-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtensorflow.py
3578 lines (3117 loc) · 145 KB
/
tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except
# pylint: disable=import-outside-toplevel, redefined-builtin
"""TF: Tensorflow frontend."""
import warnings
from collections import defaultdict
# Numpy support
import numpy as np
import tvm
from tvm.ir import IRModule
from tvm.relay.prelude import Prelude, StaticTensorArrayOps, get_tensor_array_shape
from topi.util import get_const_tuple
from .. import analysis
from .. import expr as _expr
from .. import function as _function
from .. import op as _op
from ..ty import Any
from ..expr_functor import ExprMutator, ExprVisitor
from .common import AttrCvt, get_relay_op
from .common import infer_type as _infer_type
from .common import infer_shape as _infer_shape
from .common import infer_channels as _infer_channels
from .common import infer_value as _infer_value
__all__ = ['from_tensorflow']
def _get_pad_pair(input1d, kernel1d, stride1d):
if input1d % stride1d == 0:
pad = max(kernel1d - stride1d, 0)
else:
pad = max(kernel1d - (input1d % stride1d), 0)
pad_before = pad // 2
pad_after = pad - pad_before
return [pad_before, pad_after]
def _math_name_picker(surfix):
def _impl(attr):
return 'broadcast_' + surfix
return _impl
def _dimension_picker(prefix, surfix=''):
def _impl(attr):
kernel = attr['kernel_shape']
if len(kernel) == 2:
return prefix + '2d' + surfix
if len(kernel) == 3:
return prefix + '3d' + surfix
raise tvm.error.OpAttributeInvalid(
'Only 2D or 3D kernels are supported for operator {}'.format(prefix + '2d or 3d'))
return _impl
def _dimension_constraint():
def _dim_check(attrs):
if len(attrs['kernel_shape']) in (2, 3):
return True
return False
return _dim_check, "Only 2d or 3d kernel supported."
def _get_param(params, input_node):
if isinstance(input_node, _expr.Constant):
return np.atleast_1d(input_node.data.asnumpy())
return params[input_node.name_hint].asnumpy()
def _get_num_param(params, input_node):
return _get_param(params, input_node).item()
def _get_list_param(params, input_node):
return _get_param(params, input_node).tolist()
def _get_tuple_param(params, input_node):
return tuple(_get_param(params, input_node))
def _need_prelude_for_shape_inference(op):
return "TensorArray" in op
def _get_more_static_shape(shape0, shape1):
"""Compare two shapes with the same rank,
and return the one with fewer symbolic dimension.
"""
assert len(shape0) == len(shape1)
num_sym_dim0 = 0
num_sym_dim1 = 0
for dim0, dim1 in zip(list(shape0), list(shape1)):
if not isinstance(dim0, int):
num_sym_dim0 += 1
if not isinstance(dim1, int):
num_sym_dim1 += 1
if num_sym_dim0 < num_sym_dim1:
return shape0
return shape1
def _rsqrt():
def _impl(inputs, attr, params, mod):
inputs.append(tvm.relay.const(-0.5, attr['T'].name))
return AttrCvt(op_name="power")(inputs, attr)
return _impl
def _argx(func, func_name):
""" A common wrapper for argmin and argmax operations """
def _impl(inputs, attr, params, mod):
try:
# In Tensorflow, `axis` argument is a Tensor, not attribute. We
# support the case where it inputs from a scalar constant.
axis_input_value = [_get_num_param(params, inputs[1])]
except (IndexError, KeyError):
raise TypeError(
"Unsupported argument for `{}` : `axis` should be a constant".format(func_name))
return func(inputs[0], axis=axis_input_value, keepdims=False)
return _impl
def _elemwise(name):
def _impl(inputs, attr, params, mod):
assert len(inputs) == 2, "{} take 2 inputs, {} given".format(name, len(inputs))
return get_relay_op(name)(*inputs)
return _impl
def _pool3d(name):
def _impl(inputs, attr, params, mod):
attr['data_format'] = attr['data_format'].decode("utf-8")
flip_layout = False
input_shape = _infer_shape(inputs[0], mod)
if attr['data_format'] == 'NDHWC':
attr['kernel_shape'] = (attr['ksize'][1], attr['ksize'][2], attr['ksize'][3])
attr['strides'] = (attr['strides'][1], attr['strides'][2], attr['strides'][3])
elif attr['data_format'] == 'NCDHW':
attr['kernel_shape'] = (attr['ksize'][2], attr['ksize'][3], attr['ksize'][4])
attr['strides'] = (attr['strides'][2], attr['strides'][3], attr['strides'][4])
else:
msg = 'Value {} of attribute "data_format" of operator Pooling ' \
'is not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format']))
if attr['data_format'] == "NDHWC":
input_shape = [_infer_shape(inputs[0], mod)[i] for i in (0, 4, 1, 2, 3)]
inputs[0] = _op.transpose(inputs[0], axes=(0, 4, 1, 2, 3))
attr['data_format'] = "NCDHW"
flip_layout = True
attr['padding'] = attr['padding'].decode("utf-8")
if attr['padding'] == 'VALID':
attr['padding'] = [0, 0, 0, 0, 0, 0]
elif attr['padding'] == 'SAME':
stride_d, stride_h, stride_w = attr['strides']
kernel_d, kernel_h, kernel_w = attr['kernel_shape']
if attr['data_format'] == 'NDHWC':
in_d = input_shape[1]
in_h = input_shape[2]
in_w = input_shape[3]
else:
in_d = input_shape[2]
in_h = input_shape[3]
in_w = input_shape[4]
pad_d = _get_pad_pair(in_d, kernel_d, stride_d)
pad_v = _get_pad_pair(in_h, kernel_h, stride_h)
pad_h = _get_pad_pair(in_w, kernel_w, stride_w)
attr['padding'] = [pad_d[0], pad_v[0], pad_h[0], pad_d[1], pad_v[1], pad_h[1]]
else:
msg = 'Value {} in attribute "padding" of operator Pooling is ' \
'not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['padding']))
if name == "avg_pool":
attr['count_include_pad'] = False
attr['ceil_mode'] = False
out = AttrCvt(
op_name=name,
transforms={
'kernel_shape': 'pool_size',
'data_format': 'layout'},
ignores=['ksize'])(inputs, attr)
if flip_layout:
out = _op.transpose(out, axes=(0, 2, 3, 4, 1))
return out
return _impl
def _pooling(name):
def _impl(inputs, attr, params, mod):
attr['data_format'] = attr['data_format'].decode("utf-8")
flip_layout = False
input_shape = _infer_shape(inputs[0], mod)
if attr['data_format'] == 'NHWC':
attr['kernel_shape'] = (attr['ksize'][1], attr['ksize'][2])
attr['strides'] = (attr['strides'][1], attr['strides'][2])
elif attr['data_format'] == 'NCHW':
attr['kernel_shape'] = (attr['ksize'][2], attr['ksize'][3])
attr['strides'] = (attr['strides'][2], attr['strides'][3])
else:
msg = 'Value {} of attribute "data_format" of operator Pooling ' \
'is not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format']))
if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC":
tmp_shape = _infer_shape(inputs[0], mod)
input_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)]
inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2))
attr['data_format'] = "NCHW"
flip_layout = True
# Fix padding
attr['padding'] = attr['padding'].decode("utf-8")
if attr['padding'] == 'VALID':
attr['padding'] = [0, 0]
elif attr['padding'] == 'SAME':
stride_h, stride_w = attr['strides']
kernel_h, kernel_w = attr['kernel_shape']
if attr['data_format'] == 'NHWC':
in_h = input_shape[1]
in_w = input_shape[2]
else:
in_h = input_shape[2]
in_w = input_shape[3]
pad_v = _get_pad_pair(in_h, kernel_h, stride_h)
pad_h = _get_pad_pair(in_w, kernel_w, stride_w)
attr['padding'] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]]
else:
msg = 'Value {} in attribute "padding" of operator Pooling is ' \
'not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['padding']))
if name == "avg_pool":
attr['count_include_pad'] = False
out = AttrCvt(
op_name=_dimension_picker(name),
transforms={
'kernel_shape':'pool_size',
'data_format':'layout'},
ignores=['ksize'],
extras={'ceil_mode': False},
custom_check=_dimension_constraint())(inputs, attr)
if flip_layout:
out = _op.transpose(out, axes=(0, 2, 3, 1))
return out
return _impl
def _conv(opname):
def _impl(inputs, attr, params, mod):
attr['data_format'] = attr['data_format'].decode("utf-8")
flip_layout = False
if opname == 'conv_transpose' and attr['data_format'] == 'NHWC':
# transform to NCHW for TVM backend compatible and set 'flip_layout'
# to have output flip back to NHWC
inputs[2] = _op.transpose(inputs[2], axes=(0, 3, 1, 2))
attr['strides'][1], attr['strides'][2], attr['strides'][3] = \
attr['strides'][3], attr['strides'][1], attr['strides'][2]
attr['data_format'] = 'NCHW'
if opname == 'conv_transpose' and len(attr['_output_shapes']) > 0:
tmp_shape = attr['_output_shapes'][0]
tmp_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)]
attr['_output_shapes'][0] = tmp_shape
flip_layout = True
inputs_data = inputs[0] if opname != 'conv_transpose' else inputs[2]
# NCHW Layout require weights transpose
weights_shape = _infer_shape(inputs[1], mod)
if attr['data_format'] == 'NCHW':
tmp_shape = weights_shape
if opname in ['conv', 'conv_transpose']:
tmp_shape = [tmp_shape[ii] for ii in (3, 2, 0, 1)]
inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1))
else:
tmp_shape = [tmp_shape[ii] for ii in (2, 3, 0, 1)]
inputs[1] = _op.transpose(inputs[1], axes=(2, 3, 0, 1))
weights_shape = tmp_shape
input_shape = _infer_shape(inputs_data, mod)
if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC":
input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)]
inputs_data = _op.transpose(inputs_data, axes=(0, 3, 1, 2))
if opname in ['conv', 'conv_transpose']:
weights_shape = [weights_shape[ii] for ii in (3, 2, 0, 1)]
inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1))
else:
weights_shape = [weights_shape[ii] for ii in (2, 3, 0, 1)]
inputs[1] = _op.transpose(inputs[1], axes=(2, 3, 0, 1))
attr['data_format'] = "NCHW"
attr['strides'] = [attr['strides'][ii] for ii in (0, 3, 1, 2)]
flip_layout = True
if attr['data_format'] == 'NHWC':
in_channels = input_shape[3]
kernel_h, kernel_w, _, depth_mult = weights_shape
attr['kernel_shape'] = (weights_shape[0], weights_shape[1])
if opname == 'conv':
attr['channels'] = weights_shape[3]
elif opname == 'conv_transpose':
attr['channels'] = weights_shape[2]
else:
attr['channels'] = input_shape[3] * depth_mult
if 'dilations' in attr:
attr['dilations'] = (attr['dilations'][1], attr['dilations'][2])
attr['strides'] = (attr['strides'][1], attr['strides'][2])
elif attr['data_format'] == 'NCHW':
in_channels = input_shape[1]
_, depth_mult, kernel_h, kernel_w = weights_shape
attr['kernel_shape'] = (weights_shape[2], weights_shape[3])
if opname == 'conv':
attr['channels'] = weights_shape[0]
elif opname == 'conv_transpose':
attr['channels'] = weights_shape[1]
else:
attr['channels'] = input_shape[1] * depth_mult
if attr['channels'] < 0:
attr['channels'] *= -1
if 'dilations' in attr:
attr['dilations'] = (attr['dilations'][2], attr['dilations'][3])
attr['strides'] = (attr['strides'][2], attr['strides'][3])
else:
msg = 'Value {} in attribute "data_format" of operator Conv is ' \
'not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format']))
if opname == 'depthwise':
attr['groups'] = in_channels
# Fix padding
attr['padding'] = attr['padding'].decode("utf-8")
if attr['padding'] == 'VALID':
attr['padding'] = [0, 0]
elif attr['padding'] == 'SAME':
stride_h, stride_w = attr['strides']
kernel_h, kernel_w = attr['kernel_shape']
pdata_shape = input_shape
if opname == 'conv_transpose' and len(attr['_output_shapes']) > 0:
pdata_shape = attr['_output_shapes'][0]
if attr['data_format'] == 'NHWC':
in_h = pdata_shape[1]
in_w = pdata_shape[2]
else:
in_h = pdata_shape[2]
in_w = pdata_shape[3]
dilation_h = attr['dilations'][0]
dilation_w = attr['dilations'][1]
dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h)
pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
attr['padding'] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]]
else:
msg = 'Value {} in attribute "padding" of operator Conv is not ' \
'valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['padding']))
if 'kernel_layout' not in attr:
if opname in ['conv', 'conv_transpose']:
attr['kernel_layout'] = 'HWIO' if attr['data_format'] == 'NHWC' else 'OIHW'
else:
attr['kernel_layout'] = 'HWOI' if attr['data_format'] == 'NHWC' else 'OIHW'
# Ignore the new attributes from TF2.0, for now.
out = AttrCvt(
op_name=_dimension_picker('conv',
surfix="_transpose" if opname == 'conv_transpose' else ""),
ignores=['explicit_paddings'],
transforms={
'kernel_shape': 'kernel_size',
'data_format': 'data_layout',
'dilations': ('dilation', (0, 0)),
'group': ('groups', 1)},
custom_check=_dimension_constraint())([inputs_data, inputs[1]], attr)
if flip_layout:
out = _op.transpose(out, axes=(0, 2, 3, 1))
return out
return _impl
# Dilation2d
def _dilation2d():
def _impl(inputs, attr, params, mod):
if 'data_format' not in attr:
attr['data_format'] = 'NHWC'
input_shape = _infer_shape(inputs[0], mod)
weights_shape = _infer_shape(inputs[1], mod)
if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC":
input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)]
inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2))
weights_shape = [weights_shape[ii] for ii in (2, 0, 1)]
inputs[1] = _op.transpose(inputs[1], axes=(2, 0, 1))
attr['data_format'] = "NCHW"
if attr['data_format'] in ['NHWC', 'NCHW']:
if 'rates' in attr:
attr['dilations'] = attr['rates']
if 'dilations' in attr:
attr['dilations'] = (attr['dilations'][1], attr['dilations'][2])
attr['strides'] = (attr['strides'][1], attr['strides'][2])
else:
msg = 'Value {} in attribute "data_format" of operator Dilation2D is ' \
'not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format']))
attr['padding'] = attr['padding'].decode("utf-8")
if attr['padding'] == 'VALID':
attr['padding'] = [0, 0]
elif attr['padding'] == 'SAME':
stride_h, stride_w = attr['strides']
if attr['data_format'] == 'NHWC':
kernel_h, kernel_w = weights_shape[0], weights_shape[1]
else:
kernel_h, kernel_w = weights_shape[1], weights_shape[2]
if attr['data_format'] == 'NHWC':
in_h = input_shape[1]
in_w = input_shape[2]
else:
in_h = input_shape[2]
in_w = input_shape[3]
dilation_h = attr['dilations'][0]
dilation_w = attr['dilations'][1]
dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h)
pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
if attr['data_format'] == 'NHWC':
inputs[0] = _op.nn.pad(data=inputs[0],
pad_width=((0, 0),
(pad_v[0], pad_v[1]),
(pad_h[0], pad_h[1]),
(0, 0)))
else:
inputs[0] = _op.nn.pad(data=inputs[0],
pad_width=((0, 0),
(0, 0),
(pad_v[0], pad_v[1]),
(pad_h[0], pad_h[1])))
attr['padding'] = [0, 0]
else:
msg = 'Value {} in attribute "padding" of operator Dilation2d is not ' \
'valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['padding']))
attr['kernel_layout'] = 'HWI' if attr['data_format'] == 'NHWC' else 'IHW'
out = AttrCvt(
op_name='dilation2d',
ignores=['explicit_paddings', 'rates'],
transforms={
'data_format': 'data_layout',
})([inputs[0], inputs[1]], attr)
if attr['_target_layout'] == "NCHW":
out = _op.transpose(out, axes=(0, 2, 3, 1))
return out
return _impl
def _conv3d(opname):
def _impl(inputs, attr, params, mod):
attr['data_format'] = attr['data_format'].decode("utf-8")
flip_layout = False
inputs_data = inputs[0] if opname != 'conv_transpose' else inputs[2]
# NCDHW Layout require weights transpose
weights_shape = _infer_shape(inputs[1], mod)
if attr['data_format'] == 'NCDHW':
tmp_shape = weights_shape
tmp_shape = [tmp_shape[ii] for ii in (4, 3, 0, 1, 2)]
inputs[1] = _op.transpose(inputs[1], axes=(4, 3, 0, 1, 2))
weights_shape = tmp_shape
input_shape = _infer_shape(inputs_data, mod)
if attr['_target_layout'] == "NCDHW" and attr['data_format'] == "NDHWC":
input_shape = [input_shape[ii] for ii in (0, 4, 1, 2, 3)]
inputs_data = _op.transpose(inputs_data, axes=(0, 4, 1, 2, 3))
weights_shape = [weights_shape[ii] for ii in (4, 3, 0, 1, 2)]
inputs[1] = _op.transpose(inputs[1], axes=(4, 3, 0, 1, 2))
attr['data_format'] = "NCDHW"
attr['strides'] = [attr['strides'][ii] for ii in (0, 4, 1, 2, 3)]
flip_layout = True
if attr['data_format'] == 'NDHWC':
kernel_d, kernel_h, kernel_w, _, _ = weights_shape
attr['kernel_shape'] = (kernel_d, kernel_h, kernel_w)
if opname == 'conv':
attr['channels'] = weights_shape[4]
elif opname == 'conv_transpose':
attr['channels'] = weights_shape[3]
if 'dilations' in attr:
attr['dilations'] = \
(attr['dilations'][1], attr['dilations'][2], attr['dilations'][3])
attr['strides'] = (attr['strides'][1], attr['strides'][2], attr['strides'][3])
elif attr['data_format'] == 'NCDHW':
_, _, kernel_d, kernel_h, kernel_w = weights_shape
attr['kernel_shape'] = (kernel_d, kernel_h, kernel_w)
if opname == 'conv':
attr['channels'] = weights_shape[0]
elif opname == 'conv_transpose':
attr['channels'] = weights_shape[1]
if 'dilations' in attr:
attr['dilations'] = \
(attr['dilations'][2], attr['dilations'][3], attr['dilations'][4])
attr['strides'] = (attr['strides'][2], attr['strides'][3], attr['strides'][4])
else:
msg = 'Value {} in attribute "data_format" of operator Conv is ' \
'not valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['data_format']))
# Fix padding
attr['padding'] = attr['padding'].decode("utf-8")
if attr['padding'] == 'VALID':
attr['padding'] = [0, 0, 0]
elif attr['padding'] == 'SAME':
stride_d, stride_h, stride_w = attr['strides']
kernel_d, kernel_h, kernel_w = attr['kernel_shape']
pdata_shape = input_shape
if opname == 'conv_transpose' and len(attr['_output_shapes']) > 0:
pdata_shape = attr['_output_shapes'][0]
if attr['data_format'] == 'NDHWC':
in_d = pdata_shape[1]
in_h = pdata_shape[2]
in_w = pdata_shape[3]
else:
in_d = pdata_shape[2]
in_h = pdata_shape[3]
in_w = pdata_shape[4]
dilation_d = attr['dilations'][0]
dilation_h = attr['dilations'][1]
dilation_w = attr['dilations'][2]
dilated_kernel_d = (kernel_d - 1) * dilation_d + 1
dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
pad_d = _get_pad_pair(in_d, dilated_kernel_d, stride_d)
pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h)
pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
attr['padding'] = [pad_d[0], pad_v[0], pad_h[0], pad_d[1], pad_v[1], pad_h[1]]
else:
msg = 'Value {} in attribute "padding" of operator Conv is not ' \
'valid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['padding']))
if 'kernel_layout' not in attr:
attr['kernel_layout'] = 'DHWIO' if attr['data_format'] == 'NDHWC' else 'OIDHW'
use_bias = len(inputs) == (3 if opname != 'conv_transpose' else 4)
channel_axis = 1 if attr['data_format'] == "NCDHW" else 4
# Ignore the new attributes from TF2.0, for now.
out = AttrCvt(
op_name=_dimension_picker('conv',
surfix="_transpose" if opname == 'conv_transpose' else ""),
ignores=['explicit_paddings', 'Tshape'],
transforms={
'kernel_shape': 'kernel_size',
'data_format': 'data_layout',
'dilations': ('dilation', (0, 0)),
'group': ('groups', 1)},
custom_check=_dimension_constraint())([inputs_data, inputs[1]], attr)
if use_bias:
out = _op.nn.bias_add(out,
inputs[2] if opname != 'conv_transpose' else inputs[3],
axis=channel_axis)
if flip_layout:
out = _op.transpose(out, axes=(0, 2, 3, 4, 1))
return out
return _impl
def _nms():
def _impl(inputs, attr, params, mod):
# Get parameter values
# TODO(yongwww) change nms in relay to support symbolic max_output_size
try:
max_output_size = int(np.atleast_1d(inputs[2].data.asnumpy()
.astype("int64"))[0])
except Exception:
try:
max_output_size = _infer_value(inputs[2], params,
mod).asnumpy().astype("int64").tolist()[0]
except Exception:
max_output_size = -1
iou_threshold = np.atleast_1d(inputs[3].data.asnumpy())[0]
# score_threshold was introduced from V3
score_threshold = np.atleast_1d(inputs[4].data.asnumpy())[0] if len(inputs) > 4 else 0.0
# Generate data with shape (1, num_anchors, 5)
scores = AttrCvt(op_name="expand_dims",
ignores=['T_threshold'],
extras={'axis': -1, 'num_newaxis': 1})([inputs[1]], attr)
data = get_relay_op('concatenate')([scores, inputs[0]], -1)
data = get_relay_op('expand_dims')(data, 0, 1)
# reason why using get_valid_counts is for inference performance
ct, data, indices = get_relay_op('get_valid_counts')(data,
score_threshold=score_threshold,
id_index=-1,
score_index=0)
# TensorFlow NMS doesn't have parameter top_k
top_k = -1
# TF doesn't have class id for nms input
score_index = 0
nms_ret = get_relay_op('non_max_suppression')(data=data,
valid_count=ct,
indices=indices,
max_output_size=max_output_size,
iou_threshold=iou_threshold,
force_suppress=True,
top_k=top_k,
coord_start=1,
score_index=score_index,
id_index=-1,
return_indices=True,
invalid_to_bottom=False)
# squeeze it, TF NMS is not batched
size = get_relay_op("squeeze")(nms_ret[1], axis=[1])
data_slice = get_relay_op("squeeze")(nms_ret[0], axis=[0])
# slice to get the dynamic result
ret = get_relay_op("strided_slice")(data_slice, begin=_expr.const([0]),
end=size, slice_mode="size")
return ret
return _impl
def _decode_image():
def _impl(inputs, attr, params, mod):
# Image decode wrapper: Expecting user to feed decoded input to next layer drop this layer.
warnings.warn("DecodeJpeg: It's a pass through, please handle preprocessing before input")
return inputs[0]
return _impl
def _unravel_index():
def _impl(inputs, attr, params, mod):
return _op.unravel_index(inputs[0], inputs[1])
return _impl
def _crop_and_resize():
def _impl(inputs, attr, params, mod):
# input image is a 4-D tensor of shape [batch, image_height, image_width, depth]
# boxes is a 2-D tensor of shape [num_boxes, 4], 4 is for [y1, x1, y2, x2]
try:
crop_size = _get_list_param(params, inputs[3])
except (IndexError, KeyError):
crop_size = _infer_value(inputs[3], params, mod).asnumpy().tolist()
method = attr['method'].decode()
method = 'nearest_neighbor' if method == 'nearest' else method
if method not in ['bilinear', 'nearest_neighbor']:
raise tvm.error.OpAttributeUnImplemented(
'Method {} is not supported'.format(method))
layout = attr['layout'] if 'layout' in attr else 'NHWC'
extrapolation_value = attr['extrapolation_value']
return get_relay_op("crop_and_resize")(inputs[0], inputs[1], inputs[2], crop_size,
layout, method, extrapolation_value)
return _impl
def _cast():
def _impl(inputs, attr, params, mod):
return inputs[0].astype(attr['DstT'].name)
return _impl
def _expand_dims():
def _impl(inputs, attr, params, mod):
dim_input = inputs.pop(1)
axis = _get_num_param(params, dim_input)
return AttrCvt(op_name="expand_dims", ignores=['Tdim', 'N'],
extras={'axis': int(axis), 'num_newaxis': 1})(inputs, attr)
return _impl
def _resize(method):
def _impl(inputs, attr, params, mod):
if attr['_output_shapes'][0] is not None:
size = attr['_output_shapes'][0][1:3]
# Important that the size is defined. If an axis is not, we need to infer what
# the shape should be.
if -1 in size:
size = _infer_value(inputs[1], params, mod).asnumpy().reshape([-1]).tolist()
else:
size = _infer_value(inputs[1], params, mod).asnumpy().reshape([-1]).tolist()
attr['size'] = size
inputs.pop(1)
# NHWC
attr['layout'] = 'NHWC'
if attr.pop('align_corners') is True:
attr['coordinate_transformation_mode'] = 'align_corners'
else:
attr['coordinate_transformation_mode'] = 'asymmetric'
# Ignore the new attributes from TF2.0, for now.
return AttrCvt(op_name='resize',
ignores=['Tdim', 'half_pixel_centers'],
extras={'method': method})(inputs, attr)
return _impl
def _check_numerics():
def _impl(inputs, attr, params, mod):
# Making a copy node assuming no need to verify
return AttrCvt(op_name="copy", ignores=['message'])(inputs, attr)
return _impl
def _assert():
# ToDo: In general people want asserts to be gone from TensorFlow graphs
# when they are optimizing them, so converting it to a no-op is
# reasonable. However, it would be nice to have the option to keep them
# once Relay gets a Halt or Assert op.
return _no_op()
def _no_op():
def _impl(inputs, attr, params, mod):
# ToDo: This should really be an op that returns nothing, which could
# be represented as an empty tuple. It turns out that TVM
# infrastructure doesn't like running functions that return None and
# also don't like running functions that return an empty tuple. So it
# doesn't work, but it should be made to work and then this could be
# improved. In the mean time, it is hard to imagine a case where it
# matters in any real way that a no-op is converted to a constant 0.
return tvm.relay.const(0)
return _impl
def _matmul():
def _impl(inputs, attr, params, mod):
channels = _infer_channels(inputs[1], not attr['transpose_b'])
if attr['transpose_a']:
inputs[0] = _op.transpose(inputs[0], axes=(1, 0))
if not attr['transpose_b']:
inputs[1] = _op.transpose(inputs[1], axes=(1, 0))
return AttrCvt(op_name="dense",
extras={'units': channels},
ignores=['transpose_a', 'transpose_b', 'T'])(inputs, attr)
return _impl
def _batch_matmul():
def _impl(inputs, attr, params, mod):
input_x = inputs[0]
input_y = inputs[1]
orig_shape_x = _infer_shape(input_x, mod)
orig_shape_y = _infer_shape(input_y, mod)
# reshape n-dimensional batch matmul into 3d
if len(orig_shape_x) > 3:
outer_dims = [orig_shape_x[i] for i in range(0, len(orig_shape_x) - 2)]
num_outer_elts = np.prod(outer_dims)
new_shape_x = (num_outer_elts, orig_shape_x[-2], orig_shape_x[-1])
new_shape_y = (num_outer_elts, orig_shape_y[-2], orig_shape_y[-1])
input_x = _op.reshape(input_x, newshape=new_shape_x)
input_y = _op.reshape(input_y, newshape=new_shape_y)
adj_x = attr['adj_x']
adj_y = attr['adj_y']
input_x = _op.transpose(input_x, axes=[0, 2, 1]) if adj_x else input_x
input_y = _op.transpose(input_y, axes=[0, 2, 1]) if not adj_y else input_y
ret = get_relay_op('batch_matmul')(input_x, input_y)
# reshape result back to n-dimensional
if len(orig_shape_x) > 3:
final_shape = list(orig_shape_x)
final_shape[-2] = orig_shape_x[-1] if adj_x else orig_shape_x[-2]
final_shape[-1] = orig_shape_y[-2] if adj_y else orig_shape_y[-1]
ret = _op.reshape(ret, newshape=final_shape)
return ret
return _impl
def _identity():
def _impl(inputs, attr, params, mod):
return inputs[0]
return _impl
def _concatV2():
def _impl(inputs, attr, params, mod):
pop_node = inputs.pop(len(inputs)-1)
axis = int(_get_num_param(params, pop_node))
return AttrCvt(
op_name="concatenate", ignores=['T', 'N', 'Tidx'],
extras={'axis': axis})([inputs], attr)
return _impl
def _concat():
def _impl(inputs, attr, params, mod):
pop_node = inputs.pop(0)
axis = int(_get_num_param(params, pop_node))
return AttrCvt(
op_name="concatenate", ignores=['N'],
extras={'axis': axis})([inputs], attr)
return _impl
def _pack():
def _impl(inputs, attr, params, mod):
axis = int(attr["axis"])
inputs_reshaped = [_op.expand_dims(i, axis=axis, num_newaxis=1) for i in inputs]
return _op.concatenate(inputs_reshaped, axis)
return _impl
def _tensor_array():
def _impl(inputs, attr, params, prelude):
dtype_str = attr.get('dtype').name
assert not attr["dynamic_size"], "Dynamic size tensor array is " \
"not supported in TVM yet."
if "shape" in attr:
shape = attr["shape"]
static_tensor_array_ops = StaticTensorArrayOps(prelude,
dtype_str,
shape)
static_tensor_array_ops.register()
tensor_array_constructor = prelude.get_var_static('tensor_array',
dtype_str,
shape)
tensor_array = tensor_array_constructor(inputs[0])
else:
tensor_array_constructor = prelude.get_var('tensor_array', dtype_str)
tensor_array = tensor_array_constructor(inputs[0])
return tensor_array
return _impl
def _tensor_array_scatter():
def _impl(inputs, attr, params, prelude):
dtype_str = attr.get('T').name
input_ta = inputs[0]
input_shape = get_tensor_array_shape(input_ta, dtype_str, prelude)
values_shape = _infer_shape(inputs[2], prelude.mod)
input_t_shape = values_shape[1:]
indices_shape = _infer_shape(inputs[1], prelude.mod)
if input_shape is None:
values_rank = len(values_shape)
unstack_name = "tensor_array_unstack_tensor{}".format(values_rank)
unstack_function = prelude.get_var(unstack_name, dtype_str)
values = unstack_function(inputs[2])
tensor_array_scatter_func = prelude.get_var('tensor_array_scatter', dtype_str)
else:
input_t_shape = _get_more_static_shape(input_t_shape, input_shape)
values_shape = (values_shape[0],) + input_t_shape
static_tensor_array_ops = StaticTensorArrayOps(prelude,
dtype_str,
input_t_shape)
static_tensor_array_ops.register()
# Register static indices shape
if isinstance(indices_shape[0], int):
static_tensor_array_ops.define_tensor_array_scatter(indices_shape, True)
tensor_array_scatter_func = prelude.get_var_static('tensor_array_scatter',
dtype_str,
input_t_shape)
static_tensor_array_ops = StaticTensorArrayOps(prelude,
dtype_str,
values_shape)
static_tensor_array_ops.register()
unstack_function = prelude.get_var_static('tensor_array_unstack',
dtype_str,
values_shape)
values = unstack_function(inputs[2])
ret = tensor_array_scatter_func(input_ta, inputs[1], values)
return ret
return _impl
def _tensor_array_gather():
def _impl(inputs, attr, params, prelude):
dtype_str = attr.get('dtype').name
input_shape = get_tensor_array_shape(inputs[2], dtype_str, prelude)
indices_shape = _infer_shape(inputs[1], prelude.mod)
if input_shape is None:
gather_func = prelude.get_var('tensor_array_gather', dtype_str)
out = gather_func(inputs[2], inputs[1])
else:
static_tensor_array_ops = StaticTensorArrayOps(prelude,
dtype_str,
input_shape)
static_tensor_array_ops.register()
if not isinstance(indices_shape[0], int):
gather_function = prelude.get_var_static('tensor_array_gather',
dtype_str,
input_shape)
out_tensor_t = gather_function(inputs[2], inputs[1])
out_shape = (indices_shape[0],) + input_shape
static_tensor_array_ops = StaticTensorArrayOps(prelude,
dtype_str,
out_shape)
static_tensor_array_ops.register()
# Output shape is (indices_shape[0],) + input_shape
get_data_func = prelude.get_var_static('tensor_get_data',
dtype_str,
out_shape)
out = get_data_func(out_tensor_t)
else:
# For fixed length indices, directly generate static shape output
read_func = prelude.get_var_static('tensor_array_read',
dtype_str,
input_shape)
get_data_func = prelude.get_var_static('tensor_get_data',
dtype_str,
input_shape)
tensor_list = []
for i in range(indices_shape[0]):
index = _op.take(inputs[1], tvm.relay.const(i))
out_tensor = get_data_func(read_func(inputs[2], index))
tensor_list.append(_op.expand_dims(out_tensor, axis=0))
if indices_shape[0] > 1:
out = _op.concatenate(tensor_list, axis=0)
else:
out = tensor_list[0]
return out
return _impl
def _tensor_array_size():
def _impl(inputs, attr, params, prelude):
return prelude.length(inputs[0])
return _impl
def _tensor_array_write():
def _impl(inputs, attr, params, prelude):
dtype_str = attr.get('T').name
input_ta = inputs[3]
input_ta_shape = get_tensor_array_shape(input_ta, dtype_str, prelude)
input_t_shape = _infer_shape(inputs[2], prelude.mod)
input_rank = len(input_t_shape)
if input_ta_shape is None:
tensor_name = 'tensor{}'.format(input_rank)
tensor_func = prelude.get_var(tensor_name, dtype_str)
v = tensor_func(inputs[2])
write_func = prelude.get_var('tensor_array_write', dtype_str)
else:
input_ta_rank = len(input_ta_shape)
assert input_ta_rank == input_rank, "Shape rank mismatch: {} vs {}". \
format(input_ta_rank, input_rank)
static_tensor_array_ops = StaticTensorArrayOps(prelude,
dtype_str,
input_ta_shape)
static_tensor_array_ops.register()
tensor_func = prelude.get_var_static("tensor_constructor",
dtype_str,
input_ta_shape)
v = tensor_func(inputs[2])
# Write tensor with more static shape