-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathscanner.cc
1192 lines (1035 loc) · 47 KB
/
scanner.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "arrow/dataset/scanner.h"
#include <algorithm>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <numeric>
#include <set>
#include <sstream>
#include "arrow/acero/exec_plan.h"
#include "arrow/acero/options.h"
#include "arrow/acero/query_context.h"
#include "arrow/array/array_primitive.h"
#include "arrow/array/util.h"
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/api_scalar.h"
#include "arrow/compute/api_vector.h"
#include "arrow/compute/cast.h"
#include "arrow/dataset/dataset.h"
#include "arrow/dataset/dataset_internal.h"
#include "arrow/dataset/plan.h"
#include "arrow/table.h"
#include "arrow/util/async_generator.h"
#include "arrow/util/config.h"
#include "arrow/util/iterator.h"
#include "arrow/util/logging.h"
#include "arrow/util/task_group.h"
#include "arrow/util/thread_pool.h"
#include "arrow/util/tracing_internal.h"
namespace arrow {
using internal::Executor;
using internal::SerialExecutor;
using internal::TaskGroup;
using internal::checked_cast;
namespace dataset {
using FragmentGenerator = std::function<Future<std::shared_ptr<Fragment>>()>;
std::vector<FieldRef> ScanOptions::MaterializedFields() const {
std::vector<FieldRef> fields;
for (const compute::Expression* expr : {&filter, &projection}) {
auto refs = FieldsInExpression(*expr);
fields.insert(fields.end(), std::make_move_iterator(refs.begin()),
std::make_move_iterator(refs.end()));
}
return fields;
}
std::vector<FieldPath> ScanV2Options::AllColumns(const Schema& dataset_schema) {
std::vector<FieldPath> selection(dataset_schema.num_fields());
for (int i = 0; i < dataset_schema.num_fields(); i++) {
selection[i] = {i};
}
return selection;
}
Status ScanV2Options::AddFieldsNeededForFilter(ScanV2Options* options) {
std::vector<FieldRef> fields_referenced = FieldsInExpression(options->filter);
for (const auto& field : fields_referenced) {
// Note: this will fail if the field reference is ambiguous or the field doesn't
// exist in the dataset schema
ARROW_ASSIGN_OR_RAISE(auto field_path, field.FindOne(*options->dataset->schema()));
if (std::find(options->columns.begin(), options->columns.end(), field_path) ==
options->columns.end()) {
options->columns.push_back(std::move(field_path));
}
}
return Status::OK();
}
namespace {
class ScannerRecordBatchReader : public RecordBatchReader {
public:
explicit ScannerRecordBatchReader(std::shared_ptr<Schema> schema,
TaggedRecordBatchIterator delegate)
: schema_(std::move(schema)), delegate_(std::move(delegate)) {}
std::shared_ptr<Schema> schema() const override { return schema_; }
Status ReadNext(std::shared_ptr<RecordBatch>* batch) override {
ARROW_ASSIGN_OR_RAISE(auto next, delegate_.Next());
if (IsIterationEnd(next)) {
*batch = nullptr;
} else {
*batch = std::move(next.record_batch);
}
return Status::OK();
}
Status Close() override {
std::shared_ptr<RecordBatch> batch;
RETURN_NOT_OK(ReadNext(&batch));
while (batch != nullptr) {
RETURN_NOT_OK(ReadNext(&batch));
}
return Status::OK();
}
private:
std::shared_ptr<Schema> schema_;
TaggedRecordBatchIterator delegate_;
};
const FieldVector kAugmentedFields{
field("__fragment_index", int32()),
field("__batch_index", int32()),
field("__last_in_fragment", boolean()),
field("__filename", utf8()),
};
Result<std::shared_ptr<Schema>> GetProjectedSchemaFromExpression(
const compute::Expression& projection,
const std::shared_ptr<Schema>& dataset_schema) {
// process resultant dataset_schema after projection
FieldVector project_fields;
std::set<std::string> field_names;
if (auto call = projection.call()) {
if (call->function_name != "make_struct") {
return Status::Invalid("Top level projection expression call must be make_struct");
}
for (auto field_ref : compute::FieldsInExpression(projection)) {
if (field_ref.IsName()) {
field_names.emplace(*field_ref.name());
} else if (field_ref.IsNested()) {
// We keep the top-level field name.
auto nested_field_refs = *field_ref.nested_refs();
field_names.emplace(*nested_field_refs[0].name());
} else {
return Status::Invalid(
"No projected schema was supplied and we could not infer the projected "
"schema from the projection expression.");
}
}
}
for (auto f : field_names) {
auto field = dataset_schema->GetFieldByName(f);
if (field) {
// if the field is not present in the schema we ignore it.
// the case is if kAugmentedFields are present in the expression
// and if they are not present in the provided schema, we ignore them.
project_fields.push_back(std::move(field));
}
}
return schema(project_fields);
}
// Scan options has a number of options that we can infer from the dataset
// schema if they are not specified.
Status NormalizeScanOptions(const std::shared_ptr<ScanOptions>& scan_options,
const std::shared_ptr<Schema>& dataset_schema) {
if (scan_options->dataset_schema == nullptr) {
scan_options->dataset_schema = dataset_schema;
}
if (!scan_options->filter.IsBound()) {
ARROW_ASSIGN_OR_RAISE(scan_options->filter,
scan_options->filter.Bind(*dataset_schema));
}
if (!scan_options->projected_schema) {
// If the user specifies a projection expression we can maybe infer from
// that expression
if (scan_options->projection.IsBound()) {
ARROW_ASSIGN_OR_RAISE(
auto project_schema,
GetProjectedSchemaFromExpression(scan_options->projection, dataset_schema));
if (project_schema->num_fields() > 0) {
scan_options->projected_schema = std::move(project_schema);
}
// If the projection isn't a call we assume it's literal(true) or some
// invalid expression and just ignore it. It will be replaced below
}
// If we couldn't infer it from the projection expression then just grab all
// fields from the dataset
if (!scan_options->projected_schema) {
// Until now, we assume the project expression is bound, but if it is not
// bound, we have to check the expressions and make sure bind them
// and create the projected schema based on the field_refs (which guarantees
// IsName() to be true).
// process resultant dataset_schema after projection
ARROW_ASSIGN_OR_RAISE(
auto projected_schema,
GetProjectedSchemaFromExpression(scan_options->projection, dataset_schema));
if (projected_schema->num_fields() > 0) {
// create the projected schema only if the provided expressions
// produces valid set of fields.
ARROW_ASSIGN_OR_RAISE(auto projection_descr,
ProjectionDescr::Default(
*projected_schema, scan_options->add_augmented_fields));
scan_options->projected_schema = std::move(projection_descr.schema);
scan_options->projection = projection_descr.expression;
ARROW_ASSIGN_OR_RAISE(scan_options->projection,
scan_options->projection.Bind(*projected_schema));
} else {
// if projected_fields are not found, we default to creating the projected_schema
// and projection from the dataset_schema.
ARROW_ASSIGN_OR_RAISE(auto projection_descr,
ProjectionDescr::Default(
*dataset_schema, scan_options->add_augmented_fields));
scan_options->projected_schema = std::move(projection_descr.schema);
scan_options->projection = projection_descr.expression;
}
}
}
if (scan_options->projection == compute::literal(true)) {
ARROW_ASSIGN_OR_RAISE(
auto projection_descr,
ProjectionDescr::FromNames(scan_options->projected_schema->field_names(),
*dataset_schema, scan_options->add_augmented_fields));
scan_options->projection = projection_descr.expression;
}
if (!scan_options->projection.IsBound()) {
auto fields = dataset_schema->fields();
for (const auto& aug_field : kAugmentedFields) {
fields.push_back(aug_field);
}
ARROW_ASSIGN_OR_RAISE(scan_options->projection,
scan_options->projection.Bind(Schema(std::move(fields))));
}
return Status::OK();
}
} // namespace
namespace {
class AsyncScanner : public Scanner, public std::enable_shared_from_this<AsyncScanner> {
public:
AsyncScanner(std::shared_ptr<Dataset> dataset,
std::shared_ptr<ScanOptions> scan_options)
: Scanner(std::move(scan_options)), dataset_(std::move(dataset)) {
internal::Initialize();
}
Status Scan(std::function<Status(TaggedRecordBatch)> visitor) override;
Result<TaggedRecordBatchIterator> ScanBatches() override;
Result<TaggedRecordBatchGenerator> ScanBatchesAsync() override;
Result<TaggedRecordBatchGenerator> ScanBatchesAsync(Executor* executor) override;
Result<EnumeratedRecordBatchIterator> ScanBatchesUnordered() override;
Result<EnumeratedRecordBatchGenerator> ScanBatchesUnorderedAsync() override;
Result<EnumeratedRecordBatchGenerator> ScanBatchesUnorderedAsync(
Executor* executor) override;
Result<std::shared_ptr<Table>> TakeRows(const Array& indices) override;
Result<std::shared_ptr<Table>> Head(int64_t num_rows) override;
Result<std::shared_ptr<Table>> ToTable() override;
Result<int64_t> CountRows() override;
Future<int64_t> CountRowsAsync() override;
Result<std::shared_ptr<RecordBatchReader>> ToRecordBatchReader() override;
const std::shared_ptr<Dataset>& dataset() const override;
private:
Future<> VisitBatchesAsync(std::function<Status(TaggedRecordBatch)> visitor,
Executor* executor);
Result<EnumeratedRecordBatchGenerator> ScanBatchesUnorderedAsync(
Executor* executor, bool sequence_fragments, bool use_legacy_batching = false);
Future<std::shared_ptr<Table>> ToTableAsync(Executor* executor);
Future<int64_t> CountRowsAsync(Executor* executor);
Result<FragmentGenerator> GetFragments() const;
std::shared_ptr<Dataset> dataset_;
};
Result<EnumeratedRecordBatchGenerator> FragmentToBatches(
const Enumerated<std::shared_ptr<Fragment>>& fragment,
const std::shared_ptr<ScanOptions>& options) {
#ifdef ARROW_WITH_OPENTELEMETRY
util::tracing::Span span;
START_SPAN(span, "Scanner::FragmentToBatches",
{
{"arrow.dataset.fragment", fragment.value->ToString()},
{"arrow.dataset.fragment.index", fragment.index},
{"arrow.dataset.fragment.last", fragment.last},
{"arrow.dataset.fragment.type_name", fragment.value->type_name()},
});
#endif
ARROW_ASSIGN_OR_RAISE(auto batch_gen, fragment.value->ScanBatchesAsync(options));
ArrayVector columns;
for (const auto& field : options->dataset_schema->fields()) {
// TODO(ARROW-7051): use helper to make empty batch
ARROW_ASSIGN_OR_RAISE(auto array,
MakeArrayOfNull(field->type(), /*length=*/0, options->pool));
columns.push_back(std::move(array));
}
WRAP_ASYNC_GENERATOR(batch_gen);
batch_gen = MakeDefaultIfEmptyGenerator(
std::move(batch_gen),
RecordBatch::Make(options->dataset_schema, /*num_rows=*/0, std::move(columns)));
auto enumerated_batch_gen = MakeEnumeratedGenerator(std::move(batch_gen));
auto combine_fn =
[fragment](const Enumerated<std::shared_ptr<RecordBatch>>& record_batch) {
return EnumeratedRecordBatch{record_batch, fragment};
};
return MakeMappedGenerator(enumerated_batch_gen, std::move(combine_fn));
}
Result<AsyncGenerator<EnumeratedRecordBatchGenerator>> FragmentsToBatches(
FragmentGenerator fragment_gen, const std::shared_ptr<ScanOptions>& options) {
auto enumerated_fragment_gen = MakeEnumeratedGenerator(std::move(fragment_gen));
auto batch_gen_gen =
MakeMappedGenerator(std::move(enumerated_fragment_gen),
[=](const Enumerated<std::shared_ptr<Fragment>>& fragment) {
return FragmentToBatches(fragment, options);
});
PROPAGATE_SPAN_TO_GENERATOR(std::move(batch_gen_gen));
return batch_gen_gen;
}
class OneShotFragment : public Fragment {
public:
OneShotFragment(std::shared_ptr<Schema> schema, RecordBatchIterator batch_it)
: Fragment(compute::literal(true), std::move(schema)),
batch_it_(std::move(batch_it)) {
DCHECK_NE(physical_schema_, nullptr);
}
Status CheckConsumed() {
if (!batch_it_) return Status::Invalid("OneShotFragment was already scanned");
return Status::OK();
}
Result<RecordBatchGenerator> ScanBatchesAsync(
const std::shared_ptr<ScanOptions>& options) override {
RETURN_NOT_OK(CheckConsumed());
ARROW_ASSIGN_OR_RAISE(
auto background_gen,
MakeBackgroundGenerator(std::move(batch_it_), options->io_context.executor()));
return MakeTransferredGenerator(std::move(background_gen),
::arrow::internal::GetCpuThreadPool());
}
std::string type_name() const override { return "one-shot"; }
protected:
Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() override {
return physical_schema_;
}
RecordBatchIterator batch_it_;
};
Result<FragmentGenerator> AsyncScanner::GetFragments() const {
// TODO(ARROW-8163): Async fragment scanning will return AsyncGenerator<Fragment>
// here. Current iterator based versions are all fast & sync so we will just ToVector
// it
ARROW_ASSIGN_OR_RAISE(auto fragments_it, dataset_->GetFragments(scan_options_->filter));
ARROW_ASSIGN_OR_RAISE(auto fragments_vec, fragments_it.ToVector());
return MakeVectorGenerator(std::move(fragments_vec));
}
Result<TaggedRecordBatchIterator> AsyncScanner::ScanBatches() {
return ::arrow::internal::IterateSynchronously<TaggedRecordBatch>(
[this](::arrow::internal::Executor* executor) {
return ScanBatchesAsync(executor);
},
scan_options_->use_threads);
}
Result<EnumeratedRecordBatchIterator> AsyncScanner::ScanBatchesUnordered() {
return ::arrow::internal::IterateSynchronously<EnumeratedRecordBatch>(
[this](::arrow::internal::Executor* executor) {
return ScanBatchesUnorderedAsync(executor);
},
scan_options_->use_threads);
}
Result<std::shared_ptr<Table>> AsyncScanner::ToTable() {
return ::arrow::internal::RunSynchronously<Future<std::shared_ptr<Table>>>(
[this](::arrow::internal::Executor* executor) { return ToTableAsync(executor); },
scan_options_->use_threads);
}
Result<EnumeratedRecordBatchGenerator> AsyncScanner::ScanBatchesUnorderedAsync() {
return ScanBatchesUnorderedAsync(::arrow::internal::GetCpuThreadPool(),
/*sequence_fragments=*/false);
}
Result<EnumeratedRecordBatchGenerator> AsyncScanner::ScanBatchesUnorderedAsync(
::arrow::internal::Executor* cpu_thread_pool) {
return ScanBatchesUnorderedAsync(cpu_thread_pool, /*sequence_fragments=*/false);
}
Result<EnumeratedRecordBatch> ToEnumeratedRecordBatch(
const std::optional<compute::ExecBatch>& batch, const ScanOptions& options,
const FragmentVector& fragments) {
int num_fields = options.projected_schema->num_fields();
EnumeratedRecordBatch out;
out.fragment.index = batch->values[num_fields].scalar_as<Int32Scalar>().value;
out.fragment.last = false; // ignored during reordering
out.fragment.value = fragments[out.fragment.index];
out.record_batch.index = batch->values[num_fields + 1].scalar_as<Int32Scalar>().value;
out.record_batch.last = batch->values[num_fields + 2].scalar_as<BooleanScalar>().value;
ARROW_ASSIGN_OR_RAISE(out.record_batch.value,
batch->ToRecordBatch(options.projected_schema, options.pool));
return out;
}
Result<EnumeratedRecordBatchGenerator> AsyncScanner::ScanBatchesUnorderedAsync(
Executor* cpu_executor, bool sequence_fragments, bool use_legacy_batching) {
RETURN_NOT_OK(NormalizeScanOptions(scan_options_, dataset_->schema()));
auto exec_context =
std::make_shared<compute::ExecContext>(scan_options_->pool, cpu_executor);
acero::QueryOptions query_options;
query_options.use_legacy_batching = use_legacy_batching;
ARROW_ASSIGN_OR_RAISE(auto plan,
acero::ExecPlan::Make(query_options, *exec_context.get()));
AsyncGenerator<std::optional<compute::ExecBatch>> sink_gen;
auto exprs = scan_options_->projection.call()->arguments;
auto names = checked_cast<const compute::MakeStructOptions*>(
scan_options_->projection.call()->options.get())
->field_names;
RETURN_NOT_OK(
acero::Declaration::Sequence(
{
{"scan", ScanNodeOptions{dataset_, scan_options_, sequence_fragments}},
{"filter", acero::FilterNodeOptions{scan_options_->filter}},
{"augmented_project",
acero::ProjectNodeOptions{std::move(exprs), std::move(names)}},
{"sink", acero::SinkNodeOptions{&sink_gen, /*schema=*/nullptr,
scan_options_->backpressure}},
})
.AddToPlan(plan.get()));
plan->StartProducing();
auto options = scan_options_;
ARROW_ASSIGN_OR_RAISE(auto fragments_it, dataset_->GetFragments(scan_options_->filter));
ARROW_ASSIGN_OR_RAISE(auto fragments, fragments_it.ToVector());
auto shared_fragments = std::make_shared<FragmentVector>(std::move(fragments));
// If the generator is destroyed before being completely drained, inform plan
std::shared_ptr<void> stop_producing{
nullptr, [plan, exec_context](...) {
bool not_finished_yet = plan->finished().TryAddCallback(
[&plan, &exec_context] { return [plan, exec_context](const Status&) {}; });
if (not_finished_yet) {
plan->StopProducing();
}
}};
EnumeratedRecordBatchGenerator mapped_gen = MakeMappedGenerator(
std::move(sink_gen),
[sink_gen, options,
shared_fragments](const std::optional<compute::ExecBatch>& batch)
-> Future<EnumeratedRecordBatch> {
return ToEnumeratedRecordBatch(batch, *options, *shared_fragments);
});
return [mapped_gen = std::move(mapped_gen), plan = std::move(plan),
stop_producing = std::move(stop_producing)] {
auto next = mapped_gen();
return next.Then([plan](const EnumeratedRecordBatch& value) {
if (IsIterationEnd(value)) {
return plan->finished().Then([value] { return value; });
}
return Future<EnumeratedRecordBatch>::MakeFinished(value);
});
};
}
Result<std::shared_ptr<Table>> AsyncScanner::TakeRows(const Array& indices) {
if (indices.null_count() != 0) {
return Status::NotImplemented("null take indices");
}
compute::ExecContext ctx(scan_options_->pool);
const Array* original_indices;
// If we have to cast, this is the backing reference
std::shared_ptr<Array> original_indices_ptr;
if (indices.type_id() != Type::INT64) {
ARROW_ASSIGN_OR_RAISE(
original_indices_ptr,
compute::Cast(indices, int64(), compute::CastOptions::Safe(), &ctx));
original_indices = original_indices_ptr.get();
} else {
original_indices = &indices;
}
std::shared_ptr<Array> unsort_indices;
{
ARROW_ASSIGN_OR_RAISE(
auto sort_indices,
compute::SortIndices(*original_indices, compute::SortOrder::Ascending, &ctx));
ARROW_ASSIGN_OR_RAISE(original_indices_ptr,
compute::Take(*original_indices, *sort_indices,
compute::TakeOptions::Defaults(), &ctx));
original_indices = original_indices_ptr.get();
ARROW_ASSIGN_OR_RAISE(
unsort_indices,
compute::SortIndices(*sort_indices, compute::SortOrder::Ascending, &ctx));
}
RecordBatchVector out_batches;
auto raw_indices = static_cast<const Int64Array&>(*original_indices).raw_values();
int64_t offset = 0, row_begin = 0;
ARROW_ASSIGN_OR_RAISE(auto batch_it, ScanBatches());
while (true) {
ARROW_ASSIGN_OR_RAISE(auto batch, batch_it.Next());
if (IsIterationEnd(batch)) break;
if (offset == original_indices->length()) break;
DCHECK_LT(offset, original_indices->length());
int64_t length = 0;
while (offset + length < original_indices->length()) {
auto rel_index = raw_indices[offset + length] - row_begin;
if (rel_index >= batch.record_batch->num_rows()) break;
++length;
}
DCHECK_LE(offset + length, original_indices->length());
if (length == 0) {
row_begin += batch.record_batch->num_rows();
continue;
}
Datum rel_indices = original_indices->Slice(offset, length);
ARROW_ASSIGN_OR_RAISE(rel_indices,
compute::Subtract(rel_indices, Datum(row_begin),
compute::ArithmeticOptions(), &ctx));
ARROW_ASSIGN_OR_RAISE(Datum out_batch,
compute::Take(batch.record_batch, rel_indices,
compute::TakeOptions::Defaults(), &ctx));
out_batches.push_back(out_batch.record_batch());
offset += length;
row_begin += batch.record_batch->num_rows();
}
if (offset < original_indices->length()) {
std::stringstream error;
const int64_t max_values_shown = 3;
const int64_t num_remaining = original_indices->length() - offset;
for (int64_t i = 0; i < std::min<int64_t>(max_values_shown, num_remaining); i++) {
if (i > 0) error << ", ";
error << static_cast<const Int64Array*>(original_indices)->Value(offset + i);
}
if (num_remaining > max_values_shown) error << ", ...";
return Status::IndexError("Some indices were out of bounds: ", error.str());
}
ARROW_ASSIGN_OR_RAISE(Datum out, Table::FromRecordBatches(options()->projected_schema,
std::move(out_batches)));
ARROW_ASSIGN_OR_RAISE(
out, compute::Take(out, unsort_indices, compute::TakeOptions::Defaults(), &ctx));
return out.table();
}
Result<std::shared_ptr<Table>> AsyncScanner::Head(int64_t num_rows) {
if (num_rows == 0) {
return Table::FromRecordBatches(options()->projected_schema, {});
}
ARROW_ASSIGN_OR_RAISE(auto batch_iterator, ScanBatches());
RecordBatchVector batches;
while (true) {
ARROW_ASSIGN_OR_RAISE(auto batch, batch_iterator.Next());
if (IsIterationEnd(batch)) break;
batches.push_back(batch.record_batch->Slice(0, num_rows));
num_rows -= batch.record_batch->num_rows();
if (num_rows <= 0) break;
}
return Table::FromRecordBatches(options()->projected_schema, batches);
}
Result<TaggedRecordBatchGenerator> AsyncScanner::ScanBatchesAsync() {
return ScanBatchesAsync(::arrow::internal::GetCpuThreadPool());
}
Result<TaggedRecordBatchGenerator> AsyncScanner::ScanBatchesAsync(
Executor* cpu_executor) {
ARROW_ASSIGN_OR_RAISE(
auto unordered, ScanBatchesUnorderedAsync(cpu_executor, /*sequence_fragments=*/true,
/*use_legacy_batching=*/true));
// We need an initial value sentinel, so we use one with fragment.index < 0
auto is_before_any = [](const EnumeratedRecordBatch& batch) {
return batch.fragment.index < 0;
};
auto left_after_right = [&is_before_any](const EnumeratedRecordBatch& left,
const EnumeratedRecordBatch& right) {
// Before any comes first
if (is_before_any(left)) {
return false;
}
if (is_before_any(right)) {
return true;
}
// Compare batches if fragment is the same
if (left.fragment.index == right.fragment.index) {
return left.record_batch.index > right.record_batch.index;
}
// Otherwise compare fragment
return left.fragment.index > right.fragment.index;
};
auto is_next = [is_before_any](const EnumeratedRecordBatch& prev,
const EnumeratedRecordBatch& next) {
// Only true if next is the first batch
if (is_before_any(prev)) {
return next.fragment.index == 0 && next.record_batch.index == 0;
}
// If same fragment, compare batch index
if (prev.fragment.index == next.fragment.index) {
return next.record_batch.index == prev.record_batch.index + 1;
}
// Else only if next first batch of next fragment and prev is last batch of previous
return next.fragment.index == prev.fragment.index + 1 && prev.record_batch.last &&
next.record_batch.index == 0;
};
auto before_any = EnumeratedRecordBatch{{nullptr, -1, false}, {nullptr, -1, false}};
auto sequenced = MakeSequencingGenerator(std::move(unordered), left_after_right,
is_next, before_any);
auto unenumerate_fn = [](const EnumeratedRecordBatch& enumerated_batch) {
return TaggedRecordBatch{enumerated_batch.record_batch.value,
enumerated_batch.fragment.value};
};
return MakeMappedGenerator(std::move(sequenced), unenumerate_fn);
}
struct AsyncTableAssemblyState {
/// Protecting mutating accesses to batches
std::mutex mutex{};
std::vector<RecordBatchVector> batches{};
void Emplace(const EnumeratedRecordBatch& batch) {
std::lock_guard<std::mutex> lock(mutex);
auto fragment_index = batch.fragment.index;
auto batch_index = batch.record_batch.index;
if (static_cast<int>(batches.size()) <= fragment_index) {
batches.resize(fragment_index + 1);
}
if (static_cast<int>(batches[fragment_index].size()) <= batch_index) {
batches[fragment_index].resize(batch_index + 1);
}
batches[fragment_index][batch_index] = batch.record_batch.value;
}
RecordBatchVector Finish() {
RecordBatchVector all_batches;
for (auto& fragment_batches : batches) {
auto end = std::make_move_iterator(fragment_batches.end());
for (auto it = std::make_move_iterator(fragment_batches.begin()); it != end; it++) {
all_batches.push_back(*it);
}
}
return all_batches;
}
};
Status AsyncScanner::Scan(std::function<Status(TaggedRecordBatch)> visitor) {
auto top_level_task = [this, &visitor](Executor* executor) {
return VisitBatchesAsync(visitor, executor);
};
return ::arrow::internal::RunSynchronously<Future<>>(top_level_task,
scan_options_->use_threads);
}
Future<> AsyncScanner::VisitBatchesAsync(std::function<Status(TaggedRecordBatch)> visitor,
Executor* executor) {
ARROW_ASSIGN_OR_RAISE(auto batches_gen, ScanBatchesAsync(executor));
return VisitAsyncGenerator(std::move(batches_gen), visitor);
}
Future<std::shared_ptr<Table>> AsyncScanner::ToTableAsync(Executor* cpu_executor) {
auto scan_options = scan_options_;
ARROW_ASSIGN_OR_RAISE(
auto positioned_batch_gen,
ScanBatchesUnorderedAsync(cpu_executor, /*sequence_fragments=*/false,
/*use_legacy_batching=*/true));
/// Wraps the state in a shared_ptr to ensure that failing ScanTasks don't
/// invalidate concurrently running tasks when Finish() early returns
/// and the mutex/batches fail out of scope.
auto state = std::make_shared<AsyncTableAssemblyState>();
auto table_building_task = [state](const EnumeratedRecordBatch& batch) {
state->Emplace(batch);
return batch;
};
auto table_building_gen =
MakeMappedGenerator(positioned_batch_gen, table_building_task);
return DiscardAllFromAsyncGenerator(table_building_gen).Then([state, scan_options]() {
return Table::FromRecordBatches(scan_options->projected_schema, state->Finish());
});
}
Future<int64_t> AsyncScanner::CountRowsAsync(Executor* executor) {
ARROW_ASSIGN_OR_RAISE(auto fragment_gen, GetFragments());
compute::ExecContext exec_context(scan_options_->pool, executor);
ARROW_ASSIGN_OR_RAISE(auto plan, acero::ExecPlan::Make(exec_context));
// Drop projection since we only need to count rows
const auto options = std::make_shared<ScanOptions>(*scan_options_);
ARROW_ASSIGN_OR_RAISE(auto empty_projection,
ProjectionDescr::FromNames(std::vector<std::string>(),
*scan_options_->dataset_schema,
scan_options_->add_augmented_fields));
SetProjection(options.get(), empty_projection);
auto total = std::make_shared<std::atomic<int64_t>>(0);
fragment_gen = MakeMappedGenerator(
std::move(fragment_gen),
[options, total](const std::shared_ptr<Fragment>& fragment) {
return fragment->CountRows(options->filter, options)
.Then([options, total, fragment](std::optional<int64_t> fast_count) mutable
-> std::shared_ptr<Fragment> {
if (fast_count) {
// fast path: got row count directly; skip scanning this fragment
(*total) += *fast_count;
return std::make_shared<InMemoryFragment>(options->dataset_schema,
RecordBatchVector{});
}
// slow path: actually filter this fragment's batches
return std::move(fragment);
});
});
acero::Declaration count_plan = acero::Declaration::Sequence(
{{"scan",
ScanNodeOptions{std::make_shared<FragmentDataset>(scan_options_->dataset_schema,
std::move(fragment_gen)),
options}},
{"project", acero::ProjectNodeOptions{{options->filter}, {"mask"}}},
{"aggregate", acero::AggregateNodeOptions{{compute::Aggregate{
"sum", nullptr, "mask", "selected_count"}}}}});
return acero::DeclarationToBatchesAsync(std::move(count_plan), exec_context)
.Then([total](const RecordBatchVector& batches) -> Result<int64_t> {
DCHECK_EQ(1, batches.size());
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Scalar> count_scalar,
batches[0]->column(0)->GetScalar(0));
return total->load() +
static_cast<int64_t>(
::arrow::internal::checked_pointer_cast<UInt64Scalar>(count_scalar)
->value);
});
}
Future<int64_t> AsyncScanner::CountRowsAsync() {
return CountRowsAsync(::arrow::internal::GetCpuThreadPool());
}
Result<int64_t> AsyncScanner::CountRows() {
return ::arrow::internal::RunSynchronously<Future<int64_t>>(
[this](Executor* executor) { return CountRowsAsync(executor); },
scan_options_->use_threads);
}
Result<std::shared_ptr<RecordBatchReader>> AsyncScanner::ToRecordBatchReader() {
ARROW_ASSIGN_OR_RAISE(auto it, ScanBatches());
return std::make_shared<ScannerRecordBatchReader>(options()->projected_schema,
std::move(it));
}
const std::shared_ptr<Dataset>& AsyncScanner::dataset() const { return dataset_; }
} // namespace
Result<ProjectionDescr> ProjectionDescr::FromStructExpression(
const compute::Expression& projection, const Schema& dataset_schema) {
ARROW_ASSIGN_OR_RAISE(compute::Expression bound_expression,
projection.Bind(dataset_schema));
if (bound_expression.type()->id() != Type::STRUCT) {
return Status::Invalid("Projection ", projection.ToString(),
" cannot yield record batches");
}
std::shared_ptr<Schema> projection_schema =
::arrow::schema(checked_cast<const StructType&>(*bound_expression.type()).fields(),
dataset_schema.metadata());
return ProjectionDescr{std::move(bound_expression), std::move(projection_schema)};
}
Result<ProjectionDescr> ProjectionDescr::FromExpressions(
std::vector<compute::Expression> exprs, std::vector<std::string> names,
const Schema& dataset_schema) {
compute::MakeStructOptions project_options{std::move(names)};
for (size_t i = 0; i < exprs.size(); ++i) {
if (auto ref = exprs[i].field_ref()) {
// set metadata and nullability for plain field references
ARROW_ASSIGN_OR_RAISE(auto field, ref->GetOne(dataset_schema));
project_options.field_nullability[i] = field->nullable();
project_options.field_metadata[i] = field->metadata();
}
}
return ProjectionDescr::FromStructExpression(
call("make_struct", std::move(exprs), std::move(project_options)), dataset_schema);
}
Result<ProjectionDescr> ProjectionDescr::FromNames(std::vector<std::string> names,
const Schema& dataset_schema,
bool add_augmented_fields) {
std::vector<compute::Expression> exprs(names.size());
for (size_t i = 0; i < exprs.size(); ++i) {
// If name isn't in schema, try finding it by dotted path.
if (dataset_schema.GetFieldByName(names[i]) == nullptr) {
auto name = names[i];
if (name.rfind(".", 0) != 0) {
name = "." + name;
}
ARROW_ASSIGN_OR_RAISE(auto field_ref, FieldRef::FromDotPath(name));
// safe as we know there is at least 1 dot.
names[i] = name.substr(name.rfind(".") + 1);
exprs[i] = compute::field_ref(field_ref);
} else {
exprs[i] = compute::field_ref(names[i]);
}
}
auto fields = dataset_schema.fields();
if (add_augmented_fields) {
for (const auto& aug_field : kAugmentedFields) {
fields.push_back(aug_field);
}
}
return ProjectionDescr::FromExpressions(std::move(exprs), std::move(names),
Schema(fields, dataset_schema.metadata()));
}
Result<ProjectionDescr> ProjectionDescr::Default(const Schema& dataset_schema,
bool add_augmented_fields) {
return ProjectionDescr::FromNames(dataset_schema.field_names(), dataset_schema,
add_augmented_fields);
}
void SetProjection(ScanOptions* options, ProjectionDescr projection) {
options->projection = std::move(projection.expression);
options->projected_schema = std::move(projection.schema);
}
ScannerBuilder::ScannerBuilder(std::shared_ptr<Dataset> dataset)
: ScannerBuilder(std::move(dataset), std::make_shared<ScanOptions>()) {}
ScannerBuilder::ScannerBuilder(std::shared_ptr<Dataset> dataset,
std::shared_ptr<ScanOptions> scan_options)
: dataset_(std::move(dataset)), scan_options_(std::move(scan_options)) {
scan_options_->dataset_schema = dataset_->schema();
DCHECK_OK(Filter(scan_options_->filter));
}
ScannerBuilder::ScannerBuilder(std::shared_ptr<Schema> schema,
std::shared_ptr<Fragment> fragment,
std::shared_ptr<ScanOptions> scan_options)
: ScannerBuilder(std::make_shared<FragmentDataset>(
std::move(schema), FragmentVector{std::move(fragment)}),
std::move(scan_options)) {}
std::shared_ptr<ScannerBuilder> ScannerBuilder::FromRecordBatchReader(
std::shared_ptr<RecordBatchReader> reader) {
auto batch_it = MakeIteratorFromReader(reader);
auto fragment =
std::make_shared<OneShotFragment>(reader->schema(), std::move(batch_it));
return std::make_shared<ScannerBuilder>(reader->schema(), std::move(fragment),
std::make_shared<ScanOptions>());
}
const std::shared_ptr<Schema>& ScannerBuilder::schema() const {
return scan_options_->dataset_schema;
}
const std::shared_ptr<Schema>& ScannerBuilder::projected_schema() const {
return scan_options_->projected_schema;
}
Status ScannerBuilder::Project(std::vector<std::string> columns) {
ARROW_ASSIGN_OR_RAISE(
auto projection,
ProjectionDescr::FromNames(std::move(columns), *scan_options_->dataset_schema,
scan_options_->add_augmented_fields));
SetProjection(scan_options_.get(), std::move(projection));
return Status::OK();
}
Status ScannerBuilder::Project(std::vector<compute::Expression> exprs,
std::vector<std::string> names) {
ARROW_ASSIGN_OR_RAISE(auto projection, ProjectionDescr::FromExpressions(
std::move(exprs), std::move(names),
*scan_options_->dataset_schema));
SetProjection(scan_options_.get(), std::move(projection));
return Status::OK();
}
Status ScannerBuilder::Filter(const compute::Expression& filter) {
for (const auto& ref : FieldsInExpression(filter)) {
RETURN_NOT_OK(ref.FindOne(*scan_options_->dataset_schema));
}
ARROW_ASSIGN_OR_RAISE(scan_options_->filter,
filter.Bind(*scan_options_->dataset_schema));
return Status::OK();
}
Status ScannerBuilder::UseThreads(bool use_threads) {
scan_options_->use_threads = use_threads;
return Status::OK();
}
Status ScannerBuilder::BatchSize(int64_t batch_size) {
if (batch_size <= 0) {
return Status::Invalid("BatchSize must be greater than 0, got ", batch_size);
}
scan_options_->batch_size = batch_size;
return Status::OK();
}
Status ScannerBuilder::BatchReadahead(int32_t batch_readahead) {
if (batch_readahead < 0) {
return Status::Invalid("BatchReadahead must be greater than or equal 0, got ",
batch_readahead);
}
scan_options_->batch_readahead = batch_readahead;
return Status::OK();
}
Status ScannerBuilder::FragmentReadahead(int32_t fragment_readahead) {
if (fragment_readahead < 0) {
return Status::Invalid("FragmentReadahead must be greater than or equal 0, got ",
fragment_readahead);
}
scan_options_->fragment_readahead = fragment_readahead;
return Status::OK();
}
Status ScannerBuilder::Pool(MemoryPool* pool) {
scan_options_->pool = pool;
return Status::OK();
}
Status ScannerBuilder::FragmentScanOptions(
std::shared_ptr<dataset::FragmentScanOptions> fragment_scan_options) {
scan_options_->fragment_scan_options = std::move(fragment_scan_options);
return Status::OK();
}
Status ScannerBuilder::Backpressure(acero::BackpressureOptions backpressure) {
scan_options_->backpressure = backpressure;
return Status::OK();
}
Result<std::shared_ptr<ScanOptions>> ScannerBuilder::GetScanOptions() {
if (!scan_options_->projection.IsBound()) {
RETURN_NOT_OK(Project(scan_options_->dataset_schema->field_names()));
}
return scan_options_;
}
Result<std::shared_ptr<Scanner>> ScannerBuilder::Finish() {
ARROW_ASSIGN_OR_RAISE(auto scan_options, GetScanOptions());
return std::make_shared<AsyncScanner>(dataset_, scan_options);
}
namespace {
Result<acero::ExecNode*> MakeScanNode(acero::ExecPlan* plan,
std::vector<acero::ExecNode*> inputs,
const acero::ExecNodeOptions& options) {
const auto& scan_node_options = checked_cast<const ScanNodeOptions&>(options);
auto scan_options = scan_node_options.scan_options;