diff --git a/ci/conda_env_sphinx.txt b/ci/conda_env_sphinx.txt index d0f494d2e085d..0e50875fc1ef8 100644 --- a/ci/conda_env_sphinx.txt +++ b/ci/conda_env_sphinx.txt @@ -20,7 +20,7 @@ breathe doxygen ipython numpydoc -pydata-sphinx-theme=0.14.1 +pydata-sphinx-theme=0.14 sphinx-autobuild sphinx-design sphinx-copybutton diff --git a/docs/requirements.txt b/docs/requirements.txt index aee2eb662c06b..5d6fec7ddf72e 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -5,7 +5,7 @@ breathe ipython numpydoc -pydata-sphinx-theme==0.14.1 +pydata-sphinx-theme~=0.14 sphinx-autobuild sphinx-design sphinx-copybutton diff --git a/docs/source/python/api/compute.rst b/docs/source/python/api/compute.rst index b879643017a90..928c607d139ce 100644 --- a/docs/source/python/api/compute.rst +++ b/docs/source/python/api/compute.rst @@ -590,4 +590,4 @@ User-Defined Functions :toctree: ../generated/ register_scalar_function - ScalarUdfContext + UdfContext diff --git a/docs/source/python/compute.rst b/docs/source/python/compute.rst index e8a5b613c6099..c02059a4f8faa 100644 --- a/docs/source/python/compute.rst +++ b/docs/source/python/compute.rst @@ -445,9 +445,9 @@ output type need to be defined. Using :func:`pyarrow.compute.register_scalar_fun The implementation of a user-defined function always takes a first *context* parameter (named ``ctx`` in the example above) which is an instance of -:class:`pyarrow.compute.ScalarUdfContext`. +:class:`pyarrow.compute.UdfContext`. This context exposes several useful attributes, particularly a -:attr:`~pyarrow.compute.ScalarUdfContext.memory_pool` to be used for +:attr:`~pyarrow.compute.UdfContext.memory_pool` to be used for allocations in the context of the user-defined function. You can call a user-defined function directly using :func:`pyarrow.compute.call_function`: diff --git a/docs/source/python/pandas.rst b/docs/source/python/pandas.rst index fda90c4f2a58c..23a4b73bd0965 100644 --- a/docs/source/python/pandas.rst +++ b/docs/source/python/pandas.rst @@ -197,7 +197,7 @@ use the ``datetime64[ns]`` type in Pandas and are converted to an Arrow .. ipython:: python - df = pd.DataFrame({"datetime": pd.date_range("2020-01-01T00:00:00Z", freq="H", periods=3)}) + df = pd.DataFrame({"datetime": pd.date_range("2020-01-01T00:00:00Z", freq="h", periods=3)}) df.dtypes df