-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
udaf.rs
197 lines (176 loc) · 6.61 KB
/
udaf.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! This module contains functions and structs supporting user-defined aggregate functions.
use datafusion_expr::GroupsAccumulator;
use fmt::Debug;
use std::any::Any;
use std::fmt;
use arrow::{
datatypes::Field,
datatypes::{DataType, Schema},
};
use super::{expressions::format_state_name, Accumulator, AggregateExpr};
use datafusion_common::{not_impl_err, Result};
pub use datafusion_expr::AggregateUDF;
use datafusion_physical_expr::PhysicalExpr;
use datafusion_physical_expr::aggregate::utils::down_cast_any_ref;
use std::sync::Arc;
/// Creates a physical expression of the UDAF, that includes all necessary type coercion.
/// This function errors when `args`' can't be coerced to a valid argument type of the UDAF.
pub fn create_aggregate_expr(
fun: &AggregateUDF,
input_phy_exprs: &[Arc<dyn PhysicalExpr>],
input_schema: &Schema,
name: impl Into<String>,
) -> Result<Arc<dyn AggregateExpr>> {
let input_exprs_types = input_phy_exprs
.iter()
.map(|arg| arg.data_type(input_schema))
.collect::<Result<Vec<_>>>()?;
Ok(Arc::new(AggregateFunctionExpr {
fun: fun.clone(),
args: input_phy_exprs.to_vec(),
data_type: fun.return_type(&input_exprs_types)?,
name: name.into(),
}))
}
/// Physical aggregate expression of a UDAF.
#[derive(Debug)]
pub struct AggregateFunctionExpr {
fun: AggregateUDF,
args: Vec<Arc<dyn PhysicalExpr>>,
/// Output / return type of this aggregate
data_type: DataType,
name: String,
}
impl AggregateFunctionExpr {
/// Return the `AggregateUDF` used by this `AggregateFunctionExpr`
pub fn fun(&self) -> &AggregateUDF {
&self.fun
}
}
impl AggregateExpr for AggregateFunctionExpr {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.args.clone()
}
fn state_fields(&self) -> Result<Vec<Field>> {
let fields = self
.fun
.state_type(&self.data_type)?
.iter()
.enumerate()
.map(|(i, data_type)| {
Field::new(
format_state_name(&self.name, &format!("{i}")),
data_type.clone(),
true,
)
})
.collect::<Vec<Field>>();
Ok(fields)
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
self.fun.accumulator(&self.data_type)
}
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
let accumulator = self.fun.accumulator(&self.data_type)?;
// Accumulators that have window frame startings different
// than `UNBOUNDED PRECEDING`, such as `1 PRECEEDING`, need to
// implement retract_batch method in order to run correctly
// currently in DataFusion.
//
// If this `retract_batches` is not present, there is no way
// to calculate result correctly. For example, the query
//
// ```sql
// SELECT
// SUM(a) OVER(ORDER BY a ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS sum_a
// FROM
// t
// ```
//
// 1. First sum value will be the sum of rows between `[0, 1)`,
//
// 2. Second sum value will be the sum of rows between `[0, 2)`
//
// 3. Third sum value will be the sum of rows between `[1, 3)`, etc.
//
// Since the accumulator keeps the running sum:
//
// 1. First sum we add to the state sum value between `[0, 1)`
//
// 2. Second sum we add to the state sum value between `[1, 2)`
// (`[0, 1)` is already in the state sum, hence running sum will
// cover `[0, 2)` range)
//
// 3. Third sum we add to the state sum value between `[2, 3)`
// (`[0, 2)` is already in the state sum). Also we need to
// retract values between `[0, 1)` by this way we can obtain sum
// between [1, 3) which is indeed the apropriate range.
//
// When we use `UNBOUNDED PRECEDING` in the query starting
// index will always be 0 for the desired range, and hence the
// `retract_batch` method will not be called. In this case
// having retract_batch is not a requirement.
//
// This approach is a a bit different than window function
// approach. In window function (when they use a window frame)
// they get all the desired range during evaluation.
if !accumulator.supports_retract_batch() {
return not_impl_err!(
"Aggregate can not be used as a sliding accumulator because \
`retract_batch` is not implemented: {}",
self.name
);
}
Ok(accumulator)
}
fn name(&self) -> &str {
&self.name
}
fn groups_accumulator_supported(&self) -> bool {
self.fun.groups_accumulator_supported()
}
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
self.fun.create_groups_accumulator()
}
}
impl PartialEq<dyn Any> for AggregateFunctionExpr {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.data_type == x.data_type
&& self.fun == x.fun
&& self.args.len() == x.args.len()
&& self
.args
.iter()
.zip(x.args.iter())
.all(|(this_arg, other_arg)| this_arg.eq(other_arg))
})
.unwrap_or(false)
}
}