diff --git a/cn/docs/_print/index.html b/cn/docs/_print/index.html index 775e37c2d..8aa9f3155 100644 --- a/cn/docs/_print/index.html +++ b/cn/docs/_print/index.html @@ -6452,7 +6452,7 @@ // what is the name of the brother and the name of the place? g.V(pluto).out('brother').as('god').out('lives').as('place').select('god','place').by('name') -

推荐使用HugeGraph-Studio 通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。

3.2 总结

HugeGraph 目前支持 Gremlin 的语法,用户可以通过 Gremlin / REST-API 实现各种查询需求。

8 - PERFORMANCE

8.1 - HugeGraph BenchMark Performance

1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB
com-lj.ungraph.txt399796134681189479MB

1.3 服务配置

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.6295.7115.24367.033
Titan10.15108.569150.2661217.944
Neo4j3.88418.93824.890281.537

说明

结论

2.2 遍历性能

2.2.1 术语说明
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)com-lj.ungraph(400w)
HugeGraph4.07245.11866.006609.083
Titan8.08492.507184.5431099.371
Neo4j2.42410.53711.609106.919

说明

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph1.54010.76411.243151.271
Titan7.36193.344169.2181085.235
Neo4j1.6734.7754.28440.507

说明

结论

2.3 HugeGraph-图常用分析方法性能

术语说明
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.4940.1033.3648.155
Titan11.8180.239377.709575.678
Neo4j1.7191.8001.9568.530

说明

结论
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

结论

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
HugeGraph(core)20.804242.099744.7801700.547
Titan45.790820.6332652.2359568.623
Neo4j5.91350.267142.354460.880

说明

结论

8.2 - HugeGraph-API Performance

HugeGraph API性能测试主要测试HugeGraph-Server对RESTful API请求的并发处理能力,包括:

HugeGraph的每个发布版本的RESTful API的性能测试情况可以参考:

即将更新,敬请期待!

8.2.1 - v0.5.6 Stand-alone(RocksDB)

1 测试环境

被压机器信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

注:起压机器和被压机器在同一机房

2 测试说明

2.1 名词定义(时间的单位均为ms)

2.2 底层存储

后端存储使用RocksDB,HugeGraph与RocksDB都在同一机器上启动,server相关的配置文件除主机和端口有修改外,其余均保持默认。

3 性能结果总结

  1. HugeGraph单条插入顶点和边的速度在每秒1w左右
  2. 顶点和边的批量插入速度远大于单条插入速度
  3. 按id查询顶点和边的并发度可达到13000以上,且请求的平均延时小于50ms

4 测试结果及分析

4.1 batch插入

4.1.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数

持续时间:5min

顶点的最大插入速度:
image

####### 结论:

边的最大插入速度
image

####### 结论:

4.2 single插入

4.2.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的单条插入
image

####### 结论:

边的单条插入
image

####### 结论:

4.3 按id查询

4.3.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的按id查询
image

####### 结论:

边的按id查询
image

####### 结论:

8.2.2 - v0.5.6 Cluster(Cassandra)

1 测试环境

被压机器信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

注:起压机器和被压机器在同一机房

2 测试说明

2.1 名词定义(时间的单位均为ms)

2.2 底层存储

后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。

3 性能结果总结

  1. HugeGraph单条插入顶点和边的速度分别为9000和4500
  2. 顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度
  3. 按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms

4 测试结果及分析

4.1 batch插入

4.1.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数

持续时间:5min

顶点的最大插入速度:
image

####### 结论:

边的最大插入速度
image

####### 结论:

4.2 single插入

4.2.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的单条插入
image

####### 结论:

边的单条插入
image

####### 结论:

4.3 按id查询

4.3.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的按id查询
image

####### 结论:

边的按id查询
image

####### 结论:

8.3 - HugeGraph-Loader Performance

使用场景

当要批量插入的图数据(包括顶点和边)条数为billion级别及以下,或者总数据量小于TB时,可以采用HugeGraph-Loader工具持续、高速导入图数据

性能

测试均采用网址数据的边数据

RocksDB单机性能

Cassandra集群性能

8.4 -

1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB

1.3 服务配置

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan9.51688.123111.586
RocksDB2.34514.07616.636
Cassandra11.930108.709101.959
Memory3.07715.20413.841

说明

结论

2.2 遍历性能

2.2.1 术语说明
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)
Titan7.72470.935128.884
RocksDB8.87665.85263.388
Cassandra13.125126.959102.580
Memory22.309207.411165.609

说明

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan7.11963.353115.633
RocksDB6.03264.52652.721
Cassandra9.410102.76694.197
Memory12.340195.444140.89

说明

结论

2.3 HugeGraph-图常用分析方法性能

术语说明
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan11.3330.313376.06
RocksDB44.3912.221268.792
Cassandra39.8453.337331.113
Memory35.6382.059388.987

说明

结论
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

结论

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
Titan45.943849.1682737.1179791.46
Memory(core)41.0771825.905**
Cassandra(core)39.783862.7442423.1366564.191
RocksDB(core)33.383199.894763.8691677.813

说明

结论

9 - CHANGELOGS

9.1 - HugeGraph 1.0.0 Release Notes

OLTP API & Client 更新

API/Client 接口更新

Core & Server

功能更新

Bug 修复

配置项更新

其它修改

Computer (OLAP)

Algorithm Changes

Platform Changes

Toolchain (loader, tools, hubble)

Commons (common,rpc)

Release Details

更加详细的版本变更信息,可以查看各个子仓库的链接:

9.2 - HugeGraph 0.11 Release Notes

API & Client

功能更新

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

内部修改

9.3 - HugeGraph 0.12 Release Notes

API & Client

接口更新

其它修改

Core & Server

功能更新

BUG修复

配置项修改:

其它修改

Loader

Tools

9.4 - HugeGraph 0.10 Release Notes

API & Client

功能更新

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

内部修改

9.5 - HugeGraph 0.9 Release Notes

API & Client

功能更新

BUG修复

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

9.6 - HugeGraph 0.8 Release Notes

API & Client

功能更新

BUG修复

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

9.7 - HugeGraph 0.7 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

内部修改

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

Studio

BUG修复

9.8 - HugeGraph 0.6 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

Tools

功能更新

BUG修复

Loader

功能更新

BUG修复

9.9 - HugeGraph 0.5 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

9.10 - HugeGraph 0.4.4 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

9.11 - HugeGraph 0.3.3 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

9.12 - HugeGraph 0.2 Release Notes

API & Java Client

功能更新

0.2版实现了图数据库基本功能,提供如下功能:

元数据(Schema)

顶点类型(Vertex Label)

边类型(Edge Label)

属性(Property Key)

索引(Index Label)

元数据检查

图数据

顶点(Vertex)

边(Edge)

顶点/边属性

事务

索引

索引类型

索引操作

查询/遍历

缓存

可缓存内容

缓存特性

接口(RESTful API)

更多细节详见API文档

后端支持

支持Cassandra后端

支持Memory后端(仅用于测试)

其它

支持配置项

支持多图实例

版本检查

9.13 - HugeGraph 0.2.4 Release Notes

API & Java Client

功能更新

元数据(Schema)相关

BUG修复

图数据(Vertex、Edge)相关

功能更新

BUG修复

查询、索引、缓存相关

功能更新

BUG修复

其它

功能更新

BUG修复

测试

Tinkerpop合规测试

单元测试

内部修改

10 - Contribution Guidelines

10.1 - 如何参与 HugeGraph 社区

TODO: translate this article to Chinese

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
    +

    推荐使用HugeGraph-Studio 通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。

    3.2 总结

    HugeGraph 目前支持 Gremlin 的语法,用户可以通过 Gremlin / REST-API 实现各种查询需求。

8 - PERFORMANCE

8.1 - HugeGraph BenchMark Performance

1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB
com-lj.ungraph.txt399796134681189479MB

1.3 服务配置

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.6295.7115.24367.033
Titan10.15108.569150.2661217.944
Neo4j3.88418.93824.890281.537

说明

结论

2.2 遍历性能

2.2.1 术语说明
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)com-lj.ungraph(400w)
HugeGraph4.07245.11866.006609.083
Titan8.08492.507184.5431099.371
Neo4j2.42410.53711.609106.919

说明

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph1.54010.76411.243151.271
Titan7.36193.344169.2181085.235
Neo4j1.6734.7754.28440.507

说明

结论

2.3 HugeGraph-图常用分析方法性能

术语说明
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.4940.1033.3648.155
Titan11.8180.239377.709575.678
Neo4j1.7191.8001.9568.530

说明

结论
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

结论

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
HugeGraph(core)20.804242.099744.7801700.547
Titan45.790820.6332652.2359568.623
Neo4j5.91350.267142.354460.880

说明

结论

8.2 - HugeGraph-API Performance

HugeGraph API性能测试主要测试HugeGraph-Server对RESTful API请求的并发处理能力,包括:

HugeGraph的每个发布版本的RESTful API的性能测试情况可以参考:

即将更新,敬请期待!

8.2.1 - v0.5.6 Stand-alone(RocksDB)

1 测试环境

被压机器信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

注:起压机器和被压机器在同一机房

2 测试说明

2.1 名词定义(时间的单位均为ms)

2.2 底层存储

后端存储使用RocksDB,HugeGraph与RocksDB都在同一机器上启动,server相关的配置文件除主机和端口有修改外,其余均保持默认。

3 性能结果总结

  1. HugeGraph单条插入顶点和边的速度在每秒1w左右
  2. 顶点和边的批量插入速度远大于单条插入速度
  3. 按id查询顶点和边的并发度可达到13000以上,且请求的平均延时小于50ms

4 测试结果及分析

4.1 batch插入

4.1.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数

持续时间:5min

顶点的最大插入速度:
image

####### 结论:

边的最大插入速度
image

####### 结论:

4.2 single插入

4.2.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的单条插入
image

####### 结论:

边的单条插入
image

####### 结论:

4.3 按id查询

4.3.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的按id查询
image

####### 结论:

边的按id查询
image

####### 结论:

8.2.2 - v0.5.6 Cluster(Cassandra)

1 测试环境

被压机器信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

注:起压机器和被压机器在同一机房

2 测试说明

2.1 名词定义(时间的单位均为ms)

2.2 底层存储

后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。

3 性能结果总结

  1. HugeGraph单条插入顶点和边的速度分别为9000和4500
  2. 顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度
  3. 按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms

4 测试结果及分析

4.1 batch插入

4.1.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数

持续时间:5min

顶点的最大插入速度:
image

####### 结论:

边的最大插入速度
image

####### 结论:

4.2 single插入

4.2.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的单条插入
image

####### 结论:

边的单条插入
image

####### 结论:

4.3 按id查询

4.3.1 压力上限测试
测试方法

不断提升并发量,测试server仍能正常提供服务的压力上限

压力参数
顶点的按id查询
image

####### 结论:

边的按id查询
image

####### 结论:

8.3 - HugeGraph-Loader Performance

使用场景

当要批量插入的图数据(包括顶点和边)条数为billion级别及以下,或者总数据量小于TB时,可以采用HugeGraph-Loader工具持续、高速导入图数据

性能

测试均采用网址数据的边数据

RocksDB单机性能

Cassandra集群性能

8.4 -

1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB

1.3 服务配置

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan9.51688.123111.586
RocksDB2.34514.07616.636
Cassandra11.930108.709101.959
Memory3.07715.20413.841

说明

结论

2.2 遍历性能

2.2.1 术语说明
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)
Titan7.72470.935128.884
RocksDB8.87665.85263.388
Cassandra13.125126.959102.580
Memory22.309207.411165.609

说明

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan7.11963.353115.633
RocksDB6.03264.52652.721
Cassandra9.410102.76694.197
Memory12.340195.444140.89

说明

结论

2.3 HugeGraph-图常用分析方法性能

术语说明
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan11.3330.313376.06
RocksDB44.3912.221268.792
Cassandra39.8453.337331.113
Memory35.6382.059388.987

说明

结论
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

结论

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
Titan45.943849.1682737.1179791.46
Memory(core)41.0771825.905**
Cassandra(core)39.783862.7442423.1366564.191
RocksDB(core)33.383199.894763.8691677.813

说明

结论

9 - CHANGELOGS

9.1 - HugeGraph 1.0.0 Release Notes

OLTP API & Client 更新

API/Client 接口更新

Core & Server

功能更新

Bug 修复

配置项更新

其它修改

Computer (OLAP)

Algorithm Changes

Platform Changes

Toolchain (loader, tools, hubble)

Commons (common,rpc)

Release Details

更加详细的版本变更信息,可以查看各个子仓库的链接:

9.2 - HugeGraph 0.11 Release Notes

API & Client

功能更新

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

内部修改

9.3 - HugeGraph 0.12 Release Notes

API & Client

接口更新

其它修改

Core & Server

功能更新

BUG修复

配置项修改:

其它修改

Loader

Tools

9.4 - HugeGraph 0.10 Release Notes

API & Client

功能更新

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

内部修改

9.5 - HugeGraph 0.9 Release Notes

API & Client

功能更新

BUG修复

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

9.6 - HugeGraph 0.8 Release Notes

API & Client

功能更新

BUG修复

内部修改

Core

功能更新

BUG修复

内部修改

其它

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

9.7 - HugeGraph 0.7 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

内部修改

Loader

功能更新

BUG修复

内部修改

Tools

功能更新

BUG修复

Studio

BUG修复

9.8 - HugeGraph 0.6 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

Tools

功能更新

BUG修复

Loader

功能更新

BUG修复

9.9 - HugeGraph 0.5 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

9.10 - HugeGraph 0.4.4 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

9.11 - HugeGraph 0.3.3 Release Notes

API & Java Client

功能更新

BUG修复

Core

功能更新

BUG修复

测试

内部修改

9.12 - HugeGraph 0.2 Release Notes

API & Java Client

功能更新

0.2版实现了图数据库基本功能,提供如下功能:

元数据(Schema)

顶点类型(Vertex Label)

边类型(Edge Label)

属性(Property Key)

索引(Index Label)

元数据检查

图数据

顶点(Vertex)

边(Edge)

顶点/边属性

事务

索引

索引类型

索引操作

查询/遍历

缓存

可缓存内容

缓存特性

接口(RESTful API)

更多细节详见API文档

后端支持

支持Cassandra后端

支持Memory后端(仅用于测试)

其它

支持配置项

支持多图实例

版本检查

9.13 - HugeGraph 0.2.4 Release Notes

API & Java Client

功能更新

元数据(Schema)相关

BUG修复

图数据(Vertex、Edge)相关

功能更新

BUG修复

查询、索引、缓存相关

功能更新

BUG修复

其它

功能更新

BUG修复

测试

Tinkerpop合规测试

单元测试

内部修改

10 - Contribution Guidelines

10.1 - 如何参与 HugeGraph 社区

TODO: translate this article to Chinese

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

建议: 使用 GitHub desktop 可以大幅简化和改善你提交 PR/Commit 的过程, 特别适合新人

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
     git clone https://github.com/${GITHUB_USER_NAME}/hugegraph
     
  4. Configure local HugeGraph repo

    cd hugegraph
     
    @@ -6462,7 +6462,7 @@
     # set name and email to push code to github
     git config user.name "{full-name}" # like "Jermy Li"
     git config user.email "{email-address-of-github}" # like "jermy@apache.org"
    -

Optional: You can use GitHub desktop to greatly simplify the commit and update process.

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
+

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
 git checkout master
 # pull the latest code from official hugegraph
 git pull hugegraph
@@ -6484,7 +6484,7 @@
 

Please remember to fill in the issue id, which was generated by GitHub after issue creation.

3.4 Push commit to GitHub fork repo

Push the local commit to GitHub fork repo:

# push the local commit to fork repo
 git push origin bugfix-branch:bugfix-branch
 

Note that since GitHub requires submitting code through username + token (instead of using username + password directly), you need to create a GitHub token from https://github.com/settings/tokens: -image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:

I have read the CLA Document and I hereby sign the CLA

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: +image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: image

5. Code review

Maintainers will start the code review after all the automatic checks are passed:

The commit will be accepted and merged if there is no problem after review.

Please click on “Details” to find the problem if any check does not pass.

If there are checks not passed or changes requested, then continue to modify the code and push again.

6. More changes after review

If we have not passed the review, don’t be discouraged. Usually a commit needs to be reviewed several times before being accepted! Please follow the review comments and make further changes.

After the further changes, we submit them to the local repo:

# commit all updated files in a new commit,
 # please feel free to enter any appropriate commit message, note that
 # we will squash all commits in the pull request as one commit when
diff --git a/cn/docs/contribution-guidelines/_print/index.html b/cn/docs/contribution-guidelines/_print/index.html
index d93aaeb02..31834bc18 100644
--- a/cn/docs/contribution-guidelines/_print/index.html
+++ b/cn/docs/contribution-guidelines/_print/index.html
@@ -1,6 +1,6 @@
 Contribution Guidelines | HugeGraph
 

1 - 如何参与 HugeGraph 社区

TODO: translate this article to Chinese

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
    +Click here to print.

    Return to the regular view of this page.

    Contribution Guidelines

1 - 如何参与 HugeGraph 社区

TODO: translate this article to Chinese

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

建议: 使用 GitHub desktop 可以大幅简化和改善你提交 PR/Commit 的过程, 特别适合新人

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
     git clone https://github.com/${GITHUB_USER_NAME}/hugegraph
     
  4. Configure local HugeGraph repo

    cd hugegraph
     
    @@ -10,7 +10,7 @@
     # set name and email to push code to github
     git config user.name "{full-name}" # like "Jermy Li"
     git config user.email "{email-address-of-github}" # like "jermy@apache.org"
    -

Optional: You can use GitHub desktop to greatly simplify the commit and update process.

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
+

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
 git checkout master
 # pull the latest code from official hugegraph
 git pull hugegraph
@@ -32,7 +32,7 @@
 

Please remember to fill in the issue id, which was generated by GitHub after issue creation.

3.4 Push commit to GitHub fork repo

Push the local commit to GitHub fork repo:

# push the local commit to fork repo
 git push origin bugfix-branch:bugfix-branch
 

Note that since GitHub requires submitting code through username + token (instead of using username + password directly), you need to create a GitHub token from https://github.com/settings/tokens: -image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:

I have read the CLA Document and I hereby sign the CLA

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: +image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: image

5. Code review

Maintainers will start the code review after all the automatic checks are passed:

  • Check: Contributor License Agreement is signed
  • Check: Travis CI builds is passed (automatically Test and Deploy)

The commit will be accepted and merged if there is no problem after review.

Please click on “Details” to find the problem if any check does not pass.

If there are checks not passed or changes requested, then continue to modify the code and push again.

6. More changes after review

If we have not passed the review, don’t be discouraged. Usually a commit needs to be reviewed several times before being accepted! Please follow the review comments and make further changes.

After the further changes, we submit them to the local repo:

# commit all updated files in a new commit,
 # please feel free to enter any appropriate commit message, note that
 # we will squash all commits in the pull request as one commit when
diff --git a/cn/docs/contribution-guidelines/contribute/index.html b/cn/docs/contribution-guidelines/contribute/index.html
index eec0ae726..31bc7be37 100644
--- a/cn/docs/contribution-guidelines/contribute/index.html
+++ b/cn/docs/contribution-guidelines/contribute/index.html
@@ -4,22 +4,25 @@
 Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be …">
 

如何参与 HugeGraph 社区

TODO: translate this article to Chinese

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
    + Print entire section

    如何参与 HugeGraph 社区

    TODO: translate this article to Chinese

    Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

    The following is a contribution guide for HugeGraph:

    image

    1. Preparation

    建议: 使用 GitHub desktop 可以大幅简化和改善你提交 PR/Commit 的过程, 特别适合新人

    We can contribute by reporting issues, submitting code patches or any other feedback.

    Before submitting the code, we need to do some preparation:

    1. Sign up or login to GitHub: https://github.com

    2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

    3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

      # clone code from remote to local repo
       git clone https://github.com/${GITHUB_USER_NAME}/hugegraph
       
    4. Configure local HugeGraph repo

      cd hugegraph
       
      @@ -29,7 +32,7 @@
       # set name and email to push code to github
       git config user.name "{full-name}" # like "Jermy Li"
       git config user.email "{email-address-of-github}" # like "jermy@apache.org"
      -

    Optional: You can use GitHub desktop to greatly simplify the commit and update process.

    2. Create an Issue on GitHub

    If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

    3. Make changes of code locally

    3.1 Create a new branch

    Please don’t use master branch for development. We should create a new branch instead:

    # checkout master branch
    +

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
 git checkout master
 # pull the latest code from official hugegraph
 git pull hugegraph
@@ -51,7 +54,7 @@
 

Please remember to fill in the issue id, which was generated by GitHub after issue creation.

3.4 Push commit to GitHub fork repo

Push the local commit to GitHub fork repo:

# push the local commit to fork repo
 git push origin bugfix-branch:bugfix-branch
 

Note that since GitHub requires submitting code through username + token (instead of using username + password directly), you need to create a GitHub token from https://github.com/settings/tokens: -image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:

I have read the CLA Document and I hereby sign the CLA

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: +image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: image

5. Code review

Maintainers will start the code review after all the automatic checks are passed:

  • Check: Contributor License Agreement is signed
  • Check: Travis CI builds is passed (automatically Test and Deploy)

The commit will be accepted and merged if there is no problem after review.

Please click on “Details” to find the problem if any check does not pass.

If there are checks not passed or changes requested, then continue to modify the code and push again.

6. More changes after review

If we have not passed the review, don’t be discouraged. Usually a commit needs to be reviewed several times before being accepted! Please follow the review comments and make further changes.

After the further changes, we submit them to the local repo:

# commit all updated files in a new commit,
 # please feel free to enter any appropriate commit message, note that
 # we will squash all commits in the pull request as one commit when
@@ -65,7 +68,7 @@
 git rebase -i master
 

And push it to GitHub fork repo again:

# force push the local commit to fork repo
 git push -f origin bugfix-branch:bugfix-branch
-

GitHub will automatically update the Pull Request after we push it, just wait for code review.


+

GitHub will automatically update the Pull Request after we push it, just wait for code review.


diff --git a/cn/docs/contribution-guidelines/index.xml b/cn/docs/contribution-guidelines/index.xml index 757af8ba7..bbe03726e 100644 --- a/cn/docs/contribution-guidelines/index.xml +++ b/cn/docs/contribution-guidelines/index.xml @@ -6,6 +6,7 @@ <p>The following is a contribution guide for HugeGraph:</p> <img width="884" alt="image" src="https://user-images.githubusercontent.com/9625821/159643158-8bf72c0a-93c3-4a58-8912-7b2ab20ced1d.png"> <h2 id="1-preparation">1. Preparation</h2> +<p><strong>建议</strong>: 使用 <a href="https://desktop.github.com/">GitHub desktop</a> 可以大幅简化和改善你提交 PR/Commit 的过程, 特别适合新人</p> <p>We can contribute by reporting issues, submitting code patches or any other feedback.</p> <p>Before submitting the code, we need to do some preparation:</p> <ol> @@ -32,7 +33,6 @@ </span></span><span style="display:flex;"><span>git config user.email <span style="color:#4e9a06">&#34;{email-address-of-github}&#34;</span> <span style="color:#8f5902;font-style:italic"># like &#34;jermy@apache.org&#34;</span> </span></span></code></pre></div></li> </ol> -<p>Optional: You can use <a href="https://desktop.github.com/">GitHub desktop</a> to greatly simplify the commit and update process.</p> <h2 id="2-create-an-issue-on-github">2. Create an Issue on GitHub</h2> <p>If you encounter bugs or have any questions, please go to <a href="https://github.com/apache/incubator-hugegraph/issues">GitHub Issues</a> to report them and feel free to <a href="https://github.com/apache/hugegraph/issues/new">create an issue</a>.</p> <h2 id="3-make-changes-of-code-locally">3. Make changes of code locally</h2> @@ -89,8 +89,6 @@ <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163524204-7fe0e6bf-9c8b-4b1a-ac65-6a0ac423eb16.png"></p> <h2 id="4-create-a-pull-request">4. Create a Pull Request</h2> <p>Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button &ldquo;Compare &amp; pull request&rdquo; to do it. Then edit the description for proposed changes, which can just be copied from the commit message.</p> -<p>Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:</p> -<p><code>I have read the CLA Document and I hereby sign the CLA</code></p> <p>Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to <a href="https://github.com/settings/emails">https://github.com/settings/emails</a>: <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163522445-2a50a72a-dea2-434f-9868-3a0d40d0d037.png"></p> <h2 id="5-code-review">5. Code review</h2> diff --git a/cn/docs/index.xml b/cn/docs/index.xml index bf520a0df..7d9ed5938 100644 --- a/cn/docs/index.xml +++ b/cn/docs/index.xml @@ -2306,6 +2306,7 @@ HugeGraph支持多用户并行操作,用户可输入Gremlin查询语句,并 <p>The following is a contribution guide for HugeGraph:</p> <img width="884" alt="image" src="https://user-images.githubusercontent.com/9625821/159643158-8bf72c0a-93c3-4a58-8912-7b2ab20ced1d.png"> <h2 id="1-preparation">1. Preparation</h2> +<p><strong>建议</strong>: 使用 <a href="https://desktop.github.com/">GitHub desktop</a> 可以大幅简化和改善你提交 PR/Commit 的过程, 特别适合新人</p> <p>We can contribute by reporting issues, submitting code patches or any other feedback.</p> <p>Before submitting the code, we need to do some preparation:</p> <ol> @@ -2332,7 +2333,6 @@ HugeGraph支持多用户并行操作,用户可输入Gremlin查询语句,并 </span></span><span style="display:flex;"><span>git config user.email <span style="color:#4e9a06">&#34;{email-address-of-github}&#34;</span> <span style="color:#8f5902;font-style:italic"># like &#34;jermy@apache.org&#34;</span> </span></span></code></pre></div></li> </ol> -<p>Optional: You can use <a href="https://desktop.github.com/">GitHub desktop</a> to greatly simplify the commit and update process.</p> <h2 id="2-create-an-issue-on-github">2. Create an Issue on GitHub</h2> <p>If you encounter bugs or have any questions, please go to <a href="https://github.com/apache/incubator-hugegraph/issues">GitHub Issues</a> to report them and feel free to <a href="https://github.com/apache/hugegraph/issues/new">create an issue</a>.</p> <h2 id="3-make-changes-of-code-locally">3. Make changes of code locally</h2> @@ -2389,8 +2389,6 @@ HugeGraph支持多用户并行操作,用户可输入Gremlin查询语句,并 <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163524204-7fe0e6bf-9c8b-4b1a-ac65-6a0ac423eb16.png"></p> <h2 id="4-create-a-pull-request">4. Create a Pull Request</h2> <p>Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button &ldquo;Compare &amp; pull request&rdquo; to do it. Then edit the description for proposed changes, which can just be copied from the commit message.</p> -<p>Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:</p> -<p><code>I have read the CLA Document and I hereby sign the CLA</code></p> <p>Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to <a href="https://github.com/settings/emails">https://github.com/settings/emails</a>: <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163522445-2a50a72a-dea2-434f-9868-3a0d40d0d037.png"></p> <h2 id="5-code-review">5. Code review</h2> diff --git a/cn/sitemap.xml b/cn/sitemap.xml index 2f2860fa4..a651944c5 100644 --- a/cn/sitemap.xml +++ b/cn/sitemap.xml @@ -1 +1 @@ -/cn/docs/guides/architectural/2023-06-25T21:06:07+08:00/cn/docs/config/config-guide/2023-06-21T14:48:04+08:00/cn/docs/language/hugegraph-gremlin/2023-01-01T16:16:43+08:00/cn/docs/performance/hugegraph-benchmark-0.5.6/2022-09-15T15:16:23+08:00/cn/docs/quickstart/hugegraph-server/2023-06-25T21:06:07+08:00/cn/docs/introduction/readme/2023-06-18T14:57:33+08:00/cn/docs/changelog/hugegraph-1.0.0-release-notes/2023-01-09T07:41:46+08:00/cn/docs/clients/restful-api/2023-07-31T23:55:30+08:00/cn/docs/clients/restful-api/schema/2023-05-14T19:35:13+08:00/cn/docs/performance/api-preformance/hugegraph-api-0.5.6-rocksdb/2023-01-01T16:16:43+08:00/cn/docs/contribution-guidelines/contribute/2023-06-26T14:59:53+08:00/cn/docs/config/config-option/2023-02-08T20:56:09+08:00/cn/docs/guides/desgin-concept/2022-04-17T11:36:55+08:00/cn/docs/download/download/2023-06-17T14:43:04+08:00/cn/docs/language/hugegraph-example/2023-02-02T01:21:10+08:00/cn/docs/clients/hugegraph-client/2022-09-15T15:16:23+08:00/cn/docs/performance/api-preformance/2023-06-17T14:43:04+08:00/cn/docs/quickstart/hugegraph-loader/2023-05-17T23:12:35+08:00/cn/docs/clients/restful-api/propertykey/2023-05-19T05:15:56-05:00/cn/docs/changelog/hugegraph-0.11.2-release-notes/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.12.0-release-notes/2023-01-01T16:16:43+08:00/cn/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/2023-01-01T16:16:43+08:00/cn/docs/contribution-guidelines/subscribe/2023-06-17T14:43:04+08:00/cn/docs/config/config-authentication/2022-04-17T11:36:55+08:00/cn/docs/clients/gremlin-console/2023-06-12T23:52:07+08:00/cn/docs/guides/custom-plugin/2022-09-15T15:16:23+08:00/cn/docs/performance/hugegraph-loader-performance/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-tools/2023-05-09T21:27:34+08:00/cn/docs/quickstart/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.10.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/vertexlabel/2022-04-17T11:36:55+08:00/cn/docs/contribution-guidelines/validate-release/2023-02-15T16:14:21+08:00/cn/docs/guides/backup-restore/2022-04-17T11:36:55+08:00/cn/docs/config/2022-04-17T11:36:55+08:00/cn/docs/config/config-https/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/edgelabel/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.9.2-release-notes/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-hubble/2023-01-01T16:16:43+08:00/cn/docs/contribution-guidelines/hugegraph-server-idea-setup/2023-06-25T21:06:07+08:00/cn/docs/clients/2022-04-17T11:36:55+08:00/cn/docs/config/config-computer/2023-01-01T16:16:43+08:00/cn/docs/guides/faq/2023-01-04T22:59:07+08:00/cn/docs/clients/restful-api/indexlabel/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.8.0-release-notes/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-client/2023-05-18T11:09:55+08:00/cn/docs/guides/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/rebuild/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.7.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-computer/2023-06-25T21:06:46+08:00/cn/docs/language/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.6.1-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/vertex/2023-06-04T23:04:47+08:00/cn/docs/clients/restful-api/edge/2023-06-29T10:17:29+08:00/cn/docs/performance/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.5.6-release-notes/2022-04-17T11:36:55+08:00/cn/docs/changelog/2022-04-17T11:36:55+08:00/cn/docs/contribution-guidelines/2022-12-30T19:57:48+08:00/cn/docs/changelog/hugegraph-0.4.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/traverser/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/rank/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.3.3-release-notes/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.2-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/variable/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/graphs/2022-05-27T09:27:37+08:00/cn/docs/changelog/hugegraph-0.2.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/task/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/gremlin/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/cypher/2023-07-31T23:55:30+08:00/cn/docs/clients/restful-api/auth/2023-07-31T23:55:30+08:00/cn/docs/clients/restful-api/other/2023-07-31T23:55:30+08:00/cn/docs/2022-12-30T19:57:48+08:00/cn/blog/news/2022-04-17T11:36:55+08:00/cn/blog/releases/2022-04-17T11:36:55+08:00/cn/blog/2018/10/06/easy-documentation-with-docsy/2022-04-17T11:36:55+08:00/cn/blog/2018/10/06/the-second-blog-post/2022-04-17T11:36:55+08:00/cn/blog/2018/01/04/another-great-release/2022-04-17T11:36:55+08:00/cn/docs/cla/2022-04-17T11:36:55+08:00/cn/docs/performance/hugegraph-benchmark-0.4.4/2022-09-15T15:16:23+08:00/cn/docs/summary/2023-07-31T23:55:30+08:00/cn/blog/2022-04-17T11:36:55+08:00/cn/categories//cn/community/2022-04-17T11:36:55+08:00/cn/2023-01-04T22:59:07+08:00/cn/search/2022-04-17T11:36:55+08:00/cn/tags/ \ No newline at end of file +/cn/docs/guides/architectural/2023-06-25T21:06:07+08:00/cn/docs/config/config-guide/2023-06-21T14:48:04+08:00/cn/docs/language/hugegraph-gremlin/2023-01-01T16:16:43+08:00/cn/docs/performance/hugegraph-benchmark-0.5.6/2022-09-15T15:16:23+08:00/cn/docs/quickstart/hugegraph-server/2023-06-25T21:06:07+08:00/cn/docs/introduction/readme/2023-06-18T14:57:33+08:00/cn/docs/changelog/hugegraph-1.0.0-release-notes/2023-01-09T07:41:46+08:00/cn/docs/clients/restful-api/2023-07-31T23:55:30+08:00/cn/docs/clients/restful-api/schema/2023-05-14T19:35:13+08:00/cn/docs/performance/api-preformance/hugegraph-api-0.5.6-rocksdb/2023-01-01T16:16:43+08:00/cn/docs/contribution-guidelines/contribute/2023-09-09T20:50:32+08:00/cn/docs/config/config-option/2023-02-08T20:56:09+08:00/cn/docs/guides/desgin-concept/2022-04-17T11:36:55+08:00/cn/docs/download/download/2023-06-17T14:43:04+08:00/cn/docs/language/hugegraph-example/2023-02-02T01:21:10+08:00/cn/docs/clients/hugegraph-client/2022-09-15T15:16:23+08:00/cn/docs/performance/api-preformance/2023-06-17T14:43:04+08:00/cn/docs/quickstart/hugegraph-loader/2023-05-17T23:12:35+08:00/cn/docs/clients/restful-api/propertykey/2023-05-19T05:15:56-05:00/cn/docs/changelog/hugegraph-0.11.2-release-notes/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.12.0-release-notes/2023-01-01T16:16:43+08:00/cn/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/2023-01-01T16:16:43+08:00/cn/docs/contribution-guidelines/subscribe/2023-06-17T14:43:04+08:00/cn/docs/config/config-authentication/2022-04-17T11:36:55+08:00/cn/docs/clients/gremlin-console/2023-06-12T23:52:07+08:00/cn/docs/guides/custom-plugin/2022-09-15T15:16:23+08:00/cn/docs/performance/hugegraph-loader-performance/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-tools/2023-05-09T21:27:34+08:00/cn/docs/quickstart/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.10.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/vertexlabel/2022-04-17T11:36:55+08:00/cn/docs/contribution-guidelines/validate-release/2023-02-15T16:14:21+08:00/cn/docs/guides/backup-restore/2022-04-17T11:36:55+08:00/cn/docs/config/2022-04-17T11:36:55+08:00/cn/docs/config/config-https/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/edgelabel/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.9.2-release-notes/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-hubble/2023-01-01T16:16:43+08:00/cn/docs/contribution-guidelines/hugegraph-server-idea-setup/2023-06-25T21:06:07+08:00/cn/docs/clients/2022-04-17T11:36:55+08:00/cn/docs/config/config-computer/2023-01-01T16:16:43+08:00/cn/docs/guides/faq/2023-01-04T22:59:07+08:00/cn/docs/clients/restful-api/indexlabel/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.8.0-release-notes/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-client/2023-05-18T11:09:55+08:00/cn/docs/guides/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/rebuild/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.7.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/quickstart/hugegraph-computer/2023-06-25T21:06:46+08:00/cn/docs/language/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.6.1-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/vertex/2023-06-04T23:04:47+08:00/cn/docs/clients/restful-api/edge/2023-06-29T10:17:29+08:00/cn/docs/performance/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.5.6-release-notes/2022-04-17T11:36:55+08:00/cn/docs/changelog/2022-04-17T11:36:55+08:00/cn/docs/contribution-guidelines/2022-12-30T19:57:48+08:00/cn/docs/changelog/hugegraph-0.4.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/traverser/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/rank/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.3.3-release-notes/2022-04-17T11:36:55+08:00/cn/docs/changelog/hugegraph-0.2-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/variable/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/graphs/2022-05-27T09:27:37+08:00/cn/docs/changelog/hugegraph-0.2.4-release-notes/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/task/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/gremlin/2022-04-17T11:36:55+08:00/cn/docs/clients/restful-api/cypher/2023-07-31T23:55:30+08:00/cn/docs/clients/restful-api/auth/2023-07-31T23:55:30+08:00/cn/docs/clients/restful-api/other/2023-07-31T23:55:30+08:00/cn/docs/2022-12-30T19:57:48+08:00/cn/blog/news/2022-04-17T11:36:55+08:00/cn/blog/releases/2022-04-17T11:36:55+08:00/cn/blog/2018/10/06/easy-documentation-with-docsy/2022-04-17T11:36:55+08:00/cn/blog/2018/10/06/the-second-blog-post/2022-04-17T11:36:55+08:00/cn/blog/2018/01/04/another-great-release/2022-04-17T11:36:55+08:00/cn/docs/cla/2022-04-17T11:36:55+08:00/cn/docs/performance/hugegraph-benchmark-0.4.4/2022-09-15T15:16:23+08:00/cn/docs/summary/2023-07-31T23:55:30+08:00/cn/blog/2022-04-17T11:36:55+08:00/cn/categories//cn/community/2022-04-17T11:36:55+08:00/cn/2023-01-04T22:59:07+08:00/cn/search/2022-04-17T11:36:55+08:00/cn/tags/ \ No newline at end of file diff --git a/docs/_print/index.html b/docs/_print/index.html index 2853b6ff1..ec4ef80ee 100644 --- a/docs/_print/index.html +++ b/docs/_print/index.html @@ -6460,7 +6460,7 @@
// what is the name of the brother and the name of the place? g.V(pluto).out('brother').as('god').out('lives').as('place').select('god','place').by('name') -

推荐使用HugeGraph-Studio 通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。

3.2 总结

HugeGraph 目前支持 Gremlin 的语法,用户可以通过 Gremlin / REST-API 实现各种查询需求。

8 - PERFORMANCE

8.1 - HugeGraph BenchMark Performance

1 Test environment

1.1 Hardware information

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 Software information

1.2.1 Test cases

Testing is done using the graphdb-benchmark, a benchmark suite for graph databases. This benchmark suite mainly consists of four types of tests:

1.2.2 Test dataset

Tests are conducted using both synthetic and real data.

The size of the datasets used in this test are not mentioned.

NameNumber of VerticesNumber of EdgesFile Size
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB
com-lj.ungraph.txt399796134681189479MB

1.3 Service configuration

The Titan version adapted by graphdb-benchmark is 0.5.4.

2 Test results

2.1 Batch insertion performance

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.6295.7115.24367.033
Titan10.15108.569150.2661217.944
Neo4j3.88418.93824.890281.537

Instructions

Conclusion

2.2 Traversal performance

2.2.1 Explanation of terms
2.2.2 FN performance
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)com-lj.ungraph(400w)
HugeGraph4.07245.11866.006609.083
Titan8.08492.507184.5431099.371
Neo4j2.42410.53711.609106.919

Instructions

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph1.54010.76411.243151.271
Titan7.36193.344169.2181085.235
Neo4j1.6734.7754.28440.507

Explanation

Conclusion

2.3 Performance of Common Graph Analysis Methods in HugeGraph

Terminology Explanation
FS performance
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.4940.1033.3648.155
Titan11.8180.239377.709575.678
Neo4j1.7191.8001.9568.530

Explanation

Conclusion
K-neighbor Performance
VertexDepthDegree 1Degree 2Degree 3Degree 4Degree 5Degree 6
v1Time0.031s0.033s0.048s0.500s11.27sOOM
v111Time0.027s0.034s0.115s1.36sOOM
v1111Time0.039s0.027s0.052s0.511s10.96sOOM

Explanation

K-out performance
VertexDepth1st Degree2nd Degree3rd Degree4th Degree5th Degree6th Degree
v1Time0.054s0.057s0.109s0.526s3.77sOOM
Degree10133245350,8301,128,688
v111Time0.032s0.042s0.136s1.25s20.62sOOM
Degree1021149441131502,629,970
v1111Time0.039s0.045s0.053s1.10s2.92sOOM
Degree101402555508251,070,230

Explanation

Conclusion

2.4 Comprehensive Performance Test - CW

DatabaseSize 1000Size 5000Size 10000Size 20000
HugeGraph(core)20.804242.099744.7801700.547
Titan45.790820.6332652.2359568.623
Neo4j5.91350.267142.354460.880

Explanation

Conclusion

8.2 - HugeGraph-API Performance

The HugeGraph API performance test mainly tests HugeGraph-Server’s ability to concurrently process RESTful API requests, including:

For the performance test of the RESTful API of each release version of HugeGraph, please refer to:

Updates coming soon, stay tuned!

8.2.1 - v0.5.6 Stand-alone(RocksDB)

1 Test environment

Compressed machine information:

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

Note: The load-generating machine and the machine under test are located in the same local network.

2 Test description

2.1 Definition of terms (the unit of time is ms)

2.2 Underlying storage

RocksDB is used for backend storage, HugeGraph and RocksDB are both started on the same machine, and the configuration files related to the server remain as default except for the modification of the host and port.

3 Summary of performance results

  1. The speed of inserting a single vertex and edge in HugeGraph is about 1w per second
  2. The batch insertion speed of vertices and edges is much faster than the single insertion speed
  3. The concurrency of querying vertices and edges by id can reach more than 13000, and the average delay of requests is less than 50ms

4 Test results and analysis

4.1 batch insertion

4.1.1 Upper limit stress testing
Test methods

The upper limit of stress testing is to continuously increase the concurrency and test whether the server can still provide services normally.

Stress Parameters

Duration: 5 minutes

Maximum insertion speed for vertices:
image

####### in conclusion:

Maximum insertion speed for edges
image

####### Conclusion:

4.2 Single insertion

4.2.1 Stress limit testing
Test Methods

Stress limit testing is a process of continuously increasing the concurrency level to test the upper limit of the server’s ability to provide normal service.

Stress parameters
Single vertex insertion
image

####### Conclusion:

Single edge insertion
image

####### Conclusion:

4.3 Search by ID

4.3.1 Stress test upper limit
Testing method

Continuously increasing the concurrency level to test the upper limit of the server’s ability to provide service under normal conditions.

stress parameters
Querying vertices by ID
image

####### Conclusion:

Querying edges by ID
image

####### Conclusion:

8.2.2 - v0.5.6 Cluster(Cassandra)

1 Test environment

Compressed machine information

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

Note: The machine used to initiate the load and the machine being tested are located in the same data center (or server room)

2 Test Description

2.1 Definition of terms (the unit of time is ms)

2.2 Low-Level Storage

A 15-node Cassandra cluster is used for backend storage. HugeGraph and the Cassandra cluster are located on separate servers. Server-related configuration files are modified only for host and port settings, while the rest remain default.

3 Summary of Performance Results

  1. The speed of single vertex and edge insertion in HugeGraph is 9000 and 4500 per second, respectively.
  2. The speed of bulk vertex and edge insertion is 50,000 and 150,000 per second, respectively, which is much higher than the single insertion speed.
  3. The concurrency for querying vertices and edges by ID can reach more than 12,000, and the average request delay is less than 70ms.

4 Test Results and Analysis

4.1 Batch Insertion

4.1.1 Pressure Upper Limit Test
Test Method

Continuously increase the concurrency level to test the upper limit of the server’s ability to provide services.

Pressure Parameters

Duration: 5 minutes.

Maximum Insertion Speed of Vertices:
image
Conclusion:
Maximum Insertion Speed of Edges:
image
Conclusion:

4.2 Single Insertion

4.2.1 Pressure Upper Limit Test
Test Method

Continuously increase the concurrency level to test the upper limit of the server’s ability to provide services.

Pressure Parameters
Single Insertion of Vertices:
image
Conclusion:
Single Insertion of Edges:
image
Conclusion:

4.3 Query by ID

4.3.1 Pressure Upper Limit Test
Test Method

Continuously increase the concurrency and test the upper limit of the pressure that the server can still provide services normally.

Pressure Parameters
Query by ID for vertices
image
Conclusion:
Edge search by ID
image
Conclusion:

8.3 - HugeGraph-Loader Performance

Use Cases

When the number of graph data to be batch inserted (including vertices and edges) is at the billion level or below, or the total data size is less than TB, the HugeGraph-Loader tool can be used to continuously and quickly import graph data.

Performance

The test uses the edge data of website.

RocksDB single-machine performance

Cassandra cluster performance

8.4 -

1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB

1.3 服务配置

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan9.51688.123111.586
RocksDB2.34514.07616.636
Cassandra11.930108.709101.959
Memory3.07715.20413.841

说明

结论

2.2 遍历性能

2.2.1 术语说明
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)
Titan7.72470.935128.884
RocksDB8.87665.85263.388
Cassandra13.125126.959102.580
Memory22.309207.411165.609

说明

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan7.11963.353115.633
RocksDB6.03264.52652.721
Cassandra9.410102.76694.197
Memory12.340195.444140.89

说明

结论

2.3 HugeGraph-图常用分析方法性能

术语说明
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan11.3330.313376.06
RocksDB44.3912.221268.792
Cassandra39.8453.337331.113
Memory35.6382.059388.987

说明

结论
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

结论

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
Titan45.943849.1682737.1179791.46
Memory(core)41.0771825.905**
Cassandra(core)39.783862.7442423.1366564.191
RocksDB(core)33.383199.894763.8691677.813

说明

结论

9 - Contribution Guidelines

9.1 - How to Contribute to HugeGraph

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
    +

    推荐使用HugeGraph-Studio 通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。

    3.2 总结

    HugeGraph 目前支持 Gremlin 的语法,用户可以通过 Gremlin / REST-API 实现各种查询需求。

8 - PERFORMANCE

8.1 - HugeGraph BenchMark Performance

1 Test environment

1.1 Hardware information

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 Software information

1.2.1 Test cases

Testing is done using the graphdb-benchmark, a benchmark suite for graph databases. This benchmark suite mainly consists of four types of tests:

1.2.2 Test dataset

Tests are conducted using both synthetic and real data.

The size of the datasets used in this test are not mentioned.

NameNumber of VerticesNumber of EdgesFile Size
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB
com-lj.ungraph.txt399796134681189479MB

1.3 Service configuration

The Titan version adapted by graphdb-benchmark is 0.5.4.

2 Test results

2.1 Batch insertion performance

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.6295.7115.24367.033
Titan10.15108.569150.2661217.944
Neo4j3.88418.93824.890281.537

Instructions

Conclusion

2.2 Traversal performance

2.2.1 Explanation of terms
2.2.2 FN performance
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)com-lj.ungraph(400w)
HugeGraph4.07245.11866.006609.083
Titan8.08492.507184.5431099.371
Neo4j2.42410.53711.609106.919

Instructions

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph1.54010.76411.243151.271
Titan7.36193.344169.2181085.235
Neo4j1.6734.7754.28440.507

Explanation

Conclusion

2.3 Performance of Common Graph Analysis Methods in HugeGraph

Terminology Explanation
FS performance
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)com-lj.ungraph(3000w)
HugeGraph0.4940.1033.3648.155
Titan11.8180.239377.709575.678
Neo4j1.7191.8001.9568.530

Explanation

Conclusion
K-neighbor Performance
VertexDepthDegree 1Degree 2Degree 3Degree 4Degree 5Degree 6
v1Time0.031s0.033s0.048s0.500s11.27sOOM
v111Time0.027s0.034s0.115s1.36sOOM
v1111Time0.039s0.027s0.052s0.511s10.96sOOM

Explanation

K-out performance
VertexDepth1st Degree2nd Degree3rd Degree4th Degree5th Degree6th Degree
v1Time0.054s0.057s0.109s0.526s3.77sOOM
Degree10133245350,8301,128,688
v111Time0.032s0.042s0.136s1.25s20.62sOOM
Degree1021149441131502,629,970
v1111Time0.039s0.045s0.053s1.10s2.92sOOM
Degree101402555508251,070,230

Explanation

Conclusion

2.4 Comprehensive Performance Test - CW

DatabaseSize 1000Size 5000Size 10000Size 20000
HugeGraph(core)20.804242.099744.7801700.547
Titan45.790820.6332652.2359568.623
Neo4j5.91350.267142.354460.880

Explanation

Conclusion

8.2 - HugeGraph-API Performance

The HugeGraph API performance test mainly tests HugeGraph-Server’s ability to concurrently process RESTful API requests, including:

For the performance test of the RESTful API of each release version of HugeGraph, please refer to:

Updates coming soon, stay tuned!

8.2.1 - v0.5.6 Stand-alone(RocksDB)

1 Test environment

Compressed machine information:

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

Note: The load-generating machine and the machine under test are located in the same local network.

2 Test description

2.1 Definition of terms (the unit of time is ms)

2.2 Underlying storage

RocksDB is used for backend storage, HugeGraph and RocksDB are both started on the same machine, and the configuration files related to the server remain as default except for the modification of the host and port.

3 Summary of performance results

  1. The speed of inserting a single vertex and edge in HugeGraph is about 1w per second
  2. The batch insertion speed of vertices and edges is much faster than the single insertion speed
  3. The concurrency of querying vertices and edges by id can reach more than 13000, and the average delay of requests is less than 50ms

4 Test results and analysis

4.1 batch insertion

4.1.1 Upper limit stress testing
Test methods

The upper limit of stress testing is to continuously increase the concurrency and test whether the server can still provide services normally.

Stress Parameters

Duration: 5 minutes

Maximum insertion speed for vertices:
image

####### in conclusion:

Maximum insertion speed for edges
image

####### Conclusion:

4.2 Single insertion

4.2.1 Stress limit testing
Test Methods

Stress limit testing is a process of continuously increasing the concurrency level to test the upper limit of the server’s ability to provide normal service.

Stress parameters
Single vertex insertion
image

####### Conclusion:

Single edge insertion
image

####### Conclusion:

4.3 Search by ID

4.3.1 Stress test upper limit
Testing method

Continuously increasing the concurrency level to test the upper limit of the server’s ability to provide service under normal conditions.

stress parameters
Querying vertices by ID
image

####### Conclusion:

Querying edges by ID
image

####### Conclusion:

8.2.2 - v0.5.6 Cluster(Cassandra)

1 Test environment

Compressed machine information

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD,2.7T HDD

Note: The machine used to initiate the load and the machine being tested are located in the same data center (or server room)

2 Test Description

2.1 Definition of terms (the unit of time is ms)

2.2 Low-Level Storage

A 15-node Cassandra cluster is used for backend storage. HugeGraph and the Cassandra cluster are located on separate servers. Server-related configuration files are modified only for host and port settings, while the rest remain default.

3 Summary of Performance Results

  1. The speed of single vertex and edge insertion in HugeGraph is 9000 and 4500 per second, respectively.
  2. The speed of bulk vertex and edge insertion is 50,000 and 150,000 per second, respectively, which is much higher than the single insertion speed.
  3. The concurrency for querying vertices and edges by ID can reach more than 12,000, and the average request delay is less than 70ms.

4 Test Results and Analysis

4.1 Batch Insertion

4.1.1 Pressure Upper Limit Test
Test Method

Continuously increase the concurrency level to test the upper limit of the server’s ability to provide services.

Pressure Parameters

Duration: 5 minutes.

Maximum Insertion Speed of Vertices:
image
Conclusion:
Maximum Insertion Speed of Edges:
image
Conclusion:

4.2 Single Insertion

4.2.1 Pressure Upper Limit Test
Test Method

Continuously increase the concurrency level to test the upper limit of the server’s ability to provide services.

Pressure Parameters
Single Insertion of Vertices:
image
Conclusion:
Single Insertion of Edges:
image
Conclusion:

4.3 Query by ID

4.3.1 Pressure Upper Limit Test
Test Method

Continuously increase the concurrency and test the upper limit of the pressure that the server can still provide services normally.

Pressure Parameters
Query by ID for vertices
image
Conclusion:
Edge search by ID
image
Conclusion:

8.3 - HugeGraph-Loader Performance

Use Cases

When the number of graph data to be batch inserted (including vertices and edges) is at the billion level or below, or the total data size is less than TB, the HugeGraph-Loader tool can be used to continuously and quickly import graph data.

Performance

The test uses the edge data of website.

RocksDB single-machine performance

Cassandra cluster performance

8.4 -

1 测试环境

1.1 硬件信息

CPUMemory网卡磁盘
48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz128G10000Mbps750GB SSD

1.2 软件信息

1.2.1 测试用例

测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:

1.2.2 测试数据集

测试使用人造数据和真实数据

本测试用到的数据集规模
名称vertex数目edge数目文件大小
email-enron.txt36,691367,6614MB
com-youtube.ungraph.txt1,157,8062,987,62438.7MB
amazon0601.txt403,3933,387,38847.9MB

1.3 服务配置

graphdb-benchmark适配的Titan版本为0.5.4

2 测试结果

2.1 Batch插入性能

Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan9.51688.123111.586
RocksDB2.34514.07616.636
Cassandra11.930108.709101.959
Memory3.07715.20413.841

说明

结论

2.2 遍历性能

2.2.1 术语说明
2.2.2 FN性能
Backendemail-enron(3.6w)amazon0601(40w)com-youtube.ungraph(120w)
Titan7.72470.935128.884
RocksDB8.87665.85263.388
Cassandra13.125126.959102.580
Memory22.309207.411165.609

说明

2.2.3 FA性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan7.11963.353115.633
RocksDB6.03264.52652.721
Cassandra9.410102.76694.197
Memory12.340195.444140.89

说明

结论

2.3 HugeGraph-图常用分析方法性能

术语说明
FS性能
Backendemail-enron(30w)amazon0601(300w)com-youtube.ungraph(300w)
Titan11.3330.313376.06
RocksDB44.3912.221268.792
Cassandra39.8453.337331.113
Memory35.6382.059388.987

说明

结论
K-neighbor性能
顶点深度一度二度三度四度五度六度
v1时间0.031s0.033s0.048s0.500s11.27sOOM
v111时间0.027s0.034s0.1151.36sOOM
v1111时间0.039s0.027s0.052s0.511s10.96sOOM

说明

K-out性能
顶点深度一度二度三度四度五度六度
v1时间0.054s0.057s0.109s0.526s3.77sOOM
10133245350,8301,128,688
v111时间0.032s0.042s0.136s1.25s20.62sOOM
1021149441131502,629,970
v1111时间0.039s0.045s0.053s1.10s2.92sOOM
101402555508251,070,230

说明

结论

2.4 图综合性能测试-CW

数据库规模1000规模5000规模10000规模20000
Titan45.943849.1682737.1179791.46
Memory(core)41.0771825.905**
Cassandra(core)39.783862.7442423.1366564.191
RocksDB(core)33.383199.894763.8691677.813

说明

结论

9 - Contribution Guidelines

9.1 - How to Contribute to HugeGraph

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

Optional: You can use GitHub desktop to greatly simplify the commit and update process.

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
     git clone https://github.com/${GITHUB_USER_NAME}/hugegraph
     
  4. Configure local HugeGraph repo

    cd hugegraph
     
    @@ -6470,7 +6470,7 @@
     # set name and email to push code to github
     git config user.name "{full-name}" # like "Jermy Li"
     git config user.email "{email-address-of-github}" # like "jermy@apache.org"
    -

Optional: You can use GitHub desktop to greatly simplify the commit and update process.

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
+

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
 git checkout master
 # pull the latest code from official hugegraph
 git pull hugegraph
@@ -6492,7 +6492,7 @@
 

Please remember to fill in the issue id, which was generated by GitHub after issue creation.

3.4 Push commit to GitHub fork repo

Push the local commit to GitHub fork repo:

# push the local commit to fork repo
 git push origin bugfix-branch:bugfix-branch
 

Note that since GitHub requires submitting code through username + token (instead of using username + password directly), you need to create a GitHub token from https://github.com/settings/tokens: -image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:

I have read the CLA Document and I hereby sign the CLA

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: +image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: image

5. Code review

Maintainers will start the code review after all the automatic checks are passed:

The commit will be accepted and merged if there is no problem after review.

Please click on “Details” to find the problem if any check does not pass.

If there are checks not passed or changes requested, then continue to modify the code and push again.

6. More changes after review

If we have not passed the review, don’t be discouraged. Usually a commit needs to be reviewed several times before being accepted! Please follow the review comments and make further changes.

After the further changes, we submit them to the local repo:

# commit all updated files in a new commit,
 # please feel free to enter any appropriate commit message, note that
 # we will squash all commits in the pull request as one commit when
diff --git a/docs/contribution-guidelines/_print/index.html b/docs/contribution-guidelines/_print/index.html
index b066277e0..55af956a4 100644
--- a/docs/contribution-guidelines/_print/index.html
+++ b/docs/contribution-guidelines/_print/index.html
@@ -1,6 +1,6 @@
 Contribution Guidelines | HugeGraph
 

1 - How to Contribute to HugeGraph

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
    +Click here to print.

    Return to the regular view of this page.

    Contribution Guidelines

1 - How to Contribute to HugeGraph

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

Optional: You can use GitHub desktop to greatly simplify the commit and update process.

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
     git clone https://github.com/${GITHUB_USER_NAME}/hugegraph
     
  4. Configure local HugeGraph repo

    cd hugegraph
     
    @@ -10,7 +10,7 @@
     # set name and email to push code to github
     git config user.name "{full-name}" # like "Jermy Li"
     git config user.email "{email-address-of-github}" # like "jermy@apache.org"
    -

Optional: You can use GitHub desktop to greatly simplify the commit and update process.

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
+

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
 git checkout master
 # pull the latest code from official hugegraph
 git pull hugegraph
@@ -32,7 +32,7 @@
 

Please remember to fill in the issue id, which was generated by GitHub after issue creation.

3.4 Push commit to GitHub fork repo

Push the local commit to GitHub fork repo:

# push the local commit to fork repo
 git push origin bugfix-branch:bugfix-branch
 

Note that since GitHub requires submitting code through username + token (instead of using username + password directly), you need to create a GitHub token from https://github.com/settings/tokens: -image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:

I have read the CLA Document and I hereby sign the CLA

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: +image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: image

5. Code review

Maintainers will start the code review after all the automatic checks are passed:

  • Check: Contributor License Agreement is signed
  • Check: Travis CI builds is passed (automatically Test and Deploy)

The commit will be accepted and merged if there is no problem after review.

Please click on “Details” to find the problem if any check does not pass.

If there are checks not passed or changes requested, then continue to modify the code and push again.

6. More changes after review

If we have not passed the review, don’t be discouraged. Usually a commit needs to be reviewed several times before being accepted! Please follow the review comments and make further changes.

After the further changes, we submit them to the local repo:

# commit all updated files in a new commit,
 # please feel free to enter any appropriate commit message, note that
 # we will squash all commits in the pull request as one commit when
diff --git a/docs/contribution-guidelines/contribute/index.html b/docs/contribution-guidelines/contribute/index.html
index 79a7cbe8a..9523d9adf 100644
--- a/docs/contribution-guidelines/contribute/index.html
+++ b/docs/contribution-guidelines/contribute/index.html
@@ -1,22 +1,22 @@
 How to Contribute to HugeGraph | HugeGraph
+1. Preparation Optional: You can use GitHub desktop to greatly simplify the commit and update process.
+We can contribute by reporting issues, submitting code patches or any other feedback.
+Before submitting the code, we need to do some preparation:">
 

How to Contribute to HugeGraph

Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

The following is a contribution guide for HugeGraph:

image

1. Preparation

We can contribute by reporting issues, submitting code patches or any other feedback.

Before submitting the code, we need to do some preparation:

  1. Sign up or login to GitHub: https://github.com

  2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

  3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

    # clone code from remote to local repo
    + Print entire section

    How to Contribute to HugeGraph

    Thanks for taking the time to contribute! As an open source project, HugeGraph is looking forward to be contributed from everyone, and we are also grateful to all the contributors.

    The following is a contribution guide for HugeGraph:

    image

    1. Preparation

    Optional: You can use GitHub desktop to greatly simplify the commit and update process.

    We can contribute by reporting issues, submitting code patches or any other feedback.

    Before submitting the code, we need to do some preparation:

    1. Sign up or login to GitHub: https://github.com

    2. Fork HugeGraph repo from GitHub: https://github.com/apache/incubator-hugegraph/fork

    3. Clone code from fork repo to local: https://github.com/${GITHUB_USER_NAME}/hugegraph

      # clone code from remote to local repo
       git clone https://github.com/${GITHUB_USER_NAME}/hugegraph
       
    4. Configure local HugeGraph repo

      cd hugegraph
       
      @@ -26,7 +26,7 @@
       # set name and email to push code to github
       git config user.name "{full-name}" # like "Jermy Li"
       git config user.email "{email-address-of-github}" # like "jermy@apache.org"
      -

    Optional: You can use GitHub desktop to greatly simplify the commit and update process.

    2. Create an Issue on GitHub

    If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

    3. Make changes of code locally

    3.1 Create a new branch

    Please don’t use master branch for development. We should create a new branch instead:

    # checkout master branch
    +

2. Create an Issue on GitHub

If you encounter bugs or have any questions, please go to GitHub Issues to report them and feel free to create an issue.

3. Make changes of code locally

3.1 Create a new branch

Please don’t use master branch for development. We should create a new branch instead:

# checkout master branch
 git checkout master
 # pull the latest code from official hugegraph
 git pull hugegraph
@@ -48,7 +48,7 @@
 

Please remember to fill in the issue id, which was generated by GitHub after issue creation.

3.4 Push commit to GitHub fork repo

Push the local commit to GitHub fork repo:

# push the local commit to fork repo
 git push origin bugfix-branch:bugfix-branch
 

Note that since GitHub requires submitting code through username + token (instead of using username + password directly), you need to create a GitHub token from https://github.com/settings/tokens: -image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:

I have read the CLA Document and I hereby sign the CLA

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: +image

4. Create a Pull Request

Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button “Compare & pull request” to do it. Then edit the description for proposed changes, which can just be copied from the commit message.

Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to https://github.com/settings/emails: image

5. Code review

Maintainers will start the code review after all the automatic checks are passed:

  • Check: Contributor License Agreement is signed
  • Check: Travis CI builds is passed (automatically Test and Deploy)

The commit will be accepted and merged if there is no problem after review.

Please click on “Details” to find the problem if any check does not pass.

If there are checks not passed or changes requested, then continue to modify the code and push again.

6. More changes after review

If we have not passed the review, don’t be discouraged. Usually a commit needs to be reviewed several times before being accepted! Please follow the review comments and make further changes.

After the further changes, we submit them to the local repo:

# commit all updated files in a new commit,
 # please feel free to enter any appropriate commit message, note that
 # we will squash all commits in the pull request as one commit when
@@ -62,7 +62,7 @@
 git rebase -i master
 

And push it to GitHub fork repo again:

# force push the local commit to fork repo
 git push -f origin bugfix-branch:bugfix-branch
-

GitHub will automatically update the Pull Request after we push it, just wait for code review.


+

GitHub will automatically update the Pull Request after we push it, just wait for code review.


diff --git a/docs/contribution-guidelines/index.xml b/docs/contribution-guidelines/index.xml index 49e55da86..e5f015703 100644 --- a/docs/contribution-guidelines/index.xml +++ b/docs/contribution-guidelines/index.xml @@ -3,6 +3,7 @@ <p>The following is a contribution guide for HugeGraph:</p> <img width="884" alt="image" src="https://user-images.githubusercontent.com/9625821/159643158-8bf72c0a-93c3-4a58-8912-7b2ab20ced1d.png"> <h2 id="1-preparation">1. Preparation</h2> +<p>Optional: You can use <a href="https://desktop.github.com/">GitHub desktop</a> to greatly simplify the commit and update process.</p> <p>We can contribute by reporting issues, submitting code patches or any other feedback.</p> <p>Before submitting the code, we need to do some preparation:</p> <ol> @@ -29,7 +30,6 @@ </span></span><span style="display:flex;"><span>git config user.email <span style="color:#4e9a06">&#34;{email-address-of-github}&#34;</span> <span style="color:#8f5902;font-style:italic"># like &#34;jermy@apache.org&#34;</span> </span></span></code></pre></div></li> </ol> -<p>Optional: You can use <a href="https://desktop.github.com/">GitHub desktop</a> to greatly simplify the commit and update process.</p> <h2 id="2-create-an-issue-on-github">2. Create an Issue on GitHub</h2> <p>If you encounter bugs or have any questions, please go to <a href="https://github.com/apache/incubator-hugegraph/issues">GitHub Issues</a> to report them and feel free to <a href="https://github.com/apache/hugegraph/issues/new">create an issue</a>.</p> <h2 id="3-make-changes-of-code-locally">3. Make changes of code locally</h2> @@ -86,8 +86,6 @@ <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163524204-7fe0e6bf-9c8b-4b1a-ac65-6a0ac423eb16.png"></p> <h2 id="4-create-a-pull-request">4. Create a Pull Request</h2> <p>Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button &ldquo;Compare &amp; pull request&rdquo; to do it. Then edit the description for proposed changes, which can just be copied from the commit message.</p> -<p>Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:</p> -<p><code>I have read the CLA Document and I hereby sign the CLA</code></p> <p>Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to <a href="https://github.com/settings/emails">https://github.com/settings/emails</a>: <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163522445-2a50a72a-dea2-434f-9868-3a0d40d0d037.png"></p> <h2 id="5-code-review">5. Code review</h2> diff --git a/docs/index.xml b/docs/index.xml index 4c187f5bd..26cc4c512 100644 --- a/docs/index.xml +++ b/docs/index.xml @@ -817,6 +817,7 @@ <p>The following is a contribution guide for HugeGraph:</p> <img width="884" alt="image" src="https://user-images.githubusercontent.com/9625821/159643158-8bf72c0a-93c3-4a58-8912-7b2ab20ced1d.png"> <h2 id="1-preparation">1. Preparation</h2> +<p>Optional: You can use <a href="https://desktop.github.com/">GitHub desktop</a> to greatly simplify the commit and update process.</p> <p>We can contribute by reporting issues, submitting code patches or any other feedback.</p> <p>Before submitting the code, we need to do some preparation:</p> <ol> @@ -843,7 +844,6 @@ </span></span><span style="display:flex;"><span>git config user.email <span style="color:#4e9a06">&#34;{email-address-of-github}&#34;</span> <span style="color:#8f5902;font-style:italic"># like &#34;jermy@apache.org&#34;</span> </span></span></code></pre></div></li> </ol> -<p>Optional: You can use <a href="https://desktop.github.com/">GitHub desktop</a> to greatly simplify the commit and update process.</p> <h2 id="2-create-an-issue-on-github">2. Create an Issue on GitHub</h2> <p>If you encounter bugs or have any questions, please go to <a href="https://github.com/apache/incubator-hugegraph/issues">GitHub Issues</a> to report them and feel free to <a href="https://github.com/apache/hugegraph/issues/new">create an issue</a>.</p> <h2 id="3-make-changes-of-code-locally">3. Make changes of code locally</h2> @@ -900,8 +900,6 @@ <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163524204-7fe0e6bf-9c8b-4b1a-ac65-6a0ac423eb16.png"></p> <h2 id="4-create-a-pull-request">4. Create a Pull Request</h2> <p>Go to the web page of GitHub fork repo, there would be a chance to create a Pull Request after pushing to a new branch, just click button &ldquo;Compare &amp; pull request&rdquo; to do it. Then edit the description for proposed changes, which can just be copied from the commit message.</p> -<p>Please sign the HugeGraph CLA when contributing code for the first time. You can sign the CLA by just posting a Pull Request Comment same as the below format:</p> -<p><code>I have read the CLA Document and I hereby sign the CLA</code></p> <p>Note: please make sure the email address you used to submit the code is bound to the GitHub account. For how to bind the email address, please refer to <a href="https://github.com/settings/emails">https://github.com/settings/emails</a>: <img width="1280" alt="image" src="https://user-images.githubusercontent.com/9625821/163522445-2a50a72a-dea2-434f-9868-3a0d40d0d037.png"></p> <h2 id="5-code-review">5. Code review</h2> diff --git a/en/sitemap.xml b/en/sitemap.xml index 9851a407c..7ec348cee 100644 --- a/en/sitemap.xml +++ b/en/sitemap.xml @@ -1 +1 @@ -/docs/guides/architectural/2023-06-25T21:06:07+08:00/docs/config/config-guide/2023-06-21T14:48:04+08:00/docs/language/hugegraph-gremlin/2023-05-14T07:29:41-05:00/docs/contribution-guidelines/contribute/2023-06-26T14:59:53+08:00/docs/performance/hugegraph-benchmark-0.5.6/2023-05-14T22:31:02-05:00/docs/quickstart/hugegraph-server/2023-06-25T21:06:07+08:00/docs/introduction/readme/2023-06-18T14:57:33+08:00/docs/changelog/hugegraph-1.0.0-release-notes/2023-01-09T07:41:46+08:00/docs/clients/restful-api/2023-07-31T23:55:30+08:00/docs/clients/restful-api/schema/2023-05-14T19:35:13+08:00/docs/performance/api-preformance/hugegraph-api-0.5.6-rocksdb/2023-05-15T22:47:44-05:00/docs/config/config-option/2023-02-08T20:56:09+08:00/docs/guides/desgin-concept/2023-05-14T07:20:21-05:00/docs/download/download/2023-06-17T14:43:04+08:00/docs/language/hugegraph-example/2023-02-02T01:21:10+08:00/docs/clients/hugegraph-client/2023-01-01T16:16:43+08:00/docs/performance/api-preformance/2023-06-17T14:43:04+08:00/docs/quickstart/hugegraph-loader/2023-05-17T23:12:35+08:00/docs/clients/restful-api/propertykey/2023-05-19T05:15:56-05:00/docs/changelog/hugegraph-0.12.0-release-notes/2023-05-18T06:11:19-05:00/docs/contribution-guidelines/subscribe/2023-06-17T14:43:04+08:00/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/2023-05-16T23:30:00-05:00/docs/config/config-authentication/2023-05-19T05:12:35-05:00/docs/clients/gremlin-console/2023-06-12T23:52:07+08:00/docs/guides/custom-plugin/2023-05-14T07:22:46-05:00/docs/performance/hugegraph-loader-performance/2023-05-18T00:34:48-05:00/docs/quickstart/hugegraph-tools/2023-05-09T21:27:34+08:00/docs/quickstart/2022-04-17T11:36:55+08:00/docs/contribution-guidelines/validate-release/2023-02-15T16:14:21+08:00/docs/clients/restful-api/vertexlabel/2023-05-19T04:03:23-05:00/docs/guides/backup-restore/2023-05-14T07:26:12-05:00/docs/config/2022-04-17T11:36:55+08:00/docs/config/config-https/2023-05-19T05:04:16-05:00/docs/clients/restful-api/edgelabel/2023-05-19T05:17:26-05:00/docs/contribution-guidelines/hugegraph-server-idea-setup/2023-06-25T21:06:07+08:00/docs/quickstart/hugegraph-hubble/2023-01-04T22:59:07+08:00/docs/clients/2022-04-17T11:36:55+08:00/docs/config/config-computer/2023-01-01T16:16:43+08:00/docs/guides/faq/2023-05-14T07:28:41-05:00/docs/clients/restful-api/indexlabel/2023-05-19T05:18:17-05:00/docs/quickstart/hugegraph-client/2023-05-14T22:39:27+08:00/docs/guides/2022-04-17T11:36:55+08:00/docs/clients/restful-api/rebuild/2022-05-09T18:43:53+08:00/docs/quickstart/hugegraph-computer/2023-06-25T21:06:46+08:00/docs/language/2022-04-17T11:36:55+08:00/docs/clients/restful-api/vertex/2023-06-04T23:04:47+08:00/docs/clients/restful-api/edge/2023-06-29T10:17:29+08:00/docs/performance/2022-04-17T11:36:55+08:00/docs/contribution-guidelines/2022-12-30T19:36:31+08:00/docs/clients/restful-api/traverser/2023-05-20T06:12:55-05:00/docs/changelog/2022-04-28T21:26:41+08:00/docs/clients/restful-api/rank/2022-09-15T12:59:59+08:00/docs/clients/restful-api/variable/2023-05-21T04:38:57-05:00/docs/clients/restful-api/graphs/2022-05-27T09:27:37+08:00/docs/clients/restful-api/task/2022-09-15T12:59:59+08:00/docs/clients/restful-api/gremlin/2023-05-21T04:39:11-05:00/docs/clients/restful-api/cypher/2023-07-31T23:55:30+08:00/docs/clients/restful-api/auth/2023-07-31T23:55:30+08:00/docs/clients/restful-api/other/2023-07-31T23:55:30+08:00/docs/2022-12-30T19:57:48+08:00/blog/news/2022-03-21T18:55:33+08:00/blog/releases/2022-03-21T18:55:33+08:00/blog/2018/10/06/easy-documentation-with-docsy/2022-03-21T18:55:33+08:00/blog/2018/10/06/the-second-blog-post/2022-03-21T18:55:33+08:00/blog/2018/01/04/another-great-release/2022-03-21T18:55:33+08:00/docs/cla/2022-03-21T19:51:14+08:00/docs/performance/hugegraph-benchmark-0.4.4/2022-09-15T12:59:59+08:00/docs/summary/2023-07-31T23:55:30+08:00/blog/2022-03-21T18:55:33+08:00/categories//community/2022-03-21T18:55:33+08:00/2023-01-15T13:44:01+00:00/search/2022-03-21T18:55:33+08:00/tags/ \ No newline at end of file +/docs/guides/architectural/2023-06-25T21:06:07+08:00/docs/config/config-guide/2023-06-21T14:48:04+08:00/docs/language/hugegraph-gremlin/2023-05-14T07:29:41-05:00/docs/contribution-guidelines/contribute/2023-09-09T20:50:32+08:00/docs/performance/hugegraph-benchmark-0.5.6/2023-05-14T22:31:02-05:00/docs/quickstart/hugegraph-server/2023-06-25T21:06:07+08:00/docs/introduction/readme/2023-06-18T14:57:33+08:00/docs/changelog/hugegraph-1.0.0-release-notes/2023-01-09T07:41:46+08:00/docs/clients/restful-api/2023-07-31T23:55:30+08:00/docs/clients/restful-api/schema/2023-05-14T19:35:13+08:00/docs/performance/api-preformance/hugegraph-api-0.5.6-rocksdb/2023-05-15T22:47:44-05:00/docs/config/config-option/2023-02-08T20:56:09+08:00/docs/guides/desgin-concept/2023-05-14T07:20:21-05:00/docs/download/download/2023-06-17T14:43:04+08:00/docs/language/hugegraph-example/2023-02-02T01:21:10+08:00/docs/clients/hugegraph-client/2023-01-01T16:16:43+08:00/docs/performance/api-preformance/2023-06-17T14:43:04+08:00/docs/quickstart/hugegraph-loader/2023-05-17T23:12:35+08:00/docs/clients/restful-api/propertykey/2023-05-19T05:15:56-05:00/docs/changelog/hugegraph-0.12.0-release-notes/2023-05-18T06:11:19-05:00/docs/contribution-guidelines/subscribe/2023-06-17T14:43:04+08:00/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/2023-05-16T23:30:00-05:00/docs/config/config-authentication/2023-05-19T05:12:35-05:00/docs/clients/gremlin-console/2023-06-12T23:52:07+08:00/docs/guides/custom-plugin/2023-05-14T07:22:46-05:00/docs/performance/hugegraph-loader-performance/2023-05-18T00:34:48-05:00/docs/quickstart/hugegraph-tools/2023-05-09T21:27:34+08:00/docs/quickstart/2022-04-17T11:36:55+08:00/docs/contribution-guidelines/validate-release/2023-02-15T16:14:21+08:00/docs/clients/restful-api/vertexlabel/2023-05-19T04:03:23-05:00/docs/guides/backup-restore/2023-05-14T07:26:12-05:00/docs/config/2022-04-17T11:36:55+08:00/docs/config/config-https/2023-05-19T05:04:16-05:00/docs/clients/restful-api/edgelabel/2023-05-19T05:17:26-05:00/docs/contribution-guidelines/hugegraph-server-idea-setup/2023-06-25T21:06:07+08:00/docs/quickstart/hugegraph-hubble/2023-01-04T22:59:07+08:00/docs/clients/2022-04-17T11:36:55+08:00/docs/config/config-computer/2023-01-01T16:16:43+08:00/docs/guides/faq/2023-05-14T07:28:41-05:00/docs/clients/restful-api/indexlabel/2023-05-19T05:18:17-05:00/docs/quickstart/hugegraph-client/2023-05-14T22:39:27+08:00/docs/guides/2022-04-17T11:36:55+08:00/docs/clients/restful-api/rebuild/2022-05-09T18:43:53+08:00/docs/quickstart/hugegraph-computer/2023-06-25T21:06:46+08:00/docs/language/2022-04-17T11:36:55+08:00/docs/clients/restful-api/vertex/2023-06-04T23:04:47+08:00/docs/clients/restful-api/edge/2023-06-29T10:17:29+08:00/docs/performance/2022-04-17T11:36:55+08:00/docs/contribution-guidelines/2022-12-30T19:36:31+08:00/docs/clients/restful-api/traverser/2023-05-20T06:12:55-05:00/docs/changelog/2022-04-28T21:26:41+08:00/docs/clients/restful-api/rank/2022-09-15T12:59:59+08:00/docs/clients/restful-api/variable/2023-05-21T04:38:57-05:00/docs/clients/restful-api/graphs/2022-05-27T09:27:37+08:00/docs/clients/restful-api/task/2022-09-15T12:59:59+08:00/docs/clients/restful-api/gremlin/2023-05-21T04:39:11-05:00/docs/clients/restful-api/cypher/2023-07-31T23:55:30+08:00/docs/clients/restful-api/auth/2023-07-31T23:55:30+08:00/docs/clients/restful-api/other/2023-07-31T23:55:30+08:00/docs/2022-12-30T19:57:48+08:00/blog/news/2022-03-21T18:55:33+08:00/blog/releases/2022-03-21T18:55:33+08:00/blog/2018/10/06/easy-documentation-with-docsy/2022-03-21T18:55:33+08:00/blog/2018/10/06/the-second-blog-post/2022-03-21T18:55:33+08:00/blog/2018/01/04/another-great-release/2022-03-21T18:55:33+08:00/docs/cla/2022-03-21T19:51:14+08:00/docs/performance/hugegraph-benchmark-0.4.4/2022-09-15T12:59:59+08:00/docs/summary/2023-07-31T23:55:30+08:00/blog/2022-03-21T18:55:33+08:00/categories//community/2022-03-21T18:55:33+08:00/2023-01-15T13:44:01+00:00/search/2022-03-21T18:55:33+08:00/tags/ \ No newline at end of file diff --git a/sitemap.xml b/sitemap.xml index ad44381f2..cd15f2aeb 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -1 +1 @@ -/en/sitemap.xml2023-07-31T23:55:30+08:00/cn/sitemap.xml2023-07-31T23:55:30+08:00 \ No newline at end of file +/en/sitemap.xml2023-09-09T20:50:32+08:00/cn/sitemap.xml2023-09-09T20:50:32+08:00 \ No newline at end of file