc4zvZmMrm1r0z+fOKH6RELfOOssbbLtAKYFAAAAAHiF180C0t0tbdggffe7p/nQsiYCosOHpd//3u/RMM9EQiHdVFen7UNDetXOnTqVTj/nmQXRqP7P2Wfr3gsuUNQYtezapbfv3avu0zwLAAAAAJjbCIlctnChtHSp9MEPSrt3P89D73yn9La3SX19fo6GeegNixbpnjVrtH90VK94/PHn3Wr2yupq7dq4UTfW1urHp07pnK1b9U9dXcoX0UlDAAAAAIC3CIlcFg5PbLuvqpLe+lbptHcC33GH1NMjXX+97/Nh/mlZsECbzz9fR8bH9b4DB573uXgopE/X12vnhg1aW1qq9xw4oFc+/rj2jYz4OC0AAAAAICiERB5YskS66y7pySel97//NA+sWyd96EPSt74lPfSQ7/Nh/nlFVZXuveACffOss8747Nmlpbr3wgv1T6tXa8/IiC7Yvl03HjqkVC7nw6QAAAAAgKAQEnnkssukT31q4pWzoaHTPHDzzdLKldJVV0mZjO/zYf7ZUFGhpfG4Mvm83vPkk9p12mNuE0LG6F3Llmn/xRfrLYsW6ebOTl2wfbvu5RVJAAAAAJizCIk89MlPSg8+KJWXn+bD8nLpq1+VLrlkYh0a4JPj6bR+2durVz7+uLYNDr7gs4tjMd117rnacv75yjqOLtu5U3+zf796CTYBAAAAYM4hJPJQODyx8X5gQLrmGml09E8eeMMbpG9/WyorC2Q+zE81iYTuX7dOVZGI/mznTt3f33/G77zatrV740ZdV1Oj73d36+ytW/VvJ07I4WJrAAAAAJgzCIl88Oij0pe+NHEN0Wlt2yZdd52vM2F+q7cs3b9unVbE49q0a5d+nUye8Tsl4bBuaWjQjvXr1WRZ+uv9+3XFzp06+Jz0EwAAAAAwGxES+eCyy6QbbpC++92JC62f4/e/l77wBemnP/V7NMxjK+Jx/feFF2p9ebkqI5Epf29tWZkeWLdOX29u1rahIa3dvl2f7+xUOp/3cFoAAAAAgNdMMb0usmHDBmf79u1Bj+GJbHYiLNqxY+Jk0erVz/gwk5HWr5f6+6W9e3n9DL5yHEfGGEnSEyMjOq+0dMrf7Rof14daW/Xjnh6dV1Kib61erUsrK70aFQAAAAAwA8aYRx3H2XCm5zhJ5JNIRPrBDybuKHr/+//kw2hU+uY3pSNHpBtvDGQ+zF9PBUQ/OnlSa7dt0z91dU35u8vjcd29Zo3uWbNGg7mcXvrYY7rqySfVz8XWAAAAADDrEBL5aOXKiTfK/vVfT/PhS14ivec90j/8g7R7t++zAf9jwQK12Lbec+CAvnLkyPS+u3Ch9m7cqKtXrtR3jh/XOdu26UcnT3KxNQAAAADMIoREPrv0Umn5cimXk/bs+ZMPb71VuuWWP3kXDfCHFQ7rP9es0RsXLtTVbW36XGfntL5fFonoS01N2rp+vZbHYnrb3r167e7d6hgb82hiAAAAAICbCIkCct11E4eHDh58xi9tW7r2WikWkziBgQDEQyH9x7nn6solS/SJQ4e0fXBw2jXWl5frkYsu0pcaG/Xf/f06b9s23X74sLJcbA0AAAAARY2QKCAf/ODEPUVve5s0Pv4nH953n3T++VJ3dyCzYX6LhEL6l7PP1m8vuEAbKipmXOPqVau09+KLdVl1ta5tb9fGHTu0bQahEwAAAADAH4REAampkb73vYltZ9dc8ycfLlkiHTggfeQjQYwGKGSMLquuliT9rq9Pf3fggHIzON1Wk0jonjVrdPd556k7ndaLduzQh1tbNZTNuj0yAAAAAKBAhEQBet3rpKuvlr72NeknP3nGB6tXS9dfP7EO7Te/CWw+QJIeGRzUN7u69Fd79yozg1fGjDF606JF2nfxxbpq+XL947FjOnfbNv20p8eDaQEAAAAAM0VIFLBbb5Xe9CZp6dI/+eC666TmZul975NSqUBmAyTp+tpa3dbQoP84dUpveuIJpXK5GdWpjET09bPO0h/WrVNVJKK/3LNHb9izR0f58w0AAAAARYGQKGCxmHT33ROXWEvPuK86kZDuvFNqbZV++MPA5gMk6ZqaGt3Z3Kyf9fbqtbt3a2yGQZEkvbiyUjvWr9ct9fXanEzq3G3b9I9Hj87odTYAAAAAgHsIiYqE40zcTfSs+4kuv1y6/37pne8MaizgaX+3YoW+d/bZWpVIKB4q7D8d0VBI19XWas/GjXpRRYU+dPCgXrJjh3YOD7s0LQAAAABgugiJioQxE1vOvvQl6Z57nvHBS1868eHx4884ZgQE438tXap/PvtshYzR4VRKPel0QfUaLUtbzj9fd51zjg6lUlq/fbs+1tamkQJOKgEAAAAAZoaQqIjcfrt00UUTB4c6O5/xwa5dE/cT3XVXUKMBz5JzHP3F7t165eOP6/j4eEG1jDF6+5Il2n/xxXrn0qW67cgRrdm2Tb/s7XVpWgAAAADAVBASFZF4XPqP/5Cy/4+9+w5vqzz7OP492vLeI85wEidx9iAhkzATQijQAk0oLdCwRwuFFmiBshqgQKGEt1B22SUQoKwwwkpYCdl7byfx3ra2zvvHI1mSZQcncSI7uT/XpUuybp2jR7IsWz/fz3O8cMEF4PEECoMGqdNNN0FlZUzHKASAUdN4vKCAHU4nE1esYFc7LD6dZjbzXGEh84cNw6ppTF29mgvWrqX4EEMoIYQQQgghhBBtIyFRB1NQAM89BytWwNKlgSsNBnj6aRUQ/eUvMR2fEEEnp6Yyb+hQytxuTli+nM2Nje2y34kpKawcNYq78/N5t7yc/osX88zevfhluqUQQgghhBBCHFYSEnVA06bBli0wZkzYlUOHwg03wDPPwPffx2xsQoQbm5zMV8OG0ej3c+OWLe22X6vBwF35+awaNYqh8fFctWkTE5cvZ11DQ7vdhxBCCCGEEEKISBISdVB5eer89dehqChw5T33QPfu8PXXsRqWEFGGJybyzbBhvFhY2O777hcXx1fDhvFCv36sb2xk2JIl/HX7dpyysLUQQgghhBBCtDtN70BTOEaOHKkvWbIk1sPoMEpK1PSzYcPgq6/AZAJqayEpKdZDE6JFLr+fi9ev5/quXRmfnNyu+y5zu7lp61ZeLSmhwG7nhrw8pqan08tub9f7EUIIIYQQQoijjaZpS3VdH/lTt5NOog4sO1stRfTtt3DXXYErgwHR4sWwa1fMxiZES6o8HlbU1zN55Uo+b+dF1jMtFl7p35/PhgzBomn8fssWei9aROGiRdy0ZQufV1bi8vvb9T6FEEIIIYQQ4lginUSdwOWXwwsvwCefwOTJqG6ibt3gxBPhvfdA02I9RCGalLjdTFq5kk2Njbw1cCBnZWQclvvZ3NjI3MpKPq6o4Ovqaly6TrzBwKmpqUxNT+eMtDS622yH5b6FEEIIIYQQojNpayeRhESdQGMjjB6tpp9t2RJoJnrkEfjTn+Ddd+HnP4/1EIWIUOnxMGXVKpbX1/PGgAGcl5l5WO+vwefjq6oq5lZWMreigp0uFwCD4uOZmpbG1PR0xiUlYTZI86QQQgghhBDi2CMh0VFm/XpYswZ++cvAFR4PjBwJlZWwbh0kJsZ0fEI0V+v1ctH69dyTn8+wI/j61HWd9Y2NfBwIjBbU1ODVdZKMRiYFuoympKXRxWo9YmMSQgghhBBCiFiSkOgoVloKWVnAwoUwbhzceKPqLBKiA/uhpoax7byYdVvUer18EdZltNftBmB4QgJnBLqMRicmYpIuIyGEEEIIIcRRShauPkrNmwc9esCXXwJjxsANNwQSIyE6rjmlpYxbvpwHdu484vedZDLxi8xMnu3Xj6KxY1k5ciQP9OxJgtHIg7t2MWH5crK+/55frVvHK8XFlAZCJCGEEEIIIYQ41kgnUSdTXw+jRkF1NaxYoY6AJkRH5/H7+e2GDbxeWspt3bszs2dPtA6w4HqVx8O8qirmVlTwSWUlJR4PGjAyMbFpLaORiYkYOsBYhRBCCCGEEOJgyXSzo9jq1XD88TBhAnz6KRg0Hf73P7XC9a9/HevhCdEin65zzaZNPLtvHzfk5fHPgoIOERQF+XWd5fX1zK2oYG5lJYtqa9GBTLOZKWlpnJGWxulpaaSZzbEeqhBCCCGEEEIcEAmJjnLPPQdXXAEzZ8Ltt+kwaRIsWQIbNkBOTqyHJ0SLdF3npq1bmVVUxA8jRjA6KSnWQ2pVudvNZ2FdRhVeLwZgTFISU9PTmZqWxrCEhA4VdAkhhBBCCCFES2IeEmma9gLwM6BU1/VBbdlGQqK203W46CLo3RvuuQfYtAkGD4Zzz4X//jfWwxOiVbqus6y+nuM60RH5fLrO4trapsWvl9bXA5BrsTAlLY2paWlMSksj2WSK8UiFEEIIIYQQIlpHCIkmAvXAyxISHR66DhFNDHffrRKjTz+FyZNjNSwh2uzjigr+U1zMy4WF2IzGWA+nzYpdLj4NdBl9WllJjc+HSdMYH9ZlNDA+XrqMhBBCCCGEEB1CzEOiwCDygQ8lJDq8vv4aXnoJnn/CiWHYEPD7Yc0asNliPTQh9uupPXu4ZvNmJqWm8u6gQcR3oqAoyOv380Ogy+jjigpWNjQA0NVqbVr8+tSUFBKky0gIIYQQQggRI20NiWL+qUXTtCuBKwG6d+8e49F0TuvXw4svQmGhjVufeQb27gWrNdbDEuInXZ2Xh81g4LKNG5myahUfDh7c6aZsmQwGTkhJ4YSUFB7o1Ysip5NPKiuZW1nJ66WlPLNvHxZNY2JKClMDC2D3i4uTLiMhhBBCCCFEhyOdREcBXYfp0+Gdd2D+fBg/PqwgH0RFJ/BWaSkXrl/P0Ph4vho2jMROFhS1xu33821NDR8H1jJa19gIQE+branL6KSUFOI6YQeVEEIIIYQQovOQ6WbHmJoaGDEC3G5YsQLS5zwNH30E770nQZHoFD4KrO8zq6DgqO2y2eFwqMCospIvq6po9PuxGQycFOgympqeTm+7PdbDFEIIIYQQQhxlJCQ6Bi1dCuPGwZ13wu0ZT8PVV8PLL6vDoAnRiWxpbMRqMNDtKF5Xy+nzsaCmhrkVFcytrGSzwwFAX7u9afHriSkpWA2GGI9UCCGEEEII0dnFPCTSNO2/wElABlAC3KXr+vP720ZCokO3fDkMHQoG/Gre2datsGEDpKXFemhCtIlf1xm+ZAk1Xi+fDx1KQVxcrId0RGxubOTjyko+rqzkq6oqXLpOnMHAqampai2j9HR6HMWhmRBCCCGEEOLwiXlIdDAkJGo/u3ZB48JVFF44AmbMgGefjfWQhGizZXV1TF65EovBwOdDhzIgPj7WQzqiGn0+vqqubuoy2uF0AjAwLo6p6emckZbG+ORkLNJlJIQQQgghhGgDCYmOYboOI0dCRQVsOOtmbE88Aps2QUFBrIcmRJutbWhg0sqVuP1+Phs6lBGJibEeUkzous6GQJfR3IoKFtTU4NF1Eo1GJqWmNoVGXeSIhkIIIYQQQohWSEh0jFu0CCZMgPOn1PP6rSvRJoz/6Y2E6GC2NDZy6sqVDIyPZ+6QIbEeTodQ5/XyRVUVcwNT04pcLgCGJSRwRloaU9PSGJOUhEm6jIQQQgghhBABEhIJHn0U/vhHmDULrr8e1VqUnh7rYQlxQHY7nSQajaSYzei6ftQe+exg6LrOmoYG5ga6jL6rqcEHpJhMHJ+YSKLRSJzRSJzBgD1wHmc0YjcYmi43r8UZDKoeVrNomjzvQgghhBBCdGISEgl0Hc4+Gz79FDbd9h/yH7keVq+G/PxYD02IA+bw+Thv7Vquy8vjTAk7W1Tt8TAv0GW0pqGBRp+PRr8fR+C80efDdxD7NUCLAVJT4NSGWvNwqqWazWDAIGGUEEIIIYQQ7U5CIgGo5qG//Q1mXrWbhFH94aST4IMPQD6IiU6m0uNh8sqVrGxo4PX+/fllVlash9Qpefz+psCoeYDU6PfjaGOt0eeLvG2zmvsgf7cEg6RD6XxqrRYeThnlPVAIIYQQQhxDJCQSUTwPPor5z3+Et9+Gc8+N9XCEOGA1Xi8/W72a72tquKpLF67IzWX4MbqgdUfn0/WIkMmxn3Bqf7W2BFcHw6JpTYGRvVkYZW8WMB1K3S6BlBBCCCGE6AAkJBIRSkth8ilePq8ZSYZeDuvXg3y4Fp1Qg8/H9Zs381pJCSelpPDJ0KGAmo5mNxpjPDpxpOm6jjMsZNpfd1OLX4cFT45mtwuvO/z+g+6OkkBKCCGEEELEWltDItORGIyIvYwM6NLdxC8+f5qvjadgXLgQJk2K9bCEOGDxRiPPFxbyj969Kfd4AChyOum/eDHnZWRweW4u45OTZaHlY4SmadiNRuxGI+lm82G9r/DuqP0FSgdSr/B42B2oh9/2UAKp9gqh7AYDFoMBq6ZhNRiwGgxYwi5bAzWLrCUlhBBCCHHUkJDoGGEwwEsvwbBhoxlj282XY9KQPiLRmaWazaQGQgEd+HVWFq+XlvJSSQn97HYuz83l8txcUg5zcCCOHUZNI8FkIuEI3NfhCKTKPZ4Wb3uwgVQ4k6Y1hUnNg6WocCkQLFl/IoBqvk1L+24ttArWJCwWQgghhDgwMt3sGLNgAZx8MlwwXefVS+ahnXYqyBQdcZRo8Pl4q7SU5/btY2FtLbvGjqWL1UqJ202G2SxTcYRoQWuBlMPvx+X34/b7cek6ruDXYZddgZo77PKB3K6lfbcnSzA0OsDQqi3bWANH5GvrySShlRBCCCFiSNYkEq2aORN2v/wVT28+Bf71L7juulgPSYh2V+R00tVmA2DSypVsbGzk0pwcZuTm0iNwvRCiY9F1HU94uNRKmBQVQrVjUNXSvr3t8LeSAVoMj+wHGDa19WQ3GiO+lpBcCCGEOLZJSCRa5feDx61jPWsy/PijWsS6S5dYD0uIw2ZOaSnP7tvHvKoqACanpvLHbt2YlJYW45EJIToDfzBcaiF0cvr9+z05fL6fvM1P7sPv5+CO4xdi0rT2CZ8O4LZWgwGzpmEOdGtJUCWEEELEjixcLVplMIDVplH34JPYjh8M19+Eec4bsR6WEIfN+VlZnJ+VxQ6Hg/8UF/NCcTGrGxqYlJZGo8/HLqeTwvj4WA9TCNFBGTQNm9FILHsQvS0ER4caPoWfGn0+KgPrVrVUb49/KWqoKYDmQHgUvGwJC5LMzS63eN1+9tHS/tpjHzJdUAghxLFCOomOYQsWwBcn3ss93AWffAKnnx7rIQlxRPh0HY/fj81o5KXiYn67YQMTkpO5PDeX8zMziZd1uoQQoklwGuDBhE+ewPutO7CP8MvuYD3sctN54Lbhl39qH4fboQZNLQVXBlQIaUAdrTHi6zbWDJrW8tcx2PeB3G9b960FttPC9qe1UAtuL2GeEEK0TDqJxE+aOBHm334r8+/7Au9cF6dKRiSOEUZNwxgIgqakpfFgr148t28fv92wges3b+bC7Gz+2bs3NgmLhBACLRCCWAwGkmI9mFbogbWjWg2fDjKsOpTgqsbn+8l96LqOHzWl0Y86Wmfwsjg0UeERBxA0Nau1tI9goNXWIKs99tHSGJtrqQGgpQi1tVi1xdsewj5bvZ923uf+Gh86Quh5KEFuZ913e9+vhMBHjnQSHeN8Pph0ms6iHzUWL4YBA2I9IiFiQ9d1vqmp4bl9+9jqcPDt8OFomsaXVVUMT0gg1WyO9RCFEEIcQ3RdjwiNwi/7m9Wavg6//X4CqObbd8R9+wI1Pey50MP211LN3+x2etj+D8c+9LDH2Jb9t8c+ml/f0kfmFq9r4cN1ax+323ufB3Q/h7DPlq4Lf84O5vV8IK/1g913x/k03vGFB6tHqjvy/MxMbuvR44g/1sNBOolEmxiN8NrrGscN9fL12Y8z4IMzoH//WA9LiCNO0zQmpqQwMSUFv66jaRr1Xi9nrV6NH/UL4vLcXCYmJ8t/MYQQQhx2WtiHGSHE0at5ANieAdRPhVs+IkPMlraPVQB9KPfbfPtDeS6TTcdeZCKdRAKAJR+XMeJX/TAMGwJffQXyB4kQACyrq+O5fft4raSEWp+PPnY7/+7bl1NTU2M9NCGEEEIIIYRok7Z2EhmOxGBExzfyjEwMDz8I8+ez+76XYz0cITqMEYmJPNm3L/vGjeOlwkKyLRayAlPPVtbXM7eiAl8HCtuFEEIIIYQQ4mBJJ5EI8fvZ0f0EEvZsouqHDfQZkx7rEQnRoV25cSPP7ttHV6uVGTk5XJqTQ77dHuthCSGEEEIIIUQE6SQSB85gwPafp0immjVTb8HhiPWAhOjY/tWnD3MGDmRQfDwzd+6k16JFXLR+fayHJYQQQgghhBAHRUIiESFn0mA2XfUoj1TN4MYbYz0aITo2i8HAeZmZfDxkCDvGjOGu/HyGJSQA6qgsd27fzrqGhhiPUgghhBBCCCHaRqabiRbdcgs8/DC88QZMnx7r0QjR+ayoq+P4Zcvw6DrjkpK4PDeXaVlZxBuNsR6aEEIIIYQQ4hgj083EIbnvHi8f9bmB0QsejvVQhOiUhiUmUjR2LP/o3ZtKr5dLN24k9/vvWVNfH+uhCSGEEEIIIUSLJCQSLTLbTUwdtJv8/9wF27fTgRrOhOg0siwW/titG+tGjeLb4cOZkZND//h4AJ7cs4f/Kyqi0uOJ8SiFEEIIIYQQQpGQSLRu1ix0o5H1p/6OG66XlEiIg6VpGuOTk5nVpw9GTQNgbkUF12/ZQpfvv+c369bxdVUVHWn6rxBCCCGEEOLYIyGRaF23bmj33kv/7XPZ8693eOedWA9IiKPHh0OGsOy447g8N5cPKyo4eeVK/rBlS6yHJYQQQgghhDiGycLVYv+8XvwjR7FnQx1DrRtZusJIz56xHpQQRxeHz8fbZWUUxsUxMimJdQ0N/GXbNq7IzWVKWhomg+T5QgghhBBCiIPX1oWrTUdiMKITM5kwvPIylNvx/8LI9Onw7bdgscR6YEIcPexGI7/JyWn6ervTyaLaWt6vqKCLxcKMnBwuzc2ll90ew1EKIYQQQgghjnby72nx0wYPptvJBTz/nM7OVTUsXRrrAQlxdDszPZ3dY8fy7sCBDE9I4IFduxiyeDGNPl+shyaEEEIIIYQ4ikknkWiz8z67irMKl2M5fiFgjPVwhDiqmQ0Gfp6Zyc8zMylyOllaX0+cUf3cTV65kgFxcVyem8ughIQYj1QIIYQQQghxtJBOItF2p5yCZeUS+Pe/ef112LUr1gMS4tjQ1WbjnIwMQK1flGoy8eTevQxel41kTwAAIABJREFUsoSxy5bx/L591Hu9MR6lEEIIIYQQorOThatF2+k6TJmC//sfKNQ3kDGkC/Png9kc64EJcewpc7t5taSE5/btY11jIy/068eM3Fy8fj9GTUPTtFgPUQghhBBCCNFBtHXhaukkEm2nafDEExg8br4Y/Ad++AHuuCPWgxLi2JRpsXBjt26sGTWK74cPZ1pWFgBP7N3LkCVLeGDnTj6vrKTC44nxSIUQQgghhBCdhYRE4sAUFMAdd9Bt69fcfHEJDz0Ec+fGelBCHLs0TWNscjLxgfWKulut2A0Gbtu+nUmrVpHx3Xf0//FHgl2ja+rrKXI66UhdpEIIIYQQQoiOQaabiQPnckFDA864NMaMgaIi2LIFUlJiPTAhRFC5282K+nqW1ddT6/Uys1cvAMYuW8bC2loyzWaGJyQwPCGBiSkpTE1Pj/GIhRBCCCGEEIdLW6ebydHNxIGzWsFqxeb18v6ti1hkGi8BkRAdTIbFwmlpaZyWlhZx/WMFBSyurWV5IEB6tKiIDY2NTSHRtLVr6WKxMDwxkREJCRTGxWE2SNOpEEIIIYQQxwIJicTBu/deuv/973RfsQIYQHEx5OTEelBCiP0ZnZTE6KSkpq9dfj81gSOjufx+ilwuPqqooHHPHgCsmsZd+fn8pUcPfLrOkro6hsTHYw9MbxNCCCGEEEIcPWS6mTh4ZWVQWAgDB/LFnfP52Vka770HkyfHemBCiEPh03U2NTaqbqO6Ok5JTWVqejrrGhoYuHgxRqAwLq6p2+jnGRn0tNtjPWwhhBBCCCFEK2S6mTj8MjPhoYfg8suZsOVFeveewW9+AytXQm5urAcnhDhYRk2jf3w8/ePjuTA7u+n6rlYr7wwcyPL6epbX1/NlVRWvlpRQYLfT025nYU0NjxQVNa11NCIxkWyLJYaPRAghhBBCCHEgpJOonTmdYDSC2RzrkRwhfj+ceCKsX8/G9zYwYnIGo0fDvHnqeRBCHN1K3W4SjEbijEbeLy/npi1b2Op0NtVzLRbmDxtGn7g4djudeHWdfJsNTdNiOGohhBBCCCGOLdJJFCPPPAM33ghdu0KPHuqUnx953r27Wvv5qGAwwFNPwW9+Q7/UUp54IoMZM+Bvf4O774714IQQh1tWWKfQ2RkZnJ2RQY3Xy4r6epbX1bGsvp5ugTe8WUVFPFJURIrJFNFtdEFWFkYJjYQQQgghhIg56SRqZ4sWwbMfLaFmd1dKt+WwY4c6RLzfH3m73NyWA6TgeVzckR/7IdF1CHzImzEDunWDe++N8ZiEEB3K+oYGFtTUNIVHq+rrSTKZKBk3Dk3TuHfHDordbkYkJDA8MZFB8fFY5chqQgghhBBCHLK2dhJJSNTOdF1n0L8Hsb1qO9eMvIabx99MujWHPXtg50512rEj8nzXLvB4IveTkdF6gNSjByQnH/GH9tNqa2HWLPRbbkWzyjokQoj98waOppYfWPR6xoYNvFNWRq3PB4BJ0zg3I4PZAwcCsLq+nnybjUSTNMEKIYQQQghxICQkiqEtlVuYuWAmr656FYvR0hQW5SS0fHx4nw+Ki0OhUUtBUtgSHwCkpOy/Eyktramx58j5+GOYOhXuuw9uu42vv4YXXoAXX1Sz0oQQ4qf4dZ3tTifL6upYXl9PhtnMTd26oes6ad99R43XSx+7XU1XS0zktNRUjktMjPWwhRBCCCGE6NAkJOoAwsOil3/xMhcOvvCg9qPrUFoaGRo1D5Lq6yO3iY9vPUDKz4esrMMUIp1/Pnz0EaxZw7Nf9ubKK2HmTLj99sNwX0KIY4ZP1/m4oqLpyGrL6urY6XLx5+7deaBXLxp8Pi5ct64pPBqRkEBXq1UWyBZCCCGEEAIJiWKmxlmD1+8lPS696bqtlVvJT8nHaDDy2MLH2F2ze7+dRQdK16GqKrr7KPxyVVXkNjabWkC7tSApN/cgj05WVAT9+8OECegfzeXXv9GYPRu++gomTjzEByqEEGEqPR68uk6WxcKWxkbOXrOGDY2NBH+rpZtMPNOvH+dmZlLn9bLP7abAbscgwZEQQgghhDjGSEgUI7MWzuJP8/7Eab1OY9qAafy88Oek2lOb6jd9ehOzFs3CarT+5DS09lRb2/I0tuDlsrLI25vNavHp1jqR8vLUbVo0axb84Q8wezZ1Z0xjxAhobIQVKyAz8zA+SCHEMa/B52NVWLfRdXl5DE9M5J2yMs5bu5YEo5FhCQkMS0gg3WTimrw8si0W1jc0sLSuDrvRiN1gaDoNT0zEajBQ7/Xi0nXsBgM2g0GCJiGEEEII0alISBQj68rW8fLKl5m9djY7qndgNpiZ3Hsy0wdO5+x+Z5NsS2ZzxWbu++Y+Xln1ClajlVlTZnHFcVfEdNwNDWoB7dY6kfbujby9waCCohY7kfK89PzXTZhuvB4KCli+HMaMgb/+Fe6444g/NCGEYI/LxaeVlU3h0eqGBup8PtaNGkX/+Hj+uXs3N23dGrXdrjFj6GazMXPHDv66Y0fT9bZAiLRt9GhSzGYe272b10pLiQsGTIGw6eXCQkwGA++Vl7Osri6ilmA0cmF2NqCO/Fbt9UbU441G0ltN44UQQgghhGg7CYliTNd1luxdwuy1s3lz7Zvsrt2NxWjhjIIzmDZwGmf1PYvi+mJmfjOTy4dfzgk9TqCsoQyf7jsinUUHyuWC3btb70QqKgK/P3Kb3NxQcGSzwfHHh8Iku11Nkwue/P7Ir4/16+x26NsXCgtVR5cs/C1E+/PrOhqgaRo1Xi8lbjcOvx+Hz6fO/X5OSUnBZjSyuLaWH2pro+oP9+6N1WDg+X37mFNWFlFz+v1sPP54NE3jmk2beKpZ2p5oNFJ7wgkAXLB2LbObtXTmWizsHTcOgHPXrOHLqqqITqd+cXG8M2gQAHds28YWh4O4sHpvu51r8vIAeLusjHqfr6kWZzSSbTYzKCEBgL0uFyZNa6qb5E1HCCGEEOKoIiFRrDgcKlGx2cBqBU3Dr/tZVLSIN9e+yVvr3mJP3R5sJhtT+0xl+sDpnNnnTOIt8fxu7u94YfkLXDPyGm4ZfwvZCdmxfjRt5vHAnj2RAVLl+hLO//xq/mG9nbmlI/F4Yj3Kzsluh379VGAUfurbV9WEEJ2Druu4/H4aAyGS2++nZ+CHeE19PbtdrqaAyeHzYTYYuCRH/dPgub17Wd3QEFHPtlh4om9fAC5av55FzUKs4QkJfDtiBACDfvyRtY2NEeOZlJrKZ0OHAtBz4UJ2hB1G06RpTMvM5LUBAwAYs3QpDr8fW2C6nc1gYEpaGjd26wbA7zZtwqhpTTW7wcCopCROTU3Fr+u8VVYWsa3NYKCb1UoXqxW/rlPm8TRtZ9Y0WXBcCCGEEKKdSUgUK48+Cn/8Y+hri0WFRYHQyG+z8n2en9n59czpUk2x1UOcz8jP6nI4wZnDwoQq/hu/HStGrvUO52bTRLKt6aHQqS3nza8LhFVHXE2NWsS6Sxd83y9iX6mRyZOhpARuuglyctS6RgaDGl746Vi/rq4ONm2CDRsiTzt2qE4jULfr0SM6PCosPIxHrxNCdEqlbjf1wS6nwHmC0cjwxEQA3igpocLrbao1+v0MiIvjokBINWPDBqq9XpyB7Z1+P1PT07kzPx9d1+nyww9N17sCb1J/6NqVfxYU0OjzEf/NN1FjuqNHD/7WsyelbjfZ33/fdL2Gms53f8+e/KFbN3Y5nUxZtappPajg6Xd5eZyRns5up5MHd+2KCqF+lp5OYXw8ZW4386urVQhlNDbVC+x2kk0mXH4/DT4fNoMBq8GAUd48hRBCCHEUkpAoVpYtg/nzwelUHUX7Ofe5nHxjL+XNjBLm5FRSZvOR4NY4aY+JBqOf+V19/HYFPP9+O4zLYjmwYOlgwqiWzj/5BK66Ch55BG68kaXLNMaNA7dbHT0tPx+eeQZOOUWte7RqFfTpo8IPk6kdHvdRxuGAzZujw6ONG9Xi4EEpKS2HR7167WfBcSGEaAd+XccdmH9sMxrx6TqbGhtxBqbgOQPdUL1sNgrj42nw+XipuDii7vT7mZqWxkmpqexxufjDli1R9b907865mZksr6tj8qpVTQFXcObzGwMGMD0riy+rqjh15cqocX4waBA/y8jg/fJyzlmzpul6c6Ajau7gwUxISeHD8nJu2749okvKZjDwaEEBve12FlRX81ZZGdbAdtbA6YrcXFLNZtY2NLCqvj6iZjMYGJWYiMVgoNLjoS4YUmla021kcXQhhBBCtCcJiToZr9/L/B3zmb12Nm+vf5tKRyXx5nhO7zWZGYN+Q6Ypmbc2zOHm/peTrSW2KYSKOj+Ubdzu9nmgVis+sxW3wYZTs9Pot5PW1Y49xca+ajtL19txYMel2TEn2bCn2pl4up2UXDt1Hhtuo53ULnYM8XY118pmU+f2Vr6224+JtMnvV+tCNQ+PNmyAfftCtzOZoKAgOjzq108FS0II0dl5AyGSxWDAEjgy3XanMypkOj4piWyLhW0OBx9WVESFWL/Py6OX3c7XVVXM2rMnavvZAwbQNy6O5/bu5ZZt23D5/bj8fnyBcWwbPZqedjsP7NzJbdu3R42zdNw4Mi0Wbtu2jQd27YqqO044AZvRyB3btvFicXFTeGQ1GIg3GJqmEv5fURHf1NQ0hU9WTSPFZGJmr14AvFdeznaHIyKkSjGZmJqeDsC6hgYafL7Q/jWNeKORTIsFUNMkZfqfEEII0flJSBRDh/oHlcfn4cvtX/Lm2jd5Z8M7VDursZvsOL1OLEYL1466llvH33pk1yzy+1VQdDBhVFERPPwwDB4Mkyerdpjg7RyOppO33omjyoG3zoHe6EBzOjB6nCSaHGiHElIZjT8dJP1U2HSg25jNHWa+V02N6jTauDEyPNq8mYh1orKzW+4+6t5dFs4WQoi28gXWnrIFuoGqPB5K3G5cgeudgTDppJQUzAYDy+rqWFFf33S9KzBl7689emDQNP5bUsLnVVVN17v8fnTgg8GDAbht2zbeLS+P2HeSycT2MWMAOGf1at6vqIgYY0+bjW2B+mkrVvBFdXVEfXB8PKtGjQJg9NKlLKuvj+iUGpeczFsDBwJw4bp17HW5IkKskYmJ3Nq9OwB/27EjIoSyaBoD4uObQqq3y8rQoCmgshgM5Fmt9A6s17XN4cAS6LCyhN1GOq2EEEKIAyMhUQxtvHIj3hovuZfmknpaKprx4P+QcfvczNs6jzfXvcnb696mwdMAgFEzcuHgC3nhnBcwGTpBp8zHH8Po0ZCWdnDb+3xsWOHkxwVOdm9yULTZQfF2B9XFTuZ94MDkdvDUYw4Wfumge5aTbhkOuqQ6yE11MKJ/ZBjVFFLt7+vgAuQHy2A49LApOKWv+dS+n7rOaGzTEL1e2L49uvNo/XqoqgrdLvxIa80Xzo6LO/inSAghxOEXnIYXHkAB9Au8gS+urY0KsZKMRs7PygLg6b172RnoxAruo7fdzl969ADUelXbHI6IEGt8cjLP9usHQMHChex2uXCH/b15QVYW/w0sip6wYAENzQ6PekVuLs/064eu6xjmz496TMH1rhp8Prr/8ENTeBQMkq7r0oWr8/Ko9Hi4cN26iADLomlMz8picloa5W43j+/ZExFQWQ0GTkxOpjA+nmqPh29rapquD96ml81GitmMy++n2uuN2FbWtBJCCNFRSUgUQ9tu28beZ/birfBi7Wol57c55MzIwd7r0A5F5fQ6+WzrZzy77Fk+2fIJXr+XzLhMzi08l9MLTufsfmdjNLQtIIgZrxd8PhVutAO/P9Tl8uGH8OWXqkNm82bYuhXy8tRizwC/+pXqpunTJ3QaNAiOO24/O3e59h8ktSVsOtDbHCqjsW1hUivX6xYrDT4bJTU29lbaKCq3savEyvZ9NnaW2HBgwxk4pXex0rW3jR79bOQX2igYZKPvYCvZuYaO0kglhBCiA9B1HXdgvSoNSAhMBd8YWK/KFXbKtVoZGB+PX9d5taSk6Xp3IIQalZjIaWlpNPp83LJ1a9P1wdtMz8pielYWJW43Z69eHbGty+/nzvx8ruzShXUNDQxcvDhqrM/168dlubksqq1lzLJlUfXgeldfVFVxWrP1royoLq8z0tP5tLKSKzdujAixrAYDT/bpw7DEROZXV/OvPXuwBEOmwPkt3brR1WZjaV0d8yormwKo4O3Ozcgg0WRim8PBFoejqRY8L4yLwxSYaunW9aaaSY4cKIQQxzQJiWLM7/JT/kE5xS8UU/lpJV1v7ErBPwrQ/Tp+hx9j/KGFOQ6Pg7mb5/LWurd4d8O7uH1u4kxxTB80nRnDZjC++3gMWgebI+RwwIQJasrZAw8c9rvzeqGsDHJz1dcPPAALFqgAaccOlVVNmADBg+78+tfqyGHBAKlvX3U6omv16HoomHK5IqfwNZ/Kd7iuC5+DdpDcmPEYbPgsNnSrDWOcFVOCDUuSDYP9wIOrqOuCR+0LPwWPJBj+tcyTE0IIsR+6ruMNBkiB8ySjkQSTiXqvl/WNjVEh1HEJCXS12djtdPJBRUVUCHVJTg594+JYWlfH/xUVRdRcus5jBQUMjI/nvfJybgusZxUM0Ny6zrfDhzMgPp7/Kyri+i1bosa8ffRo8u127t+5k9tbWO+qbNw4MlpY70oDLJpG9YQJ2IxG7ty+nVdKSiI6oeIMBuYPHw7A40VFLKiujpjql2Iy8ffevQGYU1rKFocjIsRKM5s5LzMTgB9ra6nxeiMCsESjkT6BLrbKwN8bwW0lxBJCiMNLQqIOxLXHBQaw5lqp/LySteeuJeuCLHIuzSFpdNIh/0JcVbyK33/8exbsWtB0XXZ8NhcMuoBpA6cxpuuYjhMYzZgBr74KDz6o0pfMTDjrLFVbuVKFFOHTrRISDn6K2n54PGqqldMJQ4ao637xC1ixAnbuDB1m/le/gtdfV5evugq6do3sREpKavehxV6wg+qnwqSwr3WHk5oSJ2VFLir3OqkudlJX5qSh0om3wdXUe2TXnKTanSTbXCRZnMQbndhxYvE7MXjC9u/1ts9jMZn2HyS1Fi4dzttYLB1mvSohhBAdlz8sOAoPorpZrZgNBva4XOxwOlUtEEC5/X7OycjAYjDwQ00NP9bVRe7D7+f+Xr0waBqvFBczr6oqYluAjwJ/GN22bRvvBda7Cm6fbDKxafRooOX1rnrbbGwJrHd16ooVfNlsvauh8fGsCFvv6se6uqaaBpyYksJXw4YBcMqKFWx1ONAATdMwACelpPB8YSEAJy5fTqnHo+qB0xnp6TwcCLFOWL6cBp+vqWbQNM7JyOD2wFTJE5Yvb1pH1BC4zS+zsrguLw+X38/PVq+O2LemaVyYlcVFOTlUezxcvGFDxL414OKcHM7JyKA4cFRGLXC9IbD9b3NyODU1lV1OJ3fv2BGxrQZcmpvL6KQktjQ28s+ioqj6Zbm5DE5IYH1DAy8UF0fsO1jvbbezpr6etwLrfWnNtu9itbKyvp6PKyoi9h0cX7rZzPK6Or6pqYmoacDF2dkkmEwsq6tjaV1d5PbAhdnZWAJrra1vbIx6/qZlZqJpGsvr6tjhdEbs26xpnBFYq2xlfT37XK6IsdsMBk4I/Od2TX09lV5vxL7tBgMjEhMB2NDQQJ3PFzG+OKOxaZrtVocDRwv17jYbALucTry6HvH9tRsMTQv6l7jdTa+d8PElBjokawJ/x4Zvbw4EpQCuQEdl8++vhKTicGtrSNQJFrPp/Kx5oalV1lwrmedlUvJaCfue3UdcYRw5l+aQ97s8jPaD6y4akjOE+TPms6liE3d/fTdvrHmDBk8D/178b2YtmkW3pG78csAvmT5oOqO6jIrtG9DDD6s5YX/8o/q6f/9QSHTddfDdd5G3HzUKfvxRXR45Ui2aE75uz8SJ8Nxzqj5jhlpMJzxkGjkSLrtM1Z94QgUgdjtmm42+drs6JjzqP2bv3r0SLBZcBjs7S2xsKbKR0iUOsFBfD3PnqjW4w911F9x9tzr8/GOPhcKjggKVb3VKwfWU7G2fHqkBKYFTc3V1oUWzlzdbODt8PfKsLCgcodY76t/Hy4DeLvrlu+ia4cToaRZOORxq42C3VfDUlutauk1Dw/63a6+j+wUFA6TDGVAFO6mMxpbPj1RN/uARQoiDYtA0bEYjtlbqeVYrefuZvj82OZmxycmt1i/KyeGinJxW6/f36sX9gaPkteSdQYPwhAVMbl0n/J/P/+rThwqPJ6JLKj5s3cQ/devGXrdbhVSBetewxzMmKYnuVis6NJ0KwxZDHBAfT47Hgx/VEaYDuYEP8QB5FgsNfn9TTQfiwzqMbQYD/rCaP2z8fl2nwedTtbDbNAaCNB+w2+WKqPl1nYpAd5RL11leXx8au67jB6YE/vFZ6/Uyr6qqafvgY5iUmsropCRKPR5ml5ZGjg2YlJbG4IQEdjqdPLFnT8S+dWBSaqoKiRoauHfnzqjv2ZS0NLpYrfxYW8tfWuhCm5qWRrrZzFfV1fxx69ao+tnp6SSYTHxQUcHdwfUcwvwiMxOLwcDrJSU80vyPZuCXJ56Ihlrr7Onww+8CcQYDDRMnAvDQrl28XloaUc82mykePx6A27Zv54P9BJTXbN7M180CymEJCSwfqT4bT1+7lqX19RH1E5KTWRDoopu8ciUbmy0BMTUtrSlAHbFkCXub/W04PTOTNwIL+nf74QfqfL6I+uW5uU1rtdkWLKC58LXWkr75Jirgu71HD+7Mz6fE7ab3woVRAeS9+fn8vmtXtjkcjFm2LCrge7BXLy7KyWFNfT1nBgPQsH08UlDAORkZLK6t5aL16yPCU03TeLyggJNTU/mmuprrt2yJCiif7NOHkUlJzKus5K4WAtCn+valf3w8H1VU8Oju3VEB47P9+tHNZuN/ZWU8t29fVHj2XL9+pJvNzCktZXZZWcTYNNQ04TijkTdKSvi4sjLq+Xu2Xz8MmsbrJSUsqK6OCvgeKSgA4NXiYpbW1zc9viyLhVsCB2I4lkgnUYx467yUvVnGvhf24dzuZMyuMRhMBho2NGDvbcdgPvjOn00VmyiqLWJkl5G8ve5tHvj2AbZXbcere8lPyWfagGlMGziNEbkjYhMYud0qzHE4VMtOz57q+iVLoLQ0tD6P0wmpqXDuuar+2GOwe3fkGj4DBsBf/6rqZ5+t2oDCtz/jDHjpJVVPSVGH+go3Ywa88IK6bDKpOWjhfv97ePxxta+8PPxWGx6jDRc2GnU7dRdcTp9/XM26hbWsGXs5DuxN6/UY4+0MumUqJ905kYrttex88A0yu9nI7mHDkhwIsQYMUAsnOZ2wZ0/0otVH8XQpr1dN+wtfNDsYJpWXh25ns0UvnN2vHyQmhnKJlk7hucX+TprWhhxD19Xrti2BU3uGVz91XXt1XB1OmnZkQ6kDrR3Mi6Yj3v5w7Dv4w7G/U/B73KYfJCGEEEdSeIil6zrGwJQ+r9+PJxhQhYdoRiNGTcPh89HYLGDTgQyzGaOmUev1Uuv1RgRcOtDDZsOgaZS53VQF6uH76B8Xh6ZpFDmdVHi9EfetQVMn0JbGRsqDAWBgHyZNY0wg9FxVX6/qYdvbDaFOo4U1NVHbJ5tMnJyaCsAXVVVUejwRjz/TbOa0QIj3Xnk51V5vxNi7Wq1MDtRfKS6mweeL2H+B3c6UQCfUE3v2NB2JMriPwfHxTfX7d+6MqPlRoejpaWm4/H7+tmNHxPOu6zqnpqYyKS2NWq+Xe8LrgZDwnIwMTk1NpdTt5q4dO6K+d7/JzubElBR2OBzc3cL+r8nLY3xyMusaGiL2H3x+/ty9O8cnJbG4tpa/hY0/+Bz8vVcvhiYk8FVVFffv2hUVgD7Vty+F8fF8UF7Og7t2Rb12Zg8YQL7dzmslJTy6e3fUa3Pe0KFkWyw8uWcP/woEpOH1ZccdR6LJxP07d/LM3r1Rj2/X2LEYNI2bt27l5eLiiJrdaGT32LEAXL5hA2+WlUV8X4Pdj0cDmW7WiXiqPJhTzeg+nR96/IDu0cm+KJvcS3OJHxB/SPuet3UeU16bgtVo5cT8E3F73SzYtQCv30vv1N5MGziN6QOnMyR7yNHf4lhfHxkgOZ1qvliPHioEeP/9yJrDAUOHwimnqK9vvjmy5nTC9Olw0UVQWor/hBPx1DvxNzrRnA6Mbid7r7uPHo//ka+e2sjJ1xRGDWn37U/RbeZVVH2+lNRJLfy8vvYaXHgh/PADXHBBZIBkt8P998PYsbB8uQqzwms2G1xyiXp827apLq3m9WHDVMtTXR3U1h7UUdIOh/LyUGAUftq2TTWDtbeWcowDPcViO6Pmx6y7seLCoquT2e/Cgpu0BDdDBvkZPNBPYpxPPXG+ZuctXXes1Hw+9XPf/PZtOQW3FS1rS5jU1tDpcO+rve6zeaj2U1+3122O1DaHst/9vcm1Vuuo20gYKoQQohOTkKgT0n06FR9XUPyfYirer0D36iSOTqTnzJ6knXbw6/JsqtjEzAUzeW31a1iNVmYMm8HgrMG8s+Edvtz+JT7dR7/0fkwbqDqMBmUNasdHJQAaa71s+b6UnRud7NniYO82JyU7nfzpyV70mZjLfx4u56tb5hKnOclNddA1zUFumosxD51L2omDcS5bh3XWQ2iuZusE/f3vMGYMfPopXHFF9ALU334L48erbqrf/jZ6YMuXq6DoySfVdL9wZjOsXw+9e8PTT8Ojj0aGSHY7/Pe/qtvr3Xfhs8+iQ6gbb1T7WbJEJTzhNbtdTQcEqK5WXTHBWisBlcsFW7bApk1qil9Ln90P5LP+oWx3JO/rYLarqVHnmgYDB6qXwbhx6tS7t3zOOWS6HgqZ2vub15FuH3ycLZ3Cn4cjdbtY3Gdbb9f8+fqprw/XNodrv0I52NS/tVp7vRkfrfvpaDryz0LzQLv5dYfrNp3pPtsS/rf1toe6/ZG8r7Zsv7/n9HBed6Tv72Cuy8tTS6QcBSQk6uQJXPBuAAAgAElEQVTcpW61btHz+yh4pIC009Nw7nTi2OYg5cQUNIN2wPsMhkWbKjbxw2U/oGkaRTVFfLT5I2avnc38nfPx634GZA5g2oBpTB80ncKM6O4X0f527FCNPps3qwBk0yZ1edcuSE6G229XGU1BgZpq1bevOv/1r9UsuRZ5vaE/Quvrobg4ejHqMWNUJ9G6dWoAzTupbrlFhUDvv68CoeadVJ99prqx7r8fZs0K1YPztD0eNcDrrlNBVDirVd0WVMfTyy+HaiYTdOmipg+CmvY3f35kCNW9Ozz7rKrPmqVCqPBOq65d4Te/UfUvvlDPQfj2aWnqCQWorFT3aberc+3Af746mvp6tZzXd9/B99+rZrTgbMusLBUWBYOj445T3w4hhGjVwQZjBxpW7i/E7Izb/NT+2ut7c7TupyP+Pu6IY2oeZje/7nDdpjPdZ1uC/7be9lC3P9j7ErFx5ZXqH+ZHAQmJjhLB74+maWy7bRu7HtiFraeNnBk55FySg617a8sZts7j82A2milvLGfgkwO5eMjF3Dz+Zvy6n3fWv8PstbP5Zuc36OgMyR7StIZRn/Q+7f3wxH6E/230+efwyScqPNq4MZSH1NSo29xwg2rWCQZIffuqwDtmobffrwKg4AKTpaVQVhYZMnk8as0oUCHO+vWRIZXFolYGB3joIZVyhG+fkwP/+5+q//zn8PXXoYWtAUaMgKVL1eWRI0OXgyZOVMETqIWONm5Ulw0GFSSddRa88Ya67tRT1ZMd3kl1yilw002qfvPN6jy8Pny4ug2oTqvwms0GubnqMeh6aN9W62H749PvD2WB33+vzoNrUlos6ikK7zbKyjoswxBCCCGEEAfrcARaLV0+Etcd6fs72Ouys9WRiY4CEhIdhXyNPsrfLWffC/uo/rIaNEg/K51B/xvEwawntLduL7d+fiuvr34dm8nGtSOv5ebxN5MVn8Xeur3MWTeHN9e+yXe71RHHhucMZ/rA6fxy4C/pldqrvR+eOAAeD+zbp5ppQGUoc+eqECl4sIj+/VUoAPDnP6tcJRgg9eunGm0MhtiM/7Dy+1Unk8ejVrcGlYbU1kaGTElJMGGCqr/8cmSI5XSqJ+nyy1V9xozo+uTJqoMKVNdTdbW6Pvieeu216oh6Xq+actfczTerb1x1terWCrJaVWD017+qowCWlMCUKdFT+S67DM48U3WIPfxw9FTA005T4Vd5uTqioNmsThaLOh80iBJ/Jj9+UcfGz3aydJWZZWssNHjMeDCT3juVUeMtjB/rZ9w4GDDIcHS+XoQQQgghhDgGSEh0lHNsd1D8UjH+Rj+9H+oNwM6/7yRtchoJwxMOKDTaWL6Rmd/M5PXVr2M32dl2wzay4kNtBLtrdjNn3Rxmr53Noj2LABjVZVTTGkbdk7u374MTh6S2Vk1Va2hQzTKgsoQFC9QUpKAzz4QPP1SXH30UMjNDAVJKS8eyFz9N11U45XSqBC4hQYVWq1dHT/Xr1QsGD1aLKz3zTPSi6lOnwumnq5Co+XpTTifcequab7hmjVq83OmMPNrZiy+qaXzffRcKw8LNmQPnnafWs5oyJap897hPeXLzZCaWzWEOv8SLEZ9BBU0GixnPB58Qd+IoePttNR8yGEIFg6iXXlKP8cMP1REEm4dU998P6enw1Veqkyy8ZjbDVVepwGvZMtVlFl4zm1UIZjCoOZmVldH3n5enHkhw6qPZ3DGnCAghhBBCCHEESEh0jHHtcbGw90J0l0780HhyL80l+9fZmNNb6GBoxaaKTXyy5ROuH309AP9d/V9O7XVqRGC0o3oHb619izfXvcmSvep7NabrGKYPnM75A86na1LX9n1got3ouuoyCk5Zy8qCX/xC5QqJiaHlgUAFRjfdpDqQ/H61JFHfvmrBY1m7pgPzetV0O6dTdRPFxakQavt2FV4FT263Ws06M1N1In3zTWTN44GzzkLv2o1dn6yj8tk57Nvhpni3h9pyNyY8/NPwJ1KG5XNJ96/4efFTZCR7iDOH3ccLL6gj6736Kjz4YPT+ly1THVj33Qd33qleaOGqqlRaecstqlOqpcdqNMI118BTT0XWbDYVuIFal+q119Rlo1EFSLm5obl2l1wC8+apACm4hlfPnmr6YrC+cGHkIrMDBsCbb6r6xRerlr3w+rBh8O9/h7bftSuyPno0/O1vqj5jhgq5gvevaSrUu/FGVb/8cvX9DB/fxIlqO4Crrw4trBisn3yy+uF2u+G226IXyj35ZDWFsr5eJcThYwvWjz9edbn95z/R9YkTYdAgqKhQUymb18ePVwFhWZkKAcMfm8GgHn9urpqGunRpdH34cLVmWFmZerMKf2yapl678fHq/ouKouu9eqk3qurqyOc2WM/NVa+Fhgb18xF+35qmugw1Tb1Ofb7oevjilkIIIYQQnYSERMcgT5WH0jdKKX6hmLoldWhmjcFzBx/UkdFKG0rp+mhXzEYz1426jj+N+1NEWASwtXIrb659kzfXvcmK4hUATOg+gWkDpnH+gPPJTcxtl8clDj+3W+UIGzeGQqRTToFf/Qp27w5Nawt+fu7bF66/XjWguFzqs1xennxuOhZUV6vMJLi20aJF6rM2qCmM4QtiDx3a8ky7Fvl8kUFWSop6wVVUqFMwXAqexo9X261apQKf8Jquh0KU999XnVzhIZXdDvfeq+pPPAErV4YW3PX7VXj20EOqPnOm6tYK1vx+yM+HRx5R9RtvVD804fVBg1T4AnDRRWoB9vD62LGh+pQpqlss/P6nTIF//EPVhw+HurrI+vTpofHl5kYeiczvV8HR/ferb0xWVuR9+/2q8+uee1RAmNvC+/RDD6npkJs3qx/25v79b3Ufy5apVc+be/VV1eU2fz6cdFJ0/X//g3POUV1mZ50VXf/iC/UG9MYb6k2ouR9/hFGj1ML1V14ZXV+/Xk21fPRRNWWzuaIi9YZ1zz1w993R9ZoaFRT96U+h73O4YHB07bVqDOEhUkKCCr9AjW3OnMh6drZ6zYIKAOfNi6z37KmuA7j0UvVYwwOu/v3h9ddVfcYM2LAhOqB8/HFVv+wy9QYeXj/++NBab1dcocLY8ABs3Dj15g7qe+xyRYZsJ5ygXtOgDijQPIA78UQ4+2z1c3b33ZF1g0HVTzpJBZSPPx4dYE6cqBZIq66GV16JDiAnTFAhbUUFfPBBdH3sWPXzWVamwu/mAeSoUep7UFYGK1ZE14cOVe895eXqUJrNH19hoQrfKyvVf12a13v0UEF0ba16DM3rmZkqoAx2jTY/0lBCQiig9Hqj68EDKwT/dpdfukIIIQ5AW0Oi1o6LJDohc6qZvGvyyLsmj/rV9RS/VEzS6CQAil8ppnFDIzkzcogriPvJfWXFZ7H6mtXM/GYmj/zwCE8sfoJrR17Lnyf8mfS4dAB6p/XmLyf8hb+c8Bc2VWxSgdHaN7n+k+u54ZMbmNhjItMHTue8AedFBUyiY7FY1DSzfv2ia9nZ6nNK8KhrwSApGAwsXao+r8fFRa55dPHF6uBh4Qtwi84vJUVlGMEZal6v+swbviB2sMkmLk59Jg2GRmPHRi6/FMFoVCdbs8X409PVqTVDhqhTa84+W51ac911rdcA7rhj//V//nP/9Vde2X/9k0/2X1++fP/14CJkLYmPD/2gtiQ7W30Dw0MkXQ8dMrFXLxUiNK8nJKj6oEGqS6p5Pbjq+ciRsHZtZICl6+pDPKgXxsKF0fXBg1X9pJNUYBJe9/tDi0dOmgTvvBNd79JF1adMgYyM6HpwPu3UqaF6+G2Cr8HW6sE3tNNPVy/olp674OOzWiMfW/C5A/U4w5//8OcOoFs3FViFjz28Hh+v2kDD6+Fvtg0NKmAMr1dVherbtkUHlOGh4bffRgeUSUmhkOj116MDSLNZ/by5XCroDN8WVNfgSSep/d5+e/Rr8uGH1eumtDQUVoV76ikVEu3YEQqCw736qnp9rV2rptM29957anyLFrUcUH75peqkmzcPLrwwur54sRrfnDlqSmxzGzaoX4DPPqtCxub27FGvzwcfVCFlc7W16nv65z+HguRwwefx6qvVNOUgTVPbBQ9hecklMHt2ZMCUm6uCL4ALLlDvPeH13r3VL3uAc89Vb+jhIdqQIWrxQ1DP3erVkd11o0eHujanTFHfo/D6iSeqUB7Uz255eeT9n3666iwF1ekY3uUXvM9bb1WXTzgh8rGDCs+vu04FcMGDYoTXL7kEfvtbFTD+8pfR9auugmnTVIgc/toK1m+4Qc3T37wZfve76Pqtt6rXzurVoXGG1++8Uz1HP/4Y6iQNd9996jlesCAynA5u/49/qD+q5s0LdaqG3+bxx1X4/cEHarp38+2fflp1aM6ZA2+9FV3/z3/UP1BefRU++ii6/tpr6vLzz6sO0fC6zRY62uy//63e18OlpKij0II6X7EicvvsbHjgAfX1ww+HDiQS1KOHWqcx+DwFj3wbHFvfvqF/CNx9t3pfCzd4sAr1QXXXBn9Ogtsfd1zoe37zzaEDoATrY8eqnxmAP/wh+rk56ST1jw+XS+2/eX3SJPX6rq1V/3hq7swz1c9HeXnoH0Th2//85+q1s2dP9JGCQb1uhw5V/+194YXo7S+8UAXcmzaF/skQXr/kEvW+uWaN+p3avH7ZZep9a/ny0HtAeP2qq9TfaYsWqffQ5vXrrlPvT999p07N69dfr35Xfv21OgpP8/pNN6nLn3+ufr7C62Zz6O+4Tz6JfO1omvo9edll6usPP1TvS+H1lBT1Ty1Q/8DauzeynpkJ55/PsUhCoqNUwuAECv5R0PR1/fJ6imYVsev+XSSfkEzOpTlknp+JKaH1l0C/jH688otXuOOEO5j5zUyeXPIkN45VUyB0XY9Y96hvel/umHgHd0y8g3Vl63hz7ZvMXjuba+dey+8+/h0n55/MtIHTOLf/uWTEZRy+By7ancWi/vk6alTL9fx89TsrGCAtXar+Bpk0Sf0989Zb6v0/eOS14Pkpp0R+XhKdk8mkDiQ3YoRqLADVvPD996HT3/8eOtLzgAGR3UZ9+kiIGDOapoK51hiN+1+gzGJRQUZr4uPVN7w1qanqD9/W5OSoU2vy80OBU0sGDNj//e/vjQ3Um1TwCIUtOeccdWrNJZeoU2tuuKH1GrQcIoT717/2Xw8enbE1X3yx//qaNfuvV1S0XktMDK0HFhR+pJicnNBC/+EhU3A+c+/eqtuneQCZnKzqgwapkKt5Pfh6GTkyukNQ19V+Qb35fPttdH3YMFU/6ST4+OPogLEg8HfVaaepNLx5PRiyhQeI4fXg+M84I7IePAUf/5lnqg8nzY9GFB6Y5OZG1sLbNqdMCR09M3gKHsgBVAiTnR1Zz8wM1SdMiLx/vz/UUgzqDT8tLfK5KywM1QsL1WMNf3zBdeJAtZ3GxUXWg89N8PVjNEZOQw5/fBZL6DUV1NKRFcJfc+H7Cq7fF7598JeU368CquZ1jyd0u9ra6Hrw9e7xqA/7zevB4MHlivwg2rze2KjC99a2r6kJhX3htwnef0WFCiubbx98zCUloW7G8Hrw+dmzR3WJNq8Hbd8eCoGCdbs9VN+wQQVd4cJfWytXhoKE4PY9e4bqP/6ojmYbLviPA1AdgqtWRY5t7NhQSPTZZ6Hp5MH7qK0NhUTvv6+eg+bPbTAkmj1bdTo2f+zBkOjFFyPHDurxn3OO+t4Hw9vwemqqek9oaGj5fbtLFxUSVVXBY49Fb9+rl/pdWVwc6iION2iQCol27gwdUCV8+1GjQiFRS79XTjxR/S5dvTrUaRrujDPUGBcvbvkfZ+edp0Kib7+NDMmCLr5Y/UzPm9fy/V99tXrv+/DDlrt3g9/bt96KDMdB/Z0RDIlefhn++9/Iek5OKCR6+unQYqxBffqEQqLHHgsd9ThoxIhjNiSS6WbHENceF8WvFFP8QjGOzQ5ST09l6CdD27x9RWNFUxfRz17/GQMyB7Q4DS1I13XWlK5pCow2V27GqBk5tdepjOoyirzEPPKS8prOs+KzMGhy+KSjgcul/r4zmVRI8PzzoRCprEzdZts29XfBiy+qUCk8QOrbV/0+kvDg6NDQoP62CHYbff+9mokBqlEjPDQaOTK6mUgIIYQQQrST5p//g9NYmx8GHkIdfX7//7N33uFxVOfbvmdmd7W76pJlWXLvNjbGuHfTq4EQSughgIHQQgIJJQkGwg9DgBCSUAwhQL5QQgsdQq82BONu494lS1aXVrvS7s7M98fR7O5oJWODwTa8t665ZvY855wpO1rtPHrPe5JmaqruTAwSj3esZ2Qkh9E6ZmuqHgwqvbU1XbdtFcEKKkrQMUNT2zv/zAqF0ttrWjKEvbExvb2uJ6PV6+rS23s8O45m3weRnERCp9i2TcMnKtQyb0oe0aooiw9ZTPFZxRSfU0xGyY4zE7fEW5j58kyeWPoEfo+/05xF7fe5uHIx/172b55f+Tzratdh2qarjkf3UJpd6jaPsrvTI6eHy0zye+QJcl+mrk4ZRmPGKCPpwQdVBPqaNclcw5qmtjMyVOTz2rVuAyn1H6LCvodlqX82OsPT5s5V9wSo7xqjR7uNox0FkwiCIAiCIAiC8NWISSTsNM3Lm1n989U0fNQABhQeXUi387pReGwhuq/zyJ5V1au45aNbEmbRa2e8xvQ+03dqn6ZlUtlcSVljGWVNZWxt3JrYLmsqo6xRlTXH0vNpFAQKkuZRu2gkp7wgUOAaDifs/ViWSgWwerWKdnZGaZx3noo2Sv2oOuCA5JD2V15RptLgwSpa1iODaPdJqqpUhLljGn3+eTK6vl8/t2k0bNiOR0kJgiAIgiAIguBGTCJhlwmvDlPxaAUVj1UQLY8yfsN4An0CmBETI9D5E9mq6lXc/end3HXEXWT6Mvmi/At65vb8xsmqbdumsbUxYRqlmkepZtL25u3YuO9jv8fvikrqkd0jzUwqyS7BZ/i+0TEK3w0tLWqIuTNkzbbhuuuUNmJEMo+d16tSRsyYkRy2vWSJGrrWRVJh7VO0tqociakJsZ1clDk5MGFC0jgaP16iywRBEARBEARhR4hJJHxtrLhF0+dN5E5USQSXHr+UaEWUbud1o+tpXfHmdT6ntW3bDLtvGJsaNu3UMLTdQcyMsS20zR2NlBKV5JS3mq2udhoaXTO7uoa2pUYjOds5GTkSlbQXU1OjjKPUZfBglSzZttVQ4ro6lWPTmcHtuOPU5C2ghif7xCvc67FtlS8zdYja0qWqXNeVWZgabdS7t+S0EgRBEARBEAQHMYmE3cbWv21l24PbaF7ajO7X6fLjLnS/tDu5k3I7rL+yeiW3fHgLTy57cqdzFn3b2LZNbaTWZSB1NMStJpI+W0umN9NtHrUb4tYjpwfFmcUYuox/2RG2aWM2m5ihtqUpZftrLGigeTQ0Q1PrDhY8GnUNGs0tGqEWjaZmjcZm6NlbY/8DNUw0nnxaI5ilkZ2nkVugkVuo0bOPRkGR9pX9d7h8C/XREaOyAxoa1Iyrjmn06acqbyGo6LFJk5LG0ciRYgYKgiAIgiAIP1zEJBJ2K7Zt0/RFExWPVFD5eCW9ft2L3r/tjdVq0bqtlUCfQFqbVLPo8R8/zmnDT9sDR75rRGIRypvK04a4JUylpjLKm8qJW3FXO0Mz6JbVbYcJt7tndyfTl7mHzmzXsGLWbjFyUhcrYn31jtvQfBpGltH5EjRAAztuY5u2Wu/K0tbGjNo01Kq1FVNlBjYBn41HU68xv/p4vwsShpHBTplPRtDAV+ojozSjw7Un1/O9M55MU0UXpUYbbdyoNL8fxo1LmkYTJiQnxNC05OK8Fr572s9m3tH2vqLt6vbe2tc37ReSE+N0tN7bte9iP4aRnA3U2W6/dKbtSrmzP0EQBOGHi5hEe4jyOeVsvHkjmldD9+rqgc2rdbjeLfq33bee/o3CjJjYcRtPtoftz2xnxU9WkH9oPt3O60aXH3VJy1+0umY1/fP7Y+gGf/70z5Q3lXNI30PI9GaS5csiP5BPn7w+AFi2ha51nix7b8CyLaqaqzqNRnLKG1sb09rmZuS6zaOUaCRnu0uwy05fA9u2sVp3v6FjR3f+c0EP6Ds2dL7GsqOE6d8mTvLszEw1TG3ZMvjVL23WrLIp2wIGykT612M2xxxps3SRzb8ft+nfx6Zvb5u+vWyKu9holv31DKxvYHi1X8wmk+i2KK3lrZgN6U6XHtA7NZEyuqttX4kPT9a+nQm8vNxtGi1YoGZp3Vk6MpDab3/V671J29V+vktTRdg1OjIfOjMjvun2120Pyfe5s/XeoDnb3/f7sDMTancZUd+G2ZV6H32d9Tdpuzv6+C73/1VlX6fNNynb2/b3XW/vS8exO9jb+tmdff3sZ3DPPbunrz2NmER7iNo3a9n+9HbstqiE9msrZnVYvkM9lnzw+87R2KHBhA1ms0m8Po4ds8EAX5GPwMAAuj/diJpdMpsnc5/E0pJRJcOjw3mm8hk0TePEriey3rueoBUkYAfItDMZHR3NjQ03gga3Zd9GWA8TtIMEbVVnYHwgB8cOBmCedx5ezZtoGyRItpVNUAsmzif13KDdMB6N3VavmWYq9UoqqKBSr6SSSiq0Ciq0CiqppFKrpIoq17UA8Npe8shDszU0S11j19pKrrFQ9dDQbLVf5zU2ifLEa10Zf7qup23rRgdrQ63Ttj1t2x4dTdPUQudr57rsqM6urv0eP0FvkIAnQNAbVNvelO1Oyh3NZ/h2KZImHIY1a1TOo+nTobgYnnkGLrgAGlP8QL9fzcw1fLgyJJYvT+ZCyu14hOa3jtls0rqtlWi5Mo0S6zL3aytspbU1coxOo5Gcta/Eh+HfN4ZbhsMwf756jyKRzr9Efd0vXHta2937MIydNwu+DW1P7vvbME12twEj7H5s+7s1qkwzucTj7tdfVf512uyt+zD3kqjdXSHVWN+Z9ddps6ttv6rs67T5JmV72/6+6+196Th2B3tbP7urr4kT4ZRTvnk/ewNiEn0Pse22qIHdaUC1rb9JWzVsxyRWGaN1cytmk0nmyEwwIVYTQ/fp6tjb6lZ6K6nMrKTF00LYE8Yf9zNu6zgAnh32LJWZlUS8ESKeCBFvhL61fbng8wsA+PmPfk55Tjlhb5gWbwu2ZnPwmoP5w3//AMBRM48ilBFyXbejVxzN9W9dDzb86IIf4bW8BKIB/DE/gViAg1cdzAlLTyCuxbl/2v0uzR/1M7hyMP239yeux1lftJ5AayCh+aN+PLaHxO9R6q+TTVpZ+3qmZlKbWUtVThXV2dVqyammMdgIXtB8GngBD8qUa9vGixp65LxOWVQuHsDAvdZBeUW2ej++w3Xi/t1NfVq2RavZSiQWoTnWjGWnmxtfha7pO28yedqZTCn1/J4AraEgVeVBKrYEKNsY5NdXBinKC3DbLUH+dHsAbBUZVVyszKJXX4WsLFi7Vj0o9O2r/mO6J7FtG7PRdJtInaw7ijTzFHi+2kzq5kP37t2RgoIgCMJ3T2emWSrftsGys30IgiDsq4hJJOwxbMtG0zWsVotPij/BClsUHldIyXkl5B+Zj+7ZPQ+Jtm0TiUcwLZPsDDX/9WdbP6Mp2kRztJlQNERzrJkBBQM4pO8hWLbF5a9dTigWSuihaIhTh53KFeOvoKGlgZ539yQUDSWMDYCbDrqJG6bfwNbGrfS8u2facfzpiD/xy4m/ZH3deo578rjEMDpnuWj0RUzvM53ypnL+ufifZPmyEnUyfZmMLhlNcVYxkViE2kgtmb5Mgt4gXt3L9y1nzLeBbdvErBiRWIRwLEw4FiYST9nupNylxTuvl1refoa8ncWrZeCxg2jxIMSCDOijTKaNq4NUbA2gxYNkB4IUZAXoVhjksOnKiPLYQXKDQYLeHUdFOdteo/OZB3cXtm0Tr41/tZm0rTU9n5MG3iJvYjhbp2ZSkQ/NkHtfEARBEARBEHYXYhIJewWhZSGV7Pr/VRKriuEr8THwvoEU/aiI1vJWGj9tVMPRUnI4ZY3MwpPrIVYfI1oWTehOHU+hB92jq6gq21azQ+1GM8UxnxwjKTsjmy7BLoRjYd5a91bCfApFldl0eP/DmdBjApvqN3HVm1e5tFA0xOxDZ3PSfifx8eaPmfrI1LT9PXfqc/x46I/579r/ctTjR7k0r+7l9TNf59B+h/Lyqpf5+as/x2t48Rk+fIYPr+7lsR89xv7F+/Pftf/lz5/9OVHuM3x4DS+3HnIr3XO68+GmD3l51cvJtm39XDj6QnIyclhcsZgllUsS5U4fh/Q9BK/hZUvDFqrD1a62Xt1LaXYpmqYRM2NomoahGd9bc8u0TFriLbtkRu3IpKpuiFDbFCbUorRWK4ztaVvY9c9mQzNSIpz8eHRPYvEaXtdrj+7Bq3s7r6N13G6HbVLqGBgQAuqBOrBrbaxaC7vaxqq2oArMShO7xsYwDTyWB8My1IJBoEuAYNcggW4Bgt2CBEoCZJZmktE9I2EmeQvFSBUEQRAEQRCEnWFnTaJ9OyOpsNeTNTyLAXcNoN/sftS8WkPFIxVkdM8AoPF/jSw/aXlam5EfjiRvah41L9ew8pyVafroBaPJPjCb8gfLWXPJGgCXkTRmwRgC/QKUzyln8x2bk0m425YRr47AW+il4p8VbP/39qRB1aYPfnAwwYwgza80Y35s0uBtoMnbhObVGOkbSe9rewNQ934dkdURtPUaFd4KAt4ADwQfoMupXQBlkMVr42gNGo2fNzLCM4LqU6qx+9iEoiHqttfR3NLMgJwBxJviDMoZxAPHPEBzvJlwLEzMjBE1o/TOU/vrltWNowYcRdSMEjWjxCyl+z1+AFriLdSEaxLlUTNKzIwRiUcAWFyxmHs/v5eoGcW0kyEepw8/nZyMHF5Y+QI3fnBj2vWuv6aeXCOXez67h7vm3ZWmx38fx9AMLn/9cuZ8MQcNLWEk5erH+LEAACAASURBVGbksvVXWwG46r9X8dra11wGVnFmMS+c9gIAsz+azcKKhUkTTPdRml3KrINmAfDIwkfY0rglYU55dA/dsrrxk+E/AeCV1a9Q31KPR/dgaAYe3UPXzK5M7jUZgHlb5tFqtrr0gkAB/Qv6A7C+bj22bSeMDkNXhktORg4A4VgYj+5J5EL6tswJ5dvbRM0ocx4JM39RhNUbwqzfEqaqLsKYSWFuvEWZTLNuiaD5whR2C5NXFCG7IExWXhjNF0lE2cWsGHEr7lpipiprjbeq1zuok3idUufrDO8DQAOK2pahu9jWAraCvllPmkmWgRevej81ZVh5PV48Hg9erxevz4s3w4vP68NjpBtduqZyaumajobmep1Whr5r9VNe78vtUpfUPtr3tbvqdVRXjEBBEARBEITvDokkEvYY8YY4LRtbVL6jlATdWaOy8OZ5adnUQuNnjcmcSW11ik4twtfFR+P8Rmpfr02UO3X63NAHb6GX6per2f7U9jR92NPD8OR6KLu/jG0Pb0vuu63O+FXj0TN01v1mHWX3lSU0bGVGTY9OB+DLc7+k8rFK1zl58j1MqZ0CwLKTl1H9XLVLz+iVwcRNEwFYfORi6t6sc+nB/YKMW67yMy06dBFN/2tSU54bGpqhkT0umxGvjABgybFLlEnlTItuaOROzmXQfYMAWH7KcqKVUTVsx9Gn5tLnd32wbItl5y+jNdxKQA9gGAZNvibMcSZ5P84jakZZf9d6YnaMAzgAj+FhjWcN24duJ3BggNZYKxWvVBDX4pyRcQaaR+N9831WFq/E6G7QGm2lfnk9hm4wq2gWGPBww8N84f0CK9MiGo0Srg6T7cnmsWGPoRkaV6+5mk+aPyGmxYjGo0SjUXpm9uT9w95HMzSOfOdIPt7+set6jSoaxbxT5qHpGmOfGsvi6sUufXrP6bxz2jugw5AHh7C2bq1LnzFwBi+f8TIA3e7sRmWz+/08ffjpPHHSEwBk3ppJOBZOaIZmcNHoi7j32HuxbIuiO4pcBpRH9zBz1Eyum3odoWiIKf+YkjCfHP28kefx05E/pSZcw09f+KnLoPLoHs7a/yyOHng0FaEKbv7gZsy4gRnzkJdjYGgeljx1EhULxrKqbBuRwY+CbTBurMEZP/GgaTqRpUdx3gkDac3YysurXqZ9IvGjBhxFr9xebKrfxDsb3kkkBgfQUHpxVjEb6jYwd8vcRHsblRfq4D4Hk52RzZqaNSyqWIRpm4mcUaZtMr77eLyGlw11G1hbtxbLtrAsK6EPLxqOpmlsadxCeVO50m0L0zIxbZO+eX2xbIuKUAU1oRpi4RjxcJxoOEo8HCc/kk+0OUptay3NsWZi0RimaWJqJmgQiAWI63HCgTBxfxwrw8L22lheC9uw8Rk+LCzidhyzbWychYWNra5TWw4v0zZVZJemZje0sRP1nB+r7ce21XZqX5ZtueoLu07COGoz63R0V5lj5KUaes4acJeRNKPa96uhpfeN5tJc++vgB0j8rnSopaxdP1rbRANaJ3q7PnbmZ0f766yfne3/q/oEkhMndPB+ppVpGu1/Pb6qrfP71FG9DsvtHey7o7Y78eu60/vupMyjeRJGt/PZ7/wdMXQjEdWZ+rcj8XfGaNs2lO7VvRhGsp5T7kR9GoaRmLQCve28ddRrDde2Uyd126nfUdmu9iHmryAIwnePDDcThN2MbSoTyZnFKd4QxwyZLgMLGzKHZQLQvLyZaEXUlfRbz9ApPKYQgJpXa2jZ1OIysLwFXkovKgVg61+30rKhRQ2rM20wwd/HT69regGw/rr1qr0zBbppk3VAFn1v6gvAijNWEN0WTbS3TZu86Xn0v11FziyYuIBYXQxMEn0UnVzEgD8NAOCTrp9gtViu/ZdeUsrAewZitph8FPgo7Rr1uq4X/W7tR7Qqytyuc9P0vrf2pfd1vYlsiPBZv8/S9AF/HUCPy3oQWhJi/gHpnwUD/jGALmd3oeqTKhYevRDN1shuUfmoqrKr6DWnF7mH51LzYQ1fXvIl/pifHrU9APiy+5eU3l1K5uhMqj+oZsPsDeSGc9mvbD/Q4YOhH1B8UzEZ/TKo+aSG8ifK6V7fnbGbx6LpGk+NeYqiS4vQu+jUz6+n+r1qhlYNZdrGaViaxZ+n/pnCkwuxAzaNKxppXN7IxLKJHLHxCCLeCLOmziJ7ajamYRLaGCJSHmHGphnM2DyDGn8Nv5z8S3yDfZi2SUt1C9FQlHPXncsJZSewOXMz5084H3LAtE1irSqq5/rV1/Oj7T9iac5Szhl5Ttr1Ou6Zu+i+4gTCUz/jn4ecmaa/dPJLHDfsOF5Y+QIn/vvENP3Dcz9kau+p/GvJvzj7P2en6QsuXMCBJQdy/+f3c8lrl6Tpay5fw4CCAfzxkz9yzdvXpOkVV1VQnFXM79/9Pbd8dEua3nx9M0FvkCvfuJJ7PnPPPaprOuYNyti54KULeHjhwy4928hmTf81RMujXFx3Ma95X3PpXRq78MyfngHg2jOv5bOB7vuxV1UvHrv3MQCu+NkVLO29FM3WMCwD3dIZUjaEex5Vx3T12VezqWiTK8Jp2JZhXPOiOucbTr2B2uxadCsZBbXflv346Yc/xdIs/jTjT4R9YXRb6ZqtMaRsCEcsOQJLs3jsoMewNAvd0tFttfSv7M/IjSOxsHh11KuJct1SxkXPmp70qepDzIixsI/6XdHtNlPD1ihqLKIgVEDMiLGlcIvS0cEGwzbIbMnEH/cT1+LUB+sThpmmKZPQF/fhsTzE9biaRAAbW7MTZpphGejoxLU4cSOOranPR1tT9SC57SyWZiXWgOt1R3Wc/XVYvot129f7qjrt+3TO+6teQ+d1EtdkN79O3efX7lPbe74rCt8M53PI+bxJ/VxyyhKvHc1OL0utu6M+2pen1bUNPLYH3dbx4MGwDfc2yTyWjomaaj7q6MqESilLreNsJ+qkttfamZo7MkU1wFZ/exL97aBu+35d7ZzjSD3e9mZrW5ljRjv9oOEylJ3P9ITe9qua2E4xRhP92yTaONc1oduaSuVAO91ON4AhpX8b17GkGqxps++2O9YE7V53+Iz6FW12qo/O2Nmqu7seu3Ccu/JRvKsf2xqJv1OapiVf70JZwvzdW8qc2/gbluUfkk/J+SW7dj33UsQkEgThW8O2beyo7TKg7LiN7tfxZHmwTZuWLS1JA6pt8XX14evqw2wxCS0MJcwnRw8ODuLv5SfeEKfunTqXQWWbNjmTcggOCNJa0Ur1f6rVQ6elHj6xoODYAoIDgkQ2RKh6ripRbts2WND1tK4E+gVoXtFM1TNViXKnn9KLSvH38tP4eSNVz1S5+rctm17X9CKjJIO69+qoetatY0O/2f0SUWxp+7dh8IODMTINKh+vpPqFavf+bZthzw5D9+iU3VdGzSs1rv41j8aI11QU2abZm6j9b22irWVZkAtDXxxK3Iqz9ndrqXm3Bsq86NUaJq2sCsS5JnggTz8NvluX0jCvgdxILn6fH7OrSXxSnIH3DgRg6wNbiTfF6V7QnazCLFryWqgvqic4OKgeHi31cNs3vy9+j5+acA3lTeWJ2edAPZQO7TKUDE8GFaEKtjZudc1QBzCqZBRew8vmhs1sadiS0JzogMk9J2PoBmtq1rClcUta+8P7Hw7Asu3L0tp7dA9HDVA5vj4v+5yyprJEO8u2yIhlcGSPI7Ftm3c2v8PW0FbiZnJ4Xa4vlzMHnIlt2/xr9b/YHNqcGHZnWialgVIuHXIptm0ze8lstjRvUW3tOKZlMiRnCNcOvRbbtrn484vZ1rKNuBXHtE3iVpyJBRO5eejN2LbNkXOPpCZao7S29jO6zuD2wbdj2zYDPxxI2AwTt1X/Fhbnl5zPHf3vIGpG6TavW9rv6BXdruCGHjdQG6tl0OJBafp1xdfxy6JfsqV1C6PXjE7T/9DlD8zMm8mX0S85ePPBafrd3e7mjLwzmN8yn2M3Hpum/73n3zk+93jeD73PqRtPTdOf7Pckh+UcxqsNr3LuhnPTInb+M+g/jM8ez7O1z3LVxqtwHvaceq8Me4WhwaE8XvU4f9j8h8SDpPPQ9MaIN+jp78k/tv2Dv5b9NfFw4/T/5qg3yffmM6dsDo+WP5qIDnJ+3h73Nhl6Bn/b/Df+U/GfZOSRpuHRPLw2XpmO92y4h3eq38HQDAxNPdBme7J5eJQyLe/bcB/z6+cnNEM3KPQVcst+t4AGD214iNWh1UrXdAzNoNhfzOUDLgfgn5v+ybaWbYmhd4ZmUBoo5dRe6po+t+U56mP1CU3XdEoDpRza7VDQ4I3yN4iYEQw92X9JoIQDCw4EYG71XEzbTBybrukU+Yvom932z4b6Fa59a5pGji+HAl8BFhaVLZWJ66rr6j3I0DPI8GRgWSpKT9eT1w6S0T+puL6LpphpO6znlHViYHXWvn0Ey+4+HrRO6nbS3rRM9dkTV7/7MTNG3Iwny51hv2Yc0zQTrx09ZsWwLCsxJNjZtiyLmB1L1m1bO59BzmeN87nibFu2pXSSZaZtJj+fSG47n0euctrqo7Yt21JlJMucbUGAdiZVqokEaSZXh/VSjbEO9M6i/To9nh3UTzXXdqbNrpbv6jHttnLHVCXlH0porvKOtnX0ZHn7dbsy5x9RTv/Qtm2nbDttOuqzszLnWGzdZVa2L0/VE9vt+7U72JelMWHYBGb+YeYuvWd7K2ISCYIgCGo2smaLT942efpNH3fdBZGPa3njHy3UbYxxQN8Yhb4YGaUZ9Lu1H6CizBo/b3TNTpZ/ZD4HvHEAAPP6zCNeH8db6E0s+Yfn0/NXava/bQ9vQw/oeAu9eAo9eAu8eLt68WRJGrzdgTOkz9ANbNumsbUx+eDXtmT5sigIFBC34nxZ9aVLNy2Tnrk96ZXbi0gswnsb33M/eFpxRpWMYnCXwdRF6nj+y+cTBpwz3O6gPgcxpMsQKkIVPLP8GZxhdU6d4wYfx6DCQWyo28C/l/87Yd45dU7f/3QGFAxgRdUKnlr2lKtvy7a4eMzF9Mnrw/zy+Ty59Mm0/q+dci3dc7rz/sb309rbts1th91GUWYRL696mWdWPOPq27ZtHjzuQXIycnhi6RM89+Vzae2fO/U5vIaX+z+/nxdXvehqq2s6b579JqByqb2y5hVMy0wMo8zyZfHBuR8A8IvXf8Hra19PaJZtUZJVwqcXfArAKc+cwjvr31EP1W19DOkyhAUXLQBg0sOTmLd1nuv9n9BjAvPOV2X7378/y7Yvc+mH9TuMt85+C4A+f+7DpoZNLv3EISfy/E+eB6DLH7tQE6lx6ecccA6P/egxADJuySBqRl36pWMv5W/H/I2YGcN3iy/t/rx28rXMPmw2tZFaCv9YmCh3zKRbDrmFa6dcy+aGzex3735pOalmHzqbmaNnsqp6FYf885A0/fbDbufk/U5mUcUiznjujDT9j4f/kcP6Hcb/yv7HlW9cmZb/6vbDbmdc93F8svkTbvnolrQ8WLMPnc3QoqF8sPED7p9/f1oOrVsOvoWeuT15b8N7PLXsqbT93zD9BgqDhby74V3eWPtGmn7N5GvI9GXy3ob3mLd1Hn6Pn4AnQMAbIOAJcNJ+J+HRPWys30htpNalBb3BxGyu+zqpQ5Pbf/44hnrMjLnM/69aO/3uybqp/yj5ruqmHl9H26ntOtr+Ou33tX2m3X90Ur6D5+JdbbMv1bdx/w1s/zdzZ7Y7at/Z9nfZ1+7o98JRFzLnuDkdXr99DTGJBEEQhE655hq45x5obYX+/eHMM9UyqC3oxLZt4g1x4rVxYjUx9AydrBFZAGy+fTOtZa3EamLEamLEa+PkH5pPv9n9sG2bD30fYsfdf1tKLy5l0P2DsOIW80fMx1PQZh4VevEUeCg4uoCCwwqwYhYNHzW4DCYjaHzXl0cQ9gpSH6QdEwkg06eGNTuTFaSaVBlGBiXZKix+Tc0aWuItrj7y/HkMLFRRg59s/iQxmYGTD6w0u5QDuilD+LkVzyXaOXUGFw5mfI/xmJbJQwsecmmmZTK2+1im9Z5GOBbmrrl3Jb5sO8d4eP/DOajPQdRGarn1o1sTucic5eT9TuagPgdR1ljGje/fmMjp5egzR81kWu9prK5Zze/e/V1a+2smX8PkXpP5ovwLrnvnukS5cxx3HH4H47qP490N77r1tmv96I8eZWS3kTz/5fNc/871rr5tbF4/83WGdBnCwwse5nfvpe9/8cWL6ZXbizs+uYNZ789K06t+XUVhsJDr37me2R/PTnvPo7+L4jW8XPrqpdw3/z6X5tW9RH+vTLtLXr2E5758zmUiFWcV8/qZrwNw97y7WVy52KV3y+rG5eNVlNpb696iJlKTMJ8C3gD5/nyGdR0GQF2kDl3TCXgDeHWZSVIQhB8uHUWh7quISSQIgiDskIYGeP55ePxxePddOOooeK0tdU9dHeTn73qftm0Tq24zj2rixGrVdnBgkNzJuZjNJivPXZkod+r0urYXfX7fh5atLXza81NXn7pfp/+d/el+aXdatraw9sq1SYOpzUjKOyiPQL8AVqtFvD6Op8CD7tU7OUpBEIQ9ixM10xJvIRKPEImpWSn3K9oPUMNo19WuS2jhWBjTNrli/BUA/HPxP5m7Za6rbdAb5N8n/xuAi16+iDfWvZHQIrEI/fL7sfry1QAc9OhBfLDpA9cxHdjtwEQU29iHxjK/XH0n1zWdgCfAwX0P5uXT1WQPJz19EtuathHwtplMngDju4/nqklXAXD7x7cTNaMJgyrgDTC4cLBrxlGv4XWZWDkZOQkDVBAEQdj9iEkkCIIg7DTl5co0GjoUtmyBfv3g4INVdNGJJ0JOzre7f9uy0XQNs8Wk8dNGl8EUr41TeFwheVPzaF7RzPJTlicMJidiaei/hlJ8ZjH1H9azaPoiAIxsI2EkDbh7gGq/spntT2zHU+DBCBhoXg3Nq1FwZAG+rj5atrbQvKwZ3asnNM2rkblfJkbQIN4YJ14fT5TrPlVP98tU7YIg7N3ErTgeXQ37LW8qp76l3mUi+T1+pvaeCsBTy56irLHMZUL1yeuTMKlmvjSTjQ0bXe2n9Z7GAzMeAKDkrhIqQhWu/Z814iz+34n/D4DA/wVoibe49ItHX8z9M+7HtExyb8tNRDE5Q/UuGXsJ1065loaWBsY+NDZtKN/l4y5n5uiZVIQqOO7J41zDCHVN5xfjf8Epw05hY/1GLnjpAtcwRF3TuXL8lRze/3BWVa/i+nev77D9+B7jWb59OXfOuzM5a2Lbctm4yxjWdRiLKxbzyKJH0oYy/nzsz+mT14dFFYv4z5f/SRvKeMGoC+ia2ZVFFYt4d8O7Sb2tj7MPOJucjBwWVSxifvn8RJ4wp84pw07B7/GzpHIJK6tXJvOwteVbO37w8Ri6wfLty9nUsMmlG5rBof0OBWBV9Soqmytd+/YaXsaUqufK9XXrqW+pd+kZngwGFapQ5K2NW4nEIq5jy/BkUJqtJmapDlcTM2Ou8/fqXnL9uQCEoqHE0N7U4/MaXuD7FdUhCN81O2sSSYIIQRAEgdJStQD4fHDddSrC6Nxz4eKL4fjj4dZb1dC0bwNNV1/4DL9B/kGdhzBl7pfJuOXjgLakryGTWE0Mb4H68ujv52fg3wamRSo5Q9bCy8NsumVT2qwfB849EF9XH3Vv17HqZ6vS9jtmyRiy9s+i4rEK1l6xNk0fv348gb4BNt+xmY03bVQmk6/NSPLqjP5iNN4CL1v/tpXKxypdmubVGP7icHSvTsU/K6h7t85lUul+PTErYfUr1YRXhF0mlZFlUHxGMQCNnzUS3R51GVhGlkH2gSqPScvWFuxW273/DE3yRQnCDwDHIAIozS5NPLR3xGnDT9thXw8d/9AO9W1XqWT9jokUjoXxe/wJ/ZXTXyEcC7tMqKFdhgJqcoGLRl9EJB4hZsYSQw7756vPQUM3GFM6Jm0oX35A/e3Q0Oia2dU1jNDJ4+b07wzDdIYhWrZFJB4BIBKPsLpmddpQxLqWOgBqI7W8u+HdtP2fOuxUhjGMTQ2beHTRo2lDHU8ceiJ98vqwuGIxN394c9o1mzFoBl0zu/Lx5o+56s2r0vRjBh5DTkYOr695nevfvT5NP3rg0fg9fp5a9lSHQxlbftuCoRs8MP8B/vb531xa6lDG2R/P5rHFj7n0fH8+tdfUAvDrt37N818+79J75fZi05Uq/9l5L57HW+vfcunDioax7BKVP+34J4/fYa61iQ9PTMu1dni/wxO54Pre0zdhcjlG1IlDTuTpU55Wx3J3L+pa6lwm2OnDT+e+Y9XwzZK7Soia0WRya03j/APP57bDbiNqRul5t8qvmKpfPu5yrp96PXWROobfPzxN/82k33D5+MvZ2riVyf+YnKbPmj6Lc0eey+qa1Rz9+NFp+m2H3sZJ+53Ewm0LOe2509L0Px/5Z44ccCRzt8xl5ssz0/QHjn2Ayb0m8/b6txP3Tqr+yAmPMLLbSF5e9TI3fnBj4ro6dZ46+SkGFAzg6eVPc9e8u1xtNTSePfVZSrNL+X+L/x9zvpiT0Jw+Xj79ZXL9ufx9wd95fOnjaft//czX8Rk+7v3fvby46kVXe6/u5ZUzXgHUMNm3N7ztap+TkcMTJz0BqAhF595x2ncNdk3kC7rlw1tYXLk40V7TNHrm9OTOI+4EYNZ7s1hTu8Z1bgMKBnDjQeqa/Pad37K1aaur/bCiYVw96Wp+aMi3QkEQBMFFcTHcfDPcdBN8+qkyi557DjLbRgHMnQvxOEyZAvoeHNGlaRqebA+e7OSfMn8PP90v7d5pm6KTipgem068IY7VYmHHbKyYRUb3DAAKjy3kwLkHYsfshGbHbPy91cNN/qH5DP774ES5HbOxohbeQmVSZY/KpvSi0kS5U0fPUBfKyDLwFnkTmtlsYsfshEkWWRuh/r161/41Q0uYRFX/rqLyX5Wuc/IWeRMm0abZm6h50Z2I2N/Xz4T1EwBYee5K6t+pd+mZIzIZu3gsAAsmLaDpiyZlMHnUFLA5E3MY8aqaWW/h9IVE1kRAbzP2NMg7OI+hjw5N6NHKqPrypgMaFBxVwIA7Byj9oIVYzZaaMUpX72Hh8YX0vq43AIsOXaQMPK2tfx26nNiF7hd3x2q1WH7y8kS/jl50chHFpxUTb4iz+uerE/06x1h0ShGFxxQSrYqy4XcbEu2cPopOLSJvSh6t5a1svXtr8thS+s8emU3L5hYqHq1wnTsaFP24iOCgIJH1bbMqgmsK3aKTi/D38hNeHab29VrXFL0AXU/piq/YR/OXzdS/X582/W7RKUV4872EloVo+l+Ta1peTdMoOrkII9MgtDREaHEobSrgopOK0H06ocUhwqvCae27nNgFTddoWtREy8YW15TGmkej8GiVfLppURPR8qhrimAtQ0uYuqHFIWLVMVf/RtAgZ7wKQwwtDRGvj7vOz8gyErnOmlc0YzabaXpwUBCA8KowVqvl2r+RbeDvpX43I+siajbMVD3LwFeskmu3bG5J3FvOYmQaePPV725rRas67JTzN4IGRqaRyNHWXtczdHSfrkyEFivtvdcMDc1QU4on9u308QPAo3vIzsjuMNm2E7XSEV7Dy11H3tWpnuXLSjw0dkRxVjGvnvFqp3q//H58fN7Hneoju41k6c+XdqpP7T01YYh0xPGDj6f+2vpO9Z+O/Ck/HflTl4FlYydMvAtHX8g5B5zjzodl2xQECgC4bNxlnDXirDQTKt+vfhevnHBlQk9NxOtE4lw96WrOPuBsl57KNZOv4ewRZ7uS9zoGG6jk9OeMOMelpxqA1065lnMOOMeVNDjPn5fQfzP5N1SEKlznX5xVnNCvnng1VeEql94nr09Cv3LCldRF6lz7d4ZpApw78lyao82JtgDjuo9L6KcNO42YFQOSSZ4P7KZmfNQ1nR8P+XFaQmzHwPQaXo4ZcEya3jdfzQjp9/g5pO8haQm3u2er7yUBT4BJPSel6V2CXQCVb25Uyag03YmyyvRmsl/Rfml60BtM6P3y+6XpGYb6jhPwBhLmcGod597ze/yJ+yg18beuqe8wHt2D3+NPO3+H1Ps1df8OrWarihRLaZ9qXje2NrK9eburfXOsOaFvb97OxvqNrvbhWDihb27YzIqqFa6k5pFYJKGvrFnJwm0LXeeWGtH4xbYvWFWzytU+Zsb4ISLDzQRBEISvxLKShtCxx6rcRb16wemnqyFp+++/Z4/vh4IVt7CjttuEMm38PdselNdHiNXGVHlUmUy6TydvmvqCXvdOHa1lrS4Dy5PvodvZ3QAou7+Mlk0tCQ1bRWf1/KX6z+qGWRuIlkfVlytLDRPM2j+LnlcpffWlq4nVxMACbKXnTspN6Mt/shwzZKq2bX0UHFmQ0BcdvAjbtLGttodqC4pOLaLnL3tiRkwWTl6Y6NdZl15USo/LexCtirJw0kLXsWFDr+t60f3i7kQ2RFgwcUGiX0fvf2d/Ss4rIbQ4xIJJC1zHZls2Qx9LH8qYyvAXhtPlhC7UvFbD0mPTHywPePsA8g/NZ/u/t7PitBVp+qjPRpEzLofyv5ezeubqNH3sirFkDs1ky91bWPerdWn6hC0T8Pfws/HmjWyctTFNn1I/BU+uh3W/WceWO7ak6dPj09EMjdU/X035A+UuTQ/oTAtPA2DFWSvY/vh2l+7t6mVypfqv+dITllLzUjuDsr+fCWuVQbnokEXUv+d+cM4amcWYhSrq/YuxX9A0v8ml507J5cCP1MPb/4b+j/DKsEsvOLqAEa8pA3Nuj7lEy9wzsRWdWsSwf6tEzB/lfoTZ6J52vdv53Rjy9yEAvK+/nxZh2OPKHgy4ewBms8lHWR/Rnt6/603fP/QlWhllbre5aXq/2/vR6ze9CK8N87+B/0vTB943kO4/705oaYhF0xapCEFfMsKw/x396XJCF0KLQ6z++Wo0T3IIOHgH8gAAH3dJREFUrO7V6fXbXuROyCW0OMTWP291DZHVvTolF5UQHBCk+ctmal6qSdMLjy/EV+QjsjFC8+LmND3rwCyMoKEmKaiOpemefA+ariUetn4o5pcgCMK+iuQkEgRBEL4VQiF48UUVYfTmm2Cayix6ovN/7ArCPo8TDWJbKSYUqAd6Q1MGXqudjBpp+3qlB3V0j44VtZRBZqf899UGT55Ksm5GTBWtktIWWxkxuldX+bDq4q5jAcjomYHu0RNDLJ12jh4YEEAzNKKVURXp06595vBMNE2jZUuL0tvaOnk/skerKJDIugix6pjr/DSPRs44FSnUvLzZvX9Ay9DInaD+A960oIlYbbJ/bJU3LHeS0us/rleRRim6p8BD3lRlcNa+VYvZaLr27+vmSxigVS9UYYWtpMFog7+3n7zpSq/4VwV21E5efxuCg4OJ9mUPlLn2bds2WQdkkTc1DytmUXZvup4zIYe8KXmYzSZlfytzv/c25B2SR+7EXGK1Mcr+Wua+9jYUzigkZ1wOLVta2PLHLa4IRTtmU3ppKXlT8ggtCbHuqnXYcdtVZ8DdA8ibnkfdO3Ws/NlKV/SjHbMZ8foI8qbnUflEJV+e+WXaPT3q81HkjMmh/MFyVl+UblCOWzmO4OAgW+7awrqr0w3KiVsnktE9g403bWTjjRvTTKTx68bjyfGw+fbNVDxakaaP/HAkmqZRdm8ZdW/XuXQjy2DQ31SOm4rHKmj6oskVJebJ89BnVh8Atv1jG+Ev3VFyvq6+hPlc/lA5LRtbXJFcvu4+ul+sojvKHywnui3qijLz9/HT7SxlnpfPKSdWF3NF+AUGBCj6cVHi3rHCySg3gOCQIIVHFSbaWzHL1T5zWCZ50/OwbZttD21LHLdzfpn7Z5IzLgcrarH9ye0uHSDrgCyyRmRhhk2qX6xOvimOPjKLzCGZxBvj1L5Rm/beZY/JJtAvQKw2Rt27dcnmbUZf9rhs/D39RKuiNHzckNZ/zoQcMrpl0FrRqiIc2+m5k3LxFnppLWsltCiUrk/OxZProWVzC83Lm9P0vKl5GJkGkY0RIqsj6fq0PPQMncj6CC0bWtL03Gm56B6d8NowrVtb087fiYAMrwoTrXCbyxiQN0V9LjSvbCZW5Y4k0X16IkKyeXkzsTq3bgSMxOdmaFkozZxOjaAMLQmpCMoUPDkeMoep0O3Q4lAyStHR8zwEB6vIoaaFTeofOil4C70E+geUvqAp8bfKwVfkw9/bj23bhBa0vTcp/q63qxd/Dz+2aRNaEqI9vm4+MkoysGIW4RXhdL3Uh6/Ih9lidvjeZXTPwFvgxYyYRNZF0tpn9MjAm+fFbDZp2dSSrvfMwJPtId4Ud7+3bf37e/kTOSSj26Lp7XtnYPgN4g1xotvTdX9vP7pPJ1avUhZoXi0Rsfp9QEwiQRAE4Vtn+3Z4+mkoKoKf/ASamuDkk5PL15khTRAEQdh92KaN1WqlmUi+Yh96hk60Okrr5tY0PXdyLkamQfPKZkILQml6yfklGJkGde/XUf9ufZo+4O4B6Bkq11rNKzVu3bQZ+fZIADbevJGqZ6tcuu7XGb9qPAArL1hJ9XPVboOwxJfQl520TA3lhISBFxwUZOwSNYx20SGLqP+wPqFjQ/bobEZ/PhqA+aPmE1rofhjOOyiPke+p4/ts4GdE1rofZguPK2T/l1QI7SfdPiFW6TYKup7Rlf0eV0OgPsz8UJlIKZRcVMLgBwZj2zYf6O5Z5gB6XNWDAXcOIN4Y5+Pc9KFxfW7sQ59ZfWgta2Vej3lpev+7+tPzVz0JrwrzvyHpUWyDHhxE6cxSGuc3smDsgjR96BNDKT69mLr36lh8yOI0ffjLw+kyowvVL1Wz7IRlafrI90cqg/LxSr48K92gHP3FaLJHZVM+p5zVF3dgUK4eR3BgkM13bmb9r9en6RPLJ5JRksGGWRvYdHP60L8pTVPwZHlY+6u1ahhxOw6yDwJg1cxVbPv7NpdmZBtMbVQJ3FecvoLtT7kjKH2lPiaVTQJgyYwl1L7qNuECgwKJe3Ph9IU0fNjg0rNGZzFmvnpG/6b33tySuWkml+vey/pQDfFOoeTCEgbPkXtvZ++91Pfz+4CYRIIgCMJ3ztKlcMopsGqVSoB9zDFqONqMGeD//vwjRhAEQfiekGo+pUbZ6V41xtpqTYlQQ9XDUBMtAMSb4slhqm265k1OCBCtjqZFCOoBHU+OB9u2VbSD7T4OI1vly7ItW0VTpLS3bRtvvhdvoRcrZtGyviV5Hm34inxKb7U6jNbwlfjw5reL5kh5JMzoqaI54qE4LevS+w/0DeDJ9RCrjyX2n9o+MCiAJ9tDrCZGZH16/5nDMjEyDaKVURXl1a7/rAOyMAIGrWWtyWiSlPbZY7PRfTotm1pUvrF2eu7kXDRD6ziSyIb8g9V/sJpXNqdFm2iGlogwDC0LpRmAmk9LRDg2LWpKRGg6GAGD3MkqQrLx88ZEBGhCzzbInaj0hrkNmE3tIonyPYkIzfoP6jHDbt1b5CVnjNLr3qlTudpS8JX4EpNV1Lxeo3K1peDv5SdrRBa2bVPzSk3aMNtA/wCZwzKxYha1r6VHoQUGB8gckokZMTuMUsscnklwYJB4U5y6t9qi1FL2kTUqi0Df9Cg2h5xxOfh7+Yluj6o8fe3InZJLRmkGrWWtiSi31Hsn/5B8fF3VMNrGeY1p7QuOLMBb4CW8JuyOgmuj8LhCPDkempc307SgCU+Ohy4ndEmrt68iJpEgCIKwR7Bt+OILNRztqaegogKWLFF5i+rqICcHDOOr+xEEQRAEQRAEYfewsybRHpyXRhAEQfg+omkwZgzcfTds3QoffphMbP2LX6iE11ddpYykvej/FIIgCIIgCILwg0dMIkEQBOFbwzBg6tTk65NPhrFj4a9/VUbS0KFw33177vgEQRAEQRAEQUgiJpEgCILwnXH88fDCC2oI2pw5UFwMGzcqzTThwQehqmqPHqIgCIIgCIIg/GCRnESCIAjCHsWyQNfhk09gyhQVfXTEESrh9Y9+BJmZe/oIBUEQBEEQBGHfRnISCYIgCPsEettfosmTVYLrq6+GZcvgrLOga1c1Y5ogCIIgCIIgCN8+YhIJgiAIew377w+33aaGoH3wAVx4ocpbBKr8ssvg008l4bUgCIIgCIIgfBuISSQIgiDsdeg6TJumZkjzeFTZtm3w8MMwcSIMHAg33ACrVu3Z4xQEQRAEQRCE7xNiEgmCIAj7BPfcA5WV8Mgj0Lcv/N//wc03J/Xt2/fcsQmCIAiCIAjC9wExiQRBEIR9hpwcOPdceOst2LoV/vAHVb58OZSUwGGHKROpoWGPHqYgCIIgCIIg7JOISSQIgiDsk5SUQL9+ajs/H377W9iwAc47D4qL4ZRTYPPmPXuMgiAIgiAIgrAvISaRIAiCsM9TWqqGnq1dC/PmwcyZ8PnnkJen9LffVomwLWvPHqcgCIIgCIIg7M1o9l40RcyYMWPs+fPn7+nDEARBEL4H2DZomtqeNg0++gh69oTTT1fL4MEQCOzZYxQEQRAEQRCE7wJN076wbXvMV9YTk0gQBEH4vtPcDC++CI8/Dv/9L5gmnHMOPPaY0vv2Ba8XsrKSy4knqogk04RZs9xaVhYMHw5Dhih9wwbIzlblwWDSnBIEQRAEQRCEvYGdNYk838XBCIIgCMKeJDMTzjhDLVVV8Oqr0L270mxbJbwOhZJLVRXU1yu9uRluu02ZQanMmgU33qhmVRs4MFmuaWp/s2fDZZfBli1w5pnpJtMZZ8CECVBdDa+8kq737Qu5uckhcroMEBcEQRAEQRC+ZcQkEgRBEH5QFBWpGdIcNA0eeqjz+jk5EItBa6sykJqa1LqwUOnZ2fDPf7pNpqYmFWkEqq1hKONpw4ZknXHjlEm0ejX87Gfp+336aZV8+5134MgjlfHkGEjZ2XDffar955/D/fenm0ynngrdusG2bbBuXbqemSkRT4IgCIIgCIIbMYkEQRAE4SvQNPD71dKli1vLyoKzz+68bb9+8N57neujR7vNI8eEGjdO6X36wO9/79ZCITWsDZQJ9NZbSd2JeJo8WZlEL78MF12Uvt8vv1TD5R56CP74R7eBlJ0NDzwABQXw0kvw+uvg8Sizy1nffDNkZMCbbyqjKlX3eFQUFcAnn6iE4qm63w8zZih9yRJloDntDEPlijrgAKVv2QKRiHvfGRnK7AMIh9XaMJKLmF+CIAiCIAhfD8lJJAiCIAjfE2wbolFlGOXkqDxL5eWwYkW6yTRzppr97dVX4Ykn3FoopMyd/Hy4/Xb4058gHleLaap1XZ0yc37xC/jLX9zHYRiqDsB558Ejj7j1vDzVHlTE0zPPuPUePZQ5BHD00fDGG2596FB1TgBTpqhjTWX8ePj006S+YoXbZJo2TZ0zwFFHqWuUqh90kBpiCPCTn6hr0153TLCLL1bXxNEMA6ZOhZNPVkMFZ81yG1gej4oAmzZNRaf94x9uzTBg5EgViRYOKwMwVTMMGDRIXaNIBJYtSzfwSkrU+x+NquGM7fsPBNS28xVQTDVBEARB+P4jiasFQRAEQfjWsSy3eeSsnYir6mpobEyWO+bR/vur9cqVKq9TalufDw49VOkffABlZe7+c3KUuQTw5JPKUHI001QmiRM99cc/wtat7v6HDoWrr1b6pZeqaKxUfdIkZe6AMpFqatz7P+64pInUv78ya1L188+Hu+5SJo3fnzRjHK65RrWvqUmPTAO45Rb47W9h40aVm6o999wDV1yhDCLnOqby8MPKnJs3T51Le5yhjG++qYYytjexnn9e5el67TVlJrbXn3gCRo1SubRuuindhHroIXVdXn0V5sxRZbqeXP/lL9C1q9Kfe06Vpeq3364i2l5/Hd59160Zhoqs83jU8S9Y4Na93qSB9/77sGaNu63fr84dlJG4bZu7fWYmTJ+u9CVLVG4yR3N0ZyjpunXQ0uLWg0EoLVV6VZX6/Ujt3+dLRgHG4+o8BEEQBOG7QBJXC4IgCILwreM8+HZGly4dGyEOQ4aopTOcB/bOOP30Heu/+c2O9Xvv3bHePoqpPevWda75fMoksO2kgZVqDOTnK5PC0Ry9oEDpJSXwxRduzTSVAQPQq5caTpiqmaaKpAI11HHOnHQTb8SIpH7DDe62pqmilACKi1UkV/vjy8pSujPsL1WPxZKRSU1NysCzLKVZllpiMaVv3Ahvv52u/+EPSv/0U5V7q73+298q/aWX0t8/ny9pEj3yiMoXlkpBQdIkuuMOZYil0ru3Oi5QRuJbb7n14cNh6VK1fdZZyYg1h4kTYe5ctX3wwbB8uVs/4gg1wyLAgAHKIC0oSC6HH548v7/8RZ1PQYG6VwoKVML9bt0QBEEQhG8NiSQSBEEQBEEQ9jlSh0CmmkiOyVZXp2YnTDWZIGmybdqkIoVS23q9cOCBSl+0SEV7OZppuiON3n1XRcql6l26KGMNVMSWE4Xm6L16wUknKf0vf4HNm9Vx1taqZcoU+L//U3ogoCKVUpk5Ex58UPVXUqJmQHQMpPx8OPFEZYLFYirKztFSF6/323k/BEEQhL0bGW4mCIIgCIIgCPsoLS1uA6muTg1lGzNG5bP65S/T9QsvVNFzFRXKRGrP7Nlw7bUqwmvGDHeUkhNlNXYsNDSohPROeX6+GuYp+asEQRD2XWS4mSAIgiAIgiDso/j9yujpyOzJyFBD8TqjSxc1q6BjHjlG0oQJSrcsle+qtlblbaqtVVFPw4Ypk2j5cjX0LRXDUEnmTzwR5s9XQxVTTaSCAvjxj6FnT7XPykpVnp+/4yGpgiAIwt6FmESCIAiCIAiC8D3C41HD6pyhde3p3RteeCG93BmSN3y4ShqfajLV1SXzh0UiKp/SqlVKq69X5aNGKZPotddUziaHrCxlFr32mur7nXfgqafSI5mOOkrVDYXUsQSDKu+ZpkkUkyAIwneFmESCIAiCIAiCIKDrap2TA9OmdV5v6lQVTeRgmmqImpPUfMoUNQteahRTbW0yX9SmTWp2u9paNXTOYetW1cfdd6tIpfY0NkJ2tpoh8M9/ThpIzrqxUa1/9SuVtDxVz8pSUVOgZgd86SW3XlwMH3+s9MsuUyZZqt6nTzLR+SWXwMKFyVntNA0GD1Yz+4GaNXHNGrc+YoQa7uf0X17u1kePTibav+KK5Lk4+vjxKicVqPOLRt3m2aRJcNppavvKK5PXzNEPOghOOEENY3SSo6dyxBFqtsPGxmTy+NT2M2aoe6KqSs3e2F4/8UQYN07NRpmaUN7RTz0VDjgANmyAf/wjXT/zTHUNV61S+bTac+656j1YuhT+85/09hdcoKLuFixQMyO21y+6CAoL4bPPVD6x9lx2mbq3Pv4YPvkkXb/yShXB99577nvf4de/Vus331QzI6bu3+eDyy9Xr199VZ1jKpmZyRk5X3xRXaNU8vPhpz9V2889p65xKl27Jt/7p55S71HquXfvrt4fgMcfT5q6Dn36wLHHqu3HHoNw2K0PHKhmvAQ1e6Yz+YDD0KHJXG1z5pDGiBEqqX80qvpvz6hR6v5vbu74vR8/Xs3k2dAAzz6brk+erAzs6mr1e92e6dOVYV5R0fFkFIceqsztLVvS742cnOS1+yEhJpEgCIIgCIIgCF8bw0gaQKAilXr37rz+eeepBVRUkmMiFRersiOOUIm7IxE1O6CTHNwZtjZtmjJPnHKnjvNQPHaseiBN1VOHvA0dqh44nXa2rZKAO5SWqgfj1H0XFSX1YFAZCql6aqRTOKxm90vVa2qS+qZNaha91GPPz0/qn36qIrVS9YyMpP7888loq9T3wDEKHn1UrVNTzwYCyiSKxVTy8/YUFiqTqLk5OZQxtX337uq619Upg6693r+/MokqK+HOO9P1/fdXJtGmTXDrren62LHKJFq9Gm66Kf34DjooaRLNmpWuH3OMMok+/xx+97t0/eST1Tl+/DFcf326fu656j19++2O93/JJeo9eOUV+NOf0nXHJHr22aRZ6JCVlTSJ/vUvZeSkUlKSNIn+/ne1j1QGDUqaRH/9qzIwUxk1Kvne33GHMspSmT49aXTcdFPSLHWYMSNpEl17rTJTUjn99KRJdOWV6t5L5cILkybRxReTxq9+pUyi1lZVtz2zZimTqKEhaYSmcued6v6pqFBmYHvmzFEm0aZNcP756foTT6j7c+VK+NnP0vWXXlIm0aJF6j5IZdCgH6ZJJImrBUEQBEEQBEEQhL0W21ZGnG0nzaXUx1gn4ip1JsNU3etVujMjYnt8PqXHYqpOe/x+pbe2puu2nYyia2lJ6qn7z85W63C44/5zctQ6FErXdT2pNzam64aRNDmdGRtT9+3xQF6e2q6tdZ+/Y6A6elWV23wEZY45emWlu29QBqSz/23b0s8tGFS6ZXWsZ2er8zPNjvXcXFUnFks3sEAZrFlZyhjuSC8sVNFaLS0d6127qmMMh9X5peLxKAPp+4LMbiYIgiAIgiAIgiAIgiDstEmkfxcHIwiCIAiCIAiCIAiCIOzdiEkkCIIgCIIgCIIgCIIgiEkkCIIgCIIgCIIgCIIgiEkkCIIgCIIgCIIgCIIgICaRIAiCIAiCIAiCIAiCgJhEgiAIgiAIgiAIgiAIAmISCYIgCIIgCIIgCIIgCIhJJAiCIAiCIAiCIAiCICAmkSAIgiAIgiD8//buP9bXgq4D+PvdvanxY6CJVlwmqIy6OgFjzKRci2pYTKzZ0pTRj61/tNTcCqtVa62x5bK2WMrUoMm0RjKZI4Wo0doyIeKHgCajkksYt1Xkjxkin/44X9tNuQXn3HOf++W8XtvZ+T7Pee7zvL/bZ+f7nPf3+T4XAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgGxzSdT2vLafbHtP24u381gAAAAAbN62lURtdyW5NMnLk+xN8pq2e7freAAAAABs3nZeSXR2kntm5t6ZeTjJ+5NcsI3HAwAAAGCTtrMkOjHJfQcs71ut+1/a/nTbm9vevH///m2MAwAAAMDBLH7j6pm5bGbOmpmzTjjhhKXjAAAAAOxI21kS3Z/kpAOW96zWAQAAAHCE2c6S6KYkp7Y9pe1Tkrw6yTXbeDwAAAAANmn3du14Zh5p+4YkH0myK8l7ZubO7ToeAAAAAJu3bSVRkszMtUmu3c5jAAAAALB1i9+4GgAAAIDlKYkAAAAAUBIBAAAAoCQCAAAAIEoiAAAAAKIkAgAAACBJZ2bpDP+j7f4k/7R0jkPgmUn+dekQrDUzxFaZIbbKDLFVZoitMkNslRliq55MM/ScmTnh/9voiCqJniza3jwzZy2dg/VlhtgqM8RWmSG2ygyxVWaIrTJDbNVOnCEfNwMAAABASQQAAACAkmi7XLZ0ANaeGWKrzBBbZYbYKjPEVpkhtsoMsVU7bobckwgAAAAAVxIBAAAAoCQ65Nqe1/aTbe9pe/HSeVgvbU9q+xdt72p7Z9s3Lp2J9dN2V9u/a/uhpbOwntoe3/aqtp9oe3fb71g6E+ul7ZtXr2Mfb/u+tk9bOhNHtrbvaftg248fsO4Zba9v+6nV96cvmZEj20Fm6LdWr2W3t7267fFLZuTI9lgzdMDP3tJ22j5ziWyHk5LoEGq7K8mlSV6eZG+S17Tdu2wq1swjSd4yM3uTvCTJ680Qm/DGJHcvHYK19rtJPjwz35rk9JgnnoC2Jyb52SRnzcwLk+xK8uplU7EGLk9y3letuzjJDTNzapIbVstwMJfna2fo+iQvnJkXJfn7JG893KFYK5fna2cobU9K8v1JPn24Ay1BSXRonZ3knpm5d2YeTvL+JBcsnIk1MjMPzMwtq8efzcYfZicum4p10nZPkh9M8q6ls7Ce2h6X5GVJ3p0kM/PwzPzHsqlYQ7uTfEPb3UmOSvLPC+fhCDczf5nk375q9QVJrlg9viLJKw9rKNbKY83QzFw3M4+sFj+aZM9hD8baOMjvoSR5e5KfT7IjbuisJDq0Tkxy3wHL++IPfDap7clJzkzyN8smYc38TjZexB5dOghr65Qk+5P8wepji+9qe/TSoVgfM3N/krdl4x3XB5I8NDPXLZuKNfXsmXlg9fgzSZ69ZBjW3k8m+dOlQ7Be2l6Q5P6ZuW3pLIeLkgiOQG2PSfInSd40M/+5dB7WQ9vzkzw4M3+7dBbW2u4kL07y+zNzZpLPx0c8eAJW9425IBuF47ckObrt65ZNxbqbjf+SeUe8i8+h1/aXsnFbhyuXzsL6aHtUkl9M8itLZzmclESH1v1JTjpgec9qHTxubb8+GwXRlTPzgaXzsFbOSfKKtv+YjY+7fk/b9y4biTW0L8m+mfnKVYxXZaM0gsfre5P8w8zsn5kvJflAkpcunIn19C9tvzlJVt8fXDgPa6jtjyc5P8lrV2UjPF7Py8YbHretzq/3JLml7TctmmqbKYkOrZuSnNr2lLZPycZNGq9ZOBNrpG2zcR+Qu2fmt5fOw3qZmbfOzJ6ZOTkbv3/+fGa8e88TMjOfSXJf29NWq85NcteCkVg/n07ykrZHrV7Xzo2bn7M51yS5aPX4oiQfXDALa6jtedn4GP4rZuYLS+dhvczMHTPzrJk5eXV+vS/Ji1fnSk9aSqJDaHVTtDck+Ug2Tob+eGbuXDYVa+acJBdm4wqQW1dfP7B0KGDH+ZkkV7a9PckZSX5z4TyskdVVaFcluSXJHdk437xs0VAc8dq+L8lfJzmt7b62P5XkkiTf1/ZT2bhC7ZIlM3JkO8gM/V6SY5NcvzqvfseiITmiHWSGdpy64g4AAAAAVxIBAAAAoCQCAAAAQEkEAAAAQJREAAAAAERJBAAAAECURAAAh0zb7277oaVzAABshpIIAAAAACURALDztH1d24+1vbXtO9vuavu5tm9ve2fbG9qesNr2jLYfbXt726vbPn21/vlt/6ztbW1vafu81e6PaXtV20+0vbJtV9tf0vau1X7ettBTBwA4KCURALCjtP22JD+a5JyZOSPJl5O8NsnRSW6emRckuTHJr67+yR8m+YWZeVGSOw5Yf2WSS2fm9CQvTfLAav2ZSd6UZG+S5yY5p+03JvmhJC9Y7ec3tvdZAgA8cUoiAGCnOTfJtye5qe2tq+XnJnk0yR+ttnlvku9se1yS42fmxtX6K5K8rO2xSU6cmauTZGa+ODNfWG3zsZnZNzOPJrk1yclJHkryxSTvbvvDSb6yLQDAEUNJBADsNE1yxcycsfo6bWZ+7TG2m03u/78OePzlJLtn5pEkZye5Ksn5ST68yX0DAGwbJREAsNPckORVbZ+VJG2f0fY52TgvetVqmx9L8lcz81CSf2/7Xav1Fya5cWY+m2Rf21eu9vHUtkcd7IBtj0ly3Mxcm+TNSU7fjicGALAVu5cOAABwOM3MXW1/Ocl1bb8uyZeSvD7J55OcvfrZg9m4b1GSXJTkHasS6N4kP7Faf2GSd7b99dU+fuT/OOyxST7Y9mnZuJLp5w7x0wIA2LLObPZKagCAJ4+2n5uZY5bOAQCwFB83AwAAAMCVRAAAAAC4kggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAABI8t9cJfvKNrGeZQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "plt.figure(figsize=(20,20))\n", "plt.xlabel('epochs')\n", @@ -1683,16 +1075,29 @@ "h9, = plt.plot(x, test_3a, 'g', label='test loss ResNet Adam')\n", "h10, = plt.plot(x, train_3a, 'g--', label='train loss ResNet Adam')\n", "l = plt.legend(handles=[h1, h2, h3, h4, h5, h6, h7, h8, h9, h10])" - ] + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAR8CAYAAAAZ7cTyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XtYlVX+///nQhA8BYTON095+pSB7C0mKEYmZOOJooONYx9JrV8Hf2VO2RDamFnfnHR0yuiTOR1My/nszJpsTH95SBBrMgXCs4UHGtQycWInopPA+v2xt3swAdGEbfp6XBfXxX2ve631vm/vrive13ut21hrERERERERERGRi1uAvwMQERERERERERH/U5JIRERERERERESUJBIRERERERERESWJREREREREREQEJYlERERERERERAQliUREREREREREBCWJREREftGMMdYY819n2bevMebLcx1THebtaozJN8YcNsaMq6c5HjfGvHaur/UnY8w8Y8wzfpj3cmNMqTGmUT2M7Zd7EhERkeopSSQiItIAjDGFxpij3j+2T/z8TwPHcFJCyVq71lrbtSFj8HoMyLTWtrDWZvy00RiTZYy55+dMYK39o7W2TmOcybXnK2PMaGPMJ+dorEJjzA0njq21/7TWNrfWVpyL8UVEROT8FejvAERERC4iN1lrV/k7iPNAB+Dts+1sjAm01pafw3hEREREBFUSiYiI+JUxJtgYU2KMia5yrpW36uhX3uN7jTE7jTH/Msb83RjTpoaxTqrAqVpdYozJ9p7e6K1i+q0xJtEYs7fK9ZHeMUqMMVuNMSlV2uYZY14yxiz1LhP73BjTpZb7SvGOUeIdM9J7fjWQBPyPN44rf9JvKtC3Svv/eM9bY8yDxpgCoMB77gVjTJEx5gdjTK4xpm+VcaYYYxZ4f+/o7T/KGPNPY0yxMeYPZ3ltE2PMfGPM98aY7caYx6o+w2qew+lifMcY86b3mW41xsRWae9hjMnzti0EQmqYIxKYA/TxPrMS7/lgY8xM730cMMbMMcY08ba1NMZ86P33+ZcxZq0xJsAY8xZwObDEO9ZjVZ5JoLdvljHm/xpjPvXGtsIY07JKPCONMV8bYw4ZY574aWVSbWp6143H88aY77zPcrPx/jdjjBlijNnmjWWfMeb3Vca70XiWNpYYY/5hjHFWaUv3Xn/YGPOlMaZ/XWIUERG5kClJJCIi4kfW2n8DfwPuqHJ6GLDGWvudMeZ64FnvudbA15xFFY619jrvr929S4cWVm03xgQBS4AVwK+Ah4C/GmOqLkcbDjwFhAM7ganVzeVN/LiAh4FWwDI8SYfG1trrgbXAWG8cX/0kzj/8pH1sleZbgN5AlPd4AxADXAr8L7DIGFNtIsXrWqAr0B+YfCJxdYbXPgl0BDoDvwZSaxmjLjGm4Pn3DAP+DpxIijUGFgNvefsuAoZWN4G1djswBvjM+8zCvE3TgCu98/8X0BaY7G17FNiL59/n/wCPe4aydwL/xFP11txa+6ca7uu/gbvwvCuNgd97444CZgMj8Lyvod55T+s07/oA4Drv/YR6rznkbXsduN9a2wKIBlZ7x+sBzAXuByKAvwB/9ybPugJjgThvv4FAYV3iFBERuZApSSQiItJwFnsrGk783Os9/794EjAn/Lf3HHj+2J5rrc3zJpQm4qkY6XiOY4sHmgPTrLU/WmtXAx9ycvLqfWvteu9Sr7/iST5U57fAUmvtSmvtcWAm0AS45mfG+Ky19l/W2qMA1toF1tpD1tpya+2fgWA8iZ2aPGWtPWqt3QhsBLqfxbXDgD9aa7+31u4FTtlTqao6xPiJtXaZd7+ft6rMEw8EAbOstcette/iSTjViTHGAPcBj3if2WHgj/znPTuOJxHTwTv+Wmutrev4wBvW2q+8/xbv8J934XZgibX2E2vtj3iSUnUdt7Z3/TjQArgKMNba7dbab6rcS5Qx5hLvv0ue9/x9wF+stZ9bayustfOBf+N5thV4/i2ijDFB1tpCa+2uM7h/ERGRC5KSRCIiIg3nFmttWJWfV73nM4Gmxpje3j+IY4D3vW1t8FRUAGCtLcVTQVGn6owz0AYostZWVjn39U/m+bbK72V4kko1jVU15kqgiJ8fc1HVA2PM771LvtzeJVahQMvquwJ1j7+2a9v8JI6TYvqpOsT403lCvMu62gD7fpK4+Zq6awU0BXJPJCWBj7znAWbgqQZbYYzZbYyZcAZjVxd3tc/HWlvGfyp+TqfGd92btPwf4CXgO2PMK8aYS7yXDgWGAF8bY9YYY/p4z3cAHq2amAXaA22stTvxVLpN8Y73tqlhGaeIiMjFREkiERERP/NWkbyDp2rnDuBDb+UHwH48f+wCYIxphmfpzL5qhjqCJzFwwmVnEMZ+oL0xpur/G1xewzx1GatqzAbPH+d1HaumyhPfeePZ2+cxPJU94d4lVm7AnEW8Z+IboF2V4/Y1XfgzY/wGaOt9didcXsv1P31mxcBRoFuVpGSotbY5gLX2sLX2UWttZzxL3sZX2ZPnTCqKqovb93y8eyBF1LFvre+6tTbDWtsTz3LDK4E07/kN1tqb8Sx9W4znvyXwJKum/iQx29Ra6/L2+19r7bXeOS0w/SzvWURE5IKhJJGIiMj54X/xLNMawX+WmoFnb5+7jDExxphgPEuGPrfWFlYzRj5wmzGmqfF86v7/+Un7ATx76VTnczwVIY8ZY4KMMYnATZzdV8jeAZKNMf29ex09imeZzz/q2L+2OE9oAZQDB4FAY8xk4JLau5wT7wATjTHhxpi2ePa1qY8YP/P2Hef997gN6FXL9QeAdt69jE5Ub70KPG/+swF6W2PMQO/vNxpj/subhHLjWX5VWWWs0z3/mrwL3GSMucYbyxTqnrir8V03xsR5K+2C8CRDjwGVxpjGxpgRxphQ79LGH6rcx6vAGG8/Y4xpZoxJNsa0MMZ0NcZc753nGJ6EWuUpEYmIiFxklCQSERFpOCe+GHXi58SSMqy1n+P547cN8P9VOb8KeAJ4D0+VRhdO3r+oqueBH/H8kT8fz75BVU0B5nuX3gyr2uDdP+YmYDCeKpTZwEhr7Y4zvUlr7Zd4NnR+0TvWTXg2Qv6xjkO8ANxuPF8Qq2nPn+V4lk99hWeJ0jFOs/TrHHkaz4bPe4BVeJIi/z7XMXqf1W3AaOBfeBKIf6uly2pgK/CtMabYey4dz5KydcaYH7zxntgP6QrvcSmehNRsa22mt+1ZYJL3PfF9KayOcW/Fs+n523je11LgO2p+RlX71vauX4In6fM9nmd5CM+SOYA7gULvPY7Bk2jFWpsD3Itnmdr33mcx2tsnGM/G3sV4ls79Cs8eSCIiIhc1c2Z7FIqIiIjICcaY/xcYbq3t5+9YzkfGmOZACXCFtXaPv+MRERGR2qmSSERERKSOjDGtjTEJxpgA72fUH+U/m4wLYIy5ybvksRmeL9ttRp+XFxER+UVQkkhERESk7hoDfwEO41ni9QGepXnyHzfj2YR6P55lbcOtStdFRER+EbTcTEREREREREREVEkkIiIiIiIiIiJKEomIiIiIiIiICBDo7wCqatmype3YsaO/wxARERERERERuWDk5uYWW2tbne668ypJ1LFjR3JycvwdhoiIiIiIiIjIBcMY83VdrtNyMxERERERERERUZJIRERERERERESUJBIREREREREREc6zPYlERERERERELmTHjx9n7969HDt2zN+hyAUoJCSEdu3aERQUdFb9lSQSERERERERaSB79+6lRYsWdOzYEWOMv8ORC4i1lkOHDrF37146dep0VmNouZmIiIiIiIhIAzl27BgRERFKEMk5Z4whIiLiZ1WpKUkkIiIiIiIi0oCUIJL68nPfLSWJRERERERERC4SJSUlzJ49+6z7z5o1i7KysmrbEhMTycnJOeuxa5KVlcWNN954yvl77rmHbdu2nfP5LmZKEomIiIiIiIhcJOozSdTQXnvtNaKioupt/PLy8nob+3ylJJGIiIiIiIjIRWLChAns2rWLmJgY0tLSAJgxYwZxcXE4nU6efPJJAI4cOUJycjLdu3cnOjqahQsXkpGRwf79+0lKSiIpKanWeVwuFw6Hg+joaNLT0wGoqKhg9OjRREdH43A4eP755wHIyMggKioKp9PJ8OHD63wvVSuXmjdvzh/+8Ae6d+9OfHw8Bw4cAODgwYMMHTqUuLg44uLi+PTTTwFYv349ffr0oUePHlxzzTV8+eWXAMybN4+UlBSuv/56+vfvX+dYLhT6upmIiIiIiIiIHzxcUEB+aek5HTOmeXNmXXFFje3Tpk1jy5Yt5OfnA7BixQoKCgpYv3491lpSUlLIzs7m4MGDtGnThqVLlwLgdrsJDQ3lueeeIzMzk5YtW9Y4x/79+0lPTyc3N5fw8HAGDBjA4sWLad++Pfv27WPLli2Ap6rpREx79uwhODjYd+5MHTlyhPj4eKZOncpjjz3Gq6++yqRJk/jd737HI488wrXXXss///lPBg4cyPbt27nqqqtYu3YtgYGBrFq1iscff5z33nsPgLy8PDZt2sSll156VrH8kilJJCIiIiIiInKRWrFiBStWrKBHjx4AlJaWUlBQQN++fXn00UdJT0/nxhtvpG/fvnUec8OGDSQmJtKqVSsARowYQXZ2Nk888QS7d+/moYceIjk5mQEDBgDgdDoZMWIEt9xyC7fccstZ3Ufjxo19+xb17NmTlStXArBq1aqT9i364YcfKC0txe12M2rUKAoKCjDGcPz4cd81v/71ry/KBBEoSSQiIiIiIiLiF7VV/DQUay0TJ07k/vvvP6UtLy+PZcuWMWnSJPr378/kyZN/1lzh4eFs3LiR5cuXM2fOHN555x3mzp3L0qVLyc7OZsmSJUydOpXNmzcTGHhm6YqgoCDfl70aNWrk20+osrKSdevWERISctL1Y8eOJSkpiffff5/CwkISExN9bc2aNftZ9/lLpj2JRERERERERC4SLVq04PDhw77jgQMHMnfuXEq9y9727dvHd999x/79+2natCmpqamkpaWRl5dXbf/q9OrVizVr1lBcXExFRQUul4t+/fpRXFxMZWUlQ4cO5ZlnniEvL4/KykqKiopISkpi+vTpuN1uXyznwoABA3jxxRd9xyeW2bndbtq2bQt49iESD1USiYiIiIiIiFwkIiIiSEhIIDo6msGDBzNjxgy2b99Onz59AM8G0AsWLGDnzp2kpaUREBBAUFAQL7/8MgD33XcfgwYNok2bNmRmZlY7R+vWrZk2bRpJSUlYa0lOTubmm29m48aN3HXXXVRWVgLw7LPPUlFRQWpqKm63G2st48aNIyws7JQxP/74Y9q1a+c7XrRoUZ3uNyMjgwcffBCn00l5eTnXXXcdc+bM4bHHHmPUqFE888wzJCcnn9EzvJAZa62/Y/CJjY21J3YmFxEREREREbnQbN++ncjISH+HIRew6t4xY0yutTb2dH213ExERERERERERJQkEhERERERERERJYlERERERERERAQliUREREREREREBCWJREREREREREQEJYlERERERERERAQliUREREREREQuGiUlJcyePfus+g4ZMoSSkpI6Xz9lyhRmzpx5VnOdTvPmzU85N2fOHN588816me9ioSSRiIiIiIiIyEWitiRReXl5rX2XLVtGWFhYfYR1TowZM4aRI0fW2/jWWiorK+tt/POBkkQiIiIiIiIiF4kJEyawa9cuYmJiSEtLIysri759+5KSkkJUVBQAt9xyCz179qRbt2688sorvr4dO3akuLiYwsJCIiMjuffee+nWrRsDBgzg6NGjtc6bn59PfHw8TqeTW2+9le+//x6AjIwMoqKicDqdDB8+HIA1a9YQExNDTEwMPXr04PDhw3W6t6qVS4mJiaSnp9OrVy+uvPJK1q5dC0BFRQVpaWnExcXhdDr5y1/+AkBpaSn9+/fn6quvxuFw8MEHHwBQWFhI165dGTlyJNHR0RQVFdX1Uf8iBfo7ABEREREREZGLVeIXX5xybtivfsUDbdtSVlHBkE2bTmkffdlljG7dmuIff+T2rVtPasvq0aPW+aZNm8aWLVvIz8/3XJ+VRV5eHlu2bKFTp04AzJ07l0svvZSjR48SFxfH0KFDiYiIOGmcgoICXC4Xr776KsOGDeO9994jNTW1xnlHjhzJiy++SL9+/Zg8eTJPPfUUs2bNYtq0aezZs4fg4GDfUraZM2fy0ksvkZCQQGlpKSEhIbXeU03Ky8tZv349y5Yt46mnnmLVqlW8/vrrhIaGsmHDBv7973+TkJDAgAEDaN++Pe+//z6XXHIJxcXFxMfHk5KS4rvX+fPnEx8ff1Zx/JKokkhERERERETkItarVy9fggg81T3du3cnPj6eoqIiCgoKTunTqVMnYmJiAOjZsyeFhYU1ju92uykpKaFfv34AjBo1iuzsbACcTicjRoxgwYIFBAZ66lgSEhIYP348GRkZlJSU+M6fqdtuu+2U+FasWMGbb75JTEwMvXv35tChQxQUFGCt5fHHH8fpdHLDDTewb98+Dhw4AECHDh0uigQRqJJIRERERERExG9qq/xp2qhRre0tGzc+beVQXTRr1uw/8WRlsWrVKj777DOaNm1KYmIix44dO6VPcHCw7/dGjRqddrlZTZYuXUp2djZLlixh6tSpbN68mQkTJpCcnMyyZctISEhg+fLlXHXVVWc89okYGzVq5NtvyVrLiy++yMCBA0+6dt68eRw8eJDc3FyCgoLo2LGj776rPp8LnSqJRERERERERC4SLVq0qHWPH7fbTXh4OE2bNmXHjh2sW7fuZ88ZGhpKeHi4b1+gt956i379+lFZWUlRURFJSUlMnz4dt9tNaWkpu3btwuFwkJ6eTlxcHDt27PjZMZwwcOBAXn75ZY4fPw7AV199xZEjR3C73fzqV78iKCiIzMxMvv7663M25y+JKolERERERERELhIREREkJCQQHR3N4MGDSU5OPql90KBBzJkzh8jISLp27XrOllnNnz+fMWPGUFZWRufOnXnjjTeoqKggNTUVt9uNtZZx48YRFhbGE088QWZmJgEBAXTr1o3BgwefMl5ZWRnt2rXzHY8fP75Ocdxzzz0UFhZy9dVXY62lVatWLF68mBEjRnDTTTfhcDiIjY09q8qlC4Gx1vo7Bp/Y2Fibk5Pj7zBERERERERE6sX27duJjIz0dxhyAavuHTPG5FprY0/XV8vNRERERERERERESSIREREREREREVGSSEREREREREREUJJIRERERERERERQkkhERERERERERFCSSEREREREREREUJJIRERERERE5KJRUlLC7Nmzz7r/rFmzKCsrq7YtMTGRnJycsx67JllZWdx4442nnL/nnnvYtm3bOZ/vdBYvXowxhh07dtR4zejRo3n33XcbMKpzQ0kiERERERERkYtEfSaJGtprr71GVFRUvY1fXl5e7XmXy8W1116Ly+Wqt7n9RUkiERERERERkYvEhAkT2LVrFzExMaSlpQEwY8YM4uLicDqdPPnkkwAcOXKE5ORkunfvTnR0NAsXLiQjI4P9+/eTlJREUlJSrfO4XC4cDgfR0dGkp6cDUFFRwejRo4mOjsbhcPD8888DkJGRQVRUFE6nk+HDh9f5XqpWLjVv3pw//OEPdO/enfj4eA4cOADAwYMHGTp0KHFxccTFxfHpp58CsH79evr06UOPHj245ppr+PLLLwGYN28eKSkpXH/99fTv3/+UOUtLS/nkk094/fXXefvtt33nrbWMHTuWrl27csMNN/Ddd9/52p5++mni4uKIjo7mvvvuw1rri/+RRx4hNjaWyMhINmzYwG233cYVV1zBpEmT6vwczqVAv8wqIiIiIiIicpF7+GHIzz+3Y8bEwKxZNbdPmzaNLVu2kO+deMWKFRQUFLB+/XqstaSkpJCdnc3Bgwdp06YNS5cuBcDtdhMaGspzzz1HZmYmLVu2rHGO/fv3k56eTm5uLuHh4QwYMIDFixfTvn179u3bx5YtWwBPVdOJmPbs2UNwcLDv3Jk6cuQI8fHxTJ06lccee4xXX32VSZMm8bvf/Y5HHnmEa6+9ln/+858MHDiQ7du3c9VVV7F27VoCAwNZtWoVjz/+OO+99x4AeXl5bNq0iUsvvfSUeT744AMGDRrElVdeSUREBLm5ufTs2ZP333+fL7/8km3btnHgwAGioqK4++67ARg7diyTJ08G4M477+TDDz/kpptuAqBx48bk5OTwwgsvcPPNN5Obm8ull15Kly5deOSRR4iIiDir53G2VEkkIiIiIiIicpFasWIFK1asoEePHlx99dXs2LGDgoICHA4HK1euJD09nbVr1xIaGlrnMTds2EBiYiKtWrUiMDCQESNGkJ2dTefOndm9ezcPPfQQH330EZdccgkATqeTESNGsGDBAgIDz66WpXHjxr59i3r27ElhYSEAq1atYuzYscTExJCSksIPP/xAaWkpbreb3/zmN0RHR/PII4+wdetW31i//vWvq00QgadC6kS10/Dhw31LzrKzs7njjjto1KgRbdq04frrr/f1yczMpHfv3jgcDlavXn3SXCkpKQA4HA66detG69atCQ4OpnPnzhQVFZ3Vs/g5VEkkIiIiIiIi4ge1Vfw0FGstEydO5P777z+lLS8vj2XLljFp0iT69+/vq4Y5W+Hh4WzcuJHly5czZ84c3nnnHebOncvSpUvJzs5myZIlTJ06lc2bN59xsigoKAhjDACNGjXy7SdUWVnJunXrCAkJOen6sWPHkpSUxPvvv09hYSGJiYm+tmbNmlU7x7/+9S9Wr17N5s2bMcZQUVGBMYYZM2bUGNexY8d44IEHyMnJoX379kyZMoVjx4752oODgwEICAjw/X7iuKY9keqTKolERERERERELhItWrTg8OHDvuOBAwcyd+5cSktLAdi3bx/fffcd+/fvp2nTpqSmppKWlkZeXl61/avTq1cv1qxZQ3FxMRUVFbhcLvr160dxcTGVlZUMHTqUZ555hry8PCorKykqKiIpKYnp06fjdrt9sZwLAwYM4MUXX/Qdn1hm53a7adu2LeDZh6gu3n33Xe68806+/vprCgsLKSoqolOnTqxdu5brrruOhQsXUlFRwTfffENmZiaALyHUsmVLSktLz/svnqmSSEREREREROQiERERQUJCAtHR0QwePJgZM2awfft2+vTpA3g2gF6wYAE7d+4kLS2NgIAAgoKCePnllwG47777GDRoEG3atPElQn6qdevWTJs2jaSkJKy1JCcnc/PNN7Nx40buuusuKisrAXj22WepqKggNTUVt9uNtZZx48YRFhZ2ypgff/wx7dq18x0vWrSoTvebkZHBgw8+iNPppLy8nOuuu445c+bw2GOPMWrUKJ555hmSk5PrNJbL5fJtwn3C0KFDcblczJ49m9WrVxMVFcXll1/ue55hYWHce++9REdHc9lllxEXF1enufzFnNhV+3wQGxtrT+xMLiIiIiIiInKh2b59O5GRkf4OQy5g1b1jxphca23s6fpquVk9+LGyksrzKPkmIiIiIiIiInI6ShKdY389cIAm2dkU/fvf/g5FRERERERERKTOlCQ6x1o3bkwlsPvoUX+HIiIiIiIiIiJSZ0oSnWOdvZ/V213lk3YiIiIiIiIiIuc7JYnOsXbBwQQao0oiEREREREREflFUZLoHAsMCKBDcLAqiURERERERETkF0VJonrwULt23BgR4e8wRERERERERE5SUlLC7Nmzz6rvkCFDKCkpqfP1U6ZMYebMmWc11+k0b978lHNz5szhzTffrJf5alNcXExQUBBz5syp8Zp58+YxduzYBozq7ChJVA9+164dI/7P//F3GCIiIiIiIiInqS1JVF5eXmvfZcuWERYWVh9hnRNjxoxh5MiR9Ta+tZbKyspTzi9atIj4+HhcLle9zd1QlCSqB+WVlRQePcqP1bw8IiIiIiIiIv4yYcIEdu3aRUxMDGlpaWRlZdG3b19SUlKIiooC4JZbbqFnz55069aNV155xde3Y8eOFBcXU1hYSGRkJPfeey/dunVjwIABHD3Nvrz5+fnEx8fjdDq59dZb+f777wHIyMggKioKp9PJ8OHDAVizZg0xMTHExMTQo0cPDh8+XKd7q1q5lJiYSHp6Or169eLKK69k7dq1AFRUVJCWlkZcXBxOp5O//OUvAJSWltK/f3+uvvpqHA4HH3zwAQCFhYV07dqVkSNHEh0dTVFR0Snzulwu/vznP7Nv3z727t3rO//GG29w5ZVX0qtXLz799FPf+SVLltC7d2969OjBDTfcwIEDB3zxjxo1ir59+9KhQwf+9re/8dhjj+FwOBg0aBDHjx+v03P4OZQkqgcfHDpEp88/Z3tZmb9DERERERERkfNYYuKpPycKfcrKqm+fN8/TXlx8atvpTJs2jS5dupCfn8+MGTMAyMvL44UXXuCrr74CYO7cueTm5pKTk0NGRgaHDh06ZZyCggIefPBBtm7dSlhYGO+9916t844cOZLp06ezadMmHA4HTz31lC+eL774gk2bNvmWa82cOZOXXnqJ/Px81q5dS5MmTU5/Y9UoLy9n/fr1zJo1yzff66+/TmhoKBs2bGDDhg28+uqr7Nmzh5CQEN5//33y8vLIzMzk0UcfxVrru9cHHniArVu30qFDh5PmKCoq4ptvvqFXr14MGzaMhQsXAvDNN9/w5JNP8umnn/LJJ5+wbds2X59rr72WdevW8cUXXzB8+HD+9Kc/+dp27drF6tWr+fvf/05qaipJSUls3ryZJk2asHTp0rN6DmdCSaJ60DkkBIBd+sKZiIiIiIiInOd69epFp06dfMcZGRl0796d+Ph4ioqKKCgoOKVPp06diImJAaBnz54UFhbWOL7b7aakpIR+/foBMGrUKLKzswFwOp2MGDGCBQsWEBgYCEBCQgLjx48nIyODkpIS3/kzddttt50S34oVK3jzzTeJiYmhd+/eHDp0iIKCAqy1PP744zidTm644Qb27dvnq/Dp0KED8fHx1c6xcOFChg0bBsDw4cN9S84+//xzEhMTadWqFY0bN+a3v/2sU5IlAAAgAElEQVStr8/evXsZOHAgDoeDGTNmsHXrVl/b4MGDCQoKwuFwUFFRwaBBgwBwOBy1PuNz5eyetNSqszfLuVtJIhEREREREalFVlbNbU2b1t7esmXt7XXVrFmzKvFksWrVKj777DOaNm1KYmIix6r5endwcLDv90aNGp12uVlNli5dSnZ2NkuWLGHq1Kls3ryZCRMmkJyczLJly0hISGD58uVcddVVZzz2iRgbNWrk22/JWsuLL77IwIEDT7p23rx5HDx4kNzcXIKCgujYsaPvvqs+n59yuVx8++23/PWvfwVg//791SbVqnrooYcYP348KSkpZGVlMWXKlFNiDggIICgoCGOM7/h0e0adC6okqgehgYFcGhjI7mr+QxIRERERERHxlxYtWtS6x4/b7SY8PJymTZuyY8cO1q1b97PnDA0NJTw83Lcv0FtvvUW/fv2orKykqKiIpKQkpk+fjtvtprS0lF27duFwOEhPTycuLo4dO3b87BhOGDhwIC+//LJvf5+vvvqKI0eO4Ha7+dWvfkVQUBCZmZl8/fXXpx3rq6++orS0lH379lFYWEhhYSETJ07E5XLRu3dv1qxZw6FDhzh+/DiLFi3y9XO73bRt2xaA+fPnn7N7OxdUSVRPOjdpokoiEREREREROa9ERESQkJBAdHQ0gwcPJjk5+aT2QYMGMWfOHCIjI+natWuNy6zO1Pz58xkzZgxlZWV07tyZN954g4qKClJTU3G73VhrGTduHGFhYTzxxBNkZmYSEBBAt27dGDx48CnjlZWV0a5dO9/x+PHj6xTHPffcQ2FhIVdffTXWWlq1asXixYsZMWIEN910Ew6Hg9jY2DpVLrlcLm699daTzg0dOpTf/va3TJ48mSlTptCnTx/CwsJ8S/PAs0H1b37zG8LDw7n++uvZs2dPnWJvCObERkzng9jYWJuTk+PvMM6Jvx08SEhAAEMiIvwdioiIiIiIiJwntm/fTmRkpL/DkAtYde+YMSbXWht7ur6qJKont7Vq5e8QRERERERERETqTHsS1ZPD5eWsLSnhhwbYWEpERERERERE5OdSkqierD98mOvy88mrZUMwEREREREREZHzhZJE9aRzSAiAvnAmIiIiIiIiIr8IShLVk/bBwTQCfeFMRERERERERH4RlCSqJ4EBAXQICVElkYiIiIiIiIj8IihJVI86N2miSiIRERERERE5b5SUlDB79uyz7j9r1izKysqqbUtMTCQnJ+esx65JVlYWxhhee+0137n8/HyMMcycOROA0aNH8+67757Ur7CwkCZNmhATE0NUVBRjxoyhsrLynMd3IVGSqB79344defGKK/wdhoiIiIiIiAhQv0mi+hQdHc0777zjO3a5XHTv3v20/bp06UJ+fj6bNm1i27ZtLF68uD7D/MVTkqgexYeGEnfJJf4OQ0RERERERASACRMmsGvXLmJiYkhLSwNgxowZxMXF4XQ6efLJJwE4cuQIycnJdO/enejoaBYuXEhGRgb79+8nKSmJpKSkWudxuVw4HA6io6NJT08HoKKigtGjRxMdHY3D4eD5558HICMjg6ioKJxOJ8OHD692vA4dOnDs2DEOHDiAtZaPPvqIwYMH1/m+AwMDueaaa9i5c2ed+1yMAv0dwIXs0PHjrPjXv0gMC6N1cLC/wxEREREREZHzycMPQ37+uR0zJgZmzaqxedq0aWzZsoV877wrVqygoKCA9evXY60lJSWF7OxsDh48SJs2bVi6dCkAbreb0NBQnnvuOTIzM2nZsmWNc+zfv5/09HRyc3MJDw9nwIABLF68mPbt27Nv3z62bNkCeKqaTsS0Z88egoODfeeqc/vtt7No0SJ69OjB1VdfTfAZ/J1dVlbGxx9/zNNPP13nPhcjVRLVo6+PHeO/t29n3Q8/+DsUERERERERkVOsWLGCFStW+BIvO3bsoKCgAIfDwcqVK0lPT2ft2rWEhobWecwNGzaQmJhIq1atCAwMZMSIEWRnZ9O5c2d2797NQw89xEcffcQl3pU3TqeTESNGsGDBAgIDa65lGTZsGIsWLcLlcnHHHXfUKZYTVVMJCQkkJyefUfXRxUiVRPWoc0gIgL5wJiIiIiIiIqeqpeKnoVhrmThxIvfff/8pbXl5eSxbtoxJkybRv39/Jk+e/LPmCg8PZ+PGjSxfvpw5c+bwzjvvMHfuXJYuXUp2djZLlixh6tSpbN68udpk0WWXXUZQUBArV67khRde4B//+Mdp5zyxJ5HUjSqJ6lFYUBDhgYH6wpmIiIiIiIicF1q0aMHhw4d9xwMHDmTu3LmUlpYCsG/fPr777jv2799P06ZNSU1NJS0tjby8vGr7V6dXr16sWbOG4uJiKioqcLlc9OvXj+LiYiorKxk6dCjPPPMMeXl5VFZWUlRURFJSEtOnT8ftdvtiqc7TTz/N9OnTadSo0Tl4GvJT9VpJZIwJA14DogEL3G2t/aw+5zzfdA4JUSWRiIiIiIiInBciIiJISEggOjqawYMHM2PGDLZv306fPn0AaN68OQsWLGDnzp2kpaUREBBAUFAQL7/8MgD33XcfgwYNok2bNmRmZlY7R+vWrZk2bRpJSUlYa0lOTubmm29m48aN3HXXXb7P0D/77LNUVFSQmpqK2+3GWsu4ceMICwurMf5rrrmmxrb777+fhx9+GID27dvjcrnO6hldzIy1tv4GN2Y+sNZa+5oxpjHQ1Fpb4y5UsbGxNicnp97i8YdhW7eysbSUL3v39ncoIiIiIiIi4mfbt28nMjLS32HIBay6d8wYk2utjT1d33qrJDLGhALXAaMBrLU/Aj/W13znq2mdOxNojL/DEBERERERERGpVX3uSdQJOAi8YYz5whjzmjGmWT3Od17q3KQJl3s3sBYREREREREROV/VZ5IoELgaeNla2wM4Akz46UXGmPuMMTnGmJyDBw/WYzj+8d2PP/Knf/6TL8vK/B2KiIiIiIiIiEiN6jNJtBfYa6393Hv8Lp6k0Umsta9Ya2OttbGtWrWqx3D8o7SigvTdu/nU7fZ3KCIiIiIiIiIiNaq3JJG19lugyBjT1XuqP7CtvuY7X7UPDqYRsPvoUX+HIiIiIiIiIiJSo3rbuNrrIeCv3i+b7Qbuquf5zjtBAQFcHhLC7mPH/B2KiIiIiIiIiEiN6nO5GdbafO9SMqe19hZr7ff1Od/5qnNIiCqJRERERERExO9KSkqYPXv2WfUdMmQIJSUldb5+ypQpzJw586zmOh1jDKmpqb7j8vJyWrVqxY033gjAvHnzGDt27Cn9OnbsiMPhwOl0MmDAAL799tt6ie+Xql6TROLRpUkTClVJJCIiIiIiIn5WW5KovLy81r7Lli0jLCysPsI6Y82aNWPLli0c9RZkrFy5krZt29apb2ZmJps2bSI2NpY//vGP9RnmL46SRA3gT126UNSnj7/DEBERERERkYvchAkT2LVrFzExMaSlpZGVlUXfvn1JSUkhKioKgFtuuYWePXvSrVs3XnnlFV/fjh07UlxcTGFhIZGRkdx7771069aNAQMG+JI1NcnPzyc+Ph6n08mtt97K9997FhplZGQQFRWF0+lk+PDhAKxZs4aYmBhiYmLo0aMHhw8frnbMIUOGsHTpUgBcLhd33HHHGT2L6667jp07d55Rnwtdfe9JJEBooB6ziIiIiIiIVCMx8dRzw4bBAw9AWRkMGXJq++jRnp/iYrj99pPbsrJqnW7atGls2bKF/Px87+VZ5OXlsWXLFjp16gTA3LlzufTSSzl69ChxcXEMHTqUiIiIk8YpKCjA5XLx6quvMmzYMN57772Tln/91MiRI3nxxRfp168fkydP5qmnnmLWrFlMmzaNPXv2EBwc7FvKNnPmTF566SUSEhIoLS0lJCSk2jGHDx/O008/zY033simTZu4++67Wbt2ba33X9WHH36Iw+Go8/UXA1USNYCDP/7IQwUF/MPt9ncoIiIiIiIiIifp1auXL0EEnuqe7t27Ex8fT1FREQUFBaf06dSpEzExMQD07NmTwsLCGsd3u92UlJTQr18/AEaNGkV2djYATqeTESNGsGDBAgK9BRYJCQmMHz+ejIwMSkpKfOd/yul0UlhYiMvlYkh1ybQaJCUlERMTww8//MDEiRPr3O9ioBKXBhBoDP+zbx8dQ0K4JjTU3+GIiIiIiIjI+aK2yp+mTWtvb9nytJVDddGsWbMq4WSxatUqPvvsM5o2bUpiYiLHqtljNzg42Pd7o0aNTrvcrCZLly4lOzubJUuWMHXqVDZv3syECRNITk5m2bJlJCQksHz5cq666qpq+6ekpPD73/+erKwsDh06VKc5MzMzadmy5VnFe6FTkqgBhAcFERYYqC+ciYiIiIiIiF+1aNGixj1+wFP1Ex4eTtOmTdmxYwfr1q372XOGhoYSHh7O2rVr6du3L2+99Rb9+vWjsrKSoqIikpKSuPbaa3n77bcpLS3l0KFDOBwOHA4HGzZsYMeOHTUmie6++27CwsJwOBxknYOE2cVOSaIG0jkkhN36wpmIiIiIiIj4UUREBAkJCURHRzN48GCSk5NPah80aBBz5swhMjKSrl27Eh8ff07mnT9/PmPGjKGsrIzOnTvzxhtvUFFRQWpqKm63G2st48aNIywsjCeeeILMzEwCAgLo1q0bgwcPrnHcdu3aMW7cuGrb5s2bx+LFi33H5yLhdaEz1lp/x+ATGxtrc3Jy/B1GvfjN1q1sKi3ly969/R2KiIiIiIiI+Mn27duJjIz0dxhyAavuHTPG5FprY0/XVxtXN5D/atKEcms5n5JyIiIiIiIiIiInKEnUQP7YqRO74uMxxvg7FBERERERERGRUyhJ1ECUHBIRERERERGR85mSRA3k++PHuWXzZj4oLvZ3KCIiIiIiIiIip1CSqIE0b9SIDw8dIqeWTw2KiIiIiIiIiPiLkkQNJCgggMtDQth99Ki/QxEREREREREROYWSRA2oc0gIu48d83cYIiIiIiIicpEqKSlh9uzZZ91/1qxZlJWVVduWmJhITk7OWY9dk6ysLIwxvPbaa75z+fn5GGOYOXMmAKNHj+bdd989qV9hYSFNmjQhJiaGqKgoxowZQ2VlZbVzLF68GGMMO3bsqDGO6ua40ChJ1IA6N2miSiIRERERERHxm/pMEtWn6Oho3nnnHd+xy+Wie/fup+3XpUsX8vPz2bRpE9u2bWPx4sXVXudyubj22mtxuVznLOZfIiWJGlD35s3p3KQJP9aQuRQRERERERGpTxMmTGDXrl3ExMSQlpYGwIwZM4iLi8PpdPLkk08CcOTIEZKTk+nevTvR0dEsXLiQjIwM9u/fT1JSEklJSbXO43K5cDgcREdHk56eDkBFRQWjR48mOjoah8PB888/D0BGRgZRUVE4nU6GDx9e7XgdOnTg2LFjHDhwAGstH330EYMHD67zfQcGBnLNNdewc+fOU9pKS0v55JNPeP3113n77bd95621jB07lq5du3LDDTfw3Xff+dqefvpp4uLiiI6O5r777sNaC3iqqR555BFiY2OJjIxkw4YN3HbbbVxxxRVMmjSpzvH6S6C/A7iYPNi2LQ+2bevvMEREREREROQ8UPBwAaX5ped0zOYxzbli1hU1tk+bNo0tW7aQn58PwIoVKygoKGD9+vVYa0lJSSE7O5uDBw/Spk0bli5dCoDb7SY0NJTnnnuOzMxMWrZsWeMc+/fvJz09ndzcXMLDwxkwYACLFy+mffv27Nu3jy1btgCeqqYTMe3Zs4fg4GDfuercfvvtLFq0iB49enD11VcTHBxc5+dSVlbGxx9/zNNPP31K2wcffMCgQYO48soriYiIIDc3l549e/L+++/z5Zdfsm3bNg4cOEBUVBR33303AGPHjmXy5MkA3HnnnXz44YfcdNNNADRu3JicnBxeeOEFbr75ZnJzc7n00kvp0qULjzzyCBEREXWOu6GpkkhERERERETkIrVixQpWrFjhS7zs2LGDgoICHA4HK1euJD09nbVr1xIaGlrnMTds2EBiYiKtWrUiMDCQESNGkJ2dTefOndm9ezcPPfQQH330EZdccgkATqeTESNGsGDBAgIDa65lGTZsGIsWLcLlcnHHHXfUKZYTVVMJCQkkJydXW33kcrl8FUzDhw/3LTnLzs7mjjvuoFGjRrRp04brr7/e1yczM5PevXvjcDhYvXo1W7du9bWlpKQA4HA46NatG61btyY4OJjOnTtTVFRUp7j9RZVEDaisooK+X3zBva1bM0YVRSIiIiIiIhe12ip+Goq1lokTJ3L//fef0paXl8eyZcuYNGkS/fv391XOnK3w8HA2btzI8uXLmTNnDu+88w5z585l6dKlZGdns2TJEqZOncrmzZurTRZddtllBAUFsXLlSl544QX+8Y9/nHbOE3sS1eRf//oXq1evZvPmzRhjqKiowBjDjBkzauxz7NgxHnjgAXJycmjfvj1TpkzhWJWPVJ2ocAoICDip2ikgIIDy8vLTxuxPqiRqQE0CAth19ChbjhzxdygiIiIiIiJyEWrRogWHDx/2HQ8cOJC5c+dSWupZ9rZv3z6+++479u/fT9OmTUlNTSUtLY28vLxq+1enV69erFmzhuLiYioqKnC5XPTr14/i4mIqKysZOnQozzzzDHl5eVRWVlJUVERSUhLTp0/H7Xb7YqnO008/zfTp02nUqNE5eBrw7rvvcuedd/L1119TWFhIUVERnTp1Yu3atVx33XUsXLiQiooKvvnmGzIzMwF8CaGWLVtSWlp6QX3xTJVEDcgY4/nCWZUMo4iIiIiIiEhDiYiIICEhgejoaAYPHsyMGTPYvn07ffr0AaB58+YsWLCAnTt3kpaWRkBAAEFBQbz88ssA3HfffQwaNIg2bdr4kiY/1bp1a6ZNm0ZSUhLWWpKTk7n55pvZuHEjd911l+8z9M8++ywVFRWkpqbidrux1jJu3DjCwsJqjP+aa66pse3+++/n4YcfBqB9+/Z1+lKZy+Xybax9wtChQ3G5XMyePZvVq1cTFRXF5Zdf7ntGYWFh3HvvvURHR3PZZZcRFxd32nl+KcyJHbjPB7GxsTYnJ8ffYdSr27dsYcuRI+zo3dvfoYiIiIiIiEgD2759O5GRkf4OQy5g1b1jxphca23s6fpquVkD69KkCXuOHaPyPErOiYiIiIiIiIgoSdTA4i+5hJtbtuRIRYW/QxERERERERER8dGeRA3s1latuLVVK3+HISIiIiIiIiJyElUS+YmWm4mIiIiIiIjI+URJogZWYS2t//EPniws9HcoIiIiIiIiIiI+ShI1sEbGEBIQwO6jR/0dioiIiIiIiIiIj5JEftA5JITdx475OwwRERERERG5yJSUlDB79uyz6jtkyBBKSkrqfP2UKVOYOXPmWc11OsYYUlNTfcfl5eW0atWKG2+8EYB58+YxduzYU/p17NgRh8OB0+lkwIABfPvtt9WOX1xcTFBQEHPmzKkxhprm+CVTksgPOjdpokoiERERERERaXC1JYnKy8tr7bts2TLCwsLqI6wz1qxZM7Zs2cJR79/WK1eupG3btnXqm5mZyaZNm4iNjeWPf/xjtdcsWrSI+Ph4XC7XOYv5l0BJIj/oHBLCd8ePU3qa/wBFREREREREzqUJEyawa9cuYmJiSEtLIysri759+5KSkkJUVBQAt9xyCz179qRbt2688sorvr4dO3akuLiYwsJCIiMjuffee+nWrRsDBgzwJWtqkp+fT3x8PE6nk1tvvZXvv/8egIyMDKKionA6nQwfPhyANWvWEBMTQ0xMDD169ODw4cPVjjlkyBCWLl0KgMvl4o477jijZ3Hdddexc+fOattcLhd//vOf2bdvH3v37vWdf+ONN7jyyivp1asXn376qe/8kiVL6N27Nz169OCGG27gwIEDgKeaatSoUfTt25cOHTrwt7/9jcceewyHw8GgQYM4fvz4GcVc35Qk8oO+oaE80q4dP+oLZyIiIiIiIhe1LxK/OOVn3+x9AFSUVVTb/s28bwD4sfjHU9pOZ9q0aXTp0oX8/HxmzJgBQF5eHi+88AJfffUVAHPnziU3N5ecnBwyMjI4dOjQKeMUFBTw4IMPsnXrVsLCwnjvvfdqnXfkyJFMnz6dTZs24XA4eOqpp3zxfPHFF2zatMm3tGvmzJm89NJL5Ofns3btWpo0aVLtmMOHD+ftt9/m2LFjbNq0id69e5/2/qv68MMPcTgcp5wvKirim2++oVevXgwbNoyFCxcC8M033/Dkk0/y6aef8sknn7Bt2zZfn2uvvZZ169bxxRdfMHz4cP70pz/52nbt2sXq1av5+9//TmpqKklJSWzevJkmTZr4klznCyWJ/ODasDCe+6//4tKgIH+HIiIiIiIiIhe5Xr160alTJ99xRkYG3bt3Jz4+nqKiIgoKCk7p06lTJ2JiYgDo2bMnhbV8wdvtdlNSUkK/fv0AGDVqFNnZ2QA4nU5GjBjBggULCAwMBCAhIYHx48eTkZFBSUmJ7/xPOZ1OCgsLcblcDBkypM73m5SURExMDD/88AMTJ048pX3hwoUMGzYM8CSiTiw5+/zzz0lMTKRVq1Y0btyY3/72t74+e/fuZeDAgTgcDmbMmMHWrVt9bYMHDyYoKAiHw0FFRQWDBg0CwOFw1Prc/KH6Jy317mhFBccqKwlXokhEREREROSi1SOrR41tjZo2qrW9ccvGtbbXVbNmzXy/Z2VlsWrVKj777DOaNm1KYmIix6r58FJwcPB/4mzU6LTLzWqydOlSsrOzWbJkCVOnTmXz5s1MmDCB5ORkli1bRkJCAsuXL+eqq66qtn9KSgq///3vycrKqrbiqTqZmZm0bNmyxnaXy8W3337LX//6VwD2799fbaKsqoceeojx48eTkpJCVlYWU6ZM8bWdeFYBAQEEBQVhjPEdn24fqIamSiI/afPZZ0w+zzKGIiIiIiIicmFr0aJFjXv8gKfqJzw8nKZNm7Jjxw7WrVv3s+cMDQ0lPDyctWvXAvDWW2/Rr18/KisrKSoqIikpienTp+N2uyktLWXXrl04HA7S09OJi4tjx44dNY5999138+STT1a7bOxsfPXVV5SWlrJv3z4KCwspLCxk4sSJuFwuevfuzZo1azh06BDHjx9n0aJFvn5ut9u3cfb8+fPPSSz+oCSRn3QMCdEXzkRERERERKRBRUREkJCQQHR0NGlpaae0Dxo0iPLyciIjI5kwYQLx8fHnZN758+eTlpaG0+kkPz+fyZMnU1FRQWpqKg6Hgx49ejBu3DjCwsKYNWsW0dHROJ1OgoKCGDx4cI3jtmvXjnHjxlXbNm/ePNq1a+f7qboBdU1cLhe33nrrSeeGDh2Ky+WidevWTJkyhT59+pCQkEBkZKTvmilTpvCb3/yGnj171lqldL4z9jzaPDk2Ntbm5OT4O4wGMXTLFraVlbG9Vy9/hyIiIiIiIiINZPv27SclF0TOtereMWNMrrU29nR9VUnkJ12aNGHP0aNUnkdJOhERERERERG5eClJ5CedQ0L4t7Xs//e//R2KiIiIiIiIiIiSRP7SLyyM57t0oUmjRv4ORURERERERESEQH8HcLGKbNaMyCqfGRQRERERERER8SdVEvnRrqNH2aUvnImIiIiIiIjIeUBJIj/qn5/Pk3v2+DsMERERERERERElifypc5Mm7D52zN9hiIiIiIiIyEWipKSE2bNnn3X/WbNmUVZWVm1bYmIiOTk5Zz12TbKysggNDSUmJoarrrqK3//+92c9ljGGRx991Hc8c+b/z97dh9lZ1+eiv9e8ZNYzJASC4R0hw4waSMLwEoRGFMSC1S3V0stDC6W4u7e1rUXdLUU9aO3Z0mJrq8XDFrtP2btWDdVTta1QS90HCsX6AogQhTpkEsAgkGASksxM5u05fzDJBtGA5JmsNWt9Pv+YzMy61y8rubwu7uv7/L4fzgc+8IHnfP+vfvWre/yZN77xjTnttNP2+DPz589/3udsFCVRAx1bFBn2uBkAAAD7yGyWRLPpjDPOyN13351vfetb+dKXvpTbb7/9BeX09PTk85//fDZt2vS8X/NcJdGWLVty5513ZuvWrRkeHn5B52oWSqIG6qvX89jERHZMTTX6KAAAALSBd7/73Vm7dm0GBwdz2WWXJUn+5E/+JCtXrsyKFSvy+7//+0mSHTt25PWvf31OOOGELFu2LH/zN3+Tq6++Oo888kjOOuusnHXWWXt8n9WrV2f58uVZtmxZLr/88iTJ1NRULrnkkixbtizLly/PRz7ykSTJ1VdfneOOOy4rVqzIBRdcsMfcoigyODiYDRs27D7nf/yP/zGnnnpqTjzxxPzd3/1dkuQ73/lOTj311AwODmbFihUZGhpKknR1deWtb33r7vd+uo0bN+b888/PypUrs3Llytx+++1Zv359rr322nzkIx/J4OBgbrvttme97vOf/3ze8IY35IILLsj111+/++vr1q3L6aefnuXLl+eKK67Y/fXt27fn7LPPzkknnZTly5fvPvP69evzspe9LJdcckle8pKX5MILL8xXvvKVrFq1KgMDA/nGN76xx8+mCrabNVBfUSRJ1o2OZtkcGDsDAACgOu/88jtz96N3V5o5eOhgPvraj/7E71911VVZs2ZN7r77qfe96aabMjQ0lG984xspyzLnnXdebr311mzcuDGHH354brjhhiTJ1q1bs3DhwvzZn/1Zbr755rzoRS/6ie/xyCOP5PLLL8+dd96ZAw88MOecc06++MUv5qijjsqGDRuyZs2aJE9N4Ow607p169LT07P7az/J5s2bMzQ0lFe+8pVJkiuvvDKvfvWrc91112XLli059dRT85rXvCbXXntt3vGOd+TCCy/M+Ph4pp42nPFbv/VbWbFiRX7v937vGdnveMc78q53vSuveMUr8tBDD+Xcc8/Nfffdl7e97W2ZP7/KcnEAACAASURBVH/+T3zMbfXq1Xn/+9+fQw45JOeff37e+9737s77jd/4jVx88cW55pprdv98vV7PF77whey///7ZtGlTTjvttJx33nlJkgceeCCf+9znct1112XlypX5zGc+k3/913/N3//93+cP//AP88UvfnGPn8/eMknUQGcsXJjPHXdcjuzpafRRAAAAaEM33XRTbrrpppx44ok56aSTcv/992doaCjLly/PP//zP+fyyy/PbbfdloULFz7vzG9+85s588wzs3jx4nR1deXCCy/Mrbfemr6+vgwPD+e3f/u38+Uvfzn7779/kmTFihW58MIL86lPfSpdXT9+luW2227LCSeckCOOOCLnnntuDj300N3nv+qqqzI4OJgzzzwzY2Njeeihh3L66afnD//wD/OhD30oDz74YIqZIY0k2X///XPxxRfn6quvfsZ7fOUrX8nb3/72DA4O5rzzzsuTTz6Z7du37/HP+thjj2VoaCiveMUr8pKXvCTd3d27S7Dbb789v/RLv5Qk+ZVf+ZXdrynLMu9973uzYsWKvOY1r8mGDRvy2GOPJUmWLFmS5cuXp6OjI8cff3zOPvvs1Gq1LF++POvXr3/efwcvlEmiBjq8pye/ePDBjT4GAAAADbCniZ99pSzLvOc978mv//qvP+t7d911V2688cZcccUVOfvss/P+979/r97rwAMPzLe//e380z/9U6699tp89rOfzXXXXZcbbrght956a/7hH/4hV155Ze69995nlUVnnHFGvvSlL2XdunU57bTT8uY3vzmDg4MpyzJ/+7d/m5e+9KXP+PmlS5fm5S9/eW644Ya87nWvyyc+8Ym8+tWv3v39d77znTnppJPylre8ZffXpqen87WvfS31ev15/5k++9nPZvPmzVmyZEmS5Mknn8zq1atz5ZVXJnnqouwf9elPfzobN27MnXfeme7u7hxzzDEZm1lq1fO0IZKOjo7dv+/o6Mjk5OTzPtcLZZKowf51y5b829atjT4GAAAAbWDBggXZtm3b7t+fe+65ue6663ZPzGzYsCGPP/54HnnkkfT29uaiiy7KZZddlrvuuuvHvv7HOfXUU/Mv//Iv2bRpU6amprJ69eq86lWvyqZNmzI9PZ3zzz8/H/zgB3PXXXdleno6Dz/8cM4666x86EMfytatW/c4vbNkyZK8+93vzoc+9KHd5//Yxz6WsiyTJN/61reSJMPDw+nr68ull16an//5n88999zzjJxFixblzW9+c/7yL/9y99fOOeecfOxjH9v9+12P5O3pz7x69ep8+ctfzvr167N+/frceeedu+8lWrVq1e5ff/rTn979mq1bt+bggw9Od3d3br755jz44IN7/Dz3JSVRg/32Aw/kyib6BwEAAEDrOuigg7Jq1aosW7Ysl112Wc4555z88i//8u4Lln/xF38x27Zty7333rv74uc/+IM/2H3x8lvf+ta89rWv3ePF1YcddliuuuqqnHXWWTnhhBNy8skn5+d//uezYcOGnHnmmRkcHMxFF12UP/qjP8rU1FQuuuiiLF++PCeeeGIuvfTSHHDAAXv8M7ztbW/LrbfemvXr1+d973tfJiYmsmLFihx//PF53/vel+SpCZ9ly5ZlcHAwa9asycUXX/ysnN/5nd95xpazq6++OnfccUdWrFiR4447Ltdee22S5A1veEO+8IUvPOvi6vXr1+fBBx/MaaedtvtrS5YsycKFC/P1r389f/7nf55rrrkmy5cv333RdpJceOGFueOOO7J8+fJ88pOfzMte9rI9/nn3pdqutq0ZnHLKKeUdd9zR6GPsU+evWZP7Rkby3VNPbfRRAAAAmGX33Xdfli5d2uhj0MJ+3L+xWq12Z1mWpzzXa00SNVhfUWR4dDTTTVTWAQAAAO1HSdRgffV6dpZlfjA+3uijAAAAAG1MSdRgfTNr+IZHRxt8EgAAAKCddT33jzCbTtt//3ztpJOybL/9Gn0UAAAAoI0piRpsYVdXXr7//o0+BgAAANDmPG7WBL6wcWM+v3Fjo48BAAAAtDElURO4esOG/OnDDzf6GAAAALS4LVu25L/9t//2gl77ute9Llu2bHneP/+BD3wgH/7wh1/Qez2Xzs7ODA4OZtmyZXnDG97wU53r6c4888yccsr/3gx/xx135Mwzz9zja9avX5/PfOYze/yZj370o6nX69m6dese3/uOO+74qc4725RETaCvXs/w2FijjwEAAECL21NJNDk5ucfX3njjjTnggANm41g/taIocvfdd2fNmjVZtGhRrrnmmhec9fjjj+cf//Efn/fPP5+SaPXq1Vm5cmU+//nPv+BzNYKSqAkcWxR5dHw8I1NTjT4KAAAALezd73531q5dm8HBwVx22WW55ZZbcsYZZ+S8887LcccdlyR54xvfmJNPPjnHH398/uIv/mL3a4855phs2rQp69evz9KlS/Of//N/zvHHH59zzjkno8+xsfvuu+/OaaedlhUrVuRNb3pTNm/enCS5+uqrc9xxx2XFihW54IILkiT/8i//ksHBwQwODubEE0/Mtm3b9ph9+umnZ8OGDbt//yd/8idZuXJlVqxYkd///d9PkuzYsSOvf/3rc8IJJ2TZsmX5m7/5m90/f9lll+XKK698Vu7U1FQuu+yy3Vmf+MQndn+Gt912WwYHB/ORj3zkWa9bu3Zttm/fng9+8INZvXr17q+Pjo7mggsuyNKlS/OmN73pGZ/Zb/zGb+SUU07J8ccfv/vMyVOf+Xve854MDg7mlFNOyV133ZVzzz03xx57bK699to9fi4vhIurm0BfvZ4kWTc2luNtOQMAAGgbZ/7PM5/1tTcf/+b85srfzMjESF736dc96/uXDF6SSwYvyaaRTfnFz/7iM753yyW37PH9rrrqqqxZsyZ33333Uz9/yy256667smbNmixZsiRJct1112XRokUZHR3NypUrc/755+eggw56Rs7Q0FBWr16d//7f/3ve/OY352//9m9z0UUX/cT3vfjii/Oxj30sr3rVq/L+978/f/AHf5CPfvSjueqqq7Ju3br09PTsfmTswx/+cK655pqsWrUq27dvT33mv5l/nKmpqfyv//W/8mu/9mtJkptuuilDQ0P5xje+kbIsc9555+XWW2/Nxo0bc/jhh+eGG25Ikmc8Bnb66afnC1/4Qm6++eYsWLBg99f/8i//MgsXLsw3v/nN7Ny5M6tWrco555yTq666Kh/+8IfzpS996cee6frrr88FF1yQM844I//+7/+exx57LIccckg+/vGPp7e3N/fdd1/uueeenHTSSbtfc+WVV2bRokWZmprK2WefnXvuuScrVqxIkrz4xS/O3XffnXe961255JJLcvvtt2dsbCzLli3L2972tp/42bwQJomaQF9RJEnWPkfzCgAAAFU79dRTdxdEyVPTPSeccEJOO+20PPzwwxkaGnrWa5YsWZLBwcEkycknn5z169f/xPytW7dmy5YtedWrXpUk+dVf/dXceuutSZIVK1bkwgsvzKc+9al0dT01x7Jq1ar8l//yX3L11Vdny5Ytu7/+dKOjoxkcHMyhhx6axx57LD/7sz+b5KmS6KabbsqJJ56Yk046Kffff3+GhoayfPny/PM//3Muv/zy3HbbbVm4cOEz8q644op88IMffMbXbrrppnzyk5/M4OBgXv7yl+eJJ574sZ/Fj1q9enUuuOCCdHR05Pzzz8/nPve5JMmtt966u0hbsWLF7hIoST772c/mpJNOyoknnpjvfOc7+e53v7v7e+edd16SZPny5Xn5y1+eBQsWZPHixc8o1qpikqgJDM6fn0dOPz2HzpvX6KMAAACwD+1p8qe3u3eP339R74uec3Lo+djvaU+03HLLLfnKV76Sf/u3f0tvb2/OPPPMjP2YO3R7enp2/7qzs/M5Hzf7SW644Ybceuut+Yd/+IdceeWVuffee/Pud787r3/963PjjTdm1apV+ad/+qe87GUve8brdt1JNDIyknPPPTfXXHNNLr300pRlmfe85z359V//9We911133ZUbb7wxV1xxRc4+++y8//3v3/29V7/61bniiivyta99bffXyrLMxz72sZx77rnPyLnlllt+4p/n3nvvzdDQ0O7Sanx8PEuWLMnb3/72n/iadevW5cMf/nC++c1v5sADD8wll1zyjM9812fd0dHxjM+9o6PjOe+R+mmZJGoC8zo6clhPT2q1WqOPAgAAQAtbsGDBHu/42bp1aw488MD09vbm/vvvf0Zp8kItXLgwBx54YG677bYkyV//9V/nVa96Vaanp/Pwww/nrLPOyoc+9KFs3bo127dvz9q1a7N8+fJcfvnlWblyZe6///6fmN3b25urr746f/qnf5rJycmce+65ue6667J9+/YkyYYNG/L444/nkUceSW9vby666KJcdtllueuuu56VdcUVV+SP//iPd//+3HPPzcc//vFMTEwkSb73ve9lx44de/wMV69enQ984ANZv3591q9fn0ceeSSPPPJIHnzwwbzyla/cfeH1mjVrcs899yRJnnzyyey3335ZuHBhHnvssZ/qEu2qmSRqEtf94AfZNjWVdxx5ZKOPAgAAQIs66KCDsmrVqixbtiw/93M/l9e//vXP+P5rX/vaXHvttVm6dGle+tKX5rTTTqvkff/qr/4qb3vb2zIyMpK+vr78j//xPzI1NZWLLrooW7duTVmWufTSS3PAAQfkfe97X26++eZ0dHTk+OOPz8/93M/tMfvEE0/MihUrsnr16vzKr/xK7rvvvpx++ulJkvnz5+dTn/pUHnjggVx22WXp6OhId3d3Pv7xjz8r53Wve10WL168+/f/6T/9p6xfvz4nnXRSyrLM4sWL88UvfjErVqxIZ2dnTjjhhFxyySV517vetfs1119/fW688cZn5L7pTW/K9ddfn0svvTRvectbsnTp0ixdujQnn3xykuSEE07IiSeemJe97GU56qijsmrVqhf8Oe+tWlmWDXvzH3XKKaeUd9xxR6OP0RC/sGZN7h8ZyXdPPbXRRwEAAGCW3HfffVm6dGmjj0EL+3H/xmq12p1lWZ7yXK/1uFmT6KvXs25sLNNNVNoBAAAA7UNJ1CT6iiJj09N5dHy80UcBAAAA2pCSqEn01etJkuEXeCM8AAAAwN5QEjWJvqJIV62Wx2ZuTQcAAKA1NdPdwLSWvf23ZbtZk+gvioy98pXprNUafRQAAABmSb1ezxNPPJGDDjooNf/9R4XKsswTTzyR+syTSi+EkqhJdPg/BwAAgJZ35JFH5vvf/342btzY6KPQgur1eo488sgX/HolURP56MMP56GdO/Nn/f2NPgoAAACzoLu7O0uWLGn0MeDHcidRE7lnx45c//jjjT4GAAAA0IaURE3k2KLID8bHMzI11eijAAAAAG1GSdRE+mYul1o3NtbgkwAAAADtRknURPqKIkkyPDra4JMAAAAA7UZJ1ET66vUc3dOTndPTjT4KAAAA0GZsN2sii+fNy/rTT2/0MQAAAIA2ZJIIAAAAACVRs7nywQfzhnvvbfQxAAAAgDajJGoymycm8pXNm1OWZaOPAgAAALQRJVGT6SuKjE1P59Hx8UYfBQAAAGgjSqIm01evJ0mGx8YafBIAAACgnSiJmkxfUSRJhkdHG3wSAAAAoJ0oiZrM0fV6XrFwYeZ3djb6KAAAAEAb6Wr0AXimno6O3HbiiY0+BgAAANBmTBIBAAAAoCRqRu9fty4v/frXG30MAAAAoI0oiZpQT0dHvjc6mtGpqUYfBQAAAGgTSqIm1FevJ0nWjY01+CQAAABAu1ASNaG+okiSDI+ONvgkAAAAQLtQEjWhJTOTRMMmiQAAAIB9REnUhBZ3d+fiQw7JsTMTRQAAAACzravRB+DZarVa/mrp0kYfAwAAAGgjJoma2LbJyUYfAQAAAGgTSqIm9d7h4Rzy1a+mLMtGHwUAAABoA0qiJnVET09Gp6fz2Ph4o48CAAAAtAElUZPqs+EMAAAA2IeURE2qb2az2fDoaINPAgAAALQDJVGTOrqnJ7WYJAIAAAD2ja5GH4Afr97Zmf/rmGOyauHCRh8FAAAAaANKoiZ2xTHHNPoIAAAAQJvwuFkT2zE1le/s2NHoYwAAAABtQEnUxD7y8MNZ9s1vZnRqqtFHAQAAAFqckqiJ7dpwtt7l1QAAAMAsUxI1sb56PYkNZwAAAMDsUxI1sV2TRMOjow0+CQAAANDqlERNbHF3d/br6DBJBAAAAMy6rkYfgJ+sVqvlEy99aV46M1EEAAAAMFuURE3uwkMOafQRAAAAgDbgcbMm9+jOnbnxiSdSlmWjjwIAAAC0MCVRk/t/N27M6++9N4+Njzf6KAAAAEALUxI1ud0bzlxeDQAAAMwiJVGT66vXkyTDo6MNPgkAAADQypRETe6YXSWRSSIAAABgFimJmly9szNHzJtnkggAAACYVV2NPgDPbfVxx+WwefMafQwAAACghSmJ5oAzDjig0UcAAAAAWpzHzeaAtaOj+cQjj2RsaqrRRwEAAABalJJoDvjak0/mbd/7Xta5vBoAAACYJUqiOaDPhjMAAABglimJKvZvW7fmiuHhlGVZWWZfUSSJDWcAAADArFESVeyObdty5UMP5fGJicoyD+7uzn4dHR43AwAAAGaNkqhiAzNTP0MjI5Vl1mq19BWFSSIAAABg1nQ1+gCtpn+mJHpgdDSvqHB1/ReXLcuiLn9dAAAAwOzQOlTs6Ho9nXmqJKrSrnuJAAAAAGaDx80q1t3RkSVFkaGKS6Lv7tiRK4aH88MK7zoCAAAA2EVJNAv6i6LySaL1Y2O58qGH8u8V3nUEAAAAsIuSaBbsKonKsqwss69eT5IM23AGAAAAzAIl0SwYKIo8OTWVjRU+GnbMrpLIhjMAAABgFiiJZsHTN5xVpd7ZmSPmzTNJBAAAAMwKJdEsmI2SKHlqw9mGnTsrzQQAAABIkq5GH6AVHVOvpzOpfMPZjcuXZ7/OzkozAQAAABIl0ayY19GRo+v1yieJ5nf56wIAAABmh8fNZsmuDWdVumf79vzqffdlvcurAQAAgIopiWbJQFFkaGQkZVlWlrl9aiqffOyxfHdkpLJMAAAAgERJNGv6iyJbp6byxMREZZl99XqSZNgkEQAAAFAxJdEsmY0NZ4fMm5fejo4Mj41VlgkAAACQKIlmzUBvb5JqN5zVarX0FYVJIgAAAKBySqJZcky9no5UO0mUJMfNlE8AAAAAVbJTfZb0dHTkxfV65SXR3xx/fKV5AAAAAIlJolk1UBSVPm4GAAAAMFuURLOovygqnyS6Z/v2vPruu3PXtm2V5gIAAADtTUk0i/qLIpsnJ/PDiYnKMrtrtdy8ZUvuGxmpLBMAAABASTSLBooiSbUbzo6p15PEhjMAAACgUkqiWdQ/UxJV+chZ0dmZw+fNy/DYWGWZAAAAAEqiWbSkXk8t1ZZESdJXFCaJAAAAgEp1NfoAraze2ZkX9/RkqOL7g35m//3zyPh4pZkAAABAe1MSzbLZ2HD2oWOPrTQPAAAAwONms2w2SiIAAACAqimJZtlAb2+emJzM5omJyjK/s2NHBr7+9dz0wx9WlgkAAAC0NyXRLJuNDWeLurrywOhohkwoAQAAABVREs2y2SiJDp03L0VHhw1nAAAAQGWURLPs2Ho9taTSqZ9arZa+ej3DY2OVZQIAAADtbVa3m9VqtfVJtiWZSjJZluUps/l+zaje2Zkje3oqv7y6ryiy1iQRAAAAUJFZLYlmnFWW5aZ98D5NazY2nL120aLcPzJSaSYAAADQvvZFSdT2Booin99UbU/2m0ccUWkeAAAA0N5m+06iMslNtVrtzlqt9tZZfq+m1V8U2TQxkS0TE5XmTpdlJqenK80EAAAA2tNsl0SvKMvypCQ/l+S3arXaK3/0B2q12ltrtdodtVrtjo0bN87ycRpjYBY2nD0wMpL9brstn23RzwwAAADYt2a1JCrLcsPM/z6e5AtJTv0xP/MXZVmeUpblKYsXL57N4zRM/yyURIf39GRsejrDLq8GAAAAKjBrJVGtVtuvVqst2PXrJOckWTNb79fM+mahJOrt7Mxh8+ZleGysskwAAACgfc3mxdWHJPlCrVbb9T6fKcvyy7P4fk2rt7MzR/b0ZKjiqZ9ji8IkEQAAAFCJWSuJyrIcTnLCbOXPNf1FUekkUZL01eu5ecuWSjMBAACA9jSbk0Q8TX9R5O83bao0800velGOLYqUZZmZiS0AAACAF0RJtI8MFEUen5jIk5OT2b+rmo/9jYsX540tetk3AAAAsG/N6nYz/rfZ2HBWlmU2jo9n6+RkZZkAAABAe1IS7SOzURI9Oj6eg7/61Xz6sccqywQAAADak5JoHzl2piSqcsPZofPmpd7RYcMZAAAAsNeURPvIfp2dOXzevEoniWq1Wvrq9QyPjVWWCQAAALQnJdE+1F8UlZZESdJXFFlrkggAAADYS0qifWigKDI0MlJp5q5JorIsK80FAAAA2ks1u9h5XvqLIo9NTGTb5GQWdFXz0f8fBx+cFfPnZ6os01WrVZIJAAAAtB+TRPvQrg1nVT4e9jMLF+bXDjssXR3+KgEAAIAXTrOwDw309iapdsPZ5PR07tq2LQ+7vBoAAADYC0qifejYej1JKr28erwsc/Kdd+aTjz1WWSYAAADQfpRE+9D8rq4cOm9epSVRb2dnDp03L8M2nAEAAAB7QUm0jw0URaWPmyVPTSgNe9wMAAAA2AtKon2svygqnSRKkr6iMEkEAAAA7BUl0T7WXxT5wfh4dkxNVZbZV6/n4Z07Mz49XVkmAAAA0F66Gn2AdjNQFEmeurz6hPnzK8n85UMOyaqFC1OrJA0AAABoRyaJ9rH+p5VEVXlJb29+dtGidHf46wQAAABeGK3CPjYbJdFUWebvNm3Kt7dvrywTAAAAaC9Kon1sQVdXDunuztDISGWZtSQXfPe7+etHH60sEwAAAGgvSqIGqHrDWUetliX1eobHxirLBAAAANqLkqgBqi6Jkqc2nA1XnAkAAAC0DyVRAwz09mbD+HhGpqYqy+wrigyPjaUsy8oyAQAAgPahJGqAXZdXr61w8qevXs+2qak8MTFRWSYAAADQPpREDTAbG85+6ZBD8t2VK3NAV1dlmQAAAED70Cg0wK6SaKjCkuiQefNyyLx5leUBAAAA7cUkUQMs7OrK4u7uSieJyrLMNRs25Cs//GFlmQAAAED7UBI1SNUbzmq1Wv7r+vW5/vHHK8sEAAAA2oeSqEEGiqLSx82S5NiiyNqxsUozAQAAgPagJGqQ/qLI93fuzOjUVGWZfUWR4YqLJwAAAKA9KIkaZNfl1cMVTv701et5eOfOjE9PV5YJAAAAtAclUYMM7NpwNjJSWWZfUaRM8pBHzgAAAICfUlejD9Cujp0piaq8vPoXFy/OL7zoRVnQ5a8VAAAA+OloExrkwO7uHNTVVWlJtF9nZ2VZAAAAQHvxuFkDDfT2Vr7h7PfXrctfP/popZkAAABA61MSNVB/UVQ6SZQkn9u4MV/ctKnSTAAAAKD1KYkaqL8o8vDOnRmbmqoss69er3RjGgAAANAelEQNNDCzjazKUqevKDI8OpqyLCvLBAAAAFqfkqiB+mdhw1lfvZ4np6byw8nJyjIBAACA1qckaqBZKYmKIgs7O/ODnTsrywQAAABaX1ejD9DOFnV3Z1FXV6Ubzt5w0EHZcsYZleUBAAAA7cEkUYNVveGsVqtVlgUAAAC0DyVRg1VdEiXJbw8N5aoHH6w0EwAAAGhtSqIGGyiKPDQ2lp3T05Vl3rVtW27avLmyPAAAAKD1KYkarL8oMp1kXYXTREvq9QxXPJ0EAAAAtDYlUYMN9PYmSaWXV/cVRR7euTPjFU4nAQAAAK1NSdRg/UWRJJXeS9RXr2c6yUNjY5VlAgAAAK1NSdRgi7q6ckBXV6Ul0Ut7e7N8v/2ybWqqskwAAACgtXU1+gDtrlarZaAoKn3c7PSFC3PPypWV5QEAAACtzyRRE+gvikoniQAAAAB+WkqiJtBfFHlwbKzSi6Yvvu++vO3f/72yPAAAAKC1KYmawEBRZDrJugovmn5iYiLf2LatsjwAAACgtSmJmsCsbDgriqwdHU1ZlpVlAgAAAK1LSdQEZqUkqtfz5NRUNk9OVpYJAAAAtC4lURN4UXd3FnZ2ZmhkpLLMvpniadiF2AAAAMDzoCRqArVarfINZ0t7e/O6RYvSUatVlgkAAAC0rq5GH4Cn9BdF7qjwoumX9PbmhhUrKssDAAAAWptJoiYx0Nub9WNjmZierjTXxdUAAADA86EkahL9RZGpJOvHxirL/IU1a3LuPfdUlgcAAAC0LiVRk5iNDWe9HR0ZcnE1AAAA8DwoiZrEwExJVGWp01cUeWgWHmEDAAAAWo+SqEks7u7Ogs7OSieJ+ur1TCd5aOfOyjIBAACA1qQkahK1Wi39RVFtSTQznTTskTMAAADgOSiJmshAUVT6uNlLe3vz64cdlsXd3ZVlAgAAAK1JSdRE+osi6yu8Q+iQefNy7UtfmsEFCyrJAwAAAFqXkqiJ9BdFJsuy0juEpsoyT0xMVJYHAAAAtCYlURPZveFsZKSyzDeuWZOf/fa3K8sDAAAAWpOSqIn0z5REVV5efUy9nrWjoynLsrJMAAAAoPUoiZrIIfPmZX5nZ7Ubzur1PDk1lc2Tk5VlAgAAAK1HSdREarVa+ivecNY3M500XGEmAAAA0HqURE2mvygqnyRKkuGxscoyAQAAgNajJGoy/UWRdWNjmZyeriSvryjywSVLcvx++1WSBwAAALSmrkYfgGcaKIpMlGUe2rlz96Nie2O/zs78n0cfXcHJAAAAgFZmkqjJzMaGs8fHx7Nm+/bK8gAAAIDWoyRqMrNREr3rgQfyhjVrKssDAAAAWo+SqMkcNm9eejs6Kt9wBTMQGgAAIABJREFU9tDYWCYquucIAAAAaD1KoiZTq9VmZcPZdJKHd+6sLBMAAABoLUqiJlR5STTzCNtwhZkAAABAa1ESNaGBosjw6GimyrKSvL56PUkyPDZWSR4AAADQepRETai/KDJelnm4olLniJ6e/M+XvSyvOfDASvIAAACA1tPV6APwbE/fcHbMzK/3Rketll899NC9zgEAAABal0miJjTQ25sklW44u3/Hjnz5iScqywMAAABai5KoCR02b16Kjo5KL6/+vzdsyC/dd19leQAAAEBrURI1oY5aLcfOwoazLZOT2TwxUVkmAAAA0DqURE1qoCgqfdzMhjMAAABgT5RETaq/KLJ2dDRTZVlJXt/MBdjDFRZPAAAAQOtQEjWp/qLIeFlmw86dleQtMUkEAAAA7EFXow/AjzcwM/kzNDqaF88UPHtjQVdXbhkczNKZzWkAAAAAT2eSqEn1z5REVV5e/aoDDsjB8+ZVlgcAAAC0DiVRkzqipyf1jo5KS6JvPPlkrt2wobI8AAAAoHUoiZpUR62WY+v1DI2MVJb595s25e1DQ5mYnq4sEwAAAGgNSqIm1l8UlU4S9RVFppI8XNFl2AAAAEDrUBI1sf6iyNqxsUyXZSV5fbs2nFVYPAEAAACtQUnUxAZ6ezM2PZ0NFU3+9M1chj08NlZJHgAAANA6lERNrOoNZ0f09GRerZa1JokAAACAH9HV6APwkw3MlERDo6M568AD9zqvs1bLv596ag7v6dnrLAAAAKC1KIma2JE9Pemp1Sq9vPqYmeIJAAAA4Ok8btbEOmq19FW84ezmzZvzuw88UFkeAAAA0BqURE1uoCgyVGFJdNf27fnT738/mycmKssEAAAA5j4lUZPrL4qsHR3NdFlWktdXryex4QwAAAB4JiVRk+svioxOT+cH4+OV5PXN3Ek0bMMZAAAA8DRKoia3e8PZyEgleUtMEgEAAAA/hpKoyfXPlERVXV69f1dXFnd3Z2NFk0kAAABAa+hq9AHYs6Pq9cyr1SrdcPb900/PvA79IAAAAPC/aQqaXGetlr6KN5wpiAAAAIAfpS2YA/qLotJJon984on8wpo1mZyeriwTAAAAmNuURHPArpKoLMtK8n4wPp4vbNqUh3furCQPAAAAmPuURHPAQFFkZHo6P6josuk+G84AAACAH6EkmgOq3nDWN5M3XOEjbAAAAMDcpiSaA6ouiY7o6Ul3rZa1SiIAAABghpJoDnjxTKlT1YazzlotJy9YkI5arZI8AAAAYO7ravQBeG5dHR1ZUq9XuuHs3046qbIsAAAAYO4zSTRH7NpwBgAAADAblERzxEBRZGhkJGVZVpL395s25ZQ77siWiYlK8gAAAIC5TUk0R/QXRXZMT+ex8fFK8ibLMndu357hsbFK8gAAAIC5TUk0R1S94ayvXk+SDHuEDQAAAIiSaM4Y6O1Nkso2nPXNlE4miQAAAIBESTRnHN3Tk65arbJJov27uvKi7m6TRAAAAEASJdGc0dXRkWPq9Uo3nL1u0aIc0dNTWR4AAAAwd3U1+gA8fwNFUdnjZknyV0uXVpYFAAAAzG0mieaQ/qLIA6OjKcuy0UcBAAAAWoySaA7pL4psm5rKxomJSvL+ftOmHHL77VnvXiIAAABoe0qiOWRgZiNZVY+cLejszOMTEzacAQAAAEqiuaR/piSq6vLqvpk8G84AAAAAJdEccky9ns5UVxId2dOTrlota00SAQAAQNtTEs0h3R0dOaZez9DISCV5nbVajqnXTRIBAAAA6Wr0Afjp7NpwVpULDz44C7v8MwAAAIB2px2YY/qLIl978smUZZlarbbXeR9YsqSCUwEAAABzncfN5piB3t5snZrKpomJyjLHpqYyVZaV5QEAAABzj5Jojql6w9mXNm1K72235Z7t2yvJAwAAAOYmJdEcU3VJdERPT8okwzacAQAAQFtTEs0xS+r1dCQZqqgk6pspnWw4AwAAgPamJJpj5nV05Oh6vbJJooVdXTmoq8skEQAAALQ5JdEc1F8UlZVEyVPTRCaJAAAAoL11NfoA/PQGiiKfefzxlGWZWq2213m/cfjh2fsUAAAAYC5TEs1B/UWRLZOT+eHkZA7q7t7rvLccdlgFpwIAAADmMo+bzUFVbzibnJ7O2tHRjExNVZIHAAAAzD1KojloYKYkGhoZqSTv1q1b0//1r+drTz5ZSR4AAAAw9yiJ5qAlRZFaqpsk6qvXk8Tl1QAAANDGlERzUE9HR17c01NZSXRkT0+6arUMj41VkgcAAADMPUqiOWqgtzdDFZVEXR0dObqnxyQRAAAAtDEl0RzVXxSVTRIlSV9RmCQCAACANtbV6APwwgwURX44OZkfTkxkUXf3Xuf9zlFHZXx6uoKTAQAAAHORkmiO6p/ZcPbA6GhOraAkOnfRor3OAAAAAOYuj5vNUU8viaqwfXIyt2zenE3j45XkAQAAAHOLkmiO6qvXU0squ7x6aHQ0Z33727l169ZK8gAAAIC5RUk0R9U7O3NUT09lk0R9M5NJNpwBAABAe1ISzWFVbjhb2NWVRV1dWWvDGQAAALQlJdEcNlAUGRoZqSyvryhMEgEAAECbUhLNYf1FkScmJ7N5YqKSvL56PcMmiQAAAKAtdTX6ALxwuzacrR0dzSnd3Xud954XvzjjZbnXOQAAAMDcoySawwZ6e5M8tZnslP333+u8wQUL9joDAAAAmJs8bjaH9dXrSVLZ5dVbJiby148+6l4iAAAAaENKojms6OzMkT09lZVEmycnc/H99+fmLVsqyQMAAADmDiXRHDdQFBmqqCQ6qqcnXbWaSSIAAABoQ0qiOa6/KCqbJOrq6MjRPT02nAEAAEAbUhLNcf1FkY0TE9k6OVlJXl9RmCQCAACANjTrJVGtVuus1WrfqtVqX5rt92pHA0WRpLrLq/vqdZNEAAAA0Ib2xSTRO5Lctw/epy31V1wSve+YY/Ktk0+uJAsAAACYO2a1JKrVakcmeX2S/2c236edHVtxSXRET0+OrNcryQIAAADmjtmeJPpokt9LMj3L79O2ejs7c8S8eRkaGakkb8vERP7owQdz17ZtleQBAAAAc8OslUS1Wu0/JHm8LMs7n+Pn3lqr1e6o1Wp3bNy4cbaO09Kq3HCWJO9dty43b9lSWR4AAADQ/GZzkmhVkvNqtdr6JNcneXWtVvvUj/5QWZZ/UZblKWVZnrJ48eJZPE7rqrIkOqC7Owd2dWWtDWcAAADQVmatJCrL8j1lWR5ZluUxSS5I8v+VZXnRbL1fOxvo7c1jExN5cnKykry+ej3DSiIAAABoK/tiuxmzbNeGs6qmf/qKIsNjY5VkAQAAAHPDPimJyrK8pSzL/7Av3qsd9Ve84ayvXs+GnTszXZaV5AEAAADNzyRRC9hVEg1VVBK975hjsvUVr0hHrVZJHgAAAND8uhp9APbefp2dOWzevMomifbr7KwkBwAAAJg7TBK1iCo3nG2bnMxvfu97+acf/rCSPAAAAKD5KYlaxEBRVPa4WdHRkb945JHctmVLJXkAAABA81MStYj+osij4+PZPjm511ldHR05ul634QwAAADaiJKoRey6vHptRcVOX1FkuKLJJAAAAKD5KYlaxMCuDWcjI5Xk9ZkkAgAAgLaiJGoRx86URFVdXj1QFCk6OjI2NVVJHgAAANDclEQtYkFXVw7p7q6sJPrdF784D55+euqdnZXkAQAAAM1NSdRCBnp7K9twBgAAALQXJVEL6S+KyiaJdk5P5w333pu/evTRSvIAAACA5qYkaiH9RZFHxsezo4J7hHo6OnL71q35xpNPVnAyAAAAoNkpiVrIrg1nayuaJrLhDAAAANqHkqiF9Fe84ayvKDLsjiMAAABoC0qiFlJ5SVSvZ/3YWKbKspI8AAAAoHkpiVrI/l1dObi7u7INZyvmz8/KBQvy5ORkJXkAAABA8+pq9AGoVpUbzn75kEPyy4ccUkkWAAAA0NxMErWYKksiAAAAoH0oiVrMQFHk+zt3ZmRqaq+zyrLMKXfckT988MEKTgYAAAA0MyVRi9l1eXUVW8lqtVo2T05mzY4de50FAAAANDclUYupfMNZUVRSOAEAAADNTUnUYnaVRFVtOOur1zM8NlZJFgAAANC8lEQt5oDu7ryou7vSSaKNExPZNjlZSR4AAADQnJRELajKDWenLFiQCw4+OCPT05XkAQAAAM2pq9EHoHoDRZFbtmypJOvsAw/M2QceWEkWAAAA0LxMErWg/qLIwzt3ZnRqqrLMSZNEAAAA0NKURC1oYOby6nUVXTjd/7Wv5Z0PPFBJFgAAANCclEQtqOoNZwu7umw4AwAAgBanJGpBu0qiKjecDVeUBQAAADQnJVELOrC7Owd1dWVoZKSSvL56PevGxjJdlpXkAQAAAM1HSdSi+oui0kmi8bLMIzt3VpIHAAAANB8lUYuqsiQ6bf/987tHHZXOWq2SPAAAAKD5dDX6AMyOgd7efObxxzM2NZV6Z+deZZ0wf35OmD+/opMBAAAAzcgkUYvqL4qUSdZVtJVsx9RUNo6PV5IFAAAANB8lUYuqesPZ8m9+M+984IFKsgAAAIDmoyRqUQMzJdFQVZdX1+sZrmgqCQAAAGg+SqIWtai7Owd2dVW64Wy4oiwAAACg+SiJWliVG8766vU8PjGR7ZOTleQBAAAAzUVJ1MIGiqK6x81mHl+r6iJsAAAAoLkoiVpYf1HkobGx7Jye3uusl++/f/68vz+Lu7srOBkAAADQbJRELay/KDKdZH0F0z9H1+u59Mgjc2hPz94fDAAAAGg6SqIWtnvD2chIJXkPjIzkuzt2VJIFAAAANBclUQvrnymJqrq8+s3f/W5+d+3aSrIAAACA5qIkamEHdXdnYWdnpRvOhivKAgAAAJqLkqiF1Wq1DPT2VrrhbN3YWKbLspI8AAAAoHkoiVpcf1FUOkk0XpZ5ZOfOSvIAAACA5qEkanH9RZH1Y2MZn57e66xjZ+44Gq5gWxoAAADQXJRELW6gKDKdZH0Fxc7JCxbkC8cfn+P322/vDwYAAAA0FSVRi6tyw9mi7u68cfHiHNTdvddZAAAAQHNRErW4KkuiJPnq1q35/zZvriQLAAAAaB5djT4As2txd3f27+ysbMPZ+9aty8j0dP7twAMryQMAAACag0miFler1ardcFYUGa4oCwAAAGgeSqI2UGlJVK/n8YmJbJ+crCQPAAAAaA5KojYwUBRZNzqaienpvc7qm7njaF0F29IAAACA5qEkagP9RZGpJA9WUOz01etJkmElEQAAALQUJVEbqHLD2bL99ssdJ5+c17i4GgAAAFqKkqgNDPT2JkklG86Kzs6cvGBB9uvs3OssAAAAoHkoidrAwd3dmd/ZWdnl1f+waVM++eijlWQBAAAAzUFJ1AZqtVqlG87+6tFH80cPPVRJFgAAANAclERtYqAoKnncLHlqw9m60dFMl2UleQAAAEDjKYnaRH9RZN3YWCanp/c6q69ez86yzA/Gxys4GQAAANAMlERtor8oMlmWeWjnzr3O6pvZlra2oskkAAAAoPGURG1iYKbYqeKRs756PUmybmxsr7MAAACA5tDV6AOwb/TPlEQPjI7m3L3MWlIUefRnfiYHd3fv/cEAAACApqAkahOHzpuX/To6Ktlw1lmr5ZB58yo4FQAAANAsPG7WJmq1WvqLIkMjI5Xk/fWjj+a/rl9fSRYAAADQeEqiNtJfFJVMEiXJv2zZkms2bKgkCwAAAGg8JVEb6S+KDI+NZaos9zqrryjy2MREdkxNVXAyAAAAoNGURG1koLc3E2WZhyrYSrZ7w1lFk0kAAABAYymJ2sjTN5ztrWNnsoYrKJwAAACAxlMStZEqS6K+osi8Wi1PTEzsdRYAAADQeF2NPgD7zuHz5qXo6MhQBSXRoq6ujL7ylemo1So4GQAAANBoSqI2UqvVKttwVqvVoh4CAACA1uFxszZTVUmUJNdu2JC33H9/JVkAAABAYymJ2sxAUWTt6GimynKvs9aOjeX6xx/PdAVZAAAAQGMpidpMf1FkvCzz/Z079zqrr17P2PR0Hh0fr+BkAAAAQCMpidrMQMUbzpJkuKLH1wAAAIDGURK1mf6ZYmdoZGSvs/rq9SRPPXYGAAAAzG1KojZzeE9P6h0dlUwSHV2v59h6PaU7iQAAAGDO62r0Adi3Omq19BdFhiooieZ1dOSB006r4FQAAABAo5kkakP9RVHJJBEAAADQOpREbai/KLJ2dLSS1fUfefjhrLrrrgpOBQAAADSSkqgNDRRFdpZlvr9z515njUxP56tPPpmRqakKTgYAAAA0ipKoDe3acFbFI2e7Npyts+EMAAAA5jQlURuqsiQ6diZr2B1HAAAAMKcpidrQkT096anVKtlwtmuSaNgkEQAAAMxpSqI21FGr5diKNpwd1N2d1y5alMXd3RWcDAAAAGiUrkYfgMbor6gkqtVq+ccVKyo4EQAAANBIJona1MBMSTRdlpXklRXlAAAAAI2hJGpT/UWRsenpPLJz515n/fFDD+VFt99eWeEEAAAA7HtKojZV5Yaz+Z2d+eHkZB4dH9/rLAAAAKAxlERtaqC3N0mq3XBWQRYAAADQGEqiNnVkT0/m1WqVTBL1zUwlDY+N7XUWAAAA0BhKojbVWaulr6INZ0fX66nFJBEAAADMZUqiNjZQFJU8btbT0ZG3H3FEVsyfX8GpAAAAgEboavQBaJz+oshXNm9OWZap1Wp7lXX1wEBFpwIAAAAawSRRG+svioxOT+cHFWwlK8syP5yYqOBUAAAAQCMoidrYwMyF01U8cvbHDz+cg26/PSNTU3udBQAAAOx7SqI21j9TElVxefWLe3qSJOttOAMAAIA5SUnUxo7q6Ul3rVZJSdQ3UzitteEMAAAA5iQlURvr6uhIX72eoZGRvc7qq9eTJMMmiQAAAGBOUhK1uf6iqGSS6EXd3Znf2Zlhk0QAAAAwJ3U1+gA0Vn9R5JYtW1KWZWq12gvOqdVq+a/HHJPj9tuvwtMBAAAA+4qSqM0N9PZmx/R0Hh0fz2Ezl0+/UO886qiKTgUAAADsax43a3NVbjjbMTWVu7dty3RZ7nUWAAAAsG8pidpclSXR/3z00Zx45515bHx8r7MAAACAfUtJ1OaO/v/Zu/Pwuus67/+vz9m/2fPtvmUPZWmB0hZUXBmwGcdbx/13Ozi3My4343qhoMCoCC6ggDqO4jbe48yIzvhD5xYdbd1wAFnaUuhCW5omTbqkTZuc7MnJ2b73HwkIUmiS811OkufjunIBOd/zfr//KFwXr+vz/bzjcUWMUasLIVEjG84AAAAAAJi1CInmuUgopPpEwpWTRA2Tp5LYcAYAAAAAwOxDSAQ1WZYrIVFtIiEjThIBAAAAADAbERJBzZal1rExOQVeOB0PhbQyHuckEQAAAAAAs1Ak6AEQvCbL0nAup5OZjJbEYgXV+mpTk5bF4y5NBgAAAAAA/EJIhGdtOCs0JPrLRYvcGAkAAAAAAPiM182g5smQqHV0tOBa3em0ftbTo/F8vuBaAAAAAADAP4REUG0iobDkyuXVv+3r0+v27OFeIgAAAAAAZhlCIigaCqkukXAlJGpIJCRJbYREAAAAAADMKoREkCQ1l5So1Y2QaPLVtfZUquBaAAAAAADAP4REkDRxefXBsTE5jlNQnUXRqEpDIV43AwAAAABgliEkgqSJkGgwl1NPJlNQHWOMGiyLk0QAAAAAAMwykaAHQHF4esPZ2JgWxWIF1fru6tWqjvBHCwAAAACA2WRKJ4mMMR82xlSYCd81xuwwxrza6+Hgn6bJkMiNy6s3VlSoqaSk4DoAAAAAAMA/U33d7G8dxxmU9GpJ1ZLeIelWz6aC7+oSCYXkTkjUmUrpzmPH1Ffgq2sAAAAAAMA/Uw2JzORfXyPp3xzHeeIZv8McEAuFVJdIuLLhbO/IiN7f2qp9o6MuTAYAAAAAAPww1ZDoUWPMrzQREm0xxpRLyns3FoLw1IazQjVMvrrGhjMAAAAAAGaPqYZE75J0naSNjuOMSopK+hvPpkIgmixLraOjchynoDq18biMxIYzAAAAAABmkamGRC+W9KTjOP3GmCslfULSgHdjIQjNlqWBXE69Bd4llAiHtSIe5yQRAAAAAACzyFRDom9IGjXGXCDpo5LaJP2rZ1MhEG5uOGtIJDhJBAAAAADALDLVkCjrTLyD9HpJX3Mc5+uSyr0bC0Fonlxb70ZI9P1zztHP164tuA4AAAAAAPBHZIrPDRljrpf0DkkvM8aENHEvEeaQukRCIcmVDWerEonCBwIAAAAAAL6Z6kmit0kal/S3juOckLRS0m2eTYVAxEMh1SQSrpwkOjg6quvb23WYV84AAAAAAJgVphQSTQZDd0mqNMa8VlLKcRzuJJqDmi3LlZNEPZmMbj18WLtHRlyYCgAAAAAAeG1KIZEx5q2Stkp6i6S3SnrEGPNmLwdDMJosy52LqycvwWbDGQAAAAAAs8NU7yT6e0kbHcc5KUnGmEWSfiPpbq8GQzCaLEt92aySmYzs6MyvnVoUjao0FGLDGQAAAAAAs8RU7yQKPRUQTeqdxncxizRPngAq9JUzY4waLIuTRAAAAAAAzBJTPUm02RizRdIPJ//5bZJ+4c1ICFLTZEh0cGxMl1RUFFSrIZHQiXTajbEAAAAAAIDHphQSOY5zrTHmTZIunfzVtx3H+U/vxkJQ6hMJGcmVe4n+/dxzFQ9x4AwAAAAAgNlgqieJ5DjOjyX92MNZUAQS4bBq4nG1jo66UgsAAAAAAMwOL3jMwxgzZIwZPM3PkDFm0K8h4S+3Npy1jo7qyr17tXt42IWpAAAAAACAl14wJHIcp9xxnIrT/JQ7jlPYhTUoWm6FRHlJd508qZ2ERAAAAAAAFD0ujMFzNJeUqDebVV8mU1Cd2nhcRlJ7KuXOYAAAAAAAwDOERHiOZ244K0QiHNaKeFztLpxKAgAAAAAA3iIkwnO4FRJJUkMiwUkiAAAAAABmAUIiPEdjIiEjqdWFkGhNaalixhQ+FAAAAAAA8FQk6AFQfBLhsFbG466cJPr6WWe5MBEAAAAAAPAaJ4lwWm5tOAMAAAAAALMDIRFOq9myXHndrG1sTK947DHd29fnwlQAAAAAAMArhEQ4rSbLUk8mo/5MpqA6ZeGw7hsY0BMjIy5NBgAAAAAAvEBIhNN6asNZW4GbyRZHoyoJhdhwBgAAAABAkSMkwmk1T4ZEraOjBdUxxqjBstTO/UYAAAAAABQ1QiKcVsNkSOTG5dUNiQQniQAAAAAAKHKRoAdAcSoJh7UiFnMlJLq0slJRY1yYCgAAAAAAeIWQCM+ruaTElQ1nH6upcWEaAAAAAADgJV43w/NqsixXThIBAAAAAIDiR0iE59VkWTqZyWgwmy2ozpFUSg0PP6x/7+52aTIAAAAAAOA2QiI8r2aXLq9eFI3qUCrlyqtrAAAAAADAG4REeF5NLoVEiclLsNlwBgAAAABA8SIkwvNqdCkkkqQGy1I7J4kAAAAAAChahER4XqXhsJbHYq68JtaQSHCSCAAAAACAIhbxqrAxJiHpPknxyT53O45zo1f94A23NpxdXl2tRCgkx3FkjHFhMgAAAAAA4CYvTxKNS7rMcZwLJF0oqcUY8yIP+8EDboVEVy5dqm+uXk1ABAAAAABAkfIsJHImDE/+Y3Tyx/GqH7zRbFk6kU5rKJstuFbecTSez7swFQAAAAAAcJundxIZY8LGmMclnZT0a8dxHjnNM+81xmw3xmw/deqUl+NgBp7acNZW4GminnRa1n336TtdXW6MBQAAAAAAXOZpSOQ4Ts5xnAslrZR0sTFmzWme+bbjOBscx9mwaNEiL8fBDDS5tOFsQTSqsDFcXg0AAAAAQJHyZbuZ4zj9ku6V1OJHP7jnqZCo0A1nxpiJDWcu3G8EAAAAAADc51lIZIxZZIypmvx7S9IVkvZ71Q/eKItEtDQWc+Xy6gbL4iQRAAAAAABFysuTRMsk3WuM2SVpmybuJPq5h/3gEbc2nD11kshxuL8cAAAAAIBiE/GqsOM4uySt86o+/NNsWdqcTBZc57ULFmhhNKqs4yhqjAuTAQAAAAAAt3gWEmHuaLIsHU+nNZLLqTQcnnGdy21bl9u2i5MBAAAAAAC3+HJxNWa3py6vbivwlTPHcXRifFw96bQbYwEAAAAAABcREuGMml3acJbK57XsoYf0ja4uN8YCAAAAAAAuIiTCGTVOhkSFXl5thcNaHoux4QwAAAAAgCJESIQzqohEtDgadWfDmWWp3YU6AAAAAADAXYREmJJmy1Lr6GjBdRoSCU4SAQAAAABQhAiJMCVNluXaSaJj4+NK5XIuTAUAAAAAANwSCXoAzA5NlqV/6e7WaC6nknB4xnVev2CBauNxOS7OBgAAAAAACkdIhClpLimRJLWNjWltWdmM61xYXq4Ly8vdGgsAAAAAALiE180wJU0ubTjLO462DQ7qoAv3GwEAAAAAAPcQEmFK3AqJjKQrdu7UF44ccWEqAAAAAADgFkIiTEllJKJF0ahaCw2JjNGfVVdrSzIpx+FmIgAAAAAAigUhEabMrQ1nm2xbR8bHtY9XzgAAAAAAKBqERJiyZssq+CSRNBESSdLmZLLgWgAAAAAAwB2ERJiyJsvS0fFxjeVyBdWpTSR0TkmJft3X59JkAAAAAACgUJGgB8Ds8dTl1e2plM4rLS2o1t3nnaeaeNyNsQAAAAAAgAs4SYQpa54MiVpduEvo3NJSlUXIKAEAAAAAKBaERJiyxsmQyI3LqyXp9sOH9bWjR12pBQAAAAAACkNIhCmrjka1IBJxLST6bX+/vnbsmCu1AAAAAABAYQiJMC3NJSWubDiTpBbb1pNjY+pwqR4AAAAAAJg5QiJMS5NluXaSqMW2JUlb2HIGAAAAAEDgCIkwLU2WpSPj40rlcgWC7EnBAAAgAElEQVTXOsuyVJdIaHMy6cJkAAAAAACgEIREmJZmy5IjqT2VKriWMUZ/uXChIsYUPhgAAAAAACgIO8gxLU3P2HB2bmlpwfW+3NRUcA0AAAAAAFA4ThJhWp4ZErkpnc+7Wg8AAAAAAEwPIRGmxY5GZUcirm04k6SrnnxSL9mxw7V6AAAAAABg+giJMG1ubjiTpNpEQo8OD+vE+LhrNQEAAAAAwPQQEmHa3A6JWmxbkvSrvj7XagIAAAAAgOkhJMK0NVuWDqdSGnfpHqELysq0JBrV5mTSlXoAAAAAAGD6CIkwbU2WpbykQy6dJgoZo1fbtn6VTCrnOK7UBAAAAAAA0xMJegDMPs/ccHZ2aakrNd+1bJleVFGhrOMobIwrNQEAAAAAwNQREmHamktKJMnVDWevqKrSK6qqXKsHAAAAAACmh9fNMG12JKKqSMTVy6sl6cT4uH7e0+NqTQAAAAAAMDWERJg2Y4zrG84k6c6uLr1+zx71ZTKu1gUAAAAAAGdGSIQZabYsV183k6RNtq28pN/29blaFwAAAAAAnBkhEWakybLUmUopnc+7VvOS8nJVhsPanEy6VhMAAAAAAEwNIRFmpMmylJfUkUq5VjMSCukK29bmZFKO47hWFwAAAAAAnBkhEWak2bIkubvhTJI2VVfrWDqtAy7XBQAAAAAALywS9ACYnZomQyK3L69+y+LF2mTbWpVIuFoXAAAAAAC8MEIizMjCaFQV4bDrIVFlJKLKCH8sAQAAAADwG6+bYUaMMRMbzkZHXa/90MCA3rxnj0ZyOddrAwAAAACA0yMkwow1WZbrJ4kkaTiX0497evT7/n7XawMAAAAAgNMjJMKMNVmWOlIpZfJ5V+u+rLJSViikLcmkq3UBAAAAAMDzIyTCjDWXlCgnqSOVcrVuIhzWq6qqtJmQCAAAAAAA3xASYca82nAmSZtsW61jY2r3oDYAAAAAAHguQiLMmJchUYtta11ZmU6m067XBgAAAAAAz8WucczY4mhU5eGwWj0Iic4qKdGODRtcrwsAAAAAAE6Pk0SYMWOMZxvOnjKezyvr8sXYAAAAAADguQiJUBAvQ6KHBwZkP/CA7h8Y8KQ+AAAAAAD4I0IiFKTZsnQolfLktM95paVKO462sOUMAAAAAADPERKhIE2WpazjqHN83PXa5ZGIXlpZqc2ERAAAAAAAeI6QCAXxcsOZNLHlbOfIiI57EEIBAAAAAIA/IiRCQZonQ6LW0VFP6rfYtiTpV319ntQHAAAAAAATCIlQkCWxmEpDIc9OEp1fWqrP19frkvJyT+oDAAAAAIAJkaAHwOxmjPF0w5kxRtfX1npSGwAAAAAA/BEniVCw5pIStXoUEknSeD6vX/T2qs3DHgAAAAAAzHeERChYk2XpUCqlbD7vSf2hbFav3b1b3+/u9qQ+AAAAAAAgJIILmixLGcfREY82kC2MxbSxvFxbkklP6gMAAAAAAEIiuODpDWcevg7WYtt6ZHBQyUzGsx4AAAAAAMxnhEQoWNNkSOTV5dXSREiUl/Sbvj7PegAAAAAAMJ8REqFgy2IxlYRCnoZEG8vLVR2J6L7+fs96AAAAAAAwn0WCHgCznzFGTZbl6etmkVBIO9avV00i4VkPAAAAAADmM04SwRVNluXpSSJJqrMshYzxtAcAAAAAAPMVIRFc0WxZah8bU85xPOuRzef1dwcO6P8cP+5ZDwAAAAAA5itCIriiybKUdhwdSaU86xEJhfSHgQH9oLvbsx4AAAAAAMxXhERwhR8bziRpk23r/oEBDWeznvYBAAAAAGC+ISSCK5pLSiTJ08urJanFtpV2HP2eLWcAAAAAALiKkAiuWBaLyQqFPD9J9NLKSpWEQtqcTHraBwAAAACA+YaQCK4IGaNGHzacxUMhvX3JElVHo572AQAAAABgvokEPQDmjmbL0v7RUc/7fGf1as97AAAAAAAw33CSCK5psiy1jY0p5zie93IcRwNcXg0AAAAAgGsIieCaJstS2nF0bHzc814vf/xxXblvn+d9AAAAAACYLwiJ4Jpmy5Lk/YYzSbqgtFS/6+vTeD7veS8AAAAAAOYDQiK4pmkyJPL68mpJ2mTbGs3n9YeBAc97AQAAAAAwHxASwTUr4nElQiFfQqJXVVUpaow2J5Oe9wIAAAAAYD4gJIJrQsaoMZFQqw8bzsoiEb2sspKQCAAAAAAAl0SCHgBzS5Nl+XKSSJKuq6nRWD4vx3FkjPGlJwAAAAAAcxUhEVzVZFna0tenvOMo5HFwc4Vte1ofAAAAAID5hNfN4KrmkhKl8nkdGx/3pd+u4WH9+NQpX3oBAAAAADCXERLBVX5uOJOkrxw9qvc8+aSy+bwv/QAAAAAAmKsIieAqv0OiFttWXzarbUNDvvQDAAAAAGCuIiSCq1bF44obo1afQqLLq6sVkrSFLWcAAAAAABSEkAiuChmjBh83nNnRqC6uqNBmQiIAAAAAAApCSATXNfkYEkkTr5ztHhnRcDbrW08AAAAAAOYaQiK4rnkyJMo7ji/9PrxihU5deqnKIhFf+gEAAAAAMBcREsF1TZalsXxex9NpX/pVRaMqCYd96QUAAAAAwFxFSATX+b3hTJLuPnlSr9m1S45Pp5cAAAAAAJhrCInguubJkKh1dNS3nsO5nH6ZTGrXyIhvPQEAAAAAmEsIieC6VYmEosb4epJok21LElvOAAAAAACYIUIiuC5sjBoSCV9DomXxuC4oLSUkAgAAAABghgiJ4InmkhK1+hgSSROnif4wMKChbNbXvgAAAAAAzAWERPBEk2Xp4NiYrxdJv3bBAm2ybfVmMr71BAAAAABgrogEPQDmpibL0mg+rxPptJbF4770fFlVlV5WVeVLLwAAAAAA5hpOEsETT2848/mVM0nqTqd9PcEEAAAAAMBcQEgETzRNhkR+Xl4tST/s7tbSBx8MJJwCAAAAAGA2IySCJ2ricUWM8T0kuqSiQpK0hS1nAAAAAABMCyERPBEJhdSQSPh+oqfBstRsWdpMSAQAAAAAwLQQEsEzT20489sm29a9/f1K5XK+9wYAAAAAYLYiJIJnngqJ/L5EusW2NZbP64GBAV/7AgAAAAAwmxESwTPNlqXhXE7d6bSvfV9ZVaVvn3WWzi8r87UvAAAAAACzGSERPBPUhrPScFjvWb5ci2MxX/sCAAAAADCbERLBM0GFRJKUzGT0na4uHR8f9703AAAAAACzESERPFOXSChijO8bziSpa3xc7z1wQP/V2+t7bwAAAAAAZiNCIngmEgqpLpEI5CTReaWlWhGLaUtfn++9AQAAAACYjQiJ4KmnNpz5zRijTbatXyeTyubzvvcHAAAAAGC2ISSCp5otS61jY3Icx/feLbatgVxOjwwN+d4bAAAAAIDZhpAInmqyLA3lcjqVyfje+/LqaoUl7SAkAgAAAADgjCJBD4C5rfkZG878XklfHY3q5KWXyo5Gfe0LAAAAAMBsxEkieKppMiQKYsOZJAIiAAAAAACmiJAInqpLJBSWArm8WpJ60mm9bvdu/eTUqUD6AwAAAAAwWxASwVPRUEh1iURgIVF1NKoHBwb0056eQPoDAAAAADBbEBLBc02WpdbR0UB6h43Rq21bW5JJ5QPYsAYAAAAAwGxBSATPNVmWDo6NyQkopGmxbXVnMto5PBxIfwAAAAAAZgNCIniuuaREA7mcejKZQPq/urpakrQlmQykPwAAAAAAswEhETz31IazoO4lWhqP66+XLNHSWCyQ/gAAAAAAzAaRoAfA3PfMkOjFlZWBzPAv55wTSF8AAAAAAGYLThLBc/WJhEKSWgM6SfSUsVxOJ9PpQGcAAAAAAKBYERLBc7FQSLWJRGCvm0lS3nFU+/DDurGjI7AZAAAAAAAoZoRE8MVTG86CEjJGl1ZWanMyGdiWNQAAAAAAihkhEXzRbFlqHRsLNKDZVF2tjlRKBwJ+7Q0AAAAAgGJESARfNFmW+rNZJbPZwGbYZNuSpM3JZGAzAAAAAABQrAiJ4ItnbjgLSr1labVlERIBAAAAAHAakaAHwPzQPBkStY6O6pKKisDm+GpzsxZGo4H1BwAAAACgWBESwRf1liWjYE8SSdKrJ185AwAAAAAAz8brZvBFPBRSTTweeEgkSb/s7dXdJ08GPQYAAAAAAEWFk0TwTXNJiVqLICT6ytGjOjI+rjcvXhz0KAAAAAAAFA1OEsE3TZZVFCeJNtm29o2O6nAqFfQoAAAAAAAUDUIi+KbJspTMZpXMZAKdo2XyXqItbDkDAAAAAOBphETwzVMbzoI+TXROSYlWxePaTEgEAAAAAMDTCIngm6YiCYmMMdpk29o7OirHcQKdBQAAAACAYsHF1fBNQyIho+BDIkn6cmOjSsNhGWOCHgUAAAAAgKJASATfJMJhrYrHi2LDWVmEP/oAAAAAADwTr5vBV8Wy4UySbjt8WK/bvTvoMQAAAAAAKAqERPBVMYVE4/m8ftbbq5PpdNCjAAAAAAAQOEIi+KrZstSTyag/kwl6FLXYtiTp1319AU8CAAAAAEDwCIngq2LZcCZJF5WXa2E0qs3JZNCjAAAAAAAQOEIi+KqYQqKQMXp1dbW2JJPKO07Q4wAAAAAAEChCIviq0bJkJD02PBz0KJKkty5erDcuXKiRXC7oUQAAAAAACBQhEXxlhcN6/cKF+kZXV1FcGP36hQv1zdWrVR6JBD0KAAAAAACBIiSC725taNBoLqebOjqCHkWSlHccPTk6GvQYAAAAAAAEipAIvltdUqKrli/Xt7q6tH9kJOhx9NnOTp23dasGstmgRwEAAAAAIDCERAjEjXV1KgmH9fH29qBH0SurqpST9Lu+vqBHAQAAAAAgMIRECMSiWEw31NTont5e/T7gcObFFRUqD4e1OZkMdA4AAAAAAIJESITAfHjlSq2Kx3VNW1ugK+ijoZAur67W5mRSToBzAAAAAAAQJEIiBMYKh/W5+no9Ojysfz95MtBZWmxbh8fHucAaAAAAADBvERIhUH+1ZInWlZXp+vZ2pXK5wOZ4/cKF+q+1a1WbSAQ2AwAAAAAAQSIkQqBCxuj2xkYdHh/XV48dC2yOJbGYXrNggaxwOLAZAAAAAAAIEiERAndZdbVeu2CBPtfZqZ50OrA52sfG9OlDhzQa4IkmAAAAAACCQkiEovDFhgaN5HK6ubMzsBlax8Z0U2en7uvvD2wGAAAAAACCQkiEonBOaanevWyZvtHVpdaALo9+eWWlEqGQtvT1BdIfAAAAAIAgERKhaHy6rk6JUEjXtbcH0t8Kh/WKykptTiYD6Q8AAAAAQJAIiVA0lsbj+viqVfpJT48eCOiVrxbb1v7RUXWMjQXSHwAAAACAoBASoah8ZNUqLY/F9NG2NjmO43v/FtuWFQrpiYBeeQMAAAAAICiERCgqJeGwPldfr61DQ/rRqVO+919dUqLkpZfqLxYs8L03AAAAAABBIiRC0XnH0qU6v7RU17e3azyf97W3MUaJcNjXngAAAAAAFANCIhSdsDG6vbFRh1Ipff3YMd/77xsZ0frt23VfQPciAQAAAAAQBEIiFKUrbFsttq3PdHYqmcn42nt5PK5dIyNsOQMAAAAAzCuehUTGmFXGmHuNMXuNMU8YYz7sVS/MTbc1NGgwm9VnOzt97VsZiejFFRWERAAAAACAecXLk0RZSR91HOdcSS+S9H5jzLke9sMcs6asTH+7bJm+duyY2nxeSd9i23pseFjd6bSvfQEAAAAACIpnIZHjOMcdx9kx+fdDkvZJWuFVP8xNN9fVKWqMbmhv97Vvi21Lkn7FaSIAAAAAwDzhy51Expg6SeskPXKaz95rjNlujNl+KoCV5yhuy+JxXbtqlX506pQeGhjwre+FZWV6x5IlWhGP+9YTAAAAAIAgGcdxvG1gTJmk/5b0OcdxfvJCz27YsMHZvn27p/Ng9hnOZtW8dasaEgk9sG6djDFBjwQAAAAAwKxhjHnUcZwNZ3rO05NExpiopB9LuutMARHwfMoiEX2mrk4PDg7qJz09vvY+mkpxLxEAAAAAYF7wcruZkfRdSfscx/mSV30wP/zNsmVaU1qqj7e1KZ3P+9Izmcmo5uGH9Z2uLl/6AQAAAAAQJC9PEl0q6R2SLjPGPD758xoP+2EOCxujLzY0qC2V0jd9Cm3saFTry8u1mcurAQAAAADzgJfbzR5wHMc4jnO+4zgXTv78wqt+mPtabFuXV1frpo4O9WcyvvTcVF2thwcHfesHAAAAAEBQfNluBrjBGKPbGhrUl83q84cP+9KzxbaVk/Tb/n5f+gEAAAAAEBRCIswqF5aX638tXap/OHpUHWNjnve7pKJCFeEwr5wBAAAAAOY8QiLMOp+pq1PYGN1w6JDnvaKhkH6yZo1uqqvzvBcAAAAAAEEiJMKsszKR0EdWrtQPT57UtsFBz/v9WXW1lsfjnvcBAAAAACBIhESYlT5eU6PF0aiuaWuT4zie9nIcR3ceO6Z7eno87QMAAAAAQJAIiTArlUciuqmuTvcNDOie3l5Pexlj9PVjx/S1Y8c87QMAAAAAQJAIiTBrvXvZMp1dUqKPtbUpk8972qvFtnVff79GczlP+wAAAAAAEBRCIsxakVBItzU06MDYmL59/LinvVpsW+OOo//u7/e0DwAAAAAAQSEkwqz2FwsW6JVVVfp0R4cGslnP+rysslJWKKTNyaRnPQAAAAAACBIhEWY1Y4xub2xUTyajLxw+7FmfRDisy6qqdDyd9qwHAAAAAABBigQ9AFCo9eXlunLJEn356FFdtXy5ahIJT/r83zVrFAmRqwIAAAAA5ib+jxdzwufq6+U4jj5x6JBnPZ4KiBzH8awHAAAAAABBISTCnFCTSOjqVav0b93d2jE05Fmf9z75pN6+b59n9QEAAAAACAohEeaM62pqtDAa1TVtbZ6d9gkbo5/39iqdz3tSHwAAAACAoBASYc6ojER0Y22t7u3v1y882kLWYtsazuX04MCAJ/UBAAAAAAgKIRHmlP+9fLmaLUvXtrUp68Fpn8uqqhQxRps9CqEAAAAAAAgKIRHmlGgopC82NGjf6Ki+e+KE6/XLIxFdWlFBSAQAAAAAmHMIiTDnvH7hQr2sslKfOnRIQ9ms6/Xfu3y53rxokfJsOQMAAAAAzCGERJhzjDG6vbFRJzMZffHIEdfrv33JEn2irk4hY1yvDQAAAABAUAiJMCddXFGh/2/xYt1x5IiOjY+7Xn84m9WOoSHX6wIAAAAAEBRCIsxZn6+vV85x9MlDh1yv/cGDB3XFzp3K8coZAAAAAGCOICTCnFVvWfrQypX63okT2jk87GrtV1dXK5nN6lFOEwEAAAAA5ghCIsxpN9TUqDoS0TVtbXJcPPVzRXW1jMSWMwAAAADAnEFIhDmtOhrVJ2tr9Zu+Pm1xMdBZGItpQ3k5IREAAAAAYM4gJMKc974VK9SYSOja9nZX7xBqsW09MjiovkzGtZoAAAAAAASFkAhzXiwU0q0NDdozMqLvnTjhWt13L1umHRs2qCoSca0mAAAAAABBISTCvPCmRYv04ooKffLQIQ1ns67UrEkkdEFZmYwxrtQDAAAAACBIhESYF4wxuqOxUcfTad1x9KhrdR8eGNBHDh509VJsAAAAAACCQEiEeePFlZV6y6JF+uLhwzo+Pu5KzSdGR/Xlo0f1xMiIK/UAAAAAAAgKIRHmlVsaGpRxHN3Y0eFKvU3V1ZLEljMAAAAAwKxHSIR5pdGy9P4VK/Td48e1Z3i44HorEwmtKS0lJAIAAAAAzHqERJh3PlFbq4pIRB9rb3el3qbqat0/MKCRXM6VegAAAAAABIGQCPPOgmhUn6it1S+TSf3ahRNALbatpbGY2sfGXJgOAAAAAIBgEBJhXvrAihWqSyR0bVubcgVuJrusulodL3qR1paVuTQdAAAAAAD+IyTCvBQPhXRLfb12jozo+93dBdUKGSNjjJwCwyYAAAAAAIJESIR5622LF+vi8nL9fXu7Rgu8T+jXyaSWPfig2njlDAAAAAAwSxESYd4yxuj2xkYdS6f15aNHC6pVl0ioO5PRFracAQAAAABmKUIizGsvq6rSGxYu1K2HD6s7nZ5xnSbLUkMioc2ERAAAAACAWYqQCPPerQ0NSuXz+nRHx4xrGGPUYtv6XV+f0vm8e8MBAAAAAOATQiLMe2eVlOiq5cv1na4u7RsZmXGdFtvWSD6vPwwMuDgdAAAAAAD+ICQCJH2qtlal4bA+3t4+4xqvqqrSB1as0JJYzMXJAAAAAADwByERIGlRLKYbamv1s95e3dvXN6MaZZGI/rG5WeeWlro8HQAAAAAA3iMkAiZ9aMUK1cTjuqatTXnHmVGNnONo6+CgkpmMy9MBAAAAAOAtQiJgkhUO6/MNDdoxPKwfdHfPqMYTIyO6ZMcO3dPT4/J0AAAAAAB4i5AIeIb/uXixLior098fOqSxXG7a319bWqplsZg2J5MeTAcAAAAAgHcIiYBnCBmj2xsbdXh8XF89dmza3zfGaJNt61d9fcrN8JU1AAAAAACCQEgE/IlXVVfrfyxYoM93dupUOj3t77fYtvqyWW0bHPRgOgAAAAAAvEFIBJzGFxoaNJLL6ebOzml/9/LqahmJV84AAAAAALMKIRFwGueUluq9y5frm11dOjA6Oq3vLohG9Yd16/TxmhqPpgMAAAAAwH2ERMDzuLGuTolQSNe1t0/7uy+urJQVDnswFQAAAAAA3iAkAp7HklhM19XU6D97enR/f/+0vjuczeoT7e36Na+cAQAAAABmCUIi4AVcvXKlVsRi+mhbm/LT2FZmhcO6s6tLPzh50sPpAAAAAABwDyER8AJKwmF9rqFB24aG9KNpBD5hY3RFdbW2JJNyphEuAQAAAAAQFEIi4AyuXLJEF5aV6fpDhzSez0/5ey22rePptHaPjHg4HQAAAAAA7iAkAs4gbIxua2hQRyqlrx07NuXvbbJtSdJm7iUCAAAAAMwChETAFFxu2/pz29ZnOzvVm8lM6TvL43FdWlGh4VzO4+kAAAAAACgcIREwRV9saNBgNqvPdnZO+Tv3r1unm+vrPZwKAAAAAAB3EBIBU7SmrEzvWrZMXz92TAdHR6f0HWOMJCk7jbuMAAAAAAAIAiERMA031dUpZoyuP3RoSs87jqOX7NihDx886PFkAAAAAAAUhpAImIZl8biuranR3adO6aGBgTM+b4zRwmiUy6sBAAAAAEWPkAiYpmtWrdKyWEwfbWuT4zhnfL7FttWeSk35FTUAAAAAAIJASARMU2k4rM/U1+uhwUH9+NSpMz6/ybYlidNEAAAAAICiRkgEzMA7ly7VmtJSfby9XekzXErdaFlqsixCIgAAAABAUSMkAmYgbIxub2xUeyqlO48dO+PzN9TU6H8uWeLDZAAAAAAAzAwhETBDm2xbV1RX6+bOTvVlMi/47N8sW6a/IiQCAAAAABQxQiKgALc1Nqo/m9XnDx8+47MdY2NT2ogGAAAAAEAQCImAAlxQVqZ3Ll2qrx49qkNjYy/47LuefFLvPXDAp8kAAAAAAJgeQiKgQJ+pr1fYGN1w6NALPtdi29ozMqKjqZRPkwEAAAAAMHWERECBVsTjumbVKv37yZN6ZHDweZ9rsW1J0pa+Pr9GAwAAAABgygiJABdcu2qVFkejuqatTY7jnPaZNaWlWh6LaUsy6fN0AAAAAACcGSER4ILySEQ319frgYEB/bSn57TPGGPUYtv6TV+fcs8TJAEAAAAAEBRCIsAl71q6VOeUlOhj7e3K5POnfeZTdXXaf/HFChvj83QAAAAAALwwQiLAJZFQSLc1Nqp1bEzf6uo67TO1iYQWx2I+TwYAAAAAwJkREgEueo1t67KqKn26o0MD2expn/nxqVO6+uBBnycDAAAAAOCFERIBLjLG6PbGRiWzWd3S2XnaZ54YGdE/HD2qnnTa5+kAAAAAAHh+hESAy9aVl+vKJUv0laNHdTiVes7nLbYtR9Jv+vr8Hw4AAAAAgOdBSAR44LP19TLG6O8PHXrOZ+vLy7UgEtHmZDKAyQAAAAAAOD1CIsADNYmErl65Ut/v7tajQ0PP+ixsjK6wbW1OJpV3nIAmBAAAAADg2QiJAI9cV1OjRdGormlrk/MnYdBf2LbqLUu9mUxA0wEAAAAA8GyERIBHKiIRfbquTr/v79fPe3uf9dmVS5fqoYsu0qJYLKDpAAAAAAB4NkIiwEPvWbZMZ1mWPtbermw+/5zPx0/zOwAAAAAAgkBIBHgoGgrpi42N2j86qn86fvxZn32nq0sLHnhAg9lsQNMBAAAAAPBHhESAx163YIFeXlmpGzs6nhUINVuWRvJ53dvfH+B0AAAAAABMICQCPGaM0e2NjTqZyeiLhw8//fuXVFaqLBzW5mQywOkAAAAAAJhASAT4YGNFhd6+eLHuOHpUR1MpSVIsFNJlVVXanEw+Z/sZAAAAAAB+IyQCfPK5+nrlHUef7Oh4+ncttq2OVEqtY2PBDQYAAAAAgAiJAN/UWZY+vHKl/uXECT0+NCRJeu2CBbqlvl4V4XDA0wEAAAAA5jtCIsBHN9TUqDoS0TVtbXIcR6sSCV1XW6ul8XjQowEAAAAA5jlCIsBHVdGobqyr02/7+5++sHoom9V/njqlVC4X8HQAAAAAgPmMkAjw2VXLl6vJsnRtW5uy+bzuHxjQG594QvcPDAQ9GgAAAABgHiMkAnwWC4V0a0ODnhgd1fdOnNArqqoUN+bpk0UAAAAAAASBkAgIwBsXLtRLKir0yY4OOY6jl1dVERIBAAAAAAJFSAQEwBijOxobdSKd1u1HjqjFtrV3dFRHUqmgRwMAAAAAzFOEREBAXlRZqbcuWqTbjhzRurIySdK9/f0BTwUAAAAAmK8IiYAA3dLQoIzj6PsnTuiJjRv1jiVLgh4JAAAAADBPERIBAWqwLH1gxQp9r0+J3L4AACAASURBVLtbOceRMSbokQAAAAAA8xQhERCwT9TWqiIS0YcOHtQ79+3TtsHBoEcCAAAAAMxDkaAHAOY7OxrVJ2tr9dG2NoUkrUoktLGiIuixAAAAAADzDCeJgCLw/hUrVJ9IKBEKaXMyGfQ4AAAAAIB5iJAIKALxUEi3NjRoNJ/X9qEhnUyngx4JAAAAADDPEBIBReItixbpvJISSdLPe3sDngYAAAAAMN8QEgFFwhijO5ubJUn/RUgEAAAAAPAZIRFQRF5eXa03Llyon/X26qaODo3n80GPBAAAAACYJwiJgCLz7dWr9caFC/Xpjg6du3Wr7uvvD3okAAAAAMA8QEgEFJkF0ag+W1+vsnBYnamUXvH443r3/v1KZjJBjwYAAAAAmMMIiYAi1FRSoj+sWyc7GlVJKKR/PnFCZ2/dqru6u+U4TtDjAQAAAADmIEIioEidX1amByaDotJwWIuiUV25b59adu1S29hY0OMBAAAAAOYYQiIv5HJBT4A54qySEt1/4YWqSyT09eZm/WNTkx4aHNSabdt0a2enMlxsDQAAAABwCSGR244elTZulO65J+hJMEfUWZYe27BBr6yu1gdWrtRvLrhAf27buv7QIa1/9FE9PDAQ9IgAAAAAgDmAkMhtS5ZI6bT0gQ9Iw8NBT4M5ImyMJOn/P3lSL3vsMb1jyRL93zVr1JfN6iWPPab3HTiggWw24CkBAAAAALMZIZHbolHpW9+SjhyRbrop6Gkwx1xRXa315eV6yxNPaCib1d6NG/WhFSv0ra4unbN1q+4+eZKLrQEAAAAAM0JI5IVLL5Xe/W7py1+Wdu0KehrMIVXRqH51/vl6eVWV/nr/fv3w5El9pblZj1x0kZbGYnrL3r163Z49OpxKBT0qAAAAAGCWISTyyq23StXV0h13BD0J5piySET/tXat/ty29b8PHNDO4WFtqKjQ1osu0h2NjfpdX5/O3bpVXzpyRFkutgYAAAAATJEppldTNmzY4Gzfvj3oMdyza5d09tlSLBb0JJiD0vm8ftHbq79ctOhZv+8YG9P7W1v1i2RSF5WV6durV2t9eXlAUwIAAAAAgmaMedRxnA1neo6TRF46//yJgGhwUEomg54Gc0wsFHo6IHpwYECfaG+X4ziqsyz9fO1a/ejcc9WVTuviRx/V1QcPapiLrQEAAAAAL4CQyGvj49KFF0of/nDQk2AO+2lPjz53+LA+0NqqvOPIGKO3LF6sfRs36r3Ll+srR4/q3G3b9LOenqBHBQAAAAAUKUIir8Xj0pVXSt//vvTb3wY9DeaoWxsa9LFVq3RnV5f+dv/+p+8iqopG9Y2zztIf1q1TRTis1+3Zozfv2aOu8fGAJwYAAAAAFBvuJPLD2Ji0dq0UCk3cU5RIBD0R5iDHcfTZzk59qqNDb1m0SN8/5xzFQn/MgdP5vO44ckQ3d3YqaoxuaWjQVcuXK2xMgFMDAAAAALzGnUTFxLKkb3xDam2VvvCFoKfBHGWM0Sfr6nRHY6Ok5/7LHQuFdH1trXZv2KBLKir0gdZWXbpjh3YND/s/LAAAAACg6HCSyE9vf7s0NCTdc4/E6Q14yJm8l+j4+LjKw2GVRSLP+fyu7m5d3dam/mxWH125Up+qq1NJOBzQxAAAAAAAr0z1JBEhkQfGxyeWmj0nBxobm3jVjIAIPsjm87ro0UdVFg7rF2vXqioafc4zvZmMrm1r0z+fOKH6RELfOOssbbLtAKYFAAAAAHiF180C0t0tbdggffe7p/nQsiYCosOHpd//3u/RMM9EQiHdVFen7UNDetXOnTqVTj/nmQXRqP7P2Wfr3gsuUNQYtezapbfv3avu0zwLAAAAAJjbCIlctnChtHSp9MEPSrt3P89D73yn9La3SX19fo6GeegNixbpnjVrtH90VK94/PHn3Wr2yupq7dq4UTfW1urHp07pnK1b9U9dXcoX0UlDAAAAAIC3CIlcFg5PbLuvqpLe+lbptHcC33GH1NMjXX+97/Nh/mlZsECbzz9fR8bH9b4DB573uXgopE/X12vnhg1aW1qq9xw4oFc+/rj2jYz4OC0AAAAAICiERB5YskS66y7pySel97//NA+sWyd96EPSt74lPfSQ7/Nh/nlFVZXuveACffOss8747Nmlpbr3wgv1T6tXa8/IiC7Yvl03HjqkVC7nw6QAAAAAgKAQEnnkssukT31q4pWzoaHTPHDzzdLKldJVV0mZjO/zYf7ZUFGhpfG4Mvm83vPkk9p12mNuE0LG6F3Llmn/xRfrLYsW6ebOTl2wfbvu5RVJAAAAAJizCIk89MlPSg8+KJWXn+bD8nLpq1+VLrlkYh0a4JPj6bR+2durVz7+uLYNDr7gs4tjMd117rnacv75yjqOLtu5U3+zf796CTYBAAAAYM4hJPJQODyx8X5gQLrmGml09E8eeMMbpG9/WyorC2Q+zE81iYTuX7dOVZGI/mznTt3f33/G77zatrV740ZdV1Oj73d36+ytW/VvJ07I4WJrAAAAAJgzCIl88Oij0pe+NHEN0Wlt2yZdd52vM2F+q7cs3b9unVbE49q0a5d+nUye8Tsl4bBuaWjQjvXr1WRZ+uv9+3XFzp06+Jz0EwAAAAAwGxES+eCyy6QbbpC++92JC62f4/e/l77wBemnP/V7NMxjK+Jx/feFF2p9ebkqI5Epf29tWZkeWLdOX29u1rahIa3dvl2f7+xUOp/3cFoAAAAAgNdMMb0usmHDBmf79u1Bj+GJbHYiLNqxY+Jk0erVz/gwk5HWr5f6+6W9e3n9DL5yHEfGGEnSEyMjOq+0dMrf7Rof14daW/Xjnh6dV1Kib61erUsrK70aFQAAAAAwA8aYRx3H2XCm5zhJ5JNIRPrBDybuKHr/+//kw2hU+uY3pSNHpBtvDGQ+zF9PBUQ/OnlSa7dt0z91dU35u8vjcd29Zo3uWbNGg7mcXvrYY7rqySfVz8XWAAAAADDrEBL5aOXKiTfK/vVfT/PhS14ivec90j/8g7R7t++zAf9jwQK12Lbec+CAvnLkyPS+u3Ch9m7cqKtXrtR3jh/XOdu26UcnT3KxNQAAAADMIoREPrv0Umn5cimXk/bs+ZMPb71VuuWWP3kXDfCHFQ7rP9es0RsXLtTVbW36XGfntL5fFonoS01N2rp+vZbHYnrb3r167e7d6hgb82hiAAAAAICbCIkCct11E4eHDh58xi9tW7r2WikWkziBgQDEQyH9x7nn6solS/SJQ4e0fXBw2jXWl5frkYsu0pcaG/Xf/f06b9s23X74sLJcbA0AAAAARY2QKCAf/ODEPUVve5s0Pv4nH953n3T++VJ3dyCzYX6LhEL6l7PP1m8vuEAbKipmXOPqVau09+KLdVl1ta5tb9fGHTu0bQahEwAAAADAH4REAampkb73vYltZ9dc8ycfLlkiHTggfeQjQYwGKGSMLquuliT9rq9Pf3fggHIzON1Wk0jonjVrdPd556k7ndaLduzQh1tbNZTNuj0yAAAAAKBAhEQBet3rpKuvlr72NeknP3nGB6tXS9dfP7EO7Te/CWw+QJIeGRzUN7u69Fd79yozg1fGjDF606JF2nfxxbpq+XL947FjOnfbNv20p8eDaQEAAAAAM0VIFLBbb5Xe9CZp6dI/+eC666TmZul975NSqUBmAyTp+tpa3dbQoP84dUpveuIJpXK5GdWpjET09bPO0h/WrVNVJKK/3LNHb9izR0f58w0AAAAARYGQKGCxmHT33ROXWEvPuK86kZDuvFNqbZV++MPA5gMk6ZqaGt3Z3Kyf9fbqtbt3a2yGQZEkvbiyUjvWr9ct9fXanEzq3G3b9I9Hj87odTYAAAAAgHsIiYqE40zcTfSs+4kuv1y6/37pne8MaizgaX+3YoW+d/bZWpVIKB4q7D8d0VBI19XWas/GjXpRRYU+dPCgXrJjh3YOD7s0LQAAAABgugiJioQxE1vOvvQl6Z57nvHBS1868eHx4884ZgQE438tXap/PvtshYzR4VRKPel0QfUaLUtbzj9fd51zjg6lUlq/fbs+1tamkQJOKgEAAAAAZoaQqIjcfrt00UUTB4c6O5/xwa5dE/cT3XVXUKMBz5JzHP3F7t165eOP6/j4eEG1jDF6+5Il2n/xxXrn0qW67cgRrdm2Tb/s7XVpWgAAAADAVBASFZF4XPqP/5Cy/4+9+w5vqzz7OP492vLeI85wEidx9iAhkzATQijQAk0oLdCwRwuFFmiBshqgQKGEt1B22SUQoKwwwkpYCdl7byfx3ra2zvvHI1mSZQcncSI7uT/XpUuybp2jR7IsWz/fz3O8cMEF4PEECoMGqdNNN0FlZUzHKASAUdN4vKCAHU4nE1esYFc7LD6dZjbzXGEh84cNw6ppTF29mgvWrqX4EEMoIYQQQgghhBBtIyFRB1NQAM89BytWwNKlgSsNBnj6aRUQ/eUvMR2fEEEnp6Yyb+hQytxuTli+nM2Nje2y34kpKawcNYq78/N5t7yc/osX88zevfhluqUQQgghhBBCHFYSEnVA06bBli0wZkzYlUOHwg03wDPPwPffx2xsQoQbm5zMV8OG0ej3c+OWLe22X6vBwF35+awaNYqh8fFctWkTE5cvZ11DQ7vdhxBCCCGEEEKISBISdVB5eer89dehqChw5T33QPfu8PXXsRqWEFGGJybyzbBhvFhY2O777hcXx1fDhvFCv36sb2xk2JIl/HX7dpyysLUQQgghhBBCtDtN70BTOEaOHKkvWbIk1sPoMEpK1PSzYcPgq6/AZAJqayEpKdZDE6JFLr+fi9ev5/quXRmfnNyu+y5zu7lp61ZeLSmhwG7nhrw8pqan08tub9f7EUIIIYQQQoijjaZpS3VdH/lTt5NOog4sO1stRfTtt3DXXYErgwHR4sWwa1fMxiZES6o8HlbU1zN55Uo+b+dF1jMtFl7p35/PhgzBomn8fssWei9aROGiRdy0ZQufV1bi8vvb9T6FEEIIIYQQ4lginUSdwOWXwwsvwCefwOTJqG6ibt3gxBPhvfdA02I9RCGalLjdTFq5kk2Njbw1cCBnZWQclvvZ3NjI3MpKPq6o4Ovqaly6TrzBwKmpqUxNT+eMtDS622yH5b6FEEIIIYQQojNpayeRhESdQGMjjB6tpp9t2RJoJnrkEfjTn+Ddd+HnP4/1EIWIUOnxMGXVKpbX1/PGgAGcl5l5WO+vwefjq6oq5lZWMreigp0uFwCD4uOZmpbG1PR0xiUlYTZI86QQQgghhBDi2CMh0VFm/XpYswZ++cvAFR4PjBwJlZWwbh0kJsZ0fEI0V+v1ctH69dyTn8+wI/j61HWd9Y2NfBwIjBbU1ODVdZKMRiYFuoympKXRxWo9YmMSQgghhBBCiFiSkOgoVloKWVnAwoUwbhzceKPqLBKiA/uhpoax7byYdVvUer18EdZltNftBmB4QgJnBLqMRicmYpIuIyGEEEIIIcRRShauPkrNmwc9esCXXwJjxsANNwQSIyE6rjmlpYxbvpwHdu484vedZDLxi8xMnu3Xj6KxY1k5ciQP9OxJgtHIg7t2MWH5crK+/55frVvHK8XFlAZCJCGEEEIIIYQ41kgnUSdTXw+jRkF1NaxYoY6AJkRH5/H7+e2GDbxeWspt3bszs2dPtA6w4HqVx8O8qirmVlTwSWUlJR4PGjAyMbFpLaORiYkYOsBYhRBCCCGEEOJgyXSzo9jq1XD88TBhAnz6KRg0Hf73P7XC9a9/HevhCdEin65zzaZNPLtvHzfk5fHPgoIOERQF+XWd5fX1zK2oYG5lJYtqa9GBTLOZKWlpnJGWxulpaaSZzbEeqhBCCCGEEEIcEAmJjnLPPQdXXAEzZ8Ltt+kwaRIsWQIbNkBOTqyHJ0SLdF3npq1bmVVUxA8jRjA6KSnWQ2pVudvNZ2FdRhVeLwZgTFISU9PTmZqWxrCEhA4VdAkhhBBCCCFES2IeEmma9gLwM6BU1/VBbdlGQqK203W46CLo3RvuuQfYtAkGD4Zzz4X//jfWwxOiVbqus6y+nuM60RH5fLrO4trapsWvl9bXA5BrsTAlLY2paWlMSksj2WSK8UiFEEIIIYQQIlpHCIkmAvXAyxISHR66DhFNDHffrRKjTz+FyZNjNSwh2uzjigr+U1zMy4WF2IzGWA+nzYpdLj4NdBl9WllJjc+HSdMYH9ZlNDA+XrqMhBBCCCGEEB1CzEOiwCDygQ8lJDq8vv4aXnoJnn/CiWHYEPD7Yc0asNliPTQh9uupPXu4ZvNmJqWm8u6gQcR3oqAoyOv380Ogy+jjigpWNjQA0NVqbVr8+tSUFBKky0gIIYQQQggRI20NiWL+qUXTtCuBKwG6d+8e49F0TuvXw4svQmGhjVufeQb27gWrNdbDEuInXZ2Xh81g4LKNG5myahUfDh7c6aZsmQwGTkhJ4YSUFB7o1Ysip5NPKiuZW1nJ66WlPLNvHxZNY2JKClMDC2D3i4uTLiMhhBBCCCFEhyOdREcBXYfp0+Gdd2D+fBg/PqwgH0RFJ/BWaSkXrl/P0Ph4vho2jMROFhS1xu33821NDR8H1jJa19gIQE+branL6KSUFOI6YQeVEEIIIYQQovOQ6WbHmJoaGDEC3G5YsQLS5zwNH30E770nQZHoFD4KrO8zq6DgqO2y2eFwqMCospIvq6po9PuxGQycFOgympqeTm+7PdbDFEIIIYQQQhxlJCQ6Bi1dCuPGwZ13wu0ZT8PVV8PLL6vDoAnRiWxpbMRqMNDtKF5Xy+nzsaCmhrkVFcytrGSzwwFAX7u9afHriSkpWA2GGI9UCCGEEEII0dnFPCTSNO2/wElABlAC3KXr+vP720ZCokO3fDkMHQoG/Gre2datsGEDpKXFemhCtIlf1xm+ZAk1Xi+fDx1KQVxcrId0RGxubOTjyko+rqzkq6oqXLpOnMHAqampai2j9HR6HMWhmRBCCCGEEOLwiXlIdDAkJGo/u3ZB48JVFF44AmbMgGefjfWQhGizZXV1TF65EovBwOdDhzIgPj7WQzqiGn0+vqqubuoy2uF0AjAwLo6p6emckZbG+ORkLNJlJIQQQgghhGgDCYmOYboOI0dCRQVsOOtmbE88Aps2QUFBrIcmRJutbWhg0sqVuP1+Phs6lBGJibEeUkzous6GQJfR3IoKFtTU4NF1Eo1GJqWmNoVGXeSIhkIIIYQQQohWSEh0jFu0CCZMgPOn1PP6rSvRJoz/6Y2E6GC2NDZy6sqVDIyPZ+6QIbEeTodQ5/XyRVUVcwNT04pcLgCGJSRwRloaU9PSGJOUhEm6jIQQQgghhBABEhIJHn0U/vhHmDULrr8e1VqUnh7rYQlxQHY7nSQajaSYzei6ftQe+exg6LrOmoYG5ga6jL6rqcEHpJhMHJ+YSKLRSJzRSJzBgD1wHmc0YjcYmi43r8UZDKoeVrNomjzvQgghhBBCdGISEgl0Hc4+Gz79FDbd9h/yH7keVq+G/PxYD02IA+bw+Thv7Vquy8vjTAk7W1Tt8TAv0GW0pqGBRp+PRr8fR+C80efDdxD7NUCLAVJT4NSGWvNwqqWazWDAIGGUEEIIIYQQ7U5CIgGo5qG//Q1mXrWbhFH94aST4IMPQD6IiU6m0uNh8sqVrGxo4PX+/fllVlash9Qpefz+psCoeYDU6PfjaGOt0eeLvG2zmvsgf7cEg6RD6XxqrRYeThnlPVAIIYQQQhxDJCQSUTwPPor5z3+Et9+Gc8+N9XCEOGA1Xi8/W72a72tquKpLF67IzWX4MbqgdUfn0/WIkMmxn3Bqf7W2BFcHw6JpTYGRvVkYZW8WMB1K3S6BlBBCCCGE6AAkJBIRSkth8ilePq8ZSYZeDuvXg3y4Fp1Qg8/H9Zs381pJCSelpPDJ0KGAmo5mNxpjPDpxpOm6jjMsZNpfd1OLX4cFT45mtwuvO/z+g+6OkkBKCCGEEELEWltDItORGIyIvYwM6NLdxC8+f5qvjadgXLgQJk2K9bCEOGDxRiPPFxbyj969Kfd4AChyOum/eDHnZWRweW4u45OTZaHlY4SmadiNRuxGI+lm82G9r/DuqP0FSgdSr/B42B2oh9/2UAKp9gqh7AYDFoMBq6ZhNRiwGgxYwi5bAzWLrCUlhBBCCHHUkJDoGGEwwEsvwbBhoxlj282XY9KQPiLRmaWazaQGQgEd+HVWFq+XlvJSSQn97HYuz83l8txcUg5zcCCOHUZNI8FkIuEI3NfhCKTKPZ4Wb3uwgVQ4k6Y1hUnNg6WocCkQLFl/IoBqvk1L+24ttArWJCwWQgghhDgwMt3sGLNgAZx8MlwwXefVS+ahnXYqyBQdcZRo8Pl4q7SU5/btY2FtLbvGjqWL1UqJ202G2SxTcYRoQWuBlMPvx+X34/b7cek6ruDXYZddgZo77PKB3K6lfbcnSzA0OsDQqi3bWANH5GvrySShlRBCCCFiSNYkEq2aORN2v/wVT28+Bf71L7juulgPSYh2V+R00tVmA2DSypVsbGzk0pwcZuTm0iNwvRCiY9F1HU94uNRKmBQVQrVjUNXSvr3t8LeSAVoMj+wHGDa19WQ3GiO+lpBcCCGEOLZJSCRa5feDx61jPWsy/PijWsS6S5dYD0uIw2ZOaSnP7tvHvKoqACanpvLHbt2YlJYW45EJIToDfzBcaiF0cvr9+z05fL6fvM1P7sPv5+CO4xdi0rT2CZ8O4LZWgwGzpmEOdGtJUCWEEELEjixcLVplMIDVplH34JPYjh8M19+Eec4bsR6WEIfN+VlZnJ+VxQ6Hg/8UF/NCcTGrGxqYlJZGo8/HLqeTwvj4WA9TCNFBGTQNm9FILHsQvS0ER4caPoWfGn0+KgPrVrVUb49/KWqoKYDmQHgUvGwJC5LMzS63eN1+9tHS/tpjHzJdUAghxLFCOomOYQsWwBcn3ss93AWffAKnnx7rIQlxRPh0HY/fj81o5KXiYn67YQMTkpO5PDeX8zMziZd1uoQQoklwGuDBhE+ewPutO7CP8MvuYD3sctN54Lbhl39qH4fboQZNLQVXBlQIaUAdrTHi6zbWDJrW8tcx2PeB3G9b960FttPC9qe1UAtuL2GeEEK0TDqJxE+aOBHm334r8+/7Au9cF6dKRiSOEUZNwxgIgqakpfFgr148t28fv92wges3b+bC7Gz+2bs3NgmLhBACLRCCWAwGkmI9mFbogbWjWg2fDjKsOpTgqsbn+8l96LqOHzWl0Y86Wmfwsjg0UeERBxA0Nau1tI9goNXWIKs99tHSGJtrqQGgpQi1tVi1xdsewj5bvZ923uf+Gh86Quh5KEFuZ913e9+vhMBHjnQSHeN8Pph0ms6iHzUWL4YBA2I9IiFiQ9d1vqmp4bl9+9jqcPDt8OFomsaXVVUMT0gg1WyO9RCFEEIcQ3RdjwiNwi/7m9Wavg6//X4CqObbd8R9+wI1Pey50MP211LN3+x2etj+D8c+9LDH2Jb9t8c+ml/f0kfmFq9r4cN1ax+323ufB3Q/h7DPlq4Lf84O5vV8IK/1g913x/k03vGFB6tHqjvy/MxMbuvR44g/1sNBOolEmxiN8NrrGscN9fL12Y8z4IMzoH//WA9LiCNO0zQmpqQwMSUFv66jaRr1Xi9nrV6NH/UL4vLcXCYmJ8t/MYQQQhx2WtiHGSHE0at5ANieAdRPhVs+IkPMlraPVQB9KPfbfPtDeS6TTcdeZCKdRAKAJR+XMeJX/TAMGwJffQXyB4kQACyrq+O5fft4raSEWp+PPnY7/+7bl1NTU2M9NCGEEEIIIYRok7Z2EhmOxGBExzfyjEwMDz8I8+ez+76XYz0cITqMEYmJPNm3L/vGjeOlwkKyLRayAlPPVtbXM7eiAl8HCtuFEEIIIYQQ4mBJJ5EI8fvZ0f0EEvZsouqHDfQZkx7rEQnRoV25cSPP7ttHV6uVGTk5XJqTQ77dHuthCSGEEEIIIUQE6SQSB85gwPafp0immjVTb8HhiPWAhOjY/tWnD3MGDmRQfDwzd+6k16JFXLR+fayHJYQQQgghhBAHRUIiESFn0mA2XfUoj1TN4MYbYz0aITo2i8HAeZmZfDxkCDvGjOGu/HyGJSQA6qgsd27fzrqGhhiPUgghhBBCCCHaRqabiRbdcgs8/DC88QZMnx7r0QjR+ayoq+P4Zcvw6DrjkpK4PDeXaVlZxBuNsR6aEEIIIYQQ4hgj083EIbnvHi8f9bmB0QsejvVQhOiUhiUmUjR2LP/o3ZtKr5dLN24k9/vvWVNfH+uhCSGEEEIIIUSLJCQSLTLbTUwdtJv8/9wF27fTgRrOhOg0siwW/titG+tGjeLb4cOZkZND//h4AJ7cs4f/Kyqi0uOJ8SiFEEIIIYQQQpGQSLRu1ix0o5H1p/6OG66XlEiIg6VpGuOTk5nVpw9GTQNgbkUF12/ZQpfvv+c369bxdVUVHWn6rxBCCCGEEOLYIyGRaF23bmj33kv/7XPZ8693eOedWA9IiKPHh0OGsOy447g8N5cPKyo4eeVK/rBlS6yHJYQQQgghhDiGycLVYv+8XvwjR7FnQx1DrRtZusJIz56xHpQQRxeHz8fbZWUUxsUxMimJdQ0N/GXbNq7IzWVKWhomg+T5QgghhBBCiIPX1oWrTUdiMKITM5kwvPIylNvx/8LI9Onw7bdgscR6YEIcPexGI7/JyWn6ervTyaLaWt6vqKCLxcKMnBwuzc2ll90ew1EKIYQQQgghjnby72nx0wYPptvJBTz/nM7OVTUsXRrrAQlxdDszPZ3dY8fy7sCBDE9I4IFduxiyeDGNPl+shyaEEEIIIYQ4ikknkWiz8z67irMKl2M5fiFgjPVwhDiqmQ0Gfp6Zyc8zMylyOllaX0+cUf3cTV65kgFxcVyem8ughIQYj1QIIYQQQghxtJBOItF2p5yCZeUS+Pe/ef112LUr1gMS4tjQ1WbjnIwMQK1flGoy8eTevQxel41kTwAAIABJREFUsoSxy5bx/L591Hu9MR6lEEIIIYQQorOThatF2+k6TJmC//sfKNQ3kDGkC/Png9kc64EJcewpc7t5taSE5/btY11jIy/068eM3Fy8fj9GTUPTtFgPUQghhBBCCNFBtHXhaukkEm2nafDEExg8br4Y/Ad++AHuuCPWgxLi2JRpsXBjt26sGTWK74cPZ1pWFgBP7N3LkCVLeGDnTj6vrKTC44nxSIUQQgghhBCdhYRE4sAUFMAdd9Bt69fcfHEJDz0Ec+fGelBCHLs0TWNscjLxgfWKulut2A0Gbtu+nUmrVpHx3Xf0//FHgl2ja+rrKXI66UhdpEIIIYQQQoiOQaabiQPnckFDA864NMaMgaIi2LIFUlJiPTAhRFC5282K+nqW1ddT6/Uys1cvAMYuW8bC2loyzWaGJyQwPCGBiSkpTE1Pj/GIhRBCCCGEEIdLW6ebydHNxIGzWsFqxeb18v6ti1hkGi8BkRAdTIbFwmlpaZyWlhZx/WMFBSyurWV5IEB6tKiIDY2NTSHRtLVr6WKxMDwxkREJCRTGxWE2SNOpEEIIIYQQxwIJicTBu/deuv/973RfsQIYQHEx5OTEelBCiP0ZnZTE6KSkpq9dfj81gSOjufx+ilwuPqqooHHPHgCsmsZd+fn8pUcPfLrOkro6hsTHYw9MbxNCCCGEEEIcPWS6mTh4ZWVQWAgDB/LFnfP52Vka770HkyfHemBCiEPh03U2NTaqbqO6Ok5JTWVqejrrGhoYuHgxRqAwLq6p2+jnGRn0tNtjPWwhhBBCCCFEK2S6mTj8MjPhoYfg8suZsOVFeveewW9+AytXQm5urAcnhDhYRk2jf3w8/ePjuTA7u+n6rlYr7wwcyPL6epbX1/NlVRWvlpRQYLfT025nYU0NjxQVNa11NCIxkWyLJYaPRAghhBBCCHEgpJOonTmdYDSC2RzrkRwhfj+ceCKsX8/G9zYwYnIGo0fDvHnqeRBCHN1K3W4SjEbijEbeLy/npi1b2Op0NtVzLRbmDxtGn7g4djudeHWdfJsNTdNiOGohhBBCCCGOLdJJFCPPPAM33ghdu0KPHuqUnx953r27Wvv5qGAwwFNPwW9+Q7/UUp54IoMZM+Bvf4O774714IQQh1tWWKfQ2RkZnJ2RQY3Xy4r6epbX1bGsvp5ugTe8WUVFPFJURIrJFNFtdEFWFkYJjYQQQgghhIg56SRqZ4sWwbMfLaFmd1dKt+WwY4c6RLzfH3m73NyWA6TgeVzckR/7IdF1CHzImzEDunWDe++N8ZiEEB3K+oYGFtTUNIVHq+rrSTKZKBk3Dk3TuHfHDordbkYkJDA8MZFB8fFY5chqQgghhBBCHLK2dhJJSNTOdF1n0L8Hsb1qO9eMvIabx99MujWHPXtg50512rEj8nzXLvB4IveTkdF6gNSjByQnH/GH9tNqa2HWLPRbbkWzyjokQoj98waOppYfWPR6xoYNvFNWRq3PB4BJ0zg3I4PZAwcCsLq+nnybjUSTNMEKIYQQQghxICQkiqEtlVuYuWAmr656FYvR0hQW5SS0fHx4nw+Ki0OhUUtBUtgSHwCkpOy/Eyktramx58j5+GOYOhXuuw9uu42vv4YXXoAXX1Sz0oQQ4qf4dZ3tTifL6upYXl9PhtnMTd26oes6ad99R43XSx+7XU1XS0zktNRUjktMjPWwhRBCCCGE6NAkJOoAwsOil3/xMhcOvvCg9qPrUFoaGRo1D5Lq6yO3iY9vPUDKz4esrMMUIp1/Pnz0EaxZw7Nf9ubKK2HmTLj99sNwX0KIY4ZP1/m4oqLpyGrL6urY6XLx5+7deaBXLxp8Pi5ct64pPBqRkEBXq1UWyBZCCCGEEAIJiWKmxlmD1+8lPS696bqtlVvJT8nHaDDy2MLH2F2ze7+dRQdK16GqKrr7KPxyVVXkNjabWkC7tSApN/cgj05WVAT9+8OECegfzeXXv9GYPRu++gomTjzEByqEEGEqPR68uk6WxcKWxkbOXrOGDY2NBH+rpZtMPNOvH+dmZlLn9bLP7abAbscgwZEQQgghhDjGSEgUI7MWzuJP8/7Eab1OY9qAafy88Oek2lOb6jd9ehOzFs3CarT+5DS09lRb2/I0tuDlsrLI25vNavHp1jqR8vLUbVo0axb84Q8wezZ1Z0xjxAhobIQVKyAz8zA+SCHEMa/B52NVWLfRdXl5DE9M5J2yMs5bu5YEo5FhCQkMS0gg3WTimrw8si0W1jc0sLSuDrvRiN1gaDoNT0zEajBQ7/Xi0nXsBgM2g0GCJiGEEEII0alISBQj68rW8fLKl5m9djY7qndgNpiZ3Hsy0wdO5+x+Z5NsS2ZzxWbu++Y+Xln1ClajlVlTZnHFcVfEdNwNDWoB7dY6kfbujby9waCCohY7kfK89PzXTZhuvB4KCli+HMaMgb/+Fe6444g/NCGEYI/LxaeVlU3h0eqGBup8PtaNGkX/+Hj+uXs3N23dGrXdrjFj6GazMXPHDv66Y0fT9bZAiLRt9GhSzGYe272b10pLiQsGTIGw6eXCQkwGA++Vl7Osri6ilmA0cmF2NqCO/Fbt9UbU441G0ltN44UQQgghhGg7CYliTNd1luxdwuy1s3lz7Zvsrt2NxWjhjIIzmDZwGmf1PYvi+mJmfjOTy4dfzgk9TqCsoQyf7jsinUUHyuWC3btb70QqKgK/P3Kb3NxQcGSzwfHHh8Iku11Nkwue/P7Ir4/16+x26NsXCgtVR5cs/C1E+/PrOhqgaRo1Xi8lbjcOvx+Hz6fO/X5OSUnBZjSyuLaWH2pro+oP9+6N1WDg+X37mFNWFlFz+v1sPP54NE3jmk2beKpZ2p5oNFJ7wgkAXLB2LbObtXTmWizsHTcOgHPXrOHLqqqITqd+cXG8M2gQAHds28YWh4O4sHpvu51r8vIAeLusjHqfr6kWZzSSbTYzKCEBgL0uFyZNa6qb5E1HCCGEEOKoIiFRrDgcKlGx2cBqBU3Dr/tZVLSIN9e+yVvr3mJP3R5sJhtT+0xl+sDpnNnnTOIt8fxu7u94YfkLXDPyGm4ZfwvZCdmxfjRt5vHAnj2RAVLl+hLO//xq/mG9nbmlI/F4Yj3Kzsluh379VGAUfurbV9WEEJ2Druu4/H4aAyGS2++nZ+CHeE19PbtdrqaAyeHzYTYYuCRH/dPgub17Wd3QEFHPtlh4om9fAC5av55FzUKs4QkJfDtiBACDfvyRtY2NEeOZlJrKZ0OHAtBz4UJ2hB1G06RpTMvM5LUBAwAYs3QpDr8fW2C6nc1gYEpaGjd26wbA7zZtwqhpTTW7wcCopCROTU3Fr+u8VVYWsa3NYKCb1UoXqxW/rlPm8TRtZ9Y0WXBcCCGEEKKdSUgUK48+Cn/8Y+hri0WFRYHQyG+z8n2en9n59czpUk2x1UOcz8jP6nI4wZnDwoQq/hu/HStGrvUO52bTRLKt6aHQqS3nza8LhFVHXE2NWsS6Sxd83y9iX6mRyZOhpARuuglyctS6RgaDGl746Vi/rq4ONm2CDRsiTzt2qE4jULfr0SM6PCosPIxHrxNCdEqlbjf1wS6nwHmC0cjwxEQA3igpocLrbao1+v0MiIvjokBINWPDBqq9XpyB7Z1+P1PT07kzPx9d1+nyww9N17sCb1J/6NqVfxYU0OjzEf/NN1FjuqNHD/7WsyelbjfZ33/fdL2Gms53f8+e/KFbN3Y5nUxZtappPajg6Xd5eZyRns5up5MHd+2KCqF+lp5OYXw8ZW4386urVQhlNDbVC+x2kk0mXH4/DT4fNoMBq8GAUd48hRBCCHEUkpAoVpYtg/nzwelUHUX7Ofe5nHxjL+XNjBLm5FRSZvOR4NY4aY+JBqOf+V19/HYFPP9+O4zLYjmwYOlgwqiWzj/5BK66Ch55BG68kaXLNMaNA7dbHT0tPx+eeQZOOUWte7RqFfTpo8IPk6kdHvdRxuGAzZujw6ONG9Xi4EEpKS2HR7167WfBcSGEaAd+XccdmH9sMxrx6TqbGhtxBqbgOQPdUL1sNgrj42nw+XipuDii7vT7mZqWxkmpqexxufjDli1R9b907865mZksr6tj8qpVTQFXcObzGwMGMD0riy+rqjh15cqocX4waBA/y8jg/fJyzlmzpul6c6Ajau7gwUxISeHD8nJu2749okvKZjDwaEEBve12FlRX81ZZGdbAdtbA6YrcXFLNZtY2NLCqvj6iZjMYGJWYiMVgoNLjoS4YUmla021kcXQhhBBCtCcJiToZr9/L/B3zmb12Nm+vf5tKRyXx5nhO7zWZGYN+Q6Ypmbc2zOHm/peTrSW2KYSKOj+Ubdzu9nmgVis+sxW3wYZTs9Pot5PW1Y49xca+ajtL19txYMel2TEn2bCn2pl4up2UXDt1Hhtuo53ULnYM8XY118pmU+f2Vr6224+JtMnvV+tCNQ+PNmyAfftCtzOZoKAgOjzq108FS0II0dl5AyGSxWDAEjgy3XanMypkOj4piWyLhW0OBx9WVESFWL/Py6OX3c7XVVXM2rMnavvZAwbQNy6O5/bu5ZZt23D5/bj8fnyBcWwbPZqedjsP7NzJbdu3R42zdNw4Mi0Wbtu2jQd27YqqO044AZvRyB3btvFicXFTeGQ1GIg3GJqmEv5fURHf1NQ0hU9WTSPFZGJmr14AvFdeznaHIyKkSjGZmJqeDsC6hgYafL7Q/jWNeKORTIsFUNMkZfqfEEII0flJSBRDh/oHlcfn4cvtX/Lm2jd5Z8M7VDursZvsOL1OLEYL1466llvH33pk1yzy+1VQdDBhVFERPPwwDB4Mkyerdpjg7RyOppO33omjyoG3zoHe6EBzOjB6nCSaHGiHElIZjT8dJP1U2HSg25jNHWa+V02N6jTauDEyPNq8mYh1orKzW+4+6t5dFs4WQoi28gXWnrIFuoGqPB5K3G5cgeudgTDppJQUzAYDy+rqWFFf33S9KzBl7689emDQNP5bUsLnVVVN17v8fnTgg8GDAbht2zbeLS+P2HeSycT2MWMAOGf1at6vqIgYY0+bjW2B+mkrVvBFdXVEfXB8PKtGjQJg9NKlLKuvj+iUGpeczFsDBwJw4bp17HW5IkKskYmJ3Nq9OwB/27EjIoSyaBoD4uObQqq3y8rQoCmgshgM5Fmt9A6s17XN4cAS6LCyhN1GOq2EEEKIAyMhUQxtvHIj3hovuZfmknpaKprx4P+QcfvczNs6jzfXvcnb696mwdMAgFEzcuHgC3nhnBcwGTpBp8zHH8Po0ZCWdnDb+3xsWOHkxwVOdm9yULTZQfF2B9XFTuZ94MDkdvDUYw4Wfumge5aTbhkOuqQ6yE11MKJ/ZBjVFFLt7+vgAuQHy2A49LApOKWv+dS+n7rOaGzTEL1e2L49uvNo/XqoqgrdLvxIa80Xzo6LO/inSAghxOEXnIYXHkAB9Au8gS+urY0KsZKMRs7PygLg6b172RnoxAruo7fdzl969ADUelXbHI6IEGt8cjLP9usHQMHChex2uXCH/b15QVYW/w0sip6wYAENzQ6PekVuLs/064eu6xjmz496TMH1rhp8Prr/8ENTeBQMkq7r0oWr8/Ko9Hi4cN26iADLomlMz8picloa5W43j+/ZExFQWQ0GTkxOpjA+nmqPh29rapquD96ml81GitmMy++n2uuN2FbWtBJCCNFRSUgUQ9tu28beZ/birfBi7Wol57c55MzIwd7r0A5F5fQ6+WzrZzy77Fk+2fIJXr+XzLhMzi08l9MLTufsfmdjNLQtIIgZrxd8PhVutAO/P9Tl8uGH8OWXqkNm82bYuhXy8tRizwC/+pXqpunTJ3QaNAiOO24/O3e59h8ktSVsOtDbHCqjsW1hUivX6xYrDT4bJTU29lbaKCq3savEyvZ9NnaW2HBgwxk4pXex0rW3jR79bOQX2igYZKPvYCvZuYaO0kglhBCiA9B1HXdgvSoNSAhMBd8YWK/KFXbKtVoZGB+PX9d5taSk6Xp3IIQalZjIaWlpNPp83LJ1a9P1wdtMz8pielYWJW43Z69eHbGty+/nzvx8ruzShXUNDQxcvDhqrM/168dlubksqq1lzLJlUfXgeldfVFVxWrP1royoLq8z0tP5tLKSKzdujAixrAYDT/bpw7DEROZXV/OvPXuwBEOmwPkt3brR1WZjaV0d8yormwKo4O3Ozcgg0WRim8PBFoejqRY8L4yLwxSYaunW9aaaSY4cKIQQxzQJiWLM7/JT/kE5xS8UU/lpJV1v7ErBPwrQ/Tp+hx9j/KGFOQ6Pg7mb5/LWurd4d8O7uH1u4kxxTB80nRnDZjC++3gMWgebI+RwwIQJasrZAw8c9rvzeqGsDHJz1dcPPAALFqgAaccOlVVNmADBg+78+tfqyGHBAKlvX3U6omv16HoomHK5IqfwNZ/Kd7iuC5+DdpDcmPEYbPgsNnSrDWOcFVOCDUuSDYP9wIOrqOuCR+0LPwWPJBj+tcyTE0IIsR+6ruMNBkiB8ySjkQSTiXqvl/WNjVEh1HEJCXS12djtdPJBRUVUCHVJTg594+JYWlfH/xUVRdRcus5jBQUMjI/nvfJybgusZxUM0Ny6zrfDhzMgPp7/Kyri+i1bosa8ffRo8u127t+5k9tbWO+qbNw4MlpY70oDLJpG9YQJ2IxG7ty+nVdKSiI6oeIMBuYPHw7A40VFLKiujpjql2Iy8ffevQGYU1rKFocjIsRKM5s5LzMTgB9ra6nxeiMCsESjkT6BLrbKwN8bwW0lxBJCiMNLQqIOxLXHBQaw5lqp/LySteeuJeuCLHIuzSFpdNIh/0JcVbyK33/8exbsWtB0XXZ8NhcMuoBpA6cxpuuYjhMYzZgBr74KDz6o0pfMTDjrLFVbuVKFFOHTrRISDn6K2n54PGqqldMJQ4ao637xC1ixAnbuDB1m/le/gtdfV5evugq6do3sREpKavehxV6wg+qnwqSwr3WHk5oSJ2VFLir3OqkudlJX5qSh0om3wdXUe2TXnKTanSTbXCRZnMQbndhxYvE7MXjC9u/1ts9jMZn2HyS1Fi4dzttYLB1mvSohhBAdlz8sOAoPorpZrZgNBva4XOxwOlUtEEC5/X7OycjAYjDwQ00NP9bVRe7D7+f+Xr0waBqvFBczr6oqYluAjwJ/GN22bRvvBda7Cm6fbDKxafRooOX1rnrbbGwJrHd16ooVfNlsvauh8fGsCFvv6se6uqaaBpyYksJXw4YBcMqKFWx1ONAATdMwACelpPB8YSEAJy5fTqnHo+qB0xnp6TwcCLFOWL6cBp+vqWbQNM7JyOD2wFTJE5Yvb1pH1BC4zS+zsrguLw+X38/PVq+O2LemaVyYlcVFOTlUezxcvGFDxL414OKcHM7JyKA4cFRGLXC9IbD9b3NyODU1lV1OJ3fv2BGxrQZcmpvL6KQktjQ28s+ioqj6Zbm5DE5IYH1DAy8UF0fsO1jvbbezpr6etwLrfWnNtu9itbKyvp6PKyoi9h0cX7rZzPK6Or6pqYmoacDF2dkkmEwsq6tjaV1d5PbAhdnZWAJrra1vbIx6/qZlZqJpGsvr6tjhdEbs26xpnBFYq2xlfT37XK6IsdsMBk4I/Od2TX09lV5vxL7tBgMjEhMB2NDQQJ3PFzG+OKOxaZrtVocDRwv17jYbALucTry6HvH9tRsMTQv6l7jdTa+d8PElBjokawJ/x4Zvbw4EpQCuQEdl8++vhKTicGtrSNQJFrPp/Kx5oalV1lwrmedlUvJaCfue3UdcYRw5l+aQ97s8jPaD6y4akjOE+TPms6liE3d/fTdvrHmDBk8D/178b2YtmkW3pG78csAvmT5oOqO6jIrtG9DDD6s5YX/8o/q6f/9QSHTddfDdd5G3HzUKfvxRXR45Ui2aE75uz8SJ8Nxzqj5jhlpMJzxkGjkSLrtM1Z94QgUgdjtmm42+drs6JjzqP2bv3r0SLBZcBjs7S2xsKbKR0iUOsFBfD3PnqjW4w911F9x9tzr8/GOPhcKjggKVb3VKwfWU7G2fHqkBKYFTc3V1oUWzlzdbODt8PfKsLCgcodY76t/Hy4DeLvrlu+ia4cToaRZOORxq42C3VfDUlutauk1Dw/63a6+j+wUFA6TDGVAFO6mMxpbPj1RN/uARQoiDYtA0bEYjtlbqeVYrefuZvj82OZmxycmt1i/KyeGinJxW6/f36sX9gaPkteSdQYPwhAVMbl0n/J/P/+rThwqPJ6JLKj5s3cQ/devGXrdbhVSBetewxzMmKYnuVis6NJ0KwxZDHBAfT47Hgx/VEaYDuYEP8QB5FgsNfn9TTQfiwzqMbQYD/rCaP2z8fl2nwedTtbDbNAaCNB+w2+WKqPl1nYpAd5RL11leXx8au67jB6YE/vFZ6/Uyr6qqafvgY5iUmsropCRKPR5ml5ZGjg2YlJbG4IQEdjqdPLFnT8S+dWBSaqoKiRoauHfnzqjv2ZS0NLpYrfxYW8tfWuhCm5qWRrrZzFfV1fxx69ao+tnp6SSYTHxQUcHdwfUcwvwiMxOLwcDrJSU80vyPZuCXJ56Ihlrr7Onww+8CcQYDDRMnAvDQrl28XloaUc82mykePx6A27Zv54P9BJTXbN7M180CymEJCSwfqT4bT1+7lqX19RH1E5KTWRDoopu8ciUbmy0BMTUtrSlAHbFkCXub/W04PTOTNwIL+nf74QfqfL6I+uW5uU1rtdkWLKC58LXWkr75Jirgu71HD+7Mz6fE7ab3woVRAeS9+fn8vmtXtjkcjFm2LCrge7BXLy7KyWFNfT1nBgPQsH08UlDAORkZLK6t5aL16yPCU03TeLyggJNTU/mmuprrt2yJCiif7NOHkUlJzKus5K4WAtCn+valf3w8H1VU8Oju3VEB47P9+tHNZuN/ZWU8t29fVHj2XL9+pJvNzCktZXZZWcTYNNQ04TijkTdKSvi4sjLq+Xu2Xz8MmsbrJSUsqK6OCvgeKSgA4NXiYpbW1zc9viyLhVsCB2I4lkgnUYx467yUvVnGvhf24dzuZMyuMRhMBho2NGDvbcdgPvjOn00VmyiqLWJkl5G8ve5tHvj2AbZXbcere8lPyWfagGlMGziNEbkjYhMYud0qzHE4VMtOz57q+iVLoLQ0tD6P0wmpqXDuuar+2GOwe3fkGj4DBsBf/6rqZ5+t2oDCtz/jDHjpJVVPSVGH+go3Ywa88IK6bDKpOWjhfv97ePxxta+8PPxWGx6jDRc2GnU7dRdcTp9/XM26hbWsGXs5DuxN6/UY4+0MumUqJ905kYrttex88A0yu9nI7mHDkhwIsQYMUAsnOZ2wZ0/0otVH8XQpr1dN+wtfNDsYJpWXh25ns0UvnN2vHyQmhnKJlk7hucX+TprWhhxD19Xrti2BU3uGVz91XXt1XB1OmnZkQ6kDrR3Mi6Yj3v5w7Dv4w7G/U/B73KYfJCGEEEdSeIil6zrGwJQ+r9+PJxhQhYdoRiNGTcPh89HYLGDTgQyzGaOmUev1Uuv1RgRcOtDDZsOgaZS53VQF6uH76B8Xh6ZpFDmdVHi9EfetQVMn0JbGRsqDAWBgHyZNY0wg9FxVX6/qYdvbDaFOo4U1NVHbJ5tMnJyaCsAXVVVUejwRjz/TbOa0QIj3Xnk51V5vxNi7Wq1MDtRfKS6mweeL2H+B3c6UQCfUE3v2NB2JMriPwfHxTfX7d+6MqPlRoejpaWm4/H7+tmNHxPOu6zqnpqYyKS2NWq+Xe8LrgZDwnIwMTk1NpdTt5q4dO6K+d7/JzubElBR2OBzc3cL+r8nLY3xyMusaGiL2H3x+/ty9O8cnJbG4tpa/hY0/+Bz8vVcvhiYk8FVVFffv2hUVgD7Vty+F8fF8UF7Og7t2Rb12Zg8YQL7dzmslJTy6e3fUa3Pe0KFkWyw8uWcP/woEpOH1ZccdR6LJxP07d/LM3r1Rj2/X2LEYNI2bt27l5eLiiJrdaGT32LEAXL5hA2+WlUV8X4Pdj0cDmW7WiXiqPJhTzeg+nR96/IDu0cm+KJvcS3OJHxB/SPuet3UeU16bgtVo5cT8E3F73SzYtQCv30vv1N5MGziN6QOnMyR7yNHf4lhfHxkgOZ1qvliPHioEeP/9yJrDAUOHwimnqK9vvjmy5nTC9Olw0UVQWor/hBPx1DvxNzrRnA6Mbid7r7uPHo//ka+e2sjJ1xRGDWn37U/RbeZVVH2+lNRJLfy8vvYaXHgh/PADXHBBZIBkt8P998PYsbB8uQqzwms2G1xyiXp827apLq3m9WHDVMtTXR3U1h7UUdIOh/LyUGAUftq2TTWDtbeWcowDPcViO6Pmx6y7seLCoquT2e/Cgpu0BDdDBvkZPNBPYpxPPXG+ZuctXXes1Hw+9XPf/PZtOQW3FS1rS5jU1tDpcO+rve6zeaj2U1+3122O1DaHst/9vcm1Vuuo20gYKoQQohOTkKgT0n06FR9XUPyfYirer0D36iSOTqTnzJ6knXbw6/JsqtjEzAUzeW31a1iNVmYMm8HgrMG8s+Edvtz+JT7dR7/0fkwbqDqMBmUNasdHJQAaa71s+b6UnRud7NniYO82JyU7nfzpyV70mZjLfx4u56tb5hKnOclNddA1zUFumosxD51L2omDcS5bh3XWQ2iuZusE/f3vMGYMfPopXHFF9ALU334L48erbqrf/jZ6YMuXq6DoySfVdL9wZjOsXw+9e8PTT8Ojj0aGSHY7/Pe/qtvr3Xfhs8+iQ6gbb1T7WbJEJTzhNbtdTQcEqK5WXTHBWisBlcsFW7bApk1qil9Ln90P5LP+oWx3JO/rYLarqVHnmgYDB6qXwbhx6tS7t3zOOWS6HgqZ2vub15FuH3ycLZ3Cn4cjdbtY3Gdbb9f8+fqprw/XNodrv0I52NS/tVp7vRkfrfvpaDryz0LzQLv5dYfrNp3pPtsS/rf1toe6/ZG8r7Zsv7/n9HBed6Tv72Cuy8tTS6QcBSQk6uQJXPBuAAAgAElEQVTcpW61btHz+yh4pIC009Nw7nTi2OYg5cQUNIN2wPsMhkWbKjbxw2U/oGkaRTVFfLT5I2avnc38nfPx634GZA5g2oBpTB80ncKM6O4X0f527FCNPps3qwBk0yZ1edcuSE6G229XGU1BgZpq1bevOv/1r9UsuRZ5vaE/Quvrobg4ejHqMWNUJ9G6dWoAzTupbrlFhUDvv68CoeadVJ99prqx7r8fZs0K1YPztD0eNcDrrlNBVDirVd0WVMfTyy+HaiYTdOmipg+CmvY3f35kCNW9Ozz7rKrPmqVCqPBOq65d4Te/UfUvvlDPQfj2aWnqCQWorFT3aberc+3Af746mvp6tZzXd9/B99+rZrTgbMusLBUWBYOj445T3w4hhGjVwQZjBxpW7i/E7Izb/NT+2ut7c7TupyP+Pu6IY2oeZje/7nDdpjPdZ1uC/7be9lC3P9j7ErFx5ZXqH+ZHAQmJjhLB74+maWy7bRu7HtiFraeNnBk55FySg617a8sZts7j82A2milvLGfgkwO5eMjF3Dz+Zvy6n3fWv8PstbP5Zuc36OgMyR7StIZRn/Q+7f3wxH6E/230+efwyScqPNq4MZSH1NSo29xwg2rWCQZIffuqwDtmobffrwKg4AKTpaVQVhYZMnk8as0oUCHO+vWRIZXFolYGB3joIZVyhG+fkwP/+5+q//zn8PXXoYWtAUaMgKVL1eWRI0OXgyZOVMETqIWONm5Ulw0GFSSddRa88Ya67tRT1ZMd3kl1yilw002qfvPN6jy8Pny4ug2oTqvwms0GubnqMeh6aN9W62H749PvD2WB33+vzoNrUlos6ikK7zbKyjoswxBCCCGEEAfrcARaLV0+Etcd6fs72Ouys9WRiY4CEhIdhXyNPsrfLWffC/uo/rIaNEg/K51B/xvEwawntLduL7d+fiuvr34dm8nGtSOv5ebxN5MVn8Xeur3MWTeHN9e+yXe71RHHhucMZ/rA6fxy4C/pldqrvR+eOAAeD+zbp5ppQGUoc+eqECl4sIj+/VUoAPDnP6tcJRgg9eunGm0MhtiM/7Dy+1Unk8ejVrcGlYbU1kaGTElJMGGCqr/8cmSI5XSqJ+nyy1V9xozo+uTJqoMKVNdTdbW6Pvieeu216oh6Xq+actfczTerb1x1terWCrJaVWD017+qowCWlMCUKdFT+S67DM48U3WIPfxw9FTA005T4Vd5uTqioNmsThaLOh80iBJ/Jj9+UcfGz3aydJWZZWssNHjMeDCT3juVUeMtjB/rZ9w4GDDIcHS+XoQQQgghhDgGSEh0lHNsd1D8UjH+Rj+9H+oNwM6/7yRtchoJwxMOKDTaWL6Rmd/M5PXVr2M32dl2wzay4kNtBLtrdjNn3Rxmr53Noj2LABjVZVTTGkbdk7u374MTh6S2Vk1Va2hQzTKgsoQFC9QUpKAzz4QPP1SXH30UMjNDAVJKS8eyFz9N11U45XSqBC4hQYVWq1dHT/Xr1QsGD1aLKz3zTPSi6lOnwumnq5Co+XpTTifcequab7hmjVq83OmMPNrZiy+qaXzffRcKw8LNmQPnnafWs5oyJap897hPeXLzZCaWzWEOv8SLEZ9BBU0GixnPB58Qd+IoePttNR8yGEIFg6iXXlKP8cMP1REEm4dU998P6enw1Veqkyy8ZjbDVVepwGvZMtVlFl4zm1UIZjCoOZmVldH3n5enHkhw6qPZ3DGnCAghhBBCCHEESEh0jHHtcbGw90J0l0780HhyL80l+9fZmNNb6GBoxaaKTXyy5ROuH309AP9d/V9O7XVqRGC0o3oHb619izfXvcmSvep7NabrGKYPnM75A86na1LX9n1got3ouuoyCk5Zy8qCX/xC5QqJiaHlgUAFRjfdpDqQ/H61JFHfvmrBY1m7pgPzetV0O6dTdRPFxakQavt2FV4FT263Ws06M1N1In3zTWTN44GzzkLv2o1dn6yj8tk57Nvhpni3h9pyNyY8/NPwJ1KG5XNJ96/4efFTZCR7iDOH3ccLL6gj6736Kjz4YPT+ly1THVj33Qd33qleaOGqqlRaecstqlOqpcdqNMI118BTT0XWbDYVuIFal+q119Rlo1EFSLm5obl2l1wC8+apACm4hlfPnmr6YrC+cGHkIrMDBsCbb6r6xRerlr3w+rBh8O9/h7bftSuyPno0/O1vqj5jhgq5gvevaSrUu/FGVb/8cvX9DB/fxIlqO4Crrw4trBisn3yy+uF2u+G226IXyj35ZDWFsr5eJcThYwvWjz9edbn95z/R9YkTYdAgqKhQUymb18ePVwFhWZkKAcMfm8GgHn9urpqGunRpdH34cLVmWFmZerMKf2yapl678fHq/ouKouu9eqk3qurqyOc2WM/NVa+Fhgb18xF+35qmugw1Tb1Ofb7oevjilkIIIYQQnYSERMcgT5WH0jdKKX6hmLoldWhmjcFzBx/UkdFKG0rp+mhXzEYz1426jj+N+1NEWASwtXIrb659kzfXvcmK4hUATOg+gWkDpnH+gPPJTcxtl8clDj+3W+UIGzeGQqRTToFf/Qp27w5Nawt+fu7bF66/XjWguFzqs1xennxuOhZUV6vMJLi20aJF6rM2qCmM4QtiDx3a8ky7Fvl8kUFWSop6wVVUqFMwXAqexo9X261apQKf8Jquh0KU999XnVzhIZXdDvfeq+pPPAErV4YW3PX7VXj20EOqPnOm6tYK1vx+yM+HRx5R9RtvVD804fVBg1T4AnDRRWoB9vD62LGh+pQpqlss/P6nTIF//EPVhw+HurrI+vTpofHl5kYeiczvV8HR/ferb0xWVuR9+/2q8+uee1RAmNvC+/RDD6npkJs3qx/25v79b3Ufy5apVc+be/VV1eU2fz6cdFJ0/X//g3POUV1mZ50VXf/iC/UG9MYb6k2ouR9/hFGj1ML1V14ZXV+/Xk21fPRRNWWzuaIi9YZ1zz1w993R9ZoaFRT96U+h73O4YHB07bVqDOEhUkKCCr9AjW3OnMh6drZ6zYIKAOfNi6z37KmuA7j0UvVYwwOu/v3h9ddVfcYM2LAhOqB8/HFVv+wy9QYeXj/++NBab1dcocLY8ABs3Dj15g7qe+xyRYZsJ5ygXtOgDijQPIA78UQ4+2z1c3b33ZF1g0HVTzpJBZSPPx4dYE6cqBZIq66GV16JDiAnTFAhbUUFfPBBdH3sWPXzWVamwu/mAeSoUep7UFYGK1ZE14cOVe895eXqUJrNH19hoQrfKyvVf12a13v0UEF0ba16DM3rmZkqoAx2jTY/0lBCQiig9Hqj68EDKwT/dpdfukIIIQ5AW0Oi1o6LJDohc6qZvGvyyLsmj/rV9RS/VEzS6CQAil8ppnFDIzkzcogriPvJfWXFZ7H6mtXM/GYmj/zwCE8sfoJrR17Lnyf8mfS4dAB6p/XmLyf8hb+c8Bc2VWxSgdHaN7n+k+u54ZMbmNhjItMHTue8AedFBUyiY7FY1DSzfv2ia9nZ6nNK8KhrwSApGAwsXao+r8fFRa55dPHF6uBh4Qtwi84vJUVlGMEZal6v+swbviB2sMkmLk59Jg2GRmPHRi6/FMFoVCdbs8X409PVqTVDhqhTa84+W51ac911rdcA7rhj//V//nP/9Vde2X/9k0/2X1++fP/14CJkLYmPD/2gtiQ7W30Dw0MkXQ8dMrFXLxUiNK8nJKj6oEGqS6p5Pbjq+ciRsHZtZICl6+pDPKgXxsKF0fXBg1X9pJNUYBJe9/tDi0dOmgTvvBNd79JF1adMgYyM6HpwPu3UqaF6+G2Cr8HW6sE3tNNPVy/olp674OOzWiMfW/C5A/U4w5//8OcOoFs3FViFjz28Hh+v2kDD6+Fvtg0NKmAMr1dVherbtkUHlOGh4bffRgeUSUmhkOj116MDSLNZ/by5XCroDN8WVNfgSSep/d5+e/Rr8uGH1eumtDQUVoV76ikVEu3YEQqCw736qnp9rV2rptM29957anyLFrUcUH75peqkmzcPLrwwur54sRrfnDlqSmxzGzaoX4DPPqtCxub27FGvzwcfVCFlc7W16nv65z+HguRwwefx6qvVNOUgTVPbBQ9hecklMHt2ZMCUm6uCL4ALLlDvPeH13r3VL3uAc89Vb+jhIdqQIWrxQ1DP3erVkd11o0eHujanTFHfo/D6iSeqUB7Uz255eeT9n3666iwF1ekY3uUXvM9bb1WXTzgh8rGDCs+vu04FcMGDYoTXL7kEfvtbFTD+8pfR9auugmnTVIgc/toK1m+4Qc3T37wZfve76Pqtt6rXzurVoXGG1++8Uz1HP/4Y6iQNd9996jlesCAynA5u/49/qD+q5s0LdaqG3+bxx1X4/cEHarp38+2fflp1aM6ZA2+9FV3/z3/UP1BefRU++ii6/tpr6vLzz6sO0fC6zRY62uy//63e18OlpKij0II6X7EicvvsbHjgAfX1ww+HDiQS1KOHWqcx+DwFj3wbHFvfvqF/CNx9t3pfCzd4sAr1QXXXBn9Ogtsfd1zoe37zzaEDoATrY8eqnxmAP/wh+rk56ST1jw+XS+2/eX3SJPX6rq1V/3hq7swz1c9HeXnoH0Th2//85+q1s2dP9JGCQb1uhw5V/+194YXo7S+8UAXcmzaF/skQXr/kEvW+uWaN+p3avH7ZZep9a/ny0HtAeP2qq9TfaYsWqffQ5vXrrlPvT999p07N69dfr35Xfv21OgpP8/pNN6nLn3+ufr7C62Zz6O+4Tz6JfO1omvo9edll6usPP1TvS+H1lBT1Ty1Q/8DauzeynpkJ55/PsUhCoqNUwuAECv5R0PR1/fJ6imYVsev+XSSfkEzOpTlknp+JKaH1l0C/jH688otXuOOEO5j5zUyeXPIkN45VUyB0XY9Y96hvel/umHgHd0y8g3Vl63hz7ZvMXjuba+dey+8+/h0n55/MtIHTOLf/uWTEZRy+By7ancWi/vk6alTL9fx89TsrGCAtXar+Bpk0Sf0989Zb6v0/eOS14Pkpp0R+XhKdk8mkDiQ3YoRqLADVvPD996HT3/8eOtLzgAGR3UZ9+kiIGDOapoK51hiN+1+gzGJRQUZr4uPVN7w1qanqD9/W5OSoU2vy80OBU0sGDNj//e/vjQ3Um1TwCIUtOeccdWrNJZeoU2tuuKH1GrQcIoT717/2Xw8enbE1X3yx//qaNfuvV1S0XktMDK0HFhR+pJicnNBC/+EhU3A+c+/eqtuneQCZnKzqgwapkKt5Pfh6GTkyukNQ19V+Qb35fPttdH3YMFU/6ST4+OPogLEg8HfVaaepNLx5PRiyhQeI4fXg+M84I7IePAUf/5lnqg8nzY9GFB6Y5OZG1sLbNqdMCR09M3gKHsgBVAiTnR1Zz8wM1SdMiLx/vz/UUgzqDT8tLfK5KywM1QsL1WMNf3zBdeJAtZ3GxUXWg89N8PVjNEZOQw5/fBZL6DUV1NKRFcJfc+H7Cq7fF7598JeU368CquZ1jyd0u9ra6Hrw9e7xqA/7zevB4MHlivwg2rze2KjC99a2r6kJhX3htwnef0WFCiubbx98zCUloW7G8Hrw+dmzR3WJNq8Hbd8eCoGCdbs9VN+wQQVd4cJfWytXhoKE4PY9e4bqP/6ojmYbLviPA1AdgqtWRY5t7NhQSPTZZ6Hp5MH7qK0NhUTvv6+eg+bPbTAkmj1bdTo2f+zBkOjFFyPHDurxn3OO+t4Hw9vwemqqek9oaGj5fbtLFxUSVVXBY49Fb9+rl/pdWVwc6iION2iQCol27gwdUCV8+1GjQiFRS79XTjxR/S5dvTrUaRrujDPUGBcvbvkfZ+edp0Kib7+NDMmCLr5Y/UzPm9fy/V99tXrv+/DDlrt3g9/bt96KDMdB/Z0RDIlefhn++9/Iek5OKCR6+unQYqxBffqEQqLHHgsd9ThoxIhjNiSS6WbHENceF8WvFFP8QjGOzQ5ST09l6CdD27x9RWNFUxfRz17/GQMyB7Q4DS1I13XWlK5pCow2V27GqBk5tdepjOoyirzEPPKS8prOs+KzMGhy+KSjgcul/r4zmVRI8PzzoRCprEzdZts29XfBiy+qUCk8QOrbV/0+kvDg6NDQoP62CHYbff+9mokBqlEjPDQaOTK6mUgIIYQQQrST5p//g9NYmx8GHkIdfX7//7N33uFxVOfbvmdmd7W76pJlWXLvNjbGuHfTq4EQSughgIHQQgIJJQkGwg9DgBCSUAwhQL5QQgsdQq82BONu494lS1aXVrvS7s7M98fR7O5oJWODwTa8t665ZvY855wpO1rtPHrPe5JmaqruTAwSj3esZ2Qkh9E6ZmuqHgwqvbU1XbdtFcEKKkrQMUNT2zv/zAqF0ttrWjKEvbExvb2uJ6PV6+rS23s8O45m3weRnERCp9i2TcMnKtQyb0oe0aooiw9ZTPFZxRSfU0xGyY4zE7fEW5j58kyeWPoEfo+/05xF7fe5uHIx/172b55f+Tzratdh2qarjkf3UJpd6jaPsrvTI6eHy0zye+QJcl+mrk4ZRmPGKCPpwQdVBPqaNclcw5qmtjMyVOTz2rVuAyn1H6LCvodlqX82OsPT5s5V9wSo7xqjR7uNox0FkwiCIAiCIAiC8NWISSTsNM3Lm1n989U0fNQABhQeXUi387pReGwhuq/zyJ5V1au45aNbEmbRa2e8xvQ+03dqn6ZlUtlcSVljGWVNZWxt3JrYLmsqo6xRlTXH0vNpFAQKkuZRu2gkp7wgUOAaDifs/ViWSgWwerWKdnZGaZx3noo2Sv2oOuCA5JD2V15RptLgwSpa1iODaPdJqqpUhLljGn3+eTK6vl8/t2k0bNiOR0kJgiAIgiAIguBGTCJhlwmvDlPxaAUVj1UQLY8yfsN4An0CmBETI9D5E9mq6lXc/end3HXEXWT6Mvmi/At65vb8xsmqbdumsbUxYRqlmkepZtL25u3YuO9jv8fvikrqkd0jzUwqyS7BZ/i+0TEK3w0tLWqIuTNkzbbhuuuUNmJEMo+d16tSRsyYkRy2vWSJGrrWRVJh7VO0tqociakJsZ1clDk5MGFC0jgaP16iywRBEARBEARhR4hJJHxtrLhF0+dN5E5USQSXHr+UaEWUbud1o+tpXfHmdT6ntW3bDLtvGJsaNu3UMLTdQcyMsS20zR2NlBKV5JS3mq2udhoaXTO7uoa2pUYjOds5GTkSlbQXU1OjjKPUZfBglSzZttVQ4ro6lWPTmcHtuOPU5C2ghif7xCvc67FtlS8zdYja0qWqXNeVWZgabdS7t+S0EgRBEARBEAQHMYmE3cbWv21l24PbaF7ajO7X6fLjLnS/tDu5k3I7rL+yeiW3fHgLTy57cqdzFn3b2LZNbaTWZSB1NMStJpI+W0umN9NtHrUb4tYjpwfFmcUYuox/2RG2aWM2m5ihtqUpZftrLGigeTQ0Q1PrDhY8GnUNGs0tGqEWjaZmjcZm6NlbY/8DNUw0nnxaI5ilkZ2nkVugkVuo0bOPRkGR9pX9d7h8C/XREaOyAxoa1Iyrjmn06acqbyGo6LFJk5LG0ciRYgYKgiAIgiAIP1zEJBJ2K7Zt0/RFExWPVFD5eCW9ft2L3r/tjdVq0bqtlUCfQFqbVLPo8R8/zmnDT9sDR75rRGIRypvK04a4JUylpjLKm8qJW3FXO0Mz6JbVbYcJt7tndyfTl7mHzmzXsGLWbjFyUhcrYn31jtvQfBpGltH5EjRAAztuY5u2Wu/K0tbGjNo01Kq1FVNlBjYBn41HU68xv/p4vwsShpHBTplPRtDAV+ojozSjw7Un1/O9M55MU0UXpUYbbdyoNL8fxo1LmkYTJiQnxNC05OK8Fr572s9m3tH2vqLt6vbe2tc37ReSE+N0tN7bte9iP4aRnA3U2W6/dKbtSrmzP0EQBOGHi5hEe4jyOeVsvHkjmldD9+rqgc2rdbjeLfq33bee/o3CjJjYcRtPtoftz2xnxU9WkH9oPt3O60aXH3VJy1+0umY1/fP7Y+gGf/70z5Q3lXNI30PI9GaS5csiP5BPn7w+AFi2ha51nix7b8CyLaqaqzqNRnLKG1sb09rmZuS6zaOUaCRnu0uwy05fA9u2sVp3v6FjR3f+c0EP6Ds2dL7GsqOE6d8mTvLszEw1TG3ZMvjVL23WrLIp2wIGykT612M2xxxps3SRzb8ft+nfx6Zvb5u+vWyKu9holv31DKxvYHi1X8wmk+i2KK3lrZgN6U6XHtA7NZEyuqttX4kPT9a+nQm8vNxtGi1YoGZp3Vk6MpDab3/V671J29V+vktTRdg1OjIfOjMjvun2120Pyfe5s/XeoDnb3/f7sDMTancZUd+G2ZV6H32d9Tdpuzv6+C73/1VlX6fNNynb2/b3XW/vS8exO9jb+tmdff3sZ3DPPbunrz2NmER7iNo3a9n+9HbstqiE9msrZnVYvkM9lnzw+87R2KHBhA1ms0m8Po4ds8EAX5GPwMAAuj/diJpdMpsnc5/E0pJRJcOjw3mm8hk0TePEriey3rueoBUkYAfItDMZHR3NjQ03gga3Zd9GWA8TtIMEbVVnYHwgB8cOBmCedx5ezZtoGyRItpVNUAsmzif13KDdMB6N3VavmWYq9UoqqKBSr6SSSiq0Ciq0CiqppFKrpIoq17UA8Npe8shDszU0S11j19pKrrFQ9dDQbLVf5zU2ifLEa10Zf7qup23rRgdrQ63Ttj1t2x4dTdPUQudr57rsqM6urv0eP0FvkIAnQNAbVNvelO1Oyh3NZ/h2KZImHIY1a1TOo+nTobgYnnkGLrgAGlP8QL9fzcw1fLgyJJYvT+ZCyu14hOa3jtls0rqtlWi5Mo0S6zL3aytspbU1coxOo5Gcta/Eh+HfN4ZbhsMwf756jyKRzr9Efd0vXHta2937MIydNwu+DW1P7vvbME12twEj7H5s+7s1qkwzucTj7tdfVf512uyt+zD3kqjdXSHVWN+Z9ddps6ttv6rs67T5JmV72/6+6+196Th2B3tbP7urr4kT4ZRTvnk/ewNiEn0Pse22qIHdaUC1rb9JWzVsxyRWGaN1cytmk0nmyEwwIVYTQ/fp6tjb6lZ6K6nMrKTF00LYE8Yf9zNu6zgAnh32LJWZlUS8ESKeCBFvhL61fbng8wsA+PmPfk55Tjlhb5gWbwu2ZnPwmoP5w3//AMBRM48ilBFyXbejVxzN9W9dDzb86IIf4bW8BKIB/DE/gViAg1cdzAlLTyCuxbl/2v0uzR/1M7hyMP239yeux1lftJ5AayCh+aN+PLaHxO9R6q+TTVpZ+3qmZlKbWUtVThXV2dVqyammMdgIXtB8GngBD8qUa9vGixp65LxOWVQuHsDAvdZBeUW2ej++w3Xi/t1NfVq2RavZSiQWoTnWjGWnmxtfha7pO28yedqZTCn1/J4AraEgVeVBKrYEKNsY5NdXBinKC3DbLUH+dHsAbBUZVVyszKJXX4WsLFi7Vj0o9O2r/mO6J7FtG7PRdJtInaw7ijTzFHi+2kzq5kP37t2RgoIgCMJ3T2emWSrftsGys30IgiDsq4hJJOwxbMtG0zWsVotPij/BClsUHldIyXkl5B+Zj+7ZPQ+Jtm0TiUcwLZPsDDX/9WdbP6Mp2kRztJlQNERzrJkBBQM4pO8hWLbF5a9dTigWSuihaIhTh53KFeOvoKGlgZ539yQUDSWMDYCbDrqJG6bfwNbGrfS8u2facfzpiD/xy4m/ZH3deo578rjEMDpnuWj0RUzvM53ypnL+ufifZPmyEnUyfZmMLhlNcVYxkViE2kgtmb5Mgt4gXt3L9y1nzLeBbdvErBiRWIRwLEw4FiYST9nupNylxTuvl1refoa8ncWrZeCxg2jxIMSCDOijTKaNq4NUbA2gxYNkB4IUZAXoVhjksOnKiPLYQXKDQYLeHUdFOdteo/OZB3cXtm0Tr41/tZm0rTU9n5MG3iJvYjhbp2ZSkQ/NkHtfEARBEARBEHYXYhIJewWhZSGV7Pr/VRKriuEr8THwvoEU/aiI1vJWGj9tVMPRUnI4ZY3MwpPrIVYfI1oWTehOHU+hB92jq6gq21azQ+1GM8UxnxwjKTsjmy7BLoRjYd5a91bCfApFldl0eP/DmdBjApvqN3HVm1e5tFA0xOxDZ3PSfifx8eaPmfrI1LT9PXfqc/x46I/579r/ctTjR7k0r+7l9TNf59B+h/Lyqpf5+as/x2t48Rk+fIYPr+7lsR89xv7F+/Pftf/lz5/9OVHuM3x4DS+3HnIr3XO68+GmD3l51cvJtm39XDj6QnIyclhcsZgllUsS5U4fh/Q9BK/hZUvDFqrD1a62Xt1LaXYpmqYRM2NomoahGd9bc8u0TFriLbtkRu3IpKpuiFDbFCbUorRWK4ztaVvY9c9mQzNSIpz8eHRPYvEaXtdrj+7Bq3s7r6N13G6HbVLqGBgQAuqBOrBrbaxaC7vaxqq2oArMShO7xsYwDTyWB8My1IJBoEuAYNcggW4Bgt2CBEoCZJZmktE9I2EmeQvFSBUEQRAEQRCEnWFnTaJ9OyOpsNeTNTyLAXcNoN/sftS8WkPFIxVkdM8AoPF/jSw/aXlam5EfjiRvah41L9ew8pyVafroBaPJPjCb8gfLWXPJGgCXkTRmwRgC/QKUzyln8x2bk0m425YRr47AW+il4p8VbP/39qRB1aYPfnAwwYwgza80Y35s0uBtoMnbhObVGOkbSe9rewNQ934dkdURtPUaFd4KAt4ADwQfoMupXQBlkMVr42gNGo2fNzLCM4LqU6qx+9iEoiHqttfR3NLMgJwBxJviDMoZxAPHPEBzvJlwLEzMjBE1o/TOU/vrltWNowYcRdSMEjWjxCyl+z1+AFriLdSEaxLlUTNKzIwRiUcAWFyxmHs/v5eoGcW0kyEepw8/nZyMHF5Y+QI3fnBj2vWuv6aeXCOXez67h7vm3ZWmx38fx9AMLn/9cuZ8MQcNLWEk5erH+LEAACAASURBVGbksvVXWwG46r9X8dra11wGVnFmMS+c9gIAsz+azcKKhUkTTPdRml3KrINmAfDIwkfY0rglYU55dA/dsrrxk+E/AeCV1a9Q31KPR/dgaAYe3UPXzK5M7jUZgHlb5tFqtrr0gkAB/Qv6A7C+bj22bSeMDkNXhktORg4A4VgYj+5J5EL6tswJ5dvbRM0ocx4JM39RhNUbwqzfEqaqLsKYSWFuvEWZTLNuiaD5whR2C5NXFCG7IExWXhjNF0lE2cWsGHEr7lpipiprjbeq1zuok3idUufrDO8DQAOK2pahu9jWAraCvllPmkmWgRevej81ZVh5PV48Hg9erxevz4s3w4vP68NjpBtduqZyaumajobmep1Whr5r9VNe78vtUpfUPtr3tbvqdVRXjEBBEARBEITvDokkEvYY8YY4LRtbVL6jlATdWaOy8OZ5adnUQuNnjcmcSW11ik4twtfFR+P8Rmpfr02UO3X63NAHb6GX6per2f7U9jR92NPD8OR6KLu/jG0Pb0vuu63O+FXj0TN01v1mHWX3lSU0bGVGTY9OB+DLc7+k8rFK1zl58j1MqZ0CwLKTl1H9XLVLz+iVwcRNEwFYfORi6t6sc+nB/YKMW67yMy06dBFN/2tSU54bGpqhkT0umxGvjABgybFLlEnlTItuaOROzmXQfYMAWH7KcqKVUTVsx9Gn5tLnd32wbItl5y+jNdxKQA9gGAZNvibMcSZ5P84jakZZf9d6YnaMAzgAj+FhjWcN24duJ3BggNZYKxWvVBDX4pyRcQaaR+N9831WFq/E6G7QGm2lfnk9hm4wq2gWGPBww8N84f0CK9MiGo0Srg6T7cnmsWGPoRkaV6+5mk+aPyGmxYjGo0SjUXpm9uT9w95HMzSOfOdIPt7+set6jSoaxbxT5qHpGmOfGsvi6sUufXrP6bxz2jugw5AHh7C2bq1LnzFwBi+f8TIA3e7sRmWz+/08ffjpPHHSEwBk3ppJOBZOaIZmcNHoi7j32HuxbIuiO4pcBpRH9zBz1Eyum3odoWiIKf+YkjCfHP28kefx05E/pSZcw09f+KnLoPLoHs7a/yyOHng0FaEKbv7gZsy4gRnzkJdjYGgeljx1EhULxrKqbBuRwY+CbTBurMEZP/GgaTqRpUdx3gkDac3YysurXqZ9IvGjBhxFr9xebKrfxDsb3kkkBgfQUHpxVjEb6jYwd8vcRHsblRfq4D4Hk52RzZqaNSyqWIRpm4mcUaZtMr77eLyGlw11G1hbtxbLtrAsK6EPLxqOpmlsadxCeVO50m0L0zIxbZO+eX2xbIuKUAU1oRpi4RjxcJxoOEo8HCc/kk+0OUptay3NsWZi0RimaWJqJmgQiAWI63HCgTBxfxwrw8L22lheC9uw8Rk+LCzidhyzbWychYWNra5TWw4v0zZVZJemZje0sRP1nB+r7ce21XZqX5ZtueoLu07COGoz63R0V5lj5KUaes4acJeRNKPa96uhpfeN5tJc++vgB0j8rnSopaxdP1rbRANaJ3q7PnbmZ0f766yfne3/q/oEkhMndPB+ppVpGu1/Pb6qrfP71FG9DsvtHey7o7Y78eu60/vupMyjeRJGt/PZ7/wdMXQjEdWZ+rcj8XfGaNs2lO7VvRhGsp5T7kR9GoaRmLQCve28ddRrDde2Uyd126nfUdmu9iHmryAIwnePDDcThN2MbSoTyZnFKd4QxwyZLgMLGzKHZQLQvLyZaEXUlfRbz9ApPKYQgJpXa2jZ1OIysLwFXkovKgVg61+30rKhRQ2rM20wwd/HT69regGw/rr1qr0zBbppk3VAFn1v6gvAijNWEN0WTbS3TZu86Xn0v11FziyYuIBYXQxMEn0UnVzEgD8NAOCTrp9gtViu/ZdeUsrAewZitph8FPgo7Rr1uq4X/W7tR7Qqytyuc9P0vrf2pfd1vYlsiPBZv8/S9AF/HUCPy3oQWhJi/gHpnwUD/jGALmd3oeqTKhYevRDN1shuUfmoqrKr6DWnF7mH51LzYQ1fXvIl/pifHrU9APiy+5eU3l1K5uhMqj+oZsPsDeSGc9mvbD/Q4YOhH1B8UzEZ/TKo+aSG8ifK6V7fnbGbx6LpGk+NeYqiS4vQu+jUz6+n+r1qhlYNZdrGaViaxZ+n/pnCkwuxAzaNKxppXN7IxLKJHLHxCCLeCLOmziJ7ajamYRLaGCJSHmHGphnM2DyDGn8Nv5z8S3yDfZi2SUt1C9FQlHPXncsJZSewOXMz5084H3LAtE1irSqq5/rV1/Oj7T9iac5Szhl5Ttr1Ou6Zu+i+4gTCUz/jn4ecmaa/dPJLHDfsOF5Y+QIn/vvENP3Dcz9kau+p/GvJvzj7P2en6QsuXMCBJQdy/+f3c8lrl6Tpay5fw4CCAfzxkz9yzdvXpOkVV1VQnFXM79/9Pbd8dEua3nx9M0FvkCvfuJJ7PnPPPaprOuYNyti54KULeHjhwy4928hmTf81RMujXFx3Ma95X3PpXRq78MyfngHg2jOv5bOB7vuxV1UvHrv3MQCu+NkVLO29FM3WMCwD3dIZUjaEex5Vx3T12VezqWiTK8Jp2JZhXPOiOucbTr2B2uxadCsZBbXflv346Yc/xdIs/jTjT4R9YXRb6ZqtMaRsCEcsOQJLs3jsoMewNAvd0tFttfSv7M/IjSOxsHh11KuJct1SxkXPmp70qepDzIixsI/6XdHtNlPD1ihqLKIgVEDMiLGlcIvS0cEGwzbIbMnEH/cT1+LUB+sThpmmKZPQF/fhsTzE9biaRAAbW7MTZpphGejoxLU4cSOOranPR1tT9SC57SyWZiXWgOt1R3Wc/XVYvot129f7qjrt+3TO+6teQ+d1EtdkN79O3efX7lPbe74rCt8M53PI+bxJ/VxyyhKvHc1OL0utu6M+2pen1bUNPLYH3dbx4MGwDfc2yTyWjomaaj7q6MqESilLreNsJ+qkttfamZo7MkU1wFZ/exL97aBu+35d7ZzjSD3e9mZrW5ljRjv9oOEylJ3P9ITe9qua2E4xRhP92yTaONc1oduaSuVAO91ON4AhpX8b17GkGqxps++2O9YE7V53+Iz6FW12qo/O2Nmqu7seu3Ccu/JRvKsf2xqJv1OapiVf70JZwvzdW8qc2/gbluUfkk/J+SW7dj33UsQkEgThW8O2beyo7TKg7LiN7tfxZHmwTZuWLS1JA6pt8XX14evqw2wxCS0MJcwnRw8ODuLv5SfeEKfunTqXQWWbNjmTcggOCNJa0Ur1f6rVQ6elHj6xoODYAoIDgkQ2RKh6ripRbts2WND1tK4E+gVoXtFM1TNViXKnn9KLSvH38tP4eSNVz1S5+rctm17X9CKjJIO69+qoetatY0O/2f0SUWxp+7dh8IODMTINKh+vpPqFavf+bZthzw5D9+iU3VdGzSs1rv41j8aI11QU2abZm6j9b22irWVZkAtDXxxK3Iqz9ndrqXm3Bsq86NUaJq2sCsS5JnggTz8NvluX0jCvgdxILn6fH7OrSXxSnIH3DgRg6wNbiTfF6V7QnazCLFryWqgvqic4OKgeHi31cNs3vy9+j5+acA3lTeWJ2edAPZQO7TKUDE8GFaEKtjZudc1QBzCqZBRew8vmhs1sadiS0JzogMk9J2PoBmtq1rClcUta+8P7Hw7Asu3L0tp7dA9HDVA5vj4v+5yyprJEO8u2yIhlcGSPI7Ftm3c2v8PW0FbiZnJ4Xa4vlzMHnIlt2/xr9b/YHNqcGHZnWialgVIuHXIptm0ze8lstjRvUW3tOKZlMiRnCNcOvRbbtrn484vZ1rKNuBXHtE3iVpyJBRO5eejN2LbNkXOPpCZao7S29jO6zuD2wbdj2zYDPxxI2AwTt1X/Fhbnl5zPHf3vIGpG6TavW9rv6BXdruCGHjdQG6tl0OJBafp1xdfxy6JfsqV1C6PXjE7T/9DlD8zMm8mX0S85ePPBafrd3e7mjLwzmN8yn2M3Hpum/73n3zk+93jeD73PqRtPTdOf7Pckh+UcxqsNr3LuhnPTInb+M+g/jM8ez7O1z3LVxqtwHvaceq8Me4WhwaE8XvU4f9j8h8SDpPPQ9MaIN+jp78k/tv2Dv5b9NfFw4/T/5qg3yffmM6dsDo+WP5qIDnJ+3h73Nhl6Bn/b/Df+U/GfZOSRpuHRPLw2XpmO92y4h3eq38HQDAxNPdBme7J5eJQyLe/bcB/z6+cnNEM3KPQVcst+t4AGD214iNWh1UrXdAzNoNhfzOUDLgfgn5v+ybaWbYmhd4ZmUBoo5dRe6po+t+U56mP1CU3XdEoDpRza7VDQ4I3yN4iYEQw92X9JoIQDCw4EYG71XEzbTBybrukU+Yvom932z4b6Fa59a5pGji+HAl8BFhaVLZWJ66rr6j3I0DPI8GRgWSpKT9eT1w6S0T+puL6LpphpO6znlHViYHXWvn0Ey+4+HrRO6nbS3rRM9dkTV7/7MTNG3Iwny51hv2Yc0zQTrx09ZsWwLCsxJNjZtiyLmB1L1m1bO59BzmeN87nibFu2pXSSZaZtJj+fSG47n0euctrqo7Yt21JlJMucbUGAdiZVqokEaSZXh/VSjbEO9M6i/To9nh3UTzXXdqbNrpbv6jHttnLHVCXlH0porvKOtnX0ZHn7dbsy5x9RTv/Qtm2nbDttOuqzszLnWGzdZVa2L0/VE9vt+7U72JelMWHYBGb+YeYuvWd7K2ISCYIgCGo2smaLT942efpNH3fdBZGPa3njHy3UbYxxQN8Yhb4YGaUZ9Lu1H6CizBo/b3TNTpZ/ZD4HvHEAAPP6zCNeH8db6E0s+Yfn0/NXava/bQ9vQw/oeAu9eAo9eAu8eLt68WRJGrzdgTOkz9ANbNumsbUx+eDXtmT5sigIFBC34nxZ9aVLNy2Tnrk96ZXbi0gswnsb33M/eFpxRpWMYnCXwdRF6nj+y+cTBpwz3O6gPgcxpMsQKkIVPLP8GZxhdU6d4wYfx6DCQWyo28C/l/87Yd45dU7f/3QGFAxgRdUKnlr2lKtvy7a4eMzF9Mnrw/zy+Ty59Mm0/q+dci3dc7rz/sb309rbts1th91GUWYRL696mWdWPOPq27ZtHjzuQXIycnhi6RM89+Vzae2fO/U5vIaX+z+/nxdXvehqq2s6b579JqByqb2y5hVMy0wMo8zyZfHBuR8A8IvXf8Hra19PaJZtUZJVwqcXfArAKc+cwjvr31EP1W19DOkyhAUXLQBg0sOTmLd1nuv9n9BjAvPOV2X7378/y7Yvc+mH9TuMt85+C4A+f+7DpoZNLv3EISfy/E+eB6DLH7tQE6lx6ecccA6P/egxADJuySBqRl36pWMv5W/H/I2YGcN3iy/t/rx28rXMPmw2tZFaCv9YmCh3zKRbDrmFa6dcy+aGzex3735pOalmHzqbmaNnsqp6FYf885A0/fbDbufk/U5mUcUiznjujDT9j4f/kcP6Hcb/yv7HlW9cmZb/6vbDbmdc93F8svkTbvnolrQ8WLMPnc3QoqF8sPED7p9/f1oOrVsOvoWeuT15b8N7PLXsqbT93zD9BgqDhby74V3eWPtGmn7N5GvI9GXy3ob3mLd1Hn6Pn4AnQMAbIOAJcNJ+J+HRPWys30htpNalBb3BxGyu+zqpQ5Pbf/44hnrMjLnM/69aO/3uybqp/yj5ruqmHl9H26ntOtr+Ou33tX2m3X90Ur6D5+JdbbMv1bdx/w1s/zdzZ7Y7at/Z9nfZ1+7o98JRFzLnuDkdXr99DTGJBEEQhE655hq45x5obYX+/eHMM9UyqC3oxLZt4g1x4rVxYjUx9AydrBFZAGy+fTOtZa3EamLEamLEa+PkH5pPv9n9sG2bD30fYsfdf1tKLy5l0P2DsOIW80fMx1PQZh4VevEUeCg4uoCCwwqwYhYNHzW4DCYjaHzXl0cQ9gpSH6QdEwkg06eGNTuTFaSaVBlGBiXZKix+Tc0aWuItrj7y/HkMLFRRg59s/iQxmYGTD6w0u5QDuilD+LkVzyXaOXUGFw5mfI/xmJbJQwsecmmmZTK2+1im9Z5GOBbmrrl3Jb5sO8d4eP/DOajPQdRGarn1o1sTucic5eT9TuagPgdR1ljGje/fmMjp5egzR81kWu9prK5Zze/e/V1a+2smX8PkXpP5ovwLrnvnukS5cxx3HH4H47qP490N77r1tmv96I8eZWS3kTz/5fNc/871rr5tbF4/83WGdBnCwwse5nfvpe9/8cWL6ZXbizs+uYNZ789K06t+XUVhsJDr37me2R/PTnvPo7+L4jW8XPrqpdw3/z6X5tW9RH+vTLtLXr2E5758zmUiFWcV8/qZrwNw97y7WVy52KV3y+rG5eNVlNpb696iJlKTMJ8C3gD5/nyGdR0GQF2kDl3TCXgDeHWZSVIQhB8uHUWh7quISSQIgiDskIYGeP55ePxxePddOOooeK0tdU9dHeTn73qftm0Tq24zj2rixGrVdnBgkNzJuZjNJivPXZkod+r0urYXfX7fh5atLXza81NXn7pfp/+d/el+aXdatraw9sq1SYOpzUjKOyiPQL8AVqtFvD6Op8CD7tU7OUpBEIQ9ixM10xJvIRKPEImpWSn3K9oPUMNo19WuS2jhWBjTNrli/BUA/HPxP5m7Za6rbdAb5N8n/xuAi16+iDfWvZHQIrEI/fL7sfry1QAc9OhBfLDpA9cxHdjtwEQU29iHxjK/XH0n1zWdgCfAwX0P5uXT1WQPJz19EtuathHwtplMngDju4/nqklXAXD7x7cTNaMJgyrgDTC4cLBrxlGv4XWZWDkZOQkDVBAEQdj9iEkkCIIg7DTl5co0GjoUtmyBfv3g4INVdNGJJ0JOzre7f9uy0XQNs8Wk8dNGl8EUr41TeFwheVPzaF7RzPJTlicMJidiaei/hlJ8ZjH1H9azaPoiAIxsI2EkDbh7gGq/spntT2zHU+DBCBhoXg3Nq1FwZAG+rj5atrbQvKwZ3asnNM2rkblfJkbQIN4YJ14fT5TrPlVP98tU7YIg7N3ErTgeXQ37LW8qp76l3mUi+T1+pvaeCsBTy56irLHMZUL1yeuTMKlmvjSTjQ0bXe2n9Z7GAzMeAKDkrhIqQhWu/Z814iz+34n/D4DA/wVoibe49ItHX8z9M+7HtExyb8tNRDE5Q/UuGXsJ1065loaWBsY+NDZtKN/l4y5n5uiZVIQqOO7J41zDCHVN5xfjf8Epw05hY/1GLnjpAtcwRF3TuXL8lRze/3BWVa/i+nev77D9+B7jWb59OXfOuzM5a2Lbctm4yxjWdRiLKxbzyKJH0oYy/nzsz+mT14dFFYv4z5f/SRvKeMGoC+ia2ZVFFYt4d8O7Sb2tj7MPOJucjBwWVSxifvn8RJ4wp84pw07B7/GzpHIJK6tXJvOwteVbO37w8Ri6wfLty9nUsMmlG5rBof0OBWBV9Soqmytd+/YaXsaUqufK9XXrqW+pd+kZngwGFapQ5K2NW4nEIq5jy/BkUJqtJmapDlcTM2Ou8/fqXnL9uQCEoqHE0N7U4/MaXuD7FdUhCN81O2sSSYIIQRAEgdJStQD4fHDddSrC6Nxz4eKL4fjj4dZb1dC0bwNNV1/4DL9B/kGdhzBl7pfJuOXjgLakryGTWE0Mb4H68ujv52fg3wamRSo5Q9bCy8NsumVT2qwfB849EF9XH3Vv17HqZ6vS9jtmyRiy9s+i4rEK1l6xNk0fv348gb4BNt+xmY03bVQmk6/NSPLqjP5iNN4CL1v/tpXKxypdmubVGP7icHSvTsU/K6h7t85lUul+PTErYfUr1YRXhF0mlZFlUHxGMQCNnzUS3R51GVhGlkH2gSqPScvWFuxW273/DE3yRQnCDwDHIAIozS5NPLR3xGnDT9thXw8d/9AO9W1XqWT9jokUjoXxe/wJ/ZXTXyEcC7tMqKFdhgJqcoGLRl9EJB4hZsYSQw7756vPQUM3GFM6Jm0oX35A/e3Q0Oia2dU1jNDJ4+b07wzDdIYhWrZFJB4BIBKPsLpmddpQxLqWOgBqI7W8u+HdtP2fOuxUhjGMTQ2beHTRo2lDHU8ceiJ98vqwuGIxN394c9o1mzFoBl0zu/Lx5o+56s2r0vRjBh5DTkYOr695nevfvT5NP3rg0fg9fp5a9lSHQxlbftuCoRs8MP8B/vb531xa6lDG2R/P5rHFj7n0fH8+tdfUAvDrt37N818+79J75fZi05Uq/9l5L57HW+vfcunDioax7BKVP+34J4/fYa61iQ9PTMu1dni/wxO54Pre0zdhcjlG1IlDTuTpU55Wx3J3L+pa6lwm2OnDT+e+Y9XwzZK7Soia0WRya03j/APP57bDbiNqRul5t8qvmKpfPu5yrp96PXWROobfPzxN/82k33D5+MvZ2riVyf+YnKbPmj6Lc0eey+qa1Rz9+NFp+m2H3sZJ+53Ewm0LOe2509L0Px/5Z44ccCRzt8xl5ssz0/QHjn2Ayb0m8/b6txP3Tqr+yAmPMLLbSF5e9TI3fnBj4ro6dZ46+SkGFAzg6eVPc9e8u1xtNTSePfVZSrNL+X+L/x9zvpiT0Jw+Xj79ZXL9ufx9wd95fOnjaft//czX8Rk+7v3fvby46kVXe6/u5ZUzXgHUMNm3N7ztap+TkcMTJz0BqAhF595x2ncNdk3kC7rlw1tYXLk40V7TNHrm9OTOI+4EYNZ7s1hTu8Z1bgMKBnDjQeqa/Pad37K1aaur/bCiYVw96Wp+aMi3QkEQBMFFcTHcfDPcdBN8+qkyi557DjLbRgHMnQvxOEyZAvoeHNGlaRqebA+e7OSfMn8PP90v7d5pm6KTipgem068IY7VYmHHbKyYRUb3DAAKjy3kwLkHYsfshGbHbPy91cNN/qH5DP774ES5HbOxohbeQmVSZY/KpvSi0kS5U0fPUBfKyDLwFnkTmtlsYsfshEkWWRuh/r161/41Q0uYRFX/rqLyX5Wuc/IWeRMm0abZm6h50Z2I2N/Xz4T1EwBYee5K6t+pd+mZIzIZu3gsAAsmLaDpiyZlMHnUFLA5E3MY8aqaWW/h9IVE1kRAbzP2NMg7OI+hjw5N6NHKqPrypgMaFBxVwIA7Byj9oIVYzZaaMUpX72Hh8YX0vq43AIsOXaQMPK2tfx26nNiF7hd3x2q1WH7y8kS/jl50chHFpxUTb4iz+uerE/06x1h0ShGFxxQSrYqy4XcbEu2cPopOLSJvSh6t5a1svXtr8thS+s8emU3L5hYqHq1wnTsaFP24iOCgIJH1bbMqgmsK3aKTi/D38hNeHab29VrXFL0AXU/piq/YR/OXzdS/X582/W7RKUV4872EloVo+l+Ta1peTdMoOrkII9MgtDREaHEobSrgopOK0H06ocUhwqvCae27nNgFTddoWtREy8YW15TGmkej8GiVfLppURPR8qhrimAtQ0uYuqHFIWLVMVf/RtAgZ7wKQwwtDRGvj7vOz8gyErnOmlc0YzabaXpwUBCA8KowVqvl2r+RbeDvpX43I+siajbMVD3LwFeskmu3bG5J3FvOYmQaePPV725rRas67JTzN4IGRqaRyNHWXtczdHSfrkyEFivtvdcMDc1QU4on9u308QPAo3vIzsjuMNm2E7XSEV7Dy11H3tWpnuXLSjw0dkRxVjGvnvFqp3q//H58fN7Hneoju41k6c+XdqpP7T01YYh0xPGDj6f+2vpO9Z+O/Ck/HflTl4FlYydMvAtHX8g5B5zjzodl2xQECgC4bNxlnDXirDQTKt+vfhevnHBlQk9NxOtE4lw96WrOPuBsl57KNZOv4ewRZ7uS9zoGG6jk9OeMOMelpxqA1065lnMOOMeVNDjPn5fQfzP5N1SEKlznX5xVnNCvnng1VeEql94nr09Cv3LCldRF6lz7d4ZpApw78lyao82JtgDjuo9L6KcNO42YFQOSSZ4P7KZmfNQ1nR8P+XFaQmzHwPQaXo4ZcEya3jdfzQjp9/g5pO8haQm3u2er7yUBT4BJPSel6V2CXQCVb25Uyag03YmyyvRmsl/Rfml60BtM6P3y+6XpGYb6jhPwBhLmcGod597ze/yJ+yg18beuqe8wHt2D3+NPO3+H1Ps1df8OrWarihRLaZ9qXje2NrK9eburfXOsOaFvb97OxvqNrvbhWDihb27YzIqqFa6k5pFYJKGvrFnJwm0LXeeWGtH4xbYvWFWzytU+Zsb4ISLDzQRBEISvxLKShtCxx6rcRb16wemnqyFp+++/Z4/vh4IVt7CjttuEMm38PdselNdHiNXGVHlUmUy6TydvmvqCXvdOHa1lrS4Dy5PvodvZ3QAou7+Mlk0tCQ1bRWf1/KX6z+qGWRuIlkfVlytLDRPM2j+LnlcpffWlq4nVxMACbKXnTspN6Mt/shwzZKq2bX0UHFmQ0BcdvAjbtLGttodqC4pOLaLnL3tiRkwWTl6Y6NdZl15USo/LexCtirJw0kLXsWFDr+t60f3i7kQ2RFgwcUGiX0fvf2d/Ss4rIbQ4xIJJC1zHZls2Qx9LH8qYyvAXhtPlhC7UvFbD0mPTHywPePsA8g/NZ/u/t7PitBVp+qjPRpEzLofyv5ezeubqNH3sirFkDs1ky91bWPerdWn6hC0T8Pfws/HmjWyctTFNn1I/BU+uh3W/WceWO7ak6dPj09EMjdU/X035A+UuTQ/oTAtPA2DFWSvY/vh2l+7t6mVypfqv+dITllLzUjuDsr+fCWuVQbnokEXUv+d+cM4amcWYhSrq/YuxX9A0v8ml507J5cCP1MPb/4b+j/DKsEsvOLqAEa8pA3Nuj7lEy9wzsRWdWsSwf6tEzB/lfoTZ6J52vdv53Rjy9yEAvK+/nxZh2OPKHgy4ewBms8lHWR/Rnt6/603fP/QlWhllbre5aXq/2/vR6ze9CK8N87+B/0vTB943kO4/705oaYhF0xapCEFfMsKw/x396XJCF0KLQ6z++Wo0T3IIOHgH8gAAH3dJREFUrO7V6fXbXuROyCW0OMTWP291DZHVvTolF5UQHBCk+ctmal6qSdMLjy/EV+QjsjFC8+LmND3rwCyMoKEmKaiOpemefA+ariUetn4o5pcgCMK+iuQkEgRBEL4VQiF48UUVYfTmm2Cayix6ovN/7ArCPo8TDWJbKSYUqAd6Q1MGXqudjBpp+3qlB3V0j44VtZRBZqf899UGT55Ksm5GTBWtktIWWxkxuldX+bDq4q5jAcjomYHu0RNDLJ12jh4YEEAzNKKVURXp06595vBMNE2jZUuL0tvaOnk/skerKJDIugix6pjr/DSPRs44FSnUvLzZvX9Ay9DInaD+A960oIlYbbJ/bJU3LHeS0us/rleRRim6p8BD3lRlcNa+VYvZaLr27+vmSxigVS9UYYWtpMFog7+3n7zpSq/4VwV21E5efxuCg4OJ9mUPlLn2bds2WQdkkTc1DytmUXZvup4zIYe8KXmYzSZlfytzv/c25B2SR+7EXGK1Mcr+Wua+9jYUzigkZ1wOLVta2PLHLa4IRTtmU3ppKXlT8ggtCbHuqnXYcdtVZ8DdA8ibnkfdO3Ws/NlKV/SjHbMZ8foI8qbnUflEJV+e+WXaPT3q81HkjMmh/MFyVl+UblCOWzmO4OAgW+7awrqr0w3KiVsnktE9g403bWTjjRvTTKTx68bjyfGw+fbNVDxakaaP/HAkmqZRdm8ZdW/XuXQjy2DQ31SOm4rHKmj6oskVJebJ89BnVh8Atv1jG+Ev3VFyvq6+hPlc/lA5LRtbXJFcvu4+ul+sojvKHywnui3qijLz9/HT7SxlnpfPKSdWF3NF+AUGBCj6cVHi3rHCySg3gOCQIIVHFSbaWzHL1T5zWCZ50/OwbZttD21LHLdzfpn7Z5IzLgcrarH9ye0uHSDrgCyyRmRhhk2qX6xOvimOPjKLzCGZxBvj1L5Rm/beZY/JJtAvQKw2Rt27dcnmbUZf9rhs/D39RKuiNHzckNZ/zoQcMrpl0FrRqiIc2+m5k3LxFnppLWsltCiUrk/OxZProWVzC83Lm9P0vKl5GJkGkY0RIqsj6fq0PPQMncj6CC0bWtL03Gm56B6d8NowrVtb087fiYAMrwoTrXCbyxiQN0V9LjSvbCZW5Y4k0X16IkKyeXkzsTq3bgSMxOdmaFkozZxOjaAMLQmpCMoUPDkeMoep0O3Q4lAyStHR8zwEB6vIoaaFTeofOil4C70E+geUvqAp8bfKwVfkw9/bj23bhBa0vTcp/q63qxd/Dz+2aRNaEqI9vm4+MkoysGIW4RXhdL3Uh6/Ih9lidvjeZXTPwFvgxYyYRNZF0tpn9MjAm+fFbDZp2dSSrvfMwJPtId4Ud7+3bf37e/kTOSSj26Lp7XtnYPgN4g1xotvTdX9vP7pPJ1avUhZoXi0Rsfp9QEwiQRAE4Vtn+3Z4+mkoKoKf/ASamuDkk5PL15khTRAEQdh92KaN1WqlmUi+Yh96hk60Okrr5tY0PXdyLkamQfPKZkILQml6yfklGJkGde/XUf9ufZo+4O4B6Bkq11rNKzVu3bQZ+fZIADbevJGqZ6tcuu7XGb9qPAArL1hJ9XPVboOwxJfQl520TA3lhISBFxwUZOwSNYx20SGLqP+wPqFjQ/bobEZ/PhqA+aPmE1rofhjOOyiPke+p4/ts4GdE1rofZguPK2T/l1QI7SfdPiFW6TYKup7Rlf0eV0OgPsz8UJlIKZRcVMLgBwZj2zYf6O5Z5gB6XNWDAXcOIN4Y5+Pc9KFxfW7sQ59ZfWgta2Vej3lpev+7+tPzVz0JrwrzvyHpUWyDHhxE6cxSGuc3smDsgjR96BNDKT69mLr36lh8yOI0ffjLw+kyowvVL1Wz7IRlafrI90cqg/LxSr48K92gHP3FaLJHZVM+p5zVF3dgUK4eR3BgkM13bmb9r9en6RPLJ5JRksGGWRvYdHP60L8pTVPwZHlY+6u1ahhxOw6yDwJg1cxVbPv7NpdmZBtMbVQJ3FecvoLtT7kjKH2lPiaVTQJgyYwl1L7qNuECgwKJe3Ph9IU0fNjg0rNGZzFmvnpG/6b33tySuWkml+vey/pQDfFOoeTCEgbPkXtvZ++91Pfz+4CYRIIgCMJ3ztKlcMopsGqVSoB9zDFqONqMGeD//vwjRhAEQfiekGo+pUbZ6V41xtpqTYlQQ9XDUBMtAMSb4slhqm265k1OCBCtjqZFCOoBHU+OB9u2VbSD7T4OI1vly7ItW0VTpLS3bRtvvhdvoRcrZtGyviV5Hm34inxKb7U6jNbwlfjw5reL5kh5JMzoqaI54qE4LevS+w/0DeDJ9RCrjyX2n9o+MCiAJ9tDrCZGZH16/5nDMjEyDaKVURXl1a7/rAOyMAIGrWWtyWiSlPbZY7PRfTotm1pUvrF2eu7kXDRD6ziSyIb8g9V/sJpXNqdFm2iGlogwDC0LpRmAmk9LRDg2LWpKRGg6GAGD3MkqQrLx88ZEBGhCzzbInaj0hrkNmE3tIonyPYkIzfoP6jHDbt1b5CVnjNLr3qlTudpS8JX4EpNV1Lxeo3K1peDv5SdrRBa2bVPzSk3aMNtA/wCZwzKxYha1r6VHoQUGB8gckokZMTuMUsscnklwYJB4U5y6t9qi1FL2kTUqi0Df9Cg2h5xxOfh7+Yluj6o8fe3InZJLRmkGrWWtiSi31Hsn/5B8fF3VMNrGeY1p7QuOLMBb4CW8JuyOgmuj8LhCPDkempc307SgCU+Ohy4ndEmrt68iJpEgCIKwR7Bt+OILNRztqaegogKWLFF5i+rqICcHDOOr+xEEQRAEQRAEYfewsybRHpyXRhAEQfg+omkwZgzcfTds3QoffphMbP2LX6iE11ddpYykvej/FIIgCIIgCILwg0dMIkEQBOFbwzBg6tTk65NPhrFj4a9/VUbS0KFw33177vgEQRAEQRAEQUgiJpEgCILwnXH88fDCC2oI2pw5UFwMGzcqzTThwQehqmqPHqIgCIIgCIIg/GCRnESCIAjCHsWyQNfhk09gyhQVfXTEESrh9Y9+BJmZe/oIBUEQBEEQBGHfRnISCYIgCPsEettfosmTVYLrq6+GZcvgrLOga1c1Y5ogCIIgCIIgCN8+YhIJgiAIew377w+33aaGoH3wAVx4ocpbBKr8ssvg008l4bUgCIIgCIIgfBuISSQIgiDsdeg6TJumZkjzeFTZtm3w8MMwcSIMHAg33ACrVu3Z4xQEQRAEQRCE7xNiEgmCIAj7BPfcA5WV8Mgj0Lcv/N//wc03J/Xt2/fcsQmCIAiCIAjC9wExiQRBEIR9hpwcOPdceOst2LoV/vAHVb58OZSUwGGHKROpoWGPHqYgCIIgCIIg7JOISSQIgiDsk5SUQL9+ajs/H377W9iwAc47D4qL4ZRTYPPmPXuMgiAIgiAIgrAvISaRIAiCsM9TWqqGnq1dC/PmwcyZ8PnnkJen9LffVomwLWvPHqcgCIIgCIIg7M1o9l40RcyYMWPs+fPn7+nDEARBEL4H2DZomtqeNg0++gh69oTTT1fL4MEQCOzZYxQEQRAEQRCE7wJN076wbXvMV9YTk0gQBEH4vtPcDC++CI8/Dv/9L5gmnHMOPPaY0vv2Ba8XsrKSy4knqogk04RZs9xaVhYMHw5Dhih9wwbIzlblwWDSnBIEQRAEQRCEvYGdNYk838XBCIIgCMKeJDMTzjhDLVVV8Oqr0L270mxbJbwOhZJLVRXU1yu9uRluu02ZQanMmgU33qhmVRs4MFmuaWp/s2fDZZfBli1w5pnpJtMZZ8CECVBdDa+8kq737Qu5uckhcroMEBcEQRAEQRC+ZcQkEgRBEH5QFBWpGdIcNA0eeqjz+jk5EItBa6sykJqa1LqwUOnZ2fDPf7pNpqYmFWkEqq1hKONpw4ZknXHjlEm0ejX87Gfp+336aZV8+5134MgjlfHkGEjZ2XDffar955/D/fenm0ynngrdusG2bbBuXbqemSkRT4IgCIIgCIIbMYkEQRAE4SvQNPD71dKli1vLyoKzz+68bb9+8N57neujR7vNI8eEGjdO6X36wO9/79ZCITWsDZQJ9NZbSd2JeJo8WZlEL78MF12Uvt8vv1TD5R56CP74R7eBlJ0NDzwABQXw0kvw+uvg8Sizy1nffDNkZMCbbyqjKlX3eFQUFcAnn6iE4qm63w8zZih9yRJloDntDEPlijrgAKVv2QKRiHvfGRnK7AMIh9XaMJKLmF+CIAiCIAhfD8lJJAiCIAjfE2wbolFlGOXkqDxL5eWwYkW6yTRzppr97dVX4Ykn3FoopMyd/Hy4/Xb4058gHleLaap1XZ0yc37xC/jLX9zHYRiqDsB558Ejj7j1vDzVHlTE0zPPuPUePZQ5BHD00fDGG2596FB1TgBTpqhjTWX8ePj006S+YoXbZJo2TZ0zwFFHqWuUqh90kBpiCPCTn6hr0153TLCLL1bXxNEMA6ZOhZNPVkMFZ81yG1gej4oAmzZNRaf94x9uzTBg5EgViRYOKwMwVTMMGDRIXaNIBJYtSzfwSkrU+x+NquGM7fsPBNS28xVQTDVBEARB+P4jiasFQRAEQfjWsSy3eeSsnYir6mpobEyWO+bR/vur9cqVKq9TalufDw49VOkffABlZe7+c3KUuQTw5JPKUHI001QmiRM99cc/wtat7v6HDoWrr1b6pZeqaKxUfdIkZe6AMpFqatz7P+64pInUv78ya1L188+Hu+5SJo3fnzRjHK65RrWvqUmPTAO45Rb47W9h40aVm6o999wDV1yhDCLnOqby8MPKnJs3T51Le5yhjG++qYYytjexnn9e5el67TVlJrbXn3gCRo1SubRuuindhHroIXVdXn0V5sxRZbqeXP/lL9C1q9Kfe06Vpeq3364i2l5/Hd59160Zhoqs83jU8S9Y4Na93qSB9/77sGaNu63fr84dlJG4bZu7fWYmTJ+u9CVLVG4yR3N0ZyjpunXQ0uLWg0EoLVV6VZX6/Ujt3+dLRgHG4+o8BEEQBOG7QBJXC4IgCILwreM8+HZGly4dGyEOQ4aopTOcB/bOOP30Heu/+c2O9Xvv3bHePoqpPevWda75fMoksO2kgZVqDOTnK5PC0Ry9oEDpJSXwxRduzTSVAQPQq5caTpiqmaaKpAI11HHOnHQTb8SIpH7DDe62pqmilACKi1UkV/vjy8pSujPsL1WPxZKRSU1NysCzLKVZllpiMaVv3Ahvv52u/+EPSv/0U5V7q73+298q/aWX0t8/ny9pEj3yiMoXlkpBQdIkuuMOZYil0ru3Oi5QRuJbb7n14cNh6VK1fdZZyYg1h4kTYe5ctX3wwbB8uVs/4gg1wyLAgAHKIC0oSC6HH548v7/8RZ1PQYG6VwoKVML9bt0QBEEQhG8NiSQSBEEQBEEQ9jlSh0CmmkiOyVZXp2YnTDWZIGmybdqkIoVS23q9cOCBSl+0SEV7OZppuiON3n1XRcql6l26KGMNVMSWE4Xm6L16wUknKf0vf4HNm9Vx1taqZcoU+L//U3ogoCKVUpk5Ex58UPVXUqJmQHQMpPx8OPFEZYLFYirKztFSF6/323k/BEEQhL0bGW4mCIIgCIIgCPsoLS1uA6muTg1lGzNG5bP65S/T9QsvVNFzFRXKRGrP7Nlw7bUqwmvGDHeUkhNlNXYsNDSohPROeX6+GuYp+asEQRD2XWS4mSAIgiAIgiDso/j9yujpyOzJyFBD8TqjSxc1q6BjHjlG0oQJSrcsle+qtlblbaqtVVFPw4Ypk2j5cjX0LRXDUEnmTzwR5s9XQxVTTaSCAvjxj6FnT7XPykpVnp+/4yGpgiAIwt6FmESCIAiCIAiC8D3C41HD6pyhde3p3RteeCG93BmSN3y4ShqfajLV1SXzh0UiKp/SqlVKq69X5aNGKZPotddUziaHrCxlFr32mur7nXfgqafSI5mOOkrVDYXUsQSDKu+ZpkkUkyAIwneFmESCIAiCIAiCIKDrap2TA9OmdV5v6lQVTeRgmmqImpPUfMoUNQteahRTbW0yX9SmTWp2u9paNXTOYetW1cfdd6tIpfY0NkJ2tpoh8M9/ThpIzrqxUa1/9SuVtDxVz8pSUVOgZgd86SW3XlwMH3+s9MsuUyZZqt6nTzLR+SWXwMKFyVntNA0GD1Yz+4GaNXHNGrc+YoQa7uf0X17u1kePTibav+KK5Lk4+vjxKicVqPOLRt3m2aRJcNppavvKK5PXzNEPOghOOEENY3SSo6dyxBFqtsPGxmTy+NT2M2aoe6KqSs3e2F4/8UQYN07NRpmaUN7RTz0VDjgANmyAf/wjXT/zTHUNV61S+bTac+656j1YuhT+85/09hdcoKLuFixQMyO21y+6CAoL4bPPVD6x9lx2mbq3Pv4YPvkkXb/yShXB99577nvf4de/Vus331QzI6bu3+eDyy9Xr199VZ1jKpmZyRk5X3xRXaNU8vPhpz9V2889p65xKl27Jt/7p55S71HquXfvrt4fgMcfT5q6Dn36wLHHqu3HHoNw2K0PHKhmvAQ1e6Yz+YDD0KHJXG1z5pDGiBEqqX80qvpvz6hR6v5vbu74vR8/Xs3k2dAAzz6brk+erAzs6mr1e92e6dOVYV5R0fFkFIceqsztLVvS742cnOS1+yEhJpEgCIIgCIIgCF8bw0gaQKAilXr37rz+eeepBVRUkmMiFRersiOOUIm7IxE1O6CTHNwZtjZtmjJPnHKnjvNQPHaseiBN1VOHvA0dqh44nXa2rZKAO5SWqgfj1H0XFSX1YFAZCql6aqRTOKxm90vVa2qS+qZNaha91GPPz0/qn36qIrVS9YyMpP7888loq9T3wDEKHn1UrVNTzwYCyiSKxVTy8/YUFiqTqLk5OZQxtX337uq619Upg6693r+/MokqK+HOO9P1/fdXJtGmTXDrren62LHKJFq9Gm66Kf34DjooaRLNmpWuH3OMMok+/xx+97t0/eST1Tl+/DFcf326fu656j19++2O93/JJeo9eOUV+NOf0nXHJHr22aRZ6JCVlTSJ/vUvZeSkUlKSNIn+/ne1j1QGDUqaRH/9qzIwUxk1Kvne33GHMspSmT49aXTcdFPSLHWYMSNpEl17rTJTUjn99KRJdOWV6t5L5cILkybRxReTxq9+pUyi1lZVtz2zZimTqKEhaYSmcued6v6pqFBmYHvmzFEm0aZNcP756foTT6j7c+VK+NnP0vWXXlIm0aJF6j5IZdCgH6ZJJImrBUEQBEEQBEEQhL0W21ZGnG0nzaXUx1gn4ip1JsNU3etVujMjYnt8PqXHYqpOe/x+pbe2puu2nYyia2lJ6qn7z85W63C44/5zctQ6FErXdT2pNzam64aRNDmdGRtT9+3xQF6e2q6tdZ+/Y6A6elWV23wEZY45emWlu29QBqSz/23b0s8tGFS6ZXWsZ2er8zPNjvXcXFUnFks3sEAZrFlZyhjuSC8sVNFaLS0d6127qmMMh9X5peLxKAPp+4LMbiYIgiAIgiAIgiAIgiDstEmkfxcHIwiCIAiCIAiCIAiCIOzdiEkkCIIgCIIgCIIgCIIgiEkkCIIgCIIgCIIgCIIgiEkkCIIgCIIgCIIgCIIgICaRIAiCIAiCIAiCIAiCgJhEgiAIgiAIgiAIgiAIAmISCYIgCIIgCIIgCIIgCIhJJAiCIAiCIAiCIAiCICAmkSAIgiAIgiD8//buP9bXgq4D+PvdvanxY6CJVlwmqIy6OgFjzKRci2pYTKzZ0pTRj61/tNTcCqtVa62x5bK2WMrUoMm0RjKZI4Wo0doyIeKHgCajkksYt1Xkjxkin/44X9tNuQXn3HOf++W8XtvZ+T7Pee7zvL/bZ+f7nPf3+T4XAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAACIkggAAACAKIkAAAAAiJIIAAAAgGxzSdT2vLafbHtP24u381gAAAAAbN62lURtdyW5NMnLk+xN8pq2e7freAAAAABs3nZeSXR2kntm5t6ZeTjJ+5NcsI3HAwAAAGCTtrMkOjHJfQcs71ut+1/a/nTbm9vevH///m2MAwAAAMDBLH7j6pm5bGbOmpmzTjjhhKXjAAAAAOxI21kS3Z/kpAOW96zWAQAAAHCE2c6S6KYkp7Y9pe1Tkrw6yTXbeDwAAAAANmn3du14Zh5p+4YkH0myK8l7ZubO7ToeAAAAAJu3bSVRkszMtUmu3c5jAAAAALB1i9+4GgAAAIDlKYkAAAAAUBIBAAAAoCQCAAAAIEoiAAAAAKIkAgAAACBJZ2bpDP+j7f4k/7R0jkPgmUn+dekQrDUzxFaZIbbKDLFVZoitMkNslRliq55MM/ScmTnh/9voiCqJniza3jwzZy2dg/VlhtgqM8RWmSG2ygyxVWaIrTJDbNVOnCEfNwMAAABASQQAAACAkmi7XLZ0ANaeGWKrzBBbZYbYKjPEVpkhtsoMsVU7bobckwgAAAAAVxIBAAAAoCQ65Nqe1/aTbe9pe/HSeVgvbU9q+xdt72p7Z9s3Lp2J9dN2V9u/a/uhpbOwntoe3/aqtp9oe3fb71g6E+ul7ZtXr2Mfb/u+tk9bOhNHtrbvaftg248fsO4Zba9v+6nV96cvmZEj20Fm6LdWr2W3t7267fFLZuTI9lgzdMDP3tJ22j5ziWyHk5LoEGq7K8mlSV6eZG+S17Tdu2wq1swjSd4yM3uTvCTJ680Qm/DGJHcvHYK19rtJPjwz35rk9JgnnoC2Jyb52SRnzcwLk+xK8uplU7EGLk9y3letuzjJDTNzapIbVstwMJfna2fo+iQvnJkXJfn7JG893KFYK5fna2cobU9K8v1JPn24Ay1BSXRonZ3knpm5d2YeTvL+JBcsnIk1MjMPzMwtq8efzcYfZicum4p10nZPkh9M8q6ls7Ce2h6X5GVJ3p0kM/PwzPzHsqlYQ7uTfEPb3UmOSvLPC+fhCDczf5nk375q9QVJrlg9viLJKw9rKNbKY83QzFw3M4+sFj+aZM9hD8baOMjvoSR5e5KfT7IjbuisJDq0Tkxy3wHL++IPfDap7clJzkzyN8smYc38TjZexB5dOghr65Qk+5P8wepji+9qe/TSoVgfM3N/krdl4x3XB5I8NDPXLZuKNfXsmXlg9fgzSZ69ZBjW3k8m+dOlQ7Be2l6Q5P6ZuW3pLIeLkgiOQG2PSfInSd40M/+5dB7WQ9vzkzw4M3+7dBbW2u4kL07y+zNzZpLPx0c8eAJW9425IBuF47ckObrt65ZNxbqbjf+SeUe8i8+h1/aXsnFbhyuXzsL6aHtUkl9M8itLZzmclESH1v1JTjpgec9qHTxubb8+GwXRlTPzgaXzsFbOSfKKtv+YjY+7fk/b9y4biTW0L8m+mfnKVYxXZaM0gsfre5P8w8zsn5kvJflAkpcunIn19C9tvzlJVt8fXDgPa6jtjyc5P8lrV2UjPF7Py8YbHretzq/3JLml7TctmmqbKYkOrZuSnNr2lLZPycZNGq9ZOBNrpG2zcR+Qu2fmt5fOw3qZmbfOzJ6ZOTkbv3/+fGa8e88TMjOfSXJf29NWq85NcteCkVg/n07ykrZHrV7Xzo2bn7M51yS5aPX4oiQfXDALa6jtedn4GP4rZuYLS+dhvczMHTPzrJk5eXV+vS/Ji1fnSk9aSqJDaHVTtDck+Ug2Tob+eGbuXDYVa+acJBdm4wqQW1dfP7B0KGDH+ZkkV7a9PckZSX5z4TyskdVVaFcluSXJHdk437xs0VAc8dq+L8lfJzmt7b62P5XkkiTf1/ZT2bhC7ZIlM3JkO8gM/V6SY5NcvzqvfseiITmiHWSGdpy64g4AAAAAVxIBAAAAoCQCAAAAQEkEAAAAQJREAAAAAERJBAAAAECURAAAh0zb7277oaVzAABshpIIAAAAACURALDztH1d24+1vbXtO9vuavu5tm9ve2fbG9qesNr2jLYfbXt726vbPn21/vlt/6ztbW1vafu81e6PaXtV20+0vbJtV9tf0vau1X7ettBTBwA4KCURALCjtP22JD+a5JyZOSPJl5O8NsnRSW6emRckuTHJr67+yR8m+YWZeVGSOw5Yf2WSS2fm9CQvTfLAav2ZSd6UZG+S5yY5p+03JvmhJC9Y7ec3tvdZAgA8cUoiAGCnOTfJtye5qe2tq+XnJnk0yR+ttnlvku9se1yS42fmxtX6K5K8rO2xSU6cmauTZGa+ODNfWG3zsZnZNzOPJrk1yclJHkryxSTvbvvDSb6yLQDAEUNJBADsNE1yxcycsfo6bWZ+7TG2m03u/78OePzlJLtn5pEkZye5Ksn5ST68yX0DAGwbJREAsNPckORVbZ+VJG2f0fY52TgvetVqmx9L8lcz81CSf2/7Xav1Fya5cWY+m2Rf21eu9vHUtkcd7IBtj0ly3Mxcm+TNSU7fjicGALAVu5cOAABwOM3MXW1/Ocl1bb8uyZeSvD7J55OcvfrZg9m4b1GSXJTkHasS6N4kP7Faf2GSd7b99dU+fuT/OOyxST7Y9mnZuJLp5w7x0wIA2LLObPZKagCAJ4+2n5uZY5bOAQCwFB83AwAAAMCVRAAAAAC4kggAAACAKIkAAAAAiJIIAAAAgCiJAAAAAIiSCAAAAIAoiQAAAABI8t9cJfvKNrGeZQAAAABJRU5ErkJggg==" + }, + "metadata": {} + } + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Acknowledgement\n", "\n", "This tutorial is inspired by some examples from [xlvector/github](https://github.com/xlvector/)." - ] + ], + "metadata": {} } ], "metadata": { @@ -1717,4 +1122,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file diff --git a/example/recommenders/demo2-dssm.ipynb b/example/recommenders/demo2-dssm.ipynb index d0cd3ed65771..fcf19988107b 100644 --- a/example/recommenders/demo2-dssm.ipynb +++ b/example/recommenders/demo2-dssm.ipynb @@ -2,36 +2,32 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, "source": [ "# Content-based recommender using Deep Structured Semantic Model\n", "\n", "An example of how to build a Deep Structured Semantic Model (DSSM) for incorporating complex content-based features into a recommender system. See [Learning Deep Structured Semantic Models for Web Search using Clickthrough Data](https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/). This example does not attempt to provide a datasource or train a model, but merely show how to structure a complex DSSM network." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [], "source": [ "import warnings\n", "\n", "import mxnet as mx\n", - "from mxnet import gluon, nd, autograd, sym\n", - "import numpy as np\n", + "from mxnet import gluon, np, npx, autograd, sym\n", + "import numpy as onp\n", "from sklearn.random_projection import johnson_lindenstrauss_min_dim\n" - ] + ], + "outputs": [], + "metadata": { + "collapsed": false + } }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], "source": [ "# Define some constants\n", "max_user = int(1e5)\n", @@ -42,48 +38,50 @@ "epsilon_proj = 0.25\n", "\n", "ctx = mx.gpu() if mx.context.num_gpus() > 0 else mx.cpu()" - ] + ], + "outputs": [], + "metadata": { + "collapsed": true + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Bag of words random projection" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "A previous version of this example contained a bag of word random projection example, it is kept here for reference but not used in the next example.\n", "Random Projection is a dimension reduction technique that guarantees the disruption of the pair-wise distance between your original data point within a certain bound.\n", "What is even more interesting is that the dimension to project onto to guarantee that bound does not depend on the original number of dimension but solely on the total number of datapoints.\n", "You can see more explanation [in this blog post](http://jasonpunyon.com/blog/2017/12/02/fun-with-random-numbers-random-projection/)" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "source": [ + "proj_dim = johnson_lindenstrauss_min_dim(num_samples, epsilon_proj)\n", + "print(\"To keep a distance disruption ~< {}% of our {} samples we need to randomly project to at least {} dimensions\".format(epsilon_proj*100, num_samples, proj_dim))" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "To keep a distance disruption ~< 25.0% of our 10000 samples we need to randomly project to at least 1414 dimensions\n" ] } ], - "source": [ - "proj_dim = johnson_lindenstrauss_min_dim(num_samples, epsilon_proj)\n", - "print(\"To keep a distance disruption ~< {}% of our {} samples we need to randomly project to at least {} dimensions\".format(epsilon_proj*100, num_samples, proj_dim))" - ] + "metadata": {} }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, - "outputs": [], "source": [ "class BagOfWordsRandomProjection(gluon.HybridBlock):\n", " def __init__(self, vocab_size, output_dim, random_seed=54321, pad_index=0):\n", @@ -102,38 +100,43 @@ " self.proj = self.params.get_constant('proj', value=proj)\n", "\n", " def _random_unit_vecs(self, vocab_size, output_dim, random_seed):\n", - " rs = np.random.RandomState(seed=random_seed)\n", + " rs = onp.random.RandomState(seed=random_seed)\n", " W = rs.normal(size=(vocab_size, output_dim))\n", " Wlen = np.linalg.norm(W, axis=1)\n", " W_unit = W / Wlen[:,None]\n", " return W_unit\n", "\n", - " def hybrid_forward(self, F, x, proj):\n", + " def forward(self, x, proj):\n", " \"\"\"\n", " :param nd or sym F:\n", " :param nd.NDArray x: index of tokens\n", " returns the sum of the projected embeddings of each token\n", " \"\"\"\n", - " embedded = F.Embedding(x, proj, input_dim=self._vocab_size, output_dim=self._output_dim)\n", + " embedded = npx.embedding(x, proj, input_dim=self._vocab_size, output_dim=self._output_dim)\n", " return embedded.sum(axis=1)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 5, - "metadata": {}, - "outputs": [], "source": [ "bowrp = BagOfWordsRandomProjection(1000, 20)\n", "bowrp.initialize()" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "source": [ + "bowrp(mx.np.array([[10, 50, 100], [5, 10, 0]]))" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "\n", @@ -148,28 +151,28 @@ "" ] }, - "execution_count": 6, "metadata": {}, - "output_type": "execute_result" + "execution_count": 6 } ], - "source": [ - "bowrp(mx.nd.array([[10, 50, 100], [5, 10, 0]]))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "With padding:" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "source": [ + "bowrp(mx.np.array([[10, 50, 100, 0], [5, 10, 0, 0]]))" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "\n", @@ -184,25 +187,21 @@ "" ] }, - "execution_count": 7, "metadata": {}, - "output_type": "execute_result" + "execution_count": 7 } ], - "source": [ - "bowrp(mx.nd.array([[10, 50, 100, 0], [5, 10, 0, 0]]))" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "# Content-based recommender / ranking system using DSSM" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "For example in the search result ranking problem:\n", "You have users, that have performed text-based searches. They were presented with results, and selected one of them.\n", @@ -213,54 +212,52 @@ "The network will jointly learn embeddings for users and query text making up the \"Query\", title and image making the \"Item\" and learn how similar they are.\n", "\n", "After training, you can index the embeddings for your items and do a knn search with your query embeddings using the cosine similarity to return ranked items" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 8, - "metadata": {}, - "outputs": [], "source": [ "proj_dim = 128" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 9, - "metadata": {}, - "outputs": [], "source": [ "class DSSMRecommenderNetwork(gluon.HybridBlock):\n", " def __init__(self, query_vocab_size, proj_dim, max_user, title_vocab_size, hidden_units, random_seed=54321, p=0.5):\n", " super(DSSMRecommenderNetwork, self).__init__()\n", - " with self.name_scope():\n", " \n", - " # User/Query pipeline\n", - " self.user_embedding = gluon.nn.Embedding(max_user, proj_dim)\n", - " self.user_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", - " \n", - " # Instead of bag of words, we use learned embeddings + stacked biLSTM average\n", - " self.query_text_embedding = gluon.nn.Embedding(query_vocab_size, proj_dim)\n", - " self.query_lstm = gluon.rnn.LSTM(hidden_units, 2, bidirectional=True)\n", - " self.query_text_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\") \n", - " \n", - " self.query_dropout = gluon.nn.Dropout(p)\n", - " self.query_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", + " # User/Query pipeline\n", + " self.user_embedding = gluon.nn.Embedding(max_user, proj_dim)\n", + " self.user_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", + " \n", + " # Instead of bag of words, we use learned embeddings + stacked biLSTM average\n", + " self.query_text_embedding = gluon.nn.Embedding(query_vocab_size, proj_dim)\n", + " self.query_lstm = gluon.rnn.LSTM(hidden_units, 2, bidirectional=True)\n", + " self.query_text_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\") \n", + " \n", + " self.query_dropout = gluon.nn.Dropout(p)\n", + " self.query_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", "\n", - " # Item pipeline\n", - " # Instead of bag of words, we use learned embeddings + stacked biLSTM average\n", - " self.title_embedding = gluon.nn.Embedding(title_vocab_size, proj_dim)\n", - " self.title_lstm = gluon.rnn.LSTM(hidden_units, 2, bidirectional=True)\n", - " self.title_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", - " \n", - " # You could use vgg here for example\n", - " self.image_embedding = gluon.model_zoo.vision.resnet18_v2(pretrained=False).features \n", - " self.image_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", - " \n", - " self.item_dropout = gluon.nn.Dropout(p)\n", - " self.item_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", + " # Item pipeline\n", + " # Instead of bag of words, we use learned embeddings + stacked biLSTM average\n", + " self.title_embedding = gluon.nn.Embedding(title_vocab_size, proj_dim)\n", + " self.title_lstm = gluon.rnn.LSTM(hidden_units, 2, bidirectional=True)\n", + " self.title_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", + " \n", + " # You could use vgg here for example\n", + " self.image_embedding = gluon.model_zoo.vision.resnet18_v2(pretrained=False).features \n", + " self.image_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", + " \n", + " self.item_dropout = gluon.nn.Dropout(p)\n", + " self.item_mlp = gluon.nn.Dense(hidden_units, activation=\"relu\")\n", " \n", - " def hybrid_forward(self, F, user, query_text, title, image):\n", + " def forward(self, user, query_text, title, image):\n", " # Query\n", " user = self.user_embedding(user)\n", " user = self.user_mlp(user)\n", @@ -271,7 +268,7 @@ " query_text = query_text.mean(axis=0)\n", " query_text = self.query_text_mlp(query_text)\n", " \n", - " query = F.concat(user, query_text)\n", + " query = np.concatenate([user, query_text])\n", " query = self.query_dropout(query)\n", " query = self.query_mlp(query)\n", " \n", @@ -285,26 +282,23 @@ " image = self.image_embedding(image)\n", " image = self.image_mlp(image)\n", " \n", - " item = F.concat(title_text, image)\n", + " item = np.concatenate([title_text, image])\n", " item = self.item_dropout(item)\n", " item = self.item_mlp(item)\n", " \n", " # Cosine Similarity\n", " query = query.expand_dims(axis=2)\n", " item = item.expand_dims(axis=2)\n", - " sim = F.batch_dot(query, item, transpose_a=True) / (query.norm(axis=1) * item.norm(axis=1) + 1e-9).expand_dims(axis=2)\n", + " sim = npx.batch_dot(query, item, transpose_a=True) / np.expand_dims((np.norm(query, axis=1) * np.norm(item, axis=1) + 1e-9), axis=2)\n", " \n", " return sim.squeeze(axis=2)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [], "source": [ "network = DSSMRecommenderNetwork(\n", " query_vocab_size,\n", @@ -320,1737 +314,67 @@ "# Load pre-trained vgg16 weights\n", "with network.name_scope():\n", " network.image_embedding = gluon.model_zoo.vision.resnet18_v2(pretrained=True, ctx=ctx).features" - ] + ], + "outputs": [], + "metadata": { + "collapsed": false, + "scrolled": false + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "It is quite hard to visualize the network since it is relatively complex but you can see the two-pronged structure, and the resnet18 branch" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "source": [ + "mx.viz.plot_network(network(\n", + " mx.sym.var('user'), mx.sym.var('query_text'), mx.sym.var('title'), mx.sym.var('image')),\n", + " shape={'user': (1,1), 'query_text': (1,30), 'title': (1,30), 'image': (1,3,224,224)},\n", + " node_attrs={\"fixedsize\":\"False\"})" + ], "outputs": [ { + "output_type": "execute_result", "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "plot\n", - "\n", - "\n", - "user\n", - "\n", - "user\n", - "\n", - "\n", - "dssmrecommendernetwork0_embedding0_fwd\n", - "\n", - "dssmrecommendernetwork0_embedding0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_embedding0_fwd->user\n", - "\n", - "\n", - "1\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense0_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense0_fwd->dssmrecommendernetwork0_embedding0_fwd\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense0_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense0_relu_fwd->dssmrecommendernetwork0_dense0_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "query_text\n", - "\n", - "query_text\n", - "\n", - "\n", - "dssmrecommendernetwork0_embedding1_fwd\n", - "\n", - "dssmrecommendernetwork0_embedding1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_embedding1_fwd->query_text\n", - "\n", - "\n", - "30\n", - "\n", - "\n", - "dssmrecommendernetwork0_transpose0\n", - "\n", - "dssmrecommendernetwork0_transpose0\n", - "\n", - "\n", - "dssmrecommendernetwork0_transpose0->dssmrecommendernetwork0_embedding1_fwd\n", - "\n", - "\n", - "30x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape0\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape1\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape1\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape2\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape2\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape3\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape3\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape4\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape4\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape5\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape5\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape6\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape6\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape7\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape7\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape8\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape8\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape9\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape9\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape10\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape10\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape11\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape11\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape12\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape12\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape13\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape13\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape14\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape14\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape15\n", - "\n", - "dssmrecommendernetwork0_lstm0_reshape15\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape0\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape1\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape2\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape3\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape4\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape5\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape6\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape7\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape8\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape9\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape10\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape11\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape12\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape13\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape14\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape15\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_0\n", - "\n", - "dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_1\n", - "\n", - "dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_1\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_rnn0\n", - "\n", - "dssmrecommendernetwork0_lstm0_rnn0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_transpose0\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_lstm0__rnn_param_concat0\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_0\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_1\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_mean0\n", - "\n", - "dssmrecommendernetwork0_mean0\n", - "\n", - "\n", - "dssmrecommendernetwork0_mean0->dssmrecommendernetwork0_lstm0_rnn0\n", - "\n", - "\n", - "1x256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense1_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense1_fwd->dssmrecommendernetwork0_mean0\n", - "\n", - "\n", - "256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense1_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense1_relu_fwd->dssmrecommendernetwork0_dense1_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_concat0\n", - "\n", - "dssmrecommendernetwork0_concat0\n", - "\n", - "\n", - "dssmrecommendernetwork0_concat0->dssmrecommendernetwork0_dense0_relu_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_concat0->dssmrecommendernetwork0_dense1_relu_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dropout0_fwd\n", - "\n", - "dssmrecommendernetwork0_dropout0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_dropout0_fwd->dssmrecommendernetwork0_concat0\n", - "\n", - "\n", - "256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense2_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense2_fwd->dssmrecommendernetwork0_dropout0_fwd\n", - "\n", - "\n", - "256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense2_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense2_relu_fwd->dssmrecommendernetwork0_dense2_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_expand_dims0\n", - "\n", - "dssmrecommendernetwork0_expand_dims0\n", - "\n", - "\n", - "dssmrecommendernetwork0_expand_dims0->dssmrecommendernetwork0_dense2_relu_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "title\n", - "\n", - "title\n", - "\n", - "\n", - "dssmrecommendernetwork0_embedding2_fwd\n", - "\n", - "dssmrecommendernetwork0_embedding2_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_embedding2_fwd->title\n", - "\n", - "\n", - "30\n", - "\n", - "\n", - "dssmrecommendernetwork0_transpose1\n", - "\n", - "dssmrecommendernetwork0_transpose1\n", - "\n", - "\n", - "dssmrecommendernetwork0_transpose1->dssmrecommendernetwork0_embedding2_fwd\n", - "\n", - "\n", - "30x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape0\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape1\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape1\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape2\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape2\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape3\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape3\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape4\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape4\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape5\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape5\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape6\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape6\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape7\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape7\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape8\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape8\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape9\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape9\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape10\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape10\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape11\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape11\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape12\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape12\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape13\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape13\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape14\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape14\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape15\n", - "\n", - "dssmrecommendernetwork0_lstm1_reshape15\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape0\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape1\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape2\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape3\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape4\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape5\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape6\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape7\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape8\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape9\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape10\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape11\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape12\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape13\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape14\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape15\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_0\n", - "\n", - "dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_1\n", - "\n", - "dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_1\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_rnn0\n", - "\n", - "dssmrecommendernetwork0_lstm1_rnn0\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_transpose1\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_lstm1__rnn_param_concat0\n", - "\n", - "\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_0\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_1\n", - "\n", - "\n", - "1x128\n", - "\n", - "\n", - "dssmrecommendernetwork0_mean1\n", - "\n", - "dssmrecommendernetwork0_mean1\n", - "\n", - "\n", - "dssmrecommendernetwork0_mean1->dssmrecommendernetwork0_lstm1_rnn0\n", - "\n", - "\n", - "1x256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense3_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense3_fwd->dssmrecommendernetwork0_mean1\n", - "\n", - "\n", - "256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense3_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense3_relu_fwd->dssmrecommendernetwork0_dense3_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "image\n", - "\n", - "image\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm0_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm0_fwd->image\n", - "\n", - "\n", - "3x224x224\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_conv0_fwd\n", - "\n", - "Convolution\n", - "7x7/2x2, 64\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_conv0_fwd->dssmrecommendernetwork0_resnetv21_batchnorm0_fwd\n", - "\n", - "\n", - "3x224x224\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm1_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_conv0_fwd\n", - "\n", - "\n", - "64x112x112\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_relu0_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_relu0_fwd->dssmrecommendernetwork0_resnetv21_batchnorm1_fwd\n", - "\n", - "\n", - "64x112x112\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_pool0_fwd\n", - "\n", - "Pooling\n", - "max, 3x3/2x2\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_pool0_fwd->dssmrecommendernetwork0_resnetv21_relu0_fwd\n", - "\n", - "\n", - "64x112x112\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_pool0_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation0\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation0->dssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv0_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 64\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation0\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage1_conv0_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation1\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation1->dssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv1_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 64\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation1\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus0\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus0\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus0->dssmrecommendernetwork0_resnetv21_pool0_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus0->dssmrecommendernetwork0_resnetv21_stage1_conv1_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage1__plus0\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation2\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation2->dssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv2_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 64\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation2\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage1_conv2_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation3\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_activation3->dssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv3_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 64\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation3\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus1\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus1\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus1->dssmrecommendernetwork0_resnetv21_stage1__plus0\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage1__plus1->dssmrecommendernetwork0_resnetv21_stage1_conv3_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_stage1__plus1\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation0\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation0->dssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv0_fwd\n", - "\n", - "Convolution\n", - "3x3/2x2, 128\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation0\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage2_conv0_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation1\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation1->dssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv1_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 128\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation1\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv2_fwd\n", - "\n", - "Convolution\n", - "1x1/2x2, 128\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation0\n", - "\n", - "\n", - "64x56x56\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus0\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus0\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus0->dssmrecommendernetwork0_resnetv21_stage2_conv1_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus0->dssmrecommendernetwork0_resnetv21_stage2_conv2_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage2__plus0\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation2\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation2->dssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv3_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 128\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation2\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage2_conv3_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation3\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_activation3->dssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv4_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 128\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2_conv4_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation3\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus1\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus1\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus1->dssmrecommendernetwork0_resnetv21_stage2__plus0\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage2__plus1->dssmrecommendernetwork0_resnetv21_stage2_conv4_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_stage2__plus1\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation0\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation0->dssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv0_fwd\n", - "\n", - "Convolution\n", - "3x3/2x2, 256\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation0\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage3_conv0_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation1\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation1->dssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv1_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 256\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation1\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv2_fwd\n", - "\n", - "Convolution\n", - "1x1/2x2, 256\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation0\n", - "\n", - "\n", - "128x28x28\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus0\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus0\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus0->dssmrecommendernetwork0_resnetv21_stage3_conv1_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus0->dssmrecommendernetwork0_resnetv21_stage3_conv2_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage3__plus0\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation2\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation2->dssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv3_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 256\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation2\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage3_conv3_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation3\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_activation3->dssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv4_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 256\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3_conv4_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation3\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus1\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus1\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus1->dssmrecommendernetwork0_resnetv21_stage3__plus0\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage3__plus1->dssmrecommendernetwork0_resnetv21_stage3_conv4_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_stage3__plus1\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation0\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation0->dssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv0_fwd\n", - "\n", - "Convolution\n", - "3x3/2x2, 512\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation0\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage4_conv0_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation1\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation1->dssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv1_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 512\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation1\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv2_fwd\n", - "\n", - "Convolution\n", - "1x1/2x2, 512\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation0\n", - "\n", - "\n", - "256x14x14\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus0\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus0\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus0->dssmrecommendernetwork0_resnetv21_stage4_conv1_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus0->dssmrecommendernetwork0_resnetv21_stage4_conv2_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage4__plus0\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation2\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation2->dssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv3_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 512\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation2\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage4_conv3_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation3\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_activation3->dssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv4_fwd\n", - "\n", - "Convolution\n", - "3x3/1x1, 512\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4_conv4_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation3\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus1\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus1\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus1->dssmrecommendernetwork0_resnetv21_stage4__plus0\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_stage4__plus1->dssmrecommendernetwork0_resnetv21_stage4_conv4_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm2_fwd\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm2_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage4__plus1\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_relu1_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_relu1_fwd->dssmrecommendernetwork0_resnetv21_batchnorm2_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_pool1_fwd\n", - "\n", - "Pooling\n", - "avg, 1x1/1x1\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_pool1_fwd->dssmrecommendernetwork0_resnetv21_relu1_fwd\n", - "\n", - "\n", - "512x7x7\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_flatten0_flatten0\n", - "\n", - "dssmrecommendernetwork0_resnetv21_flatten0_flatten0\n", - "\n", - "\n", - "dssmrecommendernetwork0_resnetv21_flatten0_flatten0->dssmrecommendernetwork0_resnetv21_pool1_fwd\n", - "\n", - "\n", - "512x1x1\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense4_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense4_fwd->dssmrecommendernetwork0_resnetv21_flatten0_flatten0\n", - "\n", - "\n", - "512\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense4_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense4_relu_fwd->dssmrecommendernetwork0_dense4_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_concat1\n", - "\n", - "dssmrecommendernetwork0_concat1\n", - "\n", - "\n", - "dssmrecommendernetwork0_concat1->dssmrecommendernetwork0_dense3_relu_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_concat1->dssmrecommendernetwork0_dense4_relu_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dropout1_fwd\n", - "\n", - "dssmrecommendernetwork0_dropout1_fwd\n", - "\n", - "\n", - "dssmrecommendernetwork0_dropout1_fwd->dssmrecommendernetwork0_concat1\n", - "\n", - "\n", - "256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense5_fwd\n", - "\n", - "FullyConnected\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense5_fwd->dssmrecommendernetwork0_dropout1_fwd\n", - "\n", - "\n", - "256\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense5_relu_fwd\n", - "\n", - "Activation\n", - "relu\n", - "\n", - "\n", - "dssmrecommendernetwork0_dense5_relu_fwd->dssmrecommendernetwork0_dense5_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_expand_dims1\n", - "\n", - "dssmrecommendernetwork0_expand_dims1\n", - "\n", - "\n", - "dssmrecommendernetwork0_expand_dims1->dssmrecommendernetwork0_dense5_relu_fwd\n", - "\n", - "\n", - "128\n", - "\n", - "\n", - "dssmrecommendernetwork0_batch_dot0\n", - "\n", - "dssmrecommendernetwork0_batch_dot0\n", - "\n", - "\n", - "dssmrecommendernetwork0_batch_dot0->dssmrecommendernetwork0_expand_dims0\n", - "\n", - "\n", - "128x1\n", - "\n", - "\n", - "dssmrecommendernetwork0_batch_dot0->dssmrecommendernetwork0_expand_dims1\n", - "\n", - "\n", - "128x1\n", - "\n", - "\n", - "dssmrecommendernetwork0_norm0\n", - "\n", - "dssmrecommendernetwork0_norm0\n", - "\n", - "\n", - "dssmrecommendernetwork0_norm0->dssmrecommendernetwork0_expand_dims0\n", - "\n", - "\n", - "128x1\n", - "\n", - "\n", - "dssmrecommendernetwork0_norm1\n", - "\n", - "dssmrecommendernetwork0_norm1\n", - "\n", - "\n", - "dssmrecommendernetwork0_norm1->dssmrecommendernetwork0_expand_dims1\n", - "\n", - "\n", - "128x1\n", - "\n", - "\n", - "dssmrecommendernetwork0__mul0\n", - "\n", - "dssmrecommendernetwork0__mul0\n", - "\n", - "\n", - "dssmrecommendernetwork0__mul0->dssmrecommendernetwork0_norm0\n", - "\n", - "\n", - "1\n", - "\n", - "\n", - "dssmrecommendernetwork0__mul0->dssmrecommendernetwork0_norm1\n", - "\n", - "\n", - "1\n", - "\n", - "\n", - "dssmrecommendernetwork0__plusscalar0\n", - "\n", - "dssmrecommendernetwork0__plusscalar0\n", - "\n", - "\n", - "dssmrecommendernetwork0__plusscalar0->dssmrecommendernetwork0__mul0\n", - "\n", - "\n", - "1\n", - "\n", - "\n", - "dssmrecommendernetwork0_expand_dims2\n", - "\n", - "dssmrecommendernetwork0_expand_dims2\n", - "\n", - "\n", - "dssmrecommendernetwork0_expand_dims2->dssmrecommendernetwork0__plusscalar0\n", - "\n", - "\n", - "1\n", - "\n", - "\n", - "dssmrecommendernetwork0__div0\n", - "\n", - "dssmrecommendernetwork0__div0\n", - "\n", - "\n", - "dssmrecommendernetwork0__div0->dssmrecommendernetwork0_batch_dot0\n", - "\n", - "\n", - "1x1\n", - "\n", - "\n", - "dssmrecommendernetwork0__div0->dssmrecommendernetwork0_expand_dims2\n", - "\n", - "\n", - "1x1\n", - "\n", - "\n", - "dssmrecommendernetwork0_squeeze0\n", - "\n", - "dssmrecommendernetwork0_squeeze0\n", - "\n", - "\n", - "dssmrecommendernetwork0_squeeze0->dssmrecommendernetwork0__div0\n", - "\n", - "\n", - "1x1\n", - "\n", - "\n", - "\n" - ], "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\nplot\n\n\nuser\n\nuser\n\n\ndssmrecommendernetwork0_embedding0_fwd\n\ndssmrecommendernetwork0_embedding0_fwd\n\n\ndssmrecommendernetwork0_embedding0_fwd->user\n\n\n1\n\n\ndssmrecommendernetwork0_dense0_fwd\n\nFullyConnected\n128\n\n\ndssmrecommendernetwork0_dense0_fwd->dssmrecommendernetwork0_embedding0_fwd\n\n\n1x128\n\n\ndssmrecommendernetwork0_dense0_relu_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_dense0_relu_fwd->dssmrecommendernetwork0_dense0_fwd\n\n\n128\n\n\nquery_text\n\nquery_text\n\n\ndssmrecommendernetwork0_embedding1_fwd\n\ndssmrecommendernetwork0_embedding1_fwd\n\n\ndssmrecommendernetwork0_embedding1_fwd->query_text\n\n\n30\n\n\ndssmrecommendernetwork0_transpose0\n\ndssmrecommendernetwork0_transpose0\n\n\ndssmrecommendernetwork0_transpose0->dssmrecommendernetwork0_embedding1_fwd\n\n\n30x128\n\n\ndssmrecommendernetwork0_lstm0_reshape0\n\ndssmrecommendernetwork0_lstm0_reshape0\n\n\ndssmrecommendernetwork0_lstm0_reshape1\n\ndssmrecommendernetwork0_lstm0_reshape1\n\n\ndssmrecommendernetwork0_lstm0_reshape2\n\ndssmrecommendernetwork0_lstm0_reshape2\n\n\ndssmrecommendernetwork0_lstm0_reshape3\n\ndssmrecommendernetwork0_lstm0_reshape3\n\n\ndssmrecommendernetwork0_lstm0_reshape4\n\ndssmrecommendernetwork0_lstm0_reshape4\n\n\ndssmrecommendernetwork0_lstm0_reshape5\n\ndssmrecommendernetwork0_lstm0_reshape5\n\n\ndssmrecommendernetwork0_lstm0_reshape6\n\ndssmrecommendernetwork0_lstm0_reshape6\n\n\ndssmrecommendernetwork0_lstm0_reshape7\n\ndssmrecommendernetwork0_lstm0_reshape7\n\n\ndssmrecommendernetwork0_lstm0_reshape8\n\ndssmrecommendernetwork0_lstm0_reshape8\n\n\ndssmrecommendernetwork0_lstm0_reshape9\n\ndssmrecommendernetwork0_lstm0_reshape9\n\n\ndssmrecommendernetwork0_lstm0_reshape10\n\ndssmrecommendernetwork0_lstm0_reshape10\n\n\ndssmrecommendernetwork0_lstm0_reshape11\n\ndssmrecommendernetwork0_lstm0_reshape11\n\n\ndssmrecommendernetwork0_lstm0_reshape12\n\ndssmrecommendernetwork0_lstm0_reshape12\n\n\ndssmrecommendernetwork0_lstm0_reshape13\n\ndssmrecommendernetwork0_lstm0_reshape13\n\n\ndssmrecommendernetwork0_lstm0_reshape14\n\ndssmrecommendernetwork0_lstm0_reshape14\n\n\ndssmrecommendernetwork0_lstm0_reshape15\n\ndssmrecommendernetwork0_lstm0_reshape15\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape0\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape1\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape2\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape3\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape4\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape5\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape6\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape7\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape8\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape9\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape10\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape11\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape12\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape13\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape14\n\n\n\n\ndssmrecommendernetwork0_lstm0__rnn_param_concat0->dssmrecommendernetwork0_lstm0_reshape15\n\n\n\n\ndssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_0\n\ndssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_0\n\n\ndssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_1\n\ndssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_1\n\n\ndssmrecommendernetwork0_lstm0_rnn0\n\ndssmrecommendernetwork0_lstm0_rnn0\n\n\ndssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_transpose0\n\n\n1x128\n\n\ndssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_lstm0__rnn_param_concat0\n\n\n\n\ndssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_0\n\n\n1x128\n\n\ndssmrecommendernetwork0_lstm0_rnn0->dssmrecommendernetwork0_lstm0_dssmrecommendernetwork0_lstm0_h0_1\n\n\n1x128\n\n\ndssmrecommendernetwork0_mean0\n\ndssmrecommendernetwork0_mean0\n\n\ndssmrecommendernetwork0_mean0->dssmrecommendernetwork0_lstm0_rnn0\n\n\n1x256\n\n\ndssmrecommendernetwork0_dense1_fwd\n\nFullyConnected\n128\n\n\ndssmrecommendernetwork0_dense1_fwd->dssmrecommendernetwork0_mean0\n\n\n256\n\n\ndssmrecommendernetwork0_dense1_relu_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_dense1_relu_fwd->dssmrecommendernetwork0_dense1_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_concat0\n\ndssmrecommendernetwork0_concat0\n\n\ndssmrecommendernetwork0_concat0->dssmrecommendernetwork0_dense0_relu_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_concat0->dssmrecommendernetwork0_dense1_relu_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_dropout0_fwd\n\ndssmrecommendernetwork0_dropout0_fwd\n\n\ndssmrecommendernetwork0_dropout0_fwd->dssmrecommendernetwork0_concat0\n\n\n256\n\n\ndssmrecommendernetwork0_dense2_fwd\n\nFullyConnected\n128\n\n\ndssmrecommendernetwork0_dense2_fwd->dssmrecommendernetwork0_dropout0_fwd\n\n\n256\n\n\ndssmrecommendernetwork0_dense2_relu_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_dense2_relu_fwd->dssmrecommendernetwork0_dense2_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_expand_dims0\n\ndssmrecommendernetwork0_expand_dims0\n\n\ndssmrecommendernetwork0_expand_dims0->dssmrecommendernetwork0_dense2_relu_fwd\n\n\n128\n\n\ntitle\n\ntitle\n\n\ndssmrecommendernetwork0_embedding2_fwd\n\ndssmrecommendernetwork0_embedding2_fwd\n\n\ndssmrecommendernetwork0_embedding2_fwd->title\n\n\n30\n\n\ndssmrecommendernetwork0_transpose1\n\ndssmrecommendernetwork0_transpose1\n\n\ndssmrecommendernetwork0_transpose1->dssmrecommendernetwork0_embedding2_fwd\n\n\n30x128\n\n\ndssmrecommendernetwork0_lstm1_reshape0\n\ndssmrecommendernetwork0_lstm1_reshape0\n\n\ndssmrecommendernetwork0_lstm1_reshape1\n\ndssmrecommendernetwork0_lstm1_reshape1\n\n\ndssmrecommendernetwork0_lstm1_reshape2\n\ndssmrecommendernetwork0_lstm1_reshape2\n\n\ndssmrecommendernetwork0_lstm1_reshape3\n\ndssmrecommendernetwork0_lstm1_reshape3\n\n\ndssmrecommendernetwork0_lstm1_reshape4\n\ndssmrecommendernetwork0_lstm1_reshape4\n\n\ndssmrecommendernetwork0_lstm1_reshape5\n\ndssmrecommendernetwork0_lstm1_reshape5\n\n\ndssmrecommendernetwork0_lstm1_reshape6\n\ndssmrecommendernetwork0_lstm1_reshape6\n\n\ndssmrecommendernetwork0_lstm1_reshape7\n\ndssmrecommendernetwork0_lstm1_reshape7\n\n\ndssmrecommendernetwork0_lstm1_reshape8\n\ndssmrecommendernetwork0_lstm1_reshape8\n\n\ndssmrecommendernetwork0_lstm1_reshape9\n\ndssmrecommendernetwork0_lstm1_reshape9\n\n\ndssmrecommendernetwork0_lstm1_reshape10\n\ndssmrecommendernetwork0_lstm1_reshape10\n\n\ndssmrecommendernetwork0_lstm1_reshape11\n\ndssmrecommendernetwork0_lstm1_reshape11\n\n\ndssmrecommendernetwork0_lstm1_reshape12\n\ndssmrecommendernetwork0_lstm1_reshape12\n\n\ndssmrecommendernetwork0_lstm1_reshape13\n\ndssmrecommendernetwork0_lstm1_reshape13\n\n\ndssmrecommendernetwork0_lstm1_reshape14\n\ndssmrecommendernetwork0_lstm1_reshape14\n\n\ndssmrecommendernetwork0_lstm1_reshape15\n\ndssmrecommendernetwork0_lstm1_reshape15\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape0\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape1\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape2\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape3\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape4\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape5\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape6\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape7\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape8\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape9\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape10\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape11\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape12\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape13\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape14\n\n\n\n\ndssmrecommendernetwork0_lstm1__rnn_param_concat0->dssmrecommendernetwork0_lstm1_reshape15\n\n\n\n\ndssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_0\n\ndssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_0\n\n\ndssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_1\n\ndssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_1\n\n\ndssmrecommendernetwork0_lstm1_rnn0\n\ndssmrecommendernetwork0_lstm1_rnn0\n\n\ndssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_transpose1\n\n\n1x128\n\n\ndssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_lstm1__rnn_param_concat0\n\n\n\n\ndssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_0\n\n\n1x128\n\n\ndssmrecommendernetwork0_lstm1_rnn0->dssmrecommendernetwork0_lstm1_dssmrecommendernetwork0_lstm1_h0_1\n\n\n1x128\n\n\ndssmrecommendernetwork0_mean1\n\ndssmrecommendernetwork0_mean1\n\n\ndssmrecommendernetwork0_mean1->dssmrecommendernetwork0_lstm1_rnn0\n\n\n1x256\n\n\ndssmrecommendernetwork0_dense3_fwd\n\nFullyConnected\n128\n\n\ndssmrecommendernetwork0_dense3_fwd->dssmrecommendernetwork0_mean1\n\n\n256\n\n\ndssmrecommendernetwork0_dense3_relu_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_dense3_relu_fwd->dssmrecommendernetwork0_dense3_fwd\n\n\n128\n\n\nimage\n\nimage\n\n\ndssmrecommendernetwork0_resnetv21_batchnorm0_fwd\n\ndssmrecommendernetwork0_resnetv21_batchnorm0_fwd\n\n\ndssmrecommendernetwork0_resnetv21_batchnorm0_fwd->image\n\n\n3x224x224\n\n\ndssmrecommendernetwork0_resnetv21_conv0_fwd\n\nConvolution\n7x7/2x2, 64\n\n\ndssmrecommendernetwork0_resnetv21_conv0_fwd->dssmrecommendernetwork0_resnetv21_batchnorm0_fwd\n\n\n3x224x224\n\n\ndssmrecommendernetwork0_resnetv21_batchnorm1_fwd\n\ndssmrecommendernetwork0_resnetv21_batchnorm1_fwd\n\n\ndssmrecommendernetwork0_resnetv21_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_conv0_fwd\n\n\n64x112x112\n\n\ndssmrecommendernetwork0_resnetv21_relu0_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_relu0_fwd->dssmrecommendernetwork0_resnetv21_batchnorm1_fwd\n\n\n64x112x112\n\n\ndssmrecommendernetwork0_resnetv21_pool0_fwd\n\nPooling\nmax, 3x3/2x2\n\n\ndssmrecommendernetwork0_resnetv21_pool0_fwd->dssmrecommendernetwork0_resnetv21_relu0_fwd\n\n\n64x112x112\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_pool0_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation0\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation0->dssmrecommendernetwork0_resnetv21_stage1_batchnorm0_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv0_fwd\n\nConvolution\n3x3/1x1, 64\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation0\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage1_conv0_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation1\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation1->dssmrecommendernetwork0_resnetv21_stage1_batchnorm1_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv1_fwd\n\nConvolution\n3x3/1x1, 64\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation1\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1__plus0\n\ndssmrecommendernetwork0_resnetv21_stage1__plus0\n\n\ndssmrecommendernetwork0_resnetv21_stage1__plus0->dssmrecommendernetwork0_resnetv21_pool0_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1__plus0->dssmrecommendernetwork0_resnetv21_stage1_conv1_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage1__plus0\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation2\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation2->dssmrecommendernetwork0_resnetv21_stage1_batchnorm2_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv2_fwd\n\nConvolution\n3x3/1x1, 64\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation2\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage1_conv2_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation3\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage1_activation3->dssmrecommendernetwork0_resnetv21_stage1_batchnorm3_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv3_fwd\n\nConvolution\n3x3/1x1, 64\n\n\ndssmrecommendernetwork0_resnetv21_stage1_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage1_activation3\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1__plus1\n\ndssmrecommendernetwork0_resnetv21_stage1__plus1\n\n\ndssmrecommendernetwork0_resnetv21_stage1__plus1->dssmrecommendernetwork0_resnetv21_stage1__plus0\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage1__plus1->dssmrecommendernetwork0_resnetv21_stage1_conv3_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_stage1__plus1\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation0\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation0->dssmrecommendernetwork0_resnetv21_stage2_batchnorm0_fwd\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv0_fwd\n\nConvolution\n3x3/2x2, 128\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation0\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage2_conv0_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation1\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation1->dssmrecommendernetwork0_resnetv21_stage2_batchnorm1_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv1_fwd\n\nConvolution\n3x3/1x1, 128\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation1\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv2_fwd\n\nConvolution\n1x1/2x2, 128\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation0\n\n\n64x56x56\n\n\ndssmrecommendernetwork0_resnetv21_stage2__plus0\n\ndssmrecommendernetwork0_resnetv21_stage2__plus0\n\n\ndssmrecommendernetwork0_resnetv21_stage2__plus0->dssmrecommendernetwork0_resnetv21_stage2_conv1_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2__plus0->dssmrecommendernetwork0_resnetv21_stage2_conv2_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage2__plus0\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation2\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation2->dssmrecommendernetwork0_resnetv21_stage2_batchnorm2_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv3_fwd\n\nConvolution\n3x3/1x1, 128\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation2\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage2_conv3_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation3\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage2_activation3->dssmrecommendernetwork0_resnetv21_stage2_batchnorm3_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv4_fwd\n\nConvolution\n3x3/1x1, 128\n\n\ndssmrecommendernetwork0_resnetv21_stage2_conv4_fwd->dssmrecommendernetwork0_resnetv21_stage2_activation3\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2__plus1\n\ndssmrecommendernetwork0_resnetv21_stage2__plus1\n\n\ndssmrecommendernetwork0_resnetv21_stage2__plus1->dssmrecommendernetwork0_resnetv21_stage2__plus0\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage2__plus1->dssmrecommendernetwork0_resnetv21_stage2_conv4_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_stage2__plus1\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation0\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation0->dssmrecommendernetwork0_resnetv21_stage3_batchnorm0_fwd\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv0_fwd\n\nConvolution\n3x3/2x2, 256\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation0\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage3_conv0_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation1\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation1->dssmrecommendernetwork0_resnetv21_stage3_batchnorm1_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv1_fwd\n\nConvolution\n3x3/1x1, 256\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation1\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv2_fwd\n\nConvolution\n1x1/2x2, 256\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation0\n\n\n128x28x28\n\n\ndssmrecommendernetwork0_resnetv21_stage3__plus0\n\ndssmrecommendernetwork0_resnetv21_stage3__plus0\n\n\ndssmrecommendernetwork0_resnetv21_stage3__plus0->dssmrecommendernetwork0_resnetv21_stage3_conv1_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3__plus0->dssmrecommendernetwork0_resnetv21_stage3_conv2_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage3__plus0\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation2\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation2->dssmrecommendernetwork0_resnetv21_stage3_batchnorm2_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv3_fwd\n\nConvolution\n3x3/1x1, 256\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation2\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage3_conv3_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation3\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage3_activation3->dssmrecommendernetwork0_resnetv21_stage3_batchnorm3_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv4_fwd\n\nConvolution\n3x3/1x1, 256\n\n\ndssmrecommendernetwork0_resnetv21_stage3_conv4_fwd->dssmrecommendernetwork0_resnetv21_stage3_activation3\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3__plus1\n\ndssmrecommendernetwork0_resnetv21_stage3__plus1\n\n\ndssmrecommendernetwork0_resnetv21_stage3__plus1->dssmrecommendernetwork0_resnetv21_stage3__plus0\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage3__plus1->dssmrecommendernetwork0_resnetv21_stage3_conv4_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd->dssmrecommendernetwork0_resnetv21_stage3__plus1\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation0\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation0->dssmrecommendernetwork0_resnetv21_stage4_batchnorm0_fwd\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv0_fwd\n\nConvolution\n3x3/2x2, 512\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv0_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation0\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd->dssmrecommendernetwork0_resnetv21_stage4_conv0_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation1\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation1->dssmrecommendernetwork0_resnetv21_stage4_batchnorm1_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv1_fwd\n\nConvolution\n3x3/1x1, 512\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv1_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation1\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv2_fwd\n\nConvolution\n1x1/2x2, 512\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv2_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation0\n\n\n256x14x14\n\n\ndssmrecommendernetwork0_resnetv21_stage4__plus0\n\ndssmrecommendernetwork0_resnetv21_stage4__plus0\n\n\ndssmrecommendernetwork0_resnetv21_stage4__plus0->dssmrecommendernetwork0_resnetv21_stage4_conv1_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4__plus0->dssmrecommendernetwork0_resnetv21_stage4_conv2_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage4__plus0\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation2\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation2->dssmrecommendernetwork0_resnetv21_stage4_batchnorm2_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv3_fwd\n\nConvolution\n3x3/1x1, 512\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv3_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation2\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd\n\n\ndssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd->dssmrecommendernetwork0_resnetv21_stage4_conv3_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation3\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_stage4_activation3->dssmrecommendernetwork0_resnetv21_stage4_batchnorm3_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv4_fwd\n\nConvolution\n3x3/1x1, 512\n\n\ndssmrecommendernetwork0_resnetv21_stage4_conv4_fwd->dssmrecommendernetwork0_resnetv21_stage4_activation3\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4__plus1\n\ndssmrecommendernetwork0_resnetv21_stage4__plus1\n\n\ndssmrecommendernetwork0_resnetv21_stage4__plus1->dssmrecommendernetwork0_resnetv21_stage4__plus0\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_stage4__plus1->dssmrecommendernetwork0_resnetv21_stage4_conv4_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_batchnorm2_fwd\n\ndssmrecommendernetwork0_resnetv21_batchnorm2_fwd\n\n\ndssmrecommendernetwork0_resnetv21_batchnorm2_fwd->dssmrecommendernetwork0_resnetv21_stage4__plus1\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_relu1_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_resnetv21_relu1_fwd->dssmrecommendernetwork0_resnetv21_batchnorm2_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_pool1_fwd\n\nPooling\navg, 1x1/1x1\n\n\ndssmrecommendernetwork0_resnetv21_pool1_fwd->dssmrecommendernetwork0_resnetv21_relu1_fwd\n\n\n512x7x7\n\n\ndssmrecommendernetwork0_resnetv21_flatten0_flatten0\n\ndssmrecommendernetwork0_resnetv21_flatten0_flatten0\n\n\ndssmrecommendernetwork0_resnetv21_flatten0_flatten0->dssmrecommendernetwork0_resnetv21_pool1_fwd\n\n\n512x1x1\n\n\ndssmrecommendernetwork0_dense4_fwd\n\nFullyConnected\n128\n\n\ndssmrecommendernetwork0_dense4_fwd->dssmrecommendernetwork0_resnetv21_flatten0_flatten0\n\n\n512\n\n\ndssmrecommendernetwork0_dense4_relu_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_dense4_relu_fwd->dssmrecommendernetwork0_dense4_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_concat1\n\ndssmrecommendernetwork0_concat1\n\n\ndssmrecommendernetwork0_concat1->dssmrecommendernetwork0_dense3_relu_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_concat1->dssmrecommendernetwork0_dense4_relu_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_dropout1_fwd\n\ndssmrecommendernetwork0_dropout1_fwd\n\n\ndssmrecommendernetwork0_dropout1_fwd->dssmrecommendernetwork0_concat1\n\n\n256\n\n\ndssmrecommendernetwork0_dense5_fwd\n\nFullyConnected\n128\n\n\ndssmrecommendernetwork0_dense5_fwd->dssmrecommendernetwork0_dropout1_fwd\n\n\n256\n\n\ndssmrecommendernetwork0_dense5_relu_fwd\n\nActivation\nrelu\n\n\ndssmrecommendernetwork0_dense5_relu_fwd->dssmrecommendernetwork0_dense5_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_expand_dims1\n\ndssmrecommendernetwork0_expand_dims1\n\n\ndssmrecommendernetwork0_expand_dims1->dssmrecommendernetwork0_dense5_relu_fwd\n\n\n128\n\n\ndssmrecommendernetwork0_batch_dot0\n\ndssmrecommendernetwork0_batch_dot0\n\n\ndssmrecommendernetwork0_batch_dot0->dssmrecommendernetwork0_expand_dims0\n\n\n128x1\n\n\ndssmrecommendernetwork0_batch_dot0->dssmrecommendernetwork0_expand_dims1\n\n\n128x1\n\n\ndssmrecommendernetwork0_norm0\n\ndssmrecommendernetwork0_norm0\n\n\ndssmrecommendernetwork0_norm0->dssmrecommendernetwork0_expand_dims0\n\n\n128x1\n\n\ndssmrecommendernetwork0_norm1\n\ndssmrecommendernetwork0_norm1\n\n\ndssmrecommendernetwork0_norm1->dssmrecommendernetwork0_expand_dims1\n\n\n128x1\n\n\ndssmrecommendernetwork0__mul0\n\ndssmrecommendernetwork0__mul0\n\n\ndssmrecommendernetwork0__mul0->dssmrecommendernetwork0_norm0\n\n\n1\n\n\ndssmrecommendernetwork0__mul0->dssmrecommendernetwork0_norm1\n\n\n1\n\n\ndssmrecommendernetwork0__plusscalar0\n\ndssmrecommendernetwork0__plusscalar0\n\n\ndssmrecommendernetwork0__plusscalar0->dssmrecommendernetwork0__mul0\n\n\n1\n\n\ndssmrecommendernetwork0_expand_dims2\n\ndssmrecommendernetwork0_expand_dims2\n\n\ndssmrecommendernetwork0_expand_dims2->dssmrecommendernetwork0__plusscalar0\n\n\n1\n\n\ndssmrecommendernetwork0__div0\n\ndssmrecommendernetwork0__div0\n\n\ndssmrecommendernetwork0__div0->dssmrecommendernetwork0_batch_dot0\n\n\n1x1\n\n\ndssmrecommendernetwork0__div0->dssmrecommendernetwork0_expand_dims2\n\n\n1x1\n\n\ndssmrecommendernetwork0_squeeze0\n\ndssmrecommendernetwork0_squeeze0\n\n\ndssmrecommendernetwork0_squeeze0->dssmrecommendernetwork0__div0\n\n\n1x1\n\n\n\n" }, - "execution_count": 11, "metadata": {}, - "output_type": "execute_result" + "execution_count": 11 } ], - "source": [ - "mx.viz.plot_network(network(\n", - " mx.sym.var('user'), mx.sym.var('query_text'), mx.sym.var('title'), mx.sym.var('image')),\n", - " shape={'user': (1,1), 'query_text': (1,30), 'title': (1,30), 'image': (1,3,224,224)},\n", - " node_attrs={\"fixedsize\":\"False\"})" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "We can print the summary of the network using dummy data. We can see it is already training on 32M parameters!" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": 12, - "metadata": { - "collapsed": true - }, + "source": [ + "user = mx.np.array([[200], [100]], ctx)\n", + "query = mx.np.array([[10, 20, 0, 0, 0], [40, 50, 0, 0, 0]], ctx) # Example of an encoded text\n", + "title = mx.np.array([[10, 20, 0, 0, 0], [40, 50, 0, 0, 0]], ctx) # Example of an encoded text\n", + "image = mx.np.random.uniform(size=(2,3, 224,224), ctx=ctx) # Example of an encoded image\n", + "\n", + "\n", + "network.summary(user, query, title, image)" + ], "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "--------------------------------------------------------------------------------\n", " Layer (type) Output Shape Param #\n", @@ -2145,22 +469,19 @@ ] } ], - "source": [ - "user = mx.nd.array([[200], [100]], ctx)\n", - "query = mx.nd.array([[10, 20, 0, 0, 0], [40, 50, 0, 0, 0]], ctx) # Example of an encoded text\n", - "title = mx.nd.array([[10, 20, 0, 0, 0], [40, 50, 0, 0, 0]], ctx) # Example of an encoded text\n", - "image = mx.nd.random.uniform(shape=(2,3, 224,224), ctx=ctx) # Example of an encoded image\n", - "\n", - "\n", - "network.summary(user, query, title, image)" - ] + "metadata": { + "collapsed": true + } }, { "cell_type": "code", "execution_count": 13, - "metadata": {}, + "source": [ + "network(user, query, title, image)" + ], "outputs": [ { + "output_type": "execute_result", "data": { "text/plain": [ "\n", @@ -2169,21 +490,18 @@ "" ] }, - "execution_count": 13, "metadata": {}, - "output_type": "execute_result" + "execution_count": 13 } ], - "source": [ - "network(user, query, title, image)" - ] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "The output is the similarity, if we wanted to train it on real data, we would need to minimize the Cosine loss, 1 - cosine_similarity." - ] + ], + "metadata": {} } ], "metadata": { @@ -2207,4 +525,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file diff --git a/example/recommenders/matrix_fact.py b/example/recommenders/matrix_fact.py index 4a438c757710..07b0f132d7c7 100644 --- a/example/recommenders/matrix_fact.py +++ b/example/recommenders/matrix_fact.py @@ -40,7 +40,7 @@ def evaluate_network(network, data_iterator, ctx): def train(network, train_data, test_data, epochs, learning_rate=0.01, optimizer='sgd', ctx=mx.gpu(0), num_epoch_lr=5, factor=0.2): np.random.seed(123) # Fix random seed for consistent demos - mx.random.seed(123) # Fix random seed for consistent demos + mx.np.random.seed(123) # Fix random seed for consistent demos random.seed(123) # Fix random seed for consistent demos schedule = mx.lr_scheduler.FactorScheduler(step=len(train_data)*len(ctx)*num_epoch_lr, factor=factor) diff --git a/example/recommenders/movielens_data.py b/example/recommenders/movielens_data.py index e92c73a8bcd9..c6fe8912d98f 100644 --- a/example/recommenders/movielens_data.py +++ b/example/recommenders/movielens_data.py @@ -37,9 +37,9 @@ def load_mldataset(filename): user.append(int(tks[0])) item.append(int(tks[1])) score.append(float(tks[2])) - user = mx.nd.array(user) - item = mx.nd.array(item) - score = mx.nd.array(score) + user = mx.np.array(user) + item = mx.np.array(item) + score = mx.np.array(score) return gluon.data.ArrayDataset(user, item, score) def ensure_local_data(prefix): diff --git a/example/restricted-boltzmann-machine/README.md b/example/restricted-boltzmann-machine/README.md deleted file mode 100644 index 026abbfeed1c..000000000000 --- a/example/restricted-boltzmann-machine/README.md +++ /dev/null @@ -1,82 +0,0 @@ - - - - - - - - - - - - - - - - - -# Restricted Boltzmann machine (RBM) - -An example of the binary RBM [1] learning the MNIST data. The RBM is implemented as a custom operator, and a gluon block is also provided. `binary_rbm.py` contains the implementation of the RBM. `binary_rbm_gluon.py` train the MNIST data using the gluon interface respectively. The MNIST data is downloaded automatically. - -The progress of the learning is monitored by estimating the log-likelihood using the annealed importance sampling [2,3]. The learning with the default hyperparameters takes about 25 minutes on GTX 1080Ti and the resulting log-likelihood is around -70 for both testing and training datasets. - -Here are some samples generated by the RBM with the default hyperparameters. The samples (right) are obtained by 3000 steps of Gibbs sampling starting from randomly chosen real images (left). - -

- -Usage: - -``` -python binary_rbm_gluon.py --help -usage: binary_rbm_gluon.py [-h] [--num-hidden NUM_HIDDEN] [--k K] - [--batch-size BATCH_SIZE] [--num-epoch NUM_EPOCH] - [--learning-rate LEARNING_RATE] - [--momentum MOMENTUM] - [--ais-batch-size AIS_BATCH_SIZE] - [--ais-num-batch AIS_NUM_BATCH] - [--ais-intermediate-steps AIS_INTERMEDIATE_STEPS] - [--ais-burn-in-steps AIS_BURN_IN_STEPS] [--cuda] - [--no-cuda] [--device-id DEVICE_ID] - [--data-loader-num-worker DATA_LOADER_NUM_WORKER] - -Restricted Boltzmann machine learning MNIST - -optional arguments: - -h, --help show this help message and exit - --num-hidden NUM_HIDDEN - number of hidden units - --k K number of Gibbs sampling steps used in the PCD - algorithm - --batch-size BATCH_SIZE - batch size - --num-epoch NUM_EPOCH - number of epochs - --learning-rate LEARNING_RATE - learning rate for stochastic gradient descent - --momentum MOMENTUM momentum for the stochastic gradient descent - --ais-batch-size AIS_BATCH_SIZE - batch size for AIS to estimate the log-likelihood - --ais-num-batch AIS_NUM_BATCH - number of batches for AIS to estimate the log- - likelihood - --ais-intermediate-steps AIS_INTERMEDIATE_STEPS - number of intermediate distributions for AIS to - estimate the log-likelihood - --ais-burn-in-steps AIS_BURN_IN_STEPS - number of burn in steps for each intermediate - distributions of AIS to estimate the log-likelihood - --cuda train on GPU with CUDA - --no-cuda train on CPU - --device-id DEVICE_ID - GPU device id - --data-loader-num-worker DATA_LOADER_NUM_WORKER - number of multithreading workers for the data loader -``` -Default: -``` -Namespace(ais_batch_size=100, ais_burn_in_steps=10, ais_intermediate_steps=10, ais_num_batch=10, batch_size=80, cuda=True, data_loader_num_worker=4, device_id=0, k=30, learning_rate=0.1, momentum=0.3, num_epoch=130, num_hidden=500) -``` -[1] G E Hinton & R R Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks Science **313**, 5786 (2006)
-[2] R M Neal, Annealed importance sampling. Stat Comput **11** 2 (2001)
-[3] R Salakhutdinov & I Murray, On the quantitative analysis of deep belief networks. In Proc. ICML '08 **25** (2008) diff --git a/example/restricted-boltzmann-machine/binary_rbm.py b/example/restricted-boltzmann-machine/binary_rbm.py deleted file mode 100644 index 115e9d140e4b..000000000000 --- a/example/restricted-boltzmann-machine/binary_rbm.py +++ /dev/null @@ -1,253 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import ast -import numpy as np -import mxnet as mx - -class BinaryRBM(mx.operator.CustomOp): - - def __init__(self, k): - self.k = k # Persistent contrastive divergence k - - def forward(self, is_train, req, in_data, out_data, aux): - visible_layer_data = in_data[0] # (num_batch, num_visible) - visible_layer_bias = in_data[1] # (num_visible,) - hidden_layer_bias = in_data[2] # (num_hidden,) - interaction_weight= in_data[3] # (num_visible, num_hidden) - - if is_train: - _, hidden_layer_prob_1 = self.sample_hidden_layer(visible_layer_data, hidden_layer_bias, interaction_weight) - hidden_layer_sample = aux[1] # The initial state of the Gibbs sampling for persistent CD - else: - hidden_layer_sample, hidden_layer_prob_1 = self.sample_hidden_layer(visible_layer_data, hidden_layer_bias, interaction_weight) - - # k-step Gibbs sampling - for _ in range(self.k): - visible_layer_sample, visible_layer_prob_1 = self.sample_visible_layer(hidden_layer_sample, visible_layer_bias, interaction_weight) - hidden_layer_sample, _ = self.sample_hidden_layer(visible_layer_sample, hidden_layer_bias, interaction_weight) - - if is_train: - # Used in backward and next forward - aux[0][:] = visible_layer_sample - aux[1][:] = hidden_layer_sample - - self.assign(out_data[0], req[0], visible_layer_prob_1) - self.assign(out_data[1], req[1], hidden_layer_prob_1) - - def backward(self, req, out_grad, in_data, out_data, in_grad, aux): - visible_layer_data = in_data[0] # (num_batch, num_visible) - visible_layer_sample = aux[0] # (num_batch, num_visible) - hidden_layer_prob_1 = out_data[1] # (num_batch, num_hidden) - hidden_layer_sample = aux[1] # (num_batch, num_hidden) - - grad_visible_layer_bias = (visible_layer_sample - visible_layer_data).mean(axis=0) - grad_hidden_layer_bias = (hidden_layer_sample - hidden_layer_prob_1).mean(axis=0) - grad_interaction_weight= (mx.nd.linalg.gemm2(visible_layer_sample.expand_dims(2), hidden_layer_sample.expand_dims(1)) - - mx.nd.linalg.gemm2(visible_layer_data.expand_dims(2), hidden_layer_prob_1.expand_dims(1)) - ).mean(axis=0) - - # We don't need the gradient on the visible layer input - self.assign(in_grad[1], req[1], grad_visible_layer_bias) - self.assign(in_grad[2], req[2], grad_hidden_layer_bias) - self.assign(in_grad[3], req[3], grad_interaction_weight) - - def sample_hidden_layer(self, visible_layer_batch, hidden_layer_bias, interaction_weight): - return self.sample_layer(visible_layer_batch, hidden_layer_bias, interaction_weight, False) - - def sample_visible_layer(self, hidden_layer_batch, visible_layer_bias, interaction_weight): - return self.sample_layer(hidden_layer_batch, visible_layer_bias, interaction_weight, True) - - def sample_layer(self, other_layer_sample, layer_bias, interaction_weight, interaction_transpose): - prob_1 = mx.nd.linalg.gemm( - other_layer_sample, - interaction_weight, - layer_bias.tile(reps=(other_layer_sample.shape[0], 1)), - transpose_b=interaction_transpose) # (num_batch, num_units_in_layer) - prob_1.sigmoid(out=prob_1) - return mx.nd.random.uniform(shape=prob_1.shape) < prob_1, prob_1 - -@mx.operator.register('BinaryRBM') -class BinaryRBMProp(mx.operator.CustomOpProp): - - # Auxiliary states are requested only if `for_training` is true. - def __init__(self, num_hidden, k, for_training): - super(BinaryRBMProp, self).__init__(False) - self.num_hidden = int(num_hidden) - self.k = int(k) - self.for_training = ast.literal_eval(for_training) - - def list_arguments(self): - # 0: (batch size, the number of visible units) - # 1: (the number of visible units,) - # 2: (the number of hidden units,) - # 3: (the number of visible units, the number of hidden units) - return ['data', 'visible_layer_bias', 'hidden_layer_bias', 'interaction_weight'] - - def list_outputs(self): - # 0: The probabilities that each visible unit is 1 after `k` steps of Gibbs sampling starting from the given `data`. - # (batch size, the number of visible units) - # 1: The probabilities that each hidden unit is 1 conditional on the given `data`. - # (batch size, the number of hidden units) - return ['visible_layer_prob_1', 'hidden_layer_prob_1'] - - def list_auxiliary_states(self): - # Used only if `self.for_trainig is true. - # 0: Store the visible layer samples obtained in the forward pass, used in the backward pass. - # (batch size, the number of visible units) - # 1: Store the hidden layer samples obtained in the forward pass, used in the backward and next forward pass. - # (batch size, the number of hidden units) - return ['aux_visible_layer_sample', 'aux_hidden_layer_sample'] if self.for_training else [] - - def infer_shape(self, in_shapes): - visible_layer_data_shape = in_shapes[0] # The input data - visible_layer_bias_shape = (visible_layer_data_shape[1],) - hidden_layer_bias_shape = (self.num_hidden,) - interaction_shape = (visible_layer_data_shape[1], self.num_hidden) - visible_layer_sample_shape = visible_layer_data_shape - visible_layer_prob_1_shape = visible_layer_sample_shape - hidden_layer_sample_shape = (visible_layer_data_shape[0], self.num_hidden) - hidden_layer_prob_1_shape = hidden_layer_sample_shape - return [visible_layer_data_shape, visible_layer_bias_shape, hidden_layer_bias_shape, interaction_shape], \ - [visible_layer_prob_1_shape, hidden_layer_prob_1_shape], \ - [visible_layer_sample_shape, hidden_layer_sample_shape] if self.for_training else [] - - def infer_type(self, in_type): - return [in_type[0], in_type[0], in_type[0], in_type[0]], \ - [in_type[0], in_type[0]], \ - [in_type[0], in_type[0]] if self.for_training else [] - - def create_operator(self, ctx, in_shapes, in_dtypes): - return BinaryRBM(self.k) - -# For gluon API -class BinaryRBMBlock(mx.gluon.HybridBlock): - - def __init__(self, num_hidden, k, for_training, **kwargs): - super(BinaryRBMBlock, self).__init__(**kwargs) - with self.name_scope(): - self.num_hidden = num_hidden - self.k = k - self.for_training = for_training - self.visible_layer_bias = self.params.get('visible_layer_bias', shape=(0,), allow_deferred_init=True) - self.hidden_layer_bias = self.params.get('hidden_layer_bias', shape=(0,), allow_deferred_init=True) - self.interaction_weight= self.params.get('interaction_weight', shape=(0, 0), allow_deferred_init=True) - if for_training: - self.aux_visible_layer_sample = self.params.get('aux_visible_layer_sample', shape=(0, 0), allow_deferred_init=True) - self.aux_hidden_layer_sample = self.params.get('aux_hidden_layer_sample', shape=(0, 0), allow_deferred_init=True) - - def hybrid_forward(self, F, data, visible_layer_bias, hidden_layer_bias, interaction_weight, aux_visible_layer_sample=None, aux_hidden_layer_sample=None): - # As long as `for_training` is kept constant, this conditional statement does not prevent hybridization. - if self.for_training: - return F.Custom( - data, - visible_layer_bias, - hidden_layer_bias, - interaction_weight, - aux_visible_layer_sample, - aux_hidden_layer_sample, - num_hidden=self.num_hidden, - k=self.k, - for_training=self.for_training, - op_type='BinaryRBM') - else: - return F.Custom( - data, - visible_layer_bias, - hidden_layer_bias, - interaction_weight, - num_hidden=self.num_hidden, - k=self.k, - for_training=self.for_training, - op_type='BinaryRBM') - -def estimate_log_likelihood(visible_layer_bias, hidden_layer_bias, interaction_weight, ais_batch_size, ais_num_batch, ais_intermediate_steps, ais_burn_in_steps, data, ctx): - # The base-rate RBM with no hidden layer. The visible layer bias is set to the same with the given RBM. - # This is not the only possible choice but simple and works well. - base_rate_visible_layer_bias = visible_layer_bias - base_rate_visible_prob_1 = base_rate_visible_layer_bias.sigmoid() - log_base_rate_z = base_rate_visible_layer_bias.exp().log1p().sum() - - def log_intermediate_unnormalized_prob(visible_layer_sample, beta): - p = mx.nd.dot( - visible_layer_sample, - (1 - beta) * base_rate_visible_layer_bias + beta * visible_layer_bias) - if beta != 0: - p += mx.nd.linalg.gemm( - visible_layer_sample, - interaction_weight, - hidden_layer_bias.tile(reps=(visible_layer_sample.shape[0], 1)), - transpose_b=False, - alpha=beta, - beta=beta).exp().log1p().sum(axis=1) - return p - - def sample_base_rbm(): - rands = mx.nd.random.uniform(shape=(ais_batch_size, base_rate_visible_prob_1.shape[0]), ctx=ctx) - return rands < base_rate_visible_prob_1.tile(reps=(ais_batch_size, 1)) - - def sample_intermediate_visible_layer(visible_layer_sample, beta): - for _ in range(ais_burn_in_steps): - hidden_prob_1 = mx.nd.linalg.gemm( - visible_layer_sample, - interaction_weight, - hidden_layer_bias.tile(reps=(visible_layer_sample.shape[0], 1)), - transpose_b=False, - alpha=beta, - beta=beta) - hidden_prob_1.sigmoid(out=hidden_prob_1) - hidden_layer_sample = mx.nd.random.uniform(shape=hidden_prob_1.shape, ctx=ctx) < hidden_prob_1 - visible_prob_1 = mx.nd.linalg.gemm( - hidden_layer_sample, - interaction_weight, - visible_layer_bias.tile(reps=(hidden_layer_sample.shape[0], 1)), - transpose_b=True, - alpha=beta, - beta=beta) + (1 - beta) * base_rate_visible_layer_bias - visible_prob_1.sigmoid(out=visible_prob_1) - visible_layer_sample = mx.nd.random.uniform(shape=visible_prob_1.shape, ctx=ctx) < visible_prob_1 - return visible_layer_sample - - def array_from_batch(batch): - if isinstance(batch, mx.io.DataBatch): - return batch.data[0].as_in_context(ctx).flatten() - else: # batch is an instance of list in the case of gluon DataLoader - return batch[0].as_in_context(ctx).flatten() - - importance_weight_sum = 0 - num_ais_samples = ais_num_batch * ais_batch_size - for _ in range(ais_num_batch): - log_importance_weight = 0 - visible_layer_sample = sample_base_rbm() - for n in range(1, ais_intermediate_steps + 1): - beta = 1. * n / ais_intermediate_steps - log_importance_weight += \ - log_intermediate_unnormalized_prob(visible_layer_sample, beta) - \ - log_intermediate_unnormalized_prob(visible_layer_sample, (n - 1.) / ais_intermediate_steps) - visible_layer_sample = sample_intermediate_visible_layer(visible_layer_sample, beta) - importance_weight_sum += log_importance_weight.exp().sum() - log_z = (importance_weight_sum / num_ais_samples).log() + log_base_rate_z - - log_likelihood = 0 - num_data = 0 - for batch in data: - batch_array = array_from_batch(batch) - log_likelihood += log_intermediate_unnormalized_prob(batch_array, 1) - log_z - num_data += batch_array.shape[0] - log_likelihood = log_likelihood.sum() / num_data - - return log_likelihood.asscalar(), log_z.asscalar() diff --git a/example/restricted-boltzmann-machine/binary_rbm_gluon.py b/example/restricted-boltzmann-machine/binary_rbm_gluon.py deleted file mode 100644 index 994b8ea0ba10..000000000000 --- a/example/restricted-boltzmann-machine/binary_rbm_gluon.py +++ /dev/null @@ -1,142 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import random as pyrnd -import argparse -import numpy as np -import mxnet as mx -from matplotlib import pyplot as plt -from binary_rbm import BinaryRBMBlock -from binary_rbm import estimate_log_likelihood - - -### Helper function - -def get_non_auxiliary_params(rbm): - return rbm.collect_params('^(?!.*_aux_.*).*$') - -### Command line arguments - -parser = argparse.ArgumentParser(description='Restricted Boltzmann machine learning MNIST') -parser.add_argument('--num-hidden', type=int, default=500, help='number of hidden units') -parser.add_argument('--k', type=int, default=30, help='number of Gibbs sampling steps used in the PCD algorithm') -parser.add_argument('--batch-size', type=int, default=80, help='batch size') -parser.add_argument('--num-epoch', type=int, default=130, help='number of epochs') -parser.add_argument('--learning-rate', type=float, default=0.1, help='learning rate for stochastic gradient descent') # The optimizer rescales this with `1 / batch_size` -parser.add_argument('--momentum', type=float, default=0.3, help='momentum for the stochastic gradient descent') -parser.add_argument('--ais-batch-size', type=int, default=100, help='batch size for AIS to estimate the log-likelihood') -parser.add_argument('--ais-num-batch', type=int, default=10, help='number of batches for AIS to estimate the log-likelihood') -parser.add_argument('--ais-intermediate-steps', type=int, default=10, help='number of intermediate distributions for AIS to estimate the log-likelihood') -parser.add_argument('--ais-burn-in-steps', type=int, default=10, help='number of burn in steps for each intermediate distributions of AIS to estimate the log-likelihood') -parser.add_argument('--cuda', action='store_true', dest='cuda', help='train on GPU with CUDA') -parser.add_argument('--no-cuda', action='store_false', dest='cuda', help='train on CPU') -parser.add_argument('--device-id', type=int, default=0, help='GPU device id') -parser.add_argument('--data-loader-num-worker', type=int, default=4, help='number of multithreading workers for the data loader') -parser.set_defaults(cuda=True) - -args = parser.parse_args() -print(args) - -### Global environment - -mx.random.seed(pyrnd.getrandbits(32)) -ctx = mx.gpu(args.device_id) if args.cuda else mx.cpu() - - -### Prepare data - -def data_transform(data, label): - return data.astype(np.float32) / 255, label.astype(np.float32) - -mnist_train_dataset = mx.gluon.data.vision.MNIST(train=True).transform(data_transform) -mnist_test_dataset = mx.gluon.data.vision.MNIST(train=False).transform(data_transform) -img_height = mnist_train_dataset[0][0].shape[0] -img_width = mnist_train_dataset[0][0].shape[1] -num_visible = img_width * img_height - -# This generates arrays with shape (batch_size, height = 28, width = 28, num_channel = 1) -train_data = mx.gluon.data.DataLoader(mnist_train_dataset, args.batch_size, shuffle=True, num_workers=args.data_loader_num_worker) -test_data = mx.gluon.data.DataLoader(mnist_test_dataset, args.batch_size, shuffle=True, num_workers=args.data_loader_num_worker) - -### Train - -rbm = BinaryRBMBlock(num_hidden=args.num_hidden, k=args.k, for_training=True, prefix='rbm_') -rbm.initialize(mx.init.Normal(sigma=.01), ctx=ctx) -rbm.hybridize() -trainer = mx.gluon.Trainer( - get_non_auxiliary_params(rbm), - 'sgd', {'learning_rate': args.learning_rate, 'momentum': args.momentum}) -for epoch in range(args.num_epoch): - # Update parameters - for batch, _ in train_data: - batch = batch.as_in_context(ctx).flatten() - with mx.autograd.record(): - out = rbm(batch) - out[0].backward() - trainer.step(batch.shape[0]) - mx.nd.waitall() # To restrict memory usage - - # Monitor the performace of the model - params = get_non_auxiliary_params(rbm) - param_visible_layer_bias = params['rbm_visible_layer_bias'].data(ctx=ctx) - param_hidden_layer_bias = params['rbm_hidden_layer_bias'].data(ctx=ctx) - param_interaction_weight = params['rbm_interaction_weight'].data(ctx=ctx) - test_log_likelihood, _ = estimate_log_likelihood( - param_visible_layer_bias, param_hidden_layer_bias, param_interaction_weight, - args.ais_batch_size, args.ais_num_batch, args.ais_intermediate_steps, args.ais_burn_in_steps, test_data, ctx) - train_log_likelihood, _ = estimate_log_likelihood( - param_visible_layer_bias, param_hidden_layer_bias, param_interaction_weight, - args.ais_batch_size, args.ais_num_batch, args.ais_intermediate_steps, args.ais_burn_in_steps, train_data, ctx) - print("Epoch %d completed with test log-likelihood %f and train log-likelihood %f" % (epoch, test_log_likelihood, train_log_likelihood)) - - -### Show some samples. - -# Each sample is obtained by 3000 steps of Gibbs sampling starting from a real sample. -# Starting from the real data is just for convenience of implmentation. -# There must be no correlation between the initial states and the resulting samples. -# You can start from random states and run the Gibbs chain for sufficiently long time. - -print("Preparing showcase") - -showcase_gibbs_sampling_steps = 3000 -showcase_num_samples_w = 15 -showcase_num_samples_h = 15 -showcase_num_samples = showcase_num_samples_w * showcase_num_samples_h -showcase_img_shape = (showcase_num_samples_h * img_height, 2 * showcase_num_samples_w * img_width) -showcase_img_column_shape = (showcase_num_samples_h * img_height, img_width) - -showcase_rbm = BinaryRBMBlock( - num_hidden=args.num_hidden, - k=showcase_gibbs_sampling_steps, - for_training=False, - params=get_non_auxiliary_params(rbm)) -showcase_iter = iter(mx.gluon.data.DataLoader(mnist_train_dataset, showcase_num_samples_h, shuffle=True)) -showcase_img = np.zeros(showcase_img_shape) -for i in range(showcase_num_samples_w): - data_batch = next(showcase_iter)[0].as_in_context(ctx).flatten() - sample_batch = showcase_rbm(data_batch) - # Each pixel is the probability that the unit is 1. - showcase_img[:, i * img_width : (i + 1) * img_width] = data_batch.reshape(showcase_img_column_shape).asnumpy() - showcase_img[:, (showcase_num_samples_w + i) * img_width : (showcase_num_samples_w + i + 1) * img_width - ] = sample_batch[0].reshape(showcase_img_column_shape).asnumpy() -s = plt.imshow(showcase_img, cmap='gray') -plt.axis('off') -plt.axvline(showcase_num_samples_w * img_width, color='y') -plt.show(s) - -print("Done") diff --git a/example/restricted-boltzmann-machine/samples.png b/example/restricted-boltzmann-machine/samples.png deleted file mode 100644 index b266f8eb6eab..000000000000 Binary files a/example/restricted-boltzmann-machine/samples.png and /dev/null differ diff --git a/example/rnn/README.md b/example/rnn/README.md deleted file mode 100644 index 4485b85f2c90..000000000000 --- a/example/rnn/README.md +++ /dev/null @@ -1,35 +0,0 @@ - - - - - - - - - - - - - - - - - -Recurrent Neural Network Examples -=========== - -For more current implementations of NLP and RNN models with MXNet, please visit [gluon-nlp](http://gluon-nlp.mxnet.io/index.html) - ------- - - -This directory contains functions for creating recurrent neural networks -models using high level mxnet.rnn interface. - -Here is a short overview of what is in this directory. - -Directory | What's in it? ---- | --- -`word_lm/` | Language model trained on the Sherlock Holmes dataset achieving state of the art performance -`bucketing/` | Language model with bucketing API with python -`bucket_R/` | Language model with bucketing API with R diff --git a/example/rnn/bucket_R/aclImdb_lstm_classification.R b/example/rnn/bucket_R/aclImdb_lstm_classification.R deleted file mode 100644 index f5e6659aadab..000000000000 --- a/example/rnn/bucket_R/aclImdb_lstm_classification.R +++ /dev/null @@ -1,92 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -require("mxnet") - -corpus_bucketed_train <- readRDS(file = "data/corpus_bucketed_train.rds") -corpus_bucketed_test <- readRDS(file = "data/corpus_bucketed_test.rds") - -vocab <- length(corpus_bucketed_test$dic) - -### Create iterators -batch.size <- 64 - -num.round <- 16 - -train.data <- mx.io.bucket.iter(buckets = corpus_bucketed_train$buckets, batch.size = batch.size, - data.mask.element = 0, shuffle = TRUE) - -eval.data <- mx.io.bucket.iter(buckets = corpus_bucketed_test$buckets, batch.size = batch.size, - data.mask.element = 0, shuffle = FALSE) - -mx.set.seed(0) -optimizer <- mx.opt.create("adadelta", rho = 0.92, epsilon = 1e-06, wd = 2e-04, clip_gradient = NULL, - rescale.grad = 1/batch.size) - -bucket_list <- unique(c(train.data$bucket.names, eval.data$bucket.names)) - -symbol_buckets <- sapply(bucket_list, function(seq) { - rnn.graph(config = "seq-to-one", - cell_type = "lstm", - num_rnn_layer = 1, - num_embed = 2, - num_hidden = 6, - num_decode = 2, - input_size = vocab, - dropout = 0.2, - ignore_label = -1, - loss_output = "softmax", - output_last_state = F, - masking = T) -}) - -# Accuracy on Training Data = 0.84066 -model_sentiment_lstm <- mx.model.buckets(symbol = symbol_buckets, - train.data = train.data, - eval.data = eval.data, - num.round = num.round, - ctx = devices, - verbose = FALSE, - metric = mx.metric.accuracy, - optimizer = optimizer, - initializer = mx.init.Xavier(rnd_type = "gaussian", - factor_type = "in", - magnitude = 2), - batch.end.callback = mx.callback.log.train.metric(period = 50), - epoch.end.callback = NULL) - -mx.model.save(model_sentiment_lstm, prefix = "model_sentiment_lstm", iteration = num.round) -model <- mx.model.load("model_sentiment_lstm", iteration = num.round) - -pred <- mx.infer.rnn(infer.data = eval.data, model = model, ctx = mx.cpu()) - -ypred <- max.col(t(as.array(pred)), tie = "first") - 1 - -packer <- mxnet:::mx.nd.arraypacker() - -eval.data$reset() - -while (eval.data$iter.next()) { - packer$push(eval.data$value()$label) -} - -ylabel <- as.array(packer$get()) - -# Accuracy on Test Data = 0.81194 -acc <- sum(ylabel == ypred)/length(ylabel) - -message(paste("Acc:", acc)) diff --git a/example/rnn/bucket_R/data_preprocessing_seq_to_one.R b/example/rnn/bucket_R/data_preprocessing_seq_to_one.R deleted file mode 100644 index 1ad12e0ba3d3..000000000000 --- a/example/rnn/bucket_R/data_preprocessing_seq_to_one.R +++ /dev/null @@ -1,191 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# download the IMDB dataset -if (!file.exists("data/aclImdb_v1.tar.gz")) { - download.file("http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz", - "data/aclImdb_v1.tar.gz") - untar("data/aclImdb_v1.tar.gz", exdir = "data/") -} - -# install required packages -list.of.packages <- c("readr", "dplyr", "stringr", "stringi") -new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])] -if (length(new.packages)) install.packages(new.packages) - -require("readr") -require("dplyr") -require("stringr") -require("stringi") - -negative_train_list <- list.files("data/aclImdb/train/neg/", full.names = T) -positive_train_list <- list.files("data/aclImdb/train/pos/", full.names = T) - -negative_test_list <- list.files("data/aclImdb/test/neg/", full.names = T) -positive_test_list <- list.files("data/aclImdb/test/pos/", full.names = T) - -file_import <- function(file_list) { - import <- sapply(file_list, read_file) - return(import) -} - -negative_train_raw <- file_import(negative_train_list) -positive_train_raw <- file_import(positive_train_list) - -negative_test_raw <- file_import(negative_test_list) -positive_test_raw <- file_import(positive_test_list) - -train_raw <- c(negative_train_raw, positive_train_raw) -test_raw <- c(negative_test_raw, positive_test_raw) - -# Pre-process a corpus composed of a vector of sequences Build a dictionnary -# removing too rare words -text_pre_process <- function(corpus, count_threshold = 10, dic = NULL) { - raw_vec <- corpus - raw_vec <- stri_enc_toascii(str = raw_vec) - - ### perform some preprocessing - raw_vec <- str_replace_all(string = raw_vec, pattern = "[^[:print:]]", replacement = "") - raw_vec <- str_to_lower(string = raw_vec) - raw_vec <- str_replace_all(string = raw_vec, pattern = "_", replacement = " ") - raw_vec <- str_replace_all(string = raw_vec, pattern = "\\bbr\\b", replacement = "") - raw_vec <- str_replace_all(string = raw_vec, pattern = "\\s+", replacement = " ") - raw_vec <- str_trim(string = raw_vec) - - ### Split raw sequence vectors into lists of word vectors (one list element per - ### sequence) - word_vec_list <- stri_split_boundaries(raw_vec, type = "word", skip_word_none = T, - skip_word_number = F, simplify = F) - - ### Build vocabulary - if (is.null(dic)) { - word_vec_unlist <- unlist(word_vec_list) - word_vec_table <- sort(table(word_vec_unlist), decreasing = T) - word_cutoff <- which.max(word_vec_table < count_threshold) - word_keep <- names(word_vec_table)[1:(word_cutoff - 1)] - stopwords <- c(letters, "an", "the", "br") - word_keep <- setdiff(word_keep, stopwords) - } else word_keep <- names(dic)[!dic == 0] - - ### Clean the sentences to keep only the curated list of words - word_vec_list <- lapply(word_vec_list, function(x) x[x %in% word_keep]) - - # sentence_vec<- stri_split_boundaries(raw_vec, type='sentence', simplify = T) - word_vec_length <- lapply(word_vec_list, length) %>% unlist() - - ### Build dictionnary - dic <- 1:length(word_keep) - names(dic) <- word_keep - dic <- c(`ยค` = 0, dic) - - ### reverse dictionnary - rev_dic <- names(dic) - names(rev_dic) <- dic - - return(list(word_vec_list = word_vec_list, dic = dic, rev_dic = rev_dic)) -} - -################################################################ -make_bucket_data <- function(word_vec_list, labels, dic, seq_len = c(225), right_pad = T) { - ### Trunc sequence to max bucket length - word_vec_list <- lapply(word_vec_list, head, n = max(seq_len)) - - word_vec_length <- lapply(word_vec_list, length) %>% unlist() - bucketID <- cut(word_vec_length, breaks = c(0, seq_len, Inf), include.lowest = T, - labels = F) - - ### Right or Left side Padding Pad sequences to their bucket length with - ### dictionnary 0-label - word_vec_list_pad <- lapply(1:length(word_vec_list), function(x) { - length(word_vec_list[[x]]) <- seq_len[bucketID[x]] - word_vec_list[[x]][is.na(word_vec_list[[x]])] <- names(dic[1]) - if (right_pad == F) - word_vec_list[[x]] <- rev(word_vec_list[[x]]) - return(word_vec_list[[x]]) - }) - - ### Assign sequences to buckets and unroll them in order to be reshaped into arrays - unrolled_arrays <- lapply(1:length(seq_len), function(x) unlist(word_vec_list_pad[bucketID == - x])) - - ### Assign labels to their buckets - bucketed_labels <- lapply(1:length(seq_len), function(x) labels[bucketID == x]) - names(bucketed_labels) <- as.character(seq_len) - - ### Assign the dictionnary to each bucket terms - unrolled_arrays_dic <- lapply(1:length(seq_len), function(x) dic[unrolled_arrays[[x]]]) - - # Reshape into arrays having each sequence into a row - features <- lapply(1:length(seq_len), function(x) { - array(unrolled_arrays_dic[[x]], - dim = c(seq_len[x], length(unrolled_arrays_dic[[x]])/seq_len[x])) - }) - - names(features) <- as.character(seq_len) - - ### Combine data and labels into buckets - buckets <- lapply(1:length(seq_len), function(x) c(list(data = features[[x]]), - list(label = bucketed_labels[[x]]))) - names(buckets) <- as.character(seq_len) - - ### reverse dictionnary - rev_dic <- names(dic) - names(rev_dic) <- dic - - return(list(buckets = buckets, dic = dic, rev_dic = rev_dic)) -} - - -corpus_preprocessed_train <- text_pre_process(corpus = train_raw, count_threshold = 10, - dic = NULL) - -corpus_preprocessed_test <- text_pre_process(corpus = test_raw, dic = corpus_preprocessed_train$dic) - -seq_length_dist <- unlist(lapply(corpus_preprocessed_train$word_vec_list, length)) -quantile(seq_length_dist, 0:20/20) - -# Save bucketed corpus -corpus_bucketed_train <- make_bucket_data(word_vec_list = corpus_preprocessed_train$word_vec_list, - labels = rep(0:1, each = 12500), - dic = corpus_preprocessed_train$dic, - seq_len = c(100, 150, 250, 400, 600), - right_pad = T) - -corpus_bucketed_test <- make_bucket_data(word_vec_list = corpus_preprocessed_test$word_vec_list, - labels = rep(0:1, each = 12500), - dic = corpus_preprocessed_test$dic, - seq_len = c(100, 150, 250, 400, 600), - right_pad = T) - -saveRDS(corpus_bucketed_train, file = "data/corpus_bucketed_train.rds") -saveRDS(corpus_bucketed_test, file = "data/corpus_bucketed_test.rds") - -# Save non bucketed corpus -corpus_single_train <- make_bucket_data(word_vec_list = corpus_preprocessed_train$word_vec_list, - labels = rep(0:1, each = 12500), - dic = corpus_preprocessed_train$dic, - seq_len = c(600), - right_pad = T) - -corpus_single_test <- make_bucket_data(word_vec_list = corpus_preprocessed_test$word_vec_list, - labels = rep(0:1, each = 12500), - dic = corpus_preprocessed_test$dic, - seq_len = c(600), - right_pad = T) - -saveRDS(corpus_single_train, file = "data/corpus_single_train.rds") -saveRDS(corpus_single_test, file = "data/corpus_single_test.rds") diff --git a/python/mxnet/gluon/block.py b/python/mxnet/gluon/block.py index bc16dc7263de..0c129912d169 100644 --- a/python/mxnet/gluon/block.py +++ b/python/mxnet/gluon/block.py @@ -1808,8 +1808,7 @@ def __call__(self, x, *args): for hook in self._forward_hooks.values(): hook(self, [x] + args, out) - if _mx_npx.is_np_array(): - _check_all_np_ndarrays(out) + return out def forward(self, x, *args):