This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
compile.py
171 lines (150 loc) · 6.27 KB
/
compile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
"""TVM Operator compile entry point"""
import tvm
from tvm import autotvm
import os
import argparse
import re
import json
import logging
import sys
import subprocess
from tvmop.opdef import __OP_DEF__
from tvmop.space import ConfigSpaces, ConfigSpace
from tvm.autotvm.measure.measure_methods import set_cuda_target_arch
logging.basicConfig(level=logging.INFO)
def create_shared(output,
objects,
options=None,
cc="g++"):
"""Create shared library.
Parameters
----------
output : str
The target shared library.
objects : List[str]
List of object files.
options : List[str]
The list of additional options string.
cc : Optional[str]
The compiler command.
"""
if sys.platform == "darwin" or sys.platform.startswith("linux"):
_linux_compile(output, objects, options, cc)
# TODO(yzhliu): elif sys.platform == "win32":
else:
raise ValueError("Unsupported platform")
def _linux_compile(output, objects, options, compile_cmd="g++"):
cmd = [compile_cmd]
if output.endswith(".so") or output.endswith(".dylib"):
cmd += ["-shared", "-fPIC"]
if sys.platform == "darwin":
cmd += ["-undefined", "dynamic_lookup"]
elif output.endswith(".obj"):
cmd += ["-c"]
cmd += ["-o", output]
if isinstance(objects, str):
cmd += [objects]
else:
cmd += objects
if options:
cmd += options
proc = subprocess.Popen(
cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
(out, _) = proc.communicate()
if proc.returncode != 0:
msg = "Compilation error:\n"
msg += str(out)
raise RuntimeError(msg)
def get_target(device):
if device == "cpu":
return "llvm"
elif device == "cuda" or device == "gpu":
return "cuda"
assert False, "Unknown device " + device
def get_cuda_arch(arch):
if arch is None:
return None
if not isinstance(arch, str):
raise TypeError('Expecting parameter arch as a str, while got a {}'.format(str(type(arch))))
if len(arch) == 0:
return None
# an example of arch string,
# -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35
# -gencode;arch=compute_75,code=[sm_75,compute_75] --fatbin-options -compress-all
archs = []
flags = arch.replace("-gencode;", "-gencode ").split()
for flag in flags:
if flag.startswith('-gencode') or flag.startswith('arch='):
archs.append(flag)
return archs
if __name__ == "__main__":
import sys
sys.path.append(os.path.dirname(sys.path[0]))
parser = argparse.ArgumentParser(description="Generate tvm operators")
parser.add_argument("-o", action="store", required=True, dest="target_path",
help="Target path which stores compiled library")
parser.add_argument("-L", action="store", default=None, dest="ld_path",
help="library link path")
parser.add_argument('--cuda-arch', type=str, default=None, dest='cuda_arch',
help='The cuda arch for compiling kernels for')
parser.add_argument("--config", action="store", required=True, dest="config_path",
help="Path which stores the config file")
arguments = parser.parse_args()
mod_llvm = tvm.IRModule({})
mod_cuda = tvm.IRModule({})
has_cuda = False
# TODO: attach instruction features to the library, e.g., avx-512, etc.
for operator_def in __OP_DEF__:
for sch, args, name in operator_def.invoke_all():
name = operator_def.get_op_name(name, args)
if tvm.runtime.module.enabled(get_target(operator_def.target)):
func_lower = tvm.lower(sch, args,
name=name,
binds=operator_def.get_binds(args))
if operator_def.target == "cpu":
mod = mod_llvm.update(func_lower)
else:
has_cuda = True
mod_cuda.update(func_lower)
lowered_funcs = {get_target("cpu"): mod_llvm}
if has_cuda > 0:
lowered_funcs[get_target("cuda")] = mod_cuda
cuda_arch = get_cuda_arch(arguments.cuda_arch)
if cuda_arch is None:
logging.info('No cuda arch specified. TVM will try to detect it from the build platform.')
else:
logging.info('Cuda arch {} set for compiling TVM operator kernels.'.format(cuda_arch))
set_cuda_target_arch(cuda_arch)
func_binary = tvm.build(lowered_funcs, name="tvmop")
# we create libtvmop.o first, which gives us chance to link tvm_runtime together with the libtvmop
# to allow mxnet find external helper functions in libtvm_runtime
func_binary.save(arguments.target_path + "/libtvmop.o")
if len(func_binary.imported_modules):
func_binary.imported_modules[0].save(arguments.target_path + "/libtvmop.cubin")
ld_path = arguments.target_path if arguments.ld_path is None else arguments.ld_path
create_shared(arguments.target_path + "/libtvmop.so",
arguments.target_path + "/libtvmop.o",
options=["-L", ld_path, "-ltvm_runtime"])
config_spaces = ConfigSpaces()
for operator_def in __OP_DEF__:
for config_space, name in operator_def.get_config_spaces():
config_spaces[name] = ConfigSpace.from_tvm(config_space)
with open(arguments.config_path, "w") as f:
json.dump(config_spaces.to_json_dict(), f)