-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy path_csv.pyx
1543 lines (1317 loc) · 53.5 KB
/
_csv.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# cython: profile=False
# distutils: language = c++
# cython: language_level = 3
from cython.operator cimport dereference as deref
from collections import namedtuple
from collections.abc import Mapping
from pyarrow.includes.common cimport *
from pyarrow.includes.libarrow cimport *
from pyarrow.includes.libarrow_python cimport (MakeInvalidRowHandler,
PyInvalidRowCallback)
from pyarrow.lib cimport (check_status, Field, MemoryPool, Schema,
RecordBatchReader, ensure_type,
maybe_unbox_memory_pool, get_input_stream,
get_writer, native_transcoding_input_stream,
pyarrow_unwrap_batch, pyarrow_unwrap_schema,
pyarrow_unwrap_table, pyarrow_wrap_schema,
pyarrow_wrap_table, pyarrow_wrap_data_type,
pyarrow_unwrap_data_type, Table, RecordBatch,
StopToken, _CRecordBatchWriter)
from pyarrow.lib import frombytes, tobytes, SignalStopHandler
cdef unsigned char _single_char(s) except 0:
val = ord(s)
if val == 0 or val > 127:
raise ValueError("Expecting an ASCII character")
return <unsigned char> val
_InvalidRow = namedtuple(
"_InvalidRow", ("expected_columns", "actual_columns", "number", "text"),
module=__name__)
class InvalidRow(_InvalidRow):
"""
Description of an invalid row in a CSV file.
Parameters
----------
expected_columns : int
The expected number of columns in the row.
actual_columns : int
The actual number of columns in the row.
number : int or None
The physical row number if known, otherwise None.
text : str
The contents of the row.
"""
__slots__ = ()
cdef CInvalidRowResult _handle_invalid_row(
handler, const CCSVInvalidRow& c_row) except CInvalidRowResult_Error:
# A negative row number means undetermined (because of parallel reading)
row_number = c_row.number if c_row.number >= 0 else None
row = InvalidRow(c_row.expected_columns, c_row.actual_columns,
row_number, frombytes(<c_string> c_row.text))
result = handler(row)
if result == 'error':
return CInvalidRowResult_Error
elif result == 'skip':
return CInvalidRowResult_Skip
else:
raise ValueError("Invalid return value for invalid row handler: "
f"expected 'error' or 'skip', got {result!r}")
cdef class ReadOptions(_Weakrefable):
"""
Options for reading CSV files.
Parameters
----------
use_threads : bool, optional (default True)
Whether to use multiple threads to accelerate reading
block_size : int, optional
How much bytes to process at a time from the input stream.
This will determine multi-threading granularity as well as
the size of individual record batches or table chunks.
Minimum valid value for block size is 1
skip_rows : int, optional (default 0)
The number of rows to skip before the column names (if any)
and the CSV data.
skip_rows_after_names : int, optional (default 0)
The number of rows to skip after the column names.
This number can be larger than the number of rows in one
block, and empty rows are counted.
The order of application is as follows:
- `skip_rows` is applied (if non-zero);
- column names are read (unless `column_names` is set);
- `skip_rows_after_names` is applied (if non-zero).
column_names : list, optional
The column names of the target table. If empty, fall back on
`autogenerate_column_names`.
autogenerate_column_names : bool, optional (default False)
Whether to autogenerate column names if `column_names` is empty.
If true, column names will be of the form "f0", "f1"...
If false, column names will be read from the first CSV row
after `skip_rows`.
encoding : str, optional (default 'utf8')
The character encoding of the CSV data. Columns that cannot
decode using this encoding can still be read as Binary.
Examples
--------
Defining an example data:
>>> import io
>>> s = "1,2,3\\nFlamingo,2,2022-03-01\\nHorse,4,2022-03-02\\nBrittle stars,5,2022-03-03\\nCentipede,100,2022-03-04"
>>> print(s)
1,2,3
Flamingo,2,2022-03-01
Horse,4,2022-03-02
Brittle stars,5,2022-03-03
Centipede,100,2022-03-04
Ignore the first numbered row and substitute it with defined
or autogenerated column names:
>>> from pyarrow import csv
>>> read_options = csv.ReadOptions(
... column_names=["animals", "n_legs", "entry"],
... skip_rows=1)
>>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options)
pyarrow.Table
animals: string
n_legs: int64
entry: date32[day]
----
animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
n_legs: [[2,4,5,100]]
entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
>>> read_options = csv.ReadOptions(autogenerate_column_names=True,
... skip_rows=1)
>>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options)
pyarrow.Table
f0: string
f1: int64
f2: date32[day]
----
f0: [["Flamingo","Horse","Brittle stars","Centipede"]]
f1: [[2,4,5,100]]
f2: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
Remove the first 2 rows of the data:
>>> read_options = csv.ReadOptions(skip_rows_after_names=2)
>>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options)
pyarrow.Table
1: string
2: int64
3: date32[day]
----
1: [["Brittle stars","Centipede"]]
2: [[5,100]]
3: [[2022-03-03,2022-03-04]]
"""
# Avoid mistakingly creating attributes
__slots__ = ()
# __init__() is not called when unpickling, initialize storage here
def __cinit__(self, *argw, **kwargs):
self.options.reset(new CCSVReadOptions(CCSVReadOptions.Defaults()))
def __init__(self, *, use_threads=None, block_size=None, skip_rows=None,
skip_rows_after_names=None, column_names=None,
autogenerate_column_names=None, encoding='utf8'):
if use_threads is not None:
self.use_threads = use_threads
if block_size is not None:
self.block_size = block_size
if skip_rows is not None:
self.skip_rows = skip_rows
if skip_rows_after_names is not None:
self.skip_rows_after_names = skip_rows_after_names
if column_names is not None:
self.column_names = column_names
if autogenerate_column_names is not None:
self.autogenerate_column_names= autogenerate_column_names
# Python-specific option
self.encoding = encoding
@property
def use_threads(self):
"""
Whether to use multiple threads to accelerate reading.
"""
return deref(self.options).use_threads
@use_threads.setter
def use_threads(self, value):
deref(self.options).use_threads = value
@property
def block_size(self):
"""
How much bytes to process at a time from the input stream.
This will determine multi-threading granularity as well as
the size of individual record batches or table chunks.
"""
return deref(self.options).block_size
@block_size.setter
def block_size(self, value):
deref(self.options).block_size = value
@property
def skip_rows(self):
"""
The number of rows to skip before the column names (if any)
and the CSV data.
See `skip_rows_after_names` for interaction description
"""
return deref(self.options).skip_rows
@skip_rows.setter
def skip_rows(self, value):
deref(self.options).skip_rows = value
@property
def skip_rows_after_names(self):
"""
The number of rows to skip after the column names.
This number can be larger than the number of rows in one
block, and empty rows are counted.
The order of application is as follows:
- `skip_rows` is applied (if non-zero);
- column names are read (unless `column_names` is set);
- `skip_rows_after_names` is applied (if non-zero).
"""
return deref(self.options).skip_rows_after_names
@skip_rows_after_names.setter
def skip_rows_after_names(self, value):
deref(self.options).skip_rows_after_names = value
@property
def column_names(self):
"""
The column names of the target table. If empty, fall back on
`autogenerate_column_names`.
"""
return [frombytes(s) for s in deref(self.options).column_names]
@column_names.setter
def column_names(self, value):
deref(self.options).column_names.clear()
for item in value:
deref(self.options).column_names.push_back(tobytes(item))
@property
def autogenerate_column_names(self):
"""
Whether to autogenerate column names if `column_names` is empty.
If true, column names will be of the form "f0", "f1"...
If false, column names will be read from the first CSV row
after `skip_rows`.
"""
return deref(self.options).autogenerate_column_names
@autogenerate_column_names.setter
def autogenerate_column_names(self, value):
deref(self.options).autogenerate_column_names = value
def validate(self):
check_status(deref(self.options).Validate())
def equals(self, ReadOptions other):
"""
Parameters
----------
other : pyarrow.csv.ReadOptions
Returns
-------
bool
"""
return (
self.use_threads == other.use_threads and
self.block_size == other.block_size and
self.skip_rows == other.skip_rows and
self.skip_rows_after_names == other.skip_rows_after_names and
self.column_names == other.column_names and
self.autogenerate_column_names ==
other.autogenerate_column_names and
self.encoding == other.encoding
)
@staticmethod
cdef ReadOptions wrap(CCSVReadOptions options):
out = ReadOptions()
out.options.reset(new CCSVReadOptions(move(options)))
out.encoding = 'utf8' # No way to know this
return out
def __getstate__(self):
return (self.use_threads, self.block_size, self.skip_rows,
self.column_names, self.autogenerate_column_names,
self.encoding, self.skip_rows_after_names)
def __setstate__(self, state):
(self.use_threads, self.block_size, self.skip_rows,
self.column_names, self.autogenerate_column_names,
self.encoding, self.skip_rows_after_names) = state
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return False
cdef class ParseOptions(_Weakrefable):
"""
Options for parsing CSV files.
Parameters
----------
delimiter : 1-character string, optional (default ',')
The character delimiting individual cells in the CSV data.
quote_char : 1-character string or False, optional (default '"')
The character used optionally for quoting CSV values
(False if quoting is not allowed).
double_quote : bool, optional (default True)
Whether two quotes in a quoted CSV value denote a single quote
in the data.
escape_char : 1-character string or False, optional (default False)
The character used optionally for escaping special characters
(False if escaping is not allowed).
newlines_in_values : bool, optional (default False)
Whether newline characters are allowed in CSV values.
Setting this to True reduces the performance of multi-threaded
CSV reading.
ignore_empty_lines : bool, optional (default True)
Whether empty lines are ignored in CSV input.
If False, an empty line is interpreted as containing a single empty
value (assuming a one-column CSV file).
invalid_row_handler : callable, optional (default None)
If not None, this object is called for each CSV row that fails
parsing (because of a mismatching number of columns).
It should accept a single InvalidRow argument and return either
"skip" or "error" depending on the desired outcome.
Examples
--------
Defining an example file from bytes object:
>>> import io
>>> s = (
... "animals;n_legs;entry\\n"
... "Flamingo;2;2022-03-01\\n"
... "# Comment here:\\n"
... "Horse;4;2022-03-02\\n"
... "Brittle stars;5;2022-03-03\\n"
... "Centipede;100;2022-03-04"
... )
>>> print(s)
animals;n_legs;entry
Flamingo;2;2022-03-01
# Comment here:
Horse;4;2022-03-02
Brittle stars;5;2022-03-03
Centipede;100;2022-03-04
>>> source = io.BytesIO(s.encode())
Read the data from a file skipping rows with comments
and defining the delimiter:
>>> from pyarrow import csv
>>> def skip_comment(row):
... if row.text.startswith("# "):
... return 'skip'
... else:
... return 'error'
...
>>> parse_options = csv.ParseOptions(delimiter=";", invalid_row_handler=skip_comment)
>>> csv.read_csv(source, parse_options=parse_options)
pyarrow.Table
animals: string
n_legs: int64
entry: date32[day]
----
animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
n_legs: [[2,4,5,100]]
entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
"""
__slots__ = ()
def __cinit__(self, *argw, **kwargs):
self._invalid_row_handler = None
self.options.reset(new CCSVParseOptions(CCSVParseOptions.Defaults()))
def __init__(self, *, delimiter=None, quote_char=None, double_quote=None,
escape_char=None, newlines_in_values=None,
ignore_empty_lines=None, invalid_row_handler=None):
if delimiter is not None:
self.delimiter = delimiter
if quote_char is not None:
self.quote_char = quote_char
if double_quote is not None:
self.double_quote = double_quote
if escape_char is not None:
self.escape_char = escape_char
if newlines_in_values is not None:
self.newlines_in_values = newlines_in_values
if ignore_empty_lines is not None:
self.ignore_empty_lines = ignore_empty_lines
if invalid_row_handler is not None:
self.invalid_row_handler = invalid_row_handler
@property
def delimiter(self):
"""
The character delimiting individual cells in the CSV data.
"""
return chr(deref(self.options).delimiter)
@delimiter.setter
def delimiter(self, value):
deref(self.options).delimiter = _single_char(value)
@property
def quote_char(self):
"""
The character used optionally for quoting CSV values
(False if quoting is not allowed).
"""
if deref(self.options).quoting:
return chr(deref(self.options).quote_char)
else:
return False
@quote_char.setter
def quote_char(self, value):
if value is False:
deref(self.options).quoting = False
else:
deref(self.options).quote_char = _single_char(value)
deref(self.options).quoting = True
@property
def double_quote(self):
"""
Whether two quotes in a quoted CSV value denote a single quote
in the data.
"""
return deref(self.options).double_quote
@double_quote.setter
def double_quote(self, value):
deref(self.options).double_quote = value
@property
def escape_char(self):
"""
The character used optionally for escaping special characters
(False if escaping is not allowed).
"""
if deref(self.options).escaping:
return chr(deref(self.options).escape_char)
else:
return False
@escape_char.setter
def escape_char(self, value):
if value is False:
deref(self.options).escaping = False
else:
deref(self.options).escape_char = _single_char(value)
deref(self.options).escaping = True
@property
def newlines_in_values(self):
"""
Whether newline characters are allowed in CSV values.
Setting this to True reduces the performance of multi-threaded
CSV reading.
"""
return deref(self.options).newlines_in_values
@newlines_in_values.setter
def newlines_in_values(self, value):
deref(self.options).newlines_in_values = value
@property
def ignore_empty_lines(self):
"""
Whether empty lines are ignored in CSV input.
If False, an empty line is interpreted as containing a single empty
value (assuming a one-column CSV file).
"""
return deref(self.options).ignore_empty_lines
@property
def invalid_row_handler(self):
"""
Optional handler for invalid rows.
If not None, this object is called for each CSV row that fails
parsing (because of a mismatching number of columns).
It should accept a single InvalidRow argument and return either
"skip" or "error" depending on the desired outcome.
"""
return self._invalid_row_handler
@invalid_row_handler.setter
def invalid_row_handler(self, value):
if value is not None and not callable(value):
raise TypeError("Expected callable or None, "
f"got instance of {type(value)!r}")
self._invalid_row_handler = value
deref(self.options).invalid_row_handler = MakeInvalidRowHandler(
<function[PyInvalidRowCallback]> &_handle_invalid_row, value)
@ignore_empty_lines.setter
def ignore_empty_lines(self, value):
deref(self.options).ignore_empty_lines = value
def validate(self):
check_status(deref(self.options).Validate())
def equals(self, ParseOptions other):
"""
Parameters
----------
other : pyarrow.csv.ParseOptions
Returns
-------
bool
"""
return (
self.delimiter == other.delimiter and
self.quote_char == other.quote_char and
self.double_quote == other.double_quote and
self.escape_char == other.escape_char and
self.newlines_in_values == other.newlines_in_values and
self.ignore_empty_lines == other.ignore_empty_lines and
self._invalid_row_handler == other._invalid_row_handler
)
@staticmethod
cdef ParseOptions wrap(CCSVParseOptions options):
out = ParseOptions()
out.options.reset(new CCSVParseOptions(move(options)))
return out
def __getstate__(self):
return (self.delimiter, self.quote_char, self.double_quote,
self.escape_char, self.newlines_in_values,
self.ignore_empty_lines, self.invalid_row_handler)
def __setstate__(self, state):
(self.delimiter, self.quote_char, self.double_quote,
self.escape_char, self.newlines_in_values,
self.ignore_empty_lines, self.invalid_row_handler) = state
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return False
cdef class _ISO8601(_Weakrefable):
"""
A special object indicating ISO-8601 parsing.
"""
__slots__ = ()
def __str__(self):
return 'ISO8601'
def __eq__(self, other):
return isinstance(other, _ISO8601)
ISO8601 = _ISO8601()
cdef class ConvertOptions(_Weakrefable):
"""
Options for converting CSV data.
Parameters
----------
check_utf8 : bool, optional (default True)
Whether to check UTF8 validity of string columns.
column_types : pyarrow.Schema or dict, optional
Explicitly map column names to column types. Passing this argument
disables type inference on the defined columns.
null_values : list, optional
A sequence of strings that denote nulls in the data
(defaults are appropriate in most cases). Note that by default,
string columns are not checked for null values. To enable
null checking for those, specify ``strings_can_be_null=True``.
true_values : list, optional
A sequence of strings that denote true booleans in the data
(defaults are appropriate in most cases).
false_values : list, optional
A sequence of strings that denote false booleans in the data
(defaults are appropriate in most cases).
decimal_point : 1-character string, optional (default '.')
The character used as decimal point in floating-point and decimal
data.
strings_can_be_null : bool, optional (default False)
Whether string / binary columns can have null values.
If true, then strings in null_values are considered null for
string columns.
If false, then all strings are valid string values.
quoted_strings_can_be_null : bool, optional (default True)
Whether quoted values can be null.
If true, then strings in "null_values" are also considered null
when they appear quoted in the CSV file. Otherwise, quoted values
are never considered null.
include_columns : list, optional
The names of columns to include in the Table.
If empty, the Table will include all columns from the CSV file.
If not empty, only these columns will be included, in this order.
include_missing_columns : bool, optional (default False)
If false, columns in `include_columns` but not in the CSV file will
error out.
If true, columns in `include_columns` but not in the CSV file will
produce a column of nulls (whose type is selected using
`column_types`, or null by default).
This option is ignored if `include_columns` is empty.
auto_dict_encode : bool, optional (default False)
Whether to try to automatically dict-encode string / binary data.
If true, then when type inference detects a string or binary column,
it it dict-encoded up to `auto_dict_max_cardinality` distinct values
(per chunk), after which it switches to regular encoding.
This setting is ignored for non-inferred columns (those in
`column_types`).
auto_dict_max_cardinality : int, optional
The maximum dictionary cardinality for `auto_dict_encode`.
This value is per chunk.
timestamp_parsers : list, optional
A sequence of strptime()-compatible format strings, tried in order
when attempting to infer or convert timestamp values (the special
value ISO8601() can also be given). By default, a fast built-in
ISO-8601 parser is used.
Examples
--------
Defining an example data:
>>> import io
>>> s = (
... "animals,n_legs,entry,fast\\n"
... "Flamingo,2,01/03/2022,Yes\\n"
... "Horse,4,02/03/2022,Yes\\n"
... "Brittle stars,5,03/03/2022,No\\n"
... "Centipede,100,04/03/2022,No\\n"
... ",6,05/03/2022,"
... )
>>> print(s)
animals,n_legs,entry,fast
Flamingo,2,01/03/2022,Yes
Horse,4,02/03/2022,Yes
Brittle stars,5,03/03/2022,No
Centipede,100,04/03/2022,No
,6,05/03/2022,
Change the type of a column:
>>> import pyarrow as pa
>>> from pyarrow import csv
>>> convert_options = csv.ConvertOptions(column_types={"n_legs": pa.float64()})
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: string
n_legs: double
entry: string
fast: string
----
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
n_legs: [[2,4,5,100,6]]
entry: [["01/03/2022","02/03/2022","03/03/2022","04/03/2022","05/03/2022"]]
fast: [["Yes","Yes","No","No",""]]
Define a date parsing format to get a timestamp type column
(in case dates are not in ISO format and not converted by default):
>>> convert_options = csv.ConvertOptions(
... timestamp_parsers=["%m/%d/%Y", "%m-%d-%Y"])
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: string
n_legs: int64
entry: timestamp[s]
fast: string
----
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
n_legs: [[2,4,5,100,6]]
entry: [[2022-01-03 00:00:00,2022-02-03 00:00:00,2022-03-03 00:00:00,2022-04-03 00:00:00,2022-05-03 00:00:00]]
fast: [["Yes","Yes","No","No",""]]
Specify a subset of columns to be read:
>>> convert_options = csv.ConvertOptions(
... include_columns=["animals", "n_legs"])
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: string
n_legs: int64
----
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
n_legs: [[2,4,5,100,6]]
List additional column to be included as a null typed column:
>>> convert_options = csv.ConvertOptions(
... include_columns=["animals", "n_legs", "location"],
... include_missing_columns=True)
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: string
n_legs: int64
location: null
----
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
n_legs: [[2,4,5,100,6]]
location: [5 nulls]
Define columns as dictionary type (by default only the
string/binary columns are dictionary encoded):
>>> convert_options = csv.ConvertOptions(
... timestamp_parsers=["%m/%d/%Y", "%m-%d-%Y"],
... auto_dict_encode=True)
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: dictionary<values=string, indices=int32, ordered=0>
n_legs: int64
entry: timestamp[s]
fast: dictionary<values=string, indices=int32, ordered=0>
----
animals: [ -- dictionary:
["Flamingo","Horse","Brittle stars","Centipede",""] -- indices:
[0,1,2,3,4]]
n_legs: [[2,4,5,100,6]]
entry: [[2022-01-03 00:00:00,2022-02-03 00:00:00,2022-03-03 00:00:00,2022-04-03 00:00:00,2022-05-03 00:00:00]]
fast: [ -- dictionary:
["Yes","No",""] -- indices:
[0,0,1,1,2]]
Set upper limit for the number of categories. If the categories
is more than the limit, the conversion to dictionary will not
happen:
>>> convert_options = csv.ConvertOptions(
... include_columns=["animals"],
... auto_dict_encode=True,
... auto_dict_max_cardinality=2)
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: string
----
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
Set empty strings to missing values:
>>> convert_options = csv.ConvertOptions(include_columns=["animals", "n_legs"],
... strings_can_be_null=True)
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
animals: string
n_legs: int64
----
animals: [["Flamingo","Horse","Brittle stars","Centipede",null]]
n_legs: [[2,4,5,100,6]]
Define values to be True and False when converting a column
into a bool type:
>>> convert_options = csv.ConvertOptions(
... include_columns=["fast"],
... false_values=["No"],
... true_values=["Yes"])
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
pyarrow.Table
fast: bool
----
fast: [[true,true,false,false,null]]
"""
# Avoid mistakingly creating attributes
__slots__ = ()
def __cinit__(self, *argw, **kwargs):
self.options.reset(
new CCSVConvertOptions(CCSVConvertOptions.Defaults()))
def __init__(self, *, check_utf8=None, column_types=None, null_values=None,
true_values=None, false_values=None, decimal_point=None,
strings_can_be_null=None, quoted_strings_can_be_null=None,
include_columns=None, include_missing_columns=None,
auto_dict_encode=None, auto_dict_max_cardinality=None,
timestamp_parsers=None):
if check_utf8 is not None:
self.check_utf8 = check_utf8
if column_types is not None:
self.column_types = column_types
if null_values is not None:
self.null_values = null_values
if true_values is not None:
self.true_values = true_values
if false_values is not None:
self.false_values = false_values
if decimal_point is not None:
self.decimal_point = decimal_point
if strings_can_be_null is not None:
self.strings_can_be_null = strings_can_be_null
if quoted_strings_can_be_null is not None:
self.quoted_strings_can_be_null = quoted_strings_can_be_null
if include_columns is not None:
self.include_columns = include_columns
if include_missing_columns is not None:
self.include_missing_columns = include_missing_columns
if auto_dict_encode is not None:
self.auto_dict_encode = auto_dict_encode
if auto_dict_max_cardinality is not None:
self.auto_dict_max_cardinality = auto_dict_max_cardinality
if timestamp_parsers is not None:
self.timestamp_parsers = timestamp_parsers
@property
def check_utf8(self):
"""
Whether to check UTF8 validity of string columns.
"""
return deref(self.options).check_utf8
@check_utf8.setter
def check_utf8(self, value):
deref(self.options).check_utf8 = value
@property
def strings_can_be_null(self):
"""
Whether string / binary columns can have null values.
"""
return deref(self.options).strings_can_be_null
@strings_can_be_null.setter
def strings_can_be_null(self, value):
deref(self.options).strings_can_be_null = value
@property
def quoted_strings_can_be_null(self):
"""
Whether quoted values can be null.
"""
return deref(self.options).quoted_strings_can_be_null
@quoted_strings_can_be_null.setter
def quoted_strings_can_be_null(self, value):
deref(self.options).quoted_strings_can_be_null = value
@property
def column_types(self):
"""
Explicitly map column names to column types.
"""
d = {frombytes(item.first): pyarrow_wrap_data_type(item.second)
for item in deref(self.options).column_types}
return d
@column_types.setter
def column_types(self, value):
cdef:
shared_ptr[CDataType] typ
if isinstance(value, Mapping):
value = value.items()
deref(self.options).column_types.clear()
for item in value:
if isinstance(item, Field):
k = item.name
v = item.type
else:
k, v = item
typ = pyarrow_unwrap_data_type(ensure_type(v))
assert typ != NULL
deref(self.options).column_types[tobytes(k)] = typ
@property
def null_values(self):
"""
A sequence of strings that denote nulls in the data.
"""
return [frombytes(x) for x in deref(self.options).null_values]
@null_values.setter
def null_values(self, value):
deref(self.options).null_values = [tobytes(x) for x in value]
@property
def true_values(self):
"""
A sequence of strings that denote true booleans in the data.
"""
return [frombytes(x) for x in deref(self.options).true_values]
@true_values.setter
def true_values(self, value):
deref(self.options).true_values = [tobytes(x) for x in value]
@property
def false_values(self):
"""
A sequence of strings that denote false booleans in the data.
"""
return [frombytes(x) for x in deref(self.options).false_values]
@false_values.setter
def false_values(self, value):
deref(self.options).false_values = [tobytes(x) for x in value]
@property
def decimal_point(self):
"""
The character used as decimal point in floating-point and decimal
data.
"""
return chr(deref(self.options).decimal_point)
@decimal_point.setter
def decimal_point(self, value):
deref(self.options).decimal_point = _single_char(value)
@property
def auto_dict_encode(self):
"""
Whether to try to automatically dict-encode string / binary data.
"""
return deref(self.options).auto_dict_encode
@auto_dict_encode.setter
def auto_dict_encode(self, value):
deref(self.options).auto_dict_encode = value
@property
def auto_dict_max_cardinality(self):
"""
The maximum dictionary cardinality for `auto_dict_encode`.
This value is per chunk.
"""
return deref(self.options).auto_dict_max_cardinality
@auto_dict_max_cardinality.setter
def auto_dict_max_cardinality(self, value):
deref(self.options).auto_dict_max_cardinality = value
@property
def include_columns(self):
"""
The names of columns to include in the Table.
If empty, the Table will include all columns from the CSV file.
If not empty, only these columns will be included, in this order.
"""
return [frombytes(s) for s in deref(self.options).include_columns]
@include_columns.setter
def include_columns(self, value):
deref(self.options).include_columns.clear()
for item in value:
deref(self.options).include_columns.push_back(tobytes(item))
@property
def include_missing_columns(self):