Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[numpy] unify impl of mixed type binary op between linux and windows #18523

Merged
merged 1 commit into from
Jun 11, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,10 @@ cmake_install.cmake
# Mac OS X
.DS_Store

# Windows
windows_package.7z
windows_package

#Notebook Automated Test
!tests/nightly/test_tutorial_config.txt
!tests/nightly/TestNotebook
Expand Down
10 changes: 0 additions & 10 deletions src/operator/mshadow_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,6 @@ struct true_divide : public mxnet_op::tunable {
return static_cast<float>(a) / static_cast<float>(b);
}

#ifndef _WIN32
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static mshadow::half::half_t Map(DType a, mshadow::half::half_t b) {
Expand All @@ -168,7 +167,6 @@ struct true_divide : public mxnet_op::tunable {
MSHADOW_XINLINE static double Map(DType a, double b) {
return static_cast<double>(a) / b;
}
#endif
};

struct rtrue_divide : public mxnet_op::tunable {
Expand All @@ -184,7 +182,6 @@ struct rtrue_divide : public mxnet_op::tunable {
return static_cast<float>(b) / static_cast<float>(a);
}

#ifndef _WIN32
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static mshadow::half::half_t Map(DType a, mshadow::half::half_t b) {
Expand All @@ -202,14 +199,12 @@ struct rtrue_divide : public mxnet_op::tunable {
MSHADOW_XINLINE static double Map(DType a, double b) {
return b / static_cast<double>(a);
}
#endif
};

MXNET_BINARY_MATH_OP_NC(left, a);

MXNET_BINARY_MATH_OP_NC(right, b);

#ifndef _WIN32
struct mixed_plus {
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
Expand Down Expand Up @@ -347,8 +342,6 @@ struct mixed_rpower {
return static_cast<double>(math::pow(b, a));
}
};
#endif


#pragma GCC diagnostic push
#if __GNUC__ >= 7
Expand Down Expand Up @@ -584,7 +577,6 @@ MXNET_BINARY_MATH_OP(rpower, math::pow(b, a));
MXNET_BINARY_MATH_OP(rpower_grad, math::id(a) * math::log(b));

MXNET_BINARY_MATH_OP(arctan2, math::atan2(a, b));

MXNET_BINARY_MATH_OP(arctan2_grad, math::id(b) / (math::id(a * a + b * b)));

MXNET_BINARY_MATH_OP(arctan2_rgrad, -math::id(a) / (math::id(a * a + b * b)));
Expand Down Expand Up @@ -819,7 +811,6 @@ struct mod : public mxnet_op::tunable {
}
};

#ifndef _WIN32
struct mixed_mod {
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
Expand Down Expand Up @@ -865,7 +856,6 @@ struct mixed_rmod {
return mod::Map(b, static_cast<double>(a));
}
};
#endif

struct fmod : public mxnet_op::tunable {
template<typename DType>
Expand Down
2 changes: 0 additions & 2 deletions src/operator/mxnet_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -867,7 +867,6 @@ struct op_with_req {
KERNEL_ASSIGN(out[i], req, OP::Map(lhs[i], rhs[i]));
}

#ifndef _WIN32
/*! \brief inputs are two tensors with a half_t output tensor */
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
Expand Down Expand Up @@ -921,7 +920,6 @@ struct op_with_req {
MSHADOW_XINLINE static void Map(index_t i, double *out, const DType *lhs, const double value) {
KERNEL_ASSIGN(out[i], req, OP::Map(lhs[i], value));
}
#endif

/*! \brief inputs are two tensors with a float output tensor */
template<typename DType,
Expand Down
53 changes: 0 additions & 53 deletions src/operator/numpy/np_elemwise_broadcast_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@ bool NumpyBinaryMixedPrecisionType(const nnvm::NodeAttrs& attrs,
return true;
}

#ifndef _WIN32
#define MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(name) \
NNVM_REGISTER_OP(name) \
.set_num_inputs(2) \
Expand All @@ -81,40 +80,12 @@ bool NumpyBinaryMixedPrecisionType(const nnvm::NodeAttrs& attrs,
}) \
.add_argument("lhs", "NDArray-or-Symbol", "First input to the function") \
.add_argument("rhs", "NDArray-or-Symbol", "Second input to the function")
#else
#define MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(name) \
NNVM_REGISTER_OP(name) \
.set_num_inputs(2) \
.set_num_outputs(1) \
.set_attr<nnvm::FListInputNames>("FListInputNames", \
[](const NodeAttrs& attrs) { \
return std::vector<std::string>{"lhs", "rhs"}; \
}) \
.set_attr<mxnet::FInferShape>("FInferShape", BinaryBroadcastShape) \
.set_attr<nnvm::FInferType>("FInferType", NumpyBinaryMixedPrecisionType) \
.set_attr<nnvm::FInplaceOption>("FInplaceOption", \
[](const NodeAttrs& attrs){ \
return std::vector<std::pair<int, int> >{{0, 0}, {1, 0}}; \
}) \
.set_attr<FResourceRequest>("FResourceRequest", \
[](const NodeAttrs& attrs) { \
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; \
}) \
.add_argument("lhs", "NDArray-or-Symbol", "First input to the function") \
.add_argument("rhs", "NDArray-or-Symbol", "Second input to the function")
#endif

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_add)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::plus, op::mshadow_op::mixed_plus,
op::mshadow_op::mixed_plus>)
#else
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::plus>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_add"});

NNVM_REGISTER_OP(_backward_npi_broadcast_add)
Expand All @@ -133,16 +104,10 @@ NNVM_REGISTER_OP(_backward_npi_broadcast_add)
mshadow_op::posone>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_subtract)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::minus, op::mshadow_op::mixed_minus,
op::mshadow_op::mixed_rminus>)
#else
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::minus>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_sub"});

NNVM_REGISTER_OP(_backward_npi_broadcast_sub)
Expand All @@ -161,16 +126,10 @@ NNVM_REGISTER_OP(_backward_npi_broadcast_sub)
mshadow_op::negone>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_multiply)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::mul, op::mshadow_op::mixed_mul,
op::mshadow_op::mixed_mul>)
#else
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::mul>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_mul"});

NNVM_REGISTER_OP(_backward_npi_broadcast_mul)
Expand All @@ -189,16 +148,10 @@ NNVM_REGISTER_OP(_backward_npi_broadcast_mul)
mshadow_op::left>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_mod)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::mod, op::mshadow_op::mixed_mod,
op::mshadow_op::mixed_rmod>)
#else
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::mod>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_mod"});

NNVM_REGISTER_OP(_backward_npi_broadcast_mod)
Expand All @@ -217,16 +170,10 @@ NNVM_REGISTER_OP(_backward_npi_broadcast_mod)
mshadow_op::mod_rgrad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_power)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::power, op::mshadow_op::mixed_power,
op::mshadow_op::mixed_rpower>)
#else
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::power>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_power"});

NNVM_REGISTER_OP(_backward_npi_broadcast_power)
Expand Down
30 changes: 0 additions & 30 deletions src/operator/numpy/np_elemwise_broadcast_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -29,80 +29,50 @@ namespace mxnet {
namespace op {

NNVM_REGISTER_OP(_npi_add)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::plus, op::mshadow_op::mixed_plus,
op::mshadow_op::mixed_plus>);
#else
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::plus>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_add)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::posone,
mshadow_op::posone>);

NNVM_REGISTER_OP(_npi_subtract)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::minus, op::mshadow_op::mixed_minus,
op::mshadow_op::mixed_rminus>);
#else
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::minus>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_sub)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::posone,
mshadow_op::negone>);

NNVM_REGISTER_OP(_npi_multiply)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::mul, op::mshadow_op::mixed_mul,
op::mshadow_op::mixed_mul>);
#else
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::mul>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_mul)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::right,
mshadow_op::left>);

NNVM_REGISTER_OP(_npi_mod)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::mod, op::mshadow_op::mixed_mod,
op::mshadow_op::mixed_rmod>);
#else
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::mod>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_mod)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

NNVM_REGISTER_OP(_npi_power)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::power, op::mshadow_op::mixed_power,
op::mshadow_op::mixed_rpower>);
#else
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::power>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_power)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::power_grad,
Expand Down
Loading