-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
xxh3_memo_table.go
425 lines (372 loc) · 13.3 KB
/
xxh3_memo_table.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package hashing provides utilities for and an implementation of a hash
// table which is more performant than the default go map implementation
// by leveraging xxh3 and some custom hash functions.
package hashing
import (
"bytes"
"math"
"reflect"
"unsafe"
"github.com/apache/arrow/go/v13/parquet"
)
//go:generate go run ../../arrow/_tools/tmpl/main.go -i -data=types.tmpldata xxh3_memo_table.gen.go.tmpl
type TypeTraits interface {
BytesRequired(n int) int
}
// MemoTable interface for hash tables and dictionary encoding.
//
// Values will remember the order they are inserted to generate a valid
// dictionary.
type MemoTable interface {
TypeTraits() TypeTraits
// Reset drops everything in the table allowing it to be reused
Reset()
// Size returns the current number of unique values stored in
// the table, including whether or not a null value has been
// inserted via GetOrInsertNull.
Size() int
// GetOrInsert returns the index of the table the specified value is,
// and a boolean indicating whether or not the value was found in
// the table (if false, the value was inserted). An error is returned
// if val is not the appropriate type for the table.
GetOrInsert(val interface{}) (idx int, existed bool, err error)
// GetOrInsertNull returns the index of the null value in the table,
// inserting one if it hasn't already been inserted. It returns a boolean
// indicating if the null value already existed or not in the table.
GetOrInsertNull() (idx int, existed bool)
// GetNull returns the index of the null value in the table, but does not
// insert one if it doesn't already exist. Will return -1 if it doesn't exist
// indicated by a false value for the boolean.
GetNull() (idx int, exists bool)
// WriteOut copys the unique values of the memotable out to the byte slice
// provided. Must have allocated enough bytes for all the values.
WriteOut(out []byte)
// WriteOutSubset is like WriteOut, but only writes a subset of values
// starting with the index offset.
WriteOutSubset(offset int, out []byte)
}
type NumericMemoTable interface {
MemoTable
WriteOutLE(out []byte)
WriteOutSubsetLE(offset int, out []byte)
}
const (
sentinel uint64 = 0
loadFactor int64 = 2
)
func max(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
var isNan32Cmp = func(v float32) bool { return math.IsNaN(float64(v)) }
// KeyNotFound is the constant returned by memo table functions when a key isn't found in the table
const KeyNotFound = -1
type BinaryBuilderIFace interface {
Reserve(int)
ReserveData(int)
Retain()
Resize(int)
ResizeData(int)
Release()
DataLen() int
Value(int) []byte
Len() int
AppendNull()
AppendString(string)
Append([]byte)
}
// BinaryMemoTable is our hashtable for binary data using the BinaryBuilder
// to construct the actual data in an easy to pass around way with minimal copies
// while using a hash table to keep track of the indexes into the dictionary that
// is created as we go.
type BinaryMemoTable struct {
tbl *Int32HashTable
builder BinaryBuilderIFace
nullIdx int
}
// NewBinaryMemoTable returns a hash table for Binary data, the passed in allocator will
// be utilized for the BinaryBuilder, if nil then memory.DefaultAllocator will be used.
// initial and valuesize can be used to pre-allocate the table to reduce allocations. With
// initial being the initial number of entries to allocate for and valuesize being the starting
// amount of space allocated for writing the actual binary data.
func NewBinaryMemoTable(initial, valuesize int, bldr BinaryBuilderIFace) *BinaryMemoTable {
bldr.Reserve(int(initial))
datasize := valuesize
if datasize <= 0 {
datasize = initial * 4
}
bldr.ReserveData(datasize)
return &BinaryMemoTable{tbl: NewInt32HashTable(uint64(initial)), builder: bldr, nullIdx: KeyNotFound}
}
type unimplementedtraits struct{}
func (unimplementedtraits) BytesRequired(int) int { panic("unimplemented") }
func (BinaryMemoTable) TypeTraits() TypeTraits {
return unimplementedtraits{}
}
// Reset dumps all of the data in the table allowing it to be reutilized.
func (s *BinaryMemoTable) Reset() {
s.tbl.Reset(32)
s.builder.Resize(0)
s.builder.ResizeData(0)
s.builder.Reserve(int(32))
s.builder.ReserveData(int(32) * 4)
s.nullIdx = KeyNotFound
}
// GetNull returns the index of a null that has been inserted into the table or
// KeyNotFound. The bool returned will be true if there was a null inserted into
// the table, and false otherwise.
func (s *BinaryMemoTable) GetNull() (int, bool) {
return int(s.nullIdx), s.nullIdx != KeyNotFound
}
// Size returns the current size of the memo table including the null value
// if one has been inserted.
func (s *BinaryMemoTable) Size() int {
sz := int(s.tbl.size)
if _, ok := s.GetNull(); ok {
sz++
}
return sz
}
// helper function to easily return a byte slice for any given value
// regardless of the type if it's a []byte, parquet.ByteArray,
// parquet.FixedLenByteArray or string.
func (BinaryMemoTable) valAsByteSlice(val interface{}) []byte {
switch v := val.(type) {
case []byte:
return v
case parquet.ByteArray:
return *(*[]byte)(unsafe.Pointer(&v))
case parquet.FixedLenByteArray:
return *(*[]byte)(unsafe.Pointer(&v))
case string:
var out []byte
h := (*reflect.StringHeader)(unsafe.Pointer(&v))
s := (*reflect.SliceHeader)(unsafe.Pointer(&out))
s.Data = h.Data
s.Len = h.Len
s.Cap = h.Len
return out
default:
panic("invalid type for binarymemotable")
}
}
// helper function to get the hash value regardless of the underlying binary type
func (BinaryMemoTable) getHash(val interface{}) uint64 {
switch v := val.(type) {
case string:
return hashString(v, 0)
case []byte:
return Hash(v, 0)
case parquet.ByteArray:
return Hash(*(*[]byte)(unsafe.Pointer(&v)), 0)
case parquet.FixedLenByteArray:
return Hash(*(*[]byte)(unsafe.Pointer(&v)), 0)
default:
panic("invalid type for binarymemotable")
}
}
// helper function to append the given value to the builder regardless
// of the underlying binary type.
func (b *BinaryMemoTable) appendVal(val interface{}) {
switch v := val.(type) {
case string:
b.builder.AppendString(v)
case []byte:
b.builder.Append(v)
case parquet.ByteArray:
b.builder.Append(*(*[]byte)(unsafe.Pointer(&v)))
case parquet.FixedLenByteArray:
b.builder.Append(*(*[]byte)(unsafe.Pointer(&v)))
}
}
func (b *BinaryMemoTable) lookup(h uint64, val []byte) (*entryInt32, bool) {
return b.tbl.Lookup(h, func(i int32) bool {
return bytes.Equal(val, b.builder.Value(int(i)))
})
}
// Get returns the index of the specified value in the table or KeyNotFound,
// and a boolean indicating whether it was found in the table.
func (b *BinaryMemoTable) Get(val interface{}) (int, bool) {
if p, ok := b.lookup(b.getHash(val), b.valAsByteSlice(val)); ok {
return int(p.payload.val), ok
}
return KeyNotFound, false
}
// GetOrInsert returns the index of the given value in the table, if not found
// it is inserted into the table. The return value 'found' indicates whether the value
// was found in the table (true) or inserted (false) along with any possible error.
func (b *BinaryMemoTable) GetOrInsert(val interface{}) (idx int, found bool, err error) {
h := b.getHash(val)
p, found := b.lookup(h, b.valAsByteSlice(val))
if found {
idx = int(p.payload.val)
} else {
idx = b.Size()
b.appendVal(val)
b.tbl.Insert(p, h, int32(idx), -1)
}
return
}
// GetOrInsertNull retrieves the index of a null in the table or inserts
// null into the table, returning the index and a boolean indicating if it was
// found in the table (true) or was inserted (false).
func (b *BinaryMemoTable) GetOrInsertNull() (idx int, found bool) {
idx, found = b.GetNull()
if !found {
idx = b.Size()
b.nullIdx = idx
b.builder.AppendNull()
}
return
}
func (b *BinaryMemoTable) Value(i int) []byte {
return b.builder.Value(i)
}
// helper function to get the offset into the builder data for a given
// index value.
func (b *BinaryMemoTable) findOffset(idx int) uintptr {
if b.builder.DataLen() == 0 {
// only empty strings, short circuit
return 0
}
val := b.builder.Value(idx)
for len(val) == 0 {
idx++
if idx >= b.builder.Len() {
break
}
val = b.builder.Value(idx)
}
if len(val) != 0 {
return uintptr(unsafe.Pointer(&val[0]))
}
return uintptr(b.builder.DataLen()) + b.findOffset(0)
}
// CopyOffsets copies the list of offsets into the passed in slice, the offsets
// being the start and end values of the underlying allocated bytes in the builder
// for the individual values of the table. out should be at least sized to Size()+1
func (b *BinaryMemoTable) CopyOffsets(out []int32) {
b.CopyOffsetsSubset(0, out)
}
// CopyOffsetsSubset is like CopyOffsets but instead of copying all of the offsets,
// it gets a subset of the offsets in the table starting at the index provided by "start".
func (b *BinaryMemoTable) CopyOffsetsSubset(start int, out []int32) {
if b.builder.Len() <= start {
return
}
first := b.findOffset(0)
delta := b.findOffset(start)
sz := b.Size()
for i := start; i < sz; i++ {
offset := int32(b.findOffset(i) - delta)
out[i-start] = offset
}
out[sz-start] = int32(b.builder.DataLen() - (int(delta) - int(first)))
}
// CopyLargeOffsets copies the list of offsets into the passed in slice, the offsets
// being the start and end values of the underlying allocated bytes in the builder
// for the individual values of the table. out should be at least sized to Size()+1
func (b *BinaryMemoTable) CopyLargeOffsets(out []int64) {
b.CopyLargeOffsetsSubset(0, out)
}
// CopyLargeOffsetsSubset is like CopyOffsets but instead of copying all of the offsets,
// it gets a subset of the offsets in the table starting at the index provided by "start".
func (b *BinaryMemoTable) CopyLargeOffsetsSubset(start int, out []int64) {
if b.builder.Len() <= start {
return
}
first := b.findOffset(0)
delta := b.findOffset(start)
sz := b.Size()
for i := start; i < sz; i++ {
offset := int64(b.findOffset(i) - delta)
out[i-start] = offset
}
out[sz-start] = int64(b.builder.DataLen() - (int(delta) - int(first)))
}
// CopyValues copies the raw binary data bytes out, out should be a []byte
// with at least ValuesSize bytes allocated to copy into.
func (b *BinaryMemoTable) CopyValues(out interface{}) {
b.CopyValuesSubset(0, out)
}
// CopyValuesSubset copies the raw binary data bytes out starting with the value
// at the index start, out should be a []byte with at least ValuesSize bytes allocated
func (b *BinaryMemoTable) CopyValuesSubset(start int, out interface{}) {
if b.builder.Len() <= start {
return
}
var (
first = b.findOffset(0)
offset = b.findOffset(int(start))
length = b.builder.DataLen() - int(offset-first)
)
outval := out.([]byte)
copy(outval, b.builder.Value(start)[0:length])
}
func (b *BinaryMemoTable) WriteOut(out []byte) {
b.CopyValues(out)
}
func (b *BinaryMemoTable) WriteOutSubset(start int, out []byte) {
b.CopyValuesSubset(start, out)
}
// CopyFixedWidthValues exists to cope with the fact that the table doesn't keep
// track of the fixed width when inserting the null value the databuffer holds a
// zero length byte slice for the null value (if found)
func (b *BinaryMemoTable) CopyFixedWidthValues(start, width int, out []byte) {
if start >= b.Size() {
return
}
null, exists := b.GetNull()
if !exists || null < start {
// nothing to skip, proceed as usual
b.CopyValuesSubset(start, out)
return
}
var (
leftOffset = b.findOffset(start)
nullOffset = b.findOffset(null)
leftSize = nullOffset - leftOffset
rightOffset = leftOffset + uintptr(b.ValuesSize())
)
if leftSize > 0 {
copy(out, b.builder.Value(start)[0:leftSize])
}
rightSize := rightOffset - nullOffset
if rightSize > 0 {
// skip the null fixed size value
copy(out[int(leftSize)+width:], b.builder.Value(null + 1)[0:rightSize])
}
}
// VisitValues exists to run the visitFn on each value currently in the hash table.
func (b *BinaryMemoTable) VisitValues(start int, visitFn func([]byte)) {
for i := int(start); i < b.Size(); i++ {
visitFn(b.builder.Value(i))
}
}
// Release is used to tell the underlying builder that it can release the memory allocated
// when the reference count reaches 0, this is safe to be called from multiple goroutines
// simultaneously
func (b *BinaryMemoTable) Release() { b.builder.Release() }
// Retain increases the ref count, it is safe to call it from multiple goroutines
// simultaneously.
func (b *BinaryMemoTable) Retain() { b.builder.Retain() }
// ValuesSize returns the current total size of all the raw bytes that have been inserted
// into the memotable so far.
func (b *BinaryMemoTable) ValuesSize() int { return b.builder.DataLen() }