-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
table.pxi
6511 lines (5551 loc) · 199 KB
/
table.pxi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from cpython.pycapsule cimport PyCapsule_CheckExact, PyCapsule_GetPointer, PyCapsule_New
import warnings
from cython import sizeof
cdef class ChunkedArray(_PandasConvertible):
"""
An array-like composed from a (possibly empty) collection of pyarrow.Arrays
Warnings
--------
Do not call this class's constructor directly.
Examples
--------
To construct a ChunkedArray object use :func:`pyarrow.chunked_array`:
>>> import pyarrow as pa
>>> pa.chunked_array([], type=pa.int8())
<pyarrow.lib.ChunkedArray object at ...>
[
...
]
>>> pa.chunked_array([[2, 2, 4], [4, 5, 100]])
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4
],
[
4,
5,
100
]
]
>>> isinstance(pa.chunked_array([[2, 2, 4], [4, 5, 100]]), pa.ChunkedArray)
True
"""
def __cinit__(self):
self.chunked_array = NULL
self._init_is_cpu = False
def __init__(self):
raise TypeError("Do not call ChunkedArray's constructor directly, use "
"`chunked_array` function instead.")
cdef void init(self, const shared_ptr[CChunkedArray]& chunked_array):
self.sp_chunked_array = chunked_array
self.chunked_array = chunked_array.get()
def __reduce__(self):
self._assert_cpu()
return chunked_array, (self.chunks, self.type)
@property
def data(self):
import warnings
warnings.warn("Calling .data on ChunkedArray is provided for "
"compatibility after Column was removed, simply drop "
"this attribute", FutureWarning)
return self
@property
def type(self):
"""
Return data type of a ChunkedArray.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs.type
DataType(int64)
"""
return pyarrow_wrap_data_type(self.sp_chunked_array.get().type())
def length(self):
"""
Return length of a ChunkedArray.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs.length()
6
"""
return self.chunked_array.length()
def __len__(self):
return self.length()
def __repr__(self):
type_format = object.__repr__(self)
return '{0}\n{1}'.format(type_format, str(self))
def to_string(self, *, int indent=0, int window=5, int container_window=2,
c_bool skip_new_lines=False):
"""
Render a "pretty-printed" string representation of the ChunkedArray
Parameters
----------
indent : int
How much to indent right the content of the array,
by default ``0``.
window : int
How many items to preview within each chunk at the begin and end
of the chunk when the chunk is bigger than the window.
The other elements will be ellipsed.
container_window : int
How many chunks to preview at the begin and end
of the array when the array is bigger than the window.
The other elements will be ellipsed.
This setting also applies to list columns.
skip_new_lines : bool
If the array should be rendered as a single line of text
or if each element should be on its own line.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs.to_string(skip_new_lines=True)
'[[2,2,4],[4,5,100]]'
"""
cdef:
c_string result
PrettyPrintOptions options
with nogil:
options = PrettyPrintOptions(indent, window)
options.skip_new_lines = skip_new_lines
options.container_window = container_window
check_status(
PrettyPrint(
deref(self.chunked_array),
options,
&result
)
)
return frombytes(result, safe=True)
def format(self, **kwargs):
"""
DEPRECATED, use pyarrow.ChunkedArray.to_string
Parameters
----------
**kwargs : dict
Returns
-------
str
"""
import warnings
warnings.warn('ChunkedArray.format is deprecated, '
'use ChunkedArray.to_string')
return self.to_string(**kwargs)
def __str__(self):
return self.to_string()
def validate(self, *, full=False):
"""
Perform validation checks. An exception is raised if validation fails.
By default only cheap validation checks are run. Pass `full=True`
for thorough validation checks (potentially O(n)).
Parameters
----------
full : bool, default False
If True, run expensive checks, otherwise cheap checks only.
Raises
------
ArrowInvalid
"""
if full:
self._assert_cpu()
with nogil:
check_status(self.sp_chunked_array.get().ValidateFull())
else:
with nogil:
check_status(self.sp_chunked_array.get().Validate())
@property
def null_count(self):
"""
Number of null entries
Returns
-------
int
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]])
>>> n_legs.null_count
1
"""
self._assert_cpu()
return self.chunked_array.null_count()
@property
def nbytes(self):
"""
Total number of bytes consumed by the elements of the chunked array.
In other words, the sum of bytes from all buffer ranges referenced.
Unlike `get_total_buffer_size` this method will account for array
offsets.
If buffers are shared between arrays then the shared
portion will only be counted multiple times.
The dictionary of dictionary arrays will always be counted in their
entirety even if the array only references a portion of the dictionary.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]])
>>> n_legs.nbytes
49
"""
self._assert_cpu()
cdef:
CResult[int64_t] c_res_buffer
with nogil:
c_res_buffer = ReferencedBufferSize(deref(self.chunked_array))
size = GetResultValue(c_res_buffer)
return size
def get_total_buffer_size(self):
"""
The sum of bytes in each buffer referenced by the chunked array.
An array may only reference a portion of a buffer.
This method will overestimate in this case and return the
byte size of the entire buffer.
If a buffer is referenced multiple times then it will
only be counted once.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]])
>>> n_legs.get_total_buffer_size()
49
"""
self._assert_cpu()
cdef:
int64_t total_buffer_size
total_buffer_size = TotalBufferSize(deref(self.chunked_array))
return total_buffer_size
def __sizeof__(self):
return super(ChunkedArray, self).__sizeof__() + self.nbytes
def __iter__(self):
for chunk in self.iterchunks():
for item in chunk:
yield item
def __getitem__(self, key):
"""
Slice or return value at given index
Parameters
----------
key : integer or slice
Slices with step not equal to 1 (or None) will produce a copy
rather than a zero-copy view
Returns
-------
value : Scalar (index) or ChunkedArray (slice)
"""
self._assert_cpu()
if isinstance(key, slice):
return _normalize_slice(self, key)
return self.getitem(_normalize_index(key, self.chunked_array.length()))
cdef getitem(self, int64_t i):
self._assert_cpu()
return Scalar.wrap(GetResultValue(self.chunked_array.GetScalar(i)))
def is_null(self, *, nan_is_null=False):
"""
Return boolean array indicating the null values.
Parameters
----------
nan_is_null : bool (optional, default False)
Whether floating-point NaN values should also be considered null.
Returns
-------
array : boolean Array or ChunkedArray
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]])
>>> n_legs.is_null()
<pyarrow.lib.ChunkedArray object at ...>
[
[
false,
false,
false,
false,
true,
false
]
]
"""
self._assert_cpu()
options = _pc().NullOptions(nan_is_null=nan_is_null)
return _pc().call_function('is_null', [self], options)
def is_nan(self):
"""
Return boolean array indicating the NaN values.
Examples
--------
>>> import pyarrow as pa
>>> import numpy as np
>>> arr = pa.chunked_array([[2, np.nan, 4], [4, None, 100]])
>>> arr.is_nan()
<pyarrow.lib.ChunkedArray object at ...>
[
[
false,
true,
false,
false,
null,
false
]
]
"""
self._assert_cpu()
return _pc().is_nan(self)
def is_valid(self):
"""
Return boolean array indicating the non-null values.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]])
>>> n_legs.is_valid()
<pyarrow.lib.ChunkedArray object at ...>
[
[
true,
true,
true
],
[
true,
false,
true
]
]
"""
self._assert_cpu()
return _pc().is_valid(self)
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def fill_null(self, fill_value):
"""
Replace each null element in values with fill_value.
See :func:`pyarrow.compute.fill_null` for full usage.
Parameters
----------
fill_value : any
The replacement value for null entries.
Returns
-------
result : Array or ChunkedArray
A new array with nulls replaced by the given value.
Examples
--------
>>> import pyarrow as pa
>>> fill_value = pa.scalar(5, type=pa.int8())
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, None, 100]])
>>> n_legs.fill_null(fill_value)
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4,
4,
5,
100
]
]
"""
self._assert_cpu()
return _pc().fill_null(self, fill_value)
def equals(self, ChunkedArray other):
"""
Return whether the contents of two chunked arrays are equal.
Parameters
----------
other : pyarrow.ChunkedArray
Chunked array to compare against.
Returns
-------
are_equal : bool
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> animals = pa.chunked_array((
... ["Flamingo", "Parrot", "Dog"],
... ["Horse", "Brittle stars", "Centipede"]
... ))
>>> n_legs.equals(n_legs)
True
>>> n_legs.equals(animals)
False
"""
self._assert_cpu()
if other is None:
return False
cdef:
CChunkedArray* this_arr = self.chunked_array
CChunkedArray* other_arr = other.chunked_array
c_bool result
with nogil:
result = this_arr.Equals(deref(other_arr))
return result
def _to_pandas(self, options, types_mapper=None, **kwargs):
self._assert_cpu()
return _array_like_to_pandas(self, options, types_mapper=types_mapper)
def to_numpy(self, zero_copy_only=False):
"""
Return a NumPy copy of this array (experimental).
Parameters
----------
zero_copy_only : bool, default False
Introduced for signature consistence with pyarrow.Array.to_numpy.
This must be False here since NumPy arrays' buffer must be contiguous.
Returns
-------
array : numpy.ndarray
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs.to_numpy()
array([ 2, 2, 4, 4, 5, 100])
"""
self._assert_cpu()
if np is None:
raise ImportError(
"Cannot return a numpy.ndarray if NumPy is not present")
if zero_copy_only:
raise ValueError(
"zero_copy_only must be False for pyarrow.ChunkedArray.to_numpy"
)
cdef:
PyObject* out
PandasOptions c_options
object values
c_options.to_numpy = True
with nogil:
check_status(
ConvertChunkedArrayToPandas(
c_options,
self.sp_chunked_array,
self,
&out
)
)
# wrap_array_output uses pandas to convert to Categorical, here
# always convert to numpy array
values = PyObject_to_object(out)
if isinstance(values, dict):
values = np.take(values['dictionary'], values['indices'])
return values
def __array__(self, dtype=None, copy=None):
self._assert_cpu()
if copy is False:
raise ValueError(
"Unable to avoid a copy while creating a numpy array as requested "
"(converting a pyarrow.ChunkedArray always results in a copy).\n"
"If using `np.array(obj, copy=False)` replace it with "
"`np.asarray(obj)` to allow a copy when needed"
)
# 'copy' can further be ignored because to_numpy() already returns a copy
values = self.to_numpy()
if dtype is None:
return values
return values.astype(dtype, copy=False)
def cast(self, object target_type=None, safe=None, options=None):
"""
Cast array values to another data type
See :func:`pyarrow.compute.cast` for usage.
Parameters
----------
target_type : DataType, None
Type to cast array to.
safe : boolean, default True
Whether to check for conversion errors such as overflow.
options : CastOptions, default None
Additional checks pass by CastOptions
Returns
-------
cast : Array or ChunkedArray
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs.type
DataType(int64)
Change the data type of an array:
>>> n_legs_seconds = n_legs.cast(pa.duration('s'))
>>> n_legs_seconds.type
DurationType(duration[s])
"""
self._assert_cpu()
return _pc().cast(self, target_type, safe=safe, options=options)
def dictionary_encode(self, null_encoding='mask'):
"""
Compute dictionary-encoded representation of array.
See :func:`pyarrow.compute.dictionary_encode` for full usage.
Parameters
----------
null_encoding : str, default "mask"
How to handle null entries.
Returns
-------
encoded : ChunkedArray
A dictionary-encoded version of this array.
Examples
--------
>>> import pyarrow as pa
>>> animals = pa.chunked_array((
... ["Flamingo", "Parrot", "Dog"],
... ["Horse", "Brittle stars", "Centipede"]
... ))
>>> animals.dictionary_encode()
<pyarrow.lib.ChunkedArray object at ...>
[
...
-- dictionary:
[
"Flamingo",
"Parrot",
"Dog",
"Horse",
"Brittle stars",
"Centipede"
]
-- indices:
[
0,
1,
2
],
...
-- dictionary:
[
"Flamingo",
"Parrot",
"Dog",
"Horse",
"Brittle stars",
"Centipede"
]
-- indices:
[
3,
4,
5
]
]
"""
self._assert_cpu()
options = _pc().DictionaryEncodeOptions(null_encoding)
return _pc().call_function('dictionary_encode', [self], options)
def flatten(self, MemoryPool memory_pool=None):
"""
Flatten this ChunkedArray. If it has a struct type, the column is
flattened into one array per struct field.
Parameters
----------
memory_pool : MemoryPool, default None
For memory allocations, if required, otherwise use default pool
Returns
-------
result : list of ChunkedArray
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> c_arr = pa.chunked_array(n_legs.value_counts())
>>> c_arr
<pyarrow.lib.ChunkedArray object at ...>
[
-- is_valid: all not null
-- child 0 type: int64
[
2,
4,
5,
100
]
-- child 1 type: int64
[
2,
2,
1,
1
]
]
>>> c_arr.flatten()
[<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
4,
5,
100
]
], <pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
1,
1
]
]]
>>> c_arr.type
StructType(struct<values: int64, counts: int64>)
>>> n_legs.type
DataType(int64)
"""
self._assert_cpu()
cdef:
vector[shared_ptr[CChunkedArray]] flattened
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
with nogil:
flattened = GetResultValue(self.chunked_array.Flatten(pool))
return [pyarrow_wrap_chunked_array(col) for col in flattened]
def combine_chunks(self, MemoryPool memory_pool=None):
"""
Flatten this ChunkedArray into a single non-chunked array.
Parameters
----------
memory_pool : MemoryPool, default None
For memory allocations, if required, otherwise use default pool
Returns
-------
result : Array
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4
],
[
4,
5,
100
]
]
>>> n_legs.combine_chunks()
<pyarrow.lib.Int64Array object at ...>
[
2,
2,
4,
4,
5,
100
]
"""
self._assert_cpu()
if self.num_chunks == 0:
return array([], type=self.type)
else:
return concat_arrays(self.chunks)
def unique(self):
"""
Compute distinct elements in array
Returns
-------
pyarrow.Array
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4
],
[
4,
5,
100
]
]
>>> n_legs.unique()
<pyarrow.lib.Int64Array object at ...>
[
2,
4,
5,
100
]
"""
self._assert_cpu()
return _pc().call_function('unique', [self])
def value_counts(self):
"""
Compute counts of unique elements in array.
Returns
-------
An array of <input type "Values", int64_t "Counts"> structs
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4
],
[
4,
5,
100
]
]
>>> n_legs.value_counts()
<pyarrow.lib.StructArray object at ...>
-- is_valid: all not null
-- child 0 type: int64
[
2,
4,
5,
100
]
-- child 1 type: int64
[
2,
2,
1,
1
]
"""
self._assert_cpu()
return _pc().call_function('value_counts', [self])
def slice(self, offset=0, length=None):
"""
Compute zero-copy slice of this ChunkedArray
Parameters
----------
offset : int, default 0
Offset from start of array to slice
length : int, default None
Length of slice (default is until end of batch starting from
offset)
Returns
-------
sliced : ChunkedArray
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4
],
[
4,
5,
100
]
]
>>> n_legs.slice(2,2)
<pyarrow.lib.ChunkedArray object at ...>
[
[
4
],
[
4
]
]
"""
cdef shared_ptr[CChunkedArray] result
if offset < 0:
raise IndexError('Offset must be non-negative')
offset = min(len(self), offset)
if length is None:
result = self.chunked_array.Slice(offset)
else:
result = self.chunked_array.Slice(offset, length)
return pyarrow_wrap_chunked_array(result)
def filter(self, mask, object null_selection_behavior="drop"):
"""
Select values from the chunked array.
See :func:`pyarrow.compute.filter` for full usage.
Parameters
----------
mask : Array or array-like
The boolean mask to filter the chunked array with.
null_selection_behavior : str, default "drop"
How nulls in the mask should be handled.
Returns
-------
filtered : Array or ChunkedArray
An array of the same type, with only the elements selected by
the boolean mask.
Examples
--------
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
2,
4
],
[
4,
5,
100
]
]
>>> mask = pa.array([True, False, None, True, False, True])
>>> n_legs.filter(mask)
<pyarrow.lib.ChunkedArray object at ...>
[
[
2
],
[
4,
100
]
]
>>> n_legs.filter(mask, null_selection_behavior="emit_null")
<pyarrow.lib.ChunkedArray object at ...>
[
[
2,
null
],
[
4,
100
]
]
"""
self._assert_cpu()
return _pc().filter(self, mask, null_selection_behavior)
def index(self, value, start=None, end=None, *, memory_pool=None):
"""
Find the first index of a value.
See :func:`pyarrow.compute.index` for full usage.
Parameters
----------
value : Scalar or object
The value to look for in the array.
start : int, optional
The start index where to look for `value`.
end : int, optional
The end index where to look for `value`.
memory_pool : MemoryPool, optional