-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtest_sparse_dense_convert.py
90 lines (74 loc) · 3.05 KB
/
test_sparse_dense_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import itertools
import numpy as np
import scipy.sparse as sp
import tvm
from tvm.ir import IRModule
from tvm import relay
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"):
Y = np.zeros((M, N), dtype=dtype)
assert M % BS_R == 0
assert N % BS_C == 0
nnz = int(density * M * N)
num_blocks = int(nnz / (BS_R * BS_C)) + 1
candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C))))
assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
chosen_blocks = candidate_blocks[
np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)
]
for i in range(len(chosen_blocks)):
r, c = chosen_blocks[i]
Y[r : r + BS_R, c : c + BS_C] = np.random.randn(BS_R, BS_C)
s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
assert s.data.shape == (num_blocks, BS_R, BS_C)
assert s.data.size >= nnz
assert s.indices.shape == (num_blocks,)
assert s.indptr.shape == (M // BS_R + 1,)
return s
def run_func(func, params, x):
with tvm.transform.PassContext(opt_level=3):
graph, lib, new_params = relay.build(func, "llvm", params=params)
from tvm.contrib import graph_executor
dev = tvm.cpu(0)
dtype = "float32"
m = graph_executor.create(graph, lib, dev)
# set inputs
m.set_input("data", tvm.nd.array(x.astype(dtype)))
m.set_input(**new_params)
# execute
m.run()
# get outputs
tvm_output = m.get_output(0)
return tvm_output.numpy()
def test_bsr_sparse_dense():
data = relay.var("data", shape=(1, 128), dtype="float32")
x = relay.nn.relu(data)
w = relay.var("weight", shape=(768, 128), dtype="float32")
y = relay.nn.dense(x, w)
z = relay.nn.relu(y)
func = relay.Function(relay.analysis.free_vars(z), z)
params = {"weight": tvm.nd.array(random_bsr_matrix(768, 128, 32, 1, 0.1).todense())}
x_np = np.random.randn(1, 128).astype("float32")
# dense output
dense_output = run_func(func, params, x_np)
# sparse
sparse_func, params = relay.data_dep_optimization.bsr_dense.convert(func, params, (32, 1), 0.2)
sparse_output = run_func(sparse_func, params, x_np)
np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5)
if __name__ == "__main__":
test_bsr_sparse_dense()