Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[numpy] fix mixed type backward #18250

Merged
merged 1 commit into from
May 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions src/operator/mshadow_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -746,6 +746,10 @@ MXNET_BINARY_MATH_OP_NC(minus_sign, a - b > DType(0) ? DType(1) : -DType(1));

MXNET_BINARY_MATH_OP(rminus, b - a);

MXNET_BINARY_MATH_OP_NC(posone, 1);

MXNET_BINARY_MATH_OP_NC(negone, -1);

MXNET_BINARY_MATH_OP(div_grad, 1.0f / math::id(b));

MXNET_BINARY_MATH_OP(div_rgrad, -math::id(a) / math::sqr(b));
Expand Down Expand Up @@ -799,6 +803,54 @@ struct mod : public mxnet_op::tunable {
}
};

#ifndef _WIN32
struct mixed_mod {
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static mshadow::half::half_t Map(DType a, mshadow::half::half_t b) {
return mod::Map(static_cast<mshadow::half::half_t>(a), b);
}

template<typename DType,
typename std::enable_if<std::is_same<DType, mshadow::half::half_t>::value ||
std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static float Map(DType a, float b) {
return mod::Map(static_cast<float>(a), b);
}

template<typename DType,
typename std::enable_if<std::is_same<DType, mshadow::half::half_t>::value ||
std::is_same<DType, float>::value ||
std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static double Map(DType a, double b) {
return mod::Map(static_cast<double>(a), b);
}
};

struct mixed_rmod {
template<typename DType,
typename std::enable_if<std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static mshadow::half::half_t Map(DType a, mshadow::half::half_t b) {
return mod::Map(b, static_cast<mshadow::half::half_t>(a));
}

template<typename DType,
typename std::enable_if<std::is_same<DType, mshadow::half::half_t>::value ||
std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static float Map(DType a, float b) {
return mod::Map(b, static_cast<float>(a));
}

template<typename DType,
typename std::enable_if<std::is_same<DType, mshadow::half::half_t>::value ||
std::is_same<DType, float>::value ||
std::is_integral<DType>::value, int>::type = 0>
MSHADOW_XINLINE static double Map(DType a, double b) {
return mod::Map(b, static_cast<double>(a));
}
};
#endif

struct fmod : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
Expand Down
64 changes: 59 additions & 5 deletions src/operator/numpy/np_elemwise_broadcast_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,22 @@ MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_add)
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::plus>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_broadcast_add"});
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_add"});

NNVM_REGISTER_OP(_backward_npi_broadcast_add)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}, {0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::posone,
mshadow_op::posone>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_subtract)
#ifndef _WIN32
Expand All @@ -128,7 +143,22 @@ MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_subtract)
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::minus>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_broadcast_sub"});
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_sub"});

NNVM_REGISTER_OP(_backward_npi_broadcast_sub)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}, {0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::posone,
mshadow_op::negone>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_multiply)
#ifndef _WIN32
Expand Down Expand Up @@ -158,9 +188,33 @@ NNVM_REGISTER_OP(_backward_npi_broadcast_mul)
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::right,
mshadow_op::left>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_mod)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::mod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_mod"});
MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_mod)
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::mod, op::mshadow_op::mixed_mod,
op::mshadow_op::mixed_rmod>)
#else
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::mod>)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_mod"});

NNVM_REGISTER_OP(_backward_npi_broadcast_mod)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_power)
#ifndef _WIN32
Expand Down
23 changes: 22 additions & 1 deletion src/operator/numpy/np_elemwise_broadcast_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,10 @@ NNVM_REGISTER_OP(_npi_add)
NumpyBinaryBroadcastComputeWithBool<gpu, op::mshadow_op::plus>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_add)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::posone,
mshadow_op::posone>);

NNVM_REGISTER_OP(_npi_subtract)
#ifndef _WIN32
.set_attr<FCompute>(
Expand All @@ -52,6 +56,10 @@ NNVM_REGISTER_OP(_npi_subtract)
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::minus>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_sub)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::posone,
mshadow_op::negone>);

NNVM_REGISTER_OP(_npi_multiply)
#ifndef _WIN32
.set_attr<FCompute>(
Expand All @@ -69,7 +77,20 @@ NNVM_REGISTER_OP(_backward_npi_broadcast_mul)
mshadow_op::left>);

NNVM_REGISTER_OP(_npi_mod)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastCompute<gpu, mshadow_op::mod>);
#ifndef _WIN32
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::mod, op::mshadow_op::mixed_mod,
op::mshadow_op::mixed_rmod>);
#else
.set_attr<FCompute>(
"FCompute<gpu>",
NumpyBinaryBroadcastCompute<gpu, op::mshadow_op::mod>);
#endif

NNVM_REGISTER_OP(_backward_npi_broadcast_mod)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

NNVM_REGISTER_OP(_npi_power)
#ifndef _WIN32
Expand Down
1 change: 1 addition & 0 deletions src/operator/numpy/np_true_divide-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
#include <vector>
#include "../../common/utils.h"
#include "../tensor/elemwise_binary_broadcast_op.h"
#include "../numpy/np_elemwise_broadcast_op.h"

namespace mxnet {
namespace op {
Expand Down
18 changes: 17 additions & 1 deletion src/operator/numpy/np_true_divide.cc
Original file line number Diff line number Diff line change
Expand Up @@ -80,10 +80,26 @@ NNVM_REGISTER_OP(_npi_true_divide)
})
#endif
.set_attr<FCompute>("FCompute<cpu>", TrueDivideBroadcastCompute<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_div"})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_div"})
.add_argument("lhs", "NDArray-or-Symbol", "Dividend array")
.add_argument("rhs", "NDArray-or-Symbol", "Divisor array");


NNVM_REGISTER_OP(_backward_npi_broadcast_div)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::div_grad,
mshadow_op::div_rgrad>);

NNVM_REGISTER_OP(_npi_true_divide_scalar)
.set_num_inputs(1)
.set_num_outputs(1)
Expand Down
4 changes: 4 additions & 0 deletions src/operator/numpy/np_true_divide.cu
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,10 @@ namespace op {
NNVM_REGISTER_OP(_npi_true_divide)
.set_attr<FCompute>("FCompute<gpu>", TrueDivideBroadcastCompute<gpu>);

NNVM_REGISTER_OP(_backward_npi_broadcast_div)
.set_attr<FCompute>("FCompute<gpu>", NumpyBinaryBackwardUseIn<gpu, mshadow_op::div_grad,
mshadow_op::div_rgrad>);

NNVM_REGISTER_OP(_npi_true_divide_scalar)
.set_attr<FCompute>("FCompute<gpu>", TrueDivideScalarCompute<gpu, mshadow_op::true_divide>);

Expand Down
2 changes: 2 additions & 0 deletions src/operator/operator_tune.cc
Original file line number Diff line number Diff line change
Expand Up @@ -430,6 +430,8 @@ IMPLEMENT_BINARY_WORKLOAD_FWD(mxnet::op::mshadow_op::rldexp); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::ldexp_grad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::ldexp_rgrad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::rldexp_grad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::posone); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::negone); // NOLINT()
/*!
* \brief Tuner objects, *not* automatically generated
*/
Expand Down
9 changes: 6 additions & 3 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -2618,10 +2618,13 @@ def hybrid_forward(self, F, a, b, *args, **kwargs):
use_broadcast=False, equal_nan=True)

funcs = {
'add': (-1.0, 1.0, None, None),
'subtract': (-1.0, 1.0, None, None),
'add': (-1.0, 1.0, lambda y, x1, x2: _np.ones(y.shape),
lambda y, x1, x2: _np.ones(y.shape)),
'subtract': (-1.0, 1.0, lambda y, x1, x2: _np.ones(y.shape),
lambda y, x1, x2: _np.ones(y.shape) * -1),
'multiply': (-1.0, 1.0, lambda y, x1, x2: _np.broadcast_to(x2, y.shape),
lambda y, x1, x2: _np.broadcast_to(x1, y.shape)),
'mod': (1.0, 5.0, None, None),
'power': (1.0, 3.0, lambda y, x1, x2: _np.power(x1, x2 - 1.0) * x2,
lambda y, x1, x2: _np.power(x1, x2) * _np.log(x1)),
}
Expand Down Expand Up @@ -2649,7 +2652,7 @@ def hybrid_forward(self, F, a, b, *args, **kwargs):
continue
check_mixed_precision_binary_func(func, low, high, lshape, rshape, lgrad, rgrad, type1, type2)

if func == 'subtract':
if func == 'subtract' or func == 'mod':
continue
for type1, type2 in itertools.product(itypes, itypes):
if type1 == type2:
Expand Down