-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
insert.rs
274 lines (240 loc) · 8.24 KB
/
insert.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Execution plan for writing data to [`DataSink`]s
use std::any::Any;
use std::fmt;
use std::fmt::Debug;
use std::sync::Arc;
use super::{
execute_input_stream, DisplayAs, DisplayFormatType, ExecutionPlan,
ExecutionPlanProperties, Partitioning, PlanProperties, SendableRecordBatchStream,
};
use crate::metrics::MetricsSet;
use crate::stream::RecordBatchStreamAdapter;
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_array::{ArrayRef, UInt64Array};
use arrow_schema::{DataType, Field, Schema};
use datafusion_common::{internal_err, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{Distribution, EquivalenceProperties};
use async_trait::async_trait;
use datafusion_physical_expr_common::sort_expr::LexRequirement;
use futures::StreamExt;
/// `DataSink` implements writing streams of [`RecordBatch`]es to
/// user defined destinations.
///
/// The `Display` impl is used to format the sink for explain plan
/// output.
#[async_trait]
pub trait DataSink: DisplayAs + Debug + Send + Sync {
/// Returns the data sink as [`Any`](std::any::Any) so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Return a snapshot of the [MetricsSet] for this
/// [DataSink].
///
/// See [ExecutionPlan::metrics()] for more details
fn metrics(&self) -> Option<MetricsSet>;
// TODO add desired input ordering
// How does this sink want its input ordered?
/// Writes the data to the sink, returns the number of values written
///
/// This method will be called exactly once during each DML
/// statement. Thus prior to return, the sink should do any commit
/// or rollback required.
async fn write_all(
&self,
data: SendableRecordBatchStream,
context: &Arc<TaskContext>,
) -> Result<u64>;
}
/// Execution plan for writing record batches to a [`DataSink`]
///
/// Returns a single row with the number of values written
#[derive(Clone)]
pub struct DataSinkExec {
/// Input plan that produces the record batches to be written.
input: Arc<dyn ExecutionPlan>,
/// Sink to which to write
sink: Arc<dyn DataSink>,
/// Schema of the sink for validating the input data
sink_schema: SchemaRef,
/// Schema describing the structure of the output data.
count_schema: SchemaRef,
/// Optional required sort order for output data.
sort_order: Option<LexRequirement>,
cache: PlanProperties,
}
impl Debug for DataSinkExec {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "DataSinkExec schema: {:?}", self.count_schema)
}
}
impl DataSinkExec {
/// Create a plan to write to `sink`
pub fn new(
input: Arc<dyn ExecutionPlan>,
sink: Arc<dyn DataSink>,
sink_schema: SchemaRef,
sort_order: Option<LexRequirement>,
) -> Self {
let count_schema = make_count_schema();
let cache = Self::create_schema(&input, count_schema);
Self {
input,
sink,
sink_schema,
count_schema: make_count_schema(),
sort_order,
cache,
}
}
/// Input execution plan
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
/// Returns insert sink
pub fn sink(&self) -> &dyn DataSink {
self.sink.as_ref()
}
/// Optional sort order for output data
pub fn sort_order(&self) -> &Option<LexRequirement> {
&self.sort_order
}
fn create_schema(
input: &Arc<dyn ExecutionPlan>,
schema: SchemaRef,
) -> PlanProperties {
let eq_properties = EquivalenceProperties::new(schema);
PlanProperties::new(
eq_properties,
Partitioning::UnknownPartitioning(1),
input.execution_mode(),
)
}
}
impl DisplayAs for DataSinkExec {
fn fmt_as(&self, t: DisplayFormatType, f: &mut fmt::Formatter) -> fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "DataSinkExec: sink=")?;
self.sink.fmt_as(t, f)
}
}
}
}
impl ExecutionPlan for DataSinkExec {
fn name(&self) -> &'static str {
"DataSinkExec"
}
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
// DataSink is responsible for dynamically partitioning its
// own input at execution time.
vec![false]
}
fn required_input_distribution(&self) -> Vec<Distribution> {
// DataSink is responsible for dynamically partitioning its
// own input at execution time, and so requires a single input partition.
vec![Distribution::SinglePartition; self.children().len()]
}
fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
// The required input ordering is set externally (e.g. by a `ListingTable`).
// Otherwise, there is no specific requirement (i.e. `sort_expr` is `None`).
vec![self.sort_order.as_ref().cloned()]
}
fn maintains_input_order(&self) -> Vec<bool> {
// Maintains ordering in the sense that the written file will reflect
// the ordering of the input. For more context, see:
//
// https://github.com/apache/datafusion/pull/6354#discussion_r1195284178
vec![true]
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.input]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(Self::new(
Arc::clone(&children[0]),
Arc::clone(&self.sink),
Arc::clone(&self.sink_schema),
self.sort_order.clone(),
)))
}
/// Execute the plan and return a stream of `RecordBatch`es for
/// the specified partition.
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
if partition != 0 {
return internal_err!("DataSinkExec can only be called on partition 0!");
}
let data = execute_input_stream(
Arc::clone(&self.input),
Arc::clone(&self.sink_schema),
0,
Arc::clone(&context),
)?;
let count_schema = Arc::clone(&self.count_schema);
let sink = Arc::clone(&self.sink);
let stream = futures::stream::once(async move {
sink.write_all(data, &context).await.map(make_count_batch)
})
.boxed();
Ok(Box::pin(RecordBatchStreamAdapter::new(
count_schema,
stream,
)))
}
/// Returns the metrics of the underlying [DataSink]
fn metrics(&self) -> Option<MetricsSet> {
self.sink.metrics()
}
}
/// Create a output record batch with a count
///
/// ```text
/// +-------+,
/// | count |,
/// +-------+,
/// | 6 |,
/// +-------+,
/// ```
fn make_count_batch(count: u64) -> RecordBatch {
let array = Arc::new(UInt64Array::from(vec![count])) as ArrayRef;
RecordBatch::try_from_iter_with_nullable(vec![("count", array, false)]).unwrap()
}
fn make_count_schema() -> SchemaRef {
// Define a schema.
Arc::new(Schema::new(vec![Field::new(
"count",
DataType::UInt64,
false,
)]))
}