-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
util.py
1386 lines (1180 loc) · 48.9 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Simple utility PTransforms.
"""
# pytype: skip-file
import collections
import contextlib
import random
import re
import threading
import time
import uuid
from typing import TYPE_CHECKING
from typing import Any
from typing import Iterable
from typing import List
from typing import Tuple
from typing import TypeVar
from typing import Union
from apache_beam import coders
from apache_beam import typehints
from apache_beam.metrics import Metrics
from apache_beam.portability import common_urns
from apache_beam.portability.api import beam_runner_api_pb2
from apache_beam.pvalue import AsSideInput
from apache_beam.transforms import window
from apache_beam.transforms.combiners import CountCombineFn
from apache_beam.transforms.core import CombinePerKey
from apache_beam.transforms.core import Create
from apache_beam.transforms.core import DoFn
from apache_beam.transforms.core import FlatMap
from apache_beam.transforms.core import Flatten
from apache_beam.transforms.core import GroupByKey
from apache_beam.transforms.core import Map
from apache_beam.transforms.core import MapTuple
from apache_beam.transforms.core import ParDo
from apache_beam.transforms.core import Windowing
from apache_beam.transforms.ptransform import PTransform
from apache_beam.transforms.ptransform import ptransform_fn
from apache_beam.transforms.timeutil import TimeDomain
from apache_beam.transforms.trigger import AccumulationMode
from apache_beam.transforms.trigger import Always
from apache_beam.transforms.userstate import BagStateSpec
from apache_beam.transforms.userstate import CombiningValueStateSpec
from apache_beam.transforms.userstate import TimerSpec
from apache_beam.transforms.userstate import on_timer
from apache_beam.transforms.window import NonMergingWindowFn
from apache_beam.transforms.window import TimestampCombiner
from apache_beam.transforms.window import TimestampedValue
from apache_beam.typehints import trivial_inference
from apache_beam.typehints.decorators import get_signature
from apache_beam.typehints.sharded_key_type import ShardedKeyType
from apache_beam.utils import windowed_value
from apache_beam.utils.annotations import deprecated
from apache_beam.utils.annotations import experimental
from apache_beam.utils.sharded_key import ShardedKey
if TYPE_CHECKING:
from apache_beam import pvalue
from apache_beam.runners.pipeline_context import PipelineContext
__all__ = [
'BatchElements',
'CoGroupByKey',
'Distinct',
'Keys',
'KvSwap',
'Regex',
'Reify',
'RemoveDuplicates',
'Reshuffle',
'ToString',
'Values',
'WithKeys',
'GroupIntoBatches'
]
K = TypeVar('K')
V = TypeVar('V')
T = TypeVar('T')
class CoGroupByKey(PTransform):
"""Groups results across several PCollections by key.
Given an input dict of serializable keys (called "tags") to 0 or more
PCollections of (key, value) tuples, it creates a single output PCollection
of (key, value) tuples whose keys are the unique input keys from all inputs,
and whose values are dicts mapping each tag to an iterable of whatever values
were under the key in the corresponding PCollection, in this manner::
('some key', {'tag1': ['value 1 under "some key" in pcoll1',
'value 2 under "some key" in pcoll1',
...],
'tag2': ... ,
... })
where `[]` refers to an iterable, not a list.
For example, given::
{'tag1': pc1, 'tag2': pc2, 333: pc3}
where::
pc1 = beam.Create([(k1, v1)]))
pc2 = beam.Create([])
pc3 = beam.Create([(k1, v31), (k1, v32), (k2, v33)])
The output PCollection would consist of items::
[(k1, {'tag1': [v1], 'tag2': [], 333: [v31, v32]}),
(k2, {'tag1': [], 'tag2': [], 333: [v33]})]
where `[]` refers to an iterable, not a list.
CoGroupByKey also works for tuples, lists, or other flat iterables of
PCollections, in which case the values of the resulting PCollections
will be tuples whose nth value is the iterable of values from the nth
PCollection---conceptually, the "tags" are the indices into the input.
Thus, for this input::
(pc1, pc2, pc3)
the output would be::
[(k1, ([v1], [], [v31, v32]),
(k2, ([], [], [v33]))]
where, again, `[]` refers to an iterable, not a list.
Attributes:
**kwargs: Accepts a single named argument "pipeline", which specifies the
pipeline that "owns" this PTransform. Ordinarily CoGroupByKey can obtain
this information from one of the input PCollections, but if there are none
(or if there's a chance there may be none), this argument is the only way
to provide pipeline information, and should be considered mandatory.
"""
def __init__(self, *, pipeline=None):
self.pipeline = pipeline
def _extract_input_pvalues(self, pvalueish):
try:
# If this works, it's a dict.
return pvalueish, tuple(pvalueish.values())
except AttributeError:
# Cast iterables a tuple so we can do re-iteration.
pcolls = tuple(pvalueish)
return pcolls, pcolls
def expand(self, pcolls):
if not pcolls:
pcolls = (self.pipeline | Create([]), )
if isinstance(pcolls, dict):
tags = list(pcolls.keys())
if all(isinstance(tag, str) and len(tag) < 10 for tag in tags):
# Small, string tags. Pass them as data.
pcolls_dict = pcolls
restore_tags = None
else:
# Pass the tags in the restore_tags closure.
tags = list(pcolls.keys())
pcolls_dict = {str(ix): pcolls[tag] for (ix, tag) in enumerate(tags)}
restore_tags = lambda vs: {
tag: vs[str(ix)]
for (ix, tag) in enumerate(tags)
}
else:
# Tags are tuple indices.
tags = [str(ix) for ix in range(len(pcolls))]
pcolls_dict = dict(zip(tags, pcolls))
restore_tags = lambda vs: tuple(vs[tag] for tag in tags)
input_key_types = []
input_value_types = []
for pcoll in pcolls_dict.values():
key_type, value_type = typehints.trivial_inference.key_value_types(
pcoll.element_type)
input_key_types.append(key_type)
input_value_types.append(value_type)
output_key_type = typehints.Union[tuple(input_key_types)]
iterable_input_value_types = tuple(
# TODO: Change List[t] to Iterable[t]
typehints.List[t] for t in input_value_types)
output_value_type = typehints.Dict[
str, typehints.Union[iterable_input_value_types or [typehints.Any]]]
result = (
pcolls_dict
| 'CoGroupByKeyImpl' >>
_CoGBKImpl(pipeline=self.pipeline).with_output_types(
typehints.Tuple[output_key_type, output_value_type]))
if restore_tags:
if isinstance(pcolls, dict):
dict_key_type = typehints.Union[tuple(
trivial_inference.instance_to_type(tag) for tag in tags)]
output_value_type = typehints.Dict[
dict_key_type, typehints.Union[iterable_input_value_types]]
else:
output_value_type = typehints.Tuple[iterable_input_value_types]
result |= 'RestoreTags' >> MapTuple(
lambda k, vs: (k, restore_tags(vs))).with_output_types(
typehints.Tuple[output_key_type, output_value_type])
return result
class _CoGBKImpl(PTransform):
def __init__(self, *, pipeline=None):
self.pipeline = pipeline
def expand(self, pcolls):
# Check input PCollections for PCollection-ness, and that they all belong
# to the same pipeline.
for pcoll in pcolls.values():
self._check_pcollection(pcoll)
if self.pipeline:
assert pcoll.pipeline == self.pipeline
tags = list(pcolls.keys())
def add_tag(tag):
return lambda k, v: (k, (tag, v))
def collect_values(key, tagged_values):
grouped_values = {tag: [] for tag in tags}
for tag, value in tagged_values:
grouped_values[tag].append(value)
return key, grouped_values
return ([
pcoll
| 'Tag[%s]' % tag >> MapTuple(add_tag(tag))
for (tag, pcoll) in pcolls.items()
]
| Flatten(pipeline=self.pipeline)
| GroupByKey()
| MapTuple(collect_values))
@ptransform_fn
@typehints.with_input_types(Tuple[K, V])
@typehints.with_output_types(K)
def Keys(pcoll, label='Keys'): # pylint: disable=invalid-name
"""Produces a PCollection of first elements of 2-tuples in a PCollection."""
return pcoll | label >> MapTuple(lambda k, _: k)
@ptransform_fn
@typehints.with_input_types(Tuple[K, V])
@typehints.with_output_types(V)
def Values(pcoll, label='Values'): # pylint: disable=invalid-name
"""Produces a PCollection of second elements of 2-tuples in a PCollection."""
return pcoll | label >> MapTuple(lambda _, v: v)
@ptransform_fn
@typehints.with_input_types(Tuple[K, V])
@typehints.with_output_types(Tuple[V, K])
def KvSwap(pcoll, label='KvSwap'): # pylint: disable=invalid-name
"""Produces a PCollection reversing 2-tuples in a PCollection."""
return pcoll | label >> MapTuple(lambda k, v: (v, k))
@ptransform_fn
@typehints.with_input_types(T)
@typehints.with_output_types(T)
def Distinct(pcoll): # pylint: disable=invalid-name
"""Produces a PCollection containing distinct elements of a PCollection."""
return (
pcoll
| 'ToPairs' >> Map(lambda v: (v, None))
| 'Group' >> CombinePerKey(lambda vs: None)
| 'Distinct' >> Keys())
@deprecated(since='2.12', current='Distinct')
@ptransform_fn
@typehints.with_input_types(T)
@typehints.with_output_types(T)
def RemoveDuplicates(pcoll):
"""Produces a PCollection containing distinct elements of a PCollection."""
return pcoll | 'RemoveDuplicates' >> Distinct()
class _BatchSizeEstimator(object):
"""Estimates the best size for batches given historical timing.
"""
_MAX_DATA_POINTS = 100
_MAX_GROWTH_FACTOR = 2
def __init__(
self,
min_batch_size=1,
max_batch_size=10000,
target_batch_overhead=.05,
target_batch_duration_secs=1,
variance=0.25,
clock=time.time,
ignore_first_n_seen_per_batch_size=0):
if min_batch_size > max_batch_size:
raise ValueError(
"Minimum (%s) must not be greater than maximum (%s)" %
(min_batch_size, max_batch_size))
if target_batch_overhead and not 0 < target_batch_overhead <= 1:
raise ValueError(
"target_batch_overhead (%s) must be between 0 and 1" %
(target_batch_overhead))
if target_batch_duration_secs and target_batch_duration_secs <= 0:
raise ValueError(
"target_batch_duration_secs (%s) must be positive" %
(target_batch_duration_secs))
if not (target_batch_overhead or target_batch_duration_secs):
raise ValueError(
"At least one of target_batch_overhead or "
"target_batch_duration_secs must be positive.")
if ignore_first_n_seen_per_batch_size < 0:
raise ValueError(
'ignore_first_n_seen_per_batch_size (%s) must be non '
'negative' % (ignore_first_n_seen_per_batch_size))
self._min_batch_size = min_batch_size
self._max_batch_size = max_batch_size
self._target_batch_overhead = target_batch_overhead
self._target_batch_duration_secs = target_batch_duration_secs
self._variance = variance
self._clock = clock
self._data = []
self._ignore_next_timing = False
self._ignore_first_n_seen_per_batch_size = (
ignore_first_n_seen_per_batch_size)
self._batch_size_num_seen = {}
self._replay_last_batch_size = None
self._size_distribution = Metrics.distribution(
'BatchElements', 'batch_size')
self._time_distribution = Metrics.distribution(
'BatchElements', 'msec_per_batch')
# Beam distributions only accept integer values, so we use this to
# accumulate under-reported values until they add up to whole milliseconds.
# (Milliseconds are chosen because that's conventionally used elsewhere in
# profiling-style counters.)
self._remainder_msecs = 0
def ignore_next_timing(self):
"""Call to indicate the next timing should be ignored.
For example, the first emit of a ParDo operation is known to be anomalous
due to setup that may occur.
"""
self._ignore_next_timing = True
@contextlib.contextmanager
def record_time(self, batch_size):
start = self._clock()
yield
elapsed = self._clock() - start
elapsed_msec = 1e3 * elapsed + self._remainder_msecs
self._size_distribution.update(batch_size)
self._time_distribution.update(int(elapsed_msec))
self._remainder_msecs = elapsed_msec - int(elapsed_msec)
# If we ignore the next timing, replay the batch size to get accurate
# timing.
if self._ignore_next_timing:
self._ignore_next_timing = False
self._replay_last_batch_size = min(batch_size, self._max_batch_size)
else:
self._data.append((batch_size, elapsed))
if len(self._data) >= self._MAX_DATA_POINTS:
self._thin_data()
def _thin_data(self):
# Make sure we don't change the parity of len(self._data)
# As it's used below to alternate jitter.
self._data.pop(random.randrange(len(self._data) // 4))
self._data.pop(random.randrange(len(self._data) // 2))
@staticmethod
def linear_regression_no_numpy(xs, ys):
# Least squares fit for y = a + bx over all points.
n = float(len(xs))
xbar = sum(xs) / n
ybar = sum(ys) / n
if xbar == 0:
return ybar, 0
if all(xs[0] == x for x in xs):
# Simply use the mean if all values in xs are same.
return 0, ybar / xbar
b = (
sum([(x - xbar) * (y - ybar)
for x, y in zip(xs, ys)]) / sum([(x - xbar)**2 for x in xs]))
a = ybar - b * xbar
return a, b
@staticmethod
def linear_regression_numpy(xs, ys):
# pylint: disable=wrong-import-order, wrong-import-position
import numpy as np
from numpy import sum
n = len(xs)
if all(xs[0] == x for x in xs):
# If all values of xs are same then fallback to linear_regression_no_numpy
return _BatchSizeEstimator.linear_regression_no_numpy(xs, ys)
xs = np.asarray(xs, dtype=float)
ys = np.asarray(ys, dtype=float)
# First do a simple least squares fit for y = a + bx over all points.
b, a = np.polyfit(xs, ys, 1)
if n < 10:
return a, b
else:
# Refine this by throwing out outliers, according to Cook's distance.
# https://en.wikipedia.org/wiki/Cook%27s_distance
sum_x = sum(xs)
sum_x2 = sum(xs**2)
errs = a + b * xs - ys
s2 = sum(errs**2) / (n - 2)
if s2 == 0:
# It's an exact fit!
return a, b
h = (sum_x2 - 2 * sum_x * xs + n * xs**2) / (n * sum_x2 - sum_x**2)
cook_ds = 0.5 / s2 * errs**2 * (h / (1 - h)**2)
# Re-compute the regression, excluding those points with Cook's distance
# greater than 0.5, and weighting by the inverse of x to give a more
# stable y-intercept (as small batches have relatively more information
# about the fixed overhead).
weight = (cook_ds <= 0.5) / xs
b, a = np.polyfit(xs, ys, 1, w=weight)
return a, b
try:
# pylint: disable=wrong-import-order, wrong-import-position
import numpy as np
linear_regression = linear_regression_numpy
except ImportError:
linear_regression = linear_regression_no_numpy
def _calculate_next_batch_size(self):
if self._min_batch_size == self._max_batch_size:
return self._min_batch_size
elif len(self._data) < 1:
return self._min_batch_size
elif len(self._data) < 2:
# Force some variety so we have distinct batch sizes on which to do
# linear regression below.
return int(
max(
min(
self._max_batch_size,
self._min_batch_size * self._MAX_GROWTH_FACTOR),
self._min_batch_size + 1))
# There tends to be a lot of noise in the top quantile, which also
# has outsided influence in the regression. If we have enough data,
# Simply declare the top 20% to be outliers.
trimmed_data = sorted(self._data)[:max(20, len(self._data) * 4 // 5)]
# Linear regression for y = a + bx, where x is batch size and y is time.
xs, ys = zip(*trimmed_data)
a, b = self.linear_regression(xs, ys)
# Avoid nonsensical or division-by-zero errors below due to noise.
a = max(a, 1e-10)
b = max(b, 1e-20)
last_batch_size = self._data[-1][0]
cap = min(last_batch_size * self._MAX_GROWTH_FACTOR, self._max_batch_size)
target = self._max_batch_size
if self._target_batch_duration_secs:
# Solution to a + b*x = self._target_batch_duration_secs.
target = min(target, (self._target_batch_duration_secs - a) / b)
if self._target_batch_overhead:
# Solution to a / (a + b*x) = self._target_batch_overhead.
target = min(target, (a / b) * (1 / self._target_batch_overhead - 1))
# Avoid getting stuck at a single batch size (especially the minimal
# batch size) which would not allow us to extrapolate to other batch
# sizes.
# Jitter alternates between 0 and 1.
jitter = len(self._data) % 2
# Smear our samples across a range centered at the target.
if len(self._data) > 10:
target += int(target * self._variance * 2 * (random.random() - .5))
return int(max(self._min_batch_size + jitter, min(target, cap)))
def next_batch_size(self):
# Check if we should replay a previous batch size due to it not being
# recorded.
if self._replay_last_batch_size:
result = self._replay_last_batch_size
self._replay_last_batch_size = None
else:
result = self._calculate_next_batch_size()
seen_count = self._batch_size_num_seen.get(result, 0) + 1
if seen_count <= self._ignore_first_n_seen_per_batch_size:
self.ignore_next_timing()
self._batch_size_num_seen[result] = seen_count
return result
class _GlobalWindowsBatchingDoFn(DoFn):
def __init__(self, batch_size_estimator, element_size_fn):
self._batch_size_estimator = batch_size_estimator
self._element_size_fn = element_size_fn
def start_bundle(self):
self._batch = []
self._running_batch_size = 0
self._target_batch_size = self._batch_size_estimator.next_batch_size()
# The first emit often involves non-trivial setup.
self._batch_size_estimator.ignore_next_timing()
def process(self, element):
self._batch.append(element)
self._running_batch_size += self._element_size_fn(element)
if self._running_batch_size >= self._target_batch_size:
with self._batch_size_estimator.record_time(self._running_batch_size):
yield window.GlobalWindows.windowed_value_at_end_of_window(self._batch)
self._batch = []
self._running_batch_size = 0
self._target_batch_size = self._batch_size_estimator.next_batch_size()
def finish_bundle(self):
if self._batch:
with self._batch_size_estimator.record_time(self._running_batch_size):
yield window.GlobalWindows.windowed_value_at_end_of_window(self._batch)
self._batch = None
self._running_batch_size = 0
self._target_batch_size = self._batch_size_estimator.next_batch_size()
class _SizedBatch():
def __init__(self):
self.elements = []
self.size = 0
class _WindowAwareBatchingDoFn(DoFn):
_MAX_LIVE_WINDOWS = 10
def __init__(self, batch_size_estimator, element_size_fn):
self._batch_size_estimator = batch_size_estimator
self._element_size_fn = element_size_fn
def start_bundle(self):
self._batches = collections.defaultdict(_SizedBatch)
self._target_batch_size = self._batch_size_estimator.next_batch_size()
# The first emit often involves non-trivial setup.
self._batch_size_estimator.ignore_next_timing()
def process(self, element, window=DoFn.WindowParam):
batch = self._batches[window]
batch.elements.append(element)
batch.size += self._element_size_fn(element)
if batch.size >= self._target_batch_size:
with self._batch_size_estimator.record_time(batch.size):
yield windowed_value.WindowedValue(
batch.elements, window.max_timestamp(), (window, ))
del self._batches[window]
self._target_batch_size = self._batch_size_estimator.next_batch_size()
elif len(self._batches) > self._MAX_LIVE_WINDOWS:
window, batch = max(
self._batches.items(),
key=lambda window_batch: window_batch[1].size)
with self._batch_size_estimator.record_time(batch.size):
yield windowed_value.WindowedValue(
batch.elements, window.max_timestamp(), (window, ))
del self._batches[window]
self._target_batch_size = self._batch_size_estimator.next_batch_size()
def finish_bundle(self):
for window, batch in self._batches.items():
if batch:
with self._batch_size_estimator.record_time(batch.size):
yield windowed_value.WindowedValue(
batch.elements, window.max_timestamp(), (window, ))
self._batches = None
self._target_batch_size = self._batch_size_estimator.next_batch_size()
@typehints.with_input_types(T)
@typehints.with_output_types(List[T])
class BatchElements(PTransform):
"""A Transform that batches elements for amortized processing.
This transform is designed to precede operations whose processing cost
is of the form
time = fixed_cost + num_elements * per_element_cost
where the per element cost is (often significantly) smaller than the fixed
cost and could be amortized over multiple elements. It consumes a PCollection
of element type T and produces a PCollection of element type List[T].
This transform attempts to find the best batch size between the minimim
and maximum parameters by profiling the time taken by (fused) downstream
operations. For a fixed batch size, set the min and max to be equal.
Elements are batched per-window and batches emitted in the window
corresponding to its contents.
Args:
min_batch_size: (optional) the smallest size of a batch
max_batch_size: (optional) the largest size of a batch
target_batch_overhead: (optional) a target for fixed_cost / time,
as used in the formula above
target_batch_duration_secs: (optional) a target for total time per bundle,
in seconds
element_size_fn: (optional) A mapping of an element to its contribution to
batch size, defaulting to every element having size 1. When provided,
attempts to provide batches of optimal total size which may consist of
a varying number of elements.
variance: (optional) the permitted (relative) amount of deviation from the
(estimated) ideal batch size used to produce a wider base for
linear interpolation
clock: (optional) an alternative to time.time for measuring the cost of
donwstream operations (mostly for testing)
"""
def __init__(
self,
min_batch_size=1,
max_batch_size=10000,
target_batch_overhead=.05,
target_batch_duration_secs=1,
*,
element_size_fn=lambda x: 1,
variance=0.25,
clock=time.time):
self._batch_size_estimator = _BatchSizeEstimator(
min_batch_size=min_batch_size,
max_batch_size=max_batch_size,
target_batch_overhead=target_batch_overhead,
target_batch_duration_secs=target_batch_duration_secs,
variance=variance,
clock=clock)
self._element_size_fn = element_size_fn
def expand(self, pcoll):
if getattr(pcoll.pipeline.runner, 'is_streaming', False):
raise NotImplementedError("Requires stateful processing (BEAM-2687)")
elif pcoll.windowing.is_default():
# This is the same logic as _GlobalWindowsBatchingDoFn, but optimized
# for that simpler case.
return pcoll | ParDo(
_GlobalWindowsBatchingDoFn(
self._batch_size_estimator, self._element_size_fn))
else:
return pcoll | ParDo(
_WindowAwareBatchingDoFn(
self._batch_size_estimator, self._element_size_fn))
class _IdentityWindowFn(NonMergingWindowFn):
"""Windowing function that preserves existing windows.
To be used internally with the Reshuffle transform.
Will raise an exception when used after DoFns that return TimestampedValue
elements.
"""
def __init__(self, window_coder):
"""Create a new WindowFn with compatible coder.
To be applied to PCollections with windows that are compatible with the
given coder.
Arguments:
window_coder: coders.Coder object to be used on windows.
"""
super().__init__()
if window_coder is None:
raise ValueError('window_coder should not be None')
self._window_coder = window_coder
def assign(self, assign_context):
if assign_context.window is None:
raise ValueError(
'assign_context.window should not be None. '
'This might be due to a DoFn returning a TimestampedValue.')
return [assign_context.window]
def get_window_coder(self):
return self._window_coder
@typehints.with_input_types(Tuple[K, V])
@typehints.with_output_types(Tuple[K, V])
class ReshufflePerKey(PTransform):
"""PTransform that returns a PCollection equivalent to its input,
but operationally provides some of the side effects of a GroupByKey,
in particular checkpointing, and preventing fusion of the surrounding
transforms.
ReshufflePerKey is experimental. No backwards compatibility guarantees.
"""
def expand(self, pcoll):
windowing_saved = pcoll.windowing
if windowing_saved.is_default():
# In this (common) case we can use a trivial trigger driver
# and avoid the (expensive) window param.
globally_windowed = window.GlobalWindows.windowed_value(None)
MIN_TIMESTAMP = window.MIN_TIMESTAMP
def reify_timestamps(element, timestamp=DoFn.TimestampParam):
key, value = element
if timestamp == MIN_TIMESTAMP:
timestamp = None
return key, (value, timestamp)
def restore_timestamps(element):
key, values = element
return [
globally_windowed.with_value((key, value)) if timestamp is None else
window.GlobalWindows.windowed_value((key, value), timestamp)
for (value, timestamp) in values
]
else:
# typing: All conditional function variants must have identical signatures
def reify_timestamps( # type: ignore[misc]
element, timestamp=DoFn.TimestampParam, window=DoFn.WindowParam):
key, value = element
# Transport the window as part of the value and restore it later.
return key, windowed_value.WindowedValue(value, timestamp, [window])
def restore_timestamps(element):
key, windowed_values = element
return [wv.with_value((key, wv.value)) for wv in windowed_values]
ungrouped = pcoll | Map(reify_timestamps).with_output_types(Any)
# TODO(https://github.com/apache/beam/issues/19785) Using global window as
# one of the standard window. This is to mitigate the Dataflow Java Runner
# Harness limitation to accept only standard coders.
ungrouped._windowing = Windowing(
window.GlobalWindows(),
triggerfn=Always(),
accumulation_mode=AccumulationMode.DISCARDING,
timestamp_combiner=TimestampCombiner.OUTPUT_AT_EARLIEST)
result = (
ungrouped
| GroupByKey()
| FlatMap(restore_timestamps).with_output_types(Any))
result._windowing = windowing_saved
return result
@typehints.with_input_types(T)
@typehints.with_output_types(T)
class Reshuffle(PTransform):
"""PTransform that returns a PCollection equivalent to its input,
but operationally provides some of the side effects of a GroupByKey,
in particular checkpointing, and preventing fusion of the surrounding
transforms.
Reshuffle adds a temporary random key to each element, performs a
ReshufflePerKey, and finally removes the temporary key.
Reshuffle is experimental. No backwards compatibility guarantees.
"""
# We use 32-bit integer as the default number of buckets.
_DEFAULT_NUM_BUCKETS = 1 << 32
def __init__(self, num_buckets=None):
"""
:param num_buckets: If set, specifies the maximum random keys that would be
generated.
"""
self.num_buckets = num_buckets if num_buckets else self._DEFAULT_NUM_BUCKETS
valid_buckets = isinstance(num_buckets, int) and num_buckets > 0
if not (num_buckets is None or valid_buckets):
raise ValueError(
'If `num_buckets` is set, it has to be an '
'integer greater than 0, got %s' % num_buckets)
def expand(self, pcoll):
# type: (pvalue.PValue) -> pvalue.PCollection
return (
pcoll | 'AddRandomKeys' >>
Map(lambda t: (random.randrange(0, self.num_buckets), t)
).with_input_types(T).with_output_types(Tuple[int, T])
| ReshufflePerKey()
| 'RemoveRandomKeys' >> Map(lambda t: t[1]).with_input_types(
Tuple[int, T]).with_output_types(T))
def to_runner_api_parameter(self, unused_context):
# type: (PipelineContext) -> Tuple[str, None]
return common_urns.composites.RESHUFFLE.urn, None
@staticmethod
@PTransform.register_urn(common_urns.composites.RESHUFFLE.urn, None)
def from_runner_api_parameter(
unused_ptransform, unused_parameter, unused_context):
return Reshuffle()
def fn_takes_side_inputs(fn):
try:
signature = get_signature(fn)
except TypeError:
# We can't tell; maybe it does.
return True
return (
len(signature.parameters) > 1 or any(
p.kind == p.VAR_POSITIONAL or p.kind == p.VAR_KEYWORD
for p in signature.parameters.values()))
@ptransform_fn
def WithKeys(pcoll, k, *args, **kwargs):
"""PTransform that takes a PCollection, and either a constant key or a
callable, and returns a PCollection of (K, V), where each of the values in
the input PCollection has been paired with either the constant key or a key
computed from the value. The callable may optionally accept positional or
keyword arguments, which should be passed to WithKeys directly. These may
be either SideInputs or static (non-PCollection) values, such as ints.
"""
if callable(k):
if fn_takes_side_inputs(k):
if all(isinstance(arg, AsSideInput)
for arg in args) and all(isinstance(kwarg, AsSideInput)
for kwarg in kwargs.values()):
return pcoll | Map(
lambda v,
*args,
**kwargs: (k(v, *args, **kwargs), v),
*args,
**kwargs)
return pcoll | Map(lambda v: (k(v, *args, **kwargs), v))
return pcoll | Map(lambda v: (k(v), v))
return pcoll | Map(lambda v: (k, v))
@experimental()
@typehints.with_input_types(Tuple[K, V])
@typehints.with_output_types(Tuple[K, Iterable[V]])
class GroupIntoBatches(PTransform):
"""PTransform that batches the input into desired batch size. Elements are
buffered until they are equal to batch size provided in the argument at which
point they are output to the output Pcollection.
Windows are preserved (batches will contain elements from the same window)
GroupIntoBatches is experimental. Its use case will depend on the runner if
it has support of States and Timers.
"""
def __init__(
self, batch_size, max_buffering_duration_secs=None, clock=time.time):
"""Create a new GroupIntoBatches.
Arguments:
batch_size: (required) How many elements should be in a batch
max_buffering_duration_secs: (optional) How long in seconds at most an
incomplete batch of elements is allowed to be buffered in the states.
The duration must be a positive second duration and should be given as
an int or float. Setting this parameter to zero effectively means no
buffering limit.
clock: (optional) an alternative to time.time (mostly for testing)
"""
self.params = _GroupIntoBatchesParams(
batch_size, max_buffering_duration_secs)
self.clock = clock
def expand(self, pcoll):
input_coder = coders.registry.get_coder(pcoll)
return pcoll | ParDo(
_pardo_group_into_batches(
input_coder,
self.params.batch_size,
self.params.max_buffering_duration_secs,
self.clock))
def to_runner_api_parameter(
self,
unused_context # type: PipelineContext
): # type: (...) -> Tuple[str, beam_runner_api_pb2.GroupIntoBatchesPayload]
return (
common_urns.group_into_batches_components.GROUP_INTO_BATCHES.urn,
self.params.get_payload())
@staticmethod
@PTransform.register_urn(
common_urns.group_into_batches_components.GROUP_INTO_BATCHES.urn,
beam_runner_api_pb2.GroupIntoBatchesPayload)
def from_runner_api_parameter(unused_ptransform, proto, unused_context):
return GroupIntoBatches(*_GroupIntoBatchesParams.parse_payload(proto))
@typehints.with_input_types(Tuple[K, V])
@typehints.with_output_types(
typehints.Tuple[
ShardedKeyType[typehints.TypeVariable(K)], # type: ignore[misc]
typehints.Iterable[typehints.TypeVariable(V)]])
class WithShardedKey(PTransform):
"""A GroupIntoBatches transform that outputs batched elements associated
with sharded input keys.
By default, keys are sharded to such that the input elements with the same
key are spread to all available threads executing the transform. Runners may
override the default sharding to do a better load balancing during the
execution time.
"""
def __init__(
self, batch_size, max_buffering_duration_secs=None, clock=time.time):
"""Create a new GroupIntoBatches with sharded output.
See ``GroupIntoBatches`` transform for a description of input parameters.
"""
self.params = _GroupIntoBatchesParams(
batch_size, max_buffering_duration_secs)
self.clock = clock
_shard_id_prefix = uuid.uuid4().bytes
def expand(self, pcoll):
key_type, value_type = pcoll.element_type.tuple_types
sharded_pcoll = pcoll | Map(
lambda key_value: (
ShardedKey(
key_value[0],
# Use [uuid, thread id] as the shard id.
GroupIntoBatches.WithShardedKey._shard_id_prefix + bytes(
threading.get_ident().to_bytes(8, 'big'))),
key_value[1])).with_output_types(
typehints.Tuple[
ShardedKeyType[key_type], # type: ignore[misc]
value_type])
return (
sharded_pcoll
| GroupIntoBatches(
self.params.batch_size,
self.params.max_buffering_duration_secs,
self.clock))
def to_runner_api_parameter(
self,
unused_context # type: PipelineContext
): # type: (...) -> Tuple[str, beam_runner_api_pb2.GroupIntoBatchesPayload]
return (
common_urns.composites.GROUP_INTO_BATCHES_WITH_SHARDED_KEY.urn,
self.params.get_payload())
@staticmethod
@PTransform.register_urn(
common_urns.composites.GROUP_INTO_BATCHES_WITH_SHARDED_KEY.urn,
beam_runner_api_pb2.GroupIntoBatchesPayload)
def from_runner_api_parameter(unused_ptransform, proto, unused_context):
return GroupIntoBatches.WithShardedKey(
*_GroupIntoBatchesParams.parse_payload(proto))
class _GroupIntoBatchesParams:
"""This class represents the parameters for
:class:`apache_beam.utils.GroupIntoBatches` transform, used to define how
elements should be batched.
"""
def __init__(self, batch_size, max_buffering_duration_secs):
self.batch_size = batch_size
self.max_buffering_duration_secs = (
0
if max_buffering_duration_secs is None else max_buffering_duration_secs)
self._validate()
def __eq__(self, other):
if other is None or not isinstance(other, _GroupIntoBatchesParams):
return False
return (
self.batch_size == other.batch_size and
self.max_buffering_duration_secs == other.max_buffering_duration_secs)
def _validate(self):
assert self.batch_size is not None and self.batch_size > 0, (
'batch_size must be a positive value')
assert (