-
Notifications
You must be signed in to change notification settings - Fork 14k
/
models.py
1182 lines (1035 loc) · 42.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=C,R,W
import logging
import re
from collections import OrderedDict
from datetime import datetime
from typing import Any, Dict, Hashable, List, NamedTuple, Optional, Tuple, Union
import pandas as pd
import sqlalchemy as sa
import sqlparse
from flask import escape, Markup
from flask_appbuilder import Model
from flask_babel import lazy_gettext as _
from sqlalchemy import (
and_,
asc,
Boolean,
Column,
DateTime,
desc,
ForeignKey,
Integer,
or_,
select,
String,
Table,
Text,
)
from sqlalchemy.exc import CompileError
from sqlalchemy.orm import backref, Query, relationship, RelationshipProperty, Session
from sqlalchemy.orm.exc import NoResultFound
from sqlalchemy.schema import UniqueConstraint
from sqlalchemy.sql import column, ColumnElement, literal_column, table, text
from sqlalchemy.sql.expression import Label, Select, TextAsFrom
from superset import app, db, security_manager
from superset.connectors.base.models import BaseColumn, BaseDatasource, BaseMetric
from superset.constants import NULL_STRING
from superset.db_engine_specs.base import TimestampExpression
from superset.exceptions import DatabaseNotFound
from superset.jinja_context import get_template_processor
from superset.models.annotations import Annotation
from superset.models.core import Database
from superset.models.helpers import QueryResult
from superset.utils import core as utils, import_datasource
config = app.config
metadata = Model.metadata # pylint: disable=no-member
class SqlaQuery(NamedTuple):
extra_cache_keys: List[Any]
labels_expected: List[str]
prequeries: List[str]
sqla_query: Select
class QueryStringExtended(NamedTuple):
labels_expected: List[str]
prequeries: List[str]
sql: str
class AnnotationDatasource(BaseDatasource):
""" Dummy object so we can query annotations using 'Viz' objects just like
regular datasources.
"""
cache_timeout = 0
def query(self, query_obj: Dict[str, Any]) -> QueryResult:
df = None
error_message = None
qry = db.session.query(Annotation)
qry = qry.filter(Annotation.layer_id == query_obj["filter"][0]["val"])
if query_obj["from_dttm"]:
qry = qry.filter(Annotation.start_dttm >= query_obj["from_dttm"])
if query_obj["to_dttm"]:
qry = qry.filter(Annotation.end_dttm <= query_obj["to_dttm"])
status = utils.QueryStatus.SUCCESS
try:
df = pd.read_sql_query(qry.statement, db.engine)
except Exception as e:
status = utils.QueryStatus.FAILED
logging.exception(e)
error_message = utils.error_msg_from_exception(e)
return QueryResult(
status=status, df=df, duration=0, query="", error_message=error_message
)
def get_query_str(self, query_obj):
raise NotImplementedError()
def values_for_column(self, column_name, limit=10000):
raise NotImplementedError()
class TableColumn(Model, BaseColumn):
"""ORM object for table columns, each table can have multiple columns"""
__tablename__ = "table_columns"
__table_args__ = (UniqueConstraint("table_id", "column_name"),)
table_id = Column(Integer, ForeignKey("tables.id"))
table = relationship(
"SqlaTable",
backref=backref("columns", cascade="all, delete-orphan"),
foreign_keys=[table_id],
)
is_dttm = Column(Boolean, default=False)
expression = Column(Text)
python_date_format = Column(String(255))
export_fields = [
"table_id",
"column_name",
"verbose_name",
"is_dttm",
"is_active",
"type",
"groupby",
"filterable",
"expression",
"description",
"python_date_format",
]
update_from_object_fields = [s for s in export_fields if s not in ("table_id",)]
export_parent = "table"
def get_sqla_col(self, label: Optional[str] = None) -> Column:
label = label or self.column_name
if not self.expression:
db_engine_spec = self.table.database.db_engine_spec
type_ = db_engine_spec.get_sqla_column_type(self.type)
col = column(self.column_name, type_=type_)
else:
col = literal_column(self.expression)
col = self.table.make_sqla_column_compatible(col, label)
return col
@property
def datasource(self) -> RelationshipProperty:
return self.table
def get_time_filter(
self,
start_dttm: DateTime,
end_dttm: DateTime,
time_range_endpoints: Optional[
Tuple[utils.TimeRangeEndpoint, utils.TimeRangeEndpoint]
],
) -> ColumnElement:
col = self.get_sqla_col(label="__time")
l = []
if start_dttm:
l.append(
col >= text(self.dttm_sql_literal(start_dttm, time_range_endpoints))
)
if end_dttm:
if (
time_range_endpoints
and time_range_endpoints[1] == utils.TimeRangeEndpoint.EXCLUSIVE
):
l.append(
col < text(self.dttm_sql_literal(end_dttm, time_range_endpoints))
)
else:
l.append(col <= text(self.dttm_sql_literal(end_dttm, None)))
return and_(*l)
def get_timestamp_expression(
self, time_grain: Optional[str]
) -> Union[TimestampExpression, Label]:
"""
Return a SQLAlchemy Core element representation of self to be used in a query.
:param time_grain: Optional time grain, e.g. P1Y
:return: A TimeExpression object wrapped in a Label if supported by db
"""
label = utils.DTTM_ALIAS
db = self.table.database
pdf = self.python_date_format
is_epoch = pdf in ("epoch_s", "epoch_ms")
if not self.expression and not time_grain and not is_epoch:
sqla_col = column(self.column_name, type_=DateTime)
return self.table.make_sqla_column_compatible(sqla_col, label)
if self.expression:
col = literal_column(self.expression)
else:
col = column(self.column_name)
time_expr = db.db_engine_spec.get_timestamp_expr(col, pdf, time_grain)
return self.table.make_sqla_column_compatible(time_expr, label)
@classmethod
def import_obj(cls, i_column):
def lookup_obj(lookup_column):
return (
db.session.query(TableColumn)
.filter(
TableColumn.table_id == lookup_column.table_id,
TableColumn.column_name == lookup_column.column_name,
)
.first()
)
return import_datasource.import_simple_obj(db.session, i_column, lookup_obj)
def dttm_sql_literal(
self,
dttm: DateTime,
time_range_endpoints: Optional[
Tuple[utils.TimeRangeEndpoint, utils.TimeRangeEndpoint]
],
) -> str:
"""Convert datetime object to a SQL expression string"""
sql = (
self.table.database.db_engine_spec.convert_dttm(self.type, dttm)
if self.type
else None
)
if sql:
return sql
tf = self.python_date_format
# Fallback to the default format (if defined) only if the SIP-15 time range
# endpoints, i.e., [start, end) are enabled.
if not tf and time_range_endpoints == (
utils.TimeRangeEndpoint.INCLUSIVE,
utils.TimeRangeEndpoint.EXCLUSIVE,
):
tf = (
self.table.database.get_extra()
.get("python_date_format_by_column_name", {})
.get(self.column_name)
)
if tf:
if tf in ["epoch_ms", "epoch_s"]:
seconds_since_epoch = int(dttm.timestamp())
if tf == "epoch_s":
return str(seconds_since_epoch)
return str(seconds_since_epoch * 1000)
return f"'{dttm.strftime(tf)}'"
# TODO(john-bodley): SIP-15 will explicitly require a type conversion.
return f"""'{dttm.strftime("%Y-%m-%d %H:%M:%S.%f")}'"""
class SqlMetric(Model, BaseMetric):
"""ORM object for metrics, each table can have multiple metrics"""
__tablename__ = "sql_metrics"
__table_args__ = (UniqueConstraint("table_id", "metric_name"),)
table_id = Column(Integer, ForeignKey("tables.id"))
table = relationship(
"SqlaTable",
backref=backref("metrics", cascade="all, delete-orphan"),
foreign_keys=[table_id],
)
expression = Column(Text, nullable=False)
export_fields = [
"metric_name",
"verbose_name",
"metric_type",
"table_id",
"expression",
"description",
"d3format",
"warning_text",
]
update_from_object_fields = list(
[s for s in export_fields if s not in ("table_id",)]
)
export_parent = "table"
def get_sqla_col(self, label: Optional[str] = None) -> Column:
label = label or self.metric_name
sqla_col = literal_column(self.expression)
return self.table.make_sqla_column_compatible(sqla_col, label)
@property
def perm(self) -> Optional[str]:
return (
("{parent_name}.[{obj.metric_name}](id:{obj.id})").format(
obj=self, parent_name=self.table.full_name
)
if self.table
else None
)
def get_perm(self) -> Optional[str]:
return self.perm
@classmethod
def import_obj(cls, i_metric):
def lookup_obj(lookup_metric):
return (
db.session.query(SqlMetric)
.filter(
SqlMetric.table_id == lookup_metric.table_id,
SqlMetric.metric_name == lookup_metric.metric_name,
)
.first()
)
return import_datasource.import_simple_obj(db.session, i_metric, lookup_obj)
sqlatable_user = Table(
"sqlatable_user",
metadata,
Column("id", Integer, primary_key=True),
Column("user_id", Integer, ForeignKey("ab_user.id")),
Column("table_id", Integer, ForeignKey("tables.id")),
)
class SqlaTable(Model, BaseDatasource):
"""An ORM object for SqlAlchemy table references"""
type = "table"
query_language = "sql"
metric_class = SqlMetric
column_class = TableColumn
owner_class = security_manager.user_model
__tablename__ = "tables"
__table_args__ = (UniqueConstraint("database_id", "table_name"),)
table_name = Column(String(250), nullable=False)
main_dttm_col = Column(String(250))
database_id = Column(Integer, ForeignKey("dbs.id"), nullable=False)
fetch_values_predicate = Column(String(1000))
owners = relationship(owner_class, secondary=sqlatable_user, backref="tables")
database = relationship(
"Database",
backref=backref("tables", cascade="all, delete-orphan"),
foreign_keys=[database_id],
)
schema = Column(String(255))
sql = Column(Text)
is_sqllab_view = Column(Boolean, default=False)
template_params = Column(Text)
baselink = "tablemodelview"
export_fields = [
"table_name",
"main_dttm_col",
"description",
"default_endpoint",
"database_id",
"offset",
"cache_timeout",
"schema",
"sql",
"params",
"template_params",
"filter_select_enabled",
"fetch_values_predicate",
]
update_from_object_fields = [
f for f in export_fields if f not in ("table_name", "database_id")
]
export_parent = "database"
export_children = ["metrics", "columns"]
sqla_aggregations = {
"COUNT_DISTINCT": lambda column_name: sa.func.COUNT(sa.distinct(column_name)),
"COUNT": sa.func.COUNT,
"SUM": sa.func.SUM,
"AVG": sa.func.AVG,
"MIN": sa.func.MIN,
"MAX": sa.func.MAX,
}
def make_sqla_column_compatible(
self, sqla_col: Column, label: Optional[str] = None
) -> Column:
"""Takes a sql alchemy column object and adds label info if supported by engine.
:param sqla_col: sql alchemy column instance
:param label: alias/label that column is expected to have
:return: either a sql alchemy column or label instance if supported by engine
"""
label_expected = label or sqla_col.name
db_engine_spec = self.database.db_engine_spec
if db_engine_spec.allows_column_aliases:
label = db_engine_spec.make_label_compatible(label_expected)
sqla_col = sqla_col.label(label)
sqla_col._df_label_expected = label_expected
return sqla_col
def __repr__(self):
return self.name
@property
def connection(self) -> str:
return str(self.database)
@property
def description_markeddown(self) -> str:
return utils.markdown(self.description)
@property
def datasource_name(self) -> str:
return self.table_name
@property
def database_name(self) -> str:
return self.database.name
@classmethod
def get_datasource_by_name(
cls,
session: Session,
datasource_name: str,
schema: Optional[str],
database_name: str,
) -> Optional["SqlaTable"]:
schema = schema or None
query = (
session.query(cls)
.join(Database)
.filter(cls.table_name == datasource_name)
.filter(Database.database_name == database_name)
)
# Handling schema being '' or None, which is easier to handle
# in python than in the SQLA query in a multi-dialect way
for tbl in query.all():
if schema == (tbl.schema or None):
return tbl
return None
@property
def link(self) -> Markup:
name = escape(self.name)
anchor = f'<a target="_blank" href="{self.explore_url}">{name}</a>'
return Markup(anchor)
def get_schema_perm(self) -> Optional[str]:
"""Returns schema permission if present, database one otherwise."""
return security_manager.get_schema_perm(self.database, self.schema)
def get_perm(self) -> str:
return ("[{obj.database}].[{obj.table_name}]" "(id:{obj.id})").format(obj=self)
@property
def name(self) -> str: # type: ignore
if not self.schema:
return self.table_name
return "{}.{}".format(self.schema, self.table_name)
@property
def full_name(self) -> str:
return utils.get_datasource_full_name(
self.database, self.table_name, schema=self.schema
)
@property
def dttm_cols(self) -> List:
l = [c.column_name for c in self.columns if c.is_dttm]
if self.main_dttm_col and self.main_dttm_col not in l:
l.append(self.main_dttm_col)
return l
@property
def num_cols(self) -> List:
return [c.column_name for c in self.columns if c.is_num]
@property
def any_dttm_col(self) -> Optional[str]:
cols = self.dttm_cols
return cols[0] if cols else None
@property
def html(self) -> str:
t = ((c.column_name, c.type) for c in self.columns)
df = pd.DataFrame(t)
df.columns = ["field", "type"]
return df.to_html(
index=False,
classes=("dataframe table table-striped table-bordered " "table-condensed"),
)
@property
def sql_url(self) -> str:
return self.database.sql_url + "?table_name=" + str(self.table_name)
def external_metadata(self):
cols = self.database.get_columns(self.table_name, schema=self.schema)
for col in cols:
try:
col["type"] = str(col["type"])
except CompileError:
col["type"] = "UNKNOWN"
return cols
@property
def time_column_grains(self) -> Dict[str, Any]:
return {
"time_columns": self.dttm_cols,
"time_grains": [grain.name for grain in self.database.grains()],
}
@property
def select_star(self) -> str:
# show_cols and latest_partition set to false to avoid
# the expensive cost of inspecting the DB
return self.database.select_star(
self.table_name,
sql=self.sql,
schema=self.schema,
show_cols=False,
latest_partition=False,
)
@property
def data(self) -> Dict:
d = super().data
if self.type == "table":
grains = self.database.grains() or []
if grains:
grains = [(g.duration, g.name) for g in grains]
d["granularity_sqla"] = utils.choicify(self.dttm_cols)
d["time_grain_sqla"] = grains
d["main_dttm_col"] = self.main_dttm_col
d["fetch_values_predicate"] = self.fetch_values_predicate
d["template_params"] = self.template_params
return d
def values_for_column(self, column_name: str, limit: int = 10000) -> List:
"""Runs query against sqla to retrieve some
sample values for the given column.
"""
cols = {col.column_name: col for col in self.columns}
target_col = cols[column_name]
tp = self.get_template_processor()
qry = (
select([target_col.get_sqla_col()])
.select_from(self.get_from_clause(tp))
.distinct()
)
if limit:
qry = qry.limit(limit)
if self.fetch_values_predicate:
tp = self.get_template_processor()
qry = qry.where(tp.process_template(self.fetch_values_predicate))
engine = self.database.get_sqla_engine()
sql = "{}".format(qry.compile(engine, compile_kwargs={"literal_binds": True}))
sql = self.mutate_query_from_config(sql)
df = pd.read_sql_query(sql=sql, con=engine)
return df[column_name].to_list()
def mutate_query_from_config(self, sql: str) -> str:
"""Apply config's SQL_QUERY_MUTATOR
Typically adds comments to the query with context"""
SQL_QUERY_MUTATOR = config["SQL_QUERY_MUTATOR"]
if SQL_QUERY_MUTATOR:
username = utils.get_username()
sql = SQL_QUERY_MUTATOR(sql, username, security_manager, self.database)
return sql
def get_template_processor(self, **kwargs):
return get_template_processor(table=self, database=self.database, **kwargs)
def get_query_str_extended(self, query_obj: Dict[str, Any]) -> QueryStringExtended:
sqlaq = self.get_sqla_query(**query_obj)
sql = self.database.compile_sqla_query(sqlaq.sqla_query)
logging.info(sql)
sql = sqlparse.format(sql, reindent=True)
sql = self.mutate_query_from_config(sql)
return QueryStringExtended(
labels_expected=sqlaq.labels_expected, sql=sql, prequeries=sqlaq.prequeries
)
def get_query_str(self, query_obj: Dict[str, Any]) -> str:
query_str_ext = self.get_query_str_extended(query_obj)
all_queries = query_str_ext.prequeries + [query_str_ext.sql]
return ";\n\n".join(all_queries) + ";"
def get_sqla_table(self):
tbl = table(self.table_name)
if self.schema:
tbl.schema = self.schema
return tbl
def get_from_clause(self, template_processor=None):
# Supporting arbitrary SQL statements in place of tables
if self.sql:
from_sql = self.sql
if template_processor:
from_sql = template_processor.process_template(from_sql)
from_sql = sqlparse.format(from_sql, strip_comments=True)
return TextAsFrom(sa.text(from_sql), []).alias("expr_qry")
return self.get_sqla_table()
def adhoc_metric_to_sqla(self, metric: Dict, cols: Dict) -> Optional[Column]:
"""
Turn an adhoc metric into a sqlalchemy column.
:param dict metric: Adhoc metric definition
:param dict cols: Columns for the current table
:returns: The metric defined as a sqlalchemy column
:rtype: sqlalchemy.sql.column
"""
expression_type = metric.get("expressionType")
label = utils.get_metric_name(metric)
if expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES["SIMPLE"]:
column_name = metric["column"].get("column_name")
table_column = cols.get(column_name)
if table_column:
sqla_column = table_column.get_sqla_col()
else:
sqla_column = column(column_name)
sqla_metric = self.sqla_aggregations[metric["aggregate"]](sqla_column)
elif expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES["SQL"]:
sqla_metric = literal_column(metric.get("sqlExpression"))
else:
return None
return self.make_sqla_column_compatible(sqla_metric, label)
def get_sqla_query( # sqla
self,
groupby,
metrics,
granularity,
from_dttm,
to_dttm,
filter=None,
is_timeseries=True,
timeseries_limit=15,
timeseries_limit_metric=None,
row_limit=None,
inner_from_dttm=None,
inner_to_dttm=None,
orderby=None,
extras=None,
columns=None,
order_desc=True,
) -> SqlaQuery:
"""Querying any sqla table from this common interface"""
template_kwargs = {
"from_dttm": from_dttm,
"groupby": groupby,
"metrics": metrics,
"row_limit": row_limit,
"to_dttm": to_dttm,
"filter": filter,
"columns": {col.column_name: col for col in self.columns},
}
template_kwargs.update(self.template_params_dict)
extra_cache_keys: List[Any] = []
template_kwargs["extra_cache_keys"] = extra_cache_keys
template_processor = self.get_template_processor(**template_kwargs)
db_engine_spec = self.database.db_engine_spec
prequeries: List[str] = []
orderby = orderby or []
# For backward compatibility
if granularity not in self.dttm_cols:
granularity = self.main_dttm_col
# Database spec supports join-free timeslot grouping
time_groupby_inline = db_engine_spec.time_groupby_inline
cols: Dict[str, Column] = {col.column_name: col for col in self.columns}
metrics_dict: Dict[str, SqlMetric] = {m.metric_name: m for m in self.metrics}
if not granularity and is_timeseries:
raise Exception(
_(
"Datetime column not provided as part table configuration "
"and is required by this type of chart"
)
)
if not groupby and not metrics and not columns:
raise Exception(_("Empty query?"))
metrics_exprs = []
for m in metrics:
if utils.is_adhoc_metric(m):
metrics_exprs.append(self.adhoc_metric_to_sqla(m, cols))
elif m in metrics_dict:
metrics_exprs.append(metrics_dict[m].get_sqla_col())
else:
raise Exception(_("Metric '%(metric)s' does not exist", metric=m))
if metrics_exprs:
main_metric_expr = metrics_exprs[0]
else:
main_metric_expr, label = literal_column("COUNT(*)"), "ccount"
main_metric_expr = self.make_sqla_column_compatible(main_metric_expr, label)
select_exprs: List[Column] = []
groupby_exprs_sans_timestamp: OrderedDict = OrderedDict()
if groupby:
select_exprs = []
for s in groupby:
if s in cols:
outer = cols[s].get_sqla_col()
else:
outer = literal_column(f"({s})")
outer = self.make_sqla_column_compatible(outer, s)
groupby_exprs_sans_timestamp[outer.name] = outer
select_exprs.append(outer)
elif columns:
for s in columns:
select_exprs.append(
cols[s].get_sqla_col()
if s in cols
else self.make_sqla_column_compatible(literal_column(s))
)
metrics_exprs = []
time_range_endpoints = extras.get("time_range_endpoints")
groupby_exprs_with_timestamp = OrderedDict(groupby_exprs_sans_timestamp.items())
if granularity:
dttm_col = cols[granularity]
time_grain = extras.get("time_grain_sqla")
time_filters = []
if is_timeseries:
timestamp = dttm_col.get_timestamp_expression(time_grain)
select_exprs += [timestamp]
groupby_exprs_with_timestamp[timestamp.name] = timestamp
# Use main dttm column to support index with secondary dttm columns.
if (
db_engine_spec.time_secondary_columns
and self.main_dttm_col in self.dttm_cols
and self.main_dttm_col != dttm_col.column_name
):
time_filters.append(
cols[self.main_dttm_col].get_time_filter(
from_dttm, to_dttm, time_range_endpoints
)
)
time_filters.append(
dttm_col.get_time_filter(from_dttm, to_dttm, time_range_endpoints)
)
select_exprs += metrics_exprs
labels_expected = [c._df_label_expected for c in select_exprs]
select_exprs = db_engine_spec.make_select_compatible(
groupby_exprs_with_timestamp.values(), select_exprs
)
qry = sa.select(select_exprs)
tbl = self.get_from_clause(template_processor)
if not columns:
qry = qry.group_by(*groupby_exprs_with_timestamp.values())
where_clause_and = []
having_clause_and: List = []
for flt in filter:
if not all([flt.get(s) for s in ["col", "op"]]):
continue
col = flt["col"]
op = flt["op"]
col_obj = cols.get(col)
if col_obj:
is_list_target = op in ("in", "not in")
eq = self.filter_values_handler(
flt.get("val"),
target_column_is_numeric=col_obj.is_num,
is_list_target=is_list_target,
)
if op in ("in", "not in"):
cond = col_obj.get_sqla_col().in_(eq)
if NULL_STRING in eq:
cond = or_(cond, col_obj.get_sqla_col() == None)
if op == "not in":
cond = ~cond
where_clause_and.append(cond)
else:
if col_obj.is_num:
eq = utils.string_to_num(flt["val"])
if op == "==":
where_clause_and.append(col_obj.get_sqla_col() == eq)
elif op == "!=":
where_clause_and.append(col_obj.get_sqla_col() != eq)
elif op == ">":
where_clause_and.append(col_obj.get_sqla_col() > eq)
elif op == "<":
where_clause_and.append(col_obj.get_sqla_col() < eq)
elif op == ">=":
where_clause_and.append(col_obj.get_sqla_col() >= eq)
elif op == "<=":
where_clause_and.append(col_obj.get_sqla_col() <= eq)
elif op == "LIKE":
where_clause_and.append(col_obj.get_sqla_col().like(eq))
elif op == "IS NULL":
where_clause_and.append(col_obj.get_sqla_col() == None)
elif op == "IS NOT NULL":
where_clause_and.append(col_obj.get_sqla_col() != None)
if extras:
where = extras.get("where")
if where:
where = template_processor.process_template(where)
where_clause_and += [sa.text("({})".format(where))]
having = extras.get("having")
if having:
having = template_processor.process_template(having)
having_clause_and += [sa.text("({})".format(having))]
if granularity:
qry = qry.where(and_(*(time_filters + where_clause_and)))
else:
qry = qry.where(and_(*where_clause_and))
qry = qry.having(and_(*having_clause_and))
if not orderby and not columns:
orderby = [(main_metric_expr, not order_desc)]
for col, ascending in orderby:
direction = asc if ascending else desc
if utils.is_adhoc_metric(col):
col = self.adhoc_metric_to_sqla(col, cols)
elif col in cols:
col = cols[col].get_sqla_col()
qry = qry.order_by(direction(col))
if row_limit:
qry = qry.limit(row_limit)
if is_timeseries and timeseries_limit and groupby and not time_groupby_inline:
if self.database.db_engine_spec.allows_joins:
# some sql dialects require for order by expressions
# to also be in the select clause -- others, e.g. vertica,
# require a unique inner alias
inner_main_metric_expr = self.make_sqla_column_compatible(
main_metric_expr, "mme_inner__"
)
inner_groupby_exprs = []
inner_select_exprs = []
for gby_name, gby_obj in groupby_exprs_sans_timestamp.items():
inner = self.make_sqla_column_compatible(gby_obj, gby_name + "__")
inner_groupby_exprs.append(inner)
inner_select_exprs.append(inner)
inner_select_exprs += [inner_main_metric_expr]
subq = select(inner_select_exprs).select_from(tbl)
inner_time_filter = dttm_col.get_time_filter(
inner_from_dttm or from_dttm,
inner_to_dttm or to_dttm,
time_range_endpoints,
)
subq = subq.where(and_(*(where_clause_and + [inner_time_filter])))
subq = subq.group_by(*inner_groupby_exprs)
ob = inner_main_metric_expr
if timeseries_limit_metric:
ob = self._get_timeseries_orderby(
timeseries_limit_metric, metrics_dict, cols
)
direction = desc if order_desc else asc
subq = subq.order_by(direction(ob))
subq = subq.limit(timeseries_limit)
on_clause = []
for gby_name, gby_obj in groupby_exprs_sans_timestamp.items():
# in this case the column name, not the alias, needs to be
# conditionally mutated, as it refers to the column alias in
# the inner query
col_name = db_engine_spec.make_label_compatible(gby_name + "__")
on_clause.append(gby_obj == column(col_name))
tbl = tbl.join(subq.alias(), and_(*on_clause))
else:
if timeseries_limit_metric:
orderby = [
(
self._get_timeseries_orderby(
timeseries_limit_metric, metrics_dict, cols
),
False,
)
]
# run prequery to get top groups
prequery_obj = {
"is_timeseries": False,
"row_limit": timeseries_limit,
"groupby": groupby,
"metrics": metrics,
"granularity": granularity,
"from_dttm": inner_from_dttm or from_dttm,
"to_dttm": inner_to_dttm or to_dttm,
"filter": filter,
"orderby": orderby,
"extras": extras,
"columns": columns,
"order_desc": True,
}
result = self.query(prequery_obj)
prequeries.append(result.query)
dimensions = [
c
for c in result.df.columns
if c not in metrics and c in groupby_exprs_sans_timestamp
]
top_groups = self._get_top_groups(
result.df, dimensions, groupby_exprs_sans_timestamp
)
qry = qry.where(top_groups)
return SqlaQuery(
extra_cache_keys=extra_cache_keys,
labels_expected=labels_expected,
sqla_query=qry.select_from(tbl),
prequeries=prequeries,
)
def _get_timeseries_orderby(self, timeseries_limit_metric, metrics_dict, cols):
if utils.is_adhoc_metric(timeseries_limit_metric):
ob = self.adhoc_metric_to_sqla(timeseries_limit_metric, cols)
elif timeseries_limit_metric in metrics_dict:
timeseries_limit_metric = metrics_dict.get(timeseries_limit_metric)
ob = timeseries_limit_metric.get_sqla_col()
else:
raise Exception(
_("Metric '%(metric)s' does not exist", metric=timeseries_limit_metric)
)
return ob
def _get_top_groups(
self, df: pd.DataFrame, dimensions: List, groupby_exprs: OrderedDict
) -> ColumnElement:
groups = []
for unused, row in df.iterrows():
group = []
for dimension in dimensions:
group.append(groupby_exprs[dimension] == row[dimension])
groups.append(and_(*group))
return or_(*groups)
def query(self, query_obj: Dict[str, Any]) -> QueryResult:
qry_start_dttm = datetime.now()
query_str_ext = self.get_query_str_extended(query_obj)
sql = query_str_ext.sql
status = utils.QueryStatus.SUCCESS
error_message = None
def mutator(df: pd.DataFrame) -> None:
"""
Some engines change the case or generate bespoke column names, either by
default or due to lack of support for aliasing. This function ensures that
the column names in the DataFrame correspond to what is expected by
the viz components.
:param df: Original DataFrame returned by the engine
"""
labels_expected = query_str_ext.labels_expected
if df is not None and not df.empty:
if len(df.columns) != len(labels_expected):
raise Exception(
f"For {sql}, df.columns: {df.columns}"
f" differs from {labels_expected}"
)
else:
df.columns = labels_expected
try:
df = self.database.get_df(sql, self.schema, mutator)